6835600017831826 a007 Real Root Of 87*x^4+601*x^3-25*x^2-394*x+488 6835600054988616 a001 987/64079*521^(38/39) 6835600058957092 s002 sum(A112416[n]/(n*exp(n)+1),n=1..infinity) 6835600078235901 m001 (BesselJ(0,1)+Sierpinski)/(LambertW(1)-Shi(1)) 6835600078250778 a007 Real Root Of -693*x^4+665*x^3-756*x^2+398*x+989 6835600084489490 a001 29/514229*34^(3/55) 6835600092084831 m001 LandauRamanujan^(Porter/Zeta(5)) 6835600100630825 m001 (1+FeigenbaumD)/(-Lehmer+ZetaQ(2)) 6835600103154565 r005 Im(z^2+c),c=23/78+31/55*I,n=31 6835600120052957 a001 377/2207*521^(23/39) 6835600121147483 r002 55th iterates of z^2 + 6835600121692921 a007 Real Root Of -996*x^4+500*x^3+784*x^2+637*x-744 6835600122006904 m001 (2*Pi/GAMMA(5/6))^ZetaQ(4)/Porter 6835600122347148 a001 377/3571*521^(2/3) 6835600127132602 m001 (-Stephens+Thue)/(1-2^(1/2)) 6835600127549900 m005 (-37/8+3/8*5^(1/2))/(31/6+1/6*5^(1/2)) 6835600173043796 a007 Real Root Of -71*x^4+565*x^3-213*x^2+665*x-520 6835600180695929 m005 (-5/8+1/4*5^(1/2))/(1/4*exp(1)+2/7) 6835600230614231 a007 Real Root Of -302*x^4+972*x^3+621*x^2-x-534 6835600244605842 l006 ln(2987/5917) 6835600252361121 a007 Real Root Of -795*x^4+864*x^3-780*x^2-749*x+302 6835600347048126 a007 Real Root Of 683*x^4-933*x^3+219*x^2+776*x-19 6835600357295090 a001 47/13*2^(34/37) 6835600388623094 a001 10946/3571*199^(5/33) 6835600428701399 a003 cos(Pi*9/77)-cos(Pi*47/112) 6835600437690013 a007 Real Root Of -75*x^4+658*x^3-953*x^2-503*x+328 6835600479155230 p004 log(28547/14411) 6835600507382818 m002 -4+Pi^2+Cosh[Pi]/12 6835600520891450 r002 2th iterates of z^2 + 6835600560259274 a007 Real Root Of 975*x^4-822*x^3+509*x^2+271*x-528 6835600595817011 m005 (1/2*exp(1)-4)/(5/6*5^(1/2)+2) 6835600614166996 m001 BesselK(1,1)*(ln(2)/ln(10)+GaussAGM) 6835600614755562 a007 Real Root Of 455*x^4-754*x^3+996*x^2+289*x-608 6835600618825922 r005 Re(z^2+c),c=-4/13+45/49*I,n=3 6835600659746487 m008 (1/3*Pi^4+4/5)/(5*Pi^4-1/3) 6835600662136161 m005 (1/3*exp(1)+1/6)/(7/9*3^(1/2)+2/9) 6835600662609222 r002 10th iterates of z^2 + 6835600666557772 r005 Im(z^2+c),c=-11/26+6/43*I,n=6 6835600667607121 m001 (Landau+QuadraticClass)/(Pi-Shi(1)) 6835600678928581 m008 (5/6*Pi^2-4)/(1/5*Pi^5+3/5) 6835600712748325 a007 Real Root Of -422*x^4-161*x^3+28*x^2+318*x+245 6835600712972325 r009 Re(z^3+c),c=-3/29+13/27*I,n=20 6835600721482448 a007 Real Root Of -863*x^4-248*x^3-314*x^2-765*x-267 6835600733001024 a001 2584/7*2^(8/9) 6835600737098546 r005 Im(z^2+c),c=-67/56+2/19*I,n=42 6835600761367691 m009 (3*Pi^2-2/3)/(1/4*Psi(1,2/3)-5) 6835600768688258 a003 sin(Pi*4/47)/sin(Pi*12/95) 6835600803645734 m001 exp(GAMMA(3/4))^2*FeigenbaumB*sin(1)^2 6835600846810992 a007 Real Root Of -923*x^4+619*x^3-744*x^2-702*x+267 6835600864806055 l006 ln(2725/5398) 6835600881903125 a001 4/10610209857723*3^(13/24) 6835600885057949 r005 Re(z^2+c),c=-19/28+8/29*I,n=19 6835600949330619 m001 (AlladiGrinstead-Stephens)^MertensB1 6835600968712860 a003 cos(Pi*15/52)*cos(Pi*46/99) 6835600978681248 m002 Pi^3+(2*Pi^5*Log[Pi])/ProductLog[Pi] 6835600988428434 r005 Im(z^2+c),c=-1/22+35/46*I,n=23 6835600999803576 m001 1/FeigenbaumDelta*exp(Cahen)^2*log(1+sqrt(2)) 6835601007048143 a007 Real Root Of 228*x^4-560*x^3+542*x^2-401*x-756 6835601012694642 b008 -7+1/Sqrt[37] 6835601014625655 r002 3th iterates of z^2 + 6835601044760947 a007 Real Root Of -265*x^4+810*x^3+242*x^2+276*x+18 6835601052633990 m001 (5^(1/2)+Zeta(3))/(-ArtinRank2+DuboisRaymond) 6835601064227893 r005 Im(z^2+c),c=-61/46+2/27*I,n=19 6835601072565684 r005 Im(z^2+c),c=-39/74+5/41*I,n=23 6835601090799373 a007 Real Root Of 8*x^4-739*x^3+287*x^2-285*x+295 6835601119119232 r005 Re(z^2+c),c=-9/14+106/233*I,n=52 6835601128472222 r002 2th iterates of z^2 + 6835601167098581 a007 Real Root Of 481*x^4-270*x^3+797*x^2+532*x-200 6835601168683459 p004 log(36229/18289) 6835601184152209 a007 Real Root Of -981*x^4+349*x^3-901*x^2-709*x+262 6835601199026393 m001 (gamma+BesselK(0,1))/Zeta(1/2) 6835601231241786 a007 Real Root Of 520*x^4+172*x^3+632*x^2-815*x-911 6835601245891636 a007 Real Root Of 535*x^4-870*x^3-402*x^2-149*x-1 6835601245931569 m001 1/Zeta(1,2)*GAMMA(11/24)^2*exp(cos(1)) 6835601252187997 a001 2584/167761*521^(38/39) 6835601282586549 a001 55/843*123^(29/30) 6835601288734069 r002 11th iterates of z^2 + 6835601308444914 m005 (1/2*3^(1/2)+5/11)/(5/6*exp(1)-1/3) 6835601312163482 r005 Re(z^2+c),c=13/118+26/53*I,n=33 6835601394590761 r009 Im(z^3+c),c=-11/29+29/43*I,n=16 6835601401793966 s001 sum(exp(-Pi/2)^n*A041636[n],n=1..infinity) 6835601408639011 a007 Real Root Of -109*x^4-664*x^3+486*x^2-491*x-168 6835601426857033 a001 6765/439204*521^(38/39) 6835601445618085 a007 Real Root Of 589*x^4-925*x^3-391*x^2-927*x-875 6835601452340901 a001 17711/1149851*521^(38/39) 6835601456058948 a001 46368/3010349*521^(38/39) 6835601456936660 a001 75025/4870847*521^(38/39) 6835601458356827 a001 28657/1860498*521^(38/39) 6835601467160240 m001 (Rabbit+Salem)/(3^(1/3)+ln(2+3^(1/2))) 6835601468090799 a001 10946/710647*521^(38/39) 6835601473772265 r005 Re(z^2+c),c=3/118+18/29*I,n=37 6835601510522491 a001 521/196418*17711^(3/31) 6835601516523313 r005 Re(z^2+c),c=-5/8+63/94*I,n=2 6835601531168303 m001 Pi*Psi(2,1/3)*BesselK(0,1)*Zeta(1,2) 6835601534808433 a001 4181/271443*521^(38/39) 6835601537480942 r005 Re(z^2+c),c=-31/46+22/63*I,n=10 6835601540285084 m001 (Bloch-CareFree)/(CopelandErdos-Stephens) 6835601571325437 l006 ln(5131/5494) 6835601616952992 l006 ln(2463/4879) 6835601627166218 m001 PrimesInBinary/Khintchine*exp(Ei(1))^2 6835601646632749 m001 (GlaisherKinkelin+Trott2nd)/(Pi-GAMMA(3/4)) 6835601652508094 m005 (1/3*Catalan-1/6)/(2*2^(1/2)-4/5) 6835601696267738 m005 (1/3*Zeta(3)-1/10)/(2/5*5^(1/2)-5/11) 6835601704201276 a001 4/5*6765^(9/37) 6835601733584423 r005 Im(z^2+c),c=-15/32+5/43*I,n=41 6835601738483106 m008 (2/3*Pi^4+3/4)/(Pi^6-2/5) 6835601740714883 m001 Psi(1,1/3)^(Weierstrass/Paris) 6835601785151493 a007 Real Root Of -13*x^4+29*x^3+876*x^2+520*x+268 6835601793469359 r009 Re(z^3+c),c=-37/60+31/60*I,n=46 6835601812602996 m005 (5^(1/2)+2/3)/(5*Catalan-1/3) 6835601847612913 m001 Zeta(1,-1)/(Niven+TravellingSalesman) 6835601858098297 a007 Real Root Of 86*x^4-491*x^3-610*x^2-193*x+555 6835601912624541 a007 Real Root Of -408*x^4+611*x^3+354*x^2-68*x-225 6835601920870671 a007 Real Root Of 62*x^4-964*x^3-15*x^2-845*x-58 6835601923065587 m001 (FeigenbaumD+FeigenbaumMu)/(MertensB1-Salem) 6835601929052536 a003 cos(Pi*17/65)/sin(Pi*43/91) 6835601947854237 r005 Re(z^2+c),c=-19/18+29/193*I,n=54 6835601949785213 a005 (1/cos(3/188*Pi))^1529 6835601971738801 m001 1/ln(sin(Pi/5))^2*Cahen*sqrt(3)^2 6835601971895999 a007 Real Root Of 642*x^4+179*x^3+666*x^2-285*x-589 6835601972990108 a007 Real Root Of -890*x^4+279*x^3+799*x^2+130*x-357 6835601986081006 a001 329/13201*521^(35/39) 6835601992097905 a001 1597/103682*521^(38/39) 6835601992722573 a007 Real Root Of 576*x^4-308*x^3+387*x^2-259*x-582 6835602034310437 m001 (1-FeigenbaumC)/(-FeigenbaumD+Porter) 6835602048765246 m003 3+30*Coth[1/2+Sqrt[5]/2]*Tan[1/2+Sqrt[5]/2] 6835602054149780 r009 Re(z^3+c),c=-3/19+19/27*I,n=22 6835602056404168 l006 ln(4664/9239) 6835602058702001 m001 (Psi(1,1/3)-ln(gamma))/(-Zeta(1,-1)+gamma(2)) 6835602063003564 m005 (1/2*3^(1/2)+4/11)/(53/45+5/18*5^(1/2)) 6835602066285636 m001 1/Rabbit*MertensB1/exp(Zeta(1/2))^2 6835602074578460 r009 Im(z^3+c),c=-1/18+37/51*I,n=3 6835602123245903 p004 log(32077/16193) 6835602140472006 a007 Real Root Of -553*x^4+962*x^3+263*x^2+311*x-522 6835602143150523 m001 (FeigenbaumC+Kolakoski)/(5^(1/2)-Si(Pi)) 6835602150773772 h001 (1/4*exp(2)+2/5)/(7/8*exp(1)+10/11) 6835602163782434 r005 Re(z^2+c),c=5/94+21/52*I,n=40 6835602176840986 r005 Re(z^2+c),c=11/42+5/13*I,n=29 6835602184373245 r002 7th iterates of z^2 + 6835602219729834 r009 Re(z^3+c),c=-27/118+35/38*I,n=6 6835602242604790 r002 4th iterates of z^2 + 6835602242764978 a007 Real Root Of -625*x^4+566*x^3-416*x^2-194*x+379 6835602286438538 a007 Real Root Of -446*x^4+807*x^3-940*x^2-277*x+605 6835602292213723 a007 Real Root Of -998*x^4+465*x^3+142*x^2-556*x-80 6835602298230805 r005 Re(z^2+c),c=-23/30+3/41*I,n=57 6835602320261425 m001 (Mills+Thue)/(Pi^(1/2)+HardHexagonsEntropy) 6835602348748428 a001 1364/377*233^(25/26) 6835602352151160 m001 (Cahen+Sarnak)/(Pi-exp(Pi)) 6835602360620382 s001 sum(exp(-Pi/2)^n*A048182[n],n=1..infinity) 6835602377158260 m001 (BesselI(0,1)+gamma(2))/(Robbin+Salem) 6835602379989110 m001 MadelungNaCl/(cos(1/12*Pi)+BesselI(1,2)) 6835602379989110 m001 MadelungNaCl/(cos(Pi/12)+BesselI(1,2)) 6835602418782039 m001 MadelungNaCl^(2^(1/3))/Otter 6835602426705503 a003 cos(Pi*2/117)*sin(Pi*6/25) 6835602464488316 r002 4th iterates of z^2 + 6835602476582662 r008 a(0)=6,K{-n^6,-28-27*n^3+51*n^2+n} 6835602486241853 r005 Im(z^2+c),c=13/58+18/35*I,n=22 6835602498349405 m006 (4/Pi+1/4)/(5/6*exp(Pi)+3) 6835602517960441 r002 53th iterates of z^2 + 6835602548166183 l006 ln(2201/4360) 6835602563312235 r002 4th iterates of z^2 + 6835602569445867 h001 (3/5*exp(2)+1/10)/(7/8*exp(2)+1/6) 6835602570203808 r005 Im(z^2+c),c=-95/74+2/59*I,n=28 6835602581900215 s001 sum(exp(-Pi/2)^n*A118647[n],n=1..infinity) 6835602593697616 m001 cos(Pi/5)*GAMMA(1/6)^2*exp(sqrt(1+sqrt(3)))^2 6835602598330100 a007 Real Root Of 31*x^4-798*x^3-971*x^2+285*x+507 6835602616926578 m001 1/BesselK(0,1)/Porter^2/ln(sinh(1)) 6835602622289460 q001 2711/3966 6835602623263245 a007 Real Root Of 5*x^4-840*x^3+148*x^2-964*x+857 6835602648847919 a007 Real Root Of 985*x^4+80*x^3+470*x^2-250*x-580 6835602688572704 r005 Re(z^2+c),c=-17/58+36/59*I,n=6 6835602700015188 m001 GAMMA(1/12)/GAMMA(23/24)/GAMMA(13/24) 6835602702361131 a007 Real Root Of -4*x^4+655*x^3+69*x^2+637*x-676 6835602715742485 a007 Real Root Of 963*x^4+145*x^3+604*x^2-405*x-723 6835602757808516 m001 (GAMMA(2/3)-arctan(1/3))/(MertensB2+PlouffeB) 6835602764638145 a007 Real Root Of 601*x^4+43*x^3+498*x^2+543*x+21 6835602797139723 a001 5/3010349*24476^(7/50) 6835602849014646 a007 Real Root Of -411*x^4+797*x^3+281*x^2+577*x-41 6835602849726582 h001 (-9*exp(1/3)+9)/(-2*exp(1/3)+8) 6835602856708753 h001 (1/5*exp(2)+7/8)/(5/11*exp(2)+1/12) 6835602901539887 s002 sum(A162520[n]/(n*exp(n)-1),n=1..infinity) 6835602908730165 s002 sum(A007879[n]/(n*exp(n)-1),n=1..infinity) 6835602908757138 s002 sum(A152271[n]/(n*exp(n)-1),n=1..infinity) 6835602912489643 r005 Im(z^2+c),c=23/64+37/54*I,n=19 6835602929085146 m001 (HardyLittlewoodC3+Niven)/(Cahen-ln(2)/ln(10)) 6835602952127302 m005 (1/3*3^(1/2)+2/3)/(3/4*5^(1/2)+1/7) 6835602962431937 m001 (sin(1/12*Pi)-ArtinRank2)/(Cahen-ZetaQ(4)) 6835602982831784 a008 Real Root of (-1+x^2+x^3+x^4+x^6-x^7-x^8+x^12) 6835603004610868 m001 1/ln(cos(1))*Zeta(9)/cosh(1)^2 6835603008824229 b008 5+Sqrt[2+ArcSec[5]] 6835603018557154 m008 (1/3*Pi^2-2/3)/(2/5*Pi^6-4/5) 6835603048192432 a007 Real Root Of -930*x^4+347*x^3-491*x^2-353*x+302 6835603068130252 m001 (PlouffeB-ZetaP(4))/(ln(5)-GAMMA(23/24)) 6835603100821479 m001 (-Conway+StolarskyHarborth)/(2^(1/2)+Artin) 6835603102170511 l006 ln(4140/8201) 6835603107482637 a007 Real Root Of -882*x^4+983*x^3-799*x^2-446*x+575 6835603132953214 a007 Real Root Of -956*x^4-425*x^3+684*x^2+687*x-50 6835603167474879 b008 2^Sqrt[37]+EulerGamma 6835603188425042 a001 1292/51841*521^(35/39) 6835603231300371 r009 Im(z^3+c),c=-31/56+13/32*I,n=5 6835603233992157 a007 Real Root Of 898*x^4-514*x^3+419*x^2-335*x-785 6835603234038885 m005 (1/2*3^(1/2)+3/10)/(-21/11+1/11*5^(1/2)) 6835603238007377 a001 10959*18^(19/30) 6835603250719593 a007 Real Root Of -226*x^4+906*x^3-280*x^2-940*x-173 6835603254102423 a007 Real Root Of -50*x^4+929*x^3-332*x^2+552*x-508 6835603261318380 m001 (ln(2+3^(1/2))+ArtinRank2)/(Otter-ZetaQ(3)) 6835603275334236 r008 a(0)=1,K{-n^6,-40-96*n^3+65*n^2+74*n} 6835603295264726 m001 (arctan(1/2)+GAMMA(11/12))/(Catalan-exp(Pi)) 6835603295694579 m001 Si(Pi)^2*Champernowne*ln(sinh(1)) 6835603297988636 a001 3/5*6765^(8/29) 6835603315502874 m001 arctan(1/2)*cos(1/12*Pi)+CopelandErdos 6835603317832680 m006 (5/6*Pi^2+2)/(5*Pi-3/4) 6835603317832680 m008 (5/6*Pi^2+2)/(5*Pi-3/4) 6835603330010792 h001 (5/8*exp(2)+1/11)/(6/7*exp(2)+5/9) 6835603335627160 r005 Im(z^2+c),c=-73/110+17/52*I,n=56 6835603340701575 a007 Real Root Of -368*x^4+433*x^3+501*x^2+885*x-897 6835603347294416 a007 Real Root Of -733*x^4+84*x^3-783*x^2-911*x-70 6835603354722752 r009 Re(z^3+c),c=-9/74+37/58*I,n=40 6835603363844673 a001 2255/90481*521^(35/39) 6835603363862594 m001 (Artin+MertensB2)/(Catalan+ln(Pi)) 6835603387785447 r004 Re(z^2+c),c=-15/14+1/22*I,z(0)=-1,n=17 6835603389438052 a001 17711/710647*521^(35/39) 6835603393172076 a001 2576/103361*521^(35/39) 6835603393716863 a001 121393/4870847*521^(35/39) 6835603394053560 a001 75025/3010349*521^(35/39) 6835603395479830 a001 28657/1149851*521^(35/39) 6835603405255631 a001 5473/219602*521^(35/39) 6835603405831331 a007 Real Root Of 376*x^4-830*x^3-783*x^2-284*x+743 6835603414264761 a007 Real Root Of -245*x^4+813*x^3+359*x^2+153*x+250 6835603420969274 q001 2158/3157 6835603449648558 a007 Real Root Of 102*x^4+574*x^3-729*x^2+761*x-95 6835603472259967 a001 4181/167761*521^(35/39) 6835603479372265 m006 (3*exp(2*Pi)+3/4)/(4/5*exp(Pi)+5) 6835603484816706 m005 (1/2*Zeta(3)+3/7)/(4/11*2^(1/2)-4/11) 6835603497005902 r005 Re(z^2+c),c=-5/4+16/83*I,n=10 6835603500223678 a007 Real Root Of 205*x^4+689*x^3+368*x^2-988*x-672 6835603542156142 m001 (5^(1/2)-Pi)/PisotVijayaraghavan 6835603547697353 m001 1/Porter/Paris/exp(Trott) 6835603562035252 m001 FeigenbaumC^ZetaQ(3)-arctan(1/3) 6835603571605833 a001 29/75025*610^(4/45) 6835603589371263 a007 Real Root Of -778*x^4+622*x^3+178*x^2+946*x+932 6835603593452314 a001 4181/1364*199^(5/33) 6835603600321615 r005 Re(z^2+c),c=-19/74+30/41*I,n=9 6835603603344264 r002 4th iterates of z^2 + 6835603608958233 m001 gamma(3)^(FeigenbaumAlpha/Robbin) 6835603611186623 m001 Pi-2^(1/3)/(cos(1)-ln(2^(1/2)+1)) 6835603612860803 m001 (ln(5)-ErdosBorwein)/(LaplaceLimit-MertensB1) 6835603628051321 a007 Real Root Of 659*x^4+245*x^3+324*x^2-591*x-621 6835603673273451 r009 Im(z^3+c),c=-29/110+33/41*I,n=4 6835603680600769 a001 17/161*76^(26/27) 6835603687986057 b008 ExpIntegralEi[(1+Pi)^2/7] 6835603700348798 m001 (Tetranacci+Totient)/(Zeta(1,-1)+Cahen) 6835603715363791 m001 (Kac-OneNinth)/(ln(2^(1/2)+1)-Champernowne) 6835603728316999 a007 Real Root Of 50*x^4-529*x^3+360*x^2+25*x-331 6835603731032529 l006 ln(1939/3841) 6835603776911753 m001 (BesselK(0,1)-Psi(2,1/3))/StolarskyHarborth 6835603790883008 a007 Real Root Of 925*x^4-405*x^3+964*x^2+478*x-455 6835603799707095 r005 Re(z^2+c),c=-3/40+36/41*I,n=23 6835603800891221 p001 sum(1/(328*n+155)/(6^n),n=0..infinity) 6835603813597547 a007 Real Root Of 996*x^4-398*x^3+290*x^2-686*x-949 6835603821552608 a007 Real Root Of 696*x^4-650*x^3+118*x^2-956*x+654 6835603823926478 a007 Real Root Of -423*x^4+746*x^3-592*x^2+203*x+746 6835603879349807 m001 BesselI(1,1)^Rabbit/(cos(1/12*Pi)^Rabbit) 6835603923696003 a007 Real Root Of 968*x^4+762*x^3+119*x^2-381*x-284 6835603930090965 a007 Real Root Of 87*x^4+593*x^3-x^2+131*x+400 6835603931514524 a001 1597/64079*521^(35/39) 6835603935092821 m002 5*Pi^6*Csch[Pi]+Pi^5/Log[Pi] 6835603938965622 a001 987/24476*521^(32/39) 6835603973749651 r005 Re(z^2+c),c=-17/22+5/117*I,n=15 6835603981032735 r005 Re(z^2+c),c=-17/22+6/115*I,n=33 6835604011565783 m004 -4/5+(125*Pi*Csch[Sqrt[5]*Pi])/6 6835604019432274 l006 ln(7435/7961) 6835604030104850 m001 Zeta(1/2)/Khintchine/exp(Zeta(5))^2 6835604061317308 m001 (Psi(2,1/3)-sin(1))/(-cos(1/5*Pi)+gamma(2)) 6835604075423602 m005 (1/3*5^(1/2)-1/6)/(67/198+5/22*5^(1/2)) 6835604095496191 m001 GAMMA(1/24)^2*MertensB1*exp(GAMMA(7/24))^2 6835604130065194 p004 log(25849/13049) 6835604140570053 r008 a(0)=7,K{-n^6,6+4*n^3+3*n^2-5*n} 6835604150457788 m005 (1/2*2^(1/2)+1/2)/(4/7*Catalan-7/10) 6835604154660392 a007 Real Root Of -117*x^4+162*x^3+928*x^2+761*x-980 6835604203981887 a007 Real Root Of -668*x^4-943*x^3-761*x^2+519*x+555 6835604234675923 s002 sum(A005067[n]/(n*exp(n)-1),n=1..infinity) 6835604245941671 a007 Real Root Of -743*x^4+125*x^3+861*x^2+799*x+346 6835604262405866 m005 (1/3*5^(1/2)+1/10)/(5/6*Catalan-2) 6835604308210850 m005 (1/2*Zeta(3)-4/9)/(2/3*5^(1/2)+4/5) 6835604324148770 a007 Real Root Of 265*x^4-960*x^3-121*x^2+983*x+364 6835604365671898 a007 Real Root Of -804*x^4-304*x^3-995*x^2+630*x+974 6835604390618336 a007 Real Root Of -333*x^4+808*x^3-303*x^2-751*x-41 6835604451023841 l006 ln(3616/7163) 6835604501698416 a001 76/1597*5^(9/40) 6835604507090344 r005 Im(z^2+c),c=-25/58+6/53*I,n=35 6835604513144456 r005 Im(z^2+c),c=-22/31+9/28*I,n=12 6835604524769777 a007 Real Root Of -240*x^4-187*x^3-846*x^2+357*x+632 6835604530382482 m005 (1/2*5^(1/2)-4/11)/(7/12*3^(1/2)-9/10) 6835604553730593 a007 Real Root Of -108*x^4-808*x^3-566*x^2-595*x+100 6835604597229059 m001 1/RenyiParking/ln(LaplaceLimit)*Riemann2ndZero 6835604620247656 m006 (1/2*Pi^2-3/4)/(2/3/Pi+2/5) 6835604644187743 a007 Real Root Of -250*x^4+331*x^3-972*x^2+166*x+16 6835604669599070 m001 1/ln(GAMMA(1/24))/LaplaceLimit^2/GAMMA(11/12) 6835604674429426 r002 20th iterates of z^2 + 6835604713050875 m001 (FeigenbaumDelta+Paris)/ArtinRank2 6835604741762422 r002 58th iterates of z^2 + 6835604742219160 r005 Im(z^2+c),c=-17/22+31/94*I,n=8 6835604747371410 m001 1/GAMMA(1/4)/exp(ArtinRank2)^2 6835604756424620 a007 Real Root Of -105*x^4-750*x^3-247*x^2-207*x-178 6835604761338756 a001 46/311187*832040^(9/32) 6835604770017035 q001 1605/2348 6835604772418828 r009 Re(z^3+c),c=-43/98+19/32*I,n=9 6835604805546917 a007 Real Root Of -190*x^4+486*x^3-262*x^2-205*x+179 6835604832852595 a007 Real Root Of 937*x^4+137*x^3-297*x^2-629*x-452 6835604842751778 r005 Im(z^2+c),c=-1/26+46/57*I,n=5 6835604899437939 r009 Im(z^3+c),c=-45/118+34/55*I,n=17 6835604932914749 m004 -4/5+(125*Pi)/(3*E^(Sqrt[5]*Pi)) 6835604950211935 r005 Im(z^2+c),c=-127/106+5/53*I,n=27 6835604999979556 m003 Sqrt[5]/64+(5*Log[1/2+Sqrt[5]/2])/72 6835605013089512 s002 sum(A030839[n]/((pi^n+1)/n),n=1..infinity) 6835605016132106 s002 sum(A030839[n]/((pi^n-1)/n),n=1..infinity) 6835605022962074 a007 Real Root Of 689*x^4-801*x^3-35*x^2-834*x-960 6835605066573483 r002 22th iterates of z^2 + 6835605071392830 a001 322/13*28657^(23/42) 6835605079030472 g001 GAMMA(3/5,29/78) 6835605095574395 m002 -5+5/Pi^3-Pi+Log[Pi] 6835605122154636 r005 Im(z^2+c),c=-73/94+1/41*I,n=58 6835605126406573 a001 610/39603*521^(38/39) 6835605127842000 a001 2584/64079*521^(32/39) 6835605130112206 a007 Real Root Of 818*x^4+678*x^3+854*x^2-765*x-884 6835605136909760 m009 (24/5*Catalan+3/5*Pi^2+1)/(1/12*Pi^2+5/6) 6835605141852896 r004 Im(z^2+c),c=-7/10+1/24*I,z(0)=-1,n=18 6835605179214293 r005 Re(z^2+c),c=-1/14+29/37*I,n=17 6835605183622301 r009 Im(z^3+c),c=-3/7+1/46*I,n=14 6835605187245887 r005 Re(z^2+c),c=-31/40+1/46*I,n=17 6835605187370358 r005 Im(z^2+c),c=-79/54+5/58*I,n=6 6835605189956306 a007 Real Root Of 664*x^4-764*x^3-3*x^2-498*x-728 6835605193974682 m001 1/ln(Salem)^2/FeigenbaumAlpha^2*GAMMA(5/6) 6835605228421790 r005 Re(z^2+c),c=-25/36+16/61*I,n=8 6835605267094127 b008 3*Sin[(3*Pi)/41] 6835605283500313 l006 ln(1677/3322) 6835605301296726 a001 615/15251*521^(32/39) 6835605310792084 r002 28th iterates of z^2 + 6835605326603429 a001 17711/439204*521^(32/39) 6835605329568465 a007 Real Root Of -870*x^4+700*x^3+11*x^2+589*x+811 6835605330295627 a001 46368/1149851*521^(32/39) 6835605330834312 a001 121393/3010349*521^(32/39) 6835605330961478 a001 196418/4870847*521^(32/39) 6835605331167237 a001 75025/1860498*521^(32/39) 6835605332577531 a001 28657/710647*521^(32/39) 6835605342243832 a001 10946/271443*521^(32/39) 6835605347835746 m005 (9/8+1/4*5^(1/2))/(6/11*Pi+3/4) 6835605351383218 a007 Real Root Of -934*x^4+606*x^3+464*x^2+763*x-728 6835605360309751 m003 1/2+Sqrt[5]/8+(5*Sinh[1/2+Sqrt[5]/2])/2 6835605360569661 r009 Im(z^3+c),c=-33/122+25/36*I,n=32 6835605367825187 a001 377/843*1364^(17/45) 6835605373011388 a005 (1/sin(69/217*Pi))^330 6835605408497642 a001 4181/103682*521^(32/39) 6835605427033542 r005 Im(z^2+c),c=-13/110+54/61*I,n=8 6835605428453414 m001 (Ei(1,1)+ArtinRank2)/(MertensB3+ZetaQ(3)) 6835605431709647 m001 LambertW(1)^2*ln(Magata)^2*sqrt(2) 6835605459965975 v002 sum(1/(3^n*(5/2*n^2+39/2*n+42)),n=1..infinity) 6835605480663096 r005 Re(z^2+c),c=-17/18+23/107*I,n=36 6835605495092371 r005 Re(z^2+c),c=-19/18+32/213*I,n=44 6835605527377657 a001 64079/34*987^(25/48) 6835605543828136 a007 Real Root Of 365*x^4-687*x^3+332*x^2-773*x+513 6835605556129567 m001 exp(1/exp(1))/Artin/BesselI(1,1) 6835605556129567 m001 exp(1/exp(1))/BesselI(1,1)/Artin 6835605586592735 a007 Real Root Of 581*x^4-440*x^3+946*x^2-765*x+48 6835605587173675 a007 Real Root Of 881*x^4-221*x^3+663*x^2+102*x-503 6835605587436969 h001 (1/11*exp(1)+9/10)/(1/9*exp(2)+6/7) 6835605596927761 r005 Im(z^2+c),c=-29/110+49/58*I,n=18 6835605625189009 m005 (1/3*Pi+3/4)/(4/5*exp(1)+5/11) 6835605647273560 a007 Real Root Of -928*x^4+652*x^3+408*x^2+816*x+778 6835605654081963 p004 log(16091/8123) 6835605656431590 a007 Real Root Of 840*x^4-255*x^3-71*x^2-296*x-434 6835605657628486 a007 Real Root Of -89*x^4+412*x^3-824*x^2-180*x+413 6835605688285263 m001 ArtinRank2/(MertensB2^Lehmer) 6835605692635390 r002 46th iterates of z^2 + 6835605707398340 m001 (Si(Pi)-exp(1))/(-Tetranacci+TwinPrimes) 6835605709910872 m005 (1/3*gamma+3/4)/(3/7*3^(1/2)+7/11) 6835605728404031 r008 a(0)=7,K{-n^6,-21-28*n^3+38*n^2+16*n} 6835605730542734 a001 21/2*2207^(32/59) 6835605749141319 m001 KomornikLoreti-exp(1)^Paris 6835605749993260 m009 (Pi^2+1/5)/(20/3*Catalan+5/6*Pi^2+2/5) 6835605761346493 a007 Real Root Of -372*x^4+900*x^3-860*x^2-504*x+426 6835605763029842 m002 -5+(24*Pi^5)/ProductLog[Pi] 6835605770878793 m001 (Riemann1stZero+Trott2nd)/(ln(Pi)+Zeta(1,2)) 6835605800090806 m005 (5/12+1/4*5^(1/2))/(6*5^(1/2)+6/7) 6835605812595894 m001 (Khinchin*Sarnak-OneNinth)/Khinchin 6835605834799419 a001 141/2161*521^(29/39) 6835605846217629 h001 (1/10*exp(1)+1/9)/(7/11*exp(2)+9/10) 6835605854262256 m004 -4/5+(125*Pi*Sech[Sqrt[5]*Pi])/6 6835605862608009 a001 1597/39603*521^(32/39) 6835605865706200 q001 2657/3887 6835605873644309 a001 2/370248451*3^(3/14) 6835605884247896 r009 Im(z^3+c),c=-31/114+2/3*I,n=6 6835605900519004 a007 Real Root Of 609*x^4-689*x^3-977*x^2-536*x+910 6835605914709099 l006 ln(4769/9447) 6835605962807696 m005 (1/3*Zeta(3)+2/7)/(3/10*5^(1/2)+1/3) 6835605983854225 r005 Im(z^2+c),c=-17/22+3/128*I,n=53 6835605991937141 a001 4181/843*199^(2/33) 6835606079720254 m005 (1/2*Catalan-1/7)/(5/11*2^(1/2)-2/11) 6835606091522422 m001 ZetaP(2)^GAMMA(17/24)*Ei(1) 6835606096407647 a007 Real Root Of -365*x^4-95*x^3-572*x^2+220*x+467 6835606123978694 m001 (LaplaceLimit+Tribonacci)/(Zeta(1,2)+Conway) 6835606126697426 a001 305/682*322^(27/31) 6835606127892369 s002 sum(A224893[n]/(n^3*exp(n)+1),n=1..infinity) 6835606128602560 s002 sum(A224893[n]/(n^3*exp(n)-1),n=1..infinity) 6835606129566398 a001 11/4181*267914296^(11/21) 6835606144631077 a007 Real Root Of -255*x^4+896*x^3+678*x^2-97*x-481 6835606147608322 a007 Real Root Of -92*x^4-607*x^3+124*x^2-115*x+407 6835606152647903 a001 1/271443*76^(29/43) 6835606187288793 m001 (FeigenbaumKappa+KhinchinLevy)/(Pi+gamma) 6835606196326576 m001 (GAMMA(17/24)-Sarnak)/(Ei(1,1)+BesselK(1,1)) 6835606198840968 a007 Real Root Of -816*x^4+212*x^3+954*x^2+652*x-781 6835606203239170 m001 GAMMA(7/24)/GlaisherKinkelin^2/exp(Zeta(7)) 6835606207775567 a001 1/75640*6557470319842^(11/21) 6835606229114029 r005 Im(z^2+c),c=-15/22+24/107*I,n=49 6835606244597231 a007 Real Root Of 705*x^4-164*x^3-157*x^2-398*x-405 6835606257056151 l006 ln(3092/6125) 6835606276670108 a001 1/126*(1/2*5^(1/2)+1/2)^13*18^(4/23) 6835606282863054 a007 Real Root Of -182*x^4+211*x^3-856*x^2+152*x+611 6835606284472161 m001 GAMMA(7/12)-arctan(1/2)*MasserGramainDelta 6835606291431035 a001 48*76^(4/49) 6835606294665059 m005 (1/3*3^(1/2)+1/3)/(5/6*3^(1/2)-1/9) 6835606299213711 a007 Real Root Of 100*x^4-123*x^3-363*x^2-858*x-478 6835606299281251 m002 Pi^3+Pi^5-Sinh[Pi]+Pi^3*Sinh[Pi] 6835606321930941 a001 7*2178309^(25/53) 6835606376327914 a007 Real Root Of 54*x^4+149*x^3+645*x^2-972*x-930 6835606384850720 a007 Real Root Of -824*x^4-339*x^3-223*x^2+701*x+655 6835606386501254 a007 Real Root Of 930*x^4-182*x^3+465*x^2-447*x-784 6835606400127210 m005 (1/2*5^(1/2)-4/9)/(2/9*gamma+6/7) 6835606421567683 m001 QuadraticClass-MertensB1-Conway 6835606428815538 r005 Re(z^2+c),c=-23/118+19/28*I,n=14 6835606434158840 r009 Re(z^3+c),c=-15/118+13/19*I,n=61 6835606450926741 r008 a(0)=7,K{-n^6,7+7*n^3-6*n^2} 6835606458847274 r005 Im(z^2+c),c=-127/98+1/19*I,n=40 6835606470568921 a007 Real Root Of -84*x^4+947*x^3+874*x^2-267*x-510 6835606477683417 m006 (2*Pi+3/5)/(Pi^2+1/5) 6835606477683417 m008 (2*Pi+3/5)/(Pi^2+1/5) 6835606478186216 a007 Real Root Of 321*x^4-680*x^3-751*x^2-591*x+902 6835606482305327 a007 Real Root Of -705*x^4-920*x^3-910*x^2+832*x+854 6835606527667419 a007 Real Root Of 229*x^4-923*x^3+221*x^2-836*x+713 6835606532332337 r002 3th iterates of z^2 + 6835606535976685 a007 Real Root Of -644*x^4+271*x^3-308*x^2+114*x+449 6835606553196002 m001 (BesselK(1,1)+Riemann1stZero)/(Shi(1)+ln(3)) 6835606577128767 a001 377/843*3571^(1/3) 6835606577456814 a007 Real Root Of 219*x^4-825*x^3+398*x^2-437*x-796 6835606594499032 m005 (1/2*Zeta(3)-2/7)/(3*3^(1/2)-7/12) 6835606619304439 l006 ln(4507/8928) 6835606635042023 a007 Real Root Of 95*x^4+496*x^3-971*x^2+666*x+933 6835606677376983 a007 Real Root Of 5*x^4+349*x^3+496*x^2+180*x+660 6835606689568706 a007 Real Root Of -72*x^4+187*x^3+995*x^2+616*x-930 6835606708886074 m001 MertensB3/HardyLittlewoodC5/PlouffeB 6835606720163424 r002 9th iterates of z^2 + 6835606732483860 a001 377/843*9349^(17/57) 6835606734949106 m001 (1+Zeta(3))/(-Zeta(5)+TravellingSalesman) 6835606741443606 r005 Re(z^2+c),c=-33/46+13/49*I,n=16 6835606754643646 m005 (1/3*exp(1)-1/11)/(3/7*Catalan+4/5) 6835606755808814 a001 377/843*45537549124^(1/9) 6835606755808821 a001 377/843*12752043^(1/6) 6835606758935634 s002 sum(A166790[n]/(n^3*pi^n-1),n=1..infinity) 6835606764272687 a001 377/843*15127^(17/60) 6835606789955552 r008 a(0)=6,K{-n^6,-84+27*n^3+41*n^2+15*n} 6835606808773190 m008 (1/3*Pi^4+3/4)/(5*Pi^2-3/4) 6835606809276064 r009 Im(z^3+c),c=-5/29+34/45*I,n=16 6835606812184705 m001 GAMMA(2/3)+MertensB2-Niven 6835606819864212 m001 (-FeigenbaumMu+Niven)/(exp(1)-gamma(2)) 6835606820266867 a001 377/843*5778^(17/54) 6835606831758036 m001 1/PrimesInBinary^2/Porter*ln(TwinPrimes)^2 6835606866082778 m001 (Ei(1,1)+Tribonacci)/(cos(1)-sin(1)) 6835606871523908 a007 Real Root Of 886*x^4+279*x^3+339*x^2+260*x-85 6835606889053093 m005 (1/3*5^(1/2)+1/12)/(2/5*exp(1)+1/8) 6835606903514032 r002 6th iterates of z^2 + 6835606908748936 a007 Real Root Of -67*x^4+830*x^3-85*x^2-855*x-265 6835606932206239 p003 LerchPhi(1/5,5,175/64) 6835606999719255 a007 Real Root Of -219*x^4+788*x^3+293*x^2+467*x-660 6835607014660409 a007 Real Root Of -550*x^4+128*x^3-152*x^2+869*x+826 6835607027963399 a007 Real Root Of 144*x^4-816*x^3+249*x^2-232*x-567 6835607043239399 m005 (1/2*3^(1/2)+8/11)/(2^(1/2)+11/12) 6835607045056950 r004 Re(z^2+c),c=-23/30-1/24*I,z(0)=-1,n=58 6835607056281623 m001 (FeigenbaumD+PlouffeB)/(Conway-sin(1)) 6835607058935823 a001 2584/39603*521^(29/39) 6835607072925315 m001 exp(FeigenbaumKappa)*Magata/GAMMA(5/24)^2 6835607079292086 a001 305/12238*521^(35/39) 6835607105985937 p003 LerchPhi(1/10,1,251/161) 6835607134612640 a001 377/1364*521^(20/39) 6835607135940644 m001 (Paris+Sarnak)/(gamma+Kac) 6835607164553140 r005 Re(z^2+c),c=31/114+13/34*I,n=18 6835607179323695 m001 (Kac-ZetaQ(2))/(gamma(3)+GaussAGM) 6835607191590719 a005 (1/sin(15/191*Pi))^52 6835607192364593 r005 Re(z^2+c),c=-31/50+22/51*I,n=46 6835607193273301 r005 Re(z^2+c),c=-89/122+9/50*I,n=3 6835607221654693 m008 (1/6*Pi^3+5)/(5*Pi-5/6) 6835607237534918 a001 6765/103682*521^(29/39) 6835607252836107 a001 377/843*2207^(17/48) 6835607255059556 a001 76*(1/2*5^(1/2)+1/2)^20*29^(9/17) 6835607255581878 h001 (4/5*exp(2)+11/12)/(2/7*exp(1)+2/9) 6835607263592175 a001 17711/271443*521^(29/39) 6835607267393877 a001 6624/101521*521^(29/39) 6835607267948538 a001 121393/1860498*521^(29/39) 6835607268029462 a001 317811/4870847*521^(29/39) 6835607268079476 a001 196418/3010349*521^(29/39) 6835607268291338 a001 75025/1149851*521^(29/39) 6835607269743459 a001 28657/439204*521^(29/39) 6835607279696445 a001 10946/167761*521^(29/39) 6835607300538439 m001 FeigenbaumDelta/(ZetaP(4)^ZetaR(2)) 6835607304688030 r005 Im(z^2+c),c=-3/5+13/50*I,n=13 6835607344158558 m005 (1/2*Zeta(3)-5/12)/(3/10*Zeta(3)-1/11) 6835607347915229 a001 4181/64079*521^(29/39) 6835607360835936 r005 Re(z^2+c),c=27/82+1/25*I,n=19 6835607371384870 r005 Re(z^2+c),c=-19/18+38/253*I,n=38 6835607410874502 l006 ln(1415/2803) 6835607420648377 r002 6th iterates of z^2 + 6835607425406982 m005 (1/2*5^(1/2)-3/5)/(3/8*2^(1/2)-5/11) 6835607476927503 s002 sum(A280798[n]/((10^n+1)/n),n=1..infinity) 6835607485396358 a007 Real Root Of -720*x^4-561*x^3-25*x^2+827*x+555 6835607485827650 m001 (cos(1/12*Pi)-sin(1/12*Pi))/(Zeta(3)-ln(3)) 6835607500692251 m001 (Cahen+Champernowne)/(MasserGramain+PlouffeB) 6835607525483374 a007 Real Root Of -270*x^4+655*x^3-174*x^2-27*x+331 6835607531095370 a003 cos(Pi*1/97)*cos(Pi*19/73) 6835607537361923 q001 1052/1539 6835607541723538 a007 Real Root Of 669*x^4-757*x^3-498*x^2-883*x+932 6835607554695836 p001 sum((-1)^n/(544*n+59)/n/(24^n),n=1..infinity) 6835607573681060 m005 (1/3*exp(1)-2/11)/(73/90+1/9*5^(1/2)) 6835607591019636 r009 Im(z^3+c),c=-1/50+43/57*I,n=7 6835607610853287 r002 4th iterates of z^2 + 6835607655575610 a007 Real Root Of 797*x^4+398*x^3+690*x^2+116*x-290 6835607678530412 r005 Re(z^2+c),c=-17/74+41/57*I,n=17 6835607704952518 a007 Real Root Of -933*x^4+126*x^3-469*x^2+133*x+554 6835607706015070 m001 (Lehmer-Porter)/(CareFree-FeigenbaumB) 6835607733473301 m001 1/LandauRamanujan^2*ArtinRank2*ln(sqrt(Pi)) 6835607735525420 m002 6*Pi^2*Cosh[Pi]-Sinh[Pi]/4 6835607752447636 m001 (ln(2)/ln(10)-Trott)^HardyLittlewoodC4 6835607785200538 a007 Real Root Of 745*x^4-773*x^3-560*x^2-499*x+687 6835607802934337 m008 (2*Pi^5-2/5)/(2/5*Pi^2+5) 6835607803236788 r009 Im(z^3+c),c=-41/122+31/49*I,n=9 6835607809704064 m001 1/Trott^2*ln(CareFree)^2*cos(Pi/5)^2 6835607815493732 a001 1597/24476*521^(29/39) 6835607829264966 m001 exp(Salem)/MinimumGamma*GAMMA(7/24) 6835607850301132 a007 Real Root Of -606*x^4+788*x^3+332*x^2+700*x-753 6835607868531414 a001 329/281*521^(11/39) 6835607879996228 a001 987/9349*521^(2/3) 6835607904300494 p004 log(27697/25867) 6835607923983709 m001 (Chi(1)-sin(1/12*Pi))/(Champernowne+Sarnak) 6835607928917260 a001 987/521*199^(8/33) 6835607933891750 m001 Pi^Landau/(HeathBrownMoroz^Landau) 6835608002390066 a007 Real Root Of 445*x^4-769*x^3+682*x^2+618*x-239 6835608002406331 r002 56i'th iterates of 2*x/(1-x^2) of 6835608007112527 m001 (ln(2)/ln(10)+GAMMA(19/24))/(Niven+ZetaP(2)) 6835608020893376 a007 Real Root Of -210*x^4+650*x^3-721*x^2+374*x+846 6835608022501364 s002 sum(A002598[n]/(n*pi^n+1),n=1..infinity) 6835608046010569 a007 Real Root Of 78*x^4+560*x^3+244*x^2+353*x-421 6835608077989406 s002 sum(A113755[n]/(n^2*exp(n)-1),n=1..infinity) 6835608107993156 a008 Real Root of (-2+x-2*x^2+9*x^4+6*x^8) 6835608121604793 h001 (-7*exp(2)+12)/(-8*exp(2)+1) 6835608125616572 a005 (1/cos(23/177*Pi))^828 6835608162826113 m001 1/exp(RenyiParking)^2/GolombDickman^2/sin(1) 6835608184373133 a001 199/514229*3^(29/56) 6835608210205593 m001 (Mills-Otter)/(QuadraticClass-Riemann3rdZero) 6835608223949138 m001 (Otter+ZetaQ(4))/(OneNinth-cos(1)) 6835608236671537 m001 (exp(1/Pi)-KomornikLoreti)/(Stephens+Trott2nd) 6835608238188649 r002 45th iterates of z^2 + 6835608245711169 m001 (Stephens+ZetaP(2))/(Conway-FransenRobinson) 6835608248945733 m005 (1/2*Catalan-1/12)/(5/11*gamma+2/7) 6835608273061378 a007 Real Root Of -796*x^4+689*x^3-59*x^2-242*x+256 6835608279382091 r005 Re(z^2+c),c=-123/94+1/23*I,n=40 6835608306582757 l006 ln(3983/7890) 6835608342331368 a007 Real Root Of -115*x^4-745*x^3+255*x^2-270*x-635 6835608346749853 p001 sum((-1)^n/(435*n+146)/(125^n),n=0..infinity) 6835608350830668 a003 cos(Pi*33/83)-sin(Pi*36/73) 6835608354773742 r009 Re(z^3+c),c=-3/29+13/27*I,n=22 6835608385300293 a007 Real Root Of 469*x^4-783*x^3-102*x^2-701*x-784 6835608393190240 r005 Im(z^2+c),c=-101/74+14/41*I,n=4 6835608403758257 a007 Real Root Of 481*x^4-813*x^3-99*x^2-676*x+663 6835608405387378 r005 Im(z^2+c),c=-13/114+23/33*I,n=13 6835608410817179 r005 Re(z^2+c),c=-39/50+5/38*I,n=39 6835608431051562 r005 Re(z^2+c),c=-23/50+23/42*I,n=4 6835608442116300 a007 Real Root Of 292*x^4+742*x^3+55*x^2-892*x-61 6835608492847934 r002 39th iterates of z^2 + 6835608502091384 r002 13th iterates of z^2 + 6835608511726013 a007 Real Root Of 86*x^4+660*x^3+602*x^2+887*x+975 6835608521547402 m005 (1/2*3^(1/2)-5)/(7/11*5^(1/2)-9/11) 6835608524349771 r005 Re(z^2+c),c=51/118+14/25*I,n=4 6835608525177562 r009 Re(z^3+c),c=-61/90+21/40*I,n=5 6835608652404253 r002 49i'th iterates of 2*x/(1-x^2) of 6835608657975173 a007 Real Root Of -454*x^4+915*x^3-160*x^2-2*x-117 6835608682841851 r005 Im(z^2+c),c=-1/31+17/23*I,n=38 6835608706408980 r005 Re(z^2+c),c=-67/126+25/51*I,n=50 6835608716693328 v002 sum(1/(2^n+(30*n^2-84*n+89)),n=1..infinity) 6835608724586094 m001 (GAMMA(3/4)*GaussAGM-ZetaP(2))/GaussAGM 6835608742162795 a001 39603/610*28657^(37/41) 6835608786722451 b008 -4+Zeta[1/2,5/2] 6835608792102601 a001 29/46368*610^(22/59) 6835608793089987 m001 GAMMA(23/24)+Magata*Niven 6835608797418236 m001 (Chi(1)+cos(1/5*Pi))/(MadelungNaCl+Robbin) 6835608800129132 l006 ln(2568/5087) 6835608826846663 m001 1/TreeGrowth2nd^2*ln(Cahen)*sqrt(3)^2 6835608832450440 a007 Real Root Of 328*x^4-196*x^3-552*x^2-930*x-512 6835608846252786 p003 LerchPhi(1/8,3,159/64) 6835608879368786 m001 (Stephens+Trott)/(Zeta(1/2)+BesselK(1,1)) 6835608882755082 r009 Re(z^3+c),c=-57/110+7/60*I,n=19 6835608896835000 m001 ln(GAMMA(1/6))^2*Kolakoski*cos(1)^2 6835608945251125 a003 sin(Pi*22/113)/sin(Pi*20/63) 6835608975126754 a001 610/15127*521^(32/39) 6835609003436808 a007 Real Root Of -18*x^4+538*x^3-993*x^2-222*x+488 6835609005697123 r005 Im(z^2+c),c=31/122+21/34*I,n=8 6835609011821888 a001 646/6119*521^(2/3) 6835609025654732 m005 (1/2*Zeta(3)+5/6)/(3/11*5^(1/2)-2/5) 6835609053674459 a003 cos(Pi*3/83)-cos(Pi*14/113) 6835609086467461 m001 1/exp(sin(Pi/5))*Conway^2/sinh(1)^2 6835609102207958 m001 (-FellerTornier+ZetaP(3))/(5^(1/2)+gamma(1)) 6835609115666691 m001 Champernowne^CopelandErdos-gamma(1) 6835609123089898 a007 Real Root Of -318*x^4+285*x^3-416*x^2+799*x+901 6835609149291548 g001 abs(GAMMA(-103/60+I*43/30)) 6835609176953025 a001 6765/64079*521^(2/3) 6835609177137001 m001 (Trott+ZetaQ(3))/(Magata-cos(1)) 6835609185277624 a007 Real Root Of -449*x^4+820*x^3+59*x^2-2*x+331 6835609201045333 a001 17711/167761*521^(2/3) 6835609204560353 a001 11592/109801*521^(2/3) 6835609205073188 a001 121393/1149851*521^(2/3) 6835609205148009 a001 317811/3010349*521^(2/3) 6835609205158925 a001 208010/1970299*521^(2/3) 6835609205160518 a001 2178309/20633239*521^(2/3) 6835609205160750 a001 5702887/54018521*521^(2/3) 6835609205160784 a001 3732588/35355581*521^(2/3) 6835609205160789 a001 39088169/370248451*521^(2/3) 6835609205160790 a001 102334155/969323029*521^(2/3) 6835609205160790 a001 66978574/634430159*521^(2/3) 6835609205160790 a001 701408733/6643838879*521^(2/3) 6835609205160790 a001 1836311903/17393796001*521^(2/3) 6835609205160790 a001 1201881744/11384387281*521^(2/3) 6835609205160790 a001 12586269025/119218851371*521^(2/3) 6835609205160790 a001 32951280099/312119004989*521^(2/3) 6835609205160790 a001 21566892818/204284540899*521^(2/3) 6835609205160790 a001 225851433717/2139295485799*521^(2/3) 6835609205160790 a001 182717648081/1730726404001*521^(2/3) 6835609205160790 a001 139583862445/1322157322203*521^(2/3) 6835609205160790 a001 53316291173/505019158607*521^(2/3) 6835609205160790 a001 10182505537/96450076809*521^(2/3) 6835609205160790 a001 7778742049/73681302247*521^(2/3) 6835609205160790 a001 2971215073/28143753123*521^(2/3) 6835609205160790 a001 567451585/5374978561*521^(2/3) 6835609205160790 a001 433494437/4106118243*521^(2/3) 6835609205160790 a001 165580141/1568397607*521^(2/3) 6835609205160790 a001 31622993/299537289*521^(2/3) 6835609205160792 a001 24157817/228826127*521^(2/3) 6835609205160805 a001 9227465/87403803*521^(2/3) 6835609205160894 a001 1762289/16692641*521^(2/3) 6835609205161502 a001 1346269/12752043*521^(2/3) 6835609205165672 a001 514229/4870847*521^(2/3) 6835609205194251 a001 98209/930249*521^(2/3) 6835609205390137 a001 75025/710647*521^(2/3) 6835609206732755 a001 28657/271443*521^(2/3) 6835609207680821 a007 Real Root Of 185*x^4-708*x^3+314*x^2+113*x-336 6835609215935198 a001 5473/51841*521^(2/3) 6835609226727965 a007 Real Root Of -467*x^4-419*x^3-600*x^2-226*x+94 6835609238269571 m001 (Catalan-Pi^(1/2))/(Salem+ZetaP(4)) 6835609243697478 q001 2603/3808 6835609251214485 r005 Re(z^2+c),c=-21/86+29/42*I,n=3 6835609268998271 r005 Re(z^2+c),c=-19/25+4/49*I,n=29 6835609279009679 a001 4181/39603*521^(2/3) 6835609279526449 a007 Real Root Of -741*x^4+146*x^3-332*x^2+915*x+989 6835609283535967 a007 Real Root Of -457*x^3+839*x^2-872*x-6 6835609296384322 m001 GAMMA(2/3)*AlladiGrinstead-ThueMorse 6835609328426663 l006 ln(3721/7371) 6835609331924303 a007 Real Root Of 781*x^4-715*x^3-199*x^2+803*x+243 6835609378838953 h001 (-8*exp(6)+3)/(-2*exp(3)-7) 6835609386580437 m006 (2/5*Pi-1)/(2/5*ln(Pi)-5/6) 6835609471357484 l006 ln(2304/2467) 6835609479990951 a007 Real Root Of -389*x^4-556*x^3-422*x^2+324*x+326 6835609486164147 m001 (-Riemann1stZero+ZetaP(3))/(exp(1)-exp(Pi)) 6835609489168335 m005 (1/2*Catalan-11/12)/(1/7*Pi+2/9) 6835609508624621 m005 (1/2*2^(1/2)+7/12)/(5/6*3^(1/2)+4/9) 6835609510407772 r009 Im(z^3+c),c=-51/106+31/49*I,n=4 6835609529877106 p004 log(26681/13469) 6835609534157477 a001 329/1926*521^(23/39) 6835609597357638 g005 GAMMA(6/11)/GAMMA(5/11)/GAMMA(1/11)/GAMMA(4/5) 6835609606774632 l006 ln(4874/9655) 6835609653789019 r009 Im(z^3+c),c=-5/9+14/59*I,n=3 6835609694426191 m001 (Ei(1,1)-MertensB3)/(Salem+ZetaP(2)) 6835609703124105 m001 sin(1)/sin(1/12*Pi)/PlouffeB 6835609711328604 a001 1597/15127*521^(2/3) 6835609717032265 m001 (Ei(1,1)-TreeGrowth2nd)/FellerTornier 6835609718223667 r005 Im(z^2+c),c=-101/122+2/51*I,n=33 6835609728844656 m001 (-Landau+Tetranacci)/(exp(1)-ln(2)) 6835609737167801 a007 Real Root Of 556*x^4-369*x^3-652*x^2-506*x+647 6835609754032330 r005 Re(z^2+c),c=-77/74+13/62*I,n=14 6835609757085596 m001 (Zeta(5)-Ei(1))/(Artin+QuadraticClass) 6835609774296645 r005 Re(z^2+c),c=-17/16+7/60*I,n=24 6835609814268204 a007 Real Root Of -63*x^4-288*x^3+886*x^2-571*x+258 6835609814788012 r005 Im(z^2+c),c=-1/74+47/62*I,n=10 6835609857908854 m001 (-BesselI(1,2)+ZetaP(3))/(Si(Pi)+Ei(1,1)) 6835609866333830 m001 (gamma(3)+RenyiParking)/(Chi(1)+sin(1/12*Pi)) 6835609870137070 m001 (exp(Pi)+sin(1/5*Pi))/(-FeigenbaumMu+Paris) 6835609890051763 r002 62th iterates of z^2 + 6835609891270086 m001 (FibonacciFactorial-Kac)/(ln(3)-Ei(1,1)) 6835609898022598 r005 Re(z^2+c),c=-21/29+3/52*I,n=3 6835609907537173 r009 Im(z^3+c),c=-38/49*I,n=19 6835609917355657 a007 Real Root Of 869*x^4+920*x^3+902*x^2-532*x-681 6835609946223252 a007 Real Root Of -846*x^4+940*x^3-69*x^2+601*x+928 6835609953627431 b008 Sinh[Erf[2/33]] 6835609956832675 m005 (1/2*3^(1/2)-2/7)/(41/72+1/8*5^(1/2)) 6835609998825525 a007 Real Root Of -830*x^4+314*x^3+292*x^2-63*x+102 6835609999940225 a007 Real Root Of 246*x^4-980*x^3-380*x^2+562*x+195 6835610003584669 a007 Real Root Of -99*x^4+960*x^3+740*x^2-263*x-451 6835610020147735 a007 Real Root Of -107*x^4-808*x^3-639*x^2-754*x+241 6835610026177088 m005 (1/2*3^(1/2)+7/11)/(5/12*Pi+8/9) 6835610072033854 m001 MasserGramain^ZetaP(3)/FeigenbaumKappa 6835610074846663 a007 Real Root Of -976*x^4+966*x^3+66*x^2+121*x-209 6835610075664498 r002 4th iterates of z^2 + 6835610100429797 r005 Im(z^2+c),c=-59/110+29/47*I,n=33 6835610116362153 s002 sum(A174422[n]/(16^n),n=1..infinity) 6835610119364399 m001 ln(Riemann2ndZero)^2*ArtinRank2^2/TwinPrimes 6835610120637885 a007 Real Root Of -860*x^4+665*x^3-540*x^2+90*x+714 6835610124088258 m001 1/FeigenbaumKappa*exp(Salem)^2*log(1+sqrt(2)) 6835610126786258 a007 Real Root Of 999*x^4-752*x^3+182*x^2-276*x-732 6835610126861064 a007 Real Root Of 536*x^4-296*x^3+891*x^2+250*x-457 6835610161553668 r009 Im(z^3+c),c=-33/74+9/16*I,n=50 6835610182809073 m005 (2/3*Catalan+5)/(1/2*Pi-3/4) 6835610206216213 a007 Real Root Of 717*x^4-145*x^3+247*x^2-977*x-68 6835610207457700 a007 Real Root Of -306*x^4-94*x^3-64*x^2+413*x+349 6835610208004949 p001 sum(1/(410*n+51)/n/(32^n),n=1..infinity) 6835610215929512 m001 (FibonacciFactorial+Trott)/(3^(1/3)+Zeta(1/2)) 6835610229601645 m001 exp(1)*(Si(Pi)+LaplaceLimit) 6835610256344410 a007 Real Root Of 359*x^4+136*x^3+869*x^2-790*x-981 6835610285836232 m001 (AlladiGrinstead+ThueMorse)/(Pi-GAMMA(2/3)) 6835610289027373 r005 Re(z^2+c),c=-55/74+2/27*I,n=46 6835610293449014 a007 Real Root Of -31*x^4+387*x^3-925*x^2+498*x+903 6835610295631111 m001 (Zeta(1/2)+ln(2+3^(1/2)))/(2^(1/3)+Chi(1)) 6835610297933781 a008 Real Root of (-3-3*x+3*x^2+3*x^3+3*x^4+x^5) 6835610315883965 a007 Real Root Of 973*x^4+281*x^3+187*x^2-253*x-383 6835610324501918 m001 1/FeigenbaumC*exp(Lehmer)/Zeta(3)^2 6835610325141562 a001 75025/123*199^(21/46) 6835610340742059 r005 Im(z^2+c),c=-8/31+41/63*I,n=7 6835610349167335 m001 (GAMMA(13/24)+ZetaQ(4))/(5^(1/2)-Zeta(1,-1)) 6835610352160846 r009 Re(z^3+c),c=-11/20+8/51*I,n=18 6835610367820727 a003 sin(Pi*13/60)/sin(Pi*35/94) 6835610374243139 a007 Real Root Of -276*x^4+645*x^3-700*x^2-435*x+296 6835610381233985 a003 cos(Pi*14/93)-cos(Pi*36/83) 6835610382391354 m001 (GolombDickman-Trott)/(ln(2)-BesselI(1,2)) 6835610401057734 q001 1551/2269 6835610404213777 a007 Real Root Of -834*x^4+379*x^3-205*x^2-35*x+375 6835610415557411 r002 54th iterates of z^2 + 6835610437754894 m005 (1/3*exp(1)+1/10)/(7/10*Pi-8/11) 6835610450709651 m001 exp(GAMMA(7/12))*GAMMA(3/4)^2*Pi^2 6835610464316821 r005 Im(z^2+c),c=-7/62+47/53*I,n=32 6835610465951234 a003 sin(Pi*4/111)-sin(Pi*22/75) 6835610485490434 a007 Real Root Of -773*x^4+786*x^3-107*x^2-778*x-62 6835610504148699 m002 Pi^(-1)-(E^Pi*Csch[Pi])/2 6835610505068418 l006 ln(1153/2284) 6835610510232677 a007 Real Root Of -264*x^4+683*x^3-461*x^2+620*x+915 6835610531672992 r005 Im(z^2+c),c=-57/122+5/63*I,n=5 6835610553593626 m001 1/log(1+sqrt(2))^2*exp(GAMMA(1/4))*sqrt(2) 6835610555144987 m005 (1/2*Catalan-2/11)/(5/9*gamma+1/12) 6835610561877163 m004 -6-25*Pi+Sqrt[5]*Pi+6*ProductLog[Sqrt[5]*Pi] 6835610568880748 a007 Real Root Of -884*x^4+652*x^3+731*x^2+650*x+504 6835610570749520 p003 LerchPhi(1/125,5,32/47) 6835610580847187 r005 Im(z^2+c),c=27/86+24/59*I,n=34 6835610585827288 a007 Real Root Of -715*x^4+59*x^3-575*x^2+713*x+931 6835610605053085 m001 (LandauRamanujan2nd-MadelungNaCl)/Niven 6835610614281027 r005 Re(z^2+c),c=-31/42+16/59*I,n=3 6835610643970163 a007 Real Root Of 161*x^4-301*x^3+689*x^2+53*x-417 6835610649151152 a001 377/843*843^(17/42) 6835610649689757 r009 Re(z^3+c),c=-15/29+7/11*I,n=42 6835610662131619 m001 (MertensB3-TwinPrimes)/(ln(5)-Kac) 6835610664297445 a007 Real Root Of -733*x^4+827*x^3-181*x^2+587*x+910 6835610680976139 a007 Real Root Of -125*x^4+699*x^3+788*x^2+867*x+475 6835610690054439 m001 gamma(2)^(Artin/MasserGramain) 6835610692171395 r005 Re(z^2+c),c=-53/114+27/50*I,n=4 6835610766257473 a001 7/13*13^(4/43) 6835610782013033 m005 (1/3*2^(1/2)-1/11)/(2/5*Pi-7/10) 6835610791972896 m001 (OneNinth+ZetaQ(2))/(GAMMA(3/4)-MinimumGamma) 6835610812114028 m008 (1/2*Pi^2-3/4)/(2*Pi^5+1/6) 6835610828545975 r005 Im(z^2+c),c=-11/70+28/41*I,n=13 6835610848742463 p004 log(31511/29429) 6835610873483794 a007 Real Root Of -142*x^4-840*x^3+870*x^2-29*x+882 6835610879998520 r005 Im(z^2+c),c=-2/3+56/195*I,n=42 6835610886447135 a001 233/322*322^(7/18) 6835610895738731 r005 Re(z^2+c),c=-25/32+1/50*I,n=51 6835610899241874 m001 Lehmer^QuadraticClass*Trott 6835610907657092 a001 2584/15127*521^(23/39) 6835610911352586 a001 21/2*11^(25/32) 6835610927070720 s002 sum(A253313[n]/(n^2*2^n-1),n=1..infinity) 6835610931302837 m001 exp(Sierpinski)*ArtinRank2*exp(1)^2 6835610931816676 a007 Real Root Of -625*x^4-14*x^3-136*x^2+87*x+255 6835610934346536 a001 21/521*29^(8/51) 6835610937977866 r002 35th iterates of z^2 + 6835610945157120 r005 Im(z^2+c),c=-25/58+6/53*I,n=31 6835610964920138 h001 (-9*exp(2)-9)/(-2*exp(2/3)+5) 6835611008859683 a001 610/843*521^(14/39) 6835611020324502 a001 610/9349*521^(29/39) 6835611029655642 a007 Real Root Of 347*x^4-115*x^3+772*x^2+565*x-87 6835611046526436 a001 1/4*121393^(13/46) 6835611053990287 a007 Real Root Of -827*x^4+544*x^3-754*x^2-17*x+695 6835611072869664 q001 1/1462927 6835611091334361 a008 Real Root of (-6+3*x+4*x^2+8*x^4+7*x^8) 6835611108047991 a001 2255/13201*521^(23/39) 6835611115313743 a007 Real Root Of 911*x^4-585*x^3-380*x^2+603*x+204 6835611137284630 a001 17711/103682*521^(23/39) 6835611141550198 a001 15456/90481*521^(23/39) 6835611142172536 a001 121393/710647*521^(23/39) 6835611142263333 a001 105937/620166*521^(23/39) 6835611142276581 a001 832040/4870847*521^(23/39) 6835611142284768 a001 514229/3010349*521^(23/39) 6835611142319450 a001 196418/1149851*521^(23/39) 6835611142557162 a001 75025/439204*521^(23/39) 6835611144186464 a001 28657/167761*521^(23/39) 6835611155353866 a001 10946/64079*521^(23/39) 6835611162948737 a007 Real Root Of 19*x^4-678*x^3+952*x^2-245*x-833 6835611163245926 a007 Real Root Of 607*x^4-689*x^3-233*x^2-865*x-835 6835611201942044 m001 (MertensB3+ThueMorse)/(exp(1)+Zeta(1,-1)) 6835611208074857 m001 QuadraticClass/(MertensB1^Psi(2,1/3)) 6835611222700850 r005 Im(z^2+c),c=-11/94+9/13*I,n=4 6835611231896379 a001 4181/24476*521^(23/39) 6835611232465443 a007 Real Root Of 892*x^4+374*x^3+976*x^2+375*x-275 6835611244285041 m001 ln(RenyiParking)^2*Kolakoski*Zeta(7)^2 6835611247598795 r002 23th iterates of z^2 + 6835611256714328 p003 LerchPhi(1/1024,3,521/213) 6835611262949230 m001 BesselI(0,2)+FeigenbaumAlpha^sqrt(1+sqrt(3)) 6835611270776201 m003 -3+6*Csch[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2]/3 6835611285248464 r002 5th iterates of z^2 + 6835611315871074 a007 Real Root Of 661*x^4+167*x^3+766*x^2-322*x-669 6835611352629479 m005 (1/2*Pi-3/8)/(10/11*Catalan+11/12) 6835611353230255 a007 Real Root Of 615*x^4-665*x^3-184*x^2-748*x-772 6835611353543380 a001 36/341*322^(13/18) 6835611355375978 r002 4th iterates of z^2 + 6835611374504473 s002 sum(A087513[n]/(exp(n)-1),n=1..infinity) 6835611379361430 m001 (CareFree+Rabbit)/(2^(1/3)+cos(1/5*Pi)) 6835611394357240 m001 LandauRamanujan*sin(1)^MasserGramain 6835611398804282 r005 Im(z^2+c),c=-23/18+7/230*I,n=44 6835611399016241 r005 Im(z^2+c),c=-95/122+1/33*I,n=25 6835611441999251 m001 (FeigenbaumDelta+GAMMA(1/24))^BesselI(0,1) 6835611450291315 a003 cos(Pi*13/83)-cos(Pi*31/71) 6835611505121145 a007 Real Root Of 793*x^4-901*x^3-491*x^2-588*x+746 6835611511570370 l006 ln(4350/8617) 6835611542726736 r002 18th iterates of z^2 + 6835611542882067 s002 sum(A165898[n]/(n*exp(n)+1),n=1..infinity) 6835611547425941 m001 (Zeta(5)+gamma(3))/(GAMMA(7/12)-ZetaQ(3)) 6835611568959763 m005 (1/2*gamma+3/7)/(7/12+5/24*5^(1/2)) 6835611594411201 a007 Real Root Of 367*x^4-405*x^3+186*x^2-766*x-820 6835611602638599 a007 Real Root Of 138*x^4-355*x^3+123*x^2-711*x-687 6835611609115691 p004 log(23567/11897) 6835611610331764 a007 Real Root Of -109*x^4-809*x^3-330*x^2+633*x-669 6835611610625488 r005 Re(z^2+c),c=-71/98+3/41*I,n=3 6835611633059660 m001 ln(GAMMA(3/4))*Magata*Pi^2 6835611636452885 a007 Real Root Of 873*x^4-301*x^3+34*x^2+333*x-75 6835611643292055 m001 (polylog(4,1/2)-sin(1))/(-PlouffeB+ZetaQ(4)) 6835611651573421 a001 2/11*199^(37/54) 6835611713062639 m001 BesselJ(1,1)^2/ln(Robbin)^2*BesselK(1,1) 6835611732263146 p001 sum(1/(89*n+36)/n/(12^n),n=0..infinity) 6835611740276986 r005 Im(z^2+c),c=-5/58+9/13*I,n=46 6835611745061752 a001 1597/843*521^(8/39) 6835611756526573 a001 1597/9349*521^(23/39) 6835611770119482 a001 144/2207*322^(29/36) 6835611819566198 a007 Real Root Of -655*x^4-938*x^3-272*x^2+937*x+611 6835611848487520 m001 2^(1/2)*Backhouse-Pi*csc(5/12*Pi)/GAMMA(7/12) 6835611848487520 m001 GAMMA(5/12)-sqrt(2)*Backhouse 6835611870112208 a007 Real Root Of -102*x^4-833*x^3-959*x^2-122*x+612 6835611870623541 q001 205/2999 6835611874565888 l006 ln(3197/6333) 6835611875602341 b008 4/11-Pi/3 6835611877051341 m001 (MertensB2+PlouffeB)/(exp(1/Pi)+GaussAGM) 6835611878550488 m005 (1/2*3^(1/2)-8/9)/(5/9*Zeta(3)-1/3) 6835611899084160 a007 Real Root Of -700*x^4+289*x^3-483*x^2-601*x+60 6835611899196884 r005 Re(z^2+c),c=-9/52+13/18*I,n=53 6835611899224763 a003 sin(Pi*14/59)/sin(Pi*35/76) 6835611927377780 a001 47/843*(1/2*5^(1/2)+1/2)^17*843^(13/15) 6835611951333245 m001 polylog(4,1/2)^(1/3/gamma) 6835611971214010 a007 Real Root Of -741*x^4+735*x^3-844*x^2-231*x+633 6835611980839687 r005 Im(z^2+c),c=17/52+22/41*I,n=27 6835611988814886 r005 Im(z^2+c),c=-99/86+12/49*I,n=36 6835611991117868 m001 (1+Ei(1))/(-MadelungNaCl+Niven) 6835611993635257 a001 47/2207*(1/2*5^(1/2)+1/2)^29*2207^(2/15) 6835611994165749 r005 Im(z^2+c),c=-1/14+35/43*I,n=23 6835612004829070 m001 (Psi(2,1/3)+exp(1/Pi))/(gamma(1)+Thue) 6835612011661339 a007 Real Root Of 434*x^4+79*x^3+518*x^2-539*x-680 6835612027735220 a007 Real Root Of 841*x^4+26*x^3+145*x^2-95*x-308 6835612065610587 m008 (5*Pi^6+2/3)/(2*Pi+3/4) 6835612114772872 a007 Real Root Of 450*x^4-199*x^3+633*x^2-84*x-515 6835612140224098 r005 Im(z^2+c),c=-25/58+6/53*I,n=33 6835612148770885 a007 Real Root Of 266*x^4-654*x^3+230*x^2-744*x-883 6835612164587534 m001 BesselJ(0,1)/ln(Si(Pi))*GAMMA(1/24)^2 6835612178849118 m005 (1/3*2^(1/2)-2/9)/(1/10*exp(1)-7/11) 6835612180263796 a007 Real Root Of -920*x^4+245*x^3+763*x^2+592*x+37 6835612188760711 m001 1/3/(GAMMA(13/24)-GAMMA(5/12)) 6835612201571641 m001 DuboisRaymond^2/exp(ErdosBorwein)^2/Bloch^2 6835612209771235 a001 987/2207*521^(17/39) 6835612212065430 a001 987/3571*521^(20/39) 6835612223770347 r005 Im(z^2+c),c=-7/10+135/193*I,n=4 6835612250906123 m001 (exp(-1/2*Pi)+FellerTornier*Stephens)/Stephens 6835612267858294 v002 sum(1/(3^n+(9/2*n^2-27/2*n+49)),n=1..infinity) 6835612271696319 a007 Real Root Of -735*x^4+385*x^3-144*x^2-911*x-272 6835612304648013 a007 Real Root Of -114*x^4-708*x^3+417*x^2-513*x-231 6835612308886995 a001 1/102287808*987^(19/20) 6835612341857738 m001 Magata^DuboisRaymond+2*Pi/GAMMA(5/6) 6835612347225012 a007 Real Root Of -505*x^4+354*x^3-204*x^2+909*x+940 6835612368008777 a008 Real Root of x^4-x^3-49*x^2+75*x-87 6835612394390757 r002 9th iterates of z^2 + 6835612395851923 m001 Riemann1stZero/(FeigenbaumC-Si(Pi)) 6835612448985334 m001 ln(GAMMA(5/6))/FeigenbaumAlpha/sin(1)^2 6835612449205972 a007 Real Root Of 779*x^4-844*x^3+565*x^2+216*x-556 6835612469903683 m001 1/exp(FeigenbaumB)^2*Kolakoski^2/MadelungNaCl 6835612470942075 a001 39603*610^(4/47) 6835612481830319 a007 Real Root Of -327*x^4-205*x^3+187*x^2+264*x+99 6835612517559900 a007 Real Root Of -419*x^4-410*x^3-821*x^2-995*x-336 6835612541580688 m008 (3/5*Pi^3-5)/(2/3*Pi^5-5) 6835612557510114 r002 34th iterates of z^2 + 6835612569485433 a007 Real Root Of 812*x^4-808*x^3+156*x^2-301*x-714 6835612606364836 v002 sum(1/(2^n+(n^2+17*n+32)),n=1..infinity) 6835612619100605 r005 Im(z^2+c),c=-21/52+19/29*I,n=4 6835612637553010 m005 (1/3*3^(1/2)-2/3)/(5/8*5^(1/2)-1/11) 6835612643510217 r005 Re(z^2+c),c=-29/46+22/61*I,n=8 6835612647085660 l006 ln(2044/4049) 6835612648406777 a001 18/55*5^(27/59) 6835612653446427 a007 Real Root Of 781*x^4+674*x^3+619*x^2-564*x-630 6835612654323976 r005 Re(z^2+c),c=-3/14+17/24*I,n=32 6835612674486512 a001 305/2889*521^(2/3) 6835612697555290 m001 (LaplaceLimit*Sierpinski+ZetaQ(2))/Sierpinski 6835612725592144 s001 sum(exp(-Pi/3)^n*A190649[n],n=1..infinity) 6835612726931198 m001 (Zeta(3)-Champernowne)/(Landau+MertensB2) 6835612764816304 q001 2549/3729 6835612776565831 a007 Real Root Of 894*x^4-917*x^3-560*x^2-807*x+911 6835612783890669 a001 377/64079*1364^(44/45) 6835612793997270 r005 Re(z^2+c),c=25/118+32/33*I,n=2 6835612809062327 m001 TravellingSalesman*(sin(1/12*Pi)+ArtinRank2) 6835612815767821 a007 Real Root Of 572*x^4+321*x^3-5*x^2-275*x-208 6835612838841445 a007 Real Root Of -493*x^4+735*x^3-915*x^2-509*x+422 6835612853792591 a001 7778742049/3*3^(15/17) 6835612879644605 a003 sin(Pi*19/105)/sin(Pi*28/97) 6835612882567816 h001 (2/5*exp(2)+5/7)/(5/7*exp(2)+1/11) 6835612905709891 m005 (4/5*Catalan-5)/(3*2^(1/2)+2) 6835612914077934 m005 (1/2*5^(1/2)+6)/(1/2*Catalan+7/12) 6835612932714676 a007 Real Root Of -813*x^4+903*x^3+779*x^2+695*x+577 6835612941390596 a001 2584/843*521^(5/39) 6835612946961024 r009 Im(z^3+c),c=-9/110+36/47*I,n=34 6835612952855419 a001 2584/9349*521^(20/39) 6835612978481521 m001 Lehmer-Psi(2,1/3)*ZetaQ(4) 6835612998353319 r005 Re(z^2+c),c=-1/40+15/61*I,n=6 6835613000131428 m001 exp(Riemann2ndZero)*Artin^2*GAMMA(1/4) 6835613006277389 a001 76/2971215073*3^(17/19) 6835613017454707 a007 Real Root Of -5*x^4-328*x^3+934*x^2-553*x-458 6835613018127699 a007 Real Root Of 115*x^4-775*x^3+739*x^2-920*x+506 6835613022806121 a001 377/39603*1364^(41/45) 6835613026666158 m001 Ei(1)^2/GolombDickman^2*exp(Zeta(9))^2 6835613060565748 a007 Real Root Of -926*x^4-36*x^3-684*x^2+102*x+580 6835613060935213 a001 6765/24476*521^(20/39) 6835613076703842 a001 17711/64079*521^(20/39) 6835613079004455 a001 46368/167761*521^(20/39) 6835613079340109 a001 121393/439204*521^(20/39) 6835613079389081 a001 317811/1149851*521^(20/39) 6835613079396225 a001 832040/3010349*521^(20/39) 6835613079397912 a001 1346269/4870847*521^(20/39) 6835613079400641 a001 514229/1860498*521^(20/39) 6835613079419347 a001 196418/710647*521^(20/39) 6835613079547555 a001 75025/271443*521^(20/39) 6835613080426311 a001 28657/103682*521^(20/39) 6835613086449391 a001 10946/39603*521^(20/39) 6835613093423267 a001 377/2207*1364^(23/45) 6835613101075697 a007 Real Root Of -528*x^4+657*x^3-672*x^2+506*x+985 6835613101561339 a001 3/47*11^(1/35) 6835613106018049 a007 Real Root Of 670*x^4-578*x^3+989*x^2-256*x-968 6835613127732199 a001 4181/15127*521^(20/39) 6835613143118107 l006 ln(4979/9863) 6835613161410726 a005 (1/sin(23/57*Pi))^1028 6835613162204877 m001 FeigenbaumKappa/Porter/ln(sin(Pi/12)) 6835613168180729 a001 47*(1/2*5^(1/2)+1/2)^5*9349^(8/15) 6835613174155232 a001 47*(1/2*5^(1/2)+1/2)^14*3571^(1/15) 6835613175115564 m001 (ln(3)+CopelandErdos)/(ReciprocalLucas-Trott) 6835613194071974 r005 Re(z^2+c),c=-29/38+3/29*I,n=21 6835613208729051 a001 47/39603*(1/2*5^(1/2)+1/2)^21*39603^(11/15) 6835613209447345 a001 47*(1/2*5^(1/2)+1/2)^9*64079^(4/15) 6835613211112084 a001 47/64079*(1/2*5^(1/2)+1/2)^32*64079^(4/15) 6835613211902627 p001 sum((-1)^n/(497*n+145)/(25^n),n=0..infinity) 6835613216379718 m005 (1/3+1/6*5^(1/2))/(1/5*2^(1/2)+3/4) 6835613228304221 m005 (2/3*Catalan+1/3)/(3/5*exp(1)-1/4) 6835613246388004 a001 47/9349*(1/2*5^(1/2)+1/2)^24*9349^(8/15) 6835613252020424 r005 Re(z^2+c),c=-43/94+17/30*I,n=17 6835613264357723 a007 Real Root Of -573*x^4+128*x^3-949*x^2+390*x+876 6835613268936776 m001 Bloch^sin(1/5*Pi)/(Bloch^StolarskyHarborth) 6835613282012887 m001 Si(Pi)*Champernowne^2/ln(Robbin) 6835613283513292 a001 13/844*1364^(38/45) 6835613307136206 a007 Real Root Of -376*x^4-257*x^3-812*x^2+725*x+875 6835613323543732 a007 Real Root Of 812*x^4+27*x^3+506*x^2+104*x-334 6835613327444722 m001 ZetaP(2)-cos(1/5*Pi)*OrthogonalArrays 6835613331559576 m005 (19/44+1/4*5^(1/2))/(3/8*3^(1/2)+4/5) 6835613397007605 a001 47*(1/2*5^(1/2)+1/2)^13*2207^(2/15) 6835613403719514 m008 (4/5*Pi^2+4)/(2/5*Pi^3+5) 6835613407520331 m005 (-17/28+1/4*5^(1/2))/(5/12*exp(1)-3/7) 6835613410688761 a001 1597/5778*521^(20/39) 6835613415857216 a007 Real Root Of 464*x^4+160*x^3-320*x^2-743*x+505 6835613419985408 a007 Real Root Of -601*x^4-333*x^3+411*x^2+801*x-502 6835613423176034 a007 Real Root Of -216*x^4+858*x^3-755*x^2+376*x+931 6835613425816595 a007 Real Root Of -31*x^4-244*x^3-666*x^2+610*x+657 6835613487169032 a001 377/15127*1364^(7/9) 6835613488566244 l006 ln(2935/5814) 6835613499276852 a001 14662949395604/55*365435296162^(5/24) 6835613518563605 r005 Re(z^2+c),c=-59/58+9/38*I,n=50 6835613530521443 m001 (sin(1)+gamma(1))/(PrimesInBinary+Rabbit) 6835613573494465 m001 FeigenbaumDelta^GlaisherKinkelin/GAMMA(11/12) 6835613581821848 a007 Real Root Of 620*x^4-595*x^3+216*x^2+217*x-278 6835613604796918 a007 Real Root Of 578*x^4-634*x^3+333*x^2-767*x+445 6835613610328112 r002 19th iterates of z^2 + 6835613619201382 m005 (1/2*3^(1/2)-1/4)/(7/12*Zeta(3)+1/5) 6835613622501173 r005 Im(z^2+c),c=-115/86+2/45*I,n=64 6835613635816030 r005 Im(z^2+c),c=-87/110+2/35*I,n=3 6835613651504693 a001 1134903170/47*322^(11/19) 6835613652781314 m005 (1/2*Pi-9/10)/(2/9*Catalan+7/9) 6835613665910398 a007 Real Root Of 798*x^4-386*x^3-175*x^2-173*x-334 6835613668348694 a007 Real Root Of -964*x^4+555*x^3+362*x^2+419*x+505 6835613692051395 r005 Im(z^2+c),c=-35/64+9/64*I,n=12 6835613710195905 a001 47/3571*(1/2*5^(1/2)+1/2)^31*3571^(1/15) 6835613747545547 r002 17th iterates of z^2 + 6835613752225657 r005 Im(z^2+c),c=11/62+27/49*I,n=39 6835613757045708 a007 Real Root Of 113*x^4-613*x^3+450*x^2-391*x-698 6835613781892256 m001 (-ln(2+3^(1/2))+Porter)/(ln(2)/ln(10)+Ei(1)) 6835613784156072 r002 53th iterates of z^2 + 6835613802169359 a001 377/5778*1364^(29/45) 6835613802763999 m001 Trott^2/Kolakoski^2/exp(Zeta(9)) 6835613806508589 a007 Real Root Of 989*x^4-225*x^3+405*x^2+278*x-287 6835613812291563 r005 Re(z^2+c),c=-77/86+9/52*I,n=46 6835613840187394 a001 377/9349*1364^(32/45) 6835613890513707 r005 Im(z^2+c),c=-13/10+9/217*I,n=38 6835613907405083 m005 (1/2*Zeta(3)+10/11)/(8/9*Pi-7/12) 6835613910300321 a007 Real Root Of 633*x^4+239*x^3+836*x^2-109*x-527 6835613930631111 s002 sum(A128142[n]/((exp(n)+1)*n),n=1..infinity) 6835613938118309 l006 ln(3826/7579) 6835613975010794 a001 3/13*233^(23/37) 6835613985050480 m005 (1/2*exp(1)+6/7)/(5/9*5^(1/2)+2) 6835613998199873 b008 59*(-13+Sqrt[2]) 6835614001517598 m001 CareFree^(exp(1/Pi)/BesselI(0,1)) 6835614003546771 m006 (3/5/Pi-1/2)/(1/4*Pi-1/3) 6835614016030819 m001 CareFree*FeigenbaumMu-FeigenbaumC 6835614044517945 m005 (1/2*exp(1)-5/7)/(5/6*3^(1/2)-1/2) 6835614050827171 m001 (Stephens+ZetaQ(4))^ln(2) 6835614055494070 r005 Im(z^2+c),c=-37/66+34/57*I,n=3 6835614063624921 r005 Im(z^2+c),c=7/94+29/47*I,n=59 6835614064762560 a007 Real Root Of 728*x^4-424*x^3+891*x^2-176*x-831 6835614073190740 a001 329/281*1364^(11/45) 6835614080206342 a007 Real Root Of 81*x^4+540*x^3-16*x^2+412*x-807 6835614134311801 l006 ln(8693/9308) 6835614140616070 a001 10946/2207*199^(2/33) 6835614148262716 m001 1/2*ArtinRank2^PrimesInBinary*2^(2/3) 6835614152213905 r002 46th iterates of z^2 + 6835614164334973 a008 Real Root of (-3-3*x-5*x^2-5*x^3+5*x^4-4*x^5) 6835614172035263 a003 sin(Pi*16/81)/sin(Pi*34/105) 6835614181444886 h001 (1/8*exp(2)+5/8)/(4/5*exp(1)+1/11) 6835614183002324 m001 Landau^ZetaP(2)/((2^(1/3))^ZetaP(2)) 6835614186805934 a007 Real Root Of 674*x^4-909*x^3-42*x^2+51*x-383 6835614217837466 l006 ln(4717/9344) 6835614219577118 m001 Psi(2,1/3)/ln(Pi)/CareFree 6835614229142743 a007 Real Root Of 96*x^4+575*x^3-479*x^2+568*x+323 6835614237547373 m001 (gamma-ln(5))/(cos(1/12*Pi)+Riemann1stZero) 6835614254162465 a007 Real Root Of 76*x^4+550*x^3+113*x^2-666*x-93 6835614349605099 m001 (exp(1/Pi)+BesselK(1,1))/(KhinchinLevy+Niven) 6835614400792838 r005 Im(z^2+c),c=17/58+26/47*I,n=19 6835614421650230 a007 Real Root Of -247*x^4+677*x^3-673*x^2-175*x+465 6835614422440374 a007 Real Root Of 667*x^4-606*x^3+951*x^2-185*x-910 6835614452132032 a007 Real Root Of 743*x^4-620*x^3+342*x^2-234*x-680 6835614531495424 m001 (BesselK(0,1)+cos(1/5*Pi))/(GAMMA(19/24)+Kac) 6835614566644853 r005 Re(z^2+c),c=-29/32+8/53*I,n=30 6835614572428497 r005 Im(z^2+c),c=-13/90+42/61*I,n=22 6835614584601269 a007 Real Root Of -648*x^4+254*x^3-465*x^2+461*x+755 6835614601204454 l006 ln(5/4652) 6835614603926806 p003 LerchPhi(1/12,4,379/193) 6835614607017896 a001 1292/2889*521^(17/39) 6835614616555261 a007 Real Root Of -546*x^4+956*x^3-556*x^2+453*x+994 6835614619989984 a007 Real Root Of -477*x^4+39*x^3-625*x^2+653*x+855 6835614620456961 m005 (1/3*5^(1/2)+1/10)/(4/7*2^(1/2)+3/7) 6835614632029856 a007 Real Root Of 971*x^4-751*x^3-485*x^2-918*x+882 6835614689032304 r009 Im(z^3+c),c=-23/62+32/47*I,n=41 6835614711004382 a007 Real Root Of 606*x^4-580*x^3-127*x^2-658*x-708 6835614714000884 m001 (sin(1)+Zeta(1/2))/(exp(-1/2*Pi)+ArtinRank2) 6835614729541775 a001 377/2207*3571^(23/51) 6835614735915393 r005 Re(z^2+c),c=-5/74+3/41*I,n=2 6835614742414919 r005 Im(z^2+c),c=-6/25+5/52*I,n=17 6835614756182294 a007 Real Root Of 279*x^4-896*x^3+380*x^2+374*x-269 6835614760320195 a007 Real Root Of 786*x^4-113*x^3+240*x^2+247*x-151 6835614768333856 r002 10th iterates of z^2 + 6835614772651105 m001 (QuadraticClass+ZetaQ(3))/(Si(Pi)+ln(gamma)) 6835614787898013 a001 377/3571*1364^(26/45) 6835614797253232 h001 (-7*exp(3/2)-1)/(-2*exp(-1)-4) 6835614829828616 r005 Im(z^2+c),c=3/94+38/55*I,n=7 6835614836132008 m001 exp(GAMMA(1/24))/Bloch^2/Zeta(7)^2 6835614855682264 a001 329/281*3571^(11/51) 6835614863545574 s002 sum(A066354[n]/(16^n-1),n=1..infinity) 6835614872408918 m001 (Ei(1,1)-FeigenbaumAlpha)/(Mills-Totient) 6835614888727874 a001 47/521*(1/2*5^(1/2)+1/2)^16*521^(14/15) 6835614923822954 a007 Real Root Of 248*x^4-469*x^3+33*x^2-440*x+381 6835614939728328 a001 377/2207*9349^(23/57) 6835614940442649 m001 (GAMMA(2/3)-BesselI(1,1))/(GAMMA(11/12)+Paris) 6835614956206269 a001 329/281*9349^(11/57) 6835614956771540 a001 6765/15127*521^(17/39) 6835614959222637 m001 gamma(3)^sin(1/12*Pi)*gamma(3)^ZetaP(3) 6835614970730744 a001 377/2207*64079^(1/3) 6835614971285657 a001 377/2207*4106118243^(1/6) 6835614971298892 a001 329/281*7881196^(1/9) 6835614971298904 a001 329/281*312119004989^(1/15) 6835614971298904 a001 329/281*1568397607^(1/12) 6835614972025295 a001 329/281*39603^(1/6) 6835614976451828 m001 1/HardHexagonsEntropy*Artin*ln(GAMMA(23/24)) 6835614976775535 a001 329/281*15127^(11/60) 6835614982736793 a001 377/2207*15127^(23/60) 6835614997097590 m001 1/exp(arctan(1/2))^2/GAMMA(23/24)*sqrt(Pi) 6835614998731684 m005 (1/2*3^(1/2)-5/12)/(2/3*5^(1/2)-5/6) 6835615007799911 a001 17711/39603*521^(17/39) 6835615013007106 a001 329/281*5778^(11/54) 6835615015244850 a001 23184/51841*521^(17/39) 6835615016331052 a001 121393/271443*521^(17/39) 6835615016489527 a001 317811/710647*521^(17/39) 6835615016512648 a001 416020/930249*521^(17/39) 6835615016516021 a001 2178309/4870847*521^(17/39) 6835615016518106 a001 1346269/3010349*521^(17/39) 6835615016526937 a001 514229/1149851*521^(17/39) 6835615016587469 a001 98209/219602*521^(17/39) 6835615017002362 a001 75025/167761*521^(17/39) 6835615019846075 a001 28657/64079*521^(17/39) 6835615039337178 a001 5473/12238*521^(17/39) 6835615039678841 m005 (1/2*5^(1/2)-3/10)/(5/6*5^(1/2)-2/3) 6835615058493715 a001 377/2207*5778^(23/54) 6835615063093798 a007 Real Root Of -222*x^4+370*x^3-393*x^2+23*x+366 6835615076578687 r005 Im(z^2+c),c=-49/62+2/35*I,n=3 6835615084506431 r005 Im(z^2+c),c=-16/31+27/56*I,n=19 6835615101450047 r002 4th iterates of z^2 + 6835615107799766 m001 MertensB1^(arctan(1/3)*QuadraticClass) 6835615131405256 r005 Im(z^2+c),c=-7/12+43/102*I,n=37 6835615138005208 a007 Real Root Of 652*x^4-413*x^3-156*x^2+890*x+407 6835615138428481 a007 Real Root Of 892*x^4-12*x^3+579*x^2+540*x-100 6835615140041691 a007 Real Root Of -958*x^4+878*x^3-740*x^2-337*x+605 6835615161466363 a001 4181/843*521^(2/39) 6835615172931189 a001 4181/9349*521^(17/39) 6835615188191944 a007 Real Root Of 128*x^4+816*x^3-268*x^2+889*x-232 6835615231125889 a003 sin(Pi*23/108)/sin(Pi*38/105) 6835615231620542 r002 35th iterates of z^2 + 6835615238611873 m001 (1+Zeta(1,2))/(FeigenbaumB+StolarskyHarborth) 6835615244036352 r005 Im(z^2+c),c=-7/27+41/48*I,n=5 6835615244368620 a007 Real Root Of -869*x^4-7*x^3+534*x^2+613*x+357 6835615289882461 a005 (1/sin(50/123*Pi))^1359 6835615292905182 a001 329/281*2207^(11/48) 6835615326983585 m001 (LandauRamanujan+Thue)/(1+exp(1/Pi)) 6835615329493941 a001 28657/5778*199^(2/33) 6835615339519074 a007 Real Root Of -449*x^4-219*x^3+622*x^2+734*x-53 6835615350101499 a001 610/2207*521^(20/39) 6835615352395695 a001 610/3571*521^(23/39) 6835615373830434 a007 Real Root Of -643*x^4-194*x^3+31*x^2-16*x+53 6835615379994360 a001 1/11*(1/2*5^(1/2)+1/2)*7^(15/19) 6835615389587360 a007 Real Root Of 818*x^4-394*x^3+864*x^2-386*x-972 6835615390233832 r001 30i'th iterates of 2*x^2-1 of 6835615418965878 l006 ln(891/1765) 6835615424094751 r002 53th iterates of z^2 + 6835615447368132 m005 (5/18+1/6*5^(1/2))/(3*Pi+1/11) 6835615457412763 a007 Real Root Of -318*x^4+742*x^3-194*x^2+351*x+637 6835615468274693 r002 22th iterates of z^2 + 6835615470722156 a003 cos(Pi*5/42)*sin(Pi*21/80) 6835615502948919 a001 75025/15127*199^(2/33) 6835615510480764 a007 Real Root Of 67*x^4+405*x^3-462*x^2-812*x-887 6835615517728071 m005 (2/5*2^(1/2)+4/5)/(3*Catalan-3/4) 6835615524465855 a007 Real Root Of -498*x^4+795*x^3+507*x^2+468*x-702 6835615528255660 a001 196418/39603*199^(2/33) 6835615531947864 a001 514229/103682*199^(2/33) 6835615532486549 a001 1346269/271443*199^(2/33) 6835615532613716 a001 2178309/439204*199^(2/33) 6835615532819475 a001 75640/15251*199^(2/33) 6835615534229772 a001 317811/64079*199^(2/33) 6835615543215369 a007 Real Root Of -163*x^4+629*x^3+306*x^2+535*x-674 6835615543896087 a001 121393/24476*199^(2/33) 6835615547995947 m001 (Grothendieck+Rabbit)/(Chi(1)+FransenRobinson) 6835615560365406 m002 -6-Tanh[Pi]+(5*Tanh[Pi])/Pi^3 6835615583737343 a007 Real Root Of -555*x^4+787*x^3+519*x^2+294*x+331 6835615592268423 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=16 6835615594717219 r005 Re(z^2+c),c=-3/16+7/10*I,n=35 6835615610149996 a001 46368/9349*199^(2/33) 6835615627385858 m001 (GAMMA(3/4)-BesselI(0,2))/(FeigenbaumB+Rabbit) 6835615632624673 r002 26th iterates of z^2 + 6835615634749738 a003 cos(Pi*31/77)-sin(Pi*4/9) 6835615642325596 a007 Real Root Of 27*x^4-333*x^3+475*x^2-67*x-380 6835615643735165 a001 377/2207*2207^(23/48) 6835615645787934 r002 24th iterates of z^2 + 6835615662191849 a007 Real Root Of -976*x^4+919*x^3+336*x^2-589*x-53 6835615662926804 a007 Real Root Of 129*x^4+931*x^3+469*x^2+936*x+200 6835615753982156 m001 HeathBrownMoroz^(Ei(1)/ZetaP(4)) 6835615761691685 a001 2584/843*1364^(1/9) 6835615785204310 a003 sin(Pi*13/93)/sin(Pi*25/117) 6835615792658389 a007 Real Root Of -545*x^4+710*x^3+358*x^2+825*x-839 6835615815865473 l006 ln(6389/6841) 6835615815865473 p004 log(6841/6389) 6835615844066770 m001 1/(3^(1/3))/Trott/exp(sqrt(5)) 6835615849371223 a001 377/167761*3571^(50/51) 6835615865101669 a001 377/5778*3571^(29/51) 6835615880024282 a001 377/103682*3571^(47/51) 6835615884804058 a007 Real Root Of 115*x^4+674*x^3-646*x^2+721*x-690 6835615900729280 h001 (-8*exp(-2)+9)/(-4*exp(1/3)-6) 6835615901684937 m001 (Chi(1)-ln(gamma))/(Kac+OrthogonalArrays) 6835615907241527 r004 Im(z^2+c),c=1/30+3/16*I,z(0)=exp(5/8*I*Pi),n=5 6835615913856711 a001 377/64079*3571^(44/51) 6835615918528738 a001 4052739537881/29*45537549124^(10/11) 6835615918528738 a001 32951280099/29*9062201101803^(10/11) 6835615918528738 a001 7787980473*23725150497407^(9/11) 6835615918528738 a001 10610209857723/29*5600748293801^(8/11) 6835615918528738 a001 1548008755920/29*505019158607^(19/22) 6835615918528738 a001 53316291173/29*1322157322203^(21/22) 6835615920688941 m005 (1/3*gamma+2/9)/(9/11*Catalan-1/7) 6835615933268971 a007 Real Root Of -96*x^4+409*x^3+881*x^2+99*x-589 6835615933855482 r005 Im(z^2+c),c=-7/9+5/38*I,n=55 6835615937119043 m001 GAMMA(11/12)^2/exp(FransenRobinson)*Zeta(7)^2 6835615939365443 a001 377/39603*3571^(41/51) 6835615943221064 r002 4th iterates of z^2 + 6835615957429107 m001 (GAMMA(2/3)*GAMMA(3/4)-Sierpinski)/GAMMA(2/3) 6835615976914886 a001 377/15127*3571^(35/51) 6835615986665895 a001 13/844*3571^(38/51) 6835616016674207 m001 exp(gamma)/KhintchineHarmonic*sin(Pi/12)^2 6835616064261082 a001 17711/3571*199^(2/33) 6835616064309536 m002 -Pi^3-Pi^4+Pi^5/5-Log[Pi] 6835616083023405 m001 KhinchinLevy/Ei(1)/Catalan 6835616086304036 a001 1597/2207*521^(14/39) 6835616088598232 a001 1597/3571*521^(17/39) 6835616115429558 r005 Im(z^2+c),c=-47/50+25/54*I,n=3 6835616116526543 a001 377/9349*3571^(32/51) 6835616117369727 a001 2584/843*3571^(5/51) 6835616129867188 r005 Re(z^2+c),c=9/86+23/48*I,n=62 6835616130119542 a001 377/5778*9349^(29/57) 6835616134738757 s002 sum(A234381[n]/(n^2*2^n+1),n=1..infinity) 6835616148045105 a007 Real Root Of 301*x^4-393*x^3-762*x^2-265*x+597 6835616163062465 a001 2584/843*9349^(5/57) 6835616164728845 r002 3th iterates of z^2 + 6835616169906563 a001 2584/843*167761^(1/15) 6835616169907502 a001 377/5778*1149851^(1/3) 6835616169909226 a001 377/5778*1322157322203^(1/6) 6835616169922754 a001 2584/843*20633239^(1/21) 6835616169922755 a001 2584/843*228826127^(1/24) 6835616169922865 a001 2584/843*1860498^(1/18) 6835616172412133 a001 2584/843*15127^(1/12) 6835616184347617 a001 377/5778*15127^(29/60) 6835616188881032 a001 2584/843*5778^(5/54) 6835616193786061 m009 (1/5*Pi^2+3)/(4/5*Psi(1,1/3)-4/5) 6835616194619170 r009 Im(z^3+c),c=-5/54+36/47*I,n=26 6835616199696032 r005 Im(z^2+c),c=-71/102+5/61*I,n=31 6835616247121874 r009 Re(z^3+c),c=-2/19+15/32*I,n=6 6835616257543263 a001 1597/843*1364^(8/45) 6835616265424532 m001 GAMMA(5/24)^2/Catalan*exp(sinh(1)) 6835616267119750 a007 Real Root Of -794*x^4-4*x^3-833*x^2+219*x+711 6835616279867231 a001 377/5778*5778^(29/54) 6835616289587025 a001 4181/843*1364^(2/45) 6835616296764050 a001 377/15127*9349^(35/57) 6835616297858801 a001 377/439204*9349^(56/57) 6835616301846766 a001 377/271443*9349^(53/57) 6835616306298595 a001 377/167761*9349^(50/57) 6835616307815318 a007 Real Root Of 729*x^4+33*x^3-58*x^2+90*x-60 6835616309536013 a001 377/103682*9349^(47/57) 6835616314045892 a001 377/39603*9349^(41/57) 6835616315952801 a001 377/64079*9349^(44/57) 6835616316107450 a001 2584/843*2207^(5/48) 6835616318155500 m001 Catalan^Khinchin*Catalan^exp(1/2) 6835616333930703 a001 13/844*9349^(2/3) 6835616338447031 a001 377/15127*24476^(5/9) 6835616342866307 m001 (Otter-ZetaP(4))/(GAMMA(7/12)+FeigenbaumD) 6835616344672738 a001 377/15127*167761^(7/15) 6835616344786077 a001 377/15127*20633239^(1/3) 6835616344786083 a001 377/15127*17393796001^(5/21) 6835616344786083 a001 377/15127*505019158607^(5/24) 6835616344786083 a001 377/15127*599074578^(5/18) 6835616344786083 a001 377/15127*228826127^(7/24) 6835616344786851 a001 377/15127*1860498^(7/18) 6835616344791722 a001 377/15127*710647^(5/12) 6835616359548020 m001 GAMMA(23/24)-gamma(1)-Grothendieck 6835616362211728 a001 377/15127*15127^(7/12) 6835616364551571 a001 377/439204*24476^(8/9) 6835616368976134 r005 Re(z^2+c),c=-85/98+44/57*I,n=3 6835616370300273 a001 377/39603*370248451^(1/3) 6835616374022743 a001 377/103682*6643838879^(1/3) 6835616374446144 a001 377/1860498*167761^(13/15) 6835616374565844 a001 377/271443*119218851371^(1/3) 6835616374645082 a001 377/710647*2139295485799^(1/3) 6835616374656632 a001 377/1860498*20633239^(13/21) 6835616374656642 a001 377/1860498*141422324^(5/9) 6835616374656642 a001 377/1860498*73681302247^(5/12) 6835616374656642 a001 377/1860498*228826127^(13/24) 6835616374658069 a001 377/1860498*1860498^(13/18) 6835616374658489 a001 377/12752043*7881196^(7/9) 6835616374658563 a001 377/12752043*20633239^(11/15) 6835616374658575 a001 377/12752043*17393796001^(11/21) 6835616374658575 a001 377/12752043*312119004989^(7/15) 6835616374658575 a001 377/12752043*505019158607^(11/24) 6835616374658575 a001 377/12752043*1568397607^(7/12) 6835616374658575 a001 377/12752043*599074578^(11/18) 6835616374658602 a001 377/370248451*20633239^(14/15) 6835616374658602 a001 377/228826127*20633239^(19/21) 6835616374658617 a001 377/969323029*141422324^(8/9) 6835616374658617 a001 377/228826127*817138163596^(5/9) 6835616374658617 a001 377/228826127*228826127^(19/24) 6835616374658617 a001 377/10749957122*17393796001^(17/21) 6835616374658617 a001 377/10749957122*45537549124^(7/9) 6835616374658617 a001 377/10749957122*505019158607^(17/24) 6835616374658617 a001 377/312119004989*17393796001^(20/21) 6835616374658617 a001 377/28143753123*28143753123^(5/6) 6835616374658617 a001 377/505019158607*312119004989^(13/15) 6835616374658617 a001 377/2139295485799*23725150497407^(19/24) 6835616374658617 a001 377/9062201101803*505019158607^(23/24) 6835616374658617 a001 377/2139295485799*505019158607^(19/21) 6835616374658617 a001 377/312119004989*3461452808002^(7/9) 6835616374658617 a001 377/312119004989*505019158607^(5/6) 6835616374658617 a001 377/505019158607*73681302247^(11/12) 6835616374658617 a001 377/45537549124*23725150497407^(2/3) 6835616374658617 a001 377/45537549124*505019158607^(16/21) 6835616374658617 a001 377/312119004989*28143753123^(14/15) 6835616374658617 a001 13/599786069*5600748293801^(2/3) 6835616374658617 a001 377/45537549124*10749957122^(8/9) 6835616374658617 a001 377/6643838879*1322157322203^(2/3) 6835616374658617 a001 377/2537720636*312119004989^(2/3) 6835616374658617 a001 377/2537720636*3461452808002^(11/18) 6835616374658617 a001 377/2537720636*28143753123^(11/15) 6835616374658617 a001 377/2537720636*1568397607^(5/6) 6835616374658617 a001 377/969323029*23725150497407^(13/24) 6835616374658617 a001 377/969323029*505019158607^(13/21) 6835616374658617 a001 377/969323029*73681302247^(2/3) 6835616374658617 a001 377/969323029*10749957122^(13/18) 6835616374658617 a001 377/10749957122*599074578^(17/18) 6835616374658617 a001 377/370248451*17393796001^(2/3) 6835616374658617 a001 377/370248451*505019158607^(7/12) 6835616374658617 a001 377/370248451*599074578^(7/9) 6835616374658617 a001 377/969323029*228826127^(13/15) 6835616374658617 a001 377/2537720636*228826127^(11/12) 6835616374658617 a001 377/141422324*4106118243^(2/3) 6835616374658618 a001 377/228826127*87403803^(5/6) 6835616374658619 a001 377/54018521*969323029^(2/3) 6835616374658621 a001 13/711491*20633239^(16/21) 6835616374658633 a001 13/711491*23725150497407^(5/12) 6835616374658633 a001 13/711491*505019158607^(10/21) 6835616374658633 a001 13/711491*28143753123^(8/15) 6835616374658633 a001 13/711491*10749957122^(5/9) 6835616374658633 a001 13/711491*228826127^(2/3) 6835616374658726 a001 377/7881196*54018521^(2/3) 6835616374658873 a001 13/711491*4870847^(5/6) 6835616374658894 a001 377/141422324*4870847^(23/24) 6835616374659371 a001 377/3010349*45537549124^(4/9) 6835616374659399 a001 377/3010349*12752043^(2/3) 6835616374659575 a001 377/3010349*4870847^(17/24) 6835616374660388 a001 13/711491*1860498^(8/9) 6835616374663284 a001 377/1149851*3010349^(2/3) 6835616374663787 a001 377/1149851*9062201101803^(1/3) 6835616374670329 a001 377/3010349*710647^(17/21) 6835616374670982 a001 377/12752043*710647^(11/12) 6835616374671524 a001 13/711491*710647^(20/21) 6835616374694045 a001 377/439204*20633239^(8/15) 6835616374694053 a001 377/439204*17393796001^(8/21) 6835616374694053 a001 377/439204*23725150497407^(7/24) 6835616374694053 a001 377/439204*505019158607^(1/3) 6835616374694053 a001 377/439204*10749957122^(7/18) 6835616374694053 a001 377/439204*599074578^(4/9) 6835616374694053 a001 377/439204*228826127^(7/15) 6835616374694221 a001 377/439204*4870847^(7/12) 6835616374703077 a001 377/439204*710647^(2/3) 6835616374733953 a001 377/1860498*271443^(5/6) 6835616374739578 a001 377/167761*167761^(2/3) 6835616374901492 a001 377/167761*20633239^(10/21) 6835616374901499 a001 377/167761*3461452808002^(5/18) 6835616374901499 a001 377/167761*28143753123^(1/3) 6835616374901499 a001 377/167761*228826127^(5/12) 6835616374902596 a001 377/167761*1860498^(5/9) 6835616375188622 a001 377/439204*103682^(7/9) 6835616375259919 a001 377/3010349*103682^(17/18) 6835616376323307 a001 377/64079*7881196^(4/9) 6835616376323356 a001 377/64079*312119004989^(4/15) 6835616376323356 a001 377/64079*1568397607^(1/3) 6835616376323488 a001 377/64079*4870847^(11/24) 6835616376330446 a001 377/64079*710647^(11/21) 6835616376711946 a001 377/64079*103682^(11/18) 6835616378203275 a001 377/167761*39603^(25/33) 6835616378392042 a001 377/439204*39603^(28/33) 6835616378757989 a001 377/1149851*39603^(31/33) 6835616379228919 a001 377/64079*39603^(2/3) 6835616386068910 a001 13/844*817138163596^(2/9) 6835616386068910 a001 13/844*87403803^(1/3) 6835616388578260 a001 13/844*39603^(19/33) 6835616390713172 a001 377/39603*15127^(41/60) 6835616397422895 a001 377/103682*15127^(47/60) 6835616398229882 a001 377/64079*15127^(11/15) 6835616399795278 a001 377/167761*15127^(5/6) 6835616400953250 a001 377/271443*15127^(53/60) 6835616402575085 a001 377/439204*15127^(14/15) 6835616404019741 a001 377/710647*15127^(59/60) 6835616404988182 a001 13/844*15127^(19/30) 6835616408960069 a001 377/9349*9349^(32/57) 6835616416699219 m008 (1/3*Pi^6+5/6)/(1/6*Pi^5-4) 6835616425771718 r002 8th iterates of z^2 + 6835616431858251 a001 4181/843*3571^(2/51) 6835616438356164 q001 499/730 6835616450135347 a001 4181/843*9349^(2/57) 6835616452865929 a001 377/9349*23725150497407^(1/6) 6835616452865929 a001 377/9349*10749957122^(2/9) 6835616452865929 a001 377/9349*228826127^(4/15) 6835616452866025 a001 377/9349*4870847^(1/3) 6835616452871085 a001 377/9349*710647^(8/21) 6835616453011534 a001 4181/843*39603^(1/33) 6835616453148539 a001 377/9349*103682^(4/9) 6835616453875214 a001 4181/843*15127^(1/30) 6835616454979065 a001 377/9349*39603^(16/33) 6835616460462774 a001 4181/843*5778^(1/27) 6835616468797947 a001 377/9349*15127^(8/15) 6835616471200545 g006 Psi(1,9/11)+Psi(1,1/4)-Psi(1,5/12)-Psi(1,5/11) 6835616477494024 a001 377/15127*5778^(35/54) 6835616487832700 a007 Real Root Of -282*x^4+890*x^3+169*x^2+363*x+515 6835616499482322 m001 1/Champernowne^2/Artin^2*exp(GAMMA(1/3)) 6835616508597123 a007 Real Root Of 358*x^4-671*x^3+349*x^2-362*x-703 6835616511353343 a001 4181/843*2207^(1/24) 6835616525758148 a001 377/39603*5778^(41/54) 6835616528600134 a007 Real Root Of -695*x^4-322*x^3-697*x^2-14*x+365 6835616530151819 a001 13/844*5778^(19/27) 6835616533387999 l006 ln(5084/10071) 6835616538353771 a007 Real Root Of 887*x^4-417*x^3+564*x^2-17*x-602 6835616543156198 a001 377/64079*5778^(22/27) 6835616545934012 a007 Real Root Of 438*x^4-279*x^3+562*x^2-197*x-582 6835616552230552 a001 377/103682*5778^(47/54) 6835616557426076 m001 (LaplaceLimit+Sarnak)/(5^(1/2)-exp(-1/2*Pi)) 6835616564484275 a001 377/167761*5778^(25/27) 6835616567696202 m002 -5+2*Coth[Pi]+Sinh[Pi]/Pi 6835616569550091 a007 Real Root Of 998*x^4-673*x^3-512*x^2-298*x+440 6835616574198906 a001 377/9349*5778^(16/27) 6835616575523586 a001 377/271443*5778^(53/54) 6835616591627219 a001 7/233*8^(17/43) 6835616605638195 r005 Re(z^2+c),c=-4/31+47/54*I,n=47 6835616608943585 a007 Real Root Of 579*x^4+947*x^3+663*x^2-805*x-684 6835616621656083 m008 (2/3*Pi^3-3/4)/(3*Pi^4-4/5) 6835616630132141 r005 Re(z^2+c),c=-9/52+13/18*I,n=56 6835616631006768 a007 Real Root Of -7*x^4+918*x^3-139*x^2-80*x+305 6835616637423771 a001 377/3571*3571^(26/51) 6835616648085163 r005 Re(z^2+c),c=19/56+27/47*I,n=4 6835616692570223 m001 (Ei(1,1)-ln(3))^Otter 6835616698014734 r005 Im(z^2+c),c=-16/29+7/57*I,n=42 6835616720760513 a007 Real Root Of -703*x^4+972*x^3+746*x^2+27*x-524 6835616770199361 l006 ln(4193/8306) 6835616787913120 b008 2/3+Sqrt[14*E] 6835616793306940 a008 Real Root of (16+16*x-4*x^2+10*x^3) 6835616796262303 b008 2^(1/3)*ExpIntegralEi[1/4] 6835616806551520 r005 Re(z^2+c),c=-59/78+3/34*I,n=7 6835616826628181 a001 1597/843*3571^(8/51) 6835616827094204 a001 4181/5778*521^(14/39) 6835616833761421 a007 Real Root Of 859*x^4+846*x^3+759*x^2-376*x-529 6835616845546873 r009 Im(z^3+c),c=-61/110+7/29*I,n=7 6835616850861366 m001 1/arctan(1/2)^2/CopelandErdos*exp(sqrt(Pi))^2 6835616852546513 m001 1/GAMMA(5/6)^2/Tribonacci^2*exp(cos(1))^2 6835616875026028 a001 377/3571*9349^(26/57) 6835616876801876 m001 (Si(Pi)-ln(Pi))/(GAMMA(23/24)+ZetaQ(3)) 6835616891980368 m001 1/BesselJ(1,1)^2/Bloch*exp(Catalan)^2 6835616892860516 r008 a(0)=7,K{-n^6,38-5*n-52*n^2+27*n^3} 6835616899736569 a001 1597/843*9349^(8/57) 6835616910699541 a001 377/3571*141422324^(2/9) 6835616910699541 a001 377/3571*73681302247^(1/6) 6835616910713034 a001 1597/843*23725150497407^(1/24) 6835616910713034 a001 1597/843*10749957122^(1/18) 6835616910713034 a001 1597/843*228826127^(1/15) 6835616910713058 a001 1597/843*4870847^(1/12) 6835616910714323 a001 1597/843*710647^(2/21) 6835616910730465 a001 377/3571*271443^(1/3) 6835616910783687 a001 1597/843*103682^(1/9) 6835616910920273 a001 4181/843*843^(1/21) 6835616911241318 a001 1597/843*39603^(4/33) 6835616912416464 a001 377/3571*39603^(13/33) 6835616914696039 a001 1597/843*15127^(2/15) 6835616920320675 r005 Im(z^2+c),c=-25/106+38/59*I,n=62 6835616923644307 a001 377/3571*15127^(13/30) 6835616935174054 a001 10946/15127*521^(14/39) 6835616941046280 a001 1597/843*5778^(4/27) 6835616950942693 a001 28657/39603*521^(14/39) 6835616953243306 a001 75025/103682*521^(14/39) 6835616953578961 a001 196418/271443*521^(14/39) 6835616953627932 a001 514229/710647*521^(14/39) 6835616953635077 a001 1346269/1860498*521^(14/39) 6835616953636764 a001 2178309/3010349*521^(14/39) 6835616953639493 a001 832040/1149851*521^(14/39) 6835616953658198 a001 317811/439204*521^(14/39) 6835616953786407 a001 121393/167761*521^(14/39) 6835616954665163 a001 46368/64079*521^(14/39) 6835616960688247 a001 17711/24476*521^(14/39) 6835616962054832 m001 1/LaplaceLimit*ln(Champernowne)^2/cos(Pi/12) 6835616971128429 a001 9349/8*1346269^(7/9) 6835616972416117 r009 Re(z^3+c),c=-3/29+13/27*I,n=24 6835616985249012 m008 (3/4*Pi^2+3)/(1/2*Pi^5-5/6) 6835617001971078 a001 6765/9349*521^(14/39) 6835617009282591 a001 377/3571*5778^(13/27) 6835617017780503 a001 377/5778*2207^(29/48) 6835617030226590 a007 Real Root Of 780*x^4-67*x^3+759*x^2+849*x+34 6835617038134645 r009 Im(z^3+c),c=-25/48+23/50*I,n=35 6835617046038110 a001 271443/8*17711^(7/9) 6835617068533796 a007 Real Root Of 261*x^4-861*x^3+978*x^2+787*x-251 6835617074019925 a007 Real Root Of 501*x^4-937*x^3+367*x^2+186*x-453 6835617077274231 a001 4*(1/2*5^(1/2)+1/2)^26*76^(22/23) 6835617084880975 a007 Real Root Of 654*x^4-613*x^3+378*x^2+663*x-62 6835617099539626 s002 sum(A141500[n]/(n^2*exp(n)-1),n=1..infinity) 6835617106387161 a003 sin(Pi*10/119)+sin(Pi*5/36) 6835617116518755 s002 sum(A128624[n]/(n^3*exp(n)-1),n=1..infinity) 6835617120899554 a007 Real Root Of 158*x^4+144*x^3-639*x^2-784*x+754 6835617134811394 l006 ln(3302/6541) 6835617137504872 m001 1/GAMMA(2/3)^2*exp(LandauRamanujan)^2*exp(1) 6835617139994287 m008 (2*Pi^2+1/4)/(3*Pi^4+1/5) 6835617144608574 a001 1597/843*2207^(1/6) 6835617146885159 s002 sum(A287745[n]/(pi^n+1),n=1..infinity) 6835617170088241 m001 1/Niven/FeigenbaumAlpha/ln(Rabbit) 6835617183467420 m001 Pi*(1-ln(2)*GAMMA(5/6)) 6835617188981658 m001 (-BesselI(0,1)+1)/(-OneNinth+4) 6835617192630855 a007 Real Root Of -209*x^4+590*x^3+415*x^2-260*x-159 6835617221874302 a001 199/4181*317811^(1/35) 6835617223206491 r005 Im(z^2+c),c=-6/25+5/52*I,n=20 6835617278897249 r002 48th iterates of z^2 + 6835617282633640 a001 2584/2207*521^(11/39) 6835617284927836 a001 2584/3571*521^(14/39) 6835617296849288 m005 (1/2*2^(1/2)-1/11)/(1/11*Catalan+9/11) 6835617315024789 a001 2584/843*843^(5/42) 6835617338291810 r008 a(0)=7,K{-n^6,-9+8*n^3+n^2+7*n} 6835617368079043 a001 377/15127*2207^(35/48) 6835617373205049 a007 Real Root Of -996*x^4+651*x^3+589*x^2-306*x-59 6835617388448073 a001 377/9349*2207^(2/3) 6835617397504393 r005 Im(z^2+c),c=-6/25+5/52*I,n=22 6835617410876514 a007 Real Root Of 371*x^4-361*x^3-555*x^2-870*x-57 6835617468068223 r005 Im(z^2+c),c=-6/25+5/52*I,n=24 6835617471342749 r005 Re(z^2+c),c=-39/70+29/60*I,n=9 6835617482864029 r005 Im(z^2+c),c=-6/25+5/52*I,n=26 6835617484742555 r005 Im(z^2+c),c=-6/25+5/52*I,n=29 6835617484782236 r005 Im(z^2+c),c=-6/25+5/52*I,n=31 6835617484811775 r005 Im(z^2+c),c=-6/25+5/52*I,n=33 6835617484813951 r005 Im(z^2+c),c=-6/25+5/52*I,n=28 6835617484819097 r005 Im(z^2+c),c=-6/25+5/52*I,n=35 6835617484820244 r005 Im(z^2+c),c=-6/25+5/52*I,n=37 6835617484820295 r005 Im(z^2+c),c=-6/25+5/52*I,n=40 6835617484820300 r005 Im(z^2+c),c=-6/25+5/52*I,n=38 6835617484820307 r005 Im(z^2+c),c=-6/25+5/52*I,n=42 6835617484820310 r005 Im(z^2+c),c=-6/25+5/52*I,n=44 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=46 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=49 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=51 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=53 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=55 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=58 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=60 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=57 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=62 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=64 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=63 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=61 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=59 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=56 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=54 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=52 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=50 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=48 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=47 6835617484820311 r005 Im(z^2+c),c=-6/25+5/52*I,n=45 6835617484820313 r005 Im(z^2+c),c=-6/25+5/52*I,n=43 6835617484820319 r005 Im(z^2+c),c=-6/25+5/52*I,n=41 6835617484820332 r005 Im(z^2+c),c=-6/25+5/52*I,n=39 6835617484820668 r005 Im(z^2+c),c=-6/25+5/52*I,n=36 6835617484823735 r005 Im(z^2+c),c=-6/25+5/52*I,n=34 6835617484839422 r005 Im(z^2+c),c=-6/25+5/52*I,n=32 6835617484884722 r005 Im(z^2+c),c=-6/25+5/52*I,n=30 6835617485270856 r005 Im(z^2+c),c=-6/25+5/52*I,n=27 6835617488737574 b008 LogBarnesG[1/4+Sqrt[3/2]] 6835617490523191 a001 329/281*843^(11/42) 6835617491016782 r005 Im(z^2+c),c=-6/25+5/52*I,n=25 6835617497072709 a001 13/844*2207^(19/24) 6835617507393762 a007 Real Root Of 503*x^4+88*x^3-12*x^2-424*x+29 6835617525177970 r005 Im(z^2+c),c=-6/25+5/52*I,n=23 6835617532406845 m001 (ln(3)+PlouffeB)/(BesselI(0,1)+Zeta(5)) 6835617533056330 r005 Re(z^2+c),c=-15/13+11/58*I,n=28 6835617534545624 a007 Real Root Of 375*x^4-820*x^3+651*x^2+136*x-555 6835617558295496 r009 Re(z^3+c),c=-57/86+14/27*I,n=3 6835617569014904 a001 377/39603*2207^(41/48) 6835617592623552 m001 (Pi+exp(Pi))/(2^(1/3)+Sierpinski) 6835617614176996 m001 FeigenbaumDelta^BesselJ(0,1)*Riemann2ndZero 6835617616317190 m001 (MinimumGamma-Psi(1,1/3))/(-Totient+ZetaP(4)) 6835617621312545 h001 (1/3*exp(2)+5/6)/(4/7*exp(2)+3/5) 6835617641890267 h001 (3/7*exp(1)+5/9)/(2/9*exp(2)+7/8) 6835617645944388 a007 Real Root Of -954*x^4+142*x^3+261*x^2-159*x+23 6835617651383695 r005 Im(z^2+c),c=-6/25+5/52*I,n=21 6835617657608999 r005 Im(z^2+c),c=-23/38+8/63*I,n=52 6835617662748823 a001 377/64079*2207^(11/12) 6835617670860074 a001 377/3571*2207^(13/24) 6835617713898407 m001 BesselK(1,1)^(QuadraticClass/Salem) 6835617717995220 a007 Real Root Of -110*x^4+827*x^3-728*x^2+415*x+912 6835617718329840 r009 Im(z^3+c),c=-3/26+44/59*I,n=18 6835617726251933 a007 Real Root Of 817*x^4-995*x^3+423*x^2+187*x-566 6835617728171833 r009 Im(z^3+c),c=-25/82+3/56*I,n=2 6835617734001465 g007 2*Psi(2,6/7)-Psi(2,9/10)-Psi(2,1/7) 6835617735887735 r005 Im(z^2+c),c=-6/25+5/52*I,n=19 6835617743982840 m001 exp(Ei(1))*GaussKuzminWirsing^2*GAMMA(11/12)^2 6835617745519253 m001 GAMMA(7/12)^GaussAGM*PrimesInBinary^GaussAGM 6835617748159045 a001 377/103682*2207^(47/48) 6835617751844690 a007 Real Root Of 554*x^4-395*x^3+16*x^2-687*x+47 6835617760242894 a007 Real Root Of -728*x^4+489*x^3-961*x^2-641*x+326 6835617768912669 l006 ln(2411/4776) 6835617769234640 a007 Real Root Of -789*x^4+154*x^3+675*x^2+727*x+403 6835617773017372 m001 1/exp(Khintchine)/Champernowne^2/cos(Pi/5)^2 6835617773348617 m001 (TravellingSalesman-ThueMorse)/(Otter+Porter) 6835617796758903 r005 Im(z^2+c),c=-6/25+5/52*I,n=18 6835617809276843 r008 a(0)=7,K{-n^6,-12+48*n-55*n^2+26*n^3} 6835617844793866 a007 Real Root Of 940*x^4-157*x^3-974*x^2-768*x+825 6835617845471880 r005 Im(z^2+c),c=-2/13+17/25*I,n=64 6835617863239165 m001 (ArtinRank2+Riemann1stZero)/(3^(1/3)-exp(Pi)) 6835617868026730 m001 (exp(1)+GAMMA(3/4))/(-ln(gamma)+Trott2nd) 6835617883671942 m001 1/cos(1)^2*GAMMA(7/24)*ln(sqrt(5))^2 6835617896008727 a007 Real Root Of 770*x^4-37*x^3+662*x^2+824*x+74 6835617926334278 m001 ErdosBorwein^(ln(2)/ln(10))*Lehmer 6835617955632908 m001 (-FeigenbaumAlpha+Kolakoski)/(exp(Pi)+Si(Pi)) 6835617980632859 a001 144/64079*199^(20/31) 6835617984316873 r005 Im(z^2+c),c=-9/10+88/191*I,n=3 6835617996505506 a007 Real Root Of 804*x^4-225*x^3+382*x^2+408*x-147 6835617998498513 m006 (2/3/Pi+2/5)/(1/5*ln(Pi)+2/3) 6835618024848814 a001 1/710647*29^(23/49) 6835618082542239 m001 (gamma(1)-FeigenbaumMu)/(Mills-Tribonacci) 6835618096740813 m001 (AlladiGrinstead+Rabbit)/(Catalan-exp(Pi)) 6835618102119078 r002 23th iterates of z^2 + 6835618124760219 a003 cos(Pi*27/107)*sin(Pi*41/96) 6835618132519725 a007 Real Root Of -396*x^4+283*x^3-244*x^2+837*x+863 6835618198561484 r002 36th iterates of z^2 + 6835618200438711 r002 53th iterates of z^2 + 6835618203904698 r005 Im(z^2+c),c=-12/19+7/55*I,n=45 6835618230580791 m001 (Zeta(5)+FeigenbaumMu)/(MertensB1+ThueMorse) 6835618236708879 r005 Im(z^2+c),c=-1+69/248*I,n=8 6835618301551257 l006 ln(3931/7787) 6835618338484019 a007 Real Root Of 504*x^4-7*x^3+958*x^2+389*x-294 6835618355496908 m005 (4/5*Pi-1/6)/(3/4*gamma+3) 6835618367393434 m005 (1/2*Zeta(3)-1/4)/(5*Zeta(3)-7/8) 6835618378623034 m006 (3/5/Pi+2/5)/(4/5*Pi^2+3/4) 6835618415814394 a001 377/1364*1364^(4/9) 6835618425360993 a003 sin(Pi*6/37)/sin(Pi*22/87) 6835618443703823 a007 Real Root Of -604*x^4+439*x^3+518*x^2+885*x+635 6835618453126290 m001 1/GAMMA(5/12)^2/KhintchineLevy/exp(Zeta(9)) 6835618466996415 m001 GAMMA(7/12)/(GAMMA(1/24)-ln(3)) 6835618477039179 m001 LaplaceLimit^(Kolakoski/Thue) 6835618487147503 a003 cos(Pi*8/115)*sin(Pi*20/81) 6835618490940239 m001 BesselK(0,1)^Psi(1,1/3)/CopelandErdos 6835618501525077 m005 (1/2*gamma-1/12)/(2/9*gamma-3/7) 6835618503219116 m001 Magata^OneNinth/(Magata^Zeta(1/2)) 6835618540019329 m001 GaussAGM*HardyLittlewoodC3^TreeGrowth2nd 6835618605343689 a007 Real Root Of 187*x^4-101*x^3+540*x^2+24*x-309 6835618633211924 a007 Real Root Of 456*x^4-124*x^3-220*x^2-728*x-534 6835618638877175 r005 Re(z^2+c),c=9/122+31/59*I,n=5 6835618643829044 r005 Im(z^2+c),c=-29/86+37/62*I,n=8 6835618647302957 a007 Real Root Of -405*x^4+694*x^3-884*x^2-107*x+650 6835618656134535 a001 2255/1926*521^(11/39) 6835618668063010 m002 -6-ProductLog[Pi]^2+Tanh[Pi]/Pi 6835618678568685 r005 Re(z^2+c),c=-61/114+22/45*I,n=9 6835618680119146 a001 64079/21*55^(45/58) 6835618683006633 r005 Im(z^2+c),c=-13/28+35/62*I,n=58 6835618685963978 m001 Catalan^FeigenbaumMu*Catalan^LandauRamanujan 6835618696636191 a003 cos(Pi*19/75)*sin(Pi*41/95) 6835618731553406 r002 39th iterates of z^2 + 6835618736041548 s002 sum(A006817[n]/(n^2*pi^n-1),n=1..infinity) 6835618742876580 a001 1597/843*843^(4/21) 6835618747688528 m001 (GAMMA(5/6)-QuadraticClass)/(ln(3)+Zeta(1/2)) 6835618747781507 m005 (1/3*2^(1/2)+1/4)/(5/7*3^(1/2)-2/11) 6835618772187012 a007 Real Root Of 240*x^4-594*x^3+401*x^2+621*x-5 6835618795473519 r001 24i'th iterates of 2*x^2-1 of 6835618805802422 a007 Real Root Of 433*x^4-928*x^3-362*x^2-328*x-446 6835618810085490 a007 Real Root Of 321*x^4-403*x^3-842*x^2-491*x-141 6835618825413375 a007 Real Root Of -848*x^4+16*x^3-769*x^2+479*x+877 6835618838024097 l006 ln(4228/4257) 6835618856525656 a001 17711/15127*521^(11/39) 6835618866931420 m001 (Porter+Trott2nd)/(ln(2^(1/2)+1)-LaplaceLimit) 6835618880785361 a007 Real Root Of -846*x^4+912*x^3-979*x^2-697*x+457 6835618885762327 a001 15456/13201*521^(11/39) 6835618887254576 r005 Re(z^2+c),c=-27/52+37/61*I,n=51 6835618890027900 a001 121393/103682*521^(11/39) 6835618890650239 a001 105937/90481*521^(11/39) 6835618890741037 a001 832040/710647*521^(11/39) 6835618890754284 a001 726103/620166*521^(11/39) 6835618890762471 a001 1346269/1149851*521^(11/39) 6835618890797153 a001 514229/439204*521^(11/39) 6835618891034865 a001 196418/167761*521^(11/39) 6835618891584412 m005 (1/2*5^(1/2)-1/10)/(221/264+7/24*5^(1/2)) 6835618892664169 a001 75025/64079*521^(11/39) 6835618903831584 a001 28657/24476*521^(11/39) 6835618905703431 a001 610/843*1364^(14/45) 6835618928465471 m001 Catalan^2/ln(MinimumGamma)^2*GAMMA(19/24) 6835618933267036 m001 FeigenbaumAlpha*(FransenRobinson-ZetaP(4)) 6835618970369412 m001 (ErdosBorwein-Robbin)/(Artin-CopelandErdos) 6835618980374184 a001 10946/9349*521^(11/39) 6835618990374453 m001 1/GAMMA(13/24)^2/ln(Ei(1))*sinh(1) 6835619020461263 r005 Im(z^2+c),c=-5/8+16/125*I,n=41 6835619023565695 r005 Re(z^2+c),c=-9/25+41/61*I,n=10 6835619085628813 a001 5/5778*9349^(27/37) 6835619116421299 r005 Im(z^2+c),c=-45/62+1/29*I,n=49 6835619117856530 m005 (-4/15+1/3*5^(1/2))/(5/6*Catalan-5/6) 6835619144313282 a007 Real Root Of 777*x^4-114*x^3+669*x^2+137*x-425 6835619146414117 l006 ln(1520/3011) 6835619152187508 m001 (Bloch-Lehmer)/(Pi-exp(1/Pi)) 6835619163011306 m007 (-3*gamma-6*ln(2)-1/4)/(-3*gamma+5/6) 6835619176786405 a001 615/124*199^(2/33) 6835619176920084 r005 Im(z^2+c),c=-51/110+31/44*I,n=5 6835619181156276 m001 Psi(1,1/3)*FransenRobinson/PrimesInBinary 6835619203561872 a001 144/3571*322^(8/9) 6835619209961936 m001 1/exp(GAMMA(11/24))^2*Si(Pi)^2/GAMMA(23/24)^2 6835619224343324 a001 987/1364*521^(14/39) 6835619228257214 r005 Re(z^2+c),c=11/90+23/62*I,n=13 6835619268412997 m001 Conway*(1-PlouffeB) 6835619268592964 a007 Real Root Of -900*x^4-471*x^3-849*x^2-45*x+412 6835619293270133 m001 (Shi(1)+DuboisRaymond)/FeigenbaumC 6835619304103444 m001 (sin(1)+BesselI(1,1))/(QuadraticClass+Salem) 6835619312225955 r005 Im(z^2+c),c=-11/98+53/60*I,n=56 6835619316166422 m002 -6*Cosh[Pi]+(6*Tanh[Pi])/5 6835619336019117 a001 5/103682*24476^(35/37) 6835619340391760 r002 61th iterates of z^2 + 6835619342953449 h001 (3/10*exp(2)+5/9)/(3/7*exp(2)+8/9) 6835619355160730 p003 LerchPhi(1/125,2,287/237) 6835619359393336 r002 3th iterates of z^2 + 6835619386942765 a007 Real Root Of 113*x^4-635*x^3+261*x^2-684*x-817 6835619394260989 l006 ln(4085/4374) 6835619425587738 m001 (Porter+Riemann1stZero)/(1+GlaisherKinkelin) 6835619428600690 a001 5/9349*39603^(25/37) 6835619432714124 a007 Real Root Of 515*x^4-99*x^3-461*x^2-928*x-563 6835619465690083 m001 (-Lehmer+TreeGrowth2nd)/(5^(1/2)-gamma(3)) 6835619477836902 a001 5/3571*3571^(28/37) 6835619502710816 a001 4181/2207*521^(8/39) 6835619505005014 a001 4181/3571*521^(11/39) 6835619547965851 a007 Real Root Of 382*x^4-861*x^3-648*x^2-510*x+843 6835619576002173 a005 (1/sin(75/191*Pi))^788 6835619614255367 r005 Im(z^2+c),c=-107/94+3/35*I,n=37 6835619666671698 a007 Real Root Of 165*x^4+22*x^3+724*x^2-693*x-841 6835619677026319 r002 15th iterates of z^2 + 6835619710073009 m001 (Otter-Thue)/(GAMMA(17/24)+Grothendieck) 6835619754736447 m001 GAMMA(7/24)^2/ln(Artin)*sin(1)^2 6835619783826171 m001 Zeta(1,-1)-sin(1/5*Pi)*QuadraticClass 6835619801914393 a007 Real Root Of -642*x^4-498*x^3-986*x^2+50*x+476 6835619810472219 a007 Real Root Of -119*x^4+588*x^3+136*x^2+412*x-507 6835619819350589 m001 GAMMA(5/12)^2*ln(Khintchine)*GAMMA(7/12) 6835619838527225 a001 377/1364*3571^(20/51) 6835619854243075 r005 Re(z^2+c),c=-11/56+11/16*I,n=48 6835619890769420 a001 8/199*1364^(37/52) 6835619895310132 b008 ArcSin[Erf[2/33]] 6835619901602454 a001 610/843*3571^(14/51) 6835619913548883 h001 (4/9*exp(2)+3/10)/(5/8*exp(2)+5/8) 6835619921158698 r005 Im(z^2+c),c=13/42+29/53*I,n=8 6835619932270220 m001 Riemann3rdZero^2/ln(FeigenbaumB)^2/exp(1) 6835619951405105 a003 cos(Pi*20/119)-cos(Pi*23/52) 6835619960730405 m001 Ei(1)^BesselK(1,1)*Ei(1)^BesselJZeros(0,1) 6835619964410370 r005 Re(z^2+c),c=-1/44+16/23*I,n=7 6835619974209931 b008 Sech[27/8] 6835619974209931 l005 sech(27/8) 6835619982956775 r005 Im(z^2+c),c=7/29+30/61*I,n=10 6835620021298277 a001 377/1364*9349^(20/57) 6835620025889168 m001 Robbin^BesselI(1,2)-Zeta(3) 6835620029542191 a001 610/843*9349^(14/57) 6835620043299467 a007 Real Root Of 268*x^4-247*x^3+82*x^2-865*x-767 6835620046215392 a001 610/843*24476^(2/9) 6835620048674685 a001 377/1364*167761^(4/15) 6835620048739451 a001 377/1364*20633239^(4/21) 6835620048739454 a001 377/1364*3461452808002^(1/9) 6835620048739454 a001 377/1364*28143753123^(2/15) 6835620048739454 a001 377/1364*228826127^(1/6) 6835620048739514 a001 377/1364*4870847^(5/24) 6835620048739893 a001 377/1364*1860498^(2/9) 6835620048742677 a001 377/1364*710647^(5/21) 6835620048751012 a001 610/843*20633239^(2/15) 6835620048751014 a001 610/843*17393796001^(2/21) 6835620048751014 a001 610/843*505019158607^(1/12) 6835620048751014 a001 610/843*599074578^(1/9) 6835620048753270 a001 610/843*710647^(1/6) 6835620048916086 a001 377/1364*103682^(5/18) 6835620049675512 a001 610/843*39603^(7/33) 6835620050060165 a001 377/1364*39603^(10/33) 6835620051607797 l006 ln(3669/7268) 6835620055721276 a001 610/843*15127^(7/30) 6835620058696971 a001 377/1364*15127^(1/3) 6835620088937038 r002 9th iterates of z^2 + 6835620101675891 m001 (Pi+2^(1/3)*GAMMA(11/12))*GAMMA(7/12) 6835620101834220 a001 610/843*5778^(7/27) 6835620102880272 m001 (Totient-ZetaQ(3))/(Landau+OrthogonalArrays) 6835620108335882 p003 LerchPhi(1/100,1,78/53) 6835620115566719 a001 4181/843*322^(1/18) 6835620124572604 a001 377/1364*5778^(10/27) 6835620134407810 a007 Real Root Of -388*x^4+618*x^3-836*x^2+391*x+940 6835620151885414 m001 GAMMA(1/6)*ln(Riemann1stZero)*arctan(1/2) 6835620158212597 m001 (2*Pi/GAMMA(5/6)-gamma*FransenRobinson)/gamma 6835620165236496 m001 Catalan^FeigenbaumAlpha*Catalan^FeigenbaumC 6835620167998535 r005 Im(z^2+c),c=-15/32+5/43*I,n=39 6835620168496250 m005 (1/2*Pi-2/5)/(6*exp(1)+9/11) 6835620169339268 r002 27i'th iterates of 2*x/(1-x^2) of 6835620183923218 r005 Re(z^2+c),c=-61/78+1/64*I,n=51 6835620237852098 r009 Re(z^3+c),c=-3/29+13/27*I,n=26 6835620238755680 a001 377/2207*843^(23/42) 6835620240289752 m001 (exp(Pi)+2^(1/3))/(-2^(1/2)+Shi(1)) 6835620263683386 a001 123/11*(1/2*5^(1/2)+1/2)^13*11^(1/15) 6835620274432931 q001 2441/3571 6835620279916870 r005 Im(z^2+c),c=-99/122+2/57*I,n=43 6835620290445152 r005 Re(z^2+c),c=-17/23+7/41*I,n=35 6835620353802753 m001 (Conway-FeigenbaumD)/(exp(1/Pi)+Cahen) 6835620357207503 a007 Real Root Of 708*x^4-814*x^3+17*x^2+997*x+259 6835620368010207 a007 Real Root Of 528*x^4-461*x^3-45*x^2-681*x-707 6835620396213099 m001 (Porter+Riemann1stZero)/(gamma+Niven) 6835620402173540 r005 Im(z^2+c),c=-133/106+5/13*I,n=29 6835620403652249 a007 Real Root Of 944*x^4+184*x^3+78*x^2-309*x-395 6835620408188731 a007 Real Root Of -130*x^4-759*x^3+792*x^2-510*x+911 6835620417998188 q001 4/58517 6835620447094716 a007 Real Root Of -524*x^4+383*x^3-194*x^2-141*x+231 6835620458068402 a001 610/843*2207^(7/24) 6835620484323916 a007 Real Root Of -209*x^4+800*x^3-730*x^2+301*x+848 6835620528936451 a001 1364/28657*317811^(34/45) 6835620532644613 m001 1/ErdosBorwein^2/Artin/exp(exp(1)) 6835620535436465 a007 Real Root Of 261*x^4-589*x^3-555*x^2+87*x+331 6835620542240607 r005 Re(z^2+c),c=-1/32+29/39*I,n=22 6835620557765807 a007 Real Root Of -904*x^4+393*x^3-39*x^2-145*x+242 6835620582789791 a007 Real Root Of 910*x^4-982*x^3+280*x^2-168*x-758 6835620592843440 r009 Im(z^3+c),c=-49/114+31/54*I,n=27 6835620605270629 a007 Real Root Of -673*x^4+836*x^3+971*x^2+486*x-906 6835620608076747 r005 Im(z^2+c),c=-5/122+14/19*I,n=56 6835620633478586 a001 377/1364*2207^(5/12) 6835620634538120 a001 5473/2889*521^(8/39) 6835620638739162 m005 (1/2*Pi+1/8)/(2/5*Zeta(3)+2) 6835620655911471 p004 log(19403/18121) 6835620661691229 a007 Real Root Of 43*x^4+275*x^3-249*x^2-846*x-195 6835620664955451 r002 61i'th iterates of 2*x/(1-x^2) of 6835620677649768 r009 Im(z^3+c),c=-17/60+3/61*I,n=9 6835620691856418 l006 ln(2149/4257) 6835620693175575 r009 Re(z^3+c),c=-2/21+11/27*I,n=15 6835620698596623 r009 Im(z^3+c),c=-3/11+26/37*I,n=27 6835620720913982 r005 Re(z^2+c),c=-23/48+51/56*I,n=3 6835620727849916 m005 (25/42+1/6*5^(1/2))/(9/10*3^(1/2)-1/7) 6835620729954127 a007 Real Root Of -609*x^4+774*x^3+78*x^2+154*x+449 6835620799669532 a001 28657/15127*521^(8/39) 6835620805423619 a001 521/514229*10946^(24/53) 6835620823321475 r005 Re(z^2+c),c=-73/94+1/23*I,n=23 6835620823761880 a001 75025/39603*521^(8/39) 6835620827276907 a001 98209/51841*521^(8/39) 6835620827789742 a001 514229/271443*521^(8/39) 6835620827864564 a001 1346269/710647*521^(8/39) 6835620827882227 a001 2178309/1149851*521^(8/39) 6835620827910806 a001 208010/109801*521^(8/39) 6835620828106692 a001 317811/167761*521^(8/39) 6835620829449313 a001 121393/64079*521^(8/39) 6835620838651771 a001 11592/6119*521^(8/39) 6835620872522836 a007 Real Root Of 145*x^4+974*x^3-157*x^2-411*x-956 6835620901726361 a001 17711/9349*521^(8/39) 6835620933913523 r009 Re(z^3+c),c=-5/78+27/29*I,n=11 6835620948360279 a003 cos(Pi*11/76)*sin(Pi*30/109) 6835620976536817 a007 Real Root Of 636*x^4-544*x^3-328*x^2-946*x-806 6835620981933276 h001 (7/11*exp(2)+1/10)/(9/10*exp(2)+3/8) 6835620997966146 a001 987/167761*1364^(44/45) 6835621012280759 a007 Real Root Of 753*x^4+240*x^3-284*x^2-313*x-169 6835621016651289 r009 Re(z^3+c),c=-3/29+13/27*I,n=28 6835621020999946 r009 Re(z^3+c),c=-3/29+13/27*I,n=31 6835621023635461 r009 Re(z^3+c),c=-3/29+13/27*I,n=29 6835621026941918 m001 (cos(1)+ln(2))/(Bloch+MertensB3) 6835621030409835 r005 Im(z^2+c),c=-2/3+38/241*I,n=6 6835621044397595 r009 Re(z^3+c),c=-3/29+13/27*I,n=33 6835621055137487 r009 Re(z^3+c),c=-3/29+13/27*I,n=35 6835621058095251 r009 Re(z^3+c),c=-3/29+13/27*I,n=37 6835621058363138 r009 Re(z^3+c),c=-3/29+13/27*I,n=40 6835621058419007 r009 Re(z^3+c),c=-3/29+13/27*I,n=42 6835621058452710 r009 Re(z^3+c),c=-3/29+13/27*I,n=44 6835621058463399 r009 Re(z^3+c),c=-3/29+13/27*I,n=46 6835621058465140 r009 Re(z^3+c),c=-3/29+13/27*I,n=49 6835621058465241 r009 Re(z^3+c),c=-3/29+13/27*I,n=51 6835621058465341 r009 Re(z^3+c),c=-3/29+13/27*I,n=53 6835621058465378 r009 Re(z^3+c),c=-3/29+13/27*I,n=55 6835621058465386 r009 Re(z^3+c),c=-3/29+13/27*I,n=58 6835621058465386 r009 Re(z^3+c),c=-3/29+13/27*I,n=60 6835621058465386 r009 Re(z^3+c),c=-3/29+13/27*I,n=57 6835621058465387 r009 Re(z^3+c),c=-3/29+13/27*I,n=62 6835621058465387 r009 Re(z^3+c),c=-3/29+13/27*I,n=64 6835621058465387 r009 Re(z^3+c),c=-3/29+13/27*I,n=63 6835621058465387 r009 Re(z^3+c),c=-3/29+13/27*I,n=61 6835621058465387 r009 Re(z^3+c),c=-3/29+13/27*I,n=59 6835621058465390 r009 Re(z^3+c),c=-3/29+13/27*I,n=56 6835621058465409 r009 Re(z^3+c),c=-3/29+13/27*I,n=54 6835621058465473 r009 Re(z^3+c),c=-3/29+13/27*I,n=52 6835621058465508 r009 Re(z^3+c),c=-3/29+13/27*I,n=48 6835621058465601 r009 Re(z^3+c),c=-3/29+13/27*I,n=50 6835621058465824 r009 Re(z^3+c),c=-3/29+13/27*I,n=47 6835621058469993 r009 Re(z^3+c),c=-3/29+13/27*I,n=38 6835621058470918 r009 Re(z^3+c),c=-3/29+13/27*I,n=45 6835621058490987 r009 Re(z^3+c),c=-3/29+13/27*I,n=43 6835621058540110 r009 Re(z^3+c),c=-3/29+13/27*I,n=41 6835621058565525 r009 Re(z^3+c),c=-3/29+13/27*I,n=39 6835621059767134 r009 Re(z^3+c),c=-3/29+13/27*I,n=36 6835621061879706 m001 (arctan(1/2)+GAMMA(13/24))/(Si(Pi)+GAMMA(3/4)) 6835621065717336 r009 Re(z^3+c),c=-3/29+13/27*I,n=34 6835621079819802 s002 sum(A234381[n]/(n^2*2^n-1),n=1..infinity) 6835621080730546 m005 (1/3*Catalan-1/5)/(9/16+7/16*5^(1/2)) 6835621082942164 r009 Re(z^3+c),c=-3/29+13/27*I,n=32 6835621096841497 g007 Psi(2,8/11)+Psi(2,1/3)-Psi(13/10)-Psi(2,7/9) 6835621105412822 r009 Re(z^3+c),c=-3/29+13/27*I,n=30 6835621106352161 a007 Real Root Of -36*x^4+178*x^3-709*x^2+809*x+949 6835621142731395 m008 (1/3*Pi^5+4)/(5*Pi-1/5) 6835621146018691 a007 Real Root Of 587*x^4-491*x^3-981*x^2-313*x+701 6835621154507482 a003 sin(Pi*1/48)+sin(Pi*7/33) 6835621160324093 m002 36/5-Log[Pi]/Pi 6835621168631750 l006 ln(4927/9760) 6835621208953684 m001 Rabbit^2/LaplaceLimit^2/exp(sin(Pi/12))^2 6835621242026216 a001 21/2206*1364^(41/45) 6835621253211157 a007 Real Root Of -14*x^4-961*x^3-268*x^2+424*x-525 6835621256167327 a007 Real Root Of -778*x^4+791*x^3-147*x^2-110*x+416 6835621260119676 q001 1942/2841 6835621274155364 r005 Re(z^2+c),c=-7/9+1/61*I,n=21 6835621275050945 r002 8th iterates of z^2 + 6835621282060309 m001 (3^(1/3)-polylog(4,1/2))/(Khinchin-MertensB3) 6835621330396605 r009 Re(z^3+c),c=-3/29+13/27*I,n=27 6835621331751864 a001 6765/2207*521^(5/39) 6835621334046062 a001 6765/3571*521^(8/39) 6835621339515468 m001 1/GAMMA(1/24)*LaplaceLimit/ln(GAMMA(3/4))^2 6835621349189713 h001 (1/4*exp(1)+3/8)/(3/10*exp(1)+8/11) 6835621365801947 s002 sum(A238515[n]/(2^n+1),n=1..infinity) 6835621381429944 a007 Real Root Of -825*x^4-558*x^3-817*x^2+600*x-37 6835621381630428 r005 Re(z^2+c),c=1/11+23/50*I,n=39 6835621392045380 a007 Real Root Of -943*x^4+501*x^3+467*x^2+97*x+214 6835621398766920 m001 (Zeta(1,-1)+ln(2+3^(1/2)))/(Cahen-Weierstrass) 6835621398871721 s002 sum(A232133[n]/(10^n+1),n=1..infinity) 6835621399251751 s002 sum(A232133[n]/(10^n-1),n=1..infinity) 6835621400861482 m005 (1/2*3^(1/2)-1/4)/(3*exp(1)+6/7) 6835621401401882 a007 Real Root Of 939*x^4-42*x^3+502*x^2+98*x-386 6835621401409877 r005 Im(z^2+c),c=-25/46+12/19*I,n=16 6835621410417565 r009 Re(z^3+c),c=-11/86+29/42*I,n=50 6835621449911928 m005 (1/2*2^(1/2)-3/11)/(1/10*exp(1)+4/11) 6835621453054091 a001 39603/55*514229^(39/56) 6835621464032341 a001 199/4181*28657^(17/24) 6835621471281002 r005 Im(z^2+c),c=19/64+17/43*I,n=3 6835621476644443 l005 ln(tanh(999/103*Pi)) 6835621484700359 a007 Real Root Of -835*x^4+95*x^3-995*x^2-665*x+223 6835621487092275 a007 Real Root Of -629*x^4+519*x^3-951*x^2-185*x+621 6835621489265666 a001 987/64079*1364^(38/45) 6835621496425094 r009 Re(z^3+c),c=-3/31+3/5*I,n=2 6835621515043210 m001 (Catalan-arctan(1/2))/Robbin 6835621531381851 r005 Im(z^2+c),c=17/52+26/63*I,n=11 6835621537454697 l006 ln(2778/5503) 6835621541060525 a001 199/14930352*2971215073^(17/24) 6835621545589768 a007 Real Root Of 573*x^4-949*x^3-731*x^2-558*x+901 6835621546003766 r002 4th iterates of z^2 + 6835621546234860 a001 47*(1/2*5^(1/2)+1/2)^3*843^(13/15) 6835621548456645 a007 Real Root Of 774*x^4-563*x^3-263*x^2-932*x-863 6835621621032867 r002 62th iterates of z^2 + 6835621621463415 m001 (GAMMA(5/6)-Sarnak*ZetaQ(4))/ZetaQ(4) 6835621668101114 a007 Real Root Of 746*x^4-869*x^3+386*x^2-249*x-791 6835621682752126 r005 Re(z^2+c),c=31/86+3/44*I,n=32 6835621693690602 a007 Real Root Of -158*x^4+980*x^3+661*x^2+412*x-869 6835621695833122 r005 Im(z^2+c),c=39/86+11/54*I,n=3 6835621701606403 a007 Real Root Of 974*x^4-418*x^3+786*x^2-251*x-885 6835621702933739 a007 Real Root Of -491*x^4+464*x^3-399*x^2+641*x+880 6835621728181423 a001 329/13201*1364^(7/9) 6835621765848761 a007 Real Root Of -372*x^4+131*x^3-720*x^2-226*x+305 6835621767499205 r004 Im(z^2+c),c=-53/42-9/13*I,z(0)=-1,n=7 6835621784586205 m001 ArtinRank2*(ln(2^(1/2)+1)+Paris) 6835621798798658 a001 987/2207*1364^(17/45) 6835621816759523 a007 Real Root Of 890*x^4+13*x^3+506*x^2-103*x-497 6835621830379499 h001 (-5*exp(2)-8)/(-7*exp(-1)-4) 6835621855491268 a001 38/98209*75025^(11/43) 6835621860869178 m001 (DuboisRaymond+MertensB3)/(BesselI(1,2)+Cahen) 6835621873143026 a007 Real Root Of -834*x^4+597*x^3+819*x^2+942*x+634 6835621873962740 a001 144/521*322^(5/9) 6835621888180378 a007 Real Root Of -761*x^4+352*x^3-827*x^2-651*x+220 6835621891353794 a001 161/416020*121393^(13/53) 6835621893920622 r009 Re(z^3+c),c=-63/106+14/55*I,n=30 6835621916349886 a007 Real Root Of 126*x^4-171*x^3+964*x^2-381*x-793 6835621929460700 m005 (1/2*Pi-4/11)/(3/4*exp(1)-3/11) 6835621953347660 m001 (GAMMA(23/24)+GolombDickman)/(exp(Pi)+1) 6835621965320006 m001 1/TwinPrimes*DuboisRaymond*exp(sin(1)) 6835621973828126 m001 (1+BesselI(0,1))/(-GAMMA(2/3)+FeigenbaumDelta) 6835621988888925 a001 987/24476*1364^(32/45) 6835621998828512 a007 Real Root Of 74*x^4+391*x^3-783*x^2-8*x-147 6835622005463881 a007 Real Root Of 646*x^4-443*x^3+274*x^2+349*x-172 6835622018805891 m001 Landau*KhinchinHarmonic^ThueMorse 6835622019340208 a001 844/13*28657^(37/41) 6835622058178894 a007 Real Root Of 588*x^4+5*x^3+542*x^2-215*x-527 6835622067779261 a007 Real Root Of 90*x^4+374*x^3+592*x^2-682*x-643 6835622069551652 m001 (Pi+ln(2)/ln(10)/BesselK(0,1))*Pi^(1/2) 6835622070824399 l006 ln(3407/6749) 6835622087976386 m002 -2-Pi^3/6+Tanh[Pi]/3 6835622088425170 a007 Real Root Of -593*x^4+790*x^3+76*x^2+437*x+645 6835622090565638 m001 1/GAMMA(1/6)/exp(Cahen)/sinh(1)^2 6835622123101110 a007 Real Root Of -732*x^4+389*x^3-137*x^2+607*x+763 6835622154239493 m001 exp(Ei(1))/GaussKuzminWirsing^2/GAMMA(11/12) 6835622192544925 a001 141/2161*1364^(29/45) 6835622195084349 m001 1/FeigenbaumB^2*exp(ArtinRank2)^2*GAMMA(19/24) 6835622195775979 a007 Real Root Of -157*x^4-941*x^3+895*x^2-178*x-814 6835622196383607 a001 34/5779*1364^(44/45) 6835622212177665 m001 (CopelandErdos-sin(1))/(FeigenbaumB+ZetaQ(2)) 6835622231744652 a007 Real Root Of -851*x^4-922*x^3-869*x^2+472*x+620 6835622242207125 a007 Real Root Of 98*x^4+726*x^3+415*x^2+359*x+984 6835622253056247 m001 (Zeta(3)+Ei(1,1))/(Conway+StronglyCareFree) 6835622264593046 p001 sum(1/(174*n+83)/n/(6^n),n=0..infinity) 6835622276332055 a001 312119004989/13*3^(20/21) 6835622288153773 a001 24476/21*2178309^(4/33) 6835622293642208 a007 Real Root Of 92*x^4-909*x^3+120*x^2-839*x-940 6835622297990411 s001 sum(1/10^(n-1)*A220437[n]/n^n,n=1..infinity) 6835622298414815 a007 Real Root Of -120*x^4-774*x^3+210*x^2-671*x+381 6835622314670419 m009 (4*Psi(1,1/3)+3/4)/(6*Psi(1,1/3)-2/5) 6835622324530114 r005 Re(z^2+c),c=-43/54+19/54*I,n=7 6835622336321274 p001 sum(1/(456*n+161)/n/(24^n),n=1..infinity) 6835622341565037 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+ThueMorse)/ZetaP(2) 6835622346971409 r005 Re(z^2+c),c=-19/14+4/143*I,n=32 6835622348174758 a001 2/6119*11^(4/13) 6835622364101722 r002 4th iterates of z^2 + 6835622364676811 a001 305/682*521^(17/39) 6835622371230358 a001 6765/1149851*1364^(44/45) 6835622392301010 a007 Real Root Of -22*x^4+308*x^3-938*x^2+150*x+644 6835622396740155 a001 17711/3010349*1364^(44/45) 6835622402762202 a001 28657/4870847*1364^(44/45) 6835622412506077 a001 5473/930249*1364^(44/45) 6835622419199948 m001 log(gamma)*(gamma+2/3) 6835622437945550 l006 ln(4036/7995) 6835622441194268 a001 2584/271443*1364^(41/45) 6835622457856841 r008 a(0)=6,K{-n^6,-42+30*n^3+53*n^2-42*n} 6835622479291593 a001 4181/710647*1364^(44/45) 6835622507545654 a001 329/1926*1364^(23/45) 6835622509026582 m001 1/ln(LandauRamanujan)/Kolakoski*Zeta(1/2) 6835622513788227 a007 Real Root Of -845*x^4+972*x^3-791*x^2-52*x+829 6835622516721720 m006 (1/4*Pi+1/3)/(2/Pi+1) 6835622525935401 a007 Real Root Of 328*x^4-783*x^3-480*x^2-606*x+817 6835622535839996 r008 a(0)=7,K{-n^6,2*n^3-n^2+5*n} 6835622536808225 a007 Real Root Of 81*x^4-947*x^3-193*x^2+294*x+174 6835622545563737 a001 987/9349*1364^(26/45) 6835622552652263 a007 Real Root Of -6*x^4+788*x^3-833*x^2-388*x+377 6835622555890761 a001 17711/5778*521^(5/39) 6835622582618894 a007 Real Root Of -213*x^4+305*x^3+824*x^2+221*x-587 6835622602713901 m001 (KhinchinHarmonic+Khinchin)/(GAMMA(3/4)-gamma) 6835622613409352 r005 Im(z^2+c),c=31/106+19/34*I,n=51 6835622616150529 a001 6765/710647*1364^(41/45) 6835622623732298 a007 Real Root Of 139*x^4+902*x^3-484*x^2-951*x+735 6835622641676303 a001 17711/1860498*1364^(41/45) 6835622645400463 a001 46368/4870847*1364^(41/45) 6835622647702121 a001 28657/3010349*1364^(41/45) 6835622657452099 a001 10946/1149851*1364^(41/45) 6835622679922354 a005 (1/cos(37/197*Pi))^259 6835622686468801 a001 2584/167761*1364^(38/45) 6835622694565308 a007 Real Root Of -922*x^4+627*x^3-510*x^2-209*x+497 