7014000006750874 m001 arctan(1/3)/(gamma(1)^Zeta(1/2)) 7014000012706392 a007 Real Root Of -143*x^4+994*x^3-251*x^2-60*x+459 7014000025247520 r008 a(0)=7,K{-n^6,-40-33*n^3+94*n^2-93*n} 7014000033819409 a001 832040/29*76^(31/42) 7014000038786961 r002 24th iterates of z^2 + 7014000083959044 r008 a(0)=7,K{-n^6,-66+6*n^3-35*n^2+23*n} 7014000092077756 r009 Im(z^3+c),c=-39/62+26/41*I,n=9 7014000110243420 r005 Im(z^2+c),c=1/16+37/60*I,n=8 7014000168739027 r005 Im(z^2+c),c=-29/48+9/62*I,n=21 7014000173343477 r008 a(0)=7,K{-n^6,-52-27*n^3+70*n^2-63*n} 7014000176808011 m005 (1/3*3^(1/2)+1/6)/(5/8*gamma+7/10) 7014000177009537 r002 47th iterates of z^2 + 7014000195406653 m001 FeigenbaumKappa*ArtinRank2*exp(Zeta(9))^2 7014000209628332 m001 (MertensB2+Rabbit)/(Zeta(3)+GAMMA(17/24)) 7014000257653170 r008 a(0)=7,K{-n^6,-77+3*n^3+99*n^2-96*n} 7014000267015012 r008 a(0)=7,K{-n^6,-28+52*n^3-77*n^2-17*n} 7014000283317292 r002 8th iterates of z^2 + 7014000303261003 a001 123/121393*89^(25/58) 7014000307064157 a007 Real Root Of 792*x^4-976*x^3-532*x^2-629*x+848 7014000320853343 h001 (1/10*exp(2)+9/11)/(4/7*exp(1)+2/3) 7014000325380229 b008 (29*Erfc[E])/5 7014000337603824 a007 Real Root Of -601*x^4+82*x^3-26*x^2+244*x-17 7014000340283366 a007 Real Root Of -853*x^4-436*x^3-579*x^2-34*x+317 7014000385076254 r008 a(0)=7,K{-n^6,10-53*n-50*n^2+21*n^3} 7014000385658339 a003 cos(Pi*20/69)/sin(Pi*21/62) 7014000394040719 r008 a(0)=7,K{-n^6,-64-31*n+43*n^2-20*n^3} 7014000405545948 a007 Real Root Of -938*x^4+777*x^3+251*x^2-537*x-5 7014000410836955 m001 Psi(2,1/3)*GAMMA(7/12)*FeigenbaumB 7014000412184464 m001 1/GAMMA(2/3)*MertensB1/ln(log(2+sqrt(3))) 7014000429718502 r002 12th iterates of z^2 + 7014000441504034 m001 1/exp(GAMMA(1/3))/Salem*Zeta(3) 7014000452176577 r008 a(0)=7,K{-n^6,-43+38*n^3+11*n^2-77*n} 7014000452217037 m001 (ln(2)/ln(10))^(3^(1/2))/Grothendieck 7014000453634764 a003 cos(Pi*27/97)-cos(Pi*19/62) 7014000456966487 l006 ln(6331/6791) 7014000458475469 m001 (exp(1)-ln(3))/(-Artin+FeigenbaumD) 7014000462799602 a001 12586269025/521*199^(7/11) 7014000466229408 h001 (-2*exp(-1)-2)/(-2*exp(-3)+4) 7014000490794122 m001 FeigenbaumDelta+Riemann1stZero^arctan(1/3) 7014000491578222 m005 (1/3*5^(1/2)-2/7)/(4*3^(1/2)-3/8) 7014000500120359 a007 Real Root Of -486*x^4+435*x^3+394*x^2+790*x+628 7014000509601267 a007 Real Root Of 901*x^4+102*x^3+564*x^2+883*x+159 7014000511505144 a007 Real Root Of 318*x^4-875*x^3+80*x^2-280*x+382 7014000517082575 m001 Robbin/ln(Backhouse)^2/Sierpinski^2 7014000522270069 m001 (GAMMA(19/24)-Paris*Porter)/Porter 7014000525052810 r009 Re(z^3+c),c=-27/118+41/57*I,n=64 7014000530062039 m001 exp(Porter)/LandauRamanujan/cos(Pi/5) 7014000534618453 a001 29*(1/2*5^(1/2)+1/2)^24*76^(8/11) 7014000545624971 r005 Re(z^2+c),c=-21/106+32/45*I,n=35 7014000578240569 m002 2/E^Pi+Cosh[Pi]/(6*Pi) 7014000587352328 r005 Im(z^2+c),c=13/36+6/11*I,n=5 7014000594437072 r005 Re(z^2+c),c=-43/58+3/37*I,n=34 7014000616945249 r009 Im(z^3+c),c=-1/122+17/23*I,n=3 7014000630415469 a007 Real Root Of 992*x^4-736*x^3-727*x^2+357*x+114 7014000636336765 a007 Real Root Of -846*x^4+900*x^3+675*x^2+617*x+616 7014000640574841 r008 a(0)=7,K{-n^6,-65-3*n^3-9*n^2+5*n} 7014000642898376 a007 Real Root Of 524*x^4-617*x^3+89*x^2-350*x-629 7014000661143901 r008 a(0)=7,K{-n^6,-31-11*n-44*n^2+14*n^3} 7014000664194301 a003 cos(Pi*10/63)-sin(Pi*29/73) 7014000684358307 a001 76/4181*514229^(5/18) 7014000684928264 a007 Real Root Of -930*x^4+894*x^3+500*x^2+79*x+343 7014000688125912 m001 (StolarskyHarborth-ZetaP(2))/(Niven-Salem) 7014000702708734 a007 Real Root Of 144*x^4-843*x^3+355*x^2+347*x-257 7014000712220387 r005 Im(z^2+c),c=-9/10+9/163*I,n=28 7014000732588071 r005 Re(z^2+c),c=-85/122+21/62*I,n=19 7014000734172585 m001 CopelandErdos*(BesselK(0,1)-Champernowne) 7014000763348266 a008 Real Root of (-1-x+x^2+x^3-x^5-x^7-x^8-x^10-x^12) 7014000765257534 a001 19/11592*2971215073^(5/18) 7014000798306209 a007 Real Root Of 785*x^4-759*x^3-722*x^2-431*x-399 7014000801268974 r009 Im(z^3+c),c=-43/110+36/53*I,n=36 7014000801742155 r008 a(0)=7,K{-n^6,-45-5*n^3+7*n^2-29*n} 7014000818030103 r008 a(0)=7,K{-n^6,-22-59*n+12*n^2-3*n^3} 7014000842257691 r005 Im(z^2+c),c=-7/11+19/43*I,n=39 7014000847659076 a007 Real Root Of -436*x^4+529*x^3+650*x^2-133*x-125 7014000861302921 m001 (BesselI(0,2)+ErdosBorwein)/(Otter+Sierpinski) 7014000881748398 m001 ((1+3^(1/2))^(1/2))^KhinchinLevy/sin(1/12*Pi) 7014000935419000 a007 Real Root Of -483*x^4+399*x^3-11*x^2+864*x+866 7014000944613836 r008 a(0)=7,K{-n^6,-52+23*n^3+52*n^2-94*n} 7014000958003539 r005 Im(z^2+c),c=-5/8+119/248*I,n=10 7014000975407896 r008 a(0)=7,K{-n^6,-72+34*n^3+9*n^2-42*n} 7014001033386829 m001 (MinimumGamma+Trott)/(gamma(3)+exp(-1/2*Pi)) 7014001037721232 r005 Re(z^2+c),c=-17/30+64/107*I,n=8 7014001046388359 r008 a(0)=7,K{-n^6,-41-33*n^3+94*n^2-92*n} 7014001048340614 r009 Im(z^3+c),c=-1/46+43/55*I,n=63 7014001077005923 q001 2605/3714 7014001094727709 a007 Real Root Of -730*x^4+765*x^3+966*x^2+551*x-949 7014001100121626 m001 (Artin+ErdosBorwein)/(5^(1/2)+sin(1/5*Pi)) 7014001117349923 r005 Im(z^2+c),c=-2/29+31/46*I,n=22 7014001127036126 r008 a(0)=7,K{-n^6,-43+12*n^3-47*n^2+6*n} 7014001172487090 r005 Im(z^2+c),c=-9/98+12/17*I,n=49 7014001173336153 r005 Im(z^2+c),c=-25/36+19/51*I,n=34 7014001199006412 r008 a(0)=7,K{-n^6,-53-27*n^3+70*n^2-62*n} 7014001204431307 a001 281/1602508992*8^(2/3) 7014001205100273 g001 abs(GAMMA(83/20+I*68/15)) 7014001213990880 r005 Re(z^2+c),c=-19/14+1/17*I,n=26 7014001227206981 r008 a(0)=7,K{-n^6,-1+16*n^3-37*n^2-50*n} 7014001248780977 r005 Im(z^2+c),c=41/110+8/29*I,n=42 7014001275328622 a007 Real Root Of 435*x^4+451*x^3+761*x^2-613*x-754 7014001285839058 r008 a(0)=7,K{-n^6,-47+11*n^3+37*n^2-71*n} 7014001329806495 r008 a(0)=7,K{-n^6,-17-58*n+2*n^2+n^3} 7014001347633643 a007 Real Root Of 940*x^4+441*x^3-160*x^2-558*x-388 7014001351465930 a001 3/832040*2^(24/25) 7014001367655235 r008 a(0)=7,K{-n^6,-77+3*n^3+100*n^2-97*n} 7014001373064035 r002 56th iterates of z^2 + 7014001374773752 a001 1/15109*(1/2*5^(1/2)+1/2)^14*521^(17/22) 7014001375801234 r002 33th iterates of z^2 + 7014001387056458 r005 Im(z^2+c),c=-5/11+52/61*I,n=3 7014001417157940 m005 (1/2*Pi+4/11)/(4/5*exp(1)+7/12) 7014001445133973 m005 (1/2*2^(1/2)+2/7)/(3/10*exp(1)+3/5) 7014001501000192 s002 sum(A265642[n]/(exp(n)),n=1..infinity) 7014001502973795 r008 a(0)=7,K{-n^6,-12-46*n-25*n^2+11*n^3} 7014001510705790 m001 exp(TreeGrowth2nd)^2*FeigenbaumB^2/cosh(1)^2 7014001523148109 m001 Pi*ln(2)/ln(10)-arctan(1/3)/ln(2+3^(1/2)) 7014001548711312 g001 Psi(4/7,61/88) 7014001561135770 m001 1/(2^(1/3))^2*ln(Conway)/cosh(1)^2 7014001570992133 m001 sin(1/12*Pi)*(Pi^(1/2)-Zeta(1,2)) 7014001570992133 m001 sin(Pi/12)*(Zeta(1,2)-sqrt(Pi)) 7014001576695115 s002 sum(A236877[n]/(n^2*exp(n)-1),n=1..infinity) 7014001577431403 m001 (QuadraticClass-ZetaQ(2))/(CareFree+PlouffeB) 7014001578510102 r008 a(0)=7,K{-n^6,-43+46*n^3-12*n^2-62*n} 7014001584306628 m001 (FeigenbaumD-Gompertz)/(ln(Pi)-3^(1/3)) 7014001586137797 r008 a(0)=7,K{-n^6,-45+49*n^3-22*n^2-53*n} 7014001597242205 r002 20th iterates of z^2 + 7014001647876508 m001 (sin(1/5*Pi)+gamma(1))/(GAMMA(7/12)-Kolakoski) 7014001664919153 a007 Real Root Of 197*x^4-837*x^3+808*x^2+787*x-182 7014001666989923 r005 Im(z^2+c),c=-13/102+29/41*I,n=22 7014001730359067 r005 Im(z^2+c),c=19/56+3/62*I,n=10 7014001740350110 a003 sin(Pi*31/119)*sin(Pi*39/95) 7014001747151837 a001 305/51841*3^(4/25) 7014001748562932 r005 Im(z^2+c),c=-9/98+12/17*I,n=46 7014001756780524 m001 (ln(2)+cos(1/12*Pi))/(Niven+TwinPrimes) 7014001762577785 m001 (gamma(2)-Rabbit)/(ln(3)+gamma(1)) 7014001780507429 m001 ThueMorse^sin(1)*BesselI(1,2)^sin(1) 7014001780950610 p001 sum((-1)^n/(165*n+104)/n/(5^n),n=0..infinity) 7014001791583267 a001 2971215073/322*521^(9/13) 7014001794263753 b008 Tan[3*ProductLog[1/4]] 7014001802818072 a007 Real Root Of 22*x^4-396*x^3-799*x^2-430*x+826 7014001804219095 m001 (HardyLittlewoodC5+Rabbit)/(1+Gompertz) 7014001805955718 m001 ln(gamma)/(ZetaP(4)+ZetaQ(4)) 7014001809829925 a007 Real Root Of 29*x^4-493*x^3+240*x^2+361*x-42 7014001827741219 a003 sin(Pi*29/77)/cos(Pi*59/119) 7014001828290362 r008 a(0)=7,K{-n^6,-54-4*n^3-14*n} 7014001872681255 r005 Re(z^2+c),c=-9/14+33/89*I,n=29 7014001873799175 a007 Real Root Of 420*x^4-205*x^3+26*x^2-657*x-646 7014001905994097 a007 Real Root Of 763*x^4-730*x^3+913*x^2+731*x-373 7014001918383056 a007 Real Root Of -929*x^4+330*x^3+151*x^2+909*x+902 7014001932899530 m008 (1/4*Pi^2+2)/(2/3*Pi^6-4) 7014001946765481 r008 a(0)=7,K{-n^6,-23-9*n-60*n^2+20*n^3} 7014001953760989 q001 2154/3071 7014001962742273 m001 (GolombDickman+ZetaP(2))/(Pi-ErdosBorwein) 7014001979121166 r005 Im(z^2+c),c=-29/50+5/39*I,n=52 7014001980974933 a007 Real Root Of 118*x^4+803*x^3-100*x^2+424*x-613 7014001983478780 a007 Real Root Of 857*x^4-918*x^3-810*x^2-575*x-529 7014001991512345 r005 Im(z^2+c),c=-3/5+15/116*I,n=41 7014002009838963 m001 (BesselI(1,2)+2/3)/(exp(1)+1/2) 7014002025856460 r005 Im(z^2+c),c=-13/34+35/53*I,n=4 7014002030648762 r005 Im(z^2+c),c=13/90+26/45*I,n=23 7014002044814454 r005 Re(z^2+c),c=-23/30+3/106*I,n=7 7014002046064937 m005 (1/2*Zeta(3)-1/11)/(1/5*2^(1/2)+4/9) 7014002051484267 l006 ln(9235/9906) 7014002061258459 a007 Real Root Of 35*x^4+175*x^3+305*x^2-476*x-432 7014002073672109 r008 a(0)=7,K{-n^6,-80-16*n^3+64*n^2-35*n} 7014002082530969 a001 11/233*17711^(8/29) 7014002114507149 r008 a(0)=7,K{-n^6,-18-19*n-60*n^2+25*n^3} 7014002121280043 m005 (13/6+3/2*5^(1/2))/(5*2^(1/2)+4/5) 7014002149522840 r009 Re(z^3+c),c=-29/122+45/64*I,n=27 7014002150239918 r005 Re(z^2+c),c=-9/10+11/67*I,n=30 7014002156833384 a001 11/377*75025^(21/43) 7014002159749138 r008 a(0)=7,K{-n^6,-42-32*n-59*n^2+62*n^3} 7014002185358925 m006 (3/4*exp(2*Pi)-3)/(2*Pi-3/5) 7014002224472006 m001 (Shi(1)+arctan(1/2))/(Riemann2ndZero+Robbin) 7014002229688880 r008 a(0)=7,K{-n^6,-6-50*n-51*n^2+34*n^3} 7014002247675052 a001 682/98209*233^(14/33) 7014002309414996 r008 a(0)=7,K{-n^6,-60+2*n-35*n^2+20*n^3} 7014002323995313 a007 Real Root Of 400*x^4-805*x^3-491*x^2-191*x-267 7014002328864054 r005 Im(z^2+c),c=-4/17+24/31*I,n=10 7014002347407674 r008 a(0)=7,K{-n^6,-49+17*n^3+18*n^2-56*n} 7014002369588268 r005 Im(z^2+c),c=13/46+7/15*I,n=6 7014002400922435 m001 LaplaceLimit^2/MertensB1/exp(GAMMA(1/24))^2 7014002407703104 r005 Re(z^2+c),c=-11/12+19/90*I,n=24 7014002447682128 a007 Real Root Of 36*x^4+172*x^3-548*x^2+29*x-616 7014002454794921 r005 Re(z^2+c),c=-5/78+39/49*I,n=44 7014002461572089 a007 Real Root Of -765*x^4+857*x^3+415*x^2+334*x-549 7014002471393601 a007 Real Root Of 447*x^4-220*x^3+623*x^2-434*x-795 7014002486310103 r008 a(0)=7,K{-n^6,-51-27*n+14*n^2-8*n^3} 7014002488867255 r005 Im(z^2+c),c=-5/26+35/52*I,n=10 7014002492460729 m001 (Robbin+ZetaQ(4))/(KomornikLoreti-sin(1)) 7014002495785311 r008 a(0)=7,K{-n^6,-50-14*n-7*n^2-n^3} 7014002511420108 g006 1/2*Pi^2-Psi(1,8/11)-Psi(1,7/8)-Psi(1,2/5) 7014002516379818 m001 (OrthogonalArrays+Thue)/(Bloch-Kolakoski) 7014002525127212 m001 (Zeta(1/2)+arctan(1/2))/(1+BesselK(0,1)) 7014002530960702 a007 Real Root Of 929*x^4-255*x^3+702*x^2+351*x-412 7014002547254910 r005 Im(z^2+c),c=-11/10+119/232*I,n=3 7014002554146022 m001 (BesselI(1,2)+KhinchinHarmonic)/PlouffeB 7014002561134150 g004 abs(GAMMA(-58/15+I*(-179/60))) 7014002571192946 a007 Real Root Of 298*x^4+388*x^3+405*x^2-173*x-14 7014002581187083 a007 Real Root Of -376*x^4+276*x^3-594*x^2+25*x+496 7014002588432917 a001 843/514229*233^(4/15) 7014002600454815 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Lehmer*ZetaQ(4) 7014002633715503 a007 Real Root Of 625*x^4-559*x^3+106*x^2-68*x-444 7014002634663389 h001 (1/11*exp(2)+7/11)/(3/7*exp(1)+7/10) 7014002644279124 b008 ((16*E)/5)!! 7014002656610895 r008 a(0)=7,K{-n^6,-37-27*n-10*n^2+2*n^3} 7014002680887377 a007 Real Root Of -501*x^4+221*x^3-531*x^2+324*x+686 7014002684765854 m001 (3^(1/3)+Ei(1,1))/(exp(Pi)-ln(gamma)) 7014002697535386 r008 a(0)=7,K{-n^6,-61+4*n^3-28*n^2+13*n} 7014002723892960 m001 1/exp(Catalan)*LandauRamanujan^2/gamma^2 7014002733212555 s002 sum(A010738[n]/(16^n-1),n=1..infinity) 7014002760578618 g005 GAMMA(11/12)*GAMMA(6/7)*GAMMA(1/7)/GAMMA(7/8) 7014002762132701 m005 (1/2*exp(1)-6/7)/(9/11*2^(1/2)+6) 7014002774819609 a007 Real Root Of 134*x^4-563*x^3+850*x^2+764*x-109 7014002783778104 r008 a(0)=7,K{-n^6,-88+25*n^3-64*n^2+54*n} 7014002812943167 m001 (-Grothendieck+ThueMorse)/(Catalan+Zeta(5)) 7014002829124258 a007 Real Root Of -123*x^4-953*x^3-488*x^2+905*x-796 7014002830027686 r005 Re(z^2+c),c=-3/28+25/32*I,n=26 7014002853337090 a007 Real Root Of -491*x^4+2*x^3+787*x^2+479*x-605 7014002868740122 m001 (Zeta(5)-3^(1/3))/(Zeta(1,-1)-ThueMorse) 7014002869770070 r002 15th iterates of z^2 + 7014002885523835 b008 (5*Cosh[1])/11 7014002895689743 m005 (1/3*5^(1/2)-1/2)/(3/11*Catalan+1/10) 7014002897270842 r002 4th iterates of z^2 + 7014002903042057 m001 exp(GAMMA(17/24))^2/RenyiParking^2*sqrt(3)^2 7014002927584162 r005 Re(z^2+c),c=5/48+14/29*I,n=56 7014002938552254 s002 sum(A085286[n]/(exp(2*pi*n)+1),n=1..infinity) 7014002946278647 m001 GAMMA(2/3)+KhinchinLevy-Tribonacci 7014002946792250 m001 gamma(1)/(MinimumGamma^Paris) 7014002956423257 r008 a(0)=7,K{-n^6,-13+8*n^3-14*n^2-53*n} 7014002957399276 m001 Zeta(1,-1)*BesselK(1,1)*CareFree 7014002963662777 m002 -(Pi^3*Log[Pi])-3*Sinh[Pi] 7014002967462494 r008 a(0)=7,K{-n^6,-47+19*n^3-67*n^2+23*n} 7014002971765039 b008 Pi*Coth[LogBarnesG[Pi]] 7014002975592002 a007 Real Root Of 78*x^4+519*x^3-321*x^2-958*x-621 7014002988426134 r005 Im(z^2+c),c=-9/56+38/55*I,n=61 7014002988450382 a003 sin(Pi*5/66)-sin(Pi*46/119) 7014002994696064 a001 23725150497407/144*12586269025^(11/24) 7014003009149767 s002 sum(A185382[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003013663415 a001 21/2207*1364^(28/47) 7014003021369681 m001 FeigenbaumB^2/exp(FeigenbaumAlpha)^2/Robbin 7014003026282666 h001 (3/10*exp(1)+7/8)/(5/9*exp(1)+9/10) 7014003045454495 m001 GolombDickman^Gompertz/OneNinth 7014003051276955 a005 (1/sin(87/235*Pi))^615 7014003071637567 r008 a(0)=7,K{-n^6,-3+22*n^3-43*n^2-48*n} 7014003086183848 r008 a(0)=7,K{-n^6,-51+22*n^3+2*n^2-43*n} 7014003087108839 a007 Real Root Of -140*x^4+62*x^3-173*x^2+152*x+247 7014003099568423 s002 sum(A066286[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003107005183 r009 Re(z^3+c),c=-71/126+17/64*I,n=20 7014003113149328 r005 Re(z^2+c),c=-11/60+37/51*I,n=53 7014003127906746 r008 a(0)=7,K{-n^6,-72+35*n^3+8*n^2-42*n} 7014003158963700 r008 a(0)=7,K{-n^6,-41-33*n^3+95*n^2-93*n} 7014003181139074 a001 987/2*3^(8/25) 7014003182105972 b008 EllipticNomeQ[BesselK[0,4]] 7014003188517671 r008 a(0)=7,K{-n^6,-39+14*n^3+14*n^2-56*n} 7014003191535149 m001 ZetaQ(4)/PrimesInBinary/LambertW(1) 7014003198710623 m004 -225*Pi+5*Cot[Sqrt[5]*Pi] 7014003200392565 m001 (MasserGramain+Sarnak)/(BesselJ(0,1)-exp(1)) 7014003204694706 a001 1/5771*(1/2*5^(1/2)+1/2)^24*199^(9/13) 7014003205674973 m001 (2^(1/2)-LambertW(1))/(Kac+LandauRamanujan2nd) 7014003214528474 a007 Real Root Of -548*x^4+917*x^3-503*x^2-293*x+491 7014003218771600 r008 a(0)=7,K{-n^6,-24+60*n^3-43*n^2-64*n} 7014003223166657 l006 ln(181/365) 7014003237111917 s002 sum(A064842[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003239678539 m001 (Catalan-Ei(1))/(-Riemann1stZero+ZetaP(3)) 7014003244100111 a007 Real Root Of -165*x^4+593*x^3+894*x^2+427*x-904 7014003264412923 m001 Tribonacci/Magata^2*exp(Ei(1))^2 7014003278010371 m001 (3^(1/2)+Artin)/(-PlouffeB+StronglyCareFree) 7014003293341882 r008 a(0)=7,K{-n^6,-38-57*n+36*n^2-13*n^3} 7014003294892915 q001 1703/2428 7014003298086347 r008 a(0)=7,K{-n^6,-56-10*n^3+18*n^2-24*n} 7014003307812712 r008 a(0)=7,K{-n^6,-18-49*n-40*n^2+38*n^3} 7014003323865338 r009 Im(z^3+c),c=-47/114+1/38*I,n=4 7014003325771330 r008 a(0)=7,K{-n^6,-53-36*n-5*n^2+24*n^3} 7014003336912119 a007 Real Root Of -274*x^4+233*x^3+229*x^2+603*x+457 7014003341450952 m001 exp(GAMMA(3/4))*LaplaceLimit^2/Zeta(1/2)^2 7014003354426456 r005 Im(z^2+c),c=-17/18+53/208*I,n=35 7014003371736333 a007 Real Root Of 839*x^4-696*x^3-492*x^2-158*x-312 7014003373653006 r008 a(0)=7,K{-n^6,-3+17*n^3-32*n^2-53*n} 7014003411911613 a007 Real Root Of -972*x^4+599*x^3+980*x^2-14*x-50 7014003420677735 s002 sum(A230137[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003427983020 a007 Real Root Of -371*x^4+104*x^3-692*x^2+131*x+558 7014003430337863 a003 sin(Pi*1/38)+sin(Pi*24/113) 7014003500697970 a007 Real Root Of -301*x^4+671*x^3-268*x^2+262*x+620 7014003507644388 r008 a(0)=7,K{-n^6,-77+4*n^3+99*n^2-97*n} 7014003510433986 a007 Real Root Of -10*x^4-695*x^3+457*x^2+567*x+23 7014003523389509 r005 Im(z^2+c),c=-27/22+5/102*I,n=7 7014003526329370 a007 Real Root Of -697*x^4-651*x^3-960*x^2-672*x-55 7014003542316403 a008 Real Root of (1+4*x-2*x^2-6*x^3-x^4-3*x^5) 7014003557367898 s002 sum(A062026[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003564765356 s002 sum(A204322[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003566547880 r009 Re(z^3+c),c=-1/28+45/52*I,n=20 7014003579713562 a001 139583862445/322*199^(1/11) 7014003580725249 a007 Real Root Of -510*x^4+779*x^3-716*x^2-916*x+102 7014003597108679 m006 (5*Pi-2/3)/(2/5*exp(2*Pi)+1/4) 7014003603904912 s002 sum(A027059[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003608644938 m005 (17/20+1/4*5^(1/2))/(4*gamma-3/10) 7014003610584368 m001 1/GAMMA(11/12)^2*ln(GlaisherKinkelin)*Pi 7014003624994103 m001 (Cahen-FeigenbaumB)/(FeigenbaumD+Trott) 7014003629617157 b008 6+3^(1/79) 7014003645085852 a007 Real Root Of -103*x^4-200*x^3-376*x^2+147*x+244 7014003645323429 r005 Re(z^2+c),c=-17/48+28/45*I,n=43 7014003647442118 m006 (5/6*exp(Pi)-1/2)/(5*exp(2*Pi)+3/5) 7014003650442262 s002 sum(A086680[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003655205702 r005 Re(z^2+c),c=-1/16+7/55*I,n=5 7014003677706176 m005 (1/2*2^(1/2)+2/7)/(7/12*5^(1/2)+1/9) 7014003695698923 m001 (Sierpinski+ThueMorse)/(CareFree-Robbin) 7014003699456824 a007 Real Root Of -383*x^4+28*x^3-795*x^2-263*x+309 7014003734955860 r005 Re(z^2+c),c=-11/14+5/193*I,n=21 7014003779255337 a001 14930208*521^(8/13) 7014003785334059 r008 a(0)=7,K{-n^6,-49-53*n+49*n^2-19*n^3} 7014003786542945 a007 Real Root Of 71*x^4+27*x^3+803*x^2+295*x-196 7014003787528006 s001 sum(exp(-2*Pi)^n*A136883[n],n=1..infinity) 7014003804873840 a007 Real Root Of -122*x^4+893*x^3+57*x^2+481*x+647 7014003820188362 m001 (-GAMMA(11/24)+1/3)/BesselI(0,2) 7014003820188362 m001 (1/3-GAMMA(11/24))/BesselI(0,2) 7014003833755074 s002 sum(A262590[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003849012249 m001 (GAMMA(23/24)-Artin)/(GaussKuzminWirsing+Kac) 7014003869318201 m001 Zeta(1/2)*GAMMA(1/12)^2/ln(log(2+sqrt(3))) 7014003924253715 s001 sum(exp(-2*Pi)^n*A027061[n],n=1..infinity) 7014003924254198 s001 sum(exp(-2*Pi)^n*A279460[n],n=1..infinity) 7014003924659322 a007 Real Root Of -480*x^4+520*x^3-269*x^2+683*x+907 7014003924763778 s002 sum(A037128[n]/(exp(2*pi*n)-1),n=1..infinity) 7014003926526253 r002 3th iterates of z^2 + 7014003927953358 g002 -Psi(6/11)-Psi(5/9)-Psi(5/7)-Psi(3/7) 7014003947999953 h001 (1/8*exp(2)+2/9)/(3/10*exp(1)+9/11) 7014003970447292 s001 sum(exp(-2*Pi)^n*A027063[n],n=1..infinity) 7014003970533880 s001 sum(exp(-2*Pi)^n*A027065[n],n=1..infinity) 7014003970534042 s001 sum(exp(-2*Pi)^n*A231057[n],n=1..infinity) 7014003979615339 r008 a(0)=7,K{-n^6,-59+30*n^3-26*n^2-15*n} 7014003981429678 m001 exp(Conway)^2/Champernowne^2*FransenRobinson^2 7014003998144271 m005 (1/2*5^(1/2)-1/6)/(29/56+3/8*5^(1/2)) 7014004003872253 r008 a(0)=7,K{-n^6,22-62*n-64*n^2+32*n^3} 7014004012252738 r005 Re(z^2+c),c=1/114+23/34*I,n=9 7014004016529754 r005 Im(z^2+c),c=-15/11+2/53*I,n=44 7014004033994976 r005 Re(z^2+c),c=19/70+21/47*I,n=29 7014004049923225 a007 Real Root Of 930*x^4-860*x^3-958*x^2-829*x-632 7014004060224305 r008 a(0)=7,K{-n^6,-61+31*n^3-30*n^2-10*n} 7014004063268855 s001 sum(exp(-2*Pi)^n*A122737[n],n=1..infinity) 7014004068707580 a007 Real Root Of 645*x^4-828*x^3-121*x^2-577*x-787 7014004102591734 m001 (5^(1/2)-LambertW(1))/(-Bloch+Rabbit) 7014004117652227 a007 Real Root Of 521*x^4-653*x^3-505*x^2-442*x-413 7014004172656903 a007 Real Root Of -126*x^4-149*x^3-604*x^2+838*x+864 7014004182541925 m001 (Kolakoski+ZetaP(3))/(ln(gamma)-FeigenbaumB) 7014004193633596 a007 Real Root Of -114*x^4+758*x^3+237*x^2+176*x+296 7014004196353097 r005 Re(z^2+c),c=-65/56+49/52*I,n=2 7014004199527176 s002 sum(A106434[n]/(exp(2*pi*n)+1),n=1..infinity) 7014004205870680 m001 (-Cahen+Lehmer)/(Catalan-GAMMA(13/24)) 7014004237342817 r005 Im(z^2+c),c=7/40+37/57*I,n=7 7014004263430419 r008 a(0)=7,K{-n^6,3+21*n^3-52*n^2-44*n} 7014004285107302 a007 Real Root Of 596*x^4-309*x^3+147*x^2-292*x-528 7014004319964086 h001 (2/9*exp(1)+3/7)/(1/7*exp(2)+5/12) 7014004341811326 m001 (Landau+ZetaQ(3))/(sin(1/5*Pi)-exp(1/Pi)) 7014004352343268 m001 (BesselI(1,2)+Mills)/(PrimesInBinary-ZetaQ(4)) 7014004363641867 r008 a(0)=7,K{-n^6,-44+n^3+20*n^2-50*n} 7014004382652777 m001 (ln(2)+ln(3))/(GAMMA(7/12)+GAMMA(23/24)) 7014004384579657 a007 Real Root Of -24*x^4+838*x^3-840*x^2+496*x-218 7014004388476746 r009 Re(z^3+c),c=-31/50+17/63*I,n=5 7014004400522254 r009 Im(z^3+c),c=-18/29+25/32*I,n=3 7014004406796806 a007 Real Root Of 677*x^4-957*x^3-212*x^2+915*x+252 7014004412204740 r008 a(0)=7,K{-n^6,-35-15*n-31*n^2+9*n^3} 7014004424726380 a007 Real Root Of 169*x^4+206*x^3+457*x^2-538*x-572 7014004427524254 a007 Real Root Of -219*x^4+507*x^3-776*x^2+133*x+703 7014004435291955 m001 BesselI(0,2)^sin(1/5*Pi)/exp(Pi) 7014004435291955 m001 BesselI(0,2)^sin(Pi/5)/exp(Pi) 7014004435291955 m001 exp(-Pi)*BesselI(0,2)^sin(Pi/5) 7014004457398789 m001 (Gompertz+KomornikLoreti)/(Magata-ZetaQ(3)) 7014004468045305 a007 Real Root Of -91*x^4-553*x^3+463*x^2-868*x+559 7014004483771756 r002 4th iterates of z^2 + 7014004486596088 a003 sin(Pi*2/91)/cos(Pi*3/52) 7014004487459891 m001 (PlouffeB+Totient)/(ln(2)+Ei(1)) 7014004513678767 m001 Riemann1stZero*Si(Pi)/exp(log(2+sqrt(3))) 7014004521772323 s001 sum(exp(-Pi/2)^n*A134756[n],n=1..infinity) 7014004559595260 m001 (Stephens+Weierstrass)/(arctan(1/2)+MertensB2) 7014004580495384 a007 Real Root Of 198*x^4-59*x^3-480*x^2-943*x+870 7014004591032602 s002 sum(A000486[n]/(n^3*exp(n)+1),n=1..infinity) 7014004661909766 r008 a(0)=7,K{-n^6,-54-52*n+56*n^2-22*n^3} 7014004673832066 s002 sum(A257601[n]/(10^n-1),n=1..infinity) 7014004679627072 a007 Real Root Of 111*x^4-664*x^3+266*x^2-465*x-713 7014004699277896 r008 a(0)=7,K{-n^6,-62+51*n^3-95*n^2+16*n} 7014004699566393 a007 Real Root Of 977*x^4-85*x^3+72*x^2+937*x+356 7014004713168468 s001 sum(exp(-2*Pi)^n*A073964[n],n=1..infinity) 7014004719169705 m001 Cahen^DuboisRaymond*LandauRamanujan 7014004725341599 a007 Real Root Of 101*x^4+793*x^3+487*x^2-624*x+852 7014004725681696 r008 a(0)=7,K{-n^6,-51-41*n-31*n^2+52*n^3} 7014004729837659 a007 Real Root Of 388*x^4+734*x^3+670*x^2-396*x-448 7014004743013264 a007 Real Root Of -715*x^4+145*x^3-573*x^2+87*x+566 7014004776735695 r008 a(0)=7,K{-n^6,-60+4*n-17*n^2+n^3} 7014004796894939 m009 (3*Psi(1,3/4)-2/5)/(48*Catalan+6*Pi^2-1/6) 7014004820121284 r005 Re(z^2+c),c=-7/17+29/49*I,n=59 7014004864777142 m001 Si(Pi)*Psi(1,1/3)^Stephens 7014004864844218 l005 43/64/(exp(43/64)-1) 7014004899479285 r005 Re(z^2+c),c=-7/10+48/169*I,n=34 7014004907654750 a001 29*3^(41/51) 7014004923081797 r005 Im(z^2+c),c=-1/22+32/41*I,n=11 7014004930059449 m006 (1/2*exp(Pi)-5/6)/(5*Pi-2/5) 7014004952615304 a007 Real Root Of -350*x^4-68*x^3-986*x^2-86*x+486 7014004960124353 a001 843/5*34^(19/47) 7014004965081819 a001 1/76*(1/2*5^(1/2)+1/2)^21*7^(2/5) 7014005007369985 h001 (1/5*exp(2)+7/11)/(7/9*exp(1)+9/10) 7014005020097321 r005 Re(z^2+c),c=-71/90+1/58*I,n=51 7014005039286920 a007 Real Root Of -12*x^4+478*x^3+569*x^2+241*x-611 7014005039810285 a001 1/329*6765^(36/41) 7014005040360729 r009 Re(z^3+c),c=-1/13+13/25*I,n=3 7014005061453125 m001 (MertensB2-Thue)/FeigenbaumAlpha 7014005099637167 a007 Real Root Of -386*x^4+50*x^3-710*x^2-335*x+225 7014005131340244 m001 (Porter-TwinPrimes)/(Ei(1,1)-exp(-1/2*Pi)) 7014005134766929 r008 a(0)=7,K{-n^6,-43-17*n-15*n^2+3*n^3} 7014005139174824 a007 Real Root Of 333*x^4-819*x^3+953*x^2+30*x-811 7014005147730077 r008 a(0)=7,K{-n^6,-77+44*n^3-77*n^2+40*n} 7014005147767364 b008 1+(16*Cosh[1/2])/3 7014005165837092 m001 Champernowne^2/ln(Artin)*GAMMA(5/12)^2 7014005168673850 m001 1/OneNinth^2/exp(RenyiParking)^2*GAMMA(1/4) 7014005175858227 r008 a(0)=7,K{-n^6,-51+11*n-64*n^2+31*n^3} 7014005176722949 r009 Re(z^3+c),c=-19/66+43/62*I,n=40 7014005186654526 r005 Re(z^2+c),c=-39/32+61/62*I,n=2 7014005195560640 m001 FeigenbaumB/GAMMA(13/24)/Sarnak 7014005225521079 r009 Re(z^3+c),c=-1/82+37/62*I,n=18 7014005252803824 r008 a(0)=7,K{-n^6,-42+63*n^3-59*n^2-33*n} 7014005253176272 r008 a(0)=7,K{-n^6,-6+3*n^3+5*n^2-74*n} 7014005254615831 a001 21/2207*24476^(20/47) 7014005257237043 m001 exp(1/Pi)^MadelungNaCl/(exp(1/Pi)^Psi(1,1/3)) 7014005259743378 m001 BesselK(0,1)*OneNinth*exp(GAMMA(1/24)) 7014005273293614 a001 21/2207*15127^(21/47) 7014005287214252 m005 (1/2*gamma+5/9)/(3/7*Pi-1/7) 7014005292676869 r008 a(0)=7,K{-n^6,-59-18*n-8*n^2+18*n^3} 7014005293085504 m005 (23/30+1/6*5^(1/2))/(4/5*Pi-8/9) 7014005302750457 s002 sum(A201436[n]/((exp(n)+1)*n),n=1..infinity) 7014005307349818 r008 a(0)=7,K{-n^6,-41-9*n-32*n^2+10*n^3} 7014005328821422 v002 sum(1/(5^n*(28*n^2-37*n+40)),n=1..infinity) 7014005349841935 r005 Im(z^2+c),c=-11/18+58/123*I,n=10 7014005372888683 r005 Re(z^2+c),c=7/114+29/52*I,n=21 7014005384903024 a001 139583862445/2207*199^(5/11) 7014005429947856 r002 11th iterates of z^2 + 7014005448969127 h001 (1/12*exp(1)+2/9)/(1/8*exp(1)+3/10) 7014005467637723 a001 3571/514229*233^(14/33) 7014005488026388 m001 (Pi-Psi(2,1/3))/Chi(1)+BesselK(1,1) 7014005499114220 m001 1/3*(CopelandErdos+StronglyCareFree)*3^(2/3) 7014005499872780 m008 (2*Pi-2/3)/(5/6*Pi^6-2/5) 7014005506122696 m001 (GAMMA(5/6)-Conway)/(Grothendieck+Rabbit) 7014005508171198 r008 a(0)=7,K{-n^6,-4-37*n-51*n^2+20*n^3} 7014005513892607 r008 a(0)=7,K{-n^6,-51-4*n-21*n^2+4*n^3} 7014005527686681 l006 ln(2904/3115) 7014005533612483 m005 (7/6+1/4*5^(1/2))/(4/5*exp(1)+2/7) 7014005556177543 r008 a(0)=7,K{-n^6,-37+42*n^3-51*n^2-24*n} 7014005557986189 m001 1/Riemann1stZero^2*exp(Bloch)^2/GAMMA(2/3)^2 7014005581930418 a007 Real Root Of -682*x^4+329*x^3-611*x^2-341*x+340 7014005602240896 q001 1252/1785 7014005616732152 a007 Real Root Of 809*x^4-852*x^3+242*x^2-465*x-935 7014005617414270 m001 (Thue-ThueMorse)^BesselJ(1,1) 7014005630525425 r008 a(0)=7,K{-n^6,-53-44*n+23*n^2+8*n^3} 7014005638838407 a003 sin(Pi*13/86)/cos(Pi*20/73) 7014005639443876 a007 Real Root Of 16*x^4-725*x^3-84*x^2-344*x-454 7014005640051229 m001 (PrimesInBinary-Zeta(5))^RenyiParking 7014005648222695 r005 Re(z^2+c),c=37/118+2/57*I,n=24 7014005654907960 a001 1/1602508992*1597^(20/21) 7014005670510004 a007 Real Root Of -819*x^4+132*x^3-924*x^2-173*x+577 7014005692470489 r009 Im(z^3+c),c=-31/74+35/58*I,n=58 7014005710863051 b008 -17/2+2^(4/7) 7014005711077871 m001 (Zeta(3)+Pi^(1/2))/(GAMMA(17/24)+Otter) 7014005724713644 r008 a(0)=7,K{-n^6,-8-32*n-58*n^2+26*n^3} 7014005745153718 r008 a(0)=7,K{-n^6,-43+63*n^3-59*n^2-32*n} 7014005745753322 a007 Real Root Of -930*x^4+817*x^3+810*x^2-437*x-198 7014005766927970 a001 7778742049/322*521^(7/13) 7014005776772534 r008 a(0)=7,K{-n^6,-55-51*n+56*n^2-22*n^3} 7014005783677997 a007 Real Root Of 818*x^4-451*x^3-499*x^2-975*x+887 7014005785839858 m001 (ln(2)-exp(1/exp(1)))/(Artin+ArtinRank2) 7014005792402421 r005 Re(z^2+c),c=-9/122+45/61*I,n=55 7014005794019193 a007 Real Root Of 9*x^4+635*x^3+262*x^2-8*x+852 7014005806619655 m001 1/exp(GolombDickman)/Artin^2*FeigenbaumC 7014005833147017 r008 a(0)=7,K{-n^6,-8+44*n^3-61*n^2-42*n} 7014005843149745 m001 (Khinchin+ZetaQ(3))/(ln(gamma)-Zeta(1,-1)) 7014005848716651 s001 sum(exp(-2*Pi)^n*A074008[n],n=1..infinity) 7014005865756495 a007 Real Root Of -470*x^4-58*x^3+887*x^2+568*x-701 7014005883442909 l006 ln(9803/9872) 7014005904662946 a007 Real Root Of 992*x^4+247*x^3-125*x^2-239*x-261 7014005916718320 r002 33th iterates of z^2 + 7014005923610106 r008 a(0)=7,K{-n^6,-84+7*n^3-5*n^2+9*n} 7014005936355608 a007 Real Root Of -439*x^4-6*x^3-907*x^2+507*x+906 7014005937423945 a001 9349/1346269*233^(14/33) 7014005938304842 r005 Im(z^2+c),c=-7/9+3/116*I,n=52 7014005956718769 r005 Re(z^2+c),c=-10/9+18/83*I,n=20 7014005961592629 a003 cos(Pi*24/109)*sin(Pi*39/107) 7014006004793689 m001 (-gamma(3)+GAMMA(7/12))/(LambertW(1)+ln(5)) 7014006006321066 r008 a(0)=7,K{-n^6,-50-4*n-22*n^2+4*n^3} 7014006008086513 r002 5th iterates of z^2 + 7014006046843251 m001 cos(Pi/12)^2/Zeta(7)*ln(log(2+sqrt(3)))^2 7014006048325429 a001 2161/311187*233^(14/33) 7014006054389532 a007 Real Root Of 107*x^4-435*x^3+398*x^2-428*x-672 7014006066302658 m001 ln(GAMMA(7/12))/FeigenbaumAlpha^2/cos(Pi/12) 7014006088215836 r005 Re(z^2+c),c=-5/48+18/23*I,n=23 7014006105058747 a007 Real Root Of -614*x^4+712*x^3+138*x^2+929*x+978 7014006124220049 m006 (3/5*Pi^2+3/5)/(2/3*ln(Pi)+1/6) 7014006125684026 a007 Real Root Of 13*x^4+904*x^3-541*x^2+541*x+797 7014006127504383 r008 a(0)=7,K{-n^6,-56+25*n^3+49*n^2-89*n} 7014006137970262 m001 (GAMMA(2/3)-3^(1/3))/(Gompertz+TwinPrimes) 7014006140505398 r008 a(0)=7,K{-n^6,-30-5*n-55*n^2+18*n^3} 7014006155367745 a005 (1/cos(41/239*Pi))^73 7014006163956404 m005 (1/3*3^(1/2)-1/2)/(7/10*exp(1)-4/5) 7014006168000481 m001 BesselK(1,1)-exp(Pi)^MasserGramain 7014006173910049 r005 Im(z^2+c),c=-29/74+4/51*I,n=3 7014006180368496 m001 FeigenbaumD/ln(FibonacciFactorial)^2/Catalan 7014006189756316 r008 a(0)=7,K{-n^6,-42+44*n^3-n^2-72*n} 7014006193899085 r008 a(0)=7,K{-n^6,-80+52*n^3-44*n^2+n} 7014006215031184 a007 Real Root Of 824*x^4-16*x^3+497*x^2-102*x-521 7014006223854708 r005 Re(z^2+c),c=43/90+3/44*I,n=2 7014006227584867 a007 Real Root Of -466*x^4-257*x^3+378*x^2+645*x-47 7014006227767798 a001 2889/416020*233^(14/33) 7014006236639932 r008 a(0)=7,K{-n^6,-46+66*n^3-69*n^2-22*n} 7014006239691072 m001 (LambertW(1)-Zeta(5))/(-ln(Pi)+Weierstrass) 7014006272652447 r008 a(0)=7,K{-n^6,-58+6*n+17*n^2-n^3} 7014006300646085 r005 Im(z^2+c),c=-9/10+9/163*I,n=25 7014006338830781 m001 ln(PrimesInBinary)^2/DuboisRaymond^2/cos(1)^2 7014006342810499 r008 a(0)=7,K{-n^6,2+21*n^3-52*n^2-43*n} 7014006343650480 r005 Im(z^2+c),c=-11/21+9/13*I,n=4 7014006344754062 r009 Im(z^3+c),c=-15/118+13/17*I,n=22 7014006355026499 r008 a(0)=7,K{-n^6,-38+8*n^3-3*n^2-39*n} 7014006362874837 m001 1/TwinPrimes^2*FeigenbaumD/ln(Catalan) 7014006372494371 a007 Real Root Of -260*x^4+401*x^3+585*x^2+72*x-36 7014006376028668 r008 a(0)=7,K{-n^6,-59-27*n+27*n^2-13*n^3} 7014006393652016 a001 21/9349*3571^(33/47) 7014006393831160 r008 a(0)=7,K{-n^6,-29+52*n^3-77*n^2-16*n} 7014006400508090 a001 76*(1/2*5^(1/2)+1/2)^23*4^(5/19) 7014006414316945 a003 sin(Pi*4/59)-sin(Pi*41/112) 7014006424060972 a007 Real Root Of -678*x^4+579*x^3-346*x^2+496*x+882 7014006445313293 r008 a(0)=7,K{-n^6,-44-16*n-15*n^2+3*n^3} 7014006449055706 a001 1364/28657*28657^(18/37) 7014006450522364 a007 Real Root Of -957*x^4-38*x^3+961*x^2+977*x+431 7014006511391642 r002 31th iterates of z^2 + 7014006548317504 r005 Re(z^2+c),c=9/28+1/28*I,n=8 7014006552293141 m001 MertensB1/ln(Champernowne)^2*GAMMA(19/24) 7014006570663974 s002 sum(A180367[n]/(exp(2*pi*n)+1),n=1..infinity) 7014006583360158 a007 Real Root Of -712*x^4+471*x^3+962*x^2+236*x-629 7014006605202757 r002 22th iterates of z^2 + 7014006605945953 a001 6/7*317811^(9/17) 7014006609533296 r008 a(0)=7,K{-n^6,-57+25*n^3+49*n^2-88*n} 7014006614305762 a001 3/2161*9349^(32/47) 7014006614672954 m005 (1/2*3^(1/2)+8/9)/(7/8*5^(1/2)+6/11) 7014006614807312 a001 182717648081/2889*199^(5/11) 7014006616349627 b008 68+Log[17/2] 7014006621307031 r008 a(0)=7,K{-n^6,-54-3*n^3-n^2-14*n} 7014006635228270 a001 1364/13*121393^(14/39) 7014006652588635 a007 Real Root Of -491*x^4+529*x^3+400*x^2+722*x+611 7014006674807581 r008 a(0)=7,K{-n^6,-81+52*n^3-44*n^2+2*n} 7014006676117814 m005 (1/2*5^(1/2)+3/4)/(7/12*gamma-3) 7014006689652599 m001 (-GAMMA(13/24)+1/2)/(-exp(1/Pi)+3) 7014006712369621 r008 a(0)=7,K{-n^6,-43+63*n^3-58*n^2-33*n} 7014006714293454 m005 (1/2*Catalan-9/10)/(-5/24+3/8*5^(1/2)) 7014006718451953 a007 Real Root Of -620*x^4+373*x^3-159*x^2-134*x+263 7014006724062972 a007 Real Root Of -192*x^4+409*x^3+742*x^2+287*x-661 7014006726580489 r008 a(0)=7,K{-n^6,-9+54*n^3-73*n^2-42*n} 7014006727995200 a007 Real Root Of 617*x^4-574*x^3+189*x^2+270*x-251 7014006762255748 a007 Real Root Of 48*x^4-518*x^3+353*x^2-412*x-653 7014006794247966 a001 956722026041/15127*199^(5/11) 7014006820428005 a001 2504730781961/39603*199^(5/11) 7014006824247621 a001 3278735159921/51841*199^(5/11) 7014006825149310 a001 10610209857723/167761*199^(5/11) 7014006826608274 a001 4052739537881/64079*199^(5/11) 7014006832916865 m001 (ln(2+3^(1/2))+gamma(3))/(CareFree-Sierpinski) 7014006836608159 a001 387002188980/6119*199^(5/11) 7014006868693399 r008 a(0)=7,K{-n^6,-64-46*n+29*n^2+11*n^3} 7014006869455248 a001 7/13201*5778^(39/47) 7014006877143911 a007 Real Root Of 112*x^4+729*x^3-441*x^2-269*x+289 7014006878373201 r008 a(0)=7,K{-n^6,-3+22*n^3-42*n^2-49*n} 7014006887876118 b008 (13*ArcSinh[E^2])/5 7014006905148393 a001 591286729879/9349*199^(5/11) 7014006910463885 r008 a(0)=7,K{-n^6,-28+18*n^3-38*n^2-24*n} 7014006928416066 a007 Real Root Of 640*x^4-979*x^3-730*x^2-156*x-243 7014006934798288 a007 Real Root Of -782*x^4+321*x^3+968*x^2+200*x-538 7014006941343315 p004 log(24359/22709) 7014006951746830 m001 (GAMMA(23/24)+ArtinRank2)/(FeigenbaumC+Kac) 7014006958729350 h002 exp(14^(12/5)-7^(10/9)) 7014006958729350 h007 exp(14^(12/5)-7^(10/9)) 7014006983587769 m005 (1/3*3^(1/2)-1/3)/(2/5*Catalan-5/7) 7014006993345870 r008 a(0)=7,K{-n^6,-66+6*n^3-34*n^2+22*n} 7014006999253366 r009 Re(z^3+c),c=-17/110+38/59*I,n=8 7014007014007014 k006 concat of cont frac of 7014007023326872 p004 log(29077/14419) 7014007033995374 r005 Im(z^2+c),c=-15/26+1/77*I,n=34 7014007069726031 r009 Re(z^3+c),c=-1/6+28/41*I,n=17 7014007072179483 r008 a(0)=7,K{-n^6,-7+3*n^3+5*n^2-73*n} 7014007081443978 a008 Real Root of (5+15*x-16*x^3) 7014007107389797 m005 (35/44+1/4*5^(1/2))/(4/5*3^(1/2)+6/11) 7014007115055669 a007 Real Root Of 987*x^4-717*x^3-692*x^2-676*x-620 7014007130813434 a007 Real Root Of -904*x^4+464*x^3+258*x^2+874*x+865 7014007151124569 a001 7*(1/2*5^(1/2)+1/2)^19*4^(1/20) 7014007176714937 h001 (6/11*exp(2)+3/11)/(5/7*exp(2)+6/7) 7014007182509757 r008 a(0)=7,K{-n^6,-9-31*n-58*n^2+26*n^3} 7014007198501337 a001 843/2584*377^(4/31) 7014007258464242 a007 Real Root Of 78*x^4+473*x^3-528*x^2-2*x+395 7014007268566435 r008 a(0)=7,K{-n^6,-31-11*n-45*n^2+15*n^3} 7014007284048988 m006 (1/2/Pi+2/5)/(1/3*Pi-1/4) 7014007287819486 r002 57th iterates of z^2 + 7014007297967329 r005 Re(z^2+c),c=-11/14+6/193*I,n=43 7014007300210390 a001 2/12586269025*34^(8/19) 7014007318882541 a007 Real Root Of -674*x^4+180*x^3-267*x^2+434*x+661 7014007341816607 m001 log(1+sqrt(2))*KhintchineLevy^2*exp(sqrt(3)) 7014007374930181 a001 225851433717/3571*199^(5/11) 7014007394705836 p001 sum(1/(336*n+143)/(100^n),n=0..infinity) 7014007396849235 r005 Re(z^2+c),c=-41/122+7/11*I,n=17 7014007412390623 m005 (1/2*Pi+9/10)/(10/11*Pi+2/3) 7014007412439040 r008 a(0)=7,K{-n^6,-48+11*n^3+37*n^2-70*n} 7014007428384661 r008 a(0)=7,K{-n^6,-5-36*n-51*n^2+20*n^3} 7014007455339308 a001 39603/5*317811^(33/46) 7014007457684096 a001 2207/317811*233^(14/33) 7014007485613607 r005 Re(z^2+c),c=-69/106+20/59*I,n=6 7014007490762080 r005 Im(z^2+c),c=-113/126+21/50*I,n=4 7014007495327074 r008 a(0)=7,K{-n^6,-14-31*n-50*n^2+23*n^3} 7014007516228220 q001 2053/2927 7014007530126062 r008 a(0)=7,K{-n^6,-20-39*n-23*n^2+10*n^3} 7014007534385049 r008 a(0)=7,K{-n^6,-60-26*n+27*n^2-13*n^3} 7014007534735905 a001 521*233^(3/55) 7014007538863584 a007 Real Root Of 318*x^4-915*x^3+824*x^2+482*x-460 7014007557075561 r008 a(0)=7,K{-n^6,-57+25*n^3+50*n^2-89*n} 7014007558506934 a007 Real Root Of 960*x^4-743*x^3-777*x^2-78*x+461 7014007571617578 r008 a(0)=7,K{-n^6,-61+5*n^3-29*n^2+13*n} 7014007597155739 m004 (-399*Sqrt[5]*Pi)/4-Sin[Sqrt[5]*Pi] 7014007603275615 m001 (-Paris+PlouffeB)/(Psi(2,1/3)+exp(1/Pi)) 7014007617710109 r008 a(0)=7,K{-n^6,-84+37*n^3-96*n^2+89*n} 7014007619886088 r008 a(0)=7,K{-n^6,-81+52*n^3-43*n^2+n} 7014007635185815 m001 (Zeta(1,2)+Cahen)/(FeigenbaumDelta-PlouffeB) 7014007638757922 m001 (3^(1/3)+FransenRobinson)/(Grothendieck-Salem) 7014007681375335 r008 a(0)=7,K{-n^6,-41-32*n^3+94*n^2-93*n} 7014007684582001 m001 (Rabbit-Riemann2ndZero)/(cos(1/5*Pi)-ln(3)) 7014007690691150 b008 5*E+18*Pi 7014007713946360 r008 a(0)=7,K{-n^6,-85-24*n^3+48*n^2-11*n} 7014007724165009 r008 a(0)=7,K{-n^6,-30+28*n^3-36*n^2-36*n} 7014007729086162 r005 Re(z^2+c),c=-1/21+17/33*I,n=4 7014007754601166 a001 12586269025/322*521^(6/13) 7014007771323686 b008 (27*ArcSinh[3])/7 7014007801475491 r008 a(0)=7,K{-n^6,-56-28*n+23*n^2-11*n^3} 7014007827947675 r009 Re(z^3+c),c=-3/86+23/31*I,n=44 7014007833196040 a001 3/2161*2207^(38/47) 7014007839395568 m001 (FeigenbaumMu+MertensB3)/(Rabbit-Trott) 7014007852899503 b008 2^Sqrt[7*Pi]*E 7014007855452005 m002 5+Pi^(-4)+E^Pi*Csch[Pi] 7014007865797843 r008 a(0)=7,K{-n^6,-67+18*n^3-4*n^2-16*n} 7014007888877726 p001 sum((-1)^n/(343*n+277)/n/(2^n),n=1..infinity) 7014007910013029 m001 1/cosh(1)^3*ln(BesselK(1,1))^2 7014007926192075 a007 Real Root Of -691*x^4+224*x^3+177*x^2-541*x-222 7014007932440662 s002 sum(A240643[n]/(exp(2*pi*n)-1),n=1..infinity) 7014007940644862 r005 Re(z^2+c),c=11/98+27/56*I,n=25 7014007943534844 r002 32th iterates of z^2 + 7014007964446029 m001 1/FeigenbaumC^2*exp(MinimumGamma)/GAMMA(2/3)^2 7014008006575695 m001 (-Landau+Otter)/(2^(1/3)-Catalan) 7014008010426874 a007 Real Root Of 531*x^4-23*x^3+474*x^2-183*x-498 7014008024816126 m001 (QuadraticClass-exp(1))/(Riemann3rdZero+Salem) 7014008038026407 m005 (1/2*exp(1)+1/9)/(10/11*exp(1)-3/8) 7014008039695209 m001 (Pi-Zeta(1,-1))/(Backhouse-Tetranacci) 7014008051977472 r002 58th iterates of z^2 + 7014008093746737 r008 a(0)=7,K{-n^6,-55-52*n+57*n^2-22*n^3} 7014008098646442 r002 7th iterates of z^2 + 7014008104681976 r005 Im(z^2+c),c=-71/86+1/19*I,n=5 7014008108929764 r008 a(0)=7,K{-n^6,-34-62*n-31*n^2+56*n^3} 7014008150634514 r008 a(0)=7,K{-n^6,-50+6*n^3-27*n^2-n} 7014008158740883 m001 Pi*(exp(Pi)/Zeta(5)-gamma(2)) 7014008192948444 m007 (-gamma+5/6)/(-3/5*gamma-9/5*ln(2)+3/10*Pi-3) 7014008215560827 a007 Real Root Of 429*x^4-336*x^3+14*x^2-672*x-698 7014008225283418 m001 (Niven-ZetaQ(4))/(Zeta(3)+FibonacciFactorial) 7014008239945459 m001 (Porter-Totient)/(exp(1/Pi)+BesselJ(1,1)) 7014008240303952 m001 RenyiParking^Si(Pi)*Zeta(3) 7014008240303952 m001 Zeta(3)*RenyiParking^Si(Pi) 7014008296739663 a001 7/89*63245986^(1/4) 7014008319619558 a007 Real Root Of 361*x^4-928*x^3+757*x^2+576*x-376 7014008324472200 m005 (1/3*exp(1)+3/4)/(2/7*5^(1/2)-3) 7014008350941051 a007 Real Root Of 812*x^4-852*x^3+524*x^2-279*x-944 7014008351122050 r005 Re(z^2+c),c=-5/106+10/63*I,n=2 7014008355861391 q001 2854/4069 7014008375894941 a007 Real Root Of -900*x^4+386*x^3-287*x^2+205*x+636 7014008384838113 r005 Re(z^2+c),c=-2/3+91/255*I,n=24 7014008416778196 r008 a(0)=7,K{-n^6,33+38*n^3-43*n^2-80*n} 7014008439591009 r005 Im(z^2+c),c=-75/98+18/37*I,n=3 7014008440236117 m001 (Pi+ln(3))/(Khinchin+ReciprocalFibonacci) 7014008449838610 a007 Real Root Of -157*x^4+672*x^3-275*x^2+235*x+570 7014008472235998 r008 a(0)=7,K{-n^6,-51-3*n-22*n^2+4*n^3} 7014008475205479 a007 Real Root Of -328*x^4-794*x^3-461*x^2+714*x+533 7014008499508652 p004 log(32251/29) 7014008507323196 r008 a(0)=7,K{-n^6,-4+22*n^3-42*n^2-48*n} 7014008530305631 m001 (1+cos(1/5*Pi))/(-HardyLittlewoodC5+ThueMorse) 7014008532401465 r002 31th iterates of z^2 + 7014008557885135 a007 Real Root Of -938*x^4+395*x^3-156*x^2+94*x+506 7014008578982512 r008 a(0)=7,K{-n^6,-43+64*n^3-59*n^2-33*n} 7014008579188363 a007 Real Root Of 54*x^4-564*x^3+462*x^2-386*x+225 7014008580643736 m001 sin(1)^2/exp(log(1+sqrt(2)))^2/sqrt(3) 7014008593457295 m001 (Si(Pi)+ln(gamma))/(-BesselJ(1,1)+Kac) 7014008599057298 a007 Real Root Of -634*x^4+79*x^3-110*x^2+984*x+925 7014008613706383 b008 7+Zeta[1+Pi,Pi] 7014008628894945 m001 (-gamma+FeigenbaumKappa)/(Psi(1,1/3)+1) 7014008634771275 r008 a(0)=7,K{-n^6,-47+18*n^3-45*n^2+2*n} 7014008647765755 a007 Real Root Of -573*x^4+299*x^3-97*x^2+588*x+702 7014008650405736 a001 3571/233*4181^(36/49) 7014008653726137 a005 (1/cos(52/213*Pi))^55 7014008660733426 a003 cos(Pi*22/87)/sin(Pi*17/35) 7014008661855760 m008 (2/3*Pi^5-1)/(2/3*Pi+4/5) 7014008665956604 r005 Re(z^2+c),c=-19/44+31/55*I,n=40 7014008675947742 a007 Real Root Of 197*x^4-387*x^3-776*x^2-126*x+556 7014008684684391 r008 a(0)=7,K{-n^6,-31+41*n^3-60*n^2-31*n} 7014008721104654 a007 Real Root Of 25*x^4+105*x^3-503*x^2-33*x+239 7014008730713327 r005 Re(z^2+c),c=29/98+7/18*I,n=45 7014008752399637 r005 Im(z^2+c),c=-35/74+44/57*I,n=3 7014008761321637 l006 ln(4947/9976) 7014008764918482 r005 Im(z^2+c),c=-11/122+23/30*I,n=30 7014008765635312 a007 Real Root Of -930*x^4+138*x^3-178*x^2-267*x+173 7014008773725229 r009 Im(z^3+c),c=-31/86+19/29*I,n=62 7014008778902117 m001 (LambertW(1)+Zeta(1,-1))/(2^(1/2)-sin(1)) 7014008779741415 a007 Real Root Of -747*x^4+194*x^3+19*x^2+507*x+594 7014008796292284 a001 28657/76*76^(27/40) 7014008798242848 m002 -5-Pi^2+Pi^4-ProductLog[Pi]*Sinh[Pi] 7014008818456566 r002 15th iterates of z^2 + 7014008819084666 m001 Magata^RenyiParking/(Magata^Zeta(5)) 7014008827894417 r005 Re(z^2+c),c=-17/114+28/37*I,n=20 7014008836985445 m001 (ln(Pi)-gamma(3))/(GaussAGM+Kolakoski) 7014008844816037 a007 Real Root Of -155*x^4+502*x^3+803*x^2+247*x-704 7014008850160893 r002 15th iterates of z^2 + 7014008866183182 m001 (3^(1/2)-exp(Pi))/(BesselI(1,2)+MinimumGamma) 7014008884622892 r008 a(0)=7,K{-n^6,-86-24*n^3+48*n^2-10*n} 7014008897699590 m001 Conway*ln(GaussAGM(1,1/sqrt(2)))/GAMMA(7/24) 7014008904736849 a007 Real Root Of 837*x^4-368*x^3+417*x^2+78*x-480 7014008915011449 b008 -10/3+Coth[2/5] 7014008925163554 m001 (ReciprocalFibonacci-Totient)/(Pi-MertensB1) 7014008930243564 r008 a(0)=7,K{-n^6,-21-38*n-23*n^2+10*n^3} 7014008938832968 a007 Real Root Of 784*x^4+974*x^3+732*x^2-803*x-777 7014008955254194 m001 (HardyLittlewoodC5+Robbin)/(ln(2)+GaussAGM) 7014008971645969 l006 ln(4766/9611) 7014008986695086 r008 a(0)=7,K{-n^6,-14+26*n^3-14*n^2-63*n} 7014008999626925 m001 1/gamma/ln(Ei(1))*sin(Pi/12) 7014009008287311 a001 3/199*18^(25/47) 7014009014077431 r009 Im(z^3+c),c=-2/19+35/46*I,n=39 7014009031525045 m001 GaussKuzminWirsing*(Ei(1)+PrimesInBinary) 7014009032943275 r005 Re(z^2+c),c=-7/10+71/251*I,n=12 7014009035535171 m002 -5+6*Cosh[Pi]+6/ProductLog[Pi] 7014009047682164 a007 Real Root Of -720*x^4+28*x^3-481*x^2+531*x+793 7014009058902592 m001 (Pi^(1/2)+Landau)/(ln(gamma)+Ei(1,1)) 7014009060104497 p003 LerchPhi(1/2,3,515/197) 7014009064488097 r009 Re(z^3+c),c=-67/118+19/53*I,n=25 7014009071932723 a007 Real Root Of 964*x^4-724*x^3-897*x^2-284*x+657 7014009109423643 r002 35th iterates of z^2 + 7014009112692132 a007 Real Root Of -80*x^4+855*x^3+50*x^2-138*x+193 7014009120714761 r005 Re(z^2+c),c=-9/122+45/61*I,n=58 7014009132329700 r005 Im(z^2+c),c=-1/19+17/25*I,n=32 7014009160553548 r002 2th iterates of z^2 + 7014009187802784 a007 Real Root Of -645*x^4-303*x^3+386*x^2+317*x+84 7014009196155542 m001 (Kac-Otter)/(GAMMA(13/24)-ErdosBorwein) 7014009198576055 l006 ln(4585/9246) 7014009237283510 a007 Real Root Of 484*x^4-498*x^3-531*x^2-405*x+600 7014009282866947 m001 (exp(Pi)+Chi(1))/(gamma(1)+PrimesInBinary) 7014009298480597 a007 Real Root Of -643*x^4+770*x^3+160*x^2+779*x+889 7014009302731757 r008 a(0)=7,K{-n^6,-39-62*n+58*n^2-7*n^3} 7014009310572815 m001 (Zeta(1,-1)-exp(1))/(Conway+FransenRobinson) 7014009317040026 m001 1/Zeta(1,2)/ln(Catalan)*gamma 7014009325053448 a003 cos(Pi*20/113)*sin(Pi*30/97) 7014009366823362 a007 Real Root Of -755*x^4+945*x^3+84*x^2-993*x-229 7014009387456569 r008 a(0)=7,K{-n^6,-57+26*n^3+49*n^2-89*n} 7014009398913199 m001 ZetaP(4)^cos(1/12*Pi)*Chi(1) 7014009399530983 m001 exp(Porter)/Kolakoski*GAMMA(17/24) 7014009416393055 m001 HardyLittlewoodC3^(cos(1/5*Pi)*cos(1/12*Pi)) 7014009417359168 a001 1/305*4181^(18/49) 7014009423035503 a007 Real Root Of 723*x^4-593*x^3+963*x^2+692*x-368 7014009423048937 a003 cos(Pi*1/25)*cos(Pi*53/111) 7014009443143725 r005 Re(z^2+c),c=17/64+18/47*I,n=52 7014009444159335 l006 ln(4404/8881) 7014009444882455 r008 a(0)=7,K{-n^6,-81+53*n^3-44*n^2+n} 7014009447912362 l006 ln(8189/8784) 7014009474107840 r008 a(0)=7,K{-n^6,-18-21*n-58*n^2+25*n^3} 7014009478740318 r008 a(0)=7,K{-n^6,-35-48*n-51*n^2+63*n^3} 7014009483265908 r008 a(0)=7,K{-n^6,-13+62*n^3-37*n^2-83*n} 7014009492209480 r008 a(0)=7,K{-n^6,-29+18*n^3-38*n^2-23*n} 7014009494560125 m001 HardyLittlewoodC4/(BesselJ(1,1)-ZetaQ(4)) 7014009498722837 a007 Real Root Of 543*x^4-198*x^3+834*x^2+529*x-239 7014009505302990 r008 a(0)=7,K{-n^6,-12-59*n-8*n^2+7*n^3} 7014009507034698 m005 (1/2*Catalan-6/7)/(11/12*2^(1/2)-8/11) 7014009520301098 r005 Im(z^2+c),c=-131/110+15/46*I,n=7 7014009525909223 a007 Real Root Of 330*x^4+225*x^3-895*x^2-572*x+684 7014009530264012 a007 Real Root Of -973*x^4+679*x^3+531*x^2+886*x+830 7014009543643723 m001 sinh(1)^2*exp(GAMMA(5/12))/sqrt(1+sqrt(3)) 7014009546469755 a007 Real Root Of 284*x^4-38*x^3-646*x^2-225*x+420 7014009568911687 r009 Re(z^3+c),c=-9/86+18/37*I,n=7 7014009589471109 m005 (1/2*Catalan+4)/(5/11*exp(1)-3/5) 7014009622886778 m001 Sierpinski^2/FeigenbaumAlpha*exp(cos(Pi/12)) 7014009635243607 m001 (Conway-Porter)/(Zeta(1,2)+CareFree) 7014009665719077 a007 Real Root Of -743*x^4+59*x^3-928*x^2+450*x-27 7014009669743352 a001 17/38*5600748293801^(9/14) 7014009670448214 a001 3571/75025*28657^(18/37) 7014009687805953 a007 Real Root Of -48*x^4+973*x^3-477*x^2+335*x+817 7014009710794265 l006 ln(4223/8516) 7014009735561343 r008 a(0)=7,K{-n^6,-20+8*n^3-15*n^2-45*n} 7014009736505975 a007 Real Root Of 487*x^4-200*x^3+800*x^2-35*x-605 7014009742274926 a001 10182505537/161*521^(5/13) 7014009794166273 a007 Real Root Of -834*x^4-340*x^3-494*x^2+243*x+498 7014009805214273 m001 (exp(1/exp(1))*PolyaRandomWalk3D)^(1/2) 7014009805264932 m001 gamma/ln(Ei(1))*log(1+sqrt(2))^2 7014009810106761 a001 48/281*(1/2+1/2*5^(1/2))^46 7014009810106761 a001 48/281*10749957122^(23/24) 7014009810745341 a001 377/322*2537720636^(14/15) 7014009810745341 a001 377/322*17393796001^(6/7) 7014009810745341 a001 377/322*45537549124^(14/17) 7014009810745341 a001 377/322*817138163596^(14/19) 7014009810745341 a001 377/322*14662949395604^(2/3) 7014009810745341 a001 377/322*(1/2+1/2*5^(1/2))^42 7014009810745341 a001 377/322*505019158607^(3/4) 7014009810745341 a001 377/322*192900153618^(7/9) 7014009810745341 a001 377/322*10749957122^(7/8) 7014009810745341 a001 377/322*4106118243^(21/23) 7014009810745341 a001 377/322*1568397607^(21/22) 7014009817230633 m001 (Shi(1)+ln(2^(1/2)+1))/(-Zeta(1/2)+Conway) 7014009818877759 r002 6th iterates of z^2 + 7014009841369934 m005 (1/2*2^(1/2)-5/8)/(4/9*Zeta(3)+7/11) 7014009845045150 a007 Real Root Of -571*x^4+795*x^3+176*x^2+597*x-43 7014009853643325 m001 (Bloch+Sierpinski)/(exp(1)+GAMMA(13/24)) 7014009857543212 a007 Real Root Of 718*x^4-967*x^3+775*x^2+731*x-376 7014009873474091 m001 ln(GolombDickman)^2*Bloch^2/CareFree 7014009885599450 h001 (3/10*exp(1)+8/9)/(6/7*exp(1)+1/10) 7014009890897260 r008 a(0)=7,K{-n^6,-28+46*n^3+4*n^2-93*n} 7014009891523815 h001 (7/11*exp(2)+2/7)/(6/7*exp(2)+7/9) 7014009913256724 r009 Im(z^3+c),c=-31/78+26/37*I,n=60 7014009920092698 r008 a(0)=7,K{-n^6,-36-47*n-51*n^2+63*n^3} 7014009921115000 m005 (2*exp(1)+3/5)/(2/3*Catalan+1/4) 7014009924548503 r008 a(0)=7,K{-n^6,-14+62*n^3-37*n^2-82*n} 7014009926268031 p004 log(32969/16349) 7014009955758849 r008 a(0)=7,K{-n^6,-60-27*n+28*n^2-13*n^3} 7014009973317675 r008 a(0)=7,K{-n^6,-35-37*n} 7014009996911609 r005 Im(z^2+c),c=-3/38+33/50*I,n=26 7014010001308911 l006 ln(4042/8151) 7014010014860819 r005 Re(z^2+c),c=-9/82+39/50*I,n=26 7014010018224259 a007 Real Root Of -107*x^4-882*x^3-794*x^2+806*x-661 7014010021014761 m001 (HeathBrownMoroz+Totient)/(BesselI(1,1)-Artin) 7014010025447843 m005 (1/2*exp(1)+4/11)/(3/4*Pi+1/10) 7014010043513366 r008 a(0)=7,K{-n^6,-62+31*n^3-30*n^2-9*n} 7014010050420394 m001 (CareFree+Paris)/(Psi(1,1/3)+GAMMA(2/3)) 7014010077913209 r009 Re(z^3+c),c=-16/27+13/55*I,n=50 7014010099249225 r009 Re(z^3+c),c=-41/66+11/16*I,n=3 7014010113757010 a007 Real Root Of 682*x^4-283*x^3+668*x^2+605*x-167 7014010140443047 a001 9349/196418*28657^(18/37) 7014010144951856 a001 123/34*139583862445^(12/13) 7014010158285681 a003 cos(Pi*18/89)-sin(Pi*39/115) 7014010176058955 p003 LerchPhi(1/8,3,101/193) 7014010184498490 m009 (6*Psi(1,2/3)+5/6)/(3/4*Psi(1,3/4)+5/6) 7014010188303273 m005 (1/2*2^(1/2)+1/3)/(8/11*5^(1/2)-1/7) 7014010209014369 a001 24476/514229*28657^(18/37) 7014010209557702 a007 Real Root Of -84*x^4+91*x^3-534*x^2+400*x+595 7014010220104265 r002 7th iterates of z^2 + 7014010223571659 r002 19th iterates of z^2 + 7014010225201863 a001 39603/832040*28657^(18/37) 7014010226296144 h001 (-exp(1/2)+1)/(-5*exp(-3)-9) 7014010228683358 m001 (-CareFree+Lehmer)/(Ei(1)-ln(2)/ln(10)) 7014010230307689 a007 Real Root Of 717*x^4-208*x^3+399*x^2+286*x-241 7014010234700746 r008 a(0)=7,K{-n^6,-7-49*n-51*n^2+34*n^3} 7014010239538531 p001 sum((-1)^n/(359*n+141)/(25^n),n=0..infinity) 7014010251393777 a001 15127/317811*28657^(18/37) 7014010254232122 r005 Im(z^2+c),c=-8/9+5/94*I,n=11 7014010256221835 r005 Re(z^2+c),c=-7/10+37/130*I,n=56 7014010262791985 m001 (arctan(1/2)+Bloch)/(Mills+Trott2nd) 7014010275031362 m001 (ln(2)-Zeta(1/2))/(OneNinth-PrimesInBinary) 7014010287971451 a007 Real Root Of 316*x^4-758*x^3+791*x^2+130*x-636 7014010319061646 l006 ln(3861/7786) 7014010327539671 r008 a(0)=7,K{-n^6,-29+46*n^3+4*n^2-92*n} 7014010334118320 r008 a(0)=7,K{-n^6,-45-56*n-22*n^2+52*n^3} 7014010336007522 r008 a(0)=7,K{-n^6,-18+27*n^3-19*n^2-55*n} 7014010347681560 r008 a(0)=7,K{-n^6,-43-45*n-42*n^2+59*n^3} 7014010380323347 r008 a(0)=7,K{-n^6,-21+76*n^3-82*n^2-44*n} 7014010391701763 a007 Real Root Of 698*x^4+43*x^3+544*x^2+875*x+192 7014010394076010 m001 cos(1)^2/Trott^2*ln(sin(Pi/5))^2 7014010400093259 b008 -1/4+AiryAi[E^(-2)] 7014010400630009 a007 Real Root Of 111*x^4-642*x^3-221*x^2-507*x+659 7014010410958279 m001 (-MertensB3+Otter)/(exp(Pi)+HeathBrownMoroz) 7014010430915829 a001 5778/121393*28657^(18/37) 7014010440552091 r008 a(0)=7,K{-n^6,-46-31*n-25*n^2+32*n^3} 7014010449324353 s002 sum(A100124[n]/((exp(n)-1)/n),n=1..infinity) 7014010457328972 a007 Real Root Of -958*x^4+348*x^3+359*x^2-307*x-40 7014010461526251 r008 a(0)=7,K{-n^6,-9-32*n-57*n^2+26*n^3} 7014010469967334 a001 6/105937*196418^(1/57) 7014010478320191 r005 Re(z^2+c),c=37/118+11/30*I,n=9 7014010481860799 r008 a(0)=7,K{-n^6,-44-17*n-15*n^2+4*n^3} 7014010486522538 b008 7+E^(-6+Sqrt[3]) 7014010501754490 r008 a(0)=7,K{-n^6,-50-10*n-33*n^2+27*n^3} 