6765000000000000 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^88 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(87) 6765000000000000 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^86 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(85) 6765000000000000 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^84 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(83) 6765000000000000 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^82 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(81) 6765000000000000 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^80 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(79) 6765000000000000 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^78 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(77) 6765000000000000 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^76 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(75) 6765000000000000 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^74 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(73) 6765000000000000 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^72 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(71) 6765000000000000 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^70 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(69) 6765000000000000 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^68 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(67) 6765000000000000 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^66 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(65) 6765000000000000 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^64 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(63) 6765000000000000 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^62 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(61) 6765000000000000 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^60 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(59) 6765000000000000 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^58 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(57) 6765000000000000 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^56 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(55) 6765000000000000 a001 615/28374454999*3461452808002^(11/12) 6765000000000000 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^54 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(53) 6765000000000000 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^52 6765000000000000 a001 6765/45537549124*817138163596^(17/19) 6765000000000000 a001 6765/45537549124*14662949395604^(17/21) 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(51) 6765000000000000 a001 6765/45537549124*192900153618^(17/18) 6765000000000000 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^50 6765000000000000 a001 6765/17393796001*14662949395604^(7/9) 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(49) 6765000000000000 a001 6765/17393796001*505019158607^(7/8) 6765000000000000 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^48 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(47) 6765000000000000 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^46 6765000000000000 a001 615/230701876*45537549124^(15/17) 6765000000000000 a001 615/230701876*312119004989^(9/11) 6765000000000000 a001 615/230701876*14662949395604^(5/7) 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(45) 6765000000000000 a001 615/230701876*192900153618^(5/6) 6765000000000000 a001 615/230701876*28143753123^(9/10) 6765000000000000 a001 615/230701876*10749957122^(15/16) 6765000000000000 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^44 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(43) 6765000000000000 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^42 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(41) 6765000000000000 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^2 6765000000000000 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^4 6765000000000000 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^6 6765000000000000 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^8 6765000000000000 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^10 6765000000000000 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^12 6765000000000000 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^14 6765000000000000 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^16 6765000000000000 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^18 6765000000000000 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^20 6765000000000000 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^22 6765000000000000 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^24 6765000000000000 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^26 6765000000000000 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^28 6765000000000000 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^30 6765000000000000 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^32 6765000000000000 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^34 6765000000000000 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^36 6765000000000000 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^38 6765000000000000 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^40 6765000000000000 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^42 6765000000000000 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^44 6765000000000000 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^46 6765000000000000 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^48 6765000000000000 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^50 6765000000000000 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^52 6765000000000000 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^54 6765000000000000 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^56 6765000000000000 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^60 6765000000000000 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^58 6765000000000000 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^59 6765000000000000 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^57 6765000000000000 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^55 6765000000000000 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^53 6765000000000000 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^51 6765000000000000 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^49 6765000000000000 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^47 6765000000000000 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^45 6765000000000000 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^43 6765000000000000 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^41 6765000000000000 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^39 6765000000000000 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^37 6765000000000000 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^35 6765000000000000 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^33 6765000000000000 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^31 6765000000000000 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^29 6765000000000000 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^27 6765000000000000 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^25 6765000000000000 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^23 6765000000000000 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^21 6765000000000000 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^19 6765000000000000 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^17 6765000000000000 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^15 6765000000000000 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^13 6765000000000000 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^11 6765000000000000 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^9 6765000000000000 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^7 6765000000000000 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^5 6765000000000000 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^3 6765000000000000 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2) 6765000000000000 a001 6765/141422324*2537720636^(13/15) 6765000000000000 a001 6765/141422324*45537549124^(13/17) 6765000000000000 a001 6765/141422324*14662949395604^(13/21) 6765000000000000 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(39) 6765000000000000 a001 6765/141422324*192900153618^(13/18) 6765000000000000 a001 6765/141422324*73681302247^(3/4) 6765000000000000 a001 6765/141422324*10749957122^(13/16) 6765000000000000 a001 6765/141422324*599074578^(13/14) 6765000000000000 a001 31622993/15127+31622993/15127*5^(1/2) 6765000000000000 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^38 6765000000000001 a001 39088169/15127*12752043^(1/17) 6765000000000002 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(37) 6765000000000002 a001 24157817/15127*141422324^(1/13) 6765000000000002 a001 24157817/15127*2537720636^(1/15) 6765000000000002 a001 24157817/15127*45537549124^(1/17) 6765000000000002 a001 24157817/15127*14662949395604^(1/21) 6765000000000002 a001 24157817/15127*(1/2+1/2*5^(1/2))^3 6765000000000002 a001 24157817/15127*192900153618^(1/18) 6765000000000002 a001 24157817/15127*10749957122^(1/16) 6765000000000002 a001 24157817/15127*599074578^(1/14) 6765000000000002 a001 24157817/15127*33385282^(1/12) 6765000000000006 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^36 6765000000000011 a001 5702887/15127*4870847^(3/16) 6765000000000013 a001 9227465/15127*20633239^(1/7) 6765000000000015 a001 615/1875749*2537720636^(7/9) 6765000000000015 a001 615/1875749*17393796001^(5/7) 6765000000000015 a001 615/1875749*312119004989^(7/11) 6765000000000015 a001 615/1875749*14662949395604^(5/9) 6765000000000015 a001 615/1875749*(1/2+1/2*5^(1/2))^35 6765000000000015 a001 615/1875749*505019158607^(5/8) 6765000000000015 a001 615/1875749*28143753123^(7/10) 6765000000000015 a001 615/1875749*599074578^(5/6) 6765000000000016 a001 615/1875749*228826127^(7/8) 6765000000000016 a001 9227465/15127*2537720636^(1/9) 6765000000000016 a001 9227465/15127*312119004989^(1/11) 6765000000000016 a001 9227465/15127*(1/2+1/2*5^(1/2))^5 6765000000000016 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^5/Lucas(20) 6765000000000016 a001 9227465/15127*28143753123^(1/10) 6765000000000016 a001 9227465/15127*228826127^(1/8) 6765000000000017 a001 39088169/15127*4870847^(1/16) 6765000000000029 a001 14930352/15127*4870847^(1/8) 6765000000000041 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^34 6765000000000105 a001 3524578/15127*20633239^(1/5) 6765000000000108 a001 6765/7881196*141422324^(11/13) 6765000000000108 a001 6765/7881196*2537720636^(11/15) 6765000000000108 a001 6765/7881196*45537549124^(11/17) 6765000000000108 a001 6765/7881196*312119004989^(3/5) 6765000000000108 a001 6765/7881196*817138163596^(11/19) 6765000000000108 a001 6765/7881196*14662949395604^(11/21) 6765000000000108 a001 6765/7881196*(1/2+1/2*5^(1/2))^33 6765000000000108 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(33) 6765000000000108 a001 6765/7881196*192900153618^(11/18) 6765000000000108 a001 6765/7881196*10749957122^(11/16) 6765000000000108 a001 6765/7881196*1568397607^(3/4) 6765000000000108 a001 6765/7881196*599074578^(11/14) 6765000000000109 a001 3524578/15127*17393796001^(1/7) 6765000000000109 a001 3524578/15127*14662949395604^(1/9) 6765000000000109 a001 3524578/15127*(1/2+1/2*5^(1/2))^7 6765000000000109 a001 3524578/15127*599074578^(1/6) 6765000000000114 a001 6765/7881196*33385282^(11/12) 6765000000000129 a001 39088169/15127*1860498^(1/15) 6765000000000197 a001 24157817/15127*1860498^(1/10) 6765000000000236 a001 311187/2161*1860498^(4/15) 6765000000000254 a001 14930352/15127*1860498^(2/15) 6765000000000285 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^32 6765000000000341 a001 9227465/15127*1860498^(1/6) 6765000000000349 a001 5702887/15127*1860498^(1/5) 6765000000000716 a001 1346269/15127*7881196^(3/11) 6765000000000746 a001 6765/3010349*(1/2+1/2*5^(1/2))^31 6765000000000746 a001 6765/3010349*9062201101803^(1/2) 6765000000000746 a001 1346269/15127*141422324^(3/13) 6765000000000746 a001 1346269/15127*2537720636^(1/5) 6765000000000746 a001 1346269/15127*45537549124^(3/17) 6765000000000746 a001 1346269/15127*817138163596^(3/19) 6765000000000746 a001 1346269/15127*14662949395604^(1/7) 6765000000000746 a001 1346269/15127*(1/2+1/2*5^(1/2))^9 6765000000000746 a001 1346269/15127*192900153618^(1/6) 6765000000000746 a001 1346269/15127*10749957122^(3/16) 6765000000000746 a001 1346269/15127*599074578^(3/14) 6765000000000748 a001 1346269/15127*33385282^(1/4) 6765000000000956 a001 39088169/15127*710647^(1/14) 6765000000001332 a001 1346269/15127*1860498^(3/10) 6765000000001907 a001 14930352/15127*710647^(1/7) 6765000000001954 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^30 6765000000002828 a001 5702887/15127*710647^(3/14) 6765000000002829 a001 832040/15127*710647^(5/14) 6765000000003457 a001 3524578/15127*710647^(1/4) 6765000000003542 a001 311187/2161*710647^(2/7) 6765000000005080 a001 514229/15127*7881196^(1/3) 6765000000005116 a001 6765/1149851*(1/2+1/2*5^(1/2))^29 6765000000005116 a001 6765/1149851*1322157322203^(1/2) 6765000000005116 a001 514229/15127*312119004989^(1/5) 6765000000005116 a001 514229/15127*(1/2+1/2*5^(1/2))^11 6765000000005116 a001 514229/15127*1568397607^(1/4) 6765000000005399 a001 267914296/64079*3571^(1/17) 6765000000007061 a001 39088169/15127*271443^(1/13) 6765000000013395 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^28 6765000000014119 a001 14930352/15127*271443^(2/13) 6765000000021146 a001 5702887/15127*271443^(3/13) 6765000000026221 a001 63245986/15127*103682^(1/24) 6765000000027965 a001 311187/2161*271443^(4/13) 6765000000028980 a001 317811/15127*271443^(6/13) 6765000000033358 a001 832040/15127*271443^(5/13) 6765000000034980 a001 6765/439204*7881196^(9/11) 6765000000035069 a001 6765/439204*141422324^(9/13) 6765000000035069 a001 6765/439204*2537720636^(3/5) 6765000000035069 a001 6765/439204*45537549124^(9/17) 6765000000035069 a001 6765/439204*817138163596^(9/19) 6765000000035069 a001 6765/439204*14662949395604^(3/7) 6765000000035069 a001 6765/439204*(1/2+1/2*5^(1/2))^27 6765000000035069 a001 6765/439204*192900153618^(1/2) 6765000000035069 a001 6765/439204*10749957122^(9/16) 6765000000035069 a001 6765/439204*599074578^(9/14) 6765000000035069 a001 196418/15127*141422324^(1/3) 6765000000035070 a001 196418/15127*(1/2+1/2*5^(1/2))^13 6765000000035070 a001 196418/15127*73681302247^(1/4) 6765000000035074 a001 6765/439204*33385282^(3/4) 6765000000036828 a001 6765/439204*1860498^(9/10) 6765000000052441 a001 39088169/15127*103682^(1/12) 6765000000078665 a001 24157817/15127*103682^(1/8) 6765000000080977 a001 196418/15127*271443^(1/2) 6765000000091814 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^26 6765000000096149 a001 75025/15127*167761^(3/5) 6765000000104878 a001 14930352/15127*103682^(1/6) 6765000000120580 a001 1346269/24476*9349^(10/19) 6765000000131121 a001 9227465/15127*103682^(5/24) 6765000000157284 a001 5702887/15127*103682^(1/4) 6765000000183656 a001 3524578/15127*103682^(7/24) 6765000000196060 a001 63245986/15127*39603^(1/22) 6765000000209483 a001 311187/2161*103682^(1/3) 6765000000220889 a001 75025/15127*439204^(5/9) 6765000000236735 a001 1346269/15127*103682^(3/8) 6765000000240323 a001 75025/15127*7881196^(5/11) 6765000000240361 a001 615/15251*20633239^(5/7) 6765000000240366 a001 75025/15127*20633239^(3/7) 6765000000240373 a001 75025/15127*141422324^(5/13) 6765000000240373 a001 615/15251*2537720636^(5/9) 6765000000240373 a001 615/15251*312119004989^(5/11) 6765000000240373 a001 615/15251*(1/2+1/2*5^(1/2))^25 6765000000240373 a001 615/15251*3461452808002^(5/12) 6765000000240373 a001 615/15251*28143753123^(1/2) 6765000000240373 a001 615/15251*228826127^(5/8) 6765000000240373 a001 75025/15127*2537720636^(1/3) 6765000000240373 a001 75025/15127*45537549124^(5/17) 6765000000240373 a001 75025/15127*312119004989^(3/11) 6765000000240373 a001 75025/15127*14662949395604^(5/21) 6765000000240373 a001 75025/15127*(1/2+1/2*5^(1/2))^15 6765000000240373 a001 75025/15127*192900153618^(5/18) 6765000000240373 a001 75025/15127*28143753123^(3/10) 6765000000240373 a001 75025/15127*10749957122^(5/16) 6765000000240373 a001 75025/15127*599074578^(5/14) 6765000000240373 a001 75025/15127*228826127^(3/8) 6765000000240375 a001 75025/15127*33385282^(5/12) 6765000000241350 a001 75025/15127*1860498^(1/2) 6765000000242001 a001 615/15251*1860498^(5/6) 6765000000260256 a001 832040/15127*103682^(5/12) 6765000000275280 a001 121393/15127*103682^(7/12) 6765000000293548 a001 514229/15127*103682^(11/24) 6765000000301257 a001 317811/15127*103682^(1/2) 6765000000375943 a001 196418/15127*103682^(13/24) 6765000000392119 a001 39088169/15127*39603^(1/11) 6765000000419068 a001 24157817/103682*9349^(7/19) 6765000000429793 a001 28657/15127*64079^(17/23) 6765000000539144 a001 2584*2207^(1/8) 6765000000588182 a001 24157817/15127*39603^(3/22) 6765000000615332 a001 5702887/2207*843^(1/7) 6765000000629304 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^24 6765000000633688 a001 75025/15127*103682^(5/8) 6765000000784233 a001 14930352/15127*39603^(2/11) 6765000000808697 a001 4976784/13201*9349^(6/19) 6765000000956557 a001 63245986/271443*9349^(7/19) 6765000000980315 a001 9227465/15127*39603^(5/22) 6765000001034975 a001 165580141/710647*9349^(7/19) 6765000001046416 a001 433494437/1860498*9349^(7/19) 6765000001048086 a001 1134903170/4870847*9349^(7/19) 6765000001048329 a001 2971215073/12752043*9349^(7/19) 6765000001048365 a001 7778742049/33385282*9349^(7/19) 6765000001048370 a001 20365011074/87403803*9349^(7/19) 6765000001048371 a001 53316291173/228826127*9349^(7/19) 6765000001048371 a001 139583862445/599074578*9349^(7/19) 6765000001048371 a001 365435296162/1568397607*9349^(7/19) 6765000001048371 a001 956722026041/4106118243*9349^(7/19) 6765000001048371 a001 2504730781961/10749957122*9349^(7/19) 6765000001048371 a001 6557470319842/28143753123*9349^(7/19) 6765000001048371 a001 10610209857723/45537549124*9349^(7/19) 6765000001048371 a001 4052739537881/17393796001*9349^(7/19) 6765000001048371 a001 1548008755920/6643838879*9349^(7/19) 6765000001048371 a001 591286729879/2537720636*9349^(7/19) 6765000001048371 a001 225851433717/969323029*9349^(7/19) 6765000001048371 a001 86267571272/370248451*9349^(7/19) 6765000001048371 a001 63246219/271444*9349^(7/19) 6765000001048373 a001 12586269025/54018521*9349^(7/19) 6765000001048387 a001 4807526976/20633239*9349^(7/19) 6765000001048480 a001 1836311903/7881196*9349^(7/19) 6765000001049117 a001 701408733/3010349*9349^(7/19) 6765000001053487 a001 267914296/1149851*9349^(7/19) 6765000001075468 a001 10946/15127*24476^(19/21) 6765000001083441 a001 102334155/439204*9349^(7/19) 6765000001176318 a001 5702887/15127*39603^(3/11) 6765000001288743 a001 39088169/167761*9349^(7/19) 6765000001372528 a001 3524578/15127*39603^(7/22) 6765000001478197 a001 63245986/15127*15127^(1/20) 6765000001568194 a001 311187/2161*39603^(4/11) 6765000001647541 a001 6765/64079*(1/2+1/2*5^(1/2))^23 6765000001647541 a001 6765/64079*4106118243^(1/2) 6765000001647541 a001 28657/15127*45537549124^(1/3) 6765000001647541 a001 28657/15127*(1/2+1/2*5^(1/2))^17 6765000001647562 a001 28657/15127*12752043^(1/2) 6765000001765286 a001 1346269/15127*39603^(9/22) 6765000001958645 a001 832040/15127*39603^(5/11) 6765000002093299 a001 28657/15127*103682^(17/24) 6765000002161776 a001 514229/15127*39603^(1/2) 6765000002250625 a001 6765/64079*103682^(23/24) 6765000002339324 a001 317811/15127*39603^(6/11) 6765000002507654 a001 6624/2161*39603^(8/11) 6765000002583849 a001 196418/15127*39603^(13/22) 6765000002653025 a001 121393/15127*39603^(7/11) 6765000002695906 a001 14930352/64079*9349^(7/19) 6765000002735701 a001 17711/5778*5778^(8/9) 6765000002956392 a001 39088169/15127*15127^(1/10) 6765000003181272 a001 75025/15127*39603^(15/22) 6765000004193200 a001 2178309/24476*9349^(9/19) 6765000004313319 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^22 6765000004434592 a001 24157817/15127*15127^(3/20) 6765000004492717 a001 39088169/103682*9349^(6/19) 6765000004882357 a001 24157817/39603*9349^(5/19) 6765000004980561 a001 28657/15127*39603^(17/22) 6765000005030208 a001 34111385/90481*9349^(6/19) 6765000005091183 s004 Continued Fraction of A206096 6765000005091183 s004 Continued fraction of A206096 6765000005108627 a001 267914296/710647*9349^(6/19) 6765000005120068 a001 233802911/620166*9349^(6/19) 6765000005121737 a001 1836311903/4870847*9349^(6/19) 6765000005121981 a001 1602508992/4250681*9349^(6/19) 6765000005122016 a001 12586269025/33385282*9349^(6/19) 6765000005122021 a001 10983760033/29134601*9349^(6/19) 6765000005122022 a001 86267571272/228826127*9349^(6/19) 6765000005122022 a001 267913919/710646*9349^(6/19) 6765000005122022 a001 591286729879/1568397607*9349^(6/19) 6765000005122022 a001 516002918640/1368706081*9349^(6/19) 6765000005122022 a001 4052739537881/10749957122*9349^(6/19) 6765000005122022 a001 3536736619241/9381251041*9349^(6/19) 6765000005122022 a001 6557470319842/17393796001*9349^(6/19) 6765000005122022 a001 2504730781961/6643838879*9349^(6/19) 6765000005122022 a001 956722026041/2537720636*9349^(6/19) 6765000005122022 a001 365435296162/969323029*9349^(6/19) 6765000005122022 a001 139583862445/370248451*9349^(6/19) 6765000005122023 a001 53316291173/141422324*9349^(6/19) 6765000005122025 a001 20365011074/54018521*9349^(6/19) 6765000005122038 a001 7778742049/20633239*9349^(6/19) 6765000005122131 a001 2971215073/7881196*9349^(6/19) 6765000005122769 a001 1134903170/3010349*9349^(6/19) 6765000005127139 a001 433494437/1149851*9349^(6/19) 6765000005157092 a001 165580141/439204*9349^(6/19) 6765000005362396 a001 63245986/167761*9349^(6/19) 6765000005912780 a001 14930352/15127*15127^(1/5) 6765000006769566 a001 24157817/64079*9349^(6/19) 6765000007390998 a001 9227465/15127*15127^(1/4) 6765000008267245 a001 1762289/12238*9349^(8/19) 6765000008566369 a001 31622993/51841*9349^(5/19) 6765000008869138 a001 5702887/15127*15127^(3/10) 6765000008956005 a001 39088169/39603*9349^(4/19) 6765000009103860 a001 165580141/271443*9349^(5/19) 6765000009182278 a001 433494437/710647*9349^(5/19) 6765000009193719 a001 567451585/930249*9349^(5/19) 6765000009195389 a001 2971215073/4870847*9349^(5/19) 6765000009195632 a001 7778742049/12752043*9349^(5/19) 6765000009195668 a001 10182505537/16692641*9349^(5/19) 6765000009195673 a001 53316291173/87403803*9349^(5/19) 6765000009195674 a001 139583862445/228826127*9349^(5/19) 6765000009195674 a001 182717648081/299537289*9349^(5/19) 6765000009195674 a001 956722026041/1568397607*9349^(5/19) 6765000009195674 a001 2504730781961/4106118243*9349^(5/19) 6765000009195674 a001 3278735159921/5374978561*9349^(5/19) 6765000009195674 a001 10610209857723/17393796001*9349^(5/19) 6765000009195674 a001 4052739537881/6643838879*9349^(5/19) 6765000009195674 a001 1134903780/1860499*9349^(5/19) 6765000009195674 a001 591286729879/969323029*9349^(5/19) 6765000009195674 a001 225851433717/370248451*9349^(5/19) 6765000009195674 a001 21566892818/35355581*9349^(5/19) 6765000009195676 a001 32951280099/54018521*9349^(5/19) 6765000009195690 a001 1144206275/1875749*9349^(5/19) 6765000009195783 a001 1201881744/1970299*9349^(5/19) 6765000009196420 a001 1836311903/3010349*9349^(5/19) 6765000009200790 a001 701408733/1149851*9349^(5/19) 6765000009230744 a001 66978574/109801*9349^(5/19) 6765000009436047 a001 9303105/15251*9349^(5/19) 6765000009650275 a001 102334155/24476*3571^(1/17) 6765000009788140 a001 6765/24476*64079^(21/23) 6765000009931404 a001 10946/15127*64079^(19/23) 6765000010182609 a001 17711/39603*24476^(20/21) 6765000010297922 a007 Real Root Of -738*x^4-55*x^3+446*x^2+518*x+33 6765000010347485 a001 3524578/15127*15127^(7/20) 6765000010843214 a001 39088169/64079*9349^(5/19) 6765000011257456 a001 63245986/15127*5778^(1/18) 6765000011265140 a001 6765/24476*439204^(7/9) 6765000011292347 a001 6765/24476*7881196^(7/11) 6765000011292407 a001 6765/24476*20633239^(3/5) 6765000011292416 a001 6765/24476*141422324^(7/13) 6765000011292417 a001 6765/24476*2537720636^(7/15) 6765000011292417 a001 6765/24476*17393796001^(3/7) 6765000011292417 a001 6765/24476*45537549124^(7/17) 6765000011292417 a001 6765/24476*14662949395604^(1/3) 6765000011292417 a001 6765/24476*(1/2+1/2*5^(1/2))^21 6765000011292417 a001 6765/24476*192900153618^(7/18) 6765000011292417 a001 6765/24476*10749957122^(7/16) 6765000011292417 a001 6765/24476*599074578^(1/2) 6765000011292417 a001 10946/15127*817138163596^(1/3) 6765000011292417 a001 10946/15127*(1/2+1/2*5^(1/2))^19 6765000011292417 a001 10946/15127*87403803^(1/2) 6765000011292420 a001 6765/24476*33385282^(7/12) 6765000011293785 a001 6765/24476*1860498^(7/10) 6765000011302463 a001 6765/24476*710647^(3/4) 6765000011790616 a001 10946/15127*103682^(19/24) 6765000011825287 a001 311187/2161*15127^(2/5) 6765000011843058 a001 6765/24476*103682^(7/8) 6765000012340746 a001 5702887/24476*9349^(7/19) 6765000012640020 a001 102334155/103682*9349^(4/19) 6765000013029658 a001 63245986/39603*9349^(3/19) 6765000013177511 a001 267914296/271443*9349^(4/19) 6765000013255930 a001 701408733/710647*9349^(4/19) 6765000013267371 a001 1836311903/1860498*9349^(4/19) 6765000013269040 a001 4807526976/4870847*9349^(4/19) 6765000013269284 a001 12586269025/12752043*9349^(4/19) 6765000013269319 a001 32951280099/33385282*9349^(4/19) 6765000013269324 a001 86267571272/87403803*9349^(4/19) 6765000013269325 a001 225851433717/228826127*9349^(4/19) 6765000013269325 a001 591286729879/599074578*9349^(4/19) 6765000013269325 a001 1548008755920/1568397607*9349^(4/19) 6765000013269325 a001 4052739537881/4106118243*9349^(4/19) 6765000013269325 a001 4807525989/4870846*9349^(4/19) 6765000013269325 a001 6557470319842/6643838879*9349^(4/19) 6765000013269325 a001 2504730781961/2537720636*9349^(4/19) 6765000013269325 a001 956722026041/969323029*9349^(4/19) 6765000013269325 a001 365435296162/370248451*9349^(4/19) 6765000013269326 a001 139583862445/141422324*9349^(4/19) 6765000013269328 a001 53316291173/54018521*9349^(4/19) 6765000013269341 a001 20365011074/20633239*9349^(4/19) 6765000013269434 a001 7778742049/7881196*9349^(4/19) 6765000013270072 a001 2971215073/3010349*9349^(4/19) 6765000013274442 a001 1134903170/1149851*9349^(4/19) 6765000013304395 a001 433494437/439204*9349^(4/19) 6765000013304515 a001 1346269/15127*15127^(9/20) 6765000013345083 a001 14930352/9349*3571^(3/17) 6765000013509698 a001 165580141/167761*9349^(4/19) 6765000013958195 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^23 6765000014780011 a001 832040/15127*15127^(1/2) 6765000014916867 a001 63245986/64079*9349^(4/19) 6765000014942092 a001 15456/13201*24476^(6/7) 6765000015017556 a001 10946/15127*39603^(19/22) 6765000015409676 a001 6765/24476*39603^(21/22) 6765000016265279 a001 514229/15127*15127^(11/20) 6765000016349504 a001 75025/39603*24476^(17/21) 6765000016414455 a001 9227465/24476*9349^(6/19) 6765000016555051 a001 121393/39603*24476^(16/21) 6765000016681204 a001 28657/39603*24476^(19/21) 6765000016713672 a001 165580141/103682*9349^(3/19) 6765000017103309 a001 34111385/13201*9349^(2/19) 6765000017219670 a001 196418/39603*24476^(5/7) 6765000017251162 a001 433494437/271443*9349^(3/19) 6765000017329581 a001 1134903170/710647*9349^(3/19) 6765000017341022 a001 2971215073/1860498*9349^(3/19) 6765000017342692 a001 7778742049/4870847*9349^(3/19) 6765000017342935 a001 20365011074/12752043*9349^(3/19) 6765000017342971 a001 53316291173/33385282*9349^(3/19) 6765000017342976 a001 139583862445/87403803*9349^(3/19) 6765000017342977 a001 365435296162/228826127*9349^(3/19) 6765000017342977 a001 956722026041/599074578*9349^(3/19) 6765000017342977 a001 2504730781961/1568397607*9349^(3/19) 6765000017342977 a001 6557470319842/4106118243*9349^(3/19) 6765000017342977 a001 10610209857723/6643838879*9349^(3/19) 6765000017342977 a001 4052739537881/2537720636*9349^(3/19) 6765000017342977 a001 1548008755920/969323029*9349^(3/19) 6765000017342977 a001 591286729879/370248451*9349^(3/19) 6765000017342977 a001 225851433717/141422324*9349^(3/19) 6765000017342979 a001 86267571272/54018521*9349^(3/19) 6765000017342993 a001 32951280099/20633239*9349^(3/19) 6765000017343086 a001 12586269025/7881196*9349^(3/19) 6765000017343723 a001 4807526976/3010349*9349^(3/19) 6765000017348093 a001 1836311903/1149851*9349^(3/19) 6765000017378047 a001 701408733/439204*9349^(3/19) 6765000017550639 a001 23184/51841*24476^(20/21) 6765000017583350 a001 267914296/167761*9349^(3/19) 6765000017642209 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^25 6765000017708938 a001 105937/13201*24476^(2/3) 6765000017724963 a001 317811/15127*15127^(3/5) 6765000018179700 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^27 6765000018258119 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^29 6765000018265185 a001 514229/39603*24476^(13/21) 6765000018269560 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^31 6765000018271229 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^33 6765000018271473 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^35 6765000018271508 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^37 6765000018271513 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^39 6765000018271514 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^41 6765000018271514 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^43 6765000018271514 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^45 6765000018271514 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^47 6765000018271514 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^49 6765000018271514 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^51 6765000018271514 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^53 6765000018271514 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^55 6765000018271514 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^57 6765000018271514 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^59 6765000018271514 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^61 6765000018271514 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^63 6765000018271514 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^65 6765000018271514 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^67 6765000018271514 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^69 6765000018271514 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^71 6765000018271514 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^73 6765000018271514 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^75 6765000018271514 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^77 6765000018271514 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^79 6765000018271514 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^81 6765000018271514 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^83 6765000018271514 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^85 6765000018271514 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^87 6765000018271514 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^89 6765000018271514 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^91 6765000018271514 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^93 6765000018271514 a004 Fibonacci(94)*Lucas(21)/(1/2+sqrt(5)/2)^95 6765000018271514 a004 Fibonacci(96)*Lucas(21)/(1/2+sqrt(5)/2)^97 6765000018271514 a004 Fibonacci(98)*Lucas(21)/(1/2+sqrt(5)/2)^99 6765000018271514 a004 Fibonacci(99)*Lucas(21)/(1/2+sqrt(5)/2)^100 6765000018271514 a004 Fibonacci(97)*Lucas(21)/(1/2+sqrt(5)/2)^98 6765000018271514 a004 Fibonacci(95)*Lucas(21)/(1/2+sqrt(5)/2)^96 6765000018271514 a004 Fibonacci(93)*Lucas(21)/(1/2+sqrt(5)/2)^94 6765000018271514 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^92 6765000018271514 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^90 6765000018271514 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^88 6765000018271514 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^86 6765000018271514 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^84 6765000018271514 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^82 6765000018271514 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^80 6765000018271514 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^78 6765000018271514 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^76 6765000018271514 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^74 6765000018271514 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^72 6765000018271514 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^70 6765000018271514 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^68 6765000018271514 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^66 6765000018271514 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^64 6765000018271514 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^62 6765000018271514 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^60 6765000018271514 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^58 6765000018271514 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^56 6765000018271514 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^54 6765000018271514 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^52 6765000018271514 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^50 6765000018271514 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^48 6765000018271514 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^46 6765000018271514 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^44 6765000018271514 a001 1/5473*(1/2+1/2*5^(1/2))^41 6765000018271514 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^42 6765000018271515 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^40 6765000018271517 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^38 6765000018271530 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^36 6765000018271623 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^34 6765000018272261 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^32 6765000018276631 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^30 6765000018306584 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^28 6765000018511887 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^26 6765000018625620 a001 121393/271443*24476^(20/21) 6765000018782457 a001 317811/710647*24476^(20/21) 6765000018795848 a001 832040/39603*24476^(4/7) 6765000018805340 a001 416020/930249*24476^(20/21) 6765000018808678 a001 2178309/4870847*24476^(20/21) 6765000018809165 a001 5702887/12752043*24476^(20/21) 6765000018809236 a001 7465176/16692641*24476^(20/21) 6765000018809247 a001 39088169/87403803*24476^(20/21) 6765000018809248 a001 102334155/228826127*24476^(20/21) 6765000018809248 a001 133957148/299537289*24476^(20/21) 6765000018809248 a001 701408733/1568397607*24476^(20/21) 6765000018809248 a001 1836311903/4106118243*24476^(20/21) 6765000018809248 a001 2403763488/5374978561*24476^(20/21) 6765000018809248 a001 12586269025/28143753123*24476^(20/21) 6765000018809248 a001 32951280099/73681302247*24476^(20/21) 6765000018809248 a001 43133785636/96450076809*24476^(20/21) 6765000018809248 a001 225851433717/505019158607*24476^(20/21) 6765000018809248 a001 591286729879/1322157322203*24476^(20/21) 6765000018809248 a001 10610209857723/23725150497407*24476^(20/21) 6765000018809248 a001 182717648081/408569081798*24476^(20/21) 6765000018809248 a001 139583862445/312119004989*24476^(20/21) 6765000018809248 a001 53316291173/119218851371*24476^(20/21) 6765000018809248 a001 10182505537/22768774562*24476^(20/21) 6765000018809248 a001 7778742049/17393796001*24476^(20/21) 6765000018809248 a001 2971215073/6643838879*24476^(20/21) 6765000018809248 a001 567451585/1268860318*24476^(20/21) 6765000018809248 a001 433494437/969323029*24476^(20/21) 6765000018809248 a001 165580141/370248451*24476^(20/21) 6765000018809249 a001 31622993/70711162*24476^(20/21) 6765000018809253 a001 24157817/54018521*24476^(20/21) 6765000018809280 a001 9227465/20633239*24476^(20/21) 6765000018809466 a001 1762289/3940598*24476^(20/21) 6765000018810741 a001 1346269/3010349*24476^(20/21) 6765000018819482 a001 514229/1149851*24476^(20/21) 6765000018879388 a001 98209/219602*24476^(20/21) 6765000018958051 a001 75025/103682*24476^(19/21) 6765000018990518 a001 102334155/64079*9349^(3/19) 6765000019163598 a001 121393/103682*24476^(6/7) 6765000019251625 a001 196418/15127*15127^(13/20) 6765000019289995 a001 75025/167761*24476^(20/21) 6765000019290238 a001 196418/271443*24476^(19/21) 6765000019336283 a001 1346269/39603*24476^(11/21) 6765000019338704 a001 514229/710647*24476^(19/21) 6765000019345775 a001 1346269/1860498*24476^(19/21) 6765000019346806 a001 3524578/4870847*24476^(19/21) 6765000019346957 a001 9227465/12752043*24476^(19/21) 6765000019346979 a001 24157817/33385282*24476^(19/21) 6765000019346982 a001 63245986/87403803*24476^(19/21) 6765000019346982 a001 165580141/228826127*24476^(19/21) 6765000019346983 a001 433494437/599074578*24476^(19/21) 6765000019346983 a001 1134903170/1568397607*24476^(19/21) 6765000019346983 a001 2971215073/4106118243*24476^(19/21) 6765000019346983 a001 7778742049/10749957122*24476^(19/21) 6765000019346983 a001 20365011074/28143753123*24476^(19/21) 6765000019346983 a001 53316291173/73681302247*24476^(19/21) 6765000019346983 a001 139583862445/192900153618*24476^(19/21) 6765000019346983 a001 365435296162/505019158607*24476^(19/21) 6765000019346983 a001 10610209857723/14662949395604*24476^(19/21) 6765000019346983 a001 591286729879/817138163596*24476^(19/21) 6765000019346983 a001 225851433717/312119004989*24476^(19/21) 6765000019346983 a001 86267571272/119218851371*24476^(19/21) 6765000019346983 a001 32951280099/45537549124*24476^(19/21) 6765000019346983 a001 12586269025/17393796001*24476^(19/21) 6765000019346983 a001 4807526976/6643838879*24476^(19/21) 6765000019346983 a001 1836311903/2537720636*24476^(19/21) 6765000019346983 a001 701408733/969323029*24476^(19/21) 6765000019346983 a001 267914296/370248451*24476^(19/21) 6765000019346983 a001 102334155/141422324*24476^(19/21) 6765000019346984 a001 39088169/54018521*24476^(19/21) 6765000019346992 a001 14930352/20633239*24476^(19/21) 6765000019347050 a001 5702887/7881196*24476^(19/21) 6765000019347444 a001 2178309/3010349*24476^(19/21) 6765000019350145 a001 832040/1149851*24476^(19/21) 6765000019368657 a001 317811/439204*24476^(19/21) 6765000019495541 a001 121393/167761*24476^(19/21) 6765000019504648 a001 17711/39603*64079^(20/23) 6765000019779507 a001 105937/90481*24476^(6/7) 6765000019828216 a001 98209/51841*24476^(17/21) 6765000019869367 a001 832040/710647*24476^(6/7) 6765000019872985 a001 726103/13201*24476^(10/21) 6765000019882477 a001 726103/620166*24476^(6/7) 6765000019884390 a001 5702887/4870847*24476^(6/7) 6765000019884669 a001 4976784/4250681*24476^(6/7) 6765000019884710 a001 39088169/33385282*24476^(6/7) 6765000019884716 a001 34111385/29134601*24476^(6/7) 6765000019884717 a001 267914296/228826127*24476^(6/7) 6765000019884717 a001 233802911/199691526*24476^(6/7) 6765000019884717 a001 1836311903/1568397607*24476^(6/7) 6765000019884717 a001 1602508992/1368706081*24476^(6/7) 6765000019884717 a001 12586269025/10749957122*24476^(6/7) 6765000019884717 a001 10983760033/9381251041*24476^(6/7) 6765000019884717 a001 86267571272/73681302247*24476^(6/7) 6765000019884717 a001 75283811239/64300051206*24476^(6/7) 6765000019884717 a001 2504730781961/2139295485799*24476^(6/7) 6765000019884717 a001 365435296162/312119004989*24476^(6/7) 6765000019884717 a001 139583862445/119218851371*24476^(6/7) 6765000019884717 a001 53316291173/45537549124*24476^(6/7) 6765000019884717 a001 20365011074/17393796001*24476^(6/7) 6765000019884717 a001 7778742049/6643838879*24476^(6/7) 6765000019884717 a001 2971215073/2537720636*24476^(6/7) 6765000019884717 a001 1134903170/969323029*24476^(6/7) 6765000019884717 a001 433494437/370248451*24476^(6/7) 6765000019884717 a001 165580141/141422324*24476^(6/7) 6765000019884719 a001 63245986/54018521*24476^(6/7) 6765000019884735 a001 24157817/20633239*24476^(6/7) 6765000019884841 a001 9227465/7881196*24476^(6/7) 6765000019885572 a001 3524578/3010349*24476^(6/7) 6765000019890580 a001 1346269/1149851*24476^(6/7) 6765000019919056 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^24 6765000019924903 a001 514229/439204*24476^(6/7) 6765000020160160 a001 196418/167761*24476^(6/7) 6765000020317485 a001 317811/103682*24476^(16/21) 6765000020335753 a001 514229/271443*24476^(17/21) 6765000020365219 a001 46368/64079*24476^(19/21) 6765000020409802 a001 1346269/710647*24476^(17/21) 6765000020411113 a001 3524578/39603*24476^(3/7) 6765000020420605 a001 1762289/930249*24476^(17/21) 6765000020422182 a001 9227465/4870847*24476^(17/21) 6765000020422412 a001 24157817/12752043*24476^(17/21) 6765000020422445 a001 31622993/16692641*24476^(17/21) 6765000020422450 a001 165580141/87403803*24476^(17/21) 6765000020422451 a001 433494437/228826127*24476^(17/21) 6765000020422451 a001 567451585/299537289*24476^(17/21) 6765000020422451 a001 2971215073/1568397607*24476^(17/21) 6765000020422451 a001 7778742049/4106118243*24476^(17/21) 6765000020422451 a001 10182505537/5374978561*24476^(17/21) 6765000020422451 a001 53316291173/28143753123*24476^(17/21) 6765000020422451 a001 139583862445/73681302247*24476^(17/21) 6765000020422451 a001 182717648081/96450076809*24476^(17/21) 6765000020422451 a001 956722026041/505019158607*24476^(17/21) 6765000020422451 a001 10610209857723/5600748293801*24476^(17/21) 6765000020422451 a001 591286729879/312119004989*24476^(17/21) 6765000020422451 a001 225851433717/119218851371*24476^(17/21) 6765000020422451 a001 21566892818/11384387281*24476^(17/21) 6765000020422451 a001 32951280099/17393796001*24476^(17/21) 6765000020422451 a001 12586269025/6643838879*24476^(17/21) 6765000020422451 a001 1201881744/634430159*24476^(17/21) 6765000020422451 a001 1836311903/969323029*24476^(17/21) 6765000020422451 a001 701408733/370248451*24476^(17/21) 6765000020422451 a001 66978574/35355581*24476^(17/21) 6765000020422453 a001 102334155/54018521*24476^(17/21) 6765000020422466 a001 39088169/20633239*24476^(17/21) 6765000020422554 a001 3732588/1970299*24476^(17/21) 6765000020423156 a001 5702887/3010349*24476^(17/21) 6765000020427282 a001 2178309/1149851*24476^(17/21) 6765000020455566 a001 208010/109801*24476^(17/21) 6765000020488085 a001 3732588/6119*9349^(5/19) 6765000020602937 a001 121393/15127*15127^(7/10) 6765000020649428 a001 317811/167761*24476^(17/21) 6765000020744994 a001 17711/39603*167761^(4/5) 6765000020787323 a001 133957148/51841*9349^(2/19) 6765000020866416 a001 832040/271443*24476^(16/21) 6765000020873731 a001 514229/103682*24476^(5/7) 6765000020937283 a001 17711/39603*20633239^(4/7) 6765000020937292 a001 17711/39603*2537720636^(4/9) 6765000020937292 a001 17711/39603*(1/2+1/2*5^(1/2))^20 6765000020937292 a001 17711/39603*23725150497407^(5/16) 6765000020937292 a001 17711/39603*505019158607^(5/14) 6765000020937292 a001 17711/39603*73681302247^(5/13) 6765000020937292 a001 17711/39603*28143753123^(2/5) 6765000020937292 a001 17711/39603*10749957122^(5/12) 6765000020937292 a001 17711/39603*4106118243^(10/23) 6765000020937292 a001 17711/39603*1568397607^(5/11) 6765000020937292 a001 17711/39603*599074578^(10/21) 6765000020937292 a001 17711/39603*228826127^(1/2) 6765000020937293 a001 17711/39603*87403803^(10/19) 6765000020937296 a001 17711/39603*33385282^(5/9) 6765000020937317 a001 17711/39603*12752043^(10/17) 6765000020937471 a001 17711/39603*4870847^(5/8) 6765000020938595 a001 17711/39603*1860498^(2/3) 6765000020946504 a001 311187/101521*24476^(16/21) 6765000020946861 a001 17711/39603*710647^(5/7) 6765000020948697 a001 5702887/39603*24476^(8/21) 6765000020958189 a001 5702887/1860498*24476^(16/21) 6765000020959894 a001 14930352/4870847*24476^(16/21) 6765000020960142 a001 39088169/12752043*24476^(16/21) 6765000020960179 a001 14619165/4769326*24476^(16/21) 6765000020960184 a001 267914296/87403803*24476^(16/21) 6765000020960185 a001 701408733/228826127*24476^(16/21) 6765000020960185 a001 1836311903/599074578*24476^(16/21) 6765000020960185 a001 686789568/224056801*24476^(16/21) 6765000020960185 a001 12586269025/4106118243*24476^(16/21) 6765000020960185 a001 32951280099/10749957122*24476^(16/21) 6765000020960185 a001 86267571272/28143753123*24476^(16/21) 6765000020960185 a001 32264490531/10525900321*24476^(16/21) 6765000020960185 a001 591286729879/192900153618*24476^(16/21) 6765000020960185 a001 1548008755920/505019158607*24476^(16/21) 6765000020960185 a001 1515744265389/494493258286*24476^(16/21) 6765000020960185 a001 2504730781961/817138163596*24476^(16/21) 6765000020960185 a001 956722026041/312119004989*24476^(16/21) 6765000020960185 a001 365435296162/119218851371*24476^(16/21) 6765000020960185 a001 139583862445/45537549124*24476^(16/21) 6765000020960185 a001 53316291173/17393796001*24476^(16/21) 6765000020960185 a001 20365011074/6643838879*24476^(16/21) 6765000020960185 a001 7778742049/2537720636*24476^(16/21) 6765000020960185 a001 2971215073/969323029*24476^(16/21) 6765000020960185 a001 1134903170/370248451*24476^(16/21) 6765000020960185 a001 433494437/141422324*24476^(16/21) 6765000020960187 a001 165580141/54018521*24476^(16/21) 6765000020960201 a001 63245986/20633239*24476^(16/21) 6765000020960296 a001 24157817/7881196*24476^(16/21) 6765000020960947 a001 9227465/3010349*24476^(16/21) 6765000020965411 a001 3524578/1149851*24476^(16/21) 6765000020996001 a001 1346269/439204*24476^(16/21) 6765000021007919 a001 17711/39603*271443^(10/13) 6765000021176960 a001 165580141/39603*9349^(1/19) 6765000021205675 a001 514229/167761*24476^(16/21) 6765000021324814 a001 233802911/90481*9349^(2/19) 6765000021403233 a001 1836311903/710647*9349^(2/19) 6765000021404394 a001 416020/51841*24476^(2/3) 6765000021406851 a001 1346269/271443*24476^(5/7) 6765000021414674 a001 267084832/103361*9349^(2/19) 6765000021416343 a001 12586269025/4870847*9349^(2/19) 6765000021416587 a001 10983760033/4250681*9349^(2/19) 6765000021416622 a001 43133785636/16692641*9349^(2/19) 6765000021416627 a001 75283811239/29134601*9349^(2/19) 6765000021416628 a001 591286729879/228826127*9349^(2/19) 6765000021416628 a001 86000486440/33281921*9349^(2/19) 6765000021416628 a001 4052739537881/1568397607*9349^(2/19) 6765000021416628 a001 3536736619241/1368706081*9349^(2/19) 6765000021416628 a001 3278735159921/1268860318*9349^(2/19) 6765000021416628 a001 2504730781961/969323029*9349^(2/19) 6765000021416628 a001 956722026041/370248451*9349^(2/19) 6765000021416629 a001 182717648081/70711162*9349^(2/19) 6765000021416631 a001 139583862445/54018521*9349^(2/19) 6765000021416644 a001 53316291173/20633239*9349^(2/19) 6765000021416737 a001 10182505537/3940598*9349^(2/19) 6765000021417375 a001 7778742049/3010349*9349^(2/19) 6765000021421745 a001 2971215073/1149851*9349^(2/19) 6765000021451698 a001 567451585/219602*9349^(2/19) 6765000021461713 a001 17711/39603*103682^(5/6) 6765000021484633 a001 3524578/710647*24476^(5/7) 6765000021486489 a001 9227465/39603*24476^(1/3) 6765000021495981 a001 9227465/1860498*24476^(5/7) 6765000021497636 a001 24157817/4870847*24476^(5/7) 6765000021497878 a001 63245986/12752043*24476^(5/7) 6765000021497913 a001 165580141/33385282*24476^(5/7) 6765000021497918 a001 433494437/87403803*24476^(5/7) 6765000021497919 a001 1134903170/228826127*24476^(5/7) 6765000021497919 a001 2971215073/599074578*24476^(5/7) 6765000021497919 a001 7778742049/1568397607*24476^(5/7) 6765000021497919 a001 20365011074/4106118243*24476^(5/7) 6765000021497919 a001 53316291173/10749957122*24476^(5/7) 6765000021497919 a001 139583862445/28143753123*24476^(5/7) 6765000021497919 a001 365435296162/73681302247*24476^(5/7) 6765000021497919 a001 956722026041/192900153618*24476^(5/7) 6765000021497919 a001 2504730781961/505019158607*24476^(5/7) 6765000021497919 a001 10610209857723/2139295485799*24476^(5/7) 6765000021497919 a001 4052739537881/817138163596*24476^(5/7) 6765000021497919 a001 140728068720/28374454999*24476^(5/7) 6765000021497919 a001 591286729879/119218851371*24476^(5/7) 6765000021497919 a001 225851433717/45537549124*24476^(5/7) 6765000021497919 a001 86267571272/17393796001*24476^(5/7) 6765000021497919 a001 32951280099/6643838879*24476^(5/7) 6765000021497919 a001 1144206275/230701876*24476^(5/7) 6765000021497919 a001 4807526976/969323029*24476^(5/7) 6765000021497919 a001 1836311903/370248451*24476^(5/7) 6765000021497919 a001 701408733/141422324*24476^(5/7) 6765000021497921 a001 267914296/54018521*24476^(5/7) 6765000021497935 a001 9303105/1875749*24476^(5/7) 6765000021498027 a001 39088169/7881196*24476^(5/7) 6765000021498660 a001 14930352/3010349*24476^(5/7) 6765000021502994 a001 5702887/1149851*24476^(5/7) 6765000021532704 a001 2178309/439204*24476^(5/7) 6765000021566597 a001 313679521/46368 6765000021657001 a001 433494437/167761*9349^(2/19) 6765000021736338 a001 75640/15251*24476^(5/7) 6765000021772631 a001 75025/64079*24476^(6/7) 6765000021943554 a001 726103/90481*24476^(2/3) 6765000021944829 a001 1346269/103682*24476^(13/21) 6765000021978178 a001 121393/64079*24476^(17/21) 6765000022022216 a001 5702887/710647*24476^(2/3) 6765000022024201 a001 4976784/13201*24476^(2/7) 6765000022033693 a001 829464/103361*24476^(2/3) 6765000022035367 a001 39088169/4870847*24476^(2/3) 6765000022035612 a001 34111385/4250681*24476^(2/3) 6765000022035647 a001 133957148/16692641*24476^(2/3) 6765000022035652 a001 233802911/29134601*24476^(2/3) 6765000022035653 a001 1836311903/228826127*24476^(2/3) 6765000022035653 a001 267084832/33281921*24476^(2/3) 6765000022035653 a001 12586269025/1568397607*24476^(2/3) 6765000022035653 a001 10983760033/1368706081*24476^(2/3) 6765000022035653 a001 43133785636/5374978561*24476^(2/3) 6765000022035653 a001 75283811239/9381251041*24476^(2/3) 6765000022035653 a001 591286729879/73681302247*24476^(2/3) 6765000022035653 a001 86000486440/10716675201*24476^(2/3) 6765000022035653 a001 4052739537881/505019158607*24476^(2/3) 6765000022035653 a001 3278735159921/408569081798*24476^(2/3) 6765000022035653 a001 2504730781961/312119004989*24476^(2/3) 6765000022035653 a001 956722026041/119218851371*24476^(2/3) 6765000022035653 a001 182717648081/22768774562*24476^(2/3) 6765000022035653 a001 139583862445/17393796001*24476^(2/3) 6765000022035653 a001 53316291173/6643838879*24476^(2/3) 6765000022035653 a001 10182505537/1268860318*24476^(2/3) 6765000022035653 a001 7778742049/969323029*24476^(2/3) 6765000022035653 a001 2971215073/370248451*24476^(2/3) 6765000022035654 a001 567451585/70711162*24476^(2/3) 6765000022035656 a001 433494437/54018521*24476^(2/3) 6765000022035669 a001 165580141/20633239*24476^(2/3) 6765000022035763 a001 31622993/3940598*24476^(2/3) 6765000022036402 a001 24157817/3010349*24476^(2/3) 6765000022040786 a001 9227465/1149851*24476^(2/3) 6765000022070832 a001 1762289/219602*24476^(2/3) 6765000022104331 a001 28657/64079*24476^(20/21) 6765000022276773 a001 1346269/167761*24476^(2/3) 6765000022294219 a001 17711/15127*15127^(9/10) 6765000022413321 a001 75025/15127*15127^(3/4) 6765000022481532 a001 46347/2206*24476^(4/7) 6765000022481682 a001 3524578/271443*24476^(13/21) 6765000022514910 a001 39088169/15127*5778^(1/9) 6765000022560008 a001 9227465/710647*24476^(13/21) 6765000022561943 a001 24157817/39603*24476^(5/21) 6765000022571435 a001 24157817/1860498*24476^(13/21) 6765000022573103 a001 63245986/4870847*24476^(13/21) 6765000022573346 a001 165580141/12752043*24476^(13/21) 6765000022573381 a001 433494437/33385282*24476^(13/21) 6765000022573387 a001 1134903170/87403803*24476^(13/21) 6765000022573387 a001 2971215073/228826127*24476^(13/21) 6765000022573387 a001 7778742049/599074578*24476^(13/21) 6765000022573387 a001 20365011074/1568397607*24476^(13/21) 6765000022573387 a001 53316291173/4106118243*24476^(13/21) 6765000022573387 a001 139583862445/10749957122*24476^(13/21) 6765000022573387 a001 365435296162/28143753123*24476^(13/21) 6765000022573387 a001 956722026041/73681302247*24476^(13/21) 6765000022573387 a001 2504730781961/192900153618*24476^(13/21) 6765000022573387 a001 10610209857723/817138163596*24476^(13/21) 6765000022573387 a001 4052739537881/312119004989*24476^(13/21) 6765000022573387 a001 1548008755920/119218851371*24476^(13/21) 6765000022573387 a001 591286729879/45537549124*24476^(13/21) 6765000022573387 a001 7787980473/599786069*24476^(13/21) 6765000022573387 a001 86267571272/6643838879*24476^(13/21) 6765000022573387 a001 32951280099/2537720636*24476^(13/21) 6765000022573387 a001 12586269025/969323029*24476^(13/21) 6765000022573387 a001 4807526976/370248451*24476^(13/21) 6765000022573388 a001 1836311903/141422324*24476^(13/21) 6765000022573390 a001 701408733/54018521*24476^(13/21) 6765000022573403 a001 9238424/711491*24476^(13/21) 6765000022573496 a001 102334155/7881196*24476^(13/21) 6765000022574133 a001 39088169/3010349*24476^(13/21) 6765000022578498 a001 14930352/1149851*24476^(13/21) 6765000022608416 a001 5702887/439204*24476^(13/21) 6765000022642796 a001 196418/64079*24476^(16/21) 6765000022813475 a001 2178309/167761*24476^(13/21) 6765000023019266 a001 5702887/271443*24476^(4/7) 6765000023019660 a001 1762289/51841*24476^(11/21) 6765000023021840 a001 6624/2161*15127^(4/5) 6765000023045398 a001 17711/103682*64079^(22/23) 6765000023064170 a001 165580141/64079*9349^(2/19) 6765000023097720 a001 14930352/710647*24476^(4/7) 6765000023099674 a001 39088169/39603*24476^(4/21) 6765000023109166 a001 39088169/1860498*24476^(4/7) 6765000023110836 a001 102334155/4870847*24476^(4/7) 6765000023111080 a001 267914296/12752043*24476^(4/7) 6765000023111116 a001 701408733/33385282*24476^(4/7) 6765000023111121 a001 1836311903/87403803*24476^(4/7) 6765000023111121 a001 102287808/4868641*24476^(4/7) 6765000023111122 a001 12586269025/599074578*24476^(4/7) 6765000023111122 a001 32951280099/1568397607*24476^(4/7) 6765000023111122 a001 86267571272/4106118243*24476^(4/7) 6765000023111122 a001 225851433717/10749957122*24476^(4/7) 6765000023111122 a001 591286729879/28143753123*24476^(4/7) 6765000023111122 a001 1548008755920/73681302247*24476^(4/7) 6765000023111122 a001 4052739537881/192900153618*24476^(4/7) 6765000023111122 a001 225749145909/10745088481*24476^(4/7) 6765000023111122 a001 6557470319842/312119004989*24476^(4/7) 6765000023111122 a001 2504730781961/119218851371*24476^(4/7) 6765000023111122 a001 956722026041/45537549124*24476^(4/7) 6765000023111122 a001 365435296162/17393796001*24476^(4/7) 6765000023111122 a001 139583862445/6643838879*24476^(4/7) 6765000023111122 a001 53316291173/2537720636*24476^(4/7) 6765000023111122 a001 20365011074/969323029*24476^(4/7) 6765000023111122 a001 7778742049/370248451*24476^(4/7) 6765000023111122 a001 2971215073/141422324*24476^(4/7) 6765000023111124 a001 1134903170/54018521*24476^(4/7) 6765000023111137 a001 433494437/20633239*24476^(4/7) 6765000023111231 a001 165580141/7881196*24476^(4/7) 6765000023111868 a001 63245986/3010349*24476^(4/7) 6765000023116241 a001 24157817/1149851*24476^(4/7) 6765000023132065 a001 317811/64079*24476^(5/7) 6765000023146207 a001 9227465/439204*24476^(4/7) 6765000023331927 a001 15456/13201*64079^(18/23) 6765000023351604 a001 3524578/167761*24476^(4/7) 6765000023557057 a001 9227465/271443*24476^(11/21) 6765000023557243 a001 5702887/103682*24476^(10/21) 6765000023603070 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^25 6765000023635463 a001 24157817/710647*24476^(11/21) 6765000023637410 a001 63245986/39603*24476^(1/7) 6765000023646902 a001 31622993/930249*24476^(11/21) 6765000023648571 a001 165580141/4870847*24476^(11/21) 6765000023648814 a001 433494437/12752043*24476^(11/21) 6765000023648850 a001 567451585/16692641*24476^(11/21) 6765000023648855 a001 2971215073/87403803*24476^(11/21) 6765000023648856 a001 7778742049/228826127*24476^(11/21) 6765000023648856 a001 10182505537/299537289*24476^(11/21) 6765000023648856 a001 53316291173/1568397607*24476^(11/21) 6765000023648856 a001 139583862445/4106118243*24476^(11/21) 6765000023648856 a001 182717648081/5374978561*24476^(11/21) 6765000023648856 a001 956722026041/28143753123*24476^(11/21) 6765000023648856 a001 2504730781961/73681302247*24476^(11/21) 6765000023648856 a001 3278735159921/96450076809*24476^(11/21) 6765000023648856 a001 10610209857723/312119004989*24476^(11/21) 6765000023648856 a001 4052739537881/119218851371*24476^(11/21) 6765000023648856 a001 387002188980/11384387281*24476^(11/21) 6765000023648856 a001 591286729879/17393796001*24476^(11/21) 6765000023648856 a001 225851433717/6643838879*24476^(11/21) 6765000023648856 a001 1135099622/33391061*24476^(11/21) 6765000023648856 a001 32951280099/969323029*24476^(11/21) 6765000023648856 a001 12586269025/370248451*24476^(11/21) 6765000023648856 a001 1201881744/35355581*24476^(11/21) 6765000023648858 a001 1836311903/54018521*24476^(11/21) 6765000023648872 a001 701408733/20633239*24476^(11/21) 6765000023648965 a001 66978574/1970299*24476^(11/21) 6765000023649602 a001 102334155/3010349*24476^(11/21) 6765000023653971 a001 39088169/1149851*24476^(11/21) 6765000023683920 a001 196452/5779*24476^(11/21) 6765000023688311 a001 514229/64079*24476^(2/3) 6765000023889187 a001 5702887/167761*24476^(11/21) 6765000024012682 a001 121393/39603*64079^(16/23) 6765000024094769 a001 4976784/90481*24476^(10/21) 6765000024095035 a001 9227465/103682*24476^(3/7) 6765000024173193 a001 39088169/710647*24476^(10/21) 6765000024175143 a001 34111385/13201*24476^(2/21) 6765000024184635 a001 831985/15126*24476^(10/21) 6765000024186305 a001 267914296/4870847*24476^(10/21) 6765000024186548 a001 233802911/4250681*24476^(10/21) 6765000024186584 a001 1836311903/33385282*24476^(10/21) 6765000024186589 a001 1602508992/29134601*24476^(10/21) 6765000024186590 a001 12586269025/228826127*24476^(10/21) 6765000024186590 a001 10983760033/199691526*24476^(10/21) 6765000024186590 a001 86267571272/1568397607*24476^(10/21) 6765000024186590 a001 75283811239/1368706081*24476^(10/21) 6765000024186590 a001 591286729879/10749957122*24476^(10/21) 6765000024186590 a001 12585437040/228811001*24476^(10/21) 6765000024186590 a001 4052739537881/73681302247*24476^(10/21) 6765000024186590 a001 3536736619241/64300051206*24476^(10/21) 6765000024186590 a001 6557470319842/119218851371*24476^(10/21) 6765000024186590 a001 2504730781961/45537549124*24476^(10/21) 6765000024186590 a001 956722026041/17393796001*24476^(10/21) 6765000024186590 a001 365435296162/6643838879*24476^(10/21) 6765000024186590 a001 139583862445/2537720636*24476^(10/21) 6765000024186590 a001 53316291173/969323029*24476^(10/21) 6765000024186590 a001 20365011074/370248451*24476^(10/21) 6765000024186590 a001 7778742049/141422324*24476^(10/21) 6765000024186592 a001 2971215073/54018521*24476^(10/21) 6765000024186606 a001 1134903170/20633239*24476^(10/21) 6765000024186699 a001 433494437/7881196*24476^(10/21) 6765000024187336 a001 165580141/3010349*24476^(10/21) 6765000024191707 a001 63245986/1149851*24476^(10/21) 6765000024211198 a001 196418/39603*64079^(15/23) 6765000024218975 a001 832040/64079*24476^(13/21) 6765000024221662 a001 24157817/439204*24476^(10/21) 6765000024234365 a001 105937/13201*64079^(14/23) 6765000024273237 a001 75025/39603*64079^(17/23) 6765000024324509 a001 514229/39603*64079^(13/23) 6765000024389071 a001 832040/39603*64079^(12/23) 6765000024426979 a001 9227465/167761*24476^(10/21) 6765000024434118 h001 (5/9*exp(1)+3/7)/(8/11*exp(1)+8/9) 6765000024463404 a001 1346269/39603*64079^(11/23) 6765000024534004 a001 726103/13201*64079^(10/23) 6765000024561745 a001 24157817/24476*9349^(4/19) 6765000024597927 a001 15456/13201*439204^(2/3) 6765000024606031 a001 3524578/39603*64079^(9/23) 6765000024621234 a001 17711/103682*7881196^(2/3) 6765000024621248 a001 15456/13201*7881196^(6/11) 6765000024621307 a001 15456/13201*141422324^(6/13) 6765000024621307 a001 17711/103682*312119004989^(2/5) 6765000024621307 a001 17711/103682*(1/2+1/2*5^(1/2))^22 6765000024621307 a001 17711/103682*10749957122^(11/24) 6765000024621307 a001 17711/103682*4106118243^(11/23) 6765000024621307 a001 17711/103682*1568397607^(1/2) 6765000024621307 a001 15456/13201*2537720636^(2/5) 6765000024621307 a001 15456/13201*45537549124^(6/17) 6765000024621307 a001 15456/13201*14662949395604^(2/7) 6765000024621307 a001 15456/13201*(1/2+1/2*5^(1/2))^18 6765000024621307 a001 15456/13201*192900153618^(1/3) 6765000024621307 a001 15456/13201*10749957122^(3/8) 6765000024621307 a001 15456/13201*4106118243^(9/23) 6765000024621307 a001 15456/13201*1568397607^(9/22) 6765000024621307 a001 17711/103682*599074578^(11/21) 6765000024621307 a001 15456/13201*599074578^(3/7) 6765000024621307 a001 15456/13201*228826127^(9/20) 6765000024621307 a001 17711/103682*228826127^(11/20) 6765000024621307 a001 15456/13201*87403803^(9/19) 6765000024621308 a001 17711/103682*87403803^(11/19) 6765000024621310 a001 15456/13201*33385282^(1/2) 6765000024621311 a001 17711/103682*33385282^(11/18) 6765000024621329 a001 15456/13201*12752043^(9/17) 6765000024621334 a001 17711/103682*12752043^(11/17) 6765000024621467 a001 15456/13201*4870847^(9/16) 6765000024621503 a001 17711/103682*4870847^(11/16) 6765000024622480 a001 15456/13201*1860498^(3/5) 6765000024622740 a001 17711/103682*1860498^(11/15) 6765000024629918 a001 15456/13201*710647^(9/14) 6765000024631832 a001 17711/103682*710647^(11/14) 6765000024632512 a001 24157817/271443*24476^(3/7) 6765000024632747 a001 7465176/51841*24476^(8/21) 6765000024677512 a001 5702887/39603*64079^(8/23) 6765000024684871 a001 15456/13201*271443^(9/13) 6765000024698996 a001 17711/103682*271443^(11/13) 6765000024710929 a001 63245986/710647*24476^(3/7) 6765000024712878 a001 165580141/39603*24476^(1/21) 6765000024713121 a001 821223648/121393 6765000024722370 a001 165580141/1860498*24476^(3/7) 6765000024724039 a001 433494437/4870847*24476^(3/7) 6765000024724282 a001 1134903170/12752043*24476^(3/7) 6765000024724318 a001 2971215073/33385282*24476^(3/7) 6765000024724323 a001 7778742049/87403803*24476^(3/7) 6765000024724324 a001 20365011074/228826127*24476^(3/7) 6765000024724324 a001 53316291173/599074578*24476^(3/7) 6765000024724324 a001 139583862445/1568397607*24476^(3/7) 6765000024724324 a001 365435296162/4106118243*24476^(3/7) 6765000024724324 a001 956722026041/10749957122*24476^(3/7) 6765000024724324 a001 2504730781961/28143753123*24476^(3/7) 6765000024724324 a001 6557470319842/73681302247*24476^(3/7) 6765000024724324 a001 10610209857723/119218851371*24476^(3/7) 6765000024724324 a001 4052739537881/45537549124*24476^(3/7) 6765000024724324 a001 1548008755920/17393796001*24476^(3/7) 6765000024724324 a001 591286729879/6643838879*24476^(3/7) 6765000024724324 a001 225851433717/2537720636*24476^(3/7) 6765000024724324 a001 86267571272/969323029*24476^(3/7) 6765000024724324 a001 32951280099/370248451*24476^(3/7) 6765000024724324 a001 12586269025/141422324*24476^(3/7) 6765000024724326 a001 4807526976/54018521*24476^(3/7) 6765000024724340 a001 1836311903/20633239*24476^(3/7) 6765000024724433 a001 3524667/39604*24476^(3/7) 6765000024725071 a001 267914296/3010349*24476^(3/7) 6765000024729441 a001 102334155/1149851*24476^(3/7) 6765000024749202 a001 9227465/39603*64079^(7/23) 6765000024759393 a001 39088169/439204*24476^(3/7) 6765000024759410 a001 1346269/64079*24476^(4/7) 6765000024820812 a001 4976784/13201*64079^(6/23) 6765000024858492 a001 17711/39603*39603^(10/11) 6765000024860975 a001 433494437/103682*9349^(1/19) 6765000024892453 a001 24157817/39603*64079^(5/23) 6765000024964082 a001 39088169/39603*64079^(4/23) 6765000024964691 a001 14930352/167761*24476^(3/7) 6765000025010239 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^27 6765000025035715 a001 63245986/39603*64079^(3/23) 6765000025093286 a001 15456/13201*103682^(3/4) 6765000025107347 a001 34111385/13201*64079^(2/23) 6765000025127624 a001 17711/271443*439204^(8/9) 6765000025141458 a001 196418/39603*167761^(3/5) 6765000025154177 a001 726103/13201*167761^(2/5) 6765000025158718 a001 17711/271443*7881196^(8/11) 6765000025158797 a001 17711/271443*141422324^(8/13) 6765000025158798 a001 17711/271443*2537720636^(8/15) 6765000025158798 a001 17711/271443*45537549124^(8/17) 6765000025158798 a001 17711/271443*14662949395604^(8/21) 6765000025158798 a001 17711/271443*(1/2+1/2*5^(1/2))^24 6765000025158798 a001 17711/271443*192900153618^(4/9) 6765000025158798 a001 17711/271443*73681302247^(6/13) 6765000025158798 a001 17711/271443*10749957122^(1/2) 6765000025158798 a001 17711/271443*4106118243^(12/23) 6765000025158798 a001 17711/271443*1568397607^(6/11) 6765000025158798 a001 121393/39603*(1/2+1/2*5^(1/2))^16 6765000025158798 a001 121393/39603*23725150497407^(1/4) 6765000025158798 a001 121393/39603*73681302247^(4/13) 6765000025158798 a001 121393/39603*10749957122^(1/3) 6765000025158798 a001 121393/39603*4106118243^(8/23) 6765000025158798 a001 121393/39603*1568397607^(4/11) 6765000025158798 a001 121393/39603*599074578^(8/21) 6765000025158798 a001 17711/271443*599074578^(4/7) 6765000025158798 a001 121393/39603*228826127^(2/5) 6765000025158798 a001 17711/271443*228826127^(3/5) 6765000025158798 a001 121393/39603*87403803^(8/19) 6765000025158798 a001 17711/271443*87403803^(12/19) 6765000025158800 a001 121393/39603*33385282^(4/9) 6765000025158802 a001 17711/271443*33385282^(2/3) 6765000025158817 a001 121393/39603*12752043^(8/17) 6765000025158827 a001 17711/271443*12752043^(12/17) 6765000025158940 a001 121393/39603*4870847^(1/2) 6765000025159011 a001 17711/271443*4870847^(3/4) 6765000025159840 a001 121393/39603*1860498^(8/15) 6765000025160361 a001 17711/271443*1860498^(4/5) 6765000025166452 a001 121393/39603*710647^(4/7) 6765000025170243 a001 39088169/271443*24476^(8/21) 6765000025170279 a001 17711/271443*710647^(6/7) 6765000025170490 a001 24157817/103682*24476^(1/3) 6765000025172193 a001 2149991423/317811 6765000025178980 a001 165580141/39603*64079^(1/23) 6765000025198170 a001 17711/103682*103682^(11/12) 6765000025202540 a001 24157817/39603*167761^(1/5) 6765000025215299 a001 121393/39603*271443^(8/13) 6765000025215542 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^29 6765000025233071 a001 832040/39603*439204^(4/9) 6765000025237210 a001 105937/13201*20633239^(2/5) 6765000025237216 a001 17711/710647*141422324^(2/3) 6765000025237216 a001 17711/710647*(1/2+1/2*5^(1/2))^26 6765000025237216 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^26/Lucas(28) 6765000025237216 a001 17711/710647*73681302247^(1/2) 6765000025237216 a001 17711/710647*10749957122^(13/24) 6765000025237216 a001 17711/710647*4106118243^(13/23) 6765000025237216 a001 17711/710647*1568397607^(13/22) 6765000025237216 a001 105937/13201*17393796001^(2/7) 6765000025237216 a001 105937/13201*14662949395604^(2/9) 6765000025237216 a001 105937/13201*(1/2+1/2*5^(1/2))^14 6765000025237216 a001 105937/13201*505019158607^(1/4) 6765000025237216 a001 105937/13201*10749957122^(7/24) 6765000025237216 a001 105937/13201*4106118243^(7/23) 6765000025237216 a001 105937/13201*1568397607^(7/22) 6765000025237216 a001 105937/13201*599074578^(1/3) 6765000025237216 a001 17711/710647*599074578^(13/21) 6765000025237216 a001 105937/13201*228826127^(7/20) 6765000025237216 a001 17711/710647*228826127^(13/20) 6765000025237217 a001 105937/13201*87403803^(7/19) 6765000025237217 a001 17711/710647*87403803^(13/19) 6765000025237219 a001 105937/13201*33385282^(7/18) 6765000025237221 a001 17711/710647*33385282^(13/18) 6765000025237233 a001 105937/13201*12752043^(7/17) 6765000025237248 a001 17711/710647*12752043^(13/17) 6765000025237341 a001 105937/13201*4870847^(7/16) 6765000025237448 a001 17711/710647*4870847^(13/16) 6765000025238128 a001 105937/13201*1860498^(7/15) 6765000025238910 a001 17711/710647*1860498^(13/15) 6765000025239031 a001 3524578/39603*439204^(1/3) 6765000025239171 a001 5628750621/832040 6765000025242812 a001 4976784/13201*439204^(2/9) 6765000025243549 a001 17711/271443*271443^(12/13) 6765000025243914 a001 105937/13201*710647^(1/2) 6765000025245495 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^31 6765000025246716 a001 63245986/39603*439204^(1/9) 6765000025248618 a001 832040/39603*7881196^(4/11) 6765000025248645 a001 17711/1860498*20633239^(4/5) 6765000025248657 a001 832040/39603*141422324^(4/13) 6765000025248657 a001 17711/1860498*17393796001^(4/7) 6765000025248657 a001 17711/1860498*14662949395604^(4/9) 6765000025248657 a001 17711/1860498*(1/2+1/2*5^(1/2))^28 6765000025248657 a001 17711/1860498*505019158607^(1/2) 6765000025248657 a001 17711/1860498*73681302247^(7/13) 6765000025248657 a001 17711/1860498*10749957122^(7/12) 6765000025248657 a001 17711/1860498*4106118243^(14/23) 6765000025248657 a001 17711/1860498*1568397607^(7/11) 6765000025248657 a001 832040/39603*2537720636^(4/15) 6765000025248657 a001 832040/39603*45537549124^(4/17) 6765000025248657 a001 832040/39603*817138163596^(4/19) 6765000025248657 a001 832040/39603*14662949395604^(4/21) 6765000025248657 a001 832040/39603*(1/2+1/2*5^(1/2))^12 6765000025248657 a001 832040/39603*192900153618^(2/9) 6765000025248657 a001 832040/39603*73681302247^(3/13) 6765000025248657 a001 832040/39603*10749957122^(1/4) 6765000025248657 a001 832040/39603*4106118243^(6/23) 6765000025248657 a001 832040/39603*1568397607^(3/11) 6765000025248657 a001 832040/39603*599074578^(2/7) 6765000025248657 a001 17711/1860498*599074578^(2/3) 6765000025248658 a001 832040/39603*228826127^(3/10) 6765000025248658 a001 17711/1860498*228826127^(7/10) 6765000025248658 a001 832040/39603*87403803^(6/19) 6765000025248658 a001 17711/1860498*87403803^(14/19) 6765000025248659 a001 832040/39603*33385282^(1/3) 6765000025248662 a001 17711/1860498*33385282^(7/9) 6765000025248663 a001 14619165/101521*24476^(8/21) 6765000025248672 a001 832040/39603*12752043^(6/17) 6765000025248692 a001 17711/1860498*12752043^(14/17) 6765000025248764 a001 832040/39603*4870847^(3/8) 6765000025248907 a001 17711/1860498*4870847^(7/8) 6765000025248943 a001 14736260440/2178309 6765000025249439 a001 832040/39603*1860498^(2/5) 6765000025249655 a001 17711/710647*710647^(13/14) 6765000025249865 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^33 6765000025250228 a001 17711/4870847*7881196^(10/11) 6765000025250313 a001 17711/4870847*20633239^(6/7) 6765000025250322 a001 726103/13201*20633239^(2/7) 6765000025250326 a001 17711/4870847*141422324^(10/13) 6765000025250327 a001 17711/4870847*2537720636^(2/3) 6765000025250327 a001 17711/4870847*45537549124^(10/17) 6765000025250327 a001 17711/4870847*312119004989^(6/11) 6765000025250327 a001 17711/4870847*14662949395604^(10/21) 6765000025250327 a001 17711/4870847*(1/2+1/2*5^(1/2))^30 6765000025250327 a001 17711/4870847*192900153618^(5/9) 6765000025250327 a001 17711/4870847*28143753123^(3/5) 6765000025250327 a001 17711/4870847*10749957122^(5/8) 6765000025250327 a001 17711/4870847*4106118243^(15/23) 6765000025250327 a001 17711/4870847*1568397607^(15/22) 6765000025250327 a001 726103/13201*2537720636^(2/9) 6765000025250327 a001 726103/13201*312119004989^(2/11) 6765000025250327 a001 726103/13201*(1/2+1/2*5^(1/2))^10 6765000025250327 a001 726103/13201*28143753123^(1/5) 6765000025250327 a001 726103/13201*10749957122^(5/24) 6765000025250327 a001 726103/13201*4106118243^(5/23) 6765000025250327 a001 726103/13201*1568397607^(5/22) 6765000025250327 a001 726103/13201*599074578^(5/21) 6765000025250327 a001 17711/4870847*599074578^(5/7) 6765000025250327 a001 726103/13201*228826127^(1/4) 6765000025250327 a001 17711/4870847*228826127^(3/4) 6765000025250327 a001 726103/13201*87403803^(5/19) 6765000025250327 a001 17711/4870847*87403803^(15/19) 6765000025250328 a001 726103/13201*33385282^(5/18) 6765000025250332 a001 17711/4870847*33385282^(5/6) 6765000025250339 a001 726103/13201*12752043^(5/17) 6765000025250363 a001 17711/4870847*12752043^(15/17) 6765000025250368 a001 38580030699/5702887 6765000025250416 a001 726103/13201*4870847^(5/16) 6765000025250482 a001 17711/1860498*1860498^(14/15) 6765000025250503 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^35 6765000025250570 a001 17711/12752043*(1/2+1/2*5^(1/2))^32 6765000025250570 a001 17711/12752043*23725150497407^(1/2) 6765000025250570 a001 17711/12752043*505019158607^(4/7) 6765000025250570 a001 17711/12752043*73681302247^(8/13) 6765000025250570 a001 17711/12752043*10749957122^(2/3) 6765000025250570 a001 17711/12752043*4106118243^(16/23) 6765000025250570 a001 17711/12752043*1568397607^(8/11) 6765000025250570 a001 5702887/39603*(1/2+1/2*5^(1/2))^8 6765000025250570 a001 5702887/39603*23725150497407^(1/8) 6765000025250570 a001 5702887/39603*505019158607^(1/7) 6765000025250570 a001 5702887/39603*73681302247^(2/13) 6765000025250570 a001 5702887/39603*10749957122^(1/6) 6765000025250570 a001 5702887/39603*4106118243^(4/23) 6765000025250570 a001 5702887/39603*1568397607^(2/11) 6765000025250570 a001 5702887/39603*599074578^(4/21) 6765000025250570 a001 17711/12752043*599074578^(16/21) 6765000025250570 a001 5702887/39603*228826127^(1/5) 6765000025250570 a001 17711/12752043*228826127^(4/5) 6765000025250570 a001 5702887/39603*87403803^(4/19) 6765000025250571 a001 17711/12752043*87403803^(16/19) 6765000025250572 a001 5702887/39603*33385282^(2/9) 6765000025250576 a001 17711/12752043*33385282^(8/9) 6765000025250576 a001 101003831657/14930352 6765000025250580 a001 5702887/39603*12752043^(4/17) 6765000025250586 a001 4976784/13201*7881196^(2/11) 6765000025250594 a001 17711/4870847*4870847^(15/16) 6765000025250596 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^37 6765000025250602 a001 63245986/39603*7881196^(1/11) 6765000025250606 a001 4976784/13201*141422324^(2/13) 6765000025250606 a001 17711/33385282*45537549124^(2/3) 6765000025250606 a001 17711/33385282*(1/2+1/2*5^(1/2))^34 6765000025250606 a001 17711/33385282*10749957122^(17/24) 6765000025250606 a001 17711/33385282*4106118243^(17/23) 6765000025250606 a001 17711/33385282*1568397607^(17/22) 6765000025250606 a001 4976784/13201*2537720636^(2/15) 6765000025250606 a001 4976784/13201*45537549124^(2/17) 6765000025250606 a001 4976784/13201*14662949395604^(2/21) 6765000025250606 a001 4976784/13201*(1/2+1/2*5^(1/2))^6 6765000025250606 a001 4976784/13201*10749957122^(1/8) 6765000025250606 a001 4976784/13201*4106118243^(3/23) 6765000025250606 a001 4976784/13201*1568397607^(3/22) 6765000025250606 a001 4976784/13201*599074578^(1/7) 6765000025250606 a001 17711/33385282*599074578^(17/21) 6765000025250606 a001 4976784/13201*228826127^(3/20) 6765000025250606 a001 17711/33385282*228826127^(17/20) 6765000025250606 a001 4976784/13201*87403803^(3/19) 6765000025250607 a001 17711/33385282*87403803^(17/19) 6765000025250607 a001 264431464272/39088169 6765000025250607 a001 4976784/13201*33385282^(1/6) 6765000025250609 a001 17711/12752043*12752043^(16/17) 6765000025250610 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^39 6765000025250611 a001 17711/87403803*141422324^(12/13) 6765000025250611 a001 17711/87403803*2537720636^(4/5) 6765000025250611 a001 17711/87403803*45537549124^(12/17) 6765000025250611 a001 17711/87403803*14662949395604^(4/7) 6765000025250611 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(38) 6765000025250611 a001 17711/87403803*505019158607^(9/14) 6765000025250611 a001 17711/87403803*192900153618^(2/3) 6765000025250611 a001 17711/87403803*73681302247^(9/13) 6765000025250611 a001 17711/87403803*10749957122^(3/4) 6765000025250611 a001 17711/87403803*4106118243^(18/23) 6765000025250611 a001 17711/87403803*1568397607^(9/11) 6765000025250611 a001 39088169/39603*(1/2+1/2*5^(1/2))^4 6765000025250611 a001 39088169/39603*23725150497407^(1/16) 6765000025250611 a001 39088169/39603*73681302247^(1/13) 6765000025250611 a001 39088169/39603*10749957122^(1/12) 6765000025250611 a001 39088169/39603*4106118243^(2/23) 6765000025250611 a001 39088169/39603*1568397607^(1/11) 6765000025250611 a001 39088169/39603*599074578^(2/21) 6765000025250611 a001 39088169/39603*228826127^(1/10) 6765000025250611 a001 17711/87403803*599074578^(6/7) 6765000025250611 a001 39088169/39603*87403803^(2/19) 6765000025250611 a001 17711/87403803*228826127^(9/10) 6765000025250611 a001 692290561159/102334155 6765000025250612 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^41 6765000025250612 a001 17711/33385282*33385282^(17/18) 6765000025250612 a001 39088169/39603*33385282^(1/9) 6765000025250612 a001 17711/228826127*817138163596^(2/3) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(40) 6765000025250612 a001 17711/228826127*10749957122^(19/24) 6765000025250612 a001 17711/228826127*4106118243^(19/23) 6765000025250612 a001 17711/228826127*1568397607^(19/22) 6765000025250612 a001 34111385/13201*(1/2+1/2*5^(1/2))^2 6765000025250612 a001 34111385/13201*10749957122^(1/24) 6765000025250612 a001 34111385/13201*4106118243^(1/23) 6765000025250612 a001 34111385/13201*1568397607^(1/22) 6765000025250612 a001 34111385/13201*599074578^(1/21) 6765000025250612 a001 34111385/13201*228826127^(1/20) 6765000025250612 a001 17711/228826127*599074578^(19/21) 6765000025250612 a001 1812440219205/267914296 6765000025250612 a001 34111385/13201*87403803^(1/19) 6765000025250612 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^43 6765000025250612 a001 17711/87403803*87403803^(18/19) 6765000025250612 a001 17711/599074578*2537720636^(8/9) 6765000025250612 a001 17711/599074578*312119004989^(8/11) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(42) 6765000025250612 a001 17711/599074578*23725150497407^(5/8) 6765000025250612 a001 17711/599074578*73681302247^(10/13) 6765000025250612 a001 17711/599074578*28143753123^(4/5) 6765000025250612 a001 17711/599074578*10749957122^(5/6) 6765000025250612 a001 17711/599074578*4106118243^(20/23) 6765000025250612 a001 17711/599074578*1568397607^(10/11) 6765000025250612 a001 267914296/39603 6765000025250612 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^45 6765000025250612 a001 17711/228826127*228826127^(19/20) 6765000025250612 a001 17711/1568397607*2537720636^(14/15) 6765000025250612 a001 17711/1568397607*17393796001^(6/7) 6765000025250612 a001 17711/1568397607*45537549124^(14/17) 6765000025250612 a001 17711/1568397607*817138163596^(14/19) 6765000025250612 a001 17711/1568397607*14662949395604^(2/3) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(44) 6765000025250612 a001 17711/1568397607*505019158607^(3/4) 6765000025250612 a001 17711/1568397607*192900153618^(7/9) 6765000025250612 a001 17711/1568397607*10749957122^(7/8) 6765000025250612 a001 17711/1568397607*4106118243^(21/23) 6765000025250612 a001 12422650070163/1836311903 6765000025250612 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^47 6765000025250612 a001 17711/599074578*599074578^(20/21) 6765000025250612 a001 17711/4106118243*312119004989^(4/5) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(46) 6765000025250612 a001 17711/4106118243*23725150497407^(11/16) 6765000025250612 a001 17711/4106118243*73681302247^(11/13) 6765000025250612 a001 17711/4106118243*10749957122^(11/12) 6765000025250612 a001 32522920114033/4807526976 6765000025250612 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^49 6765000025250612 a001 17711/1568397607*1568397607^(21/22) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(48) 6765000025250612 a001 85146110271936/12586269025 6765000025250612 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^51 6765000025250612 a001 17711/4106118243*4106118243^(22/23) 6765000025250612 a001 17711/28143753123*45537549124^(16/17) 6765000025250612 a001 17711/28143753123*14662949395604^(16/21) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(50) 6765000025250612 a001 17711/28143753123*192900153618^(8/9) 6765000025250612 a001 17711/28143753123*73681302247^(12/13) 6765000025250612 a001 222915410701775/32951280099 6765000025250612 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^53 6765000025250612 a001 17711/10749957122*10749957122^(23/24) 6765000025250612 a001 17711/73681302247*312119004989^(10/11) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(52) 6765000025250612 a001 17711/73681302247*3461452808002^(5/6) 6765000025250612 a001 583600121833389/86267571272 6765000025250612 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^55 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(54) 6765000025250612 a001 17711/192900153618*23725150497407^(13/16) 6765000025250612 a001 1527884954798392/225851433717 6765000025250612 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^57 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(56) 6765000025250612 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^59 6765000025250612 a001 17711/1322157322203*14662949395604^(8/9) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(58) 6765000025250612 a001 10472279272886969/1548008755920 6765000025250612 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^61 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(60) 6765000025250612 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^63 6765000025250612 a001 17711/9062201101803*14662949395604^(20/21) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(62) 6765000025250612 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^65 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(64) 6765000025250612 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^67 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(66) 6765000025250612 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^69 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(68) 6765000025250612 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^71 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(70) 6765000025250612 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^73 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(72) 6765000025250612 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^75 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(74) 6765000025250612 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^77 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(76) 6765000025250612 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^79 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(78) 6765000025250612 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^81 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(80) 6765000025250612 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^83 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(82) 6765000025250612 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^85 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(84) 6765000025250612 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^87 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(86) 6765000025250612 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^89 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(88) 6765000025250612 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^91 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(90) 6765000025250612 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^93 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(92) 6765000025250612 a004 Fibonacci(22)*Lucas(93)/(1/2+sqrt(5)/2)^95 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^92/Lucas(94) 6765000025250612 a004 Fibonacci(22)*Lucas(95)/(1/2+sqrt(5)/2)^97 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^94/Lucas(96) 6765000025250612 a004 Fibonacci(22)*Lucas(97)/(1/2+sqrt(5)/2)^99 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^96/Lucas(98) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^98/Lucas(100) 6765000025250612 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^2 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^97/Lucas(99) 6765000025250612 a004 Fibonacci(22)*Lucas(98)/(1/2+sqrt(5)/2)^100 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^95/Lucas(97) 6765000025250612 a004 Fibonacci(22)*Lucas(96)/(1/2+sqrt(5)/2)^98 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^93/Lucas(95) 6765000025250612 a004 Fibonacci(22)*Lucas(94)/(1/2+sqrt(5)/2)^96 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(93) 6765000025250612 a004 Fibonacci(22)*Lucas(92)/(1/2+sqrt(5)/2)^94 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(91) 6765000025250612 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^92 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(89) 6765000025250612 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^90 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(87) 6765000025250612 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^88 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(85) 6765000025250612 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^86 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(83) 6765000025250612 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^84 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(81) 6765000025250612 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^82 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(79) 6765000025250612 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^80 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(77) 6765000025250612 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^78 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(75) 6765000025250612 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^76 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(73) 6765000025250612 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^74 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(71) 6765000025250612 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^72 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(69) 6765000025250612 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^70 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(67) 6765000025250612 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^68 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(65) 6765000025250612 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^66 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(63) 6765000025250612 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^64 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(61) 6765000025250612 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^62 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(59) 6765000025250612 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^60 6765000025250612 a001 6472224530325182/956722026041 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(57) 6765000025250612 a001 17711/817138163596*3461452808002^(11/12) 6765000025250612 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^58 6765000025250612 a001 2472169787763395/365435296162 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(55) 6765000025250612 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^56 6765000025250612 a001 10609941943427/1568358005 6765000025250612 a001 17711/119218851371*817138163596^(17/19) 6765000025250612 a001 17711/119218851371*14662949395604^(17/21) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(53) 6765000025250612 a001 17711/119218851371*192900153618^(17/18) 6765000025250612 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^54 6765000025250612 a001 360684711131614/53316291173 6765000025250612 a001 17711/45537549124*14662949395604^(7/9) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(51) 6765000025250612 a001 17711/45537549124*505019158607^(7/8) 6765000025250612 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^52 6765000025250612 a001 137769300429839/20365011074 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(49) 6765000025250612 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^50 6765000025250612 a001 52623190157903/7778742049 6765000025250612 a001 17711/6643838879*45537549124^(15/17) 6765000025250612 a001 17711/6643838879*312119004989^(9/11) 6765000025250612 a001 17711/6643838879*14662949395604^(5/7) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(47) 6765000025250612 a001 17711/6643838879*192900153618^(5/6) 6765000025250612 a001 17711/6643838879*28143753123^(9/10) 6765000025250612 a001 17711/6643838879*10749957122^(15/16) 6765000025250612 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^48 6765000025250612 a001 20100270043870/2971215073 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(45) 6765000025250612 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^4 6765000025250612 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^6 6765000025250612 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^8 6765000025250612 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^10 6765000025250612 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^12 6765000025250612 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^14 6765000025250612 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^16 6765000025250612 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^18 6765000025250612 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^20 6765000025250612 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^22 6765000025250612 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^24 6765000025250612 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^26 6765000025250612 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^28 6765000025250612 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^30 6765000025250612 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^32 6765000025250612 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^34 6765000025250612 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^36 6765000025250612 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^38 6765000025250612 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^40 6765000025250612 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^42 6765000025250612 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^44 6765000025250612 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^46 6765000025250612 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^48 6765000025250612 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^50 6765000025250612 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^52 6765000025250612 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^54 6765000025250612 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^56 6765000025250612 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^58 6765000025250612 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^57 6765000025250612 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^55 6765000025250612 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^53 6765000025250612 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^51 6765000025250612 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^49 6765000025250612 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^47 6765000025250612 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^45 6765000025250612 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^43 6765000025250612 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^41 6765000025250612 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^39 6765000025250612 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^37 6765000025250612 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^35 6765000025250612 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^33 6765000025250612 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^31 6765000025250612 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^29 6765000025250612 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^27 6765000025250612 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^25 6765000025250612 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^23 6765000025250612 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^21 6765000025250612 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^19 6765000025250612 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^17 6765000025250612 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^15 6765000025250612 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^13 6765000025250612 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^11 6765000025250612 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^9 6765000025250612 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^7 6765000025250612 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^5 6765000025250612 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^3 6765000025250612 a001 7677619973707/1134903170 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(43) 6765000025250612 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2) 6765000025250612 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^44 6765000025250612 a001 2932589877251/433494437 6765000025250612 a001 17711/370248451*2537720636^(13/15) 6765000025250612 a001 17711/370248451*45537549124^(13/17) 6765000025250612 a001 17711/370248451*14662949395604^(13/21) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(41) 6765000025250612 a001 17711/370248451*192900153618^(13/18) 6765000025250612 a001 17711/370248451*73681302247^(3/4) 6765000025250612 a001 17711/370248451*10749957122^(13/16) 6765000025250612 a001 24157817/39603*20633239^(1/7) 6765000025250612 a001 165580141/79206+165580141/79206*5^(1/2) 6765000025250612 a001 17711/370248451*599074578^(13/14) 6765000025250612 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^42 6765000025250612 a001 34111385/13201*33385282^(1/18) 6765000025250612 a001 1120149658046/165580141 6765000025250612 a001 63245986/39603*141422324^(1/13) 6765000025250612 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(39) 6765000025250612 a001 63245986/39603*2537720636^(1/15) 6765000025250612 a001 63245986/39603*45537549124^(1/17) 6765000025250612 a001 63245986/39603*14662949395604^(1/21) 6765000025250612 a001 63245986/39603*(1/2+1/2*5^(1/2))^3 6765000025250612 a001 63245986/39603*192900153618^(1/18) 6765000025250612 a001 63245986/39603*10749957122^(1/16) 6765000025250612 a001 63245986/39603*599074578^(1/14) 6765000025250613 a001 63245986/39603*33385282^(1/12) 6765000025250613 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^40 6765000025250613 a001 4976784/13201*12752043^(3/17) 6765000025250614 a001 427859096887/63245986 6765000025250614 a001 17711/54018521*2537720636^(7/9) 6765000025250614 a001 17711/54018521*17393796001^(5/7) 6765000025250614 a001 17711/54018521*312119004989^(7/11) 6765000025250614 a001 17711/54018521*14662949395604^(5/9) 6765000025250614 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(37) 6765000025250614 a001 17711/54018521*505019158607^(5/8) 6765000025250614 a001 17711/54018521*28143753123^(7/10) 6765000025250614 a001 34111385/13201*12752043^(1/17) 6765000025250614 a001 24157817/39603*2537720636^(1/9) 6765000025250614 a001 24157817/39603*312119004989^(1/11) 6765000025250614 a001 24157817/39603*(1/2+1/2*5^(1/2))^5 6765000025250614 a001 24157817/39603*28143753123^(1/10) 6765000025250614 a001 17711/54018521*599074578^(5/6) 6765000025250614 a001 24157817/39603*228826127^(1/8) 6765000025250614 a001 17711/54018521*228826127^(7/8) 6765000025250616 a001 39088169/39603*12752043^(2/17) 6765000025250618 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^38 6765000025250625 a001 9227465/39603*20633239^(1/5) 6765000025250625 a001 163427632615/24157817 6765000025250627 a001 17711/20633239*141422324^(11/13) 6765000025250628 a001 17711/20633239*2537720636^(11/15) 6765000025250628 a001 17711/20633239*45537549124^(11/17) 6765000025250628 a001 17711/20633239*312119004989^(3/5) 6765000025250628 a001 17711/20633239*14662949395604^(11/21) 6765000025250628 a001 17711/20633239*(1/2+1/2*5^(1/2))^33 6765000025250628 a001 17711/20633239*192900153618^(11/18) 6765000025250628 a001 17711/20633239*10749957122^(11/16) 6765000025250628 a001 17711/20633239*1568397607^(3/4) 6765000025250628 a001 9227465/39603*17393796001^(1/7) 6765000025250628 a001 9227465/39603*14662949395604^(1/9) 6765000025250628 a001 9227465/39603*(1/2+1/2*5^(1/2))^7 6765000025250628 a001 9227465/39603*599074578^(1/6) 6765000025250628 a001 17711/20633239*599074578^(11/14) 6765000025250630 a001 34111385/13201*4870847^(1/16) 6765000025250633 a001 17711/20633239*33385282^(11/12) 6765000025250642 a001 5702887/39603*4870847^(1/4) 6765000025250647 a001 39088169/39603*4870847^(1/8) 6765000025250653 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^36 6765000025250659 a001 4976784/13201*4870847^(3/16) 6765000025250691 a001 3524578/39603*7881196^(3/11) 6765000025250705 a001 62423800958/9227465 6765000025250721 a001 3524578/39603*141422324^(3/13) 6765000025250721 a001 89/39604*(1/2+1/2*5^(1/2))^31 6765000025250721 a001 89/39604*9062201101803^(1/2) 6765000025250721 a001 3524578/39603*2537720636^(1/5) 6765000025250721 a001 3524578/39603*45537549124^(3/17) 6765000025250721 a001 3524578/39603*817138163596^(3/19) 6765000025250721 a001 3524578/39603*14662949395604^(1/7) 6765000025250721 a001 3524578/39603*(1/2+1/2*5^(1/2))^9 6765000025250721 a001 3524578/39603*192900153618^(1/6) 6765000025250721 a001 3524578/39603*10749957122^(3/16) 6765000025250721 a001 3524578/39603*599074578^(3/14) 6765000025250722 a001 3524578/39603*33385282^(1/4) 6765000025250742 a001 34111385/13201*1860498^(1/15) 6765000025250808 a001 63245986/39603*1860498^(1/10) 6765000025250872 a001 39088169/39603*1860498^(2/15) 6765000025250897 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^34 6765000025250940 a001 24157817/39603*1860498^(1/6) 6765000025250978 a001 726103/13201*1860498^(1/3) 6765000025250997 a001 4976784/13201*1860498^(1/5) 6765000025251091 a001 5702887/39603*1860498^(4/15) 6765000025251249 a001 267907531/39602 6765000025251307 a001 3524578/39603*1860498^(3/10) 6765000025251322 a001 1346269/39603*7881196^(1/3) 6765000025251358 a001 17711/3010349*(1/2+1/2*5^(1/2))^29 6765000025251358 a001 17711/3010349*1322157322203^(1/2) 6765000025251358 a001 1346269/39603*312119004989^(1/5) 6765000025251358 a001 1346269/39603*(1/2+1/2*5^(1/2))^11 6765000025251358 a001 1346269/39603*1568397607^(1/4) 6765000025251569 a001 34111385/13201*710647^(1/14) 6765000025252525 a001 39088169/39603*710647^(1/7) 6765000025252566 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^32 6765000025253476 a001 4976784/13201*710647^(3/14) 6765000025253977 a001 9227465/39603*710647^(1/4) 6765000025254398 a001 5702887/39603*710647^(2/7) 6765000025254398 a001 832040/39603*710647^(3/7) 6765000025254982 a001 9107509819/1346269 6765000025255111 a001 726103/13201*710647^(5/14) 6765000025255639 a001 17711/1149851*7881196^(9/11) 6765000025255728 a001 17711/1149851*141422324^(9/13) 6765000025255728 a001 514229/39603*141422324^(1/3) 6765000025255728 a001 17711/1149851*2537720636^(3/5) 6765000025255728 a001 17711/1149851*45537549124^(9/17) 6765000025255728 a001 17711/1149851*817138163596^(9/19) 6765000025255728 a001 17711/1149851*14662949395604^(3/7) 6765000025255728 a001 17711/1149851*(1/2+1/2*5^(1/2))^27 6765000025255728 a001 17711/1149851*192900153618^(1/2) 6765000025255728 a001 17711/1149851*10749957122^(9/16) 6765000025255728 a001 514229/39603*(1/2+1/2*5^(1/2))^13 6765000025255728 a001 514229/39603*73681302247^(1/4) 6765000025255728 a001 17711/1149851*599074578^(9/14) 6765000025255733 a001 17711/1149851*33385282^(3/4) 6765000025257487 a001 17711/1149851*1860498^(9/10) 6765000025257674 a001 34111385/13201*271443^(1/13) 6765000025260104 a001 133957148/930249*24476^(8/21) 6765000025261773 a001 701408733/4870847*24476^(8/21) 6765000025262017 a001 1836311903/12752043*24476^(8/21) 6765000025262052 a001 14930208/103681*24476^(8/21) 6765000025262057 a001 12586269025/87403803*24476^(8/21) 6765000025262058 a001 32951280099/228826127*24476^(8/21) 6765000025262058 a001 43133785636/299537289*24476^(8/21) 6765000025262058 a001 32264490531/224056801*24476^(8/21) 6765000025262058 a001 591286729879/4106118243*24476^(8/21) 6765000025262058 a001 774004377960/5374978561*24476^(8/21) 6765000025262058 a001 4052739537881/28143753123*24476^(8/21) 6765000025262058 a001 1515744265389/10525900321*24476^(8/21) 6765000025262058 a001 3278735159921/22768774562*24476^(8/21) 6765000025262058 a001 2504730781961/17393796001*24476^(8/21) 6765000025262058 a001 956722026041/6643838879*24476^(8/21) 6765000025262058 a001 182717648081/1268860318*24476^(8/21) 6765000025262058 a001 139583862445/969323029*24476^(8/21) 6765000025262058 a001 53316291173/370248451*24476^(8/21) 6765000025262059 a001 10182505537/70711162*24476^(8/21) 6765000025262060 a001 7778742049/54018521*24476^(8/21) 6765000025262074 a001 2971215073/20633239*24476^(8/21) 6765000025262167 a001 567451585/3940598*24476^(8/21) 6765000025262805 a001 433494437/3010349*24476^(8/21) 6765000025264007 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^30 6765000025264736 a001 39088169/39603*271443^(2/13) 6765000025266198 a001 196418/39603*439204^(5/9) 6765000025267175 a001 165580141/1149851*24476^(8/21) 6765000025271794 a001 4976784/13201*271443^(3/13) 6765000025276833 a001 165580141/39603*103682^(1/24) 6765000025278821 a001 5702887/39603*271443^(4/13) 6765000025280565 a001 3478759198/514229 6765000025285632 a001 196418/39603*7881196^(5/11) 6765000025285640 a001 726103/13201*271443^(5/13) 6765000025285670 a001 17711/439204*20633239^(5/7) 6765000025285675 a001 196418/39603*20633239^(3/7) 6765000025285682 a001 196418/39603*141422324^(5/13) 6765000025285682 a001 17711/439204*2537720636^(5/9) 6765000025285682 a001 17711/439204*312119004989^(5/11) 6765000025285682 a001 17711/439204*(1/2+1/2*5^(1/2))^25 6765000025285682 a001 17711/439204*3461452808002^(5/12) 6765000025285682 a001 17711/439204*28143753123^(1/2) 6765000025285682 a001 196418/39603*2537720636^(1/3) 6765000025285682 a001 196418/39603*45537549124^(5/17) 6765000025285682 a001 196418/39603*312119004989^(3/11) 6765000025285682 a001 196418/39603*14662949395604^(5/21) 6765000025285682 a001 196418/39603*(1/2+1/2*5^(1/2))^15 6765000025285682 a001 196418/39603*192900153618^(5/18) 6765000025285682 a001 196418/39603*28143753123^(3/10) 6765000025285682 a001 196418/39603*10749957122^(5/16) 6765000025285682 a001 196418/39603*599074578^(5/14) 6765000025285682 a001 196418/39603*228826127^(3/8) 6765000025285682 a001 17711/439204*228826127^(5/8) 6765000025285684 a001 196418/39603*33385282^(5/12) 6765000025286655 a001 105937/13201*271443^(7/13) 6765000025286659 a001 196418/39603*1860498^(1/2) 6765000025287310 a001 17711/439204*1860498^(5/6) 6765000025291033 a001 832040/39603*271443^(6/13) 6765000025296112 a001 2178309/64079*24476^(11/21) 6765000025297128 a001 31622993/219602*24476^(8/21) 6765000025301636 a001 514229/39603*271443^(1/2) 6765000025303054 a001 34111385/13201*103682^(1/12) 6765000025329275 a001 63245986/39603*103682^(1/8) 6765000025342426 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^28 6765000025355495 a001 39088169/39603*103682^(1/6) 6765000025381719 a001 24157817/39603*103682^(5/24) 6765000025393876 a001 17711/64079*64079^(21/23) 6765000025398466 a001 1134903170/271443*9349^(1/19) 6765000025407932 a001 4976784/13201*103682^(1/4) 6765000025434175 a001 9227465/39603*103682^(7/24) 6765000025446672 a001 165580141/39603*39603^(1/22) 6765000025455915 a001 1328767775/196418 6765000025460339 a001 5702887/39603*103682^(1/3) 6765000025476884 a001 2971215073/710647*9349^(1/19) 6765000025486710 a001 3524578/39603*103682^(3/8) 6765000025488325 a001 7778742049/1860498*9349^(1/19) 6765000025489995 a001 20365011074/4870847*9349^(1/19) 6765000025490238 a001 53316291173/12752043*9349^(1/19) 6765000025490274 a001 139583862445/33385282*9349^(1/19) 6765000025490279 a001 365435296162/87403803*9349^(1/19) 6765000025490280 a001 956722026041/228826127*9349^(1/19) 6765000025490280 a001 2504730781961/599074578*9349^(1/19) 6765000025490280 a001 6557470319842/1568397607*9349^(1/19) 6765000025490280 a001 10610209857723/2537720636*9349^(1/19) 6765000025490280 a001 4052739537881/969323029*9349^(1/19) 6765000025490280 a001 1548008755920/370248451*9349^(1/19) 6765000025490280 a001 591286729879/141422324*9349^(1/19) 6765000025490282 a001 225851433717/54018521*9349^(1/19) 6765000025490296 a001 86267571272/20633239*9349^(1/19) 6765000025490389 a001 32951280099/7881196*9349^(1/19) 6765000025490985 a001 17711/167761*(1/2+1/2*5^(1/2))^23 6765000025490985 a001 17711/167761*4106118243^(1/2) 6765000025490985 a001 75025/39603*45537549124^(1/3) 6765000025490985 a001 75025/39603*(1/2+1/2*5^(1/2))^17 6765000025491006 a001 75025/39603*12752043^(1/2) 6765000025491026 a001 12586269025/3010349*9349^(1/19) 6765000025495396 a001 4807526976/1149851*9349^(1/19) 6765000025502434 a001 24157817/167761*24476^(8/21) 6765000025512537 a001 726103/13201*103682^(5/12) 6765000025525350 a001 1836311903/439204*9349^(1/19) 6765000025537141 a001 28657/39603*64079^(19/23) 6765000025539790 a001 1346269/39603*103682^(11/24) 6765000025563310 a001 832040/39603*103682^(1/2) 6765000025578334 a001 121393/39603*103682^(2/3) 6765000025596602 a001 514229/39603*103682^(13/24) 6765000025604311 a001 105937/13201*103682^(7/12) 6765000025642732 a001 34111385/13201*39603^(1/11) 6765000025678997 a001 196418/39603*103682^(5/8) 6765000025707978 a001 63245986/271443*24476^(1/3) 6765000025708221 a001 39088169/103682*24476^(2/7) 6765000025730653 a001 701408733/167761*9349^(1/19) 6765000025786397 a001 165580141/710647*24476^(1/3) 6765000025797838 a001 433494437/1860498*24476^(1/3) 6765000025799507 a001 1134903170/4870847*24476^(1/3) 6765000025799751 a001 2971215073/12752043*24476^(1/3) 6765000025799786 a001 7778742049/33385282*24476^(1/3) 6765000025799791 a001 20365011074/87403803*24476^(1/3) 6765000025799792 a001 53316291173/228826127*24476^(1/3) 6765000025799792 a001 139583862445/599074578*24476^(1/3) 6765000025799792 a001 365435296162/1568397607*24476^(1/3) 6765000025799792 a001 956722026041/4106118243*24476^(1/3) 6765000025799792 a001 2504730781961/10749957122*24476^(1/3) 6765000025799792 a001 6557470319842/28143753123*24476^(1/3) 6765000025799792 a001 10610209857723/45537549124*24476^(1/3) 6765000025799792 a001 4052739537881/17393796001*24476^(1/3) 6765000025799792 a001 1548008755920/6643838879*24476^(1/3) 6765000025799792 a001 591286729879/2537720636*24476^(1/3) 6765000025799792 a001 225851433717/969323029*24476^(1/3) 6765000025799792 a001 86267571272/370248451*24476^(1/3) 6765000025799793 a001 63246219/271444*24476^(1/3) 6765000025799795 a001 12586269025/54018521*24476^(1/3) 6765000025799808 a001 4807526976/20633239*24476^(1/3) 6765000025799901 a001 1836311903/7881196*24476^(1/3) 6765000025800539 a001 701408733/3010349*24476^(1/3) 6765000025804909 a001 267914296/1149851*24476^(1/3) 6765000025834240 a001 3524578/64079*24476^(10/21) 6765000025834862 a001 102334155/439204*24476^(1/3) 6765000025838792 a001 63245986/39603*39603^(3/22) 6765000025879917 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^26 6765000025936742 a001 75025/39603*103682^(17/24) 6765000026034851 a001 39088169/39603*39603^(2/11) 6765000026040165 a001 39088169/167761*24476^(1/3) 6765000026094069 a001 17711/167761*103682^(23/24) 6765000026230914 a001 24157817/39603*39603^(5/22) 6765000026245712 a001 34111385/90481*24476^(2/7) 6765000026245956 a001 31622993/51841*24476^(5/21) 6765000026324131 a001 267914296/710647*24476^(2/7) 6765000026326080 a001 17711/24476*24476^(19/21) 6765000026335572 a001 233802911/620166*24476^(2/7) 6765000026337241 a001 1836311903/4870847*24476^(2/7) 6765000026337485 a001 1602508992/4250681*24476^(2/7) 6765000026337520 a001 12586269025/33385282*24476^(2/7) 6765000026337526 a001 10983760033/29134601*24476^(2/7) 6765000026337526 a001 86267571272/228826127*24476^(2/7) 6765000026337526 a001 267913919/710646*24476^(2/7) 6765000026337526 a001 591286729879/1568397607*24476^(2/7) 6765000026337526 a001 516002918640/1368706081*24476^(2/7) 6765000026337526 a001 4052739537881/10749957122*24476^(2/7) 6765000026337526 a001 3536736619241/9381251041*24476^(2/7) 6765000026337526 a001 6557470319842/17393796001*24476^(2/7) 6765000026337526 a001 2504730781961/6643838879*24476^(2/7) 6765000026337526 a001 956722026041/2537720636*24476^(2/7) 6765000026337526 a001 365435296162/969323029*24476^(2/7) 6765000026337527 a001 139583862445/370248451*24476^(2/7) 6765000026337527 a001 53316291173/141422324*24476^(2/7) 6765000026337529 a001 20365011074/54018521*24476^(2/7) 6765000026337542 a001 7778742049/20633239*24476^(2/7) 6765000026337635 a001 2971215073/7881196*24476^(2/7) 6765000026338273 a001 1134903170/3010349*24476^(2/7) 6765000026342643 a001 433494437/1149851*24476^(2/7) 6765000026371824 a001 5702887/64079*24476^(3/7) 6765000026372596 a001 165580141/439204*24476^(2/7) 6765000026426966 a001 4976784/13201*39603^(3/11) 6765000026577900 a001 63245986/167761*24476^(2/7) 6765000026623048 a001 9227465/39603*39603^(7/22) 6765000026657780 a001 507544127/75025 6765000026728808 a001 165580141/39603*15127^(1/20) 6765000026776883 a001 28657/15127*15127^(17/20) 6765000026783446 a001 165580141/271443*24476^(5/21) 6765000026783690 a001 102334155/103682*24476^(4/21) 6765000026819050 a001 5702887/39603*39603^(4/11) 6765000026861865 a001 433494437/710647*24476^(5/21) 6765000026870877 a001 17711/64079*439204^(7/9) 6765000026872677 a001 23184/51841*64079^(20/23) 6765000026873306 a001 567451585/930249*24476^(5/21) 6765000026874975 a001 2971215073/4870847*24476^(5/21) 6765000026875219 a001 7778742049/12752043*24476^(5/21) 6765000026875255 a001 10182505537/16692641*24476^(5/21) 6765000026875260 a001 53316291173/87403803*24476^(5/21) 6765000026875260 a001 139583862445/228826127*24476^(5/21) 6765000026875261 a001 182717648081/299537289*24476^(5/21) 6765000026875261 a001 956722026041/1568397607*24476^(5/21) 6765000026875261 a001 2504730781961/4106118243*24476^(5/21) 6765000026875261 a001 3278735159921/5374978561*24476^(5/21) 6765000026875261 a001 10610209857723/17393796001*24476^(5/21) 6765000026875261 a001 4052739537881/6643838879*24476^(5/21) 6765000026875261 a001 1134903780/1860499*24476^(5/21) 6765000026875261 a001 591286729879/969323029*24476^(5/21) 6765000026875261 a001 225851433717/370248451*24476^(5/21) 6765000026875261 a001 21566892818/35355581*24476^(5/21) 6765000026875263 a001 32951280099/54018521*24476^(5/21) 6765000026875277 a001 1144206275/1875749*24476^(5/21) 6765000026875370 a001 1201881744/1970299*24476^(5/21) 6765000026876007 a001 1836311903/3010349*24476^(5/21) 6765000026880377 a001 701408733/1149851*24476^(5/21) 6765000026898084 a001 17711/64079*7881196^(7/11) 6765000026898144 a001 17711/64079*20633239^(3/5) 6765000026898153 a001 17711/64079*141422324^(7/13) 6765000026898153 a001 17711/64079*2537720636^(7/15) 6765000026898153 a001 17711/64079*17393796001^(3/7) 6765000026898153 a001 17711/64079*45537549124^(7/17) 6765000026898153 a001 17711/64079*14662949395604^(1/3) 6765000026898153 a001 17711/64079*(1/2+1/2*5^(1/2))^21 6765000026898153 a001 17711/64079*192900153618^(7/18) 6765000026898153 a001 17711/64079*10749957122^(7/16) 6765000026898153 a001 28657/39603*817138163596^(1/3) 6765000026898153 a001 28657/39603*(1/2+1/2*5^(1/2))^19 6765000026898153 a001 17711/64079*599074578^(1/2) 6765000026898154 a001 28657/39603*87403803^(1/2) 6765000026898157 a001 17711/64079*33385282^(7/12) 6765000026899521 a001 17711/64079*1860498^(7/10) 6765000026908200 a001 17711/64079*710647^(3/4) 6765000026909616 a001 9227465/64079*24476^(8/21) 6765000026910331 a001 66978574/109801*24476^(5/21) 6765000027015261 a001 3524578/39603*39603^(9/22) 6765000027115634 a001 9303105/15251*24476^(5/21) 6765000027137821 a001 267914296/64079*9349^(1/19) 6765000027210926 a001 726103/13201*39603^(5/11) 6765000027266903 a001 15456/90481*64079^(22/23) 6765000027287085 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^27 6765000027321180 a001 267914296/271443*24476^(4/21) 6765000027321424 a001 165580141/103682*24476^(1/7) 6765000027396353 a001 28657/39603*103682^(19/24) 6765000027399599 a001 701408733/710647*24476^(4/21) 6765000027408018 a001 1346269/39603*39603^(1/2) 6765000027411040 a001 1836311903/1860498*24476^(4/21) 6765000027412710 a001 4807526976/4870847*24476^(4/21) 6765000027412953 a001 12586269025/12752043*24476^(4/21) 6765000027412989 a001 32951280099/33385282*24476^(4/21) 6765000027412994 a001 86267571272/87403803*24476^(4/21) 6765000027412995 a001 225851433717/228826127*24476^(4/21) 6765000027412995 a001 591286729879/599074578*24476^(4/21) 6765000027412995 a001 1548008755920/1568397607*24476^(4/21) 6765000027412995 a001 4052739537881/4106118243*24476^(4/21) 6765000027412995 a001 4807525989/4870846*24476^(4/21) 6765000027412995 a001 6557470319842/6643838879*24476^(4/21) 6765000027412995 a001 2504730781961/2537720636*24476^(4/21) 6765000027412995 a001 956722026041/969323029*24476^(4/21) 6765000027412995 a001 365435296162/370248451*24476^(4/21) 6765000027412995 a001 139583862445/141422324*24476^(4/21) 6765000027412997 a001 53316291173/54018521*24476^(4/21) 6765000027413011 a001 20365011074/20633239*24476^(4/21) 6765000027413104 a001 7778742049/7881196*24476^(4/21) 6765000027413741 a001 2971215073/3010349*24476^(4/21) 6765000027418111 a001 1134903170/1149851*24476^(4/21) 6765000027447328 a001 14930352/64079*24476^(1/3) 6765000027448065 a001 433494437/439204*24476^(4/21) 6765000027448795 a001 17711/64079*103682^(7/8) 6765000027553432 a001 121393/103682*64079^(18/23) 6765000027601377 a001 832040/39603*39603^(6/11) 6765000027653368 a001 165580141/167761*24476^(4/21) 6765000027670723 a001 46368/167761*64079^(21/23) 6765000027751948 a001 98209/51841*64079^(17/23) 6765000027775115 a001 317811/103682*64079^(16/23) 6765000027804508 a001 514229/39603*39603^(13/22) 6765000027813987 a001 75025/103682*64079^(19/23) 6765000027824576 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^29 6765000027858915 a001 433494437/271443*24476^(1/7) 6765000027859158 a001 133957148/51841*24476^(2/21) 6765000027865260 a001 514229/103682*64079^(15/23) 6765000027882812 a001 121393/710647*64079^(22/23) 6765000027902994 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^31 6765000027914436 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^33 6765000027916105 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^35 6765000027916348 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^37 6765000027916384 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^39 6765000027916389 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^41 6765000027916390 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^43 6765000027916390 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^45 6765000027916390 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^47 6765000027916390 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^49 6765000027916390 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^51 6765000027916390 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^53 6765000027916390 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^55 6765000027916390 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^57 6765000027916390 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^59 6765000027916390 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^61 6765000027916390 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^63 6765000027916390 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^65 6765000027916390 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^67 6765000027916390 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^69 6765000027916390 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^71 6765000027916390 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^73 6765000027916390 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^75 6765000027916390 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^77 6765000027916390 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^79 6765000027916390 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^81 6765000027916390 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^83 6765000027916390 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^85 6765000027916390 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^87 6765000027916390 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^89 6765000027916390 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^91 6765000027916390 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^93 6765000027916390 a004 Fibonacci(92)*Lucas(23)/(1/2+sqrt(5)/2)^95 6765000027916390 a004 Fibonacci(94)*Lucas(23)/(1/2+sqrt(5)/2)^97 6765000027916390 a004 Fibonacci(96)*Lucas(23)/(1/2+sqrt(5)/2)^99 6765000027916390 a004 Fibonacci(97)*Lucas(23)/(1/2+sqrt(5)/2)^100 6765000027916390 a004 Fibonacci(95)*Lucas(23)/(1/2+sqrt(5)/2)^98 6765000027916390 a004 Fibonacci(93)*Lucas(23)/(1/2+sqrt(5)/2)^96 6765000027916390 a004 Fibonacci(91)*Lucas(23)/(1/2+sqrt(5)/2)^94 6765000027916390 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^92 6765000027916390 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^90 6765000027916390 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^88 6765000027916390 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^86 6765000027916390 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^84 6765000027916390 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^82 6765000027916390 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^80 6765000027916390 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^78 6765000027916390 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^76 6765000027916390 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^74 6765000027916390 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^72 6765000027916390 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^70 6765000027916390 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^68 6765000027916390 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^66 6765000027916390 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^64 6765000027916390 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^62 6765000027916390 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^60 6765000027916390 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^58 6765000027916390 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^56 6765000027916390 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^54 6765000027916390 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^52 6765000027916390 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^50 6765000027916390 a001 2/28657*(1/2+1/2*5^(1/2))^43 6765000027916390 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^48 6765000027916390 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^46 6765000027916390 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^44 6765000027916390 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^42 6765000027916392 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^40 6765000027916406 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^38 6765000027916499 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^36 6765000027917136 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^34 6765000027921507 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^32 6765000027929821 a001 416020/51841*64079^(14/23) 6765000027937333 a001 1134903170/710647*24476^(1/7) 6765000027947658 a001 121393/271443*64079^(20/23) 6765000027948775 a001 2971215073/1860498*24476^(1/7) 6765000027950444 a001 7778742049/4870847*24476^(1/7) 6765000027950687 a001 20365011074/12752043*24476^(1/7) 6765000027950723 a001 53316291173/33385282*24476^(1/7) 6765000027950728 a001 139583862445/87403803*24476^(1/7) 6765000027950729 a001 365435296162/228826127*24476^(1/7) 6765000027950729 a001 956722026041/599074578*24476^(1/7) 6765000027950729 a001 2504730781961/1568397607*24476^(1/7) 6765000027950729 a001 6557470319842/4106118243*24476^(1/7) 6765000027950729 a001 10610209857723/6643838879*24476^(1/7) 6765000027950729 a001 4052739537881/2537720636*24476^(1/7) 6765000027950729 a001 1548008755920/969323029*24476^(1/7) 6765000027950729 a001 591286729879/370248451*24476^(1/7) 6765000027950729 a001 225851433717/141422324*24476^(1/7) 6765000027950731 a001 86267571272/54018521*24476^(1/7) 6765000027950745 a001 32951280099/20633239*24476^(1/7) 6765000027950838 a001 12586269025/7881196*24476^(1/7) 6765000027951460 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^30 6765000027951475 a001 4807526976/3010349*24476^(1/7) 6765000027955846 a001 1836311903/1149851*24476^(1/7) 6765000027972672 a001 105937/620166*64079^(22/23) 6765000027982056 a001 105937/13201*39603^(7/11) 6765000027985070 a001 24157817/64079*24476^(2/7) 6765000027985783 a001 832040/4870847*64079^(22/23) 6765000027985799 a001 701408733/439204*24476^(1/7) 6765000027987695 a001 726103/4250681*64079^(22/23) 6765000027987974 a001 5702887/33385282*64079^(22/23) 6765000027988015 a001 4976784/29134601*64079^(22/23) 6765000027988021 a001 39088169/228826127*64079^(22/23) 6765000027988022 a001 34111385/199691526*64079^(22/23) 6765000027988022 a001 267914296/1568397607*64079^(22/23) 6765000027988022 a001 233802911/1368706081*64079^(22/23) 6765000027988022 a001 1836311903/10749957122*64079^(22/23) 6765000027988022 a001 1602508992/9381251041*64079^(22/23) 6765000027988022 a001 12586269025/73681302247*64079^(22/23) 6765000027988022 a001 10983760033/64300051206*64079^(22/23) 6765000027988022 a001 86267571272/505019158607*64079^(22/23) 6765000027988022 a001 75283811239/440719107401*64079^(22/23) 6765000027988022 a001 2504730781961/14662949395604*64079^(22/23) 6765000027988022 a001 139583862445/817138163596*64079^(22/23) 6765000027988022 a001 53316291173/312119004989*64079^(22/23) 6765000027988022 a001 20365011074/119218851371*64079^(22/23) 6765000027988022 a001 7778742049/45537549124*64079^(22/23) 6765000027988022 a001 2971215073/17393796001*64079^(22/23) 6765000027988022 a001 1134903170/6643838879*64079^(22/23) 6765000027988022 a001 433494437/2537720636*64079^(22/23) 6765000027988022 a001 165580141/969323029*64079^(22/23) 6765000027988023 a001 63245986/370248451*64079^(22/23) 6765000027988025 a001 24157817/141422324*64079^(22/23) 6765000027988040 a001 9227465/54018521*64079^(22/23) 6765000027988147 a001 3524578/20633239*64079^(22/23) 6765000027988878 a001 1346269/7881196*64079^(22/23) 6765000027993885 a001 514229/3010349*64079^(22/23) 6765000028002910 a001 121393/439204*64079^(21/23) 6765000028004154 a001 1346269/103682*64079^(13/23) 6765000028028209 a001 196418/1149851*64079^(22/23) 6765000028051375 a001 317811/1149851*64079^(21/23) 6765000028058447 a001 832040/3010349*64079^(21/23) 6765000028059478 a001 2178309/7881196*64079^(21/23) 6765000028059629 a001 5702887/20633239*64079^(21/23) 6765000028059651 a001 14930352/54018521*64079^(21/23) 6765000028059654 a001 39088169/141422324*64079^(21/23) 6765000028059654 a001 102334155/370248451*64079^(21/23) 6765000028059654 a001 267914296/969323029*64079^(21/23) 6765000028059654 a001 701408733/2537720636*64079^(21/23) 6765000028059654 a001 1836311903/6643838879*64079^(21/23) 6765000028059654 a001 4807526976/17393796001*64079^(21/23) 6765000028059654 a001 12586269025/45537549124*64079^(21/23) 6765000028059654 a001 32951280099/119218851371*64079^(21/23) 6765000028059654 a001 86267571272/312119004989*64079^(21/23) 6765000028059654 a001 225851433717/817138163596*64079^(21/23) 6765000028059654 a001 1548008755920/5600748293801*64079^(21/23) 6765000028059654 a001 139583862445/505019158607*64079^(21/23) 6765000028059654 a001 53316291173/192900153618*64079^(21/23) 6765000028059654 a001 20365011074/73681302247*64079^(21/23) 6765000028059654 a001 7778742049/28143753123*64079^(21/23) 6765000028059654 a001 2971215073/10749957122*64079^(21/23) 6765000028059654 a001 1134903170/4106118243*64079^(21/23) 6765000028059654 a001 433494437/1568397607*64079^(21/23) 6765000028059654 a001 165580141/599074578*64079^(21/23) 6765000028059655 a001 63245986/228826127*64079^(21/23) 6765000028059656 a001 24157817/87403803*64079^(21/23) 6765000028059664 a001 9227465/33385282*64079^(21/23) 6765000028059722 a001 3524578/12752043*64079^(21/23) 6765000028060116 a001 1346269/4870847*64079^(21/23) 6765000028062817 a001 514229/1860498*64079^(21/23) 6765000028074755 a001 46347/2206*64079^(12/23) 6765000028081329 a001 196418/710647*64079^(21/23) 6765000028104496 a001 317811/710647*64079^(20/23) 6765000028113023 a001 23184/51841*167761^(4/5) 6765000028127378 a001 416020/930249*64079^(20/23) 6765000028130716 a001 2178309/4870847*64079^(20/23) 6765000028131203 a001 5702887/12752043*64079^(20/23) 6765000028131274 a001 7465176/16692641*64079^(20/23) 6765000028131285 a001 39088169/87403803*64079^(20/23) 6765000028131286 a001 102334155/228826127*64079^(20/23) 6765000028131287 a001 133957148/299537289*64079^(20/23) 6765000028131287 a001 701408733/1568397607*64079^(20/23) 6765000028131287 a001 1836311903/4106118243*64079^(20/23) 6765000028131287 a001 2403763488/5374978561*64079^(20/23) 6765000028131287 a001 12586269025/28143753123*64079^(20/23) 6765000028131287 a001 32951280099/73681302247*64079^(20/23) 6765000028131287 a001 43133785636/96450076809*64079^(20/23) 6765000028131287 a001 225851433717/505019158607*64079^(20/23) 6765000028131287 a001 591286729879/1322157322203*64079^(20/23) 6765000028131287 a001 10610209857723/23725150497407*64079^(20/23) 6765000028131287 a001 182717648081/408569081798*64079^(20/23) 6765000028131287 a001 139583862445/312119004989*64079^(20/23) 6765000028131287 a001 53316291173/119218851371*64079^(20/23) 6765000028131287 a001 10182505537/22768774562*64079^(20/23) 6765000028131287 a001 7778742049/17393796001*64079^(20/23) 6765000028131287 a001 2971215073/6643838879*64079^(20/23) 6765000028131287 a001 567451585/1268860318*64079^(20/23) 6765000028131287 a001 433494437/969323029*64079^(20/23) 6765000028131287 a001 165580141/370248451*64079^(20/23) 6765000028131287 a001 31622993/70711162*64079^(20/23) 6765000028131291 a001 24157817/54018521*64079^(20/23) 6765000028131318 a001 9227465/20633239*64079^(20/23) 6765000028131504 a001 1762289/3940598*64079^(20/23) 6765000028132780 a001 1346269/3010349*64079^(20/23) 6765000028141520 a001 514229/1149851*64079^(20/23) 6765000028146174 a001 196418/271443*64079^(19/23) 6765000028146781 a001 1762289/51841*64079^(11/23) 6765000028150387 a001 15456/13201*39603^(9/11) 6765000028156763 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^28 6765000028169341 a001 105937/90481*64079^(18/23) 6765000028191102 a001 267914296/167761*24476^(1/7) 6765000028194640 a001 514229/710647*64079^(19/23) 6765000028201427 a001 98209/219602*64079^(20/23) 6765000028201711 a001 1346269/1860498*64079^(19/23) 6765000028202743 a001 3524578/4870847*64079^(19/23) 6765000028202893 a001 9227465/12752043*64079^(19/23) 6765000028202915 a001 24157817/33385282*64079^(19/23) 6765000028202918 a001 63245986/87403803*64079^(19/23) 6765000028202919 a001 165580141/228826127*64079^(19/23) 6765000028202919 a001 433494437/599074578*64079^(19/23) 6765000028202919 a001 1134903170/1568397607*64079^(19/23) 6765000028202919 a001 2971215073/4106118243*64079^(19/23) 6765000028202919 a001 7778742049/10749957122*64079^(19/23) 6765000028202919 a001 20365011074/28143753123*64079^(19/23) 6765000028202919 a001 53316291173/73681302247*64079^(19/23) 6765000028202919 a001 139583862445/192900153618*64079^(19/23) 6765000028202919 a001 365435296162/505019158607*64079^(19/23) 6765000028202919 a001 10610209857723/14662949395604*64079^(19/23) 6765000028202919 a001 591286729879/817138163596*64079^(19/23) 6765000028202919 a001 225851433717/312119004989*64079^(19/23) 6765000028202919 a001 86267571272/119218851371*64079^(19/23) 6765000028202919 a001 32951280099/45537549124*64079^(19/23) 6765000028202919 a001 12586269025/17393796001*64079^(19/23) 6765000028202919 a001 4807526976/6643838879*64079^(19/23) 6765000028202919 a001 1836311903/2537720636*64079^(19/23) 6765000028202919 a001 701408733/969323029*64079^(19/23) 6765000028202919 a001 267914296/370248451*64079^(19/23) 6765000028202919 a001 102334155/141422324*64079^(19/23) 6765000028202920 a001 39088169/54018521*64079^(19/23) 6765000028202929 a001 14930352/20633239*64079^(19/23) 6765000028202986 a001 5702887/7881196*64079^(19/23) 6765000028203380 a001 2178309/3010349*64079^(19/23) 6765000028206081 a001 832040/1149851*64079^(19/23) 6765000028207005 a001 34111385/13201*15127^(1/10) 6765000028208213 a001 75025/271443*64079^(21/23) 6765000028218263 a001 5702887/103682*64079^(10/23) 6765000028224593 a001 317811/439204*64079^(19/23) 6765000028226581 a001 196418/39603*39603^(15/22) 6765000028259201 a001 832040/710647*64079^(18/23) 6765000028259486 a001 514229/271443*64079^(17/23) 6765000028263465 a001 75025/439204*64079^(22/23) 6765000028272312 a001 726103/620166*64079^(18/23) 6765000028274224 a001 5702887/4870847*64079^(18/23) 6765000028274503 a001 4976784/4250681*64079^(18/23) 6765000028274544 a001 39088169/33385282*64079^(18/23) 6765000028274550 a001 34111385/29134601*64079^(18/23) 6765000028274551 a001 267914296/228826127*64079^(18/23) 6765000028274551 a001 233802911/199691526*64079^(18/23) 6765000028274551 a001 1836311903/1568397607*64079^(18/23) 6765000028274551 a001 1602508992/1368706081*64079^(18/23) 6765000028274551 a001 12586269025/10749957122*64079^(18/23) 6765000028274551 a001 10983760033/9381251041*64079^(18/23) 6765000028274551 a001 86267571272/73681302247*64079^(18/23) 6765000028274551 a001 75283811239/64300051206*64079^(18/23) 6765000028274551 a001 2504730781961/2139295485799*64079^(18/23) 6765000028274551 a001 365435296162/312119004989*64079^(18/23) 6765000028274551 a001 139583862445/119218851371*64079^(18/23) 6765000028274551 a001 53316291173/45537549124*64079^(18/23) 6765000028274551 a001 20365011074/17393796001*64079^(18/23) 6765000028274551 a001 7778742049/6643838879*64079^(18/23) 6765000028274551 a001 2971215073/2537720636*64079^(18/23) 6765000028274551 a001 1134903170/969323029*64079^(18/23) 6765000028274551 a001 433494437/370248451*64079^(18/23) 6765000028274551 a001 165580141/141422324*64079^(18/23) 6765000028274554 a001 63245986/54018521*64079^(18/23) 6765000028274569 a001 24157817/20633239*64079^(18/23) 6765000028274676 a001 9227465/7881196*64079^(18/23) 6765000028275407 a001 3524578/3010349*64079^(18/23) 6765000028280414 a001 1346269/1149851*64079^(18/23) 6765000028289952 a001 9227465/103682*64079^(9/23) 6765000028295757 a001 121393/39603*39603^(8/11) 6765000028305313 a001 23184/51841*20633239^(4/7) 6765000028305322 a001 23184/51841*2537720636^(4/9) 6765000028305322 a001 23184/51841*(1/2+1/2*5^(1/2))^20 6765000028305322 a001 23184/51841*23725150497407^(5/16) 6765000028305322 a001 23184/51841*505019158607^(5/14) 6765000028305322 a001 23184/51841*73681302247^(5/13) 6765000028305322 a001 23184/51841*28143753123^(2/5) 6765000028305322 a001 23184/51841*10749957122^(5/12) 6765000028305322 a001 23184/51841*4106118243^(10/23) 6765000028305322 a001 23184/51841*1568397607^(5/11) 6765000028305322 a001 23184/51841*599074578^(10/21) 6765000028305322 a001 23184/51841*228826127^(1/2) 6765000028305322 a001 23184/51841*87403803^(10/19) 6765000028305325 a001 23184/51841*33385282^(5/9) 6765000028305346 a001 23184/51841*12752043^(10/17) 6765000028305500 a001 23184/51841*4870847^(5/8) 6765000028306625 a001 23184/51841*1860498^(2/3) 6765000028314738 a001 514229/439204*64079^(18/23) 6765000028314890 a001 23184/51841*710647^(5/7) 6765000028318717 a001 716663808/105937 6765000028324047 a001 832040/271443*64079^(16/23) 6765000028333534 a001 1346269/710647*64079^(17/23) 6765000028344338 a001 1762289/930249*64079^(17/23) 6765000028345914 a001 9227465/4870847*64079^(17/23) 6765000028346144 a001 24157817/12752043*64079^(17/23) 6765000028346178 a001 31622993/16692641*64079^(17/23) 6765000028346183 a001 165580141/87403803*64079^(17/23) 6765000028346183 a001 433494437/228826127*64079^(17/23) 6765000028346183 a001 567451585/299537289*64079^(17/23) 6765000028346183 a001 2971215073/1568397607*64079^(17/23) 6765000028346183 a001 7778742049/4106118243*64079^(17/23) 6765000028346183 a001 10182505537/5374978561*64079^(17/23) 6765000028346183 a001 53316291173/28143753123*64079^(17/23) 6765000028346183 a001 139583862445/73681302247*64079^(17/23) 6765000028346183 a001 182717648081/96450076809*64079^(17/23) 6765000028346183 a001 956722026041/505019158607*64079^(17/23) 6765000028346183 a001 10610209857723/5600748293801*64079^(17/23) 6765000028346183 a001 591286729879/312119004989*64079^(17/23) 6765000028346183 a001 225851433717/119218851371*64079^(17/23) 6765000028346183 a001 21566892818/11384387281*64079^(17/23) 6765000028346183 a001 32951280099/17393796001*64079^(17/23) 6765000028346183 a001 12586269025/6643838879*64079^(17/23) 6765000028346183 a001 1201881744/634430159*64079^(17/23) 6765000028346183 a001 1836311903/969323029*64079^(17/23) 6765000028346183 a001 701408733/370248451*64079^(17/23) 6765000028346184 a001 66978574/35355581*64079^(17/23) 6765000028346186 a001 102334155/54018521*64079^(17/23) 6765000028346198 a001 39088169/20633239*64079^(17/23) 6765000028346286 a001 3732588/1970299*64079^(17/23) 6765000028346888 a001 5702887/3010349*64079^(17/23) 6765000028351015 a001 2178309/1149851*64079^(17/23) 6765000028351478 a001 121393/167761*64079^(19/23) 6765000028361563 a001 7465176/51841*64079^(8/23) 6765000028375948 a001 23184/51841*271443^(10/13) 6765000028379299 a001 208010/109801*64079^(17/23) 6765000028396649 a001 233802911/90481*24476^(2/21) 6765000028396892 a001 433494437/103682*24476^(1/21) 6765000028398380 a001 1346269/271443*64079^(15/23) 6765000028404135 a001 311187/101521*64079^(16/23) 6765000028415820 a001 5702887/1860498*64079^(16/23) 6765000028417524 a001 14930352/4870847*64079^(16/23) 6765000028417773 a001 39088169/12752043*64079^(16/23) 6765000028417809 a001 14619165/4769326*64079^(16/23) 6765000028417815 a001 267914296/87403803*64079^(16/23) 6765000028417815 a001 701408733/228826127*64079^(16/23) 6765000028417816 a001 1836311903/599074578*64079^(16/23) 6765000028417816 a001 686789568/224056801*64079^(16/23) 6765000028417816 a001 12586269025/4106118243*64079^(16/23) 6765000028417816 a001 32951280099/10749957122*64079^(16/23) 6765000028417816 a001 86267571272/28143753123*64079^(16/23) 6765000028417816 a001 32264490531/10525900321*64079^(16/23) 6765000028417816 a001 591286729879/192900153618*64079^(16/23) 6765000028417816 a001 1548008755920/505019158607*64079^(16/23) 6765000028417816 a001 1515744265389/494493258286*64079^(16/23) 6765000028417816 a001 2504730781961/817138163596*64079^(16/23) 6765000028417816 a001 956722026041/312119004989*64079^(16/23) 6765000028417816 a001 365435296162/119218851371*64079^(16/23) 6765000028417816 a001 139583862445/45537549124*64079^(16/23) 6765000028417816 a001 53316291173/17393796001*64079^(16/23) 6765000028417816 a001 20365011074/6643838879*64079^(16/23) 6765000028417816 a001 7778742049/2537720636*64079^(16/23) 6765000028417816 a001 2971215073/969323029*64079^(16/23) 6765000028417816 a001 1134903170/370248451*64079^(16/23) 6765000028417816 a001 433494437/141422324*64079^(16/23) 6765000028417818 a001 165580141/54018521*64079^(16/23) 6765000028417832 a001 63245986/20633239*64079^(16/23) 6765000028417927 a001 24157817/7881196*64079^(16/23) 6765000028418578 a001 9227465/3010349*64079^(16/23) 6765000028423041 a001 3524578/1149851*64079^(16/23) 6765000028433203 a001 24157817/103682*64079^(7/23) 6765000028453632 a001 1346269/439204*64079^(16/23) 6765000028468981 a001 726103/90481*64079^(14/23) 6765000028475068 a001 1836311903/710647*24476^(2/21) 6765000028476161 a001 3524578/710647*64079^(15/23) 6765000028486509 a001 267084832/103361*24476^(2/21) 6765000028487509 a001 9227465/1860498*64079^(15/23) 6765000028488178 a001 12586269025/4870847*24476^(2/21) 6765000028488421 a001 10983760033/4250681*24476^(2/21) 6765000028488457 a001 43133785636/16692641*24476^(2/21) 6765000028488462 a001 75283811239/29134601*24476^(2/21) 6765000028488463 a001 591286729879/228826127*24476^(2/21) 6765000028488463 a001 86000486440/33281921*24476^(2/21) 6765000028488463 a001 4052739537881/1568397607*24476^(2/21) 6765000028488463 a001 3536736619241/1368706081*24476^(2/21) 6765000028488463 a001 3278735159921/1268860318*24476^(2/21) 6765000028488463 a001 2504730781961/969323029*24476^(2/21) 6765000028488463 a001 956722026041/370248451*24476^(2/21) 6765000028488463 a001 182717648081/70711162*24476^(2/21) 6765000028488465 a001 139583862445/54018521*24476^(2/21) 6765000028488479 a001 53316291173/20633239*24476^(2/21) 6765000028488572 a001 10182505537/3940598*24476^(2/21) 6765000028489165 a001 24157817/4870847*64079^(15/23) 6765000028489210 a001 7778742049/3010349*24476^(2/21) 6765000028489407 a001 63245986/12752043*64079^(15/23) 6765000028489442 a001 165580141/33385282*64079^(15/23) 6765000028489447 a001 433494437/87403803*64079^(15/23) 6765000028489448 a001 1134903170/228826127*64079^(15/23) 6765000028489448 a001 2971215073/599074578*64079^(15/23) 6765000028489448 a001 7778742049/1568397607*64079^(15/23) 6765000028489448 a001 20365011074/4106118243*64079^(15/23) 6765000028489448 a001 53316291173/10749957122*64079^(15/23) 6765000028489448 a001 139583862445/28143753123*64079^(15/23) 6765000028489448 a001 365435296162/73681302247*64079^(15/23) 6765000028489448 a001 956722026041/192900153618*64079^(15/23) 6765000028489448 a001 2504730781961/505019158607*64079^(15/23) 6765000028489448 a001 10610209857723/2139295485799*64079^(15/23) 6765000028489448 a001 4052739537881/817138163596*64079^(15/23) 6765000028489448 a001 140728068720/28374454999*64079^(15/23) 6765000028489448 a001 591286729879/119218851371*64079^(15/23) 6765000028489448 a001 225851433717/45537549124*64079^(15/23) 6765000028489448 a001 86267571272/17393796001*64079^(15/23) 6765000028489448 a001 32951280099/6643838879*64079^(15/23) 6765000028489448 a001 1144206275/230701876*64079^(15/23) 6765000028489448 a001 4807526976/969323029*64079^(15/23) 6765000028489448 a001 1836311903/370248451*64079^(15/23) 6765000028489448 a001 701408733/141422324*64079^(15/23) 6765000028489450 a001 267914296/54018521*64079^(15/23) 6765000028489464 a001 9303105/1875749*64079^(15/23) 6765000028489556 a001 39088169/7881196*64079^(15/23) 6765000028490188 a001 14930352/3010349*64079^(15/23) 6765000028493580 a001 2971215073/1149851*24476^(2/21) 6765000028494523 a001 5702887/1149851*64079^(15/23) 6765000028504832 a001 39088169/103682*64079^(6/23) 6765000028522801 a001 39088169/64079*24476^(5/21) 6765000028523533 a001 567451585/219602*24476^(2/21) 6765000028524233 a001 2178309/439204*64079^(15/23) 6765000028541007 a001 3524578/271443*64079^(13/23) 6765000028547643 a001 5702887/710647*64079^(14/23) 6765000028549994 a001 196418/167761*64079^(18/23) 6765000028559120 a001 829464/103361*64079^(14/23) 6765000028560794 a001 39088169/4870847*64079^(14/23) 6765000028561038 a001 34111385/4250681*64079^(14/23) 6765000028561074 a001 133957148/16692641*64079^(14/23) 6765000028561079 a001 233802911/29134601*64079^(14/23) 6765000028561080 a001 1836311903/228826127*64079^(14/23) 6765000028561080 a001 267084832/33281921*64079^(14/23) 6765000028561080 a001 12586269025/1568397607*64079^(14/23) 6765000028561080 a001 10983760033/1368706081*64079^(14/23) 6765000028561080 a001 43133785636/5374978561*64079^(14/23) 6765000028561080 a001 75283811239/9381251041*64079^(14/23) 6765000028561080 a001 591286729879/73681302247*64079^(14/23) 6765000028561080 a001 86000486440/10716675201*64079^(14/23) 6765000028561080 a001 4052739537881/505019158607*64079^(14/23) 6765000028561080 a001 3536736619241/440719107401*64079^(14/23) 6765000028561080 a001 3278735159921/408569081798*64079^(14/23) 6765000028561080 a001 2504730781961/312119004989*64079^(14/23) 6765000028561080 a001 956722026041/119218851371*64079^(14/23) 6765000028561080 a001 182717648081/22768774562*64079^(14/23) 6765000028561080 a001 139583862445/17393796001*64079^(14/23) 6765000028561080 a001 53316291173/6643838879*64079^(14/23) 6765000028561080 a001 10182505537/1268860318*64079^(14/23) 6765000028561080 a001 7778742049/969323029*64079^(14/23) 6765000028561080 a001 2971215073/370248451*64079^(14/23) 6765000028561080 a001 567451585/70711162*64079^(14/23) 6765000028561082 a001 433494437/54018521*64079^(14/23) 6765000028561096 a001 165580141/20633239*64079^(14/23) 6765000028561189 a001 31622993/3940598*64079^(14/23) 6765000028561829 a001 24157817/3010349*64079^(14/23) 6765000028566213 a001 9227465/1149851*64079^(14/23) 6765000028573161 a001 317811/167761*64079^(17/23) 6765000028576466 a001 31622993/51841*64079^(5/23) 6765000028596259 a001 1762289/219602*64079^(14/23) 6765000028612033 a001 75025/167761*64079^(20/23) 6765000028612489 a001 5702887/271443*64079^(12/23) 6765000028619333 a001 9227465/710647*64079^(13/23) 6765000028630760 a001 24157817/1860498*64079^(13/23) 6765000028632427 a001 63245986/4870847*64079^(13/23) 6765000028632671 a001 165580141/12752043*64079^(13/23) 6765000028632706 a001 433494437/33385282*64079^(13/23) 6765000028632711 a001 1134903170/87403803*64079^(13/23) 6765000028632712 a001 2971215073/228826127*64079^(13/23) 6765000028632712 a001 7778742049/599074578*64079^(13/23) 6765000028632712 a001 20365011074/1568397607*64079^(13/23) 6765000028632712 a001 53316291173/4106118243*64079^(13/23) 6765000028632712 a001 139583862445/10749957122*64079^(13/23) 6765000028632712 a001 365435296162/28143753123*64079^(13/23) 6765000028632712 a001 956722026041/73681302247*64079^(13/23) 6765000028632712 a001 2504730781961/192900153618*64079^(13/23) 6765000028632712 a001 10610209857723/817138163596*64079^(13/23) 6765000028632712 a001 4052739537881/312119004989*64079^(13/23) 6765000028632712 a001 1548008755920/119218851371*64079^(13/23) 6765000028632712 a001 591286729879/45537549124*64079^(13/23) 6765000028632712 a001 7787980473/599786069*64079^(13/23) 6765000028632712 a001 86267571272/6643838879*64079^(13/23) 6765000028632712 a001 32951280099/2537720636*64079^(13/23) 6765000028632712 a001 12586269025/969323029*64079^(13/23) 6765000028632712 a001 4807526976/370248451*64079^(13/23) 6765000028632713 a001 1836311903/141422324*64079^(13/23) 6765000028632715 a001 701408733/54018521*64079^(13/23) 6765000028632728 a001 9238424/711491*64079^(13/23) 6765000028632821 a001 102334155/7881196*64079^(13/23) 6765000028633458 a001 39088169/3010349*64079^(13/23) 6765000028635393 a001 39088169/24476*9349^(3/19) 6765000028637823 a001 14930352/1149851*64079^(13/23) 6765000028648097 a001 102334155/103682*64079^(4/23) 6765000028663305 a001 514229/167761*64079^(16/23) 6765000028667741 a001 5702887/439204*64079^(13/23) 6765000028684178 a001 9227465/271443*64079^(11/23) 6765000028690943 a001 14930352/710647*64079^(12/23) 6765000028694253 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^29 6765000028702389 a001 39088169/1860498*64079^(12/23) 6765000028704059 a001 102334155/4870847*64079^(12/23) 6765000028704303 a001 267914296/12752043*64079^(12/23) 6765000028704338 a001 701408733/33385282*64079^(12/23) 6765000028704344 a001 1836311903/87403803*64079^(12/23) 6765000028704344 a001 102287808/4868641*64079^(12/23) 6765000028704345 a001 12586269025/599074578*64079^(12/23) 6765000028704345 a001 32951280099/1568397607*64079^(12/23) 6765000028704345 a001 86267571272/4106118243*64079^(12/23) 6765000028704345 a001 225851433717/10749957122*64079^(12/23) 6765000028704345 a001 591286729879/28143753123*64079^(12/23) 6765000028704345 a001 1548008755920/73681302247*64079^(12/23) 6765000028704345 a001 4052739537881/192900153618*64079^(12/23) 6765000028704345 a001 225749145909/10745088481*64079^(12/23) 6765000028704345 a001 6557470319842/312119004989*64079^(12/23) 6765000028704345 a001 2504730781961/119218851371*64079^(12/23) 6765000028704345 a001 956722026041/45537549124*64079^(12/23) 6765000028704345 a001 365435296162/17393796001*64079^(12/23) 6765000028704345 a001 139583862445/6643838879*64079^(12/23) 6765000028704345 a001 53316291173/2537720636*64079^(12/23) 6765000028704345 a001 20365011074/969323029*64079^(12/23) 6765000028704345 a001 7778742049/370248451*64079^(12/23) 6765000028704345 a001 2971215073/141422324*64079^(12/23) 6765000028704347 a001 1134903170/54018521*64079^(12/23) 6765000028704360 a001 433494437/20633239*64079^(12/23) 6765000028704453 a001 165580141/7881196*64079^(12/23) 6765000028705091 a001 63245986/3010349*64079^(12/23) 6765000028709463 a001 24157817/1149851*64079^(12/23) 6765000028719730 a001 165580141/103682*64079^(3/23) 6765000028727866 a001 75640/15251*64079^(15/23) 6765000028728836 a001 433494437/167761*24476^(2/21) 6765000028739430 a001 9227465/439204*64079^(12/23) 6765000028755789 a001 4976784/90481*64079^(10/23) 6765000028762584 a001 24157817/710647*64079^(11/23) 6765000028774023 a001 31622993/930249*64079^(11/23) 6765000028775692 a001 165580141/4870847*64079^(11/23) 6765000028775935 a001 433494437/12752043*64079^(11/23) 6765000028775971 a001 567451585/16692641*64079^(11/23) 6765000028775976 a001 2971215073/87403803*64079^(11/23) 6765000028775977 a001 7778742049/228826127*64079^(11/23) 6765000028775977 a001 10182505537/299537289*64079^(11/23) 6765000028775977 a001 53316291173/1568397607*64079^(11/23) 6765000028775977 a001 139583862445/4106118243*64079^(11/23) 6765000028775977 a001 182717648081/5374978561*64079^(11/23) 6765000028775977 a001 956722026041/28143753123*64079^(11/23) 6765000028775977 a001 2504730781961/73681302247*64079^(11/23) 6765000028775977 a001 3278735159921/96450076809*64079^(11/23) 6765000028775977 a001 10610209857723/312119004989*64079^(11/23) 6765000028775977 a001 4052739537881/119218851371*64079^(11/23) 6765000028775977 a001 387002188980/11384387281*64079^(11/23) 6765000028775977 a001 591286729879/17393796001*64079^(11/23) 6765000028775977 a001 225851433717/6643838879*64079^(11/23) 6765000028775977 a001 1135099622/33391061*64079^(11/23) 6765000028775977 a001 32951280099/969323029*64079^(11/23) 6765000028775977 a001 12586269025/370248451*64079^(11/23) 6765000028775977 a001 1201881744/35355581*64079^(11/23) 6765000028775979 a001 1836311903/54018521*64079^(11/23) 6765000028775993 a001 701408733/20633239*64079^(11/23) 6765000028776086 a001 66978574/1970299*64079^(11/23) 6765000028776723 a001 102334155/3010349*64079^(11/23) 6765000028781093 a001 39088169/1149851*64079^(11/23) 6765000028791362 a001 133957148/51841*64079^(2/23) 6765000028795519 a001 514229/103682*167761^(3/5) 6765000028802200 a001 1346269/167761*64079^(14/23) 6765000028811041 a001 196452/5779*64079^(11/23) 6765000028819432 a001 121393/103682*439204^(2/3) 6765000028824005 a001 75025/39603*39603^(17/22) 6765000028827429 a001 24157817/271443*64079^(9/23) 6765000028829742 a001 23184/51841*103682^(5/6) 6765000028834213 a001 39088169/710647*64079^(10/23) 6765000028838436 a001 5702887/103682*167761^(2/5) 6765000028842740 a001 15456/90481*7881196^(2/3) 6765000028842753 a001 121393/103682*7881196^(6/11) 6765000028842812 a001 121393/103682*141422324^(6/13) 6765000028842812 a001 121393/103682*2537720636^(2/5) 6765000028842812 a001 15456/90481*312119004989^(2/5) 6765000028842812 a001 15456/90481*(1/2+1/2*5^(1/2))^22 6765000028842812 a001 15456/90481*10749957122^(11/24) 6765000028842812 a001 121393/103682*45537549124^(6/17) 6765000028842812 a001 121393/103682*14662949395604^(2/7) 6765000028842812 a001 121393/103682*(1/2+1/2*5^(1/2))^18 6765000028842812 a001 121393/103682*192900153618^(1/3) 6765000028842812 a001 121393/103682*10749957122^(3/8) 6765000028842812 a001 15456/90481*4106118243^(11/23) 6765000028842812 a001 121393/103682*4106118243^(9/23) 6765000028842812 a001 121393/103682*1568397607^(9/22) 6765000028842812 a001 15456/90481*1568397607^(1/2) 6765000028842812 a001 121393/103682*599074578^(3/7) 6765000028842812 a001 15456/90481*599074578^(11/21) 6765000028842812 a001 121393/103682*228826127^(9/20) 6765000028842812 a001 15456/90481*228826127^(11/20) 6765000028842813 a001 121393/103682*87403803^(9/19) 6765000028842813 a001 15456/90481*87403803^(11/19) 6765000028842815 a001 121393/103682*33385282^(1/2) 6765000028842816 a001 15456/90481*33385282^(11/18) 6765000028842834 a001 121393/103682*12752043^(9/17) 6765000028842839 a001 15456/90481*12752043^(11/17) 6765000028842973 a001 121393/103682*4870847^(9/16) 6765000028843008 a001 15456/90481*4870847^(11/16) 6765000028843985 a001 121393/103682*1860498^(3/5) 6765000028844245 a001 15456/90481*1860498^(11/15) 6765000028844767 a001 703593828/104005 6765000028845654 a001 831985/15126*64079^(10/23) 6765000028847324 a001 267914296/4870847*64079^(10/23) 6765000028847567 a001 233802911/4250681*64079^(10/23) 6765000028847603 a001 1836311903/33385282*64079^(10/23) 6765000028847608 a001 1602508992/29134601*64079^(10/23) 6765000028847609 a001 12586269025/228826127*64079^(10/23) 6765000028847609 a001 10983760033/199691526*64079^(10/23) 6765000028847609 a001 86267571272/1568397607*64079^(10/23) 6765000028847609 a001 75283811239/1368706081*64079^(10/23) 6765000028847609 a001 591286729879/10749957122*64079^(10/23) 6765000028847609 a001 12585437040/228811001*64079^(10/23) 6765000028847609 a001 4052739537881/73681302247*64079^(10/23) 6765000028847609 a001 3536736619241/64300051206*64079^(10/23) 6765000028847609 a001 6557470319842/119218851371*64079^(10/23) 6765000028847609 a001 2504730781961/45537549124*64079^(10/23) 6765000028847609 a001 956722026041/17393796001*64079^(10/23) 6765000028847609 a001 365435296162/6643838879*64079^(10/23) 6765000028847609 a001 139583862445/2537720636*64079^(10/23) 6765000028847609 a001 53316291173/969323029*64079^(10/23) 6765000028847609 a001 20365011074/370248451*64079^(10/23) 6765000028847609 a001 7778742049/141422324*64079^(10/23) 6765000028847611 a001 2971215073/54018521*64079^(10/23) 6765000028847625 a001 1134903170/20633239*64079^(10/23) 6765000028847718 a001 433494437/7881196*64079^(10/23) 6765000028848356 a001 165580141/3010349*64079^(10/23) 6765000028851424 a001 121393/103682*710647^(9/14) 6765000028852726 a001 63245986/1149851*64079^(10/23) 6765000028853337 a001 15456/90481*710647^(11/14) 6765000028862994 a001 433494437/103682*64079^(1/23) 6765000028872800 a001 2178309/167761*64079^(13/23) 6765000028882681 a001 24157817/439204*64079^(10/23) 6765000028886552 a001 31622993/51841*167761^(1/5) 6765000028890058 a001 6624/101521*439204^(8/9) 6765000028899058 a001 39088169/271443*64079^(8/23) 6765000028899557 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^31 6765000028905846 a001 63245986/710647*64079^(9/23) 6765000028906376 a001 121393/103682*271443^(9/13) 6765000028917287 a001 165580141/1860498*64079^(9/23) 6765000028918755 a001 46347/2206*439204^(4/9) 6765000028918956 a001 433494437/4870847*64079^(9/23) 6765000028919200 a001 1134903170/12752043*64079^(9/23) 6765000028919235 a001 2971215073/33385282*64079^(9/23) 6765000028919240 a001 7778742049/87403803*64079^(9/23) 6765000028919241 a001 20365011074/228826127*64079^(9/23) 6765000028919241 a001 53316291173/599074578*64079^(9/23) 6765000028919241 a001 139583862445/1568397607*64079^(9/23) 6765000028919241 a001 365435296162/4106118243*64079^(9/23) 6765000028919241 a001 956722026041/10749957122*64079^(9/23) 6765000028919241 a001 2504730781961/28143753123*64079^(9/23) 6765000028919241 a001 6557470319842/73681302247*64079^(9/23) 6765000028919241 a001 10610209857723/119218851371*64079^(9/23) 6765000028919241 a001 4052739537881/45537549124*64079^(9/23) 6765000028919241 a001 1548008755920/17393796001*64079^(9/23) 6765000028919241 a001 591286729879/6643838879*64079^(9/23) 6765000028919241 a001 225851433717/2537720636*64079^(9/23) 6765000028919241 a001 86267571272/969323029*64079^(9/23) 6765000028919241 a001 32951280099/370248451*64079^(9/23) 6765000028919242 a001 12586269025/141422324*64079^(9/23) 6765000028919244 a001 4807526976/54018521*64079^(9/23) 6765000028919257 a001 1836311903/20633239*64079^(9/23) 6765000028919350 a001 3524667/39604*64079^(9/23) 6765000028919988 a001 267914296/3010349*64079^(9/23) 6765000028920260 a001 514229/103682*439204^(5/9) 6765000028920501 a001 15456/90481*271443^(11/13) 6765000028921152 a001 6624/101521*7881196^(8/11) 6765000028921231 a001 6624/101521*141422324^(8/13) 6765000028921231 a001 6624/101521*2537720636^(8/15) 6765000028921231 a001 6624/101521*45537549124^(8/17) 6765000028921231 a001 6624/101521*14662949395604^(8/21) 6765000028921231 a001 6624/101521*(1/2+1/2*5^(1/2))^24 6765000028921231 a001 6624/101521*192900153618^(4/9) 6765000028921231 a001 6624/101521*73681302247^(6/13) 6765000028921231 a001 6624/101521*10749957122^(1/2) 6765000028921231 a001 317811/103682*(1/2+1/2*5^(1/2))^16 6765000028921231 a001 317811/103682*23725150497407^(1/4) 6765000028921231 a001 317811/103682*73681302247^(4/13) 6765000028921231 a001 317811/103682*10749957122^(1/3) 6765000028921231 a001 317811/103682*4106118243^(8/23) 6765000028921231 a001 6624/101521*4106118243^(12/23) 6765000028921231 a001 317811/103682*1568397607^(4/11) 6765000028921231 a001 6624/101521*1568397607^(6/11) 6765000028921231 a001 317811/103682*599074578^(8/21) 6765000028921231 a001 6624/101521*599074578^(4/7) 6765000028921231 a001 317811/103682*228826127^(2/5) 6765000028921231 a001 6624/101521*228826127^(3/5) 6765000028921231 a001 317811/103682*87403803^(8/19) 6765000028921232 a001 6624/101521*87403803^(12/19) 6765000028921234 a001 317811/103682*33385282^(4/9) 6765000028921235 a001 6624/101521*33385282^(2/3) 6765000028921251 a001 317811/103682*12752043^(8/17) 6765000028921260 a001 6624/101521*12752043^(12/17) 6765000028921374 a001 317811/103682*4870847^(1/2) 6765000028921445 a001 6624/101521*4870847^(3/4) 6765000028921516 a001 701726688/103729 6765000028922273 a001 317811/103682*1860498^(8/15) 6765000028922795 a001 6624/101521*1860498^(4/5) 6765000028922952 a001 9227465/103682*439204^(1/3) 6765000028924358 a001 102334155/1149851*64079^(9/23) 6765000028926832 a001 39088169/103682*439204^(2/9) 6765000028928886 a001 317811/103682*710647^(4/7) 6765000028929510 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^33 6765000028930730 a001 165580141/103682*439204^(1/9) 6765000028932666 a001 416020/51841*20633239^(2/5) 6765000028932672 a001 2576/103361*141422324^(2/3) 6765000028932672 a001 2576/103361*(1/2+1/2*5^(1/2))^26 6765000028932672 a001 2576/103361*73681302247^(1/2) 6765000028932672 a001 2576/103361*10749957122^(13/24) 6765000028932672 a001 416020/51841*17393796001^(2/7) 6765000028932672 a001 416020/51841*14662949395604^(2/9) 6765000028932672 a001 416020/51841*(1/2+1/2*5^(1/2))^14 6765000028932672 a001 416020/51841*10749957122^(7/24) 6765000028932672 a001 416020/51841*4106118243^(7/23) 6765000028932672 a001 2576/103361*4106118243^(13/23) 6765000028932672 a001 416020/51841*1568397607^(7/22) 6765000028932672 a001 2576/103361*1568397607^(13/22) 6765000028932672 a001 416020/51841*599074578^(1/3) 6765000028932672 a001 2576/103361*599074578^(13/21) 6765000028932672 a001 416020/51841*228826127^(7/20) 6765000028932672 a001 2576/103361*228826127^(13/20) 6765000028932672 a001 416020/51841*87403803^(7/19) 6765000028932673 a001 2576/103361*87403803^(13/19) 6765000028932675 a001 416020/51841*33385282^(7/18) 6765000028932677 a001 2576/103361*33385282^(13/18) 6765000028932689 a001 416020/51841*12752043^(7/17) 6765000028932704 a001 2576/103361*12752043^(13/17) 6765000028932713 a001 6624/101521*710647^(6/7) 6765000028932714 a001 38580030720/5702887 6765000028932797 a001 416020/51841*4870847^(7/16) 6765000028932904 a001 2576/103361*4870847^(13/16) 6765000028933584 a001 416020/51841*1860498^(7/15) 6765000028933880 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^35 6765000028934302 a001 46347/2206*7881196^(4/11) 6765000028934329 a001 46368/4870847*20633239^(4/5) 6765000028934341 a001 46347/2206*141422324^(4/13) 6765000028934341 a001 46347/2206*2537720636^(4/15) 6765000028934341 a001 46368/4870847*17393796001^(4/7) 6765000028934341 a001 46368/4870847*14662949395604^(4/9) 6765000028934341 a001 46368/4870847*(1/2+1/2*5^(1/2))^28 6765000028934341 a001 46368/4870847*505019158607^(1/2) 6765000028934341 a001 46368/4870847*73681302247^(7/13) 6765000028934341 a001 46368/4870847*10749957122^(7/12) 6765000028934341 a001 46347/2206*45537549124^(4/17) 6765000028934341 a001 46347/2206*817138163596^(4/19) 6765000028934341 a001 46347/2206*14662949395604^(4/21) 6765000028934341 a001 46347/2206*(1/2+1/2*5^(1/2))^12 6765000028934341 a001 46347/2206*192900153618^(2/9) 6765000028934341 a001 46347/2206*73681302247^(3/13) 6765000028934341 a001 46347/2206*10749957122^(1/4) 6765000028934341 a001 46347/2206*4106118243^(6/23) 6765000028934341 a001 46368/4870847*4106118243^(14/23) 6765000028934341 a001 46347/2206*1568397607^(3/11) 6765000028934341 a001 46368/4870847*1568397607^(7/11) 6765000028934341 a001 46347/2206*599074578^(2/7) 6765000028934341 a001 46368/4870847*599074578^(2/3) 6765000028934341 a001 46347/2206*228826127^(3/10) 6765000028934341 a001 46368/4870847*228826127^(7/10) 6765000028934342 a001 46347/2206*87403803^(6/19) 6765000028934342 a001 46368/4870847*87403803^(14/19) 6765000028934343 a001 46347/2206*33385282^(1/3) 6765000028934346 a001 46368/4870847*33385282^(7/9) 6765000028934347 a001 233805166/34561 6765000028934356 a001 46347/2206*12752043^(6/17) 6765000028934366 a001 2576/103361*1860498^(13/15) 6765000028934376 a001 46368/4870847*12752043^(14/17) 6765000028934383 a001 1134903170/271443*24476^(1/21) 6765000028934448 a001 46347/2206*4870847^(3/8) 6765000028934486 a001 15456/4250681*7881196^(10/11) 6765000028934518 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^37 6765000028934571 a001 15456/4250681*20633239^(6/7) 6765000028934580 a001 5702887/103682*20633239^(2/7) 6765000028934585 a001 15456/4250681*141422324^(10/13) 6765000028934585 a001 15456/4250681*2537720636^(2/3) 6765000028934585 a001 5702887/103682*2537720636^(2/9) 6765000028934585 a001 15456/4250681*45537549124^(10/17) 6765000028934585 a001 15456/4250681*312119004989^(6/11) 6765000028934585 a001 15456/4250681*14662949395604^(10/21) 6765000028934585 a001 15456/4250681*(1/2+1/2*5^(1/2))^30 6765000028934585 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(34) 6765000028934585 a001 15456/4250681*192900153618^(5/9) 6765000028934585 a001 15456/4250681*28143753123^(3/5) 6765000028934585 a001 15456/4250681*10749957122^(5/8) 6765000028934585 a001 5702887/103682*312119004989^(2/11) 6765000028934585 a001 5702887/103682*(1/2+1/2*5^(1/2))^10 6765000028934585 a001 5702887/103682*28143753123^(1/5) 6765000028934585 a001 5702887/103682*10749957122^(5/24) 6765000028934585 a001 5702887/103682*4106118243^(5/23) 6765000028934585 a001 15456/4250681*4106118243^(15/23) 6765000028934585 a001 5702887/103682*1568397607^(5/22) 6765000028934585 a001 15456/4250681*1568397607^(15/22) 6765000028934585 a001 5702887/103682*599074578^(5/21) 6765000028934585 a001 15456/4250681*599074578^(5/7) 6765000028934585 a001 5702887/103682*228826127^(1/4) 6765000028934585 a001 15456/4250681*228826127^(3/4) 6765000028934585 a001 5702887/103682*87403803^(5/19) 6765000028934586 a001 15456/4250681*87403803^(15/19) 6765000028934586 a001 264431464416/39088169 6765000028934587 a001 5702887/103682*33385282^(5/18) 6765000028934590 a001 15456/4250681*33385282^(5/6) 6765000028934591 a001 46368/4870847*4870847^(7/8) 6765000028934597 a001 5702887/103682*12752043^(5/17) 6765000028934606 a001 39088169/103682*7881196^(2/11) 6765000028934611 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^39 6765000028934613 a001 9227465/103682*7881196^(3/11) 6765000028934617 a001 165580141/103682*7881196^(1/11) 6765000028934620 a001 144/103681*(1/2+1/2*5^(1/2))^32 6765000028934620 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(36) 6765000028934620 a001 144/103681*23725150497407^(1/2) 6765000028934620 a001 144/103681*505019158607^(4/7) 6765000028934620 a001 144/103681*73681302247^(8/13) 6765000028934620 a001 144/103681*10749957122^(2/3) 6765000028934620 a001 7465176/51841*(1/2+1/2*5^(1/2))^8 6765000028934620 a001 7465176/51841*23725150497407^(1/8) 6765000028934620 a001 7465176/51841*505019158607^(1/7) 6765000028934620 a001 7465176/51841*73681302247^(2/13) 6765000028934620 a001 7465176/51841*10749957122^(1/6) 6765000028934620 a001 7465176/51841*4106118243^(4/23) 6765000028934620 a001 144/103681*4106118243^(16/23) 6765000028934620 a001 7465176/51841*1568397607^(2/11) 6765000028934620 a001 144/103681*1568397607^(8/11) 6765000028934620 a001 7465176/51841*599074578^(4/21) 6765000028934620 a001 144/103681*599074578^(16/21) 6765000028934620 a001 7465176/51841*228826127^(1/5) 6765000028934621 a001 144/103681*228826127^(4/5) 6765000028934621 a001 32966217216/4873055 6765000028934621 a001 7465176/51841*87403803^(4/19) 6765000028934621 a001 144/103681*87403803^(16/19) 6765000028934622 a001 15456/4250681*12752043^(15/17) 6765000028934622 a001 7465176/51841*33385282^(2/9) 6765000028934624 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^41 6765000028934625 a001 31622993/51841*20633239^(1/7) 6765000028934626 a001 39088169/103682*141422324^(2/13) 6765000028934626 a001 39088169/103682*2537720636^(2/15) 6765000028934626 a001 15456/29134601*45537549124^(2/3) 6765000028934626 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(38) 6765000028934626 a001 15456/29134601*10749957122^(17/24) 6765000028934626 a001 39088169/103682*45537549124^(2/17) 6765000028934626 a001 39088169/103682*14662949395604^(2/21) 6765000028934626 a001 39088169/103682*(1/2+1/2*5^(1/2))^6 6765000028934626 a001 39088169/103682*10749957122^(1/8) 6765000028934626 a001 39088169/103682*4106118243^(3/23) 6765000028934626 a001 15456/29134601*4106118243^(17/23) 6765000028934626 a001 39088169/103682*1568397607^(3/22) 6765000028934626 a001 15456/29134601*1568397607^(17/22) 6765000028934626 a001 39088169/103682*599074578^(1/7) 6765000028934626 a001 15456/29134601*599074578^(17/21) 6765000028934626 a001 226555027524/33489287 6765000028934626 a001 39088169/103682*228826127^(3/20) 6765000028934626 a001 24157817/103682*20633239^(1/5) 6765000028934626 a001 15456/29134601*228826127^(17/20) 6765000028934626 a001 39088169/103682*87403803^(3/19) 6765000028934626 a001 144/103681*33385282^(8/9) 6765000028934626 a001 46368/228826127*141422324^(12/13) 6765000028934626 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^43 6765000028934626 a001 46368/228826127*2537720636^(4/5) 6765000028934626 a001 46368/228826127*45537549124^(12/17) 6765000028934626 a001 46368/228826127*14662949395604^(4/7) 6765000028934626 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(40) 6765000028934626 a001 46368/228826127*505019158607^(9/14) 6765000028934626 a001 46368/228826127*192900153618^(2/3) 6765000028934626 a001 46368/228826127*73681302247^(9/13) 6765000028934626 a001 46368/228826127*10749957122^(3/4) 6765000028934626 a001 102334155/103682*(1/2+1/2*5^(1/2))^4 6765000028934626 a001 102334155/103682*23725150497407^(1/16) 6765000028934626 a001 102334155/103682*73681302247^(1/13) 6765000028934626 a001 102334155/103682*10749957122^(1/12) 6765000028934626 a001 102334155/103682*4106118243^(2/23) 6765000028934626 a001 102334155/103682*1568397607^(1/11) 6765000028934626 a001 46368/228826127*4106118243^(18/23) 6765000028934626 a001 102334155/103682*599074578^(2/21) 6765000028934626 a001 46368/228826127*1568397607^(9/11) 6765000028934626 a001 1581676699680/233802911 6765000028934626 a001 102334155/103682*228826127^(1/10) 6765000028934626 a001 46368/228826127*599074578^(6/7) 6765000028934626 a001 15456/29134601*87403803^(17/19) 6765000028934626 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^45 6765000028934626 a001 102334155/103682*87403803^(2/19) 6765000028934627 a001 2576/33281921*817138163596^(2/3) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(42) 6765000028934627 a001 2576/33281921*10749957122^(19/24) 6765000028934627 a001 133957148/51841*(1/2+1/2*5^(1/2))^2 6765000028934627 a001 133957148/51841*10749957122^(1/24) 6765000028934627 a001 133957148/51841*4106118243^(1/23) 6765000028934627 a001 133957148/51841*1568397607^(1/22) 6765000028934627 a001 2576/33281921*4106118243^(19/23) 6765000028934627 a001 12422650076928/1836311903 6765000028934627 a001 133957148/51841*599074578^(1/21) 6765000028934627 a001 2576/33281921*1568397607^(19/22) 6765000028934627 a001 46368/228826127*228826127^(9/10) 6765000028934627 a001 133957148/51841*228826127^(1/20) 6765000028934627 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^47 6765000028934627 a001 6624/224056801*2537720636^(8/9) 6765000028934627 a001 6624/224056801*312119004989^(8/11) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(44) 6765000028934627 a001 6624/224056801*23725150497407^(5/8) 6765000028934627 a001 6624/224056801*73681302247^(10/13) 6765000028934627 a001 6624/224056801*28143753123^(4/5) 6765000028934627 a001 6624/224056801*10749957122^(5/6) 6765000028934627 a001 701408733/103682 6765000028934627 a001 6624/224056801*4106118243^(20/23) 6765000028934627 a001 2576/33281921*599074578^(19/21) 6765000028934627 a001 15456/1368706081*2537720636^(14/15) 6765000028934627 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^49 6765000028934627 a001 15456/1368706081*17393796001^(6/7) 6765000028934627 a001 15456/1368706081*45537549124^(14/17) 6765000028934627 a001 15456/1368706081*817138163596^(14/19) 6765000028934627 a001 15456/1368706081*14662949395604^(2/3) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(46) 6765000028934627 a001 15456/1368706081*505019158607^(3/4) 6765000028934627 a001 15456/1368706081*192900153618^(7/9) 6765000028934627 a001 85146110318304/12586269025 6765000028934627 a001 15456/1368706081*10749957122^(7/8) 6765000028934627 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^2 6765000028934627 a001 6624/224056801*1568397607^(10/11) 6765000028934627 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^51 6765000028934627 a001 23184/5374978561*312119004989^(4/5) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(48) 6765000028934627 a001 23184/5374978561*23725150497407^(11/16) 6765000028934627 a001 23184/5374978561*73681302247^(11/13) 6765000028934627 a001 74305136941056/10983760033 6765000028934627 a001 15456/1368706081*4106118243^(21/23) 6765000028934627 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^53 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(50) 6765000028934627 a001 72950015268900/10783446409 6765000028934627 a001 23184/5374978561*10749957122^(11/12) 6765000028934627 a001 6624/10525900321*45537549124^(16/17) 6765000028934627 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^55 6765000028934627 a001 6624/10525900321*14662949395604^(16/21) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(52) 6765000028934627 a001 72756426458592/10754830177 6765000028934627 a001 6624/10525900321*192900153618^(8/9) 6765000028934627 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^57 6765000028934627 a001 2576/10716675201*312119004989^(10/11) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(54) 6765000028934627 a001 2576/10716675201*3461452808002^(5/6) 6765000028934627 a001 4000054744740096/591286729879 6765000028934627 a001 6624/10525900321*73681302247^(12/13) 6765000028934627 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^59 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(56) 6765000028934627 a001 46368/505019158607*23725150497407^(13/16) 6765000028934627 a001 72724161656874/10750060805 6765000028934627 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^61 6765000028934627 a001 15456/440719107401*14662949395604^(6/7) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(58) 6765000028934627 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^63 6765000028934627 a001 144/10749853441*14662949395604^(8/9) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(60) 6765000028934627 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^65 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(62) 6765000028934627 a001 46368/23725150497407*14662949395604^(20/21) 6765000028934627 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^67 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(64) 6765000028934627 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^69 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(66) 6765000028934627 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^71 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(68) 6765000028934627 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^73 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(70) 6765000028934627 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^75 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(72) 6765000028934627 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^77 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(74) 6765000028934627 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^79 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(76) 6765000028934627 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^81 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(78) 6765000028934627 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^83 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(80) 6765000028934627 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^85 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(82) 6765000028934627 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^87 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(84) 6765000028934627 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^89 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(86) 6765000028934627 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^91 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(88) 6765000028934627 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^93 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(90) 6765000028934627 a004 Fibonacci(24)*Lucas(91)/(1/2+sqrt(5)/2)^95 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(92) 6765000028934627 a004 Fibonacci(24)*Lucas(93)/(1/2+sqrt(5)/2)^97 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^90/Lucas(94) 6765000028934627 a004 Fibonacci(24)*Lucas(95)/(1/2+sqrt(5)/2)^99 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^92/Lucas(96) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^94/Lucas(98) 6765000028934627 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^4 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^95/Lucas(99) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^96/Lucas(100) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^93/Lucas(97) 6765000028934627 a004 Fibonacci(24)*Lucas(96)/(1/2+sqrt(5)/2)^100 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^91/Lucas(95) 6765000028934627 a004 Fibonacci(24)*Lucas(94)/(1/2+sqrt(5)/2)^98 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(93) 6765000028934627 a004 Fibonacci(24)*Lucas(92)/(1/2+sqrt(5)/2)^96 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(91) 6765000028934627 a004 Fibonacci(24)*Lucas(90)/(1/2+sqrt(5)/2)^94 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(89) 6765000028934627 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^92 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(87) 6765000028934627 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^90 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(85) 6765000028934627 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^88 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(83) 6765000028934627 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^86 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(81) 6765000028934627 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^84 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(79) 6765000028934627 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^82 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(77) 6765000028934627 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^80 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(75) 6765000028934627 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^78 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(73) 6765000028934627 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^76 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(71) 6765000028934627 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^74 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(69) 6765000028934627 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^72 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(67) 6765000028934627 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^70 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(65) 6765000028934627 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^68 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(63) 6765000028934627 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^66 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(61) 6765000028934627 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^64 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(59) 6765000028934627 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^62 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(57) 6765000028934627 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^60 6765000028934627 a001 46368/312119004989*817138163596^(17/19) 6765000028934627 a001 6472224533849760/956722026041 6765000028934627 a001 46368/312119004989*14662949395604^(17/21) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(55) 6765000028934627 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^58 6765000028934627 a001 46368/312119004989*192900153618^(17/18) 6765000028934627 a001 1236084894554832/182717648081 6765000028934627 a001 46368/119218851371*14662949395604^(7/9) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(53) 6765000028934627 a001 46368/119218851371*505019158607^(7/8) 6765000028934627 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^56 6765000028934627 a001 944284833479232/139583862445 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(51) 6765000028934627 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^54 6765000028934627 a001 46368/17393796001*45537549124^(15/17) 6765000028934627 a001 360684711328032/53316291173 6765000028934627 a001 46368/17393796001*312119004989^(9/11) 6765000028934627 a001 46368/17393796001*14662949395604^(5/7) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(49) 6765000028934627 a001 46368/17393796001*192900153618^(5/6) 6765000028934627 a001 46368/17393796001*28143753123^(9/10) 6765000028934627 a001 15456/9381251041*10749957122^(23/24) 6765000028934627 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^6 6765000028934627 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^8 6765000028934627 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^10 6765000028934627 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^12 6765000028934627 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^14 6765000028934627 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^16 6765000028934627 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^18 6765000028934627 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^20 6765000028934627 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^22 6765000028934627 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^24 6765000028934627 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^26 6765000028934627 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^28 6765000028934627 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^30 6765000028934627 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^32 6765000028934627 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^34 6765000028934627 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^36 6765000028934627 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^38 6765000028934627 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^40 6765000028934627 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^42 6765000028934627 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^44 6765000028934627 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^46 6765000028934627 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^48 6765000028934627 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^50 6765000028934627 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^52 6765000028934627 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^54 6765000028934627 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^56 6765000028934627 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^55 6765000028934627 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^53 6765000028934627 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^51 6765000028934627 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^49 6765000028934627 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^47 6765000028934627 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^45 6765000028934627 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^43 6765000028934627 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^41 6765000028934627 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^39 6765000028934627 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^37 6765000028934627 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^35 6765000028934627 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^33 6765000028934627 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^31 6765000028934627 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^29 6765000028934627 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^27 6765000028934627 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^25 6765000028934627 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^23 6765000028934627 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^21 6765000028934627 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^19 6765000028934627 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^17 6765000028934627 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^15 6765000028934627 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^13 6765000028934627 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^11 6765000028934627 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^9 6765000028934627 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^7 6765000028934627 a001 46368/17393796001*10749957122^(15/16) 6765000028934627 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^5 6765000028934627 a001 68884650252432/10182505537 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(47) 6765000028934627 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^3 6765000028934627 a001 23184/5374978561*4106118243^(22/23) 6765000028934627 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^50 6765000028934627 a001 52623190186560/7778742049 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(45) 6765000028934627 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2) 6765000028934627 a001 15456/1368706081*1568397607^(21/22) 6765000028934627 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^48 6765000028934627 a001 46368/969323029*2537720636^(13/15) 6765000028934627 a001 20100270054816/2971215073 6765000028934627 a001 46368/969323029*45537549124^(13/17) 6765000028934627 a001 46368/969323029*14662949395604^(13/21) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(43) 6765000028934627 a001 46368/969323029*192900153618^(13/18) 6765000028934627 a001 46368/969323029*73681302247^(3/4) 6765000028934627 a001 46368/969323029*10749957122^(13/16) 6765000028934627 a001 433494437/207364+433494437/207364*5^(1/2) 6765000028934627 a001 6624/224056801*599074578^(20/21) 6765000028934627 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^46 6765000028934627 a001 165580141/103682*141422324^(1/13) 6765000028934627 a001 46368/969323029*599074578^(13/14) 6765000028934627 a001 133957148/51841*87403803^(1/19) 6765000028934627 a001 3838809988944/567451585 6765000028934627 a001 165580141/103682*2537720636^(1/15) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(41) 6765000028934627 a001 165580141/103682*45537549124^(1/17) 6765000028934627 a001 165580141/103682*14662949395604^(1/21) 6765000028934627 a001 165580141/103682*(1/2+1/2*5^(1/2))^3 6765000028934627 a001 165580141/103682*192900153618^(1/18) 6765000028934627 a001 165580141/103682*10749957122^(1/16) 6765000028934627 a001 165580141/103682*599074578^(1/14) 6765000028934627 a001 2576/33281921*228826127^(19/20) 6765000028934627 a001 39088169/103682*33385282^(1/6) 6765000028934627 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^44 6765000028934627 a001 133957148/51841*33385282^(1/18) 6765000028934627 a001 2932589878848/433494437 6765000028934627 a001 11592/35355581*2537720636^(7/9) 6765000028934627 a001 31622993/51841*2537720636^(1/9) 6765000028934627 a001 11592/35355581*17393796001^(5/7) 6765000028934627 a001 11592/35355581*312119004989^(7/11) 6765000028934627 a001 11592/35355581*14662949395604^(5/9) 6765000028934627 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(39) 6765000028934627 a001 11592/35355581*505019158607^(5/8) 6765000028934627 a001 11592/35355581*28143753123^(7/10) 6765000028934627 a001 31622993/51841*312119004989^(1/11) 6765000028934627 a001 31622993/51841*(1/2+1/2*5^(1/2))^5 6765000028934627 a001 31622993/51841*28143753123^(1/10) 6765000028934627 a001 11592/35355581*599074578^(5/6) 6765000028934627 a001 31622993/51841*228826127^(1/8) 6765000028934627 a001 11592/35355581*228826127^(7/8) 6765000028934627 a001 102334155/103682*33385282^(1/9) 6765000028934627 a001 165580141/103682*33385282^(1/12) 6765000028934627 a001 46368/228826127*87403803^(18/19) 6765000028934627 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^42 6765000028934629 a001 46368/54018521*141422324^(11/13) 6765000028934629 a001 1120149658656/165580141 6765000028934629 a001 46368/54018521*2537720636^(11/15) 6765000028934629 a001 46368/54018521*45537549124^(11/17) 6765000028934629 a001 46368/54018521*312119004989^(3/5) 6765000028934629 a001 46368/54018521*817138163596^(11/19) 6765000028934629 a001 46368/54018521*14662949395604^(11/21) 6765000028934629 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(37) 6765000028934629 a001 46368/54018521*192900153618^(11/18) 6765000028934629 a001 46368/54018521*10749957122^(11/16) 6765000028934629 a001 24157817/103682*17393796001^(1/7) 6765000028934629 a001 24157817/103682*14662949395604^(1/9) 6765000028934629 a001 24157817/103682*(1/2+1/2*5^(1/2))^7 6765000028934629 a001 46368/54018521*1568397607^(3/4) 6765000028934629 a001 24157817/103682*599074578^(1/6) 6765000028934629 a001 46368/54018521*599074578^(11/14) 6765000028934629 a001 133957148/51841*12752043^(1/17) 6765000028934630 a001 7465176/51841*12752043^(4/17) 6765000028934631 a001 102334155/103682*12752043^(2/17) 6765000028934631 a001 15456/29134601*33385282^(17/18) 6765000028934633 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^40 6765000028934633 a001 39088169/103682*12752043^(3/17) 6765000028934634 a001 46368/54018521*33385282^(11/12) 6765000028934642 a001 213929548560/31622993 6765000028934642 a001 9227465/103682*141422324^(3/13) 6765000028934642 a001 9227465/103682*2537720636^(1/5) 6765000028934642 a001 46368/20633239*(1/2+1/2*5^(1/2))^31 6765000028934642 a001 46368/20633239*9062201101803^(1/2) 6765000028934642 a001 9227465/103682*45537549124^(3/17) 6765000028934642 a001 9227465/103682*817138163596^(3/19) 6765000028934642 a001 9227465/103682*14662949395604^(1/7) 6765000028934642 a001 9227465/103682*(1/2+1/2*5^(1/2))^9 6765000028934642 a001 9227465/103682*192900153618^(1/6) 6765000028934642 a001 9227465/103682*10749957122^(3/16) 6765000028934642 a001 9227465/103682*599074578^(3/14) 6765000028934644 a001 9227465/103682*33385282^(1/4) 6765000028934644 a001 133957148/51841*4870847^(1/16) 6765000028934660 a001 144/103681*12752043^(16/17) 6765000028934662 a001 102334155/103682*4870847^(1/8) 6765000028934668 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^38 6765000028934674 a001 5702887/103682*4870847^(5/16) 6765000028934679 a001 39088169/103682*4870847^(3/16) 6765000028934692 a001 7465176/51841*4870847^(1/4) 6765000028934699 a001 1762289/51841*7881196^(1/3) 6765000028934733 a001 163427632704/24157817 6765000028934735 a001 11592/1970299*(1/2+1/2*5^(1/2))^29 6765000028934735 a001 11592/1970299*1322157322203^(1/2) 6765000028934735 a001 1762289/51841*312119004989^(1/5) 6765000028934735 a001 1762289/51841*(1/2+1/2*5^(1/2))^11 6765000028934735 a001 1762289/51841*1568397607^(1/4) 6765000028934757 a001 133957148/51841*1860498^(1/15) 6765000028934822 a001 165580141/103682*1860498^(1/10) 6765000028934852 a001 15456/4250681*4870847^(15/16) 6765000028934887 a001 102334155/103682*1860498^(2/15) 6765000028934912 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^36 6765000028934953 a001 31622993/51841*1860498^(1/6) 6765000028935017 a001 39088169/103682*1860498^(1/5) 6765000028935123 a001 46347/2206*1860498^(2/5) 6765000028935142 a001 7465176/51841*1860498^(4/15) 6765000028935229 a001 9227465/103682*1860498^(3/10) 6765000028935236 a001 5702887/103682*1860498^(1/3) 6765000028935284 a001 46368/3010349*7881196^(9/11) 6765000028935357 a001 62423800992/9227465 6765000028935373 a001 46368/3010349*141422324^(9/13) 6765000028935373 a001 1346269/103682*141422324^(1/3) 6765000028935373 a001 46368/3010349*2537720636^(3/5) 6765000028935373 a001 46368/3010349*45537549124^(9/17) 6765000028935373 a001 46368/3010349*817138163596^(9/19) 6765000028935373 a001 46368/3010349*14662949395604^(3/7) 6765000028935373 a001 46368/3010349*(1/2+1/2*5^(1/2))^27 6765000028935373 a001 46368/3010349*192900153618^(1/2) 6765000028935373 a001 46368/3010349*10749957122^(9/16) 6765000028935373 a001 1346269/103682*(1/2+1/2*5^(1/2))^13 6765000028935373 a001 1346269/103682*73681302247^(1/4) 6765000028935373 a001 46368/3010349*599074578^(9/14) 6765000028935378 a001 46368/3010349*33385282^(3/4) 6765000028935583 a001 133957148/51841*710647^(1/14) 6765000028936165 a001 46368/4870847*1860498^(14/15) 6765000028936540 a001 102334155/103682*710647^(1/7) 6765000028936581 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^34 6765000028937132 a001 46368/3010349*1860498^(9/10) 6765000028937496 a001 39088169/103682*710647^(3/14) 6765000028937978 a001 24157817/103682*710647^(1/4) 6765000028938448 a001 7465176/51841*710647^(2/7) 6765000028939369 a001 5702887/103682*710647^(5/14) 6765000028939370 a001 416020/51841*710647^(1/2) 6765000028939634 a001 11921885136/1762289 6765000028939694 a001 514229/103682*7881196^(5/11) 6765000028939732 a001 46368/1149851*20633239^(5/7) 6765000028939736 a001 514229/103682*20633239^(3/7) 6765000028939743 a001 514229/103682*141422324^(5/13) 6765000028939743 a001 46368/1149851*2537720636^(5/9) 6765000028939743 a001 514229/103682*2537720636^(1/3) 6765000028939743 a001 46368/1149851*312119004989^(5/11) 6765000028939743 a001 46368/1149851*(1/2+1/2*5^(1/2))^25 6765000028939743 a001 46368/1149851*3461452808002^(5/12) 6765000028939743 a001 46368/1149851*28143753123^(1/2) 6765000028939743 a001 514229/103682*45537549124^(5/17) 6765000028939743 a001 514229/103682*312119004989^(3/11) 6765000028939743 a001 514229/103682*14662949395604^(5/21) 6765000028939743 a001 514229/103682*(1/2+1/2*5^(1/2))^15 6765000028939743 a001 514229/103682*192900153618^(5/18) 6765000028939743 a001 514229/103682*28143753123^(3/10) 6765000028939743 a001 514229/103682*10749957122^(5/16) 6765000028939743 a001 514229/103682*599074578^(5/14) 6765000028939743 a001 514229/103682*228826127^(3/8) 6765000028939743 a001 46368/1149851*228826127^(5/8) 6765000028939746 a001 514229/103682*33385282^(5/12) 6765000028940082 a001 46347/2206*710647^(3/7) 6765000028940720 a001 514229/103682*1860498^(1/2) 6765000028941372 a001 46368/1149851*1860498^(5/6) 6765000028941689 a001 133957148/51841*271443^(1/13) 6765000028944826 a001 3524578/167761*64079^(12/23) 6765000028945111 a001 2576/103361*710647^(13/14) 6765000028948022 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^32 6765000028948752 a001 102334155/103682*271443^(2/13) 6765000028954310 a001 39088169/439204*64079^(9/23) 6765000028955814 a001 39088169/103682*271443^(3/13) 6765000028960848 a001 433494437/103682*103682^(1/24) 6765000028962871 a001 7465176/51841*271443^(4/13) 6765000028968950 a001 9107509824/1346269 6765000028969696 a001 11592/109801*(1/2+1/2*5^(1/2))^23 6765000028969696 a001 98209/51841*45537549124^(1/3) 6765000028969696 a001 98209/51841*(1/2+1/2*5^(1/2))^17 6765000028969696 a001 11592/109801*4106118243^(1/2) 6765000028969717 a001 98209/51841*12752043^(1/2) 6765000028969898 a001 5702887/103682*271443^(5/13) 6765000028970692 a001 63245986/271443*64079^(7/23) 6765000028976717 a001 46347/2206*271443^(6/13) 6765000028977478 a001 14619165/101521*64079^(8/23) 6765000028977732 a001 317811/103682*271443^(8/13) 6765000028981280 a001 1346269/103682*271443^(1/2) 6765000028982111 a001 416020/51841*271443^(7/13) 6765000028987069 a001 133957148/51841*103682^(1/12) 6765000028988919 a001 133957148/930249*64079^(8/23) 6765000028990588 a001 701408733/4870847*64079^(8/23) 6765000028990832 a001 1836311903/12752043*64079^(8/23) 6765000028990867 a001 14930208/103681*64079^(8/23) 6765000028990873 a001 12586269025/87403803*64079^(8/23) 6765000028990873 a001 32951280099/228826127*64079^(8/23) 6765000028990873 a001 43133785636/299537289*64079^(8/23) 6765000028990873 a001 32264490531/224056801*64079^(8/23) 6765000028990873 a001 591286729879/4106118243*64079^(8/23) 6765000028990873 a001 774004377960/5374978561*64079^(8/23) 6765000028990873 a001 4052739537881/28143753123*64079^(8/23) 6765000028990873 a001 1515744265389/10525900321*64079^(8/23) 6765000028990873 a001 3278735159921/22768774562*64079^(8/23) 6765000028990873 a001 2504730781961/17393796001*64079^(8/23) 6765000028990873 a001 956722026041/6643838879*64079^(8/23) 6765000028990873 a001 182717648081/1268860318*64079^(8/23) 6765000028990873 a001 139583862445/969323029*64079^(8/23) 6765000028990874 a001 53316291173/370248451*64079^(8/23) 6765000028990874 a001 10182505537/70711162*64079^(8/23) 6765000028990876 a001 7778742049/54018521*64079^(8/23) 6765000028990889 a001 2971215073/20633239*64079^(8/23) 6765000028990982 a001 567451585/3940598*64079^(8/23) 6765000028991620 a001 433494437/3010349*64079^(8/23) 6765000028995990 a001 165580141/1149851*64079^(8/23) 6765000029005983 a001 6624/101521*271443^(12/13) 6765000029012802 a001 2971215073/710647*24476^(1/21) 6765000029013290 a001 165580141/103682*103682^(1/8) 6765000029016308 a001 5702887/167761*64079^(11/23) 6765000029024243 a001 7778742049/1860498*24476^(1/21) 6765000029025912 a001 20365011074/4870847*24476^(1/21) 6765000029025944 a001 31622993/219602*64079^(8/23) 6765000029026156 a001 53316291173/12752043*24476^(1/21) 6765000029026191 a001 139583862445/33385282*24476^(1/21) 6765000029026196 a001 365435296162/87403803*24476^(1/21) 6765000029026197 a001 956722026041/228826127*24476^(1/21) 6765000029026197 a001 2504730781961/599074578*24476^(1/21) 6765000029026197 a001 6557470319842/1568397607*24476^(1/21) 6765000029026197 a001 10610209857723/2537720636*24476^(1/21) 6765000029026197 a001 4052739537881/969323029*24476^(1/21) 6765000029026197 a001 1548008755920/370248451*24476^(1/21) 6765000029026198 a001 591286729879/141422324*24476^(1/21) 6765000029026200 a001 225851433717/54018521*24476^(1/21) 6765000029026213 a001 86267571272/20633239*24476^(1/21) 6765000029026306 a001 32951280099/7881196*24476^(1/21) 6765000029026441 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^30 6765000029026944 a001 12586269025/3010349*24476^(1/21) 6765000029031314 a001 4807526976/1149851*24476^(1/21) 6765000029039511 a001 102334155/103682*103682^(1/6) 6765000029042323 a001 34111385/90481*64079^(6/23) 6765000029049110 a001 165580141/710647*64079^(7/23) 6765000029060537 a001 63245986/64079*24476^(4/21) 6765000029060551 a001 433494437/1860498*64079^(7/23) 6765000029061267 a001 1836311903/439204*24476^(1/21) 6765000029062221 a001 1134903170/4870847*64079^(7/23) 6765000029062464 a001 2971215073/12752043*64079^(7/23) 6765000029062500 a001 7778742049/33385282*64079^(7/23) 6765000029062505 a001 20365011074/87403803*64079^(7/23) 6765000029062506 a001 53316291173/228826127*64079^(7/23) 6765000029062506 a001 139583862445/599074578*64079^(7/23) 6765000029062506 a001 365435296162/1568397607*64079^(7/23) 6765000029062506 a001 956722026041/4106118243*64079^(7/23) 6765000029062506 a001 2504730781961/10749957122*64079^(7/23) 6765000029062506 a001 6557470319842/28143753123*64079^(7/23) 6765000029062506 a001 10610209857723/45537549124*64079^(7/23) 6765000029062506 a001 4052739537881/17393796001*64079^(7/23) 6765000029062506 a001 1548008755920/6643838879*64079^(7/23) 6765000029062506 a001 591286729879/2537720636*64079^(7/23) 6765000029062506 a001 225851433717/969323029*64079^(7/23) 6765000029062506 a001 86267571272/370248451*64079^(7/23) 6765000029062506 a001 63246219/271444*64079^(7/23) 6765000029062508 a001 12586269025/54018521*64079^(7/23) 6765000029062522 a001 4807526976/20633239*64079^(7/23) 6765000029062615 a001 1836311903/7881196*64079^(7/23) 6765000029063252 a001 701408733/3010349*64079^(7/23) 6765000029065732 a001 31622993/51841*103682^(5/24) 6765000029067622 a001 267914296/1149851*64079^(7/23) 6765000029077891 a001 28657/103682*64079^(21/23) 6765000029087998 a001 9227465/167761*64079^(10/23) 6765000029091952 a001 39088169/103682*103682^(1/4) 6765000029097576 a001 102334155/439204*64079^(7/23) 6765000029113956 a001 165580141/271443*64079^(5/23) 6765000029118176 a001 24157817/103682*103682^(7/24) 6765000029120742 a001 267914296/710647*64079^(6/23) 6765000029130687 a001 433494437/103682*39603^(1/22) 6765000029132184 a001 233802911/620166*64079^(6/23) 6765000029133853 a001 1836311903/4870847*64079^(6/23) 6765000029134096 a001 1602508992/4250681*64079^(6/23) 6765000029134132 a001 12586269025/33385282*64079^(6/23) 6765000029134137 a001 10983760033/29134601*64079^(6/23) 6765000029134138 a001 86267571272/228826127*64079^(6/23) 6765000029134138 a001 267913919/710646*64079^(6/23) 6765000029134138 a001 591286729879/1568397607*64079^(6/23) 6765000029134138 a001 516002918640/1368706081*64079^(6/23) 6765000029134138 a001 4052739537881/10749957122*64079^(6/23) 6765000029134138 a001 3536736619241/9381251041*64079^(6/23) 6765000029134138 a001 6557470319842/17393796001*64079^(6/23) 6765000029134138 a001 2504730781961/6643838879*64079^(6/23) 6765000029134138 a001 956722026041/2537720636*64079^(6/23) 6765000029134138 a001 365435296162/969323029*64079^(6/23) 6765000029134138 a001 139583862445/370248451*64079^(6/23) 6765000029134138 a001 53316291173/141422324*64079^(6/23) 6765000029134140 a001 20365011074/54018521*64079^(6/23) 6765000029134154 a001 7778742049/20633239*64079^(6/23) 6765000029134247 a001 2971215073/7881196*64079^(6/23) 6765000029134884 a001 1134903170/3010349*64079^(6/23) 6765000029139255 a001 433494437/1149851*64079^(6/23) 6765000029144389 a001 7465176/51841*103682^(1/3) 6765000029147723 a001 46368/167761*439204^(7/9) 6765000029159608 a001 14930352/167761*64079^(9/23) 6765000029169208 a001 165580141/439204*64079^(6/23) 6765000029169883 a001 3478759200/514229 6765000029170632 a001 9227465/103682*103682^(3/8) 6765000029174930 a001 46368/167761*7881196^(7/11) 6765000029174990 a001 46368/167761*20633239^(3/5) 6765000029174999 a001 46368/167761*141422324^(7/13) 6765000029175000 a001 46368/167761*2537720636^(7/15) 6765000029175000 a001 46368/167761*17393796001^(3/7) 6765000029175000 a001 46368/167761*45537549124^(7/17) 6765000029175000 a001 46368/167761*14662949395604^(1/3) 6765000029175000 a001 46368/167761*(1/2+1/2*5^(1/2))^21 6765000029175000 a001 46368/167761*192900153618^(7/18) 6765000029175000 a001 46368/167761*10749957122^(7/16) 6765000029175000 a001 75025/103682*817138163596^(1/3) 6765000029175000 a001 75025/103682*(1/2+1/2*5^(1/2))^19 6765000029175000 a001 46368/167761*599074578^(1/2) 6765000029175000 a001 75025/103682*87403803^(1/2) 6765000029175003 a001 46368/167761*33385282^(7/12) 6765000029176368 a001 46368/167761*1860498^(7/10) 6765000029185046 a001 46368/167761*710647^(3/4) 6765000029185588 a001 267914296/271443*64079^(4/23) 6765000029188004 a001 121393/271443*167761^(4/5) 6765000029192375 a001 433494437/710647*64079^(5/23) 6765000029196795 a001 5702887/103682*103682^(5/12) 6765000029203816 a001 567451585/930249*64079^(5/23) 6765000029205485 a001 2971215073/4870847*64079^(5/23) 6765000029205729 a001 7778742049/12752043*64079^(5/23) 6765000029205764 a001 10182505537/16692641*64079^(5/23) 6765000029205769 a001 53316291173/87403803*64079^(5/23) 6765000029205770 a001 139583862445/228826127*64079^(5/23) 6765000029205770 a001 182717648081/299537289*64079^(5/23) 6765000029205770 a001 956722026041/1568397607*64079^(5/23) 6765000029205770 a001 2504730781961/4106118243*64079^(5/23) 6765000029205770 a001 3278735159921/5374978561*64079^(5/23) 6765000029205770 a001 10610209857723/17393796001*64079^(5/23) 6765000029205770 a001 4052739537881/6643838879*64079^(5/23) 6765000029205770 a001 1134903780/1860499*64079^(5/23) 6765000029205770 a001 591286729879/969323029*64079^(5/23) 6765000029205770 a001 225851433717/370248451*64079^(5/23) 6765000029205771 a001 21566892818/35355581*64079^(5/23) 6765000029205773 a001 32951280099/54018521*64079^(5/23) 6765000029205786 a001 1144206275/1875749*64079^(5/23) 6765000029205879 a001 1201881744/1970299*64079^(5/23) 6765000029206517 a001 1836311903/3010349*64079^(5/23) 6765000029210887 a001 701408733/1149851*64079^(5/23) 6765000029221155 a001 46368/64079*64079^(19/23) 6765000029223167 a001 1762289/51841*103682^(11/24) 6765000029231249 a001 24157817/167761*64079^(8/23) 6765000029231744 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^31 6765000029240840 a001 66978574/109801*64079^(5/23) 6765000029248994 a001 46347/2206*103682^(1/2) 6765000029257220 a001 433494437/271443*64079^(3/23) 6765000029264007 a001 701408733/710647*64079^(4/23) 6765000029266570 a001 701408733/167761*24476^(1/21) 6765000029275448 a001 1836311903/1860498*64079^(4/23) 6765000029276246 a001 1346269/103682*103682^(13/24) 6765000029277117 a001 4807526976/4870847*64079^(4/23) 6765000029277361 a001 12586269025/12752043*64079^(4/23) 6765000029277396 a001 32951280099/33385282*64079^(4/23) 6765000029277402 a001 86267571272/87403803*64079^(4/23) 6765000029277402 a001 225851433717/228826127*64079^(4/23) 6765000029277402 a001 591286729879/599074578*64079^(4/23) 6765000029277402 a001 1548008755920/1568397607*64079^(4/23) 6765000029277402 a001 4052739537881/4106118243*64079^(4/23) 6765000029277402 a001 4807525989/4870846*64079^(4/23) 6765000029277402 a001 6557470319842/6643838879*64079^(4/23) 6765000029277402 a001 2504730781961/2537720636*64079^(4/23) 6765000029277402 a001 956722026041/969323029*64079^(4/23) 6765000029277402 a001 365435296162/370248451*64079^(4/23) 6765000029277403 a001 139583862445/141422324*64079^(4/23) 6765000029277405 a001 53316291173/54018521*64079^(4/23) 6765000029277418 a001 20365011074/20633239*64079^(4/23) 6765000029277511 a001 7778742049/7881196*64079^(4/23) 6765000029278149 a001 2971215073/3010349*64079^(4/23) 6765000029282519 a001 1134903170/1149851*64079^(4/23) 6765000029299767 a001 416020/51841*103682^(7/12) 6765000029302878 a001 39088169/167761*64079^(7/23) 6765000029310163 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^33 6765000029312472 a001 433494437/439204*64079^(4/23) 6765000029314791 a001 121393/103682*103682^(3/4) 6765000029321604 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^35 6765000029323273 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^37 6765000029323517 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^39 6765000029323552 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^41 6765000029323557 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^43 6765000029323558 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^45 6765000029323558 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^47 6765000029323558 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^49 6765000029323558 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^51 6765000029323558 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^53 6765000029323558 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^55 6765000029323558 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^57 6765000029323558 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^59 6765000029323558 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^61 6765000029323558 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^63 6765000029323558 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^65 6765000029323558 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^67 6765000029323558 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^69 6765000029323558 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^71 6765000029323558 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^73 6765000029323558 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^75 6765000029323558 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^77 6765000029323558 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^79 6765000029323558 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^81 6765000029323558 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^83 6765000029323558 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^85 6765000029323558 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^87 6765000029323558 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^89 6765000029323558 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^91 6765000029323558 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^93 6765000029323558 a004 Fibonacci(90)*Lucas(25)/(1/2+sqrt(5)/2)^95 6765000029323558 a004 Fibonacci(92)*Lucas(25)/(1/2+sqrt(5)/2)^97 6765000029323558 a004 Fibonacci(94)*Lucas(25)/(1/2+sqrt(5)/2)^99 6765000029323558 a004 Fibonacci(95)*Lucas(25)/(1/2+sqrt(5)/2)^100 6765000029323558 a004 Fibonacci(93)*Lucas(25)/(1/2+sqrt(5)/2)^98 6765000029323558 a004 Fibonacci(91)*Lucas(25)/(1/2+sqrt(5)/2)^96 6765000029323558 a004 Fibonacci(89)*Lucas(25)/(1/2+sqrt(5)/2)^94 6765000029323558 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^92 6765000029323558 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^90 6765000029323558 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^88 6765000029323558 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^86 6765000029323558 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^84 6765000029323558 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^82 6765000029323558 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^80 6765000029323558 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^78 6765000029323558 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^76 6765000029323558 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^74 6765000029323558 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^72 6765000029323558 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^70 6765000029323558 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^68 6765000029323558 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^66 6765000029323558 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^64 6765000029323558 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^62 6765000029323558 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^60 6765000029323558 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^58 6765000029323558 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^56 6765000029323558 a001 2/75025*(1/2+1/2*5^(1/2))^45 6765000029323558 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^54 6765000029323558 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^52 6765000029323558 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^50 6765000029323558 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^48 6765000029323558 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^46 6765000029323559 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^44 6765000029323561 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^42 6765000029323574 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^40 6765000029323667 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^38 6765000029324305 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^36 6765000029326746 a001 133957148/51841*39603^(1/11) 6765000029328640 a001 1346269/271443*167761^(3/5) 6765000029328675 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^34 6765000029328853 a001 233802911/90481*64079^(2/23) 6765000029333059 a001 514229/103682*103682^(5/8) 6765000029335639 a001 1134903170/710647*64079^(3/23) 6765000029340768 a001 317811/103682*103682^(2/3) 6765000029344842 a001 317811/710647*167761^(4/5) 6765000029347080 a001 2971215073/1860498*64079^(3/23) 6765000029348750 a001 7778742049/4870847*64079^(3/23) 6765000029348993 a001 20365011074/12752043*64079^(3/23) 6765000029349029 a001 53316291173/33385282*64079^(3/23) 6765000029349034 a001 139583862445/87403803*64079^(3/23) 6765000029349035 a001 365435296162/228826127*64079^(3/23) 6765000029349035 a001 956722026041/599074578*64079^(3/23) 6765000029349035 a001 2504730781961/1568397607*64079^(3/23) 6765000029349035 a001 6557470319842/4106118243*64079^(3/23) 6765000029349035 a001 10610209857723/6643838879*64079^(3/23) 6765000029349035 a001 4052739537881/2537720636*64079^(3/23) 6765000029349035 a001 1548008755920/969323029*64079^(3/23) 6765000029349035 a001 591286729879/370248451*64079^(3/23) 6765000029349035 a001 225851433717/141422324*64079^(3/23) 6765000029349037 a001 86267571272/54018521*64079^(3/23) 6765000029349051 a001 32951280099/20633239*64079^(3/23) 6765000029349144 a001 12586269025/7881196*64079^(3/23) 6765000029349781 a001 4807526976/3010349*64079^(3/23) 6765000029354151 a001 1836311903/1149851*64079^(3/23) 6765000029358628 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^32 6765000029367724 a001 416020/930249*167761^(4/5) 6765000029371063 a001 2178309/4870847*167761^(4/5) 6765000029371550 a001 5702887/12752043*167761^(4/5) 6765000029371621 a001 7465176/16692641*167761^(4/5) 6765000029371631 a001 39088169/87403803*167761^(4/5) 6765000029371633 a001 102334155/228826127*167761^(4/5) 6765000029371633 a001 133957148/299537289*167761^(4/5) 6765000029371633 a001 701408733/1568397607*167761^(4/5) 6765000029371633 a001 1836311903/4106118243*167761^(4/5) 6765000029371633 a001 2403763488/5374978561*167761^(4/5) 6765000029371633 a001 12586269025/28143753123*167761^(4/5) 6765000029371633 a001 32951280099/73681302247*167761^(4/5) 6765000029371633 a001 43133785636/96450076809*167761^(4/5) 6765000029371633 a001 225851433717/505019158607*167761^(4/5) 6765000029371633 a001 591286729879/1322157322203*167761^(4/5) 6765000029371633 a001 10610209857723/23725150497407*167761^(4/5) 6765000029371633 a001 182717648081/408569081798*167761^(4/5) 6765000029371633 a001 139583862445/312119004989*167761^(4/5) 6765000029371633 a001 53316291173/119218851371*167761^(4/5) 6765000029371633 a001 10182505537/22768774562*167761^(4/5) 6765000029371633 a001 7778742049/17393796001*167761^(4/5) 6765000029371633 a001 2971215073/6643838879*167761^(4/5) 6765000029371633 a001 567451585/1268860318*167761^(4/5) 6765000029371633 a001 433494437/969323029*167761^(4/5) 6765000029371633 a001 165580141/370248451*167761^(4/5) 6765000029371634 a001 31622993/70711162*167761^(4/5) 6765000029371638 a001 24157817/54018521*167761^(4/5) 6765000029371665 a001 9227465/20633239*167761^(4/5) 6765000029371851 a001 1762289/3940598*167761^(4/5) 6765000029373126 a001 1346269/3010349*167761^(4/5) 6765000029374511 a001 63245986/167761*64079^(6/23) 6765000029375962 a001 4976784/90481*167761^(2/5) 6765000029380294 a001 121393/271443*20633239^(4/7) 6765000029380303 a001 121393/271443*2537720636^(4/9) 6765000029380303 a001 121393/271443*(1/2+1/2*5^(1/2))^20 6765000029380303 a001 121393/271443*23725150497407^(5/16) 6765000029380303 a001 121393/271443*505019158607^(5/14) 6765000029380303 a001 121393/271443*73681302247^(5/13) 6765000029380303 a001 121393/271443*28143753123^(2/5) 6765000029380303 a001 121393/271443*10749957122^(5/12) 6765000029380303 a001 121393/271443*4106118243^(10/23) 6765000029380303 a001 121393/271443*1568397607^(5/11) 6765000029380303 a001 121393/271443*599074578^(10/21) 6765000029380303 a001 121393/271443*228826127^(1/2) 6765000029380303 a001 121393/271443*87403803^(10/19) 6765000029380306 a001 121393/271443*33385282^(5/9) 6765000029380327 a001 121393/271443*12752043^(10/17) 6765000029380481 a001 121393/271443*4870847^(5/8) 6765000029380588 a001 14736260449/2178309 6765000029381606 a001 121393/271443*1860498^(2/3) 6765000029381866 a001 514229/1149851*167761^(4/5) 6765000029384105 a001 701408733/439204*64079^(3/23) 6765000029389871 a001 121393/271443*710647^(5/7) 6765000029400485 a001 1134903170/271443*64079^(1/23) 6765000029406421 a001 3524578/710647*167761^(3/5) 6765000029407271 a001 1836311903/710647*64079^(2/23) 6765000029415454 a001 98209/51841*103682^(17/24) 6765000029417769 a001 9227465/1860498*167761^(3/5) 6765000029418713 a001 267084832/103361*64079^(2/23) 6765000029419425 a001 24157817/4870847*167761^(3/5) 6765000029419666 a001 63245986/12752043*167761^(3/5) 6765000029419675 a001 15456/90481*103682^(11/12) 6765000029419702 a001 165580141/33385282*167761^(3/5) 6765000029419707 a001 433494437/87403803*167761^(3/5) 6765000029419707 a001 1134903170/228826127*167761^(3/5) 6765000029419708 a001 2971215073/599074578*167761^(3/5) 6765000029419708 a001 7778742049/1568397607*167761^(3/5) 6765000029419708 a001 20365011074/4106118243*167761^(3/5) 6765000029419708 a001 53316291173/10749957122*167761^(3/5) 6765000029419708 a001 139583862445/28143753123*167761^(3/5) 6765000029419708 a001 365435296162/73681302247*167761^(3/5) 6765000029419708 a001 956722026041/192900153618*167761^(3/5) 6765000029419708 a001 2504730781961/505019158607*167761^(3/5) 6765000029419708 a001 10610209857723/2139295485799*167761^(3/5) 6765000029419708 a001 4052739537881/817138163596*167761^(3/5) 6765000029419708 a001 140728068720/28374454999*167761^(3/5) 6765000029419708 a001 591286729879/119218851371*167761^(3/5) 6765000029419708 a001 225851433717/45537549124*167761^(3/5) 6765000029419708 a001 86267571272/17393796001*167761^(3/5) 6765000029419708 a001 32951280099/6643838879*167761^(3/5) 6765000029419708 a001 1144206275/230701876*167761^(3/5) 6765000029419708 a001 4807526976/969323029*167761^(3/5) 6765000029419708 a001 1836311903/370248451*167761^(3/5) 6765000029419708 a001 701408733/141422324*167761^(3/5) 6765000029419710 a001 267914296/54018521*167761^(3/5) 6765000029419723 a001 9303105/1875749*167761^(3/5) 6765000029419816 a001 39088169/7881196*167761^(3/5) 6765000029420382 a001 12586269025/4870847*64079^(2/23) 6765000029420448 a001 14930352/3010349*167761^(3/5) 6765000029420625 a001 10983760033/4250681*64079^(2/23) 6765000029420661 a001 43133785636/16692641*64079^(2/23) 6765000029420666 a001 75283811239/29134601*64079^(2/23) 6765000029420667 a001 591286729879/228826127*64079^(2/23) 6765000029420667 a001 86000486440/33281921*64079^(2/23) 6765000029420667 a001 4052739537881/1568397607*64079^(2/23) 6765000029420667 a001 3536736619241/1368706081*64079^(2/23) 6765000029420667 a001 3278735159921/1268860318*64079^(2/23) 6765000029420667 a001 2504730781961/969323029*64079^(2/23) 6765000029420667 a001 956722026041/370248451*64079^(2/23) 6765000029420667 a001 182717648081/70711162*64079^(2/23) 6765000029420669 a001 139583862445/54018521*64079^(2/23) 6765000029420683 a001 53316291173/20633239*64079^(2/23) 6765000029420776 a001 10182505537/3940598*64079^(2/23) 6765000029421413 a001 7778742049/3010349*64079^(2/23) 6765000029424042 a001 165580141/271443*167761^(1/5) 6765000029424783 a001 5702887/1149851*167761^(3/5) 6765000029425784 a001 2971215073/1149851*64079^(2/23) 6765000029435342 a001 105937/90481*439204^(2/3) 6765000029437047 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^33 6765000029438989 a001 121393/1860498*439204^(8/9) 6765000029441773 a001 98209/219602*167761^(4/5) 6765000029446143 a001 9303105/15251*64079^(5/23) 6765000029450929 a001 121393/271443*271443^(10/13) 6765000029453380 a001 1346269/271443*439204^(5/9) 6765000029454386 a001 39088169/710647*167761^(2/5) 6765000029454492 a001 2178309/439204*167761^(3/5) 6765000029455737 a001 567451585/219602*64079^(2/23) 6765000029456489 a001 5702887/271443*439204^(4/9) 6765000029458649 a001 121393/710647*7881196^(2/3) 6765000029458662 a001 105937/90481*7881196^(6/11) 6765000029458721 a001 105937/90481*141422324^(6/13) 6765000029458722 a001 105937/90481*2537720636^(2/5) 6765000029458722 a001 121393/710647*312119004989^(2/5) 6765000029458722 a001 121393/710647*(1/2+1/2*5^(1/2))^22 6765000029458722 a001 105937/90481*45537549124^(6/17) 6765000029458722 a001 105937/90481*14662949395604^(2/7) 6765000029458722 a001 105937/90481*(1/2+1/2*5^(1/2))^18 6765000029458722 a001 105937/90481*192900153618^(1/3) 6765000029458722 a001 105937/90481*10749957122^(3/8) 6765000029458722 a001 121393/710647*10749957122^(11/24) 6765000029458722 a001 105937/90481*4106118243^(9/23) 6765000029458722 a001 121393/710647*4106118243^(11/23) 6765000029458722 a001 105937/90481*1568397607^(9/22) 6765000029458722 a001 121393/710647*1568397607^(1/2) 6765000029458722 a001 105937/90481*599074578^(3/7) 6765000029458722 a001 121393/710647*599074578^(11/21) 6765000029458722 a001 105937/90481*228826127^(9/20) 6765000029458722 a001 121393/710647*228826127^(11/20) 6765000029458722 a001 105937/90481*87403803^(9/19) 6765000029458722 a001 121393/710647*87403803^(11/19) 6765000029458725 a001 105937/90481*33385282^(1/2) 6765000029458725 a001 121393/710647*33385282^(11/18) 6765000029458744 a001 105937/90481*12752043^(9/17) 6765000029458748 a001 121393/710647*12752043^(11/17) 6765000029458763 a001 38580030723/5702887 6765000029458882 a001 105937/90481*4870847^(9/16) 6765000029458918 a001 121393/710647*4870847^(11/16) 6765000029459894 a001 105937/90481*1860498^(3/5) 6765000029460155 a001 121393/710647*1860498^(11/15) 6765000029460429 a001 24157817/271443*439204^(1/3) 6765000029464324 a001 34111385/90481*439204^(2/9) 6765000029465828 a001 831985/15126*167761^(2/5) 6765000029467000 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^35 6765000029467333 a001 105937/90481*710647^(9/14) 6765000029467497 a001 267914296/4870847*167761^(2/5) 6765000029467741 a001 233802911/4250681*167761^(2/5) 6765000029467776 a001 1836311903/33385282*167761^(2/5) 6765000029467781 a001 1602508992/29134601*167761^(2/5) 6765000029467782 a001 12586269025/228826127*167761^(2/5) 6765000029467782 a001 10983760033/199691526*167761^(2/5) 6765000029467782 a001 86267571272/1568397607*167761^(2/5) 6765000029467782 a001 75283811239/1368706081*167761^(2/5) 6765000029467782 a001 591286729879/10749957122*167761^(2/5) 6765000029467782 a001 12585437040/228811001*167761^(2/5) 6765000029467782 a001 4052739537881/73681302247*167761^(2/5) 6765000029467782 a001 3536736619241/64300051206*167761^(2/5) 6765000029467782 a001 6557470319842/119218851371*167761^(2/5) 6765000029467782 a001 2504730781961/45537549124*167761^(2/5) 6765000029467782 a001 956722026041/17393796001*167761^(2/5) 6765000029467782 a001 365435296162/6643838879*167761^(2/5) 6765000029467782 a001 139583862445/2537720636*167761^(2/5) 6765000029467782 a001 53316291173/969323029*167761^(2/5) 6765000029467782 a001 20365011074/370248451*167761^(2/5) 6765000029467782 a001 7778742049/141422324*167761^(2/5) 6765000029467784 a001 2971215073/54018521*167761^(2/5) 6765000029467798 a001 1134903170/20633239*167761^(2/5) 6765000029467891 a001 433494437/7881196*167761^(2/5) 6765000029468220 a001 433494437/271443*439204^(1/9) 6765000029468529 a001 165580141/3010349*167761^(2/5) 6765000029469247 a001 121393/710647*710647^(11/14) 6765000029470083 a001 121393/1860498*7881196^(8/11) 6765000029470162 a001 121393/1860498*141422324^(8/13) 6765000029470163 a001 121393/1860498*2537720636^(8/15) 6765000029470163 a001 121393/1860498*45537549124^(8/17) 6765000029470163 a001 121393/1860498*14662949395604^(8/21) 6765000029470163 a001 121393/1860498*(1/2+1/2*5^(1/2))^24 6765000029470163 a001 121393/1860498*192900153618^(4/9) 6765000029470163 a001 121393/1860498*73681302247^(6/13) 6765000029470163 a001 832040/271443*(1/2+1/2*5^(1/2))^16 6765000029470163 a001 832040/271443*23725150497407^(1/4) 6765000029470163 a001 832040/271443*73681302247^(4/13) 6765000029470163 a001 832040/271443*10749957122^(1/3) 6765000029470163 a001 121393/1860498*10749957122^(1/2) 6765000029470163 a001 832040/271443*4106118243^(8/23) 6765000029470163 a001 121393/1860498*4106118243^(12/23) 6765000029470163 a001 832040/271443*1568397607^(4/11) 6765000029470163 a001 121393/1860498*1568397607^(6/11) 6765000029470163 a001 832040/271443*599074578^(8/21) 6765000029470163 a001 121393/1860498*599074578^(4/7) 6765000029470163 a001 832040/271443*228826127^(2/5) 6765000029470163 a001 121393/1860498*228826127^(3/5) 6765000029470163 a001 832040/271443*87403803^(8/19) 6765000029470163 a001 121393/1860498*87403803^(12/19) 6765000029470165 a001 832040/271443*33385282^(4/9) 6765000029470167 a001 121393/1860498*33385282^(2/3) 6765000029470169 a001 12625478965/1866294 6765000029470182 a001 832040/271443*12752043^(8/17) 6765000029470192 a001 121393/1860498*12752043^(12/17) 6765000029470305 a001 832040/271443*4870847^(1/2) 6765000029470377 a001 121393/1860498*4870847^(3/4) 6765000029471205 a001 832040/271443*1860498^(8/15) 6765000029471371 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^37 6765000029471726 a001 121393/1860498*1860498^(4/5) 6765000029471826 a001 726103/90481*20633239^(2/5) 6765000029471832 a001 121393/4870847*141422324^(2/3) 6765000029471832 a001 726103/90481*17393796001^(2/7) 6765000029471832 a001 121393/4870847*(1/2+1/2*5^(1/2))^26 6765000029471832 a001 121393/4870847*73681302247^(1/2) 6765000029471832 a001 726103/90481*14662949395604^(2/9) 6765000029471832 a001 726103/90481*(1/2+1/2*5^(1/2))^14 6765000029471832 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^14/Lucas(26) 6765000029471832 a001 726103/90481*505019158607^(1/4) 6765000029471832 a001 726103/90481*10749957122^(7/24) 6765000029471832 a001 121393/4870847*10749957122^(13/24) 6765000029471832 a001 726103/90481*4106118243^(7/23) 6765000029471832 a001 121393/4870847*4106118243^(13/23) 6765000029471832 a001 726103/90481*1568397607^(7/22) 6765000029471832 a001 121393/4870847*1568397607^(13/22) 6765000029471832 a001 726103/90481*599074578^(1/3) 6765000029471832 a001 121393/4870847*599074578^(13/21) 6765000029471832 a001 726103/90481*228826127^(7/20) 6765000029471832 a001 121393/4870847*228826127^(13/20) 6765000029471832 a001 726103/90481*87403803^(7/19) 6765000029471833 a001 121393/4870847*87403803^(13/19) 6765000029471833 a001 264431464437/39088169 6765000029471834 a001 726103/90481*33385282^(7/18) 6765000029471836 a001 121393/4870847*33385282^(13/18) 6765000029471849 a001 726103/90481*12752043^(7/17) 6765000029471864 a001 121393/4870847*12752043^(13/17) 6765000029471957 a001 726103/90481*4870847^(7/16) 6765000029472008 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^39 6765000029472012 a001 121393/33385282*7881196^(10/11) 6765000029472036 a001 5702887/271443*7881196^(4/11) 6765000029472063 a001 121393/12752043*20633239^(4/5) 6765000029472064 a001 121393/4870847*4870847^(13/16) 6765000029472075 a001 5702887/271443*141422324^(4/13) 6765000029472075 a001 5702887/271443*2537720636^(4/15) 6765000029472075 a001 121393/12752043*17393796001^(4/7) 6765000029472075 a001 121393/12752043*14662949395604^(4/9) 6765000029472075 a001 121393/12752043*(1/2+1/2*5^(1/2))^28 6765000029472075 a001 121393/12752043*505019158607^(1/2) 6765000029472075 a001 5702887/271443*45537549124^(4/17) 6765000029472075 a001 121393/12752043*73681302247^(7/13) 6765000029472075 a001 5702887/271443*817138163596^(4/19) 6765000029472075 a001 5702887/271443*14662949395604^(4/21) 6765000029472075 a001 5702887/271443*(1/2+1/2*5^(1/2))^12 6765000029472075 a001 5702887/271443*192900153618^(2/9) 6765000029472075 a001 5702887/271443*73681302247^(3/13) 6765000029472075 a001 5702887/271443*10749957122^(1/4) 6765000029472075 a001 121393/12752043*10749957122^(7/12) 6765000029472075 a001 5702887/271443*4106118243^(6/23) 6765000029472075 a001 121393/12752043*4106118243^(14/23) 6765000029472075 a001 5702887/271443*1568397607^(3/11) 6765000029472075 a001 121393/12752043*1568397607^(7/11) 6765000029472075 a001 5702887/271443*599074578^(2/7) 6765000029472075 a001 121393/12752043*599074578^(2/3) 6765000029472075 a001 5702887/271443*228826127^(3/10) 6765000029472076 a001 121393/12752043*228826127^(7/10) 6765000029472076 a001 692290561591/102334155 6765000029472076 a001 5702887/271443*87403803^(6/19) 6765000029472076 a001 121393/12752043*87403803^(14/19) 6765000029472077 a001 5702887/271443*33385282^(1/3) 6765000029472080 a001 121393/12752043*33385282^(7/9) 6765000029472090 a001 24157817/271443*7881196^(3/11) 6765000029472090 a001 5702887/271443*12752043^(6/17) 6765000029472097 a001 9227465/271443*7881196^(1/3) 6765000029472097 a001 34111385/90481*7881196^(2/11) 6765000029472097 a001 121393/33385282*20633239^(6/7) 6765000029472101 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^41 6765000029472106 a001 4976784/90481*20633239^(2/7) 6765000029472107 a001 433494437/271443*7881196^(1/11) 6765000029472110 a001 121393/12752043*12752043^(14/17) 6765000029472111 a001 121393/33385282*141422324^(10/13) 6765000029472111 a001 121393/33385282*2537720636^(2/3) 6765000029472111 a001 4976784/90481*2537720636^(2/9) 6765000029472111 a001 121393/33385282*45537549124^(10/17) 6765000029472111 a001 121393/33385282*312119004989^(6/11) 6765000029472111 a001 121393/33385282*14662949395604^(10/21) 6765000029472111 a001 121393/33385282*(1/2+1/2*5^(1/2))^30 6765000029472111 a001 121393/33385282*192900153618^(5/9) 6765000029472111 a001 4976784/90481*312119004989^(2/11) 6765000029472111 a001 4976784/90481*(1/2+1/2*5^(1/2))^10 6765000029472111 a001 4976784/90481*28143753123^(1/5) 6765000029472111 a001 121393/33385282*28143753123^(3/5) 6765000029472111 a001 4976784/90481*10749957122^(5/24) 6765000029472111 a001 121393/33385282*10749957122^(5/8) 6765000029472111 a001 4976784/90481*4106118243^(5/23) 6765000029472111 a001 121393/33385282*4106118243^(15/23) 6765000029472111 a001 4976784/90481*1568397607^(5/22) 6765000029472111 a001 121393/33385282*1568397607^(15/22) 6765000029472111 a001 4976784/90481*599074578^(5/21) 6765000029472111 a001 121393/33385282*599074578^(5/7) 6765000029472111 a001 226555027542/33489287 6765000029472111 a001 4976784/90481*228826127^(1/4) 6765000029472111 a001 121393/33385282*228826127^(3/4) 6765000029472111 a001 4976784/90481*87403803^(5/19) 6765000029472112 a001 121393/33385282*87403803^(15/19) 6765000029472113 a001 4976784/90481*33385282^(5/18) 6765000029472114 a001 63245986/271443*20633239^(1/5) 6765000029472115 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^43 6765000029472115 a001 165580141/271443*20633239^(1/7) 6765000029472116 a001 121393/33385282*33385282^(5/6) 6765000029472116 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(38) 6765000029472116 a001 121393/87403803*23725150497407^(1/2) 6765000029472116 a001 121393/87403803*505019158607^(4/7) 6765000029472116 a001 121393/87403803*73681302247^(8/13) 6765000029472116 a001 39088169/271443*(1/2+1/2*5^(1/2))^8 6765000029472116 a001 39088169/271443*23725150497407^(1/8) 6765000029472116 a001 39088169/271443*505019158607^(1/7) 6765000029472116 a001 39088169/271443*73681302247^(2/13) 6765000029472116 a001 39088169/271443*10749957122^(1/6) 6765000029472116 a001 121393/87403803*10749957122^(2/3) 6765000029472116 a001 39088169/271443*4106118243^(4/23) 6765000029472116 a001 121393/87403803*4106118243^(16/23) 6765000029472116 a001 39088169/271443*1568397607^(2/11) 6765000029472116 a001 121393/87403803*1568397607^(8/11) 6765000029472116 a001 4745030099417/701408733 6765000029472116 a001 39088169/271443*599074578^(4/21) 6765000029472116 a001 121393/87403803*599074578^(16/21) 6765000029472116 a001 39088169/271443*228826127^(1/5) 6765000029472116 a001 121393/87403803*228826127^(4/5) 6765000029472116 a001 39088169/271443*87403803^(4/19) 6765000029472117 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^45 6765000029472117 a001 121393/599074578*141422324^(12/13) 6765000029472117 a001 34111385/90481*141422324^(2/13) 6765000029472117 a001 121393/87403803*87403803^(16/19) 6765000029472117 a001 34111385/90481*2537720636^(2/15) 6765000029472117 a001 121393/228826127*45537549124^(2/3) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(40) 6765000029472117 a001 34111385/90481*45537549124^(2/17) 6765000029472117 a001 34111385/90481*14662949395604^(2/21) 6765000029472117 a001 34111385/90481*(1/2+1/2*5^(1/2))^6 6765000029472117 a001 34111385/90481*10749957122^(1/8) 6765000029472117 a001 121393/228826127*10749957122^(17/24) 6765000029472117 a001 34111385/90481*4106118243^(3/23) 6765000029472117 a001 121393/228826127*4106118243^(17/23) 6765000029472117 a001 34111385/90481*1568397607^(3/22) 6765000029472117 a001 12422650077915/1836311903 6765000029472117 a001 121393/228826127*1568397607^(17/22) 6765000029472117 a001 34111385/90481*599074578^(1/7) 6765000029472117 a001 121393/228826127*599074578^(17/21) 6765000029472117 a001 34111385/90481*228826127^(3/20) 6765000029472117 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^47 6765000029472117 a001 121393/599074578*2537720636^(4/5) 6765000029472117 a001 121393/228826127*228826127^(17/20) 6765000029472117 a001 121393/599074578*45537549124^(12/17) 6765000029472117 a001 121393/599074578*14662949395604^(4/7) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(42) 6765000029472117 a001 121393/599074578*505019158607^(9/14) 6765000029472117 a001 121393/599074578*192900153618^(2/3) 6765000029472117 a001 121393/599074578*73681302247^(9/13) 6765000029472117 a001 267914296/271443*(1/2+1/2*5^(1/2))^4 6765000029472117 a001 267914296/271443*23725150497407^(1/16) 6765000029472117 a001 267914296/271443*73681302247^(1/13) 6765000029472117 a001 267914296/271443*10749957122^(1/12) 6765000029472117 a001 433494437/271443*141422324^(1/13) 6765000029472117 a001 267914296/271443*4106118243^(2/23) 6765000029472117 a001 121393/599074578*10749957122^(3/4) 6765000029472117 a001 4065365016791/600940872 6765000029472117 a001 267914296/271443*1568397607^(1/11) 6765000029472117 a001 121393/599074578*4106118243^(18/23) 6765000029472117 a001 267914296/271443*599074578^(2/21) 6765000029472117 a001 121393/599074578*1568397607^(9/11) 6765000029472117 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^49 6765000029472117 a001 267914296/271443*228826127^(1/10) 6765000029472117 a001 121393/1568397607*817138163596^(2/3) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(44) 6765000029472117 a001 233802911/90481*(1/2+1/2*5^(1/2))^2 6765000029472117 a001 233802911/90481*10749957122^(1/24) 6765000029472117 a001 85146110325069/12586269025 6765000029472117 a001 233802911/90481*4106118243^(1/23) 6765000029472117 a001 121393/1568397607*10749957122^(19/24) 6765000029472117 a001 121393/599074578*599074578^(6/7) 6765000029472117 a001 233802911/90481*1568397607^(1/22) 6765000029472117 a001 121393/1568397607*4106118243^(19/23) 6765000029472117 a001 233802911/90481*599074578^(1/21) 6765000029472117 a001 121393/4106118243*2537720636^(8/9) 6765000029472117 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^51 6765000029472117 a001 121393/10749957122*2537720636^(14/15) 6765000029472117 a001 121393/4106118243*312119004989^(8/11) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(46) 6765000029472117 a001 121393/4106118243*23725150497407^(5/8) 6765000029472117 a001 121393/4106118243*73681302247^(10/13) 6765000029472117 a001 1836311903/271443 6765000029472117 a001 121393/4106118243*28143753123^(4/5) 6765000029472117 a001 121393/1568397607*1568397607^(19/22) 6765000029472117 a001 121393/4106118243*10749957122^(5/6) 6765000029472117 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^53 6765000029472117 a001 121393/10749957122*17393796001^(6/7) 6765000029472117 a001 121393/10749957122*45537549124^(14/17) 6765000029472117 a001 121393/10749957122*817138163596^(14/19) 6765000029472117 a001 121393/10749957122*14662949395604^(2/3) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(48) 6765000029472117 a001 121393/10749957122*505019158607^(3/4) 6765000029472117 a001 121393/10749957122*192900153618^(7/9) 6765000029472117 a001 72950015274696/10783446409 6765000029472117 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^2 6765000029472117 a001 121393/4106118243*4106118243^(20/23) 6765000029472117 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^55 6765000029472117 a001 121393/28143753123*312119004989^(4/5) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(50) 6765000029472117 a001 121393/28143753123*23725150497407^(11/16) 6765000029472117 a001 1527884955751825/225851433717 6765000029472117 a001 121393/28143753123*73681302247^(11/13) 6765000029472117 a001 121393/10749957122*10749957122^(7/8) 6765000029472117 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^4 6765000029472117 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^57 6765000029472117 a001 121393/192900153618*45537549124^(16/17) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(52) 6765000029472117 a001 4000054745057907/591286729879 6765000029472117 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^59 6765000029472117 a001 121393/192900153618*14662949395604^(16/21) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(54) 6765000029472117 a001 1309034909927737/193501094490 6765000029472117 a001 121393/505019158607*312119004989^(10/11) 6765000029472117 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^61 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(56) 6765000029472117 a001 121393/505019158607*3461452808002^(5/6) 6765000029472117 a001 121393/192900153618*192900153618^(8/9) 6765000029472117 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^63 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(58) 6765000029472117 a001 121393/1322157322203*23725150497407^(13/16) 6765000029472117 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^65 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(60) 6765000029472117 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^67 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(62) 6765000029472117 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^69 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(64) 6765000029472117 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^71 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(66) 6765000029472117 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^73 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(68) 6765000029472117 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^75 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(70) 6765000029472117 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^77 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(72) 6765000029472117 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^79 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(74) 6765000029472117 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^81 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(76) 6765000029472117 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^83 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(78) 6765000029472117 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^85 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(80) 6765000029472117 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^87 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(82) 6765000029472117 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^89 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(84) 6765000029472117 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^91 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(86) 6765000029472117 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^93 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(88) 6765000029472117 a004 Fibonacci(26)*Lucas(89)/(1/2+sqrt(5)/2)^95 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(90) 6765000029472117 a004 Fibonacci(26)*Lucas(91)/(1/2+sqrt(5)/2)^97 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(92) 6765000029472117 a004 Fibonacci(26)*Lucas(93)/(1/2+sqrt(5)/2)^99 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^88/Lucas(94) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^90/Lucas(96) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^92/Lucas(98) 6765000029472117 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^6 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^93/Lucas(99) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^94/Lucas(100) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^91/Lucas(97) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^89/Lucas(95) 6765000029472117 a004 Fibonacci(26)*Lucas(94)/(1/2+sqrt(5)/2)^100 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(93) 6765000029472117 a004 Fibonacci(26)*Lucas(92)/(1/2+sqrt(5)/2)^98 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(91) 6765000029472117 a004 Fibonacci(26)*Lucas(90)/(1/2+sqrt(5)/2)^96 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(89) 6765000029472117 a004 Fibonacci(26)*Lucas(88)/(1/2+sqrt(5)/2)^94 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(87) 6765000029472117 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^92 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(85) 6765000029472117 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^90 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(83) 6765000029472117 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^88 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(81) 6765000029472117 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^86 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(79) 6765000029472117 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^84 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(77) 6765000029472117 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^82 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(75) 6765000029472117 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^80 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(73) 6765000029472117 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^78 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(71) 6765000029472117 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^76 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(69) 6765000029472117 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^74 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(67) 6765000029472117 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^72 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(65) 6765000029472117 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^70 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(63) 6765000029472117 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^68 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(61) 6765000029472117 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^66 6765000029472117 a001 121393/5600748293801*3461452808002^(11/12) 6765000029472117 a001 121393/817138163596*817138163596^(17/19) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(59) 6765000029472117 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^64 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(57) 6765000029472117 a001 121393/1322157322203*505019158607^(13/14) 6765000029472117 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^62 6765000029472117 a001 16944503813785885/2504730781961 6765000029472117 a001 121393/312119004989*14662949395604^(7/9) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(55) 6765000029472117 a001 121393/312119004989*505019158607^(7/8) 6765000029472117 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^60 6765000029472117 a001 121393/817138163596*192900153618^(17/18) 6765000029472117 a001 121393/45537549124*45537549124^(15/17) 6765000029472117 a001 6472224534363989/956722026041 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(53) 6765000029472117 a001 121393/192900153618*73681302247^(12/13) 6765000029472117 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^8 6765000029472117 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^10 6765000029472117 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^12 6765000029472117 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^14 6765000029472117 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^16 6765000029472117 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^18 6765000029472117 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^20 6765000029472117 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^22 6765000029472117 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^24 6765000029472117 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^26 6765000029472117 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^28 6765000029472117 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^30 6765000029472117 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^32 6765000029472117 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^34 6765000029472117 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^36 6765000029472117 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^38 6765000029472117 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^40 6765000029472117 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^42 6765000029472117 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^44 6765000029472117 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^46 6765000029472117 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^48 6765000029472117 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^50 6765000029472117 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^52 6765000029472117 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^54 6765000029472117 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^58 6765000029472117 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^53 6765000029472117 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^51 6765000029472117 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^49 6765000029472117 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^47 6765000029472117 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^45 6765000029472117 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^43 6765000029472117 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^41 6765000029472117 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^39 6765000029472117 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^37 6765000029472117 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^35 6765000029472117 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^33 6765000029472117 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^31 6765000029472117 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^29 6765000029472117 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^27 6765000029472117 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^25 6765000029472117 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^23 6765000029472117 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^21 6765000029472117 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^19 6765000029472117 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^17 6765000029472117 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^15 6765000029472117 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^13 6765000029472117 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^11 6765000029472117 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^9 6765000029472117 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^7 6765000029472117 a001 121393/45537549124*312119004989^(9/11) 6765000029472117 a001 121393/45537549124*14662949395604^(5/7) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(51) 6765000029472117 a001 121393/45537549124*192900153618^(5/6) 6765000029472117 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^5 6765000029472117 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^56 6765000029472117 a001 121393/45537549124*28143753123^(9/10) 6765000029472117 a001 944284833554257/139583862445 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(49) 6765000029472117 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^3 6765000029472117 a001 121393/28143753123*10749957122^(11/12) 6765000029472117 a001 121393/73681302247*10749957122^(23/24) 6765000029472117 a001 121393/45537549124*10749957122^(15/16) 6765000029472117 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^54 6765000029472117 a001 121393/2537720636*2537720636^(13/15) 6765000029472117 a001 360684711356689/53316291173 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(47) 6765000029472117 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2) 6765000029472117 a001 121393/10749957122*4106118243^(21/23) 6765000029472117 a001 121393/28143753123*4106118243^(22/23) 6765000029472117 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^52 6765000029472117 a001 68884650257905/10182505537 6765000029472117 a001 121393/2537720636*45537549124^(13/17) 6765000029472117 a001 121393/2537720636*14662949395604^(13/21) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(45) 6765000029472117 a001 121393/2537720636*192900153618^(13/18) 6765000029472117 a001 121393/2537720636*73681302247^(3/4) 6765000029472117 a001 567451585/271443+567451585/271443*5^(1/2) 6765000029472117 a001 121393/2537720636*10749957122^(13/16) 6765000029472117 a001 121393/4106118243*1568397607^(10/11) 6765000029472117 a001 121393/10749957122*1568397607^(21/22) 6765000029472117 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^50 6765000029472117 a001 233802911/90481*228826127^(1/20) 6765000029472117 a001 433494437/271443*2537720636^(1/15) 6765000029472117 a001 52623190190741/7778742049 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(43) 6765000029472117 a001 433494437/271443*45537549124^(1/17) 6765000029472117 a001 433494437/271443*14662949395604^(1/21) 6765000029472117 a001 433494437/271443*(1/2+1/2*5^(1/2))^3 6765000029472117 a001 433494437/271443*192900153618^(1/18) 6765000029472117 a001 433494437/271443*10749957122^(1/16) 6765000029472117 a001 433494437/271443*599074578^(1/14) 6765000029472117 a001 34111385/90481*87403803^(3/19) 6765000029472117 a001 121393/1568397607*599074578^(19/21) 6765000029472117 a001 121393/4106118243*599074578^(20/21) 6765000029472117 a001 121393/2537720636*599074578^(13/14) 6765000029472117 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^48 6765000029472117 a001 233802911/90481*87403803^(1/19) 6765000029472117 a001 121393/370248451*2537720636^(7/9) 6765000029472117 a001 20100270056413/2971215073 6765000029472117 a001 165580141/271443*2537720636^(1/9) 6765000029472117 a001 121393/370248451*17393796001^(5/7) 6765000029472117 a001 121393/370248451*312119004989^(7/11) 6765000029472117 a001 121393/370248451*14662949395604^(5/9) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(41) 6765000029472117 a001 121393/370248451*505019158607^(5/8) 6765000029472117 a001 165580141/271443*312119004989^(1/11) 6765000029472117 a001 165580141/271443*(1/2+1/2*5^(1/2))^5 6765000029472117 a001 165580141/271443*28143753123^(1/10) 6765000029472117 a001 121393/370248451*28143753123^(7/10) 6765000029472117 a001 233/271444*141422324^(11/13) 6765000029472117 a001 121393/370248451*599074578^(5/6) 6765000029472117 a001 165580141/271443*228826127^(1/8) 6765000029472117 a001 267914296/271443*87403803^(2/19) 6765000029472117 a001 121393/599074578*228826127^(9/10) 6765000029472117 a001 121393/1568397607*228826127^(19/20) 6765000029472117 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^46 6765000029472117 a001 121393/370248451*228826127^(7/8) 6765000029472117 a001 233802911/90481*33385282^(1/18) 6765000029472117 a001 3838809989249/567451585 6765000029472117 a001 233/271444*2537720636^(11/15) 6765000029472117 a001 233/271444*45537549124^(11/17) 6765000029472117 a001 63245986/271443*17393796001^(1/7) 6765000029472117 a001 233/271444*312119004989^(3/5) 6765000029472117 a001 233/271444*817138163596^(11/19) 6765000029472117 a001 233/271444*14662949395604^(11/21) 6765000029472117 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(39) 6765000029472117 a001 233/271444*192900153618^(11/18) 6765000029472117 a001 63245986/271443*14662949395604^(1/9) 6765000029472117 a001 63245986/271443*(1/2+1/2*5^(1/2))^7 6765000029472117 a001 233/271444*10749957122^(11/16) 6765000029472117 a001 233/271444*1568397607^(3/4) 6765000029472117 a001 63245986/271443*599074578^(1/6) 6765000029472117 a001 233/271444*599074578^(11/14) 6765000029472117 a001 39088169/271443*33385282^(2/9) 6765000029472118 a001 433494437/271443*33385282^(1/12) 6765000029472118 a001 267914296/271443*33385282^(1/9) 6765000029472118 a001 121393/228826127*87403803^(17/19) 6765000029472118 a001 121393/599074578*87403803^(18/19) 6765000029472118 a001 34111385/90481*33385282^(1/6) 6765000029472118 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^44 6765000029472119 a001 24157817/271443*141422324^(3/13) 6765000029472119 a001 2932589879081/433494437 6765000029472119 a001 24157817/271443*2537720636^(1/5) 6765000029472119 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(37) 6765000029472119 a001 121393/54018521*9062201101803^(1/2) 6765000029472119 a001 24157817/271443*45537549124^(3/17) 6765000029472119 a001 24157817/271443*817138163596^(3/19) 6765000029472119 a001 24157817/271443*14662949395604^(1/7) 6765000029472119 a001 24157817/271443*(1/2+1/2*5^(1/2))^9 6765000029472119 a001 24157817/271443*192900153618^(1/6) 6765000029472119 a001 24157817/271443*10749957122^(3/16) 6765000029472119 a001 24157817/271443*599074578^(3/14) 6765000029472119 a001 233802911/90481*12752043^(1/17) 6765000029472121 a001 24157817/271443*33385282^(1/4) 6765000029472122 a001 121393/87403803*33385282^(8/9) 6765000029472122 a001 267914296/271443*12752043^(2/17) 6765000029472123 a001 121393/228826127*33385282^(17/18) 6765000029472123 a001 233/271444*33385282^(11/12) 6765000029472123 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^42 6765000029472123 a001 4976784/90481*12752043^(5/17) 6765000029472124 a001 34111385/90481*12752043^(3/17) 6765000029472126 a001 39088169/271443*12752043^(4/17) 6765000029472133 a001 1120149658745/165580141 6765000029472133 a001 121393/20633239*(1/2+1/2*5^(1/2))^29 6765000029472133 a001 121393/20633239*1322157322203^(1/2) 6765000029472133 a001 9227465/271443*312119004989^(1/5) 6765000029472133 a001 9227465/271443*(1/2+1/2*5^(1/2))^11 6765000029472133 a001 9227465/271443*1568397607^(1/4) 6765000029472135 a001 233802911/90481*4870847^(1/16) 6765000029472137 a001 121393/7881196*7881196^(9/11) 6765000029472148 a001 121393/33385282*12752043^(15/17) 6765000029472153 a001 267914296/271443*4870847^(1/8) 6765000029472155 a001 121393/87403803*12752043^(16/17) 6765000029472159 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^40 6765000029472170 a001 34111385/90481*4870847^(3/16) 6765000029472182 a001 5702887/271443*4870847^(3/8) 6765000029472187 a001 39088169/271443*4870847^(1/4) 6765000029472200 a001 4976784/90481*4870847^(5/16) 6765000029472226 a001 918152569/135721 6765000029472226 a001 121393/7881196*141422324^(9/13) 6765000029472226 a001 3524578/271443*141422324^(1/3) 6765000029472226 a001 121393/7881196*2537720636^(3/5) 6765000029472226 a001 121393/7881196*45537549124^(9/17) 6765000029472226 a001 121393/7881196*817138163596^(9/19) 6765000029472226 a001 121393/7881196*14662949395604^(3/7) 6765000029472226 a001 121393/7881196*(1/2+1/2*5^(1/2))^27 6765000029472226 a001 121393/7881196*192900153618^(1/2) 6765000029472226 a001 3524578/271443*(1/2+1/2*5^(1/2))^13 6765000029472226 a001 3524578/271443*73681302247^(1/4) 6765000029472226 a001 121393/7881196*10749957122^(9/16) 6765000029472226 a001 121393/7881196*599074578^(9/14) 6765000029472231 a001 121393/7881196*33385282^(3/4) 6765000029472247 a001 233802911/90481*1860498^(1/15) 6765000029472312 a001 433494437/271443*1860498^(1/10) 6765000029472325 a001 121393/12752043*4870847^(7/8) 6765000029472378 a001 267914296/271443*1860498^(2/15) 6765000029472378 a001 121393/33385282*4870847^(15/16) 6765000029472402 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^38 6765000029472443 a001 165580141/271443*1860498^(1/6) 6765000029472508 a001 34111385/90481*1860498^(1/5) 6765000029472637 a001 39088169/271443*1860498^(4/15) 6765000029472706 a001 24157817/271443*1860498^(3/10) 6765000029472744 a001 726103/90481*1860498^(7/15) 6765000029472762 a001 4976784/90481*1860498^(1/3) 6765000029472814 a001 1346269/271443*7881196^(5/11) 6765000029472852 a001 121393/3010349*20633239^(5/7) 6765000029472857 a001 1346269/271443*20633239^(3/7) 6765000029472857 a001 5702887/271443*1860498^(2/5) 6765000029472861 a001 163427632717/24157817 6765000029472863 a001 1346269/271443*141422324^(5/13) 6765000029472864 a001 121393/3010349*2537720636^(5/9) 6765000029472864 a001 1346269/271443*2537720636^(1/3) 6765000029472864 a001 121393/3010349*312119004989^(5/11) 6765000029472864 a001 121393/3010349*(1/2+1/2*5^(1/2))^25 6765000029472864 a001 121393/3010349*3461452808002^(5/12) 6765000029472864 a001 1346269/271443*45537549124^(5/17) 6765000029472864 a001 1346269/271443*312119004989^(3/11) 6765000029472864 a001 1346269/271443*14662949395604^(5/21) 6765000029472864 a001 1346269/271443*(1/2+1/2*5^(1/2))^15 6765000029472864 a001 1346269/271443*192900153618^(5/18) 6765000029472864 a001 1346269/271443*28143753123^(3/10) 6765000029472864 a001 121393/3010349*28143753123^(1/2) 6765000029472864 a001 1346269/271443*10749957122^(5/16) 6765000029472864 a001 1346269/271443*599074578^(5/14) 6765000029472864 a001 1346269/271443*228826127^(3/8) 6765000029472864 a001 121393/3010349*228826127^(5/8) 6765000029472866 a001 1346269/271443*33385282^(5/12) 6765000029472899 a001 63245986/1149851*167761^(2/5) 6765000029473074 a001 233802911/90481*710647^(1/14) 6765000029473526 a001 121393/4870847*1860498^(13/15) 6765000029473841 a001 1346269/271443*1860498^(1/2) 6765000029473900 a001 121393/12752043*1860498^(14/15) 6765000029473985 a001 121393/7881196*1860498^(9/10) 6765000029474031 a001 267914296/271443*710647^(1/7) 6765000029474071 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^36 6765000029474492 a001 121393/3010349*1860498^(5/6) 6765000029474987 a001 34111385/90481*710647^(3/14) 6765000029475466 a001 63245986/271443*710647^(1/4) 6765000029475943 a001 39088169/271443*710647^(2/7) 6765000029476895 a001 4976784/90481*710647^(5/14) 6765000029477218 a001 62423800997/9227465 6765000029477234 a001 121393/1149851*(1/2+1/2*5^(1/2))^23 6765000029477234 a001 514229/271443*45537549124^(1/3) 6765000029477234 a001 514229/271443*(1/2+1/2*5^(1/2))^17 6765000029477234 a001 121393/1149851*4106118243^(1/2) 6765000029477254 a001 514229/271443*12752043^(1/2) 6765000029477816 a001 5702887/271443*710647^(3/7) 6765000029477817 a001 832040/271443*710647^(4/7) 6765000029478530 a001 726103/90481*710647^(1/2) 6765000029478904 a001 2971215073/710647*64079^(1/23) 6765000029479180 a001 233802911/90481*271443^(1/13) 6765000029479910 a001 121393/439204*439204^(7/9) 6765000029481645 a001 121393/1860498*710647^(6/7) 6765000029484271 a001 121393/4870847*710647^(13/14) 6765000029485513 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^34 6765000029486242 a001 267914296/271443*271443^(2/13) 6765000029490345 a001 7778742049/1860498*64079^(1/23) 6765000029492014 a001 20365011074/4870847*64079^(1/23) 6765000029492258 a001 53316291173/12752043*64079^(1/23) 6765000029492293 a001 139583862445/33385282*64079^(1/23) 6765000029492298 a001 365435296162/87403803*64079^(1/23) 6765000029492299 a001 956722026041/228826127*64079^(1/23) 6765000029492299 a001 2504730781961/599074578*64079^(1/23) 6765000029492299 a001 6557470319842/1568397607*64079^(1/23) 6765000029492299 a001 10610209857723/2537720636*64079^(1/23) 6765000029492299 a001 4052739537881/969323029*64079^(1/23) 6765000029492299 a001 1548008755920/370248451*64079^(1/23) 6765000029492299 a001 591286729879/141422324*64079^(1/23) 6765000029492301 a001 225851433717/54018521*64079^(1/23) 6765000029492315 a001 86267571272/20633239*64079^(1/23) 6765000029492408 a001 32951280099/7881196*64079^(1/23) 6765000029493046 a001 12586269025/3010349*64079^(1/23) 6765000029493305 a001 34111385/90481*271443^(3/13) 6765000029497416 a001 4807526976/1149851*64079^(1/23) 6765000029498338 a001 1134903170/271443*103682^(1/24) 6765000029500367 a001 39088169/271443*271443^(4/13) 6765000029502461 a001 433494437/710647*167761^(1/5) 6765000029502854 a001 24157817/439204*167761^(2/5) 6765000029507078 a001 11921885137/1762289 6765000029507118 a001 121393/439204*7881196^(7/11) 6765000029507177 a001 121393/439204*20633239^(3/5) 6765000029507187 a001 121393/439204*141422324^(7/13) 6765000029507187 a001 121393/439204*2537720636^(7/15) 6765000029507187 a001 121393/439204*17393796001^(3/7) 6765000029507187 a001 121393/439204*45537549124^(7/17) 6765000029507187 a001 121393/439204*14662949395604^(1/3) 6765000029507187 a001 121393/439204*(1/2+1/2*5^(1/2))^21 6765000029507187 a001 121393/439204*192900153618^(7/18) 6765000029507187 a001 196418/271443*817138163596^(1/3) 6765000029507187 a001 196418/271443*(1/2+1/2*5^(1/2))^19 6765000029507187 a001 121393/439204*10749957122^(7/16) 6765000029507187 a001 121393/439204*599074578^(1/2) 6765000029507187 a001 196418/271443*87403803^(1/2) 6765000029507191 a001 121393/439204*33385282^(7/12) 6765000029507424 a001 4976784/90481*271443^(5/13) 6765000029508555 a001 121393/439204*1860498^(7/10) 6765000029513902 a001 567451585/930249*167761^(1/5) 6765000029514451 a001 5702887/271443*271443^(6/13) 6765000029515466 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^35 6765000029515572 a001 2971215073/4870847*167761^(1/5) 6765000029515815 a001 7778742049/12752043*167761^(1/5) 6765000029515851 a001 10182505537/16692641*167761^(1/5) 6765000029515856 a001 53316291173/87403803*167761^(1/5) 6765000029515857 a001 139583862445/228826127*167761^(1/5) 6765000029515857 a001 182717648081/299537289*167761^(1/5) 6765000029515857 a001 956722026041/1568397607*167761^(1/5) 6765000029515857 a001 2504730781961/4106118243*167761^(1/5) 6765000029515857 a001 3278735159921/5374978561*167761^(1/5) 6765000029515857 a001 10610209857723/17393796001*167761^(1/5) 6765000029515857 a001 4052739537881/6643838879*167761^(1/5) 6765000029515857 a001 1134903780/1860499*167761^(1/5) 6765000029515857 a001 591286729879/969323029*167761^(1/5) 6765000029515857 a001 225851433717/370248451*167761^(1/5) 6765000029515857 a001 21566892818/35355581*167761^(1/5) 6765000029515859 a001 32951280099/54018521*167761^(1/5) 6765000029515873 a001 1144206275/1875749*167761^(1/5) 6765000029515966 a001 1201881744/1970299*167761^(1/5) 6765000029516603 a001 1836311903/3010349*167761^(1/5) 6765000029517234 a001 121393/439204*710647^(3/4) 6765000029517776 a001 165580141/167761*64079^(4/23) 6765000029518133 a001 3524578/271443*271443^(1/2) 6765000029519077 a001 317811/4870847*439204^(8/9) 6765000029520973 a001 701408733/1149851*167761^(1/5) 6765000029521270 a001 726103/90481*271443^(7/13) 6765000029522285 a001 105937/90481*271443^(9/13) 6765000029522807 a001 165580141/103682*39603^(3/22) 6765000029524559 a001 233802911/90481*103682^(1/12) 6765000029525201 a001 832040/710647*439204^(2/3) 6765000029526664 a001 832040/271443*271443^(8/13) 6765000029526907 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^37 6765000029527369 a001 1836311903/439204*64079^(1/23) 6765000029528376 a001 317811/1149851*439204^(7/9) 6765000029528576 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^39 6765000029528820 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^41 6765000029528855 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^43 6765000029528861 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^45 6765000029528861 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^47 6765000029528861 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^49 6765000029528861 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^51 6765000029528861 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^53 6765000029528861 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^55 6765000029528861 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^57 6765000029528861 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^59 6765000029528861 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^61 6765000029528861 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^63 6765000029528861 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^65 6765000029528861 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^67 6765000029528861 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^69 6765000029528861 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^71 6765000029528861 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^73 6765000029528861 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^75 6765000029528861 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^77 6765000029528861 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^79 6765000029528861 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^81 6765000029528861 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^83 6765000029528861 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^85 6765000029528861 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^87 6765000029528861 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^89 6765000029528861 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^91 6765000029528861 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^93 6765000029528861 a004 Fibonacci(88)*Lucas(27)/(1/2+sqrt(5)/2)^95 6765000029528861 a004 Fibonacci(90)*Lucas(27)/(1/2+sqrt(5)/2)^97 6765000029528861 a004 Fibonacci(92)*Lucas(27)/(1/2+sqrt(5)/2)^99 6765000029528861 a004 Fibonacci(93)*Lucas(27)/(1/2+sqrt(5)/2)^100 6765000029528861 a004 Fibonacci(91)*Lucas(27)/(1/2+sqrt(5)/2)^98 6765000029528861 a004 Fibonacci(89)*Lucas(27)/(1/2+sqrt(5)/2)^96 6765000029528861 a004 Fibonacci(87)*Lucas(27)/(1/2+sqrt(5)/2)^94 6765000029528861 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^92 6765000029528861 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^90 6765000029528861 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^88 6765000029528861 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^86 6765000029528861 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^84 6765000029528861 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^82 6765000029528861 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^80 6765000029528861 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^78 6765000029528861 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^76 6765000029528861 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^74 6765000029528861 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^72 6765000029528861 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^70 6765000029528861 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^68 6765000029528861 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^66 6765000029528861 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^64 6765000029528861 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^62 6765000029528861 a001 1/98209*(1/2+1/2*5^(1/2))^47 6765000029528861 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^60 6765000029528861 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^58 6765000029528861 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^56 6765000029528861 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^54 6765000029528861 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^52 6765000029528861 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^50 6765000029528861 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^48 6765000029528862 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^46 6765000029528864 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^44 6765000029528877 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^42 6765000029528970 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^40 6765000029529608 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^38 6765000029530762 a001 832040/12752043*439204^(8/9) 6765000029531161 a001 3524578/710647*439204^(5/9) 6765000029532467 a001 311187/4769326*439204^(8/9) 6765000029532716 a001 5702887/87403803*439204^(8/9) 6765000029532752 a001 14930352/228826127*439204^(8/9) 6765000029532757 a001 39088169/599074578*439204^(8/9) 6765000029532758 a001 14619165/224056801*439204^(8/9) 6765000029532758 a001 267914296/4106118243*439204^(8/9) 6765000029532758 a001 701408733/10749957122*439204^(8/9) 6765000029532758 a001 1836311903/28143753123*439204^(8/9) 6765000029532758 a001 686789568/10525900321*439204^(8/9) 6765000029532758 a001 12586269025/192900153618*439204^(8/9) 6765000029532758 a001 32951280099/505019158607*439204^(8/9) 6765000029532758 a001 86267571272/1322157322203*439204^(8/9) 6765000029532758 a001 32264490531/494493258286*439204^(8/9) 6765000029532758 a001 591286729879/9062201101803*439204^(8/9) 6765000029532758 a001 1548008755920/23725150497407*439204^(8/9) 6765000029532758 a001 365435296162/5600748293801*439204^(8/9) 6765000029532758 a001 139583862445/2139295485799*439204^(8/9) 6765000029532758 a001 53316291173/817138163596*439204^(8/9) 6765000029532758 a001 20365011074/312119004989*439204^(8/9) 6765000029532758 a001 7778742049/119218851371*439204^(8/9) 6765000029532758 a001 2971215073/45537549124*439204^(8/9) 6765000029532758 a001 1134903170/17393796001*439204^(8/9) 6765000029532758 a001 433494437/6643838879*439204^(8/9) 6765000029532758 a001 165580141/2537720636*439204^(8/9) 6765000029532758 a001 63245986/969323029*439204^(8/9) 6765000029532760 a001 24157817/370248451*439204^(8/9) 6765000029532774 a001 9227465/141422324*439204^(8/9) 6765000029532869 a001 3524578/54018521*439204^(8/9) 6765000029533520 a001 1346269/20633239*439204^(8/9) 6765000029533978 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^36 6765000029534943 a001 14930352/710647*439204^(4/9) 6765000029535447 a001 832040/3010349*439204^(7/9) 6765000029536411 a001 121393/710647*271443^(11/13) 6765000029536479 a001 2178309/7881196*439204^(7/9) 6765000029536629 a001 5702887/20633239*439204^(7/9) 6765000029536651 a001 14930352/54018521*439204^(7/9) 6765000029536654 a001 39088169/141422324*439204^(7/9) 6765000029536655 a001 102334155/370248451*439204^(7/9) 6765000029536655 a001 267914296/969323029*439204^(7/9) 6765000029536655 a001 701408733/2537720636*439204^(7/9) 6765000029536655 a001 1836311903/6643838879*439204^(7/9) 6765000029536655 a001 4807526976/17393796001*439204^(7/9) 6765000029536655 a001 12586269025/45537549124*439204^(7/9) 6765000029536655 a001 32951280099/119218851371*439204^(7/9) 6765000029536655 a001 86267571272/312119004989*439204^(7/9) 6765000029536655 a001 225851433717/817138163596*439204^(7/9) 6765000029536655 a001 1548008755920/5600748293801*439204^(7/9) 6765000029536655 a001 139583862445/505019158607*439204^(7/9) 6765000029536655 a001 53316291173/192900153618*439204^(7/9) 6765000029536655 a001 20365011074/73681302247*439204^(7/9) 6765000029536655 a001 7778742049/28143753123*439204^(7/9) 6765000029536655 a001 2971215073/10749957122*439204^(7/9) 6765000029536655 a001 1134903170/4106118243*439204^(7/9) 6765000029536655 a001 433494437/1568397607*439204^(7/9) 6765000029536655 a001 165580141/599074578*439204^(7/9) 6765000029536655 a001 63245986/228826127*439204^(7/9) 6765000029536656 a001 24157817/87403803*439204^(7/9) 6765000029536665 a001 9227465/33385282*439204^(7/9) 6765000029536722 a001 3524578/12752043*439204^(7/9) 6765000029537116 a001 1346269/4870847*439204^(7/9) 6765000029537131 a001 317811/710647*20633239^(4/7) 6765000029537140 a001 317811/710647*2537720636^(4/9) 6765000029537140 a001 317811/710647*(1/2+1/2*5^(1/2))^20 6765000029537140 a001 317811/710647*23725150497407^(5/16) 6765000029537140 a001 317811/710647*505019158607^(5/14) 6765000029537140 a001 317811/710647*73681302247^(5/13) 6765000029537140 a001 317811/710647*28143753123^(2/5) 6765000029537140 a001 317811/710647*10749957122^(5/12) 6765000029537140 a001 317811/710647*4106118243^(10/23) 6765000029537140 a001 317811/710647*1568397607^(5/11) 6765000029537140 a001 317811/710647*599074578^(10/21) 6765000029537140 a001 317811/710647*228826127^(1/2) 6765000029537141 a001 317811/710647*87403803^(10/19) 6765000029537144 a001 317811/710647*33385282^(5/9) 6765000029537146 a001 11222647969/1658928 6765000029537165 a001 317811/710647*12752043^(10/17) 6765000029537319 a001 317811/710647*4870847^(5/8) 6765000029537984 a001 514229/7881196*439204^(8/9) 6765000029538312 a001 726103/620166*439204^(2/3) 6765000029538443 a001 317811/710647*1860498^(2/3) 6765000029538846 a001 63245986/710647*439204^(1/3) 6765000029539817 a001 514229/1860498*439204^(7/9) 6765000029540225 a001 5702887/4870847*439204^(2/3) 6765000029540504 a001 4976784/4250681*439204^(2/3) 6765000029540544 a001 39088169/33385282*439204^(2/3) 6765000029540550 a001 34111385/29134601*439204^(2/3) 6765000029540551 a001 267914296/228826127*439204^(2/3) 6765000029540551 a001 233802911/199691526*439204^(2/3) 6765000029540551 a001 1836311903/1568397607*439204^(2/3) 6765000029540551 a001 1602508992/1368706081*439204^(2/3) 6765000029540551 a001 12586269025/10749957122*439204^(2/3) 6765000029540551 a001 10983760033/9381251041*439204^(2/3) 6765000029540551 a001 86267571272/73681302247*439204^(2/3) 6765000029540551 a001 75283811239/64300051206*439204^(2/3) 6765000029540551 a001 2504730781961/2139295485799*439204^(2/3) 6765000029540551 a001 365435296162/312119004989*439204^(2/3) 6765000029540551 a001 139583862445/119218851371*439204^(2/3) 6765000029540551 a001 53316291173/45537549124*439204^(2/3) 6765000029540551 a001 20365011074/17393796001*439204^(2/3) 6765000029540551 a001 7778742049/6643838879*439204^(2/3) 6765000029540551 a001 2971215073/2537720636*439204^(2/3) 6765000029540551 a001 1134903170/969323029*439204^(2/3) 6765000029540551 a001 433494437/370248451*439204^(2/3) 6765000029540552 a001 165580141/141422324*439204^(2/3) 6765000029540554 a001 63245986/54018521*439204^(2/3) 6765000029540570 a001 24157817/20633239*439204^(2/3) 6765000029540676 a001 9227465/7881196*439204^(2/3) 6765000029541407 a001 3524578/3010349*439204^(2/3) 6765000029542510 a001 9227465/1860498*439204^(5/9) 6765000029542742 a001 267914296/710647*439204^(2/9) 6765000029544165 a001 24157817/4870847*439204^(5/9) 6765000029544407 a001 63245986/12752043*439204^(5/9) 6765000029544442 a001 165580141/33385282*439204^(5/9) 6765000029544447 a001 433494437/87403803*439204^(5/9) 6765000029544448 a001 1134903170/228826127*439204^(5/9) 6765000029544448 a001 2971215073/599074578*439204^(5/9) 6765000029544448 a001 7778742049/1568397607*439204^(5/9) 6765000029544448 a001 20365011074/4106118243*439204^(5/9) 6765000029544448 a001 53316291173/10749957122*439204^(5/9) 6765000029544448 a001 139583862445/28143753123*439204^(5/9) 6765000029544448 a001 365435296162/73681302247*439204^(5/9) 6765000029544448 a001 956722026041/192900153618*439204^(5/9) 6765000029544448 a001 2504730781961/505019158607*439204^(5/9) 6765000029544448 a001 10610209857723/2139295485799*439204^(5/9) 6765000029544448 a001 4052739537881/817138163596*439204^(5/9) 6765000029544448 a001 140728068720/28374454999*439204^(5/9) 6765000029544448 a001 591286729879/119218851371*439204^(5/9) 6765000029544448 a001 225851433717/45537549124*439204^(5/9) 6765000029544448 a001 86267571272/17393796001*439204^(5/9) 6765000029544448 a001 32951280099/6643838879*439204^(5/9) 6765000029544448 a001 1144206275/230701876*439204^(5/9) 6765000029544448 a001 4807526976/969323029*439204^(5/9) 6765000029544448 a001 1836311903/370248451*439204^(5/9) 6765000029544448 a001 701408733/141422324*439204^(5/9) 6765000029544450 a001 267914296/54018521*439204^(5/9) 6765000029544464 a001 9303105/1875749*439204^(5/9) 6765000029544556 a001 39088169/7881196*439204^(5/9) 6765000029545189 a001 14930352/3010349*439204^(5/9) 6765000029545419 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^37 6765000029546389 a001 39088169/1860498*439204^(4/9) 6765000029546415 a001 1346269/1149851*439204^(2/3) 6765000029546639 a001 1134903170/710647*439204^(1/9) 6765000029546709 a001 317811/710647*710647^(5/7) 6765000029548059 a001 102334155/4870847*439204^(4/9) 6765000029548303 a001 267914296/12752043*439204^(4/9) 6765000029548339 a001 701408733/33385282*439204^(4/9) 6765000029548344 a001 1836311903/87403803*439204^(4/9) 6765000029548345 a001 102287808/4868641*439204^(4/9) 6765000029548345 a001 12586269025/599074578*439204^(4/9) 6765000029548345 a001 32951280099/1568397607*439204^(4/9) 6765000029548345 a001 86267571272/4106118243*439204^(4/9) 6765000029548345 a001 225851433717/10749957122*439204^(4/9) 6765000029548345 a001 591286729879/28143753123*439204^(4/9) 6765000029548345 a001 1548008755920/73681302247*439204^(4/9) 6765000029548345 a001 4052739537881/192900153618*439204^(4/9) 6765000029548345 a001 225749145909/10745088481*439204^(4/9) 6765000029548345 a001 6557470319842/312119004989*439204^(4/9) 6765000029548345 a001 2504730781961/119218851371*439204^(4/9) 6765000029548345 a001 956722026041/45537549124*439204^(4/9) 6765000029548345 a001 365435296162/17393796001*439204^(4/9) 6765000029548345 a001 139583862445/6643838879*439204^(4/9) 6765000029548345 a001 53316291173/2537720636*439204^(4/9) 6765000029548345 a001 20365011074/969323029*439204^(4/9) 6765000029548345 a001 7778742049/370248451*439204^(4/9) 6765000029548345 a001 2971215073/141422324*439204^(4/9) 6765000029548347 a001 1134903170/54018521*439204^(4/9) 6765000029548361 a001 433494437/20633239*439204^(4/9) 6765000029548454 a001 165580141/7881196*439204^(4/9) 6765000029548509 a001 105937/620166*7881196^(2/3) 6765000029548522 a001 832040/710647*7881196^(6/11) 6765000029548581 a001 832040/710647*141422324^(6/13) 6765000029548581 a001 832040/710647*2537720636^(2/5) 6765000029548581 a001 832040/710647*45537549124^(6/17) 6765000029548581 a001 105937/620166*312119004989^(2/5) 6765000029548581 a001 105937/620166*(1/2+1/2*5^(1/2))^22 6765000029548581 a001 832040/710647*14662949395604^(2/7) 6765000029548581 a001 832040/710647*(1/2+1/2*5^(1/2))^18 6765000029548581 a001 832040/710647*192900153618^(1/3) 6765000029548581 a001 832040/710647*10749957122^(3/8) 6765000029548581 a001 105937/620166*10749957122^(11/24) 6765000029548581 a001 832040/710647*4106118243^(9/23) 6765000029548581 a001 105937/620166*4106118243^(11/23) 6765000029548581 a001 832040/710647*1568397607^(9/22) 6765000029548581 a001 105937/620166*1568397607^(1/2) 6765000029548581 a001 832040/710647*599074578^(3/7) 6765000029548581 a001 105937/620166*599074578^(11/21) 6765000029548582 a001 832040/710647*228826127^(9/20) 6765000029548582 a001 105937/620166*228826127^(11/20) 6765000029548582 a001 832040/710647*87403803^(9/19) 6765000029548582 a001 105937/620166*87403803^(11/19) 6765000029548582 a001 264431464440/39088169 6765000029548584 a001 832040/710647*33385282^(1/2) 6765000029548585 a001 105937/620166*33385282^(11/18) 6765000029548603 a001 832040/710647*12752043^(9/17) 6765000029548608 a001 105937/620166*12752043^(11/17) 6765000029548742 a001 832040/710647*4870847^(9/16) 6765000029548777 a001 105937/620166*4870847^(11/16) 6765000029549092 a001 63245986/3010349*439204^(4/9) 6765000029549523 a001 5702887/1149851*439204^(5/9) 6765000029549754 a001 832040/710647*1860498^(3/5) 6765000029549789 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^39 6765000029550015 a001 105937/620166*1860498^(11/15) 6765000029550171 a001 317811/4870847*7881196^(8/11) 6765000029550250 a001 317811/4870847*141422324^(8/13) 6765000029550251 a001 317811/4870847*2537720636^(8/15) 6765000029550251 a001 317811/4870847*45537549124^(8/17) 6765000029550251 a001 317811/4870847*14662949395604^(8/21) 6765000029550251 a001 317811/4870847*(1/2+1/2*5^(1/2))^24 6765000029550251 a001 311187/101521*(1/2+1/2*5^(1/2))^16 6765000029550251 a001 311187/101521*23725150497407^(1/4) 6765000029550251 a001 317811/4870847*192900153618^(4/9) 6765000029550251 a001 311187/101521*73681302247^(4/13) 6765000029550251 a001 317811/4870847*73681302247^(6/13) 6765000029550251 a001 311187/101521*10749957122^(1/3) 6765000029550251 a001 317811/4870847*10749957122^(1/2) 6765000029550251 a001 311187/101521*4106118243^(8/23) 6765000029550251 a001 317811/4870847*4106118243^(12/23) 6765000029550251 a001 311187/101521*1568397607^(4/11) 6765000029550251 a001 317811/4870847*1568397607^(6/11) 6765000029550251 a001 311187/101521*599074578^(8/21) 6765000029550251 a001 317811/4870847*599074578^(4/7) 6765000029550251 a001 311187/101521*228826127^(2/5) 6765000029550251 a001 317811/4870847*228826127^(3/5) 6765000029550251 a001 32966217219/4873055 6765000029550251 a001 311187/101521*87403803^(8/19) 6765000029550251 a001 317811/4870847*87403803^(12/19) 6765000029550253 a001 311187/101521*33385282^(4/9) 6765000029550255 a001 317811/4870847*33385282^(2/3) 6765000029550270 a001 311187/101521*12752043^(8/17) 6765000029550280 a001 317811/4870847*12752043^(12/17) 6765000029550287 a001 165580141/1860498*439204^(1/3) 6765000029550393 a001 311187/101521*4870847^(1/2) 6765000029550427 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^41 6765000029550436 a001 105937/29134601*7881196^(10/11) 6765000029550463 a001 10959/711491*7881196^(9/11) 6765000029550465 a001 317811/4870847*4870847^(3/4) 6765000029550488 a001 5702887/710647*20633239^(2/5) 6765000029550490 a001 14930352/710647*7881196^(4/11) 6765000029550494 a001 105937/4250681*141422324^(2/3) 6765000029550494 a001 5702887/710647*17393796001^(2/7) 6765000029550494 a001 105937/4250681*(1/2+1/2*5^(1/2))^26 6765000029550494 a001 5702887/710647*14662949395604^(2/9) 6765000029550494 a001 5702887/710647*(1/2+1/2*5^(1/2))^14 6765000029550494 a001 5702887/710647*505019158607^(1/4) 6765000029550494 a001 105937/4250681*73681302247^(1/2) 6765000029550494 a001 5702887/710647*10749957122^(7/24) 6765000029550494 a001 105937/4250681*10749957122^(13/24) 6765000029550494 a001 5702887/710647*4106118243^(7/23) 6765000029550494 a001 105937/4250681*4106118243^(13/23) 6765000029550494 a001 5702887/710647*1568397607^(7/22) 6765000029550494 a001 105937/4250681*1568397607^(13/22) 6765000029550494 a001 5702887/710647*599074578^(1/3) 6765000029550494 a001 105937/4250681*599074578^(13/21) 6765000029550494 a001 4807533741/710648 6765000029550494 a001 5702887/710647*228826127^(7/20) 6765000029550494 a001 105937/4250681*228826127^(13/20) 6765000029550495 a001 5702887/710647*87403803^(7/19) 6765000029550495 a001 105937/4250681*87403803^(13/19) 6765000029550497 a001 5702887/710647*33385282^(7/18) 6765000029550499 a001 105937/4250681*33385282^(13/18) 6765000029550502 a001 24157817/710647*7881196^(1/3) 6765000029550506 a001 63245986/710647*7881196^(3/11) 6765000029550511 a001 5702887/710647*12752043^(7/17) 6765000029550516 a001 267914296/710647*7881196^(2/11) 6765000029550517 a001 317811/33385282*20633239^(4/5) 6765000029550520 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^43 6765000029550521 a001 105937/29134601*20633239^(6/7) 6765000029550526 a001 1134903170/710647*7881196^(1/11) 6765000029550526 a001 105937/4250681*12752043^(13/17) 6765000029550530 a001 14930352/710647*141422324^(4/13) 6765000029550530 a001 14930352/710647*2537720636^(4/15) 6765000029550530 a001 317811/33385282*17393796001^(4/7) 6765000029550530 a001 14930352/710647*45537549124^(4/17) 6765000029550530 a001 317811/33385282*14662949395604^(4/9) 6765000029550530 a001 317811/33385282*(1/2+1/2*5^(1/2))^28 6765000029550530 a001 14930352/710647*817138163596^(4/19) 6765000029550530 a001 14930352/710647*14662949395604^(4/21) 6765000029550530 a001 14930352/710647*(1/2+1/2*5^(1/2))^12 6765000029550530 a001 14930352/710647*192900153618^(2/9) 6765000029550530 a001 14930352/710647*73681302247^(3/13) 6765000029550530 a001 317811/33385282*73681302247^(7/13) 6765000029550530 a001 14930352/710647*10749957122^(1/4) 6765000029550530 a001 317811/33385282*10749957122^(7/12) 6765000029550530 a001 14930352/710647*4106118243^(6/23) 6765000029550530 a001 317811/33385282*4106118243^(14/23) 6765000029550530 a001 14930352/710647*1568397607^(3/11) 6765000029550530 a001 317811/33385282*1568397607^(7/11) 6765000029550530 a001 1581676699824/233802911 6765000029550530 a001 14930352/710647*599074578^(2/7) 6765000029550530 a001 317811/33385282*599074578^(2/3) 6765000029550530 a001 14930352/710647*228826127^(3/10) 6765000029550530 a001 317811/33385282*228826127^(7/10) 6765000029550530 a001 14930352/710647*87403803^(6/19) 6765000029550530 a001 39088169/710647*20633239^(2/7) 6765000029550530 a001 317811/33385282*87403803^(14/19) 6765000029550532 a001 14930352/710647*33385282^(1/3) 6765000029550533 a001 165580141/710647*20633239^(1/5) 6765000029550534 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^45 6765000029550534 a001 433494437/710647*20633239^(1/7) 6765000029550534 a001 317811/33385282*33385282^(7/9) 6765000029550535 a001 105937/29134601*141422324^(10/13) 6765000029550535 a001 105937/29134601*2537720636^(2/3) 6765000029550535 a001 39088169/710647*2537720636^(2/9) 6765000029550535 a001 105937/29134601*45537549124^(10/17) 6765000029550535 a001 105937/29134601*312119004989^(6/11) 6765000029550535 a001 105937/29134601*14662949395604^(10/21) 6765000029550535 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(38) 6765000029550535 a001 39088169/710647*312119004989^(2/11) 6765000029550535 a001 39088169/710647*(1/2+1/2*5^(1/2))^10 6765000029550535 a001 105937/29134601*192900153618^(5/9) 6765000029550535 a001 39088169/710647*28143753123^(1/5) 6765000029550535 a001 105937/29134601*28143753123^(3/5) 6765000029550535 a001 39088169/710647*10749957122^(5/24) 6765000029550535 a001 105937/29134601*10749957122^(5/8) 6765000029550535 a001 39088169/710647*4106118243^(5/23) 6765000029550535 a001 105937/29134601*4106118243^(15/23) 6765000029550535 a001 12422650078059/1836311903 6765000029550535 a001 39088169/710647*1568397607^(5/22) 6765000029550535 a001 105937/29134601*1568397607^(15/22) 6765000029550535 a001 39088169/710647*599074578^(5/21) 6765000029550535 a001 105937/29134601*599074578^(5/7) 6765000029550535 a001 39088169/710647*228826127^(1/4) 6765000029550535 a001 105937/29134601*228826127^(3/4) 6765000029550535 a001 39088169/710647*87403803^(5/19) 6765000029550536 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^47 6765000029550536 a001 317811/1568397607*141422324^(12/13) 6765000029550536 a001 317811/370248451*141422324^(11/13) 6765000029550536 a001 105937/29134601*87403803^(15/19) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(40) 6765000029550536 a001 317811/228826127*505019158607^(4/7) 6765000029550536 a001 14619165/101521*(1/2+1/2*5^(1/2))^8 6765000029550536 a001 14619165/101521*23725150497407^(1/8) 6765000029550536 a001 14619165/101521*505019158607^(1/7) 6765000029550536 a001 14619165/101521*73681302247^(2/13) 6765000029550536 a001 317811/228826127*73681302247^(8/13) 6765000029550536 a001 14619165/101521*10749957122^(1/6) 6765000029550536 a001 317811/228826127*10749957122^(2/3) 6765000029550536 a001 516236827535/76309952 6765000029550536 a001 14619165/101521*4106118243^(4/23) 6765000029550536 a001 317811/228826127*4106118243^(16/23) 6765000029550536 a001 14619165/101521*1568397607^(2/11) 6765000029550536 a001 317811/228826127*1568397607^(8/11) 6765000029550536 a001 14619165/101521*599074578^(4/21) 6765000029550536 a001 317811/228826127*599074578^(16/21) 6765000029550536 a001 14619165/101521*228826127^(1/5) 6765000029550536 a001 267914296/710647*141422324^(2/13) 6765000029550536 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^49 6765000029550536 a001 317811/228826127*228826127^(4/5) 6765000029550536 a001 1134903170/710647*141422324^(1/13) 6765000029550536 a001 267914296/710647*2537720636^(2/15) 6765000029550536 a001 377/710646*45537549124^(2/3) 6765000029550536 a001 267914296/710647*45537549124^(2/17) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(42) 6765000029550536 a001 267914296/710647*14662949395604^(2/21) 6765000029550536 a001 267914296/710647*(1/2+1/2*5^(1/2))^6 6765000029550536 a001 267914296/710647*10749957122^(1/8) 6765000029550536 a001 85146110326056/12586269025 6765000029550536 a001 377/710646*10749957122^(17/24) 6765000029550536 a001 267914296/710647*4106118243^(3/23) 6765000029550536 a001 377/710646*4106118243^(17/23) 6765000029550536 a001 267914296/710647*1568397607^(3/22) 6765000029550536 a001 377/710646*1568397607^(17/22) 6765000029550536 a001 267914296/710647*599074578^(1/7) 6765000029550536 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^51 6765000029550536 a001 317811/1568397607*2537720636^(4/5) 6765000029550536 a001 377/710646*599074578^(17/21) 6765000029550536 a001 317811/1568397607*45537549124^(12/17) 6765000029550536 a001 317811/1568397607*14662949395604^(4/7) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(44) 6765000029550536 a001 317811/1568397607*505019158607^(9/14) 6765000029550536 a001 701408733/710647*(1/2+1/2*5^(1/2))^4 6765000029550536 a001 701408733/710647*23725150497407^(1/16) 6765000029550536 a001 317811/1568397607*192900153618^(2/3) 6765000029550536 a001 317811/1568397607*73681302247^(9/13) 6765000029550536 a001 74305136947821/10983760033 6765000029550536 a001 701408733/710647*10749957122^(1/12) 6765000029550536 a001 701408733/710647*4106118243^(2/23) 6765000029550536 a001 317811/1568397607*10749957122^(3/4) 6765000029550536 a001 701408733/710647*1568397607^(1/11) 6765000029550536 a001 317811/1568397607*4106118243^(18/23) 6765000029550536 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^53 6765000029550536 a001 317811/10749957122*2537720636^(8/9) 6765000029550536 a001 105937/9381251041*2537720636^(14/15) 6765000029550536 a001 701408733/710647*599074578^(2/21) 6765000029550536 a001 317811/6643838879*2537720636^(13/15) 6765000029550536 a001 317811/1568397607*1568397607^(9/11) 6765000029550536 a001 105937/1368706081*817138163596^(2/3) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(46) 6765000029550536 a001 1836311903/710647*(1/2+1/2*5^(1/2))^2 6765000029550536 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^2/Lucas(28) 6765000029550536 a001 583600122204333/86267571272 6765000029550536 a001 1836311903/710647*10749957122^(1/24) 6765000029550536 a001 1836311903/710647*4106118243^(1/23) 6765000029550536 a001 105937/1368706081*10749957122^(19/24) 6765000029550536 a001 1836311903/710647*1568397607^(1/22) 6765000029550536 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^55 6765000029550536 a001 105937/1368706081*4106118243^(19/23) 6765000029550536 a001 317811/10749957122*312119004989^(8/11) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(48) 6765000029550536 a001 317811/10749957122*23725150497407^(5/8) 6765000029550536 a001 686789568/101521 6765000029550536 a001 317811/10749957122*73681302247^(10/13) 6765000029550536 a001 317811/10749957122*28143753123^(4/5) 6765000029550536 a001 105937/9381251041*17393796001^(6/7) 6765000029550536 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^57 6765000029550536 a001 105937/9381251041*45537549124^(14/17) 6765000029550536 a001 317811/10749957122*10749957122^(5/6) 6765000029550536 a001 105937/9381251041*817138163596^(14/19) 6765000029550536 a001 105937/9381251041*14662949395604^(2/3) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(50) 6765000029550536 a001 4000054745104275/591286729879 6765000029550536 a001 105937/9381251041*505019158607^(3/4) 6765000029550536 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^2 6765000029550536 a001 105937/9381251041*192900153618^(7/9) 6765000029550536 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^59 6765000029550536 a001 317811/505019158607*45537549124^(16/17) 6765000029550536 a001 317811/119218851371*45537549124^(15/17) 6765000029550536 a001 317811/73681302247*312119004989^(4/5) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(52) 6765000029550536 a001 317811/73681302247*23725150497407^(11/16) 6765000029550536 a001 1163586586615921/172000972880 6765000029550536 