6835622694811652 m005 (1/2*Pi-7/8)/(5/7*Catalan+4/11) 6835622700893939 a007 Real Root Of 301*x^4-659*x^3+370*x^2+597*x-41 6835622706065962 l006 ln(4665/9241) 6835622719070480 m001 1/GAMMA(5/24)/ln(OneNinth)*sin(Pi/12)^2 6835622724279444 a001 4181/439204*1364^(41/45) 6835622726085498 a007 Real Root Of -258*x^4+987*x^3+588*x^2-345*x-139 6835622732611995 b008 3*(1+Zeta[Khinchin]) 6835622734490255 a001 6624/2161*521^(5/39) 6835622760547571 a001 121393/39603*521^(5/39) 6835622764349282 a001 317811/103682*521^(5/39) 6835622764903945 a001 832040/271443*521^(5/39) 6835622764984869 a001 311187/101521*521^(5/39) 6835622765034883 a001 1346269/439204*521^(5/39) 6835622765246745 a001 514229/167761*521^(5/39) 6835622766698869 a001 196418/64079*521^(5/39) 6835622767330475 r005 Re(z^2+c),c=-31/52+17/40*I,n=34 6835622772557824 a001 610/29*123^(34/47) 6835622776651878 a001 75025/24476*521^(5/39) 6835622810875850 r009 Re(z^3+c),c=-3/28+17/33*I,n=14 6835622811503695 a001 377/5778*843^(29/42) 6835622816382180 a001 3/10946*196418^(24/53) 6835622844870818 a001 28657/9349*521^(5/39) 6835622861138385 a001 6765/439204*1364^(38/45) 6835622865232859 a001 377/3571*843^(13/21) 6835622886622333 a001 17711/1149851*1364^(38/45) 6835622888098871 r009 Re(z^3+c),c=-1/27+52/63*I,n=8 6835622890340391 a001 46368/3010349*1364^(38/45) 6835622891218106 a001 75025/4870847*1364^(38/45) 6835622892638278 a001 28657/1860498*1364^(38/45) 6835622902372280 a001 10946/710647*1364^(38/45) 6835622916681517 a003 sin(Pi*1/67)/sin(Pi*19/79) 6835622927522501 q001 1443/2111 6835622930528932 a001 1292/51841*1364^(7/9) 6835622937046330 a001 1597/271443*1364^(44/45) 6835622941483727 r005 Im(z^2+c),c=3/8+1/41*I,n=3 6835622944408203 r009 Re(z^3+c),c=-5/64+15/64*I,n=3 6835622964635186 a001 18/1346269*12586269025^(13/23) 6835622969090124 a001 4181/271443*1364^(38/45) 6835622973064191 a007 Real Root Of 468*x^4+258*x^3+799*x^2-822*x-955 6835623008105145 a001 987/2207*3571^(1/3) 6835623017189150 a007 Real Root Of 431*x^4-458*x^3+621*x^2-283*x-724 6835623019017515 a001 1364/514229*17711^(3/31) 6835623020001293 r009 Re(z^3+c),c=-3/29+13/27*I,n=25 6835623020116363 m001 (Khinchin-PlouffeB)/(Zeta(1/2)-Pi^(1/2)) 6835623100756058 a007 Real Root Of -530*x^4+923*x^3-319*x^2-330*x+334 6835623100880103 a001 1597/1364*521^(11/39) 6835623105949069 a001 2255/90481*1364^(7/9) 6835623126269606 r005 Re(z^2+c),c=-17/14+55/171*I,n=6 6835623131542522 a001 17711/710647*1364^(7/9) 6835623135276557 a001 2576/103361*1364^(7/9) 6835623135821345 a001 121393/4870847*1364^(7/9) 6835623135900829 a001 105937/4250681*1364^(7/9) 6835623135912425 a001 416020/16692641*1364^(7/9) 6835623135914117 a001 726103/29134601*1364^(7/9) 6835623135914364 a001 5702887/228826127*1364^(7/9) 6835623135914400 a001 829464/33281921*1364^(7/9) 6835623135914405 a001 39088169/1568397607*1364^(7/9) 6835623135914406 a001 34111385/1368706081*1364^(7/9) 6835623135914406 a001 133957148/5374978561*1364^(7/9) 6835623135914406 a001 233802911/9381251041*1364^(7/9) 6835623135914406 a001 1836311903/73681302247*1364^(7/9) 6835623135914406 a001 267084832/10716675201*1364^(7/9) 6835623135914406 a001 12586269025/505019158607*1364^(7/9) 6835623135914406 a001 10983760033/440719107401*1364^(7/9) 6835623135914406 a001 43133785636/1730726404001*1364^(7/9) 6835623135914406 a001 75283811239/3020733700601*1364^(7/9) 6835623135914406 a001 182717648081/7331474697802*1364^(7/9) 6835623135914406 a001 139583862445/5600748293801*1364^(7/9) 6835623135914406 a001 53316291173/2139295485799*1364^(7/9) 6835623135914406 a001 10182505537/408569081798*1364^(7/9) 6835623135914406 a001 7778742049/312119004989*1364^(7/9) 6835623135914406 a001 2971215073/119218851371*1364^(7/9) 6835623135914406 a001 567451585/22768774562*1364^(7/9) 6835623135914406 a001 433494437/17393796001*1364^(7/9) 6835623135914406 a001 165580141/6643838879*1364^(7/9) 6835623135914406 a001 31622993/1268860318*1364^(7/9) 6835623135914408 a001 24157817/969323029*1364^(7/9) 6835623135914422 a001 9227465/370248451*1364^(7/9) 6835623135914516 a001 1762289/70711162*1364^(7/9) 6835623135915163 a001 1346269/54018521*1364^(7/9) 6835623135919592 a001 514229/20633239*1364^(7/9) 6835623135949952 a001 98209/3940598*1364^(7/9) 6835623136158043 a001 75025/3010349*1364^(7/9) 6835623137584317 a001 28657/1149851*1364^(7/9) 6835623147360146 a001 5473/219602*1364^(7/9) 6835623155294731 a007 Real Root Of -92*x^4+622*x^3-365*x^2+373*x-263 6835623163460611 a001 987/2207*9349^(17/57) 6835623169405571 a001 9/1292*196418^(13/23) 6835623177768443 a001 2584/64079*1364^(32/45) 6835623182320882 a001 1597/167761*1364^(41/45) 6835623186785621 a001 987/2207*45537549124^(1/9) 6835623186785628 a001 987/2207*12752043^(1/6) 6835623189400972 m001 1/Ei(1)/MadelungNaCl^2/exp(arctan(1/2))^2 6835623195249515 a001 987/2207*15127^(17/60) 6835623206291494 m001 3^(1/3)*exp(-1/2*Pi)^Magata 6835623210379252 a003 sin(Pi*13/61)/sin(Pi*25/69) 6835623214364677 a001 4181/167761*1364^(7/9) 6835623222223958 m008 (1/6*Pi^4+1/2)/(1/5*Pi^4+5) 6835623228491854 m005 (1/2*2^(1/2)+3/4)/(2/5*Pi+7/8) 6835623251243829 a001 987/2207*5778^(17/54) 6835623255039013 a001 610/843*843^(1/3) 6835623280159239 m001 (Si(Pi)+GAMMA(3/4))/(-gamma(3)+ZetaP(2)) 6835623291698441 l006 ln(5866/6281) 6835623301164518 a005 (1/cos(32/123*Pi))^181 6835623303849139 m001 GAMMA(5/12)^2/GAMMA(1/6)^2*exp(cosh(1)) 6835623310156223 a001 10946/2207*521^(2/39) 6835623312450422 a001 10946/3571*521^(5/39) 6835623313196602 r005 Im(z^2+c),c=-7/6+34/197*I,n=32 6835623323328502 a007 Real Root Of -740*x^4+902*x^3-507*x^2-270*x+502 6835623351223627 a001 615/15251*1364^(32/45) 6835623353828968 r002 10th iterates of z^2 + 6835623358809607 r005 Im(z^2+c),c=-97/114+17/56*I,n=7 6835623364640175 r005 Im(z^2+c),c=-5/114+37/51*I,n=35 6835623373538381 a007 Real Root Of 144*x^4-344*x^3+335*x^2+484*x+33 6835623376530397 a001 17711/439204*1364^(32/45) 6835623380222605 a001 46368/1149851*1364^(32/45) 6835623380761291 a001 121393/3010349*1364^(32/45) 6835623380888457 a001 196418/4870847*1364^(32/45) 6835623381094217 a001 75025/1860498*1364^(32/45) 6835623381936173 a007 Real Root Of -280*x^4+495*x^3-935*x^2-382*x+395 6835623382504515 a001 28657/710647*1364^(32/45) 6835623385072433 a007 Real Root Of 238*x^4-980*x^3-32*x^2+79*x+222 6835623392170841 a001 10946/271443*1364^(32/45) 6835623395322441 a007 Real Root Of 331*x^4-237*x^3-153*x^2-887*x-60 6835623402292885 r009 Im(z^3+c),c=-15/38+38/53*I,n=2 6835623416684258 a001 2584/39603*1364^(29/45) 6835623420605124 m001 (2^(1/3))^GAMMA(11/12)-Lehmer 6835623424961537 p003 LerchPhi(1/3,1,429/227) 6835623426381030 a001 1597/103682*1364^(38/45) 6835623449265660 a007 Real Root Of 676*x^4-560*x^3+277*x^2-66*x-501 6835623452336683 m001 (OneNinth-Champernowne)^Zeta(3) 6835623458424826 a001 4181/103682*1364^(32/45) 6835623464544267 a007 Real Root Of -919*x^4+252*x^3-242*x^2-407*x+116 6835623474421458 a007 Real Root Of -876*x^4+522*x^3+441*x^2+774*x+681 6835623479610031 h005 exp(cos(Pi*3/44)+sin(Pi*13/33)) 6835623487301511 a001 2584/2207*1364^(11/45) 6835623493275563 a001 987/3571*1364^(4/9) 6835623504080131 r005 Im(z^2+c),c=-69/118+36/55*I,n=22 6835623511367804 m005 (1/2*exp(1)+2/9)/(3/4*5^(1/2)+7/11) 6835623595283781 a001 6765/103682*1364^(29/45) 6835623604621318 a007 Real Root Of -776*x^4-957*x^3-899*x^2+701*x+763 6835623618061463 a007 Real Root Of -883*x^4+596*x^3+793*x^2+457*x+325 6835623621341100 a001 17711/271443*1364^(29/45) 6835623622637104 a007 Real Root Of -557*x^4+826*x^3+133*x^2+851*x+905 6835623625142812 a001 6624/101521*1364^(29/45) 6835623625697474 a001 121393/1860498*1364^(29/45) 6835623625778398 a001 317811/4870847*1364^(29/45) 6835623625828412 a001 196418/3010349*1364^(29/45) 6835623626040274 a001 75025/1149851*1364^(29/45) 6835623627492399 a001 28657/439204*1364^(29/45) 6835623637445409 a001 10946/167761*1364^(29/45) 6835623639735144 b008 2-15*Sqrt[22] 6835623660831742 r009 Im(z^3+c),c=-31/60+26/47*I,n=3 6835623668322469 m001 1/cos(Pi/5)/cos(1)^2*ln(sinh(1)) 6835623668399883 a001 3571/75025*317811^(34/45) 6835623669369276 r005 Im(z^2+c),c=-47/74+28/43*I,n=6 6835623673620559 a001 1597/64079*1364^(7/9) 6835623674912885 a003 cos(Pi*10/57)-cos(Pi*29/65) 6835623677391825 a001 646/6119*1364^(26/45) 6835623683030403 m009 (4/5*Psi(1,3/4)-1)/(5*Psi(1,2/3)-1/5) 6835623683814109 a001 987/2207*2207^(17/48) 6835623699937366 a007 Real Root Of 641*x^4-753*x^3-928*x^2-325*x-169 6835623705664356 a001 4181/64079*1364^(29/45) 6835623711148782 a007 Real Root Of -995*x^4-583*x^3-854*x^2-142*x+333 6835623718745112 a003 sin(Pi*8/29)*sin(Pi*17/48) 6835623726910421 s001 sum(exp(-Pi/4)^n*A045743[n],n=1..infinity) 6835623740726429 a007 Real Root Of 857*x^4+610*x^3+229*x^2-102*x-169 6835623744638630 r005 Im(z^2+c),c=15/44+4/55*I,n=45 6835623749589337 m001 (Bloch+MertensB1)^FibonacciFactorial 6835623757608563 a007 Real Root Of 180*x^4-842*x^3+952*x^2-16*x-764 6835623766888804 a007 Real Root Of -483*x^4+947*x^3+445*x^2+82*x-461 6835623781522566 a001 377/9349*843^(16/21) 6835623791974512 a007 Real Root Of -888*x^4+363*x^3-603*x^2+400*x+865 6835623803859509 a007 Real Root Of 567*x^4-538*x^3+857*x^2-351*x-936 6835623804410304 h002 exp(23*10^(1/2)+23*7^(1/4)) 6835623812661740 a007 Real Root Of 98*x^4+744*x^3+484*x^2-109*x+310 6835623821455073 a007 Real Root Of -70*x^4-543*x^3-361*x^2+424*x-837 6835623824110758 a007 Real Root Of 4*x^4+267*x^3-447*x^2-537*x-194 6835623833555510 m003 Sqrt[5]/8+(13*E^(1/2+Sqrt[5]/2))/10 6835623841788593 a007 Real Root Of 739*x^4-602*x^3-530*x^2-534*x-471 6835623842523316 a001 6765/64079*1364^(26/45) 6835623860338813 a005 (1/sin(83/173*Pi))^951 6835623866615676 a001 17711/167761*1364^(26/45) 6835623869106232 a007 Real Root Of 644*x^4-317*x^3+529*x^2+436*x-191 6835623869704544 s002 sum(A087380[n]/((exp(n)-1)/n),n=1..infinity) 6835623870130704 a001 11592/109801*1364^(26/45) 6835623870643540 a001 121393/1149851*1364^(26/45) 6835623870718361 a001 317811/3010349*1364^(26/45) 6835623870736024 a001 514229/4870847*1364^(26/45) 6835623870764604 a001 98209/930249*1364^(26/45) 6835623870960489 a001 75025/710647*1364^(26/45) 6835623872303111 a001 28657/271443*1364^(26/45) 6835623877019378 a001 3571/89*32951280099^(18/23) 6835623881047875 a001 2584/15127*1364^(23/45) 6835623881505573 a001 5473/51841*1364^(26/45) 6835623893649821 a007 Real Root Of -316*x^4+387*x^3-685*x^2-20*x+499 6835623912536392 a001 1597/39603*1364^(32/45) 6835623938066284 r005 Re(z^2+c),c=-7/74+27/31*I,n=59 6835623944006669 r002 17th iterates of z^2 + 6835623944580190 a001 4181/39603*1364^(26/45) 6835623950011054 r002 5th iterates of z^2 + 6835623956804544 a001 8/321*322^(35/36) 6835623971763293 m001 1/Zeta(3)/exp(FeigenbaumKappa)^2/cos(Pi/5) 6835623983153650 a001 1597/2207*1364^(14/45) 6835623984650819 r005 Im(z^2+c),c=-9/16+53/87*I,n=13 6835623992719249 p004 log(36653/18503) 6835624015197448 a001 4181/2207*1364^(8/45) 6835624019883520 a007 Real Root Of -498*x^4+937*x^3+446*x^2-766*x-324 6835624024880088 r002 58th iterates of z^2 + 6835624025017414 m005 (3/4*gamma-5/6)/(2^(1/2)-2) 6835624036034285 a007 Real Root Of 797*x^4-567*x^3+726*x^2+454*x-384 6835624039684856 a001 233/4*76^(29/51) 6835624044961217 a007 Real Root Of -475*x^4+657*x^3+976*x^2-287*x-366 6835624064664796 a001 987/439204*3571^(50/51) 6835624076140463 m005 (1/2*5^(1/2)-9/11)/(1/12*5^(1/2)-5/8) 6835624081439155 a001 2255/13201*1364^(23/45) 6835624096068440 a001 329/90481*3571^(47/51) 6835624098985432 a007 Real Root Of -925*x^4+981*x^3-986*x^2-809*x+423 6835624105584610 r002 2th iterates of z^2 + 6835624110675848 a001 17711/103682*1364^(23/45) 6835624114941425 a001 15456/90481*1364^(23/45) 6835624115563764 a001 121393/710647*1364^(23/45) 6835624115654562 a001 105937/620166*1364^(23/45) 6835624115667809 a001 832040/4870847*1364^(23/45) 6835624115675996 a001 514229/3010349*1364^(23/45) 6835624115710678 a001 196418/1149851*1364^(23/45) 6835624115948390 a001 75025/439204*1364^(23/45) 6835624117577696 a001 28657/167761*1364^(23/45) 6835624119437279 r008 a(0)=7,K{-n^6,20+20*n-39*n^2+4*n^3} 6835624126441425 a001 9349/196418*317811^(34/45) 6835624127935949 a001 987/167761*3571^(44/51) 6835624128745119 a001 10946/64079*1364^(23/45) 6835624143666415 a001 329/1926*3571^(23/51) 6835624151359438 r005 Re(z^2+c),c=1/27+27/47*I,n=17 6835624152056415 a001 6765/2207*1364^(1/9) 6835624158589046 a001 21/2206*3571^(41/51) 6835624170835292 m005 (2/5*2^(1/2)+1/2)/(1+1/4*5^(1/2)) 6835624173243978 a001 1597/24476*1364^(29/45) 6835624183288186 r005 Im(z^2+c),c=-39/31+1/32*I,n=10 6835624183430863 a007 Real Root Of 524*x^4-983*x^3+316*x^2+850*x+5 6835624186400165 r005 Re(z^2+c),c=-8/11+4/27*I,n=62 6835624192421515 a001 987/64079*3571^(38/51) 6835624193268786 a001 24476/514229*317811^(34/45) 6835624195848359 a007 Real Root Of -74*x^4+582*x^3-601*x^2-446*x+178 6835624196048682 a001 1292/2889*1364^(17/45) 6835624205287777 a001 4181/24476*1364^(23/45) 6835624209044586 a001 39603/832040*317811^(34/45) 6835624217930279 a001 329/13201*3571^(35/51) 6835624234066774 a001 2584/9349*1364^(4/9) 6835624234570366 a001 15127/317811*317811^(34/45) 6835624255479767 a001 141/2161*3571^(29/51) 6835624265230788 a001 987/24476*3571^(32/51) 6835624269794113 a001 2584/2207*3571^(11/51) 6835624284077892 q001 2387/3492 6835624294982800 a007 Real Root Of 263*x^4-372*x^3-903*x^2-671*x+942 6835624297210934 a001 646/341*521^(8/39) 6835624299006281 a007 Real Root Of 474*x^4+574*x^3+831*x^2+46*x-277 6835624330127005 m009 (5*Psi(1,2/3)+1)/(5/2*Pi^2-4/5) 6835624333247784 m002 -Cosh[Pi]/2+Cosh[Pi]*Coth[Pi]+Tanh[Pi] 6835624342146747 a001 6765/24476*1364^(4/9) 6835624345605755 a007 Real Root Of -825*x^4+918*x^3+325*x^2+485*x+653 6835624353853257 a001 329/1926*9349^(23/57) 6835624357915402 a001 17711/64079*1364^(4/9) 6835624360216018 a001 46368/167761*1364^(4/9) 6835624360504556 a001 377/15127*843^(5/6) 6835624360551674 a001 121393/439204*1364^(4/9) 6835624360600645 a001 317811/1149851*1364^(4/9) 6835624360607790 a001 832040/3010349*1364^(4/9) 6835624360608832 a001 2178309/7881196*1364^(4/9) 6835624360608984 a001 5702887/20633239*1364^(4/9) 6835624360609007 a001 14930352/54018521*1364^(4/9) 6835624360609010 a001 39088169/141422324*1364^(4/9) 6835624360609010 a001 102334155/370248451*1364^(4/9) 6835624360609010 a001 267914296/969323029*1364^(4/9) 6835624360609010 a001 701408733/2537720636*1364^(4/9) 6835624360609010 a001 1836311903/6643838879*1364^(4/9) 6835624360609010 a001 4807526976/17393796001*1364^(4/9) 6835624360609010 a001 12586269025/45537549124*1364^(4/9) 6835624360609010 a001 32951280099/119218851371*1364^(4/9) 6835624360609010 a001 86267571272/312119004989*1364^(4/9) 6835624360609010 a001 225851433717/817138163596*1364^(4/9) 6835624360609010 a001 1548008755920/5600748293801*1364^(4/9) 6835624360609010 a001 139583862445/505019158607*1364^(4/9) 6835624360609010 a001 53316291173/192900153618*1364^(4/9) 6835624360609010 a001 20365011074/73681302247*1364^(4/9) 6835624360609010 a001 7778742049/28143753123*1364^(4/9) 6835624360609010 a001 2971215073/10749957122*1364^(4/9) 6835624360609010 a001 1134903170/4106118243*1364^(4/9) 6835624360609010 a001 433494437/1568397607*1364^(4/9) 6835624360609010 a001 165580141/599074578*1364^(4/9) 6835624360609011 a001 63245986/228826127*1364^(4/9) 6835624360609012 a001 24157817/87403803*1364^(4/9) 6835624360609020 a001 9227465/33385282*1364^(4/9) 6835624360609078 a001 3524578/12752043*1364^(4/9) 6835624360609477 a001 1346269/4870847*1364^(4/9) 6835624360612206 a001 514229/1860498*1364^(4/9) 6835624360630911 a001 196418/710647*1364^(4/9) 6835624360759120 a001 75025/271443*1364^(4/9) 6835624361637877 a001 28657/103682*1364^(4/9) 6835624367660967 a001 10946/39603*1364^(4/9) 6835624370318256 a001 2584/2207*9349^(11/57) 6835624375654498 a007 Real Root Of -828*x^4+453*x^3-954*x^2-53*x+735 6835624376900042 a001 1597/15127*1364^(26/45) 6835624384855717 a001 329/1926*64079^(1/3) 6835624385410630 a001 329/1926*4106118243^(1/6) 6835624385410900 a001 2584/2207*7881196^(1/9) 6835624385410912 a001 2584/2207*312119004989^(1/15) 6835624385410912 a001 2584/2207*1568397607^(1/12) 6835624386137304 a001 2584/2207*39603^(1/6) 6835624389588521 m001 ln(Khinchin)/ln(CopelandErdos) 6835624390887550 a001 2584/2207*15127^(11/60) 6835624392501825 a007 Real Root Of 186*x^4-975*x^3+993*x^2-98*x-883 6835624395091593 a001 987/9349*3571^(26/51) 6835624396861782 a001 329/1926*15127^(23/60) 6835624408943843 a001 4181/15127*1364^(4/9) 6835624409526667 a001 5778/121393*317811^(34/45) 6835624413064920 a001 20633239/89*514229^(18/23) 6835624420225879 r005 Im(z^2+c),c=-5/66+15/22*I,n=25 6835624426469579 l006 ln(629/1246) 6835624427119171 a001 2584/2207*5778^(11/54) 6835624438278230 a001 10946/2207*1364^(2/45) 6835624447926843 r005 Im(z^2+c),c=-41/86+31/42*I,n=3 6835624461751972 m001 1/Robbin/Conway^2*ln(arctan(1/2)) 6835624465408006 a007 Real Root Of -245*x^4-263*x^3-765*x^2+477*x+653 6835624472618809 a001 329/1926*5778^(23/54) 6835624499035689 a001 28657/5778*521^(2/39) 6835624507734893 a001 6765/2207*3571^(5/51) 6835624513330093 a001 987/1149851*9349^(56/57) 6835624517427567 a001 141/101521*9349^(53/57) 6835624520497965 a001 141/2161*9349^(29/57) 6835624521592717 a001 987/439204*9349^(50/57) 6835624525580688 a001 329/90481*9349^(47/57) 6835624530032522 a001 987/167761*9349^(44/57) 6835624533269944 a001 21/2206*9349^(41/57) 6835624537779828 a001 329/13201*9349^(35/57) 6835624539686739 a001 987/64079*9349^(2/3) 6835624544894113 m001 (Paris+ZetaP(3))/(Lehmer+Magata) 6835624545802817 a001 6765/15127*1364^(17/45) 6835624549110953 a007 Real Root Of -829*x^4+968*x^3-659*x^2+231*x+956 6835624553427687 a001 6765/2207*9349^(5/57) 6835624557664663 a001 987/24476*9349^(32/57) 6835624560271793 a001 6765/2207*167761^(1/15) 6835624560285974 a001 141/2161*1149851^(1/3) 6835624560287698 a001 141/2161*1322157322203^(1/6) 6835624560287985 a001 6765/2207*20633239^(1/21) 6835624560287986 a001 6765/2207*228826127^(1/24) 6835624560288095 a001 6765/2207*1860498^(1/18) 6835624562777366 a001 6765/2207*15127^(1/12) 6835624574726107 a001 141/2161*15127^(29/60) 6835624579246286 a001 6765/2207*5778^(5/54) 6835624579462859 a001 329/13201*24476^(5/9) 6835624580022943 a001 987/1149851*24476^(8/9) 6835624580549625 a001 10946/2207*3571^(2/51) 6835624584283012 a001 4181/2207*3571^(8/51) 6835624585688573 a001 329/13201*167761^(7/15) 6835624585801913 a001 329/13201*20633239^(1/3) 6835624585801919 a001 329/13201*17393796001^(5/21) 6835624585801919 a001 329/13201*505019158607^(5/24) 6835624585801919 a001 329/13201*599074578^(5/18) 6835624585801919 a001 329/13201*228826127^(7/24) 6835624585802687 a001 329/13201*1860498^(7/18) 6835624585807558 a001 329/13201*710647^(5/12) 6835624589153834 s002 sum(A101911[n]/(n*exp(n)+1),n=1..infinity) 6835624589524393 a001 21/2206*370248451^(1/3) 6835624589949482 a001 987/4870847*167761^(13/15) 6835624590033782 a001 987/439204*167761^(2/3) 6835624590067495 a001 329/90481*6643838879^(1/3) 6835624590146732 a001 141/101521*119218851371^(1/3) 6835624590158293 a001 329/620166*2139295485799^(1/3) 6835624590159970 a001 987/4870847*20633239^(13/21) 6835624590159980 a001 987/4870847*141422324^(5/9) 6835624590159980 a001 987/4870847*73681302247^(5/12) 6835624590159980 a001 987/4870847*228826127^(13/24) 6835624590160176 a001 141/4769326*7881196^(7/9) 6835624590160250 a001 141/4769326*20633239^(11/15) 6835624590160253 a001 987/969323029*20633239^(14/15) 6835624590160253 a001 329/199691526*20633239^(19/21) 6835624590160258 a001 987/54018521*20633239^(16/21) 6835624590160262 a001 141/4769326*17393796001^(11/21) 6835624590160262 a001 141/4769326*312119004989^(7/15) 6835624590160262 a001 141/4769326*505019158607^(11/24) 6835624590160262 a001 141/4769326*1568397607^(7/12) 6835624590160262 a001 141/4769326*599074578^(11/18) 6835624590160268 a001 987/2537720636*141422324^(8/9) 6835624590160268 a001 329/199691526*817138163596^(5/9) 6835624590160268 a001 329/9381251041*17393796001^(17/21) 6835624590160268 a001 987/817138163596*17393796001^(20/21) 6835624590160268 a001 329/9381251041*45537549124^(7/9) 6835624590160268 a001 329/9381251041*505019158607^(17/24) 6835624590160268 a001 329/440719107401*312119004989^(13/15) 6835624590160268 a001 329/3020733700601*9062201101803^(5/6) 6835624590160268 a001 987/5600748293801*23725150497407^(19/24) 6835624590160268 a001 987/817138163596*3461452808002^(7/9) 6835624590160268 a001 987/23725150497407*505019158607^(23/24) 6835624590160268 a001 987/817138163596*505019158607^(5/6) 6835624590160268 a001 987/119218851371*23725150497407^(2/3) 6835624590160268 a001 987/119218851371*505019158607^(16/21) 6835624590160268 a001 329/440719107401*73681302247^(11/12) 6835624590160268 a001 987/45537549124*5600748293801^(2/3) 6835624590160268 a001 141/10525900321*28143753123^(5/6) 6835624590160268 a001 987/817138163596*28143753123^(14/15) 6835624590160268 a001 987/17393796001*1322157322203^(2/3) 6835624590160268 a001 987/119218851371*10749957122^(8/9) 6835624590160268 a001 987/6643838879*312119004989^(2/3) 6835624590160268 a001 987/6643838879*3461452808002^(11/18) 6835624590160268 a001 987/6643838879*28143753123^(11/15) 6835624590160268 a001 987/2537720636*23725150497407^(13/24) 6835624590160268 a001 987/2537720636*505019158607^(13/21) 6835624590160268 a001 987/2537720636*73681302247^(2/3) 6835624590160268 a001 987/2537720636*10749957122^(13/18) 6835624590160268 a001 987/6643838879*1568397607^(5/6) 6835624590160268 a001 987/969323029*17393796001^(2/3) 6835624590160268 a001 987/969323029*505019158607^(7/12) 6835624590160268 a001 329/9381251041*599074578^(17/18) 6835624590160268 a001 987/969323029*599074578^(7/9) 6835624590160268 a001 987/370248451*4106118243^(2/3) 6835624590160268 a001 329/199691526*228826127^(19/24) 6835624590160268 a001 987/2537720636*228826127^(13/15) 6835624590160268 a001 987/6643838879*228826127^(11/12) 6835624590160268 a001 987/141422324*969323029^(2/3) 6835624590160269 a001 329/199691526*87403803^(5/6) 6835624590160270 a001 987/54018521*23725150497407^(5/12) 6835624590160270 a001 987/54018521*505019158607^(10/21) 6835624590160270 a001 987/54018521*28143753123^(8/15) 6835624590160270 a001 987/54018521*10749957122^(5/9) 6835624590160270 a001 987/54018521*228826127^(2/3) 6835624590160282 a001 987/20633239*54018521^(2/3) 6835624590160378 a001 987/7881196*45537549124^(4/9) 6835624590160406 a001 987/7881196*12752043^(2/3) 6835624590160510 a001 987/54018521*4870847^(5/6) 6835624590160519 a001 987/3010349*3010349^(2/3) 6835624590160544 a001 987/370248451*4870847^(23/24) 6835624590160582 a001 987/7881196*4870847^(17/24) 6835624590161022 a001 987/3010349*9062201101803^(1/3) 6835624590161406 a001 987/4870847*1860498^(13/18) 6835624590162026 a001 987/54018521*1860498^(8/9) 6835624590165429 a001 987/1149851*20633239^(8/15) 6835624590165438 a001 987/1149851*17393796001^(8/21) 6835624590165438 a001 987/1149851*23725150497407^(7/24) 6835624590165438 a001 987/1149851*505019158607^(1/3) 6835624590165438 a001 987/1149851*10749957122^(7/18) 6835624590165438 a001 987/1149851*599074578^(4/9) 6835624590165438 a001 987/1149851*228826127^(7/15) 6835624590165606 a001 987/1149851*4870847^(7/12) 6835624590171335 a001 987/7881196*710647^(17/21) 6835624590172669 a001 141/4769326*710647^(11/12) 6835624590173161 a001 987/54018521*710647^(20/21) 6835624590174462 a001 987/1149851*710647^(2/3) 6835624590195696 a001 987/439204*20633239^(10/21) 6835624590195704 a001 987/439204*3461452808002^(5/18) 6835624590195704 a001 987/439204*28143753123^(1/3) 6835624590195704 a001 987/439204*228826127^(5/12) 6835624590196801 a001 987/439204*1860498^(5/9) 6835624590237290 a001 987/4870847*271443^(5/6) 6835624590403101 a001 987/167761*7881196^(4/9) 6835624590403150 a001 987/167761*312119004989^(4/15) 6835624590403150 a001 987/167761*1568397607^(1/3) 6835624590403282 a001 987/167761*4870847^(11/24) 6835624590410240 a001 987/167761*710647^(11/21) 6835624590660007 a001 987/1149851*103682^(7/9) 6835624590760926 a001 987/7881196*103682^(17/18) 6835624590791740 a001 987/167761*103682^(11/18) 6835624591825009 a001 987/64079*817138163596^(2/9) 6835624591825009 a001 987/64079*87403803^(1/3) 6835624593308717 a001 987/167761*39603^(2/3) 6835624593497484 a001 987/439204*39603^(25/33) 6835624593863431 a001 987/1149851*39603^(28/33) 6835624594255229 a001 987/3010349*39603^(31/33) 6835624594334362 a001 987/64079*39603^(19/33) 6835624596831259 a001 17711/39603*1364^(17/45) 6835624598826743 a001 10946/2207*9349^(2/57) 6835624601570574 a001 987/24476*23725150497407^(1/6) 6835624601570574 a001 987/24476*10749957122^(2/9) 6835624601570574 a001 987/24476*228826127^(4/15) 6835624601570670 a001 987/24476*4870847^(1/3) 6835624601575731 a001 987/24476*710647^(8/21) 6835624601702934 a001 10946/2207*39603^(1/33) 6835624601853185 a001 987/24476*103682^(4/9) 6835624602566615 a001 10946/2207*15127^(1/30) 6835624603227585 a001 329/13201*15127^(7/12) 6835624603683714 a001 987/24476*39603^(16/33) 6835624604276208 a001 23184/51841*1364^(17/45) 6835624605362412 a001 121393/271443*1364^(17/45) 6835624605520887 a001 317811/710647*1364^(17/45) 6835624605544008 a001 416020/930249*1364^(17/45) 6835624605547381 a001 2178309/4870847*1364^(17/45) 6835624605549466 a001 1346269/3010349*1364^(17/45) 6835624605558298 a001 514229/1149851*1364^(17/45) 6835624605618830 a001 98209/219602*1364^(17/45) 6835624606033722 a001 75025/167761*1364^(17/45) 6835624608877440 a001 28657/64079*1364^(17/45) 6835624609154183 a001 10946/2207*5778^(1/27) 6835624609937316 a001 21/2206*15127^(41/60) 6835624610744304 a001 987/64079*15127^(19/30) 6835624612309702 a001 987/167761*15127^(11/15) 6835624613467675 a001 329/90481*15127^(47/60) 6835624615089513 a001 987/439204*15127^(5/6) 6835624616534170 a001 141/101521*15127^(53/60) 6835624617502612 a001 987/24476*15127^(8/15) 6835624618046504 a001 987/1149851*15127^(14/15) 6835624619532987 a001 329/620166*15127^(59/60) 6835624628368571 a001 5473/12238*1364^(17/45) 6835624629151341 a001 377/1364*843^(10/21) 6835624632477817 a007 Real Root Of -906*x^4+230*x^3+35*x^2+518*x+609 6835624632694120 a001 987/9349*9349^(26/57) 6835624651140965 a007 Real Root Of 875*x^4+248*x^3+928*x^2-33*x-568 6835624657391483 a001 4181/2207*9349^(8/57) 6835624660044813 a001 10946/2207*2207^(1/24) 6835624661208914 a007 Real Root Of 159*x^4-358*x^3+744*x^2-532*x+33 6835624668367673 a001 987/9349*141422324^(2/9) 6835624668367673 a001 987/9349*73681302247^(1/6) 6835624668367961 a001 4181/2207*23725150497407^(1/24) 6835624668367961 a001 4181/2207*10749957122^(1/18) 6835624668367961 a001 4181/2207*228826127^(1/15) 6835624668367985 a001 4181/2207*4870847^(1/12) 6835624668369250 a001 4181/2207*710647^(2/21) 6835624668398598 a001 987/9349*271443^(1/3) 6835624668438613 a001 4181/2207*103682^(1/9) 6835624668896245 a001 4181/2207*39603^(4/33) 6835624669122428 a007 Real Root Of -354*x^4+317*x^3+654*x^2+520*x-685 6835624670084599 a001 987/9349*39603^(13/33) 6835624670245838 a001 141/2161*5778^(29/54) 6835624672350970 a001 4181/2207*15127^(2/15) 6835624672490900 a001 75025/15127*521^(2/39) 6835624681312454 a001 987/9349*15127^(13/30) 6835624691900872 a001 1597/5778*1364^(4/9) 6835624695504866 h001 (7/10*exp(1)+8/9)/(4/9*exp(2)+4/5) 6835624697797675 a001 196418/39603*521^(2/39) 6835624698701241 a001 4181/2207*5778^(4/27) 6835624699283350 r005 Re(z^2+c),c=17/86+19/39*I,n=25 6835624701489884 a001 514229/103682*521^(2/39) 6835624702028570 a001 1346269/271443*521^(2/39) 6835624702155736 a001 2178309/439204*521^(2/39) 6835624702361496 a001 75640/15251*521^(2/39) 6835624703771794 a001 317811/64079*521^(2/39) 6835624706472861 a001 6765/2207*2207^(5/48) 6835624707017633 a001 2584/2207*2207^(11/48) 6835624713438122 a001 121393/24476*521^(2/39) 6835624718510020 a001 329/13201*5778^(35/54) 6835624722903696 a001 987/24476*5778^(16/27) 6835624723944674 a001 4181/5778*1364^(14/45) 6835624729918967 a001 1597/9349*1364^(23/45) 6835624735908091 a001 987/64079*5778^(19/27) 6835624744982455 a001 21/2206*5778^(41/54) 6835624753851657 r005 Im(z^2+c),c=-31/102+19/29*I,n=35 6835624757236193 a001 987/167761*5778^(22/27) 6835624761962769 a001 4181/9349*1364^(17/45) 6835624766950836 a001 987/9349*5778^(13/27) 6835624768048142 m001 (-GolombDickman+Otter)/(cos(1)-ln(2^(1/2)+1)) 6835624768275518 a001 329/90481*5778^(47/54) 6835624779692120 a001 46368/9349*521^(2/39) 6835624779778707 a001 987/439204*5778^(25/27) 6835624791104716 a001 141/101521*5778^(53/54) 6835624803833133 a007 Real Root Of 682*x^4+272*x^3+141*x^2-913*x-752 6835624819498903 r005 Re(z^2+c),c=-13/102+48/55*I,n=23 6835624832024649 a001 10946/15127*1364^(14/45) 6835624838661113 m001 Stephens/(TwinPrimes^ThueMorse) 6835624847793305 a001 28657/39603*1364^(14/45) 6835624850093921 a001 75025/103682*1364^(14/45) 6835624850429577 a001 196418/271443*1364^(14/45) 6835624850478548 a001 514229/710647*1364^(14/45) 6835624850485693 a001 1346269/1860498*1364^(14/45) 6835624850487380 a001 2178309/3010349*1364^(14/45) 6835624850490109 a001 832040/1149851*1364^(14/45) 6835624850508814 a001 317811/439204*1364^(14/45) 6835624850612279 a001 7/267914296*34^(3/11) 6835624850637023 a001 121393/167761*1364^(14/45) 6835624851515780 a001 46368/64079*1364^(14/45) 6835624855303209 a007 Real Root Of -87*x^4-624*x^3-203*x^2-20*x-10 6835624857538871 a001 17711/24476*1364^(14/45) 6835624860803654 a001 2255/1926*1364^(11/45) 6835624898821750 a001 6765/9349*1364^(14/45) 6835624902263766 a001 4181/2207*2207^(1/6) 6835624910453385 m005 (1/3*Catalan+1/12)/(2/9*2^(1/2)-6) 6835624915989451 a001 987/3571*3571^(20/51) 6835624925908669 m001 FeigenbaumKappa/(Champernowne-arctan(1/3)) 6835624929373393 r009 Re(z^3+c),c=-15/46+41/60*I,n=29 6835624942981823 r009 Re(z^3+c),c=-14/25+13/57*I,n=6 6835624952789766 m001 (exp(1)+ln(5))/(-gamma(3)+HardyLittlewoodC3) 6835624956212034 r008 a(0)=7,K{-n^6,-4*n^3+8*n^2-n} 6835624967611645 m001 Bloch/(MasserGramain-gamma) 6835624971714527 m001 (Catalan-Zeta(3))/(-polylog(4,1/2)+PlouffeB) 6835624979053412 a001 1597/2207*3571^(14/51) 6835624985767024 a007 Real Root Of 685*x^4-628*x^3+548*x^2+347*x-369 6835624997416969 a007 Real Root Of 730*x^4+329*x^3+319*x^2-58*x-243 6835625015051800 m001 (BesselI(1,1)+Sarnak)/(Ei(1)+gamma(2)) 6835625040910520 a007 Real Root Of -197*x^4+204*x^3-662*x^2+30*x+438 6835625057861064 a001 329/1926*2207^(23/48) 6835625058715368 r005 Im(z^2+c),c=-2/3+67/158*I,n=15 6835625059612218 a001 10946/2207*843^(1/21) 6835625061194956 a001 17711/15127*1364^(11/45) 6835625088849457 a001 13/844*843^(19/21) 6835625090431654 a001 15456/13201*1364^(11/45) 6835625094697231 a001 121393/103682*1364^(11/45) 6835625095319570 a001 105937/90481*1364^(11/45) 6835625095410368 a001 832040/710647*1364^(11/45) 6835625095423615 a001 726103/620166*1364^(11/45) 6835625095431803 a001 1346269/1149851*1364^(11/45) 6835625095466484 a001 514229/439204*1364^(11/45) 6835625095704197 a001 196418/167761*1364^(11/45) 6835625097333502 a001 75025/64079*1364^(11/45) 6835625098760639 a001 987/3571*9349^(20/57) 6835625106993244 a001 1597/2207*9349^(14/57) 6835625108500927 a001 28657/24476*1364^(11/45) 6835625123666458 a001 1597/2207*24476^(2/9) 6835625126137067 a001 987/3571*167761^(4/15) 6835625126201833 a001 987/3571*20633239^(4/21) 6835625126201836 a001 987/3571*3461452808002^(1/9) 6835625126201836 a001 987/3571*28143753123^(2/15) 6835625126201836 a001 987/3571*228826127^(1/6) 6835625126201896 a001 987/3571*4870847^(5/24) 6835625126202080 a001 1597/2207*20633239^(2/15) 6835625126202082 a001 1597/2207*17393796001^(2/21) 6835625126202082 a001 1597/2207*505019158607^(1/12) 6835625126202082 a001 1597/2207*599074578^(1/9) 6835625126202275 a001 987/3571*1860498^(2/9) 6835625126204338 a001 1597/2207*710647^(1/6) 6835625126205059 a001 987/3571*710647^(5/21) 6835625126378468 a001 987/3571*103682^(5/18) 6835625127126580 a001 1597/2207*39603^(7/33) 6835625127522548 a001 987/3571*39603^(10/33) 6835625133172349 a001 1597/2207*15127^(7/30) 6835625136159360 a001 987/3571*15127^(1/3) 6835625147025499 a001 5473/2889*1364^(8/45) 6835625153262945 a007 Real Root Of -307*x^4-34*x^3+763*x^2+811*x-833 6835625160389118 a007 Real Root Of 5*x^4-388*x^3+748*x^2-620*x-46 6835625179285327 a001 1597/2207*5778^(7/27) 6835625181778835 a001 2584/3571*1364^(14/45) 6835625185043597 a001 10946/9349*1364^(11/45) 6835625199872081 r002 2th iterates of z^2 + 6835625202035043 a001 987/3571*5778^(10/27) 6835625230889294 a007 Real Root Of 115*x^4+833*x^3+256*x^2-529*x-597 6835625233803815 a001 17711/3571*521^(2/39) 6835625247581506 a007 Real Root Of -88*x^4-519*x^3+488*x^2-581*x-412 6835625263259975 a001 2584/1149851*3571^(50/51) 6835625266336930 m001 (Grothendieck-Robbin)/(Trott-ZetaP(3)) 6835625294773128 a001 2584/710647*3571^(47/51) 6835625303543294 a003 sin(Pi*7/73)+sin(Pi*11/87) 6835625312157020 a001 28657/15127*1364^(8/45) 6835625326353959 a001 34/5779*3571^(44/51) 6835625326644195 a001 2584/843*322^(5/36) 6835625336249384 a001 75025/39603*1364^(8/45) 6835625339764413 a001 98209/51841*1364^(8/45) 6835625340277249 a001 514229/271443*1364^(8/45) 6835625340352071 a001 1346269/710647*1364^(8/45) 6835625340369734 a001 2178309/1149851*1364^(8/45) 6835625340398313 a001 208010/109801*1364^(8/45) 6835625340594199 a001 317811/167761*1364^(8/45) 6835625340629035 a007 Real Root Of -714*x^4+427*x^3+97*x^2+812*x+802 6835625341936820 a001 121393/64079*1364^(8/45) 6835625351139285 a001 11592/6119*1364^(8/45) 6835625354355761 m001 FeigenbaumD^2*ln(PrimesInBinary)^2*GAMMA(3/4) 6835625357757609 a001 2584/271443*3571^(41/51) 6835625368014460 m009 (3/5*Psi(1,1/3)+3/5)/(1/5*Pi^2-1) 6835625373695501 l006 ln(7647/8188) 6835625376195817 a001 17711/5778*1364^(1/9) 6835625385785258 m001 2*Pi/GAMMA(5/6)*MertensB3-LandauRamanujan2nd 6835625389625123 a001 2584/167761*3571^(38/51) 6835625392493385 a007 Real Root Of 369*x^4-162*x^3-791*x^2-960*x+997 6835625396251718 r002 42th iterates of z^2 + 6835625405355592 a001 1292/2889*3571^(1/3) 6835625405878146 r009 Re(z^3+c),c=-3/86+43/53*I,n=47 6835625408160016 a001 141/2161*2207^(29/48) 6835625414213916 a001 17711/9349*1364^(8/45) 6835625420278226 a001 1292/51841*3571^(35/51) 6835625428529069 a001 987/9349*2207^(13/24) 6835625438132654 a001 6765/3010349*3571^(50/51) 6835625441996346 a007 Real Root Of -253*x^4+604*x^3-173*x^2-177*x+208 6835625442416311 m001 Pi-(Psi(2,1/3)-BesselJ(1,1))*GAMMA(19/24) 6835625454110702 a001 2584/64079*3571^(32/51) 6835625464732109 s002 sum(A172215[n]/(16^n-1),n=1..infinity) 6835625469661785 a001 55/15126*3571^(47/51) 6835625479414494 a001 10946/4870847*3571^(50/51) 6835625479619470 a001 2584/39603*3571^(29/51) 6835625495177696 a001 17711/4870847*3571^(47/51) 6835625501200790 a001 6765/1149851*3571^(44/51) 6835625506403547 a001 7/28657*121393^(40/59) 6835625510947397 a001 10946/3010349*3571^(47/51) 6835625517168965 a001 2584/15127*3571^(23/51) 6835625526710599 a001 17711/3010349*3571^(44/51) 6835625526919988 a001 646/6119*3571^(26/51) 6835625532713944 a001 6765/710647*3571^(41/51) 6835625532732648 a001 28657/4870847*3571^(44/51) 6835625535519774 a001 1597/2207*2207^(7/24) 6835625537153834 a001 987/24476*2207^(2/3) 6835625542476528 a001 5473/930249*3571^(44/51) 6835625546209914 a001 4181/1860498*3571^(50/51) 6835625549263262 m005 (1/2*Zeta(3)-1/7)/(5/8*5^(1/2)-8/11) 6835625554795385 a001 6624/2161*1364^(1/9) 6835625558239730 a001 17711/1860498*3571^(41/51) 6835625559757776 a001 1597/521*199^(5/33) 6835625560711113 a001 1292/2889*9349^(17/57) 6835625561963892 a001 46368/4870847*3571^(41/51) 6835625562790132 a007 Real Root Of 14*x^4+971*x^3+957*x^2-71*x-944 6835625564265550 a001 28657/3010349*3571^(41/51) 6835625564294776 a001 6765/439204*3571^(38/51) 6835625574015533 a001 10946/1149851*3571^(41/51) 6835625577748919 a001 4181/1149851*3571^(47/51) 6835625580852711 a001 121393/39603*1364^(1/9) 6835625584036132 a001 1292/2889*45537549124^(1/9) 6835625584036139 a001 1292/2889*12752043^(1/6) 6835625584654424 a001 317811/103682*1364^(1/9) 6835625585209086 a001 832040/271443*1364^(1/9) 6835625585290010 a001 311187/101521*1364^(1/9) 6835625585301817 a001 5702887/1860498*1364^(1/9) 6835625585303540 a001 14930352/4870847*1364^(1/9) 6835625585303791 a001 39088169/12752043*1364^(1/9) 6835625585303828 a001 14619165/4769326*1364^(1/9) 6835625585303833 a001 267914296/87403803*1364^(1/9) 6835625585303834 a001 701408733/228826127*1364^(1/9) 6835625585303834 a001 1836311903/599074578*1364^(1/9) 6835625585303834 a001 686789568/224056801*1364^(1/9) 6835625585303834 a001 12586269025/4106118243*1364^(1/9) 6835625585303834 a001 32951280099/10749957122*1364^(1/9) 6835625585303834 a001 86267571272/28143753123*1364^(1/9) 6835625585303834 a001 32264490531/10525900321*1364^(1/9) 6835625585303834 a001 591286729879/192900153618*1364^(1/9) 6835625585303834 a001 1548008755920/505019158607*1364^(1/9) 6835625585303834 a001 1515744265389/494493258286*1364^(1/9) 6835625585303834 a001 2504730781961/817138163596*1364^(1/9) 6835625585303834 a001 956722026041/312119004989*1364^(1/9) 6835625585303834 a001 365435296162/119218851371*1364^(1/9) 6835625585303834 a001 139583862445/45537549124*1364^(1/9) 6835625585303834 a001 53316291173/17393796001*1364^(1/9) 6835625585303834 a001 20365011074/6643838879*1364^(1/9) 6835625585303834 a001 7778742049/2537720636*1364^(1/9) 6835625585303834 a001 2971215073/969323029*1364^(1/9) 6835625585303834 a001 1134903170/370248451*1364^(1/9) 6835625585303834 a001 433494437/141422324*1364^(1/9) 6835625585303836 a001 165580141/54018521*1364^(1/9) 6835625585303850 a001 63245986/20633239*1364^(1/9) 6835625585303946 a001 24157817/7881196*1364^(1/9) 6835625585304604 a001 9227465/3010349*1364^(1/9) 6835625585309114 a001 3524578/1149851*1364^(1/9) 6835625585340024 a001 1346269/439204*1364^(1/9) 6835625585551887 a001 514229/167761*1364^(1/9) 6835625586587253 r002 53th iterates of z^2 + 6835625586678016 r005 Im(z^2+c),c=5/29+2/51*I,n=9 6835625587004012 a001 196418/64079*1364^(1/9) 6835625589778735 a001 17711/1149851*3571^(38/51) 6835625592500028 a001 1292/2889*15127^(17/60) 6835625593496794 a001 46368/3010349*3571^(38/51) 6835625594374509 a001 75025/4870847*3571^(38/51) 6835625595698427 a001 2255/90481*3571^(35/51) 6835625595794681 a001 28657/1860498*3571^(38/51) 6835625596242650 m001 (Backhouse-CareFree)/(Salem-ZetaP(4)) 6835625596957025 a001 75025/24476*1364^(1/9) 6835625605528687 a001 10946/710647*3571^(38/51) 6835625606036847 r005 Re(z^2+c),c=-31/86+35/52*I,n=2 6835625608694992 a001 2207/46368*317811^(34/45) 6835625609096113 a001 329/13201*2207^(35/48) 6835625609262074 a001 4181/710647*3571^(44/51) 6835625616446612 a007 Real Root Of -129*x^4+842*x^3+574*x^2+613*x-928 6835625616576014 a001 521/55*433494437^(9/16) 6835625621291890 a001 17711/710647*3571^(35/51) 6835625625025926 a001 2576/103361*3571^(35/51) 6835625625570714 a001 121393/4870847*3571^(35/51) 6835625625907412 a001 75025/3010349*3571^(35/51) 6835625627157892 a001 28657/5778*1364^(2/45) 6835625627333687 a001 28657/1149851*3571^(35/51) 6835625627410404 a007 Real Root Of 477*x^4-396*x^3-784*x^2-789*x+928 6835625627565943 a001 615/15251*3571^(32/51) 6835625628311802 m001 exp(BesselK(1,1))*Si(Pi)^2/Catalan 6835625637109519 a001 5473/219602*3571^(35/51) 6835625637483177 r005 Re(z^2+c),c=-9/52+13/18*I,n=59 6835625640842906 a001 4181/439204*3571^(41/51) 6835625643296412 a001 2255/1926*3571^(11/51) 6835625648494361 a001 1292/2889*5778^(17/54) 6835625652872722 a001 17711/439204*3571^(32/51) 6835625656564931 a001 46368/1149851*3571^(32/51) 6835625656780817 a001 2584/9349*3571^(20/51) 6835625657103617 a001 121393/3010349*3571^(32/51) 6835625657230784 a001 196418/4870847*3571^(32/51) 6835625657436543 a001 75025/1860498*3571^(32/51) 6835625658219046 a001 6765/103682*3571^(29/51) 6835625658846842 a001 28657/710647*3571^(32/51) 6835625665175992 a001 28657/9349*1364^(1/9) 6835625668513171 a001 10946/271443*3571^(32/51) 6835625672246558 a001 4181/271443*3571^(38/51) 6835625677631096 a001 1597/3571*1364^(17/45) 6835625678393269 r005 Im(z^2+c),c=-49/50+4/61*I,n=6 6835625684276373 a001 17711/271443*3571^(29/51) 6835625688078086 a001 6624/101521*3571^(29/51) 6835625688632749 a001 121393/1860498*3571^(29/51) 6835625688713673 a001 317811/4870847*3571^(29/51) 6835625688763687 a001 196418/3010349*3571^(29/51) 6835625688975549 a001 75025/1149851*3571^(29/51) 6835625690427674 a001 28657/439204*3571^(29/51) 6835625692051523 a001 6765/64079*3571^(26/51) 6835625700380687 a001 10946/167761*3571^(29/51) 6835625702830142 a001 987/64079*2207^(19/24) 6835625704114074 a001 4181/167761*3571^(35/51) 6835625705391425 a001 6765/2207*843^(5/42) 6835625709674902 a001 4181/3571*1364^(11/45) 6835625710941403 a001 987/3571*2207^(5/12) 6835625711951201 a001 2584/3010349*9349^(56/57) 6835625716064652 a001 1292/930249*9349^(53/57) 6835625716111157 a001 5473/2889*3571^(8/51) 6835625716143890 a001 17711/167761*3571^(26/51) 6835625717560293 a001 2255/13201*3571^(23/51) 6835625719658919 a001 11592/109801*3571^(26/51) 6835625719844544 a001 4181/5778*3571^(14/51) 6835625720171754 a001 121393/1149851*3571^(26/51) 6835625720187976 a001 2584/1149851*9349^(50/57) 6835625720246576 a001 317811/3010349*3571^(26/51) 6835625720264239 a001 514229/4870847*3571^(26/51) 6835625720292818 a001 98209/930249*3571^(26/51) 6835625720488704 a001 75025/710647*3571^(26/51) 6835625721831326 a001 28657/271443*3571^(26/51) 6835625724285451 a001 2584/710647*9349^(47/57) 6835625727355850 a001 2584/15127*9349^(23/57) 6835625728450602 a001 34/5779*9349^(44/57) 6835625731033791 a001 5473/51841*3571^(26/51) 6835625731874359 a001 17711/5778*3571^(5/51) 6835625732438573 a001 2584/271443*9349^(41/57) 6835625734167787 m001 exp(GAMMA(7/24))^2*Riemann2ndZero/Zeta(1/2) 6835625734767178 a001 4181/103682*3571^(32/51) 6835625736559165 m001 (ln(Pi)+RenyiParking)/(2^(1/2)+GAMMA(2/3)) 6835625736890409 a001 2584/167761*9349^(2/3) 6835625740127831 a001 1292/51841*9349^(35/57) 6835625740919793 s002 sum(A281805[n]/((3*n+1)!),n=1..infinity) 6835625743820576 a001 2255/1926*9349^(11/57) 6835625744637716 a001 2584/39603*9349^(29/57) 6835625746544627 a001 2584/64079*9349^(32/57) 6835625746796993 a001 17711/103682*3571^(23/51) 6835625751062571 a001 15456/90481*3571^(23/51) 6835625751684910 a001 121393/710647*3571^(23/51) 6835625751775708 a001 105937/620166*3571^(23/51) 6835625751788955 a001 832040/4870847*3571^(23/51) 6835625751797142 a001 514229/3010349*3571^(23/51) 6835625751831824 a001 196418/1149851*3571^(23/51) 6835625752069537 a001 75025/439204*3571^(23/51) 6835625753698842 a001 28657/167761*3571^(23/51) 6835625755109789 a001 6765/15127*3571^(1/3) 6835625758358316 a001 2584/15127*64079^(1/3) 6835625758913223 a001 2255/1926*7881196^(1/9) 6835625758913229 a001 2584/15127*4106118243^(1/6) 6835625758913235 a001 2255/1926*312119004989^(1/15) 6835625758913235 a001 2255/1926*1568397607^(1/12) 6835625759639627 a001 2255/1926*39603^(1/6) 6835625760142892 a001 377/39603*843^(41/42) 6835625764273523 a007 Real Root Of -160*x^4-994*x^3+685*x^2+49*x+172 6835625764389874 a001 2255/1926*15127^(11/60) 6835625764522554 a001 646/6119*9349^(26/57) 6835625764860812 a001 6765/24476*3571^(20/51) 6835625764866268 a001 10946/64079*3571^(23/51) 6835625766311738 m001 (Trott2nd+Thue)/(HardyLittlewoodC3+Robbin) 6835625768599655 a001 4181/64079*3571^(29/51) 6835625769429312 a001 28657/5778*3571^(2/51) 6835625770364383 a001 2584/15127*15127^(23/60) 6835625771703449 r005 Im(z^2+c),c=-9/8+43/83*I,n=3 6835625777567161 a001 17711/5778*9349^(5/57) 6835625778644063 a001 2584/3010349*24476^(8/9) 6835625778927349 r002 33th iterates of z^2 + 6835625780629471 a001 17711/64079*3571^(20/51) 6835625781810870 a001 1292/51841*24476^(5/9) 6835625782930087 a001 46368/167761*3571^(20/51) 6835625783265742 a001 121393/439204*3571^(20/51) 6835625783314714 a001 317811/1149851*3571^(20/51) 6835625783321859 a001 832040/3010349*3571^(20/51) 6835625783323545 a001 1346269/4870847*3571^(20/51) 6835625783326275 a001 514229/1860498*3571^(20/51) 6835625783344980 a001 196418/710647*3571^(20/51) 6835625783473189 a001 75025/271443*3571^(20/51) 6835625784351946 a001 28657/103682*3571^(20/51) 6835625784411269 a001 17711/5778*167761^(1/15) 6835625784425732 a001 2584/39603*1149851^(1/3) 6835625784427455 a001 2584/39603*1322157322203^(1/6) 6835625784427460 a001 17711/5778*20633239^(1/21) 6835625784427461 a001 17711/5778*228826127^(1/24) 6835625784427571 a001 17711/5778*1860498^(1/18) 6835625786916842 a001 17711/5778*15127^(1/12) 6835625787706433 a001 28657/5778*9349^(2/57) 6835625788036585 a001 1292/51841*167761^(7/15) 6835625788149925 a001 1292/51841*20633239^(1/3) 6835625788149930 a001 1292/51841*17393796001^(5/21) 6835625788149930 a001 1292/51841*505019158607^(5/24) 6835625788149930 a001 1292/51841*599074578^(5/18) 6835625788149930 a001 1292/51841*228826127^(7/24) 6835625788150698 a001 1292/51841*1860498^(7/18) 6835625788155570 a001 1292/51841*710647^(5/12) 6835625788240465 a001 21/2206*2207^(41/48) 6835625788575265 a001 2584/12752043*167761^(13/15) 6835625788629053 a001 2584/1149851*167761^(2/3) 6835625788693032 a001 2584/271443*370248451^(1/3) 6835625788772270 a001 2584/710647*6643838879^(1/3) 6835625788783830 a001 1292/930249*119218851371^(1/3) 6835625788785412 a001 646/1970299*3010349^(2/3) 6835625788785517 a001 2584/4870847*2139295485799^(1/3) 6835625788785719 a001 2584/87403803*7881196^(7/9) 6835625788785753 a001 2584/12752043*20633239^(13/21) 6835625788785763 a001 2584/12752043*141422324^(5/9) 6835625788785763 a001 2584/12752043*73681302247^(5/12) 6835625788785763 a001 2584/12752043*228826127^(13/24) 6835625788785790 a001 34/33391061*20633239^(14/15) 6835625788785790 a001 2584/1568397607*20633239^(19/21) 6835625788785792 a001 2584/87403803*20633239^(11/15) 6835625788785793 a001 646/35355581*20633239^(16/21) 6835625788785804 a001 2584/87403803*17393796001^(11/21) 6835625788785804 a001 2584/87403803*312119004989^(7/15) 6835625788785804 a001 2584/87403803*505019158607^(11/24) 6835625788785804 a001 2584/87403803*1568397607^(7/12) 6835625788785804 a001 2584/87403803*599074578^(11/18) 6835625788785805 a001 2584/6643838879*141422324^(8/9) 6835625788785805 a001 2584/1568397607*817138163596^(5/9) 6835625788785805 a001 2584/2139295485799*17393796001^(20/21) 6835625788785805 a001 2584/73681302247*17393796001^(17/21) 6835625788785805 a001 2584/73681302247*45537549124^(7/9) 6835625788785805 a001 2584/73681302247*505019158607^(17/24) 6835625788785805 a001 1292/1730726404001*312119004989^(13/15) 6835625788785805 a001 34/192933544679*23725150497407^(19/24) 6835625788785805 a001 2584/2139295485799*3461452808002^(7/9) 6835625788785805 a001 2584/2139295485799*505019158607^(5/6) 6835625788785805 a001 34/192933544679*505019158607^(19/21) 6835625788785805 a001 2584/312119004989*23725150497407^(2/3) 6835625788785805 a001 2584/312119004989*505019158607^(16/21) 6835625788785805 a001 2584/119218851371*5600748293801^(2/3) 6835625788785805 a001 1292/1730726404001*73681302247^(11/12) 6835625788785805 a001 646/11384387281*1322157322203^(2/3) 6835625788785805 a001 1292/96450076809*28143753123^(5/6) 6835625788785805 a001 2584/2139295485799*28143753123^(14/15) 6835625788785805 a001 2584/17393796001*312119004989^(2/3) 6835625788785805 a001 2584/17393796001*3461452808002^(11/18) 6835625788785805 a001 2584/17393796001*28143753123^(11/15) 6835625788785805 a001 2584/312119004989*10749957122^(8/9) 6835625788785805 a001 2584/6643838879*23725150497407^(13/24) 6835625788785805 a001 2584/6643838879*505019158607^(13/21) 6835625788785805 a001 2584/6643838879*73681302247^(2/3) 6835625788785805 a001 2584/6643838879*10749957122^(13/18) 6835625788785805 a001 34/33391061*17393796001^(2/3) 6835625788785805 a001 34/33391061*505019158607^(7/12) 6835625788785805 a001 2584/17393796001*1568397607^(5/6) 6835625788785805 a001 2584/969323029*4106118243^(2/3) 6835625788785805 a001 34/33391061*599074578^(7/9) 6835625788785805 a001 2584/73681302247*599074578^(17/18) 6835625788785805 a001 2584/370248451*969323029^(2/3) 6835625788785805 a001 2584/1568397607*228826127^(19/24) 6835625788785805 a001 2584/6643838879*228826127^(13/15) 6835625788785805 a001 2584/17393796001*228826127^(11/12) 6835625788785805 a001 646/35355581*23725150497407^(5/12) 6835625788785805 a001 646/35355581*505019158607^(10/21) 6835625788785805 a001 646/35355581*28143753123^(8/15) 6835625788785805 a001 646/35355581*10749957122^(5/9) 6835625788785805 a001 646/35355581*228826127^(2/3) 6835625788785806 a001 2584/1568397607*87403803^(5/6) 6835625788785806 a001 2584/54018521*54018521^(2/3) 6835625788785821 a001 2584/20633239*45537549124^(4/9) 6835625788785849 a001 2584/20633239*12752043^(2/3) 6835625788785915 a001 646/1970299*9062201101803^(1/3) 6835625788786025 a001 2584/20633239*4870847^(17/24) 6835625788786045 a001 646/35355581*4870847^(5/6) 6835625788786081 a001 2584/969323029*4870847^(23/24) 6835625788786551 a001 2584/3010349*20633239^(8/15) 6835625788786559 a001 2584/3010349*17393796001^(8/21) 6835625788786559 a001 2584/3010349*23725150497407^(7/24) 6835625788786559 a001 2584/3010349*505019158607^(1/3) 6835625788786559 a001 2584/3010349*10749957122^(7/18) 6835625788786559 a001 2584/3010349*599074578^(4/9) 6835625788786559 a001 2584/3010349*228826127^(7/15) 6835625788786727 a001 2584/3010349*4870847^(7/12) 6835625788787189 a001 2584/12752043*1860498^(13/18) 6835625788787561 a001 646/35355581*1860498^(8/9) 6835625788790967 a001 2584/1149851*20633239^(10/21) 6835625788790975 a001 2584/1149851*3461452808002^(5/18) 6835625788790975 a001 2584/1149851*28143753123^(1/3) 6835625788790975 a001 2584/1149851*228826127^(5/12) 6835625788792072 a001 2584/1149851*1860498^(5/9) 6835625788795583 a001 2584/3010349*710647^(2/3) 6835625788796778 a001 2584/20633239*710647^(17/21) 6835625788798212 a001 2584/87403803*710647^(11/12) 6835625788798696 a001 646/35355581*710647^(20/21) 6835625788821192 a001 34/5779*7881196^(4/9) 6835625788821241 a001 34/5779*312119004989^(4/15) 6835625788821241 a001 34/5779*1568397607^(1/3) 6835625788821373 a001 34/5779*4870847^(11/24) 6835625788828331 a001 34/5779*710647^(11/21) 6835625788863074 a001 2584/12752043*271443^(5/6) 6835625789028688 a001 2584/167761*817138163596^(2/9) 6835625789028688 a001 2584/167761*87403803^(1/3) 6835625789209831 a001 34/5779*103682^(11/18) 6835625789219640 a001 5473/2889*9349^(8/57) 6835625789281129 a001 2584/3010349*103682^(7/9) 6835625789386369 a001 2584/20633239*103682^(17/18) 6835625790375038 a001 10946/39603*3571^(20/51) 6835625790450547 a001 2584/64079*23725150497407^(1/6) 6835625790450547 a001 2584/64079*10749957122^(2/9) 6835625790450547 a001 2584/64079*228826127^(4/15) 6835625790450643 a001 2584/64079*4870847^(1/3) 6835625790455703 a001 2584/64079*710647^(8/21) 6835625790582624 a001 28657/5778*39603^(1/33) 6835625790733158 a001 2584/64079*103682^(4/9) 6835625791446305 a001 28657/5778*15127^(1/30) 6835625791538041 a001 2584/167761*39603^(19/33) 6835625791726808 a001 34/5779*39603^(2/3) 6835625792092755 a001 2584/1149851*39603^(25/33) 6835625792484553 a001 2584/3010349*39603^(28/33) 6835625792563686 a001 2584/64079*39603^(16/33) 6835625794108425 a001 4181/39603*3571^(26/51) 6835625798033874 a001 28657/5778*5778^(1/27) 6835625798865866 a001 2584/39603*15127^(29/60) 6835625800196114 a001 646/6119*141422324^(2/9) 6835625800196114 a001 646/6119*73681302247^(1/6) 6835625800196120 a001 5473/2889*23725150497407^(1/24) 6835625800196120 a001 5473/2889*10749957122^(1/18) 6835625800196120 a001 5473/2889*228826127^(1/15) 6835625800196144 a001 5473/2889*4870847^(1/12) 6835625800197409 a001 5473/2889*710647^(2/21) 6835625800227038 a001 646/6119*271443^(1/3) 6835625800266772 a001 5473/2889*103682^(1/9) 6835625800613132 a001 75025/15127*1364^(2/45) 6835625800621503 a001 2255/1926*5778^(11/54) 6835625800724405 a001 5473/2889*39603^(4/33) 6835625801913039 a001 646/6119*39603^(13/33) 6835625803385764 a001 17711/5778*5778^(5/54) 6835625804179130 a001 5473/2889*15127^(2/15) 6835625805575599 a001 1292/51841*15127^(7/12) 6835625806138240 a001 17711/39603*3571^(1/3) 6835625806382587 a001 2584/64079*15127^(8/15) 6835625807947985 a001 2584/167761*15127^(19/30) 6835625809105959 a001 2584/271443*15127^(41/60) 6835625810727797 a001 34/5779*15127^(11/15) 6835625812172454 a001 2584/710647*15127^(47/60) 6835625813140896 a001 646/6119*15127^(13/30) 6835625813583191 a001 23184/51841*3571^(1/3) 6835625813684788 a001 2584/1149851*15127^(5/6) 6835625814669395 a001 121393/271443*3571^(1/3) 6835625814827870 a001 317811/710647*3571^(1/3) 6835625814850991 a001 416020/930249*3571^(1/3) 6835625814854364 a001 2178309/4870847*3571^(1/3) 6835625814854856 a001 5702887/12752043*3571^(1/3) 6835625814854928 a001 7465176/16692641*3571^(1/3) 6835625814854939 a001 39088169/87403803*3571^(1/3) 6835625814854940 a001 102334155/228826127*3571^(1/3) 6835625814854941 a001 133957148/299537289*3571^(1/3) 6835625814854941 a001 701408733/1568397607*3571^(1/3) 6835625814854941 a001 1836311903/4106118243*3571^(1/3) 6835625814854941 a001 2403763488/5374978561*3571^(1/3) 6835625814854941 a001 12586269025/28143753123*3571^(1/3) 6835625814854941 a001 32951280099/73681302247*3571^(1/3) 6835625814854941 a001 43133785636/96450076809*3571^(1/3) 6835625814854941 a001 225851433717/505019158607*3571^(1/3) 6835625814854941 a001 591286729879/1322157322203*3571^(1/3) 6835625814854941 a001 10610209857723/23725150497407*3571^(1/3) 6835625814854941 a001 182717648081/408569081798*3571^(1/3) 6835625814854941 a001 139583862445/312119004989*3571^(1/3) 6835625814854941 a001 53316291173/119218851371*3571^(1/3) 6835625814854941 a001 10182505537/22768774562*3571^(1/3) 6835625814854941 a001 7778742049/17393796001*3571^(1/3) 6835625814854941 a001 2971215073/6643838879*3571^(1/3) 6835625814854941 a001 567451585/1268860318*3571^(1/3) 6835625814854941 a001 433494437/969323029*3571^(1/3) 6835625814854941 a001 165580141/370248451*3571^(1/3) 6835625814854941 a001 31622993/70711162*3571^(1/3) 6835625814854945 a001 24157817/54018521*3571^(1/3) 6835625814854973 a001 9227465/20633239*3571^(1/3) 6835625814855161 a001 1762289/3940598*3571^(1/3) 6835625814856449 a001 1346269/3010349*3571^(1/3) 6835625814865281 a001 514229/1149851*3571^(1/3) 6835625814925813 a001 98209/219602*3571^(1/3) 6835625815171272 a001 1292/930249*15127^(53/60) 6835625815340706 a001 75025/167761*3571^(1/3) 6835625816667630 a001 2584/3010349*15127^(14/15) 6835625816854253 a007 Real Root Of -409*x^4-727*x^3+216*x^2+808*x-56 6835625818160216 a001 2584/4870847*15127^(59/60) 6835625818184424 a001 28657/64079*3571^(1/3) 6835625825919911 a001 196418/39603*1364^(2/45) 6835625827924535 a001 10946/15127*3571^(14/51) 6835625829612120 a001 514229/103682*1364^(2/45) 6835625830150806 a001 1346269/271443*1364^(2/45) 6835625830277973 a001 2178309/439204*1364^(2/45) 6835625830483733 a001 75640/15251*1364^(2/45) 6835625830529405 a001 5473/2889*5778^(4/27) 6835625831657922 a001 4181/15127*3571^(20/51) 6835625831894031 a001 317811/64079*1364^(2/45) 6835625837675558 a001 5473/12238*3571^(1/3) 6835625839552024 a001 2584/9349*9349^(20/57) 6835625841408945 a001 4181/24476*3571^(23/51) 6835625841560361 a001 121393/24476*1364^(2/45) 6835625843687738 a001 17711/15127*3571^(11/51) 6835625843693194 a001 28657/39603*3571^(14/51) 6835625845993810 a001 75025/103682*3571^(14/51) 6835625846121425 a001 2584/15127*5778^(23/54) 6835625846329465 a001 196418/271443*3571^(14/51) 6835625846378437 a001 514229/710647*3571^(14/51) 6835625846385582 a001 1346269/1860498*3571^(14/51) 6835625846387268 a001 2178309/3010349*3571^(14/51) 6835625846389997 a001 832040/1149851*3571^(14/51) 6835625846408703 a001 317811/439204*3571^(14/51) 6835625846533903 a001 6765/3571*1364^(8/45) 6835625846536912 a001 121393/167761*3571^(14/51) 6835625847415669 a001 46368/64079*3571^(14/51) 6835625847784390 a001 4181/5778*9349^(14/57) 6835625848924513 a001 28657/5778*2207^(1/24) 6835625853438761 a001 17711/24476*3571^(14/51) 6835625864457605 a001 4181/5778*24476^(2/9) 6835625866928456 a001 2584/9349*167761^(4/15) 6835625866993221 a001 2584/9349*20633239^(4/21) 6835625866993224 a001 2584/9349*3461452808002^(1/9) 6835625866993224 a001 2584/9349*28143753123^(2/15) 6835625866993224 a001 2584/9349*228826127^(1/6) 6835625866993227 a001 4181/5778*20633239^(2/15) 6835625866993230 a001 4181/5778*17393796001^(2/21) 6835625866993230 a001 4181/5778*505019158607^(1/12) 6835625866993230 a001 4181/5778*599074578^(1/9) 6835625866993284 a001 2584/9349*4870847^(5/24) 6835625866993663 a001 2584/9349*1860498^(2/9) 6835625866995485 a001 4181/5778*710647^(1/6) 6835625866996447 a001 2584/9349*710647^(5/21) 6835625867169856 a001 2584/9349*103682^(5/18) 6835625867917728 a001 4181/5778*39603^(7/33) 6835625868313936 a001 2584/9349*39603^(10/33) 6835625872924439 a001 15456/13201*3571^(11/51) 6835625873963497 a001 4181/5778*15127^(7/30) 6835625876830163 a001 987/167761*2207^(11/12) 6835625876950750 a001 2584/9349*15127^(1/3) 6835625877190016 a001 121393/103682*3571^(11/51) 6835625877812355 a001 105937/90481*3571^(11/51) 6835625877903153 a001 832040/710647*3571^(11/51) 6835625877916401 a001 726103/620166*3571^(11/51) 6835625877924588 a001 1346269/1149851*3571^(11/51) 6835625877939403 a007 Real Root Of 747*x^4-674*x^3+328*x^2-239*x-695 6835625877959270 a001 514229/439204*3571^(11/51) 6835625878196982 a001 196418/167761*3571^(11/51) 6835625879826288 a001 75025/64079*3571^(11/51) 6835625880597701 m005 (1/2*5^(1/2)-4/9)/(13/20+3/20*5^(1/2)) 6835625881242691 a001 28657/15127*3571^(8/51) 6835625890943446 a001 6765/4870847*9349^(53/57) 6835625890993714 a001 28657/24476*3571^(11/51) 6835625894385615 a001 2584/39603*5778^(29/54) 6835625894721646 a001 6765/9349*3571^(14/51) 6835625895060668 a001 6765/3010349*9349^(50/57) 6835625895788584 m001 ln(1+sqrt(2))+FeigenbaumDelta+GAMMA(17/24) 6835625895788584 m001 ln(2^(1/2)+1)+GAMMA(17/24)+FeigenbaumDelta 6835625898779292 a001 646/6119*5778^(13/27) 6835625899174119 a001 55/15126*9349^(47/57) 6835625903297444 a001 6765/1149851*9349^(44/57) 6835625905335058 a001 75025/39603*3571^(8/51) 6835625907394918 a001 6765/710647*9349^(41/57) 6835625907814370 a001 46368/9349*1364^(2/45) 6835625908850087 a001 98209/51841*3571^(8/51) 6835625909362922 a001 514229/271443*3571^(8/51) 6835625909437744 a001 1346269/710647*3571^(8/51) 6835625909455407 a001 2178309/1149851*3571^(8/51) 6835625909483987 a001 208010/109801*3571^(8/51) 6835625909679872 a001 317811/167761*3571^(8/51) 6835625910465318 a001 6765/15127*9349^(17/57) 6835625910473936 a001 6624/2161*3571^(5/51) 6835625911022494 a001 121393/64079*3571^(8/51) 6835625911560070 a001 6765/439204*9349^(2/3) 6835625911783689 a001 2584/64079*5778^(16/27) 6835625915548041 a001 2255/90481*9349^(35/57) 6835625917770936 m005 (15/44+1/4*5^(1/2))/(5/12*Catalan-1/4) 6835625919999876 a001 615/15251*9349^(32/57) 6835625920076480 a001 4181/5778*5778^(7/27) 6835625920224959 a001 11592/6119*3571^(8/51) 6835625920858055 a001 1292/51841*5778^(35/54) 6835625923237299 a001 6765/103682*9349^(29/57) 6835625924690032 a001 17711/4870847*9349^(47/57) 6835625927747184 a001 2255/13201*9349^(23/57) 6835625928807254 a001 17711/3010349*9349^(44/57) 6835625929654095 a001 6765/64079*9349^(26/57) 6835625930612362 a001 17711/5778*2207^(5/48) 6835625932918542 r005 Re(z^2+c),c=-37/58+21/62*I,n=6 6835625932920705 a001 17711/1860498*9349^(41/57) 6835625933111795 a001 2584/167761*5778^(19/27) 6835625933790338 a001 6765/15127*45537549124^(1/9) 6835625933790345 a001 6765/15127*12752043^(1/6) 6835625934829303 a001 28657/4870847*9349^(44/57) 6835625936342511 a001 10946/4870847*9349^(50/57) 6835625936531264 a001 121393/39603*3571^(5/51) 6835625936644867 a001 46368/4870847*9349^(41/57) 6835625937044030 a001 17711/1149851*9349^(2/3) 6835625938946526 a001 28657/3010349*9349^(41/57) 6835625940332977 a001 317811/103682*3571^(5/51) 6835625940459733 a001 10946/3010349*9349^(47/57) 6835625940762090 a001 46368/3010349*9349^(2/3) 6835625940887640 a001 832040/271443*3571^(5/51) 6835625940968564 a001 311187/101521*3571^(5/51) 6835625941018578 a001 1346269/439204*3571^(5/51) 6835625941141505 a001 17711/710647*9349^(35/57) 6835625941230440 a001 514229/167761*3571^(5/51) 6835625941304547 a001 121393/7881196*9349^(2/3) 6835625941383691 a001 10959/711491*9349^(2/3) 6835625941395238 a001 832040/54018521*9349^(2/3) 6835625941396922 a001 2178309/141422324*9349^(2/3) 6835625941397168 a001 5702887/370248451*9349^(2/3) 6835625941397204 a001 14930352/969323029*9349^(2/3) 6835625941397209 a001 39088169/2537720636*9349^(2/3) 6835625941397210 a001 102334155/6643838879*9349^(2/3) 6835625941397210 a001 9238424/599786069*9349^(2/3) 6835625941397210 a001 701408733/45537549124*9349^(2/3) 6835625941397210 a001 1836311903/119218851371*9349^(2/3) 6835625941397210 a001 4807526976/312119004989*9349^(2/3) 6835625941397210 a001 12586269025/817138163596*9349^(2/3) 6835625941397210 a001 32951280099/2139295485799*9349^(2/3) 6835625941397210 a001 86267571272/5600748293801*9349^(2/3) 6835625941397210 a001 7787980473/505618944676*9349^(2/3) 6835625941397210 a001 365435296162/23725150497407*9349^(2/3) 6835625941397210 a001 139583862445/9062201101803*9349^(2/3) 6835625941397210 a001 53316291173/3461452808002*9349^(2/3) 6835625941397210 a001 20365011074/1322157322203*9349^(2/3) 6835625941397210 a001 7778742049/505019158607*9349^(2/3) 6835625941397210 a001 2971215073/192900153618*9349^(2/3) 6835625941397210 a001 1134903170/73681302247*9349^(2/3) 6835625941397210 a001 433494437/28143753123*9349^(2/3) 6835625941397210 a001 165580141/10749957122*9349^(2/3) 6835625941397210 a001 63245986/4106118243*9349^(2/3) 6835625941397212 a001 24157817/1568397607*9349^(2/3) 6835625941397226 a001 9227465/599074578*9349^(2/3) 6835625941397320 a001 3524578/228826127*9349^(2/3) 6835625941397963 a001 1346269/87403803*9349^(2/3) 6835625941402374 a001 514229/33385282*9349^(2/3) 6835625941432604 a001 196418/12752043*9349^(2/3) 6835625941639804 a001 75025/4870847*9349^(2/3) 6835625942254234 a001 6765/15127*15127^(17/60) 6835625942682565 a001 196418/64079*3571^(5/51) 6835625942826439 a001 2584/9349*5778^(10/27) 6835625942884555 a001 75025/15127*3571^(2/51) 6835625943059977 a001 28657/1860498*9349^(2/3) 6835625944151122 a001 2584/271443*5778^(41/54) 6835625944211904 a001 17711/15127*9349^(11/57) 6835625944573184 a001 5473/930249*9349^(44/57) 6835625944875541 a001 2576/103361*9349^(35/57) 6835625945306656 a001 17711/439204*9349^(32/57) 6835625945420329 a001 121393/4870847*9349^(35/57) 6835625945757027 a001 75025/3010349*9349^(35/57) 6835625947183302 a001 28657/1149851*9349^(35/57) 6835625947632023 a001 6765/24476*9349^(20/57) 6835625948696509 a001 10946/1149851*9349^(41/57) 6835625948998865 a001 46368/1149851*9349^(32/57) 6835625949294627 a001 17711/271443*9349^(29/57) 6835625949537552 a001 121393/3010349*9349^(32/57) 6835625949664718 a001 196418/4870847*9349^(32/57) 6835625949870478 a001 75025/1860498*9349^(32/57) 6835625951280776 a001 28657/710647*9349^(32/57) 6835625952635579 a001 75025/24476*3571^(5/51) 6835625952793983 a001 10946/710647*9349^(2/3) 6835625953096340 a001 6624/101521*9349^(29/57) 6835625953520527 a001 6765/7881196*24476^(8/9) 6835625953651002 a001 121393/1860498*9349^(29/57) 6835625953731927 a001 317811/4870847*9349^(29/57) 6835625953746463 a001 17711/167761*9349^(26/57) 6835625953781941 a001 196418/3010349*9349^(29/57) 6835625953993803 a001 75025/1149851*9349^(29/57) 6835625954351176 a001 28657/15127*9349^(8/57) 6835625954716341 r005 Re(z^2+c),c=-47/70+9/28*I,n=10 6835625955445928 a001 28657/439204*9349^(29/57) 6835625955654313 a001 34/5779*5778^(22/27) 6835625955864383 a001 10946/15127*9349^(14/57) 6835625956166739 a001 6624/2161*9349^(5/57) 6835625956959135 a001 5473/219602*9349^(35/57) 6835625956983885 a001 17711/103682*9349^(23/57) 6835625957231081 a001 2255/90481*24476^(5/9) 6835625957261492 a001 11592/109801*9349^(26/57) 6835625957774327 a001 121393/1149851*9349^(26/57) 6835625957849149 a001 317811/3010349*9349^(26/57) 6835625957866812 a001 514229/4870847*9349^(26/57) 6835625957895391 a001 98209/930249*9349^(26/57) 6835625958091277 a001 75025/710647*9349^(26/57) 6835625958749650 a001 2255/13201*64079^(1/3) 6835625959304552 a001 17711/15127*7881196^(1/9) 6835625959304564 a001 2255/13201*4106118243^(1/6) 6835625959304564 a001 17711/15127*312119004989^(1/15) 6835625959304564 a001 17711/15127*1568397607^(1/12) 6835625959433899 a001 28657/271443*9349^(26/57) 6835625960030956 a001 17711/15127*39603^(1/6) 6835625960947106 a001 10946/271443*9349^(32/57) 6835625961161677 a001 75025/15127*9349^(2/57) 6835625961249463 a001 15456/90481*9349^(23/57) 6835625961493770 a001 17711/39603*9349^(17/57) 6835625961871802 a001 121393/710647*9349^(23/57) 6835625961962600 a001 105937/620166*9349^(23/57) 6835625961975847 a001 832040/4870847*9349^(23/57) 6835625961984035 a001 514229/3010349*9349^(23/57) 6835625962018716 a001 196418/1149851*9349^(23/57) 6835625962256429 a001 75025/439204*9349^(23/57) 6835625963010847 a001 6624/2161*167761^(1/15) 6835625963025316 a001 6765/103682*1149851^(1/3) 6835625963027039 a001 6624/2161*20633239^(1/21) 6835625963027039 a001 6765/103682*1322157322203^(1/6) 6835625963027039 a001 6624/2161*228826127^(1/24) 6835625963027149 a001 6624/2161*1860498^(1/18) 6835625963400682 a001 17711/64079*9349^(20/57) 6835625963452410 a001 6765/33385282*167761^(13/15) 6835625963456796 a001 2255/90481*167761^(7/15) 6835625963501747 a001 6765/3010349*167761^(2/3) 6835625963570136 a001 2255/90481*20633239^(1/3) 6835625963570141 a001 2255/90481*17393796001^(5/21) 6835625963570141 a001 2255/90481*505019158607^(5/24) 6835625963570141 a001 2255/90481*599074578^(5/18) 6835625963570141 a001 2255/90481*228826127^(7/24) 6835625963570909 a001 2255/90481*1860498^(7/18) 6835625963575781 a001 2255/90481*710647^(5/12) 6835625963649379 a001 6765/710647*370248451^(1/3) 6835625963660939 a001 55/15126*6643838879^(1/3) 6835625963662427 a001 615/1875749*3010349^(2/3) 6835625963662626 a001 6765/4870847*119218851371^(1/3) 6835625963662828 a001 6765/228826127*7881196^(7/9) 6835625963662872 a001 2255/4250681*2139295485799^(1/3) 6835625963662898 a001 6765/33385282*20633239^(13/21) 6835625963662899 a001 6765/6643838879*20633239^(14/15) 6835625963662900 a001 2255/1368706081*20633239^(19/21) 6835625963662902 a001 6765/370248451*20633239^(16/21) 6835625963662902 a001 6765/228826127*20633239^(11/15) 6835625963662908 a001 6765/33385282*141422324^(5/9) 6835625963662908 a001 6765/33385282*73681302247^(5/12) 6835625963662908 a001 6765/33385282*228826127^(13/24) 6835625963662913 a001 6765/141422324*54018521^(2/3) 6835625963662914 a001 6765/17393796001*141422324^(8/9) 6835625963662914 a001 6765/228826127*17393796001^(11/21) 6835625963662914 a001 6765/228826127*312119004989^(7/15) 6835625963662914 a001 6765/228826127*505019158607^(11/24) 6835625963662914 a001 6765/228826127*1568397607^(7/12) 6835625963662914 a001 6765/228826127*599074578^(11/18) 6835625963662914 a001 2255/1368706081*817138163596^(5/9) 6835625963662914 a001 6765/5600748293801*17393796001^(20/21) 6835625963662914 a001 2255/64300051206*17393796001^(17/21) 6835625963662914 a001 2255/64300051206*45537549124^(7/9) 6835625963662914 a001 2255/64300051206*505019158607^(17/24) 6835625963662914 a001 2255/3020733700601*312119004989^(13/15) 6835625963662914 a001 6765/5600748293801*3461452808002^(7/9) 6835625963662914 a001 6765/817138163596*23725150497407^(2/3) 6835625963662914 a001 6765/5600748293801*505019158607^(5/6) 6835625963662914 a001 6765/817138163596*505019158607^(16/21) 6835625963662914 a001 615/28374454999*5600748293801^(2/3) 6835625963662914 a001 6765/119218851371*1322157322203^(2/3) 6835625963662914 a001 2255/3020733700601*73681302247^(11/12) 6835625963662914 a001 6765/45537549124*312119004989^(2/3) 6835625963662914 a001 6765/45537549124*3461452808002^(11/18) 6835625963662914 a001 6765/505019158607*28143753123^(5/6) 6835625963662914 a001 6765/5600748293801*28143753123^(14/15) 6835625963662914 a001 6765/45537549124*28143753123^(11/15) 6835625963662914 a001 6765/17393796001*23725150497407^(13/24) 6835625963662914 a001 6765/17393796001*505019158607^(13/21) 6835625963662914 a001 6765/17393796001*73681302247^(2/3) 6835625963662914 a001 6765/817138163596*10749957122^(8/9) 6835625963662914 a001 6765/17393796001*10749957122^(13/18) 6835625963662914 a001 6765/6643838879*17393796001^(2/3) 6835625963662914 a001 6765/6643838879*505019158607^(7/12) 6835625963662914 a001 615/230701876*4106118243^(2/3) 6835625963662914 a001 6765/45537549124*1568397607^(5/6) 6835625963662914 a001 6765/969323029*969323029^(2/3) 6835625963662914 a001 6765/6643838879*599074578^(7/9) 6835625963662914 a001 2255/64300051206*599074578^(17/18) 6835625963662914 a001 6765/370248451*23725150497407^(5/12) 6835625963662914 a001 6765/370248451*505019158607^(10/21) 6835625963662914 a001 6765/370248451*28143753123^(8/15) 6835625963662914 a001 6765/370248451*10749957122^(5/9) 6835625963662914 a001 2255/1368706081*228826127^(19/24) 6835625963662914 a001 6765/17393796001*228826127^(13/15) 6835625963662914 a001 6765/45537549124*228826127^(11/12) 6835625963662914 a001 6765/370248451*228826127^(2/3) 6835625963662915 a001 2255/1368706081*87403803^(5/6) 6835625963662916 a001 6765/54018521*45537549124^(4/9) 6835625963662930 a001 615/1875749*9062201101803^(1/3) 6835625963662944 a001 6765/54018521*12752043^(2/3) 6835625963663016 a001 6765/7881196*20633239^(8/15) 6835625963663024 a001 6765/7881196*17393796001^(8/21) 6835625963663024 a001 6765/7881196*23725150497407^(7/24) 6835625963663024 a001 6765/7881196*505019158607^(1/3) 6835625963663024 a001 6765/7881196*10749957122^(7/18) 6835625963663024 a001 6765/7881196*599074578^(4/9) 6835625963663024 a001 6765/7881196*228826127^(7/15) 6835625963663120 a001 6765/54018521*4870847^(17/24) 6835625963663154 a001 6765/370248451*4870847^(5/6) 6835625963663190 a001 615/230701876*4870847^(23/24) 6835625963663192 a001 6765/7881196*4870847^(7/12) 6835625963663661 a001 6765/3010349*20633239^(10/21) 6835625963663668 a001 6765/3010349*3461452808002^(5/18) 6835625963663668 a001 6765/3010349*28143753123^(1/3) 6835625963663668 a001 6765/3010349*228826127^(5/12) 6835625963664334 a001 6765/33385282*1860498^(13/18) 6835625963664669 a001 6765/370248451*1860498^(8/9) 6835625963664765 a001 6765/3010349*1860498^(5/9) 6835625963668035 a001 6765/1149851*7881196^(4/9) 6835625963668084 a001 6765/1149851*312119004989^(4/15) 6835625963668084 a001 6765/1149851*1568397607^(1/3) 6835625963668216 a001 6765/1149851*4870847^(11/24) 6835625963672048 a001 6765/7881196*710647^(2/3) 6835625963673874 a001 6765/54018521*710647^(17/21) 6835625963675174 a001 6765/1149851*710647^(11/21) 6835625963675321 a001 6765/228826127*710647^(11/12) 6835625963675805 a001 6765/370248451*710647^(20/21) 6835625963698350 a001 6765/439204*817138163596^(2/9) 6835625963698350 a001 6765/439204*87403803^(1/3) 6835625963740219 a001 6765/33385282*271443^(5/6) 6835625963885734 a001 28657/167761*9349^(23/57) 6835625963905797 a001 615/15251*23725150497407^(1/6) 6835625963905797 a001 615/15251*10749957122^(2/9) 6835625963905797 a001 615/15251*228826127^(4/15) 6835625963905893 a001 615/15251*4870847^(1/3) 6835625963910953 a001 615/15251*710647^(8/21) 6835625964037868 a001 75025/15127*39603^(1/33) 6835625964056674 a001 6765/1149851*103682^(11/18) 6835625964157593 a001 6765/7881196*103682^(7/9) 6835625964188408 a001 615/15251*103682^(4/9) 6835625964205449 a001 329/90481*2207^(47/48) 6835625964263465 a001 6765/54018521*103682^(17/18) 6835625964781203 a001 17711/15127*15127^(11/60) 6835625964901549 a001 75025/15127*15127^(1/30) 6835625965327656 a001 6765/64079*141422324^(2/9) 6835625965327656 a001 6765/64079*73681302247^(1/6) 6835625965327656 a001 28657/15127*23725150497407^(1/24) 6835625965327656 a001 28657/15127*10749957122^(1/18) 6835625965327656 a001 28657/15127*228826127^(1/15) 6835625965327680 a001 28657/15127*4870847^(1/12) 6835625965328945 a001 28657/15127*710647^(2/21) 6835625965358580 a001 6765/64079*271443^(1/3) 6835625965398309 a001 28657/15127*103682^(1/9) 6835625965398942 a001 10946/167761*9349^(29/57) 6835625965516421 a001 6624/2161*15127^(1/12) 6835625965701298 a001 46368/167761*9349^(20/57) 6835625965855941 a001 28657/15127*39603^(4/33) 6835625966018936 a001 615/15251*39603^(16/33) 6835625966036953 a001 121393/439204*9349^(20/57) 6835625966085925 a001 317811/1149851*9349^(20/57) 6835625966093070 a001 832040/3010349*9349^(20/57) 6835625966094756 a001 1346269/4870847*9349^(20/57) 6835625966097486 a001 514229/1860498*9349^(20/57) 6835625966116191 a001 196418/710647*9349^(20/57) 6835625966207703 a001 6765/439204*39603^(19/33) 6835625966244400 a001 75025/271443*9349^(20/57) 6835625966573651 a001 6765/1149851*39603^(2/3) 6835625966965449 a001 6765/3010349*39603^(25/33) 6835625966980324 a001 2584/710647*5778^(47/54) 6835625967044582 a001 6765/64079*39603^(13/33) 6835625967123157 a001 28657/103682*9349^(20/57) 6835625967536393 a001 10946/9349*3571^(11/51) 6835625968191335 a001 196418/39603*3571^(2/51) 6835625968460731 a007 Real Root Of 546*x^4-714*x^3-154*x^2-791*x-816 6835625968636364 a001 5473/51841*9349^(26/57) 6835625968938721 a001 23184/51841*9349^(17/57) 6835625969310666 a001 28657/15127*15127^(2/15) 6835625970024925 a001 121393/271443*9349^(17/57) 6835625970183400 a001 317811/710647*9349^(17/57) 6835625970206521 a001 416020/930249*9349^(17/57) 6835625970209894 a001 2178309/4870847*9349^(17/57) 6835625970211979 a001 1346269/3010349*9349^(17/57) 6835625970220810 a001 514229/1149851*9349^(17/57) 6835625970281342 a001 98209/219602*9349^(17/57) 6835625970696235 a001 75025/167761*9349^(17/57) 6835625970755718 a001 2255/13201*15127^(23/60) 6835625971188146 a007 Real Root Of -823*x^4+374*x^3-368*x^2-183*x+346 6835625971269780 a001 4181/9349*3571^(1/3) 6835625971489118 a001 75025/15127*5778^(1/27) 6835625971633042 a001 28657/39603*9349^(14/57) 6835625971883545 a001 514229/103682*3571^(2/51) 6835625972422231 a001 1346269/271443*3571^(2/51) 6835625972537599 a001 10946/15127*24476^(2/9) 6835625972549397 a001 2178309/439204*3571^(2/51) 6835625972755157 a001 75640/15251*3571^(2/51) 6835625973146249 a001 10946/39603*9349^(20/57) 6835625973448606 a001 15456/13201*9349^(11/57) 6835625973539954 a001 28657/64079*9349^(17/57) 6835625973933658 a001 75025/103682*9349^(14/57) 6835625974165455 a001 317811/64079*3571^(2/51) 6835625974269314 a001 196418/271443*9349^(14/57) 6835625974318285 a001 514229/710647*9349^(14/57) 6835625974325430 a001 1346269/1860498*9349^(14/57) 6835625974327117 a001 2178309/3010349*9349^(14/57) 6835625974329846 a001 832040/1149851*9349^(14/57) 6835625974348551 a001 317811/439204*9349^(14/57) 6835625974476760 a001 121393/167761*9349^(14/57) 6835625975008454 a001 6765/24476*167761^(4/15) 6835625975053161 a001 10946/64079*9349^(23/57) 6835625975073220 a001 6765/24476*20633239^(4/21) 6835625975073221 a001 10946/15127*20633239^(2/15) 6835625975073223 a001 6765/24476*3461452808002^(1/9) 6835625975073223 a001 6765/24476*28143753123^(2/15) 6835625975073223 a001 6765/24476*228826127^(1/6) 6835625975073223 a001 10946/15127*17393796001^(2/21) 6835625975073223 a001 10946/15127*505019158607^(1/12) 6835625975073223 a001 10946/15127*599074578^(1/9) 6835625975073283 a001 6765/24476*4870847^(5/24) 6835625975073662 a001 6765/24476*1860498^(2/9) 6835625975075479 a001 10946/15127*710647^(1/6) 6835625975076446 a001 6765/24476*710647^(5/21) 6835625975249855 a001 6765/24476*103682^(5/18) 6835625975355517 a001 46368/64079*9349^(14/57) 6835625975997722 a001 10946/15127*39603^(7/33) 6835625976393935 a001 6765/24476*39603^(10/33) 6835625977465451 a001 6765/103682*15127^(29/60) 6835625977714183 a001 121393/103682*9349^(11/57) 6835625978272439 a001 6765/64079*15127^(13/30) 6835625978336522 a001 105937/90481*9349^(11/57) 6835625978374011 a001 2584/1149851*5778^(25/27) 6835625978427320 a001 832040/710647*9349^(11/57) 6835625978440567 a001 726103/620166*9349^(11/57) 6835625978443543 a001 75025/39603*9349^(8/57) 6835625978448755 a001 1346269/1149851*9349^(11/57) 6835625978483437 a001 514229/439204*9349^(11/57) 6835625978721149 a001 196418/167761*9349^(11/57) 6835625979034660 a001 17711/20633239*24476^(8/9) 6835625979680166 a007 Real Root Of -907*x^4+8*x^3-687*x^2-232*x+363 6835625979837837 a001 615/15251*15127^(8/15) 6835625980350455 a001 75025/64079*9349^(11/57) 6835625980995811 a001 2255/90481*15127^(7/12) 6835625981378609 a001 17711/24476*9349^(14/57) 6835625981958572 a001 98209/51841*9349^(8/57) 6835625981985343 a001 6624/2161*5778^(5/54) 6835625982043491 a001 10946/15127*15127^(7/30) 6835625982224067 a001 121393/39603*9349^(5/57) 6835625982471408 a001 514229/271443*9349^(8/57) 6835625982546229 a001 1346269/710647*9349^(8/57) 6835625982563892 a001 2178309/1149851*9349^(8/57) 6835625982592472 a001 208010/109801*9349^(8/57) 6835625982617649 a001 6765/439204*15127^(19/30) 6835625982757121 a001 46368/54018521*24476^(8/9) 6835625982788358 a001 317811/167761*9349^(8/57) 6835625982824545 a001 17711/710647*24476^(5/9) 6835625983299596 a001 17711/9349*3571^(8/51) 6835625983300221 a001 233/271444*24476^(8/9) 6835625983379458 a001 317811/370248451*24476^(8/9) 6835625983391019 a001 832040/969323029*24476^(8/9) 6835625983392706 a001 2178309/2537720636*24476^(8/9) 6835625983392952 a001 5702887/6643838879*24476^(8/9) 6835625983392988 a001 14930352/17393796001*24476^(8/9) 6835625983392993 a001 39088169/45537549124*24476^(8/9) 6835625983392994 a001 102334155/119218851371*24476^(8/9) 6835625983392994 a001 267914296/312119004989*24476^(8/9) 6835625983392994 a001 701408733/817138163596*24476^(8/9) 6835625983392994 a001 1836311903/2139295485799*24476^(8/9) 6835625983392994 a001 4807526976/5600748293801*24476^(8/9) 6835625983392994 a001 12586269025/14662949395604*24476^(8/9) 6835625983392994 a001 20365011074/23725150497407*24476^(8/9) 6835625983392994 a001 7778742049/9062201101803*24476^(8/9) 6835625983392994 a001 2971215073/3461452808002*24476^(8/9) 6835625983392994 a001 1134903170/1322157322203*24476^(8/9) 6835625983392994 a001 433494437/505019158607*24476^(8/9) 6835625983392994 a001 165580141/192900153618*24476^(8/9) 6835625983392994 a001 63245986/73681302247*24476^(8/9) 6835625983392996 a001 24157817/28143753123*24476^(8/9) 6835625983393010 a001 9227465/10749957122*24476^(8/9) 6835625983393104 a001 3524578/4106118243*24476^(8/9) 6835625983393748 a001 1346269/1568397607*24476^(8/9) 6835625983398164 a001 514229/599074578*24476^(8/9) 6835625983428430 a001 196418/228826127*24476^(8/9) 6835625983635875 a001 75025/87403803*24476^(8/9) 6835625983831785 a001 121393/24476*3571^(2/51) 6835625984062306 a001 6765/710647*15127^(41/60) 6835625984130979 a001 121393/64079*9349^(8/57) 6835625984818790 a001 17711/39603*45537549124^(1/9) 6835625984818797 a001 17711/39603*12752043^(1/6) 6835625985030748 a001 6765/24476*15127^(1/3) 6835625985057729 a001 28657/33385282*24476^(8/9) 6835625985105013 a007 Real Root Of 937*x^4-865*x^3-446*x^2+185*x-146 6835625985574640 a001 6765/1149851*15127^(11/15) 6835625986025780 a001 317811/103682*9349^(5/57) 6835625986468456 a001 196418/39603*9349^(2/57) 6835625986558581 a001 2576/103361*24476^(5/9) 6835625986580443 a001 832040/271443*9349^(5/57) 6835625986661367 a001 311187/101521*9349^(5/57) 6835625986711381 a001 1346269/439204*9349^(5/57) 6835625986923243 a001 514229/167761*9349^(5/57) 6835625987061124 a001 55/15126*15127^(47/60) 6835625987103369 a001 121393/4870847*24476^(5/9) 6835625987182853 a001 105937/4250681*24476^(5/9) 6835625987194449 a001 416020/16692641*24476^(5/9) 6835625987196141 a001 726103/29134601*24476^(5/9) 6835625987196388 a001 5702887/228826127*24476^(5/9) 6835625987196424 a001 829464/33281921*24476^(5/9) 6835625987196429 a001 39088169/1568397607*24476^(5/9) 6835625987196430 a001 34111385/1368706081*24476^(5/9) 6835625987196430 a001 133957148/5374978561*24476^(5/9) 6835625987196430 a001 233802911/9381251041*24476^(5/9) 6835625987196430 a001 1836311903/73681302247*24476^(5/9) 6835625987196430 a001 267084832/10716675201*24476^(5/9) 6835625987196430 a001 12586269025/505019158607*24476^(5/9) 6835625987196430 a001 10983760033/440719107401*24476^(5/9) 6835625987196430 a001 43133785636/1730726404001*24476^(5/9) 6835625987196430 a001 75283811239/3020733700601*24476^(5/9) 6835625987196430 a001 182717648081/7331474697802*24476^(5/9) 6835625987196430 a001 139583862445/5600748293801*24476^(5/9) 6835625987196430 a001 53316291173/2139295485799*24476^(5/9) 6835625987196430 a001 10182505537/408569081798*24476^(5/9) 6835625987196430 a001 7778742049/312119004989*24476^(5/9) 6835625987196430 a001 2971215073/119218851371*24476^(5/9) 6835625987196430 a001 567451585/22768774562*24476^(5/9) 6835625987196430 a001 433494437/17393796001*24476^(5/9) 6835625987196430 a001 165580141/6643838879*24476^(5/9) 6835625987196430 a001 31622993/1268860318*24476^(5/9) 6835625987196432 a001 24157817/969323029*24476^(5/9) 6835625987196446 a001 9227465/370248451*24476^(5/9) 6835625987196540 a001 1762289/70711162*24476^(5/9) 6835625987197187 a001 1346269/54018521*24476^(5/9) 6835625987201616 a001 514229/20633239*24476^(5/9) 6835625987231976 a001 98209/3940598*24476^(5/9) 6835625987440067 a001 75025/3010349*24476^(5/9) 6835625987986352 a001 17711/103682*64079^(1/3) 6835625988306258 a001 28657/39603*24476^(2/9) 6835625988375368 a001 196418/64079*9349^(5/57) 6835625988541253 a001 15456/13201*7881196^(1/9) 6835625988541266 a001 17711/103682*4106118243^(1/6) 6835625988541266 a001 15456/13201*312119004989^(1/15) 6835625988541266 a001 15456/13201*1568397607^(1/12) 6835625988557482 a001 6765/3010349*15127^(5/6) 6835625988866342 a001 28657/1149851*24476^(5/9) 6835625988966641 a001 17711/87403803*167761^(13/15) 6835625989015329 a001 89/39604*167761^(2/3) 6835625989015986 r005 Re(z^2+c),c=-29/50+12/25*I,n=38 6835625989050260 a001 17711/710647*167761^(7/15) 6835625989068175 a001 121393/39603*167761^(1/15) 6835625989082644 a001 17711/271443*1149851^(1/3) 6835625989084367 a001 121393/39603*20633239^(1/21) 6835625989084368 a001 17711/271443*1322157322203^(1/6) 6835625989084368 a001 121393/39603*228826127^(1/24) 6835625989084477 a001 121393/39603*1860498^(1/18) 6835625989163600 a001 17711/710647*20633239^(1/3) 6835625989163605 a001 17711/710647*17393796001^(5/21) 6835625989163605 a001 17711/710647*505019158607^(5/24) 6835625989163605 a001 17711/710647*599074578^(5/18) 6835625989163605 a001 17711/710647*228826127^(7/24) 6835625989164373 a001 17711/710647*1860498^(7/18) 6835625989169245 a001 17711/710647*710647^(5/12) 6835625989175166 a001 17711/1860498*370248451^(1/3) 6835625989176640 a001 17711/54018521*3010349^(2/3) 6835625989176852 a001 17711/4870847*6643838879^(1/3) 6835625989177055 a001 17711/599074578*7881196^(7/9) 6835625989177098 a001 17711/12752043*119218851371^(1/3) 6835625989177125 a001 17711/17393796001*20633239^(14/15) 6835625989177126 a001 17711/10749957122*20633239^(19/21) 6835625989177128 a001 17711/969323029*20633239^(16/21) 6835625989177129 a001 17711/599074578*20633239^(11/15) 6835625989177130 a001 17711/87403803*20633239^(13/21) 6835625989177134 a001 17711/33385282*2139295485799^(1/3) 6835625989177139 a001 17711/370248451*54018521^(2/3) 6835625989177139 a001 17711/87403803*141422324^(5/9) 6835625989177140 a001 17711/87403803*73681302247^(5/12) 6835625989177140 a001 17711/87403803*228826127^(13/24) 6835625989177140 a001 17711/45537549124*141422324^(8/9) 6835625989177140 a001 17711/599074578*17393796001^(11/21) 6835625989177140 a001 17711/599074578*312119004989^(7/15) 6835625989177140 a001 17711/599074578*505019158607^(11/24) 6835625989177140 a001 17711/599074578*1568397607^(7/12) 6835625989177140 a001 17711/599074578*599074578^(11/18) 6835625989177140 a001 17711/2537720636*969323029^(2/3) 6835625989177140 a001 17711/10749957122*817138163596^(5/9) 6835625989177140 a001 17711/14662949395604*17393796001^(20/21) 6835625989177140 a001 17711/505019158607*17393796001^(17/21) 6835625989177140 a001 17711/505019158607*45537549124^(7/9) 6835625989177140 a001 17711/23725150497407*312119004989^(13/15) 6835625989177140 a001 17711/14662949395604*3461452808002^(7/9) 6835625989177140 a001 17711/2139295485799*23725150497407^(2/3) 6835625989177140 a001 17711/2139295485799*505019158607^(16/21) 6835625989177140 a001 17711/14662949395604*505019158607^(5/6) 6835625989177140 a001 89/1568437211*1322157322203^(2/3) 6835625989177140 a001 17711/119218851371*312119004989^(2/3) 6835625989177140 a001 17711/119218851371*3461452808002^(11/18) 6835625989177140 a001 17711/23725150497407*73681302247^(11/12) 6835625989177140 a001 17711/45537549124*23725150497407^(13/24) 6835625989177140 a001 17711/45537549124*505019158607^(13/21) 6835625989177140 a001 17711/45537549124*73681302247^(2/3) 6835625989177140 a001 17711/119218851371*28143753123^(11/15) 6835625989177140 a001 17711/1322157322203*28143753123^(5/6) 6835625989177140 a001 17711/17393796001*17393796001^(2/3) 6835625989177140 a001 17711/14662949395604*28143753123^(14/15) 6835625989177140 a001 17711/17393796001*505019158607^(7/12) 6835625989177140 a001 17711/45537549124*10749957122^(13/18) 6835625989177140 a001 17711/2139295485799*10749957122^(8/9) 6835625989177140 a001 17711/6643838879*4106118243^(2/3) 6835625989177140 a001 17711/119218851371*1568397607^(5/6) 6835625989177140 a001 17711/969323029*23725150497407^(5/12) 6835625989177140 a001 17711/969323029*505019158607^(10/21) 6835625989177140 a001 17711/969323029*28143753123^(8/15) 6835625989177140 a001 17711/969323029*10749957122^(5/9) 6835625989177140 a001 17711/17393796001*599074578^(7/9) 6835625989177140 a001 17711/505019158607*599074578^(17/18) 6835625989177141 a001 17711/969323029*228826127^(2/3) 6835625989177141 a001 17711/10749957122*228826127^(19/24) 6835625989177141 a001 17711/45537549124*228826127^(13/15) 6835625989177141 a001 17711/119218851371*228826127^(11/12) 6835625989177141 a001 17711/141422324*45537549124^(4/9) 6835625989177141 a001 17711/10749957122*87403803^(5/6) 6835625989177143 a001 17711/54018521*9062201101803^(1/3) 6835625989177148 a001 17711/20633239*20633239^(8/15) 6835625989177156 a001 17711/20633239*17393796001^(8/21) 6835625989177156 a001 17711/20633239*23725150497407^(7/24) 6835625989177156 a001 17711/20633239*505019158607^(1/3) 6835625989177156 a001 17711/20633239*10749957122^(7/18) 6835625989177156 a001 17711/20633239*599074578^(4/9) 6835625989177157 a001 17711/20633239*228826127^(7/15) 6835625989177169 a001 17711/141422324*12752043^(2/3) 6835625989177243 a001 89/39604*20633239^(10/21) 6835625989177250 a001 89/39604*3461452808002^(5/18) 6835625989177250 a001 89/39604*28143753123^(1/3) 6835625989177251 a001 89/39604*228826127^(5/12) 6835625989177325 a001 17711/20633239*4870847^(7/12) 6835625989177345 a001 17711/141422324*4870847^(17/24) 6835625989177381 a001 17711/969323029*4870847^(5/6) 6835625989177417 a001 17711/6643838879*4870847^(23/24) 6835625989177846 a001 17711/3010349*7881196^(4/9) 6835625989177895 a001 17711/3010349*312119004989^(4/15) 6835625989177895 a001 17711/3010349*1568397607^(1/3) 6835625989178027 a001 17711/3010349*4870847^(11/24) 6835625989178348 a001 89/39604*1860498^(5/9) 6835625989178566 a001 17711/87403803*1860498^(13/18) 6835625989178896 a001 17711/969323029*1860498^(8/9) 6835625989182310 a001 17711/1149851*817138163596^(2/9) 6835625989182311 a001 17711/1149851*87403803^(1/3) 6835625989184985 a001 17711/3010349*710647^(11/21) 6835625989186180 a001 17711/20633239*710647^(2/3) 6835625989188098 a001 17711/141422324*710647^(17/21) 6835625989189548 a001 17711/599074578*710647^(11/12) 6835625989190031 a001 17711/969323029*710647^(20/21) 6835625989212577 a001 17711/439204*23725150497407^(1/6) 6835625989212577 a001 17711/439204*10749957122^(2/9) 6835625989212577 a001 17711/439204*228826127^(4/15) 6835625989212673 a001 17711/439204*4870847^(1/3) 6835625989217733 a001 17711/439204*710647^(8/21) 6835625989254450 a001 17711/87403803*271443^(5/6) 6835625989267657 a001 15456/13201*39603^(1/6) 6835625989344648 a001 196418/39603*39603^(1/33) 6835625989420023 a001 17711/167761*141422324^(2/9) 6835625989420023 a001 17711/167761*73681302247^(1/6) 6835625989420023 a001 75025/39603*23725150497407^(1/24) 6835625989420023 a001 75025/39603*10749957122^(1/18) 6835625989420023 a001 75025/39603*228826127^(1/15) 6835625989420047 a001 75025/39603*4870847^(1/12) 6835625989421312 a001 75025/39603*710647^(2/21) 6835625989450947 a001 17711/167761*271443^(1/3) 6835625989490676 a001 75025/39603*103682^(1/9) 6835625989495188 a001 17711/439204*103682^(4/9) 6835625989566485 a001 17711/3010349*103682^(11/18) 6835625989671726 a001 17711/20633239*103682^(7/9) 6835625989741849 a001 1292/930249*5778^(53/54) 6835625989777689 a001 17711/141422324*103682^(17/18) 6835625989948308 a001 75025/39603*39603^(4/33) 6835625990050068 a001 6765/4870847*15127^(53/60) 6835625990160666 a001 514229/103682*9349^(2/57) 6835625990208329 a001 196418/39603*15127^(1/30) 6835625990606874 a001 75025/103682*24476^(2/9) 6835625990699352 a001 1346269/271443*9349^(2/57) 6835625990777113 a001 17711/64079*167761^(4/15) 6835625990826519 a001 2178309/439204*9349^(2/57) 6835625990841879 a001 17711/64079*20633239^(4/21) 6835625990841880 a001 28657/39603*20633239^(2/15) 6835625990841882 a001 17711/64079*3461452808002^(1/9) 6835625990841882 a001 17711/64079*28143753123^(2/15) 6835625990841882 a001 28657/39603*17393796001^(2/21) 6835625990841882 a001 28657/39603*505019158607^(1/12) 6835625990841882 a001 28657/39603*599074578^(1/9) 6835625990841882 a001 17711/64079*228826127^(1/6) 6835625990841942 a001 17711/64079*4870847^(5/24) 6835625990842321 a001 17711/64079*1860498^(2/9) 6835625990844138 a001 28657/39603*710647^(1/6) 6835625990845105 a001 17711/64079*710647^(5/21) 6835625990942530 a001 196418/271443*24476^(2/9) 6835625990991501 a001 514229/710647*24476^(2/9) 6835625990998646 a001 1346269/1860498*24476^(2/9) 6835625990999688 a001 3524578/4870847*24476^(2/9) 6835625990999840 a001 9227465/12752043*24476^(2/9) 6835625990999863 a001 24157817/33385282*24476^(2/9) 6835625990999866 a001 63245986/87403803*24476^(2/9) 6835625990999866 a001 165580141/228826127*24476^(2/9) 6835625990999866 a001 433494437/599074578*24476^(2/9) 6835625990999866 a001 1134903170/1568397607*24476^(2/9) 6835625990999866 a001 2971215073/4106118243*24476^(2/9) 6835625990999866 a001 7778742049/10749957122*24476^(2/9) 6835625990999866 a001 20365011074/28143753123*24476^(2/9) 6835625990999866 a001 53316291173/73681302247*24476^(2/9) 6835625990999866 a001 139583862445/192900153618*24476^(2/9) 6835625990999866 a001 365435296162/505019158607*24476^(2/9) 6835625990999866 a001 10610209857723/14662949395604*24476^(2/9) 6835625990999866 a001 591286729879/817138163596*24476^(2/9) 6835625990999866 a001 225851433717/312119004989*24476^(2/9) 6835625990999866 a001 86267571272/119218851371*24476^(2/9) 6835625990999866 a001 32951280099/45537549124*24476^(2/9) 6835625990999866 a001 12586269025/17393796001*24476^(2/9) 6835625990999866 a001 4807526976/6643838879*24476^(2/9) 6835625990999866 a001 1836311903/2537720636*24476^(2/9) 6835625990999866 a001 701408733/969323029*24476^(2/9) 6835625990999866 a001 267914296/370248451*24476^(2/9) 6835625990999867 a001 102334155/141422324*24476^(2/9) 6835625990999868 a001 39088169/54018521*24476^(2/9) 6835625990999876 a001 14930352/20633239*24476^(2/9) 6835625990999934 a001 5702887/7881196*24476^(2/9) 6835625991000333 a001 2178309/3010349*24476^(2/9) 6835625991003062 a001 832040/1149851*24476^(2/9) 6835625991018514 a001 17711/64079*103682^(5/18) 6835625991021767 a001 317811/439204*24476^(2/9) 6835625991032278 a001 75640/15251*9349^(2/57) 6835625991136949 a001 17711/167761*39603^(13/33) 6835625991149976 a001 121393/167761*24476^(2/9) 6835625991325716 a001 17711/439204*39603^(16/33) 6835625991517881 a001 28657/24476*9349^(11/57) 6835625991544095 a001 6765/7881196*15127^(14/15) 6835625991573749 a001 121393/39603*15127^(1/12) 6835625991691664 a001 17711/1149851*39603^(19/33) 6835625991766381 a001 28657/39603*39603^(7/33) 6835625992028733 a001 46368/64079*24476^(2/9) 6835625992083462 a001 17711/3010349*39603^(2/3) 6835625992162594 a001 17711/64079*39603^(10/33) 6835625992251929 a001 15456/90481*64079^(1/3) 6835625992263741 a001 23184/51841*45537549124^(1/9) 6835625992263748 a001 23184/51841*12752043^(1/6) 6835625992442577 a001 317811/64079*9349^(2/57) 6835625992689118 a001 46368/228826127*167761^(13/15) 6835625992737710 a001 46368/20633239*167761^(2/3) 6835625992784296 a001 2576/103361*167761^(7/15) 6835625992806831 a001 121393/103682*7881196^(1/9) 6835625992806843 a001 121393/103682*312119004989^(1/15) 6835625992806843 a001 15456/90481*4106118243^(1/6) 6835625992806843 a001 121393/103682*1568397607^(1/12) 6835625992869888 a001 317811/103682*167761^(1/15) 6835625992874268 a001 121393/710647*64079^(1/3) 6835625992884357 a001 6624/101521*1149851^(1/3) 6835625992886080 a001 317811/103682*20633239^(1/21) 6835625992886081 a001 6624/101521*1322157322203^(1/6) 6835625992886081 a001 317811/103682*228826127^(1/24) 6835625992886190 a001 317811/103682*1860498^(1/18) 6835625992897636 a001 2576/103361*20633239^(1/3) 6835625992897641 a001 2576/103361*17393796001^(5/21) 6835625992897641 a001 2576/103361*505019158607^(5/24) 6835625992897641 a001 2576/103361*599074578^(5/18) 6835625992897641 a001 2576/103361*228826127^(7/24) 6835625992898409 a001 2576/103361*1860498^(7/18) 6835625992899113 a001 11592/35355581*3010349^(2/3) 6835625992899328 a001 46368/4870847*370248451^(1/3) 6835625992899530 a001 6624/224056801*7881196^(7/9) 6835625992899574 a001 15456/4250681*6643838879^(1/3) 6835625992899601 a001 11592/11384387281*20633239^(14/15) 6835625992899601 a001 15456/9381251041*20633239^(19/21) 6835625992899604 a001 11592/634430159*20633239^(16/21) 6835625992899604 a001 6624/224056801*20633239^(11/15) 6835625992899606 a001 46368/228826127*20633239^(13/21) 6835625992899610 a001 46368/54018521*20633239^(8/15) 6835625992899610 a001 144/103681*119218851371^(1/3) 6835625992899614 a001 46368/969323029*54018521^(2/3) 6835625992899615 a001 15456/29134601*2139295485799^(1/3) 6835625992899616 a001 46368/228826127*141422324^(5/9) 6835625992899616 a001 46368/119218851371*141422324^(8/9) 6835625992899616 a001 46368/228826127*73681302247^(5/12) 6835625992899616 a001 46368/228826127*228826127^(13/24) 6835625992899616 a001 46368/6643838879*969323029^(2/3) 6835625992899616 a001 6624/224056801*17393796001^(11/21) 6835625992899616 a001 6624/224056801*312119004989^(7/15) 6835625992899616 a001 6624/224056801*505019158607^(11/24) 6835625992899616 a001 6624/224056801*1568397607^(7/12) 6835625992899616 a001 15456/440719107401*17393796001^(17/21) 6835625992899616 a001 11592/11384387281*17393796001^(2/3) 6835625992899616 a001 15456/9381251041*817138163596^(5/9) 6835625992899616 a001 15456/440719107401*45537549124^(7/9) 6835625992899616 a001 46368/2139295485799*5600748293801^(2/3) 6835625992899616 a001 11592/204284540899*1322157322203^(2/3) 6835625992899616 a001 15456/440719107401*505019158607^(17/24) 6835625992899616 a001 46368/312119004989*3461452808002^(11/18) 6835625992899616 a001 46368/119218851371*23725150497407^(13/24) 6835625992899616 a001 46368/119218851371*505019158607^(13/21) 6835625992899616 a001 46368/119218851371*73681302247^(2/3) 6835625992899616 a001 11592/11384387281*505019158607^(7/12) 6835625992899616 a001 46368/312119004989*28143753123^(11/15) 6835625992899616 a001 144/10749853441*28143753123^(5/6) 6835625992899616 a001 46368/119218851371*10749957122^(13/18) 6835625992899616 a001 46368/5600748293801*10749957122^(8/9) 6835625992899616 a001 46368/17393796001*4106118243^(2/3) 6835625992899616 a001 11592/634430159*23725150497407^(5/12) 6835625992899616 a001 11592/634430159*505019158607^(10/21) 6835625992899616 a001 11592/634430159*28143753123^(8/15) 6835625992899616 a001 11592/634430159*10749957122^(5/9) 6835625992899616 a001 46368/312119004989*1568397607^(5/6) 6835625992899616 a001 6624/224056801*599074578^(11/18) 6835625992899616 a001 11592/11384387281*599074578^(7/9) 6835625992899616 a001 15456/440719107401*599074578^(17/18) 6835625992899616 a001 46368/370248451*45537549124^(4/9) 6835625992899616 a001 11592/634430159*228826127^(2/3) 6835625992899616 a001 15456/9381251041*228826127^(19/24) 6835625992899616 a001 46368/119218851371*228826127^(13/15) 6835625992899616 a001 46368/312119004989*228826127^(11/12) 6835625992899616 a001 11592/35355581*9062201101803^(1/3) 6835625992899617 a001 15456/9381251041*87403803^(5/6) 6835625992899618 a001 46368/54018521*17393796001^(8/21) 6835625992899618 a001 46368/54018521*23725150497407^(7/24) 6835625992899618 a001 46368/54018521*505019158607^(1/3) 6835625992899618 a001 46368/54018521*10749957122^(7/18) 6835625992899618 a001 46368/54018521*599074578^(4/9) 6835625992899618 a001 46368/54018521*228826127^(7/15) 6835625992899624 a001 46368/20633239*20633239^(10/21) 6835625992899632 a001 46368/20633239*3461452808002^(5/18) 6835625992899632 a001 46368/20633239*28143753123^(1/3) 6835625992899632 a001 46368/20633239*228826127^(5/12) 6835625992899644 a001 46368/370248451*12752043^(2/3) 6835625992899677 a001 11592/1970299*7881196^(4/9) 6835625992899726 a001 11592/1970299*312119004989^(4/15) 6835625992899726 a001 11592/1970299*1568397607^(1/3) 6835625992899786 a001 46368/54018521*4870847^(7/12) 6835625992899820 a001 46368/370248451*4870847^(17/24) 6835625992899856 a001 11592/634430159*4870847^(5/6) 6835625992899858 a001 11592/1970299*4870847^(11/24) 6835625992899892 a001 46368/17393796001*4870847^(23/24) 6835625992900370 a001 46368/3010349*817138163596^(2/9) 6835625992900370 a001 46368/3010349*87403803^(1/3) 6835625992900729 a001 46368/20633239*1860498^(5/9) 6835625992901042 a001 46368/228826127*1860498^(13/18) 6835625992901371 a001 11592/634430159*1860498^(8/9) 6835625992903281 a001 2576/103361*710647^(5/12) 6835625992904786 a001 46368/1149851*23725150497407^(1/6) 6835625992904786 a001 46368/1149851*10749957122^(2/9) 6835625992904786 a001 46368/1149851*228826127^(4/15) 6835625992904882 a001 46368/1149851*4870847^(1/3) 6835625992906816 a001 11592/1970299*710647^(11/21) 6835625992908642 a001 46368/54018521*710647^(2/3) 6835625992909942 a001 46368/1149851*710647^(8/21) 6835625992910573 a001 46368/370248451*710647^(17/21) 6835625992912023 a001 6624/224056801*710647^(11/12) 6835625992912507 a001 11592/634430159*710647^(20/21) 6835625992935052 a001 11592/109801*141422324^(2/9) 6835625992935052 a001 11592/109801*73681302247^(1/6) 6835625992935052 a001 98209/51841*23725150497407^(1/24) 6835625992935052 a001 98209/51841*10749957122^(1/18) 6835625992935052 a001 98209/51841*228826127^(1/15) 6835625992935076 a001 98209/51841*4870847^(1/12) 6835625992936341 a001 98209/51841*710647^(2/21) 6835625992965067 a001 105937/620166*64079^(1/3) 6835625992965976 a001 11592/109801*271443^(1/3) 6835625992976926 a001 46368/228826127*271443^(5/6) 6835625992978314 a001 832040/4870847*64079^(1/3) 6835625992980247 a001 726103/4250681*64079^(1/3) 6835625992980529 a001 5702887/33385282*64079^(1/3) 6835625992980570 a001 4976784/29134601*64079^(1/3) 6835625992980576 a001 39088169/228826127*64079^(1/3) 6835625992980577 a001 34111385/199691526*64079^(1/3) 6835625992980577 a001 267914296/1568397607*64079^(1/3) 6835625992980577 a001 233802911/1368706081*64079^(1/3) 6835625992980577 a001 1836311903/10749957122*64079^(1/3) 6835625992980577 a001 1602508992/9381251041*64079^(1/3) 6835625992980577 a001 12586269025/73681302247*64079^(1/3) 6835625992980577 a001 10983760033/64300051206*64079^(1/3) 6835625992980577 a001 86267571272/505019158607*64079^(1/3) 6835625992980577 a001 75283811239/440719107401*64079^(1/3) 6835625992980577 a001 2504730781961/14662949395604*64079^(1/3) 6835625992980577 a001 139583862445/817138163596*64079^(1/3) 6835625992980577 a001 53316291173/312119004989*64079^(1/3) 6835625992980577 a001 20365011074/119218851371*64079^(1/3) 6835625992980577 a001 7778742049/45537549124*64079^(1/3) 6835625992980577 a001 2971215073/17393796001*64079^(1/3) 6835625992980577 a001 1134903170/6643838879*64079^(1/3) 6835625992980577 a001 433494437/2537720636*64079^(1/3) 6835625992980577 a001 165580141/969323029*64079^(1/3) 6835625992980577 a001 63245986/370248451*64079^(1/3) 6835625992980579 a001 24157817/141422324*64079^(1/3) 6835625992980595 a001 9227465/54018521*64079^(1/3) 6835625992980703 a001 3524578/20633239*64079^(1/3) 6835625992981441 a001 1346269/7881196*64079^(1/3) 6835625992986501 a001 514229/3010349*64079^(1/3) 6835625993005705 a001 98209/51841*103682^(1/9) 6835625993021183 a001 196418/1149851*64079^(1/3) 6835625993031088 a001 5473/12238*9349^(17/57) 6835625993036857 a001 514229/103682*39603^(1/33) 6835625993077730 a001 46368/167761*167761^(4/15) 6835625993142495 a001 46368/167761*20633239^(4/21) 6835625993142496 a001 75025/103682*20633239^(2/15) 6835625993142498 a001 46368/167761*3461452808002^(1/9) 6835625993142498 a001 46368/167761*28143753123^(2/15) 6835625993142498 a001 75025/103682*17393796001^(2/21) 6835625993142498 a001 75025/103682*505019158607^(1/12) 6835625993142498 a001 75025/103682*599074578^(1/9) 6835625993142498 a001 46368/167761*228826127^(1/6) 6835625993142558 a001 46368/167761*4870847^(5/24) 6835625993142937 a001 46368/167761*1860498^(2/9) 6835625993144754 a001 75025/103682*710647^(1/6) 6835625993145721 a001 46368/167761*710647^(5/21) 6835625993187397 a001 46368/1149851*103682^(4/9) 6835625993232220 a001 121393/599074578*167761^(13/15) 6835625993258895 a001 75025/439204*64079^(1/3) 6835625993280798 a001 121393/54018521*167761^(2/3) 6835625993282687 a001 17711/39603*15127^(17/60) 6835625993288316 a001 11592/1970299*103682^(11/18) 6835625993311457 a001 317811/1568397607*167761^(13/15) 6835625993319130 a001 46368/167761*103682^(5/18) 6835625993323018 a001 832040/4106118243*167761^(13/15) 6835625993324704 a001 987/4870846*167761^(13/15) 6835625993324950 a001 5702887/28143753123*167761^(13/15) 6835625993324986 a001 14930352/73681302247*167761^(13/15) 6835625993324992 a001 39088169/192900153618*167761^(13/15) 6835625993324992 a001 102334155/505019158607*167761^(13/15) 6835625993324992 a001 267914296/1322157322203*167761^(13/15) 6835625993324992 a001 701408733/3461452808002*167761^(13/15) 6835625993324992 a001 1836311903/9062201101803*167761^(13/15) 6835625993324992 a001 4807526976/23725150497407*167761^(13/15) 6835625993324992 a001 2971215073/14662949395604*167761^(13/15) 6835625993324992 a001 1134903170/5600748293801*167761^(13/15) 6835625993324992 a001 433494437/2139295485799*167761^(13/15) 6835625993324992 a001 165580141/817138163596*167761^(13/15) 6835625993324993 a001 63245986/312119004989*167761^(13/15) 6835625993324995 a001 24157817/119218851371*167761^(13/15) 6835625993325008 a001 9227465/45537549124*167761^(13/15) 6835625993325102 a001 3524578/17393796001*167761^(13/15) 6835625993325747 a001 1346269/6643838879*167761^(13/15) 6835625993329084 a001 121393/4870847*167761^(7/15) 6835625993330162 a001 514229/2537720636*167761^(13/15) 6835625993333445 a001 11592/6119*9349^(8/57) 6835625993349945 a001 121393/271443*45537549124^(1/9) 6835625993349952 a001 121393/271443*12752043^(1/6) 6835625993360034 a001 317811/141422324*167761^(2/3) 6835625993360429 a001 196418/969323029*167761^(13/15) 6835625993371594 a001 832040/370248451*167761^(2/3) 6835625993373281 a001 2178309/969323029*167761^(2/3) 6835625993373527 a001 5702887/2537720636*167761^(2/3) 6835625993373563 a001 14930352/6643838879*167761^(2/3) 6835625993373568 a001 39088169/17393796001*167761^(2/3) 6835625993373569 a001 102334155/45537549124*167761^(2/3) 6835625993373569 a001 267914296/119218851371*167761^(2/3) 6835625993373569 a001 3524667/1568437211*167761^(2/3) 6835625993373569 a001 1836311903/817138163596*167761^(2/3) 6835625993373569 a001 4807526976/2139295485799*167761^(2/3) 6835625993373569 a001 12586269025/5600748293801*167761^(2/3) 6835625993373569 a001 32951280099/14662949395604*167761^(2/3) 6835625993373569 a001 53316291173/23725150497407*167761^(2/3) 6835625993373569 a001 20365011074/9062201101803*167761^(2/3) 6835625993373569 a001 7778742049/3461452808002*167761^(2/3) 6835625993373569 a001 2971215073/1322157322203*167761^(2/3) 6835625993373569 a001 1134903170/505019158607*167761^(2/3) 6835625993373569 a001 433494437/192900153618*167761^(2/3) 6835625993373569 a001 165580141/73681302247*167761^(2/3) 6835625993373569 a001 63245986/28143753123*167761^(2/3) 6835625993373571 a001 24157817/10749957122*167761^(2/3) 6835625993373585 a001 9227465/4106118243*167761^(2/3) 6835625993373679 a001 3524578/1568397607*167761^(2/3) 6835625993374323 a001 1346269/599074578*167761^(2/3) 6835625993378739 a001 514229/228826127*167761^(2/3) 6835625993394187 a001 46368/54018521*103682^(7/9) 6835625993403033 a001 75025/39603*15127^(2/15) 6835625993408568 a001 105937/4250681*167761^(7/15) 6835625993409004 a001 196418/87403803*167761^(2/3) 6835625993413385 a001 121393/439204*167761^(4/15) 6835625993420165 a001 416020/16692641*167761^(7/15) 6835625993421856 a001 726103/29134601*167761^(7/15) 6835625993422103 a001 5702887/228826127*167761^(7/15) 6835625993422139 a001 829464/33281921*167761^(7/15) 6835625993422145 a001 39088169/1568397607*167761^(7/15) 6835625993422145 a001 34111385/1368706081*167761^(7/15) 6835625993422145 a001 133957148/5374978561*167761^(7/15) 6835625993422145 a001 233802911/9381251041*167761^(7/15) 6835625993422145 a001 1836311903/73681302247*167761^(7/15) 6835625993422145 a001 267084832/10716675201*167761^(7/15) 6835625993422145 a001 12586269025/505019158607*167761^(7/15) 6835625993422145 a001 10983760033/440719107401*167761^(7/15) 6835625993422145 a001 43133785636/1730726404001*167761^(7/15) 6835625993422145 a001 75283811239/3020733700601*167761^(7/15) 6835625993422145 a001 182717648081/7331474697802*167761^(7/15) 6835625993422145 a001 139583862445/5600748293801*167761^(7/15) 6835625993422145 a001 53316291173/2139295485799*167761^(7/15) 6835625993422145 a001 10182505537/408569081798*167761^(7/15) 6835625993422145 a001 7778742049/312119004989*167761^(7/15) 6835625993422145 a001 2971215073/119218851371*167761^(7/15) 6835625993422145 a001 567451585/22768774562*167761^(7/15) 6835625993422145 a001 433494437/17393796001*167761^(7/15) 6835625993422145 a001 165580141/6643838879*167761^(7/15) 6835625993422146 a001 31622993/1268860318*167761^(7/15) 6835625993422148 a001 24157817/969323029*167761^(7/15) 6835625993422162 a001 9227465/370248451*167761^(7/15) 6835625993422256 a001 1762289/70711162*167761^(7/15) 6835625993422902 a001 1346269/54018521*167761^(7/15) 6835625993424551 a001 832040/271443*167761^(1/15) 6835625993427332 a001 514229/20633239*167761^(7/15) 6835625993429170 a001 105937/90481*7881196^(1/9) 6835625993429182 a001 105937/90481*312119004989^(1/15) 6835625993429182 a001 121393/710647*4106118243^(1/6) 6835625993429182 a001 105937/90481*1568397607^(1/12) 6835625993439020 a001 121393/1860498*1149851^(1/3) 6835625993440742 a001 832040/271443*20633239^(1/21) 6835625993440743 a001 121393/1860498*1322157322203^(1/6) 6835625993440743 a001 832040/271443*228826127^(1/24) 6835625993440853 a001 832040/271443*1860498^(1/18) 6835625993442215 a001 121393/370248451*3010349^(2/3) 6835625993442424 a001 121393/4870847*20633239^(1/3) 6835625993442430 a001 121393/4870847*17393796001^(5/21) 6835625993442430 a001 121393/4870847*505019158607^(5/24) 6835625993442430 a001 121393/4870847*599074578^(5/18) 6835625993442430 a001 121393/4870847*228826127^(7/24) 6835625993442632 a001 121393/4106118243*7881196^(7/9) 6835625993442676 a001 121393/12752043*370248451^(1/3) 6835625993442685 a001 121393/20633239*7881196^(4/9) 6835625993442703 a001 121393/119218851371*20633239^(14/15) 6835625993442703 a001 121393/73681302247*20633239^(19/21) 6835625993442706 a001 121393/6643838879*20633239^(16/21) 6835625993442706 a001 121393/4106118243*20633239^(11/15) 6835625993442708 a001 121393/599074578*20633239^(13/21) 6835625993442710 a001 233/271444*20633239^(8/15) 6835625993442712 a001 121393/33385282*6643838879^(1/3) 6835625993442712 a001 121393/54018521*20633239^(10/21) 6835625993442716 a001 121393/2537720636*54018521^(2/3) 6835625993442717 a001 121393/87403803*119218851371^(1/3) 6835625993442717 a001 121393/312119004989*141422324^(8/9) 6835625993442718 a001 121393/599074578*141422324^(5/9) 6835625993442718 a001 121393/228826127*2139295485799^(1/3) 6835625993442718 a001 121393/599074578*73681302247^(5/12) 6835625993442718 a001 121393/17393796001*969323029^(2/3) 6835625993442718 a001 121393/4106118243*17393796001^(11/21) 6835625993442718 a001 121393/4106118243*312119004989^(7/15) 6835625993442718 a001 121393/4106118243*505019158607^(11/24) 6835625993442718 a001 121393/3461452808002*17393796001^(17/21) 6835625993442718 a001 121393/119218851371*17393796001^(2/3) 6835625993442718 a001 121393/3461452808002*45537549124^(7/9) 6835625993442718 a001 121393/73681302247*817138163596^(5/9) 6835625993442718 a001 121393/817138163596*312119004989^(2/3) 6835625993442718 a001 121393/14662949395604*23725150497407^(2/3) 6835625993442718 a001 121393/2139295485799*1322157322203^(2/3) 6835625993442718 a001 121393/817138163596*3461452808002^(11/18) 6835625993442718 a001 121393/14662949395604*505019158607^(16/21) 6835625993442718 a001 121393/312119004989*23725150497407^(13/24) 6835625993442718 a001 121393/312119004989*505019158607^(13/21) 6835625993442718 a001 121393/119218851371*505019158607^(7/12) 6835625993442718 a001 121393/312119004989*73681302247^(2/3) 6835625993442718 a001 121393/817138163596*28143753123^(11/15) 6835625993442718 a001 121393/9062201101803*28143753123^(5/6) 6835625993442718 a001 121393/312119004989*10749957122^(13/18) 6835625993442718 a001 121393/14662949395604*10749957122^(8/9) 6835625993442718 a001 121393/6643838879*23725150497407^(5/12) 6835625993442718 a001 121393/6643838879*505019158607^(10/21) 6835625993442718 a001 121393/6643838879*28143753123^(8/15) 6835625993442718 a001 121393/6643838879*10749957122^(5/9) 6835625993442718 a001 121393/45537549124*4106118243^(2/3) 6835625993442718 a001 121393/4106118243*1568397607^(7/12) 6835625993442718 a001 121393/817138163596*1568397607^(5/6) 6835625993442718 a001 121393/969323029*45537549124^(4/9) 6835625993442718 a001 121393/4106118243*599074578^(11/18) 6835625993442718 a001 121393/119218851371*599074578^(7/9) 6835625993442718 a001 121393/3461452808002*599074578^(17/18) 6835625993442718 a001 121393/370248451*9062201101803^(1/3) 6835625993442718 a001 121393/599074578*228826127^(13/24) 6835625993442718 a001 121393/6643838879*228826127^(2/3) 6835625993442718 a001 121393/73681302247*228826127^(19/24) 6835625993442718 a001 121393/312119004989*228826127^(13/15) 6835625993442718 a001 121393/817138163596*228826127^(11/12) 6835625993442718 a001 233/271444*17393796001^(8/21) 6835625993442718 a001 233/271444*23725150497407^(7/24) 6835625993442718 a001 233/271444*505019158607^(1/3) 6835625993442718 a001 233/271444*10749957122^(7/18) 6835625993442718 a001 233/271444*599074578^(4/9) 6835625993442718 a001 233/271444*228826127^(7/15) 6835625993442718 a001 121393/73681302247*87403803^(5/6) 6835625993442720 a001 121393/54018521*3461452808002^(5/18) 6835625993442720 a001 121393/54018521*28143753123^(1/3) 6835625993442720 a001 121393/54018521*228826127^(5/12) 6835625993442734 a001 121393/20633239*312119004989^(4/15) 6835625993442734 a001 121393/20633239*1568397607^(1/3) 6835625993442746 a001 121393/969323029*12752043^(2/3) 6835625993442828 a001 121393/7881196*817138163596^(2/9) 6835625993442828 a001 121393/7881196*87403803^(1/3) 6835625993442866 