7014010507880910 q001 801/1142 7014010517307474 m002 -6-(17*ProductLog[Pi])/18 7014010556000940 a007 Real Root Of 367*x^4-722*x^3-236*x^2-132*x+369 7014010573557133 a007 Real Root Of -277*x^4-320*x^3+834*x^2+974*x-916 7014010574731353 m002 -Pi+Pi^2*Coth[Pi]+Tanh[Pi]/4 7014010577068536 a003 sin(Pi*5/102)-sin(Pi*31/95) 7014010594864150 a001 21566892818/341*199^(5/11) 7014010605435954 r008 a(0)=7,K{-n^6,-1+17*n^3-38*n^2-50*n} 7014010648273623 r009 Re(z^3+c),c=-5/44+41/56*I,n=16 7014010668071569 l006 ln(3680/7421) 7014010673123648 m005 (1/3*2^(1/2)-2/11)/(7/10*Zeta(3)-3/7) 7014010692704065 a007 Real Root Of -39*x^4+788*x^3+799*x^2+464*x-981 7014010694842285 a007 Real Root Of 538*x^4+633*x^3+289*x^2-740*x-573 7014010716690136 r009 Im(z^3+c),c=-19/70+31/46*I,n=6 7014010726330208 m001 (ArtinRank2-MertensB2)/(Totient-Thue) 7014010760915646 m001 (gamma(3)+Landau)/(Sarnak+ZetaQ(2)) 7014010778927648 r008 a(0)=7,K{-n^6,-44-44*n-42*n^2+59*n^3} 7014010787942156 r008 a(0)=7,K{-n^6,-36-48*n-50*n^2+63*n^3} 7014010792246459 r008 a(0)=7,K{-n^6,-14+62*n^3-36*n^2-83*n} 7014010801029611 a007 Real Root Of -115*x^4-738*x^3+496*x^2+224*x+845 7014010805433065 m001 1/exp(GAMMA(5/12))/GAMMA(11/24)/Zeta(1,2)^2 7014010811073239 r008 a(0)=7,K{-n^6,-22+76*n^3-82*n^2-43*n} 7014010813113601 r005 Im(z^2+c),c=-75/62+1/12*I,n=16 7014010817839885 r005 Re(z^2+c),c=5/114+34/55*I,n=24 7014010823437793 r009 Re(z^3+c),c=-9/74+25/39*I,n=20 7014010826680546 a007 Real Root Of 126*x^4+858*x^3-80*x^2+784*x+544 7014010827234672 r008 a(0)=7,K{-n^6,-22-53*n-2*n^2+5*n^3} 7014010864661624 m001 (cos(1/12*Pi)-exp(1/Pi))/(gamma(2)+Lehmer) 7014010881904916 r005 Re(z^2+c),c=-67/86+5/19*I,n=7 7014010892855050 a007 Real Root Of -791*x^4-7*x^3-939*x^2+298*x+860 7014010940485527 a007 Real Root Of -6*x^4-416*x^3+329*x^2-750*x-830 7014010943907861 m001 BesselI(1,2)*(GlaisherKinkelin-sin(1)) 7014010950331881 h001 (7/9*exp(1)+3/10)/(5/11*exp(2)+1/12) 7014010959762197 m001 RenyiParking^KhinchinLevy/Psi(1,1/3) 7014010976451151 p003 LerchPhi(1/5,4,181/165) 7014010986881886 r008 a(0)=7,K{-n^6,-24-60*n-20*n^2+34*n^3} 7014011034525323 a007 Real Root Of -241*x^4+444*x^3+313*x^2+819*x+632 7014011035403417 r008 a(0)=7,K{-n^6,-41+21*n^2-54*n+n^3} 7014011044048118 m001 BesselJ(1,1)^exp(-1/2*Pi)/Zeta(3) 7014011053189392 l006 ln(3499/7056) 7014011061095755 m001 ln(Bloch)^2/Champernowne^2*Ei(1) 7014011063229703 a007 Real Root Of 705*x^4-722*x^3-987*x^2-858*x-536 7014011078699227 r008 a(0)=7,K{-n^6,-19-20*n-58*n^2+25*n^3} 7014011089596773 m005 (3/8+1/4*5^(1/2))/(3/7*exp(1)+1/6) 7014011108378581 r005 Re(z^2+c),c=1/62+19/33*I,n=10 7014011130495925 r008 a(0)=7,K{-n^6,-13-58*n-8*n^2+7*n^3} 7014011132145752 r005 Im(z^2+c),c=19/58+20/51*I,n=16 7014011137210753 a005 (1/cos(3/173*Pi))^1312 7014011150568254 m005 (5*Pi+1/6)/(4/5*Pi-1/4) 7014011150568254 m006 (1/6/Pi+5)/(1/4/Pi-4/5) 7014011150568254 m008 (5*Pi+1/6)/(4/5*Pi-1/4) 7014011175842036 m006 (2*ln(Pi)+2/3)/(1/4*Pi-5) 7014011186311471 r008 a(0)=7,K{-n^6,-29+46*n^3+5*n^2-93*n} 7014011209119085 a007 Real Root Of -99*x^4+96*x^3+686*x^2+605*x-771 7014011222312116 k006 concat of cont frac of 7014011222632236 k009 concat of cont frac of 7014011228450122 a007 Real Root Of -514*x^4+776*x^3-441*x^2-234*x+445 7014011228802255 r005 Re(z^2+c),c=-95/122+3/61*I,n=37 7014011239205232 b008 25/6+21*Pi 7014011247358613 r009 Im(z^3+c),c=-9/106+59/61*I,n=12 7014011250772056 m001 (BesselI(1,2)-Shi(1))/(-Paris+Thue) 7014011254459198 m001 (Zeta(5)-sin(1))/(Tetranacci+Thue) 7014011262369196 m001 ((1+3^(1/2))^(1/2))^(Robbin/Zeta(1,2)) 7014011289066816 r005 Im(z^2+c),c=-35/31+2/23*I,n=27 7014011291238724 m003 33/5+Sqrt[5]/8+(Sqrt[5]*Log[1/2+Sqrt[5]/2])/8 7014011314499258 r008 a(0)=7,K{-n^6,-86-24*n^3+49*n^2-11*n} 7014011318098601 m005 (1/2*5^(1/2)-8/11)/(3*3^(1/2)+3/8) 7014011330760989 m001 1/GAMMA(1/6)^2*Lehmer/exp(sqrt(1+sqrt(3)))^2 7014011334725286 a007 Real Root Of -158*x^4+138*x^3+201*x^2+375*x+250 7014011344990476 m005 (1/2*2^(1/2)+5/9)/(1/5*exp(1)-4/11) 7014011368680381 r005 Im(z^2+c),c=-45/98+3/41*I,n=3 7014011370017480 a007 Real Root Of -958*x^4+829*x^3-358*x^2-174*x+572 7014011375011984 a003 cos(Pi*12/79)*sin(Pi*31/107) 7014011383181767 m001 1/GAMMA(1/12)^2*Rabbit*exp(GAMMA(17/24))^2 7014011386649650 a007 Real Root Of -457*x^4-x^3+180*x^2+565*x+418 7014011400035398 m005 (1/2*Zeta(3)+4/5)/(1/5*Pi-3/7) 7014011401812885 a007 Real Root Of -895*x^4+936*x^3+899*x^2-585*x-313 7014011437089593 a007 Real Root Of 818*x^4-139*x^3-142*x^2+60*x-134 7014011460535059 r005 Im(z^2+c),c=-53/122+32/43*I,n=5 7014011479035680 r005 Re(z^2+c),c=13/82+10/13*I,n=3 7014011480324271 l006 ln(3318/6691) 7014011496001589 m001 GAMMA(1/4)*sqrt(Pi)+sin(Pi/5) 7014011496001589 m001 Pi^(3/2)*2^(1/2)/GAMMA(3/4)+sin(1/5*Pi) 7014011509274829 m001 (Kac-Tetranacci)/(Trott+ZetaP(3)) 7014011519532214 m001 (-Artin+MertensB2)/(2^(1/3)-GAMMA(2/3)) 7014011538330660 a007 Real Root Of -105*x^4+866*x^3-445*x^2+936*x-711 7014011559523962 a001 21/2207*843^(30/47) 7014011564679788 r002 4th iterates of z^2 + 7014011579091982 r009 Im(z^3+c),c=-5/24+19/27*I,n=6 7014011592568193 r008 a(0)=7,K{-n^6,-70+45*n^3-12*n^2-34*n} 7014011599563367 m001 (Otter-ZetaQ(3))/(GAMMA(17/24)-Niven) 7014011601996568 l006 ln(5285/5669) 7014011604513120 a007 Real Root Of 230*x^4-582*x^3+590*x^2-391*x-821 7014011627101743 r008 a(0)=7,K{-n^6,-44-45*n-41*n^2+59*n^3} 7014011646298051 r005 Im(z^2+c),c=-5/42+17/24*I,n=13 7014011649007056 s002 sum(A003902[n]/((3*n+1)!),n=1..infinity) 7014011652933251 a007 Real Root Of -116*x^4-803*x^3+113*x^2+340*x+492 7014011658170553 r008 a(0)=7,K{-n^6,-22+76*n^3-81*n^2-44*n} 7014011661378276 a001 2207/46368*28657^(18/37) 7014011673704843 r005 Re(z^2+c),c=-23/30+5/98*I,n=49 7014011677922865 r008 a(0)=7,K{-n^6,-84+7*n^3+2*n^2+n} 7014011693421645 a007 Real Root Of -245*x^4+487*x^3-486*x^2+960*x-543 7014011716532824 a007 Real Root Of 113*x^4+943*x^3+938*x^2-940*x-836 7014011729949249 a001 32951280099/322*521^(4/13) 7014011762002366 b008 7+E/194 7014011793406362 r005 Im(z^2+c),c=-39/64+3/23*I,n=59 7014011836203801 a007 Real Root Of -762*x^4+510*x^3-625*x^2-275*x+475 7014011875922444 a007 Real Root Of -430*x^4+986*x^3+195*x^2-337*x+112 7014011882452512 a001 3/17711*75025^(23/31) 7014011887155826 m005 (2*2^(1/2)+3)/(3/5*exp(1)-4/5) 7014011891849925 m001 1/ln(MinimumGamma)*Bloch/sqrt(Pi) 7014011913298615 r008 a(0)=7,K{-n^6,-99+14*n^3+67*n^2-53*n} 7014011935047534 a007 Real Root Of -971*x^4+656*x^3-74*x^2+659*x+960 7014011947286305 m005 (1/3*5^(1/2)+1/3)/(3/4*Zeta(3)+7/11) 7014011956749160 l006 ln(3137/6326) 7014011968289113 m001 (Si(Pi)-ln(gamma))/(Ei(1)+GAMMA(7/12)) 7014011988331924 r008 a(0)=7,K{-n^6,-35+7*n^3+18*n^2-63*n} 7014012009628077 r008 a(0)=7,K{-n^6,-71+45*n^3-12*n^2-33*n} 7014012010803019 m001 (3^(1/3)-ArtinRank2)/(Cahen-Niven) 7014012022436341 m005 (1/2*exp(1)+6/7)/(8/11*Pi+7/8) 7014012026956663 r008 a(0)=7,K{-n^6,-50-62*n+39*n^2+5*n^3} 7014012038582131 m001 (FibonacciFactorial+Gompertz)/(1-2^(1/3)) 7014012043643958 m001 (MertensB2+Rabbit)/(Si(Pi)+HardyLittlewoodC3) 7014012076991152 m001 gamma(1)^Otter/(Si(Pi)^Otter) 7014012108104284 a007 Real Root Of -783*x^4-699*x^3-81*x^2+744*x+510 7014012121202912 r008 a(0)=7,K{-n^6,-44-17*n-14*n^2+3*n^3} 7014012123461960 r009 Im(z^3+c),c=-15/82+47/64*I,n=26 7014012130937678 a005 (1/cos(11/93*Pi))^223 7014012199191245 r005 Re(z^2+c),c=-2/3+16/43*I,n=10 7014012199373967 m001 MinimumGamma/Cahen/exp(sinh(1)) 7014012199810516 r008 a(0)=7,K{-n^6,-7+3*n^3+6*n^2-74*n} 7014012231643313 m001 Artin*(GAMMA(13/24)+CopelandErdos) 7014012259890982 m005 (1/3*exp(1)-3/7)/(4/7*2^(1/2)+6) 7014012268724973 a007 Real Root Of -147*x^4-164*x^3-57*x^2+978*x+693 7014012275709499 m006 (1/6*exp(Pi)+1/3)/(1/5*Pi^2+4) 7014012283891565 r008 a(0)=7,K{-n^6,-21-39*n-22*n^2+10*n^3} 7014012327072072 m001 exp(Robbin)/Artin/exp(1)^2 7014012337647294 a007 Real Root Of -464*x^4+203*x^3-145*x^2+297*x+462 7014012356334582 r008 a(0)=7,K{-n^6,-13+9*n^3-15*n^2-53*n} 7014012361342475 a001 9/98209*8^(46/47) 7014012363354626 h001 (5/8*exp(2)+1/12)/(5/6*exp(2)+6/11) 7014012365965577 r002 37th iterates of z^2 + 7014012417363570 r009 Im(z^3+c),c=-37/66+11/51*I,n=19 7014012420811590 a007 Real Root Of 981*x^4+190*x^3+619*x^2-219*x-630 7014012430976860 m005 (1/3*Zeta(3)+3/7)/(65/72+1/8*5^(1/2)) 7014012432764473 a007 Real Root Of -388*x^4+106*x^3+149*x^2+513*x+417 7014012437653349 r005 Re(z^2+c),c=-12/19+24/61*I,n=15 7014012446788499 a007 Real Root Of 629*x^4-226*x^3+341*x^2+57*x-358 7014012460303689 r005 Re(z^2+c),c=-51/94+1/2*I,n=14 7014012462449596 r005 Im(z^2+c),c=-11/62+53/58*I,n=4 7014012465902365 r008 a(0)=7,K{-n^6,-36-48*n-51*n^2+64*n^3} 7014012469878705 r008 a(0)=7,K{-n^6,-14+63*n^3-37*n^2-83*n} 7014012471939981 r009 Re(z^3+c),c=-9/16+7/46*I,n=2 7014012491518341 l006 ln(2956/5961) 7014012507167547 m005 (1/3*exp(1)+1/12)/(2/3*Catalan+4/5) 7014012511557790 m001 GaussKuzminWirsing*exp(1/2)-Zeta(3) 7014012530509492 r002 10th iterates of z^2 + 7014012544450636 r005 Re(z^2+c),c=5/44+7/37*I,n=12 7014012551795116 b008 -76+E+Pi 7014012588725057 m001 exp(-1/2*Pi)/TreeGrowth2nd*ZetaR(2) 7014012608482135 r005 Re(z^2+c),c=-89/70+1/42*I,n=52 7014012617522821 r002 5th iterates of z^2 + 7014012627842011 a007 Real Root Of -970*x^4-662*x^3-928*x^2-198*x+324 7014012638186814 r005 Re(z^2+c),c=-19/22+77/103*I,n=3 7014012641088062 a007 Real Root Of -642*x^4+703*x^3+272*x^2-177*x+140 7014012647729632 m001 (3^(1/3))/GAMMA(1/4)/LambertW(1) 7014012647729632 m001 1/2*3^(1/3)/Pi*2^(1/2)*GAMMA(3/4)/LambertW(1) 7014012647729632 m001 1/GAMMA(1/4)*(3^(1/3))*exp(LambertW(1)) 7014012665211453 m001 GAMMA(1/24)/CopelandErdos*exp(GAMMA(5/12))^2 7014012675712846 a007 Real Root Of -958*x^4+618*x^3-290*x^2-915*x-54 7014012684749041 m008 (1/6*Pi^4+4)/(3*Pi^6+3/4) 7014012722240801 a007 Real Root Of -808*x^4+355*x^3-737*x^2+404*x+964 7014012737091098 a007 Real Root Of -785*x^4+367*x^3+246*x^2+280*x+392 7014012738853503 q001 2753/3925 7014012796345708 r005 Im(z^2+c),c=7/46+22/39*I,n=13 7014012820653708 a007 Real Root Of 467*x^4-684*x^3-89*x^2+190*x-172 7014012830256499 r008 a(0)=7,K{-n^6,-71+45*n^3-11*n^2-34*n} 7014012832097762 r008 a(0)=7,K{-n^6,-47+25*n^3-83*n^2+41*n} 7014012837644511 s002 sum(A193906[n]/(exp(n)),n=1..infinity) 7014012847285645 r008 a(0)=7,K{-n^6,-29+47*n^3+4*n^2-93*n} 7014012849547977 a007 Real Root Of 908*x^4-844*x^3-275*x^2-210*x-523 7014012853137012 r008 a(0)=7,K{-n^6,-63-24*n-40*n^2+56*n^3} 7014012854820085 a007 Real Root Of 131*x^4-899*x^3-766*x^2-249*x+830 7014012878523467 a007 Real Root Of -683*x^4+385*x^3-980*x^2-699*x+290 7014012898453112 a007 Real Root Of 944*x^4-157*x^3+817*x^2+631*x-242 7014012904695713 r005 Re(z^2+c),c=-71/94+9/29*I,n=3 7014012914710704 a007 Real Root Of -418*x^4+916*x^3+424*x^2+283*x-622 7014012943824115 r008 a(0)=7,K{-n^6,-71+27*n^3-33*n^2+8*n} 7014012944104394 m001 (-gamma(3)+ZetaQ(4))/(2^(1/2)-Chi(1)) 7014012951749144 a007 Real Root Of -884*x^4+907*x^3+210*x^2+347*x+667 7014012960650596 r008 a(0)=7,K{-n^6,-51-4*n-22*n^2+5*n^3} 7014012976305165 a007 Real Root Of 758*x^4-661*x^3-415*x^2-728*x-718 7014012989875787 p004 log(33941/16831) 7014012990128979 r008 a(0)=7,K{-n^6,-5-37*n-50*n^2+20*n^3} 7014013013303530 r009 Im(z^3+c),c=-37/66+4/15*I,n=39 7014013014724282 a008 Real Root of (-5+3*x+6*x^2-x^3+4*x^4-4*x^5) 7014013025308782 m002 6*Pi^4+(Cosh[Pi]*Sinh[Pi])/Log[Pi] 7014013052903757 m001 (Psi(2,1/3)-ln(5))/(-Zeta(1,-1)+Cahen) 7014013055948640 a001 86267571272/843*199^(4/11) 7014013076343262 r008 a(0)=7,K{-n^6,-32+31*n^3-83*n^2+12*n} 7014013096048369 l006 ln(2775/5596) 7014013097851742 r005 Im(z^2+c),c=-69/106+28/57*I,n=41 7014013100223000 r008 a(0)=7,K{-n^6,-55-52*n+56*n^2-21*n^3} 7014013102376877 a007 Real Root Of -325*x^4+768*x^3+83*x^2-168*x+185 7014013104062381 a007 Real Root Of 707*x^4-739*x^3-821*x^2-649*x+943 7014013167241808 r009 Im(z^3+c),c=-3/34+47/62*I,n=24 7014013171817795 r005 Im(z^2+c),c=-19/26+23/81*I,n=9 7014013174467833 a007 Real Root Of -701*x^4-895*x^3-668*x^2+313*x+409 7014013177870828 a001 29/514229*196418^(41/53) 7014013192642701 r002 32th iterates of z^2 + 7014013194115657 m001 (Lehmer+TwinPrimes)/(Pi-FeigenbaumKappa) 7014013199443555 r005 Im(z^2+c),c=-9/10+9/163*I,n=23 7014013202965691 r008 a(0)=7,K{-n^6,-66+30*n^3+37*n^2-72*n} 7014013203222169 m001 (Trott+ZetaP(3))/(BesselI(1,2)+GAMMA(11/12)) 7014013205089903 r005 Re(z^2+c),c=-9/14+98/213*I,n=15 7014013219362473 a007 Real Root Of -17*x^4+833*x^3+433*x^2-317*x-274 7014013222021644 m001 (2^(1/3)+gamma(3))/(KhinchinHarmonic+ZetaQ(2)) 7014013237995705 r008 a(0)=7,K{-n^6,-63-18*n^3+43*n^2-34*n} 7014013251368777 r008 a(0)=7,K{-n^6,-67-23*n^3+43*n^2+38*n} 7014013255837017 r008 a(0)=7,K{-n^6,-64-23*n-40*n^2+56*n^3} 7014013267729918 r008 a(0)=7,K{-n^6,-44-45*n-42*n^2+60*n^3} 7014013271683959 a007 Real Root Of 753*x^4-962*x^3+643*x^2+879*x-214 7014013274493594 a003 cos(Pi*25/109)*sin(Pi*41/107) 7014013287983612 m001 (3^(1/3)+Ei(1,1)*TreeGrowth2nd)/Ei(1,1) 7014013296467565 r008 a(0)=7,K{-n^6,-22+77*n^3-82*n^2-44*n} 7014013300232994 a007 Real Root Of 923*x^4+602*x^3+592*x^2-281*x-504 7014013300792537 a007 Real Root Of 676*x^4-32*x^3-22*x^2-264*x-349 7014013363109939 m005 (1/2*2^(1/2)+5/6)/(7/12*Pi+4/11) 7014013371535751 r002 46i'th iterates of 2*x/(1-x^2) of 7014013378257590 m001 1/ln(Ei(1))*Bloch/GAMMA(23/24)^2 7014013426178302 r005 Re(z^2+c),c=10/29+9/40*I,n=11 7014013440885147 r009 Re(z^3+c),c=-57/86+8/17*I,n=3 7014013441123610 m001 Porter^LaplaceLimit-sin(1/5*Pi) 7014013442685971 m005 (1/2*exp(1)+5/8)/(3/4*2^(1/2)-7/9) 7014013448367950 r008 a(0)=7,K{-n^6,-49+20*n^3-21*n^2-24*n} 7014013462040093 a007 Real Root Of 144*x^4-241*x^3+505*x^2-462*x+30 7014013510349654 m001 exp(GAMMA(7/12))*GAMMA(1/6)*sqrt(1+sqrt(3))^2 7014013513393407 m001 1/FeigenbaumC*Khintchine^2*exp(gamma) 7014013526768153 a007 Real Root Of 143*x^4+928*x^3-487*x^2+323*x+343 7014013534013320 r005 Im(z^2+c),c=-11/114+41/63*I,n=50 7014013553894633 r005 Im(z^2+c),c=-117/94+2/53*I,n=28 7014013558466297 m002 -12+(Pi^5*ProductLog[Pi])/4 7014013582028492 r008 a(0)=7,K{-n^6,16+45*n^3-67*n^2-51*n} 7014013637947223 a007 Real Root Of 466*x^4-347*x^3-385*x^2-131*x-135 7014013654329859 q001 1952/2783 7014013655875088 r008 a(0)=7,K{-n^6,-67-7*n^3+61*n^2-63*n} 7014013657335591 a007 Real Root Of -260*x^4+899*x^3-356*x^2+443*x+859 7014013665237853 m001 (-GAMMA(11/24)+1/3)/(-GAMMA(1/24)+2/3) 7014013669343553 m005 (1/2*exp(1)+5/9)/(7/11*exp(1)+1) 7014013670455578 r008 a(0)=7,K{-n^6,-55-22*n-20*n^2+21*n^3} 7014013670535297 a007 Real Root Of 856*x^4+274*x^3+414*x^2-855*x-916 7014013676169785 s002 sum(A234226[n]/((2^n-1)/n),n=1..infinity) 7014013679130926 m001 (CareFree-Mills)/(Zeta(5)-Ei(1)) 7014013701699091 r005 Re(z^2+c),c=-19/86+39/56*I,n=62 7014013702363149 r008 a(0)=7,K{-n^6,-20+8*n^3-14*n^2-46*n} 7014013702482182 a001 5778/233*8^(1/2) 7014013705511873 m001 (arctan(1/2)-CareFree)/(Khinchin+RenyiParking) 7014013710058681 r005 Im(z^2+c),c=-5/86+4/51*I,n=4 7014013717624135 a001 53316291173/322*521^(3/13) 7014013724748833 m001 (GAMMA(17/24)-cos(1))/(-Cahen+Niven) 7014013734254764 m005 (1/2*2^(1/2)+7/12)/(7/8*Pi-10/11) 7014013736148851 a007 Real Root Of -501*x^4-56*x^3+263*x^2+752*x+500 7014013756713833 a001 76/121393*34^(37/54) 7014013765760326 h001 (1/9*exp(1)+1/5)/(1/12*exp(2)+1/10) 7014013781954135 m005 (4/5*Catalan-1/6)/(5*2^(1/2)+1) 7014013784942218 l006 ln(2594/5231) 7014013804353737 m001 GAMMA(5/12)^GAMMA(5/6)+FeigenbaumDelta 7014013824656260 m002 3*E^Pi-Log[Pi]+2/ProductLog[Pi] 7014013831670051 a007 Real Root Of -112*x^4-668*x^3+953*x^2+865*x-248 7014013833601280 r009 Im(z^3+c),c=-17/78+34/47*I,n=49 7014013856109843 m005 (1/2*Zeta(3)-1/7)/(1/3*2^(1/2)+2/11) 7014013859562247 a007 Real Root Of 998*x^4-806*x^3-265*x^2-788*x-942 7014013859935076 r002 3th iterates of z^2 + 7014013875188723 a007 Real Root Of 230*x^4-570*x^3+341*x^2-419*x-714 7014013888105159 m005 (1/2*Zeta(3)-1/11)/(7/8*gamma+2/9) 7014013888224167 h001 (-3*exp(-2)-4)/(-exp(1)+9) 7014013892629168 a007 Real Root Of -513*x^4+762*x^3-635*x^2-283*x+501 7014013903039508 l006 ln(7666/8223) 7014013911841900 r005 Re(z^2+c),c=-83/106+2/57*I,n=57 7014013937139422 a007 Real Root Of 535*x^4-706*x^3+658*x^2+580*x-290 7014013950260890 r005 Re(z^2+c),c=3/62+25/56*I,n=5 7014013971629611 r004 Im(z^2+c),c=-4/7+1/8*I,z(0)=exp(7/8*I*Pi),n=31 7014013986580665 r002 28th iterates of z^2 + 7014013991692582 r002 42i'th iterates of 2*x/(1-x^2) of 7014013993307224 a001 29/34*17711^(47/51) 7014014006497124 r005 Re(z^2+c),c=-21/20+9/50*I,n=46 7014014016741217 r005 Im(z^2+c),c=1/22+29/41*I,n=4 7014014022085599 r005 Re(z^2+c),c=-79/106+11/53*I,n=3 7014014047002519 r002 17th iterates of z^2 + 7014014047799647 r008 a(0)=7,K{-n^6,-48+53*n^3-22*n^2-54*n} 7014014048348382 r008 a(0)=7,K{-n^6,-64-24*n-39*n^2+56*n^3} 7014014070885208 r008 a(0)=7,K{-n^6,-22+64*n^3-42*n^2-71*n} 7014014076691241 a003 sin(Pi*18/119)/cos(Pi*23/84) 7014014117579191 h001 (3/4*exp(2)+1/2)/(1/4*exp(1)+2/11) 7014014137956957 r005 Re(z^2+c),c=1/66+17/20*I,n=9 7014014166743762 l006 ln(5007/10097) 7014014181264512 m001 (ThueMorse-ZetaQ(3))/(LandauRamanujan-Totient) 7014014182638126 r005 Im(z^2+c),c=31/106+17/38*I,n=37 7014014211351196 m008 (3/5*Pi^3-1/5)/(5/6*Pi^3+2/5) 7014014214143986 m005 (1/2*5^(1/2)+4)/(1/9*exp(1)-3/8) 7014014223876337 m001 (1+3^(1/2))^(1/2)-ErdosBorwein-RenyiParking 7014014254250835 m005 (1/2*gamma+9/11)/(5/9*Catalan-2/3) 7014014258681502 m005 (1/2*5^(1/2)+7/11)/(2/11*Catalan-5/12) 7014014260799090 m002 -Pi^2+(E^Pi*Sech[Pi])/ProductLog[Pi]+Tanh[Pi] 7014014282801597 a007 Real Root Of -630*x^4-891*x^3-348*x^2+550*x+402 7014014284358327 r008 a(0)=7,K{-n^6,-49+17*n^3+19*n^2-57*n} 7014014293891863 a001 726103/41*7^(29/41) 7014014294808694 r002 63th iterates of z^2 + 7014014322783055 a005 (1/cos(4/203*Pi))^1016 7014014379289499 a007 Real Root Of 550*x^4-514*x^3+270*x^2-279*x-639 7014014404820217 a007 Real Root Of 120*x^4+770*x^3-384*x^2+741*x-646 7014014414043336 m001 1/cos(Pi/12)^2/Zeta(7)/exp(exp(1)) 7014014418795233 r008 a(0)=7,K{-n^6,-71+46*n^3-12*n^2-34*n} 7014014422938854 r005 Im(z^2+c),c=-5/6+1/233*I,n=15 7014014435211963 g002 Psi(10/11)+Psi(6/11)+Psi(1/8)-Psi(3/11) 7014014437136656 a007 Real Root Of -473*x^4+428*x^3+831*x^2+182*x-19 7014014461760752 r008 a(0)=7,K{-n^6,-33+67*n^3-56*n^2-49*n} 7014014479110383 r002 40th iterates of z^2 + 7014014487353669 r005 Re(z^2+c),c=27/98+26/63*I,n=53 7014014494861301 m001 (Catalan+ln(3))/(BesselI(0,2)+Lehmer) 7014014496380577 a007 Real Root Of 155*x^4+967*x^3-863*x^2-96*x+316 7014014503856764 a007 Real Root Of 390*x^4+504*x^3+254*x^2-544*x-427 7014014517893552 m005 (1/3*exp(1)+1/10)/(6/7*2^(1/2)+2/9) 7014014529333272 m004 -1+25*Pi+Cos[Sqrt[5]*Pi]-6*Sec[Sqrt[5]*Pi] 7014014531919690 r008 a(0)=7,K{-n^6,-64-18*n^3+43*n^2-33*n} 7014014535218329 s002 sum(A230454[n]/(n*exp(pi*n)-1),n=1..infinity) 7014014550656852 a007 Real Root Of 837*x^4-471*x^3-819*x^2-225*x-120 7014014563672034 a001 11/46368*2178309^(23/59) 7014014577184361 l006 ln(2413/4866) 7014014577527846 r008 a(0)=7,K{-n^6,-33+31*n^3-83*n^2+13*n} 7014014581798975 a007 Real Root Of 194*x^4-586*x^3-668*x^2-224*x+641 7014014641739985 a003 sin(Pi*1/18)*sin(Pi*9/68) 7014014668624027 a005 (1/cos(21/104*Pi))^307 7014014674679223 a007 Real Root Of -582*x^4+852*x^3-601*x^2-946*x+67 7014014680232457 m005 (1/3*Zeta(3)+1/3)/(4/11*3^(1/2)+5/12) 7014014685050406 m008 (1/6*Pi^5+4/5)/(3/4*Pi^4+4/5) 7014014687820481 a007 Real Root Of -118*x^4+563*x^3+521*x^2+767*x-960 7014014693516593 a007 Real Root Of -946*x^4-865*x^3-696*x^2-275*x+80 7014014696396619 m001 (GlaisherKinkelin+GolombDickman)^ln(gamma) 7014014708696178 r005 Re(z^2+c),c=-9/122+45/61*I,n=64 7014014709521025 r005 Re(z^2+c),c=-53/110+29/53*I,n=44 7014014715688118 p003 LerchPhi(1/125,2,263/220) 7014014718388733 r008 a(0)=7,K{-n^6,-19-21*n-57*n^2+25*n^3} 7014014721225759 r005 Im(z^2+c),c=-25/31+3/19*I,n=56 7014014776318572 r008 a(0)=7,K{-n^6,-66+31*n^3+36*n^2-72*n} 7014014780277350 a007 Real Root Of 147*x^4-556*x^3+575*x^2-490*x-854 7014014782333112 a007 Real Root Of -200*x^4+919*x^3+379*x^2+312*x-674 7014014782405483 a007 Real Root Of -740*x^4+327*x^3+386*x^2+757*x+633 7014014797595751 r009 Im(z^3+c),c=-1/126+17/23*I,n=3 7014014833868076 a007 Real Root Of -186*x^4+880*x^3+255*x^2+483*x+562 7014014846532209 r008 a(0)=7,K{-n^6,-34+67*n^3-56*n^2-48*n} 7014014853967353 r008 a(0)=7,K{-n^6,-40+7*n-57*n^2+18*n^3} 7014014867056323 g007 Psi(2,10/11)+Psi(2,7/11)+Psi(2,3/4)-Psi(2,2/7) 7014014875142760 m001 (Ei(1)-gamma(1))/(gamma(3)-FransenRobinson) 7014014895630436 m001 HeathBrownMoroz/(BesselI(0,2)^BesselJ(0,1)) 7014014931489728 m001 HardHexagonsEntropy^2*Champernowne/ln(Rabbit) 7014014936585683 m005 (1/3*3^(1/2)-1/7)/(2/7*gamma+5/11) 7014014941127087 a007 Real Root Of 972*x^4+292*x^3+287*x^2+490*x+68 7014014949460081 r002 51th iterates of z^2 + 7014014970043766 m001 (Zeta(3)-BesselI(1,1))/(AlladiGrinstead+Paris) 7014014990745858 a005 (1/sin(69/191*Pi))^747 7014015005693121 r005 Re(z^2+c),c=-9/122+45/61*I,n=61 7014015006369724 g005 GAMMA(3/11)/GAMMA(9/11)/GAMMA(4/9)/GAMMA(3/7) 7014015010485794 b008 Pi*Sinh[Cosh[1]] 7014015016626955 r008 a(0)=7,K{-n^6,13-51*n-58*n^2+24*n^3} 7014015019611916 l006 ln(4645/9367) 7014015042251066 r001 64i'th iterates of 2*x^2-1 of 7014015049186089 r005 Re(z^2+c),c=-93/118+1/52*I,n=31 7014015049738883 a007 Real Root Of -3*x^4+927*x^3-250*x^2+434*x+748 7014015094940407 a007 Real Root Of -884*x^4+97*x^3-921*x^2+340*x+939 7014015111938933 m005 (1/2*Catalan+8/11)/(10/11*Catalan+6/7) 7014015125504552 a007 Real Root Of 903*x^4+93*x^3+176*x^2-284*x+19 7014015133526224 k007 concat of cont frac of 7014015139367819 r005 Re(z^2+c),c=1/8+20/41*I,n=25 7014015159069764 a007 Real Root Of -940*x^4+491*x^3+530*x^2+148*x+240 7014015176136214 r005 Im(z^2+c),c=-13/86+47/52*I,n=26 7014015179618573 r005 Re(z^2+c),c=-23/30+2/71*I,n=7 7014015217676519 m001 (GaussAGM+Mills)/(polylog(4,1/2)-FeigenbaumMu) 7014015242077666 r008 a(0)=7,K{-n^6,-13-59*n-7*n^2+7*n^3} 7014015245508726 m001 (Paris+Trott2nd)/(gamma(2)-KomornikLoreti) 7014015254136776 r008 a(0)=7,K{-n^6,-60-27*n+27*n^2-12*n^3} 7014015288371858 a007 Real Root Of 221*x^4-857*x^3+389*x^2+487*x-199 7014015292822630 r005 Re(z^2+c),c=-9/106+40/49*I,n=12 7014015303123144 m001 (-Artin+GolombDickman)/(2^(1/2)-Shi(1)) 7014015320438133 a007 Real Root Of 112*x^4+727*x^3-490*x^2-565*x-67 7014015332439020 r008 a(0)=7,K{-n^6,-21+15*n^3-23*n^2-43*n} 7014015339736260 r008 a(0)=7,K{-n^6,-21+8*n^3-14*n^2-45*n} 7014015386239078 r005 Im(z^2+c),c=-13/12+43/85*I,n=3 7014015388652639 r002 2th iterates of z^2 + 7014015388991162 r008 a(0)=7,K{-n^6,3+33*n^3-72*n^2-36*n} 7014015389882799 l006 ln(9/10009) 7014015408873778 r008 a(0)=7,K{-n^6,-70-20*n^3+78*n^2-48*n} 7014015438072104 r008 a(0)=7,K{-n^6,-38-30*n-6*n^2+2*n^3} 7014015451855878 s002 sum(A266308[n]/(n!^2),n=1..infinity) 7014015458262196 r005 Re(z^2+c),c=-89/118+19/63*I,n=3 7014015458815832 m001 1/ln(GAMMA(2/3))/RenyiParking^2/sin(1) 7014015462874269 a007 Real Root Of -944*x^4+938*x^3+769*x^2-446*x-139 7014015470752276 r009 Re(z^3+c),c=-13/44+33/62*I,n=2 7014015497917311 l006 ln(2232/4501) 7014015524461706 a007 Real Root Of -105*x^4+20*x^3-697*x^2+704*x+869 7014015536091030 r008 a(0)=7,K{-n^6,-66+31*n^3+37*n^2-73*n} 7014015536851505 m001 Sierpinski/(1+Khinchin) 7014015547485633 a001 341/11592*233^(32/55) 7014015560126627 a007 Real Root Of 958*x^4-662*x^3-415*x^2-620*x-691 7014015570922043 a007 Real Root Of -504*x^4+988*x^3+699*x^2+911*x+758 7014015582591297 r008 a(0)=7,K{-n^6,-48+54*n^3-23*n^2-54*n} 7014015583098245 r008 a(0)=7,K{-n^6,-64-24*n-40*n^2+57*n^3} 7014015584102406 r008 a(0)=7,K{-n^6,-66+58*n^3-44*n^2-19*n} 7014015595355334 m005 (1/2*Catalan+7/9)/(5/6*2^(1/2)+7/12) 7014015600055835 r008 a(0)=7,K{-n^6,-58+68*n^3-70*n^2-11*n} 7014015603953609 r008 a(0)=7,K{-n^6,-34+67*n^3-55*n^2-49*n} 7014015615051082 m001 Niven*ln(KhintchineHarmonic)/GAMMA(2/3) 7014015622628280 r002 30th iterates of z^2 + 7014015655575205 m005 (1/2*exp(1)-6)/(1/7*3^(1/2)-10/11) 7014015678053226 m005 (1/3*2^(1/2)-1/11)/(1/5*3^(1/2)-8/9) 7014015680022288 r005 Re(z^2+c),c=-9/98+26/33*I,n=26 7014015705299585 a001 43133785636/161*521^(2/13) 7014015740415937 m001 cos(1)*ln(Backhouse)*sin(Pi/5)^2 7014015742874454 a007 Real Root Of -748*x^4+728*x^3+642*x^2+497*x+465 7014015743053249 a007 Real Root Of -773*x^4-69*x^3-752*x^2-525*x+165 7014015759592537 r002 3th iterates of z^2 + 7014015774667398 a007 Real Root Of 536*x^4-888*x^3+133*x^2-588*x-914 7014015785320135 m001 (Catalan-cos(1/5*Pi))/(ln(2^(1/2)+1)+Cahen) 7014015804875679 r005 Re(z^2+c),c=-1/4+20/31*I,n=13 7014015811459690 a007 Real Root Of 895*x^4-686*x^3+254*x^2-222*x-734 7014015815715118 a007 Real Root Of 69*x^4-322*x^3-62*x^2-279*x-293 7014015817432583 a007 Real Root Of 467*x^4-716*x^3-254*x^2-332*x-468 7014015825387127 a005 (1/cos(9/181*Pi))^159 7014015843997562 q001 1151/1641 7014015861528758 r009 Re(z^3+c),c=-11/86+5/7*I,n=50 7014015887655813 a001 843/121393*233^(14/33) 7014015891880676 a007 Real Root Of -329*x^4+772*x^3-644*x^2+398*x+942 7014015898246939 a007 Real Root Of 76*x^4+493*x^3-268*x^2-40*x-921 7014015899021572 m001 ln(RenyiParking)^2/Niven*Riemann1stZero 7014015907620511 m001 (Ei(1)-Bloch)/(CareFree+PisotVijayaraghavan) 7014015909446142 r008 a(0)=7,K{-n^6,-67+31*n^3+37*n^2-72*n} 7014015910032786 a001 213927485256/305 7014015919542725 a007 Real Root Of 359*x^4-658*x^3+652*x^2+x-634 7014015937160372 a007 Real Root Of -355*x^4+456*x^3+94*x^2+767*x+735 7014015938750231 r005 Im(z^2+c),c=-13/14+11/169*I,n=4 7014015947944513 m001 (Zeta(1/2)+Lehmer)/(Stephens-ZetaP(2)) 7014015960716561 a003 cos(Pi*1/111)-sin(Pi*8/83) 7014015967590648 r008 a(0)=7,K{-n^6,-39+61*n^3-39*n^2-54*n} 7014015970033996 h001 (4/7*exp(1)+1/12)/(2/7*exp(2)+2/9) 7014015972464133 r008 a(0)=7,K{-n^6,-59+68*n^3-70*n^2-10*n} 7014015985893136 r008 a(0)=7,K{-n^6,-13+9*n^3-14*n^2-54*n} 7014015996023120 a007 Real Root Of 413*x^4-358*x^3+681*x^2+370*x-299 7014016007512905 r005 Im(z^2+c),c=-16/27+2/7*I,n=11 7014016016649145 l006 ln(4283/8637) 7014016033392798 r005 Re(z^2+c),c=-3/98+11/48*I,n=3 7014016035588831 m001 (GAMMA(13/24)-gamma)/(-Tetranacci+ThueMorse) 7014016059056116 r009 Re(z^3+c),c=-11/82+44/63*I,n=52 7014016063293030 r008 a(0)=7,K{-n^6,-47+14*n^3-57*n^2+18*n} 7014016070184576 r005 Im(z^2+c),c=-1/11+13/18*I,n=21 7014016080703672 m001 (2^(1/2)-gamma(2))/(ArtinRank2+MertensB3) 7014016080846712 a007 Real Root Of 540*x^4-971*x^3-386*x^2+610*x+152 7014016132571340 a007 Real Root Of -375*x^4+493*x^3-903*x^2-800*x+144 7014016160656870 r009 Im(z^3+c),c=-7/58+50/63*I,n=21 7014016161351448 a007 Real Root Of -411*x^4+375*x^3+698*x^2+869*x+495 7014016162014429 a001 133957148/161*1364^(14/15) 7014016176934988 m001 Tribonacci*ln(FeigenbaumD)/sin(Pi/12) 7014016184884804 m005 (1/3*exp(1)+2/11)/(7/9*gamma-2) 7014016187752693 a005 (1/cos(14/219*Pi))^1230 7014016223196084 m001 Robbin*exp(MadelungNaCl)^2*LambertW(1)^2 7014016231509358 m001 (PlouffeB+ZetaQ(2))/(GAMMA(5/6)-Artin) 7014016254519466 r008 a(0)=7,K{-n^6,-64+38*n^3-91*n^2+44*n} 7014016264494369 r008 a(0)=7,K{-n^6,-66+24*n^3+59*n^2-88*n} 7014016264715974 a007 Real Root Of -595*x^4+896*x^3+806*x^2+384*x+326 7014016297284548 r008 a(0)=7,K{-n^6,-43+12*n^3-46*n^2+5*n} 7014016311525873 a007 Real Root Of -930*x^4-688*x^3-693*x^2+347*x+572 7014016320284753 m001 GolombDickman^ZetaP(4)-MertensB2 7014016324392926 r008 a(0)=7,K{-n^6,-48+54*n^3-22*n^2-55*n} 7014016328740139 m005 (1/3*exp(1)+3/8)/(1/3*Zeta(3)-7/12) 7014016330087844 a007 Real Root Of 741*x^4-824*x^3+976*x^2+24*x-927 7014016336063377 r008 a(0)=7,K{-n^6,-40+61*n^3-39*n^2-53*n} 7014016339203702 a007 Real Root Of 182*x^4+182*x^3+561*x^2-828*x-838 7014016342658078 q001 6/85543 7014016354178210 a007 Real Root Of -488*x^4-22*x^3-226*x^2+997*x+921 7014016354779509 m001 ln(3)^Ei(1)/(PisotVijayaraghavan^Ei(1)) 7014016355258574 a007 Real Root Of -68*x^4+716*x^3+690*x^2+593*x+340 7014016362823487 a001 377/2207*47^(55/57) 7014016379093651 r002 2th iterates of z^2 + 7014016386427808 r005 Im(z^2+c),c=-3/52+16/23*I,n=22 7014016389235137 r001 38i'th iterates of 2*x^2-1 of 7014016400070924 r005 Re(z^2+c),c=2/27+38/43*I,n=2 7014016413345638 a001 433494437/322*1364^(13/15) 7014016414183653 a007 Real Root Of -52*x^4-70*x^3-50*x^2+978*x+699 7014016415915647 a001 4870847/233*102334155^(4/21) 7014016415929240 a001 710647/233*2504730781961^(4/21) 7014016417413599 r008 a(0)=7,K{-n^6,-37+4*n^3+34*n^2-75*n} 7014016431200769 a001 33385282/233*4181^(4/21) 7014016439909297 r005 Re(z^2+c),c=-19/60+39/56*I,n=2 7014016459991871 s002 sum(A128997[n]/(exp(n)),n=1..infinity) 7014016487015540 m001 Niven^DuboisRaymond/(Niven^Thue) 7014016499350842 r005 Re(z^2+c),c=-5/9-60/89*I,n=2 7014016516557014 r009 Im(z^3+c),c=-29/56+5/12*I,n=55 7014016529327719 r008 a(0)=7,K{-n^6,-29-55*n-19*n^2+33*n^3} 7014016551570281 r008 a(0)=7,K{-n^6,-86-23*n^3+48*n^2-11*n} 7014016563638624 a003 cos(Pi*13/71)*sin(Pi*23/73) 7014016563731059 a001 20365011074/521*199^(6/11) 7014016576447701 r008 a(0)=7,K{-n^6,-41-9*n-33*n^2+11*n^3} 7014016581158844 l006 ln(2051/4136) 7014016584789469 m001 (-Porter+ZetaP(2))/(BesselK(0,1)+GAMMA(23/24)) 7014016597323500 m005 (11/28+1/4*5^(1/2))/(5/9*2^(1/2)+4/7) 7014016630085140 r008 a(0)=7,K{-n^6,-67+24*n^3+59*n^2-87*n} 7014016637651059 s002 sum(A220899[n]/(exp(2*pi*n)+1),n=1..infinity) 7014016664676856 a001 701408733/322*1364^(4/5) 7014016668964989 m005 (1/2*exp(1)+1/12)/(7/8*5^(1/2)+1/10) 7014016680561888 r008 a(0)=7,K{-n^6,-41+8*n-57*n^2+18*n^3} 7014016689090974 r008 a(0)=7,K{-n^6,-49+54*n^3-22*n^2-54*n} 7014016705750065 r008 a(0)=7,K{-n^6,-59+68*n^3-69*n^2-11*n} 7014016710627511 a007 Real Root Of 597*x^4-115*x^3+916*x^2+580*x-228 7014016717484971 m003 5+E^(1/2+Sqrt[5]/2)/3+Sin[1/2+Sqrt[5]/2]/3 7014016723618342 m001 (Totient-Trott2nd)/(Pi^(1/2)+Paris) 7014016734508111 m001 MadelungNaCl-MertensB2^PisotVijayaraghavan 7014016740705868 r008 a(0)=7,K{-n^6,-62+16*n-51*n^2+31*n^3} 7014016741274308 m001 Niven^2/ln(Champernowne)^2*GAMMA(11/12) 7014016756796825 m008 (1/5*Pi^4+4)/(2/5*Pi^2-3/5) 7014016758649782 a005 (1/cos(8/159*Pi))^1073 7014016759667343 a001 1/15129*(1/2*5^(1/2)+1/2)^14*123^(10/19) 7014016759765221 h001 (-3*exp(1)+2)/(-8*exp(7)-2) 7014016787693587 a007 Real Root Of -237*x^4+217*x^3-317*x^2+148*x+392 7014016861923498 m001 (Kolakoski-Thue)/(exp(-1/2*Pi)-GAMMA(5/6)) 7014016905631152 a007 Real Root Of 448*x^4-762*x^3-739*x^2+194*x+382 7014016906538054 m005 (1/2*exp(1)-7/8)/(1/6*2^(1/2)+5/11) 7014016910641911 m001 (Zeta(5)-CopelandErdos)/(MertensB2+OneNinth) 7014016916008083 a001 567451585/161*1364^(11/15) 7014016927889219 m001 (-ln(gamma)+5)/(-ThueMorse+1/3) 7014016931885875 g005 1/Pi/csc(1/10*Pi)/GAMMA(9/11)/GAMMA(3/4) 7014016946328788 r008 a(0)=7,K{-n^6,-78+25*n^3-97*n^2+78*n} 7014016952764428 m005 (-9/20+1/4*5^(1/2))/(71/132+5/11*5^(1/2)) 7014016959492093 m005 (1/2*Pi+1/6)/(7/10*Catalan-8/9) 7014016989760660 m001 ln(3)/(GAMMA(7/12)^Shi(1)) 7014017005816576 m001 BesselJ(0,1)*Niven^2/exp(gamma)^2 7014017010645121 m001 (ln(2)*KhinchinHarmonic-Sarnak)/ln(2) 7014017040758166 r005 Re(z^2+c),c=-9/10+22/137*I,n=32 7014017044067545 r008 a(0)=7,K{-n^6,-50-61*n-10*n^2+50*n^3} 7014017061676701 r008 a(0)=7,K{-n^6,-40+61*n^3-38*n^2-54*n} 7014017069745882 h005 exp(cos(Pi*6/41)/cos(Pi*8/23)) 7014017071589813 r008 a(0)=7,K{-n^6,-34+68*n^3-56*n^2-49*n} 7014017086093009 a001 199/317811*2584^(42/47) 7014017092939848 r009 Re(z^3+c),c=-4/31+37/55*I,n=49 7014017104663952 a007 Real Root Of -507*x^4-226*x^3+745*x^2+485*x-506 7014017121204331 r008 a(0)=7,K{-n^6,-8-n^3+19*n^2-82*n} 7014017145382042 r009 Re(z^3+c),c=-1/6+14/23*I,n=6 7014017148751073 a007 Real Root Of 675*x^4-832*x^3-987*x^2-646*x-418 7014017153832510 a001 123/1597*53316291173^(5/9) 7014017156097128 r009 Im(z^3+c),c=-5/9+17/58*I,n=55 7014017164982238 a007 Real Root Of 824*x^4+38*x^3+149*x^2-769*x-799 7014017167212018 a007 Real Root Of -223*x^4+529*x^3+223*x^2+232*x-401 7014017167339319 a001 1836311903/322*1364^(2/3) 7014017174211487 a001 233/6643838879*4^(1/2) 7014017193286121 r005 Im(z^2+c),c=-37/32+23/57*I,n=4 7014017197785954 l006 ln(3921/7907) 7014017198140368 a003 sin(Pi*28/115)/sin(Pi*53/118) 7014017206520672 a005 (1/cos(4/53*Pi))^1935 7014017224705722 m001 (3^(1/2)+Kac)/(ReciprocalFibonacci+ZetaQ(4)) 7014017235648029 r008 a(0)=7,K{-n^6,-64-18*n^3+44*n^2-34*n} 7014017263891461 m001 ln(GAMMA(23/24))/GolombDickman^2/cos(Pi/12)^2 7014017303939052 p001 sum(1/(490*n+111)/n/(24^n),n=1..infinity) 7014017317995728 m005 (3/4*exp(1)+4/5)/(1/3*Pi+3) 7014017329021846 a007 Real Root Of -239*x^4-276*x^3+375*x^2+996*x-730 7014017338706039 r005 Im(z^2+c),c=-33/25+2/49*I,n=20 7014017344868215 a007 Real Root Of 81*x^4+529*x^3-255*x^2+225*x+619 7014017347580122 m005 (1/2*Pi-1/2)/(2/7*exp(1)+3/4) 7014017350341947 r008 a(0)=7,K{-n^6,-67+24*n^3+60*n^2-88*n} 7014017361060226 m001 (-gamma+MertensB2)/(Psi(1,1/3)-Psi(2,1/3)) 7014017364626825 r005 Im(z^2+c),c=-1/36+17/24*I,n=26 7014017367757217 r008 a(0)=7,K{-n^6,-63+32*n^3+38*n^2-78*n} 7014017369116933 m001 (Stephens-Thue)/(ln(2^(1/2)+1)-GAMMA(17/24)) 7014017376135897 r005 Re(z^2+c),c=-7/10+67/236*I,n=45 7014017401146197 r008 a(0)=7,K{-n^6,-51-60*n-10*n^2+50*n^3} 7014017403758414 m001 (CopelandErdos+Trott2nd)/(BesselI(0,1)-Conway) 7014017411224901 m001 (DuboisRaymond+Otter)/(Zeta(5)-sin(1/5*Pi)) 7014017416031604 h001 (4/5*exp(1)+1/6)/(1/3*exp(2)+7/8) 7014017416981075 m005 (1/2*Zeta(3)+1/4)/(7/11*3^(1/2)+1/9) 7014017418670564 a001 2971215073/322*1364^(3/5) 7014017432375907 a007 Real Root Of -475*x^4-27*x^3-823*x^2+618*x+944 7014017441590700 r009 Im(z^3+c),c=-5/34+38/51*I,n=49 7014017455699550 q001 2652/3781 7014017469870771 g007 -Psi(2,10/11)-Psi(2,1/7)-2*Psi(2,3/4) 7014017475966096 a007 Real Root Of 993*x^4-322*x^3-977*x^2-410*x+639 7014017487845758 r008 a(0)=7,K{-n^6,-21+44*n^3-48*n^2-45*n} 7014017500210949 r008 a(0)=7,K{-n^6,-41-52*n+31*n^2-10*n^3} 7014017542509913 b008 69+Sqrt[13/10] 7014017559776561 m001 (ln(3)+Artin)/(Riemann2ndZero-Trott2nd) 7014017600397600 a007 Real Root Of -196*x^4+799*x^3-877*x^2+2*x+756 7014017602375283 r008 a(0)=7,K{-n^6,-26+43*n^3-72*n^2-21*n} 7014017606048143 r009 Im(z^3+c),c=-3/11+33/47*I,n=58 7014017610078499 r005 Im(z^2+c),c=15/106+32/53*I,n=51 7014017629713623 a003 sin(Pi*5/77)-sin(Pi*23/64) 7014017650174846 r008 a(0)=7,K{-n^6,-14+9*n^3-14*n^2-53*n} 7014017656397849 r009 Im(z^3+c),c=-17/70+42/59*I,n=36 7014017670001818 a001 14930208*1364^(8/15) 7014017692975597 a001 139583862445/322*521^(1/13) 7014017708335459 a001 123/17711*4052739537881^(5/9) 7014017717685226 a007 Real Root Of 942*x^4-511*x^3+309*x^2+240*x-388 7014017718165416 r009 Im(z^3+c),c=-7/19+41/64*I,n=32 7014017721561751 r008 a(0)=7,K{-n^6,-64+32*n^3+38*n^2-77*n} 7014017731591525 m006 (5/6*Pi^2-4/5)/(3/4*ln(Pi)+1/5) 7014017745906415 m001 1/FeigenbaumKappa*exp(CareFree)/GAMMA(5/12) 7014017753058525 a003 cos(Pi*17/56)-cos(Pi*35/106) 7014017768521064 a007 Real Root Of -903*x^4+725*x^3+145*x^2+507*x+753 7014017775692857 a003 sin(Pi*1/44)*sin(Pi*34/77) 7014017783879007 a007 Real Root Of 117*x^4+748*x^3-400*x^2+710*x-407 7014017793557783 r008 a(0)=7,K{-n^6,-22+77*n^3-76*n^2-50*n} 7014017804213393 a007 Real Root Of 960*x^4-35*x^3-698*x^2-342*x+363 7014017858220874 r008 a(0)=7,K{-n^6,-9-32*n-58*n^2+27*n^3} 7014017860175443 r008 a(0)=7,K{-n^6,17-59*n-57*n^2+25*n^3} 7014017874097248 l006 ln(1870/3771) 7014017882373024 r008 a(0)=7,K{-n^6,-33+31*n^3-82*n^2+12*n} 7014017885121851 a008 Real Root of (-9+8*x+2*x^2+8*x^4+8*x^8) 7014017888256907 m005 (1/2*Zeta(3)-5/11)/(8/11*Catalan-7/8) 7014017910321211 r008 a(0)=7,K{-n^6,-29+52*n^3-76*n^2-17*n} 7014017921333081 a001 7778742049/322*1364^(7/15) 7014017937070436 b008 7+BesselI[2,1/3] 7014017944555764 a001 5778/55*121393^(5/9) 7014017949031301 m006 (1/2*exp(Pi)-4)/(1/5*exp(2*Pi)+5/6) 7014017982482152 a007 Real Root Of 595*x^4-923*x^3-488*x^2-554*x-611 7014017999085730 m001 (-KomornikLoreti+MertensB3)/(GAMMA(3/4)-gamma) 7014018011049149 h001 (4/11*exp(1)+10/11)/(3/4*exp(1)+2/3) 7014018026402323 m001 ln(cos(Pi/12))^2*DuboisRaymond*sqrt(3)^2 7014018029483497 r002 7th iterates of z^2 + 7014018038380071 a001 64079/55*1597^(5/9) 7014018045111663 m001 GAMMA(17/24)*LaplaceLimit^2/ln(sqrt(5)) 7014018046048358 a007 Real Root Of -583*x^4+988*x^3-876*x^2-134*x+819 7014018053528635 p004 log(29803/14779) 7014018055813889 r005 Re(z^2+c),c=-13/12+113/127*I,n=2 7014018068130509 a007 Real Root Of -969*x^4+761*x^3+277*x^2+609*x+788 7014018081295045 p001 sum((-1)^n/(329*n+107)/n/(3^n),n=1..infinity) 7014018098717250 r008 a(0)=7,K{-n^6,-69+49*n^3-15*n^2-36*n} 7014018104552422 r008 a(0)=7,K{-n^6,-51-61*n-9*n^2+50*n^3} 7014018106510477 m001 FeigenbaumD*ln(Riemann1stZero)*Pi^2 7014018115318926 a007 Real Root Of -756*x^4+664*x^3+826*x^2+705*x-947 7014018126616924 m001 Zeta(1/2)*GAMMA(11/12)^2/exp(sin(1)) 7014018127371594 r008 a(0)=7,K{-n^6,-59+69*n^3-70*n^2-11*n} 7014018127641831 r009 Re(z^3+c),c=-9/70+33/50*I,n=24 7014018140874151 m001 ln((3^(1/3)))/Champernowne^2*cos(1)^2 7014018142625029 r008 a(0)=7,K{-n^6,-23+77*n^3-76*n^2-49*n} 7014018150610612 r008 a(0)=7,K{-n^6,-71+12*n^3+16*n^2-45*n} 7014018157653528 m001 (GAMMA(3/4)-ln(2+3^(1/2)))/(Cahen+Robbin) 7014018172664353 a001 12586269025/322*1364^(2/5) 7014018175360135 a003 sin(Pi*10/119)-sin(Pi*40/97) 7014018200329427 m005 (1/2*Pi+1/4)/(2/7*2^(1/2)-3) 7014018234568357 m005 (1/2*exp(1)-7/8)/(7/10*5^(1/2)-7/8) 7014018239999999 a001 144/2207*45537549124^(16/17) 7014018239999999 a001 144/2207*14662949395604^(16/21) 7014018239999999 a001 144/2207*(1/2+1/2*5^(1/2))^48 7014018239999999 a001 144/2207*192900153618^(8/9) 7014018239999999 a001 144/2207*73681302247^(12/13) 7014018240652173 a001 141/46*2537720636^(8/9) 7014018240652173 a001 141/46*312119004989^(8/11) 7014018240652173 a001 141/46*(1/2+1/2*5^(1/2))^40 7014018240652173 a001 141/46*23725150497407^(5/8) 7014018240652173 a001 141/46*73681302247^(10/13) 7014018240652173 a001 141/46*28143753123^(4/5) 7014018240652173 a001 141/46*10749957122^(5/6) 7014018240652173 a001 141/46*4106118243^(20/23) 7014018240652173 a001 141/46*1568397607^(10/11) 7014018240652173 a001 141/46*599074578^(20/21) 7014018249497615 m001 exp(arctan(1/2))^2/GolombDickman/gamma 7014018251575788 a005 (1/sin(64/153*Pi))^1372 7014018261930988 m001 (3^(1/3)+GAMMA(5/6))/(Otter+Rabbit) 7014018270411574 a003 sin(Pi*4/79)-sin(Pi*28/85) 7014018271275505 a001 13/3*322^(27/56) 7014018283303557 r005 Re(z^2+c),c=-113/114+3/64*I,n=4 7014018314796857 r009 Im(z^3+c),c=-23/66+45/64*I,n=21 7014018323103211 r008 a(0)=7,K{-n^6,-53-45*n+17*n^2+7*n^3} 7014018357603176 m001 (Otter-TwinPrimes)/(GAMMA(5/6)-Backhouse) 7014018384700105 m001 1/MadelungNaCl*ln(ErdosBorwein)*Sierpinski 7014018410121626 a007 Real Root Of -723*x^4+233*x^3-748*x^2-126*x+535 7014018418694346 r008 a(0)=7,K{-n^6,-64+32*n^3+39*n^2-78*n} 7014018423995634 a001 10182505537/161*1364^(1/3) 7014018454237874 m002 -(E^Pi*Pi^3)+15*ProductLog[Pi] 7014018464703513 a007 Real Root Of 816*x^4+101*x^3-526*x^2-691*x+51 7014018468695339 r008 a(0)=7,K{-n^6,-40+62*n^3-39*n^2-54*n} 7014018483668000 a007 Real Root Of 157*x^4-35*x^3+936*x^2+467*x-183 7014018486818041 r002 7th iterates of z^2 + 7014018499511472 r009 Re(z^3+c),c=-63/122+5/52*I,n=40 7014018527721233 r002 11th iterates of z^2 + 7014018530719991 a007 Real Root Of 423*x^4-513*x^3-599*x^2-421*x-280 7014018558801182 m001 (exp(1)+ln(2))/(DuboisRaymond+FeigenbaumDelta) 7014018577492800 r005 Im(z^2+c),c=-37/66+3/23*I,n=21 7014018582744766 a007 Real Root Of 619*x^4-830*x^3+830*x^2+678*x-369 7014018600088351 a007 Real Root Of 842*x^4-259*x^3-454*x^2-850*x-666 7014018616748568 m001 ((3^(1/3))-Khinchin)/sqrt(Pi) 7014018616748568 m001 (3^(1/3)-Khinchin)/Pi^(1/2) 7014018619198792 l006 ln(3559/7177) 7014018619198792 p004 log(7177/3559) 7014018671444728 r008 a(0)=7,K{-n^6,-8-48*n-51*n^2+34*n^3} 7014018675326924 a001 32951280099/322*1364^(4/15) 7014018681081481 r008 a(0)=7,K{-n^6,-29+25*n^3-22*n^2-49*n} 7014018686291437 r005 Re(z^2+c),c=-9/70+27/32*I,n=47 7014018691588785 q001 1501/2140 7014018706112854 a001 121393/29*2^(35/47) 7014018747841448 r008 a(0)=7,K{-n^6,-67+25*n^3+59*n^2-88*n} 7014018766866078 a001 3571/121393*233^(32/55) 7014018769806673 a007 Real Root Of -616*x^4+273*x^3-538*x^2-335*x+273 7014018793972845 a001 341/646*7778742049^(6/19) 7014018793974225 a001 2889/305*832040^(6/19) 7014018801776927 r008 a(0)=7,K{-n^6,-55+57*n^3-31*n^2-42*n} 7014018825324397 a007 Real Root Of 573*x^4-779*x^3-546*x^2-46*x+431 7014018825804073 m001 (Lehmer-StronglyCareFree)/(gamma(1)+Khinchin) 7014018830239530 r008 a(0)=7,K{-n^6,-23+77*n^3-75*n^2-50*n} 7014018857161678 m001 gamma^(Porter*TreeGrowth2nd) 7014018857464689 m001 ln(GAMMA(19/24))^2/Si(Pi)^2*Zeta(1,2) 7014018863575230 r005 Re(z^2+c),c=13/90+31/56*I,n=38 7014018870993192 r009 Re(z^3+c),c=-5/46+31/43*I,n=4 7014018882064833 r005 Re(z^2+c),c=-3/34+15/19*I,n=53 7014018902585388 a007 Real Root Of -453*x^4+819*x^3-247*x^2-972*x-168 7014018917494848 r008 a(0)=7,K{-n^6,-9-n^3+19*n^2-81*n} 7014018917665735 m005 (1/2*5^(1/2)-3/10)/(6/11*Catalan+2/3) 7014018921605164 r008 a(0)=7,K{-n^6,-42-51*n+31*n^2-10*n^3} 7014018926658222 a001 53316291173/322*1364^(1/5) 7014018938876783 m001 1/OneNinth^2*exp(Riemann2ndZero)^2/sqrt(5) 7014018962979604 m001 (gamma(2)+FransenRobinson)/(PlouffeB-ZetaP(4)) 7014018965731051 m001 (Champernowne+Robbin)/(Psi(1,1/3)+ln(3)) 7014018973577012 r005 Im(z^2+c),c=-25/44+7/55*I,n=59 7014019010562181 l006 ln(2381/2554) 7014019024086332 a007 Real Root Of 745*x^4-900*x^3+568*x^2+575*x-367 7014019028970800 a007 Real Root Of -417*x^4+702*x^3+372*x^2+677*x+635 7014019029996708 m001 (MertensB3+PrimesInBinary)/(Catalan-Magata) 7014019041421371 r002 8th iterates of z^2 + 7014019073482126 m002 Cosh[Pi]+Pi^3*Log[Pi]+E^Pi*Tanh[Pi] 7014019080125465 m001 (FeigenbaumD-ln(2)/ln(10))/(-Magata+Trott) 7014019099709714 r009 Re(z^3+c),c=-29/52+23/50*I,n=63 7014019101166577 r005 Im(z^2+c),c=4/29+17/27*I,n=41 7014019103256995 a007 Real Root Of 749*x^4-587*x^3+420*x^2-893*x+441 7014019104821428 a007 Real Root Of 441*x^4+714*x^3+625*x^2-830*x-750 7014019106251653 a007 Real Root Of -616*x^4+204*x^3+316*x^2+412*x+353 7014019122408021 a007 Real Root Of -507*x^4+287*x^3-817*x^2+230*x+785 7014019129968691 a001 1120138855056/1597 7014019136630660 r008 a(0)=7,K{-n^6,-38+51*n^3-4*n^2-80*n} 7014019162975884 a001 14619165/46*3571^(16/17) 7014019177989530 a001 43133785636/161*1364^(2/15) 7014019182315644 a003 sin(Pi*25/119)-sin(Pi*17/71) 7014019182541827 a007 Real Root Of 858*x^4-228*x^3-x^2-254*x-464 7014019193945896 a007 Real Root Of -743*x^4-235*x^3-895*x^2-318*x+316 7014019195330651 a001 165580141/322*3571^(15/17) 7014019202286303 m005 (1/2*Catalan+1/11)/(19/110+3/11*5^(1/2)) 7014019227685418 a001 133957148/161*3571^(14/17) 7014019232417726 r005 Im(z^2+c),c=-35/62+8/63*I,n=64 7014019233363422 a007 Real Root Of -514*x^4+886*x^3-554*x^2-413*x+413 7014019236567355 a001 9349/317811*233^(32/55) 7014019248257016 b008 1/3+20*E^(5/4) 7014019260040185 a001 433494437/322*3571^(13/17) 7014019266445916 a007 Real Root Of 308*x^4-297*x^3+412*x^2+798*x+180 7014019273680749 m002 5+2/Pi^5+2*Coth[Pi] 7014019274993047 m001 AlladiGrinstead-ln(5)+Paris 7014019278256544 m005 (1/2*Zeta(3)-7/9)/(1/9*3^(1/2)-4/9) 7014019292394953 a001 701408733/322*3571^(12/17) 7014019305095848 a001 6119/208010*233^(32/55) 7014019315094020 a001 64079/2178309*233^(32/55) 7014019321273231 a001 39603/1346269*233^(32/55) 7014019324749720 a001 567451585/161*3571^(11/17) 7014019341744676 r005 Im(z^2+c),c=-41/60+8/55*I,n=39 7014019347448786 a001 15127/514229*233^(32/55) 7014019347615010 m001 ln(cos(Pi/5))*DuboisRaymond/sin(Pi/5) 7014019357104488 a001 1836311903/322*3571^(10/17) 7014019364880577 m005 (-7/4+1/4*5^(1/2))/(4/9*3^(1/2)-3/5) 7014019389459256 a001 2971215073/322*3571^(9/17) 7014019393608276 a007 Real Root Of -641*x^4+295*x^3-90*x^2-793*x-255 7014019405036173 r008 a(0)=7,K{-n^6,-25+61*n-45*n^2+12*n^3} 7014019411850464 a007 Real Root Of -444*x^4+865*x^3-483*x^2+532*x+40 7014019412569954 p001 sum((-1)^n/(424*n+163)/n/(24^n),n=1..infinity) 7014019421814024 a001 14930208*3571^(8/17) 7014019429320847 a001 139583862445/322*1364^(1/15) 7014019434796626 m004 -E^(Sqrt[5]*Pi)/2+90*Sqrt[5]*Pi 7014019441142880 r008 a(0)=7,K{-n^6,-69+35*n^3+29*n^2-66*n} 7014019444148335 l006 ln(1689/3406) 7014019454168792 a001 7778742049/322*3571^(7/17) 7014019463910490 r008 a(0)=7,K{-n^6,-69+50*n^3-16*n^2-36*n} 7014019469315423 r008 a(0)=7,K{-n^6,-51-61*n-10*n^2+51*n^3} 7014019469906542 a001 8/321*312119004989^(10/11) 7014019469906542 a001 8/321*(1/2+1/2*5^(1/2))^50 7014019469906542 a001 8/321*3461452808002^(5/6) 7014019470559005 a001 1292/161*817138163596^(2/3) 7014019470559005 a001 1292/161*(1/2+1/2*5^(1/2))^38 7014019470559005 a001 1292/161*10749957122^(19/24) 7014019470559005 a001 1292/161*4106118243^(19/23) 7014019470559005 a001 1292/161*1568397607^(19/22) 7014019470559005 a001 1292/161*599074578^(19/21) 7014019470559005 a001 1292/161*228826127^(19/20) 7014019471334844 r008 a(0)=7,K{-n^6,-60-50*n+21*n^2+9*n^3} 7014019486523560 a001 12586269025/322*3571^(6/17) 7014019489480987 m001 exp(LaplaceLimit)^2/Kolakoski^2*Salem 7014019490245745 g002 Psi(5/11)+Psi(5/7)-Psi(8/11)-Psi(3/5) 7014019498456897 r005 Im(z^2+c),c=-3/17+19/21*I,n=8 7014019518878329 a001 10182505537/161*3571^(5/17) 7014019526858709 a001 2889/98209*233^(32/55) 7014019535686785 m001 GAMMA(1/24)/CareFree/exp(GAMMA(7/24))^2 7014019551233097 a001 32951280099/322*3571^(4/17) 7014019571892253 a007 Real Root Of 957*x^4-260*x^3+466*x^2+852*x+47 7014019583587866 a001 53316291173/322*3571^(3/17) 7014019599751255 a001 2932561594656/4181 7014019604627325 a001 39088169/322*9349^(18/19) 7014019608850929 a001 31622993/161*9349^(17/19) 7014019613074531 a001 14619165/46*9349^(16/19) 7014019615942635 a001 43133785636/161*3571^(2/17) 7014019617298134 a001 165580141/322*9349^(15/19) 7014019621521737 a001 133957148/161*9349^(14/19) 7014019625745339 a001 433494437/322*9349^(13/19) 7014019629968942 a001 701408733/322*9349^(12/19) 7014019634192545 a001 567451585/161*9349^(11/19) 7014019638416147 a001 1836311903/322*9349^(10/19) 7014019639366427 r005 Im(z^2+c),c=15/46+17/38*I,n=6 7014019642639750 a001 2971215073/322*9349^(9/19) 7014019646863352 a001 14930208*9349^(8/19) 7014019648297404 a001 139583862445/322*3571^(1/17) 7014019649347524 a001 144/15127*(1/2+1/2*5^(1/2))^52 7014019649347524 a001 144/15127*23725150497407^(13/16) 7014019649347524 a001 144/15127*505019158607^(13/14) 7014019649999993 a001 6765/322*141422324^(12/13) 7014019649999993 a001 6765/322*2537720636^(4/5) 7014019649999993 a001 6765/322*45537549124^(12/17) 7014019649999993 a001 6765/322*14662949395604^(4/7) 7014019649999993 a001 6765/322*(1/2+1/2*5^(1/2))^36 7014019649999993 a001 6765/322*505019158607^(9/14) 7014019649999993 a001 6765/322*192900153618^(2/3) 7014019649999993 a001 6765/322*73681302247^(9/13) 7014019649999993 a001 6765/322*10749957122^(3/4) 7014019649999993 a001 6765/322*4106118243^(18/23) 7014019649999993 a001 6765/322*1568397607^(9/11) 7014019649999993 a001 6765/322*599074578^(6/7) 7014019649999993 a001 6765/322*228826127^(9/10) 7014019649999994 a001 6765/322*87403803^(18/19) 7014019650294890 r002 28th iterates of z^2 + 7014019651086955 a001 7778742049/322*9349^(7/19) 7014019655310558 a001 12586269025/322*9349^(6/19) 7014019658741552 r005 Im(z^2+c),c=13/48+17/36*I,n=60 7014019659534160 a001 10182505537/161*9349^(5/19) 7014019663757763 a001 32951280099/322*9349^(4/19) 7014019667750794 a008 Real Root of (-5+2*x+x^2+5*x^3+5*x^4+x^5) 7014019667981366 a001 53316291173/322*9349^(3/19) 7014019668291613 a001 3838772964456/5473 7014019669501604 a001 7465176/161*24476^(20/21) 7014019670059141 a001 24157817/322*24476^(19/21) 7014019670616666 a001 39088169/322*24476^(6/7) 7014019671174195 a001 31622993/161*24476^(17/21) 7014019671731723 a001 14619165/46*24476^(16/21) 7014019672204968 a001 43133785636/161*9349^(2/19) 7014019672289251 a001 165580141/322*24476^(5/7) 7014019672846779 a001 133957148/161*24476^(2/3) 7014019673404308 a001 433494437/322*24476^(13/21) 7014019673568404 a007 Real Root Of 279*x^4-401*x^3+51*x^2+633*x+213 7014019673961836 a001 701408733/322*24476^(4/7) 7014019674519364 a001 567451585/161*24476^(11/21) 7014019675076892 a001 1836311903/322*24476^(10/21) 7014019675527611 a001 48/13201*14662949395604^(6/7) 7014019675527611 a001 48/13201*(1/2+1/2*5^(1/2))^54 7014019675634420 a001 2971215073/322*24476^(3/7) 7014019676180081 a001 17711/322*45537549124^(2/3) 7014019676180081 a001 17711/322*(1/2+1/2*5^(1/2))^34 7014019676180081 a001 17711/322*10749957122^(17/24) 7014019676180081 a001 17711/322*4106118243^(17/23) 7014019676180081 a001 17711/322*1568397607^(17/22) 7014019676180081 a001 17711/322*599074578^(17/21) 7014019676180081 a001 17711/322*228826127^(17/20) 7014019676180081 a001 17711/322*87403803^(17/19) 7014019676180087 a001 17711/322*33385282^(17/18) 7014019676191948 a001 14930208*24476^(8/21) 7014019676428571 a001 139583862445/322*9349^(1/19) 7014019676525883 b008 7+ArcCoth[6]/12 7014019676749476 a001 7778742049/322*24476^(1/3) 7014019677307005 a001 12586269025/322*24476^(2/7) 7014019677864533 a001 10182505537/161*24476^(5/21) 7014019678291516 a001 20100076192080/28657 7014019678422061 a001 32951280099/322*24476^(4/21) 7014019678979589 a001 53316291173/322*24476^(1/7) 7014019679018212 a001 5702887/322*64079^(22/23) 7014019679092540 a001 9227465/322*64079^(21/23) 7014019679166787 a001 7465176/161*64079^(20/23) 7014019679241064 a001 24157817/322*64079^(19/23) 7014019679315330 a001 39088169/322*64079^(18/23) 7014019679347234 a001 72/51841*14662949395604^(8/9) 7014019679347234 a001 72/51841*(1/2+1/2*5^(1/2))^56 7014019679389600 a001 31622993/161*64079^(17/23) 7014019679463869 a001 14619165/46*64079^(16/23) 7014019679537117 a001 43133785636/161*24476^(2/21) 7014019679538138 a001 165580141/322*64079^(15/23) 7014019679612407 a001 133957148/161*64079^(14/23) 7014019679686676 a001 433494437/322*64079^(13/23) 7014019679750483 a001 52622682647328/75025 7014019679760945 a001 701408733/322*64079^(12/23) 7014019679835214 a001 567451585/161*64079^(11/23) 7014019679904510 a001 48/90481*(1/2+1/2*5^(1/2))^58 7014019679909483 a001 1836311903/322*64079^(10/23) 7014019679963343 a001 68883985874952/98209 7014019679983752 a001 2971215073/322*64079^(9/23) 7014019679985815 a001 144/710647*14662949395604^(20/21) 7014019679985815 a001 144/710647*(1/2+1/2*5^(1/2))^60 7014019679994399 a001 360681232602384/514229 7014019679997678 a001 8/103361*(1/2+1/2*5^(1/2))^62 7014019679998930 a001 944275726057248/1346269 7014019679999408 a001 144/4870847*(1/2+1/2*5^(1/2))^64 7014019679999704 a001 144*(1/2+1/2*5^(1/2))^32 7014019679999704 a001 144*23725150497407^(1/2) 7014019679999704 a001 144*505019158607^(4/7) 