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^4 6765000029550536 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^61 6765000029550536 a001 317811/73681302247*73681302247^(11/13) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(54) 6765000029550536 a001 27416783093525592/4052739537881 6765000029550536 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^6 6765000029550536 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^63 6765000029550536 a001 105937/440719107401*312119004989^(10/11) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(56) 6765000029550536 a001 3418003333382547/505248088463 6765000029550536 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^65 6765000029550536 a001 317811/2139295485799*817138163596^(17/19) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(58) 6765000029550536 a001 105937/440719107401*3461452808002^(5/6) 6765000029550536 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^67 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(60) 6765000029550536 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^69 6765000029550536 a001 105937/3020733700601*14662949395604^(6/7) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(62) 6765000029550536 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^71 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(64) 6765000029550536 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^73 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(66) 6765000029550536 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^75 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(68) 6765000029550536 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^77 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(70) 6765000029550536 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^79 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(72) 6765000029550536 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^81 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(74) 6765000029550536 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^83 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(76) 6765000029550536 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^85 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(78) 6765000029550536 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^87 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(80) 6765000029550536 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^89 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(82) 6765000029550536 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^91 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(84) 6765000029550536 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^93 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(86) 6765000029550536 a004 Fibonacci(28)*Lucas(87)/(1/2+sqrt(5)/2)^95 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(88) 6765000029550536 a004 Fibonacci(28)*Lucas(89)/(1/2+sqrt(5)/2)^97 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(90) 6765000029550536 a004 Fibonacci(28)*Lucas(91)/(1/2+sqrt(5)/2)^99 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(92) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^86/Lucas(94) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^88/Lucas(96) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^90/Lucas(98) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^92/Lucas(100) 6765000029550536 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^8 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^91/Lucas(99) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^89/Lucas(97) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^87/Lucas(95) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(93) 6765000029550536 a004 Fibonacci(28)*Lucas(92)/(1/2+sqrt(5)/2)^100 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(91) 6765000029550536 a004 Fibonacci(28)*Lucas(90)/(1/2+sqrt(5)/2)^98 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(89) 6765000029550536 a004 Fibonacci(28)*Lucas(88)/(1/2+sqrt(5)/2)^96 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(87) 6765000029550536 a004 Fibonacci(28)*Lucas(86)/(1/2+sqrt(5)/2)^94 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(85) 6765000029550536 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^92 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(83) 6765000029550536 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^90 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(81) 6765000029550536 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^88 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(79) 6765000029550536 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^86 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(77) 6765000029550536 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^84 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(75) 6765000029550536 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^82 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(73) 6765000029550536 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^80 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(71) 6765000029550536 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^78 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(69) 6765000029550536 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^76 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(67) 6765000029550536 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^74 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(65) 6765000029550536 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^72 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(63) 6765000029550536 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^70 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(61) 6765000029550536 a001 10959/505618944676*3461452808002^(11/12) 6765000029550536 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^68 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(59) 6765000029550536 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^66 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(57) 6765000029550536 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^10 6765000029550536 a001 317811/3461452808002*505019158607^(13/14) 6765000029550536 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^12 6765000029550536 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^14 6765000029550536 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^16 6765000029550536 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^18 6765000029550536 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^20 6765000029550536 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^22 6765000029550536 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^24 6765000029550536 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^26 6765000029550536 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^28 6765000029550536 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^30 6765000029550536 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^32 6765000029550536 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^34 6765000029550536 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^36 6765000029550536 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^38 6765000029550536 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^40 6765000029550536 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^42 6765000029550536 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^44 6765000029550536 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^46 6765000029550536 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^48 6765000029550536 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^52 6765000029550536 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^64 6765000029550536 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^50 6765000029550536 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^51 6765000029550536 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^49 6765000029550536 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^47 6765000029550536 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^45 6765000029550536 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^43 6765000029550536 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^41 6765000029550536 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^39 6765000029550536 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^37 6765000029550536 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^35 6765000029550536 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^33 6765000029550536 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^31 6765000029550536 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^29 6765000029550536 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^27 6765000029550536 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^25 6765000029550536 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^23 6765000029550536 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^21 6765000029550536 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^19 6765000029550536 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^17 6765000029550536 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^15 6765000029550536 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^13 6765000029550536 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^11 6765000029550536 a001 317811/817138163596*505019158607^(7/8) 6765000029550536 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^9 6765000029550536 a001 3412406685192915/504420793834 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(55) 6765000029550536 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^7 6765000029550536 a001 317811/505019158607*192900153618^(8/9) 6765000029550536 a001 317811/2139295485799*192900153618^(17/18) 6765000029550536 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^62 6765000029550536 a001 317811/119218851371*312119004989^(9/11) 6765000029550536 a001 16944503813982303/2504730781961 6765000029550536 a001 317811/119218851371*14662949395604^(5/7) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(53) 6765000029550536 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^5 6765000029550536 a001 317811/119218851371*192900153618^(5/6) 6765000029550536 a001 317811/505019158607*73681302247^(12/13) 6765000029550536 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^60 6765000029550536 a001 6472224534439014/956722026041 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(51) 6765000029550536 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^3 6765000029550536 a001 317811/119218851371*28143753123^(9/10) 6765000029550536 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^58 6765000029550536 a001 2472169789334739/365435296162 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(49) 6765000029550536 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2) 6765000029550536 a001 105937/9381251041*10749957122^(7/8) 6765000029550536 a001 317811/73681302247*10749957122^(11/12) 6765000029550536 a001 317811/119218851371*10749957122^(15/16) 6765000029550536 a001 105937/64300051206*10749957122^(23/24) 6765000029550536 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^56 6765000029550536 a001 317811/6643838879*45537549124^(13/17) 6765000029550536 a001 944284833565203/139583862445 6765000029550536 a001 317811/6643838879*14662949395604^(13/21) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(47) 6765000029550536 a001 2971215073/1421294+2971215073/1421294*5^(1/2) 6765000029550536 a001 317811/6643838879*192900153618^(13/18) 6765000029550536 a001 317811/6643838879*73681302247^(3/4) 6765000029550536 a001 317811/6643838879*10749957122^(13/16) 6765000029550536 a001 317811/10749957122*4106118243^(20/23) 6765000029550536 a001 105937/9381251041*4106118243^(21/23) 6765000029550536 a001 317811/73681302247*4106118243^(22/23) 6765000029550536 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^54 6765000029550536 a001 1836311903/710647*599074578^(1/21) 6765000029550536 a001 267914296/710647*228826127^(3/20) 6765000029550536 a001 1134903170/710647*2537720636^(1/15) 6765000029550536 a001 360684711360870/53316291173 6765000029550536 a001 1134903170/710647*45537549124^(1/17) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(45) 6765000029550536 a001 1134903170/710647*14662949395604^(1/21) 6765000029550536 a001 1134903170/710647*(1/2+1/2*5^(1/2))^3 6765000029550536 a001 1134903170/710647*192900153618^(1/18) 6765000029550536 a001 1134903170/710647*10749957122^(1/16) 6765000029550536 a001 105937/1368706081*1568397607^(19/22) 6765000029550536 a001 1134903170/710647*599074578^(1/14) 6765000029550536 a001 317811/10749957122*1568397607^(10/11) 6765000029550536 a001 105937/9381251041*1568397607^(21/22) 6765000029550536 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^52 6765000029550536 a001 1836311903/710647*228826127^(1/20) 6765000029550536 a001 317811/969323029*2537720636^(7/9) 6765000029550536 a001 433494437/710647*2537720636^(1/9) 6765000029550536 a001 317811/969323029*17393796001^(5/7) 6765000029550536 a001 137769300517407/20365011074 6765000029550536 a001 317811/969323029*312119004989^(7/11) 6765000029550536 a001 317811/969323029*14662949395604^(5/9) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(43) 6765000029550536 a001 317811/969323029*505019158607^(5/8) 6765000029550536 a001 433494437/710647*312119004989^(1/11) 6765000029550536 a001 433494437/710647*(1/2+1/2*5^(1/2))^5 6765000029550536 a001 433494437/710647*28143753123^(1/10) 6765000029550536 a001 317811/969323029*28143753123^(7/10) 6765000029550536 a001 701408733/710647*228826127^(1/10) 6765000029550536 a001 317811/1568397607*599074578^(6/7) 6765000029550536 a001 105937/1368706081*599074578^(19/21) 6765000029550536 a001 317811/6643838879*599074578^(13/14) 6765000029550536 a001 317811/10749957122*599074578^(20/21) 6765000029550536 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^50 6765000029550536 a001 317811/969323029*599074578^(5/6) 6765000029550536 a001 433494437/710647*228826127^(1/8) 6765000029550536 a001 1836311903/710647*87403803^(1/19) 6765000029550536 a001 317811/370248451*2537720636^(11/15) 6765000029550536 a001 4047937707027/598364773 6765000029550536 a001 165580141/710647*17393796001^(1/7) 6765000029550536 a001 317811/370248451*45537549124^(11/17) 6765000029550536 a001 317811/370248451*312119004989^(3/5) 6765000029550536 a001 317811/370248451*817138163596^(11/19) 6765000029550536 a001 317811/370248451*14662949395604^(11/21) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(41) 6765000029550536 a001 165580141/710647*14662949395604^(1/9) 6765000029550536 a001 165580141/710647*(1/2+1/2*5^(1/2))^7 6765000029550536 a001 317811/370248451*192900153618^(11/18) 6765000029550536 a001 317811/370248451*10749957122^(11/16) 6765000029550536 a001 317811/370248451*1568397607^(3/4) 6765000029550536 a001 165580141/710647*599074578^(1/6) 6765000029550536 a001 14619165/101521*87403803^(4/19) 6765000029550536 a001 317811/370248451*599074578^(11/14) 6765000029550536 a001 701408733/710647*87403803^(2/19) 6765000029550536 a001 377/710646*228826127^(17/20) 6765000029550536 a001 317811/1568397607*228826127^(9/10) 6765000029550536 a001 317811/969323029*228826127^(7/8) 6765000029550536 a001 267914296/710647*87403803^(3/19) 6765000029550536 a001 105937/1368706081*228826127^(19/20) 6765000029550536 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^48 6765000029550536 a001 63245986/710647*141422324^(3/13) 6765000029550536 a001 1836311903/710647*33385282^(1/18) 6765000029550536 a001 63245986/710647*2537720636^(1/5) 6765000029550536 a001 20100270056646/2971215073 6765000029550536 a001 63245986/710647*45537549124^(3/17) 6765000029550536 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(39) 6765000029550536 a001 317811/141422324*9062201101803^(1/2) 6765000029550536 a001 63245986/710647*817138163596^(3/19) 6765000029550536 a001 63245986/710647*14662949395604^(1/7) 6765000029550536 a001 63245986/710647*(1/2+1/2*5^(1/2))^9 6765000029550536 a001 63245986/710647*192900153618^(1/6) 6765000029550536 a001 63245986/710647*10749957122^(3/16) 6765000029550536 a001 63245986/710647*599074578^(3/14) 6765000029550536 a001 1134903170/710647*33385282^(1/12) 6765000029550536 a001 317811/228826127*87403803^(16/19) 6765000029550537 a001 701408733/710647*33385282^(1/9) 6765000029550537 a001 377/710646*87403803^(17/19) 6765000029550537 a001 39088169/710647*33385282^(5/18) 6765000029550537 a001 317811/1568397607*87403803^(18/19) 6765000029550537 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^46 6765000029550537 a001 267914296/710647*33385282^(1/6) 6765000029550537 a001 14619165/101521*33385282^(2/9) 6765000029550538 a001 63245986/710647*33385282^(1/4) 6765000029550538 a001 7677619978587/1134903170 6765000029550538 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(37) 6765000029550538 a001 317811/54018521*1322157322203^(1/2) 6765000029550538 a001 24157817/710647*312119004989^(1/5) 6765000029550538 a001 24157817/710647*(1/2+1/2*5^(1/2))^11 6765000029550538 a001 24157817/710647*1568397607^(1/4) 6765000029550538 a001 1836311903/710647*12752043^(1/17) 6765000029550540 a001 105937/29134601*33385282^(5/6) 6765000029550541 a001 701408733/710647*12752043^(2/17) 6765000029550541 a001 317811/228826127*33385282^(8/9) 6765000029550541 a001 317811/370248451*33385282^(11/12) 6765000029550542 a001 377/710646*33385282^(17/18) 6765000029550542 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^44 6765000029550543 a001 267914296/710647*12752043^(3/17) 6765000029550544 a001 14930352/710647*12752043^(6/17) 6765000029550546 a001 14619165/101521*12752043^(4/17) 6765000029550547 a001 39088169/710647*12752043^(5/17) 6765000029550551 a001 10959/711491*141422324^(9/13) 6765000029550552 a001 9227465/710647*141422324^(1/3) 6765000029550552 a001 2932589879115/433494437 6765000029550552 a001 10959/711491*2537720636^(3/5) 6765000029550552 a001 10959/711491*45537549124^(9/17) 6765000029550552 a001 10959/711491*817138163596^(9/19) 6765000029550552 a001 10959/711491*14662949395604^(3/7) 6765000029550552 a001 10959/711491*(1/2+1/2*5^(1/2))^27 6765000029550552 a001 9227465/710647*(1/2+1/2*5^(1/2))^13 6765000029550552 a001 10959/711491*192900153618^(1/2) 6765000029550552 a001 9227465/710647*73681302247^(1/4) 6765000029550552 a001 10959/711491*10749957122^(9/16) 6765000029550552 a001 10959/711491*599074578^(9/14) 6765000029550554 a001 1836311903/710647*4870847^(1/16) 6765000029550556 a001 10959/711491*33385282^(3/4) 6765000029550564 a001 317811/33385282*12752043^(14/17) 6765000029550571 a001 701408733/710647*4870847^(1/8) 6765000029550572 a001 105937/29134601*12752043^(15/17) 6765000029550575 a001 317811/228826127*12752043^(16/17) 6765000029550577 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^42 6765000029550589 a001 267914296/710647*4870847^(3/16) 6765000029550595 a001 3524578/710647*7881196^(5/11) 6765000029550607 a001 14619165/101521*4870847^(1/4) 6765000029550619 a001 5702887/710647*4870847^(7/16) 6765000029550624 a001 39088169/710647*4870847^(5/16) 6765000029550633 a001 317811/7881196*20633239^(5/7) 6765000029550637 a001 14930352/710647*4870847^(3/8) 6765000029550638 a001 3524578/710647*20633239^(3/7) 6765000029550645 a001 3524578/710647*141422324^(5/13) 6765000029550645 a001 1120149658758/165580141 6765000029550645 a001 317811/7881196*2537720636^(5/9) 6765000029550645 a001 3524578/710647*2537720636^(1/3) 6765000029550645 a001 3524578/710647*45537549124^(5/17) 6765000029550645 a001 317811/7881196*312119004989^(5/11) 6765000029550645 a001 317811/7881196*(1/2+1/2*5^(1/2))^25 6765000029550645 a001 317811/7881196*3461452808002^(5/12) 6765000029550645 a001 3524578/710647*312119004989^(3/11) 6765000029550645 a001 3524578/710647*14662949395604^(5/21) 6765000029550645 a001 3524578/710647*(1/2+1/2*5^(1/2))^15 6765000029550645 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^15/Lucas(28) 6765000029550645 a001 3524578/710647*192900153618^(5/18) 6765000029550645 a001 3524578/710647*28143753123^(3/10) 6765000029550645 a001 317811/7881196*28143753123^(1/2) 6765000029550645 a001 3524578/710647*10749957122^(5/16) 6765000029550645 a001 3524578/710647*599074578^(5/14) 6765000029550645 a001 3524578/710647*228826127^(3/8) 6765000029550645 a001 317811/7881196*228826127^(5/8) 6765000029550647 a001 3524578/710647*33385282^(5/12) 6765000029550666 a001 1836311903/710647*1860498^(1/15) 6765000029550726 a001 105937/4250681*4870847^(13/16) 6765000029550731 a001 1134903170/710647*1860498^(1/10) 6765000029550779 a001 317811/33385282*4870847^(7/8) 6765000029550780 a001 433494437/271443*103682^(1/8) 6765000029550796 a001 701408733/710647*1860498^(2/15) 6765000029550802 a001 105937/29134601*4870847^(15/16) 6765000029550821 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^40 6765000029550862 a001 433494437/710647*1860498^(1/6) 6765000029550927 a001 66978574/109801*167761^(1/5) 6765000029550927 a001 267914296/710647*1860498^(1/5) 6765000029551057 a001 14619165/101521*1860498^(4/15) 6765000029551122 a001 63245986/710647*1860498^(3/10) 6765000029551186 a001 39088169/710647*1860498^(1/3) 6765000029551282 a001 427859097159/63245986 6765000029551282 a001 1346269/710647*45537549124^(1/3) 6765000029551282 a001 317811/3010349*(1/2+1/2*5^(1/2))^23 6765000029551282 a001 1346269/710647*(1/2+1/2*5^(1/2))^17 6765000029551282 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^17/Lucas(28) 6765000029551282 a001 317811/3010349*4106118243^(1/2) 6765000029551293 a001 311187/101521*1860498^(8/15) 6765000029551303 a001 1346269/710647*12752043^(1/2) 6765000029551312 a001 14930352/710647*1860498^(2/5) 6765000029551406 a001 5702887/710647*1860498^(7/15) 6765000029551493 a001 1836311903/710647*710647^(1/14) 6765000029551622 a001 3524578/710647*1860498^(1/2) 6765000029551814 a001 317811/4870847*1860498^(4/5) 6765000029551956 a001 433494437/4870847*439204^(1/3) 6765000029552188 a001 105937/4250681*1860498^(13/15) 6765000029552200 a001 1134903170/12752043*439204^(1/3) 6765000029552235 a001 2971215073/33385282*439204^(1/3) 6765000029552241 a001 7778742049/87403803*439204^(1/3) 6765000029552241 a001 20365011074/228826127*439204^(1/3) 6765000029552241 a001 53316291173/599074578*439204^(1/3) 6765000029552241 a001 139583862445/1568397607*439204^(1/3) 6765000029552241 a001 365435296162/4106118243*439204^(1/3) 6765000029552241 a001 956722026041/10749957122*439204^(1/3) 6765000029552241 a001 2504730781961/28143753123*439204^(1/3) 6765000029552241 a001 6557470319842/73681302247*439204^(1/3) 6765000029552241 a001 10610209857723/119218851371*439204^(1/3) 6765000029552241 a001 4052739537881/45537549124*439204^(1/3) 6765000029552241 a001 1548008755920/17393796001*439204^(1/3) 6765000029552241 a001 591286729879/6643838879*439204^(1/3) 6765000029552241 a001 225851433717/2537720636*439204^(1/3) 6765000029552241 a001 86267571272/969323029*439204^(1/3) 6765000029552241 a001 32951280099/370248451*439204^(1/3) 6765000029552242 a001 12586269025/141422324*439204^(1/3) 6765000029552244 a001 4807526976/54018521*439204^(1/3) 6765000029552257 a001 1836311903/20633239*439204^(1/3) 6765000029552273 a001 317811/7881196*1860498^(5/6) 6765000029552311 a001 10959/711491*1860498^(9/10) 6765000029552350 a001 3524667/39604*439204^(1/3) 6765000029552354 a001 317811/33385282*1860498^(14/15) 6765000029552449 a001 701408733/710647*710647^(1/7) 6765000029552490 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^38 6765000029552988 a001 267914296/3010349*439204^(1/3) 6765000029553406 a001 267914296/710647*710647^(3/14) 6765000029553464 a001 24157817/1149851*439204^(4/9) 6765000029553885 a001 165580141/710647*710647^(1/4) 6765000029554184 a001 233802911/620166*439204^(2/9) 6765000029554363 a001 14619165/101521*710647^(2/7) 6765000029554914 a001 121393/1860498*271443^(12/13) 6765000029555319 a001 39088169/710647*710647^(5/14) 6765000029555583 a001 317811/1149851*7881196^(7/11) 6765000029555643 a001 317811/1149851*20633239^(3/5) 6765000029555650 a001 163427632719/24157817 6765000029555652 a001 317811/1149851*141422324^(7/13) 6765000029555652 a001 317811/1149851*2537720636^(7/15) 6765000029555652 a001 317811/1149851*17393796001^(3/7) 6765000029555652 a001 317811/1149851*45537549124^(7/17) 6765000029555652 a001 317811/1149851*14662949395604^(1/3) 6765000029555652 a001 317811/1149851*(1/2+1/2*5^(1/2))^21 6765000029555652 a001 514229/710647*817138163596^(1/3) 6765000029555652 a001 514229/710647*(1/2+1/2*5^(1/2))^19 6765000029555652 a001 317811/1149851*192900153618^(7/18) 6765000029555652 a001 317811/1149851*10749957122^(7/16) 6765000029555652 a001 317811/1149851*599074578^(1/2) 6765000029555653 a001 514229/710647*87403803^(1/2) 6765000029555656 a001 317811/1149851*33385282^(7/12) 6765000029555853 a001 1836311903/4870847*439204^(2/9) 6765000029556096 a001 1602508992/4250681*439204^(2/9) 6765000029556132 a001 12586269025/33385282*439204^(2/9) 6765000029556137 a001 10983760033/29134601*439204^(2/9) 6765000029556138 a001 86267571272/228826127*439204^(2/9) 6765000029556138 a001 267913919/710646*439204^(2/9) 6765000029556138 a001 591286729879/1568397607*439204^(2/9) 6765000029556138 a001 516002918640/1368706081*439204^(2/9) 6765000029556138 a001 4052739537881/10749957122*439204^(2/9) 6765000029556138 a001 3536736619241/9381251041*439204^(2/9) 6765000029556138 a001 6557470319842/17393796001*439204^(2/9) 6765000029556138 a001 2504730781961/6643838879*439204^(2/9) 6765000029556138 a001 956722026041/2537720636*439204^(2/9) 6765000029556138 a001 365435296162/969323029*439204^(2/9) 6765000029556138 a001 139583862445/370248451*439204^(2/9) 6765000029556138 a001 53316291173/141422324*439204^(2/9) 6765000029556140 a001 20365011074/54018521*439204^(2/9) 6765000029556154 a001 7778742049/20633239*439204^(2/9) 6765000029556247 a001 2971215073/7881196*439204^(2/9) 6765000029556271 a001 14930352/710647*710647^(3/7) 6765000029556860 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^39 6765000029556885 a001 1134903170/3010349*439204^(2/9) 6765000029557021 a001 317811/1149851*1860498^(7/10) 6765000029557192 a001 5702887/710647*710647^(1/2) 6765000029557193 a001 832040/710647*710647^(9/14) 6765000029557358 a001 102334155/1149851*439204^(1/3) 6765000029557598 a001 1836311903/710647*271443^(1/13) 6765000029557905 a001 311187/101521*710647^(4/7) 6765000029558080 a001 2971215073/1860498*439204^(1/9) 6765000029558329 a001 196418/710647*439204^(7/9) 6765000029558530 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^41 6765000029558773 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^43 6765000029558809 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^45 6765000029558814 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^47 6765000029558815 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^49 6765000029558815 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^51 6765000029558815 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^53 6765000029558815 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^55 6765000029558815 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^57 6765000029558815 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^59 6765000029558815 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^61 6765000029558815 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^63 6765000029558815 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^65 6765000029558815 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^67 6765000029558815 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^69 6765000029558815 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^71 6765000029558815 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^73 6765000029558815 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^75 6765000029558815 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^77 6765000029558815 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^79 6765000029558815 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^81 6765000029558815 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^83 6765000029558815 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^85 6765000029558815 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^87 6765000029558815 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^89 6765000029558815 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^91 6765000029558815 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^93 6765000029558815 a004 Fibonacci(86)*Lucas(29)/(1/2+sqrt(5)/2)^95 6765000029558815 a004 Fibonacci(88)*Lucas(29)/(1/2+sqrt(5)/2)^97 6765000029558815 a004 Fibonacci(90)*Lucas(29)/(1/2+sqrt(5)/2)^99 6765000029558815 a004 Fibonacci(91)*Lucas(29)/(1/2+sqrt(5)/2)^100 6765000029558815 a004 Fibonacci(89)*Lucas(29)/(1/2+sqrt(5)/2)^98 6765000029558815 a004 Fibonacci(87)*Lucas(29)/(1/2+sqrt(5)/2)^96 6765000029558815 a004 Fibonacci(85)*Lucas(29)/(1/2+sqrt(5)/2)^94 6765000029558815 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^92 6765000029558815 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^90 6765000029558815 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^88 6765000029558815 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^86 6765000029558815 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^84 6765000029558815 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^82 6765000029558815 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^80 6765000029558815 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^78 6765000029558815 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^76 6765000029558815 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^74 6765000029558815 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^72 6765000029558815 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^70 6765000029558815 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^68 6765000029558815 a001 2/514229*(1/2+1/2*5^(1/2))^49 6765000029558815 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^66 6765000029558815 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^64 6765000029558815 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^62 6765000029558815 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^60 6765000029558815 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^58 6765000029558815 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^56 6765000029558815 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^54 6765000029558815 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^52 6765000029558815 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^50 6765000029558815 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^48 6765000029558817 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^46 6765000029558831 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^44 6765000029558924 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^42 6765000029559107 a001 105937/620166*710647^(11/14) 6765000029559561 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^40 6765000029559750 a001 7778742049/4870847*439204^(1/9) 6765000029559993 a001 20365011074/12752043*439204^(1/9) 6765000029560014 a001 416020/930249*20633239^(4/7) 6765000029560023 a001 416020/930249*2537720636^(4/9) 6765000029560023 a001 416020/930249*(1/2+1/2*5^(1/2))^20 6765000029560023 a001 416020/930249*23725150497407^(5/16) 6765000029560023 a001 416020/930249*505019158607^(5/14) 6765000029560023 a001 416020/930249*73681302247^(5/13) 6765000029560023 a001 416020/930249*28143753123^(2/5) 6765000029560023 a001 416020/930249*10749957122^(5/12) 6765000029560023 a001 416020/930249*4106118243^(10/23) 6765000029560023 a001 416020/930249*1568397607^(5/11) 6765000029560023 a001 416020/930249*599074578^(10/21) 6765000029560023 a001 416020/930249*228826127^(1/2) 6765000029560023 a001 12587101120/1860621 6765000029560023 a001 416020/930249*87403803^(10/19) 6765000029560026 a001 416020/930249*33385282^(5/9) 6765000029560029 a001 53316291173/33385282*439204^(1/9) 6765000029560034 a001 139583862445/87403803*439204^(1/9) 6765000029560035 a001 365435296162/228826127*439204^(1/9) 6765000029560035 a001 956722026041/599074578*439204^(1/9) 6765000029560035 a001 2504730781961/1568397607*439204^(1/9) 6765000029560035 a001 6557470319842/4106118243*439204^(1/9) 6765000029560035 a001 10610209857723/6643838879*439204^(1/9) 6765000029560035 a001 4052739537881/2537720636*439204^(1/9) 6765000029560035 a001 1548008755920/969323029*439204^(1/9) 6765000029560035 a001 591286729879/370248451*439204^(1/9) 6765000029560035 a001 225851433717/141422324*439204^(1/9) 6765000029560037 a001 86267571272/54018521*439204^(1/9) 6765000029560047 a001 416020/930249*12752043^(10/17) 6765000029560051 a001 32951280099/20633239*439204^(1/9) 6765000029560144 a001 12586269025/7881196*439204^(1/9) 6765000029560201 a001 416020/930249*4870847^(5/8) 6765000029560781 a001 4807526976/3010349*439204^(1/9) 6765000029561230 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^41 6765000029561255 a001 433494437/1149851*439204^(2/9) 6765000029561326 a001 416020/930249*1860498^(2/3) 6765000029561619 a001 832040/4870847*7881196^(2/3) 6765000029561632 a001 726103/620166*7881196^(6/11) 6765000029561692 a001 726103/620166*141422324^(6/13) 6765000029561692 a001 726103/620166*2537720636^(2/5) 6765000029561692 a001 726103/620166*45537549124^(6/17) 6765000029561692 a001 832040/4870847*312119004989^(2/5) 6765000029561692 a001 832040/4870847*(1/2+1/2*5^(1/2))^22 6765000029561692 a001 726103/620166*14662949395604^(2/7) 6765000029561692 a001 726103/620166*(1/2+1/2*5^(1/2))^18 6765000029561692 a001 726103/620166*192900153618^(1/3) 6765000029561692 a001 726103/620166*10749957122^(3/8) 6765000029561692 a001 832040/4870847*10749957122^(11/24) 6765000029561692 a001 726103/620166*4106118243^(9/23) 6765000029561692 a001 832040/4870847*4106118243^(11/23) 6765000029561692 a001 726103/620166*1568397607^(9/22) 6765000029561692 a001 832040/4870847*1568397607^(1/2) 6765000029561692 a001 726103/620166*599074578^(3/7) 6765000029561692 a001 832040/4870847*599074578^(11/21) 6765000029561692 a001 226555027545/33489287 6765000029561692 a001 726103/620166*228826127^(9/20) 6765000029561692 a001 832040/4870847*228826127^(11/20) 6765000029561692 a001 726103/620166*87403803^(9/19) 6765000029561692 a001 832040/4870847*87403803^(11/19) 6765000029561695 a001 726103/620166*33385282^(1/2) 6765000029561696 a001 832040/4870847*33385282^(11/18) 6765000029561714 a001 726103/620166*12752043^(9/17) 6765000029561719 a001 832040/4870847*12752043^(11/17) 6765000029561733 a001 317811/4870847*710647^(6/7) 6765000029561852 a001 726103/620166*4870847^(9/16) 6765000029561856 a001 832040/12752043*7881196^(8/11) 6765000029561868 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^43 6765000029561878 a001 832040/228826127*7881196^(10/11) 6765000029561888 a001 832040/4870847*4870847^(11/16) 6765000029561890 a001 832040/54018521*7881196^(9/11) 6765000029561935 a001 832040/12752043*141422324^(8/13) 6765000029561935 a001 832040/12752043*2537720636^(8/15) 6765000029561935 a001 832040/12752043*45537549124^(8/17) 6765000029561935 a001 832040/12752043*14662949395604^(8/21) 6765000029561935 a001 832040/12752043*(1/2+1/2*5^(1/2))^24 6765000029561935 a001 5702887/1860498*(1/2+1/2*5^(1/2))^16 6765000029561935 a001 5702887/1860498*23725150497407^(1/4) 6765000029561935 a001 832040/12752043*192900153618^(4/9) 6765000029561935 a001 5702887/1860498*73681302247^(4/13) 6765000029561935 a001 832040/12752043*73681302247^(6/13) 6765000029561935 a001 5702887/1860498*10749957122^(1/3) 6765000029561935 a001 832040/12752043*10749957122^(1/2) 6765000029561935 a001 5702887/1860498*4106118243^(8/23) 6765000029561935 a001 832040/12752043*4106118243^(12/23) 6765000029561935 a001 5702887/1860498*1568397607^(4/11) 6765000029561935 a001 832040/12752043*1568397607^(6/11) 6765000029561935 a001 4745030099480/701408733 6765000029561935 a001 5702887/1860498*599074578^(8/21) 6765000029561935 a001 832040/12752043*599074578^(4/7) 6765000029561935 a001 5702887/1860498*228826127^(2/5) 6765000029561935 a001 832040/12752043*228826127^(3/5) 6765000029561936 a001 5702887/1860498*87403803^(8/19) 6765000029561936 a001 832040/12752043*87403803^(12/19) 6765000029561937 a001 39088169/1860498*7881196^(4/11) 6765000029561938 a001 5702887/1860498*33385282^(4/9) 6765000029561939 a001 832040/12752043*33385282^(2/3) 6765000029561941 a001 31622993/930249*7881196^(1/3) 6765000029561943 a001 9227465/1860498*7881196^(5/11) 6765000029561947 a001 165580141/1860498*7881196^(3/11) 6765000029561955 a001 5702887/1860498*12752043^(8/17) 6765000029561957 a001 233802911/620166*7881196^(2/11) 6765000029561961 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^45 6765000029561963 a001 832040/228826127*20633239^(6/7) 6765000029561963 a001 832040/87403803*20633239^(4/5) 6765000029561965 a001 829464/103361*20633239^(2/5) 6765000029561965 a001 832040/12752043*12752043^(12/17) 6765000029561967 a001 2971215073/1860498*7881196^(1/11) 6765000029561971 a001 416020/16692641*141422324^(2/3) 6765000029561971 a001 829464/103361*17393796001^(2/7) 6765000029561971 a001 416020/16692641*(1/2+1/2*5^(1/2))^26 6765000029561971 a001 829464/103361*14662949395604^(2/9) 6765000029561971 a001 829464/103361*(1/2+1/2*5^(1/2))^14 6765000029561971 a001 829464/103361*505019158607^(1/4) 6765000029561971 a001 416020/16692641*73681302247^(1/2) 6765000029561971 a001 829464/103361*10749957122^(7/24) 6765000029561971 a001 416020/16692641*10749957122^(13/24) 6765000029561971 a001 829464/103361*4106118243^(7/23) 6765000029561971 a001 416020/16692641*4106118243^(13/23) 6765000029561971 a001 12422650078080/1836311903 6765000029561971 a001 829464/103361*1568397607^(7/22) 6765000029561971 a001 416020/16692641*1568397607^(13/22) 6765000029561971 a001 829464/103361*599074578^(1/3) 6765000029561971 a001 416020/16692641*599074578^(13/21) 6765000029561971 a001 829464/103361*228826127^(7/20) 6765000029561971 a001 416020/16692641*228826127^(13/20) 6765000029561971 a001 829464/103361*87403803^(7/19) 6765000029561972 a001 416020/16692641*87403803^(13/19) 6765000029561972 a001 831985/15126*20633239^(2/7) 6765000029561973 a001 829464/103361*33385282^(7/18) 6765000029561974 a001 433494437/1860498*20633239^(1/5) 6765000029561975 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^47 6765000029561975 a001 567451585/930249*20633239^(1/7) 6765000029561975 a001 416020/16692641*33385282^(13/18) 6765000029561976 a001 39088169/1860498*141422324^(4/13) 6765000029561976 a001 39088169/1860498*2537720636^(4/15) 6765000029561976 a001 832040/87403803*17393796001^(4/7) 6765000029561976 a001 39088169/1860498*45537549124^(4/17) 6765000029561976 a001 39088169/1860498*817138163596^(4/19) 6765000029561976 a001 832040/87403803*14662949395604^(4/9) 6765000029561976 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(38) 6765000029561976 a001 39088169/1860498*14662949395604^(4/21) 6765000029561976 a001 39088169/1860498*(1/2+1/2*5^(1/2))^12 6765000029561976 a001 39088169/1860498*192900153618^(2/9) 6765000029561976 a001 39088169/1860498*73681302247^(3/13) 6765000029561976 a001 832040/87403803*73681302247^(7/13) 6765000029561976 a001 39088169/1860498*10749957122^(1/4) 6765000029561976 a001 832040/87403803*10749957122^(7/12) 6765000029561976 a001 4065365016845/600940872 6765000029561976 a001 39088169/1860498*4106118243^(6/23) 6765000029561976 a001 832040/87403803*4106118243^(14/23) 6765000029561976 a001 39088169/1860498*1568397607^(3/11) 6765000029561976 a001 832040/87403803*1568397607^(7/11) 6765000029561976 a001 39088169/1860498*599074578^(2/7) 6765000029561976 a001 832040/87403803*599074578^(2/3) 6765000029561976 a001 39088169/1860498*228826127^(3/10) 6765000029561976 a001 832040/87403803*228826127^(7/10) 6765000029561976 a001 39088169/1860498*87403803^(6/19) 6765000029561977 a001 832040/228826127*141422324^(10/13) 6765000029561977 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^49 6765000029561977 a001 832040/4106118243*141422324^(12/13) 6765000029561977 a001 832040/969323029*141422324^(11/13) 6765000029561977 a001 832040/87403803*87403803^(14/19) 6765000029561977 a001 832040/228826127*2537720636^(2/3) 6765000029561977 a001 831985/15126*2537720636^(2/9) 6765000029561977 a001 832040/228826127*45537549124^(10/17) 6765000029561977 a001 832040/228826127*312119004989^(6/11) 6765000029561977 a001 831985/15126*312119004989^(2/11) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(40) 6765000029561977 a001 831985/15126*(1/2+1/2*5^(1/2))^10 6765000029561977 a001 832040/228826127*192900153618^(5/9) 6765000029561977 a001 831985/15126*28143753123^(1/5) 6765000029561977 a001 832040/228826127*28143753123^(3/5) 6765000029561977 a001 309622219368/45768251 6765000029561977 a001 831985/15126*10749957122^(5/24) 6765000029561977 a001 832040/228826127*10749957122^(5/8) 6765000029561977 a001 831985/15126*4106118243^(5/23) 6765000029561977 a001 832040/228826127*4106118243^(15/23) 6765000029561977 a001 831985/15126*1568397607^(5/22) 6765000029561977 a001 832040/228826127*1568397607^(15/22) 6765000029561977 a001 831985/15126*599074578^(5/21) 6765000029561977 a001 832040/228826127*599074578^(5/7) 6765000029561977 a001 831985/15126*228826127^(1/4) 6765000029561977 a001 233802911/620166*141422324^(2/13) 6765000029561977 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^51 6765000029561977 a001 832040/228826127*228826127^(3/4) 6765000029561977 a001 165580141/1860498*141422324^(3/13) 6765000029561977 a001 2971215073/1860498*141422324^(1/13) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(42) 6765000029561977 a001 416020/299537289*23725150497407^(1/2) 6765000029561977 a001 133957148/930249*(1/2+1/2*5^(1/2))^8 6765000029561977 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(30) 6765000029561977 a001 133957148/930249*23725150497407^(1/8) 6765000029561977 a001 133957148/930249*505019158607^(1/7) 6765000029561977 a001 416020/299537289*505019158607^(4/7) 6765000029561977 a001 133957148/930249*73681302247^(2/13) 6765000029561977 a001 416020/299537289*73681302247^(8/13) 6765000029561977 a001 222915410843840/32951280099 6765000029561977 a001 133957148/930249*10749957122^(1/6) 6765000029561977 a001 416020/299537289*10749957122^(2/3) 6765000029561977 a001 133957148/930249*4106118243^(4/23) 6765000029561977 a001 416020/299537289*4106118243^(16/23) 6765000029561977 a001 133957148/930249*1568397607^(2/11) 6765000029561977 a001 416020/299537289*1568397607^(8/11) 6765000029561977 a001 133957148/930249*599074578^(4/21) 6765000029561977 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^53 6765000029561977 a001 416020/299537289*599074578^(16/21) 6765000029561977 a001 233802911/620166*2537720636^(2/15) 6765000029561977 a001 832040/1568397607*45537549124^(2/3) 6765000029561977 a001 233802911/620166*45537549124^(2/17) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(44) 6765000029561977 a001 233802911/620166*14662949395604^(2/21) 6765000029561977 a001 233802911/620166*(1/2+1/2*5^(1/2))^6 6765000029561977 a001 72950015275665/10783446409 6765000029561977 a001 233802911/620166*10749957122^(1/8) 6765000029561977 a001 832040/1568397607*10749957122^(17/24) 6765000029561977 a001 233802911/620166*4106118243^(3/23) 6765000029561977 a001 832040/1568397607*4106118243^(17/23) 6765000029561977 a001 233802911/620166*1568397607^(3/22) 6765000029561977 a001 832040/4106118243*2537720636^(4/5) 6765000029561977 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^55 6765000029561977 a001 832040/73681302247*2537720636^(14/15) 6765000029561977 a001 832040/28143753123*2537720636^(8/9) 6765000029561977 a001 832040/17393796001*2537720636^(13/15) 6765000029561977 a001 832040/1568397607*1568397607^(17/22) 6765000029561977 a001 832040/4106118243*45537549124^(12/17) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(46) 6765000029561977 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^4 6765000029561977 a001 1836311903/1860498*23725150497407^(1/16) 6765000029561977 a001 1527884955772120/225851433717 6765000029561977 a001 1836311903/1860498*73681302247^(1/13) 6765000029561977 a001 832040/4106118243*192900153618^(2/3) 6765000029561977 a001 832040/4106118243*73681302247^(9/13) 6765000029561977 a001 1836311903/1860498*10749957122^(1/12) 6765000029561977 a001 1836311903/1860498*4106118243^(2/23) 6765000029561977 a001 832040/4106118243*10749957122^(3/4) 6765000029561977 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^57 6765000029561977 a001 1836311903/1860498*1568397607^(1/11) 6765000029561977 a001 832040/4106118243*4106118243^(18/23) 6765000029561977 a001 416020/5374978561*817138163596^(2/3) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(48) 6765000029561977 a001 267084832/103361*(1/2+1/2*5^(1/2))^2 6765000029561977 a001 4000054745111040/591286729879 6765000029561977 a001 233802911/620166*599074578^(1/7) 6765000029561977 a001 267084832/103361*10749957122^(1/24) 6765000029561977 a001 267084832/103361*4106118243^(1/23) 6765000029561977 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^59 6765000029561977 a001 832040/73681302247*17393796001^(6/7) 6765000029561977 a001 416020/5374978561*10749957122^(19/24) 6765000029561977 a001 832040/28143753123*312119004989^(8/11) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(50) 6765000029561977 a001 12586269025/1860498 6765000029561977 a001 832040/28143753123*73681302247^(10/13) 6765000029561977 a001 832040/73681302247*45537549124^(14/17) 6765000029561977 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^61 6765000029561977 a001 832040/1322157322203*45537549124^(16/17) 6765000029561977 a001 75640/28374454999*45537549124^(15/17) 6765000029561977 a001 832040/28143753123*28143753123^(4/5) 6765000029561977 a001 832040/73681302247*817138163596^(14/19) 6765000029561977 a001 832040/73681302247*14662949395604^(2/3) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(52) 6765000029561977 a001 27416783093571960/4052739537881 6765000029561977 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^2 6765000029561977 a001 832040/73681302247*505019158607^(3/4) 6765000029561977 a001 832040/73681302247*192900153618^(7/9) 6765000029561977 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^63 6765000029561977 a001 416020/96450076809*312119004989^(4/5) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(54) 6765000029561977 a001 416020/96450076809*23725150497407^(11/16) 6765000029561977 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^4 6765000029561977 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^65 6765000029561977 a001 416020/1730726404001*312119004989^(10/11) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(56) 6765000029561977 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^6 6765000029561977 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^67 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(58) 6765000029561977 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^8 6765000029561977 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^69 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(60) 6765000029561977 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^71 6765000029561977 a001 416020/1730726404001*3461452808002^(5/6) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(62) 6765000029561977 a001 832040/23725150497407*14662949395604^(6/7) 6765000029561977 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^73 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(64) 6765000029561977 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^75 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(66) 6765000029561977 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^77 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(68) 6765000029561977 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^79 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(70) 6765000029561977 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^81 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(72) 6765000029561977 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^83 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(74) 6765000029561977 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^85 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(76) 6765000029561977 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^87 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(78) 6765000029561977 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^89 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(80) 6765000029561977 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^91 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(82) 6765000029561977 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^93 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(84) 6765000029561977 a004 Fibonacci(30)*Lucas(85)/(1/2+sqrt(5)/2)^95 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(86) 6765000029561977 a004 Fibonacci(30)*Lucas(87)/(1/2+sqrt(5)/2)^97 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(88) 6765000029561977 a004 Fibonacci(30)*Lucas(89)/(1/2+sqrt(5)/2)^99 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(90) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(92) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^84/Lucas(94) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^86/Lucas(96) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^88/Lucas(98) 6765000029561977 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^10 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^89/Lucas(99) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^90/Lucas(100) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^87/Lucas(97) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^85/Lucas(95) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(93) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(91) 6765000029561977 a004 Fibonacci(30)*Lucas(90)/(1/2+sqrt(5)/2)^100 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(89) 6765000029561977 a004 Fibonacci(30)*Lucas(88)/(1/2+sqrt(5)/2)^98 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(87) 6765000029561977 a004 Fibonacci(30)*Lucas(86)/(1/2+sqrt(5)/2)^96 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(85) 6765000029561977 a004 Fibonacci(30)*Lucas(84)/(1/2+sqrt(5)/2)^94 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(83) 6765000029561977 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^92 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(81) 6765000029561977 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^90 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(79) 6765000029561977 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^88 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(77) 6765000029561977 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^86 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(75) 6765000029561977 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^84 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(73) 6765000029561977 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^82 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(71) 6765000029561977 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^80 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(69) 6765000029561977 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^78 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(67) 6765000029561977 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^76 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(65) 6765000029561977 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^74 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(63) 6765000029561977 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^72 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(61) 6765000029561977 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^12 6765000029561977 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^14 6765000029561977 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^16 6765000029561977 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^18 6765000029561977 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^20 6765000029561977 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^22 6765000029561977 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^24 6765000029561977 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^26 6765000029561977 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^28 6765000029561977 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^30 6765000029561977 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^32 6765000029561977 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^34 6765000029561977 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^36 6765000029561977 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^38 6765000029561977 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^40 6765000029561977 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^42 6765000029561977 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^44 6765000029561977 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^46 6765000029561977 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^48 6765000029561977 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^50 6765000029561977 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^70 6765000029561977 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^49 6765000029561977 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^47 6765000029561977 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^45 6765000029561977 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^43 6765000029561977 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^41 6765000029561977 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^39 6765000029561977 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^37 6765000029561977 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^35 6765000029561977 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^33 6765000029561977 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^31 6765000029561977 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^29 6765000029561977 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^27 6765000029561977 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^25 6765000029561977 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^23 6765000029561977 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^21 6765000029561977 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^19 6765000029561977 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^17 6765000029561977 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^15 6765000029561977 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^13 6765000029561977 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^11 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(59) 6765000029561977 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^9 6765000029561977 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^68 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(57) 6765000029561977 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^7 6765000029561977 a001 75640/28374454999*312119004989^(9/11) 6765000029561977 a001 832040/9062201101803*505019158607^(13/14) 6765000029561977 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^66 6765000029561977 a001 75640/28374454999*14662949395604^(5/7) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(55) 6765000029561977 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^5 6765000029561977 a001 832040/1322157322203*192900153618^(8/9) 6765000029561977 a001 832040/5600748293801*192900153618^(17/18) 6765000029561977 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^64 6765000029561977 a001 75640/28374454999*192900153618^(5/6) 6765000029561977 a001 22180643453791460/3278735159921 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(53) 6765000029561977 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^3 6765000029561977 a001 416020/96450076809*73681302247^(11/13) 6765000029561977 a001 832040/1322157322203*73681302247^(12/13) 6765000029561977 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^62 6765000029561977 a001 16944503814010960/2504730781961 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(51) 6765000029561977 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2) 6765000029561977 a001 75640/28374454999*28143753123^(9/10) 6765000029561977 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^60 6765000029561977 a001 832040/17393796001*45537549124^(13/17) 6765000029561977 a001 6472224534449960/956722026041 6765000029561977 a001 832040/17393796001*14662949395604^(13/21) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(49) 6765000029561977 a001 7778742049/3720996+7778742049/3720996*5^(1/2) 6765000029561977 a001 832040/17393796001*192900153618^(13/18) 6765000029561977 a001 832040/17393796001*73681302247^(3/4) 6765000029561977 a001 832040/28143753123*10749957122^(5/6) 6765000029561977 a001 832040/73681302247*10749957122^(7/8) 6765000029561977 a001 416020/96450076809*10749957122^(11/12) 6765000029561977 a001 75640/28374454999*10749957122^(15/16) 6765000029561977 a001 832040/505019158607*10749957122^(23/24) 6765000029561977 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^58 6765000029561977 a001 267084832/103361*1568397607^(1/22) 6765000029561977 a001 832040/17393796001*10749957122^(13/16) 6765000029561977 a001 2971215073/1860498*2537720636^(1/15) 6765000029561977 a001 2971215073/1860498*45537549124^(1/17) 6765000029561977 a001 1236084894669460/182717648081 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(47) 6765000029561977 a001 2971215073/1860498*14662949395604^(1/21) 6765000029561977 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^3 6765000029561977 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^3/Lucas(30) 6765000029561977 a001 2971215073/1860498*192900153618^(1/18) 6765000029561977 a001 2971215073/1860498*10749957122^(1/16) 6765000029561977 a001 610/1860499*2537720636^(7/9) 6765000029561977 a001 416020/5374978561*4106118243^(19/23) 6765000029561977 a001 832040/28143753123*4106118243^(20/23) 6765000029561977 a001 832040/73681302247*4106118243^(21/23) 6765000029561977 a001 416020/96450076809*4106118243^(22/23) 6765000029561977 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^56 6765000029561977 a001 267084832/103361*599074578^(1/21) 6765000029561977 a001 567451585/930249*2537720636^(1/9) 6765000029561977 a001 610/1860499*17393796001^(5/7) 6765000029561977 a001 188856966713360/27916772489 6765000029561977 a001 610/1860499*312119004989^(7/11) 6765000029561977 a001 567451585/930249*312119004989^(1/11) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(45) 6765000029561977 a001 567451585/930249*(1/2+1/2*5^(1/2))^5 6765000029561977 a001 610/1860499*505019158607^(5/8) 6765000029561977 a001 567451585/930249*28143753123^(1/10) 6765000029561977 a001 610/1860499*28143753123^(7/10) 6765000029561977 a001 1836311903/1860498*599074578^(2/21) 6765000029561977 a001 2971215073/1860498*599074578^(1/14) 6765000029561977 a001 832040/4106118243*1568397607^(9/11) 6765000029561977 a001 416020/5374978561*1568397607^(19/22) 6765000029561977 a001 832040/28143753123*1568397607^(10/11) 6765000029561977 a001 832040/73681302247*1568397607^(21/22) 6765000029561977 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^54 6765000029561977 a001 267084832/103361*228826127^(1/20) 6765000029561977 a001 832040/969323029*2537720636^(11/15) 6765000029561977 a001 133957148/930249*228826127^(1/5) 6765000029561977 a001 433494437/1860498*17393796001^(1/7) 6765000029561977 a001 832040/969323029*45537549124^(11/17) 6765000029561977 a001 360684711361480/53316291173 6765000029561977 a001 832040/969323029*312119004989^(3/5) 6765000029561977 a001 832040/969323029*14662949395604^(11/21) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(43) 6765000029561977 a001 433494437/1860498*14662949395604^(1/9) 6765000029561977 a001 433494437/1860498*(1/2+1/2*5^(1/2))^7 6765000029561977 a001 832040/969323029*192900153618^(11/18) 6765000029561977 a001 832040/969323029*10749957122^(11/16) 6765000029561977 a001 832040/969323029*1568397607^(3/4) 6765000029561977 a001 433494437/1860498*599074578^(1/6) 6765000029561977 a001 832040/1568397607*599074578^(17/21) 6765000029561977 a001 1836311903/1860498*228826127^(1/10) 6765000029561977 a001 832040/4106118243*599074578^(6/7) 6765000029561977 a001 233802911/620166*228826127^(3/20) 6765000029561977 a001 610/1860499*599074578^(5/6) 6765000029561977 a001 416020/5374978561*599074578^(19/21) 6765000029561977 a001 567451585/930249*228826127^(1/8) 6765000029561977 a001 832040/17393796001*599074578^(13/14) 6765000029561977 a001 832040/28143753123*599074578^(20/21) 6765000029561977 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^52 6765000029561977 a001 832040/969323029*599074578^(11/14) 6765000029561977 a001 267084832/103361*87403803^(1/19) 6765000029561977 a001 165580141/1860498*2537720636^(1/5) 6765000029561977 a001 68884650258820/10182505537 6765000029561977 a001 165580141/1860498*45537549124^(3/17) 6765000029561977 a001 165580141/1860498*817138163596^(3/19) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(41) 6765000029561977 a001 165580141/1860498*14662949395604^(1/7) 6765000029561977 a001 165580141/1860498*(1/2+1/2*5^(1/2))^9 6765000029561977 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^9/Lucas(30) 6765000029561977 a001 165580141/1860498*192900153618^(1/6) 6765000029561977 a001 165580141/1860498*10749957122^(3/16) 6765000029561977 a001 165580141/1860498*599074578^(3/14) 6765000029561977 a001 416020/299537289*228826127^(4/5) 6765000029561977 a001 1836311903/1860498*87403803^(2/19) 6765000029561977 a001 831985/15126*87403803^(5/19) 6765000029561977 a001 832040/1568397607*228826127^(17/20) 6765000029561977 a001 610/1860499*228826127^(7/8) 6765000029561977 a001 832040/4106118243*228826127^(9/10) 6765000029561977 a001 416020/5374978561*228826127^(19/20) 6765000029561977 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^50 6765000029561977 a001 233802911/620166*87403803^(3/19) 6765000029561977 a001 133957148/930249*87403803^(4/19) 6765000029561977 a001 267084832/103361*33385282^(1/18) 6765000029561977 a001 52623190191440/7778742049 6765000029561977 a001 31622993/930249*312119004989^(1/5) 6765000029561977 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(39) 6765000029561977 a001 31622993/930249*(1/2+1/2*5^(1/2))^11 6765000029561977 a001 208010/35355581*1322157322203^(1/2) 6765000029561977 a001 31622993/930249*1568397607^(1/4) 6765000029561977 a001 2971215073/1860498*33385282^(1/12) 6765000029561978 a001 832040/228826127*87403803^(15/19) 6765000029561978 a001 1836311903/1860498*33385282^(1/9) 6765000029561978 a001 416020/299537289*87403803^(16/19) 6765000029561978 a001 832040/1568397607*87403803^(17/19) 6765000029561978 a001 832040/4106118243*87403803^(18/19) 6765000029561978 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^48 6765000029561978 a001 233802911/620166*33385282^(1/6) 6765000029561978 a001 39088169/1860498*33385282^(1/3) 6765000029561978 a001 133957148/930249*33385282^(2/9) 6765000029561979 a001 831985/15126*33385282^(5/18) 6765000029561979 a001 165580141/1860498*33385282^(1/4) 6765000029561979 a001 832040/54018521*141422324^(9/13) 6765000029561979 a001 24157817/1860498*141422324^(1/3) 6765000029561979 a001 832040/54018521*2537720636^(3/5) 6765000029561979 a001 20100270056680/2971215073 6765000029561979 a001 832040/54018521*45537549124^(9/17) 6765000029561979 a001 832040/54018521*817138163596^(9/19) 6765000029561979 a001 832040/54018521*14662949395604^(3/7) 6765000029561979 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(37) 6765000029561979 a001 24157817/1860498*(1/2+1/2*5^(1/2))^13 6765000029561979 a001 832040/54018521*192900153618^(1/2) 6765000029561979 a001 24157817/1860498*73681302247^(1/4) 6765000029561979 a001 832040/54018521*10749957122^(9/16) 6765000029561979 a001 832040/54018521*599074578^(9/14) 6765000029561979 a001 267084832/103361*12752043^(1/17) 6765000029561981 a001 832040/87403803*33385282^(7/9) 6765000029561982 a001 75640/1875749*20633239^(5/7) 6765000029561982 a001 1836311903/1860498*12752043^(2/17) 6765000029561982 a001 832040/228826127*33385282^(5/6) 6765000029561982 a001 416020/299537289*33385282^(8/9) 6765000029561983 a001 832040/969323029*33385282^(11/12) 6765000029561983 a001 832040/1568397607*33385282^(17/18) 6765000029561983 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^46 6765000029561984 a001 832040/54018521*33385282^(3/4) 6765000029561984 a001 233802911/620166*12752043^(3/17) 6765000029561986 a001 9227465/1860498*20633239^(3/7) 6765000029561987 a001 133957148/930249*12752043^(4/17) 6765000029561988 a001 829464/103361*12752043^(7/17) 6765000029561989 a001 831985/15126*12752043^(5/17) 6765000029561991 a001 39088169/1860498*12752043^(6/17) 6765000029561993 a001 9227465/1860498*141422324^(5/13) 6765000029561993 a001 12586262260/1860497 6765000029561993 a001 75640/1875749*2537720636^(5/9) 6765000029561993 a001 9227465/1860498*2537720636^(1/3) 6765000029561993 a001 9227465/1860498*45537549124^(5/17) 6765000029561993 a001 75640/1875749*312119004989^(5/11) 6765000029561993 a001 75640/1875749*(1/2+1/2*5^(1/2))^25 6765000029561993 a001 75640/1875749*3461452808002^(5/12) 6765000029561993 a001 9227465/1860498*14662949395604^(5/21) 6765000029561993 a001 9227465/1860498*(1/2+1/2*5^(1/2))^15 6765000029561993 a001 9227465/1860498*192900153618^(5/18) 6765000029561993 a001 9227465/1860498*28143753123^(3/10) 6765000029561993 a001 75640/1875749*28143753123^(1/2) 6765000029561993 a001 9227465/1860498*10749957122^(5/16) 6765000029561993 a001 9227465/1860498*599074578^(5/14) 6765000029561993 a001 9227465/1860498*228826127^(3/8) 6765000029561993 a001 75640/1875749*228826127^(5/8) 6765000029561995 a001 267084832/103361*4870847^(1/16) 6765000029561995 a001 9227465/1860498*33385282^(5/12) 6765000029562003 a001 416020/16692641*12752043^(13/17) 6765000029562010 a001 832040/87403803*12752043^(14/17) 6765000029562013 a001 1836311903/1860498*4870847^(1/8) 6765000029562014 a001 832040/228826127*12752043^(15/17) 6765000029562016 a001 416020/299537289*12752043^(16/17) 6765000029562019 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^44 6765000029562030 a001 233802911/620166*4870847^(3/16) 6765000029562048 a001 133957148/930249*4870847^(1/4) 6765000029562066 a001 831985/15126*4870847^(5/16) 6765000029562078 a001 5702887/1860498*4870847^(1/2) 6765000029562083 a001 39088169/1860498*4870847^(3/8) 6765000029562086 a001 2932589879120/433494437 6765000029562086 a001 1762289/930249*45537549124^(1/3) 6765000029562086 a001 208010/1970299*(1/2+1/2*5^(1/2))^23 6765000029562086 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(33) 6765000029562086 a001 1762289/930249*(1/2+1/2*5^(1/2))^17 6765000029562086 a001 208010/1970299*4106118243^(1/2) 6765000029562096 a001 829464/103361*4870847^(7/16) 6765000029562107 a001 1762289/930249*12752043^(1/2) 6765000029562107 a001 267084832/103361*1860498^(1/15) 6765000029562149 a001 832040/12752043*4870847^(3/4) 6765000029562172 a001 2971215073/1860498*1860498^(1/10) 6765000029562203 a001 416020/16692641*4870847^(13/16) 6765000029562226 a001 832040/87403803*4870847^(7/8) 6765000029562238 a001 1836311903/1860498*1860498^(2/15) 6765000029562244 a001 832040/228826127*4870847^(15/16) 6765000029562262 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^42 6765000029562303 a001 567451585/930249*1860498^(1/6) 6765000029562368 a001 233802911/620166*1860498^(1/5) 6765000029562498 a001 133957148/930249*1860498^(4/15) 6765000029562563 a001 165580141/1860498*1860498^(3/10) 6765000029562628 a001 831985/15126*1860498^(1/3) 6765000029562654 a001 832040/3010349*7881196^(7/11) 6765000029562714 a001 832040/3010349*20633239^(3/5) 6765000029562723 a001 832040/3010349*141422324^(7/13) 6765000029562723 a001 1120149658760/165580141 6765000029562723 a001 832040/3010349*2537720636^(7/15) 6765000029562723 a001 832040/3010349*17393796001^(3/7) 6765000029562723 a001 832040/3010349*45537549124^(7/17) 6765000029562723 a001 1346269/1860498*817138163596^(1/3) 6765000029562723 a001 832040/3010349*14662949395604^(1/3) 6765000029562723 a001 832040/3010349*(1/2+1/2*5^(1/2))^21 6765000029562723 a001 1346269/1860498*(1/2+1/2*5^(1/2))^19 6765000029562723 a001 832040/3010349*192900153618^(7/18) 6765000029562723 a001 832040/3010349*10749957122^(7/16) 6765000029562724 a001 832040/3010349*599074578^(1/2) 6765000029562724 a001 1346269/1860498*87403803^(1/2) 6765000029562727 a001 832040/3010349*33385282^(7/12) 6765000029562758 a001 39088169/1860498*1860498^(2/5) 6765000029562864 a001 726103/620166*1860498^(3/5) 6765000029562883 a001 829464/103361*1860498^(7/15) 6765000029562900 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^43 6765000029562933 a001 105937/4250681*710647^(13/14) 6765000029562934 a001 267084832/103361*710647^(1/14) 6765000029562970 a001 9227465/1860498*1860498^(1/2) 6765000029562978 a001 5702887/1860498*1860498^(8/15) 6765000029563125 a001 832040/4870847*1860498^(11/15) 6765000029563143 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^45 6765000029563179 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^47 6765000029563184 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^49 6765000029563185 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^51 6765000029563185 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^53 6765000029563185 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^55 6765000029563185 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^57 6765000029563185 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^59 6765000029563185 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^61 6765000029563185 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^63 6765000029563185 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^65 6765000029563185 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^67 6765000029563185 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^69 6765000029563185 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^71 6765000029563185 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^73 6765000029563185 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^75 6765000029563185 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^77 6765000029563185 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^79 6765000029563185 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^81 6765000029563185 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^83 6765000029563185 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^85 6765000029563185 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^87 6765000029563185 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^89 6765000029563185 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^91 6765000029563185 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^93 6765000029563185 a004 Fibonacci(84)*Lucas(31)/(1/2+sqrt(5)/2)^95 6765000029563185 a004 Fibonacci(86)*Lucas(31)/(1/2+sqrt(5)/2)^97 6765000029563185 a004 Fibonacci(88)*Lucas(31)/(1/2+sqrt(5)/2)^99 6765000029563185 a004 Fibonacci(89)*Lucas(31)/(1/2+sqrt(5)/2)^100 6765000029563185 a004 Fibonacci(87)*Lucas(31)/(1/2+sqrt(5)/2)^98 6765000029563185 a004 Fibonacci(85)*Lucas(31)/(1/2+sqrt(5)/2)^96 6765000029563185 a004 Fibonacci(83)*Lucas(31)/(1/2+sqrt(5)/2)^94 6765000029563185 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^92 6765000029563185 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^90 6765000029563185 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^88 6765000029563185 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^86 6765000029563185 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^84 6765000029563185 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^82 6765000029563185 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^80 6765000029563185 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^78 6765000029563185 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^76 6765000029563185 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^74 6765000029563185 a001 2/1346269*(1/2+1/2*5^(1/2))^51 6765000029563185 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^72 6765000029563185 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^70 6765000029563185 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^68 6765000029563185 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^66 6765000029563185 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^64 6765000029563185 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^62 6765000029563185 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^60 6765000029563185 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^58 6765000029563185 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^56 6765000029563185 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^54 6765000029563185 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^52 6765000029563185 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^50 6765000029563187 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^48 6765000029563201 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^46 6765000029563294 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^44 6765000029563352 a001 2178309/4870847*20633239^(4/7) 6765000029563361 a001 2178309/4870847*2537720636^(4/9) 6765000029563361 a001 2178309/4870847*(1/2+1/2*5^(1/2))^20 6765000029563361 a001 2178309/4870847*23725150497407^(5/16) 6765000029563361 a001 2178309/4870847*505019158607^(5/14) 6765000029563361 a001 2178309/4870847*73681302247^(5/13) 6765000029563361 a001 2178309/4870847*28143753123^(2/5) 6765000029563361 a001 2178309/4870847*10749957122^(5/12) 6765000029563361 a001 2178309/4870847*4106118243^(10/23) 6765000029563361 a001 2178309/4870847*1568397607^(5/11) 6765000029563361 a001 1581676699827/233802911 6765000029563361 a001 2178309/4870847*599074578^(10/21) 6765000029563361 a001 2178309/4870847*228826127^(1/2) 6765000029563362 a001 2178309/4870847*87403803^(10/19) 6765000029563364 a001 2178309/4870847*33385282^(5/9) 6765000029563386 a001 2178309/4870847*12752043^(10/17) 6765000029563499 a001 832040/12752043*1860498^(4/5) 6765000029563532 a001 726103/4250681*7881196^(2/3) 6765000029563537 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^45 6765000029563539 a001 2178309/4870847*4870847^(5/8) 6765000029563545 a001 5702887/4870847*7881196^(6/11) 6765000029563547 a001 726103/199691526*7881196^(10/11) 6765000029563557 a001 2178309/141422324*7881196^(9/11) 6765000029563561 a001 311187/4769326*7881196^(8/11) 6765000029563599 a001 24157817/4870847*7881196^(5/11) 6765000029563604 a001 5702887/4870847*141422324^(6/13) 6765000029563605 a001 5702887/4870847*2537720636^(2/5) 6765000029563605 a001 5702887/4870847*45537549124^(6/17) 6765000029563605 a001 726103/4250681*312119004989^(2/5) 6765000029563605 a001 726103/4250681*(1/2+1/2*5^(1/2))^22 6765000029563605 a001 5702887/4870847*14662949395604^(2/7) 6765000029563605 a001 5702887/4870847*(1/2+1/2*5^(1/2))^18 6765000029563605 a001 5702887/4870847*192900153618^(1/3) 6765000029563605 a001 5702887/4870847*10749957122^(3/8) 6765000029563605 a001 726103/4250681*10749957122^(11/24) 6765000029563605 a001 5702887/4870847*4106118243^(9/23) 6765000029563605 a001 726103/4250681*4106118243^(11/23) 6765000029563605 a001 12422650078083/1836311903 6765000029563605 a001 5702887/4870847*1568397607^(9/22) 6765000029563605 a001 726103/4250681*1568397607^(1/2) 6765000029563605 a001 5702887/4870847*599074578^(3/7) 6765000029563605 a001 726103/4250681*599074578^(11/21) 6765000029563605 a001 5702887/4870847*228826127^(9/20) 6765000029563605 a001 726103/4250681*228826127^(11/20) 6765000029563605 a001 5702887/4870847*87403803^(9/19) 6765000029563605 a001 726103/4250681*87403803^(11/19) 6765000029563606 a001 102334155/4870847*7881196^(4/11) 6765000029563608 a001 5702887/4870847*33385282^(1/2) 6765000029563608 a001 726103/4250681*33385282^(11/18) 6765000029563610 a001 165580141/4870847*7881196^(1/3) 6765000029563617 a001 433494437/4870847*7881196^(3/11) 6765000029563622 a001 75640/1875749*1860498^(5/6) 6765000029563626 a001 1836311903/4870847*7881196^(2/11) 6765000029563627 a001 5702887/4870847*12752043^(9/17) 6765000029563630 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^47 6765000029563632 a001 726103/4250681*12752043^(11/17) 6765000029563633 a001 726103/199691526*20633239^(6/7) 6765000029563633 a001 46347/4868641*20633239^(4/5) 6765000029563636 a001 7778742049/4870847*7881196^(1/11) 6765000029563637 a001 2178309/54018521*20633239^(5/7) 6765000029563639 a001 39088169/4870847*20633239^(2/5) 6765000029563640 a001 311187/4769326*141422324^(8/13) 6765000029563640 a001 311187/4769326*2537720636^(8/15) 6765000029563640 a001 311187/4769326*45537549124^(8/17) 6765000029563640 a001 311187/4769326*14662949395604^(8/21) 6765000029563640 a001 311187/4769326*(1/2+1/2*5^(1/2))^24 6765000029563640 a001 14930352/4870847*(1/2+1/2*5^(1/2))^16 6765000029563640 a001 14930352/4870847*23725150497407^(1/4) 6765000029563640 a001 311187/4769326*192900153618^(4/9) 6765000029563640 a001 14930352/4870847*73681302247^(4/13) 6765000029563640 a001 311187/4769326*73681302247^(6/13) 6765000029563640 a001 14930352/4870847*10749957122^(1/3) 6765000029563640 a001 311187/4769326*10749957122^(1/2) 6765000029563640 a001 686485143/101476 6765000029563640 a001 14930352/4870847*4106118243^(8/23) 6765000029563640 a001 311187/4769326*4106118243^(12/23) 6765000029563640 a001 14930352/4870847*1568397607^(4/11) 6765000029563640 a001 311187/4769326*1568397607^(6/11) 6765000029563640 a001 14930352/4870847*599074578^(8/21) 6765000029563640 a001 311187/4769326*599074578^(4/7) 6765000029563640 a001 14930352/4870847*228826127^(2/5) 6765000029563640 a001 311187/4769326*228826127^(3/5) 6765000029563641 a001 14930352/4870847*87403803^(8/19) 6765000029563641 a001 311187/4769326*87403803^(12/19) 6765000029563642 a001 267914296/4870847*20633239^(2/7) 6765000029563642 a001 24157817/4870847*20633239^(3/7) 6765000029563643 a001 14930352/4870847*33385282^(4/9) 6765000029563643 a001 1134903170/4870847*20633239^(1/5) 6765000029563644 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^49 6765000029563644 a001 2971215073/4870847*20633239^(1/7) 6765000029563644 a001 311187/4769326*33385282^(2/3) 6765000029563645 a001 726103/29134601*141422324^(2/3) 6765000029563645 a001 39088169/4870847*17393796001^(2/7) 6765000029563645 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(38) 6765000029563645 a001 39088169/4870847*14662949395604^(2/9) 6765000029563645 a001 39088169/4870847*(1/2+1/2*5^(1/2))^14 6765000029563645 a001 39088169/4870847*505019158607^(1/4) 6765000029563645 a001 726103/29134601*73681302247^(1/2) 6765000029563645 a001 85146110326221/12586269025 6765000029563645 a001 39088169/4870847*10749957122^(7/24) 6765000029563645 a001 726103/29134601*10749957122^(13/24) 6765000029563645 a001 39088169/4870847*4106118243^(7/23) 6765000029563645 a001 726103/29134601*4106118243^(13/23) 6765000029563645 a001 39088169/4870847*1568397607^(7/22) 6765000029563645 a001 726103/29134601*1568397607^(13/22) 6765000029563645 a001 39088169/4870847*599074578^(1/3) 6765000029563645 a001 726103/29134601*599074578^(13/21) 6765000029563645 a001 39088169/4870847*228826127^(7/20) 6765000029563645 a001 726103/29134601*228826127^(13/20) 6765000029563646 a001 39088169/4870847*87403803^(7/19) 6765000029563646 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^51 6765000029563646 a001 987/4870846*141422324^(12/13) 6765000029563646 a001 2178309/2537720636*141422324^(11/13) 6765000029563646 a001 726103/29134601*87403803^(13/19) 6765000029563646 a001 726103/199691526*141422324^(10/13) 6765000029563646 a001 102334155/4870847*141422324^(4/13) 6765000029563646 a001 102334155/4870847*2537720636^(4/15) 6765000029563646 a001 46347/4868641*17393796001^(4/7) 6765000029563646 a001 102334155/4870847*45537549124^(4/17) 6765000029563646 a001 102334155/4870847*817138163596^(4/19) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(40) 6765000029563646 a001 102334155/4870847*14662949395604^(4/21) 6765000029563646 a001 102334155/4870847*(1/2+1/2*5^(1/2))^12 6765000029563646 a001 46347/4868641*505019158607^(1/2) 6765000029563646 a001 102334155/4870847*192900153618^(2/9) 6765000029563646 a001 102334155/4870847*73681302247^(3/13) 6765000029563646 a001 46347/4868641*73681302247^(7/13) 6765000029563646 a001 74305136947965/10983760033 6765000029563646 a001 102334155/4870847*10749957122^(1/4) 6765000029563646 a001 46347/4868641*10749957122^(7/12) 6765000029563646 a001 102334155/4870847*4106118243^(6/23) 6765000029563646 a001 46347/4868641*4106118243^(14/23) 6765000029563646 a001 102334155/4870847*1568397607^(3/11) 6765000029563646 a001 46347/4868641*1568397607^(7/11) 6765000029563646 a001 102334155/4870847*599074578^(2/7) 6765000029563646 a001 46347/4868641*599074578^(2/3) 6765000029563646 a001 102334155/4870847*228826127^(3/10) 6765000029563646 a001 433494437/4870847*141422324^(3/13) 6765000029563646 a001 1836311903/4870847*141422324^(2/13) 6765000029563646 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^53 6765000029563646 a001 46347/4868641*228826127^(7/10) 6765000029563646 a001 7778742049/4870847*141422324^(1/13) 6765000029563646 a001 726103/199691526*2537720636^(2/3) 6765000029563646 a001 267914296/4870847*2537720636^(2/9) 6765000029563646 a001 726103/199691526*45537549124^(10/17) 6765000029563646 a001 726103/199691526*312119004989^(6/11) 6765000029563646 a001 267914296/4870847*312119004989^(2/11) 6765000029563646 a001 726103/199691526*14662949395604^(10/21) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(42) 6765000029563646 a001 267914296/4870847*(1/2+1/2*5^(1/2))^10 6765000029563646 a001 726103/199691526*192900153618^(5/9) 6765000029563646 a001 72950015275683/10783446409 6765000029563646 a001 267914296/4870847*28143753123^(1/5) 6765000029563646 a001 726103/199691526*28143753123^(3/5) 6765000029563646 a001 267914296/4870847*10749957122^(5/24) 6765000029563646 a001 726103/199691526*10749957122^(5/8) 6765000029563646 a001 267914296/4870847*4106118243^(5/23) 6765000029563646 a001 726103/199691526*4106118243^(15/23) 6765000029563646 a001 267914296/4870847*1568397607^(5/22) 6765000029563646 a001 726103/199691526*1568397607^(15/22) 6765000029563646 a001 267914296/4870847*599074578^(5/21) 6765000029563646 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^55 6765000029563646 a001 726103/199691526*599074578^(5/7) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(44) 6765000029563646 a001 311187/224056801*23725150497407^(1/2) 6765000029563646 a001 701408733/4870847*(1/2+1/2*5^(1/2))^8 6765000029563646 a001 701408733/4870847*23725150497407^(1/8) 6765000029563646 a001 701408733/4870847*505019158607^(1/7) 6765000029563646 a001 311187/224056801*505019158607^(4/7) 6765000029563646 a001 701408733/4870847*73681302247^(2/13) 6765000029563646 a001 311187/224056801*73681302247^(8/13) 6765000029563646 a001 701408733/4870847*10749957122^(1/6) 6765000029563646 a001 311187/224056801*10749957122^(2/3) 6765000029563646 a001 701408733/4870847*4106118243^(4/23) 6765000029563646 a001 311187/224056801*4106118243^(16/23) 6765000029563646 a001 701408733/4870847*1568397607^(2/11) 6765000029563646 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^57 6765000029563646 a001 726103/64300051206*2537720636^(14/15) 6765000029563646 a001 311187/10525900321*2537720636^(8/9) 6765000029563646 a001 2178309/45537549124*2537720636^(13/15) 6765000029563646 a001 987/4870846*2537720636^(4/5) 6765000029563646 a001 311187/224056801*1568397607^(8/11) 6765000029563646 a001 2178309/6643838879*2537720636^(7/9) 6765000029563646 a001 1836311903/4870847*2537720636^(2/15) 6765000029563646 a001 726103/1368706081*45537549124^(2/3) 6765000029563646 a001 1836311903/4870847*45537549124^(2/17) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(46) 6765000029563646 a001 1836311903/4870847*14662949395604^(2/21) 6765000029563646 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^6 6765000029563646 a001 4000054745112027/591286729879 6765000029563646 a001 1836311903/4870847*10749957122^(1/8) 6765000029563646 a001 726103/1368706081*10749957122^(17/24) 6765000029563646 a001 1836311903/4870847*4106118243^(3/23) 6765000029563646 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^59 6765000029563646 a001 726103/1368706081*4106118243^(17/23) 6765000029563646 a001 987/4870846*45537549124^(12/17) 6765000029563646 a001 987/4870846*14662949395604^(4/7) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(48) 6765000029563646 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^4 6765000029563646 a001 4807526976/4870847*23725150497407^(1/16) 6765000029563646 a001 72724161663636/10750060805 6765000029563646 a001 4807526976/4870847*73681302247^(1/13) 6765000029563646 a001 987/4870846*192900153618^(2/3) 6765000029563646 a001 987/4870846*73681302247^(9/13) 6765000029563646 a001 4807526976/4870847*10749957122^(1/12) 6765000029563646 a001 7778742049/4870847*2537720636^(1/15) 6765000029563646 a001 1836311903/4870847*1568397607^(3/22) 6765000029563646 a001 4807526976/4870847*4106118243^(2/23) 6765000029563646 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^61 6765000029563646 a001 726103/64300051206*17393796001^(6/7) 6765000029563646 a001 987/4870846*10749957122^(3/4) 6765000029563646 a001 726103/9381251041*817138163596^(2/3) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(50) 6765000029563646 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^2 6765000029563646 a001 27416783093578725/4052739537881 6765000029563646 a001 12586269025/4870847*10749957122^(1/24) 6765000029563646 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^63 6765000029563646 a001 311187/494493258286*45537549124^(16/17) 6765000029563646 a001 726103/64300051206*45537549124^(14/17) 6765000029563646 a001 2178309/817138163596*45537549124^(15/17) 6765000029563646 a001 311187/10525900321*312119004989^(8/11) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(52) 6765000029563646 a001 311187/10525900321*23725150497407^(5/8) 6765000029563646 a001 32951280099/4870847 6765000029563646 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^65 6765000029563646 a001 311187/10525900321*73681302247^(10/13) 6765000029563646 a001 726103/64300051206*817138163596^(14/19) 6765000029563646 a001 726103/64300051206*14662949395604^(2/3) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(54) 6765000029563646 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^2 6765000029563646 a001 726103/64300051206*505019158607^(3/4) 6765000029563646 a001 46347/10745088481*312119004989^(4/5) 6765000029563646 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^67 6765000029563646 a001 726103/3020733700601*312119004989^(10/11) 6765000029563646 a001 2178309/817138163596*312119004989^(9/11) 6765000029563646 a001 726103/64300051206*192900153618^(7/9) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(56) 6765000029563646 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^4 6765000029563646 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^69 6765000029563646 a001 2178309/14662949395604*817138163596^(17/19) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(58) 6765000029563646 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^6 6765000029563646 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^71 6765000029563646 a001 311187/494493258286*14662949395604^(16/21) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(60) 6765000029563646 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^8 6765000029563646 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^73 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(62) 6765000029563646 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^10 6765000029563646 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^75 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(64) 6765000029563646 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^77 6765000029563646 a001 2178309/23725150497407*23725150497407^(13/16) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(66) 6765000029563646 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^79 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(68) 6765000029563646 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^81 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(70) 6765000029563646 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^83 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(72) 6765000029563646 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^85 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(74) 6765000029563646 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^87 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(76) 6765000029563646 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^89 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(78) 6765000029563646 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^91 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(80) 6765000029563646 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^93 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(82) 6765000029563646 a004 Fibonacci(32)*Lucas(83)/(1/2+sqrt(5)/2)^95 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(84) 6765000029563646 a004 Fibonacci(32)*Lucas(85)/(1/2+sqrt(5)/2)^97 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(86) 6765000029563646 a004 Fibonacci(32)*Lucas(87)/(1/2+sqrt(5)/2)^99 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(88) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(90) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(92) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^82/Lucas(94) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^84/Lucas(96) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^86/Lucas(98) 6765000029563646 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^12 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^87/Lucas(99) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^88/Lucas(100) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^85/Lucas(97) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^83/Lucas(95) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(93) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(91) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(89) 6765000029563646 a004 Fibonacci(32)*Lucas(88)/(1/2+sqrt(5)/2)^100 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(87) 6765000029563646 a004 Fibonacci(32)*Lucas(86)/(1/2+sqrt(5)/2)^98 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(85) 6765000029563646 a004 Fibonacci(32)*Lucas(84)/(1/2+sqrt(5)/2)^96 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(83) 6765000029563646 a004 Fibonacci(32)*Lucas(82)/(1/2+sqrt(5)/2)^94 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(81) 6765000029563646 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^92 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(79) 6765000029563646 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^90 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(77) 6765000029563646 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^88 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(75) 6765000029563646 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^86 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(73) 6765000029563646 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^84 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(71) 6765000029563646 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^82 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(69) 6765000029563646 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^80 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(67) 6765000029563646 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^78 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(65) 6765000029563646 a001 2178309/14662949395604*14662949395604^(17/21) 6765000029563646 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^14 6765000029563646 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^16 6765000029563646 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^18 6765000029563646 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^20 6765000029563646 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^22 6765000029563646 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^24 6765000029563646 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^26 6765000029563646 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^28 6765000029563646 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^30 6765000029563646 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^32 6765000029563646 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^34 6765000029563646 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^36 6765000029563646 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^38 6765000029563646 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^40 6765000029563646 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^42 6765000029563646 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^44 6765000029563646 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^48 6765000029563646 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^76 6765000029563646 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^46 6765000029563646 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^47 6765000029563646 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^45 6765000029563646 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^43 6765000029563646 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^41 6765000029563646 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^39 6765000029563646 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^37 6765000029563646 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^35 6765000029563646 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^33 6765000029563646 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^31 6765000029563646 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^29 6765000029563646 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^27 6765000029563646 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^25 6765000029563646 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^23 6765000029563646 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^21 6765000029563646 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^19 6765000029563646 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^17 6765000029563646 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^15 6765000029563646 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^13 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(63) 6765000029563646 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^11 6765000029563646 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^74 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(61) 6765000029563646 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^9 6765000029563646 a001 726103/3020733700601*3461452808002^(5/6) 6765000029563646 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^72 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(59) 6765000029563646 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^7 6765000029563646 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^70 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(57) 6765000029563646 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^5 6765000029563646 a001 2178309/5600748293801*505019158607^(7/8) 6765000029563646 a001 2178309/23725150497407*505019158607^(13/14) 6765000029563646 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^68 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(55) 6765000029563646 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^3 6765000029563646 a001 311187/494493258286*192900153618^(8/9) 6765000029563646 a001 2178309/14662949395604*192900153618^(17/18) 6765000029563646 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^66 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(53) 6765000029563646 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2) 6765000029563646 a001 2178309/45537549124*45537549124^(13/17) 6765000029563646 a001 46347/10745088481*73681302247^(11/13) 6765000029563646 a001 311187/494493258286*73681302247^(12/13) 6765000029563646 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^64 6765000029563646 a001 22180643453796933/3278735159921 6765000029563646 a001 2178309/45537549124*14662949395604^(13/21) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(51) 6765000029563646 a001 2178309/45537549124*192900153618^(13/18) 6765000029563646 a001 2178309/45537549124*73681302247^(3/4) 6765000029563646 a001 311187/10525900321*28143753123^(4/5) 6765000029563646 a001 2178309/817138163596*28143753123^(9/10) 6765000029563646 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^62 6765000029563646 a001 12586269025/4870847*4106118243^(1/23) 6765000029563646 a001 7778742049/4870847*45537549124^(1/17) 6765000029563646 a001 16944503814015141/2504730781961 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(49) 6765000029563646 a001 7778742049/4870847*14662949395604^(1/21) 6765000029563646 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^3 6765000029563646 a001 7778742049/4870847*10749957122^(1/16) 6765000029563646 a001 2971215073/4870847*2537720636^(1/9) 6765000029563646 a001 726103/9381251041*10749957122^(19/24) 6765000029563646 a001 311187/10525900321*10749957122^(5/6) 6765000029563646 a001 2178309/45537549124*10749957122^(13/16) 6765000029563646 a001 726103/64300051206*10749957122^(7/8) 6765000029563646 a001 46347/10745088481*10749957122^(11/12) 6765000029563646 a001 2178309/817138163596*10749957122^(15/16) 6765000029563646 a001 726103/440719107401*10749957122^(23/24) 6765000029563646 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^60 6765000029563646 a001 12586269025/4870847*1568397607^(1/22) 6765000029563646 a001 2178309/6643838879*17393796001^(5/7) 6765000029563646 a001 2178309/6643838879*312119004989^(7/11) 6765000029563646 a001 2971215073/4870847*312119004989^(1/11) 6765000029563646 a001 2178309/6643838879*14662949395604^(5/9) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(47) 6765000029563646 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^5 6765000029563646 a001 2178309/6643838879*505019158607^(5/8) 6765000029563646 a001 2971215073/4870847*28143753123^(1/10) 6765000029563646 a001 2178309/6643838879*28143753123^(7/10) 6765000029563646 a001 4807526976/4870847*1568397607^(1/11) 6765000029563646 a001 987/4870846*4106118243^(18/23) 6765000029563646 a001 2178309/2537720636*2537720636^(11/15) 6765000029563646 a001 726103/9381251041*4106118243^(19/23) 6765000029563646 a001 311187/10525900321*4106118243^(20/23) 6765000029563646 a001 726103/64300051206*4106118243^(21/23) 6765000029563646 a001 46347/10745088481*4106118243^(22/23) 6765000029563646 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^58 6765000029563646 a001 701408733/4870847*599074578^(4/21) 6765000029563646 a001 12586269025/4870847*599074578^(1/21) 6765000029563646 a001 1134903170/4870847*17393796001^(1/7) 6765000029563646 a001 2178309/2537720636*45537549124^(11/17) 6765000029563646 a001 2178309/2537720636*312119004989^(3/5) 6765000029563646 a001 1236084894669765/182717648081 6765000029563646 a001 2178309/2537720636*14662949395604^(11/21) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(45) 6765000029563646 a001 1134903170/4870847*14662949395604^(1/9) 6765000029563646 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^7 6765000029563646 a001 2178309/2537720636*192900153618^(11/18) 6765000029563646 a001 2178309/2537720636*10749957122^(11/16) 6765000029563646 a001 7778742049/4870847*599074578^(1/14) 6765000029563646 a001 726103/1368706081*1568397607^(17/22) 6765000029563646 a001 4807526976/4870847*599074578^(2/21) 6765000029563646 a001 987/4870846*1568397607^(9/11) 6765000029563646 a001 1836311903/4870847*599074578^(1/7) 6765000029563646 a001 726103/9381251041*1568397607^(19/22) 6765000029563646 a001 311187/10525900321*1568397607^(10/11) 6765000029563646 a001 726103/64300051206*1568397607^(21/22) 6765000029563646 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^56 6765000029563646 a001 2178309/2537720636*1568397607^(3/4) 6765000029563646 a001 1134903170/4870847*599074578^(1/6) 6765000029563646 a001 12586269025/4870847*228826127^(1/20) 6765000029563646 a001 433494437/4870847*2537720636^(1/5) 6765000029563646 a001 433494437/4870847*45537549124^(3/17) 6765000029563646 a001 944284833567033/139583862445 6765000029563646 a001 433494437/4870847*817138163596^(3/19) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(43) 6765000029563646 a001 433494437/4870847*14662949395604^(1/7) 6765000029563646 a001 433494437/4870847*(1/2+1/2*5^(1/2))^9 6765000029563646 a001 2178309/969323029*9062201101803^(1/2) 6765000029563646 a001 433494437/4870847*192900153618^(1/6) 6765000029563646 a001 433494437/4870847*10749957122^(3/16) 6765000029563646 a001 433494437/4870847*599074578^(3/14) 6765000029563646 a001 311187/224056801*599074578^(16/21) 6765000029563646 a001 4807526976/4870847*228826127^(1/10) 6765000029563646 a001 267914296/4870847*228826127^(1/4) 6765000029563646 a001 726103/1368706081*599074578^(17/21) 6765000029563646 a001 2178309/2537720636*599074578^(11/14) 6765000029563646 a001 2178309/6643838879*599074578^(5/6) 6765000029563646 a001 987/4870846*599074578^(6/7) 6765000029563646 a001 2971215073/4870847*228826127^(1/8) 6765000029563646 a001 726103/9381251041*599074578^(19/21) 6765000029563646 a001 2178309/45537549124*599074578^(13/14) 6765000029563646 a001 311187/10525900321*599074578^(20/21) 6765000029563646 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^54 6765000029563646 a001 1836311903/4870847*228826127^(3/20) 6765000029563646 a001 701408733/4870847*228826127^(1/5) 6765000029563646 a001 12586269025/4870847*87403803^(1/19) 6765000029563646 a001 360684711361569/53316291173 6765000029563646 a001 165580141/4870847*312119004989^(1/5) 6765000029563646 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(41) 6765000029563646 a001 165580141/4870847*(1/2+1/2*5^(1/2))^11 6765000029563646 a001 2178309/370248451*1322157322203^(1/2) 6765000029563646 a001 165580141/4870847*1568397607^(1/4) 6765000029563646 a001 726103/199691526*228826127^(3/4) 6765000029563646 a001 4807526976/4870847*87403803^(2/19) 6765000029563646 a001 311187/224056801*228826127^(4/5) 6765000029563646 a001 2178309/141422324*141422324^(9/13) 6765000029563646 a001 726103/1368706081*228826127^(17/20) 6765000029563646 a001 2178309/6643838879*228826127^(7/8) 6765000029563646 a001 987/4870846*228826127^(9/10) 6765000029563646 a001 726103/9381251041*228826127^(19/20) 6765000029563646 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^52 6765000029563646 a001 1836311903/4870847*87403803^(3/19) 6765000029563646 a001 102334155/4870847*87403803^(6/19) 6765000029563646 a001 701408733/4870847*87403803^(4/19) 6765000029563646 a001 267914296/4870847*87403803^(5/19) 6765000029563646 a001 63245986/4870847*141422324^(1/3) 6765000029563647 a001 12586269025/4870847*33385282^(1/18) 6765000029563647 a001 2178309/141422324*2537720636^(3/5) 6765000029563647 a001 68884650258837/10182505537 6765000029563647 a001 2178309/141422324*45537549124^(9/17) 6765000029563647 a001 2178309/141422324*817138163596^(9/19) 6765000029563647 a001 2178309/141422324*14662949395604^(3/7) 6765000029563647 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(39) 6765000029563647 a001 63245986/4870847*(1/2+1/2*5^(1/2))^13 6765000029563647 a001 2178309/141422324*192900153618^(1/2) 6765000029563647 a001 63245986/4870847*73681302247^(1/4) 6765000029563647 a001 2178309/141422324*10749957122^(9/16) 6765000029563647 a001 2178309/141422324*599074578^(9/14) 6765000029563647 a001 7778742049/4870847*33385282^(1/12) 6765000029563647 a001 46347/4868641*87403803^(14/19) 6765000029563647 a001 4807526976/4870847*33385282^(1/9) 6765000029563647 a001 726103/199691526*87403803^(15/19) 6765000029563647 a001 311187/224056801*87403803^(16/19) 6765000029563647 a001 726103/1368706081*87403803^(17/19) 6765000029563647 a001 987/4870846*87403803^(18/19) 6765000029563647 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^50 6765000029563647 a001 1836311903/4870847*33385282^(1/6) 6765000029563648 a001 701408733/4870847*33385282^(2/9) 6765000029563648 a001 39088169/4870847*33385282^(7/18) 6765000029563648 a001 433494437/4870847*33385282^(1/4) 6765000029563648 a001 267914296/4870847*33385282^(5/18) 6765000029563648 a001 102334155/4870847*33385282^(1/3) 6765000029563648 a001 24157817/4870847*141422324^(5/13) 6765000029563649 a001 2178309/54018521*2537720636^(5/9) 6765000029563649 a001 24157817/4870847*2537720636^(1/3) 6765000029563649 a001 52623190191453/7778742049 6765000029563649 a001 24157817/4870847*45537549124^(5/17) 6765000029563649 a001 2178309/54018521*312119004989^(5/11) 6765000029563649 a001 24157817/4870847*312119004989^(3/11) 6765000029563649 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(37) 6765000029563649 a001 24157817/4870847*14662949395604^(5/21) 6765000029563649 a001 24157817/4870847*(1/2+1/2*5^(1/2))^15 6765000029563649 a001 2178309/54018521*3461452808002^(5/12) 6765000029563649 a001 24157817/4870847*192900153618^(5/18) 6765000029563649 a001 24157817/4870847*28143753123^(3/10) 6765000029563649 a001 2178309/54018521*28143753123^(1/2) 6765000029563649 a001 24157817/4870847*10749957122^(5/16) 6765000029563649 a001 24157817/4870847*599074578^(5/14) 6765000029563649 a001 24157817/4870847*228826127^(3/8) 6765000029563649 a001 2178309/54018521*228826127^(5/8) 6765000029563649 a001 12586269025/4870847*12752043^(1/17) 6765000029563650 a001 726103/29134601*33385282^(13/18) 6765000029563651 a001 46347/4868641*33385282^(7/9) 6765000029563651 a001 24157817/4870847*33385282^(5/12) 6765000029563651 a001 2178309/141422324*33385282^(3/4) 6765000029563651 a001 4807526976/4870847*12752043^(2/17) 6765000029563651 a001 726103/199691526*33385282^(5/6) 6765000029563652 a001 311187/224056801*33385282^(8/9) 6765000029563652 a001 2178309/2537720636*33385282^(11/12) 6765000029563652 a001 726103/1368706081*33385282^(17/18) 6765000029563652 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^48 6765000029563654 a001 1836311903/4870847*12752043^(3/17) 6765000029563656 a001 701408733/4870847*12752043^(4/17) 6765000029563658 a001 267914296/4870847*12752043^(5/17) 6765000029563660 a001 14930352/4870847*12752043^(8/17) 6765000029563661 a001 102334155/4870847*12752043^(6/17) 6765000029563662 a001 20100270056685/2971215073 6765000029563662 a001 9227465/4870847*45537549124^(1/3) 6765000029563662 a001 2178309/20633239*(1/2+1/2*5^(1/2))^23 6765000029563662 a001 9227465/4870847*(1/2+1/2*5^(1/2))^17 6765000029563662 a001 2178309/20633239*4106118243^(1/2) 6765000029563662 a001 39088169/4870847*12752043^(7/17) 6765000029563664 a001 12586269025/4870847*4870847^(1/16) 6765000029563665 a001 416020/16692641*1860498^(13/15) 6765000029563670 a001 311187/4769326*12752043^(12/17) 6765000029563677 a001 726103/29134601*12752043^(13/17) 6765000029563680 a001 46347/4868641*12752043^(14/17) 6765000029563682 a001 4807526976/4870847*4870847^(1/8) 6765000029563683 a001 726103/199691526*12752043^(15/17) 6765000029563683 a001 9227465/4870847*12752043^(1/2) 6765000029563685 a001 311187/224056801*12752043^(16/17) 6765000029563686 a001 2178309/7881196*7881196^(7/11) 6765000029563688 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^46 6765000029563700 a001 1836311903/4870847*4870847^(3/16) 6765000029563718 a001 701408733/4870847*4870847^(1/4) 6765000029563735 a001 267914296/4870847*4870847^(5/16) 6765000029563738 a001 832040/54018521*1860498^(9/10) 6765000029563746 a001 2178309/7881196*20633239^(3/5) 6765000029563753 a001 102334155/4870847*4870847^(3/8) 6765000029563755 a001 2178309/7881196*141422324^(7/13) 6765000029563755 a001 3838809989301/567451585 6765000029563755 a001 2178309/7881196*2537720636^(7/15) 6765000029563755 a001 2178309/7881196*17393796001^(3/7) 6765000029563755 a001 2178309/7881196*45537549124^(7/17) 6765000029563755 a001 3524578/4870847*817138163596^(1/3) 6765000029563755 a001 2178309/7881196*14662949395604^(1/3) 6765000029563755 a001 2178309/7881196*(1/2+1/2*5^(1/2))^21 6765000029563755 a001 3524578/4870847*(1/2+1/2*5^(1/2))^19 6765000029563755 a001 2178309/7881196*192900153618^(7/18) 6765000029563755 a001 2178309/7881196*10749957122^(7/16) 6765000029563755 a001 2178309/7881196*599074578^(1/2) 6765000029563756 a001 3524578/4870847*87403803^(1/2) 6765000029563759 a001 2178309/7881196*33385282^(7/12) 6765000029563765 a001 5702887/4870847*4870847^(9/16) 6765000029563770 a001 39088169/4870847*4870847^(7/16) 6765000029563777 a001 12586269025/4870847*1860498^(1/15) 6765000029563781 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^47 6765000029563783 a001 14930352/4870847*4870847^(1/2) 6765000029563791 a001 5702887/1568397607*7881196^(10/11) 6765000029563800 a001 832040/87403803*1860498^(14/15) 6765000029563801 a001 726103/4250681*4870847^(11/16) 6765000029563801 a001 5702887/370248451*7881196^(9/11) 6765000029563810 a001 5702887/87403803*7881196^(8/11) 6765000029563811 a001 5702887/33385282*7881196^(2/3) 6765000029563816 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^49 6765000029563822 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^51 6765000029563822 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^53 6765000029563822 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^55 6765000029563822 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^57 6765000029563822 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^59 6765000029563822 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^61 6765000029563822 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^63 6765000029563822 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^65 6765000029563822 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^67 6765000029563822 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^69 6765000029563822 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^71 6765000029563822 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^73 6765000029563822 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^75 6765000029563822 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^77 6765000029563822 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^79 6765000029563822 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^81 6765000029563822 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^83 6765000029563822 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^85 6765000029563822 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^87 6765000029563822 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^89 6765000029563822 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^91 6765000029563822 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^93 6765000029563822 a004 Fibonacci(82)*Lucas(33)/(1/2+sqrt(5)/2)^95 6765000029563822 a004 Fibonacci(84)*Lucas(33)/(1/2+sqrt(5)/2)^97 6765000029563822 a004 Fibonacci(86)*Lucas(33)/(1/2+sqrt(5)/2)^99 6765000029563822 a004 Fibonacci(87)*Lucas(33)/(1/2+sqrt(5)/2)^100 6765000029563822 a004 Fibonacci(85)*Lucas(33)/(1/2+sqrt(5)/2)^98 6765000029563822 a004 Fibonacci(83)*Lucas(33)/(1/2+sqrt(5)/2)^96 6765000029563822 a004 Fibonacci(81)*Lucas(33)/(1/2+sqrt(5)/2)^94 6765000029563822 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^92 6765000029563822 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^90 6765000029563822 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^88 6765000029563822 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^86 6765000029563822 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^84 6765000029563822 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^82 6765000029563822 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^80 6765000029563822 a001 1/1762289*(1/2+1/2*5^(1/2))^53 6765000029563822 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^78 6765000029563822 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^76 6765000029563822 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^74 6765000029563822 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^72 6765000029563822 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^70 6765000029563822 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^68 6765000029563822 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^66 6765000029563822 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^64 6765000029563822 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^62 6765000029563822 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^60 6765000029563822 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^58 6765000029563822 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^56 6765000029563823 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^54 6765000029563823 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^52 6765000029563824 a001 4976784/4250681*7881196^(6/11) 6765000029563825 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^50 6765000029563826 a001 4976784/1368706081*7881196^(10/11) 6765000029563831 a001 39088169/10749957122*7881196^(10/11) 6765000029563832 a001 831985/228811001*7881196^(10/11) 6765000029563832 a001 267914296/73681302247*7881196^(10/11) 6765000029563832 a001 233802911/64300051206*7881196^(10/11) 6765000029563832 a001 1836311903/505019158607*7881196^(10/11) 6765000029563832 a001 1602508992/440719107401*7881196^(10/11) 6765000029563832 a001 12586269025/3461452808002*7881196^(10/11) 6765000029563832 a001 10983760033/3020733700601*7881196^(10/11) 6765000029563832 a001 86267571272/23725150497407*7881196^(10/11) 6765000029563832 a001 53316291173/14662949395604*7881196^(10/11) 6765000029563832 a001 20365011074/5600748293801*7881196^(10/11) 6765000029563832 a001 7778742049/2139295485799*7881196^(10/11) 6765000029563832 a001 2971215073/817138163596*7881196^(10/11) 6765000029563832 a001 1134903170/312119004989*7881196^(10/11) 6765000029563832 a001 433494437/119218851371*7881196^(10/11) 6765000029563832 a001 165580141/45537549124*7881196^(10/11) 6765000029563833 a001 63245986/17393796001*7881196^(10/11) 6765000029563835 a001 24157817/6643838879*7881196^(10/11) 6765000029563836 a001 14930352/969323029*7881196^(9/11) 6765000029563836 a001 5702887/20633239*7881196^(7/11) 6765000029563838 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^48 6765000029563839 a001 5702887/12752043*20633239^(4/7) 6765000029563841 a001 63245986/12752043*7881196^(5/11) 6765000029563841 a001 39088169/2537720636*7881196^(9/11) 6765000029563842 a001 7778742049/4870847*1860498^(1/10) 6765000029563842 a001 102334155/6643838879*7881196^(9/11) 6765000029563842 a001 9238424/599786069*7881196^(9/11) 6765000029563842 a001 701408733/45537549124*7881196^(9/11) 6765000029563842 a001 1836311903/119218851371*7881196^(9/11) 6765000029563842 a001 4807526976/312119004989*7881196^(9/11) 6765000029563842 a001 12586269025/817138163596*7881196^(9/11) 6765000029563842 a001 32951280099/2139295485799*7881196^(9/11) 6765000029563842 a001 86267571272/5600748293801*7881196^(9/11) 6765000029563842 a001 7787980473/505618944676*7881196^(9/11) 6765000029563842 a001 365435296162/23725150497407*7881196^(9/11) 6765000029563842 a001 139583862445/9062201101803*7881196^(9/11) 6765000029563842 a001 53316291173/3461452808002*7881196^(9/11) 6765000029563842 a001 20365011074/1322157322203*7881196^(9/11) 6765000029563842 a001 7778742049/505019158607*7881196^(9/11) 6765000029563842 a001 2971215073/192900153618*7881196^(9/11) 6765000029563842 a001 1134903170/73681302247*7881196^(9/11) 6765000029563842 a001 433494437/28143753123*7881196^(9/11) 6765000029563842 a001 165580141/10749957122*7881196^(9/11) 6765000029563843 a001 63245986/4106118243*7881196^(9/11) 6765000029563845 a001 24157817/1568397607*7881196^(9/11) 6765000029563846 a001 14930352/228826127*7881196^(8/11) 6765000029563848 a001 5702887/12752043*2537720636^(4/9) 6765000029563848 a001 5702887/12752043*(1/2+1/2*5^(1/2))^20 6765000029563848 a001 5702887/12752043*23725150497407^(5/16) 6765000029563848 a001 5702887/12752043*505019158607^(5/14) 6765000029563848 a001 5702887/12752043*73681302247^(5/13) 6765000029563848 a001 5702887/12752043*28143753123^(2/5) 6765000029563848 a001 5702887/12752043*10749957122^(5/12) 6765000029563848 a001 32522920134769/4807526976 6765000029563848 a001 5702887/12752043*4106118243^(10/23) 6765000029563848 a001 5702887/12752043*1568397607^(5/11) 6765000029563848 a001 5702887/12752043*599074578^(10/21) 6765000029563848 a001 5702887/12752043*228826127^(1/2) 6765000029563848 a001 9227465/2537720636*7881196^(10/11) 6765000029563849 a001 5702887/12752043*87403803^(10/19) 6765000029563850 a001 267914296/12752043*7881196^(4/11) 6765000029563851 a001 39088169/599074578*7881196^(8/11) 6765000029563852 a001 5702887/12752043*33385282^(5/9) 6765000029563852 a001 4976784/29134601*7881196^(2/3) 6765000029563852 a001 14619165/224056801*7881196^(8/11) 6765000029563852 a001 267914296/4106118243*7881196^(8/11) 6765000029563852 a001 701408733/10749957122*7881196^(8/11) 6765000029563852 a001 1836311903/28143753123*7881196^(8/11) 6765000029563852 a001 686789568/10525900321*7881196^(8/11) 6765000029563852 a001 12586269025/192900153618*7881196^(8/11) 6765000029563852 a001 32951280099/505019158607*7881196^(8/11) 6765000029563852 a001 86267571272/1322157322203*7881196^(8/11) 6765000029563852 a001 32264490531/494493258286*7881196^(8/11) 6765000029563852 a001 591286729879/9062201101803*7881196^(8/11) 6765000029563852 a001 1548008755920/23725150497407*7881196^(8/11) 6765000029563852 a001 365435296162/5600748293801*7881196^(8/11) 6765000029563852 a001 139583862445/2139295485799*7881196^(8/11) 6765000029563852 a001 53316291173/817138163596*7881196^(8/11) 6765000029563852 a001 20365011074/312119004989*7881196^(8/11) 6765000029563852 a001 7778742049/119218851371*7881196^(8/11) 6765000029563852 a001 2971215073/45537549124*7881196^(8/11) 6765000029563852 a001 1134903170/17393796001*7881196^(8/11) 6765000029563852 a001 433494437/6643838879*7881196^(8/11) 6765000029563852 a001 165580141/2537720636*7881196^(8/11) 6765000029563853 a001 63245986/969323029*7881196^(8/11) 6765000029563853 a001 433494437/12752043*7881196^(1/3) 6765000029563854 a001 311187/4769326*4870847^(3/4) 6765000029563855 a001 24157817/370248451*7881196^(8/11) 6765000029563858 a001 39088169/228826127*7881196^(2/3) 6765000029563858 a001 9227465/599074578*7881196^(9/11) 6765000029563858 a001 14930352/54018521*7881196^(7/11) 6765000029563859 a001 34111385/199691526*7881196^(2/3) 6765000029563859 a001 267914296/1568397607*7881196^(2/3) 6765000029563859 a001 233802911/1368706081*7881196^(2/3) 6765000029563859 a001 1836311903/10749957122*7881196^(2/3) 6765000029563859 a001 1602508992/9381251041*7881196^(2/3) 6765000029563859 a001 12586269025/73681302247*7881196^(2/3) 6765000029563859 a001 10983760033/64300051206*7881196^(2/3) 6765000029563859 a001 86267571272/505019158607*7881196^(2/3) 6765000029563859 a001 75283811239/440719107401*7881196^(2/3) 6765000029563859 a001 2504730781961/14662949395604*7881196^(2/3) 6765000029563859 a001 139583862445/817138163596*7881196^(2/3) 6765000029563859 a001 53316291173/312119004989*7881196^(2/3) 6765000029563859 a001 20365011074/119218851371*7881196^(2/3) 6765000029563859 a001 7778742049/45537549124*7881196^(2/3) 6765000029563859 a001 2971215073/17393796001*7881196^(2/3) 6765000029563859 a001 1134903170/6643838879*7881196^(2/3) 6765000029563859 a001 433494437/2537720636*7881196^(2/3) 6765000029563859 a001 165580141/969323029*7881196^(2/3) 6765000029563859 a001 63245986/370248451*7881196^(2/3) 6765000029563860 a001 1134903170/12752043*7881196^(3/11) 6765000029563861 a001 24157817/141422324*7881196^(2/3) 6765000029563862 a001 39088169/141422324*7881196^(7/11) 6765000029563862 a001 102334155/370248451*7881196^(7/11) 6765000029563862 a001 267914296/969323029*7881196^(7/11) 6765000029563862 a001 701408733/2537720636*7881196^(7/11) 6765000029563862 a001 1836311903/6643838879*7881196^(7/11) 6765000029563862 a001 4807526976/17393796001*7881196^(7/11) 6765000029563862 a001 12586269025/45537549124*7881196^(7/11) 6765000029563862 a001 32951280099/119218851371*7881196^(7/11) 6765000029563862 a001 86267571272/312119004989*7881196^(7/11) 6765000029563862 a001 225851433717/817138163596*7881196^(7/11) 6765000029563862 a001 1548008755920/5600748293801*7881196^(7/11) 6765000029563862 a001 139583862445/505019158607*7881196^(7/11) 6765000029563862 a001 53316291173/192900153618*7881196^(7/11) 6765000029563862 a001 20365011074/73681302247*7881196^(7/11) 6765000029563862 a001 7778742049/28143753123*7881196^(7/11) 6765000029563862 a001 2971215073/10749957122*7881196^(7/11) 6765000029563862 a001 1134903170/4106118243*7881196^(7/11) 6765000029563862 a001 433494437/1568397607*7881196^(7/11) 6765000029563862 a001 165580141/599074578*7881196^(7/11) 6765000029563862 a001 63245986/228826127*7881196^(7/11) 6765000029563863 a001 24157817/87403803*7881196^(7/11) 6765000029563865 a001 39088169/33385282*7881196^(6/11) 6765000029563868 a001 9227465/141422324*7881196^(8/11) 6765000029563870 a001 1602508992/4250681*7881196^(2/11) 6765000029563871 a001 34111385/29134601*7881196^(6/11) 6765000029563872 a001 267914296/228826127*7881196^(6/11) 6765000029563872 a001 9227465/33385282*7881196^(7/11) 6765000029563872 a001 233802911/199691526*7881196^(6/11) 6765000029563872 a001 1836311903/1568397607*7881196^(6/11) 6765000029563872 a001 1602508992/1368706081*7881196^(6/11) 6765000029563872 a001 12586269025/10749957122*7881196^(6/11) 6765000029563872 a001 10983760033/9381251041*7881196^(6/11) 6765000029563872 a001 86267571272/73681302247*7881196^(6/11) 6765000029563872 a001 75283811239/64300051206*7881196^(6/11) 6765000029563872 a001 2504730781961/2139295485799*7881196^(6/11) 6765000029563872 a001 365435296162/312119004989*7881196^(6/11) 6765000029563872 a001 139583862445/119218851371*7881196^(6/11) 6765000029563872 a001 53316291173/45537549124*7881196^(6/11) 6765000029563872 a001 20365011074/17393796001*7881196^(6/11) 6765000029563872 a001 7778742049/6643838879*7881196^(6/11) 6765000029563872 a001 2971215073/2537720636*7881196^(6/11) 6765000029563872 a001 1134903170/969323029*7881196^(6/11) 6765000029563872 a001 433494437/370248451*7881196^(6/11) 6765000029563872 a001 165580141/141422324*7881196^(6/11) 6765000029563873 a001 5702887/12752043*12752043^(10/17) 6765000029563874 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^49 6765000029563875 a001 63245986/54018521*7881196^(6/11) 6765000029563876 a001 165580141/33385282*7881196^(5/11) 6765000029563876 a001 5702887/1568397607*20633239^(6/7) 6765000029563877 a001 9227465/54018521*7881196^(2/3) 6765000029563877 a001 726103/29134601*4870847^(13/16) 6765000029563877 a001 5702887/599074578*20633239^(4/5) 6765000029563879 a001 5702887/141422324*20633239^(5/7) 6765000029563880 a001 20365011074/12752043*7881196^(1/11) 6765000029563881 a001 433494437/87403803*7881196^(5/11) 6765000029563882 a001 1134903170/228826127*7881196^(5/11) 6765000029563882 a001 2971215073/599074578*7881196^(5/11) 6765000029563882 a001 7778742049/1568397607*7881196^(5/11) 6765000029563882 a001 20365011074/4106118243*7881196^(5/11) 6765000029563882 a001 53316291173/10749957122*7881196^(5/11) 6765000029563882 a001 139583862445/28143753123*7881196^(5/11) 6765000029563882 a001 365435296162/73681302247*7881196^(5/11) 6765000029563882 a001 956722026041/192900153618*7881196^(5/11) 6765000029563882 a001 2504730781961/505019158607*7881196^(5/11) 6765000029563882 a001 10610209857723/2139295485799*7881196^(5/11) 6765000029563882 a001 4052739537881/817138163596*7881196^(5/11) 6765000029563882 a001 140728068720/28374454999*7881196^(5/11) 6765000029563882 a001 591286729879/119218851371*7881196^(5/11) 6765000029563882 a001 225851433717/45537549124*7881196^(5/11) 6765000029563882 a001 86267571272/17393796001*7881196^(5/11) 6765000029563882 a001 32951280099/6643838879*7881196^(5/11) 6765000029563882 a001 1144206275/230701876*7881196^(5/11) 6765000029563882 a001 4807526976/969323029*7881196^(5/11) 6765000029563882 a001 1836311903/370248451*7881196^(5/11) 6765000029563882 a001 701408733/141422324*7881196^(5/11) 6765000029563883 a001 34111385/4250681*20633239^(2/5) 6765000029563883 a001 63245986/12752043*20633239^(3/7) 6765000029563884 a001 4976784/4250681*141422324^(6/13) 6765000029563884 a001 4976784/4250681*2537720636^(2/5) 6765000029563884 a001 4976784/4250681*45537549124^(6/17) 6765000029563884 a001 5702887/33385282*312119004989^(2/5) 6765000029563884 a001 4976784/4250681*14662949395604^(2/7) 6765000029563884 a001 5702887/33385282*(1/2+1/2*5^(1/2))^22 6765000029563884 a001 4976784/4250681*(1/2+1/2*5^(1/2))^18 6765000029563884 a001 4976784/4250681*192900153618^(1/3) 6765000029563884 a001 85146110326224/12586269025 6765000029563884 a001 4976784/4250681*10749957122^(3/8) 6765000029563884 a001 5702887/33385282*10749957122^(11/24) 6765000029563884 a001 4976784/4250681*4106118243^(9/23) 6765000029563884 a001 5702887/33385282*4106118243^(11/23) 6765000029563884 a001 4976784/4250681*1568397607^(9/22) 6765000029563884 a001 5702887/33385282*1568397607^(1/2) 6765000029563884 a001 4976784/4250681*599074578^(3/7) 6765000029563884 a001 5702887/33385282*599074578^(11/21) 6765000029563884 a001 4976784/4250681*228826127^(9/20) 6765000029563884 a001 5702887/33385282*228826127^(11/20) 6765000029563884 a001 4976784/4250681*87403803^(9/19) 6765000029563884 a001 267914296/54018521*7881196^(5/11) 6765000029563884 a001 5702887/33385282*87403803^(11/19) 6765000029563885 a001 233802911/4250681*20633239^(2/7) 6765000029563886 a001 701408733/33385282*7881196^(4/11) 6765000029563887 a001 2971215073/12752043*20633239^(1/5) 6765000029563887 a001 4976784/4250681*33385282^(1/2) 6765000029563887 a001 5702887/33385282*33385282^(11/18) 6765000029563887 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^51 6765000029563888 a001 7778742049/12752043*20633239^(1/7) 6765000029563889 a001 5702887/87403803*141422324^(8/13) 6765000029563889 a001 5702887/87403803*2537720636^(8/15) 6765000029563889 a001 5702887/87403803*45537549124^(8/17) 6765000029563889 a001 5702887/87403803*14662949395604^(8/21) 6765000029563889 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(38) 6765000029563889 a001 39088169/12752043*(1/2+1/2*5^(1/2))^16 6765000029563889 a001 39088169/12752043*23725150497407^(1/4) 6765000029563889 a001 5702887/87403803*192900153618^(4/9) 6765000029563889 a001 39088169/12752043*73681302247^(4/13) 6765000029563889 a001 5702887/87403803*73681302247^(6/13) 6765000029563889 a001 222915410843903/32951280099 6765000029563889 a001 39088169/12752043*10749957122^(1/3) 6765000029563889 a001 5702887/87403803*10749957122^(1/2) 6765000029563889 a001 39088169/12752043*4106118243^(8/23) 6765000029563889 a001 5702887/87403803*4106118243^(12/23) 6765000029563889 a001 39088169/12752043*1568397607^(4/11) 6765000029563889 a001 5702887/87403803*1568397607^(6/11) 6765000029563889 a001 39088169/12752043*599074578^(8/21) 6765000029563889 a001 5702887/87403803*599074578^(4/7) 6765000029563889 a001 39088169/12752043*228826127^(2/5) 6765000029563889 a001 5702887/87403803*228826127^(3/5) 6765000029563889 a001 567451585/16692641*7881196^(1/3) 6765000029563889 a001 39088169/12752043*87403803^(8/19) 6765000029563889 a001 5702887/228826127*141422324^(2/3) 6765000029563889 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^53 6765000029563889 a001 5702887/87403803*87403803^(12/19) 6765000029563889 a001 5702887/28143753123*141422324^(12/13) 6765000029563889 a001 5702887/6643838879*141422324^(11/13) 6765000029563890 a001 5702887/1568397607*141422324^(10/13) 6765000029563890 a001 5702887/370248451*141422324^(9/13) 6765000029563890 a001 34111385/4250681*17393796001^(2/7) 6765000029563890 a001 34111385/4250681*14662949395604^(2/9) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(40) 6765000029563890 a001 34111385/4250681*(1/2+1/2*5^(1/2))^14 6765000029563890 a001 34111385/4250681*505019158607^(1/4) 6765000029563890 a001 583600122205485/86267571272 6765000029563890 a001 5702887/228826127*73681302247^(1/2) 6765000029563890 a001 34111385/4250681*10749957122^(7/24) 6765000029563890 a001 5702887/228826127*10749957122^(13/24) 6765000029563890 a001 34111385/4250681*4106118243^(7/23) 6765000029563890 a001 5702887/228826127*4106118243^(13/23) 6765000029563890 a001 34111385/4250681*1568397607^(7/22) 6765000029563890 a001 5702887/228826127*1568397607^(13/22) 6765000029563890 a001 267914296/12752043*141422324^(4/13) 6765000029563890 a001 34111385/4250681*599074578^(1/3) 6765000029563890 a001 5702887/228826127*599074578^(13/21) 6765000029563890 a001 34111385/4250681*228826127^(7/20) 6765000029563890 a001 1134903170/12752043*141422324^(3/13) 6765000029563890 a001 165580141/12752043*141422324^(1/3) 6765000029563890 a001 1602508992/4250681*141422324^(2/13) 6765000029563890 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^55 6765000029563890 a001 5702887/228826127*228826127^(13/20) 6765000029563890 a001 20365011074/12752043*141422324^(1/13) 6765000029563890 a001 267914296/12752043*2537720636^(4/15) 6765000029563890 a001 5702887/599074578*17393796001^(4/7) 6765000029563890 a001 267914296/12752043*45537549124^(4/17) 6765000029563890 a001 267914296/12752043*817138163596^(4/19) 6765000029563890 a001 267914296/12752043*14662949395604^(4/21) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(42) 6765000029563890 a001 267914296/12752043*(1/2+1/2*5^(1/2))^12 6765000029563890 a001 5702887/599074578*505019158607^(1/2) 6765000029563890 a001 267914296/12752043*192900153618^(2/9) 6765000029563890 a001 267914296/12752043*73681302247^(3/13) 6765000029563890 a001 5702887/599074578*73681302247^(7/13) 6765000029563890 a001 267914296/12752043*10749957122^(1/4) 6765000029563890 a001 5702887/599074578*10749957122^(7/12) 6765000029563890 a001 267914296/12752043*4106118243^(6/23) 6765000029563890 a001 5702887/599074578*4106118243^(14/23) 6765000029563890 a001 267914296/12752043*1568397607^(3/11) 6765000029563890 a001 5702887/599074578*1568397607^(7/11) 6765000029563890 a001 267914296/12752043*599074578^(2/7) 6765000029563890 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^57 6765000029563890 a001 5702887/599074578*599074578^(2/3) 6765000029563890 a001 5702887/1568397607*2537720636^(2/3) 6765000029563890 a001 233802911/4250681*2537720636^(2/9) 6765000029563890 a001 5702887/1568397607*45537549124^(10/17) 6765000029563890 a001 5702887/1568397607*312119004989^(6/11) 6765000029563890 a001 233802911/4250681*312119004989^(2/11) 6765000029563890 a001 5702887/1568397607*14662949395604^(10/21) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(44) 6765000029563890 a001 233802911/4250681*(1/2+1/2*5^(1/2))^10 6765000029563890 a001 4000054745112171/591286729879 6765000029563890 a001 5702887/1568397607*192900153618^(5/9) 6765000029563890 a001 233802911/4250681*28143753123^(1/5) 6765000029563890 a001 5702887/1568397607*28143753123^(3/5) 6765000029563890 a001 233802911/4250681*10749957122^(5/24) 6765000029563890 a001 5702887/1568397607*10749957122^(5/8) 6765000029563890 a001 233802911/4250681*4106118243^(5/23) 6765000029563890 a001 5702887/1568397607*4106118243^(15/23) 6765000029563890 a001 233802911/4250681*1568397607^(5/22) 6765000029563890 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^59 6765000029563890 a001 5702887/505019158607*2537720636^(14/15) 6765000029563890 a001 5702887/192900153618*2537720636^(8/9) 6765000029563890 a001 5702887/119218851371*2537720636^(13/15) 6765000029563890 a001 5702887/1568397607*1568397607^(15/22) 6765000029563890 a001 5702887/28143753123*2537720636^(4/5) 6765000029563890 a001 5702887/17393796001*2537720636^(7/9) 6765000029563890 a001 5702887/6643838879*2537720636^(11/15) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(46) 6765000029563890 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^8 6765000029563890 a001 1836311903/12752043*23725150497407^(1/8) 6765000029563890 a001 10472279279563961/1548008755920 6765000029563890 a001 1836311903/12752043*505019158607^(1/7) 6765000029563890 a001 5702887/4106118243*505019158607^(4/7) 6765000029563890 a001 1836311903/12752043*73681302247^(2/13) 6765000029563890 a001 5702887/4106118243*73681302247^(8/13) 6765000029563890 a001 1836311903/12752043*10749957122^(1/6) 6765000029563890 a001 5702887/4106118243*10749957122^(2/3) 6765000029563890 a001 1836311903/12752043*4106118243^(4/23) 6765000029563890 a001 1602508992/4250681*2537720636^(2/15) 6765000029563890 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^61 6765000029563890 a001 5702887/4106118243*4106118243^(16/23) 6765000029563890 a001 7778742049/12752043*2537720636^(1/9) 6765000029563890 a001 20365011074/12752043*2537720636^(1/15) 6765000029563890 a001 5702887/10749957122*45537549124^(2/3) 6765000029563890 a001 1602508992/4250681*45537549124^(2/17) 6765000029563890 a001 1602508992/4250681*14662949395604^(2/21) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(48) 6765000029563890 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^6 6765000029563890 a001 1602508992/4250681*10749957122^(1/8) 6765000029563890 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^63 6765000029563890 a001 5702887/505019158607*17393796001^(6/7) 6765000029563890 a001 5702887/10749957122*10749957122^(17/24) 6765000029563890 a001 5702887/28143753123*45537549124^(12/17) 6765000029563890 a001 5702887/28143753123*14662949395604^(4/7) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(50) 6765000029563890 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^4 6765000029563890 a001 12586269025/12752043*23725150497407^(1/16) 6765000029563890 a001 5702887/28143753123*505019158607^(9/14) 6765000029563890 a001 12586269025/12752043*73681302247^(1/13) 6765000029563890 a001 5702887/28143753123*192900153618^(2/3) 6765000029563890 a001 5702887/28143753123*73681302247^(9/13) 6765000029563890 a001 1602508992/4250681*4106118243^(3/23) 6765000029563890 a001 12586269025/12752043*10749957122^(1/12) 6765000029563890 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^65 6765000029563890 a001 5702887/9062201101803*45537549124^(16/17) 6765000029563890 a001 5702887/2139295485799*45537549124^(15/17) 6765000029563890 a001 5702887/505019158607*45537549124^(14/17) 6765000029563890 a001 5702887/119218851371*45537549124^(13/17) 6765000029563890 a001 5702887/73681302247*817138163596^(2/3) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(52) 6765000029563890 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^2 6765000029563890 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^67 6765000029563890 a001 5702887/192900153618*312119004989^(8/11) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(54) 6765000029563890 a006 5^(1/2)*Fibonacci(54)/Lucas(34)/sqrt(5) 6765000029563890 a001 5702887/192900153618*23725150497407^(5/8) 6765000029563890 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^69 6765000029563890 a001 5702887/1322157322203*312119004989^(4/5) 6765000029563890 a001 5702887/2139295485799*312119004989^(9/11) 6765000029563890 a001 5702887/505019158607*817138163596^(14/19) 6765000029563890 a001 5702887/505019158607*14662949395604^(2/3) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(56) 6765000029563890 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^2 6765000029563890 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^71 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(58) 6765000029563890 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^4 6765000029563890 a001 5702887/1322157322203*23725150497407^(11/16) 6765000029563890 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^73 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(60) 6765000029563890 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^6 6765000029563890 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^75 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(62) 6765000029563890 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^8 6765000029563890 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^77 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(64) 6765000029563890 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^10 6765000029563890 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^79 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(66) 6765000029563890 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^12 6765000029563890 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^81 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(68) 6765000029563890 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^83 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(70) 6765000029563890 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^85 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(72) 6765000029563890 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^87 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(74) 6765000029563890 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^89 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(76) 6765000029563890 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^91 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(78) 6765000029563890 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^93 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(80) 6765000029563890 a004 Fibonacci(34)*Lucas(81)/(1/2+sqrt(5)/2)^95 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(82) 6765000029563890 a004 Fibonacci(34)*Lucas(83)/(1/2+sqrt(5)/2)^97 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(84) 6765000029563890 a004 Fibonacci(34)*Lucas(85)/(1/2+sqrt(5)/2)^99 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(86) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(88) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(90) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(92) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^80/Lucas(94) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^82/Lucas(96) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^84/Lucas(98) 6765000029563890 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^14 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^85/Lucas(99) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^86/Lucas(100) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^83/Lucas(97) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^81/Lucas(95) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(93) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(91) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(89) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(87) 6765000029563890 a004 Fibonacci(34)*Lucas(86)/(1/2+sqrt(5)/2)^100 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(85) 6765000029563890 a004 Fibonacci(34)*Lucas(84)/(1/2+sqrt(5)/2)^98 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(83) 6765000029563890 a004 Fibonacci(34)*Lucas(82)/(1/2+sqrt(5)/2)^96 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(81) 6765000029563890 a004 Fibonacci(34)*Lucas(80)/(1/2+sqrt(5)/2)^94 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(79) 6765000029563890 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^92 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(77) 6765000029563890 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^90 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(75) 6765000029563890 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^88 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(73) 6765000029563890 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^86 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(71) 6765000029563890 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^84 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(69) 6765000029563890 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^16 6765000029563890 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^18 6765000029563890 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^20 6765000029563890 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^22 6765000029563890 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^24 6765000029563890 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^26 6765000029563890 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^28 6765000029563890 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^30 6765000029563890 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^32 6765000029563890 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^34 6765000029563890 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^36 6765000029563890 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^38 6765000029563890 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^40 6765000029563890 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^42 6765000029563890 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^46 6765000029563890 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^82 6765000029563890 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^44 6765000029563890 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^45 6765000029563890 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^43 6765000029563890 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^41 6765000029563890 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^39 6765000029563890 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^37 6765000029563890 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^35 6765000029563890 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^33 6765000029563890 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^31 6765000029563890 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^29 6765000029563890 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^27 6765000029563890 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^25 6765000029563890 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^23 6765000029563890 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^21 6765000029563890 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^19 6765000029563890 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^17 6765000029563890 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^15 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(67) 6765000029563890 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^13 6765000029563890 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^80 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(65) 6765000029563890 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^11 6765000029563890 a001 5702887/14662949395604*14662949395604^(7/9) 6765000029563890 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^78 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(63) 6765000029563890 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^9 6765000029563890 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^76 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(61) 6765000029563890 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^7 6765000029563890 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^74 6765000029563890 a001 5702887/2139295485799*14662949395604^(5/7) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(59) 6765000029563890 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^5 6765000029563890 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^72 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(57) 6765000029563890 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^3 6765000029563890 a001 5702887/14662949395604*505019158607^(7/8) 6765000029563890 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^70 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(55) 6765000029563890 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2) 6765000029563890 a001 5702887/505019158607*192900153618^(7/9) 6765000029563890 a001 5702887/2139295485799*192900153618^(5/6) 6765000029563890 a001 5702887/9062201101803*192900153618^(8/9) 6765000029563890 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^68 6765000029563890 a001 5702887/119218851371*14662949395604^(13/21) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(53) 6765000029563890 a001 5702887/119218851371*192900153618^(13/18) 6765000029563890 a001 5702887/192900153618*73681302247^(10/13) 6765000029563890 a001 5702887/1322157322203*73681302247^(11/13) 6765000029563890 a001 5702887/9062201101803*73681302247^(12/13) 6765000029563890 a001 10983760033/4250681*10749957122^(1/24) 6765000029563890 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^66 6765000029563890 a001 5702887/119218851371*73681302247^(3/4) 6765000029563890 a001 20365011074/12752043*45537549124^(1/17) 6765000029563890 a001 20365011074/12752043*14662949395604^(1/21) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(51) 6765000029563890 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^3 6765000029563890 a001 20365011074/12752043*192900153618^(1/18) 6765000029563890 a001 5702887/17393796001*17393796001^(5/7) 6765000029563890 a001 5702887/192900153618*28143753123^(4/5) 6765000029563890 a001 20365011074/12752043*10749957122^(1/16) 6765000029563890 a001 5702887/2139295485799*28143753123^(9/10) 6765000029563890 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^64 6765000029563890 a001 10983760033/4250681*4106118243^(1/23) 6765000029563890 a001 5702887/17393796001*312119004989^(7/11) 6765000029563890 a001 3412406685199651/504420793834 6765000029563890 a001 5702887/17393796001*14662949395604^(5/9) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(49) 6765000029563890 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^5 6765000029563890 a001 5702887/17393796001*505019158607^(5/8) 6765000029563890 a001 7778742049/12752043*28143753123^(1/10) 6765000029563890 a001 12586269025/12752043*4106118243^(2/23) 6765000029563890 a001 5702887/17393796001*28143753123^(7/10) 6765000029563890 a001 5702887/28143753123*10749957122^(3/4) 6765000029563890 a001 5702887/73681302247*10749957122^(19/24) 6765000029563890 a001 5702887/119218851371*10749957122^(13/16) 6765000029563890 a001 5702887/192900153618*10749957122^(5/6) 6765000029563890 a001 5702887/505019158607*10749957122^(7/8) 6765000029563890 a001 5702887/1322157322203*10749957122^(11/12) 6765000029563890 a001 5702887/2139295485799*10749957122^(15/16) 6765000029563890 a001 5702887/3461452808002*10749957122^(23/24) 6765000029563890 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^62 6765000029563890 a001 1836311903/12752043*1568397607^(2/11) 6765000029563890 a001 10983760033/4250681*1568397607^(1/22) 6765000029563890 a001 2971215073/12752043*17393796001^(1/7) 6765000029563890 a001 5702887/6643838879*45537549124^(11/17) 6765000029563890 a001 5702887/6643838879*312119004989^(3/5) 6765000029563890 a001 16944503814015751/2504730781961 6765000029563890 a001 2971215073/12752043*14662949395604^(1/9) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(47) 6765000029563890 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^7 6765000029563890 a001 5702887/6643838879*192900153618^(11/18) 6765000029563890 a001 5702887/6643838879*10749957122^(11/16) 6765000029563890 a001 5702887/10749957122*4106118243^(17/23) 6765000029563890 a001 12586269025/12752043*1568397607^(1/11) 6765000029563890 a001 5702887/28143753123*4106118243^(18/23) 6765000029563890 a001 1602508992/4250681*1568397607^(3/22) 6765000029563890 a001 5702887/73681302247*4106118243^(19/23) 6765000029563890 a001 5702887/192900153618*4106118243^(20/23) 6765000029563890 a001 5702887/505019158607*4106118243^(21/23) 6765000029563890 a001 5702887/1322157322203*4106118243^(22/23) 6765000029563890 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^60 6765000029563890 a001 1134903170/12752043*2537720636^(1/5) 6765000029563890 a001 10983760033/4250681*599074578^(1/21) 6765000029563890 a001 1134903170/12752043*45537549124^(3/17) 6765000029563890 a001 1134903170/12752043*817138163596^(3/19) 6765000029563890 a001 1134903170/12752043*14662949395604^(1/7) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(45) 6765000029563890 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^9 6765000029563890 a001 1134903170/12752043*192900153618^(1/6) 6765000029563890 a001 1134903170/12752043*10749957122^(3/16) 6765000029563890 a001 20365011074/12752043*599074578^(1/14) 6765000029563890 a001 5702887/4106118243*1568397607^(8/11) 6765000029563890 a001 233802911/4250681*599074578^(5/21) 6765000029563890 a001 12586269025/12752043*599074578^(2/21) 6765000029563890 a001 5702887/10749957122*1568397607^(17/22) 6765000029563890 a001 5702887/6643838879*1568397607^(3/4) 6765000029563890 a001 5702887/28143753123*1568397607^(9/11) 6765000029563890 a001 5702887/73681302247*1568397607^(19/22) 6765000029563890 a001 5702887/192900153618*1568397607^(10/11) 6765000029563890 a001 5702887/505019158607*1568397607^(21/22) 6765000029563890 a001 1602508992/4250681*599074578^(1/7) 6765000029563890 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^58 6765000029563890 a001 1836311903/12752043*599074578^(4/21) 6765000029563890 a001 2971215073/12752043*599074578^(1/6) 6765000029563890 a001 1134903170/12752043*599074578^(3/14) 6765000029563890 a001 10983760033/4250681*228826127^(1/20) 6765000029563890 a001 433494437/12752043*312119004989^(1/5) 6765000029563890 a001 2472169789339619/365435296162 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(43) 6765000029563890 a001 433494437/12752043*(1/2+1/2*5^(1/2))^11 6765000029563890 a001 5702887/969323029*1322157322203^(1/2) 6765000029563890 a001 433494437/12752043*1568397607^(1/4) 6765000029563890 a001 5702887/1568397607*599074578^(5/7) 6765000029563890 a001 12586269025/12752043*228826127^(1/10) 6765000029563890 a001 5702887/4106118243*599074578^(16/21) 6765000029563890 a001 5702887/6643838879*599074578^(11/14) 6765000029563890 a001 5702887/10749957122*599074578^(17/21) 6765000029563890 a001 5702887/17393796001*599074578^(5/6) 6765000029563890 a001 5702887/28143753123*599074578^(6/7) 6765000029563890 a001 7778742049/12752043*228826127^(1/8) 6765000029563890 a001 5702887/73681302247*599074578^(19/21) 6765000029563890 a001 5702887/119218851371*599074578^(13/14) 6765000029563890 a001 5702887/192900153618*599074578^(20/21) 6765000029563890 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^56 6765000029563890 a001 1602508992/4250681*228826127^(3/20) 6765000029563890 a001 267914296/12752043*228826127^(3/10) 6765000029563890 a001 1836311903/12752043*228826127^(1/5) 6765000029563890 a001 233802911/4250681*228826127^(1/4) 6765000029563890 a001 10983760033/4250681*87403803^(1/19) 6765000029563890 a001 5702887/370248451*2537720636^(3/5) 6765000029563890 a001 5702887/370248451*45537549124^(9/17) 6765000029563890 a001 944284833567067/139583862445 6765000029563890 a001 5702887/370248451*817138163596^(9/19) 6765000029563890 a001 5702887/370248451*14662949395604^(3/7) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(41) 6765000029563890 a001 165580141/12752043*(1/2+1/2*5^(1/2))^13 6765000029563890 a001 5702887/370248451*192900153618^(1/2) 6765000029563890 a001 165580141/12752043*73681302247^(1/4) 6765000029563890 a001 5702887/370248451*10749957122^(9/16) 6765000029563890 a001 5702887/370248451*599074578^(9/14) 6765000029563890 a001 5702887/599074578*228826127^(7/10) 6765000029563890 a001 12586269025/12752043*87403803^(2/19) 6765000029563890 a001 5702887/1568397607*228826127^(3/4) 6765000029563890 a001 5702887/4106118243*228826127^(4/5) 6765000029563890 a001 5702887/10749957122*228826127^(17/20) 6765000029563890 a001 5702887/17393796001*228826127^(7/8) 6765000029563890 a001 5702887/28143753123*228826127^(9/10) 6765000029563890 a001 5702887/73681302247*228826127^(19/20) 6765000029563890 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^54 6765000029563890 a001 1602508992/4250681*87403803^(3/19) 6765000029563890 a001 1836311903/12752043*87403803^(4/19) 6765000029563890 a001 34111385/4250681*87403803^(7/19) 6765000029563890 a001 63245986/12752043*141422324^(5/13) 6765000029563890 a001 233802911/4250681*87403803^(5/19) 6765000029563890 a001 267914296/12752043*87403803^(6/19) 6765000029563890 a001 10983760033/4250681*33385282^(1/18) 6765000029563890 a001 5702887/141422324*2537720636^(5/9) 6765000029563890 a001 63245986/12752043*2537720636^(1/3) 6765000029563890 a001 63245986/12752043*45537549124^(5/17) 6765000029563890 a001 360684711361582/53316291173 6765000029563890 a001 5702887/141422324*312119004989^(5/11) 6765000029563890 a001 63245986/12752043*312119004989^(3/11) 6765000029563890 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(39) 6765000029563890 a001 63245986/12752043*(1/2+1/2*5^(1/2))^15 6765000029563890 a001 5702887/141422324*3461452808002^(5/12) 6765000029563890 a001 63245986/12752043*192900153618^(5/18) 6765000029563890 a001 63245986/12752043*28143753123^(3/10) 6765000029563890 a001 5702887/141422324*28143753123^(1/2) 6765000029563890 a001 63245986/12752043*10749957122^(5/16) 6765000029563890 a001 63245986/12752043*599074578^(5/14) 6765000029563890 a001 63245986/12752043*228826127^(3/8) 6765000029563890 a001 24157817/20633239*7881196^(6/11) 6765000029563890 a001 5702887/141422324*228826127^(5/8) 6765000029563890 a001 5702887/228826127*87403803^(13/19) 6765000029563890 a001 20365011074/12752043*33385282^(1/12) 6765000029563890 a001 5702887/599074578*87403803^(14/19) 6765000029563890 a001 12586269025/12752043*33385282^(1/9) 6765000029563890 a001 5702887/1568397607*87403803^(15/19) 6765000029563891 a001 5702887/4106118243*87403803^(16/19) 6765000029563891 a001 5702887/10749957122*87403803^(17/19) 6765000029563891 a001 5702887/28143753123*87403803^(18/19) 6765000029563891 a001 1836311903/1860498*710647^(1/7) 6765000029563891 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^52 6765000029563891 a001 1602508992/4250681*33385282^(1/6) 6765000029563891 a001 1836311903/87403803*7881196^(4/11) 6765000029563891 a001 1836311903/12752043*33385282^(2/9) 6765000029563891 a001 1134903170/12752043*33385282^(1/4) 6765000029563891 a001 233802911/4250681*33385282^(5/18) 6765000029563892 a001 39088169/12752043*33385282^(4/9) 6765000029563892 a001 102287808/4868641*7881196^(4/11) 6765000029563892 a001 12586269025/599074578*7881196^(4/11) 6765000029563892 a001 32951280099/1568397607*7881196^(4/11) 6765000029563892 a001 86267571272/4106118243*7881196^(4/11) 6765000029563892 a001 225851433717/10749957122*7881196^(4/11) 6765000029563892 a001 591286729879/28143753123*7881196^(4/11) 6765000029563892 a001 1548008755920/73681302247*7881196^(4/11) 6765000029563892 a001 4052739537881/192900153618*7881196^(4/11) 6765000029563892 a001 225749145909/10745088481*7881196^(4/11) 6765000029563892 a001 6557470319842/312119004989*7881196^(4/11) 6765000029563892 a001 2504730781961/119218851371*7881196^(4/11) 6765000029563892 a001 956722026041/45537549124*7881196^(4/11) 6765000029563892 a001 365435296162/17393796001*7881196^(4/11) 6765000029563892 a001 139583862445/6643838879*7881196^(4/11) 6765000029563892 a001 53316291173/2537720636*7881196^(4/11) 6765000029563892 a001 20365011074/969323029*7881196^(4/11) 6765000029563892 a001 267914296/12752043*33385282^(1/3) 6765000029563892 a001 7778742049/370248451*7881196^(4/11) 6765000029563892 a001 34111385/4250681*33385282^(7/18) 6765000029563892 a001 86267564507/12752042 6765000029563892 a001 24157817/12752043*45537549124^(1/3) 6765000029563892 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(37) 6765000029563892 a001 24157817/12752043*(1/2+1/2*5^(1/2))^17 6765000029563892 a001 5702887/54018521*4106118243^(1/2) 6765000029563892 a001 2971215073/141422324*7881196^(4/11) 6765000029563892 a001 10983760033/4250681*12752043^(1/17) 6765000029563893 a001 63245986/12752043*33385282^(5/12) 6765000029563893 a001 5702887/87403803*33385282^(2/3) 6765000029563894 a001 5702887/228826127*33385282^(13/18) 6765000029563894 a001 1134903170/54018521*7881196^(4/11) 6765000029563894 a001 2971215073/87403803*7881196^(1/3) 6765000029563894 a001 5702887/370248451*33385282^(3/4) 6765000029563894 a001 5702887/599074578*33385282^(7/9) 6765000029563895 a001 12586269025/12752043*12752043^(2/17) 6765000029563895 a001 5702887/1568397607*33385282^(5/6) 6765000029563895 a001 7778742049/228826127*7881196^(1/3) 6765000029563895 a001 10182505537/299537289*7881196^(1/3) 6765000029563895 a001 53316291173/1568397607*7881196^(1/3) 6765000029563895 a001 139583862445/4106118243*7881196^(1/3) 6765000029563895 a001 182717648081/5374978561*7881196^(1/3) 6765000029563895 a001 956722026041/28143753123*7881196^(1/3) 6765000029563895 a001 2504730781961/73681302247*7881196^(1/3) 6765000029563895 a001 3278735159921/96450076809*7881196^(1/3) 6765000029563895 a001 10610209857723/312119004989*7881196^(1/3) 6765000029563895 a001 4052739537881/119218851371*7881196^(1/3) 6765000029563895 a001 387002188980/11384387281*7881196^(1/3) 6765000029563895 a001 591286729879/17393796001*7881196^(1/3) 6765000029563895 a001 225851433717/6643838879*7881196^(1/3) 6765000029563895 a001 1135099622/33391061*7881196^(1/3) 6765000029563895 a001 32951280099/969323029*7881196^(1/3) 6765000029563895 a001 12586269025/370248451*7881196^(1/3) 6765000029563895 a001 5702887/4106118243*33385282^(8/9) 6765000029563895 a001 5702887/6643838879*33385282^(11/12) 6765000029563895 a001 1201881744/35355581*7881196^(1/3) 6765000029563896 a001 5702887/10749957122*33385282^(17/18) 6765000029563896 a001 2971215073/33385282*7881196^(3/11) 6765000029563896 a001 46347/4868641*4870847^(7/8) 6765000029563896 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^50 6765000029563896 a001 5702887/20633239*20633239^(3/5) 6765000029563897 a001 1602508992/4250681*12752043^(3/17) 6765000029563897 a001 1836311903/54018521*7881196^(1/3) 6765000029563898 a001 9303105/1875749*7881196^(5/11) 6765000029563900 a001 1836311903/12752043*12752043^(4/17) 6765000029563901 a001 7778742049/87403803*7881196^(3/11) 6765000029563902 a001 20365011074/228826127*7881196^(3/11) 6765000029563902 a001 53316291173/599074578*7881196^(3/11) 6765000029563902 a001 139583862445/1568397607*7881196^(3/11) 6765000029563902 a001 365435296162/4106118243*7881196^(3/11) 6765000029563902 a001 956722026041/10749957122*7881196^(3/11) 6765000029563902 a001 2504730781961/28143753123*7881196^(3/11) 6765000029563902 a001 6557470319842/73681302247*7881196^(3/11) 6765000029563902 a001 10610209857723/119218851371*7881196^(3/11) 6765000029563902 a001 4052739537881/45537549124*7881196^(3/11) 6765000029563902 a001 1548008755920/17393796001*7881196^(3/11) 6765000029563902 a001 591286729879/6643838879*7881196^(3/11) 6765000029563902 a001 225851433717/2537720636*7881196^(3/11) 6765000029563902 a001 86267571272/969323029*7881196^(3/11) 6765000029563902 a001 32951280099/370248451*7881196^(3/11) 6765000029563902 a001 233802911/4250681*12752043^(5/17) 6765000029563902 a001 12586269025/141422324*7881196^(3/11) 6765000029563904 a001 4807526976/54018521*7881196^(3/11) 6765000029563904 a001 267914296/12752043*12752043^(6/17) 6765000029563905 a001 5702887/20633239*141422324^(7/13) 6765000029563906 a001 12586269025/33385282*7881196^(2/11) 6765000029563906 a001 5702887/20633239*2537720636^(7/15) 6765000029563906 a001 4047937707035/598364773 6765000029563906 a001 5702887/20633239*17393796001^(3/7) 6765000029563906 a001 5702887/20633239*45537549124^(7/17) 6765000029563906 a001 9227465/12752043*817138163596^(1/3) 6765000029563906 a001 5702887/20633239*14662949395604^(1/3) 6765000029563906 a001 5702887/20633239*(1/2+1/2*5^(1/2))^21 6765000029563906 a001 9227465/12752043*(1/2+1/2*5^(1/2))^19 6765000029563906 a001 5702887/20633239*192900153618^(7/18) 6765000029563906 a001 5702887/20633239*10749957122^(7/16) 6765000029563906 a001 5702887/20633239*599074578^(1/2) 6765000029563906 a001 4976784/4250681*12752043^(9/17) 6765000029563906 a001 9227465/12752043*87403803^(1/2) 6765000029563907 a001 34111385/4250681*12752043^(7/17) 6765000029563907 a001 4807526976/4870847*1860498^(2/15) 6765000029563908 a001 10983760033/4250681*4870847^(1/16) 6765000029563908 a001 433494437/20633239*7881196^(4/11) 6765000029563908 a001 39088169/12752043*12752043^(8/17) 6765000029563909 a001 5702887/20633239*33385282^(7/12) 6765000029563909 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^51 6765000029563910 a001 7465176/16692641*20633239^(4/7) 6765000029563911 a001 5702887/33385282*12752043^(11/17) 6765000029563911 a001 10983760033/29134601*7881196^(2/11) 6765000029563911 a001 701408733/20633239*7881196^(1/3) 6765000029563911 a001 86267571272/228826127*7881196^(2/11) 6765000029563912 a001 267913919/710646*7881196^(2/11) 6765000029563912 a001 591286729879/1568397607*7881196^(2/11) 6765000029563912 a001 516002918640/1368706081*7881196^(2/11) 6765000029563912 a001 4052739537881/10749957122*7881196^(2/11) 6765000029563912 a001 3536736619241/9381251041*7881196^(2/11) 6765000029563912 a001 6557470319842/17393796001*7881196^(2/11) 6765000029563912 a001 2504730781961/6643838879*7881196^(2/11) 6765000029563912 a001 956722026041/2537720636*7881196^(2/11) 6765000029563912 a001 365435296162/969323029*7881196^(2/11) 6765000029563912 a001 139583862445/370248451*7881196^(2/11) 6765000029563912 a001 4976784/1368706081*20633239^(6/7) 6765000029563912 a001 53316291173/141422324*7881196^(2/11) 6765000029563913 a001 14930352/1568397607*20633239^(4/5) 6765000029563913 a001 24157817/12752043*12752043^(1/2) 6765000029563914 a001 726103/199691526*4870847^(15/16) 6765000029563914 a001 20365011074/54018521*7881196^(2/11) 6765000029563914 a001 14930352/370248451*20633239^(5/7) 6765000029563915 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^53 6765000029563915 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^55 6765000029563915 a001 53316291173/33385282*7881196^(1/11) 6765000029563915 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^57 6765000029563915 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^59 6765000029563915 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^61 6765000029563915 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^63 6765000029563915 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^65 6765000029563915 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^67 6765000029563915 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^69 6765000029563915 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^71 6765000029563915 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^73 6765000029563915 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^75 6765000029563915 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^77 6765000029563915 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^79 6765000029563915 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^81 6765000029563915 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^83 6765000029563915 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^85 6765000029563915 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^87 6765000029563915 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^89 6765000029563915 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^91 6765000029563915 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^93 6765000029563915 a004 Fibonacci(80)*Lucas(35)/(1/2+sqrt(5)/2)^95 6765000029563915 a004 Fibonacci(82)*Lucas(35)/(1/2+sqrt(5)/2)^97 6765000029563915 a004 Fibonacci(84)*Lucas(35)/(1/2+sqrt(5)/2)^99 6765000029563915 a004 Fibonacci(85)*Lucas(35)/(1/2+sqrt(5)/2)^100 6765000029563915 a004 Fibonacci(83)*Lucas(35)/(1/2+sqrt(5)/2)^98 6765000029563915 a004 Fibonacci(81)*Lucas(35)/(1/2+sqrt(5)/2)^96 6765000029563915 a004 Fibonacci(79)*Lucas(35)/(1/2+sqrt(5)/2)^94 6765000029563915 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^92 6765000029563915 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^90 6765000029563915 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^88 6765000029563915 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^86 6765000029563915 a001 2/9227465*(1/2+1/2*5^(1/2))^55 6765000029563915 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^84 6765000029563915 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^82 6765000029563915 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^80 6765000029563915 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^78 6765000029563915 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^76 6765000029563915 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^74 6765000029563915 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^72 6765000029563915 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^70 6765000029563915 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^68 6765000029563915 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^66 6765000029563915 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^64 6765000029563915 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^62 6765000029563915 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^60 6765000029563915 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^58 6765000029563916 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^56 6765000029563916 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^54 6765000029563917 a001 39088169/10749957122*20633239^(6/7) 6765000029563918 a001 1836311903/20633239*7881196^(3/11) 6765000029563918 a001 831985/228811001*20633239^(6/7) 6765000029563918 a001 267914296/73681302247*20633239^(6/7) 6765000029563918 a001 233802911/64300051206*20633239^(6/7) 6765000029563918 a001 1836311903/505019158607*20633239^(6/7) 6765000029563918 a001 1602508992/440719107401*20633239^(6/7) 6765000029563918 a001 12586269025/3461452808002*20633239^(6/7) 6765000029563918 a001 10983760033/3020733700601*20633239^(6/7) 6765000029563918 a001 86267571272/23725150497407*20633239^(6/7) 6765000029563918 a001 53316291173/14662949395604*20633239^(6/7) 6765000029563918 a001 20365011074/5600748293801*20633239^(6/7) 6765000029563918 a001 7778742049/2139295485799*20633239^(6/7) 6765000029563918 a001 2971215073/817138163596*20633239^(6/7) 6765000029563918 a001 1134903170/312119004989*20633239^(6/7) 6765000029563918 a001 433494437/119218851371*20633239^(6/7) 6765000029563918 a001 39088169/4106118243*20633239^(4/5) 6765000029563918 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^52 6765000029563918 a001 165580141/45537549124*20633239^(6/7) 6765000029563918 a001 14930352/54018521*20633239^(3/5) 6765000029563918 a001 63245986/17393796001*20633239^(6/7) 6765000029563918 a001 5702887/87403803*12752043^(12/17) 6765000029563919 a001 102334155/10749957122*20633239^(4/5) 6765000029563919 a001 165580141/33385282*20633239^(3/7) 6765000029563919 a001 267914296/28143753123*20633239^(4/5) 6765000029563919 a001 701408733/73681302247*20633239^(4/5) 6765000029563919 a001 1836311903/192900153618*20633239^(4/5) 6765000029563919 a001 102287808/10745088481*20633239^(4/5) 6765000029563919 a001 12586269025/1322157322203*20633239^(4/5) 6765000029563919 a001 32951280099/3461452808002*20633239^(4/5) 6765000029563919 a001 86267571272/9062201101803*20633239^(4/5) 6765000029563919 a001 225851433717/23725150497407*20633239^(4/5) 6765000029563919 a001 139583862445/14662949395604*20633239^(4/5) 6765000029563919 a001 53316291173/5600748293801*20633239^(4/5) 6765000029563919 a001 20365011074/2139295485799*20633239^(4/5) 6765000029563919 a001 7778742049/817138163596*20633239^(4/5) 6765000029563919 a001 2971215073/312119004989*20633239^(4/5) 6765000029563919 a001 1134903170/119218851371*20633239^(4/5) 6765000029563919 a001 433494437/45537549124*20633239^(4/5) 6765000029563919 a001 165580141/17393796001*20633239^(4/5) 6765000029563919 a001 133957148/16692641*20633239^(2/5) 6765000029563919 a001 63245986/6643838879*20633239^(4/5) 6765000029563919 a001 39088169/969323029*20633239^(5/7) 6765000029563919 a001 7465176/16692641*2537720636^(4/9) 6765000029563919 a001 7465176/16692641*(1/2+1/2*5^(1/2))^20 6765000029563919 a001 7465176/16692641*23725150497407^(5/16) 6765000029563919 a001 7465176/16692641*505019158607^(5/14) 6765000029563919 a001 7465176/16692641*73681302247^(5/13) 6765000029563919 a001 74305136947968/10983760033 6765000029563919 a001 7465176/16692641*28143753123^(2/5) 6765000029563919 a001 7465176/16692641*10749957122^(5/12) 6765000029563919 a001 7465176/16692641*4106118243^(10/23) 6765000029563919 a001 7465176/16692641*1568397607^(5/11) 6765000029563919 a001 7465176/16692641*599074578^(10/21) 6765000029563919 a001 7465176/16692641*228826127^(1/2) 6765000029563920 a001 7465176/16692641*87403803^(10/19) 6765000029563920 a001 9303105/230701876*20633239^(5/7) 6765000029563920 a001 267914296/6643838879*20633239^(5/7) 6765000029563920 a001 701408733/17393796001*20633239^(5/7) 6765000029563920 a001 1836311903/45537549124*20633239^(5/7) 6765000029563920 a001 4807526976/119218851371*20633239^(5/7) 6765000029563920 a001 1144206275/28374454999*20633239^(5/7) 6765000029563920 a001 32951280099/817138163596*20633239^(5/7) 6765000029563920 a001 86267571272/2139295485799*20633239^(5/7) 6765000029563920 a001 225851433717/5600748293801*20633239^(5/7) 6765000029563920 a001 591286729879/14662949395604*20633239^(5/7) 6765000029563920 a001 365435296162/9062201101803*20633239^(5/7) 6765000029563920 a001 139583862445/3461452808002*20633239^(5/7) 6765000029563920 a001 53316291173/1322157322203*20633239^(5/7) 6765000029563920 a001 20365011074/505019158607*20633239^(5/7) 6765000029563920 a001 7778742049/192900153618*20633239^(5/7) 6765000029563920 a001 2971215073/73681302247*20633239^(5/7) 6765000029563920 a001 1134903170/28143753123*20633239^(5/7) 6765000029563920 a001 433494437/10749957122*20633239^(5/7) 6765000029563920 a001 24157817/6643838879*20633239^(6/7) 6765000029563920 a001 165580141/4106118243*20633239^(5/7) 6765000029563920 a001 63245986/1568397607*20633239^(5/7) 6765000029563921 a001 39088169/87403803*20633239^(4/7) 6765000029563921 a001 139583862445/87403803*7881196^(1/11) 6765000029563921 a001 1836311903/33385282*20633239^(2/7) 6765000029563921 a001 24157817/2537720636*20633239^(4/5) 6765000029563921 a001 39088169/141422324*20633239^(3/5) 6765000029563921 a001 365435296162/228826127*7881196^(1/11) 6765000029563921 a001 956722026041/599074578*7881196^(1/11) 6765000029563921 a001 5702887/228826127*12752043^(13/17) 6765000029563921 a001 2504730781961/1568397607*7881196^(1/11) 6765000029563921 a001 6557470319842/4106118243*7881196^(1/11) 6765000029563921 a001 10610209857723/6643838879*7881196^(1/11) 6765000029563921 a001 4052739537881/2537720636*7881196^(1/11) 6765000029563921 a001 1548008755920/969323029*7881196^(1/11) 6765000029563922 a001 591286729879/370248451*7881196^(1/11) 6765000029563922 a001 102334155/370248451*20633239^(3/5) 6765000029563922 a001 225851433717/141422324*7881196^(1/11) 6765000029563922 a001 267914296/969323029*20633239^(3/5) 6765000029563922 a001 701408733/2537720636*20633239^(3/5) 6765000029563922 a001 1836311903/6643838879*20633239^(3/5) 6765000029563922 a001 4807526976/17393796001*20633239^(3/5) 6765000029563922 a001 12586269025/45537549124*20633239^(3/5) 6765000029563922 a001 32951280099/119218851371*20633239^(3/5) 6765000029563922 a001 86267571272/312119004989*20633239^(3/5) 6765000029563922 a001 225851433717/817138163596*20633239^(3/5) 6765000029563922 a001 1548008755920/5600748293801*20633239^(3/5) 6765000029563922 a001 139583862445/505019158607*20633239^(3/5) 6765000029563922 a001 53316291173/192900153618*20633239^(3/5) 6765000029563922 a001 20365011074/73681302247*20633239^(3/5) 6765000029563922 a001 7778742049/28143753123*20633239^(3/5) 6765000029563922 a001 2971215073/10749957122*20633239^(3/5) 6765000029563922 a001 1134903170/4106118243*20633239^(3/5) 6765000029563922 a001 433494437/1568397607*20633239^(3/5) 6765000029563922 a001 165580141/599074578*20633239^(3/5) 6765000029563922 a001 102334155/228826127*20633239^(4/7) 6765000029563922 a001 63245986/228826127*20633239^(3/5) 6765000029563922 a001 7778742049/33385282*20633239^(1/5) 6765000029563922 a001 133957148/299537289*20633239^(4/7) 6765000029563922 a001 701408733/1568397607*20633239^(4/7) 6765000029563922 a001 1836311903/4106118243*20633239^(4/7) 6765000029563922 a001 2403763488/5374978561*20633239^(4/7) 6765000029563922 a001 12586269025/28143753123*20633239^(4/7) 6765000029563922 a001 32951280099/73681302247*20633239^(4/7) 6765000029563922 a001 43133785636/96450076809*20633239^(4/7) 6765000029563922 a001 225851433717/505019158607*20633239^(4/7) 6765000029563922 a001 591286729879/1322157322203*20633239^(4/7) 6765000029563922 a001 10610209857723/23725150497407*20633239^(4/7) 6765000029563922 a001 182717648081/408569081798*20633239^(4/7) 6765000029563922 a001 139583862445/312119004989*20633239^(4/7) 6765000029563922 a001 53316291173/119218851371*20633239^(4/7) 6765000029563922 a001 10182505537/22768774562*20633239^(4/7) 6765000029563922 a001 7778742049/17393796001*20633239^(4/7) 6765000029563922 a001 2971215073/6643838879*20633239^(4/7) 6765000029563922 a001 567451585/1268860318*20633239^(4/7) 6765000029563922 a001 433494437/969323029*20633239^(4/7) 6765000029563922 a001 24157817/599074578*20633239^(5/7) 6765000029563922 a001 165580141/370248451*20633239^(4/7) 6765000029563923 a001 7465176/16692641*33385282^(5/9) 6765000029563923 a001 31622993/70711162*20633239^(4/7) 6765000029563923 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^53 6765000029563923 a001 10182505537/16692641*20633239^(1/7) 6765000029563923 a001 24157817/87403803*20633239^(3/5) 6765000029563924 a001 433494437/87403803*20633239^(3/7) 6765000029563924 a001 86267571272/54018521*7881196^(1/11) 6765000029563924 a001 5702887/599074578*12752043^(14/17) 6765000029563924 a001 233802911/29134601*20633239^(2/5) 6765000029563924 a001 39088169/33385282*141422324^(6/13) 6765000029563924 a001 39088169/33385282*2537720636^(2/5) 6765000029563924 a001 39088169/33385282*45537549124^(6/17) 6765000029563924 a001 39088169/33385282*14662949395604^(2/7) 6765000029563924 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(38) 6765000029563924 a001 39088169/33385282*(1/2+1/2*5^(1/2))^18 6765000029563924 a001 39088169/33385282*192900153618^(1/3) 6765000029563924 a001 225851440482/33385283 6765000029563924 a001 39088169/33385282*10749957122^(3/8) 6765000029563924 a001 4976784/29134601*10749957122^(11/24) 6765000029563924 a001 39088169/33385282*4106118243^(9/23) 6765000029563924 a001 4976784/29134601*4106118243^(11/23) 6765000029563924 a001 39088169/33385282*1568397607^(9/22) 6765000029563924 a001 4976784/29134601*1568397607^(1/2) 6765000029563924 a001 39088169/33385282*599074578^(3/7) 6765000029563924 a001 4976784/29134601*599074578^(11/21) 6765000029563924 a001 1134903170/228826127*20633239^(3/7) 6765000029563924 a001 39088169/33385282*228826127^(9/20) 6765000029563924 a001 4976784/29134601*228826127^(11/20) 6765000029563925 a001 2971215073/599074578*20633239^(3/7) 6765000029563925 a001 7778742049/1568397607*20633239^(3/7) 6765000029563925 a001 20365011074/4106118243*20633239^(3/7) 6765000029563925 a001 53316291173/10749957122*20633239^(3/7) 6765000029563925 a001 139583862445/28143753123*20633239^(3/7) 6765000029563925 a001 365435296162/73681302247*20633239^(3/7) 6765000029563925 a001 956722026041/192900153618*20633239^(3/7) 6765000029563925 a001 2504730781961/505019158607*20633239^(3/7) 6765000029563925 a001 10610209857723/2139295485799*20633239^(3/7) 6765000029563925 a001 4052739537881/817138163596*20633239^(3/7) 6765000029563925 a001 140728068720/28374454999*20633239^(3/7) 6765000029563925 a001 591286729879/119218851371*20633239^(3/7) 6765000029563925 a001 225851433717/45537549124*20633239^(3/7) 6765000029563925 a001 86267571272/17393796001*20633239^(3/7) 6765000029563925 a001 32951280099/6643838879*20633239^(3/7) 6765000029563925 a001 1144206275/230701876*20633239^(3/7) 6765000029563925 a001 4807526976/969323029*20633239^(3/7) 6765000029563925 a001 1836311903/370248451*20633239^(3/7) 6765000029563925 a001 39088169/33385282*87403803^(9/19) 6765000029563925 a001 1836311903/228826127*20633239^(2/5) 6765000029563925 a001 701408733/141422324*20633239^(3/7) 6765000029563925 a001 4976784/29134601*87403803^(11/19) 6765000029563925 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^55 6765000029563925 a001 14930352/228826127*141422324^(8/13) 6765000029563925 a001 14930352/73681302247*141422324^(12/13) 6765000029563925 a001 267084832/33281921*20633239^(2/5) 6765000029563925 a001 12586269025/1568397607*20633239^(2/5) 6765000029563925 a001 10983760033/1368706081*20633239^(2/5) 6765000029563925 a001 43133785636/5374978561*20633239^(2/5) 6765000029563925 a001 75283811239/9381251041*20633239^(2/5) 6765000029563925 a001 591286729879/73681302247*20633239^(2/5) 6765000029563925 a001 86000486440/10716675201*20633239^(2/5) 6765000029563925 a001 4052739537881/505019158607*20633239^(2/5) 6765000029563925 a001 3536736619241/440719107401*20633239^(2/5) 6765000029563925 a001 3278735159921/408569081798*20633239^(2/5) 6765000029563925 a001 2504730781961/312119004989*20633239^(2/5) 6765000029563925 a001 956722026041/119218851371*20633239^(2/5) 6765000029563925 a001 182717648081/22768774562*20633239^(2/5) 6765000029563925 a001 139583862445/17393796001*20633239^(2/5) 6765000029563925 a001 53316291173/6643838879*20633239^(2/5) 6765000029563925 a001 14930352/17393796001*141422324^(11/13) 6765000029563925 a001 10182505537/1268860318*20633239^(2/5) 6765000029563925 a001 7778742049/969323029*20633239^(2/5) 6765000029563925 a001 4976784/1368706081*141422324^(10/13) 6765000029563925 a001 829464/33281921*141422324^(2/3) 6765000029563925 a001 2971215073/370248451*20633239^(2/5) 6765000029563925 a001 14930352/969323029*141422324^(9/13) 6765000029563925 a001 14930352/228826127*2537720636^(8/15) 6765000029563925 a001 14930352/228826127*45537549124^(8/17) 6765000029563925 a001 14930352/228826127*14662949395604^(8/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(40) 6765000029563925 a001 14619165/4769326*(1/2+1/2*5^(1/2))^16 6765000029563925 a001 14619165/4769326*23725150497407^(1/4) 6765000029563925 a001 72756426465360/10754830177 6765000029563925 a001 14930352/228826127*192900153618^(4/9) 6765000029563925 a001 14619165/4769326*73681302247^(4/13) 6765000029563925 a001 14930352/228826127*73681302247^(6/13) 6765000029563925 a001 14619165/4769326*10749957122^(1/3) 6765000029563925 a001 14930352/228826127*10749957122^(1/2) 6765000029563925 a001 14619165/4769326*4106118243^(8/23) 6765000029563925 a001 14930352/228826127*4106118243^(12/23) 6765000029563925 a001 14619165/4769326*1568397607^(4/11) 6765000029563925 a001 14930352/228826127*1568397607^(6/11) 6765000029563925 a001 14619165/4769326*599074578^(8/21) 6765000029563925 a001 14930352/228826127*599074578^(4/7) 6765000029563925 a001 701408733/33385282*141422324^(4/13) 6765000029563925 a001 433494437/33385282*141422324^(1/3) 6765000029563925 a001 165580141/33385282*141422324^(5/13) 6765000029563925 a001 2971215073/33385282*141422324^(3/13) 6765000029563925 a001 14619165/4769326*228826127^(2/5) 6765000029563925 a001 12586269025/33385282*141422324^(2/13) 6765000029563925 a001 14930352/228826127*228826127^(3/5) 6765000029563925 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^57 6765000029563925 a001 53316291173/33385282*141422324^(1/13) 6765000029563925 a001 133957148/16692641*17393796001^(2/7) 6765000029563925 a001 133957148/16692641*14662949395604^(2/9) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(42) 6765000029563925 a001 133957148/16692641*(1/2+1/2*5^(1/2))^14 6765000029563925 a001 133957148/16692641*505019158607^(1/4) 6765000029563925 a001 829464/33281921*73681302247^(1/2) 6765000029563925 a001 133957148/16692641*10749957122^(7/24) 6765000029563925 a001 829464/33281921*10749957122^(13/24) 6765000029563925 a001 133957148/16692641*4106118243^(7/23) 6765000029563925 a001 829464/33281921*4106118243^(13/23) 6765000029563925 a001 133957148/16692641*1568397607^(7/22) 6765000029563925 a001 829464/33281921*1568397607^(13/22) 6765000029563925 a001 133957148/16692641*599074578^(1/3) 6765000029563925 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^59 6765000029563925 a001 829464/33281921*599074578^(13/21) 6765000029563925 a001 701408733/33385282*2537720636^(4/15) 6765000029563925 a001 14930352/1568397607*17393796001^(4/7) 6765000029563925 a001 701408733/33385282*45537549124^(4/17) 6765000029563925 a001 14930352/1568397607*14662949395604^(4/9) 6765000029563925 a001 701408733/33385282*14662949395604^(4/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(44) 6765000029563925 a001 701408733/33385282*(1/2+1/2*5^(1/2))^12 6765000029563925 a001 14930352/1568397607*505019158607^(1/2) 6765000029563925 a001 701408733/33385282*192900153618^(2/9) 6765000029563925 a001 701408733/33385282*73681302247^(3/13) 6765000029563925 a001 14930352/1568397607*73681302247^(7/13) 6765000029563925 a001 701408733/33385282*10749957122^(1/4) 6765000029563925 a001 14930352/1568397607*10749957122^(7/12) 6765000029563925 a001 701408733/33385282*4106118243^(6/23) 6765000029563925 a001 14930352/1568397607*4106118243^(14/23) 6765000029563925 a001 701408733/33385282*1568397607^(3/11) 6765000029563925 a001 4976784/1368706081*2537720636^(2/3) 6765000029563925 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^61 6765000029563925 a001 14930352/1568397607*1568397607^(7/11) 6765000029563925 a001 4976784/440719107401*2537720636^(14/15) 6765000029563925 a001 14930352/505019158607*2537720636^(8/9) 6765000029563925 a001 14930352/312119004989*2537720636^(13/15) 6765000029563925 a001 14930352/73681302247*2537720636^(4/5) 6765000029563925 a001 3732588/11384387281*2537720636^(7/9) 6765000029563925 a001 14930352/17393796001*2537720636^(11/15) 6765000029563925 a001 1836311903/33385282*2537720636^(2/9) 6765000029563925 a001 4976784/1368706081*45537549124^(10/17) 6765000029563925 a001 4976784/1368706081*312119004989^(6/11) 6765000029563925 a001 1836311903/33385282*312119004989^(2/11) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(46) 6765000029563925 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^10 6765000029563925 a001 27416783093579856/4052739537881 6765000029563925 a001 4976784/1368706081*192900153618^(5/9) 6765000029563925 a001 1836311903/33385282*28143753123^(1/5) 6765000029563925 a001 4976784/1368706081*28143753123^(3/5) 6765000029563925 a001 1836311903/33385282*10749957122^(5/24) 6765000029563925 a001 4976784/1368706081*10749957122^(5/8) 6765000029563925 a001 1836311903/33385282*4106118243^(5/23) 6765000029563925 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^63 6765000029563925 a001 12586269025/33385282*2537720636^(2/15) 6765000029563925 a001 4976784/1368706081*4106118243^(15/23) 6765000029563925 a001 10182505537/16692641*2537720636^(1/9) 6765000029563925 a001 53316291173/33385282*2537720636^(1/15) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(48) 6765000029563925 a001 14930208/103681*(1/2+1/2*5^(1/2))^8 6765000029563925 a001 14930208/103681*23725150497407^(1/8) 6765000029563925 a001 7465176/5374978561*23725150497407^(1/2) 6765000029563925 a001 72723475178496/10749959329 6765000029563925 a001 14930208/103681*505019158607^(1/7) 6765000029563925 a001 14930208/103681*73681302247^(2/13) 6765000029563925 a001 7465176/5374978561*73681302247^(8/13) 6765000029563925 a001 2971215073/33385282*2537720636^(1/5) 6765000029563925 a001 14930208/103681*10749957122^(1/6) 6765000029563925 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^65 6765000029563925 a001 7465176/5374978561*10749957122^(2/3) 6765000029563925 a001 4976784/440719107401*17393796001^(6/7) 6765000029563925 a001 3732588/11384387281*17393796001^(5/7) 6765000029563925 a001 4976784/9381251041*45537549124^(2/3) 6765000029563925 a001 12586269025/33385282*45537549124^(2/17) 6765000029563925 a001 12586269025/33385282*14662949395604^(2/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(50) 6765000029563925 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^6 6765000029563925 a001 14930352/73681302247*45537549124^(12/17) 6765000029563925 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^67 6765000029563925 a001 14930352/23725150497407*45537549124^(16/17) 6765000029563925 a001 14930352/5600748293801*45537549124^(15/17) 6765000029563925 a001 4976784/440719107401*45537549124^(14/17) 6765000029563925 a001 14930352/312119004989*45537549124^(13/17) 6765000029563925 a001 14930352/73681302247*14662949395604^(4/7) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(52) 6765000029563925 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^4 6765000029563925 a001 32951280099/33385282*23725150497407^(1/16) 6765000029563925 a001 14930352/73681302247*505019158607^(9/14) 6765000029563925 a001 12586269025/33385282*10749957122^(1/8) 6765000029563925 a001 32951280099/33385282*73681302247^(1/13) 6765000029563925 a001 14930352/73681302247*192900153618^(2/3) 6765000029563925 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^69 6765000029563925 a001 14930352/73681302247*73681302247^(9/13) 6765000029563925 a001 2584/33385281*817138163596^(2/3) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(54) 6765000029563925 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^2 6765000029563925 a001 14930352/505019158607*312119004989^(8/11) 6765000029563925 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^71 6765000029563925 a001 14930352/5600748293801*312119004989^(9/11) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(56) 6765000029563925 a006 5^(1/2)*Fibonacci(56)/Lucas(36)/sqrt(5) 6765000029563925 a001 14930352/505019158607*23725150497407^(5/8) 6765000029563925 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^73 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(58) 6765000029563925 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^2 6765000029563925 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^75 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(60) 6765000029563925 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^4 6765000029563925 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^77 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(62) 6765000029563925 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^6 6765000029563925 a001 14930352/23725150497407*14662949395604^(16/21) 6765000029563925 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^79 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(64) 6765000029563925 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^8 6765000029563925 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^81 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(66) 6765000029563925 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^10 6765000029563925 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^83 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(68) 6765000029563925 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^12 6765000029563925 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^85 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(70) 6765000029563925 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^14 6765000029563925 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^87 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(72) 6765000029563925 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^89 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(74) 6765000029563925 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^91 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(76) 6765000029563925 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^93 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(78) 6765000029563925 a004 Fibonacci(36)*Lucas(79)/(1/2+sqrt(5)/2)^95 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(80) 6765000029563925 a004 Fibonacci(36)*Lucas(81)/(1/2+sqrt(5)/2)^97 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(82) 6765000029563925 a004 Fibonacci(36)*Lucas(83)/(1/2+sqrt(5)/2)^99 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(84) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(86) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(88) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(90) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(92) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^78/Lucas(94) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^80/Lucas(96) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^82/Lucas(98) 6765000029563925 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^16 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^83/Lucas(99) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^84/Lucas(100) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^81/Lucas(97) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^79/Lucas(95) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(93) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(91) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(89) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(87) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(85) 6765000029563925 a004 Fibonacci(36)*Lucas(84)/(1/2+sqrt(5)/2)^100 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(83) 6765000029563925 a004 Fibonacci(36)*Lucas(82)/(1/2+sqrt(5)/2)^98 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(81) 6765000029563925 a004 Fibonacci(36)*Lucas(80)/(1/2+sqrt(5)/2)^96 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(79) 6765000029563925 a004 Fibonacci(36)*Lucas(78)/(1/2+sqrt(5)/2)^94 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(77) 6765000029563925 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^92 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(75) 6765000029563925 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^90 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(73) 6765000029563925 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^18 6765000029563925 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^20 6765000029563925 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^22 6765000029563925 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^24 6765000029563925 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^26 6765000029563925 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^28 6765000029563925 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^30 6765000029563925 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^32 6765000029563925 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^34 6765000029563925 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^36 6765000029563925 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^38 6765000029563925 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^40 6765000029563925 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^42 6765000029563925 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^44 6765000029563925 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^88 6765000029563925 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^43 6765000029563925 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^41 6765000029563925 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^39 6765000029563925 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^37 6765000029563925 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^35 6765000029563925 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^33 6765000029563925 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^31 6765000029563925 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^29 6765000029563925 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^27 6765000029563925 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^25 6765000029563925 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^23 6765000029563925 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^21 6765000029563925 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^19 6765000029563925 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^17 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(71) 6765000029563925 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^15 6765000029563925 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^86 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(69) 6765000029563925 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^13 6765000029563925 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^84 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(67) 6765000029563925 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^11 6765000029563925 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^82 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(65) 6765000029563925 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^9 6765000029563925 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^80 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(63) 6765000029563925 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^7 6765000029563925 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^78 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(61) 6765000029563925 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^5 6765000029563925 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^76 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(59) 6765000029563925 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^3 6765000029563925 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^74 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(57) 6765000029563925 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2) 6765000029563925 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^72 6765000029563925 a001 14930352/312119004989*14662949395604^(13/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(55) 6765000029563925 a001 4976784/440719107401*192900153618^(7/9) 6765000029563925 a001 14930352/23725150497407*192900153618^(8/9) 6765000029563925 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^70 6765000029563925 a001 14930352/312119004989*192900153618^(13/18) 6765000029563925 a001 53316291173/33385282*45537549124^(1/17) 6765000029563925 a001 53316291173/33385282*14662949395604^(1/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(53) 6765000029563925 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^3 6765000029563925 a001 53316291173/33385282*192900153618^(1/18) 6765000029563925 a001 14930352/505019158607*73681302247^(10/13) 6765000029563925 a001 14930352/312119004989*73681302247^(3/4) 6765000029563925 a001 7465176/1730726404001*73681302247^(11/13) 6765000029563925 a001 14930352/23725150497407*73681302247^(12/13) 6765000029563925 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^68 6765000029563925 a001 43133785636/16692641*10749957122^(1/24) 6765000029563925 a001 3732588/11384387281*312119004989^(7/11) 6765000029563925 a001 10182505537/16692641*312119004989^(1/11) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(51) 6765000029563925 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^5 6765000029563925 a001 3732588/11384387281*505019158607^(5/8) 6765000029563925 a001 32951280099/33385282*10749957122^(1/12) 6765000029563925 a001 10182505537/16692641*28143753123^(1/10) 6765000029563925 a001 53316291173/33385282*10749957122^(1/16) 6765000029563925 a001 14930352/505019158607*28143753123^(4/5) 6765000029563925 a001 14930352/5600748293801*28143753123^(9/10) 6765000029563925 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^66 6765000029563925 a001 3732588/11384387281*28143753123^(7/10) 6765000029563925 a001 14930208/103681*4106118243^(4/23) 6765000029563925 a001 43133785636/16692641*4106118243^(1/23) 6765000029563925 a001 7778742049/33385282*17393796001^(1/7) 6765000029563925 a001 14930352/17393796001*45537549124^(11/17) 6765000029563925 a001 14930352/17393796001*312119004989^(3/5) 6765000029563925 a001 14930352/17393796001*817138163596^(11/19) 6765000029563925 a001 14930352/17393796001*14662949395604^(11/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(49) 6765000029563925 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^7 6765000029563925 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(36) 6765000029563925 a001 14930352/17393796001*192900153618^(11/18) 6765000029563925 a001 4976784/9381251041*10749957122^(17/24) 6765000029563925 a001 32951280099/33385282*4106118243^(2/23) 6765000029563925 a001 14930352/73681302247*10749957122^(3/4) 6765000029563925 a001 12586269025/33385282*4106118243^(3/23) 6765000029563925 a001 2584/33385281*10749957122^(19/24) 6765000029563925 a001 14930352/312119004989*10749957122^(13/16) 6765000029563925 a001 14930352/505019158607*10749957122^(5/6) 6765000029563925 a001 4976784/440719107401*10749957122^(7/8) 6765000029563925 a001 7465176/1730726404001*10749957122^(11/12) 6765000029563925 a001 14930352/5600748293801*10749957122^(15/16) 6765000029563925 a001 4976784/3020733700601*10749957122^(23/24) 6765000029563925 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^64 6765000029563925 a001 14930352/17393796001*10749957122^(11/16) 6765000029563925 a001 43133785636/16692641*1568397607^(1/22) 6765000029563925 a001 2971215073/33385282*45537549124^(3/17) 6765000029563925 a001 1304743732576344/192866774113 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(47) 6765000029563925 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^9 6765000029563925 a001 14930352/6643838879*9062201101803^(1/2) 6765000029563925 a001 2971215073/33385282*192900153618^(1/6) 6765000029563925 a001 2971215073/33385282*10749957122^(3/16) 6765000029563925 a001 7465176/5374978561*4106118243^(16/23) 6765000029563925 a001 1836311903/33385282*1568397607^(5/22) 6765000029563925 a001 32951280099/33385282*1568397607^(1/11) 6765000029563925 a001 4976784/9381251041*4106118243^(17/23) 6765000029563925 a001 14930352/73681302247*4106118243^(18/23) 6765000029563925 a001 2584/33385281*4106118243^(19/23) 6765000029563925 a001 14930352/505019158607*4106118243^(20/23) 6765000029563925 a001 4976784/440719107401*4106118243^(21/23) 6765000029563925 a001 12586269025/33385282*1568397607^(3/22) 6765000029563925 a001 7465176/1730726404001*4106118243^(22/23) 6765000029563925 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^62 6765000029563925 a001 14930208/103681*1568397607^(2/11) 6765000029563925 a001 43133785636/16692641*599074578^(1/21) 6765000029563925 a001 567451585/16692641*312119004989^(1/5) 6765000029563925 a001 16944503814015840/2504730781961 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(45) 6765000029563925 a001 567451585/16692641*(1/2+1/2*5^(1/2))^11 6765000029563925 a001 196452/33391061*1322157322203^(1/2) 6765000029563925 a001 53316291173/33385282*599074578^(1/14) 6765000029563925 a001 4976784/1368706081*1568397607^(15/22) 6765000029563925 a001 567451585/16692641*1568397607^(1/4) 6765000029563925 a001 32951280099/33385282*599074578^(2/21) 6765000029563925 a001 7465176/5374978561*1568397607^(8/11) 6765000029563925 a001 14930352/17393796001*1568397607^(3/4) 6765000029563925 a001 4976784/9381251041*1568397607^(17/22) 6765000029563925 a001 14930352/73681302247*1568397607^(9/11) 6765000029563925 a001 2584/33385281*1568397607^(19/22) 6765000029563925 a001 14930352/505019158607*1568397607^(10/11) 6765000029563925 a001 4976784/440719107401*1568397607^(21/22) 6765000029563925 a001 701408733/33385282*599074578^(2/7) 6765000029563925 a001 12586269025/33385282*599074578^(1/7) 6765000029563925 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^60 6765000029563925 a001 7778742049/33385282*599074578^(1/6) 6765000029563925 a001 14930208/103681*599074578^(4/21) 6765000029563925 a001 1836311903/33385282*599074578^(5/21) 6765000029563925 a001 2971215073/33385282*599074578^(3/14) 6765000029563925 a001 43133785636/16692641*228826127^(1/20) 6765000029563925 a001 14930352/969323029*2537720636^(3/5) 6765000029563925 a001 14930352/969323029*45537549124^(9/17) 6765000029563925 a001 14930352/969323029*817138163596^(9/19) 6765000029563925 a001 14930352/969323029*14662949395604^(3/7) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(43) 6765000029563925 a001 433494437/33385282*(1/2+1/2*5^(1/2))^13 6765000029563925 a001 14930352/969323029*192900153618^(1/2) 6765000029563925 a001 433494437/33385282*73681302247^(1/4) 6765000029563925 a001 14930352/969323029*10749957122^(9/16) 6765000029563925 a001 14930352/1568397607*599074578^(2/3) 6765000029563925 a001 32951280099/33385282*228826127^(1/10) 6765000029563925 a001 4976784/1368706081*599074578^(5/7) 6765000029563925 a001 7465176/5374978561*599074578^(16/21) 6765000029563925 a001 14930352/17393796001*599074578^(11/14) 6765000029563925 a001 4976784/9381251041*599074578^(17/21) 6765000029563925 a001 3732588/11384387281*599074578^(5/6) 6765000029563925 a001 10182505537/16692641*228826127^(1/8) 6765000029563925 a001 14930352/73681302247*599074578^(6/7) 6765000029563925 a001 2584/33385281*599074578^(19/21) 6765000029563925 a001 14930352/312119004989*599074578^(13/14) 6765000029563925 a001 14930352/505019158607*599074578^(20/21) 6765000029563925 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^58 6765000029563925 a001 14930352/969323029*599074578^(9/14) 6765000029563925 a001 12586269025/33385282*228826127^(3/20) 6765000029563925 a001 14930208/103681*228826127^(1/5) 6765000029563925 a001 133957148/16692641*228826127^(7/20) 6765000029563925 a001 1836311903/33385282*228826127^(1/4) 6765000029563925 a001 701408733/33385282*228826127^(3/10) 6765000029563925 a001 43133785636/16692641*87403803^(1/19) 6765000029563925 a001 14930352/370248451*2537720636^(5/9) 6765000029563925 a001 165580141/33385282*2537720636^(1/3) 6765000029563925 a001 165580141/33385282*45537549124^(5/17) 6765000029563925 a001 14930352/370248451*312119004989^(5/11) 6765000029563925 a001 1236084894669816/182717648081 6765000029563925 a001 165580141/33385282*14662949395604^(5/21) 6765000029563925 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(41) 6765000029563925 a001 165580141/33385282*(1/2+1/2*5^(1/2))^15 6765000029563925 a001 14930352/370248451*3461452808002^(5/12) 6765000029563925 a001 165580141/33385282*192900153618^(5/18) 6765000029563925 a001 165580141/33385282*28143753123^(3/10) 6765000029563925 a001 14930352/370248451*28143753123^(1/2) 6765000029563925 a001 165580141/33385282*10749957122^(5/16) 6765000029563925 a001 567451585/70711162*20633239^(2/5) 6765000029563925 a001 165580141/33385282*599074578^(5/14) 6765000029563925 a001 829464/33281921*228826127^(13/20) 6765000029563925 a001 14930352/1568397607*228826127^(7/10) 6765000029563925 a001 32951280099/33385282*87403803^(2/19) 6765000029563925 a001 4976784/1368706081*228826127^(3/4) 6765000029563925 a001 165580141/33385282*228826127^(3/8) 6765000029563925 a001 7465176/5374978561*228826127^(4/5) 6765000029563925 a001 4976784/9381251041*228826127^(17/20) 6765000029563925 a001 12586269025/12752043*4870847^(1/8) 6765000029563925 a001 3732588/11384387281*228826127^(7/8) 6765000029563925 a001 14930352/73681302247*228826127^(9/10) 6765000029563925 a001 2584/33385281*228826127^(19/20) 6765000029563925 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^56 6765000029563925 a001 14930352/370248451*228826127^(5/8) 6765000029563925 a001 12586269025/33385282*87403803^(3/19) 6765000029563925 a001 14930208/103681*87403803^(4/19) 6765000029563926 a001 1836311903/33385282*87403803^(5/19) 6765000029563926 a001 14619165/4769326*87403803^(8/19) 6765000029563926 a001 701408733/33385282*87403803^(6/19) 6765000029563926 a001 133957148/16692641*87403803^(7/19) 6765000029563926 a001 43133785636/16692641*33385282^(1/18) 6765000029563926 a001 31622993/16692641*45537549124^(1/3) 6765000029563926 a001 944284833567072/139583862445 6765000029563926 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(39) 6765000029563926 a001 31622993/16692641*(1/2+1/2*5^(1/2))^17 6765000029563926 a001 3732588/35355581*4106118243^(1/2) 6765000029563926 a001 14930352/228826127*87403803^(12/19) 6765000029563926 a001 53316291173/33385282*33385282^(1/12) 6765000029563926 a001 829464/33281921*87403803^(13/19) 6765000029563926 a001 1602508992/29134601*20633239^(2/7) 6765000029563926 a001 14930352/1568397607*87403803^(14/19) 6765000029563926 a001 32951280099/33385282*33385282^(1/9) 6765000029563926 a001 4976784/1368706081*87403803^(15/19) 6765000029563926 a001 7465176/5374978561*87403803^(16/19) 6765000029563926 a001 4976784/9381251041*87403803^(17/19) 6765000029563926 a001 14930352/73681302247*87403803^(18/19) 6765000029563926 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^54 6765000029563926 a001 12586269025/33385282*33385282^(1/6) 6765000029563926 a001 5702887/1568397607*12752043^(15/17) 6765000029563927 a001 14930208/103681*33385282^(2/9) 6765000029563927 a001 12586269025/228826127*20633239^(2/7) 6765000029563927 a001 10983760033/199691526*20633239^(2/7) 6765000029563927 a001 2971215073/33385282*33385282^(1/4) 6765000029563927 a001 86267571272/1568397607*20633239^(2/7) 6765000029563927 a001 75283811239/1368706081*20633239^(2/7) 6765000029563927 a001 591286729879/10749957122*20633239^(2/7) 6765000029563927 a001 12585437040/228811001*20633239^(2/7) 6765000029563927 a001 4052739537881/73681302247*20633239^(2/7) 6765000029563927 a001 3536736619241/64300051206*20633239^(2/7) 6765000029563927 a001 6557470319842/119218851371*20633239^(2/7) 6765000029563927 a001 2504730781961/45537549124*20633239^(2/7) 6765000029563927 a001 956722026041/17393796001*20633239^(2/7) 6765000029563927 a001 365435296162/6643838879*20633239^(2/7) 6765000029563927 a001 139583862445/2537720636*20633239^(2/7) 6765000029563927 a001 53316291173/969323029*20633239^(2/7) 6765000029563927 a001 267914296/54018521*20633239^(3/7) 6765000029563927 a001 20365011074/370248451*20633239^(2/7) 6765000029563927 a001 24157817/54018521*20633239^(4/7) 6765000029563927 a001 1836311903/33385282*33385282^(5/18) 6765000029563927 a001 7778742049/141422324*20633239^(2/7) 6765000029563927 a001 20365011074/87403803*20633239^(1/5) 6765000029563927 a001 701408733/33385282*33385282^(1/3) 6765000029563927 a001 433494437/54018521*20633239^(2/5) 6765000029563927 a001 14930352/54018521*141422324^(7/13) 6765000029563927 a001 39088169/33385282*33385282^(1/2) 6765000029563927 a001 7778742049/20633239*7881196^(2/11) 6765000029563928 a001 14930352/54018521*2537720636^(7/15) 6765000029563928 a001 14930352/54018521*17393796001^(3/7) 6765000029563928 a001 14930352/54018521*45537549124^(7/17) 6765000029563928 a001 360684711361584/53316291173 6765000029563928 a001 24157817/33385282*817138163596^(1/3) 6765000029563928 a001 14930352/54018521*14662949395604^(1/3) 6765000029563928 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(37) 6765000029563928 a001 24157817/33385282*(1/2+1/2*5^(1/2))^19 6765000029563928 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(36) 6765000029563928 a001 14930352/54018521*192900153618^(7/18) 6765000029563928 a001 14930352/54018521*10749957122^(7/16) 6765000029563928 a001 14930352/54018521*599074578^(1/2) 6765000029563928 a001 133957148/16692641*33385282^(7/18) 6765000029563928 a001 43133785636/16692641*12752043^(1/17) 6765000029563928 a001 14619165/4769326*33385282^(4/9) 6765000029563928 a001 165580141/33385282*33385282^(5/12) 6765000029563928 a001 24157817/33385282*87403803^(1/2) 6765000029563928 a001 53316291173/228826127*20633239^(1/5) 6765000029563928 a001 4976784/29134601*33385282^(11/18) 6765000029563928 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^55 6765000029563928 a001 139583862445/599074578*20633239^(1/5) 6765000029563928 a001 365435296162/1568397607*20633239^(1/5) 6765000029563928 a001 956722026041/4106118243*20633239^(1/5) 6765000029563928 a001 2504730781961/10749957122*20633239^(1/5) 6765000029563928 a001 6557470319842/28143753123*20633239^(1/5) 6765000029563928 a001 10610209857723/45537549124*20633239^(1/5) 6765000029563928 a001 4052739537881/17393796001*20633239^(1/5) 6765000029563928 a001 1548008755920/6643838879*20633239^(1/5) 6765000029563928 a001 591286729879/2537720636*20633239^(1/5) 6765000029563928 a001 225851433717/969323029*20633239^(1/5) 6765000029563928 a001 53316291173/87403803*20633239^(1/7) 6765000029563928 a001 86267571272/370248451*20633239^(1/5) 6765000029563929 a001 63246219/271444*20633239^(1/5) 6765000029563929 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^57 6765000029563929 a001 5702887/4106118243*12752043^(16/17) 6765000029563929 a001 139583862445/228826127*20633239^(1/7) 6765000029563929 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^59 6765000029563929 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^61 6765000029563929 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^63 6765000029563929 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^65 6765000029563929 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^67 6765000029563929 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^69 6765000029563929 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^71 6765000029563929 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^73 6765000029563929 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^75 6765000029563929 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^77 6765000029563929 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^79 6765000029563929 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^81 6765000029563929 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^83 6765000029563929 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^85 6765000029563929 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^87 6765000029563929 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^89 6765000029563929 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^91 6765000029563929 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^93 6765000029563929 a004 Fibonacci(78)*Lucas(37)/(1/2+sqrt(5)/2)^95 6765000029563929 a004 Fibonacci(80)*Lucas(37)/(1/2+sqrt(5)/2)^97 6765000029563929 a004 Fibonacci(82)*Lucas(37)/(1/2+sqrt(5)/2)^99 6765000029563929 a004 Fibonacci(83)*Lucas(37)/(1/2+sqrt(5)/2)^100 6765000029563929 a004 Fibonacci(81)*Lucas(37)/(1/2+sqrt(5)/2)^98 6765000029563929 a004 Fibonacci(79)*Lucas(37)/(1/2+sqrt(5)/2)^96 6765000029563929 a004 Fibonacci(77)*Lucas(37)/(1/2+sqrt(5)/2)^94 6765000029563929 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^92 6765000029563929 a001 2/24157817*(1/2+1/2*5^(1/2))^57 6765000029563929 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^90 6765000029563929 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^88 6765000029563929 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^86 6765000029563929 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^84 6765000029563929 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^82 6765000029563929 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^80 6765000029563929 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^78 6765000029563929 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^76 6765000029563929 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^74 6765000029563929 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^72 6765000029563929 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^70 6765000029563929 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^68 6765000029563929 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^66 6765000029563929 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^64 6765000029563929 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^62 6765000029563929 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^60 6765000029563929 a001 182717648081/299537289*20633239^(1/7) 6765000029563929 a001 956722026041/1568397607*20633239^(1/7) 6765000029563929 a001 2504730781961/4106118243*20633239^(1/7) 6765000029563929 a001 3278735159921/5374978561*20633239^(1/7) 6765000029563929 a001 10610209857723/17393796001*20633239^(1/7) 6765000029563929 a001 4052739537881/6643838879*20633239^(1/7) 6765000029563929 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^58 6765000029563929 a001 1134903780/1860499*20633239^(1/7) 6765000029563929 a001 591286729879/969323029*20633239^(1/7) 6765000029563929 a001 2971215073/54018521*20633239^(2/7) 6765000029563929 a001 225851433717/370248451*20633239^(1/7) 6765000029563929 a001 14930352/228826127*33385282^(2/3) 6765000029563929 a001 3524578/12752043*7881196^(7/11) 6765000029563929 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^56 6765000029563929 a001 21566892818/35355581*20633239^(1/7) 6765000029563930 a001 39088169/87403803*2537720636^(4/9) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(38) 6765000029563930 a001 39088169/87403803*23725150497407^(5/16) 6765000029563930 a001 39088169/87403803*505019158607^(5/14) 6765000029563930 a001 1527884955772561/225851433717 6765000029563930 a001 39088169/87403803*73681302247^(5/13) 6765000029563930 a001 39088169/87403803*28143753123^(2/5) 6765000029563930 a001 39088169/87403803*10749957122^(5/12) 6765000029563930 a001 39088169/87403803*4106118243^(10/23) 6765000029563930 a001 39088169/87403803*1568397607^(5/11) 6765000029563930 a001 39088169/87403803*599074578^(10/21) 6765000029563930 a001 39088169/87403803*228826127^(1/2) 6765000029563930 a001 829464/33281921*33385282^(13/18) 6765000029563930 a001 14930352/969323029*33385282^(3/4) 6765000029563930 a001 14930352/1568397607*33385282^(7/9) 6765000029563930 a001 39088169/87403803*87403803^(10/19) 6765000029563930 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^57 6765000029563930 a001 39088169/192900153618*141422324^(12/13) 6765000029563930 a001 32951280099/33385282*12752043^(2/17) 6765000029563930 a001 39088169/45537549124*141422324^(11/13) 6765000029563930 a001 34111385/29134601*141422324^(6/13) 6765000029563930 a001 39088169/10749957122*141422324^(10/13) 6765000029563930 a001 39088169/2537720636*141422324^(9/13) 6765000029563930 a001 39088169/1568397607*141422324^(2/3) 6765000029563930 a001 39088169/599074578*141422324^(8/13) 6765000029563930 a001 34111385/29134601*2537720636^(2/5) 6765000029563930 a001 34111385/29134601*45537549124^(6/17) 6765000029563930 a001 39088169/228826127*312119004989^(2/5) 6765000029563930 a001 34111385/29134601*14662949395604^(2/7) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(40) 6765000029563930 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(38) 6765000029563930 a001 4000054745112195/591286729879 6765000029563930 a001 34111385/29134601*192900153618^(1/3) 6765000029563930 a001 34111385/29134601*10749957122^(3/8) 6765000029563930 a001 39088169/228826127*10749957122^(11/24) 6765000029563930 a001 34111385/29134601*4106118243^(9/23) 6765000029563930 a001 39088169/228826127*4106118243^(11/23) 6765000029563930 a001 34111385/29134601*1568397607^(9/22) 6765000029563930 a001 39088169/228826127*1568397607^(1/2) 6765000029563930 a001 4976784/1368706081*33385282^(5/6) 6765000029563930 a001 433494437/87403803*141422324^(5/13) 6765000029563930 a001 34111385/29134601*599074578^(3/7) 6765000029563930 a001 39088169/228826127*599074578^(11/21) 6765000029563930 a001 1134903170/87403803*141422324^(1/3) 6765000029563930 a001 1836311903/87403803*141422324^(4/13) 6765000029563930 a001 7778742049/87403803*141422324^(3/13) 6765000029563930 a001 34111385/29134601*228826127^(9/20) 6765000029563930 a001 39088169/228826127*228826127^(11/20) 6765000029563930 a001 10983760033/29134601*141422324^(2/13) 6765000029563930 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^59 6765000029563930 a001 139583862445/87403803*141422324^(1/13) 6765000029563930 a001 39088169/599074578*2537720636^(8/15) 6765000029563930 a001 39088169/599074578*45537549124^(8/17) 6765000029563930 a001 39088169/599074578*14662949395604^(8/21) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(42) 6765000029563930 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(38) 6765000029563930 a001 1309034909945503/193501094490 6765000029563930 a001 39088169/599074578*192900153618^(4/9) 6765000029563930 a001 267914296/87403803*73681302247^(4/13) 6765000029563930 a001 39088169/599074578*73681302247^(6/13) 6765000029563930 a001 267914296/87403803*10749957122^(1/3) 6765000029563930 a001 39088169/599074578*10749957122^(1/2) 6765000029563930 a001 267914296/87403803*4106118243^(8/23) 6765000029563930 a001 39088169/599074578*4106118243^(12/23) 6765000029563930 a001 267914296/87403803*1568397607^(4/11) 6765000029563930 a001 39088169/599074578*1568397607^(6/11) 6765000029563930 a001 267914296/87403803*599074578^(8/21) 6765000029563930 a001 39088169/599074578*599074578^(4/7) 6765000029563930 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^61 6765000029563930 a001 233802911/29134601*17393796001^(2/7) 6765000029563930 a001 233802911/29134601*14662949395604^(2/9) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(44) 6765000029563930 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(38) 6765000029563930 a001 233802911/29134601*505019158607^(1/4) 6765000029563930 a001 39088169/1568397607*73681302247^(1/2) 6765000029563930 a001 233802911/29134601*10749957122^(7/24) 6765000029563930 a001 39088169/1568397607*10749957122^(13/24) 6765000029563930 a001 233802911/29134601*4106118243^(7/23) 6765000029563930 a001 39088169/1568397607*4106118243^(13/23) 6765000029563930 a001 233802911/29134601*1568397607^(7/22) 6765000029563930 a001 39088169/1568397607*1568397607^(13/22) 6765000029563930 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^63 6765000029563930 a001 39088169/3461452808002*2537720636^(14/15) 6765000029563930 a001 39088169/1322157322203*2537720636^(8/9) 6765000029563930 a001 4181/87403804*2537720636^(13/15) 6765000029563930 a001 39088169/192900153618*2537720636^(4/5) 6765000029563930 a001 39088169/119218851371*2537720636^(7/9) 6765000029563930 a001 39088169/45537549124*2537720636^(11/15) 6765000029563930 a001 39088169/10749957122*2537720636^(2/3) 6765000029563930 a001 1836311903/87403803*2537720636^(4/15) 6765000029563930 a001 39088169/4106118243*17393796001^(4/7) 6765000029563930 a001 1836311903/87403803*45537549124^(4/17) 6765000029563930 a001 1836311903/87403803*817138163596^(4/19) 6765000029563930 a001 39088169/4106118243*14662949395604^(4/9) 6765000029563930 a001 1836311903/87403803*14662949395604^(4/21) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(46) 6765000029563930 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(38) 6765000029563930 a001 1836311903/87403803*192900153618^(2/9) 6765000029563930 a001 1836311903/87403803*73681302247^(3/13) 6765000029563930 a001 39088169/4106118243*73681302247^(7/13) 6765000029563930 a001 1836311903/87403803*10749957122^(1/4) 6765000029563930 a001 39088169/4106118243*10749957122^(7/12) 6765000029563930 a001 1836311903/87403803*4106118243^(6/23) 6765000029563930 a001 1602508992/29134601*2537720636^(2/9) 6765000029563930 a001 7778742049/87403803*2537720636^(1/5) 6765000029563930 a001 39088169/4106118243*4106118243^(14/23) 6765000029563930 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^65 6765000029563930 a001 10983760033/29134601*2537720636^(2/15) 6765000029563930 a001 53316291173/87403803*2537720636^(1/9) 6765000029563930 a001 139583862445/87403803*2537720636^(1/15) 6765000029563930 a001 39088169/10749957122*45537549124^(10/17) 6765000029563930 a001 39088169/10749957122*312119004989^(6/11) 6765000029563930 a001 1602508992/29134601*312119004989^(2/11) 6765000029563930 a001 39088169/10749957122*14662949395604^(10/21) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(48) 6765000029563930 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(38) 6765000029563930 a001 39088169/10749957122*192900153618^(5/9) 6765000029563930 a001 1602508992/29134601*28143753123^(1/5) 6765000029563930 a001 39088169/10749957122*28143753123^(3/5) 6765000029563930 a001 1602508992/29134601*10749957122^(5/24) 6765000029563930 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^67 6765000029563930 a001 39088169/10749957122*10749957122^(5/8) 6765000029563930 a001 39088169/3461452808002*17393796001^(6/7) 6765000029563930 a001 39088169/119218851371*17393796001^(5/7) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(50) 6765000029563930 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(38) 6765000029563930 a001 12586269025/87403803*23725150497407^(1/8) 6765000029563930 a001 39088169/28143753123*23725150497407^(1/2) 6765000029563930 a001 12586269025/87403803*505019158607^(1/7) 6765000029563930 a001 39088169/28143753123*505019158607^(4/7) 6765000029563930 a001 12586269025/87403803*73681302247^(2/13) 6765000029563930 a001 39088169/28143753123*73681302247^(8/13) 6765000029563930 a001 39088169/73681302247*45537549124^(2/3) 6765000029563930 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^69 6765000029563930 a001 39088169/14662949395604*45537549124^(15/17) 6765000029563930 a001 39088169/3461452808002*45537549124^(14/17) 6765000029563930 a001 39088169/192900153618*45537549124^(12/17) 6765000029563930 a001 4181/87403804*45537549124^(13/17) 6765000029563930 a001 10983760033/29134601*45537549124^(2/17) 6765000029563930 a001 10983760033/29134601*14662949395604^(2/21) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(52) 6765000029563930 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(38) 6765000029563930 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^71 6765000029563930 a001 39088169/192900153618*14662949395604^(4/7) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(54) 6765000029563930 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(38) 6765000029563930 a001 39088169/192900153618*505019158607^(9/14) 6765000029563930 a001 139583862445/87403803*45537549124^(1/17) 6765000029563930 a001 86267571272/87403803*73681302247^(1/13) 6765000029563930 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^73 6765000029563930 a001 39088169/14662949395604*312119004989^(9/11) 6765000029563930 a001 39088169/1322157322203*312119004989^(8/11) 6765000029563930 a001 39088169/505019158607*817138163596^(2/3) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(56) 6765000029563930 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(38) 6765000029563930 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^75 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(58) 6765000029563930 a006 5^(1/2)*Fibonacci(58)/Lucas(38)/sqrt(5) 6765000029563930 a001 39088169/1322157322203*23725150497407^(5/8) 6765000029563930 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^77 6765000029563930 a001 39088169/3461452808002*14662949395604^(2/3) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(60) 6765000029563930 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^2 6765000029563930 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^79 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(62) 6765000029563930 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^4 6765000029563930 a001 39088169/9062201101803*23725150497407^(11/16) 6765000029563930 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^81 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(64) 6765000029563930 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^6 6765000029563930 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^83 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(66) 6765000029563930 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^8 6765000029563930 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^85 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(68) 6765000029563930 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^10 6765000029563930 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^87 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(70) 6765000029563930 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^12 6765000029563930 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^89 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(72) 6765000029563930 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^14 6765000029563930 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^91 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(74) 6765000029563930 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^16 6765000029563930 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^93 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(76) 6765000029563930 a004 Fibonacci(38)*Lucas(77)/(1/2+sqrt(5)/2)^95 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(78) 6765000029563930 a004 Fibonacci(38)*Lucas(79)/(1/2+sqrt(5)/2)^97 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(80) 6765000029563930 a004 Fibonacci(38)*Lucas(81)/(1/2+sqrt(5)/2)^99 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(82) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(84) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(86) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(88) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(90) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(92) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^76/Lucas(94) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^78/Lucas(96) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^80/Lucas(98) 6765000029563930 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^18 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^81/Lucas(99) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^82/Lucas(100) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^79/Lucas(97) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^77/Lucas(95) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(93) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(91) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(89) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(87) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(85) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(83) 6765000029563930 a004 Fibonacci(38)*Lucas(82)/(1/2+sqrt(5)/2)^100 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(81) 6765000029563930 a004 Fibonacci(38)*Lucas(80)/(1/2+sqrt(5)/2)^98 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(79) 6765000029563930 a004 Fibonacci(38)*Lucas(78)/(1/2+sqrt(5)/2)^96 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(77) 6765000029563930 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^20 6765000029563930 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^22 6765000029563930 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^24 6765000029563930 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^26 6765000029563930 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^28 6765000029563930 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^30 6765000029563930 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^32 6765000029563930 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^34 6765000029563930 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^36 6765000029563930 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^38 6765000029563930 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^42 6765000029563930 a004 Fibonacci(38)*Lucas(76)/(1/2+sqrt(5)/2)^94 6765000029563930 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^40 6765000029563930 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^41 6765000029563930 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^39 6765000029563930 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^37 6765000029563930 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^35 6765000029563930 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^33 6765000029563930 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^31 6765000029563930 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^29 6765000029563930 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^27 6765000029563930 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^25 6765000029563930 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^23 6765000029563930 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^21 6765000029563930 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^19 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(75) 6765000029563930 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^17 6765000029563930 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^92 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(73) 6765000029563930 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^15 6765000029563930 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^90 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(71) 6765000029563930 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^13 6765000029563930 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^88 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(69) 6765000029563930 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^11 6765000029563930 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^86 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(67) 6765000029563930 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^9 6765000029563930 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^84 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(65) 6765000029563930 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^7 6765000029563930 a001 39088169/14662949395604*14662949395604^(5/7) 6765000029563930 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^82 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(63) 6765000029563930 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^5 6765000029563930 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^80 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(61) 6765000029563930 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^3 6765000029563930 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^78 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(59) 6765000029563930 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2) 6765000029563930 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^76 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(57) 6765000029563930 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(38) 6765000029563930 a001 39088169/3461452808002*505019158607^(3/4) 6765000029563930 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^74 6765000029563930 a001 20365011074/87403803*17393796001^(1/7) 6765000029563930 a001 139583862445/87403803*14662949395604^(1/21) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(55) 6765000029563930 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(38) 6765000029563930 a001 139583862445/87403803*192900153618^(1/18) 6765000029563930 a001 39088169/3461452808002*192900153618^(7/9) 6765000029563930 a001 4181/87403804*192900153618^(13/18) 6765000029563930 a001 39088169/14662949395604*192900153618^(5/6) 6765000029563930 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^72 6765000029563930 a001 39088169/119218851371*312119004989^(7/11) 6765000029563930 a001 39088169/119218851371*14662949395604^(5/9) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(53) 6765000029563930 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(38) 6765000029563930 a001 39088169/119218851371*505019158607^(5/8) 6765000029563930 a001 39088169/192900153618*73681302247^(9/13) 6765000029563930 a001 39088169/1322157322203*73681302247^(10/13) 6765000029563930 a001 39088169/9062201101803*73681302247^(11/13) 6765000029563930 a001 39088169/45537549124*45537549124^(11/17) 6765000029563930 a001 12586269025/87403803*10749957122^(1/6) 6765000029563930 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^70 6765000029563930 a001 53316291173/87403803*28143753123^(1/10) 6765000029563930 a001 75283811239/29134601*10749957122^(1/24) 6765000029563930 a001 39088169/45537549124*312119004989^(3/5) 6765000029563930 a001 39088169/45537549124*14662949395604^(11/21) 6765000029563930 a001 20365011074/87403803*14662949395604^(1/9) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(51) 6765000029563930 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(38) 6765000029563930 a001 39088169/45537549124*192900153618^(11/18) 6765000029563930 a001 139583862445/87403803*10749957122^(1/16) 6765000029563930 a001 86267571272/87403803*10749957122^(1/12) 6765000029563930 a001 10983760033/29134601*10749957122^(1/8) 6765000029563930 a001 39088169/119218851371*28143753123^(7/10) 6765000029563930 a001 39088169/1322157322203*28143753123^(4/5) 6765000029563930 a001 39088169/14662949395604*28143753123^(9/10) 6765000029563930 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^68 6765000029563930 a001 75283811239/29134601*4106118243^(1/23) 6765000029563930 a001 7778742049/87403803*45537549124^(3/17) 6765000029563930 a001 7778742049/87403803*817138163596^(3/19) 6765000029563930 a001 7778742049/87403803*14662949395604^(1/7) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(49) 6765000029563930 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(38) 6765000029563930 a001 39088169/17393796001*9062201101803^(1/2) 6765000029563930 a001 7778742049/87403803*192900153618^(1/6) 6765000029563930 a001 1602508992/29134601*4106118243^(5/23) 6765000029563930 a001 39088169/28143753123*10749957122^(2/3) 6765000029563930 a001 7778742049/87403803*10749957122^(3/16) 6765000029563930 a001 86267571272/87403803*4106118243^(2/23) 6765000029563930 a001 39088169/73681302247*10749957122^(17/24) 6765000029563930 a001 39088169/45537549124*10749957122^(11/16) 6765000029563930 a001 39088169/192900153618*10749957122^(3/4) 6765000029563930 a001 39088169/505019158607*10749957122^(19/24) 6765000029563930 a001 4181/87403804*10749957122^(13/16) 6765000029563930 a001 39088169/1322157322203*10749957122^(5/6) 6765000029563930 a001 10983760033/29134601*4106118243^(3/23) 6765000029563930 a001 39088169/3461452808002*10749957122^(7/8) 6765000029563930 a001 39088169/9062201101803*10749957122^(11/12) 6765000029563930 a001 39088169/14662949395604*10749957122^(15/16) 6765000029563930 a001 39088169/23725150497407*10749957122^(23/24) 6765000029563930 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^66 6765000029563930 a001 12586269025/87403803*4106118243^(4/23) 6765000029563930 a001 75283811239/29134601*1568397607^(1/22) 6765000029563930 a001 2971215073/87403803*312119004989^(1/5) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(47) 6765000029563930 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(38) 6765000029563930 a001 39088169/6643838879*1322157322203^(1/2) 6765000029563930 a001 39088169/10749957122*4106118243^(15/23) 6765000029563930 a001 86267571272/87403803*1568397607^(1/11) 6765000029563930 a001 39088169/28143753123*4106118243^(16/23) 6765000029563930 a001 39088169/73681302247*4106118243^(17/23) 6765000029563930 a001 39088169/192900153618*4106118243^(18/23) 6765000029563930 a001 39088169/505019158607*4106118243^(19/23) 6765000029563930 a001 1836311903/87403803*1568397607^(3/11) 6765000029563930 a001 39088169/1322157322203*4106118243^(20/23) 6765000029563930 a001 39088169/3461452808002*4106118243^(21/23) 6765000029563930 a001 10983760033/29134601*1568397607^(3/22) 6765000029563930 a001 39088169/9062201101803*4106118243^(22/23) 6765000029563930 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^64 6765000029563930 a001 39088169/2537720636*2537720636^(3/5) 6765000029563930 a001 12586269025/87403803*1568397607^(2/11) 6765000029563930 a001 1602508992/29134601*1568397607^(5/22) 6765000029563930 a001 2971215073/87403803*1568397607^(1/4) 6765000029563930 a001 75283811239/29134601*599074578^(1/21) 6765000029563930 a001 39088169/2537720636*45537549124^(9/17) 6765000029563930 a001 39088169/2537720636*817138163596^(9/19) 6765000029563930 a001 1304743732576345/192866774113 6765000029563930 a001 39088169/2537720636*14662949395604^(3/7) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(45) 6765000029563930 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(38) 6765000029563930 a001 39088169/2537720636*192900153618^(1/2) 6765000029563930 a001 1134903170/87403803*73681302247^(1/4) 6765000029563930 a001 39088169/2537720636*10749957122^(9/16) 6765000029563930 a001 139583862445/87403803*599074578^(1/14) 6765000029563930 a001 39088169/4106118243*1568397607^(7/11) 6765000029563930 a001 86267571272/87403803*599074578^(2/21) 6765000029563930 a001 39088169/10749957122*1568397607^(15/22) 6765000029563930 a001 39088169/28143753123*1568397607^(8/11) 6765000029563930 a001 39088169/45537549124*1568397607^(3/4) 6765000029563930 a001 39088169/73681302247*1568397607^(17/22) 6765000029563930 a001 39088169/192900153618*1568397607^(9/11) 6765000029563930 a001 39088169/505019158607*1568397607^(19/22) 6765000029563930 a001 39088169/1322157322203*1568397607^(10/11) 6765000029563930 a001 39088169/3461452808002*1568397607^(21/22) 6765000029563930 a001 10983760033/29134601*599074578^(1/7) 6765000029563930 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^62 6765000029563930 a001 20365011074/87403803*599074578^(1/6) 6765000029563930 a001 233802911/29134601*599074578^(1/3) 6765000029563930 a001 12586269025/87403803*599074578^(4/21) 6765000029563930 a001 7778742049/87403803*599074578^(3/14) 6765000029563930 a001 1602508992/29134601*599074578^(5/21) 6765000029563930 a001 1836311903/87403803*599074578^(2/7) 6765000029563930 a001 75283811239/29134601*228826127^(1/20) 6765000029563930 a001 39088169/969323029*2537720636^(5/9) 6765000029563930 a001 433494437/87403803*2537720636^(1/3) 6765000029563930 a001 433494437/87403803*45537549124^(5/17) 6765000029563930 a001 39088169/969323029*312119004989^(5/11) 6765000029563930 a001 433494437/87403803*312119004989^(3/11) 6765000029563930 a001 16944503814015853/2504730781961 6765000029563930 a001 433494437/87403803*14662949395604^(5/21) 6765000029563930 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(43) 6765000029563930 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(38) 6765000029563930 a001 39088169/969323029*3461452808002^(5/12) 6765000029563930 a001 433494437/87403803*192900153618^(5/18) 6765000029563930 a001 433494437/87403803*28143753123^(3/10) 6765000029563930 a001 39088169/969323029*28143753123^(1/2) 6765000029563930 a001 433494437/87403803*10749957122^(5/16) 6765000029563930 a001 39088169/1568397607*599074578^(13/21) 6765000029563931 a001 39088169/4106118243*599074578^(2/3) 6765000029563931 a001 86267571272/87403803*228826127^(1/10) 6765000029563931 a001 39088169/2537720636*599074578^(9/14) 6765000029563931 a001 39088169/10749957122*599074578^(5/7) 6765000029563931 a001 433494437/87403803*599074578^(5/14) 6765000029563931 a001 39088169/28143753123*599074578^(16/21) 6765000029563931 a001 39088169/45537549124*599074578^(11/14) 6765000029563931 a001 39088169/73681302247*599074578^(17/21) 6765000029563931 a001 39088169/119218851371*599074578^(5/6) 6765000029563931 a001 53316291173/87403803*228826127^(1/8) 6765000029563931 a001 39088169/192900153618*599074578^(6/7) 6765000029563931 a001 39088169/505019158607*599074578^(19/21) 6765000029563931 a001 4181/87403804*599074578^(13/14) 6765000029563931 a001 39088169/1322157322203*599074578^(20/21) 6765000029563931 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^60 6765000029563931 a001 10983760033/29134601*228826127^(3/20) 6765000029563931 a001 12586269025/54018521*20633239^(1/5) 6765000029563931 a001 12586269025/87403803*228826127^(1/5) 6765000029563931 a001 1602508992/29134601*228826127^(1/4) 6765000029563931 a001 267914296/87403803*228826127^(2/5) 6765000029563931 a001 1836311903/87403803*228826127^(3/10) 6765000029563931 a001 233802911/29134601*228826127^(7/20) 6765000029563931 a001 75283811239/29134601*87403803^(1/19) 6765000029563931 a001 165580141/87403803*45537549124^(1/3) 6765000029563931 a001 6472224534451829/956722026041 6765000029563931 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(41) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(38) 6765000029563931 a001 39088169/370248451*4106118243^(1/2) 6765000029563931 a001 433494437/87403803*228826127^(3/8) 6765000029563931 a001 39088169/599074578*228826127^(3/5) 6765000029563931 a001 39088169/1568397607*228826127^(13/20) 6765000029563931 a001 39088169/969323029*228826127^(5/8) 6765000029563931 a001 39088169/4106118243*228826127^(7/10) 6765000029563931 a001 86267571272/87403803*87403803^(2/19) 6765000029563931 a001 39088169/10749957122*228826127^(3/4) 6765000029563931 a001 39088169/28143753123*228826127^(4/5) 6765000029563931 a001 39088169/73681302247*228826127^(17/20) 6765000029563931 a001 39088169/119218851371*228826127^(7/8) 6765000029563931 a001 39088169/192900153618*228826127^(9/10) 6765000029563931 a001 39088169/505019158607*228826127^(19/20) 6765000029563931 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^58 6765000029563931 a001 10983760033/29134601*87403803^(3/19) 6765000029563931 a001 39088169/141422324*141422324^(7/13) 6765000029563931 a001 12586269025/87403803*87403803^(4/19) 6765000029563931 a001 7465176/5374978561*33385282^(8/9) 6765000029563931 a001 1602508992/29134601*87403803^(5/19) 6765000029563931 a001 1836311903/87403803*87403803^(6/19) 6765000029563931 a001 34111385/29134601*87403803^(9/19) 6765000029563931 a001 233802911/29134601*87403803^(7/19) 6765000029563931 a001 75283811239/29134601*33385282^(1/18) 6765000029563931 a001 39088169/141422324*2537720636^(7/15) 6765000029563931 a001 39088169/141422324*17393796001^(3/7) 6765000029563931 a001 39088169/141422324*45537549124^(7/17) 6765000029563931 a001 295643361557/43701901 6765000029563931 a001 39088169/141422324*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(39) 6765000029563931 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(38) 6765000029563931 a001 39088169/141422324*192900153618^(7/18) 6765000029563931 a001 39088169/141422324*10749957122^(7/16) 6765000029563931 a001 39088169/141422324*599074578^(1/2) 6765000029563931 a001 267914296/87403803*87403803^(8/19) 6765000029563931 a001 14930352/17393796001*33385282^(11/12) 6765000029563931 a001 39088169/228826127*87403803^(11/19) 6765000029563931 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^59 6765000029563931 a001 102334155/505019158607*141422324^(12/13) 6765000029563931 a001 102334155/119218851371*141422324^(11/13) 6765000029563931 a001 831985/228811001*141422324^(10/13) 6765000029563931 a001 139583862445/87403803*33385282^(1/12) 6765000029563931 a001 102334155/6643838879*141422324^(9/13) 6765000029563931 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^61 6765000029563931 a001 34111385/1368706081*141422324^(2/3) 6765000029563931 a001 39088169/599074578*87403803^(12/19) 6765000029563931 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^63 6765000029563931 a001 14619165/224056801*141422324^(8/13) 6765000029563931 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^65 6765000029563931 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^67 6765000029563931 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^69 6765000029563931 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^71 6765000029563931 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^73 6765000029563931 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(76)*Lucas(39)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(78)*Lucas(39)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(80)*Lucas(39)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(81)*Lucas(39)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(79)*Lucas(39)/(1/2+sqrt(5)/2)^98 6765000029563931 a001 1/31622993*(1/2+1/2*5^(1/2))^59 6765000029563931 a004 Fibonacci(77)*Lucas(39)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(75)*Lucas(39)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^76 6765000029563931 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^74 6765000029563931 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^72 6765000029563931 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^70 6765000029563931 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^68 6765000029563931 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^66 6765000029563931 a001 4976784/9381251041*33385282^(17/18) 6765000029563931 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^64 6765000029563931 a001 267914296/1322157322203*141422324^(12/13) 6765000029563931 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^62 6765000029563931 a001 701408733/3461452808002*141422324^(12/13) 6765000029563931 a001 1836311903/9062201101803*141422324^(12/13) 6765000029563931 a001 4807526976/23725150497407*141422324^(12/13) 6765000029563931 a001 2971215073/14662949395604*141422324^(12/13) 6765000029563931 a001 1134903170/5600748293801*141422324^(12/13) 6765000029563931 a001 267914296/312119004989*141422324^(11/13) 6765000029563931 a001 433494437/2139295485799*141422324^(12/13) 6765000029563931 a001 267914296/228826127*141422324^(6/13) 6765000029563931 a001 701408733/817138163596*141422324^(11/13) 6765000029563931 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^60 6765000029563931 a001 1836311903/2139295485799*141422324^(11/13) 6765000029563931 a001 4807526976/5600748293801*141422324^(11/13) 6765000029563931 a001 12586269025/14662949395604*141422324^(11/13) 6765000029563931 a001 20365011074/23725150497407*141422324^(11/13) 6765000029563931 a001 7778742049/9062201101803*141422324^(11/13) 6765000029563931 a001 2971215073/3461452808002*141422324^(11/13) 6765000029563931 a001 1134903170/1322157322203*141422324^(11/13) 6765000029563931 a001 39088169/1568397607*87403803^(13/19) 6765000029563931 a001 267914296/73681302247*141422324^(10/13) 6765000029563931 a001 433494437/505019158607*141422324^(11/13) 6765000029563931 a001 233802911/64300051206*141422324^(10/13) 6765000029563931 a001 165580141/817138163596*141422324^(12/13) 6765000029563931 a001 102334155/370248451*141422324^(7/13) 6765000029563931 a001 1836311903/505019158607*141422324^(10/13) 6765000029563931 a001 1602508992/440719107401*141422324^(10/13) 6765000029563931 a001 12586269025/3461452808002*141422324^(10/13) 6765000029563931 a001 10983760033/3020733700601*141422324^(10/13) 6765000029563931 a001 86267571272/23725150497407*141422324^(10/13) 6765000029563931 a001 53316291173/14662949395604*141422324^(10/13) 6765000029563931 a001 20365011074/5600748293801*141422324^(10/13) 6765000029563931 a001 7778742049/2139295485799*141422324^(10/13) 6765000029563931 a001 2971215073/817138163596*141422324^(10/13) 6765000029563931 a001 1134903170/312119004989*141422324^(10/13) 6765000029563931 a001 102334155/228826127*2537720636^(4/9) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(40) 6765000029563931 a001 102334155/228826127*23725150497407^(5/16) 6765000029563931 a001 516002920895/76275376 6765000029563931 a001 102334155/228826127*505019158607^(5/14) 6765000029563931 a001 102334155/228826127*73681302247^(5/13) 6765000029563931 a001 102334155/228826127*28143753123^(2/5) 6765000029563931 a001 102334155/228826127*10749957122^(5/12) 6765000029563931 a001 1134903170/228826127*141422324^(5/13) 6765000029563931 a001 102334155/228826127*4106118243^(10/23) 6765000029563931 a001 102334155/228826127*1568397607^(5/11) 6765000029563931 a001 9238424/599786069*141422324^(9/13) 6765000029563931 a001 433494437/119218851371*141422324^(10/13) 6765000029563931 a001 102334155/228826127*599074578^(10/21) 6765000029563931 a001 133957148/5374978561*141422324^(2/3) 6765000029563931 a001 2971215073/228826127*141422324^(1/3) 6765000029563931 a001 701408733/45537549124*141422324^(9/13) 6765000029563931 a001 165580141/192900153618*141422324^(11/13) 6765000029563931 a001 1836311903/119218851371*141422324^(9/13) 6765000029563931 a001 4807526976/312119004989*141422324^(9/13) 6765000029563931 a001 12586269025/817138163596*141422324^(9/13) 6765000029563931 a001 32951280099/2139295485799*141422324^(9/13) 6765000029563931 a001 86267571272/5600748293801*141422324^(9/13) 6765000029563931 a001 7787980473/505618944676*141422324^(9/13) 6765000029563931 a001 365435296162/23725150497407*141422324^(9/13) 6765000029563931 a001 139583862445/9062201101803*141422324^(9/13) 6765000029563931 a001 53316291173/3461452808002*141422324^(9/13) 6765000029563931 a001 20365011074/1322157322203*141422324^(9/13) 6765000029563931 a001 7778742049/505019158607*141422324^(9/13) 6765000029563931 a001 2971215073/192900153618*141422324^(9/13) 6765000029563931 a001 39088169/4106118243*87403803^(14/19) 6765000029563931 a001 102287808/4868641*141422324^(4/13) 6765000029563931 a001 1134903170/73681302247*141422324^(9/13) 6765000029563931 a001 233802911/9381251041*141422324^(2/3) 6765000029563931 a001 267914296/4106118243*141422324^(8/13) 6765000029563931 a001 433494437/28143753123*141422324^(9/13) 6765000029563931 a001 1836311903/73681302247*141422324^(2/3) 6765000029563931 a001 267084832/10716675201*141422324^(2/3) 6765000029563931 a001 12586269025/505019158607*141422324^(2/3) 6765000029563931 a001 10983760033/440719107401*141422324^(2/3) 6765000029563931 a001 43133785636/1730726404001*141422324^(2/3) 6765000029563931 a001 75283811239/3020733700601*141422324^(2/3) 6765000029563931 a001 182717648081/7331474697802*141422324^(2/3) 6765000029563931 a001 139583862445/5600748293801*141422324^(2/3) 6765000029563931 a001 53316291173/2139295485799*141422324^(2/3) 6765000029563931 a001 10182505537/408569081798*141422324^(2/3) 6765000029563931 a001 7778742049/312119004989*141422324^(2/3) 6765000029563931 a001 2971215073/119218851371*141422324^(2/3) 6765000029563931 a001 567451585/22768774562*141422324^(2/3) 6765000029563931 a001 433494437/17393796001*141422324^(2/3) 6765000029563931 a001 86267571272/87403803*33385282^(1/9) 6765000029563931 a001 701408733/10749957122*141422324^(8/13) 6765000029563931 a001 165580141/45537549124*141422324^(10/13) 6765000029563931 a001 14930352/54018521*33385282^(7/12) 6765000029563931 a001 1836311903/28143753123*141422324^(8/13) 6765000029563931 a001 686789568/10525900321*141422324^(8/13) 6765000029563931 a001 12586269025/192900153618*141422324^(8/13) 6765000029563931 a001 32951280099/505019158607*141422324^(8/13) 6765000029563931 a001 86267571272/1322157322203*141422324^(8/13) 6765000029563931 a001 32264490531/494493258286*141422324^(8/13) 6765000029563931 a001 591286729879/9062201101803*141422324^(8/13) 6765000029563931 a001 1548008755920/23725150497407*141422324^(8/13) 6765000029563931 a001 365435296162/5600748293801*141422324^(8/13) 6765000029563931 a001 139583862445/2139295485799*141422324^(8/13) 6765000029563931 a001 53316291173/817138163596*141422324^(8/13) 6765000029563931 a001 20365011074/312119004989*141422324^(8/13) 6765000029563931 a001 7778742049/119218851371*141422324^(8/13) 6765000029563931 a001 2971215073/45537549124*141422324^(8/13) 6765000029563931 a001 20365011074/228826127*141422324^(3/13) 6765000029563931 a001 1134903170/17393796001*141422324^(8/13) 6765000029563931 a001 433494437/6643838879*141422324^(8/13) 6765000029563931 a001 102334155/228826127*228826127^(1/2) 6765000029563931 a001 267914296/969323029*141422324^(7/13) 6765000029563931 a001 39088169/10749957122*87403803^(15/19) 6765000029563931 a001 165580141/10749957122*141422324^(9/13) 6765000029563931 a001 701408733/2537720636*141422324^(7/13) 6765000029563931 a001 1836311903/6643838879*141422324^(7/13) 6765000029563931 a001 4807526976/17393796001*141422324^(7/13) 6765000029563931 a001 12586269025/45537549124*141422324^(7/13) 6765000029563931 a001 32951280099/119218851371*141422324^(7/13) 6765000029563931 a001 86267571272/312119004989*141422324^(7/13) 6765000029563931 a001 225851433717/817138163596*141422324^(7/13) 6765000029563931 a001 1548008755920/5600748293801*141422324^(7/13) 6765000029563931 a001 139583862445/505019158607*141422324^(7/13) 6765000029563931 a001 53316291173/192900153618*141422324^(7/13) 6765000029563931 a001 20365011074/73681302247*141422324^(7/13) 6765000029563931 a001 7778742049/28143753123*141422324^(7/13) 6765000029563931 a001 2971215073/10749957122*141422324^(7/13) 6765000029563931 a001 1134903170/4106118243*141422324^(7/13) 6765000029563931 a001 86267571272/228826127*141422324^(2/13) 6765000029563931 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^61 6765000029563931 a001 233802911/199691526*141422324^(6/13) 6765000029563931 a001 433494437/1568397607*141422324^(7/13) 6765000029563931 a001 165580141/6643838879*141422324^(2/3) 6765000029563931 a001 1836311903/1568397607*141422324^(6/13) 6765000029563931 a001 165580141/2537720636*141422324^(8/13) 6765000029563931 a001 1602508992/1368706081*141422324^(6/13) 6765000029563931 a001 12586269025/10749957122*141422324^(6/13) 6765000029563931 a001 10983760033/9381251041*141422324^(6/13) 6765000029563931 a001 86267571272/73681302247*141422324^(6/13) 6765000029563931 a001 75283811239/64300051206*141422324^(6/13) 6765000029563931 a001 2504730781961/2139295485799*141422324^(6/13) 6765000029563931 a001 365435296162/312119004989*141422324^(6/13) 6765000029563931 a001 139583862445/119218851371*141422324^(6/13) 6765000029563931 a001 53316291173/45537549124*141422324^(6/13) 6765000029563931 a001 20365011074/17393796001*141422324^(6/13) 6765000029563931 a001 7778742049/6643838879*141422324^(6/13) 6765000029563931 a001 365435296162/228826127*141422324^(1/13) 6765000029563931 a001 2971215073/2537720636*141422324^(6/13) 6765000029563931 a001 165580141/599074578*141422324^(7/13) 6765000029563931 a001 2971215073/599074578*141422324^(5/13) 6765000029563931 a001 267914296/228826127*2537720636^(2/5) 6765000029563931 a001 267914296/228826127*45537549124^(6/17) 6765000029563931 a001 34111385/199691526*312119004989^(2/5) 6765000029563931 a001 267914296/228826127*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(42) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(40) 6765000029563931 a001 27416783093579880/4052739537881 6765000029563931 a001 267914296/228826127*192900153618^(1/3) 6765000029563931 a001 267914296/228826127*10749957122^(3/8) 6765000029563931 a001 34111385/199691526*10749957122^(11/24) 6765000029563931 a001 267914296/228826127*4106118243^(9/23) 6765000029563931 a001 1134903170/969323029*141422324^(6/13) 6765000029563931 a001 34111385/199691526*4106118243^(11/23) 6765000029563931 a001 267914296/228826127*1568397607^(9/22) 6765000029563931 a001 34111385/199691526*1568397607^(1/2) 6765000029563931 a001 267914296/228826127*599074578^(3/7) 6765000029563931 a001 39088169/28143753123*87403803^(16/19) 6765000029563931 a001 34111385/199691526*599074578^(11/21) 6765000029563931 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^63 6765000029563931 a001 7778742049/1568397607*141422324^(5/13) 6765000029563931 a001 14619165/224056801*2537720636^(8/15) 6765000029563931 a001 14619165/224056801*45537549124^(8/17) 6765000029563931 a001 14619165/224056801*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(44) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(40) 6765000029563931 a001 3418003333389315/505248088463 6765000029563931 a001 14619165/224056801*192900153618^(4/9) 6765000029563931 a001 701408733/228826127*73681302247^(4/13) 6765000029563931 a001 14619165/224056801*73681302247^(6/13) 6765000029563931 a001 701408733/228826127*10749957122^(1/3) 6765000029563931 a001 14619165/224056801*10749957122^(1/2) 6765000029563931 a001 701408733/228826127*4106118243^(8/23) 6765000029563931 a001 14619165/224056801*4106118243^(12/23) 6765000029563931 a001 7778742049/599074578*141422324^(1/3) 6765000029563931 a001 701408733/228826127*1568397607^(4/11) 6765000029563931 a001 20365011074/4106118243*141422324^(5/13) 6765000029563931 a001 14619165/224056801*1568397607^(6/11) 6765000029563931 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^65 6765000029563931 a001 34111385/3020733700601*2537720636^(14/15) 6765000029563931 a001 53316291173/10749957122*141422324^(5/13) 6765000029563931 a001 6765/228826126*2537720636^(8/9) 6765000029563931 a001 102334155/2139295485799*2537720636^(13/15) 6765000029563931 a001 139583862445/28143753123*141422324^(5/13) 6765000029563931 a001 365435296162/73681302247*141422324^(5/13) 6765000029563931 a001 956722026041/192900153618*141422324^(5/13) 6765000029563931 a001 2504730781961/505019158607*141422324^(5/13) 6765000029563931 a001 10610209857723/2139295485799*141422324^(5/13) 6765000029563931 a001 4052739537881/817138163596*141422324^(5/13) 6765000029563931 a001 140728068720/28374454999*141422324^(5/13) 6765000029563931 a001 591286729879/119218851371*141422324^(5/13) 6765000029563931 a001 225851433717/45537549124*141422324^(5/13) 6765000029563931 a001 86267571272/17393796001*141422324^(5/13) 6765000029563931 a001 102334155/505019158607*2537720636^(4/5) 6765000029563931 a001 9303105/28374454999*2537720636^(7/9) 6765000029563931 a001 102334155/119218851371*2537720636^(11/15) 6765000029563931 a001 32951280099/6643838879*141422324^(5/13) 6765000029563931 a001 831985/228811001*2537720636^(2/3) 6765000029563931 a001 102334155/6643838879*2537720636^(3/5) 6765000029563931 a001 1836311903/228826127*17393796001^(2/7) 6765000029563931 a001 1836311903/228826127*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(46) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(40) 6765000029563931 a001 34111385/1368706081*73681302247^(1/2) 6765000029563931 a001 1836311903/228826127*10749957122^(7/24) 6765000029563931 a001 34111385/1368706081*10749957122^(13/24) 6765000029563931 a001 102287808/4868641*2537720636^(4/15) 6765000029563931 a001 1836311903/228826127*4106118243^(7/23) 6765000029563931 a001 12586269025/228826127*2537720636^(2/9) 6765000029563931 a001 20365011074/228826127*2537720636^(1/5) 6765000029563931 a001 34111385/1368706081*4106118243^(13/23) 6765000029563931 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^67 6765000029563931 a001 86267571272/228826127*2537720636^(2/15) 6765000029563931 a001 139583862445/228826127*2537720636^(1/9) 6765000029563931 a001 102334155/10749957122*17393796001^(4/7) 6765000029563931 a001 365435296162/228826127*2537720636^(1/15) 6765000029563931 a001 102287808/4868641*45537549124^(4/17) 6765000029563931 a001 102287808/4868641*817138163596^(4/19) 6765000029563931 a001 102287808/4868641*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(40) 6765000029563931 a001 102334155/10749957122*505019158607^(1/2) 6765000029563931 a001 102287808/4868641*192900153618^(2/9) 6765000029563931 a001 102287808/4868641*73681302247^(3/13) 6765000029563931 a001 102334155/10749957122*73681302247^(7/13) 6765000029563931 a001 102287808/4868641*10749957122^(1/4) 6765000029563931 a001 102334155/10749957122*10749957122^(7/12) 6765000029563931 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 34111385/3020733700601*17393796001^(6/7) 6765000029563931 a001 9303105/28374454999*17393796001^(5/7) 6765000029563931 a001 831985/228811001*45537549124^(10/17) 6765000029563931 a001 831985/228811001*312119004989^(6/11) 6765000029563931 a001 12586269025/228826127*312119004989^(2/11) 6765000029563931 a001 831985/228811001*14662949395604^(10/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(40) 6765000029563931 a001 831985/228811001*192900153618^(5/9) 6765000029563931 a001 12586269025/228826127*28143753123^(1/5) 6765000029563931 a001 831985/228811001*28143753123^(3/5) 6765000029563931 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 34111385/3020733700601*45537549124^(14/17) 6765000029563931 a001 102334155/2139295485799*45537549124^(13/17) 6765000029563931 a001 34111385/64300051206*45537549124^(2/3) 6765000029563931 a001 102334155/505019158607*45537549124^(12/17) 6765000029563931 a001 102334155/119218851371*45537549124^(11/17) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(40) 6765000029563931 a001 14619165/10525900321*23725150497407^(1/2) 6765000029563931 a001 14619165/10525900321*505019158607^(4/7) 6765000029563931 a001 32951280099/228826127*73681302247^(2/13) 6765000029563931 a001 86267571272/228826127*45537549124^(2/17) 6765000029563931 a001 14619165/10525900321*73681302247^(8/13) 6765000029563931 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 86267571272/228826127*14662949395604^(2/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(40) 6765000029563931 a001 365435296162/228826127*45537549124^(1/17) 6765000029563931 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 102334155/23725150497407*312119004989^(4/5) 6765000029563931 a001 102334155/505019158607*14662949395604^(4/7) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(40) 6765000029563931 a001 225851433717/228826127*23725150497407^(1/16) 6765000029563931 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(40) 6765000029563931 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(60) 6765000029563931 a001 6765/228826126*23725150497407^(5/8) 6765000029563931 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(62) 6765000029563931 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(64) 6765000029563931 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(66) 6765000029563931 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(40)*Lucas(75)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(40)*Lucas(77)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(40)*Lucas(79)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(80) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(82) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(84) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(86) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(88) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(90) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(92) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^74/Lucas(94) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^76/Lucas(96) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^78/Lucas(98) 6765000029563931 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^79/Lucas(99) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^80/Lucas(100) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^77/Lucas(97) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^75/Lucas(95) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(93) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(91) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(89) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(87) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(85) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(83) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(81) 6765000029563931 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^36 6765000029563931 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^38 6765000029563931 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^40 6765000029563931 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^39 6765000029563931 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^37 6765000029563931 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^35 6765000029563931 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(40)*Lucas(78)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(40)*Lucas(76)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(40)*Lucas(74)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(65) 6765000029563931 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(63) 6765000029563931 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(61) 6765000029563931 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 102334155/2139295485799*14662949395604^(13/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(40) 6765000029563931 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(40) 6765000029563931 a001 34111385/3020733700601*505019158607^(3/4) 6765000029563931 a001 9303105/28374454999*312119004989^(7/11) 6765000029563931 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 139583862445/228826127*312119004989^(1/11) 6765000029563931 a001 225851433717/228826127*73681302247^(1/13) 6765000029563931 a001 9303105/28374454999*14662949395604^(5/9) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(40) 6765000029563931 a001 9303105/28374454999*505019158607^(5/8) 6765000029563931 a001 102334155/505019158607*192900153618^(2/3) 6765000029563931 a001 102334155/2139295485799*192900153618^(13/18) 6765000029563931 a001 34111385/3020733700601*192900153618^(7/9) 6765000029563931 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 102334155/119218851371*312119004989^(3/5) 6765000029563931 a001 102334155/119218851371*817138163596^(11/19) 6765000029563931 a001 102334155/119218851371*14662949395604^(11/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(40) 6765000029563931 a001 102334155/119218851371*192900153618^(11/18) 6765000029563931 a001 102334155/505019158607*73681302247^(9/13) 6765000029563931 a001 139583862445/228826127*28143753123^(1/10) 6765000029563931 a001 102334155/2139295485799*73681302247^(3/4) 6765000029563931 a001 6765/228826126*73681302247^(10/13) 6765000029563931 a001 102334155/23725150497407*73681302247^(11/13) 6765000029563931 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 591286729879/228826127*10749957122^(1/24) 6765000029563931 a001 20365011074/228826127*45537549124^(3/17) 6765000029563931 a001 20365011074/228826127*14662949395604^(1/7) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(40) 6765000029563931 a001 102334155/45537549124*9062201101803^(1/2) 6765000029563931 a001 20365011074/228826127*192900153618^(1/6) 6765000029563931 a001 12586269025/228826127*10749957122^(5/24) 6765000029563931 a001 365435296162/228826127*10749957122^(1/16) 6765000029563931 a001 225851433717/228826127*10749957122^(1/12) 6765000029563931 a001 9303105/28374454999*28143753123^(7/10) 6765000029563931 a001 6765/228826126*28143753123^(4/5) 6765000029563931 a001 86267571272/228826127*10749957122^(1/8) 6765000029563931 a001 32951280099/228826127*10749957122^(1/6) 6765000029563931 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 20365011074/228826127*10749957122^(3/16) 6765000029563931 a001 591286729879/228826127*4106118243^(1/23) 6765000029563931 a001 7778742049/228826127*312119004989^(1/5) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(40) 6765000029563931 a001 102334155/17393796001*1322157322203^(1/2) 6765000029563931 a001 831985/228811001*10749957122^(5/8) 6765000029563931 a001 225851433717/228826127*4106118243^(2/23) 6765000029563931 a001 14619165/10525900321*10749957122^(2/3) 6765000029563931 a001 102334155/119218851371*10749957122^(11/16) 6765000029563931 a001 34111385/64300051206*10749957122^(17/24) 6765000029563931 a001 102334155/505019158607*10749957122^(3/4) 6765000029563931 a001 102287808/4868641*4106118243^(6/23) 6765000029563931 a001 34111385/440719107401*10749957122^(19/24) 6765000029563931 a001 102334155/2139295485799*10749957122^(13/16) 6765000029563931 a001 6765/228826126*10749957122^(5/6) 6765000029563931 a001 34111385/3020733700601*10749957122^(7/8) 6765000029563931 a001 86267571272/228826127*4106118243^(3/23) 6765000029563931 a001 102334155/23725150497407*10749957122^(11/12) 6765000029563931 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^68 6765000029563931 a001 32951280099/228826127*4106118243^(4/23) 6765000029563931 a001 12586269025/228826127*4106118243^(5/23) 6765000029563931 a001 591286729879/228826127*1568397607^(1/22) 6765000029563931 a001 1144206275/230701876*141422324^(5/13) 6765000029563931 a001 102334155/6643838879*45537549124^(9/17) 6765000029563931 a001 102334155/6643838879*817138163596^(9/19) 6765000029563931 a001 102334155/6643838879*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(40) 6765000029563931 a001 102334155/6643838879*192900153618^(1/2) 6765000029563931 a001 2971215073/228826127*73681302247^(1/4) 6765000029563931 a001 102334155/10749957122*4106118243^(14/23) 6765000029563931 a001 102334155/6643838879*10749957122^(9/16) 6765000029563931 a001 225851433717/228826127*1568397607^(1/11) 6765000029563931 a001 831985/228811001*4106118243^(15/23) 6765000029563931 a001 14619165/10525900321*4106118243^(16/23) 6765000029563931 a001 34111385/64300051206*4106118243^(17/23) 6765000029563931 a001 102334155/505019158607*4106118243^(18/23) 6765000029563931 a001 34111385/440719107401*4106118243^(19/23) 6765000029563931 a001 6765/228826126*4106118243^(20/23) 6765000029563931 a001 34111385/3020733700601*4106118243^(21/23) 6765000029563931 a001 86267571272/228826127*1568397607^(3/22) 6765000029563931 a001 102334155/23725150497407*4106118243^(22/23) 6765000029563931 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^66 6765000029563931 a001 9303105/230701876*2537720636^(5/9) 6765000029563931 a001 1836311903/228826127*1568397607^(7/22) 6765000029563931 a001 32951280099/228826127*1568397607^(2/11) 6765000029563931 a001 12586269025/228826127*1568397607^(5/22) 6765000029563931 a001 102287808/4868641*1568397607^(3/11) 6765000029563931 a001 1134903170/228826127*2537720636^(1/3) 6765000029563931 a001 7778742049/228826127*1568397607^(1/4) 6765000029563931 a001 591286729879/228826127*599074578^(1/21) 6765000029563931 a001 1134903170/228826127*45537549124^(5/17) 6765000029563931 a001 1134903170/228826127*312119004989^(3/11) 6765000029563931 a001 1134903170/228826127*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(45) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(40) 6765000029563931 a001 9303105/230701876*3461452808002^(5/12) 6765000029563931 a001 1134903170/228826127*192900153618^(5/18) 6765000029563931 a001 1134903170/228826127*28143753123^(3/10) 6765000029563931 a001 9303105/230701876*28143753123^(1/2) 6765000029563931 a001 1134903170/228826127*10749957122^(5/16) 6765000029563931 a001 34111385/1368706081*1568397607^(13/22) 6765000029563931 a001 365435296162/228826127*599074578^(1/14) 6765000029563931 a001 102334155/10749957122*1568397607^(7/11) 6765000029563931 a001 225851433717/228826127*599074578^(2/21) 6765000029563931 a001 831985/228811001*1568397607^(15/22) 6765000029563931 a001 14619165/10525900321*1568397607^(8/11) 6765000029563931 a001 102334155/119218851371*1568397607^(3/4) 6765000029563931 a001 34111385/64300051206*1568397607^(17/22) 6765000029563931 a001 102334155/505019158607*1568397607^(9/11) 6765000029563931 a001 34111385/440719107401*1568397607^(19/22) 6765000029563931 a001 6765/228826126*1568397607^(10/11) 6765000029563931 a001 34111385/3020733700601*1568397607^(21/22) 6765000029563931 a001 86267571272/228826127*599074578^(1/7) 6765000029563931 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^64 6765000029563931 a001 53316291173/228826127*599074578^(1/6) 6765000029563931 a001 32951280099/228826127*599074578^(4/21) 6765000029563931 a001 20365011074/228826127*599074578^(3/14) 6765000029563931 a001 701408733/228826127*599074578^(8/21) 6765000029563931 a001 12586269025/228826127*599074578^(5/21) 6765000029563931 a001 102287808/4868641*599074578^(2/7) 6765000029563931 a001 1836311903/228826127*599074578^(1/3) 6765000029563931 a001 4807526976/969323029*141422324^(5/13) 6765000029563931 a001 12586269025/599074578*141422324^(4/13) 6765000029563931 a001 591286729879/228826127*228826127^(1/20) 6765000029563931 a001 433494437/228826127*45537549124^(1/3) 6765000029563931 a001 44361286907595735/6557470319842 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(43) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(40) 6765000029563931 a001 102334155/969323029*4106118243^(1/2) 6765000029563931 a001 1134903170/228826127*599074578^(5/14) 6765000029563931 a001 14619165/224056801*599074578^(4/7) 6765000029563931 a001 34111385/1368706081*599074578^(13/21) 6765000029563931 a001 102334155/6643838879*599074578^(9/14) 6765000029563931 a001 102334155/10749957122*599074578^(2/3) 6765000029563931 a001 225851433717/228826127*228826127^(1/10) 6765000029563931 a001 831985/228811001*599074578^(5/7) 6765000029563931 a001 20365011074/1568397607*141422324^(1/3) 6765000029563931 a001 14619165/10525900321*599074578^(16/21) 6765000029563931 a001 102334155/119218851371*599074578^(11/14) 6765000029563931 a001 34111385/64300051206*599074578^(17/21) 6765000029563931 a001 9303105/28374454999*599074578^(5/6) 6765000029563931 a001 53316291173/4106118243*141422324^(1/3) 6765000029563931 a001 139583862445/228826127*228826127^(1/8) 6765000029563931 a001 102334155/505019158607*599074578^(6/7) 6765000029563931 a001 139583862445/10749957122*141422324^(1/3) 6765000029563931 a001 365435296162/28143753123*141422324^(1/3) 6765000029563931 a001 956722026041/73681302247*141422324^(1/3) 6765000029563931 a001 2504730781961/192900153618*141422324^(1/3) 6765000029563931 a001 10610209857723/817138163596*141422324^(1/3) 6765000029563931 a001 4052739537881/312119004989*141422324^(1/3) 6765000029563931 a001 1548008755920/119218851371*141422324^(1/3) 6765000029563931 a001 591286729879/45537549124*141422324^(1/3) 6765000029563931 a001 7787980473/599786069*141422324^(1/3) 6765000029563931 a001 86267571272/6643838879*141422324^(1/3) 6765000029563931 a001 34111385/440719107401*599074578^(19/21) 6765000029563931 a001 32951280099/2537720636*141422324^(1/3) 6765000029563931 a001 102334155/2139295485799*599074578^(13/14) 6765000029563931 a001 6765/228826126*599074578^(20/21) 6765000029563931 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^62 6765000029563931 a001 86267571272/228826127*228826127^(3/20) 6765000029563931 a001 32951280099/1568397607*141422324^(4/13) 6765000029563931 a001 12586269025/969323029*141422324^(1/3) 6765000029563931 a001 63245986/87403803*87403803^(1/2) 6765000029563931 a001 86267571272/4106118243*141422324^(4/13) 6765000029563931 a001 225851433717/10749957122*141422324^(4/13) 6765000029563931 a001 591286729879/28143753123*141422324^(4/13) 6765000029563931 a001 1548008755920/73681302247*141422324^(4/13) 6765000029563931 a001 4052739537881/192900153618*141422324^(4/13) 6765000029563931 a001 225749145909/10745088481*141422324^(4/13) 6765000029563931 a001 6557470319842/312119004989*141422324^(4/13) 6765000029563931 a001 2504730781961/119218851371*141422324^(4/13) 6765000029563931 a001 956722026041/45537549124*141422324^(4/13) 6765000029563931 a001 365435296162/17393796001*141422324^(4/13) 6765000029563931 a001 139583862445/6643838879*141422324^(4/13) 6765000029563931 a001 32951280099/228826127*228826127^(1/5) 6765000029563931 a001 53316291173/2537720636*141422324^(4/13) 6765000029563931 a001 433494437/370248451*141422324^(6/13) 6765000029563931 a001 12586269025/228826127*228826127^(1/4) 6765000029563931 a001 53316291173/599074578*141422324^(3/13) 6765000029563931 a001 20365011074/969323029*141422324^(4/13) 6765000029563931 a001 39088169/73681302247*87403803^(17/19) 6765000029563931 a001 102287808/4868641*228826127^(3/10) 6765000029563931 a001 267914296/228826127*228826127^(9/20) 6765000029563931 a001 1836311903/228826127*228826127^(7/20) 6765000029563931 a001 591286729879/228826127*87403803^(1/19) 6765000029563931 a001 1836311903/370248451*141422324^(5/13) 6765000029563931 a001 139583862445/1568397607*141422324^(3/13) 6765000029563931 a001 102334155/370248451*2537720636^(7/15) 6765000029563931 a001 701408733/228826127*228826127^(2/5) 6765000029563931 a001 102334155/370248451*17393796001^(3/7) 6765000029563931 a001 102334155/370248451*45537549124^(7/17) 6765000029563931 a001 16944503814015855/2504730781961 6765000029563931 a001 102334155/370248451*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(41) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(40) 6765000029563931 a001 102334155/370248451*192900153618^(7/18) 6765000029563931 a001 102334155/370248451*10749957122^(7/16) 6765000029563931 a001 1134903170/228826127*228826127^(3/8) 6765000029563931 a001 365435296162/4106118243*141422324^(3/13) 6765000029563931 a001 956722026041/10749957122*141422324^(3/13) 6765000029563931 a001 2504730781961/28143753123*141422324^(3/13) 6765000029563931 a001 6557470319842/73681302247*141422324^(3/13) 6765000029563931 a001 10610209857723/119218851371*141422324^(3/13) 6765000029563931 a001 4052739537881/45537549124*141422324^(3/13) 6765000029563931 a001 1548008755920/17393796001*141422324^(3/13) 6765000029563931 a001 591286729879/6643838879*141422324^(3/13) 6765000029563931 a001 225851433717/2537720636*141422324^(3/13) 6765000029563931 a001 34111385/199691526*228826127^(11/20) 6765000029563931 a001 267913919/710646*141422324^(2/13) 6765000029563931 a001 86267571272/969323029*141422324^(3/13) 6765000029563931 a001 102334155/370248451*599074578^(1/2) 6765000029563931 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^63 6765000029563931 a001 4807526976/370248451*141422324^(1/3) 6765000029563931 a001 591286729879/1568397607*141422324^(2/13) 6765000029563931 a001 7778742049/370248451*141422324^(4/13) 6765000029563931 a001 14619165/224056801*228826127^(3/5) 6765000029563931 a001 516002918640/1368706081*141422324^(2/13) 6765000029563931 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^65 6765000029563931 a001 4052739537881/10749957122*141422324^(2/13) 6765000029563931 a001 3536736619241/9381251041*141422324^(2/13) 6765000029563931 a001 6557470319842/17393796001*141422324^(2/13) 6765000029563931 a001 2504730781961/6643838879*141422324^(2/13) 6765000029563931 a001 956722026041/2537720636*141422324^(2/13) 6765000029563931 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^67 6765000029563931 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^69 6765000029563931 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^71 6765000029563931 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^73 6765000029563931 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(74)*Lucas(41)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(76)*Lucas(41)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(78)*Lucas(41)/(1/2+sqrt(5)/2)^99 6765000029563931 a001 2/165580141*(1/2+1/2*5^(1/2))^61 6765000029563931 a004 Fibonacci(79)*Lucas(41)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(77)*Lucas(41)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(75)*Lucas(41)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(73)*Lucas(41)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^76 6765000029563931 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^74 6765000029563931 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^72 6765000029563931 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^70 6765000029563931 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^68 6765000029563931 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^66 6765000029563931 a001 9303105/230701876*228826127^(5/8) 6765000029563931 a001 39088169/192900153618*87403803^(18/19) 6765000029563931 a001 34111385/1368706081*228826127^(13/20) 6765000029563931 a001 956722026041/599074578*141422324^(1/13) 6765000029563931 a001 365435296162/969323029*141422324^(2/13) 6765000029563931 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^64 6765000029563931 a001 102334155/10749957122*228826127^(7/10) 6765000029563931 a001 133957148/299537289*2537720636^(4/9) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(42) 6765000029563931 a001 133957148/299537289*23725150497407^(5/16) 6765000029563931 a001 71778070001175616/10610209857723 6765000029563931 a001 133957148/299537289*505019158607^(5/14) 6765000029563931 a001 133957148/299537289*73681302247^(5/13) 6765000029563931 a001 133957148/299537289*28143753123^(2/5) 6765000029563931 a001 133957148/299537289*10749957122^(5/12) 6765000029563931 a001 133957148/299537289*4106118243^(10/23) 6765000029563931 a001 133957148/299537289*1568397607^(5/11) 6765000029563931 a001 225851433717/228826127*87403803^(2/19) 6765000029563931 a001 831985/228811001*228826127^(3/4) 6765000029563931 a001 2504730781961/1568397607*141422324^(1/13) 6765000029563931 a001 133957148/299537289*599074578^(10/21) 6765000029563931 a001 32951280099/370248451*141422324^(3/13) 6765000029563931 a001 6557470319842/4106118243*141422324^(1/13) 6765000029563931 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^65 6765000029563931 a001 10610209857723/6643838879*141422324^(1/13) 6765000029563931 a001 14619165/10525900321*228826127^(4/5) 6765000029563931 a001 4052739537881/2537720636*141422324^(1/13) 6765000029563931 a001 233802911/199691526*2537720636^(2/5) 6765000029563931 a001 233802911/199691526*45537549124^(6/17) 6765000029563931 a001 267914296/1568397607*312119004989^(2/5) 6765000029563931 a001 233802911/199691526*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(44) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(42) 6765000029563931 a001 233802911/199691526*192900153618^(1/3) 6765000029563931 a001 233802911/199691526*10749957122^(3/8) 6765000029563931 a001 267914296/1568397607*10749957122^(11/24) 6765000029563931 a001 233802911/199691526*4106118243^(9/23) 6765000029563931 a001 267914296/1568397607*4106118243^(11/23) 6765000029563931 a001 233802911/199691526*1568397607^(9/22) 6765000029563931 a001 267914296/1568397607*1568397607^(1/2) 6765000029563931 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^67 6765000029563931 a001 267914296/23725150497407*2537720636^(14/15) 6765000029563931 a001 267914296/4106118243*2537720636^(8/15) 6765000029563931 a001 267914296/9062201101803*2537720636^(8/9) 6765000029563931 a001 267914296/5600748293801*2537720636^(13/15) 6765000029563931 a001 267914296/1322157322203*2537720636^(4/5) 6765000029563931 a001 66978574/204284540899*2537720636^(7/9) 6765000029563931 a001 267914296/312119004989*2537720636^(11/15) 6765000029563931 a001 267914296/73681302247*2537720636^(2/3) 6765000029563931 a001 9238424/599786069*2537720636^(3/5) 6765000029563931 a001 34111385/64300051206*228826127^(17/20) 6765000029563931 a001 267914296/6643838879*2537720636^(5/9) 6765000029563931 a001 267914296/4106118243*45537549124^(8/17) 6765000029563931 a001 267914296/4106118243*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(46) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(42) 6765000029563931 a001 1836311903/599074578*23725150497407^(1/4) 6765000029563931 a001 267914296/4106118243*192900153618^(4/9) 6765000029563931 a001 1836311903/599074578*73681302247^(4/13) 6765000029563931 a001 267914296/4106118243*73681302247^(6/13) 6765000029563931 a001 1836311903/599074578*10749957122^(1/3) 6765000029563931 a001 267914296/4106118243*10749957122^(1/2) 6765000029563931 a001 12586269025/599074578*2537720636^(4/15) 6765000029563931 a001 1836311903/599074578*4106118243^(8/23) 6765000029563931 a001 10983760033/199691526*2537720636^(2/9) 6765000029563931 a001 53316291173/599074578*2537720636^(1/5) 6765000029563931 a001 2971215073/599074578*2537720636^(1/3) 6765000029563931 a001 267914296/4106118243*4106118243^(12/23) 6765000029563931 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 267913919/710646*2537720636^(2/15) 6765000029563931 a001 182717648081/299537289*2537720636^(1/9) 6765000029563931 a001 956722026041/599074578*2537720636^(1/15) 6765000029563931 a001 267084832/33281921*17393796001^(2/7) 6765000029563931 a001 267084832/33281921*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(42) 6765000029563931 a001 267084832/33281921*505019158607^(1/4) 6765000029563931 a001 133957148/5374978561*73681302247^(1/2) 6765000029563931 a001 267084832/33281921*10749957122^(7/24) 6765000029563931 a001 133957148/5374978561*10749957122^(13/24) 6765000029563931 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 267914296/28143753123*17393796001^(4/7) 6765000029563931 a001 267914296/23725150497407*17393796001^(6/7) 6765000029563931 a001 66978574/204284540899*17393796001^(5/7) 6765000029563931 a001 12586269025/599074578*45537549124^(4/17) 6765000029563931 a001 12586269025/599074578*817138163596^(4/19) 6765000029563931 a001 12586269025/599074578*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(42) 6765000029563931 a001 267914296/28143753123*505019158607^(1/2) 6765000029563931 a001 12586269025/599074578*192900153618^(2/9) 6765000029563931 a001 12586269025/599074578*73681302247^(3/13) 6765000029563931 a001 267914296/28143753123*73681302247^(7/13) 6765000029563931 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 267914296/73681302247*45537549124^(10/17) 6765000029563931 a001 