a001 121393/20633239*4870847^(11/24) 6835625993442886 a001 233/271444*4870847^(7/12) 6835625993442922 a001 121393/969323029*4870847^(17/24) 6835625993442958 a001 121393/6643838879*4870847^(5/6) 6835625993442994 a001 121393/45537549124*4870847^(23/24) 6835625993443198 a001 121393/4870847*1860498^(7/18) 6835625993443472 a001 121393/3010349*23725150497407^(1/6) 6835625993443472 a001 121393/3010349*10749957122^(2/9) 6835625993443472 a001 121393/3010349*228826127^(4/15) 6835625993443568 a001 121393/3010349*4870847^(1/3) 6835625993443817 a001 121393/54018521*1860498^(5/9) 6835625993444144 a001 121393/599074578*1860498^(13/18) 6835625993444473 a001 121393/6643838879*1860498^(8/9) 6835625993447888 a001 121393/1149851*141422324^(2/9) 6835625993447888 a001 121393/1149851*73681302247^(1/6) 6835625993447888 a001 514229/271443*23725150497407^(1/24) 6835625993447888 a001 514229/271443*10749957122^(1/18) 6835625993447888 a001 514229/271443*228826127^(1/15) 6835625993447912 a001 514229/271443*4870847^(1/12) 6835625993448069 a001 121393/4870847*710647^(5/12) 6835625993448628 a001 121393/3010349*710647^(8/21) 6835625993449177 a001 514229/271443*710647^(2/21) 6835625993449824 a001 121393/20633239*710647^(11/21) 6835625993451742 a001 233/271444*710647^(2/3) 6835625993453675 a001 121393/969323029*710647^(17/21) 6835625993455125 a001 121393/4106118243*710647^(11/12) 6835625993455609 a001 121393/6643838879*710647^(20/21) 6835625993457692 a001 98209/3940598*167761^(7/15) 6835625993462357 a001 317811/1149851*167761^(4/15) 6835625993463337 a001 98209/51841*39603^(4/33) 6835625993469501 a001 832040/3010349*167761^(4/15) 6835625993470544 a001 2178309/7881196*167761^(4/15) 6835625993470696 a001 5702887/20633239*167761^(4/15) 6835625993470718 a001 14930352/54018521*167761^(4/15) 6835625993470721 a001 39088169/141422324*167761^(4/15) 6835625993470722 a001 102334155/370248451*167761^(4/15) 6835625993470722 a001 267914296/969323029*167761^(4/15) 6835625993470722 a001 701408733/2537720636*167761^(4/15) 6835625993470722 a001 1836311903/6643838879*167761^(4/15) 6835625993470722 a001 4807526976/17393796001*167761^(4/15) 6835625993470722 a001 12586269025/45537549124*167761^(4/15) 6835625993470722 a001 32951280099/119218851371*167761^(4/15) 6835625993470722 a001 86267571272/312119004989*167761^(4/15) 6835625993470722 a001 225851433717/817138163596*167761^(4/15) 6835625993470722 a001 1548008755920/5600748293801*167761^(4/15) 6835625993470722 a001 139583862445/505019158607*167761^(4/15) 6835625993470722 a001 53316291173/192900153618*167761^(4/15) 6835625993470722 a001 20365011074/73681302247*167761^(4/15) 6835625993470722 a001 7778742049/28143753123*167761^(4/15) 6835625993470722 a001 2971215073/10749957122*167761^(4/15) 6835625993470722 a001 1134903170/4106118243*167761^(4/15) 6835625993470722 a001 433494437/1568397607*167761^(4/15) 6835625993470722 a001 165580141/599074578*167761^(4/15) 6835625993470722 a001 63245986/228826127*167761^(4/15) 6835625993470723 a001 24157817/87403803*167761^(4/15) 6835625993470732 a001 9227465/33385282*167761^(4/15) 6835625993470790 a001 3524578/12752043*167761^(4/15) 6835625993471188 a001 1346269/4870847*167761^(4/15) 6835625993473917 a001 514229/1860498*167761^(4/15) 6835625993478151 a001 121393/439204*20633239^(4/21) 6835625993478152 a001 196418/271443*20633239^(2/15) 6835625993478154 a001 196418/271443*17393796001^(2/21) 6835625993478154 a001 121393/439204*3461452808002^(1/9) 6835625993478154 a001 196418/271443*505019158607^(1/12) 6835625993478154 a001 121393/439204*28143753123^(2/15) 6835625993478154 a001 196418/271443*599074578^(1/9) 6835625993478154 a001 121393/439204*228826127^(1/6) 6835625993478214 a001 121393/439204*4870847^(5/24) 6835625993478593 a001 121393/439204*1860498^(2/9) 6835625993478812 a001 121393/1149851*271443^(1/3) 6835625993480410 a001 196418/271443*710647^(1/6) 6835625993481377 a001 121393/439204*710647^(5/21) 6835625993492623 a001 196418/710647*167761^(4/15) 6835625993500164 a001 46368/370248451*103682^(17/18) 6835625993505475 a001 311187/101521*167761^(1/15) 6835625993508420 a001 317811/710647*45537549124^(1/9) 6835625993508427 a001 317811/710647*12752043^(1/6) 6835625993517282 a001 5702887/1860498*167761^(1/15) 6835625993518541 a001 514229/271443*103682^(1/9) 6835625993519004 a001 14930352/4870847*167761^(1/15) 6835625993519256 a001 39088169/12752043*167761^(1/15) 6835625993519292 a001 14619165/4769326*167761^(1/15) 6835625993519298 a001 267914296/87403803*167761^(1/15) 6835625993519298 a001 701408733/228826127*167761^(1/15) 6835625993519298 a001 1836311903/599074578*167761^(1/15) 6835625993519298 a001 686789568/224056801*167761^(1/15) 6835625993519298 a001 12586269025/4106118243*167761^(1/15) 6835625993519298 a001 32951280099/10749957122*167761^(1/15) 6835625993519298 a001 86267571272/28143753123*167761^(1/15) 6835625993519298 a001 32264490531/10525900321*167761^(1/15) 6835625993519298 a001 591286729879/192900153618*167761^(1/15) 6835625993519298 a001 1548008755920/505019158607*167761^(1/15) 6835625993519298 a001 1515744265389/494493258286*167761^(1/15) 6835625993519298 a001 2504730781961/817138163596*167761^(1/15) 6835625993519298 a001 956722026041/312119004989*167761^(1/15) 6835625993519298 a001 365435296162/119218851371*167761^(1/15) 6835625993519298 a001 139583862445/45537549124*167761^(1/15) 6835625993519298 a001 53316291173/17393796001*167761^(1/15) 6835625993519298 a001 20365011074/6643838879*167761^(1/15) 6835625993519298 a001 7778742049/2537720636*167761^(1/15) 6835625993519298 a001 2971215073/969323029*167761^(1/15) 6835625993519298 a001 1134903170/370248451*167761^(1/15) 6835625993519299 a001 433494437/141422324*167761^(1/15) 6835625993519301 a001 165580141/54018521*167761^(1/15) 6835625993519315 a001 63245986/20633239*167761^(1/15) 6835625993519411 a001 24157817/7881196*167761^(1/15) 6835625993519944 a001 317811/4870847*1149851^(1/3) 6835625993519968 a001 832040/710647*7881196^(1/9) 6835625993519980 a001 832040/710647*312119004989^(1/15) 6835625993519980 a001 105937/620166*4106118243^(1/6) 6835625993519980 a001 832040/710647*1568397607^(1/12) 6835625993520028 a001 121393/599074578*271443^(5/6) 6835625993520069 a001 9227465/3010349*167761^(1/15) 6835625993521452 a001 317811/969323029*3010349^(2/3) 6835625993521666 a001 311187/101521*20633239^(1/21) 6835625993521667 a001 317811/4870847*1322157322203^(1/6) 6835625993521667 a001 311187/101521*228826127^(1/24) 6835625993521777 a001 311187/101521*1860498^(1/18) 6835625993521870 a001 317811/10749957122*7881196^(7/9) 6835625993521908 a001 105937/4250681*20633239^(1/3) 6835625993521909 a001 317811/54018521*7881196^(4/9) 6835625993521913 a001 105937/4250681*17393796001^(5/21) 6835625993521913 a001 105937/4250681*505019158607^(5/24) 6835625993521913 a001 105937/4250681*599074578^(5/18) 6835625993521913 a001 105937/4250681*228826127^(7/24) 6835625993521940 a001 317811/312119004989*20633239^(14/15) 6835625993521941 a001 105937/64300051206*20633239^(19/21) 6835625993521943 a001 10959/599786069*20633239^(16/21) 6835625993521943 a001 317811/10749957122*20633239^(11/15) 6835625993521945 a001 317811/1568397607*20633239^(13/21) 6835625993521947 a001 317811/370248451*20633239^(8/15) 6835625993521948 a001 317811/141422324*20633239^(10/21) 6835625993521949 a001 317811/33385282*370248451^(1/3) 6835625993521954 a001 317811/6643838879*54018521^(2/3) 6835625993521954 a001 105937/29134601*6643838879^(1/3) 6835625993521955 a001 317811/817138163596*141422324^(8/9) 6835625993521955 a001 317811/1568397607*141422324^(5/9) 6835625993521955 a001 317811/228826127*119218851371^(1/3) 6835625993521955 a001 377/710646*2139295485799^(1/3) 6835625993521955 a001 317811/45537549124*969323029^(2/3) 6835625993521955 a001 317811/1568397607*73681302247^(5/12) 6835625993521955 a001 317811/10749957122*17393796001^(11/21) 6835625993521955 a001 317811/10749957122*312119004989^(7/15) 6835625993521955 a001 317811/10749957122*505019158607^(11/24) 6835625993521955 a001 105937/3020733700601*17393796001^(17/21) 6835625993521955 a001 317811/312119004989*17393796001^(2/3) 6835625993521955 a001 105937/3020733700601*45537549124^(7/9) 6835625993521955 a001 105937/64300051206*817138163596^(5/9) 6835625993521955 a001 317811/2139295485799*312119004989^(2/3) 6835625993521955 a001 10959/505618944676*5600748293801^(2/3) 6835625993521955 a001 317811/2139295485799*3461452808002^(11/18) 6835625993521955 a001 317811/5600748293801*1322157322203^(2/3) 6835625993521955 a001 105937/3020733700601*505019158607^(17/24) 6835625993521955 a001 317811/817138163596*505019158607^(13/21) 6835625993521955 a001 317811/312119004989*505019158607^(7/12) 6835625993521955 a001 317811/817138163596*73681302247^(2/3) 6835625993521955 a001 317811/2139295485799*28143753123^(11/15) 6835625993521955 a001 317811/23725150497407*28143753123^(5/6) 6835625993521955 a001 10959/599786069*23725150497407^(5/12) 6835625993521955 a001 10959/599786069*505019158607^(10/21) 6835625993521955 a001 10959/599786069*28143753123^(8/15) 6835625993521955 a001 317811/817138163596*10749957122^(13/18) 6835625993521955 a001 10959/599786069*10749957122^(5/9) 6835625993521955 a001 317811/119218851371*4106118243^(2/3) 6835625993521955 a001 317811/2537720636*45537549124^(4/9) 6835625993521955 a001 317811/10749957122*1568397607^(7/12) 6835625993521955 a001 317811/2139295485799*1568397607^(5/6) 6835625993521955 a001 317811/969323029*9062201101803^(1/3) 6835625993521955 a001 317811/10749957122*599074578^(11/18) 6835625993521955 a001 317811/312119004989*599074578^(7/9) 6835625993521955 a001 105937/3020733700601*599074578^(17/18) 6835625993521955 a001 317811/370248451*17393796001^(8/21) 6835625993521955 a001 317811/370248451*23725150497407^(7/24) 6835625993521955 a001 317811/370248451*505019158607^(1/3) 6835625993521955 a001 317811/370248451*10749957122^(7/18) 6835625993521955 a001 317811/370248451*599074578^(4/9) 6835625993521955 a001 317811/1568397607*228826127^(13/24) 6835625993521955 a001 10959/599786069*228826127^(2/3) 6835625993521955 a001 105937/64300051206*228826127^(19/24) 6835625993521955 a001 317811/370248451*228826127^(7/15) 6835625993521955 a001 317811/817138163596*228826127^(13/15) 6835625993521955 a001 317811/2139295485799*228826127^(11/12) 6835625993521956 a001 317811/141422324*3461452808002^(5/18) 6835625993521956 a001 317811/141422324*28143753123^(1/3) 6835625993521956 a001 317811/141422324*228826127^(5/12) 6835625993521956 a001 105937/64300051206*87403803^(5/6) 6835625993521958 a001 317811/54018521*312119004989^(4/15) 6835625993521958 a001 317811/54018521*1568397607^(1/3) 6835625993521971 a001 10959/711491*817138163596^(2/9) 6835625993521972 a001 10959/711491*87403803^(1/3) 6835625993521983 a001 317811/2537720636*12752043^(2/3) 6835625993522065 a001 317811/7881196*23725150497407^(1/6) 6835625993522065 a001 317811/7881196*10749957122^(2/9) 6835625993522065 a001 317811/7881196*228826127^(4/15) 6835625993522090 a001 317811/54018521*4870847^(11/24) 6835625993522123 a001 317811/370248451*4870847^(7/12) 6835625993522159 a001 317811/2537720636*4870847^(17/24) 6835625993522161 a001 317811/7881196*4870847^(1/3) 6835625993522195 a001 10959/599786069*4870847^(5/6) 6835625993522231 a001 317811/119218851371*4870847^(23/24) 6835625993522681 a001 105937/4250681*1860498^(7/18) 6835625993522709 a001 317811/3010349*141422324^(2/9) 6835625993522710 a001 1346269/710647*23725150497407^(1/24) 6835625993522710 a001 317811/3010349*73681302247^(1/6) 6835625993522710 a001 1346269/710647*10749957122^(1/18) 6835625993522710 a001 1346269/710647*228826127^(1/15) 6835625993522734 a001 1346269/710647*4870847^(1/12) 6835625993523053 a001 317811/141422324*1860498^(5/9) 6835625993523381 a001 317811/1568397607*1860498^(13/18) 6835625993523711 a001 10959/599786069*1860498^(8/9) 6835625993523999 a001 1346269/710647*710647^(2/21) 6835625993524579 a001 3524578/1149851*167761^(1/15) 6835625993527122 a001 317811/1149851*20633239^(4/21) 6835625993527123 a001 514229/710647*20633239^(2/15) 6835625993527125 a001 514229/710647*17393796001^(2/21) 6835625993527125 a001 317811/1149851*3461452808002^(1/9) 6835625993527125 a001 514229/710647*505019158607^(1/12) 6835625993527125 a001 317811/1149851*28143753123^(2/15) 6835625993527125 a001 514229/710647*599074578^(1/9) 6835625993527125 a001 317811/1149851*228826127^(1/6) 6835625993527185 a001 317811/1149851*4870847^(5/24) 6835625993527222 a001 317811/7881196*710647^(8/21) 6835625993527553 a001 105937/4250681*710647^(5/12) 6835625993527564 a001 317811/1149851*1860498^(2/9) 6835625993529048 a001 317811/54018521*710647^(11/21) 6835625993529381 a001 514229/710647*710647^(1/6) 6835625993530348 a001 317811/1149851*710647^(5/21) 6835625993530979 a001 317811/370248451*710647^(2/3) 6835625993531541 a001 416020/930249*45537549124^(1/9) 6835625993531548 a001 416020/930249*12752043^(1/6) 6835625993531750 a001 832040/12752043*1149851^(1/3) 6835625993532912 a001 317811/2537720636*710647^(17/21) 6835625993533013 a001 610/1860499*3010349^(2/3) 6835625993533215 a001 726103/620166*7881196^(1/9) 6835625993533228 a001 726103/620166*312119004989^(1/15) 6835625993533228 a001 832040/4870847*4106118243^(1/6) 6835625993533228 a001 726103/620166*1568397607^(1/12) 6835625993533235 a001 121393/103682*39603^(1/6) 6835625993533430 a001 832040/28143753123*7881196^(7/9) 6835625993533467 a001 208010/35355581*7881196^(4/9) 6835625993533473 a001 311187/4769326*1149851^(1/3) 6835625993533473 a001 5702887/1860498*20633239^(1/21) 6835625993533474 a001 832040/12752043*1322157322203^(1/6) 6835625993533474 a001 5702887/1860498*228826127^(1/24) 6835625993533501 a001 208010/204284540899*20633239^(14/15) 6835625993533501 a001 832040/505019158607*20633239^(19/21) 6835625993533504 a001 208010/11384387281*20633239^(16/21) 6835625993533504 a001 832040/28143753123*20633239^(11/15) 6835625993533504 a001 416020/16692641*20633239^(1/3) 6835625993533506 a001 832040/4106118243*20633239^(13/21) 6835625993533507 a001 832040/969323029*20633239^(8/15) 6835625993533508 a001 832040/370248451*20633239^(10/21) 6835625993533510 a001 416020/16692641*17393796001^(5/21) 6835625993533510 a001 416020/16692641*505019158607^(5/24) 6835625993533510 a001 416020/16692641*599074578^(5/18) 6835625993533510 a001 416020/16692641*228826127^(7/24) 6835625993533514 a001 832040/17393796001*54018521^(2/3) 6835625993533515 a001 832040/87403803*370248451^(1/3) 6835625993533516 a001 832040/2139295485799*141422324^(8/9) 6835625993533516 a001 832040/4106118243*141422324^(5/9) 6835625993533516 a001 832040/228826127*6643838879^(1/3) 6835625993533516 a001 416020/299537289*119218851371^(1/3) 6835625993533516 a001 832040/119218851371*969323029^(2/3) 6835625993533516 a001 832040/1568397607*2139295485799^(1/3) 6835625993533516 a001 832040/4106118243*73681302247^(5/12) 6835625993533516 a001 832040/28143753123*17393796001^(11/21) 6835625993533516 a001 832040/23725150497407*17393796001^(17/21) 6835625993533516 a001 208010/204284540899*17393796001^(2/3) 6835625993533516 a001 832040/28143753123*312119004989^(7/15) 6835625993533516 a001 832040/28143753123*505019158607^(11/24) 6835625993533516 a001 832040/23725150497407*45537549124^(7/9) 6835625993533516 a001 832040/5600748293801*312119004989^(2/3) 6835625993533516 a001 832040/5600748293801*3461452808002^(11/18) 6835625993533516 a001 208010/3665737348901*1322157322203^(2/3) 6835625993533516 a001 832040/2139295485799*505019158607^(13/21) 6835625993533516 a001 832040/23725150497407*505019158607^(17/24) 6835625993533516 a001 208010/204284540899*505019158607^(7/12) 6835625993533516 a001 832040/2139295485799*73681302247^(2/3) 6835625993533516 a001 208010/11384387281*23725150497407^(5/12) 6835625993533516 a001 208010/11384387281*505019158607^(10/21) 6835625993533516 a001 832040/5600748293801*28143753123^(11/15) 6835625993533516 a001 208010/11384387281*28143753123^(8/15) 6835625993533516 a001 208010/11384387281*10749957122^(5/9) 6835625993533516 a001 832040/2139295485799*10749957122^(13/18) 6835625993533516 a001 832040/6643838879*45537549124^(4/9) 6835625993533516 a001 75640/28374454999*4106118243^(2/3) 6835625993533516 a001 610/1860499*9062201101803^(1/3) 6835625993533516 a001 832040/28143753123*1568397607^(7/12) 6835625993533516 a001 832040/5600748293801*1568397607^(5/6) 6835625993533516 a001 832040/969323029*17393796001^(8/21) 6835625993533516 a001 832040/969323029*23725150497407^(7/24) 6835625993533516 a001 832040/969323029*505019158607^(1/3) 6835625993533516 a001 832040/969323029*10749957122^(7/18) 6835625993533516 a001 832040/28143753123*599074578^(11/18) 6835625993533516 a001 208010/204284540899*599074578^(7/9) 6835625993533516 a001 832040/969323029*599074578^(4/9) 6835625993533516 a001 832040/23725150497407*599074578^(17/18) 6835625993533516 a001 832040/370248451*3461452808002^(5/18) 6835625993533516 a001 832040/370248451*28143753123^(1/3) 6835625993533516 a001 832040/969323029*228826127^(7/15) 6835625993533516 a001 832040/4106118243*228826127^(13/24) 6835625993533516 a001 208010/11384387281*228826127^(2/3) 6835625993533516 a001 832040/505019158607*228826127^(19/24) 6835625993533516 a001 832040/370248451*228826127^(5/12) 6835625993533516 a001 832040/2139295485799*228826127^(13/15) 6835625993533516 a001 832040/5600748293801*228826127^(11/12) 6835625993533516 a001 208010/35355581*312119004989^(4/15) 6835625993533516 a001 208010/35355581*1568397607^(1/3) 6835625993533517 a001 832040/505019158607*87403803^(5/6) 6835625993533518 a001 832040/54018521*817138163596^(2/9) 6835625993533518 a001 832040/54018521*87403803^(1/3) 6835625993533532 a001 75640/1875749*23725150497407^(1/6) 6835625993533532 a001 75640/1875749*10749957122^(2/9) 6835625993533532 a001 75640/1875749*228826127^(4/15) 6835625993533544 a001 832040/6643838879*12752043^(2/3) 6835625993533583 a001 5702887/1860498*1860498^(1/18) 6835625993533626 a001 208010/1970299*141422324^(2/9) 6835625993533626 a001 1762289/930249*23725150497407^(1/24) 6835625993533626 a001 208010/1970299*73681302247^(1/6) 6835625993533626 a001 1762289/930249*10749957122^(1/18) 6835625993533626 a001 1762289/930249*228826127^(1/15) 6835625993533628 a001 75640/1875749*4870847^(1/3) 6835625993533648 a001 208010/35355581*4870847^(11/24) 6835625993533650 a001 1762289/930249*4870847^(1/12) 6835625993533684 a001 832040/969323029*4870847^(7/12) 6835625993533720 a001 832040/6643838879*4870847^(17/24) 6835625993533724 a001 5702887/87403803*1149851^(1/3) 6835625993533756 a001 208010/11384387281*4870847^(5/6) 6835625993533761 a001 14930352/228826127*1149851^(1/3) 6835625993533766 a001 39088169/599074578*1149851^(1/3) 6835625993533767 a001 14619165/224056801*1149851^(1/3) 6835625993533767 a001 267914296/4106118243*1149851^(1/3) 6835625993533767 a001 701408733/10749957122*1149851^(1/3) 6835625993533767 a001 1836311903/28143753123*1149851^(1/3) 6835625993533767 a001 686789568/10525900321*1149851^(1/3) 6835625993533767 a001 12586269025/192900153618*1149851^(1/3) 6835625993533767 a001 32951280099/505019158607*1149851^(1/3) 6835625993533767 a001 86267571272/1322157322203*1149851^(1/3) 6835625993533767 a001 32264490531/494493258286*1149851^(1/3) 6835625993533767 a001 591286729879/9062201101803*1149851^(1/3) 6835625993533767 a001 1548008755920/23725150497407*1149851^(1/3) 6835625993533767 a001 365435296162/5600748293801*1149851^(1/3) 6835625993533767 a001 139583862445/2139295485799*1149851^(1/3) 6835625993533767 a001 53316291173/817138163596*1149851^(1/3) 6835625993533767 a001 20365011074/312119004989*1149851^(1/3) 6835625993533767 a001 7778742049/119218851371*1149851^(1/3) 6835625993533767 a001 2971215073/45537549124*1149851^(1/3) 6835625993533767 a001 1134903170/17393796001*1149851^(1/3) 6835625993533767 a001 433494437/6643838879*1149851^(1/3) 6835625993533767 a001 165580141/2537720636*1149851^(1/3) 6835625993533768 a001 63245986/969323029*1149851^(1/3) 6835625993533770 a001 24157817/370248451*1149851^(1/3) 6835625993533784 a001 9227465/141422324*1149851^(1/3) 6835625993533792 a001 75640/28374454999*4870847^(23/24) 6835625993533880 a001 3524578/54018521*1149851^(1/3) 6835625993534267 a001 832040/3010349*20633239^(4/21) 6835625993534268 a001 1346269/1860498*20633239^(2/15) 6835625993534270 a001 1346269/1860498*17393796001^(2/21) 6835625993534270 a001 832040/3010349*3461452808002^(1/9) 6835625993534270 a001 1346269/1860498*505019158607^(1/12) 6835625993534270 a001 832040/3010349*28143753123^(2/15) 6835625993534270 a001 1346269/1860498*599074578^(1/9) 6835625993534270 a001 832040/3010349*228826127^(1/6) 6835625993534278 a001 416020/16692641*1860498^(7/18) 6835625993534330 a001 832040/3010349*4870847^(5/24) 6835625993534363 a001 317811/10749957122*710647^(11/12) 6835625993534538 a001 1346269/20633239*1149851^(1/3) 6835625993534613 a001 832040/370248451*1860498^(5/9) 6835625993534700 a001 2178309/6643838879*3010349^(2/3) 6835625993534709 a001 832040/3010349*1860498^(2/9) 6835625993534846 a001 10959/599786069*710647^(20/21) 6835625993534914 a001 2178309/4870847*45537549124^(1/9) 6835625993534915 a001 1762289/930249*710647^(2/21) 6835625993534921 a001 2178309/4870847*12752043^(1/6) 6835625993534942 a001 832040/4106118243*1860498^(13/18) 6835625993534946 a001 5702887/17393796001*3010349^(2/3) 6835625993534982 a001 3732588/11384387281*3010349^(2/3) 6835625993534987 a001 39088169/119218851371*3010349^(2/3) 6835625993534988 a001 9303105/28374454999*3010349^(2/3) 6835625993534988 a001 66978574/204284540899*3010349^(2/3) 6835625993534988 a001 701408733/2139295485799*3010349^(2/3) 6835625993534988 a001 1836311903/5600748293801*3010349^(2/3) 6835625993534988 a001 1201881744/3665737348901*3010349^(2/3) 6835625993534988 a001 7778742049/23725150497407*3010349^(2/3) 6835625993534988 a001 2971215073/9062201101803*3010349^(2/3) 6835625993534988 a001 567451585/1730726404001*3010349^(2/3) 6835625993534988 a001 433494437/1322157322203*3010349^(2/3) 6835625993534988 a001 165580141/505019158607*3010349^(2/3) 6835625993534988 a001 31622993/96450076809*3010349^(2/3) 6835625993534990 a001 24157817/73681302247*3010349^(2/3) 6835625993535004 a001 9227465/28143753123*3010349^(2/3) 6835625993535098 a001 1762289/5374978561*3010349^(2/3) 6835625993535117 a001 311187/10525900321*7881196^(7/9) 6835625993535148 a001 5702887/4870847*7881196^(1/9) 6835625993535154 a001 2178309/370248451*7881196^(4/9) 6835625993535160 a001 5702887/4870847*312119004989^(1/15) 6835625993535160 a001 726103/4250681*4106118243^(1/6) 6835625993535160 a001 5702887/4870847*1568397607^(1/12) 6835625993535188 a001 2178309/2139295485799*20633239^(14/15) 6835625993535188 a001 726103/440719107401*20633239^(19/21) 6835625993535190 a001 2178309/119218851371*20633239^(16/21) 6835625993535191 a001 311187/10525900321*20633239^(11/15) 6835625993535193 a001 987/4870846*20633239^(13/21) 6835625993535194 a001 2178309/2537720636*20633239^(8/15) 6835625993535195 a001 2178309/969323029*20633239^(10/21) 6835625993535196 a001 14930352/4870847*20633239^(1/21) 6835625993535196 a001 726103/29134601*20633239^(1/3) 6835625993535196 a001 311187/4769326*1322157322203^(1/6) 6835625993535196 a001 14930352/4870847*228826127^(1/24) 6835625993535201 a001 2178309/45537549124*54018521^(2/3) 6835625993535202 a001 726103/29134601*17393796001^(5/21) 6835625993535202 a001 726103/29134601*505019158607^(5/24) 6835625993535202 a001 726103/29134601*599074578^(5/18) 6835625993535202 a001 726103/29134601*228826127^(7/24) 6835625993535202 a001 2178309/5600748293801*141422324^(8/9) 6835625993535202 a001 987/4870846*141422324^(5/9) 6835625993535202 a001 46347/4868641*370248451^(1/3) 6835625993535202 a001 726103/199691526*6643838879^(1/3) 6835625993535202 a001 2178309/312119004989*969323029^(2/3) 6835625993535202 a001 311187/224056801*119218851371^(1/3) 6835625993535202 a001 726103/1368706081*2139295485799^(1/3) 6835625993535202 a001 987/4870846*73681302247^(5/12) 6835625993535202 a001 2178309/2139295485799*17393796001^(2/3) 6835625993535202 a001 311187/10525900321*17393796001^(11/21) 6835625993535202 a001 311187/10525900321*312119004989^(7/15) 6835625993535202 a001 311187/10525900321*505019158607^(11/24) 6835625993535202 a001 2178309/14662949395604*312119004989^(2/3) 6835625993535202 a001 726103/440719107401*817138163596^(5/9) 6835625993535202 a001 2178309/14662949395604*3461452808002^(11/18) 6835625993535202 a001 2178309/5600748293801*505019158607^(13/21) 6835625993535202 a001 2178309/2139295485799*505019158607^(7/12) 6835625993535202 a001 2178309/119218851371*23725150497407^(5/12) 6835625993535202 a001 2178309/119218851371*505019158607^(10/21) 6835625993535202 a001 2178309/5600748293801*73681302247^(2/3) 6835625993535202 a001 2178309/119218851371*28143753123^(8/15) 6835625993535202 a001 2178309/14662949395604*28143753123^(11/15) 6835625993535202 a001 2178309/17393796001*45537549124^(4/9) 6835625993535202 a001 2178309/119218851371*10749957122^(5/9) 6835625993535202 a001 2178309/5600748293801*10749957122^(13/18) 6835625993535202 a001 2178309/6643838879*9062201101803^(1/3) 6835625993535202 a001 2178309/817138163596*4106118243^(2/3) 6835625993535202 a001 2178309/2537720636*17393796001^(8/21) 6835625993535202 a001 2178309/2537720636*23725150497407^(7/24) 6835625993535202 a001 2178309/2537720636*505019158607^(1/3) 6835625993535202 a001 2178309/2537720636*10749957122^(7/18) 6835625993535202 a001 311187/10525900321*1568397607^(7/12) 6835625993535202 a001 2178309/14662949395604*1568397607^(5/6) 6835625993535203 a001 2178309/969323029*3461452808002^(5/18) 6835625993535203 a001 2178309/969323029*28143753123^(1/3) 6835625993535203 a001 2178309/2537720636*599074578^(4/9) 6835625993535203 a001 311187/10525900321*599074578^(11/18) 6835625993535203 a001 2178309/2139295485799*599074578^(7/9) 6835625993535203 a001 2178309/370248451*312119004989^(4/15) 6835625993535203 a001 2178309/370248451*1568397607^(1/3) 6835625993535203 a001 2178309/969323029*228826127^(5/12) 6835625993535203 a001 2178309/2537720636*228826127^(7/15) 6835625993535203 a001 987/4870846*228826127^(13/24) 6835625993535203 a001 2178309/119218851371*228826127^(2/3) 6835625993535203 a001 726103/440719107401*228826127^(19/24) 6835625993535203 a001 2178309/5600748293801*228826127^(13/15) 6835625993535203 a001 2178309/14662949395604*228826127^(11/12) 6835625993535203 a001 2178309/141422324*817138163596^(2/9) 6835625993535203 a001 2178309/141422324*87403803^(1/3) 6835625993535203 a001 726103/440719107401*87403803^(5/6) 6835625993535205 a001 2178309/54018521*23725150497407^(1/6) 6835625993535205 a001 2178309/54018521*10749957122^(2/9) 6835625993535205 a001 2178309/54018521*228826127^(4/15) 6835625993535218 a001 2178309/20633239*141422324^(2/9) 6835625993535219 a001 9227465/4870847*23725150497407^(1/24) 6835625993535219 a001 2178309/20633239*73681302247^(1/6) 6835625993535219 a001 9227465/4870847*10749957122^(1/18) 6835625993535219 a001 9227465/4870847*228826127^(1/15) 6835625993535231 a001 2178309/17393796001*12752043^(2/3) 6835625993535243 a001 9227465/4870847*4870847^(1/12) 6835625993535271 a001 208010/11384387281*1860498^(8/9) 6835625993535301 a001 2178309/54018521*4870847^(1/3) 6835625993535306 a001 14930352/4870847*1860498^(1/18) 6835625993535309 a001 2178309/7881196*20633239^(4/21) 6835625993535310 a001 3524578/4870847*20633239^(2/15) 6835625993535313 a001 3524578/4870847*17393796001^(2/21) 6835625993535313 a001 2178309/7881196*3461452808002^(1/9) 6835625993535313 a001 3524578/4870847*505019158607^(1/12) 6835625993535313 a001 2178309/7881196*28143753123^(2/15) 6835625993535313 a001 3524578/4870847*599074578^(1/9) 6835625993535313 a001 2178309/7881196*228826127^(1/6) 6835625993535335 a001 2178309/370248451*4870847^(11/24) 6835625993535363 a001 5702887/192900153618*7881196^(7/9) 6835625993535371 a001 2178309/2537720636*4870847^(7/12) 6835625993535373 a001 2178309/7881196*4870847^(5/24) 6835625993535399 a001 14930352/505019158607*7881196^(7/9) 6835625993535400 a001 5702887/969323029*7881196^(4/9) 6835625993535404 a001 39088169/1322157322203*7881196^(7/9) 6835625993535405 a001 6765/228826126*7881196^(7/9) 6835625993535405 a001 267914296/9062201101803*7881196^(7/9) 6835625993535405 a001 701408733/23725150497407*7881196^(7/9) 6835625993535405 a001 433494437/14662949395604*7881196^(7/9) 6835625993535405 a001 165580141/5600748293801*7881196^(7/9) 6835625993535405 a001 63245986/2139295485799*7881196^(7/9) 6835625993535407 a001 5702887/12752043*45537549124^(1/9) 6835625993535407 a001 2178309/17393796001*4870847^(17/24) 6835625993535407 a001 24157817/817138163596*7881196^(7/9) 6835625993535414 a001 5702887/12752043*12752043^(1/6) 6835625993535421 a001 9227465/312119004989*7881196^(7/9) 6835625993535430 a001 4976784/4250681*7881196^(1/9) 6835625993535434 a001 5702887/5600748293801*20633239^(14/15) 6835625993535434 a001 5702887/3461452808002*20633239^(19/21) 6835625993535436 a001 196452/33391061*7881196^(4/9) 6835625993535436 a001 5702887/312119004989*20633239^(16/21) 6835625993535437 a001 5702887/192900153618*20633239^(11/15) 6835625993535439 a001 5702887/28143753123*20633239^(13/21) 6835625993535440 a001 5702887/6643838879*20633239^(8/15) 6835625993535441 a001 39088169/6643838879*7881196^(4/9) 6835625993535441 a001 5702887/2537720636*20633239^(10/21) 6835625993535442 a001 102334155/17393796001*7881196^(4/9) 6835625993535442 a001 66978574/11384387281*7881196^(4/9) 6835625993535442 a001 701408733/119218851371*7881196^(4/9) 6835625993535442 a001 1836311903/312119004989*7881196^(4/9) 6835625993535442 a001 1201881744/204284540899*7881196^(4/9) 6835625993535442 a001 12586269025/2139295485799*7881196^(4/9) 6835625993535442 a001 32951280099/5600748293801*7881196^(4/9) 6835625993535442 a001 1135099622/192933544679*7881196^(4/9) 6835625993535442 a001 139583862445/23725150497407*7881196^(4/9) 6835625993535442 a001 53316291173/9062201101803*7881196^(4/9) 6835625993535442 a001 10182505537/1730726404001*7881196^(4/9) 6835625993535442 a001 7778742049/1322157322203*7881196^(4/9) 6835625993535442 a001 2971215073/505019158607*7881196^(4/9) 6835625993535442 a001 567451585/96450076809*7881196^(4/9) 6835625993535442 a001 433494437/73681302247*7881196^(4/9) 6835625993535442 a001 165580141/28143753123*7881196^(4/9) 6835625993535442 a001 31622993/5374978561*7881196^(4/9) 6835625993535442 a001 4976784/4250681*312119004989^(1/15) 6835625993535442 a001 5702887/33385282*4106118243^(1/6) 6835625993535442 a001 4976784/4250681*1568397607^(1/12) 6835625993535443 a001 2178309/119218851371*4870847^(5/6) 6835625993535443 a001 5702887/228826127*20633239^(1/3) 6835625993535444 a001 24157817/4106118243*7881196^(4/9) 6835625993535447 a001 39088169/12752043*20633239^(1/21) 6835625993535447 a001 5702887/119218851371*54018521^(2/3) 6835625993535448 a001 5702887/87403803*1322157322203^(1/6) 6835625993535448 a001 39088169/12752043*228826127^(1/24) 6835625993535448 a001 5702887/14662949395604*141422324^(8/9) 6835625993535448 a001 5702887/28143753123*141422324^(5/9) 6835625993535448 a001 5702887/228826127*17393796001^(5/21) 6835625993535448 a001 5702887/228826127*505019158607^(5/24) 6835625993535448 a001 5702887/228826127*599074578^(5/18) 6835625993535448 a001 5702887/228826127*228826127^(7/24) 6835625993535449 a001 5702887/599074578*370248451^(1/3) 6835625993535449 a001 5702887/817138163596*969323029^(2/3) 6835625993535449 a001 5702887/1568397607*6643838879^(1/3) 6835625993535449 a001 5702887/4106118243*119218851371^(1/3) 6835625993535449 a001 5702887/10749957122*2139295485799^(1/3) 6835625993535449 a001 5702887/5600748293801*17393796001^(2/3) 6835625993535449 a001 5702887/192900153618*17393796001^(11/21) 6835625993535449 a001 5702887/28143753123*73681302247^(5/12) 6835625993535449 a001 5702887/192900153618*312119004989^(7/15) 6835625993535449 a001 5702887/192900153618*505019158607^(11/24) 6835625993535449 a001 5702887/3461452808002*817138163596^(5/9) 6835625993535449 a001 5702887/14662949395604*23725150497407^(13/24) 6835625993535449 a001 5702887/14662949395604*505019158607^(13/21) 6835625993535449 a001 5702887/312119004989*23725150497407^(5/12) 6835625993535449 a001 5702887/312119004989*505019158607^(10/21) 6835625993535449 a001 5702887/14662949395604*73681302247^(2/3) 6835625993535449 a001 1597/12752044*45537549124^(4/9) 6835625993535449 a001 5702887/312119004989*28143753123^(8/15) 6835625993535449 a001 5702887/17393796001*9062201101803^(1/3) 6835625993535449 a001 5702887/312119004989*10749957122^(5/9) 6835625993535449 a001 5702887/14662949395604*10749957122^(13/18) 6835625993535449 a001 5702887/6643838879*17393796001^(8/21) 6835625993535449 a001 5702887/6643838879*23725150497407^(7/24) 6835625993535449 a001 5702887/6643838879*10749957122^(7/18) 6835625993535449 a001 5702887/2139295485799*4106118243^(2/3) 6835625993535449 a001 5702887/2537720636*3461452808002^(5/18) 6835625993535449 a001 5702887/2537720636*28143753123^(1/3) 6835625993535449 a001 5702887/192900153618*1568397607^(7/12) 6835625993535449 a001 5702887/969323029*312119004989^(4/15) 6835625993535449 a001 5702887/969323029*1568397607^(1/3) 6835625993535449 a001 5702887/6643838879*599074578^(4/9) 6835625993535449 a001 5702887/192900153618*599074578^(11/18) 6835625993535449 a001 5702887/5600748293801*599074578^(7/9) 6835625993535449 a001 5702887/370248451*817138163596^(2/9) 6835625993535449 a001 5702887/2537720636*228826127^(5/12) 6835625993535449 a001 5702887/6643838879*228826127^(7/15) 6835625993535449 a001 5702887/28143753123*228826127^(13/24) 6835625993535449 a001 5702887/312119004989*228826127^(2/3) 6835625993535449 a001 5702887/3461452808002*228826127^(19/24) 6835625993535449 a001 5702887/14662949395604*228826127^(13/15) 6835625993535449 a001 5702887/141422324*23725150497407^(1/6) 6835625993535449 a001 5702887/141422324*10749957122^(2/9) 6835625993535449 a001 5702887/370248451*87403803^(1/3) 6835625993535449 a001 5702887/141422324*228826127^(4/15) 6835625993535449 a001 5702887/3461452808002*87403803^(5/6) 6835625993535451 a001 5702887/54018521*141422324^(2/9) 6835625993535451 a001 24157817/12752043*23725150497407^(1/24) 6835625993535451 a001 5702887/54018521*73681302247^(1/6) 6835625993535451 a001 24157817/12752043*10749957122^(1/18) 6835625993535451 a001 24157817/12752043*228826127^(1/15) 6835625993535458 a001 9227465/1568397607*7881196^(4/9) 6835625993535462 a001 5702887/20633239*20633239^(4/21) 6835625993535462 a001 9227465/12752043*20633239^(2/15) 6835625993535465 a001 9227465/12752043*17393796001^(2/21) 6835625993535465 a001 5702887/20633239*3461452808002^(1/9) 6835625993535465 a001 9227465/12752043*505019158607^(1/12) 6835625993535465 a001 5702887/20633239*28143753123^(2/15) 6835625993535465 a001 9227465/12752043*599074578^(1/9) 6835625993535465 a001 5702887/20633239*228826127^(1/6) 6835625993535469 a001 196452/192933544679*20633239^(14/15) 6835625993535470 a001 4976784/3020733700601*20633239^(19/21) 6835625993535471 a001 39088169/33385282*7881196^(1/9) 6835625993535472 a001 3732588/204284540899*20633239^(16/21) 6835625993535473 a001 14930352/505019158607*20633239^(11/15) 6835625993535475 a001 14930352/73681302247*20633239^(13/21) 6835625993535475 a001 24157817/12752043*4870847^(1/12) 6835625993535475 a001 39088169/23725150497407*20633239^(19/21) 6835625993535476 a001 14930352/17393796001*20633239^(8/15) 6835625993535477 a001 1597/12752044*12752043^(2/3) 6835625993535477 a001 14930352/6643838879*20633239^(10/21) 6835625993535477 a001 34111385/29134601*7881196^(1/9) 6835625993535477 a001 39088169/2139295485799*20633239^(16/21) 6835625993535478 a001 39088169/1322157322203*20633239^(11/15) 6835625993535478 a001 24157817/23725150497407*20633239^(14/15) 6835625993535478 a001 267914296/228826127*7881196^(1/9) 6835625993535478 a001 102334155/5600748293801*20633239^(16/21) 6835625993535478 a001 7465176/16692641*45537549124^(1/9) 6835625993535478 a001 10946/599074579*20633239^(16/21) 6835625993535478 a001 233802911/199691526*7881196^(1/9) 6835625993535478 a001 1836311903/1568397607*7881196^(1/9) 6835625993535478 a001 1602508992/1368706081*7881196^(1/9) 6835625993535478 a001 12586269025/10749957122*7881196^(1/9) 6835625993535478 a001 10983760033/9381251041*7881196^(1/9) 6835625993535478 a001 86267571272/73681302247*7881196^(1/9) 6835625993535478 a001 75283811239/64300051206*7881196^(1/9) 6835625993535478 a001 2504730781961/2139295485799*7881196^(1/9) 6835625993535478 a001 365435296162/312119004989*7881196^(1/9) 6835625993535478 a001 139583862445/119218851371*7881196^(1/9) 6835625993535478 a001 53316291173/45537549124*7881196^(1/9) 6835625993535478 a001 20365011074/17393796001*7881196^(1/9) 6835625993535478 a001 7778742049/6643838879*7881196^(1/9) 6835625993535478 a001 2971215073/2537720636*7881196^(1/9) 6835625993535478 a001 433494437/23725150497407*20633239^(16/21) 6835625993535478 a001 1134903170/969323029*7881196^(1/9) 6835625993535478 a001 24157817/14662949395604*20633239^(19/21) 6835625993535478 a001 165580141/9062201101803*20633239^(16/21) 6835625993535478 a001 433494437/370248451*7881196^(1/9) 6835625993535479 a001 2178309/817138163596*4870847^(23/24) 6835625993535479 a001 6765/228826126*20633239^(11/15) 6835625993535479 a001 31622993/1730726404001*20633239^(16/21) 6835625993535479 a001 165580141/141422324*7881196^(1/9) 6835625993535479 a001 267914296/9062201101803*20633239^(11/15) 6835625993535479 a001 701408733/23725150497407*20633239^(11/15) 6835625993535479 a001 433494437/14662949395604*20633239^(11/15) 6835625993535479 a001 165580141/5600748293801*20633239^(11/15) 6835625993535479 a001 829464/33281921*20633239^(1/3) 6835625993535479 a001 63245986/2139295485799*20633239^(11/15) 6835625993535480 a001 39088169/192900153618*20633239^(13/21) 6835625993535481 a001 102334155/505019158607*20633239^(13/21) 6835625993535481 a001 267914296/1322157322203*20633239^(13/21) 6835625993535481 a001 701408733/3461452808002*20633239^(13/21) 6835625993535481 a001 1836311903/9062201101803*20633239^(13/21) 6835625993535481 a001 4807526976/23725150497407*20633239^(13/21) 6835625993535481 a001 2971215073/14662949395604*20633239^(13/21) 6835625993535481 a001 1134903170/5600748293801*20633239^(13/21) 6835625993535481 a001 433494437/2139295485799*20633239^(13/21) 6835625993535481 a001 24157817/1322157322203*20633239^(16/21) 6835625993535481 a001 165580141/817138163596*20633239^(13/21) 6835625993535481 a001 63245986/312119004989*20633239^(13/21) 6835625993535481 a001 63245986/54018521*7881196^(1/9) 6835625993535481 a001 39088169/45537549124*20633239^(8/15) 6835625993535481 a001 24157817/817138163596*20633239^(11/15) 6835625993535482 a001 102334155/119218851371*20633239^(8/15) 6835625993535482 a001 267914296/312119004989*20633239^(8/15) 6835625993535482 a001 701408733/817138163596*20633239^(8/15) 6835625993535482 a001 1836311903/2139295485799*20633239^(8/15) 6835625993535482 a001 4807526976/5600748293801*20633239^(8/15) 6835625993535482 a001 12586269025/14662949395604*20633239^(8/15) 6835625993535482 a001 20365011074/23725150497407*20633239^(8/15) 6835625993535482 a001 7778742049/9062201101803*20633239^(8/15) 6835625993535482 a001 2971215073/3461452808002*20633239^(8/15) 6835625993535482 a001 1134903170/1322157322203*20633239^(8/15) 6835625993535482 a001 433494437/505019158607*20633239^(8/15) 6835625993535482 a001 39088169/17393796001*20633239^(10/21) 6835625993535482 a001 165580141/192900153618*20633239^(8/15) 6835625993535482 a001 63245986/73681302247*20633239^(8/15) 6835625993535483 a001 102334155/45537549124*20633239^(10/21) 6835625993535483 a001 14930352/312119004989*54018521^(2/3) 6835625993535483 a001 267914296/119218851371*20633239^(10/21) 6835625993535483 a001 3524667/1568437211*20633239^(10/21) 6835625993535483 a001 1836311903/817138163596*20633239^(10/21) 6835625993535483 a001 4807526976/2139295485799*20633239^(10/21) 6835625993535483 a001 12586269025/5600748293801*20633239^(10/21) 6835625993535483 a001 32951280099/14662949395604*20633239^(10/21) 6835625993535483 a001 53316291173/23725150497407*20633239^(10/21) 6835625993535483 a001 20365011074/9062201101803*20633239^(10/21) 6835625993535483 a001 7778742049/3461452808002*20633239^(10/21) 6835625993535483 a001 2971215073/1322157322203*20633239^(10/21) 6835625993535483 a001 1134903170/505019158607*20633239^(10/21) 6835625993535483 a001 433494437/192900153618*20633239^(10/21) 6835625993535483 a001 24157817/119218851371*20633239^(13/21) 6835625993535483 a001 165580141/73681302247*20633239^(10/21) 6835625993535483 a001 63245986/28143753123*20633239^(10/21) 6835625993535484 a001 14619165/4769326*20633239^(1/21) 6835625993535484 a001 39088169/33385282*312119004989^(1/15) 6835625993535484 a001 4976784/29134601*4106118243^(1/6) 6835625993535484 a001 39088169/33385282*1568397607^(1/12) 6835625993535484 a001 14930352/54018521*20633239^(4/21) 6835625993535484 a001 14930352/73681302247*141422324^(5/9) 6835625993535484 a001 14930352/228826127*1322157322203^(1/6) 6835625993535484 a001 14619165/4769326*228826127^(1/24) 6835625993535484 a001 39088169/1568397607*20633239^(1/3) 6835625993535484 a001 24157817/28143753123*20633239^(8/15) 6835625993535484 a001 14930352/1568397607*370248451^(1/3) 6835625993535484 a001 829464/33281921*17393796001^(5/21) 6835625993535484 a001 829464/33281921*505019158607^(5/24) 6835625993535484 a001 829464/33281921*599074578^(5/18) 6835625993535484 a001 14930352/2139295485799*969323029^(2/3) 6835625993535484 a001 4976784/1368706081*6643838879^(1/3) 6835625993535484 a001 7465176/5374978561*119218851371^(1/3) 6835625993535484 a001 196452/192933544679*17393796001^(2/3) 6835625993535484 a001 14930352/505019158607*17393796001^(11/21) 6835625993535484 a001 4976784/9381251041*2139295485799^(1/3) 6835625993535484 a001 14930352/119218851371*45537549124^(4/9) 6835625993535484 a001 14930352/73681302247*73681302247^(5/12) 6835625993535484 a001 14930352/505019158607*312119004989^(7/15) 6835625993535484 a001 14930352/505019158607*505019158607^(11/24) 6835625993535484 a001 3732588/204284540899*23725150497407^(5/12) 6835625993535484 a001 196452/192933544679*505019158607^(7/12) 6835625993535484 a001 3732588/204284540899*505019158607^(10/21) 6835625993535484 a001 3732588/11384387281*9062201101803^(1/3) 6835625993535484 a001 3732588/204284540899*28143753123^(8/15) 6835625993535484 a001 14930352/17393796001*17393796001^(8/21) 6835625993535484 a001 14930352/17393796001*23725150497407^(7/24) 6835625993535484 a001 14930352/17393796001*505019158607^(1/3) 6835625993535484 a001 3732588/204284540899*10749957122^(5/9) 6835625993535484 a001 14930352/17393796001*10749957122^(7/18) 6835625993535484 a001 14930352/6643838879*3461452808002^(5/18) 6835625993535484 a001 14930352/6643838879*28143753123^(1/3) 6835625993535484 a001 14930352/5600748293801*4106118243^(2/3) 6835625993535484 a001 196452/33391061*312119004989^(4/15) 6835625993535484 a001 14930352/505019158607*1568397607^(7/12) 6835625993535484 a001 196452/33391061*1568397607^(1/3) 6835625993535484 a001 14930352/969323029*817138163596^(2/9) 6835625993535484 a001 14930352/17393796001*599074578^(4/9) 6835625993535484 a001 14930352/505019158607*599074578^(11/18) 6835625993535484 a001 196452/192933544679*599074578^(7/9) 6835625993535484 a001 829464/33281921*228826127^(7/24) 6835625993535485 a001 14930352/370248451*23725150497407^(1/6) 6835625993535485 a001 14930352/370248451*10749957122^(2/9) 6835625993535485 a001 14930352/6643838879*228826127^(5/12) 6835625993535485 a001 14930352/17393796001*228826127^(7/15) 6835625993535485 a001 14930352/73681302247*228826127^(13/24) 6835625993535485 a001 14930352/370248451*228826127^(4/15) 6835625993535485 a001 3732588/204284540899*228826127^(2/3) 6835625993535485 a001 4976784/3020733700601*228826127^(19/24) 6835625993535485 a001 24157817/33385282*20633239^(2/15) 6835625993535485 a001 3732588/35355581*141422324^(2/9) 6835625993535485 a001 14930352/969323029*87403803^(1/3) 6835625993535485 a001 31622993/16692641*23725150497407^(1/24) 6835625993535485 a001 3732588/35355581*73681302247^(1/6) 6835625993535485 a001 31622993/16692641*10749957122^(1/18) 6835625993535485 a001 31622993/16692641*228826127^(1/15) 6835625993535485 a001 34111385/1368706081*20633239^(1/3) 6835625993535485 a001 4976784/3020733700601*87403803^(5/6) 6835625993535485 a001 133957148/5374978561*20633239^(1/3) 6835625993535485 a001 233802911/9381251041*20633239^(1/3) 6835625993535485 a001 1836311903/73681302247*20633239^(1/3) 6835625993535485 a001 267084832/10716675201*20633239^(1/3) 6835625993535485 a001 12586269025/505019158607*20633239^(1/3) 6835625993535485 a001 10983760033/440719107401*20633239^(1/3) 6835625993535485 a001 43133785636/1730726404001*20633239^(1/3) 6835625993535485 a001 75283811239/3020733700601*20633239^(1/3) 6835625993535485 a001 182717648081/7331474697802*20633239^(1/3) 6835625993535485 a001 139583862445/5600748293801*20633239^(1/3) 6835625993535485 a001 53316291173/2139295485799*20633239^(1/3) 6835625993535485 a001 10182505537/408569081798*20633239^(1/3) 6835625993535485 a001 7778742049/312119004989*20633239^(1/3) 6835625993535485 a001 2971215073/119218851371*20633239^(1/3) 6835625993535485 a001 567451585/22768774562*20633239^(1/3) 6835625993535485 a001 433494437/17393796001*20633239^(1/3) 6835625993535485 a001 24157817/10749957122*20633239^(10/21) 6835625993535485 a001 165580141/6643838879*20633239^(1/3) 6835625993535485 a001 7465176/16692641*12752043^(1/6) 6835625993535486 a001 31622993/1268860318*20633239^(1/3) 6835625993535487 a001 24157817/33385282*17393796001^(2/21) 6835625993535487 a001 14930352/54018521*3461452808002^(1/9) 6835625993535487 a001 24157817/33385282*505019158607^(1/12) 6835625993535487 a001 14930352/54018521*28143753123^(2/15) 6835625993535487 a001 24157817/33385282*599074578^(1/9) 6835625993535487 a001 14930352/54018521*228826127^(1/6) 6835625993535487 a001 39088169/141422324*20633239^(4/21) 6835625993535487 a001 102334155/370248451*20633239^(4/21) 6835625993535488 a001 267914296/969323029*20633239^(4/21) 6835625993535488 a001 701408733/2537720636*20633239^(4/21) 6835625993535488 a001 1836311903/6643838879*20633239^(4/21) 6835625993535488 a001 4807526976/17393796001*20633239^(4/21) 6835625993535488 a001 12586269025/45537549124*20633239^(4/21) 6835625993535488 a001 32951280099/119218851371*20633239^(4/21) 6835625993535488 a001 86267571272/312119004989*20633239^(4/21) 6835625993535488 a001 225851433717/817138163596*20633239^(4/21) 6835625993535488 a001 1548008755920/5600748293801*20633239^(4/21) 6835625993535488 a001 139583862445/505019158607*20633239^(4/21) 6835625993535488 a001 53316291173/192900153618*20633239^(4/21) 6835625993535488 a001 20365011074/73681302247*20633239^(4/21) 6835625993535488 a001 7778742049/28143753123*20633239^(4/21) 6835625993535488 a001 2971215073/10749957122*20633239^(4/21) 6835625993535488 a001 1134903170/4106118243*20633239^(4/21) 6835625993535488 a001 433494437/1568397607*20633239^(4/21) 6835625993535488 a001 165580141/599074578*20633239^(4/21) 6835625993535488 a001 24157817/969323029*20633239^(1/3) 6835625993535488 a001 63245986/228826127*20633239^(4/21) 6835625993535488 a001 63245986/87403803*20633239^(2/15) 6835625993535488 a001 4181/87403804*54018521^(2/3) 6835625993535488 a001 165580141/228826127*20633239^(2/15) 6835625993535488 a001 433494437/599074578*20633239^(2/15) 6835625993535488 a001 1134903170/1568397607*20633239^(2/15) 6835625993535488 a001 2971215073/4106118243*20633239^(2/15) 6835625993535488 a001 7778742049/10749957122*20633239^(2/15) 6835625993535488 a001 20365011074/28143753123*20633239^(2/15) 6835625993535488 a001 53316291173/73681302247*20633239^(2/15) 6835625993535488 a001 139583862445/192900153618*20633239^(2/15) 6835625993535488 a001 365435296162/505019158607*20633239^(2/15) 6835625993535488 a001 10610209857723/14662949395604*20633239^(2/15) 6835625993535488 a001 591286729879/817138163596*20633239^(2/15) 6835625993535488 a001 225851433717/312119004989*20633239^(2/15) 6835625993535488 a001 86267571272/119218851371*20633239^(2/15) 6835625993535488 a001 32951280099/45537549124*20633239^(2/15) 6835625993535488 a001 12586269025/17393796001*20633239^(2/15) 6835625993535488 a001 4807526976/6643838879*20633239^(2/15) 6835625993535488 a001 1836311903/2537720636*20633239^(2/15) 6835625993535488 a001 701408733/969323029*20633239^(2/15) 6835625993535489 a001 267914296/370248451*20633239^(2/15) 6835625993535489 a001 102334155/141422324*20633239^(2/15) 6835625993535489 a001 39088169/87403803*45537549124^(1/9) 6835625993535489 a001 102334155/2139295485799*54018521^(2/3) 6835625993535489 a001 267914296/87403803*20633239^(1/21) 6835625993535489 a001 24157817/87403803*20633239^(4/21) 6835625993535489 a001 267914296/5600748293801*54018521^(2/3) 6835625993535489 a001 701408733/14662949395604*54018521^(2/3) 6835625993535489 a001 1134903170/23725150497407*54018521^(2/3) 6835625993535489 a001 433494437/9062201101803*54018521^(2/3) 6835625993535489 a001 165580141/3461452808002*54018521^(2/3) 6835625993535489 a001 63245986/1322157322203*54018521^(2/3) 6835625993535490 a001 39088169/192900153618*141422324^(5/9) 6835625993535490 a001 34111385/29134601*312119004989^(1/15) 6835625993535490 a001 39088169/228826127*4106118243^(1/6) 6835625993535490 a001 34111385/29134601*1568397607^(1/12) 6835625993535490 a001 39088169/370248451*141422324^(2/9) 6835625993535490 a001 39088169/599074578*1322157322203^(1/6) 6835625993535490 a001 39088169/4106118243*370248451^(1/3) 6835625993535490 a001 267914296/87403803*228826127^(1/24) 6835625993535490 a001 39088169/5600748293801*969323029^(2/3) 6835625993535490 a001 701408733/228826127*20633239^(1/21) 6835625993535490 a001 39088169/1568397607*17393796001^(5/21) 6835625993535490 a001 39088169/1568397607*505019158607^(5/24) 6835625993535490 a001 39088169/10749957122*6643838879^(1/3) 6835625993535490 a001 39088169/1322157322203*17393796001^(11/21) 6835625993535490 a001 39088169/28143753123*119218851371^(1/3) 6835625993535490 a001 39088169/45537549124*17393796001^(8/21) 6835625993535490 a001 39088169/312119004989*45537549124^(4/9) 6835625993535490 a001 39088169/73681302247*2139295485799^(1/3) 6835625993535490 a001 39088169/1322157322203*312119004989^(7/15) 6835625993535490 a001 39088169/2139295485799*23725150497407^(5/12) 6835625993535490 a001 39088169/1322157322203*505019158607^(11/24) 6835625993535490 a001 39088169/2139295485799*505019158607^(10/21) 6835625993535490 a001 39088169/192900153618*73681302247^(5/12) 6835625993535490 a001 39088169/119218851371*9062201101803^(1/3) 6835625993535490 a001 39088169/45537549124*23725150497407^(7/24) 6835625993535490 a001 39088169/2139295485799*28143753123^(8/15) 6835625993535490 a001 39088169/17393796001*3461452808002^(5/18) 6835625993535490 a001 39088169/17393796001*28143753123^(1/3) 6835625993535490 a001 39088169/45537549124*10749957122^(7/18) 6835625993535490 a001 39088169/2139295485799*10749957122^(5/9) 6835625993535490 a001 39088169/6643838879*312119004989^(4/15) 6835625993535490 a001 39088169/14662949395604*4106118243^(2/3) 6835625993535490 a001 39088169/2537720636*817138163596^(2/9) 6835625993535490 a001 39088169/6643838879*1568397607^(1/3) 6835625993535490 a001 39088169/1322157322203*1568397607^(7/12) 6835625993535490 a001 39088169/1568397607*599074578^(5/18) 6835625993535490 a001 39088169/969323029*23725150497407^(1/6) 6835625993535490 a001 39088169/969323029*10749957122^(2/9) 6835625993535490 a001 39088169/45537549124*599074578^(4/9) 6835625993535490 a001 39088169/1322157322203*599074578^(11/18) 6835625993535490 a001 39088169/1568397607*228826127^(7/24) 6835625993535490 a001 39088169/969323029*228826127^(4/15) 6835625993535490 a001 165580141/87403803*23725150497407^(1/24) 6835625993535490 a001 39088169/370248451*73681302247^(1/6) 6835625993535490 a001 165580141/87403803*10749957122^(1/18) 6835625993535490 a001 39088169/17393796001*228826127^(5/12) 6835625993535490 a001 165580141/87403803*228826127^(1/15) 6835625993535490 a001 39088169/45537549124*228826127^(7/15) 6835625993535490 a001 39088169/192900153618*228826127^(13/24) 6835625993535490 a001 39088169/2139295485799*228826127^(2/3) 6835625993535490 a001 39088169/23725150497407*228826127^(19/24) 6835625993535490 a001 1836311903/599074578*20633239^(1/21) 6835625993535490 a001 686789568/224056801*20633239^(1/21) 6835625993535490 a001 12586269025/4106118243*20633239^(1/21) 6835625993535490 a001 32951280099/10749957122*20633239^(1/21) 6835625993535490 a001 86267571272/28143753123*20633239^(1/21) 6835625993535490 a001 32264490531/10525900321*20633239^(1/21) 6835625993535490 a001 591286729879/192900153618*20633239^(1/21) 6835625993535490 a001 1548008755920/505019158607*20633239^(1/21) 6835625993535490 a001 1515744265389/494493258286*20633239^(1/21) 6835625993535490 a001 2504730781961/817138163596*20633239^(1/21) 6835625993535490 a001 956722026041/312119004989*20633239^(1/21) 6835625993535490 a001 365435296162/119218851371*20633239^(1/21) 6835625993535490 a001 139583862445/45537549124*20633239^(1/21) 6835625993535490 a001 53316291173/17393796001*20633239^(1/21) 6835625993535490 a001 20365011074/6643838879*20633239^(1/21) 6835625993535490 a001 7778742049/2537720636*20633239^(1/21) 6835625993535490 a001 2971215073/969323029*20633239^(1/21) 6835625993535490 a001 1134903170/370248451*20633239^(1/21) 6835625993535490 a001 39088169/54018521*20633239^(2/15) 6835625993535490 a001 39088169/2537720636*87403803^(1/3) 6835625993535490 a001 63245986/87403803*17393796001^(2/21) 6835625993535490 a001 39088169/141422324*3461452808002^(1/9) 6835625993535490 a001 63245986/87403803*505019158607^(1/12) 6835625993535490 a001 39088169/141422324*28143753123^(2/15) 6835625993535490 a001 63245986/87403803*599074578^(1/9) 6835625993535490 a001 39088169/141422324*228826127^(1/6) 6835625993535490 a001 433494437/141422324*20633239^(1/21) 6835625993535490 a001 102334155/505019158607*141422324^(5/9) 6835625993535490 a001 102334155/228826127*45537549124^(1/9) 6835625993535490 a001 267914296/1322157322203*141422324^(5/9) 6835625993535490 a001 102334155/969323029*141422324^(2/9) 6835625993535490 a001 701408733/3461452808002*141422324^(5/9) 6835625993535490 a001 1836311903/9062201101803*141422324^(5/9) 6835625993535490 a001 4807526976/23725150497407*141422324^(5/9) 6835625993535490 a001 2971215073/14662949395604*141422324^(5/9) 6835625993535490 a001 1134903170/5600748293801*141422324^(5/9) 6835625993535490 a001 433494437/2139295485799*141422324^(5/9) 6835625993535490 a001 267914296/228826127*312119004989^(1/15) 6835625993535490 a001 34111385/199691526*4106118243^(1/6) 6835625993535490 a001 267914296/228826127*1568397607^(1/12) 6835625993535490 a001 39088169/23725150497407*87403803^(5/6) 6835625993535490 a001 102334155/10749957122*370248451^(1/3) 6835625993535490 a001 165580141/817138163596*141422324^(5/9) 6835625993535490 a001 102334155/14662949395604*969323029^(2/3) 6835625993535490 a001 14619165/224056801*1322157322203^(1/6) 6835625993535490 a001 34111385/1368706081*17393796001^(5/21) 6835625993535490 a001 34111385/1368706081*505019158607^(5/24) 6835625993535490 a001 831985/228811001*6643838879^(1/3) 6835625993535490 a001 6765/228826126*17393796001^(11/21) 6835625993535490 a001 102334155/119218851371*17393796001^(8/21) 6835625993535490 a001 102334155/817138163596*45537549124^(4/9) 6835625993535490 a001 14619165/10525900321*119218851371^(1/3) 6835625993535490 a001 34111385/64300051206*2139295485799^(1/3) 6835625993535490 a001 102334155/5600748293801*23725150497407^(5/12) 6835625993535490 a001 6765/228826126*505019158607^(11/24) 6835625993535490 a001 102334155/5600748293801*505019158607^(10/21) 6835625993535490 a001 9303105/28374454999*9062201101803^(1/3) 6835625993535490 a001 102334155/119218851371*23725150497407^(7/24) 6835625993535490 a001 102334155/119218851371*505019158607^(1/3) 6835625993535490 a001 102334155/45537549124*3461452808002^(5/18) 6835625993535490 a001 102334155/5600748293801*28143753123^(8/15) 6835625993535490 a001 102334155/45537549124*28143753123^(1/3) 6835625993535490 a001 102334155/17393796001*312119004989^(4/15) 6835625993535490 a001 102334155/119218851371*10749957122^(7/18) 6835625993535490 a001 102334155/5600748293801*10749957122^(5/9) 6835625993535490 a001 102334155/6643838879*817138163596^(2/9) 6835625993535490 a001 102334155/17393796001*1568397607^(1/3) 6835625993535490 a001 9303105/230701876*23725150497407^(1/6) 6835625993535490 a001 9303105/230701876*10749957122^(2/9) 6835625993535490 a001 6765/228826126*1568397607^(7/12) 6835625993535490 a001 701408733/228826127*228826127^(1/24) 6835625993535490 a001 34111385/1368706081*599074578^(5/18) 6835625993535490 a001 433494437/228826127*23725150497407^(1/24) 6835625993535490 a001 102334155/969323029*73681302247^(1/6) 6835625993535490 a001 433494437/228826127*10749957122^(1/18) 6835625993535490 a001 102334155/119218851371*599074578^(4/9) 6835625993535490 a001 6765/228826126*599074578^(11/18) 6835625993535490 a001 433494437/228826127*228826127^(1/15) 6835625993535491 a001 9303105/230701876*228826127^(4/15) 6835625993535491 a001 66978574/634430159*141422324^(2/9) 6835625993535491 a001 34111385/1368706081*228826127^(7/24) 6835625993535491 a001 165580141/228826127*17393796001^(2/21) 6835625993535491 a001 102334155/370248451*3461452808002^(1/9) 6835625993535491 a001 102334155/370248451*28143753123^(2/15) 6835625993535491 a001 701408733/6643838879*141422324^(2/9) 6835625993535491 a001 165580141/228826127*599074578^(1/9) 6835625993535491 a001 1836311903/17393796001*141422324^(2/9) 6835625993535491 a001 102334155/45537549124*228826127^(5/12) 6835625993535491 a001 1201881744/11384387281*141422324^(2/9) 6835625993535491 a001 12586269025/119218851371*141422324^(2/9) 6835625993535491 a001 32951280099/312119004989*141422324^(2/9) 6835625993535491 a001 21566892818/204284540899*141422324^(2/9) 6835625993535491 a001 225851433717/2139295485799*141422324^(2/9) 6835625993535491 a001 182717648081/1730726404001*141422324^(2/9) 6835625993535491 a001 139583862445/1322157322203*141422324^(2/9) 6835625993535491 a001 53316291173/505019158607*141422324^(2/9) 6835625993535491 a001 10182505537/96450076809*141422324^(2/9) 6835625993535491 a001 7778742049/73681302247*141422324^(2/9) 6835625993535491 a001 2971215073/28143753123*141422324^(2/9) 6835625993535491 a001 567451585/5374978561*141422324^(2/9) 6835625993535491 a001 102334155/119218851371*228826127^(7/15) 6835625993535491 a001 433494437/4106118243*141422324^(2/9) 6835625993535491 a001 102334155/505019158607*228826127^(13/24) 6835625993535491 a001 102334155/370248451*228826127^(1/6) 6835625993535491 a001 102334155/5600748293801*228826127^(2/3) 6835625993535491 a001 133957148/299537289*45537549124^(1/9) 6835625993535491 a001 267914296/28143753123*370248451^(1/3) 6835625993535491 a001 165580141/1568397607*141422324^(2/9) 6835625993535491 a001 233802911/199691526*312119004989^(1/15) 6835625993535491 a001 267914296/1568397607*4106118243^(1/6) 6835625993535491 a001 233802911/199691526*1568397607^(1/12) 6835625993535491 a001 267914296/4106118243*1322157322203^(1/6) 6835625993535491 a001 701408733/73681302247*370248451^(1/3) 6835625993535491 a001 133957148/5374978561*17393796001^(5/21) 6835625993535491 a001 133957148/5374978561*505019158607^(5/24) 6835625993535491 a001 267914296/73681302247*6643838879^(1/3) 6835625993535491 a001 267914296/9062201101803*17393796001^(11/21) 6835625993535491 a001 267914296/312119004989*17393796001^(8/21) 6835625993535491 a001 267914296/2139295485799*45537549124^(4/9) 6835625993535491 a001 133957148/96450076809*119218851371^(1/3) 6835625993535491 a001 267914296/505019158607*2139295485799^(1/3) 6835625993535491 a001 10946/599074579*23725150497407^(5/12) 6835625993535491 a001 10946/599074579*505019158607^(10/21) 6835625993535491 a001 267914296/312119004989*23725150497407^(7/24) 6835625993535491 a001 267914296/312119004989*505019158607^(1/3) 6835625993535491 a001 267914296/119218851371*3461452808002^(5/18) 6835625993535491 a001 267914296/1322157322203*73681302247^(5/12) 6835625993535491 a001 66978574/11384387281*312119004989^(4/15) 6835625993535491 a001 267914296/119218851371*28143753123^(1/3) 6835625993535491 a001 10946/599074579*28143753123^(8/15) 6835625993535491 a001 9238424/599786069*817138163596^(2/9) 6835625993535491 a001 267914296/312119004989*10749957122^(7/18) 6835625993535491 a001 10946/599074579*10749957122^(5/9) 6835625993535491 a001 267914296/6643838879*23725150497407^(1/6) 6835625993535491 a001 267914296/6643838879*10749957122^(2/9) 6835625993535491 a001 66978574/11384387281*1568397607^(1/3) 6835625993535491 a001 567451585/299537289*23725150497407^(1/24) 6835625993535491 a001 66978574/634430159*73681302247^(1/6) 6835625993535491 a001 567451585/299537289*10749957122^(1/18) 6835625993535491 a001 267914296/9062201101803*1568397607^(7/12) 6835625993535491 a001 1836311903/192900153618*370248451^(1/3) 6835625993535491 a001 102287808/10745088481*370248451^(1/3) 6835625993535491 a001 12586269025/1322157322203*370248451^(1/3) 6835625993535491 a001 32951280099/3461452808002*370248451^(1/3) 6835625993535491 a001 86267571272/9062201101803*370248451^(1/3) 6835625993535491 a001 225851433717/23725150497407*370248451^(1/3) 6835625993535491 a001 139583862445/14662949395604*370248451^(1/3) 6835625993535491 a001 53316291173/5600748293801*370248451^(1/3) 6835625993535491 a001 20365011074/2139295485799*370248451^(1/3) 6835625993535491 a001 7778742049/817138163596*370248451^(1/3) 6835625993535491 a001 2971215073/312119004989*370248451^(1/3) 6835625993535491 a001 1134903170/119218851371*370248451^(1/3) 6835625993535491 a001 1836311903/599074578*228826127^(1/24) 6835625993535491 a001 133957148/5374978561*599074578^(5/18) 6835625993535491 a001 433494437/599074578*17393796001^(2/21) 6835625993535491 a001 267914296/969323029*3461452808002^(1/9) 6835625993535491 a001 267914296/969323029*28143753123^(2/15) 6835625993535491 a001 267914296/312119004989*599074578^(4/9) 6835625993535491 a001 433494437/599074578*599074578^(1/9) 6835625993535491 a001 433494437/45537549124*370248451^(1/3) 6835625993535491 a001 567451585/299537289*228826127^(1/15) 6835625993535491 a001 267914296/9062201101803*599074578^(11/18) 6835625993535491 a001 701408733/1568397607*45537549124^(1/9) 6835625993535491 a001 1836311903/1568397607*312119004989^(1/15) 6835625993535491 a001 233802911/1368706081*4106118243^(1/6) 6835625993535491 a001 1836311903/1568397607*1568397607^(1/12) 6835625993535491 a001 701408733/10749957122*1322157322203^(1/6) 6835625993535491 a001 233802911/64300051206*6643838879^(1/3) 6835625993535491 a001 233802911/9381251041*17393796001^(5/21) 6835625993535491 a001 701408733/23725150497407*17393796001^(11/21) 6835625993535491 a001 233802911/9381251041*505019158607^(5/24) 6835625993535491 a001 701408733/817138163596*17393796001^(8/21) 6835625993535491 a001 701408733/5600748293801*45537549124^(4/9) 6835625993535491 a001 701408733/505019158607*119218851371^(1/3) 6835625993535491 a001 701408733/23725150497407*312119004989^(7/15) 6835625993535491 a001 233802911/440719107401*2139295485799^(1/3) 6835625993535491 a001 701408733/2139295485799*9062201101803^(1/3) 6835625993535491 a001 3524667/1568437211*3461452808002^(5/18) 6835625993535491 a001 701408733/119218851371*312119004989^(4/15) 6835625993535491 a001 701408733/3461452808002*73681302247^(5/12) 6835625993535491 a001 3524667/1568437211*28143753123^(1/3) 6835625993535491 a001 701408733/45537549124*817138163596^(2/9) 6835625993535491 a001 701408733/17393796001*23725150497407^(1/6) 6835625993535491 a001 701408733/817138163596*10749957122^(7/18) 6835625993535491 a001 701408733/17393796001*10749957122^(2/9) 6835625993535491 a001 2971215073/1568397607*23725150497407^(1/24) 6835625993535491 a001 701408733/6643838879*73681302247^(1/6) 6835625993535491 a001 2971215073/1568397607*10749957122^(1/18) 6835625993535491 a001 701408733/119218851371*1568397607^(1/3) 6835625993535491 a001 1134903170/1568397607*17393796001^(2/21) 6835625993535491 a001 701408733/2537720636*3461452808002^(1/9) 6835625993535491 a001 1134903170/1568397607*505019158607^(1/12) 6835625993535491 a001 701408733/2537720636*28143753123^(2/15) 6835625993535491 a001 701408733/23725150497407*1568397607^(7/12) 6835625993535491 a001 1836311903/4106118243*45537549124^(1/9) 6835625993535491 a001 1602508992/1368706081*312119004989^(1/15) 6835625993535491 a001 1836311903/505019158607*6643838879^(1/3) 6835625993535491 a001 1836311903/2139295485799*17393796001^(8/21) 6835625993535491 a001 1836311903/73681302247*17393796001^(5/21) 6835625993535491 a001 1836311903/14662949395604*45537549124^(4/9) 6835625993535491 a001 1836311903/73681302247*505019158607^(5/24) 6835625993535491 a001 1836311903/1322157322203*119218851371^(1/3) 6835625993535491 a001 1836311903/2139295485799*23725150497407^(7/24) 6835625993535491 a001 1836311903/817138163596*3461452808002^(5/18) 6835625993535491 a001 1836311903/2139295485799*505019158607^(1/3) 6835625993535491 a001 1836311903/312119004989*312119004989^(4/15) 6835625993535491 a001 1836311903/119218851371*817138163596^(2/9) 6835625993535491 a001 1836311903/9062201101803*73681302247^(5/12) 6835625993535491 a001 1836311903/817138163596*28143753123^(1/3) 6835625993535491 a001 1836311903/45537549124*23725150497407^(1/6) 6835625993535491 a001 1836311903/10749957122*4106118243^(1/6) 6835625993535491 a001 1836311903/45537549124*10749957122^(2/9) 6835625993535491 a001 7778742049/4106118243*23725150497407^(1/24) 6835625993535491 a001 1836311903/17393796001*73681302247^(1/6) 6835625993535491 a001 1836311903/2139295485799*10749957122^(7/18) 6835625993535491 a001 7778742049/4106118243*10749957122^(1/18) 6835625993535491 a001 2971215073/4106118243*17393796001^(2/21) 6835625993535491 a001 1836311903/6643838879*3461452808002^(1/9) 6835625993535491 a001 2971215073/4106118243*505019158607^(1/12) 6835625993535491 a001 1836311903/6643838879*28143753123^(2/15) 6835625993535491 a001 1602508992/1368706081*1568397607^(1/12) 6835625993535491 a001 2403763488/5374978561*45537549124^(1/9) 6835625993535491 a001 1602508992/440719107401*6643838879^(1/3) 6835625993535491 a001 12586269025/10749957122*312119004989^(1/15) 6835625993535491 a001 4807526976/5600748293801*17393796001^(8/21) 6835625993535491 a001 267084832/10716675201*17393796001^(5/21) 6835625993535491 a001 686789568/10525900321*1322157322203^(1/6) 6835625993535491 a001 12586269025/3461452808002*6643838879^(1/3) 6835625993535491 a001 14930208/10749853441*119218851371^(1/3) 6835625993535491 a001 1201881744/204284540899*312119004989^(4/15) 6835625993535491 a001 1602508992/3020733700601*2139295485799^(1/3) 6835625993535491 a001 1201881744/3665737348901*9062201101803^(1/3) 6835625993535491 a001 4807526976/312119004989*817138163596^(2/9) 6835625993535491 a001 4807526976/119218851371*23725150497407^(1/6) 6835625993535491 a001 4807526976/23725150497407*73681302247^(5/12) 6835625993535491 a001 4807526976/2139295485799*28143753123^(1/3) 6835625993535491 a001 10182505537/5374978561*23725150497407^(1/24) 6835625993535491 a001 1201881744/11384387281*73681302247^(1/6) 6835625993535491 a001 10983760033/3020733700601*6643838879^(1/3) 6835625993535491 a001 10182505537/5374978561*10749957122^(1/18) 6835625993535491 a001 86267571272/23725150497407*6643838879^(1/3) 6835625993535491 a001 53316291173/14662949395604*6643838879^(1/3) 6835625993535491 a001 20365011074/5600748293801*6643838879^(1/3) 6835625993535491 a001 4807526976/119218851371*10749957122^(2/9) 6835625993535491 a001 7778742049/10749957122*17393796001^(2/21) 6835625993535491 a001 4807526976/17393796001*3461452808002^(1/9) 6835625993535491 a001 4807526976/5600748293801*10749957122^(7/18) 6835625993535491 a001 4807526976/17393796001*28143753123^(2/15) 6835625993535491 a001 7778742049/2139295485799*6643838879^(1/3) 6835625993535491 a001 12586269025/28143753123*45537549124^(1/9) 6835625993535491 a001 12586269025/14662949395604*17393796001^(8/21) 6835625993535491 a001 12586269025/505019158607*17393796001^(5/21) 6835625993535491 a001 10983760033/9381251041*312119004989^(1/15) 6835625993535491 a001 12586269025/192900153618*1322157322203^(1/6) 6835625993535491 a001 12586269025/9062201101803*119218851371^(1/3) 6835625993535491 a001 12586269025/505019158607*505019158607^(5/24) 6835625993535491 a001 12586269025/5600748293801*3461452808002^(5/18) 6835625993535491 a001 12586269025/14662949395604*505019158607^(1/3) 6835625993535491 a001 1144206275/28374454999*23725150497407^(1/6) 6835625993535491 a001 53316291173/28143753123*23725150497407^(1/24) 6835625993535491 a001 12586269025/119218851371*73681302247^(1/6) 6835625993535491 a001 20365011074/28143753123*17393796001^(2/21) 6835625993535491 a001 10983760033/440719107401*17393796001^(5/21) 6835625993535491 a001 12586269025/5600748293801*28143753123^(1/3) 6835625993535491 a001 43133785636/1730726404001*17393796001^(5/21) 6835625993535491 a001 75283811239/3020733700601*17393796001^(5/21) 6835625993535491 a001 182717648081/7331474697802*17393796001^(5/21) 6835625993535491 a001 12586269025/45537549124*3461452808002^(1/9) 6835625993535491 a001 139583862445/5600748293801*17393796001^(5/21) 6835625993535491 a001 53316291173/2139295485799*17393796001^(5/21) 6835625993535491 a001 53316291173/28143753123*10749957122^(1/18) 6835625993535491 a001 12586269025/45537549124*28143753123^(2/15) 6835625993535491 a001 53316291173/73681302247*17393796001^(2/21) 6835625993535491 a001 32951280099/73681302247*45537549124^(1/9) 6835625993535491 a001 139583862445/192900153618*17393796001^(2/21) 6835625993535491 a001 365435296162/505019158607*17393796001^(2/21) 6835625993535491 a001 591286729879/817138163596*17393796001^(2/21) 6835625993535491 a001 225851433717/312119004989*17393796001^(2/21) 6835625993535491 a001 10182505537/408569081798*17393796001^(5/21) 6835625993535491 a001 86267571272/119218851371*17393796001^(2/21) 6835625993535491 a001 86267571272/73681302247*312119004989^(1/15) 6835625993535491 a001 32951280099/23725150497407*119218851371^(1/3) 6835625993535491 a001 10983760033/440719107401*505019158607^(5/24) 6835625993535491 a001 32951280099/817138163596*23725150497407^(1/6) 6835625993535491 a001 139583862445/73681302247*23725150497407^(1/24) 6835625993535491 a001 32951280099/312119004989*73681302247^(1/6) 6835625993535491 a001 32951280099/119218851371*3461452808002^(1/9) 6835625993535491 a001 43133785636/96450076809*45537549124^(1/9) 6835625993535491 a001 225851433717/505019158607*45537549124^(1/9) 6835625993535491 a001 591286729879/1322157322203*45537549124^(1/9) 6835625993535491 a001 182717648081/408569081798*45537549124^(1/9) 6835625993535491 a001 139583862445/312119004989*45537549124^(1/9) 6835625993535491 a001 1602508992/9381251041*4106118243^(1/6) 6835625993535491 a001 1135099622/192933544679*312119004989^(4/15) 6835625993535491 a001 86267571272/1322157322203*1322157322203^(1/6) 6835625993535491 a001 86267571272/5600748293801*817138163596^(2/9) 6835625993535491 a001 43133785636/1730726404001*505019158607^(5/24) 6835625993535491 a001 86267571272/312119004989*3461452808002^(1/9) 6835625993535491 a001 139583862445/192900153618*505019158607^(1/12) 6835625993535491 a001 7787980473/505618944676*817138163596^(2/9) 6835625993535491 a001 75283811239/3020733700601*505019158607^(5/24) 6835625993535491 a001 591286729879/9062201101803*1322157322203^(1/6) 6835625993535491 a001 365435296162/5600748293801*1322157322203^(1/6) 6835625993535491 a001 21566892818/204284540899*73681302247^(1/6) 6835625993535491 a001 139583862445/505019158607*3461452808002^(1/9) 6835625993535491 a001 139583862445/9062201101803*817138163596^(2/9) 6835625993535491 a001 139583862445/2139295485799*1322157322203^(1/6) 6835625993535491 a001 365435296162/312119004989*312119004989^(1/15) 6835625993535491 a001 225851433717/2139295485799*73681302247^(1/6) 6835625993535491 a001 182717648081/1730726404001*73681302247^(1/6) 6835625993535491 a001 139583862445/1322157322203*73681302247^(1/6) 6835625993535491 a001 53316291173/192900153618*3461452808002^(1/9) 6835625993535491 a001 32951280099/119218851371*28143753123^(2/15) 6835625993535491 a001 53316291173/1322157322203*23725150497407^(1/6) 6835625993535491 a001 53316291173/2139295485799*505019158607^(5/24) 6835625993535491 a001 53316291173/817138163596*1322157322203^(1/6) 6835625993535491 a001 139583862445/119218851371*312119004989^(1/15) 6835625993535491 a001 53316291173/119218851371*45537549124^(1/9) 6835625993535491 a001 53316291173/505019158607*73681302247^(1/6) 6835625993535491 a001 86267571272/312119004989*28143753123^(2/15) 6835625993535491 a001 225851433717/817138163596*28143753123^(2/15) 6835625993535491 a001 1548008755920/5600748293801*28143753123^(2/15) 6835625993535491 a001 139583862445/505019158607*28143753123^(2/15) 6835625993535491 a001 53316291173/192900153618*28143753123^(2/15) 6835625993535491 a001 32951280099/14662949395604*28143753123^(1/3) 6835625993535491 a001 20365011074/73681302247*3461452808002^(1/9) 6835625993535491 a001 139583862445/73681302247*10749957122^(1/18) 6835625993535491 a001 21566892818/11384387281*23725150497407^(1/24) 6835625993535491 a001 182717648081/96450076809*10749957122^(1/18) 6835625993535491 a001 10182505537/7331474697802*119218851371^(1/3) 6835625993535491 a001 20365011074/73681302247*28143753123^(2/15) 6835625993535491 a001 956722026041/505019158607*10749957122^(1/18) 6835625993535491 a001 10182505537/1730726404001*312119004989^(4/15) 6835625993535491 a001 20365011074/1322157322203*817138163596^(2/9) 6835625993535491 a001 10182505537/408569081798*505019158607^(5/24) 6835625993535491 a001 10182505537/96450076809*73681302247^(1/6) 6835625993535491 a001 53316291173/23725150497407*28143753123^(1/3) 6835625993535491 a001 20365011074/312119004989*1322157322203^(1/6) 6835625993535491 a001 225851433717/119218851371*10749957122^(1/18) 6835625993535491 a001 53316291173/45537549124*312119004989^(1/15) 6835625993535491 a001 1144206275/28374454999*10749957122^(2/9) 6835625993535491 a001 20365011074/9062201101803*28143753123^(1/3) 6835625993535491 a001 10182505537/22768774562*45537549124^(1/9) 6835625993535491 a001 21566892818/11384387281*10749957122^(1/18) 6835625993535491 a001 12586269025/17393796001*17393796001^(2/21) 6835625993535491 a001 32951280099/817138163596*10749957122^(2/9) 6835625993535491 a001 86267571272/2139295485799*10749957122^(2/9) 6835625993535491 a001 225851433717/5600748293801*10749957122^(2/9) 6835625993535491 a001 591286729879/14662949395604*10749957122^(2/9) 6835625993535491 a001 365435296162/9062201101803*10749957122^(2/9) 6835625993535491 a001 139583862445/3461452808002*10749957122^(2/9) 6835625993535491 a001 53316291173/1322157322203*10749957122^(2/9) 6835625993535491 a001 7778742049/28143753123*3461452808002^(1/9) 6835625993535491 a001 12586269025/17393796001*505019158607^(1/12) 6835625993535491 a001 7778742049/9062201101803*17393796001^(8/21) 6835625993535491 a001 12586269025/14662949395604*10749957122^(7/18) 6835625993535491 a001 7778742049/28143753123*28143753123^(2/15) 6835625993535491 a001 20365011074/505019158607*10749957122^(2/9) 6835625993535491 a001 7778742049/312119004989*17393796001^(5/21) 6835625993535491 a001 32951280099/17393796001*23725150497407^(1/24) 6835625993535491 a001 7778742049/73681302247*73681302247^(1/6) 6835625993535491 a001 7778742049/192900153618*23725150497407^(1/6) 6835625993535491 a001 7778742049/5600748293801*119218851371^(1/3) 6835625993535491 a001 7778742049/505019158607*817138163596^(2/9) 6835625993535491 a001 7778742049/1322157322203*312119004989^(4/15) 6835625993535491 a001 7778742049/14662949395604*2139295485799^(1/3) 6835625993535491 a001 7778742049/23725150497407*9062201101803^(1/3) 6835625993535491 a001 7778742049/312119004989*505019158607^(5/24) 6835625993535491 a001 7778742049/119218851371*1322157322203^(1/6) 6835625993535491 a001 32951280099/17393796001*10749957122^(1/18) 6835625993535491 a001 7778742049/3461452808002*28143753123^(1/3) 6835625993535491 a001 20365011074/17393796001*312119004989^(1/15) 6835625993535491 a001 20365011074/23725150497407*10749957122^(7/18) 6835625993535491 a001 7778742049/192900153618*10749957122^(2/9) 6835625993535491 a001 7778742049/17393796001*45537549124^(1/9) 6835625993535491 a001 7778742049/9062201101803*10749957122^(7/18) 6835625993535491 a001 12586269025/73681302247*4106118243^(1/6) 6835625993535491 a001 10983760033/64300051206*4106118243^(1/6) 6835625993535491 a001 86267571272/505019158607*4106118243^(1/6) 6835625993535491 a001 75283811239/440719107401*4106118243^(1/6) 6835625993535491 a001 2504730781961/14662949395604*4106118243^(1/6) 6835625993535491 a001 139583862445/817138163596*4106118243^(1/6) 6835625993535491 a001 53316291173/312119004989*4106118243^(1/6) 6835625993535491 a001 20365011074/119218851371*4106118243^(1/6) 6835625993535491 a001 7778742049/45537549124*4106118243^(1/6) 6835625993535491 a001 4807526976/6643838879*17393796001^(2/21) 6835625993535491 a001 2971215073/10749957122*3461452808002^(1/9) 6835625993535491 a001 4807526976/6643838879*505019158607^(1/12) 6835625993535491 a001 2971215073/10749957122*28143753123^(2/15) 6835625993535491 a001 2971215073/817138163596*6643838879^(1/3) 6835625993535491 a001 12586269025/6643838879*23725150497407^(1/24) 6835625993535491 a001 2971215073/3461452808002*17393796001^(8/21) 6835625993535491 a001 2971215073/28143753123*73681302247^(1/6) 6835625993535491 a001 12586269025/6643838879*10749957122^(1/18) 6835625993535491 a001 2971215073/119218851371*17393796001^(5/21) 6835625993535491 a001 2971215073/23725150497407*45537549124^(4/9) 6835625993535491 a001 2971215073/73681302247*23725150497407^(1/6) 6835625993535491 a001 2971215073/192900153618*817138163596^(2/9) 6835625993535491 a001 2971215073/2139295485799*119218851371^(1/3) 6835625993535491 a001 2971215073/505019158607*312119004989^(4/15) 6835625993535491 a001 2971215073/1322157322203*3461452808002^(5/18) 6835625993535491 a001 2971215073/5600748293801*2139295485799^(1/3) 6835625993535491 a001 2971215073/3461452808002*505019158607^(1/3) 6835625993535491 a001 2971215073/119218851371*505019158607^(5/24) 6835625993535491 a001 2971215073/14662949395604*73681302247^(5/12) 6835625993535491 a001 2971215073/1322157322203*28143753123^(1/3) 6835625993535491 a001 2971215073/45537549124*1322157322203^(1/6) 6835625993535491 a001 12586269025/10749957122*1568397607^(1/12) 6835625993535491 a001 2971215073/73681302247*10749957122^(2/9) 6835625993535491 a001 7778742049/6643838879*312119004989^(1/15) 6835625993535491 a001 2971215073/3461452808002*10749957122^(7/18) 6835625993535491 a001 10983760033/9381251041*1568397607^(1/12) 6835625993535491 a001 86267571272/73681302247*1568397607^(1/12) 6835625993535491 a001 75283811239/64300051206*1568397607^(1/12) 6835625993535491 a001 2504730781961/2139295485799*1568397607^(1/12) 6835625993535491 a001 365435296162/312119004989*1568397607^(1/12) 6835625993535491 a001 139583862445/119218851371*1568397607^(1/12) 6835625993535491 a001 53316291173/45537549124*1568397607^(1/12) 6835625993535491 a001 2971215073/17393796001*4106118243^(1/6) 6835625993535491 a001 20365011074/17393796001*1568397607^(1/12) 6835625993535491 a001 2971215073/6643838879*45537549124^(1/9) 6835625993535491 a001 1134903170/1568397607*599074578^(1/9) 6835625993535491 a001 7778742049/6643838879*1568397607^(1/12) 6835625993535491 a001 1836311903/312119004989*1568397607^(1/3) 6835625993535491 a001 1836311903/2537720636*17393796001^(2/21) 6835625993535491 a001 1134903170/4106118243*3461452808002^(1/9) 6835625993535491 a001 1836311903/2537720636*505019158607^(1/12) 6835625993535491 a001 1134903170/4106118243*28143753123^(2/15) 6835625993535491 a001 1201881744/204284540899*1568397607^(1/3) 6835625993535491 a001 12586269025/2139295485799*1568397607^(1/3) 6835625993535491 a001 32951280099/5600748293801*1568397607^(1/3) 6835625993535491 a001 1135099622/192933544679*1568397607^(1/3) 6835625993535491 a001 139583862445/23725150497407*1568397607^(1/3) 6835625993535491 a001 53316291173/9062201101803*1568397607^(1/3) 6835625993535491 a001 10182505537/1730726404001*1568397607^(1/3) 6835625993535491 a001 7778742049/1322157322203*1568397607^(1/3) 6835625993535491 a001 1201881744/634430159*23725150497407^(1/24) 6835625993535491 a001 567451585/5374978561*73681302247^(1/6) 6835625993535491 a001 1201881744/634430159*10749957122^(1/18) 6835625993535491 a001 1134903170/312119004989*6643838879^(1/3) 6835625993535491 a001 1134903170/28143753123*23725150497407^(1/6) 6835625993535491 a001 1134903170/1322157322203*17393796001^(8/21) 6835625993535491 a001 567451585/22768774562*17393796001^(5/21) 6835625993535491 a001 1134903170/9062201101803*45537549124^(4/9) 6835625993535491 a001 1134903170/73681302247*817138163596^(2/9) 6835625993535491 a001 567451585/96450076809*312119004989^(4/15) 6835625993535491 a001 567451585/408569081798*119218851371^(1/3) 6835625993535491 a001 1134903170/505019158607*3461452808002^(5/18) 6835625993535491 a001 1134903170/1322157322203*23725150497407^(7/24) 6835625993535491 a001 567451585/1730726404001*9062201101803^(1/3) 6835625993535491 a001 1134903170/2139295485799*2139295485799^(1/3) 6835625993535491 a001 1134903170/1322157322203*505019158607^(1/3) 6835625993535491 a001 1134903170/5600748293801*73681302247^(5/12) 6835625993535491 a001 1134903170/505019158607*28143753123^(1/3) 6835625993535491 a001 567451585/22768774562*505019158607^(5/24) 6835625993535491 a001 1134903170/28143753123*10749957122^(2/9) 6835625993535491 a001 2971215073/505019158607*1568397607^(1/3) 6835625993535491 a001 1134903170/17393796001*1322157322203^(1/6) 6835625993535491 a001 1134903170/1322157322203*10749957122^(7/18) 6835625993535491 a001 2971215073/2537720636*312119004989^(1/15) 6835625993535491 a001 1134903170/6643838879*4106118243^(1/6) 6835625993535491 a001 2971215073/2537720636*1568397607^(1/12) 6835625993535491 a001 2971215073/4106118243*599074578^(1/9) 6835625993535491 a001 567451585/96450076809*1568397607^(1/3) 6835625993535491 a001 7778742049/10749957122*599074578^(1/9) 6835625993535491 a001 20365011074/28143753123*599074578^(1/9) 6835625993535491 a001 53316291173/73681302247*599074578^(1/9) 6835625993535491 a001 139583862445/192900153618*599074578^(1/9) 6835625993535491 a001 365435296162/505019158607*599074578^(1/9) 6835625993535491 a001 10610209857723/14662949395604*599074578^(1/9) 6835625993535491 a001 591286729879/817138163596*599074578^(1/9) 6835625993535491 a001 225851433717/312119004989*599074578^(1/9) 6835625993535491 a001 86267571272/119218851371*599074578^(1/9) 6835625993535491 a001 32951280099/45537549124*599074578^(1/9) 6835625993535491 a001 567451585/1268860318*45537549124^(1/9) 6835625993535491 a001 12586269025/17393796001*599074578^(1/9) 6835625993535491 a001 4807526976/6643838879*599074578^(1/9) 6835625993535491 a001 233802911/9381251041*599074578^(5/18) 6835625993535491 a001 686789568/224056801*228826127^(1/24) 6835625993535491 a001 1836311903/2537720636*599074578^(1/9) 6835625993535491 a001 701408733/969323029*17393796001^(2/21) 6835625993535491 a001 433494437/1568397607*3461452808002^(1/9) 6835625993535491 a001 701408733/969323029*505019158607^(1/12) 6835625993535491 a001 433494437/1568397607*28143753123^(2/15) 6835625993535491 a001 1836311903/73681302247*599074578^(5/18) 6835625993535491 a001 12586269025/4106118243*228826127^(1/24) 6835625993535491 a001 267084832/10716675201*599074578^(5/18) 6835625993535491 a001 12586269025/505019158607*599074578^(5/18) 6835625993535491 a001 10983760033/440719107401*599074578^(5/18) 6835625993535491 a001 43133785636/1730726404001*599074578^(5/18) 6835625993535491 a001 75283811239/3020733700601*599074578^(5/18) 6835625993535491 a001 182717648081/7331474697802*599074578^(5/18) 6835625993535491 a001 139583862445/5600748293801*599074578^(5/18) 6835625993535491 a001 53316291173/2139295485799*599074578^(5/18) 6835625993535491 a001 10182505537/408569081798*599074578^(5/18) 6835625993535491 a001 7778742049/312119004989*599074578^(5/18) 6835625993535491 a001 32951280099/10749957122*228826127^(1/24) 6835625993535491 a001 86267571272/28143753123*228826127^(1/24) 6835625993535491 a001 32264490531/10525900321*228826127^(1/24) 6835625993535491 a001 591286729879/192900153618*228826127^(1/24) 6835625993535491 a001 1548008755920/505019158607*228826127^(1/24) 6835625993535491 a001 1515744265389/494493258286*228826127^(1/24) 6835625993535491 a001 2504730781961/817138163596*228826127^(1/24) 6835625993535491 a001 956722026041/312119004989*228826127^(1/24) 6835625993535491 a001 365435296162/119218851371*228826127^(1/24) 6835625993535491 a001 139583862445/45537549124*228826127^(1/24) 6835625993535491 a001 2971215073/119218851371*599074578^(5/18) 6835625993535491 a001 53316291173/17393796001*228826127^(1/24) 6835625993535491 a001 20365011074/6643838879*228826127^(1/24) 6835625993535491 a001 701408733/817138163596*599074578^(4/9) 6835625993535491 a001 2971215073/1568397607*228826127^(1/15) 6835625993535491 a001 567451585/22768774562*599074578^(5/18) 6835625993535491 a001 7778742049/2537720636*228826127^(1/24) 6835625993535491 a001 701408733/969323029*599074578^(1/9) 6835625993535491 a001 1836311903/969323029*23725150497407^(1/24) 6835625993535491 a001 433494437/4106118243*73681302247^(1/6) 6835625993535491 a001 1836311903/969323029*10749957122^(1/18) 6835625993535491 a001 433494437/10749957122*23725150497407^(1/6) 6835625993535491 a001 433494437/119218851371*6643838879^(1/3) 6835625993535491 a001 433494437/10749957122*10749957122^(2/9) 6835625993535491 a001 433494437/14662949395604*17393796001^(11/21) 6835625993535491 a001 433494437/505019158607*17393796001^(8/21) 6835625993535491 a001 433494437/28143753123*817138163596^(2/9) 6835625993535491 a001 433494437/3461452808002*45537549124^(4/9) 6835625993535491 a001 433494437/73681302247*312119004989^(4/15) 6835625993535491 a001 433494437/192900153618*3461452808002^(5/18) 6835625993535491 a001 433494437/312119004989*119218851371^(1/3) 6835625993535491 a001 433494437/14662949395604*312119004989^(7/15) 6835625993535491 a001 433494437/505019158607*23725150497407^(7/24) 6835625993535491 a001 433494437/1322157322203*9062201101803^(1/3) 6835625993535491 a001 433494437/23725150497407*23725150497407^(5/12) 6835625993535491 a001 433494437/817138163596*2139295485799^(1/3) 6835625993535491 a001 433494437/14662949395604*505019158607^(11/24) 6835625993535491 a001 433494437/23725150497407*505019158607^(10/21) 6835625993535491 a001 433494437/2139295485799*73681302247^(5/12) 6835625993535491 a001 433494437/192900153618*28143753123^(1/3) 6835625993535491 a001 433494437/23725150497407*28143753123^(8/15) 6835625993535491 a001 433494437/17393796001*17393796001^(5/21) 6835625993535491 a001 433494437/17393796001*505019158607^(5/24) 6835625993535491 a001 433494437/505019158607*10749957122^(7/18) 6835625993535491 a001 433494437/23725150497407*10749957122^(5/9) 6835625993535491 a001 433494437/6643838879*1322157322203^(1/6) 6835625993535491 a001 1836311903/2139295485799*599074578^(4/9) 6835625993535491 a001 433494437/73681302247*1568397607^(1/3) 6835625993535491 a001 7778742049/4106118243*228826127^(1/15) 6835625993535491 a001 1134903170/969323029*312119004989^(1/15) 6835625993535491 a001 433494437/2537720636*4106118243^(1/6) 6835625993535491 a001 4807526976/5600748293801*599074578^(4/9) 6835625993535491 a001 12586269025/14662949395604*599074578^(4/9) 6835625993535491 a001 20365011074/23725150497407*599074578^(4/9) 6835625993535491 a001 7778742049/9062201101803*599074578^(4/9) 6835625993535491 a001 1134903170/969323029*1568397607^(1/12) 6835625993535491 a001 2971215073/3461452808002*599074578^(4/9) 6835625993535491 a001 10182505537/5374978561*228826127^(1/15) 6835625993535491 a001 53316291173/28143753123*228826127^(1/15) 6835625993535491 a001 139583862445/73681302247*228826127^(1/15) 6835625993535491 a001 182717648081/96450076809*228826127^(1/15) 6835625993535491 a001 956722026041/505019158607*228826127^(1/15) 6835625993535491 a001 10610209857723/5600748293801*228826127^(1/15) 6835625993535491 a001 591286729879/312119004989*228826127^(1/15) 6835625993535491 a001 225851433717/119218851371*228826127^(1/15) 6835625993535491 a001 21566892818/11384387281*228826127^(1/15) 6835625993535491 a001 32951280099/17393796001*228826127^(1/15) 6835625993535491 a001 12586269025/6643838879*228826127^(1/15) 6835625993535491 a001 701408733/23725150497407*599074578^(11/18) 6835625993535491 a001 433494437/14662949395604*1568397607^(7/12) 6835625993535491 a001 1134903170/1322157322203*599074578^(4/9) 6835625993535491 a001 1201881744/634430159*228826127^(1/15) 6835625993535491 a001 267914296/969323029*228826127^(1/6) 6835625993535491 a001 433494437/17393796001*599074578^(5/18) 6835625993535491 a001 2971215073/969323029*228826127^(1/24) 6835625993535491 a001 433494437/969323029*45537549124^(1/9) 6835625993535491 a001 1836311903/969323029*228826127^(1/15) 6835625993535491 a001 433494437/505019158607*599074578^(4/9) 6835625993535491 a001 267914296/6643838879*228826127^(4/15) 6835625993535491 a001 433494437/14662949395604*599074578^(11/18) 6835625993535491 a001 133957148/5374978561*228826127^(7/24) 6835625993535491 a001 701408733/2537720636*228826127^(1/6) 6835625993535491 a001 1836311903/6643838879*228826127^(1/6) 6835625993535491 a001 4807526976/17393796001*228826127^(1/6) 6835625993535491 a001 12586269025/45537549124*228826127^(1/6) 6835625993535491 a001 32951280099/119218851371*228826127^(1/6) 6835625993535491 a001 86267571272/312119004989*228826127^(1/6) 6835625993535491 a001 225851433717/817138163596*228826127^(1/6) 6835625993535491 a001 1548008755920/5600748293801*228826127^(1/6) 6835625993535491 a001 139583862445/505019158607*228826127^(1/6) 6835625993535491 a001 53316291173/192900153618*228826127^(1/6) 6835625993535491 a001 20365011074/73681302247*228826127^(1/6) 6835625993535491 a001 7778742049/28143753123*228826127^(1/6) 6835625993535491 a001 2971215073/10749957122*228826127^(1/6) 6835625993535491 a001 1134903170/4106118243*228826127^(1/6) 6835625993535491 a001 433494437/1568397607*228826127^(1/6) 6835625993535491 a001 267914296/370248451*17393796001^(2/21) 6835625993535491 a001 165580141/599074578*3461452808002^(1/9) 6835625993535491 a001 267914296/370248451*505019158607^(1/12) 6835625993535491 a001 165580141/599074578*28143753123^(2/15) 6835625993535491 a001 701408733/17393796001*228826127^(4/15) 6835625993535491 a001 267914296/370248451*599074578^(1/9) 6835625993535491 a001 165580141/17393796001*370248451^(1/3) 6835625993535491 a001 1836311903/45537549124*228826127^(4/15) 6835625993535491 a001 4807526976/119218851371*228826127^(4/15) 6835625993535491 a001 1144206275/28374454999*228826127^(4/15) 6835625993535491 a001 32951280099/817138163596*228826127^(4/15) 6835625993535491 a001 86267571272/2139295485799*228826127^(4/15) 6835625993535491 a001 225851433717/5600748293801*228826127^(4/15) 6835625993535491 a001 591286729879/14662949395604*228826127^(4/15) 6835625993535491 a001 365435296162/9062201101803*228826127^(4/15) 6835625993535491 a001 139583862445/3461452808002*228826127^(4/15) 6835625993535491 a001 53316291173/1322157322203*228826127^(4/15) 6835625993535491 a001 20365011074/505019158607*228826127^(4/15) 6835625993535491 a001 7778742049/192900153618*228826127^(4/15) 6835625993535491 a001 2971215073/73681302247*228826127^(4/15) 6835625993535491 a001 233802911/9381251041*228826127^(7/24) 6835625993535491 a001 267914296/119218851371*228826127^(5/12) 6835625993535491 a001 1134903170/28143753123*228826127^(4/15) 6835625993535491 a001 1836311903/73681302247*228826127^(7/24) 6835625993535491 a001 267084832/10716675201*228826127^(7/24) 6835625993535491 a001 12586269025/505019158607*228826127^(7/24) 6835625993535491 a001 10983760033/440719107401*228826127^(7/24) 6835625993535491 a001 43133785636/1730726404001*228826127^(7/24) 6835625993535491 a001 75283811239/3020733700601*228826127^(7/24) 6835625993535491 a001 182717648081/7331474697802*228826127^(7/24) 6835625993535491 a001 139583862445/5600748293801*228826127^(7/24) 6835625993535491 a001 53316291173/2139295485799*228826127^(7/24) 6835625993535491 a001 10182505537/408569081798*228826127^(7/24) 6835625993535491 a001 7778742049/312119004989*228826127^(7/24) 6835625993535491 a001 2971215073/119218851371*228826127^(7/24) 6835625993535491 a001 567451585/22768774562*228826127^(7/24) 6835625993535491 a001 267914296/312119004989*228826127^(7/15) 6835625993535491 a001 433494437/10749957122*228826127^(4/15) 6835625993535491 a001 165580141/23725150497407*969323029^(2/3) 6835625993535491 a001 433494437/17393796001*228826127^(7/24) 6835625993535491 a001 701408733/370248451*23725150497407^(1/24) 6835625993535491 a001 165580141/1568397607*73681302247^(1/6) 6835625993535491 a001 701408733/370248451*10749957122^(1/18) 6835625993535491 a001 165580141/4106118243*23725150497407^(1/6) 6835625993535491 a001 165580141/4106118243*10749957122^(2/9) 6835625993535491 a001 165580141/10749957122*817138163596^(2/9) 6835625993535491 a001 165580141/45537549124*6643838879^(1/3) 6835625993535491 a001 165580141/5600748293801*17393796001^(11/21) 6835625993535491 a001 165580141/192900153618*17393796001^(8/21) 6835625993535491 a001 165580141/28143753123*312119004989^(4/15) 6835625993535491 a001 165580141/1322157322203*45537549124^(4/9) 6835625993535491 a001 165580141/73681302247*3461452808002^(5/18) 6835625993535491 a001 165580141/192900153618*23725150497407^(7/24) 6835625993535491 a001 165580141/192900153618*505019158607^(1/3) 6835625993535491 a001 165580141/5600748293801*312119004989^(7/15) 6835625993535491 a001 165580141/505019158607*9062201101803^(1/3) 6835625993535491 a001 165580141/9062201101803*23725150497407^(5/12) 6835625993535491 a001 165580141/5600748293801*505019158607^(11/24) 6835625993535491 a001 165580141/9062201101803*505019158607^(10/21) 6835625993535491 a001 165580141/312119004989*2139295485799^(1/3) 6835625993535491 a001 165580141/119218851371*119218851371^(1/3) 6835625993535491 a001 165580141/817138163596*73681302247^(5/12) 6835625993535491 a001 165580141/73681302247*28143753123^(1/3) 6835625993535491 a001 165580141/9062201101803*28143753123^(8/15) 6835625993535491 a001 165580141/192900153618*10749957122^(7/18) 6835625993535491 a001 165580141/9062201101803*10749957122^(5/9) 6835625993535491 a001 165580141/6643838879*17393796001^(5/21) 6835625993535491 a001 165580141/6643838879*505019158607^(5/24) 6835625993535491 a001 165580141/28143753123*1568397607^(1/3) 6835625993535491 a001 165580141/2537720636*1322157322203^(1/6) 6835625993535491 a001 165580141/5600748293801*1568397607^(7/12) 6835625993535491 a001 3524667/1568437211*228826127^(5/12) 6835625993535491 a001 267914296/1322157322203*228826127^(13/24) 6835625993535491 a001 165580141/599074578*228826127^(1/6) 6835625993535491 a001 1836311903/817138163596*228826127^(5/12) 6835625993535491 a001 4807526976/2139295485799*228826127^(5/12) 6835625993535491 a001 12586269025/5600748293801*228826127^(5/12) 6835625993535491 a001 32951280099/14662949395604*228826127^(5/12) 6835625993535491 a001 53316291173/23725150497407*228826127^(5/12) 6835625993535491 a001 20365011074/9062201101803*228826127^(5/12) 6835625993535491 a001 7778742049/3461452808002*228826127^(5/12) 6835625993535491 a001 2971215073/1322157322203*228826127^(5/12) 6835625993535491 a001 165580141/6643838879*599074578^(5/18) 6835625993535491 a001 1134903170/505019158607*228826127^(5/12) 6835625993535491 a001 701408733/370248451*228826127^(1/15) 6835625993535491 a001 1134903170/370248451*228826127^(1/24) 6835625993535491 a001 433494437/370248451*312119004989^(1/15) 6835625993535491 a001 165580141/969323029*4106118243^(1/6) 6835625993535491 a001 433494437/370248451*1568397607^(1/12) 6835625993535491 a001 701408733/817138163596*228826127^(7/15) 6835625993535491 a001 165580141/192900153618*599074578^(4/9) 6835625993535491 a001 1836311903/2139295485799*228826127^(7/15) 6835625993535491 a001 4807526976/5600748293801*228826127^(7/15) 6835625993535491 a001 12586269025/14662949395604*228826127^(7/15) 6835625993535491 a001 20365011074/23725150497407*228826127^(7/15) 6835625993535491 a001 7778742049/9062201101803*228826127^(7/15) 6835625993535491 a001 2971215073/3461452808002*228826127^(7/15) 6835625993535491 a001 165580141/5600748293801*599074578^(11/18) 6835625993535491 a001 433494437/192900153618*228826127^(5/12) 6835625993535491 a001 1134903170/1322157322203*228826127^(7/15) 6835625993535491 a001 701408733/3461452808002*228826127^(13/24) 6835625993535491 a001 10946/599074579*228826127^(2/3) 6835625993535491 a001 433494437/505019158607*228826127^(7/15) 6835625993535491 a001 1836311903/9062201101803*228826127^(13/24) 6835625993535491 a001 4807526976/23725150497407*228826127^(13/24) 6835625993535491 a001 2971215073/14662949395604*228826127^(13/24) 6835625993535491 a001 1134903170/5600748293801*228826127^(13/24) 6835625993535491 a001 433494437/2139295485799*228826127^(13/24) 6835625993535491 a001 165580141/4106118243*228826127^(4/15) 6835625993535491 a001 165580141/6643838879*228826127^(7/24) 6835625993535491 a001 433494437/23725150497407*228826127^(2/3) 6835625993535491 a001 165580141/370248451*45537549124^(1/9) 6835625993535491 a001 165580141/73681302247*228826127^(5/12) 6835625993535491 a001 165580141/192900153618*228826127^(7/15) 6835625993535491 a001 165580141/817138163596*228826127^(13/24) 6835625993535491 a001 165580141/9062201101803*228826127^(2/3) 6835625993535491 a001 63245986/312119004989*141422324^(5/9) 6835625993535491 a001 102334155/6643838879*87403803^(1/3) 6835625993535491 a001 102334155/141422324*17393796001^(2/21) 6835625993535491 a001 63245986/228826127*3461452808002^(1/9) 6835625993535491 a001 102334155/141422324*505019158607^(1/12) 6835625993535491 a001 63245986/228826127*28143753123^(2/15) 6835625993535491 a001 102334155/141422324*599074578^(1/9) 6835625993535491 a001 63245986/228826127*228826127^(1/6) 6835625993535491 a001 31622993/299537289*141422324^(2/9) 6835625993535491 a001 9238424/599786069*87403803^(1/3) 6835625993535491 a001 701408733/45537549124*87403803^(1/3) 6835625993535491 a001 1836311903/119218851371*87403803^(1/3) 6835625993535491 a001 4807526976/312119004989*87403803^(1/3) 6835625993535491 a001 12586269025/817138163596*87403803^(1/3) 6835625993535491 a001 32951280099/2139295485799*87403803^(1/3) 6835625993535491 a001 86267571272/5600748293801*87403803^(1/3) 6835625993535491 a001 7787980473/505618944676*87403803^(1/3) 6835625993535491 a001 365435296162/23725150497407*87403803^(1/3) 6835625993535491 a001 139583862445/9062201101803*87403803^(1/3) 6835625993535491 a001 53316291173/3461452808002*87403803^(1/3) 6835625993535491 a001 20365011074/1322157322203*87403803^(1/3) 6835625993535491 a001 7778742049/505019158607*87403803^(1/3) 6835625993535491 a001 2971215073/192900153618*87403803^(1/3) 6835625993535491 a001 1134903170/73681302247*87403803^(1/3) 6835625993535491 a001 433494437/28143753123*87403803^(1/3) 6835625993535491 a001 66978574/35355581*23725150497407^(1/24) 6835625993535491 a001 31622993/299537289*73681302247^(1/6) 6835625993535491 a001 66978574/35355581*10749957122^(1/18) 6835625993535491 a001 63245986/6643838879*370248451^(1/3) 6835625993535491 a001 66978574/35355581*228826127^(1/15) 6835625993535491 a001 63245986/9062201101803*969323029^(2/3) 6835625993535491 a001 63245986/1568397607*23725150497407^(1/6) 6835625993535491 a001 63245986/1568397607*10749957122^(2/9) 6835625993535491 a001 63245986/4106118243*817138163596^(2/9) 6835625993535491 a001 31622993/5374978561*312119004989^(4/15) 6835625993535491 a001 63245986/17393796001*6643838879^(1/3) 6835625993535491 a001 63245986/2139295485799*17393796001^(11/21) 6835625993535491 a001 63245986/73681302247*17393796001^(8/21) 6835625993535491 a001 63245986/28143753123*3461452808002^(5/18) 6835625993535491 a001 63245986/28143753123*28143753123^(1/3) 6835625993535491 a001 63245986/505019158607*45537549124^(4/9) 6835625993535491 a001 63245986/73681302247*23725150497407^(7/24) 6835625993535491 a001 63245986/73681302247*505019158607^(1/3) 6835625993535491 a001 31622993/96450076809*9062201101803^(1/3) 6835625993535491 a001 63245986/2139295485799*312119004989^(7/15) 6835625993535491 a001 31622993/1730726404001*23725150497407^(5/12) 6835625993535491 a001 31622993/1730726404001*505019158607^(10/21) 6835625993535491 a001 63245986/2139295485799*505019158607^(11/24) 6835625993535491 a001 63245986/119218851371*2139295485799^(1/3) 6835625993535491 a001 63245986/312119004989*73681302247^(5/12) 6835625993535491 a001 31622993/22768774562*119218851371^(1/3) 6835625993535491 a001 31622993/1730726404001*28143753123^(8/15) 6835625993535491 a001 63245986/73681302247*10749957122^(7/18) 6835625993535491 a001 31622993/1730726404001*10749957122^(5/9) 6835625993535491 a001 63245986/23725150497407*4106118243^(2/3) 6835625993535491 a001 31622993/5374978561*1568397607^(1/3) 6835625993535491 a001 31622993/1268860318*17393796001^(5/21) 6835625993535491 a001 31622993/1268860318*505019158607^(5/24) 6835625993535491 a001 63245986/2139295485799*1568397607^(7/12) 6835625993535491 a001 165580141/10749957122*87403803^(1/3) 6835625993535491 a001 31622993/1268860318*599074578^(5/18) 6835625993535491 a001 63245986/969323029*1322157322203^(1/6) 6835625993535491 a001 63245986/73681302247*599074578^(4/9) 6835625993535491 a001 63245986/2139295485799*599074578^(11/18) 6835625993535491 a001 433494437/141422324*228826127^(1/24) 6835625993535491 a001 63245986/1568397607*228826127^(4/15) 6835625993535491 a001 31622993/1268860318*228826127^(7/24) 6835625993535491 a001 165580141/141422324*312119004989^(1/15) 6835625993535491 a001 63245986/370248451*4106118243^(1/6) 6835625993535491 a001 165580141/141422324*1568397607^(1/12) 6835625993535491 a001 63245986/28143753123*228826127^(5/12) 6835625993535491 a001 63245986/73681302247*228826127^(7/15) 6835625993535491 a001 63245986/312119004989*228826127^(13/24) 6835625993535491 a001 31622993/1730726404001*228826127^(2/3) 6835625993535491 a001 63245986/4106118243*87403803^(1/3) 6835625993535491 a001 31622993/70711162*45537549124^(1/9) 6835625993535491 a001 24157817/505019158607*54018521^(2/3) 6835625993535492 a001 9227465/9062201101803*20633239^(14/15) 6835625993535492 a001 39088169/54018521*17393796001^(2/21) 6835625993535492 a001 24157817/87403803*3461452808002^(1/9) 6835625993535492 a001 39088169/54018521*505019158607^(1/12) 6835625993535492 a001 24157817/87403803*28143753123^(2/15) 6835625993535492 a001 39088169/54018521*599074578^(1/9) 6835625993535492 a001 24157817/87403803*228826127^(1/6) 6835625993535492 a001 9227465/5600748293801*20633239^(19/21) 6835625993535492 a001 165580141/54018521*20633239^(1/21) 6835625993535493 a001 24157817/228826127*141422324^(2/9) 6835625993535493 a001 24157817/119218851371*141422324^(5/9) 6835625993535493 a001 102334155/54018521*23725150497407^(1/24) 6835625993535493 a001 24157817/228826127*73681302247^(1/6) 6835625993535493 a001 102334155/54018521*10749957122^(1/18) 6835625993535493 a001 102334155/54018521*228826127^(1/15) 6835625993535493 a001 24157817/599074578*23725150497407^(1/6) 6835625993535493 a001 24157817/599074578*10749957122^(2/9) 6835625993535493 a001 24157817/2537720636*370248451^(1/3) 6835625993535493 a001 24157817/3461452808002*969323029^(2/3) 6835625993535493 a001 24157817/1568397607*817138163596^(2/9) 6835625993535493 a001 24157817/4106118243*312119004989^(4/15) 6835625993535493 a001 24157817/10749957122*3461452808002^(5/18) 6835625993535493 a001 24157817/10749957122*28143753123^(1/3) 6835625993535493 a001 24157817/28143753123*17393796001^(8/21) 6835625993535493 a001 24157817/23725150497407*17393796001^(2/3) 6835625993535493 a001 24157817/817138163596*17393796001^(11/21) 6835625993535493 a001 24157817/28143753123*23725150497407^(7/24) 6835625993535493 a001 24157817/192900153618*45537549124^(4/9) 6835625993535493 a001 24157817/73681302247*9062201101803^(1/3) 6835625993535493 a001 24157817/817138163596*312119004989^(7/15) 6835625993535493 a001 24157817/14662949395604*817138163596^(5/9) 6835625993535493 a001 24157817/1322157322203*23725150497407^(5/12) 6835625993535493 a001 24157817/1322157322203*505019158607^(10/21) 6835625993535493 a001 24157817/23725150497407*505019158607^(7/12) 6835625993535493 a001 24157817/119218851371*73681302247^(5/12) 6835625993535493 a001 24157817/45537549124*2139295485799^(1/3) 6835625993535493 a001 24157817/1322157322203*28143753123^(8/15) 6835625993535493 a001 24157817/28143753123*10749957122^(7/18) 6835625993535493 a001 24157817/17393796001*119218851371^(1/3) 6835625993535493 a001 24157817/1322157322203*10749957122^(5/9) 6835625993535493 a001 24157817/6643838879*6643838879^(1/3) 6835625993535493 a001 24157817/9062201101803*4106118243^(2/3) 6835625993535493 a001 24157817/4106118243*1568397607^(1/3) 6835625993535493 a001 24157817/817138163596*1568397607^(7/12) 6835625993535493 a001 24157817/969323029*17393796001^(5/21) 6835625993535493 a001 24157817/969323029*505019158607^(5/24) 6835625993535493 a001 24157817/28143753123*599074578^(4/9) 6835625993535493 a001 24157817/817138163596*599074578^(11/18) 6835625993535493 a001 24157817/969323029*599074578^(5/18) 6835625993535493 a001 24157817/23725150497407*599074578^(7/9) 6835625993535493 a001 24157817/599074578*228826127^(4/15) 6835625993535493 a001 24157817/969323029*228826127^(7/24) 6835625993535493 a001 24157817/370248451*1322157322203^(1/6) 6835625993535493 a001 24157817/10749957122*228826127^(5/12) 6835625993535493 a001 165580141/54018521*228826127^(1/24) 6835625993535493 a001 24157817/28143753123*228826127^(7/15) 6835625993535493 a001 24157817/119218851371*228826127^(13/24) 6835625993535493 a001 24157817/1322157322203*228826127^(2/3) 6835625993535493 a001 24157817/14662949395604*228826127^(19/24) 6835625993535493 a001 24157817/1568397607*87403803^(1/3) 6835625993535493 a001 63245986/54018521*312119004989^(1/15) 6835625993535493 a001 24157817/141422324*4106118243^(1/6) 6835625993535493 a001 63245986/54018521*1568397607^(1/12) 6835625993535494 a001 24157817/14662949395604*87403803^(5/6) 6835625993535494 a001 9227465/505019158607*20633239^(16/21) 6835625993535495 a001 9227465/312119004989*20633239^(11/15) 6835625993535495 a001 24157817/54018521*45537549124^(1/9) 6835625993535496 a001 39088169/87403803*12752043^(1/6) 6835625993535497 a001 9227465/45537549124*20633239^(13/21) 6835625993535497 a001 24157817/20633239*7881196^(1/9) 6835625993535497 a001 102334155/228826127*12752043^(1/6) 6835625993535497 a001 9227465/33385282*20633239^(4/21) 6835625993535498 a001 133957148/299537289*12752043^(1/6) 6835625993535498 a001 701408733/1568397607*12752043^(1/6) 6835625993535498 a001 1836311903/4106118243*12752043^(1/6) 6835625993535498 a001 2403763488/5374978561*12752043^(1/6) 6835625993535498 a001 12586269025/28143753123*12752043^(1/6) 6835625993535498 a001 32951280099/73681302247*12752043^(1/6) 6835625993535498 a001 43133785636/96450076809*12752043^(1/6) 6835625993535498 a001 225851433717/505019158607*12752043^(1/6) 6835625993535498 a001 591286729879/1322157322203*12752043^(1/6) 6835625993535498 a001 10610209857723/23725150497407*12752043^(1/6) 6835625993535498 a001 182717648081/408569081798*12752043^(1/6) 6835625993535498 a001 139583862445/312119004989*12752043^(1/6) 6835625993535498 a001 53316291173/119218851371*12752043^(1/6) 6835625993535498 a001 10182505537/22768774562*12752043^(1/6) 6835625993535498 a001 7778742049/17393796001*12752043^(1/6) 6835625993535498 a001 2971215073/6643838879*12752043^(1/6) 6835625993535498 a001 567451585/1268860318*12752043^(1/6) 6835625993535498 a001 433494437/969323029*12752043^(1/6) 6835625993535498 a001 165580141/370248451*12752043^(1/6) 6835625993535498 a001 9227465/10749957122*20633239^(8/15) 6835625993535498 a001 31622993/70711162*12752043^(1/6) 6835625993535498 a001 14930352/20633239*20633239^(2/15) 6835625993535499 a001 9227465/4106118243*20633239^(10/21) 6835625993535501 a001 14930352/20633239*17393796001^(2/21) 6835625993535501 a001 14930352/20633239*505019158607^(1/12) 6835625993535501 a001 9227465/33385282*28143753123^(2/15) 6835625993535501 a001 14930352/20633239*599074578^(1/9) 6835625993535501 a001 9227465/33385282*228826127^(1/6) 6835625993535501 a001 9227465/370248451*20633239^(1/3) 6835625993535502 a001 24157817/54018521*12752043^(1/6) 6835625993535505 a001 9227465/192900153618*54018521^(2/3) 6835625993535506 a001 9227465/87403803*141422324^(2/9) 6835625993535506 a001 39088169/20633239*23725150497407^(1/24) 6835625993535506 a001 9227465/87403803*73681302247^(1/6) 6835625993535506 a001 39088169/20633239*10749957122^(1/18) 6835625993535506 a001 39088169/20633239*228826127^(1/15) 6835625993535506 a001 63245986/20633239*20633239^(1/21) 6835625993535506 a001 9227465/23725150497407*141422324^(8/9) 6835625993535506 a001 9227465/45537549124*141422324^(5/9) 6835625993535507 a001 9227465/228826127*23725150497407^(1/6) 6835625993535507 a001 9227465/228826127*10749957122^(2/9) 6835625993535507 a001 9227465/228826127*228826127^(4/15) 6835625993535507 a001 9227465/599074578*817138163596^(2/9) 6835625993535507 a001 9227465/969323029*370248451^(1/3) 6835625993535507 a001 9227465/1322157322203*969323029^(2/3) 6835625993535507 a001 9227465/1568397607*312119004989^(4/15) 6835625993535507 a001 9227465/1568397607*1568397607^(1/3) 6835625993535507 a001 9227465/4106118243*3461452808002^(5/18) 6835625993535507 a001 9227465/4106118243*28143753123^(1/3) 6835625993535507 a001 9227465/10749957122*17393796001^(8/21) 6835625993535507 a001 9227465/10749957122*23725150497407^(7/24) 6835625993535507 a001 9227465/10749957122*505019158607^(1/3) 6835625993535507 a001 9227465/10749957122*10749957122^(7/18) 6835625993535507 a001 9227465/9062201101803*17393796001^(2/3) 6835625993535507 a001 9227465/312119004989*17393796001^(11/21) 6835625993535507 a001 9227465/28143753123*9062201101803^(1/3) 6835625993535507 a001 9227465/73681302247*45537549124^(4/9) 6835625993535507 a001 9227465/505019158607*23725150497407^(5/12) 6835625993535507 a001 9227465/23725150497407*23725150497407^(13/24) 6835625993535507 a001 9227465/9062201101803*505019158607^(7/12) 6835625993535507 a001 9227465/23725150497407*505019158607^(13/21) 6835625993535507 a001 9227465/312119004989*312119004989^(7/15) 6835625993535507 a001 9227465/312119004989*505019158607^(11/24) 6835625993535507 a001 9227465/23725150497407*73681302247^(2/3) 6835625993535507 a001 9227465/45537549124*73681302247^(5/12) 6835625993535507 a001 9227465/505019158607*28143753123^(8/15) 6835625993535507 a001 9227465/17393796001*2139295485799^(1/3) 6835625993535507 a001 9227465/505019158607*10749957122^(5/9) 6835625993535507 a001 9227465/23725150497407*10749957122^(13/18) 6835625993535507 a001 9227465/6643838879*119218851371^(1/3) 6835625993535507 a001 9227465/3461452808002*4106118243^(2/3) 6835625993535507 a001 9227465/2537720636*6643838879^(1/3) 6835625993535507 a001 9227465/312119004989*1568397607^(7/12) 6835625993535507 a001 9227465/10749957122*599074578^(4/9) 6835625993535507 a001 9227465/312119004989*599074578^(11/18) 6835625993535507 a001 9227465/9062201101803*599074578^(7/9) 6835625993535507 a001 9227465/370248451*17393796001^(5/21) 6835625993535507 a001 9227465/370248451*505019158607^(5/24) 6835625993535507 a001 9227465/4106118243*228826127^(5/12) 6835625993535507 a001 9227465/370248451*599074578^(5/18) 6835625993535507 a001 9227465/10749957122*228826127^(7/15) 