7014019679999704 a001 144*73681302247^(8/13) 7014019679999704 a001 144*10749957122^(2/3) 7014019679999704 a001 144*4106118243^(16/23) 7014019679999704 a001 144*1568397607^(8/11) 7014019679999704 a001 144*599074578^(16/21) 7014019679999704 a001 144*228826127^(4/5) 7014019679999705 a001 144*87403803^(16/19) 7014019679999709 a001 144*33385282^(8/9) 7014019679999744 a001 144*12752043^(16/17) 7014019680000478 a001 144/3010349*(1/2+1/2*5^(1/2))^63 7014019680001730 a001 72949311681858/104005 7014019680005009 a001 144/1149851*(1/2+1/2*5^(1/2))^61 7014019680013592 a001 74304420284160/105937 7014019680036065 a001 36/109801*(1/2+1/2*5^(1/2))^59 7014019680058021 a001 14930208*64079^(8/23) 7014019680094645 a001 139583862445/322*24476^(1/21) 7014019680094898 a001 85145289102576/121393 7014019680132290 a001 7778742049/322*64079^(7/23) 7014019680206559 a001 12586269025/322*64079^(6/23) 7014019680248925 a001 144/167761*14662949395604^(19/21) 7014019680248925 a001 144/167761*(1/2+1/2*5^(1/2))^57 7014019680280828 a001 10182505537/161*64079^(5/23) 7014019680355097 a001 32951280099/322*64079^(4/23) 7014019680429366 a001 53316291173/322*64079^(3/23) 7014019680452790 a001 7465176/161*167761^(4/5) 7014019680502641 a001 165580141/322*167761^(3/5) 7014019680503635 a001 43133785636/161*64079^(2/23) 7014019680552485 a001 1836311903/322*167761^(2/5) 7014019680556877 a001 121393/322*7881196^(10/11) 7014019680556965 a001 121393/322*20633239^(6/7) 7014019680556979 a001 121393/322*141422324^(10/13) 7014019680556979 a001 121393/322*2537720636^(2/3) 7014019680556979 a001 121393/322*45537549124^(10/17) 7014019680556979 a001 121393/322*312119004989^(6/11) 7014019680556979 a001 121393/322*14662949395604^(10/21) 7014019680556979 a001 121393/322*(1/2+1/2*5^(1/2))^30 7014019680556979 a001 121393/322*192900153618^(5/9) 7014019680556979 a001 121393/322*28143753123^(3/5) 7014019680556979 a001 121393/322*10749957122^(5/8) 7014019680556979 a001 121393/322*4106118243^(15/23) 7014019680556979 a001 121393/322*1568397607^(15/22) 7014019680556979 a001 121393/322*599074578^(5/7) 7014019680556979 a001 121393/322*228826127^(3/4) 7014019680556980 a001 121393/322*87403803^(15/19) 7014019680556985 a001 121393/322*33385282^(5/6) 7014019680557017 a001 121393/322*12752043^(15/17) 7014019680557257 a001 121393/322*4870847^(15/16) 7014019680577904 a001 139583862445/322*64079^(1/23) 7014019680602329 a001 10182505537/161*167761^(1/5) 7014019680619557 a001 311187/46*439204^(8/9) 7014019680623909 a001 9227465/322*439204^(7/9) 7014019680627932 a001 39088169/322*439204^(2/3) 7014019680631973 a001 165580141/322*439204^(5/9) 7014019680636013 a001 701408733/322*439204^(4/9) 7014019680638272 a001 317811/322*20633239^(4/5) 7014019680638285 a001 317811/322*17393796001^(4/7) 7014019680638285 a001 317811/322*14662949395604^(4/9) 7014019680638285 a001 317811/322*(1/2+1/2*5^(1/2))^28 7014019680638285 a001 317811/322*505019158607^(1/2) 7014019680638285 a001 317811/322*73681302247^(7/13) 7014019680638285 a001 317811/322*10749957122^(7/12) 7014019680638285 a001 317811/322*4106118243^(14/23) 7014019680638285 a001 317811/322*1568397607^(7/11) 7014019680638285 a001 317811/322*599074578^(2/3) 7014019680638285 a001 317811/322*228826127^(7/10) 7014019680638285 a001 317811/322*87403803^(14/19) 7014019680638290 a001 317811/322*33385282^(7/9) 7014019680638320 a001 317811/322*12752043^(14/17) 7014019680638543 a001 317811/322*4870847^(7/8) 7014019680640053 a001 2971215073/322*439204^(1/3) 7014019680640176 a001 317811/322*1860498^(14/15) 7014019680644093 a001 12586269025/322*439204^(2/9) 7014019680648133 a001 53316291173/322*439204^(1/9) 7014019680650147 a001 416020/161*141422324^(2/3) 7014019680650147 a001 416020/161*(1/2+1/2*5^(1/2))^26 7014019680650147 a001 416020/161*73681302247^(1/2) 7014019680650147 a001 416020/161*10749957122^(13/24) 7014019680650147 a001 416020/161*4106118243^(13/23) 7014019680650147 a001 416020/161*1568397607^(13/22) 7014019680650147 a001 416020/161*599074578^(13/21) 7014019680650147 a001 416020/161*228826127^(13/20) 7014019680650148 a001 416020/161*87403803^(13/19) 7014019680650152 a001 416020/161*33385282^(13/18) 7014019680650180 a001 416020/161*12752043^(13/17) 7014019680650387 a001 416020/161*4870847^(13/16) 7014019680651796 a001 311187/46*7881196^(8/11) 7014019680651878 a001 311187/46*141422324^(8/13) 7014019680651878 a001 311187/46*2537720636^(8/15) 7014019680651878 a001 311187/46*45537549124^(8/17) 7014019680651878 a001 311187/46*14662949395604^(8/21) 7014019680651878 a001 311187/46*(1/2+1/2*5^(1/2))^24 7014019680651878 a001 311187/46*192900153618^(4/9) 7014019680651878 a001 311187/46*73681302247^(6/13) 7014019680651878 a001 311187/46*10749957122^(1/2) 7014019680651878 a001 311187/46*4106118243^(12/23) 7014019680651878 a001 311187/46*1568397607^(6/11) 7014019680651878 a001 311187/46*599074578^(4/7) 7014019680651878 a001 311187/46*228826127^(3/5) 7014019680651878 a001 311187/46*87403803^(12/19) 7014019680651882 a001 311187/46*33385282^(2/3) 7014019680651903 a001 416020/161*1860498^(13/15) 7014019680651908 a001 311187/46*12752043^(12/17) 7014019680652055 a001 5702887/322*7881196^(2/3) 7014019680652100 a001 311187/46*4870847^(3/4) 7014019680652111 a001 39088169/322*7881196^(6/11) 7014019680652118 a001 9227465/322*7881196^(7/11) 7014019680652122 a001 165580141/322*7881196^(5/11) 7014019680652130 a001 5702887/322*312119004989^(2/5) 7014019680652130 a001 5702887/322*(1/2+1/2*5^(1/2))^22 7014019680652130 a001 5702887/322*10749957122^(11/24) 7014019680652130 a001 5702887/322*4106118243^(11/23) 7014019680652130 a001 5702887/322*1568397607^(1/2) 7014019680652130 a001 5702887/322*599074578^(11/21) 7014019680652130 a001 5702887/322*228826127^(11/20) 7014019680652131 a001 5702887/322*87403803^(11/19) 7014019680652132 a001 701408733/322*7881196^(4/11) 7014019680652134 a001 5702887/322*33385282^(11/18) 7014019680652136 a001 567451585/161*7881196^(1/3) 7014019680652143 a001 2971215073/322*7881196^(3/11) 7014019680652153 a001 12586269025/322*7881196^(2/11) 7014019680652158 a001 7465176/161*20633239^(4/7) 7014019680652158 a001 5702887/322*12752043^(11/17) 7014019680652163 a001 53316291173/322*7881196^(1/11) 7014019680652166 a001 165580141/322*20633239^(3/7) 7014019680652167 a001 133957148/161*20633239^(2/5) 7014019680652167 a001 7465176/161*2537720636^(4/9) 7014019680652167 a001 7465176/161*(1/2+1/2*5^(1/2))^20 7014019680652167 a001 7465176/161*23725150497407^(5/16) 7014019680652167 a001 7465176/161*505019158607^(5/14) 7014019680652167 a001 7465176/161*73681302247^(5/13) 7014019680652167 a001 7465176/161*28143753123^(2/5) 7014019680652167 a001 7465176/161*10749957122^(5/12) 7014019680652167 a001 7465176/161*4106118243^(10/23) 7014019680652167 a001 7465176/161*1568397607^(5/11) 7014019680652167 a001 7465176/161*599074578^(10/21) 7014019680652167 a001 7465176/161*228826127^(1/2) 7014019680652168 a001 7465176/161*87403803^(10/19) 7014019680652169 a001 1836311903/322*20633239^(2/7) 7014019680652170 a001 7778742049/322*20633239^(1/5) 7014019680652171 a001 7465176/161*33385282^(5/9) 7014019680652171 a001 10182505537/161*20633239^(1/7) 7014019680652172 a001 39088169/322*141422324^(6/13) 7014019680652172 a001 39088169/322*2537720636^(2/5) 7014019680652172 a001 39088169/322*45537549124^(6/17) 7014019680652172 a001 39088169/322*14662949395604^(2/7) 7014019680652172 a001 39088169/322*(1/2+1/2*5^(1/2))^18 7014019680652172 a001 39088169/322*192900153618^(1/3) 7014019680652172 a001 39088169/322*10749957122^(3/8) 7014019680652172 a001 39088169/322*4106118243^(9/23) 7014019680652172 a001 39088169/322*1568397607^(9/22) 7014019680652173 a001 39088169/322*599074578^(3/7) 7014019680652173 a001 39088169/322*228826127^(9/20) 7014019680652173 a001 39088169/322*87403803^(9/19) 7014019680652173 a001 14619165/46*(1/2+1/2*5^(1/2))^16 7014019680652173 a001 14619165/46*23725150497407^(1/4) 7014019680652173 a001 14619165/46*73681302247^(4/13) 7014019680652173 a001 14619165/46*10749957122^(1/3) 7014019680652173 a001 14619165/46*4106118243^(8/23) 7014019680652173 a001 14619165/46*1568397607^(4/11) 7014019680652173 a001 14619165/46*599074578^(8/21) 7014019680652173 a001 701408733/322*141422324^(4/13) 7014019680652173 a001 433494437/322*141422324^(1/3) 7014019680652173 a001 165580141/322*141422324^(5/13) 7014019680652173 a001 2971215073/322*141422324^(3/13) 7014019680652173 a001 14619165/46*228826127^(2/5) 7014019680652173 a001 12586269025/322*141422324^(2/13) 7014019680652173 a001 53316291173/322*141422324^(1/13) 7014019680652173 a001 133957148/161*17393796001^(2/7) 7014019680652173 a001 133957148/161*14662949395604^(2/9) 7014019680652173 a001 133957148/161*(1/2+1/2*5^(1/2))^14 7014019680652173 a001 133957148/161*505019158607^(1/4) 7014019680652173 a001 133957148/161*10749957122^(7/24) 7014019680652173 a001 133957148/161*4106118243^(7/23) 7014019680652173 a001 133957148/161*1568397607^(7/22) 7014019680652173 a001 133957148/161*599074578^(1/3) 7014019680652173 a001 701408733/322*2537720636^(4/15) 7014019680652173 a001 701408733/322*45537549124^(4/17) 7014019680652173 a001 701408733/322*817138163596^(4/19) 7014019680652173 a001 701408733/322*14662949395604^(4/21) 7014019680652173 a001 701408733/322*(1/2+1/2*5^(1/2))^12 7014019680652173 a001 701408733/322*192900153618^(2/9) 7014019680652173 a001 701408733/322*73681302247^(3/13) 7014019680652173 a001 701408733/322*10749957122^(1/4) 7014019680652173 a001 701408733/322*4106118243^(6/23) 7014019680652173 a001 701408733/322*1568397607^(3/11) 7014019680652173 a001 1836311903/322*2537720636^(2/9) 7014019680652173 a001 1836311903/322*312119004989^(2/11) 7014019680652173 a001 1836311903/322*(1/2+1/2*5^(1/2))^10 7014019680652173 a001 1836311903/322*28143753123^(1/5) 7014019680652173 a001 1836311903/322*10749957122^(5/24) 7014019680652173 a001 1836311903/322*4106118243^(5/23) 7014019680652173 a001 12586269025/322*2537720636^(2/15) 7014019680652173 a001 10182505537/161*2537720636^(1/9) 7014019680652173 a001 53316291173/322*2537720636^(1/15) 7014019680652173 a001 14930208*(1/2+1/2*5^(1/2))^8 7014019680652173 a001 14930208*23725150497407^(1/8) 7014019680652173 a001 14930208*505019158607^(1/7) 7014019680652173 a001 14930208*73681302247^(2/13) 7014019680652173 a001 2971215073/322*2537720636^(1/5) 7014019680652173 a001 14930208*10749957122^(1/6) 7014019680652173 a001 12586269025/322*45537549124^(2/17) 7014019680652173 a001 12586269025/322*14662949395604^(2/21) 7014019680652173 a001 12586269025/322*(1/2+1/2*5^(1/2))^6 7014019680652173 a001 32951280099/322*(1/2+1/2*5^(1/2))^4 7014019680652173 a001 32951280099/322*23725150497407^(1/16) 7014019680652173 a001 12586269025/322*10749957122^(1/8) 7014019680652173 a001 32951280099/322*73681302247^(1/13) 7014019680652173 a001 43133785636/161*(1/2+1/2*5^(1/2))^2 7014019680652173 a001 139583862445/644+139583862445/644*5^(1/2) 7014019680652173 a001 53316291173/322*45537549124^(1/17) 7014019680652173 a001 53316291173/322*14662949395604^(1/21) 7014019680652173 a001 53316291173/322*(1/2+1/2*5^(1/2))^3 7014019680652173 a001 53316291173/322*192900153618^(1/18) 7014019680652173 a001 43133785636/161*10749957122^(1/24) 7014019680652173 a001 10182505537/161*312119004989^(1/11) 7014019680652173 a001 10182505537/161*(1/2+1/2*5^(1/2))^5 7014019680652173 a001 32951280099/322*10749957122^(1/12) 7014019680652173 a001 10182505537/161*28143753123^(1/10) 7014019680652173 a001 53316291173/322*10749957122^(1/16) 7014019680652173 a001 14930208*4106118243^(4/23) 7014019680652173 a001 43133785636/161*4106118243^(1/23) 7014019680652173 a001 7778742049/322*17393796001^(1/7) 7014019680652173 a001 7778742049/322*14662949395604^(1/9) 7014019680652173 a001 7778742049/322*(1/2+1/2*5^(1/2))^7 7014019680652173 a001 32951280099/322*4106118243^(2/23) 7014019680652173 a001 12586269025/322*4106118243^(3/23) 7014019680652173 a001 43133785636/161*1568397607^(1/22) 7014019680652173 a001 2971215073/322*45537549124^(3/17) 7014019680652173 a001 2971215073/322*817138163596^(3/19) 7014019680652173 a001 2971215073/322*14662949395604^(1/7) 7014019680652173 a001 2971215073/322*(1/2+1/2*5^(1/2))^9 7014019680652173 a001 2971215073/322*192900153618^(1/6) 7014019680652173 a001 2971215073/322*10749957122^(3/16) 7014019680652173 a001 1836311903/322*1568397607^(5/22) 7014019680652173 a001 32951280099/322*1568397607^(1/11) 7014019680652173 a001 12586269025/322*1568397607^(3/22) 7014019680652173 a001 14930208*1568397607^(2/11) 7014019680652173 a001 43133785636/161*599074578^(1/21) 7014019680652173 a001 567451585/161*312119004989^(1/5) 7014019680652173 a001 567451585/161*(1/2+1/2*5^(1/2))^11 7014019680652173 a001 53316291173/322*599074578^(1/14) 7014019680652173 a001 567451585/161*1568397607^(1/4) 7014019680652173 a001 32951280099/322*599074578^(2/21) 7014019680652173 a001 701408733/322*599074578^(2/7) 7014019680652173 a001 12586269025/322*599074578^(1/7) 7014019680652173 a001 7778742049/322*599074578^(1/6) 7014019680652173 a001 14930208*599074578^(4/21) 7014019680652173 a001 1836311903/322*599074578^(5/21) 7014019680652173 a001 2971215073/322*599074578^(3/14) 7014019680652173 a001 43133785636/161*228826127^(1/20) 7014019680652173 a001 433494437/322*(1/2+1/2*5^(1/2))^13 7014019680652173 a001 433494437/322*73681302247^(1/4) 7014019680652173 a001 32951280099/322*228826127^(1/10) 7014019680652173 a001 10182505537/161*228826127^(1/8) 7014019680652173 a001 12586269025/322*228826127^(3/20) 7014019680652173 a001 14930208*228826127^(1/5) 7014019680652173 a001 133957148/161*228826127^(7/20) 7014019680652173 a001 1836311903/322*228826127^(1/4) 7014019680652173 a001 701408733/322*228826127^(3/10) 7014019680652173 a001 43133785636/161*87403803^(1/19) 7014019680652173 a001 165580141/322*2537720636^(1/3) 7014019680652173 a001 165580141/322*45537549124^(5/17) 7014019680652173 a001 165580141/322*312119004989^(3/11) 7014019680652173 a001 165580141/322*14662949395604^(5/21) 7014019680652173 a001 165580141/322*(1/2+1/2*5^(1/2))^15 7014019680652173 a001 165580141/322*192900153618^(5/18) 7014019680652173 a001 165580141/322*28143753123^(3/10) 7014019680652173 a001 165580141/322*10749957122^(5/16) 7014019680652173 a001 165580141/322*599074578^(5/14) 7014019680652174 a001 32951280099/322*87403803^(2/19) 7014019680652174 a001 165580141/322*228826127^(3/8) 7014019680652174 a001 12586269025/322*87403803^(3/19) 7014019680652174 a001 14930208*87403803^(4/19) 7014019680652174 a001 1836311903/322*87403803^(5/19) 7014019680652174 a001 14619165/46*87403803^(8/19) 7014019680652174 a001 701408733/322*87403803^(6/19) 7014019680652174 a001 133957148/161*87403803^(7/19) 7014019680652174 a001 43133785636/161*33385282^(1/18) 7014019680652174 a001 31622993/161*45537549124^(1/3) 7014019680652174 a001 31622993/161*(1/2+1/2*5^(1/2))^17 7014019680652174 a001 53316291173/322*33385282^(1/12) 7014019680652174 a001 32951280099/322*33385282^(1/9) 7014019680652174 a001 12586269025/322*33385282^(1/6) 7014019680652175 a001 14930208*33385282^(2/9) 7014019680652175 a001 2971215073/322*33385282^(1/4) 7014019680652175 a001 1836311903/322*33385282^(5/18) 7014019680652176 a001 701408733/322*33385282^(1/3) 7014019680652176 a001 39088169/322*33385282^(1/2) 7014019680652176 a001 24157817/322*817138163596^(1/3) 7014019680652176 a001 24157817/322*(1/2+1/2*5^(1/2))^19 7014019680652176 a001 133957148/161*33385282^(7/18) 7014019680652176 a001 43133785636/161*12752043^(1/17) 7014019680652176 a001 14619165/46*33385282^(4/9) 7014019680652176 a001 165580141/322*33385282^(5/12) 7014019680652176 a001 24157817/322*87403803^(1/2) 7014019680652178 a001 32951280099/322*12752043^(2/17) 7014019680652180 a001 9227465/322*20633239^(3/5) 7014019680652181 a001 12586269025/322*12752043^(3/17) 7014019680652184 a001 14930208*12752043^(4/17) 7014019680652186 a001 1836311903/322*12752043^(5/17) 7014019680652189 a001 701408733/322*12752043^(6/17) 7014019680652190 a001 9227465/322*141422324^(7/13) 7014019680652190 a001 9227465/322*2537720636^(7/15) 7014019680652190 a001 9227465/322*17393796001^(3/7) 7014019680652190 a001 9227465/322*45537549124^(7/17) 7014019680652190 a001 9227465/322*14662949395604^(1/3) 7014019680652190 a001 9227465/322*(1/2+1/2*5^(1/2))^21 7014019680652190 a001 9227465/322*192900153618^(7/18) 7014019680652190 a001 9227465/322*10749957122^(7/16) 7014019680652190 a001 9227465/322*599074578^(1/2) 7014019680652191 a001 133957148/161*12752043^(7/17) 7014019680652192 a001 43133785636/161*4870847^(1/16) 7014019680652192 a001 7465176/161*12752043^(10/17) 7014019680652194 a001 9227465/322*33385282^(7/12) 7014019680652194 a001 14619165/46*12752043^(8/17) 7014019680652195 a001 39088169/322*12752043^(9/17) 7014019680652195 a001 31622993/161*12752043^(1/2) 7014019680652210 a001 32951280099/322*4870847^(1/8) 7014019680652229 a001 12586269025/322*4870847^(3/16) 7014019680652247 a001 14930208*4870847^(1/4) 7014019680652266 a001 1836311903/322*4870847^(5/16) 7014019680652284 a001 701408733/322*4870847^(3/8) 7014019680652286 a001 1762289/161*(1/2+1/2*5^(1/2))^23 7014019680652286 a001 1762289/161*4106118243^(1/2) 7014019680652303 a001 133957148/161*4870847^(7/16) 7014019680652309 a001 43133785636/161*1860498^(1/15) 7014019680652321 a001 14619165/46*4870847^(1/2) 7014019680652334 a001 5702887/322*4870847^(11/16) 7014019680652339 a001 39088169/322*4870847^(9/16) 7014019680652352 a001 7465176/161*4870847^(5/8) 7014019680652376 a001 53316291173/322*1860498^(1/10) 7014019680652444 a001 32951280099/322*1860498^(2/15) 7014019680652511 a001 10182505537/161*1860498^(1/6) 7014019680652579 a001 12586269025/322*1860498^(1/5) 7014019680652714 a001 14930208*1860498^(4/15) 7014019680652781 a001 2971215073/322*1860498^(3/10) 7014019680652849 a001 1836311903/322*1860498^(1/3) 7014019680652936 a001 1346269/322*20633239^(5/7) 7014019680652947 a001 1346269/322*2537720636^(5/9) 7014019680652947 a001 1346269/322*312119004989^(5/11) 7014019680652947 a001 1346269/322*(1/2+1/2*5^(1/2))^25 7014019680652947 a001 1346269/322*3461452808002^(5/12) 7014019680652947 a001 1346269/322*28143753123^(1/2) 7014019680652947 a001 1346269/322*228826127^(5/8) 7014019680652984 a001 701408733/322*1860498^(2/5) 7014019680653119 a001 133957148/161*1860498^(7/15) 7014019680653165 a001 43133785636/161*710647^(1/14) 7014019680653187 a001 165580141/322*1860498^(1/2) 7014019680653254 a001 14619165/46*1860498^(8/15) 7014019680653388 a001 39088169/322*1860498^(3/5) 7014019680653499 a001 311187/46*1860498^(4/5) 7014019680653518 a001 7465176/161*1860498^(2/3) 7014019680653608 a001 9227465/322*1860498^(7/10) 7014019680653616 a001 5702887/322*1860498^(11/15) 7014019680654158 a001 32951280099/322*710647^(1/7) 7014019680654636 a001 1346269/322*1860498^(5/6) 7014019680655150 a001 12586269025/322*710647^(3/14) 7014019680655646 a001 7778742049/322*710647^(1/4) 7014019680656142 a001 14930208*710647^(2/7) 7014019680657134 a001 1836311903/322*710647^(5/14) 7014019680657386 a001 514229/322*7881196^(9/11) 7014019680657478 a001 514229/322*141422324^(9/13) 7014019680657478 a001 514229/322*2537720636^(3/5) 7014019680657478 a001 514229/322*45537549124^(9/17) 7014019680657478 a001 514229/322*817138163596^(9/19) 7014019680657478 a001 514229/322*14662949395604^(3/7) 7014019680657478 a001 514229/322*(1/2+1/2*5^(1/2))^27 7014019680657478 a001 514229/322*192900153618^(1/2) 7014019680657478 a001 514229/322*10749957122^(9/16) 7014019680657478 a001 514229/322*599074578^(9/14) 7014019680657483 a001 514229/322*33385282^(3/4) 7014019680658126 a001 701408733/322*710647^(3/7) 7014019680659118 a001 133957148/161*710647^(1/2) 7014019680659302 a001 514229/322*1860498^(9/10) 7014019680659496 a001 43133785636/161*271443^(1/13) 7014019680660110 a001 14619165/46*710647^(4/7) 7014019680661101 a001 39088169/322*710647^(9/14) 7014019680662088 a001 7465176/161*710647^(5/7) 7014019680662606 a001 9227465/322*710647^(3/4) 7014019680663043 a001 5702887/322*710647^(11/14) 7014019680663044 a001 416020/161*710647^(13/14) 7014019680663782 a001 311187/46*710647^(6/7) 7014019680666819 a001 32951280099/322*271443^(2/13) 7014019680674141 a001 12586269025/322*271443^(3/13) 7014019680679360 a001 139583862445/322*103682^(1/24) 7014019680681464 a001 14930208*271443^(4/13) 7014019680688534 a001 98209/161*(1/2+1/2*5^(1/2))^29 7014019680688534 a001 98209/161*1322157322203^(1/2) 7014019680688786 a001 1836311903/322*271443^(5/13) 7014019680696109 a001 701408733/322*271443^(6/13) 7014019680699770 a001 433494437/322*271443^(1/2) 7014019680703432 a001 133957148/161*271443^(7/13) 7014019680706546 a001 43133785636/161*103682^(1/12) 7014019680710754 a001 14619165/46*271443^(8/13) 7014019680718076 a001 39088169/322*271443^(9/13) 7014019680725393 a001 7465176/161*271443^(10/13) 7014019680732679 a001 5702887/322*271443^(11/13) 7014019680733732 a001 53316291173/322*103682^(1/8) 7014019680739749 a001 311187/46*271443^(12/13) 7014019680760918 a001 32951280099/322*103682^(1/6) 7014019680788105 a001 10182505537/161*103682^(5/24) 7014019680815291 a001 12586269025/322*103682^(1/4) 7014019680842477 a001 7778742049/322*103682^(7/24) 7014019680855450 a001 139583862445/322*39603^(1/22) 7014019680869663 a001 14930208*103682^(1/3) 7014019680896849 a001 2971215073/322*103682^(3/8) 7014019680901395 a001 75025/322*(1/2+1/2*5^(1/2))^31 7014019680901395 a001 75025/322*9062201101803^(1/2) 7014019680924036 a001 1836311903/322*103682^(5/12) 7014019680951222 a001 567451585/161*103682^(11/24) 7014019680978408 a001 701408733/322*103682^(1/2) 7014019681005594 a001 433494437/322*103682^(13/24) 7014019681032781 a001 133957148/161*103682^(7/12) 7014019681058727 a001 43133785636/161*39603^(1/11) 7014019681059967 a001 165580141/322*103682^(5/8) 7014019681087153 a001 14619165/46*103682^(2/3) 7014019681114340 a001 31622993/161*103682^(17/24) 7014019681141525 a001 39088169/322*103682^(3/4) 7014019681168714 a001 24157817/322*103682^(19/24) 7014019681195892 a001 7465176/161*103682^(5/6) 7014019681223101 a001 9227465/322*103682^(7/8) 7014019681250227 a001 5702887/322*103682^(11/12) 7014019681262004 a001 53316291173/322*39603^(3/22) 7014019681277570 a001 1762289/161*103682^(23/24) 7014019681465281 a001 32951280099/322*39603^(2/11) 7014019681668558 a001 10182505537/161*39603^(5/22) 7014019681707891 a001 144/64079*(1/2+1/2*5^(1/2))^55 7014019681707891 a001 144/64079*3461452808002^(11/12) 7014019681871835 a001 12586269025/322*39603^(3/11) 7014019682075112 a001 7778742049/322*39603^(7/22) 7014019682184782 a001 139583862445/322*15127^(1/20) 7014019682250040 m001 ln(gamma)^(1/5*5^(1/2)*PisotVijayaraghavan) 7014019682278389 a001 14930208*39603^(4/11) 7014019682360361 a001 28657/322*141422324^(11/13) 7014019682360361 a001 28657/322*2537720636^(11/15) 7014019682360361 a001 28657/322*45537549124^(11/17) 7014019682360361 a001 28657/322*312119004989^(3/5) 7014019682360361 a001 28657/322*817138163596^(11/19) 7014019682360361 a001 28657/322*14662949395604^(11/21) 7014019682360361 a001 28657/322*(1/2+1/2*5^(1/2))^33 7014019682360361 a001 28657/322*192900153618^(11/18) 7014019682360361 a001 28657/322*10749957122^(11/16) 7014019682360361 a001 28657/322*1568397607^(3/4) 7014019682360361 a001 28657/322*599074578^(11/14) 7014019682360367 a001 28657/322*33385282^(11/12) 7014019682481666 a001 2971215073/322*39603^(9/22) 7014019682684943 a001 1836311903/322*39603^(5/11) 7014019682888220 a001 567451585/161*39603^(1/2) 7014019683091497 a001 701408733/322*39603^(6/11) 7014019683294774 a001 433494437/322*39603^(13/22) 7014019683498051 a001 133957148/161*39603^(7/11) 7014019683701328 a001 165580141/322*39603^(15/22) 7014019683717391 a001 43133785636/161*15127^(1/10) 7014019683904604 a001 14619165/46*39603^(8/11) 7014019684107882 a001 31622993/161*39603^(17/22) 7014019684311158 a001 39088169/322*39603^(9/11) 7014019684471797 a001 12422530263168/17711 7014019684514438 a001 24157817/322*39603^(19/22) 7014019684717706 a001 7465176/161*39603^(10/11) 7014019684858185 m005 (1/3*gamma+1/3)/(7/11*Catalan+1/6) 7014019684921006 a001 9227465/322*39603^(21/22) 7014019685250000 a001 53316291173/322*15127^(3/20) 7014019686782609 a001 32951280099/322*15127^(1/5) 7014019688315218 a001 10182505537/161*15127^(1/4) 7014019689847827 a001 12586269025/322*15127^(3/10) 7014019691380436 a001 7778742049/322*15127^(7/20) 7014019691707795 a001 36/6119*(1/2+1/2*5^(1/2))^53 7014019692324016 a001 139583862445/322*5778^(1/18) 7014019692360264 a001 5473/161*2537720636^(7/9) 7014019692360264 a001 5473/161*17393796001^(5/7) 7014019692360264 a001 5473/161*312119004989^(7/11) 7014019692360264 a001 5473/161*14662949395604^(5/9) 7014019692360264 a001 5473/161*(1/2+1/2*5^(1/2))^35 7014019692360264 a001 5473/161*505019158607^(5/8) 7014019692360264 a001 5473/161*28143753123^(7/10) 7014019692360264 a001 5473/161*599074578^(5/6) 7014019692360265 a001 5473/161*228826127^(7/8) 7014019692913045 a001 14930208*15127^(2/5) 7014019694445654 a001 2971215073/322*15127^(9/20) 7014019695978263 a001 1836311903/322*15127^(1/2) 7014019697510873 a001 567451585/161*15127^(11/20) 7014019699043482 a001 701408733/322*15127^(3/5) 7014019700576091 a001 433494437/322*15127^(13/20) 7014019702108700 a001 133957148/161*15127^(7/10) 7014019703641309 a001 165580141/322*15127^(3/4) 7014019703995859 a001 43133785636/161*5778^(1/9) 7014019705173917 a001 14619165/46*15127^(4/5) 7014019706575151 m004 -Cos[Sqrt[5]*Pi]+(5*Pi*Csc[Sqrt[5]*Pi])/3 7014019706706527 a001 31622993/161*15127^(17/20) 7014019708239135 a001 39088169/322*15127^(9/10) 7014019708289298 a007 Real Root Of 401*x^4-410*x^3+374*x^2-196*x-560 7014019709771747 a001 24157817/322*15127^(19/20) 7014019710651884 a001 1581661444752/2255 7014019715667701 a001 53316291173/322*5778^(1/6) 7014019721401228 m005 (1/2*Pi+8/9)/(8/9*Pi+5/7) 7014019725147775 m005 (3/4*2^(1/2)+1/4)/(4/5*2^(1/2)-3) 7014019727339544 a001 32951280099/322*5778^(2/9) 7014019739011386 a001 10182505537/161*5778^(5/18) 7014019750683229 a001 12586269025/322*5778^(1/3) 7014019760248154 a001 144/9349*817138163596^(17/19) 7014019760248154 a001 144/9349*14662949395604^(17/21) 7014019760248154 a001 144/9349*(1/2+1/2*5^(1/2))^51 7014019760248154 a001 144/9349*192900153618^(17/18) 7014019760900623 a001 4181/322*(1/2+1/2*5^(1/2))^37 7014019760954980 a007 Real Root Of 470*x^4-185*x^3+90*x^2-994*x+603 7014019762355072 a001 7778742049/322*5778^(7/18) 7014019770652165 a001 139583862445/322*2207^(1/16) 7014019771796649 r008 a(0)=7,K{-n^6,-64+33*n^3+38*n^2-78*n} 7014019774026914 a001 14930208*5778^(4/9) 7014019776270475 a007 Real Root Of 538*x^4-178*x^3+626*x^2-69*x-548 7014019785698757 a001 2971215073/322*5778^(1/2) 7014019789082790 a007 Real Root Of 979*x^4-399*x^3-699*x^2-967*x-709 7014019790894868 a005 (1/cos(8/237*Pi))^1572 7014019796178736 r008 a(0)=7,K{-n^6,-35+38*n^3-48*n^2-24*n} 7014019796688273 a007 Real Root Of -98*x^4+673*x^3-967*x^2+230*x+893 7014019797370600 a001 1836311903/322*5778^(5/9) 7014019809042442 a001 567451585/161*5778^(11/18) 7014019812842417 r008 a(0)=7,K{-n^6,-53-40*n+17*n^2+10*n^3} 7014019818023045 m001 (MasserGramain+ZetaP(2))/(cos(1)+GAMMA(23/24)) 7014019820714285 a001 701408733/322*5778^(2/3) 7014019822154113 a007 Real Root Of -21*x^4+18*x^3-382*x^2-160*x+87 7014019828410081 a007 Real Root Of -944*x^4+602*x^3+209*x^2-702*x-159 7014019830021791 r008 a(0)=7,K{-n^6,-8+69*n^3-42*n^2-90*n} 7014019832386128 a001 433494437/322*5778^(13/18) 7014019838978064 r008 a(0)=7,K{-n^6,-60+n-34*n^2+20*n^3} 7014019844057971 a001 133957148/161*5778^(7/9) 7014019855729814 a001 165580141/322*5778^(5/6) 7014019860652157 a001 43133785636/161*2207^(1/8) 7014019867401656 a001 14619165/46*5778^(8/9) 7014019879073500 a001 31622993/161*5778^(17/18) 7014019879755514 r009 Im(z^3+c),c=-61/110+6/35*I,n=30 7014019890092879 a001 226552842450/323 7014019891279120 a007 Real Root Of -996*x^4-421*x^3-283*x^2+988*x+928 7014019902194910 m001 exp(GAMMA(17/24))*BesselJ(1,1)^2*Zeta(9) 7014019914883079 a003 sin(Pi*19/77)/sin(Pi*34/71) 7014019936475513 a007 Real Root Of -352*x^4+944*x^3-22*x^2-684*x-58 7014019950652151 a001 53316291173/322*2207^(3/16) 7014019975871714 a007 Real Root Of -964*x^4+295*x^3+823*x^2+239*x-441 7014019977168243 a007 Real Root Of -978*x^4+595*x^3+596*x^2+485*x-602 7014020035565727 r008 a(0)=7,K{-n^6,-21-53*n-2*n^2+4*n^3} 7014020040652146 a001 32951280099/322*2207^(1/4) 7014020045047887 l006 ln(4886/9853) 7014020061516477 m001 (BesselI(0,1)+Sierpinski)^exp(1/exp(1)) 7014020082712522 a007 Real Root Of 686*x^4-452*x^3+640*x^2+898*x-7 7014020089559389 h001 (1/4*exp(2)+1/8)/(7/10*exp(1)+10/11) 7014020095093363 a001 843/17711*28657^(18/37) 7014020107240028 a007 Real Root Of -810*x^4-202*x^3-563*x^2+202*x+545 7014020107409787 a007 Real Root Of -658*x^4+689*x^3-757*x^2-444*x+458 7014020124950460 r008 a(0)=7,K{-n^6,-69+50*n^3-15*n^2-37*n} 7014020128784190 m005 (1/3*gamma+3/7)/(4*5^(1/2)-1/11) 7014020130069077 m001 exp(1)/(Chi(1)-GAMMA(3/4)) 7014020130652142 a001 10182505537/161*2207^(5/16) 7014020141673003 r002 22th iterates of z^2 + 7014020158164316 r008 a(0)=7,K{-n^6,-9+69*n^3-42*n^2-89*n} 7014020164483447 r008 a(0)=7,K{-n^6,-23+78*n^3-76*n^2-50*n} 7014020171187858 r002 54th iterates of z^2 + 7014020175551331 r008 a(0)=7,K{-n^6,12-50*n-58*n^2+24*n^3} 7014020177336034 m005 (23/44+1/4*5^(1/2))/(5/9*5^(1/2)+3/10) 7014020187286676 a001 123/2*2^(11/58) 7014020201551896 m001 (ln(2)/ln(10)*Trott+exp(-1/2*Pi))/ln(2)*ln(10) 7014020207868188 h001 (3/11*exp(2)+1/12)/(9/10*exp(1)+6/11) 7014020220445106 m001 (sin(1)+Pi*csc(5/24*Pi)/GAMMA(19/24))^Salem 7014020220652139 a001 12586269025/322*2207^(3/8) 7014020230030803 a001 144/3571*14662949395604^(7/9) 7014020230030803 a001 144/3571*(1/2+1/2*5^(1/2))^49 7014020230030803 a001 144/3571*505019158607^(7/8) 7014020230683230 a001 1597/322*2537720636^(13/15) 7014020230683230 a001 1597/322*45537549124^(13/17) 7014020230683230 a001 1597/322*14662949395604^(13/21) 7014020230683230 a001 1597/322*(1/2+1/2*5^(1/2))^39 7014020230683230 a001 1597/322*192900153618^(13/18) 7014020230683230 a001 1597/322*73681302247^(3/4) 7014020230683230 a001 1597/322*10749957122^(13/16) 7014020230683230 a001 1597/322*599074578^(13/14) 7014020251573894 m001 (exp(1)+GAMMA(2/3))/(-GAMMA(17/24)+CareFree) 7014020251644973 m005 (1/2*gamma+7/8)/(3/7*3^(1/2)+11/12) 7014020264812457 a007 Real Root Of -741*x^4+367*x^3+143*x^2+548*x+620 7014020273952526 m001 1/Lehmer^2*exp(GlaisherKinkelin)^2*Ei(1) 7014020276725189 m001 (cos(1/5*Pi)-exp(1))/(Kolakoski+Tetranacci) 7014020284525562 m005 (13/36+1/4*5^(1/2))/(7/11*5^(1/2)-1/9) 7014020295221330 a007 Real Root Of -814*x^4+881*x^3+114*x^2+549*x+830 7014020301630425 r005 Re(z^2+c),c=17/118+23/63*I,n=43 7014020310652137 a001 7778742049/322*2207^(7/16) 7014020330079736 r005 Re(z^2+c),c=-37/36+8/45*I,n=4 7014020330186600 r008 a(0)=7,K{-n^6,-88+25*n^3-63*n^2+53*n} 7014020344470031 r004 Im(z^2+c),c=-37/26+1/10*I,z(0)=-1,n=13 7014020344470031 r004 Im(z^2+c),c=-37/26-1/10*I,z(0)=-1,n=13 7014020362507787 l006 ln(3197/6447) 7014020363049208 a007 Real Root Of -92*x^4+662*x^3-75*x^2+664*x-635 7014020368136119 m001 (Psi(2,1/3)+Khinchin)/RenyiParking 7014020385645058 a001 139583862445/322*843^(1/14) 7014020398516586 r005 Im(z^2+c),c=-35/118+5/48*I,n=14 7014020400652137 a001 14930208*2207^(1/2) 7014020409026335 r005 Re(z^2+c),c=-85/114+7/33*I,n=3 7014020409894242 a007 Real Root Of 150*x^4+944*x^3-669*x^2+510*x-813 7014020412062947 m008 (1/5*Pi^4+2)/(Pi^5+1/4) 7014020431435396 r009 Im(z^3+c),c=-10/31+31/45*I,n=6 7014020433368986 a001 4181/3*11^(31/46) 7014020435116584 a007 Real Root Of 58*x^4-747*x^3+143*x^2-34*x-366 7014020448527421 a007 Real Root Of -726*x^4+575*x^3+464*x^2+532*x+519 7014020450073869 a007 Real Root Of 273*x^4+109*x^3+813*x^2-621*x-864 7014020450231586 r008 a(0)=7,K{-n^6,-70+50*n^3-15*n^2-36*n} 7014020455361303 a007 Real Root Of -126*x^4-862*x^3+100*x^2-231*x+971 7014020460392817 r008 a(0)=7,K{-n^6,-49+5*n^3+n^2-30*n} 7014020462296324 q001 1851/2639 7014020462757401 r005 Im(z^2+c),c=-1/25+32/41*I,n=29 7014020470106703 a007 Real Root Of -888*x^4+968*x^3-514*x^2-724*x+294 7014020476406479 m001 1/Riemann3rdZero*ln(Conway)*Robbin 7014020480259279 a007 Real Root Of -262*x^4-288*x^3-117*x^2+580*x-40 7014020485219356 m001 HardyLittlewoodC3*Psi(2,1/3)^MadelungNaCl 7014020489750700 m001 (Grothendieck+Rabbit)/(exp(1)+GaussAGM) 7014020490652137 a001 2971215073/322*2207^(9/16) 7014020491424053 a003 cos(Pi*25/99)*sin(Pi*54/109) 7014020516517605 r008 a(0)=7,K{-n^6,10-53*n-51*n^2+22*n^3} 7014020540042016 m001 PrimesInBinary^2/exp(Lehmer)/FeigenbaumKappa 7014020540390355 m001 ln(gamma)^MasserGramain/(ln(gamma)^ZetaQ(2)) 7014020554594592 a001 7/13*21^(43/51) 7014020557277372 r005 Re(z^2+c),c=-17/14+43/131*I,n=5 7014020567347874 s002 sum(A189597[n]/(pi^n+1),n=1..infinity) 7014020573798293 a007 Real Root Of 10*x^4-735*x^3-787*x^2-229*x+799 7014020574583302 a007 Real Root Of 668*x^4-915*x^3-690*x^2-817*x-711 7014020580652139 a001 1836311903/322*2207^(5/8) 7014020585496917 r008 a(0)=0,K{-n^6,-42+61*n-4*n^3} 7014020603649186 m001 (GaussAGM-Magata)/(Ei(1)+Pi^(1/2)) 7014020609359482 r005 Re(z^2+c),c=29/74+11/45*I,n=10 7014020670652142 a001 567451585/161*2207^(11/16) 7014020692180266 l006 ln(4705/9488) 7014020701834663 a007 Real Root Of -37*x^4+856*x^3-785*x^2+340*x+929 7014020702816888 a007 Real Root Of -523*x^4+865*x^3-770*x^2-54*x+766 7014020720254079 a007 Real Root Of -455*x^4+960*x^3-584*x^2+76*x+782 7014020725755182 r005 Im(z^2+c),c=-55/82+8/49*I,n=46 7014020729007739 m001 Conway-ln(2+3^(1/2))+TravellingSalesman 7014020756552616 a001 2207/75025*233^(32/55) 7014020760652146 a001 701408733/322*2207^(3/4) 7014020761174443 a007 Real Root Of -951*x^4+201*x^3+280*x^2+515*x+523 7014020786942257 r005 Re(z^2+c),c=-89/114+7/22*I,n=5 7014020789913770 a007 Real Root Of 643*x^4+559*x^3-77*x^2-676*x-399 7014020800337014 r008 a(0)=7,K{-n^6,-49+71*n^3-67*n^2-26*n} 7014020804874611 r008 a(0)=7,K{-n^6,-9+69*n^3-41*n^2-90*n} 7014020839150918 m001 (Psi(1,1/3)-Si(Pi))/(ln(3)+ZetaP(4)) 7014020839416982 a001 53316291173/123*47^(1/8) 7014020840722724 m001 (Lehmer+ThueMorse)/(exp(1/Pi)-FransenRobinson) 7014020846773669 b008 -60/7+Tan[1] 7014020850652151 a001 433494437/322*2207^(13/16) 7014020878221861 a001 199/2*2178309^(17/28) 7014020882405749 a001 46/3*28657^(4/27) 7014020927834741 k005 Champernowne real with floor(sqrt(2)*(49*n+1)) 7014020927834741 k005 Champernowne real with floor(log(2)*(100*n+2)) 7014020927834841 k005 Champernowne real with floor(gamma*(120*n+3)) 7014020927934841 k005 Champernowne real with floor(Catalan*(76*n+1)) 7014020940652157 a001 133957148/161*2207^(7/8) 7014020948195008 r005 Im(z^2+c),c=-115/94+11/64*I,n=17 7014021008999307 a007 Real Root Of 792*x^4+209*x^3+979*x^2+73*x-550 7014021010938065 r008 a(0)=2,K{-n^6,9-3*n^2-8*n} 7014021027934941 k005 Champernowne real with floor(gamma*(121*n+1)) 7014021028035042 k005 Champernowne real with floor(gamma*(121*n+2)) 7014021028035042 k001 Champernowne real with 70*n 7014021028035042 k005 Champernowne real with floor(log(2)*(101*n+1)) 7014021030652165 a001 165580141/322*2207^(15/16) 7014021073809518 a007 Real Root Of -674*x^4+457*x^3-128*x^2+860*x+987 7014021081072616 m005 (1/2*3^(1/2)-7/8)/(4/9*5^(1/2)+2/7) 7014021090638013 a001 43133785636/161*843^(1/7) 7014021111963745 r008 a(0)=7,K{-n^6,-84+70*n^3-81*n^2+24*n} 7014021118742524 r008 a(0)=7,K{-n^6,-50+71*n^3-67*n^2-25*n} 7014021121521909 a007 Real Root Of 556*x^4-655*x^3+356*x^2-267*x-723 7014021128335643 k002 Champernowne real with 1/2*n^2+137/2*n+1 7014021130101516 a007 Real Root Of 108*x^4+765*x^3-69*x^2-900*x-335 7014021132424285 a007 Real Root Of 706*x^4-822*x^3-443*x^2+222*x+175 7014021170883290 r008 a(0)=7,K{-n^6,-46-43*n+2*n^2+13*n^3} 7014021190785103 m001 ln(Pi)^BesselJ(0,1)*ln(gamma)^BesselJ(0,1) 7014021190785103 m001 ln(Pi)^BesselJ(0,1)*log(gamma)^BesselJ(0,1) 7014021204486127 m001 (ln(Pi)-GAMMA(5/6))/(Khinchin-ThueMorse) 7014021204521782 a003 sin(Pi*5/76)-sin(Pi*43/119) 7014021213885969 a007 Real Root Of -216*x^4-257*x^3-533*x^2+418*x+519 7014021228636244 k002 Champernowne real with n^2+67*n+2 7014021241010791 m003 1/36+Sqrt[5]/2+Sinh[1/2+Sqrt[5]/2]^2 7014021252215613 a007 Real Root Of -861*x^4+444*x^3+432*x^2-904*x-485 7014021263141502 r008 a(0)=7,K{-n^6,-61-46*n+56*n^2-21*n^3} 7014021286917009 m002 4+(5*Cosh[Pi])/Pi^3+Log[Pi] 7014021307209016 b008 5+30*E^2*Pi 7014021309973176 a007 Real Root Of -710*x^4+320*x^3+831*x^2-2*x-346 7014021310293338 m001 Pi/(2^(1/3)-ln(2^(1/2)+1))-GAMMA(17/24) 7014021310385235 m001 (-FeigenbaumKappa+OneNinth)/(Zeta(1,2)-sin(1)) 7014021311735413 r008 a(0)=7,K{-n^6,-62+31*n^3-29*n^2-10*n} 7014021312236573 r002 15th iterates of z^2 + 7014021321032174 a001 123/39088169*13^(5/16) 7014021328936845 k002 Champernowne real with 3/2*n^2+131/2*n+3 7014021330489244 m001 (exp(1)+3^(1/2))/(Kac+ZetaQ(3)) 7014021334622583 s002 sum(A287376[n]/((2^n-1)/n),n=1..infinity) 7014021335168700 a007 Real Root Of -65*x^4-471*x^3-188*x^2-598*x-152 7014021340920197 m005 (1/2*exp(1)-9/11)/(7/11*gamma-4/9) 7014021348215514 a007 Real Root Of -x^4+510*x^3+818*x^2+379*x-844 7014021364028728 m001 (Pi^(1/2)+MertensB1)/(2^(1/3)+GAMMA(13/24)) 7014021382915177 a007 Real Root Of -131*x^4+878*x^3-320*x^2-358*x+241 7014021391094632 l006 ln(1508/3041) 7014021396736536 a007 Real Root Of -142*x^4-870*x^3+948*x^2+367*x-589 7014021408753536 r008 a(0)=7,K{-n^6,-41+7*n-56*n^2+18*n^3} 7014021429237446 k002 Champernowne real with 2*n^2+64*n+4 7014021433986313 a007 Real Root Of 806*x^4-303*x^3+518*x^2+762*x-20 7014021485845780 a001 225851433717/2207*199^(4/11) 7014021505667073 r008 a(0)=7,K{-n^6,-69-6*n^3+55*n^2-55*n} 7014021516135391 h001 (2/11*exp(2)+6/7)/(2/5*exp(2)+2/11) 7014021521686702 r005 Re(z^2+c),c=-7/10+64/221*I,n=56 7014021529538047 k002 Champernowne real with 5/2*n^2+125/2*n+5 7014021532182998 m001 (Sarnak+ZetaP(3))/(cos(1/5*Pi)+Bloch) 7014021570898289 a003 sin(Pi*29/84)/cos(Pi*40/87) 7014021618109842 m001 MertensB1/ln(Si(Pi))*sqrt(1+sqrt(3)) 7014021627769464 a007 Real Root Of 234*x^4-179*x^3+768*x^2-406*x-781 7014021629838648 k002 Champernowne real with 3*n^2+61*n+6 7014021635251710 s002 sum(A020860[n]/((2^n+1)/n),n=1..infinity) 7014021637051553 m001 CareFree*RenyiParking+ZetaP(3) 7014021648628436 a003 cos(Pi*7/45)*cos(Pi*16/77) 7014021666291278 m001 (StolarskyHarborth-ZetaQ(2))/(Cahen-MertensB2) 7014021669853409 q001 2201/3138 7014021680509768 r005 Im(z^2+c),c=-55/82+5/37*I,n=63 7014021685235273 r008 a(0)=7,K{-n^6,-57-29*n+14*n^2+n^3} 7014021719466455 a007 Real Root Of 211*x^4-539*x^3+334*x^2-18*x-414 7014021730010927 r008 a(0)=7,K{-n^6,-26-64*n+21*n^2-3*n^3} 7014021730139249 k002 Champernowne real with 7/2*n^2+119/2*n+7 7014021736836281 r008 a(0)=7,K{-n^6,-21-39*n-23*n^2+11*n^3} 7014021746414782 r008 a(0)=7,K{-n^6,-50+71*n^3-66*n^2-26*n} 7014021761951959 p004 log(17881/8867) 7014021786545427 m001 (gamma+cos(1/5*Pi))/(Ei(1)+StolarskyHarborth) 7014021790738464 m001 (gamma(1)+gamma(2))/(Bloch+CareFree) 7014021793008468 s002 sum(A223664[n]/(10^n+1),n=1..infinity) 7014021795631040 a001 53316291173/322*843^(3/14) 7014021796639994 a007 Real Root Of -217*x^4+6*x^3+248*x^2+511*x+291 7014021798060029 r008 a(0)=7,K{-n^6,-35+45*n^3-69*n^2-10*n} 7014021830439850 k002 Champernowne real with 4*n^2+58*n+8 7014021834470411 a001 15127/1597*832040^(6/19) 7014021834471008 a001 3571/6765*7778742049^(6/19) 7014021843724852 r008 a(0)=7,K{-n^6,-13-10*n^3+46*n^2-95*n} 7014021865618546 a007 Real Root Of -238*x^4+818*x^3+376*x^2-28*x-390 7014021904465979 a007 Real Root Of 122*x^4-272*x^3+161*x^2-933*x-857 7014021905202410 a007 Real Root Of -599*x^4+109*x^3+343*x^2+254*x+192 7014021914352111 a007 Real Root Of -359*x^4+976*x^3-482*x^2-71*x+611 7014021914517407 r005 Re(z^2+c),c=-23/122+21/29*I,n=17 7014021925262149 a007 Real Root Of -147*x^4-939*x^3+564*x^2-664*x-637 7014021930740451 k002 Champernowne real with 9/2*n^2+113/2*n+9 7014021931219462 m009 (5/6*Psi(1,1/3)-1/5)/(5*Psi(1,3/4)-1) 7014021935515468 a001 11/377*46368^(4/49) 7014021946141614 r008 a(0)=7,K{-n^6,-42-52*n+32*n^2-10*n^3} 7014021958129340 a007 Real Root Of -103*x^4+726*x^3-838*x^2-366*x+431 7014021966202585 p003 LerchPhi(1/10,1,331/218) 7014021973702539 r005 Im(z^2+c),c=-7/8+106/241*I,n=4 7014021985862721 r008 a(0)=7,K{-n^6,-22-52*n-2*n^2+4*n^3} 7014021996006166 r002 40i'th iterates of 2*x/(1-x^2) of 7014022027532698 r008 a(0)=7,K{-n^6,-24+28*n^3-67*n^2-9*n} 7014022031041052 k002 Champernowne real with 5*n^2+55*n+10 7014022039440500 r008 a(0)=7,K{-n^6,-49+55*n^3-17*n^2-60*n} 7014022060930754 r008 a(0)=7,K{-n^6,-9+70*n^3-42*n^2-90*n} 7014022068016015 r002 8th iterates of z^2 + 7014022073444641 m001 Cahen^FeigenbaumAlpha-MertensB1 7014022085479937 a007 Real Root Of -369*x^4+299*x^3-371*x^2+854*x+974 7014022124324824 m001 (Zeta(1/2)-Zeta(1,-1))/(MadelungNaCl+Paris) 7014022131341653 k002 Champernowne real with 11/2*n^2+107/2*n+11 7014022142260566 m001 (Backhouse-Bloch)/(ln(Pi)-GAMMA(17/24)) 7014022148265217 l006 ln(4343/8758) 7014022174907813 a007 Real Root Of -780*x^4-183*x^3-554*x^2+724*x+906 7014022204161154 p001 sum(1/(607*n+143)/(64^n),n=0..infinity) 7014022213727126 m001 (Pi-Chi(1))/(MasserGramainDelta+MinimumGamma) 7014022226997727 a007 Real Root Of -653*x^4+524*x^3-175*x^2-680*x-52 7014022231642254 k002 Champernowne real with 6*n^2+52*n+12 7014022244753807 a007 Real Root Of 132*x^4+817*x^3-718*x^2+328*x+63 7014022278073059 a001 39603/4181*832040^(6/19) 7014022278073698 a001 9349/17711*7778742049^(6/19) 7014022296995480 a007 Real Root Of 834*x^4+243*x^3+781*x^2-195*x-639 7014022315181893 m001 1/OneNinth/ln(Rabbit)*sin(Pi/12) 7014022326433890 a007 Real Root Of 107*x^4+862*x^3+903*x^2+912*x+447 7014022331942855 k002 Champernowne real with 13/2*n^2+101/2*n+13 7014022333092259 r002 13th iterates of z^2 + 7014022336887527 r005 Re(z^2+c),c=-11/14+73/213*I,n=5 7014022342793818 a001 51841/5473*832040^(6/19) 7014022342794458 a001 6119/11592*7778742049^(6/19) 7014022344588133 a007 Real Root Of 284*x^4-682*x^3+183*x^2-784*x-944 7014022345660181 r008 a(0)=7,K{-n^6,-50+55*n^3-17*n^2-59*n} 7014022347522943 p004 log(34667/17191) 7014022352236450 a001 271443/28657*832040^(6/19) 7014022352237090 a001 64079/121393*7778742049^(6/19) 7014022353614111 a001 710647/75025*832040^(6/19) 7014022353614751 a001 167761/317811*7778742049^(6/19) 7014022353815109 a001 930249/98209*832040^(6/19) 7014022353815749 a001 109801/208010*7778742049^(6/19) 7014022353844435 a001 4870847/514229*832040^(6/19) 7014022353845074 a001 1149851/2178309*7778742049^(6/19) 7014022353848713 a001 12752043/1346269*832040^(6/19) 7014022353849337 a001 16692641/1762289*832040^(6/19) 7014022353849353 a001 3010349/5702887*7778742049^(6/19) 7014022353849428 a001 87403803/9227465*832040^(6/19) 7014022353849442 a001 228826127/24157817*832040^(6/19) 7014022353849444 a001 299537289/31622993*832040^(6/19) 7014022353849444 a001 1568397607/165580141*832040^(6/19) 7014022353849444 a001 4106118243/433494437*832040^(6/19) 7014022353849444 a001 5374978561/567451585*832040^(6/19) 7014022353849444 a001 28143753123/2971215073*832040^(6/19) 7014022353849444 a001 73681302247/7778742049*832040^(6/19) 7014022353849444 a001 96450076809/10182505537*832040^(6/19) 7014022353849444 a001 505019158607/53316291173*832040^(6/19) 7014022353849444 a001 1322157322203/139583862445*832040^(6/19) 7014022353849444 a001 1730726404001/182717648081*832040^(6/19) 7014022353849444 a001 23725150497407/2504730781961*832040^(6/19) 7014022353849444 a001 2139295485799/225851433717*832040^(6/19) 7014022353849444 a001 204284540899/21566892818*832040^(6/19) 7014022353849444 a001 312119004989/32951280099*832040^(6/19) 7014022353849444 a001 119218851371/12586269025*832040^(6/19) 7014022353849444 a001 11384387281/1201881744*832040^(6/19) 7014022353849444 a001 17393796001/1836311903*832040^(6/19) 7014022353849444 a001 6643838879/701408733*832040^(6/19) 7014022353849444 a001 634430159/66978574*832040^(6/19) 7014022353849444 a001 969323029/102334155*832040^(6/19) 7014022353849445 a001 370248451/39088169*832040^(6/19) 7014022353849450 a001 35355581/3732588*832040^(6/19) 7014022353849485 a001 54018521/5702887*832040^(6/19) 7014022353849723 a001 20633239/2178309*832040^(6/19) 7014022353849977 a001 1970299/3732588*7778742049^(6/19) 7014022353850068 a001 20633239/39088169*7778742049^(6/19) 7014022353850081 a001 54018521/102334155*7778742049^(6/19) 7014022353850083 a001 35355581/66978574*7778742049^(6/19) 7014022353850084 a001 370248451/701408733*7778742049^(6/19) 7014022353850084 a001 969323029/1836311903*7778742049^(6/19) 7014022353850084 a001 634430159/1201881744*7778742049^(6/19) 7014022353850084 a001 6643838879/12586269025*7778742049^(6/19) 7014022353850084 a001 17393796001/32951280099*7778742049^(6/19) 7014022353850084 a001 11384387281/21566892818*7778742049^(6/19) 7014022353850084 a001 119218851371/225851433717*7778742049^(6/19) 7014022353850084 a001 312119004989/591286729879*7778742049^(6/19) 7014022353850084 a001 204284540899/387002188980*7778742049^(6/19) 7014022353850084 a001 1322157322203/2504730781961*7778742049^(6/19) 7014022353850084 a001 505019158607/956722026041*7778742049^(6/19) 7014022353850084 a001 96450076809/182717648081*7778742049^(6/19) 7014022353850084 a001 73681302247/139583862445*7778742049^(6/19) 7014022353850084 a001 28143753123/53316291173*7778742049^(6/19) 7014022353850084 a001 5374978561/10182505537*7778742049^(6/19) 7014022353850084 a001 4106118243/7778742049*7778742049^(6/19) 7014022353850084 a001 1568397607/2971215073*7778742049^(6/19) 7014022353850084 a001 299537289/567451585*7778742049^(6/19) 7014022353850084 a001 228826127/433494437*7778742049^(6/19) 7014022353850085 a001 87403803/165580141*7778742049^(6/19) 7014022353850090 a001 16692641/31622993*7778742049^(6/19) 7014022353850124 a001 12752043/24157817*7778742049^(6/19) 7014022353850363 a001 4870847/9227465*7778742049^(6/19) 7014022353851357 a001 1970299/208010*832040^(6/19) 7014022353851997 a001 930249/1762289*7778742049^(6/19) 7014022353862559 a001 3010349/317811*832040^(6/19) 7014022353863198 a001 710647/1346269*7778742049^(6/19) 7014022353939333 a001 1149851/121393*832040^(6/19) 7014022353939973 a001 271443/514229*7778742049^(6/19) 7014022354465553 a001 109801/11592*832040^(6/19) 7014022354466193 a001 51841/98209*7778742049^(6/19) 7014022358072317 a001 167761/17711*832040^(6/19) 7014022358072957 a001 39603/75025*7778742049^(6/19) 7014022370247602 g007 Psi(2,6/11)+Psi(2,7/9)+Psi(2,1/7)-Psi(2,9/11) 7014022382793448 a001 64079/6765*832040^(6/19) 7014022382794088 a001 15127/28657*7778742049^(6/19) 7014022416334963 r005 Re(z^2+c),c=-19/98+25/36*I,n=35 7014022432243456 k002 Champernowne real with 7*n^2+49*n+14 7014022433171015 m005 (1/2*Zeta(3)+2/11)/(5/8*2^(1/2)-2) 7014022457427555 m001 ln(Riemann1stZero)*ErdosBorwein^2*GAMMA(23/24) 7014022500624137 a001 32951280099/322*843^(2/7) 7014022524469315 a007 Real Root Of 679*x^4-126*x^3+645*x^2+666*x-58 7014022526790789 r005 Im(z^2+c),c=-25/118+41/64*I,n=60 7014022532544057 k002 Champernowne real with 15/2*n^2+95/2*n+15 7014022541904765 r008 a(0)=7,K{-n^6,-65+28*n^3-47*n^2+20*n} 7014022546054440 q001 2551/3637 7014022551021188 l006 ln(2835/5717) 7014022552234603 a001 6119/646*832040^(6/19) 7014022552235237 a001 2889/5473*7778742049^(6/19) 7014022563847209 r005 Im(z^2+c),c=-155/126+4/45*I,n=15 7014022591580360 b008 ExpIntegralEi[(-7+E)*E] 7014022595182437 a007 Real Root Of 442*x^4+246*x^3-691*x^2-938*x+806 7014022617413698 r005 Re(z^2+c),c=-21/32+22/27*I,n=3 7014022627492475 m001 (-GAMMA(23/24)+2)/(GAMMA(11/12)+1/3) 7014022632844658 k002 Champernowne real with 8*n^2+46*n+16 7014022679181667 r008 a(0)=7,K{-n^6,1+6*n^3-59*n^2+89*n} 7014022694355387 a007 Real Root Of -817*x^4+183*x^3-665*x^2-30*x+567 7014022705004470 m005 (1/3*gamma+2/11)/(-53/70+1/10*5^(1/2)) 7014022715752891 a001 591286729879/5778*199^(4/11) 7014022729660867 r008 a(0)=7,K{-n^6,-20-53*n-38*n^2+41*n^3} 7014022733145259 k002 Champernowne real with 17/2*n^2+89/2*n+17 7014022746721418 r008 a(0)=7,K{-n^6,-91+3*n^3+30*n^2-11*n} 7014022758896775 p004 log(33937/16829) 7014022780998793 m001 1/gamma^2*Cahen/ln(log(2+sqrt(3))) 7014022833445860 k002 Champernowne real with 9*n^2+43*n+18 7014022856400979 m005 (1/3*Zeta(3)+1/9)/(1/12*gamma-7/9) 7014022868315918 m001 (ln(Pi)+3^(1/3))/(Zeta(1,2)+Mills) 7014022884336240 a007 Real Root Of -101*x^4-812*x^3-704*x^2+129*x-204 7014022895193956 a001 1548008755920/15127*199^(4/11) 7014022921374056 a001 4052739537881/39603*199^(4/11) 7014022921420506 m001 (MertensB3+PlouffeB)/(polylog(4,1/2)-Landau) 7014022925193681 a001 225749145909/2206*199^(4/11) 7014022927554339 a001 6557470319842/64079*199^(4/11) 7014022933746461 k002 Champernowne real with 19/2*n^2+83/2*n+19 7014022934803449 r005 Re(z^2+c),c=-5/94+27/34*I,n=25 7014022937554247 a001 2504730781961/24476*199^(4/11) 7014022949531034 r008 a(0)=7,K{-n^6,-50+55*n^3-16*n^2-60*n} 7014022950588022 r008 a(0)=7,K{-n^6,-56+57*n^3-25*n^2-47*n} 7014022956576846 a007 Real Root Of -301*x^4+843*x^3-791*x^2-275*x+560 7014022958236568 r008 a(0)=7,K{-n^6,-19-21*n-58*n^2+26*n^3} 7014022964839956 m001 (2^(1/2)-Ei(1,1))/(sin(1/12*Pi)+exp(1/exp(1))) 7014022964881492 m001 HeathBrownMoroz^arctan(1/2)-RenyiParking 7014022966058904 r008 a(0)=7,K{-n^6,-50+72*n^3-67*n^2-26*n} 7014022971292478 l006 ln(4162/8393) 7014022978453545 a007 Real Root Of 473*x^4-487*x^3+84*x^2-676*x-798 7014022985393777 a003 sin(Pi*6/35)/cos(Pi*27/113) 7014023006094638 a001 956722026041/9349*199^(4/11) 7014023026023737 a001 89/4*3571^(8/57) 7014023034047062 k002 Champernowne real with 10*n^2+40*n+20 7014023046276219 r009 Re(z^3+c),c=-27/122+51/55*I,n=18 7014023109149582 a007 Real Root Of -367*x^4+726*x^3-675*x^2+343*x+912 7014023118980426 r002 32th iterates of z^2 + 7014023134347663 k002 Champernowne real with 21/2*n^2+77/2*n+21 7014023135602338 a007 Real Root Of -894*x^4+974*x^3-153*x^2-741*x+108 7014023145738430 r008 a(0)=7,K{-n^6,-64-17*n^3+43*n^2-34*n} 7014023146728691 a007 Real Root Of -309*x^4+739*x^3+99*x^2-204*x+138 7014023168260463 m001 (-RenyiParking+Totient)/(ln(2)/ln(10)+Landau) 7014023168334970 m001 (LambertW(1)-Zeta(1,2))/(BesselJ(1,1)+Niven) 7014023181745321 r005 Re(z^2+c),c=-1/32+49/61*I,n=50 7014023185716089 m001 (OneNinth-QuadraticClass)/(BesselK(1,1)-Niven) 7014023203254633 m001 (GAMMA(17/24)-MertensB2)/FeigenbaumMu 7014023205617305 a001 10182505537/161*843^(5/14) 7014023234648264 k002 Champernowne real with 11*n^2+37*n+22 7014023251265526 a008 Real Root of x^4-29*x^2-114*x-194 7014023254624965 r008 a(0)=7,K{-n^6,-65+65*n^3-53*n^2-18*n} 7014023263881979 a007 Real Root Of 623*x^4+x^3+676*x^2+77*x-429 7014023266993018 r005 Im(z^2+c),c=-37/64+5/39*I,n=40 7014023272734925 a007 Real Root Of 531*x^4-299*x^3+918*x^2+297*x-475 7014023289605442 r005 Im(z^2+c),c=31/106+13/29*I,n=37 7014023334351696 m001 (StolarskyHarborth+ZetaQ(2))/(Zeta(3)+Sarnak) 7014023334948865 