139583862445/599074578*17393796001^(1/7) 6765000029563931 a001 267914296/23725150497407*45537549124^(14/17) 6765000029563931 a001 267914296/5600748293801*45537549124^(13/17) 6765000029563931 a001 267914296/1322157322203*45537549124^(12/17) 6765000029563931 a001 267914296/505019158607*45537549124^(2/3) 6765000029563931 a001 267914296/312119004989*45537549124^(11/17) 6765000029563931 a001 267914296/73681302247*312119004989^(6/11) 6765000029563931 a001 10983760033/199691526*312119004989^(2/11) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(42) 6765000029563931 a001 267914296/73681302247*192900153618^(5/9) 6765000029563931 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 267913919/710646*45537549124^(2/17) 6765000029563931 a001 956722026041/599074578*45537549124^(1/17) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(42) 6765000029563931 a001 133957148/96450076809*23725150497407^(1/2) 6765000029563931 a001 43133785636/299537289*505019158607^(1/7) 6765000029563931 a001 133957148/96450076809*505019158607^(4/7) 6765000029563931 a001 53316291173/599074578*45537549124^(3/17) 6765000029563931 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 267914296/9062201101803*312119004989^(8/11) 6765000029563931 a001 267913919/710646*14662949395604^(2/21) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(42) 6765000029563931 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 133957148/1730726404001*817138163596^(2/3) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(42) 6765000029563931 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(42) 6765000029563931 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(62) 6765000029563931 a001 267914296/23725150497407*14662949395604^(2/3) 6765000029563931 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(64) 6765000029563931 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(66) 6765000029563931 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(42)*Lucas(73)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(42)*Lucas(75)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(42)*Lucas(77)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(84) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(86) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(88) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(90) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(92) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^72/Lucas(94) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^74/Lucas(96) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^76/Lucas(98) 6765000029563931 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^77/Lucas(99) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^78/Lucas(100) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^75/Lucas(97) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^73/Lucas(95) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(93) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(91) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(89) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(87) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(85) 6765000029563931 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^38 6765000029563931 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^36 6765000029563931 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^37 6765000029563931 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^35 6765000029563931 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(42)*Lucas(78)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(42)*Lucas(76)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(42)*Lucas(74)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(42)*Lucas(72)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(65) 6765000029563931 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(63) 6765000029563931 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(42) 6765000029563931 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 956722026041/599074578*14662949395604^(1/21) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(42) 6765000029563931 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(42) 6765000029563931 a001 267914296/1322157322203*505019158607^(9/14) 6765000029563931 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 267914296/312119004989*312119004989^(3/5) 6765000029563931 a001 267914296/312119004989*817138163596^(11/19) 6765000029563931 a001 267914296/312119004989*14662949395604^(11/21) 6765000029563931 a001 139583862445/599074578*14662949395604^(1/9) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(42) 6765000029563931 a001 591286729879/599074578*73681302247^(1/13) 6765000029563931 a001 267914296/1322157322203*192900153618^(2/3) 6765000029563931 a001 267914296/5600748293801*192900153618^(13/18) 6765000029563931 a001 267914296/23725150497407*192900153618^(7/9) 6765000029563931 a001 267914296/312119004989*192900153618^(11/18) 6765000029563931 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 10983760033/199691526*28143753123^(1/5) 6765000029563931 a001 53316291173/599074578*817138163596^(3/19) 6765000029563931 a001 53316291173/599074578*14662949395604^(1/7) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(42) 6765000029563931 a001 267914296/119218851371*9062201101803^(1/2) 6765000029563931 a001 53316291173/599074578*192900153618^(1/6) 6765000029563931 a001 133957148/96450076809*73681302247^(8/13) 6765000029563931 a001 267914296/1322157322203*73681302247^(9/13) 6765000029563931 a001 182717648081/299537289*28143753123^(1/10) 6765000029563931 a001 267914296/5600748293801*73681302247^(3/4) 6765000029563931 a001 267914296/9062201101803*73681302247^(10/13) 6765000029563931 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 86000486440/33281921*10749957122^(1/24) 6765000029563931 a001 10182505537/299537289*312119004989^(1/5) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(42) 6765000029563931 a001 66978574/11384387281*1322157322203^(1/2) 6765000029563931 a001 956722026041/599074578*10749957122^(1/16) 6765000029563931 a001 267914296/73681302247*28143753123^(3/5) 6765000029563931 a001 591286729879/599074578*10749957122^(1/12) 6765000029563931 a001 66978574/204284540899*28143753123^(7/10) 6765000029563931 a001 12586269025/599074578*10749957122^(1/4) 6765000029563931 a001 267914296/9062201101803*28143753123^(4/5) 6765000029563931 a001 267913919/710646*10749957122^(1/8) 6765000029563931 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 43133785636/299537289*10749957122^(1/6) 6765000029563931 a001 10983760033/199691526*10749957122^(5/24) 6765000029563931 a001 53316291173/599074578*10749957122^(3/16) 6765000029563931 a001 86000486440/33281921*4106118243^(1/23) 6765000029563931 a001 9238424/599786069*45537549124^(9/17) 6765000029563931 a001 9238424/599786069*817138163596^(9/19) 6765000029563931 a001 9238424/599786069*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(42) 6765000029563931 a001 9238424/599786069*192900153618^(1/2) 6765000029563931 a001 7778742049/599074578*73681302247^(1/4) 6765000029563931 a001 267914296/28143753123*10749957122^(7/12) 6765000029563931 a001 1548008755920/969323029*141422324^(1/13) 6765000029563931 a001 591286729879/599074578*4106118243^(2/23) 6765000029563931 a001 267914296/73681302247*10749957122^(5/8) 6765000029563931 a001 133957148/96450076809*10749957122^(2/3) 6765000029563931 a001 267914296/312119004989*10749957122^(11/16) 6765000029563931 a001 267914296/505019158607*10749957122^(17/24) 6765000029563931 a001 267914296/1322157322203*10749957122^(3/4) 6765000029563931 a001 133957148/1730726404001*10749957122^(19/24) 6765000029563931 a001 267914296/5600748293801*10749957122^(13/16) 6765000029563931 a001 267914296/9062201101803*10749957122^(5/6) 6765000029563931 a001 267914296/23725150497407*10749957122^(7/8) 6765000029563931 a001 267913919/710646*4106118243^(3/23) 6765000029563931 a001 9238424/599786069*10749957122^(9/16) 6765000029563931 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 267084832/33281921*4106118243^(7/23) 6765000029563931 a001 43133785636/299537289*4106118243^(4/23) 6765000029563931 a001 10983760033/199691526*4106118243^(5/23) 6765000029563931 a001 12586269025/599074578*4106118243^(6/23) 6765000029563931 a001 86000486440/33281921*1568397607^(1/22) 6765000029563931 a001 2971215073/599074578*45537549124^(5/17) 6765000029563931 a001 267914296/6643838879*312119004989^(5/11) 6765000029563931 a001 2971215073/599074578*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(42) 6765000029563931 a001 267914296/6643838879*3461452808002^(5/12) 6765000029563931 a001 2971215073/599074578*192900153618^(5/18) 6765000029563931 a001 2971215073/599074578*28143753123^(3/10) 6765000029563931 a001 267914296/6643838879*28143753123^(1/2) 6765000029563931 a001 133957148/5374978561*4106118243^(13/23) 6765000029563931 a001 2971215073/599074578*10749957122^(5/16) 6765000029563931 a001 267914296/28143753123*4106118243^(14/23) 6765000029563931 a001 591286729879/599074578*1568397607^(1/11) 6765000029563931 a001 267914296/73681302247*4106118243^(15/23) 6765000029563931 a001 133957148/96450076809*4106118243^(16/23) 6765000029563931 a001 267914296/505019158607*4106118243^(17/23) 6765000029563931 a001 267914296/1322157322203*4106118243^(18/23) 6765000029563931 a001 133957148/1730726404001*4106118243^(19/23) 6765000029563931 a001 267914296/9062201101803*4106118243^(20/23) 6765000029563931 a001 267914296/23725150497407*4106118243^(21/23) 6765000029563931 a001 267913919/710646*1568397607^(3/22) 6765000029563931 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^68 6765000029563931 a001 43133785636/299537289*1568397607^(2/11) 6765000029563931 a001 1836311903/599074578*1568397607^(4/11) 6765000029563931 a001 10983760033/199691526*1568397607^(5/22) 6765000029563931 a001 10182505537/299537289*1568397607^(1/4) 6765000029563931 a001 12586269025/599074578*1568397607^(3/11) 6765000029563931 a001 267084832/33281921*1568397607^(7/22) 6765000029563931 a001 86000486440/33281921*599074578^(1/21) 6765000029563931 a001 567451585/299537289*45537549124^(1/3) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(45) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(42) 6765000029563931 a001 267914296/4106118243*1568397607^(6/11) 6765000029563931 a001 66978574/634430159*4106118243^(1/2) 6765000029563931 a001 956722026041/599074578*599074578^(1/14) 6765000029563931 a001 133957148/5374978561*1568397607^(13/22) 6765000029563931 a001 267914296/28143753123*1568397607^(7/11) 6765000029563931 a001 591286729879/599074578*599074578^(2/21) 6765000029563931 a001 267914296/73681302247*1568397607^(15/22) 6765000029563931 a001 133957148/96450076809*1568397607^(8/11) 6765000029563931 a001 267914296/312119004989*1568397607^(3/4) 6765000029563931 a001 267914296/505019158607*1568397607^(17/22) 6765000029563931 a001 267914296/1322157322203*1568397607^(9/11) 6765000029563931 a001 133957148/1730726404001*1568397607^(19/22) 6765000029563931 a001 267914296/9062201101803*1568397607^(10/11) 6765000029563931 a001 267914296/23725150497407*1568397607^(21/22) 6765000029563931 a001 267913919/710646*599074578^(1/7) 6765000029563931 a001 9303105/28374454999*228826127^(7/8) 6765000029563931 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^66 6765000029563931 a001 139583862445/599074578*599074578^(1/6) 6765000029563931 a001 43133785636/299537289*599074578^(4/21) 6765000029563931 a001 53316291173/599074578*599074578^(3/14) 6765000029563931 a001 10983760033/199691526*599074578^(5/21) 6765000029563931 a001 233802911/199691526*599074578^(3/7) 6765000029563931 a001 12586269025/599074578*599074578^(2/7) 6765000029563931 a001 102334155/505019158607*228826127^(9/10) 6765000029563931 a001 267084832/33281921*599074578^(1/3) 6765000029563931 a001 86000486440/33281921*228826127^(1/20) 6765000029563931 a001 267914296/969323029*2537720636^(7/15) 6765000029563931 a001 1836311903/599074578*599074578^(8/21) 6765000029563931 a001 2971215073/599074578*599074578^(5/14) 6765000029563931 a001 267914296/1568397607*599074578^(11/21) 6765000029563931 a001 267914296/969323029*17393796001^(3/7) 6765000029563931 a001 267914296/969323029*45537549124^(7/17) 6765000029563931 a001 267914296/969323029*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(43) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(42) 6765000029563931 a001 267914296/969323029*192900153618^(7/18) 6765000029563931 a001 267914296/969323029*10749957122^(7/16) 6765000029563931 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^67 6765000029563931 a001 267914296/4106118243*599074578^(4/7) 6765000029563931 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^69 6765000029563931 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 133957148/5374978561*599074578^(13/21) 6765000029563931 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^73 6765000029563931 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(72)*Lucas(43)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(74)*Lucas(43)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(76)*Lucas(43)/(1/2+sqrt(5)/2)^99 6765000029563931 a001 2/433494437*(1/2+1/2*5^(1/2))^63 6765000029563931 a004 Fibonacci(77)*Lucas(43)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(75)*Lucas(43)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(73)*Lucas(43)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(71)*Lucas(43)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^76 6765000029563931 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^74 6765000029563931 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^72 6765000029563931 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 9238424/599786069*599074578^(9/14) 6765000029563931 a001 34111385/440719107401*228826127^(19/20) 6765000029563931 a001 267914296/28143753123*599074578^(2/3) 6765000029563931 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^68 6765000029563931 a001 701408733/1568397607*2537720636^(4/9) 6765000029563931 a001 591286729879/599074578*228826127^(1/10) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(44) 6765000029563931 a001 701408733/1568397607*23725150497407^(5/16) 6765000029563931 a001 701408733/1568397607*505019158607^(5/14) 6765000029563931 a001 701408733/1568397607*73681302247^(5/13) 6765000029563931 a001 701408733/1568397607*28143753123^(2/5) 6765000029563931 a001 701408733/1568397607*10749957122^(5/12) 6765000029563931 a001 267914296/73681302247*599074578^(5/7) 6765000029563931 a001 701408733/1568397607*4106118243^(10/23) 6765000029563931 a001 133957148/96450076809*599074578^(16/21) 6765000029563931 a001 701408733/1568397607*1568397607^(5/11) 6765000029563931 a001 267914296/312119004989*599074578^(11/14) 6765000029563931 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 701408733/23725150497407*2537720636^(8/9) 6765000029563931 a001 701408733/14662949395604*2537720636^(13/15) 6765000029563931 a001 701408733/3461452808002*2537720636^(4/5) 6765000029563931 a001 267914296/505019158607*599074578^(17/21) 6765000029563931 a001 1836311903/1568397607*2537720636^(2/5) 6765000029563931 a001 701408733/2139295485799*2537720636^(7/9) 6765000029563931 a001 701408733/817138163596*2537720636^(11/15) 6765000029563931 a001 233802911/64300051206*2537720636^(2/3) 6765000029563931 a001 701408733/45537549124*2537720636^(3/5) 6765000029563931 a001 701408733/10749957122*2537720636^(8/15) 6765000029563931 a001 701408733/17393796001*2537720636^(5/9) 6765000029563931 a001 1836311903/1568397607*45537549124^(6/17) 6765000029563931 a001 1836311903/1568397607*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(46) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(44) 6765000029563931 a001 1836311903/1568397607*192900153618^(1/3) 6765000029563931 a001 66978574/204284540899*599074578^(5/6) 6765000029563931 a001 1836311903/1568397607*10749957122^(3/8) 6765000029563931 a001 233802911/1368706081*10749957122^(11/24) 6765000029563931 a001 7778742049/1568397607*2537720636^(1/3) 6765000029563931 a001 32951280099/1568397607*2537720636^(4/15) 6765000029563931 a001 1836311903/1568397607*4106118243^(9/23) 6765000029563931 a001 86267571272/1568397607*2537720636^(2/9) 6765000029563931 a001 139583862445/1568397607*2537720636^(1/5) 6765000029563931 a001 233802911/1368706081*4106118243^(11/23) 6765000029563931 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 591286729879/1568397607*2537720636^(2/15) 6765000029563931 a001 956722026041/1568397607*2537720636^(1/9) 6765000029563931 a001 2504730781961/1568397607*2537720636^(1/15) 6765000029563931 a001 701408733/10749957122*45537549124^(8/17) 6765000029563931 a001 701408733/10749957122*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(44) 6765000029563931 a001 686789568/224056801*23725150497407^(1/4) 6765000029563931 a001 701408733/10749957122*192900153618^(4/9) 6765000029563931 a001 686789568/224056801*73681302247^(4/13) 6765000029563931 a001 701408733/10749957122*73681302247^(6/13) 6765000029563931 a001 686789568/224056801*10749957122^(1/3) 6765000029563931 a001 701408733/10749957122*10749957122^(1/2) 6765000029563931 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 701408733/2139295485799*17393796001^(5/7) 6765000029563931 a001 12586269025/1568397607*17393796001^(2/7) 6765000029563931 a001 701408733/73681302247*17393796001^(4/7) 6765000029563931 a001 12586269025/1568397607*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(44) 6765000029563931 a001 12586269025/1568397607*505019158607^(1/4) 6765000029563931 a001 233802911/9381251041*73681302247^(1/2) 6765000029563931 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 365435296162/1568397607*17393796001^(1/7) 6765000029563931 a001 701408733/14662949395604*45537549124^(13/17) 6765000029563931 a001 701408733/3461452808002*45537549124^(12/17) 6765000029563931 a001 233802911/440719107401*45537549124^(2/3) 6765000029563931 a001 233802911/64300051206*45537549124^(10/17) 6765000029563931 a001 701408733/817138163596*45537549124^(11/17) 6765000029563931 a001 32951280099/1568397607*45537549124^(4/17) 6765000029563931 a001 32951280099/1568397607*817138163596^(4/19) 6765000029563931 a001 32951280099/1568397607*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(44) 6765000029563931 a001 701408733/73681302247*505019158607^(1/2) 6765000029563931 a001 32951280099/1568397607*192900153618^(2/9) 6765000029563931 a001 32951280099/1568397607*73681302247^(3/13) 6765000029563931 a001 701408733/73681302247*73681302247^(7/13) 6765000029563931 a001 139583862445/1568397607*45537549124^(3/17) 6765000029563931 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 591286729879/1568397607*45537549124^(2/17) 6765000029563931 a001 233802911/64300051206*312119004989^(6/11) 6765000029563931 a001 86267571272/1568397607*312119004989^(2/11) 6765000029563931 a001 2504730781961/1568397607*45537549124^(1/17) 6765000029563931 a001 233802911/64300051206*14662949395604^(10/21) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(44) 6765000029563931 a001 233802911/64300051206*192900153618^(5/9) 6765000029563931 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 701408733/23725150497407*312119004989^(8/11) 6765000029563931 a001 701408733/2139295485799*312119004989^(7/11) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(44) 6765000029563931 a001 32264490531/224056801*505019158607^(1/7) 6765000029563931 a001 701408733/505019158607*505019158607^(4/7) 6765000029563931 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 233802911/3020733700601*817138163596^(2/3) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(44) 6765000029563931 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(44) 6765000029563931 a001 1548008755920/1568397607*23725150497407^(1/16) 6765000029563931 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(44) 6765000029563931 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(64) 6765000029563931 a006 5^(1/2)*Fibonacci(64)/Lucas(44)/sqrt(5) 6765000029563931 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(66) 6765000029563931 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(44)*Lucas(71)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(44)*Lucas(73)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(44)*Lucas(75)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(88) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(90) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(92) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^70/Lucas(94) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^72/Lucas(96) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^74/Lucas(98) 6765000029563931 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^75/Lucas(99) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^76/Lucas(100) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^73/Lucas(97) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^71/Lucas(95) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(93) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(91) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(89) 6765000029563931 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^36 6765000029563931 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^35 6765000029563931 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(44)*Lucas(76)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(44)*Lucas(74)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(44)*Lucas(72)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(44)*Lucas(70)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(65) 6765000029563931 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(44) 6765000029563931 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 2504730781961/1568397607*14662949395604^(1/21) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(44) 6765000029563931 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(44) 6765000029563931 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(44) 6765000029563931 a001 701408733/2139295485799*505019158607^(5/8) 6765000029563931 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 139583862445/1568397607*14662949395604^(1/7) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(44) 6765000029563931 a001 3524667/1568437211*9062201101803^(1/2) 6765000029563931 a001 139583862445/1568397607*192900153618^(1/6) 6765000029563931 a001 701408733/3461452808002*192900153618^(2/3) 6765000029563931 a001 701408733/14662949395604*192900153618^(13/18) 6765000029563931 a001 32264490531/224056801*73681302247^(2/13) 6765000029563931 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 53316291173/1568397607*312119004989^(1/5) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(44) 6765000029563931 a001 701408733/119218851371*1322157322203^(1/2) 6765000029563931 a001 701408733/505019158607*73681302247^(8/13) 6765000029563931 a001 956722026041/1568397607*28143753123^(1/10) 6765000029563931 a001 701408733/3461452808002*73681302247^(9/13) 6765000029563931 a001 701408733/14662949395604*73681302247^(3/4) 6765000029563931 a001 701408733/23725150497407*73681302247^(10/13) 6765000029563931 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 86267571272/1568397607*28143753123^(1/5) 6765000029563931 a001 701408733/45537549124*45537549124^(9/17) 6765000029563931 a001 4052739537881/1568397607*10749957122^(1/24) 6765000029563931 a001 701408733/45537549124*817138163596^(9/19) 6765000029563931 a001 701408733/45537549124*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(44) 6765000029563931 a001 701408733/45537549124*192900153618^(1/2) 6765000029563931 a001 20365011074/1568397607*73681302247^(1/4) 6765000029563931 a001 2504730781961/1568397607*10749957122^(1/16) 6765000029563931 a001 1548008755920/1568397607*10749957122^(1/12) 6765000029563931 a001 233802911/64300051206*28143753123^(3/5) 6765000029563931 a001 701408733/2139295485799*28143753123^(7/10) 6765000029563931 a001 701408733/23725150497407*28143753123^(4/5) 6765000029563931 a001 591286729879/1568397607*10749957122^(1/8) 6765000029563931 a001 12586269025/1568397607*10749957122^(7/24) 6765000029563931 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 32264490531/224056801*10749957122^(1/6) 6765000029563931 a001 139583862445/1568397607*10749957122^(3/16) 6765000029563931 a001 86267571272/1568397607*10749957122^(5/24) 6765000029563931 a001 32951280099/1568397607*10749957122^(1/4) 6765000029563931 a001 4052739537881/1568397607*4106118243^(1/23) 6765000029563931 a001 7778742049/1568397607*45537549124^(5/17) 6765000029563931 a001 701408733/17393796001*312119004989^(5/11) 6765000029563931 a001 7778742049/1568397607*312119004989^(3/11) 6765000029563931 a001 7778742049/1568397607*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(44) 6765000029563931 a001 701408733/17393796001*3461452808002^(5/12) 6765000029563931 a001 7778742049/1568397607*192900153618^(5/18) 6765000029563931 a001 233802911/9381251041*10749957122^(13/24) 6765000029563931 a001 7778742049/1568397607*28143753123^(3/10) 6765000029563931 a001 701408733/17393796001*28143753123^(1/2) 6765000029563931 a001 701408733/73681302247*10749957122^(7/12) 6765000029563931 a001 1548008755920/1568397607*4106118243^(2/23) 6765000029563931 a001 701408733/45537549124*10749957122^(9/16) 6765000029563931 a001 233802911/64300051206*10749957122^(5/8) 6765000029563931 a001 701408733/505019158607*10749957122^(2/3) 6765000029563931 a001 701408733/817138163596*10749957122^(11/16) 6765000029563931 a001 7778742049/1568397607*10749957122^(5/16) 6765000029563931 a001 233802911/440719107401*10749957122^(17/24) 6765000029563931 a001 701408733/3461452808002*10749957122^(3/4) 6765000029563931 a001 233802911/3020733700601*10749957122^(19/24) 6765000029563931 a001 701408733/14662949395604*10749957122^(13/16) 6765000029563931 a001 701408733/23725150497407*10749957122^(5/6) 6765000029563931 a001 182717648081/299537289*228826127^(1/8) 6765000029563931 a001 591286729879/1568397607*4106118243^(3/23) 6765000029563931 a001 267914296/1322157322203*599074578^(6/7) 6765000029563931 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 139583862445/370248451*141422324^(2/13) 6765000029563931 a001 32264490531/224056801*4106118243^(4/23) 6765000029563931 a001 686789568/224056801*4106118243^(8/23) 6765000029563931 a001 86267571272/1568397607*4106118243^(5/23) 6765000029563931 a001 32951280099/1568397607*4106118243^(6/23) 6765000029563931 a001 12586269025/1568397607*4106118243^(7/23) 6765000029563931 a001 4052739537881/1568397607*1568397607^(1/22) 6765000029563931 a001 701408733/10749957122*4106118243^(12/23) 6765000029563931 a001 2971215073/1568397607*45537549124^(1/3) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(44) 6765000029563931 a001 233802911/9381251041*4106118243^(13/23) 6765000029563931 a001 701408733/73681302247*4106118243^(14/23) 6765000029563931 a001 1548008755920/1568397607*1568397607^(1/11) 6765000029563931 a001 233802911/64300051206*4106118243^(15/23) 6765000029563931 a001 701408733/505019158607*4106118243^(16/23) 6765000029563931 a001 233802911/440719107401*4106118243^(17/23) 6765000029563931 a001 701408733/3461452808002*4106118243^(18/23) 6765000029563931 a001 233802911/3020733700601*4106118243^(19/23) 6765000029563931 a001 701408733/23725150497407*4106118243^(20/23) 6765000029563931 a001 701408733/6643838879*4106118243^(1/2) 6765000029563931 a001 591286729879/1568397607*1568397607^(3/22) 6765000029563931 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 32264490531/224056801*1568397607^(2/11) 6765000029563931 a001 267914296/969323029*599074578^(1/2) 6765000029563931 a001 701408733/2537720636*2537720636^(7/15) 6765000029563931 a001 86267571272/1568397607*1568397607^(5/22) 6765000029563931 a001 53316291173/1568397607*1568397607^(1/4) 6765000029563931 a001 1836311903/1568397607*1568397607^(9/22) 6765000029563931 a001 32951280099/1568397607*1568397607^(3/11) 6765000029563931 a001 12586269025/1568397607*1568397607^(7/22) 6765000029563931 a001 4052739537881/1568397607*599074578^(1/21) 6765000029563931 a001 686789568/224056801*1568397607^(4/11) 6765000029563931 a001 133957148/1730726404001*599074578^(19/21) 6765000029563931 a001 233802911/1368706081*1568397607^(1/2) 6765000029563931 a001 701408733/2537720636*17393796001^(3/7) 6765000029563931 a001 701408733/2537720636*45537549124^(7/17) 6765000029563931 a001 1134903170/1568397607*817138163596^(1/3) 6765000029563931 a001 701408733/2537720636*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(45) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(44) 6765000029563931 a001 701408733/2537720636*192900153618^(7/18) 6765000029563931 a001 701408733/2537720636*10749957122^(7/16) 6765000029563931 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 2504730781961/1568397607*599074578^(1/14) 6765000029563931 a001 267914296/5600748293801*599074578^(13/14) 6765000029563931 a001 701408733/10749957122*1568397607^(6/11) 6765000029563931 a001 1836311903/4106118243*2537720636^(4/9) 6765000029563931 a001 1836311903/9062201101803*2537720636^(4/5) 6765000029563931 a001 1836311903/5600748293801*2537720636^(7/9) 6765000029563931 a001 1836311903/2139295485799*2537720636^(11/15) 6765000029563931 a001 233802911/9381251041*1568397607^(13/22) 6765000029563931 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 1836311903/505019158607*2537720636^(2/3) 6765000029563931 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(70)*Lucas(45)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(72)*Lucas(45)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(74)*Lucas(45)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(75)*Lucas(45)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(73)*Lucas(45)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(71)*Lucas(45)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(69)*Lucas(45)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 1836311903/119218851371*2537720636^(3/5) 6765000029563931 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 701408733/73681302247*1568397607^(7/11) 6765000029563931 a001 1836311903/45537549124*2537720636^(5/9) 6765000029563931 a001 1836311903/28143753123*2537720636^(8/15) 6765000029563931 a001 1548008755920/1568397607*599074578^(2/21) 6765000029563931 a001 4807526976/23725150497407*2537720636^(4/5) 6765000029563931 a001 267914296/9062201101803*599074578^(20/21) 6765000029563931 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 1602508992/1368706081*2537720636^(2/5) 6765000029563931 a001 1201881744/3665737348901*2537720636^(7/9) 6765000029563931 a001 233802911/64300051206*1568397607^(15/22) 6765000029563931 a001 4807526976/5600748293801*2537720636^(11/15) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(46) 6765000029563931 a001 1836311903/4106118243*23725150497407^(5/16) 6765000029563931 a001 1836311903/4106118243*505019158607^(5/14) 6765000029563931 a001 1836311903/4106118243*73681302247^(5/13) 6765000029563931 a001 1836311903/4106118243*28143753123^(2/5) 6765000029563931 a001 7778742049/23725150497407*2537720636^(7/9) 6765000029563931 a001 12586269025/14662949395604*2537720636^(11/15) 6765000029563931 a001 1836311903/4106118243*10749957122^(5/12) 6765000029563931 a001 20365011074/23725150497407*2537720636^(11/15) 6765000029563931 a001 1602508992/440719107401*2537720636^(2/3) 6765000029563931 a001 701408733/505019158607*1568397607^(8/11) 6765000029563931 a001 20365011074/4106118243*2537720636^(1/3) 6765000029563931 a001 7778742049/9062201101803*2537720636^(11/15) 6765000029563931 a001 1836311903/6643838879*2537720636^(7/15) 6765000029563931 a001 12586269025/3461452808002*2537720636^(2/3) 6765000029563931 a001 10983760033/3020733700601*2537720636^(2/3) 6765000029563931 a001 86267571272/23725150497407*2537720636^(2/3) 6765000029563931 a001 53316291173/14662949395604*2537720636^(2/3) 6765000029563931 a001 20365011074/5600748293801*2537720636^(2/3) 6765000029563931 a001 4807526976/312119004989*2537720636^(3/5) 6765000029563931 a001 701408733/817138163596*1568397607^(3/4) 6765000029563931 a001 2971215073/14662949395604*2537720636^(4/5) 6765000029563931 a001 86267571272/4106118243*2537720636^(4/15) 6765000029563931 a001 7778742049/2139295485799*2537720636^(2/3) 6765000029563931 a001 2971215073/9062201101803*2537720636^(7/9) 6765000029563931 a001 4807526976/119218851371*2537720636^(5/9) 6765000029563931 a001 12586269025/817138163596*2537720636^(3/5) 6765000029563931 a001 75283811239/1368706081*2537720636^(2/9) 6765000029563931 a001 32951280099/2139295485799*2537720636^(3/5) 6765000029563931 a001 86267571272/5600748293801*2537720636^(3/5) 6765000029563931 a001 7787980473/505618944676*2537720636^(3/5) 6765000029563931 a001 365435296162/23725150497407*2537720636^(3/5) 6765000029563931 a001 139583862445/9062201101803*2537720636^(3/5) 6765000029563931 a001 53316291173/3461452808002*2537720636^(3/5) 6765000029563931 a001 1836311903/4106118243*4106118243^(10/23) 6765000029563931 a001 20365011074/1322157322203*2537720636^(3/5) 6765000029563931 a001 233802911/440719107401*1568397607^(17/22) 6765000029563931 a001 686789568/10525900321*2537720636^(8/15) 6765000029563931 a001 2971215073/3461452808002*2537720636^(11/15) 6765000029563931 a001 365435296162/4106118243*2537720636^(1/5) 6765000029563931 a001 7778742049/505019158607*2537720636^(3/5) 6765000029563931 a001 1144206275/28374454999*2537720636^(5/9) 6765000029563931 a001 32951280099/817138163596*2537720636^(5/9) 6765000029563931 a001 2403763488/5374978561*2537720636^(4/9) 6765000029563931 a001 86267571272/2139295485799*2537720636^(5/9) 6765000029563931 a001 225851433717/5600748293801*2537720636^(5/9) 6765000029563931 a001 591286729879/14662949395604*2537720636^(5/9) 6765000029563931 a001 365435296162/9062201101803*2537720636^(5/9) 6765000029563931 a001 139583862445/3461452808002*2537720636^(5/9) 6765000029563931 a001 53316291173/1322157322203*2537720636^(5/9) 6765000029563931 a001 20365011074/505019158607*2537720636^(5/9) 6765000029563931 a001 12586269025/192900153618*2537720636^(8/15) 6765000029563931 a001 32951280099/505019158607*2537720636^(8/15) 6765000029563931 a001 7778742049/192900153618*2537720636^(5/9) 6765000029563931 a001 86267571272/1322157322203*2537720636^(8/15) 6765000029563931 a001 32264490531/494493258286*2537720636^(8/15) 6765000029563931 a001 591286729879/9062201101803*2537720636^(8/15) 6765000029563931 a001 1548008755920/23725150497407*2537720636^(8/15) 6765000029563931 a001 365435296162/5600748293801*2537720636^(8/15) 6765000029563931 a001 139583862445/2139295485799*2537720636^(8/15) 6765000029563931 a001 53316291173/817138163596*2537720636^(8/15) 6765000029563931 a001 20365011074/312119004989*2537720636^(8/15) 6765000029563931 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 2971215073/817138163596*2537720636^(2/3) 6765000029563931 a001 516002918640/1368706081*2537720636^(2/15) 6765000029563931 a001 7778742049/119218851371*2537720636^(8/15) 6765000029563931 a001 4807526976/17393796001*2537720636^(7/15) 6765000029563931 a001 2504730781961/4106118243*2537720636^(1/9) 6765000029563931 a001 701408733/3461452808002*1568397607^(9/11) 6765000029563931 a001 12586269025/45537549124*2537720636^(7/15) 6765000029563931 a001 32951280099/119218851371*2537720636^(7/15) 6765000029563931 a001 86267571272/312119004989*2537720636^(7/15) 6765000029563931 a001 225851433717/817138163596*2537720636^(7/15) 6765000029563931 a001 1548008755920/5600748293801*2537720636^(7/15) 6765000029563931 a001 139583862445/505019158607*2537720636^(7/15) 6765000029563931 a001 53316291173/192900153618*2537720636^(7/15) 6765000029563931 a001 20365011074/73681302247*2537720636^(7/15) 6765000029563931 a001 12586269025/10749957122*2537720636^(2/5) 6765000029563931 a001 12586269025/28143753123*2537720636^(4/9) 6765000029563931 a001 2971215073/192900153618*2537720636^(3/5) 6765000029563931 a001 7778742049/28143753123*2537720636^(7/15) 6765000029563931 a001 6557470319842/4106118243*2537720636^(1/15) 6765000029563931 a001 32951280099/73681302247*2537720636^(4/9) 6765000029563931 a001 43133785636/96450076809*2537720636^(4/9) 6765000029563931 a001 225851433717/505019158607*2537720636^(4/9) 6765000029563931 a001 591286729879/1322157322203*2537720636^(4/9) 6765000029563931 a001 10610209857723/23725150497407*2537720636^(4/9) 6765000029563931 a001 182717648081/408569081798*2537720636^(4/9) 6765000029563931 a001 139583862445/312119004989*2537720636^(4/9) 6765000029563931 a001 53316291173/119218851371*2537720636^(4/9) 6765000029563931 a001 1602508992/1368706081*45537549124^(6/17) 6765000029563931 a001 10182505537/22768774562*2537720636^(4/9) 6765000029563931 a001 1836311903/10749957122*312119004989^(2/5) 6765000029563931 a001 1602508992/1368706081*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(46) 6765000029563931 a001 1602508992/1368706081*192900153618^(1/3) 6765000029563931 a001 1602508992/1368706081*10749957122^(3/8) 6765000029563931 a001 1836311903/10749957122*10749957122^(11/24) 6765000029563931 a001 2971215073/73681302247*2537720636^(5/9) 6765000029563931 a001 10983760033/9381251041*2537720636^(2/5) 6765000029563931 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 7778742049/17393796001*2537720636^(4/9) 6765000029563931 a001 86267571272/73681302247*2537720636^(2/5) 6765000029563931 a001 75283811239/64300051206*2537720636^(2/5) 6765000029563931 a001 2504730781961/2139295485799*2537720636^(2/5) 6765000029563931 a001 365435296162/312119004989*2537720636^(2/5) 6765000029563931 a001 139583862445/119218851371*2537720636^(2/5) 6765000029563931 a001 1836311903/5600748293801*17393796001^(5/7) 6765000029563931 a001 53316291173/45537549124*2537720636^(2/5) 6765000029563931 a001 1836311903/192900153618*17393796001^(4/7) 6765000029563931 a001 1836311903/28143753123*45537549124^(8/17) 6765000029563931 a001 1836311903/28143753123*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(46) 6765000029563931 a001 12586269025/4106118243*23725150497407^(1/4) 6765000029563931 a001 1836311903/28143753123*192900153618^(4/9) 6765000029563931 a001 12586269025/4106118243*73681302247^(4/13) 6765000029563931 a001 1836311903/28143753123*73681302247^(6/13) 6765000029563931 a001 10983760033/1368706081*17393796001^(2/7) 6765000029563931 a001 53316291173/10749957122*2537720636^(1/3) 6765000029563931 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 956722026041/4106118243*17393796001^(1/7) 6765000029563931 a001 2971215073/45537549124*2537720636^(8/15) 6765000029563931 a001 1836311903/9062201101803*45537549124^(12/17) 6765000029563931 a001 1836311903/3461452808002*45537549124^(2/3) 6765000029563931 a001 1836311903/2139295485799*45537549124^(11/17) 6765000029563931 a001 1836311903/505019158607*45537549124^(10/17) 6765000029563931 a001 10983760033/1368706081*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(46) 6765000029563931 a001 10983760033/1368706081*505019158607^(1/4) 6765000029563931 a001 86267571272/4106118243*45537549124^(4/17) 6765000029563931 a001 1836311903/73681302247*73681302247^(1/2) 6765000029563931 a001 365435296162/4106118243*45537549124^(3/17) 6765000029563931 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 516002918640/1368706081*45537549124^(2/17) 6765000029563931 a001 1836311903/192900153618*14662949395604^(4/9) 6765000029563931 a001 86267571272/4106118243*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(46) 6765000029563931 a001 1836311903/192900153618*505019158607^(1/2) 6765000029563931 a001 86267571272/4106118243*192900153618^(2/9) 6765000029563931 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 1836311903/505019158607*312119004989^(6/11) 6765000029563931 a001 1836311903/2139295485799*312119004989^(3/5) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 1836311903/2139295485799*817138163596^(11/19) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(46) 6765000029563931 a001 1836311903/1322157322203*23725150497407^(1/2) 6765000029563931 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 1836311903/9062201101803*14662949395604^(4/7) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(46) 6765000029563931 a001 591286729879/4106118243*505019158607^(1/7) 6765000029563931 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(66) 6765000029563931 a006 5^(1/2)*Fibonacci(66)/Lucas(46)/sqrt(5) 6765000029563931 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(46)*Lucas(69)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(46)*Lucas(71)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(46)*Lucas(73)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(92) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^68/Lucas(94) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^70/Lucas(96) 6765000029563931 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^72/Lucas(98) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^74/Lucas(100) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^73/Lucas(99) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^71/Lucas(97) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^69/Lucas(95) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(93) 6765000029563931 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(46)*Lucas(74)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(46)*Lucas(72)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(46)*Lucas(70)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(46)*Lucas(68)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(46) 6765000029563931 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(46) 6765000029563931 a001 1836311903/817138163596*9062201101803^(1/2) 6765000029563931 a001 1836311903/1322157322203*505019158607^(4/7) 6765000029563931 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 365435296162/4106118243*192900153618^(1/6) 6765000029563931 a001 139583862445/4106118243*312119004989^(1/5) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(46) 6765000029563931 a001 1836311903/312119004989*1322157322203^(1/2) 6765000029563931 a001 1836311903/505019158607*192900153618^(5/9) 6765000029563931 a001 1836311903/2139295485799*192900153618^(11/18) 6765000029563931 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 591286729879/4106118243*73681302247^(2/13) 6765000029563931 a001 1836311903/119218851371*817138163596^(9/19) 6765000029563931 a001 1836311903/119218851371*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(46) 6765000029563931 a001 1836311903/192900153618*73681302247^(7/13) 6765000029563931 a001 1836311903/119218851371*192900153618^(1/2) 6765000029563931 a001 1836311903/1322157322203*73681302247^(8/13) 6765000029563931 a001 53316291173/4106118243*73681302247^(1/4) 6765000029563931 a001 2504730781961/4106118243*28143753123^(1/10) 6765000029563931 a001 1836311903/9062201101803*73681302247^(9/13) 6765000029563931 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 75283811239/1368706081*28143753123^(1/5) 6765000029563931 a001 20365011074/4106118243*45537549124^(5/17) 6765000029563931 a001 3536736619241/1368706081*10749957122^(1/24) 6765000029563931 a001 1836311903/45537549124*312119004989^(5/11) 6765000029563931 a001 20365011074/4106118243*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(46) 6765000029563931 a001 1836311903/45537549124*3461452808002^(5/12) 6765000029563931 a001 20365011074/4106118243*192900153618^(5/18) 6765000029563931 a001 6557470319842/4106118243*10749957122^(1/16) 6765000029563931 a001 4052739537881/4106118243*10749957122^(1/12) 6765000029563931 a001 1836311903/505019158607*28143753123^(3/5) 6765000029563931 a001 2971215073/10749957122*2537720636^(7/15) 6765000029563931 a001 20365011074/4106118243*28143753123^(3/10) 6765000029563931 a001 1836311903/5600748293801*28143753123^(7/10) 6765000029563931 a001 20365011074/17393796001*2537720636^(2/5) 6765000029563931 a001 516002918640/1368706081*10749957122^(1/8) 6765000029563931 a001 1836311903/45537549124*28143753123^(1/2) 6765000029563931 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 591286729879/4106118243*10749957122^(1/6) 6765000029563931 a001 12586269025/4106118243*10749957122^(1/3) 6765000029563931 a001 365435296162/4106118243*10749957122^(3/16) 6765000029563931 a001 75283811239/1368706081*10749957122^(5/24) 6765000029563931 a001 86267571272/4106118243*10749957122^(1/4) 6765000029563931 a001 10983760033/1368706081*10749957122^(7/24) 6765000029563931 a001 3536736619241/1368706081*4106118243^(1/23) 6765000029563931 a001 1836311903/28143753123*10749957122^(1/2) 6765000029563931 a001 7778742049/4106118243*45537549124^(1/3) 6765000029563931 a001 20365011074/4106118243*10749957122^(5/16) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(46) 6765000029563931 a001 233802911/3020733700601*1568397607^(19/22) 6765000029563931 a001 1836311903/73681302247*10749957122^(13/24) 6765000029563931 a001 1836311903/119218851371*10749957122^(9/16) 6765000029563931 a001 1836311903/192900153618*10749957122^(7/12) 6765000029563931 a001 4052739537881/4106118243*4106118243^(2/23) 6765000029563931 a001 1836311903/505019158607*10749957122^(5/8) 6765000029563931 a001 1836311903/1322157322203*10749957122^(2/3) 6765000029563931 a001 1836311903/2139295485799*10749957122^(11/16) 6765000029563931 a001 1836311903/3461452808002*10749957122^(17/24) 6765000029563931 a001 139583862445/28143753123*2537720636^(1/3) 6765000029563931 a001 1836311903/9062201101803*10749957122^(3/4) 6765000029563931 a001 1836311903/23725150497407*10749957122^(19/24) 6765000029563931 a001 365435296162/73681302247*2537720636^(1/3) 6765000029563931 a001 956722026041/192900153618*2537720636^(1/3) 6765000029563931 a001 2504730781961/505019158607*2537720636^(1/3) 6765000029563931 a001 10610209857723/2139295485799*2537720636^(1/3) 6765000029563931 a001 4052739537881/817138163596*2537720636^(1/3) 6765000029563931 a001 140728068720/28374454999*2537720636^(1/3) 6765000029563931 a001 591286729879/119218851371*2537720636^(1/3) 6765000029563931 a001 516002918640/1368706081*4106118243^(3/23) 6765000029563931 a001 225851433717/45537549124*2537720636^(1/3) 6765000029563931 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 225851433717/10749957122*2537720636^(4/15) 6765000029563931 a001 591286729879/4106118243*4106118243^(4/23) 6765000029563931 a001 86267571272/17393796001*2537720636^(1/3) 6765000029563931 a001 75283811239/1368706081*4106118243^(5/23) 6765000029563931 a001 1602508992/1368706081*4106118243^(9/23) 6765000029563931 a001 86267571272/4106118243*4106118243^(6/23) 6765000029563931 a001 591286729879/10749957122*2537720636^(2/9) 6765000029563931 a001 591286729879/28143753123*2537720636^(4/15) 6765000029563931 a001 1548008755920/73681302247*2537720636^(4/15) 6765000029563931 a001 10983760033/1368706081*4106118243^(7/23) 6765000029563931 a001 4052739537881/192900153618*2537720636^(4/15) 6765000029563931 a001 225749145909/10745088481*2537720636^(4/15) 6765000029563931 a001 6557470319842/312119004989*2537720636^(4/15) 6765000029563931 a001 2504730781961/119218851371*2537720636^(4/15) 6765000029563931 a001 956722026041/45537549124*2537720636^(4/15) 6765000029563931 a001 3536736619241/1368706081*1568397607^(1/22) 6765000029563931 a001 12586269025/4106118243*4106118243^(8/23) 6765000029563931 a001 956722026041/10749957122*2537720636^(1/5) 6765000029563931 a001 1836311903/10749957122*4106118243^(11/23) 6765000029563931 a001 365435296162/17393796001*2537720636^(4/15) 6765000029563931 a001 1836311903/6643838879*17393796001^(3/7) 6765000029563931 a001 701408733/23725150497407*1568397607^(10/11) 6765000029563931 a001 1836311903/6643838879*45537549124^(7/17) 6765000029563931 a001 2971215073/4106118243*817138163596^(1/3) 6765000029563931 a001 1836311903/6643838879*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(46) 6765000029563931 a001 1836311903/6643838879*192900153618^(7/18) 6765000029563931 a001 7778742049/6643838879*2537720636^(2/5) 6765000029563931 a001 12585437040/228811001*2537720636^(2/9) 6765000029563931 a001 4052739537881/73681302247*2537720636^(2/9) 6765000029563931 a001 3536736619241/64300051206*2537720636^(2/9) 6765000029563931 a001 6557470319842/119218851371*2537720636^(2/9) 6765000029563931 a001 2504730781961/45537549124*2537720636^(2/9) 6765000029563931 a001 1836311903/6643838879*10749957122^(7/16) 6765000029563931 a001 2504730781961/28143753123*2537720636^(1/5) 6765000029563931 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 6557470319842/73681302247*2537720636^(1/5) 6765000029563931 a001 956722026041/17393796001*2537720636^(2/9) 6765000029563931 a001 10610209857723/119218851371*2537720636^(1/5) 6765000029563931 a001 4052739537881/45537549124*2537720636^(1/5) 6765000029563931 a001 1836311903/28143753123*4106118243^(12/23) 6765000029563931 a001 4052739537881/10749957122*2537720636^(2/15) 6765000029563931 a001 32951280099/6643838879*2537720636^(1/3) 6765000029563931 a001 1548008755920/17393796001*2537720636^(1/5) 6765000029563931 a001 1836311903/17393796001*4106118243^(1/2) 6765000029563931 a001 1836311903/73681302247*4106118243^(13/23) 6765000029563931 a001 3278735159921/5374978561*2537720636^(1/9) 6765000029563931 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 2971215073/6643838879*2537720636^(4/9) 6765000029563931 a001 1836311903/192900153618*4106118243^(14/23) 6765000029563931 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(68)*Lucas(47)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(70)*Lucas(47)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(72)*Lucas(47)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(73)*Lucas(47)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(71)*Lucas(47)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(69)*Lucas(47)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(67)*Lucas(47)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 4052739537881/4106118243*1568397607^(1/11) 6765000029563931 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 3536736619241/9381251041*2537720636^(2/15) 6765000029563931 a001 1836311903/505019158607*4106118243^(15/23) 6765000029563931 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 139583862445/6643838879*2537720636^(4/15) 6765000029563931 a001 1836311903/1322157322203*4106118243^(16/23) 6765000029563931 a001 6557470319842/17393796001*2537720636^(2/15) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(48) 6765000029563931 a001 2403763488/5374978561*23725150497407^(5/16) 6765000029563931 a001 2403763488/5374978561*505019158607^(5/14) 6765000029563931 a001 2403763488/5374978561*73681302247^(5/13) 6765000029563931 a001 2403763488/5374978561*28143753123^(2/5) 6765000029563931 a001 1836311903/3461452808002*4106118243^(17/23) 6765000029563931 a001 10610209857723/17393796001*2537720636^(1/9) 6765000029563931 a001 2403763488/5374978561*10749957122^(5/12) 6765000029563931 a001 1836311903/9062201101803*4106118243^(18/23) 6765000029563931 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 365435296162/6643838879*2537720636^(2/9) 6765000029563931 a001 1201881744/3665737348901*17393796001^(5/7) 6765000029563931 a001 102287808/10745088481*17393796001^(4/7) 6765000029563931 a001 1836311903/23725150497407*4106118243^(19/23) 6765000029563931 a001 12586269025/10749957122*45537549124^(6/17) 6765000029563931 a001 1602508992/9381251041*312119004989^(2/5) 6765000029563931 a001 12586269025/10749957122*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(48) 6765000029563931 a001 12586269025/10749957122*192900153618^(1/3) 6765000029563931 a001 43133785636/5374978561*17393796001^(2/7) 6765000029563931 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 2504730781961/10749957122*17393796001^(1/7) 6765000029563931 a001 686789568/10525900321*45537549124^(8/17) 6765000029563931 a001 4807526976/23725150497407*45537549124^(12/17) 6765000029563931 a001 1602508992/3020733700601*45537549124^(2/3) 6765000029563931 a001 4807526976/5600748293801*45537549124^(11/17) 6765000029563931 a001 1602508992/440719107401*45537549124^(10/17) 6765000029563931 a001 4807526976/312119004989*45537549124^(9/17) 6765000029563931 a001 686789568/10525900321*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(48) 6765000029563931 a001 32951280099/10749957122*23725150497407^(1/4) 6765000029563931 a001 686789568/10525900321*192900153618^(4/9) 6765000029563931 a001 32951280099/10749957122*73681302247^(4/13) 6765000029563931 a001 225851433717/10749957122*45537549124^(4/17) 6765000029563931 a001 686789568/10525900321*73681302247^(6/13) 6765000029563931 a001 956722026041/10749957122*45537549124^(3/17) 6765000029563931 a001 53316291173/10749957122*45537549124^(5/17) 6765000029563931 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 4052739537881/10749957122*45537549124^(2/17) 6765000029563931 a001 43133785636/5374978561*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(48) 6765000029563931 a001 43133785636/5374978561*505019158607^(1/4) 6765000029563931 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 1201881744/3665737348901*312119004989^(7/11) 6765000029563931 a001 1602508992/440719107401*312119004989^(6/11) 6765000029563931 a001 102287808/10745088481*14662949395604^(4/9) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(48) 6765000029563931 a001 102287808/10745088481*505019158607^(1/2) 6765000029563931 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(48) 6765000029563931 a001 182717648081/5374978561*312119004989^(1/5) 6765000029563931 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(67)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(68) 6765000029563931 a006 5^(1/2)*Fibonacci(68)/Lucas(48)/sqrt(5) 6765000029563931 a004 Fibonacci(48)*Lucas(69)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(48)*Lucas(71)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^66/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^68/Lucas(96) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^70/Lucas(98) 6765000029563931 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^71/Lucas(99) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^72/Lucas(100) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^69/Lucas(97) 6765000029563931 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^67/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(48)*Lucas(72)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(48)*Lucas(70)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(48)*Lucas(68)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(66)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^92 6765000029563931 a001 1201881744/3665737348901*14662949395604^(5/9) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(48) 6765000029563931 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(48) 6765000029563931 a001 4807526976/2139295485799*9062201101803^(1/2) 6765000029563931 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(48) 6765000029563931 a001 1201881744/204284540899*1322157322203^(1/2) 6765000029563931 a001 1201881744/3665737348901*505019158607^(5/8) 6765000029563931 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 4807526976/312119004989*817138163596^(9/19) 6765000029563931 a001 4807526976/312119004989*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(48) 6765000029563931 a001 4807525989/4870846*73681302247^(1/13) 6765000029563931 a001 1602508992/440719107401*192900153618^(5/9) 6765000029563931 a001 4807526976/5600748293801*192900153618^(11/18) 6765000029563931 a001 4807526976/23725150497407*192900153618^(2/3) 6765000029563931 a001 4807526976/312119004989*192900153618^(1/2) 6765000029563931 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 774004377960/5374978561*73681302247^(2/13) 6765000029563931 a001 225851433717/10749957122*73681302247^(3/13) 6765000029563931 a001 139583862445/10749957122*73681302247^(1/4) 6765000029563931 a001 267084832/10716675201*73681302247^(1/2) 6765000029563931 a001 53316291173/10749957122*312119004989^(3/11) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(48) 6765000029563931 a001 4807526976/119218851371*3461452808002^(5/12) 6765000029563931 a001 53316291173/10749957122*192900153618^(5/18) 6765000029563931 a001 102287808/10745088481*73681302247^(7/13) 6765000029563931 a001 14930208/10749853441*73681302247^(8/13) 6765000029563931 a001 3278735159921/5374978561*28143753123^(1/10) 6765000029563931 a001 4807526976/23725150497407*73681302247^(9/13) 6765000029563931 a001 591286729879/1568397607*599074578^(1/7) 6765000029563931 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 591286729879/6643838879*2537720636^(1/5) 6765000029563931 a001 591286729879/10749957122*28143753123^(1/5) 6765000029563931 a001 10182505537/5374978561*45537549124^(1/3) 6765000029563931 a001 53316291173/10749957122*28143753123^(3/10) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(48) 6765000029563931 a001 4807526976/119218851371*28143753123^(1/2) 6765000029563931 a001 4807525989/4870846*10749957122^(1/12) 6765000029563931 a001 1602508992/440719107401*28143753123^(3/5) 6765000029563931 a001 1201881744/3665737348901*28143753123^(7/10) 6765000029563931 a001 4052739537881/10749957122*10749957122^(1/8) 6765000029563931 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 774004377960/5374978561*10749957122^(1/6) 6765000029563931 a001 956722026041/10749957122*10749957122^(3/16) 6765000029563931 a001 591286729879/10749957122*10749957122^(5/24) 6765000029563931 a001 4807526976/17393796001*17393796001^(3/7) 6765000029563931 a001 12586269025/10749957122*10749957122^(3/8) 6765000029563931 a001 225851433717/10749957122*10749957122^(1/4) 6765000029563931 a001 43133785636/5374978561*10749957122^(7/24) 6765000029563931 a001 32951280099/10749957122*10749957122^(1/3) 6765000029563931 a001 1602508992/9381251041*10749957122^(11/24) 6765000029563931 a001 53316291173/10749957122*10749957122^(5/16) 6765000029563931 a001 4807526976/17393796001*45537549124^(7/17) 6765000029563931 a001 7778742049/10749957122*817138163596^(1/3) 6765000029563931 a001 4807526976/17393796001*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(48) 6765000029563931 a001 4807526976/17393796001*192900153618^(7/18) 6765000029563931 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 686789568/10525900321*10749957122^(1/2) 6765000029563931 a001 267084832/10716675201*10749957122^(13/24) 6765000029563931 a001 516002918640/1368706081*1568397607^(3/22) 6765000029563931 a001 4807526976/312119004989*10749957122^(9/16) 6765000029563931 a001 102287808/10745088481*10749957122^(7/12) 6765000029563931 a001 4807525989/4870846*4106118243^(2/23) 6765000029563931 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(66)*Lucas(49)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(68)*Lucas(49)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(70)*Lucas(49)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(71)*Lucas(49)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(69)*Lucas(49)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(67)*Lucas(49)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(65)*Lucas(49)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 1602508992/440719107401*10749957122^(5/8) 6765000029563931 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 12586269025/1322157322203*17393796001^(4/7) 6765000029563931 a001 14930208/10749853441*10749957122^(2/3) 6765000029563931 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 4807526976/5600748293801*10749957122^(11/16) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(50) 6765000029563931 a001 12586269025/28143753123*23725150497407^(5/16) 6765000029563931 a001 1602508992/3020733700601*10749957122^(17/24) 6765000029563931 a001 12586269025/28143753123*505019158607^(5/14) 6765000029563931 a001 12586269025/28143753123*73681302247^(5/13) 6765000029563931 a001 75283811239/9381251041*17393796001^(2/7) 6765000029563931 a001 12586269025/45537549124*17393796001^(3/7) 6765000029563931 a001 4807526976/23725150497407*10749957122^(3/4) 6765000029563931 a001 32951280099/3461452808002*17393796001^(4/7) 6765000029563931 a001 12586269025/28143753123*28143753123^(2/5) 6765000029563931 a001 86267571272/9062201101803*17393796001^(4/7) 6765000029563931 a001 225851433717/23725150497407*17393796001^(4/7) 6765000029563931 a001 139583862445/14662949395604*17393796001^(4/7) 6765000029563931 a001 53316291173/5600748293801*17393796001^(4/7) 6765000029563931 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 6557470319842/28143753123*17393796001^(1/7) 6765000029563931 a001 10983760033/9381251041*45537549124^(6/17) 6765000029563931 a001 12586269025/23725150497407*45537549124^(2/3) 6765000029563931 a001 12586269025/14662949395604*45537549124^(11/17) 6765000029563931 a001 4807526976/17393796001*10749957122^(7/16) 6765000029563931 a001 12586269025/3461452808002*45537549124^(10/17) 6765000029563931 a001 32951280099/119218851371*17393796001^(3/7) 6765000029563931 a001 12586269025/192900153618*45537549124^(8/17) 6765000029563931 a001 12586269025/817138163596*45537549124^(9/17) 6765000029563931 a001 12586269025/73681302247*312119004989^(2/5) 6765000029563931 a001 10983760033/9381251041*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(50) 6765000029563931 a001 10983760033/9381251041*192900153618^(1/3) 6765000029563931 a001 86267571272/312119004989*17393796001^(3/7) 6765000029563931 a001 225851433717/817138163596*17393796001^(3/7) 6765000029563931 a001 1548008755920/5600748293801*17393796001^(3/7) 6765000029563931 a001 139583862445/505019158607*17393796001^(3/7) 6765000029563931 a001 20365011074/2139295485799*17393796001^(4/7) 6765000029563931 a001 139583862445/28143753123*45537549124^(5/17) 6765000029563931 a001 591286729879/28143753123*45537549124^(4/17) 6765000029563931 a001 53316291173/192900153618*17393796001^(3/7) 6765000029563931 a001 53316291173/28143753123*45537549124^(1/3) 6765000029563931 a001 2504730781961/28143753123*45537549124^(3/17) 6765000029563931 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 3536736619241/9381251041*45537549124^(2/17) 6765000029563931 a001 12586269025/192900153618*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(50) 6765000029563931 a001 86267571272/28143753123*23725150497407^(1/4) 6765000029563931 a001 12586269025/192900153618*192900153618^(4/9) 6765000029563931 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 12586269025/14662949395604*312119004989^(3/5) 6765000029563931 a001 12586269025/3461452808002*312119004989^(6/11) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(50) 6765000029563931 a001 12585437040/228811001*312119004989^(2/11) 6765000029563931 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 12586269025/1322157322203*14662949395604^(4/9) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(65)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(67)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(69)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(70) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^64/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^66/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^68/Lucas(98) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^70/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^69/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^67/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^65/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(50)*Lucas(70)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(68)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(66)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(64)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(50) 6765000029563931 a001 12586269025/5600748293801*9062201101803^(1/2) 6765000029563931 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(50) 6765000029563931 a001 12586269025/2139295485799*1322157322203^(1/2) 6765000029563931 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^88 6765000029563931 a001 12586269025/1322157322203*505019158607^(1/2) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(50) 6765000029563931 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 1144206275/28374454999*312119004989^(5/11) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(50) 6765000029563931 a001 1144206275/28374454999*3461452808002^(5/12) 6765000029563931 a001 12586269025/3461452808002*192900153618^(5/9) 6765000029563931 a001 139583862445/28143753123*192900153618^(5/18) 6765000029563931 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 4052739537881/28143753123*73681302247^(2/13) 6765000029563931 a001 86267571272/28143753123*73681302247^(4/13) 6765000029563931 a001 591286729879/28143753123*73681302247^(3/13) 6765000029563931 a001 365435296162/28143753123*73681302247^(1/4) 6765000029563931 a001 12586269025/192900153618*73681302247^(6/13) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(50) 6765000029563931 a001 12586269025/505019158607*73681302247^(1/2) 6765000029563931 a001 12586269025/1322157322203*73681302247^(7/13) 6765000029563931 a001 12586269025/9062201101803*73681302247^(8/13) 6765000029563931 a001 591286729879/73681302247*17393796001^(2/7) 6765000029563931 a001 20365011074/73681302247*17393796001^(3/7) 6765000029563931 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 12585437040/228811001*28143753123^(1/5) 6765000029563931 a001 12586269025/45537549124*45537549124^(7/17) 6765000029563931 a001 86000486440/10716675201*17393796001^(2/7) 6765000029563931 a001 4052739537881/505019158607*17393796001^(2/7) 6765000029563931 a001 3278735159921/408569081798*17393796001^(2/7) 6765000029563931 a001 2504730781961/312119004989*17393796001^(2/7) 6765000029563931 a001 4052739537881/10749957122*4106118243^(3/23) 6765000029563931 a001 956722026041/119218851371*17393796001^(2/7) 6765000029563931 a001 139583862445/28143753123*28143753123^(3/10) 6765000029563931 a001 12586269025/45537549124*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(50) 6765000029563931 a001 12586269025/45537549124*192900153618^(7/18) 6765000029563931 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 1144206275/28374454999*28143753123^(1/2) 6765000029563931 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 12586269025/3461452808002*28143753123^(3/5) 6765000029563931 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(64)*Lucas(51)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(66)*Lucas(51)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(68)*Lucas(51)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(69)*Lucas(51)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(67)*Lucas(51)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(65)*Lucas(51)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(63)*Lucas(51)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 10983760033/3020733700601*45537549124^(10/17) 6765000029563931 a001 182717648081/22768774562*17393796001^(2/7) 6765000029563931 a001 32951280099/2139295485799*45537549124^(9/17) 6765000029563931 a001 32951280099/505019158607*45537549124^(8/17) 6765000029563931 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 86267571272/73681302247*45537549124^(6/17) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(52) 6765000029563931 a001 32951280099/73681302247*23725150497407^(5/16) 6765000029563931 a001 32951280099/73681302247*505019158607^(5/14) 6765000029563931 a001 139583862445/73681302247*45537549124^(1/3) 6765000029563931 a001 365435296162/73681302247*45537549124^(5/17) 6765000029563931 a001 32951280099/119218851371*45537549124^(7/17) 6765000029563931 a001 86267571272/23725150497407*45537549124^(10/17) 6765000029563931 a001 1548008755920/73681302247*45537549124^(4/17) 6765000029563931 a001 32951280099/73681302247*73681302247^(5/13) 6765000029563931 a001 86267571272/5600748293801*45537549124^(9/17) 6765000029563931 a001 6557470319842/73681302247*45537549124^(3/17) 6765000029563931 a001 7787980473/505618944676*45537549124^(9/17) 6765000029563931 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 86267571272/1322157322203*45537549124^(8/17) 6765000029563931 a001 365435296162/23725150497407*45537549124^(9/17) 6765000029563931 a001 139583862445/9062201101803*45537549124^(9/17) 6765000029563931 a001 32264490531/494493258286*45537549124^(8/17) 6765000029563931 a001 591286729879/9062201101803*45537549124^(8/17) 6765000029563931 a001 365435296162/5600748293801*45537549124^(8/17) 6765000029563931 a001 139583862445/2139295485799*45537549124^(8/17) 6765000029563931 a001 10983760033/64300051206*312119004989^(2/5) 6765000029563931 a001 86267571272/312119004989*45537549124^(7/17) 6765000029563931 a001 53316291173/14662949395604*45537549124^(10/17) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(52) 6765000029563931 a001 86267571272/73681302247*192900153618^(1/3) 6765000029563931 a001 75283811239/64300051206*45537549124^(6/17) 6765000029563931 a001 225851433717/817138163596*45537549124^(7/17) 6765000029563931 a001 1548008755920/5600748293801*45537549124^(7/17) 6765000029563931 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 139583862445/505019158607*45537549124^(7/17) 6765000029563931 a001 10983760033/3020733700601*312119004989^(6/11) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(52) 6765000029563931 a001 32264490531/10525900321*23725150497407^(1/4) 6765000029563931 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(52) 6765000029563931 a001 1548008755920/73681302247*817138163596^(4/19) 6765000029563931 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(63)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(52) 6765000029563931 a001 1515744265389/10525900321*23725150497407^(1/8) 6765000029563931 a004 Fibonacci(52)*Lucas(65)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(67)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(72) 6765000029563931 a006 5^(1/2)*Fibonacci(72)/Lucas(52)/sqrt(5) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^62/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^64/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^66/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^67/Lucas(99) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^68/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^65/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^63/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(68)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(66)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(64)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(62)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(52) 6765000029563931 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(52) 6765000029563931 a001 1515744265389/10525900321*505019158607^(1/7) 6765000029563931 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(52) 6765000029563931 a001 32951280099/3461452808002*505019158607^(1/2) 6765000029563931 a001 32951280099/23725150497407*505019158607^(4/7) 6765000029563931 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^88 6765000029563931 a001 32951280099/505019158607*192900153618^(4/9) 6765000029563931 a001 365435296162/73681302247*192900153618^(5/18) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(52) 6765000029563931 a001 32951280099/2139295485799*192900153618^(1/2) 6765000029563931 a001 2504730781961/2139295485799*45537549124^(6/17) 6765000029563931 a001 10983760033/3020733700601*192900153618^(5/9) 6765000029563931 a001 956722026041/505019158607*45537549124^(1/3) 6765000029563931 a001 10610209857723/5600748293801*45537549124^(1/3) 6765000029563931 a001 365435296162/312119004989*45537549124^(6/17) 6765000029563931 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 1515744265389/10525900321*73681302247^(2/13) 6765000029563931 a001 53316291173/192900153618*45537549124^(7/17) 6765000029563931 a001 53316291173/817138163596*45537549124^(8/17) 6765000029563931 a001 591286729879/312119004989*45537549124^(1/3) 6765000029563931 a001 2504730781961/505019158607*45537549124^(5/17) 6765000029563931 a001 1548008755920/73681302247*73681302247^(3/13) 6765000029563931 a001 4052739537881/192900153618*45537549124^(4/17) 6765000029563931 a001 4052739537881/817138163596*45537549124^(5/17) 6765000029563931 a001 140728068720/28374454999*45537549124^(5/17) 6765000029563931 a001 32264490531/10525900321*73681302247^(4/13) 6765000029563931 a001 225749145909/10745088481*45537549124^(4/17) 6765000029563931 a001 32951280099/119218851371*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(52) 6765000029563931 a001 32951280099/119218851371*192900153618^(7/18) 6765000029563931 a001 32951280099/505019158607*73681302247^(6/13) 6765000029563931 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 225851433717/119218851371*45537549124^(1/3) 6765000029563931 a001 10983760033/440719107401*73681302247^(1/2) 6765000029563931 a001 139583862445/119218851371*45537549124^(6/17) 6765000029563931 a001 32951280099/3461452808002*73681302247^(7/13) 6765000029563931 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^89 6765000029563931 a001 591286729879/119218851371*45537549124^(5/17) 6765000029563931 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 32951280099/23725150497407*73681302247^(8/13) 6765000029563931 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(62)*Lucas(53)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(64)*Lucas(53)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(66)*Lucas(53)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(67)*Lucas(53)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(65)*Lucas(53)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(63)*Lucas(53)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(61)*Lucas(53)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(54) 6765000029563931 a001 43133785636/96450076809*23725150497407^(5/16) 6765000029563931 a001 43133785636/96450076809*505019158607^(5/14) 6765000029563931 a001 2504730781961/119218851371*45537549124^(4/17) 6765000029563931 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^89 6765000029563931 a001 86267571272/2139295485799*312119004989^(5/11) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(54) 6765000029563931 a001 956722026041/192900153618*312119004989^(3/11) 6765000029563931 a001 3278735159921/96450076809*312119004989^(1/5) 6765000029563931 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 86267571272/5600748293801*817138163596^(9/19) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(54) 6765000029563931 a001 591286729879/192900153618*23725150497407^(1/4) 6765000029563931 a001 4052739537881/192900153618*817138163596^(4/19) 6765000029563931 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(61)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(63)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(65)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(74) 6765000029563931 a006 5^(1/2)*Fibonacci(74)/Lucas(54)/sqrt(5) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^60/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^62/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^64/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^65/Lucas(99) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^66/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^63/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^61/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(66)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(64)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(62)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(60)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(54) 6765000029563931 a001 1135099622/192933544679*1322157322203^(1/2) 6765000029563931 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(54) 6765000029563931 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^90 6765000029563931 a001 75283811239/64300051206*192900153618^(1/3) 6765000029563931 a001 4052739537881/192900153618*192900153618^(2/9) 6765000029563931 a001 139583862445/192900153618*817138163596^(1/3) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(54) 6765000029563931 a001 10610209857723/119218851371*45537549124^(3/17) 6765000029563931 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 86267571272/23725150497407*192900153618^(5/9) 6765000029563931 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(60)*Lucas(55)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(62)*Lucas(55)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(64)*Lucas(55)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(65)*Lucas(55)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(63)*Lucas(55)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(61)*Lucas(55)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(59)*Lucas(55)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^92 6765000029563931 a001 225851433717/5600748293801*312119004989^(5/11) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(56) 6765000029563931 a001 225749145909/10745088481*817138163596^(4/19) 6765000029563931 a004 Fibonacci(56)*Lucas(59)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(61)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(63)/(1/2+sqrt(5)/2)^99 6765000029563931 a001 225749145909/10745088481*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(76) 6765000029563931 a006 5^(1/2)*Fibonacci(76)/Lucas(56)/sqrt(5) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^58/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^60/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^36 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^62/Lucas(98) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^64/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^63/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^61/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^59/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(64)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(62)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(60)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(56) 6765000029563931 a004 Fibonacci(56)*Lucas(58)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(56) 6765000029563931 a004 Fibonacci(58)*Lucas(57)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(60)*Lucas(57)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(62)*Lucas(57)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(63)*Lucas(57)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(61)*Lucas(57)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(59)*Lucas(57)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(58) 6765000029563931 a004 Fibonacci(58)*Lucas(59)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(58) 6765000029563931 a004 Fibonacci(58)*Lucas(61)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(78) 6765000029563931 a006 5^(1/2)*Fibonacci(78)/Lucas(58)/sqrt(5) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^56/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^58/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^60/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^38 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^61/Lucas(99) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^62/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^59/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^57/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(58) 6765000029563931 a004 Fibonacci(58)*Lucas(62)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(58) 6765000029563931 a004 Fibonacci(58)*Lucas(60)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(58) 6765000029563931 a004 Fibonacci(60)*Lucas(59)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(61)*Lucas(59)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(80) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^54/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^56/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^58/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^40 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^59/Lucas(99) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^60/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^57/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^55/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(60) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(82) 6765000029563931 a006 5^(1/2)*Fibonacci(82)/Lucas(62)/sqrt(5) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^52/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^54/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^56/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^42 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^57/Lucas(99) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^58/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^55/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^53/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(62) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(84) 6765000029563931 a006 5^(1/2)*Fibonacci(84)/Lucas(64)/sqrt(5) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^50/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^52/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^54/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^44 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^55/Lucas(99) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^56/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^53/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^51/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(64) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(86) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^48/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^50/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^46 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^52/Lucas(98) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^54/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^53/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^51/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^49/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(66) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(88) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^46/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^48/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^50/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^48 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^51/Lucas(99) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^52/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^49/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^47/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(87) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(68) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^4/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(88) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^2/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(90) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^44/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^46/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^50 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^48/Lucas(98) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^50/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^49/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^47/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^45/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(89) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(87) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^3/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^5/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^7/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(70) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^12/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^10/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^8/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^6/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(88) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^4/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(90) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^2/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(92) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^42/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^44/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^52 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^46/Lucas(98) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^48/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^47/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^45/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^43/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(91) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(89) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^3/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(87) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^5/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^7/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^9/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^11/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^13/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(72) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(76) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(78) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(80) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(82) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(84) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(86) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(88) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(90) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(92) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^40/Lucas(94) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^42/Lucas(96) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^44/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(74)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^54 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^45/Lucas(99) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^46/Lucas(100) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^43/Lucas(97) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^41/Lucas(95) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(93) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(91) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(89) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(87) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^7/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(85) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(83) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(81) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(79) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(77) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(75) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(78) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(80) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(82) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(84) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(86) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(88) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(90) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(92) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^38/Lucas(94) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^40/Lucas(96) 6765000029563931 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^56 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^42/Lucas(98) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^44/Lucas(100) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^43/Lucas(99) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^41/Lucas(97) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^39/Lucas(95) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(93) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(91) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^5/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(89) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(87) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(85) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(83) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(81) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(79) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(77) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(80) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(82) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(84) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(86) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(88) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(90) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(92) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^36/Lucas(94) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^38/Lucas(96) 6765000029563931 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^58 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^40/Lucas(98) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^42/Lucas(100) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^41/Lucas(99) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^39/Lucas(97) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^37/Lucas(95) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(93) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(91) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(89) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(87) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(85) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(83) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(81) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(79) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(80) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(84) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(86) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(88) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(90) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(92) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^34/Lucas(94) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^36/Lucas(96) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^38/Lucas(98) 6765000029563931 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^60 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^39/Lucas(99) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^40/Lucas(100) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^37/Lucas(97) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^35/Lucas(95) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(93) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(91) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(89) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(87) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(85) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(83) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(80) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(84) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(86) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(88) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(90) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^12/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(92) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^32/Lucas(94) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^34/Lucas(96) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^36/Lucas(98) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^38/Lucas(100) 6765000029563931 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^62 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^37/Lucas(99) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^35/Lucas(97) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^33/Lucas(95) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(93) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(91) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(89) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(87) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(85) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(83) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(86) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(88) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(90) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(92) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^30/Lucas(94) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^32/Lucas(96) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^34/Lucas(98) 6765000029563931 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^64 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^35/Lucas(99) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^36/Lucas(100) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^33/Lucas(97) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^31/Lucas(95) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(93) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(91) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(89) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(87) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(85) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(88) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(90) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(92) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^28/Lucas(94) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^30/Lucas(96) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^32/Lucas(98) 6765000029563931 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^66 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^33/Lucas(99) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^34/Lucas(100) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^31/Lucas(97) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^29/Lucas(95) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(93) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(91) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(89) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(87) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(88) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(90) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(92) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^26/Lucas(94) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^28/Lucas(96) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^30/Lucas(98) 6765000029563931 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^68 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^31/Lucas(99) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^32/Lucas(100) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^29/Lucas(97) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^27/Lucas(95) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(93) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(91) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(89) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(90) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(92) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^24/Lucas(94) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^26/Lucas(96) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^28/Lucas(98) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^30/Lucas(100) 6765000029563931 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^70 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^29/Lucas(99) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^27/Lucas(97) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^25/Lucas(95) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(93) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(91) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^20/Lucas(92) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^18/Lucas(92) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^24/Lucas(96) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^26/Lucas(98) 6765000029563931 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^72 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^27/Lucas(99) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^28/Lucas(100) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^25/Lucas(97) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^23/Lucas(95) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(92) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^20/Lucas(94) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^22/Lucas(96) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^24/Lucas(98) 6765000029563931 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^74 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^25/Lucas(99) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^26/Lucas(100) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^23/Lucas(97) 6765000029563931 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^21/Lucas(95) 6765000029563931 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^20/Lucas(96) 6765000029563931 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^18/Lucas(96) 6765000029563931 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^16/Lucas(96) 6765000029563931 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^76 6765000029563931 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^23/Lucas(99) 6765000029563931 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^19/Lucas(96) 6765000029563931 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^20/Lucas(98) 6765000029563931 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^21/Lucas(99) 6765000029563931 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^22/Lucas(100) 6765000029563931 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^19/Lucas(99) 6765000029563931 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^20/Lucas(100) 6765000029563931 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(55)*Lucas(55)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(56)*Lucas(56)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(57)*Lucas(57)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(58)*Lucas(58)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(59)*Lucas(59)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(60)*Lucas(60)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^20/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(1)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^21/Lucas(98) 6765000029563931 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^22/Lucas(99) 6765000029563931 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^23/Lucas(100) 6765000029563931 a004 Fibonacci(97)/Lucas(1)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^20/Lucas(97) 6765000029563931 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^21/Lucas(96) 6765000029563931 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^23/Lucas(98) 6765000029563931 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^24/Lucas(99) 6765000029563931 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^25/Lucas(100) 6765000029563931 a004 Fibonacci(95)/Lucas(1)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^22/Lucas(97) 6765000029563931 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^20/Lucas(95) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^21/Lucas(94) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^23/Lucas(96) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^25/Lucas(98) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^26/Lucas(99) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^27/Lucas(100) 6765000029563931 a004 Fibonacci(93)/Lucas(1)/(1/2+sqrt(5)/2)^73 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^24/Lucas(97) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^22/Lucas(95) 6765000029563931 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(93) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^21/Lucas(92) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^23/Lucas(94) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^25/Lucas(96) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^27/Lucas(98) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^28/Lucas(99) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^29/Lucas(100) 6765000029563931 a004 Fibonacci(91)/Lucas(1)/(1/2+sqrt(5)/2)^71 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^26/Lucas(97) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^24/Lucas(95) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(93) 6765000029563931 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(91) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(90) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(92) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^25/Lucas(94) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^27/Lucas(96) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^29/Lucas(98) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^30/Lucas(99) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^31/Lucas(100) 6765000029563931 a004 Fibonacci(89)/Lucas(1)/(1/2+sqrt(5)/2)^69 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^28/Lucas(97) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^26/Lucas(95) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(93) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(91) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(89) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(88) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(90) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(92) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^27/Lucas(94) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^29/Lucas(96) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^31/Lucas(98) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^33/Lucas(100) 6765000029563931 a004 Fibonacci(87)/Lucas(1)/(1/2+sqrt(5)/2)^67 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^32/Lucas(99) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^30/Lucas(97) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^28/Lucas(95) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(93) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(91) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(89) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(87) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(86) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(88) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(90) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(92) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^29/Lucas(94) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^31/Lucas(96) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^33/Lucas(98) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^35/Lucas(100) 6765000029563931 a004 Fibonacci(85)/Lucas(1)/(1/2+sqrt(5)/2)^65 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^34/Lucas(99) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^32/Lucas(97) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^30/Lucas(95) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(93) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(91) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(89) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(87) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(85) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(86) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(88) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(90) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(92) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^31/Lucas(94) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^33/Lucas(96) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^35/Lucas(98) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^36/Lucas(99) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^37/Lucas(100) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^34/Lucas(97) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^32/Lucas(95) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(93) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(91) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(89) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(87) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(85) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(83) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(82) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(84) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(86) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(88) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(90) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(92) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^33/Lucas(94) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^35/Lucas(96) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^37/Lucas(98) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^38/Lucas(99) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^39/Lucas(100) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^36/Lucas(97) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^34/Lucas(95) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(93) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(91) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(89) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(87) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(85) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(83) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(81) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(80) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(82) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(84) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(86) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(88) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(90) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(92) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^35/Lucas(94) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^37/Lucas(96) 6765000029563931 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^3/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^39/Lucas(98) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^41/Lucas(100) 6765000029563931 a004 Fibonacci(79)/Lucas(1)/(1/2+sqrt(5)/2)^59 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^40/Lucas(99) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^38/Lucas(97) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^36/Lucas(95) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(93) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(91) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(89) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(87) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(85) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(83) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(81) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(79) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(80) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(82) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(84) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(86) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(88) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(90) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(92) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^37/Lucas(94) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^39/Lucas(96) 6765000029563931 a004 Fibonacci(96)*(1/2+sqrt(5)/2)/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^41/Lucas(98) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^43/Lucas(100) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^42/Lucas(99) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^40/Lucas(97) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^38/Lucas(95) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(93) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(91) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(89) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(87) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(85) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(83) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(81) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(79) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(77) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(76) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(78) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(80) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(82) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(84) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(86) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(88) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(90) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(92) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^39/Lucas(94) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^41/Lucas(96) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^43/Lucas(98) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^45/Lucas(100) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^44/Lucas(99) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^42/Lucas(97) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^40/Lucas(95) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(93) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(91) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(89) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(87) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(85) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(83) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(81) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(79) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(77) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(75) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(76) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(80) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(82) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^9/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(86) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(88) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(90) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^3/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(92) 6765000029563931 a004 Fibonacci(92)*(1/2+sqrt(5)/2)/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^41/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^43/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^45/Lucas(98) 6765000029563931 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^46/Lucas(99) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^47/Lucas(100) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^44/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(73)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^42/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(93) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(91) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(89) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^4/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(87) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(85) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^10/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^12/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(75) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(73) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^11/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^9/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^7/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^5/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(88) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^3/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(90) 6765000029563931 a004 Fibonacci(90)*(1/2+sqrt(5)/2)/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^43/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^45/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^47/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^48/Lucas(99) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^49/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^46/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^44/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(91) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(89) 6765000029563931 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^2/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(87) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^4/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^6/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^8/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^10/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^12/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(71) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^3/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(88) 6765000029563931 a004 Fibonacci(88)*(1/2+sqrt(5)/2)/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^45/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^47/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^49/Lucas(98) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^51/Lucas(100) 6765000029563931 a004 Fibonacci(69)/Lucas(1)/(1/2+sqrt(5)/2)^49 6765000029563931 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^50/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^48/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^46/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(89) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(87) 6765000029563931 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^2/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^4/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(69) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(86) 6765000029563931 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^47/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^49/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^51/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^52/Lucas(99) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^53/Lucas(100) 6765000029563931 a004 Fibonacci(67)/Lucas(1)/(1/2+sqrt(5)/2)^47 6765000029563931 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^50/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^48/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(87) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(85) 6765000029563931 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(67) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(84) 6765000029563931 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^49/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^51/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^53/Lucas(98) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^55/Lucas(100) 6765000029563931 a004 Fibonacci(65)/Lucas(1)/(1/2+sqrt(5)/2)^45 6765000029563931 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^54/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^52/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^50/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(85) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(83) 6765000029563931 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(65) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(82) 6765000029563931 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^51/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^53/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^55/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^56/Lucas(99) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^57/Lucas(100) 6765000029563931 a004 Fibonacci(63)/Lucas(1)/(1/2+sqrt(5)/2)^43 6765000029563931 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^54/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^52/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(83) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(81) 6765000029563931 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(63) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(80) 6765000029563931 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^53/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^55/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^57/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^58/Lucas(99) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^59/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^56/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^54/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(81) 6765000029563931 a006 5^(1/2)*Fibonacci(81)/Lucas(61)/sqrt(5) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(79) 6765000029563931 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(61) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(59) 6765000029563931 a004 Fibonacci(59)*Lucas(61)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(78) 6765000029563931 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^55/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^57/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^59/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^60/Lucas(99) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^61/Lucas(100) 6765000029563931 a004 Fibonacci(59)/Lucas(1)/(1/2+sqrt(5)/2)^39 6765000029563931 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^58/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^56/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(79) 6765000029563931 a006 5^(1/2)*Fibonacci(79)/Lucas(59)/sqrt(5) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(77) 6765000029563931 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(59) 6765000029563931 a004 Fibonacci(59)*Lucas(60)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(59) 6765000029563931 a004 Fibonacci(60)*Lucas(58)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(62)*Lucas(58)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(61)*Lucas(58)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(59)*Lucas(58)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(57) 6765000029563931 a004 Fibonacci(57)*Lucas(59)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(57) 6765000029563931 a004 Fibonacci(57)*Lucas(61)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(57) 6765000029563931 a004 Fibonacci(57)*Lucas(63)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(76) 6765000029563931 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^57/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^59/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^61/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^62/Lucas(99) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^63/Lucas(100) 6765000029563931 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^60/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^58/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(77) 6765000029563931 a006 5^(1/2)*Fibonacci(77)/Lucas(57)/sqrt(5) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(75) 6765000029563931 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(57) 6765000029563931 a004 Fibonacci(57)*Lucas(62)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(57) 6765000029563931 a004 Fibonacci(57)*Lucas(60)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(57) 6765000029563931 a004 Fibonacci(57)*Lucas(58)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(57) 6765000029563931 a004 Fibonacci(58)*Lucas(56)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(60)*Lucas(56)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(62)*Lucas(56)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(64)*Lucas(56)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(63)*Lucas(56)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(61)*Lucas(56)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(59)*Lucas(56)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^93 6765000029563931 a001 139583862445/3461452808002*312119004989^(5/11) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^92 6765000029563931 a001 2504730781961/2139295485799*192900153618^(1/3) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(59)/(1/2+sqrt(5)/2)^94 6765000029563931 a001 10610209857723/45537549124*17393796001^(1/7) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(61)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(63)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(65)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(74) 6765000029563931 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^59/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^61/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^63/Lucas(98) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^65/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^64/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^62/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^60/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(75) 6765000029563931 a006 5^(1/2)*Fibonacci(75)/Lucas(55)/sqrt(5) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(73) 6765000029563931 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(64)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(62)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(60)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(55) 6765000029563931 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(55) 6765000029563931 a001 139583862445/14662949395604*505019158607^(1/2) 6765000029563931 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 365435296162/23725150497407*192900153618^(1/2) 6765000029563931 a001 139583862445/505019158607*192900153618^(7/18) 6765000029563931 a001 2504730781961/192900153618*73681302247^(1/4) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(55) 6765000029563931 a001 365435296162/312119004989*192900153618^(1/3) 6765000029563931 a001 139583862445/312119004989*505019158607^(5/14) 6765000029563931 a001 139583862445/2139295485799*192900153618^(4/9) 6765000029563931 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^90 6765000029563931 a001 139583862445/9062201101803*192900153618^(1/2) 6765000029563931 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(60)*Lucas(54)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(62)*Lucas(54)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(64)*Lucas(54)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(66)*Lucas(54)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(65)*Lucas(54)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(63)*Lucas(54)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(61)*Lucas(54)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 591286729879/192900153618*73681302247^(4/13) 6765000029563931 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^89 6765000029563931 a001 225749145909/10745088481*73681302247^(3/13) 6765000029563931 a001 86267571272/119218851371*817138163596^(1/3) 6765000029563931 a001 53316291173/192900153618*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(53) 6765000029563931 a001 10610209857723/817138163596*73681302247^(1/4) 6765000029563931 a001 1548008755920/505019158607*73681302247^(4/13) 6765000029563931 a001 6557470319842/312119004989*73681302247^(3/13) 6765000029563931 a001 53316291173/192900153618*192900153618^(7/18) 6765000029563931 a001 4052739537881/312119004989*73681302247^(1/4) 6765000029563931 a001 1515744265389/494493258286*73681302247^(4/13) 6765000029563931 a001 2504730781961/817138163596*73681302247^(4/13) 6765000029563931 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^88 6765000029563931 a001 225851433717/505019158607*73681302247^(5/13) 6765000029563931 a001 53316291173/1322157322203*312119004989^(5/11) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(53) 6765000029563931 a001 4052739537881/73681302247*28143753123^(1/5) 6765000029563931 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(53) 6765000029563931 a001 2504730781961/119218851371*817138163596^(4/19) 6765000029563931 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(61)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(63)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(65)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(67)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(72) 6765000029563931 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^61/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^63/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^65/Lucas(98) 6765000029563931 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^66/Lucas(99) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^67/Lucas(100) 6765000029563931 a004 Fibonacci(53)/Lucas(1)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^64/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^62/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(73) 6765000029563931 a006 5^(1/2)*Fibonacci(73)/Lucas(53)/sqrt(5) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(71) 6765000029563931 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(66)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(64)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(62)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(53) 6765000029563931 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(53) 6765000029563931 a001 182717648081/408569081798*73681302247^(5/13) 6765000029563931 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^89 6765000029563931 a001 10610209857723/119218851371*192900153618^(1/6) 6765000029563931 a001 2504730781961/119218851371*192900153618^(2/9) 6765000029563931 a001 53316291173/312119004989*312119004989^(2/5) 6765000029563931 a001 591286729879/119218851371*192900153618^(5/18) 6765000029563931 a001 139583862445/119218851371*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(53) 6765000029563931 a001 32264490531/494493258286*73681302247^(6/13) 6765000029563931 a001 53316291173/817138163596*192900153618^(4/9) 6765000029563931 a001 365435296162/5600748293801*73681302247^(6/13) 6765000029563931 a001 139583862445/119218851371*192900153618^(1/3) 6765000029563931 a001 182717648081/7331474697802*73681302247^(1/2) 6765000029563931 a001 139583862445/2139295485799*73681302247^(6/13) 6765000029563931 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 20365011074/73681302247*45537549124^(7/17) 6765000029563931 a001 139583862445/5600748293801*73681302247^(1/2) 6765000029563931 a001 139583862445/14662949395604*73681302247^(7/13) 6765000029563931 a001 2504730781961/119218851371*73681302247^(3/13) 6765000029563931 a001 1548008755920/119218851371*73681302247^(1/4) 6765000029563931 a001 365435296162/119218851371*73681302247^(4/13) 6765000029563931 a001 32951280099/73681302247*28143753123^(2/5) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(53) 6765000029563931 a001 53316291173/119218851371*505019158607^(5/14) 6765000029563931 a001 53316291173/817138163596*73681302247^(6/13) 6765000029563931 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 53316291173/2139295485799*73681302247^(1/2) 6765000029563931 a001 53316291173/5600748293801*73681302247^(7/13) 6765000029563931 a001 20365011074/23725150497407*45537549124^(11/17) 6765000029563931 a001 4052739537881/28143753123*10749957122^(1/6) 6765000029563931 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(62)*Lucas(52)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(64)*Lucas(52)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(66)*Lucas(52)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(68)*Lucas(52)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(67)*Lucas(52)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(65)*Lucas(52)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(63)*Lucas(52)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 365435296162/73681302247*28143753123^(3/10) 6765000029563931 a001 20365011074/5600748293801*45537549124^(10/17) 6765000029563931 a001 53316291173/119218851371*73681302247^(5/13) 6765000029563931 a001 3536736619241/64300051206*28143753123^(1/5) 6765000029563931 a001 20365011074/1322157322203*45537549124^(9/17) 6765000029563931 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 20365011074/312119004989*45537549124^(8/17) 6765000029563931 a001 21566892818/11384387281*45537549124^(1/3) 6765000029563931 a001 20365011074/73681302247*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(51) 6765000029563931 a001 20365011074/73681302247*192900153618^(7/18) 6765000029563931 a001 6557470319842/119218851371*28143753123^(1/5) 6765000029563931 a001 225851433717/45537549124*45537549124^(5/17) 6765000029563931 a001 956722026041/192900153618*28143753123^(3/10) 6765000029563931 a001 2504730781961/28143753123*10749957122^(3/16) 6765000029563931 a001 2504730781961/505019158607*28143753123^(3/10) 6765000029563931 a001 4052739537881/817138163596*28143753123^(3/10) 6765000029563931 a001 53316291173/45537549124*45537549124^(6/17) 6765000029563931 a001 140728068720/28374454999*28143753123^(3/10) 6765000029563931 a001 4052739537881/45537549124*45537549124^(3/17) 6765000029563931 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 591286729879/119218851371*28143753123^(3/10) 6765000029563931 a001 32951280099/817138163596*28143753123^(1/2) 6765000029563931 a001 43133785636/96450076809*28143753123^(2/5) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 20365011074/505019158607*312119004989^(5/11) 6765000029563931 a001 225851433717/45537549124*312119004989^(3/11) 6765000029563931 a001 20365011074/23725150497407*312119004989^(3/5) 6765000029563931 a001 20365011074/5600748293801*312119004989^(6/11) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(63)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(65)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(67)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(69)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(70) 6765000029563931 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^63/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^65/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^67/Lucas(98) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^69/Lucas(100) 6765000029563931 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^68/Lucas(99) 6765000029563931 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^66/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^64/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(71) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(69) 6765000029563931 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(68)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(66)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(64)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(51) 6765000029563931 a001 10182505537/7331474697802*23725150497407^(1/2) 6765000029563931 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(51) 6765000029563931 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 10182505537/1730726404001*1322157322203^(1/2) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(51) 6765000029563931 a001 3278735159921/22768774562*505019158607^(1/7) 6765000029563931 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^89 6765000029563931 a001 182717648081/22768774562*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(51) 6765000029563931 a001 225851433717/45537549124*192900153618^(5/18) 6765000029563931 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 20365011074/312119004989*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(51) 6765000029563931 a001 139583862445/45537549124*23725150497407^(1/4) 6765000029563931 a001 20365011074/1322157322203*192900153618^(1/2) 6765000029563931 a001 591286729879/1322157322203*28143753123^(2/5) 6765000029563931 a001 20365011074/312119004989*192900153618^(4/9) 6765000029563931 a001 182717648081/408569081798*28143753123^(2/5) 6765000029563931 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 3278735159921/22768774562*73681302247^(2/13) 6765000029563931 a001 956722026041/45537549124*73681302247^(3/13) 6765000029563931 a001 139583862445/312119004989*28143753123^(2/5) 6765000029563931 a001 591286729879/45537549124*73681302247^(1/4) 6765000029563931 a001 12585437040/228811001*10749957122^(5/24) 6765000029563931 a001 20365011074/119218851371*312119004989^(2/5) 6765000029563931 a001 139583862445/45537549124*73681302247^(4/13) 6765000029563931 a001 53316291173/45537549124*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(51) 6765000029563931 a001 53316291173/45537549124*192900153618^(1/3) 6765000029563931 a001 10983760033/3020733700601*28143753123^(3/5) 6765000029563931 a001 10182505537/408569081798*73681302247^(1/2) 6765000029563931 a001 20365011074/312119004989*73681302247^(6/13) 6765000029563931 a001 20365011074/2139295485799*73681302247^(7/13) 6765000029563931 a001 10182505537/7331474697802*73681302247^(8/13) 6765000029563931 a001 86267571272/2139295485799*28143753123^(1/2) 6765000029563931 a001 7778742049/28143753123*17393796001^(3/7) 6765000029563931 a001 225851433717/5600748293801*28143753123^(1/2) 6765000029563931 a001 591286729879/14662949395604*28143753123^(1/2) 6765000029563931 a001 365435296162/9062201101803*28143753123^(1/2) 6765000029563931 a001 139583862445/3461452808002*28143753123^(1/2) 6765000029563931 a001 53316291173/119218851371*28143753123^(2/5) 6765000029563931 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 53316291173/1322157322203*28143753123^(1/2) 6765000029563931 a001 86267571272/23725150497407*28143753123^(3/5) 6765000029563931 a001 2504730781961/45537549124*28143753123^(1/5) 6765000029563931 a001 53316291173/14662949395604*28143753123^(3/5) 6765000029563931 a001 225851433717/45537549124*28143753123^(3/10) 6765000029563931 a001 591286729879/28143753123*10749957122^(1/4) 6765000029563931 a001 7778742049/23725150497407*17393796001^(5/7) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(51) 6765000029563931 a001 10182505537/22768774562*23725150497407^(5/16) 6765000029563931 a001 10182505537/22768774562*505019158607^(5/14) 6765000029563931 a001 10182505537/22768774562*73681302247^(5/13) 6765000029563931 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 12586269025/28143753123*10749957122^(5/12) 6765000029563931 a001 20365011074/505019158607*28143753123^(1/2) 6765000029563931 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 20365011074/5600748293801*28143753123^(3/5) 6765000029563931 a001 75283811239/9381251041*10749957122^(7/24) 6765000029563931 a001 1515744265389/10525900321*10749957122^(1/6) 6765000029563931 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(64)*Lucas(50)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(66)*Lucas(50)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(68)*Lucas(50)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(70)*Lucas(50)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(69)*Lucas(50)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(67)*Lucas(50)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(65)*Lucas(50)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 7778742049/817138163596*17393796001^(4/7) 6765000029563931 a001 6557470319842/73681302247*10749957122^(3/16) 6765000029563931 a001 139583862445/28143753123*10749957122^(5/16) 6765000029563931 a001 10182505537/22768774562*28143753123^(2/5) 6765000029563931 a001 86267571272/28143753123*10749957122^(1/3) 6765000029563931 a001 4052739537881/73681302247*10749957122^(5/24) 6765000029563931 a001 774004377960/5374978561*4106118243^(4/23) 6765000029563931 a001 10610209857723/119218851371*10749957122^(3/16) 6765000029563931 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 3536736619241/64300051206*10749957122^(5/24) 6765000029563931 a001 10983760033/9381251041*10749957122^(3/8) 6765000029563931 a001 7778742049/28143753123*45537549124^(7/17) 6765000029563931 a001 6557470319842/119218851371*10749957122^(5/24) 6765000029563931 a001 3278735159921/22768774562*10749957122^(1/6) 6765000029563931 a001 2504730781961/6643838879*2537720636^(2/15) 6765000029563931 a001 1548008755920/73681302247*10749957122^(1/4) 6765000029563931 a001 12586269025/17393796001*817138163596^(1/3) 6765000029563931 a001 7778742049/28143753123*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(49) 6765000029563931 a001 7778742049/28143753123*192900153618^(7/18) 6765000029563931 a001 4052739537881/45537549124*10749957122^(3/16) 6765000029563931 a001 4052739537881/192900153618*10749957122^(1/4) 6765000029563931 a001 225749145909/10745088481*10749957122^(1/4) 6765000029563931 a001 6557470319842/312119004989*10749957122^(1/4) 6765000029563931 a001 2504730781961/119218851371*10749957122^(1/4) 6765000029563931 a001 2504730781961/45537549124*10749957122^(5/24) 6765000029563931 a001 591286729879/73681302247*10749957122^(7/24) 6765000029563931 a001 139583862445/17393796001*17393796001^(2/7) 6765000029563931 a001 86000486440/10716675201*10749957122^(7/24) 6765000029563931 a001 12586269025/73681302247*10749957122^(11/24) 6765000029563931 a001 3536736619241/440719107401*10749957122^(7/24) 6765000029563931 a001 3278735159921/408569081798*10749957122^(7/24) 6765000029563931 a001 2504730781961/312119004989*10749957122^(7/24) 6765000029563931 a001 956722026041/119218851371*10749957122^(7/24) 6765000029563931 a001 956722026041/45537549124*10749957122^(1/4) 6765000029563931 a001 956722026041/192900153618*10749957122^(5/16) 6765000029563931 a001 32264490531/10525900321*10749957122^(1/3) 6765000029563931 a001 2504730781961/505019158607*10749957122^(5/16) 6765000029563931 a001 4052739537881/817138163596*10749957122^(5/16) 6765000029563931 a001 140728068720/28374454999*10749957122^(5/16) 6765000029563931 a001 591286729879/119218851371*10749957122^(5/16) 6765000029563931 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 4052739537881/17393796001*17393796001^(1/7) 6765000029563931 a001 591286729879/192900153618*10749957122^(1/3) 6765000029563931 a001 1548008755920/505019158607*10749957122^(1/3) 6765000029563931 a001 1515744265389/494493258286*10749957122^(1/3) 6765000029563931 a001 2504730781961/817138163596*10749957122^(1/3) 6765000029563931 a001 956722026041/312119004989*10749957122^(1/3) 6765000029563931 a001 365435296162/119218851371*10749957122^(1/3) 6765000029563931 a001 32951280099/17393796001*45537549124^(1/3) 6765000029563931 a001 7778742049/14662949395604*45537549124^(2/3) 6765000029563931 a001 7778742049/9062201101803*45537549124^(11/17) 6765000029563931 a001 12586269025/45537549124*10749957122^(7/16) 6765000029563931 a001 7778742049/2139295485799*45537549124^(10/17) 6765000029563931 a001 86267571272/73681302247*10749957122^(3/8) 6765000029563931 a001 12586269025/192900153618*10749957122^(1/2) 6765000029563931 a001 7778742049/505019158607*45537549124^(9/17) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(49) 6765000029563931 a001 86267571272/17393796001*45537549124^(5/17) 6765000029563931 a001 7778742049/119218851371*45537549124^(8/17) 6765000029563931 a001 225851433717/45537549124*10749957122^(5/16) 6765000029563931 a001 365435296162/17393796001*45537549124^(4/17) 6765000029563931 a001 75283811239/64300051206*10749957122^(3/8) 6765000029563931 a001 1548008755920/17393796001*45537549124^(3/17) 6765000029563931 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 32951280099/73681302247*10749957122^(5/12) 6765000029563931 a001 2504730781961/2139295485799*10749957122^(3/8) 6765000029563931 a001 6557470319842/17393796001*45537549124^(2/17) 6765000029563931 a001 365435296162/312119004989*10749957122^(3/8) 6765000029563931 a001 7778742049/192900153618*312119004989^(5/11) 6765000029563931 a001 86267571272/17393796001*312119004989^(3/11) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(49) 6765000029563931 a001 7778742049/192900153618*3461452808002^(5/12) 6765000029563931 a001 86267571272/17393796001*192900153618^(5/18) 6765000029563931 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^84 6765000029563931 a001 7778742049/23725150497407*312119004989^(7/11) 6765000029563931 a001 7778742049/2139295485799*312119004989^(6/11) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 10610209857723/17393796001*312119004989^(1/11) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(49) 6765000029563931 a001 1548008755920/17393796001*817138163596^(3/19) 6765000029563931 a001 7778742049/1322157322203*1322157322203^(1/2) 6765000029563931 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^88 6765000029563931 a001 1548008755920/17393796001*14662949395604^(1/7) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(65)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(67)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(68) 6765000029563931 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(69)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(49)*Lucas(71)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^65/Lucas(94) 6765000029563931 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^67/Lucas(96) 6765000029563931 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^69/Lucas(98) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^70/Lucas(99) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^71/Lucas(100) 6765000029563931 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^68/Lucas(97) 6765000029563931 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^66/Lucas(95) 6765000029563931 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(49)*Lucas(70)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(69) 6765000029563931 a006 5^(1/2)*Fibonacci(69)/Lucas(49)/sqrt(5) 6765000029563931 a004 Fibonacci(49)*Lucas(68)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(67) 6765000029563931 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(66)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^87 6765000029563931 a001 365435296162/17393796001*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(49) 6765000029563931 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 1548008755920/17393796001*192900153618^(1/6) 6765000029563931 a001 365435296162/17393796001*192900153618^(2/9) 6765000029563931 a001 7778742049/505019158607*192900153618^(1/2) 6765000029563931 a001 139583862445/17393796001*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(49) 6765000029563931 a001 7778742049/2139295485799*192900153618^(5/9) 6765000029563931 a001 7778742049/9062201101803*192900153618^(11/18) 6765000029563931 a001 139583862445/119218851371*10749957122^(3/8) 6765000029563931 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 2504730781961/17393796001*73681302247^(2/13) 6765000029563931 a001 7787980473/599786069*73681302247^(1/4) 6765000029563931 a001 365435296162/17393796001*73681302247^(3/13) 6765000029563931 a001 7778742049/119218851371*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(49) 6765000029563931 a001 53316291173/17393796001*23725150497407^(1/4) 6765000029563931 a001 139583862445/45537549124*10749957122^(1/3) 6765000029563931 a001 7778742049/119218851371*192900153618^(4/9) 6765000029563931 a001 7778742049/312119004989*73681302247^(1/2) 6765000029563931 a001 7778742049/5600748293801*73681302247^(8/13) 6765000029563931 a001 12586269025/505019158607*10749957122^(13/24) 6765000029563931 a001 10610209857723/17393796001*28143753123^(1/10) 6765000029563931 a001 53316291173/17393796001*73681302247^(4/13) 6765000029563931 a001 7778742049/119218851371*73681302247^(6/13) 6765000029563931 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 43133785636/96450076809*10749957122^(5/12) 6765000029563931 a001 956722026041/17393796001*28143753123^(1/5) 6765000029563931 a001 225851433717/505019158607*10749957122^(5/12) 6765000029563931 a001 591286729879/1322157322203*10749957122^(5/12) 6765000029563931 a001 12586269025/817138163596*10749957122^(9/16) 6765000029563931 a001 182717648081/408569081798*10749957122^(5/12) 6765000029563931 a001 20365011074/17393796001*45537549124^(6/17) 6765000029563931 a001 139583862445/312119004989*10749957122^(5/12) 6765000029563931 a001 86267571272/17393796001*28143753123^(3/10) 6765000029563931 a001 32951280099/119218851371*10749957122^(7/16) 6765000029563931 a001 53316291173/119218851371*10749957122^(5/12) 6765000029563931 a001 10983760033/64300051206*10749957122^(11/24) 6765000029563931 a001 86267571272/312119004989*10749957122^(7/16) 6765000029563931 a001 7778742049/45537549124*312119004989^(2/5) 6765000029563931 a001 12586269025/1322157322203*10749957122^(7/12) 6765000029563931 a001 1548008755920/5600748293801*10749957122^(7/16) 6765000029563931 a001 20365011074/17393796001*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(49) 6765000029563931 a001 139583862445/505019158607*10749957122^(7/16) 6765000029563931 a001 20365011074/17393796001*192900153618^(1/3) 6765000029563931 a001 53316291173/192900153618*10749957122^(7/16) 6765000029563931 a001 7778742049/192900153618*28143753123^(1/2) 6765000029563931 a001 86267571272/505019158607*10749957122^(11/24) 6765000029563931 a001 75283811239/440719107401*10749957122^(11/24) 6765000029563931 a001 139583862445/817138163596*10749957122^(11/24) 6765000029563931 a001 53316291173/312119004989*10749957122^(11/24) 6765000029563931 a001 7778742049/2139295485799*28143753123^(3/5) 6765000029563931 a001 20365011074/73681302247*10749957122^(7/16) 6765000029563931 a001 32951280099/505019158607*10749957122^(1/2) 6765000029563931 a001 12586269025/3461452808002*10749957122^(5/8) 6765000029563931 a001 7778742049/23725150497407*28143753123^(7/10) 6765000029563931 a001 591286729879/10749957122*4106118243^(5/23) 6765000029563931 a001 86267571272/1322157322203*10749957122^(1/2) 6765000029563931 a001 32264490531/494493258286*10749957122^(1/2) 6765000029563931 a001 591286729879/9062201101803*10749957122^(1/2) 6765000029563931 a001 1548008755920/23725150497407*10749957122^(1/2) 6765000029563931 a001 365435296162/5600748293801*10749957122^(1/2) 6765000029563931 a001 139583862445/2139295485799*10749957122^(1/2) 6765000029563931 a001 6557470319842/17393796001*10749957122^(1/8) 6765000029563931 a001 53316291173/817138163596*10749957122^(1/2) 6765000029563931 a001 10983760033/440719107401*10749957122^(13/24) 6765000029563931 a001 12586269025/9062201101803*10749957122^(2/3) 6765000029563931 a001 20365011074/119218851371*10749957122^(11/24) 6765000029563931 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 10182505537/22768774562*10749957122^(5/12) 6765000029563931 a001 43133785636/1730726404001*10749957122^(13/24) 6765000029563931 a001 75283811239/3020733700601*10749957122^(13/24) 6765000029563931 a001 32951280099/2139295485799*10749957122^(9/16) 6765000029563931 a001 12586269025/14662949395604*10749957122^(11/16) 6765000029563931 a001 182717648081/7331474697802*10749957122^(13/24) 6765000029563931 a001 139583862445/5600748293801*10749957122^(13/24) 6765000029563931 a001 2504730781961/17393796001*10749957122^(1/6) 6765000029563931 a001 53316291173/2139295485799*10749957122^(13/24) 6765000029563931 a001 20365011074/312119004989*10749957122^(1/2) 6765000029563931 a001 86267571272/5600748293801*10749957122^(9/16) 6765000029563931 a001 32951280099/3461452808002*10749957122^(7/12) 6765000029563931 a001 7787980473/505618944676*10749957122^(9/16) 6765000029563931 a001 12586269025/23725150497407*10749957122^(17/24) 6765000029563931 a001 365435296162/23725150497407*10749957122^(9/16) 6765000029563931 a001 139583862445/9062201101803*10749957122^(9/16) 6765000029563931 a001 1548008755920/17393796001*10749957122^(3/16) 6765000029563931 a001 53316291173/3461452808002*10749957122^(9/16) 6765000029563931 a001 86267571272/9062201101803*10749957122^(7/12) 6765000029563931 a001 225851433717/23725150497407*10749957122^(7/12) 6765000029563931 a001 139583862445/14662949395604*10749957122^(7/12) 6765000029563931 a001 956722026041/17393796001*10749957122^(5/24) 6765000029563931 a001 53316291173/5600748293801*10749957122^(7/12) 6765000029563931 a001 10182505537/408569081798*10749957122^(13/24) 6765000029563931 a001 10983760033/3020733700601*10749957122^(5/8) 6765000029563931 a001 20365011074/1322157322203*10749957122^(9/16) 6765000029563931 a001 86267571272/23725150497407*10749957122^(5/8) 6765000029563931 a001 4052739537881/6643838879*2537720636^(1/9) 6765000029563931 a001 365435296162/17393796001*10749957122^(1/4) 6765000029563931 a001 53316291173/14662949395604*10749957122^(5/8) 6765000029563931 a001 20365011074/2139295485799*10749957122^(7/12) 6765000029563931 a001 32951280099/23725150497407*10749957122^(2/3) 6765000029563931 a001 7778742049/28143753123*10749957122^(7/16) 6765000029563931 a001 139583862445/17393796001*10749957122^(7/24) 6765000029563931 a001 20365011074/5600748293801*10749957122^(5/8) 6765000029563931 a001 86267571272/17393796001*10749957122^(5/16) 6765000029563931 a001 10182505537/7331474697802*10749957122^(2/3) 6765000029563931 a001 53316291173/17393796001*10749957122^(1/3) 6765000029563931 a001 20365011074/23725150497407*10749957122^(11/16) 6765000029563931 a001 3536736619241/9381251041*4106118243^(3/23) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(49) 6765000029563931 a001 7778742049/17393796001*23725150497407^(5/16) 6765000029563931 a001 7778742049/17393796001*505019158607^(5/14) 6765000029563931 a001 7778742049/17393796001*73681302247^(5/13) 6765000029563931 a001 225851433717/10749957122*4106118243^(6/23) 6765000029563931 a001 20365011074/17393796001*10749957122^(3/8) 6765000029563931 a001 7778742049/17393796001*28143753123^(2/5) 6765000029563931 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 7778742049/119218851371*10749957122^(1/2) 6765000029563931 a001 7778742049/45537549124*10749957122^(11/24) 6765000029563931 a001 7778742049/312119004989*10749957122^(13/24) 6765000029563931 a001 7778742049/505019158607*10749957122^(9/16) 6765000029563931 a001 7778742049/817138163596*10749957122^(7/12) 6765000029563931 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 2403763488/5374978561*4106118243^(10/23) 6765000029563931 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(66)*Lucas(48)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(68)*Lucas(48)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(70)*Lucas(48)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(72)*Lucas(48)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(71)*Lucas(48)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(69)*Lucas(48)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(67)*Lucas(48)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 7778742049/2139295485799*10749957122^(5/8) 6765000029563931 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 4052739537881/28143753123*4106118243^(4/23) 6765000029563931 a001 7778742049/5600748293801*10749957122^(2/3) 6765000029563931 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 7778742049/9062201101803*10749957122^(11/16) 6765000029563931 a001 43133785636/5374978561*4106118243^(7/23) 6765000029563931 a001 7778742049/14662949395604*10749957122^(17/24) 6765000029563931 a001 1515744265389/10525900321*4106118243^(4/23) 6765000029563931 a001 7778742049/17393796001*10749957122^(5/12) 6765000029563931 a001 3278735159921/22768774562*4106118243^(4/23) 6765000029563931 a001 6557470319842/17393796001*4106118243^(3/23) 6765000029563931 a001 12585437040/228811001*4106118243^(5/23) 6765000029563931 a001 32951280099/10749957122*4106118243^(8/23) 6765000029563931 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 10610209857723/6643838879*2537720636^(1/15) 6765000029563931 a001 2971215073/10749957122*17393796001^(3/7) 6765000029563931 a001 4052739537881/73681302247*4106118243^(5/23) 6765000029563931 a001 3536736619241/64300051206*4106118243^(5/23) 6765000029563931 a001 6557470319842/119218851371*4106118243^(5/23) 6765000029563931 a001 12586269025/10749957122*4106118243^(9/23) 6765000029563931 a001 2504730781961/45537549124*4106118243^(5/23) 6765000029563931 a001 2504730781961/17393796001*4106118243^(4/23) 6765000029563931 a001 2971215073/10749957122*45537549124^(7/17) 6765000029563931 a001 4807526976/6643838879*817138163596^(1/3) 6765000029563931 a001 2971215073/10749957122*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(47) 6765000029563931 a001 2971215073/10749957122*192900153618^(7/18) 6765000029563931 a001 591286729879/28143753123*4106118243^(6/23) 6765000029563931 a001 591286729879/4106118243*1568397607^(2/11) 6765000029563931 a001 1548008755920/73681302247*4106118243^(6/23) 6765000029563931 a001 4052739537881/192900153618*4106118243^(6/23) 6765000029563931 a001 225749145909/10745088481*4106118243^(6/23) 6765000029563931 a001 6557470319842/312119004989*4106118243^(6/23) 6765000029563931 a001 2504730781961/119218851371*4106118243^(6/23) 6765000029563931 a001 956722026041/45537549124*4106118243^(6/23) 6765000029563931 a001 956722026041/17393796001*4106118243^(5/23) 6765000029563931 a001 75283811239/9381251041*4106118243^(7/23) 6765000029563931 a001 2971215073/10749957122*10749957122^(7/16) 6765000029563931 a001 591286729879/73681302247*4106118243^(7/23) 6765000029563931 a001 86000486440/10716675201*4106118243^(7/23) 6765000029563931 a001 4052739537881/505019158607*4106118243^(7/23) 6765000029563931 a001 3536736619241/440719107401*4106118243^(7/23) 6765000029563931 a001 3278735159921/408569081798*4106118243^(7/23) 6765000029563931 a001 2504730781961/312119004989*4106118243^(7/23) 6765000029563931 a001 956722026041/119218851371*4106118243^(7/23) 6765000029563931 a001 1602508992/9381251041*4106118243^(11/23) 6765000029563931 a001 182717648081/22768774562*4106118243^(7/23) 6765000029563931 a001 365435296162/17393796001*4106118243^(6/23) 6765000029563931 a001 86267571272/28143753123*4106118243^(8/23) 6765000029563931 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 2971215073/9062201101803*17393796001^(5/7) 6765000029563931 a001 32264490531/10525900321*4106118243^(8/23) 6765000029563931 a001 591286729879/192900153618*4106118243^(8/23) 6765000029563931 a001 1548008755920/505019158607*4106118243^(8/23) 6765000029563931 a001 1515744265389/494493258286*4106118243^(8/23) 6765000029563931 a001 2504730781961/817138163596*4106118243^(8/23) 6765000029563931 a001 956722026041/312119004989*4106118243^(8/23) 6765000029563931 a001 365435296162/119218851371*4106118243^(8/23) 6765000029563931 a001 1134903170/23725150497407*2537720636^(13/15) 6765000029563931 a001 2971215073/312119004989*17393796001^(4/7) 6765000029563931 a001 139583862445/45537549124*4106118243^(8/23) 6765000029563931 a001 12586269025/6643838879*45537549124^(1/3) 6765000029563931 a001 139583862445/17393796001*4106118243^(7/23) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(47) 6765000029563931 a001 1201881744/11384387281*4106118243^(1/2) 6765000029563931 a001 10983760033/9381251041*4106118243^(9/23) 6765000029563931 a001 53316291173/6643838879*17393796001^(2/7) 6765000029563931 a001 686789568/10525900321*4106118243^(12/23) 6765000029563931 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 1548008755920/6643838879*17393796001^(1/7) 6765000029563931 a001 2971215073/14662949395604*45537549124^(12/17) 6765000029563931 a001 32951280099/6643838879*45537549124^(5/17) 6765000029563931 a001 2971215073/5600748293801*45537549124^(2/3) 6765000029563931 a001 2971215073/3461452808002*45537549124^(11/17) 6765000029563931 a001 2971215073/192900153618*45537549124^(9/17) 6765000029563931 a001 2971215073/817138163596*45537549124^(10/17) 6765000029563931 a001 2971215073/73681302247*312119004989^(5/11) 6765000029563931 a001 32951280099/6643838879*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(47) 6765000029563931 a001 2971215073/73681302247*3461452808002^(5/12) 6765000029563931 a001 32951280099/6643838879*192900153618^(5/18) 6765000029563931 a001 139583862445/6643838879*45537549124^(4/17) 6765000029563931 a001 591286729879/6643838879*45537549124^(3/17) 6765000029563931 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 2504730781961/6643838879*45537549124^(2/17) 6765000029563931 a001 10610209857723/6643838879*45537549124^(1/17) 6765000029563931 a001 2971215073/192900153618*817138163596^(9/19) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(47) 6765000029563931 a001 2971215073/192900153618*192900153618^(1/2) 6765000029563931 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 2971215073/3461452808002*312119004989^(3/5) 6765000029563931 a001 225851433717/6643838879*312119004989^(1/5) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^86 6765000029563931 a001 1548008755920/6643838879*14662949395604^(1/9) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(66) 6765000029563931 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(67)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(47)*Lucas(69)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(47)*Lucas(71)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(47)*Lucas(73)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(90) 6765000029563931 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(92) 6765000029563931 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^67/Lucas(94) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^69/Lucas(96) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^71/Lucas(98) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^73/Lucas(100) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^72/Lucas(99) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^70/Lucas(97) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^68/Lucas(95) 6765000029563931 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(93) 6765000029563931 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(91) 6765000029563931 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(47)*Lucas(72)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(47)*Lucas(70)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(47)*Lucas(68)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(67) 6765000029563931 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(65) 6765000029563931 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^91 6765000029563931 a001 2971215073/14662949395604*14662949395604^(4/7) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^89 6765000029563931 a001 2504730781961/6643838879*14662949395604^(2/21) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(47) 6765000029563931 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 10610209857723/6643838879*192900153618^(1/18) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(47) 6765000029563931 a001 2971215073/14662949395604*505019158607^(9/14) 6765000029563931 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 139583862445/6643838879*817138163596^(4/19) 6765000029563931 a001 139583862445/6643838879*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(47) 6765000029563931 a001 2971215073/312119004989*505019158607^(1/2) 6765000029563931 a001 139583862445/6643838879*192900153618^(2/9) 6765000029563931 a001 2971215073/3461452808002*192900153618^(11/18) 6765000029563931 a001 2971215073/14662949395604*192900153618^(2/3) 6765000029563931 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 956722026041/6643838879*73681302247^(2/13) 6765000029563931 a001 139583862445/6643838879*73681302247^(3/13) 6765000029563931 a001 53316291173/6643838879*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(47) 6765000029563931 a001 53316291173/6643838879*505019158607^(1/4) 6765000029563931 a001 2971215073/312119004989*73681302247^(7/13) 6765000029563931 a001 2971215073/2139295485799*73681302247^(8/13) 6765000029563931 a001 4052739537881/6643838879*28143753123^(1/10) 6765000029563931 a001 2971215073/14662949395604*73681302247^(9/13) 6765000029563931 a001 2971215073/119218851371*73681302247^(1/2) 6765000029563931 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 32951280099/6643838879*28143753123^(3/10) 6765000029563931 a001 365435296162/6643838879*28143753123^(1/5) 6765000029563931 a001 2971215073/45537549124*45537549124^(8/17) 6765000029563931 a001 86267571272/73681302247*4106118243^(9/23) 6765000029563931 a001 2971215073/73681302247*28143753123^(1/2) 6765000029563931 a001 2971215073/45537549124*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(47) 6765000029563931 a001 20365011074/6643838879*23725150497407^(1/4) 6765000029563931 a001 2971215073/45537549124*192900153618^(4/9) 6765000029563931 a001 75283811239/64300051206*4106118243^(9/23) 6765000029563931 a001 20365011074/6643838879*73681302247^(4/13) 6765000029563931 a001 10610209857723/6643838879*10749957122^(1/16) 6765000029563931 a001 2504730781961/2139295485799*4106118243^(9/23) 6765000029563931 a001 365435296162/312119004989*4106118243^(9/23) 6765000029563931 a001 2971215073/45537549124*73681302247^(6/13) 6765000029563931 a001 12586269025/28143753123*4106118243^(10/23) 6765000029563931 a001 139583862445/119218851371*4106118243^(9/23) 6765000029563931 a001 6557470319842/6643838879*10749957122^(1/12) 6765000029563931 a001 2971215073/817138163596*28143753123^(3/5) 6765000029563931 a001 1134903170/4106118243*2537720636^(7/15) 6765000029563931 a001 2971215073/9062201101803*28143753123^(7/10) 6765000029563931 a001 2504730781961/6643838879*10749957122^(1/8) 6765000029563931 a001 53316291173/45537549124*4106118243^(9/23) 6765000029563931 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 53316291173/17393796001*4106118243^(8/23) 6765000029563931 a001 956722026041/6643838879*10749957122^(1/6) 6765000029563931 a001 591286729879/6643838879*10749957122^(3/16) 6765000029563931 a001 365435296162/6643838879*10749957122^(5/24) 6765000029563931 a001 139583862445/6643838879*10749957122^(1/4) 6765000029563931 a001 267084832/10716675201*4106118243^(13/23) 6765000029563931 a001 32951280099/6643838879*10749957122^(5/16) 6765000029563931 a001 53316291173/6643838879*10749957122^(7/24) 6765000029563931 a001 32951280099/73681302247*4106118243^(10/23) 6765000029563931 a001 43133785636/96450076809*4106118243^(10/23) 6765000029563931 a001 225851433717/505019158607*4106118243^(10/23) 6765000029563931 a001 591286729879/1322157322203*4106118243^(10/23) 6765000029563931 a001 7778742049/6643838879*45537549124^(6/17) 6765000029563931 a001 182717648081/408569081798*4106118243^(10/23) 6765000029563931 a001 139583862445/312119004989*4106118243^(10/23) 6765000029563931 a001 53316291173/119218851371*4106118243^(10/23) 6765000029563931 a001 2971215073/17393796001*312119004989^(2/5) 6765000029563931 a001 7778742049/6643838879*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(47) 6765000029563931 a001 7778742049/6643838879*192900153618^(1/3) 6765000029563931 a001 20365011074/6643838879*10749957122^(1/3) 6765000029563931 a001 10182505537/22768774562*4106118243^(10/23) 6765000029563931 a001 12586269025/73681302247*4106118243^(11/23) 6765000029563931 a001 20365011074/17393796001*4106118243^(9/23) 6765000029563931 a001 2971215073/119218851371*10749957122^(13/24) 6765000029563931 a001 102287808/10745088481*4106118243^(14/23) 6765000029563931 a001 2971215073/45537549124*10749957122^(1/2) 6765000029563931 a001 2971215073/192900153618*10749957122^(9/16) 6765000029563931 a001 2971215073/312119004989*10749957122^(7/12) 6765000029563931 a001 6557470319842/6643838879*4106118243^(2/23) 6765000029563931 a001 2971215073/817138163596*10749957122^(5/8) 6765000029563931 a001 10983760033/64300051206*4106118243^(11/23) 6765000029563931 a001 4807525989/4870846*1568397607^(1/11) 6765000029563931 a001 86267571272/505019158607*4106118243^(11/23) 6765000029563931 a001 75283811239/440719107401*4106118243^(11/23) 6765000029563931 a001 139583862445/817138163596*4106118243^(11/23) 6765000029563931 a001 2971215073/2139295485799*10749957122^(2/3) 6765000029563931 a001 53316291173/312119004989*4106118243^(11/23) 6765000029563931 a001 12586269025/119218851371*4106118243^(1/2) 6765000029563931 a001 2971215073/3461452808002*10749957122^(11/16) 6765000029563931 a001 2971215073/5600748293801*10749957122^(17/24) 6765000029563931 a001 20365011074/119218851371*4106118243^(11/23) 6765000029563931 a001 2971215073/14662949395604*10749957122^(3/4) 6765000029563931 a001 7778742049/6643838879*10749957122^(3/8) 6765000029563931 a001 32951280099/312119004989*4106118243^(1/2) 6765000029563931 a001 21566892818/204284540899*4106118243^(1/2) 6765000029563931 a001 225851433717/2139295485799*4106118243^(1/2) 6765000029563931 a001 12586269025/192900153618*4106118243^(12/23) 6765000029563931 a001 182717648081/1730726404001*4106118243^(1/2) 6765000029563931 a001 139583862445/1322157322203*4106118243^(1/2) 6765000029563931 a001 53316291173/505019158607*4106118243^(1/2) 6765000029563931 a001 2971215073/17393796001*10749957122^(11/24) 6765000029563931 a001 1602508992/440719107401*4106118243^(15/23) 6765000029563931 a001 10182505537/96450076809*4106118243^(1/2) 6765000029563931 a001 2504730781961/6643838879*4106118243^(3/23) 6765000029563931 a001 32951280099/505019158607*4106118243^(12/23) 6765000029563931 a001 86267571272/1322157322203*4106118243^(12/23) 6765000029563931 a001 32264490531/494493258286*4106118243^(12/23) 6765000029563931 a001 591286729879/9062201101803*4106118243^(12/23) 6765000029563931 a001 365435296162/5600748293801*4106118243^(12/23) 6765000029563931 a001 139583862445/2139295485799*4106118243^(12/23) 6765000029563931 a001 53316291173/817138163596*4106118243^(12/23) 6765000029563931 a001 1134903170/5600748293801*2537720636^(4/5) 6765000029563931 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 20365011074/312119004989*4106118243^(12/23) 6765000029563931 a001 7778742049/45537549124*4106118243^(11/23) 6765000029563931 a001 12586269025/505019158607*4106118243^(13/23) 6765000029563931 a001 7778742049/17393796001*4106118243^(10/23) 6765000029563931 a001 14930208/10749853441*4106118243^(16/23) 6765000029563931 a001 7778742049/73681302247*4106118243^(1/2) 6765000029563931 a001 956722026041/6643838879*4106118243^(4/23) 6765000029563931 a001 75283811239/1368706081*1568397607^(5/22) 6765000029563931 a001 10983760033/440719107401*4106118243^(13/23) 6765000029563931 a001 43133785636/1730726404001*4106118243^(13/23) 6765000029563931 a001 75283811239/3020733700601*4106118243^(13/23) 6765000029563931 a001 182717648081/7331474697802*4106118243^(13/23) 6765000029563931 a001 139583862445/5600748293801*4106118243^(13/23) 6765000029563931 a001 53316291173/2139295485799*4106118243^(13/23) 6765000029563931 a001 10182505537/408569081798*4106118243^(13/23) 6765000029563931 a001 7778742049/119218851371*4106118243^(12/23) 6765000029563931 a001 567451585/1730726404001*2537720636^(7/9) 6765000029563931 a001 12586269025/1322157322203*4106118243^(14/23) 6765000029563931 a001 1602508992/3020733700601*4106118243^(17/23) 6765000029563931 a001 365435296162/6643838879*4106118243^(5/23) 6765000029563931 a001 32951280099/3461452808002*4106118243^(14/23) 6765000029563931 a001 86267571272/9062201101803*4106118243^(14/23) 6765000029563931 a001 225851433717/23725150497407*4106118243^(14/23) 6765000029563931 a001 139583862445/14662949395604*4106118243^(14/23) 6765000029563931 a001 53316291173/5600748293801*4106118243^(14/23) 6765000029563931 a001 20365011074/2139295485799*4106118243^(14/23) 6765000029563931 a001 7778742049/312119004989*4106118243^(13/23) 6765000029563931 a001 12586269025/3461452808002*4106118243^(15/23) 6765000029563931 a001 4807526976/23725150497407*4106118243^(18/23) 6765000029563931 a001 139583862445/6643838879*4106118243^(6/23) 6765000029563931 a001 10983760033/3020733700601*4106118243^(15/23) 6765000029563931 a001 86267571272/23725150497407*4106118243^(15/23) 6765000029563931 a001 53316291173/14662949395604*4106118243^(15/23) 6765000029563931 a001 20365011074/5600748293801*4106118243^(15/23) 6765000029563931 a001 7778742049/817138163596*4106118243^(14/23) 6765000029563931 a001 12586269025/9062201101803*4106118243^(16/23) 6765000029563931 a001 53316291173/6643838879*4106118243^(7/23) 6765000029563931 a001 32951280099/23725150497407*4106118243^(16/23) 6765000029563931 a001 1134903170/1322157322203*2537720636^(11/15) 6765000029563931 a001 10182505537/7331474697802*4106118243^(16/23) 6765000029563931 a001 7778742049/2139295485799*4106118243^(15/23) 6765000029563931 a001 139583862445/4106118243*1568397607^(1/4) 6765000029563931 a001 12586269025/23725150497407*4106118243^(17/23) 6765000029563931 a001 20365011074/6643838879*4106118243^(8/23) 6765000029563931 a001 7778742049/5600748293801*4106118243^(16/23) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(47) 6765000029563931 a001 2971215073/6643838879*23725150497407^(5/16) 6765000029563931 a001 2971215073/6643838879*505019158607^(5/14) 6765000029563931 a001 2971215073/6643838879*73681302247^(5/13) 6765000029563931 a001 2971215073/6643838879*28143753123^(2/5) 6765000029563931 a001 4052739537881/10749957122*1568397607^(3/22) 6765000029563931 a001 7778742049/14662949395604*4106118243^(17/23) 6765000029563931 a001 2971215073/6643838879*10749957122^(5/12) 6765000029563931 a001 7778742049/6643838879*4106118243^(9/23) 6765000029563931 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 2971215073/28143753123*4106118243^(1/2) 6765000029563931 a001 86267571272/4106118243*1568397607^(3/11) 6765000029563931 a001 1134903170/312119004989*2537720636^(2/3) 6765000029563931 a001 2971215073/45537549124*4106118243^(12/23) 6765000029563931 a001 3536736619241/9381251041*1568397607^(3/22) 6765000029563931 a001 2971215073/17393796001*4106118243^(11/23) 6765000029563931 a001 2971215073/119218851371*4106118243^(13/23) 6765000029563931 a001 365435296162/1568397607*599074578^(1/6) 6765000029563931 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 6557470319842/17393796001*1568397607^(3/22) 6765000029563931 a001 2971215073/312119004989*4106118243^(14/23) 6765000029563931 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(68)*Lucas(46)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(70)*Lucas(46)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(72)*Lucas(46)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(74)*Lucas(46)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(73)*Lucas(46)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(71)*Lucas(46)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(69)*Lucas(46)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 6557470319842/6643838879*1568397607^(1/11) 6765000029563931 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 2971215073/817138163596*4106118243^(15/23) 6765000029563931 a001 1134903170/73681302247*2537720636^(3/5) 6765000029563931 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 2971215073/2139295485799*4106118243^(16/23) 6765000029563931 a001 774004377960/5374978561*1568397607^(2/11) 6765000029563931 a001 1836311903/4106118243*1568397607^(5/11) 6765000029563931 a001 2971215073/5600748293801*4106118243^(17/23) 6765000029563931 a001 1134903170/28143753123*2537720636^(5/9) 6765000029563931 a001 2971215073/14662949395604*4106118243^(18/23) 6765000029563931 a001 10983760033/1368706081*1568397607^(7/22) 6765000029563931 a001 2971215073/6643838879*4106118243^(10/23) 6765000029563931 a001 4052739537881/28143753123*1568397607^(2/11) 6765000029563931 a001 3536736619241/1368706081*599074578^(1/21) 6765000029563931 a001 1515744265389/10525900321*1568397607^(2/11) 6765000029563931 a001 3278735159921/22768774562*1568397607^(2/11) 6765000029563931 a001 1134903170/17393796001*2537720636^(8/15) 6765000029563931 a001 2504730781961/17393796001*1568397607^(2/11) 6765000029563931 a001 2504730781961/6643838879*1568397607^(3/22) 6765000029563931 a001 267913919/710646*228826127^(3/20) 6765000029563931 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 591286729879/10749957122*1568397607^(5/22) 6765000029563931 a001 12586269025/4106118243*1568397607^(4/11) 6765000029563931 a001 12585437040/228811001*1568397607^(5/22) 6765000029563931 a001 4052739537881/73681302247*1568397607^(5/22) 6765000029563931 a001 3536736619241/64300051206*1568397607^(5/22) 6765000029563931 a001 6557470319842/119218851371*1568397607^(5/22) 6765000029563931 a001 2504730781961/45537549124*1568397607^(5/22) 6765000029563931 a001 182717648081/5374978561*1568397607^(1/4) 6765000029563931 a001 1134903170/4106118243*17393796001^(3/7) 6765000029563931 a001 956722026041/17393796001*1568397607^(5/22) 6765000029563931 a001 1134903170/4106118243*45537549124^(7/17) 6765000029563931 a001 1134903170/4106118243*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(46) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(45) 6765000029563931 a001 1134903170/4106118243*192900153618^(7/18) 6765000029563931 a001 956722026041/6643838879*1568397607^(2/11) 6765000029563931 a001 1602508992/1368706081*1568397607^(9/22) 6765000029563931 a001 1134903170/4106118243*10749957122^(7/16) 6765000029563931 a001 956722026041/28143753123*1568397607^(1/4) 6765000029563931 a001 2504730781961/73681302247*1568397607^(1/4) 6765000029563931 a001 3278735159921/96450076809*1568397607^(1/4) 6765000029563931 a001 10610209857723/312119004989*1568397607^(1/4) 6765000029563931 a001 4052739537881/119218851371*1568397607^(1/4) 6765000029563931 a001 387002188980/11384387281*1568397607^(1/4) 6765000029563931 a001 225851433717/10749957122*1568397607^(3/11) 6765000029563931 a001 1144206275/230701876*2537720636^(1/3) 6765000029563931 a001 591286729879/17393796001*1568397607^(1/4) 6765000029563931 a001 591286729879/28143753123*1568397607^(3/11) 6765000029563931 a001 1548008755920/73681302247*1568397607^(3/11) 6765000029563931 a001 4052739537881/192900153618*1568397607^(3/11) 6765000029563931 a001 225749145909/10745088481*1568397607^(3/11) 6765000029563931 a001 6557470319842/312119004989*1568397607^(3/11) 6765000029563931 a001 2504730781961/119218851371*1568397607^(3/11) 6765000029563931 a001 956722026041/45537549124*1568397607^(3/11) 6765000029563931 a001 53316291173/2537720636*2537720636^(4/15) 6765000029563931 a001 365435296162/17393796001*1568397607^(3/11) 6765000029563931 a001 365435296162/6643838879*1568397607^(5/22) 6765000029563931 a001 2971215073/2537720636*2537720636^(2/5) 6765000029563931 a001 43133785636/5374978561*1568397607^(7/22) 6765000029563931 a001 139583862445/2537720636*2537720636^(2/9) 6765000029563931 a001 32264490531/224056801*599074578^(4/21) 6765000029563931 a001 225851433717/2537720636*2537720636^(1/5) 6765000029563931 a001 225851433717/6643838879*1568397607^(1/4) 6765000029563931 a001 75283811239/9381251041*1568397607^(7/22) 6765000029563931 a001 591286729879/73681302247*1568397607^(7/22) 6765000029563931 a001 86000486440/10716675201*1568397607^(7/22) 6765000029563931 a001 4052739537881/505019158607*1568397607^(7/22) 6765000029563931 a001 3536736619241/440719107401*1568397607^(7/22) 6765000029563931 a001 3278735159921/408569081798*1568397607^(7/22) 6765000029563931 a001 2504730781961/312119004989*1568397607^(7/22) 6765000029563931 a001 956722026041/119218851371*1568397607^(7/22) 6765000029563931 a001 182717648081/22768774562*1568397607^(7/22) 6765000029563931 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 139583862445/17393796001*1568397607^(7/22) 6765000029563931 a001 139583862445/6643838879*1568397607^(3/11) 6765000029563931 a001 956722026041/2537720636*2537720636^(2/15) 6765000029563931 a001 1836311903/10749957122*1568397607^(1/2) 6765000029563931 a001 1134903780/1860499*2537720636^(1/9) 6765000029563931 a001 32951280099/10749957122*1568397607^(4/11) 6765000029563931 a001 6557470319842/4106118243*599074578^(1/14) 6765000029563931 a001 4052739537881/2537720636*2537720636^(1/15) 6765000029563931 a001 1201881744/634430159*45537549124^(1/3) 6765000029563931 a001 86267571272/28143753123*1568397607^(4/11) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(45) 6765000029563931 a001 32264490531/10525900321*1568397607^(4/11) 6765000029563931 a001 591286729879/192900153618*1568397607^(4/11) 6765000029563931 a001 1548008755920/505019158607*1568397607^(4/11) 6765000029563931 a001 1515744265389/494493258286*1568397607^(4/11) 6765000029563931 a001 2504730781961/817138163596*1568397607^(4/11) 6765000029563931 a001 956722026041/312119004989*1568397607^(4/11) 6765000029563931 a001 365435296162/119218851371*1568397607^(4/11) 6765000029563931 a001 139583862445/45537549124*1568397607^(4/11) 6765000029563931 a001 53316291173/17393796001*1568397607^(4/11) 6765000029563931 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 53316291173/6643838879*1568397607^(7/22) 6765000029563931 a001 567451585/1730726404001*17393796001^(5/7) 6765000029563931 a001 1134903170/119218851371*17393796001^(4/7) 6765000029563931 a001 1144206275/230701876*45537549124^(5/17) 6765000029563931 a001 1134903170/28143753123*312119004989^(5/11) 6765000029563931 a001 1144206275/230701876*312119004989^(3/11) 6765000029563931 a001 1144206275/230701876*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(45) 6765000029563931 a001 1134903170/28143753123*3461452808002^(5/12) 6765000029563931 a001 1144206275/230701876*192900153618^(5/18) 6765000029563931 a001 1144206275/230701876*28143753123^(3/10) 6765000029563931 a001 1134903170/28143753123*28143753123^(1/2) 6765000029563931 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 591286729879/2537720636*17393796001^(1/7) 6765000029563931 a001 10182505537/1268860318*17393796001^(2/7) 6765000029563931 a001 1134903170/73681302247*45537549124^(9/17) 6765000029563931 a001 1134903170/23725150497407*45537549124^(13/17) 6765000029563931 a001 1134903170/5600748293801*45537549124^(12/17) 6765000029563931 a001 1134903170/2139295485799*45537549124^(2/3) 6765000029563931 a001 1134903170/1322157322203*45537549124^(11/17) 6765000029563931 a001 1134903170/312119004989*45537549124^(10/17) 6765000029563931 a001 1134903170/73681302247*817138163596^(9/19) 6765000029563931 a001 1134903170/73681302247*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(45) 6765000029563931 a001 1134903170/73681302247*192900153618^(1/2) 6765000029563931 a001 32951280099/2537720636*73681302247^(1/4) 6765000029563931 a001 225851433717/2537720636*45537549124^(3/17) 6765000029563931 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 956722026041/2537720636*45537549124^(2/17) 6765000029563931 a001 53316291173/2537720636*45537549124^(4/17) 6765000029563931 a001 1135099622/33391061*312119004989^(1/5) 6765000029563931 a001 4052739537881/2537720636*45537549124^(1/17) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(45) 6765000029563931 a001 567451585/96450076809*1322157322203^(1/2) 6765000029563931 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 1134903170/1322157322203*312119004989^(3/5) 6765000029563931 a001 567451585/1730726404001*312119004989^(7/11) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 1134903170/1322157322203*817138163596^(11/19) 6765000029563931 a001 1134903780/1860499*312119004989^(1/11) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(64) 6765000029563931 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(66) 6765000029563931 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(45)*Lucas(69)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(45)*Lucas(71)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(45)*Lucas(73)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(45)*Lucas(75)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(86) 6765000029563931 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(88) 6765000029563931 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(90) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(92) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^69/Lucas(94) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^71/Lucas(96) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^73/Lucas(98) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^74/Lucas(99) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^75/Lucas(100) 6765000029563931 a004 Fibonacci(45)/Lucas(1)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^72/Lucas(97) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^70/Lucas(95) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(93) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(91) 6765000029563931 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^35 6765000029563931 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(89) 6765000029563931 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(87) 6765000029563931 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(45)*Lucas(74)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(45)*Lucas(72)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(45)*Lucas(70)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(65) 6765000029563931 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(63) 6765000029563931 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(45) 6765000029563931 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(45) 6765000029563931 a001 182717648081/1268860318*23725150497407^(1/8) 6765000029563931 a001 567451585/408569081798*505019158607^(4/7) 6765000029563931 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 1134903170/312119004989*312119004989^(6/11) 6765000029563931 a001 139583862445/2537720636*312119004989^(2/11) 6765000029563931 a001 1134903170/312119004989*14662949395604^(10/21) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(45) 6765000029563931 a001 2504730781961/2537720636*73681302247^(1/13) 6765000029563931 a001 1134903170/1322157322203*192900153618^(11/18) 6765000029563931 a001 1134903170/5600748293801*192900153618^(2/3) 6765000029563931 a001 1134903170/23725150497407*192900153618^(13/18) 6765000029563931 a001 1134903170/312119004989*192900153618^(5/9) 6765000029563931 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 182717648081/1268860318*73681302247^(2/13) 6765000029563931 a001 53316291173/2537720636*817138163596^(4/19) 6765000029563931 a001 1134903170/119218851371*14662949395604^(4/9) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(45) 6765000029563931 a001 1134903170/119218851371*505019158607^(1/2) 6765000029563931 a001 53316291173/2537720636*192900153618^(2/9) 6765000029563931 a001 53316291173/2537720636*73681302247^(3/13) 6765000029563931 a001 567451585/408569081798*73681302247^(8/13) 6765000029563931 a001 1134903780/1860499*28143753123^(1/10) 6765000029563931 a001 1134903170/5600748293801*73681302247^(9/13) 6765000029563931 a001 1134903170/23725150497407*73681302247^(3/4) 6765000029563931 a001 1134903170/119218851371*73681302247^(7/13) 6765000029563931 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 139583862445/2537720636*28143753123^(1/5) 6765000029563931 a001 3278735159921/1268860318*10749957122^(1/24) 6765000029563931 a001 10182505537/1268860318*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(45) 6765000029563931 a001 4052739537881/2537720636*10749957122^(1/16) 6765000029563931 a001 567451585/22768774562*73681302247^(1/2) 6765000029563931 a001 2504730781961/2537720636*10749957122^(1/12) 6765000029563931 a001 1134903170/312119004989*28143753123^(3/5) 6765000029563931 a001 567451585/1730726404001*28143753123^(7/10) 6765000029563931 a001 956722026041/2537720636*10749957122^(1/8) 6765000029563931 a001 12586269025/10749957122*1568397607^(9/22) 6765000029563931 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 1144206275/230701876*10749957122^(5/16) 6765000029563931 a001 225851433717/2537720636*10749957122^(3/16) 6765000029563931 a001 139583862445/2537720636*10749957122^(5/24) 6765000029563931 a001 53316291173/2537720636*10749957122^(1/4) 6765000029563931 a001 3278735159921/1268860318*4106118243^(1/23) 6765000029563931 a001 10182505537/1268860318*10749957122^(7/24) 6765000029563931 a001 1134903170/17393796001*45537549124^(8/17) 6765000029563931 a001 1134903170/17393796001*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(45) 6765000029563931 a001 7778742049/2537720636*23725150497407^(1/4) 6765000029563931 a001 1134903170/17393796001*192900153618^(4/9) 6765000029563931 a001 7778742049/2537720636*73681302247^(4/13) 6765000029563931 a001 1134903170/17393796001*73681302247^(6/13) 6765000029563931 a001 1134903170/73681302247*10749957122^(9/16) 6765000029563931 a001 1134903170/119218851371*10749957122^(7/12) 6765000029563931 a001 2504730781961/2537720636*4106118243^(2/23) 6765000029563931 a001 567451585/22768774562*10749957122^(13/24) 6765000029563931 a001 1134903170/312119004989*10749957122^(5/8) 6765000029563931 a001 567451585/408569081798*10749957122^(2/3) 6765000029563931 a001 1836311903/28143753123*1568397607^(6/11) 6765000029563931 a001 1134903170/1322157322203*10749957122^(11/16) 6765000029563931 a001 1134903170/2139295485799*10749957122^(17/24) 6765000029563931 a001 7778742049/2537720636*10749957122^(1/3) 6765000029563931 a001 1134903170/5600748293801*10749957122^(3/4) 6765000029563931 a001 567451585/7331474697802*10749957122^(19/24) 6765000029563931 a001 1134903170/23725150497407*10749957122^(13/16) 6765000029563931 a001 1134903170/17393796001*10749957122^(1/2) 6765000029563931 a001 956722026041/2537720636*4106118243^(3/23) 6765000029563931 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 10983760033/9381251041*1568397607^(9/22) 6765000029563931 a001 182717648081/1268860318*4106118243^(4/23) 6765000029563931 a001 86267571272/73681302247*1568397607^(9/22) 6765000029563931 a001 75283811239/64300051206*1568397607^(9/22) 6765000029563931 a001 2504730781961/2139295485799*1568397607^(9/22) 6765000029563931 a001 365435296162/312119004989*1568397607^(9/22) 6765000029563931 a001 139583862445/119218851371*1568397607^(9/22) 6765000029563931 a001 53316291173/45537549124*1568397607^(9/22) 6765000029563931 a001 2403763488/5374978561*1568397607^(5/11) 6765000029563931 a001 139583862445/2537720636*4106118243^(5/23) 6765000029563931 a001 20365011074/17393796001*1568397607^(9/22) 6765000029563931 a001 53316291173/2537720636*4106118243^(6/23) 6765000029563931 a001 20365011074/6643838879*1568397607^(4/11) 6765000029563931 a001 3278735159921/1268860318*1568397607^(1/22) 6765000029563931 a001 10182505537/1268860318*4106118243^(7/23) 6765000029563931 a001 567451585/5374978561*4106118243^(1/2) 6765000029563931 a001 2971215073/2537720636*45537549124^(6/17) 6765000029563931 a001 1134903170/6643838879*312119004989^(2/5) 6765000029563931 a001 2971215073/2537720636*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(45) 6765000029563931 a001 2971215073/2537720636*192900153618^(1/3) 6765000029563931 a001 7778742049/2537720636*4106118243^(8/23) 6765000029563931 a001 1836311903/73681302247*1568397607^(13/22) 6765000029563931 a001 2971215073/2537720636*10749957122^(3/8) 6765000029563931 a001 1134903170/6643838879*10749957122^(11/24) 6765000029563931 a001 12586269025/28143753123*1568397607^(5/11) 6765000029563931 a001 32951280099/73681302247*1568397607^(5/11) 6765000029563931 a001 43133785636/96450076809*1568397607^(5/11) 6765000029563931 a001 225851433717/505019158607*1568397607^(5/11) 6765000029563931 a001 591286729879/1322157322203*1568397607^(5/11) 6765000029563931 a001 182717648081/408569081798*1568397607^(5/11) 6765000029563931 a001 139583862445/312119004989*1568397607^(5/11) 6765000029563931 a001 53316291173/119218851371*1568397607^(5/11) 6765000029563931 a001 10182505537/22768774562*1568397607^(5/11) 6765000029563931 a001 567451585/22768774562*4106118243^(13/23) 6765000029563931 a001 1134903170/17393796001*4106118243^(12/23) 6765000029563931 a001 139583862445/1568397607*599074578^(3/14) 6765000029563931 a001 7778742049/17393796001*1568397607^(5/11) 6765000029563931 a001 1134903170/119218851371*4106118243^(14/23) 6765000029563931 a001 2504730781961/2537720636*1568397607^(1/11) 6765000029563931 a001 7778742049/6643838879*1568397607^(9/22) 6765000029563931 a001 1602508992/9381251041*1568397607^(1/2) 6765000029563931 a001 1134903170/312119004989*4106118243^(15/23) 6765000029563931 a001 567451585/408569081798*4106118243^(16/23) 6765000029563931 a001 1134903170/2139295485799*4106118243^(17/23) 6765000029563931 a001 1836311903/192900153618*1568397607^(7/11) 6765000029563931 a001 2971215073/2537720636*4106118243^(9/23) 6765000029563931 a001 1134903170/5600748293801*4106118243^(18/23) 6765000029563931 a001 12586269025/73681302247*1568397607^(1/2) 6765000029563931 a001 10983760033/64300051206*1568397607^(1/2) 6765000029563931 a001 86267571272/505019158607*1568397607^(1/2) 6765000029563931 a001 75283811239/440719107401*1568397607^(1/2) 6765000029563931 a001 2504730781961/14662949395604*1568397607^(1/2) 6765000029563931 a001 139583862445/817138163596*1568397607^(1/2) 6765000029563931 a001 53316291173/312119004989*1568397607^(1/2) 6765000029563931 a001 20365011074/119218851371*1568397607^(1/2) 6765000029563931 a001 567451585/7331474697802*4106118243^(19/23) 6765000029563931 a001 4052739537881/4106118243*599074578^(2/21) 6765000029563931 a001 1134903170/6643838879*4106118243^(11/23) 6765000029563931 a001 7778742049/45537549124*1568397607^(1/2) 6765000029563931 a001 956722026041/2537720636*1568397607^(3/22) 6765000029563931 a001 686789568/10525900321*1568397607^(6/11) 6765000029563931 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 1836311903/505019158607*1568397607^(15/22) 6765000029563931 a001 12586269025/192900153618*1568397607^(6/11) 6765000029563931 a001 32951280099/505019158607*1568397607^(6/11) 6765000029563931 a001 10610209857723/6643838879*599074578^(1/14) 6765000029563931 a001 86267571272/1322157322203*1568397607^(6/11) 6765000029563931 a001 32264490531/494493258286*1568397607^(6/11) 6765000029563931 a001 591286729879/9062201101803*1568397607^(6/11) 6765000029563931 a001 1548008755920/23725150497407*1568397607^(6/11) 6765000029563931 a001 365435296162/5600748293801*1568397607^(6/11) 6765000029563931 a001 139583862445/2139295485799*1568397607^(6/11) 6765000029563931 a001 53316291173/817138163596*1568397607^(6/11) 6765000029563931 a001 20365011074/312119004989*1568397607^(6/11) 6765000029563931 a001 7778742049/119218851371*1568397607^(6/11) 6765000029563931 a001 182717648081/1268860318*1568397607^(2/11) 6765000029563931 a001 2971215073/17393796001*1568397607^(1/2) 6765000029563931 a001 2971215073/6643838879*1568397607^(5/11) 6765000029563931 a001 267084832/10716675201*1568397607^(13/22) 6765000029563931 a001 1836311903/1322157322203*1568397607^(8/11) 6765000029563931 a001 12586269025/505019158607*1568397607^(13/22) 6765000029563931 a001 10983760033/440719107401*1568397607^(13/22) 6765000029563931 a001 43133785636/1730726404001*1568397607^(13/22) 6765000029563931 a001 75283811239/3020733700601*1568397607^(13/22) 6765000029563931 a001 182717648081/7331474697802*1568397607^(13/22) 6765000029563931 a001 139583862445/5600748293801*1568397607^(13/22) 6765000029563931 a001 53316291173/2139295485799*1568397607^(13/22) 6765000029563931 a001 10182505537/408569081798*1568397607^(13/22) 6765000029563931 a001 567451585/1268860318*2537720636^(4/9) 6765000029563931 a001 7778742049/312119004989*1568397607^(13/22) 6765000029563931 a001 2971215073/45537549124*1568397607^(6/11) 6765000029563931 a001 1836311903/2139295485799*1568397607^(3/4) 6765000029563931 a001 139583862445/2537720636*1568397607^(5/22) 6765000029563931 a001 102287808/10745088481*1568397607^(7/11) 6765000029563931 a001 1836311903/3461452808002*1568397607^(17/22) 6765000029563931 a001 4807525989/4870846*599074578^(2/21) 6765000029563931 a001 86267571272/1568397607*599074578^(5/21) 6765000029563931 a001 1135099622/33391061*1568397607^(1/4) 6765000029563931 a001 12586269025/1322157322203*1568397607^(7/11) 6765000029563931 a001 32951280099/3461452808002*1568397607^(7/11) 6765000029563931 a001 86267571272/9062201101803*1568397607^(7/11) 6765000029563931 a001 225851433717/23725150497407*1568397607^(7/11) 6765000029563931 a001 139583862445/14662949395604*1568397607^(7/11) 6765000029563931 a001 53316291173/5600748293801*1568397607^(7/11) 6765000029563931 a001 20365011074/2139295485799*1568397607^(7/11) 6765000029563931 a001 7778742049/817138163596*1568397607^(7/11) 6765000029563931 a001 2971215073/119218851371*1568397607^(13/22) 6765000029563931 a001 53316291173/2537720636*1568397607^(3/11) 6765000029563931 a001 1602508992/440719107401*1568397607^(15/22) 6765000029563931 a001 1836311903/9062201101803*1568397607^(9/11) 6765000029563931 a001 12586269025/3461452808002*1568397607^(15/22) 6765000029563931 a001 10983760033/3020733700601*1568397607^(15/22) 6765000029563931 a001 86267571272/23725150497407*1568397607^(15/22) 6765000029563931 a001 53316291173/14662949395604*1568397607^(15/22) 6765000029563931 a001 20365011074/5600748293801*1568397607^(15/22) 6765000029563931 a001 7778742049/2139295485799*1568397607^(15/22) 6765000029563931 a001 2971215073/312119004989*1568397607^(7/11) 6765000029563931 a001 10182505537/1268860318*1568397607^(7/22) 6765000029563931 a001 14930208/10749853441*1568397607^(8/11) 6765000029563931 a001 3278735159921/1268860318*599074578^(1/21) 6765000029563931 a001 6557470319842/6643838879*599074578^(2/21) 6765000029563931 a001 1836311903/23725150497407*1568397607^(19/22) 6765000029563931 a001 12586269025/9062201101803*1568397607^(8/11) 6765000029563931 a001 32951280099/23725150497407*1568397607^(8/11) 6765000029563931 a001 10182505537/7331474697802*1568397607^(8/11) 6765000029563931 a001 4807526976/5600748293801*1568397607^(3/4) 6765000029563931 a001 7778742049/5600748293801*1568397607^(8/11) 6765000029563931 a001 2971215073/817138163596*1568397607^(15/22) 6765000029563931 a001 12586269025/14662949395604*1568397607^(3/4) 6765000029563931 a001 20365011074/23725150497407*1568397607^(3/4) 6765000029563931 a001 1602508992/3020733700601*1568397607^(17/22) 6765000029563931 a001 7778742049/2537720636*1568397607^(4/11) 6765000029563931 a001 7778742049/9062201101803*1568397607^(3/4) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(45) 6765000029563931 a001 567451585/1268860318*23725150497407^(5/16) 6765000029563931 a001 567451585/1268860318*505019158607^(5/14) 6765000029563931 a001 567451585/1268860318*73681302247^(5/13) 6765000029563931 a001 567451585/1268860318*28143753123^(2/5) 6765000029563931 a001 12586269025/23725150497407*1568397607^(17/22) 6765000029563931 a001 567451585/1268860318*10749957122^(5/12) 6765000029563931 a001 7778742049/14662949395604*1568397607^(17/22) 6765000029563931 a001 2971215073/2139295485799*1568397607^(8/11) 6765000029563931 a001 4807526976/23725150497407*1568397607^(9/11) 6765000029563931 a001 2971215073/3461452808002*1568397607^(3/4) 6765000029563931 a001 567451585/1268860318*4106118243^(10/23) 6765000029563931 a001 2971215073/5600748293801*1568397607^(17/22) 6765000029563931 a001 516002918640/1368706081*599074578^(1/7) 6765000029563931 a001 2971215073/2537720636*1568397607^(9/22) 6765000029563931 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 4052739537881/2537720636*599074578^(1/14) 6765000029563931 a001 2971215073/14662949395604*1568397607^(9/11) 6765000029563931 a001 1134903170/17393796001*1568397607^(6/11) 6765000029563931 a001 1134903170/6643838879*1568397607^(1/2) 6765000029563931 a001 32951280099/1568397607*599074578^(2/7) 6765000029563931 a001 4052739537881/10749957122*599074578^(1/7) 6765000029563931 a001 567451585/22768774562*1568397607^(13/22) 6765000029563931 a001 3536736619241/9381251041*599074578^(1/7) 6765000029563931 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 6557470319842/17393796001*599074578^(1/7) 6765000029563931 a001 956722026041/4106118243*599074578^(1/6) 6765000029563931 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^74 6765000029563931 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^76 6765000029563931 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(70)*Lucas(44)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(72)*Lucas(44)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(74)*Lucas(44)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(76)*Lucas(44)/(1/2+sqrt(5)/2)^100 6765000029563931 a001 2/701408733*(1/2+1/2*5^(1/2))^64 6765000029563931 a004 Fibonacci(75)*Lucas(44)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(73)*Lucas(44)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(71)*Lucas(44)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 1134903170/119218851371*1568397607^(7/11) 6765000029563931 a001 2504730781961/2537720636*599074578^(2/21) 6765000029563931 a001 2504730781961/6643838879*599074578^(1/7) 6765000029563931 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 1134903170/312119004989*1568397607^(15/22) 6765000029563931 a001 567451585/408569081798*1568397607^(8/11) 6765000029563931 a001 2504730781961/10749957122*599074578^(1/6) 6765000029563931 a001 1134903170/1322157322203*1568397607^(3/4) 6765000029563931 a001 6557470319842/28143753123*599074578^(1/6) 6765000029563931 a001 10610209857723/45537549124*599074578^(1/6) 6765000029563931 a001 4052739537881/17393796001*599074578^(1/6) 6765000029563931 a001 1134903170/2139295485799*1568397607^(17/22) 6765000029563931 a001 591286729879/4106118243*599074578^(4/21) 6765000029563931 a001 1548008755920/6643838879*599074578^(1/6) 6765000029563931 a001 1134903170/5600748293801*1568397607^(9/11) 6765000029563931 a001 567451585/1268860318*1568397607^(5/11) 6765000029563931 a001 567451585/7331474697802*1568397607^(19/22) 6765000029563931 a001 701408733/1568397607*599074578^(10/21) 6765000029563931 a001 12586269025/1568397607*599074578^(1/3) 6765000029563931 a001 774004377960/5374978561*599074578^(4/21) 6765000029563931 a001 4052739537881/28143753123*599074578^(4/21) 6765000029563931 a001 1515744265389/10525900321*599074578^(4/21) 6765000029563931 a001 3278735159921/22768774562*599074578^(4/21) 6765000029563931 a001 2504730781961/17393796001*599074578^(4/21) 6765000029563931 a001 365435296162/4106118243*599074578^(3/14) 6765000029563931 a001 4052739537881/1568397607*228826127^(1/20) 6765000029563931 a001 956722026041/2537720636*599074578^(1/7) 6765000029563931 a001 956722026041/6643838879*599074578^(4/21) 6765000029563931 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 433494437/1568397607*2537720636^(7/15) 6765000029563931 a001 956722026041/10749957122*599074578^(3/14) 6765000029563931 a001 7778742049/1568397607*599074578^(5/14) 6765000029563931 a001 2504730781961/28143753123*599074578^(3/14) 6765000029563931 a001 6557470319842/73681302247*599074578^(3/14) 6765000029563931 a001 10610209857723/119218851371*599074578^(3/14) 6765000029563931 a001 4052739537881/45537549124*599074578^(3/14) 6765000029563931 a001 1548008755920/17393796001*599074578^(3/14) 6765000029563931 a001 75283811239/1368706081*599074578^(5/21) 6765000029563931 a001 591286729879/2537720636*599074578^(1/6) 6765000029563931 a001 591286729879/6643838879*599074578^(3/14) 6765000029563931 a001 686789568/224056801*599074578^(8/21) 6765000029563931 a001 591286729879/10749957122*599074578^(5/21) 6765000029563931 a001 433494437/1568397607*17393796001^(3/7) 6765000029563931 a001 433494437/1568397607*45537549124^(7/17) 6765000029563931 a001 701408733/969323029*817138163596^(1/3) 6765000029563931 a001 433494437/1568397607*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(44) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(43) 6765000029563931 a001 433494437/1568397607*192900153618^(7/18) 6765000029563931 a001 433494437/1568397607*10749957122^(7/16) 6765000029563931 a001 12585437040/228811001*599074578^(5/21) 6765000029563931 a001 4052739537881/73681302247*599074578^(5/21) 6765000029563931 a001 3536736619241/64300051206*599074578^(5/21) 6765000029563931 a001 6557470319842/119218851371*599074578^(5/21) 6765000029563931 a001 2504730781961/45537549124*599074578^(5/21) 6765000029563931 a001 956722026041/17393796001*599074578^(5/21) 6765000029563931 a001 182717648081/1268860318*599074578^(4/21) 6765000029563931 a001 365435296162/6643838879*599074578^(5/21) 6765000029563931 a001 1836311903/1568397607*599074578^(3/7) 6765000029563931 a001 86267571272/4106118243*599074578^(2/7) 6765000029563931 a001 225851433717/2537720636*599074578^(3/14) 6765000029563931 a001 225851433717/10749957122*599074578^(2/7) 6765000029563931 a001 591286729879/28143753123*599074578^(2/7) 6765000029563931 a001 1548008755920/73681302247*599074578^(2/7) 6765000029563931 a001 4052739537881/192900153618*599074578^(2/7) 6765000029563931 a001 225749145909/10745088481*599074578^(2/7) 6765000029563931 a001 6557470319842/312119004989*599074578^(2/7) 6765000029563931 a001 2504730781961/119218851371*599074578^(2/7) 6765000029563931 a001 956722026041/45537549124*599074578^(2/7) 6765000029563931 a001 365435296162/17393796001*599074578^(2/7) 6765000029563931 a001 139583862445/2537720636*599074578^(5/21) 6765000029563931 a001 139583862445/6643838879*599074578^(2/7) 6765000029563931 a001 10983760033/1368706081*599074578^(1/3) 6765000029563931 a001 3536736619241/1368706081*228826127^(1/20) 6765000029563931 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^68 6765000029563931 a001 43133785636/5374978561*599074578^(1/3) 6765000029563931 a001 433494437/14662949395604*2537720636^(8/9) 6765000029563931 a001 75283811239/9381251041*599074578^(1/3) 6765000029563931 a001 591286729879/73681302247*599074578^(1/3) 6765000029563931 a001 86000486440/10716675201*599074578^(1/3) 6765000029563931 a001 4052739537881/505019158607*599074578^(1/3) 6765000029563931 a001 3536736619241/440719107401*599074578^(1/3) 6765000029563931 a001 3278735159921/408569081798*599074578^(1/3) 6765000029563931 a001 2504730781961/312119004989*599074578^(1/3) 6765000029563931 a001 956722026041/119218851371*599074578^(1/3) 6765000029563931 a001 182717648081/22768774562*599074578^(1/3) 6765000029563931 a001 433494437/9062201101803*2537720636^(13/15) 6765000029563931 a001 139583862445/17393796001*599074578^(1/3) 6765000029563931 a001 20365011074/4106118243*599074578^(5/14) 6765000029563931 a001 433494437/2139295485799*2537720636^(4/5) 6765000029563931 a001 433494437/1322157322203*2537720636^(7/9) 6765000029563931 a001 433494437/505019158607*2537720636^(11/15) 6765000029563931 a001 53316291173/2537720636*599074578^(2/7) 6765000029563931 a001 53316291173/6643838879*599074578^(1/3) 6765000029563931 a001 433494437/119218851371*2537720636^(2/3) 6765000029563931 a001 433494437/10749957122*2537720636^(5/9) 6765000029563931 a001 433494437/28143753123*2537720636^(3/5) 6765000029563931 a001 53316291173/10749957122*599074578^(5/14) 6765000029563931 a001 233802911/1368706081*599074578^(11/21) 6765000029563931 a001 139583862445/28143753123*599074578^(5/14) 6765000029563931 a001 365435296162/73681302247*599074578^(5/14) 6765000029563931 a001 956722026041/192900153618*599074578^(5/14) 6765000029563931 a001 2504730781961/505019158607*599074578^(5/14) 6765000029563931 a001 10610209857723/2139295485799*599074578^(5/14) 6765000029563931 a001 4052739537881/817138163596*599074578^(5/14) 6765000029563931 a001 140728068720/28374454999*599074578^(5/14) 6765000029563931 a001 591286729879/119218851371*599074578^(5/14) 6765000029563931 a001 225851433717/45537549124*599074578^(5/14) 6765000029563931 a001 86267571272/17393796001*599074578^(5/14) 6765000029563931 a001 12586269025/4106118243*599074578^(8/21) 6765000029563931 a001 4807526976/969323029*2537720636^(1/3) 6765000029563931 a001 433494437/6643838879*2537720636^(8/15) 6765000029563931 a001 1836311903/969323029*45537549124^(1/3) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(46) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(43) 6765000029563931 a001 32951280099/6643838879*599074578^(5/14) 6765000029563931 a001 20365011074/969323029*2537720636^(4/15) 6765000029563931 a001 53316291173/969323029*2537720636^(2/9) 6765000029563931 a001 43133785636/299537289*228826127^(1/5) 6765000029563931 a001 86267571272/969323029*2537720636^(1/5) 6765000029563931 a001 433494437/4106118243*4106118243^(1/2) 6765000029563931 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 365435296162/969323029*2537720636^(2/15) 6765000029563931 a001 591286729879/969323029*2537720636^(1/9) 6765000029563931 a001 32951280099/10749957122*599074578^(8/21) 6765000029563931 a001 1548008755920/969323029*2537720636^(1/15) 6765000029563931 a001 4807526976/969323029*45537549124^(5/17) 6765000029563931 a001 433494437/10749957122*312119004989^(5/11) 6765000029563931 a001 4807526976/969323029*312119004989^(3/11) 6765000029563931 a001 4807526976/969323029*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(43) 6765000029563931 a001 433494437/10749957122*3461452808002^(5/12) 6765000029563931 a001 4807526976/969323029*192900153618^(5/18) 6765000029563931 a001 4807526976/969323029*28143753123^(3/10) 6765000029563931 a001 433494437/10749957122*28143753123^(1/2) 6765000029563931 a001 4807526976/969323029*10749957122^(5/16) 6765000029563931 a001 86267571272/28143753123*599074578^(8/21) 6765000029563931 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 32264490531/10525900321*599074578^(8/21) 6765000029563931 a001 591286729879/192900153618*599074578^(8/21) 6765000029563931 a001 1548008755920/505019158607*599074578^(8/21) 6765000029563931 a001 1515744265389/494493258286*599074578^(8/21) 6765000029563931 a001 2504730781961/817138163596*599074578^(8/21) 6765000029563931 a001 956722026041/312119004989*599074578^(8/21) 6765000029563931 a001 365435296162/119218851371*599074578^(8/21) 6765000029563931 a001 433494437/1322157322203*17393796001^(5/7) 6765000029563931 a001 139583862445/45537549124*599074578^(8/21) 6765000029563931 a001 433494437/28143753123*45537549124^(9/17) 6765000029563931 a001 433494437/45537549124*17393796001^(4/7) 6765000029563931 a001 433494437/28143753123*817138163596^(9/19) 6765000029563931 a001 433494437/28143753123*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(43) 6765000029563931 a001 433494437/28143753123*192900153618^(1/2) 6765000029563931 a001 12586269025/969323029*73681302247^(1/4) 6765000029563931 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 225851433717/969323029*17393796001^(1/7) 6765000029563931 a001 433494437/9062201101803*45537549124^(13/17) 6765000029563931 a001 433494437/2139295485799*45537549124^(12/17) 6765000029563931 a001 433494437/817138163596*45537549124^(2/3) 6765000029563931 a001 433494437/505019158607*45537549124^(11/17) 6765000029563931 a001 433494437/119218851371*45537549124^(10/17) 6765000029563931 a001 32951280099/969323029*312119004989^(1/5) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(43) 6765000029563931 a001 433494437/73681302247*1322157322203^(1/2) 6765000029563931 a001 86267571272/969323029*45537549124^(3/17) 6765000029563931 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 365435296162/969323029*45537549124^(2/17) 6765000029563931 a001 1548008755920/969323029*45537549124^(1/17) 6765000029563931 a001 86267571272/969323029*14662949395604^(1/7) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(43) 6765000029563931 a001 86267571272/969323029*192900153618^(1/6) 6765000029563931 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 433494437/505019158607*312119004989^(3/5) 6765000029563931 a001 433494437/505019158607*14662949395604^(11/21) 6765000029563931 a001 225851433717/969323029*14662949395604^(1/9) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^80 6765000029563931 a001 433494437/1322157322203*14662949395604^(5/9) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^82 6765000029563931 a001 1548008755920/969323029*14662949395604^(1/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(62) 6765000029563931 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(64) 6765000029563931 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(66) 6765000029563931 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(43)*Lucas(71)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(43)*Lucas(73)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(43)*Lucas(75)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(43)*Lucas(77)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(82) 6765000029563931 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(84) 6765000029563931 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^21 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(86) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(88) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(90) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(92) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^71/Lucas(94) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^73/Lucas(96) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^75/Lucas(98) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^76/Lucas(99) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^77/Lucas(100) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^74/Lucas(97) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^72/Lucas(95) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(93) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(91) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(89) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(87) 6765000029563931 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^35 6765000029563931 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^37 6765000029563931 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^36 6765000029563931 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(85) 6765000029563931 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(83) 6765000029563931 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(43)*Lucas(76)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(43)*Lucas(74)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(43)*Lucas(72)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^4 6765000029563931 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(65) 6765000029563931 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(63) 6765000029563931 a006 5^(1/2)*Fibonacci(63)/Lucas(43)/sqrt(5) 6765000029563931 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(61) 6765000029563931 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^83 6765000029563931 a001 433494437/2139295485799*14662949395604^(4/7) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^81 6765000029563931 a001 1548008755920/969323029*192900153618^(1/18) 6765000029563931 a001 365435296162/969323029*14662949395604^(2/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(43) 6765000029563931 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(43) 6765000029563931 a001 139583862445/969323029*23725150497407^(1/8) 6765000029563931 a001 139583862445/969323029*505019158607^(1/7) 6765000029563931 a001 433494437/505019158607*192900153618^(11/18) 6765000029563931 a001 433494437/2139295485799*192900153618^(2/3) 6765000029563931 a001 433494437/9062201101803*192900153618^(13/18) 6765000029563931 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 139583862445/969323029*73681302247^(2/13) 6765000029563931 a001 433494437/119218851371*312119004989^(6/11) 6765000029563931 a001 433494437/119218851371*14662949395604^(10/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(43) 6765000029563931 a001 433494437/119218851371*192900153618^(5/9) 6765000029563931 a001 433494437/312119004989*73681302247^(8/13) 6765000029563931 a001 591286729879/969323029*28143753123^(1/10) 6765000029563931 a001 433494437/2139295485799*73681302247^(9/13) 6765000029563931 a001 433494437/9062201101803*73681302247^(3/4) 6765000029563931 a001 433494437/14662949395604*73681302247^(10/13) 6765000029563931 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^75 6765000029563931 a001 53316291173/969323029*28143753123^(1/5) 6765000029563931 a001 2504730781961/969323029*10749957122^(1/24) 6765000029563931 a001 20365011074/969323029*45537549124^(4/17) 6765000029563931 a001 20365011074/969323029*817138163596^(4/19) 6765000029563931 a001 20365011074/969323029*14662949395604^(4/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(43) 6765000029563931 a001 433494437/45537549124*505019158607^(1/2) 6765000029563931 a001 20365011074/969323029*192900153618^(2/9) 6765000029563931 a001 20365011074/969323029*73681302247^(3/13) 6765000029563931 a001 1548008755920/969323029*10749957122^(1/16) 6765000029563931 a001 53316291173/17393796001*599074578^(8/21) 6765000029563931 a001 433494437/45537549124*73681302247^(7/13) 6765000029563931 a001 956722026041/969323029*10749957122^(1/12) 6765000029563931 a001 433494437/119218851371*28143753123^(3/5) 6765000029563931 a001 433494437/1322157322203*28143753123^(7/10) 6765000029563931 a001 433494437/14662949395604*28143753123^(4/5) 6765000029563931 a001 365435296162/969323029*10749957122^(1/8) 6765000029563931 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 139583862445/969323029*10749957122^(1/6) 6765000029563931 a001 86267571272/969323029*10749957122^(3/16) 6765000029563931 a001 53316291173/969323029*10749957122^(5/24) 6765000029563931 a001 7778742049/969323029*17393796001^(2/7) 6765000029563931 a001 2504730781961/969323029*4106118243^(1/23) 6765000029563931 a001 20365011074/969323029*10749957122^(1/4) 6765000029563931 a001 7778742049/969323029*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(43) 6765000029563931 a001 433494437/17393796001*73681302247^(1/2) 6765000029563931 a001 433494437/28143753123*10749957122^(9/16) 6765000029563931 a001 956722026041/969323029*4106118243^(2/23) 6765000029563931 a001 433494437/119218851371*10749957122^(5/8) 6765000029563931 a001 433494437/45537549124*10749957122^(7/12) 6765000029563931 a001 433494437/312119004989*10749957122^(2/3) 6765000029563931 a001 7778742049/969323029*10749957122^(7/24) 6765000029563931 a001 433494437/505019158607*10749957122^(11/16) 6765000029563931 a001 433494437/817138163596*10749957122^(17/24) 6765000029563931 a001 433494437/2139295485799*10749957122^(3/4) 6765000029563931 a001 433494437/5600748293801*10749957122^(19/24) 6765000029563931 a001 433494437/9062201101803*10749957122^(13/16) 6765000029563931 a001 433494437/14662949395604*10749957122^(5/6) 6765000029563931 a001 365435296162/969323029*4106118243^(3/23) 6765000029563931 a001 433494437/17393796001*10749957122^(13/24) 6765000029563931 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 139583862445/969323029*4106118243^(4/23) 6765000029563931 a001 53316291173/969323029*4106118243^(5/23) 6765000029563931 a001 20365011074/969323029*4106118243^(6/23) 6765000029563931 a001 2504730781961/969323029*1568397607^(1/22) 6765000029563931 a001 10182505537/1268860318*599074578^(1/3) 6765000029563931 a001 20365011074/6643838879*599074578^(8/21) 6765000029563931 a001 7778742049/969323029*4106118243^(7/23) 6765000029563931 a001 433494437/6643838879*45537549124^(8/17) 6765000029563931 a001 433494437/6643838879*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(43) 6765000029563931 a001 2971215073/969323029*23725150497407^(1/4) 6765000029563931 a001 433494437/6643838879*192900153618^(4/9) 6765000029563931 a001 2971215073/969323029*73681302247^(4/13) 6765000029563931 a001 433494437/6643838879*73681302247^(6/13) 6765000029563931 a001 2971215073/969323029*10749957122^(1/3) 6765000029563931 a001 433494437/6643838879*10749957122^(1/2) 6765000029563931 a001 433494437/45537549124*4106118243^(14/23) 6765000029563931 a001 433494437/17393796001*4106118243^(13/23) 6765000029563931 a001 956722026041/969323029*1568397607^(1/11) 6765000029563931 a001 433494437/119218851371*4106118243^(15/23) 6765000029563931 a001 433494437/312119004989*4106118243^(16/23) 6765000029563931 a001 2971215073/969323029*4106118243^(8/23) 6765000029563931 a001 433494437/817138163596*4106118243^(17/23) 6765000029563931 a001 3278735159921/1268860318*228826127^(1/20) 6765000029563931 a001 433494437/2139295485799*4106118243^(18/23) 6765000029563931 a001 433494437/5600748293801*4106118243^(19/23) 6765000029563931 a001 433494437/14662949395604*4106118243^(20/23) 6765000029563931 a001 433494437/6643838879*4106118243^(12/23) 6765000029563931 a001 365435296162/969323029*1568397607^(3/22) 6765000029563931 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 1602508992/1368706081*599074578^(3/7) 6765000029563931 a001 139583862445/969323029*1568397607^(2/11) 6765000029563931 a001 701408733/2537720636*599074578^(1/2) 6765000029563931 a001 1144206275/230701876*599074578^(5/14) 6765000029563931 a001 53316291173/969323029*1568397607^(5/22) 6765000029563931 a001 1134903170/969323029*2537720636^(2/5) 6765000029563931 a001 32951280099/969323029*1568397607^(1/4) 6765000029563931 a001 20365011074/969323029*1568397607^(3/11) 6765000029563931 a001 701408733/10749957122*599074578^(4/7) 6765000029563931 a001 12586269025/10749957122*599074578^(3/7) 6765000029563931 a001 10983760033/9381251041*599074578^(3/7) 6765000029563931 a001 86267571272/73681302247*599074578^(3/7) 6765000029563931 a001 75283811239/64300051206*599074578^(3/7) 6765000029563931 a001 2504730781961/2139295485799*599074578^(3/7) 6765000029563931 a001 365435296162/312119004989*599074578^(3/7) 6765000029563931 a001 139583862445/119218851371*599074578^(3/7) 6765000029563931 a001 53316291173/45537549124*599074578^(3/7) 6765000029563931 a001 7778742049/969323029*1568397607^(7/22) 6765000029563931 a001 2504730781961/969323029*599074578^(1/21) 6765000029563931 a001 20365011074/17393796001*599074578^(3/7) 6765000029563931 a001 1836311903/4106118243*599074578^(10/21) 6765000029563931 a001 1134903170/969323029*45537549124^(6/17) 6765000029563931 a001 433494437/2537720636*312119004989^(2/5) 6765000029563931 a001 1134903170/969323029*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(45) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(43) 6765000029563931 a001 1134903170/969323029*192900153618^(1/3) 6765000029563931 a001 7778742049/2537720636*599074578^(8/21) 6765000029563931 a001 7778742049/6643838879*599074578^(3/7) 6765000029563931 a001 1134903170/969323029*10749957122^(3/8) 6765000029563931 a001 433494437/2537720636*10749957122^(11/24) 6765000029563931 a001 2971215073/969323029*1568397607^(4/11) 6765000029563931 a001 1134903170/969323029*4106118243^(9/23) 6765000029563931 a001 433494437/2537720636*4106118243^(11/23) 6765000029563931 a001 1548008755920/969323029*599074578^(1/14) 6765000029563931 a001 433494437/17393796001*1568397607^(13/22) 6765000029563931 a001 433494437/6643838879*1568397607^(6/11) 6765000029563931 a001 2403763488/5374978561*599074578^(10/21) 6765000029563931 a001 233802911/9381251041*599074578^(13/21) 6765000029563931 a001 433494437/45537549124*1568397607^(7/11) 6765000029563931 a001 12586269025/28143753123*599074578^(10/21) 6765000029563931 a001 32951280099/73681302247*599074578^(10/21) 6765000029563931 a001 43133785636/96450076809*599074578^(10/21) 6765000029563931 a001 225851433717/505019158607*599074578^(10/21) 6765000029563931 a001 591286729879/1322157322203*599074578^(10/21) 6765000029563931 a001 182717648081/408569081798*599074578^(10/21) 6765000029563931 a001 139583862445/312119004989*599074578^(10/21) 6765000029563931 a001 53316291173/119218851371*599074578^(10/21) 6765000029563931 a001 10182505537/22768774562*599074578^(10/21) 6765000029563931 a001 956722026041/969323029*599074578^(2/21) 6765000029563931 a001 7778742049/17393796001*599074578^(10/21) 6765000029563931 a001 433494437/119218851371*1568397607^(15/22) 6765000029563931 a001 1836311903/6643838879*599074578^(1/2) 6765000029563931 a001 433494437/312119004989*1568397607^(8/11) 6765000029563931 a001 433494437/505019158607*1568397607^(3/4) 6765000029563931 a001 2971215073/2537720636*599074578^(3/7) 6765000029563931 a001 2971215073/6643838879*599074578^(10/21) 6765000029563931 a001 433494437/817138163596*1568397607^(17/22) 6765000029563931 a001 701408733/45537549124*599074578^(9/14) 6765000029563931 a001 1134903170/969323029*1568397607^(9/22) 6765000029563931 a001 4807526976/17393796001*599074578^(1/2) 6765000029563931 a001 1836311903/10749957122*599074578^(11/21) 6765000029563931 a001 12586269025/45537549124*599074578^(1/2) 6765000029563931 a001 32951280099/119218851371*599074578^(1/2) 6765000029563931 a001 86267571272/312119004989*599074578^(1/2) 6765000029563931 a001 225851433717/817138163596*599074578^(1/2) 6765000029563931 a001 1548008755920/5600748293801*599074578^(1/2) 6765000029563931 a001 139583862445/505019158607*599074578^(1/2) 6765000029563931 a001 53316291173/192900153618*599074578^(1/2) 6765000029563931 a001 20365011074/73681302247*599074578^(1/2) 6765000029563931 a001 7778742049/28143753123*599074578^(1/2) 6765000029563931 a001 433494437/2139295485799*1568397607^(9/11) 6765000029563931 a001 2971215073/10749957122*599074578^(1/2) 6765000029563931 a001 433494437/5600748293801*1568397607^(19/22) 6765000029563931 a001 433494437/2537720636*1568397607^(1/2) 6765000029563931 a001 433494437/14662949395604*1568397607^(10/11) 6765000029563931 a001 1602508992/9381251041*599074578^(11/21) 6765000029563931 a001 701408733/73681302247*599074578^(2/3) 6765000029563931 a001 12586269025/73681302247*599074578^(11/21) 6765000029563931 a001 10983760033/64300051206*599074578^(11/21) 6765000029563931 a001 86267571272/505019158607*599074578^(11/21) 6765000029563931 a001 75283811239/440719107401*599074578^(11/21) 6765000029563931 a001 2504730781961/14662949395604*599074578^(11/21) 6765000029563931 a001 139583862445/817138163596*599074578^(11/21) 6765000029563931 a001 53316291173/312119004989*599074578^(11/21) 6765000029563931 a001 20365011074/119218851371*599074578^(11/21) 6765000029563931 a001 365435296162/969323029*599074578^(1/7) 6765000029563931 a001 7778742049/45537549124*599074578^(11/21) 6765000029563931 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^67 6765000029563931 a001 2971215073/17393796001*599074578^(11/21) 6765000029563931 a001 1134903170/4106118243*599074578^(1/2) 6765000029563931 a001 1548008755920/1568397607*228826127^(1/10) 6765000029563931 a001 225851433717/969323029*599074578^(1/6) 6765000029563931 a001 1836311903/28143753123*599074578^(4/7) 6765000029563931 a001 86267571272/228826127*87403803^(3/19) 6765000029563931 a001 686789568/10525900321*599074578^(4/7) 6765000029563931 a001 233802911/64300051206*599074578^(5/7) 6765000029563931 a001 12586269025/192900153618*599074578^(4/7) 6765000029563931 a001 32951280099/505019158607*599074578^(4/7) 6765000029563931 a001 86267571272/1322157322203*599074578^(4/7) 6765000029563931 a001 32264490531/494493258286*599074578^(4/7) 6765000029563931 a001 591286729879/9062201101803*599074578^(4/7) 6765000029563931 a001 1548008755920/23725150497407*599074578^(4/7) 6765000029563931 a001 365435296162/5600748293801*599074578^(4/7) 6765000029563931 a001 139583862445/2139295485799*599074578^(4/7) 6765000029563931 a001 53316291173/817138163596*599074578^(4/7) 6765000029563931 a001 20365011074/312119004989*599074578^(4/7) 6765000029563931 a001 139583862445/969323029*599074578^(4/21) 6765000029563931 a001 7778742049/119218851371*599074578^(4/7) 6765000029563931 a001 2971215073/45537549124*599074578^(4/7) 6765000029563931 a001 567451585/1268860318*599074578^(10/21) 6765000029563931 a001 1134903170/6643838879*599074578^(11/21) 6765000029563931 a001 86267571272/969323029*599074578^(3/14) 6765000029563931 a001 1836311903/73681302247*599074578^(13/21) 6765000029563931 a001 267084832/10716675201*599074578^(13/21) 6765000029563931 a001 701408733/505019158607*599074578^(16/21) 6765000029563931 a001 12586269025/505019158607*599074578^(13/21) 6765000029563931 a001 10983760033/440719107401*599074578^(13/21) 6765000029563931 a001 43133785636/1730726404001*599074578^(13/21) 6765000029563931 a001 75283811239/3020733700601*599074578^(13/21) 6765000029563931 a001 182717648081/7331474697802*599074578^(13/21) 6765000029563931 a001 139583862445/5600748293801*599074578^(13/21) 6765000029563931 a001 53316291173/2139295485799*599074578^(13/21) 6765000029563931 a001 10182505537/408569081798*599074578^(13/21) 6765000029563931 a001 53316291173/969323029*599074578^(5/21) 6765000029563931 a001 7778742049/312119004989*599074578^(13/21) 6765000029563931 a001 1836311903/119218851371*599074578^(9/14) 6765000029563931 a001 2971215073/119218851371*599074578^(13/21) 6765000029563931 a001 1134903170/17393796001*599074578^(4/7) 6765000029563931 a001 4807526976/312119004989*599074578^(9/14) 6765000029563931 a001 701408733/817138163596*599074578^(11/14) 6765000029563931 a001 12586269025/817138163596*599074578^(9/14) 6765000029563931 a001 32951280099/2139295485799*599074578^(9/14) 6765000029563931 a001 86267571272/5600748293801*599074578^(9/14) 6765000029563931 a001 7787980473/505618944676*599074578^(9/14) 6765000029563931 a001 365435296162/23725150497407*599074578^(9/14) 6765000029563931 a001 139583862445/9062201101803*599074578^(9/14) 6765000029563931 a001 53316291173/3461452808002*599074578^(9/14) 6765000029563931 a001 20365011074/1322157322203*599074578^(9/14) 6765000029563931 a001 7778742049/505019158607*599074578^(9/14) 6765000029563931 a001 1836311903/192900153618*599074578^(2/3) 6765000029563931 a001 2971215073/192900153618*599074578^(9/14) 6765000029563931 a001 102287808/10745088481*599074578^(2/3) 6765000029563931 a001 233802911/440719107401*599074578^(17/21) 6765000029563931 a001 4052739537881/4106118243*228826127^(1/10) 6765000029563931 a001 12586269025/1322157322203*599074578^(2/3) 6765000029563931 a001 32951280099/3461452808002*599074578^(2/3) 6765000029563931 a001 86267571272/9062201101803*599074578^(2/3) 6765000029563931 a001 225851433717/23725150497407*599074578^(2/3) 6765000029563931 a001 139583862445/14662949395604*599074578^(2/3) 6765000029563931 a001 53316291173/5600748293801*599074578^(2/3) 6765000029563931 a001 20365011074/2139295485799*599074578^(2/3) 6765000029563931 a001 20365011074/969323029*599074578^(2/7) 6765000029563931 a001 2971215073/312119004989*599074578^(2/3) 6765000029563931 a001 567451585/22768774562*599074578^(13/21) 6765000029563931 a001 4807525989/4870846*228826127^(1/10) 6765000029563931 a001 701408733/2139295485799*599074578^(5/6) 6765000029563931 a001 1836311903/505019158607*599074578^(5/7) 6765000029563931 a001 6557470319842/6643838879*228826127^(1/10) 6765000029563931 a001 1134903170/73681302247*599074578^(9/14) 6765000029563931 a001 956722026041/1568397607*228826127^(1/8) 6765000029563931 a001 1602508992/440719107401*599074578^(5/7) 6765000029563931 a001 701408733/3461452808002*599074578^(6/7) 6765000029563931 a001 10983760033/199691526*228826127^(1/4) 6765000029563931 a001 12586269025/3461452808002*599074578^(5/7) 6765000029563931 a001 10983760033/3020733700601*599074578^(5/7) 6765000029563931 a001 86267571272/23725150497407*599074578^(5/7) 6765000029563931 a001 53316291173/14662949395604*599074578^(5/7) 6765000029563931 a001 20365011074/5600748293801*599074578^(5/7) 6765000029563931 a001 7778742049/2139295485799*599074578^(5/7) 6765000029563931 a001 7778742049/969323029*599074578^(1/3) 6765000029563931 a001 2971215073/817138163596*599074578^(5/7) 6765000029563931 a001 1134903170/119218851371*599074578^(2/3) 6765000029563931 a001 2504730781961/969323029*228826127^(1/20) 6765000029563931 a001 4807526976/969323029*599074578^(5/14) 6765000029563931 a001 433494437/1568397607*599074578^(1/2) 6765000029563931 a001 433494437/969323029*2537720636^(4/9) 6765000029563931 a001 1836311903/1322157322203*599074578^(16/21) 6765000029563931 a001 2504730781961/2537720636*228826127^(1/10) 6765000029563931 a001 14930208/10749853441*599074578^(16/21) 6765000029563931 a001 233802911/3020733700601*599074578^(19/21) 6765000029563931 a001 12586269025/9062201101803*599074578^(16/21) 6765000029563931 a001 32951280099/23725150497407*599074578^(16/21) 6765000029563931 a001 10182505537/7331474697802*599074578^(16/21) 6765000029563931 a001 7778742049/5600748293801*599074578^(16/21) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(43) 6765000029563931 a001 433494437/969323029*23725150497407^(5/16) 6765000029563931 a001 433494437/969323029*505019158607^(5/14) 6765000029563931 a001 433494437/969323029*73681302247^(5/13) 6765000029563931 a001 433494437/969323029*28143753123^(2/5) 6765000029563931 a001 1836311903/2139295485799*599074578^(11/14) 6765000029563931 a001 433494437/969323029*10749957122^(5/12) 6765000029563931 a001 1134903170/312119004989*599074578^(5/7) 6765000029563931 a001 2971215073/2139295485799*599074578^(16/21) 6765000029563931 a001 2971215073/969323029*599074578^(8/21) 6765000029563931 a001 433494437/969323029*4106118243^(10/23) 6765000029563931 a001 4807526976/5600748293801*599074578^(11/14) 6765000029563931 a001 701408733/14662949395604*599074578^(13/14) 6765000029563931 a001 12586269025/14662949395604*599074578^(11/14) 6765000029563931 a001 20365011074/23725150497407*599074578^(11/14) 6765000029563931 a001 7778742049/9062201101803*599074578^(11/14) 6765000029563931 a001 1836311903/3461452808002*599074578^(17/21) 6765000029563931 a001 2971215073/3461452808002*599074578^(11/14) 6765000029563931 a001 1602508992/3020733700601*599074578^(17/21) 6765000029563931 a001 701408733/23725150497407*599074578^(20/21) 6765000029563931 a001 12586269025/23725150497407*599074578^(17/21) 6765000029563931 a001 7778742049/14662949395604*599074578^(17/21) 6765000029563931 a001 1836311903/5600748293801*599074578^(5/6) 6765000029563931 a001 567451585/408569081798*599074578^(16/21) 6765000029563931 a001 2971215073/5600748293801*599074578^(17/21) 6765000029563931 a001 1201881744/3665737348901*599074578^(5/6) 6765000029563931 a001 433494437/969323029*1568397607^(5/11) 6765000029563931 a001 7778742049/23725150497407*599074578^(5/6) 6765000029563931 a001 2504730781961/4106118243*228826127^(1/8) 6765000029563931 a001 1836311903/9062201101803*599074578^(6/7) 6765000029563931 a001 1134903170/1322157322203*599074578^(11/14) 6765000029563931 a001 2971215073/9062201101803*599074578^(5/6) 6765000029563931 a001 3278735159921/5374978561*228826127^(1/8) 6765000029563931 a001 4807526976/23725150497407*599074578^(6/7) 6765000029563931 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^66 6765000029563931 a001 10610209857723/17393796001*228826127^(1/8) 6765000029563931 a001 4052739537881/6643838879*228826127^(1/8) 6765000029563931 a001 1134903170/2139295485799*599074578^(17/21) 6765000029563931 a001 2971215073/14662949395604*599074578^(6/7) 6765000029563931 a001 1134903170/969323029*599074578^(3/7) 6765000029563931 a001 591286729879/1568397607*228826127^(3/20) 6765000029563931 a001 1836311903/23725150497407*599074578^(19/21) 6765000029563931 a001 567451585/1730726404001*599074578^(5/6) 6765000029563931 a001 1134903780/1860499*228826127^(1/8) 6765000029563931 a001 1134903170/5600748293801*599074578^(6/7) 6765000029563931 a001 567451585/7331474697802*599074578^(19/21) 6765000029563931 a001 433494437/2537720636*599074578^(11/21) 6765000029563931 a001 433494437/6643838879*599074578^(4/7) 6765000029563931 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^68 6765000029563931 a001 1134903170/23725150497407*599074578^(13/14) 6765000029563931 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^70 6765000029563931 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^72 6765000029563931 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^74 6765000029563931 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^76 6765000029563931 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^78 6765000029563931 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(72)*Lucas(42)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(74)*Lucas(42)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(76)*Lucas(42)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(78)*Lucas(42)/(1/2+sqrt(5)/2)^100 6765000029563931 a001 1/133957148*(1/2+1/2*5^(1/2))^62 6765000029563931 a004 Fibonacci(77)*Lucas(42)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(75)*Lucas(42)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(73)*Lucas(42)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^85 6765000029563931 a001 9062201101803/267914296*8^(1/3) 6765000029563931 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^79 6765000029563931 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^77 6765000029563931 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^73 6765000029563931 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 433494437/17393796001*599074578^(13/21) 6765000029563931 a001 516002918640/1368706081*228826127^(3/20) 6765000029563931 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 433494437/28143753123*599074578^(9/14) 6765000029563931 a001 4052739537881/10749957122*228826127^(3/20) 6765000029563931 a001 3536736619241/9381251041*228826127^(3/20) 6765000029563931 a001 6557470319842/17393796001*228826127^(3/20) 6765000029563931 a001 2504730781961/6643838879*228826127^(3/20) 6765000029563931 a001 433494437/45537549124*599074578^(2/3) 6765000029563931 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^67 6765000029563931 a001 12586269025/599074578*228826127^(3/10) 6765000029563931 a001 956722026041/969323029*228826127^(1/10) 6765000029563931 a001 956722026041/2537720636*228826127^(3/20) 6765000029563931 a001 433494437/119218851371*599074578^(5/7) 6765000029563931 a001 433494437/312119004989*599074578^(16/21) 6765000029563931 a001 433494437/505019158607*599074578^(11/14) 6765000029563931 a001 433494437/817138163596*599074578^(17/21) 6765000029563931 a001 433494437/1322157322203*599074578^(5/6) 6765000029563931 a001 32264490531/224056801*228826127^(1/5) 6765000029563931 a001 591286729879/370248451*141422324^(1/13) 6765000029563931 a001 591286729879/969323029*228826127^(1/8) 6765000029563931 a001 433494437/2139295485799*599074578^(6/7) 6765000029563931 a001 433494437/969323029*599074578^(10/21) 6765000029563931 a001 433494437/5600748293801*599074578^(19/21) 6765000029563931 a001 433494437/9062201101803*599074578^(13/14) 6765000029563931 a001 433494437/14662949395604*599074578^(20/21) 6765000029563931 a001 591286729879/4106118243*228826127^(1/5) 6765000029563931 a001 774004377960/5374978561*228826127^(1/5) 6765000029563931 a001 4052739537881/28143753123*228826127^(1/5) 6765000029563931 a001 1515744265389/10525900321*228826127^(1/5) 6765000029563931 a001 3278735159921/22768774562*228826127^(1/5) 6765000029563931 a001 2504730781961/17393796001*228826127^(1/5) 6765000029563931 a001 956722026041/6643838879*228826127^(1/5) 6765000029563931 a001 63245986/312119004989*141422324^(12/13) 6765000029563931 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^65 6765000029563931 a001 267084832/33281921*228826127^(7/20) 6765000029563931 a001 365435296162/969323029*228826127^(3/20) 6765000029563931 a001 182717648081/1268860318*228826127^(1/5) 6765000029563931 a001 133957148/299537289*228826127^(1/2) 6765000029563931 a001 63245986/228826127*141422324^(7/13) 6765000029563931 a001 86000486440/33281921*87403803^(1/19) 6765000029563931 a001 86267571272/1568397607*228826127^(1/4) 6765000029563931 a001 2971215073/599074578*228826127^(3/8) 6765000029563931 a001 165580141/599074578*2537720636^(7/15) 6765000029563931 a001 165580141/599074578*17393796001^(3/7) 6765000029563931 a001 165580141/599074578*45537549124^(7/17) 6765000029563931 a001 267914296/370248451*817138163596^(1/3) 6765000029563931 a001 165580141/599074578*14662949395604^(1/3) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(42) 6765000029563931 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(41) 6765000029563931 a001 165580141/599074578*192900153618^(7/18) 6765000029563931 a001 165580141/599074578*10749957122^(7/16) 6765000029563931 a001 75283811239/1368706081*228826127^(1/4) 6765000029563931 a001 591286729879/10749957122*228826127^(1/4) 6765000029563931 a001 12585437040/228811001*228826127^(1/4) 6765000029563931 a001 4052739537881/73681302247*228826127^(1/4) 6765000029563931 a001 3536736619241/64300051206*228826127^(1/4) 6765000029563931 a001 6557470319842/119218851371*228826127^(1/4) 6765000029563931 a001 2504730781961/45537549124*228826127^(1/4) 6765000029563931 a001 956722026041/17393796001*228826127^(1/4) 6765000029563931 a001 1836311903/599074578*228826127^(2/5) 6765000029563931 a001 365435296162/6643838879*228826127^(1/4) 6765000029563931 a001 139583862445/969323029*228826127^(1/5) 6765000029563931 a001 139583862445/2537720636*228826127^(1/4) 6765000029563931 a001 32951280099/1568397607*228826127^(3/10) 6765000029563931 a001 233802911/199691526*228826127^(9/20) 6765000029563931 a001 86267571272/4106118243*228826127^(3/10) 6765000029563931 a001 225851433717/10749957122*228826127^(3/10) 6765000029563931 a001 591286729879/28143753123*228826127^(3/10) 6765000029563931 a001 1548008755920/73681302247*228826127^(3/10) 6765000029563931 a001 4052739537881/192900153618*228826127^(3/10) 6765000029563931 a001 225749145909/10745088481*228826127^(3/10) 6765000029563931 a001 6557470319842/312119004989*228826127^(3/10) 6765000029563931 a001 2504730781961/119218851371*228826127^(3/10) 6765000029563931 a001 956722026041/45537549124*228826127^(3/10) 6765000029563931 a001 365435296162/17393796001*228826127^(3/10) 6765000029563931 a001 139583862445/6643838879*228826127^(3/10) 6765000029563931 a001 53316291173/969323029*228826127^(1/4) 6765000029563931 a001 53316291173/2537720636*228826127^(3/10) 6765000029563931 a001 165580141/599074578*599074578^(1/2) 6765000029563931 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^64 6765000029563931 a001 12586269025/1568397607*228826127^(7/20) 6765000029563931 a001 4052739537881/1568397607*87403803^(1/19) 6765000029563931 a001 10983760033/1368706081*228826127^(7/20) 6765000029563931 a001 43133785636/5374978561*228826127^(7/20) 6765000029563931 a001 75283811239/9381251041*228826127^(7/20) 6765000029563931 a001 591286729879/73681302247*228826127^(7/20) 6765000029563931 a001 86000486440/10716675201*228826127^(7/20) 6765000029563931 a001 4052739537881/505019158607*228826127^(7/20) 6765000029563931 a001 3536736619241/440719107401*228826127^(7/20) 6765000029563931 a001 3278735159921/408569081798*228826127^(7/20) 6765000029563931 a001 2504730781961/312119004989*228826127^(7/20) 6765000029563931 a001 956722026041/119218851371*228826127^(7/20) 6765000029563931 a001 182717648081/22768774562*228826127^(7/20) 6765000029563931 a001 139583862445/17393796001*228826127^(7/20) 6765000029563931 a001 53316291173/6643838879*228826127^(7/20) 6765000029563931 a001 7778742049/1568397607*228826127^(3/8) 6765000029563931 a001 20365011074/969323029*228826127^(3/10) 6765000029563931 a001 3536736619241/1368706081*87403803^(1/19) 6765000029563931 a001 10182505537/1268860318*228826127^(7/20) 6765000029563931 a001 701408733/370248451*45537549124^(1/3) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(44) 6765000029563931 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(41) 6765000029563931 a001 165580141/1568397607*4106118243^(1/2) 6765000029563931 a001 3278735159921/1268860318*87403803^(1/19) 6765000029563931 a001 20365011074/4106118243*228826127^(3/8) 6765000029563931 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^66 6765000029563931 a001 32951280099/54018521*20633239^(1/7) 6765000029563931 a001 165580141/4106118243*2537720636^(5/9) 6765000029563931 a001 165580141/14662949395604*2537720636^(14/15) 6765000029563931 a001 53316291173/10749957122*228826127^(3/8) 6765000029563931 a001 165580141/5600748293801*2537720636^(8/9) 6765000029563931 a001 165580141/3461452808002*2537720636^(13/15) 6765000029563931 a001 139583862445/28143753123*228826127^(3/8) 6765000029563931 a001 365435296162/73681302247*228826127^(3/8) 6765000029563931 a001 956722026041/192900153618*228826127^(3/8) 6765000029563931 a001 2504730781961/505019158607*228826127^(3/8) 6765000029563931 a001 10610209857723/2139295485799*228826127^(3/8) 6765000029563931 a001 4052739537881/817138163596*228826127^(3/8) 6765000029563931 a001 140728068720/28374454999*228826127^(3/8) 6765000029563931 a001 591286729879/119218851371*228826127^(3/8) 6765000029563931 a001 225851433717/45537549124*228826127^(3/8) 6765000029563931 a001 86267571272/17393796001*228826127^(3/8) 6765000029563931 a001 165580141/817138163596*2537720636^(4/5) 6765000029563931 a001 165580141/505019158607*2537720636^(7/9) 6765000029563931 a001 165580141/192900153618*2537720636^(11/15) 6765000029563931 a001 1836311903/370248451*2537720636^(1/3) 6765000029563931 a001 32951280099/6643838879*228826127^(3/8) 6765000029563931 a001 165580141/45537549124*2537720636^(2/3) 6765000029563931 a001 165580141/10749957122*2537720636^(3/5) 6765000029563931 a001 686789568/224056801*228826127^(2/5) 6765000029563931 a001 1836311903/370248451*45537549124^(5/17) 6765000029563931 a001 165580141/4106118243*312119004989^(5/11) 6765000029563931 a001 1836311903/370248451*312119004989^(3/11) 6765000029563931 a001 1836311903/370248451*14662949395604^(5/21) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(46) 6765000029563931 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(41) 6765000029563931 a001 165580141/4106118243*3461452808002^(5/12) 6765000029563931 a001 1836311903/370248451*192900153618^(5/18) 6765000029563931 a001 1836311903/370248451*28143753123^(3/10) 6765000029563931 a001 165580141/4106118243*28143753123^(1/2) 6765000029563931 a001 1836311903/370248451*10749957122^(5/16) 6765000029563931 a001 7778742049/370248451*2537720636^(4/15) 6765000029563931 a001 20365011074/370248451*2537720636^(2/9) 6765000029563931 a001 32951280099/370248451*2537720636^(1/5) 6765000029563931 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^68 6765000029563931 a001 139583862445/370248451*2537720636^(2/15) 6765000029563931 a001 225851433717/370248451*2537720636^(1/9) 6765000029563931 a001 591286729879/370248451*2537720636^(1/15) 6765000029563931 a001 165580141/10749957122*45537549124^(9/17) 6765000029563931 a001 165580141/10749957122*817138163596^(9/19) 6765000029563931 a001 165580141/10749957122*14662949395604^(3/7) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(48) 6765000029563931 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(41) 6765000029563931 a001 165580141/10749957122*192900153618^(1/2) 6765000029563931 a001 4807526976/370248451*73681302247^(1/4) 6765000029563931 a001 165580141/10749957122*10749957122^(9/16) 6765000029563931 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^70 6765000029563931 a001 165580141/14662949395604*17393796001^(6/7) 6765000029563931 a001 165580141/505019158607*17393796001^(5/7) 6765000029563931 a001 12586269025/370248451*312119004989^(1/5) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(50) 6765000029563931 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(41) 6765000029563931 a001 165580141/28143753123*1322157322203^(1/2) 6765000029563931 a001 86267571272/370248451*17393796001^(1/7) 6765000029563931 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^72 6765000029563931 a001 165580141/14662949395604*45537549124^(14/17) 6765000029563931 a001 165580141/3461452808002*45537549124^(13/17) 6765000029563931 a001 165580141/192900153618*45537549124^(11/17) 6765000029563931 a001 165580141/817138163596*45537549124^(12/17) 6765000029563931 a001 165580141/312119004989*45537549124^(2/3) 6765000029563931 a001 32951280099/370248451*45537549124^(3/17) 6765000029563931 a001 32951280099/370248451*817138163596^(3/19) 6765000029563931 a001 32951280099/370248451*14662949395604^(1/7) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(52) 6765000029563931 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(41) 6765000029563931 a001 165580141/73681302247*9062201101803^(1/2) 6765000029563931 a001 32951280099/370248451*192900153618^(1/6) 6765000029563931 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^74 6765000029563931 a001 139583862445/370248451*45537549124^(2/17) 6765000029563931 a001 165580141/192900153618*312119004989^(3/5) 6765000029563931 a001 591286729879/370248451*45537549124^(1/17) 6765000029563931 a001 165580141/192900153618*817138163596^(11/19) 6765000029563931 a001 165580141/192900153618*14662949395604^(11/21) 6765000029563931 a001 86267571272/370248451*14662949395604^(1/9) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(54) 6765000029563931 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(41) 6765000029563931 a001 165580141/505019158607*312119004989^(7/11) 6765000029563931 a001 165580141/192900153618*192900153618^(11/18) 6765000029563931 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^76 6765000029563931 a001 165580141/5600748293801*312119004989^(8/11) 6765000029563931 a001 165580141/505019158607*14662949395604^(5/9) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(56) 6765000029563931 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(41) 6765000029563931 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^78 6765000029563931 a001 165580141/14662949395604*817138163596^(14/19) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(58) 6765000029563931 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(41) 6765000029563931 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^80 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(60) 6765000029563931 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(41) 6765000029563931 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^82 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(62) 6765000029563931 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2) 6765000029563931 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^84 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(64) 6765000029563931 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^3 6765000029563931 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^86 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(66) 6765000029563931 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^5 6765000029563931 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^88 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(68) 6765000029563931 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^7 6765000029563931 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^90 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(70) 6765000029563931 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^9 6765000029563931 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^92 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(72) 6765000029563931 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^11 6765000029563931 a004 Fibonacci(41)*Lucas(73)/(1/2+sqrt(5)/2)^94 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(74) 6765000029563931 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^13 6765000029563931 a004 Fibonacci(41)*Lucas(75)/(1/2+sqrt(5)/2)^96 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(76) 6765000029563931 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^15 6765000029563931 a004 Fibonacci(41)*Lucas(77)/(1/2+sqrt(5)/2)^98 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(78) 6765000029563931 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^17 6765000029563931 a004 Fibonacci(41)*Lucas(79)/(1/2+sqrt(5)/2)^100 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(80) 6765000029563931 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^19 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(82) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(84) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(86) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(88) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(90) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(92) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^73/Lucas(94) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^75/Lucas(96) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^77/Lucas(98) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^78/Lucas(99) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^79/Lucas(100) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^76/Lucas(97) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^74/Lucas(95) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(93) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(91) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(89) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(87) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(85) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(83) 6765000029563931 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^23 6765000029563931 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^25 6765000029563931 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^27 6765000029563931 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^29 6765000029563931 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^31 6765000029563931 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^33 6765000029563931 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^35 6765000029563931 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^37 6765000029563931 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^39 6765000029563931 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^38 6765000029563931 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^36 6765000029563931 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^34 6765000029563931 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^32 6765000029563931 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^30 6765000029563931 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^28 6765000029563931 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^26 6765000029563931 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^24 6765000029563931 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^22 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(81) 6765000029563931 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^20 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(79) 6765000029563931 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^18 6765000029563931 a004 Fibonacci(41)*Lucas(78)/(1/2+sqrt(5)/2)^99 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(77) 6765000029563931 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^16 6765000029563931 a004 Fibonacci(41)*Lucas(76)/(1/2+sqrt(5)/2)^97 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(75) 6765000029563931 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^14 6765000029563931 a004 Fibonacci(41)*Lucas(74)/(1/2+sqrt(5)/2)^95 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(73) 6765000029563931 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^12 6765000029563931 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^93 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(71) 6765000029563931 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^10 6765000029563931 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^91 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(69) 6765000029563931 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^8 6765000029563931 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^89 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(67) 6765000029563931 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^6 6765000029563931 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^87 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(65) 6765000029563931 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^4 6765000029563931 a001 165580141/14662949395604*14662949395604^(2/3) 6765000029563931 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^85 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(63) 6765000029563931 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^2 6765000029563931 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^83 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(61) 6765000029563931 a006 5^(1/2)*Fibonacci(61)/Lucas(41)/sqrt(5) 6765000029563931 a001 165580141/5600748293801*23725150497407^(5/8) 6765000029563931 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^81 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(59) 6765000029563931 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(41) 6765000029563931 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^79 6765000029563931 a001 591286729879/370248451*192900153618^(1/18) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(57) 6765000029563931 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(41) 6765000029563931 a001 165580141/14662949395604*505019158607^(3/4) 6765000029563931 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^77 6765000029563931 a001 165580141/817138163596*505019158607^(9/14) 6765000029563931 a001 139583862445/370248451*14662949395604^(2/21) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(55) 6765000029563931 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(41) 6765000029563931 a001 365435296162/370248451*73681302247^(1/13) 6765000029563931 a001 165580141/3461452808002*192900153618^(13/18) 6765000029563931 a001 165580141/14662949395604*192900153618^(7/9) 6765000029563931 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^75 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(53) 6765000029563931 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(41) 6765000029563931 a001 165580141/119218851371*23725150497407^(1/2) 6765000029563931 a001 53316291173/370248451*505019158607^(1/7) 6765000029563931 a001 165580141/119218851371*505019158607^(4/7) 6765000029563931 a001 53316291173/370248451*73681302247^(2/13) 6765000029563931 a001 225851433717/370248451*28143753123^(1/10) 6765000029563931 a001 165580141/817138163596*73681302247^(9/13) 6765000029563931 a001 165580141/3461452808002*73681302247^(3/4) 6765000029563931 a001 165580141/5600748293801*73681302247^(10/13) 6765000029563931 a001 165580141/119218851371*73681302247^(8/13) 6765000029563931 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^73 6765000029563931 a001 165580141/45537549124*45537549124^(10/17) 6765000029563931 a001 956722026041/370248451*10749957122^(1/24) 6765000029563931 a001 165580141/45537549124*312119004989^(6/11) 6765000029563931 a001 165580141/45537549124*14662949395604^(10/21) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(51) 6765000029563931 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(41) 6765000029563931 a001 165580141/45537549124*192900153618^(5/9) 6765000029563931 a001 591286729879/370248451*10749957122^(1/16) 6765000029563931 a001 365435296162/370248451*10749957122^(1/12) 6765000029563931 a001 20365011074/370248451*28143753123^(1/5) 6765000029563931 a001 165580141/505019158607*28143753123^(7/10) 6765000029563931 a001 165580141/5600748293801*28143753123^(4/5) 6765000029563931 a001 139583862445/370248451*10749957122^(1/8) 6765000029563931 a001 165580141/45537549124*28143753123^(3/5) 6765000029563931 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^71 6765000029563931 a001 165580141/17393796001*17393796001^(4/7) 6765000029563931 a001 32951280099/370248451*10749957122^(3/16) 6765000029563931 a001 53316291173/370248451*10749957122^(1/6) 6765000029563931 a001 20365011074/370248451*10749957122^(5/24) 6765000029563931 a001 956722026041/370248451*4106118243^(1/23) 6765000029563931 a001 7778742049/370248451*45537549124^(4/17) 6765000029563931 a001 7778742049/370248451*817138163596^(4/19) 6765000029563931 a001 165580141/17393796001*14662949395604^(4/9) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(49) 6765000029563931 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(41) 6765000029563931 a001 165580141/17393796001*505019158607^(1/2) 6765000029563931 a001 7778742049/370248451*192900153618^(2/9) 6765000029563931 a001 7778742049/370248451*73681302247^(3/13) 6765000029563931 a001 165580141/17393796001*73681302247^(7/13) 6765000029563931 a001 365435296162/370248451*4106118243^(2/23) 6765000029563931 a001 7778742049/370248451*10749957122^(1/4) 6765000029563931 a001 165580141/119218851371*10749957122^(2/3) 6765000029563931 a001 165580141/45537549124*10749957122^(5/8) 6765000029563931 a001 165580141/192900153618*10749957122^(11/16) 6765000029563931 a001 165580141/312119004989*10749957122^(17/24) 6765000029563931 a001 165580141/817138163596*10749957122^(3/4) 6765000029563931 a001 165580141/2139295485799*10749957122^(19/24) 6765000029563931 a001 165580141/3461452808002*10749957122^(13/16) 6765000029563931 a001 165580141/5600748293801*10749957122^(5/6) 6765000029563931 a001 165580141/14662949395604*10749957122^(7/8) 6765000029563931 a001 139583862445/370248451*4106118243^(3/23) 6765000029563931 a001 165580141/17393796001*10749957122^(7/12) 6765000029563931 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^69 6765000029563931 a001 53316291173/370248451*4106118243^(4/23) 6765000029563931 a001 20365011074/370248451*4106118243^(5/23) 6765000029563931 a001 267914296/1568397607*228826127^(11/20) 6765000029563931 a001 956722026041/370248451*1568397607^(1/22) 6765000029563931 a001 7778742049/370248451*4106118243^(6/23) 6765000029563931 a001 1144206275/230701876*228826127^(3/8) 6765000029563931 a001 2971215073/370248451*17393796001^(2/7) 6765000029563931 a001 2971215073/370248451*14662949395604^(2/9) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(47) 6765000029563931 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(41) 6765000029563931 a001 165580141/6643838879*73681302247^(1/2) 6765000029563931 a001 2971215073/370248451*10749957122^(7/24) 6765000029563931 a001 165580141/6643838879*10749957122^(13/24) 6765000029563931 a001 365435296162/370248451*1568397607^(1/11) 6765000029563931 a001 165580141/45537549124*4106118243^(15/23) 6765000029563931 a001 165580141/17393796001*4106118243^(14/23) 6765000029563931 a001 2971215073/370248451*4106118243^(7/23) 6765000029563931 a001 165580141/119218851371*4106118243^(16/23) 6765000029563931 a001 165580141/312119004989*4106118243^(17/23) 6765000029563931 a001 165580141/817138163596*4106118243^(18/23) 6765000029563931 a001 165580141/2139295485799*4106118243^(19/23) 6765000029563931 a001 165580141/5600748293801*4106118243^(20/23) 6765000029563931 a001 165580141/14662949395604*4106118243^(21/23) 6765000029563931 a001 139583862445/370248451*1568397607^(3/22) 6765000029563931 a001 165580141/6643838879*4106118243^(13/23) 6765000029563931 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^67 6765000029563931 a001 165580141/2537720636*2537720636^(8/15) 6765000029563931 a001 53316291173/370248451*1568397607^(2/11) 6765000029563931 a001 20365011074/370248451*1568397607^(5/22) 6765000029563931 a001 12586269025/370248451*1568397607^(1/4) 6765000029563931 a001 7778742049/370248451*1568397607^(3/11) 6765000029563931 a001 956722026041/370248451*599074578^(1/21) 6765000029563931 a001 2971215073/370248451*1568397607^(7/22) 6765000029563931 a001 165580141/2537720636*45537549124^(8/17) 6765000029563931 a001 165580141/2537720636*14662949395604^(8/21) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(45) 6765000029563931 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(41) 6765000029563931 a001 1134903170/370248451*23725150497407^(1/4) 6765000029563931 a001 165580141/2537720636*192900153618^(4/9) 6765000029563931 a001 1134903170/370248451*73681302247^(4/13) 6765000029563931 a001 165580141/2537720636*73681302247^(6/13) 6765000029563931 a001 1134903170/370248451*10749957122^(1/3) 6765000029563931 a001 165580141/2537720636*10749957122^(1/2) 6765000029563931 a001 1134903170/370248451*4106118243^(8/23) 6765000029563931 a001 165580141/2537720636*4106118243^(12/23) 6765000029563931 a001 591286729879/370248451*599074578^(1/14) 6765000029563931 a001 165580141/17393796001*1568397607^(7/11) 6765000029563931 a001 165580141/6643838879*1568397607^(13/22) 6765000029563931 a001 365435296162/370248451*599074578^(2/21) 6765000029563931 a001 165580141/45537549124*1568397607^(15/22) 6765000029563931 a001 12586269025/4106118243*228826127^(2/5) 6765000029563931 a001 165580141/119218851371*1568397607^(8/11) 6765000029563931 a001 1134903170/370248451*1568397607^(4/11) 6765000029563931 a001 165580141/192900153618*1568397607^(3/4) 6765000029563931 a001 165580141/312119004989*1568397607^(17/22) 6765000029563931 a001 165580141/817138163596*1568397607^(9/11) 6765000029563931 a001 32951280099/10749957122*228826127^(2/5) 6765000029563931 a001 86267571272/28143753123*228826127^(2/5) 6765000029563931 a001 32264490531/10525900321*228826127^(2/5) 6765000029563931 a001 591286729879/192900153618*228826127^(2/5) 6765000029563931 a001 1548008755920/505019158607*228826127^(2/5) 6765000029563931 a001 1515744265389/494493258286*228826127^(2/5) 6765000029563931 a001 2504730781961/817138163596*228826127^(2/5) 6765000029563931 a001 956722026041/312119004989*228826127^(2/5) 6765000029563931 a001 365435296162/119218851371*228826127^(2/5) 6765000029563931 a001 139583862445/45537549124*228826127^(2/5) 6765000029563931 a001 53316291173/17393796001*228826127^(2/5) 6765000029563931 a001 165580141/2139295485799*1568397607^(19/22) 6765000029563931 a001 20365011074/6643838879*228826127^(2/5) 6765000029563931 a001 165580141/5600748293801*1568397607^(10/11) 6765000029563931 a001 165580141/2537720636*1568397607^(6/11) 6765000029563931 a001 165580141/14662949395604*1568397607^(21/22) 6765000029563931 a001 63245986/73681302247*141422324^(11/13) 6765000029563931 a001 139583862445/370248451*599074578^(1/7) 6765000029563931 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^65 6765000029563931 a001 7778742049/969323029*228826127^(7/20) 6765000029563931 a001 86267571272/370248451*599074578^(1/6) 6765000029563931 a001 7778742049/2537720636*228826127^(2/5) 6765000029563931 a001 53316291173/370248451*599074578^(4/21) 6765000029563931 a001 32951280099/370248451*599074578^(3/14) 6765000029563931 a001 2504730781961/969323029*87403803^(1/19) 6765000029563931 a001 20365011074/370248451*599074578^(5/21) 6765000029563931 a001 7778742049/370248451*599074578^(2/7) 6765000029563931 a001 1836311903/1568397607*228826127^(9/20) 6765000029563931 a001 4807526976/969323029*228826127^(3/8) 6765000029563931 a001 1836311903/370248451*599074578^(5/14) 6765000029563931 a001 2971215073/370248451*599074578^(1/3) 6765000029563931 a001 956722026041/370248451*228826127^(1/20) 6765000029563931 a001 433494437/370248451*2537720636^(2/5) 6765000029563931 a001 433494437/370248451*45537549124^(6/17) 6765000029563931 a001 165580141/969323029*312119004989^(2/5) 6765000029563931 a001 433494437/370248451*14662949395604^(2/7) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(43) 6765000029563931 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(41) 6765000029563931 a001 71778070001175617/10610209857723 6765000029563931 a001 433494437/370248451*192900153618^(1/3) 6765000029563931 a001 433494437/370248451*10749957122^(3/8) 6765000029563931 a001 165580141/969323029*10749957122^(11/24) 6765000029563931 a001 433494437/370248451*4106118243^(9/23) 6765000029563931 a001 165580141/969323029*4106118243^(11/23) 6765000029563931 a001 32951280099/228826127*87403803^(4/19) 6765000029563931 a001 1134903170/370248451*599074578^(8/21) 6765000029563931 a001 433494437/370248451*1568397607^(9/22) 6765000029563931 a001 1602508992/1368706081*228826127^(9/20) 6765000029563931 a001 165580141/969323029*1568397607^(1/2) 6765000029563931 a001 12586269025/10749957122*228826127^(9/20) 6765000029563931 a001 10983760033/9381251041*228826127^(9/20) 6765000029563931 a001 86267571272/73681302247*228826127^(9/20) 6765000029563931 a001 75283811239/64300051206*228826127^(9/20) 6765000029563931 a001 2504730781961/2139295485799*228826127^(9/20) 6765000029563931 a001 365435296162/312119004989*228826127^(9/20) 6765000029563931 a001 139583862445/119218851371*228826127^(9/20) 6765000029563931 a001 53316291173/45537549124*228826127^(9/20) 6765000029563931 a001 20365011074/17393796001*228826127^(9/20) 6765000029563931 a001 267914296/4106118243*228826127^(3/5) 6765000029563931 a001 7778742049/6643838879*228826127^(9/20) 6765000029563931 a001 2971215073/969323029*228826127^(2/5) 6765000029563931 a001 701408733/1568397607*228826127^(1/2) 6765000029563931 a001 2971215073/2537720636*228826127^(9/20) 6765000029563931 a001 165580141/2537720636*599074578^(4/7) 6765000029563931 a001 165580141/6643838879*599074578^(13/21) 6765000029563931 a001 165580141/10749957122*599074578^(9/14) 6765000029563931 a001 165580141/17393796001*599074578^(2/3) 6765000029563931 a001 267914296/6643838879*228826127^(5/8) 6765000029563931 a001 365435296162/370248451*228826127^(1/10) 6765000029563931 a001 165580141/45537549124*599074578^(5/7) 6765000029563931 a001 165580141/119218851371*599074578^(16/21) 6765000029563931 a001 1836311903/4106118243*228826127^(1/2) 6765000029563931 a001 165580141/192900153618*599074578^(11/14) 6765000029563931 a001 2403763488/5374978561*228826127^(1/2) 6765000029563931 a001 12586269025/28143753123*228826127^(1/2) 6765000029563931 a001 32951280099/73681302247*228826127^(1/2) 6765000029563931 a001 43133785636/96450076809*228826127^(1/2) 6765000029563931 a001 225851433717/505019158607*228826127^(1/2) 6765000029563931 a001 591286729879/1322157322203*228826127^(1/2) 6765000029563931 a001 10610209857723/23725150497407*228826127^(1/2) 6765000029563931 a001 182717648081/408569081798*228826127^(1/2) 6765000029563931 a001 139583862445/312119004989*228826127^(1/2) 6765000029563931 a001 53316291173/119218851371*228826127^(1/2) 6765000029563931 a001 10182505537/22768774562*228826127^(1/2) 6765000029563931 a001 165580141/312119004989*599074578^(17/21) 6765000029563931 a001 433494437/370248451*599074578^(3/7) 6765000029563931 a001 7778742049/17393796001*228826127^(1/2) 6765000029563931 a001 2971215073/6643838879*228826127^(1/2) 6765000029563931 a001 165580141/505019158607*599074578^(5/6) 6765000029563931 a001 133957148/5374978561*228826127^(13/20) 6765000029563931 a001 225851433717/370248451*228826127^(1/8) 6765000029563931 a001 165580141/817138163596*599074578^(6/7) 6765000029563931 a001 1134903170/969323029*228826127^(9/20) 6765000029563931 a001 165580141/2139295485799*599074578^(19/21) 6765000029563931 a001 165580141/969323029*599074578^(11/21) 6765000029563931 a001 567451585/1268860318*228826127^(1/2) 6765000029563931 a001 165580141/3461452808002*599074578^(13/14) 6765000029563931 a001 165580141/5600748293801*599074578^(20/21) 6765000029563931 a001 233802911/1368706081*228826127^(11/20) 6765000029563931 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^63 6765000029563931 a001 139583862445/370248451*228826127^(3/20) 6765000029563931 a001 1836311903/10749957122*228826127^(11/20) 6765000029563931 a001 1602508992/9381251041*228826127^(11/20) 6765000029563931 a001 12586269025/73681302247*228826127^(11/20) 6765000029563931 a001 10983760033/64300051206*228826127^(11/20) 6765000029563931 a001 86267571272/505019158607*228826127^(11/20) 6765000029563931 a001 75283811239/440719107401*228826127^(11/20) 6765000029563931 a001 2504730781961/14662949395604*228826127^(11/20) 6765000029563931 a001 139583862445/817138163596*228826127^(11/20) 6765000029563931 a001 53316291173/312119004989*228826127^(11/20) 6765000029563931 a001 20365011074/119218851371*228826127^(11/20) 6765000029563931 a001 7778742049/45537549124*228826127^(11/20) 6765000029563931 a001 2971215073/17393796001*228826127^(11/20) 6765000029563931 a001 267914296/28143753123*228826127^(7/10) 6765000029563931 a001 1134903170/6643838879*228826127^(11/20) 6765000029563931 a001 591286729879/599074578*87403803^(2/19) 6765000029563931 a001 701408733/10749957122*228826127^(3/5) 6765000029563931 a001 53316291173/370248451*228826127^(1/5) 6765000029563931 a001 1836311903/28143753123*228826127^(3/5) 6765000029563931 a001 686789568/10525900321*228826127^(3/5) 6765000029563931 a001 12586269025/192900153618*228826127^(3/5) 6765000029563931 a001 32951280099/505019158607*228826127^(3/5) 6765000029563931 a001 86267571272/1322157322203*228826127^(3/5) 6765000029563931 a001 32264490531/494493258286*228826127^(3/5) 6765000029563931 a001 591286729879/9062201101803*228826127^(3/5) 6765000029563931 a001 1548008755920/23725150497407*228826127^(3/5) 6765000029563931 a001 365435296162/5600748293801*228826127^(3/5) 6765000029563931 a001 139583862445/2139295485799*228826127^(3/5) 6765000029563931 a001 53316291173/817138163596*228826127^(3/5) 6765000029563931 a001 20365011074/312119004989*228826127^(3/5) 6765000029563931 a001 7778742049/119218851371*228826127^(3/5) 6765000029563931 a001 2971215073/45537549124*228826127^(3/5) 6765000029563931 a001 701408733/17393796001*228826127^(5/8) 6765000029563931 a001 267914296/73681302247*228826127^(3/4) 6765000029563931 a001 63245986/17393796001*141422324^(10/13) 6765000029563931 a001 1134903170/17393796001*228826127^(3/5) 6765000029563931 a001 433494437/969323029*228826127^(1/2) 6765000029563931 a001 433494437/2537720636*228826127^(11/20) 6765000029563931 a001 1836311903/45537549124*228826127^(5/8) 6765000029563931 a001 4807526976/119218851371*228826127^(5/8) 6765000029563931 a001 1144206275/28374454999*228826127^(5/8) 6765000029563931 a001 32951280099/817138163596*228826127^(5/8) 6765000029563931 a001 86267571272/2139295485799*228826127^(5/8) 6765000029563931 a001 225851433717/5600748293801*228826127^(5/8) 6765000029563931 a001 591286729879/14662949395604*228826127^(5/8) 6765000029563931 a001 365435296162/9062201101803*228826127^(5/8) 6765000029563931 a001 139583862445/3461452808002*228826127^(5/8) 6765000029563931 a001 53316291173/1322157322203*228826127^(5/8) 6765000029563931 a001 20365011074/505019158607*228826127^(5/8) 6765000029563931 a001 7778742049/192900153618*228826127^(5/8) 6765000029563931 a001 2971215073/73681302247*228826127^(5/8) 6765000029563931 a001 233802911/9381251041*228826127^(13/20) 6765000029563931 a001 20365011074/370248451*228826127^(1/4) 6765000029563931 a001 1134903170/28143753123*228826127^(5/8) 6765000029563931 a001 1836311903/73681302247*228826127^(13/20) 6765000029563931 a001 267084832/10716675201*228826127^(13/20) 6765000029563931 a001 12586269025/505019158607*228826127^(13/20) 6765000029563931 a001 10983760033/440719107401*228826127^(13/20) 6765000029563931 a001 43133785636/1730726404001*228826127^(13/20) 6765000029563931 a001 75283811239/3020733700601*228826127^(13/20) 6765000029563931 a001 182717648081/7331474697802*228826127^(13/20) 6765000029563931 a001 139583862445/5600748293801*228826127^(13/20) 6765000029563931 a001 53316291173/2139295485799*228826127^(13/20) 6765000029563931 a001 10182505537/408569081798*228826127^(13/20) 6765000029563931 a001 7778742049/312119004989*228826127^(13/20) 6765000029563931 a001 2971215073/119218851371*228826127^(13/20) 6765000029563931 a001 133957148/96450076809*228826127^(4/5) 6765000029563931 a001 433494437/6643838879*228826127^(3/5) 6765000029563931 a001 567451585/22768774562*228826127^(13/20) 6765000029563931 a001 701408733/73681302247*228826127^(7/10) 6765000029563931 a001 433494437/10749957122*228826127^(5/8) 6765000029563931 a001 7778742049/370248451*228826127^(3/10) 6765000029563931 a001 1836311903/192900153618*228826127^(7/10) 6765000029563931 a001 102287808/10745088481*228826127^(7/10) 6765000029563931 a001 12586269025/1322157322203*228826127^(7/10) 6765000029563931 a001 32951280099/3461452808002*228826127^(7/10) 6765000029563931 a001 86267571272/9062201101803*228826127^(7/10) 6765000029563931 a001 225851433717/23725150497407*228826127^(7/10) 6765000029563931 a001 139583862445/14662949395604*228826127^(7/10) 6765000029563931 a001 53316291173/5600748293801*228826127^(7/10) 6765000029563931 a001 20365011074/2139295485799*228826127^(7/10) 6765000029563931 a001 7778742049/817138163596*228826127^(7/10) 6765000029563931 a001 1548008755920/1568397607*87403803^(2/19) 6765000029563931 a001 2971215073/312119004989*228826127^(7/10) 6765000029563931 a001 267914296/505019158607*228826127^(17/20) 6765000029563931 a001 433494437/17393796001*228826127^(13/20) 6765000029563931 a001 1134903170/119218851371*228826127^(7/10) 6765000029563931 a001 4052739537881/4106118243*87403803^(2/19) 6765000029563931 a001 4807525989/4870846*87403803^(2/19) 6765000029563931 a001 6557470319842/6643838879*87403803^(2/19) 6765000029563931 a001 233802911/64300051206*228826127^(3/4) 6765000029563931 a001 66978574/204284540899*228826127^(7/8) 6765000029563931 a001 2504730781961/2537720636*87403803^(2/19) 6765000029563931 a001 2971215073/370248451*228826127^(7/20) 6765000029563931 a001 956722026041/370248451*87403803^(1/19) 6765000029563931 a001 1836311903/505019158607*228826127^(3/4) 6765000029563931 a001 1602508992/440719107401*228826127^(3/4) 6765000029563931 a001 12586269025/3461452808002*228826127^(3/4) 6765000029563931 a001 10983760033/3020733700601*228826127^(3/4) 6765000029563931 a001 86267571272/23725150497407*228826127^(3/4) 6765000029563931 a001 53316291173/14662949395604*228826127^(3/4) 6765000029563931 a001 20365011074/5600748293801*228826127^(3/4) 6765000029563931 a001 7778742049/2139295485799*228826127^(3/4) 6765000029563931 a001 2971215073/817138163596*228826127^(3/4) 6765000029563931 a001 1836311903/370248451*228826127^(3/8) 6765000029563931 a001 267914296/1322157322203*228826127^(9/10) 6765000029563931 a001 433494437/45537549124*228826127^(7/10) 6765000029563931 a001 1134903170/312119004989*228826127^(3/4) 6765000029563931 a001 165580141/370248451*2537720636^(4/9) 6765000029563931 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(41) 6765000029563931 a001 165580141/370248451*23725150497407^(5/16) 6765000029563931 a001 27416783093579881/4052739537881 6765000029563931 a001 165580141/370248451*505019158607^(5/14) 6765000029563931 a001 165580141/370248451*73681302247^(5/13) 6765000029563931 a001 165580141/370248451*28143753123^(2/5) 6765000029563931 a001 165580141/370248451*10749957122^(5/12) 6765000029563931 a001 165580141/370248451*4106118243^(10/23) 6765000029563931 a001 165580141/370248451*1568397607^(5/11) 6765000029563931 a001 956722026041/969323029*87403803^(2/19) 6765000029563931 a001 701408733/505019158607*228826127^(4/5) 6765000029563931 a001 1134903170/370248451*228826127^(2/5) 6765000029563931 a001 1836311903/1322157322203*228826127^(4/5) 6765000029563931 a001 14930208/10749853441*228826127^(4/5) 6765000029563931 a001 12586269025/9062201101803*228826127^(4/5) 6765000029563931 a001 32951280099/23725150497407*228826127^(4/5) 6765000029563931 a001 10182505537/7331474697802*228826127^(4/5) 6765000029563931 a001 7778742049/5600748293801*228826127^(4/5) 6765000029563931 a001 2971215073/2139295485799*228826127^(4/5) 6765000029563931 a001 63245986/4106118243*141422324^(9/13) 6765000029563931 a001 12586269025/228826127*87403803^(5/19) 6765000029563931 a001 133957148/1730726404001*228826127^(19/20) 6765000029563931 a001 433494437/119218851371*228826127^(3/4) 6765000029563931 a001 567451585/408569081798*228826127^(4/5) 6765000029563931 a001 233802911/440719107401*228826127^(17/20) 6765000029563931 a001 165580141/370248451*599074578^(10/21) 6765000029563931 a001 1836311903/3461452808002*228826127^(17/20) 6765000029563931 a001 1602508992/3020733700601*228826127^(17/20) 6765000029563931 a001 12586269025/23725150497407*228826127^(17/20) 6765000029563931 a001 7778742049/14662949395604*228826127^(17/20) 6765000029563931 a001 2971215073/5600748293801*228826127^(17/20) 6765000029563931 a001 701408733/2139295485799*228826127^(7/8) 6765000029563931 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^62 6765000029563931 a001 433494437/312119004989*228826127^(4/5) 6765000029563931 a001 1134903170/2139295485799*228826127^(17/20) 6765000029563931 a001 1836311903/5600748293801*228826127^(7/8) 6765000029563931 a001 1201881744/3665737348901*228826127^(7/8) 6765000029563931 a001 7778742049/23725150497407*228826127^(7/8) 6765000029563931 a001 2971215073/9062201101803*228826127^(7/8) 6765000029563931 a001 701408733/3461452808002*228826127^(9/10) 6765000029563931 a001 31622993/1268860318*141422324^(2/3) 6765000029563931 a001 567451585/1730726404001*228826127^(7/8) 6765000029563931 a001 433494437/370248451*228826127^(9/20) 6765000029563931 a001 1836311903/9062201101803*228826127^(9/10) 6765000029563931 a001 4807526976/23725150497407*228826127^(9/10) 6765000029563931 a001 2971215073/14662949395604*228826127^(9/10) 6765000029563931 a001 433494437/817138163596*228826127^(17/20) 6765000029563931 a001 1134903170/5600748293801*228826127^(9/10) 6765000029563931 a001 233802911/3020733700601*228826127^(19/20) 6765000029563931 a001 433494437/1322157322203*228826127^(7/8) 6765000029563931 a001 267913919/710646*87403803^(3/19) 6765000029563931 a001 1836311903/23725150497407*228826127^(19/20) 6765000029563931 a001 433494437/2139295485799*228826127^(9/10) 6765000029563931 a001 567451585/7331474697802*228826127^(19/20) 6765000029563931 a001 10983760033/29134601*33385282^(1/6) 6765000029563932 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^64 6765000029563932 a001 165580141/969323029*228826127^(11/20) 6765000029563932 a001 165580141/2537720636*228826127^(3/5) 6765000029563932 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^66 6765000029563932 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^68 6765000029563932 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^70 6765000029563932 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^72 6765000029563932 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^74 6765000029563932 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^76 6765000029563932 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^78 6765000029563932 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^80 6765000029563932 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^82 6765000029563932 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^84 6765000029563932 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^86 6765000029563932 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^88 6765000029563932 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^90 6765000029563932 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^92 6765000029563932 a004 Fibonacci(74)*Lucas(40)/(1/2+sqrt(5)/2)^94 6765000029563932 a004 Fibonacci(76)*Lucas(40)/(1/2+sqrt(5)/2)^96 6765000029563932 a004 Fibonacci(78)*Lucas(40)/(1/2+sqrt(5)/2)^98 6765000029563932 a004 Fibonacci(80)*Lucas(40)/(1/2+sqrt(5)/2)^100 6765000029563932 a001 2/102334155*(1/2+1/2*5^(1/2))^60 6765000029563932 a004 Fibonacci(79)*Lucas(40)/(1/2+sqrt(5)/2)^99 6765000029563932 a004 Fibonacci(77)*Lucas(40)/(1/2+sqrt(5)/2)^97 6765000029563932 a004 Fibonacci(75)*Lucas(40)/(1/2+sqrt(5)/2)^95 6765000029563932 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^93 6765000029563932 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^91 6765000029563932 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^89 6765000029563932 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^87 6765000029563932 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^85 6765000029563932 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^83 6765000029563932 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^81 6765000029563932 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^79 6765000029563932 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^77 6765000029563932 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^75 6765000029563932 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^73 6765000029563932 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^71 6765000029563932 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^69 6765000029563932 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^67 6765000029563932 a001 165580141/4106118243*228826127^(5/8) 6765000029563932 a001 433494437/5600748293801*228826127^(19/20) 6765000029563932 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^65 6765000029563932 a001 165580141/6643838879*228826127^(13/20) 6765000029563932 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^63 6765000029563932 a001 591286729879/1568397607*87403803^(3/19) 6765000029563932 a001 63245986/969323029*141422324^(8/13) 6765000029563932 a001 516002918640/1368706081*87403803^(3/19) 6765000029563932 a001 4052739537881/10749957122*87403803^(3/19) 6765000029563932 a001 165580141/17393796001*228826127^(7/10) 6765000029563932 a001 3536736619241/9381251041*87403803^(3/19) 6765000029563932 a001 6557470319842/17393796001*87403803^(3/19) 6765000029563932 a001 2504730781961/6643838879*87403803^(3/19) 6765000029563932 a001 956722026041/2537720636*87403803^(3/19) 6765000029563932 a001 365435296162/370248451*87403803^(2/19) 6765000029563932 a001 165580141/45537549124*228826127^(3/4) 6765000029563932 a001 365435296162/969323029*87403803^(3/19) 6765000029563932 a001 102287808/4868641*87403803^(6/19) 6765000029563932 a001 165580141/119218851371*228826127^(4/5) 6765000029563932 a001 165580141/312119004989*228826127^(17/20) 6765000029563932 a001 165580141/505019158607*228826127^(7/8) 6765000029563932 a001 165580141/370248451*228826127^(1/2) 6765000029563932 a001 165580141/817138163596*228826127^(9/10) 6765000029563932 a001 43133785636/299537289*87403803^(4/19) 6765000029563932 a001 165580141/2139295485799*228826127^(19/20) 6765000029563932 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^61 6765000029563932 a001 32264490531/224056801*87403803^(4/19) 6765000029563932 a001 591286729879/4106118243*87403803^(4/19) 6765000029563932 a001 774004377960/5374978561*87403803^(4/19) 6765000029563932 a001 4052739537881/28143753123*87403803^(4/19) 6765000029563932 a001 1515744265389/10525900321*87403803^(4/19) 6765000029563932 a001 3278735159921/22768774562*87403803^(4/19) 6765000029563932 a001 2504730781961/17393796001*87403803^(4/19) 6765000029563932 a001 956722026041/6643838879*87403803^(4/19) 6765000029563932 a001 182717648081/1268860318*87403803^(4/19) 6765000029563932 a001 139583862445/370248451*87403803^(3/19) 6765000029563932 a001 139583862445/969323029*87403803^(4/19) 6765000029563932 a001 1836311903/228826127*87403803^(7/19) 6765000029563932 a001 701408733/141422324*141422324^(5/13) 6765000029563932 a001 102334155/228826127*87403803^(10/19) 6765000029563932 a001 591286729879/228826127*33385282^(1/18) 6765000029563932 a001 63245986/228826127*2537720636^(7/15) 6765000029563932 a001 63245986/228826127*17393796001^(3/7) 6765000029563932 a001 63245986/228826127*45537549124^(7/17) 6765000029563932 a001 102334155/141422324*817138163596^(1/3) 6765000029563932 a001 63245986/228826127*14662949395604^(1/3) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(40) 6765000029563932 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(39) 6765000029563932 a001 63245986/228826127*192900153618^(7/18) 6765000029563932 a001 63245986/228826127*10749957122^(7/16) 6765000029563932 a001 10983760033/199691526*87403803^(5/19) 6765000029563932 a001 63245986/228826127*599074578^(1/2) 6765000029563932 a001 1836311903/141422324*141422324^(1/3) 6765000029563932 a001 86267571272/1568397607*87403803^(5/19) 6765000029563932 a001 165580141/141422324*141422324^(6/13) 6765000029563932 a001 75283811239/1368706081*87403803^(5/19) 6765000029563932 a001 591286729879/10749957122*87403803^(5/19) 6765000029563932 a001 12585437040/228811001*87403803^(5/19) 6765000029563932 a001 4052739537881/73681302247*87403803^(5/19) 6765000029563932 a001 3536736619241/64300051206*87403803^(5/19) 6765000029563932 a001 6557470319842/119218851371*87403803^(5/19) 6765000029563932 a001 2504730781961/45537549124*87403803^(5/19) 6765000029563932 a001 956722026041/17393796001*87403803^(5/19) 6765000029563932 a001 365435296162/6643838879*87403803^(5/19) 6765000029563932 a001 139583862445/2537720636*87403803^(5/19) 6765000029563932 a001 2971215073/141422324*141422324^(4/13) 6765000029563932 a001 53316291173/370248451*87403803^(4/19) 6765000029563932 a001 53316291173/969323029*87403803^(5/19) 6765000029563932 a001 701408733/228826127*87403803^(8/19) 6765000029563932 a001 12586269025/141422324*141422324^(3/13) 6765000029563932 a001 12586269025/599074578*87403803^(6/19) 6765000029563932 a001 267914296/228826127*87403803^(9/19) 