6835625993535507 a001 9227465/45537549124*228826127^(13/24) 6835625993535507 a001 9227465/505019158607*228826127^(2/3) 6835625993535507 a001 9227465/370248451*228826127^(7/24) 6835625993535507 a001 9227465/5600748293801*228826127^(19/24) 6835625993535507 a001 9227465/23725150497407*228826127^(13/15) 6835625993535507 a001 9227465/599074578*87403803^(1/3) 6835625993535507 a001 9227465/141422324*1322157322203^(1/6) 6835625993535507 a001 63245986/20633239*228826127^(1/24) 6835625993535507 a001 9227465/5600748293801*87403803^(5/6) 6835625993535509 a001 31622993/16692641*4870847^(1/12) 6835625993535509 a001 24157817/20633239*312119004989^(1/15) 6835625993535509 a001 9227465/54018521*4106118243^(1/6) 6835625993535509 a001 24157817/20633239*1568397607^(1/12) 6835625993535513 a001 14930352/119218851371*12752043^(2/3) 6835625993535514 a001 165580141/87403803*4870847^(1/12) 6835625993535514 a001 433494437/228826127*4870847^(1/12) 6835625993535515 a001 567451585/299537289*4870847^(1/12) 6835625993535515 a001 2971215073/1568397607*4870847^(1/12) 6835625993535515 a001 7778742049/4106118243*4870847^(1/12) 6835625993535515 a001 10182505537/5374978561*4870847^(1/12) 6835625993535515 a001 53316291173/28143753123*4870847^(1/12) 6835625993535515 a001 139583862445/73681302247*4870847^(1/12) 6835625993535515 a001 182717648081/96450076809*4870847^(1/12) 6835625993535515 a001 956722026041/505019158607*4870847^(1/12) 6835625993535515 a001 10610209857723/5600748293801*4870847^(1/12) 6835625993535515 a001 591286729879/312119004989*4870847^(1/12) 6835625993535515 a001 225851433717/119218851371*4870847^(1/12) 6835625993535515 a001 21566892818/11384387281*4870847^(1/12) 6835625993535515 a001 32951280099/17393796001*4870847^(1/12) 6835625993535515 a001 12586269025/6643838879*4870847^(1/12) 6835625993535515 a001 1201881744/634430159*4870847^(1/12) 6835625993535515 a001 1836311903/969323029*4870847^(1/12) 6835625993535515 a001 701408733/370248451*4870847^(1/12) 6835625993535515 a001 66978574/35355581*4870847^(1/12) 6835625993535515 a001 3524578/119218851371*7881196^(7/9) 6835625993535517 a001 102334155/54018521*4870847^(1/12) 6835625993535518 a001 39088169/312119004989*12752043^(2/3) 6835625993535519 a001 102334155/817138163596*12752043^(2/3) 6835625993535519 a001 267914296/2139295485799*12752043^(2/3) 6835625993535519 a001 701408733/5600748293801*12752043^(2/3) 6835625993535519 a001 1836311903/14662949395604*12752043^(2/3) 6835625993535519 a001 2971215073/23725150497407*12752043^(2/3) 6835625993535519 a001 1134903170/9062201101803*12752043^(2/3) 6835625993535519 a001 433494437/3461452808002*12752043^(2/3) 6835625993535519 a001 165580141/1322157322203*12752043^(2/3) 6835625993535519 a001 63245986/505019158607*12752043^(2/3) 6835625993535521 a001 24157817/192900153618*12752043^(2/3) 6835625993535523 a001 9227465/20633239*45537549124^(1/9) 6835625993535525 a001 5702887/20633239*4870847^(5/24) 6835625993535530 a001 9227465/20633239*12752043^(1/6) 6835625993535530 a001 39088169/20633239*4870847^(1/12) 6835625993535535 a001 9227465/73681302247*12752043^(2/3) 6835625993535545 a001 5702887/141422324*4870847^(1/3) 6835625993535547 a001 14930352/54018521*4870847^(5/24) 6835625993535550 a001 39088169/141422324*4870847^(5/24) 6835625993535551 a001 102334155/370248451*4870847^(5/24) 6835625993535551 a001 267914296/969323029*4870847^(5/24) 6835625993535551 a001 701408733/2537720636*4870847^(5/24) 6835625993535551 a001 1836311903/6643838879*4870847^(5/24) 6835625993535551 a001 4807526976/17393796001*4870847^(5/24) 6835625993535551 a001 12586269025/45537549124*4870847^(5/24) 6835625993535551 a001 32951280099/119218851371*4870847^(5/24) 6835625993535551 a001 86267571272/312119004989*4870847^(5/24) 6835625993535551 a001 225851433717/817138163596*4870847^(5/24) 6835625993535551 a001 1548008755920/5600748293801*4870847^(5/24) 6835625993535551 a001 139583862445/505019158607*4870847^(5/24) 6835625993535551 a001 53316291173/192900153618*4870847^(5/24) 6835625993535551 a001 20365011074/73681302247*4870847^(5/24) 6835625993535551 a001 7778742049/28143753123*4870847^(5/24) 6835625993535551 a001 2971215073/10749957122*4870847^(5/24) 6835625993535551 a001 1134903170/4106118243*4870847^(5/24) 6835625993535551 a001 433494437/1568397607*4870847^(5/24) 6835625993535551 a001 165580141/599074578*4870847^(5/24) 6835625993535551 a001 63245986/228826127*4870847^(5/24) 6835625993535552 a001 1762289/299537289*7881196^(4/9) 6835625993535552 a001 24157817/87403803*4870847^(5/24) 6835625993535556 a001 3524578/12752043*20633239^(4/21) 6835625993535556 a001 5702887/7881196*20633239^(2/15) 6835625993535557 a001 39088169/12752043*1860498^(1/18) 6835625993535559 a001 5702887/7881196*17393796001^(2/21) 6835625993535559 a001 3524578/12752043*3461452808002^(1/9) 6835625993535559 a001 5702887/7881196*505019158607^(1/12) 6835625993535559 a001 3524578/12752043*28143753123^(2/15) 6835625993535559 a001 5702887/7881196*599074578^(1/9) 6835625993535559 a001 3524578/12752043*228826127^(1/6) 6835625993535561 a001 9227465/33385282*4870847^(5/24) 6835625993535581 a001 14930352/370248451*4870847^(1/3) 6835625993535581 a001 5702887/969323029*4870847^(11/24) 6835625993535586 a001 1762289/1730726404001*20633239^(14/15) 6835625993535586 a001 39088169/969323029*4870847^(1/3) 6835625993535586 a001 3524578/2139295485799*20633239^(19/21) 6835625993535587 a001 9303105/230701876*4870847^(1/3) 6835625993535587 a001 267914296/6643838879*4870847^(1/3) 6835625993535587 a001 701408733/17393796001*4870847^(1/3) 6835625993535587 a001 1836311903/45537549124*4870847^(1/3) 6835625993535587 a001 4807526976/119218851371*4870847^(1/3) 6835625993535587 a001 1144206275/28374454999*4870847^(1/3) 6835625993535587 a001 32951280099/817138163596*4870847^(1/3) 6835625993535587 a001 86267571272/2139295485799*4870847^(1/3) 6835625993535587 a001 225851433717/5600748293801*4870847^(1/3) 6835625993535587 a001 591286729879/14662949395604*4870847^(1/3) 6835625993535587 a001 365435296162/9062201101803*4870847^(1/3) 6835625993535587 a001 139583862445/3461452808002*4870847^(1/3) 6835625993535587 a001 53316291173/1322157322203*4870847^(1/3) 6835625993535587 a001 20365011074/505019158607*4870847^(1/3) 6835625993535587 a001 7778742049/192900153618*4870847^(1/3) 6835625993535587 a001 2971215073/73681302247*4870847^(1/3) 6835625993535587 a001 1134903170/28143753123*4870847^(1/3) 6835625993535587 a001 433494437/10749957122*4870847^(1/3) 6835625993535587 a001 165580141/4106118243*4870847^(1/3) 6835625993535587 a001 63245986/1568397607*4870847^(1/3) 6835625993535588 a001 1762289/96450076809*20633239^(16/21) 6835625993535589 a001 3524578/119218851371*20633239^(11/15) 6835625993535589 a001 24157817/599074578*4870847^(1/3) 6835625993535591 a001 3524578/17393796001*20633239^(13/21) 6835625993535592 a001 3524578/4106118243*20633239^(8/15) 6835625993535593 a001 3524578/1568397607*20633239^(10/21) 6835625993535594 a001 14619165/4769326*1860498^(1/18) 6835625993535594 a001 1762289/16692641*141422324^(2/9) 6835625993535595 a001 3732588/1970299*23725150497407^(1/24) 6835625993535595 a001 1762289/16692641*73681302247^(1/6) 6835625993535595 a001 3732588/1970299*10749957122^(1/18) 6835625993535595 a001 3732588/1970299*228826127^(1/15) 6835625993535596 a001 1762289/70711162*20633239^(1/3) 6835625993535599 a001 3524578/73681302247*54018521^(2/3) 6835625993535599 a001 267914296/87403803*1860498^(1/18) 6835625993535600 a001 3524578/87403803*23725150497407^(1/6) 6835625993535600 a001 3524578/87403803*10749957122^(2/9) 6835625993535600 a001 3524578/87403803*228826127^(4/15) 6835625993535600 a001 701408733/228826127*1860498^(1/18) 6835625993535600 a001 1836311903/599074578*1860498^(1/18) 6835625993535600 a001 686789568/224056801*1860498^(1/18) 6835625993535600 a001 12586269025/4106118243*1860498^(1/18) 6835625993535600 a001 32951280099/10749957122*1860498^(1/18) 6835625993535600 a001 86267571272/28143753123*1860498^(1/18) 6835625993535600 a001 32264490531/10525900321*1860498^(1/18) 6835625993535600 a001 591286729879/192900153618*1860498^(1/18) 6835625993535600 a001 1548008755920/505019158607*1860498^(1/18) 6835625993535600 a001 1515744265389/494493258286*1860498^(1/18) 6835625993535600 a001 2504730781961/817138163596*1860498^(1/18) 6835625993535600 a001 956722026041/312119004989*1860498^(1/18) 6835625993535600 a001 365435296162/119218851371*1860498^(1/18) 6835625993535600 a001 139583862445/45537549124*1860498^(1/18) 6835625993535600 a001 53316291173/17393796001*1860498^(1/18) 6835625993535600 a001 20365011074/6643838879*1860498^(1/18) 6835625993535600 a001 7778742049/2537720636*1860498^(1/18) 6835625993535600 a001 2971215073/969323029*1860498^(1/18) 6835625993535600 a001 3524578/9062201101803*141422324^(8/9) 6835625993535600 a001 1134903170/370248451*1860498^(1/18) 6835625993535600 a001 3524578/17393796001*141422324^(5/9) 6835625993535601 a001 3524578/228826127*817138163596^(2/9) 6835625993535601 a001 1762289/299537289*312119004989^(4/15) 6835625993535601 a001 1762289/299537289*1568397607^(1/3) 6835625993535601 a001 3524578/505019158607*969323029^(2/3) 6835625993535601 a001 3524578/1568397607*3461452808002^(5/18) 6835625993535601 a001 3524578/1568397607*28143753123^(1/3) 6835625993535601 a001 3524578/4106118243*17393796001^(8/21) 6835625993535601 a001 3524578/4106118243*23725150497407^(7/24) 6835625993535601 a001 3524578/4106118243*505019158607^(1/3) 6835625993535601 a001 3524578/4106118243*10749957122^(7/18) 6835625993535601 a001 1762289/5374978561*9062201101803^(1/3) 6835625993535601 a001 1762289/1730726404001*17393796001^(2/3) 6835625993535601 a001 3524578/119218851371*17393796001^(11/21) 6835625993535601 a001 3524578/28143753123*45537549124^(4/9) 6835625993535601 a001 1762289/96450076809*23725150497407^(5/12) 6835625993535601 a001 1762289/96450076809*505019158607^(10/21) 6835625993535601 a001 3524578/23725150497407*312119004989^(2/3) 6835625993535601 a001 3524578/2139295485799*817138163596^(5/9) 6835625993535601 a001 3524578/9062201101803*23725150497407^(13/24) 6835625993535601 a001 1762289/1730726404001*505019158607^(7/12) 6835625993535601 a001 3524578/9062201101803*505019158607^(13/21) 6835625993535601 a001 3524578/119218851371*312119004989^(7/15) 6835625993535601 a001 3524578/119218851371*505019158607^(11/24) 6835625993535601 a001 3524578/9062201101803*73681302247^(2/3) 6835625993535601 a001 1762289/96450076809*28143753123^(8/15) 6835625993535601 a001 3524578/23725150497407*28143753123^(11/15) 6835625993535601 a001 3524578/17393796001*73681302247^(5/12) 6835625993535601 a001 1762289/96450076809*10749957122^(5/9) 6835625993535601 a001 3524578/9062201101803*10749957122^(13/18) 6835625993535601 a001 3524578/6643838879*2139295485799^(1/3) 6835625993535601 a001 3524578/1322157322203*4106118243^(2/3) 6835625993535601 a001 1762289/1268860318*119218851371^(1/3) 6835625993535601 a001 3524578/119218851371*1568397607^(7/12) 6835625993535601 a001 3524578/23725150497407*1568397607^(5/6) 6835625993535601 a001 3524578/969323029*6643838879^(1/3) 6835625993535601 a001 3524578/4106118243*599074578^(4/9) 6835625993535601 a001 433494437/141422324*1860498^(1/18) 6835625993535601 a001 3524578/119218851371*599074578^(11/18) 6835625993535601 a001 1762289/1730726404001*599074578^(7/9) 6835625993535601 a001 3524578/370248451*370248451^(1/3) 6835625993535601 a001 3524578/1568397607*228826127^(5/12) 6835625993535601 a001 3524578/4106118243*228826127^(7/15) 6835625993535601 a001 3524578/17393796001*228826127^(13/24) 6835625993535601 a001 1762289/96450076809*228826127^(2/3) 6835625993535601 a001 3524578/2139295485799*228826127^(19/24) 6835625993535601 a001 3524578/9062201101803*228826127^(13/15) 6835625993535601 a001 3524578/23725150497407*228826127^(11/12) 6835625993535601 a001 3524578/228826127*87403803^(1/3) 6835625993535601 a001 1762289/70711162*17393796001^(5/21) 6835625993535601 a001 1762289/70711162*505019158607^(5/24) 6835625993535601 a001 1762289/70711162*599074578^(5/18) 6835625993535601 a001 1762289/70711162*228826127^(7/24) 6835625993535601 a001 3524578/2139295485799*87403803^(5/6) 6835625993535602 a001 24157817/7881196*20633239^(1/21) 6835625993535603 a001 9227465/228826127*4870847^(1/3) 6835625993535603 a001 165580141/54018521*1860498^(1/18) 6835625993535603 a001 3524578/54018521*1322157322203^(1/6) 6835625993535603 a001 24157817/7881196*228826127^(1/24) 6835625993535604 a001 9227465/7881196*7881196^(1/9) 6835625993535617 a001 196452/33391061*4870847^(11/24) 6835625993535617 a001 5702887/6643838879*4870847^(7/12) 6835625993535617 a001 9227465/7881196*312119004989^(1/15) 6835625993535617 a001 3524578/20633239*4106118243^(1/6) 6835625993535617 a001 9227465/7881196*1568397607^(1/12) 6835625993535617 a001 63245986/20633239*1860498^(1/18) 6835625993535619 a001 3732588/1970299*4870847^(1/12) 6835625993535619 a001 3524578/12752043*4870847^(5/24) 6835625993535622 a001 39088169/6643838879*4870847^(11/24) 6835625993535623 a001 102334155/17393796001*4870847^(11/24) 6835625993535623 a001 66978574/11384387281*4870847^(11/24) 6835625993535623 a001 701408733/119218851371*4870847^(11/24) 6835625993535623 a001 1836311903/312119004989*4870847^(11/24) 6835625993535623 a001 1201881744/204284540899*4870847^(11/24) 6835625993535623 a001 12586269025/2139295485799*4870847^(11/24) 6835625993535623 a001 32951280099/5600748293801*4870847^(11/24) 6835625993535623 a001 1135099622/192933544679*4870847^(11/24) 6835625993535623 a001 139583862445/23725150497407*4870847^(11/24) 6835625993535623 a001 53316291173/9062201101803*4870847^(11/24) 6835625993535623 a001 10182505537/1730726404001*4870847^(11/24) 6835625993535623 a001 7778742049/1322157322203*4870847^(11/24) 6835625993535623 a001 2971215073/505019158607*4870847^(11/24) 6835625993535623 a001 567451585/96450076809*4870847^(11/24) 6835625993535623 a001 433494437/73681302247*4870847^(11/24) 6835625993535623 a001 165580141/28143753123*4870847^(11/24) 6835625993535623 a001 31622993/5374978561*4870847^(11/24) 6835625993535625 a001 24157817/4106118243*4870847^(11/24) 6835625993535629 a001 3524578/28143753123*12752043^(2/3) 6835625993535639 a001 9227465/1568397607*4870847^(11/24) 6835625993535653 a001 14930352/17393796001*4870847^(7/12) 6835625993535653 a001 1597/12752044*4870847^(17/24) 6835625993535658 a001 39088169/45537549124*4870847^(7/12) 6835625993535659 a001 102334155/119218851371*4870847^(7/12) 6835625993535659 a001 267914296/312119004989*4870847^(7/12) 6835625993535659 a001 701408733/817138163596*4870847^(7/12) 6835625993535659 a001 1836311903/2139295485799*4870847^(7/12) 6835625993535659 a001 4807526976/5600748293801*4870847^(7/12) 6835625993535659 a001 12586269025/14662949395604*4870847^(7/12) 6835625993535659 a001 20365011074/23725150497407*4870847^(7/12) 6835625993535659 a001 7778742049/9062201101803*4870847^(7/12) 6835625993535659 a001 2971215073/3461452808002*4870847^(7/12) 6835625993535659 a001 1134903170/1322157322203*4870847^(7/12) 6835625993535659 a001 433494437/505019158607*4870847^(7/12) 6835625993535659 a001 165580141/192900153618*4870847^(7/12) 6835625993535659 a001 63245986/73681302247*4870847^(7/12) 6835625993535661 a001 24157817/28143753123*4870847^(7/12) 6835625993535675 a001 9227465/10749957122*4870847^(7/12) 6835625993535689 a001 14930352/119218851371*4870847^(17/24) 6835625993535689 a001 5702887/312119004989*4870847^(5/6) 6835625993535694 a001 39088169/312119004989*4870847^(17/24) 6835625993535695 a001 102334155/817138163596*4870847^(17/24) 6835625993535695 a001 267914296/2139295485799*4870847^(17/24) 6835625993535695 a001 701408733/5600748293801*4870847^(17/24) 6835625993535695 a001 1836311903/14662949395604*4870847^(17/24) 6835625993535695 a001 2971215073/23725150497407*4870847^(17/24) 6835625993535695 a001 1134903170/9062201101803*4870847^(17/24) 6835625993535695 a001 433494437/3461452808002*4870847^(17/24) 6835625993535695 a001 165580141/1322157322203*4870847^(17/24) 6835625993535695 a001 63245986/505019158607*4870847^(17/24) 6835625993535696 a001 3524578/87403803*4870847^(1/3) 6835625993535697 a001 24157817/192900153618*4870847^(17/24) 6835625993535711 a001 1762289/3940598*45537549124^(1/9) 6835625993535711 a001 9227465/73681302247*4870847^(17/24) 6835625993535713 a001 24157817/7881196*1860498^(1/18) 6835625993535718 a001 1762289/3940598*12752043^(1/6) 6835625993535725 a001 3732588/204284540899*4870847^(5/6) 6835625993535725 a001 5702887/2139295485799*4870847^(23/24) 6835625993535730 a001 39088169/2139295485799*4870847^(5/6) 6835625993535731 a001 102334155/5600748293801*4870847^(5/6) 6835625993535731 a001 10946/599074579*4870847^(5/6) 6835625993535731 a001 433494437/23725150497407*4870847^(5/6) 6835625993535731 a001 165580141/9062201101803*4870847^(5/6) 6835625993535731 a001 31622993/1730726404001*4870847^(5/6) 6835625993535733 a001 1762289/299537289*4870847^(11/24) 6835625993535733 a001 24157817/1322157322203*4870847^(5/6) 6835625993535742 a001 1346269/4106118243*3010349^(2/3) 6835625993535747 a001 9227465/505019158607*4870847^(5/6) 6835625993535751 a001 2178309/7881196*1860498^(2/9) 6835625993535761 a001 14930352/5600748293801*4870847^(23/24) 6835625993535766 a001 39088169/14662949395604*4870847^(23/24) 6835625993535767 a001 63245986/23725150497407*4870847^(23/24) 6835625993535769 a001 3524578/4106118243*4870847^(7/12) 6835625993535769 a001 24157817/9062201101803*4870847^(23/24) 6835625993535783 a001 9227465/3461452808002*4870847^(23/24) 6835625993535805 a001 3524578/28143753123*4870847^(17/24) 6835625993535841 a001 1762289/96450076809*4870847^(5/6) 6835625993535877 a001 3524578/1322157322203*4870847^(23/24) 6835625993535903 a001 5702887/20633239*1860498^(2/9) 6835625993535926 a001 14930352/54018521*1860498^(2/9) 6835625993535929 a001 39088169/141422324*1860498^(2/9) 6835625993535929 a001 102334155/370248451*1860498^(2/9) 6835625993535929 a001 267914296/969323029*1860498^(2/9) 6835625993535929 a001 701408733/2537720636*1860498^(2/9) 6835625993535929 a001 1836311903/6643838879*1860498^(2/9) 6835625993535929 a001 4807526976/17393796001*1860498^(2/9) 6835625993535929 a001 12586269025/45537549124*1860498^(2/9) 6835625993535929 a001 32951280099/119218851371*1860498^(2/9) 6835625993535929 a001 86267571272/312119004989*1860498^(2/9) 6835625993535929 a001 225851433717/817138163596*1860498^(2/9) 6835625993535929 a001 1548008755920/5600748293801*1860498^(2/9) 6835625993535929 a001 139583862445/505019158607*1860498^(2/9) 6835625993535929 a001 53316291173/192900153618*1860498^(2/9) 6835625993535929 a001 20365011074/73681302247*1860498^(2/9) 6835625993535929 a001 7778742049/28143753123*1860498^(2/9) 6835625993535929 a001 2971215073/10749957122*1860498^(2/9) 6835625993535929 a001 1134903170/4106118243*1860498^(2/9) 6835625993535929 a001 433494437/1568397607*1860498^(2/9) 6835625993535929 a001 165580141/599074578*1860498^(2/9) 6835625993535930 a001 63245986/228826127*1860498^(2/9) 6835625993535931 a001 24157817/87403803*1860498^(2/9) 6835625993535939 a001 9227465/33385282*1860498^(2/9) 6835625993535954 a001 1346269/4870847*20633239^(4/21) 6835625993535955 a001 2178309/3010349*20633239^(2/15) 6835625993535957 a001 2178309/3010349*17393796001^(2/21) 6835625993535957 a001 1346269/4870847*3461452808002^(1/9) 6835625993535957 a001 2178309/3010349*505019158607^(1/12) 6835625993535957 a001 1346269/4870847*28143753123^(2/15) 6835625993535957 a001 2178309/3010349*599074578^(1/9) 6835625993535957 a001 1346269/4870847*228826127^(1/6) 6835625993535970 a001 726103/29134601*1860498^(7/18) 6835625993535997 a001 3524578/12752043*1860498^(2/9) 6835625993536017 a001 1346269/4870847*4870847^(5/24) 6835625993536159 a001 1346269/45537549124*7881196^(7/9) 6835625993536196 a001 1346269/228826127*7881196^(4/9) 6835625993536203 a001 1346269/12752043*141422324^(2/9) 6835625993536203 a001 5702887/3010349*23725150497407^(1/24) 6835625993536203 a001 1346269/12752043*73681302247^(1/6) 6835625993536203 a001 5702887/3010349*10749957122^(1/18) 6835625993536203 a001 5702887/3010349*228826127^(1/15) 6835625993536216 a001 5702887/228826127*1860498^(7/18) 6835625993536227 a001 5702887/3010349*4870847^(1/12) 6835625993536230 a001 1346269/1322157322203*20633239^(14/15) 6835625993536230 a001 1346269/817138163596*20633239^(19/21) 6835625993536233 a001 1346269/73681302247*20633239^(16/21) 6835625993536233 a001 1346269/45537549124*20633239^(11/15) 6835625993536235 a001 1346269/6643838879*20633239^(13/21) 6835625993536236 a001 1346269/1568397607*20633239^(8/15) 6835625993536237 a001 1346269/599074578*20633239^(10/21) 6835625993536239 a001 1346269/33385282*23725150497407^(1/6) 6835625993536239 a001 1346269/33385282*10749957122^(2/9) 6835625993536239 a001 1346269/33385282*228826127^(4/15) 6835625993536242 a001 1346269/54018521*20633239^(1/3) 6835625993536243 a001 1346269/28143753123*54018521^(2/3) 6835625993536244 a001 1346269/87403803*817138163596^(2/9) 6835625993536244 a001 1346269/87403803*87403803^(1/3) 6835625993536245 a001 1346269/3461452808002*141422324^(8/9) 6835625993536245 a001 1346269/6643838879*141422324^(5/9) 6835625993536245 a001 1346269/228826127*312119004989^(4/15) 6835625993536245 a001 1346269/228826127*1568397607^(1/3) 6835625993536245 a001 1346269/599074578*3461452808002^(5/18) 6835625993536245 a001 1346269/599074578*28143753123^(1/3) 6835625993536245 a001 1346269/192900153618*969323029^(2/3) 6835625993536245 a001 1346269/1568397607*17393796001^(8/21) 6835625993536245 a001 1346269/1568397607*23725150497407^(7/24) 6835625993536245 a001 1346269/1568397607*505019158607^(1/3) 6835625993536245 a001 1346269/1568397607*10749957122^(7/18) 6835625993536245 a001 1346269/4106118243*9062201101803^(1/3) 6835625993536245 a001 1346269/10749957122*45537549124^(4/9) 6835625993536245 a001 1346269/1322157322203*17393796001^(2/3) 6835625993536245 a001 1346269/45537549124*17393796001^(11/21) 6835625993536245 a001 1346269/73681302247*23725150497407^(5/12) 6835625993536245 a001 1346269/73681302247*505019158607^(10/21) 6835625993536245 a001 1346269/9062201101803*3461452808002^(11/18) 6835625993536245 a001 1346269/23725150497407*1322157322203^(2/3) 6835625993536245 a001 1346269/817138163596*817138163596^(5/9) 6835625993536245 a001 1346269/1322157322203*505019158607^(7/12) 6835625993536245 a001 1346269/3461452808002*505019158607^(13/21) 6835625993536245 a001 1346269/3461452808002*73681302247^(2/3) 6835625993536245 a001 1346269/45537549124*312119004989^(7/15) 6835625993536245 a001 1346269/45537549124*505019158607^(11/24) 6835625993536245 a001 1346269/73681302247*28143753123^(8/15) 6835625993536245 a001 1346269/9062201101803*28143753123^(11/15) 6835625993536245 a001 1346269/73681302247*10749957122^(5/9) 6835625993536245 a001 1346269/3461452808002*10749957122^(13/18) 6835625993536245 a001 1346269/6643838879*73681302247^(5/12) 6835625993536245 a001 1346269/505019158607*4106118243^(2/3) 6835625993536245 a001 1346269/2537720636*2139295485799^(1/3) 6835625993536245 a001 1346269/45537549124*1568397607^(7/12) 6835625993536245 a001 1346269/9062201101803*1568397607^(5/6) 6835625993536245 a001 1346269/1568397607*599074578^(4/9) 6835625993536245 a001 1346269/969323029*119218851371^(1/3) 6835625993536245 a001 1346269/45537549124*599074578^(11/18) 6835625993536245 a001 1346269/1322157322203*599074578^(7/9) 6835625993536245 a001 1346269/599074578*228826127^(5/12) 6835625993536245 a001 1346269/370248451*6643838879^(1/3) 6835625993536245 a001 1346269/1568397607*228826127^(7/15) 6835625993536245 a001 1346269/6643838879*228826127^(13/24) 6835625993536245 a001 1346269/73681302247*228826127^(2/3) 6835625993536245 a001 1346269/817138163596*228826127^(19/24) 6835625993536245 a001 1346269/3461452808002*228826127^(13/15) 6835625993536245 a001 1346269/9062201101803*228826127^(11/12) 6835625993536245 a001 1346269/141422324*370248451^(1/3) 6835625993536246 a001 1346269/817138163596*87403803^(5/6) 6835625993536247 a001 1346269/54018521*17393796001^(5/21) 6835625993536247 a001 1346269/54018521*505019158607^(5/24) 6835625993536247 a001 1346269/54018521*599074578^(5/18) 6835625993536247 a001 1346269/54018521*228826127^(7/24) 6835625993536252 a001 829464/33281921*1860498^(7/18) 6835625993536258 a001 39088169/1568397607*1860498^(7/18) 6835625993536258 a001 34111385/1368706081*1860498^(7/18) 6835625993536259 a001 133957148/5374978561*1860498^(7/18) 6835625993536259 a001 233802911/9381251041*1860498^(7/18) 6835625993536259 a001 1836311903/73681302247*1860498^(7/18) 6835625993536259 a001 267084832/10716675201*1860498^(7/18) 6835625993536259 a001 12586269025/505019158607*1860498^(7/18) 6835625993536259 a001 10983760033/440719107401*1860498^(7/18) 6835625993536259 a001 43133785636/1730726404001*1860498^(7/18) 6835625993536259 a001 75283811239/3020733700601*1860498^(7/18) 6835625993536259 a001 182717648081/7331474697802*1860498^(7/18) 6835625993536259 a001 139583862445/5600748293801*1860498^(7/18) 6835625993536259 a001 53316291173/2139295485799*1860498^(7/18) 6835625993536259 a001 10182505537/408569081798*1860498^(7/18) 6835625993536259 a001 7778742049/312119004989*1860498^(7/18) 6835625993536259 a001 2971215073/119218851371*1860498^(7/18) 6835625993536259 a001 567451585/22768774562*1860498^(7/18) 6835625993536259 a001 433494437/17393796001*1860498^(7/18) 6835625993536259 a001 165580141/6643838879*1860498^(7/18) 6835625993536259 a001 31622993/1268860318*1860498^(7/18) 6835625993536260 a001 9227465/3010349*20633239^(1/21) 6835625993536261 a001 24157817/969323029*1860498^(7/18) 6835625993536261 a001 1346269/20633239*1322157322203^(1/6) 6835625993536261 a001 9227465/3010349*228826127^(1/24) 6835625993536273 a001 1346269/10749957122*12752043^(2/3) 6835625993536275 a001 9227465/370248451*1860498^(7/18) 6835625993536300 a001 2178309/969323029*1860498^(5/9) 6835625993536335 a001 1346269/33385282*4870847^(1/3) 6835625993536343 a001 3524578/3010349*7881196^(1/9) 6835625993536355 a001 3524578/3010349*312119004989^(1/15) 6835625993536355 a001 1346269/7881196*4106118243^(1/6) 6835625993536355 a001 3524578/3010349*1568397607^(1/12) 6835625993536369 a001 1762289/70711162*1860498^(7/18) 6835625993536371 a001 9227465/3010349*1860498^(1/18) 6835625993536377 a001 1346269/228826127*4870847^(11/24) 6835625993536396 a001 1346269/4870847*1860498^(2/9) 6835625993536413 a001 1346269/1568397607*4870847^(7/12) 6835625993536449 a001 1346269/10749957122*4870847^(17/24) 6835625993536485 a001 1346269/73681302247*4870847^(5/6) 6835625993536508 a001 9227465/4870847*710647^(2/21) 6835625993536521 a001 1346269/505019158607*4870847^(23/24) 6835625993536526 a001 1346269/1860498*710647^(1/6) 6835625993536546 a001 5702887/2537720636*1860498^(5/9) 6835625993536582 a001 14930352/6643838879*1860498^(5/9) 6835625993536587 a001 39088169/17393796001*1860498^(5/9) 6835625993536588 a001 102334155/45537549124*1860498^(5/9) 6835625993536588 a001 267914296/119218851371*1860498^(5/9) 6835625993536588 a001 3524667/1568437211*1860498^(5/9) 6835625993536588 a001 1836311903/817138163596*1860498^(5/9) 6835625993536588 a001 4807526976/2139295485799*1860498^(5/9) 6835625993536588 a001 12586269025/5600748293801*1860498^(5/9) 6835625993536588 a001 32951280099/14662949395604*1860498^(5/9) 6835625993536588 a001 53316291173/23725150497407*1860498^(5/9) 6835625993536588 a001 20365011074/9062201101803*1860498^(5/9) 6835625993536588 a001 7778742049/3461452808002*1860498^(5/9) 6835625993536588 a001 2971215073/1322157322203*1860498^(5/9) 6835625993536588 a001 1134903170/505019158607*1860498^(5/9) 6835625993536588 a001 433494437/192900153618*1860498^(5/9) 6835625993536588 a001 165580141/73681302247*1860498^(5/9) 6835625993536588 a001 63245986/28143753123*1860498^(5/9) 6835625993536590 a001 24157817/10749957122*1860498^(5/9) 6835625993536604 a001 9227465/4106118243*1860498^(5/9) 6835625993536629 a001 987/4870846*1860498^(13/18) 6835625993536698 a001 3524578/1568397607*1860498^(5/9) 6835625993536740 a001 24157817/12752043*710647^(2/21) 6835625993536774 a001 31622993/16692641*710647^(2/21) 6835625993536779 a001 165580141/87403803*710647^(2/21) 6835625993536780 a001 433494437/228826127*710647^(2/21) 6835625993536780 a001 567451585/299537289*710647^(2/21) 6835625993536780 a001 2971215073/1568397607*710647^(2/21) 6835625993536780 a001 7778742049/4106118243*710647^(2/21) 6835625993536780 a001 10182505537/5374978561*710647^(2/21) 6835625993536780 a001 53316291173/28143753123*710647^(2/21) 6835625993536780 a001 139583862445/73681302247*710647^(2/21) 6835625993536780 a001 182717648081/96450076809*710647^(2/21) 6835625993536780 a001 956722026041/505019158607*710647^(2/21) 6835625993536780 a001 10610209857723/5600748293801*710647^(2/21) 6835625993536780 a001 591286729879/312119004989*710647^(2/21) 6835625993536780 a001 225851433717/119218851371*710647^(2/21) 6835625993536780 a001 21566892818/11384387281*710647^(2/21) 6835625993536780 a001 32951280099/17393796001*710647^(2/21) 6835625993536780 a001 12586269025/6643838879*710647^(2/21) 6835625993536780 a001 1201881744/634430159*710647^(2/21) 6835625993536780 a001 1836311903/969323029*710647^(2/21) 6835625993536780 a001 701408733/370248451*710647^(2/21) 6835625993536780 a001 66978574/35355581*710647^(2/21) 6835625993536782 a001 102334155/54018521*710647^(2/21) 6835625993536795 a001 39088169/20633239*710647^(2/21) 6835625993536875 a001 5702887/28143753123*1860498^(13/18) 6835625993536884 a001 3732588/1970299*710647^(2/21) 6835625993536911 a001 14930352/73681302247*1860498^(13/18) 6835625993536916 a001 39088169/192900153618*1860498^(13/18) 6835625993536917 a001 102334155/505019158607*1860498^(13/18) 6835625993536917 a001 267914296/1322157322203*1860498^(13/18) 6835625993536917 a001 701408733/3461452808002*1860498^(13/18) 6835625993536917 a001 1836311903/9062201101803*1860498^(13/18) 6835625993536917 a001 4807526976/23725150497407*1860498^(13/18) 6835625993536917 a001 2971215073/14662949395604*1860498^(13/18) 6835625993536917 a001 1134903170/5600748293801*1860498^(13/18) 6835625993536917 a001 433494437/2139295485799*1860498^(13/18) 6835625993536917 a001 165580141/817138163596*1860498^(13/18) 6835625993536917 a001 63245986/312119004989*1860498^(13/18) 6835625993536919 a001 24157817/119218851371*1860498^(13/18) 6835625993536933 a001 9227465/45537549124*1860498^(13/18) 6835625993536958 a001 2178309/119218851371*1860498^(8/9) 6835625993536999 a001 1346269/3010349*45537549124^(1/9) 6835625993537006 a001 1346269/3010349*12752043^(1/6) 6835625993537015 a001 1346269/54018521*1860498^(7/18) 6835625993537027 a001 3524578/17393796001*1860498^(13/18) 6835625993537204 a001 5702887/312119004989*1860498^(8/9) 6835625993537240 a001 3732588/204284540899*1860498^(8/9) 6835625993537245 a001 39088169/2139295485799*1860498^(8/9) 6835625993537246 a001 102334155/5600748293801*1860498^(8/9) 6835625993537246 a001 10946/599074579*1860498^(8/9) 6835625993537246 a001 433494437/23725150497407*1860498^(8/9) 6835625993537246 a001 165580141/9062201101803*1860498^(8/9) 6835625993537246 a001 31622993/1730726404001*1860498^(8/9) 6835625993537248 a001 24157817/1322157322203*1860498^(8/9) 6835625993537262 a001 9227465/505019158607*1860498^(8/9) 6835625993537342 a001 1346269/599074578*1860498^(5/9) 6835625993537356 a001 1762289/96450076809*1860498^(8/9) 6835625993537492 a001 5702887/3010349*710647^(2/21) 6835625993537493 a001 832040/3010349*710647^(5/21) 6835625993537568 a001 3524578/4870847*710647^(1/6) 6835625993537671 a001 1346269/6643838879*1860498^(13/18) 6835625993537721 a001 9227465/12752043*710647^(1/6) 6835625993537743 a001 24157817/33385282*710647^(1/6) 6835625993537746 a001 63245986/87403803*710647^(1/6) 6835625993537746 a001 165580141/228826127*710647^(1/6) 6835625993537746 a001 433494437/599074578*710647^(1/6) 6835625993537747 a001 1134903170/1568397607*710647^(1/6) 6835625993537747 a001 2971215073/4106118243*710647^(1/6) 6835625993537747 a001 7778742049/10749957122*710647^(1/6) 6835625993537747 a001 20365011074/28143753123*710647^(1/6) 6835625993537747 a001 53316291173/73681302247*710647^(1/6) 6835625993537747 a001 139583862445/192900153618*710647^(1/6) 6835625993537747 a001 365435296162/505019158607*710647^(1/6) 6835625993537747 a001 10610209857723/14662949395604*710647^(1/6) 6835625993537747 a001 591286729879/817138163596*710647^(1/6) 6835625993537747 a001 225851433717/312119004989*710647^(1/6) 6835625993537747 a001 86267571272/119218851371*710647^(1/6) 6835625993537747 a001 32951280099/45537549124*710647^(1/6) 6835625993537747 a001 12586269025/17393796001*710647^(1/6) 6835625993537747 a001 4807526976/6643838879*710647^(1/6) 6835625993537747 a001 1836311903/2537720636*710647^(1/6) 6835625993537747 a001 701408733/969323029*710647^(1/6) 6835625993537747 a001 267914296/370248451*710647^(1/6) 6835625993537747 a001 102334155/141422324*710647^(1/6) 6835625993537748 a001 39088169/54018521*710647^(1/6) 6835625993537756 a001 14930352/20633239*710647^(1/6) 6835625993537815 a001 5702887/7881196*710647^(1/6) 6835625993538000 a001 1346269/73681302247*1860498^(8/9) 6835625993538213 a001 2178309/3010349*710647^(1/6) 6835625993538535 a001 2178309/7881196*710647^(5/21) 6835625993538683 a001 514229/1860498*20633239^(4/21) 6835625993538684 a001 832040/1149851*20633239^(2/15) 6835625993538686 a001 832040/1149851*17393796001^(2/21) 6835625993538686 a001 514229/1860498*3461452808002^(1/9) 6835625993538686 a001 832040/1149851*505019158607^(1/12) 6835625993538686 a001 514229/1860498*28143753123^(2/15) 6835625993538686 a001 832040/1149851*599074578^(1/9) 6835625993538686 a001 514229/1860498*228826127^(1/6) 6835625993538687 a001 5702887/20633239*710647^(5/21) 6835625993538688 a001 75640/1875749*710647^(8/21) 6835625993538710 a001 14930352/54018521*710647^(5/21) 6835625993538713 a001 39088169/141422324*710647^(5/21) 6835625993538713 a001 102334155/370248451*710647^(5/21) 6835625993538713 a001 267914296/969323029*710647^(5/21) 6835625993538713 a001 701408733/2537720636*710647^(5/21) 6835625993538713 a001 1836311903/6643838879*710647^(5/21) 6835625993538713 a001 4807526976/17393796001*710647^(5/21) 6835625993538713 a001 12586269025/45537549124*710647^(5/21) 6835625993538713 a001 32951280099/119218851371*710647^(5/21) 6835625993538713 a001 86267571272/312119004989*710647^(5/21) 6835625993538713 a001 225851433717/817138163596*710647^(5/21) 6835625993538713 a001 1548008755920/5600748293801*710647^(5/21) 6835625993538713 a001 139583862445/505019158607*710647^(5/21) 6835625993538713 a001 53316291173/192900153618*710647^(5/21) 6835625993538713 a001 20365011074/73681302247*710647^(5/21) 6835625993538713 a001 7778742049/28143753123*710647^(5/21) 6835625993538713 a001 2971215073/10749957122*710647^(5/21) 6835625993538713 a001 1134903170/4106118243*710647^(5/21) 6835625993538713 a001 433494437/1568397607*710647^(5/21) 6835625993538713 a001 165580141/599074578*710647^(5/21) 6835625993538714 a001 63245986/228826127*710647^(5/21) 6835625993538715 a001 24157817/87403803*710647^(5/21) 6835625993538723 a001 9227465/33385282*710647^(5/21) 6835625993538746 a001 514229/1860498*4870847^(5/24) 6835625993538781 a001 3524578/12752043*710647^(5/21) 6835625993539047 a001 514229/7881196*1149851^(1/3) 6835625993539125 a001 514229/1860498*1860498^(2/9) 6835625993539149 a001 416020/16692641*710647^(5/12) 6835625993539180 a001 1346269/4870847*710647^(5/21) 6835625993540158 a001 514229/1568397607*3010349^(2/3) 6835625993540361 a001 2178309/54018521*710647^(8/21) 6835625993540372 a001 514229/4870847*141422324^(2/9) 6835625993540373 a001 2178309/1149851*23725150497407^(1/24) 6835625993540373 a001 514229/4870847*73681302247^(1/6) 6835625993540373 a001 2178309/1149851*10749957122^(1/18) 6835625993540373 a001 2178309/1149851*228826127^(1/15) 6835625993540397 a001 2178309/1149851*4870847^(1/12) 6835625993540575 a001 514229/17393796001*7881196^(7/9) 6835625993540605 a001 5702887/141422324*710647^(8/21) 6835625993540606 a001 208010/35355581*710647^(11/21) 6835625993540611 a001 514229/87403803*7881196^(4/9) 6835625993540619 a001 514229/12752043*23725150497407^(1/6) 6835625993540619 a001 514229/12752043*10749957122^(2/9) 6835625993540619 a001 514229/12752043*228826127^(4/15) 6835625993540641 a001 14930352/370248451*710647^(8/21) 6835625993540646 a001 514229/505019158607*20633239^(14/15) 6835625993540646 a001 39088169/969323029*710647^(8/21) 6835625993540646 a001 514229/312119004989*20633239^(19/21) 6835625993540647 a001 9303105/230701876*710647^(8/21) 6835625993540647 a001 267914296/6643838879*710647^(8/21) 6835625993540647 a001 701408733/17393796001*710647^(8/21) 6835625993540647 a001 1836311903/45537549124*710647^(8/21) 6835625993540647 a001 4807526976/119218851371*710647^(8/21) 6835625993540647 a001 1144206275/28374454999*710647^(8/21) 6835625993540647 a001 32951280099/817138163596*710647^(8/21) 6835625993540647 a001 86267571272/2139295485799*710647^(8/21) 6835625993540647 a001 225851433717/5600748293801*710647^(8/21) 6835625993540647 a001 591286729879/14662949395604*710647^(8/21) 6835625993540647 a001 365435296162/9062201101803*710647^(8/21) 6835625993540647 a001 139583862445/3461452808002*710647^(8/21) 6835625993540647 a001 53316291173/1322157322203*710647^(8/21) 6835625993540647 a001 20365011074/505019158607*710647^(8/21) 6835625993540647 a001 7778742049/192900153618*710647^(8/21) 6835625993540647 a001 2971215073/73681302247*710647^(8/21) 6835625993540647 a001 1134903170/28143753123*710647^(8/21) 6835625993540647 a001 433494437/10749957122*710647^(8/21) 6835625993540647 a001 165580141/4106118243*710647^(8/21) 6835625993540647 a001 63245986/1568397607*710647^(8/21) 6835625993540648 a001 514229/28143753123*20633239^(16/21) 6835625993540649 a001 514229/17393796001*20633239^(11/15) 6835625993540649 a001 24157817/599074578*710647^(8/21) 6835625993540651 a001 514229/2537720636*20633239^(13/21) 6835625993540652 a001 514229/599074578*20633239^(8/15) 6835625993540653 a001 514229/228826127*20633239^(10/21) 6835625993540655 a001 514229/33385282*817138163596^(2/9) 6835625993540655 a001 514229/33385282*87403803^(1/3) 6835625993540659 a001 514229/10749957122*54018521^(2/3) 6835625993540660 a001 514229/87403803*312119004989^(4/15) 6835625993540660 a001 514229/87403803*1568397607^(1/3) 6835625993540660 a001 514229/1322157322203*141422324^(8/9) 6835625993540660 a001 514229/2537720636*141422324^(5/9) 6835625993540661 a001 514229/228826127*3461452808002^(5/18) 6835625993540661 a001 514229/228826127*28143753123^(1/3) 6835625993540661 a001 514229/228826127*228826127^(5/12) 6835625993540661 a001 514229/599074578*17393796001^(8/21) 6835625993540661 a001 514229/599074578*23725150497407^(7/24) 6835625993540661 a001 514229/599074578*505019158607^(1/3) 6835625993540661 a001 514229/599074578*10749957122^(7/18) 6835625993540661 a001 514229/599074578*599074578^(4/9) 6835625993540661 a001 514229/73681302247*969323029^(2/3) 6835625993540661 a001 514229/1568397607*9062201101803^(1/3) 6835625993540661 a001 514229/4106118243*45537549124^(4/9) 6835625993540661 a001 514229/14662949395604*17393796001^(17/21) 6835625993540661 a001 514229/505019158607*17393796001^(2/3) 6835625993540661 a001 514229/28143753123*23725150497407^(5/12) 6835625993540661 a001 514229/28143753123*505019158607^(10/21) 6835625993540661 a001 514229/28143753123*28143753123^(8/15) 6835625993540661 a001 514229/14662949395604*45537549124^(7/9) 6835625993540661 a001 514229/3461452808002*312119004989^(2/3) 6835625993540661 a001 514229/1322157322203*23725150497407^(13/24) 6835625993540661 a001 514229/3461452808002*3461452808002^(11/18) 6835625993540661 a001 514229/23725150497407*5600748293801^(2/3) 6835625993540661 a001 514229/1322157322203*505019158607^(13/21) 6835625993540661 a001 514229/14662949395604*505019158607^(17/24) 6835625993540661 a001 514229/312119004989*817138163596^(5/9) 6835625993540661 a001 514229/1322157322203*73681302247^(2/3) 6835625993540661 a001 514229/3461452808002*28143753123^(11/15) 6835625993540661 a001 514229/17393796001*17393796001^(11/21) 6835625993540661 a001 514229/17393796001*312119004989^(7/15) 6835625993540661 a001 514229/17393796001*505019158607^(11/24) 6835625993540661 a001 514229/28143753123*10749957122^(5/9) 6835625993540661 a001 514229/1322157322203*10749957122^(13/18) 6835625993540661 a001 514229/192900153618*4106118243^(2/3) 6835625993540661 a001 514229/2537720636*73681302247^(5/12) 6835625993540661 a001 514229/17393796001*1568397607^(7/12) 6835625993540661 a001 514229/3461452808002*1568397607^(5/6) 6835625993540661 a001 514229/969323029*2139295485799^(1/3) 6835625993540661 a001 514229/17393796001*599074578^(11/18) 6835625993540661 a001 514229/505019158607*599074578^(7/9) 6835625993540661 a001 514229/14662949395604*599074578^(17/18) 6835625993540661 a001 514229/599074578*228826127^(7/15) 6835625993540661 a001 514229/370248451*119218851371^(1/3) 6835625993540661 a001 514229/2537720636*228826127^(13/24) 6835625993540661 a001 514229/28143753123*228826127^(2/3) 6835625993540661 a001 514229/312119004989*228826127^(19/24) 6835625993540661 a001 514229/1322157322203*228826127^(13/15) 6835625993540661 a001 514229/3461452808002*228826127^(11/12) 6835625993540661 a001 514229/141422324*6643838879^(1/3) 6835625993540661 a001 514229/312119004989*87403803^(5/6) 6835625993540663 a001 9227465/228826127*710647^(8/21) 6835625993540663 a001 514229/54018521*370248451^(1/3) 6835625993540671 a001 514229/20633239*20633239^(1/3) 6835625993540677 a001 514229/20633239*17393796001^(5/21) 6835625993540677 a001 514229/20633239*505019158607^(5/24) 6835625993540677 a001 514229/20633239*599074578^(5/18) 6835625993540677 a001 514229/20633239*228826127^(7/24) 6835625993540689 a001 514229/4106118243*12752043^(2/3) 6835625993540715 a001 514229/12752043*4870847^(1/3) 6835625993540756 a001 3524578/87403803*710647^(8/21) 6835625993540770 a001 3524578/1149851*20633239^(1/21) 6835625993540771 a001 514229/7881196*1322157322203^(1/6) 6835625993540771 a001 3524578/1149851*228826127^(1/24) 6835625993540792 a001 514229/87403803*4870847^(11/24) 6835625993540829 a001 514229/599074578*4870847^(7/12) 6835625993540841 a001 726103/29134601*710647^(5/12) 6835625993540865 a001 514229/4106118243*4870847^(17/24) 6835625993540880 a001 3524578/1149851*1860498^(1/18) 6835625993540901 a001 514229/28143753123*4870847^(5/6) 6835625993540937 a001 514229/192900153618*4870847^(23/24) 6835625993540942 a001 832040/1149851*710647^(1/6) 6835625993541088 a001 5702887/228826127*710647^(5/12) 6835625993541124 a001 829464/33281921*710647^(5/12) 6835625993541129 a001 39088169/1568397607*710647^(5/12) 6835625993541130 a001 34111385/1368706081*710647^(5/12) 6835625993541130 a001 133957148/5374978561*710647^(5/12) 6835625993541130 a001 233802911/9381251041*710647^(5/12) 6835625993541130 a001 1836311903/73681302247*710647^(5/12) 6835625993541130 a001 267084832/10716675201*710647^(5/12) 6835625993541130 a001 12586269025/505019158607*710647^(5/12) 6835625993541130 a001 10983760033/440719107401*710647^(5/12) 6835625993541130 a001 43133785636/1730726404001*710647^(5/12) 6835625993541130 a001 75283811239/3020733700601*710647^(5/12) 6835625993541130 a001 182717648081/7331474697802*710647^(5/12) 6835625993541130 a001 139583862445/5600748293801*710647^(5/12) 6835625993541130 a001 53316291173/2139295485799*710647^(5/12) 6835625993541130 a001 10182505537/408569081798*710647^(5/12) 6835625993541130 a001 7778742049/312119004989*710647^(5/12) 6835625993541130 a001 2971215073/119218851371*710647^(5/12) 6835625993541130 a001 567451585/22768774562*710647^(5/12) 6835625993541130 a001 433494437/17393796001*710647^(5/12) 6835625993541130 a001 165580141/6643838879*710647^(5/12) 6835625993541131 a001 31622993/1268860318*710647^(5/12) 6835625993541133 a001 24157817/969323029*710647^(5/12) 6835625993541146 a001 9227465/370248451*710647^(5/12) 6835625993541241 a001 1762289/70711162*710647^(5/12) 6835625993541395 a001 1346269/33385282*710647^(8/21) 6835625993541403 a001 1346269/1149851*7881196^(1/9) 6835625993541415 a001 1346269/1149851*312119004989^(1/15) 6835625993541415 a001 514229/3010349*4106118243^(1/6) 6835625993541415 a001 1346269/1149851*1568397607^(1/12) 6835625993541445 a001 514229/20633239*1860498^(7/18) 6835625993541662 a001 2178309/1149851*710647^(2/21) 6835625993541758 a001 514229/228826127*1860498^(5/9) 6835625993541887 a001 1346269/54018521*710647^(5/12) 6835625993541909 a001 514229/1860498*710647^(5/21) 6835625993542087 a001 514229/2537720636*1860498^(13/18) 6835625993542293 a001 2178309/370248451*710647^(11/21) 6835625993542416 a001 514229/28143753123*1860498^(8/9) 6835625993542539 a001 5702887/969323029*710647^(11/21) 6835625993542539 a001 832040/969323029*710647^(2/3) 6835625993542574 a001 196452/33391061*710647^(11/21) 6835625993542580 a001 39088169/6643838879*710647^(11/21) 6835625993542580 a001 102334155/17393796001*710647^(11/21) 6835625993542581 a001 66978574/11384387281*710647^(11/21) 6835625993542581 a001 701408733/119218851371*710647^(11/21) 6835625993542581 a001 1836311903/312119004989*710647^(11/21) 6835625993542581 a001 1201881744/204284540899*710647^(11/21) 6835625993542581 a001 12586269025/2139295485799*710647^(11/21) 6835625993542581 a001 32951280099/5600748293801*710647^(11/21) 6835625993542581 a001 1135099622/192933544679*710647^(11/21) 6835625993542581 a001 139583862445/23725150497407*710647^(11/21) 6835625993542581 a001 53316291173/9062201101803*710647^(11/21) 6835625993542581 a001 10182505537/1730726404001*710647^(11/21) 6835625993542581 a001 7778742049/1322157322203*710647^(11/21) 6835625993542581 a001 2971215073/505019158607*710647^(11/21) 6835625993542581 a001 567451585/96450076809*710647^(11/21) 6835625993542581 a001 433494437/73681302247*710647^(11/21) 6835625993542581 a001 165580141/28143753123*710647^(11/21) 6835625993542581 a001 31622993/5374978561*710647^(11/21) 6835625993542583 a001 24157817/4106118243*710647^(11/21) 6835625993542597 a001 9227465/1568397607*710647^(11/21) 6835625993542691 a001 1762289/299537289*710647^(11/21) 6835625993543335 a001 1346269/228826127*710647^(11/21) 6835625993544226 a001 2178309/2537720636*710647^(2/3) 6835625993544472 a001 5702887/6643838879*710647^(2/3) 6835625993544473 a001 832040/6643838879*710647^(17/21) 6835625993544508 a001 14930352/17393796001*710647^(2/3) 6835625993544513 a001 39088169/45537549124*710647^(2/3) 6835625993544514 a001 102334155/119218851371*710647^(2/3) 6835625993544514 a001 267914296/312119004989*710647^(2/3) 6835625993544514 a001 701408733/817138163596*710647^(2/3) 6835625993544514 a001 1836311903/2139295485799*710647^(2/3) 6835625993544514 a001 4807526976/5600748293801*710647^(2/3) 6835625993544514 a001 12586269025/14662949395604*710647^(2/3) 6835625993544514 a001 20365011074/23725150497407*710647^(2/3) 6835625993544514 a001 7778742049/9062201101803*710647^(2/3) 6835625993544514 a001 2971215073/3461452808002*710647^(2/3) 6835625993544514 a001 1134903170/1322157322203*710647^(2/3) 6835625993544514 a001 433494437/505019158607*710647^(2/3) 6835625993544514 a001 165580141/192900153618*710647^(2/3) 6835625993544515 a001 63245986/73681302247*710647^(2/3) 6835625993544517 a001 24157817/28143753123*710647^(2/3) 6835625993544530 a001 9227465/10749957122*710647^(2/3) 6835625993544624 a001 3524578/4106118243*710647^(2/3) 6835625993545268 a001 1346269/1568397607*710647^(2/3) 6835625993545775 a001 514229/12752043*710647^(8/21) 6835625993545831 a001 514229/1149851*45537549124^(1/9) 6835625993545838 a001 514229/1149851*12752043^(1/6) 6835625993545923 a001 832040/28143753123*710647^(11/12) 6835625993546160 a001 2178309/17393796001*710647^(17/21) 6835625993546316 a001 514229/20633239*710647^(5/12) 6835625993546406 a001 1597/12752044*710647^(17/21) 6835625993546407 a001 208010/11384387281*710647^(20/21) 6835625993546442 a001 14930352/119218851371*710647^(17/21) 6835625993546447 a001 39088169/312119004989*710647^(17/21) 6835625993546448 a001 102334155/817138163596*710647^(17/21) 6835625993546448 a001 267914296/2139295485799*710647^(17/21) 6835625993546448 a001 701408733/5600748293801*710647^(17/21) 6835625993546448 a001 1836311903/14662949395604*710647^(17/21) 6835625993546448 a001 2971215073/23725150497407*710647^(17/21) 6835625993546448 a001 1134903170/9062201101803*710647^(17/21) 6835625993546448 a001 433494437/3461452808002*710647^(17/21) 6835625993546448 a001 165580141/1322157322203*710647^(17/21) 6835625993546448 a001 63245986/505019158607*710647^(17/21) 6835625993546450 a001 24157817/192900153618*710647^(17/21) 6835625993546464 a001 9227465/73681302247*710647^(17/21) 6835625993546558 a001 3524578/28143753123*710647^(17/21) 6835625993547202 a001 1346269/10749957122*710647^(17/21) 6835625993547610 a001 311187/10525900321*710647^(11/12) 6835625993547750 a001 514229/87403803*710647^(11/21) 6835625993547856 a001 5702887/192900153618*710647^(11/12) 6835625993547892 a001 14930352/505019158607*710647^(11/12) 6835625993547897 a001 39088169/1322157322203*710647^(11/12) 6835625993547898 a001 6765/228826126*710647^(11/12) 6835625993547898 a001 267914296/9062201101803*710647^(11/12) 6835625993547898 a001 701408733/23725150497407*710647^(11/12) 6835625993547898 a001 433494437/14662949395604*710647^(11/12) 6835625993547898 a001 165580141/5600748293801*710647^(11/12) 6835625993547898 a001 63245986/2139295485799*710647^(11/12) 6835625993547900 a001 24157817/817138163596*710647^(11/12) 6835625993547914 a001 9227465/312119004989*710647^(11/12) 6835625993548008 a001 3524578/119218851371*710647^(11/12) 6835625993548093 a001 2178309/119218851371*710647^(20/21) 6835625993548339 a001 5702887/312119004989*710647^(20/21) 6835625993548375 a001 3732588/204284540899*710647^(20/21) 6835625993548381 a001 39088169/2139295485799*710647^(20/21) 6835625993548381 a001 102334155/5600748293801*710647^(20/21) 6835625993548381 a001 10946/599074579*710647^(20/21) 6835625993548381 a001 433494437/23725150497407*710647^(20/21) 6835625993548381 a001 165580141/9062201101803*710647^(20/21) 6835625993548382 a001 31622993/1730726404001*710647^(20/21) 6835625993548384 a001 24157817/1322157322203*710647^(20/21) 6835625993548398 a001 9227465/505019158607*710647^(20/21) 6835625993548491 a001 1762289/96450076809*710647^(20/21) 6835625993548652 a001 1346269/45537549124*710647^(11/12) 6835625993549136 a001 1346269/73681302247*710647^(20/21) 6835625993549684 a001 514229/599074578*710647^(2/3) 6835625993551618 a001 514229/4106118243*710647^(17/21) 6835625993553068 a001 514229/17393796001*710647^(11/12) 6835625993553552 a001 514229/28143753123*710647^(20/21) 6835625993553634 a001 317811/3010349*271443^(1/3) 6835625993555489 a001 1346269/439204*167761^(1/15) 6835625993557388 a001 196418/710647*20633239^(4/21) 6835625993557389 a001 317811/439204*20633239^(2/15) 6835625993557391 a001 317811/439204*17393796001^(2/21) 6835625993557391 a001 196418/710647*3461452808002^(1/9) 6835625993557391 a001 317811/439204*505019158607^(1/12) 6835625993557391 a001 196418/710647*28143753123^(2/15) 6835625993557391 a001 317811/439204*599074578^(1/9) 6835625993557391 a001 196418/710647*228826127^(1/6) 6835625993557451 a001 196418/710647*4870847^(5/24) 6835625993557830 a001 196418/710647*1860498^(2/9) 6835625993559647 a001 317811/439204*710647^(1/6) 6835625993560614 a001 196418/710647*710647^(5/21) 6835625993564550 a001 208010/1970299*271443^(1/3) 6835625993566143 a001 2178309/20633239*271443^(1/3) 6835625993566375 a001 5702887/54018521*271443^(1/3) 6835625993566409 a001 3732588/35355581*271443^(1/3) 6835625993566414 a001 39088169/370248451*271443^(1/3) 6835625993566415 a001 102334155/969323029*271443^(1/3) 6835625993566415 a001 66978574/634430159*271443^(1/3) 6835625993566415 a001 701408733/6643838879*271443^(1/3) 6835625993566415 a001 1836311903/17393796001*271443^(1/3) 6835625993566415 a001 1201881744/11384387281*271443^(1/3) 6835625993566415 a001 12586269025/119218851371*271443^(1/3) 6835625993566415 a001 32951280099/312119004989*271443^(1/3) 6835625993566415 a001 21566892818/204284540899*271443^(1/3) 6835625993566415 a001 225851433717/2139295485799*271443^(1/3) 6835625993566415 a001 182717648081/1730726404001*271443^(1/3) 6835625993566415 a001 139583862445/1322157322203*271443^(1/3) 6835625993566415 a001 53316291173/505019158607*271443^(1/3) 6835625993566415 a001 10182505537/96450076809*271443^(1/3) 6835625993566415 a001 7778742049/73681302247*271443^(1/3) 6835625993566415 a001 2971215073/28143753123*271443^(1/3) 6835625993566415 a001 567451585/5374978561*271443^(1/3) 6835625993566415 a001 433494437/4106118243*271443^(1/3) 6835625993566415 a001 165580141/1568397607*271443^(1/3) 6835625993566415 a001 31622993/299537289*271443^(1/3) 6835625993566417 a001 24157817/228826127*271443^(1/3) 6835625993566430 a001 9227465/87403803*271443^(1/3) 6835625993566519 a001 1762289/16692641*271443^(1/3) 6835625993567127 a001 1346269/12752043*271443^(1/3) 6835625993567875 a001 75025/370248451*167761^(13/15) 6835625993568952 a001 98209/930249*141422324^(2/9) 6835625993568952 a001 208010/109801*23725150497407^(1/24) 6835625993568952 a001 98209/930249*73681302247^(1/6) 6835625993568952 a001 208010/109801*10749957122^(1/18) 6835625993568952 a001 208010/109801*228826127^(1/15) 6835625993568976 a001 208010/109801*4870847^(1/12) 6835625993569958 a001 196418/3010349*1149851^(1/3) 6835625993570241 a001 208010/109801*710647^(2/21) 6835625993570424 a001 98209/299537289*3010349^(2/3) 6835625993570639 a001 196418/4870847*23725150497407^(1/6) 6835625993570639 a001 196418/4870847*10749957122^(2/9) 6835625993570639 a001 196418/4870847*228826127^(4/15) 6835625993570735 a001 196418/4870847*4870847^(1/3) 6835625993570841 a001 196418/6643838879*7881196^(7/9) 6835625993570872 a001 98209/16692641*7881196^(4/9) 6835625993570885 a001 196418/12752043*817138163596^(2/9) 6835625993570885 a001 196418/12752043*87403803^(1/3) 6835625993570912 a001 98209/96450076809*20633239^(14/15) 6835625993570912 a001 196418/119218851371*20633239^(19/21) 6835625993570914 a001 98209/5374978561*20633239^(16/21) 6835625993570915 a001 196418/6643838879*20633239^(11/15) 6835625993570917 a001 196418/969323029*20633239^(13/21) 6835625993570918 a001 196418/228826127*20633239^(8/15) 6835625993570918 a001 196418/87403803*20633239^(10/21) 6835625993570921 a001 98209/16692641*312119004989^(4/15) 6835625993570921 a001 98209/16692641*1568397607^(1/3) 6835625993570925 a001 196418/4106118243*54018521^(2/3) 6835625993570926 a001 196418/87403803*3461452808002^(5/18) 6835625993570926 a001 196418/87403803*28143753123^(1/3) 6835625993570926 a001 196418/87403803*228826127^(5/12) 6835625993570926 a001 196418/505019158607*141422324^(8/9) 6835625993570927 a001 196418/969323029*141422324^(5/9) 6835625993570927 a001 196418/228826127*17393796001^(8/21) 6835625993570927 a001 196418/228826127*23725150497407^(7/24) 6835625993570927 a001 196418/228826127*505019158607^(1/3) 6835625993570927 a001 196418/228826127*10749957122^(7/18) 6835625993570927 a001 196418/228826127*599074578^(4/9) 6835625993570927 a001 196418/228826127*228826127^(7/15) 6835625993570927 a001 98209/299537289*9062201101803^(1/3) 6835625993570927 a001 196418/28143753123*969323029^(2/3) 6835625993570927 a001 196418/1568397607*45537549124^(4/9) 6835625993570927 a001 98209/5374978561*23725150497407^(5/12) 6835625993570927 a001 98209/5374978561*505019158607^(10/21) 6835625993570927 a001 98209/5374978561*28143753123^(8/15) 6835625993570927 a001 98209/5374978561*10749957122^(5/9) 6835625993570927 a001 196418/5600748293801*17393796001^(17/21) 6835625993570927 a001 98209/96450076809*17393796001^(2/3) 6835625993570927 a001 196418/5600748293801*45537549124^(7/9) 6835625993570927 a001 98209/96450076809*505019158607^(7/12) 6835625993570927 a001 196418/1322157322203*312119004989^(2/3) 6835625993570927 a001 196418/505019158607*23725150497407^(13/24) 6835625993570927 a001 196418/1322157322203*3461452808002^(11/18) 6835625993570927 a001 196418/23725150497407*23725150497407^(2/3) 6835625993570927 a001 98209/1730726404001*1322157322203^(2/3) 6835625993570927 a001 196418/5600748293801*505019158607^(17/24) 6835625993570927 a001 196418/23725150497407*505019158607^(16/21) 6835625993570927 a001 196418/119218851371*817138163596^(5/9) 6835625993570927 a001 196418/505019158607*73681302247^(2/3) 6835625993570927 a001 196418/1322157322203*28143753123^(11/15) 6835625993570927 a001 98209/7331474697802*28143753123^(5/6) 6835625993570927 a001 196418/505019158607*10749957122^(13/18) 6835625993570927 a001 196418/23725150497407*10749957122^(8/9) 6835625993570927 a001 196418/6643838879*17393796001^(11/21) 6835625993570927 a001 196418/6643838879*312119004989^(7/15) 6835625993570927 a001 196418/6643838879*505019158607^(11/24) 6835625993570927 a001 196418/73681302247*4106118243^(2/3) 6835625993570927 a001 196418/6643838879*1568397607^(7/12) 6835625993570927 a001 196418/1322157322203*1568397607^(5/6) 6835625993570927 a001 196418/969323029*73681302247^(5/12) 6835625993570927 a001 196418/6643838879*599074578^(11/18) 6835625993570927 a001 98209/96450076809*599074578^(7/9) 6835625993570927 a001 196418/5600748293801*599074578^(17/18) 6835625993570927 a001 196418/370248451*2139295485799^(1/3) 6835625993570927 a001 196418/969323029*228826127^(13/24) 6835625993570927 a001 98209/5374978561*228826127^(2/3) 6835625993570927 a001 196418/119218851371*228826127^(19/24) 6835625993570927 a001 196418/505019158607*228826127^(13/15) 6835625993570927 a001 196418/1322157322203*228826127^(11/12) 6835625993570927 a001 98209/70711162*119218851371^(1/3) 6835625993570927 a001 196418/119218851371*87403803^(5/6) 6835625993570929 a001 196418/54018521*6643838879^(1/3) 6835625993570943 a001 196418/20633239*370248451^(1/3) 6835625993570955 a001 196418/1568397607*12752043^(2/3) 6835625993571031 a001 98209/3940598*20633239^(1/3) 6835625993571037 a001 98209/3940598*17393796001^(5/21) 6835625993571037 a001 98209/3940598*505019158607^(5/24) 6835625993571037 a001 98209/3940598*599074578^(5/18) 6835625993571037 a001 98209/3940598*228826127^(7/24) 6835625993571053 a001 98209/16692641*4870847^(11/24) 6835625993571095 a001 196418/228826127*4870847^(7/12) 6835625993571131 a001 196418/1568397607*4870847^(17/24) 6835625993571167 a001 98209/5374978561*4870847^(5/6) 6835625993571203 a001 196418/73681302247*4870847^(23/24) 6835625993571297 a001 514229/4870847*271443^(1/3) 6835625993571680 a001 1346269/439204*20633239^(1/21) 6835625993571681 a001 196418/3010349*1322157322203^(1/6) 6835625993571681 a001 1346269/439204*228826127^(1/24) 6835625993571791 a001 1346269/439204*1860498^(1/18) 6835625993571805 a001 98209/3940598*1860498^(7/18) 6835625993572023 a001 196418/87403803*1860498^(5/9) 6835625993572353 a001 196418/969323029*1860498^(13/18) 6835625993572682 a001 98209/5374978561*1860498^(8/9) 6835625993575543 a001 1346269/271443*39603^(1/33) 6835625993575795 a001 196418/4870847*710647^(8/21) 6835625993576085 a001 514229/439204*7881196^(1/9) 6835625993576097 a001 514229/439204*312119004989^(1/15) 6835625993576097 a001 196418/1149851*4106118243^(1/6) 6835625993576097 a001 514229/439204*1568397607^(1/12) 6835625993576676 a001 98209/3940598*710647^(5/12) 6835625993578011 a001 98209/16692641*710647^(11/21) 6835625993579950 a001 196418/228826127*710647^(2/3) 6835625993581884 a001 196418/1568397607*710647^(17/21) 6835625993583334 a001 196418/6643838879*710647^(11/12) 6835625993583818 a001 98209/5374978561*710647^(20/21) 6835625993593362 a001 1346269/710647*103682^(1/9) 6835625993599266 a001 317811/1568397607*271443^(5/6) 6835625993599876 a001 98209/930249*271443^(1/3) 6835625993604279 a001 1762289/930249*103682^(1/9) 6835625993605871 a001 9227465/4870847*103682^(1/9) 6835625993606104 a001 24157817/12752043*103682^(1/9) 6835625993606138 a001 31622993/16692641*103682^(1/9) 6835625993606143 a001 165580141/87403803*103682^(1/9) 6835625993606143 a001 433494437/228826127*103682^(1/9) 6835625993606143 a001 567451585/299537289*103682^(1/9) 6835625993606143 a001 2971215073/1568397607*103682^(1/9) 6835625993606143 a001 7778742049/4106118243*103682^(1/9) 6835625993606143 a001 10182505537/5374978561*103682^(1/9) 6835625993606143 a001 53316291173/28143753123*103682^(1/9) 6835625993606143 a001 139583862445/73681302247*103682^(1/9) 6835625993606143 a001 182717648081/96450076809*103682^(1/9) 6835625993606143 a001 956722026041/505019158607*103682^(1/9) 6835625993606143 a001 10610209857723/5600748293801*103682^(1/9) 6835625993606143 a001 591286729879/312119004989*103682^(1/9) 6835625993606143 a001 225851433717/119218851371*103682^(1/9) 6835625993606143 a001 21566892818/11384387281*103682^(1/9) 6835625993606143 a001 32951280099/17393796001*103682^(1/9) 6835625993606143 a001 12586269025/6643838879*103682^(1/9) 6835625993606143 a001 1201881744/634430159*103682^(1/9) 6835625993606143 a001 1836311903/969323029*103682^(1/9) 6835625993606143 a001 701408733/370248451*103682^(1/9) 6835625993606144 a001 66978574/35355581*103682^(1/9) 6835625993606146 a001 102334155/54018521*103682^(1/9) 6835625993606159 a001 39088169/20633239*103682^(1/9) 6835625993606247 a001 3732588/1970299*103682^(1/9) 6835625993606363 a001 98209/219602*45537549124^(1/9) 6835625993606370 a001 98209/219602*12752043^(1/6) 6835625993606856 a001 5702887/3010349*103682^(1/9) 6835625993610827 a001 832040/4106118243*271443^(5/6) 6835625993611025 a001 2178309/1149851*103682^(1/9) 6835625993612513 a001 987/4870846*271443^(5/6) 6835625993612759 a001 5702887/28143753123*271443^(5/6) 6835625993612795 a001 14930352/73681302247*271443^(5/6) 6835625993612800 a001 39088169/192900153618*271443^(5/6) 6835625993612801 a001 102334155/505019158607*271443^(5/6) 6835625993612801 a001 267914296/1322157322203*271443^(5/6) 6835625993612801 a001 701408733/3461452808002*271443^(5/6) 6835625993612801 a001 1836311903/9062201101803*271443^(5/6) 6835625993612801 a001 4807526976/23725150497407*271443^(5/6) 6835625993612801 a001 2971215073/14662949395604*271443^(5/6) 6835625993612801 a001 1134903170/5600748293801*271443^(5/6) 6835625993612801 a001 433494437/2139295485799*271443^(5/6) 6835625993612801 a001 165580141/817138163596*271443^(5/6) 6835625993612802 a001 63245986/312119004989*271443^(5/6) 6835625993612804 a001 24157817/119218851371*271443^(5/6) 6835625993612817 a001 9227465/45537549124*271443^(5/6) 6835625993612911 a001 3524578/17393796001*271443^(5/6) 6835625993613556 a001 1346269/6643838879*271443^(5/6) 6835625993616445 a001 75025/33385282*167761^(2/3) 6835625993617971 a001 514229/2537720636*271443^(5/6) 6835625993620832 a001 75025/271443*167761^(4/15) 6835625993639605 a001 208010/109801*103682^(1/9) 6835625993648237 a001 196418/969323029*271443^(5/6) 6835625993654786 a001 121393/439204*103682^(5/18) 6835625993665782 a001 75025/3010349*167761^(7/15) 6835625993685597 a001 75025/271443*20633239^(4/21) 6835625993685598 a001 121393/167761*20633239^(2/15) 6835625993685600 a001 75025/271443*3461452808002^(1/9) 6835625993685600 a001 75025/271443*28143753123^(2/15) 6835625993685600 a001 121393/167761*17393796001^(2/21) 6835625993685600 a001 121393/167761*505019158607^(1/12) 6835625993685600 a001 121393/167761*599074578^(1/9) 6835625993685600 a001 75025/271443*228826127^(1/6) 6835625993685660 a001 75025/271443*4870847^(5/24) 6835625993686039 a001 75025/271443*1860498^(2/9) 6835625993687856 a001 121393/167761*710647^(1/6) 6835625993688823 a001 75025/271443*710647^(5/21) 6835625993702710 a001 2178309/439204*39603^(1/33) 6835625993703757 a001 317811/1149851*103682^(5/18) 6835625993710902 a001 832040/3010349*103682^(5/18) 6835625993711944 a001 2178309/7881196*103682^(5/18) 6835625993712096 a001 5702887/20633239*103682^(5/18) 6835625993712119 a001 14930352/54018521*103682^(5/18) 6835625993712122 a001 39088169/141422324*103682^(5/18) 6835625993712122 a001 102334155/370248451*103682^(5/18) 6835625993712122 a001 267914296/969323029*103682^(5/18) 6835625993712122 a001 701408733/2537720636*103682^(5/18) 6835625993712122 a001 1836311903/6643838879*103682^(5/18) 6835625993712122 a001 4807526976/17393796001*103682^(5/18) 6835625993712122 a001 12586269025/45537549124*103682^(5/18) 6835625993712122 a001 32951280099/119218851371*103682^(5/18) 6835625993712122 a001 86267571272/312119004989*103682^(5/18) 6835625993712122 a001 225851433717/817138163596*103682^(5/18) 6835625993712122 a001 1548008755920/5600748293801*103682^(5/18) 6835625993712122 a001 139583862445/505019158607*103682^(5/18) 6835625993712122 a001 53316291173/192900153618*103682^(5/18) 6835625993712122 a001 20365011074/73681302247*103682^(5/18) 6835625993712122 a001 7778742049/28143753123*103682^(5/18) 6835625993712122 a001 2971215073/10749957122*103682^(5/18) 6835625993712122 a001 1134903170/4106118243*103682^(5/18) 6835625993712122 a001 433494437/1568397607*103682^(5/18) 6835625993712123 a001 165580141/599074578*103682^(5/18) 6835625993712123 a001 63245986/228826127*103682^(5/18) 6835625993712124 a001 24157817/87403803*103682^(5/18) 6835625993712132 a001 9227465/33385282*103682^(5/18) 6835625993712190 a001 3524578/12752043*103682^(5/18) 6835625993712589 a001 1346269/4870847*103682^(5/18) 6835625993715318 a001 514229/1860498*103682^(5/18) 6835625993726083 a001 121393/3010349*103682^(4/9) 6835625993734023 a001 196418/710647*103682^(5/18) 6835625993764838 a001 75025/710647*141422324^(2/9) 6835625993764838 a001 75025/710647*73681302247^(1/6) 6835625993764838 a001 317811/167761*23725150497407^(1/24) 6835625993764838 a001 317811/167761*10749957122^(1/18) 6835625993764838 a001 317811/167761*228826127^(1/15) 6835625993764862 a001 317811/167761*4870847^(1/12) 6835625993766127 a001 317811/167761*710647^(2/21) 6835625993767351 a001 514229/167761*167761^(1/15) 6835625993776398 a001 75025/1860498*23725150497407^(1/6) 6835625993776398 a001 75025/1860498*10749957122^(2/9) 6835625993776398 a001 75025/1860498*228826127^(4/15) 6835625993776494 a001 75025/1860498*4870847^(1/3) 6835625993777870 a001 75025/228826127*3010349^(2/3) 6835625993778085 a001 75025/4870847*817138163596^(2/9) 6835625993778085 a001 75025/4870847*87403803^(1/3) 6835625993778282 a001 75025/12752043*7881196^(4/9) 6835625993778288 a001 75025/2537720636*7881196^(7/9) 6835625993778331 a001 75025/12752043*312119004989^(4/15) 6835625993778331 a001 75025/12752043*1568397607^(1/3) 6835625993778358 a001 75025/73681302247*20633239^(14/15) 6835625993778359 a001 75025/45537549124*20633239^(19/21) 6835625993778359 a001 75025/33385282*20633239^(10/21) 6835625993778361 a001 75025/4106118243*20633239^(16/21) 6835625993778361 a001 75025/2537720636*20633239^(11/15) 6835625993778363 a001 75025/370248451*20633239^(13/21) 6835625993778364 a001 75025/87403803*20633239^(8/15) 6835625993778367 a001 75025/33385282*3461452808002^(5/18) 6835625993778367 a001 75025/33385282*28143753123^(1/3) 6835625993778367 a001 75025/33385282*228826127^(5/12) 6835625993778372 a001 75025/1568397607*54018521^(2/3) 6835625993778372 a001 75025/87403803*17393796001^(8/21) 6835625993778372 a001 75025/87403803*23725150497407^(7/24) 6835625993778372 a001 75025/87403803*505019158607^(1/3) 6835625993778372 a001 75025/87403803*10749957122^(7/18) 6835625993778372 a001 75025/87403803*599074578^(4/9) 6835625993778372 a001 75025/87403803*228826127^(7/15) 6835625993778373 a001 75025/192900153618*141422324^(8/9) 6835625993778373 a001 75025/370248451*141422324^(5/9) 6835625993778373 a001 75025/228826127*9062201101803^(1/3) 6835625993778373 a001 75025/599074578*45537549124^(4/9) 6835625993778373 a001 75025/10749957122*969323029^(2/3) 6835625993778373 a001 75025/4106118243*23725150497407^(5/12) 6835625993778373 a001 75025/4106118243*505019158607^(10/21) 6835625993778373 a001 75025/4106118243*28143753123^(8/15) 6835625993778373 a001 75025/4106118243*10749957122^(5/9) 6835625993778373 a001 75025/2139295485799*17393796001^(17/21) 6835625993778373 a001 75025/73681302247*17393796001^(2/3) 6835625993778373 a001 75025/2139295485799*45537549124^(7/9) 6835625993778373 a001 75025/73681302247*505019158607^(7/12) 6835625993778373 a001 75025/192900153618*23725150497407^(13/24) 6835625993778373 a001 75025/192900153618*505019158607^(13/21) 6835625993778373 a001 75025/505019158607*312119004989^(2/3) 6835625993778373 a001 75025/1322157322203*1322157322203^(2/3) 6835625993778373 a001 75025/3461452808002*5600748293801^(2/3) 6835625993778373 a001 75025/2139295485799*505019158607^(17/24) 6835625993778373 a001 75025/192900153618*73681302247^(2/3) 6835625993778373 a001 75025/45537549124*817138163596^(5/9) 6835625993778373 a001 75025/505019158607*28143753123^(11/15) 6835625993778373 a001 75025/5600748293801*28143753123^(5/6) 6835625993778373 a001 75025/192900153618*10749957122^(13/18) 6835625993778373 a001 75025/9062201101803*10749957122^(8/9) 6835625993778373 a001 75025/28143753123*4106118243^(2/3) 6835625993778373 a001 75025/2537720636*17393796001^(11/21) 6835625993778373 a001 75025/2537720636*312119004989^(7/15) 6835625993778373 a001 75025/2537720636*505019158607^(11/24) 6835625993778373 a001 75025/505019158607*1568397607^(5/6) 6835625993778373 a001 75025/2537720636*1568397607^(7/12) 6835625993778373 a001 75025/2537720636*599074578^(11/18) 6835625993778373 a001 75025/73681302247*599074578^(7/9) 6835625993778373 a001 75025/2139295485799*599074578^(17/18) 6835625993778373 a001 75025/370248451*73681302247^(5/12) 6835625993778373 a001 75025/4106118243*228826127^(2/3) 6835625993778373 a001 75025/45537549124*228826127^(19/24) 6835625993778373 a001 75025/192900153618*228826127^(13/15) 6835625993778373 a001 75025/505019158607*228826127^(11/12) 6835625993778373 a001 75025/370248451*228826127^(13/24) 6835625993778373 a001 75025/141422324*2139295485799^(1/3) 6835625993778374 a001 75025/45537549124*87403803^(5/6) 6835625993778375 a001 75025/54018521*119218851371^(1/3) 6835625993778389 a001 75025/20633239*6643838879^(1/3) 6835625993778401 a001 75025/599074578*12752043^(2/3) 6835625993778463 a001 75025/12752043*4870847^(11/24) 6835625993778483 a001 75025/7881196*370248451^(1/3) 6835625993778540 a001 75025/87403803*4870847^(7/12) 6835625993778577 a001 75025/599074578*4870847^(17/24) 6835625993778613 a001 75025/4106118243*4870847^(5/6) 6835625993778649 a001 75025/28143753123*4870847^(23/24) 6835625993779122 a001 75025/3010349*20633239^(1/3) 6835625993779127 a001 75025/3010349*17393796001^(5/21) 6835625993779127 a001 75025/3010349*505019158607^(5/24) 6835625993779127 a001 75025/3010349*599074578^(5/18) 6835625993779127 a001 75025/3010349*228826127^(7/24) 6835625993779464 a001 75025/33385282*1860498^(5/9) 6835625993779799 a001 75025/370248451*1860498^(13/18) 6835625993779895 a001 75025/3010349*1860498^(7/18) 6835625993780129 a001 75025/4106118243*1860498^(8/9) 6835625993781555 a001 75025/1860498*710647^(8/21) 6835625993781820 a001 75025/1149851*1149851^(1/3) 6835625993783542 a001 514229/167761*20633239^(1/21) 6835625993783543 a001 75025/1149851*1322157322203^(1/6) 6835625993783543 a001 514229/167761*228826127^(1/24) 6835625993783653 a001 514229/167761*1860498^(1/18) 6835625993784767 a001 75025/3010349*710647^(5/12) 6835625993785421 a001 75025/12752043*710647^(11/21) 6835625993787396 a001 75025/87403803*710647^(2/3) 6835625993789330 a001 75025/599074578*710647^(17/21) 6835625993790781 a001 75025/2537720636*710647^(11/12) 6835625993791264 a001 75025/4106118243*710647^(20/21) 6835625993795762 a001 75025/710647*271443^(1/3) 6835625993804676 a001 317811/7881196*103682^(4/9) 6835625993813797 a001 196418/167761*7881196^(1/9) 6835625993813809 a001 196418/167761*312119004989^(1/15) 6835625993813809 a001 75025/439204*4106118243^(1/6) 6835625993813809 a001 196418/167761*1568397607^(1/12) 6835625993816143 a001 75640/1875749*103682^(4/9) 6835625993817816 a001 2178309/54018521*103682^(4/9) 6835625993818060 a001 5702887/141422324*103682^(4/9) 6835625993818096 a001 14930352/370248451*103682^(4/9) 6835625993818101 a001 39088169/969323029*103682^(4/9) 6835625993818101 a001 9303105/230701876*103682^(4/9) 6835625993818102 a001 267914296/6643838879*103682^(4/9) 6835625993818102 a001 701408733/17393796001*103682^(4/9) 6835625993818102 a001 1836311903/45537549124*103682^(4/9) 6835625993818102 a001 4807526976/119218851371*103682^(4/9) 6835625993818102 a001 1144206275/28374454999*103682^(4/9) 6835625993818102 a001 32951280099/817138163596*103682^(4/9) 6835625993818102 a001 86267571272/2139295485799*103682^(4/9) 6835625993818102 a001 225851433717/5600748293801*103682^(4/9) 6835625993818102 a001 591286729879/14662949395604*103682^(4/9) 6835625993818102 a001 365435296162/9062201101803*103682^(4/9) 6835625993818102 a001 139583862445/3461452808002*103682^(4/9) 6835625993818102 a001 53316291173/1322157322203*103682^(4/9) 6835625993818102 a001 20365011074/505019158607*103682^(4/9) 6835625993818102 a001 7778742049/192900153618*103682^(4/9) 6835625993818102 a001 2971215073/73681302247*103682^(4/9) 6835625993818102 a001 1134903170/28143753123*103682^(4/9) 6835625993818102 a001 433494437/10749957122*103682^(4/9) 6835625993818102 a001 165580141/4106118243*103682^(4/9) 6835625993818102 a001 63245986/1568397607*103682^(4/9) 6835625993818104 a001 24157817/599074578*103682^(4/9) 6835625993818118 a001 9227465/228826127*103682^(4/9) 6835625993818211 a001 3524578/87403803*103682^(4/9) 6835625993818850 a001 1346269/33385282*103682^(4/9) 6835625993823230 a001 514229/12752043*103682^(4/9) 6835625993831324 a001 121393/20633239*103682^(11/18) 6835625993835491 a001 317811/167761*103682^(1/9) 6835625993853250 a001 196418/4870847*103682^(4/9) 6835625993855684 a001 75025/370248451*271443^(5/6) 6835625993862232 a001 75025/271443*103682^(5/18) 6835625993900538 a001 514229/103682*15127^(1/30) 6835625993908470 a001 75640/15251*39603^(1/33) 6835625993910548 a001 317811/54018521*103682^(11/18) 6835625993922106 a001 208010/35355581*103682^(11/18) 6835625993923793 a001 2178309/370248451*103682^(11/18) 6835625993924039 a001 5702887/969323029*103682^(11/18) 6835625993924075 a001 196452/33391061*103682^(11/18) 6835625993924080 a001 39088169/6643838879*103682^(11/18) 6835625993924081 a001 102334155/17393796001*103682^(11/18) 6835625993924081 a001 66978574/11384387281*103682^(11/18) 6835625993924081 a001 701408733/119218851371*103682^(11/18) 6835625993924081 a001 1836311903/312119004989*103682^(11/18) 6835625993924081 a001 1201881744/204284540899*103682^(11/18) 6835625993924081 a001 12586269025/2139295485799*103682^(11/18) 6835625993924081 a001 32951280099/5600748293801*103682^(11/18) 6835625993924081 a001 1135099622/192933544679*103682^(11/18) 6835625993924081 a001 139583862445/23725150497407*103682^(11/18) 6835625993924081 a001 53316291173/9062201101803*103682^(11/18) 6835625993924081 a001 10182505537/1730726404001*103682^(11/18) 6835625993924081 a001 7778742049/1322157322203*103682^(11/18) 6835625993924081 a001 2971215073/505019158607*103682^(11/18) 6835625993924081 a001 567451585/96450076809*103682^(11/18) 6835625993924081 a001 433494437/73681302247*103682^(11/18) 6835625993924081 a001 165580141/28143753123*103682^(11/18) 6835625993924081 a001 31622993/5374978561*103682^(11/18) 6835625993924083 a001 24157817/4106118243*103682^(11/18) 6835625993924097 a001 9227465/1568397607*103682^(11/18) 6835625993924191 a001 1762289/299537289*103682^(11/18) 6835625993924835 a001 1346269/228826127*103682^(11/18) 6835625993929250 a001 514229/87403803*103682^(11/18) 6835625993937287 a001 233/271444*103682^(7/9) 6835625993959511 a001 98209/16692641*103682^(11/18) 6835625993976173 a001 514229/271443*39603^(4/33) 6835625994016525 a001 317811/370248451*103682^(7/9) 6835625994017905 a001 15456/13201*15127^(11/60) 6835625994021256 a001 75025/167761*45537549124^(1/9) 6835625994021263 a001 75025/167761*12752043^(1/6) 6835625994028085 a001 832040/969323029*103682^(7/9) 6835625994029772 a001 2178309/2537720636*103682^(7/9) 6835625994030018 a001 5702887/6643838879*103682^(7/9) 6835625994030054 a001 14930352/17393796001*103682^(7/9) 6835625994030059 a001 39088169/45537549124*103682^(7/9) 6835625994030060 a001 102334155/119218851371*103682^(7/9) 6835625994030060 a001 267914296/312119004989*103682^(7/9) 6835625994030060 a001 701408733/817138163596*103682^(7/9) 6835625994030060 a001 1836311903/2139295485799*103682^(7/9) 6835625994030060 a001 4807526976/5600748293801*103682^(7/9) 6835625994030060 a001 12586269025/14662949395604*103682^(7/9) 6835625994030060 a001 20365011074/23725150497407*103682^(7/9) 6835625994030060 a001 7778742049/9062201101803*103682^(7/9) 6835625994030060 a001 2971215073/3461452808002*103682^(7/9) 6835625994030060 a001 1134903170/1322157322203*103682^(7/9) 6835625994030060 a001 433494437/505019158607*103682^(7/9) 6835625994030060 a001 165580141/192900153618*103682^(7/9) 6835625994030060 a001 63245986/73681302247*103682^(7/9) 6835625994030062 a001 24157817/28143753123*103682^(7/9) 6835625994030076 a001 9227465/10749957122*103682^(7/9) 6835625994030170 a001 3524578/4106118243*103682^(7/9) 6835625994030814 a001 1346269/1568397607*103682^(7/9) 6835625994035230 a001 514229/599074578*103682^(7/9) 6835625994043266 a001 121393/969323029*103682^(17/18) 6835625994050994 a001 1346269/710647*39603^(4/33) 6835625994059009 a001 75025/1860498*103682^(4/9) 6835625994065496 a001 196418/228826127*103682^(7/9) 6835625994066997 a001 75025/103682*39603^(7/33) 6835625994068657 a001 2178309/1149851*39603^(4/33) 6835625994097237 a001 208010/109801*39603^(4/33) 6835625994122504 a001 317811/2537720636*103682^(17/18) 6835625994134064 a001 832040/6643838879*103682^(17/18) 6835625994135751 a001 2178309/17393796001*103682^(17/18) 6835625994135997 a001 1597/12752044*103682^(17/18) 6835625994136033 a001 14930352/119218851371*103682^(17/18) 6835625994136038 a001 39088169/312119004989*103682^(17/18) 6835625994136039 a001 102334155/817138163596*103682^(17/18) 6835625994136039 a001 267914296/2139295485799*103682^(17/18) 6835625994136039 a001 701408733/5600748293801*103682^(17/18) 6835625994136039 a001 1836311903/14662949395604*103682^(17/18) 6835625994136039 a001 2971215073/23725150497407*103682^(17/18) 6835625994136039 a001 1134903170/9062201101803*103682^(17/18) 6835625994136039 a001 433494437/3461452808002*103682^(17/18) 6835625994136039 a001 165580141/1322157322203*103682^(17/18) 6835625994136039 a001 63245986/505019158607*103682^(17/18) 6835625994136041 a001 24157817/192900153618*103682^(17/18) 6835625994136055 a001 9227465/73681302247*103682^(17/18) 6835625994136149 a001 3524578/28143753123*103682^(17/18) 6835625994136793 a001 1346269/10749957122*103682^(17/18) 6835625994141209 a001 514229/4106118243*103682^(17/18) 6835625994155574 a001 105937/90481*39603^(1/6) 6835625994166921 a001 75025/12752043*103682^(11/18) 6835625994171475 a001 196418/1568397607*103682^(17/18) 6835625994246372 a001 832040/710647*39603^(1/6) 6835625994259619 a001 726103/620166*39603^(1/6) 6835625994261552 a001 5702887/4870847*39603^(1/6) 6835625994261834 a001 4976784/4250681*39603^(1/6) 6835625994261875 a001 39088169/33385282*39603^(1/6) 6835625994261881 a001 34111385/29134601*39603^(1/6) 6835625994261882 a001 267914296/228826127*39603^(1/6) 6835625994261882 a001 233802911/199691526*39603^(1/6) 6835625994261882 a001 1836311903/1568397607*39603^(1/6) 6835625994261882 a001 1602508992/1368706081*39603^(1/6) 6835625994261882 a001 12586269025/10749957122*39603^(1/6) 6835625994261882 a001 10983760033/9381251041*39603^(1/6) 6835625994261882 a001 86267571272/73681302247*39603^(1/6) 6835625994261882 a001 75283811239/64300051206*39603^(1/6) 6835625994261882 a001 2504730781961/2139295485799*39603^(1/6) 6835625994261882 a001 365435296162/312119004989*39603^(1/6) 6835625994261882 a001 139583862445/119218851371*39603^(1/6) 6835625994261882 a001 53316291173/45537549124*39603^(1/6) 6835625994261882 a001 20365011074/17393796001*39603^(1/6) 6835625994261882 a001 7778742049/6643838879*39603^(1/6) 6835625994261882 a001 2971215073/2537720636*39603^(1/6) 6835625994261882 a001 1134903170/969323029*39603^(1/6) 6835625994261882 a001 433494437/370248451*39603^(1/6) 6835625994261883 a001 165580141/141422324*39603^(1/6) 6835625994261885 a001 63245986/54018521*39603^(1/6) 6835625994261901 a001 24157817/20633239*39603^(1/6) 6835625994262008 a001 9227465/7881196*39603^(1/6) 6835625994262747 a001 3524578/3010349*39603^(1/6) 6835625994267807 a001 1346269/1149851*39603^(1/6) 6835625994272941 a001 75025/87403803*103682^(7/9) 6835625994293123 a001 317811/167761*39603^(4/33) 6835625994302488 a001 514229/439204*39603^(1/6) 6835625994378921 a001 75025/599074578*103682^(17/18) 6835625994402652 a001 196418/271443*39603^(7/33) 6835625994439225 a001 1346269/271443*15127^(1/30) 6835625994451624 a001 514229/710647*39603^(7/33) 6835625994458769 a001 1346269/1860498*39603^(7/33) 6835625994460455 a001 2178309/3010349*39603^(7/33) 6835625994463184 a001 832040/1149851*39603^(7/33) 6835625994463211 a001 46368/167761*39603^(10/33) 6835625994481890 a001 317811/439204*39603^(7/33) 6835625994499589 a001 28657/103682*167761^(4/15) 6835625994540201 a001 196418/167761*39603^(1/6) 6835625994564354 a001 28657/103682*20633239^(4/21) 6835625994564355 a001 46368/64079*20633239^(2/15) 6835625994564358 a001 28657/103682*3461452808002^(1/9) 6835625994564358 a001 28657/103682*28143753123^(2/15) 6835625994564358 a001 46368/64079*17393796001^(2/21) 6835625994564358 a001 46368/64079*505019158607^(1/12) 6835625994564358 a001 46368/64079*599074578^(1/9) 6835625994564358 a001 28657/103682*228826127^(1/6) 6835625994564418 a001 28657/103682*4870847^(5/24) 6835625994564796 a001 28657/103682*1860498^(2/9) 6835625994566391 a001 2178309/439204*15127^(1/30) 6835625994566613 a001 46368/64079*710647^(1/6) 6835625994567580 a001 28657/103682*710647^(5/21) 6835625994610099 a001 121393/167761*39603^(7/33) 6835625994651978 a001 11592/109801*39603^(13/33) 6835625994740989 a001 28657/103682*103682^(5/18) 6835625994772151 a001 75640/15251*15127^(1/30) 6835625994798866 a001 121393/439204*39603^(10/33) 6835625994803261 a001 10946/12752043*24476^(8/9) 6835625994847837 a001 317811/1149851*39603^(10/33) 6835625994854982 a001 832040/3010349*39603^(10/33) 6835625994856669 a001 1346269/4870847*39603^(10/33) 6835625994859398 a001 514229/1860498*39603^(10/33) 6835625994878103 a001 196418/710647*39603^(10/33) 6835625994888201 a001 28657/167761*64079^(1/3) 6835625994907262 a001 4181/4870847*9349^(56/57) 6835625994989734 a001 28657/141422324*167761^(13/15) 6835625995006312 a001 75025/271443*39603^(10/33) 6835625995017925 a001 46368/1149851*39603^(16/33) 6835625995038269 a001 28657/12752043*167761^(2/3) 6835625995092057 a001 28657/1149851*167761^(7/15) 6835625995107459 a001 28657/271443*141422324^(2/9) 6835625995107459 a001 28657/271443*73681302247^(1/6) 6835625995107459 a001 121393/64079*23725150497407^(1/24) 6835625995107459 a001 121393/64079*10749957122^(1/18) 6835625995107459 a001 121393/64079*228826127^(1/15) 6835625995107483 a001 121393/64079*4870847^(1/12) 6835625995108748 a001 121393/64079*710647^(2/21) 6835625995138384 a001 28657/271443*271443^(1/3) 6835625995164814 a001 121393/1149851*39603^(13/33) 6835625995178112 a001 121393/64079*103682^(1/9) 6835625995186697 a001 28657/710647*23725150497407^(1/6) 6835625995186697 a001 28657/710647*10749957122^(2/9) 6835625995186697 a001 28657/710647*228826127^(4/15) 6835625995186793 a001 28657/710647*4870847^(1/3) 6835625995191853 a001 28657/710647*710647^(8/21) 6835625995198257 a001 28657/1860498*817138163596^(2/9) 6835625995198258 a001 28657/1860498*87403803^(1/3) 6835625995199728 a001 28657/87403803*3010349^(2/3) 6835625995199895 a001 28657/4870847*7881196^(4/9) 6835625995199944 a001 28657/4870847*312119004989^(4/15) 6835625995199944 a001 28657/4870847*1568397607^(1/3) 6835625995200076 a001 28657/4870847*4870847^(11/24) 6835625995200147 a001 28657/969323029*7881196^(7/9) 6835625995200183 a001 28657/12752043*20633239^(10/21) 6835625995200190 a001 28657/12752043*3461452808002^(5/18) 6835625995200190 a001 28657/12752043*28143753123^(1/3) 6835625995200190 a001 28657/12752043*228826127^(5/12) 6835625995200217 a001 28657/28143753123*20633239^(14/15) 6835625995200218 a001 28657/33385282*20633239^(8/15) 6835625995200218 a001 28657/17393796001*20633239^(19/21) 6835625995200220 a001 28657/1568397607*20633239^(16/21) 6835625995200220 a001 28657/969323029*20633239^(11/15) 6835625995200223 a001 28657/141422324*20633239^(13/21) 6835625995200226 a001 28657/33385282*17393796001^(8/21) 6835625995200226 a001 28657/33385282*23725150497407^(7/24) 6835625995200226 a001 28657/33385282*505019158607^(1/3) 6835625995200226 a001 28657/33385282*10749957122^(7/18) 6835625995200226 a001 28657/33385282*599074578^(4/9) 6835625995200226 a001 28657/33385282*228826127^(7/15) 6835625995200231 a001 28657/599074578*54018521^(2/3) 6835625995200231 a001 28657/87403803*9062201101803^(1/3) 6835625995200232 a001 28657/73681302247*141422324^(8/9) 6835625995200232 a001 28657/228826127*45537549124^(4/9) 6835625995200232 a001 28657/4106118243*969323029^(2/3) 6835625995200232 a001 28657/1568397607*23725150497407^(5/12) 6835625995200232 a001 28657/1568397607*505019158607^(10/21) 6835625995200232 a001 28657/1568397607*28143753123^(8/15) 6835625995200232 a001 28657/1568397607*10749957122^(5/9) 6835625995200232 a001 28657/28143753123*17393796001^(2/3) 6835625995200232 a001 28657/23725150497407*17393796001^(20/21) 6835625995200232 a001 28657/817138163596*17393796001^(17/21) 6835625995200232 a001 28657/28143753123*505019158607^(7/12) 6835625995200232 a001 28657/817138163596*45537549124^(7/9) 6835625995200232 a001 28657/73681302247*23725150497407^(13/24) 6835625995200232 a001 28657/73681302247*505019158607^(13/21) 6835625995200232 a001 28657/73681302247*73681302247^(2/3) 6835625995200232 a001 28657/192900153618*312119004989^(2/3) 6835625995200232 a001 28657/192900153618*3461452808002^(11/18) 6835625995200232 a001 28657/505019158607*1322157322203^(2/3) 6835625995200232 a001 28657/1322157322203*5600748293801^(2/3) 6835625995200232 a001 28657/23725150497407*3461452808002^(7/9) 6835625995200232 a001 28657/23725150497407*505019158607^(5/6) 6835625995200232 a001 28657/817138163596*505019158607^(17/24) 6835625995200232 a001 28657/192900153618*28143753123^(11/15) 6835625995200232 a001 28657/2139295485799*28143753123^(5/6) 6835625995200232 a001 28657/23725150497407*28143753123^(14/15) 6835625995200232 a001 28657/17393796001*817138163596^(5/9) 6835625995200232 a001 28657/73681302247*10749957122^(13/18) 6835625995200232 a001 28657/3461452808002*10749957122^(8/9) 6835625995200232 a001 28657/10749957122*4106118243^(2/3) 6835625995200232 a001 28657/192900153618*1568397607^(5/6) 6835625995200232 a001 28657/969323029*17393796001^(11/21) 6835625995200232 a001 28657/969323029*312119004989^(7/15) 6835625995200232 a001 28657/969323029*505019158607^(11/24) 6835625995200232 a001 28657/969323029*1568397607^(7/12) 6835625995200232 a001 28657/28143753123*599074578^(7/9) 6835625995200232 a001 28657/817138163596*599074578^(17/18) 6835625995200232 a001 28657/969323029*599074578^(11/18) 6835625995200232 a001 28657/1568397607*228826127^(2/3) 6835625995200232 a001 28657/17393796001*228826127^(19/24) 6835625995200232 a001 28657/73681302247*228826127^(13/15) 6835625995200232 a001 28657/192900153618*228826127^(11/12) 6835625995200232 a001 28657/141422324*141422324^(5/9) 6835625995200233 a001 28657/141422324*73681302247^(5/12) 6835625995200233 a001 28657/141422324*228826127^(13/24) 6835625995200233 a001 28657/17393796001*87403803^(5/6) 6835625995200235 a001 28657/54018521*2139295485799^(1/3) 6835625995200248 a001 28657/20633239*119218851371^(1/3) 6835625995200260 a001 28657/228826127*12752043^(2/3) 6835625995200342 a001 28657/7881196*6643838879^(1/3) 6835625995200394 a001 28657/33385282*4870847^(7/12) 6835625995200436 a001 28657/228826127*4870847^(17/24) 6835625995200472 a001 28657/1568397607*4870847^(5/6) 6835625995200508 a001 28657/10749957122*4870847^(23/24) 6835625995200987 a001 28657/3010349*370248451^(1/3) 6835625995201287 a001 28657/12752043*1860498^(5/9) 6835625995201659 a001 28657/141422324*1860498^(13/18) 6835625995201988 a001 28657/1568397607*1860498^(8/9) 6835625995205397 a001 28657/1149851*20633239^(1/3) 6835625995205402 a001 28657/1149851*17393796001^(5/21) 6835625995205402 a001 28657/1149851*505019158607^(5/24) 6835625995205402 a001 28657/1149851*599074578^(5/18) 6835625995205402 a001 28657/1149851*228826127^(7/24) 6835625995206170 a001 28657/1149851*1860498^(7/18) 6835625995207034 a001 28657/4870847*710647^(11/21) 6835625995209250 a001 28657/33385282*710647^(2/3) 6835625995211042 a001 28657/1149851*710647^(5/12) 6835625995211189 a001 28657/228826127*710647^(17/21) 6835625995212640 a001 28657/969323029*710647^(11/12) 6835625995213123 a001 28657/1568397607*710647^(20/21) 6835625995219031 a007 Real Root Of -740*x^4+201*x^3-525*x^2+114*x+549 6835625995219476 a001 196418/64079*167761^(1/15) 6835625995233945 a001 28657/439204*1149851^(1/3) 6835625995235668 a001 196418/64079*20633239^(1/21) 6835625995235668 a001 28657/439204*1322157322203^(1/6) 6835625995235668 a001 196418/64079*228826127^(1/24) 6835625995235778 a001 196418/64079*1860498^(1/18) 6835625995239635 a001 317811/3010349*39603^(13/33) 6835625995257298 a001 514229/4870847*39603^(13/33) 6835625995277543 a001 28657/141422324*271443^(5/6) 6835625995285878 a001 98209/930249*39603^(13/33) 6835625995318768 a001 317811/64079*39603^(1/33) 6835625995375462 a001 317811/103682*15127^(1/12) 6835625995409723 a001 46368/3010349*39603^(19/33) 6835625995443103 a001 75025/64079*7881196^(1/9) 6835625995443115 a001 28657/167761*4106118243^(1/6) 6835625995443115 a001 75025/64079*312119004989^(1/15) 6835625995443115 a001 75025/64079*1568397607^(1/12) 6835625995469308 a001 28657/710647*103682^(4/9) 6835625995481764 a001 75025/710647*39603^(13/33) 6835625995488856 a001 46368/64079*39603^(7/33) 6835625995556612 a001 121393/3010349*39603^(16/33) 6835625995588534 a001 28657/4870847*103682^(11/18) 6835625995635744 a001 121393/64079*39603^(4/33) 6835625995660942 a001 28657/15127*5778^(4/27) 6835625995683778 a001 196418/4870847*39603^(16/33) 6835625995694795 a001 28657/33385282*103682^(7/9) 6835625995800780 a001 28657/228826127*103682^(17/18) 6835625995805293 a001 11592/1970299*39603^(2/3) 6835625995885070 a001 28657/103682*39603^(10/33) 6835625995889538 a001 75025/1860498*39603^(16/33) 6835625995930124 a001 832040/271443*15127^(1/12) 6835625996011048 a001 311187/101521*15127^(1/12) 6835625996022855 a001 5702887/1860498*15127^(1/12) 6835625996024578 a001 14930352/4870847*15127^(1/12) 6835625996024829 a001 39088169/12752043*15127^(1/12) 6835625996024866 a001 14619165/4769326*15127^(1/12) 6835625996024871 a001 267914296/87403803*15127^(1/12) 6835625996024872 a001 701408733/228826127*15127^(1/12) 6835625996024872 a001 1836311903/599074578*15127^(1/12) 6835625996024872 a001 686789568/224056801*15127^(1/12) 6835625996024872 a001 12586269025/4106118243*15127^(1/12) 6835625996024872 a001 32951280099/10749957122*15127^(1/12) 6835625996024872 a001 86267571272/28143753123*15127^(1/12) 6835625996024872 a001 32264490531/10525900321*15127^(1/12) 6835625996024872 a001 591286729879/192900153618*15127^(1/12) 6835625996024872 a001 1548008755920/505019158607*15127^(1/12) 6835625996024872 a001 1515744265389/494493258286*15127^(1/12) 6835625996024872 a001 2504730781961/817138163596*15127^(1/12) 6835625996024872 a001 956722026041/312119004989*15127^(1/12) 6835625996024872 a001 365435296162/119218851371*15127^(1/12) 6835625996024872 a001 139583862445/45537549124*15127^(1/12) 6835625996024872 a001 53316291173/17393796001*15127^(1/12) 6835625996024872 a001 20365011074/6643838879*15127^(1/12) 6835625996024872 a001 7778742049/2537720636*15127^(1/12) 6835625996024872 a001 2971215073/969323029*15127^(1/12) 6835625996024872 a001 1134903170/370248451*15127^(1/12) 6835625996024872 a001 433494437/141422324*15127^(1/12) 6835625996024874 a001 165580141/54018521*15127^(1/12) 6835625996024888 a001 63245986/20633239*15127^(1/12) 6835625996024984 a001 24157817/7881196*15127^(1/12) 6835625996025642 a001 9227465/3010349*15127^(1/12) 6835625996030152 a001 3524578/1149851*15127^(1/12) 6835625996061062 a001 1346269/439204*15127^(1/12) 6835625996169506 a001 75025/64079*39603^(1/6) 6835625996182449 a001 317811/64079*15127^(1/30) 6835625996272925 a001 514229/167761*15127^(1/12) 6835625996287438 a001 75025/4870847*39603^(19/33) 6835625996348301 a001 121393/20633239*39603^(2/3) 6835625996427524 a001 317811/54018521*39603^(2/3) 6835625996439083 a001 208010/35355581*39603^(2/3) 6835625996440769 a001 2178309/370248451*39603^(2/3) 6835625996441015 a001 5702887/969323029*39603^(2/3) 6835625996441051 a001 196452/33391061*39603^(2/3) 6835625996441057 a001 39088169/6643838879*39603^(2/3) 6835625996441057 a001 102334155/17393796001*39603^(2/3) 6835625996441057 a001 66978574/11384387281*39603^(2/3) 6835625996441057 a001 701408733/119218851371*39603^(2/3) 6835625996441057 a001 1836311903/312119004989*39603^(2/3) 6835625996441057 a001 1201881744/204284540899*39603^(2/3) 6835625996441057 a001 12586269025/2139295485799*39603^(2/3) 6835625996441057 a001 32951280099/5600748293801*39603^(2/3) 6835625996441057 a001 1135099622/192933544679*39603^(2/3) 6835625996441057 a001 139583862445/23725150497407*39603^(2/3) 6835625996441057 a001 53316291173/9062201101803*39603^(2/3) 6835625996441057 a001 10182505537/1730726404001*39603^(2/3) 6835625996441057 a001 7778742049/1322157322203*39603^(2/3) 6835625996441057 a001 2971215073/505019158607*39603^(2/3) 6835625996441057 a001 567451585/96450076809*39603^(2/3) 6835625996441057 a001 433494437/73681302247*39603^(2/3) 6835625996441057 a001 165580141/28143753123*39603^(2/3) 6835625996441058 a001 31622993/5374978561*39603^(2/3) 6835625996441060 a001 24157817/4106118243*39603^(2/3) 6835625996441073 a001 9227465/1568397607*39603^(2/3) 6835625996441167 a001 1762289/299537289*39603^(2/3) 6835625996441812 a001 1346269/228826127*39603^(2/3) 6835625996446227 a001 514229/87403803*39603^(2/3) 6835625996476487 a001 98209/16692641*39603^(2/3) 6835625996683898 a001 75025/12752043*39603^(2/3) 6835625996795898 a001 196418/39603*5778^(1/27) 6835625996824385 a001 28657/271443*39603^(13/33) 6835625996864974 a001 28657/64079*45537549124^(1/9) 6835625996864981 a001 28657/64079*12752043^(1/6) 6835625996918062 a001 98209/51841*15127^(2/15) 6835625997299836 a001 28657/710647*39603^(16/33) 6835625997430898 a001 514229/271443*15127^(2/15) 6835625997505720 a001 1346269/710647*15127^(2/15) 6835625997516636 a001 1762289/930249*15127^(2/15) 6835625997518229 a001 9227465/4870847*15127^(2/15) 6835625997518461 a001 24157817/12752043*15127^(2/15) 6835625997518495 a001 31622993/16692641*15127^(2/15) 6835625997518500 a001 165580141/87403803*15127^(2/15) 6835625997518501 a001 433494437/228826127*15127^(2/15) 6835625997518501 a001 567451585/299537289*15127^(2/15) 6835625997518501 a001 2971215073/1568397607*15127^(2/15) 6835625997518501 a001 7778742049/4106118243*15127^(2/15) 6835625997518501 a001 10182505537/5374978561*15127^(2/15) 6835625997518501 a001 53316291173/28143753123*15127^(2/15) 6835625997518501 a001 139583862445/73681302247*15127^(2/15) 6835625997518501 a001 182717648081/96450076809*15127^(2/15) 6835625997518501 a001 956722026041/505019158607*15127^(2/15) 6835625997518501 a001 10610209857723/5600748293801*15127^(2/15) 6835625997518501 a001 591286729879/312119004989*15127^(2/15) 6835625997518501 a001 225851433717/119218851371*15127^(2/15) 6835625997518501 a001 21566892818/11384387281*15127^(2/15) 6835625997518501 a001 32951280099/17393796001*15127^(2/15) 6835625997518501 a001 12586269025/6643838879*15127^(2/15) 6835625997518501 a001 1201881744/634430159*15127^(2/15) 6835625997518501 a001 1836311903/969323029*15127^(2/15) 6835625997518501 a001 701408733/370248451*15127^(2/15) 6835625997518501 a001 66978574/35355581*15127^(2/15) 6835625997518503 a001 102334155/54018521*15127^(2/15) 6835625997518516 a001 39088169/20633239*15127^(2/15) 6835625997518605 a001 3732588/1970299*15127^(2/15) 6835625997519213 a001 5702887/3010349*15127^(2/15) 6835625997523383 a001 2178309/1149851*15127^(2/15) 6835625997551962 a001 208010/109801*15127^(2/15) 6835625997707611 a001 28657/1860498*39603^(19/33) 6835625997725050 a001 196418/64079*15127^(1/12) 6835625997747848 a001 317811/167761*15127^(2/15) 6835625997812150 a001 28657/39603*15127^(7/30) 6835625998051825 a001 17711/24476*24476^(2/9) 6835625998105511 a001 28657/4870847*39603^(2/3) 6835625998248571 a001 6765/15127*5778^(17/54) 6835625998283482 a001 121393/103682*15127^(11/60) 6835625998328382 a001 75025/24476*9349^(5/57) 6835625998642175 a001 5473/219602*24476^(5/9) 6835625998905821 a001 105937/90481*15127^(11/60) 6835625998996619 a001 832040/710647*15127^(11/60) 6835625999009867 a001 726103/620166*15127^(11/60) 6835625999018054 a001 1346269/1149851*15127^(11/60) 6835625999024484 a001 4181/3010349*9349^(53/57) 6835625999052736 a001 514229/439204*15127^(11/60) 6835625999090470 a001 121393/64079*15127^(2/15) 6835625999290448 a001 196418/167761*15127^(11/60) 6835625999992420 a001 17711/103682*15127^(23/60) 6835626000112766 a001 75025/103682*15127^(7/30) 6835626000448422 a001 196418/271443*15127^(7/30) 6835626000488108 a001 514229/103682*5778^(1/27) 6835626000497393 a001 514229/710647*15127^(7/30) 6835626000504538 a001 1346269/1860498*15127^(7/30) 6835626000506225 a001 2178309/3010349*15127^(7/30) 6835626000508954 a001 832040/1149851*15127^(7/30) 6835626000522681 a001 10946/39603*167761^(4/15) 6835626000527659 a001 317811/439204*15127^(7/30) 6835626000587446 a001 10946/39603*20633239^(4/21) 6835626000587447 a001 17711/24476*20633239^(2/15) 6835626000587449 a001 10946/39603*3461452808002^(1/9) 6835626000587449 a001 10946/39603*28143753123^(2/15) 6835626000587449 a001 17711/24476*17393796001^(2/21) 6835626000587449 a001 17711/24476*505019158607^(1/12) 6835626000587449 a001 17711/24476*599074578^(1/9) 6835626000587449 a001 10946/39603*228826127^(1/6) 6835626000587509 a001 10946/39603*4870847^(5/24) 6835626000587888 a001 10946/39603*1860498^(2/9) 6835626000589705 a001 17711/24476*710647^(1/6) 6835626000590672 a001 10946/39603*710647^(5/21) 6835626000655868 a001 121393/167761*15127^(7/30) 6835626000727638 a001 23184/51841*15127^(17/60) 6835626000764081 a001 10946/39603*103682^(5/18) 6835626000799408 a001 17711/64079*15127^(1/3) 6835626000919754 a001 75025/64079*15127^(11/60) 6835626001012833 a001 17711/15127*5778^(11/54) 6835626001026794 a001 1346269/271443*5778^(1/27) 6835626001153960 a001 2178309/439204*5778^(1/27) 6835626001359720 a001 75640/15251*5778^(1/27) 6835626001511948 a001 17711/24476*39603^(7/33) 6835626001534625 a001 46368/64079*15127^(7/30) 6835626001813842 a001 121393/271443*15127^(17/60) 6835626001908162 a001 10946/39603*39603^(10/33) 6835626001972317 a001 317811/710647*15127^(17/60) 6835626001995438 a001 416020/930249*15127^(17/60) 6835626001998811 a001 2178309/4870847*15127^(17/60) 6835626002000896 a001 1346269/3010349*15127^(17/60) 6835626002009727 a001 514229/1149851*15127^(17/60) 6835626002070259 a001 98209/219602*15127^(17/60) 6835626002108907 a001 121393/24476*9349^(2/57) 6835626002364806 a001 17711/167761*15127^(13/30) 6835626002485049 a007 Real Root Of -171*x^4-607*x^3-844*x^2+501*x+38 6835626002485152 a001 75025/167761*15127^(17/60) 6835626002770018 a001 317811/64079*5778^(1/27) 6835626003100024 a001 46368/167761*15127^(1/3) 6835626003137935 a001 4181/1860498*9349^(50/57) 6835626003435679 a001 121393/439204*15127^(1/3) 6835626003484651 a001 317811/1149851*15127^(1/3) 6835626003491796 a001 832040/3010349*15127^(1/3) 6835626003492838 a001 2178309/7881196*15127^(1/3) 6835626003492990 a001 5702887/20633239*15127^(1/3) 6835626003493012 a001 14930352/54018521*15127^(1/3) 6835626003493016 a001 39088169/141422324*15127^(1/3) 6835626003493016 a001 102334155/370248451*15127^(1/3) 6835626003493016 a001 267914296/969323029*15127^(1/3) 6835626003493016 a001 701408733/2537720636*15127^(1/3) 6835626003493016 a001 1836311903/6643838879*15127^(1/3) 6835626003493016 a001 4807526976/17393796001*15127^(1/3) 6835626003493016 a001 12586269025/45537549124*15127^(1/3) 6835626003493016 a001 32951280099/119218851371*15127^(1/3) 6835626003493016 a001 86267571272/312119004989*15127^(1/3) 6835626003493016 a001 225851433717/817138163596*15127^(1/3) 6835626003493016 a001 1548008755920/5600748293801*15127^(1/3) 6835626003493016 a001 139583862445/505019158607*15127^(1/3) 6835626003493016 a001 53316291173/192900153618*15127^(1/3) 6835626003493016 a001 20365011074/73681302247*15127^(1/3) 6835626003493016 a001 7778742049/28143753123*15127^(1/3) 6835626003493016 a001 2971215073/10749957122*15127^(1/3) 6835626003493016 a001 1134903170/4106118243*15127^(1/3) 6835626003493016 a001 433494437/1568397607*15127^(1/3) 6835626003493016 a001 165580141/599074578*15127^(1/3) 6835626003493016 a001 63245986/228826127*15127^(1/3) 6835626003493018 a001 24157817/87403803*15127^(1/3) 6835626003493026 a001 9227465/33385282*15127^(1/3) 6835626003493084 a001 3524578/12752043*15127^(1/3) 6835626003493482 a001 1346269/4870847*15127^(1/3) 6835626003496211 a001 514229/1860498*15127^(1/3) 6835626003514917 a001 196418/710647*15127^(1/3) 6835626003522780 a001 17711/271443*15127^(29/60) 6835626003643126 a001 75025/271443*15127^(1/3) 6835626004032534 a001 1597/710647*3571^(50/51) 6835626004257997 a001 15456/90481*15127^(23/60) 6835626004309925 a001 5473/51841*141422324^(2/9) 6835626004309925 a001 5473/51841*73681302247^(1/6) 6835626004309925 a001 11592/6119*23725150497407^(1/24) 6835626004309925 a001 11592/6119*10749957122^(1/18) 6835626004309925 a001 11592/6119*228826127^(1/15) 6835626004309949 a001 11592/6119*4870847^(1/12) 6835626004311214 a001 11592/6119*710647^(2/21) 6835626004340849 a001 5473/51841*271443^(1/3) 6835626004380578 a001 11592/6119*103682^(1/9) 6835626004521883 a001 28657/103682*15127^(1/3) 6835626004735304 a001 10946/54018521*167761^(13/15) 6835626004783590 a001 10946/4870847*167761^(2/3) 6835626004838210 a001 11592/6119*39603^(4/33) 6835626004853027 a001 10946/271443*23725150497407^(1/6) 6835626004853027 a001 10946/271443*10749957122^(2/9) 6835626004853027 a001 10946/271443*228826127^(4/15) 6835626004853123 a001 10946/271443*4870847^(1/3) 6835626004858183 a001 10946/271443*710647^(8/21) 6835626004867890 a001 5473/219602*167761^(7/15) 6835626004880337 a001 121393/710647*15127^(23/60) 6835626004932264 a001 10946/710647*817138163596^(2/9) 6835626004932264 a001 10946/710647*87403803^(1/3) 6835626004943776 a001 5473/930249*7881196^(4/9) 6835626004943825 a001 5473/930249*312119004989^(4/15) 6835626004943825 a001 5473/930249*1568397607^(1/3) 6835626004943957 a001 5473/930249*4870847^(11/24) 6835626004945291 a001 5473/16692641*3010349^(2/3) 6835626004945504 a001 10946/4870847*20633239^(10/21) 6835626004945511 a001 10946/4870847*3461452808002^(5/18) 6835626004945511 a001 10946/4870847*28143753123^(1/3) 6835626004945511 a001 10946/4870847*228826127^(5/12) 6835626004945714 a001 10946/370248451*7881196^(7/9) 6835626004945749 a001 10946/12752043*20633239^(8/15) 6835626004945757 a001 10946/12752043*17393796001^(8/21) 6835626004945757 a001 10946/12752043*23725150497407^(7/24) 6835626004945757 a001 10946/12752043*505019158607^(1/3) 6835626004945757 a001 10946/12752043*10749957122^(7/18) 6835626004945757 a001 10946/12752043*599074578^(4/9) 6835626004945758 a001 10946/12752043*228826127^(7/15) 6835626004945785 a001 5473/5374978561*20633239^(14/15) 6835626004945785 a001 10946/6643838879*20633239^(19/21) 6835626004945787 a001 5473/299537289*20633239^(16/21) 6835626004945788 a001 10946/370248451*20633239^(11/15) 6835626004945792 a001 10946/54018521*20633239^(13/21) 6835626004945793 a001 5473/16692641*9062201101803^(1/3) 6835626004945798 a001 10946/228826127*54018521^(2/3) 6835626004945799 a001 10946/87403803*45537549124^(4/9) 6835626004945799 a001 10946/28143753123*141422324^(8/9) 6835626004945799 a001 5473/299537289*23725150497407^(5/12) 6835626004945799 a001 5473/299537289*505019158607^(10/21) 6835626004945799 a001 5473/299537289*28143753123^(8/15) 6835626004945799 a001 5473/299537289*10749957122^(5/9) 6835626004945800 a001 10946/1568397607*969323029^(2/3) 6835626004945800 a001 10946/4106118243*4106118243^(2/3) 6835626004945800 a001 5473/5374978561*17393796001^(2/3) 6835626004945800 a001 5473/5374978561*505019158607^(7/12) 6835626004945800 a001 10946/9062201101803*17393796001^(20/21) 6835626004945800 a001 10946/312119004989*17393796001^(17/21) 6835626004945800 a001 10946/28143753123*23725150497407^(13/24) 6835626004945800 a001 10946/28143753123*505019158607^(13/21) 6835626004945800 a001 10946/28143753123*73681302247^(2/3) 6835626004945800 a001 10946/312119004989*45537549124^(7/9) 6835626004945800 a001 10946/73681302247*312119004989^(2/3) 6835626004945800 a001 10946/73681302247*3461452808002^(11/18) 6835626004945800 a001 5473/96450076809*1322157322203^(2/3) 6835626004945800 a001 5473/7331474697802*312119004989^(13/15) 6835626004945800 a001 10946/1322157322203*23725150497407^(2/3) 6835626004945800 a001 10946/9062201101803*3461452808002^(7/9) 6835626004945800 a001 10946/1322157322203*505019158607^(16/21) 6835626004945800 a001 10946/9062201101803*505019158607^(5/6) 6835626004945800 a001 10946/312119004989*505019158607^(17/24) 6835626004945800 a001 5473/7331474697802*73681302247^(11/12) 6835626004945800 a001 10946/73681302247*28143753123^(11/15) 6835626004945800 a001 5473/408569081798*28143753123^(5/6) 6835626004945800 a001 10946/9062201101803*28143753123^(14/15) 6835626004945800 a001 10946/28143753123*10749957122^(13/18) 6835626004945800 a001 10946/1322157322203*10749957122^(8/9) 6835626004945800 a001 10946/6643838879*817138163596^(5/9) 6835626004945800 a001 10946/73681302247*1568397607^(5/6) 6835626004945800 a001 5473/5374978561*599074578^(7/9) 6835626004945800 a001 10946/312119004989*599074578^(17/18) 6835626004945800 a001 10946/370248451*17393796001^(11/21) 6835626004945800 a001 10946/370248451*312119004989^(7/15) 6835626004945800 a001 10946/370248451*505019158607^(11/24) 6835626004945800 a001 10946/370248451*1568397607^(7/12) 6835626004945800 a001 10946/370248451*599074578^(11/18) 6835626004945800 a001 5473/299537289*228826127^(2/3) 6835626004945800 a001 10946/6643838879*228826127^(19/24) 6835626004945800 a001 10946/28143753123*228826127^(13/15) 6835626004945800 a001 10946/73681302247*228826127^(11/12) 6835626004945800 a001 10946/6643838879*87403803^(5/6) 6835626004945802 a001 10946/54018521*141422324^(5/9) 6835626004945802 a001 10946/54018521*73681302247^(5/12) 6835626004945802 a001 10946/54018521*228826127^(13/24) 6835626004945816 a001 10946/20633239*2139295485799^(1/3) 6835626004945827 a001 10946/87403803*12752043^(2/3) 6835626004945910 a001 5473/3940598*119218851371^(1/3) 6835626004945926 a001 10946/12752043*4870847^(7/12) 6835626004946003 a001 10946/87403803*4870847^(17/24) 6835626004946040 a001 5473/299537289*4870847^(5/6) 6835626004946076 a001 10946/4106118243*4870847^(23/24) 6835626004946554 a001 10946/3010349*6643838879^(1/3) 6835626004946609 a001 10946/4870847*1860498^(5/9) 6835626004947228 a001 10946/54018521*1860498^(13/18) 6835626004947555 a001 5473/299537289*1860498^(8/9) 6835626004950915 a001 5473/930249*710647^(11/21) 6835626004950970 a001 10946/1149851*370248451^(1/3) 6835626004954781 a001 10946/12752043*710647^(2/3) 6835626004956756 a001 10946/87403803*710647^(17/21) 6835626004958207 a001 10946/370248451*710647^(11/12) 6835626004958690 a001 5473/299537289*710647^(20/21) 6835626004971135 a001 105937/620166*15127^(23/60) 6835626004981230 a001 5473/219602*20633239^(1/3) 6835626004981236 a001 5473/219602*17393796001^(5/21) 6835626004981236 a001 5473/219602*505019158607^(5/24) 6835626004981236 a001 5473/219602*599074578^(5/18) 6835626004981236 a001 5473/219602*228826127^(7/24) 6835626004982004 a001 5473/219602*1860498^(7/18) 6835626004984382 a001 832040/4870847*15127^(23/60) 6835626004985098 a001 121393/24476*39603^(1/33) 6835626004986875 a001 5473/219602*710647^(5/12) 6835626004992569 a001 514229/3010349*15127^(23/60) 6835626005023113 a001 10946/54018521*271443^(5/6) 6835626005027251 a001 196418/1149851*15127^(23/60) 6835626005135638 a001 10946/271443*103682^(4/9) 6835626005144617 a001 17711/439204*15127^(8/15) 6835626005172490 a001 75025/24476*167761^(1/15) 6835626005186959 a001 10946/167761*1149851^(1/3) 6835626005188681 a001 75025/24476*20633239^(1/21) 6835626005188682 a001 10946/167761*1322157322203^(1/6) 6835626005188682 a001 75025/24476*228826127^(1/24) 6835626005188792 a001 75025/24476*1860498^(1/18) 6835626005264964 a001 75025/439204*15127^(23/60) 6835626005328871 a001 28657/64079*15127^(17/60) 6835626005332415 a001 5473/930249*103682^(11/18) 6835626005440327 a001 10946/12752043*103682^(7/9) 6835626005546347 a001 10946/87403803*103682^(17/18) 6835626005848779 a001 121393/24476*15127^(1/30) 6835626005879835 a001 11592/109801*15127^(13/30) 6835626006026851 a001 5473/51841*39603^(13/33) 6835626006055627 a001 10946/64079*64079^(1/3) 6835626006392671 a001 121393/1149851*15127^(13/30) 6835626006467493 a001 317811/3010349*15127^(13/30) 6835626006485156 a001 514229/4870847*15127^(13/30) 6835626006513735 a001 98209/930249*15127^(13/30) 6835626006589275 a001 17711/710647*15127^(7/12) 6835626006610529 a001 28657/24476*7881196^(1/9) 6835626006610541 a001 10946/64079*4106118243^(1/6) 6835626006610541 a001 28657/24476*312119004989^(1/15) 6835626006610541 a001 28657/24476*1568397607^(1/12) 6835626006709621 a001 75025/710647*15127^(13/30) 6835626006894269 a001 28657/167761*15127^(23/60) 6835626006966166 a001 10946/271443*39603^(16/33) 6835626007261260 a001 4181/1149851*9349^(47/57) 6835626007324492 a001 6624/101521*15127^(29/60) 6835626007336933 a001 28657/24476*39603^(1/6) 6835626007441617 a001 10946/710647*39603^(19/33) 6835626007557717 a001 17711/24476*15127^(7/30) 6835626007678063 a001 75025/24476*15127^(1/12) 6835626007849392 a001 5473/930249*39603^(2/3) 6835626007879155 a001 121393/1860498*15127^(29/60) 6835626007960079 a001 317811/4870847*15127^(29/60) 6835626008010093 a001 196418/3010349*15127^(29/60) 6835626008042672 a001 121393/39603*5778^(5/54) 6835626008052243 a001 28657/271443*15127^(13/30) 6835626008101609 a001 17711/1149851*15127^(19/30) 6835626008221955 a001 75025/1149851*15127^(29/60) 6835626008247292 a001 10946/4870847*39603^(25/33) 6835626008292935 a001 11592/6119*15127^(2/15) 6835626008836827 a001 46368/1149851*15127^(8/15) 6835626009375513 a001 121393/3010349*15127^(8/15) 6835626009454106 a001 317811/7881196*15127^(8/15) 6835626009465573 a001 75640/1875749*15127^(8/15) 6835626009467246 a001 2178309/54018521*15127^(8/15) 6835626009467490 a001 5702887/141422324*15127^(8/15) 6835626009467525 a001 14930352/370248451*15127^(8/15) 6835626009467531 a001 39088169/969323029*15127^(8/15) 6835626009467531 a001 9303105/230701876*15127^(8/15) 6835626009467531 a001 267914296/6643838879*15127^(8/15) 6835626009467531 a001 701408733/17393796001*15127^(8/15) 6835626009467531 a001 1836311903/45537549124*15127^(8/15) 6835626009467531 a001 4807526976/119218851371*15127^(8/15) 6835626009467531 a001 1144206275/28374454999*15127^(8/15) 6835626009467531 a001 32951280099/817138163596*15127^(8/15) 6835626009467531 a001 86267571272/2139295485799*15127^(8/15) 6835626009467531 a001 225851433717/5600748293801*15127^(8/15) 6835626009467531 a001 591286729879/14662949395604*15127^(8/15) 6835626009467531 a001 365435296162/9062201101803*15127^(8/15) 6835626009467531 a001 139583862445/3461452808002*15127^(8/15) 6835626009467531 a001 53316291173/1322157322203*15127^(8/15) 6835626009467531 a001 20365011074/505019158607*15127^(8/15) 