k002 Champernowne real with 23/2*n^2+71/2*n+23 7014023356125754 m001 arctan(1/3)^Zeta(5)*arctan(1/3)^Mills 7014023360552956 l006 ln(9001/9655) 7014023364303647 a007 Real Root Of -310*x^4-198*x^3+273*x^2+817*x-564 7014023395140539 r009 Re(z^3+c),c=-93/122+23/49*I,n=2 7014023435249466 k002 Champernowne real with 12*n^2+34*n+24 7014023449970674 a001 36/341*(1/2+1/2*5^(1/2))^47 7014023450621118 a001 305/161*(1/2+1/2*5^(1/2))^41 7014023475877504 a001 365435296162/3571*199^(4/11) 7014023488764098 a007 Real Root Of -593*x^4+40*x^3-624*x^2-9*x+458 7014023490550663 r008 a(0)=7,K{-n^6,-61+10*n^3-28*n^2+51*n} 7014023501261362 m001 exp(1/exp(1))/OrthogonalArrays/Porter 7014023512340010 r009 Im(z^3+c),c=-29/66+8/9*I,n=2 7014023531472829 a008 Real Root of x^3-x^2-90*x-237 7014023535550067 k002 Champernowne real with 25/2*n^2+65/2*n+25 7014023543321622 m005 (1/2*5^(1/2)-3/4)/(1/11*exp(1)+5) 7014023557706569 a007 Real Root Of -221*x^4-804*x^3-881*x^2+658*x+671 7014023578174995 m001 (Ei(1)+GAMMA(5/6))/(FeigenbaumKappa+Otter) 7014023579434887 a007 Real Root Of -147*x^4+886*x^3-646*x^2-368*x+401 7014023591997250 r002 11th iterates of z^2 + 7014023603915123 r005 Re(z^2+c),c=-9/8+31/139*I,n=36 7014023605918097 m005 (1/3*Zeta(3)-2/7)/(7/9*5^(1/2)-1/10) 7014023609671116 r005 Im(z^2+c),c=-7/10+21/85*I,n=26 7014023613603959 m001 cos(1)/(ArtinRank2-gamma(1)) 7014023615638451 a007 Real Root Of -475*x^4-504*x^3-572*x^2+745*x+745 7014023624088459 r008 a(0)=7,K{-n^6,16-58*n-63*n^2+33*n^3} 7014023628313831 m005 (1/2*Pi+11/12)/(4/9*Zeta(3)-8/9) 7014023635850668 k002 Champernowne real with 13*n^2+31*n+26 7014023642275749 r005 Re(z^2+c),c=-51/94+31/63*I,n=11 7014023645761487 a007 Real Root Of 313*x^4-722*x^3-445*x^2+76*x+339 7014023650579162 m001 (Niven-PlouffeB)/(Zeta(1/2)+GAMMA(17/24)) 7014023657413904 m001 1/FeigenbaumC^2/exp(Magata)*Rabbit 7014023664607236 m001 (BesselJ(0,1)-Kolakoski)/(-Lehmer+ZetaP(3)) 7014023672461734 a007 Real Root Of -12*x^4-849*x^3-523*x^2-680*x+383 7014023704056909 a007 Real Root Of -190*x^4+900*x^3+974*x^2+180*x-870 7014023713601792 a001 9349/987*832040^(6/19) 7014023713602137 a001 2207/4181*7778742049^(6/19) 7014023726256420 m004 -2-25*Pi+Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 7014023736151269 k002 Champernowne real with 27/2*n^2+59/2*n+27 7014023742446538 r009 Re(z^3+c),c=-15/29+4/39*I,n=64 7014023755702192 a007 Real Root Of 468*x^4-217*x^3-284*x^2-477*x-383 7014023767092090 r009 Im(z^3+c),c=-15/52+40/57*I,n=25 7014023801706363 a007 Real Root Of -374*x^4+194*x^3+19*x^2+774*x+691 7014023813046530 a001 233/39603*3^(4/25) 7014023836451870 k002 Champernowne real with 14*n^2+28*n+28 7014023837099410 s002 sum(A199586[n]/((3*n)!),n=1..infinity) 7014023840325101 r008 a(0)=7,K{-n^6,-51+62*n^3-36*n^2-46*n} 7014023841778882 r005 Re(z^2+c),c=-47/64+7/57*I,n=47 7014023845522473 r008 a(0)=7,K{-n^6,-41+66*n^3-43*n^2-53*n} 7014023869159115 l006 ln(1327/2676) 7014023883236276 h001 (4/9*exp(1)+9/11)/(2/7*exp(2)+7/9) 7014023885061135 a007 Real Root Of -809*x^4+566*x^3+319*x^2+91*x+298 7014023889842383 m005 (-5/12+1/4*5^(1/2))/(9/11*5^(1/2)+1/5) 7014023899181735 m005 (1/2*exp(1)+1/7)/(1/10*2^(1/2)+2) 7014023902547389 s001 sum(exp(-2*Pi/5)^n*A160461[n],n=1..infinity) 7014023902547389 s002 sum(A160461[n]/(exp(2/5*pi*n)),n=1..infinity) 7014023910610544 a001 12586269025/322*843^(3/7) 7014023920627154 m001 (ln(2)*MertensB1+(1+3^(1/2))^(1/2))/MertensB1 7014023923711518 a007 Real Root Of 655*x^4+12*x^3+764*x^2+535*x-155 7014023936752471 k002 Champernowne real with 29/2*n^2+53/2*n+29 7014023984871821 m001 (Chi(1)+cos(1/12*Pi))/(-sin(1/12*Pi)+ZetaQ(4)) 7014023995011923 r005 Re(z^2+c),c=-1/14+39/49*I,n=62 7014023998670447 a007 Real Root Of 959*x^4+262*x^3-536*x^2-67*x+75 7014024031920925 m008 (2/5*Pi^6-3/4)/(1/3*Pi-1/2) 7014024037053072 k002 Champernowne real with 15*n^2+25*n+30 7014024041463852 r005 Re(z^2+c),c=-22/29+6/53*I,n=5 7014024042896761 a007 Real Root Of -618*x^4+233*x^3-266*x^2-312*x+142 7014024060936422 a007 Real Root Of -763*x^4+873*x^3+101*x^2+483*x+775 7014024072502494 a007 Real Root Of 550*x^4+775*x^3+741*x^2-972*x-912 7014024095933985 m001 Psi(1,1/3)^(GaussAGM*Riemann1stZero) 7014024103992957 r008 a(0)=7,K{-n^6,-74+42*n^3+13*n^2-52*n} 7014024123707502 r008 a(0)=7,K{-n^6,-50+56*n^3-17*n^2-60*n} 7014024124692318 r008 a(0)=7,K{-n^6,-56+58*n^3-26*n^2-47*n} 7014024125017971 r008 a(0)=7,K{-n^6,-54+58*n^3-25*n^2-50*n} 7014024131763832 m001 (3^(1/3)+BesselJ(1,1))/(Paris+Sierpinski) 7014024137353673 k002 Champernowne real with 31/2*n^2+47/2*n+31 7014024154098586 m002 -Pi^2-Pi/ProductLog[Pi]+Pi^6*Sech[Pi] 7014024156939676 r008 a(0)=7,K{-n^6,22+59*n^3-99*n^2-57*n} 7014024169291381 r008 a(0)=7,K{-n^6,-38+8*n^3-2*n^2-40*n} 7014024216812255 a007 Real Root Of -908*x^4+198*x^3-986*x^2-830*x+191 7014024237654274 k002 Champernowne real with 16*n^2+22*n+32 7014024248170874 m001 Ei(1,1)+2*Zeta(1,-1)*Pi/GAMMA(5/6) 7014024271466319 m001 exp(Zeta(1/2))*MinimumGamma^2*sqrt(2) 7014024293302045 r008 a(0)=7,K{-n^6,-59+12*n^3-31*n^2+5*n} 7014024304925268 m005 (1/2*gamma-7/8)/(6*2^(1/2)-1/8) 7014024317498681 r005 Im(z^2+c),c=-15/118+33/37*I,n=8 7014024330795208 a007 Real Root Of 646*x^4-516*x^3-202*x^2-479*x-571 7014024337954875 k002 Champernowne real with 33/2*n^2+41/2*n+33 7014024353014302 r005 Im(z^2+c),c=-9/38+53/64*I,n=12 7014024374115705 r009 Im(z^3+c),c=-79/126+27/49*I,n=33 7014024389207072 r008 a(0)=7,K{-n^6,-81+42*n^3+10*n^2-42*n} 7014024390409734 r008 a(0)=7,K{-n^6,-75+42*n^3+13*n^2-51*n} 7014024391422997 m009 (6*Catalan+3/4*Pi^2+1/5)/(5/2*Pi^2-6) 7014024395769593 r005 Im(z^2+c),c=-2/27+23/33*I,n=16 7014024399544773 r008 a(0)=7,K{-n^6,-57+47*n^3+7*n^2-68*n} 7014024407874998 a001 7/10946*233^(1/59) 7014024414787611 s002 sum(A065634[n]/(pi^n),n=1..infinity) 7014024417059684 r008 a(0)=7,K{-n^6,-65+66*n^3-54*n^2-18*n} 7014024425631040 r008 a(0)=7,K{-n^6,-29+70*n^3-48*n^2-64*n} 7014024438255476 k002 Champernowne real with 17*n^2+19*n+34 7014024439345443 r008 a(0)=7,K{-n^6,-4+14*n^3-11*n^2-71*n} 7014024446830186 a007 Real Root Of -826*x^4+301*x^3+275*x^2+149*x+273 7014024462744711 r005 Im(z^2+c),c=-49/110+28/47*I,n=13 7014024489130710 r005 Im(z^2+c),c=-101/106+17/36*I,n=3 7014024509102511 a001 4870847/233*4807526976^(6/23) 7014024509167230 a001 87403803/233*75025^(6/23) 7014024509603318 m005 (1/2*Catalan+1/8)/(1/10*gamma-8/9) 7014024522050323 a007 Real Root Of -3*x^4-14*x^3+98*x^2+816*x-615 7014024527232838 m001 OneNinth^2*LandauRamanujan/ln(log(1+sqrt(2))) 7014024538556077 k002 Champernowne real with 35/2*n^2+35/2*n+35 7014024542547470 a001 514229/123*76^(28/43) 7014024548223841 a003 cos(Pi*33/94)*cos(Pi*50/101) 7014024550654692 m002 -5+E^Pi+Pi^5/6+Tanh[Pi] 7014024557528336 a007 Real Root Of 573*x^4-23*x^3+242*x^2+125*x-178 7014024576311472 a007 Real Root Of 342*x^4-409*x^3+397*x^2+83*x-361 7014024591500398 a007 Real Root Of -372*x^4+191*x^3-368*x^2+10*x+344 7014024607099844 a007 Real Root Of 237*x^4-371*x^3+84*x^2-856*x+6 7014024610515940 a007 Real Root Of -782*x^4+997*x^3-885*x^2+9*x+975 7014024615603853 a001 7778742049/322*843^(1/2) 7014024638154260 m001 ln(GAMMA(1/6))/Artin/cos(Pi/5)^2 7014024638856678 k002 Champernowne real with 18*n^2+16*n+36 7014024646621613 m009 (3/5*Psi(1,3/4)-2/3)/(1/5*Pi^2-3/4) 7014024647345888 r008 a(0)=7,K{-n^6,-94+25*n^3+55*n^2-57*n} 7014024648395713 a003 cos(Pi*2/101)*cos(Pi*32/67) 7014024672804157 m005 (1/2*exp(1)-2)/(7/11*2^(1/2)-10/11) 7014024694598604 r008 a(0)=7,K{-n^6,-56+58*n^3-25*n^2-48*n} 7014024696913717 r008 a(0)=7,K{-n^6,-20+22*n^3-45*n^2-29*n} 7014024709060659 p001 sum(1/(437*n+172)/(2^n),n=0..infinity) 7014024713375453 a007 Real Root Of 218*x^4+126*x^3-777*x^2-844*x+878 7014024739157279 k002 Champernowne real with 37/2*n^2+29/2*n+37 7014024742741347 m002 -3+(6*E^Pi)/Pi^6+Pi^2 7014024745455528 r009 Im(z^3+c),c=-13/94+13/17*I,n=5 7014024752091307 a007 Real Root Of 736*x^4+273*x^3+618*x^2+546*x-5 7014024753131374 a007 Real Root Of 321*x^4-509*x^3+471*x^2+817*x+88 7014024758692534 r008 a(0)=0,K{-n^6,-9+2*n^3-n^2-7*n} 7014024758692534 r008 a(0)=0,K{-n^6,9-2*n^3+n^2+7*n} 7014024781723695 m005 (1/3*3^(1/2)+1/3)/(4/7*gamma-1/5) 7014024789572283 a007 Real Root Of -711*x^4+540*x^3-591*x^2+235*x+814 7014024806354631 m001 (1-Ei(1))/(-Conway+Trott2nd) 7014024826334957 a007 Real Root Of -646*x^4+845*x^3-59*x^2+30*x+498 7014024839457880 k002 Champernowne real with 19*n^2+13*n+38 7014024852559271 l006 ln(3800/7663) 7014024858011632 a007 Real Root Of -678*x^4+286*x^3-577*x^2-249*x+372 7014024866898151 r005 Re(z^2+c),c=-13/10+11/240*I,n=44 7014024873039651 r009 Re(z^3+c),c=-49/86+5/16*I,n=43 7014024890144100 r002 11th iterates of z^2 + 7014024895048840 r002 9th iterates of z^2 + 7014024919486616 r005 Im(z^2+c),c=11/30+17/47*I,n=28 7014024925103973 l006 ln(6620/7101) 7014024928752473 r008 a(0)=7,K{-n^6,-95+25*n^3+55*n^2-56*n} 7014024939758481 k002 Champernowne real with 39/2*n^2+23/2*n+39 7014024940479830 r005 Re(z^2+c),c=-17/122+55/64*I,n=11 7014024955553784 r008 a(0)=7,K{-n^6,-75+42*n^3+14*n^2-52*n} 7014024957647877 m002 -25+E^Pi+Pi^2-Tanh[Pi] 7014024964610161 r008 a(0)=7,K{-n^6,-68+18*n^3-4*n^2-15*n} 7014024964925902 m001 (Grothendieck+Kac)/(Khinchin+RenyiParking) 7014024967203525 b008 7+Pi/224 7014024967960762 v002 sum(1/(2^n+(14*n^2+4*n+6)),n=1..infinity) 7014024974383810 a007 Real Root Of 436*x^4-555*x^3-129*x^2+266*x-47 7014024975376563 r008 a(0)=7,K{-n^6,-57+58*n^3-25*n^2-47*n} 7014024981419847 r008 a(0)=7,K{-n^6,-65+66*n^3-53*n^2-19*n} 7014024985741826 m009 (1/3*Pi^2-6)/(Psi(1,2/3)+4/5) 7014024993450342 r005 Im(z^2+c),c=-127/102+1/18*I,n=35 7014025039996527 m001 (Lehmer+StolarskyHarborth)/(sin(1)+Zeta(1,2)) 7014025040059082 k002 Champernowne real with 20*n^2+10*n+40 7014025041013858 m002 -Log[Pi]+6*Sinh[Pi]+2*Tanh[Pi] 7014025060500142 m001 (gamma(2)*GAMMA(19/24)+GaussAGM)/GAMMA(19/24) 7014025096473529 r002 25th iterates of z^2 + 7014025101201685 m001 (exp(1)+Paris)/(-Trott+ThueMorse) 7014025115581814 a007 Real Root Of 613*x^4+368*x^3+632*x^2+786*x+219 7014025140359683 k002 Champernowne real with 41/2*n^2+17/2*n+41 7014025155599030 m001 ZetaQ(3)^Zeta(1/2)*GAMMA(17/24)^Zeta(1/2) 7014025159224346 a007 Real Root Of 971*x^4+851*x^3+461*x^2+254*x+10 7014025188286025 h001 (5/9*exp(2)+7/11)/(9/11*exp(2)+5/7) 7014025198430196 m008 (1/6*Pi^6+2/5)/(3/4*Pi^5-1/2) 7014025205894714 m001 ln(2)/(Bloch^(Pi*csc(7/24*Pi)/GAMMA(17/24))) 7014025219758806 a007 Real Root Of 638*x^4+139*x^3+709*x^2-175*x-578 7014025240660284 k002 Champernowne real with 21*n^2+7*n+42 7014025250704319 r008 a(0)=7,K{-n^6,-40+52*n^3+2*n^2-85*n} 7014025255059913 r008 a(0)=7,K{-n^6,-54+59*n^3-26*n^2-50*n} 7014025259495985 r008 a(0)=7,K{-n^6,-66+66*n^3-53*n^2-18*n} 7014025279337438 r008 a(0)=7,K{-n^6,-6+82*n^3-71*n^2-76*n} 7014025285352020 r005 Re(z^2+c),c=-11/12+14/121*I,n=40 7014025297085162 a007 Real Root Of -516*x^4-299*x^3-771*x^2+700*x+892 7014025318072905 a001 139583862445/322*322^(1/12) 7014025320597234 a001 14930208*843^(4/7) 7014025322334522 a007 Real Root Of 109*x^4+721*x^3-262*x^2+413*x+766 7014025327223714 r008 a(0)=7,K{-n^6,-33+32*n^3-83*n^2+12*n} 7014025340960885 k002 Champernowne real with 43/2*n^2+11/2*n+43 7014025345706954 m001 1/exp(GAMMA(13/24))/Porter^2/GAMMA(17/24) 7014025352636269 a007 Real Root Of -873*x^4+900*x^3-218*x^2-713*x+129 7014025380247063 l006 ln(2473/4987) 7014025380247063 p004 log(4987/2473) 7014025386401140 m001 (5^(1/2)-ln(Pi))/(-BesselI(0,2)+Sarnak) 7014025387490213 r002 3th iterates of z^2 + 7014025399930505 a007 Real Root Of -825*x^4-43*x^3-940*x^2+11*x+655 7014025402911876 r005 Im(z^2+c),c=31/78+21/37*I,n=13 7014025441261486 k002 Champernowne real with 22*n^2+4*n+44 7014025450994870 m001 exp(-1/2*Pi)+gamma^GAMMA(17/24) 7014025484179840 r008 a(0)=7,K{-n^6,-95+25*n^3+56*n^2-57*n} 7014025498646882 a008 Real Root of (-1+x^2+x^3+x^7+x^8+x^9-x^11) 7014025502602757 p001 sum((-1)^n/(495*n+137)/(5^n),n=0..infinity) 7014025514564522 r008 a(0)=7,K{-n^6,17+34*n^3-65*n^2-58*n} 7014025519777927 r008 a(0)=7,K{-n^6,-57+48*n^3+6*n^2-68*n} 7014025521909930 r009 Im(z^3+c),c=-7/90+19/25*I,n=43 7014025526305231 r008 a(0)=7,K{-n^6,-41+52*n^3+2*n^2-84*n} 7014025534522044 r002 26th iterates of z^2 + 7014025541562087 k002 Champernowne real with 45/2*n^2+5/2*n+45 7014025601721687 r005 Re(z^2+c),c=-9/122+45/61*I,n=52 7014025641862688 k002 Champernowne real with 23*n^2+n+46 7014025642678187 m006 (1/2*Pi^2+1/6)/(2/5/Pi+3/5) 7014025648271786 a007 Real Root Of -499*x^4+271*x^3+376*x^2+922*x+676 7014025661003538 r005 Im(z^2+c),c=-5/62+5/6*I,n=47 7014025686934804 m001 GAMMA(5/6)*ln(Si(Pi))*Zeta(7) 7014025694970239 m001 Trott^2*GaussAGM(1,1/sqrt(2))^2*ln(Zeta(7)) 7014025716735323 a007 Real Root Of 924*x^4-867*x^3+784*x^2+149*x-804 7014025717763457 m001 (exp(1)+Zeta(1,2))/(ReciprocalLucas+Stephens) 7014025726397488 a007 Real Root Of 909*x^4+41*x^3+919*x^2-375*x-921 7014025730578746 r008 a(0)=7,K{-n^6,4+46*n^3-73*n^2-51*n} 7014025739456483 r002 8th iterates of z^2 + 7014025742163289 k002 Champernowne real with 47/2*n^2-1/2*n+47 7014025749582575 m005 (1/3*Zeta(3)+1/6)/(5*3^(1/2)-4/7) 7014025754817174 r009 Re(z^3+c),c=-29/52+2/15*I,n=2 7014025803893822 r008 a(0)=7,K{-n^6,-54+59*n^3-25*n^2-51*n} 7014025824091925 r005 Re(z^2+c),c=-5/8+49/108*I,n=11 7014025842463890 k002 Champernowne real with 24*n^2-2*n+48 7014025843315921 m001 ln(3)-exp(-1/2*Pi)^sin(1/5*Pi) 7014025843315921 m001 ln(3)-exp(-1/2*Pi)^sin(Pi/5) 7014025860164861 m001 (Paris-Sarnak)/(HardHexagonsEntropy-Mills) 7014025862763328 a007 Real Root Of -856*x^4-531*x^3+892*x^2+753*x-57 7014025878843893 r008 a(0)=7,K{-n^6,-3+39*n^3-90*n^2-18*n} 7014025880901362 r005 Re(z^2+c),c=-9/98+15/19*I,n=14 7014025881956470 r008 a(0)=7,K{-n^6,-9-n^3+20*n^2-82*n} 7014025886689261 a007 Real Root Of -636*x^4+778*x^3+3*x^2+67*x-163 7014025934326505 l006 ln(3619/7298) 7014025938934737 a007 Real Root Of 106*x^4+670*x^3-589*x^2-499*x+119 7014025942764491 k002 Champernowne real with 49/2*n^2-7/2*n+49 7014025957363812 r008 a(0)=7,K{-n^6,-51+23*n^3+n^2-43*n} 7014025978629581 a007 Real Root Of -721*x^4+831*x^3-773*x^2-601*x+420 7014025986536400 a007 Real Root Of -948*x^4+86*x^3-210*x^2+832*x+946 7014025990456677 b008 ArcCosh[177*Pi] 7014025996077692 m001 GAMMA(17/24)+Lehmer-Salem 7014026022645885 a001 329/1926*47^(55/57) 7014026025590686 a001 2971215073/322*843^(9/14) 7014026038750606 p001 sum(1/(422*n+155)/n/(25^n),n=1..infinity) 7014026042690422 m001 MinimumGamma^2*Kolakoski*ln(GAMMA(3/4))^2 7014026043065092 k002 Champernowne real with 25*n^2-5*n+50 7014026055600050 r008 a(0)=7,K{-n^6,-75+43*n^3+13*n^2-52*n} 7014026059517251 a007 Real Root Of 538*x^4+375*x^3-345*x^2-938*x-489 7014026063620948 r005 Re(z^2+c),c=-3/34+15/19*I,n=59 7014026063851442 r008 a(0)=7,K{-n^6,-57+48*n^3+7*n^2-69*n} 7014026066442229 r008 a(0)=7,K{-n^6,-53+50*n^3+3*n^2-71*n} 7014026068246666 m001 PisotVijayaraghavan^Landau-arctan(1/2) 7014026070189866 r008 a(0)=7,K{-n^6,-41+52*n^3+3*n^2-85*n} 7014026071059286 a007 Real Root Of 126*x^4+794*x^3-638*x^2-55*x+26 7014026074366841 r008 a(0)=7,K{-n^6,-55+59*n^3-25*n^2-50*n} 7014026075835712 m001 (Lehmer+RenyiParking)/(GAMMA(17/24)+Kac) 7014026097204018 a007 Real Root Of 501*x^4-934*x^3+304*x^2-352*x-840 7014026131858251 a007 Real Root Of -405*x^4+873*x^3+709*x^2-231*x-390 7014026143365693 k002 Champernowne real with 51/2*n^2-13/2*n+51 7014026145154008 m005 (1/2*3^(1/2)+5/8)/(8/11*Zeta(3)-3) 7014026157182185 a007 Real Root Of 965*x^4+133*x^3-96*x-255 7014026159581584 m001 StronglyCareFree*(GAMMA(11/12)-Psi(1,1/3)) 7014026191246152 a007 Real Root Of 880*x^4+293*x^3-991*x^2-822*x+750 7014026214082489 m001 ln(Zeta(5))/Sierpinski*sqrt(5)^2 7014026221889653 l006 ln(4765/9609) 7014026225731506 m005 (2/5*exp(1)-4)/(1/6*Catalan+4) 7014026243666294 k002 Champernowne real with 26*n^2-8*n+52 7014026278510608 a008 Real Root of x^3-76*x-188 7014026279208291 a007 Real Root Of 511*x^4-803*x^3-699*x^2+210*x+350 7014026301658671 m001 Si(Pi)/exp(Artin)*GAMMA(1/24)^2 7014026302911845 a007 Real Root Of -701*x^4+608*x^3+316*x^2+854*x+823 7014026306569509 m005 (3/5*exp(1)-5)/(-2/3+1/12*5^(1/2)) 7014026320130781 m005 (1/3*Pi-1/12)/(7/11*Pi-5/8) 7014026325434881 m001 exp(arctan(1/2))/Robbin*cos(1)^2 7014026331975713 r008 a(0)=7,K{-n^6,-58+48*n^3+7*n^2-68*n} 7014026343966895 k002 Champernowne real with 53/2*n^2-19/2*n+53 7014026345328611 a007 Real Root Of 74*x^4+30*x^3-611*x^2-835*x+858 7014026358211796 r005 Re(z^2+c),c=-35/52+15/32*I,n=10 7014026377454684 r005 Re(z^2+c),c=-5/62+42/53*I,n=47 7014026419020371 m001 1/Zeta(1,2)/exp(Khintchine)^2*sqrt(2) 7014026443441471 h001 (5/7*exp(2)+5/11)/(1/10*exp(1)+6/11) 7014026444267496 k002 Champernowne real with 27*n^2-11*n+54 7014026470289334 m005 (19/20+1/4*5^(1/2))/(5/12*Zeta(3)-2/7) 7014026475829717 r008 a(0)=7,K{-n^6,-13-59*n-8*n^2+8*n^3} 7014026478162610 m001 Totient/Otter/MasserGramain 7014026542050835 r002 5th iterates of z^2 + 7014026544568097 k002 Champernowne real with 55/2*n^2-25/2*n+55 7014026550212885 m005 (-1/6+1/4*5^(1/2))/(6/11*Catalan-5/9) 7014026564107451 r002 28th iterates of z^2 + 7014026565833009 r008 a(0)=7,K{-n^6,-95+26*n^3+55*n^2-57*n} 7014026589898905 a007 Real Root Of -752*x^4+208*x^3-209*x^2+712*x+856 7014026599817153 m005 (1/2*2^(1/2)+2/9)/(7/12*2^(1/2)+1/2) 7014026608121158 r008 a(0)=7,K{-n^6,-21+22*n^3-45*n^2-28*n} 7014026629721480 m001 (MertensB3-ZetaP(2))/(gamma(3)+Champernowne) 7014026644868698 k002 Champernowne real with 28*n^2-14*n+56 7014026654343676 r008 a(0)=7,K{-n^6,-59+31*n^3-27*n^2-15*n} 7014026667237266 a007 Real Root Of 782*x^4+18*x^3+238*x^2-111*x-378 7014026683524251 b008 Gamma[1/7,1/8]^(-1) 7014026695818865 a001 139583862445/1364*199^(4/11) 7014026702790197 r002 36th iterates of z^2 + 7014026730584208 a001 1836311903/322*843^(5/7) 7014026743546166 a007 Real Root Of 674*x^4-678*x^3-865*x^2+126*x+408 7014026745169299 k002 Champernowne real with 57/2*n^2-31/2*n+57 7014026745943481 r005 Im(z^2+c),c=-179/126+1/54*I,n=6 7014026779123793 m005 (1/2*Catalan-4/7)/(11/12*Catalan+7/9) 7014026798983174 b008 Log[354*Pi] 7014026802512245 a007 Real Root Of -545*x^4-24*x^3-86*x^2+760*x+699 7014026808122441 r008 a(0)=7,K{-n^6,-44+17*n^3+11*n^2-53*n} 7014026816736017 r002 3th iterates of z^2 + 7014026819429874 p004 log(28097/13933) 7014026823706343 r009 Re(z^3+c),c=-31/58+2/15*I,n=3 7014026824087182 r005 Re(z^2+c),c=-33/29+27/64*I,n=4 7014026845469810 k002 Champernowne real with 29*n^2-17*n+58 7014026849028343 a007 Real Root Of 379*x^4+10*x^3+162*x^2-924*x+64 7014026862472753 a007 Real Root Of 699*x^4+427*x^3+564*x^2-68*x-347 7014026865130053 a007 Real Root Of -929*x^4+975*x^3+221*x^2+99*x+522 7014026900949672 r009 Re(z^3+c),c=-39/70+10/61*I,n=27 7014026941812483 m001 (Psi(1,1/3)+DuboisRaymond)/Porter 7014026945770410 k002 Champernowne real with 59/2*n^2-37/2*n+59 7014026945939152 m001 ln(Zeta(3))/(2^(1/3))^2/sqrt(1+sqrt(3)) 7014026947894018 a007 Real Root Of 440*x^4-869*x^3-716*x^2-707*x-550 7014026994121497 m001 (Grothendieck+ZetaQ(4))/(ln(3)+exp(1/exp(1))) 7014026994682830 r008 a(0)=7,K{-n^6,-27-63*n+21*n^2-3*n^3} 7014027045643269 r009 Im(z^3+c),c=-23/66+33/47*I,n=35 7014027046071010 k002 Champernowne real with 30*n^2-20*n+60 7014027065350258 r005 Re(z^2+c),c=-1/44+6/23*I,n=10 7014027065598251 a007 Real Root Of 561*x^4-607*x^3+367*x^2+61*x-483 7014027079993850 r005 Re(z^2+c),c=-5/98+42/55*I,n=57 7014027089505684 m001 FeigenbaumB/FeigenbaumKappa/ZetaQ(3) 7014027092782623 m001 1/Ei(1)^2*Artin^2*ln(GAMMA(7/12))^2 7014027107705119 a003 sin(Pi*29/117)*sin(Pi*44/91) 7014027125745637 r008 a(0)=7,K{-n^6,-53+51*n^3+2*n^2-71*n} 7014027129245090 r008 a(0)=7,K{-n^6,-41+53*n^3+2*n^2-85*n} 7014027129996958 l006 ln(1146/2311) 7014027146371610 k002 Champernowne real with 61/2*n^2-43/2*n+61 7014027155765407 r008 a(0)=7,K{-n^6,11-60*n-52*n^2+29*n^3} 7014027168431339 m001 (3^(1/3)-LaplaceLimit)/(MertensB2+ZetaP(4)) 7014027197327925 s002 sum(A102192[n]/(exp(2*pi*n)-1),n=1..infinity) 7014027197729620 r002 18th iterates of z^2 + 7014027228304901 m001 FeigenbaumMu+Sierpinski+Thue 7014027246672210 k002 Champernowne real with 31*n^2-23*n+62 7014027261835323 s001 sum(exp(-2*Pi)^n*A085286[n],n=1..infinity) 7014027273030962 r002 19th iterates of z^2 + 7014027278377976 r005 Re(z^2+c),c=-79/90+12/47*I,n=39 7014027304679175 m005 (1/3*Catalan+1/4)/(1/11*Catalan-7/8) 7014027315362841 r008 a(0)=7,K{-n^6,-54+13*n^3-43*n^2+12*n} 7014027321961442 a007 Real Root Of 965*x^4-115*x^3+298*x^2+34*x-396 7014027326893198 a008 Real Root of (15+15*x-7*x^2+3*x^3) 7014027329298033 a007 Real Root Of -2*x^4-141*x^3-38*x^2+877*x+201 7014027336211427 a007 Real Root Of 774*x^4+683*x^3-59*x^2-980*x-610 7014027344946411 a007 Real Root Of 774*x^4-464*x^3+677*x^2-283*x-879 7014027345538826 r008 a(0)=7,K{-n^6,-47+19*n^3-46*n^2+2*n} 7014027346972810 k002 Champernowne real with 63/2*n^2-49/2*n+63 7014027392596337 r008 a(0)=7,K{-n^6,-60+62*n^3-34*n^2-39*n} 7014027392652271 r005 Im(z^2+c),c=-3/5+11/100*I,n=17 7014027399631611 s002 sum(A079433[n]/(exp(2*pi*n)+1),n=1..infinity) 7014027422939635 s002 sum(A190424[n]/(exp(2*pi*n)+1),n=1..infinity) 7014027431995263 a001 2584/15127*47^(55/57) 7014027433472047 s002 sum(A243454[n]/((2*n+1)!),n=1..infinity) 7014027435577801 a001 567451585/161*843^(11/14) 7014027436887441 m001 (GAMMA(7/12)-Rabbit)/(Salem-ZetaQ(3)) 7014027439649176 r005 Re(z^2+c),c=27/82+14/37*I,n=28 7014027447273410 k002 Champernowne real with 32*n^2-26*n+64 7014027501685142 a007 Real Root Of 62*x^4-330*x^3+994*x^2+707*x-122 7014027513648793 a007 Real Root Of 114*x^4+919*x^3+844*x^2+51*x+37 7014027535447762 r009 Re(z^3+c),c=-63/106+11/46*I,n=42 7014027547574010 k002 Champernowne real with 65/2*n^2-55/2*n+65 7014027570571355 a007 Real Root Of -909*x^4-308*x^3-593*x^2+812*x+975 7014027574275624 a001 34/3010349*199^(39/50) 7014027581455028 p001 sum(1/(96*n+47)/n/(100^n),n=0..infinity) 7014027607507710 b008 ArcSinh[177*Pi] 7014027613077586 a007 Real Root Of 95*x^4+721*x^3+513*x^2+783*x-882 7014027625323448 r008 a(0)=7,K{-n^6,-30-54*n+5*n^2+7*n^3} 7014027637616572 a001 2255/13201*47^(55/57) 7014027640660888 r008 a(0)=7,K{-n^6,-53+51*n^3+3*n^2-72*n} 7014027647123350 r005 Im(z^2+c),c=-11/42+40/61*I,n=7 7014027647874610 k002 Champernowne real with 33*n^2-29*n+66 7014027653680216 r002 42th iterates of z^2 + 7014027653680216 r002 42th iterates of z^2 + 7014027663039486 m006 (1/2*Pi^2-2)/(3*ln(Pi)+3/4) 7014027667616317 a001 17711/103682*47^(55/57) 7014027671993221 a001 15456/90481*47^(55/57) 7014027672631802 a001 121393/710647*47^(55/57) 7014027672724970 a001 105937/620166*47^(55/57) 7014027672738563 a001 832040/4870847*47^(55/57) 7014027672746964 a001 514229/3010349*47^(55/57) 7014027672782551 a001 196418/1149851*47^(55/57) 7014027673026467 a001 75025/439204*47^(55/57) 7014027674698296 a001 28657/167761*47^(55/57) 7014027676779714 m001 (-Ei(1)+Artin)/(exp(1)+ln(gamma)) 7014027686157179 a001 10946/64079*47^(55/57) 7014027698045311 a007 Real Root Of -347*x^4-686*x^3-806*x^2+361*x+497 7014027717058323 r008 a(0)=7,K{-n^6,-7-50*n-50*n^2+34*n^3} 7014027718198956 m006 (1/4*ln(Pi)-2/5)/(2/3*exp(Pi)+4/5) 7014027719357130 m005 (1/3*2^(1/2)-1/11)/(3/10*Pi-2/5) 7014027740649963 s002 sum(A192196[n]/(exp(2*pi*n)+1),n=1..infinity) 7014027748175210 k002 Champernowne real with 67/2*n^2-61/2*n+67 7014027749630207 a007 Real Root Of -280*x^4+645*x^3+310*x^2-220*x-153 7014027758872520 m001 (GAMMA(7/12)+ZetaQ(3))/(Chi(1)+GAMMA(2/3)) 7014027764697530 a001 4181/24476*47^(55/57) 7014027778709660 m001 (2^(1/3)-GaussAGM)/(-TwinPrimes+ZetaQ(2)) 7014027794323054 a007 Real Root Of 422*x^4-475*x^3-336*x^2-449*x+542 7014027798553126 r009 Re(z^3+c),c=-23/40+15/23*I,n=7 7014027812146514 r009 Im(z^3+c),c=-6/25+23/33*I,n=13 7014027822677209 r002 16th iterates of z^2 + 7014027839033059 m004 (-100*Sqrt[5])/Pi+(Pi*Cos[Sqrt[5]*Pi])/Sqrt[5] 7014027848444912 r008 a(0)=7,K{-n^6,-66+7*n^3-35*n^2+22*n} 7014027848475811 k002 Champernowne real with 34*n^2-32*n+68 7014027878564931 l006 ln(8/8897) 7014027894522320 r008 a(0)=7,K{-n^6,-54+51*n^3+3*n^2-71*n} 7014027898473335 r008 a(0)=7,K{-n^6,-37+43*n^3-52*n^2-24*n} 7014027903539009 m005 (1/3*exp(1)+1/8)/(64/77+2/7*5^(1/2)) 7014027904095279 a007 Real Root Of -931*x^4-299*x^3-288*x^2+398*x+543 7014027905417078 r005 Im(z^2+c),c=11/38+23/45*I,n=27 7014027914771852 r008 a(0)=7,K{-n^6,-12+71*n^3-36*n^2-94*n} 7014027925221568 s001 sum(exp(-2*Pi)^(n-1)*A212872[n],n=1..infinity) 7014027925774588 r009 Re(z^3+c),c=-7/54+43/62*I,n=46 7014027938355715 r002 39i'th iterates of 2*x/(1-x^2) of 7014027947410023 r002 35th iterates of z^2 + 7014027948113094 r009 Re(z^3+c),c=-43/82+5/36*I,n=10 7014027948776411 k002 Champernowne real with 69/2*n^2-67/2*n+69 7014027957567302 m001 1/exp(BesselK(1,1))*Si(Pi)^2*GAMMA(11/24)^2 7014027971730318 m001 (Zeta(1,-1)+MadelungNaCl)/(2^(1/2)+sin(1)) 7014027994791068 r005 Re(z^2+c),c=-37/78+27/49*I,n=9 7014028008381261 a007 Real Root Of 69*x^4-834*x^3+354*x^2+671*x-8 7014028030781010 m001 GolombDickman/ln(DuboisRaymond)*Tribonacci 7014028049077011 k002 Champernowne real with 35*n^2-35*n+70 7014028056112224 q001 35/499 7014028056895749 r008 a(0)=7,K{-n^6,-22-53*n-n^2+4*n^3} 7014028065333663 r005 Re(z^2+c),c=-13/122+25/32*I,n=11 7014028068440884 a003 sin(Pi*17/75)/sin(Pi*29/76) 7014028082300988 r008 a(0)=7,K{-n^6,-2+29*n^3-58*n^2-41*n} 7014028098466482 a007 Real Root Of -537*x^4-88*x^3-239*x^2-274*x+25 7014028110980720 s002 sum(A136883[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028112765729 l006 ln(4403/8879) 7014028124673174 r008 a(0)=7,K{-n^6,-45-26*n-2*n^2+n^3} 7014028127958621 r005 Re(z^2+c),c=-23/30+3/107*I,n=7 7014028140571465 a001 701408733/322*843^(6/7) 7014028149377611 k002 Champernowne real with 71/2*n^2-73/2*n+71 7014028150777900 r005 Re(z^2+c),c=-9/94+6/7*I,n=59 7014028155615846 s001 sum(exp(-2*Pi)^(n-1)*A126171[n],n=1..infinity) 7014028181436978 a003 cos(Pi*26/119)*sin(Pi*30/83) 7014028191881522 a007 Real Root Of 766*x^4-730*x^3+618*x^2-336*x-977 7014028206910102 a007 Real Root Of -42*x^4-238*x^3+350*x^2-229*x+702 7014028209972222 a008 Real Root of (-1+5*x+6*x^2-x^3+5*x^4) 7014028210515548 a007 Real Root Of -978*x^4-905*x^3-941*x^2-970*x-293 7014028234586870 m001 AlladiGrinstead^Gompertz/(Porter^Gompertz) 7014028245912677 s002 sum(A236625[n]/(exp(2*pi*n)+1),n=1..infinity) 7014028247237342 l006 ln(4239/4547) 7014028247706430 s002 sum(A027061[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028247706912 s002 sum(A279460[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028249678211 k002 Champernowne real with 36*n^2-38*n+72 7014028263784737 r009 Im(z^3+c),c=-11/38+37/38*I,n=40 7014028271169392 r008 a(0)=7,K{-n^6,-25-34*n-58*n^2+47*n^3} 7014028288143014 a001 29*(1/2*5^(1/2)+1/2)^2*18^(10/13) 7014028289208233 m001 (BesselI(0,2)-FeigenbaumDelta)^(5^(1/2)) 7014028289208233 m001 (BesselI(0,2)-FeigenbaumDelta)^sqrt(5) 7014028293900006 s002 sum(A027063[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028293986594 s002 sum(A027065[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028293986757 s002 sum(A231057[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028303021116 a001 1597/9349*47^(55/57) 7014028306350318 a007 Real Root Of -211*x^4-68*x^3-541*x^2+957*x+965 7014028328919403 a007 Real Root Of -147*x^4+677*x^3-389*x^2+454*x+779 7014028339066598 s001 sum(exp(-2*Pi)^(n-1)*A014334[n],n=1..infinity) 7014028339215067 a007 Real Root Of -967*x^4+765*x^3+46*x^2+507*x+831 7014028349978811 k002 Champernowne real with 73/2*n^2-79/2*n+73 7014028357628170 m001 (-Kolakoski+MertensB2)/(Cahen-ln(2)/ln(10)) 7014028370468476 m001 (-Ei(1)+Tetranacci)/(1+Pi*2^(1/2)/GAMMA(3/4)) 7014028383887643 s002 sum(A216158[n]/(exp(2*pi*n)+1),n=1..infinity) 7014028386721570 s002 sum(A122737[n]/(exp(2*pi*n)-1),n=1..infinity) 7014028397821455 r008 a(0)=7,K{-n^6,-39-56*n^2+23*n^3} 7014028435470390 r005 Im(z^2+c),c=7/24+17/33*I,n=15 7014028450279411 k002 Champernowne real with 37*n^2-41*n+74 7014028458560306 l006 ln(3257/6568) 7014028461466556 m001 LambertW(1)^sin(1/5*Pi)/(Zeta(5)^sin(1/5*Pi)) 7014028461466556 m001 LambertW(1)^sin(Pi/5)/(Zeta(5)^sin(Pi/5)) 7014028496985367 r004 Re(z^2+c),c=-1/11-11/16*I,z(0)=I,n=53 7014028497340388 r002 17th iterates of z^2 + 7014028514443893 m001 (Catalan-ln(3))/(-cos(1/12*Pi)+FeigenbaumMu) 7014028517302382 r008 a(0)=7,K{-n^6,-43-9*n^3+57*n^2-77*n} 7014028522810245 s001 sum(exp(-2*Pi)^n*A106434[n],n=1..infinity) 7014028546954153 a007 Real Root Of -809*x^4+946*x^3-665*x^2-280*x+653 7014028550580011 k002 Champernowne real with 75/2*n^2-85/2*n+75 7014028550929230 a007 Real Root Of -526*x^4+580*x^3+853*x^2+927*x+558 7014028559130587 p004 log(30529/15139) 7014028563483499 m001 (Shi(1)-ln(gamma))/(Landau+MadelungNaCl) 7014028565136423 s002 sum(A117665[n]/(exp(2*pi*n)+1),n=1..infinity) 7014028566443543 s002 sum(A068777[n]/(exp(2*pi*n)+1),n=1..infinity) 7014028568904052 m001 (GAMMA(2/3)-ln(3))/(CopelandErdos+Magata) 7014028585477302 a007 Real Root Of -129*x^4-825*x^3+456*x^2-712*x+112 7014028585516757 a007 Real Root Of -444*x^4+929*x^3+214*x^2+679*x+799 7014028585558626 a007 Real Root Of 864*x^4-543*x^3+523*x^2+416*x-362 7014028614769701 a007 Real Root Of 324*x^4-511*x^3-512*x^2-73*x+401 7014028642623258 m001 (Bloch-ZetaQ(3))/(GAMMA(3/4)-BesselI(1,1)) 7014028648515105 r008 a(0)=7,K{-n^6,-49+57*n^3-11*n^2-68*n} 7014028650880611 k002 Champernowne real with 38*n^2-44*n+76 7014028671895940 b008 ProductLog[EllipticE[E^(-1)]] 7014028680550834 m001 LandauRamanujan2nd/(Sarnak^gamma) 7014028701762945 r005 Re(z^2+c),c=-89/98+17/32*I,n=4 7014028706124816 s002 sum(A003759[n]/(exp(2*pi*n)+1),n=1..infinity) 7014028719130941 m005 (Catalan-2/5)/(3/4*Pi+5) 7014028751181211 k002 Champernowne real with 77/2*n^2-91/2*n+77 7014028753872027 s001 sum(exp(-2*Pi)^(n-1)*A287223[n],n=1..infinity) 7014028761750764 s001 sum(exp(-Pi/2)^n*A019679[n],n=1..infinity) 7014028762349643 a007 Real Root Of -930*x^4+484*x^3+39*x^2-295*x+166 7014028764613697 a007 Real Root Of -590*x^4-148*x^3-266*x^2+434*x+527 7014028807183849 r005 Im(z^2+c),c=-141/118+14/45*I,n=26 7014028836513779 a007 Real Root Of 868*x^4+584*x^3+36*x^2-232*x-189 7014028837915332 r008 a(0)=7,K{-n^6,10-59*n-52*n^2+29*n^3} 7014028845565200 a001 433494437/322*843^(13/14) 7014028851481812 k002 Champernowne real with 39*n^2-47*n+78 7014028857061483 r008 a(0)=7,K{-n^6,-42-52*n+31*n^2-9*n^3} 7014028868150027 a007 Real Root Of 92*x^4-448*x^3+991*x^2+923*x-17 7014028888506340 a008 Real Root of x^5-2*x^4-15*x^3+7*x^2+47*x+25 7014028947581959 m001 ln(5)^FeigenbaumDelta/(ln(5)^Stephens) 7014028951782412 k002 Champernowne real with 79/2*n^2-97/2*n+79 7014028958855287 b008 1+(105*ArcCosh[2])/2 7014028995185548 a007 Real Root Of 633*x^4-867*x^3+64*x^2+188*x-352 7014029004940568 a007 Real Root Of -551*x^4+512*x^3-103*x^2+709*x+858 7014029023773454 s001 sum(exp(-2*Pi)^(n-1)*A012272[n],n=1..infinity) 7014029027697654 a008 Real Root of x^3-x^2-62*x+139 7014029028817049 s001 sum(exp(-2*Pi)^(n-1)*A012266[n],n=1..infinity) 7014029034108002 s001 sum(exp(-2*Pi)^(n-1)*A052517[n],n=1..infinity) 7014029036621182 s002 sum(A073964[n]/(exp(2*pi*n)-1),n=1..infinity) 7014029039402840 s001 sum(exp(-2*Pi)^(n-1)*A012270[n],n=1..infinity) 7014029044697678 s001 sum(exp(-2*Pi)^(n-1)*A012268[n],n=1..infinity) 7014029052083012 k002 Champernowne real with 40*n^2-50*n+80 7014029081610622 a007 Real Root Of 848*x^4-363*x^3+670*x^2+512*x-301 7014029082527911 r008 a(0)=7,K{-n^6,-61-28*n+28*n^2-11*n^3} 7014029100292720 a007 Real Root Of -579*x^4+928*x^3-702*x^2-654*x+347 7014029152383612 k002 Champernowne real with 81/2*n^2-103/2*n+81 7014029156909005 a001 139583862445/843*199^(3/11) 7014029173441115 a007 Real Root Of 711*x^4-649*x^3+884*x^2-50*x-866 7014029179798317 l006 ln(2111/4257) 7014029185000043 a001 843/28657*233^(32/55) 7014029252684212 k002 Champernowne real with 41*n^2-53*n+82 7014029290308577 a003 sin(Pi*9/116)+sin(Pi*7/46) 7014029311657360 p001 sum((-1)^n/(386*n+139)/(10^n),n=0..infinity) 7014029315159629 r005 Im(z^2+c),c=-17/62+5/49*I,n=17 7014029316195692 m008 (2/3*Pi^2-5/6)/(4/5*Pi^4+4) 7014029326447640 r008 a(0)=7,K{-n^6,-55+13*n^3-43*n^2+13*n} 7014029352984812 k002 Champernowne real with 83/2*n^2-109/2*n+83 7014029376656828 r005 Re(z^2+c),c=47/106+10/63*I,n=5 7014029395377942 r008 a(0)=7,K{-n^6,-63-6*n-n^2-2*n^3} 7014029416944176 a007 Real Root Of 735*x^4+992*x^3+972*x^2+483*x+25 7014029428030788 m005 (1/2*Catalan+5)/(61/110+1/10*5^(1/2)) 7014029443612863 a005 (1/sin(81/191*Pi))^1832 7014029453285412 k002 Champernowne real with 42*n^2-56*n+84 7014029463224334 r008 a(0)=7,K{-n^6,15+66*n^3-95*n^2-56*n} 7014029467706245 s002 sum(A242427[n]/(exp(2*pi*n)+1),n=1..infinity) 7014029477327054 r005 Re(z^2+c),c=1/5+1/2*I,n=12 7014029493925023 r008 a(0)=7,K{-n^6,-49-35*n+12*n^2-n^3} 7014029522984001 r005 Re(z^2+c),c=-7/38+27/37*I,n=5 7014029536156318 h001 (1/2*exp(2)+1/8)/(1/10*exp(1)+3/11) 7014029536389940 h001 (5/6*exp(2)+1/6)/(2/7*exp(1)+1/8) 7014029542445919 a001 4181/843*2^(1/2) 7014029549379252 m005 (1/2*Pi-8/9)/(4*5^(1/2)+7/9) 7014029549920424 a001 264428914032/377 7014029552255894 a007 Real Root Of 432*x^4-952*x^3+690*x^2+725*x-264 7014029553586012 k002 Champernowne real with 85/2*n^2-115/2*n+85 7014029568362809 r008 a(0)=7,K{-n^6,27+36*n^3-65*n^2-70*n} 7014029569886560 r008 a(0)=7,K{-n^6,-39+8*n^3-2*n^2-39*n} 7014029571587881 a007 Real Root Of 812*x^4-291*x^3-660*x^2-511*x+587 7014029648338609 m005 (-1/2+1/6*5^(1/2))/(7/10*5^(1/2)+1/4) 7014029653886612 k002 Champernowne real with 43*n^2-59*n+86 7014029654794869 h001 (3/7*exp(1)+7/8)/(11/12*exp(1)+5/12) 7014029721210575 r008 a(0)=7,K{-n^6,-3-64*n-40*n^2+39*n^3} 7014029754187212 k002 Champernowne real with 87/2*n^2-121/2*n+87 7014029763772862 m001 (TreeGrowth2nd+ZetaP(2))/(Kac+MasserGramain) 7014029773869325 a007 Real Root Of -852*x^4-426*x^3+34*x^2+82*x+100 7014029781066700 a003 cos(Pi*5/74)*sin(Pi*27/106) 7014029795109173 m005 (1/2*gamma-1/12)/(3/5*Zeta(3)-3/7) 7014029801212924 a007 Real Root Of -930*x^4-35*x^3-734*x^2-723*x+67 7014029816330634 m001 (Zeta(3)+GAMMA(3/4))/(Magata+ZetaQ(2)) 7014029854487813 k002 Champernowne real with 44*n^2-62*n+88 7014029866752804 r008 a(0)=7,K{-n^6,-74+83*n^3-99*n^2+19*n} 7014029872220397 m001 cos(1/5*Pi)*FeigenbaumB-exp(1/Pi) 7014029872710053 r009 Im(z^3+c),c=-1/52+40/51*I,n=57 7014029890698127 a001 4/1346269*28657^(28/37) 7014029900958592 r009 Im(z^3+c),c=-43/94+27/46*I,n=7 7014029943475829 l006 ln(3076/6203) 7014029954788413 k002 Champernowne real with 89/2*n^2-127/2*n+89 7014029954824497 m001 (Zeta(3)-Backhouse)^sin(1/12*Pi) 7014029954824497 m001 (Zeta(3)-Backhouse)^sin(Pi/12) 7014029967216815 a007 Real Root Of 919*x^4-842*x^3-432*x^2-112*x-379 7014029979736054 a003 cos(Pi*1/109)*cos(Pi*26/103) 7014029999910252 r005 Re(z^2+c),c=-43/56+4/39*I,n=7 7014030013632912 a007 Real Root Of 105*x^4-502*x^3-199*x^2-545*x-483 7014030017489878 a007 Real Root Of 192*x^4-791*x^3-683*x^2-852*x-581 7014030055089013 k002 Champernowne real with 45*n^2-65*n+90 7014030063711102 b008 1/3-7*Cosh[3] 7014030071014096 r005 Re(z^2+c),c=10/27+10/31*I,n=35 7014030074172525 m001 (3^(1/3)-BesselK(1,1))/(KhinchinLevy-Mills) 7014030077297414 r005 Re(z^2+c),c=-17/22+5/106*I,n=55 7014030081327594 r005 Re(z^2+c),c=-41/52+1/52*I,n=57 7014030084769502 a007 Real Root Of -213*x^4+722*x^3+158*x^2-114*x+143 7014030097556013 r008 a(0)=7,K{-n^6,-39+71*n^3-45*n^2-58*n} 7014030100418836 m001 (Zeta(1/2)+arctan(1/3))/(LandauRamanujan+Thue) 7014030100523596 a007 Real Root Of -92*x^4-521*x^3+876*x^2-25*x-383 7014030106346679 r008 a(0)=7,K{-n^6,-25+10*n^2-57*n} 7014030107653643 r008 a(0)=7,K{-n^6,-54-22*n-18*n^2+25*n^3} 7014030108721413 r008 a(0)=7,K{-n^6,-13-45*n-34*n^2+20*n^3} 7014030117944317 a007 Real Root Of 927*x^4-716*x^3+577*x^2+210*x-608 7014030130606513 r005 Re(z^2+c),c=5/126+26/45*I,n=21 7014030132413717 p003 LerchPhi(1/32,1,215/148) 7014030144728413 a007 Real Root Of 217*x^4-519*x^3+781*x^2+667*x-148 7014030155389613 k002 Champernowne real with 91/2*n^2-133/2*n+91 7014030162799975 r009 Im(z^3+c),c=-13/22+20/29*I,n=7 7014030172169365 s002 sum(A074008[n]/(exp(2*pi*n)-1),n=1..infinity) 7014030177150225 a007 Real Root Of -378*x^4+734*x^3+330*x^2+898*x-954 7014030237695260 r008 a(0)=7,K{-n^6,-46-25*n-2*n^2+n^3} 7014030239871617 m005 (17/36+1/4*5^(1/2))/(1/2*exp(1)+1/9) 7014030245844875 r008 a(0)=8,K{-n^6,12-12*n^3+9*n^2-9*n} 7014030255690213 k002 Champernowne real with 46*n^2-68*n+92 7014030277435369 a007 Real Root Of 643*x^4+549*x^3+784*x^2-224*x-509 7014030279108220 m001 exp(GAMMA(19/24))/MertensB1*LambertW(1) 7014030288828014 a007 Real Root Of 49*x^4-156*x^3+484*x^2-284*x-503 7014030293251803 r008 a(0)=7,K{-n^6,-80+30*n^3+58*n^2-79*n} 7014030300271731 r008 a(0)=7,K{-n^6,-32-29*n-36*n^2+31*n^3} 7014030303834461 m005 (3/5*gamma+5/6)/(3/5*2^(1/2)+5/6) 7014030318537767 m001 GAMMA(23/24)/Cahen*TreeGrowth2nd 7014030338341388 r008 a(0)=7,K{-n^6,-10+81*n^3-60*n^2-82*n} 7014030342417461 l006 ln(4041/8149) 7014030343999568 r008 a(0)=7,K{-n^6,10+89*n^3-74*n^2-96*n} 7014030350630276 m002 -3*E^Pi+Pi^2/E^Pi-Log[Pi] 7014030351785624 m002 -Pi^3+Pi^4*Coth[Pi]+Pi*ProductLog[Pi] 7014030355990813 k002 Champernowne real with 93/2*n^2-139/2*n+93 7014030356897878 m005 (1/2*2^(1/2)+1)/(9/10*3^(1/2)+7/8) 7014030368535459 r005 Im(z^2+c),c=-1/19+11/16*I,n=32 7014030402210748 a007 Real Root Of -441*x^4+942*x^3+345*x^2+670*x+732 7014030408655653 r005 Im(z^2+c),c=-45/98+7/59*I,n=23 7014030427749505 s002 sum(A201495[n]/((3*n+1)!),n=1..infinity) 7014030429336199 m001 (Zeta(5)-sin(1/12*Pi))/(GAMMA(11/12)+ZetaQ(2)) 7014030429941092 r008 a(0)=7,K{-n^6,-39+8*n-61*n^2+20*n^3} 7014030456232831 a001 682*89^(27/52) 7014030456291413 k002 Champernowne real with 47*n^2-71*n+94 7014030467723882 r008 a(0)=7,K{-n^6,-40-56*n^2+23*n^3+n} 7014030473701203 r008 a(0)=7,K{-n^6,-61-23*n^3+65*n^2-53*n} 7014030477063133 a001 322/433494437*2178309^(2/13) 7014030477063178 a001 161/567451585*1134903170^(2/13) 7014030477063178 a001 322/2971215073*591286729879^(2/13) 7014030489409112 a001 322/165580141*4181^(2/13) 7014030503046609 m001 (2^(1/3)-GAMMA(2/3))/(Champernowne+Trott) 7014030534052471 r005 Im(z^2+c),c=11/29+35/51*I,n=10 7014030535219164 r008 a(0)=7,K{-n^6,-65+12*n^3-33*n^2+13*n} 7014030556592013 k002 Champernowne real with 95/2*n^2-145/2*n+95 7014030559392737 m001 sin(1/5*Pi)/(BesselJ(0,1)-gamma(1)) 7014030568650134 r008 a(0)=7,K{-n^6,-11+81*n^3-60*n^2-81*n} 7014030569204888 p003 LerchPhi(1/256,3,197/175) 7014030571152952 m001 Zeta(1,2)^2/GAMMA(11/24)^2*ln(sin(1))^2 7014030573515834 a007 Real Root Of 914*x^4-908*x^3-150*x^2+885*x+160 7014030587552183 l006 ln(5006/10095) 7014030599558202 a007 Real Root Of -38*x^4+862*x^3-925*x^2+133*x+855 7014030612960665 m008 (1/4*Pi^4+1)/(2/5*Pi^2-1/3) 7014030646871175 a007 Real Root Of 969*x^4+746*x^3+403*x^2-805*x-740 7014030656892613 k002 Champernowne real with 48*n^2-74*n+96 7014030661934268 m005 (1/2*exp(1)-2/5)/(6/11*Catalan-7/11) 7014030676903147 r009 Im(z^3+c),c=-15/58+3/55*I,n=5 7014030678797298 a007 Real Root Of -979*x^4-729*x^3-615*x^2+318*x+511 7014030695552447 a007 Real Root Of x^4-78*x^3+341*x^2-415*x-486 7014030699783336 a007 Real Root Of -699*x^4+602*x^3+301*x^2-590*x-185 7014030700194237 m001 1/TreeGrowth2nd/ln(Robbin)*GAMMA(5/6)^2 7014030700598752 a007 Real Root Of 5*x^4-102*x^3-840*x^2+725*x-888 7014030753352299 r005 Im(z^2+c),c=-17/14+27/155*I,n=17 7014030757193213 k002 Champernowne real with 97/2*n^2-151/2*n+97 7014030758333824 m001 (Paris-Sarnak)/(ln(2^(1/2)+1)-Pi^(1/2)) 7014030768433377 m005 (1/3*gamma+3/7)/(3*Pi-4/7) 7014030769786157 r008 a(0)=7,K{-n^6,-62-27*n+28*n^2-11*n^3} 7014030781720196 m001 1/exp(FeigenbaumDelta)*Conway^2*BesselJ(1,1) 7014030800672229 r008 a(0)=7,K{-n^6,30+33*n^3-54*n^2-81*n} 7014030803698809 r005 Re(z^2+c),c=-9/14+115/232*I,n=17 7014030805446573 r008 a(0)=7,K{-n^6,-9+19*n^2-82*n} 7014030813853699 a007 Real Root Of -469*x^4+699*x^3-761*x^2-713*x+229 7014030857493814 k002 Champernowne real with 49*n^2-77*n+98 7014030867047143 r005 Re(z^2+c),c=9/98+8/57*I,n=6 7014030873682994 r008 a(0)=7,K{-n^6,-50+14*n^3+12*n^2-44*n} 7014030875747608 r008 a(0)=7,K{-n^6,-3-60*n-46*n^2+41*n^3} 7014030889092995 s002 sum(A073973[n]/(exp(2*pi*n)+1),n=1..infinity) 7014030893947043 s001 sum(exp(-2*Pi)^n*A180367[n],n=1..infinity) 7014030903042062 r008 a(0)=7,K{-n^6,-21+22*n^3-44*n^2-29*n} 7014030923866351 p004 log(17627/16433) 7014030946917355 m002 5+Log[Pi]^(-1)+Log[Pi]*Tanh[Pi] 7014030947824431 m001 ln(2)+ln(gamma)^(2*Pi/GAMMA(5/6)) 7014030947824431 m001 ln(2)+log(gamma)^GAMMA(1/6) 7014030955498168 a001 43133785636/161*322^(1/6) 7014030957794414 k002 Champernowne real with 99/2*n^2-157/2*n+99 7014030979509735 a007 Real Root Of 470*x^4-909*x^3+87*x^2-563*x+552 7014030992647697 m002 -Pi^3+Pi^4-E^Pi*Pi^5+ProductLog[Pi] 7014031001075223 r005 Im(z^2+c),c=-11/90+61/62*I,n=28 7014031007533919 r008 a(0)=7,K{-n^6,-59+61*n^3-23*n^2-50*n} 7014031023608960 r008 a(0)=7,K{-n^6,-11+81*n^3-59*n^2-82*n} 7014031042924419 a007 Real Root Of -535*x^4-363*x^3-443*x^2-120*x+138 7014031058095014 k002 Champernowne real with 50*n^2-80*n+100 7014031078704385 a007 Real Root Of -40*x^4+937*x^3-781*x^2+118*x+800 7014031110726827 m005 (1/5*Catalan+3/4)/(5/6*Catalan-3/4) 7014031121968752 h001 (-3*exp(4)-10)/(-2*exp(2)-10) 7014031125161602 r009 Re(z^3+c),c=-59/94+17/56*I,n=2 7014031139958898 m005 (3/8+1/4*5^(1/2))/(6*5^(1/2)-1/10) 7014031154210483 a007 Real Root Of 401*x^4-14*x^3-12*x^2-797*x-655 7014031158395614 k002 Champernowne real with 101/2*n^2-163/2*n+101 7014031189925159 a001 9349/610*4181^(36/49) 7014031231693966 a001 4/75025*233^(26/55) 7014031249508759 r008 a(0)=7,K{-n^6,26+36*n^3-65*n^2-69*n} 7014031251777992 r009 Im(z^3+c),c=-13/32+35/52*I,n=2 7014031258696214 k002 Champernowne real with 51*n^2-83*n+102 7014031265387025 r008 a(0)=7,K{-n^6,-75-15*n^3+34*n^2-16*n} 7014031285987281 m001 (cos(1)+BesselI(0,1))/(ln(5)+cos(1/12*Pi)) 7014031294104044 a007 Real Root Of 103*x^4+835*x^3+887*x^2+820*x+953 7014031298782718 r008 a(0)=7,K{-n^6,11-57*n-57*n^2+31*n^3} 7014031320213512 p004 log(30707/28627) 7014031321280275 p004 log(35393/17551) 7014031349491764 a001 11/34*365435296162^(3/8) 7014031358072849 m001 Bloch/(GolombDickman^sin(1)) 7014031358996814 k002 Champernowne real with 103/2*n^2-169/2*n+103 7014031361065648 a007 Real Root Of -781*x^4+152*x^3-868*x^2-216*x+517 7014031389370513 a007 Real Root Of -405*x^4+638*x^3-596*x^2-846*x+18 7014031389535692 r009 Im(z^3+c),c=-19/44+45/52*I,n=2 7014031411934642 a007 Real Root Of -34*x^4+351*x^3-842*x^2+12*x+552 7014031420735437 m001 GAMMA(19/24)^2/RenyiParking/exp(cos(Pi/12)) 7014031422752155 m005 (1/2*gamma+1/11)/(5/6*Catalan-2/9) 7014031429455108 r002 64i'th iterates of 2*x/(1-x^2) of 7014031445695415 m001 (Kac+MinimumGamma)/(ln(Pi)+FeigenbaumC) 7014031457647309 l005 696/101/(exp(696/101)-1) 7014031457946215 r005 Re(z^2+c),c=-18/17+19/64*I,n=12 7014031459297414 k002 Champernowne real with 52*n^2-86*n+104 7014031466051639 m001 1/exp(MinimumGamma)/FeigenbaumAlpha^2*Ei(1) 7014031480970961 s001 sum(1/10^(n-1)*A108341[n],n=1..infinity) 7014031480970961 s001 sum(1/10^n*A108341[n],n=1..infinity) 7014031488848874 r008 a(0)=7,K{-n^6,-64-5*n-n^2-2*n^3} 7014031494324501 r001 52i'th iterates of 2*x^2-1 of 7014031497866948 m005 (1/4*Catalan-3/4)/(2/3*2^(1/2)-1/5) 7014031498904890 m001 Zeta(1/2)*Rabbit^2/exp(sinh(1))^2 7014031506135282 r002 36th iterates of z^2 + 7014031508409674 a003 sin(Pi*19/101)/cos(Pi*16/77) 7014031541341111 k007 concat of cont frac of 7014031542354791 r005 Re(z^2+c),c=-27/56+29/53*I,n=34 7014031551246850 r005 Im(z^2+c),c=29/70+28/45*I,n=5 7014031559598014 k002 Champernowne real with 105/2*n^2-175/2*n+105 7014031583547347 b008 -37/5+ArcCoth[E] 7014031602727873 r009 Re(z^3+c),c=-25/62+9/14*I,n=13 7014031602756913 a001 29/3*377^(13/18) 7014031614069644 l006 ln(965/1946) 7014031620480133 b008 69+Erfc[-1/8] 7014031620480133 b008 70+Erf[1/8] 7014031620824085 m001 (FeigenbaumC-KhinchinLevy)/(Trott-ZetaQ(4)) 7014031645018697 m001 1/exp(Zeta(7))*GAMMA(1/3)^3 7014031659898614 k002 Champernowne real with 53*n^2-89*n+106 7014031663985785 a007 Real Root Of -945*x^4+405*x^3+703*x^2+913*x+663 7014031673728681 a001 843/1597*7778742049^(6/19) 7014031673741887 a001 3571/377*832040^(6/19) 7014031683200703 r008 a(0)=7,K{-n^6,-56+72*n^3-53*n^2-34*n} 7014031708118093 m001 exp(1/exp(1))^GAMMA(11/12)/Riemann2ndZero 7014031717519068 r005 Re(z^2+c),c=-15/14+7/101*I,n=10 7014031722680894 a007 Real Root Of 246*x^4-348*x^3+890*x^2+52*x-581 7014031727334156 m005 (1/2*Zeta(3)+8/9)/(7/11*Pi+1/8) 7014031760199214 k002 Champernowne real with 107/2*n^2-181/2*n+107 7014031767569573 a007 Real Root Of -952*x^4+621*x^3+145*x^2-260*x+191 7014031773701613 a007 Real Root Of -631*x^4+583*x^3-308*x^2-799*x-55 7014031774685135 a007 Real Root Of -852*x^4+597*x^3+447*x^2+922*x+839 7014031776071610 a007 Real Root Of 269*x^4+457*x^3+914*x^2-94*x-423 7014031784844514 r002 46th iterates of z^2 + 7014031820279723 r005 Re(z^2+c),c=-73/94+3/43*I,n=11 7014031854342828 l006 ln(6097/6540) 7014031855224192 m001 ln(GAMMA(17/24))*GAMMA(1/4)^2*GAMMA(5/12) 7014031856796497 r005 Im(z^2+c),c=-1/42+25/36*I,n=7 7014031860499815 k002 Champernowne real with 54*n^2-92*n+108 7014031863641252 a007 Real Root Of 487*x^4-341*x^3+684*x^2-469*x-901 7014031880948867 r009 Im(z^3+c),c=-13/70+17/23*I,n=50 7014031884666536 a007 Real Root Of 482*x^4-829*x^3-398*x^2-781*x+913 7014031890663846 m001 1/BesselJ(1,1)/FeigenbaumC*exp(sqrt(3)) 7014031896223301 r008 a(0)=7,K{-n^6,-59+62*n^3-24*n^2-50*n} 7014031911349065 r008 a(0)=7,K{-n^6,-11+82*n^3-60*n^2-82*n} 7014031914645889 m001 1/Bloch^2/exp(FransenRobinson)*sin(Pi/12) 7014031952606747 r005 Im(z^2+c),c=-15/14+78/229*I,n=8 7014031956337144 r008 a(0)=7,K{-n^6,-52-39*n+8*n^2+15*n^3} 7014031960710041 k002 Champernowne real with 109/2*n^2-187/2*n+109 7014031989991518 m001 (Pi-1)/(BesselI(0,1)+KomornikLoreti) 7014031992746147 a001 610/3571*47^(55/57) 7014032003155041 a007 Real Root Of -136*x^4+969*x^3-113*x^2+954*x-915 7014032061010101 k002 Champernowne real with 55*n^2-95*n+110 7014032064297948 r008 a(0)=7,K{-n^6,-21+23*n^3-4*n^2-65*n} 7014032073671066 r005 Re(z^2+c),c=17/106+33/41*I,n=4 7014032074402230 a003 cos(Pi*42/103)*cos(Pi*8/19) 7014032083174948 m005 (1/2*Pi+7/10)/(9/11*2^(1/2)-5/6) 7014032107181704 r009 Re(z^3+c),c=-5/31+45/59*I,n=15 7014032109363857 r008 a(0)=7,K{-n^6,-58+55*n^3-2*n^2-66*n} 7014032111461726 m005 (1/2*3^(1/2)-9/10)/(-55/72+1/8*5^(1/2)) 7014032114940176 r008 a(0)=7,K{-n^6,-58+64*n^3-29*n^2-48*n} 7014032117327419 r008 a(0)=7,K{-n^6,-48-11*n^3+67*n^2-80*n} 7014032131008930 a003 cos(Pi*11/102)-sin(Pi*25/74) 7014032134897807 a007 Real Root Of -11*x^4+688*x^3-918*x^2-423*x+395 7014032135362016 r008 a(0)=7,K{-n^6,-14-44*n-34*n^2+20*n^3} 7014032160642463 m001 (Artin+HardyLittlewoodC5)/(gamma+cos(1)) 7014032160960301 a001 2/6765*34^(44/49) 7014032161310161 k002 Champernowne real with 111/2*n^2-193/2*n+111 7014032211469810 m001 BesselI(1,1)^arctan(1/3)/KhinchinLevy 7014032222528574 a007 Real Root Of -791*x^4+656*x^3-730*x^2-104*x+704 7014032234523883 r005 Re(z^2+c),c=-1+58/219*I,n=2 7014032252709239 a007 Real Root Of 443*x^4-529*x^3+328*x^2-673*x+386 7014032261610221 k002 Champernowne real with 56*n^2-98*n+112 7014032273624847 m001 Zeta(1,-1)+cos(1/12*Pi)*Paris 7014032285299348 m001 Khintchine^2*ln(GaussKuzminWirsing)/GAMMA(3/4) 7014032312386439 a007 Real Root Of 42*x^4+240*x^3-302*x^2+541*x-185 7014032317032790 a007 Real Root Of 56*x^4+431*x^3+121*x^2-902*x+907 7014032322105818 r008 a(0)=7,K{-n^6,-49+49*n^3+21*n^2-92*n} 7014032322339927 m003 (25*Log[1/2+Sqrt[5]/2])/2+Sin[1/2+Sqrt[5]/2] 7014032329269738 r008 a(0)=7,K{-n^6,-59+62*n^3-23*n^2-51*n} 7014032354430488 a007 Real Root Of 84*x^4-742*x^3+644*x^2+639*x-145 7014032361910281 k002 Champernowne real with 113/2*n^2-199/2*n+113 7014032384736214 r005 Im(z^2+c),c=-7/12+13/99*I,n=19 7014032410516696 a007 Real Root Of -85*x^4-495*x^3+665*x^2-178*x+954 7014032431321510 r008 a(0)=7,K{-n^6,10-60*n-51*n^2+29*n^3} 7014032462210341 k002 Champernowne real with 57*n^2-101*n+114 7014032496961097 m005 (1/2*2^(1/2)+6)/(1/3*Zeta(3)+5/9) 7014032497361316 r008 a(0)=7,K{-n^6,-62+17*n^3-3*n^2-20*n} 7014032499006722 a003 sin(Pi*5/63)-sin(Pi*27/68) 7014032519767721 r008 a(0)=7,K{-n^6,29+33*n^3-54*n^2-80*n} 7014032522554682 a007 Real Root Of 49*x^4-465*x^3+107*x^2+325*x+3 7014032539691365 r005 Im(z^2+c),c=-5/106+11/14*I,n=20 7014032541871301 a007 Real Root Of 119*x^4-700*x^3-788*x^2-132*x+693 7014032543030083 r008 a(0)=7,K{-n^6,-60+62*n^3-23*n^2-50*n} 7014032544006568 r008 a(0)=7,K{-n^6,-50+62*n^3-18*n^2-65*n} 7014032550986943 a001 4/233*75025^(20/27) 7014032562510401 k002 Champernowne real with 115/2*n^2-205/2*n+115 7014032566770852 r008 a(0)=7,K{-n^6,-43-62*n+47*n^2-14*n^3} 7014032575126644 m001 (Lehmer-Thue)/(sin(1/5*Pi)-exp(-1/2*Pi)) 7014032590903778 r005 Im(z^2+c),c=-6/5+1/101*I,n=39 7014032613215220 p004 log(21613/20149) 7014032631860491 m001 (gamma(2)-ln(2)*GAMMA(19/24))/GAMMA(19/24) 7014032648281212 m005 (1/2*2^(1/2)+1/12)/(5/6*Catalan+4/11) 7014032662810461 k002 Champernowne real with 58*n^2-104*n+116 7014032664699476 a001 63246219*199^(5/11) 7014032673115406 a003 cos(Pi*31/82)-cos(Pi*45/112) 7014032675068558 a007 Real Root Of -671*x^4+727*x^3-521*x^2+156*x+779 7014032692182068 m001 MinimumGamma-Tribonacci^BesselI(0,1) 7014032704078603 m001 (ln(2)+AlladiGrinstead)/(Khinchin-Landau) 7014032705124511 r005 Im(z^2+c),c=-19/18+19/243*I,n=11 7014032712546281 h001 (1/11*exp(1)+7/9)/(2/9*exp(1)+6/7) 7014032720604067 l006 ln(4644/9365) 7014032759793109 r002 3th iterates of z^2 + 7014032761436191 m001 (Ei(1)+2)/(-exp(1/exp(1))+2) 7014032763110521 k002 Champernowne real with 117/2*n^2-211/2*n+117 7014032765398092 p004 log(25579/23) 7014032768944708 r008 a(0)=7,K{-n^6,-64+9*n-47*n^2+33*n^3} 7014032781405753 a001 4*(1/2*5^(1/2)+1/2)^14*3^(2/3) 7014032811289313 a003 cos(Pi*1/67)*sin(Pi*28/113) 7014032817956927 r008 a(0)=7,K{-n^6,-3+16*n^3-32*n^2-53*n} 7014032844986723 r009 Im(z^3+c),c=-2/15+33/41*I,n=21 7014032847338914 m005 (1/3*3^(1/2)+1/12)/(5/7*Zeta(3)+1/12) 7014032863410581 k002 Champernowne real with 59*n^2-107*n+118 7014032868573358 a007 Real Root Of 444*x^4-950*x^3-856*x^2-533*x-388 7014032885777912 r005 Im(z^2+c),c=-37/34+31/107*I,n=5 7014032909052737 a003 sin(Pi*10/113)-sin(Pi*46/107) 7014032932812182 a007 Real Root Of 737*x^4-276*x^3-798*x^2-35*x+334 7014032940638701 m002 3*E^Pi*Pi^2+Pi^4/6 7014032947354665 a003 cos(Pi*20/99)*sin(Pi*35/104) 7014032955919758 r008 a(0)=7,K{-n^6,-46-26*n-2*n^2+2*n^3} 7014032963710641 k002 Champernowne real with 119/2*n^2-217/2*n+119 7014032964172322 r008 a(0)=7,K{-n^6,-98+66*n^3-53*n^2+14*n} 7014032967418230 r008 a(0)=7,K{-n^6,-58+65*n^3-30*n^2-48*n} 7014032980191270 r008 a(0)=7,K{-n^6,-48+89*n^3-97*n^2-15*n} 7014032998328870 b008 5+EllipticE[-1/2*E] 7014033010847515 l006 ln(3679/7419) 7014033020831296 a007 Real Root Of 247*x^4-942*x^3+213*x^2+872*x+122 7014033026631929 m001 BesselI(1,1)^RenyiParking-GAMMA(2/3) 7014033036983530 s001 sum(exp(-Pi)^(n-1)*A045808[n],n=1..infinity) 7014033049001703 m001 1/GAMMA(7/24)/exp(Lehmer)^2/sqrt(2) 7014033049508259 m001 (-Kac+MinimumGamma)/(3^(1/2)-cos(1)) 7014033056893180 r005 Re(z^2+c),c=1/42+9/59*I,n=5 7014033064010701 k002 Champernowne real with 60*n^2-110*n+120 7014033073009790 a007 Real Root Of 100*x^4+761*x^3+394*x^2-240*x-502 7014033078129796 r005 Re(z^2+c),c=2/23+19/32*I,n=29 7014033110404202 r008 a(0)=7,K{-n^6,-26-19*n-41*n^2+17*n^3} 7014033128114332 k009 concat of cont frac of 7014033134984947 m001 1/exp(Lehmer)*Champernowne^2*FeigenbaumB 7014033148808609 a007 Real Root Of 652*x^4+779*x^3+322*x^2-919*x-692 7014033155219912 a007 Real Root Of -120*x^4+977*x^3-179*x^2+473*x+786 7014033157299618 r008 a(0)=7,K{-n^6,14-25*n-54*n^2+32*n^3} 7014033164310761 k002 Champernowne real with 121/2*n^2-223/2*n+121 7014033188616507 r008 a(0)=7,K{-n^6,-49+89*n^3-97*n^2-14*n} 7014033204043668 a007 Real Root Of 102*x^4+614*x^3-594*x^2+699*x-875 7014033204943141 b008 10-3*Erf[2] 7014033204943141 b008 7+3*Erfc[2] 7014033227098029 m001 BesselI(0,1)*PlouffeB-Conway 7014033236557815 r008 a(0)=7,K{-n^6,-50+20*n^3-65*n^2+23*n} 7014033264033264 q001 2699/3848 7014033264610821 k002 Champernowne real with 61*n^2-113*n+122 7014033266022307 r008 a(0)=7,K{-n^6,-26-33*n-58*n^2+47*n^3} 7014033277133365 a001 2/317811*13^(47/50) 7014033285432125 r005 Im(z^2+c),c=-27/110+37/45*I,n=8 7014033285572594 a001 87403803*144^(15/17) 7014033310674116 m001 ln(Sierpinski)^2*Robbin*sinh(1) 7014033314337432 m001 BesselJ(1,1)*HardHexagonsEntropy/ZetaQ(3) 7014033314518711 m005 (1/2*Pi-11/12)/(-26/63+1/7*5^(1/2)) 7014033336319407 m006 (1/5*ln(Pi)-4/5)/(Pi+5) 7014033338521520 m001 (Robbin+Trott)/(DuboisRaymond-Paris) 7014033355324755 r005 Im(z^2+c),c=9/29+31/59*I,n=48 7014033364910881 k002 Champernowne real with 123/2*n^2-229/2*n+123 7014033379884524 r008 a(0)=7,K{-n^6,-62+60*n^3-16*n^2-53*n} 7014033382942152 m001 (Thue+ZetaP(4))/(GAMMA(7/12)-DuboisRaymond) 7014033383049424 r008 a(0)=7,K{-n^6,-58+65*n^3-29*n^2-49*n} 7014033396840393 a001 843/2*10946^(13/43) 7014033407224005 a007 Real Root Of -682*x^4-184*x^3-438*x^2-395*x+40 7014033423772627 r002 18th iterates of z^2 + 7014033428749745 m001 Magata*(Ei(1,1)+Tribonacci) 7014033429371899 a007 Real Root Of 217*x^4-344*x^3+281*x^2-879*x-926 7014033454576020 r005 Re(z^2+c),c=-19/26+23/109*I,n=33 7014033465210941 k002 Champernowne real with 62*n^2-116*n+124 7014033476582829 p003 LerchPhi(1/12,2,179/148) 7014033476668726 m001 1/5*(ln(2)/ln(10))^cosh(1)*5^(1/2) 7014033484931946 a007 Real Root Of 111*x^4-846*x^3-198*x^2+59*x-180 7014033500533388 a007 Real Root Of 81*x^4-589*x^3+109*x^2-631*x-45 7014033507491037 l006 ln(2714/5473) 7014033509169588 r008 a(0)=7,K{-n^6,-51+11*n^3+22*n^2-64*n} 7014033539321257 a005 (1/sin(62/221*Pi))^194 7014033557114195 m001 (Rabbit-ZetaP(4))^StronglyCareFree 7014033562237175 a007 Real Root Of 210*x^4-642*x^3+13*x^2-602*x-701 7014033565511001 k002 Champernowne real with 125/2*n^2-235/2*n+125 7014033572243175 m005 (1/2*2^(1/2)+2/5)/(3/4*Pi-7/9) 7014033574549194 a007 Real Root Of 751*x^4-520*x^3-728*x^2-840*x+945 7014033584480385 m006 (2/3/Pi+3/5)/(2/3*Pi^2+5) 7014033588269883 r008 a(0)=7,K{-n^6,-59+65*n^3-29*n^2-48*n} 7014033600590950 r008 a(0)=7,K{-n^6,-49+89*n^3-96*n^2-15*n} 7014033604218672 r009 Re(z^3+c),c=-3/23+31/45*I,n=53 7014033618787535 r008 a(0)=7,K{-n^6,-39-3*n^3+15*n^2-45*n} 7014033665811061 k002 Champernowne real with 63*n^2-119*n+126 7014033676588660 a007 Real Root Of 391*x^4-481*x^3+468*x^2+322*x-265 7014033677219166 m008 (1/3*Pi^2-5)/(4/5*Pi^5-1) 7014033700926372 a003 sin(Pi*3/104)-sin(Pi*16/55) 7014033716619694 a007 Real Root Of 111*x^4-267*x^3-135*x^2-511*x-411 7014033726325240 a007 Real Root Of -803*x^4+731*x^3-206*x^2-670*x+78 7014033744842869 a007 Real Root Of -x^4+136*x^3-957*x^2+456*x-626 7014033763721286 a007 Real Root Of 9*x^4-335*x^3+352*x^2+248*x-117 7014033766111121 k002 Champernowne real with 127/2*n^2-241/2*n+127 7014033770565842 m005 (1/2*5^(1/2)+4/11)/(7/8*2^(1/2)+7/8) 7014033774909203 r008 a(0)=7,K{-n^6,-38+15*n^3-42*n^2-7*n} 7014033776469758 l006 ln(7955/8533) 7014033789628355 r005 Re(z^2+c),c=-41/66+31/32*I,n=3 7014033792460257 m005 (1/3*exp(1)-1/4)/(3/4*3^(1/2)-4/11) 7014033809158951 m001 MertensB1^2*ln(ArtinRank2)/Lehmer^2 7014033844856084 m002 7+(4*ProductLog[Pi])/Pi^5 7014033847770990 b008 Tanh[(2/7)^(1/9)] 7014033857774637 r005 Re(z^2+c),c=21/74+21/46*I,n=11 7014033858857022 r002 8th iterates of z^2 + 7014033864658550 s001 sum(exp(-Pi/4)^n*A256148[n],n=1..infinity) 7014033865287225 m001 (ln(Pi)+Magata)/(Paris-RenyiParking) 7014033866411181 k002 Champernowne real with 64*n^2-122*n+128 7014033902168455 r005 Re(z^2+c),c=-2/3+97/152*I,n=6 7014033916890865 l006 ln(4463/9000) 7014033924617386 m001 (Magata-Zeta(3)*PrimesInBinary)/PrimesInBinary 7014033926295808 a007 Real Root Of 304*x^4-927*x^3-159*x^2-761*x-849 7014033935685419 b008 7*(10+(-3+Pi)^2) 7014033943623121 m005 (27/28+1/4*5^(1/2))/(5*gamma-5/7) 7014033953395247 r008 a(0)=7,K{-n^6,-40+9*n-61*n^2+20*n^3} 7014033965313018 m001 (GAMMA(3/4)+ln(Pi))/(Pi^(1/2)+ErdosBorwein) 7014033966711241 k002 Champernowne real with 129/2*n^2-247/2*n+129 7014033972975791 r002 19th iterates of z^2 + 7014033974805483 a007 Real Root Of -132*x^4-922*x^3-68*x^2-694*x-193 7014033976139881 m004 -3125*Pi-Sqrt[5]*Pi+5*Cosh[Sqrt[5]*Pi] 7014033981131065 r008 a(0)=7,K{-n^6,-71+45*n^3+26*n^2-71*n} 7014033991190909 m004 -1+(21*ProductLog[Sqrt[5]*Pi])/4 7014033996035400 h001 (3/5*exp(1)+7/10)/(4/11*exp(2)+7/11) 7014034017905413 r009 Re(z^3+c),c=-29/64+2/59*I,n=47 7014034020618093 a007 Real Root Of -791*x^4+550*x^3+385*x^2+180*x-314 7014034040011943 q001 2349/3349 7014034041208300 a007 Real Root Of -167*x^4+384*x^3+850*x^2+386*x-781 7014034051977052 m005 (3/4*gamma-3/4)/(7/6+3/2*5^(1/2)) 7014034063263638 m001 (Lehmer+MertensB2)/(GAMMA(2/3)+cos(1/12*Pi)) 7014034067011301 k002 Champernowne real with 65*n^2-125*n+130 7014034102867196 a007 Real Root Of 870*x^4-435*x^3-63*x^2+269*x-141 7014034103096740 r005 Re(z^2+c),c=9/26+29/42*I,n=8 7014034134166106 a001 18/121393*34^(26/59) 7014034140128981 m005 (1/2*gamma-5)/(35/132+2/11*5^(1/2)) 7014034164991181 s002 sum(A103430[n]/(n!