6765000029563932 a001 32951280099/1568397607*87403803^(6/19) 6765000029563932 a001 86267571272/4106118243*87403803^(6/19) 6765000029563932 a001 225851433717/10749957122*87403803^(6/19) 6765000029563932 a001 591286729879/28143753123*87403803^(6/19) 6765000029563932 a001 1548008755920/73681302247*87403803^(6/19) 6765000029563932 a001 4052739537881/192900153618*87403803^(6/19) 6765000029563932 a001 225749145909/10745088481*87403803^(6/19) 6765000029563932 a001 6557470319842/312119004989*87403803^(6/19) 6765000029563932 a001 2504730781961/119218851371*87403803^(6/19) 6765000029563932 a001 956722026041/45537549124*87403803^(6/19) 6765000029563932 a001 365435296162/17393796001*87403803^(6/19) 6765000029563932 a001 139583862445/6643838879*87403803^(6/19) 6765000029563932 a001 53316291173/2537720636*87403803^(6/19) 6765000029563932 a001 20365011074/370248451*87403803^(5/19) 6765000029563932 a001 53316291173/141422324*141422324^(2/13) 6765000029563932 a001 9227465/33385282*20633239^(3/5) 6765000029563932 a001 20365011074/969323029*87403803^(6/19) 6765000029563932 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^60 6765000029563932 a001 267084832/33281921*87403803^(7/19) 6765000029563932 a001 225851433717/141422324*141422324^(1/13) 6765000029563932 a001 86000486440/33281921*33385282^(1/18) 6765000029563932 a001 66978574/35355581*45537549124^(1/3) 6765000029563932 a001 16944503814015856/2504730781961 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(42) 6765000029563932 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(39) 6765000029563932 a001 31622993/299537289*4106118243^(1/2) 6765000029563932 a001 12586269025/1568397607*87403803^(7/19) 6765000029563932 a001 10983760033/1368706081*87403803^(7/19) 6765000029563932 a001 43133785636/5374978561*87403803^(7/19) 6765000029563932 a001 75283811239/9381251041*87403803^(7/19) 6765000029563932 a001 591286729879/73681302247*87403803^(7/19) 6765000029563932 a001 86000486440/10716675201*87403803^(7/19) 6765000029563932 a001 4052739537881/505019158607*87403803^(7/19) 6765000029563932 a001 3278735159921/408569081798*87403803^(7/19) 6765000029563932 a001 2504730781961/312119004989*87403803^(7/19) 6765000029563932 a001 956722026041/119218851371*87403803^(7/19) 6765000029563932 a001 182717648081/22768774562*87403803^(7/19) 6765000029563932 a001 139583862445/17393796001*87403803^(7/19) 6765000029563932 a001 53316291173/6643838879*87403803^(7/19) 6765000029563932 a001 10182505537/1268860318*87403803^(7/19) 6765000029563932 a001 7778742049/370248451*87403803^(6/19) 6765000029563932 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^62 6765000029563932 a001 7778742049/969323029*87403803^(7/19) 6765000029563932 a001 4052739537881/1568397607*33385282^(1/18) 6765000029563932 a001 63245986/1568397607*2537720636^(5/9) 6765000029563932 a001 701408733/141422324*2537720636^(1/3) 6765000029563932 a001 701408733/141422324*45537549124^(5/17) 6765000029563932 a001 63245986/1568397607*312119004989^(5/11) 6765000029563932 a001 22180643453797869/3278735159921 6765000029563932 a001 701408733/141422324*14662949395604^(5/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(44) 6765000029563932 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(39) 6765000029563932 a001 701408733/141422324*192900153618^(5/18) 6765000029563932 a001 701408733/141422324*28143753123^(3/10) 6765000029563932 a001 63245986/1568397607*28143753123^(1/2) 6765000029563932 a001 701408733/141422324*10749957122^(5/16) 6765000029563932 a001 3536736619241/1368706081*33385282^(1/18) 6765000029563932 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^64 6765000029563932 a001 63245986/4106118243*2537720636^(3/5) 6765000029563932 a001 63245986/5600748293801*2537720636^(14/15) 6765000029563932 a001 63245986/2139295485799*2537720636^(8/9) 6765000029563932 a001 63245986/1322157322203*2537720636^(13/15) 6765000029563932 a001 63245986/312119004989*2537720636^(4/5) 6765000029563932 a001 31622993/96450076809*2537720636^(7/9) 6765000029563932 a001 63245986/73681302247*2537720636^(11/15) 6765000029563932 a001 63245986/17393796001*2537720636^(2/3) 6765000029563932 a001 63245986/4106118243*45537549124^(9/17) 6765000029563932 a001 63245986/4106118243*817138163596^(9/19) 6765000029563932 a001 63245986/4106118243*14662949395604^(3/7) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(46) 6765000029563932 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(39) 6765000029563932 a001 63245986/4106118243*192900153618^(1/2) 6765000029563932 a001 1836311903/141422324*73681302247^(1/4) 6765000029563932 a001 63245986/4106118243*10749957122^(9/16) 6765000029563932 a001 12586269025/141422324*2537720636^(1/5) 6765000029563932 a001 7778742049/141422324*2537720636^(2/9) 6765000029563932 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^66 6765000029563932 a001 53316291173/141422324*2537720636^(2/15) 6765000029563932 a001 2971215073/141422324*2537720636^(4/15) 6765000029563932 a001 21566892818/35355581*2537720636^(1/9) 6765000029563932 a001 225851433717/141422324*2537720636^(1/15) 6765000029563932 a001 1201881744/35355581*312119004989^(1/5) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(48) 6765000029563932 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(39) 6765000029563932 a001 31622993/5374978561*1322157322203^(1/2) 6765000029563932 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^68 6765000029563932 a001 63245986/5600748293801*17393796001^(6/7) 6765000029563932 a001 31622993/96450076809*17393796001^(5/7) 6765000029563932 a001 12586269025/141422324*45537549124^(3/17) 6765000029563932 a001 12586269025/141422324*817138163596^(3/19) 6765000029563932 a001 12586269025/141422324*14662949395604^(1/7) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(50) 6765000029563932 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(39) 6765000029563932 a001 63245986/28143753123*9062201101803^(1/2) 6765000029563932 a001 12586269025/141422324*192900153618^(1/6) 6765000029563932 a001 63246219/271444*17393796001^(1/7) 6765000029563932 a001 63245986/73681302247*45537549124^(11/17) 6765000029563932 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^70 6765000029563932 a001 63245986/23725150497407*45537549124^(15/17) 6765000029563932 a001 63245986/5600748293801*45537549124^(14/17) 6765000029563932 a001 63245986/1322157322203*45537549124^(13/17) 6765000029563932 a001 63245986/312119004989*45537549124^(12/17) 6765000029563932 a001 63245986/119218851371*45537549124^(2/3) 6765000029563932 a001 63245986/73681302247*312119004989^(3/5) 6765000029563932 a001 63245986/73681302247*817138163596^(11/19) 6765000029563932 a001 63245986/73681302247*14662949395604^(11/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(52) 6765000029563932 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(39) 6765000029563932 a001 63245986/73681302247*192900153618^(11/18) 6765000029563932 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^72 6765000029563932 a001 225851433717/141422324*45537549124^(1/17) 6765000029563932 a001 21566892818/35355581*312119004989^(1/11) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(54) 6765000029563932 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(39) 6765000029563932 a001 31622993/96450076809*505019158607^(5/8) 6765000029563932 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^74 6765000029563932 a001 63245986/23725150497407*312119004989^(9/11) 6765000029563932 a001 31622993/7331474697802*312119004989^(4/5) 6765000029563932 a001 225851433717/141422324*14662949395604^(1/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(56) 6765000029563932 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(39) 6765000029563932 a001 225851433717/141422324*192900153618^(1/18) 6765000029563932 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^76 6765000029563932 a001 63245986/5600748293801*817138163596^(14/19) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(58) 6765000029563932 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(39) 6765000029563932 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^78 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(60) 6765000029563932 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2) 6765000029563932 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^80 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(62) 6765000029563932 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^3 6765000029563932 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^82 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(64) 6765000029563932 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^5 6765000029563932 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^84 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(66) 6765000029563932 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^7 6765000029563932 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^86 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(68) 6765000029563932 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^9 6765000029563932 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^88 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(70) 6765000029563932 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^11 6765000029563932 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^90 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(72) 6765000029563932 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^13 6765000029563932 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^92 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(74) 6765000029563932 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^15 6765000029563932 a004 Fibonacci(39)*Lucas(75)/(1/2+sqrt(5)/2)^94 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(76) 6765000029563932 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^17 6765000029563932 a004 Fibonacci(39)*Lucas(77)/(1/2+sqrt(5)/2)^96 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(78) 6765000029563932 a004 Fibonacci(39)*Lucas(79)/(1/2+sqrt(5)/2)^98 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(80) 6765000029563932 a004 Fibonacci(39)*Lucas(81)/(1/2+sqrt(5)/2)^100 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(82) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(84) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(86) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(88) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(90) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(92) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^75/Lucas(94) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^77/Lucas(96) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^79/Lucas(98) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^80/Lucas(99) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^81/Lucas(100) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^78/Lucas(97) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^76/Lucas(95) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(93) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(91) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(89) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(87) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(85) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(83) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(81) 6765000029563932 a004 Fibonacci(39)*Lucas(80)/(1/2+sqrt(5)/2)^99 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(79) 6765000029563932 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^21 6765000029563932 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^23 6765000029563932 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^25 6765000029563932 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^27 6765000029563932 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^29 6765000029563932 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^31 6765000029563932 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^33 6765000029563932 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^35 6765000029563932 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^37 6765000029563932 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^39 6765000029563932 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^41 6765000029563932 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^40 6765000029563932 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^38 6765000029563932 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^36 6765000029563932 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^34 6765000029563932 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^32 6765000029563932 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^30 6765000029563932 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^28 6765000029563932 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^26 6765000029563932 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^24 6765000029563932 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^22 6765000029563932 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^20 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(77) 6765000029563932 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^18 6765000029563932 a004 Fibonacci(39)*Lucas(76)/(1/2+sqrt(5)/2)^95 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(75) 6765000029563932 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^16 6765000029563932 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^93 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(73) 6765000029563932 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^14 6765000029563932 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^91 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(71) 6765000029563932 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^12 6765000029563932 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^89 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(69) 6765000029563932 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^10 6765000029563932 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^87 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(67) 6765000029563932 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^8 6765000029563932 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^85 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(65) 6765000029563932 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^6 6765000029563932 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^83 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(63) 6765000029563932 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^4 6765000029563932 a001 31622993/7331474697802*23725150497407^(11/16) 6765000029563932 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^81 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(61) 6765000029563932 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^2 6765000029563932 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^79 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(59) 6765000029563932 a006 5^(1/2)*Fibonacci(59)/Lucas(39)/sqrt(5) 6765000029563932 a001 63245986/2139295485799*23725150497407^(5/8) 6765000029563932 a001 31622993/408569081798*817138163596^(2/3) 6765000029563932 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^77 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(57) 6765000029563932 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(39) 6765000029563932 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^75 6765000029563932 a001 63245986/312119004989*14662949395604^(4/7) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(55) 6765000029563932 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(39) 6765000029563932 a001 139583862445/141422324*23725150497407^(1/16) 6765000029563932 a001 53316291173/141422324*45537549124^(2/17) 6765000029563932 a001 63245986/1322157322203*192900153618^(13/18) 6765000029563932 a001 63245986/5600748293801*192900153618^(7/9) 6765000029563932 a001 139583862445/141422324*73681302247^(1/13) 6765000029563932 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^73 6765000029563932 a001 63245986/312119004989*192900153618^(2/3) 6765000029563932 a001 53316291173/141422324*14662949395604^(2/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(53) 6765000029563932 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(39) 6765000029563932 a001 21566892818/35355581*28143753123^(1/10) 6765000029563932 a001 63245986/1322157322203*73681302247^(3/4) 6765000029563932 a001 63245986/312119004989*73681302247^(9/13) 6765000029563932 a001 63245986/2139295485799*73681302247^(10/13) 6765000029563932 a001 31622993/7331474697802*73681302247^(11/13) 6765000029563932 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^71 6765000029563932 a001 12586269025/141422324*10749957122^(3/16) 6765000029563932 a001 182717648081/70711162*10749957122^(1/24) 6765000029563932 a001 3278735159921/1268860318*33385282^(1/18) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(51) 6765000029563932 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(39) 6765000029563932 a001 10182505537/70711162*23725150497407^(1/8) 6765000029563932 a001 10182505537/70711162*505019158607^(1/7) 6765000029563932 a001 31622993/22768774562*505019158607^(4/7) 6765000029563932 a001 10182505537/70711162*73681302247^(2/13) 6765000029563932 a001 225851433717/141422324*10749957122^(1/16) 6765000029563932 a001 31622993/22768774562*73681302247^(8/13) 6765000029563932 a001 139583862445/141422324*10749957122^(1/12) 6765000029563932 a001 31622993/96450076809*28143753123^(7/10) 6765000029563932 a001 63245986/2139295485799*28143753123^(4/5) 6765000029563932 a001 63245986/23725150497407*28143753123^(9/10) 6765000029563932 a001 53316291173/141422324*10749957122^(1/8) 6765000029563932 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^69 6765000029563932 a001 10182505537/70711162*10749957122^(1/6) 6765000029563932 a001 182717648081/70711162*4106118243^(1/23) 6765000029563932 a001 63245986/17393796001*45537549124^(10/17) 6765000029563932 a001 63245986/17393796001*312119004989^(6/11) 6765000029563932 a001 7778742049/141422324*312119004989^(2/11) 6765000029563932 a001 63245986/17393796001*14662949395604^(10/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(49) 6765000029563932 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(39) 6765000029563932 a001 63245986/17393796001*192900153618^(5/9) 6765000029563932 a001 7778742049/141422324*28143753123^(1/5) 6765000029563932 a001 63245986/17393796001*28143753123^(3/5) 6765000029563932 a001 7778742049/141422324*10749957122^(5/24) 6765000029563932 a001 139583862445/141422324*4106118243^(2/23) 6765000029563932 a001 63245986/73681302247*10749957122^(11/16) 6765000029563932 a001 63245986/119218851371*10749957122^(17/24) 6765000029563932 a001 31622993/22768774562*10749957122^(2/3) 6765000029563932 a001 63245986/312119004989*10749957122^(3/4) 6765000029563932 a001 31622993/408569081798*10749957122^(19/24) 6765000029563932 a001 63245986/1322157322203*10749957122^(13/16) 6765000029563932 a001 63245986/2139295485799*10749957122^(5/6) 6765000029563932 a001 63245986/5600748293801*10749957122^(7/8) 6765000029563932 a001 53316291173/141422324*4106118243^(3/23) 6765000029563932 a001 31622993/7331474697802*10749957122^(11/12) 6765000029563932 a001 63245986/23725150497407*10749957122^(15/16) 6765000029563932 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^67 6765000029563932 a001 63245986/17393796001*10749957122^(5/8) 6765000029563932 a001 10182505537/70711162*4106118243^(4/23) 6765000029563932 a001 7778742049/141422324*4106118243^(5/23) 6765000029563932 a001 182717648081/70711162*1568397607^(1/22) 6765000029563932 a001 63245986/6643838879*17393796001^(4/7) 6765000029563932 a001 2971215073/141422324*45537549124^(4/17) 6765000029563932 a001 2971215073/141422324*817138163596^(4/19) 6765000029563932 a001 63245986/6643838879*14662949395604^(4/9) 6765000029563932 a001 2971215073/141422324*14662949395604^(4/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(47) 6765000029563932 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(39) 6765000029563932 a001 63245986/6643838879*505019158607^(1/2) 6765000029563932 a001 2971215073/141422324*192900153618^(2/9) 6765000029563932 a001 2971215073/141422324*73681302247^(3/13) 6765000029563932 a001 63245986/6643838879*73681302247^(7/13) 6765000029563932 a001 2971215073/141422324*10749957122^(1/4) 6765000029563932 a001 63245986/6643838879*10749957122^(7/12) 6765000029563932 a001 139583862445/141422324*1568397607^(1/11) 6765000029563932 a001 2971215073/141422324*4106118243^(6/23) 6765000029563932 a001 31622993/22768774562*4106118243^(16/23) 6765000029563932 a001 63245986/17393796001*4106118243^(15/23) 6765000029563932 a001 63245986/119218851371*4106118243^(17/23) 6765000029563932 a001 63245986/312119004989*4106118243^(18/23) 6765000029563932 a001 31622993/408569081798*4106118243^(19/23) 6765000029563932 a001 63245986/2139295485799*4106118243^(20/23) 6765000029563932 a001 63245986/5600748293801*4106118243^(21/23) 6765000029563932 a001 53316291173/141422324*1568397607^(3/22) 6765000029563932 a001 31622993/7331474697802*4106118243^(22/23) 6765000029563932 a001 63245986/6643838879*4106118243^(14/23) 6765000029563932 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^65 6765000029563932 a001 10182505537/70711162*1568397607^(2/11) 6765000029563932 a001 1201881744/35355581*1568397607^(1/4) 6765000029563932 a001 7778742049/141422324*1568397607^(5/22) 6765000029563932 a001 182717648081/70711162*599074578^(1/21) 6765000029563932 a001 2971215073/141422324*1568397607^(3/11) 6765000029563932 a001 567451585/70711162*17393796001^(2/7) 6765000029563932 a001 567451585/70711162*14662949395604^(2/9) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(45) 6765000029563932 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(39) 6765000029563932 a001 567451585/70711162*505019158607^(1/4) 6765000029563932 a001 31622993/1268860318*73681302247^(1/2) 6765000029563932 a001 567451585/70711162*10749957122^(7/24) 6765000029563932 a001 31622993/1268860318*10749957122^(13/24) 6765000029563932 a001 567451585/70711162*4106118243^(7/23) 6765000029563932 a001 31622993/1268860318*4106118243^(13/23) 6765000029563932 a001 225851433717/141422324*599074578^(1/14) 6765000029563932 a001 139583862445/141422324*599074578^(2/21) 6765000029563932 a001 63245986/17393796001*1568397607^(15/22) 6765000029563932 a001 63245986/6643838879*1568397607^(7/11) 6765000029563932 a001 567451585/70711162*1568397607^(7/22) 6765000029563932 a001 31622993/22768774562*1568397607^(8/11) 6765000029563932 a001 63245986/73681302247*1568397607^(3/4) 6765000029563932 a001 63245986/119218851371*1568397607^(17/22) 6765000029563932 a001 63245986/312119004989*1568397607^(9/11) 6765000029563932 a001 31622993/408569081798*1568397607^(19/22) 6765000029563932 a001 63245986/2139295485799*1568397607^(10/11) 6765000029563932 a001 63245986/5600748293801*1568397607^(21/22) 6765000029563932 a001 31622993/1268860318*1568397607^(13/22) 6765000029563932 a001 53316291173/141422324*599074578^(1/7) 6765000029563932 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^63 6765000029563932 a001 63246219/271444*599074578^(1/6) 6765000029563932 a001 10182505537/70711162*599074578^(4/21) 6765000029563932 a001 701408733/141422324*599074578^(5/14) 6765000029563932 a001 12586269025/141422324*599074578^(3/14) 6765000029563932 a001 7778742049/141422324*599074578^(5/21) 6765000029563932 a001 2971215073/141422324*599074578^(2/7) 6765000029563932 a001 2504730781961/969323029*33385282^(1/18) 6765000029563932 a001 182717648081/70711162*228826127^(1/20) 6765000029563932 a001 63245986/969323029*2537720636^(8/15) 6765000029563932 a001 63245986/969323029*45537549124^(8/17) 6765000029563932 a001 63245986/969323029*14662949395604^(8/21) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(43) 6765000029563932 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(39) 6765000029563932 a001 433494437/141422324*23725150497407^(1/4) 6765000029563932 a001 27416783093579882/4052739537881 6765000029563932 a001 63245986/969323029*192900153618^(4/9) 6765000029563932 a001 433494437/141422324*73681302247^(4/13) 6765000029563932 a001 63245986/969323029*73681302247^(6/13) 6765000029563932 a001 433494437/141422324*10749957122^(1/3) 6765000029563932 a001 63245986/969323029*10749957122^(1/2) 6765000029563932 a001 567451585/70711162*599074578^(1/3) 6765000029563932 a001 433494437/141422324*4106118243^(8/23) 6765000029563932 a001 63245986/969323029*4106118243^(12/23) 6765000029563932 a001 433494437/141422324*1568397607^(4/11) 6765000029563932 a001 63245986/969323029*1568397607^(6/11) 6765000029563932 a001 63245986/4106118243*599074578^(9/14) 6765000029563932 a001 31622993/1268860318*599074578^(13/21) 6765000029563932 a001 63245986/6643838879*599074578^(2/3) 6765000029563932 a001 139583862445/141422324*228826127^(1/10) 6765000029563932 a001 63245986/17393796001*599074578^(5/7) 6765000029563932 a001 31622993/22768774562*599074578^(16/21) 6765000029563932 a001 433494437/141422324*599074578^(8/21) 6765000029563932 a001 63245986/73681302247*599074578^(11/14) 6765000029563932 a001 63245986/119218851371*599074578^(17/21) 6765000029563932 a001 1836311903/599074578*87403803^(8/19) 6765000029563932 a001 31622993/96450076809*599074578^(5/6) 6765000029563932 a001 21566892818/35355581*228826127^(1/8) 6765000029563932 a001 63245986/312119004989*599074578^(6/7) 6765000029563932 a001 31622993/408569081798*599074578^(19/21) 6765000029563932 a001 63245986/1322157322203*599074578^(13/14) 6765000029563932 a001 63245986/2139295485799*599074578^(20/21) 6765000029563932 a001 63245986/969323029*599074578^(4/7) 6765000029563932 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^61 6765000029563932 a001 53316291173/141422324*228826127^(3/20) 6765000029563932 a001 165580141/228826127*87403803^(1/2) 6765000029563932 a001 10182505537/70711162*228826127^(1/5) 6765000029563932 a001 34111385/199691526*87403803^(11/19) 6765000029563932 a001 686789568/224056801*87403803^(8/19) 6765000029563932 a001 7778742049/141422324*228826127^(1/4) 6765000029563932 a001 12586269025/4106118243*87403803^(8/19) 6765000029563932 a001 32951280099/10749957122*87403803^(8/19) 6765000029563932 a001 86267571272/28143753123*87403803^(8/19) 6765000029563932 a001 32264490531/10525900321*87403803^(8/19) 6765000029563932 a001 591286729879/192900153618*87403803^(8/19) 6765000029563932 a001 1548008755920/505019158607*87403803^(8/19) 6765000029563932 a001 1515744265389/494493258286*87403803^(8/19) 6765000029563932 a001 2504730781961/817138163596*87403803^(8/19) 6765000029563932 a001 956722026041/312119004989*87403803^(8/19) 6765000029563932 a001 365435296162/119218851371*87403803^(8/19) 6765000029563932 a001 139583862445/45537549124*87403803^(8/19) 6765000029563932 a001 53316291173/17393796001*87403803^(8/19) 6765000029563932 a001 20365011074/6643838879*87403803^(8/19) 6765000029563932 a001 7778742049/2537720636*87403803^(8/19) 6765000029563932 a001 2971215073/370248451*87403803^(7/19) 6765000029563932 a001 365435296162/228826127*33385282^(1/12) 6765000029563932 a001 2971215073/141422324*228826127^(3/10) 6765000029563932 a001 2971215073/969323029*87403803^(8/19) 6765000029563932 a001 701408733/141422324*228826127^(3/8) 6765000029563932 a001 567451585/70711162*228826127^(7/20) 6765000029563932 a001 182717648081/70711162*87403803^(1/19) 6765000029563932 a001 956722026041/370248451*33385282^(1/18) 6765000029563932 a001 165580141/141422324*2537720636^(2/5) 6765000029563932 a001 165580141/141422324*45537549124^(6/17) 6765000029563932 a001 63245986/370248451*312119004989^(2/5) 6765000029563932 a001 165580141/141422324*14662949395604^(2/7) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(41) 6765000029563932 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(39) 6765000029563932 a001 5236139639782013/774004377960 6765000029563932 a001 165580141/141422324*192900153618^(1/3) 6765000029563932 a001 165580141/141422324*10749957122^(3/8) 6765000029563932 a001 63245986/370248451*10749957122^(11/24) 6765000029563932 a001 165580141/141422324*4106118243^(9/23) 6765000029563932 a001 63245986/370248451*4106118243^(11/23) 6765000029563932 a001 165580141/141422324*1568397607^(9/22) 6765000029563932 a001 63245986/370248451*1568397607^(1/2) 6765000029563932 a001 165580141/141422324*599074578^(3/7) 6765000029563932 a001 433494437/141422324*228826127^(2/5) 6765000029563932 a001 63245986/370248451*599074578^(11/21) 6765000029563932 a001 233802911/199691526*87403803^(9/19) 6765000029563932 a001 63245986/1568397607*228826127^(5/8) 6765000029563932 a001 1836311903/1568397607*87403803^(9/19) 6765000029563932 a001 1602508992/1368706081*87403803^(9/19) 6765000029563932 a001 12586269025/10749957122*87403803^(9/19) 6765000029563932 a001 10983760033/9381251041*87403803^(9/19) 6765000029563932 a001 86267571272/73681302247*87403803^(9/19) 6765000029563932 a001 75283811239/64300051206*87403803^(9/19) 6765000029563932 a001 2504730781961/2139295485799*87403803^(9/19) 6765000029563932 a001 365435296162/312119004989*87403803^(9/19) 6765000029563932 a001 139583862445/119218851371*87403803^(9/19) 6765000029563932 a001 53316291173/45537549124*87403803^(9/19) 6765000029563932 a001 20365011074/17393796001*87403803^(9/19) 6765000029563932 a001 7778742049/6643838879*87403803^(9/19) 6765000029563932 a001 2971215073/2537720636*87403803^(9/19) 6765000029563932 a001 63245986/969323029*228826127^(3/5) 6765000029563932 a001 1134903170/370248451*87403803^(8/19) 6765000029563932 a001 31622993/1268860318*228826127^(13/20) 6765000029563932 a001 14619165/224056801*87403803^(12/19) 6765000029563932 a001 1134903170/969323029*87403803^(9/19) 6765000029563932 a001 133957148/299537289*87403803^(10/19) 6765000029563932 a001 63245986/6643838879*228826127^(7/10) 6765000029563932 a001 433494437/599074578*87403803^(1/2) 6765000029563932 a001 139583862445/141422324*87403803^(2/19) 6765000029563932 a001 63245986/17393796001*228826127^(3/4) 6765000029563932 a001 1134903170/1568397607*87403803^(1/2) 6765000029563932 a001 31622993/22768774562*228826127^(4/5) 6765000029563932 a001 2971215073/4106118243*87403803^(1/2) 6765000029563932 a001 7778742049/10749957122*87403803^(1/2) 6765000029563932 a001 20365011074/28143753123*87403803^(1/2) 6765000029563932 a001 53316291173/73681302247*87403803^(1/2) 6765000029563932 a001 139583862445/192900153618*87403803^(1/2) 6765000029563932 a001 365435296162/505019158607*87403803^(1/2) 6765000029563932 a001 10610209857723/14662949395604*87403803^(1/2) 6765000029563932 a001 591286729879/817138163596*87403803^(1/2) 6765000029563932 a001 225851433717/312119004989*87403803^(1/2) 6765000029563932 a001 86267571272/119218851371*87403803^(1/2) 6765000029563932 a001 32951280099/45537549124*87403803^(1/2) 6765000029563932 a001 12586269025/17393796001*87403803^(1/2) 6765000029563932 a001 4807526976/6643838879*87403803^(1/2) 6765000029563932 a001 1836311903/2537720636*87403803^(1/2) 6765000029563932 a001 165580141/141422324*228826127^(9/20) 6765000029563932 a001 701408733/969323029*87403803^(1/2) 6765000029563932 a001 63245986/119218851371*228826127^(17/20) 6765000029563932 a001 31622993/96450076809*228826127^(7/8) 6765000029563932 a001 63245986/312119004989*228826127^(9/10) 6765000029563932 a001 63245986/370248451*228826127^(11/20) 6765000029563932 a001 701408733/1568397607*87403803^(10/19) 6765000029563932 a001 31622993/408569081798*228826127^(19/20) 6765000029563932 a001 12586269025/87403803*33385282^(2/9) 6765000029563932 a001 1836311903/4106118243*87403803^(10/19) 6765000029563932 a001 2403763488/5374978561*87403803^(10/19) 6765000029563932 a001 12586269025/28143753123*87403803^(10/19) 6765000029563932 a001 32951280099/73681302247*87403803^(10/19) 6765000029563932 a001 43133785636/96450076809*87403803^(10/19) 6765000029563932 a001 225851433717/505019158607*87403803^(10/19) 6765000029563932 a001 591286729879/1322157322203*87403803^(10/19) 6765000029563932 a001 10610209857723/23725150497407*87403803^(10/19) 6765000029563932 a001 182717648081/408569081798*87403803^(10/19) 6765000029563932 a001 139583862445/312119004989*87403803^(10/19) 6765000029563932 a001 53316291173/119218851371*87403803^(10/19) 6765000029563932 a001 10182505537/22768774562*87403803^(10/19) 6765000029563932 a001 7778742049/17393796001*87403803^(10/19) 6765000029563932 a001 2971215073/6643838879*87403803^(10/19) 6765000029563932 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^59 6765000029563932 a001 567451585/1268860318*87403803^(10/19) 6765000029563932 a001 267914296/370248451*87403803^(1/2) 6765000029563932 a001 433494437/370248451*87403803^(9/19) 6765000029563932 a001 34111385/1368706081*87403803^(13/19) 6765000029563932 a001 53316291173/141422324*87403803^(3/19) 6765000029563932 a001 433494437/969323029*87403803^(10/19) 6765000029563932 a001 956722026041/599074578*33385282^(1/12) 6765000029563932 a001 267914296/1568397607*87403803^(11/19) 6765000029563932 a001 2504730781961/1568397607*33385282^(1/12) 6765000029563932 a001 6557470319842/4106118243*33385282^(1/12) 6765000029563932 a001 10610209857723/6643838879*33385282^(1/12) 6765000029563932 a001 4052739537881/2537720636*33385282^(1/12) 6765000029563932 a001 233802911/1368706081*87403803^(11/19) 6765000029563932 a001 1836311903/10749957122*87403803^(11/19) 6765000029563932 a001 1602508992/9381251041*87403803^(11/19) 6765000029563932 a001 12586269025/73681302247*87403803^(11/19) 6765000029563932 a001 10983760033/64300051206*87403803^(11/19) 6765000029563932 a001 86267571272/505019158607*87403803^(11/19) 6765000029563932 a001 75283811239/440719107401*87403803^(11/19) 6765000029563932 a001 2504730781961/14662949395604*87403803^(11/19) 6765000029563932 a001 139583862445/817138163596*87403803^(11/19) 6765000029563932 a001 53316291173/312119004989*87403803^(11/19) 6765000029563932 a001 20365011074/119218851371*87403803^(11/19) 6765000029563932 a001 7778742049/45537549124*87403803^(11/19) 6765000029563932 a001 2971215073/17393796001*87403803^(11/19) 6765000029563932 a001 1548008755920/969323029*33385282^(1/12) 6765000029563932 a001 1134903170/6643838879*87403803^(11/19) 6765000029563932 a001 433494437/2537720636*87403803^(11/19) 6765000029563932 a001 102334155/10749957122*87403803^(14/19) 6765000029563932 a001 10182505537/70711162*87403803^(4/19) 6765000029563932 a001 267914296/4106118243*87403803^(12/19) 6765000029563932 a001 225851433717/228826127*33385282^(1/9) 6765000029563932 a001 591286729879/370248451*33385282^(1/12) 6765000029563932 a001 701408733/10749957122*87403803^(12/19) 6765000029563932 a001 1836311903/28143753123*87403803^(12/19) 6765000029563932 a001 686789568/10525900321*87403803^(12/19) 6765000029563932 a001 12586269025/192900153618*87403803^(12/19) 6765000029563932 a001 32951280099/505019158607*87403803^(12/19) 6765000029563932 a001 86267571272/1322157322203*87403803^(12/19) 6765000029563932 a001 32264490531/494493258286*87403803^(12/19) 6765000029563932 a001 591286729879/9062201101803*87403803^(12/19) 6765000029563932 a001 1548008755920/23725150497407*87403803^(12/19) 6765000029563932 a001 365435296162/5600748293801*87403803^(12/19) 6765000029563932 a001 139583862445/2139295485799*87403803^(12/19) 6765000029563932 a001 53316291173/817138163596*87403803^(12/19) 6765000029563932 a001 20365011074/312119004989*87403803^(12/19) 6765000029563932 a001 7778742049/119218851371*87403803^(12/19) 6765000029563932 a001 2971215073/45537549124*87403803^(12/19) 6765000029563932 a001 1134903170/17393796001*87403803^(12/19) 6765000029563932 a001 165580141/370248451*87403803^(10/19) 6765000029563932 a001 433494437/6643838879*87403803^(12/19) 6765000029563932 a001 165580141/969323029*87403803^(11/19) 6765000029563932 a001 831985/228811001*87403803^(15/19) 6765000029563932 a001 7778742049/141422324*87403803^(5/19) 6765000029563932 a001 133957148/5374978561*87403803^(13/19) 6765000029563932 a001 233802911/9381251041*87403803^(13/19) 6765000029563932 a001 1836311903/73681302247*87403803^(13/19) 6765000029563932 a001 267084832/10716675201*87403803^(13/19) 6765000029563932 a001 12586269025/505019158607*87403803^(13/19) 6765000029563932 a001 10983760033/440719107401*87403803^(13/19) 6765000029563932 a001 43133785636/1730726404001*87403803^(13/19) 6765000029563932 a001 75283811239/3020733700601*87403803^(13/19) 6765000029563932 a001 182717648081/7331474697802*87403803^(13/19) 6765000029563932 a001 139583862445/5600748293801*87403803^(13/19) 6765000029563932 a001 53316291173/2139295485799*87403803^(13/19) 6765000029563932 a001 10182505537/408569081798*87403803^(13/19) 6765000029563932 a001 7778742049/312119004989*87403803^(13/19) 6765000029563932 a001 2971215073/119218851371*87403803^(13/19) 6765000029563932 a001 567451585/22768774562*87403803^(13/19) 6765000029563932 a001 165580141/2537720636*87403803^(12/19) 6765000029563932 a001 433494437/17393796001*87403803^(13/19) 6765000029563932 a001 14619165/10525900321*87403803^(16/19) 6765000029563932 a001 2971215073/141422324*87403803^(6/19) 6765000029563932 a001 7778742049/87403803*33385282^(1/4) 6765000029563932 a001 267914296/28143753123*87403803^(14/19) 6765000029563932 a001 701408733/73681302247*87403803^(14/19) 6765000029563932 a001 102334155/141422324*87403803^(1/2) 6765000029563932 a001 1836311903/192900153618*87403803^(14/19) 6765000029563932 a001 102287808/10745088481*87403803^(14/19) 6765000029563932 a001 12586269025/1322157322203*87403803^(14/19) 6765000029563932 a001 32951280099/3461452808002*87403803^(14/19) 6765000029563932 a001 86267571272/9062201101803*87403803^(14/19) 6765000029563932 a001 225851433717/23725150497407*87403803^(14/19) 6765000029563932 a001 139583862445/14662949395604*87403803^(14/19) 6765000029563932 a001 53316291173/5600748293801*87403803^(14/19) 6765000029563932 a001 20365011074/2139295485799*87403803^(14/19) 6765000029563932 a001 7778742049/817138163596*87403803^(14/19) 6765000029563932 a001 2971215073/312119004989*87403803^(14/19) 6765000029563932 a001 1134903170/119218851371*87403803^(14/19) 6765000029563932 a001 165580141/6643838879*87403803^(13/19) 6765000029563932 a001 591286729879/599074578*33385282^(1/9) 6765000029563932 a001 433494437/45537549124*87403803^(14/19) 6765000029563932 a001 34111385/64300051206*87403803^(17/19) 6765000029563932 a001 567451585/70711162*87403803^(7/19) 6765000029563932 a001 1548008755920/1568397607*33385282^(1/9) 6765000029563932 a001 4052739537881/4106118243*33385282^(1/9) 6765000029563932 a001 4807525989/4870846*33385282^(1/9) 6765000029563932 a001 6557470319842/6643838879*33385282^(1/9) 6765000029563932 a001 182717648081/70711162*33385282^(1/18) 6765000029563932 a001 2504730781961/2537720636*33385282^(1/9) 6765000029563932 a001 31622993/70711162*2537720636^(4/9) 6765000029563932 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(39) 6765000029563932 a001 31622993/70711162*23725150497407^(5/16) 6765000029563932 a001 4000054745112196/591286729879 6765000029563932 a001 31622993/70711162*505019158607^(5/14) 6765000029563932 a001 31622993/70711162*73681302247^(5/13) 6765000029563932 a001 31622993/70711162*28143753123^(2/5) 6765000029563932 a001 31622993/70711162*10749957122^(5/12) 6765000029563932 a001 31622993/70711162*4106118243^(10/23) 6765000029563932 a001 31622993/70711162*1568397607^(5/11) 6765000029563932 a001 267914296/73681302247*87403803^(15/19) 6765000029563932 a001 956722026041/969323029*33385282^(1/9) 6765000029563932 a001 31622993/70711162*599074578^(10/21) 6765000029563932 a001 233802911/64300051206*87403803^(15/19) 6765000029563932 a001 1836311903/505019158607*87403803^(15/19) 6765000029563932 a001 1602508992/440719107401*87403803^(15/19) 6765000029563932 a001 12586269025/3461452808002*87403803^(15/19) 6765000029563932 a001 10983760033/3020733700601*87403803^(15/19) 6765000029563932 a001 86267571272/23725150497407*87403803^(15/19) 6765000029563932 a001 53316291173/14662949395604*87403803^(15/19) 6765000029563932 a001 20365011074/5600748293801*87403803^(15/19) 6765000029563932 a001 7778742049/2139295485799*87403803^(15/19) 6765000029563932 a001 2971215073/817138163596*87403803^(15/19) 6765000029563932 a001 1134903170/312119004989*87403803^(15/19) 6765000029563932 a001 165580141/17393796001*87403803^(14/19) 6765000029563932 a001 433494437/119218851371*87403803^(15/19) 6765000029563932 a001 102334155/505019158607*87403803^(18/19) 6765000029563932 a001 433494437/141422324*87403803^(8/19) 6765000029563932 a001 365435296162/370248451*33385282^(1/9) 6765000029563932 a001 133957148/96450076809*87403803^(16/19) 6765000029563932 a001 31622993/70711162*228826127^(1/2) 6765000029563932 a001 701408733/505019158607*87403803^(16/19) 6765000029563932 a001 1836311903/1322157322203*87403803^(16/19) 6765000029563932 a001 14930208/10749853441*87403803^(16/19) 6765000029563932 a001 12586269025/9062201101803*87403803^(16/19) 6765000029563932 a001 32951280099/23725150497407*87403803^(16/19) 6765000029563932 a001 10182505537/7331474697802*87403803^(16/19) 6765000029563932 a001 7778742049/5600748293801*87403803^(16/19) 6765000029563932 a001 2971215073/2139295485799*87403803^(16/19) 6765000029563932 a001 567451585/408569081798*87403803^(16/19) 6765000029563932 a001 165580141/45537549124*87403803^(15/19) 6765000029563932 a001 433494437/312119004989*87403803^(16/19) 6765000029563932 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^58 6765000029563932 a001 267914296/505019158607*87403803^(17/19) 6765000029563932 a001 233802911/440719107401*87403803^(17/19) 6765000029563932 a001 1836311903/3461452808002*87403803^(17/19) 6765000029563932 a001 1602508992/3020733700601*87403803^(17/19) 6765000029563932 a001 12586269025/23725150497407*87403803^(17/19) 6765000029563932 a001 7778742049/14662949395604*87403803^(17/19) 6765000029563932 a001 2971215073/5600748293801*87403803^(17/19) 6765000029563932 a001 1134903170/2139295485799*87403803^(17/19) 6765000029563932 a001 165580141/119218851371*87403803^(16/19) 6765000029563932 a001 433494437/817138163596*87403803^(17/19) 6765000029563932 a001 1602508992/29134601*33385282^(5/18) 6765000029563932 a001 165580141/141422324*87403803^(9/19) 6765000029563932 a001 267914296/1322157322203*87403803^(18/19) 6765000029563932 a001 701408733/3461452808002*87403803^(18/19) 6765000029563932 a001 1836311903/9062201101803*87403803^(18/19) 6765000029563932 a001 4807526976/23725150497407*87403803^(18/19) 6765000029563932 a001 2971215073/14662949395604*87403803^(18/19) 6765000029563932 a001 1134903170/5600748293801*87403803^(18/19) 6765000029563932 a001 165580141/312119004989*87403803^(17/19) 6765000029563932 a001 225851433717/141422324*33385282^(1/12) 6765000029563932 a001 433494437/2139295485799*87403803^(18/19) 6765000029563932 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^60 6765000029563932 a001 86267571272/228826127*33385282^(1/6) 6765000029563932 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^62 6765000029563932 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^64 6765000029563932 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^66 6765000029563932 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^68 6765000029563932 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^70 6765000029563932 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^72 6765000029563932 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^74 6765000029563932 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^76 6765000029563932 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^78 6765000029563932 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^80 6765000029563932 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^82 6765000029563932 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^84 6765000029563932 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^86 6765000029563932 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^88 6765000029563932 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^90 6765000029563932 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^92 6765000029563932 a004 Fibonacci(76)*Lucas(38)/(1/2+sqrt(5)/2)^94 6765000029563932 a004 Fibonacci(78)*Lucas(38)/(1/2+sqrt(5)/2)^96 6765000029563932 a004 Fibonacci(80)*Lucas(38)/(1/2+sqrt(5)/2)^98 6765000029563932 a004 Fibonacci(82)*Lucas(38)/(1/2+sqrt(5)/2)^100 6765000029563932 a004 Fibonacci(81)*Lucas(38)/(1/2+sqrt(5)/2)^99 6765000029563932 a004 Fibonacci(79)*Lucas(38)/(1/2+sqrt(5)/2)^97 6765000029563932 a004 Fibonacci(77)*Lucas(38)/(1/2+sqrt(5)/2)^95 6765000029563932 a001 2/39088169*(1/2+1/2*5^(1/2))^58 6765000029563932 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^93 6765000029563932 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^91 6765000029563932 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^89 6765000029563932 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^87 6765000029563932 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^85 6765000029563932 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^83 6765000029563932 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^81 6765000029563932 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^79 6765000029563932 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^77 6765000029563932 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^75 6765000029563932 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^73 6765000029563932 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^71 6765000029563932 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^69 6765000029563932 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^67 6765000029563932 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^65 6765000029563932 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^63 6765000029563932 a001 165580141/817138163596*87403803^(18/19) 6765000029563932 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^61 6765000029563932 a001 63245986/370248451*87403803^(11/19) 6765000029563932 a001 63245986/969323029*87403803^(12/19) 6765000029563932 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^59 6765000029563932 a001 31622993/1268860318*87403803^(13/19) 6765000029563932 a001 63245986/6643838879*87403803^(14/19) 6765000029563932 a001 267913919/710646*33385282^(1/6) 6765000029563932 a001 591286729879/1568397607*33385282^(1/6) 6765000029563932 a001 516002918640/1368706081*33385282^(1/6) 6765000029563932 a001 4052739537881/10749957122*33385282^(1/6) 6765000029563932 a001 3536736619241/9381251041*33385282^(1/6) 6765000029563932 a001 6557470319842/17393796001*33385282^(1/6) 6765000029563932 a001 2504730781961/6643838879*33385282^(1/6) 6765000029563932 a001 139583862445/141422324*33385282^(1/9) 6765000029563932 a001 956722026041/2537720636*33385282^(1/6) 6765000029563932 a001 365435296162/969323029*33385282^(1/6) 6765000029563932 a001 63245986/17393796001*87403803^(15/19) 6765000029563932 a001 139583862445/370248451*33385282^(1/6) 6765000029563932 a001 31622993/22768774562*87403803^(16/19) 6765000029563933 a001 63245986/119218851371*87403803^(17/19) 6765000029563933 a001 1836311903/87403803*33385282^(1/3) 6765000029563933 a001 31622993/70711162*87403803^(10/19) 6765000029563933 a001 63245986/312119004989*87403803^(18/19) 6765000029563933 a001 32951280099/228826127*33385282^(2/9) 6765000029563933 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^57 6765000029563933 a001 24157817/87403803*141422324^(7/13) 6765000029563933 a001 12586269025/33385282*12752043^(3/17) 6765000029563933 a001 43133785636/299537289*33385282^(2/9) 6765000029563933 a001 32264490531/224056801*33385282^(2/9) 6765000029563933 a001 591286729879/4106118243*33385282^(2/9) 6765000029563933 a001 774004377960/5374978561*33385282^(2/9) 6765000029563933 a001 4052739537881/28143753123*33385282^(2/9) 6765000029563933 a001 1515744265389/10525900321*33385282^(2/9) 6765000029563933 a001 3278735159921/22768774562*33385282^(2/9) 6765000029563933 a001 2504730781961/17393796001*33385282^(2/9) 6765000029563933 a001 956722026041/6643838879*33385282^(2/9) 6765000029563933 a001 53316291173/141422324*33385282^(1/6) 6765000029563933 a001 182717648081/1268860318*33385282^(2/9) 6765000029563933 a001 139583862445/969323029*33385282^(2/9) 6765000029563933 a001 20365011074/228826127*33385282^(1/4) 6765000029563933 a001 53316291173/370248451*33385282^(2/9) 6765000029563933 a001 24157817/87403803*2537720636^(7/15) 6765000029563933 a001 24157817/87403803*17393796001^(3/7) 6765000029563933 a001 24157817/87403803*45537549124^(7/17) 6765000029563933 a001 944284833567073/139583862445 6765000029563933 a001 24157817/87403803*14662949395604^(1/3) 6765000029563933 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(38) 6765000029563933 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(37) 6765000029563933 a001 24157817/87403803*192900153618^(7/18) 6765000029563933 a001 24157817/87403803*10749957122^(7/16) 6765000029563933 a001 24157817/87403803*599074578^(1/2) 6765000029563933 a001 233802911/29134601*33385282^(7/18) 6765000029563933 a001 53316291173/599074578*33385282^(1/4) 6765000029563933 a001 139583862445/1568397607*33385282^(1/4) 6765000029563933 a001 365435296162/4106118243*33385282^(1/4) 6765000029563933 a001 956722026041/10749957122*33385282^(1/4) 6765000029563933 a001 2504730781961/28143753123*33385282^(1/4) 6765000029563933 a001 6557470319842/73681302247*33385282^(1/4) 6765000029563933 a001 10610209857723/119218851371*33385282^(1/4) 6765000029563933 a001 4052739537881/45537549124*33385282^(1/4) 6765000029563933 a001 1548008755920/17393796001*33385282^(1/4) 6765000029563933 a001 591286729879/6643838879*33385282^(1/4) 6765000029563933 a001 225851433717/2537720636*33385282^(1/4) 6765000029563933 a001 86267571272/969323029*33385282^(1/4) 6765000029563933 a001 12586269025/228826127*33385282^(5/18) 6765000029563933 a001 75283811239/29134601*12752043^(1/17) 6765000029563933 a001 32951280099/370248451*33385282^(1/4) 6765000029563933 a001 39088169/87403803*33385282^(5/9) 6765000029563933 a001 433494437/87403803*33385282^(5/12) 6765000029563933 a001 10983760033/199691526*33385282^(5/18) 6765000029563933 a001 86267571272/1568397607*33385282^(5/18) 6765000029563933 a001 75283811239/1368706081*33385282^(5/18) 6765000029563933 a001 591286729879/10749957122*33385282^(5/18) 6765000029563933 a001 12585437040/228811001*33385282^(5/18) 6765000029563933 a001 4052739537881/73681302247*33385282^(5/18) 6765000029563933 a001 3536736619241/64300051206*33385282^(5/18) 6765000029563933 a001 6557470319842/119218851371*33385282^(5/18) 6765000029563933 a001 2504730781961/45537549124*33385282^(5/18) 6765000029563933 a001 956722026041/17393796001*33385282^(5/18) 6765000029563933 a001 365435296162/6643838879*33385282^(5/18) 6765000029563933 a001 10182505537/70711162*33385282^(2/9) 6765000029563933 a001 139583862445/2537720636*33385282^(5/18) 6765000029563933 a001 53316291173/969323029*33385282^(5/18) 6765000029563933 a001 20365011074/370248451*33385282^(5/18) 6765000029563933 a001 267914296/87403803*33385282^(4/9) 6765000029563933 a001 12586269025/141422324*33385282^(1/4) 6765000029563933 a001 39088169/54018521*87403803^(1/2) 6765000029563933 a001 102287808/4868641*33385282^(1/3) 6765000029563933 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^56 6765000029563933 a001 12586269025/599074578*33385282^(1/3) 6765000029563933 a001 24157817/119218851371*141422324^(12/13) 6765000029563933 a001 34111385/29134601*33385282^(1/2) 6765000029563933 a001 32951280099/1568397607*33385282^(1/3) 6765000029563933 a001 86267571272/4106118243*33385282^(1/3) 6765000029563933 a001 225851433717/10749957122*33385282^(1/3) 6765000029563933 a001 591286729879/28143753123*33385282^(1/3) 6765000029563933 a001 1548008755920/73681302247*33385282^(1/3) 6765000029563933 a001 4052739537881/192900153618*33385282^(1/3) 6765000029563933 a001 225749145909/10745088481*33385282^(1/3) 6765000029563933 a001 6557470319842/312119004989*33385282^(1/3) 6765000029563933 a001 2504730781961/119218851371*33385282^(1/3) 6765000029563933 a001 956722026041/45537549124*33385282^(1/3) 6765000029563933 a001 365435296162/17393796001*33385282^(1/3) 6765000029563933 a001 139583862445/6643838879*33385282^(1/3) 6765000029563933 a001 53316291173/2537720636*33385282^(1/3) 6765000029563933 a001 7778742049/141422324*33385282^(5/18) 6765000029563933 a001 20365011074/969323029*33385282^(1/3) 6765000029563933 a001 24157817/28143753123*141422324^(11/13) 6765000029563933 a001 24157817/6643838879*141422324^(10/13) 6765000029563933 a001 7778742049/370248451*33385282^(1/3) 6765000029563933 a001 24157817/1568397607*141422324^(9/13) 6765000029563933 a001 24157817/969323029*141422324^(2/3) 6765000029563934 a001 24157817/370248451*141422324^(8/13) 6765000029563934 a001 267914296/54018521*141422324^(5/13) 6765000029563934 a001 102334155/54018521*45537549124^(1/3) 6765000029563934 a001 2472169789339635/365435296162 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(40) 6765000029563934 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(37) 6765000029563934 a001 24157817/228826127*4106118243^(1/2) 6765000029563934 a001 701408733/54018521*141422324^(1/3) 6765000029563934 a001 1134903170/54018521*141422324^(4/13) 6765000029563934 a001 1836311903/228826127*33385282^(7/18) 6765000029563934 a001 4807526976/54018521*141422324^(3/13) 6765000029563934 a001 20365011074/54018521*141422324^(2/13) 6765000029563934 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^58 6765000029563934 a001 9227465/2537720636*20633239^(6/7) 6765000029563934 a001 86267571272/54018521*141422324^(1/13) 6765000029563934 a001 24157817/599074578*2537720636^(5/9) 6765000029563934 a001 267914296/54018521*2537720636^(1/3) 6765000029563934 a001 267914296/54018521*45537549124^(5/17) 6765000029563934 a001 24157817/599074578*312119004989^(5/11) 6765000029563934 a001 267914296/54018521*14662949395604^(5/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(42) 6765000029563934 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(37) 6765000029563934 a001 24157817/599074578*3461452808002^(5/12) 6765000029563934 a001 267914296/54018521*192900153618^(5/18) 6765000029563934 a001 267914296/54018521*28143753123^(3/10) 6765000029563934 a001 24157817/599074578*28143753123^(1/2) 6765000029563934 a001 267914296/54018521*10749957122^(5/16) 6765000029563934 a001 267914296/54018521*599074578^(5/14) 6765000029563934 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^60 6765000029563934 a001 24157817/1568397607*2537720636^(3/5) 6765000029563934 a001 24157817/1568397607*45537549124^(9/17) 6765000029563934 a001 24157817/1568397607*817138163596^(9/19) 6765000029563934 a001 16944503814015861/2504730781961 6765000029563934 a001 24157817/1568397607*14662949395604^(3/7) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(44) 6765000029563934 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(37) 6765000029563934 a001 24157817/1568397607*192900153618^(1/2) 6765000029563934 a001 701408733/54018521*73681302247^(1/4) 6765000029563934 a001 24157817/1568397607*10749957122^(9/16) 6765000029563934 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^62 6765000029563934 a001 24157817/2139295485799*2537720636^(14/15) 6765000029563934 a001 24157817/817138163596*2537720636^(8/9) 6765000029563934 a001 24157817/505019158607*2537720636^(13/15) 6765000029563934 a001 24157817/119218851371*2537720636^(4/5) 6765000029563934 a001 24157817/73681302247*2537720636^(7/9) 6765000029563934 a001 24157817/28143753123*2537720636^(11/15) 6765000029563934 a001 24157817/6643838879*2537720636^(2/3) 6765000029563934 a001 591286729879/228826127*12752043^(1/17) 6765000029563934 a001 1836311903/54018521*312119004989^(1/5) 6765000029563934 a001 44361286907595751/6557470319842 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(46) 6765000029563934 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(37) 6765000029563934 a001 24157817/4106118243*1322157322203^(1/2) 6765000029563934 a001 4807526976/54018521*2537720636^(1/5) 6765000029563934 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^64 6765000029563934 a001 20365011074/54018521*2537720636^(2/15) 6765000029563934 a001 32951280099/54018521*2537720636^(1/9) 6765000029563934 a001 2971215073/54018521*2537720636^(2/9) 6765000029563934 a001 86267571272/54018521*2537720636^(1/15) 6765000029563934 a001 4807526976/54018521*45537549124^(3/17) 6765000029563934 a001 4807526976/54018521*817138163596^(3/19) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(48) 6765000029563934 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(37) 6765000029563934 a001 24157817/10749957122*9062201101803^(1/2) 6765000029563934 a001 4807526976/54018521*192900153618^(1/6) 6765000029563934 a001 4807526976/54018521*10749957122^(3/16) 6765000029563934 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^66 6765000029563934 a001 24157817/2139295485799*17393796001^(6/7) 6765000029563934 a001 24157817/73681302247*17393796001^(5/7) 6765000029563934 a001 12586269025/54018521*17393796001^(1/7) 6765000029563934 a001 24157817/28143753123*45537549124^(11/17) 6765000029563934 a001 24157817/28143753123*312119004989^(3/5) 6765000029563934 a001 24157817/28143753123*817138163596^(11/19) 6765000029563934 a001 12586269025/54018521*14662949395604^(1/9) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(50) 6765000029563934 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(37) 6765000029563934 a001 24157817/28143753123*192900153618^(11/18) 6765000029563934 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^68 6765000029563934 a001 24157817/9062201101803*45537549124^(15/17) 6765000029563934 a001 24157817/2139295485799*45537549124^(14/17) 6765000029563934 a001 24157817/505019158607*45537549124^(13/17) 6765000029563934 a001 24157817/119218851371*45537549124^(12/17) 6765000029563934 a001 24157817/73681302247*312119004989^(7/11) 6765000029563934 a001 32951280099/54018521*312119004989^(1/11) 6765000029563934 a001 24157817/73681302247*14662949395604^(5/9) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(52) 6765000029563934 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(37) 6765000029563934 a001 24157817/73681302247*505019158607^(5/8) 6765000029563934 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^70 6765000029563934 a001 32951280099/54018521*28143753123^(1/10) 6765000029563934 a001 86267571272/54018521*45537549124^(1/17) 6765000029563934 a001 86267571272/54018521*14662949395604^(1/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(54) 6765000029563934 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(37) 6765000029563934 a001 86267571272/54018521*192900153618^(1/18) 6765000029563934 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^72 6765000029563934 a001 24157817/9062201101803*312119004989^(9/11) 6765000029563934 a001 24157817/5600748293801*312119004989^(4/5) 6765000029563934 a001 24157817/505019158607*14662949395604^(13/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(56) 6765000029563934 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(37) 6765000029563934 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^74 6765000029563934 a001 24157817/2139295485799*817138163596^(14/19) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(58) 6765000029563934 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2) 6765000029563934 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^76 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(60) 6765000029563934 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^3 6765000029563934 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^78 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(62) 6765000029563934 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^5 6765000029563934 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^80 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(64) 6765000029563934 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^7 6765000029563934 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^82 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(66) 6765000029563934 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^9 6765000029563934 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^84 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(68) 6765000029563934 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^11 6765000029563934 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^86 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(70) 6765000029563934 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^13 6765000029563934 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^88 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(72) 6765000029563934 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^15 6765000029563934 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^90 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(74) 6765000029563934 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^92 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(76) 6765000029563934 a004 Fibonacci(37)*Lucas(77)/(1/2+sqrt(5)/2)^94 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(78) 6765000029563934 a004 Fibonacci(37)*Lucas(79)/(1/2+sqrt(5)/2)^96 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(80) 6765000029563934 a004 Fibonacci(37)*Lucas(81)/(1/2+sqrt(5)/2)^98 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(82) 6765000029563934 a004 Fibonacci(37)*Lucas(83)/(1/2+sqrt(5)/2)^100 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(84) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(86) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(88) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(90) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(92) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^77/Lucas(94) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^79/Lucas(96) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^81/Lucas(98) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^82/Lucas(99) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^83/Lucas(100) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^80/Lucas(97) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^78/Lucas(95) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(93) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(91) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(89) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(87) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(85) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(83) 6765000029563934 a004 Fibonacci(37)*Lucas(82)/(1/2+sqrt(5)/2)^99 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(81) 6765000029563934 a004 Fibonacci(37)*Lucas(80)/(1/2+sqrt(5)/2)^97 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(79) 6765000029563934 a004 Fibonacci(37)*Lucas(78)/(1/2+sqrt(5)/2)^95 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(77) 6765000029563934 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^93 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(75) 6765000029563934 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^19 6765000029563934 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^21 6765000029563934 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^23 6765000029563934 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^25 6765000029563934 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^27 6765000029563934 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^29 6765000029563934 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^31 6765000029563934 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^33 6765000029563934 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^35 6765000029563934 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^37 6765000029563934 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^39 6765000029563934 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^41 6765000029563934 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^43 6765000029563934 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^91 6765000029563934 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^42 6765000029563934 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^40 6765000029563934 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^38 6765000029563934 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^36 6765000029563934 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^34 6765000029563934 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^32 6765000029563934 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^30 6765000029563934 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^28 6765000029563934 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^26 6765000029563934 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^24 6765000029563934 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^22 6765000029563934 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^20 6765000029563934 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^18 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(73) 6765000029563934 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^16 6765000029563934 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^89 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(71) 6765000029563934 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^14 6765000029563934 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^87 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(69) 6765000029563934 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^12 6765000029563934 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^85 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(67) 6765000029563934 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^10 6765000029563934 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^83 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(65) 6765000029563934 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^8 6765000029563934 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^81 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(63) 6765000029563934 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^6 6765000029563934 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^79 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(61) 6765000029563934 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^4 6765000029563934 a001 24157817/5600748293801*23725150497407^(11/16) 6765000029563934 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^77 6765000029563934 a001 24157817/2139295485799*14662949395604^(2/3) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(59) 6765000029563934 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^2 6765000029563934 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^75 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(57) 6765000029563934 a001 24157817/817138163596*23725150497407^(5/8) 6765000029563934 a001 24157817/2139295485799*505019158607^(3/4) 6765000029563934 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^73 6765000029563934 a001 24157817/312119004989*817138163596^(2/3) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(55) 6765000029563934 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(37) 6765000029563934 a001 24157817/505019158607*192900153618^(13/18) 6765000029563934 a001 24157817/2139295485799*192900153618^(7/9) 6765000029563934 a001 24157817/9062201101803*192900153618^(5/6) 6765000029563934 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^71 6765000029563934 a001 24157817/119218851371*14662949395604^(4/7) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(53) 6765000029563934 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(37) 6765000029563934 a001 24157817/119218851371*505019158607^(9/14) 6765000029563934 a001 24157817/119218851371*192900153618^(2/3) 6765000029563934 a001 24157817/505019158607*73681302247^(3/4) 6765000029563934 a001 24157817/817138163596*73681302247^(10/13) 6765000029563934 a001 24157817/5600748293801*73681302247^(11/13) 6765000029563934 a001 24157817/45537549124*45537549124^(2/3) 6765000029563934 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^69 6765000029563934 a001 24157817/119218851371*73681302247^(9/13) 6765000029563934 a001 139583862445/54018521*10749957122^(1/24) 6765000029563934 a001 20365011074/54018521*45537549124^(2/17) 6765000029563934 a001 20365011074/54018521*14662949395604^(2/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(51) 6765000029563934 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(37) 6765000029563934 a001 86267571272/54018521*10749957122^(1/16) 6765000029563934 a001 24157817/73681302247*28143753123^(7/10) 6765000029563934 a001 53316291173/54018521*10749957122^(1/12) 6765000029563934 a001 24157817/817138163596*28143753123^(4/5) 6765000029563934 a001 24157817/9062201101803*28143753123^(9/10) 6765000029563934 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^67 6765000029563934 a001 20365011074/54018521*10749957122^(1/8) 6765000029563934 a001 139583862445/54018521*4106118243^(1/23) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(49) 6765000029563934 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(37) 6765000029563934 a001 24157817/17393796001*23725150497407^(1/2) 6765000029563934 a001 7778742049/54018521*505019158607^(1/7) 6765000029563934 a001 24157817/17393796001*505019158607^(4/7) 6765000029563934 a001 7778742049/54018521*73681302247^(2/13) 6765000029563934 a001 24157817/17393796001*73681302247^(8/13) 6765000029563934 a001 24157817/28143753123*10749957122^(11/16) 6765000029563934 a001 7778742049/54018521*10749957122^(1/6) 6765000029563934 a001 53316291173/54018521*4106118243^(2/23) 6765000029563934 a001 24157817/119218851371*10749957122^(3/4) 6765000029563934 a001 24157817/45537549124*10749957122^(17/24) 6765000029563934 a001 24157817/312119004989*10749957122^(19/24) 6765000029563934 a001 24157817/505019158607*10749957122^(13/16) 6765000029563934 a001 24157817/817138163596*10749957122^(5/6) 6765000029563934 a001 24157817/2139295485799*10749957122^(7/8) 6765000029563934 a001 24157817/5600748293801*10749957122^(11/12) 6765000029563934 a001 24157817/9062201101803*10749957122^(15/16) 6765000029563934 a001 20365011074/54018521*4106118243^(3/23) 6765000029563934 a001 24157817/14662949395604*10749957122^(23/24) 6765000029563934 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^65 6765000029563934 a001 24157817/17393796001*10749957122^(2/3) 6765000029563934 a001 7778742049/54018521*4106118243^(4/23) 6765000029563934 a001 139583862445/54018521*1568397607^(1/22) 6765000029563934 a001 24157817/6643838879*45537549124^(10/17) 6765000029563934 a001 24157817/6643838879*312119004989^(6/11) 6765000029563934 a001 2971215073/54018521*312119004989^(2/11) 6765000029563934 a001 24157817/6643838879*14662949395604^(10/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(47) 6765000029563934 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(37) 6765000029563934 a001 71778070001175641/10610209857723 6765000029563934 a001 24157817/6643838879*192900153618^(5/9) 6765000029563934 a001 2971215073/54018521*28143753123^(1/5) 6765000029563934 a001 24157817/6643838879*28143753123^(3/5) 6765000029563934 a001 2971215073/54018521*10749957122^(5/24) 6765000029563934 a001 24157817/6643838879*10749957122^(5/8) 6765000029563934 a001 2971215073/54018521*4106118243^(5/23) 6765000029563934 a001 53316291173/54018521*1568397607^(1/11) 6765000029563934 a001 1836311903/54018521*1568397607^(1/4) 6765000029563934 a001 24157817/45537549124*4106118243^(17/23) 6765000029563934 a001 24157817/17393796001*4106118243^(16/23) 6765000029563934 a001 24157817/119218851371*4106118243^(18/23) 6765000029563934 a001 24157817/312119004989*4106118243^(19/23) 6765000029563934 a001 24157817/817138163596*4106118243^(20/23) 6765000029563934 a001 24157817/2139295485799*4106118243^(21/23) 6765000029563934 a001 20365011074/54018521*1568397607^(3/22) 6765000029563934 a001 24157817/5600748293801*4106118243^(22/23) 6765000029563934 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^63 6765000029563934 a001 24157817/6643838879*4106118243^(15/23) 6765000029563934 a001 7778742049/54018521*1568397607^(2/11) 6765000029563934 a001 1134903170/54018521*2537720636^(4/15) 6765000029563934 a001 2971215073/54018521*1568397607^(5/22) 6765000029563934 a001 139583862445/54018521*599074578^(1/21) 6765000029563934 a001 24157817/2537720636*17393796001^(4/7) 6765000029563934 a001 1134903170/54018521*45537549124^(4/17) 6765000029563934 a001 1134903170/54018521*817138163596^(4/19) 6765000029563934 a001 1134903170/54018521*14662949395604^(4/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(45) 6765000029563934 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(37) 6765000029563934 a001 24157817/2537720636*505019158607^(1/2) 6765000029563934 a001 1134903170/54018521*192900153618^(2/9) 6765000029563934 a001 1134903170/54018521*73681302247^(3/13) 6765000029563934 a001 24157817/2537720636*73681302247^(7/13) 6765000029563934 a001 1134903170/54018521*10749957122^(1/4) 6765000029563934 a001 24157817/2537720636*10749957122^(7/12) 6765000029563934 a001 1134903170/54018521*4106118243^(6/23) 6765000029563934 a001 24157817/2537720636*4106118243^(14/23) 6765000029563934 a001 86267571272/54018521*599074578^(1/14) 6765000029563934 a001 53316291173/54018521*599074578^(2/21) 6765000029563934 a001 1134903170/54018521*1568397607^(3/11) 6765000029563934 a001 24157817/17393796001*1568397607^(8/11) 6765000029563934 a001 24157817/6643838879*1568397607^(15/22) 6765000029563934 a001 24157817/28143753123*1568397607^(3/4) 6765000029563934 a001 24157817/45537549124*1568397607^(17/22) 6765000029563934 a001 24157817/119218851371*1568397607^(9/11) 6765000029563934 a001 24157817/312119004989*1568397607^(19/22) 6765000029563934 a001 24157817/817138163596*1568397607^(10/11) 6765000029563934 a001 24157817/2139295485799*1568397607^(21/22) 6765000029563934 a001 20365011074/54018521*599074578^(1/7) 6765000029563934 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^61 6765000029563934 a001 24157817/2537720636*1568397607^(7/11) 6765000029563934 a001 12586269025/54018521*599074578^(1/6) 6765000029563934 a001 7778742049/54018521*599074578^(4/21) 6765000029563934 a001 4807526976/54018521*599074578^(3/14) 6765000029563934 a001 2971215073/54018521*599074578^(5/21) 6765000029563934 a001 1134903170/54018521*599074578^(2/7) 6765000029563934 a001 139583862445/54018521*228826127^(1/20) 6765000029563934 a001 433494437/54018521*17393796001^(2/7) 6765000029563934 a001 433494437/54018521*14662949395604^(2/9) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(43) 6765000029563934 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(37) 6765000029563934 a001 10472279279564029/1548008755920 6765000029563934 a001 24157817/969323029*73681302247^(1/2) 6765000029563934 a001 433494437/54018521*10749957122^(7/24) 6765000029563934 a001 24157817/969323029*10749957122^(13/24) 6765000029563934 a001 433494437/54018521*4106118243^(7/23) 6765000029563934 a001 24157817/969323029*4106118243^(13/23) 6765000029563934 a001 433494437/54018521*1568397607^(7/22) 6765000029563934 a001 24157817/969323029*1568397607^(13/22) 6765000029563934 a001 24157817/1568397607*599074578^(9/14) 6765000029563934 a001 53316291173/54018521*228826127^(1/10) 6765000029563934 a001 433494437/54018521*599074578^(1/3) 6765000029563934 a001 24157817/2537720636*599074578^(2/3) 6765000029563934 a001 24157817/6643838879*599074578^(5/7) 6765000029563934 a001 24157817/17393796001*599074578^(16/21) 6765000029563934 a001 24157817/28143753123*599074578^(11/14) 6765000029563934 a001 24157817/45537549124*599074578^(17/21) 6765000029563934 a001 24157817/73681302247*599074578^(5/6) 6765000029563934 a001 32951280099/54018521*228826127^(1/8) 6765000029563934 a001 24157817/119218851371*599074578^(6/7) 6765000029563934 a001 24157817/312119004989*599074578^(19/21) 6765000029563934 a001 24157817/505019158607*599074578^(13/14) 6765000029563934 a001 24157817/817138163596*599074578^(20/21) 6765000029563934 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^59 6765000029563934 a001 24157817/969323029*599074578^(13/21) 6765000029563934 a001 20365011074/54018521*228826127^(3/20) 6765000029563934 a001 267084832/33281921*33385282^(7/18) 6765000029563934 a001 7778742049/54018521*228826127^(1/5) 6765000029563934 a001 267914296/54018521*228826127^(3/8) 6765000029563934 a001 2971215073/54018521*228826127^(1/4) 6765000029563934 a001 12586269025/1568397607*33385282^(7/18) 6765000029563934 a001 1134903170/54018521*228826127^(3/10) 6765000029563934 a001 10983760033/1368706081*33385282^(7/18) 6765000029563934 a001 43133785636/5374978561*33385282^(7/18) 6765000029563934 a001 75283811239/9381251041*33385282^(7/18) 6765000029563934 a001 591286729879/73681302247*33385282^(7/18) 6765000029563934 a001 86000486440/10716675201*33385282^(7/18) 6765000029563934 a001 4052739537881/505019158607*33385282^(7/18) 6765000029563934 a001 3536736619241/440719107401*33385282^(7/18) 6765000029563934 a001 3278735159921/408569081798*33385282^(7/18) 6765000029563934 a001 2504730781961/312119004989*33385282^(7/18) 6765000029563934 a001 956722026041/119218851371*33385282^(7/18) 6765000029563934 a001 182717648081/22768774562*33385282^(7/18) 6765000029563934 a001 139583862445/17393796001*33385282^(7/18) 6765000029563934 a001 53316291173/6643838879*33385282^(7/18) 6765000029563934 a001 10182505537/1268860318*33385282^(7/18) 6765000029563934 a001 2971215073/141422324*33385282^(1/3) 6765000029563934 a001 139583862445/54018521*87403803^(1/19) 6765000029563934 a001 24157817/370248451*2537720636^(8/15) 6765000029563934 a001 7778742049/969323029*33385282^(7/18) 6765000029563934 a001 24157817/370248451*45537549124^(8/17) 6765000029563934 a001 24157817/370248451*14662949395604^(8/21) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(41) 6765000029563934 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(37) 6765000029563934 a001 165580141/54018521*23725150497407^(1/4) 6765000029563934 a001 4000054745112197/591286729879 6765000029563934 a001 24157817/370248451*192900153618^(4/9) 6765000029563934 a001 165580141/54018521*73681302247^(4/13) 6765000029563934 a001 24157817/370248451*73681302247^(6/13) 6765000029563934 a001 165580141/54018521*10749957122^(1/3) 6765000029563934 a001 24157817/370248451*10749957122^(1/2) 6765000029563934 a001 165580141/54018521*4106118243^(8/23) 6765000029563934 a001 24157817/370248451*4106118243^(12/23) 6765000029563934 a001 165580141/54018521*1568397607^(4/11) 6765000029563934 a001 24157817/370248451*1568397607^(6/11) 6765000029563934 a001 433494437/54018521*228826127^(7/20) 6765000029563934 a001 165580141/54018521*599074578^(8/21) 6765000029563934 a001 24157817/370248451*599074578^(4/7) 6765000029563934 a001 24157817/599074578*228826127^(5/8) 6765000029563934 a001 1134903170/228826127*33385282^(5/12) 6765000029563934 a001 24157817/969323029*228826127^(13/20) 6765000029563934 a001 24157817/2537720636*228826127^(7/10) 6765000029563934 a001 2971215073/370248451*33385282^(7/18) 6765000029563934 a001 53316291173/54018521*87403803^(2/19) 6765000029563934 a001 24157817/6643838879*228826127^(3/4) 6765000029563934 a001 165580141/54018521*228826127^(2/5) 6765000029563934 a001 24157817/17393796001*228826127^(4/5) 6765000029563934 a001 24157817/45537549124*228826127^(17/20) 6765000029563934 a001 86000486440/33281921*12752043^(1/17) 6765000029563934 a001 24157817/73681302247*228826127^(7/8) 6765000029563934 a001 24157817/119218851371*228826127^(9/10) 6765000029563934 a001 24157817/312119004989*228826127^(19/20) 6765000029563934 a001 4052739537881/1568397607*12752043^(1/17) 6765000029563934 a001 24157817/370248451*228826127^(3/5) 6765000029563934 a001 3536736619241/1368706081*12752043^(1/17) 6765000029563934 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^57 6765000029563934 a001 3278735159921/1268860318*12752043^(1/17) 6765000029563934 a001 2504730781961/969323029*12752043^(1/17) 6765000029563934 a001 20365011074/54018521*87403803^(3/19) 6765000029563934 a001 956722026041/370248451*12752043^(1/17) 6765000029563934 a001 63245986/54018521*141422324^(6/13) 6765000029563934 a001 7778742049/54018521*87403803^(4/19) 6765000029563934 a001 2971215073/599074578*33385282^(5/12) 6765000029563934 a001 7778742049/1568397607*33385282^(5/12) 6765000029563934 a001 20365011074/4106118243*33385282^(5/12) 6765000029563934 a001 53316291173/10749957122*33385282^(5/12) 6765000029563934 a001 139583862445/28143753123*33385282^(5/12) 6765000029563934 a001 365435296162/73681302247*33385282^(5/12) 6765000029563934 a001 956722026041/192900153618*33385282^(5/12) 6765000029563934 a001 2504730781961/505019158607*33385282^(5/12) 6765000029563934 a001 10610209857723/2139295485799*33385282^(5/12) 6765000029563934 a001 4052739537881/817138163596*33385282^(5/12) 6765000029563934 a001 140728068720/28374454999*33385282^(5/12) 6765000029563934 a001 591286729879/119218851371*33385282^(5/12) 6765000029563934 a001 225851433717/45537549124*33385282^(5/12) 6765000029563934 a001 86267571272/17393796001*33385282^(5/12) 6765000029563934 a001 32951280099/6643838879*33385282^(5/12) 6765000029563934 a001 1144206275/230701876*33385282^(5/12) 6765000029563934 a001 4807526976/969323029*33385282^(5/12) 6765000029563934 a001 2971215073/54018521*87403803^(5/19) 6765000029563934 a001 701408733/228826127*33385282^(4/9) 6765000029563934 a001 1836311903/370248451*33385282^(5/12) 6765000029563934 a001 1134903170/54018521*87403803^(6/19) 6765000029563934 a001 433494437/54018521*87403803^(7/19) 6765000029563934 a001 139583862445/54018521*33385282^(1/18) 6765000029563934 a001 63245986/54018521*2537720636^(2/5) 6765000029563934 a001 63245986/54018521*45537549124^(6/17) 6765000029563934 a001 24157817/141422324*312119004989^(2/5) 6765000029563934 a001 63245986/54018521*14662949395604^(2/7) 6765000029563934 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(39) 6765000029563934 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(37) 6765000029563934 a001 1527884955772562/225851433717 6765000029563934 a001 63245986/54018521*192900153618^(1/3) 6765000029563934 a001 63245986/54018521*10749957122^(3/8) 6765000029563934 a001 24157817/141422324*10749957122^(11/24) 6765000029563934 a001 63245986/54018521*4106118243^(9/23) 6765000029563934 a001 24157817/141422324*4106118243^(11/23) 6765000029563934 a001 63245986/54018521*1568397607^(9/22) 6765000029563934 a001 24157817/141422324*1568397607^(1/2) 6765000029563934 a001 63245986/54018521*599074578^(3/7) 6765000029563934 a001 24157817/141422324*599074578^(11/21) 6765000029563934 a001 1836311903/599074578*33385282^(4/9) 6765000029563934 a001 39088169/228826127*33385282^(11/18) 6765000029563934 a001 686789568/224056801*33385282^(4/9) 6765000029563934 a001 12586269025/4106118243*33385282^(4/9) 6765000029563934 a001 32951280099/10749957122*33385282^(4/9) 6765000029563934 a001 86267571272/28143753123*33385282^(4/9) 6765000029563934 a001 32264490531/10525900321*33385282^(4/9) 6765000029563934 a001 591286729879/192900153618*33385282^(4/9) 6765000029563934 a001 1548008755920/505019158607*33385282^(4/9) 6765000029563934 a001 1515744265389/494493258286*33385282^(4/9) 6765000029563934 a001 2504730781961/817138163596*33385282^(4/9) 6765000029563934 a001 956722026041/312119004989*33385282^(4/9) 6765000029563934 a001 365435296162/119218851371*33385282^(4/9) 6765000029563934 a001 139583862445/45537549124*33385282^(4/9) 6765000029563934 a001 53316291173/17393796001*33385282^(4/9) 6765000029563934 a001 20365011074/6643838879*33385282^(4/9) 6765000029563934 a001 7778742049/2537720636*33385282^(4/9) 6765000029563934 a001 567451585/70711162*33385282^(7/18) 6765000029563934 a001 2971215073/969323029*33385282^(4/9) 6765000029563934 a001 63245986/54018521*228826127^(9/20) 6765000029563934 a001 24157817/141422324*228826127^(11/20) 6765000029563934 a001 165580141/54018521*87403803^(8/19) 6765000029563934 a001 1134903170/370248451*33385282^(4/9) 6765000029563934 a001 182717648081/70711162*12752043^(1/17) 6765000029563934 a001 86267571272/54018521*33385282^(1/12) 6765000029563934 a001 701408733/141422324*33385282^(5/12) 6765000029563934 a001 267914296/228826127*33385282^(1/2) 6765000029563934 a001 24157817/370248451*87403803^(12/19) 6765000029563934 a001 24157817/969323029*87403803^(13/19) 6765000029563934 a001 24157817/2537720636*87403803^(14/19) 6765000029563934 a001 53316291173/54018521*33385282^(1/9) 6765000029563934 a001 39088169/141422324*33385282^(7/12) 6765000029563934 a001 233802911/199691526*33385282^(1/2) 6765000029563934 a001 24157817/6643838879*87403803^(15/19) 6765000029563934 a001 1836311903/1568397607*33385282^(1/2) 6765000029563934 a001 1602508992/1368706081*33385282^(1/2) 6765000029563934 a001 12586269025/10749957122*33385282^(1/2) 6765000029563934 a001 10983760033/9381251041*33385282^(1/2) 6765000029563934 a001 86267571272/73681302247*33385282^(1/2) 6765000029563934 a001 75283811239/64300051206*33385282^(1/2) 6765000029563934 a001 2504730781961/2139295485799*33385282^(1/2) 6765000029563934 a001 365435296162/312119004989*33385282^(1/2) 6765000029563934 a001 139583862445/119218851371*33385282^(1/2) 6765000029563934 a001 53316291173/45537549124*33385282^(1/2) 6765000029563934 a001 20365011074/17393796001*33385282^(1/2) 6765000029563934 a001 7778742049/6643838879*33385282^(1/2) 6765000029563934 a001 2971215073/2537720636*33385282^(1/2) 6765000029563934 a001 433494437/141422324*33385282^(4/9) 6765000029563934 a001 1134903170/969323029*33385282^(1/2) 6765000029563934 a001 24157817/17393796001*87403803^(16/19) 6765000029563934 a001 63245986/54018521*87403803^(9/19) 6765000029563934 a001 433494437/370248451*33385282^(1/2) 6765000029563934 a001 24157817/45537549124*87403803^(17/19) 6765000029563934 a001 102334155/228826127*33385282^(5/9) 6765000029563935 a001 39088169/599074578*33385282^(2/3) 6765000029563935 a001 24157817/119218851371*87403803^(18/19) 6765000029563935 a001 24157817/141422324*87403803^(11/19) 6765000029563935 a001 9227465/969323029*20633239^(4/5) 6765000029563935 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^55 6765000029563935 a001 20365011074/54018521*33385282^(1/6) 6765000029563935 a001 133957148/299537289*33385282^(5/9) 6765000029563935 a001 701408733/1568397607*33385282^(5/9) 6765000029563935 a001 1836311903/4106118243*33385282^(5/9) 6765000029563935 a001 2403763488/5374978561*33385282^(5/9) 6765000029563935 a001 12586269025/28143753123*33385282^(5/9) 6765000029563935 a001 32951280099/73681302247*33385282^(5/9) 6765000029563935 a001 43133785636/96450076809*33385282^(5/9) 6765000029563935 a001 225851433717/505019158607*33385282^(5/9) 6765000029563935 a001 591286729879/1322157322203*33385282^(5/9) 6765000029563935 a001 10610209857723/23725150497407*33385282^(5/9) 6765000029563935 a001 182717648081/408569081798*33385282^(5/9) 6765000029563935 a001 139583862445/312119004989*33385282^(5/9) 6765000029563935 a001 53316291173/119218851371*33385282^(5/9) 6765000029563935 a001 10182505537/22768774562*33385282^(5/9) 6765000029563935 a001 7778742049/17393796001*33385282^(5/9) 6765000029563935 a001 2971215073/6643838879*33385282^(5/9) 6765000029563935 a001 567451585/1268860318*33385282^(5/9) 6765000029563935 a001 433494437/969323029*33385282^(5/9) 6765000029563935 a001 165580141/141422324*33385282^(1/2) 6765000029563935 a001 102334155/370248451*33385282^(7/12) 6765000029563935 a001 165580141/370248451*33385282^(5/9) 6765000029563935 a001 39088169/1568397607*33385282^(13/18) 6765000029563935 a001 267914296/969323029*33385282^(7/12) 6765000029563935 a001 701408733/2537720636*33385282^(7/12) 6765000029563935 a001 1836311903/6643838879*33385282^(7/12) 6765000029563935 a001 4807526976/17393796001*33385282^(7/12) 6765000029563935 a001 12586269025/45537549124*33385282^(7/12) 6765000029563935 a001 32951280099/119218851371*33385282^(7/12) 6765000029563935 a001 86267571272/312119004989*33385282^(7/12) 6765000029563935 a001 225851433717/817138163596*33385282^(7/12) 6765000029563935 a001 1548008755920/5600748293801*33385282^(7/12) 6765000029563935 a001 139583862445/505019158607*33385282^(7/12) 6765000029563935 a001 53316291173/192900153618*33385282^(7/12) 6765000029563935 a001 20365011074/73681302247*33385282^(7/12) 6765000029563935 a001 7778742049/28143753123*33385282^(7/12) 6765000029563935 a001 2971215073/10749957122*33385282^(7/12) 6765000029563935 a001 1134903170/4106118243*33385282^(7/12) 6765000029563935 a001 433494437/1568397607*33385282^(7/12) 6765000029563935 a001 34111385/199691526*33385282^(11/18) 6765000029563935 a001 165580141/599074578*33385282^(7/12) 6765000029563935 a001 7778742049/54018521*33385282^(2/9) 6765000029563935 a001 39088169/2537720636*33385282^(3/4) 6765000029563935 a001 267914296/1568397607*33385282^(11/18) 6765000029563935 a001 233802911/1368706081*33385282^(11/18) 6765000029563935 a001 1836311903/10749957122*33385282^(11/18) 6765000029563935 a001 1602508992/9381251041*33385282^(11/18) 6765000029563935 a001 12586269025/73681302247*33385282^(11/18) 6765000029563935 a001 10983760033/64300051206*33385282^(11/18) 6765000029563935 a001 86267571272/505019158607*33385282^(11/18) 6765000029563935 a001 75283811239/440719107401*33385282^(11/18) 6765000029563935 a001 2504730781961/14662949395604*33385282^(11/18) 6765000029563935 a001 139583862445/817138163596*33385282^(11/18) 6765000029563935 a001 53316291173/312119004989*33385282^(11/18) 6765000029563935 a001 20365011074/119218851371*33385282^(11/18) 6765000029563935 a001 7778742049/45537549124*33385282^(11/18) 6765000029563935 a001 2971215073/17393796001*33385282^(11/18) 6765000029563935 a001 1134903170/6643838879*33385282^(11/18) 6765000029563935 a001 433494437/2537720636*33385282^(11/18) 6765000029563935 a001 14930208/103681*12752043^(4/17) 6765000029563935 a001 63245986/228826127*33385282^(7/12) 6765000029563935 a001 165580141/969323029*33385282^(11/18) 6765000029563935 a001 39088169/4106118243*33385282^(7/9) 6765000029563935 a001 4807526976/54018521*33385282^(1/4) 6765000029563935 a001 14619165/224056801*33385282^(2/3) 6765000029563935 a001 2971215073/54018521*33385282^(5/18) 6765000029563935 a001 86267571272/87403803*12752043^(2/17) 6765000029563935 a001 267914296/4106118243*33385282^(2/3) 6765000029563935 a001 701408733/10749957122*33385282^(2/3) 6765000029563935 a001 1836311903/28143753123*33385282^(2/3) 6765000029563935 a001 686789568/10525900321*33385282^(2/3) 6765000029563935 a001 12586269025/192900153618*33385282^(2/3) 6765000029563935 a001 32951280099/505019158607*33385282^(2/3) 6765000029563935 a001 86267571272/1322157322203*33385282^(2/3) 6765000029563935 a001 32264490531/494493258286*33385282^(2/3) 6765000029563935 a001 591286729879/9062201101803*33385282^(2/3) 6765000029563935 a001 1548008755920/23725150497407*33385282^(2/3) 6765000029563935 a001 365435296162/5600748293801*33385282^(2/3) 6765000029563935 a001 139583862445/2139295485799*33385282^(2/3) 6765000029563935 a001 53316291173/817138163596*33385282^(2/3) 6765000029563935 a001 20365011074/312119004989*33385282^(2/3) 6765000029563935 a001 7778742049/119218851371*33385282^(2/3) 6765000029563935 a001 2971215073/45537549124*33385282^(2/3) 6765000029563935 a001 1134903170/17393796001*33385282^(2/3) 6765000029563935 a001 31622993/70711162*33385282^(5/9) 6765000029563935 a001 433494437/6643838879*33385282^(2/3) 6765000029563935 a001 63245986/370248451*33385282^(11/18) 6765000029563935 a001 165580141/2537720636*33385282^(2/3) 6765000029563936 a001 39088169/10749957122*33385282^(5/6) 6765000029563936 a001 34111385/1368706081*33385282^(13/18) 6765000029563936 a001 1134903170/54018521*33385282^(1/3) 6765000029563936 a001 133957148/5374978561*33385282^(13/18) 6765000029563936 a001 233802911/9381251041*33385282^(13/18) 6765000029563936 a001 1836311903/73681302247*33385282^(13/18) 6765000029563936 a001 267084832/10716675201*33385282^(13/18) 6765000029563936 a001 12586269025/505019158607*33385282^(13/18) 6765000029563936 a001 10983760033/440719107401*33385282^(13/18) 6765000029563936 a001 43133785636/1730726404001*33385282^(13/18) 6765000029563936 a001 75283811239/3020733700601*33385282^(13/18) 6765000029563936 a001 182717648081/7331474697802*33385282^(13/18) 6765000029563936 a001 139583862445/5600748293801*33385282^(13/18) 6765000029563936 a001 53316291173/2139295485799*33385282^(13/18) 6765000029563936 a001 10182505537/408569081798*33385282^(13/18) 6765000029563936 a001 7778742049/312119004989*33385282^(13/18) 6765000029563936 a001 2971215073/119218851371*33385282^(13/18) 6765000029563936 a001 567451585/22768774562*33385282^(13/18) 6765000029563936 a001 433494437/17393796001*33385282^(13/18) 6765000029563936 a001 63245986/969323029*33385282^(2/3) 6765000029563936 a001 9227465/228826127*20633239^(5/7) 6765000029563936 a001 102334155/6643838879*33385282^(3/4) 6765000029563936 a001 165580141/6643838879*33385282^(13/18) 6765000029563936 a001 39088169/28143753123*33385282^(8/9) 6765000029563936 a001 9238424/599786069*33385282^(3/4) 6765000029563936 a001 701408733/45537549124*33385282^(3/4) 6765000029563936 a001 1836311903/119218851371*33385282^(3/4) 6765000029563936 a001 4807526976/312119004989*33385282^(3/4) 6765000029563936 a001 12586269025/817138163596*33385282^(3/4) 6765000029563936 a001 32951280099/2139295485799*33385282^(3/4) 6765000029563936 a001 86267571272/5600748293801*33385282^(3/4) 6765000029563936 a001 7787980473/505618944676*33385282^(3/4) 6765000029563936 a001 365435296162/23725150497407*33385282^(3/4) 6765000029563936 a001 139583862445/9062201101803*33385282^(3/4) 6765000029563936 a001 53316291173/3461452808002*33385282^(3/4) 6765000029563936 a001 20365011074/1322157322203*33385282^(3/4) 6765000029563936 a001 7778742049/505019158607*33385282^(3/4) 6765000029563936 a001 2971215073/192900153618*33385282^(3/4) 6765000029563936 a001 1134903170/73681302247*33385282^(3/4) 6765000029563936 a001 433494437/28143753123*33385282^(3/4) 6765000029563936 a001 102334155/10749957122*33385282^(7/9) 6765000029563936 a001 165580141/10749957122*33385282^(3/4) 6765000029563936 a001 24157817/54018521*2537720636^(4/9) 6765000029563936 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(37) 6765000029563936 a001 24157817/54018521*23725150497407^(5/16) 6765000029563936 a001 24157817/54018521*505019158607^(5/14) 6765000029563936 a001 583600122205489/86267571272 6765000029563936 a001 24157817/54018521*73681302247^(5/13) 6765000029563936 a001 24157817/54018521*28143753123^(2/5) 6765000029563936 a001 24157817/54018521*10749957122^(5/12) 6765000029563936 a001 24157817/54018521*4106118243^(10/23) 6765000029563936 a001 24157817/54018521*1568397607^(5/11) 6765000029563936 a001 24157817/54018521*599074578^(10/21) 6765000029563936 a001 39088169/45537549124*33385282^(11/12) 6765000029563936 a001 433494437/54018521*33385282^(7/18) 6765000029563936 a001 24157817/54018521*228826127^(1/2) 6765000029563936 a001 267914296/28143753123*33385282^(7/9) 6765000029563936 a001 701408733/73681302247*33385282^(7/9) 6765000029563936 a001 1836311903/192900153618*33385282^(7/9) 6765000029563936 a001 102287808/10745088481*33385282^(7/9) 6765000029563936 a001 12586269025/1322157322203*33385282^(7/9) 6765000029563936 a001 32951280099/3461452808002*33385282^(7/9) 6765000029563936 a001 86267571272/9062201101803*33385282^(7/9) 6765000029563936 a001 225851433717/23725150497407*33385282^(7/9) 6765000029563936 a001 139583862445/14662949395604*33385282^(7/9) 6765000029563936 a001 53316291173/5600748293801*33385282^(7/9) 6765000029563936 a001 20365011074/2139295485799*33385282^(7/9) 6765000029563936 a001 7778742049/817138163596*33385282^(7/9) 6765000029563936 a001 2971215073/312119004989*33385282^(7/9) 6765000029563936 a001 1134903170/119218851371*33385282^(7/9) 6765000029563936 a001 31622993/1268860318*33385282^(13/18) 6765000029563936 a001 433494437/45537549124*33385282^(7/9) 6765000029563936 a001 225851433717/228826127*12752043^(2/17) 6765000029563936 a001 139583862445/54018521*12752043^(1/17) 6765000029563936 a001 165580141/17393796001*33385282^(7/9) 6765000029563936 a001 267914296/54018521*33385282^(5/12) 6765000029563936 a001 39088169/73681302247*33385282^(17/18) 6765000029563936 a001 591286729879/599074578*12752043^(2/17) 6765000029563936 a001 63245986/4106118243*33385282^(3/4) 6765000029563936 a001 1548008755920/1568397607*12752043^(2/17) 6765000029563936 a001 4052739537881/4106118243*12752043^(2/17) 6765000029563936 a001 4807525989/4870846*12752043^(2/17) 6765000029563936 a001 6557470319842/6643838879*12752043^(2/17) 6765000029563936 a001 2504730781961/2537720636*12752043^(2/17) 6765000029563936 a001 956722026041/969323029*12752043^(2/17) 6765000029563936 a001 831985/228811001*33385282^(5/6) 6765000029563936 a001 365435296162/370248451*12752043^(2/17) 6765000029563936 a001 24157817/87403803*33385282^(7/12) 6765000029563936 a001 267914296/73681302247*33385282^(5/6) 6765000029563936 a001 233802911/64300051206*33385282^(5/6) 6765000029563936 a001 1836311903/505019158607*33385282^(5/6) 6765000029563936 a001 1602508992/440719107401*33385282^(5/6) 6765000029563936 a001 12586269025/3461452808002*33385282^(5/6) 6765000029563936 a001 10983760033/3020733700601*33385282^(5/6) 6765000029563936 a001 86267571272/23725150497407*33385282^(5/6) 6765000029563936 a001 53316291173/14662949395604*33385282^(5/6) 6765000029563936 a001 20365011074/5600748293801*33385282^(5/6) 6765000029563936 a001 7778742049/2139295485799*33385282^(5/6) 6765000029563936 a001 2971215073/817138163596*33385282^(5/6) 6765000029563936 a001 1134903170/312119004989*33385282^(5/6) 6765000029563936 a001 63245986/6643838879*33385282^(7/9) 6765000029563936 a001 433494437/119218851371*33385282^(5/6) 6765000029563936 a001 165580141/54018521*33385282^(4/9) 6765000029563936 a001 24157817/54018521*87403803^(10/19) 6765000029563936 a001 165580141/45537549124*33385282^(5/6) 6765000029563937 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^54 6765000029563937 a001 139583862445/141422324*12752043^(2/17) 6765000029563937 a001 14619165/10525900321*33385282^(8/9) 6765000029563937 a001 133957148/96450076809*33385282^(8/9) 6765000029563937 a001 701408733/505019158607*33385282^(8/9) 6765000029563937 a001 1836311903/1322157322203*33385282^(8/9) 6765000029563937 a001 14930208/10749853441*33385282^(8/9) 6765000029563937 a001 12586269025/9062201101803*33385282^(8/9) 6765000029563937 a001 32951280099/23725150497407*33385282^(8/9) 6765000029563937 a001 10182505537/7331474697802*33385282^(8/9) 6765000029563937 a001 7778742049/5600748293801*33385282^(8/9) 6765000029563937 a001 2971215073/2139295485799*33385282^(8/9) 6765000029563937 a001 567451585/408569081798*33385282^(8/9) 6765000029563937 a001 63245986/17393796001*33385282^(5/6) 6765000029563937 a001 433494437/312119004989*33385282^(8/9) 6765000029563937 a001 102334155/119218851371*33385282^(11/12) 6765000029563937 a001 165580141/119218851371*33385282^(8/9) 6765000029563937 a001 267914296/312119004989*33385282^(11/12) 6765000029563937 a001 701408733/817138163596*33385282^(11/12) 6765000029563937 a001 1836311903/2139295485799*33385282^(11/12) 6765000029563937 a001 4807526976/5600748293801*33385282^(11/12) 6765000029563937 a001 12586269025/14662949395604*33385282^(11/12) 6765000029563937 a001 20365011074/23725150497407*33385282^(11/12) 6765000029563937 a001 7778742049/9062201101803*33385282^(11/12) 6765000029563937 a001 2971215073/3461452808002*33385282^(11/12) 6765000029563937 a001 1134903170/1322157322203*33385282^(11/12) 6765000029563937 a001 433494437/505019158607*33385282^(11/12) 6765000029563937 a001 34111385/64300051206*33385282^(17/18) 6765000029563937 a001 165580141/192900153618*33385282^(11/12) 6765000029563937 a001 63245986/54018521*33385282^(1/2) 6765000029563937 a001 267914296/505019158607*33385282^(17/18) 6765000029563937 a001 233802911/440719107401*33385282^(17/18) 6765000029563937 a001 1836311903/3461452808002*33385282^(17/18) 6765000029563937 a001 1602508992/3020733700601*33385282^(17/18) 6765000029563937 a001 12586269025/23725150497407*33385282^(17/18) 6765000029563937 a001 7778742049/14662949395604*33385282^(17/18) 6765000029563937 a001 2971215073/5600748293801*33385282^(17/18) 6765000029563937 a001 1134903170/2139295485799*33385282^(17/18) 6765000029563937 a001 31622993/22768774562*33385282^(8/9) 6765000029563937 a001 433494437/817138163596*33385282^(17/18) 6765000029563937 a001 165580141/312119004989*33385282^(17/18) 6765000029563937 a001 63245986/73681302247*33385282^(11/12) 6765000029563937 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^56 6765000029563937 a001 32951280099/20633239*7881196^(1/11) 6765000029563937 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^58 6765000029563937 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^60 6765000029563937 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^62 6765000029563937 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^64 6765000029563937 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^66 6765000029563937 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^68 6765000029563937 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^70 6765000029563937 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^72 6765000029563937 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^74 6765000029563937 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^76 6765000029563937 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^78 6765000029563937 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^80 6765000029563937 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^82 6765000029563937 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^84 6765000029563937 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^86 6765000029563937 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^88 6765000029563937 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^90 6765000029563937 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^92 6765000029563937 a004 Fibonacci(78)*Lucas(36)/(1/2+sqrt(5)/2)^94 6765000029563937 a004 Fibonacci(80)*Lucas(36)/(1/2+sqrt(5)/2)^96 6765000029563937 a004 Fibonacci(82)*Lucas(36)/(1/2+sqrt(5)/2)^98 6765000029563937 a004 Fibonacci(84)*Lucas(36)/(1/2+sqrt(5)/2)^100 6765000029563937 a004 Fibonacci(83)*Lucas(36)/(1/2+sqrt(5)/2)^99 6765000029563937 a004 Fibonacci(81)*Lucas(36)/(1/2+sqrt(5)/2)^97 6765000029563937 a004 Fibonacci(79)*Lucas(36)/(1/2+sqrt(5)/2)^95 6765000029563937 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^93 6765000029563937 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^91 6765000029563937 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^89 6765000029563937 a001 1/7465176*(1/2+1/2*5^(1/2))^56 6765000029563937 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^87 6765000029563937 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^85 6765000029563937 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^83 6765000029563937 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^81 6765000029563937 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^79 6765000029563937 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^77 6765000029563937 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^75 6765000029563937 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^73 6765000029563937 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^71 6765000029563937 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^69 6765000029563937 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^67 6765000029563937 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^65 6765000029563937 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^63 6765000029563937 a001 63245986/119218851371*33385282^(17/18) 6765000029563937 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^61 6765000029563937 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^59 6765000029563937 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^57 6765000029563938 a001 1836311903/33385282*12752043^(5/17) 6765000029563938 a001 24157817/141422324*33385282^(11/18) 6765000029563938 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^55 6765000029563938 a001 24157817/370248451*33385282^(2/3) 6765000029563938 a001 10983760033/29134601*12752043^(3/17) 6765000029563938 a001 24157817/969323029*33385282^(13/18) 6765000029563938 a001 24157817/1568397607*33385282^(3/4) 6765000029563938 a001 24157817/2537720636*33385282^(7/9) 6765000029563939 a001 86267571272/228826127*12752043^(3/17) 6765000029563939 a001 53316291173/54018521*12752043^(2/17) 6765000029563939 a001 267913919/710646*12752043^(3/17) 6765000029563939 a001 591286729879/1568397607*12752043^(3/17) 6765000029563939 a001 516002918640/1368706081*12752043^(3/17) 6765000029563939 a001 4052739537881/10749957122*12752043^(3/17) 6765000029563939 a001 3536736619241/9381251041*12752043^(3/17) 6765000029563939 a001 6557470319842/17393796001*12752043^(3/17) 6765000029563939 a001 2504730781961/6643838879*12752043^(3/17) 6765000029563939 a001 956722026041/2537720636*12752043^(3/17) 6765000029563939 a001 365435296162/969323029*12752043^(3/17) 6765000029563939 a001 24157817/6643838879*33385282^(5/6) 6765000029563939 a001 139583862445/370248451*12752043^(3/17) 6765000029563939 a001 53316291173/141422324*12752043^(3/17) 6765000029563939 a001 24157817/17393796001*33385282^(8/9) 6765000029563939 a001 24157817/28143753123*33385282^(11/12) 6765000029563939 a001 24157817/54018521*33385282^(5/9) 6765000029563939 a001 24157817/45537549124*33385282^(17/18) 6765000029563940 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^53 6765000029563940 a001 701408733/33385282*12752043^(6/17) 6765000029563940 a001 12586269025/87403803*12752043^(4/17) 6765000029563940 a001 9303105/1875749*20633239^(3/7) 6765000029563941 a001 165580141/20633239*20633239^(2/5) 6765000029563941 a001 9227465/33385282*141422324^(7/13) 6765000029563941 a001 32951280099/228826127*12752043^(4/17) 6765000029563941 a001 20365011074/54018521*12752043^(3/17) 6765000029563941 a001 43133785636/299537289*12752043^(4/17) 6765000029563941 a001 32264490531/224056801*12752043^(4/17) 6765000029563941 a001 591286729879/4106118243*12752043^(4/17) 6765000029563941 a001 774004377960/5374978561*12752043^(4/17) 6765000029563941 a001 4052739537881/28143753123*12752043^(4/17) 6765000029563941 a001 1515744265389/10525900321*12752043^(4/17) 6765000029563941 a001 3278735159921/22768774562*12752043^(4/17) 6765000029563941 a001 2504730781961/17393796001*12752043^(4/17) 6765000029563941 a001 956722026041/6643838879*12752043^(4/17) 6765000029563941 a001 182717648081/1268860318*12752043^(4/17) 6765000029563941 a001 139583862445/969323029*12752043^(4/17) 6765000029563941 a001 9227465/33385282*2537720636^(7/15) 6765000029563941 a001 9227465/33385282*17393796001^(3/7) 6765000029563941 a001 68884650258840/10182505537 6765000029563941 a001 9227465/33385282*45537549124^(7/17) 6765000029563941 a001 14930352/20633239*817138163596^(1/3) 6765000029563941 a001 9227465/33385282*(1/2+1/2*5^(1/2))^21 6765000029563941 a001 14930352/20633239*(1/2+1/2*5^(1/2))^19 6765000029563941 a001 9227465/33385282*192900153618^(7/18) 6765000029563941 a001 9227465/33385282*10749957122^(7/16) 6765000029563941 a001 9227465/33385282*599074578^(1/2) 6765000029563941 a001 53316291173/370248451*12752043^(4/17) 6765000029563941 a001 3524578/969323029*7881196^(10/11) 6765000029563942 a001 10182505537/70711162*12752043^(4/17) 6765000029563942 a001 14930352/20633239*87403803^(1/2) 6765000029563942 a001 133957148/16692641*12752043^(7/17) 6765000029563943 a001 1602508992/29134601*12752043^(5/17) 6765000029563943 a001 1134903170/20633239*20633239^(2/7) 6765000029563943 a001 43133785636/16692641*4870847^(1/16) 6765000029563943 a001 1602508992/4250681*4870847^(3/16) 6765000029563943 a001 12586269025/228826127*12752043^(5/17) 6765000029563943 a001 7778742049/54018521*12752043^(4/17) 6765000029563944 a001 10983760033/199691526*12752043^(5/17) 6765000029563944 a001 86267571272/1568397607*12752043^(5/17) 6765000029563944 a001 75283811239/1368706081*12752043^(5/17) 6765000029563944 a001 591286729879/10749957122*12752043^(5/17) 6765000029563944 a001 12585437040/228811001*12752043^(5/17) 6765000029563944 a001 4052739537881/73681302247*12752043^(5/17) 6765000029563944 a001 3536736619241/64300051206*12752043^(5/17) 6765000029563944 a001 6557470319842/119218851371*12752043^(5/17) 6765000029563944 a001 2504730781961/45537549124*12752043^(5/17) 6765000029563944 a001 956722026041/17393796001*12752043^(5/17) 6765000029563944 a001 365435296162/6643838879*12752043^(5/17) 6765000029563944 a001 139583862445/2537720636*12752043^(5/17) 6765000029563944 a001 53316291173/969323029*12752043^(5/17) 6765000029563944 a001 20365011074/370248451*12752043^(5/17) 6765000029563944 a001 7465176/16692641*12752043^(10/17) 6765000029563944 a001 7778742049/141422324*12752043^(5/17) 6765000029563944 a001 4807526976/20633239*20633239^(1/5) 6765000029563945 a001 9227465/33385282*33385282^(7/12) 6765000029563945 a001 14619165/4769326*12752043^(8/17) 6765000029563945 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^52 6765000029563945 a001 1144206275/1875749*20633239^(1/7) 6765000029563945 a001 1836311903/87403803*12752043^(6/17) 6765000029563946 a001 102287808/4868641*12752043^(6/17) 6765000029563946 a001 2971215073/54018521*12752043^(5/17) 6765000029563946 a001 12586269025/599074578*12752043^(6/17) 6765000029563946 a001 32951280099/1568397607*12752043^(6/17) 6765000029563946 a001 86267571272/4106118243*12752043^(6/17) 6765000029563946 a001 225851433717/10749957122*12752043^(6/17) 6765000029563946 a001 591286729879/28143753123*12752043^(6/17) 6765000029563946 a001 1548008755920/73681302247*12752043^(6/17) 6765000029563946 a001 4052739537881/192900153618*12752043^(6/17) 6765000029563946 a001 225749145909/10745088481*12752043^(6/17) 6765000029563946 a001 6557470319842/312119004989*12752043^(6/17) 6765000029563946 a001 2504730781961/119218851371*12752043^(6/17) 6765000029563946 a001 956722026041/45537549124*12752043^(6/17) 6765000029563946 a001 365435296162/17393796001*12752043^(6/17) 6765000029563946 a001 139583862445/6643838879*12752043^(6/17) 6765000029563946 a001 53316291173/2537720636*12752043^(6/17) 6765000029563946 a001 20365011074/969323029*12752043^(6/17) 6765000029563946 a001 7778742049/370248451*12752043^(6/17) 6765000029563946 a001 39088169/20633239*45537549124^(1/3) 6765000029563946 a001 360684711361585/53316291173 6765000029563946 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(38) 6765000029563946 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(35) 6765000029563946 a001 9227465/87403803*4106118243^(1/2) 6765000029563946 a001 2971215073/141422324*12752043^(6/17) 6765000029563946 a001 39088169/33385282*12752043^(9/17) 6765000029563946 a001 31622993/16692641*12752043^(1/2) 6765000029563947 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^54 6765000029563947 a001 9227465/45537549124*141422324^(12/13) 6765000029563947 a001 9227465/10749957122*141422324^(11/13) 6765000029563947 a001 9303105/1875749*141422324^(5/13) 6765000029563947 a001 9227465/2537720636*141422324^(10/13) 6765000029563947 a001 9227465/599074578*141422324^(9/13) 6765000029563947 a001 9227465/370248451*141422324^(2/3) 6765000029563947 a001 9238424/711491*141422324^(1/3) 6765000029563947 a001 9227465/228826127*2537720636^(5/9) 6765000029563947 a001 9303105/1875749*2537720636^(1/3) 6765000029563947 a001 9303105/1875749*45537549124^(5/17) 6765000029563947 a001 188856966713415/27916772489 6765000029563947 a001 9227465/228826127*312119004989^(5/11) 6765000029563947 a001 9303105/1875749*312119004989^(3/11) 6765000029563947 a001 9303105/1875749*14662949395604^(5/21) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(40) 6765000029563947 a001 9303105/1875749*(1/2+1/2*5^(1/2))^15 6765000029563947 a001 9227465/228826127*3461452808002^(5/12) 6765000029563947 a001 9303105/1875749*192900153618^(5/18) 6765000029563947 a001 9303105/1875749*28143753123^(3/10) 6765000029563947 a001 9227465/228826127*28143753123^(1/2) 6765000029563947 a001 9303105/1875749*10749957122^(5/16) 6765000029563947 a001 9303105/1875749*599074578^(5/14) 6765000029563947 a001 433494437/20633239*141422324^(4/13) 6765000029563947 a001 9303105/1875749*228826127^(3/8) 6765000029563947 a001 1836311903/20633239*141422324^(3/13) 6765000029563947 a001 7778742049/20633239*141422324^(2/13) 6765000029563947 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^56 6765000029563947 a001 9227465/228826127*228826127^(5/8) 6765000029563947 a001 32951280099/20633239*141422324^(1/13) 6765000029563947 a001 9227465/599074578*2537720636^(3/5) 6765000029563947 a001 9227465/599074578*45537549124^(9/17) 6765000029563947 a001 1236084894669820/182717648081 6765000029563947 a001 9227465/599074578*817138163596^(9/19) 6765000029563947 a001 9227465/599074578*14662949395604^(3/7) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(42) 6765000029563947 a001 9238424/711491*(1/2+1/2*5^(1/2))^13 6765000029563947 a001 9227465/599074578*192900153618^(1/2) 6765000029563947 a001 9238424/711491*73681302247^(1/4) 6765000029563947 a001 9227465/599074578*10749957122^(9/16) 6765000029563947 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^58 6765000029563947 a001 9227465/599074578*599074578^(9/14) 6765000029563947 a001 6472224534451845/956722026041 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(44) 6765000029563947 a001 701408733/20633239*(1/2+1/2*5^(1/2))^11 6765000029563947 a001 9227465/1568397607*1322157322203^(1/2) 6765000029563947 a001 701408733/20633239*1568397607^(1/4) 6765000029563947 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^60 6765000029563947 a001 9227465/817138163596*2537720636^(14/15) 6765000029563947 a001 9227465/312119004989*2537720636^(8/9) 6765000029563947 a001 9227465/192900153618*2537720636^(13/15) 6765000029563947 a001 9227465/45537549124*2537720636^(4/5) 6765000029563947 a001 9227465/10749957122*2537720636^(11/15) 6765000029563947 a001 9227465/28143753123*2537720636^(7/9) 6765000029563947 a001 1836311903/20633239*2537720636^(1/5) 6765000029563947 a001 1836311903/20633239*45537549124^(3/17) 6765000029563947 a001 1836311903/20633239*817138163596^(3/19) 6765000029563947 a001 16944503814015895/2504730781961 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(46) 6765000029563947 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^9 6765000029563947 a001 1836311903/20633239*192900153618^(1/6) 6765000029563947 a001 1836311903/20633239*10749957122^(3/16) 6765000029563947 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^62 6765000029563947 a001 1144206275/1875749*2537720636^(1/9) 6765000029563947 a001 7778742049/20633239*2537720636^(2/15) 6765000029563947 a001 32951280099/20633239*2537720636^(1/15) 6765000029563947 a001 4807526976/20633239*17393796001^(1/7) 6765000029563947 a001 9227465/10749957122*45537549124^(11/17) 6765000029563947 a001 9227465/10749957122*312119004989^(3/5) 6765000029563947 a001 9227465/10749957122*817138163596^(11/19) 6765000029563947 a001 1706203342599840/252210396917 6765000029563947 a001 4807526976/20633239*14662949395604^(1/9) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(48) 6765000029563947 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^7 6765000029563947 a001 9227465/10749957122*192900153618^(11/18) 6765000029563947 a001 9227465/28143753123*17393796001^(5/7) 6765000029563947 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^64 6765000029563947 a001 9227465/817138163596*17393796001^(6/7) 6765000029563947 a001 9227465/10749957122*10749957122^(11/16) 6765000029563947 a001 9227465/28143753123*312119004989^(7/11) 6765000029563947 a001 1144206275/1875749*312119004989^(1/11) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(50) 6765000029563947 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^5 6765000029563947 a001 9227465/28143753123*505019158607^(5/8) 6765000029563947 a001 1144206275/1875749*28143753123^(1/10) 6765000029563947 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^66 6765000029563947 a001 9227465/14662949395604*45537549124^(16/17) 6765000029563947 a001 9227465/3461452808002*45537549124^(15/17) 6765000029563947 a001 9227465/192900153618*45537549124^(13/17) 6765000029563947 a001 9227465/817138163596*45537549124^(14/17) 6765000029563947 a001 9227465/28143753123*28143753123^(7/10) 6765000029563947 a001 32951280099/20633239*45537549124^(1/17) 6765000029563947 a001 32951280099/20633239*14662949395604^(1/21) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(52) 6765000029563947 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^3 6765000029563947 a001 32951280099/20633239*192900153618^(1/18) 6765000029563947 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^68 6765000029563947 a001 9227465/192900153618*14662949395604^(13/21) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(54) 6765000029563947 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^70 6765000029563947 a001 9227465/3461452808002*312119004989^(9/11) 6765000029563947 a001 9227465/2139295485799*312119004989^(4/5) 6765000029563947 a001 9227465/192900153618*192900153618^(13/18) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(56) 6765000029563947 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2) 6765000029563947 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^72 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(58) 6765000029563947 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^3 6765000029563947 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^74 6765000029563947 a001 9227465/3461452808002*14662949395604^(5/7) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(60) 6765000029563947 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^5 6765000029563947 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^76 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(62) 6765000029563947 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^7 6765000029563947 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^78 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(64) 6765000029563947 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^9 6765000029563947 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^80 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(66) 6765000029563947 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^11 6765000029563947 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^82 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(68) 6765000029563947 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^13 6765000029563947 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^84 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(70) 6765000029563947 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^86 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(72) 6765000029563947 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^88 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(74) 6765000029563947 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^90 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(76) 6765000029563947 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^92 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(78) 6765000029563947 a004 Fibonacci(35)*Lucas(79)/(1/2+sqrt(5)/2)^94 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(80) 6765000029563947 a004 Fibonacci(35)*Lucas(81)/(1/2+sqrt(5)/2)^96 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(82) 6765000029563947 a004 Fibonacci(35)*Lucas(83)/(1/2+sqrt(5)/2)^98 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(84) 6765000029563947 a004 Fibonacci(35)*Lucas(85)/(1/2+sqrt(5)/2)^100 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(86) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(88) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(90) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(92) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^79/Lucas(94) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^81/Lucas(96) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^83/Lucas(98) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^84/Lucas(99) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^85/Lucas(100) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^82/Lucas(97) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^80/Lucas(95) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(93) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(91) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(89) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(87) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(85) 6765000029563947 a004 Fibonacci(35)*Lucas(84)/(1/2+sqrt(5)/2)^99 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(83) 6765000029563947 a004 Fibonacci(35)*Lucas(82)/(1/2+sqrt(5)/2)^97 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(81) 6765000029563947 a004 Fibonacci(35)*Lucas(80)/(1/2+sqrt(5)/2)^95 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(79) 6765000029563947 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^93 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(77) 6765000029563947 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^91 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(75) 6765000029563947 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^89 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(73) 6765000029563947 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^87 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(71) 6765000029563947 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^17 6765000029563947 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^19 6765000029563947 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^21 6765000029563947 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^23 6765000029563947 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^25 6765000029563947 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^27 6765000029563947 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^29 6765000029563947 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^31 6765000029563947 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^33 6765000029563947 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^35 6765000029563947 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^37 6765000029563947 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^39 6765000029563947 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^41 6765000029563947 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^45 6765000029563947 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^85 6765000029563947 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^43 6765000029563947 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^44 6765000029563947 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^42 6765000029563947 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^40 6765000029563947 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^38 6765000029563947 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^36 6765000029563947 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^34 6765000029563947 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^32 6765000029563947 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^30 6765000029563947 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^28 6765000029563947 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^26 6765000029563947 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^24 6765000029563947 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^22 6765000029563947 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^20 6765000029563947 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^18 6765000029563947 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^16 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(69) 6765000029563947 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^14 6765000029563947 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^83 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(67) 6765000029563947 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^12 6765000029563947 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^81 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(65) 6765000029563947 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^10 6765000029563947 a001 9227465/14662949395604*14662949395604^(16/21) 6765000029563947 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^79 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(63) 6765000029563947 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^8 6765000029563947 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^77 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(61) 6765000029563947 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^6 6765000029563947 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^75 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(59) 6765000029563947 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^4 6765000029563947 a001 9227465/2139295485799*23725150497407^(11/16) 6765000029563947 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^73 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(57) 6765000029563947 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^2 6765000029563947 a001 9227465/312119004989*312119004989^(8/11) 6765000029563947 a001 9227465/23725150497407*505019158607^(7/8) 6765000029563947 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^71 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(55) 6765000029563947 a001 9227465/312119004989*23725150497407^(5/8) 6765000029563947 a001 9227465/817138163596*192900153618^(7/9) 6765000029563947 a001 9227465/14662949395604*192900153618^(8/9) 6765000029563947 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^69 6765000029563947 a001 9227465/119218851371*817138163596^(2/3) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(53) 6765000029563947 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^2 6765000029563947 a001 9227465/192900153618*73681302247^(3/4) 6765000029563947 a001 9227465/45537549124*45537549124^(12/17) 6765000029563947 a001 9227465/312119004989*73681302247^(10/13) 6765000029563947 a001 9227465/2139295485799*73681302247^(11/13) 6765000029563947 a001 9227465/14662949395604*73681302247^(12/13) 6765000029563947 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^67 6765000029563947 a001 32951280099/20633239*10749957122^(1/16) 6765000029563947 a001 53316291173/20633239*10749957122^(1/24) 6765000029563947 a001 9227465/45537549124*14662949395604^(4/7) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(51) 6765000029563947 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^4 6765000029563947 a001 20365011074/20633239*23725150497407^(1/16) 6765000029563947 a001 9227465/45537549124*505019158607^(9/14) 6765000029563947 a001 20365011074/20633239*73681302247^(1/13) 6765000029563947 a001 9227465/45537549124*192900153618^(2/3) 6765000029563947 a001 9227465/45537549124*73681302247^(9/13) 6765000029563947 a001 9227465/312119004989*28143753123^(4/5) 6765000029563947 a001 9227465/3461452808002*28143753123^(9/10) 6765000029563947 a001 20365011074/20633239*10749957122^(1/12) 6765000029563947 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^65 6765000029563947 a001 53316291173/20633239*4106118243^(1/23) 6765000029563947 a001 9227465/17393796001*45537549124^(2/3) 6765000029563947 a001 7778742049/20633239*45537549124^(2/17) 6765000029563947 a001 7778742049/20633239*14662949395604^(2/21) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(49) 6765000029563947 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^6 6765000029563947 a001 71778070001175785/10610209857723 6765000029563947 a001 7778742049/20633239*10749957122^(1/8) 6765000029563947 a001 20365011074/20633239*4106118243^(2/23) 6765000029563947 a001 9227465/119218851371*10749957122^(19/24) 6765000029563947 a001 9227465/45537549124*10749957122^(3/4) 6765000029563947 a001 9227465/192900153618*10749957122^(13/16) 6765000029563947 a001 9227465/312119004989*10749957122^(5/6) 6765000029563947 a001 9227465/817138163596*10749957122^(7/8) 6765000029563947 a001 9227465/2139295485799*10749957122^(11/12) 6765000029563947 a001 9227465/3461452808002*10749957122^(15/16) 6765000029563947 a001 9227465/5600748293801*10749957122^(23/24) 6765000029563947 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^63 6765000029563947 a001 9227465/17393796001*10749957122^(17/24) 6765000029563947 a001 7778742049/20633239*4106118243^(3/23) 6765000029563947 a001 53316291173/20633239*1568397607^(1/22) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(47) 6765000029563947 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^8 6765000029563947 a001 27416783093579945/4052739537881 6765000029563947 a001 2971215073/20633239*505019158607^(1/7) 6765000029563947 a001 2971215073/20633239*73681302247^(2/13) 6765000029563947 a001 9227465/6643838879*73681302247^(8/13) 6765000029563947 a001 2971215073/20633239*10749957122^(1/6) 6765000029563947 a001 9227465/6643838879*10749957122^(2/3) 6765000029563947 a001 2971215073/20633239*4106118243^(4/23) 6765000029563947 a001 20365011074/20633239*1568397607^(1/11) 6765000029563947 a001 9227465/45537549124*4106118243^(18/23) 6765000029563947 a001 9227465/17393796001*4106118243^(17/23) 6765000029563947 a001 9227465/119218851371*4106118243^(19/23) 6765000029563947 a001 9227465/312119004989*4106118243^(20/23) 6765000029563947 a001 9227465/2537720636*2537720636^(2/3) 6765000029563947 a001 9227465/817138163596*4106118243^(21/23) 6765000029563947 a001 9227465/2139295485799*4106118243^(22/23) 6765000029563947 a001 7778742049/20633239*1568397607^(3/22) 6765000029563947 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^61 6765000029563947 a001 9227465/6643838879*4106118243^(16/23) 6765000029563947 a001 2971215073/20633239*1568397607^(2/11) 6765000029563947 a001 1134903170/20633239*2537720636^(2/9) 6765000029563947 a001 53316291173/20633239*599074578^(1/21) 6765000029563947 a001 9227465/2537720636*45537549124^(10/17) 6765000029563947 a001 9227465/2537720636*312119004989^(6/11) 6765000029563947 a001 1134903170/20633239*312119004989^(2/11) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(45) 6765000029563947 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^10 6765000029563947 a001 17167670950105/2537719272 6765000029563947 a001 9227465/2537720636*192900153618^(5/9) 6765000029563947 a001 1134903170/20633239*28143753123^(1/5) 6765000029563947 a001 9227465/2537720636*28143753123^(3/5) 6765000029563947 a001 1134903170/20633239*10749957122^(5/24) 6765000029563947 a001 9227465/2537720636*10749957122^(5/8) 6765000029563947 a001 1134903170/20633239*4106118243^(5/23) 6765000029563947 a001 9227465/2537720636*4106118243^(15/23) 6765000029563947 a001 32951280099/20633239*599074578^(1/14) 6765000029563947 a001 1134903170/20633239*1568397607^(5/22) 6765000029563947 a001 20365011074/20633239*599074578^(2/21) 6765000029563947 a001 9227465/10749957122*1568397607^(3/4) 6765000029563947 a001 9227465/17393796001*1568397607^(17/22) 6765000029563947 a001 9227465/6643838879*1568397607^(8/11) 6765000029563947 a001 9227465/45537549124*1568397607^(9/11) 6765000029563947 a001 9227465/119218851371*1568397607^(19/22) 6765000029563947 a001 9227465/312119004989*1568397607^(10/11) 6765000029563947 a001 9227465/817138163596*1568397607^(21/22) 6765000029563947 a001 7778742049/20633239*599074578^(1/7) 6765000029563947 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^59 6765000029563947 a001 9227465/2537720636*1568397607^(15/22) 6765000029563947 a001 4807526976/20633239*599074578^(1/6) 6765000029563947 a001 1836311903/20633239*599074578^(3/14) 6765000029563947 a001 2971215073/20633239*599074578^(4/21) 6765000029563947 a001 1134903170/20633239*599074578^(5/21) 6765000029563947 a001 53316291173/20633239*228826127^(1/20) 6765000029563947 a001 433494437/20633239*2537720636^(4/15) 6765000029563947 a001 9227465/969323029*17393796001^(4/7) 6765000029563947 a001 433494437/20633239*45537549124^(4/17) 6765000029563947 a001 433494437/20633239*817138163596^(4/19) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(43) 6765000029563947 a001 433494437/20633239*(1/2+1/2*5^(1/2))^12 6765000029563947 a001 4000054745112205/591286729879 6765000029563947 a001 9227465/969323029*505019158607^(1/2) 6765000029563947 a001 433494437/20633239*192900153618^(2/9) 6765000029563947 a001 433494437/20633239*73681302247^(3/13) 6765000029563947 a001 9227465/969323029*73681302247^(7/13) 6765000029563947 a001 433494437/20633239*10749957122^(1/4) 6765000029563947 a001 9227465/969323029*10749957122^(7/12) 6765000029563947 a001 433494437/20633239*4106118243^(6/23) 6765000029563947 a001 9227465/969323029*4106118243^(14/23) 6765000029563947 a001 433494437/20633239*1568397607^(3/11) 6765000029563947 a001 9227465/969323029*1568397607^(7/11) 6765000029563947 a001 433494437/20633239*599074578^(2/7) 6765000029563947 a001 20365011074/20633239*228826127^(1/10) 6765000029563947 a001 9227465/2537720636*599074578^(5/7) 6765000029563947 a001 9227465/6643838879*599074578^(16/21) 6765000029563947 a001 9227465/10749957122*599074578^(11/14) 6765000029563947 a001 9227465/17393796001*599074578^(17/21) 6765000029563947 a001 9227465/28143753123*599074578^(5/6) 6765000029563947 a001 1144206275/1875749*228826127^(1/8) 6765000029563947 a001 9227465/45537549124*599074578^(6/7) 6765000029563947 a001 9227465/119218851371*599074578^(19/21) 6765000029563947 a001 9227465/192900153618*599074578^(13/14) 6765000029563947 a001 9227465/312119004989*599074578^(20/21) 6765000029563947 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^57 6765000029563947 a001 7778742049/20633239*228826127^(3/20) 6765000029563947 a001 9227465/969323029*599074578^(2/3) 6765000029563947 a001 2971215073/20633239*228826127^(1/5) 6765000029563947 a001 1134903170/20633239*228826127^(1/4) 6765000029563947 a001 433494437/20633239*228826127^(3/10) 6765000029563947 a001 53316291173/20633239*87403803^(1/19) 6765000029563947 a001 165580141/20633239*17393796001^(2/7) 6765000029563947 a001 165580141/20633239*14662949395604^(2/9) 6765000029563947 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(41) 6765000029563947 a001 165580141/20633239*(1/2+1/2*5^(1/2))^14 6765000029563947 a001 165580141/20633239*505019158607^(1/4) 6765000029563947 a001 117529611982505/17373187209 6765000029563947 a001 9227465/370248451*73681302247^(1/2) 6765000029563947 a001 165580141/20633239*10749957122^(7/24) 6765000029563947 a001 9227465/370248451*10749957122^(13/24) 6765000029563947 a001 165580141/20633239*4106118243^(7/23) 6765000029563947 a001 9227465/370248451*4106118243^(13/23) 6765000029563947 a001 165580141/20633239*1568397607^(7/22) 6765000029563947 a001 9227465/370248451*1568397607^(13/22) 6765000029563947 a001 165580141/20633239*599074578^(1/3) 6765000029563947 a001 9227465/370248451*599074578^(13/21) 6765000029563947 a001 20365011074/20633239*87403803^(2/19) 6765000029563947 a001 165580141/20633239*228826127^(7/20) 6765000029563947 a001 9227465/969323029*228826127^(7/10) 6765000029563947 a001 9227465/2537720636*228826127^(3/4) 6765000029563947 a001 9227465/6643838879*228826127^(4/5) 6765000029563947 a001 9227465/17393796001*228826127^(17/20) 6765000029563947 a001 9227465/28143753123*228826127^(7/8) 6765000029563947 a001 9227465/45537549124*228826127^(9/10) 6765000029563947 a001 9227465/119218851371*228826127^(19/20) 6765000029563947 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^55 6765000029563947 a001 9227465/141422324*141422324^(8/13) 6765000029563947 a001 9227465/370248451*228826127^(13/20) 6765000029563947 a001 7778742049/20633239*87403803^(3/19) 6765000029563947 a001 2971215073/20633239*87403803^(4/19) 6765000029563947 a001 1134903170/20633239*87403803^(5/19) 6765000029563948 a001 433494437/20633239*87403803^(6/19) 6765000029563948 a001 53316291173/20633239*33385282^(1/18) 6765000029563948 a001 9227465/141422324*2537720636^(8/15) 6765000029563948 a001 9227465/141422324*45537549124^(8/17) 6765000029563948 a001 9227465/141422324*14662949395604^(8/21) 6765000029563948 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(39) 6765000029563948 a001 63245986/20633239*(1/2+1/2*5^(1/2))^16 6765000029563948 a001 63245986/20633239*23725150497407^(1/4) 6765000029563948 a001 9227465/141422324*192900153618^(4/9) 6765000029563948 a001 291800061102745/43133785636 6765000029563948 a001 63245986/20633239*73681302247^(4/13) 6765000029563948 a001 9227465/141422324*73681302247^(6/13) 6765000029563948 a001 63245986/20633239*10749957122^(1/3) 6765000029563948 a001 9227465/141422324*10749957122^(1/2) 6765000029563948 a001 63245986/20633239*4106118243^(8/23) 6765000029563948 a001 9227465/141422324*4106118243^(12/23) 6765000029563948 a001 63245986/20633239*1568397607^(4/11) 6765000029563948 a001 9227465/141422324*1568397607^(6/11) 6765000029563948 a001 63245986/20633239*599074578^(8/21) 6765000029563948 a001 9227465/141422324*599074578^(4/7) 6765000029563948 a001 233802911/29134601*12752043^(7/17) 6765000029563948 a001 165580141/20633239*87403803^(7/19) 6765000029563948 a001 63245986/20633239*228826127^(2/5) 6765000029563948 a001 9227465/141422324*228826127^(3/5) 6765000029563948 a001 32951280099/20633239*33385282^(1/12) 6765000029563948 a001 9227465/370248451*87403803^(13/19) 6765000029563948 a001 9227465/969323029*87403803^(14/19) 6765000029563948 a001 20365011074/20633239*33385282^(1/9) 6765000029563948 a001 9227465/2537720636*87403803^(15/19) 6765000029563948 a001 63245986/20633239*87403803^(8/19) 6765000029563948 a001 9227465/6643838879*87403803^(16/19) 6765000029563948 a001 9227465/17393796001*87403803^(17/19) 6765000029563948 a001 9227465/45537549124*87403803^(18/19) 6765000029563948 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^53 6765000029563948 a001 9227465/141422324*87403803^(12/19) 6765000029563948 a001 7778742049/20633239*33385282^(1/6) 6765000029563948 a001 75283811239/29134601*4870847^(1/16) 6765000029563948 a001 1836311903/228826127*12752043^(7/17) 6765000029563948 a001 1134903170/54018521*12752043^(6/17) 6765000029563948 a001 267084832/33281921*12752043^(7/17) 6765000029563949 a001 12586269025/1568397607*12752043^(7/17) 6765000029563949 a001 10983760033/1368706081*12752043^(7/17) 6765000029563949 a001 43133785636/5374978561*12752043^(7/17) 6765000029563949 a001 75283811239/9381251041*12752043^(7/17) 6765000029563949 a001 591286729879/73681302247*12752043^(7/17) 6765000029563949 a001 86000486440/10716675201*12752043^(7/17) 6765000029563949 a001 4052739537881/505019158607*12752043^(7/17) 6765000029563949 a001 3536736619241/440719107401*12752043^(7/17) 6765000029563949 a001 3278735159921/408569081798*12752043^(7/17) 6765000029563949 a001 2504730781961/312119004989*12752043^(7/17) 6765000029563949 a001 956722026041/119218851371*12752043^(7/17) 6765000029563949 a001 182717648081/22768774562*12752043^(7/17) 6765000029563949 a001 139583862445/17393796001*12752043^(7/17) 6765000029563949 a001 53316291173/6643838879*12752043^(7/17) 6765000029563949 a001 10182505537/1268860318*12752043^(7/17) 6765000029563949 a001 7778742049/969323029*12752043^(7/17) 6765000029563949 a001 2971215073/370248451*12752043^(7/17) 6765000029563949 a001 2971215073/20633239*33385282^(2/9) 6765000029563949 a001 1836311903/20633239*33385282^(1/4) 6765000029563949 a001 567451585/70711162*12752043^(7/17) 6765000029563949 a001 1134903170/20633239*33385282^(5/18) 6765000029563949 a001 591286729879/228826127*4870847^(1/16) 6765000029563949 a001 86000486440/33281921*4870847^(1/16) 6765000029563949 a001 4052739537881/1568397607*4870847^(1/16) 6765000029563949 a001 3536736619241/1368706081*4870847^(1/16) 6765000029563949 a001 3278735159921/1268860318*4870847^(1/16) 6765000029563949 a001 2504730781961/969323029*4870847^(1/16) 6765000029563949 a001 956722026041/370248451*4870847^(1/16) 6765000029563949 a001 433494437/20633239*33385282^(1/3) 6765000029563949 a001 24157817/20633239*141422324^(6/13) 6765000029563950 a001 182717648081/70711162*4870847^(1/16) 6765000029563950 a001 24157817/20633239*2537720636^(2/5) 6765000029563950 a001 24157817/20633239*45537549124^(6/17) 6765000029563950 a001 9227465/54018521*312119004989^(2/5) 6765000029563950 a001 24157817/20633239*14662949395604^(2/7) 6765000029563950 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(37) 6765000029563950 a001 24157817/20633239*(1/2+1/2*5^(1/2))^18 6765000029563950 a001 24157817/20633239*192900153618^(1/3) 6765000029563950 a001 222915410843905/32951280099 6765000029563950 a001 24157817/20633239*10749957122^(3/8) 6765000029563950 a001 9227465/54018521*10749957122^(11/24) 6765000029563950 a001 24157817/20633239*4106118243^(9/23) 6765000029563950 a001 9227465/54018521*4106118243^(11/23) 6765000029563950 a001 24157817/20633239*1568397607^(9/22) 6765000029563950 a001 9227465/54018521*1568397607^(1/2) 6765000029563950 a001 24157817/20633239*599074578^(3/7) 6765000029563950 a001 9227465/54018521*599074578^(11/21) 6765000029563950 a001 24157817/20633239*228826127^(9/20) 6765000029563950 a001 9227465/54018521*228826127^(11/20) 6765000029563950 a001 9303105/1875749*33385282^(5/12) 6765000029563950 a001 165580141/20633239*33385282^(7/18) 6765000029563950 a001 53316291173/20633239*12752043^(1/17) 6765000029563950 a001 24157817/20633239*87403803^(9/19) 6765000029563950 a001 267914296/87403803*12752043^(8/17) 6765000029563950 a001 9227465/54018521*87403803^(11/19) 6765000029563950 a001 63245986/20633239*33385282^(4/9) 6765000029563951 a001 701408733/228826127*12752043^(8/17) 6765000029563951 a001 433494437/54018521*12752043^(7/17) 6765000029563951 a001 1836311903/599074578*12752043^(8/17) 6765000029563951 a001 686789568/224056801*12752043^(8/17) 6765000029563951 a001 12586269025/4106118243*12752043^(8/17) 6765000029563951 a001 32951280099/10749957122*12752043^(8/17) 6765000029563951 a001 86267571272/28143753123*12752043^(8/17) 6765000029563951 a001 32264490531/10525900321*12752043^(8/17) 6765000029563951 a001 591286729879/192900153618*12752043^(8/17) 6765000029563951 a001 1548008755920/505019158607*12752043^(8/17) 6765000029563951 a001 1515744265389/494493258286*12752043^(8/17) 6765000029563951 a001 2504730781961/817138163596*12752043^(8/17) 6765000029563951 a001 956722026041/312119004989*12752043^(8/17) 6765000029563951 a001 365435296162/119218851371*12752043^(8/17) 6765000029563951 a001 139583862445/45537549124*12752043^(8/17) 6765000029563951 a001 53316291173/17393796001*12752043^(8/17) 6765000029563951 a001 20365011074/6643838879*12752043^(8/17) 6765000029563951 a001 7778742049/2537720636*12752043^(8/17) 6765000029563951 a001 2971215073/969323029*12752043^(8/17) 6765000029563951 a001 1134903170/370248451*12752043^(8/17) 6765000029563951 a001 3524578/228826127*7881196^(9/11) 6765000029563951 a001 433494437/141422324*12752043^(8/17) 6765000029563951 a001 4976784/29134601*12752043^(11/17) 6765000029563951 a001 165580141/87403803*12752043^(1/2) 6765000029563952 a001 139583862445/54018521*4870847^(1/16) 6765000029563952 a001 9227465/141422324*33385282^(2/3) 6765000029563952 a001 9227465/370248451*33385282^(13/18) 6765000029563952 a001 9227465/599074578*33385282^(3/4) 6765000029563952 a001 9227465/969323029*33385282^(7/9) 6765000029563952 a001 433494437/228826127*12752043^(1/2) 6765000029563952 a001 567451585/299537289*12752043^(1/2) 6765000029563952 a001 20365011074/20633239*12752043^(2/17) 6765000029563952 a001 2971215073/1568397607*12752043^(1/2) 6765000029563952 a001 7778742049/4106118243*12752043^(1/2) 6765000029563952 a001 10182505537/5374978561*12752043^(1/2) 6765000029563952 a001 53316291173/28143753123*12752043^(1/2) 6765000029563952 a001 139583862445/73681302247*12752043^(1/2) 6765000029563952 a001 182717648081/96450076809*12752043^(1/2) 6765000029563952 a001 956722026041/505019158607*12752043^(1/2) 6765000029563952 a001 10610209857723/5600748293801*12752043^(1/2) 6765000029563952 a001 591286729879/312119004989*12752043^(1/2) 6765000029563952 a001 225851433717/119218851371*12752043^(1/2) 6765000029563952 a001 21566892818/11384387281*12752043^(1/2) 6765000029563952 a001 32951280099/17393796001*12752043^(1/2) 6765000029563952 a001 12586269025/6643838879*12752043^(1/2) 6765000029563952 a001 1201881744/634430159*12752043^(1/2) 6765000029563952 a001 1836311903/969323029*12752043^(1/2) 6765000029563952 a001 701408733/370248451*12752043^(1/2) 6765000029563952 a001 9227465/2537720636*33385282^(5/6) 6765000029563952 a001 34111385/29134601*12752043^(9/17) 6765000029563952 a001 66978574/35355581*12752043^(1/2) 6765000029563953 a001 24157817/20633239*33385282^(1/2) 6765000029563953 a001 9227465/6643838879*33385282^(8/9) 6765000029563953 a001 9227465/10749957122*33385282^(11/12) 6765000029563953 a001 9227465/17393796001*33385282^(17/18) 6765000029563953 a001 267914296/228826127*12752043^(9/17) 6765000029563953 a001 9227465/54018521*33385282^(11/18) 6765000029563953 a001 165580141/54018521*12752043^(8/17) 6765000029563953 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^51 6765000029563953 a001 233802911/199691526*12752043^(9/17) 6765000029563953 a001 1836311903/1568397607*12752043^(9/17) 6765000029563953 a001 1602508992/1368706081*12752043^(9/17) 6765000029563953 a001 12586269025/10749957122*12752043^(9/17) 6765000029563953 a001 10983760033/9381251041*12752043^(9/17) 6765000029563953 a001 86267571272/73681302247*12752043^(9/17) 6765000029563953 a001 75283811239/64300051206*12752043^(9/17) 6765000029563953 a001 2504730781961/2139295485799*12752043^(9/17) 6765000029563953 a001 365435296162/312119004989*12752043^(9/17) 6765000029563953 a001 139583862445/119218851371*12752043^(9/17) 6765000029563953 a001 53316291173/45537549124*12752043^(9/17) 6765000029563953 a001 20365011074/17393796001*12752043^(9/17) 6765000029563953 a001 7778742049/6643838879*12752043^(9/17) 6765000029563953 a001 2971215073/2537720636*12752043^(9/17) 6765000029563953 a001 1134903170/969323029*12752043^(9/17) 6765000029563953 a001 433494437/370248451*12752043^(9/17) 6765000029563954 a001 165580141/141422324*12752043^(9/17) 6765000029563954 a001 39088169/87403803*12752043^(10/17) 6765000029563954 a001 9227465/20633239*20633239^(4/7) 6765000029563954 a001 102334155/54018521*12752043^(1/2) 6765000029563955 a001 14930352/228826127*12752043^(12/17) 6765000029563955 a001 7778742049/20633239*12752043^(3/17) 6765000029563956 a001 102334155/228826127*12752043^(10/17) 6765000029563956 a001 133957148/299537289*12752043^(10/17) 6765000029563956 a001 701408733/1568397607*12752043^(10/17) 6765000029563956 a001 1836311903/4106118243*12752043^(10/17) 6765000029563956 a001 2403763488/5374978561*12752043^(10/17) 6765000029563956 a001 12586269025/28143753123*12752043^(10/17) 6765000029563956 a001 32951280099/73681302247*12752043^(10/17) 6765000029563956 a001 43133785636/96450076809*12752043^(10/17) 6765000029563956 a001 225851433717/505019158607*12752043^(10/17) 6765000029563956 a001 591286729879/1322157322203*12752043^(10/17) 6765000029563956 a001 10610209857723/23725150497407*12752043^(10/17) 6765000029563956 a001 182717648081/408569081798*12752043^(10/17) 6765000029563956 a001 139583862445/312119004989*12752043^(10/17) 6765000029563956 a001 53316291173/119218851371*12752043^(10/17) 6765000029563956 a001 10182505537/22768774562*12752043^(10/17) 6765000029563956 a001 7778742049/17393796001*12752043^(10/17) 6765000029563956 a001 2971215073/6643838879*12752043^(10/17) 6765000029563956 a001 567451585/1268860318*12752043^(10/17) 6765000029563956 a001 433494437/969323029*12752043^(10/17) 6765000029563956 a001 165580141/370248451*12752043^(10/17) 6765000029563956 a001 63245986/54018521*12752043^(9/17) 6765000029563957 a001 31622993/70711162*12752043^(10/17) 6765000029563957 a001 2971215073/20633239*12752043^(4/17) 6765000029563957 a001 829464/33281921*12752043^(13/17) 6765000029563957 a001 39088169/228826127*12752043^(11/17) 6765000029563958 a001 34111385/199691526*12752043^(11/17) 6765000029563958 a001 267914296/1568397607*12752043^(11/17) 6765000029563958 a001 233802911/1368706081*12752043^(11/17) 6765000029563958 a001 1836311903/10749957122*12752043^(11/17) 6765000029563958 a001 1602508992/9381251041*12752043^(11/17) 6765000029563958 a001 12586269025/73681302247*12752043^(11/17) 6765000029563958 a001 10983760033/64300051206*12752043^(11/17) 6765000029563958 a001 86267571272/505019158607*12752043^(11/17) 6765000029563958 a001 75283811239/440719107401*12752043^(11/17) 6765000029563958 a001 2504730781961/14662949395604*12752043^(11/17) 6765000029563958 a001 139583862445/817138163596*12752043^(11/17) 6765000029563958 a001 53316291173/312119004989*12752043^(11/17) 6765000029563958 a001 20365011074/119218851371*12752043^(11/17) 6765000029563958 a001 7778742049/45537549124*12752043^(11/17) 6765000029563958 a001 2971215073/17393796001*12752043^(11/17) 6765000029563958 a001 1134903170/6643838879*12752043^(11/17) 6765000029563958 a001 433494437/2537720636*12752043^(11/17) 6765000029563958 a001 165580141/969323029*12752043^(11/17) 6765000029563959 a001 63245986/370248451*12752043^(11/17) 6765000029563960 a001 1134903170/20633239*12752043^(5/17) 6765000029563960 a001 14930352/1568397607*12752043^(14/17) 6765000029563960 a001 39088169/599074578*12752043^(12/17) 6765000029563960 a001 24157817/54018521*12752043^(10/17) 6765000029563961 a001 14619165/224056801*12752043^(12/17) 6765000029563961 a001 267914296/4106118243*12752043^(12/17) 6765000029563961 a001 701408733/10749957122*12752043^(12/17) 6765000029563961 a001 1836311903/28143753123*12752043^(12/17) 6765000029563961 a001 686789568/10525900321*12752043^(12/17) 6765000029563961 a001 12586269025/192900153618*12752043^(12/17) 6765000029563961 a001 32951280099/505019158607*12752043^(12/17) 6765000029563961 a001 86267571272/1322157322203*12752043^(12/17) 6765000029563961 a001 32264490531/494493258286*12752043^(12/17) 6765000029563961 a001 591286729879/9062201101803*12752043^(12/17) 6765000029563961 a001 1548008755920/23725150497407*12752043^(12/17) 6765000029563961 a001 365435296162/5600748293801*12752043^(12/17) 6765000029563961 a001 139583862445/2139295485799*12752043^(12/17) 6765000029563961 a001 53316291173/817138163596*12752043^(12/17) 6765000029563961 a001 20365011074/312119004989*12752043^(12/17) 6765000029563961 a001 7778742049/119218851371*12752043^(12/17) 6765000029563961 a001 2971215073/45537549124*12752043^(12/17) 6765000029563961 a001 1134903170/17393796001*12752043^(12/17) 6765000029563961 a001 433494437/6643838879*12752043^(12/17) 6765000029563961 a001 165580141/2537720636*12752043^(12/17) 6765000029563961 a001 32951280099/33385282*4870847^(1/8) 6765000029563961 a001 24157817/141422324*12752043^(11/17) 6765000029563961 a001 1836311903/12752043*4870847^(1/4) 6765000029563961 a001 63245986/969323029*12752043^(12/17) 6765000029563962 a001 433494437/20633239*12752043^(6/17) 6765000029563962 a001 4976784/1368706081*12752043^(15/17) 6765000029563962 a001 39088169/1568397607*12752043^(13/17) 6765000029563963 a001 34111385/1368706081*12752043^(13/17) 6765000029563963 a001 24157817/370248451*12752043^(12/17) 6765000029563963 a001 9227465/20633239*2537720636^(4/9) 6765000029563963 a001 9227465/20633239*(1/2+1/2*5^(1/2))^20 6765000029563963 a001 9227465/20633239*23725150497407^(5/16) 6765000029563963 a001 9227465/20633239*505019158607^(5/14) 6765000029563963 a001 9227465/20633239*73681302247^(5/13) 6765000029563963 a001 9227465/20633239*28143753123^(2/5) 6765000029563963 a001 3405844413049/503450761 6765000029563963 a001 9227465/20633239*10749957122^(5/12) 6765000029563963 a001 9227465/20633239*4106118243^(10/23) 6765000029563963 a001 9227465/20633239*1568397607^(5/11) 6765000029563963 a001 9227465/20633239*599074578^(10/21) 6765000029563963 a001 133957148/5374978561*12752043^(13/17) 6765000029563963 a001 233802911/9381251041*12752043^(13/17) 6765000029563963 a001 1836311903/73681302247*12752043^(13/17) 6765000029563963 a001 267084832/10716675201*12752043^(13/17) 6765000029563963 a001 12586269025/505019158607*12752043^(13/17) 6765000029563963 a001 10983760033/440719107401*12752043^(13/17) 6765000029563963 a001 43133785636/1730726404001*12752043^(13/17) 6765000029563963 a001 75283811239/3020733700601*12752043^(13/17) 6765000029563963 a001 182717648081/7331474697802*12752043^(13/17) 6765000029563963 a001 139583862445/5600748293801*12752043^(13/17) 6765000029563963 a001 53316291173/2139295485799*12752043^(13/17) 6765000029563963 a001 10182505537/408569081798*12752043^(13/17) 6765000029563963 a001 7778742049/312119004989*12752043^(13/17) 6765000029563963 a001 2971215073/119218851371*12752043^(13/17) 6765000029563963 a001 567451585/22768774562*12752043^(13/17) 6765000029563963 a001 433494437/17393796001*12752043^(13/17) 6765000029563963 a001 9227465/20633239*228826127^(1/2) 6765000029563963 a001 165580141/6643838879*12752043^(13/17) 6765000029563963 a001 3524578/54018521*7881196^(8/11) 6765000029563964 a001 31622993/1268860318*12752043^(13/17) 6765000029563964 a001 9227465/20633239*87403803^(10/19) 6765000029563964 a001 165580141/20633239*12752043^(7/17) 6765000029563964 a001 7465176/5374978561*12752043^(16/17) 6765000029563965 a001 39088169/4106118243*12752043^(14/17) 6765000029563965 a001 53316291173/20633239*4870847^(1/16) 6765000029563966 a001 102334155/10749957122*12752043^(14/17) 6765000029563966 a001 24157817/969323029*12752043^(13/17) 6765000029563966 a001 267914296/28143753123*12752043^(14/17) 6765000029563966 a001 701408733/73681302247*12752043^(14/17) 6765000029563966 a001 1836311903/192900153618*12752043^(14/17) 6765000029563966 a001 102287808/10745088481*12752043^(14/17) 6765000029563966 a001 12586269025/1322157322203*12752043^(14/17) 6765000029563966 a001 32951280099/3461452808002*12752043^(14/17) 6765000029563966 a001 86267571272/9062201101803*12752043^(14/17) 6765000029563966 a001 225851433717/23725150497407*12752043^(14/17) 6765000029563966 a001 139583862445/14662949395604*12752043^(14/17) 6765000029563966 a001 53316291173/5600748293801*12752043^(14/17) 6765000029563966 a001 20365011074/2139295485799*12752043^(14/17) 6765000029563966 a001 7778742049/817138163596*12752043^(14/17) 6765000029563966 a001 2971215073/312119004989*12752043^(14/17) 6765000029563966 a001 1134903170/119218851371*12752043^(14/17) 6765000029563966 a001 433494437/45537549124*12752043^(14/17) 6765000029563966 a001 165580141/17393796001*12752043^(14/17) 6765000029563966 a001 63245986/6643838879*12752043^(14/17) 6765000029563966 a001 86267571272/87403803*4870847^(1/8) 6765000029563967 a001 9227465/20633239*33385282^(5/9) 6765000029563967 a001 225851433717/228826127*4870847^(1/8) 6765000029563967 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^50 6765000029563967 a001 591286729879/599074578*4870847^(1/8) 6765000029563967 a001 1548008755920/1568397607*4870847^(1/8) 6765000029563967 a001 4052739537881/4106118243*4870847^(1/8) 6765000029563967 a001 4807525989/4870846*4870847^(1/8) 6765000029563967 a001 6557470319842/6643838879*4870847^(1/8) 6765000029563967 a001 2504730781961/2537720636*4870847^(1/8) 6765000029563967 a001 956722026041/969323029*4870847^(1/8) 6765000029563967 a001 365435296162/370248451*4870847^(1/8) 6765000029563967 a001 39088169/20633239*12752043^(1/2) 6765000029563967 a001 63245986/20633239*12752043^(8/17) 6765000029563967 a001 39088169/10749957122*12752043^(15/17) 6765000029563967 a001 139583862445/141422324*4870847^(1/8) 6765000029563968 a001 831985/228811001*12752043^(15/17) 6765000029563968 a001 24157817/2537720636*12752043^(14/17) 6765000029563968 a001 267914296/73681302247*12752043^(15/17) 6765000029563968 a001 233802911/64300051206*12752043^(15/17) 6765000029563968 a001 1836311903/505019158607*12752043^(15/17) 6765000029563968 a001 1602508992/440719107401*12752043^(15/17) 6765000029563968 a001 12586269025/3461452808002*12752043^(15/17) 6765000029563968 a001 10983760033/3020733700601*12752043^(15/17) 6765000029563968 a001 86267571272/23725150497407*12752043^(15/17) 6765000029563968 a001 53316291173/14662949395604*12752043^(15/17) 6765000029563968 a001 20365011074/5600748293801*12752043^(15/17) 6765000029563968 a001 7778742049/2139295485799*12752043^(15/17) 6765000029563968 a001 2971215073/817138163596*12752043^(15/17) 6765000029563968 a001 1134903170/312119004989*12752043^(15/17) 6765000029563968 a001 433494437/119218851371*12752043^(15/17) 6765000029563968 a001 165580141/45537549124*12752043^(15/17) 6765000029563968 a001 63245986/17393796001*12752043^(15/17) 6765000029563969 a001 53316291173/54018521*4870847^(1/8) 6765000029563970 a001 39088169/28143753123*12752043^(16/17) 6765000029563970 a001 14619165/10525900321*12752043^(16/17) 6765000029563970 a001 24157817/6643838879*12752043^(15/17) 6765000029563971 a001 133957148/96450076809*12752043^(16/17) 6765000029563971 a001 701408733/505019158607*12752043^(16/17) 6765000029563971 a001 1836311903/1322157322203*12752043^(16/17) 6765000029563971 a001 14930208/10749853441*12752043^(16/17) 6765000029563971 a001 12586269025/9062201101803*12752043^(16/17) 6765000029563971 a001 32951280099/23725150497407*12752043^(16/17) 6765000029563971 a001 10182505537/7331474697802*12752043^(16/17) 6765000029563971 a001 7778742049/5600748293801*12752043^(16/17) 6765000029563971 a001 2971215073/2139295485799*12752043^(16/17) 6765000029563971 a001 567451585/408569081798*12752043^(16/17) 6765000029563971 a001 433494437/312119004989*12752043^(16/17) 6765000029563971 a001 165580141/119218851371*12752043^(16/17) 6765000029563971 a001 31622993/22768774562*12752043^(16/17) 6765000029563972 a001 24157817/20633239*12752043^(9/17) 6765000029563972 a001 2971215073/4870847*1860498^(1/6) 6765000029563972 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^52 6765000029563973 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^54 6765000029563973 a001 24157817/17393796001*12752043^(16/17) 6765000029563973 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^56 6765000029563973 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^58 6765000029563973 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^60 6765000029563973 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^62 6765000029563973 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^64 6765000029563973 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^66 6765000029563973 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^68 6765000029563973 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^70 6765000029563973 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^72 6765000029563973 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^74 6765000029563973 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^76 6765000029563973 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^78 6765000029563973 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^80 6765000029563973 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^82 6765000029563973 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^84 6765000029563973 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^86 6765000029563973 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^88 6765000029563973 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^90 6765000029563973 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^92 6765000029563973 a004 Fibonacci(80)*Lucas(34)/(1/2+sqrt(5)/2)^94 6765000029563973 a004 Fibonacci(82)*Lucas(34)/(1/2+sqrt(5)/2)^96 6765000029563973 a004 Fibonacci(84)*Lucas(34)/(1/2+sqrt(5)/2)^98 6765000029563973 a004 Fibonacci(86)*Lucas(34)/(1/2+sqrt(5)/2)^100 6765000029563973 a004 Fibonacci(85)*Lucas(34)/(1/2+sqrt(5)/2)^99 6765000029563973 a004 Fibonacci(83)*Lucas(34)/(1/2+sqrt(5)/2)^97 6765000029563973 a004 Fibonacci(81)*Lucas(34)/(1/2+sqrt(5)/2)^95 6765000029563973 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^93 6765000029563973 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^91 6765000029563973 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^89 6765000029563973 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^87 6765000029563973 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^85 6765000029563973 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^83 6765000029563973 a001 2/5702887*(1/2+1/2*5^(1/2))^54 6765000029563973 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^81 6765000029563973 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^79 6765000029563973 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^77 6765000029563973 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^75 6765000029563973 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^73 6765000029563973 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^71 6765000029563973 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^69 6765000029563973 a001 192900153618/5702887*8^(1/3) 6765000029563973 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^67 6765000029563973 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^65 6765000029563973 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^63 6765000029563973 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^61 6765000029563973 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^59 6765000029563973 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^57 6765000029563973 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^55 6765000029563973 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^53 6765000029563975 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^51 6765000029563977 a001 9227465/54018521*12752043^(11/17) 6765000029563977 a001 9227465/141422324*12752043^(12/17) 6765000029563979 a001 12586269025/33385282*4870847^(3/16) 6765000029563979 a001 233802911/4250681*4870847^(5/16) 6765000029563979 a001 9227465/370248451*12752043^(13/17) 6765000029563982 a001 9227465/969323029*12752043^(14/17) 6765000029563983 a001 20365011074/20633239*4870847^(1/8) 6765000029563984 a001 3524578/20633239*7881196^(2/3) 6765000029563984 a001 10983760033/29134601*4870847^(3/16) 6765000029563984 a001 9227465/2537720636*12752043^(15/17) 6765000029563985 a001 86267571272/228826127*4870847^(3/16) 6765000029563985 a001 267913919/710646*4870847^(3/16) 6765000029563985 a001 591286729879/1568397607*4870847^(3/16) 6765000029563985 a001 516002918640/1368706081*4870847^(3/16) 6765000029563985 a001 4052739537881/10749957122*4870847^(3/16) 6765000029563985 a001 3536736619241/9381251041*4870847^(3/16) 6765000029563985 a001 6557470319842/17393796001*4870847^(3/16) 6765000029563985 a001 2504730781961/6643838879*4870847^(3/16) 6765000029563985 a001 956722026041/2537720636*4870847^(3/16) 6765000029563985 a001 365435296162/969323029*4870847^(3/16) 6765000029563985 a001 139583862445/370248451*4870847^(3/16) 6765000029563985 a001 53316291173/141422324*4870847^(3/16) 6765000029563986 a001 9227465/6643838879*12752043^(16/17) 6765000029563987 a001 20365011074/54018521*4870847^(3/16) 6765000029563988 a001 9227465/20633239*12752043^(10/17) 6765000029563989 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^49 6765000029563989 a001 3524578/12752043*20633239^(3/5) 6765000029563990 a001 39088169/7881196*7881196^(5/11) 6765000029563997 a001 14930208/103681*4870847^(1/4) 6765000029563997 a001 267914296/12752043*4870847^(3/8) 6765000029563997 a001 9227465/7881196*7881196^(6/11) 6765000029563999 a001 3524578/12752043*141422324^(7/13) 6765000029563999 a001 3524578/12752043*2537720636^(7/15) 6765000029563999 a001 20100270056686/2971215073 6765000029563999 a001 3524578/12752043*17393796001^(3/7) 6765000029563999 a001 3524578/12752043*45537549124^(7/17) 6765000029563999 a001 5702887/7881196*817138163596^(1/3) 6765000029563999 a001 3524578/12752043*14662949395604^(1/3) 6765000029563999 a001 3524578/12752043*(1/2+1/2*5^(1/2))^21 6765000029563999 a001 5702887/7881196*(1/2+1/2*5^(1/2))^19 6765000029563999 a001 3524578/12752043*192900153618^(7/18) 6765000029563999 a001 3524578/12752043*10749957122^(7/16) 6765000029563999 a001 3524578/12752043*599074578^(1/2) 6765000029563999 a001 5702887/7881196*87403803^(1/2) 6765000029564001 a001 7778742049/20633239*4870847^(3/16) 6765000029564001 a001 165580141/7881196*7881196^(4/11) 6765000029564002 a001 12586269025/87403803*4870847^(1/4) 6765000029564002 a001 3524578/12752043*33385282^(7/12) 6765000029564003 a001 32951280099/228826127*4870847^(1/4) 6765000029564003 a001 43133785636/299537289*4870847^(1/4) 6765000029564003 a001 32264490531/224056801*4870847^(1/4) 6765000029564003 a001 591286729879/4106118243*4870847^(1/4) 6765000029564003 a001 774004377960/5374978561*4870847^(1/4) 6765000029564003 a001 4052739537881/28143753123*4870847^(1/4) 6765000029564003 a001 1515744265389/10525900321*4870847^(1/4) 6765000029564003 a001 3278735159921/22768774562*4870847^(1/4) 6765000029564003 a001 2504730781961/17393796001*4870847^(1/4) 6765000029564003 a001 956722026041/6643838879*4870847^(1/4) 6765000029564003 a001 182717648081/1268860318*4870847^(1/4) 6765000029564003 a001 139583862445/969323029*4870847^(1/4) 6765000029564003 a001 53316291173/370248451*4870847^(1/4) 6765000029564003 a001 10182505537/70711162*4870847^(1/4) 6765000029564004 a001 66978574/1970299*7881196^(1/3) 6765000029564005 a001 7778742049/54018521*4870847^(1/4) 6765000029564011 a001 3524667/39604*7881196^(3/11) 6765000029564014 a001 34111385/4250681*4870847^(7/16) 6765000029564014 a001 1836311903/33385282*4870847^(5/16) 6765000029564019 a001 2971215073/20633239*4870847^(1/4) 6765000029564020 a001 1602508992/29134601*4870847^(5/16) 6765000029564020 a001 10983760033/4250681*1860498^(1/15) 6765000029564020 a001 12586269025/228826127*4870847^(5/16) 6765000029564020 a001 10983760033/199691526*4870847^(5/16) 6765000029564020 a001 86267571272/1568397607*4870847^(5/16) 6765000029564020 a001 75283811239/1368706081*4870847^(5/16) 6765000029564020 a001 591286729879/10749957122*4870847^(5/16) 6765000029564020 a001 12585437040/228811001*4870847^(5/16) 6765000029564020 a001 4052739537881/73681302247*4870847^(5/16) 6765000029564020 a001 3536736619241/64300051206*4870847^(5/16) 6765000029564020 a001 6557470319842/119218851371*4870847^(5/16) 6765000029564020 a001 2504730781961/45537549124*4870847^(5/16) 6765000029564020 a001 956722026041/17393796001*4870847^(5/16) 6765000029564020 a001 365435296162/6643838879*4870847^(5/16) 6765000029564020 a001 139583862445/2537720636*4870847^(5/16) 6765000029564020 a001 2971215073/7881196*7881196^(2/11) 6765000029564020 a001 53316291173/969323029*4870847^(5/16) 6765000029564021 a001 20365011074/370248451*4870847^(5/16) 6765000029564021 a001 7778742049/141422324*4870847^(5/16) 6765000029564023 a001 2971215073/54018521*4870847^(5/16) 6765000029564024 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^48 6765000029564026 a001 5702887/12752043*4870847^(5/8) 6765000029564027 a001 3524578/969323029*20633239^(6/7) 6765000029564028 a001 3524578/370248451*20633239^(4/5) 6765000029564028 a001 3524578/87403803*20633239^(5/7) 6765000029564030 a001 12586269025/7881196*7881196^(1/11) 6765000029564031 a001 39088169/12752043*4870847^(1/2) 6765000029564032 a001 701408733/33385282*4870847^(3/8) 6765000029564033 a001 39088169/7881196*20633239^(3/7) 6765000029564034 a001 52623190191456/7778742049 6765000029564034 a001 3732588/1970299*45537549124^(1/3) 6765000029564034 a001 1762289/16692641*(1/2+1/2*5^(1/2))^23 6765000029564034 a001 3732588/1970299*(1/2+1/2*5^(1/2))^17 6765000029564034 a001 1762289/16692641*4106118243^(1/2) 6765000029564034 a001 31622993/3940598*20633239^(2/5) 6765000029564036 a001 433494437/7881196*20633239^(2/7) 6765000029564036 a001 1134903170/20633239*4870847^(5/16) 6765000029564037 a001 1836311903/4870847*1860498^(1/5) 6765000029564037 a001 1836311903/87403803*4870847^(3/8) 6765000029564038 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^50 6765000029564038 a001 1201881744/1970299*20633239^(1/7) 6765000029564038 a001 102287808/4868641*4870847^(3/8) 6765000029564038 a001 12586269025/599074578*4870847^(3/8) 6765000029564038 a001 32951280099/1568397607*4870847^(3/8) 6765000029564038 a001 86267571272/4106118243*4870847^(3/8) 6765000029564038 a001 225851433717/10749957122*4870847^(3/8) 6765000029564038 a001 591286729879/28143753123*4870847^(3/8) 6765000029564038 a001 1548008755920/73681302247*4870847^(3/8) 6765000029564038 a001 4052739537881/192900153618*4870847^(3/8) 6765000029564038 a001 225749145909/10745088481*4870847^(3/8) 6765000029564038 a001 6557470319842/312119004989*4870847^(3/8) 6765000029564038 a001 2504730781961/119218851371*4870847^(3/8) 6765000029564038 a001 956722026041/45537549124*4870847^(3/8) 6765000029564038 a001 365435296162/17393796001*4870847^(3/8) 6765000029564038 a001 139583862445/6643838879*4870847^(3/8) 6765000029564038 a001 53316291173/2537720636*4870847^(3/8) 6765000029564038 a001 20365011074/969323029*4870847^(3/8) 6765000029564038 a001 7778742049/370248451*4870847^(3/8) 6765000029564039 a001 2971215073/141422324*4870847^(3/8) 6765000029564039 a001 39088169/7881196*141422324^(5/13) 6765000029564039 a001 3524578/87403803*2537720636^(5/9) 6765000029564039 a001 39088169/7881196*2537720636^(1/3) 6765000029564039 a001 68884650258841/10182505537 6765000029564039 a001 39088169/7881196*45537549124^(5/17) 6765000029564039 a001 3524578/87403803*312119004989^(5/11) 6765000029564039 a001 39088169/7881196*312119004989^(3/11) 6765000029564039 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(38) 6765000029564039 a001 39088169/7881196*(1/2+1/2*5^(1/2))^15 6765000029564039 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(33) 6765000029564039 a001 3524578/87403803*3461452808002^(5/12) 6765000029564039 a001 39088169/7881196*192900153618^(5/18) 6765000029564039 a001 39088169/7881196*28143753123^(3/10) 6765000029564039 a001 3524578/87403803*28143753123^(1/2) 6765000029564039 a001 39088169/7881196*10749957122^(5/16) 6765000029564039 a001 39088169/7881196*599074578^(5/14) 6765000029564039 a001 39088169/7881196*228826127^(3/8) 6765000029564039 a001 3524578/87403803*228826127^(5/8) 6765000029564040 a001 3524578/228826127*141422324^(9/13) 6765000029564040 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^52 6765000029564040 a001 3524578/17393796001*141422324^(12/13) 6765000029564040 a001 3524578/4106118243*141422324^(11/13) 6765000029564040 a001 3524578/969323029*141422324^(10/13) 6765000029564040 a001 102334155/7881196*141422324^(1/3) 6765000029564040 a001 3524578/228826127*2537720636^(3/5) 6765000029564040 a001 3524578/228826127*45537549124^(9/17) 6765000029564040 a001 360684711361590/53316291173 6765000029564040 a001 3524578/228826127*817138163596^(9/19) 6765000029564040 a001 3524578/228826127*14662949395604^(3/7) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(40) 6765000029564040 a001 102334155/7881196*(1/2+1/2*5^(1/2))^13 6765000029564040 a001 3524578/228826127*192900153618^(1/2) 6765000029564040 a001 102334155/7881196*73681302247^(1/4) 6765000029564040 a001 3524578/228826127*10749957122^(9/16) 6765000029564040 a001 3524578/228826127*599074578^(9/14) 6765000029564040 a001 3524667/39604*141422324^(3/13) 6765000029564040 a001 165580141/7881196*141422324^(4/13) 6765000029564040 a001 2971215073/7881196*141422324^(2/13) 6765000029564040 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^54 6765000029564040 a001 12586269025/7881196*141422324^(1/13) 6765000029564040 a001 10609941950192/1568358005 6765000029564040 a001 66978574/1970299*312119004989^(1/5) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(42) 6765000029564040 a001 66978574/1970299*(1/2+1/2*5^(1/2))^11 6765000029564040 a001 1762289/299537289*1322157322203^(1/2) 6765000029564040 a001 66978574/1970299*1568397607^(1/4) 6765000029564040 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^56 6765000029564040 a001 3524667/39604*2537720636^(1/5) 6765000029564040 a001 3524667/39604*45537549124^(3/17) 6765000029564040 a001 1236084894669837/182717648081 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(44) 6765000029564040 a001 3524667/39604*(1/2+1/2*5^(1/2))^9 6765000029564040 a001 3524578/1568397607*9062201101803^(1/2) 6765000029564040 a001 3524667/39604*192900153618^(1/6) 6765000029564040 a001 3524667/39604*10749957122^(3/16) 6765000029564040 a001 3524578/4106118243*2537720636^(11/15) 6765000029564040 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^58 6765000029564040 a001 3524578/312119004989*2537720636^(14/15) 6765000029564040 a001 3524578/119218851371*2537720636^(8/9) 6765000029564040 a001 3524578/73681302247*2537720636^(13/15) 6765000029564040 a001 1762289/5374978561*2537720636^(7/9) 6765000029564040 a001 3524578/17393796001*2537720636^(4/5) 6765000029564040 a001 1836311903/7881196*17393796001^(1/7) 6765000029564040 a001 3524578/4106118243*45537549124^(11/17) 6765000029564040 a001 3524578/4106118243*312119004989^(3/5) 6765000029564040 a001 3524578/4106118243*817138163596^(11/19) 6765000029564040 a001 3524578/4106118243*14662949395604^(11/21) 6765000029564040 a001 1836311903/7881196*14662949395604^(1/9) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(46) 6765000029564040 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^7 6765000029564040 a001 3524578/4106118243*192900153618^(11/18) 6765000029564040 a001 3524578/4106118243*10749957122^(11/16) 6765000029564040 a001 1201881744/1970299*2537720636^(1/9) 6765000029564040 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^60 6765000029564040 a001 12586269025/7881196*2537720636^(1/15) 6765000029564040 a001 1762289/5374978561*17393796001^(5/7) 6765000029564040 a001 1762289/5374978561*312119004989^(7/11) 6765000029564040 a001 1201881744/1970299*312119004989^(1/11) 6765000029564040 a001 16944503814016128/2504730781961 6765000029564040 a001 1762289/5374978561*14662949395604^(5/9) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(48) 6765000029564040 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^5 6765000029564040 a001 1762289/5374978561*505019158607^(5/8) 6765000029564040 a001 1201881744/1970299*28143753123^(1/10) 6765000029564040 a001 1762289/5374978561*28143753123^(7/10) 6765000029564040 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^62 6765000029564040 a001 3524578/312119004989*17393796001^(6/7) 6765000029564040 a001 12586269025/7881196*45537549124^(1/17) 6765000029564040 a001 22180643453798225/3278735159921 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(50) 6765000029564040 a001 12586269025/7881196*14662949395604^(1/21) 6765000029564040 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^3 6765000029564040 a001 12586269025/7881196*192900153618^(1/18) 6765000029564040 a001 12586269025/7881196*10749957122^(1/16) 6765000029564040 a001 3524578/73681302247*45537549124^(13/17) 6765000029564040 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^64 6765000029564040 a001 3524578/5600748293801*45537549124^(16/17) 6765000029564040 a001 3524578/1322157322203*45537549124^(15/17) 6765000029564040 a001 3524578/312119004989*45537549124^(14/17) 6765000029564040 a001 3524578/73681302247*14662949395604^(13/21) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(52) 6765000029564040 a001 3524578/73681302247*192900153618^(13/18) 6765000029564040 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^66 6765000029564040 a001 3524578/73681302247*73681302247^(3/4) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(54) 6765000029564040 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2) 6765000029564040 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^68 6765000029564040 a001 1762289/408569081798*312119004989^(4/5) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(56) 6765000029564040 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^3 6765000029564040 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^70 6765000029564040 a001 3524578/23725150497407*817138163596^(17/19) 6765000029564040 a001 3524578/1322157322203*14662949395604^(5/7) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(58) 6765000029564040 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^5 6765000029564040 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^72 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(60) 6765000029564040 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^7 6765000029564040 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^74 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(62) 6765000029564040 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^9 6765000029564040 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^76 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(64) 6765000029564040 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^11 6765000029564040 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^78 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(66) 6765000029564040 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^80 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(68) 6765000029564040 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^82 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(70) 6765000029564040 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^84 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(72) 6765000029564040 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^86 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(74) 6765000029564040 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^88 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(76) 6765000029564040 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^90 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(78) 6765000029564040 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^92 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(80) 6765000029564040 a004 Fibonacci(33)*Lucas(81)/(1/2+sqrt(5)/2)^94 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(82) 6765000029564040 a004 Fibonacci(33)*Lucas(83)/(1/2+sqrt(5)/2)^96 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(84) 6765000029564040 a004 Fibonacci(33)*Lucas(85)/(1/2+sqrt(5)/2)^98 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(86) 6765000029564040 a004 Fibonacci(33)*Lucas(87)/(1/2+sqrt(5)/2)^100 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(88) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(90) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(92) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^81/Lucas(94) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^83/Lucas(96) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^85/Lucas(98) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^87/Lucas(100) 6765000029564040 a004 Fibonacci(33)/Lucas(1)/(1/2+sqrt(5)/2)^13 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^86/Lucas(99) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^84/Lucas(97) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^82/Lucas(95) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(93) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(91) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(89) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(87) 6765000029564040 a004 Fibonacci(33)*Lucas(86)/(1/2+sqrt(5)/2)^99 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(85) 6765000029564040 a004 Fibonacci(33)*Lucas(84)/(1/2+sqrt(5)/2)^97 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(83) 6765000029564040 a004 Fibonacci(33)*Lucas(82)/(1/2+sqrt(5)/2)^95 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(81) 6765000029564040 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^93 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(79) 6765000029564040 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^91 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(77) 6765000029564040 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^89 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(75) 6765000029564040 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^87 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(73) 6765000029564040 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^85 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(71) 6765000029564040 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^83 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(69) 6765000029564040 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^81 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(67) 6765000029564040 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^15 6765000029564040 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^17 6765000029564040 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^19 6765000029564040 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^21 6765000029564040 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^23 6765000029564040 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^25 6765000029564040 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^27 6765000029564040 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^29 6765000029564040 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^31 6765000029564040 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^33 6765000029564040 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^35 6765000029564040 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^37 6765000029564040 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^39 6765000029564040 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^41 6765000029564040 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^43 6765000029564040 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^45 6765000029564040 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^47 6765000029564040 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^79 6765000029564040 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^46 6765000029564040 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^44 6765000029564040 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^42 6765000029564040 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^40 6765000029564040 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^38 6765000029564040 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^36 6765000029564040 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^34 6765000029564040 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^32 6765000029564040 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^30 6765000029564040 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^28 6765000029564040 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^26 6765000029564040 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^24 6765000029564040 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^22 6765000029564040 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^20 6765000029564040 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^18 6765000029564040 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^16 6765000029564040 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^14 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(65) 6765000029564040 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^12 6765000029564040 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^77 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(63) 6765000029564040 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^10 6765000029564040 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^75 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(61) 6765000029564040 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^8 6765000029564040 a001 1762289/7331474697802*3461452808002^(5/6) 6765000029564040 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^73 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(59) 6765000029564040 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^6 6765000029564040 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^71 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(57) 6765000029564040 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^4 6765000029564040 a001 1762289/408569081798*23725150497407^(11/16) 6765000029564040 a001 3524578/9062201101803*505019158607^(7/8) 6765000029564040 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^69 6765000029564040 a001 3524578/312119004989*817138163596^(14/19) 6765000029564040 a001 3524578/312119004989*14662949395604^(2/3) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(55) 6765000029564040 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^2 6765000029564040 a001 3524578/312119004989*505019158607^(3/4) 6765000029564040 a001 3524578/1322157322203*192900153618^(5/6) 6765000029564040 a001 3524578/5600748293801*192900153618^(8/9) 6765000029564040 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^67 6765000029564040 a001 3524578/312119004989*192900153618^(7/9) 6765000029564040 a001 3524578/119218851371*312119004989^(8/11) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(53) 6765000029564040 a006 5^(1/2)*Fibonacci(53)/Lucas(33)/sqrt(5) 6765000029564040 a001 3524578/119218851371*23725150497407^(5/8) 6765000029564040 a001 1762289/408569081798*73681302247^(11/13) 6765000029564040 a001 3524578/5600748293801*73681302247^(12/13) 6765000029564040 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^65 6765000029564040 a001 3524578/119218851371*73681302247^(10/13) 6765000029564040 a001 1762289/22768774562*817138163596^(2/3) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(51) 6765000029564040 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^2 6765000029564040 a001 10182505537/3940598*10749957122^(1/24) 6765000029564040 a001 3524578/119218851371*28143753123^(4/5) 6765000029564040 a001 3524578/1322157322203*28143753123^(9/10) 6765000029564040 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^63 6765000029564040 a001 2971215073/7881196*2537720636^(2/15) 6765000029564040 a001 3524578/17393796001*45537549124^(12/17) 6765000029564040 a001 10182505537/3940598*4106118243^(1/23) 6765000029564040 a001 3524578/17393796001*14662949395604^(4/7) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(49) 6765000029564040 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^4 6765000029564040 a001 27416783093580322/4052739537881 6765000029564040 a001 3524578/17393796001*505019158607^(9/14) 6765000029564040 a001 7778742049/7881196*73681302247^(1/13) 6765000029564040 a001 3524578/17393796001*192900153618^(2/3) 6765000029564040 a001 3524578/17393796001*73681302247^(9/13) 6765000029564040 a001 7778742049/7881196*10749957122^(1/12) 6765000029564040 a001 3524578/73681302247*10749957122^(13/16) 6765000029564040 a001 3524578/119218851371*10749957122^(5/6) 6765000029564040 a001 1762289/22768774562*10749957122^(19/24) 6765000029564040 a001 3524578/312119004989*10749957122^(7/8) 6765000029564040 a001 1762289/408569081798*10749957122^(11/12) 6765000029564040 a001 3524578/1322157322203*10749957122^(15/16) 6765000029564040 a001 3524578/2139295485799*10749957122^(23/24) 6765000029564040 a001 7778742049/7881196*4106118243^(2/23) 6765000029564040 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^61 6765000029564040 a001 3524578/17393796001*10749957122^(3/4) 6765000029564040 a001 10182505537/3940598*1568397607^(1/22) 6765000029564040 a001 3524578/6643838879*45537549124^(2/3) 6765000029564040 a001 2971215073/7881196*45537549124^(2/17) 6765000029564040 a001 2971215073/7881196*14662949395604^(2/21) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(47) 6765000029564040 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^6 6765000029564040 a001 5236139639782097/774004377960 6765000029564040 a001 2971215073/7881196*10749957122^(1/8) 6765000029564040 a001 3524578/6643838879*10749957122^(17/24) 6765000029564040 a001 2971215073/7881196*4106118243^(3/23) 6765000029564040 a001 7778742049/7881196*1568397607^(1/11) 6765000029564040 a001 1762289/22768774562*4106118243^(19/23) 6765000029564040 a001 3524578/17393796001*4106118243^(18/23) 6765000029564040 a001 3524578/119218851371*4106118243^(20/23) 6765000029564040 a001 3524578/312119004989*4106118243^(21/23) 6765000029564040 a001 1762289/408569081798*4106118243^(22/23) 6765000029564040 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^59 6765000029564040 a001 3524578/6643838879*4106118243^(17/23) 6765000029564040 a001 2971215073/7881196*1568397607^(3/22) 6765000029564040 a001 10182505537/3940598*599074578^(1/21) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(45) 6765000029564040 a001 567451585/3940598*(1/2+1/2*5^(1/2))^8 6765000029564040 a001 567451585/3940598*23725150497407^(1/8) 6765000029564040 a001 1762289/1268860318*23725150497407^(1/2) 6765000029564040 a001 4000054745112260/591286729879 6765000029564040 a001 1762289/1268860318*505019158607^(4/7) 6765000029564040 a001 567451585/3940598*73681302247^(2/13) 6765000029564040 a001 1762289/1268860318*73681302247^(8/13) 6765000029564040 a001 567451585/3940598*10749957122^(1/6) 6765000029564040 a001 1762289/1268860318*10749957122^(2/3) 6765000029564040 a001 567451585/3940598*4106118243^(4/23) 6765000029564040 a001 3524667/39604*599074578^(3/14) 6765000029564040 a001 1762289/1268860318*4106118243^(16/23) 6765000029564040 a001 12586269025/7881196*599074578^(1/14) 6765000029564040 a001 567451585/3940598*1568397607^(2/11) 6765000029564040 a001 3524578/4106118243*1568397607^(3/4) 6765000029564040 a001 7778742049/7881196*599074578^(2/21) 6765000029564040 a001 3524578/17393796001*1568397607^(9/11) 6765000029564040 a001 3524578/6643838879*1568397607^(17/22) 6765000029564040 a001 1762289/22768774562*1568397607^(19/22) 6765000029564040 a001 3524578/119218851371*1568397607^(10/11) 6765000029564040 a001 3524578/312119004989*1568397607^(21/22) 6765000029564040 a001 1836311903/7881196*599074578^(1/6) 6765000029564040 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^57 6765000029564040 a001 2971215073/7881196*599074578^(1/7) 6765000029564040 a001 1762289/1268860318*1568397607^(8/11) 6765000029564040 a001 567451585/3940598*599074578^(4/21) 6765000029564040 a001 10182505537/3940598*228826127^(1/20) 6765000029564040 a001 3524578/969323029*2537720636^(2/3) 6765000029564040 a001 433494437/7881196*2537720636^(2/9) 6765000029564040 a001 3524578/969323029*45537549124^(10/17) 6765000029564040 a001 3524578/969323029*312119004989^(6/11) 6765000029564040 a001 3524578/969323029*14662949395604^(10/21) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(43) 6765000029564040 a001 433494437/7881196*(1/2+1/2*5^(1/2))^10 6765000029564040 a001 1527884955772586/225851433717 6765000029564040 a001 3524578/969323029*192900153618^(5/9) 6765000029564040 a001 433494437/7881196*28143753123^(1/5) 6765000029564040 a001 3524578/969323029*28143753123^(3/5) 6765000029564040 a001 433494437/7881196*10749957122^(5/24) 6765000029564040 a001 3524578/969323029*10749957122^(5/8) 6765000029564040 a001 433494437/7881196*4106118243^(5/23) 6765000029564040 a001 3524578/969323029*4106118243^(15/23) 6765000029564040 a001 433494437/7881196*1568397607^(5/22) 6765000029564040 a001 3524578/969323029*1568397607^(15/22) 6765000029564040 a001 433494437/7881196*599074578^(5/21) 6765000029564040 a001 7778742049/7881196*228826127^(1/10) 6765000029564040 a001 3524578/4106118243*599074578^(11/14) 6765000029564040 a001 1762289/1268860318*599074578^(16/21) 6765000029564040 a001 3524578/6643838879*599074578^(17/21) 6765000029564040 a001 1762289/5374978561*599074578^(5/6) 6765000029564040 a001 1201881744/1970299*228826127^(1/8) 6765000029564040 a001 3524578/17393796001*599074578^(6/7) 6765000029564040 a001 1762289/22768774562*599074578^(19/21) 6765000029564040 a001 3524578/73681302247*599074578^(13/14) 6765000029564040 a001 3524578/119218851371*599074578^(20/21) 6765000029564040 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^55 6765000029564040 a001 2971215073/7881196*228826127^(3/20) 6765000029564040 a001 3524578/969323029*599074578^(5/7) 6765000029564040 a001 567451585/3940598*228826127^(1/5) 6765000029564040 a001 433494437/7881196*228826127^(1/4) 6765000029564040 a001 10182505537/3940598*87403803^(1/19) 6765000029564040 a001 165580141/7881196*2537720636^(4/15) 6765000029564040 a001 3524578/370248451*17393796001^(4/7) 6765000029564040 a001 165580141/7881196*45537549124^(4/17) 6765000029564040 a001 165580141/7881196*817138163596^(4/19) 6765000029564040 a001 165580141/7881196*14662949395604^(4/21) 6765000029564040 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(41) 6765000029564040 a001 165580141/7881196*(1/2+1/2*5^(1/2))^12 6765000029564040 a001 3524578/370248451*505019158607^(1/2) 6765000029564040 a001 165580141/7881196*192900153618^(2/9) 6765000029564040 a001 291800061102749/43133785636 6765000029564040 a001 165580141/7881196*73681302247^(3/13) 6765000029564040 a001 3524578/370248451*73681302247^(7/13) 6765000029564040 a001 165580141/7881196*10749957122^(1/4) 6765000029564040 a001 3524578/370248451*10749957122^(7/12) 6765000029564040 a001 165580141/7881196*4106118243^(6/23) 6765000029564040 a001 3524578/370248451*4106118243^(14/23) 6765000029564040 a001 165580141/7881196*1568397607^(3/11) 6765000029564040 a001 3524578/370248451*1568397607^(7/11) 6765000029564040 a001 165580141/7881196*599074578^(2/7) 6765000029564040 a001 3524578/370248451*599074578^(2/3) 6765000029564040 a001 165580141/7881196*228826127^(3/10) 6765000029564040 a001 7778742049/7881196*87403803^(2/19) 6765000029564040 a001 3524578/969323029*228826127^(3/4) 6765000029564040 a001 1762289/1268860318*228826127^(4/5) 6765000029564040 a001 3524578/6643838879*228826127^(17/20) 6765000029564040 a001 1762289/70711162*141422324^(2/3) 6765000029564040 a001 1762289/5374978561*228826127^(7/8) 6765000029564040 a001 3524578/17393796001*228826127^(9/10) 6765000029564040 a001 1762289/22768774562*228826127^(19/20) 6765000029564040 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^53 6765000029564040 a001 3524578/370248451*228826127^(7/10) 6765000029564040 a001 2971215073/7881196*87403803^(3/19) 6765000029564040 a001 567451585/3940598*87403803^(4/19) 6765000029564041 a001 433494437/7881196*87403803^(5/19) 6765000029564041 a001 165580141/7881196*87403803^(6/19) 6765000029564041 a001 1134903170/54018521*4870847^(3/8) 6765000029564041 a001 10182505537/3940598*33385282^(1/18) 6765000029564041 a001 31622993/3940598*17393796001^(2/7) 6765000029564041 a001 31622993/3940598*14662949395604^(2/9) 6765000029564041 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(39) 6765000029564041 a001 31622993/3940598*(1/2+1/2*5^(1/2))^14 6765000029564041 a001 31622993/3940598*505019158607^(1/4) 6765000029564041 a001 1762289/70711162*73681302247^(1/2) 6765000029564041 a001 956718501476/141421803 6765000029564041 a001 31622993/3940598*10749957122^(7/24) 6765000029564041 a001 1762289/70711162*10749957122^(13/24) 6765000029564041 a001 31622993/3940598*4106118243^(7/23) 6765000029564041 a001 1762289/70711162*4106118243^(13/23) 6765000029564041 a001 31622993/3940598*1568397607^(7/22) 6765000029564041 a001 1762289/70711162*1568397607^(13/22) 6765000029564041 a001 31622993/3940598*599074578^(1/3) 6765000029564041 a001 1762289/70711162*599074578^(13/21) 6765000029564041 a001 31622993/3940598*228826127^(7/20) 6765000029564041 a001 1762289/70711162*228826127^(13/20) 6765000029564041 a001 12586269025/7881196*33385282^(1/12) 6765000029564041 a001 31622993/3940598*87403803^(7/19) 6765000029564041 a001 7778742049/7881196*33385282^(1/9) 6765000029564041 a001 3524578/370248451*87403803^(14/19) 6765000029564041 a001 3524578/969323029*87403803^(15/19) 6765000029564041 a001 1762289/1268860318*87403803^(16/19) 6765000029564041 a001 3524578/6643838879*87403803^(17/19) 6765000029564041 a001 3524578/17393796001*87403803^(18/19) 6765000029564041 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^51 6765000029564041 a001 1762289/70711162*87403803^(13/19) 6765000029564041 a001 2971215073/7881196*33385282^(1/6) 6765000029564042 a001 567451585/3940598*33385282^(2/9) 6765000029564042 a001 3524667/39604*33385282^(1/4) 6765000029564042 a001 39088169/7881196*33385282^(5/12) 6765000029564042 a001 433494437/7881196*33385282^(5/18) 6765000029564042 a001 165580141/7881196*33385282^(1/3) 6765000029564042 a001 3524578/54018521*141422324^(8/13) 6765000029564043 a001 3524578/54018521*2537720636^(8/15) 6765000029564043 a001 3524578/54018521*45537549124^(8/17) 6765000029564043 a001 3524578/54018521*14662949395604^(8/21) 6765000029564043 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(37) 6765000029564043 a001 24157817/7881196*(1/2+1/2*5^(1/2))^16 6765000029564043 a001 24157817/7881196*23725150497407^(1/4) 6765000029564043 a001 3524578/54018521*192900153618^(4/9) 6765000029564043 a001 24157817/7881196*73681302247^(4/13) 6765000029564043 a001 3524578/54018521*73681302247^(6/13) 6765000029564043 a001 85146110326226/12586269025 6765000029564043 a001 24157817/7881196*10749957122^(1/3) 6765000029564043 a001 3524578/54018521*10749957122^(1/2) 6765000029564043 a001 24157817/7881196*4106118243^(8/23) 6765000029564043 a001 3524578/54018521*4106118243^(12/23) 6765000029564043 a001 24157817/7881196*1568397607^(4/11) 6765000029564043 a001 3524578/54018521*1568397607^(6/11) 6765000029564043 a001 24157817/7881196*599074578^(8/21) 6765000029564043 a001 3524578/54018521*599074578^(4/7) 6765000029564043 a001 24157817/7881196*228826127^(2/5) 6765000029564043 a001 3524578/54018521*228826127^(3/5) 6765000029564043 a001 10182505537/3940598*12752043^(1/17) 6765000029564043 a001 24157817/7881196*87403803^(8/19) 6765000029564043 a001 31622993/3940598*33385282^(7/18) 6765000029564043 a001 3524578/54018521*87403803^(12/19) 6765000029564044 a001 4976784/4250681*4870847^(9/16) 6765000029564045 a001 3524578/228826127*33385282^(3/4) 6765000029564045 a001 1762289/70711162*33385282^(13/18) 6765000029564045 a001 3524578/370248451*33385282^(7/9) 6765000029564045 a001 7778742049/7881196*12752043^(2/17) 6765000029564045 a001 24157817/7881196*33385282^(4/9) 6765000029564045 a001 3524578/969323029*33385282^(5/6) 6765000029564046 a001 1762289/1268860318*33385282^(8/9) 6765000029564046 a001 3524578/4106118243*33385282^(11/12) 6765000029564046 a001 3524578/6643838879*33385282^(17/18) 6765000029564046 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^49 6765000029564047 a001 3524578/54018521*33385282^(2/3) 6765000029564048 a001 2971215073/7881196*12752043^(3/17) 6765000029564050 a001 133957148/16692641*4870847^(7/16) 6765000029564050 a001 567451585/3940598*12752043^(4/17) 6765000029564053 a001 433494437/7881196*12752043^(5/17) 6765000029564054 a001 433494437/20633239*4870847^(3/8) 6765000029564055 a001 3732588/1970299*12752043^(1/2) 6765000029564055 a001 165580141/7881196*12752043^(6/17) 6765000029564055 a001 233802911/29134601*4870847^(7/16) 6765000029564056 a001 43133785636/16692641*1860498^(1/15) 6765000029564056 a001 1836311903/228826127*4870847^(7/16) 6765000029564056 a001 9227465/7881196*141422324^(6/13) 6765000029564056 a001 267084832/33281921*4870847^(7/16) 6765000029564056 a001 12586269025/1568397607*4870847^(7/16) 6765000029564056 a001 10983760033/1368706081*4870847^(7/16) 6765000029564056 a001 43133785636/5374978561*4870847^(7/16) 6765000029564056 a001 75283811239/9381251041*4870847^(7/16) 6765000029564056 a001 591286729879/73681302247*4870847^(7/16) 6765000029564056 a001 86000486440/10716675201*4870847^(7/16) 6765000029564056 a001 4052739537881/505019158607*4870847^(7/16) 6765000029564056 a001 3536736619241/440719107401*4870847^(7/16) 6765000029564056 a001 3278735159921/408569081798*4870847^(7/16) 6765000029564056 a001 2504730781961/312119004989*4870847^(7/16) 6765000029564056 a001 956722026041/119218851371*4870847^(7/16) 6765000029564056 a001 182717648081/22768774562*4870847^(7/16) 6765000029564056 a001 139583862445/17393796001*4870847^(7/16) 6765000029564056 a001 53316291173/6643838879*4870847^(7/16) 6765000029564056 a001 10182505537/1268860318*4870847^(7/16) 6765000029564056 a001 7778742049/969323029*4870847^(7/16) 6765000029564056 a001 2971215073/370248451*4870847^(7/16) 6765000029564056 a001 9227465/7881196*2537720636^(2/5) 6765000029564056 a001 9227465/7881196*45537549124^(6/17) 6765000029564056 a001 3524578/20633239*312119004989^(2/5) 6765000029564056 a001 9227465/7881196*14662949395604^(2/7) 6765000029564056 a001 3524578/20633239*(1/2+1/2*5^(1/2))^22 6765000029564056 a001 9227465/7881196*(1/2+1/2*5^(1/2))^18 6765000029564056 a001 9227465/7881196*192900153618^(1/3) 6765000029564056 a001 9227465/7881196*10749957122^(3/8) 6765000029564056 a001 3524578/20633239*10749957122^(11/24) 6765000029564056 a001 16261460067385/2403763488 6765000029564056 a001 9227465/7881196*4106118243^(9/23) 6765000029564056 a001 3524578/20633239*4106118243^(11/23) 6765000029564056 a001 9227465/7881196*1568397607^(9/22) 6765000029564056 a001 3524578/20633239*1568397607^(1/2) 6765000029564056 a001 9227465/7881196*599074578^(3/7) 6765000029564056 a001 3524578/20633239*599074578^(11/21) 6765000029564056 a001 9227465/7881196*228826127^(9/20) 6765000029564056 a001 3524578/20633239*228826127^(11/20) 6765000029564056 a001 567451585/70711162*4870847^(7/16) 6765000029564057 a001 9227465/7881196*87403803^(9/19) 6765000029564057 a001 3524578/20633239*87403803^(11/19) 6765000029564058 a001 31622993/3940598*12752043^(7/17) 6765000029564058 a001 10182505537/3940598*4870847^(1/16) 6765000029564058 a001 433494437/54018521*4870847^(7/16) 6765000029564059 a001 9227465/7881196*33385282^(1/2) 6765000029564060 a001 3524578/20633239*33385282^(11/18) 6765000029564061 a001 75283811239/29134601*1860498^(1/15) 6765000029564062 a001 591286729879/228826127*1860498^(1/15) 6765000029564062 a001 86000486440/33281921*1860498^(1/15) 6765000029564062 a001 4052739537881/1568397607*1860498^(1/15) 6765000029564062 a001 3536736619241/1368706081*1860498^(1/15) 6765000029564062 a001 3278735159921/1268860318*1860498^(1/15) 6765000029564062 a001 2504730781961/969323029*1860498^(1/15) 6765000029564062 a001 956722026041/370248451*1860498^(1/15) 6765000029564062 a001 182717648081/70711162*1860498^(1/15) 6765000029564062 a001 24157817/7881196*12752043^(8/17) 6765000029564064 a001 139583862445/54018521*1860498^(1/15) 6765000029564068 a001 14619165/4769326*4870847^(1/2) 6765000029564072 a001 3524578/54018521*12752043^(12/17) 6765000029564072 a001 165580141/20633239*4870847^(7/16) 6765000029564072 a001 1762289/70711162*12752043^(13/17) 6765000029564073 a001 267914296/87403803*4870847^(1/2) 6765000029564074 a001 701408733/228826127*4870847^(1/2) 6765000029564074 a001 1836311903/599074578*4870847^(1/2) 6765000029564074 a001 686789568/224056801*4870847^(1/2) 6765000029564074 a001 12586269025/4106118243*4870847^(1/2) 6765000029564074 a001 32951280099/10749957122*4870847^(1/2) 6765000029564074 a001 86267571272/28143753123*4870847^(1/2) 6765000029564074 a001 32264490531/10525900321*4870847^(1/2) 6765000029564074 a001 591286729879/192900153618*4870847^(1/2) 6765000029564074 a001 1548008755920/505019158607*4870847^(1/2) 6765000029564074 a001 1515744265389/494493258286*4870847^(1/2) 6765000029564074 a001 2504730781961/817138163596*4870847^(1/2) 6765000029564074 a001 956722026041/312119004989*4870847^(1/2) 6765000029564074 a001 365435296162/119218851371*4870847^(1/2) 6765000029564074 a001 139583862445/45537549124*4870847^(1/2) 6765000029564074 a001 53316291173/17393796001*4870847^(1/2) 6765000029564074 a001 20365011074/6643838879*4870847^(1/2) 6765000029564074 a001 7778742049/2537720636*4870847^(1/2) 6765000029564074 a001 2971215073/969323029*4870847^(1/2) 6765000029564074 a001 1134903170/370248451*4870847^(1/2) 6765000029564074 a001 433494437/141422324*4870847^(1/2) 6765000029564075 a001 3524578/370248451*12752043^(14/17) 6765000029564076 a001 7778742049/7881196*4870847^(1/8) 6765000029564076 a001 165580141/54018521*4870847^(1/2) 6765000029564077 a001 3524578/969323029*12752043^(15/17) 6765000029564078 a001 53316291173/20633239*1860498^(1/15) 6765000029564078 a001 9227465/7881196*12752043^(9/17) 6765000029564079 a001 1762289/1268860318*12752043^(16/17) 6765000029564080 a001 5702887/33385282*4870847^(11/16) 6765000029564082 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^47 6765000029564083 a001 3524578/20633239*12752043^(11/17) 6765000029564085 a001 39088169/33385282*4870847^(9/16) 6765000029564085 a001 20365011074/12752043*1860498^(1/10) 6765000029564090 a001 63245986/20633239*4870847^(1/2) 6765000029564091 a001 34111385/29134601*4870847^(9/16) 6765000029564092 a001 832040/3010349*1860498^(7/10) 6765000029564092 a001 267914296/228826127*4870847^(9/16) 6765000029564092 a001 233802911/199691526*4870847^(9/16) 6765000029564092 a001 1836311903/1568397607*4870847^(9/16) 6765000029564092 a001 1602508992/1368706081*4870847^(9/16) 6765000029564092 a001 12586269025/10749957122*4870847^(9/16) 6765000029564092 a001 10983760033/9381251041*4870847^(9/16) 6765000029564092 a001 86267571272/73681302247*4870847^(9/16) 6765000029564092 a001 75283811239/64300051206*4870847^(9/16) 6765000029564092 a001 2504730781961/2139295485799*4870847^(9/16) 6765000029564092 a001 365435296162/312119004989*4870847^(9/16) 6765000029564092 a001 139583862445/119218851371*4870847^(9/16) 6765000029564092 a001 53316291173/45537549124*4870847^(9/16) 6765000029564092 a001 20365011074/17393796001*4870847^(9/16) 6765000029564092 a001 7778742049/6643838879*4870847^(9/16) 6765000029564092 a001 2971215073/2537720636*4870847^(9/16) 6765000029564092 a001 1134903170/969323029*4870847^(9/16) 6765000029564092 a001 433494437/370248451*4870847^(9/16) 6765000029564092 a001 165580141/141422324*4870847^(9/16) 6765000029564094 a001 2971215073/7881196*4870847^(3/16) 6765000029564094 a001 63245986/54018521*4870847^(9/16) 6765000029564097 a001 7465176/16692641*4870847^(5/8) 6765000029564103 a001 5702887/87403803*4870847^(3/4) 6765000029564108 a001 39088169/87403803*4870847^(5/8) 6765000029564109 a001 102334155/228826127*4870847^(5/8) 6765000029564110 a001 133957148/299537289*4870847^(5/8) 6765000029564110 a001 701408733/1568397607*4870847^(5/8) 6765000029564110 a001 1836311903/4106118243*4870847^(5/8) 6765000029564110 a001 2403763488/5374978561*4870847^(5/8) 6765000029564110 a001 12586269025/28143753123*4870847^(5/8) 6765000029564110 a001 32951280099/73681302247*4870847^(5/8) 6765000029564110 a001 43133785636/96450076809*4870847^(5/8) 6765000029564110 a001 225851433717/505019158607*4870847^(5/8) 6765000029564110 a001 591286729879/1322157322203*4870847^(5/8) 6765000029564110 a001 10610209857723/23725150497407*4870847^(5/8) 6765000029564110 a001 182717648081/408569081798*4870847^(5/8) 6765000029564110 a001 139583862445/312119004989*4870847^(5/8) 6765000029564110 a001 53316291173/119218851371*4870847^(5/8) 6765000029564110 a001 10182505537/22768774562*4870847^(5/8) 6765000029564110 a001 7778742049/17393796001*4870847^(5/8) 6765000029564110 a001 2971215073/6643838879*4870847^(5/8) 6765000029564110 a001 567451585/1268860318*4870847^(5/8) 6765000029564110 a001 433494437/969323029*4870847^(5/8) 6765000029564110 a001 165580141/370248451*4870847^(5/8) 6765000029564110 a001 24157817/20633239*4870847^(9/16) 6765000029564110 a001 31622993/70711162*4870847^(5/8) 6765000029564112 a001 567451585/3940598*4870847^(1/4) 6765000029564114 a001 24157817/54018521*4870847^(5/8) 6765000029564120 a001 4976784/29134601*4870847^(11/16) 6765000029564121 a001 53316291173/33385282*1860498^(1/10) 6765000029564121 a001 5702887/228826127*4870847^(13/16) 6765000029564126 a001 139583862445/87403803*1860498^(1/10) 6765000029564126 a001 39088169/228826127*4870847^(11/16) 6765000029564127 a001 365435296162/228826127*1860498^(1/10) 6765000029564127 a001 956722026041/599074578*1860498^(1/10) 6765000029564127 a001 2504730781961/1568397607*1860498^(1/10) 6765000029564127 a001 6557470319842/4106118243*1860498^(1/10) 6765000029564127 a001 10610209857723/6643838879*1860498^(1/10) 6765000029564127 a001 4052739537881/2537720636*1860498^(1/10) 6765000029564127 a001 1548008755920/969323029*1860498^(1/10) 6765000029564127 a001 591286729879/370248451*1860498^(1/10) 6765000029564127 a001 225851433717/141422324*1860498^(1/10) 6765000029564127 a001 34111385/199691526*4870847^(11/16) 6765000029564127 a001 267914296/1568397607*4870847^(11/16) 6765000029564127 a001 233802911/1368706081*4870847^(11/16) 6765000029564127 a001 1836311903/10749957122*4870847^(11/16) 6765000029564127 a001 1602508992/9381251041*4870847^(11/16) 6765000029564127 a001 12586269025/73681302247*4870847^(11/16) 6765000029564127 a001 10983760033/64300051206*4870847^(11/16) 6765000029564127 a001 86267571272/505019158607*4870847^(11/16) 6765000029564127 a001 75283811239/440719107401*4870847^(11/16) 6765000029564127 a001 2504730781961/14662949395604*4870847^(11/16) 6765000029564127 a001 139583862445/817138163596*4870847^(11/16) 6765000029564127 a001 53316291173/312119004989*4870847^(11/16) 6765000029564127 a001 20365011074/119218851371*4870847^(11/16) 6765000029564127 a001 7778742049/45537549124*4870847^(11/16) 6765000029564127 a001 2971215073/17393796001*4870847^(11/16) 6765000029564127 a001 1134903170/6643838879*4870847^(11/16) 6765000029564127 a001 433494437/2537720636*4870847^(11/16) 6765000029564127 a001 165580141/969323029*4870847^(11/16) 6765000029564128 a001 63245986/370248451*4870847^(11/16) 6765000029564129 a001 86267571272/54018521*1860498^(1/10) 6765000029564129 a001 433494437/7881196*4870847^(5/16) 6765000029564130 a001 24157817/141422324*4870847^(11/16) 6765000029564139 a001 14930352/228826127*4870847^(3/4) 6765000029564139 a001 5702887/599074578*4870847^(7/8) 6765000029564140 a001 1762289/3940598*20633239^(4/7) 6765000029564141 a001 9227465/20633239*4870847^(5/8) 6765000029564143 a001 32951280099/20633239*1860498^(1/10) 6765000029564144 a001 39088169/599074578*4870847^(3/4) 6765000029564145 a001 14619165/224056801*4870847^(3/4) 6765000029564145 a001 267914296/4106118243*4870847^(3/4) 6765000029564145 a001 701408733/10749957122*4870847^(3/4) 6765000029564145 a001 1836311903/28143753123*4870847^(3/4) 6765000029564145 a001 686789568/10525900321*4870847^(3/4) 6765000029564145 a001 12586269025/192900153618*4870847^(3/4) 6765000029564145 a001 32951280099/505019158607*4870847^(3/4) 6765000029564145 a001 86267571272/1322157322203*4870847^(3/4) 6765000029564145 a001 32264490531/494493258286*4870847^(3/4) 6765000029564145 a001 591286729879/9062201101803*4870847^(3/4) 6765000029564145 a001 1548008755920/23725150497407*4870847^(3/4) 6765000029564145 a001 365435296162/5600748293801*4870847^(3/4) 6765000029564145 a001 139583862445/2139295485799*4870847^(3/4) 6765000029564145 a001 53316291173/817138163596*4870847^(3/4) 6765000029564145 a001 20365011074/312119004989*4870847^(3/4) 6765000029564145 a001 7778742049/119218851371*4870847^(3/4) 6765000029564145 a001 2971215073/45537549124*4870847^(3/4) 6765000029564145 a001 1134903170/17393796001*4870847^(3/4) 6765000029564145 a001 433494437/6643838879*4870847^(3/4) 6765000029564145 a001 165580141/2537720636*4870847^(3/4) 6765000029564146 a001 63245986/969323029*4870847^(3/4) 6765000029564146 a001 9227465/54018521*4870847^(11/16) 6765000029564147 a001 165580141/7881196*4870847^(3/8) 6765000029564148 a001 24157817/370248451*4870847^(3/4) 6765000029564149 a001 1762289/3940598*2537720636^(4/9) 6765000029564149 a001 1762289/3940598*(1/2+1/2*5^(1/2))^20 6765000029564149 a001 1762289/3940598*23725150497407^(5/16) 6765000029564149 a001 1762289/3940598*505019158607^(5/14) 6765000029564149 a001 1762289/3940598*73681302247^(5/13) 6765000029564149 a001 1762289/3940598*28143753123^(2/5) 6765000029564149 a001 1762289/3940598*10749957122^(5/12) 6765000029564149 a001 1762289/3940598*4106118243^(10/23) 6765000029564149 a001 12422650078084/1836311903 6765000029564149 a001 1762289/3940598*1568397607^(5/11) 6765000029564149 a001 1762289/3940598*599074578^(10/21) 6765000029564149 a001 1762289/3940598*228826127^(1/2) 6765000029564150 a001 1762289/3940598*87403803^(10/19) 6765000029564150 a001 12586269025/12752043*1860498^(2/15) 6765000029564153 a001 1762289/3940598*33385282^(5/9) 6765000029564157 a001 829464/33281921*4870847^(13/16) 6765000029564157 a001 5702887/1568397607*4870847^(15/16) 6765000029564161 a001 9227465/141422324*4870847^(3/4) 6765000029564162 a001 39088169/1568397607*4870847^(13/16) 6765000029564163 a001 34111385/1368706081*4870847^(13/16) 6765000029564163 a001 133957148/5374978561*4870847^(13/16) 6765000029564163 a001 233802911/9381251041*4870847^(13/16) 6765000029564163 a001 1836311903/73681302247*4870847^(13/16) 6765000029564163 a001 267084832/10716675201*4870847^(13/16) 6765000029564163 a001 12586269025/505019158607*4870847^(13/16) 6765000029564163 a001 10983760033/440719107401*4870847^(13/16) 6765000029564163 a001 43133785636/1730726404001*4870847^(13/16) 6765000029564163 a001 75283811239/3020733700601*4870847^(13/16) 6765000029564163 a001 182717648081/7331474697802*4870847^(13/16) 6765000029564163 a001 139583862445/5600748293801*4870847^(13/16) 6765000029564163 a001 53316291173/2139295485799*4870847^(13/16) 6765000029564163 a001 10182505537/408569081798*4870847^(13/16) 6765000029564163 a001 7778742049/312119004989*4870847^(13/16) 6765000029564163 a001 2971215073/119218851371*4870847^(13/16) 6765000029564163 a001 567451585/22768774562*4870847^(13/16) 6765000029564163 a001 433494437/17393796001*4870847^(13/16) 6765000029564163 a001 165580141/6643838879*4870847^(13/16) 6765000029564163 a001 31622993/1268860318*4870847^(13/16) 6765000029564165 a001 31622993/3940598*4870847^(7/16) 6765000029564165 a001 24157817/969323029*4870847^(13/16) 6765000029564167 a001 701408733/4870847*1860498^(4/15) 6765000029564171 a001 10182505537/3940598*1860498^(1/15) 6765000029564174 a001 1762289/3940598*12752043^(10/17) 6765000029564175 a001 14930352/1568397607*4870847^(7/8) 6765000029564175 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^46 6765000029564179 a001 9227465/370248451*4870847^(13/16) 6765000029564180 a001 39088169/4106118243*4870847^(7/8) 6765000029564181 a001 102334155/10749957122*4870847^(7/8) 6765000029564181 a001 267914296/28143753123*4870847^(7/8) 6765000029564181 a001 701408733/73681302247*4870847^(7/8) 6765000029564181 a001 1836311903/192900153618*4870847^(7/8) 6765000029564181 a001 102287808/10745088481*4870847^(7/8) 6765000029564181 a001 12586269025/1322157322203*4870847^(7/8) 6765000029564181 a001 32951280099/3461452808002*4870847^(7/8) 6765000029564181 a001 86267571272/9062201101803*4870847^(7/8) 6765000029564181 a001 225851433717/23725150497407*4870847^(7/8) 6765000029564181 a001 139583862445/14662949395604*4870847^(7/8) 6765000029564181 a001 53316291173/5600748293801*4870847^(7/8) 6765000029564181 a001 20365011074/2139295485799*4870847^(7/8) 6765000029564181 a001 7778742049/817138163596*4870847^(7/8) 6765000029564181 a001 2971215073/312119004989*4870847^(7/8) 6765000029564181 a001 1134903170/119218851371*4870847^(7/8) 6765000029564181 a001 433494437/45537549124*4870847^(7/8) 6765000029564181 a001 165580141/17393796001*4870847^(7/8) 6765000029564181 a001 63245986/6643838879*4870847^(7/8) 6765000029564183 a001 24157817/2537720636*4870847^(7/8) 6765000029564185 a001 24157817/7881196*4870847^(1/2) 6765000029564186 a001 32951280099/33385282*1860498^(2/15) 6765000029564191 a001 86267571272/87403803*1860498^(2/15) 6765000029564192 a001 225851433717/228826127*1860498^(2/15) 6765000029564192 a001 591286729879/599074578*1860498^(2/15) 6765000029564192 a001 1548008755920/1568397607*1860498^(2/15) 6765000029564192 a001 4052739537881/4106118243*1860498^(2/15) 6765000029564192 a001 4807525989/4870846*1860498^(2/15) 6765000029564192 a001 6557470319842/6643838879*1860498^(2/15) 6765000029564192 a001 2504730781961/2537720636*1860498^(2/15) 6765000029564192 a001 956722026041/969323029*1860498^(2/15) 6765000029564192 a001 365435296162/370248451*1860498^(2/15) 6765000029564192 a001 139583862445/141422324*1860498^(2/15) 6765000029564193 a001 4976784/1368706081*4870847^(15/16) 6765000029564194 a001 53316291173/54018521*1860498^(2/15) 6765000029564197 a001 9227465/969323029*4870847^(7/8) 6765000029564198 a001 39088169/10749957122*4870847^(15/16) 6765000029564199 a001 831985/228811001*4870847^(15/16) 6765000029564199 a001 267914296/73681302247*4870847^(15/16) 6765000029564199 a001 233802911/64300051206*4870847^(15/16) 6765000029564199 a001 1836311903/505019158607*4870847^(15/16) 6765000029564199 a001 1602508992/440719107401*4870847^(15/16) 6765000029564199 a001 12586269025/3461452808002*4870847^(15/16) 6765000029564199 a001 10983760033/3020733700601*4870847^(15/16) 6765000029564199 a001 86267571272/23725150497407*4870847^(15/16) 6765000029564199 a001 53316291173/14662949395604*4870847^(15/16) 6765000029564199 a001 20365011074/5600748293801*4870847^(15/16) 6765000029564199 a001 7778742049/2139295485799*4870847^(15/16) 6765000029564199 a001 2971215073/817138163596*4870847^(15/16) 6765000029564199 a001 1134903170/312119004989*4870847^(15/16) 6765000029564199 a001 433494437/119218851371*4870847^(15/16) 6765000029564199 a001 165580141/45537549124*4870847^(15/16) 6765000029564199 a001 63245986/17393796001*4870847^(15/16) 6765000029564201 a001 24157817/6643838879*4870847^(15/16) 6765000029564208 a001 20365011074/20633239*1860498^(2/15) 6765000029564210 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^48 6765000029564215 a001 9227465/2537720636*4870847^(15/16) 6765000029564216 a001 7778742049/12752043*1860498^(1/6) 6765000029564216 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^50 6765000029564216 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^52 6765000029564216 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^54 6765000029564217 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^56 6765000029564217 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^58 6765000029564217 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^60 6765000029564217 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^62 6765000029564217 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^64 6765000029564217 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^66 6765000029564217 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^68 6765000029564217 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^70 6765000029564217 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^72 6765000029564217 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^74 6765000029564217 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^76 6765000029564217 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^78 6765000029564217 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^80 6765000029564217 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^82 6765000029564217 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^84 6765000029564217 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^86 6765000029564217 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^88 6765000029564217 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^90 6765000029564217 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^92 6765000029564217 a004 Fibonacci(82)*Lucas(32)/(1/2+sqrt(5)/2)^94 6765000029564217 a004 Fibonacci(84)*Lucas(32)/(1/2+sqrt(5)/2)^96 6765000029564217 a004 Fibonacci(86)*Lucas(32)/(1/2+sqrt(5)/2)^98 6765000029564217 a004 Fibonacci(88)*Lucas(32)/(1/2+sqrt(5)/2)^100 6765000029564217 a004 Fibonacci(87)*Lucas(32)/(1/2+sqrt(5)/2)^99 6765000029564217 a004 Fibonacci(85)*Lucas(32)/(1/2+sqrt(5)/2)^97 6765000029564217 a004 Fibonacci(83)*Lucas(32)/(1/2+sqrt(5)/2)^95 6765000029564217 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^93 6765000029564217 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^91 6765000029564217 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^89 6765000029564217 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^87 6765000029564217 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^85 6765000029564217 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^83 6765000029564217 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^81 6765000029564217 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^79 6765000029564217 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^77 6765000029564217 a001 2/2178309*(1/2+1/2*5^(1/2))^52 6765000029564217 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^75 6765000029564217 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^73 6765000029564217 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^71 6765000029564217 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^69 6765000029564217 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^67 6765000029564217 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^65 6765000029564217 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^63 6765000029564217 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^61 6765000029564217 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^59 6765000029564217 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^57 6765000029564217 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^55 6765000029564217 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^53 6765000029564217 a001 9227465/7881196*4870847^(9/16) 6765000029564217 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^51 6765000029564219 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^49 6765000029564232 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^47 6765000029564233 a001 433494437/4870847*1860498^(3/10) 6765000029564236 a001 12586269025/7881196*1860498^(1/10) 6765000029564251 a001 10182505537/16692641*1860498^(1/6) 6765000029564252 a001 3524578/20633239*4870847^(11/16) 6765000029564256 a001 53316291173/87403803*1860498^(1/6) 6765000029564256 a001 3524578/54018521*4870847^(3/4) 6765000029564257 a001 139583862445/228826127*1860498^(1/6) 6765000029564257 a001 182717648081/299537289*1860498^(1/6) 6765000029564257 a001 956722026041/1568397607*1860498^(1/6) 6765000029564257 a001 2504730781961/4106118243*1860498^(1/6) 6765000029564257 a001 3278735159921/5374978561*1860498^(1/6) 6765000029564257 a001 10610209857723/17393796001*1860498^(1/6) 6765000029564257 a001 4052739537881/6643838879*1860498^(1/6) 6765000029564257 a001 1134903780/1860499*1860498^(1/6) 6765000029564257 a001 591286729879/969323029*1860498^(1/6) 6765000029564257 a001 225851433717/370248451*1860498^(1/6) 6765000029564257 a001 21566892818/35355581*1860498^(1/6) 6765000029564259 a001 32951280099/54018521*1860498^(1/6) 6765000029564272 a001 1762289/70711162*4870847^(13/16) 6765000029564273 a001 1144206275/1875749*1860498^(1/6) 6765000029564281 a001 1602508992/4250681*1860498^(1/5) 6765000029564290 a001 3524578/370248451*4870847^(7/8) 6765000029564298 a001 267914296/4870847*1860498^(1/3) 6765000029564301 a001 7778742049/7881196*1860498^(2/15) 6765000029564308 a001 3524578/969323029*4870847^(15/16) 6765000029564316 a001 12586269025/33385282*1860498^(1/5) 6765000029564321 a001 10983760033/29134601*1860498^(1/5) 6765000029564322 a001 86267571272/228826127*1860498^(1/5) 6765000029564322 a001 267913919/710646*1860498^(1/5) 6765000029564322 a001 591286729879/1568397607*1860498^(1/5) 6765000029564322 a001 516002918640/1368706081*1860498^(1/5) 6765000029564322 a001 4052739537881/10749957122*1860498^(1/5) 6765000029564322 a001 3536736619241/9381251041*1860498^(1/5) 6765000029564322 a001 6557470319842/17393796001*1860498^(1/5) 6765000029564322 a001 2504730781961/6643838879*1860498^(1/5) 6765000029564322 a001 956722026041/2537720636*1860498^(1/5) 6765000029564322 a001 365435296162/969323029*1860498^(1/5) 6765000029564322 a001 139583862445/370248451*1860498^(1/5) 6765000029564323 a001 53316291173/141422324*1860498^(1/5) 6765000029564323 a001 1346269/4870847*7881196^(7/11) 6765000029564325 a001 20365011074/54018521*1860498^(1/5) 6765000029564325 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^45 6765000029564327 a001 1762289/3940598*4870847^(5/8) 6765000029564338 a001 7778742049/20633239*1860498^(1/5) 6765000029564366 a001 1201881744/1970299*1860498^(1/6) 6765000029564383 a001 1346269/4870847*20633239^(3/5) 6765000029564393 a001 1346269/4870847*141422324^(7/13) 6765000029564393 a001 2932589879121/433494437 6765000029564393 a001 1346269/4870847*2537720636^(7/15) 6765000029564393 a001 1346269/4870847*17393796001^(3/7) 6765000029564393 a001 1346269/4870847*45537549124^(7/17) 6765000029564393 a001 2178309/3010349*817138163596^(1/3) 6765000029564393 a001 1346269/4870847*14662949395604^(1/3) 6765000029564393 a001 1346269/4870847*(1/2+1/2*5^(1/2))^21 6765000029564393 a001 2178309/3010349*(1/2+1/2*5^(1/2))^19 6765000029564393 a001 1346269/4870847*192900153618^(7/18) 6765000029564393 a001 1346269/4870847*10749957122^(7/16) 6765000029564393 a001 1346269/4870847*599074578^(1/2) 6765000029564393 a001 2178309/3010349*87403803^(1/2) 6765000029564396 a001 1346269/4870847*33385282^(7/12) 6765000029564411 a001 1836311903/12752043*1860498^(4/15) 6765000029564428 a001 102334155/4870847*1860498^(2/5) 6765000029564431 a001 2971215073/7881196*1860498^(1/5) 6765000029564446 a001 14930208/103681*1860498^(4/15) 6765000029564452 a001 12586269025/87403803*1860498^(4/15) 6765000029564452 a001 32951280099/228826127*1860498^(4/15) 6765000029564453 a001 43133785636/299537289*1860498^(4/15) 6765000029564453 a001 32264490531/224056801*1860498^(4/15) 6765000029564453 a001 591286729879/4106118243*1860498^(4/15) 6765000029564453 a001 774004377960/5374978561*1860498^(4/15) 6765000029564453 a001 4052739537881/28143753123*1860498^(4/15) 6765000029564453 a001 1515744265389/10525900321*1860498^(4/15) 6765000029564453 a001 3278735159921/22768774562*1860498^(4/15) 6765000029564453 a001 2504730781961/17393796001*1860498^(4/15) 6765000029564453 a001 956722026041/6643838879*1860498^(4/15) 6765000029564453 a001 182717648081/1268860318*1860498^(4/15) 6765000029564453 a001 139583862445/969323029*1860498^(4/15) 6765000029564453 a001 53316291173/370248451*1860498^(4/15) 6765000029564453 a001 10182505537/70711162*1860498^(4/15) 6765000029564455 a001 7778742049/54018521*1860498^(4/15) 6765000029564468 a001 2971215073/20633239*1860498^(4/15) 6765000029564476 a001 1134903170/12752043*1860498^(3/10) 6765000029564512 a001 2971215073/33385282*1860498^(3/10) 6765000029564517 a001 7778742049/87403803*1860498^(3/10) 6765000029564518 a001 20365011074/228826127*1860498^(3/10) 6765000029564518 a001 53316291173/599074578*1860498^(3/10) 6765000029564518 a001 139583862445/1568397607*1860498^(3/10) 6765000029564518 a001 365435296162/4106118243*1860498^(3/10) 6765000029564518 a001 956722026041/10749957122*1860498^(3/10) 6765000029564518 a001 2504730781961/28143753123*1860498^(3/10) 6765000029564518 a001 6557470319842/73681302247*1860498^(3/10) 6765000029564518 a001 10610209857723/119218851371*1860498^(3/10) 6765000029564518 a001 4052739537881/45537549124*1860498^(3/10) 6765000029564518 a001 1548008755920/17393796001*1860498^(3/10) 6765000029564518 a001 591286729879/6643838879*1860498^(3/10) 6765000029564518 a001 225851433717/2537720636*1860498^(3/10) 6765000029564518 a001 86267571272/969323029*1860498^(3/10) 6765000029564518 a001 32951280099/370248451*1860498^(3/10) 6765000029564518 a001 12586269025/141422324*1860498^(3/10) 6765000029564520 a001 4807526976/54018521*1860498^(3/10) 6765000029564534 a001 1836311903/20633239*1860498^(3/10) 6765000029564541 a001 233802911/4250681*1860498^(1/3) 6765000029564557 a001 39088169/4870847*1860498^(7/15) 6765000029564561 a001 567451585/3940598*1860498^(4/15) 6765000029564569 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^44 6765000029564577 a001 1836311903/33385282*1860498^(1/3) 6765000029564579 a001 1346269/370248451*7881196^(10/11) 6765000029564582 a001 1602508992/29134601*1860498^(1/3) 6765000029564583 a001 12586269025/228826127*1860498^(1/3) 6765000029564583 a001 10983760033/199691526*1860498^(1/3) 6765000029564583 a001 86267571272/1568397607*1860498^(1/3) 6765000029564583 a001 75283811239/1368706081*1860498^(1/3) 6765000029564583 a001 591286729879/10749957122*1860498^(1/3) 6765000029564583 a001 12585437040/228811001*1860498^(1/3) 6765000029564583 a001 4052739537881/73681302247*1860498^(1/3) 6765000029564583 a001 3536736619241/64300051206*1860498^(1/3) 6765000029564583 a001 6557470319842/119218851371*1860498^(1/3) 6765000029564583 a001 2504730781961/45537549124*1860498^(1/3) 6765000029564583 a001 956722026041/17393796001*1860498^(1/3) 6765000029564583 a001 365435296162/6643838879*1860498^(1/3) 6765000029564583 a001 139583862445/2537720636*1860498^(1/3) 6765000029564583 a001 53316291173/969323029*1860498^(1/3) 6765000029564583 a001 20365011074/370248451*1860498^(1/3) 6765000029564583 a001 7778742049/141422324*1860498^(1/3) 6765000029564585 a001 2971215073/54018521*1860498^(1/3) 6765000029564588 a001 1346269/87403803*7881196^(9/11) 6765000029564599 a001 1134903170/20633239*1860498^(1/3) 6765000029564603 a001 12586269025/4870847*710647^(1/14) 6765000029564615 a001 1346269/20633239*7881196^(8/11) 6765000029564622 a001 14930352/3010349*7881196^(5/11) 6765000029564626 a001 24157817/4870847*1860498^(1/2) 6765000029564627 a001 3524667/39604*1860498^(3/10) 6765000029564636 a001 7677619978603/1134903170 6765000029564636 a001 5702887/3010349*45537549124^(1/3) 6765000029564636 a001 1346269/12752043*(1/2+1/2*5^(1/2))^23 6765000029564636 a001 5702887/3010349*(1/2+1/2*5^(1/2))^17 6765000029564636 a001 1346269/12752043*4106118243^(1/2) 6765000029564639 a001 63245986/3010349*7881196^(4/11) 6765000029564641 a001 102334155/3010349*7881196^(1/3) 6765000029564648 a001 267914296/3010349*7881196^(3/11) 6765000029564657 a001 5702887/3010349*12752043^(1/2) 6765000029564658 a001 1134903170/3010349*7881196^(2/11) 6765000029564660 a001 1346269/33385282*20633239^(5/7) 6765000029564661 a001 701408733/710647*271443^(2/13) 6765000029564662 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^46 6765000029564664 a001 2178309/4870847*1860498^(2/3) 6765000029564664 a001 1346269/370248451*20633239^(6/7) 6765000029564665 a001 14930352/3010349*20633239^(3/7) 6765000029564666 a001 1346269/141422324*20633239^(4/5) 6765000029564668 a001 4807526976/3010349*7881196^(1/11) 6765000029564672 a001 267914296/12752043*1860498^(2/5) 6765000029564672 a001 14930352/3010349*141422324^(5/13) 6765000029564672 a001 1346269/33385282*2537720636^(5/9) 6765000029564672 a001 14930352/3010349*2537720636^(1/3) 6765000029564672 a001 20100270056688/2971215073 6765000029564672 a001 14930352/3010349*45537549124^(5/17) 6765000029564672 a001 1346269/33385282*312119004989^(5/11) 6765000029564672 a001 14930352/3010349*312119004989^(3/11) 6765000029564672 a001 1346269/33385282*(1/2+1/2*5^(1/2))^25 6765000029564672 a001 14930352/3010349*(1/2+1/2*5^(1/2))^15 6765000029564672 a001 1346269/33385282*3461452808002^(5/12) 6765000029564672 a001 14930352/3010349*192900153618^(5/18) 6765000029564672 a001 14930352/3010349*28143753123^(3/10) 6765000029564672 a001 1346269/33385282*28143753123^(1/2) 6765000029564672 a001 14930352/3010349*10749957122^(5/16) 6765000029564672 a001 14930352/3010349*599074578^(5/14) 6765000029564672 a001 14930352/3010349*228826127^(3/8) 6765000029564672 a001 1346269/33385282*228826127^(5/8) 6765000029564673 a001 165580141/3010349*20633239^(2/7) 6765000029564674 a001 24157817/3010349*20633239^(2/5) 6765000029564674 a001 14930352/3010349*33385282^(5/12) 6765000029564675 a001 701408733/3010349*20633239^(1/5) 6765000029564676 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^48 6765000029564676 a001 1836311903/3010349*20633239^(1/7) 6765000029564677 a001 1346269/87403803*141422324^(9/13) 6765000029564677 a001 39088169/3010349*141422324^(1/3) 6765000029564677 a001 1346269/87403803*2537720636^(3/5) 6765000029564677 a001 52623190191461/7778742049 6765000029564677 a001 1346269/87403803*45537549124^(9/17) 6765000029564677 a001 1346269/87403803*817138163596^(9/19) 6765000029564677 a001 1346269/87403803*14662949395604^(3/7) 6765000029564677 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(38) 6765000029564677 a001 39088169/3010349*(1/2+1/2*5^(1/2))^13 6765000029564677 a001 1346269/87403803*192900153618^(1/2) 6765000029564677 a001 39088169/3010349*73681302247^(1/4) 6765000029564677 a001 1346269/87403803*10749957122^(9/16) 6765000029564677 a001 1346269/87403803*599074578^(9/14) 6765000029564678 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^50 6765000029564678 a001 1346269/6643838879*141422324^(12/13) 6765000029564678 a001 1346269/1568397607*141422324^(11/13) 6765000029564678 a001 1346269/370248451*141422324^(10/13) 6765000029564678 a001 137769300517695/20365011074 6765000029564678 a001 102334155/3010349*312119004989^(1/5) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(40) 6765000029564678 a001 102334155/3010349*(1/2+1/2*5^(1/2))^11 6765000029564678 a001 1346269/228826127*1322157322203^(1/2) 6765000029564678 a001 102334155/3010349*1568397607^(1/4) 6765000029564678 a001 267914296/3010349*141422324^(3/13) 6765000029564678 a001 1134903170/3010349*141422324^(2/13) 6765000029564678 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^52 6765000029564678 a001 4807526976/3010349*141422324^(1/13) 6765000029564678 a001 267914296/3010349*2537720636^(1/5) 6765000029564678 a001 267914296/3010349*45537549124^(3/17) 6765000029564678 a001 360684711361624/53316291173 6765000029564678 a001 267914296/3010349*817138163596^(3/19) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(42) 6765000029564678 a001 1346269/599074578*9062201101803^(1/2) 6765000029564678 a001 267914296/3010349*(1/2+1/2*5^(1/2))^9 6765000029564678 a001 267914296/3010349*192900153618^(1/6) 6765000029564678 a001 267914296/3010349*10749957122^(3/16) 6765000029564678 a001 267914296/3010349*599074578^(3/14) 6765000029564678 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^54 6765000029564678 a001 1346269/1568397607*2537720636^(11/15) 6765000029564678 a001 701408733/3010349*17393796001^(1/7) 6765000029564678 a001 1346269/1568397607*45537549124^(11/17) 6765000029564678 a001 10609941950193/1568358005 6765000029564678 a001 1346269/1568397607*312119004989^(3/5) 6765000029564678 a001 1346269/1568397607*817138163596^(11/19) 6765000029564678 a001 1346269/1568397607*14662949395604^(11/21) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(44) 6765000029564678 a001 701408733/3010349*(1/2+1/2*5^(1/2))^7 6765000029564678 a001 1346269/1568397607*192900153618^(11/18) 6765000029564678 a001 1346269/1568397607*10749957122^(11/16) 6765000029564678 a001 1346269/4106118243*2537720636^(7/9) 6765000029564678 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^56 6765000029564678 a001 1346269/119218851371*2537720636^(14/15) 6765000029564678 a001 1346269/45537549124*2537720636^(8/9) 6765000029564678 a001 1346269/28143753123*2537720636^(13/15) 6765000029564678 a001 1346269/1568397607*1568397607^(3/4) 6765000029564678 a001 1346269/6643838879*2537720636^(4/5) 6765000029564678 a001 1836311903/3010349*2537720636^(1/9) 6765000029564678 a001 1346269/4106118243*17393796001^(5/7) 6765000029564678 a001 1346269/4106118243*312119004989^(7/11) 6765000029564678 a001 1836311903/3010349*312119004989^(1/11) 6765000029564678 a001 1346269/4106118243*14662949395604^(5/9) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(46) 6765000029564678 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^5 6765000029564678 a001 1346269/4106118243*505019158607^(5/8) 6765000029564678 a001 1836311903/3010349*28143753123^(1/10) 6765000029564678 a001 1346269/4106118243*28143753123^(7/10) 6765000029564678 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^58 6765000029564678 a001 4807526976/3010349*2537720636^(1/15) 6765000029564678 a001 4807526976/3010349*45537549124^(1/17) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(48) 6765000029564678 a001 4807526976/3010349*14662949395604^(1/21) 6765000029564678 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^3 6765000029564678 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(31) 6765000029564678 a001 4807526976/3010349*192900153618^(1/18) 6765000029564678 a001 4807526976/3010349*10749957122^(1/16) 6765000029564678 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^60 6765000029564678 a001 1346269/119218851371*17393796001^(6/7) 6765000029564678 a001 1346269/28143753123*45537549124^(13/17) 6765000029564678 a001 16944503814017725/2504730781961 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(50) 6765000029564678 a001 1346269/28143753123*192900153618^(13/18) 6765000029564678 a001 1346269/28143753123*73681302247^(3/4) 6765000029564678 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^62 6765000029564678 a001 1346269/2139295485799*45537549124^(16/17) 6765000029564678 a001 1346269/505019158607*45537549124^(15/17) 6765000029564678 a001 1346269/119218851371*45537549124^(14/17) 6765000029564678 a001 44361286907600631/6557470319842 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(52) 6765000029564678 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2) 6765000029564678 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^64 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(54) 6765000029564678 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^3 6765000029564678 a001 1346269/505019158607*312119004989^(9/11) 6765000029564678 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^66 6765000029564678 a001 1346269/5600748293801*312119004989^(10/11) 6765000029564678 a001 1346269/505019158607*14662949395604^(5/7) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(56) 6765000029564678 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^5 6765000029564678 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^68 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(58) 6765000029564678 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^7 6765000029564678 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^70 6765000029564678 a001 1346269/3461452808002*14662949395604^(7/9) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(60) 6765000029564678 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^9 6765000029564678 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^72 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(62) 6765000029564678 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^74 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(64) 6765000029564678 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^76 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(66) 6765000029564678 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^78 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(68) 6765000029564678 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^80 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(70) 6765000029564678 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^82 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(72) 6765000029564678 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^84 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(74) 6765000029564678 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^86 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(76) 6765000029564678 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^88 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(78) 6765000029564678 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^90 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(80) 6765000029564678 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^92 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(82) 6765000029564678 a004 Fibonacci(31)*Lucas(83)/(1/2+sqrt(5)/2)^94 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(84) 6765000029564678 a004 Fibonacci(31)*Lucas(85)/(1/2+sqrt(5)/2)^96 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(86) 6765000029564678 a004 Fibonacci(31)*Lucas(87)/(1/2+sqrt(5)/2)^98 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(88) 6765000029564678 a004 Fibonacci(31)*Lucas(89)/(1/2+sqrt(5)/2)^100 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(90) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(92) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^83/Lucas(94) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^85/Lucas(96) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^87/Lucas(98) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^89/Lucas(100) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^88/Lucas(99) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^86/Lucas(97) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^84/Lucas(95) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(93) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(91) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(89) 6765000029564678 a004 Fibonacci(31)*Lucas(88)/(1/2+sqrt(5)/2)^99 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(87) 6765000029564678 a004 Fibonacci(31)*Lucas(86)/(1/2+sqrt(5)/2)^97 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(85) 6765000029564678 a004 Fibonacci(31)*Lucas(84)/(1/2+sqrt(5)/2)^95 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(83) 6765000029564678 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^93 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(81) 6765000029564678 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^91 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(79) 6765000029564678 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^89 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(77) 6765000029564678 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^87 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(75) 6765000029564678 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^85 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(73) 6765000029564678 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^83 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(71) 6765000029564678 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^81 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(69) 6765000029564678 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^79 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(67) 6765000029564678 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^77 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(65) 6765000029564678 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^75 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(63) 6765000029564678 a001 1346269/14662949395604*23725150497407^(13/16) 6765000029564678 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^13 6765000029564678 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^15 6765000029564678 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^17 6765000029564678 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^19 6765000029564678 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^21 6765000029564678 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^23 6765000029564678 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^25 6765000029564678 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^27 6765000029564678 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^29 6765000029564678 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^31 6765000029564678 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^33 6765000029564678 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^35 6765000029564678 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^37 6765000029564678 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^39 6765000029564678 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^41 6765000029564678 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^43 6765000029564678 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^45 6765000029564678 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^47 6765000029564678 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^49 6765000029564678 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^73 6765000029564678 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^48 6765000029564678 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^46 6765000029564678 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^44 6765000029564678 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^42 6765000029564678 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^40 6765000029564678 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^38 6765000029564678 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^36 6765000029564678 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^34 6765000029564678 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^32 6765000029564678 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^30 6765000029564678 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^28 6765000029564678 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^26 6765000029564678 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^24 6765000029564678 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^22 6765000029564678 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^20 6765000029564678 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^18 6765000029564678 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^16 6765000029564678 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^14 6765000029564678 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^12 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(61) 6765000029564678 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^10 6765000029564678 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^71 6765000029564678 a001 1346269/2139295485799*14662949395604^(16/21) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(59) 6765000029564678 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^8 6765000029564678 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^69 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(57) 6765000029564678 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^6 6765000029564678 a001 1346269/3461452808002*505019158607^(7/8) 6765000029564678 a001 1346269/14662949395604*505019158607^(13/14) 6765000029564678 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^67 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(55) 6765000029564678 a001 1346269/312119004989*23725150497407^(11/16) 6765000029564678 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^4 6765000029564678 a001 1346269/505019158607*192900153618^(5/6) 6765000029564678 a001 1346269/2139295485799*192900153618^(8/9) 6765000029564678 a001 1346269/9062201101803*192900153618^(17/18) 6765000029564678 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^65 6765000029564678 a001 1346269/119218851371*817138163596^(14/19) 6765000029564678 a001 1346269/119218851371*14662949395604^(2/3) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(53) 6765000029564678 a001 71778070001183537/10610209857723 6765000029564678 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^2 6765000029564678 a001 1346269/119218851371*505019158607^(3/4) 6765000029564678 a001 1346269/119218851371*192900153618^(7/9) 6765000029564678 a001 1346269/312119004989*73681302247^(11/13) 6765000029564678 a001 1346269/2139295485799*73681302247^(12/13) 6765000029564678 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^63 6765000029564678 a001 1346269/45537549124*312119004989^(8/11) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(51) 6765000029564678 a001 1346269/45537549124*23725150497407^(5/8) 6765000029564678 a006 5^(1/2)*Fibonacci(51)/Lucas(31)/sqrt(5) 6765000029564678 a001 1346269/45537549124*73681302247^(10/13) 6765000029564678 a001 1346269/505019158607*28143753123^(9/10) 6765000029564678 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^61 6765000029564678 a001 1346269/45537549124*28143753123^(4/5) 6765000029564678 a001 1346269/17393796001*817138163596^(2/3) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(49) 6765000029564678 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^2 6765000029564678 a001 10472279279565181/1548008755920 6765000029564678 a001 7778742049/3010349*10749957122^(1/24) 6765000029564678 a001 1346269/28143753123*10749957122^(13/16) 6765000029564678 a001 7778742049/3010349*4106118243^(1/23) 6765000029564678 a001 1346269/119218851371*10749957122^(7/8) 6765000029564678 a001 1346269/45537549124*10749957122^(5/6) 6765000029564678 a001 1346269/312119004989*10749957122^(11/12) 6765000029564678 a001 1346269/505019158607*10749957122^(15/16) 6765000029564678 a001 1346269/817138163596*10749957122^(23/24) 6765000029564678 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^59 6765000029564678 a001 1346269/17393796001*10749957122^(19/24) 6765000029564678 a001 7778742049/3010349*1568397607^(1/22) 6765000029564678 a001 1346269/6643838879*45537549124^(12/17) 6765000029564678 a001 1346269/6643838879*14662949395604^(4/7) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(47) 6765000029564678 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^4 6765000029564678 a001 1346269/6643838879*505019158607^(9/14) 6765000029564678 a001 1346269/6643838879*192900153618^(2/3) 6765000029564678 a001 1346269/6643838879*73681302247^(9/13) 6765000029564678 a001 2971215073/3010349*10749957122^(1/12) 6765000029564678 a001 2971215073/3010349*4106118243^(2/23) 6765000029564678 a001 1346269/6643838879*10749957122^(3/4) 6765000029564678 a001 1346269/45537549124*4106118243^(20/23) 6765000029564678 a001 1346269/17393796001*4106118243^(19/23) 6765000029564678 a001 1346269/119218851371*4106118243^(21/23) 6765000029564678 a001 1346269/312119004989*4106118243^(22/23) 6765000029564678 a001 701408733/3010349*599074578^(1/6) 6765000029564678 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^57 6765000029564678 a001 2971215073/3010349*1568397607^(1/11) 6765000029564678 a001 1346269/6643838879*4106118243^(18/23) 6765000029564678 a001 1134903170/3010349*2537720636^(2/15) 6765000029564678 a001 7778742049/3010349*599074578^(1/21) 6765000029564678 a001 1346269/2537720636*45537549124^(2/3) 6765000029564678 a001 1134903170/3010349*45537549124^(2/17) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(45) 6765000029564678 a001 1134903170/3010349*14662949395604^(2/21) 6765000029564678 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^6 6765000029564678 a001 1527884955772730/225851433717 6765000029564678 a001 1134903170/3010349*10749957122^(1/8) 6765000029564678 a001 1346269/2537720636*10749957122^(17/24) 6765000029564678 a001 1134903170/3010349*4106118243^(3/23) 6765000029564678 a001 4807526976/3010349*599074578^(1/14) 6765000029564678 a001 1346269/2537720636*4106118243^(17/23) 6765000029564678 a001 1134903170/3010349*1568397607^(3/22) 6765000029564678 a001 2971215073/3010349*599074578^(2/21) 6765000029564678 a001 1346269/17393796001*1568397607^(19/22) 6765000029564678 a001 1346269/6643838879*1568397607^(9/11) 6765000029564678 a001 1346269/45537549124*1568397607^(10/11) 6765000029564678 a001 1346269/119218851371*1568397607^(21/22) 6765000029564678 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^55 6765000029564678 a001 1346269/2537720636*1568397607^(17/22) 6765000029564678 a001 1134903170/3010349*599074578^(1/7) 6765000029564678 a001 7778742049/3010349*228826127^(1/20) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(43) 6765000029564678 a001 1346269/969323029*23725150497407^(1/2) 6765000029564678 a001 433494437/3010349*(1/2+1/2*5^(1/2))^8 6765000029564678 a001 433494437/3010349*23725150497407^(1/8) 6765000029564678 a001 433494437/3010349*505019158607^(1/7) 6765000029564678 a001 1346269/969323029*505019158607^(4/7) 6765000029564678 a001 583600122205553/86267571272 6765000029564678 a001 433494437/3010349*73681302247^(2/13) 6765000029564678 a001 1346269/969323029*73681302247^(8/13) 6765000029564678 a001 433494437/3010349*10749957122^(1/6) 6765000029564678 a001 1346269/969323029*10749957122^(2/3) 6765000029564678 a001 433494437/3010349*4106118243^(4/23) 6765000029564678 a001 1346269/969323029*4106118243^(16/23) 6765000029564678 a001 433494437/3010349*1568397607^(2/11) 6765000029564678 a001 1346269/969323029*1568397607^(8/11) 6765000029564678 a001 433494437/3010349*599074578^(4/21) 6765000029564678 a001 1346269/1568397607*599074578^(11/14) 6765000029564678 a001 2971215073/3010349*228826127^(1/10) 6765000029564678 a001 1346269/4106118243*599074578^(5/6) 6765000029564678 a001 1836311903/3010349*228826127^(1/8) 6765000029564678 a001 1346269/2537720636*599074578^(17/21) 6765000029564678 a001 1346269/6643838879*599074578^(6/7) 6765000029564678 a001 1346269/17393796001*599074578^(19/21) 6765000029564678 a001 1346269/28143753123*599074578^(13/14) 6765000029564678 a001 1346269/45537549124*599074578^(20/21) 6765000029564678 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^53 6765000029564678 a001 1134903170/3010349*228826127^(3/20) 6765000029564678 a001 1346269/969323029*599074578^(16/21) 6765000029564678 a001 433494437/3010349*228826127^(1/5) 6765000029564678 a001 7778742049/3010349*87403803^(1/19) 6765000029564678 a001 1346269/370248451*2537720636^(2/3) 6765000029564678 a001 165580141/3010349*2537720636^(2/9) 6765000029564678 a001 1346269/370248451*45537549124^(10/17) 6765000029564678 a001 1346269/370248451*312119004989^(6/11) 6765000029564678 a001 1346269/370248451*14662949395604^(10/21) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(41) 6765000029564678 a001 165580141/3010349*(1/2+1/2*5^(1/2))^10 6765000029564678 a001 1346269/370248451*192900153618^(5/9) 6765000029564678 a001 222915410843929/32951280099 6765000029564678 a001 165580141/3010349*28143753123^(1/5) 6765000029564678 a001 1346269/370248451*28143753123^(3/5) 6765000029564678 a001 165580141/3010349*10749957122^(5/24) 6765000029564678 a001 1346269/370248451*10749957122^(5/8) 6765000029564678 a001 165580141/3010349*4106118243^(5/23) 6765000029564678 a001 1346269/370248451*4106118243^(15/23) 6765000029564678 a001 165580141/3010349*1568397607^(5/22) 6765000029564678 a001 1346269/370248451*1568397607^(15/22) 6765000029564678 a001 165580141/3010349*599074578^(5/21) 6765000029564678 a001 1346269/370248451*599074578^(5/7) 6765000029564678 a001 165580141/3010349*228826127^(1/4) 6765000029564678 a001 2971215073/3010349*87403803^(2/19) 6765000029564678 a001 1346269/969323029*228826127^(4/5) 6765000029564678 a001 1346269/2537720636*228826127^(17/20) 6765000029564678 a001 1346269/4106118243*228826127^(7/8) 6765000029564678 a001 1346269/6643838879*228826127^(9/10) 6765000029564678 a001 1346269/17393796001*228826127^(19/20) 6765000029564678 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^51 6765000029564678 a001 1134903170/3010349*87403803^(3/19) 6765000029564678 a001 1346269/370248451*228826127^(3/4) 6765000029564678 a001 433494437/3010349*87403803^(4/19) 6765000029564678 a001 63245986/3010349*141422324^(4/13) 6765000029564678 a001 165580141/3010349*87403803^(5/19) 6765000029564678 a001 7778742049/3010349*33385282^(1/18) 6765000029564678 a001 63245986/3010349*2537720636^(4/15) 6765000029564678 a001 1346269/141422324*17393796001^(4/7) 6765000029564678 a001 63245986/3010349*45537549124^(4/17) 6765000029564678 a001 63245986/3010349*817138163596^(4/19) 6765000029564678 a001 1346269/141422324*14662949395604^(4/9) 6765000029564678 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(39) 6765000029564678 a001 63245986/3010349*(1/2+1/2*5^(1/2))^12 6765000029564678 a001 1346269/141422324*505019158607^(1/2) 6765000029564678 a001 63245986/3010349*192900153618^(2/9) 6765000029564678 a001 63245986/3010349*73681302247^(3/13) 6765000029564678 a001 1346269/141422324*73681302247^(7/13) 6765000029564678 a001 85146110326234/12586269025 6765000029564678 a001 63245986/3010349*10749957122^(1/4) 6765000029564678 a001 1346269/141422324*10749957122^(7/12) 6765000029564678 a001 63245986/3010349*4106118243^(6/23) 6765000029564678 a001 1346269/141422324*4106118243^(14/23) 6765000029564678 a001 63245986/3010349*1568397607^(3/11) 6765000029564678 a001 1346269/141422324*1568397607^(7/11) 6765000029564678 a001 63245986/3010349*599074578^(2/7) 6765000029564678 a001 1346269/141422324*599074578^(2/3) 6765000029564678 a001 63245986/3010349*228826127^(3/10) 6765000029564678 a001 1346269/141422324*228826127^(7/10) 6765000029564678 a001 4807526976/3010349*33385282^(1/12) 6765000029564678 a001 63245986/3010349*87403803^(6/19) 6765000029564679 a001 2971215073/3010349*33385282^(1/9) 6765000029564679 a001 1346269/370248451*87403803^(15/19) 6765000029564679 a001 1346269/969323029*87403803^(16/19) 6765000029564679 a001 1346269/2537720636*87403803^(17/19) 6765000029564679 a001 1346269/6643838879*87403803^(18/19) 6765000029564679 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^49 6765000029564679 a001 1346269/141422324*87403803^(14/19) 6765000029564679 a001 1134903170/3010349*33385282^(1/6) 6765000029564679 a001 433494437/3010349*33385282^(2/9) 6765000029564679 a001 267914296/3010349*33385282^(1/4) 6765000029564680 a001 165580141/3010349*33385282^(5/18) 6765000029564680 a001 1346269/54018521*141422324^(2/3) 6765000029564680 a001 24157817/3010349*17393796001^(2/7) 6765000029564680 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(37) 6765000029564680 a001 24157817/3010349*14662949395604^(2/9) 6765000029564680 a001 24157817/3010349*(1/2+1/2*5^(1/2))^14 6765000029564680 a001 24157817/3010349*505019158607^(1/4) 6765000029564680 a001 1346269/54018521*73681302247^(1/2) 6765000029564680 a001 24157817/3010349*10749957122^(7/24) 6765000029564680 a001 1346269/54018521*10749957122^(13/24) 6765000029564680 a001 32522920134773/4807526976 6765000029564680 a001 24157817/3010349*4106118243^(7/23) 6765000029564680 a001 1346269/54018521*4106118243^(13/23) 6765000029564680 a001 24157817/3010349*1568397607^(7/22) 6765000029564680 a001 1346269/54018521*1568397607^(13/22) 6765000029564680 a001 24157817/3010349*599074578^(1/3) 6765000029564680 a001 1346269/54018521*599074578^(13/21) 6765000029564680 a001 63245986/3010349*33385282^(1/3) 6765000029564680 a001 24157817/3010349*228826127^(7/20) 6765000029564680 a001 1346269/54018521*228826127^(13/20) 6765000029564680 a001 7778742049/3010349*12752043^(1/17) 6765000029564681 a001 24157817/3010349*87403803^(7/19) 6765000029564681 a001 1346269/54018521*87403803^(13/19) 6765000029564682 a001 1346269/87403803*33385282^(3/4) 6765000029564683 a001 14930352/4870847*1860498^(8/15) 6765000029564683 a001 24157817/3010349*33385282^(7/18) 6765000029564683 a001 2971215073/3010349*12752043^(2/17) 6765000029564683 a001 1346269/141422324*33385282^(7/9) 6765000029564683 a001 1346269/370248451*33385282^(5/6) 6765000029564683 a001 1346269/969323029*33385282^(8/9) 6765000029564683 a001 1346269/1568397607*33385282^(11/12) 6765000029564684 a001 1346269/2537720636*33385282^(17/18) 6765000029564684 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^47 6765000029564685 a001 1346269/54018521*33385282^(13/18) 6765000029564685 a001 1134903170/3010349*12752043^(3/17) 6765000029564688 a001 433494437/3010349*12752043^(4/17) 6765000029564690 a001 165580141/3010349*12752043^(5/17) 6765000029564692 a001 433494437/7881196*1860498^(1/3) 6765000029564693 a001 63245986/3010349*12752043^(6/17) 6765000029564694 a001 1346269/20633239*141422324^(8/13) 6765000029564694 a001 1346269/20633239*2537720636^(8/15) 6765000029564694 a001 1346269/20633239*45537549124^(8/17) 6765000029564694 a001 1346269/20633239*14662949395604^(8/21) 6765000029564694 a001 1346269/20633239*(1/2+1/2*5^(1/2))^24 6765000029564694 a001 9227465/3010349*(1/2+1/2*5^(1/2))^16 6765000029564694 a001 9227465/3010349*23725150497407^(1/4) 6765000029564694 a001 1346269/20633239*192900153618^(4/9) 6765000029564694 a001 9227465/3010349*73681302247^(4/13) 6765000029564694 a001 1346269/20633239*73681302247^(6/13) 6765000029564694 a001 9227465/3010349*10749957122^(1/3) 6765000029564694 a001 1346269/20633239*10749957122^(1/2) 6765000029564694 a001 9227465/3010349*4106118243^(8/23) 6765000029564694 a001 1346269/20633239*4106118243^(12/23) 6765000029564694 a001 12422650078085/1836311903 6765000029564694 a001 9227465/3010349*1568397607^(4/11) 6765000029564694 a001 1346269/20633239*1568397607^(6/11) 6765000029564694 a001 9227465/3010349*599074578^(8/21) 6765000029564694 a001 1346269/20633239*599074578^(4/7) 6765000029564694 a001 9227465/3010349*228826127^(2/5) 6765000029564694 a001 1346269/20633239*228826127^(3/5) 6765000029564694 a001 9227465/3010349*87403803^(8/19) 6765000029564694 a001 1346269/20633239*87403803^(12/19) 6765000029564696 a001 7778742049/3010349*4870847^(1/16) 6765000029564696 a001 9227465/3010349*33385282^(4/9) 6765000029564697 a001 24157817/3010349*12752043^(7/17) 6765000029564698 a001 1346269/20633239*33385282^(2/3) 6765000029564707 a001 701408733/33385282*1860498^(2/5) 6765000029564712 a001 1346269/54018521*12752043^(13/17) 6765000029564712 a001 1836311903/87403803*1860498^(2/5) 6765000029564712 a001 1346269/141422324*12752043^(14/17) 6765000029564713 a001 102287808/4868641*1860498^(2/5) 6765000029564713 a001 12586269025/599074578*1860498^(2/5) 6765000029564713 a001 32951280099/1568397607*1860498^(2/5) 6765000029564713 a001 86267571272/4106118243*1860498^(2/5) 6765000029564713 a001 225851433717/10749957122*1860498^(2/5) 6765000029564713 a001 591286729879/28143753123*1860498^(2/5) 6765000029564713 a001 1548008755920/73681302247*1860498^(2/5) 6765000029564713 a001 4052739537881/192900153618*1860498^(2/5) 6765000029564713 a001 225749145909/10745088481*1860498^(2/5) 6765000029564713 a001 6557470319842/312119004989*1860498^(2/5) 6765000029564713 a001 2504730781961/119218851371*1860498^(2/5) 6765000029564713 a001 956722026041/45537549124*1860498^(2/5) 6765000029564713 a001 365435296162/17393796001*1860498^(2/5) 6765000029564713 a001 139583862445/6643838879*1860498^(2/5) 6765000029564713 a001 53316291173/2537720636*1860498^(2/5) 6765000029564713 a001 20365011074/969323029*1860498^(2/5) 6765000029564713 a001 7778742049/370248451*1860498^(2/5) 6765000029564713 a001 9227465/3010349*12752043^(8/17) 6765000029564713 a001 2971215073/141422324*1860498^(2/5) 6765000029564714 a001 2971215073/3010349*4870847^(1/8) 6765000029564714 a001 1346269/7881196*7881196^(2/3) 6765000029564715 a001 1346269/370248451*12752043^(15/17) 6765000029564715 a001 1134903170/54018521*1860498^(2/5) 6765000029564717 a001 1346269/969323029*12752043^(16/17) 6765000029564719 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^45 6765000029564723 a001 1346269/20633239*12752043^(12/17) 6765000029564727 a001 3524578/3010349*7881196^(6/11) 6765000029564729 a001 433494437/20633239*1860498^(2/5) 6765000029564731 a001 1134903170/3010349*4870847^(3/16) 6765000029564749 a001 433494437/3010349*4870847^(1/4) 6765000029564767 a001 165580141/3010349*4870847^(5/16) 6765000029564777 a001 5702887/4870847*1860498^(3/5) 6765000029564785 a001 63245986/3010349*4870847^(3/8) 6765000029564787 a001 3524578/3010349*141422324^(6/13) 6765000029564787 a001 3524578/3010349*2537720636^(2/5) 6765000029564787 a001 3524578/3010349*45537549124^(6/17) 6765000029564787 a001 1346269/7881196*312119004989^(2/5) 6765000029564787 a001 1346269/7881196*(1/2+1/2*5^(1/2))^22 6765000029564787 a001 3524578/3010349*14662949395604^(2/7) 6765000029564787 a001 3524578/3010349*(1/2+1/2*5^(1/2))^18 6765000029564787 a001 3524578/3010349*192900153618^(1/3) 6765000029564787 a001 3524578/3010349*10749957122^(3/8) 6765000029564787 a001 1346269/7881196*10749957122^(11/24) 6765000029564787 a001 3524578/3010349*4106118243^(9/23) 6765000029564787 a001 1346269/7881196*4106118243^(11/23) 6765000029564787 a001 3524578/3010349*1568397607^(9/22) 6765000029564787 a001 1346269/7881196*1568397607^(1/2) 6765000029564787 a001 53314944938/7880997 6765000029564787 a001 3524578/3010349*599074578^(3/7) 6765000029564787 a001 1346269/7881196*599074578^(11/21) 6765000029564787 a001 3524578/3010349*228826127^(9/20) 6765000029564787 a001 1346269/7881196*228826127^(11/20) 6765000029564787 a001 3524578/3010349*87403803^(9/19) 6765000029564787 a001 1346269/7881196*87403803^(11/19) 6765000029564790 a001 3524578/3010349*33385282^(1/2) 6765000029564791 a001 1346269/7881196*33385282^(11/18) 6765000029564802 a001 34111385/4250681*1860498^(7/15) 6765000029564805 a001 24157817/3010349*4870847^(7/16) 6765000029564808 a001 7778742049/3010349*1860498^(1/15) 6765000029564809 a001 3524578/3010349*12752043^(9/17) 6765000029564814 a001 1346269/7881196*12752043^(11/17) 6765000029564822 a001 165580141/7881196*1860498^(2/5) 6765000029564836 a001 9227465/3010349*4870847^(1/2) 6765000029564837 a001 133957148/16692641*1860498^(7/15) 6765000029564843 a001 233802911/29134601*1860498^(7/15) 6765000029564843 a001 1836311903/228826127*1860498^(7/15) 6765000029564843 a001 267084832/33281921*1860498^(7/15) 6765000029564843 a001 12586269025/1568397607*1860498^(7/15) 6765000029564843 a001 10983760033/1368706081*1860498^(7/15) 6765000029564843 a001 43133785636/5374978561*1860498^(7/15) 6765000029564843 a001 75283811239/9381251041*1860498^(7/15) 6765000029564843 a001 591286729879/73681302247*1860498^(7/15) 6765000029564843 a001 86000486440/10716675201*1860498^(7/15) 6765000029564843 a001 4052739537881/505019158607*1860498^(7/15) 6765000029564843 a001 3536736619241/440719107401*1860498^(7/15) 6765000029564843 a001 3278735159921/408569081798*1860498^(7/15) 6765000029564843 a001 2504730781961/312119004989*1860498^(7/15) 6765000029564843 a001 956722026041/119218851371*1860498^(7/15) 6765000029564843 a001 182717648081/22768774562*1860498^(7/15) 6765000029564843 a001 139583862445/17393796001*1860498^(7/15) 6765000029564843 a001 53316291173/6643838879*1860498^(7/15) 6765000029564843 a001 10182505537/1268860318*1860498^(7/15) 6765000029564843 a001 7778742049/969323029*1860498^(7/15) 6765000029564843 a001 2971215073/370248451*1860498^(7/15) 6765000029564844 a001 567451585/70711162*1860498^(7/15) 6765000029564846 a001 433494437/54018521*1860498^(7/15) 6765000029564847 a001 10983760033/4250681*710647^(1/14) 6765000029564847 a001 233802911/620166*710647^(3/14) 6765000029564859 a001 165580141/20633239*1860498^(7/15) 6765000029564867 a001 63245986/12752043*1860498^(1/2) 6765000029564873 a001 4807526976/3010349*1860498^(1/10) 6765000029564882 a001 43133785636/16692641*710647^(1/14) 6765000029564887 a001 75283811239/29134601*710647^(1/14) 6765000029564888 a001 591286729879/228826127*710647^(1/14) 6765000029564888 a001 86000486440/33281921*710647^(1/14) 6765000029564888 a001 4052739537881/1568397607*710647^(1/14) 6765000029564888 a001 3536736619241/1368706081*710647^(1/14) 6765000029564888 a001 3278735159921/1268860318*710647^(1/14) 6765000029564888 a001 2504730781961/969323029*710647^(1/14) 6765000029564888 a001 956722026041/370248451*710647^(1/14) 6765000029564889 a001 182717648081/70711162*710647^(1/14) 6765000029564891 a001 139583862445/54018521*710647^(1/14) 6765000029564903 a001 165580141/33385282*1860498^(1/2) 6765000029564904 a001 53316291173/20633239*710647^(1/14) 6765000029564908 a001 1346269/20633239*4870847^(3/4) 6765000029564908 a001 433494437/87403803*1860498^(1/2) 6765000029564908 a001 1134903170/228826127*1860498^(1/2) 6765000029564909 a001 2971215073/599074578*1860498^(1/2) 6765000029564909 a001 7778742049/1568397607*1860498^(1/2) 6765000029564909 a001 20365011074/4106118243*1860498^(1/2) 6765000029564909 a001 53316291173/10749957122*1860498^(1/2) 6765000029564909 a001 139583862445/28143753123*1860498^(1/2) 6765000029564909 a001 365435296162/73681302247*1860498^(1/2) 6765000029564909 a001 956722026041/192900153618*1860498^(1/2) 6765000029564909 a001 2504730781961/505019158607*1860498^(1/2) 6765000029564909 a001 10610209857723/2139295485799*1860498^(1/2) 6765000029564909 a001 4052739537881/817138163596*1860498^(1/2) 6765000029564909 a001 140728068720/28374454999*1860498^(1/2) 6765000029564909 a001 591286729879/119218851371*1860498^(1/2) 6765000029564909 a001 225851433717/45537549124*1860498^(1/2) 6765000029564909 a001 86267571272/17393796001*1860498^(1/2) 6765000029564909 a001 32951280099/6643838879*1860498^(1/2) 6765000029564909 a001 1144206275/230701876*1860498^(1/2) 6765000029564909 a001 4807526976/969323029*1860498^(1/2) 6765000029564909 a001 1836311903/370248451*1860498^(1/2) 6765000029564909 a001 701408733/141422324*1860498^(1/2) 6765000029564911 a001 267914296/54018521*1860498^(1/2) 6765000029564912 a001 1346269/54018521*4870847^(13/16) 6765000029564924 a001 9303105/1875749*1860498^(1/2) 6765000029564928 a001 1346269/141422324*4870847^(7/8) 6765000029564931 a001 39088169/12752043*1860498^(8/15) 6765000029564938 a001 2971215073/3010349*1860498^(2/15) 6765000029564945 a001 1346269/370248451*4870847^(15/16) 6765000029564947 a001 3524578/3010349*4870847^(9/16) 6765000029564953 a001 31622993/3940598*1860498^(7/15) 6765000029564963 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^43 6765000029564968 a001 14619165/4769326*1860498^(8/15) 6765000029564973 a001 267914296/87403803*1860498^(8/15) 6765000029564974 a001 701408733/228826127*1860498^(8/15) 6765000029564974 a001 1836311903/599074578*1860498^(8/15) 6765000029564974 a001 686789568/224056801*1860498^(8/15) 6765000029564974 a001 12586269025/4106118243*1860498^(8/15) 6765000029564974 a001 32951280099/10749957122*1860498^(8/15) 6765000029564974 a001 86267571272/28143753123*1860498^(8/15) 6765000029564974 a001 32264490531/10525900321*1860498^(8/15) 6765000029564974 a001 591286729879/192900153618*1860498^(8/15) 6765000029564974 a001 1548008755920/505019158607*1860498^(8/15) 6765000029564974 a001 1515744265389/494493258286*1860498^(8/15) 6765000029564974 a001 2504730781961/817138163596*1860498^(8/15) 6765000029564974 a001 956722026041/312119004989*1860498^(8/15) 6765000029564974 a001 365435296162/119218851371*1860498^(8/15) 6765000029564974 a001 139583862445/45537549124*1860498^(8/15) 6765000029564974 a001 53316291173/17393796001*1860498^(8/15) 6765000029564974 a001 20365011074/6643838879*1860498^(8/15) 6765000029564974 a001 7778742049/2537720636*1860498^(8/15) 6765000029564974 a001 2971215073/969323029*1860498^(8/15) 6765000029564974 a001 1134903170/370248451*1860498^(8/15) 6765000029564974 a001 433494437/141422324*1860498^(8/15) 6765000029564976 a001 165580141/54018521*1860498^(8/15) 6765000029564983 a001 1346269/7881196*4870847^(11/16) 6765000029564990 a001 63245986/20633239*1860498^(8/15) 6765000029564997 a001 10182505537/3940598*710647^(1/14) 6765000029565004 a001 1836311903/3010349*1860498^(1/6) 6765000029565017 a001 39088169/7881196*1860498^(1/2) 6765000029565038 a001 726103/4250681*1860498^(11/15) 6765000029565056 a001 4976784/4250681*1860498^(3/5) 6765000029565069 a001 1134903170/3010349*1860498^(1/5) 6765000029565085 a001 24157817/7881196*1860498^(8/15) 6765000029565097 a001 39088169/33385282*1860498^(3/5) 6765000029565103 a001 34111385/29134601*1860498^(3/5) 6765000029565104 a001 267914296/228826127*1860498^(3/5) 6765000029565104 a001 233802911/199691526*1860498^(3/5) 6765000029565104 a001 1836311903/1568397607*1860498^(3/5) 6765000029565104 a001 1602508992/1368706081*1860498^(3/5) 6765000029565104 a001 12586269025/10749957122*1860498^(3/5) 6765000029565104 a001 10983760033/9381251041*1860498^(3/5) 6765000029565104 a001 86267571272/73681302247*1860498^(3/5) 6765000029565104 a001 75283811239/64300051206*1860498^(3/5) 6765000029565104 a001 2504730781961/2139295485799*1860498^(3/5) 6765000029565104 a001 365435296162/312119004989*1860498^(3/5) 6765000029565104 a001 139583862445/119218851371*1860498^(3/5) 6765000029565104 a001 53316291173/45537549124*1860498^(3/5) 6765000029565104 a001 20365011074/17393796001*1860498^(3/5) 6765000029565104 a001 7778742049/6643838879*1860498^(3/5) 6765000029565104 a001 2971215073/2537720636*1860498^(3/5) 6765000029565104 a001 1134903170/969323029*1860498^(3/5) 6765000029565104 a001 433494437/370248451*1860498^(3/5) 6765000029565104 a001 165580141/141422324*1860498^(3/5) 6765000029565107 a001 63245986/54018521*1860498^(3/5) 6765000029565122 a001 24157817/20633239*1860498^(3/5) 6765000029565123 a001 2178309/7881196*1860498^(7/10) 6765000029565151 a001 5702887/12752043*1860498^(2/3) 6765000029565151 a001 1836311903/1149851*439204^(1/9) 6765000029565199 a001 433494437/3010349*1860498^(4/15) 6765000029565204 a001 311187/4769326*1860498^(4/5) 6765000029565222 a001 7465176/16692641*1860498^(2/3) 6765000029565229 a001 9227465/7881196*1860498^(3/5) 6765000029565233 a001 39088169/87403803*1860498^(2/3) 6765000029565234 a001 102334155/228826127*1860498^(2/3) 6765000029565234 a001 133957148/299537289*1860498^(2/3) 6765000029565234 a001 701408733/1568397607*1860498^(2/3) 6765000029565234 a001 1836311903/4106118243*1860498^(2/3) 6765000029565234 a001 2403763488/5374978561*1860498^(2/3) 6765000029565234 a001 12586269025/28143753123*1860498^(2/3) 6765000029565234 a001 32951280099/73681302247*1860498^(2/3) 6765000029565234 a001 43133785636/96450076809*1860498^(2/3) 6765000029565234 a001 225851433717/505019158607*1860498^(2/3) 6765000029565234 a001 591286729879/1322157322203*1860498^(2/3) 6765000029565234 a001 10610209857723/23725150497407*1860498^(2/3) 6765000029565234 a001 182717648081/408569081798*1860498^(2/3) 6765000029565234 a001 139583862445/312119004989*1860498^(2/3) 6765000029565234 a001 53316291173/119218851371*1860498^(2/3) 6765000029565234 a001 10182505537/22768774562*1860498^(2/3) 6765000029565234 a001 7778742049/17393796001*1860498^(2/3) 6765000029565234 a001 2971215073/6643838879*1860498^(2/3) 6765000029565234 a001 567451585/1268860318*1860498^(2/3) 6765000029565234 a001 433494437/969323029*1860498^(2/3) 6765000029565234 a001 165580141/370248451*1860498^(2/3) 6765000029565235 a001 31622993/70711162*1860498^(2/3) 6765000029565239 a001 24157817/54018521*1860498^(2/3) 6765000029565264 a001 267914296/3010349*1860498^(3/10) 6765000029565266 a001 9227465/20633239*1860498^(2/3) 6765000029565274 a001 5702887/20633239*1860498^(7/10) 6765000029565277 a001 2178309/54018521*1860498^(5/6) 6765000029565296 a001 14930352/54018521*1860498^(7/10) 6765000029565299 a001 39088169/141422324*1860498^(7/10) 6765000029565299 a001 102334155/370248451*1860498^(7/10) 6765000029565299 a001 267914296/969323029*1860498^(7/10) 6765000029565299 a001 701408733/2537720636*1860498^(7/10) 6765000029565299 a001 1836311903/6643838879*1860498^(7/10) 6765000029565299 a001 4807526976/17393796001*1860498^(7/10) 6765000029565299 a001 12586269025/45537549124*1860498^(7/10) 6765000029565299 a001 32951280099/119218851371*1860498^(7/10) 6765000029565299 a001 86267571272/312119004989*1860498^(7/10) 6765000029565299 a001 225851433717/817138163596*1860498^(7/10) 6765000029565299 a001 1548008755920/5600748293801*1860498^(7/10) 6765000029565299 a001 139583862445/505019158607*1860498^(7/10) 6765000029565299 a001 53316291173/192900153618*1860498^(7/10) 6765000029565299 a001 20365011074/73681302247*1860498^(7/10) 6765000029565299 a001 7778742049/28143753123*1860498^(7/10) 6765000029565299 a001 2971215073/10749957122*1860498^(7/10) 6765000029565299 a001 1134903170/4106118243*1860498^(7/10) 6765000029565299 a001 433494437/1568397607*1860498^(7/10) 6765000029565299 a001 165580141/599074578*1860498^(7/10) 6765000029565300 a001 63245986/228826127*1860498^(7/10) 6765000029565301 a001 24157817/87403803*1860498^(7/10) 6765000029565309 a001 9227465/33385282*1860498^(7/10) 6765000029565317 a001 5702887/33385282*1860498^(11/15) 6765000029565326 a001 433494437/1860498*710647^(1/4) 6765000029565329 a001 165580141/3010349*1860498^(1/3) 6765000029565339 a001 726103/29134601*1860498^(13/15) 6765000029565358 a001 4976784/29134601*1860498^(11/15) 6765000029565364 a001 39088169/228826127*1860498^(11/15) 6765000029565364 a001 34111385/199691526*1860498^(11/15) 6765000029565365 a001 267914296/1568397607*1860498^(11/15) 6765000029565365 a001 233802911/1368706081*1860498^(11/15) 6765000029565365 a001 1836311903/10749957122*1860498^(11/15) 6765000029565365 a001 1602508992/9381251041*1860498^(11/15) 6765000029565365 a001 12586269025/73681302247*1860498^(11/15) 6765000029565365 a001 10983760033/64300051206*1860498^(11/15) 6765000029565365 a001 86267571272/505019158607*1860498^(11/15) 6765000029565365 a001 75283811239/440719107401*1860498^(11/15) 6765000029565365 a001 2504730781961/14662949395604*1860498^(11/15) 6765000029565365 a001 139583862445/817138163596*1860498^(11/15) 6765000029565365 a001 53316291173/312119004989*1860498^(11/15) 6765000029565365 a001 20365011074/119218851371*1860498^(11/15) 6765000029565365 a001 7778742049/45537549124*1860498^(11/15) 6765000029565365 a001 2971215073/17393796001*1860498^(11/15) 6765000029565365 a001 1134903170/6643838879*1860498^(11/15) 6765000029565365 a001 433494437/2537720636*1860498^(11/15) 6765000029565365 a001 165580141/969323029*1860498^(11/15) 6765000029565365 a001 63245986/370248451*1860498^(11/15) 6765000029565367 a001 3524578/12752043*1860498^(7/10) 6765000029565367 a001 24157817/141422324*1860498^(11/15) 6765000029565383 a001 9227465/54018521*1860498^(11/15) 6765000029565406 a001 2178309/141422324*1860498^(9/10) 6765000029565415 a001 1346269/3010349*20633239^(4/7) 6765000029565424 a001 1346269/3010349*2537720636^(4/9) 6765000029565424 a001 1346269/3010349*(1/2+1/2*5^(1/2))^20 6765000029565424 a001 1346269/3010349*23725150497407^(5/16) 6765000029565424 a001 1346269/3010349*505019158607^(5/14) 6765000029565424 a001 1346269/3010349*73681302247^(5/13) 6765000029565424 a001 1346269/3010349*28143753123^(2/5) 6765000029565424 a001 1346269/3010349*10749957122^(5/12) 6765000029565424 a001 1346269/3010349*4106118243^(10/23) 6765000029565424 a001 1346269/3010349*1568397607^(5/11) 6765000029565424 a001 1346269/3010349*599074578^(10/21) 6765000029565424 a001 1812440220361/267914296 6765000029565424 a001 1346269/3010349*228826127^(1/2) 6765000029565425 a001 1346269/3010349*87403803^(10/19) 6765000029565428 a001 1346269/3010349*33385282^(5/9) 6765000029565449 a001 1346269/3010349*12752043^(10/17) 6765000029565452 a001 1762289/3940598*1860498^(2/3) 6765000029565452 a001 5702887/87403803*1860498^(4/5) 6765000029565460 a001 63245986/3010349*1860498^(2/5) 6765000029565470 a001 46347/4868641*1860498^(14/15) 6765000029565489 a001 14930352/228826127*1860498^(4/5) 6765000029565489 a001 3524578/20633239*1860498^(11/15) 6765000029565494 a001 39088169/599074578*1860498^(4/5) 6765000029565495 a001 14619165/224056801*1860498^(4/5) 6765000029565495 a001 267914296/4106118243*1860498^(4/5) 6765000029565495 a001 701408733/10749957122*1860498^(4/5) 6765000029565495 a001 1836311903/28143753123*1860498^(4/5) 6765000029565495 a001 686789568/10525900321*1860498^(4/5) 6765000029565495 a001 12586269025/192900153618*1860498^(4/5) 6765000029565495 a001 32951280099/505019158607*1860498^(4/5) 6765000029565495 a001 86267571272/1322157322203*1860498^(4/5) 6765000029565495 a001 32264490531/494493258286*1860498^(4/5) 6765000029565495 a001 591286729879/9062201101803*1860498^(4/5) 6765000029565495 a001 1548008755920/23725150497407*1860498^(4/5) 6765000029565495 a001 365435296162/5600748293801*1860498^(4/5) 6765000029565495 a001 139583862445/2139295485799*1860498^(4/5) 6765000029565495 a001 53316291173/817138163596*1860498^(4/5) 6765000029565495 a001 20365011074/312119004989*1860498^(4/5) 6765000029565495 a001 7778742049/119218851371*1860498^(4/5) 6765000029565495 a001 2971215073/45537549124*1860498^(4/5) 6765000029565495 a001 1134903170/17393796001*1860498^(4/5) 6765000029565495 a001 433494437/6643838879*1860498^(4/5) 6765000029565495 a001 165580141/2537720636*1860498^(4/5) 6765000029565495 a001 63245986/969323029*1860498^(4/5) 6765000029565497 a001 24157817/370248451*1860498^(4/5) 6765000029565511 a001 9227465/141422324*1860498^(4/5) 6765000029565519 a001 5702887/141422324*1860498^(5/6) 6765000029565554 a001 14930352/370248451*1860498^(5/6) 6765000029565559 a001 39088169/969323029*1860498^(5/6) 6765000029565560 a001 4807526976/4870847*710647^(1/7) 6765000029565560 a001 9303105/230701876*1860498^(5/6) 6765000029565560 a001 267914296/6643838879*1860498^(5/6) 6765000029565560 a001 701408733/17393796001*1860498^(5/6) 6765000029565560 a001 1836311903/45537549124*1860498^(5/6) 6765000029565560 a001 4807526976/119218851371*1860498^(5/6) 6765000029565560 a001 1144206275/28374454999*1860498^(5/6) 6765000029565560 a001 32951280099/817138163596*1860498^(5/6) 6765000029565560 a001 86267571272/2139295485799*1860498^(5/6) 6765000029565560 a001 225851433717/5600748293801*1860498^(5/6) 6765000029565560 a001 591286729879/14662949395604*1860498^(5/6) 6765000029565560 a001 365435296162/9062201101803*1860498^(5/6) 6765000029565560 a001 139583862445/3461452808002*1860498^(5/6) 6765000029565560 a001 53316291173/1322157322203*1860498^(5/6) 6765000029565560 a001 20365011074/505019158607*1860498^(5/6) 6765000029565560 a001 7778742049/192900153618*1860498^(5/6) 6765000029565560 a001 2971215073/73681302247*1860498^(5/6) 6765000029565560 a001 1134903170/28143753123*1860498^(5/6) 6765000029565560 a001 433494437/10749957122*1860498^(5/6) 6765000029565560 a001 165580141/4106118243*1860498^(5/6) 6765000029565560 a001 63245986/1568397607*1860498^(5/6) 6765000029565562 a001 24157817/599074578*1860498^(5/6) 6765000029565576 a001 9227465/228826127*1860498^(5/6) 6765000029565583 a001 5702887/228826127*1860498^(13/15) 6765000029565592 a001 24157817/3010349*1860498^(7/15) 6765000029565601 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^42 6765000029565603 a001 1346269/3010349*4870847^(5/8) 6765000029565606 a001 3524578/54018521*1860498^(4/5) 6765000029565619 a001 829464/33281921*1860498^(13/15) 6765000029565624 a001 39088169/1568397607*1860498^(13/15) 6765000029565625 a001 34111385/1368706081*1860498^(13/15) 6765000029565625 a001 133957148/5374978561*1860498^(13/15) 6765000029565625 a001 233802911/9381251041*1860498^(13/15) 6765000029565625 a001 1836311903/73681302247*1860498^(13/15) 6765000029565625 a001 267084832/10716675201*1860498^(13/15) 6765000029565625 a001 12586269025/505019158607*1860498^(13/15) 6765000029565625 a001 10983760033/440719107401*1860498^(13/15) 6765000029565625 a001 43133785636/1730726404001*1860498^(13/15) 6765000029565625 a001 75283811239/3020733700601*1860498^(13/15) 6765000029565625 a001 182717648081/7331474697802*1860498^(13/15) 6765000029565625 a001 139583862445/5600748293801*1860498^(13/15) 6765000029565625 a001 53316291173/2139295485799*1860498^(13/15) 6765000029565625 a001 10182505537/408569081798*1860498^(13/15) 6765000029565625 a001 7778742049/312119004989*1860498^(13/15) 6765000029565625 a001 2971215073/119218851371*1860498^(13/15) 6765000029565625 a001 567451585/22768774562*1860498^(13/15) 6765000029565625 a001 433494437/17393796001*1860498^(13/15) 6765000029565625 a001 165580141/6643838879*1860498^(13/15) 6765000029565626 a001 31622993/1268860318*1860498^(13/15) 6765000029565627 a001 24157817/969323029*1860498^(13/15) 6765000029565635 a001 7778742049/3010349*710647^(1/14) 6765000029565641 a001 9227465/370248451*1860498^(13/15) 6765000029565649 a001 5702887/370248451*1860498^(9/10) 6765000029565649 a001 14930352/3010349*1860498^(1/2) 6765000029565668 a001 3524578/87403803*1860498^(5/6) 6765000029565684 a001 14930352/969323029*1860498^(9/10) 6765000029565689 a001 39088169/2537720636*1860498^(9/10) 6765000029565690 a001 102334155/6643838879*1860498^(9/10) 6765000029565690 a001 9238424/599786069*1860498^(9/10) 6765000029565690 a001 701408733/45537549124*1860498^(9/10) 6765000029565690 a001 1836311903/119218851371*1860498^(9/10) 6765000029565690 a001 4807526976/312119004989*1860498^(9/10) 6765000029565690 a001 12586269025/817138163596*1860498^(9/10) 6765000029565690 a001 32951280099/2139295485799*1860498^(9/10) 6765000029565690 a001 86267571272/5600748293801*1860498^(9/10) 6765000029565690 a001 7787980473/505618944676*1860498^(9/10) 6765000029565690 a001 365435296162/23725150497407*1860498^(9/10) 6765000029565690 a001 139583862445/9062201101803*1860498^(9/10) 6765000029565690 a001 53316291173/3461452808002*1860498^(9/10) 6765000029565690 a001 20365011074/1322157322203*1860498^(9/10) 6765000029565690 a001 7778742049/505019158607*1860498^(9/10) 6765000029565690 a001 2971215073/192900153618*1860498^(9/10) 6765000029565690 a001 1134903170/73681302247*1860498^(9/10) 6765000029565690 a001 433494437/28143753123*1860498^(9/10) 6765000029565690 a001 165580141/10749957122*1860498^(9/10) 6765000029565691 a001 63245986/4106118243*1860498^(9/10) 