6835626009467531 a001 7778742049/192900153618*15127^(8/15) 6835626009467531 a001 2971215073/73681302247*15127^(8/15) 6835626009467531 a001 1134903170/28143753123*15127^(8/15) 6835626009467531 a001 433494437/10749957122*15127^(8/15) 6835626009467531 a001 165580141/4106118243*15127^(8/15) 6835626009467532 a001 63245986/1568397607*15127^(8/15) 6835626009467534 a001 24157817/599074578*15127^(8/15) 6835626009467547 a001 9227465/228826127*15127^(8/15) 6835626009467641 a001 3524578/87403803*15127^(8/15) 6835626009468280 a001 1346269/33385282*15127^(8/15) 6835626009472659 a001 514229/12752043*15127^(8/15) 6835626009502679 a001 196418/4870847*15127^(8/15) 6835626009588093 a001 17711/1860498*15127^(41/60) 6835626009674080 a001 28657/439204*15127^(29/60) 6835626009708439 a001 75025/1860498*15127^(8/15) 6835626010323311 a001 2576/103361*15127^(7/12) 6835626010544975 a001 10946/39603*15127^(1/3) 6835626010868099 a001 121393/4870847*15127^(7/12) 6835626010947583 a001 105937/4250681*15127^(7/12) 6835626010959179 a001 416020/16692641*15127^(7/12) 6835626010960871 a001 726103/29134601*15127^(7/12) 6835626010961118 a001 5702887/228826127*15127^(7/12) 6835626010961154 a001 829464/33281921*15127^(7/12) 6835626010961159 a001 39088169/1568397607*15127^(7/12) 6835626010961160 a001 34111385/1368706081*15127^(7/12) 6835626010961160 a001 133957148/5374978561*15127^(7/12) 6835626010961160 a001 233802911/9381251041*15127^(7/12) 6835626010961160 a001 1836311903/73681302247*15127^(7/12) 6835626010961160 a001 267084832/10716675201*15127^(7/12) 6835626010961160 a001 12586269025/505019158607*15127^(7/12) 6835626010961160 a001 10983760033/440719107401*15127^(7/12) 6835626010961160 a001 43133785636/1730726404001*15127^(7/12) 6835626010961160 a001 75283811239/3020733700601*15127^(7/12) 6835626010961160 a001 182717648081/7331474697802*15127^(7/12) 6835626010961160 a001 139583862445/5600748293801*15127^(7/12) 6835626010961160 a001 53316291173/2139295485799*15127^(7/12) 6835626010961160 a001 10182505537/408569081798*15127^(7/12) 6835626010961160 a001 7778742049/312119004989*15127^(7/12) 6835626010961160 a001 2971215073/119218851371*15127^(7/12) 6835626010961160 a001 567451585/22768774562*15127^(7/12) 6835626010961160 a001 433494437/17393796001*15127^(7/12) 6835626010961160 a001 165580141/6643838879*15127^(7/12) 6835626010961161 a001 31622993/1268860318*15127^(7/12) 6835626010961163 a001 24157817/969323029*15127^(7/12) 6835626010961176 a001 9227465/370248451*15127^(7/12) 6835626010961271 a001 1762289/70711162*15127^(7/12) 6835626010961917 a001 1346269/54018521*15127^(7/12) 6835626010966346 a001 514229/20633239*15127^(7/12) 6835626010996706 a001 98209/3940598*15127^(7/12) 6835626011084451 a001 17711/3010349*15127^(11/15) 6835626011118738 a001 28657/710647*15127^(8/15) 6835626011204797 a001 75025/3010349*15127^(7/12) 6835626011358735 a001 4181/710647*9349^(44/57) 6835626011819669 a001 46368/3010349*15127^(19/30) 6835626011844384 a001 317811/103682*5778^(5/54) 6835626012087180 a001 28657/24476*15127^(11/60) 6835626012399047 a001 832040/271443*5778^(5/54) 6835626012436348 a001 121393/24476*5778^(1/27) 6835626012479971 a001 311187/101521*5778^(5/54) 6835626012529985 a001 1346269/439204*5778^(5/54) 6835626012577037 a001 17711/4870847*15127^(47/60) 6835626012631072 a001 28657/1149851*15127^(7/12) 6835626012697383 a001 75025/4870847*15127^(19/30) 6835626012741847 a001 514229/167761*5778^(5/54) 6835626013312255 a001 46368/4870847*15127^(41/60) 6835626014071064 a001 89/39604*15127^(5/6) 6835626014117556 a001 28657/1860498*15127^(19/30) 6835626014193972 a001 196418/64079*5778^(5/54) 6835626014429134 a001 4181/15127*9349^(20/57) 6835626014806282 a001 11592/1970299*15127^(11/15) 6835626015349290 a001 121393/20633239*15127^(11/15) 6835626015428514 a001 317811/54018521*15127^(11/15) 6835626015440072 a001 208010/35355581*15127^(11/15) 6835626015441759 a001 2178309/370248451*15127^(11/15) 6835626015442005 a001 5702887/969323029*15127^(11/15) 6835626015442041 a001 196452/33391061*15127^(11/15) 6835626015442046 a001 39088169/6643838879*15127^(11/15) 6835626015442047 a001 102334155/17393796001*15127^(11/15) 6835626015442047 a001 66978574/11384387281*15127^(11/15) 6835626015442047 a001 701408733/119218851371*15127^(11/15) 6835626015442047 a001 1836311903/312119004989*15127^(11/15) 6835626015442047 a001 1201881744/204284540899*15127^(11/15) 6835626015442047 a001 12586269025/2139295485799*15127^(11/15) 6835626015442047 a001 32951280099/5600748293801*15127^(11/15) 6835626015442047 a001 1135099622/192933544679*15127^(11/15) 6835626015442047 a001 139583862445/23725150497407*15127^(11/15) 6835626015442047 a001 53316291173/9062201101803*15127^(11/15) 6835626015442047 a001 10182505537/1730726404001*15127^(11/15) 6835626015442047 a001 7778742049/1322157322203*15127^(11/15) 6835626015442047 a001 2971215073/505019158607*15127^(11/15) 6835626015442047 a001 567451585/96450076809*15127^(11/15) 6835626015442047 a001 433494437/73681302247*15127^(11/15) 6835626015442047 a001 165580141/28143753123*15127^(11/15) 6835626015442047 a001 31622993/5374978561*15127^(11/15) 6835626015442049 a001 24157817/4106118243*15127^(11/15) 6835626015442063 a001 9227465/1568397607*15127^(11/15) 6835626015442157 a001 1762289/299537289*15127^(11/15) 6835626015442801 a001 1346269/228826127*15127^(11/15) 6835626015447216 a001 514229/87403803*15127^(11/15) 6835626015477477 a001 98209/16692641*15127^(11/15) 6835626015523886 a001 4181/439204*9349^(41/57) 6835626015613914 a001 28657/3010349*15127^(41/60) 6835626015684887 a001 75025/12752043*15127^(11/15) 6835626016356108 a001 5473/12238*45537549124^(1/9) 6835626016356115 a001 5473/12238*12752043^(1/6) 6835626017058228 a001 17711/20633239*15127^(14/15) 6835626017106500 a001 28657/4870847*15127^(11/15) 6835626017254708 a001 5473/51841*15127^(13/30) 6835626017793446 a001 46368/20633239*15127^(5/6) 6835626018061696 a001 10946/64079*15127^(23/60) 6835626018336534 a001 121393/54018521*15127^(5/6) 6835626018415769 a001 317811/141422324*15127^(5/6) 6835626018427330 a001 832040/370248451*15127^(5/6) 6835626018429016 a001 2178309/969323029*15127^(5/6) 6835626018429262 a001 5702887/2537720636*15127^(5/6) 6835626018429298 a001 14930352/6643838879*15127^(5/6) 6835626018429303 a001 39088169/17393796001*15127^(5/6) 6835626018429304 a001 102334155/45537549124*15127^(5/6) 6835626018429304 a001 267914296/119218851371*15127^(5/6) 6835626018429304 a001 3524667/1568437211*15127^(5/6) 6835626018429304 a001 1836311903/817138163596*15127^(5/6) 6835626018429304 a001 4807526976/2139295485799*15127^(5/6) 6835626018429304 a001 12586269025/5600748293801*15127^(5/6) 6835626018429304 a001 32951280099/14662949395604*15127^(5/6) 6835626018429304 a001 53316291173/23725150497407*15127^(5/6) 6835626018429304 a001 20365011074/9062201101803*15127^(5/6) 6835626018429304 a001 7778742049/3461452808002*15127^(5/6) 6835626018429304 a001 2971215073/1322157322203*15127^(5/6) 6835626018429304 a001 1134903170/505019158607*15127^(5/6) 6835626018429304 a001 433494437/192900153618*15127^(5/6) 6835626018429304 a001 165580141/73681302247*15127^(5/6) 6835626018429305 a001 63245986/28143753123*15127^(5/6) 6835626018429307 a001 24157817/10749957122*15127^(5/6) 6835626018429320 a001 9227465/4106118243*15127^(5/6) 6835626018429414 a001 3524578/1568397607*15127^(5/6) 6835626018430059 a001 1346269/599074578*15127^(5/6) 6835626018434474 a001 514229/228826127*15127^(5/6) 6835626018464740 a001 196418/87403803*15127^(5/6) 6835626018672181 a001 75025/33385282*15127^(5/6) 6835626019511857 a001 4181/271443*9349^(2/3) 6835626019627094 a001 10946/167761*15127^(29/60) 6835626019753309 a001 75025/39603*5778^(4/27) 6835626020094004 a001 28657/12752043*15127^(5/6) 6835626020780690 a001 46368/54018521*15127^(14/15) 6835626020785067 a001 10946/271443*15127^(8/15) 6835626020854550 a001 28657/9349*3571^(5/51) 6835626021323790 a001 233/271444*15127^(14/15) 6835626021403027 a001 317811/370248451*15127^(14/15) 6835626021414587 a001 832040/969323029*15127^(14/15) 6835626021416274 a001 2178309/2537720636*15127^(14/15) 6835626021416520 a001 5702887/6643838879*15127^(14/15) 6835626021416556 a001 14930352/17393796001*15127^(14/15) 6835626021416561 a001 39088169/45537549124*15127^(14/15) 6835626021416562 a001 102334155/119218851371*15127^(14/15) 6835626021416562 a001 267914296/312119004989*15127^(14/15) 6835626021416562 a001 701408733/817138163596*15127^(14/15) 6835626021416562 a001 1836311903/2139295485799*15127^(14/15) 6835626021416562 a001 4807526976/5600748293801*15127^(14/15) 6835626021416562 a001 12586269025/14662949395604*15127^(14/15) 6835626021416562 a001 20365011074/23725150497407*15127^(14/15) 6835626021416562 a001 7778742049/9062201101803*15127^(14/15) 6835626021416562 a001 2971215073/3461452808002*15127^(14/15) 6835626021416562 a001 1134903170/1322157322203*15127^(14/15) 6835626021416562 a001 433494437/505019158607*15127^(14/15) 6835626021416562 a001 165580141/192900153618*15127^(14/15) 6835626021416562 a001 63245986/73681302247*15127^(14/15) 6835626021416564 a001 24157817/28143753123*15127^(14/15) 6835626021416578 a001 9227465/10749957122*15127^(14/15) 6835626021416672 a001 3524578/4106118243*15127^(14/15) 6835626021417316 a001 1346269/1568397607*15127^(14/15) 6835626021421732 a001 514229/599074578*15127^(14/15) 6835626021451998 a001 196418/228826127*15127^(14/15) 6835626021659444 a001 75025/87403803*15127^(14/15) 6835626022379758 a001 75025/15127*2207^(1/24) 6835626022406905 a001 5473/219602*15127^(7/12) 6835626022661495 a001 6765/9349*9349^(14/57) 6835626023081298 a001 28657/33385282*15127^(14/15) 6835626023268338 a001 98209/51841*5778^(4/27) 6835626023781174 a001 514229/271443*5778^(4/27) 6835626023851563 a001 10946/710647*15127^(19/30) 6835626023855996 a001 1346269/710647*5778^(4/27) 6835626023873659 a001 2178309/1149851*5778^(4/27) 6835626023902238 a001 208010/109801*5778^(4/27) 6835626023963693 a001 4181/167761*9349^(35/57) 6835626024098124 a001 317811/167761*5778^(4/27) 6835626024146986 a001 75025/24476*5778^(5/54) 6835626024820005 a001 5473/12238*15127^(17/60) 6835626025363897 a001 10946/1149851*15127^(41/60) 6835626025440746 a001 121393/64079*5778^(4/27) 6835626026850381 a001 5473/930249*15127^(11/15) 6835626027201116 a001 4181/103682*9349^(32/57) 6835626028156474 a001 10946/15127*5778^(7/27) 6835626028346739 a001 10946/3010349*15127^(47/60) 6835626029839325 a001 10946/4870847*15127^(5/6) 6835626030249534 a001 15456/13201*5778^(11/54) 6835626031711000 a001 4181/39603*9349^(26/57) 6835626032826829 a001 10946/12752043*15127^(14/15) 6835626033617912 a001 4181/64079*9349^(29/57) 6835626034091964 a001 5473/2889*2207^(1/6) 6835626034515112 a001 121393/103682*5778^(11/54) 6835626034643211 a001 11592/6119*5778^(4/27) 6835626035137451 a001 105937/90481*5778^(11/54) 6835626035228249 a001 832040/710647*5778^(11/54) 6835626035241497 a001 726103/620166*5778^(11/54) 6835626035249684 a001 1346269/1149851*5778^(11/54) 6835626035284366 a001 514229/439204*5778^(11/54) 6835626035522078 a001 196418/167761*5778^(11/54) 6835626035613368 a001 1597/439204*3571^(47/51) 6835626037151384 a001 75025/64079*5778^(11/54) 6835626039334711 a001 6765/9349*24476^(2/9) 6835626041805566 a001 4181/15127*167761^(4/15) 6835626041870332 a001 4181/15127*20633239^(4/21) 6835626041870333 a001 6765/9349*20633239^(2/15) 6835626041870335 a001 4181/15127*3461452808002^(1/9) 6835626041870335 a001 4181/15127*28143753123^(2/15) 6835626041870335 a001 4181/15127*228826127^(1/6) 6835626041870335 a001 6765/9349*17393796001^(2/21) 6835626041870335 a001 6765/9349*505019158607^(1/12) 6835626041870335 a001 6765/9349*599074578^(1/9) 6835626041870395 a001 4181/15127*4870847^(5/24) 6835626041870773 a001 4181/15127*1860498^(2/9) 6835626041872591 a001 6765/9349*710647^(1/6) 6835626041873557 a001 4181/15127*710647^(5/21) 6835626042046966 a001 4181/15127*103682^(5/18) 6835626042794834 a001 6765/9349*39603^(7/33) 6835626043191047 a001 4181/15127*39603^(10/33) 6835626043925133 a001 28657/39603*5778^(7/27) 6835626046225750 a001 75025/103682*5778^(7/27) 6835626046512762 a001 2255/13201*5778^(23/54) 6835626046561405 a001 196418/271443*5778^(7/27) 6835626046610377 a001 514229/710647*5778^(7/27) 6835626046617521 a001 1346269/1860498*5778^(7/27) 6835626046619208 a001 2178309/3010349*5778^(7/27) 6835626046621937 a001 832040/1149851*5778^(7/27) 6835626046640643 a001 317811/439204*5778^(7/27) 6835626046768852 a001 121393/167761*5778^(7/27) 6835626047647609 a001 46368/64079*5778^(7/27) 6835626047686538 a001 196418/39603*2207^(1/24) 6835626048318810 a001 28657/24476*5778^(11/54) 6835626048840603 a001 6765/9349*15127^(7/30) 6835626049277024 a001 17711/39603*5778^(17/54) 6835626050085796 a001 46368/9349*3571^(2/51) 6835626050906439 a001 6765/24476*5778^(10/27) 6835626051378748 a001 514229/103682*2207^(1/24) 6835626051595840 a001 4181/24476*9349^(23/57) 6835626051827860 a001 4181/15127*15127^(1/3) 6835626051917434 a001 1346269/271443*2207^(1/24) 6835626051996027 a001 3524578/710647*2207^(1/24) 6835626052007494 a001 9227465/1860498*2207^(1/24) 6835626052009167 a001 24157817/4870847*2207^(1/24) 6835626052009411 a001 63245986/12752043*2207^(1/24) 6835626052009446 a001 165580141/33385282*2207^(1/24) 6835626052009452 a001 433494437/87403803*2207^(1/24) 6835626052009452 a001 1134903170/228826127*2207^(1/24) 6835626052009452 a001 2971215073/599074578*2207^(1/24) 6835626052009452 a001 7778742049/1568397607*2207^(1/24) 6835626052009452 a001 20365011074/4106118243*2207^(1/24) 6835626052009452 a001 53316291173/10749957122*2207^(1/24) 6835626052009452 a001 139583862445/28143753123*2207^(1/24) 6835626052009452 a001 365435296162/73681302247*2207^(1/24) 6835626052009452 a001 956722026041/192900153618*2207^(1/24) 6835626052009452 a001 2504730781961/505019158607*2207^(1/24) 6835626052009452 a001 10610209857723/2139295485799*2207^(1/24) 6835626052009452 a001 4052739537881/817138163596*2207^(1/24) 6835626052009452 a001 140728068720/28374454999*2207^(1/24) 6835626052009452 a001 591286729879/119218851371*2207^(1/24) 6835626052009452 a001 225851433717/45537549124*2207^(1/24) 6835626052009452 a001 86267571272/17393796001*2207^(1/24) 6835626052009452 a001 32951280099/6643838879*2207^(1/24) 6835626052009452 a001 1144206275/230701876*2207^(1/24) 6835626052009452 a001 4807526976/969323029*2207^(1/24) 6835626052009453 a001 1836311903/370248451*2207^(1/24) 6835626052009453 a001 701408733/141422324*2207^(1/24) 6835626052009455 a001 267914296/54018521*2207^(1/24) 6835626052009468 a001 9303105/1875749*2207^(1/24) 6835626052009562 a001 39088169/7881196*2207^(1/24) 6835626052010201 a001 14930352/3010349*2207^(1/24) 6835626052014580 a001 5702887/1149851*2207^(1/24) 6835626052044600 a001 2178309/439204*2207^(1/24) 6835626052250360 a001 75640/15251*2207^(1/24) 6835626053660659 a001 317811/64079*2207^(1/24) 6835626053670701 a001 17711/24476*5778^(7/27) 6835626056408082 a001 17711/9349*9349^(8/57) 6835626056721975 a001 23184/51841*5778^(17/54) 6835626057808179 a001 121393/271443*5778^(17/54) 6835626057966654 a001 317811/710647*5778^(17/54) 6835626057989775 a001 416020/930249*5778^(17/54) 6835626057993148 a001 2178309/4870847*5778^(17/54) 6835626057995233 a001 1346269/3010349*5778^(17/54) 6835626058004064 a001 514229/1149851*5778^(17/54) 6835626058064596 a001 98209/219602*5778^(17/54) 6835626058479489 a001 75025/167761*5778^(17/54) 6835626061323208 a001 28657/64079*5778^(17/54) 6835626061600126 a001 4181/4870847*24476^(8/9) 6835626063326989 a001 121393/24476*2207^(1/24) 6835626063910836 a001 6765/64079*5778^(13/27) 6835626065646733 a001 4181/167761*24476^(5/9) 6835626066547354 a001 28657/9349*9349^(5/57) 6835626066675098 a001 17711/64079*5778^(10/27) 6835626067017021 a001 1597/271443*3571^(44/51) 6835626067384561 a001 4181/39603*141422324^(2/9) 6835626067384561 a001 4181/39603*73681302247^(1/6) 6835626067384562 a001 17711/9349*23725150497407^(1/24) 6835626067384562 a001 17711/9349*10749957122^(1/18) 6835626067384562 a001 17711/9349*228826127^(1/15) 6835626067384586 a001 17711/9349*4870847^(1/12) 6835626067385851 a001 17711/9349*710647^(2/21) 6835626067415485 a001 4181/39603*271443^(1/3) 6835626067455215 a001 17711/9349*103682^(1/9) 6835626067912847 a001 17711/9349*39603^(4/33) 6835626068060561 a001 10946/9349*9349^(11/57) 6835626068362917 a001 46368/9349*9349^(2/57) 6835626068975715 a001 46368/167761*5778^(10/27) 6835626069101487 a001 4181/39603*39603^(13/33) 6835626069311370 a001 121393/439204*5778^(10/27) 6835626069360341 a001 317811/1149851*5778^(10/27) 6835626069367486 a001 832040/3010349*5778^(10/27) 6835626069369173 a001 1346269/4870847*5778^(10/27) 6835626069371902 a001 514229/1860498*5778^(10/27) 6835626069390607 a001 196418/710647*5778^(10/27) 6835626069518816 a001 75025/271443*5778^(10/27) 6835626070397574 a001 28657/103682*5778^(10/27) 6835626071107037 a001 4181/103682*23725150497407^(1/6) 6835626071107037 a001 4181/103682*10749957122^(2/9) 6835626071107037 a001 4181/103682*228826127^(4/15) 6835626071107133 a001 4181/103682*4870847^(1/3) 6835626071112193 a001 4181/103682*710647^(8/21) 6835626071239109 a001 46368/9349*39603^(1/33) 6835626071367572 a001 17711/9349*15127^(2/15) 6835626071389648 a001 4181/103682*103682^(4/9) 6835626071532429 a001 4181/20633239*167761^(13/15) 6835626071579015 a001 4181/1860498*167761^(2/3) 6835626071650138 a001 4181/271443*817138163596^(2/9) 6835626071650139 a001 4181/271443*87403803^(1/3) 6835626071729327 a001 4181/710647*7881196^(4/9) 6835626071729376 a001 4181/710647*312119004989^(4/15) 6835626071729376 a001 4181/710647*1568397607^(1/3) 6835626071729508 a001 4181/710647*4870847^(11/24) 6835626071736466 a001 4181/710647*710647^(11/21) 6835626071740929 a001 4181/1860498*20633239^(10/21) 6835626071740937 a001 4181/1860498*3461452808002^(5/18) 6835626071740937 a001 4181/1860498*28143753123^(1/3) 6835626071740937 a001 4181/1860498*228826127^(5/12) 6835626071742034 a001 4181/1860498*1860498^(5/9) 6835626071742366 a001 4181/12752043*3010349^(2/3) 6835626071742615 a001 4181/4870847*20633239^(8/15) 6835626071742623 a001 4181/4870847*17393796001^(8/21) 6835626071742623 a001 4181/4870847*23725150497407^(7/24) 6835626071742623 a001 4181/4870847*505019158607^(1/3) 6835626071742623 a001 4181/4870847*10749957122^(7/18) 6835626071742623 a001 4181/4870847*599074578^(4/9) 6835626071742623 a001 4181/4870847*228826127^(7/15) 6835626071742791 a001 4181/4870847*4870847^(7/12) 6835626071742826 a001 4181/141422324*7881196^(7/9) 6835626071742869 a001 4181/12752043*9062201101803^(1/3) 6835626071742896 a001 4181/4106118243*20633239^(14/15) 6835626071742897 a001 4181/2537720636*20633239^(19/21) 6835626071742899 a001 4181/228826127*20633239^(16/21) 6835626071742900 a001 4181/141422324*20633239^(11/15) 6835626071742905 a001 4181/33385282*45537549124^(4/9) 6835626071742909 a001 4181/87403803*54018521^(2/3) 6835626071742911 a001 4181/10749957122*141422324^(8/9) 6835626071742911 a001 4181/228826127*23725150497407^(5/12) 6835626071742911 a001 4181/228826127*505019158607^(10/21) 6835626071742911 a001 4181/228826127*28143753123^(8/15) 6835626071742911 a001 4181/228826127*10749957122^(5/9) 6835626071742911 a001 4181/228826127*228826127^(2/3) 6835626071742911 a001 4181/599074578*969323029^(2/3) 6835626071742911 a001 4181/1568397607*4106118243^(2/3) 6835626071742911 a001 4181/4106118243*17393796001^(2/3) 6835626071742911 a001 4181/4106118243*505019158607^(7/12) 6835626071742911 a001 4181/10749957122*23725150497407^(13/24) 6835626071742911 a001 4181/10749957122*505019158607^(13/21) 6835626071742911 a001 4181/10749957122*73681302247^(2/3) 6835626071742911 a001 4181/3461452808002*17393796001^(20/21) 6835626071742911 a001 4181/119218851371*17393796001^(17/21) 6835626071742911 a001 4181/10749957122*10749957122^(13/18) 6835626071742911 a001 4181/28143753123*312119004989^(2/3) 6835626071742911 a001 4181/28143753123*3461452808002^(11/18) 6835626071742911 a001 4181/28143753123*28143753123^(11/15) 6835626071742911 a001 4181/119218851371*45537549124^(7/9) 6835626071742911 a001 4181/73681302247*1322157322203^(2/3) 6835626071742911 a001 4181/192900153618*5600748293801^(2/3) 6835626071742911 a001 4181/5600748293801*312119004989^(13/15) 6835626071742911 a001 4181/505019158607*23725150497407^(2/3) 6835626071742911 a001 4181/3461452808002*3461452808002^(7/9) 6835626071742911 a001 4181/23725150497407*23725150497407^(19/24) 6835626071742911 a001 4181/3461452808002*505019158607^(5/6) 6835626071742911 a001 4181/23725150497407*505019158607^(19/21) 6835626071742911 a001 4181/119218851371*505019158607^(17/24) 6835626071742911 a001 4181/5600748293801*73681302247^(11/12) 6835626071742911 a001 4181/312119004989*28143753123^(5/6) 6835626071742911 a001 4181/3461452808002*28143753123^(14/15) 6835626071742911 a001 4181/505019158607*10749957122^(8/9) 6835626071742911 a001 4181/2537720636*817138163596^(5/9) 6835626071742911 a001 4181/28143753123*1568397607^(5/6) 6835626071742911 a001 4181/4106118243*599074578^(7/9) 6835626071742911 a001 4181/119218851371*599074578^(17/18) 6835626071742911 a001 4181/2537720636*228826127^(19/24) 6835626071742911 a001 4181/10749957122*228826127^(13/15) 6835626071742911 a001 4181/28143753123*228826127^(11/12) 6835626071742912 a001 4181/141422324*17393796001^(11/21) 6835626071742912 a001 4181/141422324*312119004989^(7/15) 6835626071742912 a001 4181/141422324*505019158607^(11/24) 6835626071742912 a001 4181/141422324*1568397607^(7/12) 6835626071742912 a001 4181/141422324*599074578^(11/18) 6835626071742912 a001 4181/2537720636*87403803^(5/6) 6835626071742917 a001 4181/20633239*20633239^(13/21) 6835626071742927 a001 4181/20633239*141422324^(5/9) 6835626071742927 a001 4181/20633239*73681302247^(5/12) 6835626071742927 a001 4181/20633239*228826127^(13/24) 6835626071742933 a001 4181/33385282*12752043^(2/3) 6835626071743021 a001 4181/7881196*2139295485799^(1/3) 6835626071743109 a001 4181/33385282*4870847^(17/24) 6835626071743151 a001 4181/228826127*4870847^(5/6) 6835626071743187 a001 4181/1568397607*4870847^(23/24) 6835626071743666 a001 4181/3010349*119218851371^(1/3) 6835626071744354 a001 4181/20633239*1860498^(13/18) 6835626071744667 a001 4181/228826127*1860498^(8/9) 6835626071748081 a001 4181/1149851*6643838879^(1/3) 6835626071751647 a001 4181/4870847*710647^(2/3) 6835626071753862 a001 4181/33385282*710647^(17/21) 6835626071755319 a001 4181/141422324*710647^(11/12) 6835626071755802 a001 4181/228826127*710647^(20/21) 6835626071778347 a001 4181/439204*370248451^(1/3) 6835626071820238 a001 4181/20633239*271443^(5/6) 6835626071872449 a001 4181/167761*167761^(7/15) 6835626071985789 a001 4181/167761*20633239^(1/3) 6835626071985794 a001 4181/167761*17393796001^(5/21) 6835626071985794 a001 4181/167761*505019158607^(5/24) 6835626071985794 a001 4181/167761*599074578^(5/18) 6835626071985794 a001 4181/167761*228826127^(7/24) 6835626071986562 a001 4181/167761*1860498^(7/18) 6835626071991434 a001 4181/167761*710647^(5/12) 6835626072102790 a001 46368/9349*15127^(1/30) 6835626072117966 a001 4181/710647*103682^(11/18) 6835626072237192 a001 4181/4870847*103682^(7/9) 6835626072343454 a001 4181/33385282*103682^(17/18) 6835626072985203 a001 6765/103682*5778^(29/54) 6835626073220176 a001 4181/103682*39603^(16/33) 6835626073391462 a001 28657/9349*167761^(1/15) 6835626073405930 a001 4181/64079*1149851^(1/3) 6835626073407653 a001 4181/64079*1322157322203^(1/6) 6835626073407653 a001 28657/9349*20633239^(1/21) 6835626073407654 a001 28657/9349*228826127^(1/24) 6835626073407764 a001 28657/9349*1860498^(1/18) 6835626074159492 a001 4181/271443*39603^(19/33) 6835626074543975 a001 305/51841*1364^(44/45) 6835626074634943 a001 4181/710647*39603^(2/3) 6835626075042717 a001 4181/1860498*39603^(25/33) 6835626075440617 a001 4181/4870847*39603^(28/33) 6835626075749464 a001 17711/103682*5778^(23/54) 6835626075897035 a001 28657/9349*15127^(1/12) 6835626076420666 a001 10946/39603*5778^(10/27) 6835626078690359 a001 46368/9349*5778^(1/27) 6835626080015042 a001 15456/90481*5778^(23/54) 6835626080329344 a001 4181/39603*15127^(13/30) 6835626080520021 a001 2255/1926*2207^(11/48) 6835626080637381 a001 121393/710647*5778^(23/54) 6835626080728179 a001 105937/620166*5778^(23/54) 6835626080741426 a001 832040/4870847*5778^(23/54) 6835626080749614 a001 514229/3010349*5778^(23/54) 6835626080784295 a001 196418/1149851*5778^(23/54) 6835626080814342 a001 5473/12238*5778^(17/54) 6835626081022008 a001 75025/439204*5778^(23/54) 6835626081064794 a001 1292/2889*2207^(17/48) 6835626082598306 a001 4181/24476*64079^(1/3) 6835626082651313 a001 28657/167761*5778^(23/54) 6835626083153209 a001 10946/9349*7881196^(1/9) 6835626083153220 a001 4181/24476*4106118243^(1/6) 6835626083153221 a001 10946/9349*312119004989^(1/15) 6835626083153221 a001 10946/9349*1568397607^(1/12) 6835626083879613 a001 10946/9349*39603^(1/6) 6835626085238942 a001 615/15251*5778^(16/27) 6835626087039078 a001 4181/103682*15127^(8/15) 6835626087846065 a001 4181/64079*15127^(29/60) 6835626088003204 a001 17711/167761*5778^(13/27) 6835626088629860 a001 10946/9349*15127^(11/60) 6835626089411464 a001 4181/167761*15127^(7/12) 6835626089499590 r005 Im(z^2+c),c=-3/28+57/64*I,n=20 6835626090569437 a001 4181/271443*15127^(19/30) 6835626091518233 a001 11592/109801*5778^(13/27) 6835626092031069 a001 121393/1149851*5778^(13/27) 6835626092105891 a001 317811/3010349*5778^(13/27) 6835626092123554 a001 514229/4870847*5778^(13/27) 6835626092152133 a001 98209/930249*5778^(13/27) 6835626092191275 a001 4181/439204*15127^(41/60) 6835626092348019 a001 75025/710647*5778^(13/27) 6835626092365958 a001 28657/9349*5778^(5/54) 6835626092743493 a001 24476/89*1346269^(2/31) 6835626093635932 a001 4181/710647*15127^(11/15) 6835626093690641 a001 28657/271443*5778^(13/27) 6835626093818740 a001 10946/64079*5778^(23/54) 6835626094604375 a001 4181/24476*15127^(23/60) 6835626094953587 a001 6765/9349*5778^(7/27) 6835626095148267 a001 4181/1149851*15127^(47/60) 6835626096278269 a001 2255/90481*5778^(35/54) 6835626096634751 a001 4181/1860498*15127^(5/6) 6835626097717849 a001 17711/9349*5778^(4/27) 6835626098131109 a001 4181/3010349*15127^(53/60) 6835626098884539 a001 1597/167761*3571^(41/51) 6835626099042531 a001 17711/271443*5778^(29/54) 6835626099623695 a001 4181/4870847*15127^(14/15) 6835626102844244 a001 6624/101521*5778^(29/54) 6835626102893106 a001 5473/51841*5778^(13/27) 6835626103398907 a001 121393/1860498*5778^(29/54) 6835626103479831 a001 317811/4870847*5778^(29/54) 6835626103529845 a001 196418/3010349*5778^(29/54) 6835626103741707 a001 75025/1149851*5778^(29/54) 6835626104105015 a007 Real Root Of -963*x^4+883*x^3+174*x^2+455*x+722 6835626105193832 a001 28657/439204*5778^(29/54) 6835626107781461 a001 6765/439204*5778^(19/27) 6835626109002390 l006 ln(4770/9449) 6835626109211944 a001 6624/2161*2207^(5/48) 6835626110545723 a001 17711/439204*5778^(16/27) 6835626114237932 a001 46368/1149851*5778^(16/27) 6835626114615010 a001 1597/5778*3571^(20/51) 6835626114776618 a001 121393/3010349*5778^(16/27) 6835626114903785 a001 196418/4870847*5778^(16/27) 6835626115109545 a001 75025/1860498*5778^(16/27) 6835626115146846 a001 10946/167761*5778^(29/54) 6835626116519843 a001 28657/710647*5778^(16/27) 6835626117703551 a001 4181/15127*5778^(10/27) 6835626119107472 a001 6765/710647*5778^(41/54) 6835626120860302 a007 Real Root Of -997*x^4+159*x^3+500*x^2+957*x+689 6835626121871734 a001 17711/710647*5778^(35/54) 6835626124861491 a001 10946/9349*5778^(11/54) 6835626125296043 r002 24th iterates of z^2 + 6835626125605770 a001 2576/103361*5778^(35/54) 6835626126150558 a001 121393/4870847*5778^(35/54) 6835626126186173 a001 10946/271443*5778^(16/27) 6835626126487256 a001 75025/3010349*5778^(35/54) 6835626126625313 a001 4181/9349*9349^(17/57) 6835626127913531 a001 28657/1149851*5778^(35/54) 6835626129537645 a001 1597/103682*3571^(38/51) 6835626129581000 a001 46368/9349*2207^(1/24) 6835626130501160 a001 6765/1149851*5778^(22/27) 6835626132755789 a001 10946/3571*1364^(1/9) 6835626133265422 a001 17711/1149851*5778^(19/27) 6835626135269273 a001 121393/39603*2207^(5/48) 6835626136983482 a001 46368/3010349*5778^(19/27) 6835626137689365 a001 5473/219602*5778^(35/54) 6835626137861196 a001 75025/4870847*5778^(19/27) 6835626139070986 a001 317811/103682*2207^(5/48) 6835626139281369 a001 28657/1860498*5778^(19/27) 6835626139625649 a001 832040/271443*2207^(5/48) 6835626139706573 a001 311187/101521*2207^(5/48) 6835626139756587 a001 1346269/439204*2207^(5/48) 6835626139968449 a001 514229/167761*2207^(5/48) 6835626141420574 a001 196418/64079*2207^(5/48) 6835626141868998 a001 55/15126*5778^(47/54) 6835626144633260 a001 17711/1860498*5778^(41/54) 6835626144637288 a007 Real Root Of 403*x^4-501*x^3+845*x^2+898*x-29 6835626148357422 a001 46368/4870847*5778^(41/54) 6835626149015376 a001 10946/710647*5778^(19/27) 6835626149950334 a001 4181/9349*45537549124^(1/9) 6835626149950341 a001 4181/9349*12752043^(1/6) 6835626150659081 a001 28657/3010349*5778^(41/54) 6835626151373588 a001 75025/24476*2207^(5/48) 6835626153246710 a001 6765/3010349*5778^(25/27) 6835626156010971 a001 17711/3010349*5778^(22/27) 6835626157064648 a001 3571/1346269*17711^(3/31) 6835626158414231 a001 4181/9349*15127^(17/60) 6835626160409064 a001 10946/1149851*5778^(41/54) 6835626162033021 a001 28657/4870847*5778^(22/27) 6835626163370124 a001 1597/64079*3571^(35/51) 6835626164620650 a001 6765/4870847*5778^(53/54) 6835626165967743 a001 4181/39603*5778^(13/27) 6835626167384912 a001 17711/4870847*5778^(47/54) 6835626170361420 a001 4181/24476*5778^(23/54) 6835626171776902 a001 5473/930249*5778^(22/27) 6835626177678771 a001 2584/3571*3571^(14/51) 6835626183154613 a001 10946/3010349*5778^(47/54) 6835626183365818 a001 4181/64079*5778^(29/54) 6835626188878895 a001 1597/39603*3571^(32/51) 6835626192440184 a001 4181/103682*5778^(16/27) 6835626194528554 a001 10946/4870847*5778^(25/27) 6835626198544672 r005 Im(z^2+c),c=-1/18+41/60*I,n=46 6835626199223505 a001 28657/15127*2207^(1/6) 6835626204693924 a001 4181/167761*5778^(35/54) 6835626214408569 a001 4181/9349*5778^(17/54) 6835626215733252 a001 4181/271443*5778^(19/27) 6835626219592561 a001 28657/9349*2207^(5/48) 6835626221304463 r005 Re(z^2+c),c=-39/58+24/55*I,n=13 6835626223315873 a001 75025/39603*2207^(1/6) 6835626226428394 a001 1597/15127*3571^(26/51) 6835626226830902 a001 98209/51841*2207^(1/6) 6835626227236443 a001 4181/439204*5778^(41/54) 6835626227343738 a001 514229/271443*2207^(1/6) 6835626227418560 a001 1346269/710647*2207^(1/6) 6835626227429476 a001 1762289/930249*2207^(1/6) 6835626227431069 a001 9227465/4870847*2207^(1/6) 6835626227431301 a001 24157817/12752043*2207^(1/6) 6835626227431335 a001 31622993/16692641*2207^(1/6) 6835626227431340 a001 165580141/87403803*2207^(1/6) 6835626227431341 a001 433494437/228826127*2207^(1/6) 6835626227431341 a001 567451585/299537289*2207^(1/6) 6835626227431341 a001 2971215073/1568397607*2207^(1/6) 6835626227431341 a001 7778742049/4106118243*2207^(1/6) 6835626227431341 a001 10182505537/5374978561*2207^(1/6) 6835626227431341 a001 53316291173/28143753123*2207^(1/6) 6835626227431341 a001 139583862445/73681302247*2207^(1/6) 6835626227431341 a001 182717648081/96450076809*2207^(1/6) 6835626227431341 a001 956722026041/505019158607*2207^(1/6) 6835626227431341 a001 10610209857723/5600748293801*2207^(1/6) 6835626227431341 a001 591286729879/312119004989*2207^(1/6) 6835626227431341 a001 225851433717/119218851371*2207^(1/6) 6835626227431341 a001 21566892818/11384387281*2207^(1/6) 6835626227431341 a001 32951280099/17393796001*2207^(1/6) 6835626227431341 a001 12586269025/6643838879*2207^(1/6) 6835626227431341 a001 1201881744/634430159*2207^(1/6) 6835626227431341 a001 1836311903/969323029*2207^(1/6) 6835626227431341 a001 701408733/370248451*2207^(1/6) 6835626227431341 a001 66978574/35355581*2207^(1/6) 6835626227431343 a001 102334155/54018521*2207^(1/6) 6835626227431356 a001 39088169/20633239*2207^(1/6) 6835626227431445 a001 3732588/1970299*2207^(1/6) 6835626227432053 a001 5702887/3010349*2207^(1/6) 6835626227436223 a001 2178309/1149851*2207^(1/6) 6835626227464802 a001 208010/109801*2207^(1/6) 6835626227660688 a001 317811/167761*2207^(1/6) 6835626229003310 a001 121393/64079*2207^(1/6) 6835626236179418 a001 1597/24476*3571^(29/51) 6835626238205776 a001 11592/6119*2207^(1/6) 6835626238562455 a001 4181/710647*5778^(22/27) 6835626241172830 m001 (FeigenbaumKappa-Shi(1))/(MertensB1+ZetaP(3)) 6835626248491988 a001 28657/5778*843^(1/21) 6835626249956143 a001 4181/1149851*5778^(47/54) 6835626250656944 r009 Im(z^3+c),c=-29/86+37/57*I,n=24 6835626260198362 m001 TwinPrimes^(GAMMA(3/4)*RenyiParking) 6835626261323981 a001 4181/1860498*5778^(25/27) 6835626272701693 a001 4181/3010349*5778^(53/54) 6835626276310965 a001 4181/5778*2207^(7/24) 6835626280911359 a001 17711/15127*2207^(11/48) 6835626281333986 a007 Real Root Of 394*x^4-101*x^3+503*x^2-238*x-516 6835626293851435 a007 Real Root Of -39*x^4+924*x^3+168*x^2+901*x-981 6835626297386230 a001 1597/5778*9349^(20/57) 6835626301280415 a001 17711/9349*2207^(1/6) 6835626305618626 a001 2584/3571*9349^(14/57) 6835626310148062 a001 15456/13201*2207^(11/48) 6835626313712767 a007 Real Root Of 985*x^4+283*x^3+731*x^2+132*x-376 6835626314413639 a001 121393/103682*2207^(11/48) 6835626315035979 a001 105937/90481*2207^(11/48) 6835626315126777 a001 832040/710647*2207^(11/48) 6835626315140024 a001 726103/620166*2207^(11/48) 6835626315148211 a001 1346269/1149851*2207^(11/48) 6835626315182893 a001 514229/439204*2207^(11/48) 6835626315420606 a001 196418/167761*2207^(11/48) 6835626317049911 a001 75025/64079*2207^(11/48) 6835626321783600 a001 610/64079*1364^(41/45) 6835626322291843 a001 2584/3571*24476^(2/9) 6835626324762663 a001 1597/5778*167761^(4/15) 6835626324827428 a001 1597/5778*20633239^(4/21) 6835626324827431 a001 1597/5778*3461452808002^(1/9) 6835626324827431 a001 1597/5778*28143753123^(2/15) 6835626324827431 a001 1597/5778*228826127^(1/6) 6835626324827465 a001 2584/3571*20633239^(2/15) 6835626324827467 a001 2584/3571*17393796001^(2/21) 6835626324827467 a001 2584/3571*505019158607^(1/12) 6835626324827467 a001 2584/3571*599074578^(1/9) 6835626324827491 a001 1597/5778*4870847^(5/24) 6835626324827870 a001 1597/5778*1860498^(2/9) 6835626324829723 a001 2584/3571*710647^(1/6) 6835626324830654 a001 1597/5778*710647^(5/21) 6835626325004063 a001 1597/5778*103682^(5/18) 6835626325627451 m001 ln(Si(Pi))^2*DuboisRaymond^2/Riemann2ndZero 6835626325751966 a001 2584/3571*39603^(7/33) 6835626326148143 a001 1597/5778*39603^(10/33) 6835626328217338 a001 28657/24476*2207^(11/48) 6835626329478822 a007 Real Root Of 113*x^4+638*x^3-895*x^2+225*x+422 6835626331151058 a007 Real Root Of 743*x^4-376*x^3+936*x^2-217*x-868 6835626331797735 a001 2584/3571*15127^(7/30) 6835626334784957 a001 1597/5778*15127^(1/3) 6835626343725338 r005 Im(z^2+c),c=-41/30+14/109*I,n=8 6835626345438792 a007 Real Root Of -16*x^4+255*x^3-316*x^2+754*x+748 6835626357711803 q001 944/1381 6835626357733976 a007 Real Root Of -867*x^4+683*x^3+423*x^2+979*x+879 6835626361926140 a001 17711/3571*1364^(2/45) 6835626364571826 l006 ln(4141/8203) 6835626366040260 a001 1597/9349*3571^(23/51) 6835626371862789 m005 (1/2*Zeta(3)-5/7)/(7/12*Catalan-7/10) 6835626374905044 a007 Real Root Of -54*x^4+479*x^3-97*x^2+408*x+489 6835626377910721 a001 2584/3571*5778^(7/27) 6835626384390965 a001 10946/15127*2207^(7/24) 6835626400159625 a001 28657/39603*2207^(7/24) 6835626400660651 a001 1597/5778*5778^(10/27) 6835626402460242 a001 75025/103682*2207^(7/24) 6835626402795897 a001 196418/271443*2207^(7/24) 6835626402844869 a001 514229/710647*2207^(7/24) 6835626402852014 a001 1346269/1860498*2207^(7/24) 6835626402853056 a001 3524578/4870847*2207^(7/24) 6835626402853208 a001 9227465/12752043*2207^(7/24) 6835626402853230 a001 24157817/33385282*2207^(7/24) 6835626402853234 a001 63245986/87403803*2207^(7/24) 6835626402853234 a001 165580141/228826127*2207^(7/24) 6835626402853234 a001 433494437/599074578*2207^(7/24) 6835626402853234 a001 1134903170/1568397607*2207^(7/24) 6835626402853234 a001 2971215073/4106118243*2207^(7/24) 6835626402853234 a001 7778742049/10749957122*2207^(7/24) 6835626402853234 a001 20365011074/28143753123*2207^(7/24) 6835626402853234 a001 53316291173/73681302247*2207^(7/24) 6835626402853234 a001 139583862445/192900153618*2207^(7/24) 6835626402853234 a001 365435296162/505019158607*2207^(7/24) 6835626402853234 a001 10610209857723/14662949395604*2207^(7/24) 6835626402853234 a001 591286729879/817138163596*2207^(7/24) 6835626402853234 a001 225851433717/312119004989*2207^(7/24) 6835626402853234 a001 86267571272/119218851371*2207^(7/24) 6835626402853234 a001 32951280099/45537549124*2207^(7/24) 6835626402853234 a001 12586269025/17393796001*2207^(7/24) 6835626402853234 a001 4807526976/6643838879*2207^(7/24) 6835626402853234 a001 1836311903/2537720636*2207^(7/24) 6835626402853234 a001 701408733/969323029*2207^(7/24) 6835626402853234 a001 267914296/370248451*2207^(7/24) 6835626402853234 a001 102334155/141422324*2207^(7/24) 6835626402853236 a001 39088169/54018521*2207^(7/24) 6835626402853244 a001 14930352/20633239*2207^(7/24) 6835626402853302 a001 5702887/7881196*2207^(7/24) 6835626402853700 a001 2178309/3010349*2207^(7/24) 6835626402856429 a001 832040/1149851*2207^(7/24) 6835626402875135 a001 317811/439204*2207^(7/24) 6835626403003344 a001 121393/167761*2207^(7/24) 6835626403882101 a001 46368/64079*2207^(7/24) 6835626404760022 a001 10946/9349*2207^(11/48) 6835626409905193 a001 17711/24476*2207^(7/24) 6835626415619618 a001 6765/3571*3571^(8/51) 6835626418719459 r005 Im(z^2+c),c=-9/118+11/16*I,n=52 6835626421947244 a001 75025/15127*843^(1/21) 6835626430819025 a001 6765/15127*2207^(17/48) 6835626431363798 a001 2584/15127*2207^(23/48) 6835626445367346 p003 LerchPhi(1/8,4,226/205) 6835626447254025 a001 196418/39603*843^(1/21) 6835626450946235 a001 514229/103682*843^(1/21) 6835626451188082 a001 6765/9349*2207^(7/24) 6835626451200292 m001 (-GAMMA(3/4)+ln(5))/(Psi(2,1/3)-Shi(1)) 6835626451484921 a001 1346269/271443*843^(1/21) 6835626451563514 a001 3524578/710647*843^(1/21) 6835626451574981 a001 9227465/1860498*843^(1/21) 6835626451576654 a001 24157817/4870847*843^(1/21) 6835626451576898 a001 63245986/12752043*843^(1/21) 6835626451576933 a001 165580141/33385282*843^(1/21) 6835626451576939 a001 433494437/87403803*843^(1/21) 6835626451576939 a001 1134903170/228826127*843^(1/21) 6835626451576940 a001 2971215073/599074578*843^(1/21) 6835626451576940 a001 7778742049/1568397607*843^(1/21) 6835626451576940 a001 20365011074/4106118243*843^(1/21) 6835626451576940 a001 53316291173/10749957122*843^(1/21) 6835626451576940 a001 139583862445/28143753123*843^(1/21) 6835626451576940 a001 365435296162/73681302247*843^(1/21) 6835626451576940 a001 956722026041/192900153618*843^(1/21) 6835626451576940 a001 2504730781961/505019158607*843^(1/21) 6835626451576940 a001 10610209857723/2139295485799*843^(1/21) 6835626451576940 a001 4052739537881/817138163596*843^(1/21) 6835626451576940 a001 140728068720/28374454999*843^(1/21) 6835626451576940 a001 591286729879/119218851371*843^(1/21) 6835626451576940 a001 225851433717/45537549124*843^(1/21) 6835626451576940 a001 86267571272/17393796001*843^(1/21) 6835626451576940 a001 32951280099/6643838879*843^(1/21) 6835626451576940 a001 1144206275/230701876*843^(1/21) 6835626451576940 a001 4807526976/969323029*843^(1/21) 6835626451576940 a001 1836311903/370248451*843^(1/21) 6835626451576940 a001 701408733/141422324*843^(1/21) 6835626451576942 a001 267914296/54018521*843^(1/21) 6835626451576955 a001 9303105/1875749*843^(1/21) 6835626451577049 a001 39088169/7881196*843^(1/21) 6835626451577688 a001 14930352/3010349*843^(1/21) 6835626451582068 a001 5702887/1149851*843^(1/21) 6835626451612088 a001 2178309/439204*843^(1/21) 6835626451732855 a001 2584/9349*2207^(5/12) 6835626451817847 a001 75640/15251*843^(1/21) 6835626452739785 a001 1597/1860498*9349^(56/57) 6835626453228146 a001 317811/64079*843^(1/21) 6835626456863110 a001 1597/1149851*9349^(53/57) 6835626457877730 r005 Im(z^2+c),c=23/70+16/49*I,n=3 6835626460960585 a001 1597/710647*9349^(50/57) 6835626462894476 a001 121393/24476*843^(1/21) 6835626464030985 a001 1597/15127*9349^(26/57) 6835626465125737 a001 1597/439204*9349^(47/57) 6835626469113708 a001 1597/271443*9349^(44/57) 6835626473524277 r005 Im(z^2+c),c=35/122+15/34*I,n=3 6835626473565544 a001 1597/167761*9349^(41/57) 6835626476802967 a001 1597/103682*9349^(2/3) 6835626481312852 a001 1597/39603*9349^(32/57) 6835626481847481 a001 17711/39603*2207^(17/48) 6835626483219764 a001 1597/64079*9349^(35/57) 6835626488434371 a001 10946/3571*3571^(5/51) 6835626488728109 a001 6765/3571*9349^(8/57) 6835626489292433 a001 23184/51841*2207^(17/48) 6835626490378637 a001 121393/271443*2207^(17/48) 6835626490537112 a001 317811/710647*2207^(17/48) 6835626490560233 a001 416020/930249*2207^(17/48) 6835626490563606 a001 2178309/4870847*2207^(17/48) 6835626490565691 a001 1346269/3010349*2207^(17/48) 6835626490574522 a001 514229/1149851*2207^(17/48) 6835626490635055 a001 98209/219602*2207^(17/48) 6835626491049947 a001 75025/167761*2207^(17/48) 6835626492167758 a001 4181/3571*3571^(11/51) 6835626493893666 a001 28657/64079*2207^(17/48) 6835626499704548 a001 1597/15127*141422324^(2/9) 6835626499704548 a001 1597/15127*73681302247^(1/6) 6835626499704590 a001 6765/3571*23725150497407^(1/24) 6835626499704590 a001 6765/3571*10749957122^(1/18) 6835626499704590 a001 6765/3571*228826127^(1/15) 6835626499704614 a001 6765/3571*4870847^(1/12) 6835626499705879 a001 6765/3571*710647^(2/21) 6835626499735472 a001 1597/15127*271443^(1/3) 6835626499775243 a001 6765/3571*103682^(1/9) 6835626500232875 a001 6765/3571*39603^(4/33) 6835626500533585 a001 4181/2207*843^(4/21) 6835626501197693 a001 1597/24476*9349^(29/57) 6835626501421474 a001 1597/15127*39603^(13/33) 6835626503687600 a001 6765/3571*15127^(2/15) 6835626504197575 a001 17711/3571*3571^(2/51) 6835626512649332 a001 1597/15127*15127^(13/30) 6835626513384802 a001 5473/12238*2207^(17/48) 6835626515723887 r009 Im(z^3+c),c=-15/28+9/61*I,n=19 6835626517290390 a001 4181/1364*521^(5/39) 6835626519432654 a001 1597/1860498*24476^(8/9) 6835626522474698 a001 17711/3571*9349^(2/57) 6835626524902807 a001 1597/64079*24476^(5/9) 6835626525218776 a001 1597/39603*23725150497407^(1/6) 6835626525218776 a001 1597/39603*10749957122^(2/9) 6835626525218776 a001 1597/39603*228826127^(4/15) 6835626525218872 a001 1597/39603*4870847^(1/3) 6835626525223933 a001 1597/39603*710647^(8/21) 6835626525350889 a001 17711/3571*39603^(1/33) 6835626525501387 a001 1597/39603*103682^(4/9) 6835626526214571 a001 17711/3571*15127^(1/30) 6835626527331916 a001 1597/39603*39603^(16/33) 6835626528941252 a001 1597/103682*817138163596^(2/9) 6835626528941252 a001 1597/103682*87403803^(1/3) 6835626529148492 a001 46368/9349*843^(1/21) 6835626529366739 a001 1597/7881196*167761^(13/15) 6835626529401670 a001 1597/710647*167761^(2/3) 6835626529484305 a001 1597/271443*7881196^(4/9) 6835626529484354 a001 1597/271443*312119004989^(4/15) 6835626529484354 a001 1597/271443*1568397607^(1/3) 6835626529484486 a001 1597/271443*4870847^(11/24) 6835626529491444 a001 1597/271443*710647^(11/21) 6835626529563584 a001 1597/710647*20633239^(10/21) 6835626529563591 a001 1597/710647*3461452808002^(5/18) 6835626529563591 a001 1597/710647*28143753123^(1/3) 6835626529563591 a001 1597/710647*228826127^(5/12) 6835626529564688 a001 1597/710647*1860498^(5/9) 6835626529575143 a001 1597/1860498*20633239^(8/15) 6835626529575152 a001 1597/1860498*17393796001^(8/21) 6835626529575152 a001 1597/1860498*23725150497407^(7/24) 6835626529575152 a001 1597/1860498*505019158607^(1/3) 6835626529575152 a001 1597/1860498*10749957122^(7/18) 6835626529575152 a001 1597/1860498*599074578^(4/9) 6835626529575152 a001 1597/1860498*228826127^(7/15) 6835626529575320 a001 1597/1860498*4870847^(7/12) 6835626529576336 a001 1597/4870847*3010349^(2/3) 6835626529576839 a001 1597/4870847*9062201101803^(1/3) 6835626529577043 a001 1597/54018521*7881196^(7/9) 6835626529577085 a001 1597/12752043*45537549124^(4/9) 6835626529577112 a001 1597/1568397607*20633239^(14/15) 6835626529577112 a001 1597/969323029*20633239^(19/21) 6835626529577113 a001 1597/12752043*12752043^(2/3) 6835626529577114 a001 1597/87403803*20633239^(16/21) 6835626529577117 a001 1597/54018521*20633239^(11/15) 6835626529577119 a001 1597/33385282*54018521^(2/3) 6835626529577126 a001 1597/87403803*23725150497407^(5/12) 6835626529577126 a001 1597/87403803*505019158607^(10/21) 6835626529577126 a001 1597/87403803*28143753123^(8/15) 6835626529577126 a001 1597/87403803*10749957122^(5/9) 6835626529577126 a001 1597/87403803*228826127^(2/3) 6835626529577126 a001 1597/4106118243*141422324^(8/9) 6835626529577127 a001 1597/228826127*969323029^(2/3) 6835626529577127 a001 1597/599074578*4106118243^(2/3) 6835626529577127 a001 1597/1568397607*17393796001^(2/3) 6835626529577127 a001 1597/1568397607*505019158607^(7/12) 6835626529577127 a001 1597/4106118243*23725150497407^(13/24) 6835626529577127 a001 1597/4106118243*505019158607^(13/21) 6835626529577127 a001 1597/4106118243*73681302247^(2/3) 6835626529577127 a001 1597/4106118243*10749957122^(13/18) 6835626529577127 a001 1597/10749957122*312119004989^(2/3) 6835626529577127 a001 1597/10749957122*3461452808002^(11/18) 6835626529577127 a001 1597/10749957122*28143753123^(11/15) 6835626529577127 a001 1597/1322157322203*17393796001^(20/21) 6835626529577127 a001 1597/45537549124*17393796001^(17/21) 6835626529577127 a001 1597/28143753123*1322157322203^(2/3) 6835626529577127 a001 1597/73681302247*5600748293801^(2/3) 6835626529577127 a001 1597/192900153618*23725150497407^(2/3) 6835626529577127 a001 1597/192900153618*505019158607^(16/21) 6835626529577127 a001 1597/2139295485799*312119004989^(13/15) 6835626529577127 a001 1597/1322157322203*3461452808002^(7/9) 6835626529577127 a001 1597/9062201101803*23725150497407^(19/24) 6835626529577127 a001 1597/14662949395604*9062201101803^(5/6) 6835626529577127 a001 1597/1322157322203*505019158607^(5/6) 6835626529577127 a001 1597/9062201101803*505019158607^(19/21) 6835626529577127 a001 1597/45537549124*45537549124^(7/9) 6835626529577127 a001 1597/2139295485799*73681302247^(11/12) 6835626529577127 a001 1597/45537549124*505019158607^(17/24) 6835626529577127 a001 1597/119218851371*28143753123^(5/6) 6835626529577127 a001 1597/1322157322203*28143753123^(14/15) 6835626529577127 a001 1597/192900153618*10749957122^(8/9) 6835626529577127 a001 1597/10749957122*1568397607^(5/6) 6835626529577127 a001 1597/969323029*817138163596^(5/9) 6835626529577127 a001 1597/1568397607*599074578^(7/9) 6835626529577127 a001 1597/45537549124*599074578^(17/18) 6835626529577127 a001 1597/969323029*228826127^(19/24) 6835626529577127 a001 1597/4106118243*228826127^(13/15) 6835626529577127 a001 1597/10749957122*228826127^(11/12) 6835626529577127 a001 1597/969323029*87403803^(5/6) 6835626529577129 a001 1597/54018521*17393796001^(11/21) 6835626529577129 a001 1597/54018521*312119004989^(7/15) 6835626529577129 a001 1597/54018521*505019158607^(11/24) 6835626529577129 a001 1597/54018521*1568397607^(7/12) 6835626529577129 a001 1597/54018521*599074578^(11/18) 6835626529577227 a001 1597/7881196*20633239^(13/21) 6835626529577237 a001 1597/7881196*141422324^(5/9) 6835626529577237 a001 1597/7881196*73681302247^(5/12) 6835626529577237 a001 1597/7881196*228826127^(13/24) 6835626529577289 a001 1597/12752043*4870847^(17/24) 6835626529577366 a001 1597/87403803*4870847^(5/6) 6835626529577403 a001 1597/599074578*4870847^(23/24) 6835626529577881 a001 1597/3010349*2139295485799^(1/3) 6835626529578663 a001 1597/7881196*1860498^(13/18) 6835626529578881 a001 1597/87403803*1860498^(8/9) 6835626529582297 a001 1597/1149851*119218851371^(1/3) 6835626529584176 a001 1597/1860498*710647^(2/3) 6835626529588042 a001 1597/12752043*710647^(17/21) 6835626529589537 a001 1597/54018521*710647^(11/12) 6835626529590017 a001 1597/87403803*710647^(20/21) 6835626529612563 a001 1597/439204*6643838879^(1/3) 6835626529654548 a001 1597/7881196*271443^(5/6) 6835626529820009 a001 1597/167761*370248451^(1/3) 6835626529872944 a001 1597/271443*103682^(11/18) 6835626530037878 a001 6765/3571*5778^(4/27) 6835626530069721 a001 1597/1860498*103682^(7/9) 6835626530177633 a001 1597/12752043*103682^(17/18) 6835626530766075 m001 (BesselI(0,1)-gamma(3))/(Pi^(1/2)+ZetaP(4)) 6835626531128523 a001 1597/64079*167761^(7/15) 6835626531241863 a001 1597/64079*20633239^(1/3) 6835626531241868 a001 1597/64079*17393796001^(5/21) 6835626531241868 a001 1597/64079*505019158607^(5/24) 6835626531241868 a001 1597/64079*599074578^(5/18) 6835626531241869 a001 1597/64079*228826127^(7/24) 6835626531242636 a001 1597/64079*1860498^(7/18) 6835626531247508 a001 1597/64079*710647^(5/12) 6835626531450605 a001 1597/103682*39603^(19/33) 6835626532389921 a001 1597/271443*39603^(2/3) 6835626532802140 a001 17711/3571*5778^(1/27) 6835626532865372 a001 1597/710647*39603^(25/33) 6835626533273146 a001 1597/1860498*39603^(28/33) 6835626533671047 a001 1597/4870847*39603^(31/33) 6835626534127178 a001 10946/3571*9349^(5/57) 6835626540971286 a001 10946/3571*167761^(1/15) 6835626540985713 a001 1597/24476*1149851^(1/3) 6835626540987437 a001 1597/24476*1322157322203^(1/6) 6835626540987478 a001 10946/3571*20633239^(1/21) 6835626540987479 a001 10946/3571*228826127^(1/24) 6835626540987588 a001 10946/3571*1860498^(1/18) 6835626541150818 a001 1597/39603*15127^(8/15) 6835626543476860 a001 10946/3571*15127^(1/12) 6835626547860552 a001 1597/103682*15127^(19/30) 6835626548667539 a001 1597/64079*15127^(7/12) 6835626550232938 a001 1597/167761*15127^(41/60) 6835626551390912 a001 1597/271443*15127^(11/15) 6835626553012750 a001 1597/439204*15127^(47/60) 6835626554457407 a001 1597/710647*15127^(5/6) 6835626555239370 m005 (1/3*5^(1/2)-1/10)/(1/6*5^(1/2)+4/7) 6835626555425850 a001 1597/24476*15127^(29/60) 6835626555969741 a001 1597/1149851*15127^(53/60) 6835626557456226 a001 1597/1860498*15127^(14/15) 6835626558952584 a001 1597/3010349*15127^(59/60) 6835626559812862 a001 6765/24476*2207^(5/12) 6835626559945784 a001 10946/3571*5778^(5/54) 6835626560357635 a001 646/6119*2207^(13/24) 6835626560699526 a001 610/39603*1364^(38/45) 6835626575581523 a001 17711/64079*2207^(5/12) 6835626575678926 m001 DuboisRaymond-Kolakoski^BesselI(1,1) 6835626576227171 a001 1597/9349*9349^(23/57) 6835626577882140 a001 46368/167761*2207^(5/12) 6835626578217795 a001 121393/439204*2207^(5/12) 6835626578266766 a001 317811/1149851*2207^(5/12) 6835626578273911 a001 832040/3010349*2207^(5/12) 6835626578274954 a001 2178309/7881196*2207^(5/12) 6835626578275106 a001 5702887/20633239*2207^(5/12) 6835626578275128 a001 14930352/54018521*2207^(5/12) 6835626578275131 a001 39088169/141422324*2207^(5/12) 6835626578275132 a001 102334155/370248451*2207^(5/12) 6835626578275132 a001 267914296/969323029*2207^(5/12) 6835626578275132 a001 701408733/2537720636*2207^(5/12) 6835626578275132 a001 1836311903/6643838879*2207^(5/12) 6835626578275132 a001 4807526976/17393796001*2207^(5/12) 6835626578275132 a001 12586269025/45537549124*2207^(5/12) 6835626578275132 a001 32951280099/119218851371*2207^(5/12) 6835626578275132 a001 86267571272/312119004989*2207^(5/12) 6835626578275132 a001 225851433717/817138163596*2207^(5/12) 6835626578275132 a001 1548008755920/5600748293801*2207^(5/12) 6835626578275132 a001 139583862445/505019158607*2207^(5/12) 6835626578275132 a001 53316291173/192900153618*2207^(5/12) 6835626578275132 a001 20365011074/73681302247*2207^(5/12) 6835626578275132 a001 7778742049/28143753123*2207^(5/12) 6835626578275132 a001 2971215073/10749957122*2207^(5/12) 6835626578275132 a001 1134903170/4106118243*2207^(5/12) 6835626578275132 a001 433494437/1568397607*2207^(5/12) 6835626578275132 a001 165580141/599074578*2207^(5/12) 6835626578275132 a001 63245986/228826127*2207^(5/12) 6835626578275133 a001 24157817/87403803*2207^(5/12) 6835626578275142 a001 9227465/33385282*2207^(5/12) 6835626578275200 a001 3524578/12752043*2207^(5/12) 6835626578275598 a001 1346269/4870847*2207^(5/12) 6835626578278327 a001 514229/1860498*2207^(5/12) 6835626578297032 a001 196418/710647*2207^(5/12) 6835626578425241 a001 75025/271443*2207^(5/12) 6835626579303999 a001 28657/103682*2207^(5/12) 6835626581545529 m001 (GAMMA(17/24)+Champernowne)/(Ei(1)-Zeta(1,-1)) 6835626583692785 a001 17711/3571*2207^(1/24) 6835626585327091 a001 10946/39603*2207^(5/12) 6835626592691934 a001 4181/3571*9349^(11/57) 6835626598287736 a001 1597/15127*5778^(13/27) 6835626606471134 m001 Salem^FibonacciFactorial/(Salem^FeigenbaumMu) 6835626607229641 a001 1597/9349*64079^(1/3) 6835626607784554 a001 1597/9349*4106118243^(1/6) 6835626607784583 a001 4181/3571*7881196^(1/9) 6835626607784596 a001 4181/3571*312119004989^(1/15) 6835626607784596 a001 4181/3571*1568397607^(1/12) 6835626608510987 a001 4181/3571*39603^(1/6) 6835626608861479 m001 Psi(1,1/3)*Zeta(1/2)*arctan(1/2) 6835626609277681 a001 233/15127*521^(38/39) 6835626613127606 a007 Real Root Of -726*x^4+586*x^3-119*x^2+332*x-200 6835626613261235 a001 4181/3571*15127^(11/60) 6835626618352973 m001 (2^(1/3))^polylog(4,1/2)/exp(1/2) 6835626619235710 a001 1597/9349*15127^(23/60) 6835626622713806 m001 (FeigenbaumB+TwinPrimes)/(ln(3)-ln(2+3^(1/2))) 6835626626609980 a001 4181/15127*2207^(5/12) 6835626631316811 a001 610/2207*1364^(4/9) 6835626631755152 a001 2255/13201*2207^(23/48) 6835626632299925 a001 2584/39603*2207^(29/48) 6835626646551932 a001 1597/39603*5778^(16/27) 6835626646979037 a001 4181/9349*2207^(17/48) 6835626649492868 a001 4181/3571*5778^(11/54) 6835626650945609 a001 1597/24476*5778^(29/54) 6835626660991857 a001 17711/103682*2207^(23/48) 6835626663950008 a001 1597/64079*5778^(35/54) 6835626665257435 a001 15456/90481*2207^(23/48) 6835626665879774 a001 121393/710647*2207^(23/48) 6835626665970572 a001 105937/620166*2207^(23/48) 6835626665983819 a001 832040/4870847*2207^(23/48) 6835626665992007 a001 514229/3010349*2207^(23/48) 6835626666026688 a001 196418/1149851*2207^(23/48) 6835626666264401 a001 75025/439204*2207^(23/48) 6835626667893707 a001 28657/167761*2207^(23/48) 6835626669091613 l006 ln(9428/10095) 6835626673024375 a001 1597/103682*5778^(19/27) 6835626678944839 a007 Real Root Of 448*x^4-75*x^3+127*x^2-980*x-851 6835626679061134 a001 10946/64079*2207^(23/48) 6835626685278116 a001 1597/167761*5778^(41/54) 6835626687172396 a001 10946/3571*2207^(5/48) 6835626694992761 a001 1597/9349*5778^(23/54) 6835626696317444 a001 1597/271443*5778^(22/27) 6835626704562220 r005 Re(z^2+c),c=-9/14+41/121*I,n=15 6835626707820636 a001 1597/439204*5778^(47/54) 6835626708839536 m001 (MadelungNaCl+ZetaQ(4))/(ln(3)-Zeta(1/2)) 6835626711686340 l006 ln(3512/6957) 6835626719146648 a001 1597/710647*5778^(25/27) 6835626725489196 a001 6765/64079*2207^(13/24) 6835626726033969 a001 2584/64079*2207^(2/3) 6835626730540337 a001 1597/1149851*5778^(53/54) 6835626732387467 m005 (1/2*2^(1/2)+5/12)/(5/7*Pi-3/5) 6835626732555028 a007 Real Root Of 752*x^4+333*x^3+682*x^2-681*x-842 6835626733600458 a001 6765/3571*2207^(1/6) 6835626734145230 a001 2584/3571*2207^(7/24) 6835626734820899 m001 gamma/(exp(-1/2*Pi)^OneNinth) 6835626748079331 a007 Real Root Of 576*x^4-439*x^3-597*x^2-196*x-121 6835626749581566 a001 17711/167761*2207^(13/24) 6835626753096595 a001 11592/109801*2207^(13/24) 6835626753609431 a001 121393/1149851*2207^(13/24) 6835626753684253 a001 317811/3010349*2207^(13/24) 6835626753695169 a001 208010/1970299*2207^(13/24) 6835626753696762 a001 2178309/20633239*2207^(13/24) 6835626753696994 a001 5702887/54018521*2207^(13/24) 6835626753697028 a001 3732588/35355581*2207^(13/24) 6835626753697033 a001 39088169/370248451*2207^(13/24) 6835626753697034 a001 102334155/969323029*2207^(13/24) 6835626753697034 a001 66978574/634430159*2207^(13/24) 6835626753697034 a001 701408733/6643838879*2207^(13/24) 6835626753697034 a001 1836311903/17393796001*2207^(13/24) 6835626753697034 a001 1201881744/11384387281*2207^(13/24) 6835626753697034 a001 12586269025/119218851371*2207^(13/24) 6835626753697034 a001 32951280099/312119004989*2207^(13/24) 6835626753697034 a001 21566892818/204284540899*2207^(13/24) 6835626753697034 a001 225851433717/2139295485799*2207^(13/24) 6835626753697034 a001 182717648081/1730726404001*2207^(13/24) 6835626753697034 a001 139583862445/1322157322203*2207^(13/24) 6835626753697034 a001 53316291173/505019158607*2207^(13/24) 6835626753697034 a001 10182505537/96450076809*2207^(13/24) 6835626753697034 a001 7778742049/73681302247*2207^(13/24) 6835626753697034 a001 2971215073/28143753123*2207^(13/24) 6835626753697034 a001 567451585/5374978561*2207^(13/24) 6835626753697034 a001 433494437/4106118243*2207^(13/24) 6835626753697034 a001 165580141/1568397607*2207^(13/24) 6835626753697034 a001 31622993/299537289*2207^(13/24) 6835626753697036 a001 24157817/228826127*2207^(13/24) 6835626753697049 a001 9227465/87403803*2207^(13/24) 6835626753697138 a001 1762289/16692641*2207^(13/24) 6835626753697746 a001 1346269/12752043*2207^(13/24) 6835626753701916 a001 514229/4870847*2207^(13/24) 6835626753730495 a001 98209/930249*2207^(13/24) 6835626753926381 a001 75025/710647*2207^(13/24) 6835626755269003 a001 28657/271443*2207^(13/24) 6835626755603821 a001 4181/24476*2207^(23/48) 6835626764471469 a001 5473/51841*2207^(13/24) 6835626766438713 a008 Real Root of x^4-2*x^3-31*x^2-96 6835626810899532 a001 6765/103682*2207^(29/48) 6835626811444304 a001 1292/51841*2207^(35/48) 6835626813550612 a007 Real Root Of 495*x^4-670*x^3-950*x^2-488*x+38 6835626821407213 a001 305/12238*1364^(7/9) 6835626827546113 a001 4181/39603*2207^(13/24) 6835626829055226 r009 Re(z^3+c),c=-29/70+23/39*I,n=40 6835626836956863 a001 17711/271443*2207^(29/48) 6835626840758576 a001 6624/101521*2207^(29/48) 6835626841313239 a001 121393/1860498*2207^(29/48) 6835626841394163 a001 317811/4870847*2207^(29/48) 6835626841444177 a001 196418/3010349*2207^(29/48) 6835626841656039 a001 75025/1149851*2207^(29/48) 6835626843108164 a001 28657/439204*2207^(29/48) 6835626846769732 m005 (11/30+1/6*5^(1/2))/(7/11*gamma+5/7) 6835626853061179 a001 10946/167761*2207^(29/48) 6835626858586690 a007 Real Root Of 118*x^4-753*x^3-917*x^2+309*x+432 6835626862698090 b008 1+6/E^(1/36) 6835626864479676 r009 Im(z^3+c),c=-9/64+31/41*I,n=18 6835626884625830 a007 Real Root Of -802*x^4+226*x^3-206*x^2-466*x+25 6835626886938269 a001 1597/3571*3571^(1/3) 6835626890312417 a007 Real Root Of -42*x^4+793*x^3-212*x^2+411*x-426 6835626897857088 a001 1926/726103*17711^(3/31) 6835626899489242 a001 615/15251*2207^(2/3) 6835626900034015 a001 2584/167761*2207^(19/24) 6835626904638669 a001 2584/2207*843^(11/42) 6835626909151919 a007 Real Root Of 756*x^4-572*x^3+732*x^2+816*x-132 6835626909567101 a001 1597/5778*2207^(5/12) 6835626912933029 m001 (Pi+cos(1/12*Pi))/(FeigenbaumDelta+Totient) 6835626916723542 r005 Re(z^2+c),c=7/102+13/53*I,n=14 6835626917875052 m005 (1/2*3^(1/2)-7/8)/(3/10*2^(1/2)-5/9) 6835626921280159 a001 4181/64079*2207^(29/48) 6835626924796026 a001 17711/439204*2207^(2/3) 6835626926331116 r009 Re(z^3+c),c=-61/98+14/47*I,n=14 6835626928488236 a001 46368/1149851*2207^(2/3) 6835626929026922 a001 121393/3010349*2207^(2/3) 6835626929105515 a001 317811/7881196*2207^(2/3) 6835626929116982 a001 75640/1875749*2207^(2/3) 6835626929118655 a001 2178309/54018521*2207^(2/3) 6835626929118899 a001 5702887/141422324*2207^(2/3) 6835626929118934 a001 14930352/370248451*2207^(2/3) 6835626929118940 a001 39088169/969323029*2207^(2/3) 6835626929118940 a001 9303105/230701876*2207^(2/3) 6835626929118940 a001 267914296/6643838879*2207^(2/3) 6835626929118940 a001 701408733/17393796001*2207^(2/3) 6835626929118940 a001 1836311903/45537549124*2207^(2/3) 6835626929118940 a001 4807526976/119218851371*2207^(2/3) 6835626929118940 a001 1144206275/28374454999*2207^(2/3) 6835626929118940 a001 32951280099/817138163596*2207^(2/3) 6835626929118940 a001 86267571272/2139295485799*2207^(2/3) 6835626929118940 a001 225851433717/5600748293801*2207^(2/3) 6835626929118940 a001 591286729879/14662949395604*2207^(2/3) 6835626929118940 a001 365435296162/9062201101803*2207^(2/3) 6835626929118940 a001 139583862445/3461452808002*2207^(2/3) 6835626929118940 a001 53316291173/1322157322203*2207^(2/3) 6835626929118940 a001 20365011074/505019158607*2207^(2/3) 6835626929118940 a001 7778742049/192900153618*2207^(2/3) 6835626929118940 a001 2971215073/73681302247*2207^(2/3) 6835626929118940 a001 1134903170/28143753123*2207^(2/3) 6835626929118940 a001 433494437/10749957122*2207^(2/3) 6835626929118940 a001 165580141/4106118243*2207^(2/3) 6835626929118941 a001 63245986/1568397607*2207^(2/3) 6835626929118943 a001 24157817/599074578*2207^(2/3) 6835626929118956 a001 9227465/228826127*2207^(2/3) 6835626929119050 a001 3524578/87403803*2207^(2/3) 6835626929119689 a001 1346269/33385282*2207^(2/3) 6835626929124068 a001 514229/12752043*2207^(2/3) 6835626929154088 a001 196418/4870847*2207^(2/3) 6835626929359848 a001 75025/1860498*2207^(2/3) 6835626929391421 a001 4181/3571*2207^(11/48) 6835626929531106 a001 17711/5778*843^(5/42) 6835626930770147 a001 28657/710647*2207^(2/3) 6835626940436478 a001 10946/271443*2207^(2/3) 6835626947178979 m001 Psi(1,1/3)^(Ei(1)/BesselI(0,2)) 6835626953663205 a007 Real Root Of -120*x^4+526*x^3+916*x^2+524*x-928 6835626980935943 m005 (5/4+1/4*5^(1/2))/(9/10*exp(1)+1/5) 6835626983260303 a001 17711/3571*843^(1/21) 6835626986692470 r009 Im(z^3+c),c=-1/52+46/59*I,n=51 6835626986864542 a001 2255/90481*2207^(35/48) 6835626987409314 a001 2584/271443*2207^(41/48) 6835627006690497 a001 4181/103682*2207^(2/3) 6835627012458009 a001 17711/710647*2207^(35/48) 6835627016192046 a001 2576/103361*2207^(35/48) 6835627016736834 a001 121393/4870847*2207^(35/48) 6835627017073532 a001 75025/3010349*2207^(35/48) 6835627018499807 a001 28657/1149851*2207^(35/48) 6835627025063356 a001 610/15127*1364^(32/45) 6835627027774003 m001 1/RenyiParking^2*ln(Backhouse)*Zeta(7)^2 6835627028275642 a001 5473/219602*2207^(35/48) 6835627042293823 a001 1597/3571*9349^(17/57) 6835627043449931 a007 Real Root Of -627*x^4+338*x^3+703*x^2+649*x+360 6835627048061181 m001 (GAMMA(17/24)+Lehmer)/(Magata-TwinPrimes) 6835627048284341 m001 (1-Zeta(3))/(GAMMA(19/24)+Grothendieck) 6835627065618847 a001 1597/3571*45537549124^(1/9) 6835627065618854 a001 1597/3571*12752043^(1/6) 6835627074082745 a001 1597/3571*15127^(17/60) 6835627074703706 a001 6765/439204*2207^(19/24) 6835627075248479 a001 34/5779*2207^(11/12) 6835627076283504 a007 Real Root Of -542*x^4-939*x^3-168*x^2+294*x-19 6835627080137317 a001 987/2207*843^(17/42) 6835627095280210 a001 4181/167761*2207^(35/48) 6835627097861667 a001 1/13201*123^(16/35) 6835627100187671 a001 17711/1149851*2207^(19/24) 6835627103905731 a001 46368/3010349*2207^(19/24) 6835627104448189 a001 121393/7881196*2207^(19/24) 6835627104527332 a001 10959/711491*2207^(19/24) 6835627104538879 a001 832040/54018521*2207^(19/24) 6835627104540564 a001 2178309/141422324*2207^(19/24) 6835627104540810 a001 5702887/370248451*2207^(19/24) 6835627104540845 a001 14930352/969323029*2207^(19/24) 6835627104540851 a001 39088169/2537720636*2207^(19/24) 6835627104540851 a001 102334155/6643838879*2207^(19/24) 6835627104540851 a001 9238424/599786069*2207^(19/24) 6835627104540852 a001 701408733/45537549124*2207^(19/24) 6835627104540852 a001 1836311903/119218851371*2207^(19/24) 6835627104540852 a001 4807526976/312119004989*2207^(19/24) 6835627104540852 a001 12586269025/817138163596*2207^(19/24) 6835627104540852 a001 32951280099/2139295485799*2207^(19/24) 6835627104540852 a001 86267571272/5600748293801*2207^(19/24) 6835627104540852 a001 7787980473/505618944676*2207^(19/24) 6835627104540852 a001 365435296162/23725150497407*2207^(19/24) 6835627104540852 a001 139583862445/9062201101803*2207^(19/24) 6835627104540852 a001 53316291173/3461452808002*2207^(19/24) 6835627104540852 a001 20365011074/1322157322203*2207^(19/24) 6835627104540852 a001 7778742049/505019158607*2207^(19/24) 6835627104540852 a001 2971215073/192900153618*2207^(19/24) 6835627104540852 a001 1134903170/73681302247*2207^(19/24) 6835627104540852 a001 433494437/28143753123*2207^(19/24) 6835627104540852 a001 165580141/10749957122*2207^(19/24) 6835627104540852 a001 63245986/4106118243*2207^(19/24) 6835627104540854 a001 24157817/1568397607*2207^(19/24) 6835627104540868 a001 9227465/599074578*2207^(19/24) 6835627104540961 a001 3524578/228826127*2207^(19/24) 6835627104541605 a001 1346269/87403803*2207^(19/24) 6835627104546015 a001 514229/33385282*2207^(19/24) 6835627104576246 a001 196418/12752043*2207^(19/24) 6835627104783446 a001 75025/4870847*2207^(19/24) 6835627106203619 a001 28657/1860498*2207^(19/24) 6835627108130714 a001 6624/2161*843^(5/42) 6835627115937627 a001 10946/710647*2207^(19/24) 6835627118561182 m005 (1/2*Zeta(3)+5/6)/(7/6+5/12*5^(1/2)) 6835627121196564 a001 987/1364*1364^(14/45) 6835627130077091 a001 1597/3571*5778^(17/54) 6835627134188047 a001 121393/39603*843^(5/42) 6835627137989760 a001 317811/103682*843^(5/42) 6835627138544423 a001 832040/271443*843^(5/42) 6835627138625347 a001 311187/101521*843^(5/42) 6835627138675361 a001 1346269/439204*843^(5/42) 6835627138887223 a001 514229/167761*843^(5/42) 6835627139444029 a007 Real Root Of 875*x^4-440*x^3+661*x^2+795*x-97 6835627140339349 a001 196418/64079*843^(5/42) 6835627146357377 r002 24th iterates of z^2 + 6835627150292364 a001 75025/24476*843^(5/42) 6835627157489820 a007 Real Root Of 625*x^4-266*x^3+122*x^2+242*x-113 6835627162365692 a001 6765/710647*2207^(41/48) 6835627162910464 a001 2584/710647*2207^(47/48) 6835627165583751 m001 (Lehmer-Porter)/(Zeta(1,-1)+exp(1/exp(1))) 6835627182655512 a001 4181/271443*2207^(19/24) 6835627187891483 a001 17711/1860498*2207^(41/48) 6835627191615646 a001 46368/4870847*2207^(41/48) 6835627193917305 a001 28657/3010349*2207^(41/48) 6835627194426391 r002 11th iterates of z^2 + 6835627203667290 a001 10946/1149851*2207^(41/48) 6835627207535031 r004 Im(z^2+c),c=5/38+13/17*I,z(0)=I,n=4 6835627210264607 l006 ln(2883/5711) 6835627211012526 m006 (2/3*exp(Pi)-3)/(5/6*Pi-4/5) 6835627218299309 r009 Im(z^3+c),c=-13/34+21/34*I,n=46 6835627218511347 a001 28657/9349*843^(5/42) 6835627245907272 p004 log(15817/17) 6835627250095355 a001 6765/1149851*2207^(11/12) 6835627259866147 a001 1597/15127*2207^(13/24) 6835627270494679 a001 4181/439204*2207^(41/48) 6835627275605170 a001 17711/3010349*2207^(11/12) 6835627278886721 a008 Real Root of (12+5*x-17*x^2+2*x^3) 6835627279327002 a001 11592/1970299*2207^(11/12) 6835627279870010 a001 121393/20633239*2207^(11/12) 6835627279949234 a001 317811/54018521*2207^(11/12) 6835627279960793 a001 208010/35355581*2207^(11/12) 6835627279962479 a001 2178309/370248451*2207^(11/12) 6835627279962725 a001 5702887/969323029*2207^(11/12) 6835627279962761 a001 196452/33391061*2207^(11/12) 6835627279962766 a001 39088169/6643838879*2207^(11/12) 6835627279962767 a001 102334155/17393796001*2207^(11/12) 6835627279962767 a001 66978574/11384387281*2207^(11/12) 6835627279962767 a001 701408733/119218851371*2207^(11/12) 6835627279962767 a001 1836311903/312119004989*2207^(11/12) 6835627279962767 a001 1201881744/204284540899*2207^(11/12) 6835627279962767 a001 12586269025/2139295485799*2207^(11/12) 6835627279962767 a001 32951280099/5600748293801*2207^(11/12) 6835627279962767 a001 1135099622/192933544679*2207^(11/12) 6835627279962767 a001 139583862445/23725150497407*2207^(11/12) 6835627279962767 a001 53316291173/9062201101803*2207^(11/12) 6835627279962767 a001 10182505537/1730726404001*2207^(11/12) 6835627279962767 a001 7778742049/1322157322203*2207^(11/12) 6835627279962767 a001 2971215073/505019158607*2207^(11/12) 6835627279962767 a001 567451585/96450076809*2207^(11/12) 6835627279962767 a001 433494437/73681302247*2207^(11/12) 6835627279962767 a001 165580141/28143753123*2207^(11/12) 6835627279962767 a001 31622993/5374978561*2207^(11/12) 6835627279962769 a001 24157817/4106118243*2207^(11/12) 6835627279962783 a001 9227465/1568397607*2207^(11/12) 6835627279962877 a001 1762289/299537289*2207^(11/12) 6835627279963521 a001 1346269/228826127*2207^(11/12) 6835627279967936 a001 514229/87403803*2207^(11/12) 6835627279998197 a001 98209/16692641*2207^(11/12) 6835627280205608 a001 75025/12752043*2207^(11/12) 6835627280235207 a001 1597/9349*2207^(23/48) 6835627281627221 a001 28657/4870847*2207^(11/12) 6835627291371103 a001 5473/930249*2207^(11/12) 6835627300244692 a007 Real Root Of -589*x^4+834*x^3+819*x^2-37*x-13 6835627302912924 a007 Real Root Of -960*x^4+713*x^3-196*x^2-705*x+47 6835627308708520 a007 Real Root Of 505*x^4-891*x^3-444*x^2-328*x+606 6835627327769102 m001 Cahen^Shi(1)/(Cahen^DuboisRaymond) 6835627336374080 m001 (FeigenbaumKappa+Sarnak)/(gamma-ln(2^(1/2)+1)) 6835627337799169 a001 55/15126*2207^(47/48) 6835627340064307 a001 305/2889*1364^(26/45) 6835627346214164 r005 Re(z^2+c),c=3/14+20/39*I,n=45 6835627358156667 a001 4181/710647*2207^(11/12) 6835627363315087 a001 17711/4870847*2207^(47/48) 6835627370893317 m001 (-GAMMA(1/24)+4)/(GaussAGM(1,1/sqrt(2))+2) 6835627378082417 a001 610/9349*1364^(29/45) 6835627379084792 a001 10946/3010349*2207^(47/48) 6835627388860000 a001 1597/24476*2207^(29/48) 6835627398582319 r005 Im(z^2+c),c=2/11+23/39*I,n=25 6835627400005034 a007 Real Root Of 7*x^4+469*x^3-648*x^2+76*x+668 6835627436331398 m001 GAMMA(11/24)*BesselJ(1,1)^2*ln(sin(Pi/12))^2 6835627445886333 a001 4181/1149851*2207^(47/48) 6835627454237235 r002 9th iterates of z^2 + 6835627460802299 a001 1597/39603*2207^(2/3) 6835627500881722 a007 Real Root Of 632*x^4-589*x^3+781*x^2+101*x-622 6835627551087533 m001 1/OneNinth/exp(Riemann1stZero)^2/GAMMA(1/3)^2 6835627553927391 r005 Im(z^2+c),c=-13/114+47/53*I,n=8 6835627554536354 a001 1597/64079*2207^(35/48) 6835627562647617 a001 1597/3571*2207^(17/48) 6835627570833352 a007 Real Root Of -96*x^4+801*x^3-470*x^2+390*x+763 6835627572712862 a007 Real Root Of 218*x^4-757*x^3+376*x^2-272*x-651 6835627581195452 a007 Real Root Of 721*x^4-173*x^3-47*x^2+121*x-108 6835627615801038 a007 Real Root Of -601*x^4+921*x^3-82*x^2+455*x-31 6835627621916202 a007 Real Root Of -106*x^4-740*x^3-261*x^2-948*x+789 6835627632362048 a001 5473/2889*843^(4/21) 6835627639946700 a001 1597/103682*2207^(19/24) 6835627643475837 r005 Re(z^2+c),c=-17/82+17/25*I,n=11 6835627672301747 r002 26th iterates of z^2 + 6835627684001841 r002 13th iterates of z^2 + 6835627685655850 m005 (1/2*5^(1/2)-1)/(9/10*5^(1/2)-2/7) 6835627686091250 a001 10946/3571*843^(5/42) 6835627700360541 a007 Real Root Of 348*x^4-148*x^3+570*x^2-419*x-676 6835627720018112 a007 Real Root Of 380*x^4-820*x^3+934*x^2+767*x-257 6835627728536421 a001 1597/167761*2207^(41/48) 6835627737104792 a007 Real Root Of -827*x^4+886*x^3-649*x^2-718*x+276 6835627764367524 r005 Re(z^2+c),c=-19/18+29/193*I,n=42 6835627766787455 r009 Re(z^3+c),c=-7/58+16/23*I,n=35 6835627784927860 a007 Real Root Of 68*x^4-445*x^3+346*x^2-950*x+615 6835627794925926 r002 10th iterates of z^2 + 6835627797493628 a001 28657/15127*843^(4/21) 6835627805199744 r005 Im(z^2+c),c=7/24+28/51*I,n=15 6835627811384383 m005 (1/2*gamma-2/7)/(2/5*Pi-5/6) 6835627815911731 a001 1597/271443*2207^(11/12) 6835627821586002 a001 75025/39603*843^(4/21) 6835627825101032 a001 98209/51841*843^(4/21) 6835627825613868 a001 514229/271443*843^(4/21) 6835627825688690 a001 1346269/710647*843^(4/21) 6835627825699606 a001 1762289/930249*843^(4/21) 6835627825701199 a001 9227465/4870847*843^(4/21) 6835627825701431 a001 24157817/12752043*843^(4/21) 6835627825701465 a001 31622993/16692641*843^(4/21) 6835627825701470 a001 165580141/87403803*843^(4/21) 6835627825701470 a001 433494437/228826127*843^(4/21) 6835627825701471 a001 567451585/299537289*843^(4/21) 6835627825701471 a001 2971215073/1568397607*843^(4/21) 6835627825701471 a001 7778742049/4106118243*843^(4/21) 6835627825701471 a001 10182505537/5374978561*843^(4/21) 6835627825701471 a001 53316291173/28143753123*843^(4/21) 6835627825701471 a001 139583862445/73681302247*843^(4/21) 6835627825701471 a001 182717648081/96450076809*843^(4/21) 6835627825701471 a001 956722026041/505019158607*843^(4/21) 6835627825701471 a001 10610209857723/5600748293801*843^(4/21) 6835627825701471 a001 591286729879/312119004989*843^(4/21) 6835627825701471 a001 225851433717/119218851371*843^(4/21) 6835627825701471 a001 21566892818/11384387281*843^(4/21) 6835627825701471 a001 32951280099/17393796001*843^(4/21) 6835627825701471 a001 12586269025/6643838879*843^(4/21) 6835627825701471 a001 1201881744/634430159*843^(4/21) 6835627825701471 a001 1836311903/969323029*843^(4/21) 6835627825701471 a001 701408733/370248451*843^(4/21) 6835627825701471 a001 66978574/35355581*843^(4/21) 6835627825701473 a001 102334155/54018521*843^(4/21) 6835627825701486 a001 39088169/20633239*843^(4/21) 6835627825701575 a001 3732588/1970299*843^(4/21) 6835627825702183 a001 5702887/3010349*843^(4/21) 6835627825706353 a001 2178309/1149851*843^(4/21) 6835627825734932 a001 208010/109801*843^(4/21) 6835627825930818 a001 317811/167761*843^(4/21) 6835627825940105 h001 (2/9*exp(2)+1/12)/(9/11*exp(1)+3/10) 6835627827273440 a001 121393/64079*843^(4/21) 6835627833357261 r005 Im(z^2+c),c=-61/110+38/63*I,n=3 6835627836475908 a001 11592/6119*843^(4/21) 6835627851085377 m005 (1/2*gamma+5)/(71/112+1/16*5^(1/2)) 6835627866770750 a007 Real Root Of -99*x^4-541*x^3+984*x^2+396*x+80 6835627868168544 r002 2th iterates of z^2 + 6835627868168544 r002 2th iterates of z^2 + 6835627878609986 a005 (1/cos(22/185*Pi))^639 6835627884455839 a003 cos(Pi*19/69)/sin(Pi*35/88) 6835627899550562 a001 17711/9349*843^(4/21) 6835627903750907 a001 1597/439204*2207^(47/48) 6835627904921371 m001 Niven^2/KhintchineLevy*exp(GAMMA(23/24)) 6835627908001431 r005 Im(z^2+c),c=-6/25+5/52*I,n=16 6835627910340776 m001 (Mills-Niven)/(TwinPrimes-ZetaP(4)) 6835627939476987 m001 Niven/(ReciprocalLucas^FeigenbaumKappa) 6835627945335473 m001 1/ln(Robbin)/Artin*GAMMA(11/12) 6835627945734199 a007 Real Root Of 80*x^4-838*x^3-272*x^2-452*x-467 6835627947752941 m001 1/ln(Paris)*HardHexagonsEntropy/log(1+sqrt(2)) 6835627987108778 l006 ln(2254/4465) 6835628001015155 m005 (1/2*Zeta(3)+1/7)/(1/2*3^(1/2)+2/9) 6835628001843911 m006 (3/5*ln(Pi)-1/5)/(2/3/Pi+1/2) 6835628030085847 a007 Real Root Of 993*x^4+130*x^3-8*x^2+545*x+201 6835628037597299 m001 Bloch^MertensB1/Zeta(3) 6835628041949160 a007 Real Root Of 292*x^4-746*x^3+513*x^2-312*x-755 6835628046425220 r005 Re(z^2+c),c=-3/4+17/105*I,n=5 6835628054031353 a001 610/2207*3571^(20/51) 6835628057004522 a001 89/322*199^(20/33) 6835628074052994 m001 1/Paris/MertensB1*exp(LambertW(1)) 6835628086401189 r005 Re(z^2+c),c=25/78+16/55*I,n=9 6835628096484434 a001 2207/832040*17711^(3/31) 6835628117096783 a001 987/1364*3571^(14/51) 6835628118627963 m001 HardyLittlewoodC3*ln(Pi)^Landau 6835628138702280 a007 Real Root Of 533*x^4+864*x^3+182*x^2-679*x-47 6835628157645341 b008 -1/2+Zeta[-4/7] 6835628171216426 m001 (Kac+MasserGramain)/(PlouffeB-Robbin) 6835628184790707 r005 Im(z^2+c),c=-5/86+40/59*I,n=20 6835628195409686 m001 ZetaP(4)/(TwinPrimes-Grothendieck) 6835628215533536 m001 1/ArtinRank2*exp(FeigenbaumDelta)/sqrt(5) 6835628215949143 a007 Real Root Of -975*x^4+638*x^3+820*x^2+332*x-601 6835628219683838 a007 Real Root Of -31*x^4-123*x^3+515*x^2-503*x+894 6835628229651531 r009 Re(z^3+c),c=-19/56+23/35*I,n=50 6835628236802624 a001 610/2207*9349^(20/57) 6835628237620681 a007 Real Root Of -301*x^4+615*x^3-500*x^2+388*x+761 6835628245036674 a001 987/1364*9349^(14/57) 6835628261709895 a001 987/1364*24476^(2/9) 6835628264179065 a001 610/2207*167761^(4/15) 6835628264243831 a001 610/2207*20633239^(4/21) 6835628264243834 a001 610/2207*3461452808002^(1/9) 6835628264243834 a001 610/2207*28143753123^(2/15) 6835628264243834 a001 610/2207*228826127^(1/6) 6835628264243894 a001 610/2207*4870847^(5/24) 6835628264244273 a001 610/2207*1860498^(2/9) 6835628264245518 a001 987/1364*20633239^(2/15) 6835628264245520 a001 987/1364*17393796001^(2/21) 6835628264245520 a001 987/1364*505019158607^(1/12) 6835628264245520 a001 987/1364*599074578^(1/9) 6835628264247056 a001 610/2207*710647^(5/21) 6835628264247776 a001 987/1364*710647^(1/6) 6835628264262484 a001 10946/2207*322^(1/18) 6835628264420466 a001 610/2207*103682^(5/18) 6835628265170019 a001 987/1364*39603^(7/33) 6835628265564546 a001 610/2207*39603^(10/33) 6835628271215791 a001 987/1364*15127^(7/30) 6835628272557564 m001 Champernowne^Robbin/(Ei(1,1)^Robbin) 6835628274201363 a001 610/2207*15127^(1/3) 6835628275560237 m001 arctan(1/2)*LaplaceLimit^2/ln(sin(1))^2 6835628278141498 a001 2255/1926*843^(11/42) 6835628288763683 a007 Real Root Of -373*x^4+682*x^3+443*x^2+990*x+769 6835628317328789 a001 987/1364*5778^(7/27) 6835628325794914 a001 610/3571*1364^(23/45) 6835628330461050 m006 (3/4*Pi^2-1/5)/(Pi^2+2/3) 6835628330461050 m008 (3/4*Pi^2-1/5)/(Pi^2+2/3) 6835628331870706 a001 6765/3571*843^(4/21) 6835628332492462 a001 1597/2207*843^(1/3) 6835628340077075 a001 610/2207*5778^(10/27) 6835628346333314 a001 615/124*521^(2/39) 6835628352287583 p004 log(12149/6133) 6835628357508302 a007 Real Root Of -799*x^4-56*x^3-989*x^2+315*x+834 6835628371394059 r005 Re(z^2+c),c=-31/110+41/60*I,n=5 6835628416271184 r005 Im(z^2+c),c=-29/26+1/121*I,n=36 6835628443921985 m005 (1/3*Pi-3/4)/(1/8*5^(1/2)-5/7) 6835628451546844 a003 cos(Pi*43/107)-sin(Pi*48/107) 6835628462552644 r005 Re(z^2+c),c=-97/126+4/49*I,n=13 6835628471886806 m005 (1/2*3^(1/2)-3/4)/(7/8*3^(1/2)+2/11) 6835628478146916 m006 (2/5*Pi^2-3)/(2/Pi+3/4) 6835628478532901 a001 17711/15127*843^(11/42) 6835628478765168 m001 exp(1/exp(1))*(GAMMA(11/12)-GAMMA(7/12)) 6835628479343685 q001 2333/3413 6835628491729899 r005 Re(z^2+c),c=2/11+26/63*I,n=50 6835628499058645 m001 1/ln(cos(1))^2*MinimumGamma*sqrt(Pi) 6835628506957519 a001 121393/322*3^(13/24) 6835628507769613 a001 15456/13201*843^(11/42) 6835628512035192 a001 121393/103682*843^(11/42) 6835628512657531 a001 105937/90481*843^(11/42) 6835628512748330 a001 832040/710647*843^(11/42) 6835628512761577 a001 726103/620166*843^(11/42) 6835628512769764 a001 1346269/1149851*843^(11/42) 6835628512804446 a001 514229/439204*843^(11/42) 6835628513042158 a001 196418/167761*843^(11/42) 6835628514671465 a001 75025/64079*843^(11/42) 6835628525838895 a001 28657/24476*843^(11/42) 6835628534536914 m005 (1/2*gamma+7/11)/(2/7*5^(1/2)+5/7) 6835628545225189 r005 Im(z^2+c),c=-9/16+70/117*I,n=19 6835628559300006 r002 55th iterates of z^2 + 6835628564484800 l006 ln(3879/7684) 6835628568098884 a007 Real Root Of -949*x^4+408*x^3-210*x^2+574*x+828 6835628594022362 a007 Real Root Of 451*x^4-678*x^3-449*x^2-717*x+818 6835628594031585 a007 Real Root Of 89*x^4+609*x^3-54*x^2-413*x-99 6835628602381603 a001 10946/9349*843^(11/42) 6835628609341330 r005 Re(z^2+c),c=-4/7+60/107*I,n=7 6835628643015857 a001 233/843*521^(20/39) 6835628654480706 a001 233/9349*521^(35/39) 6835628673410723 m001 Artin^FeigenbaumMu*Robbin^FeigenbaumMu 6835628673563400 a001 987/1364*2207^(7/24) 6835628679430184 r009 Re(z^3+c),c=-3/29+13/27*I,n=23 6835628710022498 r005 Im(z^2+c),c=-163/122+1/22*I,n=64 6835628722449206 a001 5/3571*843^(34/37) 6835628727439050 a007 Real Root Of 433*x^4-131*x^3-590*x^2-711*x+709 6835628741348421 m001 Catalan/(arctan(1/3)^(Pi^(1/2))) 6835628741862009 a007 Real Root Of -741*x^4+72*x^3-745*x^2+638*x+969 6835628742248792 m001 (cos(1/12*Pi)+Tetranacci)/(Trott+ThueMorse) 6835628748599952 r005 Im(z^2+c),c=-141/106+1/21*I,n=48 6835628757904888 a007 Real Root Of 39*x^4+386*x^3+862*x^2+250*x-429 6835628778827048 r005 Re(z^2+c),c=-9/52+13/18*I,n=62 6835628806809670 r009 Re(z^3+c),c=-3/29+13/27*I,n=19 6835628809700731 a001 646/341*1364^(8/45) 6835628815442367 m001 1/GAMMA(3/4)^2*GAMMA(2/3)*ln(log(2+sqrt(3)))^2 6835628848983669 a001 610/2207*2207^(5/12) 6835628920289841 s002 sum(A208999[n]/(n*exp(n)-1),n=1..infinity) 6835628923907967 m001 (GolombDickman+Robbin)/(1+ln(2^(1/2)+1)) 6835628929472340 a007 Real Root Of -796*x^4+783*x^3-409*x^2+620*x-309 6835628955317665 m001 (1-ln(gamma))/(ErdosBorwein+TwinPrimes) 6835628989238005 h001 (3/10*exp(1)+3/10)/(1/2*exp(1)+3/11) 6835628989238005 m005 (1/2*exp(1)+1/2)/(5/6*exp(1)+5/11) 6835628999551934 r005 Im(z^2+c),c=5/64+13/21*I,n=26 6835629019328521 r002 3th iterates of z^2 + 6835629019506877 m001 1/Catalan^2/ln(Sierpinski)^2/GAMMA(5/24)^2 6835629019559426 m001 (Kac+ZetaP(4))/(3^(1/2)-CareFree) 6835629025190671 a007 Real Root Of 582*x^4-688*x^3+387*x^2+630*x-97 6835629027957329 a002 19^(10/7)+3^(1/5) 6835629054405377 r002 57th iterates of z^2 + 6835629061973578 a007 Real Root Of 526*x^4-127*x^3-633*x^2-523*x+579 6835629071668590 m005 (1/6*exp(1)-1/2)/(1/4*2^(1/2)+1/3) 6835629072609714 a007 Real Root Of -522*x^4+663*x^3-148*x^2+988*x-704 6835629073283957 a001 4181/5778*843^(1/3) 6835629073310648 a007 Real Root Of -497*x^4+978*x^3-615*x^2+301*x+914 6835629073936592 m001 GAMMA(17/24)-RenyiParking^MadelungNaCl 6835629073936592 m001 RenyiParking^MadelungNaCl-GAMMA(17/24) 6835629084717356 m003 -1/2+(21*Sqrt[5])/32+Sinh[1/2+Sqrt[5]/2]^2 6835629114439460 r002 29th iterates of z^2 + 6835629127013171 a001 4181/3571*843^(11/42) 6835629141995451 a001 610/271443*3571^(50/51) 6835629173862983 a001 610/167761*3571^(47/51) 6835629180421678 r005 Re(z^2+c),c=-17/24+8/45*I,n=14 6835629181364002 a001 10946/15127*843^(1/3) 6835629189593461 a001 305/2889*3571^(26/51) 6835629192818902 r005 Re(z^2+c),c=-67/64+9/49*I,n=52 6835629197132668 a001 28657/39603*843^(1/3) 6835629199433285 a001 75025/103682*843^(1/3) 6835629199768941 a001 196418/271443*843^(1/3) 6835629199817913 a001 514229/710647*843^(1/3) 6835629199825057 a001 1346269/1860498*843^(1/3) 6835629199826100 a001 3524578/4870847*843^(1/3) 6835629199826252 a001 9227465/12752043*843^(1/3) 6835629199826274 a001 24157817/33385282*843^(1/3) 6835629199826277 a001 63245986/87403803*843^(1/3) 6835629199826278 a001 165580141/228826127*843^(1/3) 6835629199826278 a001 433494437/599074578*843^(1/3) 6835629199826278 a001 1134903170/1568397607*843^(1/3) 6835629199826278 a001 2971215073/4106118243*843^(1/3) 6835629199826278 a001 7778742049/10749957122*843^(1/3) 6835629199826278 a001 20365011074/28143753123*843^(1/3) 6835629199826278 a001 53316291173/73681302247*843^(1/3) 6835629199826278 a001 139583862445/192900153618*843^(1/3) 6835629199826278 a001 365435296162/505019158607*843^(1/3) 6835629199826278 a001 10610209857723/14662949395604*843^(1/3) 6835629199826278 a001 591286729879/817138163596*843^(1/3) 6835629199826278 a001 225851433717/312119004989*843^(1/3) 6835629199826278 a001 86267571272/119218851371*843^(1/3) 6835629199826278 a001 32951280099/45537549124*843^(1/3) 6835629199826278 a001 12586269025/17393796001*843^(1/3) 6835629199826278 a001 4807526976/6643838879*843^(1/3) 6835629199826278 a001 1836311903/2537720636*843^(1/3) 6835629199826278 a001 701408733/969323029*843^(1/3) 6835629199826278 a001 267914296/370248451*843^(1/3) 6835629199826278 a001 102334155/141422324*843^(1/3) 6835629199826279 a001 39088169/54018521*843^(1/3) 6835629199826288 a001 14930352/20633239*843^(1/3) 6835629199826346 a001 5702887/7881196*843^(1/3) 6835629199826744 a001 2178309/3010349*843^(1/3) 6835629199829473 a001 832040/1149851*843^(1/3) 6835629199848179 a001 317811/439204*843^(1/3) 6835629199976388 a001 121393/167761*843^(1/3) 6835629200855145 a001 46368/64079*843^(1/3) 6835629204516103 a001 305/51841*3571^(44/51) 6835629206878240 a001 17711/24476*843^(1/3) 6835629238348597 a001 610/64079*3571^(41/51) 6835629248161145 a001 6765/9349*843^(1/3) 6835629263857380 a001 610/39603*3571^(38/51) 6835629267698678 a003 sin(Pi*5/42)/cos(Pi*25/78) 6835629268050003 a007 Real Root Of -229*x^4+994*x^3-905*x^2+216*x+938 6835629268146964 a007 Real Root Of 976*x^4-636*x^3-95*x^2+898*x+242 6835629296757928 m001 1/GAMMA(1/6)/Si(Pi)*exp(GAMMA(5/12))^2 6835629301406896 a001 610/15127*3571^(32/51) 6835629305553256 a001 1597/1364*1364^(11/45) 6835629306475552 a007 Real Root Of 411*x^4-449*x^3+22*x^2-330*x-469 6835629311157924 a001 305/12238*3571^(35/51) 6835629325005549 m001 exp((2^(1/3)))/FransenRobinson^2*GAMMA(7/12) 6835629337597080 a001 4181/1364*1364^(1/9) 6835629341703630 a003 sin(Pi*11/47)/sin(Pi*32/73) 6835629365349703 l006 ln(1625/3219) 6835629368647713 r005 Im(z^2+c),c=-1/94+40/51*I,n=42 6835629378433415 m005 (1/2*gamma-2/11)/(5/9*3^(1/2)+3/5) 6835629378786694 a001 646/341*3571^(8/51) 6835629390466585 m001 (exp(Pi)+Zeta(5))/(ln(5)+Tetranacci) 6835629403561601 r002 10th iterates of z^2 + 6835629409011900 a007 Real Root Of 579*x^4-234*x^3+41*x^2-317*x-437 6835629427196155 a001 305/2889*9349^(26/57) 6835629441018825 a001 610/9349*3571^(29/51) 6835629449496811 p001 sum((-1)^n/(459*n+437)/n/(16^n),n=1..infinity) 6835629451895216 a001 646/341*9349^(8/57) 6835629453142812 a001 28657/5778*322^(1/18) 6835629462869733 a001 305/2889*141422324^(2/9) 6835629462869733 a001 305/2889*73681302247^(1/6) 6835629462871702 a001 646/341*23725150497407^(1/24) 6835629462871702 a001 646/341*10749957122^(1/18) 6835629462871702 a001 646/341*228826127^(1/15) 6835629462871726 a001 646/341*4870847^(1/12) 6835629462872991 a001 646/341*710647^(2/21) 6835629462900657 a001 305/2889*271443^(1/3) 6835629462942355 a001 646/341*103682^(1/9) 6835629463399987 a001 646/341*39603^(4/33) 6835629464586660 a001 305/2889*39603^(13/33) 6835629466854714 a001 646/341*15127^(2/15) 6835629471699643 h001 (2/5*exp(2)+5/7)/(7/11*exp(2)+2/3) 6835629474456152 a001 615/124*1364^(2/45) 6835629475814523 a001 305/2889*15127^(13/30) 6835629477389193 a001 1292/2889*843^(17/42) 6835629478028018 r005 Im(z^2+c),c=-5/17+41/62*I,n=52 6835629493205004 a001 646/341*5778^(4/27) 6835629509996196 m005 (-1/30+1/6*5^(1/2))/(1/11*2^(1/2)-5/8) 6835629520289816 m004 3+5*Pi-(125*Log[Sqrt[5]*Pi])/(4*Pi) 6835629531118410 a001 2584/3571*843^(1/3) 6835629532480149 a007 Real Root Of -356*x^4-252*x^3-593*x^2-236*x+113 6835629558869678 r005 Im(z^2+c),c=23/64+17/64*I,n=9 6835629561452964 a001 305/2889*5778^(13/27) 6835629567394269 s001 sum(exp(-2*Pi/5)^n*A279388[n],n=1..infinity) 6835629567394269 s002 sum(A279388[n]/(exp(2/5*pi*n)),n=1..infinity) 6835629569547539 a001 4/28657*317811^(22/45) 6835629572621863 m001 1/Lehmer^2/exp(Si(Pi))^2/GAMMA(23/24) 6835629575841125 m001 1/Zeta(5)^2*Niven^2*exp(arctan(1/2))^2 6835629586922285 b008 Pi+E*(2+7*Pi) 6835629590770585 a001 610/710647*9349^(56/57) 6835629593840986 a001 610/15127*9349^(32/57) 6835629594935739 a001 305/219602*9349^(53/57) 6835629598923712 a001 610/271443*9349^(50/57) 6835629603375550 a001 610/167761*9349^(47/57) 6835629606612975 a001 305/51841*9349^(44/57) 6835629607311993 a007 Real Root Of -313*x^4+740*x^3-779*x^2-238*x+506 6835629611122862 a001 610/39603*9349^(2/3) 6835629613029774 a001 610/64079*9349^(41/57) 6835629613338178 m001 (2^(1/3)+ln(Pi))/(FeigenbaumB+Khinchin) 6835629615760688 a007 Real Root Of 408*x^4-123*x^3+538*x^2-508*x-727 6835629616727652 a001 615/124*3571^(2/51) 6835629624745115 m005 (1/3*gamma-2/3)/(4/9*5^(1/2)-3/10) 6835629625639038 s002 sum(A213326[n]/(exp(pi*n)-1),n=1..infinity) 6835629626598149 a001 75025/15127*322^(1/18) 6835629631007711 a001 305/12238*9349^(35/57) 6835629633799015 r002 4th iterates of z^2 + 6835629635004783 a001 615/124*9349^(2/57) 6835629637746930 a001 610/15127*23725150497407^(1/6) 6835629637746930 a001 610/15127*10749957122^(2/9) 6835629637746930 a001 610/15127*228826127^(4/15) 6835629637747026 a001 610/15127*4870847^(1/3) 6835629637752087 a001 610/15127*710647^(8/21) 6835629637880976 a001 615/124*39603^(1/33) 6835629638029541 a001 610/15127*103682^(4/9) 6835629638744658 a001 615/124*15127^(1/30) 6835629639860071 a001 610/15127*39603^(16/33) 6835629645332231 a001 615/124*5778^(1/27) 6835629651904942 a001 196418/39603*322^(1/18) 6835629652887907 a001 329/1926*843^(23/42) 6835629653678980 a001 610/15127*15127^(8/15) 6835629655597153 a001 514229/103682*322^(1/18) 6835629656135840 a001 1346269/271443*322^(1/18) 6835629656214433 a001 3524578/710647*322^(1/18) 6835629656225900 a001 9227465/1860498*322^(1/18) 6835629656227573 a001 24157817/4870847*322^(1/18) 6835629656227817 a001 63245986/12752043*322^(1/18) 6835629656227852 a001 165580141/33385282*322^(1/18) 6835629656227857 a001 433494437/87403803*322^(1/18) 6835629656227858 a001 1134903170/228826127*322^(1/18) 6835629656227858 a001 2971215073/599074578*322^(1/18) 6835629656227858 a001 7778742049/1568397607*322^(1/18) 6835629656227858 a001 20365011074/4106118243*322^(1/18) 6835629656227858 a001 53316291173/10749957122*322^(1/18) 6835629656227858 a001 139583862445/28143753123*322^(1/18) 6835629656227858 a001 365435296162/73681302247*322^(1/18) 6835629656227858 a001 956722026041/192900153618*322^(1/18) 6835629656227858 a001 2504730781961/505019158607*322^(1/18) 6835629656227858 a001 10610209857723/2139295485799*322^(1/18) 6835629656227858 a001 4052739537881/817138163596*322^(1/18) 6835629656227858 a001 140728068720/28374454999*322^(1/18) 6835629656227858 a001 591286729879/119218851371*322^(1/18) 6835629656227858 a001 225851433717/45537549124*322^(1/18) 6835629656227858 a001 86267571272/17393796001*322^(1/18) 6835629656227858 a001 32951280099/6643838879*322^(1/18) 6835629656227858 a001 1144206275/230701876*322^(1/18) 6835629656227858 a001 4807526976/969323029*322^(1/18) 6835629656227858 a001 1836311903/370248451*322^(1/18) 6835629656227859 a001 701408733/141422324*322^(1/18) 6835629656227861 a001 267914296/54018521*322^(1/18) 6835629656227874 a001 9303105/1875749*322^(1/18) 6835629656227968 a001 39088169/7881196*322^(1/18) 6835629656228607 a001 14930352/3010349*322^(1/18) 6835629656232986 a001 5702887/1149851*322^(1/18) 6835629656263006 a001 2178309/439204*322^(1/18) 6835629656468766 a001 75640/15251*322^(1/18) 6835629657463485 a001 610/710647*24476^(8/9) 6835629657879066 a001 317811/64079*322^(1/18) 6835629663261170 a001 610/39603*817138163596^(2/9) 6835629663261170 a001 610/39603*87403803^(1/3) 6835629665770525 a001 610/39603*39603^(19/33) 6835629666983599 a001 305/51841*7881196^(4/9) 6835629666983648 a001 305/51841*312119004989^(4/15) 6835629666983648 a001 305/51841*1568397607^(1/3) 6835629666983780 a001 305/51841*4870847^(11/24) 6835629666990738 a001 305/51841*710647^(11/21) 6835629667364828 a001 610/271443*167761^(2/3) 6835629667372238 a001 305/51841*103682^(11/18) 6835629667409779 a001 610/3010349*167761^(13/15) 6835629667526742 a001 610/271443*20633239^(10/21) 6835629667526750 a001 610/271443*3461452808002^(5/18) 6835629667526750 a001 610/271443*28143753123^(1/3) 6835629667526750 a001 610/271443*228826127^(5/12) 6835629667527847 a001 610/271443*1860498^(5/9) 6835629667545400 a001 121393/24476*322^(1/18) 6835629667605979 a001 610/710647*20633239^(8/15) 6835629667605987 a001 610/710647*17393796001^(8/21) 6835629667605987 a001 610/710647*23725150497407^(7/24) 6835629667605987 a001 610/710647*505019158607^(1/3) 6835629667605987 a001 610/710647*10749957122^(7/18) 6835629667605987 a001 610/710647*599074578^(4/9) 6835629667605987 a001 610/710647*228826127^(7/15) 6835629667606155 a001 610/710647*4870847^(7/12) 6835629667615011 a001 610/710647*710647^(2/3) 6835629667617045 a001 305/930249*3010349^(2/3) 6835629667617548 a001 305/930249*9062201101803^(1/3) 6835629667619235 a001 610/4870847*45537549124^(4/9) 6835629667619263 a001 610/4870847*12752043^(2/3) 6835629667619439 a001 610/4870847*4870847^(17/24) 6835629667619453 a001 610/20633239*7881196^(7/9) 6835629667619479 a001 610/12752043*54018521^(2/3) 6835629667619504 a001 305/16692641*20633239^(16/21) 6835629667619508 a001 305/299537289*20633239^(14/15) 6835629667619508 a001 610/370248451*20633239^(19/21) 6835629667619517 a001 305/16692641*23725150497407^(5/12) 6835629667619517 a001 305/16692641*505019158607^(10/21) 6835629667619517 a001 305/16692641*28143753123^(8/15) 6835629667619517 a001 305/16692641*10749957122^(5/9) 6835629667619517 a001 305/16692641*228826127^(2/3) 6835629667619522 a001 610/87403803*969323029^(2/3) 6835629667619522 a001 610/1568397607*141422324^(8/9) 6835629667619523 a001 610/228826127*4106118243^(2/3) 6835629667619523 a001 305/299537289*17393796001^(2/3) 6835629667619523 a001 305/299537289*505019158607^(7/12) 6835629667619523 a001 305/299537289*599074578^(7/9) 6835629667619523 a001 610/1568397607*23725150497407^(13/24) 6835629667619523 a001 610/1568397607*505019158607^(13/21) 6835629667619523 a001 610/1568397607*73681302247^(2/3) 6835629667619523 a001 610/1568397607*10749957122^(13/18) 6835629667619523 a001 610/4106118243*312119004989^(2/3) 6835629667619523 a001 610/4106118243*3461452808002^(11/18) 6835629667619523 a001 610/4106118243*28143753123^(11/15) 6835629667619523 a001 305/5374978561*1322157322203^(2/3) 6835629667619523 a001 610/505019158607*17393796001^(20/21) 6835629667619523 a001 610/28143753123*5600748293801^(2/3) 6835629667619523 a001 610/73681302247*23725150497407^(2/3) 6835629667619523 a001 610/73681302247*505019158607^(16/21) 6835629667619523 a001 305/408569081798*312119004989^(13/15) 6835629667619523 a001 610/505019158607*3461452808002^(7/9) 6835629667619523 a001 305/1730726404001*23725150497407^(19/24) 6835629667619523 a001 305/1730726404001*505019158607^(19/21) 6835629667619523 a001 305/7331474697802*505019158607^(23/24) 6835629667619523 a001 305/408569081798*73681302247^(11/12) 6835629667619523 a001 610/17393796001*17393796001^(17/21) 6835629667619523 a001 610/505019158607*28143753123^(14/15) 6835629667619523 a001 305/22768774562*28143753123^(5/6) 6835629667619523 a001 610/17393796001*45537549124^(7/9) 6835629667619523 a001 610/17393796001*505019158607^(17/24) 6835629667619523 a001 610/73681302247*10749957122^(8/9) 6835629667619523 a001 610/4106118243*1568397607^(5/6) 6835629667619523 a001 610/17393796001*599074578^(17/18) 6835629667619523 a001 610/370248451*817138163596^(5/9) 6835629667619523 a001 610/1568397607*228826127^(13/15) 6835629667619523 a001 610/4106118243*228826127^(11/12) 6835629667619523 a001 610/370248451*228826127^(19/24) 6835629667619523 a001 610/370248451*87403803^(5/6) 6835629667619527 a001 610/20633239*20633239^(11/15) 6835629667619539 a001 610/20633239*17393796001^(11/21) 6835629667619539 a001 610/20633239*312119004989^(7/15) 6835629667619539 a001 610/20633239*505019158607^(11/24) 6835629667619539 a001 610/20633239*1568397607^(7/12) 6835629667619539 a001 610/20633239*599074578^(11/18) 6835629667619757 a001 305/16692641*4870847^(5/6) 6835629667619799 a001 610/228826127*4870847^(23/24) 6835629667620267 a001 610/3010349*20633239^(13/21) 6835629667620277 a001 610/3010349*141422324^(5/9) 6835629667620277 a001 610/3010349*73681302247^(5/12) 6835629667620277 a001 610/3010349*228826127^(13/24) 6835629667621272 a001 305/16692641*1860498^(8/9) 6835629667621703 a001 610/3010349*1860498^(13/18) 6835629667624693 a001 610/1149851*2139295485799^(1/3) 6835629667630192 a001 610/4870847*710647^(17/21) 6835629667631946 a001 610/20633239*710647^(11/12) 6835629667632407 a001 305/16692641*710647^(20/21) 6835629667654959 a001 305/219602*119218851371^(1/3) 6835629667697588 a001 610/3010349*271443^(5/6) 6835629667862405 a001 610/167761*6643838879^(1/3) 6835629668100557 a001 610/710647*103682^(7/9) 6835629668219783 a001 610/4870847*103682^(17/18) 6835629669284265 a001 610/64079*370248451^(1/3) 6835629669889216 a001 305/51841*39603^(2/3) 6835629670828532 a001 610/271443*39603^(25/33) 6835629671303983 a001 610/710647*39603^(28/33) 6835629671711758 a001 305/930249*39603^(31/33) 6835629672690774 a001 305/12238*24476^(5/9) 6835629678916493 a001 305/12238*167761^(7/15) 6835629679029832 a001 305/12238*20633239^(1/3) 6835629679029838 a001 305/12238*17393796001^(5/21) 6835629679029838 a001 305/12238*505019158607^(5/24) 6835629679029838 a001 305/12238*599074578^(5/18) 6835629679029838 a001 305/12238*228826127^(7/24) 6835629679030606 a001 305/12238*1860498^(7/18) 6835629679035478 a001 305/12238*710647^(5/12) 6835629682180479 a001 610/39603*15127^(19/30) 6835629688890216 a001 305/51841*15127^(11/15) 6835629689697203 a001 610/64079*15127^(41/60) 6835629691262603 a001 610/167761*15127^(47/60) 6835629692420577 a001 610/271443*15127^(5/6) 6835629693275828 a001 4181/1364*3571^(5/51) 6835629693740682 a007 Real Root Of 266*x^4-576*x^3+860*x^2-322*x-864 6835629694042416 a001 305/219602*15127^(53/60) 6835629695487074 a001 610/710647*15127^(14/15) 6835629696222898 a001 615/124*2207^(1/24) 6835629696455517 a001 305/12238*15127^(7/12) 6835629696767671 a001 646/341*2207^(1/6) 6835629696999409 a001 610/1149851*15127^(59/60) 6835629706037224 a001 610/9349*9349^(29/57) 6835629706617126 a001 987/3571*843^(10/21) 6835629733799447 a001 46368/9349*322^(1/18) 6835629738968656 a001 4181/1364*9349^(5/57) 6835629745812768 a001 4181/1364*167761^(1/15) 6835629745825263 a001 610/9349*1149851^(1/3) 6835629745826986 a001 610/9349*1322157322203^(1/6) 6835629745828959 a001 4181/1364*20633239^(1/21) 6835629745828960 a001 4181/1364*228826127^(1/24) 6835629745829070 a001 4181/1364*1860498^(1/18) 6835629748180791 m001 BesselJ(0,1)/(ln(Pi)^GaussAGM) 6835629748318343 a001 4181/1364*15127^(1/12) 6835629756609033 a007 Real Root Of 191*x^4-859*x^3-341*x^2-730*x+891 6835629758553229 r005 Re(z^2+c),c=25/94+17/45*I,n=18 6835629759080141 a001 610/15127*5778^(16/27) 6835629760265406 a001 610/9349*15127^(29/60) 6835629764787275 a001 4181/1364*5778^(5/54) 6835629804932814 a007 Real Root Of 30*x^4-913*x^3-295*x^2-415*x-444 6835629807344359 a001 610/39603*5778^(19/27) 6835629811738038 a001 305/12238*5778^(35/54) 6835629816285594 a001 89/2207*199^(32/33) 6835629818429629 h001 (5/9*exp(2)+1/10)/(8/11*exp(2)+7/9) 6835629824742443 a001 610/64079*5778^(41/54) 6835629827143598 a001 6765/15127*843^(17/42) 6835629830159272 p004 log(26479/13367) 6835629830196445 m001 (TreeGrowth2nd+Trott)/(Ei(1,1)+BesselJ(1,1)) 6835629833816814 a001 305/51841*5778^(22/27) 6835629837488338 r005 Im(z^2+c),c=-8/9+17/57*I,n=9 6835629839571857 m001 (ln(3)+HeathBrownMoroz)/(Catalan+ln(2)) 6835629846070561 a001 610/167761*5778^(47/54) 6835629855785210 a001 610/9349*5778^(29/54) 6835629857109894 a001 610/271443*5778^(25/27) 6835629862263913 a007 Real Root Of -925*x^4-213*x^3-616*x^2+271*x+607 6835629868613092 a001 305/219602*5778^(53/54) 6835629871281794 a007 Real Root Of 125*x^4-485*x^3-167*x^2-435*x+503 6835629878172080 a001 17711/39603*843^(17/42) 6835629885617035 a001 23184/51841*843^(17/42) 6835629886703239 a001 121393/271443*843^(17/42) 6835629886861714 a001 317811/710647*843^(17/42) 6835629886884836 a001 416020/930249*843^(17/42) 6835629886888209 a001 2178309/4870847*843^(17/42) 6835629886890294 a001 1346269/3010349*843^(17/42) 6835629886899125 a001 514229/1149851*843^(17/42) 6835629886959657 a001 98209/219602*843^(17/42) 6835629887374550 a001 75025/167761*843^(17/42) 6835629890218270 a001 28657/64079*843^(17/42) 6835629892013946 a001 4181/1364*2207^(5/48) 6835629909709416 a001 5473/12238*843^(17/42) 6835629917257805 m001 GAMMA(13/24)^2/exp((3^(1/3)))*Zeta(5)^2 6835629921259842 q001 1389/2032 6835629961917068 a001 610/3571*3571^(23/51) 6835629965892995 r008 a(0)=1,K{-n^6,16+58*n-9*n^2-62*n^3} 6835629976951426 a007 Real Root Of -61*x^4+890*x^3+403*x^2-15*x-449 6835629991116137 a007 Real Root Of 243*x^4-995*x^3-935*x^2+156*x+595 6835630017112227 m001 (LambertW(1)-ln(gamma))/(-Ei(1)+MertensB1) 6835630019321082 b008 ArcSec[(-1/6+EulerGamma)*Pi] 6835630043303717 a001 4181/9349*843^(17/42) 6835630061548428 r009 Re(z^3+c),c=-51/70+4/9*I,n=2 6835630088046523 a001 1597/1364*3571^(11/51) 6835630095790598 a001 615/124*843^(1/21) 6835630096992358 l006 ln(4246/8411) 6835630103643548 m001 (MasserGramain+Robbin)/(5^(1/2)-FellerTornier) 6835630116358113 m001 TravellingSalesman/(Zeta(1/2)+PrimesInBinary) 6835630129903573 r005 Im(z^2+c),c=-9/56+37/55*I,n=49 6835630132568526 r008 a(0)=0,K{-n^6,98+23*n^3-93*n^2-43*n} 6835630148323355 a007 Real Root Of -502*x^4+854*x^3-427*x^2-171*x+465 6835630157162215 m001 (Zeta(3)-Zeta(5))/(cos(1/5*Pi)+ErdosBorwein) 6835630157229522 a001 5/3571*7^(22/27) 6835630169317387 m001 (Ei(1)-gamma(1))/(GAMMA(19/24)+Niven) 6835630172104089 a001 610/3571*9349^(23/57) 6835630176345236 a003 cos(Pi*26/113)*sin(Pi*23/63) 6835630187911471 a001 17711/3571*322^(1/18) 6835630188570752 a001 1597/1364*9349^(11/57) 6835630203106575 a001 610/3571*64079^(1/3) 6835630203661489 a001 610/3571*4106118243^(1/6) 6835630203663409 a001 1597/1364*7881196^(1/9) 6835630203663422 a001 1597/1364*312119004989^(1/15) 6835630203663422 a001 1597/1364*1568397607^(1/12) 6835630204389814 a001 1597/1364*39603^(1/6) 6835630209140064 a001 1597/1364*15127^(11/60) 6835630215112650 a001 610/3571*15127^(23/60) 6835630223031662 a001 305/2889*2207^(13/24) 6835630245371716 a001 1597/1364*5778^(11/54) 6835630253393315 m005 (1/2*Catalan-8/11)/(3*Zeta(3)+1/3) 6835630259132106 a007 Real Root Of -699*x^4+940*x^3-654*x^2+349*x+997 6835630265211780 a007 Real Root Of -103*x^4-768*x^3-431*x^2+131*x+615 6835630271837245 a007 Real Root Of 24*x^4-788*x^3-478*x^2-12*x+478 6835630281538744 r005 Im(z^2+c),c=-55/94+6/13*I,n=44 6835630290869741 a001 610/3571*5778^(23/54) 6835630293243987 m001 StolarskyHarborth^ln(2)-Thue 6835630308646982 a001 233/5778*521^(32/39) 6835630319105279 m001 (ln(Pi)+cos(1/12*Pi))/(Bloch-Weierstrass) 6835630319229055 m006 (3*exp(Pi)-1/6)/(2/3*ln(Pi)+1/4) 6835630322876701 a007 Real Root Of 894*x^4+364*x^3+287*x^2-684*x-48 6835630336197461 a007 Real Root Of -229*x^4+678*x^3+802*x^2+682*x+358 6835630346877671 p004 log(20551/20411) 6835630381304271 a003 sin(Pi*5/72)-sin(Pi*36/101) 6835630381444205 a007 Real Root Of -485*x^4+589*x^3-614*x^2-133*x+490 6835630392755687 m001 1/GAMMA(7/24)^2*GAMMA(11/12)^2/exp(cos(1)) 6835630406864234 a007 Real Root Of -887*x^4-807*x^3-909*x^2+258*x+537 6835630408770904 r005 Im(z^2+c),c=-95/66+1/20*I,n=3 6835630413931350 r009 Im(z^3+c),c=-13/114+37/48*I,n=9 6835630428005844 r009 Im(z^3+c),c=-21/34+13/60*I,n=6 6835630431824300 a008 Real Root of (1+3*x-4*x^2-x^3-6*x^4+3*x^5) 6835630442772965 r005 Im(z^2+c),c=-65/102+17/49*I,n=34 6835630447409010 a001 2584/9349*843^(10/21) 6835630451146607 a007 Real Root Of 442*x^4-454*x^3+264*x^2+288*x-168 6835630456675094 r009 Im(z^3+c),c=-15/106+2/31*I,n=4 6835630497832007 m001 GAMMA(17/24)^BesselK(1,1)*sin(1/5*Pi) 6835630497832007 m001 GAMMA(17/24)^BesselK(1,1)*sin(Pi/5) 6835630512267603 h001 (-6*exp(5)-4)/(-exp(3)+7) 6835630525270416 a001 1597/1364*2207^(11/48) 6835630550605195 l006 ln(2621/5192) 6835630555489081 a001 6765/24476*843^(10/21) 6835630563457660 r002 8th iterates of z^2 + 6835630571257751 a001 17711/64079*843^(10/21) 6835630573330879 a001 610/15127*2207^(2/3) 6835630573558369 a001 46368/167761*843^(10/21) 6835630573894025 a001 121393/439204*843^(10/21) 6835630573942996 a001 317811/1149851*843^(10/21) 6835630573950141 a001 832040/3010349*843^(10/21) 6835630573951183 a001 2178309/7881196*843^(10/21) 6835630573951335 a001 5702887/20633239*843^(10/21) 6835630573951358 a001 14930352/54018521*843^(10/21) 6835630573951361 a001 39088169/141422324*843^(10/21) 6835630573951361 a001 102334155/370248451*843^(10/21) 6835630573951361 a001 267914296/969323029*843^(10/21) 6835630573951361 a001 701408733/2537720636*843^(10/21) 6835630573951361 a001 1836311903/6643838879*843^(10/21) 6835630573951361 a001 4807526976/17393796001*843^(10/21) 6835630573951361 a001 12586269025/45537549124*843^(10/21) 6835630573951361 a001 32951280099/119218851371*843^(10/21) 6835630573951361 a001 86267571272/312119004989*843^(10/21) 6835630573951361 a001 225851433717/817138163596*843^(10/21) 6835630573951361 a001 1548008755920/5600748293801*843^(10/21) 6835630573951361 a001 139583862445/505019158607*843^(10/21) 6835630573951361 a001 53316291173/192900153618*843^(10/21) 6835630573951361 a001 20365011074/73681302247*843^(10/21) 6835630573951361 a001 7778742049/28143753123*843^(10/21) 6835630573951361 a001 2971215073/10749957122*843^(10/21) 6835630573951361 a001 1134903170/4106118243*843^(10/21) 6835630573951361 a001 433494437/1568397607*843^(10/21) 6835630573951361 a001 165580141/599074578*843^(10/21) 6835630573951362 a001 63245986/228826127*843^(10/21) 6835630573951363 a001 24157817/87403803*843^(10/21) 6835630573951371 a001 9227465/33385282*843^(10/21) 6835630573951429 a001 3524578/12752043*843^(10/21) 6835630573951828 a001 1346269/4870847*843^(10/21) 6835630573954557 a001 514229/1860498*843^(10/21) 6835630573973262 a001 196418/710647*843^(10/21) 6835630574101471 a001 75025/271443*843^(10/21) 6835630574980229 a001 28657/103682*843^(10/21) 6835630581003325 a001 10946/39603*843^(10/21) 6835630593699948 a001 610/9349*2207^(29/48) 6835630600588395 m001 (Porter+Salem)/(3^(1/3)-GAMMA(11/12)) 6835630612897026 a008 Real Root of x^3-157*x+107 6835630622286238 a001 4181/15127*843^(10/21) 6835630622907750 a001 987/9349*843^(13/21) 6835630657312170 m001 1/exp(GAMMA(5/24))^2*Kolakoski*LambertW(1) 6835630662732288 r002 28th iterates of z^2 + 6835630678591439 m001 PisotVijayaraghavan/BesselI(0,2)*Salem 6835630701024200 m001 3^(1/3)*Landau-Porter 6835630702324794 a001 305/12238*2207^(35/48) 6835630719164323 a007 Real Root Of 929*x^4+208*x^3-648*x^2-536*x-200 6835630730083000 m005 (1/2*Zeta(3)-7/8)/(1/5*exp(1)-1/7) 6835630738606906 a007 Real Root Of 315*x^4-408*x^3+556*x^2-717*x-949 6835630742689731 m001 (PrimesInBinary+Rabbit)/(Shi(1)+sin(1/5*Pi)) 6835630769214321 a007 Real Root Of 795*x^4-461*x^3+134*x^2-744*x-892 6835630770222642 m005 (4*Catalan+1/2)/(1/2*exp(1)-3/4) 6835630774267128 a001 610/39603*2207^(19/24) 6835630778763427 a001 11/17711*377^(42/53) 6835630795918219 a007 Real Root Of 654*x^4-515*x^3-812*x^2-506*x+747 6835630808966468 m001 gamma(1)/(BesselI(0,2)^ZetaP(4)) 6835630814711801 a008 Real Root of x^4-2*x^3-23*x^2-62*x-46 6835630839436434 r005 Re(z^2+c),c=-89/114+1/45*I,n=53 6835630848862500 a003 sin(Pi*1/104)-sin(Pi*21/83) 6835630850973238 a007 Real Root Of 105*x^4+648*x^3-519*x^2-211*x+533 6835630853798811 m005 (1/2*Pi-7/10)/(47/72+5/18*5^(1/2)) 6835630860652311 b008 7-SinIntegral[1/2]/3 6835630868001228 a001 610/64079*2207^(41/48) 6835630876112495 a001 610/3571*2207^(23/48) 6835630884895873 m001 ln(2)^(AlladiGrinstead*GlaisherKinkelin) 6835630890933269 a001 4181/1364*843^(5/42) 6835630898232655 r002 8th iterates of z^2 + 6835630905243524 a001 1597/5778*843^(10/21) 6835630909632427 r009 Re(z^3+c),c=-3/62+31/43*I,n=15 6835630921831164 a007 Real Root Of -601*x^4+417*x^3-116*x^2+615*x+739 6835630925708584 r009 Im(z^3+c),c=-31/94+2/3*I,n=61 6835630929400441 r009 Re(z^3+c),c=-2/21+11/27*I,n=18 6835630948783441 a007 Real Root Of 256*x^4-601*x^3-591*x^2-579*x+808 6835630953411615 a001 305/51841*2207^(11/12) 6835630958972752 a001 1597/3571*843^(17/42) 6835630965376685 a001 1926/7*34^(8/31) 6835630987307567 a007 Real Root Of -471*x^4+447*x^3-539*x^2+545*x+870 6835630994192647 a007 Real Root Of -61*x^4+658*x^3-435*x^2+261*x-172 6835631002168130 r005 Re(z^2+c),c=39/110+39/64*I,n=16 6835631022464164 a007 Real Root Of 241*x^4-804*x^3+908*x^2+159*x-625 6835631026391565 a001 2584/15127*843^(23/42) 6835631029118788 h001 (11/12*exp(1)+5/8)/(5/9*exp(2)+5/11) 6835631029364649 m001 arctan(1/2)/(sin(1/5*Pi)-BesselI(0,1)) 6835631029364649 m001 arctan(1/2)/(sin(Pi/5)-BesselI(0,1)) 6835631042001380 a001 610/167761*2207^(47/48) 6835631049880720 a007 Real Root Of -932*x^4-209*x^3+748*x^2+421*x+75 6835631071045562 m001 (ln(2^(1/2)+1)+Sarnak)/(1-BesselJ(0,1)) 6835631083101742 l006 ln(3617/7165) 6835631085870157 m001 (gamma(1)-ErdosBorwein)/(FeigenbaumC+Kac) 6835631102164260 r002 3th iterates of z^2 + 6835631117672948 a003 cos(Pi*23/91)-sin(Pi*19/68) 6835631122126641 a007 Real Root Of -993*x^4+455*x^3-914*x^2-742*x+282 6835631139467149 p001 sum(1/(348*n+151)/(10^n),n=0..infinity) 6835631140162454 r005 Re(z^2+c),c=11/32+37/63*I,n=20 6835631154982298 a007 Real Root Of 927*x^4-299*x^3+560*x^2-618*x-982 6835631164100556 m001 (-Stephens+ZetaP(3))/(FeigenbaumMu-Psi(2,1/3)) 6835631179319816 a007 Real Root Of 81*x^4+445*x^3-814*x^2-618*x-904 6835631181528185 r008 a(0)=0,K{-n^6,4+8*n^3+50*n^2-47*n} 6835631182946455 r005 Re(z^2+c),c=-19/18+29/193*I,n=52 6835631194937643 m001 (GAMMA(19/24)+Robbin)/(sin(1/12*Pi)-gamma(2)) 6835631199261088 m001 (2^(1/3)+Landau)/(MinimumGamma+Salem) 6835631201890319 a001 141/2161*843^(29/42) 6835631216605476 m001 CareFree-Riemann2ndZero^OneNinth 6835631226783054 a001 2255/13201*843^(23/42) 6835631249931213 r005 Im(z^2+c),c=-11/62+45/53*I,n=16 6835631250785824 a007 Real Root Of -935*x^4-231*x^3-591*x^2+621*x+831 6835631256019778 a001 17711/103682*843^(23/42) 6835631260285359 a001 15456/90481*843^(23/42) 6835631260907698 a001 121393/710647*843^(23/42) 6835631260998497 a001 105937/620166*843^(23/42) 6835631261011744 a001 832040/4870847*843^(23/42) 6835631261019931 a001 514229/3010349*843^(23/42) 6835631261054613 a001 196418/1149851*843^(23/42) 6835631261292326 a001 75025/439204*843^(23/42) 6835631262752050 r005 Re(z^2+c),c=-63/94+15/46*I,n=42 6835631262921632 a001 28657/167761*843^(23/42) 6835631274089067 a001 10946/64079*843^(23/42) 6835631282687557 m001 (Zeta(1/2)+FeigenbaumMu)/(3^(1/2)+GAMMA(2/3)) 6835631295038612 a001 646/341*843^(4/21) 6835631298303754 r009 Re(z^3+c),c=-1/102+27/62*I,n=16 6835631311885251 s002 sum(A129144[n]/(n*exp(n)-1),n=1..infinity) 6835631316974415 a008 Real Root of x^4-2*x^3+129*x^2+178*x-7633 6835631341435949 r005 Re(z^2+c),c=-57/86+13/40*I,n=55 6835631350631806 a001 4181/24476*843^(23/42) 6835631362339028 a007 Real Root Of -140*x^4+814*x^3+732*x^2-185*x-445 6835631367987658 a007 Real Root Of -103*x^4-799*x^3-591*x^2+531*x+924 6835631375837714 m001 (Trott-Trott2nd)/(Kolakoski-Riemann3rdZero) 6835631378418509 a007 Real Root Of 605*x^4+62*x^3+824*x^2+906*x+122 6835631382423179 a007 Real Root Of -219*x^4+985*x^3-188*x^2-154*x+345 6835631385653962 l006 ln(4613/9138) 6835631396119768 m001 exp(1/Pi)*(CopelandErdos+MertensB1) 6835631398622817 a007 Real Root Of 76*x^4-658*x^3+437*x^2+76*x-379 6835631448740987 m001 (Cahen+Kolakoski)/(arctan(1/2)+GAMMA(13/24)) 6835631459639352 a007 Real Root Of -940*x^4+728*x^3-337*x^2-960*x-61 6835631470537373 a001 987/1364*843^(1/3) 6835631482509563 a007 Real Root Of -640*x^4+801*x^3-300*x^2-794*x-7 6835631509343412 m001 Riemann1stZero/(Conway+LandauRamanujan) 6835631511389495 r005 Re(z^2+c),c=-9/52+13/18*I,n=50 6835631523145029 m001 Tribonacci^2*exp(FeigenbaumB)*Zeta(1,2)^2 6835631543764542 m001 (5^(1/2))^arctan(1/3)/((5^(1/2))^Kolakoski) 6835631557244639 r009 Re(z^3+c),c=-2/21+11/27*I,n=20 6835631561474813 a001 1597/843*322^(2/9) 6835631566143264 m001 1/MadelungNaCl*exp(MertensB1)^2*sin(1)^2 6835631644822324 a007 Real Root Of 997*x^4-747*x^3-988*x^2-871*x-590 6835631651856829 r005 Im(z^2+c),c=-1/15+2/3*I,n=26 6835631658319924 m001 GAMMA(7/12)^2/DuboisRaymond^2*exp(Zeta(3))^2 6835631669636345 a007 Real Root Of -913*x^4-503*x^3+672*x^2+887*x+331 6835631702679644 r005 Re(z^2+c),c=-41/52+12/37*I,n=7 6835631703936097 r005 Re(z^2+c),c=-19/18+29/193*I,n=60 6835631709751045 m001 BesselK(0,1)+FeigenbaumDelta+KhinchinHarmonic 6835631711046747 m001 Si(Pi)/exp(Conway)^2/Riemann1stZero^2 6835631719903252 p003 LerchPhi(1/10,3,57/233) 6835631731389804 a007 Real Root Of 751*x^4-830*x^3-484*x^2-439*x-503 6835631742478851 r002 56th iterates of z^2 + 6835631752999459 m001 (-arctan(1/2)+2)/(MadelungNaCl+1/2) 6835631754737176 a001 646/6119*843^(13/21) 6835631755497577 q001 1834/2683 6835631757171488 r005 Im(z^2+c),c=1/66+38/55*I,n=6 6835631757215498 g007 Psi(2,6/11)+Psi(2,1/7)-Psi(2,7/9)-Psi(2,5/9) 6835631759344809 m001 (FellerTornier-Lehmer)^(2*Pi/GAMMA(5/6)) 6835631778373648 r009 Re(z^3+c),c=-2/21+11/27*I,n=22 6835631792290588 b008 Gamma[(-4*Pi)/15] 6835631805418904 m005 (1/2*5^(1/2)+3/4)/(10/11*5^(1/2)+7/10) 6835631812034378 m001 (Pi*2^(1/2)/GAMMA(3/4))^ln(gamma)-Salem 