^3),n=1..infinity) 7014034167311361 k002 Champernowne real with 131/2*n^2-253/2*n+131 7014034172514341 m001 1/Magata^2/exp(MadelungNaCl)^2*FeigenbaumD 7014034173527031 m008 (5*Pi+1/4)/(3/4*Pi^5-2) 7014034192040277 r008 a(0)=7,K{-n^6,-62+61*n^3-17*n^2-53*n} 7014034212904882 m001 (1+BesselI(0,2))/(-Champernowne+ZetaP(4)) 7014034263285202 a007 Real Root Of -511*x^4+489*x^3+812*x^2+330*x-676 7014034267611421 k002 Champernowne real with 66*n^2-128*n+132 7014034281369523 r008 a(0)=7,K{-n^6,16+35*n^3-66*n^2-57*n} 7014034281420302 r009 Re(z^3+c),c=-4/23+16/35*I,n=2 7014034282499935 m001 (arctan(1/2)+Zeta(1,2))^Weierstrass 7014034286436505 m005 (1/2*Pi+2/11)/(2/11*Catalan+1/12) 7014034297373884 r005 Re(z^2+c),c=7/110+21/50*I,n=14 7014034312201310 r005 Re(z^2+c),c=-9/10+17/106*I,n=56 7014034332467767 m008 (4/5*Pi^2+2/3)/(2/5*Pi^5-1/3) 7014034334978165 m001 (2^(1/2)-Psi(1,1/3))/(Catalan+arctan(1/3)) 7014034337607570 r008 a(0)=7,K{-n^6,-55+13*n^3-42*n^2+12*n} 7014034342389319 m001 1/GAMMA(1/4)^2/Ei(1)^2/ln(gamma)^2 7014034344891951 r008 a(0)=7,K{-n^6,-44-61*n+47*n^2-14*n^3} 7014034365628937 r008 a(0)=7,K{-n^6,-62-28*n+29*n^2-11*n^3} 7014034367911481 k002 Champernowne real with 133/2*n^2-259/2*n+133 7014034370191510 r008 a(0)=7,K{-n^6,-85+32*n^3+59*n^2-77*n} 7014034405406252 r008 a(0)=7,K{-n^6,-49+90*n^3-97*n^2-15*n} 7014034410655335 a007 Real Root Of -489*x^4+906*x^3-853*x^2-949*x+185 7014034414375293 m001 MertensB1^(5^(1/2))*MertensB1^MinimumGamma 7014034423450159 r005 Im(z^2+c),c=-159/122+3/58*I,n=36 7014034462411506 r009 Im(z^3+c),c=-27/98+9/13*I,n=25 7014034462925676 a003 sin(Pi*7/29)/sin(Pi*52/119) 7014034468211541 k002 Champernowne real with 67*n^2-131*n+134 7014034478408581 a001 24476/1597*4181^(36/49) 7014034495713815 a007 Real Root Of -643*x^4+831*x^3-319*x^2+346*x+842 7014034503780133 a007 Real Root Of 915*x^4-88*x^3+143*x^2-801*x-884 7014034514821087 r008 a(0)=7,K{-n^6,-83+n^3+7*n^2+21*n} 7014034552174499 l006 ln(1749/3527) 7014034568511601 k002 Champernowne real with 135/2*n^2-265/2*n+135 7014034581342214 r008 a(0)=7,K{-n^6,-52+47*n^3+31*n^2-97*n} 7014034585086002 m005 (1/2*Zeta(3)-1/4)/(9/11*3^(1/2)-11/12) 7014034587210338 a001 21/76*47^(21/25) 7014034588238828 r008 a(0)=7,K{-n^6,-62+61*n^3-16*n^2-54*n} 7014034589232207 r005 Im(z^2+c),c=-19/78+44/57*I,n=13 7014034590977469 r008 a(0)=7,K{-n^6,-36+62*n^3-6*n^2-91*n} 7014034603411032 a007 Real Root Of 702*x^4-295*x^3-885*x^2-634*x-281 7014034629321428 m001 1/Riemann1stZero^2*ln(Paris)/sqrt(1+sqrt(3)) 7014034629892402 r002 31i'th iterates of 2*x/(1-x^2) of 7014034646398173 v002 sum(1/(3^n+(10*n^2-n+14)),n=1..infinity) 7014034647116947 r005 Im(z^2+c),c=11/42+30/61*I,n=18 7014034660975648 m005 (1/2*3^(1/2)+8/11)/(23/18+4/9*5^(1/2)) 7014034668690455 r009 Re(z^3+c),c=-7/82+17/59*I,n=9 7014034668811661 k002 Champernowne real with 68*n^2-134*n+136 7014034672028533 r009 Im(z^3+c),c=-17/28+17/48*I,n=2 7014034704837549 a007 Real Root Of 875*x^4-2*x^3-62*x^2-452*x-499 7014034744808258 a007 Real Root Of -827*x^4+995*x^3+649*x^2+735*x-978 7014034769111721 k002 Champernowne real with 137/2*n^2-271/2*n+137 7014034770488873 r008 a(0)=7,K{-n^6,-58+20*n^3-68*n^2+34*n} 7014034774897238 r008 a(0)=7,K{-n^6,-23-16*n-60*n^2+27*n^3} 7014034783340344 r002 24th iterates of z^2 + 7014034783918872 r008 a(0)=7,K{-n^6,-63+61*n^3-16*n^2-53*n} 7014034786627694 r008 a(0)=7,K{-n^6,-37+62*n^3-6*n^2-90*n} 7014034790981238 r008 a(0)=7,K{-n^6,26+36*n^3-64*n^2-70*n} 7014034794407368 h001 (-8*exp(6)+7)/(-5*exp(1)+9) 7014034821394491 b008 7+2^(2-3*E) 7014034823196315 m001 (1-BesselI(1,1))/(Landau+ZetaP(4)) 7014034834764229 p001 sum((-1)^n/(271*n+137)/(8^n),n=0..infinity) 7014034835909803 a007 Real Root Of 576*x^4-641*x^3-141*x^2+592*x+124 7014034869411781 k002 Champernowne real with 69*n^2-137*n+138 7014034886186865 h001 (2/3*exp(2)+2/11)/(8/9*exp(2)+5/7) 7014034937547710 b008 7*(-2+InverseEllipticNomeQ[1/3]) 7014034946976886 a007 Real Root Of -413*x^4+860*x^3+492*x^2+307*x+370 7014034957421500 a001 13201*233^(43/59) 7014034964264725 r005 Im(z^2+c),c=47/98+11/57*I,n=3 7014034968176544 a007 Real Root Of 467*x^4-553*x^3-28*x^2-516*x-652 7014034968347443 r008 a(0)=7,K{-n^6,-66+44*n^3+34*n^2-83*n} 7014034968348012 r008 a(0)=7,K{-n^6,-78+46*n^3+22*n^2-61*n} 7014034969711841 k002 Champernowne real with 139/2*n^2-277/2*n+139 7014034971056102 a007 Real Root Of -593*x^4-291*x^3-667*x^2+818*x+945 7014034975895084 a007 Real Root Of 111*x^4+17*x^3-551*x^2-825*x+817 7014034992151042 m001 (2^(1/2))^(FeigenbaumMu/HardyLittlewoodC3) 7014035003889069 r008 a(0)=7,K{-n^6,-52-35*n+2*n^2+17*n^3} 7014035029423459 a007 Real Root Of -523*x^4-576*x^3-242*x^2+157*x+157 7014035034129592 r005 Re(z^2+c),c=-79/102+3/25*I,n=11 7014035044184772 m001 ThueMorse^Gompertz/(RenyiParking^Gompertz) 7014035051859026 p003 LerchPhi(1/125,6,65/132) 7014035053221665 a007 Real Root Of 29*x^4-452*x^3-627*x^2-132*x+550 7014035062844934 a007 Real Root Of 692*x^4-549*x^3+645*x^2-252*x-851 7014035070011901 k002 Champernowne real with 70*n^2-140*n+140 7014035085856617 m005 (1/2*Catalan-1/5)/(5/9*Zeta(3)-3/10) 7014035086876000 a007 Real Root Of 878*x^4+715*x^3+139*x^2-667*x-502 7014035087719298 q001 1999/2850 7014035088573739 a007 Real Root Of 772*x^4-569*x^3-160*x^2-159*x-416 7014035106847319 m001 (-TravellingSalesman+ZetaQ(2))/(2^(1/2)-Bloch) 7014035114477222 a003 cos(Pi*44/107)-sin(Pi*47/109) 7014035115569110 r002 3th iterates of z^2 + 7014035120040155 m005 (-11/20+1/4*5^(1/2))/(5/8*Zeta(3)-3/4) 7014035154544597 r008 a(0)=7,K{-n^6,-40-55*n^2+23*n^3} 7014035161095472 r008 a(0)=7,K{-n^6,-79+46*n^3+22*n^2-60*n} 7014035170311961 k002 Champernowne real with 141/2*n^2-283/2*n+141 7014035173522591 r008 a(0)=7,K{-n^6,-37+62*n^3-5*n^2-91*n} 7014035175731646 r008 a(0)=7,K{-n^6,-39+67*n^3-21*n^2-78*n} 7014035179282697 m001 cos(1/5*Pi)^ThueMorse/Mills 7014035185840195 r005 Re(z^2+c),c=29/126+22/63*I,n=46 7014035188393579 a007 Real Root Of -280*x^4+603*x^3+555*x^2+393*x-689 7014035194979974 m004 -10/Pi-25*Pi+5*Pi*Cos[Sqrt[5]*Pi] 7014035202531705 m001 (1-ln(Pi))/(Sarnak+Totient) 7014035207034892 a007 Real Root Of -756*x^4+926*x^3-435*x^2-936*x+60 7014035214311508 l006 ln(4282/8635) 7014035233974760 a007 Real Root Of 737*x^4+303*x^3-376*x^2-731*x+53 7014035237057708 a007 Real Root Of -503*x^4-177*x^3-57*x^2+565*x+485 7014035243647726 m001 Salem/FransenRobinson^2/exp(GAMMA(7/12))^2 7014035254714652 a001 39603/2584*4181^(36/49) 7014035270612021 k002 Champernowne real with 71*n^2-143*n+142 7014035284756362 a007 Real Root Of -298*x^4+866*x^3-540*x^2-795*x+79 7014035292306534 m001 (Pi-Cahen)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 7014035292306534 m001 (Pi-Cahen)^GAMMA(5/12) 7014035297579139 a007 Real Root Of 278*x^4-388*x^3+578*x^2+946*x+178 7014035297902204 r008 a(0)=7,K{-n^6,-64-6*n-2*n^3} 7014035308424044 a007 Real Root Of -997*x^4+512*x^3-147*x^2-498*x+141 7014035354486419 m001 exp(RenyiParking)/FeigenbaumDelta^2/sinh(1)^2 7014035366824977 r008 a(0)=7,K{-n^6,-40+67*n^3-21*n^2-77*n} 7014035370912081 k002 Champernowne real with 143/2*n^2-289/2*n+143 7014035378436954 a003 sin(Pi*25/103)/sin(Pi*4/9) 7014035384381835 r005 Im(z^2+c),c=-69/110+13/45*I,n=22 7014035388015516 s002 sum(A247997[n]/(64^n-1),n=1..infinity) 7014035402286457 r005 Re(z^2+c),c=5/114+11/28*I,n=20 7014035412585615 m001 (3^(1/3))^LambertW(1)-GAMMA(11/24) 7014035451330878 r005 Re(z^2+c),c=-12/17+26/37*I,n=2 7014035465929508 r008 a(0)=7,K{-n^6,13+21*n^3-9*n^2-70*n} 7014035471212141 k002 Champernowne real with 72*n^2-146*n+144 7014035483920964 r008 a(0)=7,K{-n^6,-49+18*n^3+18*n^2-57*n} 7014035501104827 a007 Real Root Of -198*x^4+647*x^3+258*x^2+952*x-970 7014035542319888 r008 a(0)=7,K{-n^6,-79+46*n^3+23*n^2-61*n} 7014035571512201 k002 Champernowne real with 145/2*n^2-295/2*n+145 7014035592792724 a001 15127/610*8^(1/2) 7014035646991783 r008 a(0)=7,K{-n^6,-62+8*n-26*n^2+8*n^3} 7014035671507546 l006 ln(2533/5108) 7014035671812261 k002 Champernowne real with 73*n^2-149*n+146 7014035675510768 r005 Im(z^2+c),c=7/20+33/47*I,n=4 7014035681150617 m001 ReciprocalFibonacci^LaplaceLimit*Pi 7014035682366097 r005 Im(z^2+c),c=-15/38+9/14*I,n=9 7014035687101779 m005 (1/3*Catalan-1/12)/(2/7*gamma+3) 7014035697229583 m001 (3^(1/2)-sin(1))/(-ln(2)+ReciprocalLucas) 7014035721654077 r002 16th iterates of z^2 + 7014035735620948 m001 (Zeta(5)-cos(1/5*Pi))/(ln(5)+GAMMA(13/24)) 7014035744752384 r008 a(0)=7,K{-n^6,-40+67*n^3-20*n^2-78*n} 7014035755363681 h001 (-8*exp(1)-9)/(-4*exp(7)+3) 7014035772112321 k002 Champernowne real with 147/2*n^2-301/2*n+147 7014035793266809 s002 sum(A205930[n]/(exp(2*pi*n)+1),n=1..infinity) 7014035798796286 r005 Im(z^2+c),c=19/90+15/28*I,n=36 7014035807568512 a007 Real Root Of 361*x^4-555*x^3-136*x^2+412*x+77 7014035814611886 m002 -Pi^5/4+5*ProductLog[Pi]+Tanh[Pi] 7014035837423210 m005 (1/2*Pi-1/6)/(11/12*Zeta(3)+9/10) 7014035848717580 r008 a(0)=7,K{-n^6,-2+30*n^3-59*n^2-41*n} 7014035858014463 r002 21th iterates of z^2 + 7014035862368974 p001 sum((-1)^n/(203*n+138)/(12^n),n=0..infinity) 7014035869510556 m001 GlaisherKinkelin*Backhouse*exp(Robbin)^2 7014035872412381 k002 Champernowne real with 74*n^2-152*n+148 7014035875207289 r009 Re(z^3+c),c=-79/122+18/35*I,n=8 7014035897097400 a007 Real Root Of 793*x^4-784*x^3-609*x^2-848*x+973 7014035908341295 a007 Real Root Of 510*x^4+157*x^3+797*x^2-671*x-932 7014035929971168 r008 a(0)=7,K{-n^6,-37+63*n^3-6*n^2-91*n} 7014035937042177 r008 a(0)=7,K{-n^6,-39+80*n^3-58*n^2-54*n} 7014035968813130 r009 Im(z^3+c),c=-55/98+16/57*I,n=15 7014035970567413 m001 Khintchine^2/exp(Backhouse)^2/RenyiParking^2 7014035972679685 b008 -2+E+3*E^Pi 7014035972712441 k002 Champernowne real with 149/2*n^2-307/2*n+149 7014035986350751 m001 ln(Kolakoski)/KhintchineHarmonic^2/OneNinth 7014035997846313 r008 a(0)=7,K{-n^6,-51+23*n^3+2*n^2-44*n} 7014036009796543 r009 Re(z^3+c),c=-15/118+25/38*I,n=42 7014036012906459 a001 1/2529*(1/2*5^(1/2)+1/2)^10*3^(1/3) 7014036021481850 s001 sum(exp(-2*Pi/5)^n*A272387[n],n=1..infinity) 7014036021481850 s002 sum(A272387[n]/(exp(2/5*pi*n)),n=1..infinity) 7014036026236469 a007 Real Root Of -24*x^4-50*x^3+793*x^2-229*x+215 7014036071469105 m005 (1/2*gamma+7/11)/(59/60+3/20*5^(1/2)) 7014036073012501 k002 Champernowne real with 75*n^2-155*n+150 7014036086265595 a007 Real Root Of -801*x^4+637*x^3-372*x^2+508*x+953 7014036098155163 a007 Real Root Of -383*x^4+464*x^3+237*x^2+777*x-729 7014036111012465 m005 (1/3*Catalan-2/7)/(9/11*exp(1)+4/7) 7014036113300520 m006 (1/6*ln(Pi)+2/5)/(2/5*exp(Pi)-5/6) 7014036120236358 a007 Real Root Of -635*x^4+775*x^3+610*x^2+686*x-895 7014036122658052 m001 (-GAMMA(23/24)+FeigenbaumMu)/(3^(1/2)+Ei(1)) 7014036129389621 m003 -11/2+(13*Sqrt[5])/32-Sinh[1/2+Sqrt[5]/2] 7014036133261625 r005 Im(z^2+c),c=-13/22+55/116*I,n=13 7014036134570507 a001 29/514229*121393^(14/23) 7014036134633757 a001 29/433494437*7778742049^(14/23) 7014036147949980 m002 3/E^Pi-Cosh[Pi]/(2*Pi^4) 7014036149642675 r005 Im(z^2+c),c=-23/44+6/49*I,n=20 7014036149902029 r008 a(0)=7,K{-n^6,29+33*n^3-53*n^2-81*n} 7014036170511236 r005 Re(z^2+c),c=-13/19+11/31*I,n=15 7014036170662649 m001 GAMMA(7/12)-GaussAGM-HardHexagonsEntropy 7014036173312561 k002 Champernowne real with 151/2*n^2-313/2*n+151 7014036186850055 m001 (sin(1/12*Pi)+CareFree)/(Kac+RenyiParking) 7014036203027317 r005 Im(z^2+c),c=-3/28+17/19*I,n=56 7014036218933408 a007 Real Root Of -673*x^4-627*x^3-874*x^2-149*x+272 7014036219059800 m001 GAMMA(17/24)^2*FeigenbaumC^2*ln(GAMMA(7/24))^2 7014036236648069 h001 (6/11*exp(1)+1/5)/(5/9*exp(1)+8/9) 7014036261713556 l006 ln(3317/6689) 7014036263989457 r008 a(0)=7,K{-n^6,16-54*n-58*n^2+25*n^3} 7014036273612621 k002 Champernowne real with 76*n^2-158*n+152 7014036273913387 m005 (1/2*5^(1/2)-1/9)/(5/11*exp(1)+1/5) 7014036287906029 r008 a(0)=7,K{-n^6,-79+47*n^3+22*n^2-61*n} 7014036305060407 r008 a(0)=7,K{-n^6,-81+84*n^3-90*n^2+16*n} 7014036317582899 a007 Real Root Of -212*x^4+843*x^3-203*x^2+305*x+656 7014036373912681 k002 Champernowne real with 153/2*n^2-319/2*n+153 7014036418355051 a007 Real Root Of -523*x^4-134*x^3+681*x^2+493*x-508 7014036463065383 b008 Zeta[ArcCot[5+EulerGamma]] 7014036464238789 r005 Im(z^2+c),c=-2/3+57/205*I,n=55 7014036474212741 k002 Champernowne real with 77*n^2-161*n+154 7014036479408193 a001 7/196418*17711^(27/50) 7014036479579296 r008 a(0)=7,K{-n^6,-98+68*n^3-50*n^2+9*n} 7014036483845057 r008 a(0)=7,K{-n^6,-40+68*n^3-21*n^2-78*n} 7014036490817748 a008 Real Root of (16+4*x-17*x^2+14*x^3) 7014036495267797 r008 a(0)=7,K{-n^6,-24+96*n^3-97*n^2-46*n} 7014036508723357 a001 1/5*1836311903^(1/17) 7014036510804617 a001 2161/141*4181^(36/49) 7014036518809670 m001 ArtinRank2/ln(FibonacciFactorial)^2/cosh(1)^2 7014036574512801 k002 Champernowne real with 155/2*n^2-325/2*n+155 7014036579883523 r008 a(0)=7,K{-n^6,-28+24*n^3-22*n^2-34*n} 7014036580178647 q001 1649/2351 7014036592927961 a001 53316291173/322*322^(1/4) 7014036599051918 m001 (-GAMMA(2/3)+FeigenbaumKappa)/(1+Catalan) 7014036626256777 l006 ln(4101/8270) 7014036656117075 m008 (5/6*Pi^2+3)/(1/6*Pi^6-1/5) 7014036660730465 r008 a(0)=7,K{-n^6,-99+68*n^3-50*n^2+10*n} 7014036669213462 r008 a(0)=7,K{-n^6,-31+77*n^3-43*n^2-74*n} 7014036674590964 r008 a(0)=7,K{-n^6,-14-45*n-33*n^2+20*n^3} 7014036674812861 k002 Champernowne real with 78*n^2-164*n+156 7014036683362448 r008 a(0)=7,K{-n^6,-44-36*n+30*n^2-4*n^3} 7014036684698439 m001 cos(Pi/5)^2/exp(GlaisherKinkelin)/sin(Pi/12) 7014036699385146 r002 46th iterates of z^2 + 7014036703908283 m001 Psi(1,1/3)*(2^(1/3)-BesselI(1,1)) 7014036714607973 a007 Real Root Of -84*x^4-729*x^3-970*x^2+203*x+897 7014036718405001 r004 Im(z^2+c),c=-5/4+2/11*I,z(0)=-1,n=26 7014036739472113 a001 377/18*5778^(6/43) 7014036775112921 k002 Champernowne real with 157/2*n^2-331/2*n+157 7014036780312327 a001 36/341*18^(19/29) 7014036792102228 a007 Real Root Of -989*x^4+742*x^3-549*x^2-427*x+466 7014036801040573 m004 -2-100*Sqrt[5]*Pi+6/Log[Sqrt[5]*Pi] 7014036818493923 a007 Real Root Of 859*x^4-483*x^3-403*x^2-634*x-621 7014036827590920 a007 Real Root Of -125*x^4-782*x^3+559*x^2-839*x-689 7014036840378152 r008 a(0)=7,K{-n^6,-57-10*n^3+29*n^2-34*n} 7014036841589621 a007 Real Root Of -959*x^4-585*x^3-250*x^2+972*x+835 7014036847896749 r008 a(0)=7,K{-n^6,-84+83*n^3-87*n^2+17*n} 7014036848914664 r008 a(0)=7,K{-n^6,-32+77*n^3-43*n^2-73*n} 7014036849039133 m005 (1/2*2^(1/2)+1/9)/(31/132+5/12*5^(1/2)) 7014036873787960 l006 ln(4885/9851) 7014036875412982 k002 Champernowne real with 79*n^2-167*n+158 7014036901619577 m001 (gamma+gamma(3))/(-GaussAGM+ZetaQ(3)) 7014036902371837 a001 329/6*199^(2/43) 7014036931646841 r005 Re(z^2+c),c=-18/23+2/53*I,n=47 7014036936783974 r005 Im(z^2+c),c=-1/25+28/39*I,n=5 7014036975713042 k002 Champernowne real with 159/2*n^2-337/2*n+159 7014036978377556 r008 a(0)=7,K{-n^6,14-63*n-54*n^2+31*n^3} 7014037000614378 r002 2th iterates of z^2 + 7014037014772870 r008 a(0)=7,K{-n^6,-4+15*n^3-12*n^2-71*n} 7014037019111104 r008 a(0)=7,K{-n^6,-99+68*n^3-49*n^2+9*n} 7014037024152746 a007 Real Root Of 570*x^4-914*x^3+253*x^2-130*x-669 7014037025872230 r005 Re(z^2+c),c=-11/14+5/172*I,n=55 7014037026262996 r008 a(0)=7,K{-n^6,-85+83*n^3-87*n^2+18*n} 7014037035656098 r004 Im(z^2+c),c=1/14-1/16*I,z(0)=exp(1/8*I*Pi),n=9 7014037076013102 k002 Champernowne real with 80*n^2-170*n+160 7014037099645450 a007 Real Root Of -10*x^4+964*x^3-558*x^2+12*x+618 7014037105382084 a007 Real Root Of 128*x^4+897*x^3-127*x^2-716*x+951 7014037108249867 m001 (Zeta(1,-1)+GAMMA(13/24))/Riemann2ndZero 7014037119710069 a007 Real Root Of -904*x^4+704*x^3+515*x^2-471*x-122 7014037138729810 a003 cos(Pi*14/75)*sin(Pi*29/91) 7014037146631991 m001 exp(GAMMA(23/24))^2*Kolakoski/log(1+sqrt(2)) 7014037154295021 m005 (1/3*Pi-1/3)/(3^(1/2)-5/7) 7014037160567292 a007 Real Root Of 503*x^4-478*x^3+259*x^2-496*x-762 7014037173603059 m001 sin(1)*ln(Pi)*gamma(1) 7014037174186235 m005 (3/5*gamma-2/3)/(3/4*gamma-5) 7014037174186235 m007 (-3/5*gamma+2/3)/(-3/4*gamma+5) 7014037176313162 k002 Champernowne real with 161/2*n^2-343/2*n+161 7014037190259196 m001 (Tribonacci+Trott2nd)/(AlladiGrinstead-Landau) 7014037204419158 r008 a(0)=7,K{-n^6,-32+77*n^3-42*n^2-74*n} 7014037235454960 a007 Real Root Of 806*x^4-664*x^3+91*x^2-519*x-833 7014037248989673 a007 Real Root Of 484*x^4+493*x^3+266*x^2-782*x-56 7014037276613222 k002 Champernowne real with 81*n^2-173*n+162 7014037291108413 m001 (Artin+Cahen)/(Zeta(1,-1)-GAMMA(17/24)) 7014037295056951 r002 2th iterates of z^2 + 7014037300066952 m001 1/Zeta(1,2)*GAMMA(5/6)/exp(cos(1)) 7014037336955118 a007 Real Root Of 319*x^4-895*x^3-598*x^2-465*x-418 7014037346808940 m001 exp(Salem)^2*Riemann3rdZero^2/Zeta(1,2) 7014037348984500 r005 Re(z^2+c),c=-73/110+19/62*I,n=17 7014037368236006 r008 a(0)=7,K{-n^6,-61+53*n^3+16*n^2-79*n} 7014037376913282 k002 Champernowne real with 163/2*n^2-349/2*n+163 7014037379143601 r008 a(0)=7,K{-n^6,-85+83*n^3-86*n^2+17*n} 7014037381210247 r008 a(0)=7,K{-n^6,-21+78*n^3-39*n^2-89*n} 7014037392096539 a007 Real Root Of 925*x^4+453*x^3-152*x^2-937*x-650 7014037407912554 r009 Re(z^3+c),c=-11/122+19/56*I,n=5 7014037409893596 p001 sum(1/(407*n+145)/(16^n),n=0..infinity) 7014037425172154 a007 Real Root Of 869*x^4-297*x^3+971*x^2-206*x-935 7014037432651551 a007 Real Root Of -728*x^4-97*x^3-962*x^2+616 7014037434956230 r008 a(0)=7,K{-n^6,-45-41*n-14*n^2+22*n^3} 7014037464797239 a007 Real Root Of 164*x^4+24*x^3+817*x^2+106*x-359 7014037477213342 k002 Champernowne real with 82*n^2-176*n+164 7014037512837143 r002 38i'th iterates of 2*x/(1-x^2) of 7014037529597243 m005 (1/3*gamma+2/7)/(3/7*Zeta(3)-7/12) 7014037534570339 a007 Real Root Of 747*x^4+100*x^3-658*x^2-919*x+753 7014037538941200 a007 Real Root Of 595*x^4-777*x^3-957*x^2-845*x-534 7014037555607194 r008 a(0)=7,K{-n^6,-22+78*n^3-39*n^2-88*n} 7014037577513402 k002 Champernowne real with 165/2*n^2-355/2*n+165 7014037579160604 r005 Im(z^2+c),c=-25/44+7/55*I,n=61 7014037581562280 a007 Real Root Of -813*x^4+268*x^3-495*x^2-195*x+396 7014037586825496 a001 365435296162/2207*199^(3/11) 7014037627965219 r008 a(0)=7,K{-n^6,-37+41*n^3-45*n^2-29*n} 7014037633562293 m008 (Pi^5+1/3)/(1/6*Pi^3-4/5) 7014037654616682 m005 (1/2*gamma+8/11)/(4/9*5^(1/2)+5/11) 7014037677813462 k002 Champernowne real with 83*n^2-179*n+166 7014037693543355 a007 Real Root Of -293*x^4+829*x^3+780*x^2+540*x+352 7014037720414766 r008 a(0)=7,K{-n^6,-99+69*n^3-50*n^2+9*n} 7014037720770321 r005 Im(z^2+c),c=-73/118+8/61*I,n=39 7014037740059705 a003 sin(Pi*19/75)*sin(Pi*18/41) 7014037750385599 r008 a(0)=7,K{-n^6,-37+43*n^3-51*n^2-25*n} 7014037756942214 a007 Real Root Of 11*x^4+99*x^3+271*x^2+720*x-744 7014037768570052 m001 Zeta(5)^Ei(1)/(gamma(2)^Ei(1)) 7014037776143358 r005 Im(z^2+c),c=-85/74+4/43*I,n=13 7014037778113522 k002 Champernowne real with 167/2*n^2-361/2*n+167 7014037785877974 a007 Real Root Of -983*x^4+489*x^3-9*x^2-914*x-230 7014037787652880 p001 sum(1/(200*n+157)/(5^n),n=0..infinity) 7014037811716653 a007 Real Root Of 117*x^4-775*x^3+413*x^2-194*x-635 7014037815320724 h001 (3/4*exp(1)+1/5)/(11/12*exp(1)+7/10) 7014037829617006 r005 Re(z^2+c),c=-21/106+9/13*I,n=32 7014037834450085 a001 75025/3*47^(15/56) 7014037834557285 m001 exp(FeigenbaumB)^2/ErdosBorwein*Zeta(1/2)^2 7014037835019096 a007 Real Root Of 770*x^4-555*x^3+735*x^2+52*x-703 7014037837731695 r008 a(0)=7,K{-n^6,-34-55*n+12*n^2+5*n^3} 7014037839975059 s002 sum(A256334[n]/(n*2^n+1),n=1..infinity) 7014037841304798 s002 sum(A256334[n]/(n*2^n-1),n=1..infinity) 7014037847046306 a003 cos(Pi*16/79)*sin(Pi*29/86) 7014037878413582 k002 Champernowne real with 84*n^2-182*n+168 7014037882958606 m008 (3/4*Pi^5+2)/(1/4*Pi^2+5/6) 7014037888490585 m001 (Shi(1)-gamma)/(-ln(2)+ZetaQ(3)) 7014037889286252 m005 (1/2*gamma-3/10)/(7/11*Pi-3/8) 7014037891355121 r008 a(0)=7,K{-n^6,-66+61*n^3-9*n^2-57*n} 7014037898812633 r008 a(0)=7,K{-n^6,-4+40*n^3-38*n^2-67*n} 7014037900092883 r008 a(0)=7,K{-n^6,-32+78*n^3-43*n^2-74*n} 7014037900671342 r008 a(0)=7,K{-n^6,-22+78*n^3-38*n^2-89*n} 7014037903822337 a001 10946/2207*2^(1/2) 7014037909163665 m001 (1-ln(gamma))/(-GAMMA(11/12)+GaussAGM) 7014037913516629 a001 322*2584^(45/46) 7014037943186527 m004 -25*Pi+25*Sqrt[5]*Pi+(375*Pi)/Log[Sqrt[5]*Pi] 7014037978713642 k002 Champernowne real with 169/2*n^2-367/2*n+169 7014037982777550 m001 (ln(gamma)+ln(2+3^(1/2)))^Totient 7014038009794991 a001 199/39088169*3^(7/24) 7014038022017102 r005 Im(z^2+c),c=8/27+29/55*I,n=23 7014038045320347 h001 (-8*exp(1)-12)/(-8*exp(2)+11) 7014038058152643 b008 1+Pi*ArcSech[EulerGamma/2] 7014038069745612 r008 a(0)=7,K{-n^6,-85+84*n^3-87*n^2+17*n} 7014038079013702 k002 Champernowne real with 85*n^2-185*n+170 7014038091922204 r008 a(0)=7,K{-n^6,-39-10*n^3+38*n^2-61*n} 7014038092930375 m005 (1/2*5^(1/2)+4/11)/(7/10*3^(1/2)+9/10) 7014038096759176 a007 Real Root Of 237*x^4-828*x^3+124*x^2-583*x-813 7014038097838041 m001 1/Catalan^2/Conway^2 7014038102643996 m001 (Pi-3^(1/3))/(cos(1/12*Pi)-Sarnak) 7014038117727307 m001 Pi+1/Chi(1)+2/3*Pi*3^(1/2)/GAMMA(2/3) 7014038128892031 h001 (3/8*exp(1)+6/11)/(3/5*exp(1)+3/5) 7014038128892031 m005 (1/2*exp(1)+8/11)/(4/5*exp(1)+4/5) 7014038140936920 m005 (1/2*exp(1)-6/7)/(3/4*3^(1/2)-7/12) 7014038145148216 r008 a(0)=7,K{-n^6,-44-62*n+48*n^2-14*n^3} 7014038154875709 h001 (8/11*exp(1)+7/12)/(5/12*exp(2)+4/7) 7014038168590641 l006 ln(784/1581) 7014038171822555 m001 MasserGramain/(GAMMA(13/24)-3^(1/2)) 7014038172843620 r002 36th iterates of z^2 + 7014038179313762 k002 Champernowne real with 171/2*n^2-373/2*n+171 7014038186366483 h001 (1/9*exp(1)+2/11)/(11/12*exp(2)+1/8) 7014038201097231 a007 Real Root Of -848*x^4-197*x^3-113*x^2+743*x+714 7014038204681207 a007 Real Root Of 106*x^4+764*x^3+13*x^2-816*x+715 7014038233367765 a007 Real Root Of -10*x^4-715*x^3-946*x^2+544*x+565 7014038255064886 a007 Real Root Of 808*x^4-373*x^3+682*x^2+138*x-563 7014038266165671 a007 Real Root Of -889*x^4+271*x^3+918*x^2+874*x-943 7014038266508367 m001 ZetaR(2)/(Backhouse+TwinPrimes) 7014038279613822 k002 Champernowne real with 86*n^2-188*n+172 7014038292857015 r008 a(0)=7,K{-n^6,-15-52*n-42*n^2+34*n^3} 7014038298295193 r008 a(0)=7,K{-n^6,-46+12*n^3-19*n^2-19*n} 7014038301644900 r005 Im(z^2+c),c=-9/74+17/19*I,n=8 7014038356777968 r008 a(0)=7,K{-n^6,-29+53*n^3-77*n^2-17*n} 7014038358707924 a007 Real Root Of 474*x^4+873*x^3+980*x^2-280*x-492 7014038363051559 m004 -6+6*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi*Csc[Sqrt[5]*Pi] 7014038369372072 a007 Real Root Of 755*x^4+188*x^3-454*x^2-849*x-490 7014038379913882 k002 Champernowne real with 173/2*n^2-379/2*n+173 7014038404084514 r008 a(0)=7,K{-n^6,-23+53*n^3-74*n^2-26*n} 7014038409329663 a007 Real Root Of 23*x^4-524*x^3-375*x^2-900*x+991 7014038412171254 r005 Re(z^2+c),c=-3/34+15/19*I,n=50 7014038423801416 m004 -3125*Pi-Sqrt[5]*Pi+5*Sinh[Sqrt[5]*Pi] 7014038445091656 a007 Real Root Of -93*x^4-716*x^3-526*x^2-683*x-892 7014038459640869 m001 Pi+Psi(1,1/3)-Psi(2,1/3)+exp(gamma) 7014038467132159 a007 Real Root Of 931*x^4-645*x^3+667*x^2+529*x-405 7014038471107760 a007 Real Root Of 955*x^4-667*x^3+940*x^2+463*x-599 7014038472147545 r008 a(0)=7,K{-n^6,-63+9*n-26*n^2+8*n^3} 7014038480213942 k002 Champernowne real with 87*n^2-191*n+174 7014038485675868 a001 12752043/610*102334155^(4/21) 7014038485677851 a001 930249/305*2504730781961^(4/21) 7014038497292894 m003 5-Cos[1/2+Sqrt[5]/2]/4+2*Csc[1/2+Sqrt[5]/2] 7014038500961286 a001 87403803/610*4181^(4/21) 7014038513640948 m001 (sin(1/5*Pi)+ln(2^(1/2)+1))/(Robbin-ZetaP(2)) 7014038532432451 a007 Real Root Of 751*x^4+325*x^3+840*x^2-234*x-647 7014038537269945 r009 Im(z^3+c),c=-35/78+1/37*I,n=44 7014038544379314 s001 sum(exp(-3*Pi)^(n-1)*A075599[n],n=1..infinity) 7014038552672886 a007 Real Root Of 441*x^4+298*x^3+618*x^2-184*x-437 7014038567305079 r008 a(0)=7,K{-n^6,-66+62*n^3-10*n^2-57*n} 7014038575131570 r008 a(0)=7,K{-n^6,-28+77*n^3-36*n^2-84*n} 7014038576124012 r008 a(0)=7,K{-n^6,-22+79*n^3-39*n^2-89*n} 7014038577621200 r008 a(0)=7,K{-n^6,-36+86*n^3-67*n^2-54*n} 7014038580514002 k002 Champernowne real with 175/2*n^2-385/2*n+175 7014038593153545 a003 sin(Pi*16/69)/sin(Pi*41/103) 7014038631899736 m001 Sierpinski^2/ln(Conway)^2/FeigenbaumKappa 7014038639450689 m001 1/exp(GolombDickman)*Si(Pi)/sqrt(2) 7014038639570482 a007 Real Root Of -959*x^4-449*x^3-529*x^2+909*x+975 7014038640527565 a008 Real Root of (-4+5*x-6*x^2+5*x^3+5*x^4+3*x^5) 7014038651146536 m005 (1/2*Zeta(3)-4/5)/(1/6*Zeta(3)+1/12) 7014038652142782 a007 Real Root Of -797*x^4+453*x^3-37*x^2+842*x+958 7014038675011581 r005 Im(z^2+c),c=-81/118+3/28*I,n=46 7014038677983860 m001 ln(GAMMA(2/3))/TwinPrimes^2*Zeta(7) 7014038680814062 k002 Champernowne real with 88*n^2-194*n+176 7014038687034774 r009 Re(z^3+c),c=-5/38+42/61*I,n=47 7014038687610928 r009 Im(z^3+c),c=-7/44+47/63*I,n=47 7014038696949243 m001 GaussAGM(1,1/sqrt(2))^(2/3)/(3^(1/3))^(2/3) 7014038697058727 r009 Re(z^3+c),c=-1/64+35/53*I,n=20 7014038714645788 a007 Real Root Of -138*x^4-927*x^3+196*x^2-755*x-812 7014038727198100 r002 56th iterates of z^2 + 7014038740818171 r008 a(0)=7,K{-n^6,-29+77*n^3-36*n^2-83*n} 7014038742526243 m001 5^(1/2)-FeigenbaumC-Weierstrass 7014038765606248 r005 Im(z^2+c),c=-77/64+4/51*I,n=28 7014038772063988 r009 Re(z^3+c),c=-61/110+9/59*I,n=18 7014038773195090 s002 sum(A215479[n]/(n!^3),n=1..infinity) 7014038774627890 a001 18/514229*3^(31/49) 7014038780321744 a007 Real Root Of -885*x^4+898*x^3-355*x^2-155*x+590 7014038781114122 k002 Champernowne real with 177/2*n^2-391/2*n+177 7014038786557505 a001 39603/1597*8^(1/2) 7014038803750597 a003 sin(Pi*3/113)*sin(Pi*36/113) 7014038811688312 m001 1/exp(GAMMA(1/4))/Porter/sin(Pi/12) 7014038816735430 a001 956722026041/5778*199^(3/11) 7014038820560424 m001 (-Stephens+ZetaP(2))/(gamma+KhinchinLevy) 7014038822298076 m005 (1/2*Catalan+5/8)/(4/11*exp(1)+5/9) 7014038825752406 m001 1/KhintchineHarmonic*Artin^2*exp(sqrt(5))^2 7014038828408840 r005 Im(z^2+c),c=-2/13+39/56*I,n=46 7014038858156308 r002 45th iterates of z^2 + 7014038870797487 m001 Tribonacci^2*exp(Niven)^2/Zeta(1/2) 7014038876889848 q001 1299/1852 7014038880874364 a001 322/55*832040^(13/25) 7014038881414182 k002 Champernowne real with 89*n^2-197*n+178 7014038894785004 r005 Im(z^2+c),c=-41/58+3/13*I,n=25 7014038897773845 r008 a(0)=7,K{-n^6,-66+62*n^3-9*n^2-58*n} 7014038901171595 r008 a(0)=7,K{-n^6,-66+71*n^3-36*n^2-40*n} 7014038939404138 p001 sum((-1)^n/(297*n+289)/n/(24^n),n=1..infinity) 7014038949211650 m001 (1+3^(1/2))/(Ei(1)+2) 7014038951312879 a003 cos(Pi*18/71)/sin(Pi*19/40) 7014038952749128 m001 Porter*Backhouse/ln(Riemann2ndZero) 7014038964561167 r008 a(0)=7,K{-n^6,-62-41*n+34*n^2+3*n^3} 7014038970337285 r008 a(0)=7,K{-n^6,63+51*n^3-90*n^2-96*n} 7014038970894737 a007 Real Root Of 549*x^4-654*x^3+263*x^2-472*x-819 7014038981714242 k002 Champernowne real with 179/2*n^2-397/2*n+179 7014038996176907 a001 2504730781961/15127*199^(3/11) 7014039000614114 r009 Im(z^3+c),c=-35/78+1/37*I,n=53 7014039000835135 m001 Niven/(Sierpinski^ReciprocalFibonacci) 7014039022357067 a001 6557470319842/39603*199^(3/11) 7014039022733363 a001 521/75025*377^(23/59) 7014039028537364 a001 10610209857723/64079*199^(3/11) 7014039032337759 r005 Re(z^2+c),c=-11/14+7/222*I,n=23 7014039038537295 a001 4052739537881/24476*199^(3/11) 7014039045505972 a001 2576*3^(31/34) 7014039060524340 m001 exp(MadelungNaCl)*FibonacciFactorial/Zeta(9)^2 7014039061165672 r008 a(0)=7,K{-n^6,-67+62*n^3-9*n^2-57*n} 7014039064529342 r008 a(0)=7,K{-n^6,-67+71*n^3-36*n^2-39*n} 7014039068703904 a007 Real Root Of 232*x^4-872*x^3+196*x^2-658*x-915 7014039068738350 r008 a(0)=7,K{-n^6,-29+77*n^3-35*n^2-84*n} 7014039079869817 a007 Real Root Of 444*x^4-506*x^3+87*x^2-23*x-341 7014039082014302 k002 Champernowne real with 90*n^2-200*n+180 7014039095966348 r005 Im(z^2+c),c=-35/62+8/63*I,n=56 7014039101798471 m001 (Totient+ZetaQ(2))/(CareFree+GlaisherKinkelin) 7014039103728271 m001 1/Porter/KhintchineLevy^2/exp(cos(Pi/12))^2 7014039107077844 a001 1548008755920/9349*199^(3/11) 7014039114191796 m001 (sin(1/5*Pi)+ln(gamma))/(Kolakoski-Totient) 7014039123732396 a001 28657/5778*2^(1/2) 7014039144081546 r002 17th iterates of z^2 + 7014039144966918 a007 Real Root Of -377*x^4+564*x^3-972*x^2-539*x+386 7014039176007400 r005 Im(z^2+c),c=-15/16+4/65*I,n=15 7014039182314362 k002 Champernowne real with 181/2*n^2-403/2*n+181 7014039216410451 a007 Real Root Of 635*x^4-980*x^3-993*x^2+451*x+313 7014039221858361 a007 Real Root Of -647*x^4-267*x^3-923*x^2-390*x+245 7014039225881879 r008 a(0)=7,K{-n^6,-52+66*n^3-13*n^2-72*n} 7014039252521752 a001 103682/4181*8^(1/2) 7014039264208585 r008 a(0)=7,K{-n^6,-46-26*n-n^2+n^3} 7014039272995415 m001 (Champernowne+FeigenbaumDelta)/(Artin-Shi(1)) 7014039282614422 k002 Champernowne real with 91*n^2-203*n+182 7014039289376106 m001 TwinPrimes^(FeigenbaumD/Pi) 7014039301287179 a007 Real Root Of -719*x^4-58*x^3-694*x^2+333*x+729 7014039301714910 a001 75025/15127*2^(1/2) 7014039306311692 r009 Im(z^3+c),c=-35/78+1/37*I,n=62 7014039314545417 b008 7*3^Sech[7] 7014039320505025 a001 271443/10946*8^(1/2) 7014039320518169 m001 (ln(Pi)+gamma(3))/(StronglyCareFree+Thue) 7014039327682210 a001 196418/39603*2^(1/2) 7014039330423651 a001 710647/28657*8^(1/2) 7014039331470788 a001 514229/103682*2^(1/2) 7014039331870759 a001 1860498/75025*8^(1/2) 7014039332023534 a001 1346269/271443*2^(1/2) 7014039332081889 a001 4870847/196418*8^(1/2) 7014039332104179 a001 3524578/710647*2^(1/2) 7014039332112693 a001 12752043/514229*8^(1/2) 7014039332115945 a001 9227465/1860498*2^(1/2) 7014039332117187 a001 33385282/1346269*8^(1/2) 7014039332117661 a001 24157817/4870847*2^(1/2) 7014039332117842 a001 87403803/3524578*8^(1/2) 7014039332117912 a001 63245986/12752043*2^(1/2) 7014039332117938 a001 228826127/9227465*8^(1/2) 7014039332117948 a001 165580141/33385282*2^(1/2) 7014039332117952 a001 599074578/24157817*8^(1/2) 7014039332117953 a001 433494437/87403803*2^(1/2) 7014039332117954 a001 1568397607/63245986*8^(1/2) 7014039332117954 a001 1134903170/228826127*2^(1/2) 7014039332117954 a001 4106118243/165580141*8^(1/2) 7014039332117954 a001 2971215073/599074578*2^(1/2) 7014039332117954 a001 10749957122/433494437*8^(1/2) 7014039332117954 a001 7778742049/1568397607*2^(1/2) 7014039332117954 a001 28143753123/1134903170*8^(1/2) 7014039332117954 a001 20365011074/4106118243*2^(1/2) 7014039332117954 a001 73681302247/2971215073*8^(1/2) 7014039332117954 a001 53316291173/10749957122*2^(1/2) 7014039332117954 a001 192900153618/7778742049*8^(1/2) 7014039332117954 a001 139583862445/28143753123*2^(1/2) 7014039332117954 a001 505019158607/20365011074*8^(1/2) 7014039332117954 a001 365435296162/73681302247*2^(1/2) 7014039332117954 a001 1322157322203/53316291173*8^(1/2) 7014039332117954 a001 956722026041/192900153618*2^(1/2) 7014039332117954 a001 3461452808002/139583862445*8^(1/2) 7014039332117954 a001 2504730781961/505019158607*2^(1/2) 7014039332117954 a001 23725150497407/956722026041*8^(1/2) 7014039332117954 a001 10610209857723/2139295485799*2^(1/2) 7014039332117954 a001 14662949395604/591286729879*8^(1/2) 7014039332117954 a001 4052739537881/817138163596*2^(1/2) 7014039332117954 a001 5600748293801/225851433717*8^(1/2) 7014039332117954 a001 140728068720/28374454999*2^(1/2) 7014039332117954 a001 2139295485799/86267571272*8^(1/2) 7014039332117954 a001 591286729879/119218851371*2^(1/2) 7014039332117954 a001 817138163596/32951280099*8^(1/2) 7014039332117954 a001 225851433717/45537549124*2^(1/2) 7014039332117954 a001 28374454999/1144206275*8^(1/2) 7014039332117954 a001 86267571272/17393796001*2^(1/2) 7014039332117954 a001 119218851371/4807526976*8^(1/2) 7014039332117954 a001 32951280099/6643838879*2^(1/2) 7014039332117954 a001 45537549124/1836311903*8^(1/2) 7014039332117954 a001 1144206275/230701876*2^(1/2) 7014039332117954 a001 17393796001/701408733*8^(1/2) 7014039332117954 a001 4807526976/969323029*2^(1/2) 7014039332117954 a001 6643838879/267914296*8^(1/2) 7014039332117954 a001 1836311903/370248451*2^(1/2) 7014039332117955 a001 230701876/9303105*8^(1/2) 7014039332117955 a001 701408733/141422324*2^(1/2) 7014039332117955 a001 969323029/39088169*8^(1/2) 7014039332117957 a001 267914296/54018521*2^(1/2) 7014039332117961 a001 370248451/14930352*8^(1/2) 7014039332117971 a001 9303105/1875749*2^(1/2) 7014039332117997 a001 141422324/5702887*8^(1/2) 7014039332118066 a001 39088169/7881196*2^(1/2) 7014039332118248 a001 54018521/2178309*8^(1/2) 7014039332118722 a001 14930352/3010349*2^(1/2) 7014039332119964 a001 1875749/75640*8^(1/2) 7014039332123216 a001 5702887/1149851*2^(1/2) 7014039332131730 a001 7881196/317811*8^(1/2) 7014039332154020 a001 2178309/439204*2^(1/2) 7014039332212375 a001 3010349/121393*8^(1/2) 7014039332365150 a001 75640/15251*2^(1/2) 7014039332765121 a001 1149851/46368*8^(1/2) 7014039333812258 a001 317811/64079*2^(1/2) 7014039336553699 a001 439204/17711*8^(1/2) 7014039337917021 b008 7*3^Csch[7] 7014039340481124 r008 a(0)=7,K{-n^6,-45+n^3+20*n^2-49*n} 7014039343730884 a001 121393/24476*2^(1/2) 7014039362520999 a001 15251/615*8^(1/2) 7014039365608850 a005 (1/cos(2/127*Pi))^1591 7014039382111207 a007 Real Root Of -169*x^4+12*x^3-437*x^2+47*x+293 7014039382914482 k002 Champernowne real with 183/2*n^2-409/2*n+183 7014039387875183 r008 a(0)=7,K{-n^6,-67+71*n^3-35*n^2-40*n} 7014039405463077 r008 a(0)=7,K{-n^6,-47+12*n^3+25*n^2-59*n} 7014039411714158 a001 46368/9349*2^(1/2) 7014039476987628 r002 57th iterates of z^2 + 7014039483214542 k002 Champernowne real with 92*n^2-206*n+184 7014039487287078 r002 60th iterates of z^2 + 7014039512426670 r009 Re(z^3+c),c=-51/86+14/59*I,n=2 7014039529970641 m001 (GAMMA(23/24)+MertensB2)/(exp(1)+Ei(1,1)) 7014039540503526 a001 64079/2584*8^(1/2) 7014039567023152 l006 ln(4523/9121) 7014039576861788 a001 591286729879/3571*199^(3/11) 7014039580372108 m001 cos(1)^LandauRamanujan+ZetaP(4) 7014039583514602 k002 Champernowne real with 185/2*n^2-415/2*n+185 7014039605373250 m005 (1/2*Zeta(3)-2/9)/(1/3*Zeta(3)+5) 7014039633752857 m001 (Psi(1,1/3)-ln(2))/(Kac+TravellingSalesman) 7014039655075138 h001 (3/5*exp(1)+1/12)/(7/11*exp(1)+5/7) 7014039674699645 a003 cos(Pi*23/109)*sin(Pi*22/63) 7014039681431901 a007 Real Root Of 863*x^4-460*x^3+983*x^2+505*x-497 7014039683814662 k002 Champernowne real with 93*n^2-209*n+186 7014039705069416 a007 Real Root Of 613*x^4-835*x^3+936*x^2+911*x-258 7014039705328496 r008 a(0)=7,K{-n^6,-34-49*n-10*n^2+19*n^3} 7014039710981554 r008 a(0)=7,K{-n^6,-29+78*n^3-36*n^2-84*n} 7014039727560264 p001 sum((-1)^n/(137*n+91)/n/(625^n),n=0..infinity) 7014039747481441 m005 (1/2*3^(1/2)-5/11)/(2*Pi-5/12) 7014039755762600 m001 (Landau+PolyaRandomWalk3D)/(LambertW(1)-ln(2)) 7014039758488151 r002 38th iterates of z^2 + 7014039777635062 a007 Real Root Of 36*x^4+155*x^3-632*x^2+474*x+771 7014039784114722 k002 Champernowne real with 187/2*n^2-421/2*n+187 7014039785989171 r008 a(0)=7,K{-n^6,-2+30*n^3-58*n^2-42*n} 7014039832750987 r002 19th iterates of z^2 + 7014039835256440 m001 (GAMMA(3/4)*ln(Pi)-Landau)/GAMMA(3/4) 7014039846986477 p001 sum(1/(461*n+149)/(6^n),n=0..infinity) 7014039857744846 a007 Real Root Of 776*x^4+417*x^3-206*x^2-799*x-503 7014039859279516 r005 Re(z^2+c),c=-11/14+7/208*I,n=25 7014039860248880 l006 ln(3739/7540) 7014039873154616 r005 Im(z^2+c),c=-1/31+44/59*I,n=14 7014039877678489 a001 17711/3571*2^(1/2) 7014039884414782 k002 Champernowne real with 94*n^2-212*n+188 7014039904238923 r005 Re(z^2+c),c=13/60+18/35*I,n=59 7014039923194307 m005 (1/2*exp(1)-1)/(-73/112+1/16*5^(1/2)) 7014039926458553 a007 Real Root Of 197*x^4-56*x^3+907*x^2+227*x-354 7014039943397498 a007 Real Root Of 824*x^4+284*x^3+145*x^2-947*x-837 7014039961406176 m001 1/exp(GAMMA(5/6))/Robbin^2*GAMMA(7/24)^2 7014039984714842 k002 Champernowne real with 189/2*n^2-427/2*n+189 7014040020628717 a007 Real Root Of -740*x^4-897*x^3-355*x^2+195*x+181 7014040021281617 r008 a(0)=7,K{-n^6,-67+72*n^3-36*n^2-40*n} 7014040025012433 m001 (gamma(2)+Khinchin)/(Otter+Thue) 7014040043795072 a007 Real Root Of 570*x^4-945*x^3+630*x^2+988*x-81 7014040062619458 m001 BesselJ(1,1)^2*ln(Si(Pi))*sin(Pi/5) 7014040077390011 r008 a(0)=7,K{-n^6,-40-10*n^3+38*n^2-60*n} 7014040083901089 l006 ln(1858/1993) 7014040085014902 k002 Champernowne real with 95*n^2-215*n+190 7014040105950269 r005 Im(z^2+c),c=-47/66+6/37*I,n=38 7014040118282177 m001 1/Zeta(7)^2*GolombDickman/exp(sqrt(5))^2 7014040123439519 a003 sin(Pi*20/81)/sin(Pi*13/27) 7014040137580392 a007 Real Root Of -559*x^4+656*x^3-255*x^2-80*x+431 7014040164436523 r005 Re(z^2+c),c=-79/110+10/47*I,n=40 7014040176591665 a007 Real Root Of 277*x^4-617*x^3-157*x^2-995*x+921 7014040184663977 a007 Real Root Of 156*x^4-174*x^3+190*x^2+123*x-105 7014040185314962 k002 Champernowne real with 191/2*n^2-433/2*n+191 7014040198147900 a007 Real Root Of -827*x^4+514*x^3-88*x^2-868*x-188 7014040201992702 r008 a(0)=7,K{-n^6,-75-4*n^3+72*n^2-63*n} 7014040224526691 r005 Re(z^2+c),c=-28/31+9/59*I,n=38 7014040224908528 a001 34/3571*18^(38/55) 7014040248212272 a007 Real Root Of -144*x^4-953*x^3+418*x^2-11*x-965 7014040249153652 m001 (2*Pi/GAMMA(5/6)-FellerTornier)/RenyiParking 7014040273008356 m005 (1/3*gamma-2/3)/(5/12*gamma-11/12) 7014040273810819 r005 Im(z^2+c),c=-9/10+9/163*I,n=27 7014040285615022 k002 Champernowne real with 96*n^2-218*n+192 7014040290280831 m005 (1/2*2^(1/2)-4/5)/(2/7*exp(1)-10/11) 7014040305710655 a007 Real Root Of 916*x^4-373*x^3+213*x^2+428*x-155 7014040309067803 l006 ln(2955/5959) 7014040330972804 r008 a(0)=7,K{-n^6,-65+71*n^3-31*n^2-46*n} 7014040370130299 r005 Re(z^2+c),c=-89/106+27/40*I,n=3 7014040370386537 m001 (2*Pi/GAMMA(5/6)-Catalan)/(-Salem+Tribonacci) 7014040385915082 k002 Champernowne real with 193/2*n^2-439/2*n+193 7014040392013253 a007 Real Root Of 797*x^4-307*x^3-971*x^2-615*x+48 7014040395085232 a007 Real Root Of 996*x^4-303*x^3+78*x^2+921*x+262 7014040405003599 a007 Real Root Of -685*x^4+397*x^3+977*x^2+476*x+156 7014040422524898 r008 a(0)=7,K{-n^6,10-60*n-52*n^2+30*n^3} 7014040456136758 a007 Real Root Of 216*x^4-60*x^3-511*x^2-840*x+809 7014040461498225 r005 Re(z^2+c),c=-27/58+32/51*I,n=18 7014040463594977 b008 E+(13*Tanh[E])/3 7014040479772479 m009 (4/5*Psi(1,2/3)+3)/(3/4*Psi(1,1/3)+1/5) 7014040486215142 k002 Champernowne real with 97*n^2-221*n+194 7014040488457067 a001 46368/199*29^(18/55) 7014040501334685 m001 Riemann2ndZero/exp(Kolakoski)/GAMMA(2/3) 7014040507411779 a007 Real Root Of 948*x^4-749*x^3+675*x^2+556*x-430 7014040510971679 r008 a(0)=7,K{-n^6,-64+2*n^3+22*n^2-33*n} 7014040516933394 m005 (1/2*3^(1/2)-5/7)/(3/4*gamma-5/11) 7014040543737311 a007 Real Root Of -102*x^4-669*x^3+337*x^2+218*x+972 7014040561622464 q001 2248/3205 7014040586515202 k002 Champernowne real with 195/2*n^2-445/2*n+195 7014040606708519 m005 (1/2*3^(1/2)-7/9)/(1/9*Pi+10/11) 7014040610024167 m001 GAMMA(17/24)*(Psi(2,1/3)+cos(1)) 7014040622291052 s002 sum(A075275[n]/(n*2^n-1),n=1..infinity) 7014040623529316 m004 (5*E^(Sqrt[5]*Pi)*Pi*Cot[Sqrt[5]*Pi]^2)/3 7014040651257891 m005 (1/2*5^(1/2)+7/8)/(7/9*exp(1)+8/11) 7014040660050190 m001 arctan(1/2)*(BesselJ(0,1)+RenyiParking) 7014040676512274 a007 Real Root Of 546*x^4-486*x^3-608*x^2-900*x-632 7014040686815262 k002 Champernowne real with 98*n^2-224*n+196 7014040691758726 h001 (-8*exp(3)-2)/(-11*exp(3)-11) 7014040699778000 r005 Im(z^2+c),c=-37/54+7/57*I,n=63 7014040705015093 h002 exp(24/(11^(1/4)-12^(3/4))^(1/2)) 7014040715254208 r008 a(0)=7,K{-n^6,-52+23*n^3+2*n^2-43*n} 7014040718881997 r008 a(0)=7,K{-n^6,-21+23*n^3-45*n^2-29*n} 7014040730820462 s001 sum(exp(-2*Pi)^(n-1)*A247211[n],n=1..infinity) 7014040732442109 h001 (-exp(5)+7)/(-5*exp(6)+1) 7014040736462589 b008 5+E^ExpIntegralEi[EulerGamma] 7014040760414158 a001 24476/987*8^(1/2) 7014040769515153 m001 (Riemann1stZero-Sarnak)/(BesselI(1,1)-Artin) 7014040787115322 k002 Champernowne real with 197/2*n^2-451/2*n+197 7014040811267587 r005 Im(z^2+c),c=17/54+23/55*I,n=11 7014040819240756 a007 Real Root Of -588*x^4+43*x^3+703*x^2+373*x-480 7014040833822673 r008 a(0)=7,K{-n^6,-41+7*n-57*n^2+19*n^3} 7014040862726407 a007 Real Root Of -98*x^4-822*x^3-901*x^2+439*x+951 7014040879841539 a007 Real Root Of 962*x^4-828*x^3-397*x^2-185*x-453 7014040887415382 k002 Champernowne real with 99*n^2-227*n+198 7014040908638145 m001 1/FeigenbaumC^2*ln(Khintchine)*cosh(1)^2 7014040909216704 h001 (7/11*exp(2)+1/8)/(7/8*exp(2)+5/12) 7014040936933488 r005 Im(z^2+c),c=13/30+11/48*I,n=34 7014040938404687 r008 a(0)=7,K{-n^6,-27-64*n+22*n^2-3*n^3} 7014040947241910 a007 Real Root Of x^4-318*x^3-137*x^2-435*x+482 7014040948210479 m001 FeigenbaumB^ZetaQ(2)*ZetaQ(4)^ZetaQ(2) 7014040953011813 a007 Real Root Of -223*x^4+946*x^3+158*x^2+148*x-454 7014040954300398 a007 Real Root Of -193*x^4+771*x^3-715*x^2+273*x+856 7014040960934127 s001 sum(exp(-2*Pi)^n*A220899[n],n=1..infinity) 7014040963685803 a001 1134903170/123*123^(9/10) 7014040967292313 r008 a(0)=7,K{-n^6,-90-11*n^3+71*n^2-51*n} 7014040987715442 k002 Champernowne real with 199/2*n^2-457/2*n+199 7014040988906542 a007 Real Root Of 41*x^4-854*x^3-565*x^2-622*x+999 7014041007971487 a001 8/64079*76^(40/43) 7014041019803034 a007 Real Root Of 130*x^4-268*x^3+204*x^2-567*x-622 7014041022630586 a007 Real Root Of -977*x^4+284*x^3-587*x^2+463*x+948 7014041035012344 a007 Real Root Of 81*x^4-537*x^3-242*x^2-247*x+458 7014041042022824 a007 Real Root Of -336*x^4+595*x^3+278*x^2-185*x-131 7014041049441793 h001 (1/7*exp(2)+4/5)/(2/3*exp(1)+5/6) 7014041063815056 a003 sin(Pi*31/100)*sin(Pi*29/90) 7014041076172888 m001 (Backhouse-Champernowne)/(Salem+Sarnak) 7014041082045164 l006 ln(2171/4378) 7014041084632600 a007 Real Root Of 496*x^4+22*x^3+978*x^2-213*x-743 7014041088015502 k002 Champernowne real with 100*n^2-230*n+200 7014041093549915 r008 a(0)=7,K{-n^6,-32+88*n^3-63*n^2-64*n} 7014041125282752 h001 (11/12*exp(1)+3/10)/(1/2*exp(2)+2/7) 7014041136535231 m001 OrthogonalArrays^FellerTornier/BesselI(1,2) 7014041137283085 r009 Im(z^3+c),c=-11/58+51/58*I,n=38 7014041148859551 m001 (GAMMA(3/4)+ln(2))/(FeigenbaumMu-GaussAGM) 7014041167372697 m001 BesselJ(1,1)^2/Porter*ln(sin(Pi/5)) 7014041176315069 m001 1/ln(TreeGrowth2nd)*Lehmer^2*GAMMA(13/24) 7014041186765905 r005 Im(z^2+c),c=-33/62+18/49*I,n=4 7014041188315562 k002 Champernowne real with 201/2*n^2-463/2*n+201 7014041202472103 m005 (1/2*5^(1/2)-4/5)/(4/9*Zeta(3)+4) 7014041215310585 a007 Real Root Of 209*x^4-103*x^3-642*x^2-783*x+850 7014041218216845 m001 (gamma(2)-Trott2nd)^OneNinth 7014041226318609 m001 (Lehmer+ZetaP(3))/(ln(2)-KomornikLoreti) 7014041240699072 r009 Im(z^3+c),c=-35/82+37/64*I,n=62 7014041241064481 r008 a(0)=7,K{-n^6,-27+85*n^3-51*n^2-78*n} 7014041246160596 r002 2th iterates of z^2 + 7014041280116448 a007 Real Root Of -626*x^4+858*x^3+867*x^2-137*x-475 7014041284857344 m001 Khintchine^2/exp(Cahen)/cos(1) 7014041285605941 m005 (1/2*Catalan-1/4)/(5/6*exp(1)+7/10) 7014041287337195 m001 (ZetaP(3)-ZetaP(4))/(GAMMA(17/24)-FeigenbaumD) 7014041288615622 k002 Champernowne real with 101*n^2-233*n+202 7014041302458885 a003 sin(Pi*27/109)*sin(Pi*56/115) 7014041308751697 r009 Im(z^3+c),c=-13/31+50/61*I,n=2 7014041347723938 m001 Pi*(Psi(2,1/3)*BesselK(0,1)+ln(2^(1/2)+1)) 7014041354169769 m001 (Bloch+KhinchinHarmonic)/(BesselI(0,1)+Ei(1)) 7014041368877661 r008 a(0)=7,K{-n^6,-62+32*n^3-30*n^2-10*n} 7014041375240279 a001 2504730781961/76*3^(11/16) 7014041384084761 r008 a(0)=7,K{-n^6,-62+76*n^3-41*n^2-44*n} 7014041386419763 r008 a(0)=7,K{-n^6,-54+83*n^3-58*n^2-42*n} 7014041388094717 r008 a(0)=7,K{-n^6,-28+85*n^3-51*n^2-77*n} 7014041388915682 k002 Champernowne real with 203/2*n^2-469/2*n+203 7014041407284742 m001 (Grothendieck+Trott)/(Si(Pi)+CareFree) 7014041461793317 m001 polylog(4,1/2)^Catalan*GlaisherKinkelin 7014041463434067 r002 7th iterates of z^2 + 7014041489215742 k002 Champernowne real with 102*n^2-236*n+204 7014041500160355 r009 Im(z^3+c),c=-21/64+47/48*I,n=4 7014041511043929 m001 1/FeigenbaumB^2*ln(Bloch)^2/Magata^2 7014041530156376 r008 a(0)=7,K{-n^6,-63+76*n^3-41*n^2-43*n} 7014041532469461 r008 a(0)=7,K{-n^6,-55+83*n^3-58*n^2-41*n} 7014041538900205 r008 a(0)=7,K{-n^6,-41-5*n-47*n^2+31*n^3} 7014041550275110 r002 4th iterates of z^2 + 7014041552776570 a008 Real Root of x^4-2*x^3-11*x^2-144*x-179 7014041566214201 m001 (Ei(1)-ZetaP(3))/(GAMMA(2/3)+ln(3)) 7014041578611599 m005 (1/2*gamma+1)/(6/7*2^(1/2)+5/8) 7014041589515802 k002 Champernowne real with 205/2*n^2-475/2*n+205 7014041590409383 m001 (Otter+Riemann1stZero)/(exp(Pi)+GAMMA(3/4)) 7014041598672857 r005 