6765000029565693 a001 24157817/1568397607*1860498^(9/10) 6765000029565699 a001 317811/1149851*710647^(3/4) 6765000029565706 a001 9227465/599074578*1860498^(9/10) 6765000029565714 a001 5702887/599074578*1860498^(14/15) 6765000029565734 a001 1762289/70711162*1860498^(13/15) 6765000029565736 a001 9227465/3010349*1860498^(8/15) 6765000029565749 a001 14930352/1568397607*1860498^(14/15) 6765000029565755 a001 39088169/4106118243*1860498^(14/15) 6765000029565755 a001 102334155/10749957122*1860498^(14/15) 6765000029565755 a001 267914296/28143753123*1860498^(14/15) 6765000029565755 a001 701408733/73681302247*1860498^(14/15) 6765000029565755 a001 1836311903/192900153618*1860498^(14/15) 6765000029565755 a001 102287808/10745088481*1860498^(14/15) 6765000029565755 a001 12586269025/1322157322203*1860498^(14/15) 6765000029565755 a001 32951280099/3461452808002*1860498^(14/15) 6765000029565755 a001 86267571272/9062201101803*1860498^(14/15) 6765000029565755 a001 225851433717/23725150497407*1860498^(14/15) 6765000029565755 a001 139583862445/14662949395604*1860498^(14/15) 6765000029565755 a001 53316291173/5600748293801*1860498^(14/15) 6765000029565755 a001 20365011074/2139295485799*1860498^(14/15) 6765000029565755 a001 7778742049/817138163596*1860498^(14/15) 6765000029565755 a001 2971215073/312119004989*1860498^(14/15) 6765000029565755 a001 1134903170/119218851371*1860498^(14/15) 6765000029565755 a001 433494437/45537549124*1860498^(14/15) 6765000029565756 a001 165580141/17393796001*1860498^(14/15) 6765000029565756 a001 63245986/6643838879*1860498^(14/15) 6765000029565758 a001 24157817/2537720636*1860498^(14/15) 6765000029565761 a001 1346269/4870847*1860498^(7/10) 6765000029565771 a001 9227465/969323029*1860498^(14/15) 6765000029565799 a001 3524578/228826127*1860498^(9/10) 6765000029565803 a001 12586269025/12752043*710647^(1/7) 6765000029565804 a001 133957148/930249*710647^(2/7) 6765000029565839 a001 32951280099/33385282*710647^(1/7) 6765000029565844 a001 86267571272/87403803*710647^(1/7) 6765000029565844 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^44 6765000029565845 a001 225851433717/228826127*710647^(1/7) 6765000029565845 a001 591286729879/599074578*710647^(1/7) 6765000029565845 a001 1548008755920/1568397607*710647^(1/7) 6765000029565845 a001 4052739537881/4106118243*710647^(1/7) 6765000029565845 a001 4807525989/4870846*710647^(1/7) 6765000029565845 a001 6557470319842/6643838879*710647^(1/7) 6765000029565845 a001 2504730781961/2537720636*710647^(1/7) 6765000029565845 a001 956722026041/969323029*710647^(1/7) 6765000029565845 a001 365435296162/370248451*710647^(1/7) 6765000029565845 a001 139583862445/141422324*710647^(1/7) 6765000029565847 a001 53316291173/54018521*710647^(1/7) 6765000029565861 a001 20365011074/20633239*710647^(1/7) 6765000029565864 a001 3524578/370248451*1860498^(14/15) 6765000029565880 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^46 6765000029565885 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^48 6765000029565886 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^50 6765000029565886 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^52 6765000029565886 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^54 6765000029565886 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^56 6765000029565886 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^58 6765000029565886 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^60 6765000029565886 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^62 6765000029565886 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^64 6765000029565886 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^66 6765000029565886 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^68 6765000029565886 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^70 6765000029565886 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^72 6765000029565886 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^74 6765000029565886 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^76 6765000029565886 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^78 6765000029565886 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^80 6765000029565886 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^82 6765000029565886 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^84 6765000029565886 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^86 6765000029565886 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^88 6765000029565886 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^90 6765000029565886 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^92 6765000029565886 a004 Fibonacci(84)*Lucas(30)/(1/2+sqrt(5)/2)^94 6765000029565886 a004 Fibonacci(86)*Lucas(30)/(1/2+sqrt(5)/2)^96 6765000029565886 a004 Fibonacci(88)*Lucas(30)/(1/2+sqrt(5)/2)^98 6765000029565886 a004 Fibonacci(90)*Lucas(30)/(1/2+sqrt(5)/2)^100 6765000029565886 a004 Fibonacci(89)*Lucas(30)/(1/2+sqrt(5)/2)^99 6765000029565886 a004 Fibonacci(87)*Lucas(30)/(1/2+sqrt(5)/2)^97 6765000029565886 a004 Fibonacci(85)*Lucas(30)/(1/2+sqrt(5)/2)^95 6765000029565886 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^93 6765000029565886 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^91 6765000029565886 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^89 6765000029565886 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^87 6765000029565886 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^85 6765000029565886 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^83 6765000029565886 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^81 6765000029565886 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^79 6765000029565886 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^77 6765000029565886 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^75 6765000029565886 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^73 6765000029565886 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^71 6765000029565886 a001 1/416020*(1/2+1/2*5^(1/2))^50 6765000029565886 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^69 6765000029565886 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^67 6765000029565886 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^65 6765000029565886 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^63 6765000029565886 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^61 6765000029565886 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^59 6765000029565886 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^57 6765000029565886 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^55 6765000029565886 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^53 6765000029565886 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^51 6765000029565886 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^49 6765000029565888 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^47 6765000029565902 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^45 6765000029565954 a001 7778742049/7881196*710647^(1/7) 6765000029565959 a001 3524578/3010349*1860498^(3/5) 6765000029565995 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^43 6765000029566220 a001 1346269/7881196*1860498^(11/15) 6765000029566257 a001 1346269/20633239*1860498^(4/5) 6765000029566300 a001 1346269/33385282*1860498^(5/6) 6765000029566374 a001 1346269/54018521*1860498^(13/15) 6765000029566436 a001 1346269/87403803*1860498^(9/10) 6765000029566502 a001 1346269/141422324*1860498^(14/15) 6765000029566517 a001 1836311903/4870847*710647^(3/14) 6765000029566592 a001 2971215073/3010349*710647^(1/7) 6765000029566632 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^41 6765000029566727 a001 1346269/3010349*1860498^(2/3) 6765000029566760 a001 1602508992/4250681*710647^(3/14) 6765000029566761 a001 831985/15126*710647^(5/14) 6765000029566796 a001 12586269025/33385282*710647^(3/14) 6765000029566801 a001 10983760033/29134601*710647^(3/14) 6765000029566802 a001 86267571272/228826127*710647^(3/14) 6765000029566802 a001 267913919/710646*710647^(3/14) 6765000029566802 a001 591286729879/1568397607*710647^(3/14) 6765000029566802 a001 516002918640/1368706081*710647^(3/14) 6765000029566802 a001 4052739537881/10749957122*710647^(3/14) 6765000029566802 a001 3536736619241/9381251041*710647^(3/14) 6765000029566802 a001 6557470319842/17393796001*710647^(3/14) 6765000029566802 a001 2504730781961/6643838879*710647^(3/14) 6765000029566802 a001 956722026041/2537720636*710647^(3/14) 6765000029566802 a001 365435296162/969323029*710647^(3/14) 6765000029566802 a001 139583862445/370248451*710647^(3/14) 6765000029566802 a001 53316291173/141422324*710647^(3/14) 6765000029566804 a001 20365011074/54018521*710647^(3/14) 6765000029566818 a001 7778742049/20633239*710647^(3/14) 6765000029566911 a001 2971215073/7881196*710647^(3/14) 6765000029566995 a001 1134903170/4870847*710647^(1/4) 6765000029567024 a001 514229/1860498*7881196^(7/11) 6765000029567084 a001 514229/1860498*20633239^(3/5) 6765000029567093 a001 213929548580/31622993 6765000029567093 a001 514229/1860498*141422324^(7/13) 6765000029567094 a001 514229/1860498*2537720636^(7/15) 6765000029567094 a001 514229/1860498*17393796001^(3/7) 6765000029567094 a001 514229/1860498*45537549124^(7/17) 6765000029567094 a001 832040/1149851*817138163596^(1/3) 6765000029567094 a001 514229/1860498*14662949395604^(1/3) 6765000029567094 a001 514229/1860498*(1/2+1/2*5^(1/2))^21 6765000029567094 a001 832040/1149851*(1/2+1/2*5^(1/2))^19 6765000029567094 a001 514229/1860498*192900153618^(7/18) 6765000029567094 a001 514229/1860498*10749957122^(7/16) 6765000029567094 a001 514229/1860498*599074578^(1/2) 6765000029567094 a001 832040/1149851*87403803^(1/2) 6765000029567097 a001 514229/1860498*33385282^(7/12) 6765000029567239 a001 2971215073/12752043*710647^(1/4) 6765000029567274 a001 7778742049/33385282*710647^(1/4) 6765000029567279 a001 20365011074/87403803*710647^(1/4) 6765000029567280 a001 53316291173/228826127*710647^(1/4) 6765000029567280 a001 139583862445/599074578*710647^(1/4) 6765000029567280 a001 365435296162/1568397607*710647^(1/4) 6765000029567280 a001 956722026041/4106118243*710647^(1/4) 6765000029567280 a001 2504730781961/10749957122*710647^(1/4) 6765000029567280 a001 6557470319842/28143753123*710647^(1/4) 6765000029567280 a001 10610209857723/45537549124*710647^(1/4) 6765000029567280 a001 4052739537881/17393796001*710647^(1/4) 6765000029567280 a001 1548008755920/6643838879*710647^(1/4) 6765000029567280 a001 591286729879/2537720636*710647^(1/4) 6765000029567280 a001 225851433717/969323029*710647^(1/4) 6765000029567280 a001 86267571272/370248451*710647^(1/4) 6765000029567281 a001 63246219/271444*710647^(1/4) 6765000029567283 a001 12586269025/54018521*710647^(1/4) 6765000029567296 a001 4807526976/20633239*710647^(1/4) 6765000029567389 a001 1836311903/7881196*710647^(1/4) 6765000029567474 a001 701408733/4870847*710647^(2/7) 6765000029567548 a001 1134903170/3010349*710647^(3/14) 6765000029567717 a001 39088169/1860498*710647^(3/7) 6765000029567717 a001 1836311903/12752043*710647^(2/7) 6765000029567753 a001 14930208/103681*710647^(2/7) 6765000029567758 a001 12586269025/87403803*710647^(2/7) 6765000029567759 a001 32951280099/228826127*710647^(2/7) 6765000029567759 a001 43133785636/299537289*710647^(2/7) 6765000029567759 a001 32264490531/224056801*710647^(2/7) 6765000029567759 a001 591286729879/4106118243*710647^(2/7) 6765000029567759 a001 774004377960/5374978561*710647^(2/7) 6765000029567759 a001 4052739537881/28143753123*710647^(2/7) 6765000029567759 a001 1515744265389/10525900321*710647^(2/7) 6765000029567759 a001 3278735159921/22768774562*710647^(2/7) 6765000029567759 a001 2504730781961/17393796001*710647^(2/7) 6765000029567759 a001 956722026041/6643838879*710647^(2/7) 6765000029567759 a001 182717648081/1268860318*710647^(2/7) 6765000029567759 a001 139583862445/969323029*710647^(2/7) 6765000029567759 a001 53316291173/370248451*710647^(2/7) 6765000029567759 a001 10182505537/70711162*710647^(2/7) 6765000029567761 a001 7778742049/54018521*710647^(2/7) 6765000029567775 a001 2971215073/20633239*710647^(2/7) 6765000029567868 a001 567451585/3940598*710647^(2/7) 6765000029568027 a001 701408733/3010349*710647^(1/4) 6765000029568302 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^40 6765000029568430 a001 267914296/4870847*710647^(5/14) 6765000029568462 a001 514229/1860498*1860498^(7/10) 6765000029568505 a001 433494437/3010349*710647^(2/7) 6765000029568575 a001 196418/3010349*439204^(8/9) 6765000029568669 a001 829464/103361*710647^(1/2) 6765000029568674 a001 233802911/4250681*710647^(5/14) 6765000029568709 a001 1836311903/33385282*710647^(5/14) 6765000029568715 a001 1602508992/29134601*710647^(5/14) 6765000029568715 a001 12586269025/228826127*710647^(5/14) 6765000029568715 a001 10983760033/199691526*710647^(5/14) 6765000029568715 a001 86267571272/1568397607*710647^(5/14) 6765000029568715 a001 75283811239/1368706081*710647^(5/14) 6765000029568715 a001 591286729879/10749957122*710647^(5/14) 6765000029568715 a001 12585437040/228811001*710647^(5/14) 6765000029568715 a001 4052739537881/73681302247*710647^(5/14) 6765000029568715 a001 3536736619241/64300051206*710647^(5/14) 6765000029568715 a001 6557470319842/119218851371*710647^(5/14) 6765000029568715 a001 2504730781961/45537549124*710647^(5/14) 6765000029568715 a001 956722026041/17393796001*710647^(5/14) 6765000029568715 a001 365435296162/6643838879*710647^(5/14) 6765000029568715 a001 139583862445/2537720636*710647^(5/14) 6765000029568715 a001 53316291173/969323029*710647^(5/14) 6765000029568716 a001 20365011074/370248451*710647^(5/14) 6765000029568716 a001 7778742049/141422324*710647^(5/14) 6765000029568718 a001 2971215073/54018521*710647^(5/14) 6765000029568731 a001 1134903170/20633239*710647^(5/14) 6765000029568763 a001 1120149658761/165580141 6765000029568763 a001 2178309/1149851*45537549124^(1/3) 6765000029568763 a001 514229/4870847*(1/2+1/2*5^(1/2))^23 6765000029568763 a001 2178309/1149851*(1/2+1/2*5^(1/2))^17 6765000029568763 a001 514229/4870847*4106118243^(1/2) 6765000029568784 a001 2178309/1149851*12752043^(1/2) 6765000029568824 a001 433494437/7881196*710647^(5/14) 6765000029568939 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^42 6765000029568949 a001 514229/141422324*7881196^(10/11) 6765000029568953 a001 514229/33385282*7881196^(9/11) 6765000029568957 a001 5702887/1149851*7881196^(5/11) 6765000029568995 a001 514229/12752043*20633239^(5/7) 6765000029569000 a001 5702887/1149851*20633239^(3/7) 6765000029569006 a001 5702887/1149851*141422324^(5/13) 6765000029569006 a001 2932589879123/433494437 6765000029569006 a001 514229/12752043*2537720636^(5/9) 6765000029569006 a001 5702887/1149851*2537720636^(1/3) 6765000029569006 a001 5702887/1149851*45537549124^(5/17) 6765000029569006 a001 514229/12752043*312119004989^(5/11) 6765000029569006 a001 5702887/1149851*312119004989^(3/11) 6765000029569006 a001 514229/12752043*(1/2+1/2*5^(1/2))^25 6765000029569006 a001 514229/12752043*3461452808002^(5/12) 6765000029569006 a001 5702887/1149851*14662949395604^(5/21) 6765000029569006 a001 5702887/1149851*(1/2+1/2*5^(1/2))^15 6765000029569006 a001 5702887/1149851*192900153618^(5/18) 6765000029569006 a001 5702887/1149851*28143753123^(3/10) 6765000029569006 a001 514229/12752043*28143753123^(1/2) 6765000029569006 a001 5702887/1149851*10749957122^(5/16) 6765000029569006 a001 5702887/1149851*599074578^(5/14) 6765000029569006 a001 5702887/1149851*228826127^(3/8) 6765000029569006 a001 514229/12752043*228826127^(5/8) 6765000029569009 a001 5702887/1149851*33385282^(5/12) 6765000029569011 a001 24157817/1149851*7881196^(4/11) 6765000029569011 a001 39088169/1149851*7881196^(1/3) 6765000029569018 a001 102334155/1149851*7881196^(3/11) 6765000029569028 a001 433494437/1149851*7881196^(2/11) 6765000029569032 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^44 6765000029569035 a001 514229/141422324*20633239^(6/7) 6765000029569038 a001 514229/54018521*20633239^(4/5) 6765000029569038 a001 1836311903/1149851*7881196^(1/11) 6765000029569040 a001 267084832/103361*271443^(1/13) 6765000029569042 a001 514229/33385282*141422324^(9/13) 6765000029569042 a001 14930352/1149851*141422324^(1/3) 6765000029569042 a001 225812352312/33379505 6765000029569042 a001 514229/33385282*2537720636^(3/5) 6765000029569042 a001 514229/33385282*45537549124^(9/17) 6765000029569042 a001 514229/33385282*817138163596^(9/19) 6765000029569042 a001 514229/33385282*14662949395604^(3/7) 6765000029569042 a001 514229/33385282*(1/2+1/2*5^(1/2))^27 6765000029569042 a001 14930352/1149851*(1/2+1/2*5^(1/2))^13 6765000029569042 a001 514229/33385282*192900153618^(1/2) 6765000029569042 a001 14930352/1149851*73681302247^(1/4) 6765000029569042 a001 514229/33385282*10749957122^(9/16) 6765000029569042 a001 514229/33385282*599074578^(9/14) 6765000029569044 a001 63245986/1149851*20633239^(2/7) 6765000029569045 a001 267914296/1149851*20633239^(1/5) 6765000029569046 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^46 6765000029569046 a001 701408733/1149851*20633239^(1/7) 6765000029569046 a001 514229/33385282*33385282^(3/4) 6765000029569047 a001 20100270056701/2971215073 6765000029569047 a001 39088169/1149851*312119004989^(1/5) 6765000029569047 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(38) 6765000029569047 a001 514229/87403803*1322157322203^(1/2) 6765000029569047 a001 39088169/1149851*(1/2+1/2*5^(1/2))^11 6765000029569047 a001 39088169/1149851*1568397607^(1/4) 6765000029569048 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^48 6765000029569048 a001 514229/2537720636*141422324^(12/13) 6765000029569048 a001 514229/599074578*141422324^(11/13) 6765000029569048 a001 102334155/1149851*141422324^(3/13) 6765000029569048 a001 102334155/1149851*2537720636^(1/5) 6765000029569048 a001 52623190191495/7778742049 6765000029569048 a001 102334155/1149851*45537549124^(3/17) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(40) 6765000029569048 a001 102334155/1149851*817138163596^(3/19) 6765000029569048 a001 102334155/1149851*14662949395604^(1/7) 6765000029569048 a001 102334155/1149851*(1/2+1/2*5^(1/2))^9 6765000029569048 a001 102334155/1149851*192900153618^(1/6) 6765000029569048 a001 102334155/1149851*10749957122^(3/16) 6765000029569048 a001 102334155/1149851*599074578^(3/14) 6765000029569048 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^50 6765000029569048 a001 433494437/1149851*141422324^(2/13) 6765000029569048 a001 1836311903/1149851*141422324^(1/13) 6765000029569048 a001 514229/599074578*2537720636^(11/15) 6765000029569048 a001 68884650258892/10182505537 6765000029569048 a001 267914296/1149851*17393796001^(1/7) 6765000029569048 a001 514229/599074578*45537549124^(11/17) 6765000029569048 a001 514229/599074578*312119004989^(3/5) 6765000029569048 a001 514229/599074578*14662949395604^(11/21) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(42) 6765000029569048 a001 267914296/1149851*14662949395604^(1/9) 6765000029569048 a001 267914296/1149851*(1/2+1/2*5^(1/2))^7 6765000029569048 a001 514229/599074578*192900153618^(11/18) 6765000029569048 a001 514229/599074578*10749957122^(11/16) 6765000029569048 a001 514229/599074578*1568397607^(3/4) 6765000029569048 a001 267914296/1149851*599074578^(1/6) 6765000029569048 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^52 6765000029569048 a001 514229/599074578*599074578^(11/14) 6765000029569048 a001 514229/1568397607*2537720636^(7/9) 6765000029569048 a001 701408733/1149851*2537720636^(1/9) 6765000029569048 a001 514229/1568397607*17393796001^(5/7) 6765000029569048 a001 360684711361857/53316291173 6765000029569048 a001 514229/1568397607*312119004989^(7/11) 6765000029569048 a001 701408733/1149851*312119004989^(1/11) 6765000029569048 a001 514229/1568397607*14662949395604^(5/9) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(44) 6765000029569048 a001 701408733/1149851*(1/2+1/2*5^(1/2))^5 6765000029569048 a001 514229/1568397607*505019158607^(5/8) 6765000029569048 a001 701408733/1149851*28143753123^(1/10) 6765000029569048 a001 514229/1568397607*28143753123^(7/10) 6765000029569048 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^54 6765000029569048 a001 514229/45537549124*2537720636^(14/15) 6765000029569048 a001 514229/10749957122*2537720636^(13/15) 6765000029569048 a001 514229/17393796001*2537720636^(8/9) 6765000029569048 a001 1836311903/1149851*2537720636^(1/15) 6765000029569048 a001 1836311903/1149851*45537549124^(1/17) 6765000029569048 a001 944284833567787/139583862445 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(46) 6765000029569048 a001 1836311903/1149851*14662949395604^(1/21) 6765000029569048 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^3 6765000029569048 a001 1836311903/1149851*192900153618^(1/18) 6765000029569048 a001 1836311903/1149851*10749957122^(1/16) 6765000029569048 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^56 6765000029569048 a001 514229/10749957122*45537549124^(13/17) 6765000029569048 a001 1236084894670752/182717648081 6765000029569048 a001 514229/10749957122*14662949395604^(13/21) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(48) 6765000029569048 a001 2403763488/1149851+2403763488/1149851*5^(1/2) 6765000029569048 a001 514229/10749957122*192900153618^(13/18) 6765000029569048 a001 514229/10749957122*73681302247^(3/4) 6765000029569048 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^58 6765000029569048 a001 514229/45537549124*17393796001^(6/7) 6765000029569048 a001 514229/10749957122*10749957122^(13/16) 6765000029569048 a001 6472224534456725/956722026041 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(50) 6765000029569048 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2) 6765000029569048 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^60 6765000029569048 a001 514229/192900153618*45537549124^(15/17) 6765000029569048 a001 514229/817138163596*45537549124^(16/17) 6765000029569048 a001 16944503814028671/2504730781961 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(52) 6765000029569048 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^3 6765000029569048 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^62 6765000029569048 a001 514229/192900153618*312119004989^(9/11) 6765000029569048 a001 1304743732577332/192866774113 6765000029569048 a001 514229/192900153618*14662949395604^(5/7) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(54) 6765000029569048 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^5 6765000029569048 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^64 6765000029569048 a001 514229/2139295485799*312119004989^(10/11) 6765000029569048 a001 514229/192900153618*192900153618^(5/6) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(56) 6765000029569048 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^7 6765000029569048 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^66 6765000029569048 a001 514229/1322157322203*14662949395604^(7/9) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(58) 6765000029569048 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^68 6765000029569048 a001 514229/3461452808002*14662949395604^(17/21) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(60) 6765000029569048 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^70 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(62) 6765000029569048 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^72 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(64) 6765000029569048 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^74 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(66) 6765000029569048 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^76 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(68) 6765000029569048 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^78 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(70) 6765000029569048 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^80 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(72) 6765000029569048 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^82 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(74) 6765000029569048 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^84 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(76) 6765000029569048 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^86 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(78) 6765000029569048 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^88 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(80) 6765000029569048 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^90 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(82) 6765000029569048 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^92 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(84) 6765000029569048 a004 Fibonacci(29)*Lucas(85)/(1/2+sqrt(5)/2)^94 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(86) 6765000029569048 a004 Fibonacci(29)*Lucas(87)/(1/2+sqrt(5)/2)^96 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(88) 6765000029569048 a004 Fibonacci(29)*Lucas(89)/(1/2+sqrt(5)/2)^98 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(90) 6765000029569048 a004 Fibonacci(29)*Lucas(91)/(1/2+sqrt(5)/2)^100 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(92) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^85/Lucas(94) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^87/Lucas(96) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^89/Lucas(98) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^90/Lucas(99) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^91/Lucas(100) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^88/Lucas(97) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^86/Lucas(95) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(93) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(91) 6765000029569048 a004 Fibonacci(29)*Lucas(90)/(1/2+sqrt(5)/2)^99 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(89) 6765000029569048 a004 Fibonacci(29)*Lucas(88)/(1/2+sqrt(5)/2)^97 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(87) 6765000029569048 a004 Fibonacci(29)*Lucas(86)/(1/2+sqrt(5)/2)^95 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(85) 6765000029569048 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^93 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(83) 6765000029569048 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^91 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(81) 6765000029569048 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^89 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(79) 6765000029569048 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^87 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(77) 6765000029569048 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^85 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(75) 6765000029569048 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^83 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(73) 6765000029569048 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^81 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(71) 6765000029569048 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^79 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(69) 6765000029569048 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^77 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(67) 6765000029569048 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^75 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(65) 6765000029569048 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^73 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(63) 6765000029569048 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^71 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(61) 6765000029569048 a001 514229/23725150497407*3461452808002^(11/12) 6765000029569048 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^69 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(59) 6765000029569048 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^11 6765000029569048 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^13 6765000029569048 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^15 6765000029569048 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^17 6765000029569048 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^19 6765000029569048 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^21 6765000029569048 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^23 6765000029569048 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^25 6765000029569048 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^27 6765000029569048 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^29 6765000029569048 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^31 6765000029569048 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^33 6765000029569048 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^35 6765000029569048 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^37 6765000029569048 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^39 6765000029569048 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^41 6765000029569048 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^43 6765000029569048 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^45 6765000029569048 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^47 6765000029569048 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^49 6765000029569048 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^51 6765000029569048 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^67 6765000029569048 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^50 6765000029569048 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^48 6765000029569048 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^46 6765000029569048 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^44 6765000029569048 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^42 6765000029569048 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^40 6765000029569048 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^38 6765000029569048 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^36 6765000029569048 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^34 6765000029569048 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^32 6765000029569048 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^30 6765000029569048 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^28 6765000029569048 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^26 6765000029569048 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^24 6765000029569048 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^22 6765000029569048 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^20 6765000029569048 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^18 6765000029569048 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^16 6765000029569048 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^14 6765000029569048 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^12 6765000029569048 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^10 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(57) 6765000029569048 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^8 6765000029569048 a001 514229/1322157322203*505019158607^(7/8) 6765000029569048 a001 514229/5600748293801*505019158607^(13/14) 6765000029569048 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^65 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(55) 6765000029569048 a001 71778070001229905/10610209857723 6765000029569048 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^6 6765000029569048 a001 514229/3461452808002*192900153618^(17/18) 6765000029569048 a001 514229/817138163596*192900153618^(8/9) 6765000029569048 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^63 6765000029569048 a001 514229/119218851371*312119004989^(4/5) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(53) 6765000029569048 a001 514229/119218851371*23725150497407^(11/16) 6765000029569048 a001 27416783093600617/4052739537881 6765000029569048 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^4 6765000029569048 a001 514229/45537549124*45537549124^(14/17) 6765000029569048 a001 514229/817138163596*73681302247^(12/13) 6765000029569048 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^61 6765000029569048 a001 514229/119218851371*73681302247^(11/13) 6765000029569048 a001 514229/45537549124*817138163596^(14/19) 6765000029569048 a001 514229/45537549124*14662949395604^(2/3) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(51) 6765000029569048 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^2 6765000029569048 a001 514229/45537549124*505019158607^(3/4) 6765000029569048 a001 514229/45537549124*192900153618^(7/9) 6765000029569048 a001 514229/192900153618*28143753123^(9/10) 6765000029569048 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^59 6765000029569048 a001 514229/17393796001*312119004989^(8/11) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(49) 6765000029569048 a001 514229/17393796001*23725150497407^(5/8) 6765000029569048 a001 7778742049/1149851 6765000029569048 a006 5^(1/2)*Fibonacci(49)/Lucas(29)/sqrt(5) 6765000029569048 a001 514229/17393796001*73681302247^(10/13) 6765000029569048 a001 514229/17393796001*28143753123^(4/5) 6765000029569048 a001 514229/119218851371*10749957122^(11/12) 6765000029569048 a001 514229/45537549124*10749957122^(7/8) 6765000029569048 a001 514229/192900153618*10749957122^(15/16) 6765000029569048 a001 514229/312119004989*10749957122^(23/24) 6765000029569048 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^57 6765000029569048 a001 514229/17393796001*10749957122^(5/6) 6765000029569048 a001 514229/6643838879*817138163596^(2/3) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(47) 6765000029569048 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^2 6765000029569048 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^2/Lucas(29) 6765000029569048 a001 1527884955773717/225851433717 6765000029569048 a001 2971215073/1149851*10749957122^(1/24) 6765000029569048 a001 2971215073/1149851*4106118243^(1/23) 6765000029569048 a001 514229/6643838879*10749957122^(19/24) 6765000029569048 a001 514229/2537720636*2537720636^(4/5) 6765000029569048 a001 2971215073/1149851*1568397607^(1/22) 6765000029569048 a001 514229/45537549124*4106118243^(21/23) 6765000029569048 a001 514229/17393796001*4106118243^(20/23) 6765000029569048 a001 514229/119218851371*4106118243^(22/23) 6765000029569048 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^55 6765000029569048 a001 514229/6643838879*4106118243^(19/23) 6765000029569048 a001 1836311903/1149851*599074578^(1/14) 6765000029569048 a001 514229/2537720636*45537549124^(12/17) 6765000029569048 a001 514229/2537720636*14662949395604^(4/7) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(45) 6765000029569048 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^4 6765000029569048 a001 1134903170/1149851*23725150497407^(1/16) 6765000029569048 a001 514229/2537720636*505019158607^(9/14) 6765000029569048 a001 1134903170/1149851*73681302247^(1/13) 6765000029569048 a001 514229/2537720636*192900153618^(2/3) 6765000029569048 a001 17164709476645/2537281508 6765000029569048 a001 2971215073/1149851*599074578^(1/21) 6765000029569048 a001 514229/2537720636*73681302247^(9/13) 6765000029569048 a001 1134903170/1149851*10749957122^(1/12) 6765000029569048 a001 1134903170/1149851*4106118243^(2/23) 6765000029569048 a001 514229/2537720636*10749957122^(3/4) 6765000029569048 a001 1134903170/1149851*1568397607^(1/11) 6765000029569048 a001 514229/2537720636*4106118243^(18/23) 6765000029569048 a001 514229/17393796001*1568397607^(10/11) 6765000029569048 a001 514229/6643838879*1568397607^(19/22) 6765000029569048 a001 514229/45537549124*1568397607^(21/22) 6765000029569048 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^53 6765000029569048 a001 1134903170/1149851*599074578^(2/21) 6765000029569048 a001 514229/2537720636*1568397607^(9/11) 6765000029569048 a001 2971215073/1149851*228826127^(1/20) 6765000029569048 a001 433494437/1149851*2537720636^(2/15) 6765000029569048 a001 514229/969323029*45537549124^(2/3) 6765000029569048 a001 433494437/1149851*45537549124^(2/17) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(43) 6765000029569048 a001 433494437/1149851*14662949395604^(2/21) 6765000029569048 a001 433494437/1149851*(1/2+1/2*5^(1/2))^6 6765000029569048 a001 222915410844073/32951280099 6765000029569048 a001 433494437/1149851*10749957122^(1/8) 6765000029569048 a001 514229/969323029*10749957122^(17/24) 6765000029569048 a001 433494437/1149851*4106118243^(3/23) 6765000029569048 a001 514229/969323029*4106118243^(17/23) 6765000029569048 a001 433494437/1149851*1568397607^(3/22) 6765000029569048 a001 514229/969323029*1568397607^(17/22) 6765000029569048 a001 433494437/1149851*599074578^(1/7) 6765000029569048 a001 514229/1568397607*599074578^(5/6) 6765000029569048 a001 701408733/1149851*228826127^(1/8) 6765000029569048 a001 1134903170/1149851*228826127^(1/10) 6765000029569048 a001 514229/2537720636*599074578^(6/7) 6765000029569048 a001 514229/6643838879*599074578^(19/21) 6765000029569048 a001 514229/10749957122*599074578^(13/14) 6765000029569048 a001 514229/17393796001*599074578^(20/21) 6765000029569048 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^51 6765000029569048 a001 514229/969323029*599074578^(17/21) 6765000029569048 a001 433494437/1149851*228826127^(3/20) 6765000029569048 a001 2971215073/1149851*87403803^(1/19) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(41) 6765000029569048 a001 514229/370248451*23725150497407^(1/2) 6765000029569048 a001 165580141/1149851*(1/2+1/2*5^(1/2))^8 6765000029569048 a001 165580141/1149851*23725150497407^(1/8) 6765000029569048 a001 165580141/1149851*505019158607^(1/7) 6765000029569048 a001 514229/370248451*505019158607^(4/7) 6765000029569048 a001 165580141/1149851*73681302247^(2/13) 6765000029569048 a001 514229/370248451*73681302247^(8/13) 6765000029569048 a001 85146110326289/12586269025 6765000029569048 a001 165580141/1149851*10749957122^(1/6) 6765000029569048 a001 514229/370248451*10749957122^(2/3) 6765000029569048 a001 165580141/1149851*4106118243^(4/23) 6765000029569048 a001 514229/370248451*4106118243^(16/23) 6765000029569048 a001 165580141/1149851*1568397607^(2/11) 6765000029569048 a001 514229/370248451*1568397607^(8/11) 6765000029569048 a001 165580141/1149851*599074578^(4/21) 6765000029569048 a001 514229/370248451*599074578^(16/21) 6765000029569048 a001 165580141/1149851*228826127^(1/5) 6765000029569048 a001 514229/141422324*141422324^(10/13) 6765000029569048 a001 1134903170/1149851*87403803^(2/19) 6765000029569048 a001 514229/1568397607*228826127^(7/8) 6765000029569048 a001 514229/969323029*228826127^(17/20) 6765000029569048 a001 514229/2537720636*228826127^(9/10) 6765000029569048 a001 514229/6643838879*228826127^(19/20) 6765000029569048 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^49 6765000029569048 a001 433494437/1149851*87403803^(3/19) 6765000029569048 a001 514229/370248451*228826127^(4/5) 6765000029569048 a001 165580141/1149851*87403803^(4/19) 6765000029569048 a001 2971215073/1149851*33385282^(1/18) 6765000029569048 a001 514229/141422324*2537720636^(2/3) 6765000029569048 a001 63245986/1149851*2537720636^(2/9) 6765000029569048 a001 514229/141422324*45537549124^(10/17) 6765000029569048 a001 514229/141422324*312119004989^(6/11) 6765000029569048 a001 63245986/1149851*312119004989^(2/11) 6765000029569048 a001 514229/141422324*14662949395604^(10/21) 6765000029569048 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(39) 6765000029569048 a001 63245986/1149851*(1/2+1/2*5^(1/2))^10 6765000029569048 a001 514229/141422324*192900153618^(5/9) 6765000029569048 a001 63245986/1149851*28143753123^(1/5) 6765000029569048 a001 514229/141422324*28143753123^(3/5) 6765000029569048 a001 63245986/1149851*10749957122^(5/24) 6765000029569048 a001 514229/141422324*10749957122^(5/8) 6765000029569048 a001 16261460067397/2403763488 6765000029569048 a001 63245986/1149851*4106118243^(5/23) 6765000029569048 a001 514229/141422324*4106118243^(15/23) 6765000029569048 a001 63245986/1149851*1568397607^(5/22) 6765000029569048 a001 514229/141422324*1568397607^(15/22) 6765000029569048 a001 63245986/1149851*599074578^(5/21) 6765000029569048 a001 514229/141422324*599074578^(5/7) 6765000029569048 a001 63245986/1149851*228826127^(1/4) 6765000029569048 a001 514229/141422324*228826127^(3/4) 6765000029569049 a001 1836311903/1149851*33385282^(1/12) 6765000029569049 a001 63245986/1149851*87403803^(5/19) 6765000029569049 a001 1134903170/1149851*33385282^(1/9) 6765000029569049 a001 514229/370248451*87403803^(16/19) 6765000029569049 a001 514229/969323029*87403803^(17/19) 6765000029569049 a001 514229/2537720636*87403803^(18/19) 6765000029569049 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^47 6765000029569049 a001 433494437/1149851*33385282^(1/6) 6765000029569049 a001 514229/141422324*87403803^(15/19) 6765000029569049 a001 102334155/1149851*33385282^(1/4) 6765000029569049 a001 165580141/1149851*33385282^(2/9) 6765000029569050 a001 63245986/1149851*33385282^(5/18) 6765000029569050 a001 24157817/1149851*141422324^(4/13) 6765000029569050 a001 24157817/1149851*2537720636^(4/15) 6765000029569050 a001 514229/54018521*17393796001^(4/7) 6765000029569050 a001 24157817/1149851*45537549124^(4/17) 6765000029569050 a001 514229/54018521*14662949395604^(4/9) 6765000029569050 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(37) 6765000029569050 a001 24157817/1149851*817138163596^(4/19) 6765000029569050 a001 24157817/1149851*14662949395604^(4/21) 6765000029569050 a001 24157817/1149851*(1/2+1/2*5^(1/2))^12 6765000029569050 a001 24157817/1149851*192900153618^(2/9) 6765000029569050 a001 24157817/1149851*73681302247^(3/13) 6765000029569050 a001 514229/54018521*73681302247^(7/13) 6765000029569050 a001 24157817/1149851*10749957122^(1/4) 6765000029569050 a001 514229/54018521*10749957122^(7/12) 6765000029569050 a001 24157817/1149851*4106118243^(6/23) 6765000029569050 a001 514229/54018521*4106118243^(14/23) 6765000029569050 a001 12422650078093/1836311903 6765000029569050 a001 24157817/1149851*1568397607^(3/11) 6765000029569050 a001 514229/54018521*1568397607^(7/11) 6765000029569050 a001 24157817/1149851*599074578^(2/7) 6765000029569050 a001 514229/54018521*599074578^(2/3) 6765000029569050 a001 24157817/1149851*228826127^(3/10) 6765000029569050 a001 514229/54018521*228826127^(7/10) 6765000029569050 a001 2971215073/1149851*12752043^(1/17) 6765000029569051 a001 24157817/1149851*87403803^(6/19) 6765000029569051 a001 514229/54018521*87403803^(14/19) 6765000029569052 a001 24157817/1149851*33385282^(1/3) 6765000029569053 a001 1134903170/1149851*12752043^(2/17) 6765000029569053 a001 514229/141422324*33385282^(5/6) 6765000029569053 a001 514229/370248451*33385282^(8/9) 6765000029569054 a001 514229/599074578*33385282^(11/12) 6765000029569054 a001 514229/969323029*33385282^(17/18) 6765000029569054 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^45 6765000029569055 a001 514229/54018521*33385282^(7/9) 6765000029569055 a001 433494437/1149851*12752043^(3/17) 6765000029569058 a001 9227465/1149851*20633239^(2/5) 6765000029569058 a001 165580141/1149851*12752043^(4/17) 6765000029569061 a001 63245986/1149851*12752043^(5/17) 6765000029569064 a001 514229/20633239*141422324^(2/3) 6765000029569064 a001 9227465/1149851*17393796001^(2/7) 6765000029569064 a001 514229/20633239*(1/2+1/2*5^(1/2))^26 6765000029569064 a001 9227465/1149851*14662949395604^(2/9) 6765000029569064 a001 9227465/1149851*(1/2+1/2*5^(1/2))^14 6765000029569064 a001 9227465/1149851*505019158607^(1/4) 6765000029569064 a001 514229/20633239*73681302247^(1/2) 6765000029569064 a001 9227465/1149851*10749957122^(7/24) 6765000029569064 a001 514229/20633239*10749957122^(13/24) 6765000029569064 a001 9227465/1149851*4106118243^(7/23) 6765000029569064 a001 514229/20633239*4106118243^(13/23) 6765000029569064 a001 9227465/1149851*1568397607^(7/22) 6765000029569064 a001 514229/20633239*1568397607^(13/22) 6765000029569064 a001 4745030099485/701408733 6765000029569064 a001 9227465/1149851*599074578^(1/3) 6765000029569064 a001 514229/20633239*599074578^(13/21) 6765000029569064 a001 9227465/1149851*228826127^(7/20) 6765000029569064 a001 514229/20633239*228826127^(13/20) 6765000029569064 a001 9227465/1149851*87403803^(7/19) 6765000029569065 a001 514229/20633239*87403803^(13/19) 6765000029569065 a001 24157817/1149851*12752043^(6/17) 6765000029569066 a001 2971215073/1149851*4870847^(1/16) 6765000029569066 a001 9227465/1149851*33385282^(7/18) 6765000029569068 a001 514229/20633239*33385282^(13/18) 6765000029569078 a001 514229/7881196*7881196^(8/11) 6765000029569081 a001 9227465/1149851*12752043^(7/17) 6765000029569084 a001 1134903170/1149851*4870847^(1/8) 6765000029569085 a001 514229/54018521*12752043^(14/17) 6765000029569085 a001 514229/141422324*12752043^(15/17) 6765000029569087 a001 514229/370248451*12752043^(16/17) 6765000029569090 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^43 6765000029569096 a001 514229/20633239*12752043^(13/17) 6765000029569101 a001 433494437/1149851*4870847^(3/16) 6765000029569119 a001 165580141/1149851*4870847^(1/4) 6765000029569137 a001 63245986/1149851*4870847^(5/16) 6765000029569157 a001 514229/7881196*141422324^(8/13) 6765000029569157 a001 514229/7881196*2537720636^(8/15) 6765000029569157 a001 514229/7881196*45537549124^(8/17) 6765000029569157 a001 514229/7881196*14662949395604^(8/21) 6765000029569157 a001 514229/7881196*(1/2+1/2*5^(1/2))^24 6765000029569157 a001 3524578/1149851*(1/2+1/2*5^(1/2))^16 6765000029569157 a001 3524578/1149851*23725150497407^(1/4) 6765000029569157 a001 514229/7881196*192900153618^(4/9) 6765000029569157 a001 3524578/1149851*73681302247^(4/13) 6765000029569157 a001 514229/7881196*73681302247^(6/13) 6765000029569157 a001 3524578/1149851*10749957122^(1/3) 6765000029569157 a001 514229/7881196*10749957122^(1/2) 6765000029569157 a001 3524578/1149851*4106118243^(8/23) 6765000029569157 a001 514229/7881196*4106118243^(12/23) 6765000029569157 a001 3524578/1149851*1568397607^(4/11) 6765000029569157 a001 514229/7881196*1568397607^(6/11) 6765000029569157 a001 3524578/1149851*599074578^(8/21) 6765000029569157 a001 514229/7881196*599074578^(4/7) 6765000029569157 a001 906220110181/133957148 6765000029569157 a001 3524578/1149851*228826127^(2/5) 6765000029569157 a001 514229/7881196*228826127^(3/5) 6765000029569157 a001 24157817/1149851*4870847^(3/8) 6765000029569157 a001 3524578/1149851*87403803^(8/19) 6765000029569157 a001 514229/7881196*87403803^(12/19) 6765000029569160 a001 3524578/1149851*33385282^(4/9) 6765000029569161 a001 514229/7881196*33385282^(2/3) 6765000029569177 a001 3524578/1149851*12752043^(8/17) 6765000029569178 a001 2971215073/1149851*1860498^(1/15) 6765000029569186 a001 514229/7881196*12752043^(12/17) 6765000029569189 a001 9227465/1149851*4870847^(7/16) 6765000029569243 a001 1836311903/1149851*1860498^(1/10) 6765000029569296 a001 514229/20633239*4870847^(13/16) 6765000029569299 a001 3524578/1149851*4870847^(1/2) 6765000029569300 a001 514229/54018521*4870847^(7/8) 6765000029569309 a001 1134903170/1149851*1860498^(2/15) 6765000029569316 a001 514229/141422324*4870847^(15/16) 6765000029569333 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^41 6765000029569371 a001 514229/7881196*4870847^(3/4) 6765000029569374 a001 701408733/1149851*1860498^(1/6) 6765000029569387 a001 102334155/4870847*710647^(3/7) 6765000029569439 a001 433494437/1149851*1860498^(1/5) 6765000029569462 a001 165580141/3010349*710647^(5/14) 6765000029569569 a001 165580141/1149851*1860498^(4/15) 6765000029569590 a001 5702887/1860498*710647^(4/7) 6765000029569591 a001 416020/930249*710647^(5/7) 6765000029569631 a001 267914296/12752043*710647^(3/7) 6765000029569634 a001 102334155/1149851*1860498^(3/10) 6765000029569666 a001 701408733/33385282*710647^(3/7) 6765000029569671 a001 1836311903/87403803*710647^(3/7) 6765000029569672 a001 102287808/4868641*710647^(3/7) 6765000029569672 a001 12586269025/599074578*710647^(3/7) 6765000029569672 a001 32951280099/1568397607*710647^(3/7) 6765000029569672 a001 86267571272/4106118243*710647^(3/7) 6765000029569672 a001 225851433717/10749957122*710647^(3/7) 6765000029569672 a001 591286729879/28143753123*710647^(3/7) 6765000029569672 a001 1548008755920/73681302247*710647^(3/7) 6765000029569672 a001 4052739537881/192900153618*710647^(3/7) 6765000029569672 a001 225749145909/10745088481*710647^(3/7) 6765000029569672 a001 6557470319842/312119004989*710647^(3/7) 6765000029569672 a001 2504730781961/119218851371*710647^(3/7) 6765000029569672 a001 956722026041/45537549124*710647^(3/7) 6765000029569672 a001 365435296162/17393796001*710647^(3/7) 6765000029569672 a001 139583862445/6643838879*710647^(3/7) 6765000029569672 a001 53316291173/2537720636*710647^(3/7) 6765000029569672 a001 20365011074/969323029*710647^(3/7) 6765000029569672 a001 7778742049/370248451*710647^(3/7) 6765000029569673 a001 2971215073/141422324*710647^(3/7) 6765000029569675 a001 1134903170/54018521*710647^(3/7) 6765000029569688 a001 433494437/20633239*710647^(3/7) 6765000029569700 a001 63245986/1149851*1860498^(1/3) 6765000029569722 a001 514229/3010349*7881196^(2/3) 6765000029569735 a001 1346269/1149851*7881196^(6/11) 6765000029569781 a001 165580141/7881196*710647^(3/7) 6765000029569794 a001 1346269/1149851*141422324^(6/13) 6765000029569795 a001 1346269/1149851*2537720636^(2/5) 6765000029569795 a001 1346269/1149851*45537549124^(6/17) 6765000029569795 a001 514229/3010349*312119004989^(2/5) 6765000029569795 a001 514229/3010349*(1/2+1/2*5^(1/2))^22 6765000029569795 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(31) 6765000029569795 a001 1346269/1149851*14662949395604^(2/7) 6765000029569795 a001 1346269/1149851*(1/2+1/2*5^(1/2))^18 6765000029569795 a001 1346269/1149851*192900153618^(1/3) 6765000029569795 a001 1346269/1149851*10749957122^(3/8) 6765000029569795 a001 514229/3010349*10749957122^(11/24) 6765000029569795 a001 1346269/1149851*4106118243^(9/23) 6765000029569795 a001 514229/3010349*4106118243^(11/23) 6765000029569795 a001 1346269/1149851*1568397607^(9/22) 6765000029569795 a001 514229/3010349*1568397607^(1/2) 6765000029569795 a001 1346269/1149851*599074578^(3/7) 6765000029569795 a001 514229/3010349*599074578^(11/21) 6765000029569795 a001 1346269/1149851*228826127^(9/20) 6765000029569795 a001 514229/3010349*228826127^(11/20) 6765000029569795 a001 692290561601/102334155 6765000029569795 a001 1346269/1149851*87403803^(9/19) 6765000029569795 a001 514229/3010349*87403803^(11/19) 6765000029569798 a001 1346269/1149851*33385282^(1/2) 6765000029569798 a001 514229/3010349*33385282^(11/18) 6765000029569817 a001 1346269/1149851*12752043^(9/17) 6765000029569821 a001 514229/3010349*12752043^(11/17) 6765000029569832 a001 24157817/1149851*1860498^(2/5) 6765000029569955 a001 1346269/1149851*4870847^(9/16) 6765000029569976 a001 9227465/1149851*1860498^(7/15) 6765000029569984 a001 5702887/1149851*1860498^(1/2) 6765000029569991 a001 514229/3010349*4870847^(11/16) 6765000029570005 a001 2971215073/1149851*710647^(1/14) 6765000029570199 a001 3524578/1149851*1860498^(8/15) 6765000029570303 a001 726103/620166*710647^(9/14) 6765000029570343 a001 39088169/4870847*710647^(1/2) 6765000029570419 a001 63245986/3010349*710647^(3/7) 6765000029570587 a001 34111385/4250681*710647^(1/2) 6765000029570623 a001 133957148/16692641*710647^(1/2) 6765000029570628 a001 233802911/29134601*710647^(1/2) 6765000029570629 a001 1836311903/228826127*710647^(1/2) 6765000029570629 a001 267084832/33281921*710647^(1/2) 6765000029570629 a001 12586269025/1568397607*710647^(1/2) 6765000029570629 a001 10983760033/1368706081*710647^(1/2) 6765000029570629 a001 43133785636/5374978561*710647^(1/2) 6765000029570629 a001 75283811239/9381251041*710647^(1/2) 6765000029570629 a001 591286729879/73681302247*710647^(1/2) 6765000029570629 a001 86000486440/10716675201*710647^(1/2) 6765000029570629 a001 4052739537881/505019158607*710647^(1/2) 6765000029570629 a001 3536736619241/440719107401*710647^(1/2) 6765000029570629 a001 3278735159921/408569081798*710647^(1/2) 6765000029570629 a001 2504730781961/312119004989*710647^(1/2) 6765000029570629 a001 956722026041/119218851371*710647^(1/2) 6765000029570629 a001 182717648081/22768774562*710647^(1/2) 6765000029570629 a001 139583862445/17393796001*710647^(1/2) 6765000029570629 a001 53316291173/6643838879*710647^(1/2) 6765000029570629 a001 10182505537/1268860318*710647^(1/2) 6765000029570629 a001 7778742049/969323029*710647^(1/2) 6765000029570629 a001 2971215073/370248451*710647^(1/2) 6765000029570629 a001 567451585/70711162*710647^(1/2) 6765000029570631 a001 433494437/54018521*710647^(1/2) 6765000029570635 a001 514229/12752043*1860498^(5/6) 6765000029570645 a001 165580141/20633239*710647^(1/2) 6765000029570709 a001 12586269025/4870847*271443^(1/13) 6765000029570720 a001 514229/7881196*1860498^(4/5) 6765000029570738 a001 31622993/3940598*710647^(1/2) 6765000029570758 a001 514229/20633239*1860498^(13/15) 6765000029570801 a001 514229/33385282*1860498^(9/10) 6765000029570874 a001 514229/54018521*1860498^(14/15) 6765000029570952 a001 10983760033/4250681*271443^(1/13) 6765000029570962 a001 1134903170/1149851*710647^(1/7) 6765000029570967 a001 1346269/1149851*1860498^(3/5) 6765000029570988 a001 43133785636/16692641*271443^(1/13) 6765000029570993 a001 75283811239/29134601*271443^(1/13) 6765000029570994 a001 591286729879/228826127*271443^(1/13) 6765000029570994 a001 86000486440/33281921*271443^(1/13) 6765000029570994 a001 4052739537881/1568397607*271443^(1/13) 6765000029570994 a001 3536736619241/1368706081*271443^(1/13) 6765000029570994 a001 3278735159921/1268860318*271443^(1/13) 6765000029570994 a001 2504730781961/969323029*271443^(1/13) 6765000029570994 a001 956722026041/370248451*271443^(1/13) 6765000029570994 a001 182717648081/70711162*271443^(1/13) 6765000029570996 a001 139583862445/54018521*271443^(1/13) 6765000029571002 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^39 6765000029571010 a001 53316291173/20633239*271443^(1/13) 6765000029571103 a001 10182505537/3940598*271443^(1/13) 6765000029571228 a001 514229/3010349*1860498^(11/15) 6765000029571295 a001 14930352/4870847*710647^(4/7) 6765000029571378 a001 24157817/3010349*710647^(1/2) 6765000029571543 a001 39088169/12752043*710647^(4/7) 6765000029571580 a001 14619165/4769326*710647^(4/7) 6765000029571585 a001 267914296/87403803*710647^(4/7) 6765000029571586 a001 701408733/228826127*710647^(4/7) 6765000029571586 a001 1836311903/599074578*710647^(4/7) 6765000029571586 a001 686789568/224056801*710647^(4/7) 6765000029571586 a001 12586269025/4106118243*710647^(4/7) 6765000029571586 a001 32951280099/10749957122*710647^(4/7) 6765000029571586 a001 86267571272/28143753123*710647^(4/7) 6765000029571586 a001 32264490531/10525900321*710647^(4/7) 6765000029571586 a001 591286729879/192900153618*710647^(4/7) 6765000029571586 a001 1548008755920/505019158607*710647^(4/7) 6765000029571586 a001 1515744265389/494493258286*710647^(4/7) 6765000029571586 a001 2504730781961/817138163596*710647^(4/7) 6765000029571586 a001 956722026041/312119004989*710647^(4/7) 6765000029571586 a001 365435296162/119218851371*710647^(4/7) 6765000029571586 a001 139583862445/45537549124*710647^(4/7) 6765000029571586 a001 53316291173/17393796001*710647^(4/7) 6765000029571586 a001 20365011074/6643838879*710647^(4/7) 6765000029571586 a001 7778742049/2537720636*710647^(4/7) 6765000029571586 a001 2971215073/969323029*710647^(4/7) 6765000029571586 a001 1134903170/370248451*710647^(4/7) 6765000029571586 a001 433494437/141422324*710647^(4/7) 6765000029571588 a001 165580141/54018521*710647^(4/7) 6765000029571602 a001 63245986/20633239*710647^(4/7) 6765000029571697 a001 24157817/7881196*710647^(4/7) 6765000029571724 a001 267914296/710647*271443^(3/13) 6765000029571741 a001 7778742049/3010349*271443^(1/13) 6765000029571918 a001 433494437/1149851*710647^(3/14) 6765000029572216 a001 5702887/4870847*710647^(9/14) 6765000029572217 a001 832040/4870847*710647^(11/14) 6765000029572348 a001 9227465/3010349*710647^(4/7) 6765000029572397 a001 267914296/1149851*710647^(1/4) 6765000029572495 a001 4976784/4250681*710647^(9/14) 6765000029572536 a001 39088169/33385282*710647^(9/14) 6765000029572542 a001 34111385/29134601*710647^(9/14) 6765000029572543 a001 267914296/228826127*710647^(9/14) 6765000029572543 a001 233802911/199691526*710647^(9/14) 6765000029572543 a001 1836311903/1568397607*710647^(9/14) 6765000029572543 a001 1602508992/1368706081*710647^(9/14) 6765000029572543 a001 12586269025/10749957122*710647^(9/14) 6765000029572543 a001 10983760033/9381251041*710647^(9/14) 6765000029572543 a001 86267571272/73681302247*710647^(9/14) 6765000029572543 a001 75283811239/64300051206*710647^(9/14) 6765000029572543 a001 2504730781961/2139295485799*710647^(9/14) 6765000029572543 a001 365435296162/312119004989*710647^(9/14) 6765000029572543 a001 139583862445/119218851371*710647^(9/14) 6765000029572543 a001 53316291173/45537549124*710647^(9/14) 6765000029572543 a001 20365011074/17393796001*710647^(9/14) 6765000029572543 a001 7778742049/6643838879*710647^(9/14) 6765000029572543 a001 2971215073/2537720636*710647^(9/14) 6765000029572543 a001 1134903170/969323029*710647^(9/14) 6765000029572543 a001 433494437/370248451*710647^(9/14) 6765000029572543 a001 165580141/141422324*710647^(9/14) 6765000029572545 a001 63245986/54018521*710647^(9/14) 6765000029572561 a001 24157817/20633239*710647^(9/14) 6765000029572668 a001 9227465/7881196*710647^(9/14) 6765000029572770 a001 832040/3010349*710647^(3/4) 6765000029572780 a001 11592/109801*103682^(23/24) 6765000029572875 a001 165580141/1149851*710647^(2/7) 6765000029572929 a001 2178309/4870847*710647^(5/7) 6765000029573398 a001 3524578/3010349*710647^(9/14) 6765000029573416 a001 5702887/12752043*710647^(5/7) 6765000029573417 a001 832040/12752043*710647^(6/7) 6765000029573487 a001 7465176/16692641*710647^(5/7) 6765000029573498 a001 39088169/87403803*710647^(5/7) 6765000029573499 a001 102334155/228826127*710647^(5/7) 6765000029573500 a001 133957148/299537289*710647^(5/7) 6765000029573500 a001 701408733/1568397607*710647^(5/7) 6765000029573500 a001 1836311903/4106118243*710647^(5/7) 6765000029573500 a001 2403763488/5374978561*710647^(5/7) 6765000029573500 a001 12586269025/28143753123*710647^(5/7) 6765000029573500 a001 32951280099/73681302247*710647^(5/7) 6765000029573500 a001 43133785636/96450076809*710647^(5/7) 6765000029573500 a001 225851433717/505019158607*710647^(5/7) 6765000029573500 a001 591286729879/1322157322203*710647^(5/7) 6765000029573500 a001 10610209857723/23725150497407*710647^(5/7) 6765000029573500 a001 182717648081/408569081798*710647^(5/7) 6765000029573500 a001 139583862445/312119004989*710647^(5/7) 6765000029573500 a001 53316291173/119218851371*710647^(5/7) 6765000029573500 a001 10182505537/22768774562*710647^(5/7) 6765000029573500 a001 7778742049/17393796001*710647^(5/7) 6765000029573500 a001 2971215073/6643838879*710647^(5/7) 6765000029573500 a001 567451585/1268860318*710647^(5/7) 6765000029573500 a001 433494437/969323029*710647^(5/7) 6765000029573500 a001 165580141/370248451*710647^(5/7) 6765000029573500 a001 31622993/70711162*710647^(5/7) 6765000029573504 a001 24157817/54018521*710647^(5/7) 6765000029573531 a001 9227465/20633239*710647^(5/7) 6765000029573717 a001 1762289/3940598*710647^(5/7) 6765000029573802 a001 2178309/7881196*710647^(3/4) 6765000029573832 a001 63245986/1149851*710647^(5/14) 6765000029573952 a001 5702887/20633239*710647^(3/4) 6765000029573974 a001 14930352/54018521*710647^(3/4) 6765000029573977 a001 39088169/141422324*710647^(3/4) 6765000029573978 a001 102334155/370248451*710647^(3/4) 6765000029573978 a001 267914296/969323029*710647^(3/4) 6765000029573978 a001 701408733/2537720636*710647^(3/4) 6765000029573978 a001 1836311903/6643838879*710647^(3/4) 6765000029573978 a001 4807526976/17393796001*710647^(3/4) 6765000029573978 a001 12586269025/45537549124*710647^(3/4) 6765000029573978 a001 32951280099/119218851371*710647^(3/4) 6765000029573978 a001 86267571272/312119004989*710647^(3/4) 6765000029573978 a001 225851433717/817138163596*710647^(3/4) 6765000029573978 a001 1548008755920/5600748293801*710647^(3/4) 6765000029573978 a001 139583862445/505019158607*710647^(3/4) 6765000029573978 a001 53316291173/192900153618*710647^(3/4) 6765000029573978 a001 20365011074/73681302247*710647^(3/4) 6765000029573978 a001 7778742049/28143753123*710647^(3/4) 6765000029573978 a001 2971215073/10749957122*710647^(3/4) 6765000029573978 a001 1134903170/4106118243*710647^(3/4) 6765000029573978 a001 433494437/1568397607*710647^(3/4) 6765000029573978 a001 165580141/599074578*710647^(3/4) 6765000029573978 a001 63245986/228826127*710647^(3/4) 6765000029573979 a001 24157817/87403803*710647^(3/4) 6765000029573988 a001 9227465/33385282*710647^(3/4) 6765000029574045 a001 3524578/12752043*710647^(3/4) 6765000029574130 a001 726103/4250681*710647^(11/14) 6765000029574156 a001 514229/1149851*20633239^(4/7) 6765000029574165 a001 514229/1149851*2537720636^(4/9) 6765000029574165 a001 514229/1149851*(1/2+1/2*5^(1/2))^20 6765000029574165 a001 514229/1149851*23725150497407^(5/16) 6765000029574165 a001 514229/1149851*505019158607^(5/14) 6765000029574165 a001 514229/1149851*73681302247^(5/13) 6765000029574165 a001 514229/1149851*28143753123^(2/5) 6765000029574165 a001 514229/1149851*10749957122^(5/12) 6765000029574165 a001 514229/1149851*4106118243^(10/23) 6765000029574165 a001 514229/1149851*1568397607^(5/11) 6765000029574165 a001 514229/1149851*599074578^(10/21) 6765000029574165 a001 514229/1149851*228826127^(1/2) 6765000029574165 a001 514229/1149851*87403803^(10/19) 6765000029574166 a001 264431464441/39088169 6765000029574168 a001 514229/1149851*33385282^(5/9) 6765000029574189 a001 514229/1149851*12752043^(10/17) 6765000029574343 a001 514229/1149851*4870847^(5/8) 6765000029574409 a001 5702887/33385282*710647^(11/14) 6765000029574410 a001 416020/16692641*710647^(13/14) 6765000029574439 a001 1346269/4870847*710647^(3/4) 6765000029574449 a001 4976784/29134601*710647^(11/14) 6765000029574455 a001 39088169/228826127*710647^(11/14) 6765000029574456 a001 34111385/199691526*710647^(11/14) 6765000029574456 a001 267914296/1568397607*710647^(11/14) 6765000029574456 a001 233802911/1368706081*710647^(11/14) 6765000029574456 a001 1836311903/10749957122*710647^(11/14) 6765000029574456 a001 1602508992/9381251041*710647^(11/14) 6765000029574456 a001 12586269025/73681302247*710647^(11/14) 6765000029574456 a001 10983760033/64300051206*710647^(11/14) 6765000029574456 a001 86267571272/505019158607*710647^(11/14) 6765000029574456 a001 75283811239/440719107401*710647^(11/14) 6765000029574456 a001 2504730781961/14662949395604*710647^(11/14) 6765000029574456 a001 139583862445/817138163596*710647^(11/14) 6765000029574456 a001 53316291173/312119004989*710647^(11/14) 6765000029574456 a001 20365011074/119218851371*710647^(11/14) 6765000029574456 a001 7778742049/45537549124*710647^(11/14) 6765000029574456 a001 2971215073/17393796001*710647^(11/14) 6765000029574456 a001 1134903170/6643838879*710647^(11/14) 6765000029574456 a001 433494437/2537720636*710647^(11/14) 6765000029574456 a001 165580141/969323029*710647^(11/14) 6765000029574457 a001 63245986/370248451*710647^(11/14) 6765000029574459 a001 24157817/141422324*710647^(11/14) 6765000029574475 a001 9227465/54018521*710647^(11/14) 6765000029574581 a001 3524578/20633239*710647^(11/14) 6765000029574791 a001 24157817/1149851*710647^(3/7) 6765000029574993 a001 1346269/3010349*710647^(5/7) 6765000029575122 a001 311187/4769326*710647^(6/7) 6765000029575312 a001 1346269/7881196*710647^(11/14) 6765000029575371 a001 5702887/87403803*710647^(6/7) 6765000029575373 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^38 6765000029575407 a001 14930352/228826127*710647^(6/7) 6765000029575412 a001 39088169/599074578*710647^(6/7) 6765000029575413 a001 14619165/224056801*710647^(6/7) 6765000029575413 a001 267914296/4106118243*710647^(6/7) 6765000029575413 a001 701408733/10749957122*710647^(6/7) 6765000029575413 a001 1836311903/28143753123*710647^(6/7) 6765000029575413 a001 686789568/10525900321*710647^(6/7) 6765000029575413 a001 12586269025/192900153618*710647^(6/7) 6765000029575413 a001 32951280099/505019158607*710647^(6/7) 6765000029575413 a001 86267571272/1322157322203*710647^(6/7) 6765000029575413 a001 32264490531/494493258286*710647^(6/7) 6765000029575413 a001 591286729879/9062201101803*710647^(6/7) 6765000029575413 a001 1548008755920/23725150497407*710647^(6/7) 6765000029575413 a001 365435296162/5600748293801*710647^(6/7) 6765000029575413 a001 139583862445/2139295485799*710647^(6/7) 6765000029575413 a001 53316291173/817138163596*710647^(6/7) 6765000029575413 a001 20365011074/312119004989*710647^(6/7) 6765000029575413 a001 7778742049/119218851371*710647^(6/7) 6765000029575413 a001 2971215073/45537549124*710647^(6/7) 6765000029575413 a001 1134903170/17393796001*710647^(6/7) 6765000029575413 a001 433494437/6643838879*710647^(6/7) 6765000029575413 a001 165580141/2537720636*710647^(6/7) 6765000029575414 a001 63245986/969323029*710647^(6/7) 6765000029575416 a001 24157817/370248451*710647^(6/7) 6765000029575429 a001 9227465/141422324*710647^(6/7) 6765000029575468 a001 514229/1149851*1860498^(2/3) 6765000029575524 a001 3524578/54018521*710647^(6/7) 6765000029575762 a001 9227465/1149851*710647^(1/2) 6765000029576084 a001 726103/29134601*710647^(13/14) 6765000029576102 a001 1836311903/1860498*271443^(2/13) 6765000029576111 a001 2971215073/1149851*271443^(1/13) 6765000029576176 a001 1346269/20633239*710647^(6/7) 6765000029576328 a001 5702887/228826127*710647^(13/14) 6765000029576364 a001 829464/33281921*710647^(13/14) 6765000029576369 a001 39088169/1568397607*710647^(13/14) 6765000029576370 a001 34111385/1368706081*710647^(13/14) 6765000029576370 a001 133957148/5374978561*710647^(13/14) 6765000029576370 a001 233802911/9381251041*710647^(13/14) 6765000029576370 a001 1836311903/73681302247*710647^(13/14) 6765000029576370 a001 267084832/10716675201*710647^(13/14) 6765000029576370 a001 12586269025/505019158607*710647^(13/14) 6765000029576370 a001 10983760033/440719107401*710647^(13/14) 6765000029576370 a001 43133785636/1730726404001*710647^(13/14) 6765000029576370 a001 75283811239/3020733700601*710647^(13/14) 6765000029576370 a001 182717648081/7331474697802*710647^(13/14) 6765000029576370 a001 139583862445/5600748293801*710647^(13/14) 6765000029576370 a001 53316291173/2139295485799*710647^(13/14) 6765000029576370 a001 10182505537/408569081798*710647^(13/14) 6765000029576370 a001 7778742049/312119004989*710647^(13/14) 6765000029576370 a001 2971215073/119218851371*710647^(13/14) 6765000029576370 a001 567451585/22768774562*710647^(13/14) 6765000029576370 a001 433494437/17393796001*710647^(13/14) 6765000029576370 a001 165580141/6643838879*710647^(13/14) 6765000029576370 a001 31622993/1268860318*710647^(13/14) 6765000029576372 a001 24157817/969323029*710647^(13/14) 6765000029576386 a001 9227465/370248451*710647^(13/14) 6765000029576479 a001 1762289/70711162*710647^(13/14) 6765000029576757 a001 2971215073/710647*103682^(1/24) 6765000029576812 a001 3524578/1149851*710647^(4/7) 6765000029577001 a001 267914296/271443*103682^(1/6) 6765000029577042 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^40 6765000029577119 a001 1346269/54018521*710647^(13/14) 6765000029577140 a001 514229/1860498*710647^(3/4) 6765000029577285 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^42 6765000029577321 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^44 6765000029577326 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^46 6765000029577327 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^48 6765000029577327 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^50 6765000029577327 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^52 6765000029577327 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^54 6765000029577327 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^56 6765000029577327 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^58 6765000029577327 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^60 6765000029577327 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^62 6765000029577327 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^64 6765000029577327 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^66 6765000029577327 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^68 6765000029577327 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^70 6765000029577327 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^72 6765000029577327 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^74 6765000029577327 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^76 6765000029577327 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^78 6765000029577327 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^80 6765000029577327 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^82 6765000029577327 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^84 6765000029577327 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^86 6765000029577327 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^88 6765000029577327 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^90 6765000029577327 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^92 6765000029577327 a004 Fibonacci(86)*Lucas(28)/(1/2+sqrt(5)/2)^94 6765000029577327 a004 Fibonacci(88)*Lucas(28)/(1/2+sqrt(5)/2)^96 6765000029577327 a004 Fibonacci(90)*Lucas(28)/(1/2+sqrt(5)/2)^98 6765000029577327 a004 Fibonacci(92)*Lucas(28)/(1/2+sqrt(5)/2)^100 6765000029577327 a004 Fibonacci(91)*Lucas(28)/(1/2+sqrt(5)/2)^99 6765000029577327 a004 Fibonacci(89)*Lucas(28)/(1/2+sqrt(5)/2)^97 6765000029577327 a004 Fibonacci(87)*Lucas(28)/(1/2+sqrt(5)/2)^95 6765000029577327 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^93 6765000029577327 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^91 6765000029577327 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^89 6765000029577327 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^87 6765000029577327 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^85 6765000029577327 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^83 6765000029577327 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^81 6765000029577327 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^79 6765000029577327 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^77 6765000029577327 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^75 6765000029577327 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^73 6765000029577327 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^71 6765000029577327 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^69 6765000029577327 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^67 6765000029577327 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^65 6765000029577327 a001 2/317811*(1/2+1/2*5^(1/2))^48 6765000029577327 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^63 6765000029577327 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^61 6765000029577327 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^59 6765000029577327 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^57 6765000029577327 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^55 6765000029577327 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^53 6765000029577327 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^51 6765000029577327 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^49 6765000029577327 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^47 6765000029577329 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^45 6765000029577343 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^43 6765000029577436 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^41 6765000029577772 a001 4807526976/4870847*271443^(2/13) 6765000029578015 a001 12586269025/12752043*271443^(2/13) 6765000029578051 a001 32951280099/33385282*271443^(2/13) 6765000029578056 a001 86267571272/87403803*271443^(2/13) 6765000029578057 a001 225851433717/228826127*271443^(2/13) 6765000029578057 a001 591286729879/599074578*271443^(2/13) 6765000029578057 a001 1548008755920/1568397607*271443^(2/13) 6765000029578057 a001 4052739537881/4106118243*271443^(2/13) 6765000029578057 a001 4807525989/4870846*271443^(2/13) 6765000029578057 a001 6557470319842/6643838879*271443^(2/13) 6765000029578057 a001 2504730781961/2537720636*271443^(2/13) 6765000029578057 a001 956722026041/969323029*271443^(2/13) 6765000029578057 a001 365435296162/370248451*271443^(2/13) 6765000029578057 a001 139583862445/141422324*271443^(2/13) 6765000029578059 a001 53316291173/54018521*271443^(2/13) 6765000029578073 a001 20365011074/20633239*271443^(2/13) 6765000029578073 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^39 6765000029578166 a001 7778742049/7881196*271443^(2/13) 6765000029578406 a001 1346269/1149851*710647^(9/14) 6765000029578786 a001 14619165/101521*271443^(4/13) 6765000029578803 a001 2971215073/3010349*271443^(2/13) 6765000029579233 a001 2178309/439204*439204^(5/9) 6765000029580320 a001 514229/3010349*710647^(11/14) 6765000029580639 a001 514229/7881196*710647^(6/7) 6765000029580738 a001 514229/439204*439204^(2/3) 6765000029581503 a001 514229/20633239*710647^(13/14) 6765000029582444 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^37 6765000029583165 a001 233802911/620166*271443^(3/13) 6765000029583173 a001 1134903170/1149851*271443^(2/13) 6765000029583431 a001 9227465/439204*439204^(4/9) 6765000029583733 a001 514229/1149851*710647^(5/7) 6765000029584834 a001 1836311903/4870847*271443^(3/13) 6765000029585078 a001 1602508992/4250681*271443^(3/13) 6765000029585113 a001 12586269025/33385282*271443^(3/13) 6765000029585118 a001 10983760033/29134601*271443^(3/13) 6765000029585119 a001 86267571272/228826127*271443^(3/13) 6765000029585119 a001 267913919/710646*271443^(3/13) 6765000029585119 a001 591286729879/1568397607*271443^(3/13) 6765000029585119 a001 516002918640/1368706081*271443^(3/13) 6765000029585119 a001 4052739537881/10749957122*271443^(3/13) 6765000029585119 a001 3536736619241/9381251041*271443^(3/13) 6765000029585119 a001 6557470319842/17393796001*271443^(3/13) 6765000029585119 a001 2504730781961/6643838879*271443^(3/13) 6765000029585119 a001 956722026041/2537720636*271443^(3/13) 6765000029585119 a001 365435296162/969323029*271443^(3/13) 6765000029585119 a001 139583862445/370248451*271443^(3/13) 6765000029585120 a001 53316291173/141422324*271443^(3/13) 6765000029585122 a001 20365011074/54018521*271443^(3/13) 6765000029585135 a001 7778742049/20633239*271443^(3/13) 6765000029585228 a001 2971215073/7881196*271443^(3/13) 6765000029585536 a001 196418/710647*7881196^(7/11) 6765000029585590 a001 4801830846/709805 6765000029585596 a001 196418/710647*20633239^(3/5) 6765000029585606 a001 196418/710647*141422324^(7/13) 6765000029585606 a001 196418/710647*2537720636^(7/15) 6765000029585606 a001 196418/710647*17393796001^(3/7) 6765000029585606 a001 196418/710647*45537549124^(7/17) 6765000029585606 a001 196418/710647*14662949395604^(1/3) 6765000029585606 a001 196418/710647*(1/2+1/2*5^(1/2))^21 6765000029585606 a001 196418/710647*192900153618^(7/18) 6765000029585606 a001 317811/439204*817138163596^(1/3) 6765000029585606 a001 317811/439204*(1/2+1/2*5^(1/2))^19 6765000029585606 a001 196418/710647*10749957122^(7/16) 6765000029585606 a001 196418/710647*599074578^(1/2) 6765000029585606 a001 317811/439204*87403803^(1/2) 6765000029585609 a001 196418/710647*33385282^(7/12) 6765000029585848 a001 39088169/710647*271443^(5/13) 6765000029585866 a001 1134903170/3010349*271443^(3/13) 6765000029586974 a001 196418/710647*1860498^(7/10) 6765000029587310 a001 39088169/439204*439204^(1/3) 6765000029588198 a001 7778742049/1860498*103682^(1/24) 6765000029589408 a001 267914296/167761*64079^(3/23) 6765000029589867 a001 20365011074/4870847*103682^(1/24) 6765000029590111 a001 53316291173/12752043*103682^(1/24) 6765000029590146 a001 139583862445/33385282*103682^(1/24) 6765000029590152 a001 365435296162/87403803*103682^(1/24) 6765000029590152 a001 956722026041/228826127*103682^(1/24) 6765000029590152 a001 2504730781961/599074578*103682^(1/24) 6765000029590152 a001 6557470319842/1568397607*103682^(1/24) 6765000029590152 a001 10610209857723/2537720636*103682^(1/24) 6765000029590152 a001 4052739537881/969323029*103682^(1/24) 6765000029590152 a001 1548008755920/370248451*103682^(1/24) 6765000029590153 a001 591286729879/141422324*103682^(1/24) 6765000029590155 a001 225851433717/54018521*103682^(1/24) 6765000029590168 a001 86267571272/20633239*103682^(1/24) 6765000029590228 a001 133957148/930249*271443^(4/13) 6765000029590236 a001 433494437/1149851*271443^(3/13) 6765000029590261 a001 32951280099/7881196*103682^(1/24) 6765000029590899 a001 12586269025/3010349*103682^(1/24) 6765000029591208 a001 165580141/439204*439204^(2/9) 6765000029591897 a001 701408733/4870847*271443^(4/13) 6765000029592140 a001 1836311903/12752043*271443^(4/13) 6765000029592176 a001 14930208/103681*271443^(4/13) 6765000029592181 a001 12586269025/87403803*271443^(4/13) 6765000029592182 a001 32951280099/228826127*271443^(4/13) 6765000029592182 a001 43133785636/299537289*271443^(4/13) 6765000029592182 a001 32264490531/224056801*271443^(4/13) 6765000029592182 a001 591286729879/4106118243*271443^(4/13) 6765000029592182 a001 774004377960/5374978561*271443^(4/13) 6765000029592182 a001 4052739537881/28143753123*271443^(4/13) 6765000029592182 a001 1515744265389/10525900321*271443^(4/13) 6765000029592182 a001 3278735159921/22768774562*271443^(4/13) 6765000029592182 a001 2504730781961/17393796001*271443^(4/13) 6765000029592182 a001 956722026041/6643838879*271443^(4/13) 6765000029592182 a001 182717648081/1268860318*271443^(4/13) 6765000029592182 a001 139583862445/969323029*271443^(4/13) 6765000029592182 a001 53316291173/370248451*271443^(4/13) 6765000029592182 a001 10182505537/70711162*271443^(4/13) 6765000029592184 a001 7778742049/54018521*271443^(4/13) 6765000029592198 a001 2971215073/20633239*271443^(4/13) 6765000029592291 a001 567451585/3940598*271443^(4/13) 6765000029592906 a001 14930352/710647*271443^(6/13) 6765000029592928 a001 433494437/3010349*271443^(4/13) 6765000029593885 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^36 6765000029595105 a001 701408733/439204*439204^(1/9) 6765000029595269 a001 4807526976/1149851*103682^(1/24) 6765000029595652 a001 196418/710647*710647^(3/4) 6765000029596459 a001 9227465/710647*271443^(1/2) 6765000029597045 a001 163427632720/24157817 6765000029597047 a001 208010/109801*45537549124^(1/3) 6765000029597047 a001 98209/930249*(1/2+1/2*5^(1/2))^23 6765000029597047 a001 208010/109801*(1/2+1/2*5^(1/2))^17 6765000029597047 a001 98209/930249*4106118243^(1/2) 6765000029597068 a001 208010/109801*12752043^(1/2) 6765000029597290 a001 831985/15126*271443^(5/13) 6765000029597299 a001 165580141/1149851*271443^(4/13) 6765000029598255 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^38 6765000029598270 a001 102334155/64079*24476^(1/7) 6765000029598667 a001 2178309/439204*7881196^(5/11) 6765000029598705 a001 196418/4870847*20633239^(5/7) 6765000029598709 a001 2178309/439204*20633239^(3/7) 6765000029598716 a001 213929548581/31622993 6765000029598716 a001 2178309/439204*141422324^(5/13) 6765000029598716 a001 196418/4870847*2537720636^(5/9) 6765000029598716 a001 2178309/439204*2537720636^(1/3) 6765000029598716 a001 2178309/439204*45537549124^(5/17) 6765000029598716 a001 196418/4870847*312119004989^(5/11) 6765000029598716 a001 196418/4870847*(1/2+1/2*5^(1/2))^25 6765000029598716 a001 196418/4870847*3461452808002^(5/12) 6765000029598716 a001 2178309/439204*312119004989^(3/11) 6765000029598716 a001 2178309/439204*14662949395604^(5/21) 6765000029598716 a001 2178309/439204*(1/2+1/2*5^(1/2))^15 6765000029598716 a001 2178309/439204*192900153618^(5/18) 6765000029598716 a001 2178309/439204*28143753123^(3/10) 6765000029598716 a001 196418/4870847*28143753123^(1/2) 6765000029598716 a001 2178309/439204*10749957122^(5/16) 6765000029598716 a001 2178309/439204*599074578^(5/14) 6765000029598716 a001 2178309/439204*228826127^(3/8) 6765000029598716 a001 196418/4870847*228826127^(5/8) 6765000029598719 a001 2178309/439204*33385282^(5/12) 6765000029598871 a001 196418/12752043*7881196^(9/11) 6765000029598892 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^40 6765000029598893 a001 5473/2889*5778^(17/18) 6765000029598905 a001 196418/54018521*7881196^(10/11) 6765000029598959 a001 196452/5779*7881196^(1/3) 6765000029598959 a001 267914296/4870847*271443^(5/13) 6765000029598959 a001 196418/12752043*141422324^(9/13) 6765000029598960 a001 5702887/439204*141422324^(1/3) 6765000029598960 a001 1120149658766/165580141 6765000029598960 a001 196418/12752043*2537720636^(3/5) 6765000029598960 a001 196418/12752043*45537549124^(9/17) 6765000029598960 a001 196418/12752043*817138163596^(9/19) 6765000029598960 a001 196418/12752043*14662949395604^(3/7) 6765000029598960 a001 196418/12752043*(1/2+1/2*5^(1/2))^27 6765000029598960 a001 196418/12752043*192900153618^(1/2) 6765000029598960 a001 5702887/439204*(1/2+1/2*5^(1/2))^13 6765000029598960 a001 5702887/439204*73681302247^(1/4) 6765000029598960 a001 196418/12752043*10749957122^(9/16) 6765000029598960 a001 196418/12752043*599074578^(9/14) 6765000029598964 a001 196418/12752043*33385282^(3/4) 6765000029598971 a001 39088169/439204*7881196^(3/11) 6765000029598978 a001 9227465/439204*7881196^(4/11) 6765000029598982 a001 165580141/439204*7881196^(2/11) 6765000029598985 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^42 6765000029598990 a001 196418/54018521*20633239^(6/7) 6765000029598991 a001 701408733/439204*7881196^(1/11) 6765000029598995 a001 2932589879136/433494437 6765000029598995 a001 98209/16692641*(1/2+1/2*5^(1/2))^29 6765000029598995 a001 98209/16692641*1322157322203^(1/2) 6765000029598995 a001 196452/5779*312119004989^(1/5) 6765000029598995 a001 196452/5779*(1/2+1/2*5^(1/2))^11 6765000029598995 a001 196452/5779*1568397607^(1/4) 6765000029598998 a001 102334155/439204*20633239^(1/5) 6765000029598999 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^44 6765000029598999 a001 66978574/109801*20633239^(1/7) 6765000029598999 a001 24157817/439204*20633239^(2/7) 6765000029599000 a001 39088169/439204*141422324^(3/13) 6765000029599000 a001 225812352313/33379505 6765000029599000 a001 39088169/439204*2537720636^(1/5) 6765000029599000 a001 39088169/439204*45537549124^(3/17) 6765000029599000 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(38) 6765000029599000 a001 196418/87403803*9062201101803^(1/2) 6765000029599000 a001 39088169/439204*817138163596^(3/19) 6765000029599000 a001 39088169/439204*14662949395604^(1/7) 6765000029599000 a001 39088169/439204*(1/2+1/2*5^(1/2))^9 6765000029599000 a001 39088169/439204*192900153618^(1/6) 6765000029599000 a001 39088169/439204*10749957122^(3/16) 6765000029599000 a001 39088169/439204*599074578^(3/14) 6765000029599001 a001 196418/228826127*141422324^(11/13) 6765000029599001 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^46 6765000029599001 a001 196418/969323029*141422324^(12/13) 6765000029599001 a001 196418/228826127*2537720636^(11/15) 6765000029599001 a001 20100270056790/2971215073 6765000029599001 a001 102334155/439204*17393796001^(1/7) 6765000029599001 a001 196418/228826127*45537549124^(11/17) 6765000029599001 a001 196418/228826127*312119004989^(3/5) 6765000029599001 a001 196418/228826127*14662949395604^(11/21) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(40) 6765000029599001 a001 196418/228826127*192900153618^(11/18) 6765000029599001 a001 102334155/439204*14662949395604^(1/9) 6765000029599001 a001 102334155/439204*(1/2+1/2*5^(1/2))^7 6765000029599001 a001 196418/228826127*10749957122^(11/16) 6765000029599001 a001 196418/228826127*1568397607^(3/4) 6765000029599001 a001 102334155/439204*599074578^(1/6) 6765000029599001 a001 196418/228826127*599074578^(11/14) 6765000029599001 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^48 6765000029599001 a001 701408733/439204*141422324^(1/13) 6765000029599001 a001 98209/299537289*2537720636^(7/9) 6765000029599001 a001 66978574/109801*2537720636^(1/9) 6765000029599001 a001 4047937707056/598364773 6765000029599001 a001 98209/299537289*17393796001^(5/7) 6765000029599001 a001 98209/299537289*312119004989^(7/11) 6765000029599001 a001 98209/299537289*14662949395604^(5/9) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(42) 6765000029599001 a001 98209/299537289*505019158607^(5/8) 6765000029599001 a001 66978574/109801*312119004989^(1/11) 6765000029599001 a001 66978574/109801*(1/2+1/2*5^(1/2))^5 6765000029599001 a001 66978574/109801*28143753123^(1/10) 6765000029599001 a001 98209/299537289*28143753123^(7/10) 6765000029599001 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^50 6765000029599001 a001 98209/299537289*599074578^(5/6) 6765000029599001 a001 701408733/439204*2537720636^(1/15) 6765000029599001 a001 68884650259197/10182505537 6765000029599001 a001 701408733/439204*45537549124^(1/17) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(44) 6765000029599001 a001 701408733/439204*14662949395604^(1/21) 6765000029599001 a001 701408733/439204*(1/2+1/2*5^(1/2))^3 6765000029599001 a001 701408733/439204*192900153618^(1/18) 6765000029599001 a001 701408733/439204*10749957122^(1/16) 6765000029599001 a001 66978574/109801*228826127^(1/8) 6765000029599001 a001 165580141/439204*141422324^(2/13) 6765000029599001 a001 701408733/439204*599074578^(1/14) 6765000029599001 a001 196418/4106118243*2537720636^(13/15) 6765000029599001 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^52 6765000029599001 a001 196418/17393796001*2537720636^(14/15) 6765000029599001 a001 196418/6643838879*2537720636^(8/9) 6765000029599001 a001 196418/4106118243*45537549124^(13/17) 6765000029599001 a001 360684711363454/53316291173 6765000029599001 a001 196418/4106118243*14662949395604^(13/21) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(46) 6765000029599001 a001 196418/4106118243*192900153618^(13/18) 6765000029599001 a001 1836311903/878408+1836311903/878408*5^(1/2) 6765000029599001 a001 196418/4106118243*73681302247^(3/4) 6765000029599001 a001 196418/4106118243*10749957122^(13/16) 6765000029599001 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^54 6765000029599001 a001 944284833571968/139583862445 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(48) 6765000029599001 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2) 6765000029599001 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^56 6765000029599001 a001 1236084894676225/182717648081 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(50) 6765000029599001 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^3 6765000029599001 a001 196418/73681302247*45537549124^(15/17) 6765000029599001 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^58 6765000029599001 a001 196418/312119004989*45537549124^(16/17) 6765000029599001 a001 196418/73681302247*312119004989^(9/11) 6765000029599001 a001 6472224534485382/956722026041 6765000029599001 a001 196418/73681302247*14662949395604^(5/7) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(52) 6765000029599001 a001 196418/73681302247*192900153618^(5/6) 6765000029599001 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^5 6765000029599001 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^60 6765000029599001 a001 16944503814103696/2504730781961 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(54) 6765000029599001 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^62 6765000029599001 a001 98209/408569081798*312119004989^(10/11) 6765000029599001 a001 100364902506393/14835905701 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(56) 6765000029599001 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^64 6765000029599001 a001 196418/1322157322203*14662949395604^(17/21) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(58) 6765000029599001 a001 196418/505019158607*505019158607^(7/8) 6765000029599001 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^66 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(60) 6765000029599001 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^68 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(62) 6765000029599001 a001 196418/23725150497407*14662949395604^(19/21) 6765000029599001 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^70 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(64) 6765000029599001 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^72 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(66) 6765000029599001 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^74 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(68) 6765000029599001 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^76 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(70) 6765000029599001 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^78 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(72) 6765000029599001 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^80 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(74) 6765000029599001 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^82 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(76) 6765000029599001 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^84 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(78) 6765000029599001 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^86 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(80) 6765000029599001 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^88 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(82) 6765000029599001 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^90 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(84) 6765000029599001 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^92 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(86) 6765000029599001 a004 Fibonacci(27)*Lucas(87)/(1/2+sqrt(5)/2)^94 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(88) 6765000029599001 a004 Fibonacci(27)*Lucas(89)/(1/2+sqrt(5)/2)^96 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(90) 6765000029599001 a004 Fibonacci(27)*Lucas(91)/(1/2+sqrt(5)/2)^98 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(92) 6765000029599001 a004 Fibonacci(27)*Lucas(93)/(1/2+sqrt(5)/2)^100 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^87/Lucas(94) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^89/Lucas(96) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^91/Lucas(98) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^92/Lucas(99) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^93/Lucas(100) 6765000029599001 a004 Fibonacci(27)/Lucas(1)/(1/2+sqrt(5)/2)^7 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^90/Lucas(97) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^88/Lucas(95) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(93) 6765000029599001 a004 Fibonacci(27)*Lucas(92)/(1/2+sqrt(5)/2)^99 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(91) 6765000029599001 a004 Fibonacci(27)*Lucas(90)/(1/2+sqrt(5)/2)^97 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(89) 6765000029599001 a004 Fibonacci(27)*Lucas(88)/(1/2+sqrt(5)/2)^95 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(87) 6765000029599001 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^93 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(85) 6765000029599001 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^91 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(83) 6765000029599001 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^89 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(81) 6765000029599001 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^87 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(79) 6765000029599001 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^85 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(77) 6765000029599001 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^83 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(75) 6765000029599001 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^81 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(73) 6765000029599001 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^79 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(71) 6765000029599001 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^77 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(69) 6765000029599001 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^75 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(67) 6765000029599001 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^73 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(65) 6765000029599001 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^71 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(63) 6765000029599001 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^69 6765000029599001 a001 196418/5600748293801*14662949395604^(6/7) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(61) 6765000029599001 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^67 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(59) 6765000029599001 a001 196418/2139295485799*23725150497407^(13/16) 6765000029599001 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^65 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(57) 6765000029599001 a001 196418/2139295485799*505019158607^(13/14) 6765000029599001 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^63 6765000029599001 a001 196418/312119004989*14662949395604^(16/21) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(55) 6765000029599001 a001 27416783093722010/4052739537881 6765000029599001 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^9 6765000029599001 a001 196418/1322157322203*192900153618^(17/18) 6765000029599001 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^11 6765000029599001 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^13 6765000029599001 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^15 6765000029599001 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^17 6765000029599001 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^19 6765000029599001 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^21 6765000029599001 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^23 6765000029599001 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^25 6765000029599001 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^27 6765000029599001 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^29 6765000029599001 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^31 6765000029599001 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^33 6765000029599001 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^35 6765000029599001 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^37 6765000029599001 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^39 6765000029599001 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^41 6765000029599001 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^43 6765000029599001 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^45 6765000029599001 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^47 6765000029599001 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^49 6765000029599001 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^53 6765000029599001 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^61 6765000029599001 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^51 6765000029599001 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^52 6765000029599001 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^50 6765000029599001 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^48 6765000029599001 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^46 6765000029599001 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^44 6765000029599001 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^42 6765000029599001 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^40 6765000029599001 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^38 6765000029599001 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^36 6765000029599001 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^34 6765000029599001 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^32 6765000029599001 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^30 6765000029599001 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^28 6765000029599001 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^26 6765000029599001 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^24 6765000029599001 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^22 6765000029599001 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^20 6765000029599001 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^18 6765000029599001 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^16 6765000029599001 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^14 6765000029599001 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^12 6765000029599001 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^10 6765000029599001 a001 196418/312119004989*192900153618^(8/9) 6765000029599001 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^8 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(53) 6765000029599001 a001 5236139639809157/774004377960 6765000029599001 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^6 6765000029599001 a001 196418/312119004989*73681302247^(12/13) 6765000029599001 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^59 6765000029599001 a001 196418/17393796001*17393796001^(6/7) 6765000029599001 a001 98209/22768774562*312119004989^(4/5) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(51) 6765000029599001 a001 98209/22768774562*23725150497407^(11/16) 6765000029599001 a001 4000054745132932/591286729879 6765000029599001 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^4 6765000029599001 a001 98209/22768774562*73681302247^(11/13) 6765000029599001 a001 196418/73681302247*28143753123^(9/10) 6765000029599001 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^57 6765000029599001 a001 196418/17393796001*45537549124^(14/17) 6765000029599001 a001 196418/17393796001*817138163596^(14/19) 6765000029599001 a001 196418/17393796001*14662949395604^(2/3) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(49) 6765000029599001 a001 117529611983114/17373187209 6765000029599001 a001 196418/17393796001*192900153618^(7/9) 6765000029599001 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^2 6765000029599001 a001 196418/73681302247*10749957122^(15/16) 6765000029599001 a001 196418/119218851371*10749957122^(23/24) 6765000029599001 a001 98209/22768774562*10749957122^(11/12) 6765000029599001 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^55 6765000029599001 a001 196418/17393796001*10749957122^(7/8) 6765000029599001 a001 196418/6643838879*312119004989^(8/11) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(47) 6765000029599001 a001 196418/6643838879*23725150497407^(5/8) 6765000029599001 a001 2971215073/439204 6765000029599001 a001 196418/6643838879*73681302247^(10/13) 6765000029599001 a001 196418/6643838879*28143753123^(4/5) 6765000029599001 a001 196418/6643838879*10749957122^(5/6) 6765000029599001 a001 98209/22768774562*4106118243^(22/23) 6765000029599001 a001 196418/17393796001*4106118243^(21/23) 6765000029599001 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^53 6765000029599001 a001 196418/6643838879*4106118243^(20/23) 6765000029599001 a001 98209/1268860318*817138163596^(2/3) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(45) 6765000029599001 a001 567451585/219602*(1/2+1/2*5^(1/2))^2 6765000029599001 a001 222915410845060/32951280099 6765000029599001 a001 567451585/219602*10749957122^(1/24) 6765000029599001 a001 567451585/219602*4106118243^(1/23) 6765000029599001 a001 98209/1268860318*10749957122^(19/24) 6765000029599001 a001 567451585/219602*1568397607^(1/22) 6765000029599001 a001 98209/1268860318*4106118243^(19/23) 6765000029599001 a001 567451585/219602*599074578^(1/21) 6765000029599001 a001 196418/17393796001*1568397607^(21/22) 6765000029599001 a001 196418/6643838879*1568397607^(10/11) 6765000029599001 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^51 6765000029599001 a001 98209/1268860318*1568397607^(19/22) 6765000029599001 a001 196418/969323029*2537720636^(4/5) 6765000029599001 a001 196418/969323029*45537549124^(12/17) 6765000029599001 a001 196418/969323029*14662949395604^(4/7) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(43) 6765000029599001 a001 196418/969323029*505019158607^(9/14) 6765000029599001 a001 196418/969323029*192900153618^(2/3) 6765000029599001 a001 433494437/439204*(1/2+1/2*5^(1/2))^4 6765000029599001 a001 433494437/439204*23725150497407^(1/16) 6765000029599001 a001 433494437/439204*73681302247^(1/13) 6765000029599001 a001 196418/969323029*73681302247^(9/13) 6765000029599001 a001 433494437/439204*10749957122^(1/12) 6765000029599001 a001 85146110326666/12586269025 6765000029599001 a001 433494437/439204*4106118243^(2/23) 6765000029599001 a001 196418/969323029*10749957122^(3/4) 6765000029599001 a001 433494437/439204*1568397607^(1/11) 6765000029599001 a001 567451585/219602*228826127^(1/20) 6765000029599001 a001 196418/969323029*4106118243^(18/23) 6765000029599001 a001 433494437/439204*599074578^(2/21) 6765000029599001 a001 196418/969323029*1568397607^(9/11) 6765000029599001 a001 196418/4106118243*599074578^(13/14) 6765000029599001 a001 98209/1268860318*599074578^(19/21) 6765000029599001 a001 196418/6643838879*599074578^(20/21) 6765000029599001 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^49 6765000029599001 a001 433494437/439204*228826127^(1/10) 6765000029599001 a001 196418/969323029*599074578^(6/7) 6765000029599001 a001 567451585/219602*87403803^(1/19) 6765000029599001 a001 165580141/439204*2537720636^(2/15) 6765000029599001 a001 196418/370248451*45537549124^(2/3) 6765000029599001 a001 165580141/439204*45537549124^(2/17) 6765000029599001 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(41) 6765000029599001 a001 165580141/439204*14662949395604^(2/21) 6765000029599001 a001 165580141/439204*(1/2+1/2*5^(1/2))^6 6765000029599001 a001 165580141/439204*10749957122^(1/8) 6765000029599001 a001 196418/370248451*10749957122^(17/24) 6765000029599001 a001 165580141/439204*4106118243^(3/23) 6765000029599001 a001 16261460067469/2403763488 6765000029599001 a001 196418/370248451*4106118243^(17/23) 6765000029599001 a001 165580141/439204*1568397607^(3/22) 6765000029599001 a001 196418/370248451*1568397607^(17/22) 6765000029599001 a001 165580141/439204*599074578^(1/7) 6765000029599001 a001 196418/370248451*599074578^(17/21) 6765000029599001 a001 165580141/439204*228826127^(3/20) 6765000029599001 a001 98209/299537289*228826127^(7/8) 6765000029599001 a001 433494437/439204*87403803^(2/19) 6765000029599001 a001 196418/969323029*228826127^(9/10) 6765000029599001 a001 98209/1268860318*228826127^(19/20) 6765000029599001 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^47 6765000029599001 a001 196418/370248451*228826127^(17/20) 6765000029599002 a001 165580141/439204*87403803^(3/19) 6765000029599002 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(39) 6765000029599002 a001 98209/70711162*23725150497407^(1/2) 6765000029599002 a001 98209/70711162*505019158607^(4/7) 6765000029599002 a001 31622993/219602*(1/2+1/2*5^(1/2))^8 6765000029599002 a001 31622993/219602*23725150497407^(1/8) 6765000029599002 a001 31622993/219602*505019158607^(1/7) 6765000029599002 a001 31622993/219602*73681302247^(2/13) 6765000029599002 a001 98209/70711162*73681302247^(8/13) 6765000029599002 a001 567451585/219602*33385282^(1/18) 6765000029599002 a001 31622993/219602*10749957122^(1/6) 6765000029599002 a001 98209/70711162*10749957122^(2/3) 6765000029599002 a001 31622993/219602*4106118243^(4/23) 6765000029599002 a001 98209/70711162*4106118243^(16/23) 6765000029599002 a001 12422650078148/1836311903 6765000029599002 a001 31622993/219602*1568397607^(2/11) 6765000029599002 a001 98209/70711162*1568397607^(8/11) 6765000029599002 a001 31622993/219602*599074578^(4/21) 6765000029599002 a001 98209/70711162*599074578^(16/21) 6765000029599002 a001 31622993/219602*228826127^(1/5) 6765000029599002 a001 98209/70711162*228826127^(4/5) 6765000029599002 a001 701408733/439204*33385282^(1/12) 6765000029599002 a001 31622993/219602*87403803^(4/19) 6765000029599002 a001 39088169/439204*33385282^(1/4) 6765000029599002 a001 433494437/439204*33385282^(1/9) 6765000029599002 a001 196418/370248451*87403803^(17/19) 6765000029599002 a001 196418/969323029*87403803^(18/19) 6765000029599002 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^45 6765000029599002 a001 165580141/439204*33385282^(1/6) 6765000029599002 a001 98209/70711162*87403803^(16/19) 6765000029599003 a001 31622993/219602*33385282^(2/9) 6765000029599003 a001 196418/54018521*141422324^(10/13) 6765000029599004 a001 196418/54018521*2537720636^(2/3) 6765000029599004 a001 24157817/439204*2537720636^(2/9) 6765000029599004 a001 196418/54018521*45537549124^(10/17) 6765000029599004 a001 196418/54018521*312119004989^(6/11) 6765000029599004 a001 196418/54018521*14662949395604^(10/21) 6765000029599004 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(37) 6765000029599004 a001 196418/54018521*192900153618^(5/9) 6765000029599004 a001 24157817/439204*312119004989^(2/11) 6765000029599004 a001 24157817/439204*(1/2+1/2*5^(1/2))^10 6765000029599004 a001 24157817/439204*28143753123^(1/5) 6765000029599004 a001 196418/54018521*28143753123^(3/5) 6765000029599004 a001 24157817/439204*10749957122^(5/24) 6765000029599004 a001 196418/54018521*10749957122^(5/8) 6765000029599004 a001 24157817/439204*4106118243^(5/23) 6765000029599004 a001 196418/54018521*4106118243^(15/23) 6765000029599004 a001 24157817/439204*1568397607^(5/22) 6765000029599004 a001 196418/54018521*1568397607^(15/22) 6765000029599004 a001 4745030099506/701408733 6765000029599004 a001 24157817/439204*599074578^(5/21) 6765000029599004 a001 196418/54018521*599074578^(5/7) 6765000029599004 a001 24157817/439204*228826127^(1/4) 6765000029599004 a001 196418/54018521*228826127^(3/4) 6765000029599004 a001 567451585/219602*12752043^(1/17) 6765000029599004 a001 24157817/439204*87403803^(5/19) 6765000029599004 a001 196418/54018521*87403803^(15/19) 6765000029599005 a001 196418/20633239*20633239^(4/5) 6765000029599005 a001 24157817/439204*33385282^(5/18) 6765000029599006 a001 433494437/439204*12752043^(2/17) 6765000029599007 a001 196418/228826127*33385282^(11/12) 6765000029599007 a001 98209/70711162*33385282^(8/9) 6765000029599007 a001 196418/370248451*33385282^(17/18) 6765000029599007 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^43 6765000029599009 a001 196418/54018521*33385282^(5/6) 6765000029599009 a001 165580141/439204*12752043^(3/17) 6765000029599011 a001 31622993/219602*12752043^(4/17) 6765000029599016 a001 24157817/439204*12752043^(5/17) 6765000029599017 a001 9227465/439204*141422324^(4/13) 6765000029599017 a001 9227465/439204*2537720636^(4/15) 6765000029599017 a001 196418/20633239*17393796001^(4/7) 6765000029599017 a001 9227465/439204*45537549124^(4/17) 6765000029599017 a001 196418/20633239*14662949395604^(4/9) 6765000029599017 a001 196418/20633239*(1/2+1/2*5^(1/2))^28 6765000029599017 a001 196418/20633239*505019158607^(1/2) 6765000029599017 a001 9227465/439204*817138163596^(4/19) 6765000029599017 a001 9227465/439204*14662949395604^(4/21) 6765000029599017 a001 9227465/439204*(1/2+1/2*5^(1/2))^12 6765000029599017 a001 9227465/439204*192900153618^(2/9) 6765000029599017 a001 9227465/439204*73681302247^(3/13) 6765000029599017 a001 196418/20633239*73681302247^(7/13) 6765000029599017 a001 9227465/439204*10749957122^(1/4) 6765000029599017 a001 196418/20633239*10749957122^(7/12) 6765000029599017 a001 9227465/439204*4106118243^(6/23) 6765000029599017 a001 196418/20633239*4106118243^(14/23) 6765000029599017 a001 9227465/439204*1568397607^(3/11) 6765000029599017 a001 196418/20633239*1568397607^(7/11) 6765000029599017 a001 9227465/439204*599074578^(2/7) 6765000029599017 a001 196418/20633239*599074578^(2/3) 6765000029599017 a001 69709239245/10304396 6765000029599017 a001 9227465/439204*228826127^(3/10) 6765000029599017 a001 196418/20633239*228826127^(7/10) 6765000029599018 a001 9227465/439204*87403803^(6/19) 6765000029599018 a001 196418/20633239*87403803^(14/19) 6765000029599019 a001 567451585/219602*4870847^(1/16) 6765000029599019 a001 9227465/439204*33385282^(1/3) 6765000029599022 a001 196418/20633239*33385282^(7/9) 6765000029599032 a001 9227465/439204*12752043^(6/17) 6765000029599037 a001 433494437/439204*4870847^(1/8) 6765000029599040 a001 196418/54018521*12752043^(15/17) 6765000029599041 a001 98209/70711162*12752043^(16/17) 6765000029599043 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^41 6765000029599051 a001 196418/20633239*12752043^(14/17) 6765000029599055 a001 165580141/439204*4870847^(3/16) 6765000029599073 a001 31622993/219602*4870847^(1/4) 6765000029599093 a001 24157817/439204*4870847^(5/16) 6765000029599104 a001 1762289/219602*20633239^(2/5) 6765000029599110 a001 98209/3940598*141422324^(2/3) 6765000029599110 a001 1762289/219602*17393796001^(2/7) 6765000029599110 a001 98209/3940598*(1/2+1/2*5^(1/2))^26 6765000029599110 a001 1762289/219602*14662949395604^(2/9) 6765000029599110 a001 1762289/219602*(1/2+1/2*5^(1/2))^14 6765000029599110 a001 1762289/219602*505019158607^(1/4) 6765000029599110 a001 98209/3940598*73681302247^(1/2) 6765000029599110 a001 1762289/219602*10749957122^(7/24) 6765000029599110 a001 98209/3940598*10749957122^(13/24) 6765000029599110 a001 1762289/219602*4106118243^(7/23) 6765000029599110 a001 98209/3940598*4106118243^(13/23) 6765000029599110 a001 1762289/219602*1568397607^(7/22) 6765000029599110 a001 98209/3940598*1568397607^(13/22) 6765000029599110 a001 1762289/219602*599074578^(1/3) 6765000029599110 a001 98209/3940598*599074578^(13/21) 6765000029599110 a001 1762289/219602*228826127^(7/20) 6765000029599110 a001 98209/3940598*228826127^(13/20) 6765000029599110 a001 692290561604/102334155 6765000029599111 a001 1762289/219602*87403803^(7/19) 6765000029599111 a001 98209/3940598*87403803^(13/19) 6765000029599113 a001 1762289/219602*33385282^(7/18) 6765000029599115 a001 98209/3940598*33385282^(13/18) 6765000029599124 a001 9227465/439204*4870847^(3/8) 6765000029599127 a001 1762289/219602*12752043^(7/17) 6765000029599132 a001 567451585/219602*1860498^(1/15) 6765000029599142 a001 98209/3940598*12752043^(13/17) 6765000029599197 a001 701408733/439204*1860498^(1/10) 6765000029599203 a001 233802911/4250681*271443^(5/13) 6765000029599235 a001 1762289/219602*4870847^(7/16) 6765000029599239 a001 1836311903/33385282*271443^(5/13) 6765000029599244 a001 1602508992/29134601*271443^(5/13) 6765000029599244 a001 12586269025/228826127*271443^(5/13) 6765000029599245 a001 10983760033/199691526*271443^(5/13) 6765000029599245 a001 86267571272/1568397607*271443^(5/13) 6765000029599245 a001 75283811239/1368706081*271443^(5/13) 6765000029599245 a001 591286729879/10749957122*271443^(5/13) 6765000029599245 a001 12585437040/228811001*271443^(5/13) 6765000029599245 a001 4052739537881/73681302247*271443^(5/13) 6765000029599245 a001 3536736619241/64300051206*271443^(5/13) 6765000029599245 a001 6557470319842/119218851371*271443^(5/13) 6765000029599245 a001 2504730781961/45537549124*271443^(5/13) 6765000029599245 a001 956722026041/17393796001*271443^(5/13) 6765000029599245 a001 365435296162/6643838879*271443^(5/13) 6765000029599245 a001 139583862445/2537720636*271443^(5/13) 6765000029599245 a001 53316291173/969323029*271443^(5/13) 6765000029599245 a001 20365011074/370248451*271443^(5/13) 6765000029599245 a001 7778742049/141422324*271443^(5/13) 6765000029599247 a001 2971215073/54018521*271443^(5/13) 6765000029599260 a001 1134903170/20633239*271443^(5/13) 6765000029599262 a001 433494437/439204*1860498^(2/15) 6765000029599267 a001 196418/20633239*4870847^(7/8) 6765000029599271 a001 196418/54018521*4870847^(15/16) 6765000029599286 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^39 6765000029599327 a001 66978574/109801*1860498^(1/6) 6765000029599342 a001 98209/3940598*4870847^(13/16) 6765000029599354 a001 433494437/7881196*271443^(5/13) 6765000029599392 a001 165580141/439204*1860498^(1/5) 6765000029599523 a001 31622993/219602*1860498^(4/15) 6765000029599587 a001 39088169/439204*1860498^(3/10) 6765000029599655 a001 24157817/439204*1860498^(1/3) 6765000029599669 a001 196418/3010349*7881196^(8/11) 6765000029599693 a001 2178309/439204*1860498^(1/2) 6765000029599748 a001 196418/3010349*141422324^(8/13) 6765000029599748 a001 196418/3010349*2537720636^(8/15) 6765000029599748 a001 196418/3010349*45537549124^(8/17) 6765000029599748 a001 196418/3010349*14662949395604^(8/21) 6765000029599748 a001 196418/3010349*(1/2+1/2*5^(1/2))^24 6765000029599748 a001 196418/3010349*192900153618^(4/9) 6765000029599748 a001 1346269/439204*(1/2+1/2*5^(1/2))^16 6765000029599748 a001 1346269/439204*23725150497407^(1/4) 6765000029599748 a001 1346269/439204*73681302247^(4/13) 6765000029599748 a001 196418/3010349*73681302247^(6/13) 6765000029599748 a001 1346269/439204*10749957122^(1/3) 6765000029599748 a001 196418/3010349*10749957122^(1/2) 6765000029599748 a001 1346269/439204*4106118243^(8/23) 6765000029599748 a001 196418/3010349*4106118243^(12/23) 6765000029599748 a001 1346269/439204*1568397607^(4/11) 6765000029599748 a001 196418/3010349*1568397607^(6/11) 6765000029599748 a001 1346269/439204*599074578^(8/21) 6765000029599748 a001 196418/3010349*599074578^(4/7) 6765000029599748 a001 1346269/439204*228826127^(2/5) 6765000029599748 a001 196418/3010349*228826127^(3/5) 6765000029599748 a001 1346269/439204*87403803^(8/19) 6765000029599748 a001 196418/3010349*87403803^(12/19) 6765000029599749 a001 264431464442/39088169 6765000029599751 a001 1346269/439204*33385282^(4/9) 6765000029599752 a001 196418/3010349*33385282^(2/3) 6765000029599767 a001 1346269/439204*12752043^(8/17) 6765000029599777 a001 196418/3010349*12752043^(12/17) 6765000029599799 a001 9227465/439204*1860498^(2/5) 6765000029599890 a001 1346269/439204*4870847^(1/2) 6765000029599933 a001 5702887/710647*271443^(7/13) 6765000029599958 a001 567451585/219602*710647^(1/14) 6765000029599962 a001 196418/3010349*4870847^(3/4) 6765000029599991 a001 165580141/3010349*271443^(5/13) 6765000029600022 a001 1762289/219602*1860498^(7/15) 6765000029600345 a001 196418/4870847*1860498^(5/6) 6765000029600719 a001 196418/12752043*1860498^(9/10) 6765000029600790 a001 1346269/439204*1860498^(8/15) 6765000029600804 a001 98209/3940598*1860498^(13/15) 6765000029600841 a001 196418/20633239*1860498^(14/15) 6765000029600915 a001 433494437/439204*710647^(1/7) 6765000029600956 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^37 6765000029601311 a001 196418/3010349*1860498^(4/5) 6765000029601872 a001 165580141/439204*710647^(3/14) 6765000029602350 a001 102334155/439204*710647^(1/4) 6765000029602829 a001 31622993/219602*710647^(2/7) 6765000029602978 a001 1836311903/710647*103682^(1/12) 6765000029603222 a001 165580141/271443*103682^(5/24) 6765000029603788 a001 24157817/439204*710647^(5/14) 6765000029604045 a001 196418/1149851*7881196^(2/3) 6765000029604059 a001 514229/439204*7881196^(6/11) 6765000029604118 a001 514229/439204*141422324^(6/13) 6765000029604118 a001 514229/439204*2537720636^(2/5) 6765000029604118 a001 514229/439204*45537549124^(6/17) 6765000029604118 a001 196418/1149851*312119004989^(2/5) 6765000029604118 a001 196418/1149851*(1/2+1/2*5^(1/2))^22 6765000029604118 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^22/Lucas(29) 6765000029604118 a001 514229/439204*14662949395604^(2/7) 6765000029604118 a001 514229/439204*(1/2+1/2*5^(1/2))^18 6765000029604118 a001 514229/439204*192900153618^(1/3) 6765000029604118 a001 514229/439204*10749957122^(3/8) 6765000029604118 a001 196418/1149851*10749957122^(11/24) 6765000029604118 a001 514229/439204*4106118243^(9/23) 6765000029604118 a001 196418/1149851*4106118243^(11/23) 6765000029604118 a001 514229/439204*1568397607^(9/22) 6765000029604118 a001 196418/1149851*1568397607^(1/2) 6765000029604118 a001 514229/439204*599074578^(3/7) 6765000029604118 a001 196418/1149851*599074578^(11/21) 6765000029604118 a001 514229/439204*228826127^(9/20) 6765000029604118 a001 196418/1149851*228826127^(11/20) 6765000029604118 a001 514229/439204*87403803^(9/19) 6765000029604118 a001 196418/1149851*87403803^(11/19) 6765000029604121 a001 514229/439204*33385282^(1/2) 6765000029604122 a001 196418/1149851*33385282^(11/18) 6765000029604124 a001 2970700933/439128 6765000029604140 a001 514229/439204*12752043^(9/17) 6765000029604145 a001 196418/1149851*12752043^(11/17) 6765000029604278 a001 514229/439204*4870847^(9/16) 6765000029604314 a001 196418/1149851*4870847^(11/16) 6765000029604352 a001 39088169/1860498*271443^(6/13) 6765000029604362 a001 63245986/1149851*271443^(5/13) 6765000029604758 a001 9227465/439204*710647^(3/7) 6765000029605291 a001 514229/439204*1860498^(3/5) 6765000029605551 a001 196418/1149851*1860498^(11/15) 6765000029605808 a001 1762289/219602*710647^(1/2) 6765000029606022 a001 102334155/4870847*271443^(6/13) 6765000029606064 a001 567451585/219602*271443^(1/13) 6765000029606266 a001 267914296/12752043*271443^(6/13) 6765000029606301 a001 701408733/33385282*271443^(6/13) 6765000029606306 a001 1836311903/87403803*271443^(6/13) 6765000029606307 a001 102287808/4868641*271443^(6/13) 6765000029606307 a001 12586269025/599074578*271443^(6/13) 6765000029606307 a001 32951280099/1568397607*271443^(6/13) 6765000029606307 a001 86267571272/4106118243*271443^(6/13) 6765000029606307 a001 225851433717/10749957122*271443^(6/13) 6765000029606307 a001 591286729879/28143753123*271443^(6/13) 6765000029606307 a001 1548008755920/73681302247*271443^(6/13) 6765000029606307 a001 4052739537881/192900153618*271443^(6/13) 6765000029606307 a001 225749145909/10745088481*271443^(6/13) 6765000029606307 a001 6557470319842/312119004989*271443^(6/13) 6765000029606307 a001 2504730781961/119218851371*271443^(6/13) 6765000029606307 a001 956722026041/45537549124*271443^(6/13) 6765000029606307 a001 365435296162/17393796001*271443^(6/13) 6765000029606307 a001 139583862445/6643838879*271443^(6/13) 6765000029606307 a001 53316291173/2537720636*271443^(6/13) 6765000029606307 a001 20365011074/969323029*271443^(6/13) 6765000029606307 a001 7778742049/370248451*271443^(6/13) 6765000029606308 a001 2971215073/141422324*271443^(6/13) 6765000029606310 a001 1134903170/54018521*271443^(6/13) 6765000029606323 a001 433494437/20633239*271443^(6/13) 6765000029606416 a001 165580141/7881196*271443^(6/13) 6765000029606752 a001 311187/101521*271443^(8/13) 6765000029607054 a001 63245986/3010349*271443^(6/13) 6765000029607402 a001 1346269/439204*710647^(4/7) 6765000029607767 a001 317811/710647*271443^(10/13) 6765000029607886 a001 24157817/1860498*271443^(1/2) 6765000029609554 a001 63245986/4870847*271443^(1/2) 6765000029609797 a001 165580141/12752043*271443^(1/2) 6765000029609832 a001 433494437/33385282*271443^(1/2) 6765000029609838 a001 1134903170/87403803*271443^(1/2) 6765000029609838 a001 2971215073/228826127*271443^(1/2) 6765000029609839 a001 7778742049/599074578*271443^(1/2) 6765000029609839 a001 20365011074/1568397607*271443^(1/2) 6765000029609839 a001 53316291173/4106118243*271443^(1/2) 6765000029609839 a001 139583862445/10749957122*271443^(1/2) 6765000029609839 a001 365435296162/28143753123*271443^(1/2) 6765000029609839 a001 956722026041/73681302247*271443^(1/2) 6765000029609839 a001 2504730781961/192900153618*271443^(1/2) 6765000029609839 a001 10610209857723/817138163596*271443^(1/2) 6765000029609839 a001 4052739537881/312119004989*271443^(1/2) 6765000029609839 a001 1548008755920/119218851371*271443^(1/2) 6765000029609839 a001 591286729879/45537549124*271443^(1/2) 6765000029609839 a001 7787980473/599786069*271443^(1/2) 6765000029609839 a001 86267571272/6643838879*271443^(1/2) 6765000029609839 a001 32951280099/2537720636*271443^(1/2) 6765000029609839 a001 12586269025/969323029*271443^(1/2) 6765000029609839 a001 4807526976/370248451*271443^(1/2) 6765000029609839 a001 1836311903/141422324*271443^(1/2) 6765000029609841 a001 701408733/54018521*271443^(1/2) 6765000029609854 a001 9238424/711491*271443^(1/2) 6765000029609947 a001 102334155/7881196*271443^(1/2) 6765000029610584 a001 39088169/3010349*271443^(1/2) 6765000029611230 a001 196418/3010349*710647^(6/7) 6765000029611409 a001 829464/103361*271443^(7/13) 6765000029611426 a001 24157817/1149851*271443^(6/13) 6765000029611549 a001 98209/3940598*710647^(13/14) 6765000029612145 a001 832040/710647*271443^(9/13) 6765000029612397 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^35 6765000029612729 a001 514229/439204*710647^(9/14) 6765000029613084 a001 39088169/4870847*271443^(7/13) 6765000029613127 a001 433494437/439204*271443^(2/13) 6765000029613328 a001 34111385/4250681*271443^(7/13) 6765000029613364 a001 133957148/16692641*271443^(7/13) 6765000029613369 a001 233802911/29134601*271443^(7/13) 6765000029613370 a001 1836311903/228826127*271443^(7/13) 6765000029613370 a001 267084832/33281921*271443^(7/13) 6765000029613370 a001 12586269025/1568397607*271443^(7/13) 6765000029613370 a001 10983760033/1368706081*271443^(7/13) 6765000029613370 a001 43133785636/5374978561*271443^(7/13) 6765000029613370 a001 75283811239/9381251041*271443^(7/13) 6765000029613370 a001 591286729879/73681302247*271443^(7/13) 6765000029613370 a001 86000486440/10716675201*271443^(7/13) 6765000029613370 a001 4052739537881/505019158607*271443^(7/13) 6765000029613370 a001 3536736619241/440719107401*271443^(7/13) 6765000029613370 a001 3278735159921/408569081798*271443^(7/13) 6765000029613370 a001 2504730781961/312119004989*271443^(7/13) 6765000029613370 a001 956722026041/119218851371*271443^(7/13) 6765000029613370 a001 182717648081/22768774562*271443^(7/13) 6765000029613370 a001 139583862445/17393796001*271443^(7/13) 6765000029613370 a001 53316291173/6643838879*271443^(7/13) 6765000029613370 a001 10182505537/1268860318*271443^(7/13) 6765000029613370 a001 7778742049/969323029*271443^(7/13) 6765000029613370 a001 2971215073/370248451*271443^(7/13) 6765000029613370 a001 567451585/70711162*271443^(7/13) 6765000029613372 a001 433494437/54018521*271443^(7/13) 6765000029613386 a001 165580141/20633239*271443^(7/13) 6765000029613479 a001 31622993/3940598*271443^(7/13) 6765000029614119 a001 24157817/3010349*271443^(7/13) 6765000029614419 a001 267084832/103361*103682^(1/12) 6765000029614643 a001 196418/1149851*710647^(11/14) 6765000029614949 a001 14930352/1149851*271443^(1/2) 6765000029616088 a001 12586269025/4870847*103682^(1/12) 6765000029616332 a001 10983760033/4250681*103682^(1/12) 6765000029616367 a001 43133785636/16692641*103682^(1/12) 6765000029616373 a001 75283811239/29134601*103682^(1/12) 6765000029616373 a001 591286729879/228826127*103682^(1/12) 6765000029616373 a001 86000486440/33281921*103682^(1/12) 6765000029616373 a001 4052739537881/1568397607*103682^(1/12) 6765000029616373 a001 3536736619241/1368706081*103682^(1/12) 6765000029616373 a001 3278735159921/1268860318*103682^(1/12) 6765000029616373 a001 2504730781961/969323029*103682^(1/12) 6765000029616373 a001 956722026041/370248451*103682^(1/12) 6765000029616374 a001 182717648081/70711162*103682^(1/12) 6765000029616376 a001 139583862445/54018521*103682^(1/12) 6765000029616389 a001 53316291173/20633239*103682^(1/12) 6765000029616482 a001 10182505537/3940598*103682^(1/12) 6765000029617120 a001 7778742049/3010349*103682^(1/12) 6765000029618437 a001 5702887/1860498*271443^(8/13) 6765000029618502 a001 9227465/1149851*271443^(7/13) 6765000029620141 a001 14930352/4870847*271443^(8/13) 6765000029620189 a001 165580141/439204*271443^(3/13) 6765000029620390 a001 39088169/12752043*271443^(8/13) 6765000029620426 a001 14619165/4769326*271443^(8/13) 6765000029620432 a001 267914296/87403803*271443^(8/13) 6765000029620432 a001 701408733/228826127*271443^(8/13) 6765000029620432 a001 1836311903/599074578*271443^(8/13) 6765000029620433 a001 686789568/224056801*271443^(8/13) 6765000029620433 a001 12586269025/4106118243*271443^(8/13) 6765000029620433 a001 32951280099/10749957122*271443^(8/13) 6765000029620433 a001 86267571272/28143753123*271443^(8/13) 6765000029620433 a001 32264490531/10525900321*271443^(8/13) 6765000029620433 a001 591286729879/192900153618*271443^(8/13) 6765000029620433 a001 1548008755920/505019158607*271443^(8/13) 6765000029620433 a001 1515744265389/494493258286*271443^(8/13) 6765000029620433 a001 2504730781961/817138163596*271443^(8/13) 6765000029620433 a001 956722026041/312119004989*271443^(8/13) 6765000029620433 a001 365435296162/119218851371*271443^(8/13) 6765000029620433 a001 139583862445/45537549124*271443^(8/13) 6765000029620433 a001 53316291173/17393796001*271443^(8/13) 6765000029620433 a001 20365011074/6643838879*271443^(8/13) 6765000029620433 a001 7778742049/2537720636*271443^(8/13) 6765000029620433 a001 2971215073/969323029*271443^(8/13) 6765000029620433 a001 1134903170/370248451*271443^(8/13) 6765000029620433 a001 433494437/141422324*271443^(8/13) 6765000029620435 a001 165580141/54018521*271443^(8/13) 6765000029620449 a001 63245986/20633239*271443^(8/13) 6765000029620544 a001 24157817/7881196*271443^(8/13) 6765000029621195 a001 9227465/3010349*271443^(8/13) 6765000029621490 a001 2971215073/1149851*103682^(1/12) 6765000029625222 a001 1836311903/439204*103682^(1/24) 6765000029625256 a001 726103/620166*271443^(9/13) 6765000029625658 a001 3524578/1149851*271443^(8/13) 6765000029626271 a001 105937/620166*271443^(11/13) 6765000029627168 a001 5702887/4870847*271443^(9/13) 6765000029627252 a001 31622993/219602*271443^(4/13) 6765000029627447 a001 4976784/4250681*271443^(9/13) 6765000029627488 a001 39088169/33385282*271443^(9/13) 6765000029627494 a001 34111385/29134601*271443^(9/13) 6765000029627495 a001 267914296/228826127*271443^(9/13) 6765000029627495 a001 233802911/199691526*271443^(9/13) 6765000029627495 a001 1836311903/1568397607*271443^(9/13) 6765000029627495 a001 1602508992/1368706081*271443^(9/13) 6765000029627495 a001 12586269025/10749957122*271443^(9/13) 6765000029627495 a001 10983760033/9381251041*271443^(9/13) 6765000029627495 a001 86267571272/73681302247*271443^(9/13) 6765000029627495 a001 75283811239/64300051206*271443^(9/13) 6765000029627495 a001 2504730781961/2139295485799*271443^(9/13) 6765000029627495 a001 365435296162/312119004989*271443^(9/13) 6765000029627495 a001 139583862445/119218851371*271443^(9/13) 6765000029627495 a001 53316291173/45537549124*271443^(9/13) 6765000029627495 a001 20365011074/17393796001*271443^(9/13) 6765000029627495 a001 7778742049/6643838879*271443^(9/13) 6765000029627495 a001 2971215073/2537720636*271443^(9/13) 6765000029627495 a001 1134903170/969323029*271443^(9/13) 6765000029627495 a001 433494437/370248451*271443^(9/13) 6765000029627496 a001 165580141/141422324*271443^(9/13) 6765000029627498 a001 63245986/54018521*271443^(9/13) 6765000029627513 a001 24157817/20633239*271443^(9/13) 6765000029627620 a001 9227465/7881196*271443^(9/13) 6765000029628351 a001 3524578/3010349*271443^(9/13) 6765000029629199 a001 1134903170/710647*103682^(1/8) 6765000029629443 a001 34111385/90481*103682^(1/4) 6765000029630649 a001 416020/930249*271443^(10/13) 6765000029633358 a001 1346269/1149851*271443^(9/13) 6765000029633988 a001 2178309/4870847*271443^(10/13) 6765000029634062 a001 98209/219602*20633239^(4/7) 6765000029634071 a001 98209/219602*2537720636^(4/9) 6765000029634071 a001 98209/219602*(1/2+1/2*5^(1/2))^20 6765000029634071 a001 98209/219602*23725150497407^(5/16) 6765000029634071 a001 98209/219602*505019158607^(5/14) 6765000029634071 a001 98209/219602*73681302247^(5/13) 6765000029634071 a001 98209/219602*28143753123^(2/5) 6765000029634071 a001 98209/219602*10749957122^(5/12) 6765000029634071 a001 98209/219602*4106118243^(10/23) 6765000029634071 a001 98209/219602*1568397607^(5/11) 6765000029634071 a001 98209/219602*599074578^(10/21) 6765000029634071 a001 98209/219602*228826127^(1/2) 6765000029634072 a001 98209/219602*87403803^(10/19) 6765000029634075 a001 98209/219602*33385282^(5/9) 6765000029634096 a001 98209/219602*12752043^(10/17) 6765000029634113 a001 38580030724/5702887 6765000029634249 a001 98209/219602*4870847^(5/8) 6765000029634317 a001 24157817/439204*271443^(5/13) 6765000029634475 a001 5702887/12752043*271443^(10/13) 6765000029634546 a001 7465176/16692641*271443^(10/13) 6765000029634556 a001 39088169/87403803*271443^(10/13) 6765000029634558 a001 102334155/228826127*271443^(10/13) 6765000029634558 a001 133957148/299537289*271443^(10/13) 6765000029634558 a001 701408733/1568397607*271443^(10/13) 6765000029634558 a001 1836311903/4106118243*271443^(10/13) 6765000029634558 a001 2403763488/5374978561*271443^(10/13) 6765000029634558 a001 12586269025/28143753123*271443^(10/13) 6765000029634558 a001 32951280099/73681302247*271443^(10/13) 6765000029634558 a001 43133785636/96450076809*271443^(10/13) 6765000029634558 a001 225851433717/505019158607*271443^(10/13) 6765000029634558 a001 591286729879/1322157322203*271443^(10/13) 6765000029634558 a001 10610209857723/23725150497407*271443^(10/13) 6765000029634558 a001 182717648081/408569081798*271443^(10/13) 6765000029634558 a001 139583862445/312119004989*271443^(10/13) 6765000029634558 a001 53316291173/119218851371*271443^(10/13) 6765000029634558 a001 10182505537/22768774562*271443^(10/13) 6765000029634558 a001 7778742049/17393796001*271443^(10/13) 6765000029634558 a001 2971215073/6643838879*271443^(10/13) 6765000029634558 a001 567451585/1268860318*271443^(10/13) 6765000029634558 a001 433494437/969323029*271443^(10/13) 6765000029634558 a001 165580141/370248451*271443^(10/13) 6765000029634558 a001 31622993/70711162*271443^(10/13) 6765000029634562 a001 24157817/54018521*271443^(10/13) 6765000029634590 a001 9227465/20633239*271443^(10/13) 6765000029634776 a001 1762289/3940598*271443^(10/13) 6765000029635002 a001 317811/4870847*271443^(12/13) 6765000029635374 a001 98209/219602*1860498^(2/3) 6765000029636051 a001 1346269/3010349*271443^(10/13) 6765000029639381 a001 832040/4870847*271443^(11/13) 6765000029640640 a001 2971215073/1860498*103682^(1/8) 6765000029641294 a001 726103/4250681*271443^(11/13) 6765000029641393 a001 9227465/439204*271443^(6/13) 6765000029641573 a001 5702887/33385282*271443^(11/13) 6765000029641613 a001 4976784/29134601*271443^(11/13) 6765000029641619 a001 39088169/228826127*271443^(11/13) 6765000029641620 a001 34111385/199691526*271443^(11/13) 6765000029641620 a001 267914296/1568397607*271443^(11/13) 6765000029641620 a001 233802911/1368706081*271443^(11/13) 6765000029641620 a001 1836311903/10749957122*271443^(11/13) 6765000029641620 a001 1602508992/9381251041*271443^(11/13) 6765000029641620 a001 12586269025/73681302247*271443^(11/13) 6765000029641620 a001 10983760033/64300051206*271443^(11/13) 6765000029641620 a001 86267571272/505019158607*271443^(11/13) 6765000029641620 a001 75283811239/440719107401*271443^(11/13) 6765000029641620 a001 2504730781961/14662949395604*271443^(11/13) 6765000029641620 a001 139583862445/817138163596*271443^(11/13) 6765000029641620 a001 53316291173/312119004989*271443^(11/13) 6765000029641620 a001 20365011074/119218851371*271443^(11/13) 6765000029641620 a001 7778742049/45537549124*271443^(11/13) 6765000029641620 a001 2971215073/17393796001*271443^(11/13) 6765000029641620 a001 1134903170/6643838879*271443^(11/13) 6765000029641620 a001 433494437/2537720636*271443^(11/13) 6765000029641620 a001 165580141/969323029*271443^(11/13) 6765000029641621 a001 63245986/370248451*271443^(11/13) 6765000029641623 a001 24157817/141422324*271443^(11/13) 6765000029641639 a001 9227465/54018521*271443^(11/13) 6765000029641745 a001 3524578/20633239*271443^(11/13) 6765000029642309 a001 7778742049/4870847*103682^(1/8) 6765000029642350 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^34 6765000029642476 a001 1346269/7881196*271443^(11/13) 6765000029642553 a001 20365011074/12752043*103682^(1/8) 6765000029642588 a001 53316291173/33385282*103682^(1/8) 6765000029642594 a001 139583862445/87403803*103682^(1/8) 6765000029642594 a001 365435296162/228826127*103682^(1/8) 6765000029642594 a001 956722026041/599074578*103682^(1/8) 6765000029642594 a001 2504730781961/1568397607*103682^(1/8) 6765000029642594 a001 6557470319842/4106118243*103682^(1/8) 6765000029642594 a001 10610209857723/6643838879*103682^(1/8) 6765000029642594 a001 4052739537881/2537720636*103682^(1/8) 6765000029642594 a001 1548008755920/969323029*103682^(1/8) 6765000029642595 a001 591286729879/370248451*103682^(1/8) 6765000029642595 a001 225851433717/141422324*103682^(1/8) 6765000029642597 a001 86267571272/54018521*103682^(1/8) 6765000029642610 a001 32951280099/20633239*103682^(1/8) 6765000029642703 a001 12586269025/7881196*103682^(1/8) 6765000029643341 a001 4807526976/3010349*103682^(1/8) 6765000029643640 a001 98209/219602*710647^(5/7) 6765000029644791 a001 514229/1149851*271443^(10/13) 6765000029644867 a001 5702887/439204*271443^(1/2) 6765000029646687 a001 832040/12752043*271443^(12/13) 6765000029647484 a001 514229/3010349*271443^(11/13) 6765000029647711 a001 1836311903/1149851*103682^(1/8) 6765000029648392 a001 311187/4769326*271443^(12/13) 6765000029648549 a001 1762289/219602*271443^(7/13) 6765000029648641 a001 5702887/87403803*271443^(12/13) 6765000029648677 a001 14930352/228826127*271443^(12/13) 6765000029648682 a001 39088169/599074578*271443^(12/13) 6765000029648683 a001 14619165/224056801*271443^(12/13) 6765000029648683 a001 267914296/4106118243*271443^(12/13) 6765000029648683 a001 701408733/10749957122*271443^(12/13) 6765000029648683 a001 1836311903/28143753123*271443^(12/13) 6765000029648683 a001 686789568/10525900321*271443^(12/13) 6765000029648683 a001 12586269025/192900153618*271443^(12/13) 6765000029648683 a001 32951280099/505019158607*271443^(12/13) 6765000029648683 a001 86267571272/1322157322203*271443^(12/13) 6765000029648683 a001 32264490531/494493258286*271443^(12/13) 6765000029648683 a001 591286729879/9062201101803*271443^(12/13) 6765000029648683 a001 1548008755920/23725150497407*271443^(12/13) 6765000029648683 a001 365435296162/5600748293801*271443^(12/13) 6765000029648683 a001 139583862445/2139295485799*271443^(12/13) 6765000029648683 a001 53316291173/817138163596*271443^(12/13) 6765000029648683 a001 20365011074/312119004989*271443^(12/13) 6765000029648683 a001 7778742049/119218851371*271443^(12/13) 6765000029648683 a001 2971215073/45537549124*271443^(12/13) 6765000029648683 a001 1134903170/17393796001*271443^(12/13) 6765000029648683 a001 433494437/6643838879*271443^(12/13) 6765000029648683 a001 165580141/2537720636*271443^(12/13) 6765000029648683 a001 63245986/969323029*271443^(12/13) 6765000029648685 a001 24157817/370248451*271443^(12/13) 6765000029648699 a001 9227465/141422324*271443^(12/13) 6765000029648794 a001 3524578/54018521*271443^(12/13) 6765000029649445 a001 1346269/20633239*271443^(12/13) 6765000029651443 a001 567451585/219602*103682^(1/12) 6765000029653791 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^36 6765000029653909 a001 514229/7881196*271443^(12/13) 6765000029655420 a001 701408733/710647*103682^(1/6) 6765000029655461 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^38 6765000029655665 a001 63245986/271443*103682^(7/24) 6765000029655704 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^40 6765000029655740 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^42 6765000029655745 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^44 6765000029655746 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^46 6765000029655746 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^48 6765000029655746 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^50 6765000029655746 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^52 6765000029655746 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^54 6765000029655746 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^56 6765000029655746 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^58 6765000029655746 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^60 6765000029655746 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^62 6765000029655746 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^64 6765000029655746 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^66 6765000029655746 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^68 6765000029655746 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^70 6765000029655746 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^72 6765000029655746 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^74 6765000029655746 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^76 6765000029655746 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^78 6765000029655746 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^80 6765000029655746 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^82 6765000029655746 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^84 6765000029655746 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^86 6765000029655746 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^88 6765000029655746 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^90 6765000029655746 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^92 6765000029655746 a004 Fibonacci(88)*Lucas(26)/(1/2+sqrt(5)/2)^94 6765000029655746 a004 Fibonacci(90)*Lucas(26)/(1/2+sqrt(5)/2)^96 6765000029655746 a004 Fibonacci(92)*Lucas(26)/(1/2+sqrt(5)/2)^98 6765000029655746 a004 Fibonacci(94)*Lucas(26)/(1/2+sqrt(5)/2)^100 6765000029655746 a004 Fibonacci(93)*Lucas(26)/(1/2+sqrt(5)/2)^99 6765000029655746 a004 Fibonacci(91)*Lucas(26)/(1/2+sqrt(5)/2)^97 6765000029655746 a004 Fibonacci(89)*Lucas(26)/(1/2+sqrt(5)/2)^95 6765000029655746 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^93 6765000029655746 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^91 6765000029655746 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^89 6765000029655746 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^87 6765000029655746 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^85 6765000029655746 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^83 6765000029655746 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^81 6765000029655746 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^79 6765000029655746 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^77 6765000029655746 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^75 6765000029655746 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^73 6765000029655746 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^71 6765000029655746 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^69 6765000029655746 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^67 6765000029655746 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^65 6765000029655746 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^63 6765000029655746 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^61 6765000029655746 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^59 6765000029655746 a001 2/121393*(1/2+1/2*5^(1/2))^46 6765000029655746 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^57 6765000029655746 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^55 6765000029655746 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^53 6765000029655746 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^51 6765000029655746 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^49 6765000029655746 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^47 6765000029655746 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^45 6765000029655748 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^43 6765000029655762 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^41 6765000029655855 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^39 6765000029656249 a001 1346269/439204*271443^(8/13) 6765000029656492 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^37 6765000029658126 a001 75640/15251*167761^(3/5) 6765000029660862 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^35 6765000029661040 a001 433494437/167761*64079^(2/23) 6765000029666861 a001 1836311903/1860498*103682^(1/6) 6765000029667682 a001 514229/439204*271443^(9/13) 6765000029668177 a001 1134903170/271443*39603^(1/22) 6765000029668530 a001 4807526976/4870847*103682^(1/6) 6765000029668774 a001 12586269025/12752043*103682^(1/6) 6765000029668809 a001 32951280099/33385282*103682^(1/6) 6765000029668815 a001 86267571272/87403803*103682^(1/6) 6765000029668815 a001 225851433717/228826127*103682^(1/6) 6765000029668815 a001 591286729879/599074578*103682^(1/6) 6765000029668816 a001 1548008755920/1568397607*103682^(1/6) 6765000029668816 a001 4052739537881/4106118243*103682^(1/6) 6765000029668816 a001 4807525989/4870846*103682^(1/6) 6765000029668816 a001 6557470319842/6643838879*103682^(1/6) 6765000029668816 a001 2504730781961/2537720636*103682^(1/6) 6765000029668816 a001 956722026041/969323029*103682^(1/6) 6765000029668816 a001 365435296162/370248451*103682^(1/6) 6765000029668816 a001 139583862445/141422324*103682^(1/6) 6765000029668818 a001 53316291173/54018521*103682^(1/6) 6765000029668831 a001 20365011074/20633239*103682^(1/6) 6765000029668924 a001 7778742049/7881196*103682^(1/6) 6765000029669562 a001 2971215073/3010349*103682^(1/6) 6765000029673199 a001 75025/103682*103682^(19/24) 6765000029673932 a001 1134903170/1149851*103682^(1/6) 6765000029677664 a001 701408733/439204*103682^(1/8) 6765000029681641 a001 433494437/710647*103682^(5/24) 6765000029681807 a001 196418/1149851*271443^(11/13) 6765000029681884 a001 39088169/271443*103682^(1/3) 6765000029684500 a001 196418/3010349*271443^(12/13) 6765000029685202 a001 63245986/39603*15127^(3/20) 6765000029685213 a001 75025/271443*439204^(7/9) 6765000029690816 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^33 6765000029693082 a001 567451585/930249*103682^(5/24) 6765000029694751 a001 2971215073/4870847*103682^(5/24) 6765000029694995 a001 7778742049/12752043*103682^(5/24) 6765000029695030 a001 10182505537/16692641*103682^(5/24) 6765000029695036 a001 53316291173/87403803*103682^(5/24) 6765000029695036 a001 139583862445/228826127*103682^(5/24) 6765000029695037 a001 182717648081/299537289*103682^(5/24) 6765000029695037 a001 956722026041/1568397607*103682^(5/24) 6765000029695037 a001 2504730781961/4106118243*103682^(5/24) 6765000029695037 a001 3278735159921/5374978561*103682^(5/24) 6765000029695037 a001 10610209857723/17393796001*103682^(5/24) 6765000029695037 a001 4052739537881/6643838879*103682^(5/24) 6765000029695037 a001 1134903780/1860499*103682^(5/24) 6765000029695037 a001 591286729879/969323029*103682^(5/24) 6765000029695037 a001 225851433717/370248451*103682^(5/24) 6765000029695037 a001 21566892818/35355581*103682^(5/24) 6765000029695039 a001 32951280099/54018521*103682^(5/24) 6765000029695052 a001 1144206275/1875749*103682^(5/24) 6765000029695145 a001 1201881744/1970299*103682^(5/24) 6765000029695783 a001 1836311903/3010349*103682^(5/24) 6765000029700153 a001 701408733/1149851*103682^(5/24) 6765000029703885 a001 433494437/439204*103682^(1/6) 6765000029704698 a001 98209/219602*271443^(10/13) 6765000029707862 a001 267914296/710647*103682^(1/4) 6765000029708109 a001 24157817/271443*103682^(3/8) 6765000029708171 a001 9227465/167761*167761^(2/5) 6765000029711744 a001 9107509825/1346269 6765000029712421 a001 75025/271443*7881196^(7/11) 6765000029712481 a001 75025/271443*20633239^(3/5) 6765000029712490 a001 75025/271443*141422324^(7/13) 6765000029712490 a001 75025/271443*2537720636^(7/15) 6765000029712490 a001 75025/271443*17393796001^(3/7) 6765000029712490 a001 75025/271443*45537549124^(7/17) 6765000029712490 a001 75025/271443*14662949395604^(1/3) 6765000029712490 a001 75025/271443*(1/2+1/2*5^(1/2))^21 6765000029712490 a001 75025/271443*192900153618^(7/18) 6765000029712490 a001 121393/167761*817138163596^(1/3) 6765000029712490 a001 121393/167761*(1/2+1/2*5^(1/2))^19 6765000029712490 a001 75025/271443*10749957122^(7/16) 6765000029712490 a001 75025/271443*599074578^(1/2) 6765000029712491 a001 121393/167761*87403803^(1/2) 6765000029712494 a001 75025/271443*33385282^(7/12) 6765000029713858 a001 75025/271443*1860498^(7/10) 6765000029718866 a001 102334155/103682*39603^(2/11) 6765000029719303 a001 233802911/620166*103682^(1/4) 6765000029720972 a001 1836311903/4870847*103682^(1/4) 6765000029721216 a001 1602508992/4250681*103682^(1/4) 6765000029721252 a001 12586269025/33385282*103682^(1/4) 6765000029721257 a001 10983760033/29134601*103682^(1/4) 6765000029721257 a001 86267571272/228826127*103682^(1/4) 6765000029721258 a001 267913919/710646*103682^(1/4) 6765000029721258 a001 591286729879/1568397607*103682^(1/4) 6765000029721258 a001 516002918640/1368706081*103682^(1/4) 6765000029721258 a001 4052739537881/10749957122*103682^(1/4) 6765000029721258 a001 3536736619241/9381251041*103682^(1/4) 6765000029721258 a001 6557470319842/17393796001*103682^(1/4) 6765000029721258 a001 2504730781961/6643838879*103682^(1/4) 6765000029721258 a001 956722026041/2537720636*103682^(1/4) 6765000029721258 a001 365435296162/969323029*103682^(1/4) 6765000029721258 a001 139583862445/370248451*103682^(1/4) 6765000029721258 a001 53316291173/141422324*103682^(1/4) 6765000029721260 a001 20365011074/54018521*103682^(1/4) 6765000029721273 a001 7778742049/20633239*103682^(1/4) 6765000029721366 a001 2971215073/7881196*103682^(1/4) 6765000029722004 a001 1134903170/3010349*103682^(1/4) 6765000029722537 a001 75025/271443*710647^(3/4) 6765000029725641 a001 46368/167761*103682^(7/8) 6765000029726374 a001 433494437/1149851*103682^(1/4) 6765000029730106 a001 66978574/109801*103682^(5/24) 6765000029732672 a001 701408733/167761*64079^(1/23) 6765000029734083 a001 165580141/710647*103682^(7/24) 6765000029734321 a001 4976784/90481*103682^(5/12) 6765000029745524 a001 433494437/1860498*103682^(7/24) 6765000029746596 a001 2971215073/710647*39603^(1/22) 6765000029747193 a001 1134903170/4870847*103682^(7/24) 6765000029747437 a001 2971215073/12752043*103682^(7/24) 6765000029747473 a001 7778742049/33385282*103682^(7/24) 6765000029747478 a001 20365011074/87403803*103682^(7/24) 6765000029747478 a001 53316291173/228826127*103682^(7/24) 6765000029747479 a001 139583862445/599074578*103682^(7/24) 6765000029747479 a001 365435296162/1568397607*103682^(7/24) 6765000029747479 a001 956722026041/4106118243*103682^(7/24) 6765000029747479 a001 2504730781961/10749957122*103682^(7/24) 6765000029747479 a001 6557470319842/28143753123*103682^(7/24) 6765000029747479 a001 10610209857723/45537549124*103682^(7/24) 6765000029747479 a001 4052739537881/17393796001*103682^(7/24) 6765000029747479 a001 1548008755920/6643838879*103682^(7/24) 6765000029747479 a001 591286729879/2537720636*103682^(7/24) 6765000029747479 a001 225851433717/969323029*103682^(7/24) 6765000029747479 a001 86267571272/370248451*103682^(7/24) 6765000029747479 a001 63246219/271444*103682^(7/24) 6765000029747481 a001 12586269025/54018521*103682^(7/24) 6765000029747495 a001 4807526976/20633239*103682^(7/24) 6765000029747588 a001 1836311903/7881196*103682^(7/24) 6765000029748225 a001 701408733/3010349*103682^(7/24) 6765000029752595 a001 267914296/1149851*103682^(7/24) 6765000029756230 a001 9303105/15251*167761^(1/5) 6765000029756328 a001 165580141/439204*103682^(1/4) 6765000029758037 a001 7778742049/1860498*39603^(1/22) 6765000029759706 a001 20365011074/4870847*39603^(1/22) 6765000029759950 a001 53316291173/12752043*39603^(1/22) 6765000029759985 a001 139583862445/33385282*39603^(1/22) 6765000029759990 a001 365435296162/87403803*39603^(1/22) 6765000029759991 a001 956722026041/228826127*39603^(1/22) 6765000029759991 a001 2504730781961/599074578*39603^(1/22) 6765000029759991 a001 6557470319842/1568397607*39603^(1/22) 6765000029759991 a001 10610209857723/2537720636*39603^(1/22) 6765000029759991 a001 4052739537881/969323029*39603^(1/22) 6765000029759991 a001 1548008755920/370248451*39603^(1/22) 6765000029759992 a001 591286729879/141422324*39603^(1/22) 6765000029759994 a001 225851433717/54018521*39603^(1/22) 6765000029760007 a001 86267571272/20633239*39603^(1/22) 6765000029760100 a001 32951280099/7881196*39603^(1/22) 6765000029760304 a001 14619165/101521*103682^(1/3) 6765000029760564 a001 9227465/271443*103682^(11/24) 6765000029760738 a001 12586269025/3010349*39603^(1/22) 6765000029765108 a001 4807526976/1149851*39603^(1/22) 6765000029769234 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^32 6765000029771745 a001 133957148/930249*103682^(1/3) 6765000029773415 a001 701408733/4870847*103682^(1/3) 6765000029773658 a001 1836311903/12752043*103682^(1/3) 6765000029773694 a001 14930208/103681*103682^(1/3) 6765000029773699 a001 12586269025/87403803*103682^(1/3) 6765000029773700 a001 32951280099/228826127*103682^(1/3) 6765000029773700 a001 43133785636/299537289*103682^(1/3) 6765000029773700 a001 32264490531/224056801*103682^(1/3) 6765000029773700 a001 591286729879/4106118243*103682^(1/3) 6765000029773700 a001 774004377960/5374978561*103682^(1/3) 6765000029773700 a001 4052739537881/28143753123*103682^(1/3) 6765000029773700 a001 1515744265389/10525900321*103682^(1/3) 6765000029773700 a001 3278735159921/22768774562*103682^(1/3) 6765000029773700 a001 2504730781961/17393796001*103682^(1/3) 6765000029773700 a001 956722026041/6643838879*103682^(1/3) 6765000029773700 a001 182717648081/1268860318*103682^(1/3) 6765000029773700 a001 139583862445/969323029*103682^(1/3) 6765000029773700 a001 53316291173/370248451*103682^(1/3) 6765000029773700 a001 10182505537/70711162*103682^(1/3) 6765000029773702 a001 7778742049/54018521*103682^(1/3) 6765000029773716 a001 2971215073/20633239*103682^(1/3) 6765000029773809 a001 567451585/3940598*103682^(1/3) 6765000029774446 a001 433494437/3010349*103682^(1/3) 6765000029778248 a001 75025/1149851*439204^(8/9) 6765000029778816 a001 165580141/1149851*103682^(1/3) 6765000029782548 a001 102334155/439204*103682^(7/24) 6765000029782867 a001 75640/15251*439204^(5/9) 6765000029786525 a001 63245986/710647*103682^(3/8) 6765000029786728 a001 5702887/271443*103682^(1/2) 6765000029788827 a001 3524578/167761*439204^(4/9) 6765000029790800 a001 23843770275/3524578 6765000029790909 a001 75025/710647*(1/2+1/2*5^(1/2))^23 6765000029790909 a001 317811/167761*45537549124^(1/3) 6765000029790909 a001 317811/167761*(1/2+1/2*5^(1/2))^17 6765000029790909 a001 75025/710647*4106118243^(1/2) 6765000029790930 a001 317811/167761*12752043^(1/2) 6765000029792608 a001 14930352/167761*439204^(1/3) 6765000029795061 a001 1836311903/439204*39603^(1/22) 6765000029796511 a001 63245986/167761*439204^(2/9) 6765000029797966 a001 165580141/1860498*103682^(3/8) 6765000029799188 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^34 6765000029799636 a001 433494437/4870847*103682^(3/8) 6765000029799879 a001 1134903170/12752043*103682^(3/8) 6765000029799915 a001 2971215073/33385282*103682^(3/8) 6765000029799920 a001 7778742049/87403803*103682^(3/8) 6765000029799921 a001 20365011074/228826127*103682^(3/8) 6765000029799921 a001 53316291173/599074578*103682^(3/8) 6765000029799921 a001 139583862445/1568397607*103682^(3/8) 6765000029799921 a001 365435296162/4106118243*103682^(3/8) 6765000029799921 a001 956722026041/10749957122*103682^(3/8) 6765000029799921 a001 2504730781961/28143753123*103682^(3/8) 6765000029799921 a001 6557470319842/73681302247*103682^(3/8) 6765000029799921 a001 10610209857723/119218851371*103682^(3/8) 6765000029799921 a001 4052739537881/45537549124*103682^(3/8) 6765000029799921 a001 1548008755920/17393796001*103682^(3/8) 6765000029799921 a001 591286729879/6643838879*103682^(3/8) 6765000029799921 a001 225851433717/2537720636*103682^(3/8) 6765000029799921 a001 86267571272/969323029*103682^(3/8) 6765000029799921 a001 32951280099/370248451*103682^(3/8) 6765000029799921 a001 12586269025/141422324*103682^(3/8) 6765000029799923 a001 4807526976/54018521*103682^(3/8) 6765000029799937 a001 1836311903/20633239*103682^(3/8) 6765000029800030 a001 3524667/39604*103682^(3/8) 6765000029800408 a001 267914296/167761*439204^(1/9) 6765000029800667 a001 267914296/3010349*103682^(3/8) 6765000029802301 a001 75640/15251*7881196^(5/11) 6765000029802334 a001 12484760200/1845493 6765000029802339 a001 75025/1860498*20633239^(5/7) 6765000029802343 a001 75640/15251*20633239^(3/7) 6765000029802350 a001 75640/15251*141422324^(5/13) 6765000029802350 a001 75025/1860498*2537720636^(5/9) 6765000029802350 a001 75640/15251*2537720636^(1/3) 6765000029802350 a001 75025/1860498*312119004989^(5/11) 6765000029802350 a001 75025/1860498*(1/2+1/2*5^(1/2))^25 6765000029802350 a001 75025/1860498*3461452808002^(5/12) 6765000029802350 a001 75025/1860498*28143753123^(1/2) 6765000029802350 a001 75640/15251*45537549124^(5/17) 6765000029802350 a001 75640/15251*312119004989^(3/11) 6765000029802350 a001 75640/15251*14662949395604^(5/21) 6765000029802350 a001 75640/15251*(1/2+1/2*5^(1/2))^15 6765000029802350 a001 75640/15251*192900153618^(5/18) 6765000029802350 a001 75640/15251*28143753123^(3/10) 6765000029802350 a001 75640/15251*10749957122^(5/16) 6765000029802350 a001 75640/15251*599074578^(5/14) 6765000029802350 a001 75640/15251*228826127^(3/8) 6765000029802350 a001 75025/1860498*228826127^(5/8) 6765000029802353 a001 75640/15251*33385282^(5/12) 6765000029803327 a001 75640/15251*1860498^(1/2) 6765000029803558 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^36 6765000029803930 a001 75025/4870847*7881196^(9/11) 6765000029803979 a001 75025/1860498*1860498^(5/6) 6765000029804017 a001 163427632725/24157817 6765000029804019 a001 75025/4870847*141422324^(9/13) 6765000029804019 a001 2178309/167761*141422324^(1/3) 6765000029804019 a001 75025/4870847*2537720636^(3/5) 6765000029804019 a001 75025/4870847*45537549124^(9/17) 6765000029804019 a001 75025/4870847*817138163596^(9/19) 6765000029804019 a001 75025/4870847*14662949395604^(3/7) 6765000029804019 a001 75025/4870847*(1/2+1/2*5^(1/2))^27 6765000029804019 a001 75025/4870847*192900153618^(1/2) 6765000029804019 a001 2178309/167761*(1/2+1/2*5^(1/2))^13 6765000029804019 a001 2178309/167761*73681302247^(1/4) 6765000029804019 a001 75025/4870847*10749957122^(9/16) 6765000029804019 a001 75025/4870847*599074578^(9/14) 6765000029804024 a001 75025/4870847*33385282^(3/4) 6765000029804196 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^38 6765000029804221 a001 75025/20633239*7881196^(10/11) 6765000029804227 a001 5702887/167761*7881196^(1/3) 6765000029804262 a001 427859097175/63245986 6765000029804263 a001 75025/12752043*(1/2+1/2*5^(1/2))^29 6765000029804263 a001 75025/12752043*1322157322203^(1/2) 6765000029804263 a001 5702887/167761*312119004989^(1/5) 6765000029804263 a001 5702887/167761*(1/2+1/2*5^(1/2))^11 6765000029804263 a001 5702887/167761*1568397607^(1/4) 6765000029804269 a001 14930352/167761*7881196^(3/11) 6765000029804285 a001 63245986/167761*7881196^(2/11) 6765000029804289 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^40 6765000029804295 a001 267914296/167761*7881196^(1/11) 6765000029804298 a001 14930352/167761*141422324^(3/13) 6765000029804298 a001 1120149658800/165580141 6765000029804298 a001 14930352/167761*2537720636^(1/5) 6765000029804298 a001 75025/33385282*(1/2+1/2*5^(1/2))^31 6765000029804298 a001 75025/33385282*9062201101803^(1/2) 6765000029804298 a001 14930352/167761*45537549124^(3/17) 6765000029804298 a001 14930352/167761*14662949395604^(1/7) 6765000029804298 a001 14930352/167761*(1/2+1/2*5^(1/2))^9 6765000029804298 a001 14930352/167761*192900153618^(1/6) 6765000029804298 a001 14930352/167761*10749957122^(3/16) 6765000029804298 a001 14930352/167761*599074578^(3/14) 6765000029804300 a001 14930352/167761*33385282^(1/4) 6765000029804300 a001 39088169/167761*20633239^(1/5) 6765000029804302 a001 9303105/15251*20633239^(1/7) 6765000029804302 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^42 6765000029804303 a001 75025/87403803*141422324^(11/13) 6765000029804304 a001 2932589879225/433494437 6765000029804304 a001 75025/87403803*2537720636^(11/15) 6765000029804304 a001 75025/87403803*45537549124^(11/17) 6765000029804304 a001 75025/87403803*312119004989^(3/5) 6765000029804304 a001 75025/87403803*817138163596^(11/19) 6765000029804304 a001 75025/87403803*14662949395604^(11/21) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(38) 6765000029804304 a001 75025/87403803*192900153618^(11/18) 6765000029804304 a001 39088169/167761*17393796001^(1/7) 6765000029804304 a001 39088169/167761*14662949395604^(1/9) 6765000029804304 a001 39088169/167761*(1/2+1/2*5^(1/2))^7 6765000029804304 a001 75025/87403803*10749957122^(11/16) 6765000029804304 a001 75025/87403803*1568397607^(3/4) 6765000029804304 a001 39088169/167761*599074578^(1/6) 6765000029804304 a001 75025/87403803*599074578^(11/14) 6765000029804304 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^44 6765000029804304 a001 75025/370248451*141422324^(12/13) 6765000029804304 a001 1535523995775/226980634 6765000029804304 a001 75025/228826127*2537720636^(7/9) 6765000029804304 a001 9303105/15251*2537720636^(1/9) 6765000029804304 a001 75025/228826127*17393796001^(5/7) 6765000029804304 a001 75025/228826127*312119004989^(7/11) 6765000029804304 a001 75025/228826127*14662949395604^(5/9) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(40) 6765000029804304 a001 75025/228826127*505019158607^(5/8) 6765000029804304 a001 75025/228826127*28143753123^(7/10) 6765000029804304 a001 9303105/15251*312119004989^(1/11) 6765000029804304 a001 9303105/15251*(1/2+1/2*5^(1/2))^5 6765000029804304 a001 9303105/15251*28143753123^(1/10) 6765000029804304 a001 75025/228826127*599074578^(5/6) 6765000029804304 a001 9303105/15251*228826127^(1/8) 6765000029804304 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^46 6765000029804304 a001 267914296/167761*141422324^(1/13) 6765000029804304 a001 20100270057400/2971215073 6765000029804304 a001 267914296/167761*2537720636^(1/15) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(42) 6765000029804304 a001 267914296/167761*45537549124^(1/17) 6765000029804304 a001 267914296/167761*14662949395604^(1/21) 6765000029804304 a001 267914296/167761*(1/2+1/2*5^(1/2))^3 6765000029804304 a001 267914296/167761*192900153618^(1/18) 6765000029804304 a001 267914296/167761*10749957122^(1/16) 6765000029804304 a001 267914296/167761*599074578^(1/14) 6765000029804304 a001 75025/228826127*228826127^(7/8) 6765000029804304 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^48 6765000029804304 a001 75025/1568397607*2537720636^(13/15) 6765000029804304 a001 52623190193325/7778742049 6765000029804304 a001 75025/1568397607*45537549124^(13/17) 6765000029804304 a001 75025/1568397607*14662949395604^(13/21) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(44) 6765000029804304 a001 75025/1568397607*192900153618^(13/18) 6765000029804304 a001 75025/1568397607*73681302247^(3/4) 6765000029804304 a001 701408733/335522+701408733/335522*5^(1/2) 6765000029804304 a001 75025/1568397607*10749957122^(13/16) 6765000029804304 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^50 6765000029804304 a001 75025/6643838879*2537720636^(14/15) 6765000029804304 a001 137769300522575/20365011074 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(46) 6765000029804304 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2) 6765000029804304 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^52 6765000029804304 a001 360684711374400/53316291173 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(48) 6765000029804304 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^3 6765000029804304 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^54 6765000029804304 a001 75025/28143753123*45537549124^(15/17) 6765000029804304 a001 188856966720125/27916772489 6765000029804304 a001 75025/28143753123*312119004989^(9/11) 6765000029804304 a001 75025/28143753123*14662949395604^(5/7) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(50) 6765000029804304 a001 75025/28143753123*192900153618^(5/6) 6765000029804304 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^56 6765000029804304 a001 75025/119218851371*45537549124^(16/17) 6765000029804304 a001 2472169789427475/365435296162 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(52) 6765000029804304 a001 75025/28143753123*28143753123^(9/10) 6765000029804304 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^58 6765000029804304 a001 6472224534681800/956722026041 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(54) 6765000029804304 a001 75025/192900153618*505019158607^(7/8) 6765000029804304 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^60 6765000029804304 a001 75025/505019158607*817138163596^(17/19) 6765000029804304 a001 16944503814617925/2504730781961 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(56) 6765000029804304 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^62 6765000029804304 a001 44361286909171975/6557470319842 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(58) 6765000029804304 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^64 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(60) 6765000029804304 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^66 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(62) 6765000029804304 a001 75025/3461452808002*3461452808002^(11/12) 6765000029804304 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^68 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(64) 6765000029804304 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^70 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(66) 6765000029804304 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^72 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(68) 6765000029804304 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^74 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(70) 6765000029804304 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^76 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(72) 6765000029804304 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^78 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(74) 6765000029804304 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^80 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(76) 6765000029804304 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^82 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(78) 6765000029804304 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^84 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(80) 6765000029804304 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^86 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(82) 6765000029804304 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^88 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(84) 6765000029804304 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^90 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(86) 6765000029804304 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^92 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(88) 6765000029804304 a004 Fibonacci(25)*Lucas(89)/(1/2+sqrt(5)/2)^94 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(90) 6765000029804304 a004 Fibonacci(25)*Lucas(91)/(1/2+sqrt(5)/2)^96 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(92) 6765000029804304 a004 Fibonacci(25)*Lucas(93)/(1/2+sqrt(5)/2)^98 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^89/Lucas(94) 6765000029804304 a004 Fibonacci(25)*Lucas(95)/(1/2+sqrt(5)/2)^100 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^91/Lucas(96) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^93/Lucas(98) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^95/Lucas(100) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^94/Lucas(99) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^92/Lucas(97) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^90/Lucas(95) 6765000029804304 a004 Fibonacci(25)*Lucas(94)/(1/2+sqrt(5)/2)^99 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(93) 6765000029804304 a004 Fibonacci(25)*Lucas(92)/(1/2+sqrt(5)/2)^97 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(91) 6765000029804304 a004 Fibonacci(25)*Lucas(90)/(1/2+sqrt(5)/2)^95 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(89) 6765000029804304 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^93 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(87) 6765000029804304 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^91 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(85) 6765000029804304 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^89 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(83) 6765000029804304 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^87 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(81) 6765000029804304 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^85 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(79) 6765000029804304 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^83 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(77) 6765000029804304 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^81 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(75) 6765000029804304 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^79 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(73) 6765000029804304 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^77 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(71) 6765000029804304 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^75 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(69) 6765000029804304 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^73 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(67) 6765000029804304 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^71 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(65) 6765000029804304 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^69 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(63) 6765000029804304 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^67 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(61) 6765000029804304 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^65 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(59) 6765000029804304 a001 71778070003726025/10610209857723 6765000029804304 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^63 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(57) 6765000029804304 a001 27416783094554050/4052739537881 6765000029804304 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^61 6765000029804304 a001 75025/817138163596*505019158607^(13/14) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(55) 6765000029804304 a001 75025/312119004989*3461452808002^(5/6) 6765000029804304 a001 2094455855987225/309601751184 6765000029804304 a001 75025/505019158607*192900153618^(17/18) 6765000029804304 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^59 6765000029804304 a001 75025/119218851371*14662949395604^(16/21) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(53) 6765000029804304 a001 4000054745254325/591286729879 6765000029804304 a001 75025/119218851371*192900153618^(8/9) 6765000029804304 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^57 6765000029804304 a001 75025/119218851371*73681302247^(12/13) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(51) 6765000029804304 a001 1527884955826850/225851433717 6765000029804304 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^7 6765000029804304 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^9 6765000029804304 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^11 6765000029804304 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^13 6765000029804304 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^15 6765000029804304 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^17 6765000029804304 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^19 6765000029804304 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^21 6765000029804304 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^23 6765000029804304 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^25 6765000029804304 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^27 6765000029804304 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^29 6765000029804304 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^31 6765000029804304 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^33 6765000029804304 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^35 6765000029804304 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^37 6765000029804304 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^39 6765000029804304 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^41 6765000029804304 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^43 6765000029804304 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^45 6765000029804304 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^47 6765000029804304 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^49 6765000029804304 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^51 6765000029804304 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^53 6765000029804304 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^55 6765000029804304 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^54 6765000029804304 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^52 6765000029804304 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^50 6765000029804304 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^48 6765000029804304 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^46 6765000029804304 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^44 6765000029804304 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^42 6765000029804304 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^40 6765000029804304 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^38 6765000029804304 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^36 6765000029804304 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^34 6765000029804304 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^32 6765000029804304 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^30 6765000029804304 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^28 6765000029804304 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^26 6765000029804304 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^24 6765000029804304 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^22 6765000029804304 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^20 6765000029804304 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^18 6765000029804304 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^16 6765000029804304 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^14 6765000029804304 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^12 6765000029804304 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^10 6765000029804304 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^8 6765000029804304 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^6 6765000029804304 a001 75025/17393796001*312119004989^(4/5) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(49) 6765000029804304 a001 75025/17393796001*23725150497407^(11/16) 6765000029804304 a001 583600122226225/86267571272 6765000029804304 a001 75025/17393796001*73681302247^(11/13) 6765000029804304 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^4 6765000029804304 a001 75025/28143753123*10749957122^(15/16) 6765000029804304 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^53 6765000029804304 a001 75025/45537549124*10749957122^(23/24) 6765000029804304 a001 75025/17393796001*10749957122^(11/12) 6765000029804304 a001 75025/2537720636*2537720636^(8/9) 6765000029804304 a001 75025/6643838879*17393796001^(6/7) 6765000029804304 a001 75025/6643838879*45537549124^(14/17) 6765000029804304 a001 75025/6643838879*817138163596^(14/19) 6765000029804304 a001 75025/6643838879*14662949395604^(2/3) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(47) 6765000029804304 a001 75025/6643838879*505019158607^(3/4) 6765000029804304 a001 75025/6643838879*192900153618^(7/9) 6765000029804304 a001 222915410851825/32951280099 6765000029804304 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^2 6765000029804304 a001 75025/6643838879*10749957122^(7/8) 6765000029804304 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^51 6765000029804304 a001 75025/17393796001*4106118243^(22/23) 6765000029804304 a001 75025/6643838879*4106118243^(21/23) 6765000029804304 a001 75025/2537720636*312119004989^(8/11) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(45) 6765000029804304 a001 75025/2537720636*23725150497407^(5/8) 6765000029804304 a001 75025/2537720636*73681302247^(10/13) 6765000029804304 a001 75025/2537720636*28143753123^(4/5) 6765000029804304 a001 1134903170/167761 6765000029804304 a001 75025/2537720636*10749957122^(5/6) 6765000029804304 a001 75025/2537720636*4106118243^(20/23) 6765000029804304 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^49 6765000029804304 a001 75025/6643838879*1568397607^(21/22) 6765000029804304 a001 75025/2537720636*1568397607^(10/11) 6765000029804304 a001 75025/969323029*817138163596^(2/3) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(43) 6765000029804304 a001 433494437/167761*(1/2+1/2*5^(1/2))^2 6765000029804304 a001 433494437/167761*10749957122^(1/24) 6765000029804304 a001 433494437/167761*4106118243^(1/23) 6765000029804304 a001 75025/969323029*10749957122^(19/24) 6765000029804304 a001 32522920135925/4807526976 6765000029804304 a001 433494437/167761*1568397607^(1/22) 6765000029804304 a001 75025/969323029*4106118243^(19/23) 6765000029804304 a001 433494437/167761*599074578^(1/21) 6765000029804304 a001 75025/969323029*1568397607^(19/22) 6765000029804304 a001 433494437/167761*228826127^(1/20) 6765000029804304 a001 75025/1568397607*599074578^(13/14) 6765000029804304 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^47 6765000029804304 a001 75025/2537720636*599074578^(20/21) 6765000029804304 a001 75025/969323029*599074578^(19/21) 6765000029804304 a001 75025/370248451*2537720636^(4/5) 6765000029804304 a001 75025/370248451*45537549124^(12/17) 6765000029804304 a001 75025/370248451*14662949395604^(4/7) 6765000029804304 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(41) 6765000029804304 a001 75025/370248451*505019158607^(9/14) 6765000029804304 a001 75025/370248451*192900153618^(2/3) 6765000029804304 a001 75025/370248451*73681302247^(9/13) 6765000029804304 a001 165580141/167761*(1/2+1/2*5^(1/2))^4 6765000029804304 a001 165580141/167761*23725150497407^(1/16) 6765000029804304 a001 165580141/167761*73681302247^(1/13) 6765000029804304 a001 165580141/167761*10749957122^(1/12) 6765000029804304 a001 165580141/167761*4106118243^(2/23) 6765000029804304 a001 75025/370248451*10749957122^(3/4) 6765000029804304 a001 165580141/167761*1568397607^(1/11) 6765000029804304 a001 75025/370248451*4106118243^(18/23) 6765000029804304 a001 12422650078525/1836311903 6765000029804304 a001 165580141/167761*599074578^(2/21) 6765000029804304 a001 75025/370248451*1568397607^(9/11) 6765000029804304 a001 433494437/167761*87403803^(1/19) 6765000029804304 a001 165580141/167761*228826127^(1/10) 6765000029804304 a001 75025/370248451*599074578^(6/7) 6765000029804305 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^45 6765000029804305 a001 75025/969323029*228826127^(19/20) 6765000029804305 a001 165580141/167761*87403803^(2/19) 6765000029804305 a001 75025/370248451*228826127^(9/10) 6765000029804305 a001 63245986/167761*141422324^(2/13) 6765000029804305 a001 63245986/167761*2537720636^(2/15) 6765000029804305 a001 75025/141422324*45537549124^(2/3) 6765000029804305 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(39) 6765000029804305 a001 63245986/167761*45537549124^(2/17) 6765000029804305 a001 63245986/167761*14662949395604^(2/21) 6765000029804305 a001 63245986/167761*(1/2+1/2*5^(1/2))^6 6765000029804305 a001 63245986/167761*10749957122^(1/8) 6765000029804305 a001 75025/141422324*10749957122^(17/24) 6765000029804305 a001 63245986/167761*4106118243^(3/23) 6765000029804305 a001 75025/141422324*4106118243^(17/23) 6765000029804305 a001 63245986/167761*1568397607^(3/22) 6765000029804305 a001 75025/141422324*1568397607^(17/22) 6765000029804305 a001 63245986/167761*599074578^(1/7) 6765000029804305 a001 4745030099650/701408733 6765000029804305 a001 433494437/167761*33385282^(1/18) 6765000029804305 a001 75025/141422324*599074578^(17/21) 6765000029804305 a001 63245986/167761*228826127^(3/20) 6765000029804305 a001 75025/141422324*228826127^(17/20) 6765000029804305 a001 63245986/167761*87403803^(3/19) 6765000029804305 a001 267914296/167761*33385282^(1/12) 6765000029804305 a001 165580141/167761*33385282^(1/9) 6765000029804305 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^43 6765000029804305 a001 75025/370248451*87403803^(18/19) 6765000029804306 a001 75025/141422324*87403803^(17/19) 6765000029804306 a001 63245986/167761*33385282^(1/6) 6765000029804307 a001 75025/20633239*20633239^(6/7) 6765000029804307 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(37) 6765000029804307 a001 75025/54018521*23725150497407^(1/2) 6765000029804307 a001 75025/54018521*505019158607^(4/7) 6765000029804307 a001 75025/54018521*73681302247^(8/13) 6765000029804307 a001 24157817/167761*(1/2+1/2*5^(1/2))^8 6765000029804307 a001 24157817/167761*23725150497407^(1/8) 6765000029804307 a001 24157817/167761*505019158607^(1/7) 6765000029804307 a001 24157817/167761*73681302247^(2/13) 6765000029804307 a001 24157817/167761*10749957122^(1/6) 6765000029804307 a001 75025/54018521*10749957122^(2/3) 6765000029804307 a001 24157817/167761*4106118243^(4/23) 6765000029804307 a001 75025/54018521*4106118243^(16/23) 6765000029804307 a001 24157817/167761*1568397607^(2/11) 6765000029804307 a001 75025/54018521*1568397607^(8/11) 6765000029804307 a001 24157817/167761*599074578^(4/21) 6765000029804307 a001 75025/54018521*599074578^(16/21) 6765000029804307 a001 1812440220425/267914296 6765000029804307 a001 24157817/167761*228826127^(1/5) 6765000029804307 a001 75025/54018521*228826127^(4/5) 6765000029804307 a001 433494437/167761*12752043^(1/17) 6765000029804307 a001 24157817/167761*87403803^(4/19) 6765000029804307 a001 75025/54018521*87403803^(16/19) 6765000029804308 a001 24157817/167761*33385282^(2/9) 6765000029804309 a001 75025/87403803*33385282^(11/12) 6765000029804309 a001 165580141/167761*12752043^(2/17) 6765000029804311 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^41 6765000029804311 a001 75025/141422324*33385282^(17/18) 6765000029804312 a001 63245986/167761*12752043^(3/17) 6765000029804312 a001 75025/54018521*33385282^(8/9) 6765000029804316 a001 9227465/167761*20633239^(2/7) 6765000029804317 a001 24157817/167761*12752043^(4/17) 6765000029804320 a001 75025/20633239*141422324^(10/13) 6765000029804320 a001 75025/20633239*2537720636^(2/3) 6765000029804320 a001 9227465/167761*2537720636^(2/9) 6765000029804320 a001 75025/20633239*45537549124^(10/17) 6765000029804320 a001 75025/20633239*312119004989^(6/11) 6765000029804320 a001 75025/20633239*14662949395604^(10/21) 6765000029804320 a001 75025/20633239*(1/2+1/2*5^(1/2))^30 6765000029804320 a001 75025/20633239*192900153618^(5/9) 6765000029804320 a001 75025/20633239*28143753123^(3/5) 6765000029804320 a001 9227465/167761*312119004989^(2/11) 6765000029804320 a001 9227465/167761*(1/2+1/2*5^(1/2))^10 6765000029804320 a001 9227465/167761*28143753123^(1/5) 6765000029804320 a001 9227465/167761*10749957122^(5/24) 6765000029804320 a001 75025/20633239*10749957122^(5/8) 6765000029804320 a001 9227465/167761*4106118243^(5/23) 6765000029804320 a001 75025/20633239*4106118243^(15/23) 6765000029804320 a001 9227465/167761*1568397607^(5/22) 6765000029804320 a001 75025/20633239*1568397607^(15/22) 6765000029804320 a001 9227465/167761*599074578^(5/21) 6765000029804320 a001 75025/20633239*599074578^(5/7) 6765000029804320 a001 9227465/167761*228826127^(1/4) 6765000029804320 a001 75025/20633239*228826127^(3/4) 6765000029804320 a001 138458112325/20466831 6765000029804321 a001 9227465/167761*87403803^(5/19) 6765000029804321 a001 75025/20633239*87403803^(15/19) 6765000029804322 a001 9227465/167761*33385282^(5/18) 6765000029804322 a001 433494437/167761*4870847^(1/16) 6765000029804325 a001 75025/20633239*33385282^(5/6) 6765000029804333 a001 9227465/167761*12752043^(5/17) 6765000029804340 a001 165580141/167761*4870847^(1/8) 6765000029804346 a001 75025/54018521*12752043^(16/17) 6765000029804346 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^39 6765000029804357 a001 75025/20633239*12752043^(15/17) 6765000029804358 a001 63245986/167761*4870847^(3/16) 6765000029804374 a001 3524578/167761*7881196^(4/11) 6765000029804378 a001 24157817/167761*4870847^(1/4) 6765000029804401 a001 75025/7881196*20633239^(4/5) 6765000029804409 a001 9227465/167761*4870847^(5/16) 6765000029804413 a001 3524578/167761*141422324^(4/13) 6765000029804413 a001 3524578/167761*2537720636^(4/15) 6765000029804413 a001 75025/7881196*17393796001^(4/7) 6765000029804413 a001 75025/7881196*14662949395604^(4/9) 6765000029804413 a001 75025/7881196*(1/2+1/2*5^(1/2))^28 6765000029804413 a001 75025/7881196*505019158607^(1/2) 6765000029804413 a001 75025/7881196*73681302247^(7/13) 6765000029804413 a001 3524578/167761*45537549124^(4/17) 6765000029804413 a001 3524578/167761*817138163596^(4/19) 6765000029804413 a001 3524578/167761*14662949395604^(4/21) 6765000029804413 a001 3524578/167761*(1/2+1/2*5^(1/2))^12 6765000029804413 a001 3524578/167761*192900153618^(2/9) 6765000029804413 a001 3524578/167761*73681302247^(3/13) 6765000029804413 a001 3524578/167761*10749957122^(1/4) 6765000029804413 a001 75025/7881196*10749957122^(7/12) 6765000029804413 a001 3524578/167761*4106118243^(6/23) 6765000029804413 a001 75025/7881196*4106118243^(14/23) 6765000029804413 a001 3524578/167761*1568397607^(3/11) 6765000029804413 a001 75025/7881196*1568397607^(7/11) 6765000029804413 a001 3524578/167761*599074578^(2/7) 6765000029804413 a001 75025/7881196*599074578^(2/3) 6765000029804413 a001 3524578/167761*228826127^(3/10) 6765000029804413 a001 75025/7881196*228826127^(7/10) 6765000029804414 a001 3524578/167761*87403803^(6/19) 6765000029804414 a001 75025/7881196*87403803^(14/19) 6765000029804414 a001 264431464450/39088169 6765000029804415 a001 3524578/167761*33385282^(1/3) 6765000029804418 a001 75025/7881196*33385282^(7/9) 6765000029804428 a001 3524578/167761*12752043^(6/17) 6765000029804435 a001 433494437/167761*1860498^(1/15) 6765000029804448 a001 75025/7881196*12752043^(14/17) 6765000029804500 a001 267914296/167761*1860498^(1/10) 6765000029804520 a001 3524578/167761*4870847^(3/8) 6765000029804565 a001 165580141/167761*1860498^(2/15) 6765000029804588 a001 75025/20633239*4870847^(15/16) 6765000029804590 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^37 6765000029804630 a001 9303105/15251*1860498^(1/6) 6765000029804663 a001 75025/7881196*4870847^(7/8) 6765000029804696 a001 63245986/167761*1860498^(1/5) 6765000029804828 a001 24157817/167761*1860498^(4/15) 6765000029804885 a001 14930352/167761*1860498^(3/10) 6765000029804972 a001 9227465/167761*1860498^(1/3) 6765000029805037 a001 102334155/1149851*103682^(3/8) 6765000029805045 a001 1346269/167761*20633239^(2/5) 6765000029805051 a001 75025/3010349*141422324^(2/3) 6765000029805051 a001 75025/3010349*(1/2+1/2*5^(1/2))^26 6765000029805051 a001 75025/3010349*73681302247^(1/2) 6765000029805051 a001 1346269/167761*17393796001^(2/7) 6765000029805051 a001 1346269/167761*14662949395604^(2/9) 6765000029805051 a001 1346269/167761*(1/2+1/2*5^(1/2))^14 6765000029805051 a001 1346269/167761*10749957122^(7/24) 6765000029805051 a001 75025/3010349*10749957122^(13/24) 6765000029805051 a001 1346269/167761*4106118243^(7/23) 6765000029805051 a001 75025/3010349*4106118243^(13/23) 6765000029805051 a001 1346269/167761*1568397607^(7/22) 6765000029805051 a001 75025/3010349*1568397607^(13/22) 6765000029805051 a001 1346269/167761*599074578^(1/3) 6765000029805051 a001 75025/3010349*599074578^(13/21) 6765000029805051 a001 1346269/167761*228826127^(7/20) 6765000029805051 a001 75025/3010349*228826127^(13/20) 6765000029805051 a001 1346269/167761*87403803^(7/19) 6765000029805052 a001 75025/3010349*87403803^(13/19) 6765000029805053 a001 1346269/167761*33385282^(7/18) 6765000029805055 a001 75025/3010349*33385282^(13/18) 6765000029805057 a001 101003831725/14930352 6765000029805068 a001 1346269/167761*12752043^(7/17) 6765000029805083 a001 75025/3010349*12752043^(13/17) 6765000029805176 a001 1346269/167761*4870847^(7/16) 6765000029805195 a001 3524578/167761*1860498^(2/5) 6765000029805261 a001 433494437/167761*710647^(1/14) 6765000029805283 a001 75025/3010349*4870847^(13/16) 6765000029805778 a001 75025/4870847*1860498^(9/10) 6765000029805963 a001 1346269/167761*1860498^(7/15) 6765000029806218 a001 165580141/167761*710647^(1/7) 6765000029806237 a001 75025/7881196*1860498^(14/15) 6765000029806259 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^35 6765000029806745 a001 75025/3010349*1860498^(13/15) 6765000029807175 a001 63245986/167761*710647^(3/14) 6765000029807652 a001 39088169/167761*710647^(1/4) 6765000029808134 a001 24157817/167761*710647^(2/7) 6765000029808770 a001 31622993/219602*103682^(1/3) 6765000029809104 a001 9227465/167761*710647^(5/14) 6765000029809342 a001 75025/1149851*7881196^(8/11) 6765000029809421 a001 75025/1149851*141422324^(8/13) 6765000029809421 a001 75025/1149851*2537720636^(8/15) 6765000029809421 a001 75025/1149851*45537549124^(8/17) 6765000029809421 a001 75025/1149851*14662949395604^(8/21) 6765000029809421 a001 75025/1149851*(1/2+1/2*5^(1/2))^24 6765000029809421 a001 75025/1149851*192900153618^(4/9) 6765000029809421 a001 75025/1149851*73681302247^(6/13) 6765000029809421 a001 514229/167761*(1/2+1/2*5^(1/2))^16 6765000029809421 a001 514229/167761*23725150497407^(1/4) 6765000029809421 a001 514229/167761*73681302247^(4/13) 6765000029809421 a001 514229/167761*10749957122^(1/3) 6765000029809421 a001 75025/1149851*10749957122^(1/2) 6765000029809421 a001 514229/167761*4106118243^(8/23) 6765000029809421 a001 75025/1149851*4106118243^(12/23) 6765000029809421 a001 514229/167761*1568397607^(4/11) 6765000029809421 a001 75025/1149851*1568397607^(6/11) 6765000029809421 a001 514229/167761*599074578^(8/21) 6765000029809421 a001 75025/1149851*599074578^(4/7) 6765000029809421 a001 514229/167761*228826127^(2/5) 6765000029809421 a001 75025/1149851*228826127^(3/5) 6765000029809421 a001 514229/167761*87403803^(8/19) 6765000029809422 a001 75025/1149851*87403803^(12/19) 6765000029809424 a001 514229/167761*33385282^(4/9) 6765000029809425 a001 75025/1149851*33385282^(2/3) 6765000029809441 a001 514229/167761*12752043^(8/17) 6765000029809450 a001 75025/1149851*12752043^(12/17) 6765000029809463 a001 38580030725/5702887 6765000029809564 a001 514229/167761*4870847^(1/2) 6765000029809635 a001 75025/1149851*4870847^(3/4) 6765000029810154 a001 3524578/167761*710647^(3/7) 6765000029810463 a001 514229/167761*1860498^(8/15) 6765000029810985 a001 75025/1149851*1860498^(4/5) 6765000029811367 a001 433494437/167761*271443^(1/13) 6765000029811749 a001 1346269/167761*710647^(1/2) 6765000029812745 a001 39088169/710647*103682^(5/12) 6765000029813099 a001 3524578/271443*103682^(13/24) 6765000029815994 a001 196418/167761*439204^(2/3) 6765000029817076 a001 514229/167761*710647^(4/7) 6765000029817490 a001 75025/3010349*710647^(13/14) 6765000029817700 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^33 6765000029818430 a001 165580141/167761*271443^(2/13) 6765000029820903 a001 75025/1149851*710647^(6/7) 6765000029824187 a001 831985/15126*103682^(5/12) 6765000029825493 a001 63245986/167761*271443^(3/13) 6765000029825857 a001 267914296/4870847*103682^(5/12) 6765000029826100 a001 233802911/4250681*103682^(5/12) 6765000029826136 a001 1836311903/33385282*103682^(5/12) 6765000029826141 a001 1602508992/29134601*103682^(5/12) 6765000029826142 a001 12586269025/228826127*103682^(5/12) 6765000029826142 a001 10983760033/199691526*103682^(5/12) 6765000029826142 a001 86267571272/1568397607*103682^(5/12) 6765000029826142 a001 75283811239/1368706081*103682^(5/12) 6765000029826142 a001 591286729879/10749957122*103682^(5/12) 6765000029826142 a001 12585437040/228811001*103682^(5/12) 6765000029826142 a001 4052739537881/73681302247*103682^(5/12) 6765000029826142 a001 3536736619241/64300051206*103682^(5/12) 6765000029826142 a001 6557470319842/119218851371*103682^(5/12) 6765000029826142 a001 2504730781961/45537549124*103682^(5/12) 6765000029826142 a001 956722026041/17393796001*103682^(5/12) 6765000029826142 a001 365435296162/6643838879*103682^(5/12) 6765000029826142 a001 139583862445/2537720636*103682^(5/12) 6765000029826142 a001 53316291173/969323029*103682^(5/12) 6765000029826142 a001 20365011074/370248451*103682^(5/12) 6765000029826142 a001 7778742049/141422324*103682^(5/12) 6765000029826144 a001 2971215073/54018521*103682^(5/12) 6765000029826158 a001 1134903170/20633239*103682^(5/12) 6765000029826251 a001 433494437/7881196*103682^(5/12) 6765000029826888 a001 165580141/3010349*103682^(5/12) 6765000029830525 a001 701408733/167761*103682^(1/24) 6765000029831259 a001 63245986/1149851*103682^(5/12) 6765000029832557 a001 24157817/167761*271443^(4/13) 6765000029834990 a001 39088169/439204*103682^(3/8) 6765000029838926 a001 726103/90481*103682^(7/12) 6765000029838970 a001 24157817/710647*103682^(11/24) 6765000029839302 a001 75025/439204*7881196^(2/3) 6765000029839315 a001 196418/167761*7881196^(6/11) 6765000029839374 a001 196418/167761*141422324^(6/13) 6765000029839374 a001 196418/167761*2537720636^(2/5) 6765000029839374 a001 75025/439204*312119004989^(2/5) 6765000029839374 a001 75025/439204*(1/2+1/2*5^(1/2))^22 6765000029839374 a001 196418/167761*45537549124^(6/17) 6765000029839374 a001 196418/167761*14662949395604^(2/7) 6765000029839374 a001 196418/167761*(1/2+1/2*5^(1/2))^18 6765000029839374 a001 196418/167761*192900153618^(1/3) 6765000029839374 a001 75025/439204*10749957122^(11/24) 6765000029839374 a001 196418/167761*10749957122^(3/8) 6765000029839374 a001 196418/167761*4106118243^(9/23) 6765000029839374 a001 75025/439204*4106118243^(11/23) 6765000029839374 a001 196418/167761*1568397607^(9/22) 6765000029839374 a001 75025/439204*1568397607^(1/2) 6765000029839374 a001 196418/167761*599074578^(3/7) 6765000029839374 a001 75025/439204*599074578^(11/21) 6765000029839374 a001 196418/167761*228826127^(9/20) 6765000029839374 a001 75025/439204*228826127^(11/20) 6765000029839375 a001 196418/167761*87403803^(9/19) 6765000029839375 a001 75025/439204*87403803^(11/19) 6765000029839377 a001 196418/167761*33385282^(1/2) 6765000029839378 a001 75025/439204*33385282^(11/18) 6765000029839396 a001 196418/167761*12752043^(9/17) 6765000029839401 a001 75025/439204*12752043^(11/17) 6765000029839535 a001 196418/167761*4870847^(9/16) 6765000029839570 a001 75025/439204*4870847^(11/16) 6765000029839634 a001 9227465/167761*271443^(5/13) 6765000029839660 a001 14736260450/2178309 6765000029840547 a001 196418/167761*1860498^(3/5) 6765000029840808 a001 75025/439204*1860498^(11/15) 6765000029846789 a001 3524578/167761*271443^(6/13) 6765000029847986 a001 196418/167761*710647^(9/14) 6765000029849899 a001 75025/439204*710647^(11/14) 6765000029849926 a001 2178309/167761*271443^(1/2) 6765000029850409 a001 31622993/930249*103682^(11/24) 6765000029852078 a001 165580141/4870847*103682^(11/24) 6765000029852321 a001 433494437/12752043*103682^(11/24) 6765000029852357 a001 567451585/16692641*103682^(11/24) 6765000029852362 a001 2971215073/87403803*103682^(11/24) 6765000029852363 a001 7778742049/228826127*103682^(11/24) 6765000029852363 a001 10182505537/299537289*103682^(11/24) 6765000029852363 a001 53316291173/1568397607*103682^(11/24) 6765000029852363 a001 139583862445/4106118243*103682^(11/24) 6765000029852363 a001 182717648081/5374978561*103682^(11/24) 6765000029852363 a001 956722026041/28143753123*103682^(11/24) 6765000029852363 a001 2504730781961/73681302247*103682^(11/24) 6765000029852363 a001 3278735159921/96450076809*103682^(11/24) 6765000029852363 a001 10610209857723/312119004989*103682^(11/24) 6765000029852363 a001 4052739537881/119218851371*103682^(11/24) 6765000029852363 a001 387002188980/11384387281*103682^(11/24) 6765000029852363 a001 591286729879/17393796001*103682^(11/24) 6765000029852363 a001 225851433717/6643838879*103682^(11/24) 6765000029852363 a001 1135099622/33391061*103682^(11/24) 6765000029852363 a001 32951280099/969323029*103682^(11/24) 6765000029852363 a001 12586269025/370248451*103682^(11/24) 6765000029852363 a001 1201881744/35355581*103682^(11/24) 6765000029852365 a001 1836311903/54018521*103682^(11/24) 6765000029852379 a001 701408733/20633239*103682^(11/24) 6765000029852379 a001 75025/167761*167761^(4/5) 6765000029852472 a001 66978574/1970299*103682^(11/24) 6765000029853109 a001 102334155/3010349*103682^(11/24) 6765000029854489 a001 1346269/167761*271443^(7/13) 6765000029856747 a001 433494437/167761*103682^(1/12) 6765000029857479 a001 39088169/1149851*103682^(11/24) 6765000029861214 a001 24157817/439204*103682^(5/12) 6765000029864237 a001 233802911/90481*39603^(1/11) 6765000029865182 a001 14930352/710647*103682^(1/2) 6765000029865922 a001 514229/167761*271443^(8/13) 6765000029866179 a001 1346269/271443*103682^(5/8) 6765000029875937 a001 28657/167761*64079^(22/23) 6765000029876629 a001 39088169/1860498*103682^(1/2) 6765000029878299 a001 102334155/4870847*103682^(1/2) 6765000029878542 a001 267914296/12752043*103682^(1/2) 6765000029878578 a001 701408733/33385282*103682^(1/2) 6765000029878583 a001 1836311903/87403803*103682^(1/2) 6765000029878584 a001 102287808/4868641*103682^(1/2) 6765000029878584 a001 12586269025/599074578*103682^(1/2) 6765000029878584 a001 32951280099/1568397607*103682^(1/2) 6765000029878584 a001 86267571272/4106118243*103682^(1/2) 6765000029878584 a001 225851433717/10749957122*103682^(1/2) 6765000029878584 a001 591286729879/28143753123*103682^(1/2) 6765000029878584 a001 1548008755920/73681302247*103682^(1/2) 6765000029878584 a001 4052739537881/192900153618*103682^(1/2) 6765000029878584 a001 225749145909/10745088481*103682^(1/2) 6765000029878584 a001 6557470319842/312119004989*103682^(1/2) 6765000029878584 a001 2504730781961/119218851371*103682^(1/2) 6765000029878584 a001 956722026041/45537549124*103682^(1/2) 6765000029878584 a001 365435296162/17393796001*103682^(1/2) 6765000029878584 a001 139583862445/6643838879*103682^(1/2) 6765000029878584 a001 53316291173/2537720636*103682^(1/2) 6765000029878584 a001 20365011074/969323029*103682^(1/2) 6765000029878584 a001 7778742049/370248451*103682^(1/2) 6765000029878584 a001 2971215073/141422324*103682^(1/2) 6765000029878586 a001 1134903170/54018521*103682^(1/2) 6765000029878600 a001 433494437/20633239*103682^(1/2) 6765000029878693 a001 165580141/7881196*103682^(1/2) 6765000029879331 a001 63245986/3010349*103682^(1/2) 6765000029882968 a001 267914296/167761*103682^(1/8) 6765000029883703 a001 24157817/1149851*103682^(1/2) 6765000029887427 a001 196452/5779*103682^(11/24) 6765000029889699 a001 832040/271443*103682^(2/3) 6765000029891425 a001 9227465/710647*103682^(13/24) 6765000029894173 a001 75025/1149851*271443^(12/13) 6765000029896119 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^31 6765000029901910 a001 121393/64079*64079^(17/23) 6765000029902853 a001 24157817/1860498*103682^(13/24) 6765000029902938 a001 196418/167761*271443^(9/13) 6765000029904520 a001 63245986/4870847*103682^(13/24) 6765000029904723 a001 121393/271443*103682^(5/6) 6765000029904763 a001 165580141/12752043*103682^(13/24) 6765000029904799 a001 433494437/33385282*103682^(13/24) 6765000029904804 a001 1134903170/87403803*103682^(13/24) 6765000029904805 a001 2971215073/228826127*103682^(13/24) 6765000029904805 a001 7778742049/599074578*103682^(13/24) 6765000029904805 a001 20365011074/1568397607*103682^(13/24) 6765000029904805 a001 53316291173/4106118243*103682^(13/24) 6765000029904805 a001 139583862445/10749957122*103682^(13/24) 6765000029904805 a001 365435296162/28143753123*103682^(13/24) 6765000029904805 a001 956722026041/73681302247*103682^(13/24) 6765000029904805 a001 2504730781961/192900153618*103682^(13/24) 6765000029904805 a001 10610209857723/817138163596*103682^(13/24) 6765000029904805 a001 4052739537881/312119004989*103682^(13/24) 6765000029904805 a001 1548008755920/119218851371*103682^(13/24) 6765000029904805 a001 591286729879/45537549124*103682^(13/24) 6765000029904805 a001 7787980473/599786069*103682^(13/24) 6765000029904805 a001 86267571272/6643838879*103682^(13/24) 6765000029904805 a001 32951280099/2537720636*103682^(13/24) 6765000029904805 a001 12586269025/969323029*103682^(13/24) 6765000029904805 a001 4807526976/370248451*103682^(13/24) 6765000029904805 a001 1836311903/141422324*103682^(13/24) 6765000029904807 a001 701408733/54018521*103682^(13/24) 6765000029904821 a001 9238424/711491*103682^(13/24) 6765000029904914 a001 102334155/7881196*103682^(13/24) 6765000029905550 a001 39088169/3010349*103682^(13/24) 6765000029909189 a001 165580141/167761*103682^(1/6) 6765000029909915 a001 14930352/1149851*103682^(13/24) 6765000029913670 a001 9227465/439204*103682^(1/2) 6765000029914927 a001 31622993/51841*39603^(5/22) 6765000029917063 a001 75025/439204*271443^(11/13) 6765000029917589 a001 5702887/710647*103682^(7/12) 6765000029922991 a001 514229/271443*103682^(17/24) 6765000029929065 a001 829464/103361*103682^(7/12) 6765000029930700 a001 105937/90481*103682^(3/4) 6765000029930740 a001 39088169/4870847*103682^(7/12) 6765000029930984 a001 34111385/4250681*103682^(7/12) 6765000029931020 a001 133957148/16692641*103682^(7/12) 6765000029931025 a001 233802911/29134601*103682^(7/12) 6765000029931026 a001 1836311903/228826127*103682^(7/12) 6765000029931026 a001 267084832/33281921*103682^(7/12) 6765000029931026 a001 12586269025/1568397607*103682^(7/12) 6765000029931026 a001 10983760033/1368706081*103682^(7/12) 6765000029931026 a001 43133785636/5374978561*103682^(7/12) 6765000029931026 a001 75283811239/9381251041*103682^(7/12) 6765000029931026 a001 591286729879/73681302247*103682^(7/12) 6765000029931026 a001 86000486440/10716675201*103682^(7/12) 6765000029931026 a001 4052739537881/505019158607*103682^(7/12) 6765000029931026 a001 3536736619241/440719107401*103682^(7/12) 6765000029931026 a001 3278735159921/408569081798*103682^(7/12) 6765000029931026 a001 2504730781961/312119004989*103682^(7/12) 6765000029931026 a001 956722026041/119218851371*103682^(7/12) 6765000029931026 a001 182717648081/22768774562*103682^(7/12) 6765000029931026 a001 139583862445/17393796001*103682^(7/12) 6765000029931026 a001 53316291173/6643838879*103682^(7/12) 6765000029931026 a001 10182505537/1268860318*103682^(7/12) 6765000029931026 a001 7778742049/969323029*103682^(7/12) 6765000029931026 a001 2971215073/370248451*103682^(7/12) 6765000029931026 a001 567451585/70711162*103682^(7/12) 6765000029931028 a001 433494437/54018521*103682^(7/12) 6765000029931042 a001 165580141/20633239*103682^(7/12) 6765000029931135 a001 31622993/3940598*103682^(7/12) 6765000029931775 a001 24157817/3010349*103682^(7/12) 6765000029935409 a001 9303105/15251*103682^(5/24) 6765000029936158 a001 9227465/1149851*103682^(7/12) 6765000029939833 a001 5702887/439204*103682^(13/24) 6765000029942656 a001 1836311903/710647*39603^(1/11) 6765000029943960 a001 3524578/710647*103682^(5/8) 6765000029954097 a001 267084832/103361*39603^(1/11) 6765000029955308 a001 9227465/1860498*103682^(5/8) 6765000029955766 a001 12586269025/4870847*39603^(1/11) 6765000029956010 a001 10983760033/4250681*39603^(1/11) 6765000029956045 a001 43133785636/16692641*39603^(1/11) 6765000029956050 a001 75283811239/29134601*39603^(1/11) 6765000029956051 a001 591286729879/228826127*39603^(1/11) 6765000029956051 a001 86000486440/33281921*39603^(1/11) 6765000029956051 a001 4052739537881/1568397607*39603^(1/11) 6765000029956051 a001 3536736619241/1368706081*39603^(1/11) 6765000029956051 a001 3278735159921/1268860318*39603^(1/11) 6765000029956051 a001 2504730781961/969323029*39603^(1/11) 6765000029956051 a001 956722026041/370248451*39603^(1/11) 6765000029956052 a001 182717648081/70711162*39603^(1/11) 6765000029956054 a001 139583862445/54018521*39603^(1/11) 6765000029956067 a001 53316291173/20633239*39603^(1/11) 6765000029956160 a001 10182505537/3940598*39603^(1/11) 6765000029956798 a001 7778742049/3010349*39603^(1/11) 6765000029956964 a001 24157817/4870847*103682^(5/8) 6765000029957206 a001 63245986/12752043*103682^(5/8) 6765000029957241 a001 165580141/33385282*103682^(5/8) 6765000029957246 a001 433494437/87403803*103682^(5/8) 6765000029957247 a001 1134903170/228826127*103682^(5/8) 6765000029957247 a001 2971215073/599074578*103682^(5/8) 6765000029957247 a001 7778742049/1568397607*103682^(5/8) 6765000029957247 a001 20365011074/4106118243*103682^(5/8) 6765000029957247 a001 53316291173/10749957122*103682^(5/8) 6765000029957247 a001 139583862445/28143753123*103682^(5/8) 6765000029957247 a001 365435296162/73681302247*103682^(5/8) 6765000029957247 a001 956722026041/192900153618*103682^(5/8) 6765000029957247 a001 2504730781961/505019158607*103682^(5/8) 6765000029957247 a001 10610209857723/2139295485799*103682^(5/8) 6765000029957247 a001 4052739537881/817138163596*103682^(5/8) 6765000029957247 a001 140728068720/28374454999*103682^(5/8) 6765000029957247 a001 591286729879/119218851371*103682^(5/8) 6765000029957247 a001 225851433717/45537549124*103682^(5/8) 6765000029957247 a001 86267571272/17393796001*103682^(5/8) 6765000029957247 a001 32951280099/6643838879*103682^(5/8) 6765000029957247 a001 1144206275/230701876*103682^(5/8) 6765000029957247 a001 4807526976/969323029*103682^(5/8) 6765000029957247 a001 1836311903/370248451*103682^(5/8) 6765000029957247 a001 701408733/141422324*103682^(5/8) 6765000029957249 a001 267914296/54018521*103682^(5/8) 6765000029957263 a001 9303105/1875749*103682^(5/8) 6765000029957355 a001 39088169/7881196*103682^(5/8) 6765000029957987 a001 14930352/3010349*103682^(5/8) 6765000029961168 a001 2971215073/1149851*39603^(1/11) 6765000029961631 a001 63245986/167761*103682^(1/4) 6765000029962322 a001 5702887/1149851*103682^(5/8) 6765000029966205 a001 1762289/219602*103682^(7/12) 6765000029969787 a001 311187/101521*103682^(2/3) 6765000029981472 a001 5702887/1860498*103682^(2/3) 6765000029983177 a001 14930352/4870847*103682^(2/3) 6765000029983425 a001 39088169/12752043*103682^(2/3) 6765000029983462 a001 14619165/4769326*103682^(2/3) 6765000029983467 a001 267914296/87403803*103682^(2/3) 6765000029983468 a001 701408733/228826127*103682^(2/3) 6765000029983468 a001 1836311903/599074578*103682^(2/3) 6765000029983468 a001 686789568/224056801*103682^(2/3) 6765000029983468 a001 12586269025/4106118243*103682^(2/3) 6765000029983468 a001 32951280099/10749957122*103682^(2/3) 6765000029983468 a001 86267571272/28143753123*103682^(2/3) 6765000029983468 a001 32264490531/10525900321*103682^(2/3) 6765000029983468 a001 591286729879/192900153618*103682^(2/3) 6765000029983468 a001 1548008755920/505019158607*103682^(2/3) 6765000029983468 a001 1515744265389/494493258286*103682^(2/3) 6765000029983468 a001 2504730781961/817138163596*103682^(2/3) 6765000029983468 a001 956722026041/312119004989*103682^(2/3) 6765000029983468 a001 365435296162/119218851371*103682^(2/3) 6765000029983468 a001 139583862445/45537549124*103682^(2/3) 6765000029983468 a001 53316291173/17393796001*103682^(2/3) 6765000029983468 a001 20365011074/6643838879*103682^(2/3) 6765000029983468 a001 7778742049/2537720636*103682^(2/3) 6765000029983468 a001 2971215073/969323029*103682^(2/3) 6765000029983468 a001 1134903170/370248451*103682^(2/3) 6765000029983468 a001 433494437/141422324*103682^(2/3) 6765000029983470 a001 165580141/54018521*103682^(2/3) 6765000029983484 a001 63245986/20633239*103682^(2/3) 6765000029983579 a001 24157817/7881196*103682^(2/3) 6765000029984230 a001 9227465/3010349*103682^(2/3) 6765000029987851 a001 39088169/167761*103682^(7/24) 6765000029988693 a001 3524578/1149851*103682^(2/3) 6765000029991121 a001 567451585/219602*39603^(1/11) 6765000029992032 a001 2178309/439204*103682^(5/8) 6765000029997040 a001 1346269/710647*103682^(17/24) 6765000030000364 a001 701408733/167761*39603^(1/22) 6765000030005387 a001 196418/271443*103682^(19/24) 6765000030007843 a001 1762289/930249*103682^(17/24) 6765000030009420 a001 9227465/4870847*103682^(17/24) 6765000030009650 a001 24157817/12752043*103682^(17/24) 6765000030009683 a001 31622993/16692641*103682^(17/24) 6765000030009688 a001 165580141/87403803*103682^(17/24) 6765000030009689 a001 433494437/228826127*103682^(17/24) 6765000030009689 a001 567451585/299537289*103682^(17/24) 6765000030009689 a001 2971215073/1568397607*103682^(17/24) 6765000030009689 a001 7778742049/4106118243*103682^(17/24) 6765000030009689 a001 10182505537/5374978561*103682^(17/24) 6765000030009689 a001 53316291173/28143753123*103682^(17/24) 6765000030009689 a001 139583862445/73681302247*103682^(17/24) 6765000030009689 a001 182717648081/96450076809*103682^(17/24) 6765000030009689 a001 956722026041/505019158607*103682^(17/24) 6765000030009689 a001 10610209857723/5600748293801*103682^(17/24) 6765000030009689 a001 591286729879/312119004989*103682^(17/24) 6765000030009689 a001 225851433717/119218851371*103682^(17/24) 6765000030009689 a001 21566892818/11384387281*103682^(17/24) 6765000030009689 a001 32951280099/17393796001*103682^(17/24) 6765000030009689 a001 12586269025/6643838879*103682^(17/24) 6765000030009689 a001 1201881744/634430159*103682^(17/24) 6765000030009689 a001 1836311903/969323029*103682^(17/24) 6765000030009689 a001 701408733/370248451*103682^(17/24) 6765000030009689 a001 66978574/35355581*103682^(17/24) 6765000030009691 a001 102334155/54018521*103682^(17/24) 6765000030009704 a001 39088169/20633239*103682^(17/24) 6765000030009792 a001 3732588/1970299*103682^(17/24) 6765000030010394 a001 5702887/3010349*103682^(17/24) 6765000030014075 a001 24157817/167761*103682^(1/3) 6765000030014520 a001 2178309/1149851*103682^(17/24) 6765000030019284 a001 1346269/439204*103682^(2/3) 6765000030020560 a001 832040/710647*103682^(3/4) 6765000030033670 a001 726103/620166*103682^(3/4) 6765000030035583 a001 5702887/4870847*103682^(3/4) 6765000030035584 a001 121393/710647*103682^(11/12) 6765000030035862 a001 4976784/4250681*103682^(3/4) 6765000030035903 a001 39088169/33385282*103682^(3/4) 6765000030035909 a001 34111385/29134601*103682^(3/4) 6765000030035910 a001 267914296/228826127*103682^(3/4) 6765000030035910 a001 233802911/199691526*103682^(3/4) 6765000030035910 a001 1836311903/1568397607*103682^(3/4) 6765000030035910 a001 1602508992/1368706081*103682^(3/4) 6765000030035910 a001 12586269025/10749957122*103682^(3/4) 6765000030035910 a001 10983760033/9381251041*103682^(3/4) 6765000030035910 a001 86267571272/73681302247*103682^(3/4) 6765000030035910 a001 75283811239/64300051206*103682^(3/4) 6765000030035910 a001 2504730781961/2139295485799*103682^(3/4) 6765000030035910 a001 365435296162/312119004989*103682^(3/4) 6765000030035910 a001 139583862445/119218851371*103682^(3/4) 6765000030035910 a001 53316291173/45537549124*103682^(3/4) 6765000030035910 a001 20365011074/17393796001*103682^(3/4) 6765000030035910 a001 7778742049/6643838879*103682^(3/4) 6765000030035910 a001 2971215073/2537720636*103682^(3/4) 6765000030035910 a001 1134903170/969323029*103682^(3/4) 6765000030035910 a001 433494437/370248451*103682^(3/4) 6765000030035910 a001 165580141/141422324*103682^(3/4) 6765000030035913 a001 63245986/54018521*103682^(3/4) 6765000030035928 a001 24157817/20633239*103682^(3/4) 6765000030036035 a001 9227465/7881196*103682^(3/4) 6765000030036765 a001 3524578/3010349*103682^(3/4) 6765000030040288 a001 14930352/167761*103682^(3/8) 6765000030041773 a001 1346269/1149851*103682^(3/4) 6765000030042805 a001 208010/109801*103682^(17/24) 6765000030044668 a001 75025/167761*20633239^(4/7) 6765000030044677 a001 75025/167761*2537720636^(4/9) 6765000030044677 a001 75025/167761*(1/2+1/2*5^(1/2))^20 6765000030044677 a001 75025/167761*23725150497407^(5/16) 6765000030044677 a001 75025/167761*505019158607^(5/14) 6765000030044677 a001 75025/167761*73681302247^(5/13) 6765000030044677 a001 75025/167761*28143753123^(2/5) 6765000030044677 a001 75025/167761*10749957122^(5/12) 6765000030044677 a001 75025/167761*4106118243^(10/23) 6765000030044677 a001 75025/167761*1568397607^(5/11) 6765000030044678 a001 75025/167761*599074578^(10/21) 6765000030044678 a001 75025/167761*228826127^(1/2) 6765000030044678 a001 75025/167761*87403803^(10/19) 6765000030044681 a001 75025/167761*33385282^(5/9) 6765000030044702 a001 75025/167761*12752043^(10/17) 6765000030044856 a001 75025/167761*4870847^(5/8) 6765000030045980 a001 75025/167761*1860498^(2/3) 6765000030046632 a001 1125750125/166408 6765000030053852 a001 514229/710647*103682^(19/24) 6765000030054246 a001 75025/167761*710647^(5/7) 6765000030057829 a001 121393/439204*103682^(7/8) 6765000030060297 a001 433494437/271443*39603^(3/22) 6765000030060923 a001 1346269/1860498*103682^(19/24) 6765000030061561 a001 317811/710647*103682^(5/6) 6765000030061955 a001 3524578/4870847*103682^(19/24) 6765000030062105 a001 9227465/12752043*103682^(19/24) 6765000030062127 a001 24157817/33385282*103682^(19/24) 6765000030062130 a001 63245986/87403803*103682^(19/24) 6765000030062131 a001 165580141/228826127*103682^(19/24) 6765000030062131 a001 433494437/599074578*103682^(19/24) 6765000030062131 a001 1134903170/1568397607*103682^(19/24) 6765000030062131 a001 2971215073/4106118243*103682^(19/24) 6765000030062131 a001 7778742049/10749957122*103682^(19/24) 6765000030062131 a001 20365011074/28143753123*103682^(19/24) 6765000030062131 a001 53316291173/73681302247*103682^(19/24) 6765000030062131 a001 139583862445/192900153618*103682^(19/24) 6765000030062131 a001 365435296162/505019158607*103682^(19/24) 6765000030062131 a001 10610209857723/14662949395604*103682^(19/24) 6765000030062131 a001 591286729879/817138163596*103682^(19/24) 6765000030062131 a001 225851433717/312119004989*103682^(19/24) 6765000030062131 a001 86267571272/119218851371*103682^(19/24) 6765000030062131 a001 32951280099/45537549124*103682^(19/24) 6765000030062131 a001 12586269025/17393796001*103682^(19/24) 6765000030062131 a001 4807526976/6643838879*103682^(19/24) 6765000030062131 a001 1836311903/2537720636*103682^(19/24) 6765000030062131 a001 701408733/969323029*103682^(19/24) 6765000030062131 a001 267914296/370248451*103682^(19/24) 6765000030062131 a001 102334155/141422324*103682^(19/24) 6765000030062132 a001 39088169/54018521*103682^(19/24) 6765000030062141 a001 14930352/20633239*103682^(19/24) 6765000030062198 a001 5702887/7881196*103682^(19/24) 6765000030062592 a001 2178309/3010349*103682^(19/24) 6765000030065293 a001 832040/1149851*103682^(19/24) 6765000030066531 a001 9227465/167761*103682^(5/12) 6765000030076097 a001 514229/439204*103682^(3/4) 6765000030080317 a001 121393/1149851*103682^(23/24) 6765000030083805 a001 317811/439204*103682^(19/24) 6765000030084443 a001 416020/930249*103682^(5/6) 6765000030087782 a001 2178309/4870847*103682^(5/6) 6765000030088269 a001 5702887/12752043*103682^(5/6) 6765000030088340 a001 7465176/16692641*103682^(5/6) 6765000030088350 a001 39088169/87403803*103682^(5/6) 6765000030088352 a001 102334155/228826127*103682^(5/6) 6765000030088352 a001 133957148/299537289*103682^(5/6) 6765000030088352 a001 701408733/1568397607*103682^(5/6) 6765000030088352 a001 1836311903/4106118243*103682^(5/6) 6765000030088352 a001 2403763488/5374978561*103682^(5/6) 6765000030088352 a001 12586269025/28143753123*103682^(5/6) 6765000030088352 a001 32951280099/73681302247*103682^(5/6) 6765000030088352 a001 43133785636/96450076809*103682^(5/6) 6765000030088352 a001 225851433717/505019158607*103682^(5/6) 6765000030088352 a001 591286729879/1322157322203*103682^(5/6) 6765000030088352 a001 10610209857723/23725150497407*103682^(5/6) 6765000030088352 a001 182717648081/408569081798*103682^(5/6) 6765000030088352 a001 139583862445/312119004989*103682^(5/6) 6765000030088352 a001 53316291173/119218851371*103682^(5/6) 6765000030088352 a001 10182505537/22768774562*103682^(5/6) 6765000030088352 a001 7778742049/17393796001*103682^(5/6) 6765000030088352 a001 2971215073/6643838879*103682^(5/6) 6765000030088352 a001 567451585/1268860318*103682^(5/6) 6765000030088352 a001 433494437/969323029*103682^(5/6) 6765000030088352 a001 165580141/370248451*103682^(5/6) 6765000030088353 a001 31622993/70711162*103682^(5/6) 6765000030088357 a001 24157817/54018521*103682^(5/6) 6765000030088384 a001 9227465/20633239*103682^(5/6) 6765000030088570 a001 1762289/3940598*103682^(5/6) 6765000030089845 a001 1346269/3010349*103682^(5/6) 6765000030092694 a001 5702887/167761*103682^(11/24) 6765000030098585 a001 514229/1149851*103682^(5/6) 6765000030100427 a001 196418/64079*64079^(16/23) 6765000030101422 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^30 6765000030106294 a001 317811/1149851*103682^(7/8) 6765000030110986 a001 39088169/103682*39603^(3/11) 6765000030113365 a001 832040/3010349*103682^(7/8) 6765000030114397 a001 2178309/7881196*103682^(7/8) 6765000030114547 a001 5702887/20633239*103682^(7/8) 6765000030114569 a001 14930352/54018521*103682^(7/8) 6765000030114573 a001 39088169/141422324*103682^(7/8) 6765000030114573 a001 102334155/370248451*103682^(7/8) 6765000030114573 a001 267914296/969323029*103682^(7/8) 6765000030114573 a001 701408733/2537720636*103682^(7/8) 6765000030114573 a001 1836311903/6643838879*103682^(7/8) 6765000030114573 a001 4807526976/17393796001*103682^(7/8) 6765000030114573 a001 12586269025/45537549124*103682^(7/8) 6765000030114573 a001 32951280099/119218851371*103682^(7/8) 6765000030114573 a001 86267571272/312119004989*103682^(7/8) 6765000030114573 a001 225851433717/817138163596*103682^(7/8) 6765000030114573 a001 1548008755920/5600748293801*103682^(7/8) 6765000030114573 a001 139583862445/505019158607*103682^(7/8) 6765000030114573 a001 53316291173/192900153618*103682^(7/8) 6765000030114573 a001 20365011074/73681302247*103682^(7/8) 6765000030114573 a001 7778742049/28143753123*103682^(7/8) 6765000030114573 a001 2971215073/10749957122*103682^(7/8) 6765000030114573 a001 1134903170/4106118243*103682^(7/8) 6765000030114573 a001 433494437/1568397607*103682^(7/8) 6765000030114573 a001 165580141/599074578*103682^(7/8) 6765000030114573 a001 63245986/228826127*103682^(7/8) 6765000030114575 a001 24157817/87403803*103682^(7/8) 6765000030114583 a001 9227465/33385282*103682^(7/8) 6765000030114640 a001 3524578/12752043*103682^(7/8) 6765000030115034 a001 1346269/4870847*103682^(7/8) 6765000030115304 a001 75025/167761*271443^(10/13) 6765000030117735 a001 514229/1860498*103682^(7/8) 6765000030119066 a001 3524578/167761*103682^(1/2) 6765000030123594 a001 317811/64079*64079^(15/23) 6765000030125444 a001 105937/620166*103682^(11/12) 6765000030136005 a001 165580141/64079*24476^(2/21) 6765000030136248 a001 196418/710647*103682^(7/8) 6765000030138555 a001 832040/4870847*103682^(11/12) 6765000030138716 a001 1134903170/710647*39603^(3/22) 6765000030140467 a001 726103/4250681*103682^(11/12) 6765000030140746 a001 5702887/33385282*103682^(11/12) 6765000030140787 a001 4976784/29134601*103682^(11/12) 6765000030140793 a001 39088169/228826127*103682^(11/12) 6765000030140794 a001 34111385/199691526*103682^(11/12) 6765000030140794 a001 267914296/1568397607*103682^(11/12) 6765000030140794 a001 233802911/1368706081*103682^(11/12) 6765000030140794 a001 1836311903/10749957122*103682^(11/12) 6765000030140794 a001 1602508992/9381251041*103682^(11/12) 6765000030140794 a001 12586269025/73681302247*103682^(11/12) 6765000030140794 a001 10983760033/64300051206*103682^(11/12) 6765000030140794 a001 86267571272/505019158607*103682^(11/12) 6765000030140794 a001 75283811239/440719107401*103682^(11/12) 6765000030140794 a001 2504730781961/14662949395604*103682^(11/12) 6765000030140794 a001 139583862445/817138163596*103682^(11/12) 6765000030140794 a001 53316291173/312119004989*103682^(11/12) 6765000030140794 a001 20365011074/119218851371*103682^(11/12) 6765000030140794 a001 7778742049/45537549124*103682^(11/12) 6765000030140794 a001 2971215073/17393796001*103682^(11/12) 6765000030140794 a001 1134903170/6643838879*103682^(11/12) 6765000030140794 a001 433494437/2537720636*103682^(11/12) 6765000030140794 a001 165580141/969323029*103682^(11/12) 6765000030140795 a001 63245986/370248451*103682^(11/12) 6765000030140797 a001 24157817/141422324*103682^(11/12) 6765000030140812 a001 9227465/54018521*103682^(11/12) 6765000030140919 a001 3524578/20633239*103682^(11/12) 6765000030141650 a001 1346269/7881196*103682^(11/12) 6765000030144893 a001 2178309/167761*103682^(13/24) 6765000030146657 a001 514229/3010349*103682^(11/12) 6765000030150157 a001 2971215073/1860498*39603^(3/22) 6765000030151826 a001 7778742049/4870847*39603^(3/22) 6765000030152070 a001 20365011074/12752043*39603^(3/22) 6765000030152105 a001 53316291173/33385282*39603^(3/22) 6765000030152110 a001 139583862445/87403803*39603^(3/22) 6765000030152111 a001 365435296162/228826127*39603^(3/22) 6765000030152111 a001 956722026041/599074578*39603^(3/22) 6765000030152111 a001 2504730781961/1568397607*39603^(3/22) 6765000030152111 a001 6557470319842/4106118243*39603^(3/22) 6765000030152111 a001 10610209857723/6643838879*39603^(3/22) 6765000030152111 a001 4052739537881/2537720636*39603^(3/22) 6765000030152111 a001 1548008755920/969323029*39603^(3/22) 6765000030152111 a001 591286729879/370248451*39603^(3/22) 6765000030152112 a001 225851433717/141422324*39603^(3/22) 6765000030152114 a001 86267571272/54018521*39603^(3/22) 6765000030152127 a001 32951280099/20633239*39603^(3/22) 6765000030152220 a001 12586269025/7881196*39603^(3/22) 6765000030152858 a001 4807526976/3010349*39603^(3/22) 6765000030154366 a001 317811/3010349*103682^(23/24) 6765000030157228 a001 1836311903/1149851*39603^(3/22) 6765000030158492 a001 98209/219602*103682^(5/6) 6765000030162466 a001 75025/64079*64079^(18/23) 6765000030165170 a001 208010/1970299*103682^(23/24) 6765000030166746 a001 2178309/20633239*103682^(23/24) 6765000030166976 a001 5702887/54018521*103682^(23/24) 6765000030167009 a001 3732588/35355581*103682^(23/24) 6765000030167014 a001 39088169/370248451*103682^(23/24) 6765000030167015 a001 102334155/969323029*103682^(23/24) 6765000030167015 a001 66978574/634430159*103682^(23/24) 6765000030167015 a001 701408733/6643838879*103682^(23/24) 6765000030167015 a001 1836311903/17393796001*103682^(23/24) 6765000030167015 a001 1201881744/11384387281*103682^(23/24) 6765000030167015 a001 12586269025/119218851371*103682^(23/24) 6765000030167015 a001 32951280099/312119004989*103682^(23/24) 6765000030167015 a001 21566892818/204284540899*103682^(23/24) 6765000030167015 a001 225851433717/2139295485799*103682^(23/24) 6765000030167015 a001 182717648081/1730726404001*103682^(23/24) 6765000030167015 a001 139583862445/1322157322203*103682^(23/24) 6765000030167015 a001 53316291173/505019158607*103682^(23/24) 6765000030167015 a001 10182505537/96450076809*103682^(23/24) 6765000030167015 a001 7778742049/73681302247*103682^(23/24) 6765000030167015 a001 2971215073/28143753123*103682^(23/24) 6765000030167015 a001 567451585/5374978561*103682^(23/24) 6765000030167015 a001 433494437/4106118243*103682^(23/24) 6765000030167015 a001 165580141/1568397607*103682^(23/24) 6765000030167015 a001 31622993/299537289*103682^(23/24) 6765000030167017 a001 24157817/228826127*103682^(23/24) 6765000030167030 a001 9227465/87403803*103682^(23/24) 6765000030167118 a001 1762289/16692641*103682^(23/24) 6765000030167720 a001 1346269/12752043*103682^(23/24) 6765000030171847 a001 514229/4870847*103682^(23/24) 6765000030172145 a001 1346269/167761*103682^(7/12) 6765000030179841 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^32 6765000030180981 a001 196418/1149851*103682^(11/12) 6765000030187181 a001 701408733/439204*39603^(3/22) 6765000030191282 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^34 6765000030192951 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^36 6765000030193195 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^38 6765000030193230 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^40 6765000030193235 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^42 6765000030193236 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^44 6765000030193236 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^46 6765000030193236 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^48 6765000030193236 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^50 6765000030193236 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^52 6765000030193236 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^54 6765000030193236 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^56 6765000030193236 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^58 6765000030193236 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^60 6765000030193236 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^62 6765000030193236 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^64 6765000030193236 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^66 6765000030193236 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^68 6765000030193236 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^70 6765000030193236 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^72 6765000030193236 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^74 6765000030193236 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^76 6765000030193236 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^78 6765000030193236 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^80 6765000030193236 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^82 6765000030193236 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^84 6765000030193236 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^86 6765000030193236 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^88 6765000030193236 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^90 6765000030193236 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^92 6765000030193236 a004 Fibonacci(90)*Lucas(24)/(1/2+sqrt(5)/2)^94 6765000030193236 a004 Fibonacci(92)*Lucas(24)/(1/2+sqrt(5)/2)^96 6765000030193236 a004 Fibonacci(94)*Lucas(24)/(1/2+sqrt(5)/2)^98 6765000030193236 a004 Fibonacci(96)*Lucas(24)/(1/2+sqrt(5)/2)^100 6765000030193236 a004 Fibonacci(95)*Lucas(24)/(1/2+sqrt(5)/2)^99 6765000030193236 a004 Fibonacci(93)*Lucas(24)/(1/2+sqrt(5)/2)^97 6765000030193236 a004 Fibonacci(91)*Lucas(24)/(1/2+sqrt(5)/2)^95 6765000030193236 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^93 6765000030193236 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^91 6765000030193236 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^89 6765000030193236 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^87 6765000030193236 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^85 6765000030193236 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^83 6765000030193236 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^81 6765000030193236 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^79 6765000030193236 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^77 6765000030193236 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^75 6765000030193236 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^73 6765000030193236 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^71 6765000030193236 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^69 6765000030193236 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^67 6765000030193236 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^65 6765000030193236 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^63 6765000030193236 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^61 6765000030193236 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^59 6765000030193236 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^57 6765000030193236 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^55 6765000030193236 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^53 6765000030193236 a001 1/23184*(1/2+1/2*5^(1/2))^44 6765000030193236 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^51 6765000030193236 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^49 6765000030193236 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^47 6765000030193236 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^45 6765000030193237 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^43 6765000030193239 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^41 6765000030193252 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^39 6765000030193345 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^37 6765000030193983 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^35 6765000030195666 a001 75640/15251*103682^(5/8) 6765000030196424 a001 433494437/167761*39603^(1/11) 6765000030198353 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^33 6765000030200131 a001 98209/930249*103682^(23/24) 6765000030210690 a001 121393/167761*103682^(19/24) 6765000030213738 a001 514229/64079*64079^(14/23) 6765000030228306 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^31 6765000030228958 a001 514229/167761*103682^(2/3) 6765000030236666 a001 317811/167761*103682^(17/24) 6765000030256357 a001 267914296/271443*39603^(2/11) 6765000030263132 a001 75025/271443*103682^(7/8) 6765000030278299 a001 832040/64079*64079^(13/23) 6765000030307049 a001 24157817/103682*39603^(7/22) 6765000030311353 a001 196418/167761*103682^(3/4) 6765000030334776 a001 701408733/710647*39603^(2/11) 6765000030346217 a001 1836311903/1860498*39603^(2/11) 6765000030347886 a001 4807526976/4870847*39603^(2/11) 6765000030348130 a001 12586269025/12752043*39603^(2/11) 6765000030348165 a001 32951280099/33385282*39603^(2/11) 6765000030348170 a001 86267571272/87403803*39603^(2/11) 6765000030348171 a001 225851433717/228826127*39603^(2/11) 6765000030348171 a001 591286729879/599074578*39603^(2/11) 6765000030348171 a001 1548008755920/1568397607*39603^(2/11) 6765000030348171 a001 4052739537881/4106118243*39603^(2/11) 6765000030348171 a001 4807525989/4870846*39603^(2/11) 6765000030348171 a001 6557470319842/6643838879*39603^(2/11) 6765000030348171 a001 2504730781961/2537720636*39603^(2/11) 6765000030348171 a001 956722026041/969323029*39603^(2/11) 6765000030348171 a001 365435296162/370248451*39603^(2/11) 6765000030348172 a001 139583862445/141422324*39603^(2/11) 6765000030348174 a001 53316291173/54018521*39603^(2/11) 6765000030348187 a001 20365011074/20633239*39603^(2/11) 6765000030348280 a001 7778742049/7881196*39603^(2/11) 6765000030348918 a001 2971215073/3010349*39603^(2/11) 6765000030352632 a001 1346269/64079*64079^(12/23) 6765000030353288 a001 1134903170/1149851*39603^(2/11) 6765000030383241 a001 433494437/439204*39603^(2/11) 6765000030392484 a001 267914296/167761*39603^(3/22) 6765000030393993 a001 75025/710647*103682^(23/24) 6765000030412823 a001 433494437/103682*15127^(1/20) 6765000030416237 a001 75025/439204*103682^(11/12) 6765000030423233 a001 2178309/64079*64079^(11/23) 6765000030433609 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^29 6765000030452417 a001 165580141/271443*39603^(5/22) 6765000030495259 a001 3524578/64079*64079^(10/23) 6765000030503100 a001 7465176/51841*39603^(4/11) 6765000030530836 a001 433494437/710647*39603^(5/22) 6765000030542277 a001 567451585/930249*39603^(5/22) 6765000030543946 a001 2971215073/4870847*39603^(5/22) 6765000030544190 a001 7778742049/12752043*39603^(5/22) 6765000030544225 a001 10182505537/16692641*39603^(5/22) 6765000030544230 a001 53316291173/87403803*39603^(5/22) 6765000030544231 a001 139583862445/228826127*39603^(5/22) 6765000030544231 a001 182717648081/299537289*39603^(5/22) 6765000030544231 a001 956722026041/1568397607*39603^(5/22) 6765000030544231 a001 2504730781961/4106118243*39603^(5/22) 6765000030544231 a001 3278735159921/5374978561*39603^(5/22) 6765000030544231 a001 10610209857723/17393796001*39603^(5/22) 6765000030544231 a001 4052739537881/6643838879*39603^(5/22) 6765000030544231 a001 1134903780/1860499*39603^(5/22) 6765000030544231 a001 591286729879/969323029*39603^(5/22) 6765000030544231 a001 225851433717/370248451*39603^(5/22) 6765000030544232 a001 21566892818/35355581*39603^(5/22) 6765000030544234 a001 32951280099/54018521*39603^(5/22) 6765000030544247 a001 1144206275/1875749*39603^(5/22) 6765000030544340 a001 1201881744/1970299*39603^(5/22) 6765000030544978 a001 1836311903/3010349*39603^(5/22) 6765000030547098 a001 664383888/98209 6765000030549348 a001 701408733/1149851*39603^(5/22) 6765000030554891 a001 28657/103682*439204^(7/9) 6765000030566741 a001 5702887/64079*64079^(9/23) 6765000030569098 a001 75025/167761*103682^(5/6) 6765000030579301 a001 66978574/109801*39603^(5/22) 6765000030582099 a001 28657/103682*7881196^(7/11) 6765000030582158 a001 28657/103682*20633239^(3/5) 6765000030582168 a001 28657/103682*141422324^(7/13) 6765000030582168 a001 28657/103682*2537720636^(7/15) 6765000030582168 a001 28657/103682*17393796001^(3/7) 6765000030582168 a001 28657/103682*45537549124^(7/17) 6765000030582168 a001 28657/103682*14662949395604^(1/3) 6765000030582168 a001 28657/103682*(1/2+1/2*5^(1/2))^21 6765000030582168 a001 28657/103682*192900153618^(7/18) 6765000030582168 a001 28657/103682*10749957122^(7/16) 6765000030582168 a001 46368/64079*817138163596^(1/3) 6765000030582168 a001 46368/64079*(1/2+1/2*5^(1/2))^19 6765000030582168 a001 28657/103682*599074578^(1/2) 6765000030582168 a001 46368/64079*87403803^(1/2) 6765000030582172 a001 28657/103682*33385282^(7/12) 6765000030583536 a001 28657/103682*1860498^(7/10) 6765000030588544 a001 165580141/167761*39603^(2/11) 6765000030592215 a001 28657/103682*710647^(3/4) 6765000030623293 a001 28657/39603*39603^(19/22) 6765000030638431 a001 9227465/64079*64079^(8/23) 6765000030648477 a001 34111385/90481*39603^(3/11) 6765000030673739 a001 267914296/64079*24476^(1/21) 6765000030699182 a001 9227465/103682*39603^(9/22) 6765000030710041 a001 14930352/64079*64079^(7/23) 6765000030726896 a001 267914296/710647*39603^(3/11) 6765000030738337 a001 233802911/620166*39603^(3/11) 6765000030740006 a001 1836311903/4870847*39603^(3/11) 6765000030740250 a001 1602508992/4250681*39603^(3/11) 6765000030740285 a001 12586269025/33385282*39603^(3/11) 6765000030740290 a001 10983760033/29134601*39603^(3/11) 6765000030740291 a001 86267571272/228826127*39603^(3/11) 6765000030740291 a001 267913919/710646*39603^(3/11) 6765000030740291 a001 591286729879/1568397607*39603^(3/11) 6765000030740291 a001 516002918640/1368706081*39603^(3/11) 6765000030740291 a001 4052739537881/10749957122*39603^(3/11) 6765000030740291 a001 3536736619241/9381251041*39603^(3/11) 6765000030740291 a001 6557470319842/17393796001*39603^(3/11) 6765000030740291 a001 2504730781961/6643838879*39603^(3/11) 6765000030740291 a001 956722026041/2537720636*39603^(3/11) 6765000030740291 a001 365435296162/969323029*39603^(3/11) 6765000030740291 a001 139583862445/370248451*39603^(3/11) 6765000030740292 a001 53316291173/141422324*39603^(3/11) 6765000030740294 a001 20365011074/54018521*39603^(3/11) 6765000030740307 a001 7778742049/20633239*39603^(3/11) 6765000030740400 a001 2971215073/7881196*39603^(3/11) 6765000030741038 a001 1134903170/3010349*39603^(3/11) 6765000030745408 a001 433494437/1149851*39603^(3/11) 6765000030775361 a001 165580141/439204*39603^(3/11) 6765000030781682 a001 24157817/64079*64079^(6/23) 6765000030784604 a001 9303105/15251*39603^(5/22) 6765000030844537 a001 63245986/271443*39603^(7/22) 6765000030853311 a001 39088169/64079*64079^(5/23) 6765000030895185 a001 5702887/103682*39603^(5/11) 6765000030922956 a001 165580141/710647*39603^(7/22) 6765000030924944 a001 63245986/64079*64079^(4/23) 6765000030934397 a001 433494437/1860498*39603^(7/22) 6765000030936066 a001 1134903170/4870847*39603^(7/22) 6765000030936310 a001 2971215073/12752043*39603^(7/22) 6765000030936345 a001 7778742049/33385282*39603^(7/22) 6765000030936350 a001 20365011074/87403803*39603^(7/22) 6765000030936351 a001 53316291173/228826127*39603^(7/22) 6765000030936351 a001 139583862445/599074578*39603^(7/22) 6765000030936351 a001 365435296162/1568397607*39603^(7/22) 6765000030936351 a001 956722026041/4106118243*39603^(7/22) 6765000030936351 a001 2504730781961/10749957122*39603^(7/22) 6765000030936351 a001 6557470319842/28143753123*39603^(7/22) 6765000030936351 a001 10610209857723/45537549124*39603^(7/22) 6765000030936351 a001 4052739537881/17393796001*39603^(7/22) 6765000030936351 a001 1548008755920/6643838879*39603^(7/22) 6765000030936351 a001 591286729879/2537720636*39603^(7/22) 6765000030936351 a001 225851433717/969323029*39603^(7/22) 6765000030936351 a001 86267571272/370248451*39603^(7/22) 6765000030936352 a001 63246219/271444*39603^(7/22) 6765000030936354 a001 12586269025/54018521*39603^(7/22) 6765000030936367 a001 4807526976/20633239*39603^(7/22) 6765000030936460 a001 1836311903/7881196*39603^(7/22) 6765000030937098 a001 701408733/3010349*39603^(7/22) 6765000030941468 a001 267914296/1149851*39603^(7/22) 6765000030950314 a001 1134903170/271443*15127^(1/20) 6765000030971100 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^28 6765000030971421 a001 102334155/439204*39603^(7/22) 6765000030980665 a001 63245986/167761*39603^(3/11) 6765000030996576 a001 102334155/64079*64079^(3/23) 6765000031015413 a001 17711/64079*39603^(21/22) 6765000031028732 a001 2971215073/710647*15127^(1/20) 6765000031040174 a001 7778742049/1860498*15127^(1/20) 6765000031040596 a001 39088169/271443*39603^(4/11) 6765000031041843 a001 20365011074/4870847*15127^(1/20) 6765000031042086 a001 53316291173/12752043*15127^(1/20) 6765000031042122 a001 139583862445/33385282*15127^(1/20) 6765000031042127 a001 365435296162/87403803*15127^(1/20) 6765000031042128 a001 956722026041/228826127*15127^(1/20) 6765000031042128 a001 2504730781961/599074578*15127^(1/20) 6765000031042128 a001 6557470319842/1568397607*15127^(1/20) 6765000031042128 a001 10610209857723/2537720636*15127^(1/20) 6765000031042128 a001 4052739537881/969323029*15127^(1/20) 6765000031042128 a001 1548008755920/370248451*15127^(1/20) 6765000031042128 a001 591286729879/141422324*15127^(1/20) 6765000031042130 a001 225851433717/54018521*15127^(1/20) 6765000031042144 a001 86267571272/20633239*15127^(1/20) 6765000031042237 a001 32951280099/7881196*15127^(1/20) 6765000031042874 a001 12586269025/3010349*15127^(1/20) 6765000031047245 a001 4807526976/1149851*15127^(1/20) 6765000031053853 a001 317811/64079*167761^(3/5) 6765000031068208 a001 165580141/64079*64079^(2/23) 6765000031077198 a001 1836311903/439204*15127^(1/20) 6765000031080368 a001 46368/64079*103682^(19/24) 6765000031085563 a001 11592/6119*24476^(17/21) 6765000031091395 a001 1762289/51841*39603^(1/2) 6765000031114542 a001 3478759201/514229 6765000031115433 a001 3524578/64079*167761^(2/5) 6765000031119016 a001 14619165/101521*39603^(4/11) 6765000031119658 a001 28657/271443*(1/2+1/2*5^(1/2))^23 6765000031119658 a001 28657/271443*4106118243^(1/2) 6765000031119658 a001 121393/64079*45537549124^(1/3) 6765000031119658 a001 121393/64079*(1/2+1/2*5^(1/2))^17 6765000031119679 a001 121393/64079*12752043^(1/2) 6765000031130457 a001 133957148/930249*39603^(4/11) 6765000031132126 a001 701408733/4870847*39603^(4/11) 6765000031132370 a001 1836311903/12752043*39603^(4/11) 6765000031132405 a001 14930208/103681*39603^(4/11) 6765000031132410 a001 12586269025/87403803*39603^(4/11) 6765000031132411 a001 32951280099/228826127*39603^(4/11) 6765000031132411 a001 43133785636/299537289*39603^(4/11) 6765000031132411 a001 32264490531/224056801*39603^(4/11) 6765000031132411 a001 591286729879/4106118243*39603^(4/11) 6765000031132411 a001 774004377960/5374978561*39603^(4/11) 6765000031132411 a001 4052739537881/28143753123*39603^(4/11) 6765000031132411 a001 1515744265389/10525900321*39603^(4/11) 6765000031132411 a001 3278735159921/22768774562*39603^(4/11) 6765000031132411 a001 2504730781961/17393796001*39603^(4/11) 6765000031132411 a001 956722026041/6643838879*39603^(4/11) 6765000031132411 a001 182717648081/1268860318*39603^(4/11) 6765000031132411 a001 139583862445/969323029*39603^(4/11) 6765000031132411 a001 53316291173/370248451*39603^(4/11) 6765000031132412 a001 10182505537/70711162*39603^(4/11) 6765000031132414 a001 7778742049/54018521*39603^(4/11) 6765000031132427 a001 2971215073/20633239*39603^(4/11) 6765000031132520 a001 567451585/3940598*39603^(4/11) 6765000031132810 a001 28657/103682*103682^(7/8) 6765000031133158 a001 433494437/3010349*39603^(4/11) 6765000031137528 a001 165580141/1149851*39603^(4/11) 6765000031139841 a001 267914296/64079*64079^(1/23) 6765000031163397 a001 39088169/39603*15127^(1/5) 6765000031163397 a001 39088169/64079*167761^(1/5) 6765000031167481 a001 31622993/219602*39603^(4/11) 6765000031176403 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^30 6765000031176723 a001 39088169/167761*39603^(7/22) 6765000031178594 a001 317811/64079*439204^(5/9) 6765000031196633 a001 1346269/64079*439204^(4/9) 6765000031197331 a001 9107509827/1346269 6765000031198028 a001 317811/64079*7881196^(5/11) 6765000031198066 a001 28657/710647*20633239^(5/7) 6765000031198070 a001 317811/64079*20633239^(3/7) 6765000031198077 a001 317811/64079*141422324^(5/13) 6765000031198077 a001 28657/710647*2537720636^(5/9) 6765000031198077 a001 28657/710647*312119004989^(5/11) 6765000031198077 a001 28657/710647*(1/2+1/2*5^(1/2))^25 6765000031198077 a001 28657/710647*3461452808002^(5/12) 6765000031198077 a001 28657/710647*28143753123^(1/2) 6765000031198077 a001 317811/64079*2537720636^(1/3) 6765000031198077 a001 317811/64079*45537549124^(5/17) 6765000031198077 a001 317811/64079*312119004989^(3/11) 6765000031198077 a001 317811/64079*14662949395604^(5/21) 6765000031198077 a001 317811/64079*(1/2+1/2*5^(1/2))^15 6765000031198077 a001 317811/64079*192900153618^(5/18) 6765000031198077 a001 317811/64079*28143753123^(3/10) 6765000031198077 a001 317811/64079*10749957122^(5/16) 6765000031198077 a001 317811/64079*599074578^(5/14) 6765000031198077 a001 317811/64079*228826127^(3/8) 6765000031198077 a001 28657/710647*228826127^(5/8) 6765000031198080 a001 317811/64079*33385282^(5/12) 6765000031199054 a001 317811/64079*1860498^(1/2) 6765000031199706 a001 28657/710647*1860498^(5/6) 6765000031199741 a001 5702887/64079*439204^(1/3) 6765000031203682 a001 24157817/64079*439204^(2/9) 6765000031206356 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^32 6765000031207576 a001 102334155/64079*439204^(1/9) 6765000031209410 a001 11921885140/1762289 6765000031209429 a001 28657/1860498*7881196^(9/11) 6765000031209518 a001 28657/1860498*141422324^(9/13) 6765000031209518 a001 832040/64079*141422324^(1/3) 6765000031209518 a001 28657/1860498*2537720636^(3/5) 6765000031209518 a001 28657/1860498*45537549124^(9/17) 6765000031209518 a001 28657/1860498*817138163596^(9/19) 6765000031209518 a001 28657/1860498*14662949395604^(3/7) 6765000031209518 a001 28657/1860498*(1/2+1/2*5^(1/2))^27 6765000031209518 a001 28657/1860498*192900153618^(1/2) 6765000031209518 a001 28657/1860498*10749957122^(9/16) 6765000031209518 a001 832040/64079*(1/2+1/2*5^(1/2))^13 6765000031209518 a001 832040/64079*73681302247^(1/4) 6765000031209518 a001 28657/1860498*599074578^(9/14) 6765000031209523 a001 28657/1860498*33385282^(3/4) 6765000031210726 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^34 6765000031211151 a001 2178309/64079*7881196^(1/3) 6765000031211172 a001 62423801013/9227465 6765000031211188 a001 28657/4870847*(1/2+1/2*5^(1/2))^29 6765000031211188 a001 28657/4870847*1322157322203^(1/2) 6765000031211188 a001 2178309/64079*312119004989^(1/5) 6765000031211188 a001 2178309/64079*(1/2+1/2*5^(1/2))^11 6765000031211188 a001 2178309/64079*1568397607^(1/4) 6765000031211277 a001 28657/1860498*1860498^(9/10) 6765000031211364 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^36 6765000031211402 a001 5702887/64079*7881196^(3/11) 6765000031211429 a001 163427632759/24157817 6765000031211431 a001 5702887/64079*141422324^(3/13) 6765000031211431 a001 28657/12752043*(1/2+1/2*5^(1/2))^31 6765000031211431 a001 28657/12752043*9062201101803^(1/2) 6765000031211431 a001 5702887/64079*2537720636^(1/5) 6765000031211431 a001 5702887/64079*45537549124^(3/17) 6765000031211431 a001 5702887/64079*817138163596^(3/19) 6765000031211431 a001 5702887/64079*14662949395604^(1/7) 6765000031211431 a001 5702887/64079*(1/2+1/2*5^(1/2))^9 6765000031211431 a001 5702887/64079*192900153618^(1/6) 6765000031211431 a001 5702887/64079*10749957122^(3/16) 6765000031211431 a001 5702887/64079*599074578^(3/14) 6765000031211433 a001 5702887/64079*33385282^(1/4) 6765000031211455 a001 24157817/64079*7881196^(2/11) 6765000031211457 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^38 6765000031211463 a001 102334155/64079*7881196^(1/11) 6765000031211464 a001 14930352/64079*20633239^(1/5) 6765000031211466 a001 213929548632/31622993 6765000031211466 a001 28657/33385282*141422324^(11/13) 6765000031211467 a001 28657/33385282*2537720636^(11/15) 6765000031211467 a001 28657/33385282*45537549124^(11/17) 6765000031211467 a001 28657/33385282*312119004989^(3/5) 6765000031211467 a001 28657/33385282*817138163596^(11/19) 6765000031211467 a001 28657/33385282*14662949395604^(11/21) 6765000031211467 a001 28657/33385282*(1/2+1/2*5^(1/2))^33 6765000031211467 a001 28657/33385282*192900153618^(11/18) 6765000031211467 a001 28657/33385282*10749957122^(11/16) 6765000031211467 a001 14930352/64079*17393796001^(1/7) 6765000031211467 a001 14930352/64079*14662949395604^(1/9) 6765000031211467 a001 14930352/64079*(1/2+1/2*5^(1/2))^7 6765000031211467 a001 28657/33385282*1568397607^(3/4) 6765000031211467 a001 14930352/64079*599074578^(1/6) 6765000031211467 a001 28657/33385282*599074578^(11/14) 6765000031211470 a001 39088169/64079*20633239^(1/7) 6765000031211471 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^40 6765000031211472 a001 1120149659033/165580141 6765000031211472 a001 28657/87403803*2537720636^(7/9) 6765000031211472 a001 28657/87403803*17393796001^(5/7) 6765000031211472 a001 28657/87403803*312119004989^(7/11) 6765000031211472 a001 28657/87403803*14662949395604^(5/9) 6765000031211472 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(38) 6765000031211472 a001 28657/87403803*505019158607^(5/8) 6765000031211472 a001 28657/87403803*28143753123^(7/10) 6765000031211472 a001 39088169/64079*2537720636^(1/9) 6765000031211472 a001 39088169/64079*312119004989^(1/11) 6765000031211472 a001 39088169/64079*(1/2+1/2*5^(1/2))^5 6765000031211472 a001 39088169/64079*28143753123^(1/10) 6765000031211472 a001 28657/87403803*599074578^(5/6) 6765000031211472 a001 39088169/64079*228826127^(1/8) 6765000031211472 a001 28657/87403803*228826127^(7/8) 6765000031211472 a001 28657/33385282*33385282^(11/12) 6765000031211472 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^42 6765000031211473 a001 102334155/64079*141422324^(1/13) 6765000031211473 a001 2932589879835/433494437 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(40) 6765000031211473 a001 102334155/64079*2537720636^(1/15) 6765000031211473 a001 102334155/64079*45537549124^(1/17) 6765000031211473 a001 102334155/64079*14662949395604^(1/21) 6765000031211473 a001 102334155/64079*(1/2+1/2*5^(1/2))^3 6765000031211473 a001 102334155/64079*192900153618^(1/18) 6765000031211473 a001 102334155/64079*10749957122^(1/16) 6765000031211473 a001 102334155/64079*599074578^(1/14) 6765000031211473 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^44 6765000031211473 a001 3838809990236/567451585 6765000031211473 a001 28657/599074578*2537720636^(13/15) 6765000031211473 a001 28657/599074578*45537549124^(13/17) 6765000031211473 a001 28657/599074578*14662949395604^(13/21) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(42) 6765000031211473 a001 28657/599074578*192900153618^(13/18) 6765000031211473 a001 28657/599074578*73681302247^(3/4) 6765000031211473 a001 28657/599074578*10749957122^(13/16) 6765000031211473 a001 133957148/64079+133957148/64079*5^(1/2) 6765000031211473 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^46 6765000031211473 a001 20100270061581/2971215073 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(44) 6765000031211473 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2) 6765000031211473 a001 28657/599074578*599074578^(13/14) 6765000031211473 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^48 6765000031211473 a001 52623190204271/7778742049 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(46) 6765000031211473 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^50 6765000031211473 a001 68884650275616/10182505537 6765000031211473 a001 28657/10749957122*45537549124^(15/17) 6765000031211473 a001 28657/10749957122*312119004989^(9/11) 6765000031211473 a001 28657/10749957122*14662949395604^(5/7) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(48) 6765000031211473 a001 28657/10749957122*192900153618^(5/6) 6765000031211473 a001 28657/10749957122*28143753123^(9/10) 6765000031211473 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^52 6765000031211473 a001 360684711449425/53316291173 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(50) 6765000031211473 a001 28657/10749957122*10749957122^(15/16) 6765000031211473 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^54 6765000031211473 a001 944284833797043/139583862445 6765000031211473 a001 28657/73681302247*14662949395604^(7/9) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(52) 6765000031211473 a001 28657/73681302247*505019158607^(7/8) 6765000031211473 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^56 6765000031211473 a001 1236084894970852/182717648081 6765000031211473 a001 28657/192900153618*14662949395604^(17/21) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(54) 6765000031211473 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^58 6765000031211473 a001 6472224536028069/956722026041 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(56) 6765000031211473 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^60 6765000031211473 a001 28657/192900153618*192900153618^(17/18) 6765000031211473 a001 16944503818142503/2504730781961 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(58) 6765000031211473 a001 28657/1322157322203*3461452808002^(11/12) 6765000031211473 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^62 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(60) 6765000031211473 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^64 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(62) 6765000031211473 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^66 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(64) 6765000031211473 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^68 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(66) 6765000031211473 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^70 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(68) 6765000031211473 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^72 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(70) 6765000031211473 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^74 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(72) 6765000031211473 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^76 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(74) 6765000031211473 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^78 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(76) 6765000031211473 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^80 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(78) 6765000031211473 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^82 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(80) 6765000031211473 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^84 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(82) 6765000031211473 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^86 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(84) 6765000031211473 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^88 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(86) 6765000031211473 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^90 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(88) 6765000031211473 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^92 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(90) 6765000031211473 a004 Fibonacci(23)*Lucas(91)/(1/2+sqrt(5)/2)^94 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(92) 6765000031211473 a004 Fibonacci(23)*Lucas(93)/(1/2+sqrt(5)/2)^96 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^91/Lucas(94) 6765000031211473 a004 Fibonacci(23)*Lucas(95)/(1/2+sqrt(5)/2)^98 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^93/Lucas(96) 6765000031211473 a004 Fibonacci(23)*Lucas(97)/(1/2+sqrt(5)/2)^100 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^95/Lucas(98) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^97/Lucas(100) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^96/Lucas(99) 6765000031211473 a004 Fibonacci(23)/Lucas(1)/(1/2+sqrt(5)/2)^3 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^94/Lucas(97) 6765000031211473 a004 Fibonacci(23)*Lucas(96)/(1/2+sqrt(5)/2)^99 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^92/Lucas(95) 6765000031211473 a004 Fibonacci(23)*Lucas(94)/(1/2+sqrt(5)/2)^97 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(93) 6765000031211473 a004 Fibonacci(23)*Lucas(92)/(1/2+sqrt(5)/2)^95 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(91) 6765000031211473 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^93 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(89) 6765000031211473 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^91 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(87) 6765000031211473 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^89 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(85) 6765000031211473 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^87 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(83) 6765000031211473 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^85 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(81) 6765000031211473 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^83 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(79) 6765000031211473 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^81 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(77) 6765000031211473 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^79 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(75) 6765000031211473 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^77 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(73) 6765000031211473 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^75 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(71) 6765000031211473 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^73 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(69) 6765000031211473 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^71 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(67) 6765000031211473 a001 28657/14662949395604*14662949395604^(20/21) 6765000031211473 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^69 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(65) 6765000031211473 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^67 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(63) 6765000031211473 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^65 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(61) 6765000031211473 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^63 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(59) 6765000031211473 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^61 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(57) 6765000031211473 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^59 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(55) 6765000031211473 a001 28657/312119004989*23725150497407^(13/16) 6765000031211473 a001 4000054746086365/591286729879 6765000031211473 a001 28657/312119004989*505019158607^(13/14) 6765000031211473 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^57 6765000031211473 a001 28657/45537549124*45537549124^(16/17) 6765000031211473 a001 28657/119218851371*312119004989^(10/11) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(53) 6765000031211473 a001 28657/119218851371*3461452808002^(5/6) 6765000031211473 a001 1527884956144661/225851433717 6765000031211473 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^55 6765000031211473 a001 28657/45537549124*14662949395604^(16/21) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(51) 6765000031211473 a001 28657/45537549124*192900153618^(8/9) 6765000031211473 a001 291800061173809/43133785636 6765000031211473 a001 28657/45537549124*73681302247^(12/13) 6765000031211473 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^53 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(49) 6765000031211473 a001 222915410898193/32951280099 6765000031211473 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^51 6765000031211473 a001 28657/2537720636*2537720636^(14/15) 6765000031211473 a001 28657/17393796001*10749957122^(23/24) 6765000031211473 a001 28657/6643838879*312119004989^(4/5) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(47) 6765000031211473 a001 28657/6643838879*23725150497407^(11/16) 6765000031211473 a001 28657/6643838879*73681302247^(11/13) 6765000031211473 a001 85146110346961/12586269025 6765000031211473 a001 28657/6643838879*10749957122^(11/12) 6765000031211473 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^5 6765000031211473 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^7 6765000031211473 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^9 6765000031211473 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^11 6765000031211473 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^13 6765000031211473 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^15 6765000031211473 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^17 6765000031211473 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^19 6765000031211473 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^21 6765000031211473 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^23 6765000031211473 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^25 6765000031211473 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^27 6765000031211473 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^29 6765000031211473 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^31 6765000031211473 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^33 6765000031211473 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^35 6765000031211473 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^37 6765000031211473 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^39 6765000031211473 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^41 6765000031211473 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^43 6765000031211473 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^45 6765000031211473 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^47 6765000031211473 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^49 6765000031211473 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^51 6765000031211473 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^53 6765000031211473 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^57 6765000031211473 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^55 6765000031211473 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^56 6765000031211473 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^54 6765000031211473 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^52 6765000031211473 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^50 6765000031211473 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^48 6765000031211473 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^46 6765000031211473 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^44 6765000031211473 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^42 6765000031211473 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^40 6765000031211473 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^38 6765000031211473 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^36 6765000031211473 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^34 6765000031211473 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^32 6765000031211473 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^30 6765000031211473 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^28 6765000031211473 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^26 6765000031211473 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^24 6765000031211473 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^22 6765000031211473 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^20 6765000031211473 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^18 6765000031211473 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^16 6765000031211473 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^14 6765000031211473 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^12 6765000031211473 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^10 6765000031211473 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^8 6765000031211473 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^6 6765000031211473 a001 28657/6643838879*4106118243^(22/23) 6765000031211473 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^4 6765000031211473 a001 28657/2537720636*17393796001^(6/7) 6765000031211473 a001 28657/2537720636*45537549124^(14/17) 6765000031211473 a001 28657/2537720636*817138163596^(14/19) 6765000031211473 a001 28657/2537720636*14662949395604^(2/3) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(45) 6765000031211473 a001 28657/2537720636*505019158607^(3/4) 6765000031211473 a001 28657/2537720636*192900153618^(7/9) 6765000031211473 a001 28657/2537720636*10749957122^(7/8) 6765000031211473 a001 16261460071345/2403763488 6765000031211473 a001 28657/2537720636*4106118243^(21/23) 6765000031211473 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^2 6765000031211473 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^47 6765000031211473 a001 28657/2537720636*1568397607^(21/22) 6765000031211473 a001 28657/969323029*2537720636^(8/9) 6765000031211473 a001 28657/969323029*312119004989^(8/11) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(43) 6765000031211473 a001 28657/969323029*23725150497407^(5/8) 6765000031211473 a001 28657/969323029*73681302247^(10/13) 6765000031211473 a001 28657/969323029*28143753123^(4/5) 6765000031211473 a001 28657/969323029*10749957122^(5/6) 6765000031211473 a001 28657/969323029*4106118243^(20/23) 6765000031211473 a001 433494437/64079 6765000031211473 a001 28657/969323029*1568397607^(10/11) 6765000031211473 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^45 6765000031211473 a001 28657/969323029*599074578^(20/21) 6765000031211473 a001 28657/141422324*141422324^(12/13) 6765000031211473 a001 28657/370248451*817138163596^(2/3) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(41) 6765000031211473 a001 28657/370248451*10749957122^(19/24) 6765000031211473 a001 28657/370248451*4106118243^(19/23) 6765000031211473 a001 165580141/64079*(1/2+1/2*5^(1/2))^2 6765000031211473 a001 165580141/64079*10749957122^(1/24) 6765000031211473 a001 165580141/64079*4106118243^(1/23) 6765000031211473 a001 165580141/64079*1568397607^(1/22) 6765000031211473 a001 165580141/64079*599074578^(1/21) 6765000031211473 a001 28657/370248451*1568397607^(19/22) 6765000031211473 a001 4745030100637/701408733 6765000031211473 a001 165580141/64079*228826127^(1/20) 6765000031211473 a001 28657/370248451*599074578^(19/21) 6765000031211473 a001 165580141/64079*87403803^(1/19) 6765000031211473 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^43 6765000031211473 a001 28657/370248451*228826127^(19/20) 6765000031211473 a001 28657/141422324*2537720636^(4/5) 6765000031211473 a001 28657/141422324*45537549124^(12/17) 6765000031211473 a001 28657/141422324*14662949395604^(4/7) 6765000031211473 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(39) 6765000031211473 a001 28657/141422324*505019158607^(9/14) 6765000031211473 a001 28657/141422324*192900153618^(2/3) 6765000031211473 a001 28657/141422324*73681302247^(9/13) 6765000031211473 a001 28657/141422324*10749957122^(3/4) 6765000031211473 a001 28657/141422324*4106118243^(18/23) 6765000031211473 a001 63245986/64079*(1/2+1/2*5^(1/2))^4 6765000031211473 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^4/Lucas(23) 6765000031211473 a001 63245986/64079*23725150497407^(1/16) 6765000031211473 a001 63245986/64079*73681302247^(1/13) 6765000031211473 a001 63245986/64079*10749957122^(1/12) 6765000031211473 a001 63245986/64079*4106118243^(2/23) 6765000031211473 a001 63245986/64079*1568397607^(1/11) 6765000031211473 a001 63245986/64079*599074578^(2/21) 6765000031211473 a001 28657/141422324*1568397607^(9/11) 6765000031211473 a001 63245986/64079*228826127^(1/10) 6765000031211473 a001 28657/141422324*599074578^(6/7) 6765000031211473 a001 906220110401/133957148 6765000031211473 a001 102334155/64079*33385282^(1/12) 6765000031211473 a001 165580141/64079*33385282^(1/18) 6765000031211473 a001 63245986/64079*87403803^(2/19) 6765000031211473 a001 28657/141422324*228826127^(9/10) 6765000031211474 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^41 6765000031211474 a001 63245986/64079*33385282^(1/9) 6765000031211474 a001 28657/141422324*87403803^(18/19) 6765000031211475 a001 24157817/64079*141422324^(2/13) 6765000031211475 a001 28657/54018521*45537549124^(2/3) 6765000031211475 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(37) 6765000031211475 a001 28657/54018521*10749957122^(17/24) 6765000031211475 a001 24157817/64079*2537720636^(2/15) 6765000031211475 a001 28657/54018521*4106118243^(17/23) 6765000031211475 a001 24157817/64079*45537549124^(2/17) 6765000031211475 a001 24157817/64079*14662949395604^(2/21) 6765000031211475 a001 24157817/64079*(1/2+1/2*5^(1/2))^6 6765000031211475 a001 24157817/64079*10749957122^(1/8) 6765000031211475 a001 24157817/64079*4106118243^(3/23) 6765000031211475 a001 24157817/64079*1568397607^(3/22) 6765000031211475 a001 28657/54018521*1568397607^(17/22) 6765000031211475 a001 24157817/64079*599074578^(1/7) 6765000031211475 a001 28657/54018521*599074578^(17/21) 6765000031211475 a001 24157817/64079*228826127^(3/20) 6765000031211475 a001 28657/54018521*228826127^(17/20) 6765000031211475 a001 692290561769/102334155 6765000031211475 a001 24157817/64079*87403803^(3/19) 6765000031211475 a001 165580141/64079*12752043^(1/17) 6765000031211476 a001 28657/54018521*87403803^(17/19) 6765000031211476 a001 24157817/64079*33385282^(1/6) 6765000031211478 a001 63245986/64079*12752043^(2/17) 6765000031211479 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^39 6765000031211481 a001 28657/54018521*33385282^(17/18) 6765000031211482 a001 24157817/64079*12752043^(3/17) 6765000031211483 a001 28657/7881196*7881196^(10/11) 6765000031211489 a001 28657/20633239*(1/2+1/2*5^(1/2))^32 6765000031211489 a001 28657/20633239*23725150497407^(1/2) 6765000031211489 a001 28657/20633239*505019158607^(4/7) 6765000031211489 a001 28657/20633239*73681302247^(8/13) 6765000031211489 a001 28657/20633239*10749957122^(2/3) 6765000031211489 a001 28657/20633239*4106118243^(16/23) 6765000031211489 a001 9227465/64079*(1/2+1/2*5^(1/2))^8 6765000031211489 a001 9227465/64079*23725150497407^(1/8) 6765000031211489 a001 9227465/64079*505019158607^(1/7) 6765000031211489 a001 9227465/64079*73681302247^(2/13) 6765000031211489 a001 9227465/64079*10749957122^(1/6) 6765000031211489 a001 9227465/64079*4106118243^(4/23) 6765000031211489 a001 9227465/64079*1568397607^(2/11) 6765000031211489 a001 28657/20633239*1568397607^(8/11) 6765000031211489 a001 9227465/64079*599074578^(4/21) 6765000031211489 a001 28657/20633239*599074578^(16/21) 6765000031211489 a001 9227465/64079*228826127^(1/5) 6765000031211489 a001 28657/20633239*228826127^(4/5) 6765000031211489 a001 9227465/64079*87403803^(4/19) 6765000031211489 a001 28657/20633239*87403803^(16/19) 6765000031211490 a001 264431464505/39088169 6765000031211490 a001 9227465/64079*33385282^(2/9) 6765000031211491 a001 165580141/64079*4870847^(1/16) 6765000031211494 a001 28657/20633239*33385282^(8/9) 6765000031211499 a001 9227465/64079*12752043^(4/17) 6765000031211509 a001 63245986/64079*4870847^(1/8) 6765000031211514 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^37 6765000031211528 a001 28657/20633239*12752043^(16/17) 6765000031211529 a001 24157817/64079*4870847^(3/16) 6765000031211560 a001 9227465/64079*4870847^(1/4) 6765000031211568 a001 28657/7881196*20633239^(6/7) 6765000031211577 a001 3524578/64079*20633239^(2/7) 6765000031211581 a001 28657/7881196*141422324^(10/13) 6765000031211582 a001 28657/7881196*2537720636^(2/3) 6765000031211582 a001 28657/7881196*45537549124^(10/17) 6765000031211582 a001 28657/7881196*312119004989^(6/11) 6765000031211582 a001 28657/7881196*14662949395604^(10/21) 6765000031211582 a001 28657/7881196*(1/2+1/2*5^(1/2))^30 6765000031211582 a001 28657/7881196*192900153618^(5/9) 6765000031211582 a001 28657/7881196*28143753123^(3/5) 6765000031211582 a001 28657/7881196*10749957122^(5/8) 6765000031211582 a001 3524578/64079*2537720636^(2/9) 6765000031211582 a001 28657/7881196*4106118243^(15/23) 6765000031211582 a001 3524578/64079*312119004989^(2/11) 6765000031211582 a001 3524578/64079*(1/2+1/2*5^(1/2))^10 6765000031211582 a001 3524578/64079*28143753123^(1/5) 6765000031211582 a001 3524578/64079*10749957122^(5/24) 6765000031211582 a001 3524578/64079*4106118243^(5/23) 6765000031211582 a001 3524578/64079*1568397607^(5/22) 6765000031211582 a001 28657/7881196*1568397607^(15/22) 6765000031211582 a001 3524578/64079*599074578^(5/21) 6765000031211582 a001 28657/7881196*599074578^(5/7) 6765000031211582 a001 3524578/64079*228826127^(1/4) 6765000031211582 a001 28657/7881196*228826127^(3/4) 6765000031211582 a001 3524578/64079*87403803^(5/19) 6765000031211582 a001 28657/7881196*87403803^(15/19) 6765000031211583 a001 3524578/64079*33385282^(5/18) 6765000031211587 a001 28657/7881196*33385282^(5/6) 6765000031211588 a001 50501915873/7465176 6765000031211594 a001 3524578/64079*12752043^(5/17) 6765000031211603 a001 165580141/64079*1860498^(1/15) 6765000031211618 a001 28657/7881196*12752043^(15/17) 6765000031211668 a001 102334155/64079*1860498^(1/10) 6765000031211671 a001 3524578/64079*4870847^(5/16) 6765000031211734 a001 63245986/64079*1860498^(2/15) 6765000031211758 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^35 6765000031211798 a001 39088169/64079*1860498^(1/6) 6765000031211849 a001 28657/7881196*4870847^(15/16) 6765000031211866 a001 24157817/64079*1860498^(1/5) 6765000031212010 a001 9227465/64079*1860498^(4/15) 6765000031212018 a001 5702887/64079*1860498^(3/10) 6765000031212180 a001 1346269/64079*7881196^(4/11) 6765000031212207 a001 28657/3010349*20633239^(4/5) 6765000031212219 a001 1346269/64079*141422324^(4/13) 6765000031212219 a001 28657/3010349*17393796001^(4/7) 6765000031212219 a001 28657/3010349*14662949395604^(4/9) 6765000031212219 a001 28657/3010349*(1/2+1/2*5^(1/2))^28 6765000031212219 a001 28657/3010349*505019158607^(1/2) 6765000031212219 a001 28657/3010349*73681302247^(7/13) 6765000031212219 a001 28657/3010349*10749957122^(7/12) 6765000031212219 a001 1346269/64079*2537720636^(4/15) 6765000031212219 a001 28657/3010349*4106118243^(14/23) 6765000031212219 a001 1346269/64079*45537549124^(4/17) 6765000031212219 a001 1346269/64079*817138163596^(4/19) 6765000031212219 a001 1346269/64079*14662949395604^(4/21) 6765000031212219 a001 1346269/64079*(1/2+1/2*5^(1/2))^12 6765000031212219 a001 1346269/64079*192900153618^(2/9) 6765000031212219 a001 1346269/64079*73681302247^(3/13) 6765000031212219 a001 1346269/64079*10749957122^(1/4) 6765000031212219 a001 1346269/64079*4106118243^(6/23) 6765000031212219 a001 1346269/64079*1568397607^(3/11) 6765000031212219 a001 28657/3010349*1568397607^(7/11) 6765000031212219 a001 1346269/64079*599074578^(2/7) 6765000031212219 a001 28657/3010349*599074578^(2/3) 6765000031212219 a001 1346269/64079*228826127^(3/10) 6765000031212219 a001 28657/3010349*228826127^(7/10) 6765000031212220 a001 1346269/64079*87403803^(6/19) 6765000031212220 a001 28657/3010349*87403803^(14/19) 6765000031212221 a001 1346269/64079*33385282^(1/3) 6765000031212224 a001 28657/3010349*33385282^(7/9) 6765000031212233 a001 3524578/64079*1860498^(1/3) 6765000031212234 a001 1346269/64079*12752043^(6/17) 6765000031212254 a001 28657/3010349*12752043^(14/17) 6765000031212261 a001 38580030733/5702887 6765000031212326 a001 1346269/64079*4870847^(3/8) 6765000031212430 a001 165580141/64079*710647^(1/14) 6765000031212469 a001 28657/3010349*4870847^(7/8) 6765000031213001 a001 1346269/64079*1860498^(2/5) 6765000031213387 a001 63245986/64079*710647^(1/7) 6765000031213427 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^33 6765000031214043 a001 28657/3010349*1860498^(14/15) 6765000031214346 a001 24157817/64079*710647^(3/14) 6765000031214816 a001 14930352/64079*710647^(1/4) 6765000031215316 a001 9227465/64079*710647^(2/7) 6765000031215369 a001 28657/439204*439204^(8/9) 6765000031216366 a001 3524578/64079*710647^(5/14) 6765000031216583 a001 514229/64079*20633239^(2/5) 6765000031216589 a001 28657/1149851*141422324^(2/3) 6765000031216589 a001 28657/1149851*(1/2+1/2*5^(1/2))^26 6765000031216589 a001 28657/1149851*73681302247^(1/2) 6765000031216589 a001 28657/1149851*10749957122^(13/24) 6765000031216589 a001 28657/1149851*4106118243^(13/23) 6765000031216589 a001 514229/64079*17393796001^(2/7) 6765000031216589 a001 514229/64079*14662949395604^(2/9) 6765000031216589 a001 514229/64079*(1/2+1/2*5^(1/2))^14 6765000031216589 a001 514229/64079*505019158607^(1/4) 6765000031216589 a001 514229/64079*10749957122^(7/24) 6765000031216589 a001 514229/64079*4106118243^(7/23) 6765000031216589 a001 514229/64079*1568397607^(7/22) 6765000031216589 a001 28657/1149851*1568397607^(13/22) 6765000031216589 a001 514229/64079*599074578^(1/3) 6765000031216589 a001 28657/1149851*599074578^(13/21) 6765000031216590 a001 514229/64079*228826127^(7/20) 6765000031216590 a001 28657/1149851*228826127^(13/20) 6765000031216590 a001 514229/64079*87403803^(7/19) 6765000031216590 a001 28657/1149851*87403803^(13/19) 6765000031216592 a001 514229/64079*33385282^(7/18) 6765000031216594 a001 28657/1149851*33385282^(13/18) 6765000031216607 a001 514229/64079*12752043^(7/17) 6765000031216621 a001 28657/1149851*12752043^(13/17) 6765000031216714 a001 514229/64079*4870847^(7/16) 6765000031216821 a001 28657/1149851*4870847^(13/16) 6765000031216875 a001 14736260453/2178309 6765000031217502 a001 514229/64079*1860498^(7/15) 6765000031217960 a001 1346269/64079*710647^(3/7) 6765000031218283 a001 28657/1149851*1860498^(13/15) 6765000031218536 a001 165580141/64079*271443^(1/13) 6765000031223287 a001 514229/64079*710647^(1/2) 6765000031224868 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^31 6765000031225598 a001 63245986/64079*271443^(2/13) 6765000031229028 a001 28657/1149851*710647^(13/14) 6765000031232663 a001 24157817/64079*271443^(3/13) 6765000031236659 a001 24157817/271443*39603^(9/22) 6765000031237694 a001 267914296/64079*103682^(1/24) 6765000031239739 a001 9227465/64079*271443^(4/13) 6765000031246464 a001 28657/439204*7881196^(8/11) 6765000031246543 a001 28657/439204*141422324^(8/13) 6765000031246543 a001 28657/439204*2537720636^(8/15) 6765000031246543 a001 28657/439204*45537549124^(8/17) 6765000031246543 a001 28657/439204*14662949395604^(8/21) 6765000031246543 a001 28657/439204*(1/2+1/2*5^(1/2))^24 6765000031246543 a001 28657/439204*192900153618^(4/9) 6765000031246543 a001 28657/439204*73681302247^(6/13) 6765000031246543 a001 28657/439204*10749957122^(1/2) 6765000031246543 a001 28657/439204*4106118243^(12/23) 6765000031246543 a001 196418/64079*(1/2+1/2*5^(1/2))^16 6765000031246543 a001 196418/64079*23725150497407^(1/4) 6765000031246543 a001 196418/64079*73681302247^(4/13) 6765000031246543 a001 196418/64079*10749957122^(1/3) 6765000031246543 a001 196418/64079*4106118243^(8/23) 6765000031246543 a001 196418/64079*1568397607^(4/11) 6765000031246543 a001 28657/439204*1568397607^(6/11) 6765000031246543 a001 196418/64079*599074578^(8/21) 6765000031246543 a001 28657/439204*599074578^(4/7) 6765000031246543 a001 196418/64079*228826127^(2/5) 6765000031246543 a001 28657/439204*228826127^(3/5) 6765000031246543 a001 196418/64079*87403803^(8/19) 6765000031246543 a001 28657/439204*87403803^(12/19) 6765000031246545 a001 196418/64079*33385282^(4/9) 6765000031246547 a001 28657/439204*33385282^(2/3) 6765000031246562 a001 196418/64079*12752043^(8/17) 6765000031246572 a001 28657/439204*12752043^(12/17) 6765000031246685 a001 196418/64079*4870847^(1/2) 6765000031246757 a001 28657/439204*4870847^(3/4) 6765000031246895 a001 3524578/64079*271443^(5/13) 6765000031247585 a001 196418/64079*1860498^(8/15) 6765000031248106 a001 28657/439204*1860498^(4/5) 6765000031248497 a001 2814375313/416020 6765000031254197 a001 196418/64079*710647^(4/7) 6765000031254595 a001 1346269/64079*271443^(6/13) 6765000031255426 a001 832040/64079*271443^(1/2) 6765000031258025 a001 28657/439204*710647^(6/7) 6765000031263915 a001 165580141/64079*103682^(1/12) 6765000031266028 a001 514229/64079*271443^(7/13) 6765000031282501 a001 701408733/167761*15127^(1/20) 6765000031287061 a001 46347/2206*39603^(6/11) 6765000031290136 a001 102334155/64079*103682^(1/8) 6765000031303044 a001 196418/64079*271443^(8/13) 6765000031303287 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^29 6765000031315076 a001 63245986/710647*39603^(9/22) 6765000031316357 a001 63245986/64079*103682^(1/6) 6765000031326517 a001 165580141/1860498*39603^(9/22) 6765000031328186 a001 433494437/4870847*39603^(9/22) 6765000031328430 a001 1134903170/12752043*39603^(9/22) 6765000031328465 a001 2971215073/33385282*39603^(9/22) 6765000031328470 a001 7778742049/87403803*39603^(9/22) 6765000031328471 a001 20365011074/228826127*39603^(9/22) 6765000031328471 a001 53316291173/599074578*39603^(9/22) 6765000031328471 a001 139583862445/1568397607*39603^(9/22) 6765000031328471 a001 365435296162/4106118243*39603^(9/22) 6765000031328471 a001 956722026041/10749957122*39603^(9/22) 6765000031328471 a001 2504730781961/28143753123*39603^(9/22) 6765000031328471 a001 6557470319842/73681302247*39603^(9/22) 6765000031328471 a001 10610209857723/119218851371*39603^(9/22) 6765000031328471 a001 4052739537881/45537549124*39603^(9/22) 6765000031328471 a001 1548008755920/17393796001*39603^(9/22) 6765000031328471 a001 591286729879/6643838879*39603^(9/22) 6765000031328471 a001 225851433717/2537720636*39603^(9/22) 6765000031328471 a001 86267571272/969323029*39603^(9/22) 6765000031328471 a001 32951280099/370248451*39603^(9/22) 6765000031328472 a001 12586269025/141422324*39603^(9/22) 6765000031328473 a001 4807526976/54018521*39603^(9/22) 6765000031328487 a001 1836311903/20633239*39603^(9/22) 6765000031328580 a001 3524667/39604*39603^(9/22) 6765000031329218 a001 267914296/3010349*39603^(9/22) 6765000031331294 a001 28657/439204*271443^(12/13) 6765000031333588 a001 102334155/1149851*39603^(9/22) 6765000031342577 a001 39088169/64079*103682^(5/24) 6765000031363540 a001 39088169/439204*39603^(9/22) 6765000031368801 a001 24157817/64079*103682^(1/4) 6765000031372787 a001 24157817/167761*39603^(4/11) 6765000031395014 a001 14930352/64079*103682^(7/24) 6765000031407533 a001 267914296/64079*39603^(1/22) 6765000031421257 a001 9227465/64079*103682^(1/3) 6765000031426370 a001 28657/64079*64079^(20/23) 6765000031428466 a001 75025/64079*439204^(2/3) 6765000031432711 a001 4976784/90481*39603^(5/11) 6765000031447421 a001 5702887/64079*103682^(3/8) 6765000031451773 a001 28657/167761*7881196^(2/3) 6765000031451786 a001 75025/64079*7881196^(6/11) 6765000031451846 a001 75025/64079*141422324^(6/13) 6765000031451846 a001 75025/64079*2537720636^(2/5) 6765000031451846 a001 28657/167761*312119004989^(2/5) 6765000031451846 a001 28657/167761*(1/2+1/2*5^(1/2))^22 6765000031451846 a001 28657/167761*10749957122^(11/24) 6765000031451846 a001 28657/167761*4106118243^(11/23) 6765000031451846 a001 75025/64079*45537549124^(6/17) 6765000031451846 a001 75025/64079*14662949395604^(2/7) 6765000031451846 a001 75025/64079*(1/2+1/2*5^(1/2))^18 6765000031451846 a001 75025/64079*192900153618^(1/3) 6765000031451846 a001 75025/64079*10749957122^(3/8) 6765000031451846 a001 75025/64079*4106118243^(9/23) 6765000031451846 a001 28657/167761*1568397607^(1/2) 6765000031451846 a001 75025/64079*1568397607^(9/22) 6765000031451846 a001 75025/64079*599074578^(3/7) 6765000031451846 a001 28657/167761*599074578^(11/21) 6765000031451846 a001 75025/64079*228826127^(9/20) 6765000031451846 a001 28657/167761*228826127^(11/20) 6765000031451846 a001 75025/64079*87403803^(9/19) 6765000031451846 a001 28657/167761*87403803^(11/19) 6765000031451849 a001 75025/64079*33385282^(1/2) 6765000031451850 a001 28657/167761*33385282^(11/18) 6765000031451868 a001 75025/64079*12752043^(9/17) 6765000031451873 a001 28657/167761*12752043^(11/17) 6765000031452006 a001 75025/64079*4870847^(9/16) 6765000031452042 a001 28657/167761*4870847^(11/16) 6765000031453019 a001 75025/64079*1860498^(3/5) 6765000031453279 a001 28657/167761*1860498^(11/15) 6765000031460457 a001 75025/64079*710647^(9/14) 6765000031462371 a001 28657/167761*710647^(11/14) 6765000031465241 a001 2149991425/317811 6765000031473792 a001 3524578/64079*103682^(5/12) 6765000031484153 a001 1346269/103682*39603^(13/22) 6765000031499619 a001 2178309/64079*103682^(11/24) 6765000031511135 a001 39088169/710647*39603^(5/11) 6765000031515410 a001 75025/64079*271443^(9/13) 6765000031522577 a001 831985/15126*39603^(5/11) 6765000031524246 a001 267914296/4870847*39603^(5/11) 6765000031524490 a001 233802911/4250681*39603^(5/11) 6765000031524525 a001 1836311903/33385282*39603^(5/11) 6765000031524530 a001 1602508992/29134601*39603^(5/11) 6765000031524531 a001 12586269025/228826127*39603^(5/11) 6765000031524531 a001 10983760033/199691526*39603^(5/11) 6765000031524531 a001 86267571272/1568397607*39603^(5/11) 6765000031524531 a001 75283811239/1368706081*39603^(5/11) 6765000031524531 a001 591286729879/10749957122*39603^(5/11) 6765000031524531 a001 12585437040/228811001*39603^(5/11) 6765000031524531 a001 4052739537881/73681302247*39603^(5/11) 6765000031524531 a001 3536736619241/64300051206*39603^(5/11) 6765000031524531 a001 6557470319842/119218851371*39603^(5/11) 6765000031524531 a001 2504730781961/45537549124*39603^(5/11) 6765000031524531 a001 956722026041/17393796001*39603^(5/11) 6765000031524531 a001 365435296162/6643838879*39603^(5/11) 6765000031524531 a001 139583862445/2537720636*39603^(5/11) 6765000031524531 a001 53316291173/969323029*39603^(5/11) 6765000031524531 a001 20365011074/370248451*39603^(5/11) 6765000031524531 a001 7778742049/141422324*39603^(5/11) 6765000031524533 a001 2971215073/54018521*39603^(5/11) 6765000031524547 a001 1134903170/20633239*39603^(5/11) 6765000031524640 a001 433494437/7881196*39603^(5/11) 6765000031525278 a001 165580141/3010349*39603^(5/11) 6765000031526872 a001 1346269/64079*103682^(1/2) 6765000031529535 a001 28657/167761*271443^(11/13) 6765000031529648 a001 63245986/1149851*39603^(5/11) 6765000031550392 a001 832040/64079*103682^(13/24) 6765000031559603 a001 24157817/439204*39603^(5/11) 6765000031565416 a001 121393/64079*103682^(17/24) 6765000031568838 a001 14930352/167761*39603^(9/22) 6765000031583684 a001 514229/64079*103682^(7/12) 6765000031591393 a001 317811/64079*103682^(5/8) 6765000031603593 a001 165580141/64079*39603^(1/11) 6765000031628793 a001 9227465/271443*39603^(1/2) 6765000031666079 a001 196418/64079*103682^(2/3) 6765000031677512 a001 416020/51841*39603^(7/11) 6765000031707198 a001 24157817/710647*39603^(1/2) 6765000031718637 a001 31622993/930249*39603^(1/2) 6765000031720306 a001 165580141/4870847*39603^(1/2) 6765000031720550 a001 433494437/12752043*39603^(1/2) 6765000031720585 a001 567451585/16692641*39603^(1/2) 6765000031720590 a001 2971215073/87403803*39603^(1/2) 6765000031720591 a001 7778742049/228826127*39603^(1/2) 6765000031720591 a001 10182505537/299537289*39603^(1/2) 6765000031720591 a001 53316291173/1568397607*39603^(1/2) 6765000031720591 a001 139583862445/4106118243*39603^(1/2) 6765000031720591 a001 182717648081/5374978561*39603^(1/2) 6765000031720591 a001 956722026041/28143753123*39603^(1/2) 6765000031720591 a001 2504730781961/73681302247*39603^(1/2) 6765000031720591 a001 3278735159921/96450076809*39603^(1/2) 6765000031720591 a001 10610209857723/312119004989*39603^(1/2) 6765000031720591 a001 4052739537881/119218851371*39603^(1/2) 6765000031720591 a001 387002188980/11384387281*39603^(1/2) 6765000031720591 a001 591286729879/17393796001*39603^(1/2) 6765000031720591 a001 225851433717/6643838879*39603^(1/2) 6765000031720591 a001 1135099622/33391061*39603^(1/2) 6765000031720591 a001 32951280099/969323029*39603^(1/2) 6765000031720591 a001 12586269025/370248451*39603^(1/2) 6765000031720591 a001 1201881744/35355581*39603^(1/2) 6765000031720593 a001 1836311903/54018521*39603^(1/2) 6765000031720607 a001 701408733/20633239*39603^(1/2) 6765000031720700 a001 66978574/1970299*39603^(1/2) 6765000031721338 a001 102334155/3010349*39603^(1/2) 6765000031722742 a001 28657/271443*103682^(23/24) 6765000031725707 a001 39088169/1149851*39603^(1/2) 6765000031755655 a001 196452/5779*39603^(1/2) 6765000031764920 a001 9227465/167761*39603^(5/11) 6765000031799653 a001 102334155/64079*39603^(3/22) 6765000031824795 a001 5702887/271443*39603^(6/11) 6765000031840778 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^27 6765000031880643 a001 514229/103682*39603^(15/22) 6765000031891020 a001 133957148/51841*15127^(1/10) 6765000031903250 a001 14930352/710647*39603^(6/11) 6765000031914696 a001 39088169/1860498*39603^(6/11) 6765000031916366 a001 102334155/4870847*39603^(6/11) 6765000031916609 a001 267914296/12752043*39603^(6/11) 6765000031916645 a001 701408733/33385282*39603^(6/11) 6765000031916650 a001 1836311903/87403803*39603^(6/11) 6765000031916651 a001 102287808/4868641*39603^(6/11) 6765000031916651 a001 12586269025/599074578*39603^(6/11) 6765000031916651 a001 32951280099/1568397607*39603^(6/11) 6765000031916651 a001 86267571272/4106118243*39603^(6/11) 6765000031916651 a001 225851433717/10749957122*39603^(6/11) 6765000031916651 a001 591286729879/28143753123*39603^(6/11) 6765000031916651 a001 1548008755920/73681302247*39603^(6/11) 6765000031916651 a001 4052739537881/192900153618*39603^(6/11) 6765000031916651 a001 225749145909/10745088481*39603^(6/11) 6765000031916651 a001 6557470319842/312119004989*39603^(6/11) 6765000031916651 a001 2504730781961/119218851371*39603^(6/11) 6765000031916651 a001 956722026041/45537549124*39603^(6/11) 6765000031916651 a001 365435296162/17393796001*39603^(6/11) 6765000031916651 a001 139583862445/6643838879*39603^(6/11) 6765000031916651 a001 53316291173/2537720636*39603^(6/11) 6765000031916651 a001 20365011074/969323029*39603^(6/11) 6765000031916651 a001 7778742049/370248451*39603^(6/11) 6765000031916651 a001 2971215073/141422324*39603^(6/11) 6765000031916653 a001 1134903170/54018521*39603^(6/11) 6765000031916667 a001 433494437/20633239*39603^(6/11) 6765000031916760 a001 165580141/7881196*39603^(6/11) 6765000031917398 a001 63245986/3010349*39603^(6/11) 6765000031921770 a001 24157817/1149851*39603^(6/11) 6765000031923825 a001 75025/64079*103682^(3/4) 6765000031951737 a001 9227465/439204*39603^(6/11) 6765000031960923 a001 5702887/167761*39603^(1/2) 6765000031995713 a001 63245986/64079*39603^(2/11) 