6835631815609012 r009 Re(z^3+c),c=-2/21+11/27*I,n=24 6835631817630429 r009 Re(z^3+c),c=-2/21+11/27*I,n=27 6835631817844932 r009 Re(z^3+c),c=-2/21+11/27*I,n=25 6835631817924283 r009 Re(z^3+c),c=-2/21+11/27*I,n=29 6835631818003970 r009 Re(z^3+c),c=-2/21+11/27*I,n=31 6835631818015441 r009 Re(z^3+c),c=-2/21+11/27*I,n=33 6835631818015485 r009 Re(z^3+c),c=-2/21+11/27*I,n=34 6835631818015601 r009 Re(z^3+c),c=-2/21+11/27*I,n=36 6835631818015724 r009 Re(z^3+c),c=-2/21+11/27*I,n=38 6835631818015752 r009 Re(z^3+c),c=-2/21+11/27*I,n=40 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=43 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=45 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=47 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=49 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=52 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=54 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=56 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=58 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=61 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=59 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=63 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=64 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=62 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=60 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=57 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=55 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=53 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=50 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=51 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=48 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=46 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=42 6835631818015755 r009 Re(z^3+c),c=-2/21+11/27*I,n=44 6835631818015756 r009 Re(z^3+c),c=-2/21+11/27*I,n=41 6835631818015766 r009 Re(z^3+c),c=-2/21+11/27*I,n=39 6835631818015830 r009 Re(z^3+c),c=-2/21+11/27*I,n=37 6835631818016016 r009 Re(z^3+c),c=-2/21+11/27*I,n=35 6835631818018769 r009 Re(z^3+c),c=-2/21+11/27*I,n=32 6835631818051321 r009 Re(z^3+c),c=-2/21+11/27*I,n=30 6835631818220049 r009 Re(z^3+c),c=-2/21+11/27*I,n=28 6835631818555349 r009 Re(z^3+c),c=-2/21+11/27*I,n=26 6835631829911789 r009 Re(z^3+c),c=-2/21+11/27*I,n=23 6835631875263544 a001 1597/9349*843^(23/42) 6835631919214096 m005 (1/2*2^(1/2)+5/12)/(3/4*2^(1/2)+7/12) 6835631919868862 a001 6765/64079*843^(13/21) 6835631921516330 m001 GAMMA(1/6)^2*Tribonacci^2/exp(Zeta(1,2))^2 6835631927279277 r009 Re(z^3+c),c=-2/21+11/27*I,n=21 6835631930235949 a001 987/24476*843^(16/21) 6835631943961250 a001 17711/167761*843^(13/21) 6835631947476282 a001 11592/109801*843^(13/21) 6835631947989118 a001 121393/1149851*843^(13/21) 6835631948063940 a001 317811/3010349*843^(13/21) 6835631948074856 a001 208010/1970299*843^(13/21) 6835631948076449 a001 2178309/20633239*843^(13/21) 6835631948076681 a001 5702887/54018521*843^(13/21) 6835631948076715 a001 3732588/35355581*843^(13/21) 6835631948076720 a001 39088169/370248451*843^(13/21) 6835631948076721 a001 102334155/969323029*843^(13/21) 6835631948076721 a001 66978574/634430159*843^(13/21) 6835631948076721 a001 701408733/6643838879*843^(13/21) 6835631948076721 a001 1836311903/17393796001*843^(13/21) 6835631948076721 a001 1201881744/11384387281*843^(13/21) 6835631948076721 a001 12586269025/119218851371*843^(13/21) 6835631948076721 a001 32951280099/312119004989*843^(13/21) 6835631948076721 a001 21566892818/204284540899*843^(13/21) 6835631948076721 a001 225851433717/2139295485799*843^(13/21) 6835631948076721 a001 182717648081/1730726404001*843^(13/21) 6835631948076721 a001 139583862445/1322157322203*843^(13/21) 6835631948076721 a001 53316291173/505019158607*843^(13/21) 6835631948076721 a001 10182505537/96450076809*843^(13/21) 6835631948076721 a001 7778742049/73681302247*843^(13/21) 6835631948076721 a001 2971215073/28143753123*843^(13/21) 6835631948076721 a001 567451585/5374978561*843^(13/21) 6835631948076721 a001 433494437/4106118243*843^(13/21) 6835631948076721 a001 165580141/1568397607*843^(13/21) 6835631948076721 a001 31622993/299537289*843^(13/21) 6835631948076723 a001 24157817/228826127*843^(13/21) 6835631948076736 a001 9227465/87403803*843^(13/21) 6835631948076825 a001 1762289/16692641*843^(13/21) 6835631948077433 a001 1346269/12752043*843^(13/21) 6835631948081603 a001 514229/4870847*843^(13/21) 6835631948110182 a001 98209/930249*843^(13/21) 6835631948306068 a001 75025/710647*843^(13/21) 6835631949648691 a001 28657/271443*843^(13/21) 6835631953718479 a001 305/682*1364^(17/45) 6835631958851165 a001 5473/51841*843^(13/21) 6835632021925856 a001 4181/39603*843^(13/21) 6835632131794410 r009 Re(z^3+c),c=-7/60+32/51*I,n=18 6835632137395992 m001 Shi(1)*(Trott+ZetaQ(2)) 6835632158834291 p004 log(30841/15569) 6835632158869933 r002 34th iterates of z^2 + 6835632169160218 r005 Im(z^2+c),c=-53/86+16/51*I,n=20 6835632193784017 m001 (Lehmer-ZetaQ(3))/(BesselK(1,1)-Backhouse) 6835632211431744 r002 49th iterates of z^2 + 6835632219553475 a007 Real Root Of -213*x^4+515*x^3-385*x^2+468*x-258 6835632231075741 l006 ln(1781/1907) 6835632244922203 m001 (GAMMA(3/4)+GAMMA(13/24))/(TreeGrowth2nd-Thue) 6835632251533597 r002 17th iterates of z^2 + 6835632256630092 a008 Real Root of (1+14*x-9*x^2+3*x^3) 6835632262345099 m001 (BesselK(0,1)-ln(5))/(GAMMA(13/24)+Paris) 6835632302181912 m001 cos(1)^exp(1)*cos(1)^GAMMA(13/24) 6835632354035697 r009 Re(z^3+c),c=-2/21+11/27*I,n=19 6835632360344670 r005 Im(z^2+c),c=-113/102+27/61*I,n=5 6835632363529823 m001 (Zeta(3)+MertensB1)/(exp(1)-gamma) 6835632370985528 a007 Real Root Of 661*x^4-938*x^3-760*x^2-371*x+764 6835632373923759 m001 1/3-cos(Pi/5)-exp(-1/2*Pi) 6835632380419667 a003 sin(Pi*9/88)-sin(Pi*43/88) 6835632421947507 a007 Real Root Of 285*x^4-832*x^3+934*x^2+299*x-560 6835632423655963 a007 Real Root Of -291*x^4-80*x^3+854*x^2+496*x-649 6835632426031266 a001 2584/39603*843^(29/42) 6835632454246219 a001 1597/15127*843^(13/21) 6835632455468577 m001 (BesselI(0,1)+sin(1/12*Pi))/(-Magata+Salem) 6835632459137335 a007 Real Root Of 249*x^4+162*x^3+236*x^2-894*x-724 6835632478322665 m001 gamma*StronglyCareFree+CopelandErdos 6835632484380171 l006 ln(996/1973) 6835632496852198 r005 Re(z^2+c),c=-43/54+10/63*I,n=29 6835632517342767 a001 377/521*521^(14/39) 6835632524342676 m001 BesselI(0,1)-CopelandErdos^Artin 6835632535426231 m001 GAMMA(13/24)/ln(CareFree)*Zeta(1/2) 6835632537308682 a001 7/4181*514229^(56/57) 6835632563862338 a007 Real Root Of -336*x^4+812*x^3+327*x^2+932*x+817 6835632566559517 m001 KomornikLoreti/(FeigenbaumB+Grothendieck) 6835632570302007 a008 Real Root of x^4-2*x^3-17*x^2-72*x-258 6835632592711853 a007 Real Root Of -544*x^4-471*x^3-639*x^2-54*x+230 6835632601530056 a001 329/13201*843^(5/6) 6835632601738574 m005 (17/66+1/6*5^(1/2))/(10/11*2^(1/2)-4/11) 6835632604631024 a001 6765/103682*843^(29/42) 6835632621417384 a007 Real Root Of 921*x^4+967*x^3+796*x^2-247*x-433 6835632630688377 a001 17711/271443*843^(29/42) 6835632634490094 a001 6624/101521*843^(29/42) 6835632635044757 a001 121393/1860498*843^(29/42) 6835632635125681 a001 317811/4870847*843^(29/42) 6835632635175695 a001 196418/3010349*843^(29/42) 6835632635387557 a001 75025/1149851*843^(29/42) 6835632636839684 a001 28657/439204*843^(29/42) 6835632646792707 a001 10946/167761*843^(29/42) 6835632669821420 m001 Pi*2^(1/3)/(Chi(1)-sin(1/12*Pi)) 6835632680019857 r009 Re(z^3+c),c=-2/21+11/27*I,n=17 6835632715011745 a001 4181/64079*843^(29/42) 6835632722893322 a001 1597/1364*843^(11/42) 6835632739572849 m001 (CareFree+HardyLittlewoodC5)/(ln(5)-Pi^(1/2)) 6835632746655330 a001 1/16*(1/2*5^(1/2)+1/2)^3*4^(13/19) 6835632795261407 a007 Real Root Of -363*x^4+472*x^3+65*x^2+988*x+875 6835632831281103 r005 Im(z^2+c),c=1/46+21/26*I,n=13 6835632844661226 a001 610/2207*843^(10/21) 6835632861867241 a001 39603*832040^(23/26) 6835632872575222 a007 Real Root Of 793*x^4+420*x^3+927*x^2-130*x-561 6835632873425314 q001 2279/3334 6835632903889635 r005 Re(z^2+c),c=-3/8+29/44*I,n=56 6835632912130839 a007 Real Root Of -131*x^4-957*x^3-557*x^2-974*x-285 6835632916797463 m001 (sin(1/5*Pi)-CareFree)/(FeigenbaumB-Robbin) 6835632917095107 a007 Real Root Of -933*x^4-646*x^3-344*x^2+612*x-40 6835632922303137 a001 11/2584*21^(7/45) 6835632934503397 g002 Psi(5/8)+Psi(4/7)-Psi(7/8)-Psi(3/7) 6835632955889770 m005 (-1/8+1/4*5^(1/2))/(7/9*Zeta(3)-3/10) 6835632969035266 a007 Real Root Of 950*x^4-974*x^3-118*x^2-208*x+301 6835632976225321 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^TreeGrowth2nd-Thue 6835632981636693 m005 (1/3*gamma-1/9)/(2/9*2^(1/2)+7/8) 6835632984268872 a001 233/2207*521^(2/3) 6835632986563074 a001 233/3571*521^(29/39) 6835632988883546 r005 Im(z^2+c),c=-43/48+8/27*I,n=8 6835633031249298 m001 1/GAMMA(7/12)^2*HardHexagonsEntropy*ln(Pi) 6835633071850758 m005 (1/2*gamma+1)/(7/8*Zeta(3)+5/6) 6835633087376875 r002 20th iterates of z^2 + 6835633119117195 a001 2584/64079*843^(16/21) 6835633128223002 m001 Pi*ln(2)/ln(10)/Zeta(1/2)*GAMMA(11/12) 6835633139338504 a007 Real Root Of -204*x^4+253*x^3-327*x^2+544*x+650 6835633154139174 r009 Re(z^3+c),c=-2/21+11/27*I,n=16 6835633163026762 a001 305/682*3571^(1/3) 6835633181886740 m001 (FeigenbaumMu-ZetaQ(3))/(GAMMA(3/4)-CareFree) 6835633182591982 a001 1597/24476*843^(29/42) 6835633214423707 a007 Real Root Of -736*x^4+293*x^3+25*x^2+319*x-22 6835633230488244 r002 19th iterates of z^2 + 6835633232594150 m001 1/exp(GAMMA(5/6))^2*(3^(1/3))^2*Pi 6835633234522645 a007 Real Root Of 756*x^4-702*x^3-824*x^2+287*x+248 6835633242772618 a007 Real Root Of 233*x^4-424*x^3-517*x^2-604*x+739 6835633252295341 a007 Real Root Of 918*x^4-227*x^3+310*x^2-151*x-521 6835633282802317 p001 sum((-1)^n/(539*n+358)/n/(16^n),n=1..infinity) 6835633283959382 r005 Re(z^2+c),c=17/46+3/38*I,n=4 6835633292572631 a001 615/15251*843^(16/21) 6835633294616003 a001 987/64079*843^(19/21) 6835633300443225 a001 615/124*322^(1/18) 6835633310750113 m001 (Zeta(5)+exp(-1/2*Pi))/(polylog(4,1/2)+Conway) 6835633317879438 a001 17711/439204*843^(16/21) 6835633318382459 a001 305/682*9349^(17/57) 6835633318627902 m001 (-LandauRamanujan+Otter)/(Si(Pi)+GAMMA(2/3)) 6835633321571652 a001 46368/1149851*843^(16/21) 6835633322110338 a001 121393/3010349*843^(16/21) 6835633322188932 a001 317811/7881196*843^(16/21) 6835633322200398 a001 75640/1875749*843^(16/21) 6835633322202071 a001 2178309/54018521*843^(16/21) 6835633322202315 a001 5702887/141422324*843^(16/21) 6835633322202351 a001 14930352/370248451*843^(16/21) 6835633322202356 a001 39088169/969323029*843^(16/21) 6835633322202357 a001 9303105/230701876*843^(16/21) 6835633322202357 a001 267914296/6643838879*843^(16/21) 6835633322202357 a001 701408733/17393796001*843^(16/21) 6835633322202357 a001 1836311903/45537549124*843^(16/21) 6835633322202357 a001 4807526976/119218851371*843^(16/21) 6835633322202357 a001 1144206275/28374454999*843^(16/21) 6835633322202357 a001 32951280099/817138163596*843^(16/21) 6835633322202357 a001 86267571272/2139295485799*843^(16/21) 6835633322202357 a001 225851433717/5600748293801*843^(16/21) 6835633322202357 a001 591286729879/14662949395604*843^(16/21) 6835633322202357 a001 365435296162/9062201101803*843^(16/21) 6835633322202357 a001 139583862445/3461452808002*843^(16/21) 6835633322202357 a001 53316291173/1322157322203*843^(16/21) 6835633322202357 a001 20365011074/505019158607*843^(16/21) 6835633322202357 a001 7778742049/192900153618*843^(16/21) 6835633322202357 a001 2971215073/73681302247*843^(16/21) 6835633322202357 a001 1134903170/28143753123*843^(16/21) 6835633322202357 a001 433494437/10749957122*843^(16/21) 6835633322202357 a001 165580141/4106118243*843^(16/21) 6835633322202357 a001 63245986/1568397607*843^(16/21) 6835633322202359 a001 24157817/599074578*843^(16/21) 6835633322202373 a001 9227465/228826127*843^(16/21) 6835633322202466 a001 3524578/87403803*843^(16/21) 6835633322203105 a001 1346269/33385282*843^(16/21) 6835633322207485 a001 514229/12752043*843^(16/21) 6835633322237505 a001 196418/4870847*843^(16/21) 6835633322443265 a001 75025/1860498*843^(16/21) 6835633323853565 a001 28657/710647*843^(16/21) 6835633333519905 a001 10946/271443*843^(16/21) 6835633335486000 m001 (OrthogonalArrays+Rabbit)/(exp(1)+Artin) 6835633341707504 a001 305/682*45537549124^(1/9) 6835633341707511 a001 305/682*12752043^(1/6) 6835633350171410 a001 305/682*15127^(17/60) 6835633356851032 r002 2th iterates of z^2 + 6835633369216700 v002 sum(1/(2^n+(n^2+35*n-1)),n=1..infinity) 6835633399773986 a001 4181/103682*843^(16/21) 6835633406165807 a001 305/682*5778^(17/54) 6835633411461745 a007 Real Root Of -59*x^4+474*x^3-179*x^2-291*x+49 6835633469707510 m001 (sin(1)+Ei(1))/(Gompertz+Magata) 6835633479609109 m001 (cos(1/5*Pi)-exp(1))/(Khinchin+OneNinth) 6835633503318171 m005 (1/2*Zeta(3)-5/9)/(5/12*Catalan-3/8) 6835633513733877 a007 Real Root Of 98*x^4+793*x^3+847*x^2+158*x+824 6835633543302043 m005 (1/2*Zeta(3)-3/7)/(-69/176+1/16*5^(1/2)) 6835633547476895 r009 Im(z^3+c),c=-43/114+19/27*I,n=42 6835633569105107 a007 Real Root Of 75*x^4+430*x^3-518*x^2+440*x+806 6835633570909080 m001 (ln(3)+(1+3^(1/2))^(1/2))/(Khinchin+Totient) 6835633626097867 q001 2724/3985 6835633649267191 l006 ln(4351/8619) 6835633649575488 m005 (7/44+1/4*5^(1/2))/(3/7*2^(1/2)+4/9) 6835633655123913 h001 (3/7*exp(2)+6/7)/(7/10*exp(2)+5/7) 6835633679858334 a007 Real Root Of -760*x^4-77*x^3-405*x^2-409*x+51 6835633686157743 a007 Real Root Of 399*x^4-889*x^3-274*x^2-945*x-889 6835633686868519 m005 (-9/20+1/4*5^(1/2))/(2/7*exp(1)+9/11) 6835633706202261 m001 (FeigenbaumB*Niven-Sierpinski)/Niven 6835633717020665 a001 6765/2207*322^(5/36) 6835633724547467 r005 Im(z^2+c),c=-23/118+41/53*I,n=45 6835633758750986 m005 (29/36+1/4*5^(1/2))/(4/9*Pi+3/5) 6835633764194078 r002 19th iterates of z^2 + 6835633771822583 r002 2th iterates of z^2 + 6835633772974330 a007 Real Root Of 340*x^4-210*x^3-400*x^2-745*x+689 6835633776872858 a007 Real Root Of -471*x^4+724*x^3-52*x^2-555*x-21 6835633791913192 a007 Real Root Of 453*x^4+927*x^3+706*x^2-925*x-765 6835633794985679 a007 Real Root Of 784*x^4-220*x^3+489*x^2+272*x-284 6835633803879477 a001 1292/51841*843^(5/6) 6835633816695061 m001 GolombDickman^(ZetaQ(3)/Trott) 6835633827916973 a001 843/17711*317811^(34/45) 6835633827978903 r002 7th iterates of z^2 + 6835633838736730 a001 305/682*2207^(17/48) 6835633853886213 a001 1597/39603*843^(16/21) 6835633880992552 a007 Real Root Of -727*x^4+262*x^3+391*x^2+530*x+422 6835633932614558 a007 Real Root Of 795*x^4+212*x^3-796*x^2-774*x-263 6835633967073212 m001 (Ei(1)+gamma(1))/(FeigenbaumC+GaussAGM) 6835633967813658 m001 GAMMA(7/24)^2*exp(GAMMA(1/24))/arctan(1/2)^2 6835633972974448 a001 141/46*123^(1/6) 6835633979299894 a001 2255/90481*843^(5/6) 6835633979378303 a001 21/2206*843^(41/42) 6835633989370384 m001 (-3^(1/3)+Niven)/(BesselI(0,1)-ln(2^(1/2)+1)) 6835633995087574 l006 ln(3355/6646) 6835634000569681 a007 Real Root Of 801*x^4-920*x^3-809*x^2+196*x+363 6835634004893388 a001 17711/710647*843^(5/6) 6835634008627428 a001 2576/103361*843^(5/6) 6835634009172218 a001 121393/4870847*843^(5/6) 6835634009251701 a001 105937/4250681*843^(5/6) 6835634009263298 a001 416020/16692641*843^(5/6) 6835634009264990 a001 726103/29134601*843^(5/6) 6835634009265236 a001 5702887/228826127*843^(5/6) 6835634009265272 a001 829464/33281921*843^(5/6) 6835634009265278 a001 39088169/1568397607*843^(5/6) 6835634009265278 a001 34111385/1368706081*843^(5/6) 6835634009265279 a001 133957148/5374978561*843^(5/6) 6835634009265279 a001 233802911/9381251041*843^(5/6) 6835634009265279 a001 1836311903/73681302247*843^(5/6) 6835634009265279 a001 267084832/10716675201*843^(5/6) 6835634009265279 a001 12586269025/505019158607*843^(5/6) 6835634009265279 a001 10983760033/440719107401*843^(5/6) 6835634009265279 a001 43133785636/1730726404001*843^(5/6) 6835634009265279 a001 75283811239/3020733700601*843^(5/6) 6835634009265279 a001 182717648081/7331474697802*843^(5/6) 6835634009265279 a001 139583862445/5600748293801*843^(5/6) 6835634009265279 a001 53316291173/2139295485799*843^(5/6) 6835634009265279 a001 10182505537/408569081798*843^(5/6) 6835634009265279 a001 7778742049/312119004989*843^(5/6) 6835634009265279 a001 2971215073/119218851371*843^(5/6) 6835634009265279 a001 567451585/22768774562*843^(5/6) 6835634009265279 a001 433494437/17393796001*843^(5/6) 6835634009265279 a001 165580141/6643838879*843^(5/6) 6835634009265279 a001 31622993/1268860318*843^(5/6) 6835634009265281 a001 24157817/969323029*843^(5/6) 6835634009265295 a001 9227465/370248451*843^(5/6) 6835634009265389 a001 1762289/70711162*843^(5/6) 6835634009266035 a001 1346269/54018521*843^(5/6) 6835634009270465 a001 514229/20633239*843^(5/6) 6835634009300825 a001 98209/3940598*843^(5/6) 6835634009508916 a001 75025/3010349*843^(5/6) 6835634010935192 a001 28657/1149851*843^(5/6) 6835634019686667 a001 1346269/3*2^(17/28) 6835634020142872 a007 Real Root Of 502*x^4-995*x^3+239*x^2+932*x+98 6835634020711037 a001 5473/219602*843^(5/6) 6835634034673428 m005 (1/2*Catalan+3/10)/(5/9*Catalan+3/5) 6835634048902405 m001 exp(GAMMA(11/12))^2/GAMMA(1/4)/gamma^2 6835634050332904 m001 (arctan(1/2)-Tetranacci)/(Pi-1) 6835634055380146 m001 Trott/(CareFree+QuadraticClass) 6835634063226888 h001 (10/11*exp(1)+4/5)/(7/11*exp(2)+1/12) 6835634087715674 a001 4181/167761*843^(5/6) 6835634103182399 r002 11th iterates of z^2 + 6835634114462488 r002 22th iterates of z^2 + 6835634116872188 a001 64079/76*(1/2*5^(1/2)+1/2)^32*76^(2/17) 6835634159196289 r002 17th iterates of z^2 + 6835634161077998 v003 sum((1/2*n^3+1/2*n+3)/n^n,n=1..infinity) 6835634170493893 m001 1/(3^(1/3))*ln(Khintchine)/Zeta(9) 6835634217514896 m001 (gamma(1)+Zeta(1,2))/(GAMMA(23/24)+ZetaP(2)) 6835634231882213 h001 (1/12*exp(2)+1/8)/(1/12*exp(1)+6/7) 6835634251147913 m001 MinimumGamma^2/FeigenbaumB/exp(GAMMA(1/4)) 6835634278836171 r005 Re(z^2+c),c=-53/122+18/29*I,n=10 6835634290691058 a007 Real Root Of -962*x^4+836*x^3-447*x^2-370*x+433 6835634320318639 a007 Real Root Of 284*x^4+98*x^3+998*x^2+199*x-361 6835634330565099 m005 (1/2*exp(1)-2/5)/(4/11*2^(1/2)+8/9) 6835634347372427 a007 Real Root Of 11*x^4+758*x^3+405*x^2-738*x-816 6835634363194801 a007 Real Root Of -679*x^4+643*x^3+42*x^2-493*x-3 6835634364469492 h001 (-8*exp(1/3)+4)/(-exp(3/2)-6) 6835634367734712 r002 62th iterates of z^2 + 6835634397289890 a007 Real Root Of -827*x^4+179*x^3-626*x^2+203*x+669 6835634413648276 r002 7th iterates of z^2 + 6835634439112933 m001 (sin(1/12*Pi)-GAMMA(19/24))/(Rabbit-Stephens) 6835634450527517 s002 sum(A241918[n]/(n*pi^n-1),n=1..infinity) 6835634463783766 m001 (Zeta(1/2)-arctan(1/3))/(Pi^(1/2)+GaussAGM) 6835634468370627 r005 Re(z^2+c),c=-17/122+3/4*I,n=11 6835634491821206 a001 2584/167761*843^(19/21) 6835634506403360 r002 4th iterates of z^2 + 6835634519000386 m001 (1+Ei(1,1))/(Grothendieck+ZetaQ(4)) 6835634520210103 r009 Im(z^3+c),c=-4/25+40/41*I,n=26 6835634538328913 m001 1+FeigenbaumD^KomornikLoreti 6835634539870002 m001 1/Salem^2*exp(KhintchineLevy)^2*log(1+sqrt(2)) 6835634544421090 m005 (1/2*Pi+8/9)/(3/7*Zeta(3)-7/8) 6835634546972287 a001 1597/64079*843^(5/6) 6835634554710162 r005 Im(z^2+c),c=21/74+22/43*I,n=7 6835634571980577 a007 Real Root Of 156*x^4-190*x^3+682*x^2-725*x-909 6835634589838139 a003 sin(Pi*23/95)*sin(Pi*50/109) 6835634590451306 m001 Zeta(1/2)*(ln(gamma)+Gompertz) 6835634591439913 r002 20th iterates of z^2 + 6835634607020554 a007 Real Root Of 27*x^4-821*x^3-894*x^2-16*x+685 6835634630650378 r002 5th iterates of z^2 + 6835634632068400 a001 322/1597*1346269^(17/23) 6835634632927511 l006 ln(2359/4673) 6835634666491091 a001 6765/439204*843^(19/21) 6835634691975084 a001 17711/1149851*843^(19/21) 6835634695693148 a001 46368/3010349*843^(19/21) 6835634696235606 a001 121393/7881196*843^(19/21) 6835634696314750 a001 10959/711491*843^(19/21) 6835634696326297 a001 832040/54018521*843^(19/21) 6835634696327981 a001 2178309/141422324*843^(19/21) 6835634696328227 a001 5702887/370248451*843^(19/21) 6835634696328263 a001 14930352/969323029*843^(19/21) 6835634696328268 a001 39088169/2537720636*843^(19/21) 6835634696328269 a001 102334155/6643838879*843^(19/21) 6835634696328269 a001 9238424/599786069*843^(19/21) 6835634696328269 a001 701408733/45537549124*843^(19/21) 6835634696328269 a001 1836311903/119218851371*843^(19/21) 6835634696328269 a001 4807526976/312119004989*843^(19/21) 6835634696328269 a001 12586269025/817138163596*843^(19/21) 6835634696328269 a001 32951280099/2139295485799*843^(19/21) 6835634696328269 a001 86267571272/5600748293801*843^(19/21) 6835634696328269 a001 7787980473/505618944676*843^(19/21) 6835634696328269 a001 365435296162/23725150497407*843^(19/21) 6835634696328269 a001 139583862445/9062201101803*843^(19/21) 6835634696328269 a001 53316291173/3461452808002*843^(19/21) 6835634696328269 a001 20365011074/1322157322203*843^(19/21) 6835634696328269 a001 7778742049/505019158607*843^(19/21) 6835634696328269 a001 2971215073/192900153618*843^(19/21) 6835634696328269 a001 1134903170/73681302247*843^(19/21) 6835634696328269 a001 433494437/28143753123*843^(19/21) 6835634696328269 a001 165580141/10749957122*843^(19/21) 6835634696328270 a001 63245986/4106118243*843^(19/21) 6835634696328272 a001 24157817/1568397607*843^(19/21) 6835634696328285 a001 9227465/599074578*843^(19/21) 6835634696328379 a001 3524578/228826127*843^(19/21) 6835634696329023 a001 1346269/87403803*843^(19/21) 6835634696333433 a001 514229/33385282*843^(19/21) 6835634696363663 a001 196418/12752043*843^(19/21) 6835634696570864 a001 75025/4870847*843^(19/21) 6835634697991038 a001 28657/1860498*843^(19/21) 6835634707725057 a001 10946/710647*843^(19/21) 6835634723862767 m005 (1/3*2^(1/2)-3/4)/(83/264+1/24*5^(1/2)) 6835634736791577 a007 Real Root Of -420*x^4-405*x^3-726*x^2+558*x+683 6835634755230745 m001 (GAMMA(13/24)+Khinchin)/(Trott2nd-TwinPrimes) 6835634762012140 a007 Real Root Of -4*x^4-287*x^3-934*x^2-406*x+700 6835634769144833 m001 1/PisotVijayaraghavan/ln(ArtinRank2)^2*sinh(1) 6835634774443017 a001 4181/271443*843^(19/21) 6835634800479145 r009 Re(z^3+c),c=-1/110+18/49*I,n=8 6835634806862832 a007 Real Root Of 989*x^4+368*x^3+94*x^2-889*x-750 6835634810139827 a007 Real Root Of 529*x^4-826*x^3-683*x^2-936*x-700 6835634818628297 m001 (-ThueMorse+Weierstrass)/(cos(1)+Artin) 6835634820955861 m005 (1/2*gamma-1/5)/(4/9*Pi-1/10) 6835634833713770 a007 Real Root Of -138*x^4+21*x^3-550*x^2+306*x+503 6835634842669820 m001 AlladiGrinstead*QuadraticClass^Totient 6835634842906778 r005 Im(z^2+c),c=-51/94+37/59*I,n=25 6835634880468830 a007 Real Root Of 371*x^4-110*x^3-740*x^2-992*x+978 6835634887689686 a007 Real Root Of -123*x^4+586*x^3-956*x^2-102*x+591 6835634893223889 a007 Real Root Of 84*x^4+577*x^3-55*x^2-454*x+363 6835634900969348 r002 21th iterates of z^2 + 6835634902344510 r008 a(0)=8,K{-n^6,1-n^2-n} 6835634923900704 b008 -78+Sqrt[93] 6835634931303979 r005 Re(z^2+c),c=-19/26+19/44*I,n=4 6835634941161780 a001 17711/5778*322^(5/36) 6835634942124891 r005 Im(z^2+c),c=-1/18+11/14*I,n=20 6835634963389017 a007 Real Root Of -474*x^4+433*x^3-108*x^2+636*x+727 6835634975536545 m005 (1/2*Pi+3/10)/(2*3^(1/2)-8/11) 6835634993405284 m001 gamma(2)*(Champernowne+LandauRamanujan2nd) 6835634994286730 r009 Re(z^3+c),c=-19/29+13/41*I,n=4 6835634994818637 m001 (2^(1/3)-Ei(1))/((1+3^(1/2))^(1/2)-Sarnak) 6835635013410775 m001 (BesselK(1,1)-Artin)/(FellerTornier+Trott) 6835635035033047 m001 OneNinth*Porter/ln((2^(1/3))) 6835635043821627 a007 Real Root Of -138*x^4+517*x^3+165*x^2+803*x-761 6835635081916404 m001 OneNinth*TwinPrimes^2*exp(GAMMA(1/3)) 6835635091072542 m005 (1/3*2^(1/2)-1/8)/(7/80+3/16*5^(1/2)) 6835635103863621 m001 (FeigenbaumC+Porter)/(1-polylog(4,1/2)) 6835635116098731 a001 329/281*322^(11/36) 6835635119761598 a001 6624/2161*322^(5/36) 6835635145818961 a001 121393/39603*322^(5/36) 6835635149620679 a001 317811/103682*322^(5/36) 6835635150175342 a001 832040/271443*322^(5/36) 6835635150256266 a001 311187/101521*322^(5/36) 6835635150306280 a001 1346269/439204*322^(5/36) 6835635150518143 a001 514229/167761*322^(5/36) 6835635151970270 a001 196418/64079*322^(5/36) 6835635161923297 a001 75025/24476*322^(5/36) 6835635164875796 a007 Real Root Of 621*x^4+28*x^3+610*x^2-789*x-951 6835635168110198 a001 322/5702887*86267571272^(17/23) 6835635178548589 a001 2584/271443*843^(41/42) 6835635207874545 l006 ln(3722/7373) 6835635230142360 a001 28657/9349*322^(5/36) 6835635231734712 a001 1597/103682*843^(19/21) 6835635236869582 m001 (-Zeta(1,-1)+Niven)/(sin(1)+Ei(1)) 6835635237147785 a001 2584/123*4^(40/47) 6835635244004344 m001 (Totient-ZetaP(4))/(exp(-1/2*Pi)+GAMMA(13/24)) 6835635244926329 m001 (3^(1/3)-BesselI(1,1))/(Conway-Riemann1stZero) 6835635335477679 a007 Real Root Of 913*x^4-962*x^3+776*x^2+840*x-295 6835635336640057 r002 4th iterates of z^2 + 6835635350656515 a007 Real Root Of 626*x^4-601*x^3-897*x^2-779*x-442 6835635353505176 a001 6765/710647*843^(41/42) 6835635354345618 m001 (GAMMA(2/3)-Psi(2,1/3))/(Artin+ZetaP(2)) 6835635370806288 m001 1/Zeta(5)*ln(Ei(1))^2*log(2+sqrt(3))^2 6835635375222465 m001 (3^(1/2)+BesselJ(1,1))/(Lehmer+Sierpinski) 6835635379030998 a001 17711/1860498*843^(41/42) 6835635382755165 a001 46368/4870847*843^(41/42) 6835635385056827 a001 28657/3010349*843^(41/42) 6835635394806824 a001 10946/1149851*843^(41/42) 6835635398862887 r008 a(0)=0,K{-n^6,-6-6*n^3+5*n^2-9*n} 6835635403695206 p004 log(28843/31) 6835635407141922 m005 (1/12+1/4*5^(1/2))/(7/10*3^(1/2)-3/11) 6835635417413986 a001 305/2889*843^(13/21) 6835635436512169 a001 322/121393*144^(4/21) 6835635451410522 a007 Real Root Of -726*x^4+954*x^3+804*x^2+836*x+659 6835635461634293 a001 4181/439204*843^(41/42) 6835635471143249 a001 610/3571*843^(23/42) 6835635474600207 l006 ln(5085/10073) 6835635484126524 a007 Real Root Of 364*x^4-365*x^3+818*x^2-339*x-810 6835635509106788 a001 1/1353*(1/2*5^(1/2)+1/2)^2*11^(10/19) 6835635544991245 a007 Real Root Of -884*x^4+424*x^3+309*x^2+806*x+735 6835635548152040 r002 17th iterates of z^2 + 6835635548740551 a001 6119/36*46368^(24/43) 6835635568184781 m001 GAMMA(1/6)/Salem^2/exp(sqrt(Pi)) 6835635601968940 m001 (Psi(1,1/3)+Zeta(1/2))/(KhinchinLevy+ZetaP(4)) 6835635604951412 a003 sin(Pi*28/117)/sin(Pi*37/76) 6835635656193897 b008 11/2+Pi*ArcSech[Catalan] 6835635697722811 a001 10946/3571*322^(5/36) 6835635747300152 r002 14th iterates of z^2 + 6835635805442300 r002 63th iterates of z^2 + 6835635813596302 m001 Zeta(5)^2*MertensB1/exp(sqrt(2)) 6835635826027386 g002 -gamma-3*ln(2)-1/2*Pi-2*Psi(2/9)-Psi(3/5) 6835635836637220 m001 (Catalan-cos(1/5*Pi))/(-exp(-1/2*Pi)+Pi^(1/2)) 6835635837543675 p001 sum((-1)^n/(581*n+146)/(100^n),n=0..infinity) 6835635851911258 r008 a(0)=7,K{-n^6,6+n^3-5*n^2+n} 6835635855558021 m001 (Bloch-LambertW(1)*ZetaR(2))/LambertW(1) 6835635875083457 r009 Re(z^3+c),c=-9/86+31/63*I,n=20 6835635888647047 a007 Real Root Of 610*x^4-653*x^3+937*x^2+172*x-662 6835635894157605 r009 Im(z^3+c),c=-7/20+38/59*I,n=60 6835635919676584 a001 1597/167761*843^(41/42) 6835635926373846 a003 cos(Pi*25/81)+cos(Pi*43/93) 6835635935630554 m001 (2*Pi/GAMMA(5/6)-ln(Pi)*ArtinRank2)/ArtinRank2 6835635946862548 m001 Robbin^2/ln(LandauRamanujan)^2*GAMMA(5/6) 6835635956896387 a007 Real Root Of -602*x^4-102*x^3-950*x^2-301*x+337 6835635989366344 r002 12th iterates of z^2 + 6835636012838090 m005 (1/2*2^(1/2)-6/7)/(9/11*3^(1/2)+7/9) 6835636013403364 h001 (1/6*exp(1)+1/2)/(2/11*exp(1)+9/10) 6835636038635829 m001 (FeigenbaumKappa+Paris)/(Porter+TwinPrimes) 6835636038798484 a007 Real Root Of 508*x^4+144*x^3+819*x^2-201*x-585 6835636046140088 r005 Re(z^2+c),c=-13/14+13/172*I,n=10 6835636052619532 a007 Real Root Of -624*x^4+655*x^3+187*x^2-300*x+53 6835636085871475 a003 sin(Pi*17/63)*sin(Pi*42/115) 6835636087627362 a007 Real Root Of -559*x^4+937*x^3+142*x^2-38*x+329 6835636099816986 m001 1/exp(cos(Pi/12))/Pi/sqrt(Pi) 6835636108605619 a007 Real Root Of 102*x^4+836*x^3+913*x^2-292*x-335 6835636110145944 r005 Re(z^2+c),c=11/86+29/50*I,n=44 6835636123277290 a007 Real Root Of -977*x^4+393*x^3-209*x^2-542*x+66 6835636135424842 r009 Im(z^3+c),c=-7/62+35/48*I,n=3 6835636143199191 m001 (-FeigenbaumD+Porter)/(Zeta(1,2)-sin(1)) 6835636155994692 a007 Real Root Of -884*x^4+400*x^3+980*x^2+710*x-878 6835636167553292 h001 (1/3*exp(2)+7/8)/(1/7*exp(1)+1/10) 6835636191709194 r005 Im(z^2+c),c=-17/32+4/33*I,n=42 6835636202958878 l006 ln(1363/2700) 6835636206748148 h001 (2/11*exp(2)+7/8)/(5/12*exp(2)+1/6) 6835636263843752 m005 (1/3*Catalan+3/4)/(107/120+7/24*5^(1/2)) 6835636275297081 a008 Real Root of x^4-x^3+35*x^2-138*x-2556 6835636285534791 a007 Real Root Of 256*x^4+322*x^3+380*x^2-247*x+15 6835636293566024 r002 12th iterates of z^2 + 6835636311998486 a001 1/377*17711^(3/31) 6835636335904034 a008 Real Root of x^4-144*x^2-96*x+3889 6835636336270302 m005 (1/3*exp(1)+1/7)/(7/12*Zeta(3)+5/6) 6835636374454817 a007 Real Root Of 713*x^4-603*x^3+338*x^2-639*x-943 6835636383660300 a007 Real Root Of -391*x^4+890*x^3+868*x^2+11*x-612 6835636386369523 a007 Real Root Of 74*x^4-497*x^3-30*x^2-852*x+739 6835636387434646 a001 610/9349*843^(29/42) 6835636393960147 m001 Porter^(Pi*csc(5/24*Pi)/GAMMA(19/24))+3^(1/3) 6835636399231400 a007 Real Root Of 860*x^4-92*x^3+385*x^2-313*x-611 6835636401332088 r009 Im(z^3+c),c=-5/102+3/44*I,n=2 6835636401441387 r004 Re(z^2+c),c=-11/9-9/17*I,z(0)=-1,n=4 6835636401892781 a007 Real Root Of 967*x^4-272*x^3+133*x^2+502*x-17 6835636410883144 a007 Real Root Of 936*x^4-160*x^3+582*x^2-548*x-902 6835636420991146 m001 (BesselI(0,1)+BesselI(1,1))/GAMMA(1/3) 6835636426283149 m001 cos(1/12*Pi)*Rabbit-gamma(3) 6835636427349657 a007 Real Root Of 634*x^4+822*x^3+189*x^2-532*x-37 6835636444305082 a007 Real Root Of -258*x^4+499*x^3-346*x^2-141*x+281 6835636445421199 p001 sum((-1)^n/(313*n+140)/n/(32^n),n=1..infinity) 6835636478838486 r002 30th iterates of z^2 + 6835636492861618 m001 Khintchine*exp(Cahen)/RenyiParking 6835636513950504 a007 Real Root Of 890*x^4+144*x^3+711*x^2-757*x-998 6835636542801102 r002 8th iterates of z^2 + 6835636555666476 a007 Real Root Of -702*x^4-295*x^3-784*x^2+175*x+545 6835636568946642 m001 (gamma(1)-Tetranacci)/(ln(5)+ln(2+3^(1/2))) 6835636569054704 r005 Re(z^2+c),c=-79/114+13/55*I,n=25 6835636608879561 m001 (-FeigenbaumMu+Kac)/(BesselK(0,1)-gamma(2)) 6835636629674019 s002 sum(A255326[n]/(n*pi^n-1),n=1..infinity) 6835636635726530 a001 1970299/2*233^(7/9) 6835636678943067 r009 Im(z^3+c),c=-41/98+19/32*I,n=32 6835636693604305 h001 (4/5*exp(1)+11/12)/(4/7*exp(2)+3/10) 6835636699778488 r009 Im(z^3+c),c=-4/13+2/3*I,n=26 6835636705193947 r005 Im(z^2+c),c=-101/74+11/32*I,n=4 6835636711236163 a007 Real Root Of 968*x^4+435*x^3+298*x^2-514*x-563 6835636723116541 m001 Robbin^PlouffeB/Zeta(3) 6835636736510447 r005 Im(z^2+c),c=29/106+13/28*I,n=6 6835636764301440 m001 sin(1/12*Pi)/Robbin*ZetaP(3) 6835636784761642 r005 Re(z^2+c),c=-71/114+22/57*I,n=15 6835636819946197 b008 -9+ProductLog[6*Pi] 6835636859774632 a007 Real Root Of 5*x^4+39*x^3+224*x^2-140*x-189 6835636899826782 m001 1/Ei(1)/Riemann3rdZero*exp(sin(Pi/5))^2 6835636910474083 m001 exp(LaplaceLimit)^2*ArtinRank2^2/GAMMA(1/3) 6835636935855788 m001 (MertensB2-exp(Pi))/(Mills+Tetranacci) 6835636954588777 a007 Real Root Of 873*x^4+285*x^3+686*x^2-13*x-429 6835636964754076 a007 Real Root Of 12*x^4+830*x^3+666*x^2+101*x+678 6835636966417704 a001 610/15127*843^(16/21) 6835636966680550 m001 Salem^2*ln(LandauRamanujan)*FeigenbaumKappa^2 6835636990389595 m001 2*Pi/GAMMA(5/6)*(3^(1/2))^Artin 6835636990389595 m001 sqrt(3)^Artin*GAMMA(1/6) 6835637003619996 a007 Real Root Of 829*x^4-968*x^3+326*x^2-128*x-730 6835637009560036 r002 28th iterates of z^2 + 6835637012395755 a007 Real Root Of -600*x^4+475*x^3+372*x^2+243*x+275 6835637025148351 a007 Real Root Of -845*x^4+16*x^3+450*x^2+323*x+20 6835637033034174 a005 (1/sin(72/205*Pi))^159 6835637033736771 r009 Re(z^3+c),c=-59/106+5/32*I,n=47 6835637034131129 l006 ln(4456/8827) 6835637036389879 m001 (exp(1)-exp(Pi))/(GlaisherKinkelin+Niven) 6835637037957548 m001 (Backhouse-exp(Pi))/(Niven+Porter) 6835637056548096 a003 cos(Pi*26/97)+cos(Pi*44/89) 6835637063322320 m001 (Backhouse-exp(1))/(-GlaisherKinkelin+Porter) 6835637116361714 v002 sum(1/(3^n+(17/2*n^2+9/2*n+11)),n=1..infinity) 6835637129926711 m001 (Conway+Totient)/(3^(1/3)-GAMMA(11/12)) 6835637135764693 m005 (1/2*Catalan+1/2)/(247/264+5/24*5^(1/2)) 6835637150405873 a001 521/144*233^(25/26) 6835637153499123 m001 (arctan(1/2)*Porter+FellerTornier)/Porter 6835637158958329 a001 1/4*(1/2*5^(1/2)+1/2)^30*47^(1/10) 6835637179531284 a007 Real Root Of 852*x^4-607*x^3-407*x^2-707*x-673 6835637184703742 m001 1/3/(GAMMA(1/4)-exp(sqrt(2))) 6835637185443787 r005 Im(z^2+c),c=19/126+2/45*I,n=5 6835637192080147 m001 (Riemann2ndZero-Trott)/(ErdosBorwein+Porter) 6835637199051113 r002 45th iterates of z^2 + 6835637235064984 a001 305/682*843^(17/42) 6835637235980723 r002 50th iterates of z^2 + 6835637239521058 a007 Real Root Of 686*x^4-905*x^3-332*x^2-883*x+898 6835637260074466 m001 1/Zeta(9)^2/Riemann3rdZero*exp(cos(1)) 6835637276283852 a007 Real Root Of -918*x^4-147*x^3-802*x^2+500*x+870 6835637283650694 r005 Re(z^2+c),c=19/64+14/25*I,n=10 6835637293779534 a007 Real Root Of -825*x^4+788*x^3+754*x^2+382*x-685 6835637305335645 p001 sum(1/(555*n+149)/(12^n),n=0..infinity) 6835637346523306 h001 (2/9*exp(1)+5/6)/(7/10*exp(1)+1/5) 6835637352633733 m001 (MertensB3+ZetaQ(2))/(5^(1/2)-exp(-1/2*Pi)) 6835637363256436 m005 (1/3*5^(1/2)-1/12)/(3/8*Catalan+5/8) 6835637371588079 s002 sum(A244046[n]/(n*exp(n)+1),n=1..infinity) 6835637379937378 m001 1/ln(RenyiParking)*KhintchineLevy^2/sin(1)^2 6835637393014552 m001 Pi/GaussKuzminWirsing^2*ln(Zeta(9)) 6835637400405849 l006 ln(3093/6127) 6835637416362937 m001 (ln(gamma)+exp(1/Pi))/(BesselI(1,1)-Pi^(1/2)) 6835637416607352 a007 Real Root Of 452*x^4+117*x^3+960*x^2-66*x-555 6835637451357873 m001 (Otter+Stephens)/(ln(3)-LandauRamanujan2nd) 6835637456185729 b008 -7+BesselJ[1,1/3] 6835637461155650 m001 Lehmer^MertensB2/(Lehmer^HardyLittlewoodC4) 6835637463508494 m001 1/cos(Pi/12)^2/exp(Robbin)/cos(Pi/5) 6835637472744186 r008 a(0)=7,K{-n^6,7-2*n^3-6*n^2+3*n} 6835637479778929 m001 1/2*(Niven-PisotVijayaraghavan)/Pi*GAMMA(5/6) 6835637480798771 q001 445/651 6835637480798771 r002 2th iterates of z^2 + 6835637480798771 r002 2th iterates of z^2 + 6835637480798771 r005 Im(z^2+c),c=-4/3+89/217*I,n=2 6835637487683642 r008 a(0)=7,K{-n^6,-5+8*n^3+3*n^2+n} 6835637492285544 m005 (1/2*gamma+5/12)/(gamma+5/11) 6835637499691509 m001 (exp(-1/2*Pi)-Kolakoski)/(Zeta(5)-Ei(1)) 6835637503468759 m005 (1/2*5^(1/2)+1/8)/(7/9*Pi-5/8) 6835637508196872 a007 Real Root Of 363*x^4-868*x^3+773*x^2-850*x-62 6835637514467613 r009 Re(z^3+c),c=-7/44+35/53*I,n=15 6835637545830812 a007 Real Root Of 716*x^4-289*x^3-111*x^2+361*x+50 6835637562279076 a007 Real Root Of 281*x^4+138*x^3+763*x^2-900*x-989 6835637581737215 r005 Re(z^2+c),c=5/46+31/64*I,n=47 6835637596005611 a007 Real Root Of -477*x^4+244*x^3-695*x^2+622*x+932 6835637598171999 m001 (Bloch+StronglyCareFree)/(cos(1)+GAMMA(17/24)) 6835637627407836 m005 (1/2*gamma-5/11)/(9/11*Pi-1/7) 6835637667753036 m001 (gamma+FeigenbaumAlpha)/(-ZetaP(2)+ZetaQ(4)) 6835637675785325 r002 14th iterates of z^2 + 6835637694763948 a001 305/12238*843^(5/6) 6835637705698588 m001 (Niven-ZetaQ(2))/(Pi^(1/2)+Cahen) 6835637705734470 a001 11/317811*10946^(3/41) 6835637705946469 m001 (2^(1/2)-Chi(1))/(Catalan+gamma(1)) 6835637715697846 m005 (1/2*5^(1/2)-2/5)/(2/7*3^(1/2)+5/9) 6835637738809352 l006 ln(4823/9554) 6835637747792590 a007 Real Root Of -7*x^4-481*x^3-163*x^2+568*x+244 6835637751499813 m008 (4/5*Pi^3+2)/(2/5*Pi^4+1/4) 6835637767130592 a001 18/28657*28657^(48/53) 6835637792232182 r005 Im(z^2+c),c=31/106+33/59*I,n=23 6835637803092873 a007 Real Root Of 864*x^4-687*x^3-994*x^2-457*x-256 6835637803452867 a007 Real Root Of 545*x^4-617*x^3+920*x^2+174*x-627 6835637809944603 r002 8th iterates of z^2 + 6835637841913444 a007 Real Root Of 954*x^4+440*x^3+763*x^2+884*x+180 6835637850472444 b008 68+InverseGudermannian[Pi/9] 6835637860982657 s002 sum(A050711[n]/((2^n-1)/n),n=1..infinity) 6835637885437092 a007 Real Root Of 664*x^4-300*x^3-457*x^2-557*x-408 6835637888668878 a001 377/843*322^(17/36) 6835637919997292 a007 Real Root Of -752*x^4+958*x^3+17*x^2+745*x-659 6835637929825133 m001 (5^(1/2)-cos(1/12*Pi))/(-Kac+TreeGrowth2nd) 6835637935118618 a007 Real Root Of -762*x^4-207*x^3-633*x^2+531*x+759 6835637940880239 a007 Real Root Of 530*x^4-564*x^3-533*x^2-248*x+483 6835637947475590 a007 Real Root Of -860*x^4-948*x^3-904*x^2+254*x+481 6835637974689759 p003 LerchPhi(1/25,1,5/34) 6835638008019910 r005 Re(z^2+c),c=11/90+30/61*I,n=24 6835638015279997 r005 Re(z^2+c),c=31/90+11/20*I,n=19 6835638082824867 r002 5th iterates of z^2 + 6835638091165349 b008 1/4+4^(Sqrt[3]*E) 6835638095948034 m001 1/CareFree*ln(DuboisRaymond)^2/GAMMA(1/6) 6835638105250231 a008 Real Root of x^3-x^2-200*x-1001 6835638126230628 r005 Re(z^2+c),c=39/118+1/24*I,n=55 6835638136890019 a007 Real Root Of -823*x^4+383*x^3-460*x^2+259*x+694 6835638181420493 b008 BesselJ[2,GoldenRatio]^2 6835638190943785 g002 -gamma-2*ln(2)+Psi(11/12)-2*Psi(2/9) 6835638194999567 a007 Real Root Of 28*x^4-806*x^3+905*x^2-703*x+309 6835638208973441 a007 Real Root Of 293*x^4-731*x^3+810*x^2-142*x-773 6835638229195393 r005 Im(z^2+c),c=7/50+26/45*I,n=38 6835638251340202 r005 Re(z^2+c),c=-13/22+51/116*I,n=20 6835638252338095 m001 Cahen^exp(1/exp(1))/(Cahen^LandauRamanujan2nd) 6835638254440402 m001 1/exp(FeigenbaumB)^2*Artin*cos(Pi/12) 6835638256945306 r005 Re(z^2+c),c=-5/82+29/37*I,n=50 6835638271104513 m001 GAMMA(11/12)*Khinchin/PrimesInBinary 6835638292315693 a007 Real Root Of -855*x^4+29*x^3+400*x^2+294*x+210 6835638294261975 r005 Im(z^2+c),c=-69/118+41/63*I,n=12 6835638302841717 m001 (-Sarnak+Totient)/(1-Paris) 6835638305303351 a007 Real Root Of -937*x^4+479*x^3-527*x^2-936*x-36 6835638319435659 a007 Real Root Of -51*x^4-487*x^3-931*x^2+99*x-21 6835638323815424 a007 Real Root Of 803*x^4-420*x^3+698*x^2+431*x-341 6835638327376581 l004 sinh(591/113*Pi) 6835638327376654 l004 cosh(591/113*Pi) 6835638327722961 m009 (5*Psi(1,2/3)+1/3)/(1/3*Pi^2-1) 6835638343827842 l006 ln(1730/3427) 6835638366058621 a001 610/39603*843^(19/21) 6835638387318025 a007 Real Root Of 929*x^4+330*x^3+999*x^2-421*x-852 6835638395938280 m001 GAMMA(5/12)^2*FeigenbaumDelta/exp(GAMMA(5/6)) 6835638416340051 a007 Real Root Of 561*x^4-691*x^3+812*x^2+529*x-361 6835638421113581 a007 Real Root Of 765*x^4+46*x^3+126*x^2-481*x-540 6835638479797609 m001 1/exp(GAMMA(23/24))*GAMMA(1/6)/cos(1)^2 6835638480059177 a007 Real Root Of 440*x^4-908*x^3-268*x^2-837*x-833 6835638487146280 l006 ln(8382/8975) 6835638548487006 r005 Im(z^2+c),c=-19/34+76/127*I,n=3 6835638549704120 a007 Real Root Of -480*x^4+50*x^3+950*x^2+430*x-649 6835638559550043 r002 49th iterates of z^2 + 6835638568706769 b008 Pi+2*ArcCos[-3/11] 6835638581659044 m001 (Shi(1)+cos(1))/(-GAMMA(13/24)+Riemann3rdZero) 6835638593390333 a007 Real Root Of -981*x^4+266*x^3-969*x^2+281*x+944 6835638608845331 m001 (-BesselI(0,2)+1/3)/(GaussAGM(1,1/sqrt(2))+2) 6835638635122073 m001 (Riemann1stZero+Thue)/(BesselK(0,1)+Pi^(1/2)) 6835638641377706 m001 (MadelungNaCl+ZetaQ(2))/(ln(5)+GAMMA(23/24)) 6835638673465177 r002 23th iterates of z^2 + 6835638705111045 b008 Csch[(1+E+Pi)^(-1)] 6835638713850521 r005 Im(z^2+c),c=-13/86+43/63*I,n=43 6835638754597583 r002 53th iterates of z^2 + 6835638760940969 a007 Real Root Of 871*x^4-483*x^3+957*x^2-122*x-875 6835638771796623 a007 Real Root Of 151*x^4+909*x^3-857*x^2-190*x-599 6835638775734011 a001 28143753123/8*2^(23/24) 6835638785031163 m005 (1/3*5^(1/2)+2/11)/(29/56+3/8*5^(1/2)) 6835638803575466 m001 (Pi+ln(Pi))/((1+3^(1/2))^(1/2)-GAMMA(23/24)) 6835638819563511 p004 log(36451/18401) 6835638833203854 r005 Im(z^2+c),c=-1/110+34/43*I,n=21 6835638834147239 b008 25*ArcSinh[23/3] 6835638847256516 a007 Real Root Of 910*x^4-638*x^3-882*x^2-421*x+705 6835638848378449 m001 Riemann3rdZero^Conway+Ei(1) 6835638849884332 a007 Real Root Of 717*x^4-203*x^3-392*x^2-918*x-61 6835638866461065 l003 hypergeom([1,1,2],[1/3,4/3],97/107) 6835638872565686 a007 Real Root Of -735*x^4-496*x^3-388*x^2+374*x+439 6835638882939750 r009 Re(z^3+c),c=-3/86+43/53*I,n=45 6835638887357143 m008 (5/6*Pi^3+3/4)/(4*Pi^4-2/3) 6835638900776827 a007 Real Root Of -88*x^4+883*x^3+178*x^2-177*x-225 6835638902568586 a001 4181/1364*322^(5/36) 6835638917312358 m001 (BesselI(0,2)+Artin)/(GAMMA(2/3)-cos(1/12*Pi)) 6835638928976588 r005 Re(z^2+c),c=-5/62+7/9*I,n=26 6835638930554316 m001 (2^(1/3))^2*RenyiParking^2*ln(Catalan)^2 6835638957666239 r005 Re(z^2+c),c=-23/22+7/59*I,n=4 6835638963211902 m001 1/GAMMA(5/6)^2/ln(GAMMA(1/4))^2*Zeta(3)^2 6835639000563029 a001 15127/233*144^(9/19) 6835639014648339 p001 sum(1/(409*n+179)/(2^n),n=0..infinity) 6835639030401848 r005 Re(z^2+c),c=11/82+11/21*I,n=55 6835639039385334 r005 Im(z^2+c),c=-3/74+34/49*I,n=58 6835639054262651 r002 43th iterates of z^2 + 6835639059145153 a001 610/64079*843^(41/42) 6835639099825820 m001 MertensB1*(2^(1/3)+GAMMA(2/3)) 6835639106306016 l006 ln(3827/7581) 6835639115678512 a007 Real Root Of 921*x^4+313*x^3+521*x^2-855*x-929 6835639156189734 r005 Re(z^2+c),c=5/94+21/52*I,n=44 6835639162102073 m008 (2/3*Pi^5+5)/(Pi^5-1/4) 6835639173394133 m001 1/ln(FeigenbaumD)*FeigenbaumDelta*Zeta(3)^2 6835639190839784 a007 Real Root Of -131*x^4+567*x^3+951*x^2-130*x-508 6835639216401908 r005 Im(z^2+c),c=-11/102+51/58*I,n=44 6835639219584146 m005 (1/2*Pi-8/11)/(41/180+9/20*5^(1/2)) 6835639224127427 m005 (1/3*3^(1/2)-1/12)/(4/5*gamma-5/11) 6835639225275597 a007 Real Root Of 523*x^4+548*x^3-200*x^2-662*x+46 6835639235180079 m001 1/ln(Porter)^2*MinimumGamma^2/GAMMA(5/12) 6835639268040600 m004 -3+(4*Sinh[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 6835639289548660 a007 Real Root Of 162*x^4-558*x^3+27*x^2-165*x-339 6835639300120448 m001 Tribonacci*ln(ErdosBorwein)^2*sqrt(1+sqrt(3)) 6835639319146367 a001 4181/2207*322^(2/9) 6835639321850577 r005 Re(z^2+c),c=-10/19+26/47*I,n=50 6835639322982054 m005 (1/2*exp(1)+2/7)/(-17/56+1/8*5^(1/2)) 6835639324012449 a007 Real Root Of 129*x^4+903*x^3+279*x^2+904*x-85 6835639334045625 a007 Real Root Of 32*x^4-613*x^3-601*x^2-160*x+579 6835639334084163 m001 Zeta(7)/Khintchine/ln(sqrt(3)) 6835639344407165 a007 Real Root Of 233*x^4-922*x^3-818*x^2+10*x+619 6835639345965696 a007 Real Root Of 365*x^4+380*x^3-260*x^2-981*x+591 6835639374259629 r009 Re(z^3+c),c=-3/29+13/27*I,n=21 6835639388977168 m005 (1/3*exp(1)+1/5)/(8/11*Pi-2/3) 6835639422185702 a007 Real Root Of 263*x^4-784*x^3+83*x^2-402*x+429 6835639504829854 m001 DuboisRaymond*Khinchin/LandauRamanujan 6835639507295604 a007 Real Root Of -658*x^4+931*x^3-503*x^2+634*x+46 6835639569459980 m001 cos(1/5*Pi)^FibonacciFactorial-LandauRamanujan 6835639574962063 a003 sin(Pi*13/116)/sin(Pi*17/101) 6835639592989518 r009 Im(z^3+c),c=-13/21+19/30*I,n=3 6835639601129592 m001 KhinchinLevy*(2*Pi/GAMMA(5/6)+DuboisRaymond) 6835639619174235 m001 (3^(1/2)+ln(3))/(ThueMorse+ZetaQ(4)) 6835639705842328 m001 1/Riemann2ndZero*ln(Paris)^2/GAMMA(11/24)^2 6835639710086837 a007 Real Root Of 257*x^4-684*x^3+258*x^2-209*x-538 6835639735341376 l006 ln(2097/4154) 6835639737808933 r005 Im(z^2+c),c=-1/21+30/47*I,n=20 6835639738868166 a007 Real Root Of 355*x^4+515*x^3+574*x^2+388*x+84 6835639744786814 m006 (1/6*ln(Pi)+2)/(3/5*exp(2*Pi)-4/5) 6835639754981281 a007 Real Root Of -487*x^4+261*x^3-784*x^2+117*x+636 6835639784232915 a007 Real Root Of 175*x^4-461*x^3-512*x^2-911*x+971 6835639803946568 m001 1/Bloch*FransenRobinson^2*exp(CareFree)^2 6835639835750391 r004 Im(z^2+c),c=1/7+1/6*I,z(0)=exp(13/24*I*Pi),n=3 6835639848581648 m001 (-Zeta(1,-1)+Mills)/(exp(Pi)-ln(5)) 6835639852453632 m001 1/GAMMA(1/6)^2/Catalan/exp(GAMMA(13/24)) 6835639857056456 r005 Im(z^2+c),c=-27/40+8/23*I,n=63 6835639857535852 a007 Real Root Of 342*x^4-550*x^3+372*x^2-819*x-984 6835639870916213 r009 Re(z^3+c),c=-11/118+25/51*I,n=5 6835639872309717 a007 Real Root Of -152*x^4+705*x^3-300*x^2+445*x-356 6835639879129064 a007 Real Root Of 165*x^4-294*x^3+582*x^2+32*x-380 6835639913540356 a007 Real Root Of -63*x^4-318*x^3+804*x^2+167*x-447 6835639914394803 r002 7th iterates of z^2 + 6835639924253107 a001 233/843*1364^(4/9) 6835639943638463 a003 -cos(1/7*Pi)-2^(1/2)+cos(5/18*Pi)+cos(1/21*Pi) 6835639985382686 a007 Real Root Of -454*x^4-61*x^3-757*x^2+630*x+864 6835639998862280 a001 233/1364*521^(23/39) 6835640049353693 a007 Real Root Of 887*x^4+261*x^3+278*x^2-869*x+58 6835640058030688 a007 Real Root Of 700*x^4+x^3+125*x^2+449*x+96 6835640060498352 a007 Real Root Of 59*x^4-205*x^3-188*x^2-763*x+662 6835640088901440 r005 Im(z^2+c),c=-9/82+50/53*I,n=8 6835640097728045 r001 54i'th iterates of 2*x^2-1 of 6835640114887257 a001 2/514229*2^(48/59) 6835640126831191 m001 Riemann2ndZero*(Artin-Pi*2^(1/2)/GAMMA(3/4)) 6835640136590719 r008 a(0)=7,K{-n^6,34-33*n-14*n^2+20*n^3} 6835640161279661 r005 Re(z^2+c),c=-4/5+89/123*I,n=2 6835640175081621 l006 ln(6601/7068) 6835640201995424 a007 Real Root Of -369*x^4+925*x^3+93*x^2+46*x+364 6835640214359932 a007 Real Root Of 903*x^4-664*x^3-48*x^2-110*x-462 6835640217303696 a007 Real Root Of -95*x^4+958*x^3-258*x^2+827*x-730 6835640219857289 a007 Real Root Of 491*x^4-441*x^3+768*x^2+705*x-125 6835640220662865 a007 Real Root Of -49*x^4-185*x^3+984*x^2-421*x-963 6835640220686658 a007 Real Root Of 318*x^4-556*x^3+709*x^2+18*x-566 6835640227351542 s002 sum(A082275[n]/(n*pi^n-1),n=1..infinity) 6835640246075660 a007 Real Root Of -714*x^4+447*x^3+488*x^2+988*x+746 6835640263146284 l006 ln(4561/9035) 6835640273909332 m001 (Champernowne-Pi*OneNinth)/Pi 6835640278800192 r002 34th iterates of z^2 + 6835640282695129 m003 2/5+Sqrt[5]/512+(Sqrt[5]*Sin[1/2+Sqrt[5]/2])/8 6835640312529329 a007 Real Root Of 623*x^4+201*x^3+535*x^2-268*x-505 6835640340864759 r005 Re(z^2+c),c=3/34+32/49*I,n=6 6835640350189790 a003 sin(Pi*7/57)/sin(Pi*18/97) 6835640361988404 m005 (1/3*Pi-1/11)/(58/99+4/11*5^(1/2)) 6835640383864507 m001 exp(arctan(1/2))/GlaisherKinkelin^2/sqrt(2) 6835640403424522 m001 1/GAMMA(5/12)*ln(TreeGrowth2nd)^2/arctan(1/2) 6835640414211363 a001 377/521*1364^(14/45) 6835640444790736 r005 Re(z^2+c),c=-23/94+27/40*I,n=13 6835640450976952 a001 5473/2889*322^(2/9) 6835640451130485 a007 Real Root Of -972*x^4-146*x^3-36*x^2-103*x+112 6835640460349644 p003 LerchPhi(1/32,1,82/55) 6835640481214030 r005 Im(z^2+c),c=-31/48+6/47*I,n=55 6835640490819593 m001 Rabbit^MasserGramain*Rabbit^arctan(1/2) 6835640510429265 a001 2584/521*199^(2/33) 6835640527083474 r009 Re(z^3+c),c=-41/70+10/41*I,n=14 6835640528730264 m001 Cahen^arctan(1/2)/(MinimumGamma^arctan(1/2)) 6835640534076825 r005 Re(z^2+c),c=-113/110+10/57*I,n=4 6835640568165454 a007 Real Root Of -961*x^4+219*x^3-271*x^2-43*x+377 6835640568680925 a007 Real Root Of 69*x^4+2*x^3+411*x^2-564*x-592 6835640570512495 a007 Real Root Of -441*x^4-321*x^3-895*x^2+417*x+697 6835640574709441 b008 -69+Sqrt[-1+Sqrt[2]] 6835640581488557 a007 Real Root Of -739*x^4+906*x^3-79*x^2+337*x+718 6835640582639883 a007 Real Root Of -792*x^4+756*x^3-420*x^2+495*x+949 6835640606261718 a007 Real Root Of 259*x^4-846*x^3+887*x^2+960*x-85 6835640611788544 r009 Re(z^3+c),c=-5/56+47/60*I,n=18 6835640616108842 a001 28657/15127*322^(2/9) 6835640634412238 a003 cos(Pi*1/13)-sin(Pi*9/97) 6835640638511287 r009 Re(z^3+c),c=-9/86+31/63*I,n=22 6835640640201261 a001 75025/39603*322^(2/9) 6835640643716297 a001 98209/51841*322^(2/9) 6835640644229134 a001 514229/271443*322^(2/9) 6835640644303956 a001 1346269/710647*322^(2/9) 6835640644314872 a001 1762289/930249*322^(2/9) 6835640644316465 a001 9227465/4870847*322^(2/9) 6835640644316697 a001 24157817/12752043*322^(2/9) 6835640644316731 a001 31622993/16692641*322^(2/9) 6835640644316736 a001 165580141/87403803*322^(2/9) 6835640644316737 a001 433494437/228826127*322^(2/9) 6835640644316737 a001 567451585/299537289*322^(2/9) 6835640644316737 a001 2971215073/1568397607*322^(2/9) 6835640644316737 a001 7778742049/4106118243*322^(2/9) 6835640644316737 a001 10182505537/5374978561*322^(2/9) 6835640644316737 a001 53316291173/28143753123*322^(2/9) 6835640644316737 a001 139583862445/73681302247*322^(2/9) 6835640644316737 a001 182717648081/96450076809*322^(2/9) 6835640644316737 a001 956722026041/505019158607*322^(2/9) 6835640644316737 a001 10610209857723/5600748293801*322^(2/9) 6835640644316737 a001 591286729879/312119004989*322^(2/9) 6835640644316737 a001 225851433717/119218851371*322^(2/9) 6835640644316737 a001 21566892818/11384387281*322^(2/9) 6835640644316737 a001 32951280099/17393796001*322^(2/9) 6835640644316737 a001 12586269025/6643838879*322^(2/9) 6835640644316737 a001 1201881744/634430159*322^(2/9) 6835640644316737 a001 1836311903/969323029*322^(2/9) 6835640644316737 a001 701408733/370248451*322^(2/9) 6835640644316737 a001 66978574/35355581*322^(2/9) 6835640644316739 a001 102334155/54018521*322^(2/9) 6835640644316752 a001 39088169/20633239*322^(2/9) 6835640644316841 a001 3732588/1970299*322^(2/9) 6835640644317449 a001 5702887/3010349*322^(2/9) 6835640644321619 a001 2178309/1149851*322^(2/9) 6835640644350198 a001 208010/109801*322^(2/9) 6835640644546085 a001 317811/167761*322^(2/9) 6835640645888709 a001 121393/64079*322^(2/9) 6835640654344184 a001 7/121393*46368^(4/9) 6835640654534023 a001 7/267914296*1548008755920^(4/9) 6835640654534023 a001 7/39088169*20365011074^(4/9) 6835640654534065 a001 7/5702887*267914296^(4/9) 6835640654536046 a001 7/832040*3524578^(4/9) 6835640655091194 a001 11592/6119*322^(2/9) 6835640685443766 a007 Real Root Of 824*x^4-815*x^3+361*x^2+645*x-168 6835640705073512 a007 Real Root Of -542*x^4-117*x^3-6*x^2+783*x+619 6835640705655908 a007 Real Root Of 152*x^4-74*x^3-883*x^2-550*x+779 6835640712337370 l006 ln(2464/4881) 6835640717645339 m001 Porter*(gamma(2)+PlouffeB) 6835640718165967 a001 17711/9349*322^(2/9) 6835640732132536 r005 Im(z^2+c),c=-27/22+45/121*I,n=8 6835640780720192 m005 (1/2*Catalan-4/7)/(7/10*Zeta(3)+9/11) 6835640802689827 a007 Real Root Of -926*x^4-320*x^3-428*x^2+417*x+585 6835640822264831 s002 sum(A247327[n]/((2*n)!),n=1..infinity) 6835640829859778 a007 Real Root Of -392*x^4+494*x^3+228*x^2+641*x+575 6835640838646475 a007 Real Root Of 597*x^4-426*x^3-95*x^2-926*x-855 6835640857324753 r005 Im(z^2+c),c=-65/102+4/31*I,n=61 6835640860813723 a007 Real Root Of 597*x^4-440*x^3+621*x^2+575*x-168 6835640898977031 r008 a(0)=6,K{-n^6,-64+47*n^3-9*n^2+25*n} 6835640927366686 a007 Real Root Of -337*x^4+647*x^3-183*x^2+144*x-146 6835640939254996 m001 (Zeta(1,2)+AlladiGrinstead)/(Chi(1)+Zeta(5)) 6835640948634783 m001 Conway^2/ln(Champernowne)*sin(1) 6835640968197134 r002 56th iterates of z^2 + 6835640981429773 m002 -3*E^Pi+ProductLog[Pi]*Tanh[Pi]^2 6835641032604467 m001 (Zeta(1/2)+arctan(1/2))/(FeigenbaumB+Kac) 6835641071094871 a007 Real Root Of 186*x^4+340*x^3+905*x^2-145*x-454 6835641076283660 m001 Psi(2,1/3)^(3^(1/3))/Weierstrass 6835641076985431 a007 Real Root Of 811*x^4+130*x^3+324*x^2+16*x-276 6835641082079366 m001 Riemann1stZero^2/exp(MertensB1)^2*gamma 6835641098430648 m001 (FeigenbaumB+StolarskyHarborth)/(ln(2)+Cahen) 6835641106069661 m005 (1/3*3^(1/2)+2/7)/(8/11*5^(1/2)-4/11) 6835641106613829 r009 Im(z^3+c),c=-65/118+16/63*I,n=35 6835641117815739 a007 Real Root Of -301*x^4+779*x^3+522*x^2+335*x-656 6835641141154687 m001 GAMMA(13/24)^2*exp(Sierpinski)^2*Zeta(3)^2 6835641141524301 h001 (-2*exp(7)-5)/(-6*exp(4)+6) 6835641148806884 a007 Real Root Of 975*x^4-838*x^3-379*x^2-461*x+547 6835641150486921 a001 6765/3571*322^(2/9) 6835641153435386 r005 Re(z^2+c),c=-35/106+17/25*I,n=2 6835641175461254 a007 Real Root Of -607*x^4+99*x^3-519*x^2-532*x+43 6835641187821435 a003 sin(Pi*7/113)-sin(Pi*16/47) 6835641196880794 p001 sum((-1)^n/(500*n+79)/n/(25^n),n=1..infinity) 6835641220535623 a003 cos(Pi*23/68)+cos(Pi*45/103) 6835641228326501 m005 (2/3*gamma+2/3)/(4/5*gamma-2) 6835641228326501 m007 (-2/3*gamma-2/3)/(-4/5*gamma+2) 6835641241340420 m001 Ei(1)^2*exp(GaussKuzminWirsing)^2*Zeta(5) 6835641265712716 a008 Real Root of (4+3*x-15*x^2+3*x^3) 6835641297618023 m005 (1/3*Pi+2/11)/(7/11*5^(1/2)+3/8) 6835641323919344 r005 Im(z^2+c),c=-19/14+16/189*I,n=15 6835641324788380 r001 8i'th iterates of 2*x^2-1 of 6835641327516444 r002 7th iterates of z^2 + 6835641330561551 m001 exp(1/exp(1))/(Si(Pi)+MertensB1) 6835641346970415 a001 233/843*3571^(20/51) 6835641379670095 a001 47/21*514229^(13/50) 6835641394093607 r009 Im(z^3+c),c=-61/126+27/59*I,n=2 6835641398402454 r005 Re(z^2+c),c=-11/18+74/103*I,n=3 6835641401073690 a007 Real Root Of 891*x^4-538*x^3+659*x^2-377*x-932 6835641410113519 a001 377/521*3571^(14/51) 6835641427926897 l003 GAMMA(1,35/92) 6835641436025264 l006 ln(2831/5608) 6835641440216910 a007 Real Root Of -937*x^4-268*x^3-944*x^2+272*x+746 6835641441589742 a001 7/144*121393^(7/31) 6835641454312281 m005 (1/2*gamma+3/10)/(4/7*5^(1/2)-5/12) 6835641454786083 m001 HardyLittlewoodC5-polylog(4,1/2)-Stephens 6835641461771752 m003 49/8+Sqrt[5]/4+ProductLog[1/2+Sqrt[5]/2]/5 6835641465371742 a007 Real Root Of 433*x^4+95*x^3+710*x^2-654*x-843 6835641489372585 a007 Real Root Of 982*x^4+558*x^3+949*x^2-122*x-563 6835641494643323 q001 2616/3827 6835641511404104 a001 1/1926*47^(1/14) 6835641515349729 a008 Real Root of (-5+2*x+3*x^2+4*x^3+3*x^4+2*x^5) 6835641526356882 m009 (48*Catalan+6*Pi^2+1/6)/(5*Psi(1,2/3)-1/5) 6835641528312053 r005 Re(z^2+c),c=-15/58+43/56*I,n=34 6835641529742042 a001 233/843*9349^(20/57) 6835641538053659 a001 377/521*9349^(14/57) 6835641547105820 a007 Real Root Of 900*x^4-32*x^3-131*x^2+109*x-71 6835641548346098 m001 1/exp(Porter)^2*CopelandErdos/GAMMA(2/3)^2 6835641554726913 a001 377/521*24476^(2/9) 6835641557118536 a001 233/843*167761^(4/15) 6835641557183302 a001 233/843*20633239^(4/21) 6835641557183305 a001 233/843*3461452808002^(1/9) 6835641557183305 a001 233/843*28143753123^(2/15) 6835641557183305 a001 233/843*228826127^(1/6) 6835641557183365 a001 233/843*4870847^(5/24) 6835641557183744 a001 233/843*1860498^(2/9) 6835641557186528 a001 233/843*710647^(5/21) 6835641557262540 a001 377/521*20633239^(2/15) 6835641557262543 a001 377/521*17393796001^(2/21) 6835641557262543 a001 377/521*505019158607^(1/12) 6835641557262543 a001 377/521*599074578^(1/9) 6835641557264798 a001 377/521*710647^(1/6) 6835641557359937 a001 233/843*103682^(5/18) 6835641558187043 a001 377/521*39603^(7/33) 6835641558504020 a001 233/843*39603^(10/33) 6835641564232826 a001 377/521*15127^(7/30) 6835641567140853 a001 233/843*15127^(1/3) 6835641591727551 m001 (Psi(1,1/3)-Champernowne)^Zeta(1,-1) 6835641610345915 a001 377/521*5778^(7/27) 6835641633016694 a001 233/843*5778^(10/27) 6835641640619490 a003 cos(Pi*31/95)+cos(Pi*17/38) 6835641705024344 r005 Re(z^2+c),c=-7/15+21/38*I,n=54 6835641725553838 r002 18th iterates of z^2 + 6835641737622946 m002 -2+Pi^3-Pi^4+ProductLog[Pi]/E^Pi 6835641768813548 r005 Re(z^2+c),c=5/58+26/57*I,n=26 6835641811812666 r009 Im(z^3+c),c=-11/106+19/24*I,n=27 6835641818256943 r005 Re(z^2+c),c=-3/46+18/23*I,n=62 6835641826186506 a007 Real Root Of 313*x^4+145*x^3-167*x^2-395*x-214 6835641843226261 a001 18/591286729879*34^(15/17) 6835641846424682 a007 Real Root Of 394*x^4-466*x^3+582*x^2-31*x-528 6835641897664322 m005 (1/2*2^(1/2)-1)/(8/11*Pi+2) 6835641931352783 a007 Real Root Of 738*x^4+547*x^3+668*x^2+703*x+182 6835641966581218 a001 377/521*2207^(7/24) 6835641981150276 s002 sum(A079616[n]/(n*exp(n)-1),n=1..infinity) 6835641991707752 m001 1/Porter^2*CopelandErdos*exp(FeigenbaumC) 6835641993613398 l006 ln(3198/6335) 6835642039336309 m005 (1/2*2^(1/2)-4/9)/(1/11*3^(1/2)-4) 6835642045331275 r009 Re(z^3+c),c=-17/31+5/39*I,n=28 6835642058834055 a007 Real Root Of -889*x^4+433*x^3+604*x^2+838*x+623 6835642091051473 m005 (1/3*Catalan-2/5)/(9/11*5^(1/2)-4/9) 6835642096291726 m001 1/exp(GAMMA(23/24))*Porter^2/GAMMA(5/6) 6835642109543940 h001 (8/11*exp(1)+5/6)/(1/2*exp(2)+5/12) 6835642119452591 a007 Real Root Of -916*x^4-313*x^3-346*x^2+255*x+436 6835642125178309 g002 Psi(1/7)+Psi(3/5)-Psi(9/11)-Psi(8/11) 6835642127712415 a007 Real Root Of -641*x^4+152*x^3-740*x^2-963*x-124 6835642141924277 a001 233/843*2207^(5/12) 6835642169654747 m001 Trott*KhintchineLevy*ln(sin(Pi/5)) 6835642196416897 r009 Re(z^3+c),c=-49/106+2/43*I,n=12 6835642201581630 r005 Re(z^2+c),c=-4/7+51/82*I,n=14 6835642207039872 r002 8th iterates of z^2 + 6835642208477899 r002 48th iterates of z^2 + 6835642221210320 m001 1/GAMMA(19/24)/ln(TwinPrimes)*gamma^2 6835642222600121 a007 Real Root Of -473*x^4+981*x^3+406*x^2+85*x+285 6835642227020458 p004 log(13397/6763) 6835642253912996 a007 Real Root Of -702*x^4-545*x^3+317*x^2+765*x+354 6835642283116464 a007 Real Root Of -223*x^4+566*x^3+155*x^2+313*x+371 6835642291821878 a001 7/17711*610^(4/9) 6835642313953504 a001 1364/1346269*10946^(24/53) 6835642317380352 q001 2171/3176 6835642332772441 a007 Real Root Of -251*x^4+514*x^3+908*x^2+100*x-602 6835642338630105 m001 1/RenyiParking*CareFree^2/ln(GAMMA(1/3))^2 6835642347691935 m001 (Ei(1)+Backhouse)/(FeigenbaumMu+MertensB3) 6835642385803441 m001 1/exp(GAMMA(11/12))^2/OneNinth^2/GAMMA(7/12) 6835642394419504 r005 Re(z^2+c),c=13/40+1/27*I,n=18 6835642412126655 a007 Real Root Of 603*x^4-125*x^3-690*x^2-996*x-530 6835642436399354 l006 ln(3565/7062) 6835642478339026 m001 (Chi(1)+Artin)/(KhinchinHarmonic+Trott2nd) 6835642482666822 r009 Re(z^3+c),c=-6/11+6/35*I,n=27 6835642522062828 m001 (3^(1/2)+Khinchin)/MasserGramain 6835642532997435 a007 Real Root Of 836*x^4+340*x^3+12*x^2-422*x-368 6835642544301143 r005 Im(z^2+c),c=-37/106+41/62*I,n=50 6835642569110711 r005 Im(z^2+c),c=-26/19+16/39*I,n=3 6835642570327224 r009 Im(z^3+c),c=-31/82+19/28*I,n=31 6835642614253103 r005 Im(z^2+c),c=-21/58+6/59*I,n=7 6835642644953219 m001 (ReciprocalLucas-Sarnak)/(Niven+OneNinth) 6835642745832728 r005 Re(z^2+c),c=5/94+21/52*I,n=43 6835642750631197 m005 (1/2*Catalan-1/12)/(2/5*Zeta(3)+5) 6835642772971073 a007 Real Root Of -184*x^4-492*x^3-478*x^2+747*x+617 6835642796528913 l006 ln(3932/7789) 6835642806591361 r009 Im(z^3+c),c=-19/102+46/63*I,n=46 6835642806895601 r005 Re(z^2+c),c=-31/50+22/51*I,n=60 6835642810617672 a007 Real Root Of 835*x^4-962*x^3+24*x^2+86*x-442 6835642924450209 m001 (Zeta(1/2)+MertensB1)/(Chi(1)+Catalan) 6835642956340365 r009 Re(z^3+c),c=-5/48+20/41*I,n=20 6835642965138662 r002 14th iterates of z^2 + 6835642978396820 a007 Real Root Of 423*x^4-16*x^3-980*x^2-631*x+802 6835642994286993 m006 (5/Pi-4/5)/(2/3*Pi^2+5) 6835643004550147 a001 1364/233*10946^(1/60) 6835643050910682 m001 1/GAMMA(2/3)/PisotVijayaraghavan^2/ln(cos(1)) 6835643055928682 a007 Real Root Of 419*x^4-166*x^3-724*x^2-481*x-135 6835643080257376 m003 -1/2+Sqrt[5]/2+(5*E^(-1-Sqrt[5]))/3 6835643095170885 l006 ln(4299/8516) 6835643098142842 a007 Real Root Of -134*x^4-102*x^3-836*x^2+475*x+712 6835643106354182 m001 (Zeta(1/2)-Kac)/(KhinchinHarmonic+Mills) 6835643109505925 a007 Real Root Of -94*x^4-657*x^3-105*x^2+67*x+749 6835643110408116 l006 ln(4820/5161) 6835643121829036 r001 13i'th iterates of 2*x^2-1 of 6835643182570145 a003 sin(Pi*3/64)-sin(Pi*29/93) 6835643203645082 m001 (-sin(1/12*Pi)+MasserGramain)/(2^(1/3)-ln(2)) 6835643213048193 s002 sum(A120570[n]/(pi^n+1),n=1..infinity) 6835643231043166 m005 (1/2*exp(1)-4/11)/(1/5*exp(1)-2) 6835643261421336 r005 Re(z^2+c),c=4/11+1/14*I,n=12 6835643262467036 a007 Real Root Of -116*x^4-702*x^3+760*x^2+955*x+61 6835643288324620 a007 Real Root Of -539*x^4-567*x^3-881*x^2+854*x+932 6835643298372371 a007 Real Root Of -567*x^4+889*x^3-709*x^2+373*x+994 6835643305507135 r005 Re(z^2+c),c=-24/23+8/41*I,n=60 6835643324449869 b008 4/7+CoshIntegral[EulerGamma] 6835643346834023 l006 ln(4666/9243) 6835643366881930 m005 (1/2*exp(1)-4)/(3/8*2^(1/2)-11/12) 6835643393311232 m006 (2/3*exp(Pi)-5/6)/(3/5*Pi+1/4) 6835643395250933 r002 5i'th iterates of 2*x/(1-x^2) of 6835643400726290 r005 Im(z^2+c),c=11/23+13/47*I,n=5 6835643402957291 m005 (1/2*3^(1/2)+3)/(-15/28+3/14*5^(1/2)) 6835643458096085 m001 (Ei(1)-OrthogonalArrays)/(Rabbit+ZetaQ(3)) 6835643502699693 a007 Real Root Of -539*x^4+628*x^3+286*x^2+811*x+739 6835643504206761 m004 -15*Pi+24*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 6835643522927736 m001 (-Paris+Trott2nd)/(LambertW(1)-ln(5)) 6835643536291361 m001 (FeigenbaumC+MasserGramain)/(Si(Pi)+Pi^(1/2)) 6835643557830510 a007 Real Root Of 6*x^4+409*x^3-79*x^2-72*x+538 6835643561795240 l006 ln(5033/9970) 6835643564356435 q001 1726/2525 6835643572654176 a007 Real Root Of -756*x^4+833*x^3-526*x^2-73*x+627 6835643592060324 a007 Real Root Of 919*x^4+33*x^3+560*x^2+26*x-434 6835643599683992 r009 Im(z^3+c),c=-17/122+37/38*I,n=26 6835643633657455 m001 OneNinth*(arctan(1/2)-ln(3)) 6835643634681903 r009 Im(z^3+c),c=-61/102+43/63*I,n=5 6835643676956386 a007 Real Root Of 695*x^4-122*x^3+72*x^2-619*x+42 6835643780931288 q001 5/73146 6835643862969196 r005 Re(z^2+c),c=-33/52+26/59*I,n=25 6835643869166021 a007 Real Root Of -97*x^4+978*x^3-539*x^2-103*x+515 6835643934213554 m005 (1/2*gamma-3/4)/(3/11*Pi-2/11) 6835643952465597 r005 Re(z^2+c),c=-31/50+22/51*I,n=39 6835643971747374 a007 Real Root Of 635*x^4-325*x^3-211*x^2-764*x+586 6835643973096186 m003 -179/36+Sqrt[5]/4-Sinh[1/2+Sqrt[5]/2] 6835643979626638 m005 (1/3*Pi-1/10)/(5/9*2^(1/2)+3/5) 6835643991312675 a007 Real Root Of -416*x^4+368*x^3+618*x^2+11*x-323 6835644011880295 a003 cos(Pi*26/95)/cos(Pi*54/115) 6835644083922049 a007 Real Root Of 443*x^4-814*x^3+679*x^2-139*x-769 6835644093591854 b008 -71+Pi*Sin[1] 6835644112662473 a007 Real Root Of -216*x^4+985*x^3-348*x^2+96*x+590 6835644113660384 a001 646/341*322^(2/9) 6835644123127142 r005 Im(z^2+c),c=-3/94+3/41*I,n=4 6835644127014032 r005 Im(z^2+c),c=-141/122+5/57*I,n=38 6835644127802253 m001 (BesselK(0,1)+Zeta(3))/(MertensB2+Totient) 6835644168364368 r009 Im(z^3+c),c=-43/118+7/11*I,n=7 6835644169230692 m006 (3/5*Pi-1/2)/(1/5*Pi^2-4) 6835644169230692 m008 (3/5*Pi-1/2)/(1/5*Pi^2-4) 6835644191021172 m005 (1/2*5^(1/2)+9/11)/(7/11*Pi+5/6) 6835644203494842 h001 (7/10*exp(1)+2/11)/(4/5*exp(1)+7/8) 6835644210023133 r009 Re(z^3+c),c=-55/106+7/58*I,n=14 6835644213852908 a005 (1/cos(22/221*Pi))^687 6835644272256182 r005 Re(z^2+c),c=-29/60+32/59*I,n=59 6835644284766718 m001 RenyiParking^(sin(1)/Cahen) 6835644284800259 a007 Real Root Of -946*x^4+522*x^3+323*x^2+453*x+532 6835644307338402 a007 Real Root Of 872*x^4-693*x^3+187*x^2+401*x-225 6835644324971329 a007 Real Root Of -154*x^4+561*x^3+515*x^2+718*x-877 6835644331510342 a007 Real Root Of -795*x^4+852*x^3-879*x^2+172*x+974 6835644342599633 a007 Real Root Of -562*x^4+990*x^3-965*x^2-364*x+641 6835644393888538 m005 (1/2*2^(1/2)-6/7)/(7/11*Zeta(3)-6/11) 6835644421167237 a007 Real Root Of -975*x^4-664*x^3-178*x^2+879*x-6 6835644426564636 m001 (-gamma(2)+Sarnak)/(1-gamma(1)) 6835644435795178 a007 Real Root Of -922*x^4+90*x^3-440*x^2+751*x+949 6835644508049269 r005 Im(z^2+c),c=-43/38+4/47*I,n=23 6835644528765803 r005 Im(z^2+c),c=-25/114+15/23*I,n=56 6835644530238483 a001 2584/2207*322^(11/36) 6835644551999027 m001 (Ei(1)-gamma(3))/(FeigenbaumD+Riemann3rdZero) 6835644562161285 m001 Kolakoski^(Otter/KomornikLoreti) 6835644604777323 a007 Real Root Of 120*x^4+894*x^3+608*x^2+747*x+244 6835644607118344 a001 987/521*521^(8/39) 6835644646442317 a007 Real Root Of -670*x^4+627*x^3+457*x^2-90*x-206 6835644668406289 a007 Real Root Of -958*x^4-804*x^3-750*x^2+110*x+378 6835644691687527 m001 (-3^(1/3)+Weierstrass)/(Chi(1)+gamma) 6835644700603665 m004 -3+(2*E^(Sqrt[5]*Pi)*Tan[Sqrt[5]*Pi])/3 6835644711767524 r005 Re(z^2+c),c=3/106+27/55*I,n=4 6835644712642164 m001 (FeigenbaumD-Shi(1))/(Gompertz+Grothendieck) 6835644721144792 m001 Totient^Bloch/(Totient^(Pi^(1/2))) 6835644726317901 m005 (1/2*exp(1)+6/7)/(3/11*gamma-1/8) 6835644750979701 a007 Real Root Of 526*x^4-659*x^3-25*x^2-829*x+674 6835644753688423 m001 (Zeta(5)-gamma(3))/(BesselI(1,2)-ZetaP(4)) 6835644763560630 a001 377/521*843^(1/3) 6835644817244373 a007 Real Root Of -451*x^4+832*x^3+829*x^2+574*x-947 6835644819407247 r005 Re(z^2+c),c=23/78+28/45*I,n=3 6835644827825540 a007 Real Root Of 998*x^4-405*x^3+897*x^2+950*x-117 6835644843532380 r002 51th iterates of z^2 + 6835644868775397 a007 Real Root Of -594*x^4+823*x^3-396*x^2+103*x+648 6835644870850402 m001 (-ReciprocalFibonacci+Thue)/(PlouffeB-sin(1)) 6835644882183050 a007 Real Root Of -880*x^4+979*x^3-398*x^2+12*x+699 6835644891136327 r002 3th iterates of z^2 + 6835644897224563 m001 1/GAMMA(1/6)^2/exp(Ei(1))^2*Zeta(1,2) 6835644901616235 r009 Im(z^3+c),c=-1/24+29/40*I,n=3 6835644905804945 a001 843/2*233^(23/45) 6835644916254844 r009 Re(z^3+c),c=-4/7+4/25*I,n=12 6835644924764814 s001 sum(exp(-3*Pi/5)^n*A075767[n],n=1..infinity) 6835644924840723 m001 (-GlaisherKinkelin+Paris)/(2^(1/3)+Bloch) 6835644940076338 m001 1/Rabbit*ln(Lehmer)^2*BesselK(0,1)^2 6835644960751955 m005 (-17/44+1/4*5^(1/2))/(3/8*Catalan-1/11) 6835644988162701 a007 Real Root Of 582*x^4-118*x^3+43*x^2+149*x-83 6835645026703409 a007 Real Root Of -987*x^4-178*x^3-788*x^2+325*x+749 6835645069042897 r009 Im(z^3+c),c=-9/17+20/49*I,n=32 6835645072600079 a007 Real Root Of -361*x^4+91*x^3-627*x^2-386*x+137 6835645096981046 a007 Real Root Of 289*x^4-531*x^3-533*x^2-356*x-227 6835645107427984 a007 Real Root Of -893*x^4+368*x^3-609*x^2-458*x+284 6835645117266638 m005 (1/2*5^(1/2)+10/11)/(6/7*Pi+3/11) 6835645154635916 r009 Im(z^3+c),c=-25/42+35/51*I,n=45 6835645155072628 m005 (5/4+1/4*5^(1/2))/(1/4*2^(1/2)-3) 6835645158557142 s002 sum(A050020[n]/(n^3*2^n+1),n=1..infinity) 6835645168847745 r005 Im(z^2+c),c=35/78+19/47*I,n=5 6835645185660014 r009 Re(z^3+c),c=-7/31+31/46*I,n=16 6835645209822562 m001 (cos(1/5*Pi)+CareFree)/(1-exp(Pi)) 6835645215334058 m001 (gamma(3)+LaplaceLimit*Paris)/Paris 6835645230998910 h001 (1/9*exp(1)+4/7)/(1/7*exp(2)+2/9) 6835645239062587 m001 1/ln(Riemann1stZero)/LandauRamanujan*Salem^2 6835645261156315 v002 sum(1/(2^n+(2*n^2+11*n+38)),n=1..infinity) 6835645290290133 m001 BesselJ(0,1)*KhinchinHarmonic-OrthogonalArrays 6835645293196172 m001 exp(Rabbit)*CopelandErdos^2/sqrt(1+sqrt(3)) 6835645309491088 l006 ln(7/6513) 6835645314244836 a007 Real Root Of 574*x^4-53*x^3-101*x^2-972*x-66 6835645318895831 r002 7th iterates of z^2 + 6835645337365023 a003 cos(Pi*11/114)-cos(Pi*26/63) 6835645349678583 m008 (3/5*Pi^2-4/5)/(4/5*Pi^4-3) 6835645360413592 a007 Real Root Of -532*x^4-806*x^3-931*x^2+647*x+736 6835645370260312 m001 (1+Catalan)/(-sin(1/5*Pi)+HardyLittlewoodC4) 6835645370440742 a003 sin(Pi*2/91)*sin(Pi*37/81) 6835645398840452 m006 (Pi+3/5)/(5*ln(Pi)-1/4) 6835645419686208 m001 (MadelungNaCl-Trott)/(GAMMA(2/3)+KhinchinLevy) 6835645430340881 m001 gamma(2)^ZetaP(4)*Sarnak^ZetaP(4) 6835645431840931 m001 (FibonacciFactorial-Mills)/(ln(2)+Bloch) 6835645432939545 m004 6+(75*Sqrt[5])/Pi+Sqrt[5]*Pi+Log[Sqrt[5]*Pi] 6835645466524170 m001 ln(MertensB1)^2*DuboisRaymond^2*Zeta(9)^2 6835645470698058 m001 (GAMMA(13/24)-Pi^(1/2))/(Bloch+Porter) 6835645473652678 r005 Re(z^2+c),c=5/94+21/52*I,n=47 6835645539164396 s002 sum(A125306[n]/(n*exp(n)+1),n=1..infinity) 6835645545093153 p001 sum(1/(332*n+147)/(64^n),n=0..infinity) 6835645555501128 a007 Real Root Of -232*x^4+827*x^3-419*x^2+530*x-380 6835645561803137 h001 (-4*exp(2)+4)/(-5*exp(2/3)+6) 6835645575873145 l006 ln(7859/8415) 6835645594744787 a007 Real Root Of -248*x^4-76*x^3+450*x^2+773*x+348 6835645605717577 m001 ln(RenyiParking)/GolombDickman^2*Catalan 6835645633270845 r002 6th iterates of z^2 + 6835645640723194 r002 33th iterates of z^2 + 6835645652115741 r009 Re(z^3+c),c=-14/23+9/41*I,n=5 6835645657137483 m001 (Shi(1)+LandauRamanujan)/(-Lehmer+Thue) 6835645677694770 q001 1281/1874 6835645682032314 r005 Im(z^2+c),c=-15/32+5/43*I,n=37 6835645687616505 a001 610/843*322^(7/18) 6835645739925846 a007 Real Root Of 12*x^4+821*x^3+63*x^2+940*x+653 6835645749232668 a001 123/75025*317811^(10/21) 6835645749481980 a001 123/9227465*7778742049^(10/21) 6835645779759420 a007 Real Root Of 391*x^4-434*x^3+62*x^2+471*x+69 6835645788017251 a007 Real Root Of 416*x^4-699*x^3+869*x^2-51*x-755 6835645793743588 m001 DuboisRaymond/(exp(-1/2*Pi)+ZetaP(4)) 6835645817602754 r005 Im(z^2+c),c=-15/16+7/117*I,n=9 6835645831872543 m001 PrimesInBinary-Salem^gamma 6835645839847706 a007 Real Root Of -665*x^4+137*x^3-972*x^2-619*x+220 6835645846477572 m001 1/FeigenbaumB*LaplaceLimit^2*exp(sin(Pi/12)) 6835645859704327 r005 Re(z^2+c),c=-45/62+7/62*I,n=3 6835645903744853 a001 2255/1926*322^(11/36) 6835645909961340 r005 Im(z^2+c),c=-43/34+1/96*I,n=23 6835645926800896 r005 Re(z^2+c),c=-61/90+20/47*I,n=4 6835645945745759 m001 (-HardyLittlewoodC3+Kac)/(Catalan+arctan(1/2)) 6835645964689926 a007 Real Root Of -246*x^4-145*x^3-695*x^2+465*x+650 6835645979311617 p003 LerchPhi(1/2,1,367/159) 6835646003551707 a007 Real Root Of -33*x^4+833*x^3-863*x^2-346*x+440 6835646027451265 m001 MertensB1^ln(2)*3^(1/2) 6835646032424039 p001 sum((-1)^n/(423*n+146)/(128^n),n=0..infinity) 6835646037701132 a007 Real Root Of 976*x^4-205*x^3+976*x^2+431*x-440 6835646063081609 m001 exp(Catalan)^2/Rabbit*log(1+sqrt(2))^2 6835646074688707 r005 Re(z^2+c),c=-17/58+29/46*I,n=54 6835646104136773 a001 17711/15127*322^(11/36) 6835646108224520 a007 Real Root Of -845*x^4-79*x^3-149*x^2+303*x+436 6835646133373560 a001 15456/13201*322^(11/36) 6835646137609605 a001 233/843*843^(10/21) 6835646137639150 a001 121393/103682*322^(11/36) 6835646138261491 a001 105937/90481*322^(11/36) 6835646138352290 a001 832040/710647*322^(11/36) 6835646138365537 a001 726103/620166*322^(11/36) 6835646138373724 a001 1346269/1149851*322^(11/36) 6835646138408406 a001 514229/439204*322^(11/36) 6835646138646119 a001 196418/167761*322^(11/36) 6835646140275430 a001 75025/64079*322^(11/36) 6835646144104397 a001 13/7*119218851371^(19/22) 6835646151442889 a001 28657/24476*322^(11/36) 6835646163132190 r005 Re(z^2+c),c=-25/34+29/67*I,n=4 6835646164447854 m001 (-Lehmer+Totient)/(Psi(1,1/3)+GaussAGM) 6835646164579453 r005 Re(z^2+c),c=-11/98+22/25*I,n=47 6835646173152559 a005 (1/cos(11/145*Pi))^1111 6835646176987497 r005 Im(z^2+c),c=-13/25+28/45*I,n=25 6835646180802227 a007 Real Root Of -x^4+204*x^3+456*x^2+98*x-345 6835646185615484 r005 Im(z^2+c),c=-7/8+3/61*I,n=22 6835646188453145 a007 Real Root Of 126*x^4+832*x^3-207*x^2+58*x+713 6835646203547366 a007 Real Root Of -36*x^4-310*x^3-373*x^2+302*x-922 6835646205155733 a007 Real Root Of 89*x^4-85*x^3-137*x^2-795*x-526 6835646209807431 r005 Re(z^2+c),c=-31/50+22/51*I,n=53 6835646213714053 r008 a(0)=7,K{-n^6,5*n^3-3*n^2+6*n} 6835646218256986 a007 Real Root Of 906*x^4-410*x^3-830*x^2-556*x-321 6835646223945238 a005 (1/sin(50/137*Pi))^368 6835646227985795 a001 10946/9349*322^(11/36) 6835646237051250 a007 Real Root Of 531*x^4-365*x^3-175*x^2-666*x-606 6835646241936572 p001 sum((-1)^n/(89*n+53)/n/(10^n),n=0..infinity) 6835646257038375 h001 (7/9*exp(1)+7/11)/(3/7*exp(2)+6/7) 6835646270763679 r005 Re(z^2+c),c=9/74+53/54*I,n=3 6835646272242672 a007 Real Root Of -819*x^4-608*x^3-865*x^2-639*x-48 6835646294789490 l006 ln(367/727) 6835646294789490 p004 log(727/367) 6835646335001611 a007 Real Root Of -244*x^4+957*x^3-242*x^2-297*x+269 6835646352910533 m001 (ThueMorse+ZetaQ(4))/(CareFree-Paris) 6835646392785773 m001 BesselK(1,1)/GolombDickman^2*exp(Ei(1))^2 6835646423575446 r005 Im(z^2+c),c=27/82+13/32*I,n=35 6835646430883558 a007 Real Root Of 243*x^4-882*x^3-272*x^2-922*x+986 6835646434970332 a007 Real Root Of -33*x^4+924*x^3+270*x^2+838*x+749 6835646458176226 r009 Im(z^3+c),c=-5/42+27/37*I,n=3 6835646466201791 r009 Re(z^3+c),c=-79/118+20/53*I,n=2 6835646527743873 h001 (3/11*exp(2)+4/7)/(4/9*exp(2)+1/2) 6835646543764769 a007 Real Root Of 948*x^4-775*x^3+118*x^2+374*x-254 6835646553300172 a007 Real Root Of -244*x^4+359*x^3+259*x^2+232*x-341 6835646553446424 r005 Im(z^2+c),c=43/122+20/31*I,n=4 6835646566536790 m001 GAMMA(1/6)^2/FeigenbaumC^2/ln(sin(Pi/12)) 6835646576712752 a007 Real Root Of 81*x^4-573*x^3+37*x^2-313*x+362 6835646577405646 a001 4181/843*123^(1/15) 6835646584896506 a007 Real Root Of -445*x^4+239*x^3-416*x^2-111*x+292 6835646595908953 r005 Im(z^2+c),c=-49/36+2/53*I,n=50 6835646608982940 m001 Paris^2/Si(Pi)/ln(arctan(1/2)) 6835646650320509 m001 Riemann1stZero/(Mills^exp(1)) 6835646658772950 m001 (GAMMA(13/24)+ZetaQ(4))/(Si(Pi)-ln(gamma)) 6835646683273710 m001 (Si(Pi)+gamma(2))/(-Backhouse+KhinchinLevy) 6835646752618715 a001 4181/3571*322^(11/36) 6835646767703119 a007 Real Root Of -898*x^4-358*x^3-494*x^2+678*x+776 6835646779589214 a007 Real Root Of 976*x^4+68*x^3-873*x^2-980*x+843 6835646799443371 r005 Im(z^2+c),c=-149/126+7/48*I,n=3 6835646810206842 a003 cos(Pi*11/73)*cos(Pi*25/113) 6835646823912810 a003 cos(Pi*29/111)/sin(Pi*10/21) 6835646824165558 r009 Re(z^3+c),c=-65/114+8/39*I,n=2 6835646837640079 v002 sum(1/(3^n+(8*n^2-24*n+54)),n=1..infinity) 6835646841521726 a005 (1/cos(4/229*Pi))^1276 6835646848330742 a001 18/5*2584^(49/51) 6835646867926990 r009 Re(z^3+c),c=-43/118+49/57*I,n=3 6835646915605510 m001 (-arctan(1/3)+MertensB2)/(Si(Pi)-cos(1/5*Pi)) 6835646921069304 a007 Real Root Of -262*x^4+909*x^3+258*x^2+632*x+659 6835646937014039 r005 Re(z^2+c),c=-4/5+46/101*I,n=4 6835646949835682 m005 (1/2*Catalan+1/11)/(3*exp(1)-1/8) 6835646982145576 a007 Real Root Of 841*x^4-85*x^3+54*x^2+572*x+155 6835646996175907 r005 Re(z^2+c),c=-7/118+43/52*I,n=8 6835647030707621 a007 Real Root Of -339*x^4+845*x^3-189*x^2+263*x+612 6835647034965665 a007 Real Root Of 43*x^4+302*x^3+78*x^2+268*x+764 6835647064508158 r005 Im(z^2+c),c=-5/18+33/41*I,n=6 6835647065778406 m001 Si(Pi)/exp(Artin)^2/GlaisherKinkelin 6835647071915433 m001 (3^(1/3)-Bloch)/(Landau-ReciprocalLucas) 6835647083736050 a007 Real Root Of -452*x^4+418*x^3-195*x^2+810*x+877 6835647109741232 h001 (2/7*exp(1)+3/5)/(1/4*exp(2)+1/6) 6835647118620494 h001 (7/9*exp(1)+1/4)/(5/11*exp(2)+1/10) 6835647123548732 m001 1/GAMMA(7/24)*ArtinRank2*ln(gamma)^2 6835647128581216 m001 1/exp(GAMMA(7/12))/FeigenbaumC/sqrt(3) 6835647153119921 m001 (ln(Pi)-Cahen)/(Kac+OneNinth) 6835647160937477 m005 (1/3*3^(1/2)-1/11)/(8/9*2^(1/2)-6/11) 6835647248273656 m005 (1/2*2^(1/2)+4/7)/(9/11*Pi-7/10) 6835647266803396 r008 a(0)=7,K{-n^6,-3+8*n^3+4*n^2-2*n} 6835647267074847 r002 30th iterates of z^2 + 6835647270339926 a007 Real Root Of -610*x^4+833*x^3-269*x^2+778*x-539 6835647293214000 m001 (Totient-Thue)/(GAMMA(23/24)-FellerTornier) 6835647296248474 a007 Real Root Of 265*x^4-468*x^3+413*x^2-573*x-792 6835647310282004 r002 44th iterates of z^2 + 6835647310928604 r005 Im(z^2+c),c=-3/70+39/50*I,n=56 6835647349237108 r002 8th iterates of z^2 + 6835647379002280 a007 Real Root Of -62*x^4-351*x^3+535*x^2+148*x-731 6835647381946398 a007 Real Root Of -909*x^4+546*x^3+974*x^2-180*x-308 6835647391417361 a007 Real Root Of 796*x^4+443*x^3-296*x^2-538*x+38 6835647391428653 a001 1/987*10946^(24/53) 6835647400710364 q001 2117/3097 6835647405793691 p003 LerchPhi(1/100,3,453/185) 6835647407379739 r009 Im(z^3+c),c=-9/17+20/49*I,n=52 6835647411888241 m005 (1/2*gamma+2/3)/(2/5*Zeta(3)+11/12) 6835647414376419 r009 Im(z^3+c),c=-9/17+20/49*I,n=62 6835647425613007 a007 Real Root Of 74*x^4-42*x^3+844*x^2-477*x-750 6835647432639079 r005 Re(z^2+c),c=-65/122+37/40*I,n=3 6835647440889869 m001 (-Tetranacci+ZetaP(2))/(Catalan+Zeta(1,2)) 6835647447694511 a007 Real Root Of 4*x^4-683*x^3-809*x^2-535*x+961 6835647465974279 a007 Real Root Of 824*x^4+537*x^3+802*x^2+777*x+148 6835647560514901 m001 ln(BesselJ(0,1))^2*GolombDickman*GAMMA(7/12) 6835647569299928 m001 (ln(2^(1/2)+1)-Bloch)/(Champernowne+PlouffeB) 6835647572928510 a007 Real Root Of 959*x^4-843*x^3+159*x^2-221*x-704 6835647578855452 a007 Real Root Of 109*x^4+868*x^3+956*x^2+676*x-790 6835647579272739 a001 233/39603*1364^(44/45) 6835647607515323 a007 Real Root Of 5*x^4-957*x^3+546*x^2-66*x-607 6835647614713321 m001 exp(-1/2*Pi)^LandauRamanujan2nd*Niven 6835647649890242 a001 233/2207*1364^(26/45) 6835647660515521 r008 a(0)=7,K{-n^6,-9+9*n^3-2*n^2+9*n} 6835647664474415 a007 Real Root Of -35*x^4-148*x^3+668*x^2+248*x-373 6835647671727343 r009 Im(z^3+c),c=-9/17+20/49*I,n=42 6835647709309615 a007 Real Root Of -582*x^4+672*x^3-543*x^2+586*x+996 6835647714557442 a001 365435296162/7*2^(7/18) 6835647718193632 m001 Thue/(Porter^Gompertz) 6835647723697834 a007 Real Root Of -930*x^4-253*x^3-380*x^2-718*x-191 6835647734589338 m001 1/GAMMA(13/24)/ln(BesselJ(0,1))*sqrt(3)^2 6835647741463586 a007 Real Root Of -796*x^4+677*x^3-87*x^2+157*x+538 6835647747463492 a001 610/521*521^(11/39) 6835647762286748 a003 sin(Pi*10/49)/sin(Pi*39/115) 6835647765808343 a007 Real Root Of -982*x^4+886*x^3+662*x^2+439*x-678 6835647785386427 r009 Im(z^3+c),c=-7/32+31/35*I,n=13 6835647788051134 m001 GAMMA(7/24)*(1/2-exp(1)) 6835647801911454 a005 (1/sin(59/142*Pi))^1668 6835647831936949 r009 Im(z^3+c),c=-2/27+49/64*I,n=9 6835647833859849 r005 Re(z^2+c),c=-19/18+29/193*I,n=62 6835647839981228 a001 233/24476*1364^(41/45) 6835647845360208 a003 sin(Pi*27/103)*sin(Pi*21/55) 6835647846095765 m001 (Conway*GaussAGM-polylog(4,1/2))/GaussAGM 6835647864525177 a007 Real Root Of 221*x^4-477*x^3-90*x^2-977*x+814 6835647879759143 m001 gamma(1)/(GAMMA(11/12)-gamma(2)) 6835647882419519 b008 7+ExpIntegralEi[1/5]/5 6835647890019366 r005 Im(z^2+c),c=23/62+6/31*I,n=4 6835647890110884 r005 Im(z^2+c),c=-21/44+15/29*I,n=12 6835647896622581 a007 Real Root Of -71*x^4+822*x^3-967*x^2+322*x+950 6835647902037909 b008 Sqrt[2]+Pi^2*ArcCoth[2] 6835647928661335 s002 sum(A101296[n]/(exp(n)+1),n=1..infinity) 6835647929415548 s002 sum(A181819[n]/(exp(n)+1),n=1..infinity) 6835647943866059 m004 -6+2*Csch[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]^2 6835647946681494 m004 -6+4/E^(Sqrt[5]*Pi)-Tan[Sqrt[5]*Pi]^2 6835647947110220 a001 55/199*123^(2/3) 6835647949496925 m004 -6+2*Sech[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]^2 6835647956984452 a001 2178309/11*11^(31/60) 6835647968524739 h001 (7/11*exp(1)+1/6)/(6/7*exp(1)+4/9) 6835647994368480 a001 322/5702887*86267571272^(4/21) 6835647994370434 a001 161/416020*3524578^(4/21) 6835647999824856 m001 Trott2nd^Landau*MertensB1^Landau 6835648004064475 m001 ln(2)*FeigenbaumC+2*Pi/GAMMA(5/6) 6835648004279419 g007 Psi(2,1/7)-Psi(2,5/12)-2*Psi(13/10) 6835648009119945 h001 (-7*exp(2/3)-8)/(-8*exp(1/3)+8) 6835648011109401 a007 Real Root Of -746*x^4+900*x^3-386*x^2+353*x+872 6835648019518515 r005 Re(z^2+c),c=9/98+6/13*I,n=57 6835648020848406 m001 (FeigenbaumKappa-RenyiParking)^LandauRamanujan 6835648026420141 a007 Real Root Of 14*x^4+943*x^3-954*x^2+170*x+609 6835648033886514 m001 (Psi(1,1/3)-arctan(1/3))/(Champernowne+Mills) 6835648035636824 a007 Real Root Of -50*x^4+973*x^3+5*x^2+797*x-847 6835648037322304 m008 (3/5*Pi^2-2/3)/(4/5*Pi^6-1/3) 6835648038725702 p002 log(3^(5/6)-5^(3/7)) 6835648043637997 a001 233/15127*1364^(38/45) 6835648063415795 a007 Real Root Of 134*x^4+842*x^3-562*x^2-416*x-212 6835648100042331 a001 521/2971215073*6765^(15/16) 6835648128047956 a001 521/4052739537881*14930352^(15/16) 6835648133708368 m001 (sin(1/5*Pi)-HardyLittlewoodC3)/ln(2) 6835648137740919 a007 Real Root Of 637*x^4-135*x^3-68*x^2-330*x-376 6835648143706006 a003 cos(Pi*5/93)*sin(Pi*10/41) 6835648158543435 r005 Im(z^2+c),c=-13/42+37/57*I,n=21 6835648225239686 r005 Im(z^2+c),c=-91/102+23/63*I,n=5 6835648242658981 m001 (ThueMorse-ZetaQ(3))/(gamma(3)-Lehmer) 6835648293821971 a003 sin(Pi*13/74)/sin(Pi*32/115) 6835648295142666 m001 (Paris+Trott)/(GAMMA(2/3)-Otter) 6835648308172462 r002 21th iterates of z^2 + 6835648349624665 a007 Real Root Of 593*x^4+321*x^3+904*x^2-374*x-705 6835648358639917 a001 233/5778*1364^(32/45) 6835648377904178 h001 (1/3*exp(2)+2/5)/(5/9*exp(2)+1/12) 6835648387943680 a001 17/9*123^(44/59) 6835648392952809 r005 Re(z^2+c),c=-9/14+38/83*I,n=15 6835648396658144 a001 233/9349*1364^(7/9) 6835648410438316 r005 Im(z^2+c),c=1/3+26/63*I,n=8 6835648447705554 a007 Real Root Of 784*x^4-571*x^3+993*x^2-106*x-890 6835648483669518 a001 1597/521*521^(5/39) 6835648501283504 s002 sum(A230728[n]/(n!^3),n=1..infinity) 6835648540386041 m001 (-Lehmer+Tetranacci)/(Catalan+Zeta(5)) 6835648551885384 r005 Re(z^2+c),c=-11/26+37/62*I,n=20 6835648576946051 a007 Real Root Of -806*x^4-915*x^3-738*x^2-191*x+98 6835648579011536 m001 GAMMA(2/3)*(GlaisherKinkelin-KomornikLoreti) 6835648581305250 m001 3^(1/3)-FeigenbaumMu^Lehmer 6835648593972712 m001 1/ln(Magata)*MertensB1^2*GAMMA(3/4) 6835648610535884 a007 Real Root Of 705*x^4-746*x^3-591*x^2-858*x+947 6835648652967643 m001 Gompertz/(FellerTornier-HardyLittlewoodC5) 6835648670411610 m005 (11/12+1/4*5^(1/2))/(5*gamma-8/11) 6835648707128899 m005 (1/3*exp(1)+2/9)/(1/8*3^(1/2)-1/5) 6835648734723986 r002 35th iterates of z^2 + 6835648749789385 s002 sum(A237433[n]/(exp(n)+1),n=1..infinity) 6835648754903187 r005 Re(z^2+c),c=-19/18+29/193*I,n=64 6835648755213226 a007 Real Root Of -74*x^4-627*x^3-921*x^2-522*x+767 6835648756808253 a007 Real Root Of -842*x^4-202*x^3-701*x^2-288*x+250 6835648766151656 a007 Real Root Of 126*x^4+858*x^3-76*x^2-269*x+661 6835648768144582 m001 1/Ei(1)/exp(FeigenbaumDelta)*sinh(1)^2 6835648778573392 m006 (3*ln(Pi)-5/6)/(1/4*ln(Pi)-2/3) 6835648811412729 m001 Pi*ln(2)/ln(10)-Si(Pi)+Chi(1) 6835648811661415 m001 1/GAMMA(7/12)^2/Backhouse^2*ln(Zeta(3))^2 6835648828962911 r009 Im(z^3+c),c=-29/82+18/23*I,n=3 6835648829601329 p004 log(21499/10853) 6835648830277847 r005 Re(z^2+c),c=5/94+21/52*I,n=51 6835648831448758 r002 61th iterates of z^2 + 6835648857831730 m005 (1/3*3^(1/2)+2/3)/(5/6*Zeta(3)+9/11) 6835648858318297 m001 Robbin/Riemann3rdZero^2/exp(GAMMA(1/24)) 6835648862993331 s002 sum(A182129[n]/(n^3*pi^n-1),n=1..infinity) 6835648889421930 m001 (Pi+1)*(sin(1)+cos(1/5*Pi)) 6835648902089180 s002 sum(A236515[n]/(exp(n)+1),n=1..infinity) 6835648925182704 m001 (Thue+ZetaQ(3))/(BesselI(1,1)+CareFree) 6835648929681311 m009 (6*Psi(1,1/3)+1/4)/(6*Catalan+3/4*Pi^2-4) 6835648990434758 r005 Im(z^2+c),c=-15/32+5/43*I,n=33 6835648991460639 m009 (5/12*Pi^2+1)/(16/5*Catalan+2/5*Pi^2+3/5) 6835649002549796 a007 Real Root Of 20*x^4-28*x^3+159*x^2-437*x+229 6835649025687749 r005 Re(z^2+c),c=-65/122+29/60*I,n=21 6835649054441926 a007 Real Root Of 940*x^4-405*x^3-543*x^2-856*x-666 6835649103116950 m001 1/MadelungNaCl^3/exp(Zeta(7)) 6835649109098268 a007 Real Root Of -120*x^4-765*x^3+440*x^2+380*x-306 6835649109730597 m001 (KhinchinLevy-Otter)/sin(1/12*Pi) 6835649115781337 l006 ln(4876/9659) 6835649115932024 m009 (1/4*Psi(1,3/4)+3)/(24/5*Catalan+3/5*Pi^2-5) 6835649119621548 a001 987/521*1364^(8/45) 6835649143632870 a001 233/521*322^(27/31) 6835649144636983 m005 (1/2*Pi-1/6)/(6/11*exp(1)+4/7) 6835649171650263 m001 (Conway-Khinchin)/(Trott2nd+ZetaP(3)) 6835649206547761 s002 sum(A034835[n]/(n*exp(pi*n)+1),n=1..infinity) 6835649210374485 r005 Re(z^2+c),c=-17/26+71/105*I,n=2 6835649211795129 m001 (ln(5)+GolombDickman)/(exp(1)-ln(gamma)) 6835649214940414 r009 Re(z^3+c),c=-57/98+32/47*I,n=3 6835649236126345 r005 Re(z^2+c),c=-59/86+3/10*I,n=26 6835649236426651 m001 (ln(3)-ln(5)*KhinchinLevy)/KhinchinLevy 6835649238853407 l006 ln(7727/7780) 6835649245181383 r005 Re(z^2+c),c=-2/15+31/34*I,n=7 6835649245694027 r005 Im(z^2+c),c=-23/98+17/20*I,n=5 6835649260889517 m001 (Ei(1,1)-Stephens)/(ZetaQ(2)-ZetaQ(4)) 6835649270420694 a007 Real Root Of 637*x^4-14*x^3+775*x^2+908*x+115 6835649281266788 a007 Real Root Of -602*x^4+10*x^3+241*x^2+847*x+601 6835649290265943 a007 Real Root Of 742*x^4+123*x^3+795*x^2-48*x-527 6835649308751786 m001 (Zeta(3)-GAMMA(3/4))/(FeigenbaumB+Sierpinski) 6835649344373554 a001 233/3571*1364^(29/45) 6835649345389643 l006 ln(4509/8932) 6835649364971192 a007 Real Root Of 649*x^4+240*x^3-179*x^2-785*x-518 6835649370114306 r005 Re(z^2+c),c=5/94+21/52*I,n=48 6835649375961286 m001 PlouffeB^(1/5*5^(1/2)*ln(Pi)) 6835649386795035 a007 Real Root Of -385*x^4+597*x^3+428*x^2+950*x-956 6835649393941353 m001 PrimesInBinary^Stephens+StolarskyHarborth 6835649402902832 r009 Re(z^3+c),c=-43/78+1/6*I,n=38 6835649464134456 m001 ZetaQ(4)/(FeigenbaumC+LandauRamanujan2nd) 6835649466132273 h001 (-exp(4)-12)/(-5*exp(3)+3) 6835649470424720 a007 Real Root Of -407*x^4+466*x^3-862*x^2-68*x+594 6835649472133431 m005 (1/3*Pi+2/5)/(9/11*3^(1/2)+7/10) 6835649473038345 r005 Re(z^2+c),c=-7/27+11/16*I,n=5 6835649486219003 l006 ln(3039/3254) 6835649489976211 m001 (Grothendieck-ZetaQ(4))/(Pi^(1/2)+FeigenbaumB) 6835649499424890 a001 233/2207*3571^(26/51) 6835649510806165 m001 (ln(gamma)-ln(5))/(Landau-Thue) 6835649564784368 a005 (1/sin(42/157*Pi))^116 6835649605883809 m005 (1/2*Catalan-5/8)/(6/11*Zeta(3)-9/10) 6835649615686618 l006 ln(4142/8205) 6835649618543526 p003 LerchPhi(1/1024,1,101/69) 6835649628605232 m001 (sin(1/5*Pi)+Rabbit)^Zeta(1/2) 6835649645484718 m001 (Pi-cos(1/5*Pi))/(GAMMA(13/24)+Pi^(1/2)) 6835649650170801 h001 (3/8*exp(2)+1/9)/(5/9*exp(2)+1/9) 6835649656591568 r005 Im(z^2+c),c=-101/78+18/43*I,n=4 6835649670478022 m001 cos(1)*arctan(1/2)^2*exp(sqrt(Pi)) 6835649680004791 a001 2584/521*521^(2/39) 6835649687648232 r009 Re(z^3+c),c=-5/48+20/41*I,n=22 6835649688709202 a001 987/521*3571^(8/51) 6835649702262150 r005 Re(z^2+c),c=5/94+21/52*I,n=54 6835649728770195 a005 (1/cos(21/226*Pi))^151 6835649737028290 a001 233/2207*9349^(26/57) 6835649758528441 a003 cos(Pi*23/99)*sin(Pi*17/46) 6835649761817941 a001 987/521*9349^(8/57) 6835649772701974 a001 233/2207*141422324^(2/9) 6835649772701974 a001 233/2207*73681302247^(1/6) 6835649772732899 a001 233/2207*271443^(1/3) 6835649772794460 a001 987/521*23725150497407^(1/24) 6835649772794460 a001 987/521*10749957122^(1/18) 6835649772794460 a001 987/521*228826127^(1/15) 6835649772794484 a001 987/521*4870847^(1/12) 6835649772795749 a001 987/521*710647^(2/21) 6835649772865113 a001 987/521*103682^(1/9) 6835649773322746 a001 987/521*39603^(4/33) 6835649774418906 a001 233/2207*39603^(13/33) 6835649776777484 a001 987/521*15127^(2/15) 6835649778504154 m006 (3/4*exp(Pi)+5/6)/(3*Pi^2-3) 6835649785646803 a001 233/2207*15127^(13/30) 6835649795256717 r005 Re(z^2+c),c=5/94+21/52*I,n=50 6835649803127851 a001 987/521*5778^(4/27) 6835649832113652 a001 377*18^(7/34) 6835649841487508 m005 (1/2*gamma+2/5)/(3/11*Zeta(3)-3/7) 6835649850884150 m001 (Rabbit-ZetaQ(4))/(HeathBrownMoroz+MertensB2) 6835649871285499 a001 233/2207*5778^(13/27) 6835649884104296 r002 15th iterates of z^2 + 6835649938539339 l006 ln(3775/7478) 6835649953851083 a007 Real Root Of -130*x^4-892*x^3-46*x^2-265*x-737 6835649958790030 r005 Re(z^2+c),c=5/94+21/52*I,n=55 6835649980453032 r005 Re(z^2+c),c=5/94+21/52*I,n=58 6835650006393597 r009 Im(z^3+c),c=-11/24+1/29*I,n=21 6835650006691124 a001 987/521*2207^(1/6) 6835650009859184 r009 Im(z^3+c),c=-13/50+26/37*I,n=8 6835650023646189 r009 Im(z^3+c),c=-23/44+2/5*I,n=46 6835650032125336 m001 (GAMMA(2/3)+Niven)/(Trott2nd-Weierstrass) 6835650040883074 q001 836/1223 6835650042473670 r005 Re(z^2+c),c=-105/118+9/41*I,n=52 6835650062483483 r005 Re(z^2+c),c=-19/26+8/69*I,n=28 6835650071073640 a007 Real Root Of 348*x^4-639*x^3+129*x^2-897*x+681 6835650084103718 a007 Real Root Of 755*x^3-142*x^2+806*x+56 6835650088231900 r005 Re(z^2+c),c=5/94+21/52*I,n=61 6835650092859209 a007 Real Root Of 316*x^4-826*x^3-496*x^2-825*x-665 6835650094910128 r002 5th iterates of z^2 + 6835650097959091 r005 Re(z^2+c),c=5/94+21/52*I,n=62 6835650129207856 r005 Re(z^2+c),c=5/94+21/52*I,n=64 6835650133166731 m004 -3+(4*Cosh[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi])/3 6835650136413648 r005 Re(z^2+c),c=5/94+21/52*I,n=57 6835650147976926 r005 Re(z^2+c),c=5/94+21/52*I,n=63 6835650149009055 m001 (arctan(1/3)+GAMMA(5/6))/(GAMMA(17/24)-Magata) 6835650151255113 r009 Im(z^3+c),c=-85/126+23/40*I,n=3 6835650154312832 a007 Real Root Of -107*x^4-743*x^3-238*x^2-959*x+865 6835650154879484 r005 Re(z^2+c),c=5/94+21/52*I,n=59 6835650169164590 r005 Re(z^2+c),c=-83/82+10/43*I,n=60 6835650188843500 r005 Re(z^2+c),c=5/94+21/52*I,n=60 6835650229723549 r002 37th iterates of z^2 + 6835650236245070 m001 (2^(1/3)-Shi(1))/(ln(5)+FeigenbaumKappa) 6835650253031694 a007 Real Root Of -423*x^4+296*x^3-796*x^2-740*x+53 6835650276534805 a007 Real Root Of 107*x^4-20*x^3-905*x^2-657*x+855 6835650278284782 b008 6+LogIntegral[ArcSinh[Pi]] 6835650279855580 a007 Real Root Of -362*x^4-251*x^3-568*x^2+990*x+941 6835650314600711 m004 -1+(150*Sqrt[5])/Pi+5*Pi+Sinh[Sqrt[5]*Pi] 6835650330926641 l006 ln(3408/6751) 6835650348508138 a001 1597/1364*322^(11/36) 6835650351551356 a007 Real Root Of -65*x^4+817*x^3+533*x^2-48*x-463 6835650360322007 m001 BesselJ(1,1)^2/exp(TreeGrowth2nd)^2/sinh(1) 6835650363339140 m001 (Riemann3rdZero-Stephens)/(ln(3)-Backhouse) 6835650364062319 a007 Real Root Of 766*x^4-345*x^3+322*x^2-164*x-540 6835650388112648 r005 Re(z^2+c),c=5/94+21/52*I,n=56 6835650411333912 r005 Im(z^2+c),c=-9/31+25/38*I,n=23 6835650466911572 m001 (ln(3)+GAMMA(11/12))/(Grothendieck-Porter) 6835650473109810 m001 GolombDickman*Bloch^2/exp(Rabbit) 6835650490499930 a007 Real Root Of 314*x^4-322*x^3+611*x^2-499*x-798 6835650496566216 m001 1/PrimesInBinary/ln(ArtinRank2)^2/exp(1) 6835650507946607 a007 Real Root Of -258*x^4+869*x^3-585*x^2+717*x-438 6835650511866119 r002 5th iterates of z^2 + 6835650532866162 a001 233/2207*2207^(13/24) 6835650547856121 r002 36th iterates of z^2 + 6835650551901928 a007 Real Root Of -871*x^4+448*x^3-593*x^2+374*x+866 6835650557992839 a007 Real Root Of 823*x^4+954*x^3+206*x^2-361*x-218 6835650585236250 a001 89/1364*199^(29/33) 6835650605614988 m005 (1/2*5^(1/2)+2/9)/(2/5*3^(1/2)-8/9) 6835650634990561 a001 233/5778*3571^(32/51) 6835650647987779 r005 Re(z^2+c),c=5/94+21/52*I,n=52 6835650649913250 a001 233/103682*3571^(50/51) 6835650656215383 r005 Re(z^2+c),c=5/94+21/52*I,n=53 6835650662906647 s002 sum(A268140[n]/(n^2*2^n-1),n=1..infinity) 6835650683745851 a001 233/64079*3571^(47/51) 6835650701727735 r002 14th iterates of z^2 + 6835650702186710 m005 (1/2*3^(1/2)+2)/(1/9*Zeta(3)+2/7) 6835650704042902 a007 Real Root Of -831*x^4-136*x^3-404*x^2+132*x+417 6835650709254713 a001 233/39603*3571^(44/51) 6835650741773046 r009 Im(z^3+c),c=-13/122+49/64*I,n=26 6835650745972507 m005 (1/2*Pi+4/5)/(exp(1)+3/4) 6835650746804347 a001 233/15127*3571^(38/51) 6835650756555406 a001 233/24476*3571^(41/51) 6835650765086617 a001 1597/2207*322^(7/18) 6835650776514395 a001 1515744265389/46*7^(3/8) 6835650785334348 a007 Real Root Of -185*x^4+936*x^3+580*x^2+611*x+486 6835650785427083 a007 Real Root Of -899*x^4-235*x^3-417*x^2-300*x+111 6835650803592286 a001 39603/55*196418^(9/16) 6835650808131150 a001 2584/521*1364^(2/45) 6835650818023648 l006 ln(3041/6024) 6835650845934108 b008 5+(6*(-1+Pi))/7 6835650879787357 a007 Real Root Of 659*x^4-756*x^3-121*x^2-524*x-687 6835650880823061 a007 Real Root Of -821*x^4+791*x^3+841*x^2+793*x+581 6835650886416714 a001 233/9349*3571^(35/51) 6835650899760977 a007 Real Root Of -928*x^4+602*x^3-981*x^2-549*x+478 6835650917629545 a007 Real Root Of 846*x^4+676*x^3+61*x^2-377*x-255 6835650927425564 a001 233/5778*9349^(32/57) 6835650928830168 a007 Real Root Of -451*x^4+710*x^3-677*x^2+84*x+699 6835650930985211 a007 Real Root Of -230*x^4+842*x^3+630*x^2-341*x-280 6835650947909579 r008 a(0)=7,K{-n^6,41-30*n-n^2-5*n^3} 6835650950403094 a001 2584/521*3571^(2/51) 6835650956764861 m001 gamma(1)^(Magata/Pi/csc(1/24*Pi)*GAMMA(23/24)) 6835650957888432 m005 (1/2*Zeta(3)-9/11)/(1/8*2^(1/2)+3) 6835650968680282 a001 2584/521*9349^(2/57) 6835650971331645 a001 233/5778*23725150497407^(1/6) 6835650971331645 a001 233/5778*10749957122^(2/9) 6835650971331645 a001 233/5778*228826127^(4/15) 6835650971331741 a001 233/5778*4870847^(1/3) 6835650971336802 a001 233/5778*710647^(8/21) 6835650971394149 r005 Im(z^2+c),c=-7/78+43/62*I,n=64 6835650971556484 a001 2584/521*39603^(1/33) 6835650971614257 a001 233/5778*103682^(4/9) 6835650972420169 a001 2584/521*15127^(1/30) 6835650973444793 a001 233/5778*39603^(16/33) 6835650976514782 a007 Real Root Of -601*x^4+927*x^3-599*x^2-840*x+133 6835650977626214 a007 Real Root Of 616*x^4-571*x^3-463*x^2-659*x-551 6835650979007762 a001 2584/521*5778^(1/27) 6835650987263744 a001 233/5778*15127^(8/15) 6835651021111759 a007 Real Root Of -146*x^4-931*x^3+436*x^2-24*x+865 6835651029898588 a001 2584/521*2207^(1/24) 6835651048994708 r009 Re(z^3+c),c=-5/58+34/47*I,n=26 6835651062709575 m001 (ZetaP(3)+ZetaQ(2))/(ln(3)-LandauRamanujan) 6835651092665235 a001 233/5778*5778^(16/27) 6835651094070920 a001 233/15127*9349^(2/3) 6835651099153662 a001 233/271443*9349^(56/57) 6835651103605514 a001 233/167761*9349^(53/57) 6835651106842949 a001 233/103682*9349^(50/57) 6835651111352850 a001 233/39603*9349^(44/57) 6835651113259769 a001 233/64079*9349^(47/57) 6835651131237762 a001 233/24476*9349^(41/57) 6835651136177576 m001 (Rabbit-Sierpinski)/(arctan(1/2)+BesselI(0,2)) 6835651146209393 a001 233/15127*817138163596^(2/9) 6835651146209393 a001 233/15127*87403803^(1/3) 6835651148718755 a001 233/15127*39603^(19/33) 6835651165128761 a001 233/15127*15127^(19/30) 6835651165846772 a001 233/271443*24476^(8/9) 6835651171723664 a001 233/39603*7881196^(4/9) 6835651171723713 a001 233/39603*312119004989^(4/15) 6835651171723713 a001 233/39603*1568397607^(1/3) 6835651171723845 a001 233/39603*4870847^(11/24) 6835651171730803 a001 233/39603*710647^(11/21) 6835651172112304 a001 233/39603*103682^(11/18) 6835651174629290 a001 233/39603*39603^(2/3) 6835651175284280 a001 233/103682*167761^(2/3) 6835651175446194 a001 233/103682*20633239^(10/21) 6835651175446202 a001 233/103682*3461452808002^(5/18) 6835651175446202 a001 233/103682*28143753123^(1/3) 6835651175446202 a001 233/103682*228826127^(5/12) 6835651175447299 a001 233/103682*1860498^(5/9) 6835651175876750 a001 233/1149851*167761^(13/15) 6835651175989297 a001 233/271443*20633239^(8/15) 6835651175989306 a001 233/271443*17393796001^(8/21) 6835651175989306 a001 233/271443*23725150497407^(7/24) 6835651175989306 a001 233/271443*505019158607^(1/3) 6835651175989306 a001 233/271443*10749957122^(7/18) 6835651175989306 a001 233/271443*599074578^(4/9) 6835651175989306 a001 233/271443*228826127^(7/15) 6835651175989474 a001 233/271443*4870847^(7/12) 6835651175998330 a001 233/271443*710647^(2/3) 6835651176068041 a001 233/710647*3010349^(2/3) 6835651176068544 a001 233/710647*9062201101803^(1/3) 6835651176080104 a001 233/1860498*45537549124^(4/9) 6835651176080132 a001 233/1860498*12752043^(2/3) 6835651176080308 a001 233/1860498*4870847^(17/24) 6835651176081789 a001 233/4870847*54018521^(2/3) 6835651176082025 a001 233/12752043*20633239^(16/21) 6835651176082037 a001 233/12752043*23725150497407^(5/12) 6835651176082037 a001 233/12752043*505019158607^(10/21) 6835651176082037 a001 233/12752043*28143753123^(8/15) 6835651176082037 a001 233/12752043*10749957122^(5/9) 6835651176082037 a001 233/12752043*228826127^(2/3) 6835651176082064 a001 233/228826127*20633239^(14/15) 6835651176082065 a001 233/141422324*20633239^(19/21) 6835651176082073 a001 233/33385282*969323029^(2/3) 6835651176082078 a001 233/87403803*4106118243^(2/3) 6835651176082079 a001 233/599074578*141422324^(8/9) 6835651176082079 a001 233/228826127*17393796001^(2/3) 6835651176082079 a001 233/228826127*505019158607^(7/12) 6835651176082079 a001 233/228826127*599074578^(7/9) 6835651176082079 a001 233/599074578*23725150497407^(13/24) 6835651176082079 a001 233/599074578*505019158607^(13/21) 6835651176082079 a001 233/599074578*73681302247^(2/3) 6835651176082079 a001 233/599074578*10749957122^(13/18) 6835651176082079 a001 233/1568397607*312119004989^(2/3) 6835651176082079 a001 233/1568397607*3461452808002^(11/18) 6835651176082079 a001 233/1568397607*28143753123^(11/15) 6835651176082079 a001 233/1568397607*1568397607^(5/6) 6835651176082079 a001 233/4106118243*1322157322203^(2/3) 6835651176082079 a001 233/10749957122*5600748293801^(2/3) 6835651176082079 a001 233/192900153618*17393796001^(20/21) 6835651176082079 a001 233/28143753123*23725150497407^(2/3) 6835651176082079 a001 233/28143753123*505019158607^(16/21) 6835651176082079 a001 233/192900153618*3461452808002^(7/9) 6835651176082079 a001 233/192900153618*505019158607^(5/6) 6835651176082079 a001 233/1322157322203*23725150497407^(19/24) 6835651176082079 a001 233/23725150497407*3461452808002^(17/18) 6835651176082079 a001 233/2139295485799*9062201101803^(5/6) 6835651176082079 a001 233/312119004989*312119004989^(13/15) 6835651176082079 a001 233/1322157322203*505019158607^(19/21) 6835651176082079 a001 233/312119004989*73681302247^(11/12) 6835651176082079 a001 233/192900153618*28143753123^(14/15) 6835651176082079 a001 233/17393796001*28143753123^(5/6) 6835651176082079 a001 233/28143753123*10749957122^(8/9) 6835651176082079 a001 233/6643838879*17393796001^(17/21) 6835651176082079 a001 233/6643838879*45537549124^(7/9) 6835651176082079 a001 233/6643838879*505019158607^(17/24) 6835651176082079 a001 233/6643838879*599074578^(17/18) 6835651176082079 a001 233/599074578*228826127^(13/15) 6835651176082079 a001 233/1568397607*228826127^(11/12) 6835651176082079 a001 233/141422324*817138163596^(5/9) 6835651176082080 a001 233/141422324*228826127^(19/24) 6835651176082080 a001 233/141422324*87403803^(5/6) 6835651176082104 a001 233/7881196*7881196^(7/9) 6835651176082177 a001 233/7881196*20633239^(11/15) 6835651176082189 a001 233/7881196*17393796001^(11/21) 6835651176082189 a001 233/7881196*312119004989^(7/15) 6835651176082189 a001 233/7881196*505019158607^(11/24) 6835651176082189 a001 233/7881196*1568397607^(7/12) 6835651176082189 a001 233/7881196*599074578^(11/18) 6835651176082277 a001 233/12752043*4870847^(5/6) 6835651176082354 a001 233/87403803*4870847^(23/24) 6835651176083792 a001 233/12752043*1860498^(8/9) 6835651176087239 a001 233/1149851*20633239^(13/21) 6835651176087249 a001 233/1149851*141422324^(5/9) 6835651176087249 a001 233/1149851*73681302247^(5/12) 6835651176087249 a001 233/1149851*228826127^(13/24) 6835651176088675 a001 233/1149851*1860498^(13/18) 6835651176091062 a001 233/1860498*710647^(17/21) 6835651176094597 a001 233/7881196*710647^(11/12) 6835651176094928 a001 233/12752043*710647^(20/21) 6835651176117515 a001 233/439204*2139295485799^(1/3) 6835651176164560 a001 233/1149851*271443^(5/6) 6835651176324963 a001 233/167761*119218851371^(1/3) 6835651176483877 a001 233/271443*103682^(7/9) 6835651176680655 a001 233/1860498*103682^(17/18) 6835651177746827 a001 233/64079*6643838879^(1/3) 6835651178747995 a001 233/103682*39603^(25/33) 6835651179687314 a001 233/271443*39603^(28/33) 6835651180162767 a001 233/710647*39603^(31/33) 6835651187492430 a001 233/24476*370248451^(1/3) 6835651190268403 a008 Real Root of (-4+5*x-x^2+3*x^3-3*x^4+5*x^5) 6835651193630350 a001 233/39603*15127^(11/15) 6835651200340108 a001 233/103682*15127^(5/6) 6835651201147098 a001 233/64079*15127^(47/60) 6835651202712502 a001 233/167761*15127^(53/60) 6835651203870480 a001 233/271443*15127^(14/15) 6835651205492324 a001 233/439204*15127^(59/60) 6835651206267511 a001 233/9349*9349^(35/57) 6835651207905433 a001 233/24476*15127^(41/60) 6835651229358981 m001 (Landau-sin(1))/(MertensB1+ZetaP(3)) 6835651247950705 a001 233/9349*24476^(5/9) 6835651254176443 a001 233/9349*167761^(7/15) 6835651254289784 a001 233/9349*20633239^(1/3) 6835651254289789 a001 233/9349*17393796001^(5/21) 6835651254289789 a001 233/9349*505019158607^(5/24) 6835651254289789 a001 233/9349*599074578^(5/18) 6835651254289789 a001 233/9349*228826127^(7/24) 6835651254290557 a001 233/9349*1860498^(7/18) 6835651254295429 a001 233/9349*710647^(5/12) 6835651260203867 r005 Re(z^2+c),c=-15/22+43/120*I,n=22 6835651262260301 r002 20th iterates of z^2 + 6835651262260301 r002 20th iterates of z^2 + 6835651262324740 r005 Re(z^2+c),c=5/94+21/52*I,n=41 6835651269427509 r005 Im(z^2+c),c=-7/78+43/62*I,n=52 6835651271715523 a001 233/9349*15127^(7/12) 6835651290293034 a001 233/15127*5778^(19/27) 6835651291129662 m005 (1/2*Pi-3/5)/(4/7*Pi-3/8) 6835651298820960 b008 63*AiryAi[E] 6835651303985271 a001 1597/521*1364^(1/9) 6835651318668866 m005 (7/12+1/4*5^(1/2))/(10/11*exp(1)-4/5) 6835651336456774 h005 exp(sin(Pi*23/59)+sin(Pi*25/57)) 6835651337007525 g005 1/2/Pi^2/csc(2/5*Pi)*GAMMA(8/11)*GAMMA(5/6) 6835651338557404 a001 233/39603*5778^(22/27) 6835651342951097 a001 233/24476*5778^(41/54) 6835651355955543 a001 233/64079*5778^(47/54) 6835651365029942 a001 233/103682*5778^(25/27) 6835651374660678 r002 15th iterates of z^2 + 6835651377283728 a001 233/167761*5778^(53/54) 6835651378682470 r009 Re(z^3+c),c=-1/3+44/63*I,n=39 6835651386998408 a001 233/9349*5778^(35/54) 6835651391292326 a007 Real Root Of 731*x^4-752*x^3+589*x^2+474*x-351 6835651405254739 r005 Re(z^2+c),c=-19/18+29/193*I,n=58 6835651407316591 a001 233/3571*3571^(29/51) 6835651410463406 a001 2/514229*233^(55/58) 6835651429467535 a001 2584/521*843^(1/21) 6835651438826381 l006 ln(2674/5297) 6835651467721206 r002 11th iterates of z^2 + 6835651485365633 m001 1/ln(MertensB1)^2*ArtinRank2/LambertW(1) 6835651493195131 r005 Im(z^2+c),c=-31/48+11/56*I,n=12 6835651505880543 a001 4181/5778*322^(7/18) 6835651519017675 m005 (5/6*exp(1)+1/5)/(2/3*Catalan-1/4) 6835651519704788 m001 (2^(1/3))^2*CopelandErdos*ln(sin(Pi/12))^2 6835651522411874 r005 Re(z^2+c),c=-17/22+4/93*I,n=45 6835651530152189 m001 1/GAMMA(23/24)/Champernowne^2/exp(sqrt(5)) 6835651542274035 r002 7th iterates of z^2 + 6835651570948645 r005 Im(z^2+c),c=27/94+25/57*I,n=3 6835651573245395 r009 Re(z^3+c),c=-45/118+53/64*I,n=4 6835651603022360 a007 Real Root Of -744*x^4+612*x^3-667*x^2-409*x+390 6835651604966813 a001 987/521*843^(4/21) 6835651608780491 r008 a(0)=6,K{-n^6,-60+55*n^3-31*n^2+35*n} 6835651613960942 a001 10946/15127*322^(7/18) 6835651623449999 m005 (1/2*3^(1/2)-3)/(6/7*2^(1/2)-9/10) 6835651626529800 a007 Real Root Of 681*x^4-408*x^3-202*x^2-871*x-780 6835651629729660 a001 28657/39603*322^(7/18) 6835651632030285 a001 75025/103682*322^(7/18) 6835651632365942 a001 196418/271443*322^(7/18) 6835651632414913 a001 514229/710647*322^(7/18) 6835651632422058 a001 1346269/1860498*322^(7/18) 6835651632423101 a001 3524578/4870847*322^(7/18) 6835651632423253 a001 9227465/12752043*322^(7/18) 6835651632423275 a001 24157817/33385282*322^(7/18) 6835651632423278 a001 63245986/87403803*322^(7/18) 6835651632423279 a001 165580141/228826127*322^(7/18) 6835651632423279 a001 433494437/599074578*322^(7/18) 6835651632423279 a001 1134903170/1568397607*322^(7/18) 6835651632423279 a001 2971215073/4106118243*322^(7/18) 6835651632423279 a001 7778742049/10749957122*322^(7/18) 6835651632423279 a001 20365011074/28143753123*322^(7/18) 6835651632423279 a001 53316291173/73681302247*322^(7/18) 6835651632423279 a001 139583862445/192900153618*322^(7/18) 6835651632423279 a001 365435296162/505019158607*322^(7/18) 6835651632423279 a001 10610209857723/14662949395604*322^(7/18) 6835651632423279 a001 591286729879/817138163596*322^(7/18) 6835651632423279 a001 225851433717/312119004989*322^(7/18) 6835651632423279 a001 86267571272/119218851371*322^(7/18) 6835651632423279 a001 32951280099/45537549124*322^(7/18) 6835651632423279 a001 12586269025/17393796001*322^(7/18) 6835651632423279 a001 4807526976/6643838879*322^(7/18) 6835651632423279 a001 1836311903/2537720636*322^(7/18) 6835651632423279 a001 701408733/969323029*322^(7/18) 6835651632423279 a001 267914296/370248451*322^(7/18) 6835651632423279 a001 102334155/141422324*322^(7/18) 6835651632423280 a001 39088169/54018521*322^(7/18) 6835651632423289 a001 14930352/20633239*322^(7/18) 6835651632423347 a001 5702887/7881196*322^(7/18) 6835651632423745 a001 2178309/3010349*322^(7/18) 6835651632426474 a001 832040/1149851*322^(7/18) 6835651632445180 a001 317811/439204*322^(7/18) 6835651632573389 a001 121393/167761*322^(7/18) 6835651633452149 a001 46368/64079*322^(7/18) 6835651636726177 a007 Real Root Of -495*x^4-346*x^3-718*x^2-812*x-222 6835651639475264 a001 17711/24476*322^(7/18) 6835651659665162 a001 1597/521*3571^(5/51) 6835651665907935 m001 ln(TwinPrimes)^2/FeigenbaumC/GAMMA(19/24)^2 6835651672335842 a001 233/3571*9349^(29/57) 6835651680758305 a001 6765/9349*322^(7/18) 6835651702752605 r005 Im(z^2+c),c=-23/34+11/101*I,n=30 6835651705358137 a001 1597/521*9349^(5/57) 6835651712124009 a001 233/3571*1149851^(1/3) 6835651712125732 a001 233/3571*1322157322203^(1/6) 6835651712202271 a001 1597/521*167761^(1/15) 6835651712218462 a001 1597/521*20633239^(1/21) 6835651712218463 a001 1597/521*228826127^(1/24) 6835651712218573 a001 1597/521*1860498^(1/18) 6835651714707854 a001 1597/521*15127^(1/12) 6835651721199568 m001 (Weierstrass+ZetaQ(3))/(gamma(1)+gamma(3)) 6835651726564198 a001 233/3571*15127^(29/60) 6835651731176839 a001 1597/521*5778^(5/54) 6835651734256854 m005 (3/44+1/4*5^(1/2))/(1/7*gamma-1) 6835651796264527 a008 Real Root of x^4-2*x^3-40*x^2+9*x+263 6835651817838832 l006 ln(4981/9867) 6835651822084310 a001 233/3571*5778^(29/54) 6835651826702684 m001 (Riemann1stZero+Stephens)/(3^(1/3)+Rabbit) 6835651858403919 a001 1597/521*2207^(5/48) 6835651862545103 m001 (-ln(gamma)+1/2)/(Zeta(3)+1/3) 6835651881881814 r009 Im(z^3+c),c=-29/98+7/11*I,n=4 6835651891855145 m001 (HeathBrownMoroz+Magata)/(ln(2)-DuboisRaymond) 6835651906918514 a001 233/5778*2207^(2/3) 6835651929339210 r005 Re(z^2+c),c=5/56+26/57*I,n=28 6835651945076295 r005 Im(z^2+c),c=-33/25+1/38*I,n=55 6835651954468982 a007 Real Root Of -768*x^4+177*x^3+61*x^2-121*x+113 6835651963716498 a001 2584/3571*322^(7/18) 6835651968184442 m001 (gamma(2)+Riemann2ndZero)/(5^(1/2)+Chi(1)) 6835651983586636 a007 Real Root Of 67*x^4-666*x^3+941*x^2-313*x-881 6835651997790731 r005 Im(z^2+c),c=-39/44+19/45*I,n=4 6835652019352334 b008 ArcCoth[1/3+EllipticE[1/2]] 6835652027866362 m001 (2*Pi/GAMMA(5/6)+Champernowne)/FeigenbaumB 6835652031046102 r008 a(0)=1,K{-n^6,-5+8*n^3+9*n^2-8*n} 6835652033629461 a007 Real Root Of -736*x^4+70*x^3-994*x^2+463*x+964 6835652042146739 r009 Re(z^3+c),c=-1/28+48/59*I,n=51 6835652068371634 m001 exp(1/2)/(Lehmer^exp(1)) 6835652079051446 r005 Re(z^2+c),c=-37/29+2/63*I,n=16 6835652086972896 a005 (1/cos(29/162*Pi))^218 6835652110973346 a007 Real Root Of 968*x^4-892*x^3-53*x^2-188*x-600 6835652126170054 a007 Real Root Of 165*x^4-206*x^3+333*x^2-488*x-591 6835652161046215 b008 -1/2+Sqrt[3/(-1+Pi)] 6835652172721899 a001 41/329*956722026041^(9/16) 6835652177803315 r002 41th iterates of z^2 + 6835652185342770 a007 Real Root Of 753*x^4+188*x^3+747*x^2-785*x-990 6835652203404035 m001 1/Riemann2ndZero/Conway/ln((2^(1/3)))^2 6835652210688773 r005 Re(z^2+c),c=-73/102+19/54*I,n=11 6835652214601919 r005 Im(z^2+c),c=-17/18+19/41*I,n=3 6835652233050511 m009 (1/5*Psi(1,1/3)+5)/(48*Catalan+6*Pi^2-1/2) 6835652237302725 m006 (1/4*Pi+5)/(1/3*exp(Pi)+3/4) 6835652238966083 m001 BesselK(0,1)*ln(Salem) 6835652257144967 l006 ln(2307/4570) 6835652257218842 a001 233/15127*2207^(19/24) 6835652271792366 a007 Real Root Of 932*x^4-534*x^3-319*x^2-395*x-495 6835652277587975 a001 233/9349*2207^(35/48) 6835652279038239 a007 Real Root Of -765*x^4+104*x^3-82*x^2+539*x+607 6835652283639467 m001 1/Rabbit/exp(FeigenbaumDelta)/GAMMA(5/24)^2 6835652309370002 r005 Im(z^2+c),c=-10/11+17/42*I,n=4 6835652319387949 r002 63th iterates of z^2 + 6835652323197371 a007 Real Root Of 407*x^4-795*x^3-35*x^2+144*x-228 6835652330431508 a007 Real Root Of 922*x^4-884*x^3+794*x^2+769*x-329 6835652383187540 a001 4/1597*4181^(23/58) 6835652386213166 a001 233/24476*2207^(41/48) 6835652389937877 a007 Real Root Of -640*x^4-66*x^3-586*x^2-580*x-4 6835652397430503 a007 Real Root Of 121*x^4-476*x^3+74*x^2-294*x-414 6835652399529831 m004 -15*Pi+24*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 6835652409370620 r005 Re(z^2+c),c=-11/14+35/96*I,n=5 6835652424203676 a007 Real Root Of -301*x^4+791*x^3-900*x^2-152*x+635 6835652424755708 m005 (1/2*gamma+1/6)/(10/11*Catalan-1/6) 6835652458155728 a001 233/39603*2207^(11/12) 6835652479523598 r005 Im(z^2+c),c=53/114+21/59*I,n=10 6835652481700389 a007 Real Root Of 321*x^4-642*x^3+92*x^2+777*x+213 6835652521141008 r005 Re(z^2+c),c=-31/82+28/47*I,n=15 6835652529066538 r001 45i'th iterates of 2*x^2-1 of 6835652532639966 r005 Im(z^2+c),c=-17/110+47/58*I,n=21 6835652535500996 r005 Im(z^2+c),c=-1/15+36/53*I,n=52 6835652537718462 m002 6-E^Pi-Sinh[Pi]+Pi^4*Tanh[Pi] 6835652542849246 a007 Real Root Of 85*x^4+179*x^3+753*x^2-361*x-560 6835652551890126 a001 233/64079*2207^(47/48) 6835652560001418 a001 233/3571*2207^(29/48) 6835652573772184 a007 Real Root Of -120*x^4+698*x^3+760*x^2+521*x-908 6835652615591379 m001 Khinchin^(3^(1/3))+2/3*Pi*3^(1/2)/GAMMA(2/3) 6835652615591379 m001 Khinchin^(3^(1/3))+GAMMA(1/3) 6835652621548881 m002 -6+(2*Cosh[Pi])/Pi^4-ProductLog[Pi] 6835652623337529 a007 Real Root Of 710*x^4-487*x^3+385*x^2-308*x-701 6835652628859524 h001 (6/11*exp(1)+1/8)/(8/11*exp(1)+3/8) 6835652661651039 a007 Real Root Of -395*x^4-566*x^3-632*x^2+783*x+736 6835652681557022 m001 1/ln(Zeta(3))*GAMMA(19/24)/cos(Pi/12)^2 6835652685426456 a007 Real Root Of 51*x^4-418*x^3-317*x^2-975*x-663 6835652705553139 m005 (1/2*5^(1/2)-6)/(8/9*Catalan-1/10) 6835652712770552 s001 sum(1/10^(n-1)*A001485[n]/n!,n=1..infinity) 6835652726978381 a007 Real Root Of -78*x^4-98*x^3-951*x^2-262*x+251 6835652734239416 a007 Real Root Of 307*x^4-30*x^3-895*x^2-922*x+991 6835652750165672 q001 2063/3018 6835652763056993 r005 Re(z^2+c),c=5/94+21/52*I,n=49 6835652772375424 l006 ln(4247/8413) 6835652779250646 a007 Real Root Of 423*x^4-270*x^3+181*x^2-424*x-553 6835652787905056 a007 Real Root Of -x^4-683*x^3+387*x^2+407*x+169 6835652788207201 a007 Real Root Of -808*x^4-864*x^3+360*x^2+638*x-45 6835652792312423 a003 sin(Pi*11/45)*sin(Pi*35/79) 6835652803184971 m001 1/ln(GAMMA(1/6))^2*Riemann1stZero^2*Zeta(7) 6835652805924992 m001 1/ln(GAMMA(5/6))/Rabbit*sin(Pi/5) 6835652810304540 m001 RenyiParking^2*Bloch^2*ln(sqrt(3)) 6835652829493217 m005 (1/3*3^(1/2)+2/11)/(8/11*Catalan+4/9) 6835652842778782 m008 (3*Pi-2/5)/(2/5*Pi^3+4/5) 6835652857326452 a001 1597/521*843^(5/42) 6835652892043851 a007 Real Root Of 947*x^4-416*x^3-831*x^2-118*x-32 6835652899464678 a007 Real Root Of -968*x^4+845*x^3+520*x^2+896*x-914 6835652905984857 a007 Real Root Of -540*x^4-849*x^3-881*x^2+986*x-63 6835652915522986 m005 (3/5*gamma-1/6)/(1/5*Pi+2) 6835652923138096 a007 Real Root Of -474*x^4-705*x^3-519*x^2+780*x+654 6835652959113322 r001 53i'th iterates of 2*x^2-1 of 6835652972308275 a001 233/1364*1364^(23/45) 6835652983737565 a001 89/843*199^(26/33) 6835652986163300 h001 (5/7*exp(1)+1/8)/(7/9*exp(1)+10/11) 6835653018758210 m001 1/exp(FibonacciFactorial)*Cahen*BesselK(1,1)^2 6835653028834546 a007 Real Root Of -244*x^4+952*x^3+842*x^2+597*x+372 6835653035638918 a003 sin(Pi*7/90)-sin(Pi*35/93) 6835653057219613 m001 Shi(1)+Riemann2ndZero^Stephens 6835653067547260 r002 4th iterates of z^2 + 6835653076106812 r005 Im(z^2+c),c=29/74+19/62*I,n=10 6835653090780005 a007 Real Root Of -103*x^4+952*x^3+370*x^2+485*x-786 6835653091606953 a001 89/271443*29^(12/55) 6835653113151210 m001 (Bloch+Riemann1stZero)/(Pi^(1/2)-exp(Pi)) 6835653118074539 m001 exp(Trott)^2/KhintchineLevy/(2^(1/3)) 6835653122247294 r005 Im(z^2+c),c=1/64+11/17*I,n=18 6835653123988798 m001 arctan(1/3)^(cos(1/5*Pi)*PrimesInBinary) 6835653124611569 m001 (2^(1/3)+cos(1/5*Pi))/(-FeigenbaumMu+Landau) 6835653153516741 a007 Real Root Of 946*x^4-950*x^3-243*x^2-507*x-743 6835653158834027 r009 Im(z^3+c),c=-37/82+47/50*I,n=2 6835653194712430 r005 Im(z^2+c),c=-79/114+16/41*I,n=10 6835653200847098 r002 31th iterates of z^2 + 6835653217247001 a007 Real Root Of -500*x^4+994*x^3+948*x^2-293*x-451 6835653302528404 a007 Real Root Of 286*x^4+153*x^3-752*x^2-351*x+480 6835653307619142 a003 cos(Pi*1/13)-sin(Pi*43/120) 6835653323073739 m001 (CopelandErdos+Magata)/(Mills-Tribonacci) 6835653325691317 a007 Real Root Of 602*x^4+684*x^3+942*x^2-683*x-820 6835653356507534 r005 Re(z^2+c),c=-5/58+44/63*I,n=49 6835653364725781 a001 47/13*21^(28/29) 6835653376332624 r002 11th iterates of z^2 + 6835653385074701 l006 ln(1940/3843) 6835653386713985 m005 (1/3*Pi-1/11)/(1/2*Zeta(3)-2) 6835653431816068 a008 Real Root of x^4-2*x^3+6*x^2+118*x+77 6835653498264993 