Im(z^2+c),c=-3/50+31/45*I,n=43 7014041605007086 m001 cos(1/5*Pi)*MasserGramainDelta*PlouffeB 7014041608300584 a007 Real Root Of -994*x^4+807*x^3-242*x^2-147*x+535 7014041617817075 m001 (FeigenbaumD+Magata)/(sin(1/5*Pi)-Backhouse) 7014041621212510 a003 cos(Pi*4/95)-cos(Pi*7/55) 7014041622333553 a003 sin(Pi*5/102)+sin(Pi*12/65) 7014041623114901 m001 ln(2)+OneNinth*ZetaP(4) 7014041679261197 r008 a(0)=7,K{-n^6,-28+85*n^3-50*n^2-78*n} 7014041689815862 k002 Champernowne real with 103*n^2-239*n+206 7014041696123732 m001 1/(2^(1/3))^2/FransenRobinson^2*ln(Catalan) 7014041705622100 a001 33385282/1597*102334155^(4/21) 7014041705622389 a001 4870847/1597*2504730781961^(4/21) 7014041717272516 r005 Im(z^2+c),c=-33/70+4/31*I,n=10 7014041720907560 a001 228826127/1597*4181^(4/21) 7014041724020414 l006 ln(3558/7175) 7014041740410859 m001 1/ln(GAMMA(1/4))^2*Conway^2/Zeta(1/2) 7014041740622368 r005 Im(z^2+c),c=7/27+35/62*I,n=40 7014041749596636 a007 Real Root Of 753*x^4+125*x^3-71*x^2-935*x-760 7014041767562438 s002 sum(A074010[n]/(exp(2*pi*n)+1),n=1..infinity) 7014041767595002 r008 a(0)=7,K{-n^6,-3+30*n^3-58*n^2-41*n} 7014041790115922 k002 Champernowne real with 207/2*n^2-481/2*n+207 7014041812237115 h001 (3/8*exp(2)+5/12)/(3/5*exp(2)+1/9) 7014041819443775 r008 a(0)=7,K{-n^6,-63+76*n^3-40*n^2-44*n} 7014041821707832 r008 a(0)=7,K{-n^6,-55+83*n^3-57*n^2-42*n} 7014041829856558 a007 Real Root Of -785*x^4+912*x^3-827*x^2+32*x+934 7014041834003750 r005 Im(z^2+c),c=-15/118+29/41*I,n=13 7014041857149201 m002 -1-E^Pi+Pi^3+Log[Pi]-Tanh[Pi] 7014041858883677 a007 Real Root Of 451*x^4-257*x^3+907*x^2-104*x-717 7014041867961572 m005 (1/2*3^(1/2)-8/9)/(8/11*3^(1/2)+2) 7014041890415982 k002 Champernowne real with 104*n^2-242*n+208 7014041894507853 m001 exp(MertensB1)^2*GolombDickman^2/Zeta(1,2) 7014041899831610 a007 Real Root Of -930*x^4+607*x^3+396*x^2+123*x+326 7014041910518045 r005 Re(z^2+c),c=-7/118+33/41*I,n=38 7014041950726915 a007 Real Root Of 87*x^4+719*x^3+653*x^2-745*x+185 7014041952635080 a007 Real Root Of -333*x^4+859*x^3-512*x^2-141*x+530 7014041966354701 r008 a(0)=7,K{-n^6,-50+88*n^3-69*n^2-40*n} 7014041967911683 r005 Re(z^2+c),c=-18/23+3/59*I,n=23 7014041983657594 r008 a(0)=0,K{-n^6,-98-3*n^3+99*n^2-12*n} 7014041990716042 k002 Champernowne real with 209/2*n^2-487/2*n+209 7014042005130209 m001 (Niven+StolarskyHarborth)/(ln(5)-Zeta(1,2)) 7014042005555893 r005 Im(z^2+c),c=-19/30+28/57*I,n=14 7014042005866360 l006 ln(4945/9972) 7014042027513708 a007 Real Root Of 619*x^4-986*x^3+577*x^2+727*x-264 7014042042920306 m005 (1/2*2^(1/2)+5/7)/(100/99+5/11*5^(1/2)) 7014042053449342 m001 1/GAMMA(5/12)/Porter*exp(cosh(1))^2 7014042085658533 r008 a(0)=7,K{-n^6,-15-39*n-58*n^2+38*n^3} 7014042091016102 k002 Champernowne real with 105*n^2-245*n+210 7014042101413412 m001 (3^(1/2)+gamma(2))/(FeigenbaumC+GolombDickman) 7014042108503815 r008 a(0)=7,K{-n^6,-51+88*n^3-69*n^2-39*n} 7014042119979278 m005 (1/2*exp(1)-5/12)/(7/12*3^(1/2)+1/3) 7014042147349019 a007 Real Root Of -626*x^4+440*x^3+944*x^2+837*x+426 7014042155513688 a001 2/32951280099*6557470319842^(16/17) 7014042155513695 a001 1/7465176*1836311903^(16/17) 7014042166633877 m001 (ErdosBorwein*Lehmer+ZetaP(3))/ErdosBorwein 7014042170410373 g001 Psi(3/5,16/53) 7014042175406171 a001 87403803/4181*102334155^(4/21) 7014042175406213 a001 12752043/4181*2504730781961^(4/21) 7014042178022894 a007 Real Root Of 314*x^4-22*x^3+873*x^2-372*x-774 7014042179258844 m001 (gamma(3)+CareFree)/(MertensB2-Trott2nd) 7014042184591737 m001 (Zeta(5)-exp(Pi))/(-Grothendieck+Porter) 7014042186170960 a001 2/6765*514229^(16/17) 7014042190691638 a001 599074578/4181*4181^(4/21) 7014042191316162 k002 Champernowne real with 211/2*n^2-493/2*n+211 7014042206718806 r008 a(0)=7,K{-n^6,-4+15*n^3-11*n^2-72*n} 7014042209571422 a007 Real Root Of 541*x^4+507*x^3+586*x^2+344*x-3 7014042230362286 a001 32951280099/322*322^(1/3) 7014042232135041 a007 Real Root Of 360*x^4-175*x^3+470*x^2+31*x-357 7014042243946748 a001 228826127/10946*102334155^(4/21) 7014042243946754 a001 16692641/5473*2504730781961^(4/21) 7014042250190341 r008 a(0)=7,K{-n^6,-28+86*n^3-51*n^2-78*n} 7014042250706412 r002 3th iterates of z^2 + 7014042251601616 r008 a(0)=7,K{-n^6,-46+95*n^3-87*n^2-33*n} 7014042252186832 r008 a(0)=7,K{-n^6,-34-36*n-40*n^2+40*n^3} 7014042253243699 r008 a(0)=7,K{-n^6,-14+97*n^3-77*n^2-77*n} 7014042253946684 a001 599074578/28657*102334155^(4/21) 7014042253946685 a001 87403803/28657*2504730781961^(4/21) 7014042255405655 a001 1568397607/75025*102334155^(4/21) 7014042255405655 a001 228826127/75025*2504730781961^(4/21) 7014042255618516 a001 4106118243/196418*102334155^(4/21) 7014042255618516 a001 299537289/98209*2504730781961^(4/21) 7014042255649572 a001 10749957122/514229*102334155^(4/21) 7014042255649572 a001 1568397607/514229*2504730781961^(4/21) 7014042255654103 a001 28143753123/1346269*102334155^(4/21) 7014042255654103 a001 4106118243/1346269*2504730781961^(4/21) 7014042255654764 a001 73681302247/3524578*102334155^(4/21) 7014042255654764 a001 5374978561/1762289*2504730781961^(4/21) 7014042255654860 a001 192900153618/9227465*102334155^(4/21) 7014042255654860 a001 28143753123/9227465*2504730781961^(4/21) 7014042255654874 a001 505019158607/24157817*102334155^(4/21) 7014042255654874 a001 73681302247/24157817*2504730781961^(4/21) 7014042255654876 a001 1322157322203/63245986*102334155^(4/21) 7014042255654876 a001 96450076809/31622993*2504730781961^(4/21) 7014042255654877 a001 3461452808002/165580141*102334155^(4/21) 7014042255654877 a001 505019158607/165580141*2504730781961^(4/21) 7014042255654877 a001 9062201101803/433494437*102334155^(4/21) 7014042255654877 a001 23725150497407/1134903170*102334155^(4/21) 7014042255654877 a001 14662949395604/701408733*102334155^(4/21) 7014042255654877 a001 1322157322203/433494437*2504730781961^(4/21) 7014042255654877 a001 5600748293801/267914296*102334155^(4/21) 7014042255654877 a001 1730726404001/567451585*2504730781961^(4/21) 7014042255654877 a001 9062201101803/2971215073*2504730781961^(4/21) 7014042255654877 a001 23725150497407/7778742049*2504730781961^(4/21) 7014042255654877 a001 3665737348901/1201881744*2504730781961^(4/21) 7014042255654877 a001 5600748293801/1836311903*2504730781961^(4/21) 7014042255654877 a001 2139295485799/701408733*2504730781961^(4/21) 7014042255654877 a001 204284540899/66978574*2504730781961^(4/21) 7014042255654877 a001 2139295485799/102334155*102334155^(4/21) 7014042255654877 a001 28374454999/9303105*2504730781961^(4/21) 7014042255654878 a001 87403804/4181*102334155^(4/21) 7014042255654878 a001 119218851371/39088169*2504730781961^(4/21) 7014042255654883 a001 312119004989/14930352*102334155^(4/21) 7014042255654883 a001 11384387281/3732588*2504730781961^(4/21) 7014042255654920 a001 119218851371/5702887*102334155^(4/21) 7014042255654920 a001 17393796001/5702887*2504730781961^(4/21) 7014042255655172 a001 45537549124/2178309*102334155^(4/21) 7014042255655172 a001 6643838879/2178309*2504730781961^(4/21) 7014042255656903 a001 17393796001/832040*102334155^(4/21) 7014042255656903 a001 1860499/610*2504730781961^(4/21) 7014042255668765 a001 6643838879/317811*102334155^(4/21) 7014042255668765 a001 969323029/317811*2504730781961^(4/21) 7014042255750071 a001 370248451/121393*2504730781961^(4/21) 7014042255750071 a001 2537720636/121393*102334155^(4/21) 7014042256307348 a001 35355581/11592*2504730781961^(4/21) 7014042256307348 a001 969323029/46368*102334155^(4/21) 7014042258461118 r002 3th iterates of z^2 + 7014042259232216 a001 1568397607/10946*4181^(4/21) 7014042260126982 a001 54018521/17711*2504730781961^(4/21) 7014042260126984 a001 370248451/17711*102334155^(4/21) 7014042269232152 a001 4106118243/28657*4181^(4/21) 7014042270691123 a001 10749957122/75025*4181^(4/21) 7014042270903984 a001 28143753123/196418*4181^(4/21) 7014042270935040 a001 73681302247/514229*4181^(4/21) 7014042270939571 a001 192900153618/1346269*4181^(4/21) 7014042270940232 a001 505019158607/3524578*4181^(4/21) 7014042270940328 a001 1322157322203/9227465*4181^(4/21) 7014042270940342 a001 3461452808002/24157817*4181^(4/21) 7014042270940345 a001 9062201101803/63245986*4181^(4/21) 7014042270940345 a001 23725150497407/165580141*4181^(4/21) 7014042270940345 a001 14662949395604/102334155*4181^(4/21) 7014042270940346 a001 5600748293801/39088169*4181^(4/21) 7014042270940351 a001 2139295485799/14930352*4181^(4/21) 7014042270940388 a001 817138163596/5702887*4181^(4/21) 7014042270940641 a001 312119004989/2178309*4181^(4/21) 7014042270942371 a001 119218851371/832040*4181^(4/21) 7014042270954234 a001 45537549124/317811*4181^(4/21) 7014042271035539 a001 17393796001/121393*4181^(4/21) 7014042271592817 a001 6643838879/46368*4181^(4/21) 7014042275412452 a001 2537720636/17711*4181^(4/21) 7014042286307139 a001 1875749/615*2504730781961^(4/21) 7014042286307155 a001 141422324/6765*102334155^(4/21) 7014042291616222 k002 Champernowne real with 106*n^2-248*n+212 7014042301592624 a001 969323029/6765*4181^(4/21) 7014042303687162 m001 exp(GAMMA(1/6))*Lehmer*GAMMA(5/12)^2 7014042310504387 m001 (MertensB3-Niven)/(Cahen+FeigenbaumDelta) 7014042323134625 m001 MertensB1-Pi^(1/2)*Landau 7014042342447644 r009 Re(z^3+c),c=-7/58+35/58*I,n=32 7014042385574395 r008 a(0)=7,K{-n^6,-41+69*n^3-6*n^2-93*n} 7014042386751649 r008 a(0)=7,K{-n^6,-63+77*n^3-41*n^2-44*n} 7014042388904577 r008 a(0)=7,K{-n^6,-55+84*n^3-58*n^2-42*n} 7014042389315651 r008 a(0)=7,K{-n^6,-38+43*n^3-51*n^2-24*n} 7014042390050937 r008 a(0)=7,K{-n^6,-51+88*n^3-68*n^2-40*n} 7014042391916282 k002 Champernowne real with 213/2*n^2-499/2*n+213 7014042400120354 m009 (1/3*Psi(1,3/4)+6)/(Psi(1,1/3)-1/3) 7014042425778836 r005 Im(z^2+c),c=-15/122+33/37*I,n=16 7014042460806528 r005 Im(z^2+c),c=-35/29+4/41*I,n=53 7014042465748615 a001 1970299/646*2504730781961^(4/21) 7014042465748725 a001 54018521/2584*102334155^(4/21) 7014042468524266 r009 Im(z^3+c),c=-29/102+37/56*I,n=4 7014042481034196 a001 370248451/2584*4181^(4/21) 7014042491131761 m006 (3/4*Pi^2+1/4)/(1/5*exp(2*Pi)+2) 7014042492216342 k002 Champernowne real with 107*n^2-251*n+214 7014042509762677 a007 Real Root Of -276*x^4+692*x^3+384*x^2+518*x+480 7014042539512751 r005 Im(z^2+c),c=-5/8+53/146*I,n=52 7014042558092273 a001 1/682*7^(37/46) 7014042565073833 m008 (3/4*Pi^4-5)/(Pi^2-1/6) 7014042567467014 r008 a(0)=7,K{-n^6,26+37*n^3-65*n^2-70*n} 7014042592516402 k002 Champernowne real with 215/2*n^2-505/2*n+215 7014042598467273 r008 a(0)=7,K{-n^6,-62-28*n+28*n^2-10*n^3} 7014042616498708 m005 (1/3*Pi-3/4)/(5/7*3^(1/2)+3) 7014042617894502 r005 Im(z^2+c),c=-1/10+43/49*I,n=32 7014042622308446 m005 (1/2*Catalan+1)/(5/9*Pi+1/3) 7014042681916233 m001 (Paris-Thue)/(Ei(1,1)-Conway) 7014042692816462 k002 Champernowne real with 108*n^2-254*n+216 7014042712599810 r008 a(0)=7,K{-n^6,-26-34*n-57*n^2+47*n^3} 7014042728871281 l006 ln(1387/2797) 7014042744674085 m001 (LambertW(1)+Zeta(1/2))/(ArtinRank2+Stephens) 7014042754773774 m001 (GAMMA(23/24)+Cahen)/(KomornikLoreti+Lehmer) 7014042769275715 m005 (1/2*gamma+5/7)/(4/11*3^(1/2)+4/5) 7014042769667339 a007 Real Root Of 881*x^4-750*x^3+545*x^2+110*x-663 7014042778851957 a007 Real Root Of -567*x^4+602*x^3+17*x^2+712*x+836 7014042779540930 a003 cos(Pi*20/83)-cos(Pi*31/114) 7014042780658792 m003 11/6+Sqrt[5]/4+5*Tanh[1/2+Sqrt[5]/2] 7014042788567005 a007 Real Root Of -332*x^4-781*x^3-557*x^2+867*x+693 7014042792556562 a007 Real Root Of -488*x^4-952*x^3-721*x^2+701*x+636 7014042793116522 k002 Champernowne real with 217/2*n^2-511/2*n+217 7014042795819704 a003 sin(Pi*2/95)/cos(Pi*5/46) 7014042796239752 a007 Real Root Of -773*x^4+568*x^3-394*x^2+338*x+814 7014042796810541 a001 225851433717/1364*199^(3/11) 7014042809187537 r005 Re(z^2+c),c=-51/106+41/61*I,n=2 7014042816497097 m001 (BesselK(0,1)-ln(3))/(Cahen+FellerTornier) 7014042851825437 a007 Real Root Of -587*x^4+617*x^3-363*x^2+310*x+751 7014042852401449 a007 Real Root Of -513*x^4+697*x^3-111*x^2+510*x+777 7014042856143360 a007 Real Root Of -76*x^4-564*x^3-296*x^2-665*x-776 7014042859755776 r002 9th iterates of z^2 + 7014042867701404 q001 949/1353 7014042868616345 m001 (ln(5)+Otter)/(Robbin-Trott) 7014042870535037 m009 (1/8*Pi^2-3)/(5/6*Psi(1,3/4)+2/5) 7014042883386204 m001 (2^(1/3)+CareFree)/(-Conway+Mills) 7014042886327237 m001 ArtinRank2^2/Backhouse^2/exp(Lehmer)^2 7014042893416582 k002 Champernowne real with 109*n^2-257*n+218 7014042916790108 m003 11/2+(7*Sqrt[5])/64-E^(1/2+Sqrt[5]/2) 7014042917903965 m001 Kolakoski^2*DuboisRaymond^2/exp(GAMMA(3/4)) 7014042942299910 r008 a(0)=7,K{-n^6,-51+89*n^3-69*n^2-40*n} 7014042949879700 r005 Re(z^2+c),c=-3/34+15/19*I,n=62 7014042959342648 r005 Im(z^2+c),c=-37/50+4/43*I,n=41 7014042963033681 a007 Real Root Of -128*x^4-764*x^3+971*x^2+199*x-205 7014042980893184 a007 Real Root Of -642*x^4+837*x^3+138*x^2+701*x+868 7014042983538883 m001 CareFree^(GAMMA(2/3)*RenyiParking) 7014042993716642 k002 Champernowne real with 219/2*n^2-517/2*n+219 7014043011233096 r002 61th iterates of z^2 + 7014043014786521 r008 a(0)=7,K{-n^6,-24+53*n^3-74*n^2-25*n} 7014043025239051 a007 Real Root Of 958*x^4-70*x^3-58*x^2-792*x-783 7014043059634204 m001 GAMMA(19/24)^3*ln(cosh(1)) 7014043071447205 a001 615/124*2^(1/2) 7014043090678748 r005 Im(z^2+c),c=-5/7+17/101*I,n=23 7014043094016702 k002 Champernowne real with 110*n^2-260*n+220 7014043100892590 a007 Real Root Of 831*x^4+161*x^3-119*x^2-834*x-672 7014043104111223 r005 Re(z^2+c),c=-53/56+4/15*I,n=18 7014043104184292 r005 Im(z^2+c),c=37/110+23/59*I,n=39 7014043105155455 r002 24th iterates of z^2 + 7014043131818243 m009 (2*Psi(1,3/4)-4)/(6*Psi(1,3/4)+1/5) 7014043164583535 m001 GaussAGM^KomornikLoreti*GaussAGM^ZetaP(3) 7014043180567783 m008 (5/6*Pi^2+3)/(1/2*Pi^3+1/2) 7014043185505182 m001 1/BesselJ(0,1)^2*Backhouse*exp(Zeta(5)) 7014043194316762 k002 Champernowne real with 221/2*n^2-523/2*n+221 7014043199559320 a007 Real Root Of 723*x^4-863*x^3+374*x^2-706*x+434 7014043200283433 a007 Real Root Of 375*x^4-326*x^3-547*x^2-686*x+772 7014043230570207 a007 Real Root Of 626*x^4-736*x^3-838*x^2-560*x-386 7014043253823986 a007 Real Root Of 64*x^4+378*x^3-543*x^2-280*x+285 7014043259635860 m001 (ln(3)-Niven)/(Totient-Weierstrass) 7014043268749283 m005 (1/2*3^(1/2)-5/12)/(2/11*5^(1/2)+6) 7014043271278183 a007 Real Root Of 488*x^4+611*x^3+496*x^2-932*x-805 7014043291308235 m001 (Ei(1)+gamma(3))/(Pi^(1/2)-KhinchinHarmonic) 7014043294616822 k002 Champernowne real with 111*n^2-263*n+222 7014043326406108 a007 Real Root Of -229*x^4-419*x^3-539*x^2+988*x+869 7014043338660188 r008 a(0)=7,K{-n^6,-72+60*n^3+9*n^2-68*n} 7014043340388205 m009 (2/5*Pi^2-3/4)/(24*Catalan+3*Pi^2-6) 7014043372586736 a007 Real Root Of 765*x^4+137*x^3-383*x^2-102*x-21 7014043373965325 m001 Thue/(GAMMA(19/24)^BesselI(0,1)) 7014043394916882 k002 Champernowne real with 223/2*n^2-529/2*n+223 7014043406943527 m001 (Backhouse+Gompertz)/(exp(1)+exp(-1/2*Pi)) 7014043415009603 a007 Real Root Of 398*x^4-552*x^3+184*x^2+163*x-263 7014043430778644 a003 sin(Pi*22/111)/sin(Pi*5/16) 7014043439297355 a007 Real Root Of -773*x^4+921*x^3-503*x^2-327*x+523 7014043450719630 a007 Real Root Of 146*x^4+954*x^3-618*x^2-887*x+10 7014043479345477 l006 ln(4764/9607) 7014043495216942 k002 Champernowne real with 112*n^2-266*n+224 7014043510211063 m001 gamma(2)^Pi/(QuadraticClass^Pi) 7014043528589406 r008 a(0)=7,K{-n^6,-51-55*n+49*n^2-15*n^3} 7014043534181433 a007 Real Root Of 121*x^4+51*x^3+123*x^2-570*x-472 7014043561046948 m001 (Tribonacci+Thue)/(BesselJ(1,1)+Magata) 7014043576593309 g002 Psi(7/12)+Psi(3/11)+Psi(2/5)-Psi(7/9) 7014043582653880 p004 log(15383/14341) 7014043595517002 k002 Champernowne real with 225/2*n^2-535/2*n+225 7014043595926018 a007 Real Root Of -835*x^4-475*x^3-922*x^2-416*x+200 7014043598994377 a007 Real Root Of -402*x^4+792*x^3+272*x^2-339*x-1 7014043599994794 m001 (Magata+ZetaQ(2))/(ln(2)-KhinchinLevy) 7014043604795503 a007 Real Root Of -871*x^4+552*x^3+49*x^2+369*x+636 7014043617831480 r005 Im(z^2+c),c=-9/16+14/113*I,n=22 7014043673676639 a007 Real Root Of -741*x^4+488*x^3-987*x^2+199*x+19 7014043695659033 a001 3010349/987*2504730781961^(4/21) 7014043695659791 a001 20633239/987*102334155^(4/21) 7014043695817062 k002 Champernowne real with 113*n^2-269*n+226 7014043710945278 a001 141422324/987*4181^(4/21) 7014043723734225 m005 (1/2*3^(1/2)-6/7)/(5/11*5^(1/2)+1/4) 7014043728169740 r002 15th iterates of z^2 + 7014043732695008 r005 Im(z^2+c),c=-41/62+4/39*I,n=23 7014043743281042 a007 Real Root Of -339*x^4+659*x^3-637*x^2+475*x+956 7014043753092085 a007 Real Root Of -891*x^4-588*x^3+839*x^2+707*x-5 7014043764798556 m001 (Pi+2^(1/2))/(gamma-FibonacciFactorial) 7014043766365764 a007 Real Root Of -217*x^4+275*x^3-543*x^2-323*x+188 7014043771882423 a007 Real Root Of 329*x^4-964*x^3+705*x^2+80*x-703 7014043777428005 m001 (Catalan+BesselJ(1,1))/(-Cahen+LaplaceLimit) 7014043778386314 a007 Real Root Of -804*x^4-482*x^3-400*x^2-184*x+96 7014043787579903 l006 ln(3377/6810) 7014043791828545 a007 Real Root Of -108*x^4+523*x^3+169*x^2+735*x+639 7014043791928586 r005 Re(z^2+c),c=-45/64+17/61*I,n=23 7014043792792900 r008 a(0)=7,K{-n^6,-35-54*n+12*n^2+5*n^3} 7014043796117122 k002 Champernowne real with 227/2*n^2-541/2*n+227 7014043811862283 a007 Real Root Of 152*x^4-981*x^3+429*x^2+538*x-209 7014043837633752 m001 Trott^Sarnak*Trott^QuadraticClass 7014043842630531 a003 cos(Pi*15/101)-cos(Pi*25/57) 7014043853178331 a007 Real Root Of -151*x^4+706*x^3+604*x^2+128*x-594 7014043880573657 m001 1/GAMMA(1/3)/Champernowne*exp(sin(1)) 7014043889051692 r002 48th iterates of z^2 + 7014043896417182 k002 Champernowne real with 114*n^2-272*n+228 7014043923595460 a007 Real Root Of 181*x^4+374*x^3+264*x^2-903*x-678 7014043935212785 l006 ln(7/7785) 7014043986397239 r009 Im(z^3+c),c=-5/29+41/42*I,n=38 7014043996717242 k002 Champernowne real with 229/2*n^2-547/2*n+229 7014044030344385 r008 a(0)=7,K{-n^6,16+52*n^3-92*n^2-49*n} 7014044032525374 a007 Real Root Of -298*x^4+801*x^3+876*x^2+953*x+586 7014044032753635 m001 (Ei(1,1)+BesselI(1,1))^MinimumGamma 7014044040796602 m001 polylog(4,1/2)^ZetaP(4)/FeigenbaumKappa 7014044056678858 m005 (1/2*5^(1/2)-7/10)/(1/2*2^(1/2)-1/9) 7014044088238816 m008 (2*Pi-5)/(3/5*Pi^5-2/3) 7014044097017302 k002 Champernowne real with 115*n^2-275*n+230 7014044098786006 h001 (7/11*exp(2)+1/7)/(5/6*exp(2)+3/4) 7014044099411716 m001 cos(1)^(ReciprocalLucas/Magata) 7014044144347956 r008 a(0)=7,K{-n^6,29+34*n^3-54*n^2-81*n} 7014044151224366 a007 Real Root Of -681*x^4-577*x^3-114*x^2+994*x+719 7014044175936338 r002 23th iterates of z^2 + 7014044177681345 g005 GAMMA(2/7)/GAMMA(4/9)/GAMMA(7/8)/GAMMA(3/7) 7014044197317362 k002 Champernowne real with 231/2*n^2-553/2*n+231 7014044210087135 b008 ArcCsc[247*EulerGamma] 7014044211053778 r008 a(0)=7,K{-n^6,-68+27*n^3-36*n^2+9*n} 7014044215576709 a007 Real Root Of -642*x^4-99*x^3-368*x^2+664*x+768 7014044227590538 r004 Re(z^2+c),c=-17/22+1/22*I,z(0)=-1,n=6 7014044229339676 a007 Real Root Of 362*x^4-139*x^3-602*x^2-916*x+899 7014044237999668 a007 Real Root Of -609*x^4+595*x^3+534*x^2+193*x-456 7014044258389989 r008 a(0)=7,K{-n^6,-93+84*n^3-70*n^2+8*n} 7014044295052505 r004 Im(z^2+c),c=-5/8-1/8*I,z(0)=-1,n=31 7014044297617422 k002 Champernowne real with 116*n^2-278*n+232 7014044299015666 a003 cos(Pi*9/56)/cos(Pi*52/113) 7014044323226089 m001 DuboisRaymond/((Pi^(1/2))^Grothendieck) 7014044325698598 a007 Real Root Of -821*x^4+546*x^3+794*x^2+859*x+599 7014044328463877 a007 Real Root Of 719*x^4-335*x^3-597*x^2-654*x+694 7014044355800092 a007 Real Root Of -7*x^4+409*x^3-968*x^2-251*x+443 7014044359216243 m001 (GAMMA(2/3)-GolombDickman)/(ZetaQ(3)+ZetaQ(4)) 7014044368310282 a003 sin(Pi*4/53)/sin(Pi*5/46) 7014044376735943 r008 a(0)=7,K{-n^6,-91+21*n^3-11*n^2+11*n} 7014044384382706 m001 (ReciprocalLucas+Sarnak)/(ln(Pi)+Khinchin) 7014044385658567 r008 a(0)=7,K{-n^6,-94+84*n^3-70*n^2+9*n} 7014044393857324 m001 (Zeta(1/2)+Bloch)/(RenyiParking+Robbin) 7014044394545656 a007 Real Root Of 101*x^4-792*x^3-733*x^2-764*x-473 7014044397917482 k002 Champernowne real with 233/2*n^2-559/2*n+233 7014044399864051 a001 46347*199^(55/58) 7014044408135899 m001 CareFree*gamma(1)^ZetaQ(4) 7014044414671861 m001 (1-Catalan)/(-KhinchinLevy+Mills) 7014044421516051 r005 Im(z^2+c),c=7/64+31/52*I,n=16 7014044424516995 r002 3th iterates of z^2 + 7014044426741611 a003 sin(Pi*28/81)-sin(Pi*40/99) 7014044427488606 b008 E^(2+Sqrt[5])+Coth[3] 7014044433510138 r008 a(0)=7,K{-n^6,-40-10*n^3+39*n^2-61*n} 7014044441344986 m001 (sin(1/5*Pi)-ln(gamma))/(Zeta(1,-1)-Backhouse) 7014044442831190 a001 1/6621*(1/2*5^(1/2)+1/2)^12*3^(1/3) 7014044450756294 a007 Real Root Of -292*x^4+748*x^3-102*x^2+885*x-758 7014044466680251 a007 Real Root Of 419*x^4-281*x^3-210*x^2-881*x-713 7014044479642144 r009 Re(z^3+c),c=-71/118+11/43*I,n=2 7014044485642368 m001 (2^(1/2)-Zeta(5))/(FeigenbaumDelta+Rabbit) 7014044491064104 r008 a(0)=7,K{-n^6,-45+23*n^3-17*n^2-39*n} 7014044498217542 k002 Champernowne real with 117*n^2-281*n+234 7014044501333039 h001 (7/12*exp(2)+6/11)/(9/10*exp(2)+3/11) 7014044505117079 a007 Real Root Of 239*x^4-71*x^3+291*x^2-350*x-471 7014044508752804 r008 a(0)=7,K{-n^6,-62-15*n^3+63*n^2-59*n} 7014044525483786 l006 ln(1990/4013) 7014044550529519 m001 1/Backhouse^2/exp(Artin)^2*Pi 7014044569797005 a007 Real Root Of -340*x^4+662*x^3+272*x^2+348*x+421 7014044579591412 a007 Real Root Of 196*x^4-993*x^3+650*x^2-996*x+67 7014044592379880 a007 Real Root Of 347*x^4-86*x^3+54*x^2-550*x-526 7014044596506117 a007 Real Root Of -776*x^4-570*x^3-601*x^2+284*x+486 7014044598517602 k002 Champernowne real with 235/2*n^2-565/2*n+235 7014044609729246 a007 Real Root Of -546*x^4+456*x^3-744*x^2-303*x+443 7014044610824160 r008 a(0)=7,K{-n^6,-5+15*n^3-11*n^2-71*n} 7014044630671781 r008 a(0)=7,K{-n^6,-94+55*n^3+18*n^2-50*n} 7014044636182345 m001 (-ErdosBorwein+Lehmer)/(ln(2)/ln(10)+ln(Pi)) 7014044637869383 r008 a(0)=7,K{-n^6,-94+84*n^3-69*n^2+8*n} 7014044641052759 b008 5+55*Sech[4] 7014044641969418 r008 a(0)=7,K{-n^6,-52+97*n^3-87*n^2-29*n} 7014044664696134 h001 (5/6*exp(1)+9/10)/(1/2*exp(2)+9/11) 7014044691042959 r005 Im(z^2+c),c=-15/26+1/73*I,n=26 7014044697282942 m003 -1/6+(9*Sqrt[5])/32+(5*Cosh[1/2+Sqrt[5]/2])/2 7014044698817662 k002 Champernowne real with 118*n^2-284*n+236 7014044701743595 m001 (HardyLittlewoodC3-Landau)/(Pi-FeigenbaumC) 7014044713729823 r008 a(0)=7,K{-n^6,-27-64*n+21*n^2-2*n^3} 7014044742686227 a007 Real Root Of 845*x^4-696*x^3-748*x^2-76*x-130 7014044746072155 m001 1/GAMMA(2/3)^2/ln(Cahen)*LambertW(1) 7014044767067172 r008 a(0)=7,K{-n^6,-15+92*n^3-53*n^2-95*n} 7014044784580498 r005 Re(z^2+c),c=-47/40+20/21*I,n=2 7014044792938900 m008 (1/2*Pi-3)/(2/3*Pi^5-1/4) 7014044799117722 k002 Champernowne real with 237/2*n^2-571/2*n+237 7014044803608685 m001 (FeigenbaumKappa+ZetaP(3))/(Zeta(5)+ln(Pi)) 7014044808968610 r005 Re(z^2+c),c=-3/46+6/53*I,n=6 7014044830142543 a003 sin(Pi*16/89)/cos(Pi*17/76) 7014044857595516 m001 1/BesselJ(0,1)*exp(Niven)^2*BesselK(0,1)^2 7014044858175398 r008 a(0)=7,K{-n^6,3+26*n^3-42*n^2-59*n} 7014044899417782 k002 Champernowne real with 119*n^2-287*n+238 7014044911082193 m001 (2^(1/2)-LandauRamanujan2nd)/KhinchinLevy 7014044943820224 q001 2497/3560 7014044956324305 r009 Im(z^3+c),c=-19/44+25/44*I,n=52 7014044957615370 m001 (Paris-Porter)/(Backhouse-Magata) 7014044963415684 m001 ln(5)^Zeta(5)/(ln(5)^Grothendieck) 7014044982027966 a007 Real Root Of 406*x^4-869*x^3+425*x^2+83*x-549 7014044983222740 a007 Real Root Of 796*x^4-182*x^3-250*x^2-236*x-298 7014044991404816 a008 Real Root of (-2+8*x-4*x^2-8*x^4+5*x^8) 7014044999717842 k002 Champernowne real with 239/2*n^2-577/2*n+239 7014045007086467 r008 a(0)=7,K{-n^6,-77+67*n^3-8*n^2-53*n} 7014045010001790 k002 Champernowne real with 120*n^2-290*n+240 7014045021488234 a001 75025/11*521^(19/51) 7014045049268270 r005 Re(z^2+c),c=19/118+21/52*I,n=6 7014045069210876 l006 ln(4583/9242) 7014045101455196 l002 Ei(7,52/71) 7014045103449277 m001 (Zeta(5)-Sarnak)/(Thue-ThueMorse) 7014045113218269 m005 (7/20+1/4*5^(1/2))/(6/11*gamma-4/9) 7014045114264835 r008 a(0)=7,K{-n^6,-87-13*n^3+94*n^2-64*n} 7014045120185173 a001 5778/377*4181^(36/49) 7014045133102740 r008 a(0)=7,K{-n^6,-94+85*n^3-70*n^2+8*n} 7014045140199880 a001 329/6*39603^(1/43) 7014045150317368 r005 Re(z^2+c),c=-9/122+45/61*I,n=49 7014045171839425 r005 Re(z^2+c),c=23/122+16/53*I,n=40 7014045199593205 m001 (Catalan+Ei(1))/(-CareFree+GaussKuzminWirsing) 7014045202340186 r008 a(0)=7,K{-n^6,-37-56*n+3*n^2+21*n^3} 7014045240634297 m001 (Catalan-gamma(2))/(Zeta(1,2)+Riemann1stZero) 7014045257906330 a001 267913919*199^(2/11) 7014045284800390 m002 (Pi^6*Sech[Pi])/Log[Pi]-Sinh[Pi]/5 7014045289623764 a007 Real Root Of -544*x^4+752*x^3-646*x^2-690*x+225 7014045294964447 p001 sum((-1)^n/(407*n+142)/(64^n),n=0..infinity) 7014045318994556 m005 (1/2*Zeta(3)+2/7)/(4/9*Catalan+6/7) 7014045338905403 r005 Re(z^2+c),c=-65/118+21/37*I,n=29 7014045356982212 r008 a(0)=7,K{-n^6,-94-35*n^3+89*n^2-32*n} 7014045364016319 m001 (-Cahen+GolombDickman)/(exp(1)+gamma(3)) 7014045368155045 h001 (-11*exp(4)+9)/(-4*exp(3)-4) 7014045395743926 m001 1/ln(BesselJ(1,1))*Si(Pi)/LambertW(1)^2 7014045399625350 a007 Real Root Of 232*x^4-628*x^3+817*x^2-361*x-928 7014045401665220 r008 a(0)=7,K{-n^6,-13+30*n^3-62*n^2-27*n} 7014045438091606 m005 (7/8+1/4*5^(1/2))/(4/11*Zeta(3)-5/12) 7014045449570052 m001 1/ln(GAMMA(11/24))/Khintchine^2*gamma^2 7014045462287419 m005 (1/2*2^(1/2)-7/9)/(35/88+3/11*5^(1/2)) 7014045481140851 m001 ArtinRank2^LambertW(1)/(Conway^LambertW(1)) 7014045486494662 l006 ln(2593/5229) 7014045492908927 a007 Real Root Of 3*x^4-257*x^3+918*x^2+951*x+126 7014045495795519 p003 LerchPhi(1/512,1,167/117) 7014045499322237 m001 GAMMA(11/24)/CareFree^2*ln(GAMMA(7/12))^2 7014045502899227 l003 BesselY(0,76/93) 7014045512058340 r008 a(0)=7,K{-n^6,12-51*n-57*n^2+24*n^3} 7014045519846449 a001 144/521*45537549124^(15/17) 7014045519846449 a001 144/521*312119004989^(9/11) 7014045519846449 a001 144/521*14662949395604^(5/7) 7014045519846449 a001 144/521*(1/2+1/2*5^(1/2))^45 7014045519846449 a001 144/521*192900153618^(5/6) 7014045519846449 a001 144/521*28143753123^(9/10) 7014045519846449 a001 144/521*10749957122^(15/16) 7014045520403726 a001 233/322*(1/2+1/2*5^(1/2))^43 7014045528105566 r005 Im(z^2+c),c=-25/74+41/62*I,n=4 7014045543514796 a007 Real Root Of 994*x^4-712*x^3+324*x^2+48*x-612 7014045567915842 a007 Real Root Of -174*x^4+549*x^3-721*x^2+769*x-332 7014045572691436 m005 (1/3*Catalan-2/3)/(3/10*2^(1/2)+1/11) 7014045578989763 g007 Psi(2,8/11)+Psi(2,1/5)-Psi(2,2/9)-Psi(2,7/8) 7014045582123980 m001 3^(1/3)/(MertensB3+Sarnak) 7014045583272441 a007 Real Root Of 664*x^4-178*x^3-404*x^2-735*x+615 7014045614983852 a008 Real Root of (-7+3*x+6*x^2+9*x^4-4*x^8) 7014045621190218 m001 (Robbin+Salem)/(MertensB3-Mills) 7014045642005952 m008 (1/6*Pi^6+1/6)/(3/4*Pi^5-5/6) 7014045646716460 a007 Real Root Of 411*x^4-200*x^3+938*x^2-174*x-752 7014045672491304 m001 (GAMMA(19/24)+Magata)/(Zeta(1,2)+BesselI(1,2)) 7014045672742327 a001 1/17334*(1/2*5^(1/2)+1/2)^14*3^(1/3) 7014045673727209 a007 Real Root Of 556*x^4+206*x^3-233*x^2+124*x-178 7014045682472923 m005 (1/2*3^(1/2)+7/10)/(6/11*exp(1)+3/4) 7014045686633628 m005 (1/2*2^(1/2)-5/6)/(4/5*exp(1)-3/8) 7014045737712770 r008 a(0)=7,K{-n^6,-75+97*n^3-94*n^2+n} 7014045744232286 m001 1/(2^(1/3))^2*DuboisRaymond*ln(sqrt(Pi)) 7014045747200899 a007 Real Root Of -801*x^4+881*x^3+873*x^2+651*x+525 7014045766810341 m005 (1/3*Pi+3/4)/(9/11*Zeta(3)-8/11) 7014045768702229 a007 Real Root Of -144*x^4-961*x^3+413*x^2+436*x-344 7014045789282894 m001 1/Kolakoski*exp(ArtinRank2)^2*sinh(1)^2 7014045793779481 m005 (1/2*3^(1/2)+10/11)/(2/9*exp(1)-6/7) 7014045800399516 a007 Real Root Of -607*x^4+977*x^3-678*x^2+213*x+967 7014045801018387 m005 (1/2*exp(1)-6)/(5*2^(1/2)-5/11) 7014045802808663 r008 a(0)=7,K{-n^6,-40+8*n-60*n^2+20*n^3} 7014045807137454 l006 ln(8767/9404) 7014045852183979 a001 1/45381*(1/2*5^(1/2)+1/2)^16*3^(1/3) 7014045855801181 r008 a(0)=7,K{-n^6,-76+97*n^3-94*n^2+2*n} 7014045878364164 a001 1/118809*(1/2*5^(1/2)+1/2)^18*3^(1/3) 7014045884478640 m005 (1/12+1/6*5^(1/2))/(1/5*Catalan-5/6) 7014045884544468 a001 1/192237*(1/2*5^(1/2)+1/2)^19*3^(1/3) 7014045885518859 a007 Real Root Of -624*x^4+737*x^3+921*x^2+363*x-811 7014045887771045 a007 Real Root Of 888*x^4+534*x^3+851*x^2-624*x-887 7014045894544409 a001 1/73428*(1/2*5^(1/2)+1/2)^17*3^(1/3) 7014045905970510 r005 Im(z^2+c),c=-51/122+23/39*I,n=52 7014045914213658 r008 a(0)=7,K{-n^6,-40-56*n^2+24*n^3} 7014045952121192 a007 Real Root Of -638*x^4+515*x^3-471*x^2+609*x+991 7014045954321278 a007 Real Root Of -396*x^4+672*x^3+412*x^2+968*x+804 7014045963085024 a001 1/28047*(1/2*5^(1/2)+1/2)^15*3^(1/3) 7014045982918576 r005 Im(z^2+c),c=-47/82+6/47*I,n=59 7014045998490433 a007 Real Root Of 50*x^4-425*x^3-455*x^2-847*x-529 7014046020727215 m001 Psi(1,1/3)^Tribonacci-ZetaR(2) 7014046026668576 r005 Im(z^2+c),c=-21/34+7/18*I,n=20 7014046041650121 a003 cos(Pi*11/85)*sin(Pi*13/47) 7014046046300313 r005 Re(z^2+c),c=-1/17+51/64*I,n=62 7014046053849122 m005 (1/6*gamma-4)/(2/5*2^(1/2)+5) 7014046059777374 a007 Real Root Of -305*x^4+790*x^3-912*x^2+285*x+995 7014046084871224 l006 ln(3196/6445) 7014046089890720 r008 a(0)=7,K{-n^6,-76+97*n^3-93*n^2+n} 7014046098175543 r009 Im(z^3+c),c=-9/52+25/34*I,n=12 7014046150591086 r005 Im(z^2+c),c=-55/78+5/54*I,n=10 7014046152755200 m005 (23/20+1/4*5^(1/2))/(2*exp(1)-3) 7014046185122797 r008 a(0)=7,K{-n^6,-63+8*n-25*n^2+8*n^3} 7014046190772613 a007 Real Root Of -433*x^4+303*x^3+969*x^2-52*x-440 7014046216583597 q001 1548/2207 7014046230193771 r005 Re(z^2+c),c=6/29+14/43*I,n=19 7014046249541973 m001 (2*Pi/GAMMA(5/6)-GaussAGM)/(Paris+Stephens) 7014046253952148 a007 Real Root Of -534*x^4+748*x^3-502*x^2-374*x+372 7014046260935861 a007 Real Root Of 97*x^4-80*x^3+583*x^2+285*x-138 7014046278251899 b008 -8+2^(-1/49) 7014046279814880 r005 Re(z^2+c),c=-11/106+39/50*I,n=2 7014046300026663 a007 Real Root Of 415*x^4-455*x^3+50*x^2-891*x-907 7014046302088941 r005 Im(z^2+c),c=-23/102+22/29*I,n=58 7014046305754008 a007 Real Root Of 466*x^4-965*x^3+891*x^2+301*x-673 7014046307902115 m001 (Ei(1)-polylog(4,1/2))/(GolombDickman+Totient) 7014046331856473 r005 Im(z^2+c),c=-27/52+39/58*I,n=19 7014046337007617 a001 514229/7*123^(18/19) 7014046343652161 a005 (1/sin(77/183*Pi))^1239 7014046364320829 a007 Real Root Of 364*x^4-171*x^3+167*x^2+545*x+153 7014046380396698 a007 Real Root Of -859*x^4-378*x^3-88*x^2+26*x+139 7014046410037894 a007 Real Root Of 465*x^4-389*x^3-726*x^2-635*x-335 7014046417470102 a007 Real Root Of 290*x^4+515*x^3+746*x^2-792*x-815 7014046420452930 m001 TreeGrowth2nd/(RenyiParking-exp(1/Pi)) 7014046424685835 a007 Real Root Of 9*x^4+640*x^3+623*x^2+723*x+209 7014046424933330 r008 a(0)=7,K{-n^6,-95+48*n^3+46*n^2-70*n} 7014046432869428 a001 1/10713*(1/2*5^(1/2)+1/2)^13*3^(1/3) 7014046444190588 r009 Im(z^3+c),c=-5/26+23/31*I,n=33 7014046450568746 m001 Salem^2*FibonacciFactorial*ln(GAMMA(3/4))^2 7014046493291953 l006 ln(3799/7661) 7014046498622694 r009 Im(z^3+c),c=-13/23+19/52*I,n=18 7014046502651451 a003 cos(Pi*25/99)*sin(Pi*55/111) 7014046508176648 r005 Im(z^2+c),c=-49/114+5/43*I,n=17 7014046511253267 s002 sum(A071941[n]/(n^2*2^n+1),n=1..infinity) 7014046533899537 m003 14+Sqrt[5]/16+Tan[1/2+Sqrt[5]/2] 7014046538905261 r008 a(0)=7,K{-n^6,-96+48*n^3+46*n^2-69*n} 7014046549828811 r008 a(0)=7,K{-n^6,-76+98*n^3-94*n^2+n} 7014046555836369 r005 Im(z^2+c),c=25/56+16/57*I,n=7 7014046557193004 a007 Real Root Of -668*x^4+953*x^3-164*x^2-649*x+116 7014046562107181 r005 Re(z^2+c),c=-15/22+13/37*I,n=53 7014046570352587 a001 123/433494437*102334155^(4/23) 7014046570352587 a001 123/2971215073*6557470319842^(4/23) 7014046578888198 a001 12752043/610*4807526976^(6/23) 7014046578953169 a001 228826127/610*75025^(6/23) 7014046582131884 a001 199/4181*3^(6/17) 7014046593632218 a007 Real Root Of 274*x^4-267*x^3-265*x^2-727*x-538 7014046626245761 m005 (1/2*Pi+7/12)/(10/11*exp(1)+3/5) 7014046656721445 r008 a(0)=7,K{-n^6,-99+68*n^3-15*n^2-25*n} 7014046666010525 a001 123/63245986*1597^(4/23) 7014046684970396 m001 Riemann1stZero/(Psi(2,1/3)^ZetaP(3)) 7014046707514419 a007 Real Root Of -146*x^4-927*x^3+644*x^2-175*x+579 7014046714109507 m005 (1/3*3^(1/2)-3/7)/(3/8*gamma-3/7) 7014046726507552 r008 a(0)=7,K{-n^6,-35-35*n-40*n^2+40*n^3} 7014046730937533 r008 a(0)=0,K{-n^6,-1+7*n^3+8*n^2+n} 7014046730937533 r008 a(0)=0,K{-n^6,1-7*n^3-8*n^2-n} 7014046740399811 r008 a(0)=7,K{-n^6,-57+28*n^3-28*n^2-12*n} 7014046745469719 r008 a(0)=7,K{-n^6,-21-60*n-27*n^2+38*n^3} 7014046764896299 r008 a(0)=7,K{-n^6,-96+48*n^3+47*n^2-70*n} 7014046764922156 a007 Real Root Of -615*x^4+570*x^3-67*x^2+782*x+927 7014046775631723 a007 Real Root Of -56*x^4+831*x^3+435*x^2-217*x-335 7014046783447265 r002 3th iterates of z^2 + 7014046789819123 l006 ln(4402/8877) 7014046789995280 a007 Real Root Of -355*x^4-745*x^3-655*x^2+794*x+708 7014046807675778 a007 Real Root Of 455*x^4-828*x^3-585*x^2-574*x+866 7014046809387958 r008 a(0)=7,K{-n^6,-37-17*n-48*n^2+35*n^3} 7014046850591916 m001 (Paris-Salem)/(GAMMA(5/6)-GlaisherKinkelin) 7014046883149611 r008 a(0)=7,K{-n^6,-19-61*n-27*n^2+30*n^3} 7014046890288280 m001 (CareFree-Lehmer)/(MertensB1+MertensB3) 7014046891171874 a001 1568397607*144^(13/17) 7014046897221668 m005 (1/2*exp(1)+7/9)/(6*gamma-5/12) 7014046897671424 a007 Real Root Of -449*x^4+472*x^3-172*x^2+168*x+474 7014046898346451 m008 (2/5*Pi^4-4)/(5*Pi^2+1/2) 7014046903236908 r008 a(0)=7,K{-n^6,-44-62*n+47*n^2-13*n^3} 7014046930342854 r009 Im(z^3+c),c=-9/58+43/56*I,n=8 7014046943671799 a007 Real Root Of 203*x^4-187*x^3+417*x^2-63*x-363 7014046990871718 a007 Real Root Of 238*x^4-346*x^3-561*x^2-900*x+66 7014046994572612 r008 a(0)=7,K{-n^6,2+26*n^3-42*n^2-58*n} 7014047014895385 l006 ln(5005/10093) 7014047025210604 a007 Real Root Of -372*x^4+381*x^3+158*x^2+515*x+505 7014047068452401 a001 161/416020*233^(6/55) 7014047074028896 r008 a(0)=7,K{-n^6,-14-45*n-34*n^2+21*n^3} 7014047082909034 r005 Re(z^2+c),c=-101/94+1/36*I,n=18 7014047084329830 b008 6+11*Sqrt[34] 7014047103829128 a007 Real Root Of -723*x^4-733*x^3-998*x^2+613*x+843 7014047127073716 m005 (1/2*exp(1)-1/11)/(7/10*2^(1/2)+9/11) 7014047139179937 a007 Real Root Of -633*x^4+521*x^3+212*x^2-634*x-216 7014047148075686 m001 1/exp(GAMMA(7/24))*FeigenbaumKappa^2/Zeta(3) 7014047209132187 r008 a(0)=7,K{-n^6,-96+49*n^3+46*n^2-70*n} 7014047221062709 a007 Real Root Of 682*x^4-211*x^3-276*x^2-717*x-605 7014047223565749 r005 Im(z^2+c),c=11/34+12/31*I,n=21 7014047233585920 m005 (1/2*2^(1/2)-6/11)/(6/11*3^(1/2)-5/7) 7014047239344264 m001 (arctan(1/3)-exp(1))/(-gamma(2)+Magata) 7014047239411750 m005 (1/2*gamma-7/8)/(5*3^(1/2)-3/10) 7014047255722275 m005 (1/3*Zeta(3)+3/4)/(7/8*3^(1/2)+1/8) 7014047258035990 b008 -4/11+2^(1/11) 7014047263827649 m001 GAMMA(7/12)^(Zeta(1/2)/MadelungNaCl) 7014047284305022 a007 Real Root Of -790*x^4+380*x^3+563*x^2+713*x-717 7014047290457315 m001 (Zeta(5)-ln(2^(1/2)+1))/(Ei(1)+FellerTornier) 7014047345444500 a001 305/9*521^(5/43) 7014047346256398 l006 ln(6909/7411) 7014047348328952 r008 a(0)=7,K{-n^6,20-6*n-61*n^2+30*n^3} 7014047358023890 g006 Psi(1,7/8)+Psi(1,3/5)-Psi(1,7/9)-Psi(1,4/7) 7014047367692208 a007 Real Root Of -574*x^4+458*x^3-559*x^2+442*x+882 7014047379629899 a007 Real Root Of -518*x^4+345*x^3-424*x^2+700*x+944 7014047390078854 m001 (HeathBrownMoroz+ZetaQ(3))/(ln(gamma)+ln(2)) 7014047406460822 r002 10th iterates of z^2 + 7014047421718122 a001 3/55*13^(5/51) 7014047469985564 m005 (1/2*gamma+7/8)/(5/12*5^(1/2)+8/11) 7014047489842448 r009 Im(z^3+c),c=-9/26+19/27*I,n=36 7014047510183307 m004 -Cos[Sqrt[5]*Pi]^2+(150*Csc[Sqrt[5]*Pi])/Pi 7014047518609627 s001 sum(exp(-Pi)^(n-1)*A264307[n],n=1..infinity) 7014047534042127 r008 a(0)=7,K{-n^6,-87+42*n^3+73*n^2-99*n} 7014047549227685 p004 log(14957/7417) 7014047577281332 a007 Real Root Of -122*x^4-875*x^3-162*x^2-272*x-593 7014047583779247 r005 Re(z^2+c),c=-7/94+1/36*I,n=5 7014047604754768 v002 sum(1/(2^n+(3/2*n^2+17/2*n+45)),n=1..infinity) 7014047623232665 r009 Re(z^3+c),c=-63/122+24/35*I,n=3 7014047625310046 m001 1/Robbin*exp(CareFree)/TwinPrimes^2 7014047648131213 r008 a(0)=7,K{-n^6,-68+4*n^3-7*n^2-n} 7014047662613055 m001 Robbin^2/ln(Backhouse)*BesselK(1,1) 7014047666014490 a007 Real Root Of 597*x^4-788*x^3+271*x^2+165*x-434 7014047673021452 a007 Real Root Of 667*x^4-479*x^3+606*x^2-244*x-796 7014047696831100 q001 2147/3061 7014047704297444 p004 log(17389/8623) 7014047736918384 r008 a(0)=7,K{-n^6,-79-15*n^3+60*n^2-40*n} 7014047737389107 s001 sum(exp(-Pi/3)^n*A283567[n],n=1..infinity) 7014047737992205 s002 sum(A120104[n]/(n^2*10^n-1),n=1..infinity) 7014047740527630 m004 -25*Pi+(15*Cot[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 7014047764735358 a007 Real Root Of 883*x^4-949*x^3-538*x^2-189*x+511 7014047765260012 a007 Real Root Of -431*x^4+62*x^3-180*x^2+808*x+781 7014047771779684 a008 Real Root of (-4+4*x+4*x^2-4*x^3-x^4+5*x^5) 7014047798836846 a007 Real Root Of 564*x^4+242*x^3-904*x^2-622*x+661 7014047802308566 a001 2/102334155*6557470319842^(14/17) 7014047802403760 a001 2/121393*1836311903^(14/17) 7014047838863130 r002 58th iterates of z^2 + 7014047840742686 m001 (CareFree-Conway)/(FeigenbaumC-Khinchin) 7014047842986716 a007 Real Root Of 561*x^4-501*x^3+84*x^2+844*x+242 7014047867801142 a001 10182505537/161*322^(5/12) 7014047883546447 m005 (1/2*Catalan-1/8)/(2/7*Zeta(3)-9/11) 7014047888546206 m001 1/exp(sinh(1))^2/exp(1)*sqrt(2)^2 7014047891590148 a007 Real Root Of 973*x^4+524*x^3+104*x^2-465*x-432 7014047915821002 m006 (1/3/Pi-2/5)/(1/6*exp(Pi)+1/3) 7014047917819573 a007 Real Root Of -898*x^4-518*x^3-650*x^2+584*x+768 7014047919499034 m001 ln(2)^BesselK(0,1)/(ln(5)^BesselK(0,1)) 7014047941533507 m001 (ln(5)-cos(1/12*Pi))/(sin(1/12*Pi)-Salem) 7014047955286280 a007 Real Root Of 373*x^4-622*x^3-759*x^2-314*x+718 7014047989100653 r008 a(0)=7,K{-n^6,-36-59*n+13*n^2+9*n^3} 7014048056347745 m002 (6*Cosh[Pi]^2)/Pi^2-Sinh[Pi] 7014048059684636 r005 Im(z^2+c),c=13/42+17/43*I,n=7 7014048071263003 r008 a(0)=7,K{-n^6,-76+70*n^3-3*n^2-62*n} 7014048077441369 m005 (1/3*2^(1/2)-1/3)/(8/9*Zeta(3)+9/10) 7014048086220211 p001 sum(1/(599*n+145)/(12^n),n=0..infinity) 7014048090035064 r009 Im(z^3+c),c=-29/78+17/27*I,n=61 7014048100068627 m005 (4/5*Pi+5)/(19/24+1/8*5^(1/2)) 7014048112137240 r009 Re(z^3+c),c=-29/54+4/29*I,n=18 7014048113724218 a001 2207*233^(7/33) 7014048139439270 p004 log(31981/15859) 7014048144136691 a003 cos(Pi*31/115)/sin(Pi*35/89) 7014048152388126 a007 Real Root Of -295*x^4+526*x^3+447*x^2+700*x-821 7014048175589495 r008 a(0)=7,K{-n^6,-77+70*n^3-3*n^2-61*n} 7014048197304164 m001 OneNinth^2*exp(Tribonacci)^2*GAMMA(7/12) 7014048204012186 r005 Re(z^2+c),c=-17/28+30/49*I,n=18 7014048209031067 r001 40i'th iterates of 2*x^2-1 of 7014048216507632 r008 a(0)=7,K{-n^6,-27-59*n-10*n^2+27*n^3} 7014048258546797 h001 (-7*exp(3/2)-3)/(-2*exp(-3)+5) 7014048260826901 a007 Real Root Of -955*x^4-688*x^3-730*x^2+234*x+517 7014048272416735 m001 1/ln(arctan(1/2))/Zeta(3)/cosh(1) 7014048273717903 m001 HardyLittlewoodC3*Porter^sin(1/12*Pi) 7014048275672552 r009 Re(z^3+c),c=-13/118+33/64*I,n=23 7014048281764331 r008 a(0)=7,K{-n^6,-55+22*n^3-56*n^2+17*n} 7014048304773572 m005 (1/3*exp(1)+1/4)/(7/9*5^(1/2)-1/11) 7014048321516787 r005 Re(z^2+c),c=17/50+5/12*I,n=21 7014048322907320 a007 Real Root Of 902*x^4-172*x^3+626*x^2-471*x-916 7014048341777114 a007 Real Root Of -8*x^4-551*x^3+707*x^2-216*x+66 7014048380267497 r008 a(0)=7,K{-n^6,-79+58*n^3+33*n^2-83*n} 7014048382518014 r008 a(0)=7,K{-n^6,-77+70*n^3-2*n^2-62*n} 7014048392636961 r005 Im(z^2+c),c=-2/13+39/56*I,n=37 7014048421278023 a007 Real Root Of -579*x^4+152*x^3-933*x^2-708*x+155 7014048421642790 a007 Real Root Of -906*x^4+682*x^3+83*x^2+793*x+970 7014048424678496 m006 (1/6*Pi+4)/(-1+1/6*Pi^2) 7014048424678496 m008 (1/6*Pi+4)/(-1+1/6*Pi^2) 7014048432906344 a007 Real Root Of 860*x^4+960*x^3-142*x^2-879*x+62 7014048439353397 a007 Real Root Of 375*x^4-964*x^3+31*x^2+470*x-109 7014048452433196 m005 (1/2*2^(1/2)+6)/(2/3*gamma+4/7) 7014048469656927 a007 Real Root Of 623*x^4-594*x^3-313*x^2+51*x-166 7014048496610048 m006 (1/6*ln(Pi)-1)/(5*exp(Pi)-1/3) 7014048496949082 m001 1/ln(GAMMA(5/12))^2*BesselK(0,1)*GAMMA(7/24)^2 7014048521098060 a003 cos(Pi*31/97)/cos(Pi*39/82) 7014048523082754 m005 (1/3*3^(1/2)-2/9)/(9/10*Catalan-7/8) 7014048531289910 q001 2746/3915 7014048559205416 m001 Rabbit*(LambertW(1)+BesselK(0,1)) 7014048559603525 r005 Im(z^2+c),c=23/82+24/49*I,n=31 7014048572356541 m005 (1/3*Zeta(3)+1/12)/(17/7+2*5^(1/2)) 7014048572568606 r009 Im(z^3+c),c=-47/126+32/45*I,n=7 7014048579924421 m001 Thue^MadelungNaCl*Thue^sin(1/5*Pi) 7014048588906256 r008 a(0)=7,K{-n^6,-89+83*n^3-46*n^2-19*n} 7014048618793158 a007 Real Root Of -961*x^4+143*x^3-991*x^2-484*x+430 7014048641920703 m005 (1/2*Pi-9/11)/(5/11*3^(1/2)+2/7) 7014048657989268 l006 ln(603/1216) 7014048680304284 m001 GAMMA(5/24)^2*exp(Robbin)^2*cos(Pi/12) 7014048687546680 r002 6th iterates of z^2 + 7014048690288247 r008 a(0)=7,K{-n^6,-90+83*n^3-46*n^2-18*n} 7014048693654853 r008 a(0)=7,K{-n^6,-46+99*n^3-72*n^2-52*n} 7014048705492442 r008 a(0)=7,K{-n^6,-59-29*n^3+89*n^2-73*n} 7014048737591027 a007 Real Root Of 662*x^4-880*x^3-12*x^2+700*x+33 7014048750152740 r009 Im(z^3+c),c=-9/26+19/27*I,n=41 7014048757666839 r002 62th iterates of z^2 + 7014048760430819 a007 Real Root Of 90*x^4+512*x^3-741*x^2+754*x+589 7014048765704853 a001 53316291173/521*199^(4/11) 7014048789546450 r008 a(0)=7,K{-n^6,-77+71*n^3-3*n^2-62*n} 7014048794439442 r008 a(0)=7,K{-n^6,-47+99*n^3-72*n^2-51*n} 7014048816505965 m001 FellerTornier/GaussKuzminWirsing*TwinPrimes 7014048824730958 r008 a(0)=7,K{-n^6,-22+24*n^3-4*n^2-66*n} 7014048825950158 m001 (gamma(1)-FeigenbaumB)/(Niven-PrimesInBinary) 7014048858405948 r005 Im(z^2+c),c=-101/114+1/19*I,n=22 7014048864698255 m001 GAMMA(1/4)*ln(Porter)^2*log(2+sqrt(3)) 7014048876031414 m001 (Paris+Tetranacci)/(Zeta(1,-1)-Champernowne) 7014048891395756 r008 a(0)=7,K{-n^6,-90+83*n^3-45*n^2-19*n} 7014048921190609 m001 exp(GAMMA(11/24))/Paris*Zeta(9) 7014048951346192 r002 2th iterates of z^2 + 7014048954058475 s002 sum(A225491[n]/((2^n+1)/n),n=1..infinity) 7014048957915828 a007 Real Root Of 122*x^4+721*x^3-850*x^2+734*x+480 7014048972745668 r008 a(0)=7,K{-n^6,-98+7*n^3+2*n^2+13*n} 7014048980791494 p001 sum(floor(nd*n)/(57*n+35)/(3^n),n=0..infinity) 7014048984710063 m001 (Rabbit-Sierpinski)/(gamma(2)+FeigenbaumD) 7014048985351952 a001 5778*28657^(9/37) 7014048994359424 r008 a(0)=7,K{-n^6,-47+99*n^3-71*n^2-52*n} 7014049027644254 m001 (-Kolakoski+Porter)/(2^(1/3)-ln(2)/ln(10)) 7014049057355388 r005 Re(z^2+c),c=-1/19+24/29*I,n=20 7014049069975118 r005 Re(z^2+c),c=-17/114+28/37*I,n=29 7014049076096031 a007 Real Root Of -206*x^4-194*x^3-348*x^2-157*x+44 7014049083158724 a007 Real Root Of -544*x^4+831*x^3+213*x^2-54*x-222 7014049088041034 a007 Real Root Of 423*x^4+336*x^3+170*x^2-305*x-284 7014049089777266 r005 Re(z^2+c),c=-18/31+16/35*I,n=56 7014049092821316 r005 Im(z^2+c),c=-9/10+9/163*I,n=30 7014049121817541 a001 9349/377*8^(1/2) 7014049162728079 a007 Real Root Of -785*x^4+65*x^3-611*x^2-298*x+304 7014049182032312 m005 (1/2*Pi-2/5)/(4/11*Catalan-1/2) 7014049186069378 r008 a(0)=7,K{-n^6,-75+63*n^3+24*n^2-83*n} 7014049186570847 m001 FeigenbaumMu^(Bloch/ZetaQ(2)) 7014049191581984 a007 Real Root Of 742*x^4+391*x^3-894*x^2-634*x+570 7014049205148467 a007 Real Root Of 762*x^4+720*x^3+591*x^2-190*x-360 7014049206712248 m005 (-19/36+1/4*5^(1/2))/(-5/44+1/4*5^(1/2)) 7014049209583749 m005 (1/2*exp(1)-10/11)/(3/5*5^(1/2)-7/10) 7014049212072103 m001 (ln(gamma)+Grothendieck)/(Catalan+sin(1)) 7014049227963049 m001 Pi*Salem-Pi*csc(5/24*Pi)/GAMMA(19/24) 7014049249259577 a007 Real Root Of -928*x^4+570*x^3-225*x^2+221*x+687 7014049284202503 m001 (Conway+Lehmer)/(StronglyCareFree+Tetranacci) 7014049287055095 r008 a(0)=7,K{-n^6,-90+84*n^3-46*n^2-19*n} 7014049315109697 r005 Re(z^2+c),c=17/114+35/54*I,n=17 7014049335599634 r008 a(0)=7,K{-n^6,-44-23*n-17*n^2+12*n^3} 7014049343467183 m005 (1/3*Pi-1/11)/(5/6*5^(1/2)-1/2) 7014049353814263 r005 Im(z^2+c),c=-83/70+7/36*I,n=41 7014049367422856 a003 cos(Pi*23/91)/sin(Pi*22/45) 7014049371390600 m001 (CopelandErdos-ln(gamma))^Porter 7014049376199274 a007 Real Root Of 97*x^4-359*x^3+354*x^2-417*x-614 7014049387681195 r008 a(0)=7,K{-n^6,-47+100*n^3-72*n^2-52*n} 7014049428070953 a007 Real Root Of 438*x^4-74*x^3-149*x^2-41*x-87 7014049431111193 a007 Real Root Of -869*x^4-637*x^3-353*x^2+724*x+672 7014049442951589 a003 sin(Pi*1/47)-sin(Pi*29/104) 7014049443809121 m001 Sierpinski^2/exp(Si(Pi))^2/GAMMA(1/24) 7014049480841825 m001 Stephens-Zeta(3)^exp(Pi) 7014049513427180 r002 14th iterates of z^2 + 7014049520741363 r009 Re(z^3+c),c=-7/82+15/52*I,n=5 7014049543668870 a007 Real Root Of -21*x^4-78*x^3+488*x^2-108*x-854 7014049545200291 r005 Re(z^2+c),c=-103/98+9/52*I,n=26 7014049546038209 a007 Real Root Of 613*x^4-845*x^3+294*x^2-79*x-640 7014049550075677 a007 Real Root Of -169*x^4+787*x^3+637*x^2+506*x+354 7014049632811594 m005 (1/2*Pi-3/8)/(8/9*Zeta(3)+7/11) 7014049636343314 m005 (1/3*2^(1/2)+1/11)/(7/9*3^(1/2)-6/11) 7014049636983927 r008 a(0)=7,K{-n^6,-88-13*n^3+94*n^2-63*n} 7014049652821328 a001 1/4092*(1/2*5^(1/2)+1/2)^11*3^(1/3) 7014049660666405 m008 (1/4*Pi^4-3)/(3*Pi^2+5/6) 7014049667926061 a007 Real Root Of -574*x^4+575*x^3+354*x^2+580*x+570 7014049710420478 r009 Im(z^3+c),c=-9/26+19/27*I,n=51 7014049725977916 p001 sum(1/(547*n+362)/n/(16^n),n=1..infinity) 7014049741135034 m005 (1/4*exp(1)-3)/(Pi+1/6) 7014049745684696 a007 Real Root Of -949*x^4+101*x^3-52*x^2+54*x+328 7014049757374204 b008 7+(3+2*E)^(-2) 7014049773668257 a007 Real Root Of -697*x^4-135*x^3-697*x^2+345*x+707 7014049797845935 a007 Real Root Of -723*x^4-165*x^3+818*x^2+980*x+403 7014049798838144 a001 33385282/1597*4807526976^(6/23) 7014049798903153 a001 599074578/1597*75025^(6/23) 7014049811133520 a003 sin(Pi*2/23)-sin(Pi*47/111) 7014049820418472 r002 18th iterates of z^2 + 7014049838341534 a007 Real Root Of -78*x^4-99*x^3+224*x^2+811*x-626 7014049846421096 h001 (-5*exp(3)+1)/(-4*exp(1/3)+7) 7014049884054650 a007 Real Root Of -82*x^4+704*x^3-379*x^2+262*x+633 7014049902730813 m001 ln(gamma)/(ZetaP(2)^HardyLittlewoodC4) 7014049922872588 m001 (Ei(1,1)+Cahen)/(Salem+ZetaQ(2)) 7014049923724591 m008 (5/6*Pi^2-4/5)/(1/3*Pi^3+1/4) 7014049924338093 a007 Real Root Of -925*x^4+209*x^3+518*x^2+811*x+610 7014049925093532 a007 Real Root Of 484*x^4-210*x^3-197*x^2-220*x-247 7014049981306905 r005 Im(z^2+c),c=-11/10+2/241*I,n=21 7014050017698784 l006 ln(5051/5418) 7014050109950388 m001 exp(TreeGrowth2nd)^2*Bloch^2/BesselJ(0,1) 7014050110865205 r008 a(0)=7,K{-n^6,-58-53*n+51*n^2-9*n^3} 7014050114379412 r002 5th iterates of z^2 + 7014050131840732 h001 (-9*exp(4)-2)/(-4*exp(3)+10) 7014050166032279 r009 Re(z^3+c),c=-85/126+16/43*I,n=2 7014050199384684 m001 (Mills+PolyaRandomWalk3D)/(1-BesselJ(0,1)) 7014050201201658 r005 Re(z^2+c),c=-17/114+28/37*I,n=38 7014050202842628 m008 (1/3*Pi+2/3)/(1/4*Pi^6+4) 7014050221813074 r005 Re(z^2+c),c=-17/114+28/37*I,n=41 7014050222657135 m001 (Kolakoski+MinimumGamma)/(arctan(1/3)-Cahen) 7014050225745667 r005 Re(z^2+c),c=-17/114+28/37*I,n=47 7014050225822812 r005 Re(z^2+c),c=-17/114+28/37*I,n=50 7014050226051610 r005 Re(z^2+c),c=-17/114+28/37*I,n=59 7014050226061700 r005 Re(z^2+c),c=-17/114+28/37*I,n=62 7014050226064714 r005 Re(z^2+c),c=-17/114+28/37*I,n=56 7014050226141674 r005 Re(z^2+c),c=-17/114+28/37*I,n=53 7014050229322286 r005 Re(z^2+c),c=-17/114+28/37*I,n=44 7014050250618002 r005 Re(z^2+c),c=-17/114+28/37*I,n=32 7014050257385235 m001 Sierpinski^2*exp(PrimesInBinary)/(3^(1/3)) 7014050258941186 a007 Real Root Of -837*x^4+440*x^3+323*x^2+619*x+42 7014050259081356 r008 a(0)=7,K{-n^6,-42-58*n+22*n^2+11*n^3} 7014050268622758 a001 87403803/4181*4807526976^(6/23) 7014050268687771 a001 1568397607/4181*75025^(6/23) 7014050279216408 a007 Real Root Of -363*x^4+270*x^3-798*x^2-440*x+265 7014050287586231 p001 sum(1/(606*n+143)/(64^n),n=0..infinity) 7014050296888705 a007 Real Root Of -819*x^4+382*x^3+578*x^2+652*x+503 7014050314983825 a007 Real Root Of -636*x^4+169*x^3+180*x^2+786*x+675 7014050318196706 a007 Real Root Of 420*x^4-661*x^3+147*x^2-737*x-919 7014050323020448 m005 (1/3*Pi-2/11)/(9/10*gamma+5/7) 7014050329209803 r005 Re(z^2+c),c=-17/114+28/37*I,n=35 7014050335740796 m001 (Si(Pi)-cos(1/5*Pi))/(MertensB2+ZetaP(2)) 7014050337163414 a001 228826127/10946*4807526976^(6/23) 7014050337228428 a001 4106118243/10946*75025^(6/23) 7014050347163361 a001 599074578/28657*4807526976^(6/23) 7014050347228376 a001 10749957122/28657*75025^(6/23) 7014050348622334 a001 1568397607/75025*4807526976^(6/23) 7014050348687348 a001 28143753123/75025*75025^(6/23) 7014050348835195 a001 4106118243/196418*4807526976^(6/23) 7014050348866251 a001 10749957122/514229*4807526976^(6/23) 7014050348870782 a001 28143753123/1346269*4807526976^(6/23) 7014050348871443 a001 73681302247/3524578*4807526976^(6/23) 7014050348871540 a001 192900153618/9227465*4807526976^(6/23) 7014050348871554 a001 505019158607/24157817*4807526976^(6/23) 7014050348871556 a001 1322157322203/63245986*4807526976^(6/23) 7014050348871556 a001 3461452808002/165580141*4807526976^(6/23) 7014050348871556 a001 9062201101803/433494437*4807526976^(6/23) 7014050348871556 a001 23725150497407/1134903170*4807526976^(6/23) 7014050348871556 a001 14662949395604/701408733*4807526976^(6/23) 7014050348871556 a001 5600748293801/267914296*4807526976^(6/23) 7014050348871556 a001 2139295485799/102334155*4807526976^(6/23) 7014050348871557 a001 87403804/4181*4807526976^(6/23) 7014050348871562 a001 312119004989/14930352*4807526976^(6/23) 7014050348871599 a001 119218851371/5702887*4807526976^(6/23) 7014050348871852 a001 45537549124/2178309*4807526976^(6/23) 7014050348873582 a001 17393796001/832040*4807526976^(6/23) 7014050348885445 a001 6643838879/317811*4807526976^(6/23) 7014050348900210 a001 73681302247/196418*75025^(6/23) 7014050348931266 a001 192900153618/514229*75025^(6/23) 7014050348935797 a001 505019158607/1346269*75025^(6/23) 7014050348936458 a001 1322157322203/3524578*75025^(6/23) 7014050348936554 a001 3461452808002/9227465*75025^(6/23) 7014050348936568 a001 9062201101803/24157817*75025^(6/23) 7014050348936570 a001 23725150497407/63245986*75025^(6/23) 7014050348936572 a001 14662949395604/39088169*75025^(6/23) 7014050348936577 a001 5600748293801/14930352*75025^(6/23) 7014050348936614 a001 2139295485799/5702887*75025^(6/23) 7014050348936866 a001 817138163596/2178309*75025^(6/23) 7014050348938597 a001 28374454999/75640*75025^(6/23) 7014050348950459 a001 119218851371/317811*75025^(6/23) 7014050348966751 a001 2537720636/121393*4807526976^(6/23) 7014050349031765 a001 45537549124/121393*75025^(6/23) 7014050349524029 a001 969323029/46368*4807526976^(6/23) 7014050349589043 a001 17393796001/46368*75025^(6/23) 7014050353343668 a001 370248451/17711*4807526976^(6/23) 