6765000032021006 a001 3524578/271443*39603^(13/22) 6765000032028709 a001 28657/167761*103682^(11/12) 6765000032058191 a001 317811/103682*39603^(8/11) 6765000032099331 a001 9227465/710647*39603^(13/22) 6765000032110759 a001 24157817/1860498*39603^(13/22) 6765000032112426 a001 63245986/4870847*39603^(13/22) 6765000032112670 a001 165580141/12752043*39603^(13/22) 6765000032112705 a001 433494437/33385282*39603^(13/22) 6765000032112710 a001 1134903170/87403803*39603^(13/22) 6765000032112711 a001 2971215073/228826127*39603^(13/22) 6765000032112711 a001 7778742049/599074578*39603^(13/22) 6765000032112711 a001 20365011074/1568397607*39603^(13/22) 6765000032112711 a001 53316291173/4106118243*39603^(13/22) 6765000032112711 a001 139583862445/10749957122*39603^(13/22) 6765000032112711 a001 365435296162/28143753123*39603^(13/22) 6765000032112711 a001 956722026041/73681302247*39603^(13/22) 6765000032112711 a001 2504730781961/192900153618*39603^(13/22) 6765000032112711 a001 10610209857723/817138163596*39603^(13/22) 6765000032112711 a001 4052739537881/312119004989*39603^(13/22) 6765000032112711 a001 1548008755920/119218851371*39603^(13/22) 6765000032112711 a001 591286729879/45537549124*39603^(13/22) 6765000032112711 a001 7787980473/599786069*39603^(13/22) 6765000032112711 a001 86267571272/6643838879*39603^(13/22) 6765000032112711 a001 32951280099/2537720636*39603^(13/22) 6765000032112711 a001 12586269025/969323029*39603^(13/22) 6765000032112711 a001 4807526976/370248451*39603^(13/22) 6765000032112711 a001 1836311903/141422324*39603^(13/22) 6765000032112713 a001 701408733/54018521*39603^(13/22) 6765000032112727 a001 9238424/711491*39603^(13/22) 6765000032112820 a001 102334155/7881196*39603^(13/22) 6765000032113457 a001 39088169/3010349*39603^(13/22) 6765000032117822 a001 14930352/1149851*39603^(13/22) 6765000032147739 a001 5702887/439204*39603^(13/22) 6765000032157133 a001 3524578/167761*39603^(6/11) 6765000032191772 a001 39088169/64079*39603^(5/22) 6765000032216672 a001 726103/90481*39603^(7/11) 6765000032226521 a001 23184/51841*39603^(10/11) 6765000032295334 a001 5702887/710647*39603^(7/11) 6765000032302716 a001 98209/51841*39603^(17/22) 6765000032306811 a001 829464/103361*39603^(7/11) 6765000032308485 a001 39088169/4870847*39603^(7/11) 6765000032308729 a001 34111385/4250681*39603^(7/11) 6765000032308765 a001 133957148/16692641*39603^(7/11) 6765000032308770 a001 233802911/29134601*39603^(7/11) 6765000032308771 a001 1836311903/228826127*39603^(7/11) 6765000032308771 a001 267084832/33281921*39603^(7/11) 6765000032308771 a001 12586269025/1568397607*39603^(7/11) 6765000032308771 a001 10983760033/1368706081*39603^(7/11) 6765000032308771 a001 43133785636/5374978561*39603^(7/11) 6765000032308771 a001 75283811239/9381251041*39603^(7/11) 6765000032308771 a001 591286729879/73681302247*39603^(7/11) 6765000032308771 a001 86000486440/10716675201*39603^(7/11) 6765000032308771 a001 4052739537881/505019158607*39603^(7/11) 6765000032308771 a001 3536736619241/440719107401*39603^(7/11) 6765000032308771 a001 3278735159921/408569081798*39603^(7/11) 6765000032308771 a001 2504730781961/312119004989*39603^(7/11) 6765000032308771 a001 956722026041/119218851371*39603^(7/11) 6765000032308771 a001 182717648081/22768774562*39603^(7/11) 6765000032308771 a001 139583862445/17393796001*39603^(7/11) 6765000032308771 a001 53316291173/6643838879*39603^(7/11) 6765000032308771 a001 10182505537/1268860318*39603^(7/11) 6765000032308771 a001 7778742049/969323029*39603^(7/11) 6765000032308771 a001 2971215073/370248451*39603^(7/11) 6765000032308771 a001 567451585/70711162*39603^(7/11) 6765000032308773 a001 433494437/54018521*39603^(7/11) 6765000032308787 a001 165580141/20633239*39603^(7/11) 6765000032308880 a001 31622993/3940598*39603^(7/11) 6765000032309520 a001 24157817/3010349*39603^(7/11) 6765000032313904 a001 9227465/1149851*39603^(7/11) 6765000032343950 a001 1762289/219602*39603^(7/11) 6765000032352799 a001 2178309/167761*39603^(13/22) 6765000032371892 a001 121393/103682*39603^(9/11) 6765000032387835 a001 24157817/64079*39603^(3/11) 6765000032413763 a001 1346269/271443*39603^(15/22) 6765000032428510 a001 233802911/90481*15127^(1/10) 6765000032491544 a001 3524578/710647*39603^(15/22) 6765000032492975 a001 75025/24476*24476^(16/21) 6765000032502893 a001 9227465/1860498*39603^(15/22) 6765000032504548 a001 24157817/4870847*39603^(15/22) 6765000032504790 a001 63245986/12752043*39603^(15/22) 6765000032504825 a001 165580141/33385282*39603^(15/22) 6765000032504830 a001 433494437/87403803*39603^(15/22) 6765000032504831 a001 1134903170/228826127*39603^(15/22) 6765000032504831 a001 2971215073/599074578*39603^(15/22) 6765000032504831 a001 7778742049/1568397607*39603^(15/22) 6765000032504831 a001 20365011074/4106118243*39603^(15/22) 6765000032504831 a001 53316291173/10749957122*39603^(15/22) 6765000032504831 a001 139583862445/28143753123*39603^(15/22) 6765000032504831 a001 365435296162/73681302247*39603^(15/22) 6765000032504831 a001 956722026041/192900153618*39603^(15/22) 6765000032504831 a001 2504730781961/505019158607*39603^(15/22) 6765000032504831 a001 10610209857723/2139295485799*39603^(15/22) 6765000032504831 a001 4052739537881/817138163596*39603^(15/22) 6765000032504831 a001 140728068720/28374454999*39603^(15/22) 6765000032504831 a001 591286729879/119218851371*39603^(15/22) 6765000032504831 a001 225851433717/45537549124*39603^(15/22) 6765000032504831 a001 86267571272/17393796001*39603^(15/22) 6765000032504831 a001 32951280099/6643838879*39603^(15/22) 6765000032504831 a001 1144206275/230701876*39603^(15/22) 6765000032504831 a001 4807526976/969323029*39603^(15/22) 6765000032504831 a001 1836311903/370248451*39603^(15/22) 6765000032504831 a001 701408733/141422324*39603^(15/22) 6765000032504833 a001 267914296/54018521*39603^(15/22) 6765000032504847 a001 9303105/1875749*39603^(15/22) 6765000032504939 a001 39088169/7881196*39603^(15/22) 6765000032505571 a001 14930352/3010349*39603^(15/22) 6765000032506929 a001 1836311903/710647*15127^(1/10) 6765000032509906 a001 5702887/1149851*39603^(15/22) 6765000032518370 a001 267084832/103361*15127^(1/10) 6765000032520039 a001 12586269025/4870847*15127^(1/10) 6765000032520283 a001 10983760033/4250681*15127^(1/10) 6765000032520318 a001 43133785636/16692641*15127^(1/10) 6765000032520324 a001 75283811239/29134601*15127^(1/10) 6765000032520324 a001 591286729879/228826127*15127^(1/10) 6765000032520325 a001 86000486440/33281921*15127^(1/10) 6765000032520325 a001 4052739537881/1568397607*15127^(1/10) 6765000032520325 a001 3536736619241/1368706081*15127^(1/10) 6765000032520325 a001 3278735159921/1268860318*15127^(1/10) 6765000032520325 a001 2504730781961/969323029*15127^(1/10) 6765000032520325 a001 956722026041/370248451*15127^(1/10) 6765000032520325 a001 182717648081/70711162*15127^(1/10) 6765000032520327 a001 139583862445/54018521*15127^(1/10) 6765000032520340 a001 53316291173/20633239*15127^(1/10) 6765000032520433 a001 10182505537/3940598*15127^(1/10) 6765000032521071 a001 7778742049/3010349*15127^(1/10) 6765000032525441 a001 2971215073/1149851*15127^(1/10) 6765000032539616 a001 2178309/439204*39603^(15/22) 6765000032549891 a001 1346269/167761*39603^(7/11) 6765000032555395 a001 567451585/219602*15127^(1/10) 6765000032583887 a001 14930352/64079*39603^(7/22) 6765000032607122 a001 832040/271443*39603^(8/11) 6765000032641597 a001 24157817/39603*15127^(1/4) 6765000032666716 a001 28657/64079*167761^(4/5) 6765000032687210 a001 311187/101521*39603^(8/11) 6765000032689669 a001 267914296/64079*15127^(1/20) 6765000032698522 a001 121393/24476*24476^(5/7) 6765000032698895 a001 5702887/1860498*39603^(8/11) 6765000032700600 a001 14930352/4870847*39603^(8/11) 6765000032700849 a001 39088169/12752043*39603^(8/11) 6765000032700885 a001 14619165/4769326*39603^(8/11) 6765000032700890 a001 267914296/87403803*39603^(8/11) 6765000032700891 a001 701408733/228826127*39603^(8/11) 6765000032700891 a001 1836311903/599074578*39603^(8/11) 6765000032700891 a001 686789568/224056801*39603^(8/11) 6765000032700891 a001 12586269025/4106118243*39603^(8/11) 6765000032700891 a001 32951280099/10749957122*39603^(8/11) 6765000032700891 a001 86267571272/28143753123*39603^(8/11) 6765000032700891 a001 32264490531/10525900321*39603^(8/11) 6765000032700891 a001 591286729879/192900153618*39603^(8/11) 6765000032700891 a001 1548008755920/505019158607*39603^(8/11) 6765000032700891 a001 1515744265389/494493258286*39603^(8/11) 6765000032700891 a001 2504730781961/817138163596*39603^(8/11) 6765000032700891 a001 956722026041/312119004989*39603^(8/11) 6765000032700891 a001 365435296162/119218851371*39603^(8/11) 6765000032700891 a001 139583862445/45537549124*39603^(8/11) 6765000032700891 a001 53316291173/17393796001*39603^(8/11) 6765000032700891 a001 20365011074/6643838879*39603^(8/11) 6765000032700891 a001 7778742049/2537720636*39603^(8/11) 6765000032700891 a001 2971215073/969323029*39603^(8/11) 6765000032700891 a001 1134903170/370248451*39603^(8/11) 6765000032700891 a001 433494437/141422324*39603^(8/11) 6765000032700893 a001 165580141/54018521*39603^(8/11) 6765000032700907 a001 63245986/20633239*39603^(8/11) 6765000032701002 a001 24157817/7881196*39603^(8/11) 6765000032701653 a001 9227465/3010349*39603^(8/11) 6765000032706117 a001 3524578/1149851*39603^(8/11) 6765000032709046 a001 31622993/12238*9349^(2/19) 6765000032736707 a001 1346269/439204*39603^(8/11) 6765000032743250 a001 75640/15251*39603^(15/22) 6765000032760698 a001 433494437/167761*15127^(1/10) 6765000032779969 a001 9227465/64079*39603^(4/11) 6765000032810253 a001 514229/271443*39603^(17/22) 6765000032824675 a001 28657/24476*24476^(6/7) 6765000032859005 a001 28657/64079*20633239^(4/7) 6765000032859014 a001 28657/64079*2537720636^(4/9) 6765000032859014 a001 28657/64079*(1/2+1/2*5^(1/2))^20 6765000032859014 a001 28657/64079*23725150497407^(5/16) 6765000032859014 a001 28657/64079*505019158607^(5/14) 6765000032859014 a001 28657/64079*73681302247^(5/13) 6765000032859014 a001 28657/64079*28143753123^(2/5) 6765000032859014 a001 28657/64079*10749957122^(5/12) 6765000032859014 a001 28657/64079*4106118243^(10/23) 6765000032859014 a001 28657/64079*1568397607^(5/11) 6765000032859014 a001 28657/64079*599074578^(10/21) 6765000032859014 a001 28657/64079*228826127^(1/2) 6765000032859015 a001 28657/64079*87403803^(10/19) 6765000032859018 a001 28657/64079*33385282^(5/9) 6765000032859039 a001 28657/64079*12752043^(10/17) 6765000032859192 a001 28657/64079*4870847^(5/8) 6765000032860317 a001 28657/64079*1860498^(2/3) 6765000032868583 a001 28657/64079*710647^(5/7) 6765000032884302 a001 1346269/710647*39603^(17/22) 6765000032895106 a001 1762289/930249*39603^(17/22) 6765000032896682 a001 9227465/4870847*39603^(17/22) 6765000032896912 a001 24157817/12752043*39603^(17/22) 6765000032896945 a001 31622993/16692641*39603^(17/22) 6765000032896950 a001 165580141/87403803*39603^(17/22) 6765000032896951 a001 433494437/228826127*39603^(17/22) 6765000032896951 a001 567451585/299537289*39603^(17/22) 6765000032896951 a001 2971215073/1568397607*39603^(17/22) 6765000032896951 a001 7778742049/4106118243*39603^(17/22) 6765000032896951 a001 10182505537/5374978561*39603^(17/22) 6765000032896951 a001 53316291173/28143753123*39603^(17/22) 6765000032896951 a001 139583862445/73681302247*39603^(17/22) 6765000032896951 a001 182717648081/96450076809*39603^(17/22) 6765000032896951 a001 956722026041/505019158607*39603^(17/22) 6765000032896951 a001 10610209857723/5600748293801*39603^(17/22) 6765000032896951 a001 591286729879/312119004989*39603^(17/22) 6765000032896951 a001 225851433717/119218851371*39603^(17/22) 6765000032896951 a001 21566892818/11384387281*39603^(17/22) 6765000032896951 a001 32951280099/17393796001*39603^(17/22) 6765000032896951 a001 12586269025/6643838879*39603^(17/22) 6765000032896951 a001 1201881744/634430159*39603^(17/22) 6765000032896951 a001 1836311903/969323029*39603^(17/22) 6765000032896951 a001 701408733/370248451*39603^(17/22) 6765000032896951 a001 66978574/35355581*39603^(17/22) 6765000032896953 a001 102334155/54018521*39603^(17/22) 6765000032896966 a001 39088169/20633239*39603^(17/22) 6765000032897054 a001 3732588/1970299*39603^(17/22) 6765000032897656 a001 5702887/3010349*39603^(17/22) 6765000032900139 a001 75025/103682*39603^(19/22) 6765000032901783 a001 2178309/1149851*39603^(17/22) 6765000032929641 a001 28657/64079*271443^(10/13) 6765000032930067 a001 208010/109801*39603^(17/22) 6765000032946381 a001 514229/167761*39603^(8/11) 6765000032950829 a001 821223649/121393 6765000032975971 a001 5702887/64079*39603^(9/22) 6765000032987801 a001 105937/90481*39603^(9/11) 6765000033077661 a001 832040/710647*39603^(9/11) 6765000033090771 a001 726103/620166*39603^(9/11) 6765000033092684 a001 5702887/4870847*39603^(9/11) 6765000033092963 a001 4976784/4250681*39603^(9/11) 6765000033093004 a001 39088169/33385282*39603^(9/11) 6765000033093010 a001 34111385/29134601*39603^(9/11) 6765000033093011 a001 267914296/228826127*39603^(9/11) 6765000033093011 a001 233802911/199691526*39603^(9/11) 6765000033093011 a001 1836311903/1568397607*39603^(9/11) 6765000033093011 a001 1602508992/1368706081*39603^(9/11) 6765000033093011 a001 12586269025/10749957122*39603^(9/11) 6765000033093011 a001 10983760033/9381251041*39603^(9/11) 6765000033093011 a001 86267571272/73681302247*39603^(9/11) 6765000033093011 a001 75283811239/64300051206*39603^(9/11) 6765000033093011 a001 2504730781961/2139295485799*39603^(9/11) 6765000033093011 a001 365435296162/312119004989*39603^(9/11) 6765000033093011 a001 139583862445/119218851371*39603^(9/11) 6765000033093011 a001 53316291173/45537549124*39603^(9/11) 6765000033093011 a001 20365011074/17393796001*39603^(9/11) 6765000033093011 a001 7778742049/6643838879*39603^(9/11) 6765000033093011 a001 2971215073/2537720636*39603^(9/11) 6765000033093011 a001 1134903170/969323029*39603^(9/11) 6765000033093011 a001 433494437/370248451*39603^(9/11) 6765000033093011 a001 165580141/141422324*39603^(9/11) 6765000033093014 a001 63245986/54018521*39603^(9/11) 6765000033093029 a001 24157817/20633239*39603^(9/11) 6765000033093136 a001 9227465/7881196*39603^(9/11) 6765000033093866 a001 3524578/3010349*39603^(9/11) 6765000033098874 a001 1346269/1149851*39603^(9/11) 6765000033123929 a001 317811/167761*39603^(17/22) 6765000033133198 a001 514229/439204*39603^(9/11) 6765000033172182 a001 3524578/64079*39603^(5/11) 6765000033232327 a001 196418/271443*39603^(19/22) 6765000033247946 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^26 6765000033280792 a001 514229/710647*39603^(19/22) 6765000033287863 a001 1346269/1860498*39603^(19/22) 6765000033288895 a001 3524578/4870847*39603^(19/22) 6765000033289045 a001 9227465/12752043*39603^(19/22) 6765000033289067 a001 24157817/33385282*39603^(19/22) 6765000033289070 a001 63245986/87403803*39603^(19/22) 6765000033289071 a001 165580141/228826127*39603^(19/22) 6765000033289071 a001 433494437/599074578*39603^(19/22) 6765000033289071 a001 1134903170/1568397607*39603^(19/22) 6765000033289071 a001 2971215073/4106118243*39603^(19/22) 6765000033289071 a001 7778742049/10749957122*39603^(19/22) 6765000033289071 a001 20365011074/28143753123*39603^(19/22) 6765000033289071 a001 53316291173/73681302247*39603^(19/22) 6765000033289071 a001 139583862445/192900153618*39603^(19/22) 6765000033289071 a001 365435296162/505019158607*39603^(19/22) 6765000033289071 a001 10610209857723/14662949395604*39603^(19/22) 6765000033289071 a001 591286729879/817138163596*39603^(19/22) 6765000033289071 a001 225851433717/312119004989*39603^(19/22) 6765000033289071 a001 86267571272/119218851371*39603^(19/22) 6765000033289071 a001 32951280099/45537549124*39603^(19/22) 6765000033289071 a001 12586269025/17393796001*39603^(19/22) 6765000033289071 a001 4807526976/6643838879*39603^(19/22) 6765000033289071 a001 1836311903/2537720636*39603^(19/22) 6765000033289071 a001 701408733/969323029*39603^(19/22) 6765000033289071 a001 267914296/370248451*39603^(19/22) 6765000033289071 a001 102334155/141422324*39603^(19/22) 6765000033289072 a001 39088169/54018521*39603^(19/22) 6765000033289081 a001 14930352/20633239*39603^(19/22) 6765000033289138 a001 5702887/7881196*39603^(19/22) 6765000033289532 a001 2178309/3010349*39603^(19/22) 6765000033292233 a001 832040/1149851*39603^(19/22) 6765000033292259 a001 46368/167761*39603^(21/22) 6765000033301502 a001 121393/271443*39603^(10/11) 6765000033310745 a001 317811/439204*39603^(19/22) 6765000033363140 a001 98209/12238*24476^(2/3) 6765000033367847 a001 2178309/64079*39603^(1/2) 6765000033368454 a001 196418/167761*39603^(9/11) 6765000033369216 a001 165580141/103682*15127^(3/20) 6765000033383435 a001 28657/64079*103682^(5/6) 6765000033397915 a001 17711/9349*9349^(17/19) 6765000033437630 a001 121393/167761*39603^(19/22) 6765000033458340 a001 317811/710647*39603^(10/11) 6765000033481222 a001 416020/930249*39603^(10/11) 6765000033484561 a001 2178309/4870847*39603^(10/11) 6765000033485048 a001 5702887/12752043*39603^(10/11) 6765000033485119 a001 7465176/16692641*39603^(10/11) 6765000033485129 a001 39088169/87403803*39603^(10/11) 6765000033485131 a001 102334155/228826127*39603^(10/11) 6765000033485131 a001 133957148/299537289*39603^(10/11) 6765000033485131 a001 701408733/1568397607*39603^(10/11) 6765000033485131 a001 1836311903/4106118243*39603^(10/11) 6765000033485131 a001 2403763488/5374978561*39603^(10/11) 6765000033485131 a001 12586269025/28143753123*39603^(10/11) 6765000033485131 a001 32951280099/73681302247*39603^(10/11) 6765000033485131 a001 43133785636/96450076809*39603^(10/11) 6765000033485131 a001 225851433717/505019158607*39603^(10/11) 6765000033485131 a001 591286729879/1322157322203*39603^(10/11) 6765000033485131 a001 10610209857723/23725150497407*39603^(10/11) 6765000033485131 a001 182717648081/408569081798*39603^(10/11) 6765000033485131 a001 139583862445/312119004989*39603^(10/11) 6765000033485131 a001 53316291173/119218851371*39603^(10/11) 6765000033485131 a001 10182505537/22768774562*39603^(10/11) 6765000033485131 a001 7778742049/17393796001*39603^(10/11) 6765000033485131 a001 2971215073/6643838879*39603^(10/11) 6765000033485131 a001 567451585/1268860318*39603^(10/11) 6765000033485131 a001 433494437/969323029*39603^(10/11) 6765000033485131 a001 165580141/370248451*39603^(10/11) 6765000033485132 a001 31622993/70711162*39603^(10/11) 6765000033485136 a001 24157817/54018521*39603^(10/11) 6765000033485163 a001 9227465/20633239*39603^(10/11) 6765000033485349 a001 1762289/3940598*39603^(10/11) 6765000033486624 a001 1346269/3010349*39603^(10/11) 6765000033495364 a001 514229/1149851*39603^(10/11) 6765000033555271 a001 98209/219602*39603^(10/11) 6765000033564939 a001 1346269/64079*39603^(6/11) 6765000033624447 a001 121393/439204*39603^(21/22) 6765000033672912 a001 317811/1149851*39603^(21/22) 6765000033679983 a001 832040/3010349*39603^(21/22) 6765000033681015 a001 2178309/7881196*39603^(21/22) 6765000033681165 a001 5702887/20633239*39603^(21/22) 6765000033681187 a001 14930352/54018521*39603^(21/22) 6765000033681190 a001 39088169/141422324*39603^(21/22) 6765000033681191 a001 102334155/370248451*39603^(21/22) 6765000033681191 a001 267914296/969323029*39603^(21/22) 6765000033681191 a001 701408733/2537720636*39603^(21/22) 6765000033681191 a001 1836311903/6643838879*39603^(21/22) 6765000033681191 a001 4807526976/17393796001*39603^(21/22) 6765000033681191 a001 12586269025/45537549124*39603^(21/22) 6765000033681191 a001 32951280099/119218851371*39603^(21/22) 6765000033681191 a001 86267571272/312119004989*39603^(21/22) 6765000033681191 a001 225851433717/817138163596*39603^(21/22) 6765000033681191 a001 1548008755920/5600748293801*39603^(21/22) 6765000033681191 a001 139583862445/505019158607*39603^(21/22) 6765000033681191 a001 53316291173/192900153618*39603^(21/22) 6765000033681191 a001 20365011074/73681302247*39603^(21/22) 6765000033681191 a001 7778742049/28143753123*39603^(21/22) 6765000033681191 a001 2971215073/10749957122*39603^(21/22) 6765000033681191 a001 1134903170/4106118243*39603^(21/22) 6765000033681191 a001 433494437/1568397607*39603^(21/22) 6765000033681191 a001 165580141/599074578*39603^(21/22) 6765000033681191 a001 63245986/228826127*39603^(21/22) 6765000033681192 a001 24157817/87403803*39603^(21/22) 6765000033681201 a001 9227465/33385282*39603^(21/22) 6765000033681258 a001 3524578/12752043*39603^(21/22) 6765000033681652 a001 1346269/4870847*39603^(21/22) 6765000033684353 a001 514229/1860498*39603^(21/22) 6765000033702865 a001 196418/710647*39603^(21/22) 6765000033758298 a001 832040/64079*39603^(13/22) 6765000033772369 a001 24157817/15127*5778^(1/6) 6765000033785437 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^28 6765000033829750 a001 75025/271443*39603^(21/22) 6765000033852409 a001 10959/844*24476^(13/21) 6765000033863855 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^30 6765000033875297 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^32 6765000033876966 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^34 6765000033877209 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^36 6765000033877245 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^38 6765000033877250 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^40 6765000033877251 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^42 6765000033877251 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^44 6765000033877251 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^46 6765000033877251 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^48 6765000033877251 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^50 6765000033877251 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^52 6765000033877251 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^54 6765000033877251 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^56 6765000033877251 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^58 6765000033877251 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^60 6765000033877251 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^62 6765000033877251 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^64 6765000033877251 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^66 6765000033877251 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^68 6765000033877251 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^70 6765000033877251 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^72 6765000033877251 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^74 6765000033877251 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^76 6765000033877251 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^78 6765000033877251 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^80 6765000033877251 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^82 6765000033877251 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^84 6765000033877251 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^86 6765000033877251 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^88 6765000033877251 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^90 6765000033877251 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^92 6765000033877251 a004 Fibonacci(92)*Lucas(22)/(1/2+sqrt(5)/2)^94 6765000033877251 a004 Fibonacci(94)*Lucas(22)/(1/2+sqrt(5)/2)^96 6765000033877251 a004 Fibonacci(96)*Lucas(22)/(1/2+sqrt(5)/2)^98 6765000033877251 a004 Fibonacci(98)*Lucas(22)/(1/2+sqrt(5)/2)^100 6765000033877251 a004 Fibonacci(97)*Lucas(22)/(1/2+sqrt(5)/2)^99 6765000033877251 a004 Fibonacci(95)*Lucas(22)/(1/2+sqrt(5)/2)^97 6765000033877251 a004 Fibonacci(93)*Lucas(22)/(1/2+sqrt(5)/2)^95 6765000033877251 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^93 6765000033877251 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^91 6765000033877251 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^89 6765000033877251 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^87 6765000033877251 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^85 6765000033877251 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^83 6765000033877251 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^81 6765000033877251 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^79 6765000033877251 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^77 6765000033877251 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^75 6765000033877251 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^73 6765000033877251 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^71 6765000033877251 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^69 6765000033877251 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^67 6765000033877251 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^65 6765000033877251 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^63 6765000033877251 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^61 6765000033877251 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^59 6765000033877251 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^57 6765000033877251 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^55 6765000033877251 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^53 6765000033877251 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^51 6765000033877251 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^49 6765000033877251 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^47 6765000033877251 a001 2/17711*(1/2+1/2*5^(1/2))^42 6765000033877251 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^45 6765000033877251 a001 599074578/17711*8^(1/3) 6765000033877251 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^43 6765000033877251 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^41 6765000033877253 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^39 6765000033877267 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^37 6765000033877360 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^35 6765000033877997 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^33 6765000033882368 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^31 6765000033906707 a001 433494437/271443*15127^(3/20) 6765000033912321 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^29 6765000033961429 a001 514229/64079*39603^(7/11) 6765000033965877 a001 75025/167761*39603^(10/11) 6765000033985126 a001 1134903170/710647*15127^(3/20) 6765000033996567 a001 2971215073/1860498*15127^(3/20) 6765000033998236 a001 7778742049/4870847*15127^(3/20) 6765000033998480 a001 20365011074/12752043*15127^(3/20) 6765000033998515 a001 53316291173/33385282*15127^(3/20) 6765000033998520 a001 139583862445/87403803*15127^(3/20) 6765000033998521 a001 365435296162/228826127*15127^(3/20) 6765000033998521 a001 956722026041/599074578*15127^(3/20) 6765000033998521 a001 2504730781961/1568397607*15127^(3/20) 6765000033998521 a001 6557470319842/4106118243*15127^(3/20) 6765000033998521 a001 10610209857723/6643838879*15127^(3/20) 6765000033998521 a001 4052739537881/2537720636*15127^(3/20) 6765000033998521 a001 1548008755920/969323029*15127^(3/20) 6765000033998521 a001 591286729879/370248451*15127^(3/20) 6765000033998521 a001 225851433717/141422324*15127^(3/20) 6765000033998523 a001 86267571272/54018521*15127^(3/20) 6765000033998537 a001 32951280099/20633239*15127^(3/20) 6765000033998630 a001 12586269025/7881196*15127^(3/20) 6765000033999268 a001 4807526976/3010349*15127^(3/20) 6765000034003638 a001 1836311903/1149851*15127^(3/20) 6765000034033591 a001 701408733/439204*15127^(3/20) 6765000034117624 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^27 6765000034119785 a001 4976784/13201*15127^(3/10) 6765000034138977 a001 317811/64079*39603^(15/22) 6765000034167866 a001 165580141/64079*15127^(1/10) 6765000034238894 a001 267914296/167761*15127^(3/20) 6765000034307308 a001 46368/64079*39603^(19/22) 6765000034383502 a001 196418/64079*39603^(8/11) 6765000034408655 a001 514229/24476*24476^(4/7) 6765000034452678 a001 121393/64079*39603^(17/22) 6765000034699428 a001 28657/103682*39603^(21/22) 6765000034847413 a001 102334155/103682*15127^(1/5) 6765000034895488 a001 193864606/28657 6765000034939318 a001 208010/6119*24476^(11/21) 6765000034980926 a001 75025/64079*39603^(9/11) 6765000035038752 a001 10946/39603*64079^(21/23) 6765000035182016 a001 17711/24476*64079^(19/23) 6765000035384903 a001 267914296/271443*15127^(1/5) 6765000035463322 a001 701408733/710647*15127^(1/5) 6765000035474763 a001 1836311903/1860498*15127^(1/5) 6765000035476433 a001 4807526976/4870847*15127^(1/5) 6765000035476676 a001 12586269025/12752043*15127^(1/5) 6765000035476712 a001 32951280099/33385282*15127^(1/5) 6765000035476717 a001 86267571272/87403803*15127^(1/5) 6765000035476718 a001 225851433717/228826127*15127^(1/5) 6765000035476718 a001 591286729879/599074578*15127^(1/5) 6765000035476718 a001 1548008755920/1568397607*15127^(1/5) 6765000035476718 a001 4052739537881/4106118243*15127^(1/5) 6765000035476718 a001 4807525989/4870846*15127^(1/5) 6765000035476718 a001 6557470319842/6643838879*15127^(1/5) 6765000035476718 a001 2504730781961/2537720636*15127^(1/5) 6765000035476718 a001 956722026041/969323029*15127^(1/5) 6765000035476718 a001 365435296162/370248451*15127^(1/5) 6765000035476718 a001 139583862445/141422324*15127^(1/5) 6765000035476720 a001 53316291173/54018521*15127^(1/5) 6765000035476734 a001 20365011074/20633239*15127^(1/5) 6765000035476827 a001 7778742049/7881196*15127^(1/5) 6765000035477464 a001 2971215073/3010349*15127^(1/5) 6765000035479754 a001 1346269/24476*24476^(10/21) 6765000035481834 a001 1134903170/1149851*15127^(1/5) 6765000035511788 a001 433494437/439204*15127^(1/5) 6765000035524792 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^25 6765000035598004 a001 9227465/39603*15127^(7/20) 6765000035646062 a001 102334155/64079*15127^(3/20) 6765000035717091 a001 165580141/167761*15127^(1/5) 6765000036016456 a001 2178309/24476*24476^(3/7) 6765000036325610 a001 31622993/51841*15127^(1/4) 6765000036508067 a001 165580141/39603*5778^(1/18) 6765000036515752 a001 10946/39603*439204^(7/9) 6765000036542960 a001 10946/39603*7881196^(7/11) 6765000036543019 a001 10946/39603*20633239^(3/5) 6765000036543029 a001 10946/39603*141422324^(7/13) 6765000036543029 a001 10946/39603*2537720636^(7/15) 6765000036543029 a001 10946/39603*17393796001^(3/7) 6765000036543029 a001 10946/39603*45537549124^(7/17) 6765000036543029 a001 10946/39603*14662949395604^(1/3) 6765000036543029 a001 10946/39603*(1/2+1/2*5^(1/2))^21 6765000036543029 a001 10946/39603*192900153618^(7/18) 6765000036543029 a001 10946/39603*10749957122^(7/16) 6765000036543029 a001 10946/39603*599074578^(1/2) 6765000036543029 a001 17711/24476*817138163596^(1/3) 6765000036543029 a001 17711/24476*(1/2+1/2*5^(1/2))^19 6765000036543029 a001 17711/24476*87403803^(1/2) 6765000036543033 a001 10946/39603*33385282^(7/12) 6765000036544397 a001 10946/39603*1860498^(7/10) 6765000036553076 a001 10946/39603*710647^(3/4) 6765000036554584 a001 1762289/12238*24476^(8/21) 6765000036780214 a001 28657/64079*39603^(10/11) 6765000036782697 a001 102334155/24476*9349^(1/19) 6765000036863100 a001 165580141/271443*15127^(1/4) 6765000036941519 a001 433494437/710647*15127^(1/4) 6765000036952960 a001 567451585/930249*15127^(1/4) 6765000036954629 a001 2971215073/4870847*15127^(1/4) 6765000036954873 a001 7778742049/12752043*15127^(1/4) 6765000036954908 a001 10182505537/16692641*15127^(1/4) 6765000036954913 a001 53316291173/87403803*15127^(1/4) 6765000036954914 a001 139583862445/228826127*15127^(1/4) 6765000036954914 a001 182717648081/299537289*15127^(1/4) 6765000036954914 a001 956722026041/1568397607*15127^(1/4) 6765000036954914 a001 2504730781961/4106118243*15127^(1/4) 6765000036954914 a001 3278735159921/5374978561*15127^(1/4) 6765000036954914 a001 10610209857723/17393796001*15127^(1/4) 6765000036954914 a001 4052739537881/6643838879*15127^(1/4) 6765000036954914 a001 1134903780/1860499*15127^(1/4) 6765000036954914 a001 591286729879/969323029*15127^(1/4) 6765000036954914 a001 225851433717/370248451*15127^(1/4) 6765000036954915 a001 21566892818/35355581*15127^(1/4) 6765000036954917 a001 32951280099/54018521*15127^(1/4) 6765000036954930 a001 1144206275/1875749*15127^(1/4) 6765000036955023 a001 1201881744/1970299*15127^(1/4) 6765000036955661 a001 1836311903/3010349*15127^(1/4) 6765000036960031 a001 701408733/1149851*15127^(1/4) 6765000036989984 a001 66978574/109801*15127^(1/4) 6765000037041229 a001 17711/24476*103682^(19/24) 6765000037076143 a001 5702887/39603*15127^(2/5) 6765000037092168 a001 5702887/24476*24476^(1/3) 6765000037093671 a001 10946/39603*103682^(7/8) 6765000037124260 a001 63245986/64079*15127^(1/5) 6765000037195287 a001 9303105/15251*15127^(1/4) 6765000037629960 a001 9227465/24476*24476^(2/7) 6765000037803805 a001 39088169/103682*15127^(3/10) 6765000038167672 a001 3732588/6119*24476^(5/21) 6765000038341296 a001 34111385/90481*15127^(3/10) 6765000038419715 a001 267914296/710647*15127^(3/10) 6765000038431157 a001 233802911/620166*15127^(3/10) 6765000038432826 a001 1836311903/4870847*15127^(3/10) 6765000038433069 a001 1602508992/4250681*15127^(3/10) 6765000038433105 a001 12586269025/33385282*15127^(3/10) 6765000038433110 a001 10983760033/29134601*15127^(3/10) 6765000038433111 a001 86267571272/228826127*15127^(3/10) 6765000038433111 a001 267913919/710646*15127^(3/10) 6765000038433111 a001 591286729879/1568397607*15127^(3/10) 6765000038433111 a001 516002918640/1368706081*15127^(3/10) 6765000038433111 a001 4052739537881/10749957122*15127^(3/10) 6765000038433111 a001 3536736619241/9381251041*15127^(3/10) 6765000038433111 a001 6557470319842/17393796001*15127^(3/10) 6765000038433111 a001 2504730781961/6643838879*15127^(3/10) 6765000038433111 a001 956722026041/2537720636*15127^(3/10) 6765000038433111 a001 365435296162/969323029*15127^(3/10) 6765000038433111 a001 139583862445/370248451*15127^(3/10) 6765000038433111 a001 53316291173/141422324*15127^(3/10) 6765000038433113 a001 20365011074/54018521*15127^(3/10) 6765000038433127 a001 7778742049/20633239*15127^(3/10) 6765000038433220 a001 2971215073/7881196*15127^(3/10) 6765000038433857 a001 1134903170/3010349*15127^(3/10) 6765000038438228 a001 433494437/1149851*15127^(3/10) 6765000038468181 a001 165580141/439204*15127^(3/10) 6765000038554490 a001 3524578/39603*15127^(9/20) 6765000038602455 a001 39088169/64079*15127^(1/4) 6765000038673484 a001 63245986/167761*15127^(3/10) 6765000038705414 a001 24157817/24476*24476^(4/21) 6765000039009296 a001 11592/6119*64079^(17/23) 6765000039208807 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^24 6765000039243145 a001 39088169/24476*24476^(1/7) 6765000039282005 a001 24157817/103682*15127^(7/20) 6765000039378152 a001 10946/15127*15127^(19/20) 6765000039690051 a001 121393/24476*64079^(15/23) 6765000039780881 a001 31622993/12238*24476^(2/21) 6765000039819494 a001 63245986/271443*15127^(7/20) 6765000039888567 a001 98209/12238*64079^(14/23) 6765000039897912 a001 165580141/710647*15127^(7/20) 6765000039909353 a001 433494437/1860498*15127^(7/20) 6765000039911022 a001 1134903170/4870847*15127^(7/20) 6765000039911266 a001 2971215073/12752043*15127^(7/20) 6765000039911301 a001 7778742049/33385282*15127^(7/20) 6765000039911307 a001 20365011074/87403803*15127^(7/20) 6765000039911307 a001 53316291173/228826127*15127^(7/20) 6765000039911307 a001 139583862445/599074578*15127^(7/20) 6765000039911308 a001 365435296162/1568397607*15127^(7/20) 6765000039911308 a001 956722026041/4106118243*15127^(7/20) 6765000039911308 a001 2504730781961/10749957122*15127^(7/20) 6765000039911308 a001 6557470319842/28143753123*15127^(7/20) 6765000039911308 a001 10610209857723/45537549124*15127^(7/20) 6765000039911308 a001 4052739537881/17393796001*15127^(7/20) 6765000039911308 a001 1548008755920/6643838879*15127^(7/20) 6765000039911308 a001 591286729879/2537720636*15127^(7/20) 6765000039911308 a001 225851433717/969323029*15127^(7/20) 6765000039911308 a001 86267571272/370248451*15127^(7/20) 6765000039911308 a001 63246219/271444*15127^(7/20) 6765000039911310 a001 12586269025/54018521*15127^(7/20) 6765000039911323 a001 4807526976/20633239*15127^(7/20) 6765000039911416 a001 1836311903/7881196*15127^(7/20) 6765000039911734 a001 10959/844*64079^(13/23) 6765000039912054 a001 701408733/3010349*15127^(7/20) 6765000039916424 a001 267914296/1149851*15127^(7/20) 6765000039946377 a001 102334155/439204*15127^(7/20) 6765000039950606 a001 75025/24476*64079^(16/23) 6765000039986671 a001 507544128/75025 6765000040001878 a001 514229/24476*64079^(12/23) 6765000040032293 a001 726103/13201*15127^(1/2) 6765000040066440 a001 208010/6119*64079^(11/23) 6765000040080655 a001 24157817/64079*15127^(3/10) 6765000040140773 a001 1346269/24476*64079^(10/23) 6765000040151680 a001 39088169/167761*15127^(7/20) 6765000040192082 a001 433494437/103682*5778^(1/18) 6765000040211373 a001 2178309/24476*64079^(9/23) 6765000040227044 a001 5473/51841*(1/2+1/2*5^(1/2))^23 6765000040227044 a001 5473/51841*4106118243^(1/2) 6765000040227044 a001 11592/6119*45537549124^(1/3) 6765000040227044 a001 11592/6119*(1/2+1/2*5^(1/2))^17 6765000040227064 a001 11592/6119*12752043^(1/2) 6765000040268169 a001 17711/24476*39603^(19/22) 6765000040283400 a001 1762289/12238*64079^(8/23) 6765000040318614 a001 102334155/24476*24476^(1/21) 6765000040354881 a001 5702887/24476*64079^(7/23) 6765000040426571 a001 9227465/24476*64079^(6/23) 6765000040498181 a001 3732588/6119*64079^(5/23) 6765000040569822 a001 24157817/24476*64079^(4/23) 6765000040615975 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^26 6765000040620310 a001 121393/24476*167761^(3/5) 6765000040641451 a001 39088169/24476*64079^(3/23) 6765000040660289 a001 10946/39603*39603^(21/22) 6765000040672801 a001 11592/6119*103682^(17/24) 6765000040713084 a001 31622993/12238*64079^(2/23) 6765000040729464 a001 664383889/98209 6765000040729573 a001 1134903170/271443*5778^(1/18) 6765000040745051 a001 121393/24476*439204^(5/9) 6765000040760193 a001 7465176/51841*15127^(2/5) 6765000040760946 a001 1346269/24476*167761^(2/5) 6765000040764485 a001 121393/24476*7881196^(5/11) 6765000040764523 a001 10946/271443*20633239^(5/7) 6765000040764527 a001 121393/24476*20633239^(3/7) 6765000040764534 a001 121393/24476*141422324^(5/13) 6765000040764534 a001 10946/271443*2537720636^(5/9) 6765000040764534 a001 10946/271443*312119004989^(5/11) 6765000040764534 a001 10946/271443*(1/2+1/2*5^(1/2))^25 6765000040764534 a001 10946/271443*3461452808002^(5/12) 6765000040764534 a001 10946/271443*28143753123^(1/2) 6765000040764534 a001 121393/24476*2537720636^(1/3) 6765000040764534 a001 121393/24476*45537549124^(5/17) 6765000040764534 a001 121393/24476*312119004989^(3/11) 6765000040764534 a001 121393/24476*14662949395604^(5/21) 6765000040764534 a001 121393/24476*(1/2+1/2*5^(1/2))^15 6765000040764534 a001 121393/24476*192900153618^(5/18) 6765000040764534 a001 121393/24476*28143753123^(3/10) 6765000040764534 a001 121393/24476*10749957122^(5/16) 6765000040764534 a001 121393/24476*599074578^(5/14) 6765000040764534 a001 121393/24476*228826127^(3/8) 6765000040764534 a001 10946/271443*228826127^(5/8) 6765000040764537 a001 121393/24476*33385282^(5/12) 6765000040765511 a001 121393/24476*1860498^(1/2) 6765000040766163 a001 10946/271443*1860498^(5/6) 6765000040784716 a001 102334155/24476*64079^(1/23) 6765000040807991 a001 2971215073/710647*5778^(1/18) 6765000040808268 a001 3732588/6119*167761^(1/5) 6765000040819433 a001 7778742049/1860498*5778^(1/18) 6765000040821102 a001 20365011074/4870847*5778^(1/18) 6765000040821279 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^28 6765000040821345 a001 53316291173/12752043*5778^(1/18) 6765000040821381 a001 139583862445/33385282*5778^(1/18) 6765000040821386 a001 365435296162/87403803*5778^(1/18) 6765000040821387 a001 956722026041/228826127*5778^(1/18) 6765000040821387 a001 2504730781961/599074578*5778^(1/18) 6765000040821387 a001 6557470319842/1568397607*5778^(1/18) 6765000040821387 a001 10610209857723/2537720636*5778^(1/18) 6765000040821387 a001 4052739537881/969323029*5778^(1/18) 6765000040821387 a001 1548008755920/370248451*5778^(1/18) 6765000040821387 a001 591286729879/141422324*5778^(1/18) 6765000040821389 a001 225851433717/54018521*5778^(1/18) 6765000040821403 a001 86267571272/20633239*5778^(1/18) 6765000040821496 a001 32951280099/7881196*5778^(1/18) 6765000040822133 a001 12586269025/3010349*5778^(1/18) 6765000040826504 a001 4807526976/1149851*5778^(1/18) 6765000040830127 a001 5473/51841*103682^(23/24) 6765000040837836 a001 3478759206/514229 6765000040842864 a001 10946/710647*7881196^(9/11) 6765000040842953 a001 10946/710647*141422324^(9/13) 6765000040842953 a001 10959/844*141422324^(1/3) 6765000040842953 a001 10946/710647*2537720636^(3/5) 6765000040842953 a001 10946/710647*45537549124^(9/17) 6765000040842953 a001 10946/710647*817138163596^(9/19) 6765000040842953 a001 10946/710647*14662949395604^(3/7) 6765000040842953 a001 10946/710647*(1/2+1/2*5^(1/2))^27 6765000040842953 a001 10946/710647*192900153618^(1/2) 6765000040842953 a001 10946/710647*10749957122^(9/16) 6765000040842953 a001 10946/710647*599074578^(9/14) 6765000040842953 a001 10959/844*(1/2+1/2*5^(1/2))^13 6765000040842953 a001 10959/844*73681302247^(1/4) 6765000040842958 a001 10946/710647*33385282^(3/4) 6765000040844373 a001 2178309/24476*439204^(1/3) 6765000040844712 a001 10946/710647*1860498^(9/10) 6765000040845879 a001 514229/24476*439204^(4/9) 6765000040848571 a001 9227465/24476*439204^(2/9) 6765000040851232 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^30 6765000040852451 a001 39088169/24476*439204^(1/9) 6765000040853648 a001 9107509840/1346269 6765000040854358 a001 208010/6119*7881196^(1/3) 6765000040854394 a001 5473/930249*(1/2+1/2*5^(1/2))^29 6765000040854394 a001 5473/930249*1322157322203^(1/2) 6765000040854394 a001 208010/6119*312119004989^(1/5) 6765000040854394 a001 208010/6119*(1/2+1/2*5^(1/2))^11 6765000040854394 a001 208010/6119*1568397607^(1/4) 6765000040855602 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^32 6765000040855954 a001 11921885157/1762289 6765000040856034 a001 2178309/24476*7881196^(3/11) 6765000040856063 a001 2178309/24476*141422324^(3/13) 6765000040856063 a001 10946/4870847*(1/2+1/2*5^(1/2))^31 6765000040856063 a001 10946/4870847*9062201101803^(1/2) 6765000040856063 a001 2178309/24476*2537720636^(1/5) 6765000040856063 a001 2178309/24476*45537549124^(3/17) 6765000040856063 a001 2178309/24476*817138163596^(3/19) 6765000040856063 a001 2178309/24476*14662949395604^(1/7) 6765000040856063 a001 2178309/24476*(1/2+1/2*5^(1/2))^9 6765000040856063 a001 2178309/24476*192900153618^(1/6) 6765000040856063 a001 2178309/24476*10749957122^(3/16) 6765000040856063 a001 2178309/24476*599074578^(3/14) 6765000040856065 a001 2178309/24476*33385282^(1/4) 6765000040856240 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^34 6765000040856291 a001 4801830854/709805 6765000040856304 a001 5702887/24476*20633239^(1/5) 6765000040856307 a001 10946/12752043*141422324^(11/13) 6765000040856307 a001 10946/12752043*2537720636^(11/15) 6765000040856307 a001 10946/12752043*45537549124^(11/17) 6765000040856307 a001 10946/12752043*312119004989^(3/5) 6765000040856307 a001 10946/12752043*817138163596^(11/19) 6765000040856307 a001 10946/12752043*14662949395604^(11/21) 6765000040856307 a001 10946/12752043*(1/2+1/2*5^(1/2))^33 6765000040856307 a001 10946/12752043*192900153618^(11/18) 6765000040856307 a001 10946/12752043*10749957122^(11/16) 6765000040856307 a001 10946/12752043*1568397607^(3/4) 6765000040856307 a001 10946/12752043*599074578^(11/14) 6765000040856307 a001 5702887/24476*17393796001^(1/7) 6765000040856307 a001 5702887/24476*14662949395604^(1/9) 6765000040856307 a001 5702887/24476*(1/2+1/2*5^(1/2))^7 6765000040856307 a001 5702887/24476*599074578^(1/6) 6765000040856312 a001 10946/12752043*33385282^(11/12) 6765000040856333 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^36 6765000040856338 a001 39088169/24476*7881196^(1/11) 6765000040856340 a001 163427632992/24157817 6765000040856340 a001 3732588/6119*20633239^(1/7) 6765000040856342 a001 5473/16692641*2537720636^(7/9) 6765000040856342 a001 5473/16692641*17393796001^(5/7) 6765000040856342 a001 5473/16692641*312119004989^(7/11) 6765000040856342 a001 5473/16692641*14662949395604^(5/9) 6765000040856342 a001 5473/16692641*(1/2+1/2*5^(1/2))^35 6765000040856342 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(36) 6765000040856342 a001 5473/16692641*505019158607^(5/8) 6765000040856342 a001 5473/16692641*28143753123^(7/10) 6765000040856342 a001 5473/16692641*599074578^(5/6) 6765000040856342 a001 3732588/6119*2537720636^(1/9) 6765000040856342 a001 3732588/6119*312119004989^(1/11) 6765000040856342 a001 3732588/6119*(1/2+1/2*5^(1/2))^5 6765000040856342 a001 3732588/6119*28143753123^(1/10) 6765000040856342 a001 3732588/6119*228826127^(1/8) 6765000040856343 a001 5473/16692641*228826127^(7/8) 6765000040856345 a001 9227465/24476*7881196^(2/11) 6765000040856346 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^38 6765000040856347 a001 213929548937/31622993 6765000040856348 a001 39088169/24476*141422324^(1/13) 6765000040856348 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(38) 6765000040856348 a001 39088169/24476*2537720636^(1/15) 6765000040856348 a001 39088169/24476*45537549124^(1/17) 6765000040856348 a001 39088169/24476*14662949395604^(1/21) 6765000040856348 a001 39088169/24476*(1/2+1/2*5^(1/2))^3 6765000040856348 a001 39088169/24476*192900153618^(1/18) 6765000040856348 a001 39088169/24476*10749957122^(1/16) 6765000040856348 a001 39088169/24476*599074578^(1/14) 6765000040856348 a001 39088169/24476*33385282^(1/12) 6765000040856348 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^40 6765000040856348 a001 1120149660630/165580141 6765000040856348 a001 10946/228826127*2537720636^(13/15) 6765000040856348 a001 10946/228826127*45537549124^(13/17) 6765000040856348 a001 10946/228826127*14662949395604^(13/21) 6765000040856348 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(40) 6765000040856348 a001 10946/228826127*192900153618^(13/18) 6765000040856348 a001 10946/228826127*73681302247^(3/4) 6765000040856348 a001 10946/228826127*10749957122^(13/16) 6765000040856348 a001 10946/228826127*599074578^(13/14) 6765000040856348 a001 102334155/48952+102334155/48952*5^(1/2) 6765000040856348 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^42 6765000040856348 a001 2932589884016/433494437 6765000040856348 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(42) 6765000040856349 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^44 6765000040856349 a001 3838809995709/567451585 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(44) 6765000040856349 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^46 6765000040856349 a001 20100270090238/2971215073 6765000040856349 a001 10946/4106118243*45537549124^(15/17) 6765000040856349 a001 10946/4106118243*312119004989^(9/11) 6765000040856349 a001 10946/4106118243*14662949395604^(5/7) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(46) 6765000040856349 a001 10946/4106118243*192900153618^(5/6) 6765000040856349 a001 10946/4106118243*28143753123^(9/10) 6765000040856349 a001 10946/4106118243*10749957122^(15/16) 6765000040856349 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^48 6765000040856349 a001 4047937713792/598364773 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(48) 6765000040856349 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^50 6765000040856349 a001 68884650373825/10182505537 6765000040856349 a001 10946/28143753123*14662949395604^(7/9) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(50) 6765000040856349 a001 10946/28143753123*505019158607^(7/8) 6765000040856349 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^52 6765000040856349 a001 360684711963654/53316291173 6765000040856349 a001 10946/73681302247*817138163596^(17/19) 6765000040856349 a001 10946/73681302247*14662949395604^(17/21) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(52) 6765000040856349 a001 10946/73681302247*192900153618^(17/18) 6765000040856349 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^54 6765000040856349 a001 944284835143312/139583862445 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(54) 6765000040856349 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^56 6765000040856349 a001 1236084896733141/182717648081 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(56) 6765000040856349 a001 10946/505019158607*3461452808002^(11/12) 6765000040856349 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^58 6765000040856349 a001 10946/1322157322203*14662949395604^(19/21) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(58) 6765000040856349 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^60 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(60) 6765000040856349 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^62 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(62) 6765000040856349 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^64 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(64) 6765000040856349 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^66 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(66) 6765000040856349 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^68 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(68) 6765000040856349 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^70 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(70) 6765000040856349 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^72 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(72) 6765000040856349 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^74 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(74) 6765000040856349 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^76 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(76) 6765000040856349 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^78 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(78) 6765000040856349 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^80 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(80) 6765000040856349 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^82 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(82) 6765000040856349 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^84 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(84) 6765000040856349 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^86 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(86) 6765000040856349 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^88 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(88) 6765000040856349 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^90 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(90) 6765000040856349 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^92 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(92) 6765000040856349 a004 Fibonacci(21)*Lucas(93)/(1/2+sqrt(5)/2)^94 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^93/Lucas(94) 6765000040856349 a004 Fibonacci(21)*Lucas(95)/(1/2+sqrt(5)/2)^96 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^95/Lucas(96) 6765000040856349 a004 Fibonacci(21)*Lucas(97)/(1/2+sqrt(5)/2)^98 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^97/Lucas(98) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^99/Lucas(100) 6765000040856349 a004 Fibonacci(21)*Lucas(99)/(1/2+sqrt(5)/2)^100 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^98/Lucas(99) 6765000040856349 a004 Fibonacci(21)*Lucas(98)/(1/2+sqrt(5)/2)^99 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^96/Lucas(97) 6765000040856349 a004 Fibonacci(21)*Lucas(96)/(1/2+sqrt(5)/2)^97 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^94/Lucas(95) 6765000040856349 a004 Fibonacci(21)*Lucas(94)/(1/2+sqrt(5)/2)^95 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(93) 6765000040856349 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^93 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(91) 6765000040856349 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^91 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(89) 6765000040856349 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^89 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(87) 6765000040856349 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^87 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(85) 6765000040856349 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^85 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(83) 6765000040856349 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^83 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(81) 6765000040856349 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^81 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(79) 6765000040856349 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^79 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(77) 6765000040856349 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^77 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(75) 6765000040856349 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^75 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(73) 6765000040856349 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^73 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(71) 6765000040856349 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^71 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(69) 6765000040856349 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^69 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(67) 6765000040856349 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^67 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(65) 6765000040856349 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^65 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(63) 6765000040856349 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^63 6765000040856349 a001 10946/5600748293801*14662949395604^(20/21) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(61) 6765000040856349 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^61 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(59) 6765000040856349 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^59 6765000040856349 a001 5473/408569081798*14662949395604^(8/9) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(57) 6765000040856349 a001 4000054751789252/591286729879 6765000040856349 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^57 6765000040856349 a001 10946/312119004989*14662949395604^(6/7) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(55) 6765000040856349 a001 117529612178690/17373187209 6765000040856349 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^55 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(53) 6765000040856349 a001 10946/119218851371*23725150497407^(13/16) 6765000040856349 a001 10946/119218851371*505019158607^(13/14) 6765000040856349 a001 291800061589829/43133785636 6765000040856349 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^53 6765000040856349 a001 5473/22768774562*312119004989^(10/11) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(51) 6765000040856349 a001 5473/22768774562*3461452808002^(5/6) 6765000040856349 a001 222915411216004/32951280099 6765000040856349 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^51 6765000040856349 a001 10946/17393796001*45537549124^(16/17) 6765000040856349 a001 10946/17393796001*14662949395604^(16/21) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(49) 6765000040856349 a001 10946/17393796001*192900153618^(8/9) 6765000040856349 a001 10946/17393796001*73681302247^(12/13) 6765000040856349 a001 85146110468354/12586269025 6765000040856349 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^49 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(47) 6765000040856349 a001 10946/6643838879*10749957122^(23/24) 6765000040856349 a001 16261460094529/2403763488 6765000040856349 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^47 6765000040856349 a001 5473/1268860318*312119004989^(4/5) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(45) 6765000040856349 a001 5473/1268860318*23725150497407^(11/16) 6765000040856349 a001 5473/1268860318*73681302247^(11/13) 6765000040856349 a001 5473/1268860318*10749957122^(11/12) 6765000040856349 a001 5473/1268860318*4106118243^(22/23) 6765000040856349 a001 12422650098820/1836311903 6765000040856349 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^45 6765000040856349 a001 10946/969323029*2537720636^(14/15) 6765000040856349 a001 10946/969323029*17393796001^(6/7) 6765000040856349 a001 10946/969323029*45537549124^(14/17) 6765000040856349 a001 10946/969323029*817138163596^(14/19) 6765000040856349 a001 10946/969323029*14662949395604^(2/3) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(43) 6765000040856349 a001 10946/969323029*505019158607^(3/4) 6765000040856349 a001 10946/969323029*192900153618^(7/9) 6765000040856349 a001 10946/969323029*10749957122^(7/8) 6765000040856349 a001 10946/969323029*4106118243^(21/23) 6765000040856349 a001 10946/969323029*1568397607^(21/22) 6765000040856349 a001 4745030107402/701408733 6765000040856349 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^3 6765000040856349 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^5 6765000040856349 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^7 6765000040856349 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^9 6765000040856349 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^11 6765000040856349 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^13 6765000040856349 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^15 6765000040856349 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^17 6765000040856349 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^19 6765000040856349 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^21 6765000040856349 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^23 6765000040856349 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^25 6765000040856349 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^27 6765000040856349 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^29 6765000040856349 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^31 6765000040856349 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^33 6765000040856349 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^35 6765000040856349 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^37 6765000040856349 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^39 6765000040856349 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^41 6765000040856349 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^43 6765000040856349 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^45 6765000040856349 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^47 6765000040856349 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^49 6765000040856349 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^51 6765000040856349 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^53 6765000040856349 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^55 6765000040856349 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^59 6765000040856349 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^57 6765000040856349 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^58 6765000040856349 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^56 6765000040856349 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^54 6765000040856349 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^52 6765000040856349 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^50 6765000040856349 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^48 6765000040856349 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^46 6765000040856349 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^44 6765000040856349 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^42 6765000040856349 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^40 6765000040856349 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^38 6765000040856349 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^36 6765000040856349 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^34 6765000040856349 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^32 6765000040856349 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^30 6765000040856349 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^28 6765000040856349 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^26 6765000040856349 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^24 6765000040856349 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^22 6765000040856349 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^20 6765000040856349 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^18 6765000040856349 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^16 6765000040856349 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^14 6765000040856349 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^12 6765000040856349 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^10 6765000040856349 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^8 6765000040856349 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^6 6765000040856349 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^4 6765000040856349 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^2 6765000040856349 a001 10946/370248451*2537720636^(8/9) 6765000040856349 a001 10946/370248451*312119004989^(8/11) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(41) 6765000040856349 a001 10946/370248451*23725150497407^(5/8) 6765000040856349 a001 10946/370248451*73681302247^(10/13) 6765000040856349 a001 10946/370248451*28143753123^(4/5) 6765000040856349 a001 10946/370248451*10749957122^(5/6) 6765000040856349 a001 10946/370248451*4106118243^(20/23) 6765000040856349 a001 10946/370248451*1568397607^(10/11) 6765000040856349 a001 10946/370248451*599074578^(20/21) 6765000040856349 a001 165580141/24476 6765000040856349 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^41 6765000040856349 a001 5473/70711162*817138163596^(2/3) 6765000040856349 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(39) 6765000040856349 a001 5473/70711162*10749957122^(19/24) 6765000040856349 a001 5473/70711162*4106118243^(19/23) 6765000040856349 a001 5473/70711162*1568397607^(19/22) 6765000040856349 a001 5473/70711162*599074578^(19/21) 6765000040856349 a001 31622993/12238*(1/2+1/2*5^(1/2))^2 6765000040856349 a001 31622993/12238*10749957122^(1/24) 6765000040856349 a001 31622993/12238*4106118243^(1/23) 6765000040856349 a001 31622993/12238*1568397607^(1/22) 6765000040856349 a001 31622993/12238*599074578^(1/21) 6765000040856349 a001 31622993/12238*228826127^(1/20) 6765000040856349 a001 31622993/12238*87403803^(1/19) 6765000040856349 a001 5473/70711162*228826127^(19/20) 6765000040856349 a001 692290562756/102334155 6765000040856349 a001 31622993/12238*33385282^(1/18) 6765000040856349 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^39 6765000040856351 a001 10946/54018521*141422324^(12/13) 6765000040856351 a001 10946/54018521*2537720636^(4/5) 6765000040856351 a001 10946/54018521*45537549124^(12/17) 6765000040856351 a001 10946/54018521*14662949395604^(4/7) 6765000040856351 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(37) 6765000040856351 a001 10946/54018521*505019158607^(9/14) 6765000040856351 a001 10946/54018521*192900153618^(2/3) 6765000040856351 a001 10946/54018521*73681302247^(9/13) 6765000040856351 a001 10946/54018521*10749957122^(3/4) 6765000040856351 a001 10946/54018521*4106118243^(18/23) 6765000040856351 a001 10946/54018521*1568397607^(9/11) 6765000040856351 a001 10946/54018521*599074578^(6/7) 6765000040856351 a001 24157817/24476*(1/2+1/2*5^(1/2))^4 6765000040856351 a001 24157817/24476*23725150497407^(1/16) 6765000040856351 a001 24157817/24476*73681302247^(1/13) 6765000040856351 a001 24157817/24476*10749957122^(1/12) 6765000040856351 a001 24157817/24476*4106118243^(2/23) 6765000040856351 a001 24157817/24476*1568397607^(1/11) 6765000040856351 a001 24157817/24476*599074578^(2/21) 6765000040856351 a001 24157817/24476*228826127^(1/10) 6765000040856351 a001 24157817/24476*87403803^(2/19) 6765000040856351 a001 10946/54018521*228826127^(9/10) 6765000040856351 a001 31622993/12238*12752043^(1/17) 6765000040856352 a001 24157817/24476*33385282^(1/9) 6765000040856352 a001 10946/54018521*87403803^(18/19) 6765000040856352 a001 264431464882/39088169 6765000040856355 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^37 6765000040856356 a001 24157817/24476*12752043^(2/17) 6765000040856364 a001 9227465/24476*141422324^(2/13) 6765000040856364 a001 10946/20633239*45537549124^(2/3) 6765000040856364 a001 10946/20633239*(1/2+1/2*5^(1/2))^34 6765000040856364 a001 10946/20633239*10749957122^(17/24) 6765000040856364 a001 10946/20633239*4106118243^(17/23) 6765000040856364 a001 10946/20633239*1568397607^(17/22) 6765000040856364 a001 10946/20633239*599074578^(17/21) 6765000040856364 a001 9227465/24476*2537720636^(2/15) 6765000040856364 a001 9227465/24476*45537549124^(2/17) 6765000040856364 a001 9227465/24476*14662949395604^(2/21) 6765000040856364 a001 9227465/24476*(1/2+1/2*5^(1/2))^6 6765000040856364 a001 9227465/24476*10749957122^(1/8) 6765000040856364 a001 9227465/24476*4106118243^(3/23) 6765000040856364 a001 9227465/24476*1568397607^(3/22) 6765000040856364 a001 9227465/24476*599074578^(1/7) 6765000040856364 a001 9227465/24476*228826127^(3/20) 6765000040856365 a001 10946/20633239*228826127^(17/20) 6765000040856365 a001 9227465/24476*87403803^(3/19) 6765000040856365 a001 10946/20633239*87403803^(17/19) 6765000040856365 a001 9227465/24476*33385282^(1/6) 6765000040856367 a001 31622993/12238*4870847^(1/16) 6765000040856370 a001 10946/20633239*33385282^(17/18) 6765000040856370 a001 50501915945/7465176 6765000040856372 a001 9227465/24476*12752043^(3/17) 6765000040856386 a001 24157817/24476*4870847^(1/8) 6765000040856390 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^35 6765000040856418 a001 9227465/24476*4870847^(3/16) 6765000040856457 a001 1836311903/439204*5778^(1/18) 6765000040856457 a001 5473/3940598*(1/2+1/2*5^(1/2))^32 6765000040856457 a001 5473/3940598*23725150497407^(1/2) 6765000040856457 a001 5473/3940598*505019158607^(4/7) 6765000040856457 a001 5473/3940598*73681302247^(8/13) 6765000040856457 a001 5473/3940598*10749957122^(2/3) 6765000040856457 a001 5473/3940598*4106118243^(16/23) 6765000040856457 a001 5473/3940598*1568397607^(8/11) 6765000040856457 a001 5473/3940598*599074578^(16/21) 6765000040856457 a001 1762289/12238*(1/2+1/2*5^(1/2))^8 6765000040856457 a001 1762289/12238*23725150497407^(1/8) 6765000040856457 a001 1762289/12238*505019158607^(1/7) 6765000040856457 a001 1762289/12238*73681302247^(2/13) 6765000040856457 a001 1762289/12238*10749957122^(1/6) 6765000040856457 a001 1762289/12238*4106118243^(4/23) 6765000040856457 a001 1762289/12238*1568397607^(2/11) 6765000040856457 a001 1762289/12238*599074578^(4/21) 6765000040856457 a001 1762289/12238*228826127^(1/5) 6765000040856458 a001 5473/3940598*228826127^(4/5) 6765000040856458 a001 1762289/12238*87403803^(4/19) 6765000040856458 a001 5473/3940598*87403803^(16/19) 6765000040856459 a001 1762289/12238*33385282^(2/9) 6765000040856463 a001 5473/3940598*33385282^(8/9) 6765000040856467 a001 1762289/12238*12752043^(4/17) 6765000040856479 a001 31622993/12238*1860498^(1/15) 6765000040856497 a001 5473/3940598*12752043^(16/17) 6765000040856499 a001 38580030788/5702887 6765000040856529 a001 1762289/12238*4870847^(1/4) 6765000040856543 a001 39088169/24476*1860498^(1/10) 6765000040856611 a001 24157817/24476*1860498^(2/15) 6765000040856634 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^33 6765000040856650 a001 2178309/24476*1860498^(3/10) 6765000040856668 a001 3732588/6119*1860498^(1/6) 6765000040856755 a001 9227465/24476*1860498^(1/5) 6765000040856979 a001 1762289/12238*1860498^(4/15) 6765000040856996 a001 10946/3010349*7881196^(10/11) 6765000040857081 a001 10946/3010349*20633239^(6/7) 6765000040857090 a001 1346269/24476*20633239^(2/7) 6765000040857095 a001 10946/3010349*141422324^(10/13) 6765000040857095 a001 10946/3010349*2537720636^(2/3) 6765000040857095 a001 10946/3010349*45537549124^(10/17) 6765000040857095 a001 10946/3010349*312119004989^(6/11) 6765000040857095 a001 10946/3010349*14662949395604^(10/21) 6765000040857095 a001 10946/3010349*(1/2+1/2*5^(1/2))^30 6765000040857095 a001 10946/3010349*192900153618^(5/9) 6765000040857095 a001 10946/3010349*28143753123^(3/5) 6765000040857095 a001 10946/3010349*10749957122^(5/8) 6765000040857095 a001 10946/3010349*4106118243^(15/23) 6765000040857095 a001 10946/3010349*1568397607^(15/22) 6765000040857095 a001 10946/3010349*599074578^(5/7) 6765000040857095 a001 1346269/24476*2537720636^(2/9) 6765000040857095 a001 1346269/24476*312119004989^(2/11) 6765000040857095 a001 1346269/24476*(1/2+1/2*5^(1/2))^10 6765000040857095 a001 1346269/24476*28143753123^(1/5) 6765000040857095 a001 1346269/24476*10749957122^(5/24) 6765000040857095 a001 1346269/24476*4106118243^(5/23) 6765000040857095 a001 1346269/24476*1568397607^(5/22) 6765000040857095 a001 1346269/24476*599074578^(5/21) 6765000040857095 a001 1346269/24476*228826127^(1/4) 6765000040857095 a001 10946/3010349*228826127^(3/4) 6765000040857095 a001 1346269/24476*87403803^(5/19) 6765000040857096 a001 10946/3010349*87403803^(15/19) 6765000040857097 a001 1346269/24476*33385282^(5/18) 6765000040857100 a001 10946/3010349*33385282^(5/6) 6765000040857107 a001 1346269/24476*12752043^(5/17) 6765000040857132 a001 10946/3010349*12752043^(15/17) 6765000040857184 a001 1346269/24476*4870847^(5/16) 6765000040857306 a001 31622993/12238*710647^(1/14) 6765000040857362 a001 10946/3010349*4870847^(15/16) 6765000040857380 a001 14736260474/2178309 6765000040857746 a001 1346269/24476*1860498^(1/3) 6765000040858264 a001 24157817/24476*710647^(1/7) 6765000040858303 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^31 6765000040859235 a001 9227465/24476*710647^(3/14) 6765000040859656 a001 5702887/24476*710647^(1/4) 6765000040860285 a001 1762289/12238*710647^(2/7) 6765000040861426 a001 514229/24476*7881196^(4/11) 6765000040861452 a001 10946/1149851*20633239^(4/5) 6765000040861465 a001 514229/24476*141422324^(4/13) 6765000040861465 a001 10946/1149851*17393796001^(4/7) 6765000040861465 a001 10946/1149851*14662949395604^(4/9) 6765000040861465 a001 10946/1149851*(1/2+1/2*5^(1/2))^28 6765000040861465 a001 10946/1149851*505019158607^(1/2) 6765000040861465 a001 10946/1149851*73681302247^(7/13) 6765000040861465 a001 10946/1149851*10749957122^(7/12) 6765000040861465 a001 10946/1149851*4106118243^(14/23) 6765000040861465 a001 10946/1149851*1568397607^(7/11) 6765000040861465 a001 10946/1149851*599074578^(2/3) 6765000040861465 a001 514229/24476*2537720636^(4/15) 6765000040861465 a001 514229/24476*45537549124^(4/17) 6765000040861465 a001 514229/24476*817138163596^(4/19) 6765000040861465 a001 514229/24476*14662949395604^(4/21) 6765000040861465 a001 514229/24476*(1/2+1/2*5^(1/2))^12 6765000040861465 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^12/Lucas(21) 6765000040861465 a001 514229/24476*192900153618^(2/9) 6765000040861465 a001 514229/24476*73681302247^(3/13) 6765000040861465 a001 514229/24476*10749957122^(1/4) 6765000040861465 a001 514229/24476*4106118243^(6/23) 6765000040861465 a001 514229/24476*1568397607^(3/11) 6765000040861465 a001 514229/24476*599074578^(2/7) 6765000040861465 a001 514229/24476*228826127^(3/10) 6765000040861465 a001 10946/1149851*228826127^(7/10) 6765000040861465 a001 514229/24476*87403803^(6/19) 6765000040861466 a001 10946/1149851*87403803^(14/19) 6765000040861467 a001 514229/24476*33385282^(1/3) 6765000040861470 a001 10946/1149851*33385282^(7/9) 6765000040861480 a001 514229/24476*12752043^(6/17) 6765000040861499 a001 10946/1149851*12752043^(14/17) 6765000040861572 a001 514229/24476*4870847^(3/8) 6765000040861715 a001 10946/1149851*4870847^(7/8) 6765000040861879 a001 1346269/24476*710647^(5/14) 6765000040862247 a001 514229/24476*1860498^(2/5) 6765000040863289 a001 10946/1149851*1860498^(14/15) 6765000040863412 a001 31622993/12238*271443^(1/13) 6765000040863420 a001 2814375317/416020 6765000040867206 a001 514229/24476*710647^(3/7) 6765000040869744 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^29 6765000040870476 a001 24157817/24476*271443^(2/13) 6765000040877552 a001 9227465/24476*271443^(3/13) 6765000040882569 a001 102334155/24476*103682^(1/24) 6765000040884708 a001 1762289/12238*271443^(4/13) 6765000040888860 a001 10959/844*271443^(1/2) 6765000040891412 a001 98209/12238*20633239^(2/5) 6765000040891418 a001 5473/219602*141422324^(2/3) 6765000040891418 a001 5473/219602*(1/2+1/2*5^(1/2))^26 6765000040891418 a001 5473/219602*73681302247^(1/2) 6765000040891418 a001 5473/219602*10749957122^(13/24) 6765000040891418 a001 5473/219602*4106118243^(13/23) 6765000040891418 a001 5473/219602*1568397607^(13/22) 6765000040891418 a001 5473/219602*599074578^(13/21) 6765000040891418 a001 98209/12238*17393796001^(2/7) 6765000040891418 a001 98209/12238*14662949395604^(2/9) 6765000040891418 a001 98209/12238*(1/2+1/2*5^(1/2))^14 6765000040891418 a001 98209/12238*10749957122^(7/24) 6765000040891418 a001 98209/12238*4106118243^(7/23) 6765000040891418 a001 98209/12238*1568397607^(7/22) 6765000040891418 a001 98209/12238*599074578^(1/3) 6765000040891419 a001 98209/12238*228826127^(7/20) 6765000040891419 a001 5473/219602*228826127^(13/20) 6765000040891419 a001 98209/12238*87403803^(7/19) 6765000040891419 a001 5473/219602*87403803^(13/19) 6765000040891421 a001 98209/12238*33385282^(7/18) 6765000040891423 a001 5473/219602*33385282^(13/18) 6765000040891436 a001 98209/12238*12752043^(7/17) 6765000040891450 a001 5473/219602*12752043^(13/17) 6765000040891543 a001 98209/12238*4870847^(7/16) 6765000040891650 a001 5473/219602*4870847^(13/16) 6765000040892331 a001 98209/12238*1860498^(7/15) 6765000040892408 a001 1346269/24476*271443^(5/13) 6765000040893112 a001 5473/219602*1860498^(13/15) 6765000040898116 a001 98209/12238*710647^(1/2) 6765000040903841 a001 514229/24476*271443^(6/13) 6765000040903857 a001 5473/219602*710647^(13/14) 6765000040904814 a001 165383956/24447 6765000040908791 a001 31622993/12238*103682^(1/12) 6765000040927981 a001 10946/64079*64079^(22/23) 6765000040935011 a001 39088169/24476*103682^(1/8) 6765000040940857 a001 98209/12238*271443^(7/13) 6765000040948163 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^27 6765000040961235 a001 24157817/24476*103682^(1/6) 6765000040987448 a001 3732588/6119*103682^(5/24) 6765000041013691 a001 9227465/24476*103682^(1/4) 6765000041039854 a001 5702887/24476*103682^(7/24) 6765000041052408 a001 102334155/24476*39603^(1/22) 6765000041061760 a001 701408733/167761*5778^(1/18) 6765000041065548 a001 10946/167761*439204^(8/9) 6765000041066226 a001 1762289/12238*103682^(1/3) 6765000041092053 a001 2178309/24476*103682^(3/8) 6765000041096642 a001 10946/167761*7881196^(8/11) 6765000041096721 a001 10946/167761*141422324^(8/13) 6765000041096722 a001 10946/167761*2537720636^(8/15) 6765000041096722 a001 10946/167761*45537549124^(8/17) 6765000041096722 a001 10946/167761*14662949395604^(8/21) 6765000041096722 a001 10946/167761*(1/2+1/2*5^(1/2))^24 6765000041096722 a001 10946/167761*192900153618^(4/9) 6765000041096722 a001 10946/167761*73681302247^(6/13) 6765000041096722 a001 10946/167761*10749957122^(1/2) 6765000041096722 a001 10946/167761*4106118243^(12/23) 6765000041096722 a001 10946/167761*1568397607^(6/11) 6765000041096722 a001 10946/167761*599074578^(4/7) 6765000041096722 a001 75025/24476*(1/2+1/2*5^(1/2))^16 6765000041096722 a001 75025/24476*23725150497407^(1/4) 6765000041096722 a001 75025/24476*73681302247^(4/13) 6765000041096722 a001 75025/24476*10749957122^(1/3) 6765000041096722 a001 75025/24476*4106118243^(8/23) 6765000041096722 a001 75025/24476*1568397607^(4/11) 6765000041096722 a001 75025/24476*599074578^(8/21) 6765000041096722 a001 75025/24476*228826127^(2/5) 6765000041096722 a001 10946/167761*228826127^(3/5) 6765000041096722 a001 75025/24476*87403803^(8/19) 6765000041096722 a001 10946/167761*87403803^(12/19) 6765000041096724 a001 75025/24476*33385282^(4/9) 6765000041096726 a001 10946/167761*33385282^(2/3) 6765000041096741 a001 75025/24476*12752043^(8/17) 6765000041096751 a001 10946/167761*12752043^(12/17) 6765000041096864 a001 75025/24476*4870847^(1/2) 6765000041096935 a001 10946/167761*4870847^(3/4) 6765000041097764 a001 75025/24476*1860498^(8/15) 6765000041098285 a001 10946/167761*1860498^(4/5) 6765000041104376 a001 75025/24476*710647^(4/7) 6765000041108203 a001 10946/167761*710647^(6/7) 6765000041119305 a001 1346269/24476*103682^(5/12) 6765000041142826 a001 208010/6119*103682^(11/24) 6765000041153223 a001 75025/24476*271443^(8/13) 6765000041157850 a001 121393/24476*103682^(5/8) 6765000041176118 a001 514229/24476*103682^(1/2) 6765000041181473 a001 10946/167761*271443^(12/13) 6765000041183826 a001 10959/844*103682^(13/24) 6765000041188536 a001 821223650/121393 6765000041214510 a001 28657/24476*64079^(18/23) 6765000041248469 a001 31622993/12238*39603^(1/11) 6765000041258513 a001 98209/12238*103682^(7/12) 6765000041297689 a001 39088169/271443*15127^(2/5) 6765000041376108 a001 14619165/101521*15127^(2/5) 6765000041387550 a001 133957148/930249*15127^(2/5) 6765000041389219 a001 701408733/4870847*15127^(2/5) 6765000041389463 a001 1836311903/12752043*15127^(2/5) 6765000041389498 a001 14930208/103681*15127^(2/5) 6765000041389503 a001 12586269025/87403803*15127^(2/5) 6765000041389504 a001 32951280099/228826127*15127^(2/5) 6765000041389504 a001 43133785636/299537289*15127^(2/5) 6765000041389504 a001 32264490531/224056801*15127^(2/5) 6765000041389504 a001 591286729879/4106118243*15127^(2/5) 6765000041389504 a001 774004377960/5374978561*15127^(2/5) 6765000041389504 a001 4052739537881/28143753123*15127^(2/5) 6765000041389504 a001 1515744265389/10525900321*15127^(2/5) 6765000041389504 a001 3278735159921/22768774562*15127^(2/5) 6765000041389504 a001 2504730781961/17393796001*15127^(2/5) 6765000041389504 a001 956722026041/6643838879*15127^(2/5) 6765000041389504 a001 182717648081/1268860318*15127^(2/5) 6765000041389504 a001 139583862445/969323029*15127^(2/5) 6765000041389504 a001 53316291173/370248451*15127^(2/5) 6765000041389504 a001 10182505537/70711162*15127^(2/5) 6765000041389506 a001 7778742049/54018521*15127^(2/5) 6765000041389520 a001 2971215073/20633239*15127^(2/5) 6765000041389613 a001 567451585/3940598*15127^(2/5) 6765000041390251 a001 433494437/3010349*15127^(2/5) 6765000041394083 a001 5473/12238*24476^(20/21) 6765000041394621 a001 165580141/1149851*15127^(2/5) 6765000041424574 a001 31622993/219602*15127^(2/5) 6765000041444528 a001 39088169/24476*39603^(3/22) 6765000041485653 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^25 6765000041511521 a001 1346269/39603*15127^(11/20) 6765000041516258 a001 75025/24476*103682^(2/3) 6765000041558843 a001 14930352/64079*15127^(7/20) 6765000041629879 a001 24157817/167761*15127^(2/5) 6765000041640591 a001 24157817/24476*39603^(2/11) 6765000041836642 a001 3732588/6119*39603^(5/22) 6765000042032724 a001 9227465/24476*39603^(3/11) 6765000042228727 a001 5702887/24476*39603^(7/22) 6765000042238412 a001 9227465/103682*15127^(9/20) 6765000042334545 a001 102334155/24476*15127^(1/20) 6765000042424937 a001 1762289/12238*39603^(4/11) 6765000042468928 a001 267914296/64079*5778^(1/18) 6765000042480510 a001 28657/24476*439204^(2/3) 6765000042503817 a001 10946/64079*7881196^(2/3) 6765000042503831 a001 28657/24476*7881196^(6/11) 6765000042503890 a001 28657/24476*141422324^(6/13) 6765000042503890 a001 10946/64079*312119004989^(2/5) 6765000042503890 a001 10946/64079*(1/2+1/2*5^(1/2))^22 6765000042503890 a001 10946/64079*10749957122^(11/24) 6765000042503890 a001 10946/64079*4106118243^(11/23) 6765000042503890 a001 10946/64079*1568397607^(1/2) 6765000042503890 a001 10946/64079*599074578^(11/21) 6765000042503890 a001 28657/24476*2537720636^(2/5) 6765000042503890 a001 28657/24476*45537549124^(6/17) 6765000042503890 a001 28657/24476*14662949395604^(2/7) 6765000042503890 a001 28657/24476*(1/2+1/2*5^(1/2))^18 6765000042503890 a001 28657/24476*192900153618^(1/3) 6765000042503890 a001 28657/24476*10749957122^(3/8) 6765000042503890 a001 28657/24476*4106118243^(9/23) 6765000042503890 a001 28657/24476*1568397607^(9/22) 6765000042503890 a001 28657/24476*599074578^(3/7) 6765000042503890 a001 10946/64079*228826127^(11/20) 6765000042503890 a001 28657/24476*228826127^(9/20) 6765000042503890 a001 28657/24476*87403803^(9/19) 6765000042503890 a001 10946/64079*87403803^(11/19) 6765000042503893 a001 28657/24476*33385282^(1/2) 6765000042503894 a001 10946/64079*33385282^(11/18) 6765000042503912 a001 28657/24476*12752043^(9/17) 6765000042503917 a001 10946/64079*12752043^(11/17) 6765000042504050 a001 28657/24476*4870847^(9/16) 6765000042504086 a001 10946/64079*4870847^(11/16) 6765000042505063 a001 28657/24476*1860498^(3/5) 6765000042505323 a001 10946/64079*1860498^(11/15) 6765000042512501 a001 28657/24476*710647^(9/14) 6765000042514415 a001 10946/64079*710647^(11/14) 6765000042567454 a001 28657/24476*271443^(9/13) 6765000042581579 a001 10946/64079*271443^(11/13) 6765000042620603 a001 2178309/24476*39603^(9/22) 6765000042775889 a001 24157817/271443*15127^(9/20) 6765000042817695 a001 1346269/24476*39603^(5/11) 6765000042854306 a001 63245986/710647*15127^(9/20) 6765000042865746 a001 165580141/1860498*15127^(9/20) 6765000042867416 a001 433494437/4870847*15127^(9/20) 6765000042867659 a001 1134903170/12752043*15127^(9/20) 6765000042867695 a001 2971215073/33385282*15127^(9/20) 6765000042867700 a001 7778742049/87403803*15127^(9/20) 6765000042867701 a001 20365011074/228826127*15127^(9/20) 6765000042867701 a001 53316291173/599074578*15127^(9/20) 6765000042867701 a001 139583862445/1568397607*15127^(9/20) 6765000042867701 a001 365435296162/4106118243*15127^(9/20) 6765000042867701 a001 956722026041/10749957122*15127^(9/20) 6765000042867701 a001 2504730781961/28143753123*15127^(9/20) 6765000042867701 a001 6557470319842/73681302247*15127^(9/20) 6765000042867701 a001 10610209857723/119218851371*15127^(9/20) 6765000042867701 a001 4052739537881/45537549124*15127^(9/20) 6765000042867701 a001 1548008755920/17393796001*15127^(9/20) 6765000042867701 a001 591286729879/6643838879*15127^(9/20) 6765000042867701 a001 225851433717/2537720636*15127^(9/20) 6765000042867701 a001 86267571272/969323029*15127^(9/20) 6765000042867701 a001 32951280099/370248451*15127^(9/20) 6765000042867701 a001 12586269025/141422324*15127^(9/20) 6765000042867703 a001 4807526976/54018521*15127^(9/20) 6765000042867717 a001 1836311903/20633239*15127^(9/20) 6765000042867810 a001 3524667/39604*15127^(9/20) 6765000042868447 a001 267914296/3010349*15127^(9/20) 6765000042872817 a001 102334155/1149851*15127^(9/20) 6765000042902770 a001 39088169/439204*15127^(9/20) 6765000042975869 a001 28657/24476*103682^(3/4) 6765000042987017 a001 832040/39603*15127^(3/5) 6765000043011054 a001 208010/6119*39603^(1/2) 6765000043037061 a001 9227465/64079*15127^(2/5) 6765000043080753 a001 10946/64079*103682^(11/12) 6765000043108068 a001 14930352/167761*15127^(9/20) 6765000043133195 a001 156839761/23184 6765000043214185 a001 514229/24476*39603^(6/11) 6765000043391733 a001 10959/844*39603^(13/22) 6765000043432427 a001 28657/9349*9349^(16/19) 6765000043560063 a001 11592/6119*39603^(17/22) 6765000043636258 a001 98209/12238*39603^(7/11) 6765000043705434 a001 121393/24476*39603^(15/22) 6765000043716551 a001 5702887/103682*15127^(1/2) 6765000043812742 a001 31622993/12238*15127^(1/10) 6765000044233681 a001 75025/24476*39603^(8/11) 6765000044254077 a001 4976784/90481*15127^(1/2) 6765000044332501 a001 39088169/710647*15127^(1/2) 6765000044343943 a001 831985/15126*15127^(1/2) 6765000044345612 a001 267914296/4870847*15127^(1/2) 6765000044345856 a001 233802911/4250681*15127^(1/2) 6765000044345891 a001 1836311903/33385282*15127^(1/2) 6765000044345896 a001 1602508992/29134601*15127^(1/2) 6765000044345897 a001 12586269025/228826127*15127^(1/2) 6765000044345897 a001 10983760033/199691526*15127^(1/2) 6765000044345897 a001 86267571272/1568397607*15127^(1/2) 6765000044345897 a001 75283811239/1368706081*15127^(1/2) 6765000044345897 a001 591286729879/10749957122*15127^(1/2) 6765000044345897 a001 12585437040/228811001*15127^(1/2) 6765000044345897 a001 4052739537881/73681302247*15127^(1/2) 6765000044345897 a001 3536736619241/64300051206*15127^(1/2) 6765000044345897 a001 6557470319842/119218851371*15127^(1/2) 6765000044345897 a001 2504730781961/45537549124*15127^(1/2) 6765000044345897 a001 956722026041/17393796001*15127^(1/2) 6765000044345897 a001 365435296162/6643838879*15127^(1/2) 6765000044345897 a001 139583862445/2537720636*15127^(1/2) 6765000044345897 a001 53316291173/969323029*15127^(1/2) 6765000044345897 a001 20365011074/370248451*15127^(1/2) 6765000044345898 a001 7778742049/141422324*15127^(1/2) 6765000044345900 a001 2971215073/54018521*15127^(1/2) 6765000044345913 a001 1134903170/20633239*15127^(1/2) 6765000044346006 a001 433494437/7881196*15127^(1/2) 6765000044346644 a001 165580141/3010349*15127^(1/2) 6765000044351014 a001 63245986/1149851*15127^(1/2) 6765000044380970 a001 24157817/439204*15127^(1/2) 6765000044472284 a001 514229/39603*15127^(13/20) 6765000044515201 a001 5702887/64079*15127^(9/20) 6765000044551165 a001 24157817/9349*3571^(2/17) 6765000044586286 a001 9227465/167761*15127^(1/2) 6765000044930000 a001 10946/9349*9349^(18/19) 6765000045029816 a001 14930352/15127*5778^(2/9) 6765000045169668 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^23 6765000045194898 a001 1762289/51841*15127^(11/20) 6765000045229233 a001 46368/9349*9349^(15/19) 6765000045290937 a001 39088169/24476*15127^(3/20) 6765000045732295 a001 9227465/271443*15127^(11/20) 6765000045810701 a001 24157817/710647*15127^(11/20) 6765000045822140 a001 31622993/930249*15127^(11/20) 6765000045823809 a001 165580141/4870847*15127^(11/20) 6765000045824052 a001 433494437/12752043*15127^(11/20) 6765000045824088 a001 567451585/16692641*15127^(11/20) 6765000045824093 a001 2971215073/87403803*15127^(11/20) 6765000045824094 a001 7778742049/228826127*15127^(11/20) 6765000045824094 a001 10182505537/299537289*15127^(11/20) 6765000045824094 a001 53316291173/1568397607*15127^(11/20) 6765000045824094 a001 139583862445/4106118243*15127^(11/20) 6765000045824094 a001 182717648081/5374978561*15127^(11/20) 6765000045824094 a001 956722026041/28143753123*15127^(11/20) 6765000045824094 a001 2504730781961/73681302247*15127^(11/20) 6765000045824094 a001 3278735159921/96450076809*15127^(11/20) 6765000045824094 a001 10610209857723/312119004989*15127^(11/20) 6765000045824094 a001 4052739537881/119218851371*15127^(11/20) 6765000045824094 a001 387002188980/11384387281*15127^(11/20) 6765000045824094 a001 591286729879/17393796001*15127^(11/20) 6765000045824094 a001 225851433717/6643838879*15127^(11/20) 6765000045824094 a001 1135099622/33391061*15127^(11/20) 6765000045824094 a001 32951280099/969323029*15127^(11/20) 6765000045824094 a001 12586269025/370248451*15127^(11/20) 6765000045824094 a001 1201881744/35355581*15127^(11/20) 6765000045824096 a001 1836311903/54018521*15127^(11/20) 6765000045824110 a001 701408733/20633239*15127^(11/20) 6765000045824203 a001 66978574/1970299*15127^(11/20) 6765000045824840 a001 102334155/3010349*15127^(11/20) 6765000045829210 a001 39088169/1149851*15127^(11/20) 6765000045859158 a001 196452/5779*15127^(11/20) 6765000045931969 a001 105937/13201*15127^(7/10) 6765000045993548 a001 3524578/64079*15127^(1/2) 6765000046032970 a001 28657/24476*39603^(9/11) 6765000046064425 a001 5702887/167761*15127^(11/20) 6765000046672701 a001 46347/2206*15127^(3/5) 6765000046769137 a001 24157817/24476*15127^(1/5) 6765000047210435 a001 5702887/271443*15127^(3/5) 6765000047288889 a001 14930352/710647*15127^(3/5) 6765000047300335 a001 39088169/1860498*15127^(3/5) 6765000047302005 a001 102334155/4870847*15127^(3/5) 6765000047302249 a001 267914296/12752043*15127^(3/5) 6765000047302284 a001 701408733/33385282*15127^(3/5) 6765000047302290 a001 1836311903/87403803*15127^(3/5) 6765000047302290 a001 102287808/4868641*15127^(3/5) 6765000047302290 a001 12586269025/599074578*15127^(3/5) 6765000047302290 a001 32951280099/1568397607*15127^(3/5) 6765000047302290 a001 86267571272/4106118243*15127^(3/5) 6765000047302290 a001 225851433717/10749957122*15127^(3/5) 6765000047302290 a001 591286729879/28143753123*15127^(3/5) 6765000047302290 a001 1548008755920/73681302247*15127^(3/5) 6765000047302290 a001 4052739537881/192900153618*15127^(3/5) 6765000047302290 a001 225749145909/10745088481*15127^(3/5) 6765000047302290 a001 6557470319842/312119004989*15127^(3/5) 6765000047302290 a001 2504730781961/119218851371*15127^(3/5) 6765000047302290 a001 956722026041/45537549124*15127^(3/5) 6765000047302290 a001 365435296162/17393796001*15127^(3/5) 6765000047302290 a001 139583862445/6643838879*15127^(3/5) 6765000047302290 a001 53316291173/2537720636*15127^(3/5) 6765000047302290 a001 20365011074/969323029*15127^(3/5) 6765000047302291 a001 7778742049/370248451*15127^(3/5) 6765000047302291 a001 2971215073/141422324*15127^(3/5) 6765000047302293 a001 1134903170/54018521*15127^(3/5) 6765000047302306 a001 433494437/20633239*15127^(3/5) 6765000047302399 a001 165580141/7881196*15127^(3/5) 6765000047303037 a001 63245986/3010349*15127^(3/5) 6765000047307409 a001 24157817/1149851*15127^(3/5) 6765000047337376 a001 9227465/439204*15127^(3/5) 6765000047458631 a001 196418/39603*15127^(3/4) 6765000047471350 a001 2178309/64079*15127^(11/20) 6765000047542772 a001 3524578/167761*15127^(3/5) 6765000047765523 a001 34111385/13201*5778^(1/9) 6765000048151929 a001 1346269/103682*15127^(13/20) 6765000048247325 a001 3732588/6119*15127^(1/4) 6765000048688782 a001 3524578/271443*15127^(13/20) 6765000048767107 a001 9227465/710647*15127^(13/20) 6765000048778535 a001 24157817/1860498*15127^(13/20) 6765000048780202 a001 63245986/4870847*15127^(13/20) 6765000048780446 a001 165580141/12752043*15127^(13/20) 6765000048780481 a001 433494437/33385282*15127^(13/20) 6765000048780486 a001 1134903170/87403803*15127^(13/20) 6765000048780487 a001 2971215073/228826127*15127^(13/20) 6765000048780487 a001 7778742049/599074578*15127^(13/20) 6765000048780487 a001 20365011074/1568397607*15127^(13/20) 6765000048780487 a001 53316291173/4106118243*15127^(13/20) 6765000048780487 a001 139583862445/10749957122*15127^(13/20) 6765000048780487 a001 365435296162/28143753123*15127^(13/20) 6765000048780487 a001 956722026041/73681302247*15127^(13/20) 6765000048780487 a001 2504730781961/192900153618*15127^(13/20) 6765000048780487 a001 10610209857723/817138163596*15127^(13/20) 6765000048780487 a001 4052739537881/312119004989*15127^(13/20) 6765000048780487 a001 1548008755920/119218851371*15127^(13/20) 6765000048780487 a001 591286729879/45537549124*15127^(13/20) 6765000048780487 a001 7787980473/599786069*15127^(13/20) 6765000048780487 a001 86267571272/6643838879*15127^(13/20) 6765000048780487 a001 32951280099/2537720636*15127^(13/20) 6765000048780487 a001 12586269025/969323029*15127^(13/20) 6765000048780487 a001 4807526976/370248451*15127^(13/20) 6765000048780487 a001 1836311903/141422324*15127^(13/20) 6765000048780489 a001 701408733/54018521*15127^(13/20) 6765000048780503 a001 9238424/711491*15127^(13/20) 6765000048780596 a001 102334155/7881196*15127^(13/20) 6765000048781233 a001 39088169/3010349*15127^(13/20) 6765000048785598 a001 14930352/1149851*15127^(13/20) 6765000048809943 a001 121393/39603*15127^(4/5) 6765000048815515 a001 5702887/439204*15127^(13/20) 6765000048950578 a001 1346269/64079*15127^(3/5) 6765000049020575 a001 2178309/167761*15127^(13/20) 6765000049627424 a001 416020/51841*15127^(7/10) 6765000049725544 a001 9227465/24476*15127^(3/10) 6765000050166584 a001 726103/90481*15127^(7/10) 6765000050172562 a001 75025/9349*9349^(14/19) 6765000050245247 a001 5702887/710647*15127^(7/10) 6765000050256723 a001 829464/103361*15127^(7/10) 6765000050258398 a001 39088169/4870847*15127^(7/10) 6765000050258642 a001 34111385/4250681*15127^(7/10) 6765000050258678 a001 133957148/16692641*15127^(7/10) 6765000050258683 a001 233802911/29134601*15127^(7/10) 6765000050258684 a001 1836311903/228826127*15127^(7/10) 6765000050258684 a001 267084832/33281921*15127^(7/10) 6765000050258684 a001 12586269025/1568397607*15127^(7/10) 6765000050258684 a001 10983760033/1368706081*15127^(7/10) 6765000050258684 a001 43133785636/5374978561*15127^(7/10) 6765000050258684 a001 75283811239/9381251041*15127^(7/10) 6765000050258684 a001 591286729879/73681302247*15127^(7/10) 6765000050258684 a001 86000486440/10716675201*15127^(7/10) 6765000050258684 a001 4052739537881/505019158607*15127^(7/10) 6765000050258684 a001 3536736619241/440719107401*15127^(7/10) 6765000050258684 a001 3278735159921/408569081798*15127^(7/10) 6765000050258684 a001 2504730781961/312119004989*15127^(7/10) 6765000050258684 a001 956722026041/119218851371*15127^(7/10) 6765000050258684 a001 182717648081/22768774562*15127^(7/10) 6765000050258684 a001 139583862445/17393796001*15127^(7/10) 6765000050258684 a001 53316291173/6643838879*15127^(7/10) 6765000050258684 a001 10182505537/1268860318*15127^(7/10) 6765000050258684 a001 7778742049/969323029*15127^(7/10) 6765000050258684 a001 2971215073/370248451*15127^(7/10) 6765000050258684 a001 567451585/70711162*15127^(7/10) 6765000050258686 a001 433494437/54018521*15127^(7/10) 6765000050258700 a001 165580141/20633239*15127^(7/10) 6765000050258793 a001 31622993/3940598*15127^(7/10) 6765000050259432 a001 24157817/3010349*15127^(7/10) 6765000050263816 a001 9227465/1149851*15127^(7/10) 6765000050293863 a001 1762289/219602*15127^(7/10) 6765000050426074 a001 832040/64079*15127^(13/20) 6765000050499803 a001 1346269/167761*15127^(7/10) 6765000050501224 a001 46368-17711*5^(1/2) 6765000050620327 a001 75025/39603*15127^(17/20) 6765000050716121 a001 5473/12238*64079^(20/23) 6765000051112692 a001 514229/103682*15127^(3/4) 6765000051203683 a001 5702887/24476*15127^(7/20) 6765000051228846 a001 15456/13201*15127^(9/10) 6765000051449538 a001 133957148/51841*5778^(1/9) 6765000051645812 a001 1346269/271443*15127^(3/4) 6765000051723594 a001 3524578/710647*15127^(3/4) 6765000051734942 a001 9227465/1860498*15127^(3/4) 6765000051736597 a001 24157817/4870847*15127^(3/4) 6765000051736839 a001 63245986/12752043*15127^(3/4) 6765000051736874 a001 165580141/33385282*15127^(3/4) 6765000051736879 a001 433494437/87403803*15127^(3/4) 6765000051736880 a001 1134903170/228826127*15127^(3/4) 6765000051736880 a001 2971215073/599074578*15127^(3/4) 6765000051736880 a001 7778742049/1568397607*15127^(3/4) 6765000051736880 a001 20365011074/4106118243*15127^(3/4) 6765000051736880 a001 53316291173/10749957122*15127^(3/4) 6765000051736880 a001 139583862445/28143753123*15127^(3/4) 6765000051736880 a001 365435296162/73681302247*15127^(3/4) 6765000051736880 a001 956722026041/192900153618*15127^(3/4) 6765000051736880 a001 2504730781961/505019158607*15127^(3/4) 6765000051736880 a001 10610209857723/2139295485799*15127^(3/4) 6765000051736880 a001 4052739537881/817138163596*15127^(3/4) 6765000051736880 a001 140728068720/28374454999*15127^(3/4) 6765000051736880 a001 591286729879/119218851371*15127^(3/4) 6765000051736880 a001 225851433717/45537549124*15127^(3/4) 6765000051736880 a001 86267571272/17393796001*15127^(3/4) 6765000051736880 a001 32951280099/6643838879*15127^(3/4) 6765000051736880 a001 1144206275/230701876*15127^(3/4) 6765000051736880 a001 4807526976/969323029*15127^(3/4) 6765000051736880 a001 1836311903/370248451*15127^(3/4) 6765000051736881 a001 701408733/141422324*15127^(3/4) 6765000051736883 a001 267914296/54018521*15127^(3/4) 6765000051736896 a001 9303105/1875749*15127^(3/4) 6765000051736988 a001 39088169/7881196*15127^(3/4) 6765000051737621 a001 14930352/3010349*15127^(3/4) 6765000051741955 a001 5702887/1149851*15127^(3/4) 6765000051771665 a001 2178309/439204*15127^(3/4) 6765000051911342 a001 514229/64079*15127^(7/10) 6765000051956467 a001 5473/12238*167761^(4/5) 6765000051975299 a001 75640/15251*15127^(3/4) 6765000051987028 a001 233802911/90481*5778^(1/9) 6765000052065447 a001 1836311903/710647*5778^(1/9) 6765000052076888 a001 267084832/103361*5778^(1/9) 6765000052078557 a001 12586269025/4870847*5778^(1/9) 6765000052078801 a001 10983760033/4250681*5778^(1/9) 6765000052078837 a001 43133785636/16692641*5778^(1/9) 6765000052078842 a001 75283811239/29134601*5778^(1/9) 6765000052078842 a001 591286729879/228826127*5778^(1/9) 6765000052078843 a001 86000486440/33281921*5778^(1/9) 6765000052078843 a001 4052739537881/1568397607*5778^(1/9) 6765000052078843 a001 3536736619241/1368706081*5778^(1/9) 6765000052078843 a001 3278735159921/1268860318*5778^(1/9) 6765000052078843 a001 2504730781961/969323029*5778^(1/9) 6765000052078843 a001 956722026041/370248451*5778^(1/9) 6765000052078843 a001 182717648081/70711162*5778^(1/9) 6765000052078845 a001 139583862445/54018521*5778^(1/9) 6765000052078858 a001 53316291173/20633239*5778^(1/9) 6765000052078951 a001 10182505537/3940598*5778^(1/9) 6765000052079589 a001 7778742049/3010349*5778^(1/9) 6765000052083959 a001 2971215073/1149851*5778^(1/9) 6765000052113804 a001 102334155/24476*5778^(1/18) 6765000052113913 a001 567451585/219602*5778^(1/9) 6765000052148757 a001 5473/12238*20633239^(4/7) 6765000052148766 a001 5473/12238*2537720636^(4/9) 6765000052148766 a001 5473/12238*(1/2+1/2*5^(1/2))^20 6765000052148766 a001 5473/12238*23725150497407^(5/16) 6765000052148766 a001 5473/12238*505019158607^(5/14) 6765000052148766 a001 5473/12238*73681302247^(5/13) 6765000052148766 a001 5473/12238*28143753123^(2/5) 6765000052148766 a001 5473/12238*10749957122^(5/12) 6765000052148766 a001 5473/12238*4106118243^(10/23) 6765000052148766 a001 5473/12238*1568397607^(5/11) 6765000052148766 a001 5473/12238*599074578^(10/21) 6765000052148766 a001 5473/12238*228826127^(1/2) 6765000052148766 a001 5473/12238*87403803^(10/19) 6765000052148769 a001 5473/12238*33385282^(5/9) 6765000052148790 a001 5473/12238*12752043^(10/17) 6765000052148944 a001 5473/12238*4870847^(5/8) 6765000052150069 a001 5473/12238*1860498^(2/3) 6765000052158334 a001 5473/12238*710647^(5/7) 6765000052219392 a001 5473/12238*271443^(10/13) 6765000052319216 a001 433494437/167761*5778^(1/9) 6765000052572376 a001 317811/103682*15127^(4/5) 6765000052673186 a001 5473/12238*103682^(5/6) 6765000052682030 a001 1762289/12238*15127^(2/5) 6765000053121308 a001 832040/271443*15127^(4/5) 6765000053201396 a001 311187/101521*15127^(4/5) 6765000053213081 a001 5702887/1860498*15127^(4/5) 6765000053214786 a001 14930352/4870847*15127^(4/5) 6765000053215034 a001 39088169/12752043*15127^(4/5) 6765000053215071 a001 14619165/4769326*15127^(4/5) 6765000053215076 a001 267914296/87403803*15127^(4/5) 6765000053215077 a001 701408733/228826127*15127^(4/5) 6765000053215077 a001 1836311903/599074578*15127^(4/5) 6765000053215077 a001 686789568/224056801*15127^(4/5) 6765000053215077 a001 12586269025/4106118243*15127^(4/5) 6765000053215077 a001 32951280099/10749957122*15127^(4/5) 6765000053215077 a001 86267571272/28143753123*15127^(4/5) 6765000053215077 a001 32264490531/10525900321*15127^(4/5) 6765000053215077 a001 591286729879/192900153618*15127^(4/5) 6765000053215077 a001 1548008755920/505019158607*15127^(4/5) 6765000053215077 a001 1515744265389/494493258286*15127^(4/5) 6765000053215077 a001 2504730781961/817138163596*15127^(4/5) 6765000053215077 a001 956722026041/312119004989*15127^(4/5) 6765000053215077 a001 365435296162/119218851371*15127^(4/5) 6765000053215077 a001 139583862445/45537549124*15127^(4/5) 6765000053215077 a001 53316291173/17393796001*15127^(4/5) 6765000053215077 a001 20365011074/6643838879*15127^(4/5) 6765000053215077 a001 7778742049/2537720636*15127^(4/5) 6765000053215077 a001 2971215073/969323029*15127^(4/5) 6765000053215077 a001 1134903170/370248451*15127^(4/5) 6765000053215077 a001 433494437/141422324*15127^(4/5) 6765000053215079 a001 165580141/54018521*15127^(4/5) 6765000053215093 a001 63245986/20633239*15127^(4/5) 6765000053215188 a001 24157817/7881196*15127^(4/5) 6765000053215839 a001 9227465/3010349*15127^(4/5) 6765000053220302 a001 3524578/1149851*15127^(4/5) 6765000053250893 a001 1346269/439204*15127^(4/5) 6765000053371026 a001 317811/64079*15127^(3/4) 6765000053460567 a001 514229/167761*15127^(4/5) 6765000053726384 a001 165580141/64079*5778^(1/9) 6765000053914026 a001 121393/9349*9349^(13/19) 6765000054099039 a001 98209/51841*15127^(17/20) 6765000054159833 a001 2178309/24476*15127^(9/20) 6765000054307112 s002 sum(A190462[n]/((2^n+1)/n),n=1..infinity) 6765000054606576 a001 514229/271443*15127^(17/20) 6765000054680624 a001 1346269/710647*15127^(17/20) 6765000054691428 a001 1762289/930249*15127^(17/20) 6765000054693004 a001 9227465/4870847*15127^(17/20) 6765000054693234 a001 24157817/12752043*15127^(17/20) 6765000054693268 a001 31622993/16692641*15127^(17/20) 6765000054693273 a001 165580141/87403803*15127^(17/20) 6765000054693273 a001 433494437/228826127*15127^(17/20) 6765000054693273 a001 567451585/299537289*15127^(17/20) 6765000054693273 a001 2971215073/1568397607*15127^(17/20) 6765000054693273 a001 7778742049/4106118243*15127^(17/20) 6765000054693273 a001 10182505537/5374978561*15127^(17/20) 6765000054693273 a001 53316291173/28143753123*15127^(17/20) 6765000054693273 a001 139583862445/73681302247*15127^(17/20) 6765000054693273 a001 182717648081/96450076809*15127^(17/20) 6765000054693273 a001 956722026041/505019158607*15127^(17/20) 6765000054693273 a001 10610209857723/5600748293801*15127^(17/20) 6765000054693273 a001 591286729879/312119004989*15127^(17/20) 6765000054693273 a001 225851433717/119218851371*15127^(17/20) 6765000054693273 a001 21566892818/11384387281*15127^(17/20) 6765000054693273 a001 32951280099/17393796001*15127^(17/20) 6765000054693273 a001 12586269025/6643838879*15127^(17/20) 6765000054693273 a001 1201881744/634430159*15127^(17/20) 6765000054693273 a001 1836311903/969323029*15127^(17/20) 6765000054693274 a001 701408733/370248451*15127^(17/20) 6765000054693274 a001 66978574/35355581*15127^(17/20) 6765000054693276 a001 102334155/54018521*15127^(17/20) 6765000054693288 a001 39088169/20633239*15127^(17/20) 6765000054693376 a001 3732588/1970299*15127^(17/20) 6765000054693978 a001 5702887/3010349*15127^(17/20) 6765000054698105 a001 2178309/1149851*15127^(17/20) 6765000054726389 a001 208010/109801*15127^(17/20) 6765000054814544 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^22 6765000054897688 a001 196418/64079*15127^(4/5) 6765000054920251 a001 317811/167761*15127^(17/20) 6765000054983889 a001 28657/39603*15127^(19/20) 6765000055450351 a001 121393/103682*15127^(9/10) 6765000055639061 a001 1346269/24476*15127^(1/2) 6765000056066260 a001 105937/90481*15127^(9/10) 6765000056069965 a001 5473/12238*39603^(10/11) 6765000056156120 a001 832040/710647*15127^(9/10) 6765000056169231 a001 726103/620166*15127^(9/10) 6765000056171143 a001 5702887/4870847*15127^(9/10) 6765000056171422 a001 4976784/4250681*15127^(9/10) 6765000056171463 a001 39088169/33385282*15127^(9/10) 6765000056171469 a001 34111385/29134601*15127^(9/10) 6765000056171470 a001 267914296/228826127*15127^(9/10) 6765000056171470 a001 233802911/199691526*15127^(9/10) 6765000056171470 a001 1836311903/1568397607*15127^(9/10) 6765000056171470 a001 1602508992/1368706081*15127^(9/10) 6765000056171470 a001 12586269025/10749957122*15127^(9/10) 6765000056171470 a001 10983760033/9381251041*15127^(9/10) 6765000056171470 a001 86267571272/73681302247*15127^(9/10) 6765000056171470 a001 75283811239/64300051206*15127^(9/10) 6765000056171470 a001 2504730781961/2139295485799*15127^(9/10) 6765000056171470 a001 365435296162/312119004989*15127^(9/10) 6765000056171470 a001 139583862445/119218851371*15127^(9/10) 6765000056171470 a001 53316291173/45537549124*15127^(9/10) 6765000056171470 a001 20365011074/17393796001*15127^(9/10) 6765000056171470 a001 7778742049/6643838879*15127^(9/10) 6765000056171470 a001 2971215073/2537720636*15127^(9/10) 6765000056171470 a001 1134903170/969323029*15127^(9/10) 6765000056171470 a001 433494437/370248451*15127^(9/10) 6765000056171470 a001 165580141/141422324*15127^(9/10) 6765000056171473 a001 63245986/54018521*15127^(9/10) 6765000056171488 a001 24157817/20633239*15127^(9/10) 6765000056171595 a001 9227465/7881196*15127^(9/10) 6765000056172325 a001 3524578/3010349*15127^(9/10) 6765000056177333 a001 1346269/1149851*15127^(9/10) 6765000056211657 a001 514229/439204*15127^(9/10) 6765000056249001 a001 121393/64079*15127^(17/20) 6765000056287293 a001 9227465/15127*5778^(5/18) 6765000056446913 a001 196418/167761*15127^(9/10) 6765000056462085 a001 119814916/17711 6765000057114557 a001 208010/6119*15127^(11/20) 6765000057260735 a001 75025/103682*15127^(19/20) 6765000057592922 a001 196418/271443*15127^(19/20) 6765000057641388 a001 514229/710647*15127^(19/20) 6765000057648459 a001 1346269/1860498*15127^(19/20) 6765000057649490 a001 3524578/4870847*15127^(19/20) 6765000057649641 a001 9227465/12752043*15127^(19/20) 6765000057649663 a001 24157817/33385282*15127^(19/20) 6765000057649666 a001 63245986/87403803*15127^(19/20) 6765000057649667 a001 165580141/228826127*15127^(19/20) 6765000057649667 a001 433494437/599074578*15127^(19/20) 6765000057649667 a001 1134903170/1568397607*15127^(19/20) 6765000057649667 a001 2971215073/4106118243*15127^(19/20) 6765000057649667 a001 7778742049/10749957122*15127^(19/20) 6765000057649667 a001 20365011074/28143753123*15127^(19/20) 6765000057649667 a001 53316291173/73681302247*15127^(19/20) 6765000057649667 a001 139583862445/192900153618*15127^(19/20) 6765000057649667 a001 10610209857723/14662949395604*15127^(19/20) 6765000057649667 a001 591286729879/817138163596*15127^(19/20) 6765000057649667 a001 225851433717/312119004989*15127^(19/20) 6765000057649667 a001 86267571272/119218851371*15127^(19/20) 6765000057649667 a001 32951280099/45537549124*15127^(19/20) 6765000057649667 a001 12586269025/17393796001*15127^(19/20) 6765000057649667 a001 4807526976/6643838879*15127^(19/20) 6765000057649667 a001 1836311903/2537720636*15127^(19/20) 6765000057649667 a001 701408733/969323029*15127^(19/20) 6765000057649667 a001 267914296/370248451*15127^(19/20) 6765000057649667 a001 102334155/141422324*15127^(19/20) 6765000057649668 a001 39088169/54018521*15127^(19/20) 6765000057649676 a001 14930352/20633239*15127^(19/20) 6765000057649734 a001 5702887/7881196*15127^(19/20) 6765000057650128 a001 2178309/3010349*15127^(19/20) 6765000057652829 a001 832040/1149851*15127^(19/20) 6765000057671341 a001 317811/439204*15127^(19/20) 6765000057798225 a001 121393/167761*15127^(19/20) 6765000058059385 a001 75025/64079*15127^(9/10) 6765000058114562 a001 196418/9349*9349^(12/19) 6765000058498558 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^24 6765000058599824 a001 514229/24476*15127^(3/5) 6765000058667903 a001 46368/64079*15127^(19/20) 6765000059022979 a001 63245986/39603*5778^(1/6) 6765000059036049 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^26 6765000059114468 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^28 6765000059125909 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^30 6765000059127578 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^32 6765000059127822 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^34 6765000059127857 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^36 6765000059127862 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^38 6765000059127863 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^40 6765000059127863 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^42 6765000059127863 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^44 6765000059127863 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^46 6765000059127863 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^48 6765000059127863 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^50 6765000059127863 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^52 6765000059127863 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^54 6765000059127863 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^56 6765000059127863 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^58 6765000059127863 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^60 6765000059127863 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^62 6765000059127863 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^64 6765000059127863 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^66 6765000059127863 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^68 6765000059127863 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^70 6765000059127863 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^72 6765000059127863 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^74 6765000059127863 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^76 6765000059127863 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^78 6765000059127863 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^80 6765000059127863 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^82 6765000059127863 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^84 6765000059127863 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^86 6765000059127863 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^88 6765000059127863 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^90 6765000059127863 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^92 6765000059127863 a004 Fibonacci(94)*Lucas(20)/(1/2+sqrt(5)/2)^94 6765000059127863 a004 Fibonacci(96)*Lucas(20)/(1/2+sqrt(5)/2)^96 6765000059127863 a004 Fibonacci(98)*Lucas(20)/(1/2+sqrt(5)/2)^98 6765000059127863 a004 Fibonacci(100)*Lucas(20)/(1/2+sqrt(5)/2)^100 6765000059127863 a004 Fibonacci(99)*Lucas(20)/(1/2+sqrt(5)/2)^99 6765000059127863 a004 Fibonacci(97)*Lucas(20)/(1/2+sqrt(5)/2)^97 6765000059127863 a004 Fibonacci(95)*Lucas(20)/(1/2+sqrt(5)/2)^95 6765000059127863 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^93 6765000059127863 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^91 6765000059127863 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^89 6765000059127863 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^87 6765000059127863 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^85 6765000059127863 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^83 6765000059127863 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^81 6765000059127863 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^79 6765000059127863 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^77 6765000059127863 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^75 6765000059127863 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^73 6765000059127863 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^71 6765000059127863 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^69 6765000059127863 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^67 6765000059127863 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^65 6765000059127863 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^63 6765000059127863 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^61 6765000059127863 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^59 6765000059127863 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^57 6765000059127863 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^55 6765000059127863 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^53 6765000059127863 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^51 6765000059127863 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^49 6765000059127863 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^47 6765000059127863 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^45 6765000059127863 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^43 6765000059127863 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^41 6765000059127863 a001 2/6765*(1/2+1/2*5^(1/2))^40 6765000059127864 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^39 6765000059127866 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^37 6765000059127879 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^35 6765000059127972 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^33 6765000059128610 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^31 6765000059132980 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^29 6765000059162933 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^27 6765000059368236 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^25 6765000060059509 a001 10959/844*15127^(13/20) 6765000060775405 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^23 6765000061586171 a001 98209/12238*15127^(7/10) 6765000062139748 a001 317811/9349*9349^(11/19) 6765000062706993 a001 165580141/103682*5778^(1/6) 6765000062937483 a001 121393/24476*15127^(3/4) 6765000063244484 a001 433494437/271443*5778^(1/6) 6765000063322903 a001 1134903170/710647*5778^(1/6) 6765000063334344 a001 2971215073/1860498*5778^(1/6) 6765000063336013 a001 7778742049/4870847*5778^(1/6) 6765000063336257 a001 20365011074/12752043*5778^(1/6) 6765000063336292 a001 53316291173/33385282*5778^(1/6) 6765000063336297 a001 139583862445/87403803*5778^(1/6) 6765000063336298 a001 365435296162/228826127*5778^(1/6) 6765000063336298 a001 956722026041/599074578*5778^(1/6) 6765000063336298 a001 2504730781961/1568397607*5778^(1/6) 6765000063336298 a001 6557470319842/4106118243*5778^(1/6) 6765000063336298 a001 10610209857723/6643838879*5778^(1/6) 6765000063336298 a001 4052739537881/2537720636*5778^(1/6) 6765000063336298 a001 1548008755920/969323029*5778^(1/6) 6765000063336298 a001 591286729879/370248451*5778^(1/6) 6765000063336299 a001 225851433717/141422324*5778^(1/6) 6765000063336301 a001 86267571272/54018521*5778^(1/6) 6765000063336314 a001 32951280099/20633239*5778^(1/6) 6765000063336407 a001 12586269025/7881196*5778^(1/6) 6765000063337045 a001 4807526976/3010349*5778^(1/6) 6765000063341415 a001 1836311903/1149851*5778^(1/6) 6765000063371260 a001 31622993/12238*5778^(1/9) 6765000063371368 a001 701408733/439204*5778^(1/6) 6765000063576671 a001 267914296/167761*5778^(1/6) 6765000064628764 a001 17711/24476*15127^(19/20) 6765000064747867 a001 75025/24476*15127^(4/5) 6765000064983840 a001 102334155/64079*5778^(1/6) 6765000065356386 a001 11592/6119*15127^(17/20) 6765000066106961 a001 28657/2-6765/2*5^(1/2) 6765000066231912 a001 514229/9349*9349^(10/19) 6765000067182430 a001 6765/9349*24476^(19/21) 6765000067544692 a001 5702887/15127*5778^(1/3) 6765000069111429 a001 28657/24476*15127^(9/10) 6765000070280433 a001 39088169/39603*5778^(2/9) 6765000070298492 a001 832040/9349*9349^(9/19) 6765000070420280 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^21 6765000072062422 a001 10946/3571*3571^(16/17) 6765000073964449 a001 102334155/103682*5778^(2/9) 6765000074374845 a001 1346269/9349*9349^(8/19) 6765000074501940 a001 267914296/271443*5778^(2/9) 6765000074580358 a001 701408733/710647*5778^(2/9) 6765000074591799 a001 1836311903/1860498*5778^(2/9) 6765000074593469 a001 4807526976/4870847*5778^(2/9) 6765000074593712 a001 12586269025/12752043*5778^(2/9) 6765000074593748 a001 32951280099/33385282*5778^(2/9) 6765000074593753 a001 86267571272/87403803*5778^(2/9) 6765000074593754 a001 225851433717/228826127*5778^(2/9) 6765000074593754 a001 591286729879/599074578*5778^(2/9) 6765000074593754 a001 1548008755920/1568397607*5778^(2/9) 6765000074593754 a001 4052739537881/4106118243*5778^(2/9) 6765000074593754 a001 4807525989/4870846*5778^(2/9) 6765000074593754 a001 6557470319842/6643838879*5778^(2/9) 6765000074593754 a001 2504730781961/2537720636*5778^(2/9) 6765000074593754 a001 956722026041/969323029*5778^(2/9) 6765000074593754 a001 365435296162/370248451*5778^(2/9) 6765000074593754 a001 139583862445/141422324*5778^(2/9) 6765000074593756 a001 53316291173/54018521*5778^(2/9) 6765000074593770 a001 20365011074/20633239*5778^(2/9) 6765000074593863 a001 7778742049/7881196*5778^(2/9) 6765000074594500 a001 2971215073/3010349*5778^(2/9) 6765000074598871 a001 1134903170/1149851*5778^(2/9) 6765000074628715 a001 39088169/24476*5778^(1/6) 6765000074628824 a001 433494437/439204*5778^(2/9) 6765000074834127 a001 165580141/167761*5778^(2/9) 6765000075250637 a001 9227465/3571*1364^(2/15) 6765000075757236 a001 4181*3571^(1/17) 6765000075895101 a001 4181/15127*64079^(21/23) 6765000076038366 a001 6765/9349*64079^(19/23) 6765000076241296 a001 63245986/64079*5778^(2/9) 6765000077372101 a001 4181/15127*439204^(7/9) 6765000077399308 a001 4181/15127*7881196^(7/11) 6765000077399368 a001 4181/15127*20633239^(3/5) 6765000077399378 a001 4181/15127*141422324^(7/13) 6765000077399378 a001 4181/15127*2537720636^(7/15) 6765000077399378 a001 4181/15127*17393796001^(3/7) 6765000077399378 a001 4181/15127*45537549124^(7/17) 6765000077399378 a001 4181/15127*14662949395604^(1/3) 6765000077399378 a001 4181/15127*(1/2+1/2*5^(1/2))^21 6765000077399378 a001 4181/15127*192900153618^(7/18) 6765000077399378 a001 4181/15127*10749957122^(7/16) 6765000077399378 a001 4181/15127*599074578^(1/2) 6765000077399379 a001 6765/9349*817138163596^(1/3) 6765000077399379 a001 6765/9349*(1/2+1/2*5^(1/2))^19 6765000077399379 a001 6765/9349*87403803^(1/2) 6765000077399381 a001 4181/15127*33385282^(7/12) 6765000077400746 a001 4181/15127*1860498^(7/10) 6765000077409424 a001 4181/15127*710647^(3/4) 6765000077897578 a001 6765/9349*103682^(19/24) 6765000077950020 a001 4181/15127*103682^(7/8) 6765000078447465 a001 2178309/9349*9349^(7/19) 6765000078802298 a001 3524578/15127*5778^(7/18) 6765000081124518 a001 6765/9349*39603^(19/22) 6765000081516637 a001 4181/15127*39603^(21/22) 6765000081537892 a001 24157817/39603*5778^(5/18) 6765000081712698 a001 -17711+10946*5^(1/2) 6765000082521510 a001 3524578/9349*9349^(6/19) 6765000085221905 a001 31622993/51841*5778^(5/18) 6765000085486257 r005 Im(z^2+c),c=-87/62+11/62*I,n=6 6765000085759395 a001 165580141/271443*5778^(5/18) 6765000085837814 a001 433494437/710647*5778^(5/18) 6765000085849255 a001 567451585/930249*5778^(5/18) 6765000085850924 a001 2971215073/4870847*5778^(5/18) 6765000085851168 a001 7778742049/12752043*5778^(5/18) 6765000085851203 a001 10182505537/16692641*5778^(5/18) 6765000085851209 a001 53316291173/87403803*5778^(5/18) 6765000085851209 a001 139583862445/228826127*5778^(5/18) 6765000085851210 a001 182717648081/299537289*5778^(5/18) 6765000085851210 a001 956722026041/1568397607*5778^(5/18) 6765000085851210 a001 2504730781961/4106118243*5778^(5/18) 6765000085851210 a001 3278735159921/5374978561*5778^(5/18) 6765000085851210 a001 10610209857723/17393796001*5778^(5/18) 6765000085851210 a001 4052739537881/6643838879*5778^(5/18) 6765000085851210 a001 1134903780/1860499*5778^(5/18) 6765000085851210 a001 591286729879/969323029*5778^(5/18) 6765000085851210 a001 225851433717/370248451*5778^(5/18) 6765000085851210 a001 21566892818/35355581*5778^(5/18) 6765000085851212 a001 32951280099/54018521*5778^(5/18) 6765000085851225 a001 1144206275/1875749*5778^(5/18) 6765000085851318 a001 1201881744/1970299*5778^(5/18) 6765000085851956 a001 1836311903/3010349*5778^(5/18) 6765000085856326 a001 701408733/1149851*5778^(5/18) 6765000085886173 a001 24157817/24476*5778^(2/9) 6765000085886279 a001 66978574/109801*5778^(5/18) 6765000086091582 a001 9303105/15251*5778^(5/18) 6765000086595011 a001 5702887/9349*9349^(5/19) 6765000086804710 a001 63245986/15127*2207^(1/16) 6765000087343875 a001 9227465/5778*2207^(3/16) 6765000087498750 a001 39088169/64079*5778^(5/18) 6765000087662760 a001 17711/3571*3571^(15/17) 6765000090059359 a001 311187/2161*5778^(4/9) 6765000090668720 a001 9227465/9349*9349^(4/19) 6765000091357573 a001 74049691/10946 6765000091357573 a001 34130-12238*5^(1/2) 6765000092795340 a001 4976784/13201*5778^(1/3) 6765000093508511 a001 17711/9349*24476^(17/21) 6765000094742350 a001 14930352/9349*9349^(3/19) 6765000095670893 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^20 6765000096479359 a001 39088169/103682*5778^(1/3) 6765000097016851 a001 34111385/90481*5778^(1/3) 6765000097095270 a001 267914296/710647*5778^(1/3) 6765000097106711 a001 233802911/620166*5778^(1/3) 6765000097108380 a001 1836311903/4870847*5778^(1/3) 6765000097108624 a001 1602508992/4250681*5778^(1/3) 6765000097108659 a001 12586269025/33385282*5778^(1/3) 6765000097108664 a001 10983760033/29134601*5778^(1/3) 6765000097108665 a001 86267571272/228826127*5778^(1/3) 6765000097108665 a001 267913919/710646*5778^(1/3) 6765000097108665 a001 591286729879/1568397607*5778^(1/3) 6765000097108665 a001 516002918640/1368706081*5778^(1/3) 6765000097108665 a001 4052739537881/10749957122*5778^(1/3) 6765000097108665 a001 3536736619241/9381251041*5778^(1/3) 6765000097108665 a001 6557470319842/17393796001*5778^(1/3) 6765000097108665 a001 2504730781961/6643838879*5778^(1/3) 6765000097108665 a001 956722026041/2537720636*5778^(1/3) 6765000097108665 a001 365435296162/969323029*5778^(1/3) 6765000097108665 a001 139583862445/370248451*5778^(1/3) 6765000097108666 a001 53316291173/141422324*5778^(1/3) 6765000097108668 a001 20365011074/54018521*5778^(1/3) 6765000097108681 a001 7778742049/20633239*5778^(1/3) 6765000097108774 a001 2971215073/7881196*5778^(1/3) 6765000097109412 a001 1134903170/3010349*5778^(1/3) 6765000097113782 a001 433494437/1149851*5778^(1/3) 6765000097143621 a001 3732588/6119*5778^(5/18) 6765000097143735 a001 165580141/439204*5778^(1/3) 6765000097349039 a001 63245986/167761*5778^(1/3) 6765000098267994 a001 46368/9349*24476^(5/7) 6765000098756209 a001 24157817/64079*5778^(1/3) 6765000098816010 a001 24157817/9349*9349^(2/19) 6765000099675406 a001 75025/9349*24476^(2/3) 6765000099880952 a001 121393/9349*24476^(13/21) 6765000100007106 a001 28657/9349*24476^(16/21) 6765000100545571 a001 196418/9349*24476^(4/7) 6765000101034840 a001 317811/9349*24476^(11/21) 6765000101317847 a001 1346269/15127*5778^(1/2) 6765000101432243 a001 17711/9349*64079^(17/23) 6765000101591086 a001 514229/9349*24476^(10/21) 6765000102121749 a001 832040/9349*24476^(3/7) 6765000102649990 a001 4181/39603*(1/2+1/2*5^(1/2))^23 6765000102649990 a001 4181/39603*4106118243^(1/2) 6765000102649991 a001 17711/9349*45537549124^(1/3) 6765000102649991 a001 17711/9349*(1/2+1/2*5^(1/2))^17 6765000102650012 a001 17711/9349*12752043^(1/2) 6765000102662184 a001 1346269/9349*24476^(8/21) 6765000102889658 a001 4181*9349^(1/19) 6765000103095749 a001 17711/9349*103682^(17/24) 6765000103198887 a001 2178309/9349*24476^(1/3) 6765000103253074 a001 4181/39603*103682^(23/24) 6765000103737015 a001 3524578/9349*24476^(2/7) 6765000104052817 a001 9227465/39603*5778^(7/18) 6765000104274598 a001 5702887/9349*24476^(5/21) 6765000104686464 a001 193864608/28657 6765000104812390 a001 9227465/9349*24476^(4/21) 6765000105259522 a001 46368/9349*64079^(15/23) 6765000105315768 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^22 6765000105350102 a001 14930352/9349*24476^(1/7) 6765000105485114 a001 6765/9349*15127^(19/20) 6765000105887845 a001 24157817/9349*24476^(2/21) 6765000105940277 a001 121393/9349*64079^(13/23) 6765000105983011 a001 17711/9349*39603^(17/22) 6765000106138794 a001 196418/9349*64079^(12/23) 6765000106161961 a001 317811/9349*64079^(11/23) 6765000106180512 a007 Real Root Of -760*x^4+129*x^3+913*x^2+719*x-785 6765000106189782 a001 46368/9349*167761^(3/5) 6765000106200832 a001 75025/9349*64079^(14/23) 6765000106252105 a001 514229/9349*64079^(10/23) 6765000106314523 a001 46368/9349*439204^(5/9) 6765000106316666 a001 832040/9349*64079^(9/23) 6765000106333956 a001 46368/9349*7881196^(5/11) 6765000106333994 a001 4181/103682*20633239^(5/7) 6765000106333999 a001 46368/9349*20633239^(3/7) 6765000106334005 a001 4181/103682*2537720636^(5/9) 6765000106334005 a001 4181/103682*312119004989^(5/11) 6765000106334005 a001 4181/103682*(1/2+1/2*5^(1/2))^25 6765000106334005 a001 4181/103682*3461452808002^(5/12) 6765000106334005 a001 4181/103682*28143753123^(1/2) 6765000106334005 a001 4181/103682*228826127^(5/8) 6765000106334006 a001 46368/9349*141422324^(5/13) 6765000106334006 a001 46368/9349*2537720636^(1/3) 6765000106334006 a001 46368/9349*45537549124^(5/17) 6765000106334006 a001 46368/9349*312119004989^(3/11) 6765000106334006 a001 46368/9349*14662949395604^(5/21) 6765000106334006 a001 46368/9349*(1/2+1/2*5^(1/2))^15 6765000106334006 a001 46368/9349*192900153618^(5/18) 6765000106334006 a001 46368/9349*28143753123^(3/10) 6765000106334006 a001 46368/9349*10749957122^(5/16) 6765000106334006 a001 46368/9349*599074578^(5/14) 6765000106334006 a001 46368/9349*228826127^(3/8) 6765000106334008 a001 46368/9349*33385282^(5/12) 6765000106334983 a001 46368/9349*1860498^(1/2) 6765000106335634 a001 4181/103682*1860498^(5/6) 6765000106390999 a001 1346269/9349*64079^(8/23) 6765000106425576 a001 4181*24476^(1/21) 6765000106461600 a001 2178309/9349*64079^(7/23) 6765000106533626 a001 3524578/9349*64079^(6/23) 6765000106605108 a001 5702887/9349*64079^(5/23) 6765000106631122 a001 507544133/75025 6765000106676798 a001 9227465/9349*64079^(4/23) 6765000106722937 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^24 6765000106727321 a001 46368/9349*103682^(5/8) 6765000106748408 a001 14930352/9349*64079^(3/23) 6765000106820049 a001 24157817/9349*64079^(2/23) 6765000106871406 a001 4181/271443*7881196^(9/11) 6765000106871495 a001 4181/271443*141422324^(9/13) 6765000106871496 a001 4181/271443*2537720636^(3/5) 6765000106871496 a001 4181/271443*45537549124^(9/17) 6765000106871496 a001 4181/271443*817138163596^(9/19) 6765000106871496 a001 4181/271443*14662949395604^(3/7) 6765000106871496 a001 4181/271443*(1/2+1/2*5^(1/2))^27 6765000106871496 a001 4181/271443*192900153618^(1/2) 6765000106871496 a001 4181/271443*10749957122^(9/16) 6765000106871496 a001 4181/271443*599074578^(9/14) 6765000106871496 a001 121393/9349*141422324^(1/3) 6765000106871496 a001 121393/9349*(1/2+1/2*5^(1/2))^13 6765000106871496 a001 121393/9349*73681302247^(1/4) 6765000106871500 a001 4181/271443*33385282^(3/4) 6765000106872278 a001 514229/9349*167761^(2/5) 6765000106873254 a001 4181/271443*1860498^(9/10) 6765000106891678 a001 4181*64079^(1/23) 6765000106914844 a001 1328767791/196418 6765000106915195 a001 5702887/9349*167761^(1/5) 6765000106917404 a001 121393/9349*271443^(1/2) 6765000106928240 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^26 6765000106949666 a001 832040/9349*439204^(1/3) 6765000106949879 a001 317811/9349*7881196^(1/3) 6765000106949914 a001 4181/710647*(1/2+1/2*5^(1/2))^29 6765000106949914 a001 4181/710647*1322157322203^(1/2) 6765000106949915 a001 317811/9349*312119004989^(1/5) 6765000106949915 a001 317811/9349*(1/2+1/2*5^(1/2))^11 6765000106949915 a001 317811/9349*1568397607^(1/4) 6765000106955626 a001 3524578/9349*439204^(2/9) 6765000106956239 a001 3478759240/514229 6765000106958193 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^28 6765000106959408 a001 14930352/9349*439204^(1/9) 6765000106961327 a001 832040/9349*7881196^(3/11) 6765000106961355 a001 4181/1860498*(1/2+1/2*5^(1/2))^31 6765000106961355 a001 4181/1860498*9062201101803^(1/2) 6765000106961356 a001 832040/9349*141422324^(3/13) 6765000106961356 a001 832040/9349*2537720636^(1/5) 6765000106961356 a001 832040/9349*45537549124^(3/17) 6765000106961356 a001 832040/9349*817138163596^(3/19) 6765000106961356 a001 832040/9349*14662949395604^(1/7) 6765000106961356 a001 832040/9349*(1/2+1/2*5^(1/2))^9 6765000106961356 a001 832040/9349*192900153618^(1/6) 6765000106961356 a001 832040/9349*10749957122^(3/16) 6765000106961356 a001 832040/9349*599074578^(3/14) 6765000106961358 a001 832040/9349*33385282^(1/4) 6765000106961943 a001 832040/9349*1860498^(3/10) 6765000106962278 a001 9107509929/1346269 6765000106962563 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^30 6765000106963022 a001 2178309/9349*20633239^(1/5) 6765000106963024 a001 4181/4870847*141422324^(11/13) 6765000106963025 a001 4181/4870847*2537720636^(11/15) 6765000106963025 a001 4181/4870847*45537549124^(11/17) 6765000106963025 a001 4181/4870847*312119004989^(3/5) 6765000106963025 a001 4181/4870847*817138163596^(11/19) 6765000106963025 a001 4181/4870847*14662949395604^(11/21) 6765000106963025 a001 4181/4870847*(1/2+1/2*5^(1/2))^33 6765000106963025 a001 4181/4870847*192900153618^(11/18) 6765000106963025 a001 4181/4870847*10749957122^(11/16) 6765000106963025 a001 4181/4870847*1568397607^(3/4) 6765000106963025 a001 4181/4870847*599074578^(11/14) 6765000106963026 a001 2178309/9349*17393796001^(1/7) 6765000106963026 a001 2178309/9349*14662949395604^(1/9) 6765000106963026 a001 2178309/9349*(1/2+1/2*5^(1/2))^7 6765000106963026 a001 2178309/9349*599074578^(1/6) 6765000106963030 a001 4181/4870847*33385282^(11/12) 6765000106963159 a001 23843770547/3524578 6765000106963201 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^32 6765000106963267 a001 5702887/9349*20633239^(1/7) 6765000106963268 a001 4181/12752043*2537720636^(7/9) 6765000106963268 a001 4181/12752043*17393796001^(5/7) 6765000106963268 a001 4181/12752043*312119004989^(7/11) 6765000106963268 a001 4181/12752043*14662949395604^(5/9) 6765000106963268 a001 4181/12752043*(1/2+1/2*5^(1/2))^35 6765000106963268 a001 4181/12752043*505019158607^(5/8) 6765000106963268 a001 4181/12752043*28143753123^(7/10) 6765000106963268 a001 4181/12752043*599074578^(5/6) 6765000106963268 a001 4181/12752043*228826127^(7/8) 6765000106963269 a001 5702887/9349*2537720636^(1/9) 6765000106963269 a001 5702887/9349*312119004989^(1/11) 6765000106963269 a001 5702887/9349*(1/2+1/2*5^(1/2))^5 6765000106963269 a001 5702887/9349*28143753123^(1/10) 6765000106963269 a001 5702887/9349*228826127^(1/8) 6765000106963288 a001 62423801712/9227465 6765000106963294 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^34 6765000106963295 a001 14930352/9349*7881196^(1/11) 6765000106963304 a001 4181/33385282*(1/2+1/2*5^(1/2))^37 6765000106963305 a001 14930352/9349*141422324^(1/13) 6765000106963305 a001 14930352/9349*2537720636^(1/15) 6765000106963305 a001 14930352/9349*45537549124^(1/17) 6765000106963305 a001 14930352/9349*14662949395604^(1/21) 6765000106963305 a001 14930352/9349*(1/2+1/2*5^(1/2))^3 6765000106963305 a001 14930352/9349*192900153618^(1/18) 6765000106963305 a001 14930352/9349*10749957122^(1/16) 6765000106963305 a001 14930352/9349*599074578^(1/14) 6765000106963305 a001 14930352/9349*33385282^(1/12) 6765000106963307 a001 163427634589/24157817 6765000106963308 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^36 6765000106963309 a001 4181/87403803*2537720636^(13/15) 6765000106963309 a001 4181/87403803*45537549124^(13/17) 6765000106963309 a001 4181/87403803*14662949395604^(13/21) 6765000106963309 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(38) 6765000106963309 a001 4181/87403803*192900153618^(13/18) 6765000106963309 a001 4181/87403803*73681302247^(3/4) 6765000106963309 a001 4181/87403803*10749957122^(13/16) 6765000106963309 a001 4181/87403803*599074578^(13/14) 6765000106963309 a001 427859102055/63245986 6765000106963310 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^38 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(40) 6765000106963310 a001 1120149671576/165580141 6765000106963310 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^40 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(42) 6765000106963310 a001 2932589912673/433494437 6765000106963310 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^42 6765000106963310 a001 4181/1568397607*45537549124^(15/17) 6765000106963310 a001 4181/1568397607*312119004989^(9/11) 6765000106963310 a001 4181/1568397607*14662949395604^(5/7) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(44) 6765000106963310 a001 4181/1568397607*192900153618^(5/6) 6765000106963310 a001 4181/1568397607*28143753123^(9/10) 6765000106963310 a001 4181/1568397607*10749957122^(15/16) 6765000106963310 a001 7677620066443/1134903170 6765000106963310 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^44 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(46) 6765000106963310 a001 20100270286656/2971215073 6765000106963310 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^46 6765000106963310 a001 4181/10749957122*14662949395604^(7/9) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(48) 6765000106963310 a001 4181/10749957122*505019158607^(7/8) 6765000106963310 a001 52623190793525/7778742049 6765000106963310 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^48 6765000106963310 a001 4181/28143753123*817138163596^(17/19) 6765000106963310 a001 4181/28143753123*14662949395604^(17/21) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(50) 6765000106963310 a001 4181/28143753123*192900153618^(17/18) 6765000106963310 a001 137769302093919/20365011074 6765000106963310 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^50 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(52) 6765000106963310 a001 360684715488232/53316291173 6765000106963310 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^52 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(54) 6765000106963310 a001 4181/192900153618*3461452808002^(11/12) 6765000106963310 a001 944284844370777/139583862445 6765000106963310 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^54 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(56) 6765000106963310 a001 591286729879/87403802 6765000106963310 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^56 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(58) 6765000106963310 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^58 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(60) 6765000106963310 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^60 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(62) 6765000106963310 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^62 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(64) 6765000106963310 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^64 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(66) 6765000106963310 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^66 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(68) 6765000106963310 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^68 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(70) 6765000106963310 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^70 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(72) 6765000106963310 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^72 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(74) 6765000106963310 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^74 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(76) 6765000106963310 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^76 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(78) 6765000106963310 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^78 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(80) 6765000106963310 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^80 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(82) 6765000106963310 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^82 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(84) 6765000106963310 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^84 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(86) 6765000106963310 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^86 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(88) 6765000106963310 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^88 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^91/Lucas(90) 6765000106963310 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^90 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^93/Lucas(92) 6765000106963310 a004 Fibonacci(19)*Lucas(93)/(1/2+sqrt(5)/2)^92 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^95/Lucas(94) 6765000106963310 a004 Fibonacci(19)*Lucas(95)/(1/2+sqrt(5)/2)^94 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^97/Lucas(96) 6765000106963310 a004 Fibonacci(19)*Lucas(97)/(1/2+sqrt(5)/2)^96 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^99/Lucas(98) 6765000106963310 a004 Fibonacci(19)*Lucas(99)/(1/2+sqrt(5)/2)^98 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)/Lucas(1) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^100/Lucas(99) 6765000106963310 a004 Fibonacci(19)*Lucas(100)/(1/2+sqrt(5)/2)^99 6765000106963310 a004 Fibonacci(19)*Lucas(98)/(1/2+sqrt(5)/2)^97 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^98/Lucas(97) 6765000106963310 a004 Fibonacci(19)*Lucas(96)/(1/2+sqrt(5)/2)^95 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^96/Lucas(95) 6765000106963310 a004 Fibonacci(19)*Lucas(94)/(1/2+sqrt(5)/2)^93 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^94/Lucas(93) 6765000106963310 a004 Fibonacci(19)*Lucas(92)/(1/2+sqrt(5)/2)^91 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(91) 6765000106963310 a004 Fibonacci(19)*Lucas(90)/(1/2+sqrt(5)/2)^89 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(89) 6765000106963310 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^87 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(87) 6765000106963310 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^85 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(85) 6765000106963310 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^83 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(83) 6765000106963310 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^81 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(81) 6765000106963310 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^79 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(79) 6765000106963310 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^77 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(77) 6765000106963310 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^75 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(75) 6765000106963310 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^73 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(73) 6765000106963310 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^71 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(71) 6765000106963310 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^69 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(69) 6765000106963310 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^67 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(67) 6765000106963310 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^65 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(65) 6765000106963310 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^63 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(63) 6765000106963310 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^61 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(61) 6765000106963310 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^59 6765000106963310 a001 10472279399378941/1548008755920 6765000106963310 a001 4181/2139295485799*14662949395604^(20/21) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(59) 6765000106963310 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^57 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(57) 6765000106963310 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^55 6765000106963310 a001 1527884973253322/225851433717 6765000106963310 a001 4181/312119004989*14662949395604^(8/9) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(55) 6765000106963310 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^53 6765000106963310 a001 583600128882545/86267571272 6765000106963310 a001 4181/119218851371*14662949395604^(6/7) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(53) 6765000106963310 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^51 6765000106963310 a001 222915413394313/32951280099 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(51) 6765000106963310 a001 4181/45537549124*23725150497407^(13/16) 6765000106963310 a001 4181/45537549124*505019158607^(13/14) 6765000106963310 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^49 6765000106963310 a001 85146111300394/12586269025 6765000106963310 a001 4181/17393796001*312119004989^(10/11) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(49) 6765000106963310 a001 4181/17393796001*3461452808002^(5/6) 6765000106963310 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^47 6765000106963310 a001 32522920506869/4807526976 6765000106963310 a001 4181/6643838879*45537549124^(16/17) 6765000106963310 a001 4181/6643838879*14662949395604^(16/21) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(47) 6765000106963310 a001 4181/6643838879*192900153618^(8/9) 6765000106963310 a001 4181/6643838879*73681302247^(12/13) 6765000106963310 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^45 6765000106963310 a001 12422650220213/1836311903 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(45) 6765000106963310 a001 4181/2537720636*10749957122^(23/24) 6765000106963310 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^43 6765000106963310 a001 4745030153770/701408733 6765000106963310 a001 4181/969323029*312119004989^(4/5) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(43) 6765000106963310 a001 4181/969323029*23725150497407^(11/16) 6765000106963310 a001 4181/969323029*73681302247^(11/13) 6765000106963310 a001 4181/969323029*10749957122^(11/12) 6765000106963310 a001 4181/969323029*4106118243^(22/23) 6765000106963310 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^41 6765000106963310 a001 1812440241097/267914296 6765000106963310 a001 4181/370248451*2537720636^(14/15) 6765000106963310 a001 4181/370248451*17393796001^(6/7) 6765000106963310 a001 4181/370248451*45537549124^(14/17) 6765000106963310 a001 4181/370248451*817138163596^(14/19) 6765000106963310 a001 4181/370248451*14662949395604^(2/3) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(41) 6765000106963310 a001 4181/370248451*505019158607^(3/4) 6765000106963310 a001 4181/370248451*192900153618^(7/9) 6765000106963310 a001 4181/370248451*10749957122^(7/8) 6765000106963310 a001 4181/370248451*4106118243^(21/23) 6765000106963310 a001 4181/370248451*1568397607^(21/22) 6765000106963310 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^39 6765000106963310 a001 692290569521/102334155 6765000106963310 a001 4181/141422324*2537720636^(8/9) 6765000106963310 a001 4181/141422324*312119004989^(8/11) 6765000106963310 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(39) 6765000106963310 a001 4181/141422324*23725150497407^(5/8) 6765000106963310 a001 4181/141422324*73681302247^(10/13) 6765000106963310 a001 4181/141422324*28143753123^(4/5) 6765000106963310 a001 4181/141422324*10749957122^(5/6) 6765000106963310 a001 4181/141422324*4106118243^(20/23) 6765000106963310 a001 4181/141422324*1568397607^(10/11) 6765000106963310 a001 4181/141422324*599074578^(20/21) 6765000106963311 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2) 6765000106963311 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^3 6765000106963311 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^5 6765000106963311 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^7 6765000106963311 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^9 6765000106963311 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^11 6765000106963311 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^13 6765000106963311 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^15 6765000106963311 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^17 6765000106963311 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^19 6765000106963311 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^21 6765000106963311 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^23 6765000106963311 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^25 6765000106963311 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^27 6765000106963311 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^29 6765000106963311 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^31 6765000106963311 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^33 6765000106963311 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^35 6765000106963311 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^37 6765000106963311 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^39 6765000106963311 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^41 6765000106963311 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^43 6765000106963311 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^45 6765000106963311 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^47 6765000106963311 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^49 6765000106963311 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^51 6765000106963311 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^53 6765000106963311 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^55 6765000106963311 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^57 6765000106963311 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^59 6765000106963311 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^61 6765000106963311 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^60 6765000106963311 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^58 6765000106963311 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^56 6765000106963311 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^54 6765000106963311 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^52 6765000106963311 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^50 6765000106963311 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^48 6765000106963311 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^46 6765000106963311 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^44 6765000106963311 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^42 6765000106963311 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^40 6765000106963311 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^38 6765000106963311 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^36 6765000106963311 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^34 6765000106963311 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^32 6765000106963311 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^30 6765000106963311 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^28 6765000106963311 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^26 6765000106963311 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^24 6765000106963311 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^22 6765000106963311 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^20 6765000106963311 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^18 6765000106963311 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^16 6765000106963311 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^14 6765000106963311 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^12 6765000106963311 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^10 6765000106963311 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^8 6765000106963311 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^6 6765000106963311 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^4 6765000106963311 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^2 6765000106963311 a001 63245986/9349 6765000106963312 a001 4181/54018521*817138163596^(2/3) 6765000106963312 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(37) 6765000106963312 a001 4181/54018521*10749957122^(19/24) 6765000106963312 a001 4181/54018521*4106118243^(19/23) 6765000106963312 a001 4181/54018521*1568397607^(19/22) 6765000106963312 a001 4181/54018521*599074578^(19/21) 6765000106963312 a001 4181/54018521*228826127^(19/20) 6765000106963313 a001 24157817/9349*(1/2+1/2*5^(1/2))^2 6765000106963313 a001 24157817/9349*10749957122^(1/24) 6765000106963313 a001 24157817/9349*4106118243^(1/23) 6765000106963313 a001 24157817/9349*1568397607^(1/22) 6765000106963313 a001 24157817/9349*599074578^(1/21) 6765000106963313 a001 24157817/9349*228826127^(1/20) 6765000106963313 a001 24157817/9349*87403803^(1/19) 6765000106963313 a001 24157817/9349*33385282^(1/18) 6765000106963316 a001 24157817/9349*12752043^(1/17) 6765000106963316 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^35 6765000106963318 a001 101003832877/14930352 6765000106963325 a001 4181/20633239*141422324^(12/13) 6765000106963326 a001 4181/20633239*2537720636^(4/5) 6765000106963326 a001 4181/20633239*45537549124^(12/17) 6765000106963326 a001 4181/20633239*14662949395604^(4/7) 6765000106963326 a001 4181/20633239*(1/2+1/2*5^(1/2))^36 6765000106963326 a001 4181/20633239*505019158607^(9/14) 6765000106963326 a001 4181/20633239*192900153618^(2/3) 6765000106963326 a001 4181/20633239*73681302247^(9/13) 6765000106963326 a001 4181/20633239*10749957122^(3/4) 6765000106963326 a001 4181/20633239*4106118243^(18/23) 6765000106963326 a001 4181/20633239*1568397607^(9/11) 6765000106963326 a001 4181/20633239*599074578^(6/7) 6765000106963326 a001 4181/20633239*228826127^(9/10) 6765000106963327 a001 4181/20633239*87403803^(18/19) 6765000106963327 a001 9227465/9349*(1/2+1/2*5^(1/2))^4 6765000106963327 a001 9227465/9349*23725150497407^(1/16) 6765000106963327 a001 9227465/9349*73681302247^(1/13) 6765000106963327 a001 9227465/9349*10749957122^(1/12) 6765000106963327 a001 9227465/9349*4106118243^(2/23) 6765000106963327 a001 9227465/9349*1568397607^(1/11) 6765000106963327 a001 9227465/9349*599074578^(2/21) 6765000106963327 a001 9227465/9349*228826127^(1/10) 6765000106963327 a001 9227465/9349*87403803^(2/19) 6765000106963327 a001 9227465/9349*33385282^(1/9) 6765000106963331 a001 24157817/9349*4870847^(1/16) 6765000106963332 a001 9227465/9349*12752043^(2/17) 6765000106963351 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^33 6765000106963362 a001 9227465/9349*4870847^(1/8) 6765000106963367 a001 38580031165/5702887 6765000106963400 a001 3524578/9349*7881196^(2/11) 6765000106963419 a001 4181/7881196*45537549124^(2/3) 6765000106963419 a001 4181/7881196*(1/2+1/2*5^(1/2))^34 6765000106963419 a001 4181/7881196*10749957122^(17/24) 6765000106963419 a001 4181/7881196*4106118243^(17/23) 6765000106963419 a001 4181/7881196*1568397607^(17/22) 6765000106963419 a001 4181/7881196*599074578^(17/21) 6765000106963419 a001 4181/7881196*228826127^(17/20) 6765000106963420 a001 4181/7881196*87403803^(17/19) 6765000106963420 a001 3524578/9349*141422324^(2/13) 6765000106963420 a001 3524578/9349*2537720636^(2/15) 6765000106963420 a001 3524578/9349*45537549124^(2/17) 6765000106963420 a001 3524578/9349*14662949395604^(2/21) 6765000106963420 a001 3524578/9349*(1/2+1/2*5^(1/2))^6 6765000106963420 a001 3524578/9349*10749957122^(1/8) 6765000106963420 a001 3524578/9349*4106118243^(3/23) 6765000106963420 a001 3524578/9349*1568397607^(3/22) 6765000106963420 a001 3524578/9349*599074578^(1/7) 6765000106963420 a001 3524578/9349*228826127^(3/20) 6765000106963420 a001 3524578/9349*87403803^(3/19) 6765000106963421 a001 3524578/9349*33385282^(1/6) 6765000106963425 a001 4181/7881196*33385282^(17/18) 6765000106963427 a001 3524578/9349*12752043^(3/17) 6765000106963443 a001 24157817/9349*1860498^(1/15) 6765000106963473 a001 3524578/9349*4870847^(3/16) 6765000106963500 a001 14930352/9349*1860498^(1/10) 6765000106963587 a001 9227465/9349*1860498^(2/15) 6765000106963595 a001 5702887/9349*1860498^(1/6) 6765000106963595 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^31 6765000106963704 a001 14736260618/2178309 6765000106963811 a001 3524578/9349*1860498^(1/5) 6765000106964056 a001 4181/3010349*(1/2+1/2*5^(1/2))^32 6765000106964056 a001 4181/3010349*23725150497407^(1/2) 6765000106964056 a001 4181/3010349*505019158607^(4/7) 6765000106964056 a001 4181/3010349*73681302247^(8/13) 6765000106964056 a001 4181/3010349*10749957122^(2/3) 6765000106964056 a001 4181/3010349*4106118243^(16/23) 6765000106964056 a001 4181/3010349*1568397607^(8/11) 6765000106964056 a001 4181/3010349*599074578^(16/21) 6765000106964056 a001 4181/3010349*228826127^(4/5) 6765000106964057 a001 4181/3010349*87403803^(16/19) 6765000106964057 a001 1346269/9349*(1/2+1/2*5^(1/2))^8 6765000106964057 a001 1346269/9349*23725150497407^(1/8) 6765000106964057 a001 1346269/9349*505019158607^(1/7) 6765000106964057 a001 1346269/9349*73681302247^(2/13) 6765000106964057 a001 1346269/9349*10749957122^(1/6) 6765000106964057 a001 1346269/9349*4106118243^(4/23) 6765000106964057 a001 1346269/9349*1568397607^(2/11) 6765000106964057 a001 1346269/9349*599074578^(4/21) 6765000106964057 a001 1346269/9349*228826127^(1/5) 6765000106964057 a001 1346269/9349*87403803^(4/19) 6765000106964059 a001 1346269/9349*33385282^(2/9) 6765000106964062 a001 4181/3010349*33385282^(8/9) 6765000106964067 a001 1346269/9349*12752043^(4/17) 6765000106964096 a001 4181/3010349*12752043^(16/17) 6765000106964129 a001 1346269/9349*4870847^(1/4) 6765000106964270 a001 24157817/9349*710647^(1/14) 6765000106964578 a001 1346269/9349*1860498^(4/15) 6765000106965240 a001 9227465/9349*710647^(1/7) 6765000106965264 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^29 6765000106966011 a001 5628750689/832040 6765000106966290 a001 3524578/9349*710647^(3/14) 6765000106966374 a001 2178309/9349*710647^(1/4) 6765000106967885 a001 1346269/9349*710647^(2/7) 6765000106968327 a001 4181/1149851*7881196^(10/11) 6765000106968413 a001 4181/1149851*20633239^(6/7) 6765000106968423 a001 514229/9349*20633239^(2/7) 6765000106968426 a001 4181/1149851*141422324^(10/13) 6765000106968426 a001 4181/1149851*2537720636^(2/3) 6765000106968426 a001 4181/1149851*45537549124^(10/17) 6765000106968426 a001 4181/1149851*312119004989^(6/11) 6765000106968426 a001 4181/1149851*14662949395604^(10/21) 6765000106968426 a001 4181/1149851*(1/2+1/2*5^(1/2))^30 6765000106968426 a001 4181/1149851*192900153618^(5/9) 6765000106968426 a001 4181/1149851*28143753123^(3/5) 6765000106968426 a001 4181/1149851*10749957122^(5/8) 6765000106968426 a001 4181/1149851*4106118243^(15/23) 6765000106968426 a001 4181/1149851*1568397607^(15/22) 6765000106968427 a001 4181/1149851*599074578^(5/7) 6765000106968427 a001 4181/1149851*228826127^(3/4) 6765000106968427 a001 4181/1149851*87403803^(15/19) 6765000106968427 a001 514229/9349*2537720636^(2/9) 6765000106968427 a001 514229/9349*312119004989^(2/11) 6765000106968427 a001 514229/9349*(1/2+1/2*5^(1/2))^10 6765000106968427 a001 514229/9349*28143753123^(1/5) 6765000106968427 a001 514229/9349*10749957122^(5/24) 6765000106968427 a001 514229/9349*4106118243^(5/23) 6765000106968427 a001 514229/9349*1568397607^(5/22) 6765000106968427 a001 514229/9349*599074578^(5/21) 6765000106968427 a001 514229/9349*228826127^(1/4) 6765000106968428 a001 514229/9349*87403803^(5/19) 6765000106968429 a001 514229/9349*33385282^(5/18) 6765000106968432 a001 4181/1149851*33385282^(5/6) 6765000106968440 a001 514229/9349*12752043^(5/17) 6765000106968463 a001 4181/1149851*12752043^(15/17) 6765000106968516 a001 514229/9349*4870847^(5/16) 6765000106968694 a001 4181/1149851*4870847^(15/16) 6765000106969079 a001 514229/9349*1860498^(1/3) 6765000106970376 a001 24157817/9349*271443^(1/13) 6765000106973212 a001 514229/9349*710647^(5/14) 6765000106976705 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^27 6765000106977452 a001 9227465/9349*271443^(2/13) 6765000106981822 a001 2149991449/317811 6765000106982794 a001 196418/9349*439204^(4/9) 6765000106984608 a001 3524578/9349*271443^(3/13) 6765000106989531 a001 4181*103682^(1/24) 6765000106992308 a001 1346269/9349*271443^(4/13) 6765000106998341 a001 196418/9349*7881196^(4/11) 6765000106998367 a001 4181/439204*20633239^(4/5) 6765000106998380 a001 4181/439204*17393796001^(4/7) 6765000106998380 a001 4181/439204*14662949395604^(4/9) 6765000106998380 a001 4181/439204*(1/2+1/2*5^(1/2))^28 6765000106998380 a001 4181/439204*505019158607^(1/2) 6765000106998380 a001 4181/439204*73681302247^(7/13) 6765000106998380 a001 4181/439204*10749957122^(7/12) 6765000106998380 a001 4181/439204*4106118243^(14/23) 6765000106998380 a001 4181/439204*1568397607^(7/11) 6765000106998380 a001 4181/439204*599074578^(2/3) 6765000106998380 a001 4181/439204*228826127^(7/10) 6765000106998380 a001 4181/439204*87403803^(14/19) 6765000106998381 a001 196418/9349*141422324^(4/13) 6765000106998381 a001 196418/9349*2537720636^(4/15) 6765000106998381 a001 196418/9349*45537549124^(4/17) 6765000106998381 a001 196418/9349*817138163596^(4/19) 6765000106998381 a001 196418/9349*14662949395604^(4/21) 6765000106998381 a001 196418/9349*(1/2+1/2*5^(1/2))^12 6765000106998381 a001 196418/9349*192900153618^(2/9) 6765000106998381 a001 196418/9349*73681302247^(3/13) 6765000106998381 a001 196418/9349*10749957122^(1/4) 6765000106998381 a001 196418/9349*4106118243^(6/23) 6765000106998381 a001 196418/9349*1568397607^(3/11) 6765000106998381 a001 196418/9349*599074578^(2/7) 6765000106998381 a001 196418/9349*228826127^(3/10) 6765000106998381 a001 196418/9349*87403803^(6/19) 6765000106998383 a001 196418/9349*33385282^(1/3) 6765000106998385 a001 4181/439204*33385282^(7/9) 6765000106998395 a001 196418/9349*12752043^(6/17) 6765000106998414 a001 4181/439204*12752043^(14/17) 6765000106998488 a001 196418/9349*4870847^(3/8) 6765000106998629 a001 4181/439204*4870847^(7/8) 6765000106999162 a001 196418/9349*1860498^(2/5) 6765000107000204 a001 4181/439204*1860498^(14/15) 6765000107003741 a001 514229/9349*271443^(5/13) 6765000107004122 a001 196418/9349*710647^(3/7) 6765000107015755 a001 24157817/9349*103682^(1/12) 6765000107040757 a001 196418/9349*271443^(6/13) 6765000107041968 a001 14930352/9349*103682^(1/8) 6765000107055124 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^25 6765000107068211 a001 9227465/9349*103682^(1/6) 6765000107090194 a001 821223658/121393 6765000107094374 a001 5702887/9349*103682^(5/24) 6765000107120746 a001 3524578/9349*103682^(1/4) 6765000107146573 a001 2178309/9349*103682^(7/24) 6765000107159370 a001 4181*39603^(1/22) 6765000107173826 a001 1346269/9349*103682^(1/3) 6765000107197346 a001 832040/9349*103682^(3/8) 6765000107203677 a001 75025/9349*20633239^(2/5) 6765000107203683 a001 4181/167761*141422324^(2/3) 6765000107203683 a001 4181/167761*(1/2+1/2*5^(1/2))^26 6765000107203683 a001 4181/167761*73681302247^(1/2) 6765000107203683 a001 4181/167761*10749957122^(13/24) 6765000107203683 a001 4181/167761*4106118243^(13/23) 6765000107203683 a001 4181/167761*1568397607^(13/22) 6765000107203683 a001 4181/167761*599074578^(13/21) 6765000107203683 a001 4181/167761*228826127^(13/20) 6765000107203684 a001 4181/167761*87403803^(13/19) 6765000107203684 a001 75025/9349*17393796001^(2/7) 6765000107203684 a001 75025/9349*14662949395604^(2/9) 6765000107203684 a001 75025/9349*(1/2+1/2*5^(1/2))^14 6765000107203684 a001 75025/9349*505019158607^(1/4) 6765000107203684 a001 75025/9349*10749957122^(7/24) 6765000107203684 a001 75025/9349*4106118243^(7/23) 6765000107203684 a001 75025/9349*1568397607^(7/22) 6765000107203684 a001 75025/9349*599074578^(1/3) 6765000107203684 a001 75025/9349*228826127^(7/20) 6765000107203684 a001 75025/9349*87403803^(7/19) 6765000107203686 a001 75025/9349*33385282^(7/18) 6765000107203687 a001 4181/167761*33385282^(13/18) 6765000107203701 a001 75025/9349*12752043^(7/17) 6765000107203715 a001 4181/167761*12752043^(13/17) 6765000107203809 a001 75025/9349*4870847^(7/16) 6765000107203915 a001 4181/167761*4870847^(13/16) 6765000107204596 a001 75025/9349*1860498^(7/15) 6765000107205377 a001 4181/167761*1860498^(13/15) 6765000107210382 a001 75025/9349*710647^(1/2) 6765000107212370 a001 121393/9349*103682^(13/24) 6765000107216122 a001 4181/167761*710647^(13/14) 6765000107230638 a001 514229/9349*103682^(5/12) 6765000107238347 a001 317811/9349*103682^(11/24) 6765000107253122 a001 75025/9349*271443^(7/13) 6765000107313033 a001 196418/9349*103682^(1/2) 6765000107355433 a001 24157817/9349*39603^(1/11) 6765000107464736 a001 28657/9349*64079^(16/23) 6765000107551485 a001 14930352/9349*39603^(3/22) 6765000107570778 a001 75025/9349*103682^(7/12) 6765000107592615 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^23 6765000107736818 a001 24157817/103682*5778^(7/18) 6765000107747567 a001 9227465/9349*39603^(2/11) 6765000107832988 a001 313679525/46368 6765000107943569 a001 5702887/9349*39603^(5/22) 6765000108139780 a001 3524578/9349*39603^(3/11) 6765000108274307 a001 63245986/271443*5778^(7/18) 6765000108335445 a001 2178309/9349*39603^(7/22) 6765000108352725 a001 165580141/710647*5778^(7/18) 6765000108364167 a001 433494437/1860498*5778^(7/18) 6765000108365836 a001 1134903170/4870847*5778^(7/18) 6765000108366079 a001 2971215073/12752043*5778^(7/18) 6765000108366115 a001 7778742049/33385282*5778^(7/18) 6765000108366120 a001 20365011074/87403803*5778^(7/18) 6765000108366121 a001 53316291173/228826127*5778^(7/18) 6765000108366121 a001 139583862445/599074578*5778^(7/18) 6765000108366121 a001 365435296162/1568397607*5778^(7/18) 6765000108366121 a001 956722026041/4106118243*5778^(7/18) 6765000108366121 a001 2504730781961/10749957122*5778^(7/18) 6765000108366121 a001 6557470319842/28143753123*5778^(7/18) 6765000108366121 a001 10610209857723/45537549124*5778^(7/18) 6765000108366121 a001 4052739537881/17393796001*5778^(7/18) 6765000108366121 a001 1548008755920/6643838879*5778^(7/18) 6765000108366121 a001 591286729879/2537720636*5778^(7/18) 6765000108366121 a001 225851433717/969323029*5778^(7/18) 6765000108366121 a001 86267571272/370248451*5778^(7/18) 6765000108366121 a001 63246219/271444*5778^(7/18) 6765000108366123 a001 12586269025/54018521*5778^(7/18) 6765000108366137 a001 4807526976/20633239*5778^(7/18) 6765000108366230 a001 1836311903/7881196*5778^(7/18) 6765000108366867 a001 701408733/3010349*5778^(7/18) 6765000108371238 a001 267914296/1149851*5778^(7/18) 6765000108401098 a001 9227465/24476*5778^(1/3) 6765000108401191 a001 102334155/439204*5778^(7/18) 6765000108441506 a001 4181*15127^(1/20) 6765000108532537 a001 1346269/9349*39603^(4/11) 6765000108576513 a001 10946/9349*24476^(6/7) 6765000108579678 a001 4181/64079*439204^(8/9) 6765000108606493 a001 39088169/167761*5778^(7/18) 6765000108610772 a001 4181/64079*7881196^(8/11) 6765000108610851 a001 4181/64079*141422324^(8/13) 6765000108610851 a001 4181/64079*2537720636^(8/15) 6765000108610851 a001 4181/64079*45537549124^(8/17) 6765000108610851 a001 4181/64079*14662949395604^(8/21) 6765000108610851 a001 4181/64079*(1/2+1/2*5^(1/2))^24 6765000108610851 a001 4181/64079*192900153618^(4/9) 6765000108610851 a001 4181/64079*73681302247^(6/13) 6765000108610851 a001 4181/64079*10749957122^(1/2) 6765000108610851 a001 4181/64079*4106118243^(12/23) 6765000108610851 a001 4181/64079*1568397607^(6/11) 6765000108610851 a001 4181/64079*599074578^(4/7) 6765000108610851 a001 4181/64079*228826127^(3/5) 6765000108610852 a001 4181/64079*87403803^(12/19) 6765000108610852 a001 28657/9349*(1/2+1/2*5^(1/2))^16 6765000108610852 a001 28657/9349*23725150497407^(1/4) 6765000108610852 a001 28657/9349*73681302247^(4/13) 6765000108610852 a001 28657/9349*10749957122^(1/3) 6765000108610852 a001 28657/9349*4106118243^(8/23) 6765000108610852 a001 28657/9349*1568397607^(4/11) 6765000108610852 a001 28657/9349*599074578^(8/21) 6765000108610852 a001 28657/9349*228826127^(2/5) 6765000108610853 a001 28657/9349*87403803^(8/19) 6765000108610855 a001 28657/9349*33385282^(4/9) 6765000108610855 a001 4181/64079*33385282^(2/3) 6765000108610872 a001 28657/9349*12752043^(8/17) 6765000108610881 a001 4181/64079*12752043^(12/17) 6765000108610995 a001 28657/9349*4870847^(1/2) 6765000108611065 a001 4181/64079*4870847^(3/4) 6765000108611895 a001 28657/9349*1860498^(8/15) 6765000108612415 a001 4181/64079*1860498^(4/5) 6765000108618507 a001 28657/9349*710647^(4/7) 6765000108622333 a001 4181/64079*710647^(6/7) 6765000108667353 a001 28657/9349*271443^(8/13) 6765000108695603 a001 4181/64079*271443^(12/13) 6765000108725896 a001 832040/9349*39603^(9/22) 6765000108929027 a001 514229/9349*39603^(5/11) 6765000109030389 a001 28657/9349*103682^(2/3) 6765000109106575 a001 317811/9349*39603^(1/2) 6765000109274906 a001 46368/9349*39603^(15/22) 6765000109351100 a001 196418/9349*39603^(6/11) 6765000109420276 a001 121393/9349*39603^(13/22) 6765000109919706 a001 24157817/9349*15127^(1/10) 6765000109948524 a001 75025/9349*39603^(7/11) 6765000110013656 a001 14930352/64079*5778^(7/18) 6765000111276629 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^21 6765000111397894 a001 14930352/9349*15127^(3/20) 6765000111747812 a001 28657/9349*39603^(8/11) 6765000112055322 a001 165580141/39603*2207^(1/16) 6765000112572602 a001 832040/15127*5778^(5/9) 6765000112876113 a001 9227465/9349*15127^(1/5) 6765000112924171 a001 119814917/17711 6765000114354252 a001 5702887/9349*15127^(1/4) 6765000115310215 a001 5702887/39603*5778^(4/9) 6765000115739337 a001 433494437/103682*2207^(1/16) 6765000115832599 a001 3524578/9349*15127^(3/10) 6765000116276827 a001 1134903170/271443*2207^(1/16) 6765000116355246 a001 2971215073/710647*2207^(1/16) 6765000116366687 a001 7778742049/1860498*2207^(1/16) 6765000116368356 a001 20365011074/4870847*2207^(1/16) 6765000116368600 a001 53316291173/12752043*2207^(1/16) 6765000116368635 a001 139583862445/33385282*2207^(1/16) 6765000116368640 a001 365435296162/87403803*2207^(1/16) 6765000116368641 a001 956722026041/228826127*2207^(1/16) 6765000116368641 a001 2504730781961/599074578*2207^(1/16) 6765000116368641 a001 6557470319842/1568397607*2207^(1/16) 6765000116368641 a001 10610209857723/2537720636*2207^(1/16) 6765000116368641 a001 4052739537881/969323029*2207^(1/16) 6765000116368641 a001 1548008755920/370248451*2207^(1/16) 6765000116368642 a001 591286729879/141422324*2207^(1/16) 6765000116368644 a001 225851433717/54018521*2207^(1/16) 6765000116368657 a001 86267571272/20633239*2207^(1/16) 6765000116368750 a001 32951280099/7881196*2207^(1/16) 6765000116369388 a001 12586269025/3010349*2207^(1/16) 6765000116373758 a001 4807526976/1149851*2207^(1/16) 6765000116403711 a001 1836311903/439204*2207^(1/16) 6765000116609014 a001 701408733/167761*2207^(1/16) 6765000116679818 a001 4181/24476*64079^(22/23) 6765000116966348 a001 10946/9349*64079^(18/23) 6765000117310402 a001 2178309/9349*15127^(7/20) 6765000118016183 a001 267914296/64079*2207^(1/16) 6765000118220766 a001 4181*5778^(1/18) 6765000118232348 a001 10946/9349*439204^(2/3) 6765000118255655 a001 4181/24476*7881196^(2/3) 6765000118255669 a001 10946/9349*7881196^(6/11) 6765000118255727 a001 4181/24476*312119004989^(2/5) 6765000118255727 a001 4181/24476*(1/2+1/2*5^(1/2))^22 6765000118255727 a001 4181/24476*10749957122^(11/24) 6765000118255727 a001 4181/24476*4106118243^(11/23) 6765000118255727 a001 4181/24476*1568397607^(1/2) 6765000118255727 a001 4181/24476*599074578^(11/21) 6765000118255727 a001 4181/24476*228826127^(11/20) 6765000118255728 a001 4181/24476*87403803^(11/19) 6765000118255728 a001 10946/9349*141422324^(6/13) 6765000118255728 a001 10946/9349*2537720636^(2/5) 6765000118255728 a001 10946/9349*45537549124^(6/17) 6765000118255728 a001 10946/9349*14662949395604^(2/7) 6765000118255728 a001 10946/9349*(1/2+1/2*5^(1/2))^18 6765000118255728 a001 10946/9349*192900153618^(1/3) 6765000118255728 a001 10946/9349*10749957122^(3/8) 6765000118255728 a001 10946/9349*4106118243^(9/23) 6765000118255728 a001 10946/9349*1568397607^(9/22) 6765000118255728 a001 10946/9349*599074578^(3/7) 6765000118255728 a001 10946/9349*228826127^(9/20) 6765000118255728 a001 10946/9349*87403803^(9/19) 6765000118255731 a001 4181/24476*33385282^(11/18) 6765000118255731 a001 10946/9349*33385282^(1/2) 6765000118255750 a001 10946/9349*12752043^(9/17) 6765000118255754 a001 4181/24476*12752043^(11/17) 6765000118255888 a001 10946/9349*4870847^(9/16) 6765000118255923 a001 4181/24476*4870847^(11/16) 6765000118256901 a001 10946/9349*1860498^(3/5) 6765000118257160 a001 4181/24476*1860498^(11/15) 6765000118264339 a001 10946/9349*710647^(9/14) 6765000118266252 a001 4181/24476*710647^(11/14) 6765000118319292 a001 10946/9349*271443^(9/13) 6765000118333416 a001 4181/24476*271443^(11/13) 6765000118727707 a001 10946/9349*103682^(3/4) 6765000118789630 a001 1346269/9349*15127^(2/5) 6765000118832590 a001 4181/24476*103682^(11/12) 6765000118994266 a001 7465176/51841*5778^(4/9) 6765000119531761 a001 39088169/271443*5778^(4/9) 6765000119610181 a001 14619165/101521*5778^(4/9) 6765000119621622 a001 133957148/930249*5778^(4/9) 6765000119623292 a001 701408733/4870847*5778^(4/9) 6765000119623535 a001 1836311903/12752043*5778^(4/9) 6765000119623571 a001 14930208/103681*5778^(4/9) 6765000119623576 a001 12586269025/87403803*5778^(4/9) 6765000119623577 a001 32951280099/228826127*5778^(4/9) 6765000119623577 a001 43133785636/299537289*5778^(4/9) 6765000119623577 a001 32264490531/224056801*5778^(4/9) 6765000119623577 a001 591286729879/4106118243*5778^(4/9) 6765000119623577 a001 774004377960/5374978561*5778^(4/9) 6765000119623577 a001 4052739537881/28143753123*5778^(4/9) 6765000119623577 a001 1515744265389/10525900321*5778^(4/9) 6765000119623577 a001 3278735159921/22768774562*5778^(4/9) 6765000119623577 a001 2504730781961/17393796001*5778^(4/9) 6765000119623577 a001 956722026041/6643838879*5778^(4/9) 6765000119623577 a001 182717648081/1268860318*5778^(4/9) 6765000119623577 a001 139583862445/969323029*5778^(4/9) 6765000119623577 a001 53316291173/370248451*5778^(4/9) 6765000119623577 a001 10182505537/70711162*5778^(4/9) 6765000119623579 a001 7778742049/54018521*5778^(4/9) 6765000119623593 a001 2971215073/20633239*5778^(4/9) 6765000119623686 a001 567451585/3940598*5778^(4/9) 6765000119624323 a001 433494437/3010349*5778^(4/9) 6765000119628693 a001 165580141/1149851*5778^(4/9) 6765000119658497 a001 5702887/24476*5778^(7/18) 6765000119658647 a001 31622993/219602*5778^(4/9) 6765000119863952 a001 24157817/167761*5778^(4/9) 6765000120265126 a001 832040/9349*15127^(9/20) 6765000121271134 a001 9227465/64079*5778^(4/9) 6765000121750393 a001 514229/9349*15127^(1/2) 6765000121784808 a001 10946/9349*39603^(9/11) 6765000123210078 a001 317811/9349*15127^(11/20) 6765000123837128 a001 514229/15127*5778^(11/18) 6765000124736740 a001 196418/9349*15127^(3/5) 6765000124829695 a001 28657/3571*3571^(14/17) 6765000126088052 a001 121393/9349*15127^(13/20) 6765000126567822 a001 3524578/39603*5778^(1/2) 6765000127661059 a001 102334155/24476*2207^(1/16) 6765000127779334 a001 17711/9349*15127^(17/20) 6765000127898436 a001 75025/9349*15127^(7/10) 6765000128506955 a001 46368/9349*15127^(3/4) 6765000129478225 a001 24157817/9349*5778^(1/9) 6765000130251743 a001 9227465/103682*5778^(1/2) 6765000130789220 a001 24157817/271443*5778^(1/2) 6765000130867637 a001 63245986/710647*5778^(1/2) 6765000130879078 a001 165580141/1860498*5778^(1/2) 6765000130880747 a001 433494437/4870847*5778^(1/2) 6765000130880991 a001 1134903170/12752043*5778^(1/2) 6765000130881026 a001 2971215073/33385282*5778^(1/2) 6765000130881032 a001 7778742049/87403803*5778^(1/2) 6765000130881032 a001 20365011074/228826127*5778^(1/2) 6765000130881032 a001 53316291173/599074578*5778^(1/2) 6765000130881032 a001 139583862445/1568397607*5778^(1/2) 6765000130881032 a001 365435296162/4106118243*5778^(1/2) 6765000130881032 a001 956722026041/10749957122*5778^(1/2) 6765000130881032 a001 2504730781961/28143753123*5778^(1/2) 6765000130881032 a001 6557470319842/73681302247*5778^(1/2) 6765000130881032 a001 10610209857723/119218851371*5778^(1/2) 6765000130881032 a001 4052739537881/45537549124*5778^(1/2) 6765000130881032 a001 1548008755920/17393796001*5778^(1/2) 6765000130881032 a001 591286729879/6643838879*5778^(1/2) 6765000130881032 a001 225851433717/2537720636*5778^(1/2) 6765000130881032 a001 86267571272/969323029*5778^(1/2) 6765000130881032 a001 32951280099/370248451*5778^(1/2) 6765000130881033 a001 12586269025/141422324*5778^(1/2) 6765000130881035 a001 4807526976/54018521*5778^(1/2) 6765000130881048 a001 1836311903/20633239*5778^(1/2) 6765000130881141 a001 3524667/39604*5778^(1/2) 6765000130881779 a001 267914296/3010349*5778^(1/2) 6765000130886149 a001 102334155/1149851*5778^(1/2) 6765000130916101 a001 39088169/439204*5778^(1/2) 6765000130916103 a001 1762289/12238*5778^(4/9) 6765000131121399 a001 14930352/167761*5778^(1/2) 6765000132261998 a001 28657/9349*15127^(4/5) 6765000132528532 a001 5702887/64079*5778^(1/2) 6765000135076072 a001 317811/15127*5778^(2/3) 6765000136527242 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^19 6765000137824883 a001 726103/13201*5778^(5/9) 6765000140735672 a001 14930352/9349*5778^(1/6) 6765000141509142 a001 5702887/103682*5778^(5/9) 6765000142046668 a001 4976784/90481*5778^(5/9) 6765000142125092 a001 39088169/710647*5778^(5/9) 6765000142136534 a001 831985/15126*5778^(5/9) 6765000142138203 a001 267914296/4870847*5778^(5/9) 6765000142138447 a001 233802911/4250681*5778^(5/9) 6765000142138482 a001 1836311903/33385282*5778^(5/9) 6765000142138487 a001 1602508992/29134601*5778^(5/9) 6765000142138488 a001 12586269025/228826127*5778^(5/9) 6765000142138488 a001 10983760033/199691526*5778^(5/9) 6765000142138488 a001 86267571272/1568397607*5778^(5/9) 6765000142138488 a001 75283811239/1368706081*5778^(5/9) 6765000142138488 a001 591286729879/10749957122*5778^(5/9) 6765000142138488 a001 12585437040/228811001*5778^(5/9) 6765000142138488 a001 4052739537881/73681302247*5778^(5/9) 6765000142138488 a001 3536736619241/64300051206*5778^(5/9) 6765000142138488 a001 6557470319842/119218851371*5778^(5/9) 6765000142138488 a001 2504730781961/45537549124*5778^(5/9) 6765000142138488 a001 956722026041/17393796001*5778^(5/9) 6765000142138488 a001 365435296162/6643838879*5778^(5/9) 6765000142138488 a001 139583862445/2537720636*5778^(5/9) 6765000142138488 a001 53316291173/969323029*5778^(5/9) 6765000142138488 a001 20365011074/370248451*5778^(5/9) 6765000142138489 a001 7778742049/141422324*5778^(5/9) 6765000142138490 a001 2971215073/54018521*5778^(5/9) 6765000142138504 a001 1134903170/20633239*5778^(5/9) 6765000142138597 a001 433494437/7881196*5778^(5/9) 6765000142139235 a001 165580141/3010349*5778^(5/9) 6765000142143605 a001 63245986/1149851*5778^(5/9) 6765000142173165 a001 2178309/24476*5778^(1/2) 6765000142173560 a001 24157817/439204*5778^(5/9) 6765000142378877 a001 9227465/167761*5778^(5/9) 6765000143038017 m001 GAMMA(19/24)^2/ln((2^(1/3)))/log(1+sqrt(2)) 6765000143786139 a001 3524578/64079*5778^(5/9) 6765000144863267 a001 10946/9349*15127^(9/10) 6765000146381993 a001 196418/15127*5778^(13/18) 6765000147051783 a003 cos(Pi*45/113)-sin(Pi*37/81) 6765000147819659 a001 -20295/2+15127/2*5^(1/2) 6765000147819660 a001 45765226/6765 6765000148136796 m001 (-gamma(2)+RenyiParking)/(Psi(1,1/3)+ln(3)) 6765000149083371 a001 1346269/39603*5778^(11/18) 6765000151993150 a001 9227465/9349*5778^(2/9) 6765000152766748 a001 1762289/51841*5778^(11/18) 6765000153304146 a001 9227465/271443*5778^(11/18) 6765000153382551 a001 24157817/710647*5778^(11/18) 6765000153393990 a001 31622993/930249*5778^(11/18) 6765000153395659 a001 165580141/4870847*5778^(11/18) 6765000153395902 a001 433494437/12752043*5778^(11/18) 6765000153395938 a001 567451585/16692641*5778^(11/18) 6765000153395943 a001 2971215073/87403803*5778^(11/18) 6765000153395944 a001 7778742049/228826127*5778^(11/18) 6765000153395944 a001 10182505537/299537289*5778^(11/18) 6765000153395944 a001 53316291173/1568397607*5778^(11/18) 6765000153395944 a001 139583862445/4106118243*5778^(11/18) 6765000153395944 a001 182717648081/5374978561*5778^(11/18) 6765000153395944 a001 956722026041/28143753123*5778^(11/18) 6765000153395944 a001 2504730781961/73681302247*5778^(11/18) 6765000153395944 a001 3278735159921/96450076809*5778^(11/18) 6765000153395944 a001 10610209857723/312119004989*5778^(11/18) 6765000153395944 a001 4052739537881/119218851371*5778^(11/18) 6765000153395944 a001 387002188980/11384387281*5778^(11/18) 6765000153395944 a001 591286729879/17393796001*5778^(11/18) 6765000153395944 a001 225851433717/6643838879*5778^(11/18) 6765000153395944 a001 1135099622/33391061*5778^(11/18) 6765000153395944 a001 32951280099/969323029*5778^(11/18) 6765000153395944 a001 12586269025/370248451*5778^(11/18) 6765000153395944 a001 1201881744/35355581*5778^(11/18) 6765000153395946 a001 1836311903/54018521*5778^(11/18) 6765000153395960 a001 701408733/20633239*5778^(11/18) 6765000153396053 a001 66978574/1970299*5778^(11/18) 6765000153396690 a001 102334155/3010349*5778^(11/18) 6765000153401060 a001 39088169/1149851*5778^(11/18) 6765000153431008 a001 196452/5779*5778^(11/18) 6765000153431652 a001 1346269/24476*5778^(5/9) 6765000153636275 a001 5702887/167761*5778^(11/18) 6765000153758923 a001 46368/3571*3571^(13/17) 6765000155043200 a001 2178309/64079*5778^(11/18) 6765000157512565 a001 121393/15127*5778^(7/9) 6765000160338126 a001 832040/39603*5778^(2/3) 6765000163250548 a001 5702887/9349*5778^(5/18) 6765000164023810 a001 46347/2206*5778^(2/3) 6765000164561544 a001 5702887/271443*5778^(2/3) 6765000164639998 a001 14930352/710647*5778^(2/3) 6765000164651444 a001 39088169/1860498*5778^(2/3) 6765000164653114 a001 102334155/4870847*5778^(2/3) 6765000164653358 a001 267914296/12752043*5778^(2/3) 6765000164653394 a001 701408733/33385282*5778^(2/3) 6765000164653399 a001 1836311903/87403803*5778^(2/3) 6765000164653400 a001 102287808/4868641*5778^(2/3) 6765000164653400 a001 12586269025/599074578*5778^(2/3) 6765000164653400 a001 32951280099/1568397607*5778^(2/3) 6765000164653400 a001 86267571272/4106118243*5778^(2/3) 6765000164653400 a001 225851433717/10749957122*5778^(2/3) 6765000164653400 a001 591286729879/28143753123*5778^(2/3) 6765000164653400 a001 1548008755920/73681302247*5778^(2/3) 6765000164653400 a001 4052739537881/192900153618*5778^(2/3) 6765000164653400 a001 225749145909/10745088481*5778^(2/3) 6765000164653400 a001 6557470319842/312119004989*5778^(2/3) 6765000164653400 a001 2504730781961/119218851371*5778^(2/3) 6765000164653400 a001 956722026041/45537549124*5778^(2/3) 6765000164653400 a001 365435296162/17393796001*5778^(2/3) 6765000164653400 a001 139583862445/6643838879*5778^(2/3) 6765000164653400 a001 53316291173/2537720636*5778^(2/3) 6765000164653400 a001 20365011074/969323029*5778^(2/3) 6765000164653400 a001 7778742049/370248451*5778^(2/3) 6765000164653400 a001 2971215073/141422324*5778^(2/3) 6765000164653402 a001 1134903170/54018521*5778^(2/3) 6765000164653416 a001 433494437/20633239*5778^(2/3) 6765000164653509 a001 165580141/7881196*5778^(2/3) 6765000164654147 a001 63245986/3010349*5778^(2/3) 6765000164658519 a001 24157817/1149851*5778^(2/3) 6765000164686407 a001 208010/6119*5778^(11/18) 6765000164688486 a001 9227465/439204*5778^(2/3) 6765000164893882 a001 3524578/167761*5778^(2/3) 6765000166301688 a001 1346269/64079*5778^(2/3) 6765000169102208 a001 75025/15127*5778^(5/6) 6765000171602653 a001 514229/39603*5778^(13/18) 6765000173070271 a001 9654-1292*5^(1/2) 6765000173608007 a001 4181/9349*24476^(20/21) 6765000173609419 a001 39088169/15127*2207^(1/8) 6765000174148528 a001 5702887/5778*2207^(1/4) 6765000174508154 a001 3524578/9349*5778^(1/3) 6765000175282297 a001 1346269/103682*5778^(13/18) 6765000175819150 a001 3524578/271443*5778^(13/18) 6765000175897476 a001 9227465/710647*5778^(13/18) 6765000175908904 a001 24157817/1860498*5778^(13/18) 6765000175910571 a001 63245986/4870847*5778^(13/18) 6765000175910814 a001 165580141/12752043*5778^(13/18) 6765000175910850 a001 433494437/33385282*5778^(13/18) 6765000175910855 a001 1134903170/87403803*5778^(13/18) 6765000175910855 a001 2971215073/228826127*5778^(13/18) 6765000175910856 a001 7778742049/599074578*5778^(13/18) 6765000175910856 a001 20365011074/1568397607*5778^(13/18) 6765000175910856 a001 53316291173/4106118243*5778^(13/18) 6765000175910856 a001 139583862445/10749957122*5778^(13/18) 6765000175910856 a001 365435296162/28143753123*5778^(13/18) 6765000175910856 a001 956722026041/73681302247*5778^(13/18) 6765000175910856 a001 2504730781961/192900153618*5778^(13/18) 6765000175910856 a001 10610209857723/817138163596*5778^(13/18) 6765000175910856 a001 4052739537881/312119004989*5778^(13/18) 6765000175910856 a001 1548008755920/119218851371*5778^(13/18) 6765000175910856 a001 591286729879/45537549124*5778^(13/18) 6765000175910856 a001 7787980473/599786069*5778^(13/18) 6765000175910856 a001 86267571272/6643838879*5778^(13/18) 6765000175910856 a001 32951280099/2537720636*5778^(13/18) 6765000175910856 a001 12586269025/969323029*5778^(13/18) 6765000175910856 a001 4807526976/370248451*5778^(13/18) 6765000175910856 a001 1836311903/141422324*5778^(13/18) 6765000175910858 a001 701408733/54018521*5778^(13/18) 6765000175910871 a001 9238424/711491*5778^(13/18) 6765000175910964 a001 102334155/7881196*5778^(13/18) 6765000175911601 a001 39088169/3010349*5778^(13/18) 6765000175915966 a001 14930352/1149851*5778^(13/18) 6765000175945884 a001 5702887/439204*5778^(13/18) 6765000175950934 a001 514229/24476*5778^(2/3) 6765000176150944 a001 2178309/167761*5778^(13/18) 6765000177556443 a001 832040/64079*5778^(13/18) 6765000179489986 a001 6624/2161*5778^(8/9) 6765000182841596 a001 105937/13201*5778^(7/9) 6765000182930045 a001 4181/9349*64079^(20/23) 6765000184170392 a001 4181/9349*167761^(4/5) 6765000184362681 a001 4181/9349*20633239^(4/7) 6765000184362690 a001 4181/9349*2537720636^(4/9) 6765000184362690 a001 4181/9349*(1/2+1/2*5^(1/2))^20 6765000184362690 a001 4181/9349*23725150497407^(5/16) 6765000184362690 a001 4181/9349*505019158607^(5/14) 6765000184362690 a001 4181/9349*73681302247^(5/13) 6765000184362690 a001 4181/9349*28143753123^(2/5) 6765000184362690 a001 4181/9349*10749957122^(5/12) 6765000184362690 a001 4181/9349*4106118243^(10/23) 6765000184362690 a001 4181/9349*1568397607^(5/11) 6765000184362690 a001 4181/9349*599074578^(10/21) 6765000184362690 a001 4181/9349*228826127^(1/2) 6765000184362691 a001 4181/9349*87403803^(10/19) 6765000184362693 a001 4181/9349*33385282^(5/9) 6765000184362715 a001 4181/9349*12752043^(10/17) 6765000184362868 a001 4181/9349*4870847^(5/8) 6765000184363993 a001 4181/9349*1860498^(2/3) 6765000184372258 a001 4181/9349*710647^(5/7) 6765000184433317 a001 4181/9349*271443^(10/13) 6765000184887111 a001 4181/9349*103682^(5/6) 6765000185765216 a001 2178309/9349*5778^(7/18) 6765000185834675 a001 75025/3571*3571^(12/17) 6765000186537052 a001 416020/51841*5778^(7/9) 6765000187076212 a001 726103/90481*5778^(7/9) 6765000187154874 a001 5702887/710647*5778^(7/9) 6765000187166351 a001 829464/103361*5778^(7/9) 6765000187168025 a001 39088169/4870847*5778^(7/9) 6765000187168270 a001 34111385/4250681*5778^(7/9) 6765000187168305 a001 133957148/16692641*5778^(7/9) 6765000187168311 a001 233802911/29134601*5778^(7/9) 6765000187168311 a001 1836311903/228826127*5778^(7/9) 6765000187168311 a001 267084832/33281921*5778^(7/9) 6765000187168311 a001 12586269025/1568397607*5778^(7/9) 6765000187168311 a001 10983760033/1368706081*5778^(7/9) 6765000187168311 a001 43133785636/5374978561*5778^(7/9) 6765000187168311 a001 75283811239/9381251041*5778^(7/9) 6765000187168311 a001 591286729879/73681302247*5778^(7/9) 6765000187168311 a001 86000486440/10716675201*5778^(7/9) 6765000187168311 a001 4052739537881/505019158607*5778^(7/9) 6765000187168311 a001 3536736619241/440719107401*5778^(7/9) 6765000187168311 a001 3278735159921/408569081798*5778^(7/9) 6765000187168311 a001 2504730781961/312119004989*5778^(7/9) 6765000187168311 a001 956722026041/119218851371*5778^(7/9) 6765000187168311 a001 182717648081/22768774562*5778^(7/9) 6765000187168311 a001 139583862445/17393796001*5778^(7/9) 6765000187168311 a001 53316291173/6643838879*5778^(7/9) 6765000187168311 a001 10182505537/1268860318*5778^(7/9) 6765000187168311 a001 7778742049/969323029*5778^(7/9) 6765000187168311 a001 2971215073/370248451*5778^(7/9) 6765000187168312 a001 567451585/70711162*5778^(7/9) 6765000187168314 a001 433494437/54018521*5778^(7/9) 6765000187168327 a001 165580141/20633239*5778^(7/9) 6765000187168421 a001 31622993/3940598*5778^(7/9) 6765000187169060 a001 24157817/3010349*5778^(7/9) 6765000187173444 a001 9227465/1149851*5778^(7/9) 6765000187189877 a001 10959/844*5778^(13/18) 6765000187203490 a001 1762289/219602*5778^(7/9) 6765000187409431 a001 1346269/167761*5778^(7/9) 6765000188283890 a001 4181/9349*39603^(10/11) 6765000188820970 a001 514229/64079*5778^(7/9) 6765000192339645 a001 89/123*322^(12/31) 6765000193024288 a001 28657/15127*5778^(17/18) 6765000193768021 a001 4181*2207^(1/16) 6765000194147518 a001 196418/39603*5778^(5/6) 6765000196360357 r002 5th iterates of z^2 + 6765000197023704 a001 1346269/9349*5778^(4/9) 6765000197801579 a001 514229/103682*5778^(5/6) 6765000198334699 a001 1346269/271443*5778^(5/6) 6765000198412481 a001 3524578/710647*5778^(5/6) 6765000198423829 a001 9227465/1860498*5778^(5/6) 6765000198425484 a001 24157817/4870847*5778^(5/6) 6765000198425726 a001 63245986/12752043*5778^(5/6) 6765000198425761 a001 165580141/33385282*5778^(5/6) 6765000198425766 a001 433494437/87403803*5778^(5/6) 6765000198425767 a001 1134903170/228826127*5778^(5/6) 6765000198425767 a001 2971215073/599074578*5778^(5/6) 6765000198425767 a001 7778742049/1568397607*5778^(5/6) 6765000198425767 a001 20365011074/4106118243*5778^(5/6) 6765000198425767 a001 53316291173/10749957122*5778^(5/6) 6765000198425767 a001 139583862445/28143753123*5778^(5/6) 6765000198425767 a001 365435296162/73681302247*5778^(5/6) 6765000198425767 a001 956722026041/192900153618*5778^(5/6) 6765000198425767 a001 2504730781961/505019158607*5778^(5/6) 6765000198425767 a001 10610209857723/2139295485799*5778^(5/6) 6765000198425767 a001 4052739537881/817138163596*5778^(5/6) 6765000198425767 a001 140728068720/28374454999*5778^(5/6) 6765000198425767 a001 591286729879/119218851371*5778^(5/6) 6765000198425767 a001 225851433717/45537549124*5778^(5/6) 6765000198425767 a001 86267571272/17393796001*5778^(5/6) 6765000198425767 a001 32951280099/6643838879*5778^(5/6) 6765000198425767 a001 1144206275/230701876*5778^(5/6) 6765000198425767 a001 4807526976/969323029*5778^(5/6) 6765000198425767 a001 1836311903/370248451*5778^(5/6) 6765000198425768 a001 701408733/141422324*5778^(5/6) 6765000198425770 a001 267914296/54018521*5778^(5/6) 6765000198425783 a001 9303105/1875749*5778^(5/6) 6765000198425875 a001 39088169/7881196*5778^(5/6) 6765000198426508 a001 14930352/3010349*5778^(5/6) 6765000198430842 a001 5702887/1149851*5778^(5/6) 6765000198460552 a001 2178309/439204*5778^(5/6) 6765000198495799 a001 98209/12238*5778^(7/9) 6765000198664186 a001 75640/15251*5778^(5/6) 6765000198860033 a001 34111385/13201*2207^(1/8) 6765000200059913 a001 317811/64079*5778^(5/6) 6765000202544048 a001 133957148/51841*2207^(1/8) 6765000202634202 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^18 6765000203081538 a001 233802911/90481*2207^(1/8) 6765000203159957 a001 1836311903/710647*2207^(1/8) 6765000203171398 a001 267084832/103361*2207^(1/8) 6765000203173067 a001 12586269025/4870847*2207^(1/8) 6765000203173311 a001 10983760033/4250681*2207^(1/8) 6765000203173346 a001 43133785636/16692641*2207^(1/8) 6765000203173352 a001 75283811239/29134601*2207^(1/8) 6765000203173352 a001 591286729879/228826127*2207^(1/8) 6765000203173352 a001 86000486440/33281921*2207^(1/8) 6765000203173352 a001 4052739537881/1568397607*2207^(1/8) 6765000203173352 a001 3536736619241/1368706081*2207^(1/8) 6765000203173352 a001 3278735159921/1268860318*2207^(1/8) 6765000203173352 a001 2504730781961/969323029*2207^(1/8) 6765000203173352 a001 956722026041/370248451*2207^(1/8) 6765000203173353 a001 182717648081/70711162*2207^(1/8) 6765000203173355 a001 139583862445/54018521*2207^(1/8) 6765000203173368 a001 53316291173/20633239*2207^(1/8) 6765000203173461 a001 10182505537/3940598*2207^(1/8) 6765000203174099 a001 7778742049/3010349*2207^(1/8) 6765000203178469 a001 2971215073/1149851*2207^(1/8) 6765000203208422 a001 567451585/219602*2207^(1/8) 6765000203413726 a001 433494437/167761*2207^(1/8) 6765000204820894 a001 165580141/64079*2207^(1/8) 6765000205278089 a001 121393/39603*5778^(8/9) 6765000208278459 a001 832040/9349*5778^(1/2) 6765000209040523 a001 317811/103682*5778^(8/9) 6765000209589454 a001 832040/271443*5778^(8/9) 6765000209626370 a001 121393/24476*5778^(5/6) 6765000209669542 a001 311187/101521*5778^(8/9) 6765000209681227 a001 5702887/1860498*5778^(8/9) 6765000209682932 a001 14930352/4870847*5778^(8/9) 6765000209683181 a001 39088169/12752043*5778^(8/9) 6765000209683217 a001 14619165/4769326*5778^(8/9) 6765000209683222 a001 267914296/87403803*5778^(8/9) 6765000209683223 a001 701408733/228826127*5778^(8/9) 6765000209683223 a001 1836311903/599074578*5778^(8/9) 6765000209683223 a001 686789568/224056801*5778^(8/9) 6765000209683223 a001 12586269025/4106118243*5778^(8/9) 6765000209683223 a001 32951280099/10749957122*5778^(8/9) 6765000209683223 a001 86267571272/28143753123*5778^(8/9) 6765000209683223 a001 32264490531/10525900321*5778^(8/9) 6765000209683223 a001 591286729879/192900153618*5778^(8/9) 6765000209683223 a001 1548008755920/505019158607*5778^(8/9) 6765000209683223 a001 1515744265389/494493258286*5778^(8/9) 6765000209683223 a001 2504730781961/817138163596*5778^(8/9) 6765000209683223 a001 956722026041/312119004989*5778^(8/9) 6765000209683223 a001 365435296162/119218851371*5778^(8/9) 6765000209683223 a001 139583862445/45537549124*5778^(8/9) 6765000209683223 a001 53316291173/17393796001*5778^(8/9) 6765000209683223 a001 20365011074/6643838879*5778^(8/9) 6765000209683223 a001 7778742049/2537720636*5778^(8/9) 6765000209683223 a001 2971215073/969323029*5778^(8/9) 6765000209683223 a001 1134903170/370248451*5778^(8/9) 6765000209683223 a001 433494437/141422324*5778^(8/9) 6765000209683226 a001 165580141/54018521*5778^(8/9) 6765000209683239 a001 63245986/20633239*5778^(8/9) 6765000209683334 a001 24157817/7881196*5778^(8/9) 6765000209683986 a001 9227465/3010349*5778^(8/9) 6765000209688449 a001 3524578/1149851*5778^(8/9) 6765000209719040 a001 1346269/439204*5778^(8/9) 6765000209928713 a001 514229/167761*5778^(8/9) 6765000210639552 m001 (-CopelandErdos+FeigenbaumC)/(2^(1/3)+ln(3)) 6765000211365835 a001 196418/64079*5778^(8/9) 6765000213926620 a001 -2584+4181*5^(1/2) 6765000214465770 a001 31622993/12238*2207^(1/8) 6765000216708562 a001 121393/3571*3571^(11/17) 6765000216867732 a001 75025/39603*5778^(17/18) 6765000219542985 a001 514229/9349*5778^(5/9) 6765000220346444 a001 98209/51841*5778^(17/18) 6765000220853981 a001 514229/271443*5778^(17/18) 6765000220928030 a001 1346269/710647*5778^(17/18) 6765000220938834 a001 1762289/930249*5778^(17/18) 6765000220940410 a001 9227465/4870847*5778^(17/18) 6765000220940640 a001 24157817/12752043*5778^(17/18) 6765000220940673 a001 31622993/16692641*5778^(17/18) 6765000220940678 a001 165580141/87403803*5778^(17/18) 6765000220940679 a001 433494437/228826127*5778^(17/18) 6765000220940679 a001 567451585/299537289*5778^(17/18) 6765000220940679 a001 2971215073/1568397607*5778^(17/18) 6765000220940679 a001 7778742049/4106118243*5778^(17/18) 6765000220940679 a001 10182505537/5374978561*5778^(17/18) 6765000220940679 a001 53316291173/28143753123*5778^(17/18) 6765000220940679 a001 139583862445/73681302247*5778^(17/18) 6765000220940679 a001 182717648081/96450076809*5778^(17/18) 6765000220940679 a001 956722026041/505019158607*5778^(17/18) 6765000220940679 a001 10610209857723/5600748293801*5778^(17/18) 6765000220940679 a001 591286729879/312119004989*5778^(17/18) 6765000220940679 a001 225851433717/119218851371*5778^(17/18) 6765000220940679 a001 21566892818/11384387281*5778^(17/18) 6765000220940679 a001 32951280099/17393796001*5778^(17/18) 6765000220940679 a001 12586269025/6643838879*5778^(17/18) 6765000220940679 a001 1201881744/634430159*5778^(17/18) 6765000220940679 a001 1836311903/969323029*5778^(17/18) 6765000220940679 a001 701408733/370248451*5778^(17/18) 6765000220940679 a001 66978574/35355581*5778^(17/18) 6765000220940681 a001 102334155/54018521*5778^(17/18) 6765000220940694 a001 39088169/20633239*5778^(17/18) 6765000220940782 a001 3732588/1970299*5778^(17/18) 6765000220941384 a001 5702887/3010349*5778^(17/18) 6765000220945511 a001 2178309/1149851*5778^(17/18) 6765000220973795 a001 208010/109801*5778^(17/18) 6765000221167657 a001 317811/167761*5778^(17/18) 6765000221216014 a001 75025/24476*5778^(8/9) 6765000222496406 a001 121393/64079*5778^(17/18) 6765000227884815 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^20 6765000227965683 m001 (2^(1/2))^(Shi(1)/Zeta(1,2)) 6765000230781929 a001 317811/9349*5778^(11/18) 6765000231568830 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^22 6765000231603792 a001 11592/6119*5778^(17/18) 6765000232106321 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^24 6765000232184739 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^26 6765000232196181 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^28 6765000232197850 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^30 6765000232198093 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^32 6765000232198129 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^34 6765000232198134 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^36 6765000232198135 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^38 6765000232198135 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^40 6765000232198135 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^42 6765000232198135 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^44 6765000232198135 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^46 6765000232198135 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^48 6765000232198135 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^50 6765000232198135 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^52 6765000232198135 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^54 6765000232198135 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^56 6765000232198135 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^58 6765000232198135 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^60 6765000232198135 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^62 6765000232198135 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^64 6765000232198135 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^66 6765000232198135 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^68 6765000232198135 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^70 6765000232198135 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^72 6765000232198135 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^74 6765000232198135 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^76 6765000232198135 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^78 6765000232198135 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^80 6765000232198135 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^82 6765000232198135 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^84 6765000232198135 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^86 6765000232198135 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^88 6765000232198135 a004 Fibonacci(92)*Lucas(18)/(1/2+sqrt(5)/2)^90 6765000232198135 a004 Fibonacci(94)*Lucas(18)/(1/2+sqrt(5)/2)^92 6765000232198135 a004 Fibonacci(96)*Lucas(18)/(1/2+sqrt(5)/2)^94 6765000232198135 a004 Fibonacci(98)*Lucas(18)/(1/2+sqrt(5)/2)^96 6765000232198135 a004 Fibonacci(100)*Lucas(18)/(1/2+sqrt(5)/2)^98 6765000232198135 a004 Fibonacci(99)*Lucas(18)/(1/2+sqrt(5)/2)^97 6765000232198135 a004 Fibonacci(97)*Lucas(18)/(1/2+sqrt(5)/2)^95 6765000232198135 a004 Fibonacci(95)*Lucas(18)/(1/2+sqrt(5)/2)^93 6765000232198135 a004 Fibonacci(93)*Lucas(18)/(1/2+sqrt(5)/2)^91 6765000232198135 a004 Fibonacci(91)*Lucas(18)/(1/2+sqrt(5)/2)^89 6765000232198135 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^87 6765000232198135 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^85 6765000232198135 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^83 6765000232198135 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^81 6765000232198135 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^79 6765000232198135 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^77 6765000232198135 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^75 6765000232198135 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^73 6765000232198135 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^71 6765000232198135 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^69 6765000232198135 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^67 6765000232198135 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^65 6765000232198135 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^63 6765000232198135 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^61 6765000232198135 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^59 6765000232198135 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^57 6765000232198135 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^55 6765000232198135 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^53 6765000232198135 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^51 6765000232198135 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^49 6765000232198135 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^47 6765000232198135 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^45 6765000232198135 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^43 6765000232198135 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^41 6765000232198135 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^39 6765000232198135 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^37 6765000232198137 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^35 6765000232198141 a001 1/1292*(1/2+1/2*5^(1/2))^38 6765000232198151 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^33 6765000232198244 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^31 6765000232198881 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^29 6765000232203252 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^27 6765000232233205 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^25 6765000232438508 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^23 6765000233845676 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^21 6765000242087851 a001 196418/9349*5778^(2/3) 6765000243490552 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^19 6765000245290679 r009 Re(z^3+c),c=-5/66+9/43*I,n=8 6765000248041521 a001 196418/3571*3571^(10/17) 6765000253218422 a001 121393/9349*5778^(13/18) 6765000260414134 a001 24157817/15127*2207^(3/16) 6765000260953391 a001 1762289/2889*2207^(5/16) 6765000264808066 a001 75025/9349*5778^(7/9) 6765000266898641 a007 Real Root Of 17*x^4-933*x^3-178*x^2-160*x+475 6765000268784046 r005 Re(z^2+c),c=-41/54+11/26*I,n=3 6765000275195844 a001 46368/9349*5778^(5/6) 6765000277579581 a007 Real Root Of 892*x^4-133*x^3+988*x^2-458*x-990 6765000279199130 a001 317811/3571*3571^(9/17) 6765000280033582 a001 9959/2+1597/2*5^(1/2) 6765000280572736 a001 24157817/9349*2207^(1/8) 6765000283264635 a001 5473/682*1364^(14/15) 6765000285664745 a001 63245986/39603*2207^(3/16) 6765000288730146 a001 28657/9349*5778^(8/9) 6765000289283640 r005 Im(z^2+c),c=-101/82+3/59*I,n=42 6765000289348760 a001 165580141/103682*2207^(3/16) 6765000289886250 a001 433494437/271443*2207^(3/16) 6765000289964669 a001 1134903170/710647*2207^(3/16) 6765000289976110 a001 2971215073/1860498*2207^(3/16) 6765000289977779 a001 7778742049/4870847*2207^(3/16) 6765000289978023 a001 20365011074/12752043*2207^(3/16) 6765000289978059 a001 53316291173/33385282*2207^(3/16) 6765000289978064 a001 139583862445/87403803*2207^(3/16) 6765000289978065 a001 365435296162/228826127*2207^(3/16) 6765000289978065 a001 956722026041/599074578*2207^(3/16) 6765000289978065 a001 2504730781961/1568397607*2207^(3/16) 6765000289978065 a001 6557470319842/4106118243*2207^(3/16) 6765000289978065 a001 10610209857723/6643838879*2207^(3/16) 6765000289978065 a001 4052739537881/2537720636*2207^(3/16) 6765000289978065 a001 1548008755920/969323029*2207^(3/16) 6765000289978065 a001 591286729879/370248451*2207^(3/16) 6765000289978065 a001 225851433717/141422324*2207^(3/16) 6765000289978067 a001 86267571272/54018521*2207^(3/16) 6765000289978081 a001 32951280099/20633239*2207^(3/16) 6765000289978174 a001 12586269025/7881196*2207^(3/16) 6765000289978811 a001 4807526976/3010349*2207^(3/16) 6765000289983181 a001 1836311903/1149851*2207^(3/16) 6765000290013135 a001 701408733/439204*2207^(3/16) 6765000290218438 a001 267914296/167761*2207^(3/16) 6765000291625606 a001 102334155/64079*2207^(3/16) 6765000294026741 a001 17711/9349*5778^(17/18) 6765000301270481 a001 39088169/24476*2207^(3/16) 6765000309330782 a007 Real Root Of -780*x^4+531*x^3+467*x^2-445*x-187 6765000309597516 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^17 6765000310423717 a001 514229/3571*3571^(8/17) 6765000316482193 a007 Real Root Of -897*x^4-67*x^3-40*x^2+193*x+316 6765000317658903 a001 14930352/3571*1364^(1/15) 6765000341046949 m002 (23*Cosh[Pi])/4+Tanh[Pi] 6765000341622721 a001 832040/3571*3571^(7/17) 6765000347216036 a001 2584/3571*24476^(19/21) 6765000347218839 a001 14930352/15127*2207^(1/4) 6765000347757710 a001 726103/1926*2207^(3/8) 6765000355928673 a001 1597/5778*64079^(21/23) 6765000356071973 a001 2584/3571*64079^(19/23) 6765000357405674 a001 1597/5778*439204^(7/9) 6765000357432881 a001 1597/5778*7881196^(7/11) 6765000357432941 a001 1597/5778*20633239^(3/5) 6765000357432950 a001 1597/5778*141422324^(7/13) 6765000357432950 a001 1597/5778*2537720636^(7/15) 6765000357432950 a001 1597/5778*17393796001^(3/7) 6765000357432950 a001 1597/5778*45537549124^(7/17) 6765000357432950 a001 1597/5778*14662949395604^(1/3) 6765000357432950 a001 1597/5778*(1/2+1/2*5^(1/2))^21 6765000357432950 a001 1597/5778*192900153618^(7/18) 6765000357432950 a001 1597/5778*10749957122^(7/16) 6765000357432950 a001 1597/5778*599074578^(1/2) 6765000357432954 a001 1597/5778*33385282^(7/12) 6765000357432986 a001 2584/3571*817138163596^(1/3) 6765000357432986 a001 2584/3571*(1/2+1/2*5^(1/2))^19 6765000357432986 a001 2584/3571*87403803^(1/2) 6765000357434318 a001 1597/5778*1860498^(7/10) 6765000357442997 a001 1597/5778*710647^(3/4) 6765000357931185 a001 2584/3571*103682^(19/24) 6765000357983592 a001 1597/5778*103682^(7/8) 6765000361158126 a001 2584/3571*39603^(19/22) 6765000361550210 a001 1597/5778*39603^(21/22) 6765000365067271 a007 Real Root Of -71*x^4+392*x^3-863*x^2+591*x+931 6765000367377441 a001 14930352/9349*2207^(3/16) 6765000372469457 a001 39088169/39603*2207^(1/4) 6765000372831497 a001 1346269/3571*3571^(6/17) 6765000376153473 a001 102334155/103682*2207^(1/4) 6765000376690964 a001 267914296/271443*2207^(1/4) 6765000376769382 a001 701408733/710647*2207^(1/4) 6765000376780824 a001 1836311903/1860498*2207^(1/4) 6765000376782493 a001 4807526976/4870847*2207^(1/4) 6765000376782736 a001 12586269025/12752043*2207^(1/4) 6765000376782772 a001 32951280099/33385282*2207^(1/4) 6765000376782777 a001 86267571272/87403803*2207^(1/4) 6765000376782778 a001 225851433717/228826127*2207^(1/4) 6765000376782778 a001 591286729879/599074578*2207^(1/4) 6765000376782778 a001 1548008755920/1568397607*2207^(1/4) 6765000376782778 a001 4052739537881/4106118243*2207^(1/4) 6765000376782778 a001 4807525989/4870846*2207^(1/4) 6765000376782778 a001 6557470319842/6643838879*2207^(1/4) 6765000376782778 a001 2504730781961/2537720636*2207^(1/4) 6765000376782778 a001 956722026041/969323029*2207^(1/4) 6765000376782778 a001 365435296162/370248451*2207^(1/4) 6765000376782778 a001 139583862445/141422324*2207^(1/4) 6765000376782780 a001 53316291173/54018521*2207^(1/4) 6765000376782794 a001 20365011074/20633239*2207^(1/4) 6765000376782887 a001 7778742049/7881196*2207^(1/4) 6765000376783524 a001 2971215073/3010349*2207^(1/4) 6765000376787895 a001 1134903170/1149851*2207^(1/4) 6765000376817848 a001 433494437/439204*2207^(1/4) 6765000377023151 a001 165580141/167761*2207^(1/4) 6765000378430320 a001 63245986/64079*2207^(1/4) 6765000385518722 a001 2584/3571*15127^(19/20) 6765000386996892 a001 305+2889*5^(1/2) 6765000386996904 a001 17480761/2584 6765000388075198 a001 24157817/24476*2207^(1/4) 6765000392008716 m003 5+Sqrt[5]/1024-Tan[1/2+Sqrt[5]/2]/12 6765000394263752 a001 87403803*144^(7/17) 6765000404036541 a001 2178309/3571*3571^(5/17) 6765000417826676 m001 (Si(Pi)-Zeta(1/2))/(-exp(-1/2*Pi)+ArtinRank2) 6765000434023575 a001 9227465/15127*2207^(5/16) 6765000434563455 a001 1346269/5778*2207^(7/16) 6765000435243011 a001 3524578/3571*3571^(4/17) 6765000454182177 a001 9227465/9349*2207^(1/4) 6765000459274175 a001 24157817/39603*2207^(5/16) 6765000461251190 a001 6765/3571*9349^(17/19) 6765000462958188 a001 31622993/51841*2207^(5/16) 6765000463022649 a007 Real Root Of -483*x^4+501*x^3+596*x^2+592*x+384 6765000463495678 a001 165580141/271443*2207^(5/16) 6765000463574097 a001 433494437/710647*2207^(5/16) 6765000463585538 a001 567451585/930249*2207^(5/16) 6765000463587207 a001 2971215073/4870847*2207^(5/16) 6765000463587451 a001 7778742049/12752043*2207^(5/16) 6765000463587486 a001 10182505537/16692641*2207^(5/16) 6765000463587491 a001 53316291173/87403803*2207^(5/16) 6765000463587492 a001 139583862445/228826127*2207^(5/16) 6765000463587492 a001 182717648081/299537289*2207^(5/16) 6765000463587492 a001 956722026041/1568397607*2207^(5/16) 6765000463587492 a001 2504730781961/4106118243*2207^(5/16) 6765000463587492 a001 3278735159921/5374978561*2207^(5/16) 6765000463587492 a001 10610209857723/17393796001*2207^(5/16) 6765000463587492 a001 4052739537881/6643838879*2207^(5/16) 6765000463587492 a001 1134903780/1860499*2207^(5/16) 6765000463587492 a001 591286729879/969323029*2207^(5/16) 6765000463587492 a001 225851433717/370248451*2207^(5/16) 6765000463587493 a001 21566892818/35355581*2207^(5/16) 6765000463587495 a001 32951280099/54018521*2207^(5/16) 6765000463587508 a001 1144206275/1875749*2207^(5/16) 6765000463587601 a001 1201881744/1970299*2207^(5/16) 6765000463588239 a001 1836311903/3010349*2207^(5/16) 6765000463592609 a001 701408733/1149851*2207^(5/16) 6765000463622562 a001 66978574/109801*2207^(5/16) 6765000463827865 a001 9303105/15251*2207^(5/16) 6765000465235033 a001 39088169/64079*2207^(5/16) 6765000465666258 m001 (KhinchinLevy+Rabbit)/(5^(1/2)+LambertW(1)) 6765000466448936 a001 1597*3571^(3/17) 6765000467608083 b008 1/2+E*Csc[Pi/7] 6765000472948679 a007 Real Root Of 635*x^4-700*x^3-143*x^2-650*x-724 6765000473810263 a003 sin(Pi*22/93)*sin(Pi*40/81) 6765000474879904 a001 3732588/6119*2207^(5/16) 6765000478354460 a001 28284467/4181 6765000482517573 m006 (4*Pi^2+4/5)/(5/6*ln(Pi)+5) 6765000482667779 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^16 6765000487491147 r005 Im(z^2+c),c=-25/44+7/57*I,n=42 6765000494649108 a001 17711/3571*9349^(15/19) 6765000497655069 a001 9227465/3571*3571^(2/17) 6765000502992807 r002 2th iterates of z^2 + 6765000503595593 m001 Lehmer/(LaplaceLimit^arctan(1/3)) 6765000504683621 a001 28657/3571*9349^(14/19) 6765000506181194 a001 10946/3571*9349^(16/19) 6765000506480427 a001 46368/3571*9349^(13/19) 6765000506555289 m001 1/exp(GAMMA(1/3))^2/GAMMA(1/12)*GAMMA(17/24)^2 6765000506893146 a001 24157817/5778*843^(1/14) 6765000510067192 a001 17711/1364*1364^(13/15) 6765000511423756 a001 75025/3571*9349^(12/19) 6765000514109715 a003 cos(Pi*10/47)*cos(Pi*43/91) 6765000515165221 a001 121393/3571*9349^(11/19) 6765000519365757 a001 196418/3571*9349^(10/19) 6765000520202366 a007 Real Root Of -833*x^4+450*x^3+506*x^2+622*x+503 6765000520828232 a001 5702887/15127*2207^(3/8) 6765000521361790 a001 6765/3571*24476^(17/21) 6765000521365470 a001 416020/2889*2207^(1/2) 6765000522167717 m001 Trott^(LandauRamanujan2nd*ZetaR(2)) 6765000523390943 a001 317811/3571*9349^(9/19) 6765000527483107 a001 514229/3571*9349^(8/19) 6765000528861123 a001 14930352/3571*3571^(1/17) 6765000529285523 a001 6765/3571*64079^(17/23) 6765000530503230 a001 1597/15127*(1/2+1/2*5^(1/2))^23 6765000530503230 a001 1597/15127*4106118243^(1/2) 6765000530503271 a001 6765/3571*45537549124^(1/3) 6765000530503271 a001 6765/3571*(1/2+1/2*5^(1/2))^17 6765000530503292 a001 6765/3571*12752043^(1/2) 6765000530949029 a001 6765/3571*103682^(17/24) 6765000531106313 a001 1597/15127*103682^(23/24) 6765000531549688 a001 832040/3571*9349^(7/19) 6765000533790534 m001 (Pi-exp(1/exp(1)))/(FeigenbaumD-ZetaP(3)) 6765000533836291 a001 6765/3571*39603^(17/22) 6765000535626041 a001 1346269/3571*9349^(6/19) 6765000539698661 a001 2178309/3571*9349^(5/19) 6765000540626201 a007 Real Root Of -686*x^4+688*x^3+179*x^2-44*x+245 6765000540853859 r004 Re(z^2+c),c=3/38+3/22*I,z(0)=exp(7/8*I*Pi),n=6 6765000540986835 a001 5702887/9349*2207^(5/16) 6765000543772707 a001 3524578/3571*9349^(4/19) 6765000544182684 a007 Real Root Of -6*x^4-416*x^3-673*x^2+691*x-222 6765000546078882 a001 4976784/13201*2207^(3/8) 6765000547687873 a001 17711/3571*24476^(5/7) 6765000547846208 a001 1597*9349^(3/19) 6765000548145441 a001 37024848/5473 6765000548774746 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^18 6765000549762902 a001 39088169/103682*2207^(3/8) 6765000550300393 a001 34111385/90481*2207^(3/8) 6765000550378812 a001 267914296/710647*2207^(3/8) 6765000550390254 a001 233802911/620166*2207^(3/8) 6765000550391923 a001 1836311903/4870847*2207^(3/8) 6765000550392166 a001 1602508992/4250681*2207^(3/8) 6765000550392202 a001 12586269025/33385282*2207^(3/8) 6765000550392207 a001 10983760033/29134601*2207^(3/8) 6765000550392208 a001 86267571272/228826127*2207^(3/8) 6765000550392208 a001 267913919/710646*2207^(3/8) 6765000550392208 a001 591286729879/1568397607*2207^(3/8) 6765000550392208 a001 516002918640/1368706081*2207^(3/8) 6765000550392208 a001 4052739537881/10749957122*2207^(3/8) 6765000550392208 a001 3536736619241/9381251041*2207^(3/8) 6765000550392208 a001 6557470319842/17393796001*2207^(3/8) 6765000550392208 a001 2504730781961/6643838879*2207^(3/8) 6765000550392208 a001 956722026041/2537720636*2207^(3/8) 6765000550392208 a001 365435296162/969323029*2207^(3/8) 6765000550392208 a001 139583862445/370248451*2207^(3/8) 6765000550392208 a001 53316291173/141422324*2207^(3/8) 6765000550392210 a001 20365011074/54018521*2207^(3/8) 6765000550392224 a001 7778742049/20633239*2207^(3/8) 6765000550392317 a001 2971215073/7881196*2207^(3/8) 6765000550392954 a001 1134903170/3010349*2207^(3/8) 6765000550397325 a001 433494437/1149851*2207^(3/8) 6765000550427278 a001 165580141/439204*2207^(3/8) 6765000550632581 a001 63245986/167761*2207^(3/8) 6765000551919917 a001 9227465/3571*9349^(2/19) 6765000552039752 a001 24157817/64079*2207^(3/8) 6765000552447356 a001 46368/3571*24476^(13/21) 6765000553854768 a001 75025/3571*24476^(4/7) 6765000554060315 a001 121393/3571*24476^(11/21) 6765000554186468 a001 28657/3571*24476^(2/3) 6765000554679402 a001 17711/3571*64079^(15/23) 6765000554724933 a001 196418/3571*24476^(10/21) 6765000555214202 a001 317811/3571*24476^(3/7) 6765000555609662 a001 17711/3571*167761^(3/5) 6765000555632615 a001 6765/3571*15127^(17/20) 6765000555734402 a001 17711/3571*439204^(5/9) 6765000555753832 a001 1597/39603*20633239^(5/7) 6765000555753836 a001 17711/3571*7881196^(5/11) 6765000555753844 a001 1597/39603*2537720636^(5/9) 6765000555753844 a001 1597/39603*312119004989^(5/11) 6765000555753844 a001 1597/39603*(1/2+1/2*5^(1/2))^25 6765000555753844 a001 1597/39603*3461452808002^(5/12) 6765000555753844 a001 1597/39603*28143753123^(1/2) 6765000555753844 a001 1597/39603*228826127^(5/8) 6765000555753879 a001 17711/3571*20633239^(3/7) 6765000555753885 a001 17711/3571*141422324^(5/13) 6765000555753885 a001 17711/3571*2537720636^(1/3) 6765000555753885 a001 17711/3571*45537549124^(5/17) 6765000555753885 a001 17711/3571*312119004989^(3/11) 6765000555753885 a001 17711/3571*14662949395604^(5/21) 6765000555753885 a001 17711/3571*(1/2+1/2*5^(1/2))^15 6765000555753885 a001 17711/3571*192900153618^(5/18) 6765000555753885 a001 17711/3571*28143753123^(3/10) 6765000555753885 a001 17711/3571*10749957122^(5/16) 6765000555753885 a001 17711/3571*599074578^(5/14) 6765000555753885 a001 17711/3571*228826127^(3/8) 6765000555753888 a001 17711/3571*33385282^(5/12) 6765000555754863 a001 17711/3571*1860498^(1/2) 6765000555755472 a001 1597/39603*1860498^(5/6) 6765000555770448 a001 514229/3571*24476^(8/21) 6765000555993547 a001 14930352/3571*9349^(1/19) 6765000556147201 a001 17711/3571*103682^(5/8) 6765000556301112 a001 832040/3571*24476^(1/3) 6765000556841547 a001 1346269/3571*24476^(2/7) 6765000557378249 a001 2178309/3571*24476^(5/21) 6765000557916377 a001 3524578/3571*24476^(4/21) 6765000558327808 a001 193864621/28657 6765000558419622 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^20 6765000558453961 a001 1597*24476^(1/7) 6765000558506681 a001 46368/3571*64079^(13/23) 6765000558694785 a001 17711/3571*39603^(15/22) 6765000558991753 a001 9227465/3571*24476^(2/21) 6765000559187436 a001 121393/3571*64079^(11/23) 6765000559385953 a001 196418/3571*64079^(10/23) 6765000559409120 a001 317811/3571*64079^(9/23) 6765000559437770 a001 1597/103682*7881196^(9/11) 6765000559437859 a001 1597/103682*141422324^(9/13) 6765000559437859 a001 1597/103682*2537720636^(3/5) 6765000559437859 a001 1597/103682*45537549124^(9/17) 6765000559437859 a001 1597/103682*817138163596^(9/19) 6765000559437859 a001 1597/103682*14662949395604^(3/7) 6765000559437859 a001 1597/103682*(1/2+1/2*5^(1/2))^27 6765000559437859 a001 1597/103682*192900153618^(1/2) 6765000559437859 a001 1597/103682*10749957122^(9/16) 6765000559437859 a001 1597/103682*599074578^(9/14) 6765000559437863 a001 1597/103682*33385282^(3/4) 6765000559437900 a001 46368/3571*141422324^(1/3) 6765000559437900 a001 46368/3571*(1/2+1/2*5^(1/2))^13 6765000559437900 a001 46368/3571*73681302247^(1/4) 6765000559439618 a001 1597/103682*1860498^(9/10) 6765000559447991 a001 75025/3571*64079^(12/23) 6765000559483808 a001 46368/3571*271443^(1/2) 6765000559499264 a001 514229/3571*64079^(8/23) 6765000559529465 a001 14930352/3571*24476^(1/21) 6765000559563825 a001 832040/3571*64079^(7/23) 6765000559638158 a001 1346269/3571*64079^(6/23) 6765000559708759 a001 2178309/3571*64079^(5/23) 6765000559778774 a001 46368/3571*103682^(13/24) 6765000559780785 a001 3524578/3571*64079^(4/23) 6765000559813395 a001 507544167/75025 6765000559826791 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^22 6765000559852267 a001 1597*64079^(3/23) 6765000559923957 a001 9227465/3571*64079^(2/23) 6765000559975349 a001 1597/271443*(1/2+1/2*5^(1/2))^29 6765000559975349 a001 1597/271443*1322157322203^(1/2) 6765000559975355 a001 121393/3571*7881196^(1/3) 6765000559975391 a001 121393/3571*312119004989^(1/5) 6765000559975391 a001 121393/3571*(1/2+1/2*5^(1/2))^11 6765000559975391 a001 121393/3571*1568397607^(1/4) 6765000559995567 a001 14930352/3571*64079^(1/23) 6765000560006126 a001 196418/3571*167761^(2/5) 6765000560018845 a001 2178309/3571*167761^(1/5) 6765000560030139 a001 664383940/98209 6765000560032094 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^24 6765000560042120 a001 317811/3571*439204^(1/3) 6765000560053768 a001 1597/710647*(1/2+1/2*5^(1/2))^31 6765000560053768 a001 1597/710647*9062201101803^(1/2) 6765000560053780 a001 317811/3571*7881196^(3/11) 6765000560053810 a001 317811/3571*141422324^(3/13) 6765000560053810 a001 317811/3571*2537720636^(1/5) 6765000560053810 a001 317811/3571*45537549124^(3/17) 6765000560053810 a001 317811/3571*817138163596^(3/19) 6765000560053810 a001 317811/3571*14662949395604^(1/7) 6765000560053810 a001 317811/3571*(1/2+1/2*5^(1/2))^9 6765000560053810 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^9/Lucas(17) 6765000560053810 a001 317811/3571*192900153618^(1/6) 6765000560053810 a001 317811/3571*10749957122^(3/16) 6765000560053810 a001 317811/3571*599074578^(3/14) 6765000560053811 a001 317811/3571*33385282^(1/4) 6765000560054396 a001 317811/3571*1860498^(3/10) 6765000560060158 a001 1346269/3571*439204^(2/9) 6765000560061762 a001 3478759473/514229 6765000560062047 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^26 6765000560063267 a001 1597*439204^(1/9) 6765000560065209 a001 1597/1860498*141422324^(11/13) 6765000560065209 a001 1597/1860498*2537720636^(11/15) 6765000560065209 a001 1597/1860498*45537549124^(11/17) 6765000560065209 a001 1597/1860498*312119004989^(3/5) 6765000560065209 a001 1597/1860498*817138163596^(11/19) 6765000560065209 a001 1597/1860498*14662949395604^(11/21) 6765000560065209 a001 1597/1860498*(1/2+1/2*5^(1/2))^33 6765000560065209 a001 1597/1860498*192900153618^(11/18) 6765000560065209 a001 1597/1860498*10749957122^(11/16) 6765000560065209 a001 1597/1860498*1568397607^(3/4) 6765000560065209 a001 1597/1860498*599074578^(11/14) 6765000560065215 a001 1597/1860498*33385282^(11/12) 6765000560065248 a001 832040/3571*20633239^(1/5) 6765000560065251 a001 832040/3571*17393796001^(1/7) 6765000560065251 a001 832040/3571*14662949395604^(1/9) 6765000560065251 a001 832040/3571*(1/2+1/2*5^(1/2))^7 6765000560065251 a001 832040/3571*599074578^(1/6) 6765000560066376 a001 9107510539/1346269 6765000560066417 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^28 6765000560066879 a001 1597/4870847*2537720636^(7/9) 6765000560066879 a001 1597/4870847*17393796001^(5/7) 6765000560066879 a001 1597/4870847*312119004989^(7/11) 6765000560066879 a001 1597/4870847*14662949395604^(5/9) 6765000560066879 a001 1597/4870847*(1/2+1/2*5^(1/2))^35 6765000560066879 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(32) 6765000560066879 a001 1597/4870847*505019158607^(5/8) 6765000560066879 a001 1597/4870847*28143753123^(7/10) 6765000560066879 a001 1597/4870847*599074578^(5/6) 6765000560066879 a001 1597/4870847*228826127^(7/8) 6765000560066918 a001 2178309/3571*20633239^(1/7) 6765000560066920 a001 2178309/3571*2537720636^(1/9) 6765000560066920 a001 2178309/3571*312119004989^(1/11) 6765000560066920 a001 2178309/3571*(1/2+1/2*5^(1/2))^5 6765000560066920 a001 2178309/3571*28143753123^(1/10) 6765000560066920 a001 2178309/3571*228826127^(1/8) 6765000560067049 a001 11921886072/1762289 6765000560067055 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^30 6765000560067122 a001 1597/12752043*(1/2+1/2*5^(1/2))^37 6765000560067147 a001 62423805893/9227465 6765000560067148 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^32 6765000560067154 a001 1597*7881196^(1/11) 6765000560067158 a001 1597/33385282*2537720636^(13/15) 6765000560067158 a001 1597/33385282*45537549124^(13/17) 6765000560067158 a001 1597/33385282*14662949395604^(13/21) 6765000560067158 a001 1597/33385282*(1/2+1/2*5^(1/2))^39 6765000560067158 a001 1597/33385282*192900153618^(13/18) 6765000560067158 a001 1597/33385282*73681302247^(3/4) 6765000560067158 a001 1597/33385282*10749957122^(13/16) 6765000560067158 a001 1597/33385282*599074578^(13/14) 6765000560067161 a001 163427645535/24157817 6765000560067161 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^34 6765000560067163 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(38) 6765000560067163 a001 213929565356/31622993 6765000560067163 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^36 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(40) 6765000560067164 a001 1120149746601/165580141 6765000560067164 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^38 6765000560067164 a001 1597*141422324^(1/13) 6765000560067164 a001 1597/599074578*45537549124^(15/17) 6765000560067164 a001 1597/599074578*312119004989^(9/11) 6765000560067164 a001 1597/599074578*14662949395604^(5/7) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(42) 6765000560067164 a001 1597/599074578*192900153618^(5/6) 6765000560067164 a001 1597/599074578*28143753123^(9/10) 6765000560067164 a001 1597/599074578*10749957122^(15/16) 6765000560067164 a001 2932590109091/433494437 6765000560067164 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^40 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(44) 6765000560067164 a001 3838810290336/567451585 6765000560067164 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^42 6765000560067164 a001 1597/4106118243*14662949395604^(7/9) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(46) 6765000560067164 a001 1597/4106118243*505019158607^(7/8) 6765000560067164 a001 20100271632925/2971215073 6765000560067164 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^44 6765000560067164 a001 1597*2537720636^(1/15) 6765000560067164 a001 1597/10749957122*817138163596^(17/19) 6765000560067164 a001 1597/10749957122*14662949395604^(17/21) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(48) 6765000560067164 a001 1597/10749957122*192900153618^(17/18) 6765000560067164 a001 52623194318103/7778742049 6765000560067164 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^46 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(50) 6765000560067164 a001 43133785636/6376021 6765000560067164 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^48 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(52) 6765000560067164 a001 1597/73681302247*3461452808002^(11/12) 6765000560067164 a001 360684739646049/53316291173 6765000560067164 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^50 6765000560067164 a001 1597*45537549124^(1/17) 6765000560067164 a001 1597/192900153618*14662949395604^(19/21) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(54) 6765000560067164 a001 944284907616763/139583862445 6765000560067164 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^52 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(56) 6765000560067164 a001 1236084991602120/182717648081 6765000560067164 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^54 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(58) 6765000560067164 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^56 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(60) 6765000560067164 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^58 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(62) 6765000560067164 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^60 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(64) 6765000560067164 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^62 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(66) 6765000560067164 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^64 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(68) 6765000560067164 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^66 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(70) 6765000560067164 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^68 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(72) 6765000560067164 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^70 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(74) 6765000560067164 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^72 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(76) 6765000560067164 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^74 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(78) 6765000560067164 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^76 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(80) 6765000560067164 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^78 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(82) 6765000560067164 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^80 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(84) 6765000560067164 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^82 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(86) 6765000560067164 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^84 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(88) 6765000560067164 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^86 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^93/Lucas(90) 6765000560067164 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^88 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^95/Lucas(92) 6765000560067164 a004 Fibonacci(17)*Lucas(93)/(1/2+sqrt(5)/2)^90 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^97/Lucas(94) 6765000560067164 a004 Fibonacci(17)*Lucas(95)/(1/2+sqrt(5)/2)^92 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^99/Lucas(96) 6765000560067164 a004 Fibonacci(17)*Lucas(97)/(1/2+sqrt(5)/2)^94 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^3/Lucas(1) 6765000560067164 a004 Fibonacci(17)*Lucas(100)/(1/2+sqrt(5)/2)^97 6765000560067164 a004 Fibonacci(17)*Lucas(99)/(1/2+sqrt(5)/2)^96 6765000560067164 a004 Fibonacci(17)*Lucas(98)/(1/2+sqrt(5)/2)^95 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^100/Lucas(97) 6765000560067164 a004 Fibonacci(17)*Lucas(96)/(1/2+sqrt(5)/2)^93 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^98/Lucas(95) 6765000560067164 a004 Fibonacci(17)*Lucas(94)/(1/2+sqrt(5)/2)^91 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^96/Lucas(93) 6765000560067164 a004 Fibonacci(17)*Lucas(92)/(1/2+sqrt(5)/2)^89 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^94/Lucas(91) 6765000560067164 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^87 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^92/Lucas(89) 6765000560067164 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^85 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(87) 6765000560067164 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^83 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(85) 6765000560067164 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^81 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(83) 6765000560067164 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^79 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(81) 6765000560067164 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^77 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(79) 6765000560067164 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^75 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(77) 6765000560067164 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^73 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(75) 6765000560067164 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^71 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(73) 6765000560067164 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^69 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(71) 6765000560067164 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^67 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(69) 6765000560067164 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^65 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(67) 6765000560067164 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^63 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(65) 6765000560067164 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^61 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(63) 6765000560067164 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^59 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(61) 6765000560067164 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^57 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(59) 6765000560067164 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^55 6765000560067164 a001 1597*192900153618^(1/18) 6765000560067164 a001 1597/817138163596*14662949395604^(20/21) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(57) 6765000560067164 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^53 6765000560067164 a001 1527885075587477/225851433717 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(55) 6765000560067164 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^51 6765000560067164 a001 291800083985357/43133785636 6765000560067164 a001 1597/119218851371*14662949395604^(8/9) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(53) 6765000560067164 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^49 6765000560067164 a001 222915428324665/32951280099 6765000560067164 a001 1597/45537549124*14662949395604^(6/7) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(51) 6765000560067164 a001 1597*10749957122^(1/16) 6765000560067164 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^47 6765000560067164 a001 85146117003281/12586269025 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(49) 6765000560067164 a001 1597/17393796001*23725150497407^(13/16) 6765000560067164 a001 1597/17393796001*505019158607^(13/14) 6765000560067164 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^45 6765000560067164 a001 16261461342589/2403763488 6765000560067164 a001 1597/6643838879*312119004989^(10/11) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(47) 6765000560067164 a001 1597/6643838879*3461452808002^(5/6) 6765000560067164 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^43 6765000560067164 a001 12422651052253/1836311903 6765000560067164 a001 1597/2537720636*45537549124^(16/17) 6765000560067164 a001 1597/2537720636*14662949395604^(16/21) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(45) 6765000560067164 a001 1597/2537720636*192900153618^(8/9) 6765000560067164 a001 1597/2537720636*73681302247^(12/13) 6765000560067164 a001 1597*599074578^(1/14) 6765000560067164 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^41 6765000560067164 a001 4745030471581/701408733 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(43) 6765000560067164 a001 1597/969323029*10749957122^(23/24) 6765000560067164 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^39 6765000560067164 a001 906220181245/133957148 6765000560067164 a001 1597/370248451*312119004989^(4/5) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(41) 6765000560067164 a001 1597/370248451*23725150497407^(11/16) 6765000560067164 a001 1597/370248451*73681302247^(11/13) 6765000560067164 a001 1597/370248451*10749957122^(11/12) 6765000560067164 a001 1597/370248451*4106118243^(22/23) 6765000560067164 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^37 6765000560067164 a001 692290615889/102334155 6765000560067164 a001 1597/141422324*2537720636^(14/15) 6765000560067164 a001 1597/141422324*17393796001^(6/7) 6765000560067164 a001 1597/141422324*45537549124^(14/17) 6765000560067164 a001 1597/141422324*817138163596^(14/19) 6765000560067164 a001 1597/141422324*14662949395604^(2/3) 6765000560067164 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(39) 6765000560067164 a001 1597/141422324*505019158607^(3/4) 6765000560067164 a001 1597/141422324*192900153618^(7/9) 6765000560067164 a001 1597/141422324*10749957122^(7/8) 6765000560067164 a001 1597/141422324*4106118243^(21/23) 6765000560067164 a001 1597/141422324*1568397607^(21/22) 6765000560067164 a001 1597*33385282^(1/12) 6765000560067165 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^35 6765000560067165 a001 264431485177/39088169 6765000560067166 a001 1597/54018521*2537720636^(8/9) 6765000560067166 a001 1597/54018521*312119004989^(8/11) 6765000560067166 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(37) 6765000560067166 a001 1597/54018521*23725150497407^(5/8) 6765000560067166 a001 1597/54018521*73681302247^(10/13) 6765000560067166 a001 1597/54018521*28143753123^(4/5) 6765000560067166 a001 1597/54018521*10749957122^(5/6) 6765000560067166 a001 1597/54018521*4106118243^(20/23) 6765000560067166 a001 1597/54018521*1568397607^(10/11) 6765000560067166 a001 1597/54018521*599074578^(20/21) 6765000560067170 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^33 6765000560067170 a001 50501919821/7465176 6765000560067180 a001 1597/20633239*817138163596^(2/3) 6765000560067180 a001 1597/20633239*(1/2+1/2*5^(1/2))^38 6765000560067180 a001 1597/20633239*10749957122^(19/24) 6765000560067180 a001 1597/20633239*4106118243^(19/23) 6765000560067180 a001 1597/20633239*1568397607^(19/22) 6765000560067180 a001 1597/20633239*599074578^(19/21) 6765000560067180 a001 1597/20633239*228826127^(19/20) 6765000560067199 a001 7465176/3571+7465176/3571*5^(1/2) 6765000560067204 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2) 6765000560067205 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^3 6765000560067205 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^5 6765000560067205 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^7 6765000560067205 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^9 6765000560067205 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^11 6765000560067205 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^13 6765000560067205 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^15 6765000560067205 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^17 6765000560067205 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^19 6765000560067205 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^21 6765000560067205 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^23 6765000560067205 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^25 6765000560067205 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^27 6765000560067205 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^29 6765000560067205 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^31 6765000560067205 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^33 6765000560067205 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^35 6765000560067205 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^37 6765000560067205 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^39 6765000560067205 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^41 6765000560067205 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^43 6765000560067205 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^45 6765000560067205 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^47 6765000560067205 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^49 6765000560067205 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^51 6765000560067205 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^53 6765000560067205 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^55 6765000560067205 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^57 6765000560067205 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^59 6765000560067205 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^61 6765000560067205 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^63 6765000560067205 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^62 6765000560067205 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^60 6765000560067205 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^58 6765000560067205 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^56 6765000560067205 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^54 6765000560067205 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^52 6765000560067205 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^50 6765000560067205 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^48 6765000560067205 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^46 6765000560067205 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^44 6765000560067205 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^42 6765000560067205 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^40 6765000560067205 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^38 6765000560067205 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^36 6765000560067205 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^34 6765000560067205 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^32 6765000560067205 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^30 6765000560067205 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^28 6765000560067205 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^26 6765000560067205 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^24 6765000560067205 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^22 6765000560067205 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^20 6765000560067205 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^18 6765000560067205 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^16 6765000560067205 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^14 6765000560067205 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^12 6765000560067205 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^10 6765000560067205 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^8 6765000560067205 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^6 6765000560067205 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^4 6765000560067206 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^2 6765000560067208 a001 24157817/3571 6765000560067221 a001 9227465/3571*(1/2+1/2*5^(1/2))^2 6765000560067221 a001 9227465/3571*10749957122^(1/24) 6765000560067221 a001 9227465/3571*4106118243^(1/23) 6765000560067221 a001 9227465/3571*1568397607^(1/22) 6765000560067221 a001 9227465/3571*599074578^(1/21) 6765000560067221 a001 9227465/3571*228826127^(1/20) 6765000560067221 a001 9227465/3571*87403803^(1/19) 6765000560067221 a001 9227465/3571*33385282^(1/18) 6765000560067224 a001 9227465/3571*12752043^(1/17) 6765000560067239 a001 9227465/3571*4870847^(1/16) 6765000560067246 a001 2178309/3571*1860498^(1/6) 6765000560067272 a001 1597/7881196*141422324^(12/13) 6765000560067273 a001 1597/7881196*2537720636^(4/5) 6765000560067273 a001 1597/7881196*45537549124^(12/17) 6765000560067273 a001 1597/7881196*14662949395604^(4/7) 6765000560067273 a001 1597/7881196*(1/2+1/2*5^(1/2))^36 6765000560067273 a001 1597/7881196*505019158607^(9/14) 6765000560067273 a001 1597/7881196*192900153618^(2/3) 6765000560067273 a001 1597/7881196*73681302247^(9/13) 6765000560067273 a001 1597/7881196*10749957122^(3/4) 6765000560067273 a001 1597/7881196*4106118243^(18/23) 6765000560067273 a001 1597/7881196*1568397607^(9/11) 6765000560067273 a001 1597/7881196*599074578^(6/7) 6765000560067273 a001 1597/7881196*228826127^(9/10) 6765000560067273 a001 1597/7881196*87403803^(18/19) 6765000560067314 a001 3524578/3571*(1/2+1/2*5^(1/2))^4 6765000560067314 a001 3524578/3571*23725150497407^(1/16) 6765000560067314 a001 3524578/3571*73681302247^(1/13) 6765000560067314 a001 3524578/3571*10749957122^(1/12) 6765000560067314 a001 3524578/3571*4106118243^(2/23) 6765000560067314 a001 3524578/3571*1568397607^(1/11) 6765000560067314 a001 3524578/3571*599074578^(2/21) 6765000560067314 a001 3524578/3571*228826127^(1/10) 6765000560067314 a001 3524578/3571*87403803^(2/19) 6765000560067315 a001 3524578/3571*33385282^(1/9) 6765000560067319 a001 3524578/3571*12752043^(2/17) 6765000560067350 a001 3524578/3571*4870847^(1/8) 6765000560067351 a001 9227465/3571*1860498^(1/15) 6765000560067359 a001 1597*1860498^(1/10) 6765000560067449 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^29 6765000560067465 a001 14736261605/2178309 6765000560067575 a001 3524578/3571*1860498^(2/15) 6765000560067910 a001 1597/3010349*45537549124^(2/3) 6765000560067910 a001 1597/3010349*(1/2+1/2*5^(1/2))^34 6765000560067910 a001 1597/3010349*10749957122^(17/24) 6765000560067910 a001 1597/3010349*4106118243^(17/23) 6765000560067910 a001 1597/3010349*1568397607^(17/22) 6765000560067910 a001 1597/3010349*599074578^(17/21) 6765000560067910 a001 1597/3010349*228826127^(17/20) 6765000560067911 a001 1597/3010349*87403803^(17/19) 6765000560067916 a001 1597/3010349*33385282^(17/18) 6765000560067932 a001 1346269/3571*7881196^(2/11) 6765000560067952 a001 1346269/3571*141422324^(2/13) 6765000560067952 a001 1346269/3571*2537720636^(2/15) 6765000560067952 a001 1346269/3571*45537549124^(2/17) 6765000560067952 a001 1346269/3571*14662949395604^(2/21) 6765000560067952 a001 1346269/3571*(1/2+1/2*5^(1/2))^6 6765000560067952 a001 1346269/3571*10749957122^(1/8) 6765000560067952 a001 1346269/3571*4106118243^(3/23) 6765000560067952 a001 1346269/3571*1568397607^(3/22) 6765000560067952 a001 1346269/3571*599074578^(1/7) 6765000560067952 a001 1346269/3571*228826127^(3/20) 6765000560067952 a001 1346269/3571*87403803^(3/19) 6765000560067953 a001 1346269/3571*33385282^(1/6) 6765000560067959 a001 1346269/3571*12752043^(3/17) 6765000560068005 a001 1346269/3571*4870847^(3/16) 6765000560068178 a001 9227465/3571*710647^(1/14) 6765000560068343 a001 1346269/3571*1860498^(1/5) 6765000560068600 a001 832040/3571*710647^(1/4) 6765000560069118 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^27 6765000560069227 a001 2814375533/416020 6765000560069228 a001 3524578/3571*710647^(1/7) 6765000560070822 a001 1346269/3571*710647^(3/14) 6765000560072280 a001 1597/1149851*(1/2+1/2*5^(1/2))^32 6765000560072280 a001 1597/1149851*23725150497407^(1/2) 6765000560072280 a001 1597/1149851*505019158607^(4/7) 6765000560072280 a001 1597/1149851*73681302247^(8/13) 6765000560072280 a001 1597/1149851*10749957122^(2/3) 6765000560072280 a001 1597/1149851*4106118243^(16/23) 6765000560072280 a001 1597/1149851*1568397607^(8/11) 6765000560072280 a001 1597/1149851*599074578^(16/21) 6765000560072280 a001 1597/1149851*228826127^(4/5) 6765000560072281 a001 1597/1149851*87403803^(16/19) 6765000560072286 a001 1597/1149851*33385282^(8/9) 6765000560072319 a001 1597/1149851*12752043^(16/17) 6765000560072322 a001 514229/3571*(1/2+1/2*5^(1/2))^8 6765000560072322 a001 514229/3571*23725150497407^(1/8) 6765000560072322 a001 514229/3571*505019158607^(1/7) 6765000560072322 a001 514229/3571*73681302247^(2/13) 6765000560072322 a001 514229/3571*10749957122^(1/6) 6765000560072322 a001 514229/3571*4106118243^(4/23) 6765000560072322 a001 514229/3571*1568397607^(2/11) 6765000560072322 a001 514229/3571*599074578^(4/21) 6765000560072322 a001 514229/3571*228826127^(1/5) 6765000560072322 a001 514229/3571*87403803^(4/19) 6765000560072323 a001 514229/3571*33385282^(2/9) 6765000560072332 a001 514229/3571*12752043^(4/17) 6765000560072393 a001 514229/3571*4870847^(1/4) 6765000560072843 a001 514229/3571*1860498^(4/15) 6765000560074284 a001 9227465/3571*271443^(1/13) 6765000560076149 a001 514229/3571*710647^(2/7) 6765000560080559 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^25 6765000560081306 a001 2149991593/317811 6765000560081439 a001 3524578/3571*271443^(2/13) 6765000560089140 a001 1346269/3571*271443^(3/13) 6765000560093420 a001 14930352/3571*103682^(1/24) 6765000560100572 a001 514229/3571*271443^(4/13) 6765000560102135 a001 1597/439204*7881196^(10/11) 6765000560102220 a001 1597/439204*20633239^(6/7) 6765000560102233 a001 1597/439204*141422324^(10/13) 6765000560102234 a001 1597/439204*2537720636^(2/3) 6765000560102234 a001 1597/439204*45537549124^(10/17) 6765000560102234 a001 1597/439204*312119004989^(6/11) 6765000560102234 a001 1597/439204*14662949395604^(10/21) 6765000560102234 a001 1597/439204*(1/2+1/2*5^(1/2))^30 6765000560102234 a001 1597/439204*192900153618^(5/9) 6765000560102234 a001 1597/439204*28143753123^(3/5) 6765000560102234 a001 1597/439204*10749957122^(5/8) 6765000560102234 a001 1597/439204*4106118243^(15/23) 6765000560102234 a001 1597/439204*1568397607^(15/22) 6765000560102234 a001 1597/439204*599074578^(5/7) 6765000560102234 a001 1597/439204*228826127^(3/4) 6765000560102234 a001 1597/439204*87403803^(15/19) 6765000560102239 a001 1597/439204*33385282^(5/6) 6765000560102270 a001 1597/439204*12752043^(15/17) 6765000560102271 a001 196418/3571*20633239^(2/7) 6765000560102275 a001 196418/3571*2537720636^(2/9) 6765000560102275 a001 196418/3571*312119004989^(2/11) 6765000560102275 a001 196418/3571*(1/2+1/2*5^(1/2))^10 6765000560102275 a001 196418/3571*28143753123^(1/5) 6765000560102275 a001 196418/3571*10749957122^(5/24) 6765000560102275 a001 196418/3571*4106118243^(5/23) 6765000560102275 a001 196418/3571*1568397607^(5/22) 6765000560102275 a001 196418/3571*599074578^(5/21) 6765000560102275 a001 196418/3571*228826127^(1/4) 6765000560102275 a001 196418/3571*87403803^(5/19) 6765000560102277 a001 196418/3571*33385282^(5/18) 6765000560102287 a001 196418/3571*12752043^(5/17) 6765000560102364 a001 196418/3571*4870847^(5/16) 6765000560102501 a001 1597/439204*4870847^(15/16) 6765000560102927 a001 196418/3571*1860498^(1/3) 6765000560107059 a001 196418/3571*710647^(5/14) 6765000560119663 a001 9227465/3571*103682^(1/12) 6765000560137588 a001 196418/3571*271443^(5/13) 6765000560145827 a001 1597*103682^(1/8) 6765000560158978 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^23 6765000560164095 a001 821223713/121393 6765000560172198 a001 3524578/3571*103682^(1/6) 6765000560198025 a001 2178309/3571*103682^(5/24) 6765000560225278 a001 1346269/3571*103682^(1/4) 6765000560248798 a001 832040/3571*103682^(7/24) 6765000560263259 a001 14930352/3571*39603^(1/22) 6765000560263822 a001 121393/3571*103682^(11/24) 6765000560282090 a001 514229/3571*103682^(1/3) 6765000560289799 a001 317811/3571*103682^(3/8) 6765000560291992 a001 75025/3571*439204^(4/9) 6765000560307524 a001 1597/167761*20633239^(4/5) 6765000560307537 a001 1597/167761*17393796001^(4/7) 6765000560307537 a001 1597/167761*14662949395604^(4/9) 6765000560307537 a001 1597/167761*(1/2+1/2*5^(1/2))^28 6765000560307537 a001 1597/167761*505019158607^(1/2) 6765000560307537 a001 1597/167761*73681302247^(7/13) 6765000560307537 a001 1597/167761*10749957122^(7/12) 6765000560307537 a001 1597/167761*4106118243^(14/23) 6765000560307537 a001 1597/167761*1568397607^(7/11) 6765000560307537 a001 1597/167761*599074578^(2/3) 6765000560307537 a001 1597/167761*228826127^(7/10) 6765000560307537 a001 1597/167761*87403803^(14/19) 6765000560307539 a001 75025/3571*7881196^(4/11) 6765000560307541 a001 1597/167761*33385282^(7/9) 6765000560307571 a001 1597/167761*12752043^(14/17) 6765000560307578 a001 75025/3571*141422324^(4/13) 6765000560307578 a001 75025/3571*2537720636^(4/15) 6765000560307578 a001 75025/3571*45537549124^(4/17) 6765000560307578 a001 75025/3571*817138163596^(4/19) 6765000560307578 a001 75025/3571*14662949395604^(4/21) 6765000560307578 a001 75025/3571*(1/2+1/2*5^(1/2))^12 6765000560307578 a001 75025/3571*192900153618^(2/9) 6765000560307578 a001 75025/3571*73681302247^(3/13) 6765000560307578 a001 75025/3571*10749957122^(1/4) 6765000560307578 a001 75025/3571*4106118243^(6/23) 6765000560307578 a001 75025/3571*1568397607^(3/11) 6765000560307578 a001 75025/3571*599074578^(2/7) 6765000560307578 a001 75025/3571*228826127^(3/10) 6765000560307579 a001 75025/3571*87403803^(6/19) 6765000560307580 a001 75025/3571*33385282^(1/3) 6765000560307593 a001 75025/3571*12752043^(6/17) 6765000560307685 a001 75025/3571*4870847^(3/8) 6765000560307786 a001 1597/167761*4870847^(7/8) 6765000560308360 a001 75025/3571*1860498^(2/5) 6765000560309361 a001 1597/167761*1860498^(14/15) 6765000560313319 a001 75025/3571*710647^(3/7) 6765000560349954 a001 75025/3571*271443^(6/13) 6765000560364486 a001 196418/3571*103682^(5/12) 6765000560459341 a001 9227465/3571*39603^(1/11) 6765000560622231 a001 75025/3571*103682^(1/2) 6765000560655344 a001 1597*39603^(3/22) 6765000560696469 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^21 6765000560711895 a001 28657/3571*64079^(14/23) 6765000560731538 a001 156839773/23184 6765000560851554 a001 3524578/3571*39603^(2/11) 6765000561047220 a001 2178309/3571*39603^(5/22) 6765000561244312 a001 1346269/3571*39603^(3/11) 6765000561437671 a001 832040/3571*39603^(7/22) 6765000561545396 a001 14930352/3571*15127^(1/20) 6765000561640802 a001 514229/3571*39603^(4/11) 6765000561684642 a001 9227465/24476*2207^(3/8) 6765000561714705 a001 1597/64079*141422324^(2/3) 6765000561714705 a001 1597/64079*(1/2+1/2*5^(1/2))^26 6765000561714705 a001 1597/64079*73681302247^(1/2) 6765000561714705 a001 1597/64079*10749957122^(13/24) 6765000561714705 a001 1597/64079*4106118243^(13/23) 6765000561714705 a001 1597/64079*1568397607^(13/22) 6765000561714705 a001 1597/64079*599074578^(13/21) 6765000561714705 a001 1597/64079*228826127^(13/20) 6765000561714706 a001 1597/64079*87403803^(13/19) 6765000561714710 a001 1597/64079*33385282^(13/18) 6765000561714737 a001 1597/64079*12752043^(13/17) 6765000561714740 a001 28657/3571*20633239^(2/5) 6765000561714747 a001 28657/3571*17393796001^(2/7) 6765000561714747 a001 28657/3571*14662949395604^(2/9) 6765000561714747 a001 28657/3571*(1/2+1/2*5^(1/2))^14 6765000561714747 a001 28657/3571*505019158607^(1/4) 6765000561714747 a001 28657/3571*10749957122^(7/24) 6765000561714747 a001 28657/3571*4106118243^(7/23) 6765000561714747 a001 28657/3571*1568397607^(7/22) 6765000561714747 a001 28657/3571*599074578^(1/3) 6765000561714747 a001 28657/3571*228826127^(7/20) 6765000561714747 a001 28657/3571*87403803^(7/19) 6765000561714749 a001 28657/3571*33385282^(7/18) 6765000561714764 a001 28657/3571*12752043^(7/17) 6765000561714872 a001 28657/3571*4870847^(7/16) 6765000561714937 a001 1597/64079*4870847^(13/16) 6765000561715659 a001 28657/3571*1860498^(7/15) 6765000561716399 a001 1597/64079*1860498^(13/15) 6765000561721445 a001 28657/3571*710647^(1/2) 6765000561727144 a001 1597/64079*710647^(13/14) 6765000561764185 a001 28657/3571*271443^(7/13) 6765000561818350 a001 317811/3571*39603^(9/22) 6765000561986680 a001 46368/3571*39603^(13/22) 6765000562062875 a001 196418/3571*39603^(5/11) 6765000562081841 a001 28657/3571*103682^(7/12) 6765000562132051 a001 121393/3571*39603^(1/2) 6765000562660298 a001 75025/3571*39603^(6/11) 6765000562755876 a001 10946/3571*24476^(16/21) 6765000563023615 a001 9227465/3571*15127^(1/10) 6765000564140856 a001 4181/3571*9349^(18/19) 6765000564380484 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^19 6765000564459587 a001 28657/3571*39603^(7/11) 6765000564501754 a001 1597*15127^(3/20) 6765000564620857 a001 119814925/17711 6765000565980101 a001 3524578/3571*15127^(1/5) 6765000567457904 a001 2178309/3571*15127^(1/4) 6765000568937132 a001 1346269/3571*15127^(3/10) 6765000570213507 a001 10946/3571*64079^(16/23) 6765000570412628 a001 832040/3571*15127^(7/20) 6765000571319506 m001 (Zeta(5)-Sarnak)/(Trott+ZetaP(2)) 6765000571324656 a001 14930352/3571*5778^(1/18) 6765000571328408 a001 1597/24476*439204^(8/9) 6765000571359502 a001 1597/24476*7881196^(8/11) 6765000571359581 a001 1597/24476*141422324^(8/13) 6765000571359582 a001 1597/24476*2537720636^(8/15) 6765000571359582 a001 1597/24476*45537549124^(8/17) 6765000571359582 a001 1597/24476*14662949395604^(8/21) 6765000571359582 a001 1597/24476*(1/2+1/2*5^(1/2))^24 6765000571359582 a001 1597/24476*192900153618^(4/9) 6765000571359582 a001 1597/24476*73681302247^(6/13) 6765000571359582 a001 1597/24476*10749957122^(1/2) 6765000571359582 a001 1597/24476*4106118243^(12/23) 6765000571359582 a001 1597/24476*1568397607^(6/11) 6765000571359582 a001 1597/24476*599074578^(4/7) 6765000571359582 a001 1597/24476*228826127^(3/5) 6765000571359582 a001 1597/24476*87403803^(12/19) 6765000571359586 a001 1597/24476*33385282^(2/3) 6765000571359611 a001 1597/24476*12752043^(12/17) 6765000571359623 a001 10946/3571*(1/2+1/2*5^(1/2))^16 6765000571359623 a001 10946/3571*23725150497407^(1/4) 6765000571359623 a001 10946/3571*73681302247^(4/13) 6765000571359623 a001 10946/3571*10749957122^(1/3) 6765000571359623 a001 10946/3571*4106118243^(8/23) 6765000571359623 a001 10946/3571*1568397607^(4/11) 6765000571359623 a001 10946/3571*599074578^(8/21) 6765000571359623 a001 10946/3571*228826127^(2/5) 6765000571359624 a001 10946/3571*87403803^(8/19) 6765000571359626 a001 10946/3571*33385282^(4/9) 6765000571359643 a001 10946/3571*12752043^(8/17) 6765000571359766 a001 10946/3571*4870847^(1/2) 6765000571359796 a001 1597/24476*4870847^(3/4) 6765000571360666 a001 10946/3571*1860498^(8/15) 6765000571361145 a001 1597/24476*1860498^(4/5) 6765000571367278 a001 10946/3571*710647^(4/7) 6765000571371064 a001 1597/24476*710647^(6/7) 6765000571416124 a001 10946/3571*271443^(8/13) 6765000571444333 a001 1597/24476*271443^(12/13) 6765000571779160 a001 10946/3571*103682^(2/3) 6765000571897896 a001 514229/3571*15127^(2/5) 6765000573357580 a001 317811/3571*15127^(9/20) 6765000574496583 a001 10946/3571*39603^(8/11) 6765000574884242 a001 196418/3571*15127^(1/2) 6765000576235555 a001 121393/3571*15127^(11/20) 6765000577831581 a001 28657/322*18^(40/57) 6765000577926836 a001 17711/3571*15127^(3/4) 6765000578045939 a001 75025/3571*15127^(3/5) 6765000578654458 a001 46368/3571*15127^(13/20) 6765000581805831 a001 1/322*(1/2*5^(1/2)+1/2)^6*3^(3/17) 6765000582409501 a001 28657/3571*15127^(7/10) 6765000582582134 a001 9227465/3571*5778^(1/9) 6765000588884675 m001 (MertensB3+OneNinth)/(Artin-FeigenbaumAlpha) 6765000589631098 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^17 6765000591278640 a001 45765229/6765 6765000593839533 a001 1597*5778^(1/6) 6765000595010771 a001 10946/3571*15127^(4/5) 6765000605097140 a001 3524578/3571*5778^(2/9) 6765000606132096 a007 Real Root Of 262*x^4-316*x^3+480*x^2+988*x+296 6765000607633099 a001 3524578/15127*2207^(7/16) 6765000608177257 a001 514229/5778*2207^(9/16) 6765000615921461 m005 (1/3*Zeta(3)-2/11)/(4*Catalan-3/7) 6765000616354203 a001 2178309/3571*5778^(5/18) 6765000624382955 a007 Real Root Of -473*x^4+880*x^3+98*x^2+305*x+533 6765000627612691 a001 1346269/3571*5778^(1/3) 6765000627787374 a001 4181/3571*24476^(6/7) 6765000627791702 a001 3524578/9349*2207^(3/8) 6765000628898340 r005 Re(z^2+c),c=13/50+25/61*I,n=21 6765000630028675 a003 sin(Pi*25/107)/sin(Pi*51/112) 6765000632883621 a001 9227465/39603*2207^(7/16) 6765000635890640 a001 1597/9349*64079^(22/23) 6765000636177209 a001 4181/3571*64079^(18/23) 6765000636567622 a001 24157817/103682*2207^(7/16) 6765000637105111 a001 63245986/271443*2207^(7/16) 6765000637183529 a001 165580141/710647*2207^(7/16) 6765000637194970 a001 433494437/1860498*2207^(7/16) 6765000637196639 a001 1134903170/4870847*2207^(7/16) 6765000637196883 a001 2971215073/12752043*2207^(7/16) 6765000637196919 a001 7778742049/33385282*2207^(7/16) 6765000637196924 a001 20365011074/87403803*2207^(7/16) 6765000637196924 a001 53316291173/228826127*2207^(7/16) 6765000637196925 a001 139583862445/599074578*2207^(7/16) 6765000637196925 a001 365435296162/1568397607*2207^(7/16) 6765000637196925 a001 956722026041/4106118243*2207^(7/16) 6765000637196925 a001 2504730781961/10749957122*2207^(7/16) 6765000637196925 a001 6557470319842/28143753123*2207^(7/16) 6765000637196925 a001 10610209857723/45537549124*2207^(7/16) 6765000637196925 a001 4052739537881/17393796001*2207^(7/16) 6765000637196925 a001 1548008755920/6643838879*2207^(7/16) 6765000637196925 a001 591286729879/2537720636*2207^(7/16) 6765000637196925 a001 225851433717/969323029*2207^(7/16) 6765000637196925 a001 86267571272/370248451*2207^(7/16) 6765000637196925 a001 63246219/271444*2207^(7/16) 6765000637196927 a001 12586269025/54018521*2207^(7/16) 6765000637196940 a001 4807526976/20633239*2207^(7/16) 6765000637197033 a001 1836311903/7881196*2207^(7/16) 6765000637197671 a001 701408733/3010349*2207^(7/16) 6765000637202041 a001 267914296/1149851*2207^(7/16) 6765000637231994 a001 102334155/439204*2207^(7/16) 6765000637437297 a001 39088169/167761*2207^(7/16) 6765000637443210 a001 4181/3571*439204^(2/3) 6765000637466476 a001 1597/9349*7881196^(2/3) 6765000637466530 a001 4181/3571*7881196^(6/11) 6765000637466549 a001 1597/9349*312119004989^(2/5) 6765000637466549 a001 1597/9349*(1/2+1/2*5^(1/2))^22 6765000637466549 a001 1597/9349*10749957122^(11/24) 6765000637466549 a001 1597/9349*4106118243^(11/23) 6765000637466549 a001 1597/9349*1568397607^(1/2) 6765000637466549 a001 1597/9349*599074578^(11/21) 6765000637466549 a001 1597/9349*228826127^(11/20) 6765000637466550 a001 1597/9349*87403803^(11/19) 6765000637466553 a001 1597/9349*33385282^(11/18) 6765000637466576 a001 1597/9349*12752043^(11/17) 6765000637466590 a001 4181/3571*141422324^(6/13) 6765000637466590 a001 4181/3571*2537720636^(2/5) 6765000637466590 a001 4181/3571*45537549124^(6/17) 6765000637466590 a001 4181/3571*14662949395604^(2/7) 6765000637466590 a001 4181/3571*(1/2+1/2*5^(1/2))^18 6765000637466590 a001 4181/3571*192900153618^(1/3) 6765000637466590 a001 4181/3571*10749957122^(3/8) 6765000637466590 a001 4181/3571*4106118243^(9/23) 6765000637466590 a001 4181/3571*1568397607^(9/22) 6765000637466590 a001 4181/3571*599074578^(3/7) 6765000637466590 a001 4181/3571*228826127^(9/20) 6765000637466590 a001 4181/3571*87403803^(9/19) 6765000637466593 a001 4181/3571*33385282^(1/2) 6765000637466612 a001 4181/3571*12752043^(9/17) 6765000637466745 a001 1597/9349*4870847^(11/16) 6765000637466750 a001 4181/3571*4870847^(9/16) 6765000637467762 a001 4181/3571*1860498^(3/5) 6765000637467982 a001 1597/9349*1860498^(11/15) 6765000637475201 a001 4181/3571*710647^(9/14) 6765000637477074 a001 1597/9349*710647^(11/14) 6765000637530154 a001 4181/3571*271443^(9/13) 6765000637544238 a001 1597/9349*271443^(11/13) 6765000637938568 a001 4181/3571*103682^(3/4) 6765000638043412 a001 1597/9349*103682^(11/12) 6765000638844460 a001 14930352/64079*2207^(7/16) 6765000638867447 a001 832040/3571*5778^(7/18) 6765000640995670 a001 4181/3571*39603^(9/11) 6765000641441089 a007 Real Root Of -241*x^4+155*x^3+922*x^2+750*x-55 6765000646871916 a001 14930352/3571*2207^(1/16) 6765000648489301 a001 5702887/24476*2207^(7/16) 6765000650131974 a001 514229/3571*5778^(4/9) 6765000661370919 a001 317811/3571*5778^(1/2) 6765000664074131 a001 4181/3571*15127^(9/10) 6765000672676841 a001 196418/3571*5778^(5/9) 6765000679668479 a007 Real Root Of -732*x^4+683*x^3+389*x^2-347*x-48 6765000679963428 a001 63245986/15127*843^(1/14) 6765000680578911 a001 3524578/2207*843^(3/14) 6765000683807413 a001 121393/3571*5778^(11/18) 6765000694437422 a001 311187/2161*2207^(1/2) 6765000694963462 a001 105937/1926*2207^(5/8) 6765000695397057 a001 75025/3571*5778^(2/3) 6765000705214042 a001 165580141/39603*843^(1/14) 6765000705784836 a001 46368/3571*5778^(13/18) 6765000708898057 a001 433494437/103682*843^(1/14) 6765000709207368 a007 Real Root Of -819*x^4+762*x^3+339*x^2+511*x+598 6765000709435548 a001 1134903170/271443*843^(1/14) 6765000709513967 a001 2971215073/710647*843^(1/14) 6765000709525408 a001 7778742049/1860498*843^(1/14) 6765000709527077 a001 20365011074/4870847*843^(1/14) 6765000709527320 a001 53316291173/12752043*843^(1/14) 6765000709527356 a001 139583862445/33385282*843^(1/14) 6765000709527361 a001 365435296162/87403803*843^(1/14) 6765000709527362 a001 956722026041/228826127*843^(1/14) 6765000709527362 a001 2504730781961/599074578*843^(1/14) 6765000709527362 a001 6557470319842/1568397607*843^(1/14) 6765000709527362 a001 10610209857723/2537720636*843^(1/14) 6765000709527362 a001 4052739537881/969323029*843^(1/14) 6765000709527362 a001 1548008755920/370248451*843^(1/14) 6765000709527362 a001 591286729879/141422324*843^(1/14) 6765000709527364 a001 225851433717/54018521*843^(1/14) 6765000709527378 a001 86267571272/20633239*843^(1/14) 6765000709527471 a001 32951280099/7881196*843^(1/14) 6765000709528109 a001 12586269025/3010349*843^(1/14) 6765000709532479 a001 4807526976/1149851*843^(1/14) 6765000709562432 a001 1836311903/439204*843^(1/14) 6765000709767735 a001 701408733/167761*843^(1/14) 6765000711174904 a001 267914296/64079*843^(1/14) 6765000714596026 a001 2178309/9349*2207^(7/16) 6765000719319139 a001 28657/3571*5778^(7/9) 6765000719688281 a001 5702887/39603*2207^(1/2) 6765000720819780 a001 102334155/24476*843^(1/14) 6765000721880033 a001 6765/3571*5778^(17/18) 6765000723372331 a001 7465176/51841*2207^(1/2) 6765000723909827 a001 39088169/271443*2207^(1/2) 6765000723988247 a001 14619165/101521*2207^(1/2) 6765000723999688 a001 133957148/930249*2207^(1/2) 6765000724001357 a001 701408733/4870847*2207^(1/2) 6765000724001601 a001 1836311903/12752043*2207^(1/2) 6765000724001636 a001 14930208/103681*2207^(1/2) 6765000724001641 a001 12586269025/87403803*2207^(1/2) 6765000724001642 a001 32951280099/228826127*2207^(1/2) 6765000724001642 a001 43133785636/299537289*2207^(1/2) 6765000724001642 a001 32264490531/224056801*2207^(1/2) 6765000724001642 a001 591286729879/4106118243*2207^(1/2) 6765000724001642 a001 774004377960/5374978561*2207^(1/2) 6765000724001642 a001 4052739537881/28143753123*2207^(1/2) 6765000724001642 a001 1515744265389/10525900321*2207^(1/2) 6765000724001642 a001 3278735159921/22768774562*2207^(1/2) 6765000724001642 a001 2504730781961/17393796001*2207^(1/2) 6765000724001642 a001 956722026041/6643838879*2207^(1/2) 6765000724001642 a001 182717648081/1268860318*2207^(1/2) 6765000724001642 a001 139583862445/969323029*2207^(1/2) 6765000724001642 a001 53316291173/370248451*2207^(1/2) 6765000724001643 a001 10182505537/70711162*2207^(1/2) 6765000724001645 a001 7778742049/54018521*2207^(1/2) 6765000724001658 a001 2971215073/20633239*2207^(1/2) 6765000724001751 a001 567451585/3940598*2207^(1/2) 6765000724002389 a001 433494437/3010349*2207^(1/2) 6765000724006759 a001 165580141/1149851*2207^(1/2) 6765000724036713 a001 31622993/219602*2207^(1/2) 6765000724242018 a001 24157817/167761*2207^(1/2) 6765000724615734 a001 17711/3571*5778^(5/6) 6765000725649200 a001 9227465/64079*2207^(1/2) 6765000726057684 r005 Re(z^2+c),c=-121/114+5/37*I,n=6 6765000733676656 a001 9227465/3571*2207^(1/8) 6765000735294170 a001 1762289/12238*2207^(1/2) 6765000738604394 r005 Im(z^2+c),c=-1/34+41/64*I,n=27 6765000742648706 a007 Real Root Of -410*x^4+722*x^3+503*x^2+794*x-905 6765000751478929 a001 10946/3571*5778^(8/9) 6765000758436357 a001 28657/1364*1364^(4/5) 6765000762701383 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^15 6765000773993808 a001 8740381/1292 6765000779629049 h001 (-8*exp(4)-8)/(-6*exp(7)+5) 6765000781243173 a001 1346269/15127*2207^(9/16) 6765000781816646 a001 98209/2889*2207^(11/16) 6765000786926748 a001 4181*843^(1/14) 6765000801401776 a001 1346269/9349*2207^(1/2) 6765000806493150 a001 3524578/39603*2207^(9/16) 6765000807862328 a007 Real Root Of -212*x^4+322*x^3-760*x^2-940*x-144 6765000810177072 a001 9227465/103682*2207^(9/16) 6765000810714549 a001 24157817/271443*2207^(9/16) 6765000810792966 a001 63245986/710647*2207^(9/16) 6765000810804407 a001 165580141/1860498*2207^(9/16) 6765000810806076 a001 433494437/4870847*2207^(9/16) 6765000810806320 a001 1134903170/12752043*2207^(9/16) 6765000810806355 a001 2971215073/33385282*2207^(9/16) 6765000810806360 a001 7778742049/87403803*2207^(9/16) 6765000810806361 a001 20365011074/228826127*2207^(9/16) 6765000810806361 a001 53316291173/599074578*2207^(9/16) 6765000810806361 a001 139583862445/1568397607*2207^(9/16) 6765000810806361 a001 365435296162/4106118243*2207^(9/16) 6765000810806361 a001 956722026041/10749957122*2207^(9/16) 6765000810806361 a001 2504730781961/28143753123*2207^(9/16) 6765000810806361 a001 6557470319842/73681302247*2207^(9/16) 6765000810806361 a001 10610209857723/119218851371*2207^(9/16) 6765000810806361 a001 4052739537881/45537549124*2207^(9/16) 6765000810806361 a001 1548008755920/17393796001*2207^(9/16) 6765000810806361 a001 591286729879/6643838879*2207^(9/16) 6765000810806361 a001 225851433717/2537720636*2207^(9/16) 6765000810806361 a001 86267571272/969323029*2207^(9/16) 6765000810806361 a001 32951280099/370248451*2207^(9/16) 6765000810806362 a001 12586269025/141422324*2207^(9/16) 6765000810806364 a001 4807526976/54018521*2207^(9/16) 6765000810806377 a001 1836311903/20633239*2207^(9/16) 6765000810806470 a001 3524667/39604*2207^(9/16) 6765000810807108 a001 267914296/3010349*2207^(9/16) 6765000810811478 a001 102334155/1149851*2207^(9/16) 6765000810841430 a001 39088169/439204*2207^(9/16) 6765000811046728 a001 14930352/167761*2207^(9/16) 6765000812453861 a001 5702887/64079*2207^(9/16) 6765000820481317 a001 1597*2207^(3/16) 6765000822098495 a001 2178309/24476*2207^(9/16) 6765000822668380 a001 843/514229*89^(6/19) 6765000833659038 a001 38/17*17711^(6/53) 6765000855167382 a007 Real Root Of 930*x^4-475*x^3-551*x^2-914*x-708 6765000859356240 m001 (Magata+ZetaP(4))/(sin(1/5*Pi)+gamma(1)) 6765000868045191 a001 832040/15127*2207^(5/8) 6765000868494481 a001 121393/5778*2207^(3/4) 6765000888203795 a001 832040/9349*2207^(9/16) 6765000893297476 a001 726103/13201*2207^(5/8) 6765000896981735 a001 5702887/103682*2207^(5/8) 6765000897519261 a001 4976784/90481*2207^(5/8) 6765000897597685 a001 39088169/710647*2207^(5/8) 6765000897609127 a001 831985/15126*2207^(5/8) 6765000897610796 a001 267914296/4870847*2207^(5/8) 6765000897611040 a001 233802911/4250681*2207^(5/8) 6765000897611075 a001 1836311903/33385282*2207^(5/8) 6765000897611080 a001 1602508992/29134601*2207^(5/8) 6765000897611081 a001 12586269025/228826127*2207^(5/8) 6765000897611081 a001 10983760033/199691526*2207^(5/8) 6765000897611081 a001 86267571272/1568397607*2207^(5/8) 6765000897611081 a001 75283811239/1368706081*2207^(5/8) 6765000897611081 a001 591286729879/10749957122*2207^(5/8) 6765000897611081 a001 12585437040/228811001*2207^(5/8) 6765000897611081 a001 4052739537881/73681302247*2207^(5/8) 6765000897611081 a001 3536736619241/64300051206*2207^(5/8) 6765000897611081 a001 6557470319842/119218851371*2207^(5/8) 6765000897611081 a001 2504730781961/45537549124*2207^(5/8) 6765000897611081 a001 956722026041/17393796001*2207^(5/8) 6765000897611081 a001 365435296162/6643838879*2207^(5/8) 6765000897611081 a001 139583862445/2537720636*2207^(5/8) 6765000897611081 a001 53316291173/969323029*2207^(5/8) 6765000897611081 a001 20365011074/370248451*2207^(5/8) 6765000897611082 a001 7778742049/141422324*2207^(5/8) 6765000897611084 a001 2971215073/54018521*2207^(5/8) 6765000897611097 a001 1134903170/20633239*2207^(5/8) 6765000897611190 a001 433494437/7881196*2207^(5/8) 6765000897611828 a001 165580141/3010349*2207^(5/8) 6765000897616198 a001 63245986/1149851*2207^(5/8) 6765000897646154 a001 24157817/439204*2207^(5/8) 6765000897851470 a001 9227465/167761*2207^(5/8) 6765000899258732 a001 3524578/64079*2207^(5/8) 6765000907286188 a001 3524578/3571*2207^(1/4) 6765000908904246 a001 1346269/24476*2207^(5/8) 6765000949209947 a008 Real Root of (5+6*x-11*x^2-13*x^3) 6765000954856983 a001 514229/15127*2207^(11/16) 6765000955548391 b008 BarnesG[1+2^Pi] 6765000955631390 a001 75025/5778*2207^(13/16) 6765000960413360 r005 Im(z^2+c),c=-3/50+49/59*I,n=26 6765000960481028 a001 47/121393*2584^(23/35) 6765000964990838 a007 Real Root Of -743*x^4+575*x^3-898*x^2-774*x+221 6765000971955436 a007 Real Root Of 196*x^4-608*x^3+234*x^2-736*x+538 6765000975015587 a001 514229/9349*2207^(5/8) 6765000980103229 a001 1346269/39603*2207^(11/16) 6765000981663553 m001 (MinimumGamma+Porter)/(GolombDickman-Shi(1)) 6765000983786606 a001 1762289/51841*2207^(11/16) 6765000984324004 a001 9227465/271443*2207^(11/16) 6765000984402409 a001 24157817/710647*2207^(11/16) 6765000984413848 a001 31622993/930249*2207^(11/16) 6765000984415517 a001 165580141/4870847*2207^(11/16) 6765000984415761 a001 433494437/12752043*2207^(11/16) 6765000984415796 a001 567451585/16692641*2207^(11/16) 6765000984415801 a001 2971215073/87403803*2207^(11/16) 6765000984415802 a001 7778742049/228826127*2207^(11/16) 6765000984415802 a001 10182505537/299537289*2207^(11/16) 6765000984415802 a001 53316291173/1568397607*2207^(11/16) 6765000984415802 a001 139583862445/4106118243*2207^(11/16) 6765000984415802 a001 182717648081/5374978561*2207^(11/16) 6765000984415802 a001 956722026041/28143753123*2207^(11/16) 6765000984415802 a001 2504730781961/73681302247*2207^(11/16) 6765000984415802 a001 3278735159921/96450076809*2207^(11/16) 6765000984415802 a001 10610209857723/312119004989*2207^(11/16) 6765000984415802 a001 4052739537881/119218851371*2207^(11/16) 6765000984415802 a001 387002188980/11384387281*2207^(11/16) 6765000984415802 a001 591286729879/17393796001*2207^(11/16) 6765000984415802 a001 225851433717/6643838879*2207^(11/16) 6765000984415802 a001 1135099622/33391061*2207^(11/16) 6765000984415802 a001 32951280099/969323029*2207^(11/16) 6765000984415802 a001 12586269025/370248451*2207^(11/16) 6765000984415803 a001 1201881744/35355581*2207^(11/16) 6765000984415805 a001 1836311903/54018521*2207^(11/16) 6765000984415818 a001 701408733/20633239*2207^(11/16) 6765000984415911 a001 66978574/1970299*2207^(11/16) 6765000984416549 a001 102334155/3010349*2207^(11/16) 6765000984420918 a001 39088169/1149851*2207^(11/16) 6765000984450866 a001 196452/5779*2207^(11/16) 6765000984656134 a001 5702887/167761*2207^(11/16) 6765000986063059 a001 2178309/64079*2207^(11/16) 6765000992350959 m001 (-Artin+CopelandErdos)/(sin(1)+Zeta(3)) 6765000994090515 a001 2178309/3571*2207^(5/16) 6765000995706267 a001 208010/6119*2207^(11/16) 6765000998226945 a007 Real Root Of 567*x^4-738*x^3-328*x^2-423*x+546 6765000998567822 a001 11592/341*1364^(11/15) 6765001002679443 a008 Real Root of (-7+7*x+3*x^2+3*x^4+6*x^8) 6765001013171225 a001 6677056/987 6765001014358400 m005 (1/3*Pi-1/2)/(7/8*2^(1/2)-3/7) 6765001016883694 r005 Im(z^2+c),c=8/27+9/20*I,n=44 6765001035340075 m001 (Artin-Conway*Gompertz)/Gompertz 6765001041566434 a001 2576/321*2207^(7/8) 6765001041643193 a001 317811/15127*2207^(3/4) 6765001061801797 a001 317811/9349*2207^(11/16) 6765001066905250 a001 832040/39603*2207^(3/4) 6765001070590934 a001 46347/2206*2207^(3/4) 6765001071128669 a001 5702887/271443*2207^(3/4) 6765001071207123 a001 14930352/710647*2207^(3/4) 6765001071218569 a001 39088169/1860498*2207^(3/4) 6765001071220239 a001 102334155/4870847*2207^(3/4) 6765001071220483 a001 267914296/12752043*2207^(3/4) 6765001071220518 a001 701408733/33385282*2207^(3/4) 6765001071220524 a001 1836311903/87403803*2207^(3/4) 6765001071220524 a001 102287808/4868641*2207^(3/4) 6765001071220525 a001 12586269025/599074578*2207^(3/4) 6765001071220525 a001 32951280099/1568397607*2207^(3/4) 6765001071220525 a001 86267571272/4106118243*2207^(3/4) 6765001071220525 a001 225851433717/10749957122*2207^(3/4) 6765001071220525 a001 591286729879/28143753123*2207^(3/4) 6765001071220525 a001 1548008755920/73681302247*2207^(3/4) 6765001071220525 a001 4052739537881/192900153618*2207^(3/4) 6765001071220525 a001 225749145909/10745088481*2207^(3/4) 6765001071220525 a001 6557470319842/312119004989*2207^(3/4) 6765001071220525 a001 2504730781961/119218851371*2207^(3/4) 6765001071220525 a001 956722026041/45537549124*2207^(3/4) 6765001071220525 a001 365435296162/17393796001*2207^(3/4) 6765001071220525 a001 139583862445/6643838879*2207^(3/4) 6765001071220525 a001 53316291173/2537720636*2207^(3/4) 6765001071220525 a001 20365011074/969323029*2207^(3/4) 6765001071220525 a001 7778742049/370248451*2207^(3/4) 6765001071220525 a001 2971215073/141422324*2207^(3/4) 6765001071220527 a001 1134903170/54018521*2207^(3/4) 6765001071220540 a001 433494437/20633239*2207^(3/4) 6765001071220634 a001 165580141/7881196*2207^(3/4) 6765001071221271 a001 63245986/3010349*2207^(3/4) 6765001071225644 a001 24157817/1149851*2207^(3/4) 6765001071255610 a001 9227465/439204*2207^(3/4) 6765001071461007 a001 3524578/167761*2207^(3/4) 6765001072868813 a001 1346269/64079*2207^(3/4) 6765001079815794 a001 1597/3571*24476^(20/21) 6765001080896269 a001 1346269/3571*2207^(3/8) 6765001082518060 a001 514229/24476*2207^(3/4) 6765001083849329 a001 7/3*4181^(6/47) 6765001084858811 g001 Psi(4/7,63/94) 6765001087482246 r002 4th iterates of z^2 + 6765001089137834 a001 1597/3571*64079^(20/23) 6765001090378181 a001 1597/3571*167761^(4/5) 6765001090570470 a001 1597/3571*20633239^(4/7) 6765001090570479 a001 1597/3571*2537720636^(4/9) 6765001090570479 a001 1597/3571*(1/2+1/2*5^(1/2))^20 6765001090570479 a001 1597/3571*23725150497407^(5/16) 6765001090570479 a001 1597/3571*505019158607^(5/14) 6765001090570479 a001 1597/3571*73681302247^(5/13) 6765001090570479 a001 1597/3571*28143753123^(2/5) 6765001090570479 a001 1597/3571*10749957122^(5/12) 6765001090570479 a001 1597/3571*4106118243^(10/23) 6765001090570479 a001 1597/3571*1568397607^(5/11) 6765001090570479 a001 1597/3571*599074578^(10/21) 6765001090570479 a001 1597/3571*228826127^(1/2) 6765001090570480 a001 1597/3571*87403803^(10/19) 6765001090570482 a001 1597/3571*33385282^(5/9) 6765001090570504 a001 1597/3571*12752043^(10/17) 6765001090570657 a001 1597/3571*4870847^(5/8) 6765001090571782 a001 1597/3571*1860498^(2/3) 6765001090580047 a001 1597/3571*710647^(5/7) 6765001090641106 a001 1597/3571*271443^(10/13) 6765001091094900 a001 1597/3571*103682^(5/6) 6765001094491679 a001 1597/3571*39603^(10/11) 6765001128496381 a001 196418/15127*2207^(13/16) 6765001130648003 a001 28657/5778*2207^(15/16) 6765001137893071 a001 53316291173/3*123^(5/18) 6765001145754929 a007 Real Root Of -56*x^4+514*x^3-799*x^2-969*x-119 6765001148654986 a001 196418/9349*2207^(3/4) 6765001153717044 a001 514229/39603*2207^(13/16) 6765001157396689 a001 1346269/103682*2207^(13/16) 6765001157933542 a001 3524578/271443*2207^(13/16) 6765001158011868 a001 9227465/710647*2207^(13/16) 6765001158023296 a001 24157817/1860498*2207^(13/16) 6765001158024963 a001 63245986/4870847*2207^(13/16) 6765001158025206 a001 165580141/12752043*2207^(13/16) 6765001158025242 a001 433494437/33385282*2207^(13/16) 6765001158025247 a001 1134903170/87403803*2207^(13/16) 6765001158025248 a001 2971215073/228826127*2207^(13/16) 6765001158025248 a001 7778742049/599074578*2207^(13/16) 6765001158025248 a001 20365011074/1568397607*2207^(13/16) 6765001158025248 a001 53316291173/4106118243*2207^(13/16) 6765001158025248 a001 139583862445/10749957122*2207^(13/16) 6765001158025248 a001 365435296162/28143753123*2207^(13/16) 6765001158025248 a001 956722026041/73681302247*2207^(13/16) 6765001158025248 a001 2504730781961/192900153618*2207^(13/16) 6765001158025248 a001 10610209857723/817138163596*2207^(13/16) 6765001158025248 a001 4052739537881/312119004989*2207^(13/16) 6765001158025248 a001 1548008755920/119218851371*2207^(13/16) 6765001158025248 a001 591286729879/45537549124*2207^(13/16) 6765001158025248 a001 7787980473/599786069*2207^(13/16) 6765001158025248 a001 86267571272/6643838879*2207^(13/16) 6765001158025248 a001 32951280099/2537720636*2207^(13/16) 6765001158025248 a001 12586269025/969323029*2207^(13/16) 6765001158025248 a001 4807526976/370248451*2207^(13/16) 6765001158025248 a001 1836311903/141422324*2207^(13/16) 6765001158025250 a001 701408733/54018521*2207^(13/16) 6765001158025264 a001 9238424/711491*2207^(13/16) 6765001158025357 a001 102334155/7881196*2207^(13/16) 6765001158025994 a001 39088169/3010349*2207^(13/16) 6765001158030358 a001 14930352/1149851*2207^(13/16) 6765001158060276 a001 5702887/439204*2207^(13/16) 6765001158265336 a001 2178309/167761*2207^(13/16) 6765001159670835 a001 832040/64079*2207^(13/16) 6765001167698292 a001 832040/3571*2207^(7/16) 6765001169304271 a001 10959/844*2207^(13/16) 6765001174087836 p004 log(27701/14083) 6765001186856617 a001 2584*843^(1/7) 6765001196949488 r005 Re(z^2+c),c=-1/90+31/38*I,n=2 6765001207448023 s002 sum(A149468[n]/(16^n),n=1..infinity) 6765001215174221 a001 121393/15127*2207^(7/8) 6765001215805179 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^14 6765001221072641 r002 13th iterates of z^2 + 6765001235332826 a001 121393/9349*2207^(13/16) 6765001240030683 a001 14930352/3571*843^(1/14) 6765001240503257 a001 105937/13201*2207^(7/8) 6765001241845821 a001 75025/1364*1364^(2/3) 6765001244198713 a001 416020/51841*2207^(7/8) 6765001244737873 a001 726103/90481*2207^(7/8) 6765001244816535 a001 5702887/710647*2207^(7/8) 6765001244828012 a001 829464/103361*2207^(7/8) 6765001244829686 a001 39088169/4870847*2207^(7/8) 6765001244829931 a001 34111385/4250681*2207^(7/8) 6765001244829966 a001 133957148/16692641*2207^(7/8) 6765001244829971 a001 233802911/29134601*2207^(7/8) 6765001244829972 a001 1836311903/228826127*2207^(7/8) 6765001244829972 a001 267084832/33281921*2207^(7/8) 6765001244829972 a001 12586269025/1568397607*2207^(7/8) 6765001244829972 a001 10983760033/1368706081*2207^(7/8) 6765001244829972 a001 43133785636/5374978561*2207^(7/8) 6765001244829972 a001 75283811239/9381251041*2207^(7/8) 6765001244829972 a001 591286729879/73681302247*2207^(7/8) 6765001244829972 a001 86000486440/10716675201*2207^(7/8) 6765001244829972 a001 4052739537881/505019158607*2207^(7/8) 6765001244829972 a001 3536736619241/440719107401*2207^(7/8) 6765001244829972 a001 3278735159921/408569081798*2207^(7/8) 6765001244829972 a001 2504730781961/312119004989*2207^(7/8) 6765001244829972 a001 956722026041/119218851371*2207^(7/8) 6765001244829972 a001 182717648081/22768774562*2207^(7/8) 6765001244829972 a001 139583862445/17393796001*2207^(7/8) 6765001244829972 a001 53316291173/6643838879*2207^(7/8) 6765001244829972 a001 10182505537/1268860318*2207^(7/8) 6765001244829972 a001 7778742049/969323029*2207^(7/8) 6765001244829972 a001 2971215073/370248451*2207^(7/8) 6765001244829973 a001 567451585/70711162*2207^(7/8) 6765001244829975 a001 433494437/54018521*2207^(7/8) 6765001244829988 a001 165580141/20633239*2207^(7/8) 6765001244830082 a001 31622993/3940598*2207^(7/8) 6765001244830721 a001 24157817/3010349*2207^(7/8) 6765001244835105 a001 9227465/1149851*2207^(7/8) 6765001244865151 a001 1762289/219602*2207^(7/8) 6765001245071092 a001 1346269/167761*2207^(7/8) 6765001246482631 a001 514229/64079*2207^(7/8) 6765001246603529 a003 sin(Pi*25/91)*sin(Pi*36/103) 6765001254510087 a001 514229/3571*2207^(1/2) 6765001256157461 a001 98209/12238*2207^(7/8) 6765001279790048 a001 521/317811*2178309^(13/51) 6765001302311134 a001 75025/15127*2207^(15/16) 6765001322469739 a001 75025/9349*2207^(7/8) 6765001327356448 a001 196418/39603*2207^(15/16) 6765001331010510 a001 514229/103682*2207^(15/16) 6765001331543630 a001 1346269/271443*2207^(15/16) 6765001331621411 a001 3524578/710647*2207^(15/16) 6765001331632759 a001 9227465/1860498*2207^(15/16) 6765001331634415 a001 24157817/4870847*2207^(15/16) 6765001331634657 a001 63245986/12752043*2207^(15/16) 6765001331634692 a001 165580141/33385282*2207^(15/16) 6765001331634697 a001 433494437/87403803*2207^(15/16) 6765001331634698 a001 1134903170/228826127*2207^(15/16) 6765001331634698 a001 2971215073/599074578*2207^(15/16) 6765001331634698 a001 7778742049/1568397607*2207^(15/16) 6765001331634698 a001 20365011074/4106118243*2207^(15/16) 6765001331634698 a001 53316291173/10749957122*2207^(15/16) 6765001331634698 a001 139583862445/28143753123*2207^(15/16) 6765001331634698 a001 365435296162/73681302247*2207^(15/16) 6765001331634698 a001 956722026041/192900153618*2207^(15/16) 6765001331634698 a001 2504730781961/505019158607*2207^(15/16) 6765001331634698 a001 10610209857723/2139295485799*2207^(15/16) 6765001331634698 a001 4052739537881/817138163596*2207^(15/16) 6765001331634698 a001 140728068720/28374454999*2207^(15/16) 6765001331634698 a001 591286729879/119218851371*2207^(15/16) 6765001331634698 a001 225851433717/45537549124*2207^(15/16) 6765001331634698 a001 86267571272/17393796001*2207^(15/16) 6765001331634698 a001 32951280099/6643838879*2207^(15/16) 6765001331634698 a001 1144206275/230701876*2207^(15/16) 6765001331634698 a001 4807526976/969323029*2207^(15/16) 6765001331634698 a001 1836311903/370248451*2207^(15/16) 6765001331634698 a001 701408733/141422324*2207^(15/16) 6765001331634700 a001 267914296/54018521*2207^(15/16) 6765001331634714 a001 9303105/1875749*2207^(15/16) 6765001331634806 a001 39088169/7881196*2207^(15/16) 6765001331635438 a001 14930352/3010349*2207^(15/16) 6765001331639773 a001 5702887/1149851*2207^(15/16) 6765001331669483 a001 2178309/439204*2207^(15/16) 6765001331873117 a001 75640/15251*2207^(15/16) 6765001333268844 a001 317811/64079*2207^(15/16) 6765001341296301 a001 317811/3571*2207^(9/16) 6765001342835303 a001 121393/24476*2207^(15/16) 6765001359926923 a001 39088169/15127*843^(1/7) 6765001360542013 a001 987*843^(2/7) 6765001384621164 a001 726103/281*322^(1/6) 6765001385177541 a001 34111385/13201*843^(1/7) 6765001388861556 a001 133957148/51841*843^(1/7) 6765001388875487 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^16 6765001389399047 a001 233802911/90481*843^(1/7) 6765001389477466 a001 1836311903/710647*843^(1/7) 6765001389488907 a001 267084832/103361*843^(1/7) 6765001389490576 a001 12586269025/4870847*843^(1/7) 6765001389490819 a001 10983760033/4250681*843^(1/7) 6765001389490855 a001 43133785636/16692641*843^(1/7) 6765001389490860 a001 75283811239/29134601*843^(1/7) 6765001389490861 a001 591286729879/228826127*843^(1/7) 6765001389490861 a001 86000486440/33281921*843^(1/7) 6765001389490861 a001 4052739537881/1568397607*843^(1/7) 6765001389490861 a001 3536736619241/1368706081*843^(1/7) 6765001389490861 a001 3278735159921/1268860318*843^(1/7) 6765001389490861 a001 2504730781961/969323029*843^(1/7) 6765001389490861 a001 956722026041/370248451*843^(1/7) 6765001389490861 a001 182717648081/70711162*843^(1/7) 6765001389490863 a001 139583862445/54018521*843^(1/7) 6765001389490877 a001 53316291173/20633239*843^(1/7) 6765001389490970 a001 10182505537/3940598*843^(1/7) 6765001389491608 a001 7778742049/3010349*843^(1/7) 6765001389495978 a001 2971215073/1149851*843^(1/7) 6765001389525931 a001 567451585/219602*843^(1/7) 6765001389731234 a001 433494437/167761*843^(1/7) 6765001391138403 a001 165580141/64079*843^(1/7) 6765001400783281 a001 31622993/12238*843^(1/7) 6765001408404787 a001 46368/9349*2207^(15/16) 6765001410507728 a007 Real Root Of -102*x^4-753*x^3-515*x^2-734*x-892 6765001414126104 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^18 6765001417810120 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^20 6765001418347610 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^22 6765001418426029 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^24 6765001418437470 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^26 6765001418439139 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^28 6765001418439383 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^30 6765001418439419 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^32 6765001418439424 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^34 6765001418439424 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^36 6765001418439425 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^38 6765001418439425 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^40 6765001418439425 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^42 6765001418439425 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^44 6765001418439425 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^46 6765001418439425 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^48 6765001418439425 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^50 6765001418439425 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^52 6765001418439425 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^54 6765001418439425 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^56 6765001418439425 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^58 6765001418439425 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^60 6765001418439425 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^62 6765001418439425 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^64 6765001418439425 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^66 6765001418439425 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^68 6765001418439425 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^70 6765001418439425 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^72 6765001418439425 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^74 6765001418439425 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^76 6765001418439425 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^78 6765001418439425 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^80 6765001418439425 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^82 6765001418439425 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^84 6765001418439425 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^86 6765001418439425 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^88 6765001418439425 a004 Fibonacci(94)*Lucas(16)/(1/2+sqrt(5)/2)^90 6765001418439425 a004 Fibonacci(96)*Lucas(16)/(1/2+sqrt(5)/2)^92 6765001418439425 a004 Fibonacci(98)*Lucas(16)/(1/2+sqrt(5)/2)^94 6765001418439425 a004 Fibonacci(100)*Lucas(16)/(1/2+sqrt(5)/2)^96 6765001418439425 a004 Fibonacci(99)*Lucas(16)/(1/2+sqrt(5)/2)^95 6765001418439425 a004 Fibonacci(97)*Lucas(16)/(1/2+sqrt(5)/2)^93 6765001418439425 a004 Fibonacci(95)*Lucas(16)/(1/2+sqrt(5)/2)^91 6765001418439425 a004 Fibonacci(93)*Lucas(16)/(1/2+sqrt(5)/2)^89 6765001418439425 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^87 6765001418439425 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^85 6765001418439425 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^83 6765001418439425 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^81 6765001418439425 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^79 6765001418439425 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^77 6765001418439425 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^75 6765001418439425 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^73 6765001418439425 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^71 6765001418439425 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^69 6765001418439425 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^67 6765001418439425 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^65 6765001418439425 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^63 6765001418439425 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^61 6765001418439425 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^59 6765001418439425 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^57 6765001418439425 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^55 6765001418439425 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^53 6765001418439425 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^51 6765001418439425 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^49 6765001418439425 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^47 6765001418439425 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^45 6765001418439425 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^43 6765001418439425 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^41 6765001418439425 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^39 6765001418439425 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^37 6765001418439425 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^35 6765001418439427 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^33 6765001418439440 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^31 6765001418439534 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^29 6765001418439710 a001 2/987*(1/2+1/2*5^(1/2))^36 6765001418440171 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^27 6765001418444541 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^25 6765001418474495 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^23 6765001418679798 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^21 6765001420086966 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^19 6765001428149493 a001 196418/3571*2207^(5/8) 6765001429731844 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^17 6765001445439152 m001 (-Stephens+ThueMorse)/(Riemann3rdZero-sin(1)) 6765001451393747 a007 Real Root Of 315*x^4+288*x^3+94*x^2-797*x-559 6765001466890258 a001 24157817/9349*843^(1/7) 6765001483921963 a001 121393/1364*1364^(3/5) 6765001493774391 m005 (1/2*Zeta(3)-8/9)/(1/4*Zeta(3)+1/8) 6765001495838819 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^15 6765001507622807 a007 Real Root Of -566*x^4-565*x^3-739*x^2+899*x+890 6765001514827337 a001 121393/3571*2207^(11/16) 6765001540994395 h001 (3/7*exp(2)+2/5)/(7/10*exp(2)+1/10) 6765001601964253 a001 75025/3571*2207^(3/4) 6765001624172014 a007 Real Root Of 111*x^4+904*x^3+912*x^2-947*x-749 6765001655028790 a007 Real Root Of -89*x^4-619*x^3-234*x^2-663*x+987 6765001663598076 m001 (2^(1/3))*exp(Si(Pi))^2*GAMMA(1/12)^2 6765001676164934 q001 2018/2983 6765001687899305 a001 46368/3571*2207^(13/16) 6765001690951788 m005 (1/2*gamma+2/5)/(5/7*Catalan+4/11) 6765001701058107 m001 1/BesselK(0,1)^2*ln(TreeGrowth2nd)*Zeta(1/2) 6765001712060462 m001 (Otter-Stephens)/(FeigenbaumB+Khinchin) 6765001726457186 a001 98209/682*1364^(8/15) 6765001748580225 a001 5702887/1364*521^(1/13) 6765001752952058 m001 (-MertensB2+OneNinth)/(CareFree-sin(1)) 6765001776980883 a001 28657/3571*2207^(7/8) 6765001795478124 r005 Re(z^2+c),c=-43/60+6/41*I,n=18 6765001843411828 h001 (9/11*exp(1)+7/10)/(4/7*exp(2)+1/10) 6765001857785634 a007 Real Root Of 823*x^4+398*x^3+122*x^2-476*x-427 6765001857824753 a001 17711/3571*2207^(15/16) 6765001861250543 r005 Im(z^2+c),c=41/122+2/39*I,n=18 6765001861850061 r005 Re(z^2+c),c=-69/70+11/64*I,n=10 6765001866820186 a001 9227465/5778*843^(3/14) 6765001867369532 m001 (Shi(1)+ln(gamma))/(-ZetaP(4)+ZetaQ(4)) 6765001883820818 r005 Re(z^2+c),c=4/19+4/9*I,n=55 6765001886669402 m001 (FeigenbaumMu-GAMMA(5/6)*ZetaP(2))/ZetaP(2) 6765001889420472 l006 ln(5415/5794) 6765001889957504 a007 Real Root Of -103*x^4+615*x^3+745*x^2+361*x-754 6765001892836886 a007 Real Root Of -367*x^4+885*x^3-279*x^2+317*x+693 6765001917215149 a007 Real Root Of 627*x^4-355*x^3+858*x^2+498*x-297 6765001919994258 a001 9227465/3571*843^(1/7) 6765001932624433 m001 (MertensB1+MertensB2)/(1+Catalan) 6765001934819973 r009 Im(z^3+c),c=-7/54+35/47*I,n=40 6765001948942766 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^13 6765001952627515 r005 Re(z^2+c),c=9/50+32/61*I,n=15 6765001957964732 a001 10946/521*521^(12/13) 6765001958056159 a007 Real Root Of -860*x^4+812*x^3+766*x^2+411*x+359 6765001968817067 a001 317811/1364*1364^(7/15) 6765002021355546 a007 Real Root Of -688*x^4+740*x^3+621*x^2-68*x+43 6765002021566560 r005 Im(z^2+c),c=-1/66+37/59*I,n=8 6765002022189540 h003 exp(Pi*(2^(10/3)-11^(1/7))) 6765002022189540 h008 exp(Pi*(2^(10/3)-11^(1/7))) 6765002026342451 a001 6677057/987 6765002037924355 a007 Real Root Of 286*x^4+179*x^3+811*x^2-274*x-561 6765002039890490 a001 24157817/15127*843^(3/14) 6765002040506609 a001 1346269/2207*843^(5/14) 6765002062005799 m001 ZetaQ(2)^LaplaceLimit/(ZetaQ(2)^ln(2+3^(1/2))) 6765002065141108 a001 63245986/39603*843^(3/14) 6765002068825123 a001 165580141/103682*843^(3/14) 6765002069362614 a001 433494437/271443*843^(3/14) 6765002069441033 a001 1134903170/710647*843^(3/14) 6765002069452474 a001 2971215073/1860498*843^(3/14) 6765002069454143 a001 7778742049/4870847*843^(3/14) 6765002069454387 a001 20365011074/12752043*843^(3/14) 6765002069454422 a001 53316291173/33385282*843^(3/14) 6765002069454428 a001 139583862445/87403803*843^(3/14) 6765002069454428 a001 365435296162/228826127*843^(3/14) 6765002069454428 a001 956722026041/599074578*843^(3/14) 6765002069454428 a001 2504730781961/1568397607*843^(3/14) 6765002069454428 a001 6557470319842/4106118243*843^(3/14) 6765002069454428 a001 10610209857723/6643838879*843^(3/14) 6765002069454428 a001 4052739537881/2537720636*843^(3/14) 6765002069454428 a001 1548008755920/969323029*843^(3/14) 6765002069454429 a001 591286729879/370248451*843^(3/14) 6765002069454429 a001 225851433717/141422324*843^(3/14) 6765002069454431 a001 86267571272/54018521*843^(3/14) 6765002069454444 a001 32951280099/20633239*843^(3/14) 6765002069454537 a001 12586269025/7881196*843^(3/14) 6765002069455175 a001 4807526976/3010349*843^(3/14) 6765002069459545 a001 1836311903/1149851*843^(3/14) 6765002069489498 a001 701408733/439204*843^(3/14) 6765002069694802 a001 267914296/167761*843^(3/14) 6765002071101970 a001 102334155/64079*843^(3/14) 6765002080746848 a001 39088169/24476*843^(3/14) 6765002087679694 a007 Real Root Of 838*x^4-765*x^3-32*x^2-850*x+651 6765002092191971 a007 Real Root Of -889*x^4+642*x^3+35*x^2-96*x+304 6765002099031444 r008 a(0)=8,K{-n^6,-59+27*n^3+57*n^2-24*n} 6765002102443941 g001 GAMMA(4/5,20/53) 6765002106555777 a007 Real Root Of -889*x^4-330*x^3+32*x^2+944*x+708 6765002108555710 a007 Real Root Of -86*x^4-547*x^3+136*x^2-719*x-317 6765002111907646 a007 Real Root Of -664*x^4+826*x^3+177*x^2+834*x+878 6765002118351626 m005 (15/44+1/4*5^(1/2))/(6/11*gamma-2/11) 6765002143331323 r002 3th iterates of z^2 + 6765002146853825 a001 14930352/9349*843^(3/14) 6765002155867091 m005 (1/2*Catalan+1/12)/(1/12*Zeta(3)+7/10) 6765002172711971 m001 (gamma(2)+FeigenbaumC)/(OneNinth+Sierpinski) 6765002177267547 m009 (Psi(1,1/3)+3)/(2*Psi(1,1/3)-5/6) 6765002190929642 m001 (Grothendieck+RenyiParking)/Artin 6765002192847056 r005 Im(z^2+c),c=-34/29+5/63*I,n=9 6765002194865391 r005 Re(z^2+c),c=-7/106+46/59*I,n=17 6765002211243935 a001 514229/1364*1364^(2/5) 6765002211457213 a007 Real Root Of 795*x^4-362*x^3+664*x^2+861*x 6765002247080367 r009 Re(z^3+c),c=-67/114+11/30*I,n=6 6765002248403329 r002 53th iterates of z^2 + 6765002257637295 m001 MertensB2/(BesselJ(0,1)+LandauRamanujan) 6765002266595941 a001 987/1364*24476^(19/21) 6765002275306947 a001 610/2207*64079^(21/23) 6765002275451880 a001 987/1364*64079^(19/23) 6765002276783948 a001 610/2207*439204^(7/9) 6765002276811155 a001 610/2207*7881196^(7/11) 6765002276811215 a001 610/2207*20633239^(3/5) 6765002276811224 a001 610/2207*141422324^(7/13) 6765002276811224 a001 610/2207*2537720636^(7/15) 6765002276811224 a001 610/2207*17393796001^(3/7) 6765002276811224 a001 610/2207*45537549124^(7/17) 6765002276811224 a001 610/2207*14662949395604^(1/3) 6765002276811224 a001 610/2207*(1/2+1/2*5^(1/2))^21 6765002276811224 a001 610/2207*192900153618^(7/18) 6765002276811224 a001 610/2207*10749957122^(7/16) 6765002276811224 a001 610/2207*599074578^(1/2) 6765002276811228 a001 610/2207*33385282^(7/12) 6765002276812592 a001 610/2207*1860498^(7/10) 6765002276812893 a001 987/1364*817138163596^(1/3) 6765002276812893 a001 987/1364*(1/2+1/2*5^(1/2))^19 6765002276812894 a001 987/1364*87403803^(1/2) 6765002276821271 a001 610/2207*710647^(3/4) 6765002277311093 a001 987/1364*103682^(19/24) 6765002277361866 a001 610/2207*103682^(7/8) 6765002280538034 a001 987/1364*39603^(19/22) 6765002280928485 a001 610/2207*39603^(21/22) 6765002296440982 m004 9-(125*Log[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 6765002298544459 m005 (1/2*Pi+3/5)/(4*gamma+9/10) 6765002303144981 m001 (Conway+Rabbit)/(Pi+Zeta(1,-1)) 6765002304898638 a001 987/1364*15127^(19/20) 6765002319819238 a003 cos(Pi*3/109)-cos(Pi*44/111) 6765002336854866 m001 1/BesselK(0,1)^2*(3^(1/3))*ln(Zeta(7)) 6765002408801100 m001 (-Ei(1,1)+Mills)/(Shi(1)-ln(gamma)) 6765002418559442 r009 Im(z^3+c),c=-7/122+29/30*I,n=14 6765002431890677 m001 GAMMA(5/24)/(exp(-Pi)-ln(2)) 6765002433690556 m001 Salem^(2*Pi/GAMMA(5/6)/StolarskyHarborth) 6765002436614291 m001 1/GAMMA(7/24)^2/Catalan^2*exp(Zeta(1/2))^2 6765002449840057 m001 1/Zeta(9)/ln(GAMMA(5/12))^2/sin(Pi/12) 6765002451221346 a007 Real Root Of -521*x^4+282*x^3+175*x^2+440*x+414 6765002453645228 a001 610*1364^(1/3) 6765002490756969 a007 Real Root Of -334*x^4+619*x^3+705*x^2+644*x-880 6765002521432173 q001 2683/3966 6765002533037968 r009 Im(z^3+c),c=-7/122+29/30*I,n=18 6765002539560173 m005 (1/2*Pi+2)/(3/11*Zeta(3)+1/5) 6765002541386560 r005 Re(z^2+c),c=-3/98+8/11*I,n=38 6765002546783744 a001 5702887/5778*843^(2/7) 6765002555544833 r009 Im(z^3+c),c=-7/122+29/30*I,n=20 6765002559830969 r009 Im(z^3+c),c=-7/122+29/30*I,n=26 6765002559845773 r009 Im(z^3+c),c=-7/122+29/30*I,n=32 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=34 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=38 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=40 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=46 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=52 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=54 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=58 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=60 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=64 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=62 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=56 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=50 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=48 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=44 6765002559845804 r009 Im(z^3+c),c=-7/122+29/30*I,n=42 6765002559845805 r009 Im(z^3+c),c=-7/122+29/30*I,n=36 6765002559845984 r009 Im(z^3+c),c=-7/122+29/30*I,n=30 6765002559846787 r009 Im(z^3+c),c=-7/122+29/30*I,n=28 6765002559856765 r009 Im(z^3+c),c=-7/122+29/30*I,n=24 6765002560650959 r009 Im(z^3+c),c=-7/122+29/30*I,n=22 6765002592870315 a007 Real Root Of 98*x^4+629*x^3-364*x^2-986*x-529 6765002599957821 a001 1597*843^(3/14) 6765002602679671 r005 Im(z^2+c),c=-15/62+5/52*I,n=6 6765002607408214 m001 ln(OneNinth)^2*Riemann2ndZero^2*GAMMA(7/24) 6765002607854223 a001 161/1762289*832040^(6/19) 6765002607854949 a001 161/31622993*7778742049^(6/19) 6765002618525799 a007 Real Root Of -75*x^4+905*x^3+229*x^2+344*x-602 6765002643399378 m001 2^(1/2)*Bloch/Paris 6765002648273377 s002 sum(A193860[n]/(16^n),n=1..infinity) 6765002651001993 s002 sum(A211849[n]/(16^n),n=1..infinity) 6765002696056301 a001 1346269/1364*1364^(4/15) 6765002713707769 m001 (GAMMA(7/12)-TreeGrowth2nd)/ln(5) 6765002715391373 b008 -9+3^(-1+Sqrt[3]) 6765002719854115 a001 14930352/15127*843^(2/7) 6765002720467541 a001 832040/2207*843^(3/7) 6765002734729247 m005 (1/2*Catalan-3/5)/(-23/35+1/5*5^(1/2)) 6765002745104742 a001 39088169/39603*843^(2/7) 6765002748788759 a001 102334155/103682*843^(2/7) 6765002749326250 a001 267914296/271443*843^(2/7) 6765002749404669 a001 701408733/710647*843^(2/7) 6765002749416110 a001 1836311903/1860498*843^(2/7) 6765002749417779 a001 4807526976/4870847*843^(2/7) 6765002749418023 a001 12586269025/12752043*843^(2/7) 6765002749418058 a001 32951280099/33385282*843^(2/7) 6765002749418063 a001 86267571272/87403803*843^(2/7) 6765002749418064 a001 225851433717/228826127*843^(2/7) 6765002749418064 a001 591286729879/599074578*843^(2/7) 6765002749418064 a001 1548008755920/1568397607*843^(2/7) 6765002749418064 a001 4052739537881/4106118243*843^(2/7) 6765002749418064 a001 4807525989/4870846*843^(2/7) 6765002749418064 a001 6557470319842/6643838879*843^(2/7) 6765002749418064 a001 2504730781961/2537720636*843^(2/7) 6765002749418064 a001 956722026041/969323029*843^(2/7) 6765002749418064 a001 365435296162/370248451*843^(2/7) 6765002749418065 a001 139583862445/141422324*843^(2/7) 6765002749418067 a001 53316291173/54018521*843^(2/7) 6765002749418080 a001 20365011074/20633239*843^(2/7) 6765002749418173 a001 7778742049/7881196*843^(2/7) 6765002749418811 a001 2971215073/3010349*843^(2/7) 6765002749423181 a001 1134903170/1149851*843^(2/7) 6765002749453134 a001 433494437/439204*843^(2/7) 6765002749658437 a001 165580141/167761*843^(2/7) 6765002751065607 a001 63245986/64079*843^(2/7) 6765002760710488 a001 24157817/24476*843^(2/7) 6765002770020513 a007 Real Root Of 222*x^4+370*x^3+879*x^2-486*x-663 6765002826817491 a001 9227465/9349*843^(2/7) 6765002880648297 m001 (3^(1/3)+Kolakoski)/(Porter+Tribonacci) 6765002905933606 a007 Real Root Of -922*x^4+311*x^3+663*x^2+952*x+630 6765002929914352 r009 Im(z^3+c),c=-7/122+29/30*I,n=16 6765002934021490 a007 Real Root Of 470*x^4-451*x^3+509*x^2-473*x-791 6765002938463651 a001 2178309/1364*1364^(1/5) 6765002939714139 v003 sum((2*n^3-3*n^2-5*n+27)*n!