a007 Real Root Of -692*x^4+941*x^3+417*x^2+415*x-628 6835653515010023 r005 Re(z^2+c),c=-4/25+36/49*I,n=20 6835653515962229 m001 ln(TreeGrowth2nd)/Riemann2ndZero^2/exp(1) 6835653529600312 a007 Real Root Of 561*x^4-572*x^3+182*x^2-105*x-462 6835653532046180 m001 (Catalan-Shi(1))/(sin(1)+GAMMA(3/4)) 6835653538279752 a007 Real Root Of 115*x^4-142*x^3-18*x^2-490*x-397 6835653554269450 r005 Im(z^2+c),c=33/86+10/49*I,n=35 6835653573258371 a001 23725150497407/89*3^(6/7) 6835653583782835 r005 Re(z^2+c),c=-49/64+4/59*I,n=31 6835653589956309 m001 (Pi^(1/2)-ln(2^(1/2)+1))/Conway 6835653597869721 a007 Real Root Of -718*x^4+121*x^3-735*x^2+581*x+936 6835653640981730 h001 (1/2*exp(2)+10/11)/(8/9*exp(2)+1/6) 6835653645716497 m005 (1/2*gamma+2/7)/(4/5*3^(1/2)-6/11) 6835653647879409 m001 (OneNinth+ZetaP(3))/(Si(Pi)+BesselI(0,2)) 6835653667492864 m001 ln(2+3^(1/2))*Champernowne^(2^(1/2)) 6835653675342075 l006 ln(7336/7855) 6835653693981875 a007 Real Root Of -126*x^4+485*x^3-96*x^2+23*x+243 6835653707680092 m001 1/GAMMA(5/24)^2/GAMMA(19/24)^2/ln(sqrt(3)) 6835653734540896 m001 1/FeigenbaumB/exp(Si(Pi))*GAMMA(1/4) 6835653767284411 r005 Re(z^2+c),c=-18/19+8/35*I,n=16 6835653769593435 r009 Im(z^3+c),c=-9/17+20/49*I,n=22 6835653773596551 a007 Real Root Of 171*x^4-737*x^3-918*x^2-979*x-513 6835653787172832 a007 Real Root Of -561*x^4+727*x^3+773*x^2+439*x-771 6835653818775391 a002 14^(1/12)+19^(10/7) 6835653841840102 r005 Im(z^2+c),c=7/24+32/59*I,n=35 6835653852735893 a007 Real Root Of 220*x^4-600*x^3+113*x^2-682*x+557 6835653875195958 m001 exp(Kolakoski)*Bloch*cos(Pi/5)^2 6835653903141825 a001 987/1364*322^(7/18) 6835653905245790 a007 Real Root Of -538*x^4-547*x^3-864*x^2+229*x+503 6835653911885706 m004 -18+100*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 6835653931828485 a007 Real Root Of -139*x^4+467*x^3-122*x^2+147*x+337 6835653936936176 s002 sum(A210103[n]/((pi^n+1)/n),n=1..infinity) 6835653943484168 m006 (5/6*ln(Pi)+1/4)/(3/4/Pi-2) 6835653952159016 a001 610/521*1364^(11/45) 6835653953297813 r005 Im(z^2+c),c=31/94+35/62*I,n=7 6835653984375516 a003 sin(Pi*15/104)/sin(Pi*25/113) 6835653988870378 r005 Re(z^2+c),c=5/94+21/52*I,n=46 6835654028393824 a001 41/726103*89^(5/9) 6835654081211089 r009 Im(z^3+c),c=-11/54+45/49*I,n=36 6835654082727688 r002 10th iterates of z^2 + 6835654125790230 l006 ln(3513/6959) 6835654137306312 a007 Real Root Of -239*x^4+851*x^3-367*x^2+879*x-649 6835654137766971 r009 Re(z^3+c),c=-27/46+12/49*I,n=2 6835654138722215 m001 ln(GaussKuzminWirsing)/Champernowne*sin(1)^2 6835654148333661 m006 (1/5*Pi^2+5/6)/(1/6*exp(Pi)+1/4) 6835654157697194 a001 521*(1/2*5^(1/2)+1/2)^10*3^(1/17) 6835654190281900 m001 (Zeta(3)-Ei(1))/(Ei(1,1)+Kolakoski) 6835654203674746 m001 (5^(1/2)+1)/(-cos(1/5*Pi)+GlaisherKinkelin) 6835654204066475 a001 2/6765*46368^(31/43) 6835654207684930 m001 GAMMA(1/24)^Zeta(1,2)*ln(2+sqrt(3)) 6835654254176349 r002 5th iterates of z^2 + 6835654271718018 a007 Real Root Of -74*x^4+935*x^3-810*x^2-135*x+601 6835654277902511 m001 GAMMA(3/4)*(Psi(2,1/3)-TwinPrimes) 6835654288934791 h001 (3/10*exp(1)+3/5)/(2/11*exp(2)+8/11) 6835654319720521 a001 987/2207*322^(17/36) 6835654345924114 a007 Real Root Of 757*x^3+614*x^2+413*x-811 6835654375011546 m001 (Cahen+GaussAGM)/(MadelungNaCl+PrimesInBinary) 6835654375852428 a007 Real Root Of -266*x^4+726*x^3+421*x^2+301*x+299 6835654391379796 a007 Real Root Of -981*x^4+999*x^3-551*x^2+154*x+896 6835654402283855 r005 Re(z^2+c),c=-97/126+2/39*I,n=39 6835654408328187 l006 ln(5086/10075) 6835654424196610 m005 (1/3*Zeta(3)+1/12)/(1/8*5^(1/2)+3/7) 6835654428580851 a007 Real Root Of -647*x^4+596*x^3+269*x^2-430*x-88 6835654442060175 b008 64+ArcCosh[39] 6835654456132415 r005 Re(z^2+c),c=11/86+7/32*I,n=14 6835654466096105 m005 (1/2*3^(1/2)-4/5)/(47/132+3/11*5^(1/2)) 6835654466172305 m001 (cos(1)-Kolakoski)/(Pi+gamma) 6835654467945729 a003 cos(Pi*26/71)*cos(Pi*25/56) 6835654503900179 m004 -2-70*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 6835654511665837 m005 (1/2*5^(1/2)+4/11)/(257/198+7/18*5^(1/2)) 6835654516662058 r002 29th iterates of z^2 + 6835654551848779 a007 Real Root Of -269*x^4+85*x^3+798*x^2+535*x-707 6835654552975025 a007 Real Root Of -594*x^4+379*x^3-173*x^2+84*x+389 6835654557174092 m001 (GAMMA(23/24)+PrimesInBinary)/(2^(1/2)+ln(2)) 6835654564944983 a001 47/165580141*20365011074^(13/21) 6835654564957296 a001 47/317811*832040^(13/21) 6835654578548459 a007 Real Root Of -423*x^4-40*x^3-291*x^2-368*x-36 6835654596100278 q001 1227/1795 6835654600401044 b008 -1/50+Sqrt[47] 6835654600401044 b008 1/5-10*Sqrt[47] 6835654608042559 r002 3th iterates of z^2 + 6835654608436328 a001 233/1364*3571^(23/51) 6835654610397448 m001 Sierpinski*exp(Porter)/GAMMA(13/24) 6835654631410804 m005 (1/2*Zeta(3)+7/12)/(19/20+7/20*5^(1/2)) 6835654634130164 a001 2584/521*322^(1/18) 6835654643647945 r005 Re(z^2+c),c=-5/122+16/21*I,n=51 6835654651387740 m001 MasserGramainDelta/(Pi-Weierstrass) 6835654651554118 r005 Im(z^2+c),c=3/11+37/64*I,n=59 6835654662975270 r005 Im(z^2+c),c=-1/27+35/54*I,n=24 6835654669486831 m004 -3-Pi+5*Cot[Sqrt[5]*Pi] 6835654678422241 a007 Real Root Of -664*x^4+128*x^3+171*x^2+910*x+728 6835654684345940 m005 (1/3*5^(1/2)-1/9)/(1/8*gamma-1) 6835654685694096 s002 sum(A210103[n]/((pi^n-1)/n),n=1..infinity) 6835654704152625 a007 Real Root Of -410*x^4-45*x^3-625*x^2+364*x+616 6835654706899573 a005 (1/cos(5/132*Pi))^1893 6835654726132957 a001 10946/2207*123^(1/15) 6835654734655105 a001 610/521*3571^(11/51) 6835654745040325 r005 Im(z^2+c),c=-3/31+43/62*I,n=4 6835654761733215 a007 Real Root Of -351*x^4+170*x^3+310*x^2+798*x-668 6835654767447643 a007 Real Root Of -588*x^4+733*x^3-454*x^2+258*x+751 6835654771510151 m001 (BesselJ(1,1)-Conway)/(KhinchinLevy+ZetaP(4)) 6835654796566439 r001 49i'th iterates of 2*x^2-1 of 6835654818624108 a001 233/1364*9349^(23/57) 6835654830405947 a007 Real Root Of -12*x^4-833*x^3-861*x^2+600*x+865 6835654835179696 a001 610/521*9349^(11/57) 6835654849626705 a001 233/1364*64079^(1/3) 6835654850181621 a001 233/1364*4106118243^(1/6) 6835654850272408 a001 610/521*7881196^(1/9) 6835654850272420 a001 610/521*312119004989^(1/15) 6835654850272420 a001 610/521*1568397607^(1/12) 6835654850998815 a001 610/521*39603^(1/6) 6835654853598030 s002 sum(A191771[n]/(n^2*2^n+1),n=1..infinity) 6835654855749082 a001 610/521*15127^(11/60) 6835654861632824 a001 233/1364*15127^(23/60) 6835654862178935 a008 Real Root of x^4-2*x^3-2*x^2-176*x-248 6835654888630625 r005 Re(z^2+c),c=-19/26+25/127*I,n=3 6835654891980865 a001 610/521*5778^(11/54) 6835654896879386 r005 Im(z^2+c),c=1/14+11/12*I,n=3 6835654919160726 m001 1/LambertW(1)*GAMMA(11/24)*ln(Zeta(9)) 6835654920972541 a007 Real Root Of -569*x^4+206*x^3-389*x^2+170*x+488 6835654937390188 a001 233/1364*5778^(23/54) 6835654961040144 p001 sum((-1)^n/(359*n+145)/(32^n),n=0..infinity) 6835654978575302 m001 (Totient-Trott)/(GlaisherKinkelin+Robbin) 6835655002454414 r005 Im(z^2+c),c=11/78+29/49*I,n=6 6835655023932292 m005 (3*Catalan-3/5)/(4*gamma+5/6) 6835655039323610 l006 ln(1573/3116) 6835655040896281 r005 Re(z^2+c),c=-21/52+37/63*I,n=46 6835655043840441 m001 (Pi+Ei(1))/(LandauRamanujan-Trott2nd) 6835655074217060 m005 (-1/2+1/6*5^(1/2))/(8/9*5^(1/2)-1/8) 6835655103483772 m001 1/Riemann2ndZero*exp(MinimumGamma)*gamma^2 6835655147094187 a007 Real Root Of 144*x^4+947*x^3-356*x^2-695*x-41 6835655153286652 r002 26th iterates of z^2 + 6835655171880574 a001 610/521*2207^(11/48) 6835655179051684 m001 GAMMA(1/4)*exp(Sierpinski)^2/cos(Pi/12)^2 6835655179583675 m001 ln(Magata)^2/FeigenbaumDelta^2/Zeta(7) 6835655247813411 r005 Im(z^2+c),c=-31/25+3/56*I,n=3 6835655263693387 a007 Real Root Of -523*x^4+290*x^3-393*x^2+289*x+588 6835655279504810 r005 Re(z^2+c),c=-41/64+9/25*I,n=49 6835655284704773 r005 Im(z^2+c),c=-43/64+19/49*I,n=13 6835655334744550 m001 (MadelungNaCl+Mills)/(Grothendieck+Khinchin) 6835655337403170 p001 sum((-1)^n/(437*n+146)/(125^n),n=0..infinity) 6835655347070224 a007 Real Root Of -898*x^4+382*x^3-824*x^2+73*x+753 6835655351896903 m001 1/cos(1)^2*Sierpinski/exp(sin(Pi/12)) 6835655364240819 r002 4th iterates of z^2 + 6835655379535403 a007 Real Root Of 927*x^4-508*x^3+465*x^2+844*x-5 6835655381364279 m001 (ZetaQ(2)-ZetaQ(4))/(Landau-Mills) 6835655383251696 a007 Real Root Of 414*x^4+955*x^3+792*x^2-586*x-556 6835655385265088 a007 Real Root Of -411*x^4+309*x^3+123*x^2+428*x-359 6835655414613068 m001 BesselK(0,1)/(sin(1)^FransenRobinson) 6835655438063955 a007 Real Root Of 634*x^4-262*x^3+203*x^2-22*x-332 6835655461278339 a007 Real Root Of -765*x^4+433*x^3-839*x^2-258*x+521 6835655478857106 a003 sin(Pi*2/101)-sin(Pi*1/24) 6835655492483730 r008 a(0)=6,K{-n^6,-52+27*n-33*n^2+57*n^3} 6835655522635052 a001 233/1364*2207^(23/48) 6835655558034104 r004 Im(z^2+c),c=3/26-1/6*I,z(0)=exp(5/8*I*Pi),n=3 6835655560942142 p001 sum(1/(155*n+151)/(16^n),n=0..infinity) 6835655576620354 a008 Real Root of x^4-2*x^3-8*x^2-166*x-36 6835655587481442 m001 (Conway*Niven-Shi(1))/Niven 6835655606956022 a001 843/832040*10946^(24/53) 6835655673960434 r002 12th iterates of z^2 + 6835655694527487 m001 (3^(1/3)-KhinchinHarmonic)/(ZetaP(2)-ZetaQ(3)) 6835655697449766 p004 log(28979/14629) 6835655702112571 r005 Re(z^2+c),c=-95/122+1/30*I,n=31 6835655711792441 a007 Real Root Of 900*x^4-237*x^3+643*x^2+137*x-479 6835655727263919 a001 233/2207*843^(13/21) 6835655762435164 r002 53th iterates of z^2 + 6835655775131602 m001 LaplaceLimit/CopelandErdos/exp(sqrt(2)) 6835655776741464 l006 ln(4352/8621) 6835655806929470 m001 (Chi(1)+Zeta(3))/(ln(5)+exp(1/Pi)) 6835655809432021 r002 8th iterates of z^2 + 6835655812233860 m005 (1/2*exp(1)+3)/(7/12*5^(1/2)-2/3) 6835655816297013 m001 (Bloch-Si(Pi))/(FeigenbaumB+KhinchinLevy) 6835655838622369 a007 Real Root Of -590*x^4-667*x^3+64*x^2+777*x+417 6835655840503642 m001 1/cos(1)*GlaisherKinkelin^2*exp(cos(Pi/5)) 6835655866434851 m001 BesselK(1,1)/exp(TreeGrowth2nd)/LambertW(1) 6835655897839471 a007 Real Root Of 621*x^4-505*x^3+398*x^2-745*x+349 6835655903970713 m001 (Salem+TwinPrimes)/(Si(Pi)+GaussAGM) 6835655914627462 r009 Re(z^3+c),c=-9/86+31/63*I,n=24 6835655915017886 a001 28657/5778*123^(1/15) 6835655924509102 r005 Re(z^2+c),c=-5/52+44/57*I,n=23 6835655957642915 m001 Rabbit*StronglyCareFree^ZetaR(2) 6835655970928731 r009 Re(z^3+c),c=-65/122+1/59*I,n=2 6835655975860042 a007 Real Root Of 161*x^4-676*x^3-129*x^2-392*x+509 6835655980947478 p004 log(33757/17041) 6835655990396768 a007 Real Root Of 86*x^4+684*x^3+756*x^2+660*x-108 6835655991770670 h001 (9/11*exp(2)+3/7)/(1/11*exp(1)+7/10) 6835655992367564 a007 Real Root Of 940*x^4+169*x^3+554*x^2-427*x-702 6835655997545367 r002 38th iterates of z^2 + 6835656002399034 a007 Real Root Of -x^4-685*x^3-980*x^2+345*x-760 6835656002437180 m001 1/exp(LambertW(1))^2/Magata/sinh(1)^2 6835656019911019 a007 Real Root Of -411*x^4+787*x^3+394*x^2-237*x-5 6835656026097004 m001 1/exp(Sierpinski)^2*Conway/Trott 6835656052313996 m001 (2^(1/3)-GAMMA(2/3))/(ln(gamma)+Tetranacci) 6835656065288534 r002 2th iterates of z^2 + 6835656070955889 a003 sin(Pi*17/74)/sin(Pi*48/115) 6835656084104002 m001 (FeigenbaumB-Gompertz)/(MadelungNaCl+Niven) 6835656088473895 a001 75025/15127*123^(1/15) 6835656113780786 a001 196418/39603*123^(1/15) 6835656117473012 a001 514229/103682*123^(1/15) 6835656118011700 a001 1346269/271443*123^(1/15) 6835656118090294 a001 3524578/710647*123^(1/15) 6835656118101760 a001 9227465/1860498*123^(1/15) 6835656118103433 a001 24157817/4870847*123^(1/15) 6835656118103678 a001 63245986/12752043*123^(1/15) 6835656118103713 a001 165580141/33385282*123^(1/15) 6835656118103718 a001 433494437/87403803*123^(1/15) 6835656118103719 a001 1134903170/228826127*123^(1/15) 6835656118103719 a001 2971215073/599074578*123^(1/15) 6835656118103719 a001 7778742049/1568397607*123^(1/15) 6835656118103719 a001 20365011074/4106118243*123^(1/15) 6835656118103719 a001 53316291173/10749957122*123^(1/15) 6835656118103719 a001 139583862445/28143753123*123^(1/15) 6835656118103719 a001 365435296162/73681302247*123^(1/15) 6835656118103719 a001 956722026041/192900153618*123^(1/15) 6835656118103719 a001 2504730781961/505019158607*123^(1/15) 6835656118103719 a001 10610209857723/2139295485799*123^(1/15) 6835656118103719 a001 4052739537881/817138163596*123^(1/15) 6835656118103719 a001 140728068720/28374454999*123^(1/15) 6835656118103719 a001 591286729879/119218851371*123^(1/15) 6835656118103719 a001 225851433717/45537549124*123^(1/15) 6835656118103719 a001 86267571272/17393796001*123^(1/15) 6835656118103719 a001 32951280099/6643838879*123^(1/15) 6835656118103719 a001 1144206275/230701876*123^(1/15) 6835656118103719 a001 4807526976/969323029*123^(1/15) 6835656118103719 a001 1836311903/370248451*123^(1/15) 6835656118103720 a001 701408733/141422324*123^(1/15) 6835656118103722 a001 267914296/54018521*123^(1/15) 6835656118103735 a001 9303105/1875749*123^(1/15) 6835656118103828 a001 39088169/7881196*123^(1/15) 6835656118104467 a001 14930352/3010349*123^(1/15) 6835656118108847 a001 5702887/1149851*123^(1/15) 6835656118138867 a001 2178309/439204*123^(1/15) 6835656118344628 a001 75640/15251*123^(1/15) 6835656119754933 a001 317811/64079*123^(1/15) 6835656129421305 a001 121393/24476*123^(1/15) 6835656155442545 a007 Real Root Of 254*x^4-723*x^3-76*x^2-139*x+306 6835656166314998 a007 Real Root Of 708*x^4-641*x^3+919*x^2+497*x-449 6835656178982936 p003 LerchPhi(1/3,3,47/192) 6835656194142766 l006 ln(2779/5505) 6835656195636815 a007 Real Root Of 873*x^4-921*x^3-34*x^2+171*x-352 6835656195675608 a001 46368/9349*123^(1/15) 6835656196832698 m001 ZetaP(2)*(ln(2+3^(1/2))+DuboisRaymond) 6835656218780840 m005 (1/2*Catalan+1/11)/(5/9*Catalan-3/7) 6835656244825164 a007 Real Root Of 984*x^4-243*x^3+72*x^2-724*x-821 6835656252469851 m005 (1/3*Zeta(3)-1/5)/(1/9*gamma-3) 6835656253964974 r009 Re(z^3+c),c=-107/126+21/38*I,n=2 6835656261072015 m001 (Psi(2,1/3)+GAMMA(13/24))/(-Thue+ZetaP(4)) 6835656265080667 a007 Real Root Of 777*x^4-286*x^3+336*x^2-237*x-580 6835656275152405 m008 (5*Pi+2/3)/(1/4*Pi^6-4/5) 6835656305294083 r002 8th iterates of z^2 + 6835656325322106 m001 1/GAMMA(3/4)/Cahen*exp(Zeta(1/2))^2 6835656328274678 m001 (FeigenbaumD-Grothendieck)/(ln(3)+Ei(1,1)) 6835656346571478 a007 Real Root Of -336*x^4+624*x^3+321*x^2+477*x-602 6835656349205571 m001 BesselJ(0,1)/(Psi(1,1/3)+ln(3)) 6835656355585768 m001 (Otter+Sierpinski)/(Bloch-GlaisherKinkelin) 6835656454398927 a007 Real Root Of -480*x^4-907*x^3-980*x^2-218*x+124 6835656474166213 a007 Real Root Of 81*x^4-27*x^3-348*x^2-925*x-496 6835656476081695 b008 (-2+E)*Sqrt[E]*EulerGamma 6835656482128308 m005 (1/2*5^(1/2)+4)/(11/12*Catalan-1/11) 6835656494937499 m001 (FransenRobinson-KomornikLoreti)/(Rabbit-Thue) 6835656509174699 a007 Real Root Of -635*x^4+434*x^3+500*x^2+457*x-546 6835656521100154 m006 (3/5*exp(2*Pi)-1/6)/(2/5*Pi^2+3/4) 6835656551966567 a007 Real Root Of 113*x^4-188*x^3+913*x^2+631*x-80 6835656609328363 r005 Re(z^2+c),c=-5/4+87/229*I,n=19 6835656630265759 r005 Im(z^2+c),c=-15/26+81/124*I,n=21 6835656638047348 l006 ln(4297/4601) 6835656641030351 p001 sum((-1)^n/(391*n+211)/n/(24^n),n=1..infinity) 6835656649789390 a001 17711/3571*123^(1/15) 6835656649984770 l006 ln(3985/7894) 6835656651228103 a007 Real Root Of 111*x^4+895*x^3+963*x^2+152*x-442 6835656675719593 a001 377/1364*322^(5/9) 6835656695340439 a007 Real Root Of 841*x^4+523*x^3+883*x^2-89*x-490 6835656699436504 a003 1/2+cos(2/15*Pi)-2*cos(4/9*Pi)-cos(3/8*Pi) 6835656705038981 m001 (HardyLittlewoodC5+Porter)/(3^(1/3)+Conway) 6835656716981949 a001 1292/2889*322^(17/36) 6835656736482615 r005 Re(z^2+c),c=-65/114+27/58*I,n=64 6835656756139746 r002 4th iterates of z^2 + 6835656758892946 a007 Real Root Of -x^4-683*x^3+387*x^2+220*x-718 6835656771157945 a007 Real Root Of -286*x^4+951*x^3-199*x^2+364*x+708 6835656774409767 m001 BesselI(1,2)*(ReciprocalFibonacci-Zeta(1,2)) 6835656800854179 r005 Im(z^2+c),c=-29/26+1/121*I,n=35 6835656812218211 m005 (5/6+1/4*5^(1/2))/(-13/24+1/3*5^(1/2)) 6835656830286528 m005 (1/3*5^(1/2)+1/9)/(9/10*Catalan+3/7) 6835656840663825 a007 Real Root Of -795*x^4+469*x^3-325*x^2+203*x+614 6835656856921574 r008 a(0)=7,K{-n^6,-1+8*n^3+5*n^2-5*n} 6835656869133410 a007 Real Root Of -761*x^4-345*x^3-258*x^2+920*x+64 6835656884639322 a007 Real Root Of 848*x^4-423*x^3+234*x^2-24*x-446 6835656899194671 r005 Re(z^2+c),c=1/44+19/54*I,n=18 6835656902643906 a007 Real Root Of -147*x^4+691*x^3+298*x^2-112*x+37 6835656921503818 g007 Psi(2,7/8)+Psi(2,4/7)-Psi(2,7/12)-Psi(2,1/7) 6835656927969071 r001 18i'th iterates of 2*x^2-1 of 6835656949725390 q001 1618/2367 6835656975066717 m005 (1/3*Catalan-1/4)/(1/6*Pi+2/7) 6835656984020001 r005 Re(z^2+c),c=5/94+21/52*I,n=45 6835656987325077 a007 Real Root Of 350*x^4+546*x^3+937*x^2-660*x-791 6835656987988387 a007 Real Root Of -596*x^4+997*x^3+279*x^2-80*x-264 6835657017132170 m009 (4/5*Psi(1,1/3)-1/2)/(2*Psi(1,3/4)+6) 6835657037521915 a003 sin(Pi*16/85)/cos(Pi*11/56) 6835657050487654 r009 Im(z^3+c),c=-5/26+45/46*I,n=64 6835657052666342 m001 (-Ei(1,1)+BesselK(1,1))/(Chi(1)-Psi(2,1/3)) 6835657055699734 p001 sum(1/(311*n+282)/n/(25^n),n=1..infinity) 6835657066737748 a001 6765/15127*322^(17/36) 6835657067629291 h001 (3/11*exp(1)+1/10)/(1/6*exp(1)+7/9) 6835657092298457 a001 377/2207*322^(23/36) 6835657099839850 a008 Real Root of x^3-174*x-870 6835657100800314 m001 (GaussAGM+Thue)/(Chi(1)+GAMMA(13/24)) 6835657117766433 a001 17711/39603*322^(17/36) 6835657125211418 a001 23184/51841*322^(17/36) 6835657126297627 a001 121393/271443*322^(17/36) 6835657126456102 a001 317811/710647*322^(17/36) 6835657126479224 a001 416020/930249*322^(17/36) 6835657126482597 a001 2178309/4870847*322^(17/36) 6835657126484682 a001 1346269/3010349*322^(17/36) 6835657126493513 a001 514229/1149851*322^(17/36) 6835657126554046 a001 98209/219602*322^(17/36) 6835657126968940 a001 75025/167761*322^(17/36) 6835657129812672 a001 28657/64079*322^(17/36) 6835657149303895 a001 5473/12238*322^(17/36) 6835657149834119 p004 log(15061/7603) 6835657161702935 a003 sin(Pi*8/103)-sin(Pi*44/117) 6835657180162625 m009 (1/10*Pi^2+2/3)/(1/5*Psi(1,1/3)+2/5) 6835657201632427 m001 TravellingSalesman^(gamma*ReciprocalLucas) 6835657203677982 a007 Real Root Of -736*x^4-102*x^3-326*x^2-539*x-88 6835657224455167 r005 Re(z^2+c),c=-2/3+59/189*I,n=10 6835657234487792 r008 a(0)=7,K{-n^6,-7+9*n^3-n^2+6*n} 6835657235745903 m005 (1/12+1/6*5^(1/2))/(5*2^(1/2)-2/5) 6835657241513606 a007 Real Root Of 107*x^4+422*x^3+579*x^2-999*x-842 6835657263685148 a007 Real Root Of 706*x^4-58*x^3+859*x^2-155*x-680 6835657272217246 h001 (-6*exp(3)+10)/(-3*exp(2)+6) 6835657274767440 a007 Real Root Of -163*x^4+419*x^3-696*x^2+574*x+887 6835657281666360 a007 Real Root Of -688*x^4+317*x^3+670*x^2-85*x-206 6835657282898729 a001 4181/9349*322^(17/36) 6835657296530763 m005 (1/2*Catalan-4/5)/(1/6*Zeta(3)+3/10) 6835657299194166 v002 sum(1/(3^n+(17*n^2-5*n+8)),n=1..infinity) 6835657363361067 a007 Real Root Of 253*x^4-630*x^3-163*x^2-791*x-721 6835657366088118 r001 16i'th iterates of 2*x^2-1 of 6835657369511404 a001 610/521*843^(11/42) 6835657371869860 m001 DuboisRaymond^2/exp(Cahen)^2/GAMMA(7/12) 6835657372231792 m001 (ln(3)+Riemann2ndZero)/(5^(1/2)+1) 6835657387116930 m006 (4/5*ln(Pi)+2/5)/(5/Pi+1/3) 6835657391963682 m001 (Pi+ln(Pi))/(HeathBrownMoroz+Kac) 6835657393688134 m004 12+6*E^(Sqrt[5]*Pi)+25*Pi 6835657394142714 r002 18th iterates of z^2 + 6835657401332937 m001 BesselI(0,2)/Porter*TreeGrowth2nd 6835657403678633 m001 ln(5)/(FeigenbaumAlpha-ZetaR(2)) 6835657438862735 a001 47/144*121393^(21/46) 6835657458903400 m001 (gamma(3)+Sarnak)^KhinchinLevy 6835657463806061 r002 4th iterates of z^2 + 6835657472303866 a007 Real Root Of 145*x^4+864*x^3-878*x^2-80*x-140 6835657472673675 m001 (Grothendieck+Weierstrass)/(3^(1/3)-Pi^(1/2)) 6835657473466700 r005 Re(z^2+c),c=-7/10+74/195*I,n=22 6835657477178271 s002 sum(A118314[n]/(n*exp(n)-1),n=1..infinity) 6835657487114965 m001 Bloch*(LambertW(1)+QuadraticClass) 6835657494100471 s002 sum(A002033[n]/(n*exp(n)-1),n=1..infinity) 6835657501549112 r002 38th iterates of z^2 + 6835657502747127 m001 (sin(1)*GAMMA(19/24)-ThueMorse)/sin(1) 6835657502869362 g006 Psi(1,5/6)+Psi(1,1/3)-Psi(1,10/11)-Psi(1,1/4) 6835657534313905 m003 1/6+Sqrt[5]/4-ProductLog[1/2+Sqrt[5]/2]/18 6835657557365766 a007 Real Root Of 72*x^4+365*x^3-826*x^2+268*x-190 6835657566854392 m005 (1/2*3^(1/2)+3/5)/(5/11*exp(1)+10/11) 6835657580725425 m001 PisotVijayaraghavan^Psi(1,1/3)/Riemann3rdZero 6835657593501283 r005 Im(z^2+c),c=19/90+11/21*I,n=29 6835657625645209 a007 Real Root Of -604*x^4+950*x^3-865*x^2+188*x+968 6835657632592524 m005 (1/2*2^(1/2)+1/9)/(6/11*exp(1)-2/7) 6835657700386787 l006 ln(1206/2389) 6835657714327303 b008 Gudermannian[ArcSec[E/2]] 6835657729070466 r009 Im(z^3+c),c=-27/62+17/32*I,n=2 6835657768649021 m005 (1/2*Zeta(3)-1/4)/(-13/40+3/8*5^(1/2)) 6835657846755608 m001 (OneNinth-ReciprocalLucas)/(Sarnak-ZetaP(2)) 6835657848925213 a007 Real Root Of -955*x^4+289*x^3+58*x^2+865*x+865 6835657856186753 m005 (1/2*2^(1/2)+1/4)/(9/11*Zeta(3)+5/12) 6835657884708425 r002 44th iterates of z^2 + 6835657884997641 a007 Real Root Of -371*x^4-30*x^3-40*x^2+171*x+207 6835657889057417 a007 Real Root Of 104*x^4+552*x^3-977*x^2+806*x+405 6835657903461375 m001 exp(HardHexagonsEntropy)^2*Cahen^2/Pi^2 6835657911307641 r005 Re(z^2+c),c=-31/102+15/22*I,n=5 6835657937421855 a007 Real Root Of -690*x^4+986*x^3-994*x^2-180*x+807 6835657967559363 a007 Real Root Of 469*x^4+162*x^3+887*x^2+717*x+25 6835657967582328 m005 (2/5*2^(1/2)+5)/(2^(1/2)-3/5) 6835657981886909 a007 Real Root Of -778*x^4+335*x^3-419*x^2+514*x+824 6835658016767175 l003 KelvinKei(0,51/110) 6835658043054733 a007 Real Root Of 95*x^4+465*x^3+562*x^2-129*x-223 6835658047653828 a001 832040/2207*18^(7/34) 6835658065878769 a007 Real Root Of -57*x^4+248*x^3-737*x^2-199*x+300 6835658121438218 m001 (ln(2^(1/2)+1)+Artin)/(Salem+TwinPrimes) 6835658143328522 a007 Real Root Of -235*x^4+884*x^3+453*x^2-279*x-252 6835658165971602 a007 Real Root Of 91*x^4+555*x^3-523*x^2-448*x-39 6835658175343435 l003 KelvinBei(0,57/109) 6835658198571412 a001 1597/3571*322^(17/36) 6835658205780092 m005 (1/3*exp(1)+2/11)/(-5/8+5/24*5^(1/2)) 6835658231161947 r005 Im(z^2+c),c=-39/58+24/53*I,n=30 6835658249997848 r005 Im(z^2+c),c=-71/126+17/38*I,n=64 6835658270255819 m005 (1/2*gamma-1/8)/(-2/15+1/6*5^(1/2)) 6835658295411545 a007 Real Root Of -580*x^4+293*x^3+121*x^2+729*x+662 6835658298870320 a003 sin(Pi*14/73)/sin(Pi*14/45) 6835658300025291 a001 233/5778*843^(16/21) 6835658353754735 a001 233/3571*843^(29/42) 6835658363560929 m001 (HardHexagonsEntropy-Mills)/Conway 6835658386801993 a007 Real Root Of 758*x^4-931*x^3-651*x^2-394*x-428 6835658387206532 q001 2009/2939 6835658387518787 m001 (Pi^(1/2)-Shi(1))/(FellerTornier+Sarnak) 6835658408797724 a007 Real Root Of 441*x^4+2*x^3+687*x^2-119*x-498 6835658422718849 r005 Re(z^2+c),c=-51/86+11/25*I,n=12 6835658457651049 m001 (-FeigenbaumD+ZetaQ(3))/(Artin-BesselJ(0,1)) 6835658464378254 r005 Im(z^2+c),c=17/52+11/29*I,n=26 6835658465315406 m001 sin(1)*GAMMA(7/12)*ln(sin(Pi/5)) 6835658471985282 h001 (-5*exp(2)+10)/(-7*exp(4)-12) 6835658476655153 m002 (Pi^5*Coth[Pi])/4-Pi^4*Csch[Pi] 6835658476656208 a007 Real Root Of 286*x^4-352*x^3-809*x^2-493*x+765 6835658513078779 m001 (1+Paris*ZetaR(2))/ZetaR(2) 6835658561694520 a007 Real Root Of 330*x^4+98*x^3+77*x^2-884*x-681 6835658577714876 r009 Im(z^3+c),c=-61/86+26/59*I,n=3 6835658592831276 r005 Re(z^2+c),c=-3/4+29/82*I,n=3 6835658611513630 r009 Re(z^3+c),c=-1/34+47/57*I,n=38 6835658639550266 l006 ln(4457/8829) 6835658645793157 m001 Psi(2,1/3)*GAMMA(3/4)-cos(1/5*Pi) 6835658656160557 b008 -1/2+(1+E)/Pi 6835658666103452 m003 -5+(3*Sqrt[5])/64+3*Tan[1/2+Sqrt[5]/2] 6835658674441179 a007 Real Root Of -612*x^4+552*x^3-682*x^2-450*x+321 6835658700536229 a007 Real Root Of -375*x^4-241*x^3-449*x^2+432*x+510 6835658718612098 a003 cos(Pi*1/61)-cos(Pi*39/98) 6835658754694546 r004 Re(z^2+c),c=-15/14+1/17*I,z(0)=-1,n=5 6835658780313505 m001 (2^(1/2)+BesselK(0,1))/(FeigenbaumD+ZetaQ(4)) 6835658858718339 r002 4th iterates of z^2 + 6835658859627601 a007 Real Root Of 144*x^4-170*x^3-452*x^2-95*x+299 6835658882308670 r002 17th iterates of z^2 + 6835658909554569 m005 (1/3*gamma-3/7)/(-5/8+1/8*5^(1/2)) 6835658923601982 a007 Real Root Of -556*x^4-893*x^3-710*x^2+695*x+643 6835658944347850 a007 Real Root Of 933*x^4-544*x^3-110*x^2-16*x-337 6835658979688287 m001 (3^(1/2)+BesselJ(0,1))/(ArtinRank2+Otter) 6835658987944939 l006 ln(3251/6440) 6835659000547052 a007 Real Root Of 12*x^4-773*x^3-111*x^2+374*x+58 6835659006264330 r005 Im(z^2+c),c=27/70+20/53*I,n=9 6835659006899839 m001 (Catalan+LaplaceLimit)/(-MasserGramain+Otter) 6835659015378466 a007 Real Root Of -891*x^4-660*x^3-290*x^2+854*x+703 6835659017780035 r005 Im(z^2+c),c=-35/52+29/48*I,n=5 6835659029900543 r005 Re(z^2+c),c=1/122+35/41*I,n=6 6835659071140746 m001 (sin(1)+gamma(1))/(GAMMA(23/24)+Paris) 6835659167162661 a007 Real Root Of -780*x^4+10*x^3+313*x^2+538*x+395 6835659186668826 m001 (ln(2)/ln(10)+exp(1))/(BesselJ(1,1)+ZetaQ(4)) 6835659205364815 a007 Real Root Of -987*x^4+792*x^3+403*x^2+326*x+503 6835659208798321 m001 (-Kolakoski+Weierstrass)/(cos(1)+gamma(1)) 6835659209923781 m004 -1+(150*Sqrt[5])/Pi+5*Pi+Cosh[Sqrt[5]*Pi] 6835659227818923 a007 Real Root Of -548*x^4+630*x^3-891*x^2-12*x+729 6835659243603574 r002 8th iterates of z^2 + 6835659246286637 a001 726103/1926*18^(7/34) 6835659270049199 a001 233/9349*843^(5/6) 6835659300372546 r009 Im(z^3+c),c=-25/74+32/47*I,n=26 6835659310314029 s002 sum(A225250[n]/(2^n+1),n=1..infinity) 6835659356308743 q001 24/3511 6835659356308743 q001 6/87775 6835659356575548 p004 log(25033/12637) 6835659366621926 m001 1/Riemann1stZero^2*exp(Cahen)*GAMMA(1/3)^2 6835659367602321 a007 Real Root Of 84*x^4+129*x^3+952*x^2-771*x-949 6835659380484806 a001 2/233*1597^(48/53) 6835659391109654 m005 (-5/42+1/6*5^(1/2))/(3/10*exp(1)-4/9) 6835659395910908 a007 Real Root Of -496*x^4+268*x^3-232*x^2+219*x+452 6835659407098601 a007 Real Root Of 628*x^4-750*x^3+111*x^2-501*x-771 6835659410278836 h001 (-8*exp(2/3)-4)/(-exp(-2)+3) 6835659443703312 a001 144/199*199^(14/33) 6835659444540914 r005 Im(z^2+c),c=17/78+55/59*I,n=3 6835659465796720 a007 Real Root Of -90*x^4-100*x^3-275*x^2+974*x+782 6835659473352420 r008 a(0)=7,K{-n^6,12-10*n^3+3*n} 6835659482432686 h001 (5/9*exp(2)+5/9)/(8/9*exp(2)+1/4) 6835659514697787 m001 (cos(Pi/5)+Ei(1))^GAMMA(11/24) 6835659550248217 r009 Re(z^3+c),c=-67/118+30/47*I,n=25 6835659577359833 m001 1/TreeGrowth2nd^2/ln(Khintchine)/BesselJ(0,1) 6835659659412356 a005 (1/cos(4/173*Pi))^1600 6835659690503862 m005 (1/5*2^(1/2)-5/6)/(1/3*Catalan+1/2) 6835659719945337 a003 sin(Pi*17/72)/sin(Pi*51/113) 6835659725388831 r002 4th iterates of z^2 + 6835659747257884 l006 ln(2045/4051) 6835659762333194 a001 615/124*123^(1/15) 6835659791342844 a007 Real Root Of 108*x^4-899*x^3+662*x^2-490*x-955 6835659806772347 a001 3/55*196418^(1/54) 6835659846238864 a007 Real Root Of -96*x^4+706*x^3+199*x^2+896*x-910 6835659849034194 a001 233/15127*843^(19/21) 6835659865658935 a005 (1/cos(7/157*Pi))^1599 6835659867871524 r005 Re(z^2+c),c=-31/48+8/23*I,n=40 6835659894162366 m007 (-5/6*gamma-5/2*ln(2)-5/12*Pi+2)/(-gamma+4/5) 6835659897801063 r005 Re(z^2+c),c=-53/86+21/53*I,n=29 6835659957009753 m001 Bloch^(Robbin/Mills) 6835659964992642 a007 Real Root Of -73*x^4-478*x^3+24*x^2-681*x+932 6835659987082662 a001 1346269/3571*18^(7/34) 6835659987825819 m001 1/ln(FeigenbaumD)^2/KhintchineLevy^2*Zeta(1,2) 6835659995664443 m004 -10+25*Pi-Tan[Sqrt[5]*Pi]/5 6835660000945243 a007 Real Root Of -710*x^4+237*x^3-253*x^2+142*x+446 6835660008091579 a007 Real Root Of 136*x^4-708*x^3+413*x^2-524*x-807 6835660010346356 a007 Real Root Of 387*x^4-322*x^3-617*x^2-198*x+442 6835660024682881 m001 (Pi+GAMMA(13/24))/(CareFree-OrthogonalArrays) 6835660028430305 s002 sum(A030069[n]/(n*exp(n)-1),n=1..infinity) 6835660044812949 m001 HardyLittlewoodC5/LambertW(1)/Shi(1) 6835660050818042 a007 Real Root Of 89*x^4+526*x^3-613*x^2-197*x+986 6835660053881949 q001 2791/4083 6835660056742832 a001 24476/55*196418^(13/58) 6835660059086967 r005 Im(z^2+c),c=-131/122+5/64*I,n=12 6835660059736358 r005 Re(z^2+c),c=-17/22+3/70*I,n=15 6835660070456495 m001 GAMMA(11/12)*(2/3-BesselK(1,1)) 6835660108246510 m001 ThueMorse*(FeigenbaumD-GAMMA(23/24)) 6835660117682374 a001 233/1364*843^(23/42) 6835660126971234 r005 Re(z^2+c),c=-31/98+50/63*I,n=7 6835660131524751 a007 Real Root Of 854*x^4+419*x^3+170*x^2-667*x-588 6835660146808639 r005 Re(z^2+c),c=33/122+24/53*I,n=11 6835660155785174 m001 (Ei(1)-arctan(1/3))/(GaussAGM+Porter) 6835660166814491 a007 Real Root Of 94*x^4+580*x^3-485*x^2-275*x+803 6835660204183476 m001 sqrt(1+sqrt(3))^2/Artin*exp(sqrt(5)) 6835660204293705 m001 (CareFree-gamma)/(-FeigenbaumB+MasserGramain) 6835660211897541 m001 (Ei(1,1)+Kolakoski)/(ln(2)-sin(1)) 6835660220605055 m001 (QuadraticClass+Robbin)/(Zeta(3)+GAMMA(11/12)) 6835660226337077 m001 (-Zeta(1,2)+MasserGramain)/(1+ln(2+3^(1/2))) 6835660229026281 m001 1/Salem^2/exp(FeigenbaumDelta)*Zeta(7) 6835660233622261 r002 48th iterates of z^2 + 6835660248074729 l006 ln(4929/9764) 6835660293702937 m005 (7/6+1/4*5^(1/2))/(1/10*2^(1/2)-1/6) 6835660315793309 a007 Real Root Of -56*x^4-479*x^3-669*x^2-139*x-418 6835660339018420 a007 Real Root Of -382*x^4+519*x^3+463*x^2+148*x+134 6835660339388735 r005 Im(z^2+c),c=-61/114+31/50*I,n=13 6835660347217355 a007 Real Root Of -163*x^4-992*x^3+976*x^2+940*x-144 6835660359142305 a007 Real Root Of 974*x^4-698*x^3+122*x^2+608*x-77 6835660375784222 a007 Real Root Of 579*x^4-825*x^3+237*x^2+927*x+133 6835660379755479 r009 Im(z^3+c),c=-13/34+1/60*I,n=16 6835660383454281 r009 Re(z^3+c),c=-9/86+31/63*I,n=19 6835660421003587 a007 Real Root Of -386*x^4+707*x^3-897*x^2-132*x+639 6835660475353074 a001 11/317811*2^(54/55) 6835660480039231 a007 Real Root Of -149*x^4-946*x^3+625*x^2+835*x-335 6835660483540597 a001 39603/610*144^(9/19) 6835660505874259 m001 BesselI(1,1)^(2/3) 6835660539126398 m005 (1/3*Zeta(3)+1/4)/(1/12*gamma-1) 6835660546508838 m004 -8+25*Pi-2*Cot[Sqrt[5]*Pi] 6835660550631532 l006 ln(5555/5948) 6835660558902530 m001 (ln(3)-Niven)/(ThueMorse+Weierstrass) 6835660567346807 m005 (1/3*Pi+3/7)/(5/9*5^(1/2)+11/12) 6835660577382876 a001 233/24476*843^(41/42) 6835660603196228 l006 ln(2884/5713) 6835660661386390 a007 Real Root Of 841*x^4-406*x^3+495*x^2+469*x-224 6835660665501746 a007 Real Root Of -572*x^4-96*x^3-239*x^2-645*x-235 6835660669956213 m001 MadelungNaCl^2*ln(Kolakoski)*Paris^2 6835660671940990 a007 Real Root Of 862*x^4+337*x^3+952*x^2-292*x-725 6835660681573954 m001 (Stephens-cos(1))/(-ZetaQ(2)+ZetaQ(4)) 6835660718407764 m001 (Khinchin+Otter)/(ln(gamma)+exp(1/Pi)) 6835660728940585 a007 Real Root Of 154*x^4+926*x^3-810*x^2+440*x+390 6835660752585548 m001 (-Gompertz+RenyiParking)/(Chi(1)+exp(1/Pi)) 6835660762622682 r005 Im(z^2+c),c=27/70+15/34*I,n=6 6835660774743940 a007 Real Root Of -31*x^4+219*x^3+410*x^2+606*x-669 6835660792808114 a007 Real Root Of -570*x^4+487*x^3+515*x^2+903*x-889 6835660820795861 m005 (1/2*2^(1/2)+3/5)/(2/3*exp(1)+1/10) 6835660849773743 a007 Real Root Of -330*x^4-44*x^3-412*x^2-109*x+176 6835660858352331 m001 2*Pi/GAMMA(5/6)*MasserGramainDelta/ZetaR(2) 6835660868987514 a001 1597/521*322^(5/36) 6835660875728265 a007 Real Root Of -857*x^4+939*x^3-39*x^2-173*x+387 6835660878504966 h001 (9/11*exp(2)+7/9)/(1/5*exp(1)+5/11) 6835660885037292 r005 Im(z^2+c),c=-133/106+10/47*I,n=8 6835660891960731 r005 Re(z^2+c),c=-65/86+2/27*I,n=7 6835660926502794 r005 Re(z^2+c),c=-17/110+50/51*I,n=4 6835660928093220 r005 Im(z^2+c),c=-9/94+28/33*I,n=32 6835660940841004 r005 Re(z^2+c),c=-2/3+47/103*I,n=36 6835660947116867 r005 Re(z^2+c),c=4/11+9/55*I,n=26 6835660957983543 r002 13th iterates of z^2 + 6835660968129707 a007 Real Root Of 347*x^4-686*x^3+631*x^2+930*x+46 6835660971296728 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^Zeta(1,2)-Salem 6835661021493876 m001 (GAMMA(5/6)+ZetaQ(2))/(ln(gamma)+BesselI(0,2)) 6835661044659017 p002 log(14^(5/3)+18^(7/3)) 6835661073353036 l006 ln(3723/7375) 6835661102526466 a007 Real Root Of 123*x^4-576*x^3+281*x^2-860*x-930 6835661107749611 a003 cos(Pi*2/21)*sin(Pi*17/67) 6835661147706863 m001 (BesselI(0,1)-exp(Pi))/(ln(5)+BesselI(1,2)) 6835661149367920 m001 1/FeigenbaumB/ln(Artin)^2*GAMMA(1/24)^2 6835661173453490 m005 (1/2*2^(1/2)-2)/(5/11*5^(1/2)+7/8) 6835661184047485 a007 Real Root Of -202*x^4+345*x^3-228*x^2+641*x+699 6835661188489482 a007 Real Root Of 976*x^4-268*x^3+804*x^2+318*x-457 6835661225600002 a007 Real Root Of 707*x^4+266*x^3+973*x^2-155*x-630 6835661238638239 m006 (1/6*exp(Pi)-2/5)/(5*ln(Pi)-2/3) 6835661254500435 m005 (-1/44+1/4*5^(1/2))/(1/4*Catalan+5/9) 6835661262982234 m001 ln(2)^(FeigenbaumD/Sierpinski) 6835661290064688 a001 11*28657^(40/47) 6835661290911376 a007 Real Root Of 120*x^4+730*x^3-615*x^2+79*x+441 6835661315422932 r002 15th iterates of z^2 + 6835661351191467 a001 1/4*13^(20/51) 6835661353110137 a003 sin(Pi*22/107)/sin(Pi*12/35) 6835661362041570 a007 Real Root Of 368*x^4-186*x^3+341*x^2-961*x-956 6835661370576224 l006 ln(4562/9037) 6835661402642261 a007 Real Root Of -129*x^4+868*x^3-761*x^2+681*x-359 6835661417241946 r002 2th iterates of z^2 + 6835661424433446 m005 (7/20+1/4*5^(1/2))/(7/11*exp(1)-2/5) 6835661466042399 m001 Niven^2*FeigenbaumB^2/ln(GAMMA(1/6))^2 6835661472326114 b008 5/2+Pi+ArcSec[E] 6835661511545240 a007 Real Root Of -291*x^4+556*x^3+591*x^2+692*x+438 6835661551448818 r002 8th iterates of z^2 + 6835661559954132 m002 -Pi^5/3+3*Sinh[Pi]-Tanh[Pi] 6835661595806777 h005 exp(cos(Pi*3/56)/sin(Pi*6/35)) 6835661598454443 b008 Haversine[2*Zeta[1/3]] 6835661606211571 a005 (1/sin(79/177*Pi))^1263 6835661614965495 m001 (1-arctan(1/2))/(StronglyCareFree+ZetaQ(3)) 6835661703872963 m006 (5/6*Pi-3)/(3/5*Pi^2-1/3) 6835661703872963 m008 (5/6*Pi-3)/(3/5*Pi^2-1/3) 6835661732862413 m001 (GAMMA(5/6)+GAMMA(23/24))/(5^(1/2)+Catalan) 6835661753209181 a001 987/3571*322^(5/9) 6835661755219926 a007 Real Root Of 133*x^4+942*x^3+334*x^2+883*x+924 6835661764293031 m005 (1/2*2^(1/2)-1/12)/(1/2*Catalan+5/11) 6835661812197554 r005 Im(z^2+c),c=-5/4+20/153*I,n=14 6835661832731576 a007 Real Root Of 757*x^4-165*x^3+404*x^2+380*x-147 6835661848779892 r002 6th iterates of z^2 + 6835661867947880 a007 Real Root Of 239*x^4-102*x^3+793*x^2+432*x-160 6835661903315612 r009 Re(z^3+c),c=-5/48+20/41*I,n=24 6835661905372711 m001 Weierstrass/(LandauRamanujan^GAMMA(2/3)) 6835661907045015 r005 Im(z^2+c),c=-15/38+27/46*I,n=31 6835661922643951 m001 FeigenbaumB^(ln(2+3^(1/2))/HardyLittlewoodC3) 6835661946997189 a007 Real Root Of 518*x^4-406*x^3+869*x^2-385*x-912 6835661956440334 m001 (ThueMorse-ZetaP(4))/(Ei(1)-OrthogonalArrays) 6835661990990069 m001 PisotVijayaraghavan^2*ln(ArtinRank2)^2/gamma^2 6835661996549931 m001 GAMMA(23/24)^exp(-1/2*Pi)-arctan(1/3) 6835662026585254 r005 Im(z^2+c),c=-87/118+4/39*I,n=4 6835662082726679 a007 Real Root Of -719*x^4+761*x^3-647*x^2-653*x+256 6835662084583152 a007 Real Root Of -364*x^4+120*x^3+846*x^2+247*x-523 6835662118610519 r009 Re(z^3+c),c=-3/14+37/52*I,n=11 6835662124123286 s002 sum(A078959[n]/(n^3*pi^n+1),n=1..infinity) 6835662160729528 a001 521/8*196418^(21/55) 6835662171203223 m001 (-PlouffeB+Stephens)/(2^(1/3)+exp(-1/2*Pi)) 6835662173973476 a001 505019158607/3*5702887^(5/21) 6835662173973486 a001 45537549124/3*139583862445^(5/21) 6835662174560131 r009 Re(z^3+c),c=-9/74+41/64*I,n=31 6835662175399366 m005 (1/2*Catalan+1/10)/(45/88+3/22*5^(1/2)) 6835662210491073 v002 sum(1/(5^n+(21*n^2-57*n+55)),n=1..infinity) 6835662243573487 a007 Real Root Of 11*x^4-57*x^3-865*x^2+209*x-376 6835662266141654 r005 Re(z^2+c),c=23/102+11/32*I,n=22 6835662278592027 a001 6119/2*6557470319842^(2/19) 6835662281833393 m005 (1/2*5^(1/2)-1/5)/(8/11*3^(1/2)+1/12) 6835662286362522 a007 Real Root Of -684*x^4-683*x^3-543*x^2+25*x+202 6835662287259341 a001 17711/29*3^(4/39) 6835662288337646 a001 64079/8*701408733^(2/19) 6835662289785080 a001 167761/8*75025^(2/19) 6835662298466900 a007 Real Root Of 294*x^4+152*x^3-209*x^2-853*x+568 6835662313765061 m001 GAMMA(13/24)*(sqrt(5)+GAMMA(11/24)) 6835662368888669 m001 (GAMMA(5/6)+FeigenbaumKappa)/(exp(1)+Catalan) 6835662369242869 l006 ln(9/8374) 6835662398405982 a007 Real Root Of 510*x^4-793*x^3+79*x^2-776*x-932 6835662448968659 a005 (1/cos(6/79*Pi))^147 6835662457846688 r005 Re(z^2+c),c=19/118+29/37*I,n=4 6835662476020004 r005 Im(z^2+c),c=-41/94+5/44*I,n=27 6835662485341492 h001 (-2*exp(3/2)+2)/(-3*exp(1/3)-6) 6835662494004539 a001 2584/9349*322^(5/9) 6835662500796995 r005 Im(z^2+c),c=-3/56+24/35*I,n=31 6835662517541911 r009 Re(z^3+c),c=-1/36+39/49*I,n=39 6835662525268686 m005 (-5/44+1/4*5^(1/2))/(7/8*3^(1/2)+5) 6835662533955355 r009 Im(z^3+c),c=-27/58+13/25*I,n=5 6835662599253344 a007 Real Root Of 829*x^4+345*x^3+976*x^2+228*x-371 6835662602085117 a001 6765/24476*322^(5/9) 6835662617853861 a001 17711/64079*322^(5/9) 6835662620154489 a001 46368/167761*322^(5/9) 6835662620490146 a001 121393/439204*322^(5/9) 6835662620539118 a001 317811/1149851*322^(5/9) 6835662620546263 a001 832040/3010349*322^(5/9) 6835662620547305 a001 2178309/7881196*322^(5/9) 6835662620547458 a001 5702887/20633239*322^(5/9) 6835662620547480 a001 14930352/54018521*322^(5/9) 6835662620547483 a001 39088169/141422324*322^(5/9) 6835662620547483 a001 102334155/370248451*322^(5/9) 6835662620547483 a001 267914296/969323029*322^(5/9) 6835662620547483 a001 701408733/2537720636*322^(5/9) 6835662620547483 a001 1836311903/6643838879*322^(5/9) 6835662620547483 a001 4807526976/17393796001*322^(5/9) 6835662620547483 a001 12586269025/45537549124*322^(5/9) 6835662620547483 a001 32951280099/119218851371*322^(5/9) 6835662620547483 a001 86267571272/312119004989*322^(5/9) 6835662620547483 a001 225851433717/817138163596*322^(5/9) 6835662620547483 a001 1548008755920/5600748293801*322^(5/9) 6835662620547483 a001 139583862445/505019158607*322^(5/9) 6835662620547483 a001 53316291173/192900153618*322^(5/9) 6835662620547483 a001 20365011074/73681302247*322^(5/9) 6835662620547483 a001 7778742049/28143753123*322^(5/9) 6835662620547483 a001 2971215073/10749957122*322^(5/9) 6835662620547483 a001 1134903170/4106118243*322^(5/9) 6835662620547483 a001 433494437/1568397607*322^(5/9) 6835662620547484 a001 165580141/599074578*322^(5/9) 6835662620547484 a001 63245986/228826127*322^(5/9) 6835662620547485 a001 24157817/87403803*322^(5/9) 6835662620547493 a001 9227465/33385282*322^(5/9) 6835662620547552 a001 3524578/12752043*322^(5/9) 6835662620547950 a001 1346269/4870847*322^(5/9) 6835662620550679 a001 514229/1860498*322^(5/9) 6835662620569384 a001 196418/710647*322^(5/9) 6835662620697594 a001 75025/271443*322^(5/9) 6835662621576356 a001 28657/103682*322^(5/9) 6835662627599480 a001 10946/39603*322^(5/9) 6835662631217485 m001 (1-Rabbit)^HardyLittlewoodC4 6835662664351005 m001 cos(1)^(GAMMA(1/4)*Zeta(3)) 6835662664351005 m001 cos(1)^(Pi*2^(1/2)/GAMMA(3/4)*Zeta(3)) 6835662668882586 a001 4181/15127*322^(5/9) 6835662682955494 m001 (Porter+ZetaQ(4))/(GAMMA(2/3)+Kolakoski) 6835662689481873 l006 ln(839/1662) 6835662711952353 r005 Re(z^2+c),c=-47/98+13/25*I,n=4 6835662739630824 s002 sum(A173801[n]/(n*exp(n)-1),n=1..infinity) 6835662747963078 r002 15th iterates of z^2 + 6835662751495735 m001 (Cahen-DuboisRaymond)^Weierstrass 6835662765632409 m001 (MertensB1+Porter)/(ArtinRank2+FeigenbaumC) 6835662774771141 r005 Im(z^2+c),c=-7/90+50/61*I,n=23 6835662788065705 m001 ThueMorse^(CareFree/GAMMA(13/24)) 6835662789982162 a007 Real Root Of -90*x^4-626*x^3-182*x^2-726*x+95 6835662816139757 s001 sum(exp(-4*Pi/5)^n*A075222[n],n=1..infinity) 6835662834414690 a007 Real Root Of 212*x^4-140*x^3-267*x^2-354*x-23 6835662843754604 m005 (1/3*5^(1/2)+2/9)/(7/12*Zeta(3)+5/7) 6835662851842759 a007 Real Root Of 219*x^4-314*x^3-543*x^2-924*x-526 6835662860595602 a007 Real Root Of -298*x^4+789*x^3-213*x^2-292*x+217 6835662874906050 r009 Re(z^3+c),c=-9/86+31/63*I,n=26 6835662903520346 r008 a(0)=6,K{-n^6,-54+44*n-55*n^2+64*n^3} 6835662917037431 a007 Real Root Of -154*x^4+400*x^3-173*x^2+263*x+422 6835662917732161 s002 sum(A077382[n]/(n^2*exp(n)-1),n=1..infinity) 6835662931996163 a007 Real Root Of -788*x^4-485*x^3-642*x^2+348*x+555 6835662951841199 a001 1597/5778*322^(5/9) 6835662952004987 r005 Re(z^2+c),c=-3/5+79/119*I,n=14 6835662957960091 r005 Im(z^2+c),c=-65/46+7/61*I,n=9 6835662963200060 m001 (5^(1/2)-ln(2))/(Grothendieck+Weierstrass) 6835662964857892 r005 Im(z^2+c),c=-7/58+61/62*I,n=13 6835662985788974 r005 Im(z^2+c),c=-7/6+11/124*I,n=58 6835662987099059 b008 Zeta[-2+Sqrt[2],5] 6835663007896891 a001 11/987*21^(28/47) 6835663010757984 a007 Real Root Of -506*x^4+934*x^3-446*x^2-505*x+272 6835663012265437 m001 (BesselJ(0,1)-Psi(1,1/3))/(GAMMA(2/3)+Trott) 6835663018321786 l006 ln(6813/7295) 6835663021146439 r005 Im(z^2+c),c=-17/29+4/7*I,n=3 6835663053235991 a005 (1/cos(17/206*Pi))^463 6835663098527912 a001 11/2*610^(2/59) 6835663108811362 m008 (1/6*Pi^5-1/4)/(3*Pi-2) 6835663123067530 a007 Real Root Of 983*x^4-933*x^3+236*x^2+724*x-128 6835663125146766 a001 514229/1364*18^(7/34) 6835663126510969 m001 (polylog(4,1/2)+Kolakoski)/(Porter+ZetaP(2)) 6835663134347426 r005 Im(z^2+c),c=-55/86+4/35*I,n=21 6835663145571058 m001 (exp(1)+FeigenbaumB)/(KomornikLoreti+Magata) 6835663159705093 r005 Im(z^2+c),c=-123/110+5/59*I,n=9 6835663167961098 a007 Real Root Of -915*x^4-736*x^3+334*x^2+332*x-24 6835663206178762 m005 (1/2*3^(1/2)-7/10)/(1/3*2^(1/2)-5/7) 6835663217265483 a007 Real Root Of 75*x^4+427*x^3-693*x^2-728*x+40 6835663244484886 m001 ln(Rabbit)^2/KhintchineHarmonic^2*sqrt(Pi) 6835663254616513 m005 (1/2*Pi+2/3)/(1/6*5^(1/2)-7/10) 6835663273791928 a007 Real Root Of -743*x^4+588*x^3+612*x^2+776*x-842 6835663280325333 a007 Real Root Of -303*x^4+588*x^3-571*x^2+546*x+894 6835663316458601 b008 4/75+Sqrt[46] 6835663328068123 a007 Real Root Of 362*x^4-60*x^3-657*x^2-348*x+485 6835663341255505 m001 ln(CareFree)*GaussAGM(1,1/sqrt(2))^2*exp(1) 6835663345503673 r002 28th iterates of z^2 + 6835663357351437 m001 FeigenbaumD^AlladiGrinstead*HardyLittlewoodC4 6835663376273788 a001 3/610*2^(19/40) 6835663387822996 m005 (-5/8+1/4*5^(1/2))/(19/22+1/22*5^(1/2)) 6835663396926754 b008 3*Sqrt[BesselJ[3,Sqrt[2]]] 6835663397583243 m001 (ArtinRank2-Bloch)/(MinimumGamma+Tribonacci) 6835663424837027 m001 (DuboisRaymond+FeigenbaumC)/(GAMMA(2/3)+ln(5)) 6835663436528506 m001 (-Landau+Tetranacci)/(2^(1/3)+BesselJ(0,1)) 6835663439834095 a007 Real Root Of -763*x^4+535*x^3+275*x^2+613*x+628 6835663448335384 a001 17711/76*47^(43/49) 6835663458091761 a007 Real Root Of -280*x^4+766*x^3-461*x^2+402*x+796 6835663489304002 a003 sin(Pi*14/69)/sin(Pi*38/113) 6835663513604739 a003 sin(Pi*22/69)/cos(Pi*41/89) 6835663516973458 m006 (1/2*ln(Pi)+2)/(2/3*ln(Pi)+3) 6835663526821523 m001 1/FransenRobinson/ln(Backhouse)*Khintchine^2 6835663532292279 m002 -8+6/Pi^5+Log[Pi] 6835663564681169 b008 LerchPhi[-5*Sqrt[3],3,1/2] 6835663574976625 a007 Real Root Of -224*x^4+965*x^3+117*x^2-343*x+68 6835663579410600 m006 (3*Pi-2)/(1/4*ln(Pi)+4/5) 6835663598079691 r005 Im(z^2+c),c=25/122+32/57*I,n=31 6835663603248815 a007 Real Root Of -888*x^4+909*x^3+714*x^2+212*x-575 6835663617876084 a001 103682/1597*144^(9/19) 6835663619701965 m005 (1/2*gamma+5/12)/(4*exp(1)-5/9) 6835663633622323 a007 Real Root Of -99*x^4-555*x^3+884*x^2+410*x+378 6835663633674953 a001 1/3732588*377^(3/19) 6835663636215508 r009 Im(z^3+c),c=-15/32+34/55*I,n=7 6835663645170590 a007 Real Root Of 99*x^4-439*x^3-979*x^2-411*x+857 6835663647788589 m005 (3/4*Catalan-2/3)/(23/10+3/10*5^(1/2)) 6835663670859272 a007 Real Root Of -214*x^4+684*x^3-530*x^2+660*x+964 6835663677645193 a007 Real Root Of 49*x^4+261*x^3-546*x^2-357*x-547 6835663695439444 a007 Real Root Of 110*x^4+666*x^3-612*x^2-29*x+954 6835663695968919 a007 Real Root Of -942*x^4-57*x^3+299*x^2+843*x+624 6835663705808650 m001 (CopelandErdos-Lehmer)/(Stephens-ZetaQ(2)) 6835663739622232 m001 1/Zeta(9)^2*FeigenbaumD^2/exp(sinh(1))^2 6835663783879457 m001 (RenyiParking+Salem)/(GAMMA(2/3)-Zeta(1/2)) 6835663784926962 m001 GAMMA(1/24)^2*exp(Artin)^2*sin(Pi/5) 6835663817199003 r005 Im(z^2+c),c=41/98+16/33*I,n=4 6835663827040585 a007 Real Root Of x^4-307*x^3-135*x^2-202*x+299 6835663829929734 m001 Zeta(5)/(MertensB2+Riemann1stZero) 6835663844196301 r005 Re(z^2+c),c=-83/114+3/19*I,n=3 6835663875109110 p001 sum(1/(260*n+159)/(5^n),n=0..infinity) 6835663881911468 m005 (1/2*gamma-5/11)/(1/9*5^(1/2)-3/11) 6835663909924476 h001 (2/11*exp(2)+1/5)/(4/5*exp(1)+1/12) 6835663942225716 m001 FellerTornier^(BesselJ(1,1)*LandauRamanujan) 6835663972100504 a007 Real Root Of 442*x^4-276*x^3+86*x^2-739*x-730 6835663972627828 m001 ln(Riemann1stZero)*Backhouse*sqrt(Pi) 6835663978714096 l006 ln(4667/9245) 6835663985240124 m003 -3*E^(-1/2-Sqrt[5]/2)+18*Csch[1/2+Sqrt[5]/2] 6835663999180923 m001 2^(1/2)-BesselJ(0,1)-MertensB3 6835663999558323 a007 Real Root Of 153*x^4-876*x^3-582*x^2-39*x+545 6835664037057925 r005 Im(z^2+c),c=43/106+11/46*I,n=3 6835664043233066 r002 11th iterates of z^2 + 6835664061000122 a001 55/24476*123^(22/31) 6835664075169709 a001 271443/4181*144^(9/19) 6835664141887955 a001 710647/10946*144^(9/19) 6835664151622016 a001 1860498/28657*144^(9/19) 6835664153042197 a001 4870847/75025*144^(9/19) 6835664153249398 a001 12752043/196418*144^(9/19) 6835664153279628 a001 33385282/514229*144^(9/19) 6835664153284039 a001 87403803/1346269*144^(9/19) 6835664153284682 a001 228826127/3524578*144^(9/19) 6835664153284776 a001 599074578/9227465*144^(9/19) 6835664153284790 a001 1568397607/24157817*144^(9/19) 6835664153284792 a001 4106118243/63245986*144^(9/19) 6835664153284792 a001 10749957122/165580141*144^(9/19) 6835664153284792 a001 28143753123/433494437*144^(9/19) 6835664153284792 a001 73681302247/1134903170*144^(9/19) 6835664153284792 a001 192900153618/2971215073*144^(9/19) 6835664153284792 a001 505019158607/7778742049*144^(9/19) 6835664153284792 a001 1322157322203/20365011074*144^(9/19) 6835664153284792 a001 3461452808002/53316291173*144^(9/19) 6835664153284792 a001 9062201101803/139583862445*144^(9/19) 6835664153284792 a001 23725150497407/365435296162*144^(9/19) 6835664153284792 a001 505618944676/7787980473*144^(9/19) 6835664153284792 a001 5600748293801/86267571272*144^(9/19) 6835664153284792 a001 2139295485799/32951280099*144^(9/19) 6835664153284792 a001 817138163596/12586269025*144^(9/19) 6835664153284792 a001 312119004989/4807526976*144^(9/19) 6835664153284792 a001 119218851371/1836311903*144^(9/19) 6835664153284792 a001 45537549124/701408733*144^(9/19) 6835664153284792 a001 599786069/9238424*144^(9/19) 6835664153284792 a001 6643838879/102334155*144^(9/19) 6835664153284793 a001 2537720636/39088169*144^(9/19) 6835664153284798 a001 969323029/14930352*144^(9/19) 6835664153284834 a001 370248451/5702887*144^(9/19) 6835664153285080 a001 141422324/2178309*144^(9/19) 6835664153286765 a001 54018521/832040*144^(9/19) 6835664153298312 a001 711491/10959*144^(9/19) 6835664153377456 a001 7881196/121393*144^(9/19) 6835664153919916 a001 3010349/46368*144^(9/19) 6835664157637997 a001 1149851/17711*144^(9/19) 6835664160022969 m001 Grothendieck*(FeigenbaumAlpha+MertensB3) 6835664168853389 m001 BesselK(0,1)^2/ln(LandauRamanujan)*Zeta(5) 6835664183122100 a001 439204/6765*144^(9/19) 6835664213022165 m005 (5/6*2^(1/2)+4/5)/(2/3*Pi+4/5) 6835664221205357 a007 Real Root Of -466*x^4+309*x^3-886*x^2-223*x+462 6835664231941025 r008 a(0)=0,K{-n^6,98-80*n^3+33*n^2+95*n} 6835664240105932 r005 Re(z^2+c),c=3/106+20/33*I,n=40 6835664244826539 a007 Real Root Of -590*x^4-63*x^3+144*x^2+390*x+308 6835664247556117 r005 Re(z^2+c),c=-61/54+17/54*I,n=10 6835664261280906 l006 ln(3828/7583) 6835664269051784 m002 -3-Pi/(4*E^Pi)+Pi^2 6835664335664335 q001 391/572 6835664335664335 r002 2th iterates of z^2 + 6835664335664335 r002 2th iterates of z^2 + 6835664335664335 r002 2th iterates of z^2 + 6835664335664335 r005 Im(z^2+c),c=-15/13+23/44*I,n=2 6835664348685836 m001 ReciprocalLucas*(exp(1)+LandauRamanujan) 6835664357792743 a001 167761/2584*144^(9/19) 6835664363892368 a007 Real Root Of 170*x^4-598*x^3-515*x^2-166*x+508 6835664368873285 m001 (Si(Pi)+Bloch)^BesselI(0,2) 6835664393206090 m001 (BesselK(1,1)-gamma)/(BesselI(0,2)+MertensB3) 6835664414909873 m001 polylog(4,1/2)/(CareFree^Kolakoski) 6835664423626672 a001 987/521*322^(2/9) 6835664432061226 a002 5^(7/12)-3^(4/7) 6835664470558378 a007 Real Root Of -918*x^4+743*x^3-x^2-644*x-2 6835664474688654 a001 305/682*322^(17/36) 6835664491215330 r009 Im(z^3+c),c=-17/32+21/53*I,n=12 6835664496723134 m001 (FeigenbaumC+Trott)/(2^(1/2)-ln(Pi)) 6835664498851980 r005 Im(z^2+c),c=-3/16+1/11*I,n=13 6835664500535587 a007 Real Root Of 821*x^4-555*x^3-452*x^2+157*x-38 6835664512810403 m005 (-13/44+1/4*5^(1/2))/(1/4*gamma-4) 6835664525790133 a001 377/3571*322^(13/18) 6835664534338997 a005 (1/sin(77/171*Pi))^157 6835664554277490 m001 Riemann3rdZero^2/ln(GlaisherKinkelin)*exp(1) 6835664584980460 a007 Real Root Of 546*x^4-142*x^3+787*x^2-633*x-965 6835664593512261 k002 Champernowne real with 1/2*n^2+573/2*n-219 6835664631057535 a007 Real Root Of 123*x^4+796*x^3-320*x^2-53*x+285 6835664632076538 m001 PisotVijayaraghavan/Backhouse*exp(Zeta(7))^2 6835664632635745 s002 sum(A035280[n]/(n^2*exp(n)-1),n=1..infinity) 6835664635377124 m001 (LambertW(1)+Zeta(3))/sin(1/12*Pi) 6835664635377124 m001 (LambertW(1)+Zeta(3))/sin(Pi/12) 6835664680258160 r002 18th iterates of z^2 + 6835664693812321 k002 Champernowne real with n^2+285*n-218 6835664698398204 r004 Im(z^2+c),c=1/22+5/8*I,z(0)=I,n=5 6835664702478382 l006 ln(2989/5921) 6835664716750614 l006 ln(8071/8642) 6835664734956381 r005 Re(z^2+c),c=-77/102+6/29*I,n=5 6835664751837118 a007 Real Root Of 834*x^4-916*x^3-95*x^2-540*x+524 6835664792979126 h001 (1/9*exp(1)+11/12)/(1/7*exp(2)+8/11) 6835664794112381 k002 Champernowne real with 3/2*n^2+567/2*n-217 6835664821148321 a007 Real Root Of x^4-394*x^3+810*x^2+131*x-415 6835664847754670 m005 (-7/4+1/4*5^(1/2))/(3/7*3^(1/2)+1) 6835664850034550 r009 Re(z^3+c),c=-9/86+31/63*I,n=28 6835664883867768 a007 Real Root Of -877*x^4+812*x^3-635*x^2-210*x+604 6835664885831467 a003 sin(Pi*23/97)/sin(Pi*28/61) 6835664891267994 a001 610/2207*322^(5/9) 6835664893532446 r005 Im(z^2+c),c=2/19+12/19*I,n=20 6835664894412441 k002 Champernowne real with 2*n^2+282*n-216 6835664900723738 a007 Real Root Of -130*x^4-859*x^3+164*x^2-396*x-904 6835664907527543 m001 1/exp(GAMMA(5/6))/Sierpinski^2/sin(1)^2 6835664928803641 r002 32th iterates of z^2 + 6835664955908397 r009 Im(z^3+c),c=-3/17+19/26*I,n=12 6835664968365080 r005 Im(z^2+c),c=5/23+32/63*I,n=10 6835664994002797 r009 Re(z^3+c),c=-9/86+31/63*I,n=31 6835664994712501 k002 Champernowne real with 5/2*n^2+561/2*n-215 6835665001435104 a008 Real Root of (-4+2*x+3*x^2-x^3+3*x^4+6*x^5) 6835665040876920 r009 Re(z^3+c),c=-9/86+31/63*I,n=33 6835665047048821 m001 TwinPrimes/exp(GolombDickman)*GAMMA(5/24)^2 6835665057580037 r005 Re(z^2+c),c=-4/25+36/49*I,n=14 6835665063008685 r009 Re(z^3+c),c=-9/86+31/63*I,n=29 6835665069866673 r009 Re(z^3+c),c=-9/86+31/63*I,n=35 6835665079622071 r009 Re(z^3+c),c=-9/86+31/63*I,n=37 6835665081311976 r009 Re(z^3+c),c=-9/86+31/63*I,n=40 6835665081407108 r009 Re(z^3+c),c=-9/86+31/63*I,n=42 6835665081518096 r009 Re(z^3+c),c=-9/86+31/63*I,n=44 6835665081563141 r009 Re(z^3+c),c=-9/86+31/63*I,n=46 6835665081574817 r009 Re(z^3+c),c=-9/86+31/63*I,n=48 6835665081574960 r009 Re(z^3+c),c=-9/86+31/63*I,n=51 6835665081575100 r009 Re(z^3+c),c=-9/86+31/63*I,n=49 6835665081575336 r009 Re(z^3+c),c=-9/86+31/63*I,n=53 6835665081575530 r009 Re(z^3+c),c=-9/86+31/63*I,n=55 6835665081575590 r009 Re(z^3+c),c=-9/86+31/63*I,n=57 6835665081575598 r009 Re(z^3+c),c=-9/86+31/63*I,n=60 6835665081575599 r009 Re(z^3+c),c=-9/86+31/63*I,n=62 6835665081575600 r009 Re(z^3+c),c=-9/86+31/63*I,n=64 6835665081575601 r009 Re(z^3+c),c=-9/86+31/63*I,n=63 6835665081575601 r009 Re(z^3+c),c=-9/86+31/63*I,n=58 6835665081575602 r009 Re(z^3+c),c=-9/86+31/63*I,n=61 6835665081575602 r009 Re(z^3+c),c=-9/86+31/63*I,n=59 6835665081575629 r009 Re(z^3+c),c=-9/86+31/63*I,n=56 6835665081575743 r009 Re(z^3+c),c=-9/86+31/63*I,n=54 6835665081576038 r009 Re(z^3+c),c=-9/86+31/63*I,n=52 6835665081576358 r009 Re(z^3+c),c=-9/86+31/63*I,n=50 6835665081579958 r009 Re(z^3+c),c=-9/86+31/63*I,n=47 6835665081604195 r009 Re(z^3+c),c=-9/86+31/63*I,n=45 6835665081679516 r009 Re(z^3+c),c=-9/86+31/63*I,n=43 6835665081698615 r009 Re(z^3+c),c=-9/86+31/63*I,n=39 6835665081813454 r009 Re(z^3+c),c=-9/86+31/63*I,n=41 6835665082023415 r009 Re(z^3+c),c=-9/86+31/63*I,n=38 6835665086839039 r009 Re(z^3+c),c=-9/86+31/63*I,n=36 6835665095012561 k002 Champernowne real with 3*n^2+279*n-214 6835665104585532 r009 Re(z^3+c),c=-9/86+31/63*I,n=34 6835665129646656 a007 Real Root Of 107*x^4+622*x^3-875*x^2-746*x+838 6835665129840990 r005 Re(z^2+c),c=-9/118+35/47*I,n=24 6835665137929553 a007 Real Root Of 506*x^4-340*x^3-503*x^2-392*x-252 6835665145948649 r009 Re(z^3+c),c=-9/86+31/63*I,n=32 6835665152454580 a001 1/66978574*32951280099^(3/19) 6835665152454597 a001 2/31622993*3524578^(3/19) 6835665163566138 m001 (HeathBrownMoroz-Kac)/(Zeta(5)-Champernowne) 6835665168720291 m001 FeigenbaumAlpha-KhinchinLevy*Khinchin 6835665170896765 r009 Re(z^3+c),c=-9/86+31/63*I,n=30 6835665193733094 m001 Porter/OrthogonalArrays/GAMMA(7/12) 6835665195312621 k002 Champernowne real with 7/2*n^2+555/2*n-213 6835665211838565 m001 (Pi+HardyLittlewoodC3)/(OneNinth-TwinPrimes) 6835665217141536 a001 64079/144*987^(21/53) 6835665217891128 a007 Real Root Of 576*x^4-543*x^3-281*x^2-455*x+490 6835665223128190 m001 (FeigenbaumKappa+Kac)/(3^(1/3)+Backhouse) 6835665235270585 m001 (DuboisRaymond+Mills)/(3^(1/2)+arctan(1/2)) 6835665235741345 m005 (-1/28+1/4*5^(1/2))/(4*3^(1/2)+8/11) 6835665247399408 h001 (1/4*exp(1)+11/12)/(9/11*exp(1)+1/9) 6835665252171421 r005 Im(z^2+c),c=-13/19+11/49*I,n=41 6835665252183978 s002 sum(A257059[n]/(pi^n+1),n=1..infinity) 6835665262709484 s002 sum(A257059[n]/(pi^n),n=1..infinity) 6835665273243158 s002 sum(A257059[n]/(pi^n-1),n=1..infinity) 6835665295612681 k002 Champernowne real with 4*n^2+276*n-212 6835665302071558 m001 (LaplaceLimit+Paris)^HardHexagonsEntropy 6835665306745158 a007 Real Root Of -109*x^4-27*x^3+381*x^2+694*x-620 6835665337395648 r009 Re(z^3+c),c=-3/29+13/27*I,n=18 6835665359097429 g007 Psi(2,2/5)-Psi(2,4/9)-Psi(2,1/7)-Psi(2,4/5) 6835665380288436 a007 Real Root Of 90*x^4+520*x^3-759*x^2-665*x+509 6835665381714441 a001 233/521*521^(17/39) 6835665391928483 m001 1/exp(MertensB1)^2/CopelandErdos*exp(1) 6835665395912741 k002 Champernowne real with 9/2*n^2+549/2*n-211 6835665408617895 r005 Re(z^2+c),c=-13/18+19/121*I,n=39 6835665429790304 r005 Im(z^2+c),c=41/102+27/35*I,n=3 6835665435026565 r005 Re(z^2+c),c=17/64+37/58*I,n=3 6835665444836073 b008 -4/9+Sqrt[53] 6835665449960285 p001 sum(1/(281*n+156)/(6^n),n=0..infinity) 6835665453280066 r005 Re(z^2+c),c=-119/118+8/33*I,n=12 6835665453757005 m001 (Landau+Robbin)/(gamma(2)+Pi^(1/2)) 6835665463246211 r002 57th iterates of z^2 + 6835665488015050 l006 ln(2150/4259) 6835665494022902 a007 Real Root Of -42*x^4+839*x^3-131*x^2-213*x-52 6835665496212801 k002 Champernowne real with 5*n^2+273*n-210 6835665520852381 a007 Real Root Of 884*x^4-152*x^3+590*x^2+113*x-440 6835665555003386 a001 64079/987*144^(9/19) 6835665566731197 r005 Im(z^2+c),c=-37/28+1/37*I,n=63 6835665573536680 a007 Real Root Of -844*x^4+666*x^3-923*x^2+938*x-60 6835665596512861 k002 Champernowne real with 11/2*n^2+543/2*n-209 6835665601731011 s002 sum(A227072[n]/(n^3*pi^n-1),n=1..infinity) 6835665626098579 a008 Real Root of x^4-x^3-30*x^2+128*x-226 6835665627130207 m001 (gamma(2)-Niven)/(Riemann3rdZero+ZetaP(4)) 6835665641435392 m005 (1/2*Zeta(3)+4/7)/(8/11*Pi-4) 6835665673489012 m001 (Thue-ZetaP(2))/(ln(gamma)+ln(Pi)) 6835665690159178 r005 Im(z^2+c),c=-13/12+7/88*I,n=14 6835665691124731 m007 (-gamma-2*ln(2)+1/3)/(-2/3*gamma-2) 6835665691564426 r009 Re(z^3+c),c=-19/28+39/43*I,n=2 6835665696812921 k002 Champernowne real with 6*n^2+270*n-208 6835665706504579 r005 Im(z^2+c),c=-13/18+23/96*I,n=26 6835665716037203 m005 (1/2*3^(1/2)+2/5)/(5/8*5^(1/2)+5/11) 6835665729226801 a007 Real Root Of 923*x^4-876*x^3+796*x^2-83*x-910 6835665741499574 r009 Re(z^3+c),c=-33/56+10/41*I,n=58 6835665745235129 m001 (BesselK(0,1)-BesselK(1,1))/(Mills+Totient) 6835665747066098 m005 (1/2*Catalan-2/7)/(10/11*gamma-3/11) 6835665748934800 m001 (-Stephens+Trott)/(OrthogonalArrays-gamma) 6835665753180317 m001 (3^(1/3)-Ei(1,1))/(GAMMA(5/6)+TwinPrimes) 6835665790921875 a007 Real Root Of 954*x^4-592*x^3-853*x^2-840*x-573 6835665797112981 k002 Champernowne real with 13/2*n^2+537/2*n-207 6835665806182388 r005 Im(z^2+c),c=-1/60+37/58*I,n=40 6835665806416164 m005 (2*Pi-2/5)/(3/4*2^(1/2)-1/5) 6835665807083871 a007 Real Root Of 385*x^4-763*x^3+587*x^2-76*x-654 6835665809970540 s002 sum(A178880[n]/(exp(n)),n=1..infinity) 6835665825496533 a007 Real Root Of 308*x^4-7*x^3+392*x^2-928*x-887 6835665828684077 a007 Real Root Of 673*x^4-378*x^3+350*x^2+644*x+9 6835665831736640 r005 Re(z^2+c),c=-39/46+35/47*I,n=2 6835665832277370 a007 Real Root Of 129*x^4-427*x^3+93*x^2-828*x-774 6835665877244228 a007 Real Root Of 636*x^4-830*x^3-475*x^2+790*x+358 6835665889569045 a007 Real Root Of -341*x^4+744*x^3-683*x^2-132*x+541 6835665890985088 a007 Real Root Of -621*x^4-394*x^3-490*x^2+432*x+534 6835665897413041 k002 Champernowne real with 7*n^2+267*n-206 6835665906742387 m005 (1/24+1/6*5^(1/2))/(3/5*gamma-2/7) 6835665914650195 h001 (-exp(3/2)+5)/(-4*exp(1/3)-2) 6835665920728551 m001 (CareFree-Porter)^OrthogonalArrays 6835665942564743 r009 Re(z^3+c),c=-9/86+31/63*I,n=27 6835665944979840 r005 Im(z^2+c),c=-107/110+3/46*I,n=9 6835665950161765 a007 Real Root Of -267*x^4+609*x^3+454*x^2+314*x-563 6835665952550432 a007 Real Root Of -119*x^4-680*x^3+822*x^2-555*x+420 6835665957118868 l006 ln(9329/9989) 6835665958877223 a007 Real Root Of -33*x^4+782*x^3-41*x^2+623*x+702 6835665971147726 a007 Real Root Of 693*x^4-567*x^3+7*x^2-729*x-834 6835665982449829 m001 (gamma(1)-Paris)/(Sierpinski-ZetaP(4)) 6835665995662388 r005 Im(z^2+c),c=-59/94+12/29*I,n=11 6835665997713101 k002 Champernowne real with 15/2*n^2+531/2*n-205 6835666000127605 a007 Real Root Of 23*x^4-341*x^3+280*x^2+26*x-227 6835666028800353 a003 sin(Pi*29/117)*sin(Pi*26/61) 6835666048573449 m001 (sin(1/5*Pi)-Gompertz)/(Mills-ZetaQ(2)) 6835666054734403 r005 Re(z^2+c),c=-1/3+46/61*I,n=6 6835666075191094 a007 Real Root Of 862*x^4-801*x^3-657*x^2-81*x+430 6835666084596777 a007 Real Root Of -803*x^4+936*x^3+466*x^2+106*x+329 6835666098013161 k002 Champernowne real with 8*n^2+264*n-204 6835666118920588 m005 (1/2*3^(1/2)+3)/(6/11*Zeta(3)+5) 6835666143352009 a007 Real Root Of -660*x^4-916*x^3-930*x^2-202*x+148 6835666159456487 r005 Im(z^2+c),c=-71/102+5/39*I,n=47 6835666160686464 a007 Real Root Of 907*x^4-363*x^3+196*x^2+33*x-383 6835666166422714 l006 ln(3461/6856) 6835666167568690 m001 (Pi-exp(Pi)*LambertW(1))/Zeta(1/2) 6835666198313221 k002 Champernowne real with 17/2*n^2+525/2*n-203 6835666228643960 a007 Real Root Of -810*x^4+931*x^3+589*x^2+572*x+590 6835666249457498 r005 Re(z^2+c),c=-9/16+84/127*I,n=2 6835666263753230 r008 a(0)=7,K{-n^6,1+8*n^3+6*n^2-8*n} 6835666288893284 a008 Real Root of (2+4*x-4*x^2-3*x^3-6*x^4-4*x^5) 6835666298613281 k002 Champernowne real with 9*n^2+261*n-202 6835666301593597 r005 Im(z^2+c),c=-11/10+7/86*I,n=21 6835666317471862 s002 sum(A210580[n]/((exp(n)+1)*n),n=1..infinity) 6835666332601642 r005 Im(z^2+c),c=3/38+32/55*I,n=5 6835666341233291 m005 (1/2*3^(1/2)+6)/(1/4*3^(1/2)+4/7) 6835666359164481 s002 sum(A013278[n]/(10^n-1),n=1..infinity) 6835666391258298 a008 Real Root of x^4-x^3-33*x^2+123*x-120 6835666398913341 k002 Champernowne real with 19/2*n^2+519/2*n-201 6835666400482731 a007 Real Root Of -845*x^4-413*x^3-51*x^2+390*x+343 6835666408031515 r009 Im(z^3+c),c=-45/82+7/41*I,n=4 6835666413123288 a007 Real Root Of -811*x^4+679*x^3-451*x^2-494*x+267 6835666433994245 r005 Im(z^2+c),c=-19/30+31/125*I,n=4 6835666436040635 r005 Im(z^2+c),c=-71/122+1/8*I,n=51 6835666442536750 m001 LandauRamanujan2nd/cos(1/12*Pi)/ln(2^(1/2)+1) 6835666458407153 r005 Im(z^2+c),c=23/60+19/54*I,n=60 6835666459831308 r005 Im(z^2+c),c=7/24+32/59*I,n=43 6835666472075775 l006 ln(4772/9453) 6835666492870566 a003 cos(Pi*7/101)-cos(Pi*15/37) 6835666499213401 k002 Champernowne real with 10*n^2+258*n-200 6835666506481440 a001 329/1926*322^(23/36) 6835666515988951 r002 28th iterates of z^2 + 6835666526187393 a001 521/610*1346269^(9/19) 6835666555133893 m001 (Kolakoski+Otter)/(Psi(2,1/3)+sin(1/12*Pi)) 6835666572648293 r002 10th iterates of z^2 + 6835666587276479 a007 Real Root Of -322*x^4+830*x^3-678*x^2-565*x+266 6835666589267463 p002 log(21^(1/2)/(15+11^(1/2))^(1/2)) 6835666599513461 k002 Champernowne real with 21/2*n^2+513/2*n-199 6835666626010724 r008 a(0)=7,K{-n^6,-5+9*n^3+3*n} 6835666628269612 a007 Real Root Of -872*x^4+277*x^3-656*x^2-950*x-64 6835666633253892 h001 (5/11*exp(1)+2/5)/(1/4*exp(2)+6/11) 6835666662845022 r005 Im(z^2+c),c=3/86+33/53*I,n=48 6835666691208053 a007 Real Root Of 201*x^4-525*x^3-400*x-485 6835666692168224 a001 144/54018521*3^(6/7) 6835666697525182 b008 Sqrt[ArcCot[1/4+Sqrt[3]]] 6835666699813521 k002 Champernowne real with 11*n^2+255*n-198 6835666705521069 r009 Im(z^3+c),c=-23/38+31/45*I,n=9 6835666710011358 k002 Champernowne real with 23/2*n^2+507/2*n-197 6835666722890666 r005 Im(z^2+c),c=-37/78+28/53*I,n=12 6835666810041364 k002 Champernowne real with 12*n^2+252*n-196 6835666829752429 m005 (1/2*3^(1/2)+1/7)/(2/9*Pi+7/9) 6835666841618243 m001 (1-ln(3))/(-exp(1/exp(1))+gamma(3)) 6835666884302120 m005 (1/3*3^(1/2)+1/2)/(7/10*3^(1/2)+4/11) 6835666909080914 a007 Real Root Of -144*x^4-861*x^3+717*x^2-977*x-787 6835666910071370 k002 Champernowne real with 25/2*n^2+501/2*n-195 6835666915822594 a007 Real Root Of -810*x^4+420*x^3-127*x^2+453*x+680 6835666921939847 m001 1/ln(GAMMA(1/4))^2*Kolakoski^2/GAMMA(1/6) 6835666938469903 m001 ln((2^(1/3)))^2*Si(Pi)^2*GAMMA(11/24)^2 6835666948632958 h001 (8/9*exp(1)+4/11)/(3/7*exp(2)+9/10) 6835667010101376 k002 Champernowne real with 13*n^2+249*n-194 6835667063797155 r009 Re(z^3+c),c=-5/48+20/41*I,n=26 6835667074020870 m001 (Chi(1)+cos(1/12*Pi))/(Sierpinski+ZetaQ(2)) 6835667082775645 m008 (2/3*Pi^5-1/4)/(3*Pi^2+1/5) 6835667110131382 k002 Champernowne real with 27/2*n^2+495/2*n-193 6835667115716794 m001 (1-LambertW(1))/(-cos(1/5*Pi)+3^(1/3)) 6835667120112934 m001 KhinchinLevy*Niven-Totient 6835667146987028 b008 -1/11+Zeta[1/11] 6835667173797973 r002 8th iterates of z^2 + 6835667178993078 m005 (1/2*2^(1/2)-3/7)/(11/12*2^(1/2)-8/9) 6835667196208707 a001 377/521*322^(7/18) 6835667196801408 r009 Re(z^3+c),c=-25/52+1/38*I,n=3 6835667199454448 r005 Re(z^2+c),c=-59/122+26/49*I,n=9 6835667210161388 k002 Champernowne real with 14*n^2+246*n-192 6835667256375107 m001 1/exp(Porter)^2*Bloch^2/sqrt(3) 6835667278990486 l006 ln(1311/2597) 6835667305272135 m001 CopelandErdos+GolombDickman^Niven 6835667310191394 k002 Champernowne real with 29/2*n^2+489/2*n-191 6835667335746678 a007 Real Root Of 88*x^4+564*x^3-137*x^2+818*x+3 6835667339273163 m001 (Paris+ZetaQ(4))/(BesselI(1,2)-Champernowne) 6835667350457385 a001 6/75283811239*21^(12/17) 6835667369986196 a007 Real Root Of 547*x^4-736*x^3-8*x^2-608*x+535 6835667378759461 a001 4/17711*317811^(31/49) 6835667385642099 r009 Im(z^3+c),c=-27/50+3/19*I,n=44 6835667404677121 a007 Real Root Of 779*x^4-953*x^3+562*x^2+695*x-262 6835667410221400 k002 Champernowne real with 15*n^2+243*n-190 6835667446712994 a007 Real Root Of 799*x^4-490*x^3-380*x^2-292*x-353 6835667467725162 m001 (Magata+MinimumGamma)/(exp(1/Pi)-Conway) 6835667472774915 m001 (Catalan-exp(1))/(-Zeta(1/2)+Salem) 6835667480639144 r009 Im(z^3+c),c=-47/86+15/38*I,n=10 6835667483969724 m001 (Ei(1)+BesselI(1,1))/(Cahen+Otter) 6835667484715626 a007 Real Root Of 381*x^4-686*x^3+675*x^2-353*x-859 6835667491046065 a007 Real Root Of -950*x^4+919*x^3-391*x^2-867*x+91 6835667510251406 k002 Champernowne real with 31/2*n^2+483/2*n-189 6835667529997064 r005 Re(z^2+c),c=-89/122+4/23*I,n=58 6835667545551105 a007 Real Root Of -153*x^4+695*x^3-799*x^2+489*x+963 6835667552476074 r005 Im(z^2+c),c=-15/32+5/43*I,n=35 6835667601151280 m001 1/BesselJ(0,1)^2/(3^(1/3))^2/ln(sqrt(2))^2 6835667610281412 k002 Champernowne real with 16*n^2+240*n-188 6835667643518116 h001 (5/7*exp(1)+7/12)/(1/12*exp(1)+1/7) 6835667649895629 a007 Real Root Of -827*x^4+418*x^3-980*x^2-256*x+597 6835667650680920 a007 Real Root Of 782*x^4+143*x^3+564*x^2+213*x-243 6835667651116434 a001 3571/610*10946^(1/60) 6835667665760583 r002 38th iterates of z^2 + 6835667683198333 r002 6th iterates of z^2 + 6835667686904114 r002 13th iterates of z^2 + 6835667693492984 m001 1/BesselJ(1,1)/Riemann3rdZero^2*ln(cosh(1))^2 6835667710311418 k002 Champernowne real with 33/2*n^2+477/2*n-187 6835667723167978 a007 Real Root Of -92*x^4-788*x^3-951*x^2+915*x-132 6835667730822898 r005 Re(z^2+c),c=-1/106+13/45*I,n=7 6835667737943557 m005 (1/2*Pi+9/11)/(2/7*3^(1/2)+3) 6835667769538020 m001 CopelandErdos^(ReciprocalLucas/Shi(1)) 6835667769863813 a007 Real Root Of -756*x^4+710*x^3+522*x^2+951*x+798 6835667774856635 r005 Re(z^2+c),c=1/54+15/44*I,n=9 6835667787369689 r009 Im(z^3+c),c=-2/13+23/31*I,n=56 6835667798152389 m005 (1/3*5^(1/2)+2/9)/(3/10*exp(1)+3/5) 6835667810341424 k002 Champernowne real with 17*n^2+237*n-186 6835667814859656 a007 Real Root Of 449*x^4-852*x^3-143*x^2-867*x-896 6835667822330395 m005 (1/3*3^(1/2)-1/5)/(1/9*exp(1)+1/4) 6835667829242137 h001 (4/9*exp(1)+5/12)/(8/11*exp(1)+2/5) 6835667833250559 a007 Real Root Of 139*x^4+918*x^3-340*x^2-812*x+65 6835667850048346 m001 GAMMA(7/12)/(BesselI(0,2)-exp(-Pi)) 6835667851112413 a001 4181/123*521^(39/46) 6835667875462079 b008 8^Gamma[Sqrt[Pi]] 6835667876154208 r005 Im(z^2+c),c=7/24+32/59*I,n=51 6835667879992503 a001 2584/15127*322^(23/36) 6835667883337457 p004 log(25243/12743) 6835667887630921 m002 6+Pi^5/5+ProductLog[Pi]^2 6835667910371430 k002 Champernowne real with 35/2*n^2+471/2*n-185 6835667912878099 r009 Re(z^3+c),c=-1/8+20/31*I,n=21 6835667919623425 a007 Real Root Of -661*x^4+766*x^3+198*x^2+442*x-495 6835667920942886 m001 (BesselI(1,1)+Lehmer)/(MadelungNaCl-ZetaQ(2)) 6835667973149328 a007 Real Root Of -390*x^4-353*x^3+714*x^2+963*x-794 6835668000727740 r005 Im(z^2+c),c=7/24+32/59*I,n=59 6835668006052484 r005 Im(z^2+c),c=7/24+32/59*I,n=63 6835668009318297 s002 sum(A267475[n]/(n!^2),n=1..infinity) 6835668010401436 k002 Champernowne real with 18*n^2+234*n-184 6835668024574562 a003 sin(Pi*2/103)-sin(Pi*27/101) 6835668037586161 r005 Im(z^2+c),c=7/24+32/59*I,n=55 6835668059392803 r005 Re(z^2+c),c=-4/7+23/33*I,n=5 6835668061459335 m001 1/GAMMA(19/24)^2/exp(FeigenbaumC)*sin(Pi/5) 6835668080385072 a001 2255/13201*322^(23/36) 6835668087318719 a001 34/521*11^(48/49) 6835668102097752 m001 (exp(1/exp(1))+Trott2nd)/(ln(2)-Zeta(1/2)) 6835668107096066 m001 (1-Catalan)/(-BesselK(1,1)+FeigenbaumC) 6835668109621954 a001 17711/103682*322^(23/36) 6835668110431442 k002 Champernowne real with 37/2*n^2+465/2*n-183 6835668111855725 m001 cosh(1)*GAMMA(1/24)^2*ln(sqrt(5)) 6835668113887557 a001 15456/90481*322^(23/36) 6835668114509901 a001 121393/710647*322^(23/36) 6835668114600699 a001 105937/620166*322^(23/36) 6835668114613947 a001 832040/4870847*322^(23/36) 6835668114622134 a001 514229/3010349*322^(23/36) 6835668114656816 a001 196418/1149851*322^(23/36) 6835668114894530 a001 75025/439204*322^(23/36) 6835668115938579 a007 Real Root Of 386*x^4-841*x^3+664*x^2-168*x-778 6835668116523845 a001 28657/167761*322^(23/36) 6835668119187133 r009 Im(z^3+c),c=-5/32+40/41*I,n=44 6835668127691341 a001 10946/64079*322^(23/36) 6835668153132750 l006 ln(4405/8726) 6835668161522094 a007 Real Root Of -118*x^4-769*x^3+324*x^2+366*x-625 6835668169841233 a001 5600748293801/3*233^(5/21) 6835668177907296 m001 (1+2^(1/3))/(-ReciprocalFibonacci+ZetaQ(2)) 6835668204234492 a001 4181/24476*322^(23/36) 6835668210461448 k002 Champernowne real with 19*n^2+231*n-182 6835668211519752 s002 sum(A275130[n]/(64^n-1),n=1..infinity) 6835668225173805 r008 a(0)=7,K{-n^6,91-86*n^3-78*n^2+79*n} 6835668239838898 m001 (-Salem+ZetaP(4))/(3^(1/2)-Champernowne) 6835668240945737 r005 Re(z^2+c),c=11/58+16/51*I,n=11 6835668261565571 r005 Re(z^2+c),c=-5/38+40/53*I,n=5 6835668279416147 r002 17th iterates of z^2 + 6835668296713869 r005 Im(z^2+c),c=-7/78+43/62*I,n=61 6835668298044512 r005 Re(z^2+c),c=7/46+5/12*I,n=7 6835668310491454 k002 Champernowne real with 39/2*n^2+459/2*n-181 6835668369733597 m006 (2/5*ln(Pi)-3/5)/(2/5*ln(Pi)-1/4) 6835668393985471 a007 Real Root Of 864*x^4-536*x^3+17*x^2+86*x-309 6835668410521460 k002 Champernowne real with 20*n^2+228*n-180 6835668431702474 r009 Re(z^3+c),c=-5/48+20/41*I,n=28 6835668446413512 m001 (OneNinth+ThueMorse)^LandauRamanujan2nd 6835668452793217 r001 4i'th iterates of 2*x^2-1 of 6835668453026994 s002 sum(A272359[n]/(exp(2*pi*n)-1),n=1..infinity) 6835668461989356 m004 -5-20*Pi-(Sqrt[5]*Cos[Sqrt[5]*Pi])/Pi 6835668474118344 r005 Im(z^2+c),c=7/24+32/59*I,n=47 6835668494535613 r009 Re(z^3+c),c=-5/48+20/41*I,n=31 6835668510551466 k002 Champernowne real with 41/2*n^2+453/2*n-179 6835668523527203 l006 ln(3094/6129) 6835668524977252 r009 Re(z^3+c),c=-5/48+20/41*I,n=29 6835668530635847 r009 Re(z^3+c),c=-5/48+20/41*I,n=33 6835668535337915 r002 34th iterates of z^2 + 6835668550248005 r009 Re(z^3+c),c=-5/48+20/41*I,n=35 6835668556341352 r009 Re(z^3+c),c=-5/48+20/41*I,n=37 6835668557190949 r009 Re(z^3+c),c=-5/48+20/41*I,n=40 6835668557274209 r009 Re(z^3+c),c=-5/48+20/41*I,n=42 6835668557343939 r009 Re(z^3+c),c=-5/48+20/41*I,n=44 6835668557369511 r009 Re(z^3+c),c=-5/48+20/41*I,n=46 6835668557375199 r009 Re(z^3+c),c=-5/48+20/41*I,n=49 6835668557375259 r009 Re(z^3+c),c=-5/48+20/41*I,n=51 6835668557375486 r009 Re(z^3+c),c=-5/48+20/41*I,n=53 6835668557375492 r009 Re(z^3+c),c=-5/48+20/41*I,n=48 6835668557375588 r009 Re(z^3+c),c=-5/48+20/41*I,n=55 6835668557375616 r009 Re(z^3+c),c=-5/48+20/41*I,n=57 6835668557375618 r009 Re(z^3+c),c=-5/48+20/41*I,n=60 6835668557375619 r009 Re(z^3+c),c=-5/48+20/41*I,n=62 6835668557375619 r009 Re(z^3+c),c=-5/48+20/41*I,n=58 6835668557375619 r009 Re(z^3+c),c=-5/48+20/41*I,n=64 6835668557375619 r009 Re(z^3+c),c=-5/48+20/41*I,n=63 6835668557375620 r009 Re(z^3+c),c=-5/48+20/41*I,n=61 6835668557375620 r009 Re(z^3+c),c=-5/48+20/41*I,n=59 6835668557375631 r009 Re(z^3+c),c=-5/48+20/41*I,n=56 6835668557375687 r009 Re(z^3+c),c=-5/48+20/41*I,n=54 6835668557375851 r009 Re(z^3+c),c=-5/48+20/41*I,n=52 6835668557376089 r009 Re(z^3+c),c=-5/48+20/41*I,n=50 6835668557377490 r009 Re(z^3+c),c=-5/48+20/41*I,n=47 6835668557390618 r009 Re(z^3+c),c=-5/48+20/41*I,n=45 6835668557435415 r009 Re(z^3+c),c=-5/48+20/41*I,n=43 6835668557506949 r009 Re(z^3+c),c=-5/48+20/41*I,n=39 6835668557526994 r009 Re(z^3+c),c=-5/48+20/41*I,n=41 6835668557543861 r009 Re(z^3+c),c=-5/48+20/41*I,n=38 6835668558786211 a007 Real Root Of -280*x^4+265*x^3+769*x^2+782*x+321 6835668560419628 r009 Re(z^3+c),c=-5/48+20/41*I,n=36 6835668571951258 r009 Re(z^3+c),c=-5/48+20/41*I,n=34 6835668579187329 m001 Riemann1stZero/(Magata^Lehmer) 6835668601336692 r009 Re(z^3+c),c=-5/48+20/41*I,n=32 6835668609049011 a007 Real Root Of -6*x^4+939*x^3+36*x^2+311*x+497 6835668610581472 k002 Champernowne real with 21*n^2+225*n-178 6835668618740957 a001 29/196418*17711^(32/51) 6835668622673484 a007 Real Root Of 145*x^4-943*x^3+319*x^2-425*x+411 6835668627709684 r009 Re(z^3+c),c=-5/48+20/41*I,n=30 6835668637780529 a001 8/4870847*47^(10/27) 6835668669428637 a001 13/29*2^(14/23) 6835668677434012 a007 Real Root Of 676*x^4+199*x^3+594*x^2+232*x-203 6835668679591477 a007 Real Root Of -106*x^4-669*x^3+392*x^2+159*x+523 6835668681093787 m001 1/sqrt(2)/sin(Pi/12)^2*ln(sqrt(5))^2 6835668709312651 m005 (7/3+5/2*5^(1/2))/(5*exp(1)-2) 6835668710611478 k002 Champernowne real with 43/2*n^2+447/2*n-177 6835668715316123 m005 (1/2*exp(1)+1)/(11/12*Pi+4/7) 6835668725159000 m005 (1/2*gamma-1/3)/(5/11*gamma-11/12) 6835668728869058 a001 1597/9349*322^(23/36) 6835668733898989 p001 sum((-1)^n/(551*n+138)/(3^n),n=0..infinity) 6835668738209522 r009 Re(z^3+c),c=-77/122+25/37*I,n=4 6835668746534038 m001 (Mills+Riemann3rdZero)/(3^(1/3)-Shi(1)) 6835668771515798 a007 Real Root Of 958*x^4-516*x^3+649*x^2+783*x-142 6835668789808917 q001 2683/3925 6835668799329443 a003 cos(Pi*19/115)-cos(Pi*41/93) 6835668810641484 k002 Champernowne real with 22*n^2+222*n-176 6835668812016159 r005 Im(z^2+c),c=5/38+31/53*I,n=44 6835668833200168 r009 Im(z^3+c),c=-3/8+43/63*I,n=11 6835668858074569 l006 ln(4877/9661) 6835668858074569 p004 log(9661/4877) 6835668861871308 a007 Real Root Of 806*x^4+563*x^3+355*x^2-294*x-363 6835668891043676 a007 Real Root Of -125*x^4+228*x^3-980*x^2+136*x+651 6835668891239147 r005 Im(z^2+c),c=-29/26+1/121*I,n=40 6835668910671490 k002 Champernowne real with 45/2*n^2+441/2*n-175 6835668929084315 m001 (ErdosBorwein-Kac)/(Stephens+Thue) 6835668964686997 r005 Im(z^2+c),c=-5/44+31/35*I,n=38 6835668980501987 a003 sin(Pi*29/111)*sin(Pi*43/112) 6835669008626995 a008 Real Root of (-9+4*x+9*x^2+9*x^4+2*x^8) 6835669010701496 k002 Champernowne real with 23*n^2+219*n-174 6835669027875914 a007 Real Root Of -463*x^4-454*x^3-701*x^2+653*x+730 6835669031593186 s001 sum(exp(-2*Pi/3)^n*A235301[n],n=1..infinity) 6835669090993295 m001 (Pi+GAMMA(2/3))/(AlladiGrinstead-Porter) 6835669100167240 m009 (Psi(1,1/3)-4/5)/(4*Catalan+1/2*Pi^2+5) 6835669106756900 r009 Re(z^3+c),c=-5/48+20/41*I,n=27 6835669110731502 k002 Champernowne real with 47/2*n^2+435/2*n-173 6835669116766066 a007 Real Root Of 752*x^4-694*x^3+31*x^2+533*x-36 6835669120399747 h003 exp(Pi*(15^(10/3)-6^(2/3))) 6835669120399747 h008 exp(Pi*(15^(10/3)-6^(2/3))) 6835669131985999 p003 LerchPhi(1/25,5,524/193) 6835669136531935 a007 Real Root Of 620*x^4-534*x^3+283*x^2+641*x 6835669151634563 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=18 6835669151867784 a001 29/121393*144^(11/52) 6835669152491838 r009 Re(z^3+c),c=-67/122+6/17*I,n=12 6835669160542236 m001 gamma(1)*cos(1/12*Pi)^MasserGramainDelta 6835669174024122 m005 (1/3*Zeta(3)+1/12)/(4/11*Catalan+3/8) 6835669182872745 a007 Real Root Of 60*x^4-683*x^3-472*x^2-688*x-481 6835669210761508 k002 Champernowne real with 24*n^2+216*n-172 6835669211833441 r005 Im(z^2+c),c=-3/5+45/113*I,n=46 6835669224240169 p001 sum((-1)^n/(472*n+137)/(3^n),n=0..infinity) 6835669226736596 a007 Real Root Of -539*x^4+864*x^3-46*x^2-758*x-103 6835669234546492 r002 3th iterates of z^2 + 6835669279064320 a001 377/5778*322^(29/36) 6835669299770229 a007 Real Root Of -879*x^4-178*x^3-547*x^2-453*x+81 6835669310791514 k002 Champernowne real with 49/2*n^2+429/2*n-171 6835669317943798 m001 (GaussKuzminWirsing-Thue)/StolarskyHarborth 6835669318118165 a007 Real Root Of -934*x^4+965*x^3+204*x^2+227*x+572 6835669362592842 r005 Re(z^2+c),c=-19/18+29/193*I,n=56 6835669380417599 m005 (1/2*gamma+1/7)/(3/7*3^(1/2)-1/9) 6835669390119209 a007 Real Root Of 905*x^4-950*x^3-411*x^2-711*x-795 6835669391477676 r009 Im(z^3+c),c=-27/50+3/19*I,n=39 6835669410821520 k002 Champernowne real with 25*n^2+213*n-170 6835669438607102 l006 ln(1783/3532) 6835669478076583 a007 Real Root Of -297*x^4+91*x^3-584*x^2+170*x+483 6835669484833140 r005 Re(z^2+c),c=-35/48+7/40*I,n=3 6835669500018427 g001 GAMMA(4/5,38/103) 6835669507456922 a007 Real Root Of -11*x^4-754*x^3-131*x^2+753*x+388 6835669510851526 k002 Champernowne real with 51/2*n^2+423/2*n-169 6835669537273715 m001 (arctan(1/2)-exp(1))/(FeigenbaumC+Porter) 6835669542338070 a007 Real Root Of -625*x^4-304*x^3-585*x^2+530*x+675 6835669549657023 q001 2292/3353 6835669577425856 m001 Shi(1)*BesselI(1,1)^LandauRamanujan 6835669589511421 m001 (Rabbit+ZetaP(4))/(BesselJ(1,1)-BesselI(1,2)) 6835669597400523 r005 Re(z^2+c),c=6/29+11/25*I,n=52 6835669608653684 a001 1364/7778742049*6765^(15/16) 6835669610881532 k002 Champernowne real with 26*n^2+210*n-168 6835669636659398 a001 1364/10610209857723*14930352^(15/16) 6835669637689364 m001 (GAMMA(11/12)+Weierstrass)/(Zeta(3)+Zeta(5)) 6835669655932313 m001 Pi-ln(2)/ln(10)/gamma(1)-BesselJ(1,1) 6835669698519298 a007 Real Root Of -820*x^4+772*x^3+505*x^2+435*x+487 6835669710911538 k002 Champernowne real with 53/2*n^2+417/2*n-167 6835669718609172 a007 Real Root Of 885*x^4-363*x^3-392*x^2+730*x+373 6835669725520529 m005 (1/3*3^(1/2)-1/4)/(4/5*5^(1/2)+3) 6835669737927369 m005 (1/2*3^(1/2)-2/7)/(7/9*gamma+2/5) 6835669762764159 r005 Im(z^2+c),c=37/118+21/44*I,n=13 6835669775153636 h001 (7/10*exp(2)+1/2)/(1/10*exp(2)+1/11) 6835669810941544 k002 Champernowne real with 27*n^2+207*n-166 6835669851520980 r009 Re(z^3+c),c=-9/86+31/63*I,n=25 6835669871402666 m001 (exp(1)+FeigenbaumB*FeigenbaumMu)/FeigenbaumB 6835669873387744 r008 a(0)=6,K{-n^6,-62+72*n^3-83*n^2+72*n} 6835669879364417 r002 17th iterates of z^2 + 6835669879676576 a001 17/2889*18^(28/33) 6835669895473556 r002 59th iterates of z^2 + 6835669910971550 k002 Champernowne real with 55/2*n^2+411/2*n-165 6835669945372812 m008 (1/2*Pi^6+1/6)/(1/5*Pi^3+5/6) 6835669957917054 a003 cos(Pi*8/89)*sin(Pi*30/119) 6835669971274707 m001 1/Trott^2/ln(RenyiParking)*GAMMA(7/12)^2 6835669973960597 m005 (1/2*5^(1/2)+1/3)/(7/8*5^(1/2)+1/6) 6835669990991410 a001 8/29*199^(6/35) 6835670011001556 k002 Champernowne real with 28*n^2+204*n-164 6835670022467524 m005 (1/2*exp(1)+8/9)/(1/6*3^(1/2)+3) 6835670032748337 m001 (OrthogonalArrays-gamma(3)*ZetaQ(4))/gamma(3) 6835670036308546 m001 (Tetranacci+ZetaQ(3))/(Ei(1)-Zeta(1,2)) 6835670042238794 a007 Real Root Of -632*x^4+583*x^3-336*x^2+560*x+864 6835670101241561 a007 Real Root Of 178*x^4+262*x^3+830*x^2-749*x-855 6835670111031562 k002 Champernowne real with 57/2*n^2+405/2*n-163 6835670127105945 r005 Im(z^2+c),c=-21/38+5/62*I,n=9 6835670137879430 m001 (Cahen+Otter)/(2*Pi/GAMMA(5/6)-ln(2)/ln(10)) 6835670139760390 l006 ln(4038/7999) 6835670156452864 r005 Re(z^2+c),c=-13/14+11/145*I,n=16 6835670159533039 r009 Re(z^3+c),c=-39/70+8/51*I,n=62 6835670200928732 a001 521/46368*12586269025^(9/19) 6835670205257310 m005 (1/2*exp(1)-8/11)/(9/10*Catalan+1/10) 6835670206535871 m001 (ln(2)-MinimumGamma)^exp(1/exp(1)) 6835670211061568 k002 Champernowne real with 29*n^2+201*n-162 6835670218245746 r001 3i'th iterates of 2*x^2-1 of 6835670259057263 r005 Re(z^2+c),c=-11/14+79/153*I,n=3 6835670259208174 a007 Real Root Of -77*x^4-652*x^3-928*x^2-550*x-532 6835670279701466 m001 GAMMA(5/6)^((1+3^(1/2))^(1/2))/KomornikLoreti 6835670284609404 a007 Real Root Of -769*x^4+981*x^3-678*x^2-752*x+284 6835670291877678 m003 3/2-Cos[1/2+Sqrt[5]/2]-Tan[1/2+Sqrt[5]/2]/4 6835670295250443 r005 Re(z^2+c),c=3/46+41/63*I,n=24 6835670297025410 a001 11*165580141^(6/13) 6835670311091574 k002 Champernowne real with 59/2*n^2+399/2*n-161 6835670328620039 a007 Real Root Of 863*x^4+632*x^3+182*x^2-852*x-654 6835670330781052 h001 (3/5*exp(1)+1/10)/(5/8*exp(1)+5/6) 6835670364562849 m001 ln(3)*FeigenbaumDelta*MertensB3 6835670377750063 m005 (1/2*2^(1/2)+8/9)/(2/7*exp(1)-4/5) 6835670391524847 m001 (HardHexagonsEntropy-Paris)/(Ei(1)+gamma(3)) 6835670392877647 a007 Real Root Of 796*x^4-23*x^3+546*x^2+75*x-385 6835670411121580 k002 Champernowne real with 30*n^2+198*n-160 6835670412827514 a007 Real Root Of -261*x^4+664*x^3+639*x^2+78*x-507 6835670421186668 a007 Real Root Of 609*x^4+376*x^3+151*x^2-172*x-201 6835670434577375 m001 ln(2^(1/2)+1)^FeigenbaumB/ln(2+3^(1/2)) 6835670443541852 m005 (1/2*3^(1/2)+7/8)/(2*Zeta(3)+1/7) 6835670461383474 a007 Real Root Of -132*x^4-835*x^3+583*x^2+884*x+300 6835670506467168 p003 LerchPhi(1/256,1,283/193) 6835670511151586 k002 Champernowne real with 61/2*n^2+393/2*n-159 6835670554469318 a007 Real Root Of -678*x^4+869*x^3-106*x^2+604*x+888 6835670592672517 m001 Catalan*(HeathBrownMoroz-RenyiParking) 6835670611181592 k002 Champernowne real with 31*n^2+195*n-158 6835670612951154 m005 (2/5*exp(1)-1)/(2/3*Catalan+2/3) 6835670615838658 r005 Re(z^2+c),c=-101/98+21/64*I,n=12 6835670621567496 m005 (1/2*Zeta(3)+1/7)/(7/10*Catalan-3/4) 6835670622078389 q001 1901/2781 6835670666993298 r005 Im(z^2+c),c=3/50+26/37*I,n=4 6835670684600119 r002 52th iterates of z^2 + 6835670693513035 h001 (4/7*exp(2)+7/8)/(8/9*exp(2)+8/9) 6835670694153399 l006 ln(2255/4467) 6835670710356726 m001 ln(BesselJ(1,1))/ErdosBorwein^2*arctan(1/2)^2 6835670711211598 k002 Champernowne real with 63/2*n^2+387/2*n-157 6835670726253816 m001 (TravellingSalesman+ZetaP(2))/(gamma(3)+Niven) 6835670730789167 a003 sin(Pi*6/101)/cos(Pi*33/80) 6835670741604845 m001 (3^(1/3)+Cahen)/(Conway+MadelungNaCl) 6835670748229054 a007 Real Root Of 796*x^4-984*x^3-392*x^2+528*x+56 6835670785725233 m001 exp(Kolakoski)*KhintchineHarmonic^2/Paris 6835670799886857 m001 (arctan(1/2)-LaplaceLimit)^CopelandErdos 6835670811241604 k002 Champernowne real with 32*n^2+192*n-156 6835670813052087 m001 (ln(5)-LaplaceLimit)/(MinimumGamma-ZetaP(4)) 6835670814811350 r009 Im(z^3+c),c=-17/44+31/47*I,n=30 6835670822113753 r002 55th iterates of z^2 + 6835670825206687 m001 Paris^2*MertensB1^2/exp(GAMMA(1/12))^2 6835670837969824 m001 (FeigenbaumDelta+MertensB3)/(Paris-Trott) 6835670869585504 m001 FeigenbaumB-FeigenbaumC*StolarskyHarborth 6835670872291539 m001 HardHexagonsEntropy^Stephens/Pi^(1/2) 6835670881534450 r009 Re(z^3+c),c=-5/48+20/41*I,n=19 6835670882668959 b008 64+Log[78] 6835670892383498 p001 sum((-1)^n/(313*n+134)/(3^n),n=0..infinity) 6835670894431313 a007 Real Root Of 424*x^4-214*x^3+955*x^2-10*x-614 6835670910779993 a001 1/3*89^(4/25) 6835670911271610 k002 Champernowne real with 65/2*n^2+381/2*n-155 6835670928436854 a007 Real Root Of 779*x^4-771*x^3+819*x^2-136*x-892 6835670989189659 a007 Real Root Of -12*x^4+37*x^3+898*x^2+712*x+925 6835671011301616 k002 Champernowne real with 33*n^2+189*n-154 6835671033431036 s002 sum(A041212[n]/(16^n),n=1..infinity) 6835671035804885 m006 (3/5/Pi+3)/(2*exp(Pi)+2/5) 6835671054711287 h001 (11/12*exp(1)+2/5)/(6/11*exp(2)+1/5) 6835671062333382 a007 Real Root Of -210*x^4+336*x^3+192*x^2-27*x+45 6835671069113258 s002 sum(A187090[n]/(n^3*exp(n)-1),n=1..infinity) 6835671079807679 h001 (8/11*exp(1)+2/3)/(4/9*exp(2)+7/12) 6835671097557538 a007 Real Root Of -60*x^4-571*x^3-952*x^2+961*x-327 6835671100941534 a007 Real Root Of 596*x^4+12*x^3-998*x^2-491*x+668 6835671101774415 r005 Re(z^2+c),c=-85/94+11/21*I,n=4 6835671111331622 k002 Champernowne real with 67/2*n^2+375/2*n-153 6835671112086031 m001 (Pi^(1/2))^ZetaP(2)/Ei(1) 6835671138124913 r005 Im(z^2+c),c=3/11+17/35*I,n=11 6835671143498814 l006 ln(4982/9869) 6835671174433253 r005 Im(z^2+c),c=-7/12+1/86*I,n=27 6835671205240085 r005 Im(z^2+c),c=-85/114+1/26*I,n=13 6835671211361628 k002 Champernowne real with 34*n^2+186*n-152 6835671218241303 m005 (1/2*Pi+6/7)/(1/7*gamma+3/11) 6835671247014959 a001 9349/1597*10946^(1/60) 6835671249114678 a007 Real Root Of 254*x^4+175*x^3+684*x^2+227*x-164 6835671280474843 r005 Re(z^2+c),c=-83/110+1/42*I,n=7 6835671296325564 r009 Im(z^3+c),c=-5/66+43/56*I,n=48 6835671296416748 r008 a(0)=7,K{-n^6,90-86*n^3-78*n^2+80*n} 6835671306037705 r005 Im(z^2+c),c=-53/98+5/41*I,n=35 6835671311391634 k002 Champernowne real with 69/2*n^2+369/2*n-151 6835671322520639 a007 Real Root Of 874*x^4-960*x^3-398*x^2+147*x-211 6835671333447289 a001 1/34*2178309^(31/45) 6835671335065173 h001 (3/7*exp(2)+7/11)/(5/7*exp(2)+2/7) 6835671344199745 m001 1/Magata^2*ln(LaplaceLimit)^2/Zeta(1/2)^2 6835671395283302 m001 ln(Catalan)^2/Tribonacci^2/gamma^2 6835671397883860 a007 Real Root Of -190*x^4+902*x^3+166*x^2+699*x-802 6835671407437176 r005 Re(z^2+c),c=-65/118+31/56*I,n=57 6835671411421640 k002 Champernowne real with 35*n^2+183*n-150 6835671421838295 m001 (Backhouse-MertensB1)/MadelungNaCl 6835671461090756 a007 Real Root Of -368*x^4+696*x^3+794*x^2-215*x-366 6835671471385552 m001 (-BesselI(1,1)+ZetaQ(4))/(Psi(1,1/3)-Si(Pi)) 6835671483943002 a007 Real Root Of 67*x^4+264*x^3+633*x^2-784*x-762 6835671501421335 r005 Re(z^2+c),c=-81/118+4/15*I,n=23 6835671511451646 k002 Champernowne real with 71/2*n^2+363/2*n-149 6835671515069723 l006 ln(2727/5402) 6835671575101455 a007 Real Root Of -934*x^4+835*x^3-207*x^2-514*x+216 6835671578048381 p003 LerchPhi(1/64,3,39/74) 6835671587223832 m001 BesselJ(0,1)-ln(5)+StronglyCareFree 6835671592372279 r005 Im(z^2+c),c=11/28+7/50*I,n=12 6835671600718032 m002 -Cosh[Pi]/6+6*Sinh[Pi]+Tanh[Pi] 6835671609490168 m001 (Sierpinski+ZetaP(3))/(GAMMA(2/3)+FeigenbaumD) 6835671611481652 k002 Champernowne real with 36*n^2+180*n-148 6835671636987989 a007 Real Root Of 128*x^4-545*x^3-170*x^2-833*x-692 6835671640480860 m001 OneNinth^2*ln(FibonacciFactorial)^2/sin(1)^2 6835671646849789 r002 53th iterates of z^2 + 6835671663823888 m006 (1/3*Pi-3)/(1/6*exp(Pi)-1) 6835671675983561 a007 Real Root Of 706*x^4-745*x^3+597*x^2-758*x+323 6835671684415807 a003 cos(Pi*28/115)*sin(Pi*44/111) 6835671690875526 m001 (Pi-ln(5))/(FeigenbaumAlpha-MertensB1) 6835671694402238 h001 (5/11*exp(1)+3/8)/(5/6*exp(1)+1/11) 6835671704828509 r005 Im(z^2+c),c=-5/98+19/26*I,n=5 6835671707338989 a007 Real Root Of -612*x^4+681*x^3-59*x^2+688*x+849 6835671708598165 a007 Real Root Of 532*x^4-462*x^3+879*x^2-447*x-980 6835671711511658 k002 Champernowne real with 73/2*n^2+357/2*n-147 6835671763682959 r005 Re(z^2+c),c=11/54+8/25*I,n=17 6835671766653924 p003 LerchPhi(1/64,3,192/169) 6835671771649760 a001 24476/4181*10946^(1/60) 6835671791162913 m004 -3-(20*Sqrt[5])/Pi+Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 6835671811541664 k002 Champernowne real with 37*n^2+177*n-146 6835671812115428 m001 (-Niven+QuadraticClass)/(Grothendieck-gamma) 6835671817819331 m005 (1/2*Catalan-1/6)/(2/7*Catalan+4) 6835671827958594 a007 Real Root Of -563*x^4+570*x^3-595*x^2+256*x+758 6835671836324654 r009 Im(z^3+c),c=-13/22+27/41*I,n=5 6835671837912688 p001 sum((-1)^n/(545*n+58)/n/(24^n),n=1..infinity) 6835671840493122 m001 (BesselJ(1,1)+Bloch)/(Thue+Weierstrass) 6835671844554178 a007 Real Root Of 270*x^4-465*x^3+523*x^2+800*x+95 6835671858982746 m001 1/exp(Riemann2ndZero)/Rabbit/GAMMA(7/12) 6835671877384827 a007 Real Root Of -337*x^4+73*x^3+235*x^2+547*x+361 6835671885546217 a007 Real Root Of 258*x^4-724*x^3+305*x^2+341*x-197 6835671895499246 a001 13201/2255*10946^(1/60) 6835671905683380 a007 Real Root Of -628*x^4+775*x^3+697*x^2+250*x-607 6835671906044112 m004 -6-10/Pi+25*Pi-Tanh[Sqrt[5]*Pi] 6835671906720350 m005 (1/2*Zeta(3)+2/7)/(5/11*Zeta(3)-5/12) 6835671911571670 k002 Champernowne real with 75/2*n^2+351/2*n-145 6835671912264829 r009 Re(z^3+c),c=-5/48+20/41*I,n=25 6835671914025816 g002 Psi(5/11)+Psi(2/5)-Psi(1/10)-Psi(5/7) 6835671941021423 m001 Porter/(BesselJ(1,1)+Riemann2ndZero) 6835671958503987 r005 Re(z^2+c),c=-17/22+3/64*I,n=39 6835671970560822 m001 (MasserGramain+ReciprocalLucas)/(exp(1)+ln(3)) 6835671977576096 m001 2*Pi/GAMMA(5/6)*GAMMA(19/24)^GlaisherKinkelin 6835671977638859 g002 Psi(3/11)+Psi(1/9)-Psi(3/8)-Psi(2/7) 6835671984350390 h001 (3/4*exp(2)+2/5)/(2/11*exp(1)+3/8) 6835672005276648 r009 Im(z^3+c),c=-17/58+20/29*I,n=54 6835672011601676 k002 Champernowne real with 38*n^2+174*n-144 6835672021556845 s002 sum(A231408[n]/(n^2*exp(n)-1),n=1..infinity) 6835672044472403 m001 (Lehmer-ZetaP(3))/(polylog(4,1/2)-GAMMA(5/6)) 6835672067377922 r005 Im(z^2+c),c=-55/52+15/47*I,n=9 6835672087777519 m001 sin(1/5*Pi)^ZetaQ(4)/MinimumGamma 6835672090211292 r005 Im(z^2+c),c=41/110+11/58*I,n=4 6835672093739989 l006 ln(3199/6337) 6835672095891933 a001 15127/2584*10946^(1/60) 6835672107423508 r005 Re(z^2+c),c=-10/13+4/55*I,n=25 6835672111631682 k002 Champernowne real with 77/2*n^2+345/2*n-143 6835672112464620 h001 (-2*exp(3/2)-6)/(-6*exp(3/2)+5) 6835672124517320 a001 341/2*377^(28/45) 6835672184966246 a007 Real Root Of 970*x^4-856*x^3+812*x^2+924*x-233 6835672211661688 k002 Champernowne real with 39*n^2+171*n-142 6835672231823303 s002 sum(A054862[n]/(exp(n)),n=1..infinity) 6835672249886826 q001 151/2209 6835672265884728 r005 Im(z^2+c),c=-39/106+35/59*I,n=58 6835672278301512 m001 (3^(1/2)-Si(Pi))/(Chi(1)+Catalan) 6835672280960784 r005 Re(z^2+c),c=11/94+9/14*I,n=6 6835672283512303 a001 987/9349*322^(13/18) 6835672295952111 r005 Im(z^2+c),c=-7/16+41/42*I,n=3 6835672301342746 p003 LerchPhi(1/12,3,383/155) 6835672306906077 m002 -Pi^4+Pi^3*Coth[Pi]-ProductLog[Pi]-Tanh[Pi] 6835672311691694 k002 Champernowne real with 79/2*n^2+339/2*n-141 6835672313261219 m001 (-Gompertz+Sierpinski)/(Chi(1)-GAMMA(5/6)) 6835672315668791 b008 9*JacobiAmplitude[2/3,-2] 6835672324768151 a001 610/3571*322^(23/36) 6835672384742907 a007 Real Root Of 331*x^4-965*x^3-641*x^2-869*x-675 6835672406236273 h001 (1/10*exp(2)+5/6)/(3/10*exp(2)+1/12) 6835672411721700 k002 Champernowne real with 40*n^2+168*n-140 6835672439159238 r005 Re(z^2+c),c=-111/122+9/64*I,n=20 6835672461614165 r005 Im(z^2+c),c=1/4+29/59*I,n=14 6835672472138542 r009 Im(z^3+c),c=-49/122+13/21*I,n=42 6835672480899887 a003 cos(Pi*5/42)-cos(Pi*37/88) 6835672485456946 a007 Real Root Of -897*x^4-477*x^3-728*x^2+533*x+748 6835672499257224 r002 35th iterates of z^2 + 6835672511751706 k002 Champernowne real with 81/2*n^2+333/2*n-139 6835672523604804 l006 ln(3671/7272) 6835672532069808 r005 Re(z^2+c),c=1/78+13/17*I,n=5 6835672545989616 m001 Landau*(2^(1/3)-ZetaQ(4)) 6835672560009529 m005 (1/2*5^(1/2)-11/12)/(1/6*Pi-9/11) 6835672611781712 k002 Champernowne real with 41*n^2+165*n-138 6835672620694822 m001 (Zeta(3)+HardyLittlewoodC4)/(Shi(1)-exp(Pi)) 6835672625479952 m005 (1/2*3^(1/2)-1/10)/(5/11*3^(1/2)+1/3) 6835672646628537 r005 Im(z^2+c),c=-49/94+22/35*I,n=11 6835672711811718 k002 Champernowne real with 83/2*n^2+327/2*n-137 6835672729350195 r005 Im(z^2+c),c=-37/28+1/37*I,n=47 6835672738452885 r001 34i'th iterates of 2*x^2-1 of 6835672746717789 a001 3571/20365011074*6765^(15/16) 6835672748082587 m001 (cos(1/5*Pi)-Champernowne)/(Paris+ZetaQ(4)) 6835672783502094 r005 Im(z^2+c),c=-3/74+19/26*I,n=35 6835672804879945 a003 sin(Pi*16/83)/sin(Pi*26/83) 6835672808602212 r005 Im(z^2+c),c=7/24+32/59*I,n=39 6835672811613716 a007 Real Root Of -722*x^4+767*x^3-17*x^2-428*x+118 6835672811841724 k002 Champernowne real with 42*n^2+162*n-136 6835672812238829 a007 Real Root Of -598*x^4+714*x^3-935*x^2+880*x-56 6835672814111429 k006 concat of cont frac of 6835672828686105 s001 sum(exp(-Pi)^n*A248979[n],n=1..infinity) 6835672828686105 s002 sum(A248979[n]/(exp(pi*n)),n=1..infinity) 6835672828890710 a007 Real Root Of 224*x^4+125*x^3+402*x^2-50*x-231 6835672831092999 m001 Riemann1stZero^2*GolombDickman^2*ln(Catalan) 6835672837439585 m001 (Catalan-GAMMA(5/12))/sqrt(Pi) 6835672837439585 m001 (Catalan-Pi*csc(5/12*Pi)/GAMMA(7/12))/Pi^(1/2) 6835672855523098 l006 ln(4143/8207) 6835672861621459 m005 (1/3*2^(1/2)+2/5)/(3/10*Catalan+1) 6835672867910938 a007 Real Root Of -426*x^4+386*x^3-398*x^2+889*x-452 6835672911871730 k002 Champernowne real with 85/2*n^2+321/2*n-135 6835672917363563 a007 Real Root Of 386*x^4+691*x^3+679*x^2-897*x-794 6835672928672240 m005 (1/2*Pi-1/4)/(7/8*3^(1/2)+5/12) 6835672929426442 m005 (1/2*Pi+1/5)/(4/11*3^(1/2)-8/9) 6835672931484607 m005 (1/2*3^(1/2)+1/10)/(5/8*exp(1)-2/7) 6835672935002800 r004 Re(z^2+c),c=-3/38+7/20*I,z(0)=I,n=3 6835672953685812 s002 sum(A108466[n]/(n*exp(n)-1),n=1..infinity) 6835672965376871 a007 Real Root Of 150*x^4+997*x^3-115*x^2+615*x+522 6835672970177109 r005 Re(z^2+c),c=-7/34+25/36*I,n=8 6835672992600158 r005 Re(z^2+c),c=5/94+21/52*I,n=39 6835672995675892 a007 Real Root Of -853*x^4+962*x^3-499*x^2+394*x+996 6835673011901736 k002 Champernowne real with 43*n^2+159*n-134 6835673036427216 m001 1/exp(cosh(1))^2/OneNinth^2*log(2+sqrt(3))^2 6835673041138192 m001 exp(arctan(1/2))^2/Riemann1stZero^2*cos(1) 6835673050456876 a001 1/311187*4181^(11/30) 6835673082948318 m001 BesselJ(1,1)^2/ln(FeigenbaumB)^2/sin(1) 6835673109352112 m001 1/BesselJ(1,1)*ln(Porter)/GAMMA(5/6)^2 6835673111931742 k002 Champernowne real with 87/2*n^2+315/2*n-133 6835673119547371 l006 ln(4615/9142) 6835673131266652 a007 Real Root Of -693*x^4-623*x^3-609*x^2+796*x+781 6835673171963558 m001 (ln(2^(1/2)+1)-gamma(2))/(GAMMA(5/6)+ZetaP(3)) 6835673188376397 a007 Real Root Of 888*x^4-607*x^3+661*x^2-397*x-968 6835673190145461 a003 sin(Pi*16/61)*sin(Pi*37/97) 6835673190828331 r002 2th iterates of z^2 + 6835673193723353 r002 5th iterates of z^2 + 6835673201583795 r005 Im(z^2+c),c=-109/102+17/59*I,n=10 6835673204555172 a001 9349/53316291173*6765^(15/16) 6835673211961748 k002 Champernowne real with 44*n^2+156*n-132 6835673219120630 g007 Psi(2,7/10)+Psi(2,7/8)-Psi(2,8/11)-Psi(2,1/7) 6835673223889049 m001 (BesselI(1,2)-FeigenbaumB)^exp(1/Pi) 6835673234834446 a007 Real Root Of -36*x^4+325*x^3-476*x^2+705*x+816 6835673247069401 a007 Real Root Of 949*x^4+363*x^3+830*x^2-133*x-570 6835673249549987 r005 Im(z^2+c),c=17/118+17/30*I,n=16 6835673269357430 a001 11/121393*6765^(25/51) 6835673270342609 m001 (Zeta(1,2)-Magata)/(MasserGramain-Rabbit) 6835673271352746 a001 24476/139583862445*6765^(15/16) 6835673281098381 a001 64079/365435296162*6765^(15/16) 6835673282520250 a001 167761/956722026041*6765^(15/16) 6835673282727697 a001 439204/2504730781961*6765^(15/16) 6835673282757964 a001 1149851/6557470319842*6765^(15/16) 6835673282765109 a001 620166/3536736619241*6765^(15/16) 6835673282776669 a001 710647/4052739537881*6765^(15/16) 6835673282855907 a001 90481/516002918640*6765^(15/16) 6835673283399013 a001 103682/591286729879*6765^(15/16) 6835673287121514 a001 13201/75283811239*6765^(15/16) 6835673311991754 k002 Champernowne real with 89/2*n^2+309/2*n-131 6835673312635917 a001 15127/86267571272*6765^(15/16) 6835673315672825 m005 (1/2*5^(1/2)+3/4)/(4/5*Catalan+2) 6835673317544367 s002 sum(A126429[n]/(exp(n)-1),n=1..infinity) 6835673334576374 l006 ln(5087/10077) 6835673343179147 p001 sum((-1)^n/(583*n+146)/(100^n),n=0..infinity) 6835673353741236 r005 Re(z^2+c),c=5/46+9/16*I,n=50 6835673367965986 r002 3th iterates of z^2 + 6835673378181834 b008 FresnelS[ArcTan[8*Pi]] 6835673409727188 a007 Real Root Of -831*x^4+600*x^3-101*x^2-391*x+153 6835673412021760 k002 Champernowne real with 45*n^2+153*n-130 6835673415348628 a001 646/6119*322^(13/18) 6835673426937077 q001 2629/3846 6835673438592809 a007 Real Root Of -389*x^4+846*x^3-370*x^2-22*x+513 6835673449415670 m001 StronglyCareFree/(Tribonacci^exp(-1/2*Pi)) 6835673469404119 a001 1926/329*10946^(1/60) 6835673487514236 a001 1926/10983760033*6765^(15/16) 6835673488148752 m002 -E^Pi+2*Pi^2-3*Log[Pi] 6835673492182419 a007 Real Root Of -326*x^4+434*x^3-73*x^2+597*x+652 6835673512051766 k002 Champernowne real with 91/2*n^2+303/2*n-129 6835673532778038 a008 Real Root of x^2-x-4741 6835673540988131 a007 Real Root Of -875*x^4+896*x^3-898*x^2-10*x+890 6835673552225903 m005 (1/2*Catalan-1/9)/(3/7*Catalan-9/10) 6835673564435657 s002 sum(A279104[n]/((exp(n)+1)*n),n=1..infinity) 6835673569841798 a007 Real Root Of 796*x^4+117*x^3-511*x^2-615*x+448 6835673580481320 a001 6765/64079*322^(13/18) 6835673604573855 a001 17711/167761*322^(13/18) 6835673608088909 a001 11592/109801*322^(13/18) 6835673608601748 a001 121393/1149851*322^(13/18) 6835673608676570 a001 317811/3010349*322^(13/18) 6835673608687487 a001 208010/1970299*322^(13/18) 6835673608689079 a001 2178309/20633239*322^(13/18) 6835673608689312 a001 5702887/54018521*322^(13/18) 6835673608689346 a001 3732588/35355581*322^(13/18) 6835673608689351 a001 39088169/370248451*322^(13/18) 6835673608689351 a001 102334155/969323029*322^(13/18) 6835673608689351 a001 66978574/634430159*322^(13/18) 6835673608689351 a001 701408733/6643838879*322^(13/18) 6835673608689351 a001 1836311903/17393796001*322^(13/18) 6835673608689351 a001 1201881744/11384387281*322^(13/18) 6835673608689351 a001 12586269025/119218851371*322^(13/18) 6835673608689351 a001 32951280099/312119004989*322^(13/18) 6835673608689351 a001 21566892818/204284540899*322^(13/18) 6835673608689351 a001 225851433717/2139295485799*322^(13/18) 6835673608689351 a001 182717648081/1730726404001*322^(13/18) 6835673608689351 a001 139583862445/1322157322203*322^(13/18) 6835673608689351 a001 53316291173/505019158607*322^(13/18) 6835673608689351 a001 10182505537/96450076809*322^(13/18) 6835673608689351 a001 7778742049/73681302247*322^(13/18) 6835673608689351 a001 2971215073/28143753123*322^(13/18) 6835673608689351 a001 567451585/5374978561*322^(13/18) 6835673608689351 a001 433494437/4106118243*322^(13/18) 6835673608689351 a001 165580141/1568397607*322^(13/18) 6835673608689352 a001 31622993/299537289*322^(13/18) 6835673608689354 a001 24157817/228826127*322^(13/18) 6835673608689367 a001 9227465/87403803*322^(13/18) 6835673608689455 a001 1762289/16692641*322^(13/18) 6835673608690064 a001 1346269/12752043*322^(13/18) 6835673608694233 a001 514229/4870847*322^(13/18) 6835673608722813 a001 98209/930249*322^(13/18) 6835673608918700 a001 75025/710647*322^(13/18) 6835673609677158 r002 3th iterates of z^2 + 6835673610261331 a001 28657/271443*322^(13/18) 6835673612081772 k002 Champernowne real with 46*n^2+150*n-128 6835673619463861 a001 5473/51841*322^(13/18) 6835673624817915 s001 sum(exp(-3*Pi/5)^n*A030686[n],n=1..infinity) 6835673625232802 a001 165580141/3*47^(1/18) 6835673645021601 m004 -15*Pi+(25*Pi)/Log[Sqrt[5]*Pi] 6835673653198282 a007 Real Root Of -83*x^4+719*x^3+657*x^2+324*x-740 6835673669378733 m001 ln(cos(Pi/12))^2*Paris/log(2+sqrt(3))^2 6835673678891808 r005 Re(z^2+c),c=-49/50+11/43*I,n=37 6835673682538936 a001 4181/39603*322^(13/18) 6835673683524001 m001 Riemann2ndZero^Landau/BesselJ(0,1) 6835673688623020 a007 Real Root Of -780*x^4-697*x^3-451*x^2+804*x+708 6835673689602176 a008 Real Root of (2+6*x+x^2-4*x^3+3*x^4+2*x^5) 6835673704797704 a007 Real Root Of 510*x^4+67*x^3+295*x^2+402*x+47 6835673709090211 r002 13th iterates of z^2 + 6835673712111778 k002 Champernowne real with 93/2*n^2+297/2*n-127 6835673727804571 a007 Real Root Of 97*x^4-256*x^3+607*x^2-814*x-943 6835673734869528 a003 sin(Pi*12/55)/sin(Pi*26/69) 6835673739680388 m001 Zeta(1,2)/(gamma(3)^ln(2)) 6835673760818510 a001 844/13*144^(9/19) 6835673788748761 a007 Real Root Of -728*x^4+769*x^3-181*x^2-344*x+254 6835673812141784 k002 Champernowne real with 47*n^2+147*n-126 6835673815198005 r005 Re(z^2+c),c=-9/74+40/49*I,n=39 6835673815632596 a007 Real Root Of 303*x^4-639*x^3+160*x^2-275*x-533 6835673829232888 m001 (-Cahen+RenyiParking)/(3^(1/2)-exp(-1/2*Pi)) 6835673840429561 r005 Re(z^2+c),c=37/122+27/52*I,n=52 6835673843465648 r002 12th iterates of z^2 + 6835673851338753 a007 Real Root Of -509*x^4-986*x^3-874*x^2+340*x+437 6835673859543487 a007 Real Root Of -882*x^4+849*x^3-504*x^2+143*x+797 6835673886902061 r002 22th iterates of z^2 + 6835673912171790 k002 Champernowne real with 95/2*n^2+291/2*n-125 6835673914997815 l006 ln(1258/1347) 6835673949647766 a007 Real Root Of -849*x^4+625*x^3-796*x^2-95*x+692 6835673963404431 r005 Im(z^2+c),c=-9/98+16/23*I,n=13 6835673964828583 r001 49i'th iterates of 2*x^2-1 of 6835673983848967 r002 4th iterates of z^2 + 6835674012201796 k002 Champernowne real with 48*n^2+144*n-124 6835674015295400 a001 39603/34*4181^(21/43) 6835674032320250 a003 sin(Pi*1/30)*sin(Pi*27/119) 6835674056358960 a007 Real Root Of 191*x^4-667*x^3-334*x^2-880*x-6 6835674112231802 k002 Champernowne real with 97/2*n^2+285/2*n-123 6835674112869356 m005 (1/2*Pi-9/10)/(2/9*Pi-3/5) 6835674114861935 a001 1597/15127*322^(13/18) 6835674149688940 m005 (1/2*Catalan-4/7)/(54/77+3/7*5^(1/2)) 6835674198721614 a001 54018521/21*2504730781961^(7/16) 6835674198721616 a001 224056801/3*1134903170^(7/16) 6835674198723878 a001 45537549124/21*514229^(7/16) 6835674212261808 k002 Champernowne real with 49*n^2+141*n-122 6835674240312317 r005 Im(z^2+c),c=-11/13+22/47*I,n=4 6835674244829807 a001 521*(1/2*5^(1/2)+1/2)^24*3^(3/14) 6835674279713009 r009 Re(z^3+c),c=-2/21+11/27*I,n=14 6835674289574106 a001 377/167761*199^(20/31) 6835674293814981 m001 (Niven+TreeGrowth2nd)/(ln(5)+GAMMA(7/12)) 6835674299638461 m005 (1/2*Zeta(3)+5/9)/(7/8*2^(1/2)+5/11) 6835674312291814 k002 Champernowne real with 99/2*n^2+279/2*n-121 6835674318318956 r009 Re(z^3+c),c=-13/118+27/50*I,n=22 6835674318540627 a007 Real Root Of -739*x^4+615*x^3-463*x^2+446*x+879 6835674350275404 a007 Real Root Of -894*x^4+720*x^3+118*x^2-120*x+288 6835674380476004 r005 Im(z^2+c),c=-3/16+1/11*I,n=16 6835674408238696 m001 OneNinth*FeigenbaumAlpha^2/exp(GAMMA(1/12)) 6835674412321820 k002 Champernowne real with 50*n^2+138*n-120 6835674435338762 r005 Im(z^2+c),c=-25/58+6/53*I,n=28 6835674454081129 a007 Real Root Of 853*x^4-445*x^3+893*x^2+472*x-423 6835674467463529 a007 Real Root Of 542*x^4-589*x^3-184*x^2-132*x+246 6835674467995703 m005 (4/5*Catalan-1)/(3*2^(1/2)-1/3) 6835674493237963 a007 Real Root Of 845*x^4+511*x^3+756*x^2-659*x-825 6835674512351826 k002 Champernowne real with 101/2*n^2+273/2*n-119 6835674520351195 a007 Real Root Of -111*x^4+932*x^3-493*x^2+468*x-363 6835674522968792 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=21 6835674526893089 a001 3461452808002/5*55^(4/7) 6835674550381202 a007 Real Root Of 673*x^4+57*x^3-74*x^2-898*x-708 6835674553424259 a007 Real Root Of -524*x^4+433*x^3-378*x^2+197*x+564 6835674557190349 a001 11/377*144^(33/52) 6835674558006317 h001 (-6*exp(3)-12)/(-10*exp(3)+7) 6835674565670040 r005 Im(z^2+c),c=-3/16+1/11*I,n=18 6835674575054571 r005 Im(z^2+c),c=-9/106+20/31*I,n=38 6835674590686526 m001 (Si(Pi)+sin(1))/(-polylog(4,1/2)+Champernowne) 6835674594821927 r002 3th iterates of z^2 + 6835674604523460 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=23 6835674607443062 a008 Real Root of x^4-30*x^2-100*x-98 6835674612381832 k002 Champernowne real with 51*n^2+135*n-118 6835674614545480 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=20 6835674626436182 m001 ln(Riemann3rdZero)/RenyiParking*(2^(1/3))^2 6835674634522826 r005 Im(z^2+c),c=-3/16+1/11*I,n=20 6835674639210876 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=25 6835674643925626 r005 Im(z^2+c),c=-3/16+1/11*I,n=22 6835674644138958 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=27 6835674644385970 r005 Im(z^2+c),c=-3/16+1/11*I,n=25 6835674644408860 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=30 6835674644422679 r005 Im(z^2+c),c=-3/16+1/11*I,n=23 6835674644423100 r005 Im(z^2+c),c=-3/16+1/11*I,n=27 6835674644426966 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=32 6835674644430392 r005 Im(z^2+c),c=-3/16+1/11*I,n=29 6835674644430717 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=34 6835674644431082 r005 Im(z^2+c),c=-3/16+1/11*I,n=32 6835674644431092 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=37 6835674644431095 r005 Im(z^2+c),c=-3/16+1/11*I,n=34 6835674644431098 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=39 6835674644431099 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=36 6835674644431100 r005 Im(z^2+c),c=-3/16+1/11*I,n=36 6835674644431100 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=41 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=38 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=43 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=41 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=46 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=39 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=43 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=48 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=45 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=50 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=48 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=53 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=50 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=55 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=52 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=52 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=57 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=54 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=59 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=57 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=62 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=55 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=59 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=64 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=61 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=64 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=63 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=62 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=60 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=60 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=63 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=58 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=61 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=56 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=58 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=53 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=56 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=51 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=47 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=54 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=49 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=51 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=46 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=49 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=44 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=44 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=47 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=42 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=45 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=40 6835674644431101 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=42 6835674644431101 r005 Im(z^2+c),c=-3/16+1/11*I,n=37 6835674644431102 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=40 6835674644431103 r005 Im(z^2+c),c=-3/16+1/11*I,n=35 6835674644431103 r005 Im(z^2+c),c=-3/16+1/11*I,n=31 6835674644431107 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=38 6835674644431113 r005 Im(z^2+c),c=-3/16+1/11*I,n=33 6835674644431178 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=35 6835674644431234 r005 Im(z^2+c),c=-3/16+1/11*I,n=30 6835674644432481 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=33 6835674644433721 r005 Im(z^2+c),c=-3/16+1/11*I,n=28 6835674644438715 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=28 6835674644441665 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=31 6835674644451949 r005 Im(z^2+c),c=-3/16+1/11*I,n=26 6835674644463336 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=29 6835674644501125 r005 Im(z^2+c),c=-3/16+1/11*I,n=24 6835674645882846 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=26 6835674647112289 r005 Im(z^2+c),c=-3/16+1/11*I,n=21 6835674647590253 a007 Real Root Of 91*x^4+740*x^3+918*x^2+653*x-756 6835674656881802 m001 (BesselJ(0,1)+Rabbit)/(Shi(1)-sin(1)) 6835674660056027 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=24 6835674662095115 m008 (1/5*Pi^2-1/6)/(5/6*Pi^3+3/5) 6835674674119691 r005 Im(z^2+c),c=-3/16+1/11*I,n=15 6835674674670667 r005 Im(z^2+c),c=-3/16+1/11*I,n=19 6835674676178974 r005 Im(z^2+c),c=-19/14+19/183*I,n=10 6835674686148065 a001 2207/12586269025*6765^(15/16) 6835674688907214 r005 Re(z^2+c),c=-3/70+4/5*I,n=4 6835674712411838 k002 Champernowne real with 103/2*n^2+267/2*n-117 6835674728388670 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=22 6835674733856005 a007 Real Root Of 628*x^4-902*x^3+791*x^2-924*x+413 6835674743000791 r005 Re(z^2+c),c=-7/38+45/53*I,n=18 6835674757559587 r002 16th iterates of z^2 + 6835674794314833 a007 Real Root Of 128*x^4-730*x^3-796*x^2-89*x+638 6835674812441844 k002 Champernowne real with 52*n^2+132*n-116 6835674814453273 a007 Real Root Of 180*x^4-897*x^3-40*x^2-578*x+661 6835674814813461 r005 Im(z^2+c),c=-3/16+1/11*I,n=17 6835674819676798 g002 Psi(1/10)-Psi(7/12)-Psi(8/11)-Psi(6/7) 6835674823589080 a007 Real Root Of 674*x^4-50*x^3-851*x^2-624*x+693 6835674832775583 m001 (-Si(Pi)+ln(2+3^(1/2)))/(Psi(2,1/3)-exp(Pi)) 6835674846815850 m009 (6*Psi(1,2/3)-5/6)/(5/2*Pi^2+1) 6835674847043767 m005 (1/3*3^(1/2)+2/5)/(8/11*Zeta(3)+5/9) 6835674852658973 m005 (1/2*Catalan+5/8)/(11/14+5/14*5^(1/2)) 6835674890933785 m001 exp(GAMMA(5/12))/FeigenbaumB^2/sqrt(Pi) 6835674897418988 m001 (ln(3)*StolarskyHarborth+Robbin)/ln(3) 6835674912471850 k002 Champernowne real with 105/2*n^2+261/2*n-115 6835674918132241 m001 (Totient+ZetaQ(4))/(exp(1/exp(1))-Magata) 6835674919660095 a007 Real Root Of 152*x^4-801*x^3-634*x^2-341*x+752 6835674921553847 r005 Re(z^2+c),c=5/94+21/52*I,n=42 6835674922140458 m006 (5/6*exp(Pi)+1/2)/(3*Pi^2-2/3) 6835674940061392 r005 Im(z^2+c),c=-17/42+1/9*I,n=17 6835674947097258 m001 (Conway-Gompertz)/(Grothendieck-RenyiParking) 6835674963991248 a007 Real Root Of 306*x^4-904*x^3+886*x^2+289*x-572 6835674970816454 a001 233/521*1364^(17/45) 6835674976187603 m001 gamma^StolarskyHarborth*TravellingSalesman 6835674978890739 h001 (4/9*exp(1)+2/11)/(1/5*exp(2)+5/9) 6835674982259114 a007 Real Root Of -384*x^4+980*x^3+725*x^2-332*x-341 6835674983175223 b008 25/4+Erf[EulerGamma] 6835674992886675 a007 Real Root Of 839*x^4-234*x^3+450*x^2+189*x-339 6835674995189771 a001 610/521*322^(11/36) 6835675012501856 k002 Champernowne real with 53*n^2+129*n-114 6835675015271838 q001 1119/1637 6835675024725011 r002 30th iterates of z^2 + 6835675030136226 m001 (3^(1/3)-ln(2+3^(1/2)))/(FeigenbaumC+ZetaQ(4)) 6835675037120077 r005 Re(z^2+c),c=-65/86+22/57*I,n=3 6835675040241217 a008 Real Root of x^4-18*x^2-110*x-67 6835675045753844 r005 Im(z^2+c),c=13/48+29/61*I,n=11 6835675053512103 a007 Real Root Of -315*x^4+99*x^3-684*x^2+828*x+986 6835675055178026 r009 Im(z^3+c),c=-43/114+9/13*I,n=6 6835675056097526 a001 377/9349*322^(8/9) 6835675061530487 a007 Real Root Of 640*x^4-985*x^3+164*x^2-715*x+587 6835675063327788 r005 Im(z^2+c),c=-7/10+51/229*I,n=23 6835675081289741 r009 Im(z^3+c),c=-5/13+29/42*I,n=6 6835675093094623 r005 Im(z^2+c),c=-29/26+1/121*I,n=39 6835675112531862 k002 Champernowne real with 107/2*n^2+255/2*n-113 6835675126830013 r005 Im(z^2+c),c=-1/25+46/61*I,n=29 6835675138280438 r005 Im(z^2+c),c=-19/102+27/40*I,n=28 6835675170005015 m001 (Pi-1)/(exp(1)+PrimesInBinary) 6835675191310687 a007 Real Root Of 976*x^4-669*x^3+747*x^2+680*x-311 6835675212561868 k002 Champernowne real with 54*n^2+126*n-112 6835675213626592 m005 (5/6*exp(1)+1/4)/(1/4*exp(1)+3) 6835675222880432 m001 (BesselK(0,1)-exp(-1/2*Pi))/(Zeta(1,2)+Kac) 6835675235534332 r008 a(0)=6,K{-n^6,14-n-22*n^2+8*n^3} 6835675257429262 r005 Re(z^2+c),c=13/56+17/48*I,n=40 6835675270495165 m005 (3*Pi+4/5)/(5*Pi-3/4) 6835675270495165 m006 (4/5/Pi+3)/(3/4/Pi-5) 6835675270495165 m008 (3*Pi+4/5)/(5*Pi-3/4) 6835675276754806 a007 Real Root Of -689*x^4+285*x^3-768*x^2-315*x+385 6835675278051030 m005 (21/4+1/4*5^(1/2))/(3/11*Catalan+3/5) 6835675305062171 a007 Real Root Of -463*x^4-882*x^3+210*x^2+736*x-51 6835675312591874 k002 Champernowne real with 109/2*n^2+249/2*n-111 6835675334599358 r005 Im(z^2+c),c=-17/14+18/235*I,n=27 6835675336124394 m001 (ln(Pi)-Thue)/(Pi+Zeta(5)) 6835675344433889 s002 sum(A120405[n]/(n*exp(n)-1),n=1..infinity) 6835675363833148 m001 ln(gamma)^Artin*ln(gamma)^MertensB1 6835675371714439 m006 (3/5*exp(2*Pi)+4)/(1/6*ln(Pi)-2/3) 6835675373930458 a007 Real Root Of 102*x^4+572*x^3-695*x^2+972*x-883 6835675380472756 a007 Real Root Of -674*x^4+856*x^3-973*x^2-723*x+381 6835675382848646 r005 Im(z^2+c),c=-13/114+39/44*I,n=26 6835675412621880 k002 Champernowne real with 55*n^2+123*n-110 6835675421459302 r005 Re(z^2+c),c=-45/58+7/61*I,n=59 6835675435164474 r005 Im(z^2+c),c=-43/94+3/26*I,n=27 6835675437031316 l006 ln(472/935) 6835675484983396 r005 Im(z^2+c),c=25/94+40/59*I,n=5 6835675501842867 a003 cos(Pi*9/103)-sin(Pi*9/100) 