7014050353408683 a001 6643838879/17711*75025^(6/23) 7014050379523870 a001 141422324/6765*4807526976^(6/23) 7014050379588885 a001 230701876/615*75025^(6/23) 7014050396403518 a007 Real Root Of -528*x^4+582*x^3-912*x^2+489*x-30 7014050404537615 a008 Real Root of (1+11*x-10*x^2-11*x^3) 7014050409074137 a003 cos(Pi*20/103)*cos(Pi*26/55) 7014050409586923 a007 Real Root Of 780*x^4-803*x^3+318*x^2+230*x-461 7014050429189674 l006 ln(4643/9363) 7014050438837186 a007 Real Root Of 47*x^4-253*x^3+359*x^2+210*x-128 7014050458823142 r008 a(0)=7,K{-n^6,-5-37*n-51*n^2+21*n^3} 7014050461086634 m001 Zeta(5)^ErdosBorwein*Robbin 7014050475537292 m001 (Shi(1)+CareFree)/(FeigenbaumAlpha+ZetaQ(3)) 7014050481994266 a003 sin(Pi*25/101)*sin(Pi*34/69) 7014050482424784 m001 GAMMA(1/6)^2/exp(ErdosBorwein)*GAMMA(5/6) 7014050483335434 m001 (BesselK(0,1)+BesselJ(1,1))/(BesselK(1,1)+Kac) 7014050525929032 a007 Real Root Of 614*x^4-645*x^3+272*x^2+921*x+141 7014050544204057 m001 3^(1/2)*MertensB3-ErdosBorwein 7014050558965647 a001 54018521/2584*4807526976^(6/23) 7014050559030664 a001 969323029/2584*75025^(6/23) 7014050580119671 a007 Real Root Of 909*x^4-955*x^3-529*x^2-438*x+677 7014050580491132 r009 Re(z^3+c),c=-29/56+12/29*I,n=6 7014050597855304 r008 a(0)=7,K{-n^6,3-52*n-42*n^2+20*n^3} 7014050604300241 a007 Real Root Of 36*x^4-530*x^3-655*x^2-631*x+939 7014050613566422 r005 Re(z^2+c),c=-9/16+37/83*I,n=11 7014050618105739 a003 sin(Pi*1/112)*sin(Pi*7/87) 7014050636915251 a007 Real Root Of -481*x^4+666*x^3-281*x^2+514*x+845 7014050640917524 r005 Re(z^2+c),c=-23/110+41/56*I,n=2 7014050641446494 r005 Im(z^2+c),c=-31/54+7/54*I,n=29 7014050660899640 b008 Erfc[Sqrt[Csch[EulerGamma]]] 7014050693554460 l006 ln(4040/8147) 7014050712206471 a001 1/196452*34^(1/11) 7014050720448026 r005 Re(z^2+c),c=-40/27+6/55*I,n=2 7014050745955573 a007 Real Root Of -998*x^4+681*x^3+380*x^2-209*x+143 7014050760706432 m005 (3/8+1/4*5^(1/2))/(4*Pi+3/4) 7014050763753230 a007 Real Root Of 2*x^4-369*x^3+849*x^2-216*x-697 7014050795830250 r008 a(0)=7,K{-n^6,-25+35*n^3-33*n^2-46*n} 7014050815897456 g007 Psi(2,3/10)-14*Zeta(3)-Psi(2,6/11)-Psi(2,5/8) 7014050827535207 r002 4th iterates of z^2 + 7014050835503602 r002 6th iterates of z^2 + 7014050836752426 m001 (PlouffeB-ThueMorse)/(CareFree-Kolakoski) 7014050859728347 a007 Real Root Of 455*x^4-490*x^3-34*x^2-226*x-421 7014050864090866 m001 (Zeta(1/2)+PlouffeB)/OrthogonalArrays 7014050869302927 a001 377/18*322^(9/43) 7014050908633982 h001 (-5*exp(1/2)+4)/(-9*exp(2)+6) 7014050923925870 a007 Real Root Of 105*x^4+403*x^3+662*x^2-901*x-844 7014050929319407 a008 Real Root of x^4-x^3+7*x^2-29*x+17 7014050932484169 m001 (BesselI(1,1)-Cahen)/(Sarnak-Tribonacci) 7014050944591801 a007 Real Root Of 953*x^4-196*x^3+218*x^2+812*x+164 7014050964778924 r008 a(0)=7,K{-n^6,-38+88*n^3-23*n^2-98*n} 7014050990170551 a003 cos(Pi*28/111)*sin(Pi*52/107) 7014051020294422 a003 cos(Pi*7/87)*cos(Pi*23/95) 7014051024821693 r005 Re(z^2+c),c=-29/34+85/112*I,n=2 7014051025039037 b008 EllipticPi[2,Pi/3,-5/4] 7014051030048491 m002 -5*E^Pi-Pi+Pi^4/2 7014051050681508 l006 ln(3437/6931) 7014051153458657 r009 Im(z^3+c),c=-29/70+34/57*I,n=43 7014051173693652 m005 (1/3*3^(1/2)+1/10)/(3/4*3^(1/2)-1/3) 7014051208338089 m001 (GAMMA(23/24)-Porter*Totient)/Totient 7014051224024823 m005 (49/12+1/12*5^(1/2))/(2/5*exp(1)+5) 7014051279854904 m001 Mills^Catalan-Stephens 7014051312971360 r005 Re(z^2+c),c=-7/10+79/216*I,n=24 7014051318356557 m006 (4/5*ln(Pi)+5)/(3*ln(Pi)+5) 7014051343149131 a005 (1/sin(85/209*Pi))^1471 7014051354672888 a007 Real Root Of -982*x^4+605*x^3-973*x^2+706*x+5 7014051356646824 a007 Real Root Of -808*x^4+713*x^3+343*x^2+532*x+646 7014051374207757 p001 sum(1/(335*n+143)/(100^n),n=0..infinity) 7014051383771244 m009 (5/6*Psi(1,1/3)+4)/(8*Catalan+Pi^2+1/2) 7014051409134665 m001 GaussAGM/BesselI(1,1)*Weierstrass 7014051412535100 r005 Im(z^2+c),c=-25/44+7/55*I,n=57 7014051445704271 m001 (Pi+FeigenbaumDelta*Totient)/Totient 7014051448779061 a007 Real Root Of 195*x^4-592*x^3-671*x^2-949*x-587 7014051449511095 r009 Im(z^3+c),c=-9/26+19/27*I,n=61 7014051467760697 m001 StolarskyHarborth*(AlladiGrinstead+ZetaQ(2)) 7014051471080047 h001 (7/11*exp(2)+1/11)/(6/7*exp(2)+1/2) 7014051476493037 b008 6+Sec[1/6] 7014051477906584 r005 Im(z^2+c),c=-3/28+29/33*I,n=18 7014051498559871 m001 exp((2^(1/3)))^2/OneNinth^2/GAMMA(7/12) 7014051510811997 r005 Im(z^2+c),c=-67/66+3/10*I,n=19 7014051511215576 a007 Real Root Of 190*x^4-694*x^3-63*x^2-946*x-918 7014051522248243 q001 599/854 7014051530132830 a007 Real Root Of 256*x^4-465*x^3+310*x^2-433*x+29 7014051536089001 a001 11/610*1597^(38/47) 7014051547074157 a007 Real Root Of -800*x^4-164*x^3-647*x^2-384*x+186 7014051547432133 r005 Im(z^2+c),c=11/82+17/26*I,n=30 7014051553124539 r005 Im(z^2+c),c=-47/78+3/23*I,n=19 7014051558272467 m002 Pi/4+2*Pi^5*Log[Pi] 7014051559782852 l006 ln(2834/5715) 7014051561416112 r002 2th iterates of z^2 + 7014051561691615 m001 ln(Zeta(3))^2*FeigenbaumKappa/cos(Pi/5)^2 7014051574593104 r008 a(0)=7,K{-n^6,2+26*n^3-41*n^2-59*n} 7014051577371597 a007 Real Root Of -685*x^4+996*x^3-190*x^2-325*x+375 7014051585288037 s002 sum(A085286[n]/(exp(2*pi*n)-1),n=1..infinity) 7014051611457144 a001 18/5*34^(16/19) 7014051620128755 a001 163427402749/233 7014051623393609 r002 39th iterates of z^2 + 7014051629994246 r008 a(0)=7,K{-n^6,-55+14*n^3-43*n^2+12*n} 7014051642541783 a007 Real Root Of -494*x^4+107*x^3-233*x^2-723*x-236 7014051652825582 m001 (GAMMA(2/3)+MasserGramain)/(1+Si(Pi)) 7014051655687457 a007 Real Root Of -145*x^4-877*x^3+871*x^2-867*x-609 7014051677048910 r008 a(0)=7,K{-n^6,-63+32*n-51*n^2+12*n^3} 7014051677299237 a007 Real Root Of -229*x^4+443*x^3-190*x^2+807*x-570 7014051699991459 a007 Real Root Of 677*x^4+725*x^3+693*x^2-558*x-646 7014051717986143 a005 (1/sin(38/99*Pi))^130 7014051722914680 s001 sum(exp(-2*Pi)^n*A079433[n],n=1..infinity) 7014051736756948 r002 10th iterates of z^2 + 7014051746222704 s001 sum(exp(-2*Pi)^n*A190424[n],n=1..infinity) 7014051752414812 r008 a(0)=7,K{-n^6,-24+53*n^3-73*n^2-26*n} 7014051774291594 h001 (1/12*exp(2)+3/7)/(1/10*exp(2)+3/4) 7014051788878132 a001 20633239/987*4807526976^(6/23) 7014051788943163 a001 370248451/987*75025^(6/23) 7014051823646771 a007 Real Root Of 536*x^4-779*x^3-774*x^2-957*x-689 7014051867615444 m001 (Totient+ThueMorse)/(gamma(1)+FellerTornier) 7014051888160693 m004 5/3+125*Pi-Log[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 7014051911717264 r008 a(0)=7,K{-n^6,-65+84*n^3-19*n^2-71*n} 7014051918762715 a007 Real Root Of -770*x^4+129*x^3+674*x^2+788*x+452 7014051923281277 a007 Real Root Of -91*x^4+715*x^3-922*x^2+851*x-368 7014051924101935 a003 cos(Pi*29/105)/sin(Pi*28/75) 7014051987441963 m001 (Totient+ThueMorse)/(Si(Pi)+MasserGramain) 7014051990941273 a007 Real Root Of 250*x^4-416*x^3-22*x^2-972*x-875 7014051995224602 r008 a(0)=7,K{-n^6,-66+84*n^3-19*n^2-70*n} 7014051995551470 r008 a(0)=7,K{-n^6,-96+92*n^3-58*n^2-9*n} 7014052014663267 a007 Real Root Of 650*x^4+103*x^3+325*x^2-662*x-746 7014052058053268 a007 Real Root Of -638*x^4+934*x^3-115*x^2+577*x+938 7014052063933031 s001 sum(exp(-2*Pi)^n*A192196[n],n=1..infinity) 7014052093592937 m006 (2/5*Pi+3/4)/(3*Pi^2-1) 7014052093592937 m008 (2/5*Pi+3/4)/(3*Pi^2-1) 7014052115805305 m001 sin(1/5*Pi)*(Zeta(3)-ZetaQ(3)) 7014052125602060 a001 1149851/377*2504730781961^(4/21) 7014052125607252 a001 7881196/377*102334155^(4/21) 7014052132533654 m001 Champernowne*Paris*Stephens 7014052140892852 a001 54018521/377*4181^(4/21) 7014052145051761 a007 Real Root Of 56*x^4-319*x^3+402*x^2+2*x-320 7014052160998028 r008 a(0)=7,K{-n^6,-66+84*n^3-18*n^2-71*n} 7014052197690320 a007 Real Root Of -577*x^4+169*x^3-962*x^2-103*x+599 7014052198021894 m001 (1/3)^exp(sqrt(2))*Cahen 7014052198192882 s002 sum(A206775[n]/(n^2*2^n+1),n=1..infinity) 7014052202996518 s001 sum(exp(-2*Pi)^(n-1)*A289161[n],n=1..infinity) 7014052217649652 b008 6+Cosh[ArcCsc[6]] 7014052239065507 a007 Real Root Of 936*x^4+523*x^3+906*x^2+282*x-294 7014052248309354 a001 1/76*(1/2*5^(1/2)+1/2)^12*4^(4/11) 7014052249002261 a007 Real Root Of 107*x^4+739*x^3-3*x^2+637*x+646 7014052256538546 l006 ln(8244/8843) 7014052290428518 r005 Im(z^2+c),c=15/98+41/63*I,n=28 7014052305374506 a007 Real Root Of -308*x^4+859*x^3+481*x^2+494*x-805 7014052323331879 r008 a(0)=7,K{-n^6,-70+69*n^3+26*n^2-96*n} 7014052344086397 l006 ln(2231/4499) 7014052354346818 h001 (1/2*exp(1)+9/11)/(3/8*exp(2)+1/3) 7014052357593999 a007 Real Root Of -308*x^4+855*x^3-739*x^2-887*x+111 7014052377519968 m001 (Totient+TravellingSalesman)/(5^(1/2)+ln(2)) 7014052377585368 v002 sum(1/(5^n*(9*n^2+22*n)),n=1..infinity) 7014052393941309 a007 Real Root Of -159*x^4+720*x^3-414*x^2-718*x-13 7014052404749474 r008 a(0)=7,K{-n^6,-71+69*n^3+26*n^2-95*n} 7014052422129051 r002 49th iterates of z^2 + 7014052435534582 m001 (Gompertz+Khinchin)/(gamma(2)-FeigenbaumDelta) 7014052446922430 a001 39603/233*89^(6/19) 7014052447495067 r009 Re(z^3+c),c=-3/50+44/49*I,n=11 7014052463607100 a007 Real Root Of 491*x^4-347*x^3-951*x^2-26*x+487 7014052469071225 a007 Real Root Of -319*x^4-48*x^3-358*x^2+448*x+551 7014052487626729 r008 a(0)=7,K{-n^6,-66+85*n^3-19*n^2-71*n} 7014052493195998 m001 (Magata+Sarnak)/(BesselJ(0,1)-GAMMA(2/3)) 7014052508264307 a008 Real Root of (-4+6*x-x^2-x^3+4*x^4-2*x^5) 7014052517239060 m001 1/GAMMA(1/4)/Conway^2/exp(Pi) 7014052526821164 m001 FeigenbaumD/Riemann2ndZero*ln(gamma) 7014052526821164 m001 ln(gamma)*FeigenbaumD/Riemann2ndZero 7014052566393307 r008 a(0)=7,K{-n^6,-71+69*n^3+27*n^2-96*n} 7014052569195746 s001 sum(exp(-2*Pi)^n*A236625[n],n=1..infinity) 7014052570982066 m001 -GaussAGM(1,1/sqrt(2))/(exp(-1/2*Pi)+1) 7014052591260087 r005 Im(z^2+c),c=-89/82+17/45*I,n=4 7014052602458274 m001 (CareFree+GaussAGM)/(Paris-ZetaP(4)) 7014052603873950 a003 cos(Pi*17/95)-cos(Pi*54/119) 7014052624436075 g007 Psi(2,7/9)+Psi(2,1/7)-Psi(13/10)-Psi(2,8/9) 7014052634953236 m001 (2^(1/3))^2/Si(Pi)^2*exp(exp(1)) 7014052645482403 r008 a(0)=7,K{-n^6,-80+61*n^3+47*n^2-99*n} 7014052657339753 r005 Re(z^2+c),c=-17/114+28/37*I,n=26 7014052664639976 a007 Real Root Of -780*x^4+381*x^3+534*x^2+785*x-756 7014052696030086 a007 Real Root Of 420*x^4-131*x^3+754*x^2-140*x-616 7014052703078480 m001 1/ln(Salem)*HardHexagonsEntropy/GAMMA(3/4) 7014052707170711 s001 sum(exp(-2*Pi)^n*A216158[n],n=1..infinity) 7014052712306511 r005 Re(z^2+c),c=19/106+25/62*I,n=8 7014052756514483 m001 1/cos(1)^2/exp(FibonacciFactorial)^2*cosh(1)^2 7014052768592679 h001 (4/9*exp(1)+3/8)/(7/9*exp(1)+1/7) 7014052768993763 h001 (-3*exp(2)+4)/(-11*exp(1)+4) 7014052785594171 a007 Real Root Of 922*x^4-56*x^3-220*x^2-252*x-311 7014052790908411 p004 log(20063/9949) 7014052846262959 s002 sum(A106434[n]/(exp(2*pi*n)-1),n=1..infinity) 7014052884954986 r008 a(0)=7,K{-n^6,-71+70*n^3+26*n^2-96*n} 7014052886702182 r008 a(0)=7,K{-n^6,-55+84*n^3-8*n^2-92*n} 7014052887840111 r005 Im(z^2+c),c=-39/94+7/61*I,n=20 7014052888419492 s001 sum(exp(-2*Pi)^n*A117665[n],n=1..infinity) 7014052889726612 s001 sum(exp(-2*Pi)^n*A068777[n],n=1..infinity) 7014052892403926 a007 Real Root Of -145*x^4-304*x^3-716*x^2+467*x+610 7014052901084655 a007 Real Root Of -445*x^4-255*x^3+958*x^2+990*x-970 7014052920068801 l006 ln(3859/7782) 7014052920520785 m001 Champernowne-TwinPrimes^arctan(1/2) 7014052938013771 r005 Re(z^2+c),c=-25/36+13/37*I,n=44 7014052939103195 a003 cos(Pi*16/111)-cos(Pi*31/71) 7014052942562744 a007 Real Root Of -111*x^4+278*x^3-704*x^2+255*x+648 7014052944937914 r008 a(0)=7,K{-n^6,-45-22*n-17*n^2+12*n^3} 7014052955698201 m001 RenyiParking/exp(Conway)*sin(Pi/5)^2 7014052983643707 s001 sum(exp(-2*Pi)^(n-1)*A048120[n],n=1..infinity) 7014052991866336 h001 (2/11*exp(2)+1/7)/(6/11*exp(1)+7/11) 7014052992047845 m001 1/GAMMA(1/12)/ln(RenyiParking)*GAMMA(1/24) 7014052994663615 m009 (1/3*Psi(1,2/3)+5)/(3/5*Psi(1,3/4)-2/3) 7014053029407885 s001 sum(exp(-2*Pi)^n*A003759[n],n=1..infinity) 7014053060065796 p001 sum(1/(239*n+143)/(125^n),n=0..infinity) 7014053067201047 m001 (Totient+ThueMorse)/(Pi-Cahen) 7014053086952179 r005 Im(z^2+c),c=-35/62+8/63*I,n=62 7014053096925490 a007 Real Root Of -486*x^4+504*x^3-921*x^2-105*x+671 7014053107706313 r002 7th iterates of z^2 + 7014053108908356 a007 Real Root Of 293*x^4-753*x^3-957*x^2-401*x+941 7014053110512612 r008 a(0)=0,K{-n^6,-17+20*n^3-64*n^2+77*n} 7014053119074750 m005 (1/3*gamma+2/3)/(-43/132+1/11*5^(1/2)) 7014053119302042 s002 sum(A092438[n]/(exp(2*pi*n)+1),n=1..infinity) 7014053166804665 p003 LerchPhi(1/100,6,65/132) 7014053169440051 m005 (1/2*gamma-2)/(5/7*Pi-2) 7014053190329929 m001 1/GAMMA(1/3)/ln(Khintchine)^2*GAMMA(2/3)^2 7014053198596406 a007 Real Root Of -405*x^4+845*x^3-740*x^2-758*x+222 7014053210694467 r005 Im(z^2+c),c=-1/16+23/24*I,n=4 7014053211232987 m001 FibonacciFactorial/GaussKuzminWirsing/Stephens 7014053225958147 h001 (1/6*exp(1)+10/11)/(2/9*exp(2)+3/10) 7014053227425719 a005 (1/sin(62/227*Pi))^40 7014053251089093 a007 Real Root Of -553*x^4+782*x^3+119*x^2+466*x+672 7014053284866756 r005 Im(z^2+c),c=-37/54+1/56*I,n=64 7014053298049852 r008 a(0)=7,K{-n^6,-35+47*n^3-74*n^2-7*n} 7014053312599083 m001 (gamma(1)+MasserGramain)/(Zeta(5)-Ei(1,1)) 7014053314146851 m001 exp(-Pi)/(log(gamma)^cos(Pi/5)) 7014053339541917 a007 Real Root Of -984*x^4+504*x^3+130*x^2-157*x+238 7014053355307726 a007 Real Root Of -119*x^4-851*x^3-147*x^2-197*x+216 7014053359301253 a007 Real Root Of 427*x^4+33*x^3+241*x^2+303*x+2 7014053367291955 m001 (RenyiParking+ZetaQ(4))/(Bloch+Gompertz) 7014053390539816 r009 Re(z^3+c),c=-5/23+21/29*I,n=45 7014053416534472 r008 a(0)=7,K{-n^6,-18-30*n-3*n^2+12*n^3} 7014053419139910 m001 exp(PrimesInBinary)^2*Lehmer/BesselJ(1,1)^2 7014053441546287 s002 sum(A285024[n]/(exp(2*pi*n)+1),n=1..infinity) 7014053449121878 a001 2/317811*6557470319842^(12/17) 7014053477028324 a001 322/1346269*317811^(4/15) 7014053477032785 a001 322/9227465*433494437^(4/15) 7014053477032802 a001 161/31622993*591286729879^(4/15) 7014053479266071 r005 Re(z^2+c),c=-23/30+1/36*I,n=7 7014053501389515 m005 (1/2*exp(1)-1/7)/(5/6*2^(1/2)+5/9) 7014053505244528 a001 12586269025/322*322^(1/2) 7014053508739068 r009 Im(z^3+c),c=-9/26+19/27*I,n=56 7014053558156626 a003 sin(Pi*19/85)/sin(Pi*19/51) 7014053581089598 p001 sum((-1)^n/(510*n+139)/(8^n),n=0..infinity) 7014053596510309 a007 Real Root Of -232*x^4+842*x^3-88*x^2-67*x+343 7014053607733640 a001 1836311903/843*521^(12/13) 7014053625610820 m004 -2250/Pi+5*Pi-Tan[Sqrt[5]*Pi] 7014053635682174 p001 sum((-1)^n/(203*n+134)/(6^n),n=0..infinity) 7014053638297582 m001 (Cahen-GaussKuzminWirsing)/(PlouffeB+ZetaQ(3)) 7014053654766292 a007 Real Root Of -79*x^4+508*x^3+307*x^2+349*x-552 7014053687680261 a007 Real Root Of -299*x^4-456*x^3+84*x^2+949*x+66 7014053687842172 a001 591286729879/2207*199^(2/11) 7014053690920202 a007 Real Root Of 199*x^4-249*x^3+396*x^2-827*x+423 7014053694871875 r008 a(0)=7,K{-n^6,-34-56*n+17*n^2+11*n^3} 7014053696931721 a007 Real Root Of -41*x^4-154*x^3+815*x^2-970*x-806 7014053709391070 l006 ln(1628/3283) 7014053712912130 a007 Real Root Of 120*x^4+807*x^3-127*x^2+871*x+388 7014053716673144 a007 Real Root Of 118*x^4-407*x^3+239*x^2-367*x-544 7014053718812950 r009 Re(z^3+c),c=-23/54+1/53*I,n=8 7014053723513195 a007 Real Root Of 197*x^4-544*x^3-599*x^2-123*x+521 7014053759860758 m001 (Ei(1)-3^(1/3))/(FeigenbaumKappa-Rabbit) 7014053764648396 s002 sum(A230245[n]/(exp(2*pi*n)+1),n=1..infinity) 7014053765420775 r005 Im(z^2+c),c=1/18+17/27*I,n=52 7014053771921559 r005 Re(z^2+c),c=5/21+5/14*I,n=34 7014053790989313 s001 sum(exp(-2*Pi)^n*A242427[n],n=1..infinity) 7014053818858305 s001 sum(exp(-2*Pi)^(n-1)*A124355[n],n=1..infinity) 7014053828346792 p001 sum(1/(230*n+143)/(128^n),n=0..infinity) 7014053836284215 r005 Im(z^2+c),c=-28/31+22/53*I,n=4 7014053849952185 a007 Real Root Of 607*x^4-970*x^3+463*x^2-132*x-802 7014053862649900 r008 a(0)=7,K{-n^6,-68-6*n^3+15*n^2-13*n} 7014053875213539 m005 (1/2*Zeta(3)-5/11)/(5/8*Catalan-4/11) 7014053900975945 r008 a(0)=7,K{-n^6,-50+2*n^3+14*n^2-39*n} 7014053938000363 m001 (sin(1/12*Pi)-GAMMA(7/12))/(3^(1/3)+Zeta(1/2)) 7014053956466727 r005 Re(z^2+c),c=-9/82+39/50*I,n=32 7014053973914655 a008 Real Root of (-6+5*x+6*x^2-4*x^4+3*x^5) 7014053984202023 m001 (ln(2)-GAMMA(11/12))/(GolombDickman-OneNinth) 7014053994314428 p001 sum((-1)^n/(351*n+86)/n/(3^n),n=1..infinity) 7014053998525877 m001 GAMMA(13/24)-HardyLittlewoodC4^ZetaQ(2) 7014054006368596 m001 1/GAMMA(7/12)/BesselJ(1,1)/ln(cos(Pi/5)) 7014054019447349 a007 Real Root Of -380*x^4+856*x^3-286*x^2-40*x+500 7014054021342188 r009 Im(z^3+c),c=-35/78+1/37*I,n=35 7014054033874611 r001 36i'th iterates of 2*x^2-1 of 7014054053808437 s001 sum(exp(-2*Pi)^(n-1)*A052862[n],n=1..infinity) 7014054066903364 a007 Real Root Of -517*x^4-375*x^3-374*x^2+977*x+865 7014054092187832 m001 BesselK(0,1)-ln(2+3^(1/2))+DuboisRaymond 7014054094329867 m001 Robbin^(BesselI(1,2)/Si(Pi)) 7014054105229145 m005 (1/3*3^(1/2)-1/9)/(31/5+1/5*5^(1/2)) 7014054113529913 p004 log(15199/7537) 7014054113634602 m001 (BesselI(0,1)+arctan(1/2))/(-Ei(1,1)+Khinchin) 7014054119161069 r009 Re(z^3+c),c=-97/114+23/42*I,n=2 7014054203574038 r008 a(0)=7,K{-n^6,-22-24*n-61*n^2+41*n^3} 7014054230394062 a007 Real Root Of -243*x^4+110*x^3+369*x^2+441*x-470 7014054235664445 m002 -6+Pi^5/4-Log[Pi]/Pi 7014054243992484 r009 Re(z^3+c),c=-1/86+25/44*I,n=20 7014054254778135 r008 a(0)=7,K{-n^6,-61-19*n-19*n^2+29*n^3} 7014054255065365 a007 Real Root Of 23*x^4-978*x^3-242*x^2+191*x+317 7014054261671788 a007 Real Root Of 118*x^4-200*x^3-571*x^2-805*x+886 7014054291972102 m005 (1/2*Pi+6)/(4/11*exp(1)+1/11) 7014054296400842 m001 (Chi(1)+CareFree)/(Totient+Thue) 7014054303812589 m003 -17/24+(Sqrt[5]*E^(-1/2-Sqrt[5]/2))/64 7014054336425024 r008 a(0)=7,K{-n^6,15+52*n^3-92*n^2-48*n} 7014054351297338 a007 Real Root Of -107*x^4+602*x^3-387*x^2+966*x-669 7014054352919079 r008 a(0)=7,K{-n^6,-53-31*n-15*n^2+29*n^3} 7014054366346848 m001 PlouffeB/(BesselK(1,1)^BesselJ(0,1)) 7014054379916474 m001 (5^(1/2)-BesselK(0,1))/(Tetranacci+TwinPrimes) 7014054380472917 m004 -8+(25*Pi)/E^(Sqrt[5]*Pi)+Tan[Sqrt[5]*Pi] 7014054395409741 a007 Real Root Of -818*x^4+732*x^3-625*x^2-40*x+730 7014054399323412 r008 a(0)=7,K{-n^6,-48+12*n^3+25*n^2-58*n} 7014054400349021 m001 (BesselI(1,2)+Gompertz)/(Si(Pi)+BesselI(0,1)) 7014054402552718 r008 a(0)=7,K{-n^6,-54-47*n+19*n^2+13*n^3} 7014054414869344 a007 Real Root Of -166*x^4+727*x^3-632*x^2-191*x+468 7014054420905765 l006 ln(4281/8633) 7014054436017214 r009 Im(z^3+c),c=-27/106+35/46*I,n=7 7014054446226866 a007 Real Root Of 119*x^4-971*x^3+508*x^2-825*x+635 7014054461871496 r009 Re(z^3+c),c=-3/82+41/47*I,n=10 7014054474306516 a007 Real Root Of -941*x^4+712*x^3+430*x^2-496*x-86 7014054481340834 r005 Im(z^2+c),c=-107/126+3/64*I,n=11 7014054486861044 a007 Real Root Of -767*x^4-279*x^3+44*x^2+200*x+208 7014054501459980 r002 45th iterates of z^2 + 7014054508328563 r005 Im(z^2+c),c=-69/82+1/23*I,n=25 7014054517068847 r002 49th iterates of z^2 + 7014054548554217 p004 log(36599/18149) 7014054556478338 a007 Real Root Of -120*x^4-717*x^3+917*x^2+285*x-89 7014054558722769 m001 (CareFree*FeigenbaumMu-Trott)/FeigenbaumMu 7014054583319263 b008 Tanh[Tanh[4/3]] 7014054600010447 r009 Re(z^3+c),c=-55/62+34/59*I,n=2 7014054608318332 m001 1/Zeta(3)*exp(PrimesInBinary)^2/exp(1) 7014054627419782 q001 2645/3771 7014054627665871 a001 75025/11*9349^(13/51) 7014054655420646 a001 17711/11*15127^(20/51) 7014054659766916 a007 Real Root Of 510*x^4-946*x^3+225*x^2+688*x-78 7014054662555054 p004 log(19333/9587) 7014054684042061 m005 (1/2*Pi-9/11)/(1/8*Pi-1/2) 7014054684212648 r001 18i'th iterates of 2*x^2-1 of 7014054688452779 m005 (-25/44+1/4*5^(1/2))/(4*Pi+1/2) 7014054721273417 m005 (1/2*exp(1)-3/11)/(7/12*gamma-2/11) 7014054738837732 r008 a(0)=7,K{-n^6,-42-3*n^3+16*n^2-43*n} 7014054747037922 r005 Re(z^2+c),c=-27/40+18/55*I,n=24 7014054758421619 a007 Real Root Of 22*x^4-652*x^3-593*x^2-233*x-102 7014054802026066 a007 Real Root Of 523*x^4-665*x^3-257*x^2-979*x+916 7014054803239922 m001 (gamma(2)-FellerTornier)/(Grothendieck+Otter) 7014054803977122 a007 Real Root Of -458*x^4+740*x^3+261*x^2+783*x+787 7014054834761300 m005 (1/2*gamma+1/11)/(1/10*3^(1/2)-5/7) 7014054857523125 l006 ln(2653/5350) 7014054861678057 r005 Re(z^2+c),c=-9/8+66/223*I,n=13 7014054877972240 a007 Real Root Of -915*x^4+326*x^3-818*x^2-203*x+594 7014054885037404 m001 gamma*Riemann1stZero-ln(Pi) 7014054889115218 a001 2/987*1836311903^(12/17) 7014054892188750 r008 a(0)=7,K{-n^6,-13+31*n^3-63*n^2-27*n} 7014054894164285 m001 AlladiGrinstead/(GAMMA(3/4)^CareFree) 7014054917754930 a001 86000486440/321*199^(2/11) 7014054926300051 a007 Real Root Of -733*x^4+287*x^3-682*x^2+164*x+727 7014054937420222 m001 1/3*MertensB1*3^(2/3)/Sierpinski 7014054947913385 r008 a(0)=7,K{-n^6,-49-8*n-8*n^2+13*n^3} 7014054950321611 r002 16th iterates of z^2 + 7014054953559383 g007 2*Psi(2,8/11)+Psi(2,7/8)+Psi(2,1/3) 7014054973928459 r005 Re(z^2+c),c=-3/44+47/59*I,n=53 7014054985397974 m001 (gamma(2)+LaplaceLimit)^FeigenbaumB 7014054994177566 a007 Real Root Of -234*x^4+977*x^3+443*x^2+256*x-678 7014054994356012 m001 FeigenbaumC*(ln(Pi)+Khinchin) 7014054998455770 m001 (exp(1)+CareFree)/(-LaplaceLimit+ZetaP(3)) 7014055060754460 m001 1/Zeta(5)^2/exp(Riemann2ndZero)*Zeta(7)^2 7014055074398755 a007 Real Root Of 917*x^4-875*x^3+128*x^2+821*x-11 7014055082272051 r005 Im(z^2+c),c=-5/46+31/34*I,n=23 7014055086437099 m001 1/3-exp(gamma)-GAMMA(1/6) 7014055092629371 a007 Real Root Of -836*x^4+329*x^3+422*x^2+386*x+379 7014055096568488 m005 (1/3*3^(1/2)+2/7)/(5/7*gamma+9/11) 7014055097196819 a001 4052739537881/15127*199^(2/11) 7014055111426298 p003 LerchPhi(1/3,1,406/221) 7014055123377038 a001 3536736619241/13201*199^(2/11) 7014055139557304 a001 3278735159921/12238*199^(2/11) 7014055141552690 a007 Real Root Of 541*x^4-60*x^3-245*x^2-774*x-574 7014055144409946 r005 Im(z^2+c),c=-5/32+43/53*I,n=21 7014055159602561 r009 Im(z^3+c),c=-3/98+18/23*I,n=31 7014055182318920 r005 Im(z^2+c),c=-83/118+2/37*I,n=5 7014055208098010 a001 2504730781961/9349*199^(2/11) 7014055211211208 a007 Real Root Of 287*x^4+273*x^3+922*x^2-743*x-950 7014055212376063 s001 sum(exp(-2*Pi)^n*A073973[n],n=1..infinity) 7014055216439944 r008 a(0)=7,K{-n^6,-35-36*n-39*n^2+40*n^3} 7014055217399757 s002 sum(A180367[n]/(exp(2*pi*n)-1),n=1..infinity) 7014055252627660 r009 Re(z^3+c),c=-29/56+7/62*I,n=8 7014055288382914 a007 Real Root Of 252*x^4+918*x^3+672*x^2-696*x-563 7014055288507770 m001 (GAMMA(11/12)+GaussAGM)/(2^(1/2)-ln(Pi)) 7014055291063450 r009 Im(z^3+c),c=-4/17+7/10*I,n=13 7014055297453246 a007 Real Root Of 872*x^4+503*x^3+789*x^2+105*x-352 7014055300918194 m001 (-Niven+ZetaP(4))/(AlladiGrinstead-gamma) 7014055304336461 r008 a(0)=7,K{-n^6,-40-9*n^3+38*n^2-61*n} 7014055317779517 a007 Real Root Of 957*x^4-516*x^3+934*x^2+130*x-778 7014055331212784 r005 Re(z^2+c),c=7/50+7/18*I,n=37 7014055349285958 a001 17711/11*2207^(25/51) 7014055355781772 a007 Real Root Of 322*x^4-419*x^3+947*x^2+722*x-182 7014055365722916 l006 ln(3678/7417) 7014055384935494 m001 ln(Pi)^2*Cahen/Zeta(3) 7014055388681520 a007 Real Root Of -757*x^4+966*x^3+94*x^2-9*x+464 7014055402948623 r005 Re(z^2+c),c=-49/78+19/43*I,n=18 7014055406811880 r008 a(0)=7,K{-n^6,-44+13*n^3+15*n^2-51*n} 7014055409724538 m001 1/GAMMA(11/12)*exp(CareFree)/sqrt(1+sqrt(3))^2 7014055424553693 a001 7/13201*18^(3/31) 7014055455759399 a007 Real Root Of 338*x^4-635*x^3-326*x^2-431*x+600 7014055459589073 m001 (PrimesInBinary+Robbin)/(sin(1)+ln(2)) 7014055465314006 r005 Re(z^2+c),c=-95/122+2/29*I,n=21 7014055488248244 m001 (Mills+ZetaQ(2))/(ln(Pi)+Kolakoski) 7014055511531124 a007 Real Root Of 685*x^4-758*x^3+797*x^2-102*x-891 7014055536510113 q001 2046/2917 7014055539995439 a007 Real Root Of -265*x^4-159*x^3-356*x^2+986*x+876 7014055546109506 r009 Im(z^3+c),c=-21/38+9/38*I,n=11 7014055562256405 m001 (GlaisherKinkelin-Zeta(1/2))^Psi(2,1/3) 7014055582063164 m001 (exp(1/Pi)-GAMMA(7/12))/(Paris-ZetaP(4)) 7014055589292058 r005 Re(z^2+c),c=17/126+25/48*I,n=51 7014055595420393 a001 2971215073/843*521^(11/13) 7014055635582250 r005 Im(z^2+c),c=-93/110+2/45*I,n=48 7014055636606296 a001 21/2207*322^(35/47) 7014055639421276 r008 a(0)=0,K{-n^6,-63+56*n^3-54*n^2-77*n} 7014055651213611 a007 Real Root Of -928*x^4+335*x^3-885*x^2-142*x+676 7014055651882092 a007 Real Root Of 236*x^4-945*x^3-463*x^2-477*x-490 7014055652402481 l006 ln(4703/9484) 7014055661234829 a007 Real Root Of -445*x^4-152*x^3-443*x^2+588*x-39 7014055675590273 a007 Real Root Of -836*x^4+121*x^3+193*x^2+111*x+227 7014055677658384 a007 Real Root Of -997*x^4+692*x^3+454*x^2-386*x-14 7014055677883033 a001 956722026041/3571*199^(2/11) 7014055705214030 m001 GAMMA(7/12)*Riemann1stZero^2*exp(exp(1))^2 7014055708265150 r005 Re(z^2+c),c=2/21+18/37*I,n=22 7014055728412393 a007 Real Root Of -11*x^4-765*x^3+458*x^2-91*x-729 7014055744838896 m001 (GAMMA(17/24)-Conway)/(ErdosBorwein+MertensB2) 7014055767205048 m001 (-FeigenbaumB+Kolakoski)/(Psi(2,1/3)+ln(Pi)) 7014055798154364 l006 ln(3193/3425) 7014055804038410 r002 7th iterates of z^2 + 7014055810363059 r009 Im(z^3+c),c=-9/26+19/27*I,n=46 7014055817141678 r008 a(0)=7,K{-n^6,-82+77*n^3+20*n^2-86*n} 7014055818455817 r008 a(0)=7,K{-n^6,-88+96*n^3-40*n^2-39*n} 7014055833901117 r008 a(0)=7,K{-n^6,-79-5*n^3+7*n^2+5*n} 7014055867375520 s002 sum(A033152[n]/(2^n-1),n=1..infinity) 7014055880237511 m001 (KhinchinLevy-MertensB1)/(ln(2)+Kac) 7014055883159426 r008 a(0)=7,K{-n^6,-89+96*n^3-40*n^2-38*n} 7014055886159536 m008 (2/3*Pi^6+1/5)/(3*Pi^5-4) 7014055896153644 a007 Real Root Of 855*x^4-700*x^3+301*x^2+122*x-511 7014055907044293 a001 1860498/55*317811^(8/19) 7014055911520231 a001 39603/55*2971215073^(8/19) 7014055959897097 r008 a(0)=7,K{-n^6,-68+18*n^3-3*n^2-16*n} 7014055963838200 r005 Re(z^2+c),c=-99/106+1/47*I,n=6 7014055971519579 s002 sum(A207875[n]/(n^2*exp(n)+1),n=1..infinity) 7014055987417804 a007 Real Root Of -546*x^4+649*x^3-715*x^2-754*x+179 7014055989446508 a007 Real Root Of 917*x^4-231*x^3-561*x^2+115*x+55 7014055998003820 r005 Im(z^2+c),c=3/106+1/15*I,n=3 7014056009478433 r008 a(0)=7,K{-n^6,-92+22*n^3-54*n^2+51*n} 7014056011717421 r008 a(0)=7,K{-n^6,-89+96*n^3-39*n^2-39*n} 7014056039580592 m005 (1/2*Catalan+4/11)/(5/11*Zeta(3)+5/8) 7014056052206317 r005 Im(z^2+c),c=-27/40+4/17*I,n=54 7014056070862482 m001 arctan(1/2)^2/ln(GolombDickman)^2/sinh(1)^2 7014056075839513 r009 Im(z^3+c),c=-25/42+22/49*I,n=16 7014056077078846 a007 Real Root Of -244*x^4+768*x^3+176*x^2+253*x-470 7014056085327753 r008 a(0)=7,K{-n^6,-43-22*n-30*n^2+22*n^3} 7014056098930650 b008 -3/8+E^2 7014056111093972 a007 Real Root Of -380*x^4-292*x^3-700*x^2-65*x+290 7014056119224681 m001 HeathBrownMoroz/FeigenbaumC/GAMMA(23/24) 7014056153410185 m001 1/Sierpinski^2*ln(KhintchineHarmonic)*sin(1) 7014056164035036 a003 sin(Pi*1/120)+sin(Pi*21/89) 7014056170788003 a007 Real Root Of -797*x^4+822*x^3+424*x^2+673*x+740 7014056173041098 a007 Real Root Of -486*x^4-699*x^3-629*x^2+90*x+249 7014056173206167 a007 Real Root Of -997*x^4+497*x^3-215*x^2+511*x+877 7014056192547142 a007 Real Root Of -192*x^4+187*x^3+538*x^2+756*x-813 7014056197357426 a007 Real Root Of 594*x^4-670*x^3-257*x^2+92*x-184 7014056202964970 m008 (2*Pi-4/5)/(5/6*Pi^4-3) 7014056212418063 r002 18th iterates of z^2 + 7014056236469288 m001 HardyLittlewoodC5/(exp(1/exp(1))^Zeta(1/2)) 7014056239022437 m005 (1/2*2^(1/2)-2)/(6*Pi-5/12) 7014056251509205 r009 Re(z^3+c),c=-13/110+18/29*I,n=16 7014056264883688 r008 a(0)=7,K{-n^6,-87+88*n^3-12*n^2-60*n} 7014056265464211 r008 a(0)=7,K{-n^6,-89+97*n^3-40*n^2-39*n} 7014056301231789 m001 ln(2)^Zeta(1/2)*Tribonacci^Zeta(1/2) 7014056316768346 a007 Real Root Of 795*x^4-743*x^3-819*x^2-867*x-654 7014056327592019 r008 a(0)=7,K{-n^6,-88+88*n^3-12*n^2-59*n} 7014056335840998 a007 Real Root Of -2*x^4+876*x^3-449*x^2+384*x+793 7014056336158888 m009 (32*Catalan+4*Pi^2+3)/(48*Catalan+6*Pi^2-5/6) 7014056373823981 m001 GAMMA(5/24)*TreeGrowth2nd*ln(Zeta(5)) 7014056379126670 a007 Real Root Of 676*x^4-472*x^3-565*x^2-551*x-435 7014056380118839 r008 a(0)=7,K{-n^6,-69-6*n^3+15*n^2-12*n} 7014056397914912 a007 Real Root Of -213*x^4+93*x^3+761*x^2+194*x-491 7014056404408340 a007 Real Root Of 731*x^4-182*x^3-216*x^2-879*x-750 7014056426429289 r002 12th iterates of z^2 + 7014056449931458 p001 sum((-1)^n/(494*n+137)/n/(2^n),n=1..infinity) 7014056452199268 r008 a(0)=7,K{-n^6,-88+88*n^3-11*n^2-60*n} 7014056460477426 a007 Real Root Of 898*x^4-57*x^3+388*x^2-569*x-827 7014056465792516 r008 a(0)=7,K{-n^6,-70+23*n^3-19*n^2-20*n} 7014056466362910 a007 Real Root Of -907*x^4+912*x^3-549*x^2-86*x+744 7014056472839643 m001 ln(LaplaceLimit)*Champernowne*sinh(1)^2 7014056474738614 b008 7+(68+Pi)^(-1) 7014056480507208 m001 Pi-Psi(2,1/3)/Shi(1)*GAMMA(17/24) 7014056484229125 r009 Im(z^3+c),c=-31/74+35/58*I,n=2 7014056488006456 m005 (1/2*gamma+1)/(5/7*3^(1/2)+3/5) 7014056529913102 a007 Real Root Of 258*x^4-678*x^3+175*x^2-571*x-783 7014056539448588 a007 Real Root Of 166*x^4-724*x^3-540*x^2-557*x+866 7014056571998189 m001 GAMMA(11/24)*MinimumGamma^2/exp(sqrt(Pi)) 7014056577978894 a007 Real Root Of 816*x^4-187*x^3+426*x^2-635*x-917 7014056586561608 m001 Psi(2,1/3)*GlaisherKinkelin-ln(gamma) 7014056590961834 r009 Re(z^3+c),c=-63/118+4/23*I,n=21 7014056604372857 r005 Re(z^2+c),c=-53/70+12/37*I,n=3 7014056616090131 r009 Im(z^3+c),c=-37/78+26/45*I,n=14 7014056632364745 a007 Real Root Of -218*x^4+172*x^3-523*x^2-367*x+112 7014056637951176 r008 a(0)=7,K{-n^6,-63+98*n^3-27*n^2-79*n} 7014056638257660 s001 sum(exp(-2*Pi)^(n-1)*A052723[n],n=1..infinity) 7014056657956983 a008 Real Root of x^3-x^2+9*x-359 7014056681092597 l006 ln(1025/2067) 7014056694122910 m001 (Thue+ThueMorse)/(Niven+OneNinth) 7014056698200675 r008 a(0)=7,K{-n^6,-88+89*n^3-12*n^2-60*n} 7014056717171902 a007 Real Root Of 80*x^4+521*x^3-268*x^2-661 7014056761977452 a007 Real Root Of -464*x^4+97*x^3+160*x^2+526*x+436 7014056776396384 a001 34/4870847*11^(51/53) 7014056786338318 m001 (arctan(1/2)+Backhouse)/(FeigenbaumD+ZetaQ(2)) 7014056792878726 a007 Real Root Of -516*x^4+883*x^3+649*x^2+74*x-551 7014056809266111 m001 GAMMA(5/12)^2/Si(Pi)^2/ln(cosh(1))^2 7014056811846054 l006 ln(1989/2003) 7014056818603830 m005 (1/2*gamma-1/6)/(3/8*5^(1/2)+9/10) 7014056839474208 r005 Re(z^2+c),c=-3/34+15/19*I,n=56 7014056839806960 r009 Im(z^3+c),c=-37/64+17/43*I,n=5 7014056850599670 a007 Real Root Of 3*x^4-612*x^3+72*x^2-547*x-631 7014056878863414 r005 Re(z^2+c),c=-17/114+28/37*I,n=23 7014056889949905 m001 sin(1)^2/GAMMA(7/24)/ln(sqrt(Pi))^2 7014056899813844 r005 Re(z^2+c),c=-27/26+37/112*I,n=15 7014056900433085 m001 (-GAMMA(5/6)+GAMMA(7/12))/(Ei(1)-Psi(2,1/3)) 7014056908732906 m001 (GAMMA(5/6)-Sarnak)/(Stephens+ZetaQ(4)) 7014056913513414 r005 Re(z^2+c),c=-9/14+55/136*I,n=50 7014056925770061 a001 521/89*6557470319842^(17/24) 7014056938489675 a007 Real Root Of 487*x^4-884*x^3-444*x^2-869*x-814 7014056940471667 r008 a(0)=7,K{-n^6,-82+98*n^3-34*n^2-53*n} 7014056943748320 a007 Real Root Of 29*x^4-495*x^3+895*x^2+599*x-198 7014056955353324 a007 Real Root Of 424*x^4+175*x^3+611*x^2-264*x-528 7014056967057676 a007 Real Root Of 116*x^4+725*x^3-565*x^2+463*x+460 7014056985356927 p003 LerchPhi(1/512,3,233/207) 7014057006181953 r005 Im(z^2+c),c=-1/18+39/49*I,n=11 7014057026448711 r009 Im(z^3+c),c=-25/78+11/16*I,n=6 7014057049030129 a007 Real Root Of 856*x^4-164*x^3+528*x^2+735*x-8 7014057113949752 r005 Re(z^2+c),c=-15/118+30/41*I,n=15 7014057141341777 h001 (5/6*exp(1)+11/12)/(1/10*exp(1)+2/11) 7014057144906478 m001 (MinimumGamma+Trott2nd)/(Chi(1)+GAMMA(17/24)) 7014057149685547 a007 Real Root Of 130*x^4+754*x^3-969*x^2+904*x-449 7014057152149218 a002 11^(9/10)-2^(5/7) 7014057162819916 a007 Real Root Of 193*x^4-225*x^3+202*x^2-689*x-707 7014057174172048 a003 sin(Pi*1/51)/sin(Pi*15/44) 7014057175754660 r009 Re(z^3+c),c=-7/82+17/59*I,n=11 7014057191280704 m001 (Cahen+HardyLittlewoodC5)/(Pi-GAMMA(13/24)) 7014057198254968 q001 1447/2063 7014057200111686 a001 29/5*28657^(1/54) 7014057200200863 a007 Real Root Of 65*x^4-592*x^3-593*x^2-942*x-589 7014057200708549 m001 1/GAMMA(1/24)^2*ln(ArtinRank2)/cos(Pi/12)^2 7014057212019490 r005 Re(z^2+c),c=-1/19+7/41*I,n=8 7014057244331868 m001 (2^(1/3))^2*ln(Cahen)*Zeta(9) 7014057245787126 h001 (1/12*exp(1)+9/10)/(1/3*exp(1)+7/10) 7014057268418457 a003 sin(Pi*9/91)/cos(Pi*36/101) 7014057269511058 r005 Re(z^2+c),c=2/23+1/8*I,n=4 7014057270512334 a007 Real Root Of 712*x^4-823*x^3-144*x^2+340*x-147 7014057278437397 a003 sin(Pi*8/87)+sin(Pi*16/117) 7014057282511036 a001 233/1364*47^(55/57) 7014057290284470 m001 ZetaR(2)^Niven+LaplaceLimit 7014057302372908 r005 Im(z^2+c),c=-13/110+3/35*I,n=5 7014057305895983 a007 Real Root Of -409*x^4+980*x^3+445*x^2-736*x-298 7014057331907465 a007 Real Root Of -577*x^4+468*x^3-882*x^2-117*x+653 7014057335773340 a001 1/322*(1/2*5^(1/2)+1/2)^7*76^(9/19) 7014057351439821 m001 (Shi(1)-sin(1/12*Pi))/(PrimesInBinary+Sarnak) 7014057357175357 a001 121393/11*843^(14/51) 7014057386650977 a005 (1/cos(7/229*Pi))^1419 7014057409326706 m001 (CareFree*Landau-ZetaQ(4))/Landau 7014057414405286 m001 (Trott2nd+ZetaQ(2))/(BesselI(1,1)+Lehmer) 7014057422796983 a007 Real Root Of 554*x^4-281*x^3+109*x^2-230*x-446 7014057428876039 m001 Artin/(ZetaQ(4)^Salem) 7014057429220449 p003 LerchPhi(1/25,2,191/159) 7014057437802314 r009 Re(z^3+c),c=-2/19+5/11*I,n=6 7014057470735896 m001 1/BesselJ(0,1)^2/ln(MertensB1)^2*exp(1)^2 7014057471694832 m005 (1/2*Pi+4)/(2/11*exp(1)+3/10) 7014057479496619 p004 log(24439/12119) 7014057506176922 a007 Real Root Of -377*x^4+946*x^3+65*x^2+565*x+782 7014057519742980 a007 Real Root Of 38*x^4-740*x^3+270*x^2-440*x-706 7014057524834883 r008 a(0)=7,K{-n^6,-94+71*n^3+46*n^2-94*n} 7014057550657821 a007 Real Root Of 798*x^4-900*x^3-782*x^2+100*x+432 7014057551533712 r008 a(0)=7,K{-n^6,-4+40*n^3-51*n^2-50*n} 7014057558156576 a007 Real Root Of 634*x^4+74*x^3+712*x^2+994*x+219 7014057565759306 a007 Real Root Of -995*x^4+125*x^3-467*x^2+421*x+809 7014057581220194 m001 (Pi*2^(1/2)/GAMMA(3/4))^(GAMMA(5/6)*Totient) 7014057582079541 r008 a(0)=7,K{-n^6,-95+71*n^3+46*n^2-93*n} 7014057583107710 a001 1602508992/281*521^(10/13) 7014057598732835 r005 Re(z^2+c),c=-1/25+49/59*I,n=15 7014057610570670 m001 (Shi(1)+GaussAGM)/(-Magata+Rabbit) 7014057617789024 r002 9th iterates of z^2 + 7014057633579268 a007 Real Root Of 43*x^4-575*x^3-286*x^2-632*x+772 7014057637342699 a003 sin(Pi*8/81)+sin(Pi*7/54) 7014057638368950 a007 Real Root Of -796*x^4+970*x^3-711*x^2-120*x+793 7014057652567961 r008 a(0)=7,K{-n^6,-53-26*n-4*n^2+17*n^3} 7014057678891658 a007 Real Root Of -981*x^4+913*x^3-628*x^2+112*x+940 7014057694116003 r002 32th iterates of z^2 + 7014057695864588 r008 a(0)=7,K{-n^6,-95+71*n^3+47*n^2-94*n} 7014057732649093 r009 Re(z^3+c),c=-7/82+17/59*I,n=12 7014057732795912 r009 Re(z^3+c),c=-7/82+17/59*I,n=14 7014057745884324 a007 Real Root Of 843*x^4-326*x^3-81*x^2-940*x-936 7014057746400633 r005 Im(z^2+c),c=-3/50+35/51*I,n=22 7014057746993665 r009 Re(z^3+c),c=-7/82+17/59*I,n=16 7014057747838471 r009 Re(z^3+c),c=-7/82+17/59*I,n=19 7014057747840479 r009 Re(z^3+c),c=-7/82+17/59*I,n=18 7014057747843233 r009 Re(z^3+c),c=-7/82+17/59*I,n=21 7014057747843922 r009 Re(z^3+c),c=-7/82+17/59*I,n=23 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=26 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=28 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=30 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=31 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=33 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=35 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=38 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=40 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=42 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=45 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=47 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=49 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=50 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=52 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=54 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=57 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=59 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=61 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=62 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=64 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=63 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=60 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=58 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=56 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=55 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=53 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=51 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=48 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=43 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=46 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=44 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=41 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=39 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=37 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=36 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=34 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=32 7014057747843947 r009 Re(z^3+c),c=-7/82+17/59*I,n=29 7014057747843948 r009 Re(z^3+c),c=-7/82+17/59*I,n=27 7014057747843948 r009 Re(z^3+c),c=-7/82+17/59*I,n=25 7014057747843949 r009 Re(z^3+c),c=-7/82+17/59*I,n=24 7014057747844105 r009 Re(z^3+c),c=-7/82+17/59*I,n=22 7014057747846412 r009 Re(z^3+c),c=-7/82+17/59*I,n=20 7014057747967304 r009 Re(z^3+c),c=-7/82+17/59*I,n=17 7014057749677023 m005 (1/2*Catalan+4/11)/(6/11*2^(1/2)+2/5) 7014057750072934 a001 4/4181*233^(26/33) 7014057750957503 l006 ln(4522/9119) 7014057751930522 r009 Re(z^3+c),c=-7/82+17/59*I,n=15 7014057777242950 r005 Re(z^2+c),c=-1/22+7/36*I,n=5 7014057786206633 r009 Re(z^3+c),c=-7/82+17/59*I,n=13 7014057797365006 a007 Real Root Of 11*x^4-473*x^3+529*x^2-922*x+547 7014057840416106 r005 Im(z^2+c),c=-33/34+19/44*I,n=5 7014057856452144 m001 (OneNinth+Robbin)/(3^(1/2)-HardyLittlewoodC3) 7014057871017678 m001 (Psi(1,1/3)+GAMMA(2/3))/(gamma(1)+Niven) 7014057883525221 a003 sin(Pi*21/85)/sin(Pi*46/95) 7014057888433418 m001 Kolakoski*ln(Artin)/GAMMA(11/12)^2 7014057900885621 a007 Real Root Of 834*x^4+18*x^3-595*x^2-837*x-490 7014057910295935 p003 LerchPhi(1/64,3,464/191) 7014057919915339 r002 51th iterates of z^2 + 7014057920634906 r008 a(0)=7,K{-n^6,-95+72*n^3+46*n^2-94*n} 7014057923486258 p003 LerchPhi(1/8,4,436/223) 7014057956262842 r005 Re(z^2+c),c=-91/118+1/16*I,n=61 7014057961076300 a007 Real Root Of -123*x^4+663*x^3-823*x^2+467*x+991 7014057975378551 m001 (-ZetaP(3)+ZetaQ(3))/(PolyaRandomWalk3D-gamma) 7014057985765556 s002 sum(A276819[n]/(n^2*pi^n-1),n=1..infinity) 7014058014572900 r009 Im(z^3+c),c=-37/66+4/15*I,n=43 7014058018065356 b008 6+Pi^(1/82) 7014058018340579 m001 (Backhouse-Champernowne)/(Conway+Gompertz) 7014058023857189 r008 a(0)=7,K{-n^6,-8-45*n-54*n^2+41*n^3} 7014058064543850 l006 ln(3497/7052) 7014058077171286 h001 (3/8*exp(1)+7/9)/(2/3*exp(1)+3/4) 7014058081131629 m009 (1/3*Psi(1,1/3)+1/2)/(1/6*Psi(1,2/3)+5) 7014058108591658 r005 Re(z^2+c),c=-37/50+5/51*I,n=3 7014058137750238 r002 4th iterates of z^2 + 7014058156105323 m005 (-17/44+1/4*5^(1/2))/(-37/132+3/22*5^(1/2)) 7014058177456698 r002 12th iterates of z^2 + 7014058183389580 r005 Im(z^2+c),c=-47/82+6/47*I,n=61 7014058193676243 r005 Re(z^2+c),c=41/94+10/61*I,n=3 7014058197179726 r008 a(0)=7,K{-n^6,-90+87*n^3+6*n^2-74*n} 7014058238616197 r009 Re(z^3+c),c=-7/34+45/53*I,n=6 7014058241867972 m001 ArtinRank2/ln(FransenRobinson)^2/cos(Pi/12)^2 7014058284739946 a007 Real Root Of 140*x^4+914*x^3-473*x^2-26*x-366 7014058311511426 a007 Real Root Of 630*x^4-127*x^3-111*x^2+567*x+256 7014058313872533 a007 Real Root Of -790*x^4-199*x^3-995*x^2-817*x+39 7014058334277579 r005 Im(z^2+c),c=-39/34+11/74*I,n=10 7014058336555733 a007 Real Root Of 9*x^4+626*x^3-359*x^2+718*x-350 7014058344684757 r008 a(0)=7,K{-n^6,-88-13*n^3+95*n^2-64*n} 7014058365596523 a007 Real Root Of 619*x^4-397*x^3+751*x^2-155*x-765 7014058386126803 a007 Real Root Of -885*x^4+16*x^3-291*x^2+224*x+520 7014058418865793 m001 (Otter-ZetaQ(3))/(Kolakoski+Magata) 7014058456764510 a007 Real Root Of 487*x^4+613*x^3+576*x^2-699*x-680 7014058466594485 r008 a(0)=7,K{-n^6,-89+77*n^3+39*n^2-98*n} 7014058486313404 m005 (4*gamma-2/3)/(4/5*exp(1)+1/6) 7014058519915025 r008 a(0)=7,K{-n^6,-90+77*n^3+39*n^2-97*n} 7014058533661689 a007 Real Root Of -667*x^4+461*x^3+171*x^2-347*x-7 7014058573466835 r009 Im(z^3+c),c=-11/48+24/35*I,n=6 7014058599013806 a003 cos(Pi*3/37)*sin(Pi*8/31) 7014058599013806 a003 sin(Pi*8/31)*sin(Pi*31/74) 7014058623696246 a007 Real Root Of 960*x^4+500*x^3-69*x^2-589*x-439 7014058625921850 r008 a(0)=7,K{-n^6,-90+77*n^3+40*n^2-98*n} 7014058638183573 l006 ln(2472/4985) 7014058642375910 m001 GAMMA(23/24)^2/exp(DuboisRaymond)^2/Zeta(7)^2 7014058679706601 q001 2295/3272 7014058704094857 m001 (-ThueMorse+2/3)/(GolombDickman+3) 7014058708105003 r008 a(0)=7,K{-n^6,-35-55*n+13*n^2+5*n^3} 7014058720545574 a008 Real Root of x^4-2*x^3-36*x^2-8*x+97 7014058748640951 r009 Im(z^3+c),c=-57/122+51/53*I,n=2 7014058749782575 b008 7*Zeta[9] 7014058753548878 m009 (2*Psi(1,3/4)+1)/(40*Catalan+5*Pi^2+3/4) 7014058814550900 r008 a(0)=7,K{-n^6,-47+10*n-60*n^2+25*n^3} 7014058816979241 p001 sum((-1)^n/(139*n+89)/n/(625^n),n=0..infinity) 7014058835414075 r008 a(0)=7,K{-n^6,-90+78*n^3+39*n^2-98*n} 7014058856478024 m001 Chi(1)/GAMMA(3/4)*GAMMA(23/24) 7014058868212254 m005 (1/2*2^(1/2)+5/8)/(7/11*Pi-1/10) 7014058897839177 a001 182717648081/682*199^(2/11) 7014058905765028 r005 Re(z^2+c),c=1/23+13/57*I,n=8 7014058913786149 a001 123/11*(1/2*5^(1/2)+1/2)^25*11^(11/20) 7014058926103556 r005 Im(z^2+c),c=-43/78+21/38*I,n=56 7014058927334376 r009 Im(z^3+c),c=-9/94+36/47*I,n=60 7014058983638794 a001 322/1836311903*8^(2/3) 7014058997238104 a007 Real Root Of 928*x^4-95*x^3+3*x^2+687*x+223 7014059075502374 r005 Im(z^2+c),c=-13/21+12/49*I,n=17 7014059111808547 m001 FransenRobinson*Otter-GAMMA(17/24) 7014059129820099 g007 Psi(2,11/12)+Psi(2,5/11)-Psi(2,3/8)-Psi(2,1/7) 7014059130883732 m001 ln(Zeta(3))^2*GAMMA(11/24)/cos(Pi/12)^2 7014059142692446 a001 7778742049/322*322^(7/12) 7014059150053438 l006 ln(3919/7903) 7014059176910640 r002 8th iterates of z^2 + 7014059176920997 a007 Real Root Of 241*x^4-312*x^3-386*x^2-717*x-479 7014059200126668 r005 Re(z^2+c),c=-41/52+1/51*I,n=49 7014059230394180 r008 a(0)=7,K{-n^6,-36-35*n-39*n^2+40*n^3} 7014059244020583 a007 Real Root Of -881*x^4+688*x^3-320*x^2-549*x+223 7014059256928107 m001 (cos(1/5*Pi)+gamma(2))/(Gompertz+Landau) 7014059267005383 r005 Re(z^2+c),c=-79/118+18/59*I,n=48 7014059277104759 a007 Real Root Of -75*x^4+816*x^3+828*x^2-339*x-433 7014059282712207 r008 a(0)=7,K{-n^6,-37-58*n+13*n^2+9*n^3} 7014059288778765 m001 (ln(3)-ErdosBorwein)/(Kac+Paris) 7014059292983300 r005 Im(z^2+c),c=19/60+13/29*I,n=46 7014059301376872 m001 cosh(1)^2/Riemann1stZero^2*exp(sqrt(Pi)) 7014059317869702 r005 Re(z^2+c),c=-7/86+41/52*I,n=11 7014059354924021 r005 Im(z^2+c),c=-17/62+5/49*I,n=19 7014059356250433 a007 Real Root Of 13*x^4+899*x^3-900*x^2-23*x-352 7014059378879210 m001 (Lehmer+2)/(-GaussKuzminWirsing+4) 7014059384968679 m001 (1-ln(Pi))/(Gompertz+Porter) 7014059393735575 m005 (5*Pi+4/5)/(1/4*2^(1/2)+2) 7014059396852826 a007 Real Root Of -337*x^4+311*x^3+174*x^2+815*x-683 7014059426492732 a001 317811/76*11^(11/51) 7014059434276030 a007 Real Root Of 75*x^4+502*x^3-25*x^2+965*x-302 7014059440051494 a007 Real Root Of 786*x^4+455*x^3+108*x^2-594*x-503 7014059443972208 m001 HardHexagonsEntropy^2/ln(Backhouse)/exp(1)^2 7014059460389178 a007 Real Root Of -419*x^4+522*x^3-482*x^2+662*x+983 7014059471574958 r005 Re(z^2+c),c=-5/86+24/29*I,n=16 7014059479941751 r005 Im(z^2+c),c=-15/16+4/65*I,n=18 7014059515443920 p003 LerchPhi(1/100,4,247/226) 7014059548759904 a007 Real Root Of 140*x^4-118*x^3-397*x^2-821*x+778 7014059556211926 a001 1/1730726404001*3^(3/17) 7014059570795591 a001 7778742049/843*521^(9/13) 7014059579669678 l006 ln(7721/8282) 7014059584710669 a007 Real Root Of 636*x^4-666*x^3-724*x^2-804*x+996 7014059605476557 m005 (1/2*Catalan-1)/(3/7*2^(1/2)+1/6) 7014059611968563 a007 Real Root Of -253*x^4+980*x^3+664*x^2+69*x-652 7014059623525809 a007 Real Root Of 139*x^4+903*x^3-422*x^2+511*x-484 7014059638987910 a007 Real Root Of 698*x^4-983*x^3+64*x^2-49*x-574 7014059655925620 a007 Real Root Of -347*x^4+252*x^3+389*x^2+521*x+345 7014059671832107 r008 a(0)=7,K{-n^6,-26-34*n-58*n^2+48*n^3} 7014059695993663 a008 Real Root of x^4-2*x^3-21*x^2-76*x-164 7014059717078480 a007 Real Root Of -770*x^4+953*x^3+615*x^2+528*x+583 7014059719586398 r008 a(0)=7,K{-n^6,15+48*n^3-69*n^2-69*n} 7014059722493561 m001 1/exp(Zeta(3))*Riemann3rdZero*cos(Pi/12)^2 7014059737895498 r008 a(0)=7,K{-n^6,-96+90*n^3+9*n^2-74*n} 7014059752549543 p004 log(25411/12601) 7014059765020099 a005 (1/cos(3/67*Pi))^1588 7014059772997653 m005 (1/2*Catalan+8/11)/(2*Zeta(3)-5/7) 7014059774570476 m006 (1/6*Pi+5/6)/(4/5*exp(Pi)+5/6) 7014059788251079 a007 Real Root Of -228*x^4+686*x^3-521*x^2-227*x+389 7014059824207240 r008 a(0)=7,K{-n^6,-13+31*n^3-62*n^2-28*n} 7014059824648680 a001 1/41*1364^(6/41) 7014059825017048 r002 3th iterates of z^2 + 7014059828098111 m004 -2/5+100*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 7014059830734893 a001 76/377*89^(5/18) 7014059832616201 m001 ArtinRank2^(1/3*3^(1/2)*Niven) 7014059841852722 r005 Re(z^2+c),c=-55/74+11/61*I,n=47 7014059846472169 m001 (GaussAGM+Mills)/(ln(gamma)-FeigenbaumAlpha) 7014059863596811 r005 Im(z^2+c),c=-149/114+7/25*I,n=5 7014059868866366 r005 Re(z^2+c),c=-9/82+39/50*I,n=38 7014059871832122 r009 Re(z^3+c),c=-13/23+13/34*I,n=11 7014059873844703 m001 ln(GAMMA(5/12))^2/MertensB1^2*sin(1) 7014059877185297 m001 Riemann3rdZero^2*ln(Artin)^2*OneNinth^2 7014059877826050 r005 Re(z^2+c),c=4/25+9/34*I,n=20 7014059916893801 a007 Real Root Of 66*x^4-458*x^3-671*x^2-14*x+482 7014059931205581 r005 Re(z^2+c),c=-83/106+3/61*I,n=21 7014059934338496 a001 3/267914296*8^(15/17) 7014059934809896 a003 cos(Pi*1/94)*sin(Pi*26/105) 7014059967451537 a007 Real Root Of 544*x^4-447*x^3-697*x^2-581*x+773 7014059970944766 m005 (1/3*gamma+1/2)/(7/11*Zeta(3)+2/9) 7014059976562017 r002 60i'th iterates of 2*x/(1-x^2) of 7014059977122111 a007 Real Root Of 217*x^4-922*x^3-781*x^2-311*x+868 7014060024512470 l006 ln(1447/2918) 7014060030343284 a007 Real Root Of 647*x^4-258*x^3+589*x^2-430*x-837 7014060050085836 a001 163427599167/233 7014060056245357 a001 47/514229*8^(49/50) 7014060067573274 m001 MertensB1^Ei(1,1)/(ln(2+3^(1/2))^Ei(1,1)) 7014060079349862 a007 Real Root Of -997*x^4+986*x^3-204*x^2+348*x+926 7014060110937393 r008 a(0)=7,K{-n^6,-67-18*n^3+54*n^2-41*n} 7014060113272201 r008 a(0)=7,K{-n^6,-40+14*n^3+14*n^2-55*n} 7014060132014774 m001 (-Niven+Paris)/(CopelandErdos-exp(Pi)) 7014060153108904 a007 Real Root Of -4*x^4+296*x^3-404*x^2+167*x+419 7014060176629390 a007 Real Root Of 71*x^4+447*x^3-452*x^2-785*x-867 7014060176864666 m001 1/FeigenbaumC^2*Artin*ln(GAMMA(17/24))^2 7014060202938516 m001 (BesselJ(1,1)+GaussAGM)/(ln(5)+exp(-1/2*Pi)) 7014060210655022 r009 Re(z^3+c),c=-7/54+32/43*I,n=60 7014060218835320 a001 7881196/377*4807526976^(6/23) 7014060218900447 a001 141422324/377*75025^(6/23) 7014060224870745 m005 (1/2*3^(1/2)-2/11)/(7/10*gamma+4/7) 7014060234804070 r005 Re(z^2+c),c=-9/82+39/50*I,n=47 7014060239908250 m008 (3/4*Pi^2-3)/(2*Pi^3+3/4) 7014060249867217 a007 Real Root Of 135*x^4-698*x^3+163*x^2-622*x-790 7014060263903313 a007 Real Root Of -304*x^4-92*x^3+34*x^2+352*x+272 7014060265227145 r005 Re(z^2+c),c=-9/82+39/50*I,n=53 7014060274429679 a007 Real Root Of 336*x^4+329*x^3+460*x^2-141*x-293 7014060274807043 r005 Re(z^2+c),c=-9/82+39/50*I,n=59 7014060277559612 r005 Re(z^2+c),c=-9/82+39/50*I,n=62 7014060281875920 r005 Re(z^2+c),c=-9/82+39/50*I,n=56 7014060294473754 r005 Re(z^2+c),c=-9/82+39/50*I,n=41 7014060300751328 r005 Re(z^2+c),c=-9/82+39/50*I,n=50 7014060323881355 a008 Real Root of x^4-2*x^3-97*x^2+98*x+2349 7014060328173003 r005 Re(z^2+c),c=-9/82+39/50*I,n=44 7014060329283951 r008 a(0)=7,K{-n^6,-11-52*n-30*n^2+21*n^3} 7014060329865671 m001 (-gamma(1)+(1+3^(1/2))^(1/2))/(1-Zeta(1/2)) 7014060336468085 r005 Im(z^2+c),c=-15/22+26/119*I,n=25 7014060342756181 m001 (MasserGramain+Sarnak)/(2^(1/3)+ln(2)) 7014060357401191 r005 Re(z^2+c),c=7/18+6/37*I,n=14 7014060361680329 a001 7/6765*17711^(25/58) 7014060367620749 a001 161/98209*233^(4/15) 7014060369664712 r005 Im(z^2+c),c=4/11+16/59*I,n=4 7014060387938562 a007 Real Root Of 734*x^4-707*x^3+333*x^2+32*x-563 7014060401976046 a001 1/41*5778^(5/41) 7014060406050577 r005 Im(z^2+c),c=-5/28+41/60*I,n=10 7014060417686223 b008 6+Sqrt[(2+Pi)/5] 7014060424974108 a008 Real Root of (-6+3*x+5*x^2+x^3+x^4+5*x^5) 7014060440326058 r005 Im(z^2+c),c=-73/110+7/52*I,n=62 7014060474618706 a007 Real Root Of 152*x^4+998*x^3-343*x^2+824*x-858 7014060478166936 r002 21th iterates of z^2 + 7014060480266014 h001 (2/7*exp(1)+2/3)/(2/11*exp(2)+5/7) 7014060496797546 a001 28143753123*144^(11/17) 7014060500766592 m001 (Chi(1)-cos(1))/(-Zeta(1,-1)+sin(1/12*Pi)) 7014060506786048 m001 (-MertensB2+Porter)/(2^(1/3)-Cahen) 7014060511486964 m001 FeigenbaumD*(GAMMA(11/12)-ln(2+3^(1/2))) 7014060519393034 a007 Real Root Of -929*x^4+331*x^3-387*x^2-186*x+399 7014060535920347 a001 2/987*6557470319842^(10/17) 7014060536470105 a007 Real Root Of 933*x^4+69*x^3+864*x^2-305*x-841 7014060565441335 r008 a(0)=7,K{-n^6,-50+5*n^3+n^2-29*n} 7014060594571169 r009 Re(z^3+c),c=-9/74+30/49*I,n=23 7014060615002660 r008 a(0)=7,K{-n^6,-46+13*n^3-20*n^2-19*n} 7014060622837215 p004 log(34651/17183) 7014060626724890 m005 (2/3*exp(1)-1/2)/(5*Pi+3) 7014060627605018 a007 Real Root Of 225*x^4-74*x^3+610*x^2+281*x-183 7014060654682332 r008 a(0)=7,K{-n^6,-66-2*n^3+4*n^2-8*n} 7014060674603377 r005 Re(z^2+c),c=7/66+11/64*I,n=5 7014060682313388 p003 LerchPhi(1/25,3,256/227) 7014060687169497 r005 Im(z^2+c),c=7/114+39/59*I,n=23 7014060711083980 m001 (ZetaP(3)-ZetaQ(4))/(3^(1/3)+GAMMA(23/24)) 7014060744017966 l006 ln(4763/9605) 7014060774156350 a007 Real Root Of -720*x^4+538*x^3+718*x^2+414*x-655 7014060782475438 m005 (1/2*Catalan+9/10)/(1/3*Pi+8/9) 7014060803659793 a007 Real Root Of -441*x^4+440*x^3-542*x^2-83*x+467 7014060809721206 a007 Real Root Of 729*x^4-428*x^3+149*x^2+809*x+170 7014060811430333 a007 Real Root Of 239*x^4+940*x^3+875*x^2-673*x-636 7014060827973350 r005 Re(z^2+c),c=-9/10+30/187*I,n=52 7014060828824933 a003 sin(Pi*8/115)-sin(Pi*10/27) 7014060830555619 a007 Real Root Of -573*x^4-14*x^3+250*x^2-196*x+158 7014060841364021 a007 Real Root Of 155*x^4-356*x^3+617*x^2+218*x-311 7014060892895098 m001 (ln(3)+Zeta(1,2))/((1+3^(1/2))^(1/2)+Cahen) 7014060954080494 