/n^n,n=1..infinity) 6765002957009277 m001 (Ei(1)+MasserGramain)/(Catalan-cos(1)) 6765002971942186 r005 Im(z^2+c),c=-25/36+1/19*I,n=5 6765002991203821 m001 TwinPrimes*GAMMA(11/12)^ZetaP(2) 6765003000927502 m001 Pi/ln(2)*ln(10)*(Catalan+2*Pi/GAMMA(5/6)) 6765003013518057 a007 Real Root Of -111*x^4+353*x^3+795*x^2+250*x-619 6765003029598998 m001 log(2+sqrt(3))^2/GAMMA(13/24)^2*exp(sinh(1))^2 6765003037738804 a007 Real Root Of 949*x^4+171*x^3+952*x^2+255*x-409 6765003047289630 r005 Im(z^2+c),c=-7/23+32/49*I,n=29 6765003111882434 r005 Im(z^2+c),c=-17/31+4/33*I,n=43 6765003130870381 a001 10803710/1597 6765003135183661 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^12 6765003168033846 a001 615/124*3571^(15/17) 6765003180872436 a001 1762289/682*1364^(2/15) 6765003187308681 a007 Real Root Of -32*x^4+191*x^3+764*x^2+331*x-626 6765003188646728 p004 log(12689/6451) 6765003213656159 r009 Re(z^3+c),c=-9/118+47/63*I,n=57 6765003218973546 a007 Real Root Of -464*x^4+547*x^3-135*x^2+171*x+444 6765003226747578 a001 1762289/2889*843^(5/14) 6765003240096303 a001 5473/682*3571^(14/17) 6765003243243073 r009 Re(z^3+c),c=-4/31+43/62*I,n=39 6765003243791118 a001 4181/1364*3571^(16/17) 6765003255696647 a001 17711/1364*3571^(13/17) 6765003259530283 a007 Real Root Of 45*x^4-20*x^3+67*x^2-480*x-371 6765003272495539 r005 Re(z^2+c),c=37/98+7/38*I,n=24 6765003279921660 a001 3524578/3571*843^(2/7) 6765003290638103 a005 (1/cos(4/209*Pi))^1057 6765003292863600 a001 28657/1364*3571^(12/17) 6765003300981563 m001 MasserGramainDelta-MertensB3^PlouffeB 6765003321792841 a001 11592/341*3571^(11/17) 6765003353554136 m001 (Ei(1,1)-ArtinRank2)/(QuadraticClass-ZetaP(3)) 6765003353868609 a001 75025/1364*3571^(10/17) 6765003370646538 a007 Real Root Of 455*x^4+467*x^3+640*x^2-209*x-385 6765003377229197 m001 ln(Pi^(1/2)+DuboisRaymond) 6765003384742510 a001 121393/1364*3571^(9/17) 6765003393802710 a001 646/341*9349^(17/19) 6765003399817838 a001 9227465/15127*843^(5/14) 6765003400438313 a001 514229/2207*843^(1/2) 6765003412231037 r005 Im(z^2+c),c=-1/31+25/37*I,n=12 6765003416075484 a001 98209/682*3571^(8/17) 6765003419503060 m001 (Rabbit+Trott)/(ln(2)/ln(10)+LandauRamanujan) 6765003423280684 a001 5702887/1364*1364^(1/15) 6765003425068449 a001 24157817/39603*843^(5/14) 6765003428752463 a001 31622993/51841*843^(5/14) 6765003429289954 a001 165580141/271443*843^(5/14) 6765003429368373 a001 433494437/710647*843^(5/14) 6765003429379814 a001 567451585/930249*843^(5/14) 6765003429381483 a001 2971215073/4870847*843^(5/14) 6765003429381727 a001 7778742049/12752043*843^(5/14) 6765003429381762 a001 10182505537/16692641*843^(5/14) 6765003429381767 a001 53316291173/87403803*843^(5/14) 6765003429381768 a001 139583862445/228826127*843^(5/14) 6765003429381768 a001 182717648081/299537289*843^(5/14) 6765003429381768 a001 956722026041/1568397607*843^(5/14) 6765003429381768 a001 2504730781961/4106118243*843^(5/14) 6765003429381768 a001 3278735159921/5374978561*843^(5/14) 6765003429381768 a001 10610209857723/17393796001*843^(5/14) 6765003429381768 a001 4052739537881/6643838879*843^(5/14) 6765003429381768 a001 1134903780/1860499*843^(5/14) 6765003429381768 a001 591286729879/969323029*843^(5/14) 6765003429381768 a001 225851433717/370248451*843^(5/14) 6765003429381769 a001 21566892818/35355581*843^(5/14) 6765003429381771 a001 32951280099/54018521*843^(5/14) 6765003429381784 a001 1144206275/1875749*843^(5/14) 6765003429381877 a001 1201881744/1970299*843^(5/14) 6765003429382515 a001 1836311903/3010349*843^(5/14) 6765003429386885 a001 701408733/1149851*843^(5/14) 6765003429416838 a001 66978574/109801*843^(5/14) 6765003429622141 a001 9303105/15251*843^(5/14) 6765003431029310 a001 39088169/64079*843^(5/14) 6765003440674185 a001 3732588/6119*843^(5/14) 6765003447233108 a001 317811/1364*3571^(7/17) 6765003453913335 a001 646/341*24476^(17/21) 6765003461837072 a001 646/341*64079^(17/23) 6765003463052872 a001 305/2889*(1/2+1/2*5^(1/2))^23 6765003463052872 a001 305/2889*4106118243^(1/2) 6765003463054821 a001 646/341*45537549124^(1/3) 6765003463054821 a001 646/341*(1/2+1/2*5^(1/2))^17 6765003463054841 a001 646/341*12752043^(1/2) 6765003463500578 a001 646/341*103682^(17/24) 6765003463655956 a001 305/2889*103682^(23/24) 6765003466387842 a001 646/341*39603^(17/22) 6765003473959540 a003 cos(Pi*14/39)+cos(Pi*29/69) 6765003478457710 a001 514229/1364*3571^(6/17) 6765003488184176 a001 646/341*15127^(17/20) 6765003506781145 a001 5702887/9349*843^(5/14) 6765003509656728 a001 610*3571^(5/17) 6765003515195933 r005 Re(z^2+c),c=-23/22+21/113*I,n=64 6765003521085699 m001 (exp(1)-gamma)/(Zeta(3)+ReciprocalLucas) 6765003528581526 a007 Real Root Of -116*x^4-835*x^3-456*x^2-832*x-320 6765003538558708 a001 5778/13*1346269^(27/52) 6765003540865519 a001 1346269/1364*3571^(4/17) 6765003550716609 m001 GAMMA(2/3)^2/Magata/exp(Zeta(5))^2 6765003551268079 m001 GolombDickman*(BesselI(1,1)-exp(1/2)) 6765003552249426 b008 -2+(2+Pi^(-1))^(1/3) 6765003572070577 a001 2178309/1364*3571^(3/17) 6765003572860530 m001 (Zeta(5)-LandauRamanujan2nd)/(Robbin+Trott) 6765003575020380 a001 615/124*9349^(15/19) 6765003580430118 r005 Re(z^2+c),c=19/64+5/12*I,n=42 6765003587658454 a001 28284480/4181 6765003588287759 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^14 6765003599800340 r005 Re(z^2+c),c=45/122+43/64*I,n=11 6765003603277061 a001 1762289/682*3571^(2/17) 6765003608418313 a001 17711/1364*9349^(13/19) 6765003618452831 a001 28657/1364*9349^(12/19) 6765003619950405 a001 5473/682*9349^(14/19) 6765003620249637 a001 11592/341*9349^(11/19) 6765003625192969 a001 75025/1364*9349^(10/19) 6765003628059169 a001 615/124*24476^(5/7) 6765003628934435 a001 121393/1364*9349^(9/19) 6765003633134974 a001 98209/682*9349^(8/19) 6765003634483001 a001 5702887/1364*3571^(1/17) 6765003635050701 a001 615/124*64079^(15/23) 6765003635980961 a001 615/124*167761^(3/5) 6765003636105702 a001 615/124*439204^(5/9) 6765003636123220 a001 610/15127*20633239^(5/7) 6765003636123231 a001 610/15127*2537720636^(5/9) 6765003636123231 a001 610/15127*312119004989^(5/11) 6765003636123231 a001 610/15127*(1/2+1/2*5^(1/2))^25 6765003636123231 a001 610/15127*3461452808002^(5/12) 6765003636123231 a001 610/15127*28143753123^(1/2) 6765003636123231 a001 610/15127*228826127^(5/8) 6765003636124860 a001 610/15127*1860498^(5/6) 6765003636125136 a001 615/124*7881196^(5/11) 6765003636125179 a001 615/124*20633239^(3/7) 6765003636125185 a001 615/124*141422324^(5/13) 6765003636125185 a001 615/124*2537720636^(1/3) 6765003636125185 a001 615/124*45537549124^(5/17) 6765003636125185 a001 615/124*312119004989^(3/11) 6765003636125185 a001 615/124*14662949395604^(5/21) 6765003636125185 a001 615/124*(1/2+1/2*5^(1/2))^15 6765003636125185 a001 615/124*192900153618^(5/18) 6765003636125185 a001 615/124*28143753123^(3/10) 6765003636125185 a001 615/124*10749957122^(5/16) 6765003636125185 a001 615/124*599074578^(5/14) 6765003636125185 a001 615/124*228826127^(3/8) 6765003636125188 a001 615/124*33385282^(5/12) 6765003636126163 a001 615/124*1860498^(1/2) 6765003636518501 a001 615/124*103682^(5/8) 6765003637160162 a001 317811/1364*9349^(7/19) 6765003639066087 a001 615/124*39603^(15/22) 6765003641252328 a001 514229/1364*9349^(6/19) 6765003645318910 a001 610*9349^(5/19) 6765003649395265 a001 1346269/1364*9349^(4/19) 6765003649405369 a007 Real Root Of -168*x^4+549*x^3-77*x^2+468*x+557 6765003653467887 a001 2178309/1364*9349^(3/19) 6765003654302941 a001 37024865/5473 6765003654385264 a001 17711/1364*24476^(13/21) 6765003654394756 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^16 6765003654431665 a001 646/341*5778^(17/18) 6765003657541935 a001 1762289/682*9349^(2/19) 6765003658298146 a001 615/124*15127^(3/4) 6765003659144749 a001 11592/341*24476^(11/21) 6765003660444592 a001 17711/1364*64079^(13/23) 6765003660552162 a001 75025/1364*24476^(10/21) 6765003660757709 a001 121393/1364*24476^(3/7) 6765003660883862 a001 28657/1364*24476^(4/7) 6765003661373768 a001 610/39603*7881196^(9/11) 6765003661373857 a001 610/39603*141422324^(9/13) 6765003661373857 a001 610/39603*2537720636^(3/5) 6765003661373857 a001 610/39603*45537549124^(9/17) 6765003661373857 a001 610/39603*817138163596^(9/19) 6765003661373857 a001 610/39603*14662949395604^(3/7) 6765003661373857 a001 610/39603*(1/2+1/2*5^(1/2))^27 6765003661373857 a001 610/39603*192900153618^(1/2) 6765003661373857 a001 610/39603*10749957122^(9/16) 6765003661373857 a001 610/39603*599074578^(9/14) 6765003661373861 a001 610/39603*33385282^(3/4) 6765003661375616 a001 610/39603*1860498^(9/10) 6765003661375811 a001 17711/1364*141422324^(1/3) 6765003661375811 a001 17711/1364*(1/2+1/2*5^(1/2))^13 6765003661375811 a001 17711/1364*73681302247^(1/4) 6765003661421719 a001 17711/1364*271443^(1/2) 6765003661422328 a001 98209/682*24476^(8/21) 6765003661615438 a001 5702887/1364*9349^(1/19) 6765003661716685 a001 17711/1364*103682^(13/24) 6765003661911597 a001 317811/1364*24476^(1/3) 6765003662467843 a001 514229/1364*24476^(2/7) 6765003662998507 a001 610*24476^(5/21) 6765003663538942 a001 1346269/1364*24476^(4/21) 6765003663924592 a001 17711/1364*39603^(13/22) 6765003664026241 a001 193864710/28657 6765003664039636 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^18 6765003664075645 a001 2178309/1364*24476^(1/7) 6765003664271873 a001 11592/341*64079^(11/23) 6765003664613773 a001 1762289/682*24476^(2/21) 6765003664952628 a001 121393/1364*64079^(9/23) 6765003665057874 a001 305/51841*(1/2+1/2*5^(1/2))^29 6765003665057874 a001 305/51841*1322157322203^(1/2) 6765003665059792 a001 11592/341*7881196^(1/3) 6765003665059828 a001 11592/341*312119004989^(1/5) 6765003665059828 a001 11592/341*(1/2+1/2*5^(1/2))^11 6765003665059828 a001 11592/341*1568397607^(1/4) 6765003665151145 a001 98209/682*64079^(8/23) 6765003665151357 a001 5702887/1364*24476^(1/21) 6765003665174312 a001 317811/1364*64079^(7/23) 6765003665213184 a001 75025/1364*64079^(10/23) 6765003665264456 a001 514229/1364*64079^(6/23) 6765003665329017 a001 610*64079^(5/23) 6765003665348260 a001 11592/341*103682^(11/24) 6765003665403351 a001 1346269/1364*64079^(4/23) 6765003665444851 a001 20301776/3001 6765003665446806 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^20 6765003665473951 a001 2178309/1364*64079^(3/23) 6765003665545978 a001 1762289/682*64079^(2/23) 6765003665585629 a001 121393/1364*439204^(1/3) 6765003665595364 a001 610/271443*(1/2+1/2*5^(1/2))^31 6765003665595364 a001 610/271443*9062201101803^(1/2) 6765003665597289 a001 121393/1364*7881196^(3/11) 6765003665597319 a001 121393/1364*141422324^(3/13) 6765003665597319 a001 121393/1364*2537720636^(1/5) 6765003665597319 a001 121393/1364*45537549124^(3/17) 6765003665597319 a001 121393/1364*817138163596^(3/19) 6765003665597319 a001 121393/1364*14662949395604^(1/7) 6765003665597319 a001 121393/1364*(1/2+1/2*5^(1/2))^9 6765003665597319 a001 121393/1364*192900153618^(1/6) 6765003665597319 a001 121393/1364*10749957122^(3/16) 6765003665597319 a001 121393/1364*599074578^(3/14) 6765003665597320 a001 121393/1364*33385282^(1/4) 6765003665597905 a001 121393/1364*1860498^(3/10) 6765003665617459 a001 5702887/1364*64079^(1/23) 6765003665639104 a001 610*167761^(1/5) 6765003665651824 a001 664384245/98209 6765003665652109 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^22 6765003665673783 a001 610/710647*141422324^(11/13) 6765003665673783 a001 610/710647*2537720636^(11/15) 6765003665673783 a001 610/710647*45537549124^(11/17) 6765003665673783 a001 610/710647*312119004989^(3/5) 6765003665673783 a001 610/710647*817138163596^(11/19) 6765003665673783 a001 610/710647*14662949395604^(11/21) 6765003665673783 a001 610/710647*(1/2+1/2*5^(1/2))^33 6765003665673783 a001 610/710647*192900153618^(11/18) 6765003665673783 a001 610/710647*10749957122^(11/16) 6765003665673783 a001 610/710647*1568397607^(3/4) 6765003665673783 a001 610/710647*599074578^(11/14) 6765003665673789 a001 610/710647*33385282^(11/12) 6765003665675734 a001 317811/1364*20633239^(1/5) 6765003665675738 a001 317811/1364*17393796001^(1/7) 6765003665675738 a001 317811/1364*14662949395604^(1/9) 6765003665675738 a001 317811/1364*(1/2+1/2*5^(1/2))^7 6765003665675738 a001 317811/1364*599074578^(1/6) 6765003665679087 a001 317811/1364*710647^(1/4) 6765003665682021 a001 3478761070/514229 6765003665682062 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^24 6765003665684951 a001 2178309/1364*439204^(1/9) 6765003665685224 a001 305/930249*2537720636^(7/9) 6765003665685224 a001 305/930249*17393796001^(5/7) 6765003665685224 a001 305/930249*312119004989^(7/11) 6765003665685224 a001 305/930249*14662949395604^(5/9) 6765003665685224 a001 305/930249*(1/2+1/2*5^(1/2))^35 6765003665685224 a001 305/930249*505019158607^(5/8) 6765003665685224 a001 305/930249*28143753123^(7/10) 6765003665685224 a001 305/930249*599074578^(5/6) 6765003665685225 a001 305/930249*228826127^(7/8) 6765003665686426 a001 9107514720/1346269 6765003665686432 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^26 6765003665686456 a001 514229/1364*439204^(2/9) 6765003665686894 a001 610/4870847*(1/2+1/2*5^(1/2))^37 6765003665687069 a001 11921891545/1762289 6765003665687070 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^28 6765003665687137 a001 610/12752043*2537720636^(13/15) 6765003665687137 a001 610/12752043*45537549124^(13/17) 6765003665687137 a001 610/12752043*14662949395604^(13/21) 6765003665687137 a001 610/12752043*(1/2+1/2*5^(1/2))^39 6765003665687137 a001 610/12752043*192900153618^(13/18) 6765003665687137 a001 610/12752043*73681302247^(3/4) 6765003665687137 a001 610/12752043*10749957122^(13/16) 6765003665687137 a001 610/12752043*599074578^(13/14) 6765003665687163 a001 12484766910/1845493 6765003665687163 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^30 6765003665687173 a001 305/16692641*(1/2+1/2*5^(1/2))^41 6765003665687176 a001 163427720560/24157817 6765003665687176 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^32 6765003665687177 a001 610*20633239^(1/7) 6765003665687178 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(38) 6765003665687178 a001 213929663565/31622993 6765003665687178 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^34 6765003665687179 a001 610/228826127*45537549124^(15/17) 6765003665687179 a001 610/228826127*312119004989^(9/11) 6765003665687179 a001 610/228826127*14662949395604^(5/7) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(40) 6765003665687179 a001 610/228826127*192900153618^(5/6) 6765003665687179 a001 610/228826127*28143753123^(9/10) 6765003665687179 a001 610/228826127*10749957122^(15/16) 6765003665687179 a001 1120150260830/165580141 6765003665687179 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^36 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(42) 6765003665687179 a001 2932591455360/433494437 6765003665687179 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^38 6765003665687179 a001 610/1568397607*14662949395604^(7/9) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(44) 6765003665687179 a001 610/1568397607*505019158607^(7/8) 6765003665687179 a001 12586269025/1860497 6765003665687179 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^40 6765003665687179 a001 610/4106118243*817138163596^(17/19) 6765003665687179 a001 610/4106118243*14662949395604^(17/21) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(46) 6765003665687179 a001 610/4106118243*192900153618^(17/18) 6765003665687179 a001 20100280860390/2971215073 6765003665687179 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^42 6765003665687179 a001 610*2537720636^(1/9) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(48) 6765003665687179 a001 52623218475920/7778742049 6765003665687179 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^44 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(50) 6765003665687179 a001 610/28143753123*3461452808002^(11/12) 6765003665687179 a001 68884687283685/10182505537 6765003665687179 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^46 6765003665687179 a001 610/73681302247*14662949395604^(19/21) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(52) 6765003665687179 a001 360684905226190/53316291173 6765003665687179 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^48 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(54) 6765003665687179 a001 188857068222240/27916772489 6765003665687179 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^50 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(56) 6765003665687179 a001 1236085559053705/182717648081 6765003665687179 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^52 6765003665687179 a001 610*312119004989^(1/11) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(58) 6765003665687179 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^54 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(60) 6765003665687179 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^56 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(62) 6765003665687179 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^58 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(64) 6765003665687179 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^60 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(66) 6765003665687179 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^62 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(68) 6765003665687179 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^64 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(70) 6765003665687179 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^66 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(72) 6765003665687179 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^68 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(74) 6765003665687179 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^70 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(76) 6765003665687179 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^72 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(78) 6765003665687179 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^74 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(80) 6765003665687179 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^76 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(82) 6765003665687179 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^78 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(84) 6765003665687179 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^80 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(86) 6765003665687179 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^82 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^93/Lucas(88) 6765003665687179 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^84 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^95/Lucas(90) 6765003665687179 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^86 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^97/Lucas(92) 6765003665687179 a004 Fibonacci(15)*Lucas(93)/(1/2+sqrt(5)/2)^88 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^99/Lucas(94) 6765003665687179 a004 Fibonacci(15)*Lucas(95)/(1/2+sqrt(5)/2)^90 6765003665687179 a004 Fibonacci(15)*Lucas(97)/(1/2+sqrt(5)/2)^92 6765003665687179 a004 Fibonacci(15)*Lucas(100)/(1/2+sqrt(5)/2)^95 6765003665687179 a004 Fibonacci(15)*Lucas(99)/(1/2+sqrt(5)/2)^94 6765003665687179 a004 Fibonacci(15)*Lucas(98)/(1/2+sqrt(5)/2)^93 6765003665687179 a004 Fibonacci(15)*Lucas(96)/(1/2+sqrt(5)/2)^91 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^100/Lucas(95) 6765003665687179 a004 Fibonacci(15)*Lucas(94)/(1/2+sqrt(5)/2)^89 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^98/Lucas(93) 6765003665687179 a004 Fibonacci(15)*Lucas(92)/(1/2+sqrt(5)/2)^87 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^96/Lucas(91) 6765003665687179 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^85 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^94/Lucas(89) 6765003665687179 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^83 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^92/Lucas(87) 6765003665687179 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^81 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(85) 6765003665687179 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^79 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(83) 6765003665687179 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^77 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(81) 6765003665687179 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^75 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(79) 6765003665687179 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^73 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(77) 6765003665687179 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^71 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(75) 6765003665687179 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^69 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(73) 6765003665687179 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^67 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(71) 6765003665687179 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^65 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(69) 6765003665687179 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^63 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(67) 6765003665687179 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^61 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(65) 6765003665687179 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^59 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(63) 6765003665687179 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^57 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(61) 6765003665687179 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^55 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(59) 6765003665687179 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^53 6765003665687179 a001 4000056895103620/591286729879 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(57) 6765003665687179 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^51 6765003665687179 a001 1527885776996210/225851433717 6765003665687179 a001 610/312119004989*14662949395604^(20/21) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(55) 6765003665687179 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^49 6765003665687179 a001 291800217942505/43133785636 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(53) 6765003665687179 a001 610*28143753123^(1/10) 6765003665687179 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^47 6765003665687179 a001 222915530658820/32951280099 6765003665687179 a001 305/22768774562*14662949395604^(8/9) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(51) 6765003665687179 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^45 6765003665687179 a001 3405846243658/503450761 6765003665687179 a001 610/17393796001*14662949395604^(6/7) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(49) 6765003665687179 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^43 6765003665687179 a001 16261468807765/2403763488 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(47) 6765003665687179 a001 610/6643838879*23725150497407^(13/16) 6765003665687179 a001 610/6643838879*505019158607^(13/14) 6765003665687179 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^41 6765003665687179 a001 12422656755140/1836311903 6765003665687179 a001 305/1268860318*312119004989^(10/11) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(45) 6765003665687179 a001 305/1268860318*3461452808002^(5/6) 6765003665687179 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^39 6765003665687179 a001 4745032649890/701408733 6765003665687179 a001 610/969323029*45537549124^(16/17) 6765003665687179 a001 610/969323029*14662949395604^(16/21) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(43) 6765003665687179 a001 610/969323029*192900153618^(8/9) 6765003665687179 a001 610/969323029*73681302247^(12/13) 6765003665687179 a001 610*228826127^(1/8) 6765003665687179 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^37 6765003665687179 a001 906220597265/133957148 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(41) 6765003665687179 a001 610/370248451*10749957122^(23/24) 6765003665687179 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^35 6765003665687179 a001 138458186740/20466831 6765003665687179 a001 305/70711162*312119004989^(4/5) 6765003665687179 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(39) 6765003665687179 a001 305/70711162*23725150497407^(11/16) 6765003665687179 a001 305/70711162*73681302247^(11/13) 6765003665687179 a001 305/70711162*10749957122^(11/12) 6765003665687179 a001 305/70711162*4106118243^(22/23) 6765003665687180 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^33 6765003665687180 a001 264431606570/39088169 6765003665687181 a001 610/54018521*2537720636^(14/15) 6765003665687181 a001 610/54018521*17393796001^(6/7) 6765003665687181 a001 610/54018521*45537549124^(14/17) 6765003665687181 a001 610/54018521*817138163596^(14/19) 6765003665687181 a001 610/54018521*14662949395604^(2/3) 6765003665687181 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(37) 6765003665687181 a001 610/54018521*505019158607^(3/4) 6765003665687181 a001 610/54018521*192900153618^(7/9) 6765003665687181 a001 610/54018521*10749957122^(7/8) 6765003665687181 a001 610/54018521*4106118243^(21/23) 6765003665687181 a001 610/54018521*1568397607^(21/22) 6765003665687185 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^31 6765003665687185 a001 50501943005/7465176 6765003665687195 a001 610/20633239*2537720636^(8/9) 6765003665687195 a001 610/20633239*312119004989^(8/11) 6765003665687195 a001 610/20633239*(1/2+1/2*5^(1/2))^40 6765003665687195 a001 610/20633239*23725150497407^(5/8) 6765003665687195 a001 610/20633239*73681302247^(10/13) 6765003665687195 a001 610/20633239*28143753123^(4/5) 6765003665687195 a001 610/20633239*10749957122^(5/6) 6765003665687195 a001 610/20633239*4106118243^(20/23) 6765003665687195 a001 610/20633239*1568397607^(10/11) 6765003665687195 a001 610/20633239*599074578^(20/21) 6765003665687220 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^29 6765003665687221 a001 38580051460/5702887 6765003665687288 a001 305/3940598*817138163596^(2/3) 6765003665687288 a001 305/3940598*(1/2+1/2*5^(1/2))^38 6765003665687288 a001 305/3940598*10749957122^(19/24) 6765003665687288 a001 305/3940598*4106118243^(19/23) 6765003665687288 a001 305/3940598*1568397607^(19/22) 6765003665687288 a001 305/3940598*599074578^(19/21) 6765003665687288 a001 305/3940598*228826127^(19/20) 6765003665687464 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^27 6765003665687466 a001 14736268370/2178309 6765003665687505 a001 610*1860498^(1/6) 6765003665687925 a001 610/3010349*141422324^(12/13) 6765003665687925 a001 610/3010349*2537720636^(4/5) 6765003665687925 a001 610/3010349*45537549124^(12/17) 6765003665687925 a001 610/3010349*14662949395604^(4/7) 6765003665687925 a001 610/3010349*(1/2+1/2*5^(1/2))^36 6765003665687925 a001 610/3010349*505019158607^(9/14) 6765003665687925 a001 610/3010349*192900153618^(2/3) 6765003665687925 a001 610/3010349*73681302247^(9/13) 6765003665687925 a001 610/3010349*10749957122^(3/4) 6765003665687925 a001 610/3010349*4106118243^(18/23) 6765003665687925 a001 610/3010349*1568397607^(9/11) 6765003665687925 a001 610/3010349*599074578^(6/7) 6765003665687925 a001 610/3010349*228826127^(9/10) 6765003665687926 a001 610/3010349*87403803^(18/19) 6765003665688838 a001 2178309/1364*7881196^(1/11) 6765003665688848 a001 2178309/1364*141422324^(1/13) 6765003665688848 a001 2178309/1364*2537720636^(1/15) 6765003665688848 a001 2178309/1364*45537549124^(1/17) 6765003665688848 a001 2178309/1364*14662949395604^(1/21) 6765003665688848 a001 2178309/1364*(1/2+1/2*5^(1/2))^3 6765003665688848 a001 2178309/1364*192900153618^(1/18) 6765003665688848 a001 2178309/1364*10749957122^(1/16) 6765003665688848 a001 2178309/1364*599074578^(1/14) 6765003665688849 a001 2178309/1364*33385282^(1/12) 6765003665689043 a001 2178309/1364*1860498^(1/10) 6765003665689092 a001 5702887/2728+5702887/2728*5^(1/2) 6765003665689127 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2) 6765003665689132 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^3 6765003665689133 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^5 6765003665689133 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^7 6765003665689133 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^9 6765003665689133 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^11 6765003665689133 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^13 6765003665689133 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^15 6765003665689133 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^17 6765003665689133 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^19 6765003665689133 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^21 6765003665689133 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^23 6765003665689133 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^25 6765003665689133 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^27 6765003665689133 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^29 6765003665689133 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^31 6765003665689133 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^33 6765003665689133 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^35 6765003665689133 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^37 6765003665689133 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^39 6765003665689133 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^41 6765003665689133 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^43 6765003665689133 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^45 6765003665689133 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^47 6765003665689133 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^49 6765003665689133 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^51 6765003665689133 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^53 6765003665689133 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^55 6765003665689133 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^57 6765003665689133 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^59 6765003665689133 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^61 6765003665689133 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^63 6765003665689133 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^65 6765003665689133 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^64 6765003665689133 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^62 6765003665689133 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^60 6765003665689133 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^58 6765003665689133 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^56 6765003665689133 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^54 6765003665689133 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^52 6765003665689133 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^50 6765003665689133 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^48 6765003665689133 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^46 6765003665689133 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^44 6765003665689133 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^42 6765003665689133 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^40 6765003665689133 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^38 6765003665689133 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^36 6765003665689133 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^34 6765003665689133 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^32 6765003665689133 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^30 6765003665689133 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^28 6765003665689133 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^26 6765003665689133 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^24 6765003665689133 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^22 6765003665689133 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^20 6765003665689133 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^18 6765003665689133 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^16 6765003665689133 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^14 6765003665689133 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^12 6765003665689133 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^10 6765003665689133 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^8 6765003665689133 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^6 6765003665689134 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^4 6765003665689135 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^2 6765003665689149 a001 9227465/1364 6765003665689242 a001 1762289/682*(1/2+1/2*5^(1/2))^2 6765003665689242 a001 1762289/682*10749957122^(1/24) 6765003665689242 a001 1762289/682*4106118243^(1/23) 6765003665689242 a001 1762289/682*1568397607^(1/22) 6765003665689242 a001 1762289/682*599074578^(1/21) 6765003665689242 a001 1762289/682*228826127^(1/20) 6765003665689242 a001 1762289/682*87403803^(1/19) 6765003665689242 a001 1762289/682*33385282^(1/18) 6765003665689245 a001 1762289/682*12752043^(1/17) 6765003665689260 a001 1762289/682*4870847^(1/16) 6765003665689372 a001 1762289/682*1860498^(1/15) 6765003665689880 a001 1346269/1364*(1/2+1/2*5^(1/2))^4 6765003665689880 a001 1346269/1364*23725150497407^(1/16) 6765003665689880 a001 1346269/1364*73681302247^(1/13) 6765003665689880 a001 1346269/1364*10749957122^(1/12) 6765003665689880 a001 1346269/1364*4106118243^(2/23) 6765003665689880 a001 1346269/1364*1568397607^(1/11) 6765003665689880 a001 1346269/1364*599074578^(2/21) 6765003665689880 a001 1346269/1364*228826127^(1/10) 6765003665689880 a001 1346269/1364*87403803^(2/19) 6765003665689880 a001 1346269/1364*33385282^(1/9) 6765003665689885 a001 1346269/1364*12752043^(2/17) 6765003665689915 a001 1346269/1364*4870847^(1/8) 6765003665690140 a001 1346269/1364*1860498^(2/15) 6765003665690199 a001 1762289/682*710647^(1/14) 6765003665691793 a001 1346269/1364*710647^(1/7) 6765003665692295 a001 610/1149851*45537549124^(2/3) 6765003665692295 a001 610/1149851*(1/2+1/2*5^(1/2))^34 6765003665692295 a001 610/1149851*10749957122^(17/24) 6765003665692295 a001 610/1149851*4106118243^(17/23) 6765003665692295 a001 610/1149851*1568397607^(17/22) 6765003665692295 a001 610/1149851*599074578^(17/21) 6765003665692296 a001 610/1149851*228826127^(17/20) 6765003665692296 a001 610/1149851*87403803^(17/19) 6765003665692301 a001 610/1149851*33385282^(17/18) 6765003665694230 a001 514229/1364*7881196^(2/11) 6765003665694250 a001 514229/1364*141422324^(2/13) 6765003665694250 a001 514229/1364*2537720636^(2/15) 6765003665694250 a001 514229/1364*45537549124^(2/17) 6765003665694250 a001 514229/1364*14662949395604^(2/21) 6765003665694250 a001 514229/1364*(1/2+1/2*5^(1/2))^6 6765003665694250 a001 514229/1364*10749957122^(1/8) 6765003665694250 a001 514229/1364*4106118243^(3/23) 6765003665694250 a001 514229/1364*1568397607^(3/22) 6765003665694250 a001 514229/1364*599074578^(1/7) 6765003665694250 a001 514229/1364*228826127^(3/20) 6765003665694250 a001 514229/1364*87403803^(3/19) 6765003665694251 a001 514229/1364*33385282^(1/6) 6765003665694257 a001 514229/1364*12752043^(3/17) 6765003665694303 a001 514229/1364*4870847^(3/16) 6765003665694641 a001 514229/1364*1860498^(1/5) 6765003665696305 a001 1762289/682*271443^(1/13) 6765003665697120 a001 514229/1364*710647^(3/14) 6765003665700574 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^23 6765003665700683 a001 2149992580/317811 6765003665704005 a001 1346269/1364*271443^(2/13) 6765003665715313 a001 5702887/1364*103682^(1/24) 6765003665715438 a001 514229/1364*271443^(3/13) 6765003665722249 a001 305/219602*(1/2+1/2*5^(1/2))^32 6765003665722249 a001 305/219602*23725150497407^(1/2) 6765003665722249 a001 305/219602*505019158607^(4/7) 6765003665722249 a001 305/219602*73681302247^(8/13) 6765003665722249 a001 305/219602*10749957122^(2/3) 6765003665722249 a001 305/219602*4106118243^(16/23) 6765003665722249 a001 305/219602*1568397607^(8/11) 6765003665722249 a001 305/219602*599074578^(16/21) 6765003665722249 a001 305/219602*228826127^(4/5) 6765003665722250 a001 305/219602*87403803^(16/19) 6765003665722254 a001 305/219602*33385282^(8/9) 6765003665722288 a001 305/219602*12752043^(16/17) 6765003665724203 a001 98209/682*(1/2+1/2*5^(1/2))^8 6765003665724203 a001 98209/682*23725150497407^(1/8) 6765003665724203 a001 98209/682*505019158607^(1/7) 6765003665724203 a001 98209/682*73681302247^(2/13) 6765003665724203 a001 98209/682*10749957122^(1/6) 6765003665724203 a001 98209/682*4106118243^(4/23) 6765003665724203 a001 98209/682*1568397607^(2/11) 6765003665724203 a001 98209/682*599074578^(4/21) 6765003665724203 a001 98209/682*228826127^(1/5) 6765003665724203 a001 98209/682*87403803^(4/19) 6765003665724204 a001 98209/682*33385282^(2/9) 6765003665724213 a001 98209/682*12752043^(4/17) 6765003665724274 a001 98209/682*4870847^(1/4) 6765003665724724 a001 98209/682*1860498^(4/15) 6765003665728030 a001 98209/682*710647^(2/7) 6765003665741684 a001 1762289/682*103682^(1/12) 6765003665752454 a001 98209/682*271443^(4/13) 6765003665767511 a001 2178309/1364*103682^(1/8) 6765003665778993 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^21 6765003665779740 a001 821224090/121393 6765003665794764 a001 1346269/1364*103682^(1/6) 6765003665818284 a001 610*103682^(5/24) 6765003665833308 a001 121393/1364*103682^(3/8) 6765003665833357 a001 75025/1364*167761^(2/5) 6765003665851576 a001 514229/1364*103682^(1/4) 6765003665859285 a001 317811/1364*103682^(7/24) 6765003665885152 a001 5702887/1364*39603^(1/22) 6765003665927453 a001 610/167761*7881196^(10/11) 6765003665927538 a001 610/167761*20633239^(6/7) 6765003665927552 a001 610/167761*141422324^(10/13) 6765003665927552 a001 610/167761*2537720636^(2/3) 6765003665927552 a001 610/167761*45537549124^(10/17) 6765003665927552 a001 610/167761*312119004989^(6/11) 6765003665927552 a001 610/167761*14662949395604^(10/21) 6765003665927552 a001 610/167761*(1/2+1/2*5^(1/2))^30 6765003665927552 a001 610/167761*192900153618^(5/9) 6765003665927552 a001 610/167761*28143753123^(3/5) 6765003665927552 a001 610/167761*10749957122^(5/8) 6765003665927552 a001 610/167761*4106118243^(15/23) 6765003665927552 a001 610/167761*1568397607^(15/22) 6765003665927552 a001 610/167761*599074578^(5/7) 6765003665927552 a001 610/167761*228826127^(3/4) 6765003665927553 a001 610/167761*87403803^(15/19) 6765003665927557 a001 610/167761*33385282^(5/6) 6765003665927589 a001 610/167761*12752043^(15/17) 6765003665927819 a001 610/167761*4870847^(15/16) 6765003665929502 a001 75025/1364*20633239^(2/7) 6765003665929506 a001 75025/1364*2537720636^(2/9) 6765003665929506 a001 75025/1364*312119004989^(2/11) 6765003665929506 a001 75025/1364*(1/2+1/2*5^(1/2))^10 6765003665929506 a001 75025/1364*28143753123^(1/5) 6765003665929506 a001 75025/1364*10749957122^(5/24) 6765003665929506 a001 75025/1364*4106118243^(5/23) 6765003665929506 a001 75025/1364*1568397607^(5/22) 6765003665929506 a001 75025/1364*599074578^(5/21) 6765003665929506 a001 75025/1364*228826127^(1/4) 6765003665929507 a001 75025/1364*87403803^(5/19) 6765003665929508 a001 75025/1364*33385282^(5/18) 6765003665929519 a001 75025/1364*12752043^(5/17) 6765003665929595 a001 75025/1364*4870847^(5/16) 6765003665930158 a001 75025/1364*1860498^(1/3) 6765003665933972 a001 98209/682*103682^(1/3) 6765003665934290 a001 75025/1364*710647^(5/14) 6765003665964820 a001 75025/1364*271443^(5/13) 6765003666081362 a001 1762289/682*39603^(1/11) 6765003666191717 a001 75025/1364*103682^(5/12) 6765003666277028 a001 2178309/1364*39603^(3/22) 6765003666316484 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^19 6765003666321601 a001 156839845/23184 6765003666474120 a001 1346269/1364*39603^(2/11) 6765003666477088 a001 28657/1364*64079^(12/23) 6765003666667479 a001 610*39603^(5/22) 6765003666870610 a001 514229/1364*39603^(3/11) 6765003667048158 a001 317811/1364*39603^(7/22) 6765003667167289 a001 5702887/1364*15127^(1/20) 6765003667216489 a001 11592/341*39603^(1/2) 6765003667292684 a001 98209/682*39603^(4/11) 6765003667321089 a001 28657/1364*439204^(4/9) 6765003667334708 a001 610/64079*20633239^(4/5) 6765003667334721 a001 610/64079*17393796001^(4/7) 6765003667334721 a001 610/64079*14662949395604^(4/9) 6765003667334721 a001 610/64079*(1/2+1/2*5^(1/2))^28 6765003667334721 a001 610/64079*505019158607^(1/2) 6765003667334721 a001 610/64079*73681302247^(7/13) 6765003667334721 a001 610/64079*10749957122^(7/12) 6765003667334721 a001 610/64079*4106118243^(14/23) 6765003667334721 a001 610/64079*1568397607^(7/11) 6765003667334721 a001 610/64079*599074578^(2/3) 6765003667334721 a001 610/64079*228826127^(7/10) 6765003667334722 a001 610/64079*87403803^(14/19) 6765003667334726 a001 610/64079*33385282^(7/9) 6765003667334755 a001 610/64079*12752043^(14/17) 6765003667334971 a001 610/64079*4870847^(7/8) 6765003667336545 a001 610/64079*1860498^(14/15) 6765003667336636 a001 28657/1364*7881196^(4/11) 6765003667336675 a001 28657/1364*141422324^(4/13) 6765003667336676 a001 28657/1364*2537720636^(4/15) 6765003667336676 a001 28657/1364*45537549124^(4/17) 6765003667336676 a001 28657/1364*817138163596^(4/19) 6765003667336676 a001 28657/1364*14662949395604^(4/21) 6765003667336676 a001 28657/1364*(1/2+1/2*5^(1/2))^12 6765003667336676 a001 28657/1364*192900153618^(2/9) 6765003667336676 a001 28657/1364*73681302247^(3/13) 6765003667336676 a001 28657/1364*10749957122^(1/4) 6765003667336676 a001 28657/1364*4106118243^(6/23) 6765003667336676 a001 28657/1364*1568397607^(3/11) 6765003667336676 a001 28657/1364*599074578^(2/7) 6765003667336676 a001 28657/1364*228826127^(3/10) 6765003667336676 a001 28657/1364*87403803^(6/19) 6765003667336678 a001 28657/1364*33385282^(1/3) 6765003667336690 a001 28657/1364*12752043^(6/17) 6765003667336782 a001 28657/1364*4870847^(3/8) 6765003667337457 a001 28657/1364*1860498^(2/5) 6765003667342416 a001 28657/1364*710647^(3/7) 6765003667361860 a001 121393/1364*39603^(9/22) 6765003667379051 a001 28657/1364*271443^(6/13) 6765003667651328 a001 28657/1364*103682^(1/2) 6765003667890107 a001 75025/1364*39603^(5/11) 6765003668645637 a001 1762289/682*15127^(1/10) 6765003669453274 a001 5473/682*24476^(2/3) 6765003669689397 a001 28657/1364*39603^(6/11) 6765003670000501 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^17 6765003670035571 a001 119814980/17711 6765003670123440 a001 2178309/1364*15127^(3/20) 6765003671602669 a001 1346269/1364*15127^(1/5) 6765003673078166 a001 610*15127^(1/4) 6765003674563434 a001 514229/1364*15127^(3/10) 6765003675978705 a001 5473/682*64079^(14/23) 6765003676023119 a001 317811/1364*15127^(7/20) 6765003676946553 a001 5702887/1364*5778^(1/18) 6765003676979602 a001 305/12238*141422324^(2/3) 6765003676979602 a001 305/12238*(1/2+1/2*5^(1/2))^26 6765003676979602 a001 305/12238*73681302247^(1/2) 6765003676979602 a001 305/12238*10749957122^(13/24) 6765003676979602 a001 305/12238*4106118243^(13/23) 6765003676979602 a001 305/12238*1568397607^(13/22) 6765003676979602 a001 305/12238*599074578^(13/21) 6765003676979602 a001 305/12238*228826127^(13/20) 6765003676979603 a001 305/12238*87403803^(13/19) 6765003676979606 a001 305/12238*33385282^(13/18) 6765003676979634 a001 305/12238*12752043^(13/17) 6765003676979834 a001 305/12238*4870847^(13/16) 6765003676981296 a001 305/12238*1860498^(13/15) 6765003676981550 a001 5473/682*20633239^(2/5) 6765003676981556 a001 5473/682*17393796001^(2/7) 6765003676981556 a001 5473/682*14662949395604^(2/9) 6765003676981556 a001 5473/682*(1/2+1/2*5^(1/2))^14 6765003676981556 a001 5473/682*505019158607^(1/4) 6765003676981556 a001 5473/682*10749957122^(7/24) 6765003676981556 a001 5473/682*4106118243^(7/23) 6765003676981556 a001 5473/682*1568397607^(7/22) 6765003676981556 a001 5473/682*599074578^(1/3) 6765003676981556 a001 5473/682*228826127^(7/20) 6765003676981557 a001 5473/682*87403803^(7/19) 6765003676981559 a001 5473/682*33385282^(7/18) 6765003676981574 a001 5473/682*12752043^(7/17) 6765003676981681 a001 5473/682*4870847^(7/16) 6765003676982468 a001 5473/682*1860498^(7/15) 6765003676988254 a001 5473/682*710647^(1/2) 6765003676992041 a001 305/12238*710647^(13/14) 6765003677030995 a001 5473/682*271443^(7/13) 6765003677348651 a001 5473/682*103682^(7/12) 6765003677549782 a001 98209/682*15127^(2/5) 6765003677910093 a001 4181/1364*9349^(16/19) 6765003678901095 a001 121393/1364*15127^(9/20) 6765003679726398 a001 5473/682*39603^(7/11) 6765003680592377 a001 17711/1364*15127^(13/20) 6765003680711480 a001 75025/1364*15127^(1/2) 6765003681319999 a001 11592/341*15127^(11/20) 6765003685075044 a001 28657/1364*15127^(3/5) 6765003688204165 a001 1762289/682*5778^(1/9) 6765003689406823 a007 Real Root Of -271*x^4+503*x^3+978*x^2+147*x-646 6765003695251127 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^15 6765003695491500 a001 9153050/1353 6765003697676320 a001 5473/682*15127^(7/10) 6765003699461233 a001 2178309/1364*5778^(1/6) 6765003710719726 a001 1346269/1364*5778^(2/9) 6765003721974487 a001 610*5778^(5/18) 6765003724993363 a007 Real Root Of 304*x^4-635*x^3-55*x^2-702*x+633 6765003733239020 a001 514229/1364*5778^(1/3) 6765003734484802 a001 4181/1364*24476^(16/21) 6765003741942437 a001 4181/1364*64079^(16/23) 6765003743055426 a001 610/9349*439204^(8/9) 6765003743086521 a001 610/9349*7881196^(8/11) 6765003743086600 a001 610/9349*141422324^(8/13) 6765003743086600 a001 610/9349*2537720636^(8/15) 6765003743086600 a001 610/9349*45537549124^(8/17) 6765003743086600 a001 610/9349*14662949395604^(8/21) 6765003743086600 a001 610/9349*(1/2+1/2*5^(1/2))^24 6765003743086600 a001 610/9349*192900153618^(4/9) 6765003743086600 a001 610/9349*73681302247^(6/13) 6765003743086600 a001 610/9349*10749957122^(1/2) 6765003743086600 a001 610/9349*4106118243^(12/23) 6765003743086600 a001 610/9349*1568397607^(6/11) 6765003743086600 a001 610/9349*599074578^(4/7) 6765003743086600 a001 610/9349*228826127^(3/5) 6765003743086600 a001 610/9349*87403803^(12/19) 6765003743086604 a001 610/9349*33385282^(2/3) 6765003743086629 a001 610/9349*12752043^(12/17) 6765003743086814 a001 610/9349*4870847^(3/4) 6765003743088163 a001 610/9349*1860498^(4/5) 6765003743088553 a001 4181/1364*(1/2+1/2*5^(1/2))^16 6765003743088553 a001 4181/1364*23725150497407^(1/4) 6765003743088553 a001 4181/1364*73681302247^(4/13) 6765003743088553 a001 4181/1364*10749957122^(1/3) 6765003743088553 a001 4181/1364*4106118243^(8/23) 6765003743088553 a001 4181/1364*1568397607^(4/11) 6765003743088553 a001 4181/1364*599074578^(8/21) 6765003743088553 a001 4181/1364*228826127^(2/5) 6765003743088554 a001 4181/1364*87403803^(8/19) 6765003743088556 a001 4181/1364*33385282^(4/9) 6765003743088573 a001 4181/1364*12752043^(8/17) 6765003743088696 a001 4181/1364*4870847^(1/2) 6765003743089596 a001 4181/1364*1860498^(8/15) 6765003743096208 a001 4181/1364*710647^(4/7) 6765003743098082 a001 610/9349*710647^(6/7) 6765003743145054 a001 4181/1364*271443^(8/13) 6765003743171352 a001 610/9349*271443^(12/13) 6765003743508090 a001 4181/1364*103682^(2/3) 6765003744477970 a001 317811/1364*5778^(7/18) 6765003746225515 a001 4181/1364*39603^(8/11) 6765003752493848 a001 5702887/1364*2207^(1/16) 6765003755783897 a001 98209/682*5778^(4/9) 6765003765842576 r005 Im(z^2+c),c=-47/98+7/27*I,n=4 6765003766739712 a001 4181/1364*15127^(4/5) 6765003766914474 a001 121393/1364*5778^(1/2) 6765003778504124 a001 75025/1364*5778^(5/9) 6765003782545527 r002 18th iterates of z^2 + 6765003788891907 a001 11592/341*5778^(11/18) 6765003795782028 m001 cosh(1)-Riemann1stZero^(ln(2)/ln(10)) 6765003802426217 a001 28657/1364*5778^(2/3) 6765003804987111 a001 615/124*5778^(5/6) 6765003807722814 a001 17711/1364*5778^(13/18) 6765003817932611 a007 Real Root Of 51*x^4-198*x^3-210*x^2-216*x-122 6765003827709508 r005 Im(z^2+c),c=-41/40+4/55*I,n=6 6765003831249067 a007 Real Root Of -833*x^4+678*x^3-106*x^2-260*x+257 6765003834586021 a001 5473/682*5778^(7/9) 6765003839298756 a001 1762289/682*2207^(1/8) 6765003855115477 a007 Real Root Of 733*x^4+377*x^3+559*x^2-512*x-639 6765003859467912 a001 17711/521*521^(11/13) 6765003860052681 a007 Real Root Of -770*x^4+526*x^3-771*x^2-133*x+587 6765003868321491 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^13 6765003869884871 m005 (1/3*5^(1/2)-1/10)/(5/11*3^(1/2)+1/6) 6765003869969040 a001 8740385/1292 6765003894611594 a007 Real Root Of 993*x^4-847*x^3+50*x^2-736*x-991 6765003906710936 a001 726103/1926*843^(3/7) 6765003912437384 m005 (1/3*2^(1/2)-1/4)/(9/10*2^(1/2)+2) 6765003923207944 a001 4181/1364*5778^(8/9) 6765003926103121 a001 2178309/1364*2207^(3/16) 6765003929640535 r002 5th iterates of z^2 + 6765003937963116 r002 5th iterates of z^2 + 6765003950386939 m001 (Kac+MertensB1)/(Zeta(1,2)-Artin) 6765003959885024 a001 2178309/3571*843^(5/14) 6765003974411182 a007 Real Root Of -922*x^4+812*x^3+364*x^2+686*x+742 6765004007779006 r009 Re(z^3+c),c=-11/122+20/53*I,n=5 6765004012908913 a001 1346269/1364*2207^(1/4) 6765004028490082 r002 4th iterates of z^2 + 6765004030143231 r008 a(0)=7,K{-n^6,-6+2*n^3+7*n^2+3*n} 6765004031229764 r009 Im(z^3+c),c=-1/32+23/30*I,n=52 6765004050981864 m005 (1/2*Catalan-4/11)/(9/11*Catalan-8/9) 6765004062679444 g005 Pi^(1/2)*GAMMA(8/11)*GAMMA(5/11)*GAMMA(4/7) 6765004077962275 a001 9227465/2207*322^(1/12) 6765004079781550 a001 5702887/15127*843^(3/7) 6765004080383570 a001 317811/2207*843^(4/7) 6765004090171465 m005 (1/2*Catalan-5/11)/(7/10*Zeta(3)-1/3) 6765004098331884 m001 (-Mills+TwinPrimes)/(Landau-Psi(1,1/3)) 6765004099710973 a001 610*2207^(5/16) 6765004105032212 a001 4976784/13201*843^(3/7) 6765004108716235 a001 39088169/103682*843^(3/7) 6765004109253726 a001 34111385/90481*843^(3/7) 6765004109332145 a001 267914296/710647*843^(3/7) 6765004109343586 a001 233802911/620166*843^(3/7) 6765004109345256 a001 1836311903/4870847*843^(3/7) 6765004109345499 a001 1602508992/4250681*843^(3/7) 6765004109345535 a001 12586269025/33385282*843^(3/7) 6765004109345540 a001 10983760033/29134601*843^(3/7) 6765004109345541 a001 86267571272/228826127*843^(3/7) 6765004109345541 a001 267913919/710646*843^(3/7) 6765004109345541 a001 591286729879/1568397607*843^(3/7) 6765004109345541 a001 516002918640/1368706081*843^(3/7) 6765004109345541 a001 4052739537881/10749957122*843^(3/7) 6765004109345541 a001 3536736619241/9381251041*843^(3/7) 6765004109345541 a001 6557470319842/17393796001*843^(3/7) 6765004109345541 a001 2504730781961/6643838879*843^(3/7) 6765004109345541 a001 956722026041/2537720636*843^(3/7) 6765004109345541 a001 365435296162/969323029*843^(3/7) 6765004109345541 a001 139583862445/370248451*843^(3/7) 6765004109345541 a001 53316291173/141422324*843^(3/7) 6765004109345543 a001 20365011074/54018521*843^(3/7) 6765004109345557 a001 7778742049/20633239*843^(3/7) 6765004109345650 a001 2971215073/7881196*843^(3/7) 6765004109346287 a001 1134903170/3010349*843^(3/7) 6765004109350657 a001 433494437/1149851*843^(3/7) 6765004109380611 a001 165580141/439204*843^(3/7) 6765004109585914 a001 63245986/167761*843^(3/7) 6765004110993085 a001 24157817/64079*843^(3/7) 6765004120637981 a001 9227465/24476*843^(3/7) 6765004122866878 a001 1597/1364*9349^(18/19) 6765004125390663 m005 (1/2*Catalan+2/5)/(7/9*Zeta(3)+1/3) 6765004137651748 r009 Im(z^3+c),c=-35/62+7/18*I,n=7 6765004160073477 l006 ln(7601/8133) 6765004179820278 r009 Re(z^3+c),c=-13/110+34/55*I,n=30 6765004184103802 r009 Re(z^3+c),c=-2/25+11/42*I,n=9 6765004186513430 a001 1597/1364*24476^(6/7) 6765004186522806 a001 514229/1364*2207^(3/8) 6765004186745076 a001 3524578/9349*843^(3/7) 6765004194614828 a001 610/3571*64079^(22/23) 6765004194903270 a001 1597/1364*64079^(18/23) 6765004196169271 a001 1597/1364*439204^(2/3) 6765004196190665 a001 610/3571*7881196^(2/3) 6765004196190738 a001 610/3571*312119004989^(2/5) 6765004196190738 a001 610/3571*(1/2+1/2*5^(1/2))^22 6765004196190738 a001 610/3571*10749957122^(11/24) 6765004196190738 a001 610/3571*4106118243^(11/23) 6765004196190738 a001 610/3571*1568397607^(1/2) 6765004196190738 a001 610/3571*599074578^(11/21) 6765004196190738 a001 610/3571*228826127^(11/20) 6765004196190738 a001 610/3571*87403803^(11/19) 6765004196190742 a001 610/3571*33385282^(11/18) 6765004196190765 a001 610/3571*12752043^(11/17) 6765004196190934 a001 610/3571*4870847^(11/16) 6765004196192171 a001 610/3571*1860498^(11/15) 6765004196192591 a001 1597/1364*7881196^(6/11) 6765004196192650 a001 1597/1364*141422324^(6/13) 6765004196192651 a001 1597/1364*2537720636^(2/5) 6765004196192651 a001 1597/1364*45537549124^(6/17) 6765004196192651 a001 1597/1364*14662949395604^(2/7) 6765004196192651 a001 1597/1364*(1/2+1/2*5^(1/2))^18 6765004196192651 a001 1597/1364*192900153618^(1/3) 6765004196192651 a001 1597/1364*10749957122^(3/8) 6765004196192651 a001 1597/1364*4106118243^(9/23) 6765004196192651 a001 1597/1364*1568397607^(9/22) 6765004196192651 a001 1597/1364*599074578^(3/7) 6765004196192651 a001 1597/1364*228826127^(9/20) 6765004196192651 a001 1597/1364*87403803^(9/19) 6765004196192654 a001 1597/1364*33385282^(1/2) 6765004196192673 a001 1597/1364*12752043^(9/17) 6765004196192811 a001 1597/1364*4870847^(9/16) 6765004196193823 a001 1597/1364*1860498^(3/5) 6765004196201262 a001 1597/1364*710647^(9/14) 6765004196201263 a001 610/3571*710647^(11/14) 6765004196256214 a001 1597/1364*271443^(9/13) 6765004196268427 a001 610/3571*271443^(11/13) 6765004196664630 a001 1597/1364*103682^(3/4) 6765004196767601 a001 610/3571*103682^(11/12) 6765004197821543 m001 FeigenbaumKappa^2/Paris/ln(log(2+sqrt(3))) 6765004199721732 a001 1597/1364*39603^(9/11) 6765004205938375 m001 GlaisherKinkelin*(FeigenbaumMu+Niven) 6765004222659543 m001 1/gamma^3/ln(arctan(1/2)) 6765004222800206 a001 1597/1364*15127^(9/10) 6765004227262190 m001 LandauRamanujan/FeigenbaumD/BesselK(0,1) 6765004246100808 a001 29/2584*55^(13/29) 6765004273309057 a001 317811/1364*2207^(7/16) 6765004299294779 l006 ln(4967/9770) 6765004307780973 a007 Real Root Of 892*x^4-558*x^3-678*x^2-486*x+625 6765004311188388 m001 (Catalan+BesselK(1,1))/(FeigenbaumC+ThueMorse) 6765004342551339 a001 (2+2^(1/2))^(602/41) 6765004345652888 a001 5702887/1364*843^(1/14) 6765004356458041 m001 (Zeta(3)-Zeta(1,-1))/(ln(2+3^(1/2))+CareFree) 6765004360162287 a001 98209/682*2207^(1/2) 6765004410311413 r009 Im(z^3+c),c=-37/52+23/52*I,n=3 6765004410806038 m001 (GAMMA(2/3)-Ei(1))/(gamma(2)+AlladiGrinstead) 6765004416654298 m002 -10-Pi^3+E^Pi*Pi^3 6765004446840169 a001 121393/1364*2207^(9/16) 6765004447161394 a007 Real Root Of 81*x^4-686*x^3+647*x^2-564*x-907 6765004450879575 a007 Real Root Of 381*x^4+225*x^3+425*x^2-206*x-344 6765004471235325 m001 BesselK(0,1)^(2*Pi/GAMMA(5/6))*GaussAGM 6765004474789986 m001 (Shi(1)+FeigenbaumC)/(-MertensB2+MinimumGamma) 6765004478669275 m006 (4*Pi^2+1/3)/(3/5*Pi+4) 6765004478669275 m008 (4*Pi^2+1/3)/(3/5*Pi+4) 6765004495651052 r005 Im(z^2+c),c=-13/82+28/33*I,n=28 6765004513606505 a001 38/17*225851433717^(3/23) 6765004514550603 l006 ln(4755/9353) 6765004529985761 a007 Real Root Of 483*x^4-141*x^3+413*x^2+118*x-254 6765004533977123 a001 75025/1364*2207^(5/8) 6765004534536621 a007 Real Root Of -406*x^4+352*x^3-730*x^2+532*x+888 6765004586675788 a001 1346269/5778*843^(1/2) 6765004591184183 m005 (1/3*5^(1/2)-1/4)/(1/8*2^(1/2)-1/4) 6765004597506179 g003 Re(GAMMA(-46/15+I*(-3/4))) 6765004602088114 r009 Re(z^3+c),c=-13/114+28/45*I,n=11 6765004608220144 m001 Lehmer^BesselJ(0,1)*Psi(1,1/3) 6765004619912212 a001 11592/341*2207^(11/16) 6765004630498012 r005 Re(z^2+c),c=-69/110+26/61*I,n=39 6765004639849881 a001 1346269/3571*843^(3/7) 6765004662002102 p001 sum(1/(509*n+150)/(16^n),n=0..infinity) 6765004676247840 a001 843/89*8^(52/55) 6765004687189082 a001 521/144*75025^(6/23) 6765004692243081 a008 Real Root of (-9+9*x+6*x^2+x^4-x^8) 6765004708993829 a001 28657/1364*2207^(3/4) 6765004737509575 m005 (1/3*Catalan+1/10)/(2/3*3^(1/2)-5/9) 6765004738022936 a007 Real Root Of 444*x^4-660*x^3+299*x^2-220*x-583 6765004749767706 a007 Real Root Of -516*x^4+812*x^3+532*x^2+983*x+781 6765004749896333 l006 ln(4543/8936) 6765004753889894 m001 (Cahen+Sarnak)/(ArtinRank2-exp(1)) 6765004755498598 m005 (2/3*exp(1)+3/5)/(2/5*2^(1/2)+3) 6765004759745538 a001 3524578/15127*843^(1/2) 6765004760395873 a001 196418/2207*843^(9/14) 6765004767838968 m001 (ln(2)/ln(10)+Zeta(3))/(ln(2)+GAMMA(7/12)) 6765004769470663 a007 Real Root Of 873*x^4-131*x^3+661*x^2-457*x-34 6765004784996075 a001 9227465/39603*843^(1/2) 6765004785463910 r005 Re(z^2+c),c=-55/106+19/31*I,n=22 6765004788351049 r005 Im(z^2+c),c=11/62+29/53*I,n=28 6765004788680078 a001 24157817/103682*843^(1/2) 6765004789217567 a001 63245986/271443*843^(1/2) 6765004789295986 a001 165580141/710647*843^(1/2) 6765004789307427 a001 433494437/1860498*843^(1/2) 6765004789309096 a001 1134903170/4870847*843^(1/2) 6765004789309340 a001 2971215073/12752043*843^(1/2) 6765004789309375 a001 7778742049/33385282*843^(1/2) 6765004789309381 a001 20365011074/87403803*843^(1/2) 6765004789309381 a001 53316291173/228826127*843^(1/2) 6765004789309381 a001 139583862445/599074578*843^(1/2) 6765004789309381 a001 365435296162/1568397607*843^(1/2) 6765004789309381 a001 956722026041/4106118243*843^(1/2) 6765004789309381 a001 2504730781961/10749957122*843^(1/2) 6765004789309381 a001 6557470319842/28143753123*843^(1/2) 6765004789309381 a001 10610209857723/45537549124*843^(1/2) 6765004789309381 a001 4052739537881/17393796001*843^(1/2) 6765004789309381 a001 1548008755920/6643838879*843^(1/2) 6765004789309381 a001 591286729879/2537720636*843^(1/2) 6765004789309381 a001 225851433717/969323029*843^(1/2) 6765004789309381 a001 86267571272/370248451*843^(1/2) 6765004789309382 a001 63246219/271444*843^(1/2) 6765004789309384 a001 12586269025/54018521*843^(1/2) 6765004789309397 a001 4807526976/20633239*843^(1/2) 6765004789309490 a001 1836311903/7881196*843^(1/2) 6765004789310128 a001 701408733/3010349*843^(1/2) 6765004789314498 a001 267914296/1149851*843^(1/2) 6765004789344451 a001 102334155/439204*843^(1/2) 6765004789549754 a001 39088169/167761*843^(1/2) 6765004789837734 a001 17711/1364*2207^(13/16) 6765004790956918 a001 14930352/64079*843^(1/2) 6765004800601765 a001 5702887/24476*843^(1/2) 6765004818617100 a007 Real Root Of -420*x^4+575*x^3+79*x^2+894*x-731 6765004829376010 a007 Real Root Of -953*x^4+934*x^3-179*x^2-477*x+248 6765004837293636 m005 (1/2*Pi-11/12)/(6/7*Catalan+2/11) 6765004854488331 m001 ln(FeigenbaumD)/GlaisherKinkelin*Zeta(1,2)^2 6765004866708530 a001 2178309/9349*843^(1/2) 6765004888105470 r009 Im(z^3+c),c=-11/46+29/42*I,n=13 6765004892248253 a001 5473/682*2207^(7/8) 6765004899003888 m001 1/exp(PrimesInBinary)^2*Khintchine/sqrt(3) 6765004928840327 m001 (-Artin+MadelungNaCl)/(BesselK(0,1)+ln(5)) 6765004938196646 a001 615/124*2207^(15/16) 6765004944464565 m001 Bloch^gamma-PisotVijayaraghavan 6765004948782959 a007 Real Root Of -616*x^4+110*x^3-738*x^2-965*x-152 6765005000117192 r005 Im(z^2+c),c=-53/36+4/27*I,n=4 6765005008282138 l006 ln(4331/8519) 6765005020113624 a007 Real Root Of -941*x^4+941*x^3-83*x^2-923*x-98 6765005025616903 a001 1762289/682*843^(1/7) 6765005035712362 m002 -5+6*Pi^4+Pi^4*Tanh[Pi] 6765005050127074 m005 (1/3*2^(1/2)+2/9)/(1/9*gamma-1/6) 6765005050722959 a007 Real Root Of 923*x^4-415*x^3-832*x^2+241*x+222 6765005054563419 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^11 6765005065856129 a001 6677060/987 6765005066707409 p001 sum(1/(509*n+34)/n/(3^n),n=1..infinity) 6765005070149673 a007 Real Root Of 423*x^4+534*x^3+224*x^2-395*x-293 6765005082642691 a007 Real Root Of -405*x^4+900*x^3+839*x^2+634*x-47 6765005086469989 q001 133/1966 6765005086469989 q001 665/983 6765005094665098 a007 Real Root Of -463*x^4+234*x^3+962*x^2-7*x-411 6765005096690023 m001 Conway*exp(Champernowne)/FeigenbaumDelta^2 6765005133257458 a007 Real Root Of 42*x^4-661*x^3+947*x^2-389*x-910 6765005134907118 a003 cos(Pi*9/52)-cos(Pi*27/61) 6765005147877182 a007 Real Root Of 992*x^4-850*x^3-769*x^2+101*x+339 6765005153244671 a003 sin(Pi*11/116)/sin(Pi*1/7) 6765005167087423 r002 32th iterates of z^2 + 6765005171897933 a007 Real Root Of 169*x^4-18*x^3-41*x^2-996*x-696 6765005189262077 a007 Real Root Of -829*x^4+446*x^3+468*x^2+895*x+703 6765005189733725 r005 Im(z^2+c),c=-8/21+23/36*I,n=23 6765005230907773 a007 Real Root Of 465*x^4-982*x^3+149*x^2-175*x-588 6765005254428134 a007 Real Root Of -667*x^4+396*x^3-850*x^2+511*x+997 6765005258298899 m001 MadelungNaCl/exp(GolombDickman)/Salem^2 6765005264204225 a001 24157817/5778*322^(1/12) 6765005265658898 m001 gamma(1)^(arctan(1/2)*arctan(1/3)) 6765005266636976 a001 416020/2889*843^(4/7) 6765005281911189 r005 Im(z^2+c),c=-35/122+21/25*I,n=8 6765005293265551 l006 ln(4119/8102) 6765005300241033 m005 (-13/44+1/4*5^(1/2))/(9/10*gamma-10/11) 6765005307173519 r005 Im(z^2+c),c=-23/31+2/29*I,n=59 6765005319811074 a001 832040/3571*843^(1/2) 6765005332964408 m001 LambertW(1)/BesselK(1,1)/exp(log(2+sqrt(3)))^2 6765005353242404 h001 (5/11*exp(2)+7/11)/(3/4*exp(2)+4/11) 6765005358614546 r005 Re(z^2+c),c=-5/82+21/26*I,n=25 6765005376845267 m001 Ei(1,1)^(Chi(1)*HardyLittlewoodC4) 6765005391957571 r002 36th iterates of z^2 + 6765005407100695 a007 Real Root Of 825*x^4-278*x^3+763*x^2-232*x-765 6765005424998215 m001 Pi*(ln(2)/ln(10)+Catalan)/BesselI(1,1) 6765005437274628 a001 63245986/15127*322^(1/12) 6765005439709050 a001 311187/2161*843^(4/7) 6765005440232895 a001 121393/2207*843^(5/7) 6765005447428019 a007 Real Root Of -62*x^4+630*x^3+274*x^2+326*x-528 6765005462525260 a001 165580141/39603*322^(1/12) 6765005464959926 a001 5702887/39603*843^(4/7) 6765005466209278 a001 433494437/103682*322^(1/12) 6765005466746769 a001 1134903170/271443*322^(1/12) 6765005466825188 a001 2971215073/710647*322^(1/12) 6765005466836629 a001 7778742049/1860498*322^(1/12) 6765005466838298 a001 20365011074/4870847*322^(1/12) 6765005466838541 a001 53316291173/12752043*322^(1/12) 6765005466838577 a001 139583862445/33385282*322^(1/12) 6765005466838582 a001 365435296162/87403803*322^(1/12) 6765005466838583 a001 956722026041/228826127*322^(1/12) 6765005466838583 a001 2504730781961/599074578*322^(1/12) 6765005466838583 a001 6557470319842/1568397607*322^(1/12) 6765005466838583 a001 10610209857723/2537720636*322^(1/12) 6765005466838583 a001 4052739537881/969323029*322^(1/12) 6765005466838583 a001 1548008755920/370248451*322^(1/12) 6765005466838583 a001 591286729879/141422324*322^(1/12) 6765005466838585 a001 225851433717/54018521*322^(1/12) 6765005466838599 a001 86267571272/20633239*322^(1/12) 6765005466838692 a001 32951280099/7881196*322^(1/12) 6765005466839330 a001 12586269025/3010349*322^(1/12) 6765005466843700 a001 4807526976/1149851*322^(1/12) 6765005466873653 a001 1836311903/439204*322^(1/12) 6765005467078956 a001 701408733/167761*322^(1/12) 6765005468486126 a001 267914296/64079*322^(1/12) 6765005468643979 a001 7465176/51841*843^(4/7) 6765005469181475 a001 39088169/271443*843^(4/7) 6765005469259895 a001 14619165/101521*843^(4/7) 6765005469271336 a001 133957148/930249*843^(4/7) 6765005469273005 a001 701408733/4870847*843^(4/7) 6765005469273249 a001 1836311903/12752043*843^(4/7) 6765005469273284 a001 14930208/103681*843^(4/7) 6765005469273290 a001 12586269025/87403803*843^(4/7) 6765005469273290 a001 32951280099/228826127*843^(4/7) 6765005469273291 a001 43133785636/299537289*843^(4/7) 6765005469273291 a001 32264490531/224056801*843^(4/7) 6765005469273291 a001 591286729879/4106118243*843^(4/7) 6765005469273291 a001 774004377960/5374978561*843^(4/7) 6765005469273291 a001 4052739537881/28143753123*843^(4/7) 6765005469273291 a001 1515744265389/10525900321*843^(4/7) 6765005469273291 a001 3278735159921/22768774562*843^(4/7) 6765005469273291 a001 2504730781961/17393796001*843^(4/7) 6765005469273291 a001 956722026041/6643838879*843^(4/7) 6765005469273291 a001 182717648081/1268860318*843^(4/7) 6765005469273291 a001 139583862445/969323029*843^(4/7) 6765005469273291 a001 53316291173/370248451*843^(4/7) 6765005469273291 a001 10182505537/70711162*843^(4/7) 6765005469273293 a001 7778742049/54018521*843^(4/7) 6765005469273306 a001 2971215073/20633239*843^(4/7) 6765005469273399 a001 567451585/3940598*843^(4/7) 6765005469274037 a001 433494437/3010349*843^(4/7) 6765005469278407 a001 165580141/1149851*843^(4/7) 6765005469308361 a001 31622993/219602*843^(4/7) 6765005469513666 a001 24157817/167761*843^(4/7) 6765005470920849 a001 9227465/64079*843^(4/7) 6765005478131009 a001 102334155/24476*322^(1/12) 6765005480565826 a001 1762289/12238*843^(4/7) 6765005486909207 r002 4th iterates of z^2 + 6765005493131392 r008 a(0)=0,K{-n^6,-30+18*n^3-99*n^2-37*n} 6765005499952211 m001 (-Stephens+Thue)/(exp(1)+Porter) 6765005503555431 m001 GAMMA(11/24)^2/exp(Backhouse)^2/sqrt(3)^2 6765005519448711 a007 Real Root Of -64*x^4-359*x^3+544*x^2+434*x+938 6765005525466674 r009 Im(z^3+c),c=-25/106+39/56*I,n=8 6765005544238024 a001 4181*322^(1/12) 6765005546673479 a001 1346269/9349*843^(4/7) 6765005593307753 a003 sin(Pi*11/40)*sin(Pi*37/106) 6765005598086887 a007 Real Root Of -684*x^4+29*x^3-792*x^2+166*x+627 6765005599891350 r009 Im(z^3+c),c=-51/94+12/29*I,n=6 6765005605639419 r005 Re(z^2+c),c=7/122+21/41*I,n=7 6765005607582734 a007 Real Root Of -157*x^4+70*x^3+453*x^2+856*x-60 6765005609176256 l006 ln(3907/7685) 6765005663219413 b008 4+3*Tanh[8/5] 6765005688334437 h001 (-11*exp(1)-4)/(-8*exp(2)+9) 6765005689086259 m001 (Sierpinski+Totient)/(Zeta(3)-Grothendieck) 6765005690337575 a007 Real Root Of -924*x^4+37*x^3-857*x^2-528*x+240 6765005705580442 a001 2178309/1364*843^(3/14) 6765005711342549 m005 (1/2*3^(1/2)-3)/(2*gamma+2) 6765005718877962 r005 Re(z^2+c),c=-19/26+26/103*I,n=3 6765005748063427 r005 Re(z^2+c),c=-23/30+1/21*I,n=13 6765005764564364 m005 (1/2*2^(1/2)+3)/(5*Catalan+9/10) 6765005780556248 a007 Real Root Of -656*x^4-324*x^3-237*x^2+317*x+360 6765005782538244 a001 28657/521*521^(10/13) 6765005793147749 r002 50th iterates of z^2 + 6765005820085596 r005 Im(z^2+c),c=-53/102+5/42*I,n=57 6765005906993502 a007 Real Root Of 967*x^4-964*x^3-965*x^2-45*x+568 6765005913780881 m005 (1/2*exp(1)-5/11)/(1/12*gamma-2/11) 6765005921643822 m001 Zeta(1,-1)/exp(-1/2*Pi)/Salem 6765005925424920 a001 17711/11*199^(16/59) 6765005931106155 m001 (ln(5)+Zeta(1,2))/(GolombDickman-Sarnak) 6765005942456458 r005 Im(z^2+c),c=-31/30+5/69*I,n=7 6765005946608004 a001 514229/5778*843^(9/14) 6765005961337596 l006 ln(3695/7268) 6765005961583122 r002 10th iterates of z^2 + 6765005971191544 m003 1/32+Sqrt[5]/2-6/ProductLog[1/2+Sqrt[5]/2] 6765005984737476 a007 Real Root Of 652*x^4-660*x^3+200*x^2+518*x-82 6765005997342277 a001 14930352/3571*322^(1/12) 6765005999782108 a001 514229/3571*843^(4/7) 6765006030520292 m001 1/(3^(1/3))^2*MinimumGamma^2*ln(GAMMA(11/24)) 6765006099859390 r005 Im(z^2+c),c=-53/102+5/42*I,n=55 6765006110919582 m001 FeigenbaumD^2*ln(FeigenbaumDelta)/GAMMA(13/24) 6765006113799713 m001 (Shi(1)+Zeta(5))/(FeigenbaumD+ThueMorse) 6765006119674056 a001 1346269/15127*843^(9/14) 6765006120529058 a001 75025/2207*843^(11/14) 6765006141554475 g006 Psi(1,9/10)+Psi(1,5/7)+Psi(1,1/3)-Psi(1,1/9) 6765006144924053 a001 3524578/39603*843^(9/14) 6765006148025283 b008 1+68*ExpIntegralEi[3] 6765006148607978 a001 9227465/103682*843^(9/14) 6765006149145456 a001 24157817/271443*843^(9/14) 6765006149223873 a001 63245986/710647*843^(9/14) 6765006149235314 a001 165580141/1860498*843^(9/14) 6765006149236983 a001 433494437/4870847*843^(9/14) 6765006149237226 a001 1134903170/12752043*843^(9/14) 6765006149237262 a001 2971215073/33385282*843^(9/14) 6765006149237267 a001 7778742049/87403803*843^(9/14) 6765006149237268 a001 20365011074/228826127*843^(9/14) 6765006149237268 a001 53316291173/599074578*843^(9/14) 6765006149237268 a001 139583862445/1568397607*843^(9/14) 6765006149237268 a001 365435296162/4106118243*843^(9/14) 6765006149237268 a001 956722026041/10749957122*843^(9/14) 6765006149237268 a001 2504730781961/28143753123*843^(9/14) 6765006149237268 a001 6557470319842/73681302247*843^(9/14) 6765006149237268 a001 10610209857723/119218851371*843^(9/14) 6765006149237268 a001 4052739537881/45537549124*843^(9/14) 6765006149237268 a001 1548008755920/17393796001*843^(9/14) 6765006149237268 a001 591286729879/6643838879*843^(9/14) 6765006149237268 a001 225851433717/2537720636*843^(9/14) 6765006149237268 a001 86267571272/969323029*843^(9/14) 6765006149237268 a001 32951280099/370248451*843^(9/14) 6765006149237268 a001 12586269025/141422324*843^(9/14) 6765006149237270 a001 4807526976/54018521*843^(9/14) 6765006149237284 a001 1836311903/20633239*843^(9/14) 6765006149237377 a001 3524667/39604*843^(9/14) 6765006149238014 a001 267914296/3010349*843^(9/14) 6765006149242385 a001 102334155/1149851*843^(9/14) 6765006149272337 a001 39088169/439204*843^(9/14) 6765006149477635 a001 14930352/167761*843^(9/14) 6765006150884769 a001 5702887/64079*843^(9/14) 6765006155117611 a003 cos(Pi*4/71)*cos(Pi*22/85) 6765006160529410 a001 2178309/24476*843^(9/14) 6765006192722929 p004 log(35089/17839) 6765006199036287 m001 (sin(1/5*Pi)+ln(2))/(Ei(1)-ZetaQ(4)) 6765006221472347 m005 (3/4*2^(1/2)+2/5)/(1/2*exp(1)+4/5) 6765006222126597 a003 cos(Pi*7/69)*cos(Pi*26/105) 6765006226634763 a001 832040/9349*843^(9/14) 6765006249340281 m001 (Si(Pi)-ln(gamma))/(-GAMMA(7/12)+GAMMA(19/24)) 6765006267223528 r009 Re(z^3+c),c=-7/86+5/18*I,n=8 6765006322247060 m001 (Shi(1)+Zeta(5))/(ln(gamma)+Thue) 6765006356368978 l006 ln(3483/6851) 6765006358146072 m001 (BesselI(0,1)+MertensB3)/(5^(1/2)-Si(Pi)) 6765006378914720 r009 Im(z^3+c),c=-5/26+25/34*I,n=12 6765006379892966 a001 13/4*47^(41/52) 6765006385545474 a001 1346269/1364*843^(2/7) 6765006387374215 a007 Real Root Of -980*x^4+427*x^3-858*x^2-216*x+584 6765006471105897 m005 (1/2*Zeta(3)+1/6)/(7/8*Catalan+1/3) 6765006475369506 m001 FeigenbaumDelta^exp(1)*GAMMA(23/24) 6765006475369506 m001 GAMMA(23/24)*FeigenbaumDelta^exp(1) 6765006476192018 a007 Real Root Of -515*x^4-250*x^3+741*x^2+896*x-760 6765006485760106 a007 Real Root Of -588*x^4+289*x^3+908*x^2+420*x-666 6765006501647409 a007 Real Root Of 574*x^4-304*x^3-558*x^2-888*x+830 6765006519642222 r002 14th iterates of z^2 + 6765006567823297 r009 Im(z^3+c),c=-20/31+23/48*I,n=4 6765006569818698 r005 Re(z^2+c),c=-2/19+43/49*I,n=59 6765006589297599 b008 -68+Csch[Sqrt[Pi]] 6765006591664925 m001 (arctan(1/2)+Champernowne)/(Thue+ZetaQ(3)) 6765006604383403 m001 (Zeta(5)+MertensB1)/(Porter+ZetaP(2)) 6765006623917553 m001 (3^(1/2)-exp(Pi))/(FeigenbaumAlpha+Robbin) 6765006626553517 a001 105937/1926*843^(5/7) 6765006637483821 m001 (ln(2+3^(1/2))+Artin)/(Shi(1)+3^(1/3)) 6765006649166724 a007 Real Root Of -746*x^4+863*x^3-589*x^2+272*x+877 6765006674449958 m001 (Bloch+FellerTornier)/(gamma(2)-gamma(3)) 6765006679727626 a001 317811/3571*843^(9/14) 6765006680880107 r005 Im(z^2+c),c=-23/42+4/33*I,n=42 6765006684163225 m001 sin(Pi/5)^exp(sqrt(2))*BesselK(1,1) 6765006685655772 a007 Real Root Of 793*x^4-548*x^3-531*x^2-840*x-661 6765006708790274 p004 log(32587/16567) 6765006713678384 m001 FeigenbaumD/ln(2)*ZetaP(3) 6765006721298174 m001 (-GAMMA(13/24)+MertensB1)/(Zeta(1/2)-gamma) 6765006743499289 m001 LaplaceLimit/(cos(1/12*Pi)^Lehmer) 6765006762621278 a001 521/13*610^(4/49) 6765006767533490 m001 (GaussAGM-MasserGramain)/(ln(Pi)+GAMMA(13/24)) 6765006768070374 a007 Real Root Of -752*x^4+733*x^3+228*x^2+668*x+732 6765006772138334 m001 (Catalan-ln(5))/(-HardyLittlewoodC4+MertensB3) 6765006772739597 a001 48*29^(11/14) 6765006782230710 r009 Re(z^3+c),c=-55/118+34/61*I,n=40 6765006787894471 a001 47/1597*610^(39/46) 6765006799623422 a001 46368/2207*843^(6/7) 6765006799635398 a001 832040/15127*843^(5/7) 6765006802605877 l006 ln(3271/6434) 6765006818521181 r002 4th iterates of z^2 + 6765006821897936 a001 1346269/843*322^(1/4) 6765006824887705 a001 726103/13201*843^(5/7) 6765006825735540 m001 (exp(1/Pi)+OrthogonalArrays)/(Pi+cos(1/12*Pi)) 6765006828571967 a001 5702887/103682*843^(5/7) 6765006829109493 a001 4976784/90481*843^(5/7) 6765006829187917 a001 39088169/710647*843^(5/7) 6765006829199359 a001 831985/15126*843^(5/7) 6765006829201029 a001 267914296/4870847*843^(5/7) 6765006829201272 a001 233802911/4250681*843^(5/7) 6765006829201308 a001 1836311903/33385282*843^(5/7) 6765006829201313 a001 1602508992/29134601*843^(5/7) 6765006829201314 a001 12586269025/228826127*843^(5/7) 6765006829201314 a001 10983760033/199691526*843^(5/7) 6765006829201314 a001 86267571272/1568397607*843^(5/7) 6765006829201314 a001 75283811239/1368706081*843^(5/7) 6765006829201314 a001 591286729879/10749957122*843^(5/7) 6765006829201314 a001 12585437040/228811001*843^(5/7) 6765006829201314 a001 4052739537881/73681302247*843^(5/7) 6765006829201314 a001 3536736619241/64300051206*843^(5/7) 6765006829201314 a001 6557470319842/119218851371*843^(5/7) 6765006829201314 a001 2504730781961/45537549124*843^(5/7) 6765006829201314 a001 956722026041/17393796001*843^(5/7) 6765006829201314 a001 365435296162/6643838879*843^(5/7) 6765006829201314 a001 139583862445/2537720636*843^(5/7) 6765006829201314 a001 53316291173/969323029*843^(5/7) 6765006829201314 a001 20365011074/370248451*843^(5/7) 6765006829201314 a001 7778742049/141422324*843^(5/7) 6765006829201316 a001 2971215073/54018521*843^(5/7) 6765006829201330 a001 1134903170/20633239*843^(5/7) 6765006829201423 a001 433494437/7881196*843^(5/7) 6765006829202060 a001 165580141/3010349*843^(5/7) 6765006829206431 a001 63245986/1149851*843^(5/7) 6765006829236386 a001 24157817/439204*843^(5/7) 6765006829441703 a001 9227465/167761*843^(5/7) 6765006830848966 a001 3524578/64079*843^(5/7) 6765006835295257 a007 Real Root Of 635*x^4-914*x^3-639*x^2-793*x-660 6765006840494489 a001 1346269/24476*843^(5/7) 6765006852262648 a007 Real Root Of -537*x^4+941*x^3-112*x^2+379*x-384 6765006858441858 a001 4106118243/55*55^(11/20) 6765006874172740 a007 Real Root Of 536*x^4+64*x^3+206*x^2-333*x-412 6765006881652019 a008 Real Root of x^4-x^3-19*x^2-88*x-320 6765006906605888 a001 514229/9349*843^(5/7) 6765006907290309 a003 sin(Pi*23/80)*sin(Pi*38/115) 6765006921489498 a007 Real Root Of -137*x^4+397*x^3-221*x^2-415*x-28 6765006924652878 a001 521/2584*6765^(7/51) 6765006926471258 m001 (Catalan-sin(1/5*Pi))/(ln(gamma)+MertensB2) 6765006931784532 a007 Real Root Of 109*x^4+873*x^3+894*x^2-156*x+17 6765006944956056 a007 Real Root Of -312*x^4+65*x^3+888*x^2+118*x-441 6765006979343237 r005 Im(z^2+c),c=-53/102+5/42*I,n=59 6765006993990791 g007 Psi(2,1/10)-Psi(2,7/12)-Psi(2,1/11)-Psi(2,6/7) 6765007013844466 r009 Im(z^3+c),c=-31/90+21/31*I,n=6 6765007015463227 a003 sin(Pi*7/71)-sin(Pi*32/73) 6765007024288812 a003 cos(Pi*26/107)-sin(Pi*29/100) 6765007024385977 m001 (Lehmer-Paris)/(cos(1/12*Pi)-CopelandErdos) 6765007025484124 r005 Re(z^2+c),c=-155/122+9/22*I,n=11 6765007065506843 a001 610*843^(5/14) 6765007069533961 m001 (log(gamma)-GAMMA(1/12))/exp(gamma) 6765007070500863 m002 (-3*Pi^4*Cosh[Pi])/5+Tanh[Pi] 6765007078123754 r005 Re(z^2+c),c=-35/82+27/44*I,n=4 6765007100032368 a007 Real Root Of 350*x^4-991*x^3-184*x^2-890*x-898 6765007160161130 a007 Real Root Of -962*x^4-783*x^3+12*x^2+382*x+212 6765007172681796 a007 Real Root Of 185*x^4-874*x^3-377*x^2-63*x+447 6765007210954985 a007 Real Root Of 403*x^4-94*x^3+94*x^2-14*x-166 6765007230510774 a007 Real Root Of -138*x^4-65*x^3+747*x^2+457*x-602 6765007244509619 r005 Im(z^2+c),c=-53/102+5/42*I,n=52 6765007250014888 m001 (BesselK(1,1)-Bloch)/(MadelungNaCl+ZetaP(3)) 6765007250651254 m005 (1/3*5^(1/2)+1/9)/(1/2*3^(1/2)+2/5) 6765007256763680 m001 1/2*Cahen*2^(2/3)*PisotVijayaraghavan 6765007284101436 a007 Real Root Of 139*x^4+932*x^3+20*x^2+527*x+69 6765007284484905 p001 sum((-1)^n/(500*n+109)/n/(24^n),n=1..infinity) 6765007291059640 a001 305/682*24476^(20/21) 6765007300381689 a001 305/682*64079^(20/23) 6765007301622036 a001 305/682*167761^(4/5) 6765007301814326 a001 305/682*20633239^(4/7) 6765007301814335 a001 305/682*2537720636^(4/9) 6765007301814335 a001 305/682*(1/2+1/2*5^(1/2))^20 6765007301814335 a001 305/682*23725150497407^(5/16) 6765007301814335 a001 305/682*505019158607^(5/14) 6765007301814335 a001 305/682*73681302247^(5/13) 6765007301814335 a001 305/682*28143753123^(2/5) 6765007301814335 a001 305/682*10749957122^(5/12) 6765007301814335 a001 305/682*4106118243^(10/23) 6765007301814335 a001 305/682*1568397607^(5/11) 6765007301814335 a001 305/682*599074578^(10/21) 6765007301814335 a001 305/682*228826127^(1/2) 6765007301814335 a001 305/682*87403803^(10/19) 6765007301814338 a001 305/682*33385282^(5/9) 6765007301814359 a001 305/682*12752043^(10/17) 6765007301814513 a001 305/682*4870847^(5/8) 6765007301815638 a001 305/682*1860498^(2/3) 6765007301823903 a001 305/682*710647^(5/7) 6765007301884961 a001 305/682*271443^(10/13) 6765007302338756 a001 305/682*103682^(5/6) 6765007305735539 a001 305/682*39603^(10/11) 6765007306566076 a001 98209/2889*843^(11/14) 6765007310694482 l006 ln(3059/6017) 6765007331788338 r002 39th iterates of z^2 + 6765007336916224 a007 Real Root Of 253*x^4-88*x^3+458*x^2-423*x-576 6765007347552169 a001 19/36*610^(28/37) 6765007355626999 m001 (3^(1/3)+cos(1/12*Pi))/(exp(1)+sin(1)) 6765007359740191 a001 196418/3571*843^(5/7) 6765007371270612 a007 Real Root Of 869*x^4+335*x^3+569*x^2-302*x-543 6765007440063372 a007 Real Root Of -279*x^4+328*x^3-335*x^2-166*x+201 6765007441689787 m005 (5/6*2^(1/2)+4/5)/(4/5*exp(1)+3/4) 6765007454732648 m001 GAMMA(11/24)*GAMMA(1/6)/exp(arctan(1/2)) 6765007464821712 a003 cos(Pi*44/117)+cos(Pi*40/99) 6765007479606580 a001 514229/15127*843^(11/14) 6765007481864382 a001 28657/2207*843^(13/14) 6765007491154468 m001 (2^(1/3)+exp(1))/(-exp(1/Pi)+ReciprocalLucas) 6765007504852850 a001 1346269/39603*843^(11/14) 6765007508536231 a001 1762289/51841*843^(11/14) 6765007509073629 a001 9227465/271443*843^(11/14) 6765007509152035 a001 24157817/710647*843^(11/14) 6765007509163474 a001 31622993/930249*843^(11/14) 6765007509165143 a001 165580141/4870847*843^(11/14) 6765007509165386 a001 433494437/12752043*843^(11/14) 6765007509165422 a001 567451585/16692641*843^(11/14) 6765007509165427 a001 2971215073/87403803*843^(11/14) 6765007509165428 a001 7778742049/228826127*843^(11/14) 6765007509165428 a001 10182505537/299537289*843^(11/14) 6765007509165428 a001 53316291173/1568397607*843^(11/14) 6765007509165428 a001 139583862445/4106118243*843^(11/14) 6765007509165428 a001 182717648081/5374978561*843^(11/14) 6765007509165428 a001 956722026041/28143753123*843^(11/14) 6765007509165428 a001 2504730781961/73681302247*843^(11/14) 6765007509165428 a001 3278735159921/96450076809*843^(11/14) 6765007509165428 a001 10610209857723/312119004989*843^(11/14) 6765007509165428 a001 4052739537881/119218851371*843^(11/14) 6765007509165428 a001 387002188980/11384387281*843^(11/14) 6765007509165428 a001 591286729879/17393796001*843^(11/14) 6765007509165428 a001 225851433717/6643838879*843^(11/14) 6765007509165428 a001 1135099622/33391061*843^(11/14) 6765007509165428 a001 32951280099/969323029*843^(11/14) 6765007509165428 a001 12586269025/370248451*843^(11/14) 6765007509165428 a001 1201881744/35355581*843^(11/14) 6765007509165430 a001 1836311903/54018521*843^(11/14) 6765007509165444 a001 701408733/20633239*843^(11/14) 6765007509165537 a001 66978574/1970299*843^(11/14) 6765007509166174 a001 102334155/3010349*843^(11/14) 6765007509170544 a001 39088169/1149851*843^(11/14) 6765007509200492 a001 196452/5779*843^(11/14) 6765007509405760 a001 5702887/167761*843^(11/14) 6765007510812686 a001 2178309/64079*843^(11/14) 6765007520455903 a001 208010/6119*843^(11/14) 6765007569128653 r005 Im(z^2+c),c=-55/122+5/44*I,n=34 6765007583340199 m001 DuboisRaymond/(BesselI(0,1)+ln(5)) 6765007586551497 a001 317811/9349*843^(11/14) 6765007599019428 a007 Real Root Of 740*x^4-507*x^3+479*x^2-50*x-565 6765007612987062 m001 exp(MertensB1)^2*FeigenbaumDelta^2*Tribonacci 6765007664212275 a001 199/233*75025^(22/37) 6765007690541081 m003 -Cosh[1/2+Sqrt[5]/2]^2+Csch[1/2+Sqrt[5]/2]/4 6765007695082050 a001 11/75025*13^(31/52) 6765007696254489 q001 2637/3898 6765007697371405 a001 46368/521*521^(9/13) 6765007700348042 g007 Psi(2,4/11)+Psi(2,1/5)+Psi(2,1/3)-Psi(2,1/8) 6765007745478052 a001 514229/1364*843^(3/7) 6765007801594169 s002 sum(A065333[n]/(n*exp(n)-1),n=1..infinity) 6765007811436529 m001 (FeigenbaumKappa+Sierpinski)/(Pi+FeigenbaumD) 6765007832650541 a007 Real Root Of -509*x^4+291*x^3+42*x^2-354*x-62 6765007894452030 l006 ln(2847/5600) 6765007902037709 a007 Real Root Of -556*x^4+354*x^3-22*x^2-80*x+182 6765007913840489 m001 exp(GAMMA(5/6))/BesselK(1,1)*log(2+sqrt(3)) 6765007926360832 a007 Real Root Of -919*x^4+899*x^3-909*x^2-897*x+280 6765007935490186 m001 (HeathBrownMoroz-MertensB3)/(Pi-GAMMA(19/24)) 6765007957559681 a001 2550408/377 6765007959494494 r005 Im(z^2+c),c=-1/26+17/23*I,n=59 6765007966782884 r009 Re(z^3+c),c=-13/66+37/57*I,n=11 6765007969554051 a001 75025/3*1364^(45/58) 6765007977892056 m001 (Si(Pi)+Chi(1))/(-ln(2)+FeigenbaumDelta) 6765007983246521 a007 Real Root Of -285*x^4+159*x^3+132*x^2+853*x-627 6765007986403354 a001 121393/5778*843^(6/7) 6765007997776791 m001 GAMMA(11/12)^ZetaP(4)/ZetaR(2) 6765007998925106 r005 Re(z^2+c),c=-51/56+7/50*I,n=54 6765008016485063 r002 7th iterates of z^2 + 6765008039577474 a001 121393/3571*843^(11/14) 6765008039908099 r005 Re(z^2+c),c=11/54+11/26*I,n=24 6765008047277981 r005 Re(z^2+c),c=-47/62+1/19*I,n=9 6765008074605491 a007 Real Root Of 816*x^4-363*x^3-476*x^2-103*x+229 6765008111277116 a007 Real Root Of 821*x^4+147*x^3+668*x^2-662*x-880 6765008137146877 m001 1/(BesselJ(0,1)^Zeta(1/2)) 6765008159552247 a001 317811/15127*843^(6/7) 6765008160180733 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^10 6765008171116917 m005 (1/3*gamma-1/11)/(6/11*3^(1/2)+5/9) 6765008174264239 r005 Im(z^2+c),c=-5/118+49/64*I,n=59 6765008177093868 m001 1/exp(Tribonacci)^2/Magata^2/LambertW(1)^2 6765008182539120 a007 Real Root Of 850*x^4-706*x^3+740*x^2+265*x-556 6765008184814331 a001 832040/39603*843^(6/7) 6765008187676905 h001 (-8*exp(3)-3)/(-6*exp(6)+1) 6765008188500020 a001 46347/2206*843^(6/7) 6765008189037754 a001 5702887/271443*843^(6/7) 6765008189116209 a001 14930352/710647*843^(6/7) 6765008189127655 a001 39088169/1860498*843^(6/7) 6765008189129325 a001 102334155/4870847*843^(6/7) 6765008189129569 a001 267914296/12752043*843^(6/7) 6765008189129604 a001 701408733/33385282*843^(6/7) 6765008189129610 a001 1836311903/87403803*843^(6/7) 6765008189129610 a001 102287808/4868641*843^(6/7) 6765008189129610 a001 12586269025/599074578*843^(6/7) 6765008189129610 a001 32951280099/1568397607*843^(6/7) 6765008189129610 a001 86267571272/4106118243*843^(6/7) 6765008189129610 a001 225851433717/10749957122*843^(6/7) 6765008189129610 a001 591286729879/28143753123*843^(6/7) 6765008189129610 a001 1548008755920/73681302247*843^(6/7) 6765008189129610 a001 4052739537881/192900153618*843^(6/7) 6765008189129610 a001 225749145909/10745088481*843^(6/7) 6765008189129610 a001 6557470319842/312119004989*843^(6/7) 6765008189129610 a001 2504730781961/119218851371*843^(6/7) 6765008189129610 a001 956722026041/45537549124*843^(6/7) 6765008189129610 a001 365435296162/17393796001*843^(6/7) 6765008189129610 a001 139583862445/6643838879*843^(6/7) 6765008189129610 a001 53316291173/2537720636*843^(6/7) 6765008189129610 a001 20365011074/969323029*843^(6/7) 6765008189129610 a001 7778742049/370248451*843^(6/7) 6765008189129611 a001 2971215073/141422324*843^(6/7) 6765008189129613 a001 1134903170/54018521*843^(6/7) 6765008189129626 a001 433494437/20633239*843^(6/7) 6765008189129719 a001 165580141/7881196*843^(6/7) 6765008189130357 a001 63245986/3010349*843^(6/7) 6765008189134729 a001 24157817/1149851*843^(6/7) 6765008189164696 a001 9227465/439204*843^(6/7) 6765008189370093 a001 3524578/167761*843^(6/7) 6765008190777900 a001 1346269/64079*843^(6/7) 6765008200427158 a001 514229/24476*843^(6/7) 6765008219593025 r004 Im(z^2+c),c=-53/42+1/20*I,z(0)=-1,n=5 6765008227971054 a007 Real Root Of 887*x^4-376*x^3-892*x^2-794*x+876 6765008238989618 a007 Real Root Of -63*x^4-103*x^3+27*x^2+718*x-453 6765008239128553 m001 (Niven-ZetaP(2))/(3^(1/3)+HardyLittlewoodC5) 6765008266564153 a001 196418/9349*843^(6/7) 6765008310795146 a007 Real Root Of -712*x^4+332*x^3-676*x^2+208*x+702 6765008374435751 r005 Im(z^2+c),c=-53/102+5/42*I,n=61 6765008375706001 m001 GAMMA(7/12)/Khinchin/sin(1) 6765008375706001 m001 GAMMA(7/12)/sin(1)/Khinchin 6765008380894798 r009 Im(z^3+c),c=-11/46+32/45*I,n=64 6765008387159728 b008 67*Coth[8/3] 6765008424465471 m001 ZetaP(3)/(Sierpinski-ZetaQ(4)) 6765008425423746 a001 317811/1364*843^(1/2) 6765008440832835 m001 (LandauRamanujan-StolarskyHarborth)/Psi(1,1/3) 6765008451885517 a007 Real Root Of 338*x^4-663*x^3-867*x+721 6765008546744269 a001 1364/233*1597^(1/51) 6765008561831420 r005 Re(z^2+c),c=-7/82+23/30*I,n=5 6765008572142438 l006 ln(2635/5183) 6765008576329331 q001 1972/2915 6765008576329331 r005 Im(z^2+c),c=-121/106+29/55*I,n=2 6765008584399312 a007 Real Root Of 477*x^4-20*x^3+218*x^2-522*x-559 6765008598683455 a007 Real Root Of -924*x^4+225*x^3-151*x^2-30*x+312 6765008606660102 a007 Real Root Of -93*x^4+716*x^3-660*x^2+13*x+552 6765008635507129 h001 (4/5*exp(1)+1/11)/(11/12*exp(1)+6/7) 6765008662868074 a001 7/4*(1/2*5^(1/2)+1/2)^10*4^(19/23) 6765008666699772 a001 75025/5778*843^(13/14) 6765008670892503 r005 Im(z^2+c),c=-9/14+70/199*I,n=27 6765008681262996 h001 (1/6*exp(2)+5/9)/(5/7*exp(1)+7/10) 6765008686902820 m001 (ln(2)-ln(3))/(sin(1/12*Pi)+PolyaRandomWalk3D) 6765008700971038 a007 Real Root Of 60*x^4+307*x^3-803*x^2-878*x+190 6765008709755460 r009 Re(z^3+c),c=-2/25+11/42*I,n=11 6765008719873897 a001 75025/3571*843^(6/7) 6765008730427511 r009 Re(z^3+c),c=-2/25+11/42*I,n=12 6765008738839683 r005 Im(z^2+c),c=-19/14+5/127*I,n=41 6765008741414036 r002 24th iterates of z^2 + 6765008742389743 r009 Re(z^3+c),c=-2/25+11/42*I,n=14 6765008743909218 r009 Re(z^3+c),c=-2/25+11/42*I,n=16 6765008743948516 r009 Re(z^3+c),c=-2/25+11/42*I,n=19 6765008743948906 r009 Re(z^3+c),c=-2/25+11/42*I,n=21 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=23 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=24 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=26 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=28 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=31 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=33 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=36 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=35 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=38 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=40 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=43 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=45 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=48 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=50 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=52 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=53 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=55 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=57 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=59 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=60 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=61 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=62 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=63 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=64 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=58 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=56 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=54 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=51 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=47 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=49 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=46 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=44 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=41 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=42 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=39 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=37 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=34 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=32 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=29 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=30 6765008743948925 r009 Re(z^3+c),c=-2/25+11/42*I,n=27 6765008743948926 r009 Re(z^3+c),c=-2/25+11/42*I,n=25 6765008743948928 r009 Re(z^3+c),c=-2/25+11/42*I,n=22 6765008743949028 r009 Re(z^3+c),c=-2/25+11/42*I,n=20 6765008743949892 r009 Re(z^3+c),c=-2/25+11/42*I,n=18 6765008743950759 r009 Re(z^3+c),c=-2/25+11/42*I,n=17 6765008744244807 r009 Re(z^3+c),c=-2/25+11/42*I,n=15 6765008747721219 a007 Real Root Of -787*x^4-336*x^3+438*x^2+879*x+455 6765008750017777 r009 Re(z^3+c),c=-2/25+11/42*I,n=13 6765008767759927 r002 55th iterates of z^2 + 6765008776218026 a007 Real Root Of 579*x^4-846*x^3-471*x^2-860*x+938 6765008833951603 m001 (exp(Pi)+Chi(1))/(Niven+Tribonacci) 6765008839564961 a001 196418/15127*843^(13/14) 6765008844864201 s002 sum(A172622[n]/((2^n-1)/n),n=1..infinity) 6765008864785653 a001 514229/39603*843^(13/14) 6765008868465302 a001 1346269/103682*843^(13/14) 6765008869002156 a001 3524578/271443*843^(13/14) 6765008869080482 a001 9227465/710647*843^(13/14) 6765008869091909 a001 24157817/1860498*843^(13/14) 6765008869093576 a001 63245986/4870847*843^(13/14) 6765008869093820 a001 165580141/12752043*843^(13/14) 6765008869093855 a001 433494437/33385282*843^(13/14) 6765008869093860 a001 1134903170/87403803*843^(13/14) 6765008869093861 a001 2971215073/228826127*843^(13/14) 6765008869093861 a001 7778742049/599074578*843^(13/14) 6765008869093861 a001 20365011074/1568397607*843^(13/14) 6765008869093861 a001 53316291173/4106118243*843^(13/14) 6765008869093861 a001 139583862445/10749957122*843^(13/14) 6765008869093861 a001 365435296162/28143753123*843^(13/14) 6765008869093861 a001 956722026041/73681302247*843^(13/14) 6765008869093861 a001 2504730781961/192900153618*843^(13/14) 6765008869093861 a001 10610209857723/817138163596*843^(13/14) 6765008869093861 a001 4052739537881/312119004989*843^(13/14) 6765008869093861 a001 1548008755920/119218851371*843^(13/14) 6765008869093861 a001 591286729879/45537549124*843^(13/14) 6765008869093861 a001 7787980473/599786069*843^(13/14) 6765008869093861 a001 86267571272/6643838879*843^(13/14) 6765008869093861 a001 32951280099/2537720636*843^(13/14) 6765008869093861 a001 12586269025/969323029*843^(13/14) 6765008869093861 a001 4807526976/370248451*843^(13/14) 6765008869093862 a001 1836311903/141422324*843^(13/14) 6765008869093864 a001 701408733/54018521*843^(13/14) 6765008869093877 a001 9238424/711491*843^(13/14) 6765008869093970 a001 102334155/7881196*843^(13/14) 6765008869094607 a001 39088169/3010349*843^(13/14) 6765008869098972 a001 14930352/1149851*843^(13/14) 6765008869128890 a001 5702887/439204*843^(13/14) 6765008869333949 a001 2178309/167761*843^(13/14) 6765008870739450 a001 832040/64079*843^(13/14) 6765008875831192 a007 Real Root Of -244*x^4+217*x^3-301*x^2+538*x+620 6765008880372898 a001 10959/844*843^(13/14) 6765008937702610 a007 Real Root Of -811*x^4+895*x^3+545*x^2+793*x+734 6765008946401527 a001 121393/9349*843^(13/14) 6765008952886389 a003 sin(Pi*22/73)*sin(Pi*16/51) 6765008953594492 l006 ln(5058/9949) 6765008962479306 m005 (1/3*gamma+2/7)/(5/9*gamma-1/4) 6765008974081023 m005 (1/2*Catalan-6/11)/(1/5*Zeta(3)-1/9) 6765008978113164 m001 1/Khintchine^2/exp(DuboisRaymond)*Lehmer 6765008988795656 r005 Re(z^2+c),c=-55/74+5/38*I,n=50 6765009010713668 p004 log(34613/17597) 6765009028023616 m004 (-20*E^(Sqrt[5]*Pi))/Pi+125*Pi-Tan[Sqrt[5]*Pi] 6765009093546334 a007 Real Root Of -666*x^4+496*x^3+822*x^2+624*x+339 6765009102966666 a001 5702887/1364*322^(1/12) 6765009105436486 a001 98209/682*843^(4/7) 6765009110626640 a007 Real Root Of 192*x^4-494*x^3+656*x^2-855*x-61 6765009129998870 m001 (Si(Pi)+(1+3^(1/2))^(1/2))/(-Kac+OneNinth) 6765009149489967 a007 Real Root Of 657*x^4-593*x^3+732*x^2-81*x-711 6765009170660517 r002 25th iterates of z^2 + 6765009175207001 r009 Im(z^3+c),c=-11/62+37/51*I,n=17 6765009194679501 r002 12th iterates of z^2 + 6765009204462593 a007 Real Root Of -180*x^4+856*x^3+311*x^2+706*x+638 6765009213508668 m001 (BesselK(1,1)-PlouffeB)/(Tribonacci+Trott2nd) 6765009231594152 r005 Re(z^2+c),c=-7/9+1/44*I,n=35 6765009235042230 r005 Im(z^2+c),c=-43/110+5/46*I,n=22 6765009249266300 a007 Real Root Of -336*x^4+755*x^3-390*x^2+277*x+670 6765009270296537 m001 (KomornikLoreti+Niven)/(Chi(1)-GAMMA(2/3)) 6765009290390774 m009 (1/10*Pi^2+4)/(3/4*Psi(1,1/3)-1/5) 6765009320295467 m001 1/Niven^2/ln(Magata)^2/Tribonacci^2 6765009323035921 r005 Re(z^2+c),c=5/52+15/28*I,n=19 6765009346423692 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^12 6765009368421617 l006 ln(2423/4766) 6765009372146818 m005 (-11/20+1/4*5^(1/2))/(7/11*Catalan+3/4) 6765009372408614 g006 Psi(1,8/11)+Psi(1,4/5)-Psi(1,9/11)-Psi(1,6/7) 6765009373012752 r009 Re(z^3+c),c=-2/25+11/42*I,n=10 6765009389679163 m001 GAMMA(1/24)*ln(BesselJ(1,1))^2/GAMMA(7/12)^2 6765009390473002 a001 329*24476^(57/58) 6765009398968523 a001 46368/3571*843^(13/14) 6765009417979600 m001 MinimumGamma^2*ln(ArtinRank2)*Zeta(1,2)^2 6765009419021681 b008 7-Pi^2/42 6765009422652852 a001 2178309/521*199^(1/11) 6765009425996092 r005 Im(z^2+c),c=-15/122+9/13*I,n=31 6765009459527637 m001 Riemann1stZero/(Sierpinski^StronglyCareFree) 6765009459968595 m005 (-5/44+1/4*5^(1/2))/(3/5*5^(1/2)-2) 6765009469633157 a007 Real Root Of 60*x^4-538*x^3-259*x^2-549*x-432 6765009477350707 m008 (1/3*Pi^4-3)/(3/4*Pi+2) 6765009505464613 a008 Real Root of x^4-2*x^3-32*x^2-18*x+111 6765009515240123 a001 5702887/2207*322^(1/6) 6765009519494207 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^14 6765009522787171 r005 Im(z^2+c),c=-53/102+5/42*I,n=63 6765009544744855 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^16 6765009548428875 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^18 6765009548702208 a007 Real Root Of -861*x^4-126*x^3+12*x^2+695*x+606 6765009548966366 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^20 6765009549044785 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^22 6765009549056226 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^24 6765009549057895 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^26 6765009549058139 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^28 6765009549058174 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^30 6765009549058179 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^32 6765009549058180 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^34 6765009549058180 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^36 6765009549058180 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^38 6765009549058180 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^40 6765009549058180 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^42 6765009549058180 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^44 6765009549058180 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^46 6765009549058180 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^48 6765009549058180 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^50 6765009549058180 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^52 6765009549058180 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^54 6765009549058180 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^56 6765009549058180 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^58 6765009549058180 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^60 6765009549058180 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^62 6765009549058180 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^64 6765009549058180 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^66 6765009549058180 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^68 6765009549058180 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^70 6765009549058180 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^72 6765009549058180 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^74 6765009549058180 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^76 6765009549058180 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^78 6765009549058180 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^80 6765009549058180 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^82 6765009549058180 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^84 6765009549058180 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^86 6765009549058180 a004 Fibonacci(94)*Lucas(14)/(1/2+sqrt(5)/2)^88 6765009549058180 a004 Fibonacci(96)*Lucas(14)/(1/2+sqrt(5)/2)^90 6765009549058180 a004 Fibonacci(100)*Lucas(14)/(1/2+sqrt(5)/2)^94 6765009549058180 a004 Fibonacci(98)*Lucas(14)/(1/2+sqrt(5)/2)^92 6765009549058180 a004 Fibonacci(99)*Lucas(14)/(1/2+sqrt(5)/2)^93 6765009549058180 a004 Fibonacci(97)*Lucas(14)/(1/2+sqrt(5)/2)^91 6765009549058180 a004 Fibonacci(95)*Lucas(14)/(1/2+sqrt(5)/2)^89 6765009549058180 a004 Fibonacci(93)*Lucas(14)/(1/2+sqrt(5)/2)^87 6765009549058180 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^85 6765009549058180 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^83 6765009549058180 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^81 6765009549058180 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^79 6765009549058180 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^77 6765009549058180 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^75 6765009549058180 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^73 6765009549058180 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^71 6765009549058180 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^69 6765009549058180 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^67 6765009549058180 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^65 6765009549058180 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^63 6765009549058180 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^61 6765009549058180 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^59 6765009549058180 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^57 6765009549058180 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^55 6765009549058180 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^53 6765009549058180 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^51 6765009549058180 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^49 6765009549058180 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^47 6765009549058180 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^45 6765009549058180 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^43 6765009549058180 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^41 6765009549058180 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^39 6765009549058180 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^37 6765009549058180 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^35 6765009549058181 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^33 6765009549058183 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^31 6765009549058196 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^29 6765009549058289 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^27 6765009549058927 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^25 6765009549063297 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^23 6765009549071576 a001 2/377*(1/2+1/2*5^(1/2))^34 6765009549093250 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^21 6765009549298554 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^19 6765009550705724 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^17 6765009560350613 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^15 6765009570293363 a007 Real Root Of 40*x^4+147*x^3+662*x^2-661*x-713 6765009572162802 a007 Real Root Of 466*x^4-735*x^3-632*x^2-421*x+704 6765009601256020 a007 Real Root Of 250*x^4+519*x^3+180*x^2-744*x-51 6765009615351637 a001 75025/521*521^(8/13) 6765009624284720 a008 Real Root of x^4-x^3-25*x^2-82*x-86 6765009626457668 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^13 6765009657612609 r005 Im(z^2+c),c=-1/21+42/55*I,n=32 6765009665022571 b008 -4+Pi+ArcCot[2*E] 6765009668048650 r002 60th iterates of z^2 + 6765009670104059 m001 exp(GAMMA(5/24))/Si(Pi)*cosh(1) 6765009677398856 r009 Im(z^3+c),c=-59/110+9/59*I,n=4 6765009681174264 a007 Real Root Of 132*x^4+920*x^3+250*x^2+467*x+83 6765009697665533 m005 (1/36+1/4*5^(1/2))/(7/11*5^(1/2)-5/9) 6765009705292950 m008 (2/5*Pi^3+5/6)/(2*Pi^4+5/6) 6765009742422466 a007 Real Root Of -952*x^4+677*x^3+555*x^2+102*x+224 6765009762064337 r004 Re(z^2+c),c=-5/26-5/11*I,z(0)=I,n=4 6765009776451660 a007 Real Root Of 814*x^4-841*x^3-738*x^2-971*x-750 6765009784769515 l006 ln(2186/2339) 6765009785273945 a001 121393/1364*843^(9/14) 6765009797673457 r009 Im(z^3+c),c=-5/17+28/41*I,n=52 6765009821204418 l006 ln(4634/9115) 6765009824345198 m005 (31/44+1/4*5^(1/2))/(11/12*2^(1/2)+4/7) 6765009824509825 a007 Real Root Of 346*x^4-573*x^3-121*x^2-443*x+460 6765009836046264 a007 Real Root Of -337*x^4+609*x^3-344*x^2-193*x+286 6765009838845514 m002 -5+E^Pi+Pi+4*Cosh[Pi] 6765009855878243 r005 Re(z^2+c),c=-73/126+27/55*I,n=49 6765009867902615 m001 (MertensB1+ZetaQ(3))/(sin(1/5*Pi)+Magata) 6765009880496669 p003 LerchPhi(1/512,4,247/224) 6765009892076492 m001 (-Mills+Porter)/(3^(1/2)+Cahen) 6765009893563279 r002 62th iterates of z^2 + 6765009893597959 b008 -1+Sqrt[2]*Cosh[3/5] 6765009932469010 m001 (exp(-1/2*Pi)-FeigenbaumB)/(Grothendieck-Thue) 6765009936579690 m002 1+Pi/6+6/Log[Pi] 6765009948336267 m001 Si(Pi)*sin(1/5*Pi)^Ei(1) 6765009948336267 m001 sin(Pi/5)^Ei(1)*Si(Pi) 6765009966755640 m004 -4+25*Pi-Sqrt[5]*Pi+Sin[Sqrt[5]*Pi]/5 6765009974350745 a007 Real Root Of -93*x^4-750*x^3-880*x^2-431*x-59 6765009999606025 r005 Im(z^2+c),c=-67/102+3/56*I,n=11 6765010011200679 r002 58th iterates of z^2 + 6765010014446441 r009 Im(z^3+c),c=-11/38+26/37*I,n=32 6765010028190022 p004 log(31277/15901) 6765010038740266 r005 Re(z^2+c),c=-47/64+4/43*I,n=34 6765010055210160 m001 1/cos(Pi/12)/Magata/ln(cos(Pi/5))^2 6765010059430009 a007 Real Root Of -253*x^4+786*x^3+532*x^2+763*x-950 6765010069770154 a007 Real Root Of 530*x^4-787*x^3-410*x^2-174*x+438 6765010072120419 r005 Re(z^2+c),c=-15/31+16/21*I,n=5 6765010079562159 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^11 6765010111260262 a007 Real Root Of -577*x^4-709*x^3+720*x^2+832*x-552 6765010128919638 s002 sum(A189289[n]/(n*exp(n)-1),n=1..infinity) 6765010131091364 a007 Real Root Of 348*x^4-398*x^3+987*x^2-324*x-867 6765010138833977 a003 sin(Pi*7/101)-sin(Pi*33/94) 6765010171066451 a007 Real Root Of 656*x^4+111*x^3-135*x^2-551*x-414 6765010183112840 a007 Real Root Of -163*x^4+491*x^3+334*x^2+817*x+586 6765010205173169 m005 (1/3*3^(1/2)-2/5)/(-13/24+1/8*5^(1/2)) 6765010214973207 m001 1/ln(TreeGrowth2nd)^2/CopelandErdos*Zeta(5)^2 6765010240680472 l006 ln(3683/3708) 6765010244658820 s001 sum(exp(-Pi/2)^(n-1)*A178298[n],n=1..infinity) 6765010250311495 r005 Im(z^2+c),c=-53/102+5/42*I,n=53 6765010267355646 r002 64th iterates of z^2 + 6765010280972246 b008 JacobiAmplitude[7/11,-1] 6765010312562310 a007 Real Root Of 123*x^4+735*x^3-559*x^2+781*x+805 6765010317401921 l006 ln(2211/4349) 6765010329347121 r005 Im(z^2+c),c=-9/52+41/61*I,n=10 6765010350043619 r005 Re(z^2+c),c=7/52+31/61*I,n=40 6765010351966873 q001 1307/1932 6765010373075274 a007 Real Root Of 138*x^4+850*x^3-615*x^2-431*x-644 6765010375554619 a007 Real Root Of -660*x^4-859*x^3-288*x^2+906*x+617 6765010397126670 r009 Im(z^3+c),c=-13/29+24/43*I,n=64 6765010408362227 m001 (BesselI(0,1)+3^(1/3))/(Gompertz+Magata) 6765010412348561 a001 521/8*17711^(52/55) 6765010422825944 a007 Real Root Of 449*x^4+336*x^3+787*x^2+392*x-85 6765010463541156 m001 (MertensB1+Trott2nd)/(Pi+GAMMA(5/6)) 6765010465570544 a001 75025/1364*843^(5/7) 6765010481069841 m001 1/exp(GAMMA(13/24))*Si(Pi)^2*Zeta(7)^2 6765010484209513 r005 Re(z^2+c),c=5/46+14/29*I,n=54 6765010492715345 p003 LerchPhi(1/256,1,323/218) 6765010519643416 a001 377/7*3^(11/53) 6765010533821960 a007 Real Root Of -641*x^4+729*x^3-303*x^2+716*x+983 6765010567208841 a003 sin(Pi*7/29)*sin(Pi*50/113) 6765010569902618 a007 Real Root Of -58*x^4+999*x^3+265*x^2+567*x-802 6765010589116047 m001 sin(1/12*Pi)^LambertW(1)*Backhouse 6765010589116047 m001 sin(Pi/12)^LambertW(1)*Backhouse 6765010607091934 a003 cos(Pi*11/79)*cos(Pi*22/95) 6765010608397981 r005 Re(z^2+c),c=-73/106+11/39*I,n=23 6765010610079575 a001 2550409/377 6765010649482014 m001 (Niven-StronglyCareFree)/(ln(5)-CopelandErdos) 6765010668133419 m001 sin(1/5*Pi)^(Conway/Pi^(1/2)) 6765010671307813 r005 Im(z^2+c),c=-17/38+6/53*I,n=20 6765010701483076 a001 2584*322^(1/6) 6765010717085372 a007 Real Root Of -443*x^4+336*x^3+503*x^2-11*x-234 6765010746450971 m001 GaussKuzminWirsing^LandauRamanujan2nd-Salem 6765010765322899 m002 -2+E^Pi+(3*Pi^3)/2 6765010767289007 m001 (Zeta(1/2)+Zeta(1,2))/(BesselJ(1,1)-Kolakoski) 6765010791789369 m001 1/exp(Robbin)/Bloch^2*cos(1)^2 6765010850276567 a008 Real Root of x^4+2*x^2-2186 6765010863572729 l006 ln(4210/8281) 6765010874553625 a001 39088169/15127*322^(1/6) 6765010883459323 m005 (5/6*2^(1/2)+4)/(3*exp(1)-1/2) 6765010887622308 r005 Re(z^2+c),c=15/82+23/35*I,n=6 6765010895135228 a007 Real Root Of 294*x^4-273*x^3-757*x^2-774*x+893 6765010899804278 a001 34111385/13201*322^(1/6) 6765010903488299 a001 133957148/51841*322^(1/6) 6765010904025790 a001 233802911/90481*322^(1/6) 6765010904104209 a001 1836311903/710647*322^(1/6) 6765010904115650 a001 267084832/103361*322^(1/6) 6765010904117320 a001 12586269025/4870847*322^(1/6) 6765010904117563 a001 10983760033/4250681*322^(1/6) 6765010904117599 a001 43133785636/16692641*322^(1/6) 6765010904117604 a001 75283811239/29134601*322^(1/6) 6765010904117605 a001 591286729879/228826127*322^(1/6) 6765010904117605 a001 86000486440/33281921*322^(1/6) 6765010904117605 a001 4052739537881/1568397607*322^(1/6) 6765010904117605 a001 3536736619241/1368706081*322^(1/6) 6765010904117605 a001 3278735159921/1268860318*322^(1/6) 6765010904117605 a001 2504730781961/969323029*322^(1/6) 6765010904117605 a001 956722026041/370248451*322^(1/6) 6765010904117605 a001 182717648081/70711162*322^(1/6) 6765010904117607 a001 139583862445/54018521*322^(1/6) 6765010904117621 a001 53316291173/20633239*322^(1/6) 6765010904117714 a001 10182505537/3940598*322^(1/6) 6765010904118351 a001 7778742049/3010349*322^(1/6) 6765010904122722 a001 2971215073/1149851*322^(1/6) 6765010904152675 a001 567451585/219602*322^(1/6) 6765010904357978 a001 433494437/167761*322^(1/6) 6765010905765149 a001 165580141/64079*322^(1/6) 6765010915410041 a001 31622993/12238*322^(1/6) 6765010916574114 m001 FellerTornier*(LandauRamanujan+MertensB3) 6765010928215896 m009 (3/5*Psi(1,2/3)-1/3)/(1/12*Pi^2-3/5) 6765010936771320 a007 Real Root Of 584*x^4-973*x^3-942*x^2+241*x+447 6765010943482867 m001 (-Backhouse+Landau)/(cos(1)+cos(1/5*Pi)) 6765010972734355 r009 Re(z^3+c),c=-3/122+45/56*I,n=64 6765010981517111 a001 24157817/9349*322^(1/6) 6765011008877303 m001 (GAMMA(23/24)+Gompertz)/(Zeta(1/2)+Zeta(1,2)) 6765011015757303 a007 Real Root Of 558*x^4-219*x^3+20*x^2-831*x-756 6765011048973513 a007 Real Root Of 159*x^4+474*x^3+381*x^2-841*x+55 6765011066668156 a007 Real Root Of 156*x^4-884*x^3+68*x^2+422*x-52 6765011108487239 a007 Real Root Of 333*x^4-706*x^3+89*x^2-62*x-371 6765011111957630 a007 Real Root Of 142*x^4+841*x^3-805*x^2+80*x+344 6765011143395299 a001 5/39603*1364^(10/43) 6765011144665344 a001 11592/341*843^(11/14) 6765011146787028 a005 (1/cos(25/189*Pi))^591 6765011197760226 a007 Real Root Of 346*x^4-687*x^3+123*x^2-428*x-631 6765011207517834 m001 (Pi^(1/2)+Otter)/(BesselI(0,1)-LambertW(1)) 6765011260576574 a003 sin(Pi*20/87)/sin(Pi*19/44) 6765011276017197 a007 Real Root Of -251*x^4+418*x^3+638*x^2-84*x-312 6765011276835577 b008 Pi+Cot[(3*Pi)/35] 6765011294955342 m001 1/GAMMA(1/3)^2*ln(Riemann1stZero)^2/Zeta(3)^2 6765011339705477 r008 a(0)=7,K{-n^6,24-40*n+6*n^2+15*n^3} 6765011349850887 m005 (1/3*Catalan+1/11)/(1/9*2^(1/2)+3/7) 6765011374243527 a007 Real Root Of 405*x^4-370*x^3+840*x^2-494*x-918 6765011378499970 m005 (1/2*5^(1/2)-2/7)/(3/8*2^(1/2)+7/10) 6765011402715570 m001 PlouffeB/(gamma(1)+StronglyCareFree) 6765011405281296 a007 Real Root Of 554*x^4-741*x^3+680*x^2+236*x-497 6765011415609099 r005 Im(z^2+c),c=-7/8+1/209*I,n=31 6765011434621747 a001 9227465/3571*322^(1/6) 6765011465797591 r002 38i'th iterates of 2*x/(1-x^2) of 6765011467666571 l006 ln(1999/3932) 6765011508576698 r005 Im(z^2+c),c=-9/7+26/125*I,n=6 6765011528213043 m001 GAMMA(11/12)/Tribonacci^2/exp(GAMMA(7/12)) 6765011529665510 r009 Re(z^3+c),c=-1/86+17/28*I,n=33 6765011532130545 a001 233*521^(7/13) 6765011563156092 a007 Real Root Of 59*x^4-733*x^3-351*x^2-554*x+750 6765011566786517 h001 (9/11*exp(2)+3/8)/(1/12*exp(2)+1/3) 6765011566822866 a007 Real Root Of -55*x^4-251*x^3-8*x^2+969*x+593 6765011586308450 p001 sum(1/(547*n+31)/n/(256^n),n=1..infinity) 6765011590297734 m005 (1/2*Catalan-4/9)/(8/11*5^(1/2)+3/8) 6765011623912780 s002 sum(A155573[n]/(n^3*10^n+1),n=1..infinity) 6765011640339248 r002 57th iterates of z^2 + 6765011641291760 a007 Real Root Of 994*x^4-584*x^3-318*x^2-190*x-372 6765011652213046 p004 log(27107/13781) 6765011669221901 a007 Real Root Of 524*x^4+623*x^3+947*x^2+27*x-332 6765011675056701 r009 Re(z^3+c),c=-9/82+25/56*I,n=4 6765011697211601 a001 5/710647*3571^(24/43) 6765011709219320 m005 (1/2*Pi-7/10)/(1/11*Pi-3/11) 6765011714912705 a001 9349/610*34^(8/19) 6765011727577493 m001 (TwinPrimes+2)/(GAMMA(11/24)+2) 6765011728631348 r002 56th iterates of z^2 + 6765011756531952 a007 Real Root Of -430*x^4-555*x^3-918*x^2+777*x+864 6765011772574971 a007 Real Root Of -46*x^4+301*x^3-239*x^2+47*x+244 6765011790534910 a007 Real Root Of -922*x^4+268*x^3+219*x^2-155*x+71 6765011798941063 m001 Pi/(exp(Pi)-ln(5))*arctan(1/2) 6765011812236079 m005 (1/2*2^(1/2)+3/11)/(1/10*exp(1)-5/12) 6765011826906742 a001 28657/1364*843^(6/7) 6765011890606420 r002 2th iterates of z^2 + 6765011890606420 r002 2th iterates of z^2 + 6765011890963372 a007 Real Root Of 503*x^4-242*x^3-359*x^2-714*x-499 6765011913751358 m004 6*E^(Sqrt[5]*Pi)+(125*Tanh[Sqrt[5]*Pi])/(2*Pi) 6765011925778282 m001 (FeigenbaumD+MertensB3)/(Shi(1)-arctan(1/2)) 6765011941533009 s002 sum(A237971[n]/((pi^n+1)/n),n=1..infinity) 6765011945234876 m004 6*E^(Sqrt[5]*Pi)+125/(2*Pi) 6765011946518692 a001 5/1860498*9349^(26/43) 6765011960670343 r005 Im(z^2+c),c=-55/106+41/61*I,n=8 6765011976445435 m006 (1/5*Pi-5/6)/(1/6/Pi+1/4) 6765011989051026 m001 (Artin-Cahen)/(Pi+sin(1)) 6765011992692129 a001 5/271443*64079^(14/43) 6765012013258569 a001 5/4870847*15127^(29/43) 6765012015013857 m005 (1/3*Catalan+1/5)/(10/11*gamma+2/9) 6765012018255414 m001 (3^(1/3))^cos(1/12*Pi)*Weierstrass 6765012018685641 m001 (ln(gamma)-Conway)/(Khinchin+ZetaQ(2)) 6765012046748275 a007 Real Root Of -714*x^4+668*x^3-635*x^2+3*x+649 6765012070457254 a001 5/9349*24476^(1/43) 6765012072012300 a003 cos(Pi*33/83)-sin(Pi*6/13) 6765012081995651 r005 Im(z^2+c),c=-65/98+17/41*I,n=21 6765012086310506 s002 sum(A196157[n]/(10^n-1),n=1..infinity) 6765012092222779 h005 exp(cos(Pi*4/55)+sin(Pi*12/31)) 6765012092954305 a001 5/15127*2207^(4/43) 6765012098580969 r002 11th iterates of z^2 + 6765012139413773 l006 ln(3786/7447) 6765012141544413 a007 Real Root Of 324*x^4-248*x^3-56*x^2-507*x-462 6765012148559527 q001 1949/2881 6765012156328111 a007 Real Root Of -834*x^4+955*x^3+271*x^2+882*x+943 6765012190970664 r002 63th iterates of z^2 + 6765012199409224 a003 sin(Pi*21/79)*sin(Pi*15/41) 6765012203256859 m001 (-ZetaP(4)+ZetaQ(2))/(1-Robbin) 6765012254485021 m001 Cahen^cos(1/5*Pi)/MertensB2 6765012256309355 m001 1/Kolakoski^2/ln(Conway)^2/gamma^2 6765012259175346 a001 832040/843*322^(1/3) 6765012265383097 a001 7/956722026041*20365011074^(17/22) 6765012265387051 a001 7/267914296*514229^(17/22) 6765012274539923 a007 Real Root Of 598*x^4-559*x^3+818*x^2+69*x-626 6765012277003287 a007 Real Root Of 260*x^4-300*x^3+363*x^2-885*x+471 6765012280977768 m001 (Landau-Trott)/(sin(1/5*Pi)-exp(1/Pi)) 6765012284149426 m001 1/Bloch*FeigenbaumDelta*exp(GAMMA(1/6))^2 6765012284361912 m005 (1/2*Pi-6/7)/(10/11*Catalan+2/9) 6765012304695315 m003 -3/2+Sqrt[5]/4+E^(1/2+Sqrt[5]/2)/5 6765012307117224 r005 Im(z^2+c),c=-53/102+5/42*I,n=64 6765012331403880 a003 sin(Pi*29/107)*sin(Pi*21/59) 6765012411405820 r002 22th iterates of z^2 + 6765012418230644 r002 8th iterates of z^2 + 6765012424975722 m001 1/exp(GAMMA(2/3))^2*GAMMA(1/3)^2*sqrt(2) 6765012425194416 a007 Real Root Of 827*x^4-624*x^3+206*x^2-778*x-987 6765012478691800 a007 Real Root Of 846*x^4-253*x^3+248*x^2-303*x-574 6765012483261874 m001 Psi(1,1/3)/(FeigenbaumC^Robbin) 6765012484189751 m001 (-Porter+TwinPrimes)/(BesselK(0,1)-cos(1)) 6765012500910487 a001 17711/1364*843^(13/14) 6765012525350769 r002 61th iterates of z^2 + 6765012539273654 r002 59th iterates of z^2 + 6765012559761138 a007 Real Root Of -145*x^4+278*x^3+89*x^2+877*x+669 6765012583812267 r002 28th iterates of z^2 + 6765012638063917 r002 53th iterates of z^2 + 6765012654721869 p003 LerchPhi(1/8,6,54/109) 6765012695958215 r009 Re(z^3+c),c=-18/31+13/54*I,n=50 6765012699248453 m002 -Pi^5+E^Pi*Pi^5+ProductLog[Pi]-Sinh[Pi] 6765012721223319 a007 Real Root Of -465*x^4-194*x^3-169*x^2+101*x+183 6765012722295518 a007 Real Root Of -630*x^4-224*x^3+512*x^2+439*x-330 6765012731779222 r009 Im(z^3+c),c=-13/44+2/43*I,n=6 6765012732343971 a001 1364*514229^(11/17) 6765012734083871 a007 Real Root Of -192*x^4+54*x^3-606*x^2-197*x+201 6765012741554302 m001 1/GAMMA(17/24)*FeigenbaumD*exp(sin(Pi/5))^2 6765012777212042 r005 Im(z^2+c),c=-13/14+10/173*I,n=12 6765012781581143 m001 (Si(Pi)+GAMMA(3/4))/(-arctan(1/2)+ZetaQ(3)) 6765012788573405 m001 Pi*(exp(Pi)-ln(2^(1/2)+1))-BesselI(0,2) 6765012814235833 m006 (4/5*Pi+1/6)/(1/5*exp(Pi)-2/3) 6765012817530898 r002 54i'th iterates of 2*x/(1-x^2) of 6765012840750129 a007 Real Root Of -276*x^4+479*x^3+917*x^2+492*x-843 6765012857084905 m001 (MinimumGamma+Totient)/(ThueMorse+ZetaQ(4)) 6765012858504559 r009 Im(z^3+c),c=-1/6+31/42*I,n=63 6765012860572754 a007 Real Root Of 401*x^4-487*x^3+717*x^2-281*x-753 6765012862890355 a007 Real Root Of -711*x^4-29*x^3-611*x^2+756*x+931 6765012890853372 l006 ln(1787/3515) 6765012919036340 a007 Real Root Of 88*x^4+650*x^3+340*x^2-202*x+2 6765012936952272 a007 Real Root Of 825*x^4-664*x^3-2*x^2-496*x-713 6765012983974864 a003 sin(Pi*5/87)-sin(Pi*35/107) 6765013036498989 s002 sum(A031836[n]/(n^2*2^n-1),n=1..infinity) 6765013036622063 r005 Re(z^2+c),c=-127/126+17/47*I,n=9 6765013037746586 m001 3^(1/3)*(QuadraticClass-ThueMorse) 6765013047763211 a008 Real Root of x^4-x^3-31*x^2-76*x+148 6765013049586878 r005 Im(z^2+c),c=33/106+19/46*I,n=11 6765013054830287 q001 2591/3830 6765013068877568 r005 Im(z^2+c),c=-51/62+1/26*I,n=22 6765013068977327 a007 Real Root Of -410*x^4+584*x^3-969*x^2-49*x+677 6765013086077348 r005 Re(z^2+c),c=11/52+31/59*I,n=31 6765013120377806 r002 56th iterates of z^2 + 6765013127198498 r009 Re(z^3+c),c=-19/78+32/45*I,n=27 6765013141418740 a007 Real Root Of 12*x^4+817*x^3+349*x^2-181*x-7 6765013185186544 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^9 6765013185660128 a007 Real Root Of 507*x^4-544*x^3-257*x^2-998*x+855 6765013194503602 a007 Real Root Of -386*x^4+112*x^3-190*x^2+765*x+720 6765013209417150 a007 Real Root Of 168*x^4-879*x^3-136*x^2-974*x-904 6765013220367162 m009 (3/5*Psi(1,2/3)+1/5)/(1/10*Pi^2-4) 6765013221494725 m001 ln(3)^CareFree/(gamma(1)^CareFree) 6765013226624149 a008 Real Root of (-4+3*x+2*x^2+5*x^3-x^4-2*x^5) 6765013238229893 a003 cos(Pi*22/97)*sin(Pi*25/71) 6765013250173876 a007 Real Root Of 901*x^4-37*x^3-958*x^2-976*x-422 6765013250987497 m001 (-CareFree+Thue)/(sin(1)+exp(1/exp(1))) 6765013262599469 a001 2550410/377 6765013271052571 a007 Real Root Of 354*x^4-982*x^3+564*x^2-72*x-685 6765013276360219 r005 Im(z^2+c),c=-53/102+5/42*I,n=62 6765013296348665 a001 199/34*233^(22/49) 6765013303198448 r005 Re(z^2+c),c=-11/102+5/7*I,n=36 6765013306644110 m001 (Tetranacci+ZetaP(2))/(FeigenbaumB+Khinchin) 6765013349865012 a007 Real Root Of -933*x^4+688*x^3-711*x^2+324*x+953 6765013363419004 a007 Real Root Of -539*x^4+477*x^3-884*x^2+257*x+839 6765013368267827 m001 (Zeta(5)+StolarskyHarborth)/(1+3^(1/2))^(1/2) 6765013368553047 p001 sum(1/(221*n+202)/(2^n),n=0..infinity) 6765013379838767 m001 (GAMMA(19/24)+ReciprocalLucas)/arctan(1/2) 6765013434320971 a007 Real Root Of -581*x^4+913*x^3-584*x^2-301*x+468 6765013435368209 m001 (PolyaRandomWalk3D-ZetaP(2))/(Zeta(3)-Zeta(5)) 6765013436975306 s002 sum(A107008[n]/(n^3*10^n+1),n=1..infinity) 6765013436975306 s002 sum(A141375[n]/(n^3*10^n+1),n=1..infinity) 6765013449369069 a001 196418/521*521^(6/13) 6765013455352301 m001 Shi(1)*(2*Pi/GAMMA(5/6)+FeigenbaumB) 6765013467066658 m001 1/Catalan^2/RenyiParking^2*exp(gamma)^2 6765013485716757 r005 Re(z^2+c),c=-19/78+19/25*I,n=29 6765013489455746 a007 Real Root Of -231*x^4+468*x^3-622*x^2-841*x-91 6765013516796929 a001 1568397607*144^(5/17) 6765013519414230 a007 Real Root Of 571*x^4+289*x^3-642*x^2-670*x+538 6765013527741389 m005 (1/3*Pi-1/12)/(3/10*Pi-4/5) 6765013553309141 a007 Real Root Of 794*x^4+460*x^3-823*x^2-993*x-319 6765013564673823 a007 Real Root Of -679*x^4+849*x^3+21*x^2+428*x+685 6765013605150163 r002 9th iterates of z^2 + 6765013650258555 r005 Re(z^2+c),c=-49/64+2/29*I,n=29 6765013683157887 m005 (1/3*Zeta(3)+1/9)/(3*5^(1/2)+6/7) 6765013733514415 r005 Im(z^2+c),c=-5/12+17/28*I,n=6 6765013737061014 l006 ln(3362/6613) 6765013755627863 p001 sum((-1)^n/(229*n+217)/n/(3^n),n=1..infinity) 6765013760205864 m001 (Chi(1)-GAMMA(2/3))/(-Landau+Mills) 6765013771738042 m005 (1/2*gamma-1/10)/(3*Zeta(3)-9/11) 6765013776790390 a007 Real Root Of -150*x^4+441*x^3+35*x^2+359*x-364 6765013828769600 m001 ln(2+3^(1/2))^PlouffeB/(ln(2+3^(1/2))^Ei(1)) 6765013840653481 a007 Real Root Of 604*x^4-274*x^3-400*x^2-808*x+688 6765013844573865 m001 (Gompertz*MertensB2-ln(2+3^(1/2)))/MertensB2 6765013844783489 m001 gamma(2)/(GlaisherKinkelin^exp(1/exp(1))) 6765013857672178 g006 Psi(1,6/7)+Psi(1,2/3)+1/2*Pi^2-Psi(1,7/11) 6765013880046315 s001 sum(exp(-Pi/2)^(n-1)*A205937[n],n=1..infinity) 6765013905187386 a007 Real Root Of 396*x^4-659*x^3-476*x^2-665*x-519 6765013921614082 a003 cos(Pi*6/83)-cos(Pi*14/101) 6765013928293772 r005 Im(z^2+c),c=-33/70+1/10*I,n=9 6765013942271786 m001 (Si(Pi)+3^(1/3))/(-Robbin+ZetaP(3)) 6765013947311456 m001 1/BesselK(1,1)^2*ln(MinimumGamma)^2/sin(Pi/5) 6765013957101718 m004 -8-E^(Sqrt[5]*Pi)+Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 6765013976177667 h001 (5/8*exp(2)+1/12)/(2/9*exp(1)+1/11) 6765013992577851 m001 (arctan(1/2)+BesselI(1,2))/GaussKuzminWirsing 6765014008580103 a001 7/1597*14930352^(4/9) 6765014010962044 a007 Real Root Of -568*x^4-766*x^3-522*x^2+979*x+783 6765014014512092 h001 (4/5*exp(1)+11/12)/(1/2*exp(2)+7/8) 6765014014530906 m001 (-exp(1/Pi)+1)/(cos(1)+5) 6765014018865974 a007 Real Root Of 324*x^4+290*x^3-364*x^2-989*x+678 6765014029941676 m001 (GaussAGM+Kolakoski)/(3^(1/3)+cos(1/12*Pi)) 6765014043354911 l006 ln(4937/9711) 6765014071645274 m001 (FeigenbaumKappa+Otter)/(Zeta(1,-1)-Bloch) 6765014083728691 r002 9th iterates of z^2 + 6765014090850697 a007 Real Root Of -306*x^4+759*x^3-784*x^2+46*x+689 6765014102892155 r005 Re(z^2+c),c=-15/14+6/187*I,n=18 6765014103999158 r005 Re(z^2+c),c=-19/26+19/109*I,n=22 6765014110344338 r005 Re(z^2+c),c=7/46+25/39*I,n=17 6765014133524093 m005 (1/2*Catalan-1/7)/(-41/176+5/16*5^(1/2)) 6765014136055777 m001 (GAMMA(2/3)+ln(3))/GAMMA(1/4) 6765014136055777 m001 1/2*(GAMMA(2/3)+ln(3))/Pi*2^(1/2)*GAMMA(3/4) 6765014199505296 a007 Real Root Of -457*x^4+984*x^3-369*x^2+946*x+66 6765014205565740 r005 Re(z^2+c),c=-15/14+5/228*I,n=6 6765014222243975 a007 Real Root Of -854*x^4+937*x^3-846*x^2-794*x+319 6765014222748135 a008 Real Root of x^4-2*x^3-25*x^2-42*x-47 6765014230678119 r005 Re(z^2+c),c=-55/94+33/59*I,n=14 6765014245715209 a007 Real Root Of -27*x^4+514*x^3-99*x^2+600*x+616 6765014247815336 s002 sum(A149469[n]/(16^n),n=1..infinity) 6765014277759142 a007 Real Root Of 880*x^4-619*x^3+543*x^2+759*x-111 6765014285203187 r009 Im(z^3+c),c=-20/21+1/55*I,n=2 6765014298025383 p004 log(15907/8087) 6765014336424001 h001 (-5*exp(1/2)+3)/(-5*exp(-3)+8) 6765014351292391 a007 Real Root Of 960*x^4-456*x^3-29*x^2+201*x-193 6765014410110065 a007 Real Root Of -556*x^4-855*x^3-549*x^2+204*x+241 6765014410973303 r002 4th iterates of z^2 + 6765014418724573 r005 Im(z^2+c),c=5/36+41/63*I,n=26 6765014423144211 a007 Real Root Of 713*x^4-682*x^3-156*x^2+111*x-214 6765014431636885 a003 sin(Pi*10/93)+sin(Pi*12/107) 6765014473564770 m002 -4+Pi+Pi^4/E^(2*Pi) 6765014479574814 a007 Real Root Of 683*x^4-217*x^3-740*x^2+47*x+231 6765014527791993 a001 7/10946*1134903170^(4/9) 6765014538844061 a001 7/75025*86267571272^(4/9) 6765014539079317 a001 7/514229*6557470319842^(4/9) 6765014540248761 a001 1762289/682*322^(1/6) 6765014540747630 m001 (BesselI(1,2)+OneNinth)/(exp(-1/2*Pi)-exp(1)) 6765014543240445 a007 Real Root Of -162*x^4+982*x^3+638*x^2+714*x+529 6765014546405359 m001 (2^(1/3))/exp(OneNinth)^2/GAMMA(3/4)^2 6765014574591982 m001 (Zeta(5)+Bloch)/(Chi(1)-exp(Pi)) 6765014578869577 r005 Im(z^2+c),c=-53/102+5/42*I,n=60 6765014628950608 m001 1/ln(Riemann2ndZero)/Backhouse*sqrt(3)^2 6765014632252888 m005 (1/3*Zeta(3)+2/3)/(4/7*5^(1/2)+3/10) 6765014643450651 a007 Real Root Of 160*x^4+977*x^3-832*x^2-724*x+546 6765014653608965 r005 Re(z^2+c),c=13/36+4/63*I,n=4 6765014669579756 m001 (-FeigenbaumMu+Rabbit)/(1-gamma) 6765014670506833 m005 (1/2*2^(1/2)-3/11)/(-11/56+3/8*5^(1/2)) 6765014677636239 g004 Im(GAMMA(-28/15+I*9/4)) 6765014697170805 l006 ln(1575/3098) 6765014706743376 r009 Re(z^3+c),c=-13/106+23/35*I,n=48 6765014714532540 m005 (1/3*3^(1/2)-1/9)/(8/9*Catalan-1/8) 6765014720777129 g002 Psi(1/9)+Psi(7/8)-Psi(4/9)-Psi(5/7) 6765014742230917 a001 8/167761*11^(7/48) 6765014742469252 m001 Pi^Paris/(Pi^BesselJ(1,1)) 6765014773388547 m001 (cos(1/12*Pi)+GAMMA(23/24))/(FeigenbaumMu-Kac) 6765014793809754 r005 Im(z^2+c),c=-53/102+5/42*I,n=54 6765014821819022 a007 Real Root Of -112*x^4-694*x^3+578*x^2+888*x-729 6765014824683505 a007 Real Root Of 961*x^4+242*x^3+584*x^2-716*x-878 6765014829021043 r002 23th iterates of z^2 + 6765014834743232 m001 (3^(1/3)-BesselK(0,1))/(-MertensB1+ThueMorse) 6765014843750751 a001 46/311187*4181^(36/49) 6765014861700124 r005 Im(z^2+c),c=27/122+8/15*I,n=58 6765014868112298 r005 Re(z^2+c),c=-19/28+17/49*I,n=37 6765014886644948 a001 24476/1597*34^(8/19) 6765014897426435 r005 Im(z^2+c),c=25/58+13/60*I,n=3 6765014917158573 r002 43th iterates of z^2 + 6765014942018144 m001 Rabbit^sin(1/12*Pi)*Rabbit^ln(2^(1/2)+1) 6765014952387499 a007 Real Root Of -8*x^4-530*x^3+757*x^2-57*x-366 6765014952522549 a001 3524578/2207*322^(1/4) 6765014963258175 g006 Psi(1,1/11)-2*Psi(1,9/11)-Psi(1,1/7) 6765014975880591 a007 Real Root Of -501*x^4+817*x^3+556*x^2+54*x-439 6765014985358276 a007 Real Root Of -427*x^4-41*x^3-62*x^2+90*x+166 6765015009633316 m003 8+5*Cos[1/2+Sqrt[5]/2]-Sin[1/2+Sqrt[5]/2] 6765015034621738 a007 Real Root Of -158*x^4+891*x^3-821*x^2-239*x+523 6765015083074113 a007 Real Root Of -141*x^4+922*x^3-521*x^2+533*x+914 6765015084949675 r005 Re(z^2+c),c=-81/110+8/27*I,n=3 6765015087061077 a007 Real Root Of 81*x^4+489*x^3-390*x^2+10*x-340 6765015119395791 a007 Real Root Of 834*x^4-784*x^3+985*x^2+698*x-396 6765015147290667 a007 Real Root Of -658*x^4+975*x^3+940*x^2-228*x-440 6765015149802470 m005 (1/2*Zeta(3)-3/5)/(8/11*Catalan-9/11) 6765015154657198 r005 Im(z^2+c),c=-3/25+17/23*I,n=6 6765015162903999 s002 sum(A108525[n]/((2*n)!),n=1..infinity) 6765015169467052 a007 Real Root Of 159*x^4-878*x^3-892*x^2-228*x+801 6765015225531156 r005 Im(z^2+c),c=-29/54+37/56*I,n=10 6765015238872100 m001 Psi(2,1/3)+ErdosBorwein-Riemann1stZero 6765015247122862 m006 (5/6*Pi+4)/(1/6*Pi^2-2/3) 6765015247122862 m008 (5/6*Pi+4)/(1/6*Pi^2-2/3) 6765015258965794 a001 322/233*75025^(16/29) 6765015261675615 a007 Real Root Of -111*x^4-638*x^3+667*x^2-626*x+199 6765015264488577 a007 Real Root Of -131*x^4+319*x^3+140*x^2+563*x+443 6765015269746375 a007 Real Root Of -249*x^4+612*x^3-43*x^2+985*x-784 6765015271793528 h001 (1/10*exp(2)+7/8)/(7/12*exp(1)+4/5) 6765015290227677 a007 Real Root Of -46*x^4+469*x^3+285*x^2+915*x-885 6765015336426728 l006 ln(7701/8240) 6765015339588345 r002 6th iterates of z^2 + 6765015349394689 a001 64079/4181*34^(8/19) 6765015361389307 a007 Real Root Of 819*x^4-741*x^3+824*x^2+74*x-728 6765015366432787 a001 317811/521*521^(5/13) 6765015384206916 a007 Real Root Of 46*x^4-786*x^3+984*x^2-273*x-888 6765015396068281 r005 Re(z^2+c),c=-83/118+10/51*I,n=16 6765015412413181 l006 ln(4513/8877) 6765015416908971 a001 167761/10946*34^(8/19) 6765015418544220 r005 Re(z^2+c),c=15/118+35/41*I,n=3 6765015422268954 a001 377/521*24476^(19/21) 6765015426014134 s002 sum(A027286[n]/((exp(n)-1)/n),n=1..infinity) 6765015426759173 a001 439204/28657*34^(8/19) 6765015428034019 r005 Re(z^2+c),c=-95/122+1/62*I,n=37 6765015428196298 a001 1149851/75025*34^(8/19) 6765015428405971 a001 3010349/196418*34^(8/19) 6765015428436562 a001 7881196/514229*34^(8/19) 6765015428441026 a001 20633239/1346269*34^(8/19) 6765015428441677 a001 54018521/3524578*34^(8/19) 6765015428441772 a001 141422324/9227465*34^(8/19) 6765015428441786 a001 370248451/24157817*34^(8/19) 6765015428441788 a001 969323029/63245986*34^(8/19) 6765015428441788 a001 2537720636/165580141*34^(8/19) 6765015428441788 a001 6643838879/433494437*34^(8/19) 6765015428441788 a001 17393796001/1134903170*34^(8/19) 6765015428441788 a001 45537549124/2971215073*34^(8/19) 6765015428441788 a001 119218851371/7778742049*34^(8/19) 6765015428441788 a001 312119004989/20365011074*34^(8/19) 6765015428441788 a001 817138163596/53316291173*34^(8/19) 6765015428441788 a001 2139295485799/139583862445*34^(8/19) 6765015428441788 a001 14662949395604/956722026041*34^(8/19) 6765015428441788 a001 494493258286/32264490531*34^(8/19) 6765015428441788 a001 1322157322203/86267571272*34^(8/19) 6765015428441788 a001 505019158607/32951280099*34^(8/19) 6765015428441788 a001 192900153618/12586269025*34^(8/19) 6765015428441788 a001 10525900321/686789568*34^(8/19) 6765015428441788 a001 28143753123/1836311903*34^(8/19) 6765015428441788 a001 10749957122/701408733*34^(8/19) 6765015428441788 a001 4106118243/267914296*34^(8/19) 6765015428441788 a001 224056801/14619165*34^(8/19) 6765015428441789 a001 599074578/39088169*34^(8/19) 6765015428441794 a001 228826127/14930352*34^(8/19) 6765015428441830 a001 87403803/5702887*34^(8/19) 6765015428442079 a001 4769326/311187*34^(8/19) 6765015428443784 a001 12752043/832040*34^(8/19) 6765015428455469 a001 4870847/317811*34^(8/19) 6765015428535557 a001 1860498/121393*34^(8/19) 6765015429084490 a001 101521/6624*34^(8/19) 6765015430903227 a001 233/843*64079^(21/23) 6765015431124911 a001 377/521*64079^(19/23) 6765015432380231 a001 233/843*439204^(7/9) 6765015432407438 a001 233/843*7881196^(7/11) 6765015432407498 a001 233/843*20633239^(3/5) 6765015432407507 a001 233/843*141422324^(7/13) 6765015432407508 a001 233/843*2537720636^(7/15) 6765015432407508 a001 233/843*17393796001^(3/7) 6765015432407508 a001 233/843*45537549124^(7/17) 6765015432407508 a001 233/843*14662949395604^(1/3) 6765015432407508 a001 233/843*(1/2+1/2*5^(1/2))^21 6765015432407508 a001 233/843*192900153618^(7/18) 6765015432407508 a001 233/843*10749957122^(7/16) 6765015432407508 a001 233/843*599074578^(1/2) 6765015432407511 a001 233/843*33385282^(7/12) 6765015432408876 a001 233/843*1860498^(7/10) 6765015432417554 a001 233/843*710647^(3/4) 6765015432485927 a001 377/521*817138163596^(1/3) 6765015432485927 a001 377/521*(1/2+1/2*5^(1/2))^19 6765015432485927 a001 377/521*87403803^(1/2) 6765015432846932 a001 271443/17711*34^(8/19) 6765015432958151 a001 233/843*103682^(7/8) 6765015432984127 a001 377/521*103682^(19/24) 6765015436211075 a001 377/521*39603^(19/22) 6765015436524777 a001 233/843*39603^(21/22) 6765015458635093 a001 103682/6765*34^(8/19) 6765015460550419 a001 18/5702887*5^(9/19) 6765015460571726 a001 377/521*15127^(19/20) 6765015465393719 p001 sum(1/(171*n+146)/n/(5^n),n=0..infinity) 6765015468945125 r002 6th iterates of z^2 + 6765015516032088 a007 Real Root Of 722*x^4-952*x^3-216*x^2-226*x-500 6765015531115917 r008 a(0)=7,K{-n^6,-25-68*n^3+62*n^2+35*n} 6765015535805446 m005 (1/2*3^(1/2)+5/12)/(6*Pi+1/9) 6765015537129340 a007 Real Root Of -901*x^4+131*x^3+680*x^2+739*x+418 6765015570196921 a001 10946/199*199^(10/11) 6765015584422491 m001 exp(-1/2*Pi)^(GAMMA(11/12)*CopelandErdos) 6765015617129294 m001 1/Riemann1stZero^2/Porter/exp(cos(Pi/5))^2 6765015635389788 a001 39603/2584*34^(8/19) 6765015639338792 a007 Real Root Of 631*x^4-800*x^3+884*x^2-26*x-802 6765015643765750 m001 (1-GAMMA(23/24))/(-Cahen+MertensB1) 6765015662396700 r005 Re(z^2+c),c=-7/9+1/116*I,n=29 6765015666218114 m001 1/gamma/exp(GAMMA(7/24))/sinh(1) 6765015713954082 a007 Real Root Of 481*x^4-122*x^3-2*x^2+400*x+133 6765015714958859 m009 (3/5*Psi(1,2/3)-2/3)/(1/2*Psi(1,2/3)+1/5) 6765015722694949 s002 sum(A237971[n]/((pi^n-1)/n),n=1..infinity) 6765015744739884 a007 Real Root Of 123*x^4-115*x^3-200*x^2-559*x-348 6765015784493161 a007 Real Root Of -150*x^4-890*x^3+729*x^2-737*x+275 6765015795839553 l006 ln(2938/5779) 6765015806111696 q001 642/949 6765015811827257 m005 (1/2*5^(1/2)-1/4)/(4/5*Zeta(3)-5/6) 6765015815465964 m005 (1/2*5^(1/2)-5)/(2/7*Catalan-6) 6765015829587877 a007 Real Root Of 402*x^4-125*x^3+686*x^2-117*x-516 6765015847269165 a003 cos(Pi*2/83)-sin(Pi*8/77) 6765015861090241 r005 Im(z^2+c),c=-25/44+7/12*I,n=3 6765015861540592 r005 Im(z^2+c),c=5/29+31/54*I,n=49 6765015928703519 a007 Real Root Of 98*x^4+276*x^3+760*x^2+328*x-61 6765015951331151 r005 Im(z^2+c),c=-53/102+5/42*I,n=58 6765015965234268 m001 (BesselI(1,2)-Kolakoski)/(Lehmer-Weierstrass) 6765015970476518 m001 (MertensB2+Stephens)/(ln(gamma)-FeigenbaumC) 6765015983561738 s002 sum(A148186[n]/(pi^n+1),n=1..infinity) 6765015998836638 r002 40th iterates of z^2 + 6765015999119309 a003 cos(Pi*12/41)+cos(Pi*32/67) 6765016006520855 a007 Real Root Of 121*x^4-408*x^3+319*x^2+202*x-161 6765016020154376 r009 Im(z^3+c),c=-65/126+23/53*I,n=18 6765016030161612 m001 (cos(1)*ln(Pi)-LandauRamanujan2nd)/cos(1) 6765016051527456 r002 60th iterates of z^2 + 6765016070857483 a007 Real Root Of 944*x^4+325*x^3+429*x^2-329*x-516 6765016072833521 a005 (1/sin(80/221*Pi))^494 6765016073892043 m005 (1/5*gamma-3)/(-13/20+1/10*5^(1/2)) 6765016084046536 a007 Real Root Of -141*x^4-840*x^3+847*x^2+521*x+15 6765016086425691 r005 Re(z^2+c),c=-23/30+12/119*I,n=17 6765016093852407 a007 Real Root Of 537*x^4+566*x^3-882*x^2-921*x+739 6765016106705988 r005 Im(z^2+c),c=1/15+5/8*I,n=9 6765016112972025 a007 Real Root Of -65*x^4-323*x^3+713*x^2-655*x-923 6765016120743673 r005 Re(z^2+c),c=19/64+21/52*I,n=56 6765016133392926 p001 sum((-1)^n/(385*n+69)/n/(3^n),n=1..infinity) 6765016138766327 a001 9227465/5778*322^(1/4) 6765016143376139 r005 Re(z^2+c),c=19/64+16/41*I,n=58 6765016149435492 m001 1/KhintchineLevy^2*exp(Cahen)/Riemann1stZero^2 6765016174195352 r002 54th iterates of z^2 + 6765016178422241 a007 Real Root Of -512*x^4-562*x^3-304*x^2+505*x+414 6765016198165326 l006 ln(4301/8460) 6765016199961981 m006 (2*Pi^2-1/4)/(3*Pi^2-4/5) 6765016199961981 m008 (2*Pi^2-1/4)/(3*Pi^2-4/5) 6765016199961981 m009 (2*Pi^2-1/4)/(3*Pi^2-4/5) 6765016215748914 m001 TravellingSalesman^gamma(1)*TwinPrimes 6765016218017927 m002 -E^Pi+2/Pi^3+Pi^4/ProductLog[Pi] 6765016224030072 m005 (1/3*gamma+1/4)/(5/8*3^(1/2)-3/7) 6765016224969023 a007 Real Root Of -908*x^4+923*x^3-975*x^2-287*x+728 6765016244108407 m001 ln(5)*GAMMA(5/6)/Khinchin 6765016244108407 m001 ln(5)/Khinchin*GAMMA(5/6) 6765016255342853 m003 6+5*Cos[1/2+Sqrt[5]/2]+Csc[1/2+Sqrt[5]/2] 6765016268183311 a007 Real Root Of -279*x^4-497*x^3-487*x^2+972*x+785 6765016271085696 a007 Real Root Of -699*x^4-379*x^3-695*x^2+427*x+636 6765016279690515 m001 (ZetaP(2)+ZetaQ(3))/(Artin+HardyLittlewoodC4) 6765016288020038 r002 2th iterates of z^2 + 6765016293433383 r005 Im(z^2+c),c=-7/30+19/25*I,n=63 6765016311836996 a001 24157817/15127*322^(1/4) 6765016316125888 m002 3*E^Pi*Pi^4+Pi^3*Sech[Pi] 6765016322068094 r002 28th iterates of z^2 + 6765016337087667 a001 63245986/39603*322^(1/4) 6765016340771691 a001 165580141/103682*322^(1/4) 6765016341309182 a001 433494437/271443*322^(1/4) 6765016341387601 a001 1134903170/710647*322^(1/4) 6765016341399042 a001 2971215073/1860498*322^(1/4) 6765016341400712 a001 7778742049/4870847*322^(1/4) 6765016341400955 a001 20365011074/12752043*322^(1/4) 6765016341400991 a001 53316291173/33385282*322^(1/4) 6765016341400996 a001 139583862445/87403803*322^(1/4) 6765016341400997 a001 365435296162/228826127*322^(1/4) 6765016341400997 a001 956722026041/599074578*322^(1/4) 6765016341400997 a001 2504730781961/1568397607*322^(1/4) 6765016341400997 a001 6557470319842/4106118243*322^(1/4) 6765016341400997 a001 10610209857723/6643838879*322^(1/4) 6765016341400997 a001 4052739537881/2537720636*322^(1/4) 6765016341400997 a001 1548008755920/969323029*322^(1/4) 6765016341400997 a001 591286729879/370248451*322^(1/4) 6765016341400997 a001 225851433717/141422324*322^(1/4) 6765016341400999 a001 86267571272/54018521*322^(1/4) 6765016341401013 a001 32951280099/20633239*322^(1/4) 6765016341401106 a001 12586269025/7881196*322^(1/4) 6765016341401743 a001 4807526976/3010349*322^(1/4) 6765016341406113 a001 1836311903/1149851*322^(1/4) 6765016341436067 a001 701408733/439204*322^(1/4) 6765016341641370 a001 267914296/167761*322^(1/4) 6765016343048542 a001 102334155/64079*322^(1/4) 6765016352693440 a001 39088169/24476*322^(1/4) 6765016355726900 m001 Cahen^2/Artin^2/ln(Champernowne)^2 6765016418800557 a001 14930352/9349*322^(1/4) 6765016438711180 a007 Real Root Of 300*x^4-858*x^3-911*x^2-197*x+753 6765016439543652 r005 Re(z^2+c),c=-37/48+1/27*I,n=57 6765016451489284 h001 (-6*exp(3)+7)/(-3*exp(4)-4) 6765016459781064 m001 (Kac-Magata)/(Conway+FransenRobinson) 6765016460689720 m001 (Pi^(1/2)-Trott2nd)/(GAMMA(2/3)+GAMMA(3/4)) 6765016461558544 r002 64th iterates of z^2 + 6765016465519383 m001 exp(GAMMA(7/12))^2/Bloch^2*sin(1)^2 6765016466726509 a001 2207/55*377^(10/21) 6765016511170414 a007 Real Root Of -365*x^4+962*x^3-773*x^2+750*x-375 6765016511274318 a007 Real Root Of -940*x^4-398*x^3+840*x^2+848*x-638 6765016534374119 a007 Real Root Of 539*x^4-756*x^3-7*x^2-335*x+351 6765016541104394 r009 Im(z^3+c),c=-11/21+22/37*I,n=36 6765016554423436 l005 495/32/(exp(495/64)+1) 6765016575196782 a007 Real Root Of -461*x^4+228*x^3+555*x^2+844*x-799 6765016596509822 h001 (1/12*exp(2)+10/11)/(2/7*exp(2)+1/7) 6765016598065683 r008 a(0)=7,K{-n^6,-37-60*n^3+32*n^2+69*n} 6765016604595733 r005 Im(z^2+c),c=-53/102+5/42*I,n=56 6765016616055786 m001 (PlouffeB-Salem)^ln(3) 6765016646864787 a007 Real Root Of -643*x^4+805*x^3+299*x^2+536*x-614 6765016649329897 h001 (1/8*exp(2)+5/9)/(3/5*exp(1)+5/9) 6765016691662254 a007 Real Root Of -10*x^4+409*x^3-714*x^2+391*x+720 6765016721543927 r005 Im(z^2+c),c=-3/17+41/56*I,n=24 6765016741385330 m001 1/GAMMA(5/6)^2/Catalan/ln(GAMMA(7/24))^2 6765016743033614 a007 Real Root Of 497*x^4-314*x^3+101*x^2+156*x-142 6765016761016890 h001 (-7*exp(2/3)+9)/(-9*exp(2)-2) 6765016761097028 h001 (2/11*exp(2)+2/3)/(7/9*exp(1)+6/7) 6765016780092198 a007 Real Root Of 135*x^4+820*x^3-722*x^2-725*x-741 6765016780337262 a007 Real Root Of 664*x^4-574*x^3+287*x^2+488*x-118 6765016802958121 a007 Real Root Of -226*x^4+729*x^3+670*x^2+170*x-600 6765016807616865 r005 Im(z^2+c),c=-9/86+31/37*I,n=38 6765016846884733 a001 2161/141*34^(8/19) 6765016860254140 p001 sum((-1)^n/(347*n+237)/n/(25^n),n=1..infinity) 6765016864849840 m005 (1/2*gamma+1/8)/(1/2*gamma-9/10) 6765016871905508 a001 1597*322^(1/4) 6765016910632333 a007 Real Root Of -21*x^4-121*x^3-692*x^2+444*x+584 6765016942056290 s002 sum(A196147[n]/(n*pi^n-1),n=1..infinity) 6765016942345833 a001 1364/3*3^(17/47) 6765016944492364 r005 Re(z^2+c),c=-11/102+5/7*I,n=33 6765016955062504 a007 Real Root Of -91*x^4+578*x^3-731*x^2+79*x+586 6765016964841538 m002 4-Cosh[Pi]*Coth[Pi]+Tanh[Pi]/Log[Pi] 6765016973909869 m001 (GAMMA(7/12)-Khinchin)/(ln(Pi)+BesselI(1,1)) 6765017011268737 a008 Real Root of x^3-240*x-1314 6765017023960296 m005 (1/2*2^(1/2)+9/11)/(5/9*Pi-4) 6765017034452464 s001 sum(exp(-2*Pi/5)^n*A215294[n],n=1..infinity) 6765017034452464 s002 sum(A215294[n]/(exp(2/5*pi*n)),n=1..infinity) 6765017065394266 l006 ln(1363/2681) 6765017085058382 a001 5/271443*843^(23/43) 6765017134670183 a003 sin(Pi*26/115)/sin(Pi*41/99) 6765017141759698 m001 (ln(3)-MertensB3)/(Paris+ReciprocalFibonacci) 6765017142129494 a007 Real Root Of 825*x^4-703*x^3-399*x^2-292*x+425 6765017147799202 m005 (1/2*2^(1/2)+5/7)/(-49/18+5/18*5^(1/2)) 6765017231800678 a007 Real Root Of -876*x^4+936*x^3+26*x^2+505*x+803 6765017240864076 a001 21/2*47^(15/31) 6765017247001915 r002 55th iterates of z^2 + 6765017258614040 h001 (2/9*exp(2)+1/6)/(11/12*exp(1)+2/11) 6765017283564025 a001 514229/521*521^(4/13) 6765017315946930 r005 Re(z^2+c),c=-27/62+21/32*I,n=2 6765017321051785 r005 Re(z^2+c),c=53/126+7/47*I,n=3 6765017406161655 r005 Re(z^2+c),c=-113/114+8/25*I,n=12 6765017421792138 m001 (-Zeta(1,2)+MertensB1)/(5^(1/2)-arctan(1/2)) 6765017436847440 p003 LerchPhi(1/3,5,262/95) 6765017445475971 r005 Re(z^2+c),c=-11/102+5/7*I,n=39 6765017452441807 a007 Real Root Of 921*x^4-486*x^3+986*x^2-39*x-821 6765017458180102 r005 Im(z^2+c),c=-1/18+24/31*I,n=11 6765017474777454 r008 a(0)=7,K{-n^6,-21+49*n+34*n^2-58*n^3} 6765017480981440 a007 Real Root Of 13*x^4+873*x^3-439*x^2-156*x+900 6765017536888316 a007 Real Root Of -529*x^4-52*x^3-599*x^2-322*x+151 6765017536956591 l006 ln(5515/5901) 6765017565996354 a008 Real Root of (12+2*x-17*x^2-18*x^3) 6765017591268868 a007 Real Root Of -991*x^4+489*x^3-228*x^2+613*x+878 6765017657365755 r005 Re(z^2+c),c=-111/122+9/64*I,n=24 6765017679631133 a001 55/9349*76^(1/31) 6765017691321742 a007 Real Root Of -563*x^4+731*x^3-867*x^2+99*x+808 6765017696466899 a001 514229/843*322^(5/12) 6765017710703722 a007 Real Root Of -318*x^4+781*x^3-717*x^2+487*x+966 6765017730605855 r005 Im(z^2+c),c=-2/3+4/253*I,n=52 6765017733310531 a007 Real Root Of -510*x^4-224*x^3+687*x^2+823*x-695 6765017734176251 a001 9/1292*225851433717^(2/23) 6765017808582253 r002 11th iterates of z^2 + 6765017815927441 r002 52th iterates of z^2 + 6765017816484940 m004 -1+Sqrt[5]*Pi+Csc[Sqrt[5]*Pi]/2 6765017819678138 a007 Real Root Of 71*x^4-659*x^3-807*x^2-459*x+869 6765017822035830 m006 (5/6*Pi^2-2/5)/(4*Pi-1) 6765017822035830 m008 (5/6*Pi^2-2/5)/(4*Pi-1) 6765017873956752 r005 Im(z^2+c),c=-55/122+5/44*I,n=36 6765017884630420 a007 Real Root Of -613*x^4-497*x^3-697*x^2+830*x+855 6765017889873812 r005 Im(z^2+c),c=-1/11+20/29*I,n=40 6765017896316984 m001 (gamma+cos(1))/(PlouffeB+Salem) 6765017917103466 a001 22768774562/17*2504730781961^(18/23) 6765017921673111 a007 Real Root Of 390*x^4+816*x^3+963*x^2-803*x-813 6765017929785461 r008 a(0)=7,K{-n^6,-19-56*n^3+29*n^2+50*n} 6765017949651163 v002 sum(1/(3^n+(25*n^2-22*n+16)),n=1..infinity) 6765017975779338 a005 (1/sin(92/223*Pi))^1014 6765018004051853 r005 Re(z^2+c),c=-13/18+17/84*I,n=18 6765018027465799 l006 ln(3877/7626) 6765018054716194 m001 (DuboisRaymond-RenyiParking)/(Zeta(5)-Ei(1,1)) 6765018092591259 m001 1/ln(FeigenbaumB)/Khintchine/sqrt(3)^2 6765018099896030 r002 39th iterates of z^2 + 6765018103784692 m001 (GAMMA(5/6)-KhinchinLevy)/(Mills-ZetaP(2)) 6765018104123599 m005 (1/2*Catalan-5/11)/(-25/36+1/12*5^(1/2)) 6765018121467512 r009 Im(z^3+c),c=-55/114+29/64*I,n=2 6765018127855547 r008 a(0)=7,K{-n^6,11-3*n+56*n^2-60*n^3} 6765018133223195 a007 Real Root Of -477*x^4+827*x^3-67*x^2+175*x+505 6765018143732962 a007 Real Root Of 121*x^4+900*x^3+416*x^2-866*x+315 6765018153066914 r005 Re(z^2+c),c=-7/118+49/64*I,n=25 6765018155973963 a007 Real Root Of 776*x^4+169*x^3+726*x^2-156*x-548 6765018165928081 m001 BesselJ(0,1)/Riemann3rdZero/ZetaP(2) 6765018264018192 a007 Real Root Of 158*x^4+911*x^3-933*x^2+911*x-16 6765018266139540 h001 (3/5*exp(1)+5/7)/(3/7*exp(2)+3/10) 6765018291190242 a007 Real Root Of -950*x^4+284*x^3-853*x^2-571*x+291 6765018291800778 r005 Im(z^2+c),c=-16/13+4/53*I,n=63 6765018342225236 m001 1/CopelandErdos^2/ln(Backhouse)/sin(1)^2 6765018368414980 m001 PlouffeB-PrimesInBinary^ln(2) 6765018375539876 a001 1/2255*34^(17/22) 6765018385013249 a007 Real Root Of 735*x^4+59*x^3+716*x^2+172*x-347 6765018393043895 s002 sum(A091251[n]/(n^3*2^n+1),n=1..infinity) 6765018404104351 m001 1/cos(1)^2/exp(MertensB1)^2*gamma^2 6765018413589411 a007 Real Root Of -706*x^4+233*x^3-984*x^2+406*x+945 6765018418774585 a007 Real Root Of -387*x^4+345*x^3-387*x^2-371*x+114 6765018431763811 h001 (3/5*exp(2)+3/7)/(1/9*exp(1)+5/12) 6765018476226449 r002 4th iterates of z^2 + 6765018497330379 m001 (FeigenbaumC-GAMMA(17/24))^MasserGramain 6765018509390414 a007 Real Root Of -85*x^4-534*x^3+394*x^2+772*x-107 6765018513699326 m004 9+Cos[Sqrt[5]*Pi]+25*Pi*Cos[Sqrt[5]*Pi] 6765018539070265 r009 Re(z^3+c),c=-1/16+37/40*I,n=9 6765018540789998 m002 -(Cosh[Pi]*Coth[Pi])+Log[Pi]+4/ProductLog[Pi] 6765018549066197 l006 ln(2514/4945) 6765018578620632 a007 Real Root Of -547*x^4-698*x^3-787*x^2+274*x+444 6765018586326357 a007 Real Root Of -927*x^4+792*x^3+159*x^2+256*x-297 6765018607123870 q001 2545/3762 6765018652945594 m001 FeigenbaumAlpha/sin(1)/GAMMA(5/24) 6765018662667935 s002 sum(A049581[n]/(2^n-1),n=1..infinity) 6765018674293300 r005 Re(z^2+c),c=-22/31+7/32*I,n=16 6765018703366227 a007 Real Root Of -922*x^4+893*x^3+467*x^2+624*x+678 6765018721518497 m001 1/GAMMA(7/24)*Cahen*exp(sin(Pi/5))^2 6765018746876305 m001 exp(MinimumGamma)/Champernowne*BesselJ(1,1)^2 6765018765400526 a007 Real Root Of -613*x^4+549*x^3+903*x^2+498*x+222 6765018781695286 p004 log(17099/8693) 6765018786966235 r005 Im(z^2+c),c=1/102+17/27*I,n=37 6765018816743413 r009 Im(z^3+c),c=-23/98+44/47*I,n=28 6765018830105702 a007 Real Root Of -13*x^4-892*x^3-862*x^2-898*x-542 6765018853194775 r002 3th iterates of z^2 + 6765018855463643 m005 (1/3*gamma+1/4)/(8/9*3^(1/2)+5) 6765018856418274 m001 BesselK(0,1)/(ln(gamma)+gamma(1)) 6765018879030636 a007 Real Root Of 196*x^4-61*x^3+61*x^2+53*x-52 6765018885367807 a007 Real Root Of -82*x^4-431*x^3+885*x^2+308*x-111 6765018905846183 a007 Real Root Of 542*x^4+824*x^3+999*x^2+502*x+24 6765018920420898 a001 6/329*3524578^(2/23) 6765018942153620 m001 (Pi+2^(1/3))/(CareFree-ZetaQ(2)) 6765018949144256 a007 Real Root Of 32*x^4-735*x^3-947*x^2-279*x+843 6765018957981435 r005 Im(z^2+c),c=-9/7+4/115*I,n=46 6765018958976923 a007 Real Root Of 610*x^4-11*x^3-316*x^2-283*x-178 6765018964814097 a001 228826127/89*46368^(7/23) 6765018965005516 a001 7881196/89*2971215073^(7/23) 6765018983340426 a001 322/1346269*8^(1/2) 6765018992464209 m005 (1/2*Catalan-3/10)/(5/8*exp(1)+7/11) 6765019005083352 a007 Real Root Of -89*x^4-452*x^3+908*x^2-828*x-689 6765019025772411 m001 Pi*(exp(Pi)-3^(1/3))-polylog(4,1/2) 6765019033338587 r002 43th iterates of z^2 + 6765019062605913 m001 1/GAMMA(5/6)^2*GAMMA(2/3)^2/exp(GAMMA(7/12))^2 6765019100838267 l006 ln(3665/7209) 6765019114199994 a007 Real Root Of -959*x^4+968*x^3-505*x^2+101*x+800 6765019140148859 m005 (1/2*Zeta(3)-2/11)/(6/11*5^(1/2)-3/5) 6765019144980747 r005 Im(z^2+c),c=-17/32+4/61*I,n=3 6765019153784708 r008 a(0)=7,K{-n^6,11+7*n+41*n^2-55*n^3} 6765019166144249 a007 Real Root Of -636*x^4+691*x^3+160*x^2+652*x+715 6765019176897517 a007 Real Root Of -771*x^4+568*x^3-654*x^2+36*x+661 6765019182697800 a007 Real Root Of -257*x^4+850*x^3+42*x^2-180*x+176 6765019190226045 m006 (1/3*Pi^2-3/4)/(2/5*ln(Pi)-5/6) 6765019199978463 a007 Real Root Of -888*x^4+305*x^3-475*x^2-353*x+259 6765019200670223 a001 832040/521*521^(3/13) 6765019243223289 m001 ZetaP(3)*(ln(2)/ln(10)+FeigenbaumMu) 6765019290905731 r005 Re(z^2+c),c=33/94+1/42*I,n=4 6765019308276736 a007 Real Root Of -894*x^4-456*x^3-360*x^2+967*x+865 6765019333533488 r002 21th iterates of z^2 + 6765019339399504 r009 Re(z^3+c),c=-1/22+41/45*I,n=2 6765019342593192 a008 Real Root of (-5+2*x+x^2+5*x^3+6*x^4-x^5) 6765019349084982 m001 1/Robbin*ln(GolombDickman)/GAMMA(23/24)^2 6765019356845521 a007 Real Root Of 78*x^4-458*x^3+885*x^2+423*x-277 6765019357748819 a007 Real Root Of 550*x^4+629*x^3+766*x^2-337*x-499 6765019386970439 m005 (1/3*Catalan+3/4)/(10/11*Catalan+8/11) 6765019388868775 l006 ln(4816/9473) 6765019413001259 m005 (1/3*exp(1)-1/9)/(11/36+7/18*5^(1/2)) 6765019424567718 m005 (1/2*Catalan-6/11)/(4*Pi+4/11) 6765019443466622 a005 (1/cos(8/169*Pi))^1417 6765019451540536 m001 1/Porter^2/MertensB1^2*ln(GAMMA(1/24))^2 6765019453089577 l006 ln(8844/9463) 6765019515075827 m005 (1/2*Catalan-2/7)/(11/12*Pi-1/3) 6765019520154220 r005 Im(z^2+c),c=-93/122+10/61*I,n=15 6765019533901848 s002 sum(A172570[n]/(16^n),n=1..infinity) 6765019538055852 m001 ln(GAMMA(19/24))/GAMMA(11/24)/GAMMA(3/4) 6765019552079630 q001 1903/2813 6765019582020506 a001 41/15456*225851433717^(10/21) 6765019584151735 r005 Re(z^2+c),c=-1/20+33/40*I,n=40 6765019586327248 a007 Real Root Of -62*x^4+293*x^3+62*x^2+882*x+672 6765019601713696 a007 Real Root Of -900*x^4+180*x^3-849*x^2-520*x+281 6765019634623726 m001 (Kolakoski+ZetaQ(2))/(ln(gamma)-CareFree) 6765019639624669 a007 Real Root Of 553*x^4+392*x^3+218*x^2-214*x-239 6765019645216990 h001 (1/2*exp(2)+5/6)/(8/9*exp(2)+1/8) 6765019645679372 g006 Psi(1,10/11)+Psi(1,8/11)+Psi(1,1/8)-Psi(1,4/5) 6765019659606959 m001 MasserGramain-arctan(1/2)-Thue 6765019676022116 m008 (1/5*Pi^3-3/4)/(5/6*Pi^2-1/6) 6765019693545763 m001 Porter^2*Cahen/ln(Trott)^2 6765019697713062 m005 (1/2*2^(1/2)+4/9)/(7/11*3^(1/2)+3/5) 6765019704004405 m005 (1/2*2^(1/2)-2/7)/(1/4*Catalan+6) 6765019714147666 m001 HardyLittlewoodC3^Paris/Riemann1stZero 6765019715753112 a007 Real Root Of -235*x^4+972*x^3-949*x^2-929*x+156 6765019801162963 a001 521/317811*13^(21/38) 6765019833370911 a007 Real Root Of -768*x^4-484*x^3-683*x^2+76*x+375 6765019852019718 m001 (-Trott2nd+ZetaQ(3))/(Catalan+Tribonacci) 6765019876328238 m008 (3/4*Pi^4-2/3)/(1/3*Pi^5+5) 6765019901005753 a007 Real Root Of -362*x^4+902*x^3+414*x^2+107*x+238 6765019937130556 s002 sum(A172570[n]/(16^n-1),n=1..infinity) 6765019975889076 s002 sum(A111798[n]/(n^2*exp(n)-1),n=1..infinity) 6765019977534681 a001 2178309/1364*322^(1/4) 6765019997027318 m001 (Kolakoski-ZetaQ(2))/(ln(gamma)+BesselJ(1,1)) 6765020041120161 a007 Real Root Of 576*x^4+425*x^3+771*x^2-924*x-967 6765020058411031 a007 Real Root Of 801*x^4-243*x^3-793*x^2-808*x+817 6765020073612306 m001 (PrimesInBinary-Totient)/(Zeta(3)-Zeta(1,-1)) 6765020119201931 r002 20th iterates of z^2 + 6765020123669488 p001 sum(1/(198*n+61)/n/(6^n),n=1..infinity) 6765020139727924 r005 Im(z^2+c),c=-55/122+5/44*I,n=32 6765020159867204 r009 Re(z^3+c),c=-5/44+29/50*I,n=35 6765020164543886 m001 1/Zeta(3)/OneNinth*exp(sqrt(5))^2 6765020174935955 r005 Re(z^2+c),c=3/64+39/64*I,n=10 6765020194245521 r005 Im(z^2+c),c=-47/74+3/26*I,n=30 6765020213606852 m001 1/BesselK(0,1)*ln(Niven)^2 6765020227350725 r005 Im(z^2+c),c=-61/98+15/41*I,n=32 6765020237516380 a007 Real Root Of -65*x^4-582*x^3-945*x^2+12*x-719 6765020292853275 m001 (Cahen-MinimumGamma)/(ZetaP(3)-ZetaQ(2)) 6765020301005196 m001 1/GAMMA(1/6)^2*ln(Champernowne)*Zeta(9) 6765020306011909 l006 ln(1151/2264) 6765020317754528 r005 Re(z^2+c),c=-29/38+10/49*I,n=7 6765020328932382 m001 (Artin+CareFree)/(MertensB1+MertensB3) 6765020356791218 m001 (Pi-GAMMA(17/24))/(LaplaceLimit-Magata) 6765020357657531 r009 Im(z^3+c),c=-9/38+20/27*I,n=10 6765020382877321 r005 Re(z^2+c),c=-15/22+17/58*I,n=63 6765020389808801 a001 987*322^(1/3) 6765020391175851 m001 BesselI(1,2)^Mills/(Trott^Mills) 6765020395700786 m004 6+ProductLog[Sqrt[5]*Pi]/2+Sech[Sqrt[5]*Pi] 6765020397108501 m004 6+2/E^(Sqrt[5]*Pi)+ProductLog[Sqrt[5]*Pi]/2 6765020398516218 m004 6+Csch[Sqrt[5]*Pi]+ProductLog[Sqrt[5]*Pi]/2 6765020406075929 a007 Real Root Of -924*x^4+664*x^3-982*x^2+150*x+950 6765020426388661 m001 Porter*Lehmer*exp(GAMMA(23/24))^2 6765020455879150 m001 DuboisRaymond*(FeigenbaumD+Kolakoski) 6765020484593367 r005 Im(z^2+c),c=-1/22+43/56*I,n=59 6765020487824130 a001 1364/233*6557470319842^(16/17) 6765020502319872 r005 Im(z^2+c),c=-19/26+37/106*I,n=8 6765020534141469 r005 Re(z^2+c),c=3/22+11/47*I,n=14 6765020544854232 r005 Re(z^2+c),c=-11/102+5/7*I,n=42 6765020550680791 m005 (1/2*3^(1/2)-5/6)/(3*3^(1/2)-4/11) 6765020577498059 r008 a(0)=0,K{-n^6,59+9*n^3+32*n^2+48*n} 6765020605686602 r002 2th iterates of z^2 + 6765020608492881 r002 5th iterates of z^2 + 6765020616364050 g007 Psi(2,4/9)-Psi(2,7/10)-Psi(2,5/7)-Psi(2,1/7) 6765020684801300 a003 sin(Pi*11/72)/cos(Pi*6/23) 6765020745795019 m001 (-ZetaP(3)+ZetaQ(4))/(2^(1/2)+ln(Pi)) 6765020761225401 a007 Real Root Of 787*x^4+248*x^3+867*x^2-389*x-748 6765020788270299 a003 cos(Pi*1/36)*sin(Pi*24/101) 6765020802287071 m001 (-ln(2)+(1+3^(1/2))^(1/2))/(gamma+sin(1)) 6765020802970184 r002 62th iterates of z^2 + 6765020817212865 m005 (1/3*3^(1/2)+2/7)/(20/63+3/7*5^(1/2)) 6765020836793919 m001 (Psi(2,1/3)+ln(gamma))^PlouffeB 6765020858652108 m005 (1/2*exp(1)-2)/(-13/28+1/4*5^(1/2)) 6765020861656196 a007 Real Root Of 368*x^4-394*x^3+320*x^2-592*x-746 6765020930045319 a007 Real Root Of -308*x^4+795*x^3-976*x^2+205*x+896 6765020932292905 a007 Real Root Of 595*x^4-378*x^3-169*x^2-477*x-487 6765020951572492 r005 Im(z^2+c),c=-67/114+7/58*I,n=22 6765020953159206 m001 1/ln(GolombDickman)^2*ArtinRank2*Porter^2 6765020977575801 a007 Real Root Of 121*x^4-942*x^3-633*x^2+556 6765020998439665 m001 1/OneNinth/FeigenbaumC^2*ln(GAMMA(1/12)) 6765021015234746 r002 25th iterates of z^2 + 6765021032232639 m005 (1/3*Catalan+3/5)/(1/5*2^(1/2)-5/12) 6765021056568188 r002 54th iterates of z^2 + 6765021068838371 a007 Real Root Of -626*x^4-662*x^3-430*x^2+717*x+608 6765021074049410 m001 (Otter+Totient)/(ln(3)-arctan(1/2)) 6765021074837255 s002 sum(A156374[n]/((10^n+1)/n),n=1..infinity) 6765021075010464 s002 sum(A156374[n]/((10^n-1)/n),n=1..infinity) 6765021100455831 a007 Real Root Of 36*x^4-443*x^3+153*x^2-605*x-624 6765021105813348 m008 (1/3*Pi^5+4)/(1/2*Pi^3+1/6) 6765021106302707 a007 Real Root Of -255*x^4+357*x^3-468*x^2+835*x+943 6765021107130705 a007 Real Root Of -102*x^4+185*x^3+592*x^2+253*x-478 6765021117786737 a001 1346269/521*521^(2/13) 6765021130738110 a007 Real Root Of -403*x^4-404*x^3-756*x^2+734*x+5 6765021130937392 a007 Real Root Of 4*x^4+272*x^3+101*x^2+435*x+381 6765021176626629 m001 KomornikLoreti/(BesselJ(0,1)-Magata) 6765021230900774 p004 log(28181/14327) 6765021272578486 a001 322/1597*102334155^(4/21) 6765021286402252 a001 144/3571*199^(30/31) 6765021307390830 m001 AlladiGrinstead*(Chi(1)-gamma(3)) 6765021311475409 a001 4126663/610 6765021311695176 l006 ln(4392/8639) 6765021315786788 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^8 6765021337221073 a007 Real Root Of 799*x^4-743*x^3-309*x^2-952*x-900 6765021343964271 a007 Real Root Of 458*x^4-546*x^3-682*x^2-857*x+965 6765021371639007 m001 (GAMMA(1/24)+1/3)/(polylog(4,1/2)+3) 6765021407756601 m001 (Trott+Trott2nd)/(BesselI(0,1)-FeigenbaumC) 6765021410275475 m001 (Robbin+ThueMorse)/(BesselI(0,1)+arctan(1/3)) 6765021421536137 r005 Im(z^2+c),c=5/74+40/61*I,n=58 6765021435734428 r002 11th iterates of z^2 + 6765021446779917 r008 a(0)=0,K{-n^6,63+4*n^3+49*n^2+32*n} 6765021449441398 m001 (ln(3)+cos(1/12*Pi))/(KhinchinHarmonic+Mills) 6765021458779142 m001 cos(1/12*Pi)^Robbin/exp(1/exp(1)) 6765021459227467 q001 1261/1864 6765021467581930 a007 Real Root Of 13*x^4-671*x^3+801*x^2-300*x-780 6765021513192477 m001 (Salem+Sierpinski)/(BesselK(1,1)-Gompertz) 6765021517448102 a007 Real Root Of 593*x^4+110*x^3+91*x^2-970*x-788 6765021576053868 a001 5702887/5778*322^(1/3) 6765021635687276 a001 4181/521*1364^(14/15) 6765021637799952 m004 -6+5*Pi+(5*Sqrt[5]*Sinh[Sqrt[5]*Pi])/(3*Pi) 6765021668850795 l006 ln(3241/6375) 6765021682633380 r005 Re(z^2+c),c=-35/58+11/26*I,n=25 6765021698952978 r009 Im(z^3+c),c=-17/78+47/55*I,n=8 6765021703862505 r002 11th iterates of z^2 + 6765021705131196 m001 (3^(1/3)-KhinchinLevy)/(Rabbit-RenyiParking) 6765021706813015 r005 Re(z^2+c),c=-39/50+3/11*I,n=9 6765021728339874 m001 (Tetranacci+Trott)/(GAMMA(3/4)+GAMMA(13/24)) 6765021732961042 a007 Real Root Of -139*x^4+967*x^3-260*x^2-660*x+1 6765021734946021 m001 (FeigenbaumD-LaplaceLimit)^exp(1) 6765021742914244 a007 Real Root Of -381*x^4-228*x^3+986*x^2+760*x-815 6765021749124726 a001 14930352/15127*322^(1/3) 6765021759410406 m001 (-ln(Pi)+Totient)/(Chi(1)+ln(gamma)) 6765021771132682 a001 6765/521*1364^(13/15) 6765021774375425 a001 39088169/39603*322^(1/3) 6765021775277549 r005 Re(z^2+c),c=-5/106+7/9*I,n=35 6765021778059452 a001 102334155/103682*322^(1/3) 6765021778596944 a001 267914296/271443*322^(1/3) 6765021778675363 a001 701408733/710647*322^(1/3) 6765021778686805 a001 1836311903/1860498*322^(1/3) 6765021778688474 a001 4807526976/4870847*322^(1/3) 6765021778688717 a001 12586269025/12752043*322^(1/3) 6765021778688753 a001 32951280099/33385282*322^(1/3) 6765021778688758 a001 86267571272/87403803*322^(1/3) 6765021778688759 a001 225851433717/228826127*322^(1/3) 6765021778688759 a001 591286729879/599074578*322^(1/3) 6765021778688759 a001 1548008755920/1568397607*322^(1/3) 6765021778688759 a001 4052739537881/4106118243*322^(1/3) 6765021778688759 a001 4807525989/4870846*322^(1/3) 6765021778688759 a001 6557470319842/6643838879*322^(1/3) 6765021778688759 a001 2504730781961/2537720636*322^(1/3) 6765021778688759 a001 956722026041/969323029*322^(1/3) 6765021778688759 a001 365435296162/370248451*322^(1/3) 6765021778688759 a001 139583862445/141422324*322^(1/3) 6765021778688761 a001 53316291173/54018521*322^(1/3) 6765021778688775 a001 20365011074/20633239*322^(1/3) 6765021778688868 a001 7778742049/7881196*322^(1/3) 6765021778689505 a001 2971215073/3010349*322^(1/3) 6765021778693876 a001 1134903170/1149851*322^(1/3) 6765021778723829 a001 433494437/439204*322^(1/3) 6765021778929133 a001 165580141/167761*322^(1/3) 6765021779312238 h001 (1/7*exp(2)+3/5)/(1/4*exp(2)+3/5) 6765021780336306 a001 63245986/64079*322^(1/3) 6765021789981215 a001 24157817/24476*322^(1/3) 6765021791790930 a001 161/5473*2504730781961^(4/21) 6765021800455677 m001 (1+ln(2)/ln(10))/(-Catalan+Sarnak) 6765021801695247 m001 1/exp(Salem)^2*Riemann2ndZero*Tribonacci^2 6765021813139540 a001 64079*514229^(9/17) 6765021818019016 a003 cos(Pi*1/65)/cos(Pi*24/53) 6765021833830182 m001 ln(2^(1/2)+1)^FibonacciFactorial/BesselI(0,1) 6765021837392560 m005 (1/2*Zeta(3)-2)/(6/7*3^(1/2)+7/12) 6765021856088403 a001 9227465/9349*322^(1/3) 6765021870251710 a008 Real Root of x^3-x^2-241*x-1275 6765021876656241 a001 208010/19*15127^(39/43) 6765021892121255 r009 Re(z^3+c),c=-65/122+17/37*I,n=6 6765021942656205 r008 a(0)=0,K{-n^6,-61-31*n-54*n^2-2*n^3} 6765021954540513 a007 Real Root Of -987*x^4+814*x^3+754*x^2-780*x-414 6765021976191231 r005 Re(z^2+c),c=-11/102+5/7*I,n=45 6765021988781897 a007 Real Root Of -488*x^4-51*x^3-798*x^2+546*x+821 6765022010587731 r002 16th iterates of z^2 + 6765022013599160 a007 Real Root Of -762*x^4-511*x^3-506*x^2+173*x+350 6765022015518935 a007 Real Root Of -852*x^4-77*x^3-984*x^2-62*x+563 6765022033439108 r005 Im(z^2+c),c=-83/114+2/39*I,n=26 6765022041532225 m001 (2^(1/3)+Zeta(5))/(-FeigenbaumMu+ZetaP(3)) 6765022048270828 m002 Pi^2+Log[Pi]/Pi^3+5*Sinh[Pi] 6765022054398229 a001 10946/521*1364^(4/5) 6765022088027456 a007 Real Root Of -86*x^4-490*x^3+724*x^2+834*x+927 6765022126820585 p003 LerchPhi(1/64,6,206/193) 6765022132844149 m001 1/ln(Khintchine)^2*TwinPrimes 6765022148808333 a007 Real Root Of -147*x^4-853*x^3+998*x^2+239*x-261 6765022152549644 m001 (2^(1/3)-GAMMA(17/24))/(-Gompertz+Lehmer) 6765022167196482 a007 Real Root Of -955*x^4-173*x^3-70*x^2+454*x+31 6765022168984316 s002 sum(A275000[n]/(n^2*exp(n)-1),n=1..infinity) 6765022168984316 s002 sum(A275003[n]/(n^2*exp(n)-1),n=1..infinity) 6765022168984316 s002 sum(A079682[n]/(n^2*exp(n)-1),n=1..infinity) 6765022173748484 a007 Real Root Of -553*x^4+983*x^3-430*x^2-538*x+253 6765022174230154 r004 Re(z^2+c),c=-3/46+2/21*I,z(0)=-1,n=12 6765022225277009 m001 GlaisherKinkelin^FellerTornier*GolombDickman 6765022241229416 s002 sum(A028444[n]/(n^2*exp(n)-1),n=1..infinity) 6765022252550334 m002 -Pi^2-ProductLog[Pi]/4+Pi*ProductLog[Pi] 6765022279972296 a007 Real Root Of -141*x^4-881*x^3+419*x^2-504*x-25 6765022281201516 a001 17711/521*1364^(11/15) 6765022287850222 m004 Log[Sqrt[5]*Pi]/3+15*Sech[Sqrt[5]*Pi] 6765022300081643 m001 1/exp(GAMMA(11/24))^2*KhintchineLevy*exp(1) 6765022306871153 r005 Im(z^2+c),c=-31/94+3/29*I,n=15 6765022309193847 a001 3524578/3571*322^(1/3) 6765022323537536 m001 (GAMMA(5/6)-KhinchinLevy)/(Lehmer+MertensB1) 6765022329245156 r005 Im(z^2+c),c=-53/44+3/34*I,n=41 6765022334541285 r005 Re(z^2+c),c=-15/86+27/37*I,n=2 6765022352537062 m005 (1/2*3^(1/2)+5/11)/(Zeta(3)+3/4) 6765022387391032 a003 sin(Pi*8/89)/cos(Pi*27/74) 6765022408128273 m005 (19/28+1/4*5^(1/2))/(exp(1)-8/9) 6765022411057541 m001 arctan(1/3)/(ZetaQ(3)^GAMMA(5/6)) 6765022419390217 l006 ln(2090/4111) 6765022426076255 r005 Im(z^2+c),c=-2/23+31/34*I,n=12 6765022430839789 r009 Im(z^3+c),c=-71/86+1/45*I,n=2 6765022466125354 a003 sin(Pi*7/61)/sin(Pi*11/63) 6765022467779205 m001 arctan(1/2)^2*Zeta(1,2)/ln(sin(1))^2 6765022472592192 m008 (3/4*Pi^5+1/4)/(2/5*Pi^4-5) 6765022483826700 r005 Re(z^2+c),c=-11/102+5/7*I,n=48 6765022486576808 r009 Im(z^3+c),c=-15/74+14/19*I,n=57 6765022499007516 m004 30/E^(Sqrt[5]*Pi)+Log[Sqrt[5]*Pi]/3 6765022529571480 a001 28657/521*1364^(2/3) 6765022543141314 r005 Im(z^2+c),c=-53/102+5/42*I,n=51 6765022543765068 r005 Im(z^2+c),c=19/64+26/57*I,n=57 6765022545778327 r005 Re(z^2+c),c=47/122+4/35*I,n=8 6765022564535074 m001 Ei(1,1)^(AlladiGrinstead/Pi) 6765022566097212 a001 1/610*2178309^(13/51) 6765022580154308 m001 (2^(1/2)-CareFree)/(-MinimumGamma+ThueMorse) 6765022583733556 a007 Real Root Of 454*x^4-523*x^3-377*x^2-731*x-579 6765022619729455 a001 199/89*2584^(23/53) 6765022620928537 r005 Re(z^2+c),c=-11/102+5/7*I,n=51 6765022622601917 r005 Re(z^2+c),c=-43/56+15/64*I,n=7 6765022625889460 r009 Im(z^3+c),c=-27/50+13/34*I,n=58 6765022627458201 l006 ln(3329/3562) 6765022627930958 r002 11th iterates of z^2 + 6765022629855522 r005 Re(z^2+c),c=-11/102+5/7*I,n=63 6765022632746235 r005 Re(z^2+c),c=-11/102+5/7*I,n=60 6765022638148509 r005 Re(z^2+c),c=-11/102+5/7*I,n=57 6765022639737098 m001 GaussKuzminWirsing^2/ln(Artin)^2*Rabbit 6765022642306442 r005 Re(z^2+c),c=-11/102+5/7*I,n=54 6765022656618297 a003 sin(Pi*1/104)+sin(Pi*17/76) 6765022657090251 a007 Real Root Of 759*x^4-375*x^3-436*x^2+190*x+53 6765022667133358 m001 (Pi-Catalan)/(MasserGramainDelta+Porter) 6765022672950253 a007 Real Root Of -577*x^4-272*x^3-252*x^2+71*x+200 6765022687547447 r002 28th iterates of z^2 + 6765022710165145 m004 15*Csch[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi]/3 6765022727915253 a003 sin(Pi*21/97)-sin(Pi*13/53) 6765022729070897 m006 (3/5*exp(2*Pi)+2)/(4*ln(Pi)+1/5) 6765022735693704 b008 E+Pi+Tanh[3/2] 6765022757806959 m001 Ei(1)^2/Salem^2*ln(sinh(1))^2 6765022761398898 r002 11th iterates of z^2 + 6765022769703718 a001 46368/521*1364^(3/5) 6765022775394839 a007 Real Root Of 288*x^4-417*x^3+126*x^2-869*x+599 6765022803028810 a003 cos(Pi*5/73)*sin(Pi*28/115) 6765022825510570 m001 (Champernowne+Salem)/(LambertW(1)+GAMMA(2/3)) 6765022854232824 g007 14*Zeta(3)-Psi(2,8/11)-Psi(2,3/8)-Psi(2,5/7) 6765022868937645 r005 Im(z^2+c),c=-23/118+43/64*I,n=57 6765022869542458 m005 (1/3*2^(1/2)+1/10)/(9/10*exp(1)+6) 6765022872521027 a001 17711/3*1364^(1/53) 6765022875852072 m001 BesselI(1,1)^gamma*BesselI(1,1)^OneNinth 6765022876903558 m001 (Catalan-Chi(1))/(-ErdosBorwein+ZetaP(2)) 6765022894580316 l006 ln(5119/10069) 6765022894580316 p004 log(10069/5119) 6765022916695049 a001 10946/3*3571^(4/53) 6765022927027933 a003 cos(Pi*1/43)*sin(Pi*14/59) 6765022930997777 m008 (5/6*Pi^2-2)/(1/5*Pi^3+3) 6765022960634206 a001 11/17711*13^(27/29) 6765022969505025 r009 Re(z^3+c),c=-61/114+7/57*I,n=9 6765022987093553 a001 7/47*(1/2*5^(1/2)+1/2)^7*47^(5/7) 6765022989440085 m001 polylog(4,1/2)^ZetaQ(2)/(polylog(4,1/2)^Otter) 6765023012982500 a001 75025/521*1364^(8/15) 6765023034900061 a001 2178309/521*521^(1/13) 6765023065907862 a007 Real Root Of 618*x^4-796*x^3+429*x^2-520*x-924 6765023065917136 a007 Real Root Of -220*x^4+983*x^3+609*x^2-72*x+23 6765023073294115 r002 10th iterates of z^2 + 6765023086586134 m001 (-StolarskyHarborth+Trott)/(gamma+arctan(1/2)) 6765023090238061 h001 (6/7*exp(2)+3/11)/(1/12*exp(1)+3/4) 6765023112514741 a007 Real Root Of -199*x^4+541*x^3-777*x^2-316*x+351 6765023118561192 a008 Real Root of x^4-x^3-19*x^2+47*x-23 6765023123046097 a007 Real Root Of 191*x^4+620*x^3+881*x^2-653*x-693 6765023128947099 a007 Real Root Of 83*x^4-820*x^3+212*x^2-54*x+176 6765023133737238 a001 377*322^(1/2) 6765023151153794 a003 sin(Pi*15/82)/sin(Pi*30/101) 6765023172525564 a007 Real Root Of 419*x^4+868*x^3+675*x^2-989*x-797 6765023178082913 a005 (1/cos(11/149*Pi))^834 6765023199555470 m002 -(Pi^2*Coth[Pi])-5*Sinh[Pi] 6765023206014126 a007 Real Root Of -43*x^4-343*x^3-322*x^2+110*x-651 6765023222459902 l006 ln(3029/5958) 6765023255059421 a001 233*1364^(7/15) 6765023277962077 m001 1/sin(Pi/12)*ln(Khintchine)*sqrt(Pi) 6765023294694055 r005 Im(z^2+c),c=-109/114+4/15*I,n=27 6765023320343035 m001 exp(1/2)^cos(Pi/12)/(exp(1/2)^MadelungNaCl) 6765023335138871 m001 (-Porter+Riemann1stZero)/(Chi(1)+MertensB2) 6765023335931243 m001 (-ArtinRank2+ZetaQ(2))/(GAMMA(7/12)-gamma) 6765023351681972 m001 BesselJ(1,1)-((1+3^(1/2))^(1/2))^Ei(1,1) 6765023356376859 h001 (5/9*exp(2)+3/11)/(1/11*exp(1)+2/5) 6765023367439798 r002 21th iterates of z^2 + 6765023370398383 a007 Real Root Of 812*x^4-849*x^3-578*x^2+617*x+249 6765023379068448 r002 5th iterates of z^2 + 6765023383985692 m005 (17/36+1/4*5^(1/2))/(9/10*Catalan+7/10) 6765023389708528 q001 188/2779 6765023399672193 m001 (ln(gamma)*BesselI(1,1)-Magata)/ln(gamma) 6765023426935257 h001 (2/7*exp(1)+1/11)/(1/12*exp(2)+2/3) 6765023435615704 m001 (Artin-ln(2)/ln(10))/(Kac+ZetaP(2)) 6765023447149542 b008 -85/12+Pi^(-1) 6765023448828229 m001 (Psi(1,1/3)+3^(1/3))/(-Grothendieck+ZetaP(4)) 6765023461480750 m001 (Gompertz+Stephens)/(ln(5)+Champernowne) 6765023462336357 p004 log(13763/6997) 6765023475329996 a007 Real Root Of 750*x^4-296*x^3+536*x^2+105*x-423 6765023476847512 a007 Real Root Of 544*x^4-956*x^3-489*x^2+352*x+52 6765023482775429 a007 Real Root Of -324*x^4+896*x^3-695*x^2+474*x+984 6765023483755107 a001 1597/3*15127^(14/53) 6765023493882319 a001 987/521*9349^(17/19) 6765023497595424 a001 196418/521*1364^(2/5) 6765023523182592 b008 -1/12+3^(-1/4) 6765023535109745 a007 Real Root Of -491*x^4-271*x^3-942*x^2+233*x+20 6765023546526461 a007 Real Root Of -562*x^4+761*x^3+423*x^2+129*x+247 6765023552229373 m001 LambertW(1)^Robbin*LambertW(1)^Trott2nd 6765023553993123 a001 987/521*24476^(17/21) 6765023557765701 a007 Real Root Of 113*x^4+810*x^3+249*x^2-440*x-269 6765023561916884 a001 987/521*64079^(17/23) 6765023563043106 a001 233/2207*(1/2+1/2*5^(1/2))^23 6765023563043106 a001 233/2207*4106118243^(1/2) 6765023563134636 a001 987/521*45537549124^(1/3) 6765023563134636 a001 987/521*(1/2+1/2*5^(1/2))^17 6765023563134657 a001 987/521*12752043^(1/2) 6765023563580395 a001 987/521*103682^(17/24) 6765023563646192 a001 233/2207*103682^(23/24) 6765023566467667 a001 987/521*39603^(17/22) 6765023567222831 a007 Real Root Of 298*x^4-622*x^3+718*x^2+873*x+7 6765023588264065 a001 987/521*15127^(17/20) 6765023605437180 a007 Real Root Of 971*x^4-979*x^3-993*x^2+816*x+500 6765023608320170 m001 (ln(Pi)-polylog(4,1/2))/(Weierstrass+ZetaP(2)) 6765023629558405 m001 exp(Zeta(3))^2/BesselK(1,1)/exp(1) 6765023630802386 s002 sum(A131722[n]/(n*pi^n-1),n=1..infinity) 6765023630802386 s002 sum(A097325[n]/(n*pi^n-1),n=1..infinity) 6765023645447690 l006 ln(3968/7805) 6765023648998280 a007 Real Root Of -103*x^4-621*x^3+531*x^2+199*x+512 6765023652053252 a008 Real Root of x^4-20*x^2-178*x+25 6765023657336581 r002 34th iterates of z^2 + 6765023692674736 p001 sum(1/(545*n+33)/n/(256^n),n=1..infinity) 6765023707445079 h001 (-4*exp(3/2)-5)/(-6*exp(3/2)-7) 6765023723883673 a007 Real Root Of 429*x^4-318*x^3+71*x^2-698*x-693 6765023739956085 a001 317811/521*1364^(1/3) 6765023754512049 a001 987/521*5778^(17/18) 6765023789226935 r002 34th iterates of z^2 + 6765023817126675 a007 Real Root Of 675*x^4-882*x^3+124*x^2+698*x+1 6765023823095240 m005 (1/2*Zeta(3)-6/11)/(1/12*2^(1/2)-1/5) 6765023826167362 a007 Real Root Of -894*x^4+734*x^3-771*x^2-815*x+216 6765023826951201 a007 Real Root Of -769*x^4+549*x^3-72*x^2+306*x+571 6765023853332512 a001 317811/76*29^(1/7) 6765023864555947 s002 sum(A251967[n]/(16^n-1),n=1..infinity) 6765023883358518 r005 Im(z^2+c),c=-95/82+2/23*I,n=58 6765023883921207 a007 Real Root Of 373*x^4-6*x^3-815*x^2-401*x+568 6765023901425091 m001 (2^(1/3)+DuboisRaymond)/(ErdosBorwein+Landau) 6765023906550189 l006 ln(4907/9652) 6765023953773071 m001 ln(sin(1))*GAMMA(2/3)/sin(Pi/5)^2 6765023982383733 a001 514229/521*1364^(4/15) 6765023984509510 m006 (3/5*ln(Pi)+3)/(2*Pi-5/6) 6765023997794383 m005 (1/2*2^(1/2)-7/10)/(7/8*gamma+6/11) 6765024002583487 a001 5/9349*47^(29/44) 6765024005560489 r009 Re(z^3+c),c=-55/102+7/47*I,n=3 6765024011537258 r002 4th iterates of z^2 + 6765024028225761 a007 Real Root Of 940*x^4+420*x^3-562*x^2-985*x-476 6765024043768245 a007 Real Root Of -470*x^4+637*x^3+456*x^2+71*x+135 6765024050216720 a007 Real Root Of 389*x^4-989*x^3+856*x^2-918*x+454 6765024058768871 a007 Real Root Of -804*x^4+864*x^3+621*x^2+545*x-752 6765024083665226 s002 sum(A078290[n]/(n^3*10^n-1),n=1..infinity) 6765024092201199 a007 Real Root Of -788*x^4+911*x^3-957*x^2-414*x+605 6765024123959581 a001 3010349/233*1836311903^(16/17) 6765024123965144 a001 6643838879/233*514229^(16/17) 6765024139520792 a008 Real Root of (1+3*x+6*x^2+6*x^3-6*x^4-x^5) 6765024146926642 m001 MertensB1*ArtinRank2^2/exp(Porter)^2 6765024151173795 a007 Real Root Of 640*x^4-668*x^3+970*x^2-157*x-891 6765024152258317 a007 Real Root Of -884*x^4+43*x^3-387*x^2+314*x+588 6765024162493264 r005 Im(z^2+c),c=-3/74+29/39*I,n=59 6765024175121046 m001 Zeta(1,2)^2*FransenRobinson*exp(Zeta(7)) 6765024185709398 m001 GlaisherKinkelin-Rabbit^MinimumGamma 6765024222098472 a001 416020/161*123^(1/5) 6765024224785806 a001 832040/521*1364^(1/5) 6765024231023499 a007 Real Root Of 490*x^4-659*x^3-325*x^2-618*x-576 6765024254864017 r009 Re(z^3+c),c=-45/82+7/43*I,n=7 6765024255947861 m005 (1/6*Pi-1/4)/(2*gamma-3/4) 6765024268885970 a007 Real Root Of -762*x^4-595*x^3-950*x^2+594*x+812 6765024281287496 a001 2584/521*3571^(15/17) 6765024322124201 r009 Re(z^3+c),c=-59/98+5/18*I,n=6 6765024363833243 q001 2499/3694 6765024368206504 m001 exp(GAMMA(11/24))*GAMMA(1/12)/GAMMA(19/24) 6765024378763461 r009 Im(z^3+c),c=-29/82+15/22*I,n=25 6765024417307639 a007 Real Root Of -850*x^4+473*x^3-328*x^2-839*x-93 6765024418820783 m001 1/MadelungNaCl^2/exp(FeigenbaumB)^2/Catalan 6765024420788979 a001 10803744/1597 6765024421418244 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^10 6765024422783794 a007 Real Root Of 240*x^4-879*x^3+26*x^2-748*x+716 6765024424425903 a001 322/89*55^(19/26) 6765024447244637 m001 Si(Pi)^GAMMA(13/24)/(gamma^GAMMA(13/24)) 6765024467197660 a001 1346269/521*1364^(2/15) 6765024477238560 m001 1/Niven^2*Champernowne^2/ln(PrimesInBinary)^2 6765024485204147 r005 Im(z^2+c),c=-35/118+15/23*I,n=40 6765024492597298 a007 Real Root Of -37*x^4-194*x^3+383*x^2+74*x+405 6765024516770766 a001 6765/521*3571^(13/17) 6765024528682751 m001 (1-ln(2))/(cos(1/12*Pi)+FeigenbaumMu) 6765024541216559 m001 Zeta(3)^2*GolombDickman^2*ln(sqrt(2))^2 6765024557961841 m005 (1/2*Zeta(3)+1/4)/(1/2*Catalan+4/5) 6765024558330901 p001 sum(1/(527*n+96)/n/(24^n),n=1..infinity) 6765024572988012 m001 Pi-2^(1/3)/Zeta(1,2)+BesselI(0,2) 6765024588833450 a001 10946/521*3571^(12/17) 6765024592528277 a001 4181/521*3571^(14/17) 6765024604433844 a001 17711/521*3571^(11/17) 6765024610811324 m006 (Pi+1)/(2/3/Pi+2/5) 6765024624369211 m001 (Pi^(1/2))^(3^(1/2))/(sin(1/5*Pi)^(3^(1/2))) 6765024624369211 m001 sqrt(Pi)^sqrt(3)/(sin(Pi/5)^sqrt(3)) 6765024640973424 r005 Re(z^2+c),c=-21/62+23/37*I,n=18 6765024641600914 a001 28657/521*3571^(10/17) 6765024643239305 r005 Re(z^2+c),c=-20/19+6/37*I,n=20 6765024670530246 a001 46368/521*3571^(9/17) 6765024673933750 m001 exp(Ei(1))^2/FeigenbaumDelta^2*gamma^2 6765024677107392 a003 sin(Pi*8/49)/cos(Pi*29/120) 6765024677329040 r009 Re(z^3+c),c=-31/64+4/57*I,n=45 6765024685117990 a007 Real Root Of 381*x^4-574*x^3-550*x^2+199*x+215 6765024685934192 a001 11/4181*3^(49/57) 6765024688275300 a001 2584/521*9349^(15/19) 6765024700593051 r005 Im(z^2+c),c=-1/18+19/24*I,n=62 6765024702606115 a001 75025/521*3571^(8/17) 6765024705187222 m001 BesselI(0,1)^Zeta(3)/ReciprocalLucas 6765024709605790 a001 2178309/521*1364^(1/15) 6765024733480114 a001 233*3571^(7/17) 6765024734489555 r009 Im(z^3+c),c=-45/118+1/58*I,n=15 6765024738179416 h001 (5/11*exp(1)+2/3)/(7/10*exp(1)+10/11) 6765024741314254 a001 2584/521*24476^(5/7) 6765024748305808 a001 2584/521*64079^(15/23) 6765024749236071 a001 2584/521*167761^(3/5) 6765024749288476 a001 233/5778*20633239^(5/7) 6765024749288487 a001 233/5778*2537720636^(5/9) 6765024749288487 a001 233/5778*312119004989^(5/11) 6765024749288487 a001 233/5778*(1/2+1/2*5^(1/2))^25 6765024749288487 a001 233/5778*3461452808002^(5/12) 6765024749288487 a001 233/5778*28143753123^(1/2) 6765024749288487 a001 233/5778*228826127^(5/8) 6765024749290116 a001 233/5778*1860498^(5/6) 6765024749360812 a001 2584/521*439204^(5/9) 6765024749380246 a001 2584/521*7881196^(5/11) 6765024749380289 a001 2584/521*20633239^(3/7) 6765024749380295 a001 2584/521*141422324^(5/13) 6765024749380296 a001 2584/521*2537720636^(1/3) 6765024749380296 a001 2584/521*45537549124^(5/17) 6765024749380296 a001 2584/521*312119004989^(3/11) 6765024749380296 a001 2584/521*14662949395604^(5/21) 6765024749380296 a001 2584/521*(1/2+1/2*5^(1/2))^15 6765024749380296 a001 2584/521*192900153618^(5/18) 6765024749380296 a001 2584/521*28143753123^(3/10) 6765024749380296 a001 2584/521*10749957122^(5/16) 6765024749380296 a001 2584/521*599074578^(5/14) 6765024749380296 a001 2584/521*228826127^(3/8) 6765024749380298 a001 2584/521*33385282^(5/12) 6765024749381273 a001 2584/521*1860498^(1/2) 6765024749773613 a001 2584/521*103682^(5/8) 6765024752321206 a001 2584/521*39603^(15/22) 6765024764813186 a001 196418/521*3571^(6/17) 6765024771553325 a001 2584/521*15127^(3/4) 6765024789309348 a007 Real Root Of 10*x^4+682*x^3+363*x^2-589*x+925 6765024795970909 a001 317811/521*3571^(5/17) 6765024796453967 a007 Real Root Of -780*x^4+334*x^3+66*x^2+484*x+564 6765024797235412 m005 (1/2*Pi-7/12)/(7/8*2^(1/2)+2/9) 6765024827195609 a001 514229/521*3571^(4/17) 6765024828292479 r009 Re(z^3+c),c=-5/44+29/50*I,n=37 6765024858394726 a001 832040/521*3571^(3/17) 6765024859714063 a007 Real Root Of -789*x^4+94*x^3+88*x^2+127*x+240 6765024865740640 a001 199/377*514229^(1/53) 6765024869493540 a001 6765/521*9349^(13/19) 6765024874431954 a001 28284569/4181 6765024874523767 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^12 6765024883426487 a007 Real Root Of 844*x^4-598*x^3-238*x^2+813*x+297 6765024889603615 a001 1346269/521*3571^(2/17) 6765024902891579 a001 17711/521*9349^(11/19) 6765024908083284 a007 Real Root Of -437*x^4-540*x^3-784*x^2+87*x+342 6765024912555677 m002 Pi^5+Pi^3*Sinh[Pi]+ProductLog[Pi]*Sinh[Pi] 6765024912926128 a001 28657/521*9349^(10/19) 6765024914423706 a001 10946/521*9349^(12/19) 6765024914722940 a001 46368/521*9349^(9/19) 6765024915460635 a001 6765/521*24476^(13/21) 6765024918242749 a001 2584/521*5778^(5/6) 6765024919666287 a001 75025/521*9349^(8/19) 6765024920808772 a001 2178309/521*3571^(1/17) 6765024921519982 a001 6765/521*64079^(13/23) 6765024922359301 a001 233/15127*7881196^(9/11) 6765024922359390 a001 233/15127*141422324^(9/13) 6765024922359390 a001 233/15127*2537720636^(3/5) 6765024922359390 a001 233/15127*45537549124^(9/17) 6765024922359390 a001 233/15127*817138163596^(9/19) 6765024922359390 a001 233/15127*14662949395604^(3/7) 6765024922359390 a001 233/15127*(1/2+1/2*5^(1/2))^27 6765024922359390 a001 233/15127*192900153618^(1/2) 6765024922359390 a001 233/15127*10749957122^(9/16) 6765024922359390 a001 233/15127*599074578^(9/14) 6765024922359395 a001 233/15127*33385282^(3/4) 6765024922361149 a001 233/15127*1860498^(9/10) 6765024922451205 a001 6765/521*141422324^(1/3) 6765024922451205 a001 6765/521*(1/2+1/2*5^(1/2))^13 6765024922451205 a001 6765/521*73681302247^(1/4) 6765024922497112 a001 6765/521*271443^(1/2) 6765024922792080 a001 6765/521*103682^(13/24) 6765024923407765 a001 233*9349^(7/19) 6765024924382623 m001 (5^(1/2)-GAMMA(11/12))/(MertensB3+ThueMorse) 6765024924999994 a001 6765/521*39603^(13/22) 6765024926439286 a007 Real Root Of 341*x^4-748*x^3-955*x^2-785*x-397 6765024927608317 a001 196418/521*9349^(6/19) 6765024931633517 a001 317811/521*9349^(5/19) 6765024935725696 a001 514229/521*9349^(4/19) 6765024939792292 a001 832040/521*9349^(3/19) 6765024940617577 a001 5696151/842 6765024940630972 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^14 6765024941667831 a001 6765/521*15127^(13/20) 6765024941786813 a001 17711/521*24476^(11/21) 6765024943868659 a001 1346269/521*9349^(2/19) 6765024946546313 a001 46368/521*24476^(3/7) 6765024946588269 a007 Real Root Of -745*x^4-435*x^3-535*x^2+894*x+871 6765024946913953 a001 17711/521*64079^(11/23) 6765024947415491 r005 Re(z^2+c),c=-11/90+23/28*I,n=42 6765024947610096 a001 233/39603*(1/2+1/2*5^(1/2))^29 6765024947610096 a001 233/39603*1322157322203^(1/2) 6765024947701874 a001 17711/521*7881196^(1/3) 6765024947701910 a001 17711/521*312119004989^(1/5) 6765024947701910 a001 17711/521*(1/2+1/2*5^(1/2))^11 6765024947701910 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^11/Lucas(13) 6765024947701910 a001 17711/521*1568397607^(1/4) 6765024947738944 a007 Real Root Of -113*x^4+914*x^3-25*x^2+386*x-509 6765024947941294 a001 2178309/521*9349^(1/19) 6765024947953731 a001 75025/521*24476^(8/21) 6765024947990343 a001 17711/521*103682^(11/24) 6765024948159278 a001 233*24476^(1/3) 6765024948285432 a001 28657/521*24476^(10/21) 6765024948823899 a001 196418/521*24476^(2/7) 6765024949313169 a001 317811/521*24476^(5/21) 6765024949858578 a001 17711/521*39603^(1/2) 6765024949869418 a001 514229/521*24476^(4/21) 6765024950066893 r009 Re(z^3+c),c=-5/42+17/27*I,n=27 6765024950273929 a001 193865320/28657 6765024950275883 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^16 6765024950400083 a001 832040/521*24476^(1/7) 6765024950741246 a001 46368/521*64079^(9/23) 6765024950940520 a001 1346269/521*24476^(2/21) 6765024951294124 a001 233/103682*(1/2+1/2*5^(1/2))^31 6765024951294124 a001 233/103682*9062201101803^(1/2) 6765024951374248 a001 46368/521*439204^(1/3) 6765024951385909 a001 46368/521*7881196^(3/11) 6765024951385938 a001 46368/521*141422324^(3/13) 6765024951385939 a001 46368/521*2537720636^(1/5) 6765024951385939 a001 46368/521*45537549124^(3/17) 6765024951385939 a001 46368/521*817138163596^(3/19) 6765024951385939 a001 46368/521*14662949395604^(1/7) 6765024951385939 a001 46368/521*(1/2+1/2*5^(1/2))^9 6765024951385939 a001 46368/521*192900153618^(1/6) 6765024951385939 a001 46368/521*10749957122^(3/16) 6765024951385939 a001 46368/521*599074578^(3/14) 6765024951385940 a001 46368/521*33385282^(1/4) 6765024951386525 a001 46368/521*1860498^(3/10) 6765024951422003 a001 233*64079^(7/23) 6765024951477224 a001 2178309/521*24476^(1/21) 6765024951620521 a001 196418/521*64079^(6/23) 6765024951621929 a001 46368/521*103682^(3/8) 6765024951643688 a001 317811/521*64079^(5/23) 6765024951682560 a001 75025/521*64079^(8/23) 6765024951682772 a001 507545997/75025 6765024951683057 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^18 6765024951733832 a001 514229/521*64079^(4/23) 6765024951798394 a001 832040/521*64079^(3/23) 6765024951831616 a001 233/271443*141422324^(11/13) 6765024951831616 a001 233/271443*2537720636^(11/15) 6765024951831616 a001 233/271443*45537549124^(11/17) 6765024951831616 a001 233/271443*312119004989^(3/5) 6765024951831616 a001 233/271443*817138163596^(11/19) 6765024951831616 a001 233/271443*14662949395604^(11/21) 6765024951831616 a001 233/271443*(1/2+1/2*5^(1/2))^33 6765024951831616 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^33/Lucas(26) 6765024951831616 a001 233/271443*192900153618^(11/18) 6765024951831616 a001 233/271443*10749957122^(11/16) 6765024951831616 a001 233/271443*1568397607^(3/4) 6765024951831616 a001 233/271443*599074578^(11/14) 6765024951831622 a001 233/271443*33385282^(11/12) 6765024951872727 a001 1346269/521*64079^(2/23) 6765024951888319 a001 1328772671/196418 6765024951888361 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^20 6765024951910035 a001 233/710647*2537720636^(7/9) 6765024951910035 a001 233/710647*17393796001^(5/7) 6765024951910035 a001 233/710647*312119004989^(7/11) 6765024951910035 a001 233/710647*14662949395604^(5/9) 6765024951910035 a001 233/710647*(1/2+1/2*5^(1/2))^35 6765024951910035 a001 233/710647*505019158607^(5/8) 6765024951910035 a001 233/710647*28143753123^(7/10) 6765024951910035 a001 233/710647*599074578^(5/6) 6765024951910036 a001 233/710647*228826127^(7/8) 6765024951918308 a001 3478772016/514229 6765024951918314 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^22 6765024951921477 a001 233/1860498*(1/2+1/2*5^(1/2))^37 6765024951922684 a001 9107543377/1346269 6765024951922684 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^24 6765024951923146 a001 233/4870847*2537720636^(13/15) 6765024951923146 a001 233/4870847*45537549124^(13/17) 6765024951923146 a001 233/4870847*14662949395604^(13/21) 6765024951923146 a001 233/4870847*(1/2+1/2*5^(1/2))^39 6765024951923146 a001 233/4870847*192900153618^(13/18) 6765024951923146 a001 233/4870847*73681302247^(3/4) 6765024951923146 a001 233/4870847*10749957122^(13/16) 6765024951923146 a001 233/4870847*599074578^(13/14) 6765024951923322 a001 23843858115/3524578 6765024951923322 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^26 6765024951923389 a001 233/12752043*(1/2+1/2*5^(1/2))^41 6765024951923415 a001 4801848536/709805 6765024951923415 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^28 6765024951923425 a001 233/33385282*(1/2+1/2*5^(1/2))^43 6765024951923425 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(36) 6765024951923428 a001 233*20633239^(1/5) 6765024951923429 a001 163428234789/24157817 6765024951923429 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^30 6765024951923430 a001 233/87403803*45537549124^(15/17) 6765024951923430 a001 233/87403803*312119004989^(9/11) 6765024951923430 a001 233/87403803*14662949395604^(5/7) 6765024951923430 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(38) 6765024951923430 a001 233/87403803*192900153618^(5/6) 6765024951923430 a001 233/87403803*28143753123^(9/10) 6765024951923430 a001 233/87403803*10749957122^(15/16) 6765024951923431 a001 1836311903/271442 6765024951923431 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^32 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(40) 6765024951923431 a001 1120153785408/165580141 6765024951923431 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^34 6765024951923431 a001 233/599074578*14662949395604^(7/9) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(42) 6765024951923431 a001 233/599074578*505019158607^(7/8) 6765024951923431 a001 2932600682825/433494437 6765024951923431 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^36 6765024951923431 a001 233/1568397607*817138163596^(17/19) 6765024951923431 a001 233/1568397607*14662949395604^(17/21) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(44) 6765024951923431 a001 233/1568397607*192900153618^(17/18) 6765024951923431 a001 7677648263067/1134903170 6765024951923431 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^38 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(46) 6765024951923431 a001 20100344106376/2971215073 6765024951923431 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^40 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(48) 6765024951923431 a001 233/10749957122*3461452808002^(11/12) 6765024951923431 a001 4047952619697/598364773 6765024951923431 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^42 6765024951923431 a001 233/28143753123*14662949395604^(19/21) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(50) 6765024951923431 a001 137769808061807/20365011074 6765024951923431 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^44 6765024951923431 a001 233*17393796001^(1/7) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(52) 6765024951923431 a001 360686040129360/53316291173 6765024951923431 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^46 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(54) 6765024951923431 a001 944288312326273/139583862445 6765024951923431 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^48 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(56) 6765024951923431 a001 2472178896849459/365435296162 6765024951923431 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^50 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(58) 6765024951923431 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^52 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(60) 6765024951923431 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^54 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(62) 6765024951923431 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^56 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(64) 6765024951923431 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^58 6765024951923431 a001 233*14662949395604^(1/9) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(66) 6765024951923431 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^60 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(68) 6765024951923431 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^62 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(70) 6765024951923431 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^64 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(72) 6765024951923431 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^66 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(74) 6765024951923431 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^68 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(76) 6765024951923431 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^70 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^85/Lucas(78) 6765024951923431 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^72 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^87/Lucas(80) 6765024951923431 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^74 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^89/Lucas(82) 6765024951923431 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^76 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^91/Lucas(84) 6765024951923431 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^78 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^93/Lucas(86) 6765024951923431 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^80 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^95/Lucas(88) 6765024951923431 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^82 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^97/Lucas(90) 6765024951923431 a004 Fibonacci(13)*Lucas(91)/(1/2+sqrt(5)/2)^84 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^99/Lucas(92) 6765024951923431 a004 Fibonacci(13)*Lucas(93)/(1/2+sqrt(5)/2)^86 6765024951923431 a004 Fibonacci(13)*Lucas(95)/(1/2+sqrt(5)/2)^88 6765024951923431 a004 Fibonacci(13)*Lucas(97)/(1/2+sqrt(5)/2)^90 6765024951923431 a004 Fibonacci(13)*Lucas(99)/(1/2+sqrt(5)/2)^92 6765024951923431 a004 Fibonacci(13)*Lucas(100)/(1/2+sqrt(5)/2)^93 6765024951923431 a004 Fibonacci(13)*Lucas(98)/(1/2+sqrt(5)/2)^91 6765024951923431 a004 Fibonacci(13)*Lucas(96)/(1/2+sqrt(5)/2)^89 6765024951923431 a004 Fibonacci(13)*Lucas(94)/(1/2+sqrt(5)/2)^87 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^100/Lucas(93) 6765024951923431 a004 Fibonacci(13)*Lucas(92)/(1/2+sqrt(5)/2)^85 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^98/Lucas(91) 6765024951923431 a004 Fibonacci(13)*Lucas(90)/(1/2+sqrt(5)/2)^83 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^96/Lucas(89) 6765024951923431 a004 Fibonacci(13)*Lucas(88)/(1/2+sqrt(5)/2)^81 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^94/Lucas(87) 6765024951923431 a004 Fibonacci(13)*Lucas(86)/(1/2+sqrt(5)/2)^79 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^92/Lucas(85) 6765024951923431 a004 Fibonacci(13)*Lucas(84)/(1/2+sqrt(5)/2)^77 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^90/Lucas(83) 6765024951923431 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^75 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(81) 6765024951923431 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^73 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(79) 6765024951923431 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^71 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(77) 6765024951923431 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^69 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(75) 6765024951923431 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^67 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(73) 6765024951923431 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^65 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(71) 6765024951923431 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^63 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(69) 6765024951923431 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^61 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(67) 6765024951923431 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^59 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(65) 6765024951923431 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^57 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(63) 6765024951923431 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^55 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(61) 6765024951923431 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^53 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(59) 6765024951923431 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^51 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(57) 6765024951923431 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^49 6765024951923431 a001 117530044963322/17373187209 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(55) 6765024951923431 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^47 6765024951923431 a001 583602272196913/86267571272 6765024951923431 a001 233/119218851371*14662949395604^(20/21) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(53) 6765024951923431 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^45 6765024951923431 a001 956722026041/141421803 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(51) 6765024951923431 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^43 6765024951923431 a001 85146424005746/12586269025 6765024951923431 a001 233/17393796001*14662949395604^(8/9) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(49) 6765024951923431 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^41 6765024951923431 a001 32523039949685/4807526976 6765024951923431 a001 233/6643838879*14662949395604^(6/7) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(47) 6765024951923431 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^39 6765024951923431 a001 12422695843309/1836311903 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(45) 6765024951923431 a001 233/2537720636*23725150497407^(13/16) 6765024951923431 a001 233/2537720636*505019158607^(13/14) 6765024951923431 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^37 6765024951923431 a001 4745047580242/701408733 6765024951923431 a001 233*599074578^(1/6) 6765024951923431 a001 233/969323029*312119004989^(10/11) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(43) 6765024951923431 a001 233/969323029*3461452808002^(5/6) 6765024951923431 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^35 6765024951923431 a001 139418992109/20608792 6765024951923431 a001 233/370248451*45537549124^(16/17) 6765024951923431 a001 233/370248451*14662949395604^(16/21) 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(41) 6765024951923431 a001 233/370248451*192900153618^(8/9) 6765024951923431 a001 233/370248451*73681302247^(12/13) 6765024951923431 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^33 6765024951923431 a001 692293112009/102334155 6765024951923431 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(39) 6765024951923431 a001 233/141422324*10749957122^(23/24) 6765024951923432 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^31 6765024951923432 a001 264432438610/39088169 6765024951923433 a001 233/54018521*312119004989^(4/5) 6765024951923433 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(37) 6765024951923433 a001 233/54018521*23725150497407^(11/16) 6765024951923433 a001 233/54018521*73681302247^(11/13) 6765024951923433 a001 233/54018521*10749957122^(11/12) 6765024951923433 a001 233/54018521*4106118243^(22/23) 6765024951923437 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^29 6765024951923437 a001 101004203821/14930352 6765024951923447 a001 233/20633239*2537720636^(14/15) 6765024951923447 a001 233/20633239*17393796001^(6/7) 6765024951923447 a001 233/20633239*45537549124^(14/17) 6765024951923447 a001 233/20633239*817138163596^(14/19) 6765024951923447 a001 233/20633239*14662949395604^(2/3) 6765024951923447 a001 233/20633239*(1/2+1/2*5^(1/2))^42 6765024951923447 a001 233/20633239*505019158607^(3/4) 6765024951923447 a001 233/20633239*192900153618^(7/9) 6765024951923447 a001 233/20633239*10749957122^(7/8) 6765024951923447 a001 233/20633239*4106118243^(21/23) 6765024951923447 a001 233/20633239*1568397607^(21/22) 6765024951923473 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^27 6765024951923473 a001 38580172853/5702887 6765024951923540 a001 233/7881196*2537720636^(8/9) 6765024951923540 a001 233/7881196*312119004989^(8/11) 6765024951923540 a001 233/7881196*(1/2+1/2*5^(1/2))^40 6765024951923540 a001 233/7881196*23725150497407^(5/8) 6765024951923540 a001 233/7881196*73681302247^(10/13) 6765024951923540 a001 233/7881196*28143753123^(4/5) 6765024951923540 a001 233/7881196*10749957122^(5/6) 6765024951923540 a001 233/7881196*4106118243^(20/23) 6765024951923540 a001 233/7881196*1568397607^(10/11) 6765024951923540 a001 233/7881196*599074578^(20/21) 6765024951923716 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^25 6765024951923716 a001 14736314738/2178309 6765024951924178 a001 233/3010349*817138163596^(2/3) 6765024951924178 a001 233/3010349*(1/2+1/2*5^(1/2))^38 6765024951924178 a001 233/3010349*10749957122^(19/24) 6765024951924178 a001 233/3010349*4106118243^(19/23) 6765024951924178 a001 233/3010349*1568397607^(19/22) 6765024951924178 a001 233/3010349*599074578^(19/21) 6765024951924178 a001 233/3010349*228826127^(19/20) 6765024951925385 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^23 6765024951925388 a001 5628771361/832040 6765024951926780 a001 233*710647^(1/4) 6765024951928547 a001 233/1149851*141422324^(12/13) 6765024951928548 a001 233/1149851*2537720636^(4/5) 6765024951928548 a001 233/1149851*45537549124^(12/17) 6765024951928548 a001 233/1149851*14662949395604^(4/7) 6765024951928548 a001 233/1149851*(1/2+1/2*5^(1/2))^36 6765024951928548 a001 233/1149851*505019158607^(9/14) 6765024951928548 a001 233/1149851*192900153618^(2/3) 6765024951928548 a001 233/1149851*73681302247^(9/13) 6765024951928548 a001 233/1149851*10749957122^(3/4) 6765024951928548 a001 233/1149851*4106118243^(18/23) 6765024951928548 a001 233/1149851*1568397607^(9/11) 6765024951928548 a001 233/1149851*599074578^(6/7) 6765024951928548 a001 233/1149851*228826127^(9/10) 6765024951928548 a001 233/1149851*87403803^(18/19) 6765024951936827 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^21 6765024951936842 a001 165384565/24447 6765024951943328 a001 2178309/521*64079^(1/23) 6765024951953775 a001 317811/521*167761^(1/5) 6765024951958501 a001 233/439204*45537549124^(2/3) 6765024951958501 a001 233/439204*(1/2+1/2*5^(1/2))^34 6765024951958501 a001 233/439204*10749957122^(17/24) 6765024951958501 a001 233/439204*4106118243^(17/23) 6765024951958501 a001 233/439204*1568397607^(17/22) 6765024951958501 a001 233/439204*599074578^(17/21) 6765024951958501 a001 233/439204*228826127^(17/20) 6765024951958502 a001 233/439204*87403803^(17/19) 6765024951958507 a001 233/439204*33385282^(17/18) 6765024952001848 a001 317811/521*20633239^(1/7) 6765024952001850 a001 317811/521*2537720636^(1/9) 6765024952001850 a001 317811/521*312119004989^(1/11) 6765024952001850 a001 317811/521*(1/2+1/2*5^(1/2))^5 6765024952001850 a001 317811/521*28143753123^(1/10) 6765024952001850 a001 317811/521*228826127^(1/8) 6765024952002176 a001 317811/521*1860498^(1/6) 6765024952009395 a001 832040/521*439204^(1/9) 6765024952013281 a001 832040/521*7881196^(1/11) 6765024952013291 a001 832040/521*141422324^(1/13) 6765024952013291 a001 832040/521*2537720636^(1/15) 6765024952013291 a001 832040/521*45537549124^(1/17) 6765024952013291 a001 832040/521*14662949395604^(1/21) 6765024952013291 a001 832040/521*(1/2+1/2*5^(1/2))^3 6765024952013291 a001 832040/521*192900153618^(1/18) 6765024952013291 a001 832040/521*10749957122^(1/16) 6765024952013291 a001 832040/521*599074578^(1/14) 6765024952013292 a001 832040/521*33385282^(1/12) 6765024952013487 a001 832040/521*1860498^(1/10) 6765024952014961 a001 2178309/1042+2178309/1042*5^(1/2) 6765024952015204 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2) 6765024952015240 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^3 6765024952015245 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^5 6765024952015246 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^7 6765024952015246 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^9 6765024952015246 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^11 6765024952015246 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^13 6765024952015246 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^15 6765024952015246 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^17 6765024952015246 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^19 6765024952015246 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^21 6765024952015246 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^23 6765024952015246 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^25 6765024952015246 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^27 6765024952015246 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^29 6765024952015246 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^31 6765024952015246 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^33 6765024952015246 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^35 6765024952015246 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^37 6765024952015246 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^39 6765024952015246 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^41 6765024952015246 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^43 6765024952015246 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^45 6765024952015246 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^47 6765024952015246 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^49 6765024952015246 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^51 6765024952015246 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^53 6765024952015246 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^55 6765024952015246 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^57 6765024952015246 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^59 6765024952015246 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^61 6765024952015246 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^63 6765024952015246 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^65 6765024952015246 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^67 6765024952015246 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^66 6765024952015246 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^64 6765024952015246 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^62 6765024952015246 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^60 6765024952015246 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^58 6765024952015246 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^56 6765024952015246 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^54 6765024952015246 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^52 6765024952015246 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^50 6765024952015246 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^48 6765024952015246 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^46 6765024952015246 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^44 6765024952015246 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^42 6765024952015246 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^40 6765024952015246 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^38 6765024952015246 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^36 6765024952015246 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^34 6765024952015246 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^32 6765024952015246 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^30 6765024952015246 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^28 6765024952015246 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^26 6765024952015246 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^24 6765024952015246 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^22 6765024952015246 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^20 6765024952015246 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^18 6765024952015246 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^16 6765024952015246 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^14 6765024952015246 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^12 6765024952015246 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^10 6765024952015246 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^8 6765024952015246 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^6 6765024952015248 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^4 6765024952015262 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^2 6765024952015355 a001 3524578/521 6765024952015992 a001 1346269/521*(1/2+1/2*5^(1/2))^2 6765024952015992 a001 1346269/521*10749957122^(1/24) 6765024952015992 a001 1346269/521*4106118243^(1/23) 6765024952015992 a001 1346269/521*1568397607^(1/22) 6765024952015992 a001 1346269/521*599074578^(1/21) 6765024952015992 a001 1346269/521*228826127^(1/20) 6765024952015992 a001 1346269/521*87403803^(1/19) 6765024952015993 a001 1346269/521*33385282^(1/18) 6765024952015995 a001 1346269/521*12752043^(1/17) 6765024952016010 a001 1346269/521*4870847^(1/16) 6765024952016122 a001 1346269/521*1860498^(1/15) 6765024952016949 a001 1346269/521*710647^(1/14) 6765024952020362 a001 514229/521*(1/2+1/2*5^(1/2))^4 6765024952020362 a001 514229/521*23725150497407^(1/16) 6765024952020362 a001 514229/521*73681302247^(1/13) 6765024952020362 a001 514229/521*10749957122^(1/12) 6765024952020362 a001 514229/521*4106118243^(2/23) 6765024952020362 a001 514229/521*1568397607^(1/11) 6765024952020362 a001 514229/521*599074578^(2/21) 6765024952020362 a001 514229/521*228826127^(1/10) 6765024952020362 a001 514229/521*87403803^(2/19) 6765024952020363 a001 514229/521*33385282^(1/9) 6765024952020367 a001 514229/521*12752043^(2/17) 6765024952020398 a001 514229/521*4870847^(1/8) 6765024952020623 a001 514229/521*1860498^(2/15) 6765024952022276 a001 514229/521*710647^(1/7) 6765024952023055 a001 1346269/521*271443^(1/13) 6765024952034488 a001 514229/521*271443^(2/13) 6765024952041182 a001 2178309/521*103682^(1/24) 6765024952042522 a001 196418/521*439204^(2/9) 6765024952050296 a001 196418/521*7881196^(2/11) 6765024952050316 a001 196418/521*141422324^(2/13) 6765024952050316 a001 196418/521*2537720636^(2/15) 6765024952050316 a001 196418/521*45537549124^(2/17) 6765024952050316 a001 196418/521*14662949395604^(2/21) 6765024952050316 a001 196418/521*(1/2+1/2*5^(1/2))^6 6765024952050316 a001 196418/521*10749957122^(1/8) 6765024952050316 a001 196418/521*4106118243^(3/23) 6765024952050316 a001 196418/521*1568397607^(3/22) 6765024952050316 a001 196418/521*599074578^(1/7) 6765024952050316 a001 196418/521*228826127^(3/20) 6765024952050316 a001 196418/521*87403803^(3/19) 6765024952050317 a001 196418/521*33385282^(1/6) 6765024952050323 a001 196418/521*12752043^(3/17) 6765024952050369 a001 196418/521*4870847^(3/16) 6765024952050707 a001 196418/521*1860498^(1/5) 6765024952053186 a001 196418/521*710647^(3/14) 6765024952068434 a001 1346269/521*103682^(1/12) 6765024952071504 a001 196418/521*271443^(3/13) 6765024952091955 a001 832040/521*103682^(1/8) 6765024952106979 a001 233*103682^(7/24) 6765024952125247 a001 514229/521*103682^(1/6) 6765024952132956 a001 317811/521*103682^(5/24) 6765024952163805 a001 233/167761*(1/2+1/2*5^(1/2))^32 6765024952163805 a001 233/167761*23725150497407^(1/2) 6765024952163805 a001 233/167761*505019158607^(4/7) 6765024952163805 a001 233/167761*73681302247^(8/13) 6765024952163805 a001 233/167761*10749957122^(2/3) 6765024952163805 a001 233/167761*4106118243^(16/23) 6765024952163805 a001 233/167761*1568397607^(8/11) 6765024952163805 a001 233/167761*599074578^(16/21) 6765024952163805 a001 233/167761*228826127^(4/5) 6765024952163806 a001 233/167761*87403803^(16/19) 6765024952163810 a001 233/167761*33385282^(8/9) 6765024952163844 a001 233/167761*12752043^(16/17) 6765024952207643 a001 196418/521*103682^(1/4) 6765024952211021 a001 2178309/521*39603^(1/22) 6765024952255620 a001 75025/521*(1/2+1/2*5^(1/2))^8 6765024952255620 a001 75025/521*23725150497407^(1/8) 6765024952255620 a001 75025/521*505019158607^(1/7) 6765024952255620 a001 75025/521*73681302247^(2/13) 6765024952255620 a001 75025/521*10749957122^(1/6) 6765024952255620 a001 75025/521*4106118243^(4/23) 6765024952255620 a001 75025/521*1568397607^(2/11) 6765024952255620 a001 75025/521*599074578^(4/21) 6765024952255620 a001 75025/521*228826127^(1/5) 6765024952255620 a001 75025/521*87403803^(4/19) 6765024952255621 a001 75025/521*33385282^(2/9) 6765024952255629 a001 75025/521*12752043^(4/17) 6765024952255691 a001 75025/521*4870847^(1/4) 6765024952256141 a001 75025/521*1860498^(4/15) 6765024952259447 a001 75025/521*710647^(2/7) 6765024952283870 a001 75025/521*271443^(4/13) 6765024952408114 a001 1346269/521*39603^(1/11) 6765024952465389 a001 75025/521*103682^(1/3) 6765024952552738 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^17 6765024952553485 a001 313680677/46368 6765024952601473 a001 832040/521*39603^(3/22) 6765024952804605 a001 514229/521*39603^(2/11) 6765024952863144 m001 (Salem-ZetaP(3))/(Ei(1)-PrimesInBinary) 6765024952946468 a001 28657/521*64079^(10/23) 6765024952982154 a001 317811/521*39603^(5/22) 6765024953150485 a001 46368/521*39603^(9/22) 6765024953226680 a001 196418/521*39603^(3/11) 6765024953295856 a001 233*39603^(7/22) 6765024953407454 a007 Real Root Of -884*x^4-34*x^3-599*x^2+92*x+511 6765024953493163 a001 2178309/521*15127^(1/20) 6765024953566644 a001 28657/521*167761^(2/5) 6765024953570880 a001 233/64079*7881196^(10/11) 6765024953570965 a001 233/64079*20633239^(6/7) 6765024953570978 a001 233/64079*141422324^(10/13) 6765024953570979 a001 233/64079*2537720636^(2/3) 6765024953570979 a001 233/64079*45537549124^(10/17) 6765024953570979 a001 233/64079*312119004989^(6/11) 6765024953570979 a001 233/64079*14662949395604^(10/21) 6765024953570979 a001 233/64079*(1/2+1/2*5^(1/2))^30 6765024953570979 a001 233/64079*192900153618^(5/9) 6765024953570979 a001 233/64079*28143753123^(3/5) 6765024953570979 a001 233/64079*10749957122^(5/8) 6765024953570979 a001 233/64079*4106118243^(15/23) 6765024953570979 a001 233/64079*1568397607^(15/22) 6765024953570979 a001 233/64079*599074578^(5/7) 6765024953570979 a001 233/64079*228826127^(3/4) 6765024953570979 a001 233/64079*87403803^(15/19) 6765024953570984 a001 233/64079*33385282^(5/6) 6765024953571015 a001 233/64079*12752043^(15/17) 6765024953571246 a001 233/64079*4870847^(15/16) 6765024953662789 a001 28657/521*20633239^(2/7) 6765024953662793 a001 28657/521*2537720636^(2/9) 6765024953662793 a001 28657/521*312119004989^(2/11) 6765024953662793 a001 28657/521*(1/2+1/2*5^(1/2))^10 6765024953662793 a001 28657/521*28143753123^(1/5) 6765024953662793 a001 28657/521*10749957122^(5/24) 6765024953662793 a001 28657/521*4106118243^(5/23) 6765024953662793 a001 28657/521*1568397607^(5/22) 6765024953662793 a001 28657/521*599074578^(5/21) 6765024953662793 a001 28657/521*228826127^(1/4) 6765024953662793 a001 28657/521*87403803^(5/19) 6765024953662795 a001 28657/521*33385282^(5/18) 6765024953662805 a001 28657/521*12752043^(5/17) 6765024953662882 a001 28657/521*4870847^(5/16) 6765024953663445 a001 28657/521*1860498^(1/3) 6765024953667577 a001 28657/521*710647^(5/14) 6765024953698107 a001 28657/521*271443^(5/13) 6765024953824105 a001 75025/521*39603^(4/11) 6765024953925005 a001 28657/521*103682^(5/12) 6765024954972396 a001 1346269/521*15127^(1/10) 6765024955623400 a001 28657/521*39603^(5/11) 6765024956236766 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^15 6765024956241883 a001 119815357/17711 6765024956447897 a001 832040/521*15127^(3/20) 6765024956854871 a001 10946/521*24476^(4/7) 6765024957933170 a001 514229/521*15127^(1/5) 6765024959392860 a001 317811/521*15127^(1/4) 6765024960919528 a001 196418/521*15127^(3/10) 6765024962270845 a001 233*15127^(7/20) 6765024962448114 a001 10946/521*64079^(12/23) 6765024963215877 a001 233/24476*20633239^(4/5) 6765024963215890 a001 233/24476*17393796001^(4/7) 6765024963215890 a001 233/24476*14662949395604^(4/9) 6765024963215890 a001 233/24476*(1/2+1/2*5^(1/2))^28 6765024963215890 a001 233/24476*505019158607^(1/2) 6765024963215890 a001 233/24476*73681302247^(7/13) 6765024963215890 a001 233/24476*10749957122^(7/12) 6765024963215890 a001 233/24476*4106118243^(14/23) 6765024963215890 a001 233/24476*1568397607^(7/11) 6765024963215890 a001 233/24476*599074578^(2/3) 6765024963215890 a001 233/24476*228826127^(7/10) 6765024963215890 a001 233/24476*87403803^(14/19) 6765024963215894 a001 233/24476*33385282^(7/9) 6765024963215924 a001 233/24476*12752043^(14/17) 6765024963216139 a001 233/24476*4870847^(7/8) 6765024963217714 a001 233/24476*1860498^(14/15) 6765024963272458 a001 2178309/521*5778^(1/18) 6765024963292118 a001 10946/521*439204^(4/9) 6765024963307665 a001 10946/521*7881196^(4/11) 6765024963307704 a001 10946/521*141422324^(4/13) 6765024963307704 a001 10946/521*2537720636^(4/15) 6765024963307704 a001 10946/521*45537549124^(4/17) 6765024963307704 a001 10946/521*817138163596^(4/19) 6765024963307704 a001 10946/521*14662949395604^(4/21) 6765024963307704 a001 10946/521*(1/2+1/2*5^(1/2))^12 6765024963307704 a001 10946/521*192900153618^(2/9) 6765024963307704 a001 10946/521*73681302247^(3/13) 6765024963307704 a001 10946/521*10749957122^(1/4) 6765024963307704 a001 10946/521*4106118243^(6/23) 6765024963307704 a001 10946/521*1568397607^(3/11) 6765024963307704 a001 10946/521*599074578^(2/7) 6765024963307704 a001 10946/521*228826127^(3/10) 6765024963307705 a001 10946/521*87403803^(6/19) 6765024963307706 a001 10946/521*33385282^(1/3) 6765024963307719 a001 10946/521*12752043^(6/17) 6765024963307811 a001 10946/521*4870847^(3/8) 6765024963308486 a001 10946/521*1860498^(2/5) 6765024963313445 a001 10946/521*710647^(3/7) 6765024963350080 a001 10946/521*271443^(6/13) 6765024963622358 a001 10946/521*103682^(1/2) 6765024963962133 a001 17711/521*15127^(11/20) 6765024964081236 a001 75025/521*15127^(2/5) 6765024964689757 a001 46368/521*15127^(9/20) 6765024965660433 a001 10946/521*39603^(6/11) 6765024968444814 a001 28657/521*15127^(1/2) 6765024972383577 a001 4181/521*9349^(14/19) 6765024973849668 a007 Real Root Of 986*x^4-418*x^3+491*x^2+709*x-81 6765024974530986 a001 1346269/521*5778^(1/9) 6765024981046129 a001 10946/521*15127^(3/5) 6765024981487472 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^13 6765024981522542 a001 45765394/6765 6765024983221393 a001 1597/521*3571^(16/17) 6765024984462807 r002 22th iterates of z^2 + 6765024985785783 a001 832040/521*5778^(1/6) 6765024997050351 a001 514229/521*5778^(2/9) 6765025008289336 a001 317811/521*5778^(5/18) 6765025009909770 l006 ln(939/1847) 6765025019595298 a001 196418/521*5778^(1/3) 6765025021886603 a001 4181/521*24476^(2/3) 6765025028412054 a001 4181/521*64079^(14/23) 6765025029323095 a001 233/9349*141422324^(2/3) 6765025029323096 a001 233/9349*(1/2+1/2*5^(1/2))^26 6765025029323096 a001 233/9349*73681302247^(1/2) 6765025029323096 a001 233/9349*10749957122^(13/24) 6765025029323096 a001 233/9349*4106118243^(13/23) 6765025029323096 a001 233/9349*1568397607^(13/22) 6765025029323096 a001 233/9349*599074578^(13/21) 6765025029323096 a001 233/9349*228826127^(13/20) 6765025029323096 a001 233/9349*87403803^(13/19) 6765025029323100 a001 233/9349*33385282^(13/18) 6765025029323127 a001 233/9349*12752043^(13/17) 6765025029323327 a001 233/9349*4870847^(13/16) 6765025029324789 a001 233/9349*1860498^(13/15) 6765025029335534 a001 233/9349*710647^(13/14) 6765025029414903 a001 4181/521*20633239^(2/5) 6765025029414909 a001 4181/521*17393796001^(2/7) 6765025029414909 a001 4181/521*14662949395604^(2/9) 6765025029414909 a001 4181/521*(1/2+1/2*5^(1/2))^14 6765025029414909 a001 4181/521*505019158607^(1/4) 6765025029414909 a001 4181/521*10749957122^(7/24) 6765025029414909 a001 4181/521*4106118243^(7/23) 6765025029414909 a001 4181/521*1568397607^(7/22) 6765025029414909 a001 4181/521*599074578^(1/3) 6765025029414909 a001 4181/521*228826127^(7/20) 6765025029414910 a001 4181/521*87403803^(7/19) 6765025029414912 a001 4181/521*33385282^(7/18) 6765025029414926 a001 4181/521*12752043^(7/17) 6765025029415034 a001 4181/521*4870847^(7/16) 6765025029415821 a001 4181/521*1860498^(7/15) 6765025029421607 a001 4181/521*710647^(1/2) 6765025029464348 a001 4181/521*271443^(7/13) 6765025029782005 a001 4181/521*103682^(7/12) 6765025030725911 a001 233*5778^(7/18) 6765025032159759 a001 4181/521*39603^(7/11) 6765025038819990 a001 2178309/521*2207^(1/16) 6765025042315597 a001 75025/521*5778^(4/9) 6765025050109738 a001 4181/521*15127^(7/10) 6765025052703413 a001 46368/521*5778^(1/2) 6765025061839647 r002 11th iterates of z^2 + 6765025062487131 a007 Real Root Of -189*x^4+521*x^3+724*x^2-74*x-403 6765025066237765 a001 28657/521*5778^(5/9) 6765025068798668 a001 6765/521*5778^(13/18) 6765025071190552 r005 Im(z^2+c),c=-2/3+30/157*I,n=38 6765025071534379 a001 17711/521*5778^(11/18) 6765025088323447 a007 Real Root Of -156*x^4+834*x^3+102*x^2+554*x-647 6765025098397671 a001 10946/521*5778^(2/3) 6765025125626053 a001 1346269/521*2207^(1/8) 6765025150606051 a001 5778/377*34^(8/19) 6765025154558381 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^11 6765025154798761 a001 17480825/2584 6765025161211523 m001 (-FeigenbaumMu+Totient)/(Si(Pi)+exp(1/exp(1))) 6765025173205755 m008 (5*Pi^4+1/5)/(3/4*Pi^6-4/5) 6765025187019872 a001 4181/521*5778^(7/9) 6765025198713703 m005 (1/2*gamma-5/6)/(9/10*gamma+2/7) 6765025212428384 a001 832040/521*2207^(3/16) 6765025225977244 r005 Im(z^2+c),c=-71/118+1/8*I,n=51 6765025230826914 r005 Re(z^2+c),c=-2/23+17/22*I,n=2 6765025235759765 r002 26th iterates of z^2 + 6765025237884778 a007 Real Root Of 973*x^4-822*x^3+402*x^2+61*x-601 6765025241595492 m005 (1/3*exp(1)+1/7)/(5/8*2^(1/2)+2/3) 6765025299240488 a001 514229/521*2207^(1/4) 6765025313976147 m001 (-Conway+Otter)/(1+3^(1/3)) 6765025338628265 m001 (Tetranacci-Trott)/(Zeta(3)-GAMMA(19/24)) 6765025343561390 r002 52th iterates of z^2 + 6765025360054486 m001 1/exp(GAMMA(23/24))^2*BesselJ(1,1)^2*exp(1) 6765025366723230 m001 exp(-1/2*Pi)^ErdosBorwein+Gompertz 6765025386027010 a001 317811/521*2207^(5/16) 6765025387370933 m005 (1/2*5^(1/2)-1/3)/(8/11*Zeta(3)+2/7) 6765025414826397 a001 1346269/1364*322^(1/3) 6765025417341763 a001 1597/521*9349^(16/19) 6765025418195507 a007 Real Root Of -853*x^4+366*x^3-250*x^2+706*x+884 6765025421462171 r002 14th iterates of z^2 + 6765025422316389 l004 Pi/sinh(82/115*Pi) 6765025439219465 g007 Psi(2,5/8)+Psi(2,3/8)+Psi(2,2/5)-Psi(2,5/9) 6765025443008997 a007 Real Root Of 196*x^4+135*x^3+22*x^2-916*x-629 6765025445526679 a007 Real Root Of 313*x^4-999*x^3-614*x^2+109*x+451 6765025449525657 m001 (Chi(1)+3^(1/3))/(Otter+PrimesInBinary) 6765025451293666 m001 (-OneNinth+Salem)/(2^(1/2)-Zeta(1,-1)) 6765025452488154 a003 cos(Pi*15/79)*sin(Pi*32/105) 6765025472880511 a001 196418/521*2207^(3/8) 6765025473916654 a001 1597/521*24476^(16/21) 6765025481374312 a001 1597/521*64079^(16/23) 6765025482397486 a001 233/3571*439204^(8/9) 6765025482428580 a001 233/3571*7881196^(8/11) 6765025482428659 a001 233/3571*141422324^(8/13) 6765025482428659 a001 233/3571*2537720636^(8/15) 6765025482428659 a001 233/3571*45537549124^(8/17) 6765025482428659 a001 233/3571*14662949395604^(8/21) 6765025482428659 a001 233/3571*(1/2+1/2*5^(1/2))^24 6765025482428659 a001 233/3571*192900153618^(4/9) 6765025482428659 a001 233/3571*73681302247^(6/13) 6765025482428659 a001 233/3571*10749957122^(1/2) 6765025482428659 a001 233/3571*4106118243^(12/23) 6765025482428659 a001 233/3571*1568397607^(6/11) 6765025482428659 a001 233/3571*599074578^(4/7) 6765025482428659 a001 233/3571*228826127^(3/5) 6765025482428660 a001 233/3571*87403803^(12/19) 6765025482428663 a001 233/3571*33385282^(2/3) 6765025482428689 a001 233/3571*12752043^(12/17) 6765025482428873 a001 233/3571*4870847^(3/4) 6765025482430223 a001 233/3571*1860498^(4/5) 6765025482440141 a001 233/3571*710647^(6/7) 6765025482513411 a001 233/3571*271443^(12/13) 6765025482520432 a001 1597/521*(1/2+1/2*5^(1/2))^16 6765025482520432 a001 1597/521*23725150497407^(1/4) 6765025482520432 a001 1597/521*73681302247^(4/13) 6765025482520432 a001 1597/521*10749957122^(1/3) 6765025482520432 a001 1597/521*4106118243^(8/23) 6765025482520432 a001 1597/521*1568397607^(4/11) 6765025482520432 a001 1597/521*599074578^(8/21) 6765025482520432 a001 1597/521*228826127^(2/5) 6765025482520433 a001 1597/521*87403803^(8/19) 6765025482520435 a001 1597/521*33385282^(4/9) 6765025482520452 a001 1597/521*12752043^(8/17) 6765025482520575 a001 1597/521*4870847^(1/2) 6765025482521475 a001 1597/521*1860498^(8/15) 6765025482528087 a001 1597/521*710647^(4/7) 6765025482576934 a001 1597/521*271443^(8/13) 6765025482939970 a001 1597/521*103682^(2/3) 6765025485657404 a001 1597/521*39603^(8/11) 6765025496063585 m005 (1/3*2^(1/2)-1/9)/(1/11*Pi-9/11) 6765025505612195 m005 (1/2*2^(1/2)-2/5)/(5/11*3^(1/2)-1/3) 6765025506171667 a001 1597/521*15127^(4/5) 6765025509020512 r005 Re(z^2+c),c=-3/4+9/239*I,n=7 6765025511805089 m001 (FeigenbaumB-Kac)/(Otter+Paris) 6765025549848283 m001 (ln(Pi)-BesselI(0,2))/(Artin+Conway) 6765025559558663 a001 233*2207^(7/16) 6765025615241052 r005 Re(z^2+c),c=6/25+13/36*I,n=18 6765025631622464 p004 log(34259/17417) 6765025631980896 a001 2178309/521*843^(1/14) 6765025646695889 a001 75025/521*2207^(1/2) 6765025662640402 a001 1597/521*5778^(8/9) 6765025663072276 r005 Im(z^2+c),c=-7/58+9/13*I,n=16 6765025664839829 m001 (Ei(1)-exp(Pi))/(-Ei(1,1)+ReciprocalFibonacci) 6765025671469707 a007 Real Root Of 791*x^4+898*x^3+564*x^2-871*x-735 6765025671727573 a001 3571/2178309*2178309^(13/51) 6765025672647577 m005 (-17/28+1/4*5^(1/2))/(1/2*gamma-1) 6765025680012439 m005 (3/4*Pi-2)/(5/6*exp(1)+3) 6765025688538121 m006 (1/5*ln(Pi)+1/4)/(2/3*Pi^2+1/2) 6765025695919774 a007 Real Root Of -866*x^4+52*x^3-764*x^2-420*x+263 6765025732631246 a001 46368/521*2207^(9/16) 6765025733189643 a007 Real Root Of -689*x^4+848*x^3+980*x^2-75*x-516 6765025748126502 a007 Real Root Of 851*x^4-509*x^3+222*x^2-363*x-683 6765025768696444 r002 42th iterates of z^2 + 6765025769742587 m001 Backhouse-LaplaceLimit*Salem 6765025783907476 m001 Psi(1,1/3)/(AlladiGrinstead-TwinPrimes) 6765025801438083 r002 60th iterates of z^2 + 6765025821713141 a001 28657/521*2207^(5/8) 6765025827100848 a001 1346269/2207*322^(5/12) 6765025830808192 r002 25th iterates of z^2 + 6765025847022000 m005 (1/2*3^(1/2)-5/11)/(1/7*gamma+6) 6765025853800938 r002 13th iterates of z^2 + 6765025902557298 a001 17711/521*2207^(11/16) 6765025918774848 a007 Real Root Of 117*x^4-256*x^3+334*x^2-464*x-33 6765025947727509 a003 sin(Pi*4/59)-sin(Pi*8/23) 6765025953297502 m001 ln(BesselJ(1,1))/PisotVijayaraghavan/Catalan 6765025953562108 m001 BesselK(0,1)*(arctan(1/3)+GAMMA(17/24)) 6765025963207687 m001 (ln(5)+ln(2^(1/2)+1))/(Pi+cos(1)) 6765025967395240 m001 1/FeigenbaumAlpha^2/Cahen^2/ln(GAMMA(5/12))^2 6765025973685300 m001 MertensB1*(gamma(3)+Sierpinski) 6765025990711137 m006 (3/5*Pi^2+1/6)/(1/6*exp(2*Pi)+3/4) 6765025995602951 m005 (-9/28+1/4*5^(1/2))/(1/7*Pi-4/5) 6765025996638583 r002 25th iterates of z^2 + 6765026004968137 a001 10946/521*2207^(3/4) 6765026006762617 r005 Im(z^2+c),c=-31/54+22/51*I,n=33 6765026022943773 a007 Real Root Of 937*x^4-752*x^3-752*x^2-265*x+560 6765026048652509 r005 Im(z^2+c),c=-20/27+2/57*I,n=17 6765026050916674 a001 6765/521*2207^(13/16) 6765026051455820 a001 2584/521*2207^(15/16) 6765026065953370 m001 (2^(1/3)+Pi*csc(11/24*Pi)/GAMMA(13/24))/Bloch 6765026076687975 m001 GAMMA(11/12)*Stephens-cos(1) 6765026088967146 a007 Real Root Of -645*x^4-232*x^3+717*x^2+631*x+162 6765026096531548 m001 Sarnak*HardyLittlewoodC3^ZetaR(2) 6765026107099494 a007 Real Root Of -187*x^4-40*x^3-854*x^2-97*x+352 6765026107410004 l004 sinh(858/119) 6765026111497109 a001 11/34*39088169^(4/23) 6765026116555697 s001 sum(exp(-Pi/2)^(n-1)*A038475[n],n=1..infinity) 6765026117425751 a007 Real Root Of x^4-97*x^3-710*x^2-7*x+320 6765026119600621 r005 Im(z^2+c),c=-17/110+39/58*I,n=55 6765026155024943 m001 1/DuboisRaymond^2/Conway^2/exp(FeigenbaumB) 6765026160650457 m005 (1/2*3^(1/2)+1/5)/(6/7*Zeta(3)+6/11) 6765026173290443 r009 Re(z^3+c),c=-33/56+12/47*I,n=10 6765026212735692 a007 Real Root Of -494*x^4+541*x^3-340*x^2-261*x+250 6765026217624434 l006 ln(4483/8818) 6765026226242352 l006 ln(7801/8347) 6765026233726519 r005 Im(z^2+c),c=-1/17+23/29*I,n=35 6765026244685441 a001 4181/521*2207^(7/8) 6765026271513018 a007 Real Root Of -705*x^4+270*x^3-977*x^2-988*x+10 6765026284252402 r002 6th iterates of z^2 + 6765026311947932 a001 1346269/521*843^(1/7) 6765026324927071 m002 3*E^Pi*Pi^4+Pi^3*Csch[Pi] 6765026340804041 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^9 6765026342451874 a001 6677081/987 6765026395989953 m001 (Ei(1)-GAMMA(7/12)*Trott2nd)/Trott2nd 6765026404908088 m001 exp(arctan(1/2))*Riemann3rdZero/sin(Pi/5) 6765026411873932 m001 (FeigenbaumC-ZetaQ(4))/(Ei(1)+AlladiGrinstead) 6765026415627413 r005 Re(z^2+c),c=-7/10+52/147*I,n=17 6765026420348659 m001 1/GAMMA(1/12)*FeigenbaumC^2*exp(sin(1)) 6765026444099249 r005 Re(z^2+c),c=21/50+9/61*I,n=3 6765026491183460 m001 (-cos(Pi/5)+1/2)/(-exp(-Pi)+1/2) 6765026503955007 r009 Re(z^3+c),c=-19/29+4/11*I,n=2 6765026509203799 r005 Im(z^2+c),c=9/32+19/37*I,n=27 6765026510204261 r005 Re(z^2+c),c=13/40+29/47*I,n=8 6765026514302785 a001 2207/5*75025^(13/29) 6765026537614271 l006 ln(3544/6971) 6765026543792669 m001 (-sin(1/12*Pi)+ZetaQ(3))/(5^(1/2)-Zeta(1/2)) 6765026570496425 m005 (4*gamma+2/5)/(3/4*gamma-5/6) 6765026570496425 m007 (-4*gamma-2/5)/(-3/4*gamma+5/6) 6765026572137515 s002 sum(A010514[n]/(n*10^n+1),n=1..infinity) 6765026579040206 m001 (sin(1/12*Pi)+Conway)/(MasserGramain-Otter) 6765026605938123 r005 Im(z^2+c),c=-9/19+34/57*I,n=43 6765026620563782 m001 (LaplaceLimit-sin(1))/(-Trott2nd+ZetaQ(2)) 6765026633735243 m009 (4*Psi(1,2/3)-1/6)/(1/10*Pi^2+4/5) 6765026639355561 a001 28143753123*144^(3/17) 6765026649566709 m005 (2/5*gamma-1/4)/(4/5*exp(1)-5) 6765026656227457 r004 Im(z^2+c),c=5/14-7/23*I,z(0)=exp(3/8*I*Pi),n=3 6765026667855448 m001 cos(1/5*Pi)^KhinchinHarmonic*cos(1/5*Pi)^Paris 6765026673189595 r005 Im(z^2+c),c=-18/31+4/7*I,n=3 6765026702921492 m009 (4/3*Catalan+1/6*Pi^2-2)/(3/2*Pi^2-2) 6765026730595084 a001 3571*6557470319842^(7/17) 6765026739637506 m001 (sin(1)+Zeta(5))/(Ei(1)+QuadraticClass) 6765026766465323 r005 Re(z^2+c),c=-5/34+41/49*I,n=18 6765026770490463 a007 Real Root Of -346*x^4+676*x^3-146*x^2+246*x+515 6765026771229219 m005 (1/2*3^(1/2)-2/3)/(10/11*Pi+1/11) 6765026783901505 p003 LerchPhi(1/25,4,129/208) 6765026802067241 a007 Real Root Of 235*x^4-454*x^3-666*x^2-544*x-253 6765026806077824 a007 Real Root Of -840*x^4-422*x^3-888*x^2+744*x+955 6765026806426613 a007 Real Root Of -491*x^4+996*x^3-363*x^2-373*x+325 6765026807350715 m001 GaussKuzminWirsing/(sin(1/12*Pi)^Lehmer) 6765026807350715 m001 GaussKuzminWirsing/(sin(Pi/12)^Lehmer) 6765026824180909 a001 47/121393*1346269^(15/41) 6765026845590376 a007 Real Root Of -182*x^4+186*x^3-438*x^2+526*x+652 6765026878418416 b008 3+13*Sinh[2/7] 6765026894525480 a007 Real Root Of 311*x^4-843*x^3-436*x^2-468*x+712 6765026909972169 m001 (Psi(1,1/3)+ln(Pi))/(arctan(1/3)+Totient) 6765026913931430 m004 -6+(5*Sqrt[5]*E^(Sqrt[5]*Pi))/(6*Pi)+5*Pi 6765026921677323 a007 Real Root Of 285*x^4-179*x^3-46*x^2-875*x-686 6765026938870225 m005 (1/2*Pi+3/10)/(8/9*5^(1/2)+7/9) 6765026941746735 m001 (GAMMA(1/12)-GAMMA(11/24))/sqrt(2) 6765026943494804 m001 Psi(1,1/3)^HardHexagonsEntropy*Khinchin 6765026949593972 a007 Real Root Of 903*x^4-999*x^3+857*x^2+675*x-434 6765026959463130 a007 Real Root Of 708*x^4-638*x^3-846*x^2-805*x+981 6765026970838813 m001 (-Zeta(1,2)+GAMMA(17/24))/(exp(1)+LambertW(1)) 6765026987174553 a007 Real Root Of 420*x^4-773*x^3-842*x^2-98*x+603 6765026990028644 a007 Real Root Of -957*x^4-886*x^3-306*x^2+965*x+719 6765026991911303 a001 832040/521*843^(3/14) 6765027011439069 m001 (gamma-ln(5))/(-BesselJ(1,1)+Lehmer) 6765027013345988 a001 1762289/2889*322^(5/12) 6765027021050795 a007 Real Root Of -957*x^4+674*x^3+487*x^2+823*x+743 6765027040546818 m001 exp(Ei(1))^2/HardHexagonsEntropy*Zeta(1/2)^2 6765027062782985 a001 34/9349*47^(41/54) 6765027068218597 a001 1597/3*843^(20/53) 6765027085357955 m001 HeathBrownMoroz^KhinchinLevy/BesselI(1,1) 6765027088291575 l006 ln(2605/5124) 6765027104064022 m005 (1/2*Pi+4/11)/(6/7*Pi+1/6) 6765027118741105 m001 TwinPrimes*ln(LaplaceLimit)^2/GAMMA(17/24)^2 6765027141045750 m001 (Thue+TwinPrimes)/(5^(1/2)-gamma(2)) 6765027146682083 m005 (3/4*Catalan-1/6)/(2/5*gamma-1) 6765027176764076 m002 -E^Pi+Pi^5-Pi^6+2*Coth[Pi] 6765027186416857 a001 9227465/15127*322^(5/12) 6765027206549585 m001 (KhinchinLevy-PlouffeB)/(Stephens+Weierstrass) 6765027211667557 a001 24157817/39603*322^(5/12) 6765027215351584 a001 31622993/51841*322^(5/12) 6765027215889077 a001 165580141/271443*322^(5/12) 6765027215967496 a001 433494437/710647*322^(5/12) 6765027215978937 a001 567451585/930249*322^(5/12) 6765027215980606 a001 2971215073/4870847*322^(5/12) 6765027215980850 a001 7778742049/12752043*322^(5/12) 6765027215980885 a001 10182505537/16692641*322^(5/12) 6765027215980890 a001 53316291173/87403803*322^(5/12) 6765027215980891 a001 139583862445/228826127*322^(5/12) 6765027215980891 a001 182717648081/299537289*322^(5/12) 6765027215980891 a001 956722026041/1568397607*322^(5/12) 6765027215980891 a001 2504730781961/4106118243*322^(5/12) 6765027215980891 a001 3278735159921/5374978561*322^(5/12) 6765027215980891 a001 10610209857723/17393796001*322^(5/12) 6765027215980891 a001 4052739537881/6643838879*322^(5/12) 6765027215980891 a001 1134903780/1860499*322^(5/12) 6765027215980891 a001 591286729879/969323029*322^(5/12) 6765027215980891 a001 225851433717/370248451*322^(5/12) 6765027215980892 a001 21566892818/35355581*322^(5/12) 6765027215980894 a001 32951280099/54018521*322^(5/12) 6765027215980907 a001 1144206275/1875749*322^(5/12) 6765027215981000 a001 1201881744/1970299*322^(5/12) 6765027215981638 a001 1836311903/3010349*322^(5/12) 6765027215986008 a001 701408733/1149851*322^(5/12) 6765027216015961 a001 66978574/109801*322^(5/12) 6765027216221265 a001 9303105/15251*322^(5/12) 6765027217628438 a001 39088169/64079*322^(5/12) 6765027221643682 m001 GAMMA(13/24)/FeigenbaumD*exp(Zeta(3))^2 6765027227273348 a001 3732588/6119*322^(5/12) 6765027261101812 a001 3010349*514229^(7/17) 6765027261729759 a001 103682*1836311903^(7/17) 6765027273881826 m005 (41/36+1/4*5^(1/2))/(3^(1/2)+7/9) 6765027274598057 a001 38/17*1548008755920^(7/9) 6765027290983539 a007 Real Root Of -522*x^4-820*x^3-221*x^2+617*x+374 6765027293380540 a001 5702887/9349*322^(5/12) 6765027305223691 a007 Real Root Of -819*x^4+580*x^3-39*x^2+377*x+624 6765027316434750 b008 35*ArcCsch[2+Pi] 6765027322404371 q001 619/915 6765027338944290 g005 2*Pi/GAMMA(5/6)*GAMMA(2/3)/GAMMA(11/12)^2 6765027346284609 r005 Re(z^2+c),c=-5/27+44/63*I,n=20 6765027359989302 m006 (5*exp(Pi)+1/5)/(4/5*Pi-4/5) 6765027429051999 m001 (Zeta(1,2)+OneNinth)/FibonacciFactorial 6765027488180295 r005 Re(z^2+c),c=-19/26+21/86*I,n=27 6765027497875126 a007 Real Root Of 531*x^4-378*x^3-40*x^2-887*x-810 6765027503522084 b008 -1/4+Sqrt[4-Pi] 6765027544286502 m005 (4*gamma+4/5)/(-39/8+1/8*5^(1/2)) 6765027545233806 l006 ln(4271/8401) 6765027591112693 a001 2207/1346269*2178309^(13/51) 6765027669274496 a003 cos(Pi*49/120)-sin(Pi*16/39) 6765027671884515 a001 514229/521*843^(2/7) 6765027680901523 m001 1/Zeta(7)/ln(RenyiParking)^2*gamma 6765027688247446 m001 (-BesselK(1,1)+Gompertz)/(2^(1/2)-5^(1/2)) 6765027690104990 r002 27th iterates of z^2 + 6765027746486012 a001 2178309/3571*322^(5/12) 6765027746528086 g006 Psi(1,1/8)+Psi(1,3/7)-Psi(1,9/11)-Psi(1,8/9) 6765027757159847 b008 1+76*Sqrt[79] 6765027766093851 m001 1/exp((2^(1/3)))^2*Backhouse/sqrt(3) 6765027769388276 m001 1/exp(GAMMA(5/12))*DuboisRaymond*cos(1)^2 6765027777954629 a007 Real Root Of 81*x^4-553*x^3+157*x^2-536*x+445 6765027779262169 b008 8-(2*E)/3+EulerGamma 6765027787503781 r002 8th iterates of z^2 + 6765027804925858 a008 Real Root of (-6+4*x+5*x^2+x^3+4*x^4-x^5) 6765027807645270 a007 Real Root Of -14*x^4-937*x^3+677*x^2-428*x+936 6765027808709677 p003 LerchPhi(1/16,1,355/231) 6765027834144249 m001 (Pi^(1/2)+ErdosBorwein)/(Totient-Tribonacci) 6765027867622882 r005 Re(z^2+c),c=-1/54+10/41*I,n=3 6765027869294116 r005 Im(z^2+c),c=-1/22+19/25*I,n=38 6765027879532834 r005 Im(z^2+c),c=-19/27+3/52*I,n=3 6765027887158964 a007 Real Root Of 737*x^4-970*x^3+390*x^2-288*x-828 6765027901303585 m001 ln(2+3^(1/2))/(Zeta(1/2)+Magata) 6765027918903669 a007 Real Root Of 127*x^4+746*x^3-651*x^2+889*x+773 6765027929438696 r008 a(0)=0,K{-n^6,25-14*n^3+84*n^2+53*n} 6765027962923671 m008 (5/6*Pi^3-1/5)/(1/3*Pi^2+1/2) 6765027965508285 r005 Im(z^2+c),c=-129/118+5/62*I,n=9 6765028007574472 a007 Real Root Of -102*x^4+111*x^3+757*x^2+700*x-833 6765028037918251 a001 124/615*6765^(7/51) 6765028042834708 a007 Real Root Of 93*x^4-555*x^3+603*x^2-548*x-838 6765028135569846 a001 4/161*3571^(6/49) 6765028137299732 r005 Im(z^2+c),c=-11/15+9/32*I,n=23 6765028140096859 a007 Real Root Of -166*x^4+789*x^3+772*x^2+86*x-621 6765028200957275 m001 polylog(4,1/2)*Zeta(3)^Backhouse 6765028218348831 r005 Re(z^2+c),c=-11/14+102/193*I,n=3 6765028220141930 m001 ZetaR(2)-GaussAGM-gamma(2) 6765028234736868 r005 Re(z^2+c),c=1/15+11/26*I,n=35 6765028241299561 r005 Im(z^2+c),c=-45/31+9/56*I,n=4 6765028259720265 l006 ln(1666/3277) 6765028273249726 m003 -4+4*Cos[1/2+Sqrt[5]/2]+3*Tan[1/2+Sqrt[5]/2] 6765028303864599 a003 cos(Pi*13/89)*cos(Pi*18/79) 6765028305771720 a001 47/1346269*591286729879^(13/21) 6765028350494116 a007 Real Root Of -843*x^4+244*x^3-977*x^2-126*x+614 6765028351832212 a001 317811/521*843^(5/14) 6765028352447059 a007 Real Root Of 200*x^4-638*x^3+910*x^2+90*x-595 6765028359703232 a007 Real Root Of 467*x^4-918*x^3-743*x^2+79*x+473 6765028366066593 a007 Real Root Of 802*x^4-307*x^3-972*x^2-890*x+974 6765028404046152 a007 Real Root Of 972*x^4-258*x^3+382*x^2-208*x-599 6765028417961328 r009 Im(z^3+c),c=-31/56+10/41*I,n=49 6765028431552486 r009 Re(z^3+c),c=-21/40+8/21*I,n=3 6765028450552333 m001 1/ArtinRank2*Bloch 6765028450552333 m001 Bloch/ArtinRank2 6765028478994780 r005 Im(z^2+c),c=-18/23+15/52*I,n=8 6765028502914358 p001 sum(1/(239*n+154)/(10^n),n=0..infinity) 6765028508407525 a001 47/2584*24157817^(13/21) 6765028514825852 a001 610/521*9349^(18/19) 6765028527260359 a007 Real Root Of -304*x^4+346*x^3+808*x^2-58*x-374 6765028530010252 r002 7th iterates of z^2 + 6765028534406018 m001 ArtinRank2^(Pi^(1/2))+ZetaR(2) 6765028535244569 a007 Real Root Of -404*x^4-929*x^3-770*x^2+706*x+627 6765028555641288 m001 1/ln(GAMMA(5/6))^2*PrimesInBinary^2/sqrt(3) 6765028557404910 r005 Re(z^2+c),c=-35/78+23/41*I,n=4 6765028566309827 r002 23th iterates of z^2 + 6765028571078925 a001 196418/843*322^(7/12) 6765028578472633 a001 610/521*24476^(6/7) 6765028583746578 a007 Real Root Of -253*x^4+703*x^3-632*x^2-903*x-51 6765028586486112 a001 233/1364*64079^(22/23) 6765028586862503 a001 610/521*64079^(18/23) 6765028588061956 a001 233/1364*7881196^(2/3) 6765028588062028 a001 233/1364*312119004989^(2/5) 6765028588062028 a001 233/1364*(1/2+1/2*5^(1/2))^22 6765028588062028 a001 233/1364*10749957122^(11/24) 6765028588062028 a001 233/1364*4106118243^(11/23) 6765028588062028 a001 233/1364*1568397607^(1/2) 6765028588062028 a001 233/1364*599074578^(11/21) 6765028588062028 a001 233/1364*228826127^(11/20) 6765028588062029 a001 233/1364*87403803^(11/19) 6765028588062032 a001 233/1364*33385282^(11/18) 6765028588062055 a001 233/1364*12752043^(11/17) 6765028588062224 a001 233/1364*4870847^(11/16) 6765028588063462 a001 233/1364*1860498^(11/15) 6765028588072553 a001 233/1364*710647^(11/14) 6765028588128509 a001 610/521*439204^(2/3) 6765028588139718 a001 233/1364*271443^(11/13) 6765028588151829 a001 610/521*7881196^(6/11) 6765028588151889 a001 610/521*141422324^(6/13) 6765028588151889 a001 610/521*2537720636^(2/5) 6765028588151889 a001 610/521*45537549124^(6/17) 6765028588151889 a001 610/521*14662949395604^(2/7) 6765028588151889 a001 610/521*(1/2+1/2*5^(1/2))^18 6765028588151889 a001 610/521*192900153618^(1/3) 6765028588151889 a001 610/521*10749957122^(3/8) 6765028588151889 a001 610/521*4106118243^(9/23) 6765028588151889 a001 610/521*1568397607^(9/22) 6765028588151889 a001 610/521*599074578^(3/7) 6765028588151889 a001 610/521*228826127^(9/20) 6765028588151889 a001 610/521*87403803^(9/19) 6765028588151892 a001 610/521*33385282^(1/2) 6765028588151911 a001 610/521*12752043^(9/17) 6765028588152049 a001 610/521*4870847^(9/16) 6765028588153061 a001 610/521*1860498^(3/5) 6765028588160500 a001 610/521*710647^(9/14) 6765028588215453 a001 610/521*271443^(9/13) 6765028588623869 a001 610/521*103682^(3/4) 6765028588638894 a001 233/1364*103682^(11/12) 6765028591680983 a001 610/521*39603^(9/11) 6765028605270018 r002 14th iterates of z^2 + 6765028614759540 a001 610/521*15127^(9/10) 6765028648938683 a007 Real Root Of -585*x^4+672*x^3+396*x^2-849*x-425 6765028677148006 a007 Real Root Of -495*x^4-430*x^3-202*x^2+204*x+201 6765028686367733 r005 Re(z^2+c),c=1/5+8/25*I,n=33 6765028712881202 m001 ln(5)^Zeta(1/2)*FeigenbaumKappa 6765028717065718 m001 1/GAMMA(1/6)^2/FransenRobinson*exp(sqrt(Pi)) 6765028728889517 a003 sin(Pi*18/77)/sin(Pi*47/103) 6765028731222873 a001 521/2*377^(28/51) 6765028756128408 g001 Psi(7/8,37/118) 6765028767782531 m001 1/Zeta(1/2)*Niven/ln(sin(1)) 6765028784015711 b008 67+Sin[15] 6765028793882297 m001 (Zeta(1,2)+Thue)/(Chi(1)+arctan(1/3)) 6765028804812621 s002 sum(A230990[n]/(n*pi^n-1),n=1..infinity) 6765028809855059 h001 (4/7*exp(1)+1/5)/(3/10*exp(2)+3/8) 6765028813467717 m006 (5/6*Pi+3/5)/(3/5/Pi-2/3) 6765028819994349 r009 Im(z^3+c),c=-6/19+26/37*I,n=15 6765028822420215 m001 (Riemann1stZero+Thue)/(BesselI(1,2)+Kac) 6765028842851443 m001 (GAMMA(13/24)+Paris)/(3^(1/2)+Chi(1)) 6765028881624327 a007 Real Root Of 668*x^4-924*x^3+289*x^2+466*x-243 6765028884610788 m005 (1/3*Pi+1/3)/(3/4*5^(1/2)+4/11) 6765028892071972 a007 Real Root Of -152*x^4-960*x^3+573*x^2+696*x-374 6765028904732404 h001 (-6*exp(2)-1)/(-6*exp(-3)+7) 6765028904792281 a007 Real Root Of -873*x^4+974*x^3-113*x^2-80*x+482 6765028905211954 l006 ln(4472/4785) 6765028911394024 r005 Im(z^2+c),c=-12/13+13/50*I,n=48 6765028916911170 a007 Real Root Of -738*x^4+368*x^3-384*x^2+941*x-62 6765028930953276 m001 Pi*2^(1/2)/GAMMA(3/4)/(Psi(2,1/3)+GAMMA(7/12)) 6765028953968171 a007 Real Root Of -65*x^4+477*x^3+196*x^2+685*x+535 6765028969144594 a007 Real Root Of 871*x^4-956*x^3-216*x^2+23*x-364 6765028994998452 m005 (1/2*Zeta(3)-3/5)/(5/8*2^(1/2)+7/11) 6765028996815081 r009 Im(z^3+c),c=-8/17+22/47*I,n=2 6765029011524021 l006 ln(4059/7984) 6765029015177930 m001 exp(Pi)^(cosh(1)*FeigenbaumDelta) 6765029031846955 a001 196418/521*843^(3/7) 6765029053005366 r005 Re(z^2+c),c=-77/114+17/39*I,n=25 6765029069397439 r009 Im(z^3+c),c=-29/82+15/22*I,n=30 6765029071551366 r009 Re(z^3+c),c=-1/14+1/7*I,n=4 6765029078460031 a001 322/1597*4807526976^(6/23) 6765029091185354 m001 1/Catalan/GaussKuzminWirsing*ln(cosh(1))^2 6765029100926365 a001 123/377*9227465^(10/21) 6765029133602670 b008 E-164*(1+Pi) 6765029142108121 p001 sum(1/(614*n+149)/(25^n),n=0..infinity) 6765029173375385 a007 Real Root Of 526*x^4-195*x^3+459*x^2-311*x-591 6765029223598400 h001 (10/11*exp(1)+1/11)/(5/11*exp(2)+3/7) 6765029230261987 m001 exp(1)^2/ln(Si(Pi))/sqrt(Pi) 6765029265783661 m001 ln(Catalan)*Riemann3rdZero*GAMMA(7/24) 6765029267836814 a001 682*144^(37/40) 6765029270195337 m001 (ln(gamma)+Zeta(1,-1))/(GAMMA(7/12)-Bloch) 6765029297768765 a007 Real Root Of -42*x^4+941*x^3-991*x^2+101*x+822 6765029302022784 m001 MertensB2-Robbin^StolarskyHarborth 6765029308699423 a007 Real Root Of -835*x^4+885*x^3-664*x^2-316*x+539 6765029314482768 r009 Re(z^3+c),c=-43/78+11/52*I,n=36 6765029370588291 a007 Real Root Of -452*x^4+975*x^3-511*x^2-515*x+282 6765029376624226 p003 LerchPhi(1/2,3,143/54) 6765029400906642 h002 exp(19^(1/2)+6^(1/3)+11^(2/3)) 6765029414204239 s001 sum(exp(-3*Pi/5)^n*A256588[n],n=1..infinity) 6765029470029312 r005 Im(z^2+c),c=-65/98+9/29*I,n=11 6765029490136128 m001 FeigenbaumD*FeigenbaumDelta-Psi(2,1/3) 6765029510587275 a007 Real Root Of 160*x^4-232*x^3+627*x^2+809*x+155 6765029533377645 m005 (1/2*Pi-7/10)/(3*gamma-4/9) 6765029533414733 a007 Real Root Of -968*x^4+720*x^3+377*x^2+631*x+680 6765029533604152 m001 sqrt(5)/DuboisRaymond*exp(sqrt(Pi)) 6765029534767280 m001 (RenyiParking-Trott)/(ln(2)-Grothendieck) 6765029534927689 l006 ln(2393/4707) 6765029536728384 r005 Re(z^2+c),c=-3/58+37/47*I,n=11 6765029567491459 r004 Re(z^2+c),c=-15/22+6/23*I,z(0)=-1,n=10 6765029570243190 a001 439204/233*6557470319842^(14/17) 6765029570278260 a001 370248451/233*1836311903^(14/17) 6765029570282474 a001 312119004989/233*514229^(14/17) 6765029572632229 r005 Re(z^2+c),c=-23/30+18/95*I,n=9 6765029586691840 a001 3571/13*5^(14/25) 6765029616695359 m005 (1/2*exp(1)+3/8)/(5/6*5^(1/2)+7/10) 6765029644343591 a007 Real Root Of 719*x^4+22*x^3+704*x^2+65*x-422 6765029656107729 m005 (1/2*2^(1/2)+6/11)/(7/11*5^(1/2)+3/7) 6765029668766179 a007 Real Root Of -246*x^4-39*x^3+877*x^2+902*x+57 6765029688015030 m001 (gamma(2)+FeigenbaumB)/(FeigenbaumD-Porter) 6765029711686416 a001 233*843^(1/2) 6765029735011481 m001 exp(-1/2*Pi)-Thue^cos(1/5*Pi) 6765029769860270 r009 Im(z^3+c),c=-39/86+31/63*I,n=2 6765029794683740 m001 (Pi+LambertW(1))/(ln(gamma)+HeathBrownMoroz) 6765029821208710 r005 Im(z^2+c),c=-5/98+24/29*I,n=27 6765029843860040 m005 (1/2*Zeta(3)+1)/(4/7*Pi+4/7) 6765029893461146 a007 Real Root Of 619*x^4-559*x^3+272*x^2+766*x+91 6765029894555140 m001 (KomornikLoreti+ZetaQ(4))/(Zeta(3)+3^(1/3)) 6765029907165765 a007 Real Root Of 134*x^4-944*x^3-259*x^2+217*x-55 6765029916702191 m001 Cahen*(sin(1/5*Pi)+arctan(1/2)) 6765029916702191 m001 Cahen*(sin(Pi/5)+arctan(1/2)) 6765029918382587 m001 Magata/exp(FransenRobinson)^2/GAMMA(2/3)^2 6765029920571667 r005 Im(z^2+c),c=-55/122+5/44*I,n=38 6765029922625718 r009 Im(z^3+c),c=-10/19+11/27*I,n=32 6765029926602816 m001 (1+cos(1))/(ln(2^(1/2)+1)+HardHexagonsEntropy) 6765029936418188 r005 Im(z^2+c),c=-4/11+5/47*I,n=23 6765029941192991 m001 (Pi-3^(1/2))/(Zeta(3)+QuadraticClass) 6765029963363136 r005 Im(z^2+c),c=-7/122+37/51*I,n=54 6765030009898360 r005 Im(z^2+c),c=-5/118+25/33*I,n=53 6765030060218542 a003 cos(Pi*1/66)-sin(Pi*7/67) 6765030104332379 m005 (1/2*exp(1)-11/12)/(2/7*2^(1/2)+1/4) 6765030105622904 m001 1/exp(GAMMA(19/24))^2*FeigenbaumC/sin(Pi/12) 6765030122615658 m005 (1/3*Pi+3/5)/(3/8*Catalan-1/10) 6765030203975138 r002 3th iterates of z^2 + 6765030215855689 l006 ln(3120/6137) 6765030220935107 r005 Im(z^2+c),c=-35/114+40/47*I,n=6 6765030235838719 a007 Real Root Of -87*x^4-469*x^3+651*x^2-986*x+552 6765030243141263 m001 (-ArtinRank2+TwinPrimes)/(Psi(2,1/3)+gamma(1)) 6765030279061347 h001 (5/11*exp(1)+7/10)/(2/7*exp(2)+3/4) 6765030288534110 r009 Im(z^3+c),c=-65/122+22/59*I,n=34 6765030296435569 a007 Real Root Of 823*x^4+307*x^3+356*x^2-347*x-475 6765030304670125 m004 (3125*Sin[Sqrt[5]*Pi])/Pi+5*Tan[Sqrt[5]*Pi] 6765030336458907 q001 2453/3626 6765030378372405 m001 (Totient-Trott2nd)/(exp(1/Pi)+BesselI(1,1)) 6765030379278959 r009 Im(z^3+c),c=-29/82+15/22*I,n=35 6765030382665687 m001 MasserGramainDelta*(GAMMA(23/24)+Khinchin) 6765030389309643 a001 2178309/521*322^(1/12) 6765030391985019 a001 75025/521*843^(4/7) 6765030416779150 a007 Real Root Of 441*x^4-957*x^3+389*x^2-540*x-932 6765030440948808 r009 Re(z^3+c),c=-37/66+7/47*I,n=57 6765030470386150 r009 Im(z^3+c),c=-29/82+15/22*I,n=60 6765030470386569 r009 Im(z^3+c),c=-29/82+15/22*I,n=55 6765030470471657 r009 Im(z^3+c),c=-29/82+15/22*I,n=50 6765030471439479 r009 Im(z^3+c),c=-29/82+15/22*I,n=45 6765030473058616 r009 Im(z^3+c),c=-29/82+15/22*I,n=40 6765030481024958 a007 Real Root Of 224*x^4-436*x^3-984*x^2-196*x+671 6765030491438351 a007 Real Root Of 609*x^4-762*x^3+753*x^2+43*x-679 6765030541151796 a007 Real Root Of -579*x^4+12*x^3-433*x^2+764*x+840 6765030562526884 a003 cos(Pi*20/109)*sin(Pi*26/87) 6765030581618989 a007 Real Root Of -720*x^4+28*x^3-443*x^2-259*x+187 6765030588010217 m001 (Pi+Psi(1,1/3))/exp(gamma)/ln(3) 6765030600784832 m003 3+Sqrt[5]/2-3*Sec[1/2+Sqrt[5]/2] 6765030616105336 a007 Real Root Of 684*x^4+42*x^3+581*x^2-560*x-775 6765030629553879 r009 Re(z^3+c),c=-27/50+8/61*I,n=37 6765030639422264 l006 ln(3847/7567) 6765030645821603 r002 14i'th iterates of 2*x/(1-x^2) of 6765030648910503 m001 GaussKuzminWirsing*ZetaQ(2)+TwinPrimes 6765030699014686 a007 Real Root Of -258*x^4-404*x^3-769*x^2+519*x+632 6765030700291537 r009 Re(z^3+c),c=-3/23+19/27*I,n=25 6765030716626840 r002 11th iterates of z^2 + 6765030719340280 m001 GolombDickman^sin(1/12*Pi)*LandauRamanujan 6765030719340280 m001 GolombDickman^sin(Pi/12)*LandauRamanujan 6765030726165987 m001 (Catalan+cos(1/12*Pi))/(FeigenbaumD+Paris) 6765030738744509 m008 (Pi+1)/(2*Pi^5+1/6) 6765030758544901 r002 6th iterates of z^2 + 6765030789909857 r005 Re(z^2+c),c=15/82+13/43*I,n=7 6765030852118751 a001 610*322^(5/12) 6765030873659655 m003 53/10+(Sqrt[5]*Cosh[1/2+Sqrt[5]/2])/4 6765030900141904 m001 (Niven-Tribonacci)/(gamma(2)+exp(-1/2*Pi)) 6765030924504072 a007 Real Root Of -765*x^4-392*x^3-471*x^2+669*x+707 6765030928343923 l006 ln(4574/8997) 6765030945014168 r005 Re(z^2+c),c=-121/102+16/51*I,n=15 6765030975789485 m001 GAMMA(1/12)-sqrt(1+sqrt(3))-GAMMA(7/24) 6765031000063749 r002 11th iterates of z^2 + 6765031011022308 r005 Im(z^2+c),c=4/29+25/39*I,n=9 6765031025228477 a007 Real Root Of -11*x^4-740*x^3+285*x^2+265*x-472 6765031068086777 a001 1/7*(1/2*5^(1/2)+1/2)^6*4^(7/10) 6765031071081820 a001 46368/521*843^(9/14) 6765031082369393 m001 (Salem+ThueMorse)/(ln(2^(1/2)+1)+Porter) 6765031083856722 m005 (1/2*Catalan+5/12)/(8/11*5^(1/2)-1/3) 6765031083967333 a001 89*199^(9/11) 6765031097746040 m005 (-5/28+1/4*5^(1/2))/(5/11*gamma+3/10) 6765031113073737 r005 Im(z^2+c),c=-15/16+17/44*I,n=4 6765031118302065 a001 3571/17711*6765^(7/51) 6765031128862553 r002 8th iterates of z^2 + 6765031180163254 r005 Re(z^2+c),c=-1/74+40/61*I,n=12 6765031182641589 m005 (1/2*Pi-8/11)/(3/10*3^(1/2)+8/11) 6765031245066694 b008 5-8*ArcSec[10] 6765031263804285 r004 Re(z^2+c),c=-2/3-3/5*I,z(0)=exp(1/8*I*Pi),n=2 6765031264393533 a001 832040/2207*322^(1/2) 6765031270564780 a007 Real Root Of -881*x^4+160*x^3+921*x^2+858*x+393 6765031273960381 a007 Real Root Of -209*x^4+554*x^3-342*x^2+256*x+545 6765031282039177 r005 Re(z^2+c),c=-53/94+36/55*I,n=34 6765031291120344 r005 Im(z^2+c),c=-21/32+9/25*I,n=49 6765031293317501 h001 (-2*exp(1)+3)/(-8*exp(-3)+4) 6765031327844340 r005 Im(z^2+c),c=29/106+37/64*I,n=11 6765031334309283 a001 843*1836311903^(9/17) 6765031342611933 a007 Real Root Of 231*x^4-882*x^3-87*x^2-240*x-444 6765031350693387 a007 Real Root Of -45*x^4-181*x^3+707*x^2-948*x-556 6765031353744005 q001 1834/2711 6765031359278606 m005 (-15/4+1/4*5^(1/2))/(5/12*3^(1/2)-1/4) 6765031359420409 h001 (3/8*exp(2)+4/11)/(3/5*exp(2)+1/5) 6765031384312924 m005 (1/2*gamma-3/8)/(7/12*Pi-5/9) 6765031399812876 m001 1/GAMMA(13/24)^2/ln(GAMMA(11/12))/Zeta(7)^2 6765031462617139 r008 a(0)=7,K{-n^6,47+29*n-55*n^2-17*n^3} 6765031493146710 r009 Re(z^3+c),c=-19/36+19/40*I,n=36 6765031496978220 a007 Real Root Of -642*x^4+738*x^3+930*x^2+542*x+304 6765031519589849 m001 (5^(1/2)+cos(1))/(-gamma(3)+ThueMorse) 6765031550974282 m001 (Stephens+ZetaP(3))/(Pi^(1/2)-LaplaceLimit) 6765031562560419 r009 Im(z^3+c),c=-43/82+13/35*I,n=6 6765031567724005 a001 9349/46368*6765^(7/51) 6765031582703311 m001 (cos(1/5*Pi)-ZetaP(3))/Zeta(1,2) 6765031599324211 a003 cos(Pi*16/69)*sin(Pi*43/119) 6765031630563438 a007 Real Root Of -976*x^4+567*x^3+662*x^2+770*x-795 6765031633293782 a001 24476/121393*6765^(7/51) 6765031648772707 a001 39603/196418*6765^(7/51) 6765031662992500 m001 (Cahen+Robbin)/(Tetranacci+ZetaQ(4)) 6765031668904252 m001 Salem^2/ZetaP(2)^2 6765031673818133 a001 15127/75025*6765^(7/51) 6765031708620358 m005 (1/2*3^(1/2)-4/7)/(-4/55+5/22*5^(1/2)) 6765031731112406 a007 Real Root Of -290*x^4+125*x^3-85*x^2+338*x+367 6765031753325227 a001 28657/521*843^(5/7) 6765031761174845 r002 13th iterates of z^2 + 6765031777215779 a003 cos(Pi*1/57)-sin(Pi*12/115) 6765031783815239 r005 Re(z^2+c),c=-23/22+9/47*I,n=36 6765031788296151 r002 11th iterates of z^2 + 6765031790776551 r009 Im(z^3+c),c=-1/56+31/40*I,n=23 6765031801739680 a007 Real Root Of -102*x^4+738*x^3-122*x^2+987*x-819 6765031815030076 m005 (1/2*2^(1/2)+7/9)/(9/10*gamma-3/10) 6765031815835430 m001 1/exp(Niven)^2*ArtinRank2^2*BesselK(0,1) 6765031845482039 a001 5778/28657*6765^(7/51) 6765031874551456 a007 Real Root Of 109*x^4+788*x^3+282*x^2-414*x-37 6765031885674402 m001 (ln(3)-ErdosBorwein)/(Sarnak+Trott2nd) 6765031907451307 m001 (Robbin-Tetranacci)/(LaplaceLimit-PlouffeB) 6765031909017952 r002 32th iterates of z^2 + 6765031909477626 a007 Real Root Of -878*x^4+321*x^3-559*x^2+226*x+692 6765031914964245 m001 1/GAMMA(5/24)/exp(GAMMA(17/24))*Zeta(5)^2 6765031934088833 r005 Im(z^2+c),c=-10/9+9/110*I,n=36 6765031937740139 a007 Real Root Of 558*x^4+174*x^3+211*x^2-654*x-602 6765031954480405 a007 Real Root Of 462*x^4-67*x^3+750*x^2-398*x-730 6765031980277417 m006 (5*ln(Pi)+1/5)/(2/5*exp(Pi)-1/2) 6765031995763918 a003 sin(Pi*5/34)/cos(Pi*29/107) 6765032012876277 m005 (1/2*gamma-7/12)/(3/4*2^(1/2)-5/8) 6765032015475129 a007 Real Root Of -629*x^4-995*x^3-969*x^2+662*x+715 6765032021206110 a001 105937/6*9349^(37/41) 6765032090046166 a007 Real Root Of 542*x^4-929*x^3-439*x^2-925*x-826 6765032111979976 a001 1346269/18*15127^(29/41) 6765032112716952 m005 (1/12+1/4*5^(1/2))/(2/7*2^(1/2)+6/11) 6765032113221207 m001 (QuadraticClass+Tribonacci)/(exp(1)+Conway) 6765032123910213 a007 Real Root Of 465*x^4-813*x^3+486*x^2+765*x-54 6765032128916068 r009 Re(z^3+c),c=-15/122+31/47*I,n=56 6765032156077031 a007 Real Root Of -56*x^4+989*x^3+665*x^2+324*x-818 6765032186318719 a001 144/521*7^(23/50) 6765032190062907 m004 -6+5*Pi+(5*Sqrt[5]*Cosh[Sqrt[5]*Pi])/(3*Pi) 6765032211240772 m002 1+E^Pi/Pi^3+5*Coth[Pi] 6765032220847853 m002 -2+ProductLog[Pi]/3+6*Sinh[Pi] 6765032222493476 a007 Real Root Of -353*x^4+351*x^3-102*x^2+174*x+347 6765032225423571 a007 Real Root Of -233*x^4+272*x^3+477*x^2+673*x-709 6765032246932319 m001 1/Lehmer*exp(Bloch)*Riemann3rdZero 6765032264522812 a007 Real Root Of -68*x^4-438*x^3+37*x^2-707*x+342 6765032266081851 r005 Re(z^2+c),c=-1/20+31/40*I,n=23 6765032273498103 a001 2207/13*987^(31/58) 6765032276118024 m001 (gamma(1)+BesselJ(1,1))/(Psi(2,1/3)+Chi(1)) 6765032284002482 a001 47/144*34^(49/57) 6765032287690780 m001 GAMMA(13/24)/ln(FransenRobinson)^2*GAMMA(5/24) 6765032322858853 a007 Real Root Of -349*x^4+744*x^3-308*x^2+264*x+623 6765032329163078 m001 (ln(2+3^(1/2))-Kac)/(KhinchinHarmonic-Sarnak) 6765032329869246 m001 BesselJ(1,1)*(Backhouse+StolarskyHarborth) 6765032347933677 r009 Re(z^3+c),c=-2/25+11/42*I,n=8 6765032379888110 m001 GAMMA(7/12)^arctan(1/3)-MasserGramainDelta 6765032408210204 m001 (ln(2)-HardHexagonsEntropy)/(Kac+ThueMorse) 6765032423499098 a007 Real Root Of 429*x^4-727*x^3-124*x^2+358*x-16 6765032427330957 a001 17711/521*843^(11/14) 6765032432103920 m001 FellerTornier-Lehmer^ZetaQ(4) 6765032434451138 m005 (1/3*exp(1)-1/11)/(2/3*5^(1/2)-2/7) 6765032450641934 a001 726103/1926*322^(1/2) 6765032457204335 l006 ln(727/1430) 6765032465790748 a007 Real Root Of 338*x^4-43*x^3+809*x^2+849*x+120 6765032498441995 a007 Real Root Of -464*x^4-948*x^3-833*x^2+179*x+306 6765032511469757 r009 Re(z^3+c),c=-61/126+1/18*I,n=24 6765032514369481 a007 Real Root Of -545*x^4+523*x^3-146*x^2-294*x+144 6765032530767521 r005 Im(z^2+c),c=-23/44+16/33*I,n=34 6765032552399302 m001 (ArtinRank2+PlouffeB)/(3^(1/2)+gamma(3)) 6765032570364601 m001 (-Zeta(1,2)+FeigenbaumB)/(2^(1/2)+Zeta(3)) 6765032578450554 a001 365435296162/29*7^(19/22) 6765032580086933 m001 (GAMMA(3/4)+GAMMA(5/6))/(Khinchin+Kolakoski) 6765032601187958 m001 (Chi(1)+ln(2^(1/2)+1))/(Ei(1)+MasserGramain) 6765032618694585 a008 Real Root of x^3-x^2-58*x-37 6765032620753770 r005 Re(z^2+c),c=45/122+5/46*I,n=12 6765032623713278 a001 5702887/15127*322^(1/2) 6765032627142711 l006 ln(5615/6008) 6765032642527021 m005 (1/2*Zeta(3)+2/3)/(7/8*Pi-7/8) 6765032646718089 m005 (1/2*Catalan+7/12)/(4/9*5^(1/2)+6/11) 6765032648964047 a001 4976784/13201*322^(1/2) 6765032652648085 a001 39088169/103682*322^(1/2) 6765032653185579 a001 34111385/90481*322^(1/2) 6765032653263998 a001 267914296/710647*322^(1/2) 6765032653275439 a001 233802911/620166*322^(1/2) 6765032653277108 a001 1836311903/4870847*322^(1/2) 6765032653277352 a001 1602508992/4250681*322^(1/2) 6765032653277388 a001 12586269025/33385282*322^(1/2) 6765032653277393 a001 10983760033/29134601*322^(1/2) 6765032653277393 a001 86267571272/228826127*322^(1/2) 6765032653277394 a001 267913919/710646*322^(1/2) 6765032653277394 a001 591286729879/1568397607*322^(1/2) 6765032653277394 a001 516002918640/1368706081*322^(1/2) 6765032653277394 a001 4052739537881/10749957122*322^(1/2) 6765032653277394 a001 3536736619241/9381251041*322^(1/2) 6765032653277394 a001 6557470319842/17393796001*322^(1/2) 6765032653277394 a001 2504730781961/6643838879*322^(1/2) 6765032653277394 a001 956722026041/2537720636*322^(1/2) 6765032653277394 a001 365435296162/969323029*322^(1/2) 6765032653277394 a001 139583862445/370248451*322^(1/2) 6765032653277394 a001 53316291173/141422324*322^(1/2) 6765032653277396 a001 20365011074/54018521*322^(1/2) 6765032653277409 a001 7778742049/20633239*322^(1/2) 6765032653277502 a001 2971215073/7881196*322^(1/2) 6765032653278140 a001 1134903170/3010349*322^(1/2) 6765032653282510 a001 433494437/1149851*322^(1/2) 6765032653312464 a001 165580141/439204*322^(1/2) 6765032653517768 a001 63245986/167761*322^(1/2) 6765032654924945 a001 24157817/64079*322^(1/2) 6765032664569881 a001 9227465/24476*322^(1/2) 6765032679567450 r005 Im(z^2+c),c=-4/7+1/82*I,n=39 6765032707415793 a001 1149851*6557470319842^(5/17) 6765032707420951 a001 12752043*1836311903^(5/17) 6765032707422414 a001 141422324*514229^(5/17) 6765032718948491 a001 13/2*11^(1/60) 6765032722210518 a007 Real Root Of -142*x^4-945*x^3+202*x^2+787*x+920 6765032722436721 m005 (1/3*2^(1/2)-1/9)/(-139/24+5/24*5^(1/2)) 6765032730677255 a001 3524578/9349*322^(1/2) 6765032741389592 a007 Real Root Of -464*x^4+928*x^3-94*x^2+320*x+644 6765032763671891 m001 1/cos(1)^2*GAMMA(5/24)*ln(cos(Pi/5))^2 6765032768600004 m002 -2-Pi+ProductLog[Pi]/3+Sinh[Pi] 6765032821611463 m001 Grothendieck^(5^(1/2))/ZetaQ(2) 6765032849269656 m005 (1/2*3^(1/2)-8/9)/(2/5*Zeta(3)-1/7) 6765032865319889 r005 Re(z^2+c),c=29/122+19/53*I,n=18 6765032869231973 a007 Real Root Of 980*x^4-703*x^3+605*x^2+962*x-49 6765032880558642 a001 1/299537289*3^(9/14) 6765032899516952 a003 sin(Pi*7/95)-sin(Pi*35/97) 6765032932933218 m008 (2/3*Pi^5+1/3)/(Pi^3-4/5) 6765032937514725 a007 Real Root Of 10*x^4+691*x^3+989*x^2+570*x+607 6765032938631246 a001 3571/610*1597^(1/51) 6765032945088837 b008 -2*(1+Sqrt[14])+E 6765032948698247 a007 Real Root Of -716*x^4-10*x^3-295*x^2+114*x+359 6765032966526031 a007 Real Root Of 500*x^4-90*x^3-546*x^2-809*x-430 6765032977683523 r005 Im(z^2+c),c=29/106+29/62*I,n=7 6765033022083949 a001 2207/10946*6765^(7/51) 6765033048419295 b008 -70+EulerGamma+Sqrt[Pi] 6765033050599344 r005 Im(z^2+c),c=-53/102+5/42*I,n=35 6765033066106017 m001 1/ln(GAMMA(5/6))/GAMMA(17/24)^2/exp(1)^2 6765033068350516 a007 Real Root Of 135*x^4+873*x^3-189*x^2+553*x-80 6765033071657578 m004 4+6*E^(Sqrt[5]*Pi)+50/Pi 6765033088150356 m001 (Pi+Backhouse)/(Totient-TwinPrimes) 6765033098201205 r002 33th iterates of z^2 + 6765033098677490 r005 Re(z^2+c),c=-11/16+17/55*I,n=23 6765033111951352 a007 Real Root Of -628*x^4+759*x^3+378*x^2+598*x-681 6765033117252474 m001 (2^(1/3)+Zeta(1,-1))/(-BesselI(0,2)+Robbin) 6765033122903457 a001 10946/521*843^(6/7) 6765033147052377 r009 Im(z^3+c),c=-43/78+23/60*I,n=2 6765033150956604 m001 GAMMA(19/24)^BesselI(0,2)-LandauRamanujan 6765033150956604 m001 LandauRamanujan-GAMMA(19/24)^BesselI(0,2) 6765033183783972 a001 1346269/3571*322^(1/2) 6765033188027410 a007 Real Root Of 189*x^4-438*x^3-77*x^2-109*x+205 6765033215626735 a007 Real Root Of 571*x^4-853*x^3+142*x^2-558*x+457 6765033228125546 m001 (Niven-Stephens)/(GAMMA(23/24)+Cahen) 6765033232362907 a003 sin(Pi*28/109)-sin(Pi*20/69) 6765033257608701 h001 (3/4*exp(1)+1/9)/(2/5*exp(2)+2/9) 6765033260946283 m001 1/exp(Salem)/KhintchineHarmonic^2*Sierpinski^2 6765033272903743 h001 (1/11*exp(2)+2/9)/(1/5*exp(1)+7/9) 6765033274482054 r005 Re(z^2+c),c=-35/46+3/26*I,n=9 6765033287996820 r005 Im(z^2+c),c=-19/16+13/82*I,n=9 6765033299541477 a007 Real Root Of -837*x^4+877*x^3-828*x^2-282*x+635 6765033299859097 r002 4th iterates of z^2 + 6765033299891742 r002 14th iterates of z^2 + 6765033309498507 r005 Re(z^2+c),c=-3/4+7/186*I,n=7 6765033309880435 m001 (Gompertz+Robbin)/(gamma+GlaisherKinkelin) 6765033344605599 a007 Real Root Of 639*x^4-881*x^3-907*x^2-303*x+759 6765033348310474 r002 6th iterates of z^2 + 6765033360401896 m001 GaussKuzminWirsing*Landau-sin(1) 6765033365174886 v002 sum(1/(5^n*(35/2*n^2-23/2*n-3)),n=1..infinity) 6765033371940168 b008 68+Zeta[-1/5] 6765033387468075 a003 sin(Pi*27/98)*sin(Pi*39/112) 6765033399622058 r001 39i'th iterates of 2*x^2-1 of 6765033403185495 a007 Real Root Of -727*x^4+799*x^3+224*x^2-386*x+36 6765033407572383 q001 1215/1796 6765033437500417 a001 1/3*(1/2*5^(1/2)+1/2)^8*76^(20/23) 6765033441106918 a007 Real Root Of 562*x^4+342*x^3+937*x^2-815*x-992 6765033493925603 a008 Real Root of x^5-10*x^3-x^2+8*x-2 6765033498360444 l004 cosh(858/119) 6765033585763967 r005 Re(z^2+c),c=-29/27+7/43*I,n=8 6765033611830738 a007 Real Root Of -954*x^4-478*x^3-816*x^2-197*x+292 6765033626762975 a001 199/514229*514229^(26/35) 6765033653339789 p004 log(34499/17539) 6765033683052193 r009 Re(z^3+c),c=-3/23+28/39*I,n=39 6765033691294979 m001 (Paris-ZetaP(3))/(Landau+LandauRamanujan2nd) 6765033715318588 r005 Im(z^2+c),c=3/86+33/53*I,n=31 6765033731138985 a007 Real Root Of -492*x^4+486*x^3-626*x^2-340*x+310 6765033742994069 a008 Real Root of x^3-x^2-78*x-52 6765033758686044 m001 (GAMMA(5/6)+Pi^(1/2))/(Magata+QuadraticClass) 6765033762013661 a001 6765/521*843^(13/14) 6765033775347689 a007 Real Root Of 57*x^4-536*x^3+915*x^2-104*x-667 6765033807499255 a007 Real Root Of 523*x^4-958*x^3+159*x^2+25*x-462 6765033812949648 a001 5/76*64079^(18/43) 6765033821327365 r005 Im(z^2+c),c=-15/14+18/233*I,n=21 6765033830751487 m004 -Cos[Sqrt[5]*Pi]/4+(20*Cot[Sqrt[5]*Pi])/Pi 6765033838598200 r005 Re(z^2+c),c=17/66+37/64*I,n=63 6765033844336273 m001 FibonacciFactorial^Lehmer-ZetaP(2) 6765033849148443 r002 9th iterates of z^2 + 6765033855056157 a007 Real Root Of 769*x^4-274*x^3-878*x^2-8*x+331 6765033861199364 a003 sin(Pi*26/109)*sin(Pi*31/67) 6765033868898380 a007 Real Root Of 948*x^4-133*x^3+350*x^2+127*x-314 6765033873951946 m001 DuboisRaymond*(Pi^(1/2)+Niven) 6765033887699371 a001 34/87403803*11^(3/13) 6765033891078949 l006 ln(4877/9593) 6765033894563790 m001 GAMMA(2/3)*OneNinth^2/exp(sin(1)) 6765033912566198 a007 Real Root Of 868*x^4-960*x^3+788*x^2+338*x-611 6765033922025598 a001 5/76*5778^(23/43) 6765033936523601 r002 26th iterates of z^2 + 6765033957361186 r005 Im(z^2+c),c=-1/15+51/64*I,n=11 6765033964267593 r005 Re(z^2+c),c=-47/122+23/34*I,n=11 6765033996364267 m001 (Pi^(1/2)-Mills)/(BesselI(0,2)-BesselI(1,2)) 6765034008249631 a001 121393/843*322^(2/3) 6765034014991318 m001 (-Cahen+Robbin)/(2^(1/3)+exp(1/exp(1))) 6765034024550299 m001 (Rabbit+ZetaQ(4))/(Psi(1,1/3)+BesselK(0,1)) 6765034025920929 a003 cos(Pi*5/52)-cos(Pi*16/39) 6765034038335829 a007 Real Root Of -463*x^4+602*x^3+341*x^2-98*x+61 6765034043863285 a007 Real Root Of 694*x^4-614*x^3+909*x^2-122*x-834 6765034049298083 p004 log(25919/13177) 6765034054362219 m001 (GolombDickman+TwinPrimes)/(Shi(1)+sin(1)) 6765034080560387 r005 Im(z^2+c),c=-33/62+3/25*I,n=39 6765034093344561 a007 Real Root Of -81*x^4+639*x^3-82*x^2+644*x+688 6765034098454960 m008 (1/2*Pi^4+1/5)/(4/5*Pi^2-2/3) 6765034142266120 l006 ln(4150/8163) 6765034191160342 r002 4th iterates of z^2 + 6765034201925643 r005 Im(z^2+c),c=31/78+3/14*I,n=11 6765034205833193 r009 Re(z^3+c),c=-7/118+29/32*I,n=17 6765034236101461 a001 11/2*12586269025^(9/10) 6765034318933407 r008 a(0)=7,K{-n^6,1-n^3+4*n^2+3*n} 6765034320163601 m001 (-Ei(1,1)+FeigenbaumKappa)/(Chi(1)+sin(1)) 6765034337103957 a007 Real Root Of -399*x^4+311*x^3+437*x^2+673*x-668 6765034343610115 r005 Re(z^2+c),c=-79/118+19/64*I,n=39 6765034344170509 a001 4/55*6557470319842^(7/9) 6765034346824512 m001 ArtinRank2^FeigenbaumC/LandauRamanujan 6765034347761495 m005 (1/2*Catalan+4)/(3/7*3^(1/2)-1/12) 6765034350946216 a007 Real Root Of 475*x^4+10*x^3-268*x^2-637*x+451 6765034363051266 m001 Backhouse-KomornikLoreti^BesselI(1,1) 6765034382540879 m005 (1/2*Pi+2)/(5/12*3^(1/2)-6) 6765034384869030 a007 Real Root Of -10*x^4-662*x^3+969*x^2-818*x+325 6765034387943501 p001 sum(1/(325*n+148)/(256^n),n=0..infinity) 6765034392699806 m009 (3/4*Psi(1,1/3)-3/4)/(2*Psi(1,3/4)+5) 6765034435029373 r005 Im(z^2+c),c=-23/18+5/171*I,n=56 6765034439635944 r005 Re(z^2+c),c=-1/19+20/29*I,n=52 6765034471452750 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^7 6765034500150955 l006 ln(3423/6733) 6765034511864161 m009 (1/3*Pi^2+4/5)/(16/5*Catalan+2/5*Pi^2-5/6) 6765034512700830 m001 Kolakoski/(Psi(1,1/3)+exp(1/2)) 6765034521912177 r005 Re(z^2+c),c=-9/14+67/192*I,n=40 6765034543734720 m008 (2*Pi^5+3)/(3*Pi-1/3) 6765034555893208 p004 log(27701/25889) 6765034560615381 a007 Real Root Of 840*x^4-781*x^3-558*x^2-437*x-458 6765034625819034 m001 Otter^GaussKuzminWirsing/(Otter^Zeta(1/2)) 6765034626189817 m001 (DuboisRaymond+Lehmer)/(Sarnak+TreeGrowth2nd) 6765034626800322 a001 3/10946*5^(32/57) 6765034642144292 m009 (4/5*Psi(1,2/3)+2/5)/(1/2*Psi(1,1/3)-5/6) 6765034649259321 m005 (1/2*exp(1)+9/11)/(7/12*2^(1/2)-6/7) 6765034655079076 a007 Real Root Of 506*x^4-269*x^3-672*x^2-151*x+387 6765034666541374 m001 ln(TwinPrimes)/MinimumGamma*cosh(1)^2 6765034686160515 m001 (3^(1/2)+CareFree)/(DuboisRaymond+Magata) 6765034712461178 a007 Real Root Of -96*x^4+792*x^3+678*x^2-311*x-325 6765034741031343 a007 Real Root Of 912*x^4+403*x^3+801*x^2-695*x-903 6765034756181260 r009 Im(z^3+c),c=-7/40+15/16*I,n=6 6765034769682167 h002 exp(11+1/13*2^(2/3)) 6765034782426333 q001 1/1478189 6765034814832622 a007 Real Root Of -834*x^4+322*x^3-78*x^2+501*x+649 6765034833686223 r005 Im(z^2+c),c=13/44+25/44*I,n=3 6765034842327052 m001 (HeathBrownMoroz+Porter)/(ln(Pi)+GAMMA(23/24)) 6765034850729750 m001 (exp(-1/2*Pi)-Porter)/(Sarnak-Sierpinski) 6765034865160538 a003 cos(Pi*13/71)*sin(Pi*20/67) 6765034874498282 r001 20i'th iterates of 2*x^2-1 of 6765034882756607 m005 (1/2*5^(1/2)-4/9)/(3/10*2^(1/2)+4/7) 6765034896228134 a007 Real Root Of -111*x^4-638*x^3+643*x^2-953*x-914 6765034960651942 m001 (Gompertz-Porter)/(gamma(3)+GAMMA(17/24)) 6765034972321658 a007 Real Root Of 62*x^4-792*x^3-510*x^2+301*x+262 6765034994221404 r005 Re(z^2+c),c=-1/38+25/34*I,n=20 6765034997660181 m001 (PlouffeB-Robbin)/(KhinchinLevy-MinimumGamma) 6765034999082815 m001 LaplaceLimit*Magata^Ei(1) 6765035008331974 m005 (1/2*exp(1)+5/6)/(3/11*gamma+1/6) 6765035016600577 a001 141422324/233*6557470319842^(12/17) 6765035016600577 a001 45537549124/233*1836311903^(12/17) 6765035016604189 a001 14662949395604/233*514229^(12/17) 6765035033164496 m008 (1/4*Pi^2-4)/(3/4*Pi^3-3/5) 6765035039020077 r005 Re(z^2+c),c=-7/122+38/47*I,n=42 6765035051049323 l006 ln(2696/5303) 6765035051412789 m001 1/ln((3^(1/3)))*MertensB1^2*BesselK(1,1)^2 6765035087371827 a001 1/29*2^(35/36) 6765035088503479 m005 (1/3*2^(1/2)+3/7)/(6/7*Zeta(3)+3/10) 6765035090071659 l006 ln(6758/7231) 6765035105775650 r005 Im(z^2+c),c=-7/62+25/28*I,n=20 6765035135045234 r005 Re(z^2+c),c=-7/9+2/83*I,n=39 6765035160941948 r002 3th iterates of z^2 + 6765035160941948 r002 3th iterates of z^2 + 6765035167067605 r002 17i'th iterates of 2*x/(1-x^2) of 6765035167437830 a001 199/832040*3^(53/56) 6765035188640863 m001 (ln(5)+Khinchin)/(Sarnak-TwinPrimes) 6765035192373816 a007 Real Root Of 117*x^4+886*x^3+525*x^2-732*x+276 6765035204354304 a007 Real Root Of -706*x^4+734*x^3+493*x^2-136*x-213 6765035218779921 a007 Real Root Of 380*x^4+626*x^3+604*x^2-115*x-240 6765035230049487 a001 3524578/843*123^(1/10) 6765035251309541 a007 Real Root Of 829*x^4-285*x^3+622*x^2+156*x-441 6765035261308566 r005 Re(z^2+c),c=-5/8+75/218*I,n=6 6765035272002181 m001 (Si(Pi)+GAMMA(2/3))/(gamma(3)+Bloch) 6765035278542106 a007 Real Root Of 145*x^4+876*x^3-598*x^2+859*x+692 6765035278653295 a001 29/2178309*2584^(6/29) 6765035286045780 r005 Im(z^2+c),c=-19/70+23/35*I,n=4 6765035304784649 a007 Real Root Of -842*x^4+388*x^3+42*x^2+956*x+924 6765035313339247 m001 (Pi-BesselI(0,2))/(GAMMA(17/24)-Trott) 6765035320022066 a007 Real Root Of 90*x^4-885*x^3-25*x^2-26*x-299 6765035321262121 m005 (1/2*2^(1/2)+7/11)/(4/9*exp(1)+7/9) 6765035352892795 r002 38i'th iterates of 2*x/(1-x^2) of 6765035355308099 a007 Real Root Of -401*x^4+913*x^3+896*x^2+549*x+328 6765035365524377 s002 sum(A105242[n]/(n*pi^n-1),n=1..infinity) 6765035370722461 m001 (exp(1/Pi)+Tribonacci)/(Pi+ln(5)) 6765035378283725 b008 5+Sinh[4/3] 6765035389984982 p004 log(32831/16691) 6765035394732685 m004 -2+100*Sqrt[5]*Pi-5*Pi*ProductLog[Sqrt[5]*Pi] 6765035403694522 r005 Re(z^2+c),c=-57/98+29/45*I,n=12 6765035406678094 a007 Real Root Of 816*x^4+12*x^3-940*x^2-518*x+606 6765035407848849 a007 Real Root Of 430*x^4+546*x^3+805*x^2+620*x+130 6765035455277624 l006 ln(4665/9176) 6765035474504137 r005 Im(z^2+c),c=-13/114+36/41*I,n=26 6765035487485991 q001 1811/2677 6765035507706082 a007 Real Root Of -104*x^4-597*x^3+690*x^2-232*x-155 6765035508494620 a007 Real Root Of 810*x^4+662*x^3+784*x^2-881*x-63 6765035529031795 m001 (ln(5)-BesselJ(1,1))/(MertensB1+Porter) 6765035534871768 m001 ln(GAMMA(13/24))/PrimesInBinary*LambertW(1) 6765035556396452 r009 Re(z^3+c),c=-1/25+25/34*I,n=17 6765035576778564 a007 Real Root Of 266*x^4+534*x^3+971*x^2-769*x-855 6765035595038616 a001 199/89*21^(4/11) 6765035609982875 m006 (1/3/Pi-5/6)/(1/5*exp(2*Pi)+2/5) 6765035621629499 m009 (5/2*Pi^2-1)/(16*Catalan+2*Pi^2+3/5) 6765035632263233 r004 Im(z^2+c),c=-25/26-1/16*I,z(0)=-1,n=5 6765035644019432 m001 (KomornikLoreti+Magata)/(OneNinth+TwinPrimes) 6765035650928861 m005 (1/2*Catalan-1/11)/(2*Pi-6/7) 6765035653525950 a001 29/5*10946^(41/54) 6765035654209472 r005 Im(z^2+c),c=15/64+1/52*I,n=37 6765035655943082 a007 Real Root Of 676*x^4-252*x^3+578*x^2+522*x-131 6765035664976748 m001 exp(GAMMA(19/24))^2/FeigenbaumKappa^2/sin(1) 6765035675523816 r005 Re(z^2+c),c=-55/58+16/53*I,n=9 6765035678663412 r008 a(0)=6,K{-n^6,2*n^3+4*n^2-2*n} 6765035683382445 m008 (1/5*Pi^3-5/6)/(1/2*Pi^2+3) 6765035690012525 p003 LerchPhi(1/5,3,267/106) 6765035719692608 m005 (1/2*Zeta(3)-1/11)/(-61/72+1/24*5^(1/2)) 6765035721758534 a001 843/514229*2178309^(13/51) 6765035725812803 a001 11/267914296*3^(5/11) 6765035768730696 p003 LerchPhi(1/256,4,202/103) 6765035813176302 a007 Real Root Of 974*x^4-46*x^3+762*x^2-578*x-958 6765035826609728 a001 1346269/521*322^(1/6) 6765035842274928 p001 sum(1/(543*n+35)/n/(256^n),n=1..infinity) 6765035850751549 a007 Real Root Of 583*x^4+92*x^3-545*x^2-996*x-518 6765035858223716 m001 gamma^exp(1/2)*gamma^Zeta(1,2) 6765035860094729 a005 (1/cos(5/63*Pi))^574 6765035863901609 a007 Real Root Of -461*x^4+112*x^3+319*x^2+755*x+496 6765035887124053 r009 Re(z^3+c),c=-3/29+29/59*I,n=14 6765035914753296 r005 Im(z^2+c),c=-5/94+50/59*I,n=20 6765035931135565 a007 Real Root Of -506*x^4-129*x^3-907*x^2+291*x+678 6765035935506947 a001 11/196418*17711^(37/51) 6765035949679511 a007 Real Root Of -345*x^4+732*x^3-427*x^2-540*x+129 6765035961011573 a007 Real Root Of -478*x^4+689*x^3-469*x^2+331*x+752 6765035982956748 a007 Real Root Of 748*x^4-781*x^3+702*x^2+347*x-485 6765035996011927 a007 Real Root Of -722*x^4+300*x^3-548*x^2-566*x+112 6765035998796943 a007 Real Root Of -301*x^4+767*x^3+35*x^2+870*x-779 6765036008756266 l006 ln(1969/3873) 6765036028349981 s002 sum(A237398[n]/(exp(n)),n=1..infinity) 6765036037619028 m001 (BesselJ(1,1)+Bloch)/(GolombDickman+Sarnak) 6765036051457783 r005 Im(z^2+c),c=-65/74+14/59*I,n=24 6765036061580364 a007 Real Root Of 898*x^4+236*x^3+926*x^2-426*x-827 6765036063492257 a003 sin(Pi*7/94)-sin(Pi*33/91) 6765036075634734 a007 Real Root Of 730*x^4-304*x^3+359*x^2-171*x-527 6765036107834729 m001 (Totient+Trott)/(Riemann2ndZero-Shi(1)) 6765036119950910 m001 (PlouffeB-TwinPrimes)/(ln(2)-cos(1/12*Pi)) 6765036148001850 m001 (sin(1)+arctan(1/2))/(Tetranacci+ZetaQ(4)) 6765036152476888 h001 (1/7*exp(2)+9/10)/(9/11*exp(1)+2/3) 6765036159575066 a007 Real Root Of -804*x^4+294*x^3+700*x^2+408*x-519 6765036187421598 r009 Im(z^3+c),c=-25/42+33/61*I,n=21 6765036213178683 r005 Im(z^2+c),c=-13/21+13/29*I,n=53 6765036216979500 m005 (1/2*Catalan-2/7)/(9/10*exp(1)+1/10) 6765036218659149 a007 Real Root Of -545*x^4+164*x^3+17*x^2+934*x+789 6765036241800540 r002 4th iterates of z^2 + 6765036284758231 a007 Real Root Of -885*x^4-80*x^3-720*x^2+294*x+689 6765036289425247 a001 514229/1364*322^(1/2) 6765036290903838 r005 Re(z^2+c),c=23/60+8/45*I,n=59 6765036296107784 m005 (1/3*Pi-1/12)/(7/10*Zeta(3)+7/12) 6765036318860419 a007 Real Root Of 152*x^4-153*x^3-191*x^2-902*x-602 6765036327797043 r002 4th iterates of z^2 + 6765036347815560 a001 1/1149851*76^(9/19) 6765036377384555 a001 29/21*377^(15/56) 6765036387457896 a007 Real Root Of 602*x^4-914*x^3+917*x^2+177*x-709 6765036408086396 m009 (3/4*Psi(1,2/3)-1/5)/(3/8*Pi^2-3/5) 6765036413624108 a007 Real Root Of -871*x^4-723*x^3-608*x^2-526*x-119 6765036425767060 a007 Real Root Of 55*x^4-612*x^3-993*x^2+42*x+604 6765036427602521 p004 log(24251/12329) 6765036440271816 m001 Pi-exp(Pi)/cos(1)*(1+3^(1/2))^(1/2) 6765036459967894 a007 Real Root Of 9*x^4-601*x^3-148*x^2-584*x+647 6765036469444426 m001 (Psi(1,1/3)+Ei(1))/Pi^(1/2) 6765036473494664 a007 Real Root Of 44*x^4-905*x^3+350*x^2+941*x+187 6765036478829722 a003 sin(Pi*27/119)/sin(Pi*38/91) 6765036495521209 a007 Real Root Of -847*x^4-240*x^3+810*x^2+468*x+49 6765036497372427 a001 9349/1597*1597^(1/51) 6765036517944399 a003 cos(Pi*8/57)-cos(Pi*35/82) 6765036521684149 a008 Real Root of x^4-x^3-93*x^2+71*x+1991 6765036537380550 q001 2407/3558 6765036544153401 a007 Real Root Of -466*x^4+176*x^3+460*x^2+484*x+269 6765036596529416 r005 Re(z^2+c),c=-5/4+27/124*I,n=8 6765036645195223 m002 -(E^Pi*Pi^5)+Cosh[Pi]+Pi^5*Tanh[Pi] 6765036648882790 m005 (1/2*gamma+1/6)/(7/11*exp(1)+5) 6765036657945942 m001 (Mills+Robbin)/(Chi(1)-GAMMA(5/6)) 6765036686233593 r002 27th iterates of z^2 + 6765036701700361 a001 514229/2207*322^(7/12) 6765036704671348 a007 Real Root Of 551*x^4-292*x^3-800*x^2-699*x+814 6765036705604335 r005 Re(z^2+c),c=-3/4+59/156*I,n=3 6765036705975656 p004 log(29137/14813) 6765036748955642 m001 ZetaQ(4)/(ln(3)+Totient) 6765036759592142 a007 Real Root Of -347*x^4+379*x^3-436*x^2+892*x+993 6765036767193954 a007 Real Root Of -74*x^4+245*x^3-848*x^2+734*x+976 6765036812860187 l006 ln(3211/6316) 6765036830766125 a007 Real Root Of 641*x^4-788*x^3-18*x^2-306*x-577 6765036836940151 r005 Re(z^2+c),c=-53/78+15/61*I,n=12 6765036840400194 l006 ln(7901/8454) 6765036865548441 m001 Gompertz/QuadraticClass 6765036865548441 m001 exp(1)*Ei(1,1)/QuadraticClass 6765036903696308 a007 Real Root Of 81*x^4+576*x^3+128*x^2-375*x+284 6765036912424645 a005 (1/sin(75/169*Pi))^1444 6765036986016653 m001 (ErdosBorwein+MinimumGamma)^Niven 6765037006196798 m001 Paris*ln(Niven)*GAMMA(17/24) 6765037015436702 h001 (5/8*exp(2)+4/9)/(9/10*exp(2)+5/6) 6765037016586041 a001 24476/4181*1597^(1/51) 6765037031534505 r009 Re(z^3+c),c=-5/44+29/50*I,n=39 6765037048549083 m002 Pi^2+Pi^3+(Cosh[Pi]*Sinh[Pi])/5 6765037068709350 r005 Re(z^2+c),c=-31/32+13/54*I,n=60 6765037078416713 a007 Real Root Of -848*x^4-200*x^3+417*x^2+998*x+600 6765037086539504 a001 55/64079*18^(5/7) 6765037092338292 a001 64079/10946*1597^(1/51) 6765037100842612 b008 1/16+CosIntegral[19] 6765037139155759 a001 13201/2255*1597^(1/51) 6765037140399437 a007 Real Root Of -495*x^4+533*x^3+42*x^2-184*x+125 6765037140463053 m001 (2^(1/3)-exp(1))/(-2^(1/2)+FeigenbaumMu) 6765037152531349 m001 Si(Pi)*FransenRobinson/ln(arctan(1/2)) 6765037155851237 b008 ArcSin[2*(-1+Coth[1])] 6765037165425497 m001 ln(GAMMA(1/24))/Kolakoski^2/exp(1)^2 6765037168413866 l006 ln(4453/8759) 6765037187295918 a005 (1/cos(5/119*Pi))^1800 6765037205390483 r002 17th iterates of z^2 + 6765037208368520 a007 Real Root Of 581*x^4-699*x^3-97*x^2-673*x-749 6765037229276214 m001 (3^(1/3)-Kac)/(Kolakoski+ThueMorse) 6765037246051762 m001 (Salem-ZetaQ(4))/(BesselI(0,2)-Landau) 6765037294590457 p003 LerchPhi(1/1024,6,111/104) 6765037295701438 r009 Im(z^3+c),c=-53/102+23/53*I,n=31 6765037331866150 m001 1/exp(Paris)*Niven*Robbin^2 6765037337477737 a001 15127/2584*1597^(1/51) 6765037364926247 r009 Im(z^3+c),c=-13/56+8/11*I,n=10 6765037373928102 r005 Re(z^2+c),c=-81/106+5/52*I,n=21 6765037426947494 a007 Real Root Of -833*x^4+693*x^3+764*x^2+874*x-981 6765037434133367 s002 sum(A255803[n]/((pi^n-1)/n),n=1..infinity) 6765037442341424 m001 (GAMMA(23/24)-Gompertz)/(Sarnak-TwinPrimes) 6765037454990298 m001 Artin^GAMMA(13/24)*polylog(4,1/2)^GAMMA(13/24) 6765037454990298 m001 polylog(4,1/2)^GAMMA(13/24)*Artin^GAMMA(13/24) 6765037473905178 v002 sum(1/(2^n+(9*n^2+10*n+11)),n=1..infinity) 6765037475654750 a003 sin(Pi*20/97)/sin(Pi*27/77) 6765037477554698 m001 TravellingSalesman/(KhinchinLevy^arctan(1/3)) 6765037481008933 a007 Real Root Of -827*x^4+381*x^3+901*x^2-84*x-178 6765037496817227 a007 Real Root Of -952*x^4-566*x^3-591*x^2+376*x+549 6765037498271492 m006 (1/4*exp(2*Pi)+3)/(4/Pi+3/4) 6765037559824156 b008 Tan[2/(3*Pi^2)] 6765037574751918 r009 Re(z^3+c),c=-5/126+25/33*I,n=20 6765037612114427 m005 (1/2*5^(1/2)-1/2)/(2/9*5^(1/2)+5/12) 6765037619638041 r005 Re(z^2+c),c=-5/118+50/63*I,n=42 6765037630586075 a008 Real Root of (-1-x-x^5+x^6-x^7+x^8+x^11-x^12) 6765037658081593 h003 exp(Pi*(11^(10/3)+18^(4/7))) 6765037658081593 h008 exp(Pi*(11^(10/3)+18^(4/7))) 6765037667473749 m005 (1/2*5^(1/2)-2/11)/(9/10*2^(1/2)+1/9) 6765037700635379 m001 GAMMA(3/4)+(2^(1/3))*GAMMA(5/24) 6765037721567255 m001 PrimesInBinary-FeigenbaumB-sin(1/12*Pi) 6765037803270421 g007 Psi(2,7/12)+Psi(2,9/11)+Psi(2,2/11)-Psi(2,1/8) 6765037880093160 a007 Real Root Of 984*x^4-222*x^3+241*x^2-597*x-789 6765037887943675 a001 1346269/5778*322^(7/12) 6765037903472188 a007 Real Root Of 192*x^4+399*x^3+973*x^2-542*x-41 6765037917357865 m001 GAMMA(19/24)*Gompertz/MertensB2 6765037936631225 a007 Real Root Of 785*x^4-855*x^3-13*x^2-693*x-892 6765037938370278 r009 Im(z^3+c),c=-39/70+13/48*I,n=43 6765037946975867 r005 Im(z^2+c),c=-8/25+4/39*I,n=17 6765037967203193 a007 Real Root Of -671*x^4-485*x^3+205*x^2+790*x+431 6765037975493635 a007 Real Root Of 462*x^4-146*x^3+39*x^2-188*x-287 6765038005029049 a007 Real Root Of 186*x^4-633*x^3-368*x^2-252*x-237 6765038007153829 m001 (Zeta(1/2)+Zeta(1,2))/(Khinchin+Thue) 6765038011959977 a007 Real Root Of -597*x^4+389*x^3+244*x^2+739*x-607 6765038020140312 r008 a(0)=0,K{-n^6,-4+71*n^3-83*n^2+31*n} 6765038049152363 r005 Im(z^2+c),c=-17/26+21/127*I,n=29 6765038053703657 m001 GAMMA(2/3)^2*GAMMA(11/12)^2/ln(gamma)^2 6765038061014277 a001 3524578/15127*322^(7/12) 6765038076456442 a007 Real Root Of 36*x^4-367*x^3-57*x^2-263*x-273 6765038077736273 m008 (2/3*Pi^2-5)/(3/4*Pi^5+4) 6765038086264938 a001 9227465/39603*322^(7/12) 6765038087643163 l006 ln(1242/2443) 6765038089948960 a001 24157817/103682*322^(7/12) 6765038090486452 a001 63245986/271443*322^(7/12) 6765038090564871 a001 165580141/710647*322^(7/12) 6765038090576312 a001 433494437/1860498*322^(7/12) 6765038090577981 a001 1134903170/4870847*322^(7/12) 6765038090578225 a001 2971215073/12752043*322^(7/12) 6765038090578260 a001 7778742049/33385282*322^(7/12) 6765038090578265 a001 20365011074/87403803*322^(7/12) 6765038090578266 a001 53316291173/228826127*322^(7/12) 6765038090578266 a001 139583862445/599074578*322^(7/12) 6765038090578266 a001 365435296162/1568397607*322^(7/12) 6765038090578266 a001 956722026041/4106118243*322^(7/12) 6765038090578266 a001 2504730781961/10749957122*322^(7/12) 6765038090578266 a001 6557470319842/28143753123*322^(7/12) 6765038090578266 a001 10610209857723/45537549124*322^(7/12) 6765038090578266 a001 4052739537881/17393796001*322^(7/12) 6765038090578266 a001 1548008755920/6643838879*322^(7/12) 6765038090578266 a001 