6835675512651886 k002 Champernowne real with 111/2*n^2+243/2*n-109 6835675516585911 r005 Im(z^2+c),c=-13/98+43/62*I,n=10 6835675529934701 a007 Real Root Of -725*x^4+911*x^3-929*x^2-337*x+653 6835675533454602 r009 Re(z^3+c),c=-35/66+3/22*I,n=63 6835675548250030 h001 (1/8*exp(2)+8/9)/(3/11*exp(2)+7/11) 6835675576097884 a007 Real Root Of 147*x^4+953*x^3-282*x^2+599*x+712 6835675606439613 m001 RenyiParking/exp(FeigenbaumDelta)/GAMMA(23/24) 6835675612681892 k002 Champernowne real with 56*n^2+120*n-108 6835675620526249 a001 1346269/2*11^(29/30) 6835675632416851 m001 (MasserGramain-Tribonacci)/(Zeta(3)+Landau) 6835675666327608 a001 1364*(1/2*5^(1/2)+1/2)^8*3^(1/17) 6835675670008439 a001 47/3*2584^(3/16) 6835675689491336 a007 Real Root Of 621*x^4-105*x^3+203*x^2+196*x-130 6835675712711898 k002 Champernowne real with 113/2*n^2+237/2*n-107 6835675751406659 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=19 6835675752787887 r002 13th iterates of z^2 + 6835675756442347 s001 sum(exp(-Pi)^(n-1)*A232448[n],n=1..infinity) 6835675760475077 r005 Im(z^2+c),c=-67/50+4/57*I,n=42 6835675774610176 r005 Re(z^2+c),c=-67/118+6/11*I,n=18 6835675785359672 r005 Im(z^2+c),c=-7/22+3/29*I,n=12 6835675812741904 k002 Champernowne real with 57*n^2+117*n-106 6835675835950667 m001 BesselJ(1,1)^2*ln(MinimumGamma)/Zeta(5)^2 6835675840506373 r008 a(0)=7,K{-n^6,-3+9*n^3+n^2} 6835675843116892 a003 sin(Pi*28/75)-sin(Pi*46/101) 6835675859705698 a001 5473/2*521^(6/41) 6835675861225124 a007 Real Root Of -155*x^4+707*x^3-375*x^2+764*x-539 6835675876056698 a007 Real Root Of -458*x^4+607*x^3-310*x^2-911*x-184 6835675911984313 p001 sum(1/(409*n+52)/n/(32^n),n=1..infinity) 6835675912771910 k002 Champernowne real with 115/2*n^2+231/2*n-105 6835675921629999 a007 Real Root Of 967*x^4+600*x^3+527*x^2-489*x-600 6835675927818402 a007 Real Root Of -411*x^4-321*x^3-960*x^2+723*x+930 6835675953782694 a001 29/610*317811^(20/51) 6835675971193128 r002 17th iterates of z^2 + 6835675977928272 a007 Real Root Of -382*x^4-265*x^3-794*x^2-440*x+69 6835675979607233 a007 Real Root Of 675*x^4-428*x^3-331*x^2-809*x+697 6835675988553792 r005 Im(z^2+c),c=-20/31+19/53*I,n=47 6835675994677176 r002 3th iterates of z^2 + 6835675998076812 a007 Real Root Of -976*x^4+158*x^3-352*x^2+471*x+750 6835676012801916 k002 Champernowne real with 58*n^2+114*n-104 6835676038740197 a003 sin(Pi*2/95)/cos(Pi*6/73) 6835676052830545 m005 (1/3*Pi+2/9)/(3^(1/2)+1/8) 6835676073064000 a007 Real Root Of -372*x^4+388*x^3-981*x^2-801*x+116 6835676080540974 a001 11/4807526976*8^(10/19) 6835676101633556 r002 40th iterates of z^2 + 6835676112831922 k002 Champernowne real with 117/2*n^2+225/2*n-103 6835676117049450 a005 (1/cos(4/49*Pi))^1235 6835676165182085 a007 Real Root Of -841*x^4+438*x^3+340*x^2+849*x+745 6835676180132348 a001 233/521*3571^(1/3) 6835676196074194 m001 ZetaP(3)-exp(1/Pi)*GolombDickman 6835676212861928 k002 Champernowne real with 59*n^2+111*n-102 6835676216529125 a005 (1/sin(100/229*Pi))^1137 6835676236024018 r005 Im(z^2+c),c=-77/60+2/59*I,n=32 6835676254238430 a007 Real Root Of 443*x^4-326*x^3+980*x^2-132*x-749 6835676254881697 a007 Real Root Of -114*x^4+950*x^3+303*x^2+587*x+588 6835676258721534 m005 (1/2*exp(1)-6/7)/(5*2^(1/2)+3/11) 6835676312891934 k002 Champernowne real with 119/2*n^2+219/2*n-101 6835676335489022 a001 233/521*9349^(17/57) 6835676358814214 a001 233/521*45537549124^(1/9) 6835676358814221 a001 233/521*12752043^(1/6) 6835676363227001 a001 1149851/5*139583862445^(17/20) 6835676363232185 a001 4106118243/5*9227465^(17/20) 6835676366859020 a007 Real Root Of -748*x^4+503*x^3+626*x^2+837*x-862 6835676367278173 a001 233/521*15127^(17/60) 6835676369851374 s002 sum(A241120[n]/(n^2*pi^n-1),n=1..infinity) 6835676371391813 p003 LerchPhi(1/100,5,150/139) 6835676398707441 r005 Im(z^2+c),c=-57/86+2/41*I,n=18 6835676406497058 a007 Real Root Of 64*x^4+87*x^3+435*x^2-447*x-495 6835676411933069 m004 -2+6*Sec[Sqrt[5]*Pi]+125*Pi*Sech[Sqrt[5]*Pi] 6835676412921940 k002 Champernowne real with 60*n^2+108*n-100 6835676423272923 a001 233/521*5778^(17/54) 6835676430879182 r009 Im(z^3+c),c=-65/106+18/53*I,n=2 6835676431150635 r005 Im(z^2+c),c=-71/94+2/49*I,n=20 6835676431644171 m001 FeigenbaumC/(PlouffeB^(Pi^(1/2))) 6835676448026662 a007 Real Root Of 878*x^4-440*x^3-559*x^2-964*x+869 6835676471164230 m001 1/exp(GlaisherKinkelin)^2*Conway/Porter 6835676473957666 m004 -3/4+25*Sqrt[5]*Pi-25*Pi*Sec[Sqrt[5]*Pi] 6835676474826016 m005 (1/3*Pi+2/11)/(Zeta(3)-3) 6835676482049412 r005 Im(z^2+c),c=19/58+21/64*I,n=3 6835676490719769 m001 (1+Shi(1))/(Otter+ZetaQ(2)) 6835676495400529 a007 Real Root Of -154*x^4-996*x^3+281*x^2-661*x+460 6835676496255778 a007 Real Root Of 73*x^4-742*x^3-386*x^2-744*x+910 6835676507345852 a003 sin(Pi*2/89)-sin(Pi*31/114) 6835676509240853 r005 Re(z^2+c),c=-17/14+85/256*I,n=5 6835676512951946 k002 Champernowne real with 121/2*n^2+213/2*n-99 6835676516889367 s002 sum(A115449[n]/(n^2*exp(n)-1),n=1..infinity) 6835676522499841 a007 Real Root Of -929*x^4+651*x^3+163*x^2-943*x-310 6835676560441996 r005 Im(z^2+c),c=-3/16+1/11*I,n=14 6835676561605234 r005 Re(z^2+c),c=-9/52+13/18*I,n=47 6835676568044537 a007 Real Root Of 234*x^4-62*x^3-646*x^2-716*x+760 6835676612981952 k002 Champernowne real with 61*n^2+105*n-98 6835676614268214 a001 2207/55*2584^(4/59) 6835676633764847 a007 Real Root Of -277*x^4+33*x^3-721*x^2+281*x+600 6835676636749923 r005 Im(z^2+c),c=31/106+14/25*I,n=59 6835676646067346 a007 Real Root Of 752*x^4+170*x^3+179*x^2-632*x-44 6835676674244659 m005 (1/4*5^(1/2)+3/4)/(3/7*exp(1)+3/4) 6835676698205487 m005 (1/2*2^(1/2)+3/11)/(59/63+2/9*5^(1/2)) 6835676701566000 s002 sum(A221515[n]/(n*pi^n+1),n=1..infinity) 6835676713011958 k002 Champernowne real with 123/2*n^2+207/2*n-97 6835676715548586 m001 (ln(5)-Conway)/(KomornikLoreti-Totient) 6835676726203983 r001 43i'th iterates of 2*x^2-1 of 6835676737273788 m001 1/sin(1)^2*exp(Salem)/sin(Pi/12)^2 6835676738986661 a007 Real Root Of 104*x^4-157*x^3+511*x^2+254*x-138 6835676744581386 r005 Re(z^2+c),c=-165/122+2/61*I,n=24 6835676787281829 a003 sin(Pi*17/71)/sin(Pi*51/104) 6835676802852811 r005 Re(z^2+c),c=-17/86+31/45*I,n=53 6835676813041964 k002 Champernowne real with 62*n^2+102*n-96 6835676826021962 m005 (-1/28+1/4*5^(1/2))/(1/10*Catalan-6/7) 6835676855846568 a001 233/521*2207^(17/48) 6835676857700472 m001 1/exp(Zeta(5))*Conway^2/log(1+sqrt(2)) 6835676881168618 m001 Champernowne^QuadraticClass/exp(Pi) 6835676903231711 a007 Real Root Of 145*x^4+909*x^3-484*x^2+529*x-15 6835676903361398 m001 GAMMA(2/3)/(GAMMA(7/12)+ZetaP(2)) 6835676912848752 r005 Im(z^2+c),c=13/66+38/41*I,n=3 6835676913071970 k002 Champernowne real with 125/2*n^2+201/2*n-95 6835676930139207 m001 GAMMA(3/4)^2/exp(Catalan)/Zeta(1,2)^2 6835676944342812 a007 Real Root Of -389*x^4-30*x^3-800*x^2+89*x+510 6835676946126861 m001 1/Robbin/exp(PrimesInBinary)/Zeta(1/2) 6835676992696630 r002 5th iterates of z^2 + 6835677005873145 m008 (3/5*Pi-5/6)/(1/2*Pi^5+5/6) 6835677013101976 k002 Champernowne real with 63*n^2+99*n-94 6835677078047760 a001 305/2889*322^(13/18) 6835677079351826 a007 Real Root Of 943*x^4+474*x^3+424*x^2-871*x-848 6835677082579089 a007 Real Root Of 803*x^4-639*x^3-24*x^2+900*x+247 6835677113131982 k002 Champernowne real with 127/2*n^2+195/2*n-93 6835677115564119 m001 1/exp(Zeta(5))^2/Robbin^2*cosh(1)^2 6835677125870526 m001 GlaisherKinkelin^Zeta(1,-1)/OrthogonalArrays 6835677127605631 m001 1/GAMMA(23/24)/exp(Sierpinski)/Zeta(5)^2 6835677137853534 a007 Real Root Of -181*x^4+86*x^3-509*x^2+957*x+959 6835677138259154 r002 56th iterates of z^2 + 6835677151631725 a007 Real Root Of 726*x^4-598*x^3-451*x^2-151*x-242 6835677168888100 h001 (4/7*exp(2)+2/5)/(6/7*exp(2)+3/7) 6835677193903577 a007 Real Root Of -872*x^4+228*x^3-419*x^2+79*x+513 6835677199504742 a003 sin(Pi*9/46)/sin(Pi*31/97) 6835677213161988 k002 Champernowne real with 64*n^2+96*n-92 6835677220548911 r005 Re(z^2+c),c=-69/118+31/56*I,n=15 6835677258463270 m001 1/Pi/ln(MertensB1)^2/sin(Pi/12) 6835677265091215 m001 (Landau+MasserGramainDelta)/(Si(Pi)+ln(5)) 6835677271164433 r005 Re(z^2+c),c=-47/40+15/43*I,n=4 6835677275318971 r005 Re(z^2+c),c=-11/12+11/91*I,n=26 6835677276091783 q001 1847/2702 6835677285088084 a007 Real Root Of -916*x^4+289*x^3-319*x^2-337*x+211 6835677296585707 m002 -1+Log[Pi]+(Coth[Pi]*ProductLog[Pi])/2 6835677297519195 m002 -4+(3*E^Pi)/Pi^2-Pi^2 6835677313191994 k002 Champernowne real with 129/2*n^2+189/2*n-91 6835677343499267 r005 Im(z^2+c),c=-3/5+29/80*I,n=9 6835677349984132 m001 ArtinRank2-GlaisherKinkelin-Paris 6835677359694503 m001 (RenyiParking+TreeGrowth2nd)/(1-GAMMA(19/24)) 6835677366151684 a007 Real Root Of -554*x^4+725*x^3+559*x^2-473*x-232 6835677393265915 m001 FeigenbaumC/Paris^2/ln(log(2+sqrt(3))) 6835677406645343 r002 4th iterates of z^2 + 6835677413222000 k002 Champernowne real with 65*n^2+93*n-90 6835677434638951 m001 Paris^KhinchinLevy-RenyiParking 6835677457448525 m001 (Pi-Psi(1,1/3))/(Si(Pi)-GaussAGM) 6835677458166079 m005 (1/3*exp(1)-1/2)/(1/10*Zeta(3)-5/7) 6835677463831974 r008 a(0)=7,K{-n^6,90-86*n^3-77*n^2+79*n} 6835677490238825 r005 Re(z^2+c),c=-3/5+42/95*I,n=22 6835677495715232 m001 (Cahen+Totient)/(GAMMA(5/6)+Pi^(1/2)) 6835677507960234 m001 1/Trott^2*exp(Kolakoski)^2*GAMMA(13/24) 6835677513252006 k002 Champernowne real with 131/2*n^2+183/2*n-89 6835677517550952 m004 -2+125*Pi*Csch[Sqrt[5]*Pi]+6*Sec[Sqrt[5]*Pi] 6835677536948177 m001 (3^(1/2)-cos(1))/(LambertW(1)+Salem) 6835677571727182 a007 Real Root Of 732*x^4+868*x^3+852*x^2-413*x-563 6835677602540399 m001 (MertensB3+Sarnak)/(FellerTornier+Khinchin) 6835677613282012 k002 Champernowne real with 66*n^2+90*n-88 6835677623762574 r005 Im(z^2+c),c=1/118+23/26*I,n=7 6835677653650172 l006 ln(4825/9558) 6835677658460532 a007 Real Root Of -499*x^4+49*x^3+12*x^2+809*x+672 6835677663528448 a007 Real Root Of -148*x^4-959*x^3+324*x^2-249*x-15 6835677669507980 a001 141/2161*322^(29/36) 6835677713312018 k002 Champernowne real with 133/2*n^2+177/2*n-87 6835677727366237 a007 Real Root Of -422*x^4+923*x^3-627*x^2+458*x+993 6835677741445890 r005 Im(z^2+c),c=-17/30+14/113*I,n=53 6835677744796361 a007 Real Root Of -743*x^4+864*x^3-232*x^2+438*x+846 6835677755158886 a007 Real Root Of -233*x^4-5*x^3+650*x^2+557*x-632 6835677756158623 a007 Real Root Of -525*x^4+461*x^3-657*x^2-781*x+35 6835677773454776 r002 47th iterates of z^2 + 6835677791974619 r005 Im(z^2+c),c=-29/26+1/121*I,n=44 6835677802618438 r002 32th iterates of z^2 + 6835677813342024 k002 Champernowne real with 67*n^2+87*n-86 6835677814685742 a007 Real Root Of 116*x^4+654*x^3-977*x^2-190*x-25 6835677820097014 a007 Real Root Of 91*x^4-767*x^3+856*x^2+424*x-375 6835677848740526 a007 Real Root Of 139*x^4-930*x^3-627*x^2+178*x+438 6835677851169644 m001 (Mills+TreeGrowth2nd)/(ln(3)+Backhouse) 6835677864854502 m001 (2^(1/3)-ln(Pi))/(-Zeta(1,2)+RenyiParking) 6835677894000269 l006 ln(4353/8623) 6835677895023044 m005 (5/6*Catalan+1/2)/(2/3*gamma-1/5) 6835677913372030 k002 Champernowne real with 135/2*n^2+171/2*n-85 6835677919594003 r002 2th iterates of z^2 + 6835677948967822 m007 (-2/5*gamma-1/3)/(-4*gamma-8*ln(2)-2/5) 6835677952956289 m005 (1/2*exp(1)-8/11)/(2/9*Catalan-1/9) 6835677958271087 a001 47/17711*10946^(38/45) 6835677983402472 b008 Tanh[Sin[E]/6] 6835677992041628 r009 Re(z^3+c),c=-8/15+1/33*I,n=2 6835677999640845 a005 (1/sin(51/229*Pi))^109 6835678013402036 k002 Champernowne real with 68*n^2+84*n-84 6835678040994607 r005 Im(z^2+c),c=-129/110+5/56*I,n=47 6835678063066933 a005 (1/sin(62/157*Pi))^864 6835678094095979 a007 Real Root Of -198*x^4+319*x^3-845*x^2-471*x+218 6835678094832968 m005 (1/2*2^(1/2)+3/5)/(6/7*2^(1/2)+7/10) 6835678113432042 k002 Champernowne real with 137/2*n^2+165/2*n-83 6835678124761176 m005 (1/2*exp(1)+7/8)/(3*gamma-5) 6835678132444172 a007 Real Root Of -640*x^4+532*x^3-730*x^2+369*x+903 6835678147768131 m001 (1+2^(1/3))/(exp(1)+sin(1/5*Pi)) 6835678157168025 a007 Real Root Of 208*x^4-787*x^3-617*x^2-162*x+605 6835678175418201 p001 sum(1/(371*n+148)/(25^n),n=0..infinity) 6835678184278692 a001 233/843*322^(5/9) 6835678192812221 l006 ln(3881/7688) 6835678195107461 m003 1+(9*Sqrt[5])/256-6/ProductLog[1/2+Sqrt[5]/2] 6835678213462048 k002 Champernowne real with 69*n^2+81*n-82 6835678216223949 p001 sum((-1)^n/(338*n+297)/n/(2^n),n=1..infinity) 6835678228689619 m001 (exp(Pi)+exp(1/Pi))/(-ThueMorse+ZetaQ(2)) 6835678258561189 q001 2575/3767 6835678262938972 a001 9349/144*28657^(37/41) 6835678275461562 m001 Backhouse^FeigenbaumDelta+GAMMA(11/12) 6835678275461562 m001 GAMMA(11/12)+Backhouse^FeigenbaumDelta 6835678298168262 m001 (Psi(1,1/3)-Zeta(1,-1))/(-Kac+PlouffeB) 6835678309250176 p004 log(22129/11171) 6835678310717539 a007 Real Root Of -430*x^4+685*x^3-872*x^2+788*x-50 6835678313492054 k002 Champernowne real with 139/2*n^2+159/2*n-81 6835678332262292 a007 Real Root Of 45*x^4-715*x^3+638*x^2-x-537 6835678388974172 a007 Real Root Of 799*x^4-302*x^3+458*x^2-202*x-623 6835678413522060 k002 Champernowne real with 70*n^2+78*n-80 6835678462468976 m001 FransenRobinson^2/ln(DuboisRaymond)/CareFree 6835678468880472 m001 (BesselI(1,2)-GlaisherKinkelin)^BesselI(0,2) 6835678481800670 g001 abs(GAMMA(53/60+I*3/4)) 6835678491904378 r009 Re(z^3+c),c=-7/58+23/36*I,n=22 6835678494918495 a007 Real Root Of 838*x^4-29*x^3+628*x^2-716*x+46 6835678513552066 k002 Champernowne real with 141/2*n^2+153/2*n-79 6835678552247437 m005 (1/2*Pi-11/12)/(1/2*3^(1/2)+1/11) 6835678572717009 a007 Real Root Of 919*x^4-230*x^3+922*x^2-142*x-802 6835678574369388 l006 ln(3409/6753) 6835678579426521 r002 10th iterates of z^2 + 6835678583826011 m001 (Ei(1,1)-MertensB3)/(Niven-ZetaP(4)) 6835678594075843 r005 Im(z^2+c),c=-5/44+55/62*I,n=8 6835678613582072 k002 Champernowne real with 71*n^2+75*n-78 6835678620286717 r005 Im(z^2+c),c=17/82+33/62*I,n=52 6835678634232358 a007 Real Root Of -960*x^4+919*x^3+158*x^2-827*x-136 6835678713612078 k002 Champernowne real with 143/2*n^2+147/2*n-77 6835678728642389 m001 (Si(Pi)-cos(1))/(-Tetranacci+ZetaQ(3)) 6835678730661716 m005 (1/2*5^(1/2)-1/2)/(1/2*Pi-2/3) 6835678804394494 a001 3571*(1/2*5^(1/2)+1/2)^6*3^(1/17) 6835678813642084 k002 Champernowne real with 72*n^2+72*n-76 6835678819378374 m001 (exp(1/exp(1))+ZetaP(4))/(Pi-Catalan) 6835678856642861 a007 Real Root Of 470*x^4-733*x^3-598*x^2-415*x-341 6835678866754863 a007 Real Root Of -342*x^4-333*x^3+523*x^2+712*x-51 6835678882112100 m001 Riemann1stZero^2/exp(Conway)*(2^(1/3)) 6835678893657249 a001 2584/39603*322^(29/36) 6835678913672090 k002 Champernowne real with 145/2*n^2+141/2*n-75 6835678952209437 a007 Real Root Of 324*x^4-237*x^3+326*x^2-132*x-389 6835678952614116 a001 199/196418*196418^(34/47) 6835678956422533 a007 Real Root Of -680*x^4+595*x^3-336*x^2+68*x+542 6835678969334706 a007 Real Root Of 754*x^4-276*x^3+582*x^2-154*x-630 6835678982328013 a007 Real Root Of -651*x^4-432*x^3-623*x^2+813*x+851 6835678984712003 a003 cos(Pi*32/119)/sin(Pi*47/111) 6835678988037967 r005 Re(z^2+c),c=-1/6+23/34*I,n=27 6835678996014297 m001 1/Trott*Riemann2ndZero*exp((2^(1/3))) 6835679013702096 k002 Champernowne real with 73*n^2+69*n-74 6835679017057341 a007 Real Root Of -458*x^4+15*x^3-159*x^2-360*x-67 6835679029309726 r005 Re(z^2+c),c=-11/62+33/46*I,n=47 6835679055038799 a007 Real Root Of 937*x^4-645*x^3+693*x^2+912*x-111 6835679072258221 a001 6765/103682*322^(29/36) 6835679078565268 l006 ln(2937/5818) 6835679082087722 s002 sum(A244367[n]/(n^2*exp(n)-1),n=1..infinity) 6835679098315751 a001 17711/271443*322^(29/36) 6835679101823301 a007 Real Root Of 244*x^4+163*x^3+310*x^2-16*x-157 6835679102117494 a001 6624/101521*322^(29/36) 6835679102672161 a001 121393/1860498*322^(29/36) 6835679102753085 a001 317811/4870847*322^(29/36) 6835679102803100 a001 196418/3010349*322^(29/36) 6835679103014964 a001 75025/1149851*322^(29/36) 6835679104465891 a007 Real Root Of 680*x^4-946*x^3+977*x^2+837*x-335 6835679104467100 a001 28657/439204*322^(29/36) 6835679113732102 k002 Champernowne real with 147/2*n^2+135/2*n-73 6835679114420191 a001 10946/167761*322^(29/36) 6835679119231878 a007 Real Root Of -402*x^4+878*x^3-479*x^2+294*x+793 6835679119386262 r005 Im(z^2+c),c=-29/26+1/121*I,n=43 6835679138349654 a003 sin(Pi*21/88)/sin(Pi*47/99) 6835679141357845 h001 (5/11*exp(2)+4/9)/(5/7*exp(2)+2/7) 6835679154297936 a007 Real Root Of 872*x^4-370*x^3+787*x^2+176*x-556 6835679156530727 m001 1/Riemann2ndZero^2*Champernowne/ln(Ei(1))^2 6835679160109966 a007 Real Root Of 36*x^4-48*x^3+618*x^2-22*x-327 6835679162947204 m001 (-ln(3)+ZetaQ(2))/(cos(1)-ln(2)) 6835679164342222 m001 1/GAMMA(1/4)*ln(RenyiParking)/GAMMA(19/24) 6835679170920487 r005 Im(z^2+c),c=-7/122+39/49*I,n=35 6835679179553560 r009 Im(z^3+c),c=-29/52+8/35*I,n=3 6835679182630037 r009 Re(z^3+c),c=-9/86+30/61*I,n=15 6835679182639692 a001 4181/64079*322^(29/36) 6835679213762108 k002 Champernowne real with 74*n^2+66*n-72 6835679224071549 a007 Real Root Of -692*x^4+542*x^3+664*x^2-116*x-253 6835679231652237 r002 3th iterates of z^2 + 6835679262232282 a001 9349*(1/2*5^(1/2)+1/2)^4*3^(1/17) 6835679269573168 m001 (cos(1/12*Pi)-FeigenbaumAlpha)/(Landau+Niven) 6835679294495994 m001 (FeigenbaumC+Khinchin*ZetaQ(4))/Khinchin 6835679304900246 r005 Im(z^2+c),c=43/122+31/47*I,n=17 6835679311632037 a007 Real Root Of -46*x^4-199*x^3+666*x^2-755*x+592 6835679313699905 m001 1/Salem/Si(Pi)^2/ln(Zeta(5)) 6835679313792114 k002 Champernowne real with 149/2*n^2+129/2*n-71 6835679320681619 m001 (ln(2^(1/2)+1)-Pi^(1/2))/(Cahen+TwinPrimes) 6835679326736282 p001 sum((-1)^n/(155*n+136)/(6^n),n=0..infinity) 6835679327789154 a003 cos(Pi*37/108)+cos(Pi*42/97) 6835679329029916 a001 24476*(1/2*5^(1/2)+1/2)^2*3^(1/17) 6835679334761560 a007 Real Root Of -714*x^4-373*x^3+173*x^2+853*x+539 6835679338775559 a001 64079*3^(1/17) 6835679340440313 a001 (1/2*5^(1/2)+1/2)^23*3^(1/17) 6835679344798698 a001 39603*(1/2*5^(1/2)+1/2)*3^(1/17) 6835679370313123 a001 15127*(1/2*5^(1/2)+1/2)^3*3^(1/17) 6835679383104631 m001 1/Robbin*LaplaceLimit^2/ln(GAMMA(1/3))^2 6835679396854905 p001 sum(1/(457*n+83)/n/(3^n),n=1..infinity) 6835679412187852 a001 6765/4*3571^(7/41) 6835679413822120 k002 Champernowne real with 75*n^2+63*n-70 6835679426053156 a007 Real Root Of 606*x^4+306*x^3+233*x^2-940*x-786 6835679434117447 a007 Real Root Of 960*x^4-262*x^3+741*x^2-8*x-645 6835679436146072 a007 Real Root Of 818*x^4+478*x^3+876*x^2+271*x-250 6835679441175648 m005 (15/28+1/4*5^(1/2))/(8/11*Zeta(3)+8/11) 6835679443549873 r005 Im(z^2+c),c=-53/118+52/61*I,n=3 6835679445510954 r005 Im(z^2+c),c=-15/86+41/60*I,n=4 6835679456405517 m001 1/GAMMA(1/3)^2*ln(Kolakoski)*Zeta(1/2)^2 6835679486226485 a001 14662949395604/5*610^(17/20) 6835679513852126 k002 Champernowne real with 151/2*n^2+123/2*n-69 6835679518769417 a007 Real Root Of -872*x^4+314*x^3-350*x^2+598*x+863 6835679523577411 a007 Real Root Of 639*x^4-583*x^3+988*x^2-115*x-866 6835679545191597 a001 5778*(1/2*5^(1/2)+1/2)^5*3^(1/17) 6835679600463618 m001 (GolombDickman+MertensB2)/(exp(Pi)+GAMMA(5/6)) 6835679613882132 k002 Champernowne real with 76*n^2+60*n-68 6835679617617560 a001 4181/4*15127^(8/41) 6835679626275381 a007 Real Root Of 25*x^4-395*x^3+350*x^2-424*x-585 6835679630250709 a007 Real Root Of -78*x^4-452*x^3+402*x^2-953*x+632 6835679650223108 a001 1597/24476*322^(29/36) 6835679665525372 a007 Real Root Of 313*x^4-223*x^3-963*x^2-363*x+701 6835679690356214 a001 13/7*4^(47/50) 6835679693218163 a007 Real Root Of 183*x^4-566*x^3+332*x^2-47*x-408 6835679709042647 r005 Im(z^2+c),c=-29/26+1/121*I,n=48 6835679709785655 m001 (-GAMMA(23/24)+Champernowne)/(5^(1/2)-Catalan) 6835679713745829 m001 (-Zeta(1,-1)+Paris)/(exp(1)+ln(Pi)) 6835679713912138 k002 Champernowne real with 153/2*n^2+117/2*n-67 6835679737572911 m005 (1/2*Zeta(3)+7/12)/(5/12*exp(1)+3/5) 6835679759946209 m009 (2*Pi^2-1/4)/(4/5*Psi(1,2/3)+2/5) 6835679760918809 a007 Real Root Of 316*x^4-921*x^3+101*x^2-728*x-908 6835679769847806 a007 Real Root Of 417*x^4-674*x^3-70*x^2-812*x+712 6835679775848697 l006 ln(2465/4883) 6835679805451332 a007 Real Root Of 487*x^4-807*x^3+74*x^2-59*x-439 6835679813942144 k002 Champernowne real with 77*n^2+57*n-66 6835679823371915 r005 Re(z^2+c),c=-17/106+47/64*I,n=20 6835679831883385 a007 Real Root Of 133*x^4+990*x^3+522*x^2-278*x-466 6835679895622860 m008 (5*Pi^2-1/3)/(3/4*Pi^6-4) 6835679895823370 a008 Real Root of x^4-2*x^3-13*x^2-188*x+348 6835679913972150 k002 Champernowne real with 155/2*n^2+111/2*n-65 6835679929388657 a003 sin(Pi*16/77)/sin(Pi*31/89) 6835679950476642 s002 sum(A045006[n]/(n^2*2^n+1),n=1..infinity) 6835679954078017 a001 4181/4*2207^(10/41) 6835679965058863 m005 (1/2*Zeta(3)-8/9)/(4/5*5^(1/2)-6) 6835679979860121 a007 Real Root Of -706*x^4-282*x^3-793*x^2+792*x+976 6835679981086877 m001 (ln(2+sqrt(3))+1/3)/(MadelungNaCl+2/3) 6835679981211612 r005 Im(z^2+c),c=-9/14+89/219*I,n=37 6835679987352134 r005 Im(z^2+c),c=-29/26+1/121*I,n=47 6835679989234197 a007 Real Root Of 279*x^4-984*x^3+923*x^2-927*x-68 6835680014002156 k002 Champernowne real with 78*n^2+54*n-64 6835680016381945 m001 (Niven-ZetaP(4))/(Zeta(1,-1)+gamma(1)) 6835680019647250 r009 Re(z^3+c),c=-1/82+19/34*I,n=10 6835680037586351 a007 Real Root Of 961*x^4+730*x^3+294*x^2-866*x-706 6835680048328695 r005 Re(z^2+c),c=-79/118+7/22*I,n=10 6835680059745472 m005 (1/2*Pi-1/4)/(2*gamma+7/9) 6835680070795843 a001 1597/4*39603^(11/41) 6835680095913509 h001 (4/7*exp(1)+7/9)/(2/5*exp(2)+5/11) 6835680104971025 m001 Sierpinski^Cahen/(FeigenbaumDelta^Cahen) 6835680113552246 r005 Im(z^2+c),c=-29/26+1/121*I,n=52 6835680114032162 k002 Champernowne real with 157/2*n^2+105/2*n-63 6835680126192096 a007 Real Root Of -288*x^4+924*x^3+136*x^2+952*x-66 6835680170660703 r005 Im(z^2+c),c=-29/26+1/121*I,n=51 6835680171931879 m001 1/exp(Robbin)^2/CareFree^2*GAMMA(5/6)^2 6835680197118787 r005 Im(z^2+c),c=-29/26+1/121*I,n=56 6835680197460334 m005 (2/5*exp(1)-1/3)/(11/12+1/12*5^(1/2)) 6835680208565562 r005 Im(z^2+c),c=-29/26+1/121*I,n=55 6835680212943212 r005 Re(z^2+c),c=13/44+22/39*I,n=38 6835680213994383 r005 Im(z^2+c),c=-29/26+1/121*I,n=60 6835680214062168 k002 Champernowne real with 79*n^2+51*n-62 6835680214949080 a001 47/233*365435296162^(11/23) 6835680216228055 r005 Im(z^2+c),c=-29/26+1/121*I,n=59 6835680217316133 r005 Im(z^2+c),c=-29/26+1/121*I,n=64 6835680217738116 r005 Im(z^2+c),c=-29/26+1/121*I,n=63 6835680218905583 r005 Im(z^2+c),c=-29/26+1/121*I,n=61 6835680219880838 r005 Im(z^2+c),c=-29/26+1/121*I,n=62 6835680222318821 r005 Im(z^2+c),c=-29/26+1/121*I,n=57 6835680227393748 r005 Im(z^2+c),c=-29/26+1/121*I,n=58 6835680233549451 m001 LambertW(1)*GAMMA(7/12)^TreeGrowth2nd 6835680235229880 l006 ln(4458/8831) 6835680238095072 m001 (BesselJ(0,1)+CareFree)/(ErdosBorwein+Landau) 6835680239412005 r005 Im(z^2+c),c=-29/26+1/121*I,n=53 6835680252196195 a001 233/521*843^(17/42) 6835680260139903 a007 Real Root Of -834*x^4-392*x^3-606*x^2-417*x+55 6835680265059164 r005 Im(z^2+c),c=-29/26+1/121*I,n=54 6835680285095463 a007 Real Root Of -820*x^4-51*x^3+792*x^2+473*x+116 6835680293833242 r005 Im(z^2+c),c=-13/86+43/63*I,n=28 6835680294020986 a007 Real Root Of 31*x^4-842*x^3+860*x^2+33*x-655 6835680295374722 a007 Real Root Of 492*x^4-806*x^3-639*x^2-930*x-702 6835680300708233 m001 (exp(1/Pi)+StronglyCareFree)/(2^(1/2)+3^(1/2)) 6835680314092174 k002 Champernowne real with 159/2*n^2+99/2*n-61 6835680322994597 r005 Im(z^2+c),c=-29/26+1/121*I,n=49 6835680334806636 m005 (-13/20+1/4*5^(1/2))/(2/11*3^(1/2)-2/11) 6835680349057449 a003 cos(Pi*1/98)*cos(Pi*19/73) 6835680375529973 s002 sum(A230772[n]/(n*pi^n-1),n=1..infinity) 6835680377647935 r005 Re(z^2+c),c=-69/74+3/52*I,n=8 6835680381609344 a007 Real Root Of -545*x^4+336*x^3-262*x^2-162*x+238 6835680386803984 a007 Real Root Of -594*x^4-148*x^3+899*x^2+822*x-805 6835680402525208 h001 (7/8*exp(1)+9/11)/(5/9*exp(2)+4/7) 6835680414122180 k002 Champernowne real with 80*n^2+48*n-60 6835680421505077 r009 Re(z^3+c),c=-5/48+20/41*I,n=23 6835680423816691 m006 (1/2*exp(2*Pi)+1/3)/(3/5*Pi^2-2) 6835680442095388 a001 377/15127*322^(35/36) 6835680447093343 s001 sum(exp(-2*Pi/5)^n*A285896[n],n=1..infinity) 6835680447093343 s002 sum(A285896[n]/(exp(2/5*pi*n)),n=1..infinity) 6835680447354690 m001 (-sin(1/5*Pi)+ZetaQ(3))/(2^(1/2)-LambertW(1)) 6835680449416847 r005 Im(z^2+c),c=-29/26+1/121*I,n=50 6835680453987569 a007 Real Root Of 410*x^4+236*x^3+43*x^2-721*x+49 6835680458560376 a007 Real Root Of 400*x^4+45*x^3+510*x^2-497*x-651 6835680463930096 a007 Real Root Of 463*x^4-320*x^3-83*x^2-68*x-211 6835680474195888 a007 Real Root Of 924*x^4-537*x^3+779*x^2+489*x-403 6835680477940412 r005 Im(z^2+c),c=-129/110+4/45*I,n=44 6835680481377787 r005 Re(z^2+c),c=-9/16+47/95*I,n=13 6835680485466613 a007 Real Root Of -39*x^4+644*x^3-887*x^2+236*x+790 6835680491546942 m005 (1/2*Zeta(3)-5/7)/(2/5*2^(1/2)-2/5) 6835680494733970 a007 Real Root Of 123*x^4-656*x^3-345*x^2-936*x-715 6835680512716283 a007 Real Root Of 192*x^4-113*x^3+788*x^2+151*x-343 6835680514152186 k002 Champernowne real with 161/2*n^2+93/2*n-59 6835680517863904 m001 (BesselK(1,1)+MertensB1)/(Totient-ZetaP(4)) 6835680553398774 a007 Real Root Of -450*x^4+753*x^3-181*x^2+906*x-677 6835680559112252 r005 Im(z^2+c),c=17/52+23/59*I,n=16 6835680569132156 m002 2+Pi^2/2-Csch[Pi]*Log[Pi] 6835680584731884 a007 Real Root Of 19*x^4-672*x^3+666*x^2-377*x+157 6835680597553979 a007 Real Root Of -724*x^4+363*x^3-202*x^2-675*x-93 6835680603100546 m001 CareFree^MadelungNaCl/(CareFree^Robbin) 6835680614182192 k002 Champernowne real with 81*n^2+45*n-58 6835680627788490 p004 log(28571/14423) 6835680636612430 a001 521/75025*433494437^(3/13) 6835680636868850 a001 521/317811*225851433717^(3/13) 6835680641213244 a001 521/17711*832040^(3/13) 6835680676161717 a007 Real Root Of 103*x^4+617*x^3-510*x^2+536*x-318 6835680682350169 a001 521/4181*1597^(3/13) 6835680700003480 r005 Im(z^2+c),c=-19/56+37/60*I,n=25 6835680714068071 r005 Im(z^2+c),c=-109/106+4/55*I,n=14 6835680714212198 k002 Champernowne real with 163/2*n^2+87/2*n-57 6835680722906274 r005 Im(z^2+c),c=-29/26+1/121*I,n=45 6835680729445076 r005 Re(z^2+c),c=-43/62+11/32*I,n=62 6835680729943021 a007 Real Root Of 767*x^4-970*x^3-150*x^2-639*x-844 6835680733684519 a007 Real Root Of 242*x^4-945*x^3-293*x^2-132*x-308 6835680734470791 m001 ln(Niven)*GaussKuzminWirsing^2/FeigenbaumD^2 6835680743826489 a001 2207*(1/2*5^(1/2)+1/2)^7*3^(1/17) 6835680750235406 a007 Real Root Of -804*x^4+375*x^3+434*x^2+945*x-793 6835680751173708 q001 728/1065 6835680751173708 r005 Im(z^2+c),c=-13/10+91/213*I,n=2 6835680770111138 a001 47/8*987^(21/59) 6835680793080860 r002 61th iterates of z^2 + 6835680801980743 r009 Im(z^3+c),c=-3/86+17/22*I,n=15 6835680803405774 l006 ln(1993/3948) 6835680814242204 k002 Champernowne real with 82*n^2+42*n-56 6835680831083119 m005 (1/2*gamma-5/11)/(5/8*Catalan-3) 6835680849314023 r009 Im(z^3+c),c=-41/86+11/19*I,n=34 6835680884538228 a007 Real Root Of 695*x^4-330*x^3+470*x^2-369*x-729 6835680884979356 m001 (ln(2)/ln(10)+Zeta(3))/(Totient+Thue) 6835680889815244 r009 Im(z^3+c),c=-13/70+49/50*I,n=60 6835680914272210 k002 Champernowne real with 165/2*n^2+81/2*n-55 6835680933495742 m001 cos(1/12*Pi)^Zeta(1,2)*Robbin 6835680942195038 r008 a(0)=7,K{-n^6,-53+2*n^3-2*n^2+60*n} 6835680947292276 r009 Re(z^3+c),c=-9/86+31/63*I,n=23 6835680954179974 m001 Thue^FeigenbaumAlpha*Thue^gamma(3) 6835680960700053 a007 Real Root Of -96*x^4+597*x^3-107*x^2+593*x+667 6835680977431613 a007 Real Root Of 991*x^4+699*x^3+532*x^2-748*x-753 6835680980973353 m001 FeigenbaumD+Khinchin+Porter 6835680983597045 r009 Im(z^3+c),c=-1/90+32/41*I,n=33 6835680991804897 a007 Real Root Of -825*x^4+767*x^3+847*x^2+611*x+447 6835681010549272 a007 Real Root Of 705*x^4-915*x^3-208*x^2-237*x-511 6835681014302216 k002 Champernowne real with 83*n^2+39*n-54 6835681019358089 m001 ZetaQ(2)^(gamma*BesselI(1,2)) 6835681026292248 p001 sum((-1)^n/(217*n+17)/n/(6^n),n=1..infinity) 6835681041281996 r005 Im(z^2+c),c=-9/14+32/145*I,n=21 6835681062438480 a007 Real Root Of 477*x^4-608*x^3-355*x^2-714*x+744 6835681096102718 a001 2584/521*123^(1/15) 6835681105496294 m001 (Tetranacci-ZetaQ(2))/(ErdosBorwein-MertensB3) 6835681109358200 m008 (2*Pi^3+4/5)/(3*Pi^5+5/6) 6835681112643702 m005 (1/6*Catalan-4)/(1/5*Pi+5) 6835681114332222 k002 Champernowne real with 167/2*n^2+75/2*n-53 6835681114428604 m001 (Lehmer-Niven)/(GAMMA(11/12)-FeigenbaumD) 6835681142940688 r002 20th iterates of z^2 + 6835681147011405 a007 Real Root Of -129*x^4-964*x^3-615*x^2-393*x-204 6835681153961960 a007 Real Root Of -830*x^4-578*x^3-235*x^2+883*x+710 6835681158674724 m005 (1/2*3^(1/2)-2/11)/(5/11*Zeta(3)+5/11) 6835681168083372 a007 Real Root Of -355*x^4-458*x^3-619*x^2+882*x-6 6835681214362228 k002 Champernowne real with 84*n^2+36*n-52 6835681239189123 r002 28th iterates of z^2 + 6835681240698864 a007 Real Root Of 68*x^4+378*x^3-632*x^2-145*x+807 6835681248145119 m001 1/BesselK(1,1)/ln(Tribonacci)^2/cos(Pi/5)^2 6835681263352752 p004 log(10909/5507) 6835681294159608 m001 (MertensB3+OneNinth)/(Pi-MertensB2) 6835681307076805 g007 Psi(2,5/11)+Psi(2,3/4)-Psi(2,5/8)-Psi(2,2/7) 6835681314392234 k002 Champernowne real with 169/2*n^2+69/2*n-51 6835681332305493 r005 Im(z^2+c),c=-29/26+1/121*I,n=46 6835681339592953 m001 ZetaQ(2)^GaussAGM/(ZetaQ(2)^CareFree) 6835681363617226 m001 Lehmer^((1+3^(1/2))^(1/2)*TreeGrowth2nd) 6835681370911339 m001 exp(Zeta(9))^2/FeigenbaumAlpha^2*gamma 6835681387963552 r008 a(0)=7,K{-n^6,-4-18*n^3+31*n^2-5*n} 6835681414422240 k002 Champernowne real with 85*n^2+33*n-50 6835681421305982 h001 (1/2*exp(1)+1/5)/(7/9*exp(1)+1/6) 6835681421305982 m005 (1/2*exp(1)+1/5)/(7/9*exp(1)+1/6) 6835681452784633 m001 Shi(1)/GAMMA(2/3)*ZetaQ(3) 6835681476010178 h001 (3/11*exp(2)+3/10)/(4/11*exp(2)+7/10) 6835681505052691 a007 Real Root Of 116*x^4-619*x^3-752*x^2-625*x+951 6835681514452246 k002 Champernowne real with 171/2*n^2+63/2*n-49 6835681520970403 a007 Real Root Of 712*x^4-673*x^3+40*x^2-250*x-560 6835681524216239 l006 ln(3514/6961) 6835681566188207 a007 Real Root Of 900*x^4-503*x^3-295*x^2+236*x-58 6835681574105421 m001 (GlaisherKinkelin+ZetaP(2))/(exp(Pi)+5^(1/2)) 6835681579582494 r002 25th iterates of z^2 + 6835681591257936 a007 Real Root Of 994*x^4+253*x^3+527*x^2-643*x-822 6835681592373828 a007 Real Root Of -140*x^4-832*x^3+996*x^2+906*x-422 6835681604602259 a007 Real Root Of 96*x^4+735*x^3+623*x^2+679*x+692 6835681607353685 r005 Re(z^2+c),c=-49/110+37/56*I,n=2 6835681614482252 k002 Champernowne real with 86*n^2+30*n-48 6835681646659743 m001 (ArtinRank2-Mills)/(ln(3)-exp(-1/2*Pi)) 6835681671999462 m001 (gamma(2)-CopelandErdos)/(GaussAGM-PlouffeB) 6835681714512258 k002 Champernowne real with 173/2*n^2+57/2*n-47 6835681726140981 m002 -Pi^4+2*Csch[Pi]+Pi^3/ProductLog[Pi] 6835681776419308 a001 199/5*196418^(19/45) 6835681778650703 h001 (-8*exp(1)+9)/(-exp(-2)+2) 6835681809534051 l006 ln(5035/9974) 6835681814542264 k002 Champernowne real with 87*n^2+27*n-46 6835681819548139 a007 Real Root Of 920*x^4-354*x^3+341*x^2-23*x-489 6835681830544210 a005 (1/sin(43/183*Pi))^156 6835681856706674 a007 Real Root Of 81*x^4+658*x^3+856*x^2+952*x-173 6835681886224915 a001 3/89*8^(17/50) 6835681893392942 a003 cos(Pi*21/83)*sin(Pi*40/93) 6835681896001940 r004 Im(z^2+c),c=-1+5/9*I,z(0)=exp(23/24*I*Pi),n=4 6835681899172474 a007 Real Root Of 773*x^4+674*x^3-444*x^2-911*x-60 6835681907107479 m001 MinimumGamma*Si(Pi)*ln(sqrt(1+sqrt(3)))^2 6835681914572270 k002 Champernowne real with 175/2*n^2+51/2*n-45 6835681923927391 m001 (Riemann3rdZero-Stephens)/(sin(1/12*Pi)+Paris) 6835681929341124 a007 Real Root Of -766*x^4+78*x^3-37*x^2+289*x+407 6835681938236772 a007 Real Root Of 652*x^4-699*x^3+627*x^2+627*x-230 6835681969464060 a007 Real Root Of 927*x^4-627*x^3-429*x^2-737*x-706 6835681978843532 b008 -5+ArcCosh[147] 6835681978843532 b008 -5+ArcSech[1/147] 6835681995121222 m005 (1/36+1/4*5^(1/2))/(4/11*5^(1/2)-8/11) 6835682014602276 k002 Champernowne real with 88*n^2+24*n-44 6835682059842176 a007 Real Root Of 47*x^4-404*x^3+277*x^2-489*x-603 6835682065326021 a001 1/322*(1/2*5^(1/2)+1/2)^14*4^(9/13) 6835682096908113 m006 (1/3*ln(Pi)+3)/(1/6/Pi-5) 6835682097554494 m001 (GAMMA(2/3)+ZetaP(2))/(gamma-sin(1)) 6835682104281622 a007 Real Root Of -391*x^4+686*x^3+55*x^2+565*x+665 6835682111215664 r005 Im(z^2+c),c=-11/16+4/41*I,n=38 6835682114632282 k002 Champernowne real with 177/2*n^2+45/2*n-43 6835682137011113 m001 (2^(1/2)-2^(1/3))/(Grothendieck+Weierstrass) 6835682156792000 r009 Re(z^3+c),c=-11/36+15/22*I,n=53 6835682168418373 m001 exp(Si(Pi))/Backhouse^2/GAMMA(5/24) 6835682169759533 m005 (1/2*Pi-7/12)/(2/9*gamma-3/11) 6835682181104023 h005 exp(cos(Pi*6/59)+sin(Pi*20/47)) 6835682181777159 h001 (2/9*exp(1)+5/8)/(2/11*exp(2)+5/11) 6835682193296815 r009 Im(z^3+c),c=-8/15+4/29*I,n=4 6835682208419174 m004 5+6*E^(Sqrt[5]*Pi)+25*Pi+Sqrt[5]*Pi 6835682214662288 k002 Champernowne real with 89*n^2+21*n-42 6835682222229477 a005 (1/cos(33/211*Pi))^125 6835682259098662 m001 Zeta(3)*(BesselI(0,2)+Magata) 6835682271232358 m001 (exp(1)+GAMMA(5/6))/(-Bloch+MertensB2) 6835682272367210 a007 Real Root Of -999*x^4-134*x^3-57*x^2-648*x-241 6835682314692294 k002 Champernowne real with 179/2*n^2+39/2*n-41 6835682341504581 r005 Re(z^2+c),c=13/70+19/63*I,n=29 6835682343241318 m005 (1/2*3^(1/2)-1/9)/(7/12*5^(1/2)-1/5) 6835682365286640 a007 Real Root Of 204*x^4-795*x^3-415*x^2-618*x-527 6835682410944203 a003 sin(Pi*25/87)*sin(Pi*37/110) 6835682414722300 k002 Champernowne real with 90*n^2+18*n-40 6835682438426626 a007 Real Root Of 914*x^4+8*x^3+252*x^2-685*x-783 6835682438899363 a007 Real Root Of -116*x^4+992*x^3-763*x^2-298*x+495 6835682444552962 m005 (1/2*2^(1/2)-1/6)/(1/12*Catalan+5/7) 6835682468710083 l006 ln(1521/3013) 6835682504937915 a001 987/439204*199^(20/31) 6835682514752306 k002 Champernowne real with 181/2*n^2+33/2*n-39 6835682517469738 m005 (1/2*Zeta(3)-1/12)/(6/7*3^(1/2)-8/11) 6835682520755516 a007 Real Root Of -135*x^4+894*x^3+878*x^2-217*x-518 6835682533127961 m001 BesselK(0,1)*DuboisRaymond*GaussAGM 6835682551937514 a007 Real Root Of -135*x^4-969*x^3-231*x^2+710*x+896 6835682587734738 a007 Real Root Of -972*x^4+589*x^3+58*x^2-15*x+363 6835682597113531 r005 Im(z^2+c),c=-29/26+1/121*I,n=41 6835682601171897 a007 Real Root Of 599*x^4+148*x^3+5*x^2-9*x-92 6835682613147946 m001 (Conway+ThueMorse)/(exp(-1/2*Pi)-exp(1)) 6835682614782312 k002 Champernowne real with 91*n^2+15*n-38 6835682651303690 g007 Psi(2,11/12)+Psi(2,1/7)-Psi(2,9/10)-Psi(2,5/6) 6835682658473732 r002 56th iterates of z^2 + 6835682663695861 a007 Real Root Of 565*x^4-124*x^3+431*x^2-886*x-970 6835682667078690 a003 cos(Pi*14/97)*sin(Pi*11/40) 6835682698746352 r004 Im(z^2+c),c=2/7-9/14*I,z(0)=exp(7/12*I*Pi),n=2 6835682703436177 r005 Re(z^2+c),c=-55/58+8/31*I,n=4 6835682714812318 k002 Champernowne real with 183/2*n^2+27/2*n-37 6835682717338047 p001 sum(1/(441*n+151)/n/(25^n),n=1..infinity) 6835682746356606 r009 Im(z^3+c),c=-13/82+17/22*I,n=7 6835682776663497 m001 (cos(1/5*Pi)-KhinchinLevy)/(PlouffeB+ZetaP(4)) 6835682793497312 a005 (1/sin(76/179*Pi))^1368 6835682808298106 a007 Real Root Of 350*x^4+754*x^3+551*x^2-648*x-536 6835682814842324 k002 Champernowne real with 92*n^2+12*n-36 6835682836551130 m005 (1/2*Pi-5/8)/(2/3*exp(1)-3/7) 6835682839602647 r005 Re(z^2+c),c=-37/48+5/59*I,n=15 6835682848289768 m005 (1/3*5^(1/2)+3/7)/(1/4*2^(1/2)-2/11) 6835682855087558 a001 610/9349*322^(29/36) 6835682877818823 l006 ln(8283/8869) 6835682883609657 a001 2207/377*10946^(1/60) 6835682895724499 r005 Re(z^2+c),c=-81/82+7/50*I,n=30 6835682897708342 m001 (-OrthogonalArrays+Porter)/(cos(1)+ln(gamma)) 6835682901292038 m005 (1/3*2^(1/2)+2/7)/(5/8*gamma-1/4) 6835682901706551 a001 281/1602508992*6765^(15/16) 6835682914864893 a007 Real Root Of 195*x^4-785*x^3+37*x^2-852*x-893 6835682914872330 k002 Champernowne real with 185/2*n^2+21/2*n-35 6835682919077466 m001 1/GolombDickman*exp(Conway)*OneNinth^2 6835682929712319 a001 843/6557470319842*14930352^(15/16) 6835682935509463 m001 (1+3^(1/3))/(-exp(-1/2*Pi)+BesselI(1,1)) 6835682945180093 m005 (1/2*gamma+1/12)/(3/4*Catalan-1/7) 6835682946350727 b008 1/3+4^Sin[4] 6835682958934186 a005 (1/cos(4/129*Pi))^889 6835682959480357 a003 cos(Pi*3/97)/cos(Pi*39/86) 6835682971418837 r005 Re(z^2+c),c=-15/122+38/55*I,n=9 6835682978011787 a001 161/4*102334155^(7/9) 6835682988291985 m001 1/GAMMA(11/12)*ln(BesselJ(1,1))*Zeta(1,2)^2 6835683014902336 k002 Champernowne real with 93*n^2+9*n-34 6835683025277211 a007 Real Root Of -276*x^4+391*x^3+664*x^2+815*x-932 6835683028782176 a001 3571/34*121393^(4/25) 6835683051297618 r005 Im(z^2+c),c=-5/4+19/150*I,n=16 6835683090094920 r002 11th iterates of z^2 + 6835683104214117 m001 exp(sqrt(2))^(1/3)*exp(sqrt(2))^GAMMA(23/24) 6835683108619805 a007 Real Root Of 653*x^4-752*x^3+69*x^2-98*x-482 6835683114932342 k002 Champernowne real with 187/2*n^2+15/2*n-33 6835683136518232 a007 Real Root Of -615*x^4+963*x^3+502*x^2-269*x-224 6835683163069242 b008 ArcSinh[PolyLog[3,2/3]] 6835683189164815 r002 53th iterates of z^2 + 6835683204667813 a007 Real Root Of 314*x^4-436*x^3-30*x^2-347*x-431 6835683204872033 a001 987/24476*322^(8/9) 6835683214141933 a003 cos(Pi*17/107)-sin(Pi*34/101) 6835683214962348 k002 Champernowne real with 94*n^2+6*n-32 6835683242410990 a007 Real Root Of 859*x^4-224*x^3+855*x^2-378*x-917 6835683277156355 r005 Re(z^2+c),c=-145/98+1/28*I,n=11 6835683279991207 l006 ln(4091/8104) 6835683280430468 m005 (1/2*5^(1/2)-5/6)/(2/7*gamma+4) 6835683297180043 q001 2521/3688 6835683297584353 a001 305/2*5778^(18/41) 6835683299307453 m002 -4-Cosh[Pi]+Pi^4/Log[Pi]-Log[Pi] 6835683314992354 k002 Champernowne real with 189/2*n^2+9/2*n-31 6835683340216497 r005 Re(z^2+c),c=-57/74+3/53*I,n=13 6835683354376228 a007 Real Root Of 877*x^4+176*x^3-949*x^2-720*x-184 6835683371430194 a001 3/17711*4052739537881^(16/21) 6835683396821629 r002 20th iterates of z^2 + 6835683415022360 k002 Champernowne real with 95*n^2+3*n-30 6835683438641669 r009 Im(z^3+c),c=-99/122+11/47*I,n=2 6835683439762779 m004 16*E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi]^2 6835683441125343 a007 Real Root Of 841*x^4-992*x^3-879*x^2-180*x+667 6835683456477781 r002 14th iterates of z^2 + 6835683475058255 r002 4th iterates of z^2 + 6835683478051466 r004 Re(z^2+c),c=-17/22+1/16*I,z(0)=-1,n=16 6835683504851706 r009 Im(z^3+c),c=-35/94+15/19*I,n=3 6835683510964880 a003 sin(Pi*9/83)+sin(Pi*5/44) 6835683515052366 k002 Champernowne real with 191/2*n^2+3/2*n-29 6835683560655246 m001 ZetaQ(2)^BesselI(1,2)-ln(2) 6835683575802952 m001 ln(cos(1))*FeigenbaumAlpha^2*sqrt(Pi) 6835683579111397 a007 Real Root Of 33*x^4-389*x^3+216*x^2-999*x+699 6835683587792944 a007 Real Root Of 122*x^4+848*x^3+168*x^2+411*x-554 6835683615082372 k002 Champernowne real with 96*n^2-28 6835683628115605 a007 Real Root Of 320*x^4-798*x^3-578*x^2-315*x-270 6835683642062741 m001 (Ei(1,1)-BesselI(1,2))/(FeigenbaumC+ZetaP(3)) 6835683689356859 r005 Im(z^2+c),c=-1/21+7/10*I,n=62 6835683703543341 a001 2584/1149851*199^(20/31) 6835683715112378 k002 Champernowne real with 193/2*n^2-3/2*n-27 6835683723165385 m001 Ei(1)-ln(3)*KomornikLoreti 6835683733838429 r005 Re(z^2+c),c=11/52+13/29*I,n=54 6835683760130705 l006 ln(2570/5091) 6835683781924017 m001 ln(Pi)^Zeta(1/2)/(ln(Pi)^GAMMA(2/3)) 6835683789257128 m001 (2^(1/3)-Mills)/(-Totient+TwinPrimes) 6835683803339252 a001 18/1346269*10946^(10/57) 6835683806518403 m001 GAMMA(1/4)/BesselJ(0,1)/ln(2) 6835683806518403 m001 Pi*2^(1/2)/GAMMA(3/4)/BesselJ(0,1)/ln(2) 6835683815142384 k002 Champernowne real with 97*n^2-3*n-26 6835683818279275 m005 (1/2*2^(1/2)+1/8)/(2/9*gamma-1/4) 6835683838455748 a003 sin(Pi*3/65)*sin(Pi*8/51) 6835683854124296 a007 Real Root Of 145*x^4+946*x^3-422*x^2-903*x-883 6835683861025299 m006 (3/5*ln(Pi)+3/4)/(2/5*exp(2*Pi)-4) 6835683869854491 m001 (Si(Pi)+FeigenbaumC)/(-Lehmer+ZetaQ(2)) 6835683869910616 a001 3/121393*75025^(41/45) 6835683878417516 a001 6765/3010349*199^(20/31) 6835683915172390 k002 Champernowne real with 195/2*n^2-9/2*n-25 6835683919699709 a001 10946/4870847*199^(20/31) 6835683952688889 m001 (Mills-Riemann2ndZero)/(Ei(1)-ErdosBorwein) 6835683954451023 a007 Real Root Of 268*x^4-716*x^3-104*x^2-220*x-389 6835683959904636 s001 sum(exp(-Pi/2)^n*A026019[n],n=1..infinity) 6835683983180599 a007 Real Root Of 878*x^4-814*x^3+480*x^2-60*x-717 6835683984837557 a007 Real Root Of 775*x^4-514*x^3-18*x^2-455*x-636 6835683986495700 a001 4181/1860498*199^(20/31) 6835684015202396 k002 Champernowne real with 98*n^2-6*n-24 6835684087147052 m009 (1/5*Psi(1,3/4)+3)/(8/3*Catalan+1/3*Pi^2-3/5) 6835684110266762 r002 19th iterates of z^2 + 6835684111193986 r005 Re(z^2+c),c=-69/94+12/41*I,n=14 6835684115232402 k002 Champernowne real with 197/2*n^2-15/2*n-23 6835684121011018 a007 Real Root Of -906*x^4-929*x^3-323*x^2+98*x+119 6835684130039339 p001 sum((-1)^n/(524*n+145)/(24^n),n=0..infinity) 6835684134036833 m001 (GAMMA(2/3)*gamma(1)+Gompertz)/gamma(1) 6835684151050482 m001 (Shi(1)+MertensB1)/(Tetranacci+ZetaQ(4)) 6835684196956573 m001 (arctan(1/3)-gamma(1))/gamma 6835684215262408 k002 Champernowne real with 99*n^2-9*n-22 6835684237429112 a001 305/161*123^(4/15) 6835684285638499 a001 329/41*1364^(43/46) 6835684291688665 m005 (1/2*5^(1/2)-1/11)/(5/12*3^(1/2)-4/7) 6835684302891297 l006 ln(3619/7169) 6835684315292414 k002 Champernowne real with 199/2*n^2-21/2*n-21 6835684325606803 m001 ArtinRank2/ln(Backhouse)^2*Salem^2 6835684330459394 a007 Real Root Of -297*x^4+777*x^3+80*x^2+786*x-758 6835684330918795 q001 1793/2623 6835684330918795 r002 2th iterates of z^2 + 6835684393762197 a001 2584/64079*322^(8/9) 6835684408225878 m001 1/FeigenbaumC/exp(Bloch)^2*LambertW(1)^2 6835684415322420 k002 Champernowne real with 100*n^2-12*n-20 6835684430661130 m001 (ln(2+3^(1/2))+ZetaP(2))/sin(1/12*Pi) 6835684444322234 a001 1597/710647*199^(20/31) 6835684445699757 m001 (Si(Pi)+GAMMA(2/3))/(-ln(2)+MasserGramain) 6835684456277590 a007 Real Root Of -193*x^4+991*x^3-548*x^2-4*x+612 6835684456841626 m001 (Kolakoski+Thue)/(Si(Pi)+LambertW(1)) 6835684464818719 m001 (Sarnak+Trott2nd)/(Catalan-GAMMA(23/24)) 6835684482833518 l006 ln(7025/7522) 6835684515352426 k002 Champernowne real with 201/2*n^2-27/2*n-19 6835684520684666 m001 StolarskyHarborth^Artin*ZetaP(3) 6835684567218934 a001 615/15251*322^(8/9) 6835684592525931 a001 17711/439204*322^(8/9) 6835684596218172 a001 46368/1149851*322^(8/9) 6835684596756863 a001 121393/3010349*322^(8/9) 6835684596835457 a001 317811/7881196*322^(8/9) 6835684596846924 a001 75640/1875749*322^(8/9) 6835684596848597 a001 2178309/54018521*322^(8/9) 6835684596848841 a001 5702887/141422324*322^(8/9) 6835684596848876 a001 14930352/370248451*322^(8/9) 6835684596848882 a001 39088169/969323029*322^(8/9) 6835684596848882 a001 9303105/230701876*322^(8/9) 6835684596848882 a001 267914296/6643838879*322^(8/9) 6835684596848882 a001 701408733/17393796001*322^(8/9) 6835684596848882 a001 1836311903/45537549124*322^(8/9) 6835684596848882 a001 4807526976/119218851371*322^(8/9) 6835684596848882 a001 1144206275/28374454999*322^(8/9) 6835684596848882 a001 32951280099/817138163596*322^(8/9) 6835684596848882 a001 86267571272/2139295485799*322^(8/9) 6835684596848882 a001 225851433717/5600748293801*322^(8/9) 6835684596848882 a001 591286729879/14662949395604*322^(8/9) 6835684596848882 a001 365435296162/9062201101803*322^(8/9) 6835684596848882 a001 139583862445/3461452808002*322^(8/9) 6835684596848882 a001 53316291173/1322157322203*322^(8/9) 6835684596848882 a001 20365011074/505019158607*322^(8/9) 6835684596848882 a001 7778742049/192900153618*322^(8/9) 6835684596848882 a001 2971215073/73681302247*322^(8/9) 6835684596848882 a001 1134903170/28143753123*322^(8/9) 6835684596848882 a001 433494437/10749957122*322^(8/9) 6835684596848882 a001 165580141/4106118243*322^(8/9) 6835684596848883 a001 63245986/1568397607*322^(8/9) 6835684596848885 a001 24157817/599074578*322^(8/9) 6835684596848898 a001 9227465/228826127*322^(8/9) 6835684596848992 a001 3524578/87403803*322^(8/9) 6835684596849631 a001 1346269/33385282*322^(8/9) 6835684596854010 a001 514229/12752043*322^(8/9) 6835684596884031 a001 196418/4870847*322^(8/9) 6835684597089792 a001 75025/1860498*322^(8/9) 6835684598500103 a001 28657/710647*322^(8/9) 6835684601711920 l006 ln(4668/9247) 6835684608166515 a001 10946/271443*322^(8/9) 6835684608200686 m001 (Landau+ZetaQ(3))/(GAMMA(13/24)-FeigenbaumB) 6835684608657661 a003 cos(Pi*14/101)*sin(Pi*28/103) 6835684615382432 k002 Champernowne real with 101*n^2-15*n-18 6835684633835663 a001 196418/521*18^(7/34) 6835684633979413 a008 Real Root of x^4-x^3-27*x^2-77*x-76 6835684653884486 r005 Im(z^2+c),c=33/122+8/17*I,n=52 6835684656845829 r004 Re(z^2+c),c=2/9+8/23*I,z(0)=I,n=3 6835684657663399 h001 (5/12*exp(2)+7/9)/(3/4*exp(2)+1/10) 6835684673553533 p004 log(29819/15053) 6835684674421093 a001 4181/103682*322^(8/9) 6835684677321239 r005 Im(z^2+c),c=-57/86+15/32*I,n=11 6835684715412438 k002 Champernowne real with 203/2*n^2-33/2*n-17 6835684716174789 r005 Im(z^2+c),c=-1/36+7/11*I,n=33 6835684724872971 h001 (-7*exp(2/3)-1)/(-5*exp(3/2)+1) 6835684746148515 a003 sin(Pi*20/113)/cos(Pi*16/73) 6835684781985281 m001 HardyLittlewoodC3/(cos(1/12*Pi)-Ei(1)) 6835684791181118 a007 Real Root Of -139*x^4-916*x^3+123*x^2-641*x+782 6835684805707302 m002 -6+ProductLog[Pi]/Pi^3-Tanh[Pi]/Log[Pi] 6835684812847860 a007 Real Root Of 308*x^4-231*x^3+865*x^2+565*x-159 6835684815442444 k002 Champernowne real with 102*n^2-18*n-16 6835684816864243 a001 377*3^(13/24) 6835684831266022 a007 Real Root Of 141*x^4+837*x^3-922*x^2-299*x+527 6835684834732899 m005 (1/2*Pi+1/7)/(25/18+1/2*5^(1/2)) 6835684851081172 r005 Re(z^2+c),c=-29/38+9/50*I,n=7 6835684860707342 r009 Im(z^3+c),c=-63/118+8/55*I,n=24 6835684875598352 r009 Im(z^3+c),c=-13/31+3/5*I,n=4 6835684878927841 a007 Real Root Of 151*x^4-626*x^3+399*x^2-393*x-688 6835684883173480 r008 a(0)=7,K{-n^6,-1+9*n^3+2*n^2-3*n} 6835684915472450 k002 Champernowne real with 205/2*n^2-39/2*n-15 6835684917487739 m001 (exp(1/exp(1))-BesselI(1,2))/(ln(2)+3^(1/3)) 6835684920730305 a007 Real Root Of -583*x^4+527*x^3+24*x^2+548*x+659 6835684937563472 b008 ArcCsch[10+8*EulerGamma] 6835684948022720 b008 EulerGamma*(1/3+Csch[1]) 6835684951868769 m001 (FransenRobinson+HardyLittlewoodC3)/(Pi+Ei(1)) 6835684968764804 m001 (Lehmer-Totient)/(BesselI(0,2)-KhinchinLevy) 6835684976857476 m005 (1/2*Zeta(3)+3/11)/(4/5*Catalan+6/11) 6835684990299363 m001 FransenRobinson/(Pi+cos(1/12*Pi)) 6835684992168425 r005 Im(z^2+c),c=-129/106+5/39*I,n=38 6835685015502456 k002 Champernowne real with 103*n^2-21*n-14 6835685020174922 r009 Im(z^3+c),c=-27/94+29/41*I,n=54 6835685027569618 r005 Im(z^2+c),c=17/114+23/40*I,n=24 6835685038185390 b008 -1/3+2*E+EulerGamma^(-1) 6835685052714428 h001 (1/4*exp(2)+5/12)/(4/11*exp(2)+5/8) 6835685075986143 a007 Real Root Of 158*x^4+960*x^3-682*x^2+994*x+321 6835685081089606 a007 Real Root Of 417*x^4-796*x^3+607*x^2+607*x-214 6835685088825193 m009 (3/10*Pi^2+1)/(2*Psi(1,2/3)-1/3) 6835685101425248 a007 Real Root Of -634*x^4+164*x^3+607*x^2+833*x-767 6835685115532462 k002 Champernowne real with 207/2*n^2-45/2*n-13 6835685128536726 a001 1597/39603*322^(8/9) 6835685141112913 r005 Re(z^2+c),c=-65/94+12/43*I,n=45 6835685148446360 m001 (Cahen-ZetaP(4))/(Zeta(5)-exp(-1/2*Pi)) 6835685149145011 a007 Real Root Of 881*x^4-364*x^3+470*x^2+290*x-330 6835685158493698 a007 Real Root Of 648*x^4-699*x^3-153*x^2+173*x-175 6835685165253929 r002 19th iterates of z^2 + 6835685179799081 r005 Im(z^2+c),c=-19/14+4/131*I,n=24 6835685181579209 m001 1/Si(Pi)^2*Bloch^2/ln(Sierpinski) 6835685190072062 m001 cos(1)^2/exp(LaplaceLimit)^2*log(1+sqrt(2)) 6835685215562468 k002 Champernowne real with 104*n^2-24*n-12 6835685216152028 a001 440719107401/7*233^(7/16) 6835685241370257 r002 25th iterates of z^2 + 6835685261857120 a007 Real Root Of 800*x^4+398*x^3+752*x^2-300*x-604 6835685270762140 a007 Real Root Of 705*x^4+357*x^3+923*x^2-699*x-949 6835685274065629 r005 Im(z^2+c),c=-7/78+43/62*I,n=58 6835685315592474 k002 Champernowne real with 209/2*n^2-51/2*n-11 6835685319284550 m006 (4/5*Pi^2-2)/(1/6*exp(2*Pi)-3) 6835685319790935 m009 (3*Pi^2-1/2)/(2/3*Psi(1,2/3)-2) 6835685320442368 a007 Real Root Of 734*x^4-681*x^3-288*x^2-227*x+347 6835685359225935 r001 23i'th iterates of 2*x^2-1 of 6835685380307452 r002 9th iterates of z^2 + 6835685398544226 h001 (1/9*exp(1)+1/6)/(11/12*exp(2)+1/12) 6835685415622480 k002 Champernowne real with 105*n^2-27*n-10 6835685469144595 m001 ln(GAMMA(5/6))*FeigenbaumDelta^2*sin(Pi/12) 6835685473682528 r005 Im(z^2+c),c=-29/26+1/121*I,n=42 6835685474239947 a007 Real Root Of -750*x^4-582*x^3-668*x^2+888*x+897 6835685505140025 a007 Real Root Of 539*x^4-740*x^3+683*x^2-48*x-706 6835685515652486 k002 Champernowne real with 211/2*n^2-57/2*n-9 6835685546297806 r005 Im(z^2+c),c=-5/44+5/61*I,n=3 6835685547085204 m001 FeigenbaumC*Bloch^2/ln(GAMMA(1/12))^2 6835685551933911 a007 Real Root Of -997*x^4+484*x^3+140*x^2+600*x+717 6835685594298679 r005 Im(z^2+c),c=-13/22+12/103*I,n=8 6835685596348992 m005 (1/2*gamma+4/7)/(1/9*Pi+10/11) 6835685615682492 k002 Champernowne real with 106*n^2-30*n-8 6835685632628755 l006 ln(1049/2078) 6835685634955252 m001 (StronglyCareFree-Totient)/(gamma(2)+GaussAGM) 6835685678923606 r002 61th iterates of z^2 + 6835685696848695 r005 Im(z^2+c),c=-7/74+41/59*I,n=25 6835685706889886 m001 (GAMMA(5/6)-HeathBrownMoroz)/(Mills-Otter) 6835685715712498 k002 Champernowne real with 213/2*n^2-63/2*n-7 6835685741201234 a007 Real Root Of -389*x^4+547*x^3+354*x^2+124*x+179 6835685780672513 r005 Im(z^2+c),c=-9/16+17/63*I,n=6 6835685786775267 m001 FeigenbaumD/ln(KhintchineLevy)*TwinPrimes^2 6835685798742483 m005 (1/4*2^(1/2)+2)/(1/4*gamma+1/5) 6835685815742504 k002 Champernowne real with 107*n^2-33*n-6 6835685825559768 a007 Real Root Of -653*x^4+498*x^3-565*x^2+21*x+580 6835685874980404 l004 Pi/cosh(389/89*Pi) 6835685874996586 l004 Pi/sinh(389/89*Pi) 6835685882813603 m001 FeigenbaumDelta+GAMMA(11/24)^GAMMA(19/24) 6835685894520119 a007 Real Root Of 771*x^4-132*x^3-382*x^2-335*x-261 6835685902377042 h001 (-6*exp(1/3)+4)/(-8*exp(-3)-6) 6835685914320200 m001 1/ln(FeigenbaumC)*FeigenbaumAlpha^2*TwinPrimes 6835685914352493 m001 (-DuboisRaymond+Porter)/(Si(Pi)-gamma(2)) 6835685915772510 k002 Champernowne real with 215/2*n^2-69/2*n-5 6835685928612062 a007 Real Root Of 150*x^4-979*x^3-625*x^2-311*x-266 6835685946387535 a007 Real Root Of -119*x^4-683*x^3+973*x^2+668*x+767 6835685953762654 a007 Real Root Of -471*x^4+716*x^3-3*x^2+63*x+376 6835685966344306 r005 Im(z^2+c),c=-17/50+3/32*I,n=5 6835685973549609 l006 ln(3499/3523) 6835685982484674 a007 Real Root Of 210*x^4-757*x^3+462*x^2-482*x-833 6835685993480510 m001 MertensB1/ln(Conway)^2*FeigenbaumKappa^2 6835685993611761 m001 (HardyLittlewoodC5-Mills)/(Zeta(1,2)-Artin) 6835685999666045 r005 Re(z^2+c),c=-1/21+47/60*I,n=61 6835686015802516 k002 Champernowne real with 108*n^2-36*n-4 6835686025177227 s002 sum(A198090[n]/(exp(n)+1),n=1..infinity) 6835686038787878 a007 Real Root Of 72*x^4+573*x^3+593*x^2+171*x-722 6835686058627101 r005 Im(z^2+c),c=-5/17+1/10*I,n=7 6835686059992603 a007 Real Root Of -682*x^4+429*x^3-689*x^2+303*x+815 6835686067860798 r002 32th iterates of z^2 + 6835686096964624 m006 (5/6/Pi+5/6)/(3*exp(2*Pi)+2/3) 6835686103207577 r002 38th iterates of z^2 + 6835686115832522 k002 Champernowne real with 217/2*n^2-75/2*n-3 6835686139478867 m001 BesselJ(1,1)^2/Magata/ln(Zeta(7)) 6835686197732017 r005 Re(z^2+c),c=-19/82+55/62*I,n=9 6835686202448855 a007 Real Root Of 183*x^4-824*x^3+15*x^2-819*x-870 6835686209857989 a007 Real Root Of 765*x^4-156*x^3-870*x^2-336*x+519 6835686215862528 k002 Champernowne real with 109*n^2-39*n-2 6835686221436931 r009 Im(z^3+c),c=-27/50+3/19*I,n=49 6835686234506199 a007 Real Root Of 777*x^4-825*x^3+646*x^2+60*x-694 6835686274442284 m001 (BesselI(0,2)-Catalan)/(GAMMA(17/24)+Rabbit) 6835686289658158 m001 Riemann2ndZero^2/ln(Artin)^2/Sierpinski^2 6835686295417221 m005 (1/2*gamma+3/5)/(7/11*2^(1/2)+2/5) 6835686296284025 m001 (BesselI(0,1)+HardyLittlewoodC3)/(-Kac+Magata) 6835686306988837 m001 Zeta(1/2)/MinimumGamma^2 6835686315892534 k002 Champernowne real with 219/2*n^2-81/2*n-1 6835686350099316 r005 Re(z^2+c),c=-65/102+25/42*I,n=5 6835686353238770 r005 Im(z^2+c),c=1/106+25/33*I,n=8 6835686359068494 a007 Real Root Of 840*x^4+398*x^3+638*x^2-943*x-999 6835686393178663 a007 Real Root Of 731*x^4-660*x^3-930*x^2-679*x-400 6835686415922540 k002 Champernowne real with 110*n^2-42*n 6835686418735016 m008 (1/3*Pi^6+2/3)/(2/5*Pi^2+3/4) 6835686436347137 a007 Real Root Of 314*x^4-577*x^3+476*x^2+391*x-208 6835686437549377 m001 (LambertW(1)-ln(5))/(ln(2^(1/2)+1)+Cahen) 6835686506293589 m001 1/Magata*ln(Lehmer)^2/Trott^2 6835686515066482 a007 Real Root Of -48*x^4+943*x^3+327*x^2+561*x-827 6835686515952546 k002 Champernowne real with 221/2*n^2-87/2*n+1 6835686522887195 a007 Real Root Of -455*x^4+405*x^3-216*x^2+495*x+668 6835686528589878 m001 OrthogonalArrays/gamma(3) 6835686534042589 m001 (-Paris+RenyiParking)/(Chi(1)-KomornikLoreti) 6835686545761938 a007 Real Root Of 847*x^4-576*x^3+516*x^2-196*x-744 6835686564952392 a007 Real Root Of -634*x^4+589*x^3-334*x^2-175*x+363 6835686572705096 r005 Re(z^2+c),c=-41/98+45/61*I,n=4 6835686595082507 a007 Real Root Of -507*x^4+752*x^3+404*x^2+920*x+791 6835686614804316 m005 (5*2^(1/2)-1/2)/(3/4*exp(1)-3) 6835686615982552 k002 Champernowne real with 111*n^2-45*n+2 6835686640866613 l006 ln(4773/9455) 6835686653138230 a007 Real Root Of -686*x^4+846*x^3-446*x^2+213*x+774 6835686684006960 m001 ArtinRank2^(ln(2^(1/2)+1)/GaussAGM) 6835686716012558 k002 Champernowne real with 223/2*n^2-93/2*n+3 6835686716480061 a007 Real Root Of -744*x^4+338*x^3+466*x^2+40*x+80 6835686747657150 h001 (-exp(3)+9)/(-4*exp(6)-8) 6835686749043886 h001 (1/12*exp(1)+4/7)/(1/6*exp(1)+5/7) 6835686761177040 r005 Re(z^2+c),c=-107/102+5/29*I,n=24 6835686777920410 q001 1065/1558 6835686777920410 r002 2th iterates of z^2 + 6835686778603242 a003 sin(Pi*28/101)*sin(Pi*19/54) 6835686784469118 a003 cos(Pi*9/64)-cos(Pi*15/103) 6835686787854230 a007 Real Root Of -630*x^4+419*x^3+14*x^2+758*x-52 6835686787962913 r005 Re(z^2+c),c=-9/16+87/128*I,n=3 6835686788076532 l006 ln(5767/6175) 6835686788404438 m001 exp(-1/2*Pi)-GaussKuzminWirsing-sin(Pi/5) 6835686788404438 m001 exp(-1/2*Pi)-sin(1/5*Pi)-GaussKuzminWirsing 6835686791712667 r009 Im(z^3+c),c=-7/9*I,n=23 6835686794478596 a007 Real Root Of 647*x^4-426*x^3-x^2-856*x-862 6835686808457836 m009 (4/5*Psi(1,3/4)+4)/(4/5*Psi(1,1/3)+3/4) 6835686816042564 k002 Champernowne real with 112*n^2-48*n+4 6835686828311272 m001 (cos(1)+Ei(1,1))/(MertensB2+ZetaP(4)) 6835686856727674 a007 Real Root Of 268*x^4-245*x^3-227*x^2-524*x+484 6835686870353385 a003 cos(Pi*31/119)/sin(Pi*34/69) 6835686881666026 a007 Real Root Of 662*x^4-815*x^3-365*x^2+59*x+246 6835686882955913 r005 Im(z^2+c),c=-7/30+33/43*I,n=41 6835686891201563 r002 20th iterates of z^2 + 6835686896858576 r009 Re(z^3+c),c=-21/38+13/50*I,n=56 6835686904757910 a007 Real Root Of 470*x^4-775*x^3+368*x^2-506*x-868 6835686916072570 k002 Champernowne real with 225/2*n^2-99/2*n+5 6835686924873445 l006 ln(3724/7377) 6835686925283978 r005 Re(z^2+c),c=2/27+17/39*I,n=27 6835686933683626 a007 Real Root Of 743*x^4-713*x^3+602*x^2+173*x-553 6835686953262289 a007 Real Root Of 422*x^4-676*x^3+927*x^2+486*x-409 6835686979460844 h001 (8/11*exp(1)+7/12)/(5/12*exp(2)+2/3) 6835686998125287 m001 GAMMA(23/24)^cos(1/5*Pi)*gamma(3)^cos(1/5*Pi) 6835687016102576 k002 Champernowne real with 113*n^2-51*n+6 6835687024581912 a007 Real Root Of -34*x^4+892*x^3+316*x^2+800*x-972 6835687042951372 a003 cos(Pi*5/89)-cos(Pi*13/99) 6835687048149270 p003 LerchPhi(1/5,1,99/59) 6835687068837221 m001 (Zeta(5)+ln(3))/(CopelandErdos+ZetaP(4)) 6835687092411720 r005 Im(z^2+c),c=1/22+23/25*I,n=3 6835687098900087 a007 Real Root Of 509*x^4-916*x^3+751*x^2-160*x-864 6835687116132582 k002 Champernowne real with 227/2*n^2-105/2*n+7 6835687116675434 r005 Im(z^2+c),c=-7/78+43/62*I,n=55 6835687145642802 a008 Real Root of x^4-2*x^3-86*x^2+87*x+1791 6835687148820814 m005 (-1/6+1/4*5^(1/2))/(8/11*2^(1/2)-5/11) 6835687153508476 m001 Paris/ln(Artin)/Porter 6835687162395588 m001 ((3^(1/3))-sqrt(1+sqrt(3)))/GAMMA(7/24) 6835687216162588 k002 Champernowne real with 114*n^2-54*n+8 6835687227969542 a007 Real Root Of 986*x^4-980*x^3-635*x^2+725*x+264 6835687229670445 r005 Im(z^2+c),c=-37/48+1/42*I,n=52 6835687234259105 a007 Real Root Of -621*x^4+689*x^3-583*x^2-537*x+261 6835687258239955 m001 Trott2nd^GAMMA(3/4)*GolombDickman^GAMMA(3/4) 6835687262040944 a003 sin(Pi*20/63)/cos(Pi*47/102) 6835687269487894 a007 Real Root Of -157*x^4-954*x^3+747*x^2-556*x-631 6835687276878055 a007 Real Root Of 680*x^4-174*x^3+349*x^2+875*x+231 6835687293306599 a007 Real Root Of -39*x^4+911*x^3+493*x^2+209*x+212 6835687305212698 a007 Real Root Of -944*x^4+978*x^3+118*x^2+390*x-428 6835687315172931 b008 64+ArcSinh[39] 6835687316192594 k002 Champernowne real with 229/2*n^2-111/2*n+9 6835687324854326 s002 sum(A050296[n]/(pi^n-1),n=1..infinity) 6835687338386854 m008 (Pi^2+1/2)/(1/2*Pi^3-1/3) 6835687350076356 r002 3th iterates of z^2 + 6835687350076356 r002 3th iterates of z^2 + 6835687373347674 r009 Re(z^3+c),c=-5/44+34/63*I,n=8 6835687378248740 a007 Real Root Of 82*x^4-419*x^3+581*x^2-421*x-711 6835687393914323 m001 (-ZetaP(3)+ZetaQ(3))/(exp(Pi)+ln(Pi)) 6835687395633294 m002 -4+E^Pi*Pi-ProductLog[Pi]/Pi 6835687402283383 m001 FeigenbaumC/FeigenbaumMu*MertensB3 6835687416222600 k002 Champernowne real with 115*n^2-57*n+10 6835687421200539 m001 Zeta(1,-1)^GAMMA(13/24)/BesselJ(0,1) 6835687422601103 m001 Pi/(1/2*ln(2)/ln(10)*2^(1/2)-sin(1/12*Pi)) 6835687431626551 l006 ln(2675/5299) 6835687496368571 m005 (1/3*3^(1/2)-3/4)/(1/8*Zeta(3)-1/8) 6835687516252606 k002 Champernowne real with 231/2*n^2-117/2*n+11 6835687575227365 r009 Im(z^3+c),c=-9/122+19/25*I,n=45 6835687577798717 a007 Real Root Of 150*x^4-633*x^3-232*x^2-818*x+837 6835687582311979 a001 610/271443*199^(20/31) 6835687601784897 g002 -Psi(10/11)-Psi(6/11)-Psi(3/10)-Psi(6/7) 6835687616282612 k002 Champernowne real with 116*n^2-60*n+12 6835687618902972 r005 Im(z^2+c),c=1/19+13/21*I,n=32 6835687621349301 a007 Real Root Of 84*x^4+514*x^3-363*x^2+390*x+400 6835687639386040 a007 Real Root Of 580*x^4-360*x^3-936*x^2-372*x+680 6835687654443020 s002 sum(A004557[n]/(n^3*2^n+1),n=1..infinity) 6835687678160436 a007 Real Root Of -499*x^4-297*x^3-912*x^2-211*x+296 6835687693469104 g007 Psi(2,4/9)-Psi(2,5/11)-Psi(2,1/6)-Psi(2,1/5) 6835687716312618 k002 Champernowne real with 233/2*n^2-123/2*n+13 6835687723253359 a007 Real Root Of -206*x^4+107*x^3+787*x^2+477*x-683 6835687768771304 r002 2th iterates of z^2 + 6835687776115439 m001 (-Zeta(1,-1)+Totient)/(Shi(1)+ln(Pi)) 6835687794346022 a007 Real Root Of 545*x^4-707*x^3-502*x^2-715*x-599 6835687804942680 r009 Im(z^3+c),c=-25/74+32/47*I,n=21 6835687806176237 r002 27th iterates of z^2 + 6835687816342624 k002 Champernowne real with 117*n^2-63*n+14 6835687816544655 a007 Real Root Of 579*x^4+406*x^3-199*x^2-954*x+66 6835687843529414 a007 Real Root Of 780*x^4-635*x^3-115*x^2-892*x+696 6835687870396251 l006 ln(4301/8520) 6835687870515117 r005 Im(z^2+c),c=-27/38+6/29*I,n=17 6835687875936521 m005 (1/2*2^(1/2)-1/2)/(9/10*exp(1)+7/12) 6835687880414200 m001 1/Sierpinski^2/exp(cosh(1))^2 6835687881792890 a001 123/24157817*2584^(11/12) 6835687891421423 m005 (3*Pi+4/5)/(3/5*Catalan-2/5) 6835687894941356 m001 GAMMA(2/3)*Riemann2ndZero^2/exp(sqrt(5))^2 6835687912270393 m001 (Catalan+sin(1))/(Cahen+Tetranacci) 6835687916372630 k002 Champernowne real with 235/2*n^2-129/2*n+15 6835687944588788 m001 1/exp(GAMMA(5/24))^2/CareFree^2*sqrt(5) 6835687948827917 b008 ArcTan[Sin[E]/6] 6835687971196450 m001 (FeigenbaumDelta+Paris*Riemann2ndZero)/Paris 6835687979194974 a007 Real Root Of 724*x^4-227*x^3-334*x^2-147*x-175 6835688009888248 m002 -6+3*E^Pi+Pi^2/2 6835688016402636 k002 Champernowne real with 118*n^2-66*n+16 6835688063668487 m002 -Pi^4+3*Cosh[Pi]-5*Log[Pi] 6835688067943568 a007 Real Root Of -598*x^4+263*x^3-335*x^2-657*x-78 6835688069479999 a001 41/1602508992*832040^(11/12) 6835688069481809 a001 123/956722026041*267914296^(11/12) 6835688071214218 a007 Real Root Of -466*x^4+476*x^3+278*x^2+383*x-442 6835688112121359 a001 5473*2^(17/53) 6835688115911566 a007 Real Root Of -676*x^4-474*x^3-490*x^2+819*x+785 6835688116432642 k002 Champernowne real with 237/2*n^2-135/2*n+17 6835688149437332 m001 (-ln(3)+Trott2nd)/(ln(2)/ln(10)+BesselI(0,1)) 6835688151001743 m001 (Psi(1,1/3)+cos(1))/(-BesselI(0,2)+Sarnak) 6835688161190517 m001 (-AlladiGrinstead+GaussAGM)/(cos(1)-gamma) 6835688165825448 r005 Re(z^2+c),c=11/102+2/3*I,n=9 6835688170072108 m001 1/TwinPrimes^2/exp(ArtinRank2)^2*Zeta(3) 6835688180991597 a005 (1/cos(11/86*Pi))^467 6835688216462648 k002 Champernowne real with 119*n^2-69*n+18 6835688241091565 a001 610/15127*322^(8/9) 6835688243078611 r002 16th iterates of z^2 + 6835688245304433 s001 sum(exp(-Pi/3)^(n-1)*A024822[n],n=1..infinity) 6835688260065285 m005 (1/2*exp(1)+1/8)/(10/11*exp(1)-3/10) 6835688263466759 a008 Real Root of (-3+4*x-4*x^2+6*x^3+x^4) 6835688316492654 k002 Champernowne real with 239/2*n^2-141/2*n+19 6835688321887233 r005 Re(z^2+c),c=-39/50+1/62*I,n=27 6835688343189757 r009 Im(z^3+c),c=-7/54+46/61*I,n=5 6835688383872424 m001 1/BesselJ(0,1)/FeigenbaumDelta*ln(GAMMA(1/12)) 6835688410109035 a007 Real Root Of -93*x^4+848*x^3+590*x^2+169*x+131 6835688416522660 k002 Champernowne real with 120*n^2-72*n+20 6835688433458196 a007 Real Root Of 899*x^4-588*x^3+368*x^2+575*x-163 6835688452889687 m001 RenyiParking^2*exp(Artin)*sin(1) 6835688468358766 r005 Im(z^2+c),c=-49/40+6/25*I,n=8 6835688474576953 a007 Real Root Of -999*x^4+402*x^3+256*x^2+913*x+851 6835688495831294 r005 Re(z^2+c),c=-9/52+13/18*I,n=44 6835688512595576 r005 Re(z^2+c),c=-5/6+35/74*I,n=4 6835688526987456 a007 Real Root Of -131*x^4-998*x^3-633*x^2+576*x+768 6835688534296622 a007 Real Root Of 433*x^4-170*x^3+566*x^2-159*x-522 6835688544337354 m001 (GAMMA(11/12)+Bloch)/(Grothendieck+ZetaP(2)) 6835688556386810 q001 2467/3609 6835688565398684 m001 (-ln(Pi)+5)/(GAMMA(13/24)+4) 6835688576328851 m001 Si(Pi)-exp(1/exp(1))-PlouffeB 6835688592234429 l006 ln(1626/3221) 6835688639905352 a007 Real Root Of -974*x^4+225*x^3-135*x^2+457*x+660 6835688661473388 a005 (1/cos(31/200*Pi))^146 6835688671739236 m001 (ln(2^(1/2)+1)-HeathBrownMoroz)/(Kac+Robbin) 6835688683188499 a001 329/13201*322^(35/36) 6835688711575664 r008 a(0)=7,K{-n^6,8-3*n^3-2*n^2-n} 6835688717404614 a003 sin(Pi*11/114)-sin(Pi*51/116) 6835688729206251 m005 (1/2*5^(1/2)-7/11)/(1/6*gamma-1/6) 6835688731541693 a007 Real Root Of -499*x^4+505*x^3-97*x^2+735*x+818 6835688754063244 a007 Real Root Of -655*x^4+994*x^3+516*x^2+182*x-540 6835688762625207 r005 Re(z^2+c),c=-7/86+41/43*I,n=10 6835688763364509 m002 6-Cosh[Pi]/Pi^5+Log[Pi]^(-1) 6835688764172265 a007 Real Root Of 857*x^4+704*x^3-257*x^2-893*x+62 6835688766368545 m005 (1/2*2^(1/2)-1/8)/(4*5^(1/2)-3/7) 6835688782534707 r005 Im(z^2+c),c=37/102+2/15*I,n=27 6835688785374265 a007 Real Root Of -720*x^4-314*x^3-608*x^2+749*x+853 6835688788985326 m001 Magata/Lehmer^2*exp(GAMMA(5/12))^2 6835688799564075 r005 Im(z^2+c),c=-7/94+41/59*I,n=7 6835688808391984 m001 1/exp(gamma)^2/(2^(1/3))*sqrt(1+sqrt(3))^2 6835688882434026 m001 (Tetranacci-ZetaQ(2))/(GAMMA(17/24)+Backhouse) 6835688899338004 r009 Im(z^3+c),c=-4/17+13/18*I,n=45 6835688903781818 a001 28657/123*3571^(19/46) 6835688905921488 a007 Real Root Of 765*x^4-313*x^3+594*x^2+112*x-468 6835688921961052 r005 Im(z^2+c),c=47/122+1/7*I,n=20 6835688949771972 a007 Real Root Of 146*x^4-886*x^3+284*x^2+823*x+115 6835688951812778 m001 ln(TwinPrimes)^2/FeigenbaumDelta/cos(1) 6835688959392255 a001 843*(1/2*5^(1/2)+1/2)^9*3^(1/17) 6835688973855410 m001 exp(GAMMA(5/24))^2/GAMMA(1/6)*gamma 6835689080984804 m001 (MadelungNaCl+ZetaQ(4))/(2^(1/2)+ln(Pi)) 6835689096289360 a001 28657/123*9349^(17/46) 6835689115290976 m006 (5/6*exp(2*Pi)-4/5)/(1/Pi+1/3) 6835689121041920 a001 75025/123*24476^(11/46) 6835689185846842 m001 TwinPrimes/(Zeta(1,2)^cos(1)) 6835689237415317 r009 Re(z^3+c),c=-2/19+44/63*I,n=18 6835689252082497 m005 (1/2*2^(1/2)+1/2)/(3/11*Pi+10/11) 6835689255271756 a007 Real Root Of 722*x^4-73*x^3+912*x^2-408*x-886 6835689272880261 r005 Im(z^2+c),c=-115/114+4/57*I,n=14 6835689276160855 p003 LerchPhi(1/8,2,7/183) 6835689284807523 m001 GAMMA(11/12)/(MinimumGamma^ln(Pi)) 6835689303539646 m001 ln(Robbin)^2*Khintchine/sin(Pi/12)^2 6835689306969420 m001 (ArtinRank2-Totient)/(gamma(3)-Zeta(1,2)) 6835689308293484 m005 (1/2*gamma+1/4)/(1/8*3^(1/2)+4/7) 6835689322236830 m005 (1/2*Pi-3/11)/(8/11*5^(1/2)+3/11) 6835689341014435 m001 (cos(1/5*Pi)+arctan(1/3))/Zeta(1,-1) 6835689357871408 m001 (-Tetranacci+TreeGrowth2nd)/(1+Salem) 6835689357914428 r005 Im(z^2+c),c=-29/66+6/53*I,n=13 6835689368211862 a007 Real Root Of 772*x^4-257*x^3+908*x^2-44*x-705 6835689372905687 a007 Real Root Of 600*x^4+692*x^3+533*x^2-531*x-522 6835689389639220 r005 Im(z^2+c),c=-69/122+18/35*I,n=8 6835689396970508 s002 sum(A167567[n]/((exp(n)-1)/n),n=1..infinity) 6835689399185940 m001 GaussAGM*(BesselJ(0,1)+ZetaQ(2)) 6835689403053381 l006 ln(3829/7585) 6835689408613206 m001 (Thue-ZetaP(4))/(Zeta(5)+OneNinth) 6835689409338348 a007 Real Root Of 957*x^4+591*x^3+394*x^2+135*x-112 6835689409467724 a007 Real Root Of -105*x^4+633*x^3-225*x^2+794*x+873 6835689423507204 m001 (Si(Pi)+Totient)/FeigenbaumDelta 6835689426175865 a007 Real Root Of 458*x^4-962*x^3-957*x^2-724*x-455 6835689432357268 a007 Real Root Of -523*x^4+550*x^3+336*x^2+839*x-792 6835689444231126 m001 (MadelungNaCl+MertensB3)/(ZetaP(2)-ZetaQ(4)) 6835689448757220 m001 sin(1/12*Pi)/(ErdosBorwein^FransenRobinson) 6835689455924197 m006 (5*exp(2*Pi)-3/4)/(4/5*ln(Pi)+3) 6835689483313577 a007 Real Root Of -471*x^4+568*x^3-35*x^2-845*x-277 6835689503871381 m001 (Psi(1,1/3)+3^(1/2))/(GAMMA(23/24)+CareFree) 6835689510608849 a007 Real Root Of 84*x^4-571*x^3+647*x^2-549*x+237 6835689514790043 m005 (1/2*2^(1/2)+7/10)/(107/90+7/18*5^(1/2)) 6835689515015571 r005 Im(z^2+c),c=-101/94+4/51*I,n=24 6835689555201787 r005 Re(z^2+c),c=-16/29+41/44*I,n=3 6835689577371747 a005 (1/sin(71/169*Pi))^1218 6835689599225847 a007 Real Root Of -964*x^4-17*x^3-951*x^2+488*x+983 6835689636214749 r005 Re(z^2+c),c=-1/25+45/58*I,n=17 6835689685075797 a005 (1/cos(7/206*Pi))^1950 6835689710481578 p003 LerchPhi(1/10,4,112/181) 6835689716750382 a007 Real Root Of 138*x^4+355*x^3+746*x^2-829*x-832 6835689742622425 p001 sum(1/(393*n+148)/(24^n),n=0..infinity) 6835689749394343 r005 Im(z^2+c),c=-11/18+34/83*I,n=23 6835689767691902 r005 Re(z^2+c),c=-11/48+43/60*I,n=32 6835689775207802 a007 Real Root Of -673*x^4+629*x^3+328*x^2+933*x-845 6835689777353708 a007 Real Root Of -939*x^4+499*x^3-444*x^2+619*x+995 6835689778492043 a007 Real Root Of 577*x^4-532*x^3-540*x^2-498*x-384 6835689785226564 r002 3th iterates of z^2 + 6835689804657257 r005 Re(z^2+c),c=-17/30+57/118*I,n=9 6835689826934963 a007 Real Root Of -883*x^4+655*x^3+250*x^2+48*x+318 6835689867085128 p004 log(33769/17047) 6835689885547785 a001 1292/51841*322^(35/36) 6835689898735405 r008 a(0)=7,K{-n^6,90-85*n^3-78*n^2+79*n} 6835689907362262 q001 1402/2051 6835689917487865 r005 Re(z^2+c),c=-103/98+13/54*I,n=16 6835689940735231 r009 Re(z^3+c),c=-5/48+38/55*I,n=20 6835689942696825 a007 Real Root Of 237*x^4+59*x^3+649*x^2-819*x-896 6835689954889561 r005 Im(z^2+c),c=-13/14+67/215*I,n=6 6835689963050645 a007 Real Root Of 473*x^4+5*x^3+497*x^2+389*x-68 6835689965930608 m002 6/Pi^2+Csch[Pi]/Log[Pi] 6835689976973622 a007 Real Root Of 57*x^4-843*x^3+30*x^2-884*x-900 6835689981485780 m005 (3/4*exp(1)-1/5)/(5/6*gamma-3/4) 6835690001506183 l006 ln(2203/4364) 6835690001706513 m001 (Kac-Psi(1,1/3))/(Robbin+Sarnak) 6835690013987941 m001 CareFree-FransenRobinson*Khinchin 6835690041373362 r009 Re(z^3+c),c=-23/110+45/52*I,n=6 6835690060969641 a001 2255/90481*322^(35/36) 6835690068951752 m001 (2^(1/3))^2*Niven*ln(sqrt(1+sqrt(3)))^2 6835690086563345 a001 17711/710647*322^(35/36) 6835690090297416 a001 2576/103361*322^(35/36) 6835690090842210 a001 121393/4870847*322^(35/36) 6835690091178911 a001 75025/3010349*322^(35/36) 6835690092605199 a001 28657/1149851*322^(35/36) 6835690100868036 m005 (1/3*2^(1/2)-1/9)/(23/12+3/2*5^(1/2)) 6835690102381124 a001 5473/219602*322^(35/36) 6835690105240983 m005 (1/2*5^(1/2)+1/6)/(191/198+9/22*5^(1/2)) 6835690163302757 a001 322/6765*317811^(34/45) 6835690169386310 a001 4181/167761*322^(35/36) 6835690215331467 m001 TreeGrowth2nd/GaussKuzminWirsing/ln(cos(Pi/5)) 6835690257653221 a007 Real Root Of -833*x^4+723*x^3+489*x^2+573*x+576 6835690279914539 m001 (-Champernowne+ErdosBorwein)/(3^(1/3)-exp(Pi)) 6835690338302213 m001 (Zeta(3)+cos(1/5*Pi))/(ln(5)+MertensB3) 6835690344391637 r005 Im(z^2+c),c=-3/19+33/49*I,n=43 6835690369617515 r005 Im(z^2+c),c=-53/98+5/41*I,n=44 6835690373027318 m008 (3/4*Pi^5-2/3)/(2/5*Pi^2-3/5) 6835690379633793 l006 ln(4509/4828) 6835690416877178 m001 Ei(1)^GAMMA(5/6)/ln(2)*ln(10) 6835690423286635 a007 Real Root Of 575*x^4+387*x^3+371*x^2-554*x+36 6835690450169470 m001 exp(exp(1))^2/Zeta(7)/gamma^2 6835690461364834 l006 ln(4983/9871) 6835690498308484 v002 sum(1/(2^n+(19/2*n^2-1/2*n+24)),n=1..infinity) 6835690507276592 q001 1/146291 6835690520487412 a007 Real Root Of 644*x^4-224*x^3+685*x^2+290*x-334 6835690553134221 m001 Psi(2,1/3)*ln(3)*GAMMA(5/6) 6835690575334234 a007 Real Root Of -349*x^4+944*x^3+366*x^2+767*x+731 6835690577286070 m001 MinimumGamma/LaplaceLimit/FellerTornier 6835690590553543 a007 Real Root Of -565*x^4-635*x^3+596*x^2+968*x-614 6835690612697437 a007 Real Root Of 509*x^4-413*x^3+985*x^2+669*x-246 6835690616268271 m001 Porter/exp(KhintchineLevy)^2*sqrt(5)^2 6835690628646692 a001 1597/64079*322^(35/36) 6835690647125603 a007 Real Root Of -658*x^4-342*x^3+983*x^2+981*x-877 6835690681190317 b008 (9/44)^Pi 6835690702500905 a007 Real Root Of -951*x^4+462*x^3-619*x^2+447*x+950 6835690736146587 m005 (13/20+1/4*5^(1/2))/(2/9*Pi-7/8) 6835690785852012 a007 Real Root Of 824*x^4-525*x^3+345*x^2-110*x-584 6835690809566273 a007 Real Root Of 425*x^4-984*x^3-141*x^2-816*x-899 6835690815231382 a007 Real Root Of -922*x^4+703*x^3-38*x^2-36*x+419 6835690819832200 r005 Im(z^2+c),c=-5/8+118/247*I,n=10 6835690825777987 l006 ln(2780/5507) 6835690836914535 a007 Real Root Of -142*x^4-960*x^3+168*x^2+605*x-307 6835690859882009 r005 Im(z^2+c),c=-63/64+9/29*I,n=7 6835690890904931 a007 Real Root Of 413*x^4+208*x^3+270*x^2-6*x-154 6835690907997970 a007 Real Root Of -963*x^4+428*x^3+378*x^2-947*x-477 6835690910474493 a003 cos(Pi*26/93)/sin(Pi*33/86) 6835690930345871 m003 Sqrt[5]/4-8*Tanh[1/2+Sqrt[5]/2] 6835690952086905 a007 Real Root Of -68*x^4-427*x^3+187*x^2-521*x-217 6835691002575012 a007 Real Root Of -576*x^4+852*x^3-735*x^2-454*x+431 6835691005968061 r005 Im(z^2+c),c=-2/13+47/58*I,n=45 6835691011692974 m005 (1/2*Zeta(3)-1/8)/(5/11*3^(1/2)-1/11) 6835691028374755 a005 (1/cos(6/83*Pi))^605 6835691058185161 a007 Real Root Of -684*x^4+903*x^3-608*x^2-288*x+525 6835691081725525 a007 Real Root Of -897*x^4+998*x^3-75*x^2-769*x+24 6835691118146099 a007 Real Root Of 952*x^4-186*x^3+83*x^2-956*x+65 6835691133501094 m001 (Pi-ln(5))/(QuadraticClass-Thue) 6835691149081441 a007 Real Root Of 661*x^4-473*x^3-491*x^2-534*x-431 6835691150622615 m001 MadelungNaCl+GAMMA(5/24)^ln(3) 6835691168646985 m001 (ln(5)+GAMMA(17/24))/(PrimesInBinary+ZetaQ(3)) 6835691172927356 a001 1364/1597*1346269^(9/19) 6835691196725335 a007 Real Root Of 923*x^4+425*x^3+931*x^2+718*x-10 6835691198242060 g001 abs(GAMMA(25/12+I*217/60)) 6835691201870840 r005 Im(z^2+c),c=-29/26+1/121*I,n=37 6835691207192684 a007 Real Root Of -608*x^4-580*x^3-404*x^2+418*x+422 6835691224467872 a007 Real Root Of -874*x^4+839*x^3+171*x^2+597*x+787 6835691264293716 a001 34/2207*1364^(31/59) 6835691287930380 v002 sum(1/(3^n+(27*n^2-79*n+83)),n=1..infinity) 6835691291042093 a007 Real Root Of 526*x^4-101*x^3-354*x^2-97*x-48 6835691295317202 s001 sum(exp(-Pi)^n*A118785[n],n=1..infinity) 6835691295317202 s002 sum(A118785[n]/(exp(pi*n)),n=1..infinity) 6835691300541512 m005 (1/2*Catalan+5/12)/(7/10*5^(1/2)-2/7) 6835691309802722 r005 Re(z^2+c),c=25/114+8/31*I,n=4 6835691336890686 m005 (1/3*5^(1/2)-1/8)/(4/9*Zeta(3)-5/8) 6835691366698648 l006 ln(3357/6650) 6835691368925053 r002 9th iterates of z^2 + 6835691372822642 r002 3th iterates of z^2 + 6835691382349980 a007 Real Root Of -748*x^4+953*x^3+380*x^2+484*x+621 6835691383695625 a007 Real Root Of -493*x^4-56*x^3-683*x^2+578*x+804 6835691384493501 r002 5th iterates of z^2 + 6835691412580279 a007 Real Root Of -723*x^4-381*x^3+288*x^2+675*x+363 6835691441423329 m001 GAMMA(13/24)*exp(Si(Pi))/GAMMA(7/12) 6835691445579278 a003 cos(Pi*12/65)-sin(Pi*9/25) 6835691449595655 a007 Real Root Of -89*x^4+438*x^3-567*x^2-312*x+211 6835691460388574 a007 Real Root Of -143*x^4-961*x^3+76*x^2-394*x-973 6835691464017627 a007 Real Root Of 156*x^4+976*x^3-526*x^2+675*x+328 6835691481484017 a001 2584/843*123^(1/6) 6835691498351793 m001 (Backhouse-Conway)/(FeigenbaumD-ZetaP(2)) 6835691505561686 r005 Im(z^2+c),c=-23/30+3/128*I,n=45 6835691517454771 m001 1/BesselJ(0,1)^2*exp(MertensB1)*GAMMA(7/24) 6835691535360170 r005 Im(z^2+c),c=-119/114+13/44*I,n=6 6835691537376597 r009 Im(z^3+c),c=-41/102+13/21*I,n=10 6835691555709105 a007 Real Root Of 543*x^4-426*x^3-249*x^2-28*x+153 6835691556567238 a008 Real Root of x^4-2*x^3-14*x^2-95*x-241 6835691598121365 s001 sum(exp(-Pi/2)^n*A106334[n],n=1..infinity) 6835691599785145 m001 (Artin+Lehmer)/(Mills+OneNinth) 6835691625741295 r009 Im(z^3+c),c=-2/11+33/41*I,n=8 6835691648143565 m001 cos(1)*(BesselJ(1,1)-Niven) 6835691651209636 m001 ZetaP(2)-ln(3)^GAMMA(2/3) 6835691651331674 m001 (OneNinth+Rabbit)/(ln(gamma)+KhinchinHarmonic) 6835691709066520 a001 1364/121393*12586269025^(9/19) 6835691719519508 r009 Re(z^3+c),c=-1/82+29/45*I,n=46 6835691730427398 a007 Real Root Of 75*x^4-796*x^3+74*x^2+12*x-297 6835691747688943 m001 (GAMMA(1/3)+Backhouse)^GAMMA(2/3) 6835691748945565 l006 ln(3934/7793) 6835691766323049 r009 Re(z^3+c),c=-13/23+5/31*I,n=58 6835691806716380 a007 Real Root Of -549*x^4+986*x^3+694*x^2+896*x+723 6835691821203105 m001 exp(BesselJ(0,1))*FeigenbaumKappa*GAMMA(1/24) 6835691823899371 q001 1739/2544 6835691869562733 a007 Real Root Of -940*x^4-47*x^3+39*x^2+414*x+455 6835691882810372 m001 GAMMA(5/12)*BesselK(0,1)/ln(Pi)^2 6835691884962381 a007 Real Root Of -853*x^4-695*x^3-930*x^2-48*x+366 6835691904170342 a007 Real Root Of 136*x^4+965*x^3+301*x^2+463*x+390 6835691910698295 r005 Re(z^2+c),c=-26/29+13/63*I,n=50 6835691950304596 a007 Real Root Of 244*x^4-502*x^3+92*x^2-43*x-286 6835691966915518 r005 Re(z^2+c),c=-19/102+19/27*I,n=32 6835691967441701 m001 (BesselI(1,1)-Tribonacci)/(Trott2nd-ZetaQ(3)) 6835691975911878 m001 (LambertW(1)-Si(Pi))/(Conway+Stephens) 6835692014151884 a007 Real Root Of 289*x^4+4*x^3-53*x^2-253*x-210 6835692033406407 l006 ln(4511/8936) 6835692033989649 a007 Real Root Of 543*x^4-822*x^3-651*x^2-616*x-498 6835692056958589 r005 Im(z^2+c),c=-67/122+39/64*I,n=3 6835692074253085 m002 -1+Pi^2/4+5*ProductLog[Pi] 6835692087309440 b008 19+28*ArcCosh[3] 6835692087309440 b008 19+56*ArcCsch[1] 6835692104478845 m001 (exp(1/Pi)+KhinchinLevy)/(Si(Pi)+Ei(1)) 6835692114370775 a007 Real Root Of -127*x^4-808*x^3+547*x^2+916*x-91 6835692129020197 m001 (2*Pi/GAMMA(5/6)-exp(Pi))/(Cahen+Tetranacci) 6835692153006622 a007 Real Root Of -252*x^4+588*x^3+532*x^2+96*x-447 6835692164487142 m001 (GAMMA(23/24)+2/3)/(-RenyiParking+1/2) 6835692171618566 a007 Real Root Of -919*x^4+352*x^3+21*x^2+753*x+818 6835692187201274 a003 cos(Pi*17/120)*sin(Pi*32/117) 6835692216440396 a007 Real Root Of -531*x^4+873*x^3+489*x^2+706*x-874 6835692253349198 l006 ln(5088/10079) 6835692272697764 a007 Real Root Of -169*x^4+215*x^3-819*x^2+83*x+545 6835692273886571 r002 31th iterates of z^2 + 6835692274491881 a007 Real Root Of -953*x^4+600*x^3+788*x^2+640*x+469 6835692330995950 m005 (1/3*Pi-1/10)/(7/12*exp(1)-1/5) 6835692338853178 a007 Real Root Of -119*x^4+223*x^3-354*x^2+397*x+534 6835692347599621 m001 StolarskyHarborth/(GAMMA(2/3)+Zeta(1,-1)) 6835692356409155 g001 abs(GAMMA(-19/12+I*89/60)) 6835692356568546 m004 -E^(Sqrt[5]*Pi)+150*Pi-5*Pi*Log[Sqrt[5]*Pi] 6835692385842600 h001 (2/5*exp(1)+1/11)/(1/8*exp(2)+4/5) 6835692392083023 a007 Real Root Of -589*x^4+250*x^3-549*x^2-847*x-114 6835692409555104 a007 Real Root Of 319*x^4-373*x^3-345*x^2-498*x-368 6835692425916465 a007 Real Root Of -296*x^4+886*x^3-632*x^2+477*x+969 6835692440704058 m001 GAMMA(13/24)^2*Tribonacci^2*exp(Zeta(7))^2 6835692480834646 r005 Re(z^2+c),c=-61/70+7/45*I,n=12 6835692504534713 a001 17711/76*199^(30/47) 6835692525761580 r002 10th iterates of z^2 + 6835692536968098 m001 (Thue+ZetaQ(4))/(exp(-1/2*Pi)-Porter) 6835692578135957 a007 Real Root Of -111*x^4+929*x^3-277*x^2+213*x+596 6835692589897054 a007 Real Root Of -92*x^4-582*x^3+291*x^2-337*x-926 6835692616712352 s002 sum(A186565[n]/(n^3*2^n+1),n=1..infinity) 6835692618487707 r009 Im(z^3+c),c=-5/9+6/55*I,n=6 6835692619810518 m005 (1/2*2^(1/2)-1/5)/(1/12*Catalan-9/11) 6835692621969506 a001 322/121393*17711^(3/31) 6835692626196682 m005 (1/2*2^(1/2)-8/11)/(1/9*Zeta(3)-3/7) 6835692630804997 a007 Real Root Of -401*x^4+794*x^3-99*x^2+998*x-802 6835692639309224 m001 (Conway+Porter)/(Zeta(5)-3^(1/3)) 6835692663393587 a007 Real Root Of 935*x^4-459*x^3+438*x^2-488*x-889 6835692666163349 a007 Real Root Of -552*x^4+734*x^3-573*x^2+45*x+6 6835692700766474 m005 (1/2*gamma+1/6)/(1/2*3^(1/2)-1/5) 6835692708487273 b008 26/3+19*Pi 6835692748593545 a007 Real Root Of 247*x^4-348*x^3-748*x^2-252*x+579 6835692777555882 a007 Real Root Of -527*x^4-59*x^3-450*x^2+681*x+772 6835692778307829 m001 Catalan*exp(KhintchineHarmonic)^2/GAMMA(5/24) 6835692784766707 m001 (cos(1)+BesselI(0,1))/(gamma-sin(1)) 6835692785934112 a007 Real Root Of 874*x^4-347*x^3-545*x^2-414*x-330 6835692809576108 r005 Im(z^2+c),c=7/86+18/29*I,n=8 6835692836939323 a007 Real Root Of -321*x^4+967*x^3-849*x^2-276*x+587 6835692848285238 a007 Real Root Of 78*x^4-374*x^3-714*x^2-746*x+946 6835692893839897 m001 cos(Pi/5)*FibonacciFactorial^2/exp(gamma) 6835692949992095 r005 Re(z^2+c),c=-21/29+11/59*I,n=29 6835692974887935 a007 Real Root Of -464*x^4+441*x^3+689*x^2+756*x+437 6835692982283261 m001 1/exp(Lehmer)*ArtinRank2*BesselK(0,1)^2 6835692984603017 b008 8+(-1+Sin[3])^(-1) 6835692985696293 a007 Real Root Of 3*x^4-665*x^3+261*x^2-584*x+489 6835692988937450 a003 sin(Pi*21/83)*sin(Pi*46/113) 6835692989464438 a005 (1/cos(5/79*Pi))^1138 6835692995714614 m001 1/Khintchine^2*Artin^2*exp((2^(1/3))) 6835693023536963 r005 Re(z^2+c),c=-3/38+32/33*I,n=21 6835693032446465 a001 832040/2207*3^(13/24) 6835693036863408 m005 (1/2*3^(1/2)-7/10)/(2/11*Pi-3) 6835693038736231 m001 Backhouse*MasserGramain^(3^(1/2)) 6835693048771690 l006 ln(7760/8309) 6835693115090187 r005 Im(z^2+c),c=-37/66+1/8*I,n=19 6835693117317477 m001 (Si(Pi)+Zeta(3))/(-gamma(1)+Artin) 6835693118208758 q001 2076/3037 6835693119068263 a007 Real Root Of -662*x^4+188*x^3+232*x^2+778*x+628 6835693120840001 a003 sin(Pi*4/81)-sin(Pi*31/98) 6835693122907431 a007 Real Root Of -134*x^4-971*x^3-439*x^2-298*x+903 6835693123139232 m001 (GAMMA(7/12)+Cahen)/(Lehmer+Sierpinski) 6835693143864652 a007 Real Root Of 987*x^4-186*x^3+197*x^2-515*x-719 6835693157642445 m001 (GAMMA(2/3)+MertensB3)/(Zeta(3)-cos(1/5*Pi)) 6835693172471756 r005 Re(z^2+c),c=-47/38+23/43*I,n=2 6835693184555038 a007 Real Root Of 545*x^4-860*x^3-167*x^2+295*x-114 6835693185398383 r005 Im(z^2+c),c=-23/42+6/49*I,n=49 6835693186266438 m001 (ln(Pi)+DuboisRaymond)/(BesselI(0,1)+ln(2)) 6835693204738688 a007 Real Root Of -223*x^4-582*x^3-734*x^2+704*x+687 6835693214092949 a007 Real Root Of 126*x^4-787*x^3+230*x^2-393*x-655 6835693265538544 m005 (-1/28+1/4*5^(1/2))/(7/8*3^(1/2)-3/4) 6835693271075922 p003 LerchPhi(1/1024,4,354/181) 6835693271188991 a007 Real Root Of -324*x^4+112*x^3+803*x^2+222*x-492 6835693284524506 a005 (1/sin(53/131*Pi))^1203 6835693316071878 a007 Real Root Of 169*x^4-925*x^3+981*x^2+813*x-235 6835693319468563 m001 (Shi(1)+BesselJ(1,1))/(GAMMA(7/12)+Robbin) 6835693327943186 a007 Real Root Of -221*x^4+983*x^3-930*x^2-737*x+293 6835693350457235 g007 Psi(2,11/12)-Psi(2,2/9)-2*Psi(2,1/5) 6835693351215152 a007 Real Root Of 388*x^4-816*x^3-229*x^2+114*x+205 6835693370352074 m002 -E^Pi+E^Pi*Pi^3-Cosh[Pi]/ProductLog[Pi] 6835693388901666 r005 Im(z^2+c),c=-19/29+5/19*I,n=37 6835693403252448 a003 cos(Pi*31/115)/sin(Pi*37/88) 6835693438347219 a007 Real Root Of 781*x^4-889*x^3+170*x^2+54*x-497 6835693479959862 a007 Real Root Of 718*x^4-380*x^3-891*x^2-603*x-274 6835693489165448 m005 (1/2*2^(1/2)+8/11)/(3/11*5^(1/2)-2/5) 6835693503435856 r005 Im(z^2+c),c=-11/12+3/47*I,n=4 6835693505776484 a001 5473/9*11^(2/41) 6835693536894743 a007 Real Root Of -730*x^4+676*x^3+369*x^2+952*x-67 6835693556560805 m005 (1/3*exp(1)+3/5)/(1/11*5^(1/2)+2) 6835693579602062 a007 Real Root Of -148*x^4-982*x^3+264*x^2+536*x+809 6835693609070308 a007 Real Root Of 93*x^4+569*x^3-377*x^2+652*x+762 6835693697257068 r005 Im(z^2+c),c=-13/22+59/104*I,n=3 6835693740266687 a007 Real Root Of 658*x^4-409*x^3+688*x^2+7*x-591 6835693752441638 r002 29th iterates of z^2 + 6835693758999380 r008 a(0)=7,K{-n^6,1+9*n^3+3*n^2-6*n} 6835693776464178 a001 305/12238*322^(35/36) 6835693778181755 r005 Re(z^2+c),c=-5/6+157/233*I,n=3 6835693783645712 a007 Real Root Of -430*x^4-81*x^3-567*x^2+831*x+901 6835693789184065 m001 Catalan*FeigenbaumAlpha^2/exp(GAMMA(5/12)) 6835693809451873 r002 14th iterates of z^2 + 6835693816725335 h001 (2/11*exp(2)+5/8)/(1/3*exp(2)+5/12) 6835693839156401 a007 Real Root Of -680*x^3+191*x^2-368*x-558 6835693846435478 m001 ln(BesselJ(0,1))/Riemann2ndZero^2*GAMMA(5/6) 6835693857212567 m005 (1/2*2^(1/2)+4/9)/(6/7*3^(1/2)+1/5) 6835693878608857 p001 sum((-1)^n/(425*n+146)/(128^n),n=0..infinity) 6835693893756403 r008 a(0)=1,K{-n^6,12-2*n^3-43*n^2+33*n} 6835693895108724 a001 10182505537/161*18^(14/17) 6835693921241288 m002 -1+2/Pi^3+6*Sinh[Pi] 6835693933519202 a007 Real Root Of -603*x^4+652*x^3+257*x^2-108*x+146 6835693937364593 r009 Re(z^3+c),c=-57/106+20/37*I,n=9 6835693962582090 r005 Re(z^2+c),c=-73/94+1/59*I,n=19 6835693967772126 r002 4th iterates of z^2 + 6835693972867110 l006 ln(577/1143) 6835693975799682 r002 2th iterates of z^2 + 6835693983975291 a003 sin(Pi*10/87)/cos(Pi*35/107) 6835694011950323 a007 Real Root Of 763*x^4+331*x^3+558*x^2-694*x-796 6835694026148284 h001 (5/8*exp(1)+3/5)/(9/10*exp(1)+11/12) 6835694050991501 q001 2413/3530 6835694068289458 a007 Real Root Of -271*x^4+288*x^3+410*x^2+84*x+17 6835694116160821 m009 (5*Psi(1,1/3)-3)/(32*Catalan+4*Pi^2+2/3) 6835694123368186 a007 Real Root Of 686*x^4-367*x^3-275*x^2-49*x-172 6835694149149894 m002 (Pi*Log[Pi]^2*Tanh[Pi])/6 6835694150431506 a007 Real Root Of 333*x^4-512*x^3+773*x^2+460*x-283 6835694175488696 r002 26th iterates of z^2 + 6835694217875970 r009 Re(z^3+c),c=-5/48+20/41*I,n=21 6835694227398839 m001 MadelungNaCl^2*exp(Lehmer)^2/MinimumGamma 6835694231085409 a001 726103/1926*3^(13/24) 6835694231571086 r009 Im(z^3+c),c=-27/50+3/19*I,n=54 6835694235358556 a007 Real Root Of -327*x^4+159*x^3+513*x^2+152*x-323 6835694254873837 r002 15th iterates of z^2 + 6835694265881776 a001 123/1346269*21^(39/59) 6835694299797361 a003 cos(Pi*17/79)*sin(Pi*17/50) 6835694307042945 r002 31th iterates of z^2 + 6835694316873192 a007 Real Root Of 763*x^4-775*x^3+484*x^2+37*x-615 6835694322136182 a007 Real Root Of -126*x^4-762*x^3+709*x^2+75*x-900 6835694342653935 m001 (Zeta(1,2)-FellerTornier)/(OneNinth+ZetaP(4)) 6835694362433070 a007 Real Root Of -582*x^4+368*x^3+371*x^2+385*x-427 6835694365013647 g006 Psi(1,11/12)-Psi(1,2/11)-Psi(1,2/9)-Psi(1,1/4) 6835694367311009 a007 Real Root Of 571*x^4-541*x^3+861*x^2+165*x-587 6835694370489875 a003 sin(Pi*2/87)*sin(Pi*21/53) 6835694375281397 m001 (Magata+RenyiParking)/(Ei(1)-FeigenbaumAlpha) 6835694382815254 r004 Im(z^2+c),c=-3/16+1/11*I,z(0)=-1,n=17 6835694390542260 a007 Real Root Of 256*x^4-374*x^3+68*x^2-446*x-512 6835694405964509 a001 5702887/15127*3^(13/24) 6835694419037721 r005 Im(z^2+c),c=-9/14+16/103*I,n=19 6835694426741765 m001 (Bloch+CareFree)/(GolombDickman-ZetaP(2)) 6835694431479026 a001 4976784/13201*3^(13/24) 6835694431940989 r005 Im(z^2+c),c=-3/50+29/36*I,n=35 6835694435201544 a001 39088169/103682*3^(13/24) 6835694435744652 a001 34111385/90481*3^(13/24) 6835694435823891 a001 267914296/710647*3^(13/24) 6835694435835451 a001 233802911/620166*3^(13/24) 6835694435837138 a001 1836311903/4870847*3^(13/24) 6835694435837384 a001 1602508992/4250681*3^(13/24) 6835694435837420 a001 12586269025/33385282*3^(13/24) 6835694435837425 a001 10983760033/29134601*3^(13/24) 6835694435837426 a001 86267571272/228826127*3^(13/24) 6835694435837426 a001 267913919/710646*3^(13/24) 6835694435837426 a001 591286729879/1568397607*3^(13/24) 6835694435837426 a001 516002918640/1368706081*3^(13/24) 6835694435837426 a001 4052739537881/10749957122*3^(13/24) 6835694435837426 a001 3536736619241/9381251041*3^(13/24) 6835694435837426 a001 6557470319842/17393796001*3^(13/24) 6835694435837426 a001 2504730781961/6643838879*3^(13/24) 6835694435837426 a001 956722026041/2537720636*3^(13/24) 6835694435837426 a001 365435296162/969323029*3^(13/24) 6835694435837426 a001 139583862445/370248451*3^(13/24) 6835694435837427 a001 53316291173/141422324*3^(13/24) 6835694435837429 a001 20365011074/54018521*3^(13/24) 6835694435837442 a001 7778742049/20633239*3^(13/24) 6835694435837536 a001 2971215073/7881196*3^(13/24) 6835694435838181 a001 1134903170/3010349*3^(13/24) 6835694435842596 a001 433494437/1149851*3^(13/24) 6835694435872863 a001 165580141/439204*3^(13/24) 6835694436080312 a001 63245986/167761*3^(13/24) 6835694437502187 a001 24157817/64079*3^(13/24) 6835694445174321 r002 25th iterates of z^2 + 6835694445174321 r002 25th iterates of z^2 + 6835694446918282 r009 Im(z^3+c),c=-27/50+3/19*I,n=64 6835694447247865 a001 9227465/24476*3^(13/24) 6835694450059704 a007 Real Root Of 556*x^4+159*x^3-236*x^2-769*x-486 6835694461732392 r002 4th iterates of z^2 + 6835694477105259 m001 (Pi-ln(3))/(GAMMA(23/24)+ReciprocalLucas) 6835694499695980 m001 (-Trott2nd+ZetaP(3))/(Shi(1)+ln(3)) 6835694514045741 a001 3524578/9349*3^(13/24) 6835694556540803 a001 17/12238*9349^(40/59) 6835694564310215 s002 sum(A099639[n]/((2*n+1)!),n=1..infinity) 6835694586252015 a001 34/39603*24476^(39/59) 6835694596700329 a001 34/710647*64079^(51/59) 6835694600159131 a001 969323029/13*267914296^(19/23) 6835694602294843 a001 34/1149851*39603^(56/59) 6835694622269001 m005 (gamma-3)/(2*gamma-4/5) 6835694622269001 m007 (-gamma+3)/(-2*gamma+4/5) 6835694628803474 a001 17/12238*15127^(38/59) 6835694630234700 m001 gamma(2)/Si(Pi)*Mills 6835694643681986 a007 Real Root Of -92*x^4-510*x^3+680*x^2-843*x+436 6835694664765909 a001 9062201101803/13*4181^(19/23) 6835694665829990 a007 Real Root Of 381*x^4-831*x^3+124*x^2+526*x-47 6835694683483299 m001 GaussAGM/FeigenbaumDelta/MertensB1 6835694685313173 r002 6th iterates of z^2 + 6835694725328291 m001 (-Cahen+FeigenbaumAlpha)/(2^(1/3)-Zeta(1/2)) 6835694730169266 r005 Im(z^2+c),c=-15/22+11/86*I,n=8 6835694738047376 v002 sum(1/(2^n+(8*n^2-24*n+74)),n=1..infinity) 6835694755157842 q001 275/4023 6835694768840146 a001 3571/4181*1346269^(9/19) 6835694780656337 m001 (2^(1/3)+GAMMA(17/24))/(-Artin+ZetaQ(4)) 6835694813896147 a007 Real Root Of -815*x^4+768*x^3+15*x^2+380*x+676 6835694847061532 a001 3571/317811*12586269025^(9/19) 6835694909892556 m001 (BesselI(0,1)+Zeta(3))^GAMMA(5/12) 6835694942095834 r005 Re(z^2+c),c=27/110+4/11*I,n=18 6835694944052374 r002 12th iterates of z^2 + 6835694959745819 a007 Real Root Of -145*x^4-978*x^3+154*x^2+472*x+239 6835694971885226 a001 1346269/3571*3^(13/24) 6835694972315736 m001 Rabbit^KhinchinLevy/(Rabbit^ZetaP(4)) 6835695005612897 p004 log(33563/16943) 6835695008486129 a001 5/710647*24476^(9/40) 6835695011185038 a001 5/167761*64079^(3/40) 6835695012436096 r005 Re(z^2+c),c=-3/5+28/67*I,n=41 6835695022398968 h001 (-3*exp(8)-2)/(-exp(3)+7) 6835695029001107 m005 (1/2*Zeta(3)+2/11)/(5/9*Catalan+7/11) 6835695074584049 r009 Re(z^3+c),c=-12/25+1/52*I,n=3 6835695078347290 m001 (2^(1/3)+cos(1))/(-ln(Pi)+ln(2^(1/2)+1)) 6835695078647393 m001 (2^(1/3)-3^(1/3))/(CareFree+ReciprocalLucas) 6835695084591149 m009 (1/4*Psi(1,2/3)+6)/(6*Catalan+3/4*Pi^2-3) 6835695089609312 a003 sin(Pi*8/105)-sin(Pi*35/94) 6835695102198363 m001 (gamma(1)+FeigenbaumC)/(GaussAGM-Magata) 6835695108019743 a007 Real Root Of -420*x^4+759*x^3-609*x^2+353*x+860 6835695112034553 r009 Im(z^3+c),c=-27/50+3/19*I,n=59 6835695112461150 a007 Real Root Of -136*x^4+609*x^3-861*x^2+501*x+969 6835695114319045 a007 Real Root Of -48*x^4+708*x^3-814*x^2+376*x+874 6835695146776759 a007 Real Root Of 452*x^4-842*x^3+853*x^2-165*x-879 6835695169731194 a001 119218851371/55*6765^(9/23) 6835695172319410 a007 Real Root Of -940*x^4+424*x^3+788*x^2+785*x-835 6835695181420582 a001 1568397607/55*433494437^(9/23) 6835695198576004 r005 Im(z^2+c),c=-47/70+13/63*I,n=30 6835695219501719 a005 (1/cos(5/106*Pi))^1637 6835695274349795 a007 Real Root Of -43*x^4-266*x^3+209*x^2+230*x+729 6835695283293560 r005 Im(z^2+c),c=-65/94+5/21*I,n=36 6835695286811860 r002 18th iterates of z^2 + 6835695293476792 a001 9349/10946*1346269^(9/19) 6835695300219301 r005 Re(z^2+c),c=-127/118+1/59*I,n=4 6835695304888834 a001 9349/832040*12586269025^(9/19) 6835695337456213 m001 (ln(5)-gamma(3))/(MasserGramain+Niven) 6835695350528153 p003 LerchPhi(1/32,3,545/222) 6835695359003271 m001 (Niven+Riemann3rdZero)/(arctan(1/2)+gamma(1)) 6835695367438011 r009 Im(z^3+c),c=-21/52+38/63*I,n=12 6835695370020248 a001 24476/28657*1346269^(9/19) 6835695371684937 a001 24476/2178309*12586269025^(9/19) 6835695381187788 a001 64079/75025*1346269^(9/19) 6835695381430358 a001 64079/5702887*12586269025^(9/19) 6835695382817110 a001 167761/196418*1346269^(9/19) 6835695382852195 a001 167761/14930352*12586269025^(9/19) 6835695383054825 a001 439204/514229*1346269^(9/19) 6835695383059639 a001 439204/39088169*12586269025^(9/19) 6835695383089507 a001 1149851/1346269*1346269^(9/19) 6835695383089904 a001 1149851/102334155*12586269025^(9/19) 6835695383094320 a001 3010349/267914296*12586269025^(9/19) 6835695383094567 a001 3010349/3524578*1346269^(9/19) 6835695383094964 a001 39604/3524667*12586269025^(9/19) 6835695383095058 a001 20633239/1836311903*12586269025^(9/19) 6835695383095072 a001 54018521/4807526976*12586269025^(9/19) 6835695383095074 a001 141422324/12586269025*12586269025^(9/19) 6835695383095074 a001 370248451/32951280099*12586269025^(9/19) 6835695383095074 a001 969323029/86267571272*12586269025^(9/19) 6835695383095074 a001 2537720636/225851433717*12586269025^(9/19) 6835695383095074 a001 6643838879/591286729879*12586269025^(9/19) 6835695383095074 a001 17393796001/1548008755920*12586269025^(9/19) 6835695383095074 a001 45537549124/4052739537881*12586269025^(9/19) 6835695383095074 a001 119218851371/10610209857723*12586269025^(9/19) 6835695383095074 a001 73681302247/6557470319842*12586269025^(9/19) 6835695383095074 a001 28143753123/2504730781961*12586269025^(9/19) 6835695383095074 a001 10749957122/956722026041*12586269025^(9/19) 6835695383095074 a001 4106118243/365435296162*12586269025^(9/19) 6835695383095074 a001 1568397607/139583862445*12586269025^(9/19) 6835695383095074 a001 599074578/53316291173*12586269025^(9/19) 6835695383095074 a001 228826127/20365011074*12586269025^(9/19) 6835695383095075 a001 87403803/7778742049*12586269025^(9/19) 6835695383095080 a001 33385282/2971215073*12586269025^(9/19) 6835695383095116 a001 12752043/1134903170*12586269025^(9/19) 6835695383095305 a001 7881196/9227465*1346269^(9/19) 6835695383095362 a001 4870847/433494437*12586269025^(9/19) 6835695383095413 a001 20633239/24157817*1346269^(9/19) 6835695383095429 a001 54018521/63245986*1346269^(9/19) 6835695383095431 a001 141422324/165580141*1346269^(9/19) 6835695383095431 a001 370248451/433494437*1346269^(9/19) 6835695383095431 a001 969323029/1134903170*1346269^(9/19) 6835695383095431 a001 2537720636/2971215073*1346269^(9/19) 6835695383095431 a001 6643838879/7778742049*1346269^(9/19) 6835695383095431 a001 17393796001/20365011074*1346269^(9/19) 6835695383095431 a001 45537549124/53316291173*1346269^(9/19) 6835695383095431 a001 119218851371/139583862445*1346269^(9/19) 6835695383095431 a001 312119004989/365435296162*1346269^(9/19) 6835695383095431 a001 817138163596/956722026041*1346269^(9/19) 6835695383095431 a001 2139295485799/2504730781961*1346269^(9/19) 6835695383095431 a001 3020733700601/3536736619241*1346269^(9/19) 6835695383095431 a001 505019158607/591286729879*1346269^(9/19) 6835695383095431 a001 64300051206/75283811239*1346269^(9/19) 6835695383095431 a001 73681302247/86267571272*1346269^(9/19) 6835695383095431 a001 9381251041/10983760033*1346269^(9/19) 6835695383095431 a001 10749957122/12586269025*1346269^(9/19) 6835695383095431 a001 1368706081/1602508992*1346269^(9/19) 6835695383095431 a001 1568397607/1836311903*1346269^(9/19) 6835695383095431 a001 199691526/233802911*1346269^(9/19) 6835695383095432 a001 228826127/267914296*1346269^(9/19) 6835695383095432 a001 29134601/34111385*1346269^(9/19) 6835695383095438 a001 33385282/39088169*1346269^(9/19) 6835695383095480 a001 4250681/4976784*1346269^(9/19) 6835695383095762 a001 4870847/5702887*1346269^(9/19) 6835695383097049 a001 1860498/165580141*12586269025^(9/19) 6835695383097694 a001 620166/726103*1346269^(9/19) 6835695383108609 a001 710647/63245986*12586269025^(9/19) 6835695383110942 a001 710647/832040*1346269^(9/19) 6835695383187846 a001 271443/24157817*12586269025^(9/19) 6835695383201741 a001 90481/105937*1346269^(9/19) 6835695383730939 a001 103682/9227465*12586269025^(9/19) 6835695383824086 a001 103682/121393*1346269^(9/19) 6835695386263019 a007 Real Root Of -734*x^4+489*x^3+810*x^2-136*x-155 6835695387453358 a001 39603/3524578*12586269025^(9/19) 6835695388089707 a001 13201/15456*1346269^(9/19) 6835695395257698 m005 (1/2*Catalan-5/6)/(1/8*exp(1)-8/9) 6835695412967200 a001 15127/1346269*12586269025^(9/19) 6835695417326706 a001 15127/17711*1346269^(9/19) 6835695420052685 m002 Pi^4/15+ProductLog[Pi]/Pi 6835695438252169 a007 Real Root Of -47*x^4+929*x^3+77*x^2-553*x-107 6835695450569654 m005 (1/3*Pi-1/11)/(1/6*3^(1/2)-3/7) 6835695458812777 m001 (Si(Pi)-exp(1))/(BesselI(0,1)+HeathBrownMoroz) 6835695464509179 m001 (Totient-Pi*csc(5/24*Pi)/GAMMA(19/24))*5^(1/2) 6835695500724360 m001 1/exp(Porter)/FransenRobinson^2*GAMMA(7/12)^2 6835695502278534 r005 Im(z^2+c),c=33/118+10/23*I,n=7 6835695538947071 p004 log(22133/11173) 6835695566543625 a007 Real Root Of 174*x^4-575*x^3-772*x^2-616*x-282 6835695587166681 a003 sin(Pi*29/112)*sin(Pi*23/59) 6835695587841668 a001 5778/514229*12586269025^(9/19) 6835695588519495 m001 LambertW(1)/exp((3^(1/3)))^2/arctan(1/2) 6835695605908922 a001 73681302247/8*6765^(5/22) 6835695609155309 a003 cos(Pi*5/71)-cos(Pi*43/106) 6835695612698214 a001 6643838879/8*267914296^(5/22) 6835695612698214 a001 299537289/4*10610209857723^(5/22) 6835695617720076 a001 1926/2255*1346269^(9/19) 6835695628066676 r009 Im(z^3+c),c=-9/98+34/45*I,n=24 6835695636335499 r001 4i'th iterates of 2*x^2-1 of 6835695672910061 a007 Real Root Of -596*x^4+583*x^3-437*x^2+106*x+593 6835695682881704 r005 Im(z^2+c),c=-10/31+6/55*I,n=6 6835695689027645 r002 7th iterates of z^2 + 6835695703785297 a007 Real Root Of 911*x^4-901*x^3-434*x^2-420*x-571 6835695707402907 m005 (1/2*Catalan-5/11)/(8/11*2^(1/2)+4) 6835695720387351 m001 (Weierstrass+ZetaP(2))/(arctan(1/3)+MertensB2) 6835695738135923 r002 5th iterates of z^2 + 6835695748264846 m005 (1/2*gamma+1/9)/(3/4*3^(1/2)-5/7) 6835695753523426 a001 1364*(1/2*5^(1/2)+1/2)^22*3^(3/14) 6835695764000461 r005 Re(z^2+c),c=-33/34+17/81*I,n=6 6835695773968400 b008 2+83*ExpIntegralEi[E] 6835695792436434 m001 (Psi(2,1/3)-cos(1/5*Pi))/(-Cahen+MinimumGamma) 6835695797566908 a007 Real Root Of 495*x^4+227*x^3+530*x^2-677*x-746 6835695800356804 a007 Real Root Of -795*x^4+647*x^3-25*x^2+695*x+867 6835695802406847 a007 Real Root Of 186*x^4-709*x^3+844*x^2+125*x-576 6835695815648941 a007 Real Root Of -509*x^4-724*x^3+97*x^2+990*x+67 6835695826056175 l006 ln(4721/9352) 6835695830223056 a007 Real Root Of -773*x^4+745*x^3+259*x^2-200*x+149 6835695860150550 a007 Real Root Of -664*x^4+753*x^3+867*x^2+454*x-811 6835695880439723 a007 Real Root Of 931*x^4+337*x^3-883*x^2-790*x+58 6835695903271895 m001 Artin^ReciprocalLucas/(Porter^ReciprocalLucas) 6835695936637495 m001 1/GAMMA(1/4)^2/GAMMA(1/24)^2*ln(GAMMA(13/24)) 6835695955263549 r005 Im(z^2+c),c=-41/86+4/35*I,n=13 6835695986095065 r009 Re(z^3+c),c=-21/38+10/63*I,n=13 6835696036098892 r005 Re(z^2+c),c=-57/82+7/20*I,n=28 6835696036367736 a007 Real Root Of -783*x^4+130*x^3-265*x^2+317*x+553 6835696062067871 a007 Real Root Of 690*x^4-991*x^3-609*x^2-890*x-791 6835696084089471 l006 ln(4144/8209) 6835696110562655 g006 Psi(1,1/7)+Psi(1,3/5)+Psi(1,1/4)-Psi(1,7/10) 6835696115758445 m001 Artin^BesselI(0,1)*Artin^MinimumGamma 6835696119173296 a007 Real Root Of -479*x^4+455*x^3-407*x^2+803*x+989 6835696135493055 m005 (1/3*5^(1/2)+1/12)/(5/7*gamma+4/5) 6835696180189038 a003 cos(Pi*27/101)/sin(Pi*25/58) 6835696217854001 h001 (5/9*exp(2)+2/9)/(7/9*exp(2)+7/12) 6835696250906617 b008 ArcCsc[(3*E^2)/14] 6835696275936660 m001 (-gamma(1)+GlaisherKinkelin)/(Chi(1)+ln(Pi)) 6835696280976987 a007 Real Root Of 596*x^4+646*x^3-764*x^2-817*x+579 6835696304845334 p001 sum(1/(481*n+151)/(8^n),n=0..infinity) 6835696307796165 m005 (-5/44+1/4*5^(1/2))/(5*2^(1/2)-5/9) 6835696324025256 a003 sin(Pi*1/62)/cos(Pi*15/64) 6835696348409726 m001 AlladiGrinstead-Psi(2,1/3)*GAMMA(3/4) 6835696425601990 l006 ln(3567/7066) 6835696428040310 a003 cos(Pi*2/117)-sin(Pi*28/61) 6835696436011898 r002 6th iterates of z^2 + 6835696438800257 r002 10th iterates of z^2 + 6835696445812413 a007 Real Root Of -647*x^4-998*x^3-177*x^2+584*x+4 6835696449278094 r005 Re(z^2+c),c=7/94+31/48*I,n=31 6835696453796000 a007 Real Root Of -514*x^4+351*x^3+631*x^2+568*x-683 6835696454355857 a007 Real Root Of -12*x^4+784*x^3+240*x^2+812*x-915 6835696581958395 a003 cos(Pi*15/97)*sin(Pi*9/32) 6835696586477777 m001 (Psi(2,1/3)-Si(Pi))/(BesselK(0,1)+ThueMorse) 6835696608378774 r002 14th iterates of z^2 + 6835696625902045 a007 Real Root Of 786*x^4-215*x^3+519*x^2-426*x-774 6835696626185767 m006 (4*exp(Pi)+1/5)/(1/2*exp(Pi)+2) 6835696646018179 m001 (Magata-PlouffeB)^KomornikLoreti 6835696656794856 m003 1/40+Sqrt[5]/8+ProductLog[1/2+Sqrt[5]/2]/2 6835696677122807 a007 Real Root Of 176*x^4-170*x^3-637*x^2-403*x+589 6835696700133449 h001 (2/9*exp(1)+7/9)/(5/12*exp(1)+8/9) 6835696709800820 r009 Im(z^3+c),c=-1/13+36/47*I,n=9 6835696711878473 m001 (Ei(1,1)*ZetaR(2)+Porter)/Ei(1,1) 6835696714481253 r005 Re(z^2+c),c=-67/90+4/53*I,n=5 6835696717191868 r005 Re(z^2+c),c=-7/15+34/57*I,n=42 6835696750753356 l006 ln(3251/3481) 6835696757564915 m001 1/FibonacciFactorial*DuboisRaymond/exp(sin(1)) 6835696757989060 p001 sum((-1)^n/(601*n+143)/(8^n),n=0..infinity) 6835696758034257 a003 -1/2+2*cos(1/18*Pi)-cos(1/30*Pi)-cos(11/30*Pi) 6835696772506033 r005 Im(z^2+c),c=17/58+24/47*I,n=36 6835696776503469 r005 Re(z^2+c),c=-115/126+7/30*I,n=26 6835696783389530 r009 Re(z^3+c),c=-55/106+5/56*I,n=28 6835696786449106 a001 2207/196418*12586269025^(9/19) 6835696800725893 m001 (GAMMA(13/24)+ErdosBorwein)/Weierstrass 6835696805232143 m001 (GAMMA(13/24)+Thue)/(Zeta(1,2)-exp(1)) 6835696810854651 m005 (-1/20+1/4*5^(1/2))/(9/10*exp(1)+5) 6835696822404796 a007 Real Root Of -755*x^4+244*x^3-448*x^2+348*x+690 6835696827096729 a007 Real Root Of 267*x^4+232*x^3+925*x^2-74*x-467 6835696836303988 h001 (-4*exp(7)+4)/(-8*exp(2)-5) 6835696858438145 m005 (1/2*exp(1)-3/10)/(9/11*Catalan+4/5) 6835696859891817 a007 Real Root Of 128*x^4+954*x^3+461*x^2-644*x-700 6835696874071880 m005 (1/2*Zeta(3)+4/9)/(2*gamma+3/8) 6835696874866165 a007 Real Root Of -324*x^4+81*x^3+101*x^2+409*x+329 6835696892032038 r002 27th iterates of z^2 + 6835696892140019 r005 Re(z^2+c),c=13/102+13/44*I,n=3 6835696898922330 l006 ln(2990/5923) 6835696908115292 s002 sum(A206099[n]/(n^3*exp(n)+1),n=1..infinity) 6835696911797758 a007 Real Root Of 243*x^4-664*x^3+707*x^2-887*x+435 6835696932569108 a007 Real Root Of 3*x^4-329*x^3-878*x^2-176*x+635 6835696932663684 b008 (E*Sinh[E])/3 6835696969860551 r009 Re(z^3+c),c=-9/86+31/63*I,n=21 6835696971440155 a001 233/1364*322^(23/36) 6835696991236712 a001 2207/2584*1346269^(9/19) 6835696997287899 m001 1/exp(1)*ln(BesselK(1,1))/sqrt(1+sqrt(3))^2 6835697047242949 p004 log(22549/11383) 6835697087054105 a003 cos(Pi*2/47)*cos(Pi*25/97) 6835697119578024 m001 BesselK(0,1)^Pi/cos(1/12*Pi) 6835697119578024 m001 BesselK(0,1)^Pi/cos(Pi/12) 6835697121919143 m001 exp((3^(1/3)))^2/Khintchine*GAMMA(23/24) 6835697146406935 r005 Re(z^2+c),c=4/21+15/49*I,n=17 6835697163959752 m001 Zeta(5)/exp(PrimesInBinary)/Zeta(9) 6835697164655600 m001 (Trott+ZetaP(4))/(Chi(1)-Rabbit) 6835697173044563 a007 Real Root Of 401*x^4-20*x^3-804*x^2-561*x+678 6835697193008448 r002 25th iterates of z^2 + 6835697213397121 a007 Real Root Of -11*x^4-758*x^3-405*x^2+703*x+614 6835697220876040 m005 (1/2*5^(1/2)+7/11)/(5/12*Catalan-1/8) 6835697264307739 a007 Real Root Of -238*x^4+513*x^3+323*x^2+164*x+177 6835697267868615 m005 (1/2*2^(1/2)-7/11)/(2/11*2^(1/2)+7/9) 6835697272074420 r005 Re(z^2+c),c=3/110+9/25*I,n=27 6835697280695759 a007 Real Root Of -519*x^4+257*x^3-272*x^2+128*x+410 6835697298875334 r005 Im(z^2+c),c=31/94+24/59*I,n=26 6835697300941098 m001 ln(2)/ln(10)*(Khinchin-PrimesInBinary) 6835697319190171 r005 Re(z^2+c),c=1/106+12/43*I,n=2 6835697335232037 m001 Rabbit/exp(Khintchine)/sin(1)^2 6835697342258695 a001 987/29*29^(49/55) 6835697342373072 m001 (Pi-2^(1/2))/(Pi*2^(1/2)/GAMMA(3/4)-ln(3)) 6835697368841958 m001 Champernowne^ZetaR(2)*GolombDickman^ZetaR(2) 6835697388021475 a001 233/2207*322^(13/18) 6835697418567262 m001 GAMMA(13/24)+MertensB1-Sierpinski 6835697423165709 m001 GAMMA(11/24)^2/BesselJ(1,1)^2/exp(Zeta(5)) 6835697429485554 m005 (1/2*Pi+4/5)/(2/3*Zeta(3)-5/11) 6835697471573611 a007 Real Root Of 263*x^4-732*x^3-122*x^2-529*x+595 6835697523650661 r005 Im(z^2+c),c=-31/26+1/113*I,n=46 6835697581834157 m005 (27/44+1/4*5^(1/2))/(3/10*exp(1)+9/10) 6835697588582466 a007 Real Root Of 371*x^4-568*x^3-588*x^2-108*x+449 6835697595830942 m001 Psi(1,1/3)/(BesselI(0,1)^((1+3^(1/2))^(1/2))) 6835697598604699 l006 ln(2413/4780) 6835697634536618 m005 (1/2*Catalan+3/10)/(4/7*exp(1)-4/9) 6835697641532943 m001 (Lehmer+Niven)/(ReciprocalFibonacci+ZetaQ(4)) 6835697695569583 a007 Real Root Of 307*x^4-94*x^3-121*x^2-147*x-141 6835697718015497 b008 1+E+Sqrt[7+E] 6835697751489396 a007 Real Root Of -550*x^4+800*x^3+997*x^2+922*x+540 6835697783187366 m005 (1/2*3^(1/2)+3/5)/(1/4*2^(1/2)-3/8) 6835697794471064 a007 Real Root Of -117*x^4-767*x^3+370*x^2+866*x-900 6835697888847965 m001 (OneNinth+ZetaP(2))/(gamma(2)-AlladiGrinstead) 6835697913221096 a007 Real Root Of -978*x^4+438*x^3-759*x^2+310*x+920 6835697917340776 r005 Re(z^2+c),c=-11/18+57/119*I,n=5 6835697950664935 m001 (exp(Pi)+CareFree)/(Magata+StolarskyHarborth) 6835697960135671 b008 47+37*EulerGamma 6835697976645395 r005 Im(z^2+c),c=-33/62+7/57*I,n=21 6835697986027607 g005 GAMMA(9/10)*GAMMA(1/9)/GAMMA(9/11)/GAMMA(4/5) 6835698011955404 m001 (Landau-Salem)/(Zeta(1,-1)-gamma(1)) 6835698056465930 m005 (1/2*5^(1/2)-8/9)/(6*gamma-1/9) 6835698090967645 l006 ln(4249/8417) 6835698109965390 a001 514229/1364*3^(13/24) 6835698117751768 m007 (-1/4*gamma+4)/(-3*gamma-6*ln(2)+1/4) 6835698143627928 a007 Real Root Of -121*x^4-496*x^3-962*x^2+621*x+742 6835698144238478 a007 Real Root Of 937*x^4-570*x^3-141*x^2-369*x-573 6835698154091600 a007 Real Root Of 5*x^4-850*x^3+931*x^2+845*x-130 6835698154826511 r005 Im(z^2+c),c=-11/13+3/52*I,n=3 6835698181129587 a007 Real Root Of -423*x^4+991*x^3-680*x^2-77*x+674 6835698190700364 a007 Real Root Of -121*x^4+256*x^3+388*x^2+786*x+52 6835698237579808 a007 Real Root Of 86*x^4-733*x^3-12*x^2-919*x-63 6835698238958055 a007 Real Root Of -356*x^4+875*x^3+553*x^2+859*x+686 6835698259889793 a001 1/3*13^(7/25) 6835698284483239 a007 Real Root Of 733*x^4-465*x^3-3*x^2-917*x-934 6835698303023088 a007 Real Root Of 702*x^4-493*x^3+638*x^2-28*x-628 6835698310581651 r002 31th iterates of z^2 + 6835698315399322 a001 3/46*11^(1/51) 6835698331238043 r005 Im(z^2+c),c=-41/30+1/37*I,n=18 6835698352476594 m001 1/TreeGrowth2nd^2*Salem^2/exp(GAMMA(19/24))^2 6835698356324666 s002 sum(A142579[n]/(n!^2),n=1..infinity) 6835698373188785 r002 29th iterates of z^2 + 6835698383190204 m001 ArtinRank2^Kolakoski*ArtinRank2^MertensB1 6835698383739522 m005 (7/44+1/4*5^(1/2))/(4/7*Zeta(3)+4/11) 6835698394641756 m001 1/exp(BesselK(0,1))/Porter/cos(Pi/5)^2 6835698394765199 m009 (3*Pi^2-4/5)/(1/2*Psi(1,1/3)-5/6) 6835698397296509 a007 Real Root Of 107*x^4+771*x^3+117*x^2-905*x+989 6835698410579561 m001 (-BesselJ(1,1)+4)/(exp(-1/2*Pi)+5) 6835698420036341 s001 sum(exp(-Pi/2)^n*A031235[n],n=1..infinity) 6835698421122922 m008 (2/3*Pi^4-2/3)/(2/5*Pi^3-3) 6835698461416613 a007 Real Root Of 369*x^4-830*x^3-273*x^2+973*x+447 6835698488694736 r008 a(0)=0,K{-n^6,-32+11*n+26*n^2+10*n^3} 6835698491868194 a007 Real Root Of -661*x^4+226*x^3+702*x^2+480*x-584 6835698495640836 r005 Im(z^2+c),c=-35/27+1/22*I,n=18 6835698501603168 m001 (exp(Pi)+ArtinRank2)/(-DuboisRaymond+Landau) 6835698509028833 r009 Im(z^3+c),c=-31/122+43/61*I,n=4 6835698533538206 r005 Im(z^2+c),c=-6/25+5/52*I,n=14 6835698552026029 a007 Real Root Of 725*x^4-587*x^3+393*x^2+814*x+27 6835698557198881 r005 Im(z^2+c),c=47/122+11/47*I,n=15 6835698597288566 p001 sum((-1)^n/(61*n+53)/n/(128^n),n=0..infinity) 6835698657707496 a003 sin(Pi*24/95)*sin(Pi*49/120) 6835698683441216 a007 Real Root Of 691*x^4-763*x^3-967*x^2-982*x-614 6835698702156749 m001 exp(Pi)/cosh(1)/Ei(1,1) 6835698706891010 m005 (1/3*Catalan-2/3)/(3/7*exp(1)-7/11) 6835698712960991 p004 log(21401/23) 6835698721473324 a007 Real Root Of 259*x^4-755*x^3-253*x^2-464*x+620 6835698735304367 a007 Real Root Of 823*x^4-592*x^3+431*x^2+957*x+84 6835698738065532 l006 ln(1836/3637) 6835698741180230 a007 Real Root Of -133*x^4+582*x^3-68*x^2+944*x+892 6835698751168233 m005 (1/2*Pi-7/9)/(6/7*Catalan+3/8) 6835698772496646 r009 Re(z^3+c),c=-1/98+25/53*I,n=16 6835698775734240 m001 (Catalan-Pi^(1/2))/(-Niven+ZetaP(2)) 6835698788273972 a007 Real Root Of 449*x^4-265*x^3+958*x^2-336*x-860 6835698793147758 m001 Artin^(Zeta(3)*arctan(1/3)) 6835698813017034 a007 Real Root Of 475*x^4+439*x^3-112*x^2-877*x+6 6835698813450115 v002 sum(1/(5^n*(2*n^2+40*n-10)),n=1..infinity) 6835698832582724 r002 14th iterates of z^2 + 6835698848980617 a007 Real Root Of 281*x^4-784*x^3+347*x^2-439*x-774 6835698850092866 a007 Real Root Of 719*x^4-584*x^3+256*x^2+107*x-390 6835698853208014 r009 Re(z^3+c),c=-29/110+38/61*I,n=7 6835698872949086 r005 Re(z^2+c),c=-5/6+37/203*I,n=58 6835698877034842 h001 (11/12*exp(2)+2/3)/(1/11*exp(2)+5/12) 6835698882478739 a005 (1/sin(65/139*Pi))^371 6835698891599534 a001 3571*(1/2*5^(1/2)+1/2)^20*3^(3/14) 6835698892680547 p004 log(35227/17783) 6835698897558963 a007 Real Root Of 16*x^4+97*x^3+940*x^2+320*x-193 6835698915636111 r005 Im(z^2+c),c=-16/25+3/10*I,n=31 6835698919655112 r002 5th iterates of z^2 + 6835698939393178 a007 Real Root Of -203*x^4+856*x^3+286*x^2+73*x+234 6835698948063328 r004 Re(z^2+c),c=2/11+11/21*I,z(0)=I,n=6 6835698979567636 a001 1/41*24476^(29/52) 6835698980660302 a007 Real Root Of -29*x^4+107*x^3-513*x^2+914*x+905 6835698980734802 m005 (1/2*3^(1/2)+1/4)/(3/8*Pi+5/11) 6835698983120657 s001 sum(exp(-4*Pi/5)^n*A007146[n],n=1..infinity) 6835698994956038 m005 (1/2*2^(1/2)-7/11)/(1/4*Pi-8/9) 6835699020456108 m005 (1/2*3^(1/2)-11/12)/(1/4*5^(1/2)+2/11) 6835699076788730 m001 (BesselK(0,1)+FransenRobinson)^GAMMA(13/24) 6835699081208309 a007 Real Root Of 987*x^4-181*x^3+634*x^2+191*x-439 6835699086374033 a007 Real Root Of 124*x^4+747*x^3-652*x^2+351*x+724 6835699091718354 m001 (Si(Pi)-gamma)/(Zeta(3)+LaplaceLimit) 6835699100376329 m001 GAMMA(1/4)/((1/3)^gamma) 6835699100376329 m001 exp(gamma)^ln(3)*GAMMA(1/4) 6835699100463545 m001 (GAMMA(11/12)+CareFree)/(FeigenbaumB-Magata) 6835699119941229 r002 23th iterates of z^2 + 6835699125756062 r002 26th iterates of z^2 + 6835699126331882 m001 (5^(1/2))^ln(2^(1/2)+1)/((5^(1/2))^GAMMA(2/3)) 6835699126331882 m001 sqrt(5)^ln(1+sqrt(2))/(sqrt(5)^GAMMA(2/3)) 6835699127001420 m001 (BesselJ(1,1)-RenyiParking)^FellerTornier 6835699142850319 r002 4th iterates of z^2 + 6835699143037675 a007 Real Root Of 987*x^4-43*x^3+245*x^2-707*x-827 6835699203528485 m001 (sin(1)+PrimesInBinary)/(-Tribonacci+ZetaQ(4)) 6835699251571449 a007 Real Root Of 273*x^4-62*x^3+85*x^2-446*x-424 6835699254987004 m001 BesselI(0,1)^Psi(2,1/3)*GaussKuzminWirsing 6835699260529914 m001 ((1+3^(1/2))^(1/2)-Porter)/exp(1) 6835699269372479 a002 15^(5/6)-11^(5/12) 6835699273766007 m001 sin(1)^Pi*sin(1)^Zeta(1,2) 6835699285070297 a007 Real Root Of -699*x^4+416*x^3-434*x^2+121*x+571 6835699293831988 m005 (1/2*Catalan+6/11)/(9/10*3^(1/2)-1/11) 6835699295664144 l006 ln(4931/9768) 6835699303123250 r005 Im(z^2+c),c=17/56+27/46*I,n=3 6835699317276467 m001 (BesselI(0,2)+GaussAGM)/(Pi+2^(1/2)) 6835699333279644 m001 (Pi+Psi(1,1/3))/(Chi(1)+ln(3)) 6835699346579728 r005 Re(z^2+c),c=4/27+11/41*I,n=6 6835699349438667 a001 9349*(1/2*5^(1/2)+1/2)^18*3^(3/14) 6835699352758719 a001 47/514229*46368^(44/53) 6835699391529810 m001 Zeta(1,2)/ln(Pi)*GaussAGM 6835699394419954 m001 (5^(1/2)-Catalan)/(ln(5)+arctan(1/3)) 6835699415351271 r005 Im(z^2+c),c=-3/94+32/39*I,n=14 6835699416236497 a001 24476*(1/2*5^(1/2)+1/2)^16*3^(3/14) 6835699425608351 m001 (ln(3)+ln(Pi))/(Catalan-sin(1/5*Pi)) 6835699425982169 a001 64079*(1/2*5^(1/2)+1/2)^14*3^(3/14) 6835699427646926 a001 54018521*3^(3/14) 6835699432005325 a001 39603*(1/2*5^(1/2)+1/2)^15*3^(3/14) 6835699434968344 a007 Real Root Of -893*x^4+649*x^3+934*x^2+429*x-742 6835699457519826 a001 15127*(1/2*5^(1/2)+1/2)^17*3^(3/14) 6835699461816564 a007 Real Root Of -660*x^4+207*x^3+180*x^2+999*x+809 6835699463605864 a007 Real Root Of 62*x^4+391*x^3-332*x^2-789*x-361 6835699465869658 m001 (Catalan+gamma(3))/(Champernowne+Trott) 6835699486379354 a007 Real Root Of 875*x^4-349*x^3+722*x^2-401*x-914 6835699522774433 a007 Real Root Of 865*x^4+245*x^3-24*x^2-450*x-407 6835699546659741 m005 (1/2*2^(1/2)-1/8)/(3/10*Pi-1/11) 6835699581205992 a001 8/29*39603^(3/35) 6835699594343247 a007 Real Root Of -95*x^4+164*x^3+862*x^2+665*x-889 6835699598838679 r009 Im(z^3+c),c=-5/23+24/35*I,n=6 6835699626439914 l006 ln(3095/6131) 6835699632398813 a001 5778*(1/2*5^(1/2)+1/2)^19*3^(3/14) 6835699637658880 a007 Real Root Of 773*x^4-862*x^3-265*x^2-358*x-565 6835699767697153 m001 LaplaceLimit/Sarnak/Totient 6835699768684618 r009 Im(z^3+c),c=-11/40+41/58*I,n=15 6835699796297228 r005 Re(z^2+c),c=-16/21+3/44*I,n=55 6835699797160243 q001 337/493 6835699813418625 a003 cos(Pi*38/107)*cos(Pi*50/101) 6835699830024198 m001 (-Zeta(1,2)+Trott)/(Chi(1)-ln(gamma)) 6835699850339842 m005 (-5/42+1/6*5^(1/2))/(-29/42+1/7*5^(1/2)) 6835699859598916 m001 1/ln(GAMMA(3/4))*GAMMA(17/24)^2*sin(1) 6835699863366537 a007 Real Root Of -104*x^4-747*x^3-227*x^2+203*x+468 6835699869031256 m001 Riemann2ndZero*ln(Si(Pi))/Ei(1) 6835699871941689 a001 6765/2207*123^(1/6) 6835699878442147 a007 Real Root Of 31*x^4-254*x^3+571*x^2-697*x+284 6835699890799932 h002 exp(14^(7/4)+5^(10/3)) 6835699890799932 h007 exp(14^(7/4)+5^(10/3)) 6835699891950012 m005 (1/3*Pi+1/11)/(7/11*Zeta(3)+9/10) 6835699910094781 h001 (-exp(1)+6)/(-4*exp(-3)+5) 6835699922385789 r002 31th iterates of z^2 + 6835699927330186 p001 sum(1/(455*n+162)/n/(24^n),n=1..infinity) 6835699930257820 h001 (3/5*exp(2)+5/6)/(1/4*exp(1)+1/11) 6835699937058518 a007 Real Root Of -619*x^4-46*x^3-189*x^2+960*x+865 6835699973797043 r005 Im(z^2+c),c=-7/10+14/241*I,n=33