591286729879/2537720636*322^(7/12) 6765038090578266 a001 225851433717/969323029*322^(7/12) 6765038090578266 a001 86267571272/370248451*322^(7/12) 6765038090578266 a001 63246219/271444*322^(7/12) 6765038090578268 a001 12586269025/54018521*322^(7/12) 6765038090578282 a001 4807526976/20633239*322^(7/12) 6765038090578375 a001 1836311903/7881196*322^(7/12) 6765038090579013 a001 701408733/3010349*322^(7/12) 6765038090583383 a001 267914296/1149851*322^(7/12) 6765038090613336 a001 102334155/439204*322^(7/12) 6765038090818640 a001 39088169/167761*322^(7/12) 6765038092225811 a001 14930352/64079*322^(7/12) 6765038095469938 m001 (-BesselK(0,1)+ZetaQ(2))/(Psi(2,1/3)+sin(1)) 6765038096118403 a007 Real Root Of -958*x^4-310*x^3-301*x^2-552*x-131 6765038101870705 a001 5702887/24476*322^(7/12) 6765038118445158 r005 Im(z^2+c),c=15/64+1/52*I,n=36 6765038126613926 a007 Real Root Of -951*x^4+382*x^3-399*x^2-108*x+427 6765038143477988 a007 Real Root Of -138*x^4+232*x^3+558*x^2+783*x-828 6765038148308205 l006 ln(9044/9677) 6765038153745752 a001 370248451*6557470319842^(3/17) 6765038153745752 a001 1568397607*1836311903^(3/17) 6765038153746655 a001 6643838879*514229^(3/17) 6765038155929061 m001 1/GAMMA(7/12)^2*GAMMA(1/4)^2/ln(Zeta(7)) 6765038167977796 a001 2178309/9349*322^(7/12) 6765038223230963 s002 sum(A035172[n]/(n*exp(n)-1),n=1..infinity) 6765038230336985 a001 2/28657*610^(17/48) 6765038232392608 m001 (BesselJ(0,1)+Zeta(3))/(-Porter+Salem) 6765038234316335 r005 Im(z^2+c),c=-55/122+5/44*I,n=40 6765038246060401 m001 ln(Rabbit)*Backhouse*FeigenbaumKappa 6765038259354093 r005 Im(z^2+c),c=-77/122+5/39*I,n=54 6765038277561310 m002 4+Pi+5*Cosh[Pi]*Sinh[Pi] 6765038280902874 h001 (4/11*exp(1)+3/10)/(1/2*exp(1)+6/11) 6765038283654944 m001 -GAMMA(3/4)/(ln(Pi)+2/3) 6765038283654944 m001 GAMMA(3/4)/(2/3+ln(Pi)) 6765038293844237 m001 ln(LandauRamanujan)/Si(Pi)^2/OneNinth^2 6765038315907625 a007 Real Root Of 45*x^4+191*x^3-716*x^2+428*x+546 6765038354078108 s002 sum(A114076[n]/(n^2*exp(n)+1),n=1..infinity) 6765038357973886 r009 Re(z^3+c),c=-5/27+17/36*I,n=2 6765038379723818 m002 6+5*Csch[Pi]+Tanh[Pi]/3 6765038392577243 a003 cos(Pi*13/72)*sin(Pi*8/27) 6765038407771234 a001 7/28657*610^(29/56) 6765038428374271 a007 Real Root Of 232*x^4-874*x^3+329*x^2-193*x+202 6765038472041253 a001 64079/3*34^(17/52) 6765038478163602 a007 Real Root Of 254*x^4-808*x^3+501*x^2+66*x-488 6765038492322563 m005 (-11/42+1/6*5^(1/2))/(7/8*2^(1/2)+2/5) 6765038503950354 a001 29/832040*17711^(4/59) 6765038520199273 m001 1/Zeta(3)*Salem*ln(Zeta(7))^2 6765038526517333 h001 (11/12*exp(1)+4/5)/(7/12*exp(2)+5/9) 6765038536110650 p003 LerchPhi(1/125,4,118/107) 6765038544082819 m001 sin(1)^GAMMA(13/24)*sin(1)^GolombDickman 6765038544082819 m001 sin(1)^GolombDickman*sin(1)^GAMMA(13/24) 6765038569784080 a007 Real Root Of -47*x^4-60*x^3+49*x^2+745*x-498 6765038577207787 m001 1/Porter^2/Cahen^2/ln(GAMMA(1/4))^2 6765038601365779 r009 Re(z^3+c),c=-13/106+27/41*I,n=42 6765038606088070 m001 MadelungNaCl/(GAMMA(7/12)^(5^(1/2))) 6765038606088070 m001 MadelungNaCl/(GAMMA(7/12)^sqrt(5)) 6765038614356056 r002 3th iterates of z^2 + 6765038621082570 a001 832040/3571*322^(7/12) 6765038657760063 a001 1/72*34^(22/49) 6765038685784430 r005 Im(z^2+c),c=5/36+11/17*I,n=29 6765038696797068 a001 1926/329*1597^(1/51) 6765038713655992 a007 Real Root Of 770*x^4+298*x^3+157*x^2-488*x-471 6765038726044820 r005 Re(z^2+c),c=-3/26+43/61*I,n=15 6765038742427582 a007 Real Root Of -272*x^4+711*x^3+194*x^2+239*x+350 6765038746574665 r009 Re(z^3+c),c=-1/12+47/62*I,n=52 6765038755114847 r005 Im(z^2+c),c=-1/26+37/48*I,n=56 6765038791645615 r005 Re(z^2+c),c=-7/9+3/125*I,n=47 6765038802567306 m001 exp(Robbin)*DuboisRaymond^2/Trott 6765038822843412 m001 ln(5)^Gompertz*FellerTornier^Gompertz 6765038824117869 a007 Real Root Of 319*x^4-237*x^3+623*x^2-341*x-656 6765038832977125 m005 (1/3*gamma-1/9)/(Catalan+2/7) 6765038834344489 a007 Real Root Of 846*x^4-847*x^3+215*x^2+152*x-435 6765038858493469 m001 GaussKuzminWirsing^2*Conway^2/ln(Paris) 6765038890426224 m008 (5*Pi^3+4/5)/(3/4*Pi^5+5/6) 6765038913012721 m001 GAMMA(19/24)/Conway*exp(Zeta(7))^2 6765038926293811 m001 Zeta(5)/(Backhouse+ZetaP(4)) 6765038956654709 b008 Erfc[3/13]/11 6765038960640709 m007 (-2/5*gamma+5/6)/(-3*gamma-6*ln(2)+5) 6765038976780541 l003 ln(867) 6765038977413530 a007 Real Root Of -863*x^4-593*x^3-429*x^2+187*x+320 6765038991892298 r002 22th iterates of z^2 + 6765039032811137 m001 (Landau-Sarnak)/(Zeta(5)-Conway) 6765039052822998 l006 ln(4241/8342) 6765039077578098 h001 (3/8*exp(1)+11/12)/(3/8*exp(2)+1/11) 6765039083435698 a007 Real Root Of 744*x^4-750*x^3+468*x^2+429*x-312 6765039091134478 r002 8th iterates of z^2 + 6765039091869150 m001 (Porter+Trott)/(ArtinRank2-Catalan) 6765039099085658 m005 (1/2*2^(1/2)+4/11)/(9/11*Catalan+5/6) 6765039104631306 m001 (ln(2)+LaplaceLimit)/(Tetranacci+ZetaP(4)) 6765039116400906 a007 Real Root Of -800*x^4-539*x^3-138*x^2+423*x+350 6765039118200372 m001 (Zeta(5)-ZetaR(2))^Psi(2,1/3) 6765039126350164 r002 46th iterates of z^2 + 6765039127745495 m001 (Artin+GlaisherKinkelin)/(Pi-ln(2)) 6765039159330172 r002 17th iterates of z^2 + 6765039184513153 a007 Real Root Of -964*x^4-649*x^3-86*x^2+576*x+430 6765039185362501 m001 (MertensB3-Trott2nd)/(Conway+Kac) 6765039196085849 a001 2207/5*21^(26/29) 6765039204323104 b008 -Sqrt[-Cot[2]] 6765039204323104 b008 1/Sqrt[-Tan[2]] 6765039208148510 m001 (5^(1/2)+Catalan)/(-MinimumGamma+Tetranacci) 6765039222183920 a007 Real Root Of -616*x^4+689*x^3-106*x^2+896*x+997 6765039226476921 m001 (5^(1/2)+exp(1/exp(1)))^Porter 6765039255965171 a007 Real Root Of 978*x^4-648*x^3+289*x^2-129*x-625 6765039278762619 a001 199/196418*4181^(39/50) 6765039302066093 r002 7th iterates of z^2 + 6765039328878623 m001 MasserGramainDelta/FeigenbaumAlpha/OneNinth 6765039347014964 r009 Re(z^3+c),c=-19/44+1/52*I,n=58 6765039350380124 r002 33th iterates of z^2 + 6765039366779342 r002 4th iterates of z^2 + 6765039366821541 a003 cos(Pi*19/59)+cos(Pi*34/75) 6765039375528691 b008 1/11-4*ArcSinh[Khinchin] 6765039377084359 a007 Real Root Of -764*x^4+607*x^3+486*x^2+861*x+708 6765039383647747 r005 Im(z^2+c),c=15/64+1/52*I,n=38 6765039393856673 a001 1/1292*4181^(13/50) 6765039411053963 a007 Real Root Of -433*x^4-652*x^3-328*x^2+921*x+662 6765039414218801 a007 Real Root Of 765*x^4-28*x^3-952*x^2-529*x+642 6765039432141604 m001 ln(3)/(Niven-StolarskyHarborth) 6765039441488796 g002 Psi(2/7)+Psi(4/5)-Psi(7/10)-Psi(3/8) 6765039445883782 a001 75025/843*322^(3/4) 6765039452540661 l006 ln(2999/5899) 6765039461941042 r002 28th iterates of z^2 + 6765039475096302 g005 GAMMA(8/9)*GAMMA(2/9)*GAMMA(5/6)*GAMMA(2/3) 6765039501887721 a007 Real Root Of 248*x^4-589*x^3+314*x^2-677*x-836 6765039503778704 a007 Real Root Of 706*x^4-740*x^3+211*x^2+530*x-115 6765039515003113 a007 Real Root Of 632*x^4-757*x^3-143*x^2-768*x+687 6765039524742687 a007 Real Root Of -696*x^4+369*x^3-571*x^2+236*x+681 6765039525887829 a007 Real Root Of 386*x^4+268*x^3+997*x^2-560*x-833 6765039538975253 a007 Real Root Of 873*x^4-366*x^3+567*x^2-543*x-923 6765039539915515 a007 Real Root Of 180*x^4-790*x^3+697*x^2-480*x-926 6765039547158252 m005 (1/2*2^(1/2)+5/11)/(8/11*5^(1/2)+1/11) 6765039590568373 m001 gamma*ZetaP(2)+Zeta(1,2) 6765039593785710 m005 (1/2+1/2*5^(1/2))/(11/12*exp(1)-1/10) 6765039606240564 r009 Im(z^3+c),c=-9/50+27/37*I,n=12 6765039612539603 a007 Real Root Of 793*x^4-697*x^3-140*x^2+727*x+174 6765039661800775 a007 Real Root Of 568*x^4-334*x^3-40*x^2-535*x-566 6765039662742381 a007 Real Root Of -433*x^4+679*x^3-390*x^2+298*x+681 6765039674494091 a007 Real Root Of 840*x^4-867*x^3+957*x^2+679*x-423 6765039676268089 r009 Im(z^3+c),c=-17/29+11/16*I,n=5 6765039727582292 q001 596/881 6765039735627966 a003 cos(Pi*24/89)/sin(Pi*33/76) 6765039740841940 m001 GolombDickman^FeigenbaumKappa+ZetaR(2) 6765039751406294 m001 (1+exp(-1/2*Pi))/(-Tribonacci+ZetaQ(2)) 6765039761939649 a001 505019158607*144^(1/17) 6765039763393711 a001 7/3*591286729879^(5/17) 6765039786879569 m005 (1/2*5^(1/2)+1)/(1/7*Catalan+3) 6765039808975175 l006 ln(4756/9355) 6765039855730525 m001 (GaussKuzminWirsing+MinimumGamma)/(1+ln(5)) 6765039870731938 m005 (1/2*5^(1/2)-1/11)/(8/9*Zeta(3)-11/12) 6765039883923133 a007 Real Root Of 698*x^4-299*x^3+89*x^2-864*x-864 6765039887912275 m001 (gamma(2)-Pi^(1/2))/(MertensB3+Riemann3rdZero) 6765039902007935 a007 Real Root Of -674*x^4-344*x^3+146*x^2+731*x-50 6765039919773727 m001 OneNinth^Zeta(1,2)-ln(2+3^(1/2)) 6765039919773727 m001 OneNinth^Zeta(1,2)-ln(2+sqrt(3)) 6765039927401468 r009 Re(z^3+c),c=-1/46+43/56*I,n=42 6765039931033741 a007 Real Root Of 170*x^4-885*x^3-251*x^2+95*x+289 6765039932305695 a007 Real Root Of 606*x^4-998*x^3+14*x^2-679*x+635 6765039960347115 r005 Re(z^2+c),c=37/118+1/60*I,n=6 6765039962811367 a007 Real Root Of 127*x^4-921*x^3-216*x^2-519*x-564 6765039966416831 m001 2*Pi/GAMMA(5/6)+Mills-OneNinth 6765039987663917 r005 Im(z^2+c),c=-17/32+8/13*I,n=13 6765040027324663 r005 Im(z^2+c),c=-47/42+4/13*I,n=5 6765040073567780 m001 (arctan(1/3)+Grothendieck)/(MertensB2-Sarnak) 6765040091763693 m001 Zeta(5)+Zeta(1,2)-StronglyCareFree 6765040103713690 m001 (Otter-ZetaP(3))/(BesselI(0,2)+FeigenbaumC) 6765040124143594 r001 28i'th iterates of 2*x^2-1 of 6765040152003104 a001 1/208010*1597^(19/53) 6765040153761561 m001 (ln(Pi)-polylog(4,1/2))/(GAMMA(23/24)-Paris) 6765040154747255 r002 8th iterates of z^2 + 6765040157856886 m005 (1/2*2^(1/2)-2/7)/(-23/60+9/20*5^(1/2)) 6765040158563596 a007 Real Root Of -30*x^4+955*x^3-427*x^2+850*x-669 6765040171063689 s002 sum(A261344[n]/(n^2*2^n+1),n=1..infinity) 6765040195586791 m001 TwinPrimes/(LaplaceLimit-BesselI(1,1)) 6765040213559948 m001 Artin^(Psi(1,1/3)/DuboisRaymond) 6765040282819294 a007 Real Root Of -267*x^4+741*x^3+64*x^2+198*x+390 6765040300736589 r002 18th iterates of z^2 + 6765040303368996 a007 Real Root Of 798*x^4-939*x^3-296*x^2-468*x-639 6765040312001633 a007 Real Root Of 431*x^4-785*x^3+293*x^2-94*x-531 6765040314053760 a007 Real Root Of -239*x^4+337*x^3-274*x^2-13*x+271 6765040322489282 r005 Im(z^2+c),c=-97/74+1/29*I,n=8 6765040347228855 s002 sum(A205711[n]/(n^3*10^n+1),n=1..infinity) 6765040352157599 r002 5th iterates of z^2 + 6765040399564878 a003 sin(Pi*23/84)*sin(Pi*33/94) 6765040417368490 l006 ln(1757/3456) 6765040462927279 a001 5600748293801/233*1836311903^(10/17) 6765040462927279 a001 45537549124/233*6557470319842^(10/17) 6765040467081530 m005 (1/2*3^(1/2)+2/11)/(7/12*gamma-2/11) 6765040481637398 m001 OrthogonalArrays*PlouffeB+ZetaQ(3) 6765040497832550 a007 Real Root Of -313*x^4-132*x^3-67*x^2+879*x+650 6765040504324829 m001 (ln(5)-GAMMA(17/24))/(Otter+Tribonacci) 6765040510795797 a008 Real Root of x^3-57*x-76 6765040518408043 m001 ln(cosh(1))/MinimumGamma^2*gamma^2 6765040557021243 m002 -Pi^5+E^Pi*Pi^5-Cosh[Pi]+Log[Pi] 6765040697896479 r005 Im(z^2+c),c=-45/106+19/33*I,n=29 6765040701231318 m005 (1/3*5^(1/2)-2/11)/(5/11*Catalan+5/12) 6765040749820915 a001 832040/199*76^(1/9) 6765040767168712 r005 Im(z^2+c),c=-1/21+40/57*I,n=41 6765040778791483 r005 Im(z^2+c),c=25/126+28/55*I,n=6 6765040785101869 h001 (1/2*exp(2)+8/9)/(9/10*exp(2)+1/8) 6765040789765371 r005 Im(z^2+c),c=-51/118+1/64*I,n=6 6765040791085621 m004 7-Tan[Sqrt[5]*Pi]/(2*Log[Sqrt[5]*Pi]) 6765040795624179 a001 9349/21*12586269025^(10/11) 6765040831762571 a007 Real Root Of -356*x^4-151*x^3-321*x^2+401*x+446 6765040866172181 r002 38th iterates of z^2 + 6765040873011846 a001 141422324/21*317811^(10/11) 6765040873018908 a001 1149851/21*63245986^(10/11) 6765040875313126 a007 Real Root Of 734*x^4+730*x^3+935*x^2+471*x-37 6765040883684722 r005 Im(z^2+c),c=-39/74+19/54*I,n=4 6765040899832561 r009 Im(z^3+c),c=-25/64+25/37*I,n=2 6765040915405183 r005 Im(z^2+c),c=-7/48+43/63*I,n=25 6765040918501801 r005 Re(z^2+c),c=4/9+13/35*I,n=4 6765040930695426 a007 Real Root Of -966*x^4+909*x^3+878*x^2+414*x-761 6765040932239051 r009 Im(z^3+c),c=-5/17+37/55*I,n=21 6765040965595478 a008 Real Root of (14+8*x-12*x^2+10*x^3) 6765040986139386 r005 Re(z^2+c),c=-11/30+34/57*I,n=7 6765041013363771 r005 Re(z^2+c),c=-23/30+6/127*I,n=13 6765041014558147 a007 Real Root Of 391*x^4-633*x^3+344*x^2-375*x-689 6765041043451403 a007 Real Root Of -393*x^4+258*x^3-133*x^2-74*x+173 6765041064082390 m001 (MinimumGamma+Paris)/(1+Mills) 6765041072064224 m001 Shi(1)^ln(2+3^(1/2))/BesselI(1,2) 6765041086633326 a001 843/4181*6765^(7/51) 6765041087528405 a001 1/610*13^(21/38) 6765041135541340 l006 ln(4029/7925) 6765041142976957 m001 Weierstrass^(1/5*5^(1/2)*GAMMA(19/24)) 6765041158468687 m001 Tribonacci/ln(Porter)^2*cos(1) 6765041183635119 m001 (sin(1/5*Pi)+GAMMA(11/12))/(Si(Pi)+gamma) 6765041215086905 r005 Im(z^2+c),c=19/98+1/30*I,n=17 6765041228302243 r008 a(0)=0,K{-n^6,70+24*n^3-8*n^2+62*n} 6765041233246123 r009 Im(z^3+c),c=-63/106+20/37*I,n=60 6765041263910450 a001 832040/521*322^(1/4) 6765041266182056 a007 Real Root Of -576*x^4+324*x^3-485*x^2+618*x+861 6765041287285630 p004 log(32713/16631) 6765041296007807 m001 (-Landau+Lehmer)/(3^(1/2)+2*Pi/GAMMA(5/6)) 6765041326053838 m001 (BesselK(0,1)-ln(gamma))/(-ln(5)+ZetaP(3)) 6765041342868979 a007 Real Root Of 568*x^4+309*x^3+551*x^2-54*x-312 6765041355302600 a001 17393796001/21*1597^(10/11) 6765041378868726 m001 (Paris-Weierstrass)/(sin(1/5*Pi)-Cahen) 6765041387622924 r005 Im(z^2+c),c=-55/122+5/44*I,n=31 6765041395563990 r009 Im(z^3+c),c=-5/52+35/47*I,n=5 6765041412842075 m001 (3^(1/3))*exp(PrimesInBinary)*GAMMA(1/6)^2 6765041445891863 a007 Real Root Of 769*x^4-557*x^3+584*x^2-89*x-661 6765041465095480 m005 (1/2*gamma+4/11)/(8/9*gamma-5/12) 6765041466531835 a007 Real Root Of -503*x^4+923*x^3+362*x^2+940*x-982 6765041497442122 r002 27i'th iterates of 2*x/(1-x^2) of 6765041508956412 m005 (1/2*exp(1)-2/3)/(1/10*5^(1/2)+4/5) 6765041522249308 r005 Re(z^2+c),c=-33/94+19/30*I,n=43 6765041536355037 a001 521/2*17711^(4/41) 6765041545637634 r002 10i'th iterates of 2*x/(1-x^2) of 6765041550011543 m001 Pi/(exp(Pi)+LambertW(1))-cos(1/5*Pi) 6765041555782519 a007 Real Root Of 937*x^4-981*x^3-602*x^2+269*x+201 6765041566512598 r005 Re(z^2+c),c=9/122+30/59*I,n=15 6765041574825465 m001 (Ei(1)+KhinchinHarmonic)/ZetaQ(2) 6765041634681167 a001 11/2584*4181^(31/51) 6765041643123252 m001 (Conway-Lehmer)/(Stephens+Weierstrass) 6765041643363294 m001 Psi(2,1/3)*(polylog(4,1/2)+Rabbit) 6765041646151757 s002 sum(A035194[n]/(n*exp(n)-1),n=1..infinity) 6765041690924095 l006 ln(2272/4469) 6765041709485708 r002 50th iterates of z^2 + 6765041714686065 r002 5th iterates of z^2 + 6765041726710530 a001 317811/1364*322^(7/12) 6765041734226685 a007 Real Root Of 348*x^4-163*x^3-236*x^2-959*x+66 6765041783126350 a007 Real Root Of -594*x^4+132*x^3-99*x^2+821*x+766 6765041803841118 r009 Im(z^3+c),c=-1/11+31/41*I,n=60 6765041876124608 r009 Re(z^3+c),c=-53/110+3/46*I,n=38 6765041889395694 r005 Im(z^2+c),c=-7/122+33/43*I,n=5 6765041913189487 m001 (GAMMA(3/4)+Zeta(1,2))/(PrimesInBinary+Trott) 6765041961827495 m005 (1/2*Zeta(3)-7/12)/(6/7*exp(1)+2/7) 6765041969419547 m001 (arctan(1/3)+gamma(1))/(OneNinth-PlouffeB) 6765041971277411 a007 Real Root Of 646*x^4-963*x^3-238*x^2-735*x+769 6765042016005777 a007 Real Root Of 432*x^4+670*x^3+786*x^2-871*x-832 6765042031462945 m005 (-17/30+1/10*5^(1/2))/(1/2*2^(1/2)-1/5) 6765042057409196 m005 (1/2*exp(1)-1/9)/(8/9*exp(1)-4/7) 6765042070539185 m001 cos(Pi/12)^2*FibonacciFactorial/exp(sqrt(2))^2 6765042084920111 r002 4th iterates of z^2 + 6765042097172650 m001 Kolakoski^Cahen*Kolakoski^GAMMA(11/12) 6765042100318892 a007 Real Root Of 785*x^4+83*x^3+978*x^2-375*x-840 6765042119030276 r009 Im(z^3+c),c=-23/106+41/57*I,n=10 6765042125181926 r002 17th iterates of z^2 + 6765042133232260 l006 ln(5059/9951) 6765042138985975 a001 317811/2207*322^(2/3) 6765042146485197 r005 Im(z^2+c),c=-20/23+1/21*I,n=19 6765042148363493 r005 Im(z^2+c),c=-15/14+18/233*I,n=26 6765042172927471 g006 Psi(1,4/5)-Psi(1,7/9)-Psi(1,1/8)-Psi(1,5/6) 6765042175193911 r002 25th iterates of z^2 + 6765042177039423 h001 (2/9*exp(2)+5/6)/(4/9*exp(2)+3/8) 6765042193712543 r002 7th iterates of z^2 + 6765042203227018 r002 42th iterates of z^2 + 6765042245961469 a007 Real Root Of -69*x^4-574*x^3-753*x^2-98*x+605 6765042256378780 h001 (-5*exp(-1)+6)/(-9*exp(2)+5) 6765042267945868 m001 (Sierpinski-Trott)/(ln(Pi)-LandauRamanujan) 6765042270199205 m001 (Pi+Kac)/(PlouffeB+StolarskyHarborth) 6765042292500202 r005 Im(z^2+c),c=41/106+13/38*I,n=44 6765042300795802 a003 sin(Pi*7/32)/sin(Pi*12/31) 6765042346962598 a007 Real Root Of -231*x^4-758*x^3-557*x^2+920*x+691 6765042347049008 a007 Real Root Of -778*x^4+862*x^3+566*x^2+698*x+643 6765042355481539 m004 75*Pi+25*Sqrt[5]*Pi+125*Pi*Sin[Sqrt[5]*Pi] 6765042358904599 b008 67+SinIntegral[2/3] 6765042370568568 r009 Im(z^3+c),c=-61/106+10/33*I,n=40 6765042370977248 s002 sum(A072800[n]/(exp(n)-1),n=1..infinity) 6765042377429408 r002 14th iterates of z^2 + 6765042416293148 a007 Real Root Of 504*x^4-655*x^3-769*x^2-921*x-59 6765042427554109 m001 3^(1/2)-GAMMA(11/12) 6765042427554109 m001 GAMMA(11/12)-exp(1/2)^ln(3) 6765042434417329 r009 Im(z^3+c),c=-37/82+35/64*I,n=45 6765042438627140 p001 sum((-1)^n/(362*n+91)/n/(3^n),n=1..infinity) 6765042454329633 r009 Re(z^3+c),c=-7/118+29/32*I,n=25 6765042458579609 a007 Real Root Of 598*x^4+848*x^3+866*x^2-920*x+58 6765042463532788 r005 Im(z^2+c),c=47/102+1/53*I,n=3 6765042485840986 a007 Real Root Of -136*x^4+243*x^3+843*x^2+113*x-509 6765042493807828 l006 ln(2787/5482) 6765042500595912 r005 Im(z^2+c),c=-11/9+38/93*I,n=5 6765042511547660 m001 (Salem-Weierstrass)/(Artin+LaplaceLimit) 6765042512610490 m001 1/ln(BesselK(0,1))^2/Si(Pi)*Zeta(1,2) 6765042522607545 m001 (exp(Pi)-gamma(1))/(Otter+PlouffeB) 6765042525336800 r009 Re(z^3+c),c=-7/60+37/61*I,n=29 6765042539434519 r005 Re(z^2+c),c=-23/34+22/51*I,n=27 6765042574165087 m001 (gamma(3)+polylog(4,1/2))/(ln(5)-sin(1)) 6765042575879754 b008 66+Erfi[1] 6765042591888505 r009 Re(z^3+c),c=-7/118+29/32*I,n=27 6765042598665105 m001 (GAMMA(5/6)+HardyLittlewoodC3)/(Chi(1)-ln(3)) 6765042623727012 m001 KhinchinLevy^Shi(1)/(DuboisRaymond^Shi(1)) 6765042645400682 a007 Real Root Of 140*x^4+799*x^3-930*x^2+551*x+435 6765042673983245 a007 Real Root Of -560*x^4+349*x^3-115*x^2-167*x+165 6765042690074886 a007 Real Root Of 85*x^4+584*x^3-7*x^2-596*x-934 6765042714008365 b008 91*Coth[E^(-2)] 6765042733374909 r009 Re(z^3+c),c=-7/118+29/32*I,n=29 6765042764317016 r009 Re(z^3+c),c=-7/118+29/32*I,n=39 6765042764325376 a001 29/144*832040^(4/45) 6765042764399087 r009 Re(z^3+c),c=-7/118+29/32*I,n=37 6765042764403087 r009 Re(z^3+c),c=-7/118+29/32*I,n=41 6765042764440896 r009 Re(z^3+c),c=-7/118+29/32*I,n=43 6765042764442894 r009 Re(z^3+c),c=-7/118+29/32*I,n=51 6765042764442922 r009 Re(z^3+c),c=-7/118+29/32*I,n=53 6765042764442952 r009 Re(z^3+c),c=-7/118+29/32*I,n=55 6765042764442959 r009 Re(z^3+c),c=-7/118+29/32*I,n=63 6765042764442959 r009 Re(z^3+c),c=-7/118+29/32*I,n=61 6765042764442960 r009 Re(z^3+c),c=-7/118+29/32*I,n=59 6765042764442960 r009 Re(z^3+c),c=-7/118+29/32*I,n=57 6765042764443112 r009 Re(z^3+c),c=-7/118+29/32*I,n=49 6765042764444215 r009 Re(z^3+c),c=-7/118+29/32*I,n=47 6765042764445996 r009 Re(z^3+c),c=-7/118+29/32*I,n=45 6765042765616644 r009 Re(z^3+c),c=-7/118+29/32*I,n=35 6765042769260066 r009 Re(z^3+c),c=-7/118+29/32*I,n=33 6765042769849353 r009 Re(z^3+c),c=-7/118+29/32*I,n=31 6765042774623093 m002 -Pi^2-5*Cosh[Pi]+ProductLog[Pi]/6 6765042778844424 b008 1/4+Pi^2/E^Pi 6765042778844424 m002 -1/4-Pi^2/E^Pi 6765042809861610 a001 13/710647*4^(50/53) 6765042833099299 r005 Im(z^2+c),c=-55/122+5/44*I,n=42 6765042842836966 g005 GAMMA(8/11)*GAMMA(1/7)/GAMMA(8/9)/GAMMA(5/6) 6765042858469297 a007 Real Root Of 27*x^4-674*x^3+736*x^2+593*x-150 6765042858770813 a001 377/11*5778^(36/59) 6765042930485105 m001 ln(TreeGrowth2nd)*Kolakoski*Zeta(5) 6765042932740056 m001 (Porter+ZetaP(3))/(exp(Pi)+GAMMA(5/6)) 6765042947965185 a007 Real Root Of -103*x^4-709*x^3-89*x^2-x+289 6765042968903830 r005 Im(z^2+c),c=-49/94+31/61*I,n=25 6765042972125433 a007 Real Root Of 907*x^4-276*x^3+156*x^2-154*x-451 6765042972660095 r008 a(0)=8,K{-n^6,-45+39*n^3+28*n^2-21*n} 6765042979942693 q001 2361/3490 6765042993444448 m001 cos(Pi/5)^2/cos(1)^2*ln(sqrt(3))^2 6765043023362410 m005 (1/2*Zeta(3)-3/11)/(-109/22+1/22*5^(1/2)) 6765043035939258 a007 Real Root Of 261*x^4-950*x^3-710*x^2-760*x-538 6765043042591948 b008 SinIntegral[1/(2*E^2)] 6765043046246265 l006 ln(3302/6495) 6765043046760368 r002 39th iterates of z^2 + 6765043072344128 a007 Real Root Of 706*x^4-530*x^3+967*x^2-286*x-948 6765043077815932 r005 Re(z^2+c),c=-17/58+17/27*I,n=54 6765043131922554 m001 ZetaP(3)^Paris+Zeta(1,-1) 6765043145452710 r008 a(0)=0,K{-n^6,-84-10*n^3-41*n^2-13*n} 6765043152080311 m001 (Si(Pi)-gamma)/(-Ei(1)+Trott) 6765043158440820 p004 log(26993/13723) 6765043227123150 a007 Real Root Of -151*x^4+67*x^3+260*x^2+294*x-307 6765043244966387 m001 (Chi(1)+MadelungNaCl)/(Magata+PrimesInBinary) 6765043253475772 a003 sin(Pi*11/97)/sin(Pi*5/29) 6765043256847695 m005 (1/2*5^(1/2)+1/8)/(7/8*2^(1/2)+3/5) 6765043265896147 m001 (2^(1/3)+Artin)/(-Riemann3rdZero+Thue) 6765043271419327 m001 ErdosBorwein^ZetaQ(3)/ZetaR(2) 6765043275310106 m005 (1/2*Pi+1/4)/(1/7*Catalan-2/5) 6765043287606448 a007 Real Root Of 33*x^4-207*x^3+280*x^2-776*x+454 6765043298639201 a007 Real Root Of -418*x^4+162*x^3+609*x^2+984*x-907 6765043301942411 m001 1/BesselK(1,1)^2*ln(PrimesInBinary)/Ei(1)^2 6765043303867906 a007 Real Root Of 446*x^4-215*x^3+772*x^2-38*x-539 6765043315027612 a001 5/15251*521^(15/31) 6765043324915579 m001 1/GAMMA(1/12)*ln(TreeGrowth2nd)/GAMMA(11/12) 6765043325246054 a001 416020/2889*322^(2/3) 6765043336767598 a003 cos(Pi*33/115)+cos(Pi*27/56) 6765043338837183 r005 Im(z^2+c),c=-5/74+29/42*I,n=7 6765043360459689 h001 (4/9*exp(1)+4/9)/(7/12*exp(1)+6/7) 6765043360708787 a001 9227465/2207*123^(1/10) 6765043392081631 a007 Real Root Of -143*x^4-963*x^3+145*x^2+824*x+301 6765043399598102 r005 Im(z^2+c),c=-13/122+53/63*I,n=62 6765043416977050 m005 (1/2*3^(1/2)-4/5)/(2/7*Pi-4/5) 6765043431075277 p003 LerchPhi(1/8,6,287/183) 6765043434902783 m002 5+Cosh[Pi]/Pi-Sinh[Pi]/6 6765043437042101 a003 sin(Pi*26/93)*sin(Pi*27/79) 6765043445585089 r009 Re(z^3+c),c=-7/118+29/32*I,n=23 6765043449611697 l006 ln(3817/7508) 6765043459647817 m001 (exp(Pi)+Ei(1))/(-Kac+LaplaceLimit) 6765043474748551 m001 Bloch*Trott+ZetaQ(4) 6765043492419490 a001 1/72*514229^(8/17) 6765043498319102 a001 311187/2161*322^(2/3) 6765043499833213 a007 Real Root Of 64*x^4+430*x^3-123*x^2-558*x+937 6765043521872843 m005 (7/5+2/5*5^(1/2))/(Pi+1/4) 6765043523570120 a001 5702887/39603*322^(2/3) 6765043525322569 a007 Real Root Of 89*x^4+565*x^3-158*x^2+532*x-653 6765043525603235 a007 Real Root Of 652*x^4-348*x^3+730*x^2-468*x-895 6765043527254194 a001 7465176/51841*322^(2/3) 6765043527791693 a001 39088169/271443*322^(2/3) 6765043527870113 a001 14619165/101521*322^(2/3) 6765043527881554 a001 133957148/930249*322^(2/3) 6765043527883224 a001 701408733/4870847*322^(2/3) 6765043527883467 a001 1836311903/12752043*322^(2/3) 6765043527883503 a001 14930208/103681*322^(2/3) 6765043527883508 a001 12586269025/87403803*322^(2/3) 6765043527883509 a001 32951280099/228826127*322^(2/3) 6765043527883509 a001 43133785636/299537289*322^(2/3) 6765043527883509 a001 32264490531/224056801*322^(2/3) 6765043527883509 a001 591286729879/4106118243*322^(2/3) 6765043527883509 a001 774004377960/5374978561*322^(2/3) 6765043527883509 a001 4052739537881/28143753123*322^(2/3) 6765043527883509 a001 1515744265389/10525900321*322^(2/3) 6765043527883509 a001 3278735159921/22768774562*322^(2/3) 6765043527883509 a001 2504730781961/17393796001*322^(2/3) 6765043527883509 a001 956722026041/6643838879*322^(2/3) 6765043527883509 a001 182717648081/1268860318*322^(2/3) 6765043527883509 a001 139583862445/969323029*322^(2/3) 6765043527883509 a001 53316291173/370248451*322^(2/3) 6765043527883509 a001 10182505537/70711162*322^(2/3) 6765043527883511 a001 7778742049/54018521*322^(2/3) 6765043527883525 a001 2971215073/20633239*322^(2/3) 6765043527883618 a001 567451585/3940598*322^(2/3) 6765043527884255 a001 433494437/3010349*322^(2/3) 6765043527888626 a001 165580141/1149851*322^(2/3) 6765043527918579 a001 31622993/219602*322^(2/3) 6765043528123886 a001 24157817/167761*322^(2/3) 6765043529531077 a001 9227465/64079*322^(2/3) 6765043539176107 a001 1762289/12238*322^(2/3) 6765043549294168 r002 15th iterates of z^2 + 6765043550166537 m001 (Pi-polylog(4,1/2))/(Bloch+Magata) 6765043570459195 a001 39603/5*4181^(17/21) 6765043588598822 a007 Real Root Of 318*x^4-802*x^3-541*x^2-171*x-183 6765043600074980 a001 192900153618*1836311903^(1/17) 6765043600074980 a001 119218851371*6557470319842^(1/17) 6765043600075281 a001 312119004989*514229^(1/17) 6765043605284132 a001 1346269/9349*322^(2/3) 6765043608925117 s001 sum(exp(-Pi/2)^n*A230361[n],n=1..infinity) 6765043630621553 m005 (1/2*Catalan-3/11)/(5/11*2^(1/2)-11/12) 6765043679484503 a007 Real Root Of 364*x^4-828*x^3-923*x^2+122*x+520 6765043686849807 m001 1/sinh(1)/FeigenbaumD^2*ln(sqrt(Pi)) 6765043704437679 m005 (1/2*gamma+5/12)/(4/9*3^(1/2)+3/11) 6765043719427079 m005 (1/2*exp(1)+7/11)/(11/12*5^(1/2)+9/10) 6765043757070747 l006 ln(4332/8521) 6765043789702637 g004 Im(GAMMA(31/60+I*37/60)) 6765043798746323 a007 Real Root Of 180*x^4-487*x^3+274*x^2-114*x-391 6765043803231271 a007 Real Root Of -871*x^4+759*x^3+18*x^2-290*x+213 6765043818658666 a007 Real Root Of -360*x^4+385*x^3+30*x^2+318*x+396 6765043832080671 r005 Re(z^2+c),c=-2/3+81/254*I,n=10 6765043837261998 a007 Real Root Of -662*x^4-16*x^3+937*x^2+588*x-683 6765043849836096 a007 Real Root Of 994*x^4+203*x^3-42*x^2-733*x-622 6765043880374056 a007 Real Root Of -266*x^4-319*x^3-888*x^2+100*x+431 6765043894228192 m001 1/OneNinth/exp(Sierpinski)*cos(Pi/12) 6765043917828359 m001 1/exp(Riemann3rdZero)^2/FeigenbaumC^2*Zeta(3) 6765043973210572 h003 exp(Pi*(3^(12/11)+5^(5/7))) 6765043973210572 h008 exp(Pi*(3^(12/11)+5^(5/7))) 6765043976869937 r004 Im(z^2+c),c=-7/11+3/23*I,z(0)=-1,n=37 6765043999193949 l006 ln(4847/9534) 6765044000712817 a007 Real Root Of 121*x^4-405*x^3-129*x^2-268*x-273 6765044003373819 r005 Re(z^2+c),c=-47/56+37/53*I,n=3 6765044006181315 a008 Real Root of x^4-x^3-45*x^2+27*x-162 6765044047975182 m005 (1/2*3^(1/2)+3/5)/(-2/63+1/9*5^(1/2)) 6765044058395310 a001 514229/3571*322^(2/3) 6765044078190877 q001 1765/2609 6765044080841813 r008 a(0)=0,K{-n^6,60+9*n^3+32*n^2+47*n} 6765044133272154 a007 Real Root Of -401*x^4-288*x^3+970*x^2+667*x-722 6765044140529635 r005 Im(z^2+c),c=-103/118+3/62*I,n=13 6765044177740838 r002 26th iterates of z^2 + 6765044186130836 r009 Re(z^3+c),c=-5/66+9/43*I,n=6 6765044193167269 a001 3571/2178309*13^(21/38) 6765044208421580 a007 Real Root Of 681*x^4-703*x^3-438*x^2-263*x+20 6765044208770315 m003 -35/6+Sqrt[5]/8-Sinh[1/2+Sqrt[5]/2]/2 6765044280493585 a007 Real Root Of -153*x^4-236*x^3-359*x^2+480*x+448 6765044294284843 r002 4th iterates of z^2 + 6765044300671464 m001 1/ln(GAMMA(7/12))^2*BesselK(0,1)/sin(Pi/5)^2 6765044305257099 r005 Re(z^2+c),c=-85/118+7/58*I,n=3 6765044384736447 h001 (1/4*exp(1)+1/11)/(1/7*exp(2)+1/12) 6765044398153070 m003 5+Sqrt[5]/8+(3*Tan[1/2+Sqrt[5]/2]^2)/2 6765044400671095 m002 -4-E^Pi*Pi^5+Pi^6/3 6765044407926704 a007 Real Root Of 533*x^4-198*x^3+100*x^2-877*x-812 6765044426644303 p004 log(24133/12269) 6765044433119012 m001 (gamma+sin(1))/(ln(2)+OrthogonalArrays) 6765044444996967 a007 Real Root Of -134*x^4-923*x^3-68*x^2+300*x+38 6765044448532956 a008 Real Root of x^5-5*x^3-5*x^2+12*x+9 6765044477433141 a007 Real Root Of -484*x^4+750*x^3-930*x^2-766*x+241 6765044540951959 a007 Real Root Of 53*x^4+280*x^3-575*x^2-347*x-351 6765044546957625 a001 24157817/5778*123^(1/10) 6765044550490728 m001 (Rabbit-TwinPrimes)/(arctan(1/3)-GAMMA(11/12)) 6765044554319263 p003 LerchPhi(1/25,3,234/205) 6765044572092652 m001 GAMMA(11/24)^sqrt(2)/((1/2)^sqrt(2)) 6765044596280075 m009 (20/3*Catalan+5/6*Pi^2+2/5)/(1/12*Pi^2-3) 6765044643571078 m001 (3^(1/2)-Khinchin)/(RenyiParking+Robbin) 6765044667913357 a007 Real Root Of -868*x^4+439*x^3+909*x^2+631*x-797 6765044669113161 b008 67+Tan[1+E] 6765044681568179 r005 Im(z^2+c),c=-3/70+41/54*I,n=50 6765044720029033 a001 63245986/15127*123^(1/10) 6765044745279812 a001 165580141/39603*123^(1/10) 6765044748963851 a001 433494437/103682*123^(1/10) 6765044749501345 a001 1134903170/271443*123^(1/10) 6765044749579765 a001 2971215073/710647*123^(1/10) 6765044749591206 a001 7778742049/1860498*123^(1/10) 6765044749592875 a001 20365011074/4870847*123^(1/10) 6765044749593119 a001 53316291173/12752043*123^(1/10) 6765044749593154 a001 139583862445/33385282*123^(1/10) 6765044749593159 a001 365435296162/87403803*123^(1/10) 6765044749593160 a001 956722026041/228826127*123^(1/10) 6765044749593160 a001 2504730781961/599074578*123^(1/10) 6765044749593160 a001 6557470319842/1568397607*123^(1/10) 6765044749593160 a001 10610209857723/2537720636*123^(1/10) 6765044749593160 a001 4052739537881/969323029*123^(1/10) 6765044749593160 a001 1548008755920/370248451*123^(1/10) 6765044749593160 a001 591286729879/141422324*123^(1/10) 6765044749593162 a001 225851433717/54018521*123^(1/10) 6765044749593176 a001 86267571272/20633239*123^(1/10) 6765044749593269 a001 32951280099/7881196*123^(1/10) 6765044749593907 a001 12586269025/3010349*123^(1/10) 6765044749598277 a001 4807526976/1149851*123^(1/10) 6765044749628230 a001 1836311903/439204*123^(1/10) 6765044749833535 a001 701408733/167761*123^(1/10) 6765044750392222 p004 log(30211/15359) 6765044751240712 a001 267914296/64079*123^(1/10) 6765044760885652 a001 102334155/24476*123^(1/10) 6765044767118951 a007 Real Root Of 395*x^4-252*x^3-640*x^2-489*x+619 6765044788373705 r005 Re(z^2+c),c=39/82+7/44*I,n=2 6765044789593368 m005 (1/2*gamma+3/8)/(2/9*2^(1/2)+2/3) 6765044790087302 m001 (-Sarnak+ZetaQ(3))/(Psi(1,1/3)+Bloch) 6765044826993050 a001 4181*123^(1/10) 6765044848376704 a007 Real Root Of 719*x^4-565*x^3+860*x^2-226*x-872 6765044855776814 r009 Im(z^3+c),c=-55/122+23/42*I,n=5 6765044859916792 a007 Real Root Of 973*x^4-954*x^3-345*x^2-718*x-827 6765044861680544 m008 (2*Pi^4+1/2)/(3*Pi^6+3) 6765044875702778 m001 GAMMA(1/12)/GaussAGM(1,1/sqrt(2))/ln(Zeta(9)) 6765044879754162 a001 3571/610*6557470319842^(16/17) 6765044881007677 a001 1/1353*(1/2*5^(1/2)+1/2)^11*11^(7/11) 6765044882320430 a001 15456/281*322^(5/6) 6765044882952137 m001 gamma(1)^ZetaQ(3)/exp(1/exp(1)) 6765044884549862 a007 Real Root Of 91*x^4-787*x^3-574*x^2-980*x-663 6765044912404254 a001 17711/76*11^(4/9) 6765044962055015 a007 Real Root Of 761*x^4-639*x^3-381*x^2+325*x+37 6765044963552742 s001 sum(exp(-Pi/4)^(n-1)*A016650[n],n=1..infinity) 6765044975850007 a001 3/832040*610^(16/35) 6765044987793766 m007 (-1/2*gamma-5)/(-5*gamma-10*ln(2)+2) 6765044996153688 r005 Im(z^2+c),c=-55/122+5/44*I,n=44 6765045013814621 r002 9th iterates of z^2 + 6765045026740567 m001 FeigenbaumKappa*(arctan(1/3)+FeigenbaumDelta) 6765045030067553 a001 1926*514229^(39/49) 6765045082636800 a007 Real Root Of -563*x^4+910*x^3+856*x^2+958*x+656 6765045088924711 b008 -7+Tan[3/13] 6765045090803340 h001 (-2*exp(1/3)-3)/(-9*exp(1/3)+4) 6765045123822767 r009 Re(z^3+c),c=-11/70+44/61*I,n=21 6765045143122641 r009 Im(z^3+c),c=-43/102+33/38*I,n=2 6765045153258216 m001 ArtinRank2-gamma(3)^GolombDickman 6765045168007184 a007 Real Root Of 548*x^4+113*x^3-216*x^2-921*x-604 6765045212185419 m001 ln(KhintchineLevy)^2*DuboisRaymond/sin(1) 6765045212526748 b008 Erf[ProductLog[6]^(-1)] 6765045217312724 a001 843/5*75025^(17/23) 6765045238050929 a007 Real Root Of -486*x^4+566*x^3-627*x^2-371*x+313 6765045273988785 a001 199/18*(1/2*5^(1/2)+1/2)^5*18^(13/22) 6765045279069323 m001 exp(-1/2*Pi)*(KomornikLoreti+Porter) 6765045280099935 a001 14930352/3571*123^(1/10) 6765045283230172 r005 Im(z^2+c),c=-7/66+16/19*I,n=56 6765045291215011 m005 (1/2*Zeta(3)-7/12)/(1/6*5^(1/2)-1/9) 6765045315551817 a007 Real Root Of 972*x^4+103*x^3+13*x^2-883*x-775 6765045333077536 m005 (1/3*3^(1/2)-1/6)/(1/10*Zeta(3)-8/11) 6765045360749531 a007 Real Root Of -288*x^4-14*x^3-314*x^2+404*x+473 6765045380798553 r005 Im(z^2+c),c=-7/82+34/41*I,n=47 6765045386611960 a007 Real Root Of 759*x^4-603*x^3+864*x^2-127*x-827 6765045410260844 a001 3940598/305*1836311903^(16/17) 6765045410265768 a001 17393796001/610*514229^(16/17) 6765045425314398 a003 sin(Pi*17/103)/sin(Pi*28/107) 6765045461648077 r008 a(0)=0,K{-n^6,-62-30*n-54*n^2-2*n^3} 6765045463892320 a007 Real Root Of 613*x^4-314*x^3-84*x^2+593*x+214 6765045464404205 a007 Real Root Of -973*x^4+943*x^3-223*x^2-591*x+198 6765045472134213 a001 18/28657*55^(1/54) 6765045509546218 r002 7th iterates of z^2 + 6765045523438777 a007 Real Root Of -575*x^4+787*x^3-775*x^2-486*x+390 6765045524645361 m005 (1/2*2^(1/2)-4/11)/(3/8*Zeta(3)-2/5) 6765045532367943 a007 Real Root Of -237*x^4-610*x^3-103*x^2+686*x+372 6765045540838986 m005 (1/2*Catalan-5/9)/(3/7*3^(1/2)+7/10) 6765045547138514 m002 Cosh[Pi]/5+ProductLog[Pi]+Pi*ProductLog[Pi] 6765045548423704 a007 Real Root Of -917*x^4+267*x^3-37*x^2-542*x-75 6765045578196872 m005 (1/3*exp(1)-2/5)/(1/12*gamma+7/10) 6765045604575711 p003 LerchPhi(1/100,2,207/170) 6765045623280405 m001 Zeta(1,-1)/(HardHexagonsEntropy^FeigenbaumD) 6765045670939941 a003 cos(Pi*14/81)*sin(Pi*29/100) 6765045677439784 m001 1/GAMMA(1/12)*ln(PrimesInBinary)^2*Zeta(9)^2 6765045680138073 m001 (Riemann2ndZero+ZetaP(2))/(3^(1/2)+3^(1/3)) 6765045687429476 m001 1/cos(1)/exp(Kolakoski)*cos(Pi/5) 6765045694792658 a003 cos(Pi*19/87)*sin(Pi*21/62) 6765045696254024 a001 11/144*225851433717^(11/21) 6765045727969734 m001 (ln(Pi)+Landau)/(MadelungNaCl+RenyiParking) 6765045740959397 m001 (Ei(1)-exp(Pi))/(-GAMMA(7/12)+FeigenbaumDelta) 6765045746713853 r005 Re(z^2+c),c=-61/86+20/63*I,n=6 6765045786508548 a007 Real Root Of -818*x^4+258*x^3-384*x^2+581*x+820 6765045786722954 a007 Real Root Of -610*x^4+668*x^3-55*x^2+296*x+560 6765045826642005 a007 Real Root Of -269*x^4+953*x^3+222*x^2+273*x-525 6765045840702903 a005 (1/cos(31/185*Pi))^393 6765045850410465 a001 199/2*14930352^(20/21) 6765045854701868 r005 Im(z^2+c),c=-55/122+5/44*I,n=46 6765045871819916 m001 (Pi+2^(1/2))/(BesselI(0,1)-Lehmer) 6765045875646337 m001 (Sarnak+Thue)/(LambertW(1)+Pi^(1/2)) 6765045882914858 m001 cos(1/12*Pi)*Kolakoski*QuadraticClass 6765045887613839 m001 Rabbit*exp(Conway)*sin(Pi/12) 6765045900866588 a007 Real Root Of -137*x^4-865*x^3+312*x^2-620*x+664 6765045909258366 a001 14662949395604/233*6557470319842^(8/17) 6765045931654618 r002 5th iterates of z^2 + 6765045936496931 r005 Im(z^2+c),c=-55/122+5/44*I,n=49 6765045938077969 a007 Real Root Of -771*x^4-258*x^3-245*x^2+27*x+212 6765045945739472 r005 Im(z^2+c),c=-55/122+5/44*I,n=51 6765045960912297 r005 Re(z^2+c),c=-6/29+36/53*I,n=19 6765045966763253 m001 arctan(1/3)*GolombDickman+PlouffeB 6765045981258223 s002 sum(A113942[n]/((2*n)!),n=1..infinity) 6765045981340548 r005 Im(z^2+c),c=-55/122+5/44*I,n=53 6765045981530690 r009 Re(z^3+c),c=-5/44+29/50*I,n=41 6765046010804664 r005 Im(z^2+c),c=-55/122+5/44*I,n=55 6765046028739522 r005 Im(z^2+c),c=-55/122+5/44*I,n=57 6765046029689762 r005 Im(z^2+c),c=15/64+1/52*I,n=39 6765046031097357 r005 Im(z^2+c),c=-5/34+56/59*I,n=7 6765046035849472 l006 ln(515/1013) 6765046037858017 r005 Im(z^2+c),c=-55/122+5/44*I,n=59 6765046041812258 r005 Im(z^2+c),c=-55/122+5/44*I,n=61 6765046043035022 r005 Im(z^2+c),c=-55/122+5/44*I,n=64 6765046043217557 r005 Im(z^2+c),c=-55/122+5/44*I,n=63 6765046043777808 r005 Im(z^2+c),c=-55/122+5/44*I,n=62 6765046046208693 r005 Im(z^2+c),c=-55/122+5/44*I,n=60 6765046052339227 r005 Im(z^2+c),c=-55/122+5/44*I,n=58 6765046055152807 m001 (2^(1/2))^GAMMA(11/12)-BesselJ(0,1) 6765046055152807 m001 BesselJ(0,1)-sqrt(2)^GAMMA(11/12) 6765046055225817 r005 Im(z^2+c),c=-55/122+5/44*I,n=47 6765046065383571 r005 Im(z^2+c),c=-55/122+5/44*I,n=56 6765046080873604 a003 cos(Pi*12/61)-sin(Pi*21/61) 6765046088986642 r005 Im(z^2+c),c=-55/122+5/44*I,n=54 6765046098817791 a007 Real Root Of -724*x^4+169*x^3-994*x^2-767*x+140 6765046110033523 a007 Real Root Of -418*x^4+930*x^3+807*x^2-276*x-383 6765046112557644 a001 2207/1346269*13^(21/38) 6765046113982868 a007 Real Root Of -850*x^4+83*x^3-995*x^2-383*x+400 6765046117537258 r005 Im(z^2+c),c=-55/122+5/44*I,n=48 6765046123238593 r005 Im(z^2+c),c=-55/122+5/44*I,n=52 6765046134392473 m001 GAMMA(3/4)^2*GAMMA(2/3)*exp(Zeta(3)) 6765046140663454 r009 Re(z^3+c),c=-7/102+43/59*I,n=21 6765046152690993 r005 Im(z^2+c),c=-55/122+5/44*I,n=50 6765046183425213 a001 47/2584*6765^(7/47) 6765046190829827 a007 Real Root Of -839*x^4+448*x^3+409*x^2+381*x+385 6765046194308745 m001 (-RenyiParking+Sierpinski)/(2^(1/3)+Backhouse) 6765046213822611 r002 5th iterates of z^2 + 6765046215148594 m005 (1/2*5^(1/2)-1/5)/(7/8*Catalan+5/9) 6765046220230843 a007 Real Root Of -191*x^4+462*x^3+468*x^2+658*x+414 6765046236366593 a007 Real Root Of 539*x^4-841*x^3+82*x^2+251*x-241 6765046276216569 a007 Real Root Of -199*x^4+364*x^3+269*x^2+726*x+48 6765046296296296 q001 1169/1728 6765046316196002 m001 (exp(sqrt(2))+5)/(-sqrt(1+sqrt(3))+3) 6765046323241238 a001 956722026041/2*2^(1/2) 6765046330725452 m001 DuboisRaymond^MasserGramainDelta/RenyiParking 6765046348661037 m001 (MadelungNaCl-TwinPrimes)/(ln(5)-gamma(3)) 6765046380232570 r005 Im(z^2+c),c=-9/62+41/60*I,n=4 6765046397017469 m005 (1/2*5^(1/2)-3/4)/(3/4*gamma+1/9) 6765046448441188 a007 Real Root Of 879*x^4+848*x^3+402*x^2-589*x-504 6765046481013904 a007 Real Root Of 677*x^4-794*x^3-300*x^2-678*x-709 6765046500058803 a007 Real Root Of 707*x^4-463*x^3+188*x^2-867*x-964 6765046500647966 r005 Re(z^2+c),c=-6/19+17/25*I,n=5 6765046516692550 a003 sin(Pi*5/72)+sin(Pi*7/46) 6765046527093474 m001 (-FeigenbaumC+Trott)/(AlladiGrinstead-cos(1)) 6765046549950731 a007 Real Root Of 104*x^4+731*x^3+307*x^2+945*x+837 6765046551919022 r005 Im(z^2+c),c=-55/122+5/44*I,n=45 6765046583177617 m001 3^(1/2)*FeigenbaumB-BesselJ(0,1) 6765046587832415 m001 KomornikLoreti^GaussKuzminWirsing*LambertW(1) 6765046596285588 r009 Re(z^3+c),c=-9/74+34/55*I,n=17 6765046619340068 a001 28657/199*199^(8/11) 6765046629331222 m005 (1/2*2^(1/2)-5/12)/(5/9*gamma-3/4) 6765046649497370 m001 1/ln(sinh(1))/FeigenbaumC*sqrt(2)^2 6765046652083060 s001 sum(exp(-2*Pi/3)^n*A018222[n],n=1..infinity) 6765046664631049 m001 (Tribonacci-ZetaP(4))/(exp(1/exp(1))-Niven) 6765046701225314 a001 514229/521*322^(1/3) 6765046717022043 r005 Re(z^2+c),c=-15/14+3/137*I,n=6 6765046717791837 m005 (1/2*Pi-1/6)/(8/11*Zeta(3)-2/3) 6765046739671782 m005 (1/2*gamma+2)/(9/10*Pi+5/9) 6765046740831873 m001 (GAMMA(2/3)-arctan(1/2))/(Lehmer+Sarnak) 6765046779955498 r005 Im(z^2+c),c=5/78+25/41*I,n=8 6765046782752077 a007 Real Root Of -107*x^4-633*x^3+652*x^2+305*x+355 6765046787226898 h001 (2/5*exp(1)+3/7)/(2/3*exp(1)+3/7) 6765046800958600 a007 Real Root Of 999*x^4-887*x^3+706*x^2-820*x-59 6765046801795480 m001 (BesselJ(1,1)*Lehmer-Robbin)/Lehmer 6765046828822392 m001 (Chi(1)+ArtinRank2)/(-CopelandErdos+ZetaQ(3)) 6765046847772942 a007 Real Root Of 831*x^4-675*x^3-545*x^2-920*x-756 6765046852197627 a007 Real Root Of -589*x^4+906*x^3-811*x^2-105*x+704 6765046872129643 m001 exp(arctan(1/2))*GAMMA(5/12)*sqrt(2)^2 6765046876655214 m001 gamma^GaussAGM/(gamma^Champernowne) 6765046878763147 m001 (arctan(1/3)+sin(1/12*Pi))/(Zeta(5)-Ei(1)) 6765046900252967 a007 Real Root Of 812*x^4+2*x^3+656*x^2-778*x-996 6765046923919799 m001 (BesselI(0,1)*gamma(3)-Thue)/BesselI(0,1) 6765046951070934 a007 Real Root Of -625*x^4+295*x^3-262*x^2+832*x+905 6765046991738426 b008 ArcCoth[(3*Pi^2)/2] 6765047006996129 s002 sum(A091262[n]/(16^n-1),n=1..infinity) 6765047027190386 s002 sum(A210281[n]/(n*10^n+1),n=1..infinity) 6765047040248528 m001 (exp(Pi)-Gompertz)^FeigenbaumMu 6765047055490063 m001 (Ei(1)-Pi^(1/2))/(sin(1/5*Pi)+GAMMA(3/4)) 6765047073270072 r009 Re(z^3+c),c=-31/70+1/33*I,n=7 6765047077896050 r002 29th iterates of z^2 + 6765047114425469 r009 Re(z^3+c),c=-25/114+36/49*I,n=45 6765047121340710 m001 Riemann2ndZero/exp(Khintchine)^2/Zeta(3)^2 6765047161283862 p003 LerchPhi(1/8,4,103/166) 6765047163334858 a001 21/2207*199^(29/36) 6765047164067161 a001 98209/682*322^(2/3) 6765047164918018 r005 Im(z^2+c),c=-39/86+29/53*I,n=43 6765047171182715 r005 Re(z^2+c),c=-11/12+8/65*I,n=48 6765047176665486 m002 -2+6*Cosh[Pi]+Log[Pi]*Sech[Pi] 6765047188881700 m001 exp(GAMMA(1/12))^2/FeigenbaumDelta/GAMMA(7/24) 6765047189236169 l006 ln(1143/1223) 6765047194553379 r002 38i'th iterates of 2*x/(1-x^2) of 6765047203762771 a007 Real Root Of 392*x^4-935*x^3-473*x^2-49*x+457 6765047210594655 a007 Real Root Of -608*x^4+344*x^3-685*x^2-713*x+65 6765047213841798 r005 Re(z^2+c),c=-5/27+45/49*I,n=5 6765047218048445 m001 (GlaisherKinkelin+Totient)/(Catalan-Conway) 6765047220477446 s002 sum(A210281[n]/(n*10^n-1),n=1..infinity) 6765047221776187 m001 (-OneNinth+ThueMorse)/(exp(1)+KomornikLoreti) 6765047222601318 r002 18th iterates of z^2 + 6765047238807221 r005 Im(z^2+c),c=-9/8+17/199*I,n=8 6765047258263829 r002 2th iterates of z^2 + 6765047314370758 r005 Re(z^2+c),c=-3/4+5/133*I,n=7 6765047319748749 m001 1/exp(KhintchineLevy)^2/Bloch/cos(1)^2 6765047320957415 m001 BesselJ(1,1)^gamma(1)/(gamma(3)^gamma(1)) 6765047334573336 a007 Real Root Of 148*x^4+936*x^3-326*x^2+774*x-39 6765047351855823 m001 (1-ln(2))/(GAMMA(5/6)+Magata) 6765047372998269 m001 (Kac-Tetranacci)/(ln(gamma)-exp(1/Pi)) 6765047394157456 p003 LerchPhi(1/125,1,101/68) 6765047407537992 a007 Real Root Of 406*x^4-701*x^3-225*x^2-532*x-559 6765047418943950 r005 Im(z^2+c),c=-53/78+5/38*I,n=8 6765047419842878 m001 FellerTornier^TreeGrowth2nd-cos(1) 6765047429306489 r005 Im(z^2+c),c=19/106+37/64*I,n=60 6765047432271505 m001 (Pi^(1/2)-Shi(1))/(-HardyLittlewoodC5+Porter) 6765047437015892 m001 AlladiGrinstead*Magata^(3^(1/2)) 6765047464626945 m005 (1/3*Zeta(3)-2/3)/(5/12*5^(1/2)+3) 6765047487022206 r002 24th iterates of z^2 + 6765047497424139 m006 (1/5*Pi^2-1/6)/(1/2*exp(2*Pi)-3/5) 6765047505299855 m001 ZetaR(2)^Landau+arctan(1/3) 6765047520763383 a007 Real Root Of 225*x^4-455*x^3+339*x^2-549*x+310 6765047554633906 r005 Im(z^2+c),c=-7/8+1/209*I,n=34 6765047555131642 m005 (1/2*exp(1)+2/9)/(3/4*gamma-2/3) 6765047563168910 m001 (ZetaP(4)-ZetaQ(2))/(GAMMA(5/6)-Porter) 6765047576342937 a001 196418/2207*322^(3/4) 6765047576567894 a007 Real Root Of -856*x^4+48*x^3-604*x^2+314*x+683 6765047580294321 a007 Real Root Of -358*x^4+881*x^3-658*x^2+720*x+52 6765047587759499 m001 1/MinimumGamma^2*Conway/ln(Sierpinski)^2 6765047590853037 a008 Real Root of (2+x-3*x^2-4*x^3-5*x^4+x^5) 6765047592591035 a007 Real Root Of 406*x^4-279*x^3+394*x^2+7*x-347 6765047605310632 h001 (1/2*exp(2)+8/11)/(4/5*exp(2)+5/8) 6765047625237607 m001 (GaussAGM+PisotVijayaraghavan)/(ln(2)-Artin) 6765047636476820 r002 7th iterates of z^2 + 6765047714991439 r005 Im(z^2+c),c=-9/20+5/44*I,n=23 6765047734404977 a001 89/3*9062201101803^(13/18) 6765047748458516 a007 Real Root Of 144*x^4-562*x^3-217*x^2-117*x-184 6765047758801017 r002 10th iterates of z^2 + 6765047821275806 m001 (2^(1/3)+BesselK(1,1))/(GAMMA(17/24)+Porter) 6765047854282666 a007 Real Root Of -316*x^4+725*x^3-512*x^2-99*x+458 6765047857478236 a007 Real Root Of 859*x^4-584*x^3-936*x^2-109*x+503 6765047870217592 a007 Real Root Of -709*x^4+401*x^3-742*x^2-905*x 6765047901041794 m001 (BesselI(0,1)-ln(gamma))/(-Khinchin+ZetaQ(4)) 6765047904120182 m001 TwinPrimes-exp(-1/2*Pi)-GAMMA(5/6) 6765047904120182 m001 exp(-1/2*Pi)+GAMMA(5/6)-TwinPrimes 6765047910833590 a007 Real Root Of -802*x^4+552*x^3-25*x^2-914*x-268 6765047946646418 m005 (1/2*Zeta(3)-5/12)/(3/10*Catalan-3) 6765047947732231 r005 Im(z^2+c),c=-55/122+5/44*I,n=43 6765047950282571 a007 Real Root Of 454*x^4+25*x^3+460*x^2-250*x-467 6765047954787548 a003 sin(Pi*8/53)/cos(Pi*14/53) 6765047960525440 m005 (7/20+1/4*5^(1/2))/(7/12*3^(1/2)+1/3) 6765047970032705 m005 (1/3*Catalan-2/5)/(3/8*3^(1/2)+3/4) 6765047978994680 a007 Real Root Of 426*x^4-113*x^3-341*x^2-933*x+733 6765047993213186 a007 Real Root Of -473*x^4-625*x^3-7*x^2+735*x+406 6765047995222976 a003 cos(Pi*27/115)*sin(Pi*29/79) 6765048005189940 m001 (gamma(3)+ZetaQ(2)*ZetaR(2))/ZetaR(2) 6765048007546000 a007 Real Root Of -872*x^4+539*x^3-241*x^2+853*x-451 6765048010183849 r005 Re(z^2+c),c=-23/30+5/106*I,n=13 6765048013723198 a001 2207/377*1597^(1/51) 6765048016639369 a007 Real Root Of 579*x^4-901*x^3+407*x^2+762*x-71 6765048034972057 l006 ln(4938/9713) 6765048035341099 p001 sum(1/(541*n+37)/n/(256^n),n=1..infinity) 6765048041304692 m001 (sin(1/12*Pi)+Zeta(1,2))/(Chi(1)-Zeta(1,-1)) 6765048041818926 r005 Re(z^2+c),c=-35/102+31/50*I,n=47 6765048049715700 m005 (1/2*5^(1/2)+1/8)/(7/10*3^(1/2)+5/8) 6765048075896462 a007 Real Root Of -706*x^4+89*x^3-817*x^2-339*x+320 6765048080038023 h001 (4/7*exp(2)+2/7)/(7/9*exp(2)+11/12) 6765048125292538 a007 Real Root Of 73*x^4+493*x^3-145*x^2-837*x+711 6765048128717634 a005 (1/cos(12/97*Pi))^500 6765048134487781 a007 Real Root Of 113*x^4-819*x^3-251*x^2-881*x+61 6765048156552441 r002 4th iterates of z^2 + 6765048156868292 v002 sum(1/(3^n+(3*n^2-7*n+44)),n=1..infinity) 6765048156920439 a007 Real Root Of -910*x^4+728*x^3+323*x^2-729*x-225 6765048160452667 r005 Im(z^2+c),c=-13/16+51/110*I,n=3 6765048220143896 m009 (5/6*Psi(1,3/4)-2/5)/(1/3*Pi^2-3/4) 6765048230059315 a007 Real Root Of -184*x^4+956*x^3-874*x^2+320*x+951 6765048236947788 m001 (Rabbit+Trott2nd)/(HeathBrownMoroz+OneNinth) 6765048267743483 l006 ln(4423/8700) 6765048274467699 m001 ZetaQ(3)^Psi(1,1/3)/(exp(1/Pi)^Psi(1,1/3)) 6765048277137513 a003 sin(Pi*15/71)/sin(Pi*43/118) 6765048294749628 a007 Real Root Of -894*x^4-604*x^3-456*x^2+74*x+259 6765048351906836 m001 (1-cos(1))/(-CopelandErdos+GaussKuzminWirsing) 6765048380186982 a007 Real Root Of -321*x^4+44*x^3-47*x^2+961*x-575 6765048385742357 a001 5702887/1364*123^(1/10) 6765048394389101 a007 Real Root Of 399*x^4-310*x^3+478*x^2-375*x-652 6765048415996583 b008 1/4+Sqrt[ArcCot[2*E]] 6765048437046768 m005 (3*2^(1/2)-2/3)/(1/3*2^(1/2)-1) 6765048438501624 a001 9349/1597*6557470319842^(16/17) 6765048444074182 b008 7*Pi^2+PolyLog[2,-2] 6765048454592977 a001 28657/11*521^(9/59) 6765048507884204 a007 Real Root Of 117*x^4+764*x^3-292*x^2-638*x+530 6765048511699911 a007 Real Root Of 268*x^4+398*x^3+748*x^2-789*x-809 6765048515901541 a001 20633239/1597*1836311903^(16/17) 6765048515906373 a001 45537549124/1597*514229^(16/17) 6765048522951012 r005 Im(z^2+c),c=-61/114+5/47*I,n=13 6765048543689320 q001 1742/2575 6765048555818692 p003 LerchPhi(1/5,5,74/43) 6765048561864586 l006 ln(3908/7687) 6765048580386092 r009 Re(z^3+c),c=-7/118+29/32*I,n=21 6765048587617186 m005 (1/2*Zeta(3)+1/8)/(1/10*3^(1/2)+9/10) 6765048590569242 r005 Im(z^2+c),c=2/5+7/32*I,n=59 6765048591149980 m001 exp(Niven)*ErdosBorwein*BesselJ(0,1) 6765048602887390 a007 Real Root Of -352*x^4+992*x^3-620*x^2+311*x+875 6765048606365855 m001 (ln(3)-arctan(1/2))/(polylog(4,1/2)-Backhouse) 6765048610167948 r001 47i'th iterates of 2*x^2-1 of 6765048614142039 a007 Real Root Of 639*x^4-748*x^3-46*x^2-233*x-502 6765048635809736 m001 ln(FeigenbaumC)^2*Si(Pi)/Zeta(9) 6765048647997472 a003 sin(Pi*4/47)-sin(Pi*23/59) 6765048670004470 a003 sin(Pi*22/109)/sin(Pi*18/53) 6765048677876214 a007 Real Root Of -939*x^4+799*x^3+285*x^2-910*x-302 6765048680163440 h005 exp(cos(Pi*2/49)+cos(Pi*5/39)) 6765048689587528 a001 21/4*18^(5/57) 6765048689994883 a007 Real Root Of 672*x^4-713*x^3-828*x^2+57*x+56 6765048711294716 m001 (BesselJ(0,1)-MertensB2)/(Pi+sin(1)) 6765048734634632 a007 Real Root Of 968*x^4+59*x^3+327*x^2+556*x+42 6765048740052680 m001 BesselI(1,1)+GAMMA(5/6)*Paris 6765048741242880 g007 -Psi(2,7/12)-Psi(2,7/10)-Psi(2,3/8)-Psi(2,4/7) 6765048762562575 a001 514229/5778*322^(3/4) 6765048773518635 r002 37i'th iterates of 2*x/(1-x^2) of 6765048799508591 r008 a(0)=0,K{-n^6,60-11*n^3+92*n^2+7*n} 6765048809530163 a007 Real Root Of 159*x^4+964*x^3-652*x^2+710*x+77 6765048831603186 a007 Real Root Of 104*x^4-708*x^3+678*x^2+401*x-280 6765048873564580 r005 Re(z^2+c),c=-5/94+41/52*I,n=35 6765048888683270 m001 (KhinchinHarmonic-Si(Pi))/(OneNinth+Porter) 6765048933124883 a005 (1/cos(16/91*Pi))^398 6765048935629723 a001 1346269/15127*322^(3/4) 6765048945270891 l006 ln(3393/6674) 6765048957716154 a001 24476/4181*6557470319842^(16/17) 6765048960879880 a001 3524578/39603*322^(3/4) 6765048962447405 r008 a(0)=0,K{-n^6,-32-54*n^3+14*n^2+57*n} 6765048963385796 r008 a(0)=0,K{-n^6,-44-52*n^3+2*n^2+79*n} 6765048964563828 a001 9227465/103682*322^(3/4) 6765048965101309 a001 24157817/271443*322^(3/4) 6765048965179726 a001 63245986/710647*322^(3/4) 6765048965191167 a001 165580141/1860498*322^(3/4) 6765048965192837 a001 433494437/4870847*322^(3/4) 6765048965193080 a001 1134903170/12752043*322^(3/4) 6765048965193116 a001 2971215073/33385282*322^(3/4) 6765048965193121 a001 7778742049/87403803*322^(3/4) 6765048965193122 a001 20365011074/228826127*322^(3/4) 6765048965193122 a001 53316291173/599074578*322^(3/4) 6765048965193122 a001 139583862445/1568397607*322^(3/4) 6765048965193122 a001 365435296162/4106118243*322^(3/4) 6765048965193122 a001 956722026041/10749957122*322^(3/4) 6765048965193122 a001 2504730781961/28143753123*322^(3/4) 6765048965193122 a001 6557470319842/73681302247*322^(3/4) 6765048965193122 a001 10610209857723/119218851371*322^(3/4) 6765048965193122 a001 4052739537881/45537549124*322^(3/4) 6765048965193122 a001 1548008755920/17393796001*322^(3/4) 6765048965193122 a001 591286729879/6643838879*322^(3/4) 6765048965193122 a001 225851433717/2537720636*322^(3/4) 6765048965193122 a001 86267571272/969323029*322^(3/4) 6765048965193122 a001 32951280099/370248451*322^(3/4) 6765048965193122 a001 12586269025/141422324*322^(3/4) 6765048965193124 a001 4807526976/54018521*322^(3/4) 6765048965193138 a001 1836311903/20633239*322^(3/4) 6765048965193231 a001 3524667/39604*322^(3/4) 6765048965193868 a001 267914296/3010349*322^(3/4) 6765048965198238 a001 102334155/1149851*322^(3/4) 6765048965228191 a001 39088169/439204*322^(3/4) 6765048965433490 a001 14930352/167761*322^(3/4) 6765048966840633 a001 5702887/64079*322^(3/4) 6765048969008651 a001 54018521/4181*1836311903^(16/17) 6765048969013469 a001 119218851371/4181*514229^(16/17) 6765048976485335 a001 2178309/24476*322^(3/4) 6765048987457600 m005 (1/3*Catalan-1/9)/(8/9*exp(1)+5/11) 6765049007960019 a001 832040/7*3571^(38/49) 6765049014337460 r009 Re(z^3+c),c=-39/110+41/58*I,n=5 6765049015715671 m001 (ln(2)/ln(10))^FeigenbaumMu+LaplaceLimit 6765049033468539 a001 64079/10946*6557470319842^(16/17) 6765049035116092 a001 70711162/5473*1836311903^(16/17) 6765049035120908 a001 312119004989/10946*514229^(16/17) 6765049036086930 h001 (5/12*exp(1)+2/7)/(2/9*exp(2)+5/11) 6765049040812159 m001 (MinimumGamma+Trott)/(exp(1/Pi)-exp(Pi)) 6765049042174501 a007 Real Root Of 273*x^4-975*x^3+494*x^2+420*x-301 6765049042591107 a001 832040/9349*322^(3/4) 6765049044520664 a001 167761/28657*6557470319842^(16/17) 6765049044761038 a001 370248451/28657*1836311903^(16/17) 6765049044765854 a001 817138163596/28657*514229^(16/17) 6765049044879524 a007 Real Root Of -817*x^4+50*x^3+270*x^2+708*x+542 6765049046133147 a001 439204/75025*6557470319842^(16/17) 6765049046168217 a001 969323029/75025*1836311903^(16/17) 6765049046173033 a001 2139295485799/75025*514229^(16/17) 6765049046368405 a001 1149851/196418*6557470319842^(16/17) 6765049046373521 a001 1268860318/98209*1836311903^(16/17) 6765049046378337 a001 5600748293801/196418*514229^(16/17) 6765049046402729 a001 3010349/514229*6557470319842^(16/17) 6765049046403475 a001 6643838879/514229*1836311903^(16/17) 6765049046407736 a001 7881196/1346269*6557470319842^(16/17) 6765049046407845 a001 17393796001/1346269*1836311903^(16/17) 6765049046408291 a001 14662949395604/514229*514229^(16/17) 6765049046408467 a001 20633239/3524578*6557470319842^(16/17) 6765049046408483 a001 22768774562/1762289*1836311903^(16/17) 6765049046408573 a001 54018521/9227465*6557470319842^(16/17) 6765049046408576 a001 119218851371/9227465*1836311903^(16/17) 6765049046408589 a001 141422324/24157817*6557470319842^(16/17) 6765049046408589 a001 312119004989/24157817*1836311903^(16/17) 6765049046408591 a001 370248451/63245986*6557470319842^(16/17) 6765049046408591 a001 408569081798/31622993*1836311903^(16/17) 6765049046408592 a001 969323029/165580141*6557470319842^(16/17) 6765049046408592 a001 2139295485799/165580141*1836311903^(16/17) 6765049046408592 a001 2537720636/433494437*6557470319842^(16/17) 6765049046408592 a001 5600748293801/433494437*1836311903^(16/17) 6765049046408592 a001 7331474697802/567451585*1836311903^(16/17) 6765049046408592 a001 6643838879/1134903170*6557470319842^(16/17) 6765049046408592 a001 17393796001/2971215073*6557470319842^(16/17) 6765049046408592 a001 45537549124/7778742049*6557470319842^(16/17) 6765049046408592 a001 119218851371/20365011074*6557470319842^(16/17) 6765049046408592 a001 312119004989/53316291173*6557470319842^(16/17) 6765049046408592 a001 440719107401/75283811239*6557470319842^(16/17) 6765049046408592 a001 505019158607/86267571272*6557470319842^(16/17) 6765049046408592 a001 64300051206/10983760033*6557470319842^(16/17) 6765049046408592 a001 73681302247/12586269025*6557470319842^(16/17) 6765049046408592 a001 23725150497407/1836311903*1836311903^(16/17) 6765049046408592 a001 9381251041/1602508992*6557470319842^(16/17) 6765049046408592 a001 10749957122/1836311903*6557470319842^(16/17) 6765049046408592 a001 3020733700601/233802911*1836311903^(16/17) 6765049046408592 a001 1368706081/233802911*6557470319842^(16/17) 6765049046408592 a001 1730726404001/133957148*1836311903^(16/17) 6765049046408592 a001 1568397607/267914296*6557470319842^(16/17) 6765049046408592 a001 440719107401/34111385*1836311903^(16/17) 6765049046408592 a001 199691526/34111385*6557470319842^(16/17) 6765049046408593 a001 505019158607/39088169*1836311903^(16/17) 6765049046408593 a001 228826127/39088169*6557470319842^(16/17) 6765049046408598 a001 33385281/2584*1836311903^(16/17) 6765049046408599 a001 29134601/4976784*6557470319842^(16/17) 6765049046408633 a001 73681302247/5702887*1836311903^(16/17) 6765049046408639 a001 33385282/5702887*6557470319842^(16/17) 6765049046408877 a001 9381251041/726103*1836311903^(16/17) 6765049046408918 a001 4250681/726103*6557470319842^(16/17) 6765049046410546 a001 5374978561/416020*1836311903^(16/17) 6765049046410831 a001 4870847/832040*6557470319842^(16/17) 6765049046415362 a001 23725150497407/832040*514229^(16/17) 6765049046421987 a001 1368706081/105937*1836311903^(16/17) 6765049046423942 a001 620166/105937*6557470319842^(16/17) 6765049046426803 a001 3020733700601/105937*514229^(16/17) 6765049046500407 a001 1568397607/121393*1836311903^(16/17) 6765049046505222 a001 3461452808002/121393*514229^(16/17) 6765049046513802 a001 710647/121393*6557470319842^(16/17) 6765049047037901 a001 33281921/2576*1836311903^(16/17) 6765049047042717 a001 440719107401/15456*514229^(16/17) 6765049047129716 a001 90481/15456*6557470319842^(16/17) 6765049050721943 a001 228826127/17711*1836311903^(16/17) 6765049050726758 a001 505019158607/17711*514229^(16/17) 6765049051351252 a001 103682/17711*6557470319842^(16/17) 6765049075972739 a001 29134601/2255*1836311903^(16/17) 6765049075977554 a001 64300051206/2255*514229^(16/17) 6765049080286089 a001 13201/2255*6557470319842^(16/17) 6765049085720911 r005 Im(z^2+c),c=2/15+21/32*I,n=9 6765049094958790 a007 Real Root Of -131*x^4+652*x^3+739*x^2+308*x-721 6765049099866463 a007 Real Root Of -995*x^4+749*x^3-758*x^2-21*x+773 6765049105038609 r004 Im(z^2+c),c=-7/20+2/19*I,z(0)=-1,n=17 6765049124424956 m001 (PlouffeB-PolyaRandomWalk3D)/(Pi-ln(Pi)) 6765049175065394 a007 Real Root Of -818*x^4+771*x^3-297*x^2-674*x+90 6765049190298848 l006 ln(6924/6971) 6765049206541004 m001 (Conway-Si(Pi)*Trott2nd)/Si(Pi) 6765049217755327 a007 Real Root Of 172*x^4+558*x^3+608*x^2-252*x-312 6765049234946717 r005 Re(z^2+c),c=5/62+16/37*I,n=13 6765049249044276 a001 16692641/1292*1836311903^(16/17) 6765049249049085 a001 73681302247/2584*514229^(16/17) 6765049258666403 r009 Re(z^3+c),c=-75/118+12/35*I,n=14 6765049278608417 a001 15127/2584*6557470319842^(16/17) 6765049300160777 a007 Real Root Of 561*x^4-702*x^3-86*x^2-323*x-514 6765049305755978 r009 Re(z^3+c),c=-11/78+9/14*I,n=13 6765049365667613 a001 832040/7*9349^(34/49) 6765049366213900 m003 -4+4*Cot[1/2+Sqrt[5]/2]+3*Tan[1/2+Sqrt[5]/2] 6765049383460200 m001 (Magata-ZetaP(4))/(2*Pi/GAMMA(5/6)-Cahen) 6765049403331265 a007 Real Root Of -833*x^4-74*x^3-276*x^2+182*x+401 6765049411025273 m003 -47/12+(3*Sqrt[5])/64-Tan[1/2+Sqrt[5]/2]/2 6765049447103789 a001 6624*15127^(47/49) 6765049452576370 a007 Real Root Of 980*x^4+781*x^3+766*x^2-980*x-977 6765049452645030 m001 Riemann2ndZero^(Niven*Sierpinski) 6765049460243765 a003 cos(Pi*18/71)*sin(Pi*18/43) 6765049465893467 l006 ln(2878/5661) 6765049480988559 a007 Real Root Of -623*x^4+517*x^3+392*x^2+662*x+559 6765049484086185 m001 (sin(1)+LaplaceLimit)/(-Niven+Tetranacci) 6765049494621701 m001 (FeigenbaumC-ReciprocalLucas)/DuboisRaymond 6765049495686837 a001 317811/3571*322^(3/4) 6765049514537211 a007 Real Root Of 504*x^4-392*x^3-745*x^2-748*x-392 6765049530070882 a007 Real Root Of 968*x^4-563*x^3+5*x^2-168*x-493 6765049569018174 h001 (3/5*exp(1)+1/7)/(3/4*exp(1)+7/12) 6765049585911621 r005 Im(z^2+c),c=-53/102+5/42*I,n=49 6765049600592820 m001 FeigenbaumC/Kolakoski/Magata 6765049604911284 a007 Real Root Of 406*x^4-930*x^3-708*x^2-584*x+922 6765049651051021 r005 Im(z^2+c),c=-5/86+7/9*I,n=11 6765049652314280 m001 1/Zeta(1/2)*TreeGrowth2nd*exp(cos(Pi/5)) 6765049678550555 q001 2315/3422 6765049679671107 a007 Real Root Of 584*x^4+810*x^3+980*x^2-470*x-638 6765049697255910 a007 Real Root Of -924*x^4+519*x^3+511*x^2-104*x+50 6765049706651425 m005 (1/2*Zeta(3)+7/9)/(173/154+9/22*5^(1/2)) 6765049715155962 a007 Real Root Of 21*x^4-913*x^3+579*x^2-987*x+681 6765049742629243 a007 Real Root Of -147*x^4-964*x^3+336*x^2+877*x-13 6765049760701099 r009 Im(z^3+c),c=-11/54+27/28*I,n=54 6765049778337182 a007 Real Root Of -889*x^4+433*x^3-840*x^2+268*x+886 6765049792320645 r005 Re(z^2+c),c=-33/52+19/53*I,n=22 6765049802230575 a007 Real Root Of 705*x^4-77*x^3+271*x^2-14*x-305 6765049833490096 m001 (Riemann3rdZero-Totient)/(Landau+Otter) 6765049836548546 a007 Real Root Of -694*x^4+559*x^3-184*x^2+206*x+542 6765049838380960 r009 Re(z^3+c),c=-45/94+1/33*I,n=3 6765049863711798 a001 233/521*24476^(20/21) 6765049873033905 a001 233/521*64079^(20/23) 6765049874274260 a001 233/521*167761^(4/5) 6765049874466551 a001 233/521*20633239^(4/7) 6765049874466560 a001 233/521*2537720636^(4/9) 6765049874466560 a001 233/521*(1/2+1/2*5^(1/2))^20 6765049874466560 a001 233/521*23725150497407^(5/16) 6765049874466560 a001 233/521*505019158607^(5/14) 6765049874466560 a001 233/521*73681302247^(5/13) 6765049874466560 a001 233/521*28143753123^(2/5) 6765049874466560 a001 233/521*10749957122^(5/12) 6765049874466560 a001 233/521*4106118243^(10/23) 6765049874466560 a001 233/521*1568397607^(5/11) 6765049874466560 a001 233/521*599074578^(10/21) 6765049874466560 a001 233/521*228826127^(1/2) 6765049874466560 a001 233/521*87403803^(10/19) 6765049874466563 a001 233/521*33385282^(5/9) 6765049874466584 a001 233/521*12752043^(10/17) 6765049874466738 a001 233/521*4870847^(5/8) 6765049874467863 a001 233/521*1860498^(2/3) 6765049874476128 a001 233/521*710647^(5/7) 6765049874537187 a001 233/521*271443^(10/13) 6765049874990985 a001 233/521*103682^(5/6) 6765049878387788 a001 233/521*39603^(10/11) 6765049879625530 m001 (Khinchin-TravellingSalesman)/(ln(5)+Conway) 6765049884502832 m001 Chi(1)^FransenRobinson-GAMMA(17/24) 6765049892388723 a007 Real Root Of -313*x^4+924*x^3-230*x^2-464*x+143 6765049905354548 r005 Im(z^2+c),c=-107/122+7/30*I,n=26 6765049905704348 r005 Im(z^2+c),c=-11/16+17/89*I,n=57 6765049927052459 m005 (1/2*2^(1/2)-7/10)/(1/4*Zeta(3)+3/4) 6765049934135952 r008 a(0)=8,K{-n^6,-53+43*n^3+12*n^2-n} 6765049975948721 m001 exp(GAMMA(3/4))/Si(Pi)/exp(1) 6765049979566249 a007 Real Root Of -126*x^4-784*x^3+537*x^2+429*x-498 6765049993480543 a007 Real Root Of -241*x^4-136*x^3-513*x^2+764*x+760 6765050003624959 r002 22th iterates of z^2 + 6765050041163314 r005 Re(z^2+c),c=1/82+5/8*I,n=37 6765050043709127 r009 Im(z^3+c),c=-23/36+15/47*I,n=47 6765050062155366 m009 (6*Psi(1,3/4)-5/6)/(3/4*Psi(1,2/3)-1/6) 6765050071570590 r005 Re(z^2+c),c=-17/44+29/47*I,n=29 6765050100466774 r005 Im(z^2+c),c=33/86+4/15*I,n=58 6765050108359521 m005 (1/2*gamma-3/10)/(1/8*5^(1/2)-1/9) 6765050166957385 b008 (3*SphericalBesselY[2,9])/5 6765050167916505 m005 (1/2*gamma-1/10)/(1/6*gamma-3/8) 6765050167916505 m007 (-gamma+1/5)/(-1/3*gamma+3/4) 6765050174449547 r005 Re(z^2+c),c=5/86+11/27*I,n=17 6765050187832288 a007 Real Root Of -887*x^4-122*x^3-79*x^2+288*x+379 6765050202739249 m006 (1/5*exp(2*Pi)+2)/(3/4/Pi-2/5) 6765050213448393 l006 ln(2363/4648) 6765050220907680 a007 Real Root Of -310*x^4-344*x^3-639*x^2-461*x-61 6765050226155511 a001 3/8*701408733^(14/15) 6765050229663696 s002 sum(A267902[n]/((exp(n)+1)/n),n=1..infinity) 6765050261747627 m001 Zeta(1/2)^2*Kolakoski^2*ln(sqrt(1+sqrt(3))) 6765050280142922 a003 cos(Pi*3/85)*cos(Pi*28/107) 6765050290154628 r005 Re(z^2+c),c=13/40+19/53*I,n=51 6765050302120397 b008 6+ArcSec[Log[4]] 6765050305842973 a007 Real Root Of 134*x^4-577*x^3-422*x^2-741*x+845 6765050316445863 a007 Real Root Of -353*x^4+808*x^3-896*x^2-457*x+425 6765050316676553 r002 4th iterates of z^2 + 6765050318699611 a007 Real Root Of -880*x^4+658*x^3-474*x^2+3*x+607 6765050321907995 a001 28657/843*322^(11/12) 6765050333434916 a007 Real Root Of -162*x^4-27*x^3-240*x^2+907*x+749 6765050347158628 m001 (BesselJ(1,1)-sin(Pi/12))/GAMMA(1/3) 6765050361849161 r005 Re(z^2+c),c=-93/94+4/17*I,n=40 6765050364018859 m001 (Riemann1stZero+Tribonacci)/(exp(Pi)+Bloch) 6765050366497468 m001 1/exp(OneNinth)^2*KhintchineLevy/sqrt(2) 6765050370516362 m001 Rabbit/ln(Conway)^2*sin(Pi/12)^2 6765050430025077 r005 Im(z^2+c),c=-145/118+1/49*I,n=52 6765050435294475 a001 4250681/329*1836311903^(16/17) 6765050435299249 a001 9381251041/329*514229^(16/17) 6765050447745632 a007 Real Root Of 492*x^4-991*x^3+196*x^2+431*x-208 6765050460878799 r009 Re(z^3+c),c=-5/44+29/50*I,n=43 6765050478120602 m001 (Si(Pi)+sin(1/5*Pi))/(-CopelandErdos+Gompertz) 6765050488057848 m001 (Cahen-CareFree)/(Kolakoski+OneNinth) 6765050491568618 r009 Im(z^3+c),c=-17/50+44/61*I,n=6 6765050492544465 m001 (ln(5)+arctan(1/2))/(Zeta(1,-1)+Bloch) 6765050496329382 m001 (cos(1/5*Pi)-ln(5))/(exp(1/exp(1))-MertensB1) 6765050499219677 r005 Im(z^2+c),c=-43/64+5/39*I,n=45 6765050550764858 r005 Re(z^2+c),c=-97/86+10/37*I,n=24 6765050570474306 a007 Real Root Of 554*x^4-812*x^3+76*x^2+429*x-112 6765050577870169 r009 Re(z^3+c),c=-41/78+5/53*I,n=14 6765050579268035 m001 (GAMMA(11/12)+Sierpinski)/ZetaQ(2) 6765050607625353 a007 Real Root Of 62*x^4-897*x^3+544*x^2-803*x+559 6765050607972871 r005 Im(z^2+c),c=-17/56+32/49*I,n=32 6765050637930147 a001 1926/329*6557470319842^(16/17) 6765050643702327 a007 Real Root Of 25*x^4+175*x^3+66*x^2+315*x+929 6765050649151948 r002 16th iterates of z^2 + 6765050656198363 a007 Real Root Of 675*x^4-647*x^3+354*x^2+919*x+118 6765050672019872 h001 (9/11*exp(1)+4/9)/(1/2*exp(2)+1/4) 6765050672289406 m001 (MertensB3-Weierstrass)/(Cahen+GolombDickman) 6765050700189739 a003 cos(Pi*21/115)*cos(Pi*21/104) 6765050713418583 m004 -2+125*Pi+30*Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 6765050724363363 l006 ln(4211/8283) 6765050734522451 m001 (-ln(gamma)+MertensB1)/(3^(1/2)-Si(Pi)) 6765050762943907 a007 Real Root Of -764*x^4-315*x^3+543*x^2+571*x-41 6765050767301228 m001 BesselK(0,1)/ln(Riemann3rdZero)/GAMMA(5/24)^2 6765050772969561 a007 Real Root Of -328*x^4+672*x^3+389*x^2+740*x-818 6765050801867151 a007 Real Root Of -882*x^4-238*x^3-411*x^2-15*x+289 6765050804640678 m001 (Robbin+Weierstrass)/(Catalan+LandauRamanujan) 6765050813148303 m001 (arctan(1/2)+Bloch)/(FeigenbaumKappa+Trott2nd) 6765050821694611 a007 Real Root Of -236*x^4+475*x^3+867*x^2+499*x-832 6765050837595177 m001 1/exp(OneNinth)^2*Champernowne^2*GAMMA(1/24)^2 6765050856108696 a007 Real Root Of -497*x^4+165*x^3+808*x^2+502*x+125 6765050856590905 a001 1149851/610*6557470319842^(14/17) 6765050856596022 a001 969323029/610*1836311903^(14/17) 6765050856600236 a001 408569081798/305*514229^(14/17) 6765050892670347 r005 Re(z^2+c),c=-23/38+17/47*I,n=6 6765050895045554 r005 Re(z^2+c),c=-11/12+8/65*I,n=50 6765050903565841 m001 (ZetaP(3)-ZetaQ(3))/(Bloch-Riemann3rdZero) 6765050963832563 m001 ln(GAMMA(1/4))^2/DuboisRaymond^2*cosh(1) 6765050964393969 m005 (1/3*5^(1/2)+3/8)/(1/3*exp(1)+3/4) 6765050980586769 h005 exp(sin(Pi*15/41)+sin(Pi*20/41)) 6765050995845090 a007 Real Root Of 476*x^4+436*x^3+797*x^2-190*x-458 6765051003499603 a007 Real Root Of 631*x^4-788*x^3-419*x^2-165*x-296 6765051009604174 r005 Re(z^2+c),c=-1+17/203*I,n=4 6765051020673464 a007 Real Root Of -308*x^4+37*x^3+67*x^2+579*x+437 6765051022139469 m001 (Champernowne+Kac)/(cos(1)+LambertW(1)) 6765051044610968 m001 FeigenbaumAlpha+Mills+Otter 6765051044653945 h001 (1/3*exp(2)+9/10)/(1/11*exp(1)+1/4) 6765051047832321 m001 (Salem-Sierpinski)/(ErdosBorwein+PlouffeB) 6765051075925023 m005 (1/2*Catalan-4/11)/(3/10*3^(1/2)+7/8) 6765051093307635 a007 Real Root Of 563*x^4+436*x^3+947*x^2+339*x-187 6765051109352541 r005 Im(z^2+c),c=-159/122+1/18*I,n=52 6765051122015229 r009 Re(z^3+c),c=-5/44+29/50*I,n=46 6765051128208822 a007 Real Root Of -857*x^4+523*x^3-495*x^2+105*x+639 6765051163733700 r005 Im(z^2+c),c=-55/122+5/44*I,n=41 6765051168572444 a007 Real Root Of 25*x^4-601*x^3-858*x^2-558*x+951 6765051176577714 r009 Re(z^3+c),c=-5/44+29/50*I,n=48 6765051179299959 r002 4th iterates of z^2 + 6765051186516837 r005 Im(z^2+c),c=-21/32+17/60*I,n=44 6765051267906012 a007 Real Root Of -923*x^4+221*x^3-351*x^2-107*x+350 6765051280811214 a007 Real Root Of 17*x^4+39*x^3-397*x^2+898*x+712 6765051292380576 a007 Real Root Of 342*x^4+304*x^3-372*x^2-922*x-431 6765051309632330 a007 Real Root Of 936*x^4-545*x^3-133*x^2-754*x-814 6765051315095453 a007 Real Root Of -42*x^4-158*x^3+107*x^2+924*x+536 6765051321324242 a008 Real Root of x^3-x^2-56*x+115 6765051341651022 m001 BesselJ(0,1)/ln(Artin)/GAMMA(1/12) 6765051342207823 a007 Real Root Of -174*x^4+945*x^3-610*x^2-596*x+205 6765051349996390 r005 Im(z^2+c),c=-17/50+50/63*I,n=6 6765051350981855 r005 Re(z^2+c),c=-7/10+61/245*I,n=14 6765051359681209 a007 Real Root Of -845*x^4+625*x^3+378*x^2+932*x+828 6765051377659902 l006 ln(1848/3635) 6765051387811277 m005 (1/2*Catalan-7/9)/(3/10*Zeta(3)-5/6) 6765051397077448 r009 Re(z^3+c),c=-5/44+29/50*I,n=50 6765051397664933 r005 Im(z^2+c),c=-9/16+1/82*I,n=57 6765051404548905 m005 (1/2*5^(1/2)+4)/(4/9*gamma+1/2) 6765051423196610 a001 9/3278735159921*46368^(16/17) 6765051429117104 a005 (1/cos(23/226*Pi))^878 6765051431363912 r009 Im(z^3+c),c=-15/38+33/53*I,n=10 6765051431890599 m001 (-KhinchinHarmonic+Robbin)/(1+BesselK(1,1)) 6765051433604482 m005 (1/2*3^(1/2)-5/7)/(5/6*Pi-3/8) 6765051460623567 m001 1/Zeta(9)*exp(Rabbit)/sqrt(3)^2 6765051470938470 r005 Im(z^2+c),c=-11/78+24/35*I,n=25 6765051474552001 m005 (1/3*3^(1/2)-1/3)/(1/6*2^(1/2)+1/8) 6765051477812614 a007 Real Root Of 963*x^4-997*x^3-235*x^2+254*x-231 6765051490568295 a007 Real Root Of 476*x^4+2*x^3-599*x^2-967*x+828 6765051508112947 h001 (7/8*exp(2)+9/11)/(2/7*exp(1)+3/10) 6765051514151486 m001 (Zeta(5)-exp(Pi))/(Tetranacci+Totient) 6765051517561990 r002 13th iterates of z^2 + 6765051519272136 r005 Re(z^2+c),c=-37/70+24/49*I,n=9 6765051548049376 m004 6+5*Sqrt[5]*Pi+(25*Pi*Sin[Sqrt[5]*Pi])/2 6765051565868452 r009 Re(z^3+c),c=-5/44+29/50*I,n=52 6765051568945814 a007 Real Root Of 917*x^4+219*x^3+375*x^2+937*x+338 6765051571562787 r005 Re(z^2+c),c=-59/44+5/61*I,n=14 6765051599917841 a003 cos(Pi*22/91)*sin(Pi*31/81) 6765051601441337 a007 Real Root Of 238*x^4-971*x^3+922*x^2+11*x-765 6765051604429328 r009 Im(z^3+c),c=-11/42+27/40*I,n=4 6765051609351713 a007 Real Root Of -599*x^4+951*x^3+358*x^2-819*x-298 6765051631109397 m001 Lehmer^2/ln(GlaisherKinkelin)^2/Catalan^2 6765051633044438 r002 32th iterates of z^2 + 6765051634278411 a007 Real Root Of -114*x^4+802*x^3-504*x^2-594*x+101 6765051652636278 r009 Re(z^3+c),c=-5/44+29/50*I,n=54 6765051658854916 r005 Im(z^2+c),c=-8/7+5/54*I,n=14 6765051665516326 s001 sum(exp(-Pi/2)^n*A068541[n],n=1..infinity) 6765051669116036 r009 Re(z^3+c),c=-5/44+29/50*I,n=57 6765051669489497 r009 Re(z^3+c),c=-5/44+29/50*I,n=59 6765051673449695 r009 Re(z^3+c),c=-5/44+29/50*I,n=61 6765051676625210 r009 Re(z^3+c),c=-5/44+29/50*I,n=63 6765051680085783 r009 Re(z^3+c),c=-5/44+29/50*I,n=64 6765051680780673 a008 Real Root of x^4-2*x^3-25*x^2-49*x+45 6765051682489934 r009 Re(z^3+c),c=-5/44+29/50*I,n=62 6765051684074831 r009 Re(z^3+c),c=-5/44+29/50*I,n=56 6765051684497511 r009 Re(z^3+c),c=-5/44+29/50*I,n=55 6765051686296423 r009 Re(z^3+c),c=-5/44+29/50*I,n=60 6765051689384825 r009 Re(z^3+c),c=-5/44+29/50*I,n=58 6765051706408235 a001 23725150497407/8*365435296162^(7/11) 6765051717380295 a007 Real Root Of 677*x^4-233*x^3-68*x^2-188*x-310 6765051729605030 m001 GAMMA(19/24)^2/exp(TwinPrimes)/GAMMA(23/24)^2 6765051739462789 r009 Re(z^3+c),c=-5/44+29/50*I,n=53 6765051742688920 m001 (BesselJ(0,1)+GAMMA(5/6))/(MertensB3+Porter) 6765051772173955 r009 Im(z^3+c),c=-29/74+21/31*I,n=28 6765051781054108 m001 1/Riemann2ndZero*ln(Lehmer)*exp(1) 6765051790587336 r009 Re(z^3+c),c=-1/48+16/21*I,n=55 6765051791322070 m005 (1/2*gamma+3/5)/(3/5*Pi-4/7) 6765051795796055 r005 Im(z^2+c),c=15/64+1/52*I,n=35 6765051797915482 m001 (-ln(2)+GAMMA(19/24))/(2^(1/3)+ln(gamma)) 6765051843241087 m005 (1/2*5^(1/2)-7/11)/(-29/132+5/12*5^(1/2)) 6765051846680262 a007 Real Root Of -842*x^4+605*x^3+347*x^2-325*x-15 6765051857632912 a007 Real Root Of -916*x^4+430*x^3+918*x^2+196*x-494 6765051861221990 r009 Re(z^3+c),c=-5/44+29/50*I,n=44 6765051865482372 r009 Re(z^3+c),c=-5/44+29/50*I,n=51 6765051893447513 a007 Real Root Of -974*x^4+310*x^3-525*x^2-602*x+133 6765051903114186 r004 Re(z^2+c),c=7/34+2/5*I,z(0)=I,n=2 6765051924693420 l006 ln(5029/9892) 6765051944670646 m001 (Ei(1)+Kac)/(MertensB3-Niven) 6765051947086209 r005 Re(z^2+c),c=-5/27+44/63*I,n=35 6765051965051190 a007 Real Root Of -733*x^4-271*x^3+788*x^2+928*x-751 6765052001451873 a007 Real Root Of -317*x^4-575*x^3-285*x^2+562*x+399 6765052006424899 a007 Real Root Of -495*x^4+610*x^3+330*x^2+724*x-726 6765052026731397 a007 Real Root Of 924*x^4-659*x^3-293*x^2-719*x+631 6765052027783880 r009 Re(z^3+c),c=-5/44+29/50*I,n=45 6765052055290142 a007 Real Root Of 725*x^4-219*x^3-488*x^2-987*x+807 6765052060133017 a007 Real Root Of -120*x^4+872*x^3+404*x^2-109*x-356 6765052061682410 m001 (2^(1/2)-ln(3))/(-BesselI(1,1)+Paris) 6765052068623483 a007 Real Root Of -92*x^4-672*x^3-446*x^2-850*x-700 6765052071445233 r009 Re(z^3+c),c=-5/44+29/50*I,n=49 6765052099711397 a001 3/11*3^(43/52) 6765052134857725 r009 Im(z^3+c),c=-3/118+23/32*I,n=3 6765052138518965 a001 317811/521*322^(5/12) 6765052159848151 s002 sum(A149470[n]/(16^n),n=1..infinity) 6765052163344197 a007 Real Root Of 129*x^4-643*x^3-14*x^2-969*x+834 6765052170833212 r002 6th iterates of z^2 + 6765052171007502 g005 GAMMA(7/10)*GAMMA(8/9)*GAMMA(1/7)/GAMMA(2/3) 6765052175143832 a007 Real Root Of 698*x^4-852*x^3+195*x^2-214*x-644 6765052186382156 r005 Im(z^2+c),c=-39/29+3/40*I,n=5 6765052186593580 m001 Psi(2,1/3)*exp(1/Pi)^Cahen 6765052192717015 h001 (7/12*exp(2)+1/12)/(4/5*exp(2)+7/12) 6765052203301669 s002 sum(A041661[n]/(16^n),n=1..infinity) 6765052222452826 a001 615*24476^(14/59) 6765052239148076 m005 (1/3*Pi+2/7)/(9/10*Pi-6/7) 6765052242492193 l006 ln(3181/6257) 6765052242492193 p004 log(6257/3181) 6765052250968072 a001 17711/11*39603^(8/59) 6765052252114480 a007 Real Root Of -79*x^4+291*x^3-581*x^2+781*x-336 6765052255673150 r009 Re(z^3+c),c=-5/44+29/50*I,n=47 6765052278091691 r005 Im(z^2+c),c=19/52+7/22*I,n=59 6765052284739153 m001 Chi(1)^HardyLittlewoodC5/exp(1/Pi) 6765052312657892 r005 Re(z^2+c),c=-49/64+18/41*I,n=4 6765052332119079 a007 Real Root Of 718*x^4+814*x^3+960*x^2-503*x-678 6765052334444946 m001 (Cahen+Sarnak)/(sin(1/12*Pi)-BesselI(0,2)) 6765052340609310 a007 Real Root Of -426*x^4+405*x^3+151*x^2+650*x-545 6765052346859441 r005 Im(z^2+c),c=-7/12+41/60*I,n=5 6765052405622786 a001 2/710647*4^(31/49) 6765052428695047 s002 sum(A043666[n]/((2*n+1)!),n=1..infinity) 6765052451491810 m001 (exp(1)+Zeta(5))/(-LaplaceLimit+OneNinth) 6765052456131413 a007 Real Root Of -545*x^4-804*x^3-317*x^2+150*x-1 6765052461992566 m001 exp(-1/2*Pi)*GAMMA(1/24)^Artin 6765052464605349 m001 BesselK(0,1)*ln(5)-GAMMA(2/3) 6765052468295609 m001 exp(1)/Catalan*BesselI(0,2) 6765052472555927 r009 Re(z^3+c),c=-41/66+13/53*I,n=9 6765052505781023 m001 1/Zeta(5)^2/Lehmer/exp(sin(1)) 6765052509328076 a001 17711/11*2207^(11/59) 6765052533796850 r002 56th iterates of z^2 + 6765052535937390 a007 Real Root Of -559*x^4-186*x^3+109*x^2+175*x+128 6765052540513545 r005 Im(z^2+c),c=-27/22+4/61*I,n=17 6765052567415209 a007 Real Root Of 328*x^4+156*x^3+543*x^2-890*x-871 6765052596548457 l006 ln(4514/8879) 6765052600360373 r005 Im(z^2+c),c=-23/18+1/198*I,n=57 6765052601252811 a001 121393/1364*322^(3/4) 6765052615483257 a001 3571/3*89^(12/31) 6765052630370340 m005 (1/2*gamma+2/3)/(9/11*Zeta(3)+3/7) 6765052648573392 r005 Im(z^2+c),c=-21/26+3/89*I,n=54 6765052660456265 a001 123/4181*377^(11/12) 6765052677128171 r005 Re(z^2+c),c=-109/102+14/61*I,n=56 6765052692036365 a007 Real Root Of -108*x^4+615*x^3+720*x^2+579*x-889 6765052713819484 m005 (5/6+1/6*5^(1/2))/(5/12*2^(1/2)-4/7) 6765052714247104 m001 (Ei(1,1)-gamma(3))/(DuboisRaymond-Magata) 6765052730111136 r009 Re(z^3+c),c=-1/4+18/25*I,n=42 6765052734123337 r005 Im(z^2+c),c=-1/26+29/39*I,n=59 6765052737166992 r009 Im(z^3+c),c=-21/58+27/40*I,n=21 6765052738950450 m001 (exp(-1/2*Pi)-exp(Pi))/(CareFree+Khinchin) 6765052766681808 r002 51th iterates of z^2 + 6765052781128209 a007 Real Root Of 144*x^4-442*x^3+69*x^2-42*x-227 6765052869670871 m008 (5/6*Pi^4+3)/(4*Pi^3+2/5) 6765052884549190 a001 3020733700601/48*144^(16/17) 6765052897003826 m001 GAMMA(19/24)^Khinchin/(Stephens^Khinchin) 6765052932146541 r005 Re(z^2+c),c=25/114+26/57*I,n=40 6765052960217919 m001 (LandauRamanujan+Niven)/(2^(1/2)+5^(1/2)) 6765052971842498 m009 (32*Catalan+4*Pi^2+3/4)/(2/3*Psi(1,3/4)-2/3) 6765052990696760 a007 Real Root Of 127*x^4-846*x^3+639*x^2+99*x-514 6765052991752009 a007 Real Root Of -726*x^4+729*x^3-441*x^2-196*x+447 6765053004567210 m005 (1/3*exp(1)+3/7)/(2/3*3^(1/2)+9/11) 6765053013528919 a001 121393/2207*322^(5/6) 6765053021369343 r005 Re(z^2+c),c=-41/56+9/35*I,n=8 6765053051614785 p001 sum((-1)^n/(157*n+123)/(2^n),n=0..infinity) 6765053069300009 r009 Im(z^3+c),c=-45/106+29/49*I,n=16 6765053071274645 r005 Im(z^2+c),c=-49/38+2/55*I,n=58 6765053076840207 m001 (1-gamma)/(-ThueMorse+Weierstrass) 6765053090897476 r009 Re(z^3+c),c=-81/122+3/8*I,n=2 6765053109965418 m001 (exp(1)+ln(gamma))/(-gamma(3)+FellerTornier) 6765053128689492 q001 573/847 6765053128689492 r005 Im(z^2+c),c=-13/14+191/242*I,n=2 6765053142568019 a007 Real Root Of 137*x^4-675*x^3-566*x^2-883*x-576 6765053151754077 r005 Im(z^2+c),c=-7/24+1/10*I,n=17 6765053153873057 m008 (3/4*Pi+2)/(2/3*Pi^6+3) 6765053154396277 s002 sum(A021384[n]/(n*exp(pi*n)+1),n=1..infinity) 6765053160955413 m001 Mills^Shi(1)*FeigenbaumDelta^Shi(1) 6765053190979725 a003 sin(Pi*12/119)-sin(Pi*32/71) 6765053220793566 r005 Re(z^2+c),c=-11/16+26/99*I,n=8 6765053264779292 r009 Im(z^3+c),c=-19/52+33/49*I,n=31 6765053276097548 r002 22th iterates of z^2 + 6765053325488395 r008 a(0)=7,K{-n^6,-5+n^3-2*n^2+5*n} 6765053339713968 a007 Real Root Of 870*x^4+255*x^3+183*x^2-980*x-850 6765053386247557 r002 3th iterates of z^2 + 6765053415654050 m008 (1/3*Pi^6+5)/(1/2*Pi^6+2/5) 6765053423543824 s002 sum(A220909[n]/((2^n-1)/n),n=1..infinity) 6765053436725282 r005 Im(z^2+c),c=-10/9+9/110*I,n=28 6765053441449364 l006 ln(1333/2622) 6765053521033404 m001 (ln(gamma)+GAMMA(5/6))/(DuboisRaymond+Robbin) 6765053528247391 m001 exp(Zeta(1/2))/Zeta(1,2)*sqrt(1+sqrt(3))^2 6765053549902295 a007 Real Root Of -786*x^4+845*x^3+985*x^2+462*x+288 6765053555550873 a007 Real Root Of -136*x^4+287*x^3+213*x^2+590*x+419 6765053564519049 r005 Im(z^2+c),c=15/64+1/52*I,n=40 6765053572906134 a007 Real Root Of 567*x^4+31*x^3-9*x^2-251*x+17 6765053576805090 a007 Real Root Of -944*x^4+993*x^3+589*x^2+413*x+515 6765053578932358 a005 (1/cos(5/229*Pi))^812 6765053587633933 m001 (Mills+OneNinth)/(GAMMA(11/12)+MertensB2) 6765053593908556 a007 Real Root Of 397*x^4-912*x^3+668*x^2-78*x-724 6765053598319764 r002 44th iterates of z^2 + 6765053606247570 r009 Im(z^3+c),c=-3/17+35/46*I,n=16 6765053610499760 m001 (KhinchinHarmonic+ZetaP(4))/(Si(Pi)+sin(1)) 6765053629317634 a007 Real Root Of -165*x^4+914*x^3-117*x^2+838*x+938 6765053631948892 a003 sin(Pi*6/95)-sin(Pi*23/68) 6765053647317044 m001 (-3^(1/3)+gamma(3))/(Si(Pi)-exp(Pi)) 6765053658958348 m005 1/4*5^(1/2)/(1/12*Catalan+3/4) 6765053673690911 a007 Real Root Of -219*x^4-44*x^3+319*x^2+830*x-648 6765053689433866 r005 Re(z^2+c),c=-119/110+20/57*I,n=6 6765053745425475 a007 Real Root Of 942*x^4-30*x^3+744*x^2+924*x+78 6765053749750747 m001 FeigenbaumB^BesselI(1,1)/MertensB3 6765053752983026 r005 Re(z^2+c),c=-23/32+5/63*I,n=3 6765053760949565 p001 sum((-1)^n/(571*n+146)/(16^n),n=0..infinity) 6765053765378933 r005 Re(z^2+c),c=-13/14+3/38*I,n=16 6765053785153506 a007 Real Root Of 440*x^4-899*x^3+40*x^2-562*x-769 6765053820537289 a003 sin(Pi*3/103)-sin(Pi*17/61) 6765053826746223 r009 Re(z^3+c),c=-1/27+4/5*I,n=11 6765053826868268 m001 exp(TreeGrowth2nd)/PisotVijayaraghavan*gamma 6765053827188054 p004 log(31147/30937) 6765053834544751 a007 Real Root Of 382*x^4-148*x^3+556*x^2-72*x-429 6765053849505353 a001 5/15251*1364^(13/31) 6765053851695693 m001 ZetaP(4)/(FeigenbaumC-ArtinRank2) 6765053885705755 a007 Real Root Of -964*x^4+682*x^3+457*x^2-93*x+141 6765053886586462 m001 (gamma(1)+FellerTornier)/(1-Zeta(5)) 6765053929975574 r005 Im(z^2+c),c=-9/14+22/193*I,n=32 6765053930415411 a007 Real Root Of 754*x^4-558*x^3+647*x^2+860*x-45 6765053933806121 a007 Real Root Of -903*x^4+86*x^3-376*x^2+321*x+605 6765053952434910 a007 Real Root Of -157*x^4+781*x^3+306*x^2+173*x-466 6765053956430046 a007 Real Root Of -166*x^4+187*x^3+310*x^2+779*x-692 6765053962238380 a001 3010349/1597*6557470319842^(14/17) 6765053962239127 a001 2537720636/1597*1836311903^(14/17) 6765053962243341 a001 2139295485799/1597*514229^(14/17) 6765053970365664 a001 199/34*2178309^(25/39) 6765054012654768 r002 4th iterates of z^2 + 6765054021652913 b008 2*Pi+Zeta[3,Sqrt[2]] 6765054096599885 m001 LambertW(1)+FeigenbaumDelta+GAMMA(7/12) 6765054096599885 m001 LambertW(1)+GAMMA(7/12)+FeigenbaumDelta 6765054109608495 g006 Psi(1,9/10)-Psi(1,5/11)-Psi(1,2/7)-Psi(1,1/7) 6765054129227793 r002 31i'th iterates of 2*x/(1-x^2) of 6765054167017945 h001 (5/11*exp(2)+1/2)/(2/3*exp(2)+7/9) 6765054177499180 r005 Im(z^2+c),c=-2/3+35/254*I,n=20 6765054180081933 r009 Im(z^3+c),c=-41/98+25/43*I,n=59 6765054181238203 r002 55i'th iterates of 2*x/(1-x^2) of 6765054199857883 a001 105937/1926*322^(5/6) 6765054233204063 l006 ln(4817/9475) 6765054243225745 a001 843/514229*13^(21/38) 6765054290423585 r005 Re(z^2+c),c=1/15+11/26*I,n=32 6765054339071891 a007 Real Root Of -509*x^4+660*x^3-153*x^2-133*x+291 6765054343025501 g006 Psi(1,5/7)-Psi(1,7/12)-Psi(1,5/8)-Psi(1,4/5) 6765054348547693 m001 ((1+3^(1/2))^(1/2))^cos(1)/(Magata^cos(1)) 6765054348560832 m001 LaplaceLimit+HeathBrownMoroz^MasserGramain 6765054360425275 r002 4th iterates of z^2 + 6765054365514342 m001 exp(Pi)^sin(1)*exp(Pi)^(1/2) 6765054365514342 m001 exp(Pi)^sin(1)/exp(-1/2*Pi) 6765054372940981 a001 832040/15127*322^(5/6) 6765054384156881 m008 (4/5*Pi^3-5)/(3*Pi^2-1/3) 6765054391458020 m003 49/12+Sqrt[5]/64-3*Sec[1/2+Sqrt[5]/2] 6765054398193465 a001 726103/13201*322^(5/6) 6765054401877753 a001 5702887/103682*322^(5/6) 6765054402415284 a001 4976784/90481*322^(5/6) 6765054402493708 a001 39088169/710647*322^(5/6) 6765054402505150 a001 831985/15126*322^(5/6) 6765054402506820 a001 267914296/4870847*322^(5/6) 6765054402507063 a001 233802911/4250681*322^(5/6) 6765054402507099 a001 1836311903/33385282*322^(5/6) 6765054402507104 a001 1602508992/29134601*322^(5/6) 6765054402507105 a001 12586269025/228826127*322^(5/6) 6765054402507105 a001 10983760033/199691526*322^(5/6) 6765054402507105 a001 86267571272/1568397607*322^(5/6) 6765054402507105 a001 75283811239/1368706081*322^(5/6) 6765054402507105 a001 591286729879/10749957122*322^(5/6) 6765054402507105 a001 12585437040/228811001*322^(5/6) 6765054402507105 a001 4052739537881/73681302247*322^(5/6) 6765054402507105 a001 3536736619241/64300051206*322^(5/6) 6765054402507105 a001 6557470319842/119218851371*322^(5/6) 6765054402507105 a001 2504730781961/45537549124*322^(5/6) 6765054402507105 a001 956722026041/17393796001*322^(5/6) 6765054402507105 a001 365435296162/6643838879*322^(5/6) 6765054402507105 a001 139583862445/2537720636*322^(5/6) 6765054402507105 a001 53316291173/969323029*322^(5/6) 6765054402507105 a001 20365011074/370248451*322^(5/6) 6765054402507105 a001 7778742049/141422324*322^(5/6) 6765054402507107 a001 2971215073/54018521*322^(5/6) 6765054402507121 a001 1134903170/20633239*322^(5/6) 6765054402507214 a001 433494437/7881196*322^(5/6) 6765054402507851 a001 165580141/3010349*322^(5/6) 6765054402512222 a001 63245986/1149851*322^(5/6) 6765054402542177 a001 24157817/439204*322^(5/6) 6765054402747496 a001 9227465/167761*322^(5/6) 6765054404154768 a001 3524578/64079*322^(5/6) 6765054413800359 a001 1346269/24476*322^(5/6) 6765054415346479 a001 7881196/4181*6557470319842^(14/17) 6765054415346588 a001 6643838879/4181*1836311903^(14/17) 6765054415350801 a001 5600748293801/4181*514229^(14/17) 6765054421176157 m005 (1/2*3^(1/2)-1/4)/(1/11*Pi+5/8) 6765054430798760 a001 13/47*4^(20/31) 6765054447555770 m005 (1/2*5^(1/2)-1/7)/(8/11*3^(1/2)+2/11) 6765054460222223 m001 1/RenyiParking*LaplaceLimit/ln(Pi)^2 6765054479912223 a001 514229/9349*322^(5/6) 6765054481454065 a001 20633239/10946*6557470319842^(14/17) 6765054481454080 a001 17393796001/10946*1836311903^(14/17) 6765054481458294 a001 7331474697802/5473*514229^(14/17) 6765054487671705 r005 Re(z^2+c),c=-7/10+38/81*I,n=14 6765054488360176 m001 1/FeigenbaumAlpha^2*Cahen*ln(GAMMA(11/24)) 6765054489085228 m005 (1/2*exp(1)-4/7)/(4/11*Zeta(3)+8/11) 6765054491099031 a001 54018521/28657*6557470319842^(14/17) 6765054491099034 a001 45537549124/28657*1836311903^(14/17) 6765054492506213 a001 141422324/75025*6557470319842^(14/17) 6765054492506213 a001 119218851371/75025*1836311903^(14/17) 6765054492711518 a001 370248451/196418*6557470319842^(14/17) 6765054492711518 a001 312119004989/196418*1836311903^(14/17) 6765054492741472 a001 969323029/514229*6557470319842^(14/17) 6765054492741472 a001 817138163596/514229*1836311903^(14/17) 6765054492745842 a001 2537720636/1346269*6557470319842^(14/17) 6765054492745842 a001 2139295485799/1346269*1836311903^(14/17) 6765054492746480 a001 5600748293801/3524578*1836311903^(14/17) 6765054492746480 a001 6643838879/3524578*6557470319842^(14/17) 6765054492746573 a001 14662949395604/9227465*1836311903^(14/17) 6765054492746573 a001 17393796001/9227465*6557470319842^(14/17) 6765054492746586 a001 45537549124/24157817*6557470319842^(14/17) 6765054492746588 a001 119218851371/63245986*6557470319842^(14/17) 6765054492746588 a001 312119004989/165580141*6557470319842^(14/17) 6765054492746588 a001 817138163596/433494437*6557470319842^(14/17) 6765054492746588 a001 2139295485799/1134903170*6557470319842^(14/17) 6765054492746588 a001 5600748293801/2971215073*6557470319842^(14/17) 6765054492746588 a001 3020733700601/1602508992*6557470319842^(14/17) 6765054492746588 a001 3461452808002/1836311903*6557470319842^(14/17) 6765054492746588 a001 440719107401/233802911*6557470319842^(14/17) 6765054492746588 a001 505019158607/267914296*6557470319842^(14/17) 6765054492746589 a001 64300051206/34111385*6557470319842^(14/17) 6765054492746589 a001 73681302247/39088169*6557470319842^(14/17) 6765054492746594 a001 23725150497407/14930352*1836311903^(14/17) 6765054492746594 a001 9381251041/4976784*6557470319842^(14/17) 6765054492746630 a001 9062201101803/5702887*1836311903^(14/17) 6765054492746630 a001 10749957122/5702887*6557470319842^(14/17) 6765054492746874 a001 494493258286/311187*1836311903^(14/17) 6765054492746874 a001 1368706081/726103*6557470319842^(14/17) 6765054492748543 a001 1322157322203/832040*1836311903^(14/17) 6765054492748543 a001 1568397607/832040*6557470319842^(14/17) 6765054492759984 a001 505019158607/317811*1836311903^(14/17) 6765054492759984 a001 710646/377*6557470319842^(14/17) 6765054492838403 a001 192900153618/121393*1836311903^(14/17) 6765054492838404 a001 228826127/121393*6557470319842^(14/17) 6765054493375898 a001 10525900321/6624*1836311903^(14/17) 6765054493375899 a001 29134601/15456*6557470319842^(14/17) 6765054497059943 a001 28143753123/17711*1836311903^(14/17) 6765054497059949 a001 33385282/17711*6557470319842^(14/17) 6765054497064156 a001 23725150497407/17711*514229^(14/17) 6765054498609134 r009 Re(z^3+c),c=-1/30+46/57*I,n=19 6765054499179449 m005 (1/2*gamma-4/9)/(113/84+3/7*5^(1/2)) 6765054511181235 a007 Real Root Of -818*x^4+3*x^3-204*x^2-165*x+154 6765054520993314 a007 Real Root Of 131*x^4+762*x^3-786*x^2+284*x-567 6765054522310758 a001 10749957122/6765*1836311903^(14/17) 6765054522310800 a001 4250681/2255*6557470319842^(14/17) 6765054522314972 a001 3020733700601/2255*514229^(14/17) 6765054533371805 m001 (ln(3)+(1+3^(1/2))^(1/2))/(Magata+TwinPrimes) 6765054534487241 a007 Real Root Of -798*x^4+853*x^3-974*x^2-847*x+304 6765054536134302 l006 ln(3484/6853) 6765054563105670 r009 Re(z^3+c),c=-3/38+25/53*I,n=3 6765054564108087 m001 (2^(1/3)-GAMMA(5/6))/(Tetranacci+Trott) 6765054579084372 m005 (1/2*Catalan-5/12)/(6/11*Catalan+1/9) 6765054606561338 r009 Im(z^3+c),c=-14/29+17/33*I,n=20 6765054606618232 m005 (1/2*Zeta(3)+10/11)/(-59/84+3/14*5^(1/2)) 6765054621153498 m001 (GAMMA(2/3)-BesselI(1,1))^exp(1/2) 6765054621885236 m001 1/ln((3^(1/3)))^2*Backhouse^2/GAMMA(7/12)^2 6765054626842013 p004 log(31643/16087) 6765054643497594 l004 Shi(280/81) 6765054656954478 r009 Re(z^3+c),c=-5/44+29/50*I,n=42 6765054680506212 a007 Real Root Of -725*x^4+613*x^3+660*x^2+204*x-478 6765054690992834 r005 Im(z^2+c),c=-2/13+33/49*I,n=58 6765054695382429 a001 4106118243/2584*1836311903^(14/17) 6765054695382715 a001 4870847/2584*6557470319842^(14/17) 6765054695386643 a001 1730726404001/1292*514229^(14/17) 6765054736390570 a007 Real Root Of -45*x^4-145*x^3+991*x^2-591*x+8 6765054741235934 p003 LerchPhi(1/2,6,109/220) 6765054745311940 r002 36i'th iterates of 2*x/(1-x^2) of 6765054746344005 r005 Im(z^2+c),c=-7/6+7/99*I,n=10 6765054750250801 m009 (8*Catalan+Pi^2+5)/(2/5*Pi^2-2/3) 6765054783235006 m001 MadelungNaCl/CareFree*exp(sqrt(1+sqrt(3)))^2 6765054801463237 r009 Im(z^3+c),c=-27/50+13/42*I,n=14 6765054851510416 a007 Real Root Of -61*x^4+912*x^3-684*x^2-86*x+550 6765054862313034 p004 log(26399/13421) 6765054871456229 a007 Real Root Of -921*x^4-118*x^3+224*x^2-87*x-5 6765054882391000 a007 Real Root Of 973*x^4-957*x^3+381*x^2-258*x-849 6765054892897404 a001 2/121393*121393^(49/54) 6765054933049713 a001 196418/3571*322^(5/6) 6765054939222509 r005 Re(z^2+c),c=3/64+25/64*I,n=17 6765054958400338 a007 Real Root Of -249*x^4+874*x^3-442*x^2+492*x-349 6765054971439083 m001 (-Paris+Robbin)/(Pi^(1/2)-Psi(1,1/3)) 6765054994432326 a005 (1/cos(23/229*Pi))^629 6765055004913976 a007 Real Root Of -79*x^4+919*x^3+228*x^2-203*x-235 6765055005087913 a007 Real Root Of -801*x^4-105*x^3+471*x^2+877*x+513 6765055007685572 r005 Re(z^2+c),c=7/27+36/61*I,n=7 6765055010622735 m001 (Chi(1)+arctan(1/2))/(RenyiParking+Salem) 6765055034290437 r005 Im(z^2+c),c=-77/122+6/47*I,n=58 6765055056922351 a007 Real Root Of 308*x^4-799*x^3-458*x^2+116*x+314 6765055106366055 r005 Im(z^2+c),c=-139/118+5/56*I,n=45 6765055137208405 m001 exp(GAMMA(11/24))*ErdosBorwein/GAMMA(13/24) 6765055145172718 a007 Real Root Of 134*x^4+822*x^3-573*x^2-2*x+43 6765055168904627 m001 (cos(1/5*Pi)+Zeta(1,2))/(Salem+Sarnak) 6765055192340722 r005 Im(z^2+c),c=7/19+17/61*I,n=15 6765055196422837 a007 Real Root Of 676*x^4-738*x^3-171*x^2-424*x+452 6765055207001782 m008 (3/5*Pi^4+4)/(3*Pi^5+5) 6765055210993158 a007 Real Root Of 304*x^4-713*x^3-660*x^2-393*x+725 6765055211416368 r002 50th iterates of z^2 + 6765055214523374 l006 ln(2151/4231) 6765055222393132 r005 Im(z^2+c),c=-3/62+42/53*I,n=26 6765055222971884 a007 Real Root Of 301*x^4-977*x^3+101*x^2-452*x+499 6765055224704409 r001 25i'th iterates of 2*x^2-1 of 6765055226495043 a007 Real Root Of 461*x^4-504*x^3+510*x^2+204*x-348 6765055232640866 a007 Real Root Of -272*x^4-600*x^3-633*x^2+903*x-58 6765055238510310 a003 cos(Pi*22/95)/cos(Pi*33/71) 6765055262856861 a007 Real Root Of 540*x^4-494*x^3-338*x^2-573*x-499 6765055267111325 a001 55/39603*3571^(6/31) 6765055272926474 a001 15127/8*514229^(28/45) 6765055312310383 m001 (-Riemann2ndZero+Salem)/(5^(1/2)+ArtinRank2) 6765055326185176 m005 (1/2*gamma+5/8)/(3/8*3^(1/2)-2) 6765055326245386 r005 Re(z^2+c),c=-41/102+24/41*I,n=7 6765055346446760 a001 55/15127*15127^(2/31) 6765055347189715 r009 Re(z^3+c),c=-5/44+29/50*I,n=33 6765055358273701 a001 55/64079*9349^(7/31) 6765055358552354 a007 Real Root Of 709*x^4+179*x^3-762*x^2-999*x+71 6765055369747693 r004 Re(z^2+c),c=3/34+3/17*I,z(0)=exp(7/8*I*Pi),n=6 6765055410593546 m001 (Riemann1stZero-Tetranacci)/(Bloch+MertensB3) 6765055426027573 a001 1/416020*75025^(11/37) 6765055456078113 b008 -7+Sqrt[Pi]*Csch[E] 6765055460629270 m005 (1/2*exp(1)+1/9)/(2/5*Pi+11/12) 6765055461026508 m002 -3+Pi+Pi^6-Pi^5/ProductLog[Pi] 6765055466366608 a007 Real Root Of -529*x^4+826*x^3+256*x^2-682*x-212 6765055472967971 m001 1/exp(Khintchine)/Si(Pi)*FeigenbaumKappa^2 6765055478676423 a001 55/710647*5778^(16/31) 6765055485258388 r008 a(0)=6,K{-n^6,-54-35*n^3+69*n^2+16*n} 6765055491377562 r005 Im(z^2+c),c=-41/52+22/47*I,n=3 6765055499319173 r005 Im(z^2+c),c=-5/36+38/43*I,n=5 6765055505599543 a007 Real Root Of -507*x^4+435*x^3-547*x^2+656*x+935 6765055516361156 m001 FeigenbaumD^2/Riemann2ndZero^2*ln(TwinPrimes) 6765055529432589 a007 Real Root Of 22*x^4-808*x^3+335*x^2-838*x-975 6765055533946765 r009 Im(z^3+c),c=-27/74+39/58*I,n=11 6765055548101994 a007 Real Root Of 72*x^4-184*x^3+691*x^2-72*x-437 6765055552472743 m001 CareFree*FeigenbaumAlpha/ln(sinh(1))^2 6765055557731756 a007 Real Root Of -300*x^4-269*x^3-711*x^2-164*x+194 6765055588849525 r005 Im(z^2+c),c=19/126+34/59*I,n=41 6765055593959690 r005 Im(z^2+c),c=-35/34+29/93*I,n=8 6765055596011131 p004 log(24373/12391) 6765055609449695 a007 Real Root Of 65*x^4-115*x^3+389*x^2-293*x-2 6765055613451573 a001 615*843^(21/59) 6765055632019237 m004 -31-5*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 6765055670175437 h001 (5/12*exp(1)+2/3)/(7/9*exp(1)+6/11) 6765055676145911 l006 ln(5120/10071) 6765055687101593 a007 Real Root Of -711*x^4+246*x^3-532*x^2-23*x+453 6765055692887902 r009 Re(z^3+c),c=-17/44+40/61*I,n=33 6765055698551672 m005 (1/2*Catalan+5/12)/(1/2*2^(1/2)-2) 6765055699267842 a007 Real Root Of -756*x^4+908*x^3+376*x^2+658*x-740 6765055705001014 a007 Real Root Of 229*x^4-821*x^3-987*x^2-768*x-370 6765055726339363 a001 18/7778742049*987^(14/17) 6765055743580696 a002 3^(6/7)-2^(11/12) 6765055757562118 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^6 6765055778714033 m001 (2^(1/2)+BesselI(1,2))/(Magata+MertensB2) 6765055781254790 r009 Re(z^3+c),c=-7/58+35/54*I,n=29 6765055788687293 r005 Re(z^2+c),c=9/38+17/47*I,n=33 6765055798040764 a007 Real Root Of 632*x^4-121*x^3+935*x^2+381*x-340 6765055807928448 a007 Real Root Of 994*x^4-767*x^3+26*x^2-654*x-900 6765055809397006 a007 Real Root Of -425*x^4-511*x^3-786*x^2+895*x+896 6765055850180075 a001 610/11*9349^(31/59) 6765055861020317 r009 Re(z^3+c),c=-13/34+36/53*I,n=32 6765055866412941 a007 Real Root Of -627*x^4+846*x^3+411*x^2+979*x-981 6765055881633548 a001 224056801/141*1836311903^(14/17) 6765055881635503 a001 620166/329*6557470319842^(14/17) 6765055881637762 a001 440719107401/329*514229^(14/17) 6765055887992234 a007 Real Root Of 597*x^4+180*x^3+347*x^2-733*x-724 6765055902256608 r005 Re(z^2+c),c=-27/40+19/55*I,n=46 6765055941101869 m005 (1/3*Pi-1/11)/(2/9*5^(1/2)+11/12) 6765055968435761 a001 9349/34*28657^(5/57) 6765055980460623 a001 1/3*(1/2*5^(1/2)+1/2)^27*29^(5/11) 6765055995968541 a007 Real Root Of 856*x^4-530*x^3+910*x^2+53*x-724 6765056006765752 m001 (BesselJ(0,1)-Zeta(1,-1))/(FeigenbaumB+Landau) 6765056010585129 l006 ln(2969/5840) 6765056013870155 r005 Re(z^2+c),c=21/118+17/58*I,n=29 6765056014692227 m001 Artin-GAMMA(7/12)+FeigenbaumC 6765056016527815 r002 2th iterates of z^2 + 6765056034556939 l006 ln(9244/9891) 6765056050640232 a007 Real Root Of 106*x^4+718*x^3+128*x^2+906*x+551 6765056089609950 m002 -Pi^(-3)+5*Log[Pi]+ProductLog[Pi] 6765056100148855 a007 Real Root Of -996*x^4+375*x^3+104*x^2-114*x+200 6765056130048291 a001 2207/34*55^(31/53) 6765056130413676 m001 (Riemann1stZero-Sierpinski)/(gamma(3)+Niven) 6765056153381829 r009 Im(z^3+c),c=-16/25+13/41*I,n=17 6765056154743282 a007 Real Root Of -610*x^4+679*x^3-487*x^2+318*x+776 6765056157170451 a001 6119/36*4181^(28/39) 6765056180540570 a001 55/710647*2207^(18/31) 6765056196162319 r005 Im(z^2+c),c=19/54+10/23*I,n=9 6765056198547007 a007 Real Root Of 586*x^4+747*x^3+780*x^2-159*x-356 6765056222902389 a007 Real Root Of 170*x^4+301*x^3-423*x^2-936*x+698 6765056223560589 m001 cos(Pi/12)^2*(2^(1/3))^2/exp(cosh(1))^2 6765056243105208 m001 3^(1/3)/GAMMA(2/3)*HardyLittlewoodC3 6765056256423804 a007 Real Root Of 299*x^4-771*x^3+141*x^2-488*x-696 6765056256998807 m001 1/ln(Magata)*GolombDickman^2*GAMMA(5/12) 6765056302935476 a001 370248451/610*6557470319842^(12/17) 6765056302935476 a001 119218851371/610*1836311903^(12/17) 6765056304440499 a001 75025/843*18^(40/57) 6765056309821962 a001 1/843*(1/2*5^(1/2)+1/2)^8*3^(3/17) 6765056326598997 m001 (exp(1/Pi)-Landau)/(OrthogonalArrays-ZetaP(3)) 6765056342315070 a007 Real Root Of -257*x^4+421*x^3-296*x^2+138*x+413 6765056352292802 m001 cos(1/5*Pi)/(Cahen-Tribonacci) 6765056352528291 a007 Real Root Of 204*x^4-927*x^3-337*x^2-524*x+753 6765056375408504 r005 Re(z^2+c),c=13/106+27/55*I,n=32 6765056384792439 r005 Im(z^2+c),c=-15/22+31/117*I,n=28 6765056389015267 a007 Real Root Of -392*x^4-379*x^3-169*x^2+951*x+65 6765056398566395 a007 Real Root Of 496*x^4-679*x^3-130*x^2-593*x+567 6765056399709837 a007 Real Root Of -463*x^4+649*x^3+49*x^2-490*x-56 6765056409731676 s002 sum(A107995[n]/((exp(n)+1)*n),n=1..infinity) 6765056415110372 m001 (Zeta(3)-cos(1/5*Pi))/(CareFree-Champernowne) 6765056445876961 m002 -5-Cosh[Pi]+Pi^6*Csch[Pi]+Tanh[Pi] 6765056462744814 l006 ln(3787/7449) 6765056472802545 m005 (1/3*gamma-2/3)/(2*Pi+8/11) 6765056487351359 s002 sum(A058883[n]/(n^3*pi^n-1),n=1..infinity) 6765056489083215 h001 (1/6*exp(2)+1/9)/(5/8*exp(1)+2/7) 6765056525058730 h001 (5/12*exp(2)+8/11)/(2/3*exp(2)+7/10) 6765056539576282 a007 Real Root Of -869*x^4+657*x^3-307*x^2-501*x+187 6765056549884727 m001 (Magata-Tetranacci)/(BesselI(1,2)+Gompertz) 6765056550656542 a001 161/98209*89^(6/19) 6765056563081577 r009 Re(z^3+c),c=-7/60+20/33*I,n=40 6765056579004435 m009 (1/2*Psi(1,3/4)+5)/(Pi^2-3/5) 6765056583440234 m008 (2/3*Pi^2-3/4)/(5/6*Pi^4+5) 6765056594455821 a005 (1/sin(60/137*Pi))^100 6765056596714817 r005 Re(z^2+c),c=-16/23+11/49*I,n=25 6765056630955084 m001 Stephens^(GolombDickman/ln(2^(1/2)+1)) 6765056636011083 m005 (1/2*5^(1/2)-3/11)/(3/8*3^(1/2)+3/5) 6765056643560727 r009 Re(z^3+c),c=-43/78+9/53*I,n=58 6765056648777579 q001 2269/3354 6765056682178191 a001 39603/2*144^(27/38) 6765056694908005 a007 Real Root Of -812*x^4+506*x^3+922*x^2+531*x+264 6765056712239189 a007 Real Root Of -269*x^4+847*x^3+102*x^2+315*x+485 6765056712568033 m005 (1/3*gamma-1/8)/(6*3^(1/2)-3/7) 6765056744734630 m001 ln(GAMMA(1/4))^2/Rabbit/sin(Pi/5)^2 6765056754267519 l006 ln(4605/9058) 6765056766479505 p003 LerchPhi(1/8,3,116/219) 6765056787653772 m005 (1/2*2^(1/2)+1/3)/(5/6*exp(1)-8/11) 6765056799938558 a007 Real Root Of -229*x^4+634*x^3-525*x^2+909*x-523 6765056818091129 m001 1/exp(Paris)^2/HardHexagonsEntropy*GAMMA(1/12) 6765056822797836 m001 (DuboisRaymond-MertensB3)/(ln(5)-gamma(1)) 6765056825114318 a007 Real Root Of -813*x^4+610*x^3+77*x^2-702*x-151 6765056835401797 r005 Re(z^2+c),c=-13/66+44/63*I,n=26 6765056870128902 a001 9/3278735159921*3524578^(14/17) 6765056879578893 m001 ln(Pi)^FeigenbaumB/Zeta(1,-1) 6765056889339163 m009 (5*Psi(1,1/3)+3)/(3/4*Psi(1,1/3)+1/3) 6765056950734280 m001 (Pi-exp(1/exp(1)))/(gamma(1)-Riemann3rdZero) 6765056956972979 a007 Real Root Of 366*x^4+265*x^3+983*x^2-585*x-44 6765056959659406 m006 (1/2*exp(2*Pi)+1/4)/(1/5*exp(Pi)-2/3) 6765056975020139 a007 Real Root Of 268*x^4-453*x^3+713*x^2+613*x-108 6765056977113644 b008 2+5*Erfc[1/24] 6765056984512570 r005 Im(z^2+c),c=47/106+10/29*I,n=31 6765057004857530 a007 Real Root Of 637*x^4-81*x^3+473*x^2+65*x-331 6765057011072493 a007 Real Root Of -393*x^4+604*x^3-959*x^2-259*x+533 6765057032556076 a007 Real Root Of -96*x^4-734*x^3-691*x^2-841*x-244 6765057100343982 r009 Re(z^3+c),c=-7/118+29/32*I,n=19 6765057127059653 r005 Im(z^2+c),c=-2/13+43/64*I,n=31 6765057128570705 h001 (3/11*exp(1)+7/12)/(4/9*exp(1)+3/4) 6765057162814747 m005 (1/2*Catalan+7/8)/(9/11*Pi-3/5) 6765057165527068 r002 6th iterates of z^2 + 6765057173385367 s002 sum(A107995[n]/(n*exp(n)+1),n=1..infinity) 6765057189176448 a007 Real Root Of -590*x^4+617*x^3-35*x^2+648*x+769 6765057207892531 m001 (polylog(4,1/2)-GAMMA(23/24))/(OneNinth-Thue) 6765057218499220 r005 Im(z^2+c),c=-13/30+29/50*I,n=14 6765057219255230 a007 Real Root Of 813*x^4+549*x^3+779*x^2+84*x-300 6765057223399626 r005 Im(z^2+c),c=-95/78+4/49*I,n=45 6765057239138397 r002 3th iterates of z^2 + 6765057253507504 a007 Real Root Of 134*x^4+918*x^3-14*x^2-665*x-303 6765057274116691 a003 sin(Pi*18/91)/sin(Pi*32/97) 6765057276034232 s002 sum(A107995[n]/(n*exp(n)-1),n=1..infinity) 6765057282575842 l006 ln(8101/8668) 6765057285795639 r002 52th iterates of z^2 + 6765057290400845 a005 (1/cos(49/226*Pi))^117 6765057291807043 m001 exp(GAMMA(1/12))*Artin*GAMMA(2/3)^2 6765057383111485 m005 (1/2*2^(1/2)-1/4)/(1/11*exp(1)+3/7) 6765057397878406 a005 (1/cos(27/230*Pi))^656 6765057429279941 m005 (25/4+1/4*5^(1/2))/(3/10*gamma+5/6) 6765057434752007 m001 (3^(1/2))^Zeta(1/2)/LaplaceLimit 6765057440746503 h001 (1/4*exp(2)+8/11)/(1/2*exp(2)+1/9) 6765057441261946 r005 Re(z^2+c),c=27/106+35/57*I,n=8 6765057449848512 r005 Im(z^2+c),c=-1/25+24/37*I,n=21 6765057474856874 r005 Im(z^2+c),c=-1/32+48/59*I,n=23 6765057476396398 m005 (1/3*2^(1/2)+3/7)/(3/8*2^(1/2)+4/5) 6765057484009678 r005 Im(z^2+c),c=-55/122+5/44*I,n=39 6765057499109021 m001 (Gompertz-ThueMorse)/exp(1) 6765057512896008 m005 (1/2*exp(1)-2/9)/(7/10*exp(1)-2/9) 6765057528661437 s002 sum(A069447[n]/(exp(n)-1),n=1..infinity) 6765057547965941 a007 Real Root Of 294*x^4+3*x^3-674*x^2-445*x+547 6765057550058936 m001 ln(2^(1/2)+1)/(KhinchinHarmonic^Weierstrass) 6765057565546248 a007 Real Root Of -949*x^4-133*x^3+660*x^2+623*x+277 6765057569167900 a007 Real Root Of 437*x^4-754*x^3+45*x^2-484*x-673 6765057575883965 a001 196418/521*322^(1/2) 6765057589590546 a007 Real Root Of -919*x^4-143*x^3-510*x^2+784*x+912 6765057594740664 m001 (GAMMA(13/24)+Sierpinski)/(1+Zeta(1,2)) 6765057596586847 m001 (Zeta(5)-CareFree)/(FeigenbaumC-Totient) 6765057613846498 a003 sin(Pi*1/56)-sin(Pi*28/107) 6765057622608956 a007 Real Root Of 935*x^4-105*x^3+849*x^2-315*x-830 6765057627413341 r005 Im(z^2+c),c=-7/6+13/132*I,n=18 6765057682691172 r005 Re(z^2+c),c=-41/102+23/34*I,n=3 6765057690434594 r009 Re(z^3+c),c=-15/122+29/44*I,n=36 6765057724779041 r002 27th iterates of z^2 + 6765057739406705 r009 Re(z^3+c),c=-41/70+31/48*I,n=16 6765057774294656 r005 Re(z^2+c),c=-1/17+46/59*I,n=35 6765057790315565 a007 Real Root Of -776*x^4+772*x^3+141*x^2-680*x-123 6765057800854488 a007 Real Root Of -839*x^4-932*x^3-939*x^2-161*x+208 6765057838053450 q001 1696/2507 6765057844911206 r005 Im(z^2+c),c=-41/29+1/19*I,n=11 6765057885105463 a007 Real Root Of -62*x^4+321*x^3-835*x^2+354*x+734 6765057915151879 m001 (Conway+FeigenbaumAlpha)/(Psi(2,1/3)-ln(Pi)) 6765057947238697 m001 (-GAMMA(17/24)+TwinPrimes)/(cos(1)+ln(gamma)) 6765057962935905 a007 Real Root Of -477*x^4+986*x^3+47*x^2+67*x+429 6765057968387331 a008 Real Root of (1+4*x+4*x^2-3*x^3-3*x^4+3*x^5) 6765058038901907 a001 75025/1364*322^(5/6) 6765058097488406 m001 1/BesselJ(0,1)/ln(TwinPrimes)*arctan(1/2)^2 6765058103896361 l006 ln(818/1609) 6765058121485378 a007 Real Root Of 702*x^4-707*x^3-716*x^2-453*x+706 6765058134825553 a007 Real Root Of -929*x^4+671*x^3+2*x^2-76*x+350 6765058138718554 m001 (-Khinchin+Salem)/(FeigenbaumB-exp(Pi)) 6765058156591433 a001 41/726103*144^(2/55) 6765058206740184 m001 (Catalan-Chi(1))/(-GAMMA(7/12)+FeigenbaumD) 6765058245147784 r005 Re(z^2+c),c=-97/126+13/60*I,n=9 6765058256503425 a003 cos(Pi*31/113)/sin(Pi*40/97) 6765058263668203 a007 Real Root Of 587*x^4-984*x^3+686*x^2+23*x-726 6765058293463681 r005 Im(z^2+c),c=-21/74+43/50*I,n=5 6765058334492189 m002 -6+4/E^Pi-ProductLog[Pi]/Log[Pi] 6765058423495813 a007 Real Root Of -832*x^4+402*x^3+101*x^2-119*x+172 6765058428123670 s001 sum(exp(-2*Pi/5)^n*A259263[n],n=1..infinity) 6765058428123670 s002 sum(A259263[n]/(exp(2/5*pi*n)),n=1..infinity) 6765058436384276 h001 (6/11*exp(2)+1/10)/(1/7*exp(1)+2/9) 6765058444857983 r005 Im(z^2+c),c=-13/48+20/29*I,n=9 6765058451178346 a001 75025/2207*322^(11/12) 6765058452350964 a007 Real Root Of -219*x^4-745*x^3-459*x^2+534*x+38 6765058458256801 a007 Real Root Of 122*x^4+942*x^3+919*x^2+847*x-209 6765058470251822 r005 Re(z^2+c),c=-23/30+4/85*I,n=13 6765058480654344 a003 cos(Pi*13/77)*sin(Pi*33/115) 6765058506418813 a007 Real Root Of 730*x^4-310*x^3+610*x^2+649*x-89 6765058530408169 a007 Real Root Of -101*x^4-734*x^3-302*x^2+341*x+422 6765058539263254 a007 Real Root Of -127*x^4-801*x^3+318*x^2-519*x-57 6765058550721125 r005 Im(z^2+c),c=-65/44+3/44*I,n=6 6765058565910540 m001 ln(Trott)^2/FeigenbaumDelta*cosh(1) 6765058565985496 a001 4870847/377*1836311903^(16/17) 6765058565990027 a001 10749957122/377*514229^(16/17) 6765058648299011 a007 Real Root Of 950*x^4-143*x^3-587*x^2-277*x-162 6765058666309831 a007 Real Root Of 345*x^4+459*x^3+728*x^2-884*x-63 6765058681932698 m005 (1/2*Zeta(3)-8/11)/(10/11*5^(1/2)-1/6) 6765058694816754 a007 Real Root Of -744*x^4+583*x^3-432*x^2+402*x+806 6765058762552948 a007 Real Root Of 15*x^4+76*x^3-44*x^2+988*x+810 6765058780918515 a007 Real Root Of -261*x^4+409*x^3-96*x^2+878*x-622 6765058799251150 r005 Re(z^2+c),c=-95/122+1/51*I,n=51 6765058800478705 a007 Real Root Of -59*x^4-519*x^3-809*x^2+23*x+70 6765058849315595 a007 Real Root Of 71*x^4+603*x^3+897*x^2+477*x+158 6765058851603262 m001 exp(log(1+sqrt(2)))/GaussKuzminWirsing/sinh(1) 6765058857976844 r005 Re(z^2+c),c=13/64+11/34*I,n=31 6765058862895000 m001 (Psi(2,1/3)+exp(1))/(-BesselI(1,1)+Totient) 6765058885772438 m009 (6*Catalan+3/4*Pi^2+1/5)/(Psi(1,2/3)-5) 6765058923427326 m001 (-gamma(1)+AlladiGrinstead)/(2^(1/2)-exp(1)) 6765058940622201 l006 ln(6958/7445) 6765058964198380 m001 Rabbit^Stephens*TravellingSalesman^Stephens 6765058986504511 m001 (exp(1/Pi)+OneNinth)/(GAMMA(3/4)+cos(1/12*Pi)) 6765058996125416 a007 Real Root Of 385*x^4-530*x^3-709*x^2-176*x+527 6765059042009665 a007 Real Root Of -964*x^4+583*x^3+398*x^2+786*x+732 6765059050230556 h001 (7/11*exp(1)+1/8)/(11/12*exp(1)+1/4) 6765059054067397 a003 cos(Pi*19/89)-cos(Pi*41/88) 6765059058286336 a003 sin(Pi*11/107)-sin(Pi*33/71) 6765059069360903 m001 BesselK(0,1)^Porter/(ln(gamma)^Porter) 6765059076451733 p001 sum((-1)^n/(240*n+41)/n/(5^n),n=1..infinity) 6765059089161084 a007 Real Root Of -59*x^4+791*x^3+695*x^2+585*x-43 6765059108090068 m001 1/Paris/LandauRamanujan^2/ln(GAMMA(19/24))^2 6765059115264275 s002 sum(A255289[n]/(n^3*exp(n)-1),n=1..infinity) 6765059117835329 r005 Im(z^2+c),c=-13/12+7/89*I,n=25 6765059126352144 m005 (1/2*Pi-1/9)/(3/5*Pi+3/11) 6765059193382883 a007 Real Root Of -928*x^4+520*x^3-476*x^2+554*x+948 6765059207525609 m001 (Zeta(3)-Stephens)^GaussAGM 6765059219232764 m005 (-1/44+1/4*5^(1/2))/(5/7*3^(1/2)-4/9) 6765059224407986 a007 Real Root Of 71*x^4-361*x^3+408*x^2-471*x-632 6765059237269417 p004 log(32359/16451) 6765059252166075 m001 BesselK(1,1)^ln(2)*BesselK(1,1)^ZetaP(4) 6765059274471747 a003 cos(Pi*19/48)-sin(Pi*47/98) 6765059284911155 a007 Real Root Of -904*x^4+898*x^3+506*x^2+956*x-967 6765059293437433 a007 Real Root Of 134*x^4+857*x^3-440*x^2-784*x-498 6765059328480184 m001 (Backhouse+MertensB3)/(1-sin(1/5*Pi)) 6765059329650587 m001 1/Zeta(9)*ln(GAMMA(2/3))*sqrt(5) 6765059330943703 r005 Re(z^2+c),c=37/102+31/61*I,n=9 6765059334809266 r005 Re(z^2+c),c=-18/59*I,n=16 6765059379115240 b008 Sqrt[3]*ProductLog[EulerGamma] 6765059408581081 a001 969323029/1597*6557470319842^(12/17) 6765059408581081 a001 312119004989/1597*1836311903^(12/17) 6765059413754954 r002 45th iterates of z^2 + 6765059419116407 r005 Re(z^2+c),c=-25/38+1/3*I,n=51 6765059420443980 s002 sum(A045215[n]/(n!^2),n=1..infinity) 6765059459432185 r005 Im(z^2+c),c=-8/19+27/50*I,n=10 6765059462517121 r005 Re(z^2+c),c=-7/40+17/25*I,n=63 6765059466645855 a007 Real Root Of -303*x^4+167*x^3+385*x^2+870*x-753 6765059470801732 a007 Real Root Of -877*x^4+373*x^3+271*x^2-49*x+142 6765059476180497 a007 Real Root Of -242*x^4+198*x^3-581*x^2+587*x+775 6765059483139127 m001 (Lehmer-Otter)/((1+3^(1/2))^(1/2)-Conway) 6765059506935288 r009 Im(z^3+c),c=-39/70+5/18*I,n=55 6765059514667073 a007 Real Root Of -804*x^4+864*x^3+302*x^2-375*x+44 6765059518656197 l006 ln(4393/8641) 6765059530813473 r005 Re(z^2+c),c=-3/4+8/213*I,n=7 6765059531369182 a007 Real Root Of -996*x^4+73*x^3+903*x^2+313*x-439 6765059536854408 r005 Re(z^2+c),c=-13/90+29/39*I,n=2 6765059553076194 a007 Real Root Of 4*x^4-521*x^3+231*x^2-432*x+347 6765059573254072 m001 (2^(1/2)+Zeta(1/2))/(-GolombDickman+Mills) 6765059584927942 a007 Real Root Of -663*x^4-122*x^3-717*x^2-58*x+390 6765059612609718 r005 Im(z^2+c),c=-39/82+3/26*I,n=22 6765059631599609 r008 a(0)=0,K{-n^6,8-51*n^3+25*n^2+3*n} 6765059637224539 a001 98209/2889*322^(11/12) 6765059640009975 r005 Re(z^2+c),c=53/110+6/31*I,n=2 6765059644477103 a007 Real Root Of 676*x^4-501*x^3+641*x^2+176*x-471 6765059644610005 a007 Real Root Of 668*x^4+414*x^3+873*x^2-582*x-805 6765059654441478 a007 Real Root Of 676*x^4+40*x^3+573*x^2+113*x-315 6765059658420607 a007 Real Root Of 833*x^4-538*x^3+348*x^2-375*x-754 6765059666971359 m005 (1/2*gamma+3/5)/(19/40+3/8*5^(1/2)) 6765059683048986 r005 Im(z^2+c),c=-29/26+7/85*I,n=19 6765059688911882 m001 (Bloch+Totient)/(Pi-arctan(1/2)) 6765059726256249 m001 OneNinth^2*Sierpinski^2/ln(Pi) 6765059763512209 r005 Im(z^2+c),c=29/94+9/22*I,n=12 6765059771228337 r005 Re(z^2+c),c=-25/46+36/55*I,n=50 6765059794009345 r005 Im(z^2+c),c=-9/31+38/59*I,n=29 6765059807452958 a007 Real Root Of -514*x^4-962*x^3-439*x^2+418*x+30 6765059810266381 a001 514229/15127*322^(11/12) 6765059831442515 r005 Im(z^2+c),c=-7/6+10/123*I,n=9 6765059835512847 a001 1346269/39603*322^(11/12) 6765059839196256 a001 1762289/51841*322^(11/12) 6765059839733659 a001 9227465/271443*322^(11/12) 6765059839812065 a001 24157817/710647*322^(11/12) 6765059839823504 a001 31622993/930249*322^(11/12) 6765059839825173 a001 165580141/4870847*322^(11/12) 6765059839825416 a001 433494437/12752043*322^(11/12) 6765059839825452 a001 567451585/16692641*322^(11/12) 6765059839825457 a001 2971215073/87403803*322^(11/12) 6765059839825458 a001 7778742049/228826127*322^(11/12) 6765059839825458 a001 10182505537/299537289*322^(11/12) 6765059839825458 a001 53316291173/1568397607*322^(11/12) 6765059839825458 a001 139583862445/4106118243*322^(11/12) 6765059839825458 a001 182717648081/5374978561*322^(11/12) 6765059839825458 a001 956722026041/28143753123*322^(11/12) 6765059839825458 a001 2504730781961/73681302247*322^(11/12) 6765059839825458 a001 3278735159921/96450076809*322^(11/12) 6765059839825458 a001 10610209857723/312119004989*322^(11/12) 6765059839825458 a001 4052739537881/119218851371*322^(11/12) 6765059839825458 a001 387002188980/11384387281*322^(11/12) 6765059839825458 a001 591286729879/17393796001*322^(11/12) 6765059839825458 a001 225851433717/6643838879*322^(11/12) 6765059839825458 a001 1135099622/33391061*322^(11/12) 6765059839825458 a001 32951280099/969323029*322^(11/12) 6765059839825458 a001 12586269025/370248451*322^(11/12) 6765059839825458 a001 1201881744/35355581*322^(11/12) 6765059839825460 a001 1836311903/54018521*322^(11/12) 6765059839825474 a001 701408733/20633239*322^(11/12) 6765059839825567 a001 66978574/1970299*322^(11/12) 6765059839826204 a001 102334155/3010349*322^(11/12) 6765059839830574 a001 39088169/1149851*322^(11/12) 6765059839860522 a001 196452/5779*322^(11/12) 6765059840065791 a001 5702887/167761*322^(11/12) 6765059841472729 a001 2178309/64079*322^(11/12) 6765059842369048 l006 ln(3575/7032) 6765059851116020 a001 208010/6119*322^(11/12) 6765059852117006 a007 Real Root Of 993*x^4-704*x^3-977*x^2-154*x-83 6765059854065248 r005 Re(z^2+c),c=-5/86+18/23*I,n=26 6765059861688907 a001 2537720636/4181*6557470319842^(12/17) 6765059861688907 a001 817138163596/4181*1836311903^(12/17) 6765059874620411 a007 Real Root Of 873*x^4+137*x^3+291*x^2-73*x-323 6765059904306938 a007 Real Root Of -135*x^4-893*x^3+114*x^2-300*x-967 6765059917212126 a001 317811/9349*322^(11/12) 6765059923336523 m001 Zeta(9)/exp(Zeta(1,2))^2/cos(Pi/12) 6765059927796453 a001 2139295485799/10946*1836311903^(12/17) 6765059927796453 a001 6643838879/10946*6557470319842^(12/17) 6765059928064518 a007 Real Root Of 526*x^4-652*x^3+349*x^2-92*x-534 6765059928817001 r009 Re(z^3+c),c=-3/25+19/30*I,n=32 6765059937441414 a001 5600748293801/28657*1836311903^(12/17) 6765059937441414 a001 17393796001/28657*6557470319842^(12/17) 6765059938848595 a001 14662949395604/75025*1836311903^(12/17) 6765059938848595 a001 45537549124/75025*6557470319842^(12/17) 6765059939053900 a001 119218851371/196418*6557470319842^(12/17) 6765059939083853 a001 312119004989/514229*6557470319842^(12/17) 6765059939088223 a001 817138163596/1346269*6557470319842^(12/17) 6765059939088861 a001 2139295485799/3524578*6557470319842^(12/17) 6765059939088954 a001 5600748293801/9227465*6557470319842^(12/17) 6765059939088968 a001 14662949395604/24157817*6557470319842^(12/17) 6765059939088971 a001 23725150497407/39088169*6557470319842^(12/17) 6765059939088976 a001 3020733700601/4976784*6557470319842^(12/17) 6765059939089011 a001 3461452808002/5702887*6557470319842^(12/17) 6765059939089255 a001 440719107401/726103*6557470319842^(12/17) 6765059939090924 a001 505019158607/832040*6557470319842^(12/17) 6765059939102365 a001 64300051206/105937*6557470319842^(12/17) 6765059939180785 a001 23725150497407/121393*1836311903^(12/17) 6765059939180785 a001 73681302247/121393*6557470319842^(12/17) 6765059939718280 a001 3020733700601/15456*1836311903^(12/17) 6765059939718280 a001 9381251041/15456*6557470319842^(12/17) 6765059943402328 a001 3461452808002/17711*1836311903^(12/17) 6765059943402328 a001 10749957122/17711*6557470319842^(12/17) 6765059944876466 r009 Im(z^3+c),c=-25/64+15/26*I,n=7 6765059950336701 m001 1/GAMMA(5/6)^2*exp(Khintchine)*sin(Pi/5) 6765059954872722 a001 2207/377*6557470319842^(16/17) 6765059964974033 r002 4th iterates of z^2 + 6765059968653164 a001 440719107401/2255*1836311903^(12/17) 6765059968653164 a001 1368706081/2255*6557470319842^(12/17) 6765059971885490 r009 Re(z^3+c),c=-23/52+23/41*I,n=50 6765059988290162 m001 GAMMA(17/24)/ln(FeigenbaumB)*cos(Pi/12) 6765060029810385 m001 (GAMMA(23/24)+Niven)/(ThueMorse-ZetaQ(3)) 6765060047996996 m001 1/ln(GAMMA(1/4))/GAMMA(1/12)*Zeta(9) 6765060056391653 m001 (-Ei(1,1)+FeigenbaumD)/(Chi(1)-Zeta(3)) 6765060057227631 m001 (Artin+Salem)/(Tribonacci+ZetaP(2)) 6765060058051244 m005 (1/2*gamma-5/6)/(5/8*gamma+4/9) 6765060076695534 a007 Real Root Of -226*x^4+856*x^3+74*x^2+892*x-855 6765060096243166 r005 Re(z^2+c),c=-73/94+1/37*I,n=29 6765060111390480 r005 Im(z^2+c),c=-133/122+5/63*I,n=18 6765060113830908 m001 1/KhintchineLevy/exp(Conway)/Tribonacci^2 6765060124732153 m002 Pi^(-5)+(E^Pi*Sech[Pi])/Pi^3 6765060130919859 m001 Khinchin*(KhinchinLevy+MertensB3) 6765060135067253 a007 Real Root Of 646*x^4+195*x^3+734*x^2-760*x-925 6765060141724974 a001 505019158607/2584*1836311903^(12/17) 6765060141724974 a001 1568397607/2584*6557470319842^(12/17) 6765060164123541 m005 (1/2*Zeta(3)+1/10)/(1/6+7/18*5^(1/2)) 6765060206159877 r005 Re(z^2+c),c=-2/29+7/9*I,n=17 6765060213428204 a007 Real Root Of 995*x^4-232*x^3+425*x^2-670*x-928 6765060214321610 m001 (3^(1/3)-Zeta(1,2))/(FeigenbaumD+GaussAGM) 6765060228694805 a003 sin(Pi*1/48)/sin(Pi*33/79) 6765060238459238 m001 (ln(5)+Zeta(1,-1))/(MertensB1-Weierstrass) 6765060240963855 q001 1123/1660 6765060249700940 r002 10th iterates of z^2 + 6765060272106987 p001 sum(1/(539*n+39)/n/(256^n),n=1..infinity) 6765060292600812 r005 Im(z^2+c),c=31/98+13/38*I,n=3 6765060341385297 l003 FresnelS(23/98) 6765060358172639 l006 ln(2757/5423) 6765060367862452 r005 Im(z^2+c),c=-11/54+11/17*I,n=39 6765060370241607 a001 121393/3571*322^(11/12) 6765060374383331 m001 cos(1/5*Pi)^Robbin/(Zeta(1/2)^Robbin) 6765060402781345 m001 (cos(1)+Zeta(5))/(-GolombDickman+Otter) 6765060405583564 m005 (1/2*5^(1/2)-1/5)/(1/6*2^(1/2)-1/10) 6765060450962354 m001 (Kolakoski+RenyiParking)/(BesselK(1,1)-Artin) 6765060472806870 m001 (2^(1/3)+exp(1))/(-Pi^(1/2)+FeigenbaumC) 6765060474813943 a007 Real Root Of 254*x^4-702*x^3-865*x^2-982*x-539 6765060479360965 m006 (5/6*exp(2*Pi)+2/5)/(3/4*Pi^2-4/5) 6765060503466189 m001 exp(sqrt(2))*GAMMA(7/24)^2*sqrt(3) 6765060518212094 m008 (1/4*Pi^3+4/5)/(2/5*Pi^5+4) 6765060567526871 a007 Real Root Of -589*x^4-961*x^3-97*x^2+855*x+58 6765060575023512 m001 (exp(1)+cos(1/12*Pi))/(-MinimumGamma+Porter) 6765060586523752 m001 1/ln(TwinPrimes)^2/Bloch*GAMMA(1/24)^2 6765060629258293 a007 Real Root Of 116*x^4+909*x^3+936*x^2+634*x-78 6765060648057144 a007 Real Root Of 358*x^4+183*x^3+890*x^2-104*x-496 6765060681024658 m005 (-1/6+1/4*5^(1/2))/(1/6*Zeta(3)-6) 6765060712200484 m001 (2^(1/2)+1)/(5^(1/2)+MertensB3) 6765060716419929 q001 6/88691 6765060750846776 l006 ln(4696/9237) 6765060777051507 m001 MertensB1*(LandauRamanujan+MasserGramainDelta) 6765060824125271 r005 Im(z^2+c),c=15/64+1/52*I,n=41 6765060836103202 a007 Real Root Of 96*x^4+650*x^3-103*x^2-845*x-831 6765060853104925 m001 (Ei(1,1)+gamma(1))/(Cahen+Riemann2ndZero) 6765060858387570 a005 (1/cos(3/89*Pi))^1570 6765060863867777 m001 exp(Trott)/ErdosBorwein*Zeta(5)^2 6765060873901002 r005 Im(z^2+c),c=-5/86+16/23*I,n=14 6765060896892260 a007 Real Root Of 911*x^4-887*x^3-51*x^2-413*x-28 6765060915695888 m001 1/ln(Trott)^2*FeigenbaumC/GAMMA(1/12)^2 6765060922469052 m005 (1/2*exp(1)-8/11)/(1/4*5^(1/2)+3/8) 6765060926961005 r005 Re(z^2+c),c=2/17+25/52*I,n=25 6765060930297482 m001 (RenyiParking-gamma)/(Riemann3rdZero+ZetaP(3)) 6765060943866861 a007 Real Root Of 888*x^4+374*x^3-799*x^2-827*x-264 6765060960453956 m001 (sin(1/12*Pi)-FeigenbaumMu)/(Landau-ZetaQ(2)) 6765060978184589 a007 Real Root Of -636*x^4+67*x^3-349*x^2-916*x-306 6765060979554947 p003 LerchPhi(1/25,1,153/101) 6765060991241076 m001 1/ln(RenyiParking)/PrimesInBinary/GAMMA(3/4) 6765061010249537 m001 (Ei(1,1)-Kac)/(KhinchinLevy-KomornikLoreti) 6765061046980715 a003 sin(Pi*22/93)*sin(Pi*41/83) 6765061057072225 m004 -6+50/Pi-(125*Log[Sqrt[5]*Pi])/Pi 6765061114925855 m001 1/exp(GAMMA(11/24))^2/Robbin^2/sin(1)^2 6765061120268111 m001 (ln(2)/ln(10)+Trott)/(ZetaP(2)+ZetaQ(3)) 6765061130204718 m005 (1/2*5^(1/2)-3/4)/(4/11*exp(1)-4/9) 6765061152223289 m005 (1/3*Zeta(3)+2/11)/(1/11*Catalan+7/9) 6765061164333037 m001 (Sarnak-Stephens)/(cos(1/5*Pi)+Riemann2ndZero) 6765061164604820 r008 a(0)=0,K{-n^6,-58+52*n^2-8*n^3} 6765061191134156 a007 Real Root Of -750*x^4+606*x^3+964*x^2+469*x-789 6765061219512061 r005 Im(z^2+c),c=-55/82+13/42*I,n=58 6765061219680220 a007 Real Root Of -347*x^4+461*x^3+93*x^2+964*x+825 6765061220492473 m001 1/FransenRobinson*exp(Artin)/BesselJ(0,1) 6765061243091296 a001 3*2584^(23/58) 6765061248487928 r009 Re(z^3+c),c=-5/44+29/50*I,n=40 6765061249613063 m004 -6+(25*Pi)/6-Log[Sqrt[5]*Pi]/6 6765061250188140 a007 Real Root Of 54*x^4-67*x^3+93*x^2-852*x-651 6765061250481753 l006 ln(5815/6222) 6765061258010961 p001 sum(1/(373*n+93)/n/(32^n),n=1..infinity) 6765061265963096 a007 Real Root Of 864*x^4+58*x^3-254*x^2-837*x-613 6765061280086209 r009 Re(z^3+c),c=-1/98+13/27*I,n=17 6765061309177125 l006 ln(1939/3814) 6765061312183860 a007 Real Root Of -39*x^4+901*x^3-210*x^2-24*x+367 6765061326645676 m001 1/ln(KhintchineLevy)/Bloch/FeigenbaumC 6765061327977048 a001 64300051206/329*1836311903^(12/17) 6765061327977048 a001 199691526/329*6557470319842^(12/17) 6765061338440426 a007 Real Root Of 382*x^4-509*x^3-718*x^2+120*x+325 6765061363216851 a007 Real Root Of 950*x^4-55*x^3+349*x^2+752*x+133 6765061375168336 a007 Real Root Of -581*x^4-864*x^3-510*x^2+556*x-35 6765061393018407 m005 (1/2*Zeta(3)+10/11)/(1/8*2^(1/2)-2/5) 6765061409769189 a007 Real Root Of 661*x^4-945*x^3-286*x^2-980*x+948 6765061419448139 a007 Real Root Of -611*x^4+316*x^3-953*x^2+207*x+802 6765061420757862 a007 Real Root Of 684*x^4-660*x^3+926*x^2-264*x-950 6765061461465067 a007 Real Root Of -985*x^4+671*x^3+969*x^2+42*x-1 6765061464056854 a001 123/832040*121393^(11/12) 6765061464139063 a001 123/165580141*39088169^(11/12) 6765061464139064 a001 41/10983760033*12586269025^(11/12) 6765061464139064 a001 123/6557470319842*4052739537881^(11/12) 6765061466048574 m005 (1/2+1/6*5^(1/2))/(3/7*exp(1)+1/8) 6765061466810698 p004 log(32717/16633) 6765061480059218 a007 Real Root Of 783*x^4+71*x^3+478*x^2-361*x-605 6765061498178378 m001 (BesselK(0,1)-KhinchinLevy)/(-Mills+ZetaP(3)) 6765061503247714 a007 Real Root Of 270*x^4-537*x^3+238*x^2+854*x+246 6765061510054748 a001 29*610^(7/53) 6765061512223453 a007 Real Root Of -500*x^4+30*x^3+676*x^2+853*x-791 6765061515949699 m001 (Pi^(1/2)-HardyLittlewoodC4)/(Mills+Thue) 6765061516960549 a007 Real Root Of -673*x^4+313*x^3-611*x^2-17*x+506 6765061516968399 m005 (1/2*2^(1/2)-2/5)/(8/9*3^(1/2)+3) 6765061517223943 r005 Re(z^2+c),c=-43/60+7/39*I,n=35 6765061523032910 a003 sin(Pi*5/61)+sin(Pi*14/101) 6765061547896359 h001 (3/10*exp(1)+2/9)/(4/11*exp(1)+6/11) 6765061548166715 m008 (5/6*Pi^2+5)/(2*Pi^4+2/3) 6765061563193933 a007 Real Root Of -354*x^4+983*x^3-341*x^2-734*x+38 6765061568656498 p001 sum((-1)^n/(515*n+391)/n/(16^n),n=1..infinity) 6765061585122929 a001 199/591286729879*514229^(13/14) 6765061586573207 a007 Real Root Of 93*x^4-887*x^3-116*x^2-44*x+338 6765061619219027 a007 Real Root Of -10*x^4+453*x^3+96*x^2+805*x+643 6765061634198646 a007 Real Root Of 252*x^4-546*x^3+994*x^2+245*x-511 6765061648966405 a001 7^(56/57) 6765061682747083 r009 Im(z^3+c),c=-9/74+47/63*I,n=18 6765061699153994 m001 (CopelandErdos-Tribonacci*Trott2nd)/Trott2nd 6765061713660447 a007 Real Root Of 431*x^4-543*x^3+712*x^2+330*x-361 6765061734196151 s001 sum(exp(-2*Pi/5)^n*A045486[n],n=1..infinity) 6765061734196151 s002 sum(A045486[n]/(exp(2/5*pi*n)),n=1..infinity) 6765061742737523 m001 (Salem+ZetaP(4))/(BesselI(1,2)+MertensB1) 6765061747775919 a007 Real Root Of -883*x^4+138*x^3+773*x^2+281*x+64 6765061749279315 a001 7331474697802/305*1836311903^(10/17) 6765061749279315 a001 119218851371/610*6557470319842^(10/17) 6765061762912046 a007 Real Root Of -61*x^4-363*x^3+216*x^2-879*x-454 6765061810692334 m002 -Pi^2+Pi^3-Pi^5+Pi^6 6765061833665858 l006 ln(4999/9833) 6765061833665858 p004 log(9833/4999) 6765061846660254 a007 Real Root Of 87*x^4+533*x^3-430*x^2-305*x+414 6765061854573992 a008 Real Root of x^4-x^3-34*x^2+106*x-131 6765061856775018 a007 Real Root Of 142*x^4+32*x^3-81*x^2-837*x-549 6765061871783971 r002 18th iterates of z^2 + 6765061900398704 h001 (5/7*exp(1)+8/9)/(4/9*exp(2)+9/10) 6765061909316676 m001 (Zeta(1/2)+Pi^(1/2))/(exp(1)+Ei(1)) 6765061909398087 m001 (3^(1/3)+GaussAGM)/(HardyLittlewoodC5+Otter) 6765061928857751 s002 sum(A101202[n]/(n*exp(n)+1),n=1..infinity) 6765061944661776 m001 (gamma+gamma(2))/(Zeta(1,2)+Paris) 6765061948656964 a007 Real Root Of -658*x^4+684*x^3-785*x^2-121*x+627 6765061997965051 a007 Real Root Of -999*x^4+57*x^3+571*x^2+586*x+362 6765062011329739 a007 Real Root Of 332*x^4-929*x^3+626*x^2-407*x-919 6765062016593031 p004 log(21871/11119) 6765062025192955 m001 (Shi(1)+BesselK(1,1))/(-ArtinRank2+ZetaP(2)) 6765062042563736 m001 (Shi(1)-sin(1/5*Pi))/(-GAMMA(2/3)+TwinPrimes) 6765062055409170 m001 (1+gamma(3))/(GAMMA(19/24)+HardyLittlewoodC4) 6765062059637691 m008 (2/5*Pi^3+3/4)/(2*Pi^4-2/5) 6765062096937438 m005 (1/2*2^(1/2)-10/11)/(7/9*Zeta(3)-7/11) 6765062108944188 l003 AiryBi(16/117) 6765062118242535 m001 (BesselJ(1,1)-BesselK(0,1))^Paris 6765062142492947 m001 (ln(2^(1/2)+1)-MertensB1)/(ln(2)-ln(5)) 6765062142790206 a007 Real Root Of 788*x^4+102*x^3+262*x^2+648*x+185 6765062144077870 r009 Re(z^3+c),c=-39/64+7/25*I,n=6 6765062146510696 a001 46368/199*199^(7/11) 6765062153591639 m001 (KhinchinLevy-Riemann2ndZero)/(Zeta(5)+Ei(1)) 6765062166013443 l006 ln(3060/6019) 6765062192099087 a007 Real Root Of 64*x^4+98*x^3+615*x^2-963*x-916 6765062215337404 a007 Real Root Of 872*x^4-629*x^3+989*x^2+408*x-554 6765062280678170 a007 Real Root Of 947*x^4+198*x^3+703*x^2-259*x-634 6765062310867371 a007 Real Root Of -476*x^4-542*x^3+830*x^2+913*x-730 6765062316463651 a001 9/10182505537*317811^(12/17) 6765062316473107 a001 9/3278735159921*1134903170^(12/17) 6765062339761650 m001 (Otter-Thue)/(FeigenbaumAlpha+Gompertz) 6765062353042669 m001 1/Riemann2ndZero^2*exp(Lehmer)*sqrt(1+sqrt(3)) 6765062356589851 a007 Real Root Of -131*x^4-767*x^3+878*x^2+341*x-963 6765062357474468 m001 (2*Pi/GAMMA(5/6))^(Khinchin*PrimesInBinary) 6765062365505686 b008 2+77*ProductLog[2] 6765062373716328 r008 a(0)=0,K{-n^6,-16+7*n-26*n^2+50*n^3} 6765062379802224 m001 GAMMA(1/4)^2*ln(FeigenbaumB)^2*GAMMA(7/12) 6765062392695983 s002 sum(A149471[n]/(16^n),n=1..infinity) 6765062427966209 m001 1/TreeGrowth2nd^2*Conway/ln(GAMMA(1/24))^2 6765062429475329 r002 9th iterates of z^2 + 6765062438540855 a007 Real Root Of 307*x^4-50*x^3-129*x^2-568*x-405 6765062465666607 a007 Real Root Of -874*x^4+201*x^3-462*x^2+61*x+498 6765062467445869 m001 1/Khintchine^2*DuboisRaymond*ln(GAMMA(17/24)) 6765062496249787 a007 Real Root Of -716*x^4-267*x^3-231*x^2+201*x+309 6765062522888227 m006 (2/5*ln(Pi)-4/5)/(5*ln(Pi)-2/3) 6765062551960880 m005 (1/2*2^(1/2)-7/10)/(1/10*2^(1/2)+10/11) 6765062563383813 l006 ln(4181/8224) 6765062589873899 a007 Real Root Of 114*x^4-725*x^3+915*x^2-362*x-912 6765062620588999 h001 (-4*exp(2)+5)/(-9*exp(6)+1) 6765062635961525 m005 (1/3*2^(1/2)+3)/(4/5*2^(1/2)+4) 6765062653176777 m001 (BesselI(1,2)+FeigenbaumB)/(Pi+BesselJ(1,1)) 6765062676910634 q001 1673/2473 6765062698831195 a001 3010349/5*832040^(13/19) 6765062714961344 r009 Re(z^3+c),c=-9/74+35/54*I,n=45 6765062739377186 m001 (2*ln(3)*Pi/GAMMA(5/6)+ln(2+3^(1/2)))/ln(3) 6765062739377186 m001 (ln(3)*GAMMA(1/6)+ln(2+sqrt(3)))/ln(3) 6765062742345222 a007 Real Root Of 456*x^4+78*x^3-361*x^2-926*x+672 6765062759944487 a007 Real Root Of 12*x^4+821*x^3+609*x^2-871*x+6 6765062797488636 r005 Re(z^2+c),c=-1/56+14/53*I,n=9 6765062805593680 a007 Real Root Of -260*x^4-30*x^3-875*x^2+682*x+907 6765062806366297 a007 Real Root Of 374*x^4-281*x^3+342*x^2+87*x-263 6765062812184299 r005 Im(z^2+c),c=-2/3+2/141*I,n=62 6765062827775588 m001 FeigenbaumDelta^2/ln(CopelandErdos)^2/cosh(1) 6765062845787214 m005 (1/3*3^(1/2)+1/5)/(1/9*Pi+4/5) 6765062850120632 a003 cos(Pi*5/109)*sin(Pi*23/96) 6765062853442150 a007 Real Root Of -700*x^4+573*x^3-642*x^2-526*x+262 6765062863845296 a007 Real Root Of 903*x^4-432*x^3+206*x^2-288*x-612 6765062901469359 a001 5778/5*7778742049^(13/19) 6765062907695675 r005 Im(z^2+c),c=-9/70+38/55*I,n=22 6765062910130044 a007 Real Root Of 216*x^4-874*x^3-74*x^2-714*x-765 6765062913954487 r005 Im(z^2+c),c=5/26+19/35*I,n=40 6765062930454609 m001 GAMMA(7/24)*(2/3+GAMMA(7/12)) 6765062966830016 a007 Real Root Of 113*x^4-926*x^3+26*x^2-427*x+540 6765062978043013 a007 Real Root Of 129*x^4+908*x^3+155*x^2-457*x+746 6765062989067323 a007 Real Root Of 721*x^4-693*x^3+557*x^2+626*x-197 6765062996325212 m001 (CareFree+Tribonacci)/(gamma(3)+Artin) 6765063013077983 a001 233*322^(7/12) 6765063026651294 r005 Im(z^2+c),c=-37/66+5/41*I,n=34 6765063051174865 a001 55/1860498*843^(25/31) 6765063071625481 g007 Psi(2,5/7)+Psi(2,1/7)-Psi(2,9/11)-Psi(2,6/11) 6765063093703397 r005 Im(z^2+c),c=-69/110+7/32*I,n=19 6765063115731549 r002 28th iterates of z^2 + 6765063133487409 m001 (CareFree+Paris)/(2^(1/3)+gamma(1)) 6765063150347172 m009 (6*Psi(1,2/3)+1)/(1/3*Psi(1,1/3)-1/2) 6765063156499603 p004 log(36293/18451) 6765063175925879 m005 (1/2*exp(1)-1)/(1/12*Catalan+5/11) 6765063193566474 m001 (GAMMA(2/3)-Landau)/(Sarnak+Weierstrass) 6765063228119510 a007 Real Root Of -492*x^4+474*x^3+579*x^2+899*x+593 6765063256053805 m002 -6*Pi^4*Cosh[Pi]+Pi^2*Coth[Pi] 6765063256135210 m001 (TwinPrimes+ZetaQ(3))/(Catalan-gamma(1)) 6765063259955531 r005 Im(z^2+c),c=-61/90+7/43*I,n=38 6765063261123356 a007 Real Root Of 487*x^4-425*x^3-971*x^2-37*x+499 6765063269745439 m001 1/exp(Robbin)^2/Artin/GAMMA(23/24)^2 6765063276959025 m001 1/ln(RenyiParking)^2*Lehmer*cos(Pi/12) 6765063289842638 a007 Real Root Of 832*x^4-112*x^3+301*x^2-234*x-505 6765063308952713 a007 Real Root Of -839*x^4-928*x^3-480*x^2+770*x+629 6765063333017809 m001 exp(Tribonacci)^2/LandauRamanujan^2/Zeta(9) 6765063338549074 r005 Im(z^2+c),c=-51/82+8/51*I,n=23 6765063359708190 r005 Re(z^2+c),c=-1/21+47/61*I,n=60 6765063377832536 m005 (1/3*3^(1/2)-1/8)/(1/5*exp(1)+1/8) 6765063385130743 r005 Im(z^2+c),c=-93/118+1/36*I,n=56 6765063396761743 m001 Magata/ln(CopelandErdos)^2*PrimesInBinary 6765063404500808 a007 Real Root Of 546*x^4-18*x^3+900*x^2-661*x-979 6765063439271505 m005 (1/3*exp(1)-1/2)/(1/2*gamma-8/9) 6765063457340264 r004 Im(z^2+c),c=9/20-2/7*I,z(0)=exp(3/8*I*Pi),n=4 6765063475353496 a001 11592/341*322^(11/12) 6765063501837422 a007 Real Root Of 341*x^4-744*x^3+116*x^2-556*x-731 6765063502229835 m001 FeigenbaumDelta*(Artin-MasserGramainDelta) 6765063514972003 b008 ArcCos[1/2+(2/3)^Pi] 6765063522321331 a007 Real Root Of 929*x^4-670*x^3-563*x^2-675*x-601 6765063574428799 r008 a(0)=0,K{-n^6,-20+61*n-13*n^2-43*n^3} 6765063579252821 m001 (3^(1/2)-Catalan)/(Artin+FeigenbaumB) 6765063584459250 a001 5/710647*322^(34/43) 6765063625686031 a007 Real Root Of 370*x^4+95*x^3+756*x^2-331*x-618 6765063632535268 a007 Real Root Of -594*x^4+652*x^3+355*x^2+584*x-635 6765063643648089 m001 ZetaP(4)/CareFree/ln(5) 6765063645136475 a007 Real Root Of 684*x^4-340*x^3-823*x^2-793*x-50 6765063648087864 l006 ln(1121/2205) 6765063656554866 m001 Shi(1)/(ZetaQ(2)^HardyLittlewoodC3) 6765063695942493 a001 123/121393*8^(21/23) 6765063715330852 a007 Real Root Of -280*x^4-4*x^3-866*x^2-211*x+311 6765063718558043 a007 Real Root Of 763*x^4-104*x^3+293*x^2-294*x-525 6765063739416435 a007 Real Root Of 136*x^4-923*x^3-545*x^2-707*x+985 6765063758776612 r005 Im(z^2+c),c=-15/23+2/15*I,n=39 6765063798151507 a007 Real Root Of 442*x^4-578*x^3-313*x^2-242*x-292 6765063833352662 a001 47/10946*3^(12/29) 6765063866522728 a007 Real Root Of 116*x^4+707*x^3-503*x^2+38*x-794 6765063879031062 r002 6th iterates of z^2 + 6765063888259292 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^8 6765063893679712 r009 Re(z^3+c),c=-7/15+1/23*I,n=6 6765063900912739 m001 (GAMMA(7/12)-exp(1))/(MadelungNaCl+Trott) 6765063902942086 r002 22th iterates of z^2 + 6765063907486305 q001 2223/3286 6765063907486305 r002 2th iterates of z^2 + 6765063921600780 m001 (ln(gamma)+Zeta(1/2))/(Bloch-ZetaP(3)) 6765063941619138 r005 Im(z^2+c),c=-10/19+6/61*I,n=11 6765063977684488 m005 (1/2*Catalan+1/2)/(6/7*gamma-7/11) 6765063992725759 m001 (Cahen+DuboisRaymond)/(FeigenbaumC-Lehmer) 6765063993878736 m001 (LaplaceLimit+Paris)/(BesselK(0,1)+CareFree) 6765063999138213 a007 Real Root Of -82*x^4-619*x^3-398*x^2+391*x+963 6765064008464253 a007 Real Root Of 652*x^4+591*x^3+653*x^2-387*x-29 6765064010219444 m005 (1/3*3^(1/2)-1/4)/(5/8*2^(1/2)-2/5) 6765064012330872 a001 599074578/377*1836311903^(14/17) 6765064012335086 a001 505019158607/377*514229^(14/17) 6765064012344268 a001 710647/377*6557470319842^(14/17) 6765064058201305 m001 1/FeigenbaumDelta^2/exp(Conway)^2*sqrt(2)^2 6765064073857468 a007 Real Root Of -56*x^4-343*x^3+106*x^2-969*x-309 6765064078800406 r005 Re(z^2+c),c=19/90+20/61*I,n=17 6765064083618136 r005 Re(z^2+c),c=-11/12+8/65*I,n=52 6765064089098977 a003 sin(Pi*28/117)*sin(Pi*26/57) 6765064108233577 a001 3461452808002/89*21^(2/11) 6765064110954566 a007 Real Root Of 914*x^4-619*x^3+538*x^2+472*x-310 6765064142608873 r005 Re(z^2+c),c=-35/94+9/14*I,n=47 6765064142935731 m005 (1/2*2^(1/2)+4)/(1/2*Pi-7/8) 6765064145978481 h001 (2/11*exp(2)+9/10)/(8/9*exp(1)+9/10) 6765064160492058 m001 1/MinimumGamma/Kolakoski^2*exp(FeigenbaumC) 6765064232811870 r005 Re(z^2+c),c=-20/21+7/30*I,n=14 6765064233843739 m005 (1/2*gamma+2/7)/(41/72+1/8*5^(1/2)) 6765064241418712 m001 (GAMMA(11/12)-Riemann3rdZero)^BesselK(1,1) 6765064285489662 r005 Re(z^2+c),c=25/94+20/53*I,n=31 6765064287450321 a007 Real Root Of -935*x^4+36*x^3+365*x^2+887*x+640 6765064297773517 m002 -Pi^2+Pi^3-Pi^4+Pi^2/Log[Pi] 6765064299398107 r009 Im(z^3+c),c=-37/110+17/28*I,n=4 6765064299665195 s002 sum(A042477[n]/(16^n),n=1..infinity) 6765064336915640 r005 Im(z^2+c),c=-23/31+7/29*I,n=21 6765064352030537 a007 Real Root Of 131*x^4+723*x^3-953*x^2+887*x-920 6765064352402538 r005 Re(z^2+c),c=11/46+27/64*I,n=13 6765064390715647 a003 cos(Pi*47/117)-sin(Pi*45/103) 6765064414486079 m001 OneNinth^2*Backhouse^2*ln(log(2+sqrt(3))) 6765064416366153 a007 Real Root Of -927*x^4+369*x^3-179*x^2+610*x+803 6765064434919916 a001 196418/2207*18^(40/57) 6765064440506690 a001 1/2207*(1/2*5^(1/2)+1/2)^10*3^(3/17) 6765064447270192 r005 Im(z^2+c),c=-67/62+23/62*I,n=4 6765064450433768 b008 14/141+EulerGamma 6765064479366718 m001 (Sarnak+TwinPrimes)/(Khinchin-exp(Pi)) 6765064481546964 g002 Psi(1/10)-Psi(11/12)-Psi(6/11)-Psi(5/7) 6765064501304511 r005 Re(z^2+c),c=2/13+14/37*I,n=43 6765064504242228 r005 Im(z^2+c),c=-13/110+9/13*I,n=13 6765064545465954 a007 Real Root Of -804*x^4+399*x^3-353*x^2+289*x+649 6765064569721932 m001 Salem*(Ei(1,1)-Kolakoski) 6765064595476036 l006 ln(4787/9416) 6765064595496049 m002 -E^Pi+Pi^5-Pi^6+E^Pi*Csch[Pi] 6765064625662882 a001 18/233*102334155^(2/17) 6765064654214600 m001 (Catalan+ln(5))/(-Zeta(1,-1)+exp(-1/2*Pi)) 6765064661598899 m001 FellerTornier*(Riemann2ndZero-ZetaQ(2)) 6765064690550737 l006 ln(4672/4999) 6765064693593432 m001 (FeigenbaumB+Robbin)/(GAMMA(11/12)-exp(Pi)) 6765064709060070 m001 (Cahen-Pi*csc(5/12*Pi)/GAMMA(7/12))/Ei(1,1) 6765064730713504 a007 Real Root Of -147*x^4-935*x^3+295*x^2-720*x+39 6765064732264462 a007 Real Root Of -61*x^4-449*x^3-271*x^2-208*x-253 6765064734990230 m002 -3+E^Pi-Pi^5+Pi^6+Tanh[Pi] 6765064744880097 a007 Real Root Of -119*x^4-771*x^3+96*x^2-892*x+112 6765064767433232 r005 Im(z^2+c),c=3/52+25/39*I,n=12 6765064776649415 v002 sum(1/(2^n+(30*n^2-39*n+31)),n=1..infinity) 6765064792034286 m001 1/ln(Porter)*Artin/(3^(1/3)) 6765064801668177 a005 (1/sin(96/235*Pi))^1255 6765064833757655 r002 7th iterates of z^2 + 6765064854927420 a001 312119004989/1597*6557470319842^(10/17) 6765064870249669 m001 (MasserGramain-Salem)/(ZetaP(4)+ZetaQ(4)) 6765064870609012 h001 (4/11*exp(2)+3/5)/(4/7*exp(2)+7/11) 6765064885171092 l006 ln(3666/7211) 6765064893390861 m008 (5/6*Pi-2/3)/(3*Pi^6+1/4) 6765064897052403 m001 (-Ei(1)+Grothendieck)/(5^(1/2)-LambertW(1)) 6765064903627855 m001 (2^(1/2)+FransenRobinson)/(-Kac+ZetaQ(4)) 6765064908039803 r005 Im(z^2+c),c=-9/29+6/59*I,n=19 6765064915691329 r005 Im(z^2+c),c=-13/36+40/63*I,n=38 6765064922126595 r005 Im(z^2+c),c=-47/114+31/51*I,n=6 6765064945212629 m005 (19/44+1/4*5^(1/2))/(11/12*Catalan+5/8) 6765064961548993 a001 199/1134903170*610^(13/14) 6765065045787448 h001 (6/7*exp(2)+3/5)/(1/11*exp(1)+7/9) 6765065047067096 a007 Real Root Of -798*x^4-706*x^3-671*x^2-66*x+211 6765065052471121 r009 Re(z^3+c),c=-3/29+37/50*I,n=40 6765065074512023 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^10 6765065076312613 r005 Im(z^2+c),c=17/82+1/34*I,n=19 6765065112371350 r002 2th iterates of z^2 + 6765065113739889 m001 2^(1/2)*Otter+Sierpinski 6765065123396093 a007 Real Root Of -674*x^4+412*x^3-885*x^2+92*x+736 6765065137417787 m001 (-Niven+Paris)/(1+exp(1/Pi)) 6765065138481840 a003 cos(Pi*1/43)-cos(Pi*40/101) 6765065156058850 m001 (gamma(2)*Weierstrass+TwinPrimes)/gamma(2) 6765065192648897 r009 Re(z^3+c),c=-7/66+31/60*I,n=12 6765065209383838 m005 (1/2*Catalan-3/8)/(4*Pi-3/10) 6765065214185987 a001 1/89*34^(28/55) 6765065228442505 a003 sin(Pi*2/93)/sin(Pi*35/73) 6765065247583964 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^12 6765065254629254 m001 (BesselI(0,2)-Artin)/(Grothendieck+MertensB2) 6765065269671832 r002 4th iterates of z^2 + 6765065272834820 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^14 6765065276518870 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^16 6765065277056366 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^18 6765065277134786 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^20 6765065277146227 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^22 6765065277147896 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^24 6765065277148140 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^26 6765065277148175 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^28 6765065277148180 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^30 6765065277148181 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^32 6765065277148181 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^34 6765065277148181 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^36 6765065277148181 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^38 6765065277148181 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^40 6765065277148181 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^42 6765065277148181 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^44 6765065277148181 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^46 6765065277148181 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^48 6765065277148181 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^50 6765065277148181 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^52 6765065277148181 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^54 6765065277148181 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^56 6765065277148181 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^58 6765065277148181 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^60 6765065277148181 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^62 6765065277148181 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^64 6765065277148181 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^66 6765065277148181 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^68 6765065277148181 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^70 6765065277148181 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^72 6765065277148181 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^74 6765065277148181 a004 Fibonacci(84)*Lucas(12)/(1/2+sqrt(5)/2)^76 6765065277148181 a004 Fibonacci(86)*Lucas(12)/(1/2+sqrt(5)/2)^78 6765065277148181 a004 Fibonacci(88)*Lucas(12)/(1/2+sqrt(5)/2)^80 6765065277148181 a004 Fibonacci(90)*Lucas(12)/(1/2+sqrt(5)/2)^82 6765065277148181 a004 Fibonacci(92)*Lucas(12)/(1/2+sqrt(5)/2)^84 6765065277148181 a004 Fibonacci(94)*Lucas(12)/(1/2+sqrt(5)/2)^86 6765065277148181 a004 Fibonacci(96)*Lucas(12)/(1/2+sqrt(5)/2)^88 6765065277148181 a004 Fibonacci(98)*Lucas(12)/(1/2+sqrt(5)/2)^90 6765065277148181 a004 Fibonacci(100)*Lucas(12)/(1/2+sqrt(5)/2)^92 6765065277148181 a004 Fibonacci(99)*Lucas(12)/(1/2+sqrt(5)/2)^91 6765065277148181 a004 Fibonacci(97)*Lucas(12)/(1/2+sqrt(5)/2)^89 6765065277148181 a004 Fibonacci(95)*Lucas(12)/(1/2+sqrt(5)/2)^87 6765065277148181 a004 Fibonacci(93)*Lucas(12)/(1/2+sqrt(5)/2)^85 6765065277148181 a004 Fibonacci(91)*Lucas(12)/(1/2+sqrt(5)/2)^83 6765065277148181 a004 Fibonacci(89)*Lucas(12)/(1/2+sqrt(5)/2)^81 6765065277148181 a004 Fibonacci(87)*Lucas(12)/(1/2+sqrt(5)/2)^79 6765065277148181 a004 Fibonacci(85)*Lucas(12)/(1/2+sqrt(5)/2)^77 6765065277148181 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^75 6765065277148181 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^73 6765065277148181 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^71 6765065277148181 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^69 6765065277148181 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^67 6765065277148181 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^65 6765065277148181 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^63 6765065277148181 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^61 6765065277148181 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^59 6765065277148181 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^57 6765065277148181 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^55 6765065277148181 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^53 6765065277148181 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^51 6765065277148181 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^49 6765065277148181 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^47 6765065277148181 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^45 6765065277148181 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^43 6765065277148181 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^41 6765065277148181 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^39 6765065277148181 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^37 6765065277148181 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^35 6765065277148181 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^33 6765065277148182 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^31 6765065277148184 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^29 6765065277148197 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^27 6765065277148290 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^25 6765065277148928 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^23 6765065277153298 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^21 6765065277183252 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^19 6765065277388557 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^17 6765065277777492 a001 1/72*(1/2+1/2*5^(1/2))^32 6765065278795739 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^15 6765065288440707 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^13 6765065299418457 m006 (exp(2*Pi)+4)/(5/6*Pi^2-1/4) 6765065308035611 a001 817138163596/4181*6557470319842^(10/17) 6765065324599562 a007 Real Root Of -209*x^4+702*x^3-869*x^2-999*x-17 6765065338890827 r005 Im(z^2+c),c=-15/23+13/54*I,n=6 6765065354548306 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^11 6765065374143210 a001 2139295485799/10946*6557470319842^(10/17) 6765065383788179 a001 5600748293801/28657*6557470319842^(10/17) 6765065385195361 a001 14662949395604/75025*6557470319842^(10/17) 6765065385527551 a001 23725150497407/121393*6557470319842^(10/17) 6765065386065047 a001 3020733700601/15456*6557470319842^(10/17) 6765065389749097 a001 3461452808002/17711*6557470319842^(10/17) 6765065408494571 m001 (GAMMA(13/24)+Kac)/(ReciprocalFibonacci-Trott) 6765065409492346 r009 Im(z^3+c),c=-17/42+47/58*I,n=2 6765065414999954 a001 440719107401/2255*6557470319842^(10/17) 6765065419196148 a007 Real Root Of -168*x^4+239*x^3-299*x^2+99*x+313 6765065422170993 a007 Real Root Of -3*x^4+144*x^3+990*x^2-787*x+235 6765065430070964 l006 ln(2545/5006) 6765065458915654 m001 (2^(1/3)-BesselI(0,2))/(Kac+QuadraticClass) 6765065465002637 h001 (2/5*exp(2)+1/10)/(3/5*exp(2)+1/12) 6765065470879042 a007 Real Root Of -375*x^4+880*x^3-967*x^2-57*x+755 6765065475055783 r009 Re(z^3+c),c=-49/90+7/51*I,n=7 6765065479577073 a007 Real Root Of 973*x^4+355*x^3-36*x^2-26*x-95 6765065484870373 m005 (1/42+1/6*5^(1/2))/(2/9*exp(1)-6/11) 6765065488568428 m001 ln(abs(Chi(1)-Pi^(1/2))) 6765065502690985 a007 Real Root Of -x^4-676*x^3+344*x^2+890*x+72 6765065525588431 a007 Real Root Of -109*x^4+709*x^3-891*x^2-80*x+596 6765065535985801 m001 (FellerTornier+Magata)/(Psi(2,1/3)+gamma(2)) 6765065537188035 a007 Real Root Of -246*x^4+57*x^3-702*x^2+530*x+749 6765065546845458 m001 (exp(1)+ln(5))/(-Ei(1,1)+Thue) 6765065569356322 v002 sum(1/(3^n*(8*n^2+10*n+45)),n=1..infinity) 6765065588071903 a001 505019158607/2584*6557470319842^(10/17) 6765065591882006 m001 (Bloch-LandauRamanujan2nd)/(Lehmer+MertensB2) 6765065621142510 a001 514229/5778*18^(40/57) 6765065626759238 a001 1/5778*(1/2*5^(1/2)+1/2)^12*3^(3/17) 6765065645179383 r005 Im(z^2+c),c=-5/122+37/50*I,n=14 6765065650849811 m001 (exp(1/Pi)+GAMMA(5/6))/(Kac-LaplaceLimit) 6765065706646139 r002 39th iterates of z^2 + 6765065721577169 r005 Re(z^2+c),c=-15/14+6/187*I,n=24 6765065725109700 m005 (1/2*3^(1/2)+11/12)/(3/8*Zeta(3)-5/7) 6765065726048843 a005 (1/cos(16/155*Pi))^939 6765065747144260 r002 20th iterates of z^2 + 6765065766744940 m004 3/4+25*Pi+5*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 6765065776576399 r005 Im(z^2+c),c=29/102+25/48*I,n=7 6765065788663608 a003 cos(Pi*17/71)*sin(Pi*43/114) 6765065794210088 a001 1346269/15127*18^(40/57) 6765065799831187 a001 1/15127*(1/2*5^(1/2)+1/2)^14*3^(3/17) 6765065804262598 a007 Real Root Of -958*x^4+922*x^3-640*x^2+235*x+938 6765065807656530 a004 Fibonacci(17)*Lucas(12)/(1/2+sqrt(5)/2)^9 6765065811937305 a007 Real Root Of 355*x^4+35*x^3-542*x^2-624*x+585 6765065823270105 m001 (Bloch-exp(1))/(HardyLittlewoodC3+Khinchin) 6765065825082045 a001 1/39603*(1/2*5^(1/2)+1/2)^16*3^(3/17) 6765065831042964 a001 1/64079*(1/2*5^(1/2)+1/2)^17*3^(3/17) 6765065835065803 a001 2178309/24476*18^(40/57) 6765065838800309 m009 (6*Catalan+3/4*Pi^2-1/4)/(1/10*Pi^2-4/5) 6765065840687934 a001 1/24476*(1/2*5^(1/2)+1/2)^15*3^(3/17) 6765065887490831 a007 Real Root Of 897*x^4+832*x^3+81*x^2-777*x-493 6765065889480192 m005 (1/3*gamma-1/4)/(1/10*gamma-1/7) 6765065898598622 a007 Real Root Of 743*x^4-284*x^3+713*x^2-454*x-877 6765065901171739 a001 832040/9349*18^(40/57) 6765065906795539 a001 1/9349*(1/2*5^(1/2)+1/2)^13*3^(3/17) 6765065931094847 a007 Real Root Of -467*x^4+860*x^3-841*x^2+858*x-364 6765065931614129 a007 Real Root Of -557*x^4+919*x^3+445*x^2+555*x+573 6765065933372255 l006 ln(3969/7807) 6765065941215026 a007 Real Root Of 118*x^4-966*x^3-375*x^2-238*x+607 6765066000675269 r005 Im(z^2+c),c=-75/118+1/7*I,n=31 6765066004920738 r002 51th iterates of z^2 + 6765066014836987 h001 (1/8*exp(2)+4/7)/(6/11*exp(1)+8/11) 6765066049898931 m001 cos(1)^QuadraticClass/Thue 6765066060706724 a007 Real Root Of 516*x^4+77*x^3-439*x^2-780*x-411 6765066071891402 a007 Real Root Of 85*x^4-735*x^3+727*x^2+788*x-45 6765066091441076 m005 (1/3*3^(1/2)-1/7)/(5/9*5^(1/2)-3/5) 6765066101921062 r009 Im(z^3+c),c=-3/94+24/31*I,n=41 6765066109829012 m001 (Trott2nd-Weierstrass)/(Backhouse-Kolakoski) 6765066134818569 a003 cos(Pi*22/79)/sin(Pi*23/58) 6765066148102636 a008 Real Root of (-4+5*x-3*x^3+4*x^4+5*x^5) 6765066166560700 a007 Real Root Of 569*x^4+868*x^3+761*x^2-503*x-539 6765066216315515 h001 (1/8*exp(1)+4/11)/(1/8*exp(1)+7/10) 6765066237887621 r005 Im(z^2+c),c=-19/98+24/37*I,n=47 6765066250297803 a007 Real Root Of 416*x^4-687*x^3+588*x^2-969*x+512 6765066258116413 m001 Magata^BesselJ(0,1)*FeigenbaumMu^BesselJ(0,1) 6765066258395386 m005 (1/3*gamma-4)/(1/5*Pi+5) 6765066273226053 r002 54th iterates of z^2 + 6765066303642546 s001 sum(exp(-2*Pi/5)^n*A067220[n],n=1..infinity) 6765066303642546 s002 sum(A067220[n]/(exp(2/5*pi*n)),n=1..infinity) 6765066348963258 a007 Real Root Of 474*x^4-314*x^3-587*x^2-792*x-51 6765066354268599 a001 317811/3571*18^(40/57) 6765066359903841 a001 1/3571*(1/2*5^(1/2)+1/2)^11*3^(3/17) 6765066375061357 r001 56i'th iterates of 2*x^2-1 of 6765066391593712 s002 sum(A270613[n]/(n^2*exp(n)-1),n=1..infinity) 6765066397849970 m001 exp(LandauRamanujan)^2*Champernowne/sin(1) 6765066402674001 m002 2/3+(3*Coth[Pi])/Pi^5 6765066413653283 r008 a(0)=0,K{-n^6,61+16*n^3+11*n^2+60*n} 6765066414324311 m001 GAMMA(5/6)^2*PrimesInBinary^2/exp(sinh(1)) 6765066421156298 m005 (1/2*2^(1/2)+5/6)/(3/4*5^(1/2)+3/5) 6765066433691250 r002 4th iterates of z^2 + 6765066441355550 h001 (7/11*exp(2)+1/7)/(10/11*exp(2)+4/9) 6765066453126697 m005 (1/2*Pi+1/3)/(2/9*Pi-5/12) 6765066470822893 r005 Re(z^2+c),c=-5/56+42/61*I,n=61 6765066509765649 r009 Re(z^3+c),c=-15/122+31/47*I,n=50 6765066530749306 a007 Real Root Of -895*x^4+265*x^3-737*x^2-285*x+414 6765066534207416 m001 TwinPrimes/Rabbit/exp(1/Pi) 6765066535391819 a007 Real Root Of 655*x^4-384*x^3+963*x^2-358*x-939 6765066542206016 s002 sum(A250346[n]/(64^n-1),n=1..infinity) 6765066572882624 r009 Im(z^3+c),c=-15/94+21/29*I,n=12 6765066578775381 a003 sin(Pi*25/106)/sin(Pi*56/117) 6765066628686889 a001 377/1364*7^(23/50) 6765066646934162 m001 ln(Tribonacci)*Sierpinski^2/BesselK(1,1) 6765066651636391 m001 (CareFree-Porter)^(3^(1/3)) 6765066662260864 a007 Real Root Of -980*x^4-397*x^3+189*x^2+862*x+579 6765066664421746 m005 (1/3*5^(1/2)-1/7)/(5/6*Zeta(3)-1/9) 6765066667206174 m001 GAMMA(1/4)*exp(GlaisherKinkelin)/GAMMA(11/24) 6765066725166252 r005 Re(z^2+c),c=-35/62+17/28*I,n=7 6765066744520493 a007 Real Root Of 198*x^4-913*x^3-384*x^2-196*x-281 6765066744733219 m001 (Riemann2ndZero+Sarnak)/(Pi-gamma(1)) 6765066745748994 m005 (1/2*Zeta(3)+11/12)/(11/12*Pi-7/11) 6765066764930675 a007 Real Root Of 814*x^4-612*x^3-993*x^2-734*x+970 6765066767873720 s002 sum(A161808[n]/(n*pi^n-1),n=1..infinity) 6765066774324932 a001 23725150497407/987*1836311903^(10/17) 6765066774324932 a001 64300051206/329*6557470319842^(10/17) 6765066776145153 a003 sin(Pi*5/17)*sin(Pi*19/59) 6765066799646236 m001 (Mills+Robbin)/(Si(Pi)+Shi(1)) 6765066810636387 m001 PlouffeB/(polylog(4,1/2)-sin(1/5*Pi)) 6765066810803044 a007 Real Root Of 912*x^4-874*x^3+335*x^2-625*x+41 6765066814938602 a007 Real Root Of -767*x^4-457*x^3+872*x^2+921*x-720 6765066818873832 r005 Re(z^2+c),c=-11/23+37/56*I,n=7 6765066824757186 r005 Im(z^2+c),c=-89/74+5/34*I,n=64 6765066832881874 l006 ln(1424/2801) 6765066838769780 a007 Real Root Of -600*x^4+464*x^3-397*x^2-646*x+14 6765066846510255 m005 (1/2*Zeta(3)-3/7)/(3/8*Zeta(3)-3) 6765066861186989 r005 Re(z^2+c),c=-11/102+5/7*I,n=30 6765066868742090 r005 Re(z^2+c),c=-14/15+1/19*I,n=10 6765066923001085 r002 3th iterates of z^2 + 6765066957877154 a007 Real Root Of 289*x^4+115*x^3+209*x^2-280*x-310 6765066962952053 a007 Real Root Of -847*x^4+719*x^3-199*x^2+702*x+966 6765066973877158 a007 Real Root Of 79*x^4-363*x^3+996*x^2+44*x-555 6765066977533762 r005 Re(z^2+c),c=-7/9+1/115*I,n=29 6765066995528425 m008 (4*Pi^6+1/4)/(1/2*Pi^2+3/4) 6765067004477295 m005 (1/2*Zeta(3)-1/12)/(7/10*5^(1/2)-4/5) 6765067015332897 m001 ln(Cahen)^2/Artin^2*ArtinRank2^2 6765067026190455 m004 18+6*E^(Sqrt[5]*Pi)+Log[Sqrt[5]*Pi] 6765067035139326 r005 Im(z^2+c),c=-9/110+31/45*I,n=4 6765067058292355 m008 (2*Pi^4+4/5)/(Pi-1/4) 6765067090268095 a007 Real Root Of -387*x^4-118*x^3-274*x^2+482*x+496 6765067116122478 m001 ReciprocalLucas/Artin/StronglyCareFree 6765067129158572 a007 Real Root Of -887*x^4+670*x^3-141*x^2-551*x+85 6765067129765535 l006 ln(8201/8775) 6765067136949764 m001 1/Lehmer*FeigenbaumAlpha*ln(GAMMA(19/24)) 6765067148194771 r005 Re(z^2+c),c=-41/62+9/28*I,n=55 6765067149206843 m006 (1/5/Pi-4/5)/(3/5*exp(Pi)-3) 6765067172623842 r005 Re(z^2+c),c=-79/110+2/35*I,n=3 6765067174971797 m001 1/sqrt(3)*Tribonacci^2*exp(sqrt(Pi))^2 6765067183457296 m002 -41+E^Pi*Pi^3 6765067199536198 r005 Re(z^2+c),c=7/54+2/9*I,n=9 6765067218183335 r005 Im(z^2+c),c=15/64+1/52*I,n=42 6765067234371266 a003 cos(Pi*22/115)-cos(Pi*43/95) 6765067243667278 a007 Real Root Of 625*x^4+163*x^3+630*x^2+112*x-293 6765067261217043 a008 Real Root of (-3-x+4*x^2+x^4-2*x^5) 6765067294179023 a007 Real Root Of 977*x^4-993*x^3-721*x^2-361*x+677 6765067301866180 r009 Im(z^3+c),c=-5/56+28/37*I,n=7 6765067309439195 a007 Real Root Of -704*x^4+31*x^3-19*x^2-381*x-92 6765067343964496 r005 Im(z^2+c),c=-99/86+5/58*I,n=41 6765067346344652 r005 Im(z^2+c),c=-17/38+6/53*I,n=16 6765067384762332 m001 (Catalan+ln(2))/(Gompertz+Grothendieck) 6765067385184149 a007 Real Root Of 242*x^4-469*x^3-883*x^2-342*x+730 6765067396391751 r009 Re(z^3+c),c=-13/31+34/47*I,n=3 6765067424796563 r005 Re(z^2+c),c=-11/12+8/65*I,n=62 6765067436833214 a007 Real Root Of -496*x^4+716*x^3-649*x^2-128*x+536 6765067437419574 h001 (4/7*exp(1)+1/12)/(5/9*exp(1)+10/11) 6765067438781476 r002 48th iterates of z^2 + 6765067476315614 m001 1/arctan(1/2)^2*exp(GAMMA(5/12))/gamma 6765067480610571 m005 (1/2*Pi-5/6)/(7/11*Pi-10/11) 6765067529322503 m001 Porter^Trott/ZetaR(2) 6765067543136145 r009 Re(z^3+c),c=-13/118+11/20*I,n=28 6765067577610285 m001 1/ln(Trott)^2/FransenRobinson^2/Catalan 6765067613243268 l006 ln(4575/8999) 6765067650167741 a007 Real Root Of -864*x^4+107*x^3-514*x^2-305*x+243 6765067650676506 q001 11/1626 6765067650676506 q001 55/813 6765067653345721 a007 Real Root Of -62*x^4+375*x^3-376*x^2+152*x+404 6765067667002252 m001 (-GAMMA(2/3)+Zeta(1,2))/(Catalan-gamma) 6765067668265987 r002 50th iterates of z^2 + 6765067671293048 m001 (BesselJ(0,1)-Kac)/(Paris+ReciprocalLucas) 6765067678403579 r005 Im(z^2+c),c=-111/110+15/46*I,n=7 6765067695251801 g001 GAMMA(2/11,35/87) 6765067720801499 a007 Real Root Of -974*x^4-570*x^3-714*x^2+647*x+792 6765067721569581 r005 Re(z^2+c),c=-11/12+8/65*I,n=60 6765067744423720 r005 Im(z^2+c),c=-1/44+21/31*I,n=10 6765067762821787 a001 18/7778742049*39088169^(10/17) 6765067762821787 a001 18/956722026041*139583862445^(10/17) 6765067769263633 a007 Real Root Of 343*x^4-710*x^3+560*x^2+436*x-253 6765067769464452 a001 9/31622993*10946^(10/17) 6765067780469579 r005 Re(z^2+c),c=-15/14+6/187*I,n=28 6765067784034612 r002 6th iterates of z^2 + 6765067796520773 a007 Real Root Of -438*x^4+453*x^3-360*x^2+330*x+620 6765067799523705 r005 Im(z^2+c),c=-61/98+12/61*I,n=19 6765067809400371 m001 (MertensB1-Sarnak)/(BesselK(1,1)-GAMMA(17/24)) 6765067829948283 m005 (-5/8+1/4*5^(1/2))/(8/11*gamma+5/9) 6765067836302459 m001 (gamma(1)+Landau)/(Pi-Psi(1,1/3)) 6765067839327710 r005 Re(z^2+c),c=-11/12+8/65*I,n=64 6765067843210345 a003 sin(Pi*1/97)/sin(Pi*17/107) 6765067855830335 r005 Im(z^2+c),c=-55/122+5/44*I,n=37 6765067864004526 a005 (1/sin(98/237*Pi))^975 6765067866259968 a007 Real Root Of -330*x^4+902*x^3+92*x^2-537*x-57 6765067880554667 m001 (-BesselI(0,1)+GAMMA(11/12))/(2^(1/3)+Si(Pi)) 6765067881621500 r005 Im(z^2+c),c=-23/34+1/76*I,n=8 6765067887185992 a007 Real Root Of 684*x^4+849*x^3+423*x^2-881*x-670 6765067903108963 m003 33/2+Sqrt[5]/4+4*Sec[1/2+Sqrt[5]/2] 6765067912677700 a007 Real Root Of 532*x^4-846*x^3+672*x^2-77*x-733 6765067922620726 m005 (1/2*Catalan+6/7)/(5/7*Pi-3/10) 6765067928795770 m001 (Salem+Sierpinski)/(BesselI(1,2)-MertensB2) 6765067933221951 m001 (Catalan-Zeta(5))/(-ln(Pi)+cos(1/12*Pi)) 6765067965904189 l006 ln(3151/6198) 6765067978540225 h001 (1/6*exp(1)+5/8)/(3/7*exp(1)+3/7) 6765067979414779 a001 2/89*2971215073^(15/19) 6765067989140932 m001 Psi(2,1/3)/(sin(1)^KhinchinLevy) 6765068003677375 m005 (1/3*Pi-2/11)/(5/11*2^(1/2)+7/11) 6765068015095750 a007 Real Root Of -50*x^4-228*x^3+895*x^2+881*x-865 6765068031358349 a007 Real Root Of -10*x^4+729*x^3+438*x^2-244*x-259 6765068087606755 r002 13th iterates of z^2 + 6765068098420236 r005 Re(z^2+c),c=-15/14+6/187*I,n=32 6765068118967567 r005 Re(z^2+c),c=-15/14+6/187*I,n=38 6765068119428661 r005 Re(z^2+c),c=-15/14+6/187*I,n=42 6765068119520391 r005 Re(z^2+c),c=-15/14+6/187*I,n=46 6765068119527819 r005 Re(z^2+c),c=-15/14+6/187*I,n=52 6765068119527907 r005 Re(z^2+c),c=-15/14+6/187*I,n=56 6765068119527908 r005 Re(z^2+c),c=-15/14+6/187*I,n=50 6765068119527933 r005 Re(z^2+c),c=-15/14+6/187*I,n=60 6765068119527935 r005 Re(z^2+c),c=-15/14+6/187*I,n=64 6765068119527936 r005 Re(z^2+c),c=-15/14+6/187*I,n=62 6765068119527945 r005 Re(z^2+c),c=-15/14+6/187*I,n=58 6765068119528004 r005 Re(z^2+c),c=-15/14+6/187*I,n=54 6765068119529279 r005 Re(z^2+c),c=-15/14+6/187*I,n=48 6765068119558182 r005 Re(z^2+c),c=-15/14+6/187*I,n=44 6765068119797871 r005 Re(z^2+c),c=-15/14+6/187*I,n=40 6765068120040398 r005 Re(z^2+c),c=-15/14+6/187*I,n=36 6765068121506815 b008 3-20*FresnelC[2] 6765068122254952 r005 Re(z^2+c),c=-15/14+6/187*I,n=34 6765068163300889 m001 MertensB1*DuboisRaymond^2*exp(GAMMA(1/6))^2 6765068184544114 m001 GolombDickman/exp(ErdosBorwein)*cos(1) 6765068211143406 m005 (1/3*Catalan+2/5)/(1/11*exp(1)-1/7) 6765068214676854 r005 Re(z^2+c),c=-15/14+6/187*I,n=30 6765068228431746 m005 (1/2*5^(1/2)+4)/(1/10*3^(1/2)+7/12) 6765068260681625 b008 -66+BesselY[2,1] 6765068272298578 m001 (Artin-FeigenbaumC)/(ln(3)+GAMMA(11/12)) 6765068278873042 r005 Re(z^2+c),c=-95/122+1/52*I,n=59 6765068293172631 a005 (1/sin(67/149*Pi))^1436 6765068296659346 l006 ln(4878/9595) 6765068340554872 a007 Real Root Of 570*x^4-720*x^3+202*x^2-228*x-589 6765068388418503 h001 (1/12*exp(2)+11/12)/(3/11*exp(2)+1/4) 6765068416978612 a007 Real Root Of -398*x^4+937*x^3+660*x^2-149*x-408 6765068423642926 m008 (5/6*Pi^3+1/4)/(2/5*Pi^4-2/5) 6765068432594074 m005 (1/2*gamma-1)/(2/9*3^(1/2)+2/3) 6765068443208312 r005 Im(z^2+c),c=-157/122+5/26*I,n=10 6765068450735448 a001 75025/521*322^(2/3) 6765068462926270 a007 Real Root Of 384*x^4-266*x^3+156*x^2+967*x+420 6765068463624171 m006 (Pi^2+1)/(3*exp(2*Pi)+1/4) 6765068475094295 a007 Real Root Of 961*x^4-927*x^3-505*x^2-829*x-818 6765068476367865 r005 Im(z^2+c),c=-37/27+1/40*I,n=4 6765068485104530 m001 (Lehmer+Totient)/(2^(1/2)+3^(1/3)) 6765068491207263 r005 Re(z^2+c),c=-22/31+11/37*I,n=19 6765068498698588 m001 (MertensB2-Sierpinski)/(GAMMA(2/3)-Zeta(1,2)) 6765068515591173 m005 (1/3*gamma+4)/(1/6*exp(1)+1/6) 6765068530284219 a007 Real Root Of 592*x^4-843*x^3-116*x^2+770*x+189 6765068532420950 m001 (Zeta(3)+cos(1/5*Pi))/(ln(2)+BesselI(0,2)) 6765068562382049 a007 Real Root Of 980*x^4-601*x^3-157*x^2-339*x+282 6765068574847811 r002 8th iterates of z^2 + 6765068614156387 r005 Re(z^2+c),c=-29/42+11/26*I,n=4 6765068615863642 m005 (1/2*Catalan-1)/(7/12*Zeta(3)+1/10) 6765068629130645 r005 Re(z^2+c),c=-29/30+28/121*I,n=22 6765068641096916 m009 (3/4*Psi(1,1/3)+5)/(6*Psi(1,2/3)+1/5) 6765068662227003 m005 (1/2*Pi+1/11)/(5/7*gamma-1/6) 6765068669011980 a007 Real Root Of 444*x^4-816*x^3+614*x^2-70*x-674 6765068687824855 r005 Re(z^2+c),c=-37/64+23/36*I,n=10 6765068813660822 s002 sum(A226847[n]/(16^n-1),n=1..infinity) 6765068822628463 r005 Re(z^2+c),c=-46/31+11/54*I,n=2 6765068840916521 a007 Real Root Of -40*x^4-177*x^3+524*x^2-796*x-386 6765068847136151 a007 Real Root Of -433*x^4+775*x^3+346*x^2+885*x+771 6765068849730599 m001 1/OneNinth*exp(ArtinRank2)*GAMMA(1/4) 6765068900139053 l006 ln(1727/3397) 6765068913306499 a004 Fibonacci(15)*Lucas(12)/(1/2+sqrt(5)/2)^7 6765068922822596 b008 4+3/2^(2/17) 6765068932865027 h001 (5/7*exp(1)+4/9)/(2/5*exp(2)+4/7) 6765068942294697 a001 514229/322*123^(3/10) 6765068951133941 r009 Re(z^3+c),c=-7/62+37/51*I,n=54 6765068973204833 m001 Grothendieck^ThueMorse-Lehmer 6765068976327583 m001 1/ln(ArtinRank2)/Backhouse^2/TreeGrowth2nd^2 6765068999994612 m001 (GAMMA(23/24)+ErdosBorwein)/(Mills+Sierpinski) 6765069011688171 a007 Real Root Of -953*x^4-640*x^3-877*x^2-118*x+323 6765069011876118 a007 Real Root Of -433*x^4+159*x^3+57*x^2+491*x+446 6765069080735788 r002 3th iterates of z^2 + 6765069080773613 a007 Real Root Of 419*x^4+665*x^3+390*x^2-675*x-517 6765069098144062 a007 Real Root Of 927*x^4+57*x^3+181*x^2-811*x-808 6765069111600917 a007 Real Root Of -189*x^4+182*x^3-760*x^2+160*x+552 6765069113272771 m005 (1/2*gamma-3/7)/(5/11*exp(1)+5/6) 6765069124566687 r005 Re(z^2+c),c=-15/14+6/187*I,n=26 6765069147640358 s002 sum(A248931[n]/(16^n-1),n=1..infinity) 6765069151422736 a003 cos(Pi*9/58)-cos(Pi*49/113) 6765069169584121 r001 58i'th iterates of 2*x^2-1 of 6765069171486916 m001 (exp(1/Pi)+Artin)/Sierpinski 6765069190151409 m002 -Pi+Pi^2+(Coth[Pi]*Log[Pi])/Pi^3 6765069196778258 m001 exp(1/2)/((1/3)^GAMMA(17/24)) 6765069205699885 m005 (-2/3+1/4*5^(1/2))/(20/21+2/7*5^(1/2)) 6765069227134229 r005 Im(z^2+c),c=-29/98+3/29*I,n=6 6765069233040500 r005 Im(z^2+c),c=-5/62+47/57*I,n=44 6765069246476594 r002 3th iterates of z^2 + 6765069258666858 a007 Real Root Of -727*x^4+528*x^3-748*x^2-550*x+286 6765069337407025 r008 a(0)=0,K{-n^6,45+4*n^3+39*n^2+60*n} 6765069382319211 r002 8th iterates of z^2 + 6765069384893856 a007 Real Root Of -669*x^4+902*x^3-995*x^2-78*x+822 6765069386663079 a001 38*3^(21/40) 6765069414433358 a007 Real Root Of 860*x^4+568*x^3+778*x^2+237*x-200 6765069449238188 p001 sum((-1)^n/(576*n+145)/(10^n),n=0..infinity) 6765069454010557 r005 Re(z^2+c),c=-11/12+8/65*I,n=58 6765069458680917 a001 73681302247/377*1836311903^(12/17) 6765069458680917 a001 228826127/377*6557470319842^(12/17) 6765069458684529 a001 23725150497407/377*514229^(12/17) 6765069459842311 a001 121393/1364*18^(40/57) 6765069465555975 a001 1/1364*(1/2*5^(1/2)+1/2)^9*3^(3/17) 6765069475849760 a007 Real Root Of 458*x^4-807*x^3-219*x^2-11*x-253 6765069494004667 m001 1/OneNinth/Trott/ln(GAMMA(7/24))^2 6765069515267934 a007 Real Root Of 698*x^4-124*x^3+527*x^2-429*x-716 6765069524613621 r005 Re(z^2+c),c=-7/9+1/57*I,n=31 6765069525023772 a005 (1/cos(25/226*Pi))^1189 6765069541160886 a007 Real Root Of -781*x^4-239*x^3+63*x^2+296*x+261 6765069552314929 p001 sum(1/(323*n+148)/(256^n),n=0..infinity) 6765069561249532 l005 227/55/(exp(227/55)-1) 6765069591873388 m001 (QuadraticClass-Trott)/(GAMMA(2/3)-GAMMA(3/4)) 6765069591944934 a007 Real Root Of -96*x^4-588*x^3+325*x^2-470*x+971 6765069595384034 m002 -4+6/Pi^2-Pi*ProductLog[Pi] 6765069596795937 a007 Real Root Of 407*x^4-835*x^3+605*x^2-536*x+259 6765069618860747 m008 (1/4*Pi^6-1/3)/(4*Pi^2-4) 6765069637439189 r009 Re(z^3+c),c=-13/27+3/61*I,n=17 6765069643455038 a007 Real Root Of -536*x^4+501*x^3-757*x^2+559*x+992 6765069649883906 m002 6+Log[Pi]+5*Cosh[Pi]*Sinh[Pi] 6765069658279054 a007 Real Root Of -670*x^4+43*x^3+198*x^2+776*x+588 6765069672208939 a001 2178309/521*123^(1/10) 6765069679816658 m001 GAMMA(1/6)/ln(TreeGrowth2nd)/Zeta(9) 6765069683682785 l006 ln(3757/7390) 6765069686028823 r005 Re(z^2+c),c=-18/25+6/53*I,n=3 6765069710425645 a003 sin(Pi*3/68)+sin(Pi*19/105) 6765069717707212 a007 Real Root Of 542*x^4-770*x^3-765*x^2-344*x+27 6765069733380142 m001 ln(2)^Artin*StronglyCareFree 6765069747361963 a001 13/5778*4^(27/34) 6765069750745789 a003 cos(Pi*3/67)*sin(Pi*17/71) 6765069778295317 a007 Real Root Of -765*x^4-253*x^3-629*x^2-146*x+271 6765069786851168 r002 47th iterates of z^2 + 6765069803853808 m001 (-BesselJ(1,1)+Mills)/(Chi(1)-cos(1/12*Pi)) 6765069811424812 a007 Real Root Of -479*x^4+507*x^3-861*x^2-679*x+192 6765069821120409 a007 Real Root Of -144*x^4-846*x^3+884*x^2+109*x-37 6765069823677882 r005 Re(z^2+c),c=-67/126+17/26*I,n=2 6765069867563945 a007 Real Root Of 452*x^4-643*x^3+132*x^2-322*x-572 6765069878127908 a007 Real Root Of 786*x^4+4*x^3-440*x^2-762*x+551 6765069881015814 m005 (1/2*Pi-10/11)/(1/6*Zeta(3)+7/9) 6765069924394232 r002 47th iterates of z^2 + 6765069932562419 r009 Re(z^3+c),c=-61/126+1/18*I,n=31 6765069934976482 r002 5th iterates of z^2 + 6765069959109474 m001 (gamma(2)+HardyLittlewoodC4)^FellerTornier 6765069961716302 r005 Im(z^2+c),c=-67/74+2/37*I,n=13 6765069964629367 a007 Real Root Of -239*x^4-643*x^3-767*x^2+643*x+637 6765069965598769 r005 Re(z^2+c),c=13/126+31/57*I,n=25 6765069975723649 m001 OrthogonalArrays^(2^(1/2))*cos(1)^(2^(1/2)) 6765069984682641 s002 sum(A103974[n]/(exp(pi*n)-1),n=1..infinity) 6765069989053357 m001 (2*Pi/GAMMA(5/6)+Kolakoski)/(Psi(1,1/3)-ln(2)) 6765069997785690 s001 sum(exp(-Pi/4)^n*A049307[n],n=1..infinity) 6765069999157616 a001 322/55*3^(5/38) 6765070035266916 r008 a(0)=0,K{-n^6,45+n^3+48*n^2+54*n} 6765070036960910 m005 (4*Catalan+1/4)/(1/4*Pi+5) 6765070060392413 r009 Re(z^3+c),c=-11/90+13/18*I,n=59 6765070096398733 a007 Real Root Of 958*x^4+239*x^3+917*x^2+339*x-317 6765070107035745 r009 Re(z^3+c),c=-9/44+51/61*I,n=6 6765070110248878 m001 (sin(1/12*Pi)-GAMMA(5/6))/(Totient-ZetaQ(2)) 6765070120296185 r005 Re(z^2+c),c=9/118+23/42*I,n=14 6765070125013745 a003 -1/2+cos(1/30*Pi)+1/2*3^(1/2)-2*cos(7/18*Pi) 6765070126095912 r009 Re(z^3+c),c=-7/58+31/48*I,n=12 6765070168172824 r005 Im(z^2+c),c=-2/3+11/62*I,n=17 6765070182105729 a007 Real Root Of -11*x^4+67*x^3-836*x^2-168*x+292 6765070196231398 m005 (1/2*Catalan-2)/(1/8*3^(1/2)-4/9) 6765070197110126 m001 Thue/(ZetaP(3)-exp(1/exp(1))) 6765070231947517 r005 Im(z^2+c),c=-47/62+1/16*I,n=58 6765070239000338 a007 Real Root Of 519*x^4-14*x^3-275*x^2-591*x-387 6765070253825357 a007 Real Root Of 829*x^4+168*x^3+385*x^2-831*x-860 6765070274782046 m005 (1/3*5^(1/2)-2/3)/(4/7*gamma+5/6) 6765070287652733 r002 2th iterates of z^2 + 6765070324823561 m001 (Pi-sin(1/12*Pi))/(GAMMA(19/24)-RenyiParking) 6765070335870270 m001 Tribonacci^2/FeigenbaumC*ln((3^(1/3))) 6765070350273883 l006 ln(2030/3993) 6765070355771590 a007 Real Root Of 674*x^4-386*x^3+701*x^2+85*x-524 6765070359012124 l006 ln(3529/3776) 6765070374296952 p001 sum(1/(444*n+149)/(32^n),n=0..infinity) 6765070389838114 a007 Real Root Of -272*x^4+784*x^3+227*x^2+967*x+850 6765070392172310 a007 Real Root Of 237*x^4-857*x^3+217*x^2-106*x-486 6765070392286119 a007 Real Root Of -615*x^4+435*x^3-736*x^2+508*x+944 6765070393667587 r005 Re(z^2+c),c=-57/82+10/51*I,n=14 6765070401725593 a007 Real Root Of 765*x^4-785*x^3-263*x^2-788*x-816 6765070468187930 a007 Real Root Of 345*x^4-532*x^3-289*x^2-673*x-560 6765070528864235 a001 24476/55*317811^(23/58) 6765070530794395 a007 Real Root Of -599*x^4+487*x^3-249*x^2+115*x+468 6765070546348503 m005 (1/2*2^(1/2)+5/11)/(9/11*3^(1/2)+3/10) 6765070549124755 r005 Im(z^2+c),c=19/60+2/51*I,n=64 6765070589867757 m005 (1/2*exp(1)+9/11)/(1/10*5^(1/2)-6/11) 6765070592474951 m001 (Artin-Cahen)/(Magata+Stephens) 6765070611843505 m001 (arctan(1/3)-exp(1/Pi))/(ArtinRank2+Thue) 6765070614845636 r005 Im(z^2+c),c=9/62+7/11*I,n=9 6765070629648293 r005 Im(z^2+c),c=-7/12+14/113*I,n=52 6765070633886914 a007 Real Root Of -782*x^4+558*x^3-249*x^2-391*x+186 6765070651459720 m001 ln(GAMMA(7/12))^2/Champernowne*arctan(1/2) 6765070670925852 m001 (Psi(1,1/3)-gamma(3))/(ArtinRank2+Kolakoski) 6765070688136015 m005 (1/2*exp(1)+1/5)/(6/11*3^(1/2)-5/7) 6765070689062209 r002 11th iterates of z^2 + 6765070694499741 r008 a(0)=0,K{-n^6,-71+6*n^3-82*n^2-n} 6765070701687654 r009 Im(z^3+c),c=-19/52+33/49*I,n=36 6765070702059042 q001 2727/4031 6765070722545864 m005 (1/2*gamma+4/11)/(1/9*gamma+9/10) 6765070733296156 m005 (1/2*Pi+4/11)/(2/11*Pi-6/7) 6765070738093612 r002 16th iterates of z^2 + 6765070769726641 m005 (3/4*exp(1)-4)/(1/4*Catalan-1/5) 6765070820164993 m001 Zeta(1,-1)-sin(1/5*Pi)+ZetaP(4) 6765070839991947 a007 Real Root Of -360*x^4+691*x^3-527*x^2-901*x-79 6765070842426022 r009 Im(z^3+c),c=-9/22+1/49*I,n=5 6765070850054629 m001 exp(log(2+sqrt(3)))^2*gamma*sin(1) 6765070877200073 r005 Im(z^2+c),c=-13/12+1/128*I,n=19 6765070878479121 r005 Re(z^2+c),c=-15/14+6/187*I,n=20 6765070888556724 m001 (Khinchin-PlouffeB)/(Zeta(3)-GAMMA(7/12)) 6765070900010901 r005 Re(z^2+c),c=1/34+5/13*I,n=8 6765070919375386 r005 Re(z^2+c),c=-51/74+13/47*I,n=34 6765070924278604 l006 ln(4363/8582) 6765070932162966 m003 5+Sqrt[5]/2+(7*Tanh[1/2+Sqrt[5]/2])/10 6765070958358488 a007 Real Root Of 275*x^4-863*x^3-282*x^2-577*x+729 6765070967708496 r005 Im(z^2+c),c=-55/82+7/43*I,n=8 6765071003722025 m001 (gamma+cos(1))/(GAMMA(11/12)+Gompertz) 6765071046082549 a007 Real Root Of -627*x^4+421*x^3-795*x^2-425*x+338 6765071064643621 a005 (1/cos(55/191*Pi))^114 6765071073562108 a007 Real Root Of -73*x^4-376*x^3+833*x^2+130*x-756 6765071075474192 a007 Real Root Of -925*x^4+967*x^3+674*x^2+124*x-498 6765071075599132 a007 Real Root Of -982*x^4+903*x^3+268*x^2+209*x+504 6765071079511824 a007 Real Root Of 799*x^4+474*x^3+717*x^2+177*x-229 6765071084555594 r005 Re(z^2+c),c=-17/18+28/115*I,n=56 6765071102588660 a007 Real Root Of 627*x^4-864*x^3-577*x^2-92*x-197 6765071116198252 b008 E*ArcCsc[ExpIntegralEi[5]] 6765071122875229 r005 Im(z^2+c),c=-33/86+32/51*I,n=12 6765071140944029 a003 cos(Pi*3/35)*sin(Pi*26/105) 6765071142983588 r005 Re(z^2+c),c=1/48+21/25*I,n=9 6765071155872372 h001 (9/11*exp(1)+4/9)/(3/7*exp(2)+7/9) 6765071163645943 r002 23th iterates of z^2 + 6765071170224967 a003 sin(Pi*2/95)/cos(Pi*5/73) 6765071178609259 m005 (1/2*3^(1/2)+1/5)/(4/7*Zeta(3)+8/9) 6765071188633625 s002 sum(A064418[n]/(n^2*exp(n)-1),n=1..infinity) 6765071246720250 r009 Im(z^3+c),c=-17/58+17/25*I,n=40 6765071315426533 r009 Im(z^3+c),c=-11/42+29/42*I,n=25 6765071394214789 m001 (-ErdosBorwein+Tribonacci)/(5^(1/2)+Zeta(3)) 6765071423734035 l006 ln(2333/4589) 6765071460403291 r008 a(0)=0,K{-n^6,-36+29*n-24*n^2+46*n^3} 6765071463849109 r005 Im(z^2+c),c=-19/14+1/141*I,n=33 6765071472964574 q001 2177/3218 6765071478689342 m005 (1/3*gamma-3/5)/(1/3*5^(1/2)-1/7) 6765071495857658 m001 Pi*(exp(Pi)-arctan(1/3)-GAMMA(17/24)) 6765071502158030 m005 (1/3*2^(1/2)-2/11)/(5/12*5^(1/2)-8/9) 6765071509655681 m001 (cos(1/5*Pi)+Zeta(1,2))/(Conway+Gompertz) 6765071512756607 r002 6th iterates of z^2 + 6765071520674856 a005 (1/cos(4/95*Pi))^1530 6765071521908700 m005 (21/20+1/4*5^(1/2))/(-1/24+1/8*5^(1/2)) 6765071528696115 a007 Real Root Of -580*x^4+720*x^3+210*x^2+783*x+778 6765071532492307 a007 Real Root Of -966*x^4+656*x^3-730*x^2-54*x+703 6765071538424512 r005 Im(z^2+c),c=35/122+38/63*I,n=39 6765071541847428 m001 GaussAGM/(Chi(1)+Pi*csc(1/12*Pi)/GAMMA(11/12)) 6765071548202660 a007 Real Root Of -279*x^4-34*x^3-560*x^2+115*x+382 6765071553451595 a003 cos(Pi*10/27)+cos(Pi*43/105) 6765071559677272 r005 Re(z^2+c),c=-11/12+8/65*I,n=54 6765071576587284 a007 Real Root Of -439*x^4-900*x^3-540*x^2+904*x+672 6765071587512342 m001 RenyiParking*(Cahen+MertensB1) 6765071624465478 m001 Zeta(1/2)*(GAMMA(3/4)+Magata) 6765071643441551 r005 Im(z^2+c),c=-11/16+13/73*I,n=53 6765071649392175 s002 sum(A141280[n]/((exp(n)+1)/n),n=1..infinity) 6765071653742564 a001 987/3571*7^(23/50) 6765071690426952 p001 sum(1/(525*n+418)/n/(16^n),n=1..infinity) 6765071694848034 a007 Real Root Of 614*x^4+933*x^3+241*x^2-479*x+31 6765071715152292 h001 (6/11*exp(1)+8/11)/(3/7*exp(2)+1/10) 6765071744840858 r009 Im(z^3+c),c=-8/15+23/57*I,n=6 6765071753390504 s002 sum(A009906[n]/(n*pi^n+1),n=1..infinity) 6765071756064841 a007 Real Root Of -427*x^4+658*x^3-577*x^2+78*x+610 6765071765306140 m001 1/(3^(1/3))^2*Sierpinski^2/exp(GAMMA(7/24))^2 6765071770648145 a007 Real Root Of -279*x^4+800*x^3+563*x^2-93*x-384 6765071773998971 m005 (1/2*3^(1/2)+1/12)/(2/11*exp(1)+10/11) 6765071782595371 m001 1/MadelungNaCl^2*exp(Khintchine)/Rabbit 6765071803305693 a007 Real Root Of -24*x^4+495*x^3-398*x^2+193*x+471 6765071833962762 r005 Re(z^2+c),c=2/13+14/37*I,n=44 6765071842293345 r005 Re(z^2+c),c=-15/14+6/187*I,n=22 6765071856705259 s002 sum(A135093[n]/((exp(n)+1)/n),n=1..infinity) 6765071862277795 l006 ln(4969/9774) 6765071880922765 p001 sum(1/(571*n+152)/(8^n),n=0..infinity) 6765071881849606 r005 Re(z^2+c),c=-11/12+8/65*I,n=56 6765071888850210 m001 (Lehmer-ZetaP(4))/(Ei(1,1)+Landau) 6765071917721839 a007 Real Root Of 89*x^4+696*x^3+726*x^2+502*x-755 6765071939070140 a005 (1/cos(35/198*Pi))^139 6765071971829016 m008 (3/4*Pi+3)/(5/6*Pi^4-2) 6765071979067480 a007 Real Root Of -14*x^4+112*x^3-970*x^2+487*x+811 6765071996674965 h001 (4/7*exp(1)+5/7)/(1/3*exp(2)+8/9) 6765072049113947 a007 Real Root Of 384*x^4-809*x^3+569*x^2-205*x-730 6765072070208908 m006 (3*exp(2*Pi)-2/5)/(exp(Pi)+3/5) 6765072083357417 a007 Real Root Of 809*x^4+987*x^3+606*x^2-504*x+31 6765072126294493 a007 Real Root Of 554*x^4-962*x^3+85*x^2-924*x+768 6765072137564930 r005 Im(z^2+c),c=-73/114+7/54*I,n=54 6765072172016735 m001 GAMMA(5/6)/(ZetaQ(3)^FransenRobinson) 6765072222921447 b008 8+(9/2)^E 6765072233983035 a007 Real Root Of 285*x^4-850*x^3+164*x^2-550*x-770 6765072250412298 l006 ln(2636/5185) 6765072255564187 r005 Re(z^2+c),c=-15/16+20/71*I,n=16 6765072257823218 m005 (5/8+1/4*5^(1/2))/(3/11*Catalan-2) 6765072265830276 s002 sum(A241093[n]/((exp(n)-1)/n),n=1..infinity) 6765072269539913 m005 (1/2*Catalan-2/7)/(1/3*5^(1/2)-1) 6765072289065101 m001 (Pi+LandauRamanujan)*3^(1/2) 6765072289065101 m001 sqrt(3)*(Pi+LandauRamanujan) 6765072322967273 a007 Real Root Of -311*x^4-874*x^3-345*x^2+764*x+53 6765072345763809 r002 58i'th iterates of 2*x/(1-x^2) of 6765072355297808 r009 Re(z^3+c),c=-5/44+29/50*I,n=38 6765072356945443 r005 Im(z^2+c),c=-25/54+41/53*I,n=3 6765072386887921 a001 2584/9349*7^(23/50) 6765072391156331 r005 Re(z^2+c),c=2/9+14/31*I,n=2 6765072418169863 m001 GAMMA(11/24)^2*Ei(1)/exp(GAMMA(19/24))^2 6765072434694476 r009 Re(z^3+c),c=-25/102+46/51*I,n=7 6765072475017262 r002 8th iterates of z^2 + 6765072476161084 a007 Real Root Of -704*x^4+916*x^3+508*x^2+552*x+572 6765072493852378 a001 6765/24476*7^(23/50) 6765072509458282 a001 17711/64079*7^(23/50) 6765072511735153 a001 46368/167761*7^(23/50) 6765072512067344 a001 121393/439204*7^(23/50) 6765072512115810 a001 317811/1149851*7^(23/50) 6765072512122881 a001 832040/3010349*7^(23/50) 6765072512124550 a001 1346269/4870847*7^(23/50) 6765072512127251 a001 514229/1860498*7^(23/50) 6765072512145764 a001 196418/710647*7^(23/50) 6765072512272649 a001 75025/271443*7^(23/50) 6765072513142336 a001 28657/103682*7^(23/50) 6765072514088288 a007 Real Root Of -507*x^4+837*x^3+155*x^2+298*x+496 6765072519103261 a001 10946/39603*7^(23/50) 6765072519263304 r005 Im(z^2+c),c=15/64+1/52*I,n=43 6765072527777468 m001 Champernowne^(ZetaR(2)/Kolakoski) 6765072546524388 m001 (exp(1/exp(1))+gamma(1))/(FellerTornier+Niven) 6765072552808013 p001 sum(1/(537*n+41)/n/(256^n),n=1..infinity) 6765072556499914 m005 (1/2*exp(1)-4/7)/(1/9*Zeta(3)-1/4) 6765072557210821 m009 (6*Psi(1,1/3)+2/5)/(5/6*Psi(1,1/3)+3/5) 6765072559960048 a001 4181/15127*7^(23/50) 6765072573317525 r002 10th iterates of z^2 + 6765072584616592 a007 Real Root Of 196*x^4-517*x^3+360*x^2-990*x+624 6765072594001175 a007 Real Root Of 500*x^4+353*x^3+448*x^2-901*x-810 6765072597459269 m002 6/Pi^3+Cosh[Pi]/24 6765072603122181 a007 Real Root Of -466*x^4+866*x^3+565*x^2-896*x-499 6765072608550322 a007 Real Root Of 691*x^4-971*x^3+460*x^2+226*x-503 6765072609046886 r005 Im(z^2+c),c=27/74+16/53*I,n=4 6765072636713805 m001 (Conway-Salem)/(Pi-2^(1/3)) 6765072644502829 a007 Real Root Of -387*x^4+329*x^3+970*x^2-7*x-460 6765072655584804 r005 Re(z^2+c),c=-1/14+31/40*I,n=44 6765072676960518 p003 LerchPhi(1/32,2,226/185) 6765072687095000 r009 Re(z^3+c),c=-39/70+12/53*I,n=6 6765072701767348 a007 Real Root Of -579*x^4+149*x^3-630*x^2-752*x-53 6765072707218635 a007 Real Root Of 538*x^4+11*x^3+181*x^2-801*x-734 6765072707304568 a003 sin(Pi*12/71)/cos(Pi*3/13) 6765072738843583 r002 36th iterates of z^2 + 6765072765072765 q001 1627/2405 6765072782315837 m001 (ErdosBorwein*GaussAGM-Psi(2,1/3))/GaussAGM 6765072784798336 a007 Real Root Of -121*x^4+704*x^3-234*x^2+793*x-622 6765072785399171 r005 Im(z^2+c),c=-15/14+18/233*I,n=25 6765072789907533 r005 Im(z^2+c),c=41/102+10/47*I,n=23 6765072802295648 m001 (arctan(1/2)+FeigenbaumB)/(Stephens+Totient) 6765072823235524 r002 4th iterates of z^2 + 6765072835639315 a003 cos(Pi*16/61)*sin(Pi*41/87) 6765072838698651 r009 Im(z^3+c),c=-17/50+22/35*I,n=9 6765072839996621 a001 1597/5778*7^(23/50) 6765072856143586 r005 Im(z^2+c),c=-20/29+2/43*I,n=11 6765072863465345 m001 1/cos(Pi/12)*ln(GAMMA(11/12))^2*sqrt(5) 6765072906635587 l006 ln(2939/5781) 6765072951667822 a007 Real Root Of -983*x^4+95*x^3+377*x^2+701*x+537 6765072968889755 a007 Real Root Of 784*x^4+472*x^3+155*x^2-439*x-386 6765072976656988 a001 322*34^(4/19) 6765072994311059 m001 (FransenRobinson+HardyLittlewoodC5)/PlouffeB 6765072996254114 a007 Real Root Of 203*x^4-812*x^3+993*x^2+5*x-745 6765073025427080 a007 Real Root Of 965*x^4+38*x^3+419*x^2-767*x-901 6765073044976519 r005 Re(z^2+c),c=-1/13+7/9*I,n=8 6765073131494660 m005 (1/2*Zeta(3)+5/7)/(2/5*5^(1/2)-7/10) 6765073144132484 a003 sin(Pi*10/49)/sin(Pi*29/84) 6765073154894372 m001 1/KhintchineLevy/ln(Conway)^2/sqrt(Pi) 6765073155421345 r005 Im(z^2+c),c=-19/26+1/33*I,n=57 6765073209174849 a001 9/31622993*14930352^(8/17) 6765073209174852 a001 18/2971215073*53316291173^(8/17) 6765073230202754 s002 sum(A225710[n]/(exp(pi*n)-1),n=1..infinity) 6765073231871786 r002 41th iterates of z^2 + 6765073245597736 a001 18/1346269*4181^(8/17) 6765073264917673 a001 18/28657*17711^(56/59) 6765073269269086 a007 Real Root Of -70*x^4+52*x^3+640*x^2+304*x-500 6765073271684448 m005 (1/2*Zeta(3)-7/9)/(10/11*Catalan-4/7) 6765073308905797 a007 Real Root Of 863*x^4+603*x^3+560*x^2+36*x-226 6765073328453368 m001 (Cahen+Magata)/(BesselK(0,1)+2*Pi/GAMMA(5/6)) 6765073375050795 s002 sum(A115167[n]/(10^n+1),n=1..infinity) 6765073380162029 m005 (1/3*gamma+1/3)/(5*3^(1/2)-8/9) 6765073401198011 m001 (MinimumGamma+Trott)/(LambertW(1)+ln(5)) 6765073406523782 a007 Real Root Of 400*x^4+566*x^3+132*x^2-479*x-293 6765073422980547 m001 (Landau+MasserGramain)/(MertensB2+Sarnak) 6765073425690162 m001 1/exp(GAMMA(5/6))*BesselK(1,1)^2/sqrt(3) 6765073440196502 l006 ln(3242/6377) 6765073453811546 r005 Im(z^2+c),c=-73/114+4/35*I,n=30 6765073479668536 m001 (Ei(1)-gamma(3))/(Pi^(1/2)+GAMMA(23/24)) 6765073486100545 m001 1/(2^(1/3))/Robbin^2*exp(log(2+sqrt(3))) 6765073491413382 a003 sin(Pi*15/74)/sin(Pi*27/79) 6765073496933704 m001 (2^(1/2))^BesselI(1,2)/((2^(1/2))^exp(1)) 6765073496933704 m001 sqrt(2)^BesselI(1,2)/(sqrt(2)^exp(1)) 6765073534181163 m001 ln(2)^ArtinRank2/ln(Pi) 6765073534427924 a007 Real Root Of -56*x^4-258*x^3+860*x^2+327*x+268 6765073534920351 a007 Real Root Of -256*x^4+119*x^3-448*x^2+85*x+353 6765073543075100 r009 Im(z^3+c),c=-5/64+31/43*I,n=3 6765073610783142 m001 cos(1/12*Pi)/(Mills^MertensB3) 6765073612762028 m001 (1+AlladiGrinstead)/(-Khinchin+Trott) 6765073652751249 a007 Real Root Of -191*x^4+416*x^3-402*x^2+259*x+528 6765073668747484 m001 1/exp(FeigenbaumD)*Salem*sin(1) 6765073680243725 m006 (3*exp(2*Pi)-1/2)/(2*Pi^2+4) 6765073680849614 r002 12th iterates of z^2 + 6765073684271661 r008 a(0)=7,K{-n^6,-18-61*n^3+45*n^2+38*n} 6765073689481043 a007 Real Root Of -220*x^4+961*x^3-202*x^2+637*x+867 6765073700108293 p001 sum((-1)^n/(527*n+143)/(6^n),n=0..infinity) 6765073716093628 a007 Real Root Of 295*x^4+49*x^3+77*x^2-658*x-527 6765073725937771 a007 Real Root Of -660*x^4+352*x^3-789*x^2-676*x+151 6765073768077765 a007 Real Root Of 693*x^4-378*x^3+344*x^2+97*x-354 6765073769734010 m001 (MertensB3+Porter)/(Cahen-Shi(1)) 6765073781831798 m002 -4/Pi^3+6*Coth[Pi]*Log[Pi] 6765073793803327 b008 29*ArcTan[23]^2 6765073805354015 q001 2704/3997 6765073817088907 r002 53th iterates of z^2 + 6765073846532989 r009 Re(z^3+c),c=-5/44+29/50*I,n=34 6765073849591078 b008 (7*Cosh[Catalan])/15 6765073850641176 a001 29/21*4181^(26/35) 6765073865806721 m005 (1/2*Catalan+6/7)/(9/11*gamma-2/3) 6765073882547828 l006 ln(3545/6973) 6765073887195405 a001 46368/521*322^(3/4) 6765073897833604 r005 Im(z^2+c),c=-17/26+14/103*I,n=48 6765073910856863 m001 (Psi(2,1/3)-Zeta(3))/(-gamma(3)+GaussAGM) 6765073912351056 m001 1/GAMMA(1/3)*exp(FeigenbaumC)^2/arctan(1/2)^2 6765073914859059 m001 (Zeta(1,-1)*GaussAGM+DuboisRaymond)/GaussAGM 6765073919422334 r005 Re(z^2+c),c=-45/58+1/32*I,n=45 6765073945663325 r005 Im(z^2+c),c=-4/7+13/105*I,n=19 6765073949676707 r008 a(0)=7,K{-n^6,23-34*n+41*n^2-15*n^3} 6765073955780282 m001 GAMMA(17/24)/FeigenbaumAlpha*HeathBrownMoroz 6765073989355639 r005 Re(z^2+c),c=-51/64+15/52*I,n=8 6765073994031642 r005 Re(z^2+c),c=-41/56+1/6*I,n=52 6765074025085544 p001 sum(1/(473*n+125)/n/(25^n),n=1..infinity) 6765074032338862 a007 Real Root Of 92*x^4-277*x^3-441*x^2-848*x+842 6765074049614008 p003 LerchPhi(1/100,3,86/35) 6765074086775431 a005 (1/cos(34/111*Pi))^94 6765074091002408 a001 8/15127*521^(38/49) 6765074131724235 r005 Im(z^2+c),c=-143/114+9/23*I,n=14 6765074139250736 r009 Re(z^3+c),c=-5/46+29/54*I,n=19 6765074162732669 r002 6th iterates of z^2 + 6765074183527374 m001 (Porter+Sarnak)/(Backhouse+Grothendieck) 6765074255235703 l006 ln(3848/7569) 6765074288366195 a007 Real Root Of -977*x^4+857*x^3+439*x^2+739*x+769 6765074314313605 m001 RenyiParking*GolombDickman^2*exp(Zeta(1/2)) 6765074332183750 m001 sin(1)/ln(Riemann3rdZero)*sin(Pi/12) 6765074374967757 r009 Im(z^3+c),c=-11/58+44/45*I,n=48 6765074383619496 m001 (Rabbit-Stephens)/(GAMMA(2/3)+GolombDickman) 6765074417898302 m001 (GAMMA(5/12)-cos(1))/GAMMA(1/24) 6765074428580782 r005 Re(z^2+c),c=5/126+22/51*I,n=8 6765074431589787 r002 30th iterates of z^2 + 6765074452891119 a007 Real Root Of -351*x^4+891*x^3+892*x^2+212*x-754 6765074454654488 a001 11*(1/2*5^(1/2)+1/2)^16*29^(7/23) 6765074457273964 m001 (Psi(1,1/3)-Zeta(1/2))/(-Ei(1,1)+Tetranacci) 6765074463875206 a001 322/5*4181^(11/39) 6765074520786292 r005 Im(z^2+c),c=27/70+17/50*I,n=39 6765074531217132 a007 Real Root Of 487*x^4-932*x^3-154*x^2+652*x+121 6765074549783383 a007 Real Root Of 815*x^4-651*x^3+42*x^2+388*x-129 6765074568504376 a007 Real Root Of 989*x^4-728*x^3+174*x^2-659*x-958 6765074573515267 l006 ln(4151/8165) 6765074597091910 m001 1/sin(Pi/12)*exp(Trott)*sqrt(3) 6765074597557902 m001 1/Kolakoski^2*ArtinRank2^2*ln(Catalan) 6765074605592039 r005 Im(z^2+c),c=-7/10+20/201*I,n=14 6765074643442938 r005 Re(z^2+c),c=21/106+29/51*I,n=13 6765074645286701 r002 41th iterates of z^2 + 6765074651279448 r002 48th iterates of z^2 + 6765074660146557 a007 Real Root Of 298*x^4-930*x^3+525*x^2-478*x-914 6765074662068011 m004 3/4+25*Pi+5*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 6765074669799793 a007 Real Root Of -439*x^4+781*x^3-3*x^2-352*x+97 6765074693833010 r005 Re(z^2+c),c=-11/12+8/65*I,n=40 6765074715865039 m001 (gamma(2)+BesselK(1,1))/(Trott+ZetaP(4)) 6765074727633697 m001 (Kac+RenyiParking)/(sin(1/5*Pi)+3^(1/3)) 6765074734837686 r002 14th iterates of z^2 + 6765074739621523 m008 (2/5*Pi^6+5)/(3/5*Pi^6-1) 6765074744942770 a007 Real Root Of -804*x^4+730*x^3-541*x^2-374*x+389 6765074746354267 p003 LerchPhi(1/16,2,151/123) 6765074751645680 r009 Im(z^3+c),c=-61/114+5/49*I,n=4 6765074759395460 a001 610/2207*7^(23/50) 6765074770662817 a001 6643838879*13^(19/21) 6765074790405811 a001 7/2*9227465^(8/13) 6765074793479426 r008 a(0)=7,K{-n^6,10-2*n+56*n^2-60*n^3} 6765074836281820 l006 ln(5915/6329) 6765074839980595 m001 (Porter-ZetaP(3))/(FeigenbaumAlpha-Lehmer) 6765074848490508 l006 ln(4454/8761) 6765074852145251 r005 Re(z^2+c),c=-33/86+26/41*I,n=18 6765074852398210 r005 Re(z^2+c),c=-17/22+4/117*I,n=19 6765074884700819 a001 9/305*1597^(14/19) 6765074905035347 a001 9062201101803/377*1836311903^(10/17) 6765074905035347 a001 73681302247/377*6557470319842^(10/17) 6765074922436471 r005 Im(z^2+c),c=-5/66+28/41*I,n=61 6765074935062098 a007 Real Root Of -106*x^4-662*x^3+238*x^2-887*x+166 6765074947261939 m001 BesselK(1,1)*ln(BesselJ(0,1))/cosh(1)^2 6765074968344399 a007 Real Root Of 134*x^4-856*x^3+304*x^2+497*x-96 6765074971764766 m001 (Chi(1)+GAMMA(19/24))/(-Rabbit+ThueMorse) 6765074994418300 r005 Re(z^2+c),c=-31/48+5/12*I,n=39 6765075007554470 a007 Real Root Of 866*x^4-172*x^3-586*x^2-530*x-325 6765075019815719 a005 (1/cos(14/215*Pi))^200 6765075088436314 l006 ln(4757/9357) 6765075118924324 a001 13/15127*11^(37/43) 6765075123359780 m001 1/3*cos(1/12*Pi)^Rabbit*3^(2/3) 6765075124254547 m001 2^(1/2)/(5^(1/2)-exp(Pi)) 6765075124254547 m001 sqrt(2)/(exp(Pi)-sqrt(5)) 6765075136072786 a007 Real Root Of -73*x^4-399*x^3+698*x^2+430*x+331 6765075146170134 m001 Magata*exp(MertensB1)*GAMMA(7/12) 6765075219145890 r009 Im(z^3+c),c=-11/64+32/43*I,n=56 6765075247514879 a007 Real Root Of -651*x^4+574*x^3-691*x^2+171*x+746 6765075254781846 a007 Real Root Of -59*x^4-502*x^3-825*x^2-914*x-273 6765075266952993 r002 30th iterates of z^2 + 6765075266952993 r002 30th iterates of z^2 + 6765075279358206 a007 Real Root Of 256*x^4-791*x^3+709*x^2+170*x-508 6765075281570794 a007 Real Root Of -429*x^4-357*x^3-595*x^2-437*x-44 6765075291562535 a001 29/55*17711^(6/23) 6765075299645523 l006 ln(5060/9953) 6765075308602861 m005 (1/2*5^(1/2)-1)/(6/11*3^(1/2)+4/5) 6765075309470082 m001 GaussAGM^(2^(1/2)*GAMMA(7/12)) 6765075331776143 a001 1/90481*11^(34/45) 6765075332646580 a007 Real Root Of 359*x^4+166*x^3+963*x^2-48*x-497 6765075349123456 m001 (GAMMA(5/6)*GAMMA(23/24)-Si(Pi))/GAMMA(23/24) 6765075349547900 r005 Im(z^2+c),c=-4/11+5/47*I,n=25 6765075370682811 r008 a(0)=0,K{-n^6,25-14*n^3+83*n^2+54*n} 6765075376884422 q001 1077/1592 6765075402580208 m005 (1/3*3^(1/2)+2/11)/(4/5*5^(1/2)-2/3) 6765075416410064 m006 (3/5*exp(2*Pi)-2)/(1/3*Pi-1) 6765075452359399 m008 (4/5*Pi^2+1/4)/(2/5*Pi^5-2) 6765075462112451 m001 (2^(1/3)-Si(Pi))/(-LambertW(1)+3^(1/3)) 6765075504290634 a005 (1/cos(15/203*Pi))^155 6765075512544266 a007 Real Root Of 366*x^4-955*x^3+437*x^2+407*x-297 6765075516777607 a007 Real Root Of 498*x^4+214*x^3+506*x^2+301*x-66 6765075552040878 a007 Real Root Of 631*x^4-696*x^3-208*x^2-224*x-404 6765075558814728 m005 (1/2*2^(1/2)-5/6)/(34/35+2/5*5^(1/2)) 6765075563185708 a007 Real Root Of 4*x^4+268*x^3-179*x^2-199*x-174 6765075569370122 r009 Im(z^3+c),c=-19/110+19/25*I,n=5 6765075601844216 m001 (Otter+Stephens)/(arctan(1/3)-Artin) 6765075605673287 a003 cos(Pi*29/102)+cos(Pi*46/95) 6765075620370595 p003 LerchPhi(1/1024,1,247/167) 6765075622018202 m001 Lehmer*ln(HardHexagonsEntropy)/cos(1)^2 6765075628192443 a003 cos(Pi*7/82)*sin(Pi*25/101) 6765075632881163 a003 cos(Pi*6/77)*sin(Pi*14/57) 6765075633393052 m001 exp(KhintchineHarmonic)^2/Si(Pi)^2/sqrt(2) 6765075638447981 m001 (Catalan-Psi(2,1/3))/(CopelandErdos+Lehmer) 6765075652366323 r009 Im(z^3+c),c=-39/70+5/18*I,n=63 6765075706392339 a007 Real Root Of 689*x^4+689*x^3+484*x^2-450*x+28 6765075718696813 a007 Real Root Of -374*x^4-290*x^3-821*x^2+919*x+986 6765075743630133 m005 (1/3*exp(1)-1/6)/(8/11*3^(1/2)-1/6) 6765075789410215 r002 14th iterates of z^2 + 6765075809936469 r005 Re(z^2+c),c=-23/30+3/64*I,n=13 6765075812379247 r002 62i'th iterates of 2*x/(1-x^2) of 6765075820974131 a007 Real Root Of 625*x^4+130*x^3+457*x^2-324*x-519 6765075829570508 m001 GaussAGM^FellerTornier*GaussAGM^Tribonacci 6765075856696773 a007 Real Root Of -581*x^4+419*x^3-406*x^2-701*x-37 6765075913406007 m001 1/GAMMA(2/3)^2*exp(Cahen)^2/cos(1)^2 6765075915220406 a001 11/34*2584^(17/25) 6765075928321658 m001 GolombDickman*exp(ErdosBorwein)^2*TwinPrimes^2 6765075938405998 a008 Real Root of (-5+5*x+x^2+x^3+6*x^5) 6765075941372357 m001 arctan(1/2)*GAMMA(1/24)-exp(sqrt(2)) 6765075971803163 q001 5/73909 6765075973459951 m001 FeigenbaumC/FeigenbaumB*HardyLittlewoodC4 6765075985849869 m001 ln(sin(1))^2*GAMMA(11/24)*sinh(1) 6765075996232384 r002 50th iterates of z^2 + 6765076008403680 a007 Real Root Of -968*x^4+997*x^3+332*x^2+221*x+509 6765076073956876 m001 (DuboisRaymond-Mills*StolarskyHarborth)/Mills 6765076101873614 r005 Im(z^2+c),c=-149/118+1/31*I,n=7 6765076109804782 r009 Im(z^3+c),c=-6/17+33/52*I,n=27 6765076117678759 r008 a(0)=7,K{-n^6,-52*n^3+27*n^2+29*n} 6765076127271418 a007 Real Root Of -660*x^4-292*x^3-972*x^2-137*x+400 6765076143172441 r009 Re(z^3+c),c=-21/44+1/57*I,n=3 6765076171720886 m009 (1/3*Pi^2+2)/(1/2*Psi(1,2/3)-3/4) 6765076173225456 m005 (1/12+1/4*5^(1/2))/(1/5*2^(1/2)+2/3) 6765076221280736 m005 (1/2*Pi-3/11)/(4/7*2^(1/2)-1) 6765076305970028 s002 sum(A049850[n]/((2^n+1)/n),n=1..infinity) 6765076311447903 a003 sin(Pi*3/79)+sin(Pi*16/85) 6765076343156659 r005 Re(z^2+c),c=-2/11+40/59*I,n=12 6765076366206317 a008 Real Root of (16+18*x-7*x^2+2*x^3) 6765076378492283 r002 28th iterates of z^2 + 6765076384098526 a007 Real Root Of -865*x^4+834*x^3-252*x^2-548*x+184 6765076400267219 m005 (1/3*Pi+1/12)/(7/11*Catalan-3/4) 6765076404726655 a001 1/76*(1/2*5^(1/2)+1/2)^5*3571^(3/16) 6765076408374348 m001 (exp(1)+MadelungNaCl)/(-MasserGramain+Mills) 6765076408584946 m001 (3^(1/3)-Ei(1,1))/(PolyaRandomWalk3D+Porter) 6765076432939938 m006 (2/3*Pi-1)/(2/3*exp(Pi)+3/4) 6765076484963350 a007 Real Root Of 944*x^4-799*x^3+255*x^2+421*x-277 6765076499359622 a001 1/76*(1/2*5^(1/2)+1/2)^7*9349^(1/16) 6765076502631466 a007 Real Root Of -906*x^4+551*x^3+166*x^2+570*x+670 6765076503682276 a001 1/76*(1/2*5^(1/2)+1/2)*64079^(5/16) 6765076505329836 a001 1/4870004*(1/2*5^(1/2)+1/2)^24*64079^(5/16) 6765076510549195 a001 1/1860176*(1/2*5^(1/2)+1/2)^20*24476^(7/16) 6765076525387258 a001 312119004989/13*987^(9/11) 6765076525392144 m001 Stephens^ln(2+3^(1/2))/TravellingSalesman 6765076538287264 r002 3th iterates of z^2 + 6765076562095842 a001 377/9349*199^(30/31) 6765076569186304 m005 (1/2*3^(1/2)+8/9)/(11/12*Pi-2/7) 6765076576759877 a001 1/710524*(1/2*5^(1/2)+1/2)^26*9349^(1/16) 6765076586322000 r002 5th iterates of z^2 + 6765076639291591 h001 (-4*exp(1/3)-3)/(-6*exp(2/3)-1) 6765076678832476 a007 Real Root Of 575*x^4+41*x^3+319*x^2-628*x+41 6765076697422353 r005 Im(z^2+c),c=-45/94+5/43*I,n=19 6765076715022322 r005 Im(z^2+c),c=15/64+1/52*I,n=44 6765076739701198 l006 ln(8301/8882) 6765076757005642 r002 12th iterates of z^2 + 6765076763773635 a007 Real Root Of -33*x^4-82*x^3+949*x^2+97*x+956 6765076768800046 m005 (1/2*Catalan+3/8)/(5/12*gamma-4/11) 6765076783005023 a007 Real Root Of -527*x^4+508*x^3+295*x^2+822*x-738 6765076789348684 r009 Im(z^3+c),c=-7/64+33/43*I,n=25 6765076802081905 v003 sum((n^3-3*n^2+14*n+5)/n^(n-2),n=1..infinity) 6765076824264435 m001 (-Conway+TreeGrowth2nd)/(Shi(1)+Ei(1,1)) 6765076832884734 s002 sum(A235375[n]/((exp(n)+1)/n),n=1..infinity) 6765076859825190 m001 (TravellingSalesman-Thue)/(ln(3)+MertensB2) 6765076866023940 m001 (3^(1/2)+BesselI(1,1))/(Otter+TreeGrowth2nd) 6765076867404719 a007 Real Root Of -96*x^4-364*x^3-990*x^2+932*x+991 6765076891417000 a007 Real Root Of 665*x^4-17*x^3-530*x^2-589*x+507 6765076892306576 a007 Real Root Of -44*x^4-202*x^3+525*x^2-731*x+646 6765076896815806 a001 123/2*4807526976^(8/11) 6765076907222553 a007 Real Root Of -123*x^4+421*x^3+398*x^2+840*x-855 6765076909284292 p001 sum((-1)^n/(371*n+87)/n/(32^n),n=1..infinity) 6765076935235918 a001 1/271396*(1/2*5^(1/2)+1/2)^22*3571^(3/16) 6765076961897552 q001 2681/3963 6765076995404705 r005 Im(z^2+c),c=-31/46+15/59*I,n=63 6765076998152582 r002 24th iterates of z^2 + 6765077009689103 m001 (Gompertz-arctan(1/2)*ZetaQ(3))/ZetaQ(3) 6765077011847768 a007 Real Root Of -203*x^4+770*x^3+306*x^2+961*x+791 6765077025566546 h001 (4/11*exp(2)+9/10)/(7/11*exp(2)+3/5) 6765077087404679 r002 16th iterates of z^2 + 6765077091958824 r002 44i'th iterates of 2*x/(1-x^2) of 6765077133435893 m001 (Zeta(3)+Stephens)/(Pi+exp(Pi)) 6765077146722834 p004 log(22469/11423) 6765077150941629 m001 1/TreeGrowth2nd^2/ln(Cahen)/sqrt(3) 6765077174018905 m001 1/ln(PisotVijayaraghavan)^2/Paris/Ei(1) 6765077185978172 a001 1/103664*(1/2*5^(1/2)+1/2)^11*1364^(13/16) 6765077186114114 m005 (1/2*gamma-3/7)/(3/5*5^(1/2)+8/11) 6765077203616635 p001 sum(1/(336*n+263)/n/(25^n),n=1..infinity) 6765077204180736 p001 sum((-1)^n/(359*n+249)/n/(24^n),n=1..infinity) 6765077205501991 a007 Real Root Of -581*x^4+757*x^3+211*x^2-85*x+202 6765077208152019 r005 Re(z^2+c),c=-35/52+16/57*I,n=21 6765077208571346 m005 (1/2*2^(1/2)-1/7)/(1/2*gamma+6/11) 6765077211147839 m001 (Catalan+CareFree)/(-FeigenbaumAlpha+OneNinth) 6765077260534657 a007 Real Root Of 132*x^4+910*x^3+220*x^2+838*x+867 6765077278443855 m005 (1/2*Catalan-1)/(3*exp(1)-1/7) 6765077293450479 m005 (-21/44+1/4*5^(1/2))/(1/7*5^(1/2)+8/9) 6765077301346389 m008 (1/2*Pi^5-1/5)/(3/4*Pi^3-2/3) 6765077317413136 a007 Real Root Of -304*x^4+367*x^3-563*x^2-674*x-21 6765077322630319 a007 Real Root Of -234*x^4+636*x^3+734*x^2-50*x-450 6765077335214070 m001 1/ln(GAMMA(13/24))^2/FeigenbaumAlpha^2*Zeta(5) 6765077341427380 a007 Real Root Of 395*x^4-512*x^3+569*x^2-271*x-685 6765077362806753 s002 sum(A259286[n]/(n*exp(n)-1),n=1..infinity) 6765077375166341 m001 (GAMMA(5/6)+ThueMorse)/(BesselJ(1,1)-exp(1)) 6765077378799737 p003 LerchPhi(1/1024,4,53/152) 6765077379124722 h001 (1/12*exp(2)+5/6)/(2/9*exp(2)+1/2) 6765077390318584 m001 Paris/exp(ArtinRank2)*GAMMA(19/24)^2 6765077392194718 m001 (Pi-5^(1/2))/(GolombDickman-ReciprocalLucas) 6765077458727427 r005 Re(z^2+c),c=-11/12+8/65*I,n=46 6765077472096787 a007 Real Root Of 611*x^4+232*x^3+996*x^2-983*x-71 6765077490395316 a007 Real Root Of 656*x^4-615*x^3-817*x^2-584*x+822 6765077502524162 r005 Re(z^2+c),c=-1/102+3/5*I,n=20 6765077544617247 a001 98209/9*11^(35/46) 6765077547113787 s002 sum(A049048[n]/(exp(n)+1),n=1..infinity) 6765077550564250 m001 1/exp(Zeta(5))*OneNinth*sqrt(Pi) 6765077568759184 r005 Im(z^2+c),c=-13/56+13/20*I,n=55 6765077569233162 r009 Re(z^3+c),c=-7/90+13/61*I,n=2 6765077576046508 m005 (1/2*3^(1/2)+4/7)/(5/8*5^(1/2)+8/11) 6765077581397774 a007 Real Root Of -382*x^4+783*x^3-55*x^2+695*x-47 6765077584352729 a001 9349/13*1548008755920^(9/11) 6765077593820010 m005 (1/3*exp(1)-2/9)/(2/11*5^(1/2)-5/12) 6765077604668101 r005 Re(z^2+c),c=-53/110+7/13*I,n=19 6765077617195008 a003 sin(Pi*11/79)/sin(Pi*14/65) 6765077649523242 a007 Real Root Of 834*x^4-873*x^3+396*x^2+157*x-520 6765077655222991 a007 Real Root Of -700*x^4+619*x^3-353*x^2-795*x-38 6765077659494586 a007 Real Root Of -248*x^4-235*x^3+995*x^2+948*x-972 6765077661752993 a001 54018521/13*39088169^(9/11) 6765077661766391 a001 710647/13*7778742049^(9/11) 6765077661781690 a001 4106118243/13*196418^(9/11) 6765077664679873 r005 Im(z^2+c),c=-31/27+5/59*I,n=9 6765077676863523 a001 75025/199*199^(6/11) 6765077694085409 r002 24th iterates of z^2 + 6765077707034456 r009 Im(z^3+c),c=-9/94+34/45*I,n=24 6765077712403191 m001 ArtinRank2*cos(1/12*Pi)^QuadraticClass 6765077712974340 m001 1/Kolakoski/exp(Bloch)^2*sinh(1)^2 6765077717881550 m001 Paris^2*MertensB1/exp(PisotVijayaraghavan) 6765077718001904 r009 Im(z^3+c),c=-39/94+31/52*I,n=4 6765077727757870 m001 (ln(gamma)-FeigenbaumMu)/(MertensB3-Sarnak) 6765077802744785 r005 Im(z^2+c),c=-17/82+13/20*I,n=62 6765077807491553 a008 Real Root of x^4-37*x^2-63*x+25 6765077817275325 a008 Real Root of (-4+x+5*x^2+4*x^3-3*x^4+3*x^5) 6765077824565808 a007 Real Root Of -943*x^4-322*x^3-627*x^2+497*x+721 6765077891503582 r005 Im(z^2+c),c=17/44+19/50*I,n=13 6765077916720175 a007 Real Root Of -726*x^4-630*x^3+55*x^2+423*x+218 6765077925241281 m001 (sin(1/5*Pi)-GAMMA(7/12))/(Gompertz+Kolakoski) 6765077939112978 r002 51th iterates of z^2 + 6765077957726934 a007 Real Root Of -630*x^4+999*x^3-206*x^2+555*x+911 6765077987242890 r009 Im(z^3+c),c=-39/70+5/18*I,n=59 6765078000477891 m005 (1/2*Catalan-7/12)/(-43/22+1/22*5^(1/2)) 6765078014494972 a007 Real Root Of 810*x^4+596*x^3+223*x^2+324*x+132 6765078022220967 m005 (1/2*Catalan-4/7)/(8/11*exp(1)-3/10) 6765078025121320 m001 (sin(1/5*Pi)+Zeta(1,-1))/GolombDickman 6765078026149304 q001 1604/2371 6765078027236740 r005 Im(z^2+c),c=-17/18+110/239*I,n=3 6765078044298882 a005 (1/cos(17/148*Pi))^340 6765078061865264 a001 1/39596*(1/2*5^(1/2)+1/2)^9*521^(15/16) 6765078067162491 a007 Real Root Of -685*x^4+870*x^3-102*x^2+218*x+607 6765078069089931 r009 Im(z^3+c),c=-2/19+31/41*I,n=39 6765078091028146 s002 sum(A087982[n]/(pi^n),n=1..infinity) 6765078124093111 m001 (BesselI(0,2)-cos(1))/(Cahen+Tetranacci) 6765078128767423 m009 (1/4*Psi(1,3/4)+1/4)/(4*Psi(1,2/3)+5/6) 6765078129957552 a001 18/514229*14930352^(14/19) 6765078129962673 a001 18/433494437*139583862445^(14/19) 6765078145947029 a007 Real Root Of 52*x^4+290*x^3-359*x^2+532*x+900 6765078147608365 m009 (6*Psi(1,2/3)-3)/(2*Pi^2+3) 6765078163071469 a007 Real Root Of -885*x^4+203*x^3+7*x^2+371*x+496 6765078211712617 m001 ln(TwinPrimes)^2/MertensB1*GAMMA(23/24) 6765078213260520 r005 Re(z^2+c),c=-17/48+2/3*I,n=9 6765078221176183 a007 Real Root Of -603*x^4+694*x^3+629*x^2+836*x-942 6765078255880913 a008 Real Root of x^4-32*x^2-85*x-55 6765078275198367 r005 Re(z^2+c),c=-43/82+25/53*I,n=4 6765078293197533 a007 Real Root Of 927*x^4-412*x^3+262*x^2-376*x-696 6765078314977396 m001 (Ei(1,1)-LandauRamanujan)/(Porter-Robbin) 6765078323127229 r009 Re(z^3+c),c=-13/110+13/21*I,n=42 6765078361930768 m001 Ei(1)*MinimumGamma*ln(GAMMA(1/12)) 6765078375096557 r005 Im(z^2+c),c=-25/18+1/178*I,n=10 6765078383372155 a005 (1/sin(58/167*Pi))^189 6765078401778837 b008 6+Tanh[Zeta[7]] 6765078409873271 m005 (1/2*Zeta(3)+4/11)/(4/11*2^(1/2)-1/2) 6765078411334946 m001 1/exp(FeigenbaumC)*CareFree^2/sinh(1) 6765078427384959 m001 Soldner^HardHexagonsEntropy 6765078455127643 a007 Real Root Of -77*x^4-420*x^3+742*x^2+548*x+992 6765078464854728 a007 Real Root Of -101*x^4-626*x^3+273*x^2-744*x+205 6765078468430042 m001 (-GAMMA(23/24)+Robbin)/(cos(1)-gamma(3)) 6765078469417944 m001 1/ln(Magata)*Khintchine^2*GAMMA(1/12) 6765078479460030 a007 Real Root Of 564*x^4-752*x^3+324*x^2-551*x-872 6765078485147324 a007 Real Root Of -911*x^4-132*x^3-805*x^2+505*x+860 6765078497440140 a007 Real Root Of 129*x^4+852*x^3-179*x^2-129*x+912 6765078502004636 a007 Real Root Of 267*x^4-952*x^3-397*x^2-442*x-468 6765078518291952 a007 Real Root Of -683*x^4-287*x^3-537*x^2+173*x+417 6765078522921745 r005 Re(z^2+c),c=29/78+4/33*I,n=12 6765078555777964 r008 a(0)=0,K{-n^6,38-41*n^3+10*n^2-22*n} 6765078566484214 m001 (Mills+Porter)/(2^(1/2)+Khinchin) 6765078592221583 a007 Real Root Of 915*x^4-973*x^3-681*x^2+24*x-165 6765078615559806 l006 ln(303/596) 6765078648386273 m009 (Pi^2-2/5)/(20/3*Catalan+5/6*Pi^2-1/3) 6765078655509609 a001 9/98209*196418^(6/17) 6765078655532192 a001 9/1762289*701408733^(6/17) 6765078655532301 a001 9/31622993*2504730781961^(6/17) 6765078659148335 r005 Re(z^2+c),c=-79/64+57/58*I,n=2 6765078772194368 m008 (1/3*Pi^5+1/5)/(5*Pi-3/5) 6765078779069897 a007 Real Root Of 821*x^4-792*x^3-557*x^2+602*x+245 6765078787832969 m001 (log(gamma)+sin(Pi/12))^GAMMA(1/12) 6765078791936091 m001 (Zeta(1/2)+Zeta(1,-1))/(PlouffeB+Tetranacci) 6765078858951471 a007 Real Root Of -221*x^4+314*x^3-669*x^2+574*x+838 6765078859087491 a003 cos(Pi*11/107)*cos(Pi*21/44) 6765078859406944 s002 sum(A202694[n]/(n^2*exp(n)-1),n=1..infinity) 6765078860681423 r005 Im(z^2+c),c=-63/82+8/51*I,n=16 6765078873596960 a001 199/18*(1/2*5^(1/2)+1/2)^19*18^(13/20) 6765078881676441 m001 1/Sierpinski*exp(FeigenbaumB)/GAMMA(1/4)^2 6765078896178053 m001 ArtinRank2-arctan(1/3)^Magata 6765078929138981 b008 5/2+E^2*EulerGamma 6765078963265660 m001 Catalan^sin(1/12*Pi)-ln(2)/ln(10) 6765078995525933 r005 Im(z^2+c),c=-165/122+28/59*I,n=3 6765078998648525 r009 Re(z^3+c),c=-13/122+27/62*I,n=4 6765079079690660 m005 (3*2^(1/2)+2/3)/(5/3+5/2*5^(1/2)) 6765079080030003 m001 Magata*CareFree^2/exp(Catalan) 6765079095212342 m008 (2/5*Pi^3-5/6)/(1/3*Pi^2-5) 6765079097063439 m001 1/ln(GAMMA(11/12))^2/MadelungNaCl*sin(Pi/5)^2 6765079106226300 m001 (Magata+Totient)/(BesselK(1,1)-Conway) 6765079136151840 m001 (3^(1/3)-PolyaRandomWalk3D)/(Salem+ZetaP(2)) 6765079142363790 m001 (ThueMorse-ln(1+sqrt(2)))/ln(2) 6765079142363790 m001 (ThueMorse-ln(2^(1/2)+1))/ln(2) 6765079143972685 m005 (1/3*3^(1/2)-1/2)/(5/6*3^(1/2)-3/10) 6765079183323239 m005 (1/3*Pi+1/9)/(2/3*exp(1)-1/10) 6765079232967759 r002 47th iterates of z^2 + 6765079251334125 r005 Re(z^2+c),c=-9/14+34/97*I,n=17 6765079291916464 a007 Real Root Of 177*x^4-713*x^3-671*x^2+7*x+54 6765079314754305 a007 Real Root Of 207*x^4-998*x^3+259*x^2+869*x+117 6765079319149352 m002 -Pi^3+Pi^4+Pi^3/(E^Pi*ProductLog[Pi]) 6765079326806291 a001 28657/521*322^(5/6) 6765079365079365 q001 2131/3150 6765079369945727 p003 LerchPhi(1/2,1,264/113) 6765079382465943 m001 (2^(1/3)-3^(1/3))/(-gamma(2)+Khinchin) 6765079394973908 r005 Im(z^2+c),c=-23/18+16/199*I,n=3 6765079395041552 m005 (1/4*2^(1/2)+5/6)/(2*gamma+3/5) 6765079423744988 r005 Im(z^2+c),c=-1/23+26/41*I,n=17 6765079443402060 r009 Im(z^3+c),c=-73/122+36/53*I,n=17 6765079467931012 r005 Im(z^2+c),c=7/19+2/21*I,n=14 6765079468204298 r005 Re(z^2+c),c=11/86+30/59*I,n=4 6765079469071398 r005 Im(z^2+c),c=-89/86+4/55*I,n=10 6765079522244165 p004 log(21647/20231) 6765079540444115 m005 (1/3*3^(1/2)+1/2)/(5/11*5^(1/2)-6/7) 6765079602753642 m001 1/2*(ln(2)/ln(10)+2^(1/2)*arctan(1/2))*2^(1/2) 6765079619247933 a008 Real Root of x^4-38*x^2-62*x+64 6765079623630699 a007 Real Root Of -46*x^4+294*x^3-726*x^2+448*x+736 6765079635344807 p004 log(32363/16453) 6765079641956781 r002 7th iterates of z^2 + 6765079677006091 m005 (1/2*5^(1/2)-1/10)/(4/11*3^(1/2)+7/8) 6765079701871335 r005 Im(z^2+c),c=-13/18+10/91*I,n=4 6765079739525192 s002 sum(A161163[n]/(n^2*exp(n)+1),n=1..infinity) 6765079750489855 a007 Real Root Of -117*x^4-664*x^3+805*x^2-327*x+426 6765079767202085 a007 Real Root Of -887*x^4+624*x^3+767*x^2+343*x+260 6765079799904042 s002 sum(A040064[n]/(n^3*10^n+1),n=1..infinity) 6765079813492808 r005 Re(z^2+c),c=-3/4+3/80*I,n=7 6765079823198390 h001 (-7*exp(-3)-2)/(-4*exp(-1)-2) 6765079828019947 m005 (5*2^(1/2)+3/4)/(1/3*exp(1)+1/4) 6765079841214103 r005 Re(z^2+c),c=-19/122+25/33*I,n=24 6765079853443314 m001 arctan(1/3)^GAMMA(2/3)*Pi 6765079859113487 m002 -(E^Pi*Pi^5)+Sinh[Pi]+Pi^5*Tanh[Pi] 6765079883123009 a007 Real Root Of 34*x^4+263*x^3+233*x^2+84*x+118 6765079908462628 r005 Im(z^2+c),c=15/64+1/52*I,n=45 6765079910074343 r002 7th iterates of z^2 + 6765079912991982 r005 Re(z^2+c),c=-51/70+13/56*I,n=3 6765079922373140 b008 Log[LogGamma[Sech[E]]] 6765079925089644 r005 Im(z^2+c),c=-4/11+5/47*I,n=28 6765079935495379 m001 Lehmer*(Chi(1)+GaussKuzminWirsing) 6765079937728243 a007 Real Root Of 552*x^4-110*x^3-911*x^2-618*x+46 6765079942926533 a007 Real Root Of 135*x^4+819*x^3-744*x^2-766*x-324 6765079950311015 a001 726103/281*123^(1/5) 6765079958746138 a008 Real Root of x^4-33*x^2-84*x-16 6765079959274308 m001 (-GAMMA(19/24)+KhinchinLevy)/(Shi(1)+sin(1)) 6765079965524953 b008 Erf[(2*Pi)/9] 6765079983281807 m001 1/Salem*ln(Artin)*cos(Pi/5) 6765079989609624 p004 log(24019/12211) 6765080033697694 m005 (1/2*2^(1/2)+7/10)/(6/7*exp(1)-1/4) 6765080042576758 m005 (1/3*5^(1/2)+1/7)/(6/7*gamma+9/11) 6765080050533978 m005 (1/2*gamma+3/8)/(2/7*Pi+1/12) 6765080084823054 m006 (4/5*exp(Pi)+3)/(4/5*Pi+2/3) 6765080098677250 m002 -5+Pi^2-Sinh[Pi]-Sech[Pi]*Tanh[Pi] 6765080103738966 p003 LerchPhi(1/32,4,271/138) 6765080148353325 s002 sum(A241101[n]/(n^3*10^n+1),n=1..infinity) 6765080170779044 a007 Real Root Of 839*x^4-715*x^3+274*x^2-626*x-946 6765080173072028 q001 2658/3929 6765080205620677 a007 Real Root Of 120*x^4-842*x^3-168*x^2-785*x-740 6765080235154434 r002 19th iterates of z^2 + 6765080249599223 a007 Real Root Of 571*x^4-810*x^3+269*x^2-85*x-551 6765080270801400 m001 (gamma(1)-OneNinth)/(GAMMA(3/4)+3^(1/3)) 6765080281643584 a007 Real Root Of -469*x^4+659*x^3+775*x^2+991*x+618 6765080285114371 a003 sin(Pi*29/120)*sin(Pi*41/93) 6765080341106419 r005 Im(z^2+c),c=-93/74+1/54*I,n=38 6765080351394162 a001 23725150497407/377*6557470319842^(8/17) 6765080353315412 m001 (Zeta(5)-BesselI(0,2))/(DuboisRaymond-Trott) 6765080357916008 r005 Im(z^2+c),c=-55/122+5/44*I,n=35 6765080376020852 a007 Real Root Of -419*x^4+302*x^3+542*x^2-13*x-245 6765080406768170 m001 Sarnak^Porter/(Sarnak^sin(1/12*Pi)) 6765080421850807 r005 Im(z^2+c),c=-37/56+2/63*I,n=16 6765080422272614 m001 ((1+3^(1/2))^(1/2)+Kac)/(Otter+ThueMorse) 6765080438375633 m001 1/ln(BesselJ(0,1))^2/Champernowne^2/GAMMA(2/3) 6765080443086432 p004 log(18059/9181) 6765080461539760 p003 LerchPhi(1/8,1,380/237) 6765080474991833 a003 sin(Pi*10/109)-sin(Pi*39/95) 6765080479730291 a007 Real Root Of 669*x^4-127*x^3+570*x^2-239*x-602 6765080485024886 a007 Real Root Of -551*x^4+859*x^3+696*x^2+195*x-601 6765080514238257 m005 (27/28+1/4*5^(1/2))/(1/12*Zeta(3)+1/8) 6765080530149937 m001 ln(2^(1/2)+1)/(FeigenbaumMu^exp(-1/2*Pi)) 6765080532463659 a007 Real Root Of -209*x^4+383*x^3+671*x^2+752*x+364 6765080542204283 a007 Real Root Of -782*x^4+810*x^3-623*x^2+30*x+720 6765080548431549 q001 1/1478179 6765080554557391 a001 41/7*75025^(11/26) 6765080575328154 a007 Real Root Of 104*x^4-495*x^3+694*x^2-441*x-791 6765080603409885 r005 Re(z^2+c),c=-34/23+11/63*I,n=2 6765080614992311 a007 Real Root Of 148*x^4-873*x^3-691*x^2+224*x+404 6765080663145483 r005 Re(z^2+c),c=-43/58+7/62*I,n=5 6765080678108950 r009 Re(z^3+c),c=-7/66+43/58*I,n=52 6765080704427563 r005 Re(z^2+c),c=-13/74+22/31*I,n=14 6765080742743813 a005 (1/cos(5/214*Pi))^1563 6765080749771051 m001 1/Paris/CareFree/exp(GAMMA(7/12))^2 6765080787276644 r005 Im(z^2+c),c=-4/11+5/47*I,n=30 6765080816867182 a001 1346269/76*11^(19/34) 6765080875286962 a007 Real Root Of 819*x^4-457*x^3+843*x^2-151*x-801 6765080887016505 m002 5+16/E^Pi+ProductLog[Pi] 6765080888162234 a001 3/28657*53316291173^(13/24) 6765080888435831 a007 Real Root Of 729*x^4+346*x^3+68*x^2-472*x-396 6765080894676836 m001 (2^(1/2)+Shi(1))/(ArtinRank2+Otter) 6765080898572062 a007 Real Root Of -672*x^4+66*x^3+25*x^2-313*x-62 6765080932394515 m001 exp(Pi)/sin(1/5*Pi)/LandauRamanujan2nd 6765080941676663 p003 LerchPhi(1/32,1,229/152) 6765080971649869 m005 (5/6*exp(1)-1/3)/(1/4*gamma-3) 6765080975329751 r005 Im(z^2+c),c=-121/106+4/45*I,n=7 6765080989965202 a003 cos(Pi*6/109)*sin(Pi*20/83) 6765080993496805 r005 Im(z^2+c),c=-1/106+25/39*I,n=5 6765081004023557 a001 2/4181*46368^(1/31) 6765081005707764 a007 Real Root Of -30*x^4-134*x^3+337*x^2-982*x-718 6765081006480753 a007 Real Root Of -108*x^4+824*x^3-573*x^2-337*x+312 6765081015403643 a001 1364/21*2178309^(19/24) 6765081040292221 m005 (1/2*3^(1/2)-6/7)/(7/8*gamma-7/11) 6765081046328422 m001 Mills/(StolarskyHarborth^Magata) 6765081071114089 m001 (Si(Pi)+HeathBrownMoroz)/Trott2nd 6765081072349809 a007 Real Root Of 259*x^4-623*x^3+665*x^2+354*x-312 6765081075846130 r009 Re(z^3+c),c=-29/48+13/46*I,n=14 6765081095144289 m006 (3/4*exp(Pi)+1)/(4/5*Pi+1/5) 6765081100762079 r005 Im(z^2+c),c=-11/10+17/211*I,n=29 6765081111254046 s002 sum(A006604[n]/(16^n),n=1..infinity) 6765081135883010 m001 1/FeigenbaumD/ln(Rabbit)^2*Zeta(1/2)^2 6765081150765349 m001 (exp(Pi)+5^(1/2))/(-BesselI(0,1)+Conway) 6765081151241406 r005 Im(z^2+c),c=-33/98+31/49*I,n=62 6765081170662887 m001 exp(Salem)^2/MertensB1^2*BesselJ(1,1) 6765081175134108 a007 Real Root Of -563*x^4-112*x^3-244*x^2+652*x+636 6765081180245454 m005 (1/2*Pi+1/8)/(3/11*2^(1/2)-7/11) 6765081191945755 r005 Re(z^2+c),c=29/102+38/63*I,n=55 6765081233928455 r005 Im(z^2+c),c=-1/11+20/29*I,n=55 6765081239712073 m001 FeigenbaumKappa/Ei(1)/Shi(1) 6765081264042489 l002 polylog(10,48/71) 6765081286600247 m001 (-exp(-1/2*Pi)+Zeta(1,2))/(1+ln(2)) 6765081309909820 a007 Real Root Of -425*x^4-335*x^3-898*x^2+378*x+652 6765081320154152 m005 (1/2*Pi+9/11)/(4/9*3^(1/2)-5/12) 6765081361339899 m001 (exp(-1/2*Pi)-Salem)/(Ei(1)-arctan(1/2)) 6765081364952499 m001 exp(TreeGrowth2nd)^2/Niven^2/GAMMA(3/4) 6765081366713337 m001 exp(Zeta(5))*ErdosBorwein/sin(Pi/12)^2 6765081366981230 r005 Im(z^2+c),c=-5/4+11/183*I,n=41 6765081370632868 r009 Re(z^3+c),c=-5/74+1/30*I,n=2 6765081390164707 a007 Real Root Of -506*x^4-75*x^3-545*x^2+421*x+617 6765081458362240 l006 ln(2386/2553) 6765081466806807 m001 (-FeigenbaumB+Robbin)/(Catalan+ErdosBorwein) 6765081481799940 m001 (-BesselI(1,2)+GaussAGM)/(gamma+cos(1)) 6765081512244181 m001 (Otter-Stephens)/(FeigenbaumD+GaussAGM) 6765081533543772 h001 (3/11*exp(1)+9/11)/(5/7*exp(1)+4/11) 6765081535741433 m001 (2^(1/2)-Sarnak)^GAMMA(11/12) 6765081592441496 r005 Re(z^2+c),c=-91/86+7/52*I,n=30 6765081595577732 r005 Re(z^2+c),c=-19/18+5/34*I,n=28 6765081624438957 a007 Real Root Of 25*x^4-578*x^3-6*x^2+147*x-82 6765081636675504 r009 Im(z^3+c),c=-14/29+19/37*I,n=17 6765081639588399 a007 Real Root Of 118*x^4-418*x^3+265*x^2-703*x-751 6765081652963207 r005 Im(z^2+c),c=-4/11+5/47*I,n=32 6765081668018503 m001 1/GAMMA(1/24)*Khintchine/exp(sqrt(2))^2 6765081709718864 r005 Re(z^2+c),c=-13/82+19/26*I,n=23 6765081711045199 m001 arctan(1/2)^2*GAMMA(7/24)^2/ln(sqrt(3))^2 6765081717539480 r005 Im(z^2+c),c=27/70+17/50*I,n=34 6765081719487263 r005 Re(z^2+c),c=-19/18+28/191*I,n=46 6765081770593472 a007 Real Root Of 633*x^4+297*x^3+860*x^2-384*x-694 6765081787197293 v002 sum(1/(5^n*(9/2*n^2+57/2*n-30)),n=1..infinity) 6765081804628427 m001 (-FeigenbaumB+Mills)/(gamma+Champernowne) 6765081804811803 r005 Re(z^2+c),c=6/25+23/50*I,n=48 6765081805263261 r002 28th iterates of z^2 + 6765081812128679 a007 Real Root Of 85*x^4+568*x^3-48*x^2+126*x+872 6765081812879946 r005 Im(z^2+c),c=-13/90+28/41*I,n=64 6765081814053807 r009 Im(z^3+c),c=-59/106+13/46*I,n=19 6765081845328725 m005 (1/2*2^(1/2)+1)/(4/7*Catalan+2) 6765081856150643 r005 Im(z^2+c),c=-5/78+23/24*I,n=3 6765081870896229 r005 Im(z^2+c),c=11/42+23/47*I,n=30 6765081957958278 a001 199/2*6557470319842^(11/18) 6765081966734303 r005 Im(z^2+c),c=-15/34+7/62*I,n=23 6765081987779771 b008 2/5+7*Sin[2] 6765081987870327 r005 Im(z^2+c),c=-4/7+1/81*I,n=38 6765081995383478 s002 sum(A223268[n]/(n*exp(n)-1),n=1..infinity) 6765082006424876 m001 3/2*Zeta(1,2)/exp(-1/2*Pi) 6765082011269826 m001 OneNinth/(QuadraticClass+Rabbit) 6765082011732463 a007 Real Root Of 130*x^4+717*x^3-962*x^2+976*x+330 6765082012709156 l006 ln(4939/9715) 6765082027495676 a007 Real Root Of 149*x^4-324*x^3-794*x^2-255*x+605 6765082044643336 h001 (3/11*exp(1)+4/11)/(1/3*exp(1)+8/11) 6765082045323898 a007 Real Root Of -474*x^4+709*x^3+195*x^2+147*x+329 6765082056555439 a007 Real Root Of 86*x^4+653*x^3+508*x^2+311*x+900 6765082065695921 a001 2207/144*34^(8/19) 6765082073859083 m005 (1/2*3^(1/2)+1/6)/(3/11*5^(1/2)+11/12) 6765082085520630 r005 Im(z^2+c),c=-4/11+5/47*I,n=34 6765082118078820 a007 Real Root Of -95*x^4+797*x^3-583*x^2+595*x+936 6765082168278478 a007 Real Root Of -190*x^4+811*x^3+186*x^2+431*x-588 6765082176955718 h001 (1/3*exp(2)+6/11)/(6/11*exp(2)+5/12) 6765082193830268 a007 Real Root Of -953*x^4+395*x^3+32*x^2+820*x+862 6765082200004069 m001 1/GAMMA(19/24)^2*ln(GolombDickman)^2/cosh(1)^2 6765082232810614 r009 Im(z^3+c),c=-1/25+33/43*I,n=13 6765082232916162 r005 Im(z^2+c),c=-9/14+33/184*I,n=17 6765082234740231 l006 ln(4636/9119) 6765082249565296 r005 Im(z^2+c),c=-4/11+5/47*I,n=36 6765082253577994 r005 Im(z^2+c),c=15/64+1/52*I,n=46 6765082262539544 m001 1/FeigenbaumC*LaplaceLimit^2*exp(Zeta(5)) 6765082289319880 r008 a(0)=4,K{-n^6,42-30*n^3-39*n^2+27*n} 6765082298353247 r005 Im(z^2+c),c=-83/98+1/23*I,n=18 6765082299290606 r005 Im(z^2+c),c=-4/11+5/47*I,n=38 6765082307863087 r005 Im(z^2+c),c=-4/11+5/47*I,n=41 6765082308241764 r005 Im(z^2+c),c=-4/11+5/47*I,n=43 6765082308976555 r005 Im(z^2+c),c=-4/11+5/47*I,n=45 6765082309386008 r005 Im(z^2+c),c=-4/11+5/47*I,n=47 6765082309551431 r005 Im(z^2+c),c=-4/11+5/47*I,n=49 6765082309604777 r005 Im(z^2+c),c=-4/11+5/47*I,n=51 6765082309617178 r005 Im(z^2+c),c=-4/11+5/47*I,n=56 6765082309617300 r005 Im(z^2+c),c=-4/11+5/47*I,n=54 6765082309617768 r005 Im(z^2+c),c=-4/11+5/47*I,n=58 6765082309617982 r005 Im(z^2+c),c=-4/11+5/47*I,n=53 6765082309618147 r005 Im(z^2+c),c=-4/11+5/47*I,n=60 6765082309618311 r005 Im(z^2+c),c=-4/11+5/47*I,n=62 6765082309618367 r005 Im(z^2+c),c=-4/11+5/47*I,n=64 6765082309618421 r005 Im(z^2+c),c=-4/11+5/47*I,n=63 6765082309618520 r005 Im(z^2+c),c=-4/11+5/47*I,n=61 6765082309618778 r005 Im(z^2+c),c=-4/11+5/47*I,n=59 6765082309619287 r005 Im(z^2+c),c=-4/11+5/47*I,n=57 6765082309619765 r005 Im(z^2+c),c=-4/11+5/47*I,n=55 6765082309622848 r005 Im(z^2+c),c=-4/11+5/47*I,n=52 6765082309650504 r005 Im(z^2+c),c=-4/11+5/47*I,n=50 6765082309747092 r005 Im(z^2+c),c=-4/11+5/47*I,n=48 6765082310015317 r005 Im(z^2+c),c=-4/11+5/47*I,n=46 6765082310419182 r005 Im(z^2+c),c=-4/11+5/47*I,n=40 6765082310594991 r005 Im(z^2+c),c=-4/11+5/47*I,n=44 6765082311351152 r005 Im(z^2+c),c=-4/11+5/47*I,n=42 6765082312040632 r005 Im(z^2+c),c=-4/11+5/47*I,n=39 6765082312613548 a007 Real Root Of -977*x^4+674*x^3-894*x^2+54*x+859 6765082317175054 a003 sin(Pi*19/93)/sin(Pi*37/107) 6765082336789001 r005 Im(z^2+c),c=-4/11+5/47*I,n=37 6765082349284975 r005 Im(z^2+c),c=27/70+17/50*I,n=49 6765082359338725 a007 Real Root Of 668*x^4+821*x^3+629*x^2-617*x-591 6765082361893676 m001 ln(GAMMA(1/6))^2/Cahen^2/GAMMA(23/24)^2 6765082384311541 a007 Real Root Of -826*x^4-136*x^3-301*x^2-338*x+40 6765082389870661 m001 DuboisRaymond*MasserGramain*ZetaQ(2) 6765082403878262 r002 41th iterates of z^2 + 6765082407341430 g006 Psi(1,1/9)-Psi(1,7/11)-Psi(1,4/11)-Psi(1,7/10) 6765082411538910 v002 sum(1/(3^n*(26*n^2-16*n+49)),n=1..infinity) 6765082429797839 r005 Im(z^2+c),c=-4/11+5/47*I,n=35 6765082430174999 m001 Lehmer^HardHexagonsEntropy*OrthogonalArrays 6765082431527293 r005 Re(z^2+c),c=15/106+25/49*I,n=11 6765082452999143 a007 Real Root Of 357*x^4-537*x^3-455*x^2-596*x-436 6765082464912764 m005 (1/2*2^(1/2)+5/7)/(6/7*2^(1/2)+8/9) 6765082465119203 r002 32th iterates of z^2 + 6765082477442508 a007 Real Root Of -997*x^4-10*x^3+859*x^2+690*x-648 6765082483627849 m001 GAMMA(1/4)/Salem^2/exp(GAMMA(2/3)) 6765082486951417 m001 Cahen^2*ln(Artin)/BesselK(1,1) 6765082487823882 l006 ln(4333/8523) 6765082489484856 r009 Im(z^3+c),c=-101/106+11/60*I,n=2 6765082510337084 a007 Real Root Of 7*x^4+468*x^3-384*x^2-545*x+417 6765082559689439 a007 Real Root Of 980*x^4-958*x^3+559*x^2+106*x-686 6765082569303833 h001 (6/11*exp(2)+7/11)/(11/12*exp(2)+1/8) 6765082601160531 a007 Real Root Of 776*x^4+570*x^3+877*x^2-881*x-6 6765082622389167 r005 Im(z^2+c),c=-5/6+4/99*I,n=22 6765082632436867 m005 (1/2*2^(1/2)-3/10)/(1/10*3^(1/2)+3/7) 6765082640471810 r009 Im(z^3+c),c=-79/114+5/62*I,n=3 6765082664723696 m001 (BesselK(0,1)-sin(1/5*Pi))/(Kac+Tribonacci) 6765082672509481 p004 log(34519/32261) 6765082673575534 m001 exp(Paris)*ArtinRank2^2*(2^(1/3)) 6765082675165677 a008 Real Root of x^4-x^3-42*x^2+16*x+29 6765082684536899 r005 Re(z^2+c),c=15/38+2/13*I,n=11 6765082696918743 r005 Im(z^2+c),c=-4/11+5/47*I,n=26 6765082698787355 a007 Real Root Of 100*x^4+549*x^3-973*x^2-807*x-407 6765082703802281 r005 Im(z^2+c),c=-4/11+5/47*I,n=33 6765082717951109 r005 Im(z^2+c),c=-147/118+11/51*I,n=8 6765082734192481 a007 Real Root Of 3*x^4-854*x^3-651*x^2+378*x+306 6765082744058442 a007 Real Root Of 303*x^4-34*x^3-931*x^2-798*x+913 6765082746377520 r009 Im(z^3+c),c=-27/118+32/45*I,n=20 6765082778964271 l006 ln(4030/7927) 6765082787411193 a007 Real Root Of 222*x^4-245*x^3-790*x^2-43*x+420 6765082789550447 m005 (1/2*2^(1/2)-5/8)/(6/7*Catalan+3/7) 6765082832465904 m001 Zeta(3)*(Bloch-MertensB2) 6765082837469108 r009 Re(z^3+c),c=-39/70+7/43*I,n=58 6765082841598639 m005 (1/2*3^(1/2)-9/11)/(13/5+2*5^(1/2)) 6765082862494826 r009 Re(z^3+c),c=-11/102+33/62*I,n=14 6765082908168706 a007 Real Root Of -874*x^4-695*x^3-350*x^2+603*x+536 6765082922168621 a005 (1/sin(73/171*Pi))^1197 6765082941499076 b008 -15/2+ArcCosh[Glaisher] 6765082941610307 a007 Real Root Of 899*x^4-208*x^3+501*x^2-272*x-666 6765082965492589 m001 1/GAMMA(1/6)*GlaisherKinkelin/exp(GAMMA(3/4)) 6765082969201978 a007 Real Root Of -141*x^4-897*x^3+448*x^2+368*x-404 6765082975784019 r005 Im(z^2+c),c=-3/62+18/25*I,n=20 6765082979462559 a007 Real Root Of 14*x^4+937*x^3-698*x^2-955*x-805 6765082997805950 r005 Im(z^2+c),c=-5/29+29/44*I,n=19 6765083007762706 r005 Re(z^2+c),c=-93/122+1/20*I,n=47 6765083019427027 a007 Real Root Of -624*x^4-362*x^3-663*x^2+977*x+983 6765083021396115 r005 Im(z^2+c),c=-1/12+47/62*I,n=27 6765083028939759 m005 (1/3*Zeta(3)+1/3)/(9/11*Zeta(3)-7/8) 6765083047002093 a007 Real Root Of 583*x^4+262*x^3-997*x^2-773*x+776 6765083059314815 a005 (1/cos(13/178*Pi))^1546 6765083101628648 m001 (-Artin+Weierstrass)/(GAMMA(3/4)-exp(1)) 6765083109842546 a007 Real Root Of 923*x^4-853*x^3-299*x^2-886*x+807 6765083117443281 l006 ln(3727/7331) 6765083117443281 p004 log(7331/3727) 6765083119945867 g002 gamma+2*ln(2)+Psi(10/11)+Psi(4/11)-Psi(1/8) 6765083125831860 m001 (cos(1)+ln(2+3^(1/2)))/(-Magata+Robbin) 6765083144089427 m001 (CareFree+QuadraticClass)/(Artin-exp(1)) 6765083146594689 a007 Real Root Of -87*x^4-494*x^3+605*x^2-187*x+324 6765083150119560 r009 Re(z^3+c),c=-5/44+29/50*I,n=36 6765083178033211 m008 (1/6*Pi+4/5)/(2*Pi^4+5/6) 6765083187175933 r005 Re(z^2+c),c=-115/94+7/31*I,n=11 6765083187967740 a007 Real Root Of -749*x^4+662*x^3+193*x^2-459*x-37 6765083192611656 m001 (Ei(1)-gamma)/(FeigenbaumKappa+Lehmer) 6765083210272102 r005 Im(z^2+c),c=23/78+7/16*I,n=41 6765083227740580 m001 RenyiParking^2/ln(Kolakoski)/Ei(1)^2 6765083251621516 a007 Real Root Of 422*x^4-561*x^3+27*x^2+756*x+237 6765083270787590 m001 (GAMMA(11/12)+5)/(-Ei(1)+1) 6765083273972076 a007 Real Root Of 688*x^4-385*x^3-550*x^2-685*x-475 6765083288690270 r005 Im(z^2+c),c=-19/36+4/37*I,n=13 6765083289273154 a007 Real Root Of -940*x^4+514*x^3-244*x^2+166*x+580 6765083292103965 a007 Real Root Of -832*x^4+354*x^3-150*x^2+252*x+523 6765083292244029 a001 47/6765*225851433717^(19/24) 6765083314928958 r008 a(0)=3,K{-n^6,5-7*n^3+n} 6765083321757949 a001 1926*8^(29/48) 6765083321860309 a007 Real Root Of -209*x^4-11*x^3+619*x^2+937*x-870 6765083343217601 r005 Im(z^2+c),c=-4/11+5/47*I,n=31 6765083346184767 m001 ln(2)*(Shi(1)-StolarskyHarborth) 6765083367941472 m001 (Champernowne-Magata)/(GAMMA(5/6)-Cahen) 6765083368323081 a007 Real Root Of -562*x^4+271*x^3+126*x^2+445*x+445 6765083382762193 m001 TwinPrimes^Artin*TwinPrimes^LambertW(1) 6765083385019280 a008 Real Root of x^4-2*x^3+15*x^2+144*x-3136 6765083387115020 m001 1/ln(Trott)^2/ArtinRank2*cos(Pi/12) 6765083388671493 m001 (Psi(1,1/3)+Zeta(5))/(GAMMA(19/24)+Bloch) 6765083397486884 a007 Real Root Of 25*x^4-9*x^3+712*x^2-750*x-54 6765083417798643 a007 Real Root Of 109*x^4+826*x^3+463*x^2-861*x+419 6765083420727878 r002 9th iterates of z^2 + 6765083427521528 r005 Re(z^2+c),c=-67/118+20/41*I,n=34 6765083433154958 m001 3^(1/3)*GaussKuzminWirsing^HardyLittlewoodC3 6765083440308087 q001 527/779 6765083440308087 r002 2th iterates of z^2 + 6765083440308087 r005 Im(z^2+c),c=-103/82+17/38*I,n=2 6765083461207465 m001 (MertensB1+Totient)/(Ei(1)+Bloch) 6765083469585264 h001 (2/7*exp(2)+7/10)/(6/11*exp(2)+1/8) 6765083495921609 r005 Im(z^2+c),c=-55/122+5/44*I,n=33 6765083501631508 a003 -1+2*cos(1/7*Pi)-cos(1/5*Pi)+cos(10/21*Pi) 6765083515549076 r009 Im(z^3+c),c=-31/48+11/35*I,n=2 6765083515828316 l006 ln(3424/6735) 6765083520616387 r002 36th iterates of z^2 + 6765083532371715 r009 Re(z^3+c),c=-73/98+13/28*I,n=2 6765083551879408 m001 ln(5)^GAMMA(5/6)-MertensB2 6765083596030737 m001 (LandauRamanujan2nd+PlouffeB)/(Zeta(1,2)-Kac) 6765083614165380 a007 Real Root Of 419*x^4+95*x^3+793*x^2-480*x-746 6765083666368017 m001 1/GAMMA(3/4)/GAMMA(1/12)/exp(sinh(1))^2 6765083670910493 r005 Re(z^2+c),c=43/90+11/64*I,n=2 6765083674698094 a007 Real Root Of -125*x^4+772*x^3+626*x^2+775*x+503 6765083680269558 r002 20th iterates of z^2 + 6765083693148357 r005 Re(z^2+c),c=-10/19+27/55*I,n=9 6765083735354694 r005 Re(z^2+c),c=-39/82+28/47*I,n=50 6765083742247412 a007 Real Root Of 873*x^4+987*x^3-730*x^2-931*x+66 6765083744300627 r009 Im(z^3+c),c=-13/74+14/19*I,n=37 6765083758816749 m001 exp(RenyiParking)/Magata^2/GAMMA(13/24)^2 6765083770939506 m002 -Pi^5+E^Pi*Pi^5+Log[Pi]-Sinh[Pi] 6765083824359749 a003 cos(Pi*23/82)+cos(Pi*19/39) 6765083843733130 m001 (1-Si(Pi))/(-polylog(4,1/2)+Cahen) 6765083889362351 m001 GaussKuzminWirsing^exp(gamma)*BesselI(1,1) 6765083916154832 r005 Im(z^2+c),c=15/64+1/52*I,n=47 6765083934806875 a001 8/843*15127^(10/49) 6765083939132002 a007 Real Root Of -521*x^4+276*x^3-768*x^2-176*x+427 6765083991567169 l006 ln(3121/6139) 6765083995608375 m001 (gamma(1)-FeigenbaumD)/(Zeta(3)-ln(5)) 6765084005388170 g002 Psi(10/11)+Psi(2/11)+Psi(5/7)-Psi(4/5) 6765084024472192 a001 18/4181*121393^(4/17) 6765084040336343 m001 GAMMA(1/24)^2/exp(DuboisRaymond)/sin(Pi/12)^2 6765084051167596 h001 (1/2*exp(2)+1/7)/(7/10*exp(2)+1/2) 6765084052011455 r005 Im(z^2+c),c=15/64+1/52*I,n=34 6765084075915311 r005 Re(z^2+c),c=-31/34+10/73*I,n=26 6765084090678206 a001 29/13*365435296162^(11/17) 6765084100246574 a001 18/28657*433494437^(4/17) 6765084101547958 m001 Pi-exp(Pi)/arctan(1/3)+GAMMA(5/6) 6765084101859065 a001 9/98209*1548008755920^(4/17) 6765084102983063 r009 Re(z^3+c),c=-5/94+23/33*I,n=5 6765084111685005 m001 (Landau+ZetaQ(4))/(1-DuboisRaymond) 6765084128454164 m002 -2+6*Cosh[Pi]+Csch[Pi]*Log[Pi] 6765084131191025 a007 Real Root Of -408*x^4+365*x^3-164*x^2+150*x+375 6765084133037853 m002 -8+5/Pi^3+ProductLog[Pi] 6765084150413868 m005 (1/3*2^(1/2)+1/8)/(2/5*Catalan-5/11) 6765084181951791 a007 Real Root Of -58*x^4-292*x^3+590*x^2-646*x-295 6765084200522533 r009 Im(z^3+c),c=-11/30+37/55*I,n=41 6765084213266111 m001 (-Otter+Totient)/(2^(1/3)+GAMMA(5/6)) 6765084218913551 r005 Im(z^2+c),c=1/23+37/61*I,n=8 6765084235903295 r002 9th iterates of z^2 + 6765084265141871 a007 Real Root Of 28*x^4-438*x^3-245*x^2-913*x-647 6765084275003012 r005 Im(z^2+c),c=-4/11+5/47*I,n=27 6765084291203857 r009 Im(z^3+c),c=-35/66+6/43*I,n=24 6765084322761389 m001 Magata/(GolombDickman^Backhouse) 6765084336506196 r002 14th iterates of z^2 + 6765084348995669 m002 -3/2+Pi-6*Sinh[Pi] 6765084359833645 r005 Im(z^2+c),c=-4/11+5/47*I,n=29 6765084360025217 a007 Real Root Of 642*x^4+455*x^3+183*x^2-100*x-145 6765084379327297 a007 Real Root Of -360*x^4+989*x^3-699*x^2-493*x+368 6765084401643840 m001 (Pi^(1/2)+LaplaceLimit)/(exp(1)+ln(2^(1/2)+1)) 6765084410706258 r005 Im(z^2+c),c=-107/118+27/59*I,n=3 6765084415450446 r009 Re(z^3+c),c=-2/17+8/13*I,n=29 6765084447609665 a007 Real Root Of -914*x^4-832*x^3-895*x^2+893*x-6 6765084452778801 m001 1/exp(GAMMA(1/6))*FeigenbaumC*cos(Pi/12) 6765084473147551 r002 28i'th iterates of 2*x/(1-x^2) of 6765084488576357 a007 Real Root Of 532*x^4+65*x^3+788*x^2-683*x-914 6765084489854568 m001 Tribonacci^2*LaplaceLimit*ln(sqrt(3))^2 6765084503308883 m001 cos(1)*Trott2nd+Robbin 6765084508520417 a007 Real Root Of 904*x^4-951*x^3-546*x^2-924*x-859 6765084512793823 a001 4/1346269*34^(7/30) 6765084528185061 a007 Real Root Of 197*x^4-948*x^3+160*x^2-711*x-889 6765084551958806 m005 (1/2*Catalan-3/7)/(7/10*5^(1/2)-2) 6765084569611791 l006 ln(2818/5543) 6765084580073287 b008 26/5+6^(1/4) 6765084587384909 r002 16th iterates of z^2 + 6765084595439419 m005 (1/3*5^(1/2)-3/4)/(4/9*3^(1/2)-1/12) 6765084604746360 r004 Im(z^2+c),c=-9/22+11/24*I,z(0)=-1,n=4 6765084615641031 m001 (GAMMA(2/3)+Ei(1,1))/(ErdosBorwein-Tribonacci) 6765084626710232 a001 987/24476*199^(30/31) 6765084646740322 m001 1/ln(GolombDickman)^2/Cahen*cos(Pi/12) 6765084659438950 m005 (1/2*3^(1/2)+5)/(-95/168+7/24*5^(1/2)) 6765084687060153 a001 416020/9*47^(23/33) 6765084697321915 a007 Real Root Of 930*x^4-960*x^3-914*x^2-670*x+974 6765084723593493 m001 1/ln(GAMMA(1/4))^2*(3^(1/3))/GAMMA(17/24) 6765084740767504 r002 4th iterates of z^2 + 6765084743874772 a001 3/1149851*199^(9/50) 6765084746874146 a007 Real Root Of -156*x^4+505*x^3-311*x^2-274*x+146 6765084758183741 a001 17711/521*322^(11/12) 6765084764116286 a007 Real Root Of 3*x^4+193*x^3-677*x^2-261*x-714 6765084778032876 a007 Real Root Of 104*x^4+790*x^3+694*x^2+836*x+654 6765084810878651 s001 sum(exp(-2*Pi)^n*A278022[n],n=1..infinity) 6765084838962364 r005 Im(z^2+c),c=-23/48+3/26*I,n=15 6765084856789741 a007 Real Root Of -174*x^4+709*x^3+800*x^2+115*x-627 6765084877681287 p001 sum(1/(535*n+43)/n/(256^n),n=1..infinity) 6765084893741940 a007 Real Root Of 577*x^4+193*x^3+599*x^2+160*x-227 6765084898301883 a007 Real Root Of -877*x^4+494*x^3-390*x^2+427*x+804 6765084915725784 a007 Real Root Of 758*x^4-942*x^3+831*x^2+956*x-184 6765084921850881 m005 (1/12+1/4*5^(1/2))/(7/8*gamma+4/9) 6765084961087825 m001 (FibonacciFactorial-OneNinth)/Zeta(1,-1) 6765084977809229 r005 Im(z^2+c),c=27/70+17/50*I,n=59 6765084978118736 a007 Real Root Of -114*x^4+859*x^3+836*x^2-273*x-440 6765085000145167 m001 (BesselK(1,1)-ln(3)*ZetaQ(3))/ZetaQ(3) 6765085001808115 r009 Im(z^3+c),c=-19/50+21/31*I,n=46 6765085002419962 m001 ln(2+3^(1/2))/HardyLittlewoodC5/Weierstrass 6765085025990983 r002 24th iterates of z^2 + 6765085036300819 a007 Real Root Of -619*x^4+979*x^3-929*x^2+176*x+977 6765085038819373 m001 ZetaP(4)^Bloch/BesselJ(1,1) 6765085046243740 r002 8th iterates of z^2 + 6765085046243740 r002 8th iterates of z^2 + 6765085051805045 r005 Im(z^2+c),c=15/64+1/52*I,n=48 6765085067298277 m005 (1/3*5^(1/2)+1/7)/(7/12*exp(1)-3/11) 6765085097203450 a008 Real Root of (-1+5*x+7*x^2+5*x^4+3*x^8) 6765085101163804 r009 Re(z^3+c),c=-5/44+37/64*I,n=19 6765085102622197 m005 (1/3*Pi+1/12)/(269/264+7/24*5^(1/2)) 6765085126546950 a007 Real Root Of -835*x^4+801*x^3+8*x^2+10*x+426 6765085161325757 m005 (2/5*gamma+1/3)/(11/4+5/2*5^(1/2)) 6765085164819762 a007 Real Root Of -29*x^4-77*x^3-878*x^2+671*x+838 6765085209547787 a007 Real Root Of -360*x^4+670*x^3-257*x^2-623*x-21 6765085216518402 h001 (3/10*exp(2)+7/12)/(1/2*exp(2)+4/9) 6765085264620741 r002 9th iterates of z^2 + 6765085265425201 a007 Real Root Of -365*x^4-173*x^3-390*x^2+910*x+817 6765085266061480 r005 Im(z^2+c),c=27/70+17/50*I,n=64 6765085272195972 a007 Real Root Of 274*x^4-80*x^3-516*x^2-691*x+671 6765085280267012 a007 Real Root Of -262*x^4+319*x^3-115*x^2+956*x-638 6765085285247667 a007 Real Root Of -437*x^4+640*x^3-791*x^2+234*x+810 6765085286938690 l006 ln(2515/4947) 6765085302740976 m005 (23/20+1/4*5^(1/2))/(8/11*5^(1/2)+9/10) 6765085307001018 m001 (FellerTornier+LandauRamanujan)/(Niven-Paris) 6765085310535221 m001 (Champernowne+Stephens)/(Thue+ZetaP(3)) 6765085318942382 a003 cos(Pi*21/58)+cos(Pi*48/115) 6765085357174115 r002 9th iterates of z^2 + 6765085406238551 a003 cos(Pi*19/116)*sin(Pi*17/60) 6765085423417731 m008 (1/4*Pi^3-4/5)/(1/3*Pi^5+3/4) 6765085430225629 r005 Im(z^2+c),c=-67/110+1/55*I,n=22 6765085441600999 a007 Real Root Of -440*x^4+887*x^3+565*x^2+724*x+598 6765085451577182 m001 ln(Porter)^2/FeigenbaumDelta^2*Zeta(9)^2 6765085459010929 m001 Champernowne^2/ln(ErdosBorwein)^2/Zeta(9) 6765085464626943 r009 Im(z^3+c),c=-5/52+13/18*I,n=3 6765085481395147 m008 (4*Pi^6-5/6)/(2*Pi-3/5) 6765085482767254 r005 Im(z^2+c),c=-13/70+5/56*I,n=5 6765085493327047 r009 Im(z^3+c),c=-15/31+25/52*I,n=5 6765085503477488 m005 (1/2*Catalan-1/6)/(3*Zeta(3)+7/10) 6765085517902903 r005 Re(z^2+c),c=-87/122+11/41*I,n=41 6765085546099942 m005 (1/2*Catalan-1/3)/(1/11*3^(1/2)-2) 6765085581967076 m001 QuadraticClass-sin(1/12*Pi)+ZetaQ(2) 6765085614633850 r002 6th iterates of z^2 + 6765085634550365 m001 (-PlouffeB+Sierpinski)/(Si(Pi)+BesselI(0,1)) 6765085649613479 m001 sqrt(2)*sinh(1)^2*exp(sqrt(Pi))^2 6765085659760071 r005 Re(z^2+c),c=-9/14+50/149*I,n=17 6765085660149876 m001 (sin(1)+cos(1/12*Pi))/(FeigenbaumB+Tribonacci) 6765085663921786 m005 (21/4+1/4*5^(1/2))/(1/8*2^(1/2)-1/11) 6765085680138551 a007 Real Root Of 886*x^4-955*x^3-411*x^2+321*x-76 6765085683076257 m001 FeigenbaumDelta-Zeta(5)-Otter 6765085685390485 m001 Niven*FibonacciFactorial*exp(GAMMA(19/24)) 6765085713114960 r005 Im(z^2+c),c=-33/34+7/109*I,n=12 6765085714572936 l006 ln(4727/9298) 6765085735668857 r005 Re(z^2+c),c=-23/18+5/98*I,n=4 6765085740116450 m001 1/exp(Zeta(3))/GAMMA(1/12)*sin(Pi/12) 6765085747713588 a007 Real Root Of 813*x^4-124*x^3+314*x^2+107*x-280 6765085788233160 r002 3th iterates of z^2 + 6765085795318994 r005 Im(z^2+c),c=15/64+1/52*I,n=49 6765085803321601 a001 2584/64079*199^(30/31) 6765085804965842 m001 RenyiParking-exp(Pi)*Otter 6765085811342284 m001 (Bloch-CareFree)/(ErdosBorwein+FeigenbaumC) 6765085842784691 m006 (2/Pi-5)/(2*Pi+1/6) 6765085846625015 h001 (1/10*exp(2)+5/6)/(9/11*exp(1)+1/10) 6765085901450812 r009 Re(z^3+c),c=-29/50+3/22*I,n=5 6765085902235093 m002 3*E^Pi*Pi^4+Pi/Log[Pi] 6765085912090946 a001 9/305*365435296162^(2/17) 6765085974986886 a001 615/15251*199^(30/31) 6765085975255766 m001 Zeta(1,2)*StronglyCareFree+OrthogonalArrays 6765086000032514 a001 17711/439204*199^(30/31) 6765086003686622 a001 46368/1149851*199^(30/31) 6765086004130480 r009 Im(z^3+c),c=-33/52+9/28*I,n=57 6765086004219749 a001 121393/3010349*199^(30/31) 6765086004315660 a001 46/311187*28657^(19/51) 6765086004345603 a001 196418/4870847*199^(30/31) 6765086004549240 a001 75025/1860498*199^(30/31) 6765086005944985 a001 28657/710647*199^(30/31) 6765086015511563 a001 10946/271443*199^(30/31) 6765086016428206 a001 18/4181*165580141^(7/18) 6765086020580981 m005 (5/6+1/6*5^(1/2))/(6/11*exp(1)+3/10) 6765086044991933 r005 Im(z^2+c),c=-19/30+1/76*I,n=50 6765086056617619 r005 Re(z^2+c),c=-55/86+23/55*I,n=18 6765086072411601 m005 (1/6*Pi+2)/(-47/12+1/12*5^(1/2)) 6765086074867798 a007 Real Root Of 966*x^4-810*x^3+718*x^2-666*x+42 6765086075659952 a007 Real Root Of -832*x^4+247*x^3-388*x^2+205*x+567 6765086081081867 a001 4181/103682*199^(30/31) 6765086093920384 a001 18/121393*956722026041^(7/18) 6765086105034905 h001 (-exp(7)+9)/(-4*exp(6)+6) 6765086105925877 m009 (2/3*Psi(1,1/3)+3/4)/(3/5*Psi(1,1/3)+5) 6765086106814229 m001 GAMMA(7/24)/exp(RenyiParking)*arctan(1/2) 6765086120855214 l006 ln(8401/8989) 6765086133963624 m003 Sqrt[5]/64+(125*Coth[1/2+Sqrt[5]/2])/2 6765086148102236 r005 Im(z^2+c),c=-3/86+32/47*I,n=27 6765086160526496 a003 cos(Pi*1/9)*cos(Pi*52/109) 6765086170098370 a007 Real Root Of 367*x^4+92*x^3-146*x^2-971*x-65 6765086175182578 m001 (Conway-KhinchinHarmonic)/(gamma(2)-Cahen) 6765086180228096 r005 Im(z^2+c),c=27/70+17/50*I,n=54 6765086199488377 m001 ln(Sierpinski)^2/Si(Pi)/FeigenbaumD^2 6765086200784546 l006 ln(2212/4351) 6765086224591933 m001 1/GAMMA(3/4)^2*ln((2^(1/3)))*GAMMA(5/24) 6765086257080022 r005 Im(z^2+c),c=15/64+1/52*I,n=50 6765086262202066 a007 Real Root Of 32*x^4-37*x^3-183*x^2-626*x+512 6765086281538392 r005 Re(z^2+c),c=1/62+19/56*I,n=11 6765086291305296 m001 FeigenbaumKappa/(Landau-Zeta(1/2)) 6765086309127250 r009 Re(z^3+c),c=-9/94+8/19*I,n=9 6765086336935093 m001 1/Magata/ln(GAMMA(11/24))^2 6765086340212336 a007 Real Root Of 143*x^4+966*x^3-103*x^2-693*x-410 6765086343960734 a007 Real Root Of -177*x^4+727*x^3+319*x^2+507*x-677 6765086415914466 r002 21th iterates of z^2 + 6765086428140838 m005 (1/2*Catalan-1/2)/(-41/132+5/12*5^(1/2)) 6765086444277463 a001 2207/5*5^(13/49) 6765086450825156 a007 Real Root Of 615*x^4+114*x^3+190*x^2-797*x+53 6765086455181408 a001 843/34*196418^(37/57) 6765086480169838 m005 (1/2*2^(1/2)+6)/(5/12*Zeta(3)-3/5) 6765086485205389 r005 Im(z^2+c),c=15/64+1/52*I,n=64 6765086492743863 r005 Im(z^2+c),c=15/64+1/52*I,n=63 6765086493945146 r008 a(0)=7,K{-n^6,1-3*n^3+6*n^2} 6765086503448097 r005 Im(z^2+c),c=15/64+1/52*I,n=62 6765086515610355 m001 (ln(Pi)*gamma(1)+Stephens)/gamma(1) 6765086518119344 r005 Im(z^2+c),c=15/64+1/52*I,n=61 6765086519876226 a007 Real Root Of 151*x^4+295*x^3+693*x^2-462*x-570 6765086523581087 r005 Im(z^2+c),c=15/64+1/52*I,n=51 6765086527440481 m001 (Landau+MertensB1)/(GAMMA(7/12)-exp(1)) 6765086529168509 p003 LerchPhi(1/25,6,191/83) 6765086530507418 a001 1597/39603*199^(30/31) 6765086537526699 r005 Im(z^2+c),c=15/64+1/52*I,n=60 6765086562234985 r005 Im(z^2+c),c=15/64+1/52*I,n=59 6765086566839044 a007 Real Root Of -781*x^4+129*x^3+991*x^2+315*x-543 6765086585764986 v003 sum((8*n-6)/(n!+2),n=1..infinity) 6765086592318517 r005 Im(z^2+c),c=15/64+1/52*I,n=58 6765086626913261 r005 Im(z^2+c),c=15/64+1/52*I,n=57 6765086633124115 r001 60i'th iterates of 2*x^2-1 of 6765086641694851 m001 (gamma(2)+gamma(3))/(Conway-ZetaP(3)) 6765086660066732 r005 Im(z^2+c),c=15/64+1/52*I,n=52 6765086663548060 r005 Im(z^2+c),c=15/64+1/52*I,n=56 6765086672523737 a007 Real Root Of -326*x^4+760*x^3+489*x^2+831*x-953 6765086675882678 a007 Real Root Of 479*x^4-356*x^3-458*x^2-694*x+689 6765086680118512 m001 (BesselI(0,2)+PlouffeB)/(Si(Pi)-exp(1/exp(1))) 6765086697184396 r005 Im(z^2+c),c=15/64+1/52*I,n=55 6765086699347140 m001 GAMMA(1/24)^2/ln(GAMMA(1/12))/gamma^2 6765086709063489 s002 sum(A185781[n]/(n^3*exp(n)-1),n=1..infinity) 6765086714040852 r005 Im(z^2+c),c=15/64+1/52*I,n=53 6765086714562221 m001 GAMMA(23/24)/exp(Ei(1))^2*cos(1)^2 6765086718886196 r005 Im(z^2+c),c=15/64+1/52*I,n=54 6765086721569436 m001 1/(2^(1/3))^2*Riemann3rdZero^2*ln(GAMMA(1/6)) 6765086733340408 b008 1/5-47*ArcSinh[2] 6765086741472715 m001 1/PrimesInBinary/ln(Porter)*Zeta(5)^2 6765086758494365 l006 ln(4121/8106) 6765086758541976 a003 sin(Pi*2/47)+sin(Pi*17/93) 6765086765086765 q001 2612/3861 6765086783351286 a001 47/21*2178309^(41/58) 6765086783912190 m003 (3*Sech[1/2+Sqrt[5]/2])/4+Tan[1/2+Sqrt[5]/2]/3 6765086786467361 a001 33385282/89*21^(19/20) 6765086795201131 m005 (1/2*Catalan-7/11)/(3*Catalan-1/9) 6765086800906092 a003 cos(Pi*47/116)-sin(Pi*27/64) 6765086822306211 a007 Real Root Of -682*x^4+894*x^3+462*x^2+672*x-800 6765086822748632 a001 1/23184*610^(4/57) 6765086833349104 m002 -1+Pi^6+Log[Pi]-Pi^5/ProductLog[Pi] 6765086859690542 h001 (-6*exp(4)+10)/(-5*exp(2)-10) 6765086883298249 r002 3th iterates of z^2 + 6765086884508511 a001 521/34*13^(11/19) 6765086933117379 m001 (GAMMA(3/4)+ln(2))/(BesselJ(1,1)-Sarnak) 6765086949200981 m001 (-Artin+FeigenbaumDelta)/(LambertW(1)-Zeta(3)) 6765086951289972 h001 (1/2*exp(1)+2/11)/(1/5*exp(2)+4/5) 6765086955118261 a007 Real Root Of 157*x^4+938*x^3-789*x^2+374*x+211 6765086978531304 r005 Re(z^2+c),c=-123/94+16/57*I,n=4 6765086978599982 a007 Real Root Of 505*x^4-972*x^3+250*x^2-291*x-718 6765086983117670 r005 Im(z^2+c),c=13/110+24/41*I,n=30 6765087006513916 a007 Real Root Of 869*x^4+881*x^3+559*x^2-161*x-274 6765087053136489 a005 (1/cos(9/215*Pi))^1548 6765087069256055 m001 (gamma(2)+ZetaP(3))/(exp(Pi)+2^(1/3)) 6765087085890790 a007 Real Root Of 772*x^4+331*x^3-575*x^2-705*x-273 6765087087570044 a007 Real Root Of 687*x^4-994*x^3+234*x^2+279*x-370 6765087095871107 a005 (1/cos(19/163*Pi))^632 6765087109328162 m001 (MertensB1-Riemann2ndZero)/(Pi+gamma(1)) 6765087131303281 r005 Im(z^2+c),c=-9/86+3/37*I,n=6 6765087162338835 r002 38th iterates of z^2 + 6765087164876625 a003 sin(Pi*13/55)/sin(Pi*49/100) 6765087168024817 r005 Re(z^2+c),c=-15/14+4/183*I,n=6 6765087169430533 m005 (1/3*Pi+1/9)/(1/8*Catalan-2/7) 6765087191682359 r005 Re(z^2+c),c=-3/122+13/47*I,n=4 6765087214691036 a007 Real Root Of 821*x^4-853*x^3+517*x^2+x-672 6765087219422770 g006 Psi(1,10/11)+Psi(1,7/8)+1/2*Pi^2-Psi(1,6/7) 6765087220365835 m001 (GaussAGM+Gompertz)/(CareFree-Catalan) 6765087220765227 a007 Real Root Of 615*x^4+116*x^3+958*x^2-270*x-714 6765087235104717 r002 3th iterates of z^2 + 6765087254836224 m001 exp(1/exp(1))^FeigenbaumD-ReciprocalFibonacci 6765087277452292 m001 exp(1/2)^cos(Pi/5)/(exp(1/2)^BesselI(1,2)) 6765087290374626 m001 (Riemann3rdZero-ZetaP(2))/(ln(3)-MinimumGamma) 6765087346692298 p001 sum((-1)^(n+1)/(61*n+14)/(3^n),n=0..infinity) 6765087379860433 m001 (Ei(1,1)-HardyLittlewoodC4)/(Lehmer+Rabbit) 6765087404724875 l006 ln(1909/3755) 6765087414528014 a007 Real Root Of 775*x^4-871*x^3-219*x^2-531*x-691 6765087427695728 m001 (-Catalan+5)/(Zeta(5)+5) 6765087447280972 a007 Real Root Of 224*x^4-926*x^3-333*x^2+256*x+219 6765087448121174 r002 48th iterates of z^2 + 6765087487411408 h001 (8/11*exp(1)+9/10)/(6/11*exp(2)+2/9) 6765087502728562 r005 Im(z^2+c),c=-6/13+13/22*I,n=12 6765087557981765 m001 (Zeta(3)-sin(1))/(-Kolakoski+MertensB1) 6765087580381660 m001 (Zeta(1,-1)-Riemann3rdZero)^Lehmer 6765087605451005 q001 2085/3082 6765087633415240 a007 Real Root Of 822*x^4-758*x^3-514*x^2-296*x+498 6765087638395550 m001 (Porter-Rabbit)/(BesselK(1,1)+polylog(4,1/2)) 6765087642515631 m003 6+(65*Sqrt[5])/512+Log[1/2+Sqrt[5]/2] 6765087662760077 m009 (20/3*Catalan+5/6*Pi^2-1/3)/(2*Psi(1,1/3)+1/2) 6765087683308264 m009 (3/4*Psi(1,3/4)-4/5)/(1/4*Psi(1,3/4)+1) 6765087685484750 a007 Real Root Of -372*x^4+428*x^3-290*x^2+560*x+722 6765087708124290 a007 Real Root Of -555*x^4-81*x^3-542*x^2-463*x+26 6765087745599353 a007 Real Root Of 223*x^4-300*x^3+798*x^2+387*x-243 6765087750321596 a007 Real Root Of -27*x^4-165*x^3+102*x^2-69*x+332 6765087764118706 a007 Real Root Of -610*x^4+300*x^3-205*x^2-82*x+259 6765087768374965 r005 Im(z^2+c),c=-13/12+5/64*I,n=12 6765087768961234 a007 Real Root Of -514*x^4+31*x^3+801*x^2+948*x+392 6765087783271097 a007 Real Root Of -258*x^4+932*x^3+537*x^2+491*x+429 6765087790074110 m005 (1/2*exp(1)+1/7)/(53/42+3/7*5^(1/2)) 6765087796588126 r005 Im(z^2+c),c=-53/98+7/58*I,n=42 6765087829179013 m005 (1/4*Catalan+1/6)/(3/5*2^(1/2)+5) 6765087838654401 m001 FeigenbaumB/Zeta(5)/KhinchinLevy 6765087839400484 v002 sum(1/(5^n+(47/2*n^2-25/2*n+3)),n=1..infinity) 6765087844558836 a001 11/14930352*433494437^(5/22) 6765087847124576 a001 11/1346269*10946^(5/22) 6765087852475754 m005 (-1/20+1/4*5^(1/2))/(-25/154+9/22*5^(1/2)) 6765087915132697 a001 233/843*7^(23/50) 6765087919085032 r002 25th iterates of z^2 + 6765087933859969 r005 Re(z^2+c),c=-2/3+49/116*I,n=4 6765087934975769 a001 6/7*21^(19/28) 6765087938318833 a007 Real Root Of 396*x^4-199*x^3+500*x^2-570*x-759 6765087960091074 a007 Real Root Of -84*x^4-319*x^3-644*x^2+654*x+656 6765087965905363 a007 Real Root Of -956*x^4+95*x^3-757*x^2-451*x+271 6765087970349457 l006 ln(6015/6436) 6765087988903096 m005 (2/3*exp(1)+4)/(3*Pi-5/6) 6765087993425655 m001 DuboisRaymond*ErdosBorwein/exp(BesselJ(0,1))^2 6765088022096058 r009 Re(z^3+c),c=-3/50+40/61*I,n=5 6765088035115079 m001 Conway-FransenRobinson^Robbin 6765088060519451 s002 sum(A143232[n]/(n^3*2^n+1),n=1..infinity) 6765088077278811 a007 Real Root Of -725*x^4+471*x^3+473*x^2+690*x+548 6765088080057812 m005 (1/2*exp(1)+1/4)/(8/11*Zeta(3)-7/11) 6765088081024399 a001 5702887/2207*123^(1/5) 6765088102001839 m005 (1/2*3^(1/2)+5/11)/(7/11*exp(1)+2/9) 6765088133947419 a007 Real Root Of -38*x^4+892*x^3-536*x^2-45*x+499 6765088144151111 r005 Re(z^2+c),c=-49/52+18/59*I,n=19 6765088160738586 p001 sum(1/(463*n+151)/(12^n),n=0..infinity) 6765088162368045 l006 ln(3515/6914) 6765088171738259 m004 5+6*E^(Sqrt[5]*Pi)+5*Pi-Cos[Sqrt[5]*Pi] 6765088212561335 r002 8th iterates of z^2 + 6765088218459565 m001 (GAMMA(2/3)-exp(1/Pi))/(Pi^(1/2)+GAMMA(17/24)) 6765088283663894 m001 (GolombDickman-ThueMorse)/(Pi+gamma(2)) 6765088291133476 m001 ln(2^(1/2)+1)^FransenRobinson/Zeta(5) 6765088292492830 m001 (Mills+ZetaP(2))/(Ei(1)+CareFree) 6765088332901002 m001 (Shi(1)+BesselJ(0,1))/(GAMMA(2/3)+Totient) 6765088346676703 m001 PrimesInBinary^(StronglyCareFree/MadelungNaCl) 6765088416175612 a007 Real Root Of 349*x^4-927*x^3+216*x^2-71*x-507 6765088416988173 m001 (Weierstrass+ZetaQ(2))/(GAMMA(3/4)-Conway) 6765088417615953 a007 Real Root Of 140*x^4+973*x^3+278*x^2+656*x-270 6765088426147313 a007 Real Root Of -828*x^4-815*x^3+82*x^2+841*x-57 6765088427138417 a001 73681302247/13*701408733^(8/23) 6765088431066266 a001 3461452808002/13*10946^(8/23) 6765088439323330 r005 Im(z^2+c),c=-11/10+61/228*I,n=17 6765088439789669 b008 EllipticPi[2/5,Pi/5,1/3] 6765088443476941 r005 Im(z^2+c),c=-71/110+6/47*I,n=43 6765088444801308 l006 ln(5121/10073) 6765088453939459 a007 Real Root Of -664*x^4+756*x^3+222*x^2-428*x-18 6765088466582653 h001 (1/7*exp(2)+1/9)/(3/10*exp(1)+10/11) 6765088503371596 a007 Real Root Of -161*x^4-61*x^3+713*x^2+775*x-798 6765088520509686 r005 Im(z^2+c),c=-7/94+43/63*I,n=31 6765088531701051 a007 Real Root Of 914*x^4+138*x^3+792*x^2-301*x+2 6765088565955734 r009 Im(z^3+c),c=-43/110+36/53*I,n=22 6765088572807282 r002 30th iterates of z^2 + 6765088575139777 h001 (3/5*exp(1)+1/10)/(2/9*exp(2)+11/12) 6765088610251354 m001 (Zeta(3)+gamma(2))/(KhinchinLevy+Stephens) 6765088630871305 a003 cos(Pi*21/52)-sin(Pi*47/110) 6765088641264839 r005 Re(z^2+c),c=15/62+4/11*I,n=18 6765088649683190 m001 (BesselJ(1,1)-GAMMA(17/24))/(Trott+ZetaQ(4)) 6765088667222865 a007 Real Root Of -386*x^4+951*x^3-143*x^2+670*x+894 6765088670063238 a007 Real Root Of -356*x^4-929*x^3-780*x^2+811*x-51 6765088703617463 m001 1/exp(GAMMA(5/6))*Paris^2*arctan(1/2)^2 6765088706707460 m003 4-Log[1/2+Sqrt[5]/2]^2+3*Sin[1/2+Sqrt[5]/2] 6765088709240057 m001 (ln(Pi)+PisotVijayaraghavan)/(2^(1/2)+5^(1/2)) 6765088709590225 a007 Real Root Of -51*x^4+474*x^3-85*x^2+84*x-154 6765088738885005 r001 57i'th iterates of 2*x^2-1 of 6765088763277758 r005 Im(z^2+c),c=-9/10+2/35*I,n=6 6765088805312366 r002 64th iterates of z^2 + 6765088822818567 m001 Kolakoski-GAMMA(11/12)-Zeta(1,2) 6765088834150153 m001 (Shi(1)*Cahen-HardHexagonsEntropy)/Shi(1) 6765088851274368 m009 (2/3*Psi(1,1/3)+3)/(6*Psi(1,2/3)-4) 6765088865227570 h001 (4/7*exp(2)+4/9)/(11/12*exp(2)+1/8) 6765088866367700 r005 Re(z^2+c),c=-27/38+17/49*I,n=33 6765088896716294 m002 -5+Cosh[Pi]+(5*ProductLog[Pi])/Pi^3 6765088904045675 l003 KelvinKei(0,49/101) 6765088919627842 a007 Real Root Of 100*x^4-115*x^3+546*x^2-904*x-918 6765088943004301 r005 Im(z^2+c),c=21/58+9/28*I,n=39 6765088958597118 p001 sum((-1)^n/(271*n+143)/(10^n),n=0..infinity) 6765088993003152 r002 4th iterates of z^2 + 6765089014329135 q001 1558/2303 6765089014329135 r005 Im(z^2+c),c=-129/94+19/49*I,n=2 6765089039115071 m001 exp(Trott)^2/Salem^2*Catalan 6765089045468617 m005 (2/5*exp(1)+1/2)/(3/5*gamma+2) 6765089062953782 l006 ln(1606/3159) 6765089074674888 r009 Im(z^3+c),c=-73/114+13/41*I,n=9 6765089075380182 a007 Real Root Of -361*x^4+256*x^3-948*x^2-143*x+492 6765089081392251 r005 Im(z^2+c),c=-11/8+4/27*I,n=7 6765089090681528 a007 Real Root Of 671*x^4-666*x^3+318*x^2-699*x+393 6765089167680864 a007 Real Root Of 521*x^4-552*x^3+150*x^2+950*x+294 6765089168396918 a007 Real Root Of -144*x^4-934*x^3+339*x^2+414*x-276 6765089193312698 a007 Real Root Of -421*x^4+674*x^3+24*x^2-631*x-141 6765089210440156 s002 sum(A129078[n]/(exp(n)),n=1..infinity) 6765089223181362 h001 (2/9*exp(1)+5/11)/(3/8*exp(1)+6/11) 6765089247216418 m005 (1/4*exp(1)+2/5)/(5*Pi+1/4) 6765089255577517 a007 Real Root Of -588*x^4+883*x^3+938*x^2+109*x+41 6765089258282587 r009 Re(z^3+c),c=-15/52+41/60*I,n=62 6765089267281128 a001 2584*123^(1/5) 6765089272043047 r005 Im(z^2+c),c=-17/18+51/211*I,n=28 6765089284658900 s002 sum(A269256[n]/((pi^n+1)/n),n=1..infinity) 6765089329456662 m005 (1/2*Zeta(3)-5/8)/(1/4*Catalan-7/12) 6765089343568671 b008 7-ArcCosh[Khinchin]/7 6765089343876001 a007 Real Root Of -714*x^4-621*x^3-112*x^2+487*x+338 6765089352336602 p004 log(21517/10939) 6765089359833312 m005 (1/2*Zeta(3)-1/11)/(1/9*gamma-9/11) 6765089370419958 m001 ln(gamma)/(ln(2)^LambertW(1)) 6765089370419958 m001 log(gamma)/(ln(2)^LambertW(1)) 6765089376307716 m001 (arctan(1/3)+Pi^(1/2))/(FeigenbaumD+ThueMorse) 6765089383050856 a007 Real Root Of -17*x^4+29*x^3+881*x^2-544*x+586 6765089387789418 a003 cos(Pi*11/103)*sin(Pi*15/59) 6765089399549733 a007 Real Root Of 123*x^4-988*x^3+28*x^2-69*x+314 6765089440353687 a001 39088169/15127*123^(1/5) 6765089453798912 r005 Im(z^2+c),c=39/118+22/63*I,n=8 6765089461272516 m001 1/exp(Zeta(9))^2/OneNinth*cos(1) 6765089465604634 a001 34111385/13201*123^(1/5) 6765089467024206 m001 (Ei(1,1)-Shi(1))/(Zeta(1,-1)+OrthogonalArrays) 6765089467024206 m001 Chi(1)/(Zeta(1,-1)+OrthogonalArrays) 6765089468826238 a007 Real Root Of -174*x^4+527*x^3+580*x^2+254*x+106 6765089469288697 a001 133957148/51841*123^(1/5) 6765089469826195 a001 233802911/90481*123^(1/5) 6765089469904615 a001 1836311903/710647*123^(1/5) 6765089469916056 a001 267084832/103361*123^(1/5) 6765089469917725 a001 12586269025/4870847*123^(1/5) 6765089469917969 a001 10983760033/4250681*123^(1/5) 6765089469918005 a001 43133785636/16692641*123^(1/5) 6765089469918010 a001 75283811239/29134601*123^(1/5) 6765089469918010 a001 591286729879/228826127*123^(1/5) 6765089469918011 a001 86000486440/33281921*123^(1/5) 6765089469918011 a001 4052739537881/1568397607*123^(1/5) 6765089469918011 a001 3536736619241/1368706081*123^(1/5) 6765089469918011 a001 3278735159921/1268860318*123^(1/5) 6765089469918011 a001 2504730781961/969323029*123^(1/5) 6765089469918011 a001 956722026041/370248451*123^(1/5) 6765089469918011 a001 182717648081/70711162*123^(1/5) 6765089469918013 a001 139583862445/54018521*123^(1/5) 6765089469918027 a001 53316291173/20633239*123^(1/5) 6765089469918120 a001 10182505537/3940598*123^(1/5) 6765089469918757 a001 7778742049/3010349*123^(1/5) 6765089469923127 a001 2971215073/1149851*123^(1/5) 6765089469953081 a001 567451585/219602*123^(1/5) 6765089470158387 a001 433494437/167761*123^(1/5) 6765089471565574 a001 165580141/64079*123^(1/5) 6765089472628773 p004 log(15199/7727) 6765089473054106 a007 Real Root Of -885*x^4+834*x^3-531*x^2+277*x+874 6765089481210577 a001 31622993/12238*123^(1/5) 6765089492457550 a007 Real Root Of 989*x^4+729*x^3+477*x^2+381*x+58 6765089494806417 a007 Real Root Of -31*x^4+638*x^3+66*x^2+831*x+736 6765089511309374 b008 -5+ArcSinh[(3+Pi)^2] 6765089535782415 r009 Re(z^3+c),c=-33/74+1/30*I,n=14 6765089541872398 a007 Real Root Of 412*x^4+228*x^3+279*x^2-502*x-483 6765089547318416 a001 24157817/9349*123^(1/5) 6765089576222480 a008 Real Root of x^4-2*x^3-8*x^2-80*x-568 6765089597320665 r005 Re(z^2+c),c=-23/30+5/107*I,n=13 6765089600191217 r005 Re(z^2+c),c=-15/82+35/51*I,n=17 6765089610915953 a001 610/15127*199^(30/31) 6765089618812519 a007 Real Root Of -968*x^4-342*x^3-340*x^2+731*x+747 6765089621196852 a007 Real Root Of 461*x^4-304*x^3+769*x^2-546*x-912 6765089644537353 r005 Im(z^2+c),c=-35/106+31/49*I,n=19 6765089670191879 m001 FeigenbaumAlpha^sqrt(5)/GAMMA(1/12) 6765089698168733 r005 Im(z^2+c),c=-11/10+1/125*I,n=17 6765089703099482 h002 exp(6^(11/12)-17^(5/12)) 6765089703099482 h007 exp(6^(11/12)-17^(5/12)) 6765089706569664 r002 4th iterates of z^2 + 6765089709726032 a007 Real Root Of 523*x^4-121*x^3-52*x^2+123*x-40 6765089711339640 a007 Real Root Of 386*x^4-370*x^3+659*x^2+983*x+168 6765089716990335 a007 Real Root Of -111*x^4-124*x^3-854*x^2+843*x+946 6765089759499167 m005 (1/2*Pi-3)/(8/9*5^(1/2)+1/8) 6765089762206089 m001 polylog(4,1/2)*(FeigenbaumB+Weierstrass) 6765089764074183 l006 ln(4515/8881) 6765089772923528 a003 cos(Pi*10/97)*cos(Pi*21/85) 6765089778815800 a007 Real Root Of -13*x^4-887*x^3-507*x^2+200*x-84 6765089784446258 r002 25th iterates of z^2 + 6765089788614133 r005 Re(z^2+c),c=-13/14+20/253*I,n=22 6765089795005472 a007 Real Root Of 411*x^4-875*x^3+232*x^2+18*x-451 6765089802924813 h001 (1/5*exp(1)+5/9)/(4/11*exp(1)+7/11) 6765089812205856 a007 Real Root Of 341*x^4-990*x^3-80*x^2-610*x-754 6765089844052125 r005 Im(z^2+c),c=-19/30+6/47*I,n=60 6765089896679468 m001 1/cos(Pi/5)*BesselK(0,1)^2/exp(sinh(1)) 6765089904775855 m001 GolombDickman*exp(ArtinRank2)^2*Khintchine 6765089909949000 a007 Real Root Of -9*x^4+73*x^3+945*x^2+156*x-741 6765089927925803 a007 Real Root Of -242*x^4+490*x^3+391*x^2+37*x-305 6765089937445786 a007 Real Root Of -191*x^4+415*x^3-354*x^2+524*x+685 6765089974780840 a007 Real Root Of -553*x^4-769*x^3-131*x^2+404*x+211 6765090000428314 a001 9227465/3571*123^(1/5) 6765090034205690 a001 4/51841*1364^(46/49) 6765090034504049 a007 Real Root Of 541*x^4-478*x^3-680*x^2-464*x-264 6765090065190296 a007 Real Root Of 841*x^4-838*x^3+686*x^2+227*x-596 6765090077877455 r005 Im(z^2+c),c=-28/27+13/51*I,n=21 6765090084146953 a007 Real Root Of -38*x^4+22*x^3-583*x^2-26*x+264 6765090107491022 m005 (1/2*Pi+7/8)/(4/11*gamma-4/7) 6765090125237926 m001 (Backhouse-Totient)/(ln(2)+GAMMA(23/24)) 6765090130596349 m005 (2*Pi-1/6)/(1/2*Pi-2/3) 6765090130596349 m006 (1/4/Pi-3)/(1/Pi-3/4) 6765090130596349 m008 (2*Pi-1/6)/(1/2*Pi-2/3) 6765090148941729 q001 2589/3827 6765090151148539 l006 ln(2909/5722) 6765090159947498 a007 Real Root Of 725*x^4-433*x^3+261*x^2-335*x-632 6765090164561293 m001 Gompertz*FeigenbaumKappa^PrimesInBinary 6765090199748054 a004 Fibonacci(13)*Lucas(12)/(1/2+sqrt(5)/2)^5 6765090220421908 m001 (-Grothendieck+ZetaP(2))/(1+cos(1/12*Pi)) 6765090231218720 m001 Zeta(3)*Bloch^2*exp(arctan(1/2))^2 6765090240778461 m001 FeigenbaumMu^(arctan(1/3)*FeigenbaumDelta) 6765090246055731 m001 (FeigenbaumD-FellerTornier*Khinchin)/Khinchin 6765090251209236 m001 Tribonacci*exp(Si(Pi))*gamma 6765090254259970 a007 Real Root Of 89*x^4-578*x^3-648*x^2-12*x+465 6765090260241268 a007 Real Root Of 381*x^4-350*x^3+766*x^2-670*x-992 6765090318348724 r005 Re(z^2+c),c=3/17+16/55*I,n=18 6765090340220019 a007 Real Root Of 953*x^4-210*x^3-962*x^2-676*x+763 6765090349865436 r005 Re(z^2+c),c=1/15+1/17*I,n=2 6765090351024254 s002 sum(A068260[n]/((pi^n-1)/n),n=1..infinity) 6765090358728843 m001 1/exp(1)^2/OneNinth*exp(sin(1))^2 6765090369156359 r005 Im(z^2+c),c=-2/3+29/172*I,n=40 6765090370675296 a007 Real Root Of -527*x^4-82*x^3-757*x^2-926*x-195 6765090409142367 r005 Re(z^2+c),c=37/98+8/31*I,n=28 6765090412099931 a007 Real Root Of -471*x^4+768*x^3-746*x^2-832*x+115 6765090448920585 r002 13th iterates of z^2 + 6765090452635711 m001 1/Backhouse^3*ln(CopelandErdos)^2 6765090470431397 m001 (5^(1/2)+Ei(1))/(BesselK(1,1)+ZetaQ(3)) 6765090496314707 a007 Real Root Of -947*x^4-995*x^3-25*x^2+874*x+493 6765090509318778 m002 2*Pi^4+Pi^6/2+Tanh[Pi] 6765090537268968 m001 1/Rabbit^2/Cahen*ln(GAMMA(5/24))^2 6765090539810260 r005 Re(z^2+c),c=-15/14+13/126*I,n=6 6765090552280105 r005 Re(z^2+c),c=-42/31+2/37*I,n=4 6765090566067971 l006 ln(4212/8285) 6765090569486860 a007 Real Root Of 120*x^4-24*x^3+974*x^2-576*x-868 6765090574043293 m009 (6*Psi(1,2/3)-3/5)/(3*Psi(1,1/3)-4) 6765090580027659 b008 -7+(2+E)/E^3 6765090629867069 r005 Re(z^2+c),c=-41/60+10/37*I,n=43 6765090633958708 a007 Real Root Of -739*x^4-366*x^3-533*x^2+941*x+922 6765090636493048 m001 (cos(1)+Zeta(1/2))/(-Pi^(1/2)+ThueMorse) 6765090655859932 a003 cos(Pi*18/61)/sin(Pi*33/95) 6765090664011396 m005 (-23/4+1/4*5^(1/2))/(7/11*gamma+2/5) 6765090666134745 s002 sum(A043183[n]/(exp(2*pi*n)-1),n=1..infinity) 6765090666134745 s002 sum(A039360[n]/(exp(2*pi*n)-1),n=1..infinity) 6765090666134745 s002 sum(A043963[n]/(exp(2*pi*n)-1),n=1..infinity) 6765090739776063 r008 a(0)=7,K{-n^6,-32+30*n+10*n^2-2*n^3} 6765090745837950 a001 46368/521*18^(40/57) 6765090752089129 a001 1/521*(1/2*5^(1/2)+1/2)^7*3^(3/17) 6765090764156944 m001 (Thue+ZetaP(2))/(Tetranacci+Trott) 6765090769660225 m001 (3^(1/2)-BesselK(0,1))/(Paris+Tribonacci) 6765090773119695 v002 sum(1/(3^n+(3/2*n^2+57/2*n-5)),n=1..infinity) 6765090800204235 m005 (1/2*2^(1/2)+5/9)/(1/9*Zeta(3)-2) 6765090825762071 a007 Real Root Of 118*x^4+817*x^3-5*x^2-917*x-179 6765090844441705 m001 (MertensB2+Riemann3rdZero)/(3^(1/3)-Shi(1)) 6765090885003800 a007 Real Root Of 583*x^4+79*x^3+97*x^2-300*x-345 6765090929560832 a003 cos(Pi*1/60)-cos(Pi*36/91) 6765090930490250 a007 Real Root Of -803*x^4-179*x^3-697*x^2-10*x+425 6765090939132806 r005 Im(z^2+c),c=29/82+37/58*I,n=4 6765090942074843 p003 LerchPhi(1/32,6,152/97) 6765090947159589 h001 (4/5*exp(1)+1/4)/(4/9*exp(2)+3/10) 6765090962739913 m001 (1+ln(2^(1/2)+1))/(-Otter+ZetaP(3)) 6765090971008102 r008 a(0)=0,K{-n^6,60+12*n^3+22*n^2+54*n} 6765090999657503 a007 Real Root Of -42*x^4+655*x^3+214*x^2+785*x-823 6765091000350251 r005 Re(z^2+c),c=-5/122+34/45*I,n=8 6765091000583030 m001 (Artin+CopelandErdos)/(OneNinth-Paris) 6765091003703808 r005 Im(z^2+c),c=-7/8+62/203*I,n=6 6765091063872087 a007 Real Root Of 309*x^4-725*x^3-582*x^2-226*x+579 6765091065330485 a007 Real Root Of 11*x^4+750*x^3+406*x^2+724*x-997 6765091097792853 r005 Re(z^2+c),c=-47/86+18/31*I,n=46 6765091126385574 r002 42th iterates of z^2 + 6765091165526496 a007 Real Root Of -669*x^4+934*x^3-574*x^2-915*x+73 6765091181536277 m001 ln(FeigenbaumD)*PrimesInBinary*sqrt(1+sqrt(3)) 6765091200675507 a007 Real Root Of -908*x^4+670*x^3-585*x^2-240*x+503 6765091216925122 a007 Real Root Of 48*x^4-460*x^3+894*x^2-478*x-885 6765091230118254 a007 Real Root Of 312*x^4-685*x^3-989*x^2-437*x+895 6765091230571644 a003 cos(Pi*29/111)*sin(Pi*53/115) 6765091235093789 a007 Real Root Of -592*x^4-477*x^3-878*x^2+593*x+44 6765091247836053 a007 Real Root Of 419*x^4-654*x^3-278*x^2-377*x+497 6765091251277172 m005 (1/2*2^(1/2)-5)/(2*exp(1)+10/11) 6765091278868857 h001 (3/8*exp(2)+5/11)/(4/7*exp(2)+6/11) 6765091295201560 m001 ZetaQ(4)/(Ei(1)+Landau) 6765091305693555 r005 Im(z^2+c),c=-57/94+1/8*I,n=38 6765091318977868 m001 (Niven-PrimesInBinary)/(cos(1/5*Pi)+ln(3)) 6765091321221044 m005 (-13/28+1/4*5^(1/2))/(1/10*5^(1/2)-4/11) 6765091325253843 a007 Real Root Of -815*x^4+269*x^3-696*x^2-731*x+78 6765091346000636 m005 (1/2*gamma-1/8)/(5/11*3^(1/2)-6/11) 6765091376456208 a007 Real Root Of -648*x^4+604*x^3-484*x^2+517*x+894 6765091378171420 a007 Real Root Of -150*x^4+836*x^3+271*x^2-599*x-239 6765091437039274 r005 Im(z^2+c),c=-107/122+18/59*I,n=6 6765091450034184 a001 161/98209*2178309^(13/51) 6765091452291816 h001 (5/11*exp(1)+1/5)/(3/4*exp(1)+1/12) 6765091461518249 a007 Real Root Of 123*x^4+744*x^3-583*x^2-26*x-773 6765091492392259 l006 ln(1303/2563) 6765091493515646 a003 sin(Pi*1/64)-sin(Pi*23/89) 6765091495815738 m001 GAMMA(11/12)*Paris^2*ln(GAMMA(11/24)) 6765091509570624 r009 Re(z^3+c),c=-1/110+17/26*I,n=15 6765091540323097 r005 Re(z^2+c),c=-75/74+11/28*I,n=4 6765091562106102 a007 Real Root Of -470*x^4+500*x^3+41*x^2+529*x-433 6765091619743367 m001 (KhinchinLevy+Robbin)/(Chi(1)-FeigenbaumMu) 6765091644629483 a007 Real Root Of 739*x^4+992*x^3+498*x^2-518*x-426 6765091656846537 r002 31th iterates of z^2 + 6765091677254387 r002 26th iterates of z^2 + 6765091707613452 a007 Real Root Of 361*x^4-370*x^3+420*x^2+209*x-241 6765091748367863 r005 Im(z^2+c),c=-53/118+26/31*I,n=3 6765091765169826 a008 Real Root of x^4-x^3-17*x^2-111*x-256 6765091782002781 m001 (ln(3)+BesselI(1,1))/(FellerTornier-ZetaP(4)) 6765091818392165 r005 Im(z^2+c),c=-3/56+4/5*I,n=62 6765091863517060 q001 1031/1524 6765091865353755 r002 8i'th iterates of 2*x/(1-x^2) of 6765091879822073 a002 13^(2/3)+18^(10/7) 6765091895176917 m001 ln(Salem)^2/Khintchine^2/cos(1) 6765091923329489 m001 (Paris-RenyiParking)/(Ei(1,1)-Champernowne) 6765092017748565 p001 sum(1/(526*n+97)/n/(24^n),n=1..infinity) 6765092025234119 a007 Real Root Of -640*x^4-37*x^3-76*x^2+842*x+727 6765092039555025 r005 Im(z^2+c),c=27/70+17/50*I,n=44 6765092049168016 m005 (1/2*3^(1/2)-7/9)/(1/4*5^(1/2)-3/7) 6765092091806713 p001 sum(1/(393*n+157)/n/(3^n),n=1..infinity) 6765092094226699 m001 Pi+exp(Pi)*sin(1/12*Pi)/(1+3^(1/2))^(1/2) 6765092098858334 r005 Re(z^2+c),c=-31/46+22/63*I,n=46 6765092126424308 m005 (1/2*Catalan+5/11)/(7/8*3^(1/2)-1/6) 6765092167799570 m001 1/exp(Salem)/MadelungNaCl^2*sin(Pi/12)^2 6765092172134541 m006 (2/3*exp(2*Pi)+5)/(exp(2*Pi)-2/5) 6765092186454009 a003 cos(Pi*5/84)-sin(Pi*10/101) 6765092191584575 r005 Im(z^2+c),c=-1/62+27/43*I,n=8 6765092205713933 h001 (5/12*exp(1)+5/8)/(8/9*exp(1)+2/11) 6765092220245315 m001 (arctan(1/3)+GAMMA(5/6))/(GAMMA(17/24)+Thue) 6765092222329346 a007 Real Root Of -696*x^4+577*x^3+515*x^2+840*x+657 6765092251859697 l006 ln(3629/3883) 6765092268857960 b008 -1+SinIntegral[4]^(-2) 6765092287193149 l006 ln(4909/9656) 6765092331568079 r005 Im(z^2+c),c=17/86+27/49*I,n=29 6765092345332235 p001 sum((-1)^n/(197*n+33)/n/(64^n),n=1..infinity) 6765092359617526 m001 (Ei(1)-HardyLittlewoodC4)/(Zeta(3)+ln(Pi)) 6765092360802241 m006 (5/6*exp(2*Pi)-3/4)/(1/4*exp(Pi)+4/5) 6765092365022807 m001 exp((3^(1/3)))*Riemann2ndZero/GAMMA(1/4)^2 6765092383076736 r005 Im(z^2+c),c=-7/48+15/22*I,n=64 6765092391512345 r002 20th iterates of z^2 + 6765092398026718 r005 Re(z^2+c),c=-13/18+11/71*I,n=3 6765092409607793 r005 Im(z^2+c),c=-11/18+11/87*I,n=48 6765092413137860 a007 Real Root Of -525*x^4+576*x^3-267*x^2+17*x+422 6765092476970652 m005 (1/2*5^(1/2)-7/11)/(2/11*Catalan+6/11) 6765092513170997 r004 Im(z^2+c),c=-23/38+1/5*I,z(0)=-1,n=5 6765092565250333 a007 Real Root Of -446*x^4+843*x^3-943*x^2-779*x+259 6765092574388241 l006 ln(3606/7093) 6765092617235336 a001 39088169/2*14662949395604^(20/21) 6765092617235336 a001 4052739537881/2*141422324^(12/13) 6765092617235337 a001 133957148*14662949395604^(8/9) 6765092617235337 a001 701408733/2*14662949395604^(6/7) 6765092617235337 a001 225851433717/2*2537720636^(14/15) 6765092617235337 a001 591286729879/2*2537720636^(8/9) 6765092617235337 a001 956722026041/2*2537720636^(13/15) 6765092617235337 a001 4052739537881/2*2537720636^(4/5) 6765092617235337 a001 3278735159921*2537720636^(7/9) 6765092617235337 a001 1836311903/2*23725150497407^(13/16) 6765092617235337 a001 1836311903/2*505019158607^(13/14) 6765092617235337 a001 2403763488*312119004989^(10/11) 6765092617235337 a001 2403763488*3461452808002^(5/6) 6765092617235337 a001 225851433717/2*17393796001^(6/7) 6765092617235337 a001 3278735159921*17393796001^(5/7) 6765092617235337 a001 12586269025/2*45537549124^(16/17) 6765092617235337 a001 12586269025/2*14662949395604^(16/21) 6765092617235337 a001 12586269025/2*192900153618^(8/9) 6765092617235337 a001 12586269025/2*73681302247^(12/13) 6765092617235337 a001 225851433717/2*45537549124^(14/17) 6765092617235337 a001 956722026041/2*45537549124^(13/17) 6765092617235337 a001 53316291173/2*45537549124^(15/17) 6765092617235337 a001 4052739537881/2*45537549124^(12/17) 6765092617235337 a001 10610209857723/2*45537549124^(2/3) 6765092617235337 a001 43133785636*312119004989^(4/5) 6765092617235337 a001 43133785636*23725150497407^(11/16) 6765092617235337 a001 3278735159921*312119004989^(7/11) 6765092617235337 a001 225851433717/2*817138163596^(14/19) 6765092617235337 a001 225851433717/2*14662949395604^(2/3) 6765092617235337 a001 225851433717/2*505019158607^(3/4) 6765092617235337 a001 3278735159921*14662949395604^(5/9) 6765092617235337 a001 3278735159921*505019158607^(5/8) 6765092617235337 a001 4052739537881/2*505019158607^(9/14) 6765092617235337 a001 225851433717/2*192900153618^(7/9) 6765092617235337 a001 956722026041/2*192900153618^(13/18) 6765092617235337 a001 53316291173/2*312119004989^(9/11) 6765092617235337 a001 53316291173/2*14662949395604^(5/7) 6765092617235337 a001 53316291173/2*192900153618^(5/6) 6765092617235337 a001 4052739537881/2*73681302247^(9/13) 6765092617235337 a001 43133785636*73681302247^(11/13) 6765092617235337 a001 956722026041/2*73681302247^(3/4) 6765092617235337 a001 591286729879/2*73681302247^(10/13) 6765092617235337 a001 3278735159921*28143753123^(7/10) 6765092617235337 a001 591286729879/2*28143753123^(4/5) 6765092617235337 a001 53316291173/2*28143753123^(9/10) 6765092617235337 a001 7778742049/2*14662949395604^(7/9) 6765092617235337 a001 7778742049/2*505019158607^(7/8) 6765092617235337 a001 10610209857723/2*10749957122^(17/24) 6765092617235337 a001 4052739537881/2*10749957122^(3/4) 6765092617235337 a001 774004377960*10749957122^(19/24) 6765092617235337 a001 956722026041/2*10749957122^(13/16) 6765092617235337 a001 591286729879/2*10749957122^(5/6) 6765092617235337 a001 225851433717/2*10749957122^(7/8) 6765092617235337 a001 43133785636*10749957122^(11/12) 6765092617235337 a001 32951280099/2*10749957122^(23/24) 6765092617235337 a001 53316291173/2*10749957122^(15/16) 6765092617235337 a001 2971215073/2*817138163596^(17/19) 6765092617235337 a001 2971215073/2*14662949395604^(17/21) 6765092617235337 a001 2971215073/2*192900153618^(17/18) 6765092617235337 a001 10610209857723/2*4106118243^(17/23) 6765092617235337 a001 4052739537881/2*4106118243^(18/23) 6765092617235337 a001 774004377960*4106118243^(19/23) 6765092617235337 a001 591286729879/2*4106118243^(20/23) 6765092617235337 a001 225851433717/2*4106118243^(21/23) 6765092617235337 a001 43133785636*4106118243^(22/23) 6765092617235337 a001 10610209857723/2*1568397607^(17/22) 6765092617235337 a001 4052739537881/2*1568397607^(9/11) 6765092617235337 a001 774004377960*1568397607^(19/22) 6765092617235337 a001 591286729879/2*1568397607^(10/11) 6765092617235337 a001 225851433717/2*1568397607^(21/22) 6765092617235337 a001 433494437/2*3461452808002^(11/12) 6765092617235337 a001 10610209857723/2*599074578^(17/21) 6765092617235337 a001 3278735159921*599074578^(5/6) 6765092617235337 a001 4052739537881/2*599074578^(6/7) 6765092617235337 a001 774004377960*599074578^(19/21) 6765092617235337 a001 956722026041/2*599074578^(13/14) 6765092617235337 a001 591286729879/2*599074578^(20/21) 6765092617235337 a001 165580141/2*14662949395604^(19/21) 6765092617235337 a001 10610209857723/2*228826127^(17/20) 6765092617235337 a001 3278735159921*228826127^(7/8) 6765092617235337 a001 4052739537881/2*228826127^(9/10) 6765092617235337 a001 774004377960*228826127^(19/20) 6765092617235338 a001 10610209857723/2*87403803^(17/19) 6765092617235338 a001 4052739537881/2*87403803^(18/19) 6765092617235343 a001 10610209857723/2*33385282^(17/18) 6765092636667082 a007 Real Root Of 320*x^4-819*x^3-181*x^2+721*x+250 6765092652359041 a001 1/18*(1/2*5^(1/2)+1/2)^17*47^(11/12) 6765092654272722 a007 Real Root Of 333*x^4-975*x^3-60*x^2+423*x-58 6765092660469226 a007 Real Root Of 338*x^4+356*x^3+502*x^2-814*x-741 6765092676170473 a007 Real Root Of -705*x^4-452*x^3-483*x^2+531*x+588 6765092684072296 a007 Real Root Of 636*x^4-557*x^3-25*x^2-180*x-416 6765092691660424 a007 Real Root Of 886*x^4-623*x^3+450*x^2-601*x-991 6765092696334161 r002 3th iterates of z^2 + 6765092697977999 a007 Real Root Of -305*x^4+527*x^3-881*x^2+279*x+819 6765092722512664 m009 (6*Psi(1,3/4)+3/4)/(1/2*Psi(1,2/3)+5/6) 6765092728210374 r005 Re(z^2+c),c=-85/82+11/53*I,n=48 6765092731361854 m001 (GAMMA(2/3)-ZetaR(2))/Grothendieck 6765092738867771 a007 Real Root Of 159*x^4-458*x^3-728*x^2-676*x+899 6765092738994577 m001 (gamma(2)+Champernowne*Trott)/Champernowne 6765092759576091 r005 Im(z^2+c),c=-11/8+22/227*I,n=17 6765092783269937 a007 Real Root Of -595*x^4-160*x^3+127*x^2+139*x+111 6765092807379328 s002 sum(A089222[n]/(n^2*2^n+1),n=1..infinity) 6765092816739749 a007 Real Root Of 3*x^4-861*x^3-660*x^2-541*x+934 6765092824467162 s002 sum(A089222[n]/(n^2*2^n-1),n=1..infinity) 6765092830296665 r008 a(0)=0,K{-n^6,66+2*n^3+55*n^2+25*n} 6765092832081457 m005 (-25/44+1/4*5^(1/2))/(6/11*2^(1/2)+7/12) 6765092841767520 s002 sum(A046580[n]/(16^n),n=1..infinity) 6765092844858220 a007 Real Root Of -660*x^4-538*x^3-801*x^2-602*x-69 6765092845287114 r005 Re(z^2+c),c=-9/8+160/177*I,n=2 6765092865721461 a001 196418/47*2^(41/59) 6765092897615316 a007 Real Root Of -736*x^4+873*x^3-965*x^2-315*x+653 6765092916620784 m005 (1/2*3^(1/2)+3/11)/(7/9*2^(1/2)+7/12) 6765092941304834 m001 (Psi(1,1/3)+ln(Pi))/(KhinchinLevy+Weierstrass) 6765092945682875 a007 Real Root Of -867*x^4-512*x^3-875*x^2+657*x+868 6765092946108114 m004 -1-(20*E^(Sqrt[5]*Pi))/Pi+125*Pi 6765092954827093 r005 Im(z^2+c),c=11/82+37/57*I,n=9 6765092974481679 r005 Im(z^2+c),c=23/56+16/45*I,n=12 6765092979697590 r008 a(0)=0,K{-n^6,-62-31*n-53*n^2-2*n^3} 6765092981158451 r005 Re(z^2+c),c=39/122+17/32*I,n=32 6765093016158122 m005 (1/2*gamma-2/3)/(57/11+2/11*5^(1/2)) 6765093037537372 r005 Re(z^2+c),c=-9/82+42/59*I,n=12 6765093040804918 a007 Real Root Of 87*x^4+495*x^3-618*x^2-46*x-996 6765093046936783 m001 Tribonacci^2/exp(Backhouse)^2/exp(1) 6765093050503463 a008 Real Root of (-5+3*x+5*x^2+2*x^4+6*x^8) 6765093051204447 a007 Real Root Of -207*x^4+121*x^3+309*x^2+895*x-741 6765093089537692 a007 Real Root Of 963*x^4+647*x^3+870*x^2-858*x-980 6765093097548526 m004 -E^(Sqrt[5]*Pi)+(285*Pi)/2 6765093106091395 a001 1762289/682*123^(1/5) 6765093106964599 m001 (Tetranacci+ZetaP(2))/(FeigenbaumD+GaussAGM) 6765093114962431 g001 Psi(3/8,2/37) 6765093129390430 r009 Re(z^3+c),c=-25/29+13/23*I,n=2 6765093145899176 a007 Real Root Of -890*x^4+949*x^3+88*x^2+105*x+511 6765093154952629 a007 Real Root Of 218*x^4-321*x^3-847*x^2-403*x+714 6765093156013201 m001 Salem*exp(KhintchineHarmonic)*Zeta(9)^2 6765093170257759 r005 Im(z^2+c),c=29/74+7/33*I,n=47 6765093186563945 l006 ln(2303/4530) 6765093188254946 r008 a(0)=8,K{-n^6,-39+10*n-29*n^2+59*n^3} 6765093206050120 a001 121393/199*199^(5/11) 6765093210930034 a007 Real Root Of 367*x^4+587*x^3+281*x^2-874*x-615 6765093211303086 a007 Real Root Of -580*x^4+288*x^3+577*x+601 6765093221730025 p003 LerchPhi(1/5,1,95/56) 6765093244252937 m001 BesselK(1,1)^2/Champernowne/ln(cosh(1)) 6765093247333165 a001 4/2889*39603^(18/49) 6765093257988387 a007 Real Root Of -898*x^4+384*x^3-897*x^2-255*x+545 6765093258821520 a007 Real Root Of -501*x^4+585*x^3+924*x^2+501*x-838 6765093263524076 a001 3/6643838879*123^(9/16) 6765093317400003 r005 Re(z^2+c),c=11/106+30/61*I,n=26 6765093336728533 a001 4/2889*5778^(22/49) 6765093354873773 m001 (Pi-1)/(FeigenbaumAlpha+LaplaceLimit) 6765093356413462 m001 (arctan(1/2)-FeigenbaumC)/(Trott2nd+ZetaP(3)) 6765093374779498 m001 (-Paris+Totient)/(1+GaussAGM) 6765093377328984 m005 (1/2*exp(1)+1/10)/(7/12*Catalan-3/4) 6765093377751689 a001 8/15127*9349^(26/49) 6765093385213656 s002 sum(A103133[n]/(16^n),n=1..infinity) 6765093394479358 r005 Im(z^2+c),c=17/46+20/61*I,n=5 6765093446747628 a001 4/51841*64079^(30/49) 6765093447696568 r005 Im(z^2+c),c=2/9+22/43*I,n=18 6765093451773243 l006 ln(3241/3263) 6765093454830566 a007 Real Root Of 795*x^4-446*x^3-658*x^2-571*x+659 6765093506632349 m001 (-PlouffeB+ThueMorse)/(Champernowne-Shi(1)) 6765093513534141 m001 ln(cos(1))/Zeta(1,2)^2*cos(Pi/12) 6765093523850416 a007 Real Root Of 62*x^4-3*x^3-479*x^2-322*x+425 6765093525424185 a007 Real Root Of 37*x^4-732*x^3-494*x^2+99*x+378 6765093546671136 r005 Im(z^2+c),c=-127/98+2/55*I,n=28 6765093563334341 r005 Im(z^2+c),c=7/52+23/38*I,n=14 6765093593461639 q001 2566/3793 6765093603586564 r009 Im(z^3+c),c=-8/27+40/59*I,n=38 6765093624769830 a007 Real Root Of 389*x^4-975*x^3+68*x^2-663*x-863 6765093625406073 a003 cos(Pi*31/117)/sin(Pi*22/47) 6765093633979899 a007 Real Root Of 213*x^4-50*x^3-289*x^2-593*x-329 6765093634731787 a007 Real Root Of 371*x^4-930*x^3-918*x^2-335*x+857 6765093701359313 a007 Real Root Of -388*x^4+65*x^3-310*x^2+889*x-6 6765093702541045 a001 199/5702887*17711^(7/13) 6765093704863592 a001 199/139583862445*2504730781961^(7/13) 6765093704863592 a001 199/4807526976*4807526976^(7/13) 6765093704863601 a001 199/165580141*9227465^(7/13) 6765093743602237 s001 sum(exp(-Pi/4)^(n-1)*A081361[n],n=1..infinity) 6765093759743007 r002 34th iterates of z^2 + 6765093762114243 a007 Real Root Of -585*x^4+293*x^3-982*x^2-x+662 6765093789969983 r009 Re(z^3+c),c=-47/86+9/40*I,n=24 6765093827102366 l004 sinh(584/119) 6765093835610517 r008 a(0)=0,K{-n^6,46+n^3+48*n^2+53*n} 6765093854897413 l006 ln(3303/6497) 6765093873992477 m001 GAMMA(1/6)*ln(Riemann1stZero)^2/gamma 6765093876922737 a007 Real Root Of 949*x^4+372*x^3+237*x^2-603*x-600 6765093878856385 a001 11/21*46368^(1/42) 6765093886165230 m001 1/GAMMA(5/6)^2/GAMMA(5/24)*ln(cos(1))^2 6765093894238678 s002 sum(A069187[n]/((exp(n)-1)/n),n=1..infinity) 6765093898338609 m005 (5/6*2^(1/2)-1)/(3/4*exp(1)+3/5) 6765093951498067 a007 Real Root Of -608*x^4+162*x^3+257*x^2+621*x+480 6765093956907414 r005 Re(z^2+c),c=-53/58+5/38*I,n=32 6765093995923454 r002 34th iterates of z^2 + 6765094016237498 r005 Re(z^2+c),c=-61/90+17/50*I,n=46 6765094039524158 a007 Real Root Of 142*x^4+891*x^3-391*x^2+507*x-238 6765094065975390 a007 Real Root Of -734*x^4+362*x^3-409*x^2+575*x+842 6765094084596382 m001 GAMMA(17/24)/(Zeta(1/2)+ReciprocalFibonacci) 6765094086115382 a007 Real Root Of 11*x^4+732*x^3-826*x^2-220*x+407 6765094112431626 r009 Re(z^3+c),c=-13/110+39/64*I,n=19 6765094121662458 a007 Real Root Of 699*x^4-848*x^3+455*x^2-115*x-695 6765094127845928 m001 (Shi(1)+ZetaR(2))/Grothendieck 6765094136346831 a007 Real Root Of 480*x^4-759*x^3-814*x^2-68*x+553 6765094169381688 m008 (1/6*Pi^5-3/5)/(1/4*Pi^5-2) 6765094189012447 m001 1/Salem/Riemann1stZero^2*exp(arctan(1/2)) 6765094212594809 l006 ln(4303/8464) 6765094220739103 m009 (4/5*Psi(1,3/4)+3/4)/(2/5*Pi^2+1/6) 6765094223086157 m001 (Zeta(1,2)-GAMMA(5/6))/(Otter+Paris) 6765094241960040 r009 Re(z^3+c),c=-19/110+32/47*I,n=8 6765094259227913 m005 (1/2*Zeta(3)-2/9)/(4/5*2^(1/2)-4/7) 6765094268290421 m002 -E^Pi+Pi-Pi^6+Pi^5*Tanh[Pi] 6765094271956041 r005 Re(z^2+c),c=-5/8+108/253*I,n=25 6765094294957051 a007 Real Root Of -249*x^4-250*x^3-841*x^2+747*x+865 6765094296035322 a003 sin(Pi*1/29)*sin(Pi*17/79) 6765094326571382 r009 Im(z^3+c),c=-31/56+3/10*I,n=27 6765094332043059 m005 (1/2*exp(1)-6/11)/(5/11*Zeta(3)-2/3) 6765094332742159 m006 (1/4*Pi^2-3)/(5/6*ln(Pi)-1/6) 6765094344322140 r009 Im(z^3+c),c=-11/48+38/53*I,n=54 6765094352231000 m001 LambertW(1)/exp(1/Pi)*GAMMA(13/24) 6765094352250101 m005 (1/2*gamma-7/9)/(5/12*Zeta(3)+2/9) 6765094354516902 m001 (Pi^(1/2)-exp(1))/(-GAMMA(17/24)+FeigenbaumD) 6765094378428527 a007 Real Root Of 584*x^4+80*x^3-574*x^2-726*x-326 6765094388761788 r005 Re(z^2+c),c=-67/98+12/35*I,n=64 6765094394917343 m001 (-Pi^(1/2)+Cahen)/(5^(1/2)-LambertW(1)) 6765094400790428 a007 Real Root Of -588*x^4-143*x^3-167*x^2+950*x+798 6765094404869994 m001 Backhouse^Bloch-polylog(4,1/2) 6765094416449830 m005 (1/2*5^(1/2)+4)/(7/12*Catalan+2/9) 6765094427384437 m003 3/2+Sqrt[5]/32+5/(2*Log[1/2+Sqrt[5]/2]) 6765094439718158 p003 LerchPhi(1/12,1,282/181) 6765094445374408 m005 (5/6*gamma+4/5)/(2/3*Catalan-4/5) 6765094451564006 m004 -3+375/Pi-Log[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 6765094472330498 a007 Real Root Of 38*x^4+284*x^3+141*x^2-380*x-687 6765094482894181 b008 ProductLog[1+(2*Pi)/19] 6765094492829449 a001 8/39603*2207^(37/49) 6765094503128083 a007 Real Root Of 667*x^4-647*x^3-710*x^2-858*x+966 6765094526836618 m001 (Niven-Sierpinski)/(BesselK(1,1)-Bloch) 6765094527961906 m005 (1/2*exp(1)-2/3)/(1/6*Pi+1/2) 6765094535882780 r005 Im(z^2+c),c=-9/62+43/63*I,n=31 6765094542449760 p004 log(35227/17909) 6765094553034755 m006 (2/3*ln(Pi)-1/2)/(1/3*Pi^2+3/5) 6765094555179291 a007 Real Root Of 658*x^4-572*x^3-781*x^2-357*x-199 6765094573942450 m001 (GAMMA(23/24)-exp(1))/(MertensB2+Porter) 6765094590688073 m001 sin(Pi/12)^2/Si(Pi)^2*exp(sqrt(Pi))^2 6765094596999560 r002 3th iterates of z^2 + 6765094619313283 m001 Pi/Psi(2,1/3)*BesselI(0,1)*Zeta(1,2) 6765094621435356 a001 7/9227465*63245986^(1/4) 6765094621435369 a001 7/24157817*2971215073^(1/4) 6765094621435371 a001 7/63245986*139583862445^(1/4) 6765094621435372 a001 7/165580141*6557470319842^(1/4) 6765094621435372 a001 1/14619165*956722026041^(1/4) 6765094621435373 a001 7/39088169*20365011074^(1/4) 6765094621435378 a001 7/14930352*433494437^(1/4) 6765094621435417 a001 7/5702887*9227465^(1/4) 6765094621435450 a001 7/3524578*1346269^(1/4) 6765094621444425 a001 1/311187*196418^(1/4) 6765094621846516 a001 7/1346269*28657^(1/4) 6765094640787441 a001 7/832040*4181^(1/4) 6765094659594452 r005 Re(z^2+c),c=-1/18+39/50*I,n=47 6765094662950494 a007 Real Root Of 60*x^4+549*x^3+842*x^2-776*x+519 6765094666248818 a007 Real Root Of 542*x^4-563*x^3+433*x^2+204*x-348 6765094669039701 r005 Re(z^2+c),c=-55/98+15/31*I,n=40 6765094755398854 q001 1535/2269 6765094781632791 m001 Mills*PrimesInBinary^RenyiParking 6765094798308567 r005 Re(z^2+c),c=11/74+16/59*I,n=6 6765094834924860 h001 (-7*exp(-2)-5)/(-2*exp(1/3)-6) 6765094897997078 r009 Re(z^3+c),c=-61/110+10/51*I,n=6 6765094936037762 a008 Real Root of x^2-x-4509 6765094961937082 a007 Real Root Of 272*x^4+238*x^3+641*x^2-747*x-782 6765094965086562 m005 (1/2*Catalan-1/10)/(-46/99+4/9*5^(1/2)) 6765095019243029 m001 (BesselJ(1,1)-Psi(1,1/3))/(GaussAGM+Lehmer) 6765095032675552 a003 cos(Pi*29/107)/sin(Pi*44/103) 6765095042148923 a007 Real Root Of -17*x^4+977*x^3+73*x^2+270*x-515 6765095043797481 a007 Real Root Of -516*x^4+876*x^3-345*x^2-528*x+180 6765095081475138 a007 Real Root Of 487*x^4-203*x^3-152*x^2-771*x+552 6765095128249096 a007 Real Root Of -140*x^4+838*x^3+151*x^2+619*x-718 6765095139678910 m001 (Niven-PrimesInBinary)/(GAMMA(3/4)-MertensB2) 6765095145531245 a007 Real Root Of 233*x^4-214*x^3-841*x^2-66*x+447 6765095155192682 a003 sin(Pi*3/67)+sin(Pi*20/111) 6765095161415252 m001 1/exp(Robbin)*ErdosBorwein/GAMMA(3/4) 6765095163629293 m001 1/(2^(1/3))/MertensB1^2*exp(log(1+sqrt(2)))^2 6765095170297805 m005 (1/2*5^(1/2)-2/9)/(5/11*Zeta(3)+7/9) 6765095171114827 r005 Re(z^2+c),c=-5/74+3/44*I,n=2 6765095172153137 b008 4+Sqrt[5+Sqrt[7]] 6765095196593978 a007 Real Root Of -856*x^4-852*x^3+27*x^2+764*x+420 6765095204036703 m001 Zeta(9)*Catalan^2*ln(sqrt(5)) 6765095266097778 a007 Real Root Of 382*x^4-837*x^3+401*x^2+950*x+120 6765095276837291 a007 Real Root Of -307*x^4+789*x^3+404*x^2+336*x+351 6765095281301311 l006 ln(8501/9096) 6765095283671392 a008 Real Root of x^3-x^2-224*x-1160 6765095287818046 m001 Riemann1stZero*Rabbit*ln(TreeGrowth2nd)^2 6765095304939814 r005 Re(z^2+c),c=-17/98+46/63*I,n=2 6765095327418065 a007 Real Root Of 830*x^4-646*x^3+850*x^2+597*x-359 6765095331574921 a007 Real Root Of 59*x^4+271*x^3-912*x^2-452*x-993 6765095335690118 a007 Real Root Of 89*x^4+699*x^3+768*x^2+877*x+788 6765095340311739 r008 a(0)=8,K{-n^6,-39+60*n^3-32*n^2+12*n} 6765095365274956 a007 Real Root Of 724*x^4-769*x^3-396*x^2+898*x+399 6765095371741820 a001 24476/89*610^(8/57) 6765095373676473 h001 (-2*exp(3)+10)/(-exp(4)+10) 6765095374594162 r009 Im(z^3+c),c=-31/66+35/61*I,n=25 6765095377349164 a007 Real Root Of -942*x^4-376*x^3-292*x^2+691*x+682 6765095379825608 a007 Real Root Of -202*x^4+933*x^3+334*x^2+533*x-760 6765095381836330 a007 Real Root Of 98*x^4+668*x^3+9*x^2-104*x+439 6765095387099524 m001 (2^(1/2)-BesselJ(0,1))/(CopelandErdos+Sarnak) 6765095387177514 m001 1/Paris^2/GolombDickman^2*ln(GAMMA(19/24))^2 6765095387213100 r005 Im(z^2+c),c=-151/126+4/47*I,n=28 6765095394069220 l006 ln(1000/1967) 6765095412068041 r005 Im(z^2+c),c=43/118+16/53*I,n=13 6765095417459962 a003 cos(Pi*17/107)*sin(Pi*7/25) 6765095458188426 r005 Re(z^2+c),c=-15/14+7/240*I,n=8 6765095460544571 r005 Im(z^2+c),c=-25/34+3/59*I,n=5 6765095499473255 m001 (Tribonacci+ZetaQ(4))/(BesselK(0,1)-ln(2)) 6765095504989826 a007 Real Root Of 902*x^4-303*x^3-814*x^2-792*x-446 6765095511798594 b008 -2/7+2^(-1/18) 6765095515444073 m001 (-Cahen+ErdosBorwein)/(2^(1/2)-gamma(2)) 6765095519243287 a007 Real Root Of -736*x^4+373*x^3-149*x^2+355*x+578 6765095530473594 a001 7/514229*610^(1/4) 6765095543511689 a001 1/64079*47^(8/21) 6765095580549580 a003 sin(Pi*6/65)-sin(Pi*33/80) 6765095590838341 r002 10th iterates of z^2 + 6765095638132196 r009 Im(z^3+c),c=-51/106+16/31*I,n=47 6765095658184819 m001 1/Trott^2*exp(Niven)*Zeta(3)^2 6765095663248698 a007 Real Root Of -831*x^4-613*x^3-317*x^2+202*x+266 6765095690397515 h001 (1/3*exp(1)+2/11)/(4/9*exp(1)+2/5) 6765095690397515 m005 (1/3*exp(1)+2/11)/(4/9*exp(1)+2/5) 6765095691568893 a007 Real Root Of 461*x^4-39*x^3-614*x^2-478*x-151 6765095705629224 s002 sum(A238664[n]/(n^3*10^n+1),n=1..infinity) 6765095723070929 r005 Im(z^2+c),c=-35/44+7/15*I,n=3 6765095725258301 r008 a(0)=0,K{-n^6,-18+26*n^3+45*n^2-38*n} 6765095743650241 a007 Real Root Of 133*x^4-849*x^3+229*x^2-82*x-451 6765095766624516 a008 Real Root of (2+4*x+3*x^2+x^3+x^4+4*x^5) 6765095776569272 m005 (1/3*Zeta(3)-3/4)/(5/11*Catalan+1/10) 6765095777056189 m001 (3^(1/3)-Lehmer)/(MertensB3-ZetaP(4)) 6765095787265103 h001 (9/10*exp(1)+9/10)/(7/12*exp(2)+7/11) 6765095810768308 a007 Real Root Of -531*x^4+611*x^3+192*x^2+116*x+291 6765095829332419 a007 Real Root Of 778*x^4+585*x^3+367*x^2-698*x-622 6765095840859392 m001 Artin*Conway^(5^(1/2)) 6765095850780875 r005 Re(z^2+c),c=-57/110+25/36*I,n=30 6765095880838828 r005 Im(z^2+c),c=-47/66+5/59*I,n=62 6765095882461977 a007 Real Root Of -400*x^4+324*x^3+72*x^2+19*x+164 6765095903209735 a007 Real Root Of 344*x^4-676*x^3-267*x^2+45*x+229 6765095925608871 a007 Real Root Of 357*x^4-18*x^3-402*x^2-369*x-146 6765095956256033 m001 1/FibonacciFactorial/DuboisRaymond*ln(sinh(1)) 6765095972917570 a007 Real Root Of 550*x^4+120*x^3+134*x^2-740*x+5 6765095986129679 a001 47/5*233^(21/58) 6765096016470010 m005 (12/5+2/5*5^(1/2))/(3/4*Catalan-1/5) 6765096048406611 r005 Im(z^2+c),c=-25/42+5/41*I,n=19 6765096050995818 a007 Real Root Of 563*x^4+947*x^3+497*x^2-693*x-521 6765096058826832 a001 1/3*28657^(2/29) 6765096115151428 m008 (1/3*Pi^4+3/4)/(1/2*Pi^4+2/5) 6765096115876841 m004 6*E^(Sqrt[5]*Pi)+(6*Sqrt[5])/Pi+5*Pi 6765096118651918 r005 Im(z^2+c),c=-1/44+19/23*I,n=5 6765096152093045 s002 sum(A029868[n]/(16^n),n=1..infinity) 6765096178535871 a007 Real Root Of 860*x^4+120*x^3+626*x^2-561*x-809 6765096203858645 m006 (2/3*exp(2*Pi)-3/5)/(1/2*Pi^2+1/3) 6765096206968782 a007 Real Root Of 231*x^4-86*x^3+556*x^2+827*x+230 6765096217650962 q001 2039/3014 6765096217985535 m001 (MertensB2+Riemann2ndZero)/(gamma+FeigenbaumD) 6765096222138849 a001 5473/161*18^(5/21) 6765096253214738 r005 Im(z^2+c),c=-15/14+18/233*I,n=32 6765096361872823 a001 322/1597*6765^(7/51) 6765096402571081 m008 (4*Pi^3+3/4)/(2/3*Pi-1/4) 6765096414358552 a007 Real Root Of 697*x^4-433*x^3+287*x^2+583*x-17 6765096420814164 m001 1/ln(BesselK(0,1))/FeigenbaumKappa^2*Zeta(5)^2 6765096476437500 l006 ln(4697/9239) 6765096485731976 m004 -6+Sinh[Sqrt[5]*Pi]+(375*Sinh[Sqrt[5]*Pi])/Pi 6765096515335717 m005 (1/6*Pi-3/4)/(4/5*Pi+5/6) 6765096515335717 m006 (3/4/Pi-1/6)/(5/6/Pi+4/5) 6765096515335717 m008 (1/6*Pi-3/4)/(4/5*Pi+5/6) 6765096517015334 a007 Real Root Of 141*x^4+948*x^3-87*x^2-287*x+220 6765096530710616 r002 12th iterates of z^2 + 6765096561452539 a007 Real Root Of -915*x^4+52*x^3-723*x^2+36*x+563 6765096568162393 a007 Real Root Of 840*x^4-590*x^3+684*x^2+338*x-443 6765096570993290 a007 Real Root Of -114*x^4+659*x^3-694*x^2-122*x+463 6765096574685207 m004 -6+Cosh[Sqrt[5]*Pi]+(375*Sinh[Sqrt[5]*Pi])/Pi 6765096579664502 a007 Real Root Of 303*x^4-906*x^3+679*x^2-95*x-719 6765096581335773 m001 (BesselI(0,1)+GAMMA(13/24))/(Otter+Totient) 6765096647245657 s002 sum(A103503[n]/(n^3*2^n+1),n=1..infinity) 6765096659687664 r002 22th iterates of z^2 + 6765096690295981 r005 Im(z^2+c),c=-13/106+35/51*I,n=4 6765096740349547 a001 2/89*10946^(27/44) 6765096744124978 a007 Real Root Of 118*x^4-453*x^3+381*x^2+475*x-18 6765096769206828 l006 ln(3697/7272) 6765096806678256 b008 Tanh[E^Sqrt[2]/5] 6765096806929273 r002 3th iterates of z^2 + 6765096818964328 r009 Im(z^3+c),c=-31/110+26/35*I,n=39 6765096820292456 m001 (Pi-exp(1))/(Zeta(1/2)+GaussAGM) 6765096841091881 a007 Real Root Of 466*x^4-486*x^3+859*x^2+225*x-489 6765096850136177 a007 Real Root Of 675*x^4-920*x^3-762*x^2-801*x-51 6765096851813257 m001 (Salem+ZetaP(4))/(3^(1/3)+HardyLittlewoodC5) 6765096863431353 h001 (3/5*exp(2)+2/7)/(5/6*exp(2)+9/11) 6765096868079462 s001 sum(exp(-Pi/2)^n*A030732[n],n=1..infinity) 6765096915910078 r005 Im(z^2+c),c=-1/22+20/29*I,n=4 6765096932483997 r002 3th iterates of z^2 + 6765096932787374 m001 exp(1)*(Champernowne-Riemann3rdZero) 6765096938775510 r002 2th iterates of z^2 + 6765096944718365 a007 Real Root Of -996*x^4+121*x^3-174*x^2+469*x+643 6765096970426610 m001 1/exp(FeigenbaumC)^2*Porter/GAMMA(1/6) 6765096984560820 r005 Im(z^2+c),c=-41/34+11/116*I,n=28 6765096996104976 m005 (-13/44+1/4*5^(1/2))/(1/8*gamma-1/9) 6765097012559210 r009 Im(z^3+c),c=-31/122+43/62*I,n=11 6765097014421529 a007 Real Root Of -554*x^4+517*x^3-875*x^2-227*x+523 6765097027014609 s002 sum(A237016[n]/(n*pi^n-1),n=1..infinity) 6765097042090018 a007 Real Root Of 865*x^4-676*x^3-128*x^2-315*x-545 6765097079916279 r005 Re(z^2+c),c=-23/42+15/22*I,n=8 6765097100292631 q001 2543/3759 6765097108239654 r005 Im(z^2+c),c=17/48+13/34*I,n=28 6765097125680301 r009 Im(z^3+c),c=-25/86+41/56*I,n=12 6765097161790003 m001 (cos(1)+FeigenbaumB*Trott2nd)/FeigenbaumB 6765097173751521 m001 (FeigenbaumD+Robbin)/(Zeta(1/2)+cos(1/12*Pi)) 6765097196684212 a001 2/7778742049*46368^(7/23) 6765097196875742 a001 2/225851433717*2971215073^(7/23) 6765097202060066 a007 Real Root Of 758*x^4+411*x^3+819*x^2-202*x-543 6765097211688166 m001 Bloch/(LandauRamanujan^Totient) 6765097212614833 r005 Im(z^2+c),c=-133/110+1/15*I,n=12 6765097230564140 a001 1/329*317811^(12/49) 6765097236656155 m001 (-FeigenbaumD+MertensB3)/(cos(1)+Backhouse) 6765097246965634 p001 sum(1/(533*n+45)/n/(256^n),n=1..infinity) 6765097247114367 r005 Im(z^2+c),c=-7/52+31/45*I,n=16 6765097248637968 r005 Re(z^2+c),c=-83/122+13/38*I,n=10 6765097250605499 a007 Real Root Of 944*x^4-169*x^3+549*x^2+438*x-205 6765097258345420 m005 (1/2*2^(1/2)+9/11)/(1/3*5^(1/2)-3) 6765097279083535 l006 ln(2697/5305) 6765097312244205 r008 a(0)=0,K{-n^6,-24-29*n+42*n^2+26*n^3} 6765097321593731 a001 7/55*987^(34/59) 6765097334853152 r005 Im(z^2+c),c=-2/3+5/29*I,n=40 6765097408232652 a007 Real Root Of 827*x^4-753*x^3-542*x^2-680*x+768 6765097424706080 m009 (1/3*Psi(1,2/3)+2)/(2*Catalan+1/4*Pi^2+1/6) 6765097458876982 m001 (Si(Pi)+Zeta(1,-1))/(FeigenbaumC+Robbin) 6765097494459573 a007 Real Root Of 63*x^4-389*x^3-686*x^2-826*x+980 6765097504284582 a007 Real Root Of 201*x^4-686*x^3+488*x^2-389*x-741 6765097523165766 r005 Re(z^2+c),c=-1/94+11/40*I,n=6 6765097537837296 l006 ln(4872/5213) 6765097580722488 a007 Real Root Of 980*x^4-595*x^3-904*x^2-608*x+804 6765097600962080 m001 HardyLittlewoodC3*Ei(1)^Paris 6765097617550425 m001 MasserGramain^(Stephens/Cahen) 6765097619223143 a007 Real Root Of -836*x^4-788*x^3-320*x^2+889*x+679 6765097621603575 r005 Im(z^2+c),c=-69/118+14/33*I,n=63 6765097640717410 a007 Real Root Of -320*x^4-462*x^3-996*x^2+865*x+965 6765097647120279 a008 Real Root of (-7+5*x+8*x^2-x^8) 6765097649235099 s002 sum(A190917[n]/((10^n-1)/n),n=1..infinity) 6765097652218969 a007 Real Root Of -836*x^4+87*x^3-488*x^2-39*x+399 6765097657180044 r005 Im(z^2+c),c=15/98+13/22*I,n=17 6765097665032057 r005 Im(z^2+c),c=-49/40+7/38*I,n=19 6765097673470079 r005 Im(z^2+c),c=-11/82+42/61*I,n=10 6765097690172843 a007 Real Root Of -384*x^4+977*x^3+749*x^2+325*x+260 6765097701616188 a007 Real Root Of -370*x^4-938*x^3-757*x^2+657*x+578 6765097708080826 l006 ln(4394/8643) 6765097726402417 a008 Real Root of (-6+6*x+x^2+3*x^3+4*x^4-2*x^5) 6765097726906156 a007 Real Root Of -71*x^4+877*x^3+931*x^2-313*x-471 6765097739418062 a007 Real Root Of 489*x^4-840*x^3-577*x^2-265*x+601 6765097752379696 m001 LandauRamanujan*exp(Cahen)/arctan(1/2)^2 6765097763410507 r009 Re(z^3+c),c=-61/126+1/18*I,n=38 6765097786324176 a003 cos(Pi*13/107)*sin(Pi*13/50) 6765097825250564 m001 (-ArtinRank2+Thue)/(2^(1/3)+GAMMA(5/6)) 6765097845867378 a007 Real Root Of 145*x^4+900*x^3-525*x^2+236*x+564 6765097890394467 a001 1/167732*(1/2*5^(1/2)+1/2)^2*2207^(4/21) 6765097892708313 a007 Real Root Of 867*x^4-399*x^3-141*x^2-311*x-451 6765097893147316 a007 Real Root Of 178*x^4-932*x^3-917*x^2-343*x+903 6765097896737470 r002 63th iterates of z^2 + 6765097898034144 p004 log(11981/6091) 6765097907813945 a007 Real Root Of -702*x^4-64*x^3-994*x^2-658*x+137 6765097914679497 m002 7-Cosh[Pi]/(5*Pi^2) 6765097925608310 r005 Im(z^2+c),c=-3/70+18/25*I,n=47 6765097928376856 a001 312119004989/5*317811^(11/15) 6765097928386570 a001 7881196/5*591286729879^(11/15) 6765097928386679 a001 1568397607/5*433494437^(11/15) 6765097942294960 h001 (-2*exp(5)-1)/(-3*exp(5)+5) 6765097968940400 m002 -4+Pi^2+2*Pi^3*Tanh[Pi] 6765097979233500 r005 Re(z^2+c),c=31/118+13/28*I,n=35 6765098012054276 a001 1/322*(1/2*5^(1/2)+1/2)^9*3^(23/24) 6765098040044218 a007 Real Root Of 807*x^4-782*x^3+583*x^2-3*x-680 6765098063608411 a001 9062201101803/2*1836311903^(15/17) 6765098063608411 a001 6643838879/2*6557470319842^(15/17) 6765098076824770 s002 sum(A193856[n]/(16^n),n=1..infinity) 6765098125198876 m001 Paris^2/Niven^2/ln(GAMMA(13/24)) 6765098133594200 r005 Im(z^2+c),c=-69/86+1/25*I,n=16 6765098136583105 a007 Real Root Of 123*x^4-144*x^3-503*x^2-810*x+797 6765098160933047 r009 Im(z^3+c),c=-11/31+41/57*I,n=12 6765098205778822 p004 log(32009/16273) 6765098215494262 m001 1/GAMMA(23/24)^2*exp(GAMMA(13/24))*sinh(1)^2 6765098217389438 a007 Real Root Of 931*x^4-589*x^3-679*x^2-852*x-643 6765098229197416 r009 Im(z^3+c),c=-13/54+28/39*I,n=38 6765098246818625 m005 (1/2*3^(1/2)-1/10)/(5*5^(1/2)+1/7) 6765098248079067 m001 GAMMA(5/12)*Catalan^2*ln(cos(1))^2 6765098260298086 r005 Im(z^2+c),c=-4/5+6/121*I,n=10 6765098275941875 m005 (1/3*Pi+1/9)/(6/7*2^(1/2)+1/2) 6765098289435010 r002 7th iterates of z^2 + 6765098289456416 m005 (1/3*Catalan+1/7)/(3*5^(1/2)-1/12) 6765098291729999 a007 Real Root Of -378*x^4+615*x^3-979*x^2+104*x+788 6765098312649809 h001 (9/11*exp(2)+7/10)/(1/11*exp(1)+3/4) 6765098313527687 r005 Im(z^2+c),c=-29/42+13/42*I,n=35 6765098315741686 r005 Re(z^2+c),c=19/78+18/49*I,n=61 6765098318660862 s002 sum(A266939[n]/(n^3*10^n+1),n=1..infinity) 6765098331304577 m001 Riemann3rdZero^Mills+sin(1/5*Pi) 6765098342690150 a003 sin(Pi*1/85)-sin(Pi*22/87) 6765098342732755 a001 233/3*322^(41/53) 6765098354532198 r005 Im(z^2+c),c=-17/23+1/24*I,n=26 6765098361531293 a001 521/10610209857723*3^(7/24) 6765098389875540 l006 ln(1697/3338) 6765098399803033 a007 Real Root Of -827*x^4+933*x^3-230*x^2-70*x+520 6765098409920110 m001 ln(OneNinth)^2*CareFree*GAMMA(5/24)^2 6765098414886225 m005 (1/2*Pi-4/9)/(7/11*Zeta(3)+9/10) 6765098429554699 a007 Real Root Of -100*x^4-625*x^3+226*x^2-728*x+680 6765098438826966 r005 Im(z^2+c),c=-9/82+49/52*I,n=7 6765098490062763 r005 Re(z^2+c),c=-49/64+4/53*I,n=57 6765098531523991 h001 (1/8*exp(1)+1/2)/(3/11*exp(1)+1/2) 6765098550203245 h001 (-8*exp(-3)-9)/(-6*exp(1/2)-4) 6765098556641956 a008 Real Root of (-4+2*x+4*x^2+2*x^3+5*x^4-6*x^5) 6765098569527795 a007 Real Root Of -43*x^4+535*x^3-633*x^2+743*x+967 6765098579422294 m005 (1/2*2^(1/2)+5/6)/(7/12*Pi+4/9) 6765098606463184 a007 Real Root Of 146*x^4+873*x^3-732*x^2+438*x+950 6765098662183396 a007 Real Root Of -902*x^4-768*x^3-765*x^2+854*x+879 6765098673617283 m001 (Pi+ln(2)/ln(10))*Zeta(5)*Ei(1) 6765098673763705 a007 Real Root Of 823*x^4-868*x^3+19*x^2+50*x-416 6765098678060076 r009 Re(z^3+c),c=-2/29+4/45*I,n=3 6765098734206581 a007 Real Root Of -217*x^4+685*x^3-776*x^2+472*x+932 6765098782625165 m001 (LaplaceLimit+ZetaP(2))/(ln(gamma)-ln(3)) 6765098816720875 a007 Real Root Of 371*x^4-511*x^3+948*x^2-123*x-753 6765098819310374 a003 sin(Pi*25/104)*sin(Pi*48/107) 6765098819749606 r009 Im(z^3+c),c=-19/58+29/44*I,n=34 6765098825562930 a007 Real Root Of 72*x^4+429*x^3-456*x^2-473*x-315 6765098834632515 a007 Real Root Of 959*x^4+25*x^3+888*x^2+935*x+33 6765098855007018 q001 4/59127 6765098864108992 a007 Real Root Of -802*x^4+575*x^3-521*x^2+326*x+805 6765098869264443 m001 (5^(1/2)-Cahen)/(-PolyaRandomWalk3D+Stephens) 6765098876966866 m001 (3^(1/2)-cos(1))/(-Pi^(1/2)+Trott) 6765098895680523 a007 Real Root Of -880*x^4+666*x^3+644*x^2+750*x-824 6765098905621822 a007 Real Root Of 245*x^4-637*x^3+607*x^2-328*x+90 6765098911644590 a007 Real Root Of -496*x^4-21*x^3+478*x^2+707*x-50 6765098916789379 a003 cos(Pi*19/110)*cos(Pi*25/119) 6765098927252057 s001 sum(exp(-Pi)^n*A284888[n],n=1..infinity) 6765098927252057 s002 sum(A284888[n]/(exp(pi*n)),n=1..infinity) 6765098963528273 p004 log(30817/15667) 6765098965680225 a007 Real Root Of -659*x^4+948*x^3+275*x^2+404*x+579 6765098971567078 a007 Real Root Of -917*x^4+407*x^3+887*x^2+553*x-714 6765098974390330 r005 Im(z^2+c),c=-15/14+18/233*I,n=31 6765098998792250 m004 5+(Sqrt[5]*Pi)/4+5*Sech[Sqrt[5]*Pi] 6765099009168397 a007 Real Root Of 924*x^4+944*x^3+518*x^2-508*x-482 6765099010630506 a001 1/3009828*(1/2*5^(1/2)+1/2)^10*39603^(1/21) 6765099012869414 m004 5+(Sqrt[5]*Pi)/4+5*Csch[Sqrt[5]*Pi] 6765099013844265 s002 sum(A171278[n]/(64^n-1),n=1..infinity) 6765099015474069 m001 polylog(4,1/2)^StronglyCareFree+ZetaP(4) 6765099025763369 a007 Real Root Of -635*x^4+251*x^3-994*x^2-539*x+301 6765099047735739 a007 Real Root Of -955*x^4-783*x^3-577*x^2-x+221 6765099063085770 a007 Real Root Of -3*x^4+394*x^3+543*x^2+250*x-539 6765099068472664 m001 (ln(3)-gamma(2))/(GAMMA(13/24)-ZetaQ(4)) 6765099069543135 a007 Real Root Of 115*x^4+755*x^3-288*x^2-916*x-133 6765099090031219 a007 Real Root Of 22*x^4-942*x^3-688*x^2-448*x+905 6765099122167342 l006 ln(4091/8047) 6765099151561944 s002 sum(A253807[n]/(n^3*exp(n)-1),n=1..infinity) 6765099209787434 m004 -5+(100*Sqrt[5])/Pi+2*Cos[Sqrt[5]*Pi] 6765099217955109 h002 exp(19^(7/12)-7^(2/3)) 6765099217955109 h007 exp(19^(7/12)-7^(2/3)) 6765099232436667 m001 (Pi*2^(1/2)/GAMMA(3/4)+Salem)/Rabbit 6765099239007486 r008 a(0)=0,K{-n^6,26-14*n^3+83*n^2+53*n} 6765099252504821 a007 Real Root Of -91*x^4-613*x^3+53*x^2+327*x+599 6765099253997875 a007 Real Root Of -743*x^4+827*x^3-299*x^2+889*x-565 6765099256787698 r005 Re(z^2+c),c=35/86+15/43*I,n=46 6765099284147141 a007 Real Root Of 88*x^4+527*x^3-369*x^2+746*x+779 6765099333367810 a007 Real Root Of -553*x^4-540*x^3-439*x^2+892*x+753 6765099372584304 r002 53th iterates of z^2 + 6765099376311106 m001 (FeigenbaumB+Landau)/(3^(1/2)-GAMMA(7/12)) 6765099379315030 r005 Re(z^2+c),c=-28/31+10/63*I,n=62 6765099402123479 m001 Khintchine*CareFree^2*ln(BesselK(1,1)) 6765099418937371 a001 1/271396*(1/2*5^(1/2)+1/2)^2*3571^(5/21) 6765099434231036 r002 5th iterates of z^2 + 6765099435756545 r005 Re(z^2+c),c=-3/118+14/57*I,n=17 6765099439007840 a003 sin(Pi*1/21)/sin(Pi*7/99) 6765099452839649 r005 Im(z^2+c),c=-5/118+33/46*I,n=26 6765099498600982 a007 Real Root Of -603*x^4-16*x^3-877*x^2-412*x+244 6765099508491831 r009 Re(z^3+c),c=-23/44+1/7*I,n=28 6765099515217073 r005 Re(z^2+c),c=-31/34+17/122*I,n=14 6765099524893495 a003 cos(Pi*34/89)+cos(Pi*45/113) 6765099554757514 m005 (1/3*Zeta(3)+1/2)/(4/5*2^(1/2)+1/5) 6765099570127608 r009 Re(z^3+c),c=-6/11+20/47*I,n=7 6765099576877225 r009 Re(z^3+c),c=-3/34+41/55*I,n=57 6765099580344740 a007 Real Root Of 542*x^4-546*x^3+391*x^2-150*x-563 6765099582466222 r008 a(0)=8,K{-n^6,-9+57*n^3-8*n^2-39*n} 6765099602757169 a007 Real Root Of -968*x^4+355*x^3+405*x^2+239*x+289 6765099608250798 m001 ln(3)+Pi*csc(7/24*Pi)/GAMMA(17/24)+Sierpinski 6765099634001256 m001 (Otter+Weierstrass)/(exp(1/exp(1))+Zeta(1,2)) 6765099641256361 l006 ln(2394/4709) 6765099644334949 a007 Real Root Of 191*x^4-8*x^3+540*x^2-614*x-705 6765099659564461 r005 Re(z^2+c),c=-3/32+33/43*I,n=20 6765099665538246 a007 Real Root Of 518*x^4-751*x^3-457*x^2-386*x-393 6765099681021932 p001 sum(1/(613*n+149)/(25^n),n=0..infinity) 6765099681331974 a005 (1/cos(7/122*Pi))^258 6765099709217466 a003 cos(Pi*19/67)/sin(Pi*41/108) 6765099746886082 b008 25/4+Sech[Glaisher] 6765099759555331 r002 34th iterates of z^2 + 6765099784909053 r009 Re(z^3+c),c=-71/126+11/35*I,n=10 6765099813957325 m001 gamma(2)*OrthogonalArrays+StolarskyHarborth 6765099831972158 m001 (Kolakoski-Porter)/(Zeta(3)-exp(-1/2*Pi)) 6765099851969000 a007 Real Root Of 677*x^4-241*x^3+850*x^2-125*x-690 6765099883156779 m001 (BesselI(0,1)+Cahen)/(FeigenbaumKappa+Porter) 6765099887201741 r005 Re(z^2+c),c=21/64+37/61*I,n=3 6765099946073721 m001 Pi*ln(2)/ln(10)*(Zeta(1,2)+(1+3^(1/2))^(1/2)) 6765099961442983 m001 GAMMA(7/12)/(MertensB2-Shi(1)) 6765099974576285 a007 Real Root Of 315*x^4-871*x^3+423*x^2+296*x-329 6765099980456089 a007 Real Root Of 953*x^4-304*x^3-340*x^2+318*x+77 6765099984456719 a001 13/2*199^(43/49) 6765099989050131 m001 CopelandErdos^(ZetaP(3)/MasserGramain) 6765099991747605 r005 Re(z^2+c),c=11/126+7/52*I,n=8