m005 (1/2*exp(1)+5/11)/(2^(1/2)-4) 7014060965706279 r005 Im(z^2+c),c=-5/6+60/217*I,n=9 7014061011569909 a007 Real Root Of 898*x^4+90*x^3-232*x^2-744*x-594 7014061013833770 m003 -11/2+Sqrt[5]/1024-2*ProductLog[1/2+Sqrt[5]/2] 7014061041467521 a007 Real Root Of -83*x^4-584*x^3-69*x^2-363*x+216 7014061043983237 m001 (GAMMA(7/12)+1/2)/(-OneNinth+3) 7014061054673763 r002 22th iterates of z^2 + 7014061057987929 l006 ln(3316/6687) 7014061069847359 m001 (-Pi^(1/2)+Bloch)/(2^(1/2)+BesselJ(1,1)) 7014061069970797 a007 Real Root Of 281*x^4+183*x^3+517*x^2-560*x-652 7014061072150983 m004 -4-99*Sqrt[5]*Pi-Log[Sqrt[5]*Pi] 7014061086782632 m006 (1/5/Pi-3/4)/(1/4*exp(Pi)+4) 7014061092871000 a001 682/98209*377^(23/59) 7014061115106067 m006 (4/5*exp(2*Pi)+2)/(1/6/Pi-2/3) 7014061129730368 r005 Im(z^2+c),c=-7/6+18/71*I,n=29 7014061139263787 r002 55th iterates of z^2 + 7014061143139768 m001 (Paris+Trott)/(Zeta(1,-1)-HardHexagonsEntropy) 7014061158328159 m001 Chi(1)-QuadraticClass^BesselJ(0,1) 7014061159750692 r005 Im(z^2+c),c=-107/94+1/15*I,n=6 7014061167115177 a001 7/610*433494437^(11/14) 7014061183258290 g002 -gamma-2*ln(2)+Psi(6/7)+Psi(4/7)+Psi(2/5) 7014061185005848 r008 a(0)=7,K{-n^6,-58+28*n^3-28*n^2-11*n} 7014061185362306 m001 DuboisRaymond/(GAMMA(23/24)+MadelungNaCl) 7014061197509603 r008 a(0)=7,K{-n^6,-55+23*n^3-57*n^2+17*n} 7014061204897306 a007 Real Root Of 105*x^4+843*x^3+789*x^2+161*x-929 7014061204933805 a007 Real Root Of -882*x^4+301*x^3-793*x^2+303*x+920 7014061207609594 q001 848/1209 7014061207609594 r002 2th iterates of z^2 + 7014061207609594 r005 Im(z^2+c),c=-29/26+53/93*I,n=2 7014061211008780 r009 Im(z^3+c),c=-11/30+31/49*I,n=53 7014061216205628 m001 exp(-1/2*Pi)^AlladiGrinstead*Riemann3rdZero 7014061219633956 r005 Im(z^2+c),c=23/54+11/52*I,n=18 7014061225091977 m001 (Ei(1)+BesselI(0,2))/(ln(gamma)+ln(Pi)) 7014061250994487 r005 Im(z^2+c),c=9/28+32/63*I,n=11 7014061260329884 r005 Re(z^2+c),c=-53/56+14/55*I,n=27 7014061261876008 r009 Im(z^3+c),c=-1/36+44/57*I,n=9 7014061320566458 m001 sqrt(5)^(exp(1/exp(1))*GAMMA(1/24)) 7014061332201298 a007 Real Root Of -134*x^4-919*x^3+45*x^2-688*x+167 7014061336595483 m001 (Bloch+Porter)/(BesselI(1,2)+GAMMA(19/24)) 7014061341112321 r004 Re(z^2+c),c=-5/11+6/23*I,z(0)=-1,n=3 7014061358940616 a001 365435296162/843*199^(1/11) 7014061361409484 m001 exp(Trott)^2*LandauRamanujan^2*sinh(1) 7014061445498212 m001 (Zeta(1/2)+gamma(3))/(FeigenbaumKappa+Sarnak) 7014061459442060 a001 163427632005/233 7014061485622317 a001 163427632615/233 7014061489442060 a001 163427632704/233 7014061490085836 a001 163427632719/233 7014061490094420 a001 817138163596/233*8^(1/3) 7014061490094420 a001 2/233*(1/2+1/2*5^(1/2))^57 7014061490128755 a001 163427632720/233 7014061490343347 a001 163427632725/233 7014061491237470 a007 Real Root Of 967*x^4-613*x^3-920*x^2-97*x-61 7014061491802575 a001 163427632759/233 7014061501802575 a001 163427632992/233 7014061519622335 m005 (4/5*2^(1/2)+1)/(3/4*exp(1)+1) 7014061536455968 r005 Im(z^2+c),c=-17/62+5/49*I,n=22 7014061537350093 h001 (3/5*exp(1)+3/10)/(3/4*exp(1)+5/7) 7014061543283062 m006 (3*exp(2*Pi)-4)/(5/6*Pi-1/3) 7014061558484034 a001 12586269025/843*521^(8/13) 7014061570343347 a001 163427634589/233 7014061578607373 r005 Im(z^2+c),c=-73/54+1/60*I,n=7 7014061583748112 m001 (Conway-Gompertz)/(Zeta(1,-1)+GAMMA(19/24)) 7014061619454502 r008 a(0)=7,K{-n^6,-45-23*n-16*n^2+12*n^3} 7014061639219049 a007 Real Root Of -763*x^4+61*x^3-183*x^2-962*x-379 7014061641170418 r009 Re(z^3+c),c=-57/94+13/48*I,n=21 7014061647489612 a007 Real Root Of 548*x^4+401*x^3+898*x^2-248*x-610 7014061710529459 b008 2/3+BesselK[0,3] 7014061723709390 r005 Re(z^2+c),c=7/86+23/51*I,n=42 7014061724190657 a007 Real Root Of -675*x^4+104*x^3-172*x^2+512*x+643 7014061731196589 r005 Re(z^2+c),c=23/122+16/53*I,n=41 7014061733003302 a003 sin(Pi*16/81)/sin(Pi*14/45) 7014061733555485 a007 Real Root Of 13*x^4-994*x^3-250*x^2+389*x+190 7014061750041237 a007 Real Root Of 169*x^4-548*x^3+263*x^2+136*x-264 7014061751972061 m001 2^(1/2)-Sarnak+Trott 7014061752280543 r009 Im(z^3+c),c=-2/21+48/61*I,n=52 7014061762505695 m001 polylog(4,1/2)^((3^(1/3))/GAMMA(1/3)) 7014061762505695 m001 polylog(4,1/2)^(1/2*3^(5/6)/Pi*GAMMA(2/3)) 7014061787352532 r005 Re(z^2+c),c=-39/50+1/25*I,n=59 7014061792551579 r002 4th iterates of z^2 + 7014061798145499 m001 LandauRamanujan/(Grothendieck^ZetaR(2)) 7014061821557556 r009 Re(z^3+c),c=-3/58+46/61*I,n=12 7014061825232336 r008 a(0)=7,K{-n^6,-13+9*n^3-4*n^2-61*n} 7014061858062524 r008 a(0)=7,K{-n^6,2+27*n^3-42*n^2-59*n} 7014061858115725 l006 ln(1869/3769) 7014061866647878 a007 Real Root Of -705*x^4+866*x^3+550*x^2-841*x-391 7014061892043101 r005 Re(z^2+c),c=23/122+16/53*I,n=30 7014061900464411 m001 PrimesInBinary^2/ErdosBorwein^2/ln(Sierpinski) 7014061903139910 r005 Im(z^2+c),c=-17/62+5/49*I,n=24 7014061908295369 m005 (1/2*3^(1/2)+1/2)/(7/9*exp(1)-1/6) 7014061933226769 a007 Real Root Of 702*x^4-74*x^3+312*x^2-328*x-579 7014061968744418 m005 (1/2*exp(1)-2)/(17/7+3*5^(1/2)) 7014061969190882 m005 (1/3*exp(1)-1/4)/(4/9*exp(1)-3/11) 7014062033065727 m001 (Chi(1)-ErdosBorwein)/(GaussAGM+MertensB1) 7014062037679517 a001 4807526976/2207*521^(12/13) 7014062040128755 a001 163427645535/233 7014062048202883 m005 (1/2*exp(1)+3/8)/(3/11*3^(1/2)+2) 7014062054722010 a003 sin(Pi*4/87)/cos(Pi*33/76) 7014062057017149 p001 sum(1/(356*n+147)/(10^n),n=0..infinity) 7014062057804457 a007 Real Root Of 493*x^4-408*x^3+501*x^2-434*x-811 7014062061783447 m001 BesselK(0,1)/(BesselK(1,1)-ZetaQ(4)) 7014062069157764 r005 Im(z^2+c),c=-17/62+5/49*I,n=26 7014062076727563 a007 Real Root Of -184*x^4+179*x^3+126*x^2+838*x-667 7014062092583299 r008 a(0)=7,K{-n^6,-69-6*n^3+16*n^2-13*n} 7014062096840918 r005 Im(z^2+c),c=-17/62+5/49*I,n=20 7014062104013779 m002 2+18*Pi+Cosh[Pi] 7014062112488140 r005 Im(z^2+c),c=-17/62+5/49*I,n=28 7014062120189233 r005 Im(z^2+c),c=-17/62+5/49*I,n=30 7014062120379681 r005 Im(z^2+c),c=-17/62+5/49*I,n=33 7014062120380787 r005 Im(z^2+c),c=-17/62+5/49*I,n=31 7014062120514874 r005 Im(z^2+c),c=-17/62+5/49*I,n=35 7014062120565539 r005 Im(z^2+c),c=-17/62+5/49*I,n=37 7014062120577567 r005 Im(z^2+c),c=-17/62+5/49*I,n=39 7014062120579356 r005 Im(z^2+c),c=-17/62+5/49*I,n=42 7014062120579401 r005 Im(z^2+c),c=-17/62+5/49*I,n=44 7014062120579447 r005 Im(z^2+c),c=-17/62+5/49*I,n=46 7014062120579462 r005 Im(z^2+c),c=-17/62+5/49*I,n=48 7014062120579465 r005 Im(z^2+c),c=-17/62+5/49*I,n=50 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=53 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=55 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=57 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=59 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=61 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=64 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=62 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=63 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=60 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=58 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=56 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=52 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=54 7014062120579466 r005 Im(z^2+c),c=-17/62+5/49*I,n=51 7014062120579467 r005 Im(z^2+c),c=-17/62+5/49*I,n=49 7014062120579470 r005 Im(z^2+c),c=-17/62+5/49*I,n=41 7014062120579474 r005 Im(z^2+c),c=-17/62+5/49*I,n=47 7014062120579503 r005 Im(z^2+c),c=-17/62+5/49*I,n=45 7014062120579565 r005 Im(z^2+c),c=-17/62+5/49*I,n=43 7014062120579935 r005 Im(z^2+c),c=-17/62+5/49*I,n=40 7014062120585022 r005 Im(z^2+c),c=-17/62+5/49*I,n=38 7014062120610863 r005 Im(z^2+c),c=-17/62+5/49*I,n=36 7014062120700230 r005 Im(z^2+c),c=-17/62+5/49*I,n=34 7014062120848583 r005 Im(z^2+c),c=-17/62+5/49*I,n=32 7014062123023511 r005 Im(z^2+c),c=-17/62+5/49*I,n=29 7014062125669238 m001 exp(Lehmer)^2/Kolakoski^2/exp(1)^2 7014062126225669 r005 Re(z^2+c),c=-9/82+39/50*I,n=35 7014062142280738 r005 Im(z^2+c),c=-17/62+5/49*I,n=27 7014062148782177 m001 exp(Pi)/(Robbin^Khinchin) 7014062149074776 m001 1/Sierpinski^2*CareFree*exp(Ei(1)) 7014062152527081 m001 1/FeigenbaumD^2*Robbin/ln(Pi)^2 7014062160714677 a007 Real Root Of 9*x^4-396*x^3-114*x^2-468*x-411 7014062161646656 m001 1/exp(GAMMA(7/24))*LandauRamanujan*sqrt(2)^2 7014062167839982 r009 Im(z^3+c),c=-1/7+16/21*I,n=46 7014062175657422 m001 1/exp(LaplaceLimit)*FeigenbaumAlpha/Tribonacci 7014062176068059 a007 Real Root Of 434*x^4-23*x^3+447*x^2-291*x-537 7014062192035863 h001 (2/9*exp(2)+3/5)/(9/10*exp(1)+3/4) 7014062193548518 m005 (1/2*exp(1)+11/12)/(5/9*Catalan-5/6) 7014062201878367 a007 Real Root Of -662*x^4-838*x^3-596*x^2+731*x+677 7014062215331097 m001 (Bloch-TravellingSalesman)/(Pi+arctan(1/3)) 7014062221666667 a007 Real Root Of 199*x^4-175*x^3-998*x^2-349*x+748 7014062231261562 r005 Im(z^2+c),c=-17/62+5/49*I,n=25 7014062235682729 m001 Zeta(1,2)^FeigenbaumKappa/Mills 7014062246272595 l006 ln(4528/4857) 7014062248936299 s002 sum(A208915[n]/(n*exp(n)-1),n=1..infinity) 7014062249283751 r009 Re(z^3+c),c=-7/82+17/59*I,n=10 7014062268142004 a008 Real Root of (-4+4*x-2*x^2+9*x^4) 7014062268588563 a007 Real Root Of 149*x^4+912*x^3-992*x^2-436*x-182 7014062269869585 a007 Real Root Of -896*x^4+690*x^3-303*x^2-519*x+240 7014062274935054 m001 (Salem+Stephens)/(gamma(1)+FellerTornier) 7014062303224035 r005 Re(z^2+c),c=-35/66+32/51*I,n=17 7014062307689650 a001 64079/13*4807526976^(16/19) 7014062309402315 a001 141422324/13*514229^(16/19) 7014062311510489 a001 7/317811*55^(19/22) 7014062317239896 m001 (Catalan-GAMMA(3/4))/(-MadelungNaCl+Mills) 7014062320768802 m005 (1/3*Catalan-1/5)/(5/11*3^(1/2)+5/7) 7014062336854562 r008 a(0)=7,K{-n^6,-14+31*n^3-62*n^2-27*n} 7014062363624172 m001 (-OneNinth+Trott2nd)/(3^(1/2)-sin(1/5*Pi)) 7014062371809817 a001 29/75025*3^(32/59) 7014062378429003 m001 (sin(1/5*Pi)-BesselK(1,1))/(Conway+Rabbit) 7014062384749073 r008 a(0)=7,K{-n^6,-8+7*n^3-9*n^2-n} 7014062390894696 m001 Ei(1)-GAMMA(5/6)^MinimumGamma 7014062394761751 m001 (Salem+Stephens)/(Si(Pi)+MasserGramain) 7014062411544038 r008 a(0)=7,K{-n^6,-49+20*n^3-20*n^2-25*n} 7014062449378110 a007 Real Root Of -133*x^4-892*x^3+376*x^2+706*x+557 7014062495909856 l006 ln(4160/8389) 7014062505095165 r005 Im(z^2+c),c=-17/62+5/49*I,n=23 7014062507781229 a003 cos(Pi*37/120)+cos(Pi*53/116) 7014062533210913 a007 Real Root Of 776*x^4+179*x^3-292*x^2-785*x-533 7014062538820712 a007 Real Root Of -409*x^4-198*x^3-950*x^2+469*x+827 7014062562494502 m005 (1/2*2^(1/2)+1/9)/(2/11*Catalan+1) 7014062562597578 r009 Im(z^3+c),c=-1/98+47/60*I,n=19 7014062563606398 m001 Riemann2ndZero^2*Artin*ln(GAMMA(7/12)) 7014062602510299 a007 Real Root Of -516*x^4-478*x^3+478*x^2+468*x-35 7014062619238189 r008 a(0)=7,K{-n^6,-38+16*n^3-43*n^2-7*n} 7014062634573191 r008 a(0)=0,K{-n^6,-52-21*n^3+8*n^2+50*n} 7014062680693173 p004 log(13009/6451) 7014062696860620 a007 Real Root Of 801*x^4-908*x^3+597*x^2-70*x-850 7014062701708291 m001 1/exp(MadelungNaCl)^2*Artin^2*sqrt(1+sqrt(3)) 7014062703825494 a007 Real Root Of 503*x^4+545*x^3+30*x^2-699*x-49 7014062712912769 m005 (1/2*Catalan-9/11)/(5*Catalan+5/9) 7014062715655706 m001 1/3*GAMMA(23/24)^ZetaP(2)*3^(2/3) 7014062730496671 m005 (17/30+1/6*5^(1/2))/(3/5*3^(1/2)+3/10) 7014062768662610 r005 Im(z^2+c),c=-17/62+5/49*I,n=21 7014062770682572 a007 Real Root Of 68*x^4-137*x^3-917*x^2-673*x+954 7014062798300454 a007 Real Root Of 516*x^4-405*x^3-315*x^2-331*x+402 7014062802960956 m009 (5/12*Pi^2-5)/(4*Psi(1,2/3)+2/5) 7014062807847233 m001 GAMMA(13/24)/(KhinchinHarmonic+Lehmer) 7014062845833340 r008 a(0)=7,K{-n^6,-60+n-35*n^2+21*n^3} 7014062856921804 m001 Robbin*(arctan(1/2)+Gompertz) 7014062860200536 r009 Im(z^3+c),c=-14/25+14/53*I,n=19 7014062883553293 a007 Real Root Of 400*x^4-432*x^3+800*x^2+186*x-509 7014062897089192 m005 (1/3*3^(1/2)-1/10)/(1/7*5^(1/2)-1) 7014062903386752 a007 Real Root Of -746*x^4+643*x^3-111*x^2+37*x+483 7014062905687571 r005 Re(z^2+c),c=-41/54+7/55*I,n=5 7014062920990815 m005 (1/2*gamma-5/8)/(4/9*Pi-11/12) 7014062938020583 a003 sin(Pi*25/111)/sin(Pi*20/53) 7014062942995255 a007 Real Root Of -348*x^4+616*x^3-193*x^2+823*x+969 7014062960648975 r009 Im(z^3+c),c=-13/40+9/13*I,n=26 7014062961464107 a007 Real Root Of -849*x^4+61*x^3-741*x^2+151*x+697 7014062963028826 r009 Re(z^3+c),c=-45/74+22/35*I,n=14 7014062965594490 a007 Real Root Of -700*x^4+778*x^3+85*x^2+954*x-810 7014062977436589 r008 a(0)=7,K{-n^6,-12-51*n-30*n^2+21*n^3} 7014063013328601 h001 (-6*exp(2)-11)/(-10*exp(2)-5) 7014063016222890 l006 ln(2291/4620) 7014063028054432 r005 Im(z^2+c),c=-7/12+14/109*I,n=57 7014063060714310 r005 Re(z^2+c),c=-5/62+42/53*I,n=53 7014063063922768 a007 Real Root Of 545*x^4-386*x^3-356*x^2-832*x+760 7014063097969038 h002 exp(14^(12/5)-2^(5/6)) 7014063097969038 h007 exp(14^(12/5)-2^(5/6)) 7014063103383886 a007 Real Root Of 115*x^4-332*x^3+651*x^2-163*x-577 7014063105886958 r005 Re(z^2+c),c=-81/86+12/55*I,n=4 7014063106830319 r008 a(0)=7,K{-n^6,-37-34*n-39*n^2+40*n^3} 7014063108420197 m001 (Ei(1,1)-ln(2)/ln(10))/(gamma(2)+GAMMA(19/24)) 7014063112728215 m001 ErdosBorwein^(exp(Pi)*FibonacciFactorial) 7014063115658229 m001 1/GAMMA(7/12)*ln(GAMMA(5/24))/sinh(1)^2 7014063128384810 a001 1/10959*2584^(21/38) 7014063134005924 b008 7/InverseEllipticNomeQ[1/3] 7014063160867095 a003 sin(Pi*7/83)-sin(Pi*43/104) 7014063197095778 r005 Im(z^2+c),c=-7/11+2/15*I,n=39 7014063205402417 a007 Real Root Of -911*x^4+151*x^3+395*x^2-833*x-506 7014063218602792 a007 Real Root Of -82*x^4-504*x^3+386*x^2-701*x+646 7014063219107439 a007 Real Root Of -109*x^4-721*x^3+316*x^2+165*x+633 7014063219187598 a007 Real Root Of -456*x^4+357*x^3+336*x^2+31*x+90 7014063258292300 m001 (cos(1)-ln(Pi))^CareFree 7014063267593739 a001 12586269025/5778*521^(12/13) 7014063276524885 m005 (1/3*gamma-1/12)/(8/11*Catalan+8/9) 7014063284781516 q001 2793/3982 7014063299413456 a007 Real Root Of 529*x^4+99*x^3-311*x^2-589*x-354 7014063309069503 a007 Real Root Of 906*x^4-643*x^3+904*x^2+218*x-733 7014063313705185 r009 Re(z^3+c),c=-53/118+1/30*I,n=5 7014063332087343 r001 43i'th iterates of 2*x^2-1 of 7014063339770775 a007 Real Root Of -498*x^4+441*x^3+345*x^2-57*x+63 7014063339795372 a007 Real Root Of 355*x^4-778*x^3+54*x^2-941*x+816 7014063352048417 r008 a(0)=7,K{-n^6,-88+26*n^3-64*n^2+53*n} 7014063370007047 a007 Real Root Of -28*x^4-224*x^3-181*x^2+103*x+101 7014063432426911 r005 Re(z^2+c),c=-19/26+27/103*I,n=8 7014063447035842 a001 32951280099/15127*521^(12/13) 7014063448777270 l006 ln(5004/10091) 7014063459996712 m006 (exp(Pi)+5/6)/(5/6*Pi+4/5) 7014063473216092 a001 86267571272/39603*521^(12/13) 7014063474522437 m001 (Salem+Stephens)/(Pi-Cahen) 7014063477035739 a001 225851433717/103682*521^(12/13) 7014063477593018 a001 591286729879/271443*521^(12/13) 7014063477674324 a001 1548008755920/710647*521^(12/13) 7014063477686187 a001 4052739537881/1860498*521^(12/13) 7014063477687917 a001 2178309*521^(12/13) 7014063477688987 a001 6557470319842/3010349*521^(12/13) 7014063477693518 a001 2504730781961/1149851*521^(12/13) 7014063477724574 a001 956722026041/439204*521^(12/13) 7014063477937436 a001 365435296162/167761*521^(12/13) 7014063479396411 a001 139583862445/64079*521^(12/13) 7014063487593405 a007 Real Root Of 545*x^4+212*x^3+540*x^2-698*x-814 7014063489396377 a001 53316291173/24476*521^(12/13) 7014063512950318 r008 a(0)=7,K{-n^6,-27+24*n^3-68*n^2} 7014063546173041 a001 20365011074/843*521^(7/13) 7014063557937165 a001 20365011074/9349*521^(12/13) 7014063567225374 a007 Real Root Of 316*x^4-514*x^3+489*x^2+799*x+66 7014063575767297 r008 a(0)=7,K{-n^6,-47-63*n+52*n^2-14*n^3} 7014063584175961 m001 (Paris-Trott2nd)/(ln(2)+FellerTornier) 7014063584819544 a007 Real Root Of -518*x^4-133*x^3+763*x^2+352*x-451 7014063592943359 g007 Psi(2,5/7)-Psi(2,5/9)-Psi(2,1/7)-Psi(2,2/3) 7014063594762558 r008 a(0)=7,K{-n^6,-68+10*n^3-18*n^2+4*n} 7014063640441734 m005 (31/44+1/4*5^(1/2))/(7/8*Catalan+1) 7014063663714360 r008 a(0)=7,K{-n^6,-52-18*n^3+62*n^2-64*n} 7014063726427315 m001 ln(Porter)/CopelandErdos^2*Zeta(7)^2 7014063806388277 a007 Real Root Of 164*x^4+553*x^3+984*x^2+191*x-199 7014063810148008 a008 Real Root of (-6+5*x+4*x^3+6*x^4-2*x^5) 7014063814048941 l006 ln(2713/5471) 7014063814048941 p004 log(5471/2713) 7014063849416613 m005 (3/5*Catalan+3)/(3/4*2^(1/2)+4) 7014063899524937 q001 1/1425707 7014063903151657 a007 Real Root Of 592*x^4-378*x^3+705*x^2-454*x-939 7014063905855357 r008 a(0)=7,K{-n^6,-67-11*n^3+61*n^2-54*n} 7014063911411979 m004 -90*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 7014063925046811 m001 1/GAMMA(1/3)^2/Cahen*exp(sinh(1)) 7014063952421039 m001 (Zeta(3)+Cahen)/(Mills+PisotVijayaraghavan) 7014063958764190 r008 a(0)=7,K{-n^6,3+55*n^3-64*n^2-64*n} 7014063966099332 a007 Real Root Of -338*x^4+166*x^3-938*x^2-966*x-77 7014063969106494 m004 -100*Sqrt[5]*Pi+(5*Sin[Sqrt[5]*Pi])/Pi 7014063990166306 a007 Real Root Of 374*x^4-461*x^3+626*x^2-588*x-970 7014064025368660 a001 7778742049/2207*521^(11/13) 7014064027722747 a001 7778742049/3571*521^(12/13) 7014064028158958 a007 Real Root Of 410*x^4-584*x^3+755*x^2-4*x-675 7014064042068682 m001 (LaplaceLimit+TwinPrimes)/(2^(1/2)+Bloch) 7014064078216374 a007 Real Root Of -412*x^4+471*x^3+427*x^2+13*x-282 7014064108672766 r009 Im(z^3+c),c=-29/122+22/29*I,n=3 7014064190407500 q001 1945/2773 7014064218261997 r005 Re(z^2+c),c=-25/34+10/69*I,n=24 7014064222469265 m001 FeigenbaumDelta/Chi(1)/Kolakoski 7014064258854416 m001 ln(RenyiParking)^2*FeigenbaumC*GAMMA(5/12)^2 7014064260249904 a007 Real Root Of 522*x^4-815*x^3-148*x^2-381*x-602 7014064279926154 m001 GAMMA(5/6)+exp(1)^(Pi^(1/2)) 7014064279926154 m001 GAMMA(5/6)+exp(1)^sqrt(Pi) 7014064281653369 r008 a(0)=7,K{-n^6,-64-6*n-n^2-n^3} 7014064289103995 h001 (4/9*exp(2)+6/11)/(5/7*exp(2)+2/11) 7014064289375304 r008 a(0)=7,K{-n^6,-53+12*n-56*n^2+33*n^3} 7014064298379111 a005 (1/cos(11/162*Pi))^1491 7014064299035535 a007 Real Root Of -766*x^4+161*x^3-904*x^2-567*x+288 7014064311117888 a007 Real Root Of 958*x^4-265*x^3+779*x^2+611*x-278 7014064312860685 a001 3571/514229*377^(23/59) 7014064334187939 a007 Real Root Of -686*x^4+587*x^3-266*x^2-752*x-28 7014064349532130 a005 (1/cos(11/113*Pi))^41 7014064376012473 a007 Real Root Of 835*x^4+533*x^3+954*x^2-628*x-928 7014064380682258 a007 Real Root Of 76*x^4+645*x^3+848*x^2+490*x+342 7014064390397867 r002 19th iterates of z^2 + 7014064397085419 l006 ln(3135/6322) 7014064431909430 m005 (1/2*2^(1/2)-5/6)/(3/10*Pi+6/7) 7014064439498733 m001 (Rabbit+ZetaQ(2))/(2^(1/2)-FeigenbaumAlpha) 7014064474185182 b008 InverseJacobiSD[E^2,2+Pi] 7014064478544950 a007 Real Root Of -158*x^4-445*x^3-769*x^2+988*x+956 7014064483242095 a003 cos(Pi*15/61)*sin(Pi*37/85) 7014064491916205 a001 34/29*9349^(9/46) 7014064504021392 r009 Im(z^3+c),c=-39/56+8/27*I,n=2 7014064515505798 a007 Real Root Of 475*x^4+180*x^3-777*x^2-724*x+713 7014064524258328 a007 Real Root Of -238*x^4+988*x^3-377*x^2-77*x+530 7014064533863359 m001 Niven*Conway*ln(GAMMA(1/24)) 7014064537083228 a007 Real Root Of 779*x^4-389*x^3+281*x^2+87*x-400 7014064551780473 r005 Im(z^2+c),c=-7/86+33/47*I,n=22 7014064555256971 v002 sum(1/(3^n*(32*n^2-86*n+118)),n=1..infinity) 7014064563392593 a001 34/505019158607*47^(14/23) 7014064596100103 m001 1/Khintchine*exp(Si(Pi))/Tribonacci^2 7014064615173967 m001 (Pi-Zeta(3))/(Conway+MinimumGamma) 7014064637911960 a007 Real Root Of 106*x^4+792*x^3+393*x^2+450*x+561 7014064702846173 m008 (3/4*Pi^3-5/6)/(1/3*Pi^6-4/5) 7014064729217829 m001 (GAMMA(2/3)-ln(3))/(gamma(1)-FeigenbaumMu) 7014064741937822 h001 (-8*exp(1/3)-2)/(-7*exp(1/3)-9) 7014064776039066 a007 Real Root Of 912*x^4-642*x^3+894*x^2+636*x-436 7014064780144895 a001 14930208*322^(2/3) 7014064782650849 a001 9349/1346269*377^(23/59) 7014064785930841 m008 (1/5*Pi^4+4/5)/(Pi-1/4) 7014064841779792 l006 ln(3557/7173) 7014064841808006 h001 (-7*exp(3)+11)/(-9*exp(3)-4) 7014064851523464 r002 2th iterates of z^2 + 7014064866747191 a001 86267571272/521*199^(3/11) 7014064867164391 m001 GaussKuzminWirsing-MertensB2^ZetaR(2) 7014064878488641 m001 FransenRobinson^2/Conway*exp(GAMMA(3/4))^2 7014064893553263 a001 2161/311187*377^(23/59) 7014064915518454 a003 cos(2/5*Pi)+2*cos(5/24*Pi)-2*cos(8/27*Pi) 7014064937201614 a001 7/121393*365435296162^(11/14) 7014064961942567 a001 2584/521*2^(1/2) 7014064983842131 m001 ln(GAMMA(1/6))^2/BesselK(0,1)*Zeta(9) 7014064992908496 m001 (exp(1)-polylog(4,1/2))/(Khinchin+ZetaP(2)) 7014065007686916 a007 Real Root Of -575*x^4+466*x^3+499*x^2+725*x+563 7014065017528422 a007 Real Root Of 112*x^4+846*x^3+489*x^2+535*x+546 7014065033879455 r005 Re(z^2+c),c=-7/10+61/250*I,n=38 7014065035631059 r005 Re(z^2+c),c=-29/27+1/63*I,n=6 7014065051958330 r005 Im(z^2+c),c=3/32+43/62*I,n=3 7014065055593982 h001 (5/9*exp(2)+1/2)/(7/8*exp(2)+1/10) 7014065062787251 m001 (GAMMA(3/4)-MertensB2)/(PlouffeB-RenyiParking) 7014065072997138 a001 2889/416020*377^(23/59) 7014065083308463 r005 Im(z^2+c),c=-9/110+41/58*I,n=4 7014065086242068 a007 Real Root Of 238*x^4-961*x^3+6*x^2-670*x+741 7014065120919611 a007 Real Root Of 306*x^4-210*x^3-813*x^2-18*x+411 7014065151141904 m001 (Psi(2,1/3)+exp(-1/2*Pi))/(-Artin+ZetaP(2)) 7014065163031268 m001 (Rabbit+Trott2nd)/(Psi(1,1/3)+PrimesInBinary) 7014065192148428 l006 ln(3979/8024) 7014065222604614 m001 (gamma+Mills)/Khinchin 7014065227855675 p001 sum((-1)^n/(193*n+137)/(10^n),n=0..infinity) 7014065255283230 a001 10182505537/2889*521^(11/13) 7014065258732233 a007 Real Root Of 758*x^4+178*x^3+994*x^2-171*x-731 7014065260085836 a001 163427720560/233 7014065272097603 r002 57th iterates of z^2 + 7014065284386842 s002 sum(A220899[n]/(exp(2*pi*n)-1),n=1..infinity) 7014065305958990 r005 Im(z^2+c),c=-47/82+8/21*I,n=11 7014065309730301 r005 Im(z^2+c),c=-7/106+43/62*I,n=37 7014065343675551 l006 ln(6/6673) 7014065347630744 m001 ln(gamma)^(GaussAGM*Rabbit) 7014065364169233 r005 Im(z^2+c),c=-45/62+1/30*I,n=39 7014065366824065 s002 sum(A062618[n]/(n^2*exp(n)-1),n=1..infinity) 7014065379021273 s002 sum(A281748[n]/((2*n)!),n=1..infinity) 7014065379021277 s002 sum(A282363[n]/((2*n)!),n=1..infinity) 7014065397515645 r009 Im(z^3+c),c=-47/90+4/31*I,n=28 7014065400216582 a007 Real Root Of 915*x^4+868*x^3+579*x^2-6*x-211 7014065434725384 a001 53316291173/15127*521^(11/13) 7014065460905642 a001 139583862445/39603*521^(11/13) 7014065464725290 a001 182717648081/51841*521^(11/13) 7014065465282569 a001 956722026041/271443*521^(11/13) 7014065465363875 a001 2504730781961/710647*521^(11/13) 7014065465375738 a001 3278735159921/930249*521^(11/13) 7014065465378538 a001 10610209857723/3010349*521^(11/13) 7014065465383069 a001 4052739537881/1149851*521^(11/13) 7014065465414125 a001 387002188980/109801*521^(11/13) 7014065465626987 a001 591286729879/167761*521^(11/13) 7014065467085962 a001 225851433717/64079*521^(11/13) 7014065475325251 l006 ln(4401/8875) 7014065477085931 a001 21566892818/6119*521^(11/13) 7014065488949343 s002 sum(A281894[n]/((2*n)!),n=1..infinity) 7014065488949343 s002 sum(A282103[n]/((2*n)!),n=1..infinity) 7014065491784376 s001 sum(exp(-2*Pi)^(n-1)*A074418[n],n=1..infinity) 7014065492159191 a005 (1/cos(12/61*Pi))^336 7014065493886162 s002 sum(A282257[n]/((2*n)!),n=1..infinity) 7014065518304939 m001 (Kac+TwinPrimes)/(gamma(3)+FeigenbaumC) 7014065532296310 m001 Zeta(5)^2*exp(Champernowne)/log(2+sqrt(3))^2 7014065533862612 a001 10983760033/281*521^(6/13) 7014065545626738 a001 32951280099/9349*521^(11/13) 7014065565562193 s002 sum(A013461[n]/((2^n+1)/n),n=1..infinity) 7014065579908910 m001 (2^(1/3)+FransenRobinson)/(-Gompertz+Salem) 7014065592490668 m001 (FransenRobinson-Landau)/(Pi^(1/2)+Backhouse) 7014065596688160 a007 Real Root Of -505*x^4+684*x^3-228*x^2+621*x+906 7014065607750862 r009 Im(z^3+c),c=-31/58+8/59*I,n=34 7014065617846463 m001 (BesselI(0,1)+Pi^(1/2))/(-GAMMA(23/24)+Lehmer) 7014065625703544 m001 (BesselI(0,2)+Kac)/(1-2^(1/2)) 7014065659413073 s002 sum(A040684[n]/(n^3*exp(n)+1),n=1..infinity) 7014065708947592 l006 ln(4823/9726) 7014065716470030 r005 Re(z^2+c),c=-85/106+3/19*I,n=45 7014065722429146 a007 Real Root Of 998*x^4+292*x^3+473*x^2-5*x-377 7014065757928827 l006 ln(5863/6289) 7014065765872294 r002 22th iterates of z^2 + 7014065777994124 p004 log(30029/14891) 7014065783019145 a007 Real Root Of -608*x^4+29*x^3-687*x^2-177*x+371 7014065803635865 r009 Im(z^3+c),c=-13/38+31/44*I,n=36 7014065827747905 m001 Rabbit/ln(Kolakoski)/TreeGrowth2nd 7014065844417549 r008 a(0)=7,K{-n^6,-34-6*n-50*n^2+19*n^3} 7014065865108884 m001 (DuboisRaymond+Thue)/(cos(1/5*Pi)+ln(2)) 7014065872005691 r008 a(0)=7,K{-n^6,-39-40*n-15*n^2+20*n^3} 7014065913507040 p001 sum(1/(515*n+168)/(2^n),n=0..infinity) 7014065922244460 m001 (Psi(2,1/3)+PisotVijayaraghavan)/ZetaP(4) 7014065922482866 m001 1/GAMMA(23/24)^2/FeigenbaumD^2*ln(sin(Pi/5)) 7014066013058366 a001 12586269025/2207*521^(10/13) 7014066015412454 a001 12586269025/3571*521^(11/13) 7014066024230131 r005 Re(z^2+c),c=-11/14+6/181*I,n=35 7014066039241735 a007 Real Root Of 803*x^4+336*x^3-939*x^2-889*x-240 7014066046825678 a001 139583862445/322*123^(1/10) 7014066047730023 r005 Re(z^2+c),c=1/22+19/48*I,n=28 7014066050684379 a007 Real Root Of -804*x^4+708*x^3+35*x^2-845*x-171 7014066090421870 r008 a(0)=7,K{-n^6,-3+48*n^3-70*n^2-42*n} 7014066090797310 a007 Real Root Of -211*x^4+662*x^3-142*x^2+450*x+665 7014066090845507 s001 sum(exp(-2*Pi)^n*A074010[n],n=1..infinity) 7014066093760444 r002 15th iterates of z^2 + 7014066101281605 a007 Real Root Of 92*x^4-510*x^3+248*x^2-453*x-638 7014066118237399 r005 Im(z^2+c),c=-125/106+4/41*I,n=22 7014066137696424 m001 (FeigenbaumB+Gompertz)/(1+Zeta(5)) 7014066143398251 a007 Real Root Of -808*x^4-677*x^3-423*x^2+814*x+741 7014066146712821 r009 Im(z^3+c),c=-25/62+17/24*I,n=13 7014066148152463 a007 Real Root Of -926*x^4+580*x^3+317*x^2+517*x-38 7014066177592105 a007 Real Root Of 3*x^4-690*x^3+674*x^2-132*x-663 7014066207673229 a001 46/141*377^(4/31) 7014066216586328 a001 47/139583862445*377^(9/10) 7014066218777622 a007 Real Root Of 605*x^4+48*x^3+628*x^2-408*x-725 7014066233919411 a007 Real Root Of 255*x^4+19*x^3+35*x^2-795*x-630 7014066234978710 h001 (2/5*exp(1)+1/12)/(7/12*exp(1)+1/12) 7014066237671475 a007 Real Root Of -690*x^4+242*x^3+65*x^2+829*x+800 7014066259166182 r008 a(0)=7,K{-n^6,-28-18*n^3+51*n^2-19*n} 7014066270229193 r009 Im(z^3+c),c=-17/52+40/57*I,n=61 7014066276097677 a003 cos(Pi*7/118)*sin(Pi*21/83) 7014066302923755 a001 2207/317811*377^(23/59) 7014066330953500 a007 Real Root Of 334*x^4-793*x^3+646*x^2+210*x-525 7014066344207813 s001 sum(exp(-Pi)^n*A202835[n],n=1..infinity) 7014066344207813 s002 sum(A202835[n]/(exp(pi*n)),n=1..infinity) 7014066348982650 r005 Im(z^2+c),c=-79/126+15/64*I,n=13 7014066369969977 a007 Real Root Of 720*x^4-526*x^3+770*x^2+65*x-689 7014066375149715 m001 GAMMA(13/24)*BesselJ(1,1)^MertensB2 7014066378669323 m001 1/exp(cos(1))/arctan(1/2)^2*sin(Pi/12) 7014066399011715 a005 (1/cos(18/143*Pi))^913 7014066410400774 r008 a(0)=7,K{-n^6,-36-54*n-11*n^2+31*n^3} 7014066427794758 a007 Real Root Of 737*x^4+409*x^3+371*x^2-592*x-635 7014066447037001 m001 1/Khintchine^2*Conway/ln(BesselK(1,1))^2 7014066450408939 r002 13th iterates of z^2 + 7014066452108195 m001 Pi-2^(5/6)/arctan(1/2) 7014066468147848 m005 (1/2*5^(1/2)-1/10)/(10/11*Catalan-9/11) 7014066468397120 m001 (MasserGramain-exp(1))/(-Otter+ZetaQ(4)) 7014066487216601 r008 a(0)=7,K{-n^6,-41+20*n^3-40*n^2-11*n} 7014066496163682 q001 1097/1564 7014066497554837 r005 Im(z^2+c),c=-93/110+2/45*I,n=46 7014066506658058 m005 (1/3*gamma+1/11)/(3/5*3^(1/2)+3) 7014066517856971 a007 Real Root Of -230*x^4+236*x^3-809*x^2+64*x+580 7014066530990754 r008 a(0)=7,K{-n^6,-19-40*n-45*n^2+31*n^3} 7014066538623823 m001 Niven^3*exp(PisotVijayaraghavan)^2 7014066557315645 a007 Real Root Of -697*x^4+147*x^3+768*x^2+810*x-828 7014066567715060 m001 MinimumGamma*GolombDickman*ln(arctan(1/2)) 7014066574116220 a007 Real Root Of 342*x^4-805*x^3-597*x^2-488*x+831 7014066576578983 a007 Real Root Of 13*x^4+915*x^3+219*x^2-235*x+442 7014066598083969 a001 2/55*46368^(45/49) 7014066617331963 a003 cos(Pi*1/84)*cos(Pi*27/107) 7014066644957135 m001 ln(PrimesInBinary)^2*CareFree*GAMMA(17/24) 7014066669692800 m001 (Pi+Psi(2,1/3)*2^(1/2))*Zeta(1,2) 7014066675450573 r002 10th iterates of z^2 + 7014066699886652 m001 Trott/(GAMMA(19/24)^exp(1)) 7014066704101085 a007 Real Root Of -830*x^4+206*x^3-363*x^2-256*x+271 7014066736437235 a007 Real Root Of -86*x^4-725*x^3-792*x^2+304*x-930 7014066744059283 m001 Robbin*(GAMMA(3/4)+Zeta(1,-1)) 7014066750497667 a007 Real Root Of 74*x^4-733*x^3+957*x^2-96*x-809 7014066751257890 r005 Re(z^2+c),c=-37/58+17/46*I,n=8 7014066790072864 m001 Ei(1,1)^BesselI(1,1)*Ei(1,1)^KhinchinLevy 7014066809252863 a003 cos(Pi*16/67)*sin(Pi*49/120) 7014066826344264 a007 Real Root Of 475*x^4+178*x^3-481*x^2-991*x-512 7014066837317044 m005 (1/2*5^(1/2)-5/12)/(7/9*2^(1/2)-1/10) 7014066853458339 m001 BesselK(0,1)-FibonacciFactorial^BesselI(1,1) 7014066861354564 s002 sum(A197777[n]/(n^3*exp(n)+1),n=1..infinity) 7014066869363139 m001 (Zeta(1/2)+Trott2nd)/(Pi-ln(3)) 7014066898831243 r005 Im(z^2+c),c=-5/106+41/59*I,n=50 7014066903596895 a007 Real Root Of 723*x^4-568*x^3+998*x^2+57*x-822 7014066945697392 m001 (Catalan+GAMMA(19/24))/(-MertensB2+MertensB3) 7014066953466764 a007 Real Root Of 943*x^4-841*x^3+870*x^2+896*x-318 7014066994377636 a001 1/76*(1/2*5^(1/2)+1/2)^26*199^(9/16) 7014066998282265 a007 Real Root Of -453*x^4+907*x^3-301*x^2-644*x+119 7014067008314593 r008 a(0)=7,K{-n^6,-56-34*n-12*n^2+21*n^3} 7014067012120879 m001 (Riemann3rdZero+Thue)/(Zeta(1,2)+Mills) 7014067086816556 m001 CareFree-Paris^FeigenbaumAlpha 7014067100651643 r008 a(0)=7,K{-n^6,-28-40*n-46*n^2+44*n^3} 7014067147356898 m001 (ln(gamma)-gamma(3))/(Artin+ThueMorse) 7014067179095409 r009 Im(z^3+c),c=-51/94+9/41*I,n=25 7014067197003600 m001 TwinPrimes^ReciprocalLucas+sin(1/12*Pi) 7014067206751569 m006 (1/6*ln(Pi)-1/2)/(1/2/Pi-3/5) 7014067239379267 a007 Real Root Of 172*x^4-498*x^3+468*x^2-200*x-584 7014067242973285 a001 10983760033/1926*521^(10/13) 7014067247682724 a001 2971215073/1364*521^(12/13) 7014067252378910 m001 (FeigenbaumB-Lehmer)/(Magata+Trott) 7014067267879141 r002 4th iterates of z^2 + 7014067300517533 r008 a(0)=7,K{-n^6,-55+23*n^3-56*n^2+16*n} 7014067370922439 a007 Real Root Of -127*x^4-754*x^3+881*x^2-678*x-897 7014067386520326 a007 Real Root Of 841*x^4-392*x^3+530*x^2+544*x-218 7014067387725477 a007 Real Root Of 972*x^4+682*x^3+477*x^2-789*x-788 7014067410789959 r008 a(0)=7,K{-n^6,-32+20*n^3-18*n^2-43*n} 7014067422415489 a001 86267571272/15127*521^(10/13) 7014067425397144 a007 Real Root Of 211*x^4-653*x^3+938*x^2-234*x-902 7014067425739401 r008 a(0)=7,K{-n^6,-44-21*n-30*n^2+22*n^3} 7014067430135492 m004 (-4*Sec[Sqrt[5]*Pi])/3+25*Pi*Tan[Sqrt[5]*Pi] 7014067434807821 a007 Real Root Of 920*x^4-302*x^3+718*x^2+512*x-321 7014067448595755 a001 75283811239/13201*521^(10/13) 7014067450910244 a007 Real Root Of 410*x^4+296*x^3+56*x^2-893*x-651 7014067452415404 a001 591286729879/103682*521^(10/13) 7014067452972683 a001 516002918640/90481*521^(10/13) 7014067453053989 a001 4052739537881/710647*521^(10/13) 7014067453065852 a001 3536736619241/620166*521^(10/13) 7014067453073183 a001 6557470319842/1149851*521^(10/13) 7014067453104239 a001 2504730781961/439204*521^(10/13) 7014067453317101 a001 956722026041/167761*521^(10/13) 7014067454776077 a001 365435296162/64079*521^(10/13) 7014067464776049 a001 139583862445/24476*521^(10/13) 7014067471769667 r008 a(0)=7,K{-n^6,-58+n^3+21*n^2-36*n} 7014067477318688 a007 Real Root Of -483*x^4+194*x^3-710*x^2+322*x+759 7014067499225231 r008 a(0)=7,K{-n^6,-24+54*n^3-74*n^2-26*n} 7014067499599671 a003 sin(Pi*23/93)/sin(Pi*53/108) 7014067513535871 a007 Real Root Of -619*x^4+903*x^3+400*x^2-333*x-125 7014067519268350 r008 a(0)=7,K{-n^6,-53-44*n+34*n^2-9*n^3} 7014067521552745 a001 53316291173/843*521^(5/13) 7014067525435718 r005 Re(z^2+c),c=-17/122+40/61*I,n=54 7014067525662380 a007 Real Root Of 695*x^4+714*x^3+815*x^2-860*x-926 7014067533316875 a001 53316291173/9349*521^(10/13) 7014067541620710 m001 ln(FeigenbaumKappa)/FeigenbaumAlpha*gamma 7014067563429368 a007 Real Root Of -903*x^4+490*x^3-693*x^2-199*x+589 7014067590023724 a001 377/843*312119004989^(4/5) 7014067590023724 a001 377/843*(1/2+1/2*5^(1/2))^44 7014067590023724 a001 377/843*23725150497407^(11/16) 7014067590023724 a001 377/843*73681302247^(11/13) 7014067590023724 a001 377/843*10749957122^(11/12) 7014067590023724 a001 377/843*4106118243^(22/23) 7014067595349706 r008 a(0)=7,K{-n^6,-93+22*n^3-54*n^2+52*n} 7014067596943242 m005 (3/20+1/4*5^(1/2))/(31/55+1/5*5^(1/2)) 7014067603740397 m001 (sin(1/12*Pi)+GAMMA(19/24))/(MertensB3+Rabbit) 7014067616967937 m002 (-2*Pi^5)/3+Cosh[Pi]*Sinh[Pi] 7014067707552535 m001 Paris^2*Artin^2*exp(GAMMA(13/24)) 7014067755092421 m001 BesselK(0,1)/ln(FeigenbaumC)^2/GAMMA(13/24) 7014067776862095 m001 TreeGrowth2nd^2*ln(FeigenbaumB)^2*OneNinth 7014067806214314 a007 Real Root Of -867*x^4+515*x^3+487*x^2+457*x-528 7014067828048028 m001 (2/3)^GAMMA(13/24)/((2/3)^BesselJ(0,1)) 7014067865960819 a007 Real Root Of 267*x^4-333*x^3+559*x^2-608*x-881 7014067875154903 a003 cos(Pi*11/29)+cos(Pi*42/107) 7014067880127662 r005 Re(z^2+c),c=-29/48+17/45*I,n=6 7014067887666146 r005 Re(z^2+c),c=13/56+20/41*I,n=32 7014067888440098 r009 Im(z^3+c),c=-47/56+11/48*I,n=2 7014067901261513 a007 Real Root Of -780*x^4+874*x^3+636*x^2-62*x+134 7014067901993055 m001 Zeta(3)^2*ln(Ei(1))/log(2+sqrt(3)) 7014067918412140 r005 Re(z^2+c),c=11/62+2/7*I,n=13 7014067966983976 l006 ln(7198/7721) 7014067991238350 r008 a(0)=7,K{-n^6,-7+11*n^3+5*n^2-81*n} 7014068000748635 a001 20365011074/2207*521^(9/13) 7014068003102724 a001 20365011074/3571*521^(10/13) 7014068070030419 m002 6*Sinh[Pi]+Pi^2*Sech[Pi]*Tanh[Pi] 7014068078012314 a007 Real Root Of -724*x^4-107*x^3+444*x^2-54*x-118 7014068083378858 r005 Im(z^2+c),c=-6/25+39/40*I,n=4 7014068099952294 r005 Im(z^2+c),c=-13/102+29/41*I,n=19 7014068103063997 r009 Im(z^3+c),c=-65/126+31/49*I,n=36 7014068113961130 m005 (1/3*5^(1/2)+3/7)/(2/7*2^(1/2)-4/7) 7014068145373623 l006 ln(422/851) 7014068166908905 a007 Real Root Of -214*x^4+687*x^3+312*x^2+381*x-606 7014068180404887 m005 (1/3*5^(1/2)+3/5)/(1/3*exp(1)-5/7) 7014068194661416 a007 Real Root Of -599*x^4-828*x^3-725*x^2+683*x+695 7014068205655429 m001 gamma(1)*(sin(1/12*Pi)+CareFree) 7014068217962418 s001 sum(exp(-3*Pi)^(n-1)*A220326[n],n=1..infinity) 7014068227560617 m001 cos(1)^2/GAMMA(17/24)/exp(sinh(1)) 7014068230085317 m005 (1/2*gamma+9/10)/(6*exp(1)+7/11) 7014068250431033 a001 76*5702887^(1/7) 7014068283681657 r005 Re(z^2+c),c=23/122+16/53*I,n=45 7014068309580856 r002 6th iterates of z^2 + 7014068317793706 a007 Real Root Of -158*x^4+594*x^3+403*x^2+462*x+369 7014068323460111 a007 Real Root Of -105*x^4-840*x^3-874*x^2-957*x+563 7014068331897789 q001 2443/3483 7014068339467674 m001 (arctan(1/2)+Bloch)/(QuadraticClass+ZetaP(2)) 7014068372766861 r008 a(0)=7,K{-n^6,-95+9*n^3+49*n^2-86*n} 7014068394478609 r005 Im(z^2+c),c=11/42+31/64*I,n=35 7014068401838262 r008 a(0)=7,K{-n^6,-47-56*n+36*n^2-3*n^3} 7014068420247072 r005 Im(z^2+c),c=-81/110+13/61*I,n=19 7014068435667617 a007 Real Root Of 703*x^4-581*x^3+620*x^2+825*x-97 7014068458090593 r005 Im(z^2+c),c=-49/86+17/50*I,n=11 7014068460725791 r005 Re(z^2+c),c=17/42+9/62*I,n=56 7014068461005997 a007 Real Root Of 108*x^4+352*x^3+994*x^2-488*x-39 7014068472186931 b008 1+Root[1-3*#1+3*#1^5&,1,0] 7014068488928558 a001 1/615*2584^(8/43) 7014068504141340 r005 Re(z^2+c),c=-17/23+10/59*I,n=56 7014068513429870 a007 Real Root Of 550*x^4-659*x^3+498*x^2-196*x-743 7014068528137728 r008 a(0)=7,K{-n^6,-11+21*n^3+6*n^2-94*n} 7014068545207783 a007 Real Root Of 117*x^4-910*x^3-338*x^2-509*x+809 7014068562847642 g007 Psi(2,2/11)-Psi(2,9/11)-Psi(2,8/11)-Psi(2,1/8) 7014068615852298 r008 a(0)=7,K{-n^6,-2+32*n^3-58*n^2-44*n} 7014068618176385 m001 Sierpinski^2*GolombDickman^2/ln(Tribonacci)^2 7014068643473087 a007 Real Root Of -105*x^4-724*x^3+120*x^2+364*x+955 7014068643986199 r005 Re(z^2+c),c=-17/14+21/155*I,n=48 7014068652300376 a007 Real Root Of -571*x^4+495*x^3+636*x^2+697*x+485 7014068676453487 a007 Real Root Of 571*x^4-665*x^3+519*x^2-278*x-818 7014068693493741 m001 Pi*2^(1/3)/Zeta(1,2)/BesselK(1,1) 7014068701800327 m001 GAMMA(5/24)^2*exp(Riemann3rdZero)^2/Zeta(1/2) 7014068733528076 r008 a(0)=7,K{-n^6,-12-52*n-29*n^2+21*n^3} 7014068734854223 g006 2*Psi(1,11/12)+Psi(1,3/7)-Psi(1,1/4) 7014068749595349 m001 GAMMA(1/12)*exp(MinimumGamma)*sqrt(2) 7014068762589828 a007 Real Root Of 395*x^4-830*x^3+874*x^2-144*x-913 7014068779370542 m005 (1/2*5^(1/2)-3/8)/(1/8*Zeta(3)+10/11) 7014068799828857 a007 Real Root Of 968*x^4-819*x^3-535*x^2+711*x+245 7014068803548465 m001 (exp(1/exp(1))+Kolakoski)/(3^(1/2)-Zeta(1/2)) 7014068825300928 r008 a(0)=7,K{-n^6,-46+13*n^3-19*n^2-20*n} 7014068840434868 m008 (2/5*Pi^4+5)/(2*Pi^3+2/3) 7014068850957329 m001 (BesselI(1,1)+1/2)/(-Si(Pi)+1/3) 7014068863342670 a007 Real Root Of -793*x^4+241*x^3-458*x^2+199*x+640 7014068878956661 m001 Sierpinski^ln(3)/(FeigenbaumMu^ln(3)) 7014068891102013 p001 sum(1/(469*n+144)/(24^n),n=0..infinity) 7014068892054542 r005 Im(z^2+c),c=-9/10+9/163*I,n=29 7014068923235308 a007 Real Root Of 812*x^4+27*x^3-193*x^2-664*x-558 7014068937965075 a007 Real Root Of -970*x^4+182*x^3+59*x^2-179*x+143 7014068944726033 r008 a(0)=7,K{-n^6,-41-52*n+8*n^2+17*n^3} 7014068958011535 m001 (-PolyaRandomWalk3D+ZetaP(2))/(5^(1/2)-Cahen) 7014068986729941 r005 Im(z^2+c),c=-11/8+1/204*I,n=45 7014068986899644 r005 Re(z^2+c),c=-17/114+61/62*I,n=10 7014068987586568 m001 TreeGrowth2nd/Backhouse*exp(Zeta(1/2)) 7014068992032714 r009 Im(z^3+c),c=-13/56+25/33*I,n=3 7014069001641377 r005 Im(z^2+c),c=-3/52+42/61*I,n=64 7014069024100473 m001 (cos(1/5*Pi)+ln(3))/(PlouffeB-RenyiParking) 7014069024823276 m001 (Conway+ZetaP(4))/(Pi-GAMMA(19/24)) 7014069029824512 a007 Real Root Of -91*x^4-643*x^3-x^2+245*x+139 7014069057623177 r005 Re(z^2+c),c=-20/27+4/33*I,n=3 7014069072425783 m005 (1/3*Catalan+1/12)/(3/10*gamma-8/11) 7014069073672540 a001 341/2*55^(6/17) 7014069109126693 a007 Real Root Of 514*x^4-349*x^3+792*x^2+340*x-396 7014069133670410 a007 Real Root Of 123*x^4+775*x^3-588*x^2+102*x-630 7014069135644771 m006 (3/5*exp(2*Pi)+1/3)/(3/4*ln(Pi)-2/5) 7014069143479422 a007 Real Root Of 938*x^4-256*x^3+98*x^2-866*x-971 7014069157760840 a007 Real Root Of -835*x^4+366*x^3-725*x^2+17*x+697 7014069186058768 m001 Gompertz^ErdosBorwein*ln(5) 7014069195018143 a007 Real Root Of -527*x^4+495*x^3+x^2+944*x+960 7014069196411338 r008 a(0)=7,K{-n^6,-15+10*n^3+21*n^2-89*n} 7014069206303993 a007 Real Root Of -480*x^4-794*x^3-840*x^2+678*x+731 7014069229137953 m004 5/3+125*Pi-Cosh[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 7014069229952668 a007 Real Root Of -691*x^4-917*x^3-789*x^2+653*x+697 7014069229962118 m001 (sin(1/5*Pi)+cos(1/5*Pi))/(2^(1/2)+gamma) 7014069230663903 a001 53316291173/5778*521^(9/13) 7014069235373343 a001 1201881744/341*521^(11/13) 7014069235731440 r005 Re(z^2+c),c=-23/22+19/96*I,n=42 7014069238998398 a007 Real Root Of -899*x^4+649*x^3-908*x^2-535*x+513 7014069245848673 r008 a(0)=7,K{-n^6,-63+8*n-26*n^2+9*n^3} 7014069250732826 a007 Real Root Of -551*x^4+305*x^3+720*x^2+352*x-573 7014069253631086 m005 (27/44+1/4*5^(1/2))/(3/8*5^(1/2)+5/6) 7014069255816443 r008 a(0)=7,K{-n^6,-60-9*n^3+31*n^2-34*n} 7014069263277926 b008 47+E^Pi 7014069263277926 m002 -47-E^Pi 7014069269278340 r005 Im(z^2+c),c=-15/22+3/115*I,n=24 7014069324950373 a007 Real Root Of -837*x^4+388*x^3+470*x^2+618*x-596 7014069333226805 a007 Real Root Of -453*x^4+202*x^3-876*x^2-863*x+5 7014069336476700 m002 Pi^4/E^Pi+(3*Coth[Pi])/ProductLog[Pi] 7014069341118774 m001 (cos(1/5*Pi)-Bloch)/(Totient-Thue) 7014069355700425 a007 Real Root Of -613*x^4+862*x^3-401*x^2+495*x-299 7014069378153972 m001 (GAMMA(11/12)+Salem)/(exp(1)+arctan(1/2)) 7014069390093025 r005 Re(z^2+c),c=-7/10+37/129*I,n=56 7014069393225259 m001 (GaussAGM+TreeGrowth2nd)/(GAMMA(19/24)+Cahen) 7014069410106158 a001 139583862445/15127*521^(9/13) 7014069435195873 m001 1/GolombDickman^2/Cahen*exp(Sierpinski)^2 7014069435527945 r008 a(0)=7,K{-n^6,-45+11*n^3+13*n^2-42*n} 7014069436133766 r002 18th iterates of z^2 + 7014069436286431 a001 365435296162/39603*521^(9/13) 7014069440106081 a001 956722026041/103682*521^(9/13) 7014069440663361 a001 2504730781961/271443*521^(9/13) 7014069440744667 a001 6557470319842/710647*521^(9/13) 7014069440763860 a001 10610209857723/1149851*521^(9/13) 7014069440794916 a001 4052739537881/439204*521^(9/13) 7014069441007778 a001 140728068720/15251*521^(9/13) 7014069442466755 a001 591286729879/64079*521^(9/13) 7014069452466729 a001 7787980473/844*521^(9/13) 7014069475751130 r008 a(0)=7,K{-n^6,-42+20*n^3-40*n^2-10*n} 7014069484819450 l006 ln(8533/9153) 7014069486240261 r008 a(0)=7,K{-n^6,-57-35*n-3*n^2+25*n^3} 7014069509243442 a001 86267571272/843*521^(4/13) 7014069510592560 a007 Real Root Of -971*x^4+145*x^3-331*x^2-352*x+201 7014069512484942 a007 Real Root Of -560*x^4+812*x^3-19*x^2-559*x+33 7014069514292807 b008 68+21^(1/4) 7014069521007575 a001 86267571272/9349*521^(9/13) 7014069532438837 a007 Real Root Of -734*x^4-64*x^3-260*x^2+581*x+691 7014069554627175 m009 (1/10*Pi^2+1/6)/(8*Catalan+Pi^2-3/4) 7014069563008399 m001 Catalan^2*Bloch^2*exp(GAMMA(1/4)) 7014069583603559 r005 Im(z^2+c),c=-1/14+30/43*I,n=40 7014069601936860 m001 ln(Ei(1))*(3^(1/3))/GAMMA(1/4)^2 7014069636756944 r005 Re(z^2+c),c=3/26+15/31*I,n=25 7014069668533401 r008 a(0)=7,K{-n^6,-32+11*n^3-6*n^2-45*n} 7014069671950692 r005 Im(z^2+c),c=-29/26+7/82*I,n=40 7014069697662605 r009 Re(z^3+c),c=-2/19+9/19*I,n=17 7014069718858250 a007 Real Root Of -959*x^4+495*x^3-754*x^2-121*x+689 7014069720765725 m001 (Kac+Niven)/(gamma(2)-FellerTornier) 7014069735776537 r008 a(0)=7,K{-n^6,-7-50*n-51*n^2+35*n^3} 7014069747444169 a003 cos(Pi*25/107)*sin(Pi*37/94) 7014069781835280 m005 (1/2*5^(1/2)-3/5)/(4/5*3^(1/2)+6) 7014069788895809 a001 956722026041/2207*199^(1/11) 7014069800479557 a007 Real Root Of -133*x^4+292*x^3-759*x^2+527*x+876 7014069828035435 q001 1346/1919 7014069879163381 m001 (Trott+ZetaP(3))/(Mills+Totient) 7014069879701635 m001 (Kac+Otter)/(arctan(1/3)-FeigenbaumB) 7014069880754995 a007 Real Root Of -558*x^4-31*x^3-332*x^2+431*x+590 7014069893762481 a007 Real Root Of 560*x^4-759*x^3-720*x^2-434*x+785 7014069898024813 a007 Real Root Of -340*x^4+97*x^3-109*x^2+363*x+424 7014069934396114 m005 (1/2*Pi-1/12)/(3/8*Catalan-5/9) 7014069954649564 a007 Real Root Of 38*x^4-532*x^3-869*x^2-281*x+799 7014069957297919 m005 (1/3*exp(1)+1/10)/(7/10*2^(1/2)+4/9) 7014069959552951 m008 (2/3*Pi^2+1/5)/(Pi^4-3/4) 7014069970501161 m005 (1/2*2^(1/2)+1/2)/(7/10*exp(1)-2/11) 7014069970627717 m001 Catalan^GAMMA(13/24)/Champernowne 7014069975352875 h001 (3/7*exp(2)+1/5)/(5/8*exp(2)+2/11) 7014069979261609 s002 sum(A108495[n]/(n^2*2^n+1),n=1..infinity) 7014069980664616 a007 Real Root Of -662*x^4-83*x^3-603*x^2+607*x+854 7014069988439467 a001 32951280099/2207*521^(8/13) 7014069990793557 a001 32951280099/3571*521^(9/13) 7014070004457832 m001 Zeta(1,-1)/(GAMMA(23/24)+MertensB3) 7014070013866937 r008 a(0)=7,K{-n^6,-91+23*n^3-56*n^2+51*n} 7014070015954525 m002 -Cosh[Pi]+4*Log[Pi]-Tanh[Pi]/Pi^6 7014070025938674 r008 a(0)=7,K{-n^6,-36+29*n^3-37*n^2-31*n} 7014070068298524 r005 Re(z^2+c),c=-31/48+13/42*I,n=8 7014070123060720 m001 ln(gamma)^Catalan/(AlladiGrinstead^Catalan) 7014070124919566 m001 Pi^(1/2)/(ln(3)-Pi*2^(1/2)/GAMMA(3/4)) 7014070124919566 m001 sqrt(Pi)/(ln(3)-GAMMA(1/4)) 7014070137532490 a007 Real Root Of -76*x^4+198*x^3-970*x^2-449*x+249 7014070139044320 r002 32th iterates of z^2 + 7014070140701407 k006 concat of cont frac of 7014070148953501 a007 Real Root Of -406*x^4-14*x^3+474*x^2+784*x-680 7014070179941898 a007 Real Root Of -836*x^4-430*x^3-943*x^2+291*x+722 7014070187390226 a007 Real Root Of 950*x^4+172*x^3+77*x^2+685*x+272 7014070187879976 m001 5^(1/2)/(Thue-cos(1)) 7014070197523838 a007 Real Root Of -56*x^4-472*x^3-613*x^2-353*x+348 7014070204111948 m001 (FellerTornier+LandauRamanujan)/(1-ln(gamma)) 7014070223048757 a007 Real Root Of 678*x^4-564*x^3-80*x^2-239*x-487 7014070225767528 r008 a(0)=7,K{-n^6,-22-56*n-16*n^2+21*n^3} 7014070245426570 r008 a(0)=7,K{-n^6,-45+12*n^3-15*n^2-24*n} 7014070261567066 r005 Re(z^2+c),c=-17/15+17/39*I,n=4 7014070262535550 b008 20/3+Erf[Pi^(-1)] 7014070282677221 r008 a(0)=7,K{-n^6,-56+23*n^3-56*n^2+17*n} 7014070296248672 r005 Im(z^2+c),c=-3/4+5/88*I,n=12 7014070308211986 m005 (23/44+1/4*5^(1/2))/(61/70+3/10*5^(1/2)) 7014070373593416 m003 61/12+Sqrt[5]/8+4*Csch[1/2+Sqrt[5]/2] 7014070380318211 m001 (exp(1/Pi)+BesselI(1,2))/(1-gamma) 7014070417601874 a001 2971215073/322*322^(3/4) 7014070429400703 r008 a(0)=7,K{-n^6,-33+38*n^3-30*n^2-45*n} 7014070433086572 a007 Real Root Of -99*x^4-691*x^3-63*x^2-657*x-338 7014070433348379 r005 Im(z^2+c),c=-65/86+1/17*I,n=3 7014070480099636 a008 Real Root of (-2+x+x^2-5*x^3+2*x^4) 7014070489263599 r008 a(0)=7,K{-n^6,-37-35*n-38*n^2+40*n^3} 7014070492013601 a007 Real Root Of 255*x^4-952*x^3+763*x^2-842*x+482 7014070495443909 m001 (Pi+Zeta(3))/(BesselI(1,2)-GAMMA(7/12)) 7014070509867504 m005 (1/3*Catalan+1/9)/(1/9*Zeta(3)-8/11) 7014070518217079 m004 3+(75*Sqrt[5])/Pi+5*Pi-Log[Sqrt[5]*Pi] 7014070547425332 r008 a(0)=7,K{-n^6,-35-36*n-40*n^2+41*n^3} 7014070551861418 l006 ln(4883/9847) 7014070555253166 r008 a(0)=7,K{-n^6,-54-43*n+34*n^2-9*n^3} 7014070569733527 m005 (1/2*gamma-1)/(7/12*exp(1)-4/7) 7014070603837810 m001 (GAMMA(11/12)-Bloch)/(StronglyCareFree-Thue) 7014070614551814 m005 (1/2*exp(1)-1/11)/(4/9*exp(1)+3/5) 7014070629723465 a007 Real Root Of 484*x^4-422*x^3-89*x^2-298*x-428 7014070636592381 r005 Im(z^2+c),c=-93/110+2/45*I,n=50 7014070640522142 a007 Real Root Of -593*x^4+826*x^3+807*x^2+685*x+512 7014070653230711 a005 (1/cos(38/233*Pi))^366 7014070670800630 a007 Real Root Of -943*x^4+334*x^3+84*x^2-120*x+218 7014070701261347 r005 Re(z^2+c),c=-1/90+16/55*I,n=7 7014070712725263 r008 a(0)=7,K{-n^6,-29-39*n-46*n^2+44*n^3} 7014070728542614 a007 Real Root Of 653*x^4+26*x^3-313*x^2-362*x-249 7014070765532662 a007 Real Root Of 178*x^4-729*x^3-676*x^2-392*x+816 7014070779509415 l006 ln(4461/8996) 7014070797981257 a001 1364/5*377^(29/31) 7014070803886908 m001 exp(Zeta(1,2))*Champernowne^2*sinh(1) 7014070823703022 m001 GAMMA(5/24)/exp(Porter)^2*sqrt(3)^2 7014070827626041 a007 Real Root Of -829*x^4+207*x^3-350*x^2+520*x+809 7014070857314596 m001 (gamma(2)+Zeta(1,2))/(OneNinth+Trott2nd) 7014070860832179 a007 Real Root Of 57*x^4-216*x^3+154*x^2-941*x+645 7014070863188003 r002 4th iterates of z^2 + 7014070883946271 r005 Re(z^2+c),c=23/122+16/53*I,n=44 7014070912267167 m001 (Pi-Zeta(1,-1))/(MasserGramain-ZetaP(3)) 7014070935368706 m001 (GAMMA(5/6)-FeigenbaumC)/(Salem-ZetaP(3)) 7014070940172586 a007 Real Root Of 604*x^4+328*x^3+821*x^2+295*x-230 7014070943681691 m005 (1/2*3^(1/2)-2/5)/(4/7*exp(1)-8/9) 7014070963855122 a007 Real Root Of -260*x^4+942*x^3-569*x^2-938*x+10 7014070988334270 m009 (1/3*Psi(1,2/3)+1)/(5/6*Psi(1,3/4)-5) 7014071005781286 r009 Re(z^3+c),c=-1/106+26/35*I,n=36 7014071018811390 a001 2504730781961/5778*199^(1/11) 7014071018923290 r005 Re(z^2+c),c=8/19+9/64*I,n=4 7014071054727326 l006 ln(4039/8145) 7014071092196679 h005 exp(cos(Pi*1/30)+cos(Pi*4/41)) 7014071107897786 a007 Real Root Of -544*x^4+393*x^3-981*x^2-928*x+99 7014071128699032 r008 a(0)=7,K{-n^6,-47-8*n^3+34*n^2-51*n} 7014071145040791 a003 cos(Pi*25/99)*sin(Pi*56/113) 7014071160052698 r009 Re(z^3+c),c=-37/66+19/37*I,n=9 7014071188890330 m001 GAMMA(1/12)/RenyiParking/ln(GAMMA(5/24))^2 7014071190287303 a003 sin(Pi*1/45)/cos(Pi*1/30) 7014071198253691 a001 6557470319842/15127*199^(1/11) 7014071204652734 r008 a(0)=7,K{-n^6,-8+11*n^3+5*n^2-80*n} 7014071218355084 a001 43133785636/2889*521^(8/13) 7014071223064526 a001 7778742049/1364*521^(10/13) 7014071240614273 a001 10610209857723/24476*199^(1/11) 7014071246278842 m001 (cos(1/5*Pi)-Zeta(1/2))/(Artin-ArtinRank2) 7014071280438901 m008 (2/3*Pi^6-1/2)/(3*Pi^5-5) 7014071306854825 m001 (Ei(1)+exp(1/Pi))/(Weierstrass-ZetaQ(3)) 7014071309155137 a001 4052739537881/9349*199^(1/11) 7014071391776678 a007 Real Root Of -834*x^4-649*x^3-519*x^2+185*x+363 7014071394165275 l006 ln(3617/7294) 7014071397797390 a001 32264490531/2161*521^(8/13) 7014071411279315 r008 a(0)=7,K{-n^6,-67-17*n^3+53*n^2-41*n} 7014071423977670 a001 591286729879/39603*521^(8/13) 7014071427797322 a001 774004377960/51841*521^(8/13) 7014071428354601 a001 4052739537881/271443*521^(8/13) 7014071428435907 a001 1515744265389/101521*521^(8/13) 7014071428486157 a001 3278735159921/219602*521^(8/13) 7014071428699019 a001 2504730781961/167761*521^(8/13) 7014071430157996 a001 956722026041/64079*521^(8/13) 7014071432395750 a007 Real Root Of -830*x^4-835*x^3+130*x^2+783*x+398 7014071440157973 a001 182717648081/12238*521^(8/13) 7014071443519605 r009 Im(z^3+c),c=-15/34+38/61*I,n=5 7014071448099023 r009 Re(z^3+c),c=-9/86+22/47*I,n=13 7014071457537104 a003 sin(Pi*17/95)/cos(Pi*25/111) 7014071465562320 a007 Real Root Of -645*x^4+407*x^3-168*x^2+704*x+873 7014071470227113 a007 Real Root Of -748*x^4-974*x^3-12*x^2+820*x+426 7014071496934702 a001 139583862445/843*521^(3/13) 7014071504733841 m001 3^(1/2)-Zeta(5)^FeigenbaumB 7014071504905464 r005 Re(z^2+c),c=-3/28+25/32*I,n=32 7014071506660837 m001 (Chi(1)-Psi(1,1/3))/(BesselI(0,1)+ZetaQ(2)) 7014071508698839 a001 139583862445/9349*521^(8/13) 7014071517276645 r005 Re(z^2+c),c=-31/26+35/72*I,n=2 7014071522259302 r005 Re(z^2+c),c=-77/118+24/59*I,n=30 7014071525624653 p004 log(21031/10429) 7014071537858172 m005 (1/2*3^(1/2)+1/2)/(6/11*3^(1/2)-3/4) 7014071541648882 a007 Real Root Of 86*x^4+700*x^3+684*x^2-46*x-574 7014071595106591 a007 Real Root Of 288*x^4-527*x^3-754*x^2-573*x+885 7014071614114064 m005 (1/2*Pi+11/12)/(5/11*Zeta(3)+3) 7014071622095519 m001 1/ln(GAMMA(11/12))*DuboisRaymond^2*Zeta(9) 7014071675962624 a001 2/5*377^(27/31) 7014071695196189 m001 Riemann2ndZero^(Bloch*FeigenbaumKappa) 7014071722779551 a001 1/1563*(1/2*5^(1/2)+1/2)^9*3^(1/3) 7014071729569041 a003 sin(Pi*11/115)-sin(Pi*52/109) 7014071739384596 s002 sum(A216387[n]/(n*pi^n+1),n=1..infinity) 7014071744954142 a001 13/271443*7^(10/51) 7014071754216906 r002 6th iterates of z^2 + 7014071766644944 m001 Riemann2ndZero/(HeathBrownMoroz-ln(2)/ln(10)) 7014071778941238 a001 1548008755920/3571*199^(1/11) 7014071793182466 m009 (1/3*Pi^2-3)/(2*Catalan+1/4*Pi^2-1/6) 7014071802955313 r005 Im(z^2+c),c=-3/110+49/64*I,n=11 7014071823270072 l006 ln(3195/6443) 7014071825311543 r008 a(0)=7,K{-n^6,-42-16*n-41*n^2+26*n^3} 7014071828920080 p003 LerchPhi(1/12,4,279/143) 7014071843110793 m005 (1/2*Zeta(3)+3/5)/(2/5*exp(1)+5/8) 7014071910151007 m001 (GAMMA(2/3)+ZetaP(4))/(Chi(1)+Zeta(3)) 7014071938147388 m005 (-9/20+1/4*5^(1/2))/(5/7*Catalan+9/10) 7014071972072542 r002 7th iterates of z^2 + 7014071973460955 a007 Real Root Of 633*x^4+56*x^3+460*x^2-503*x-713 7014071974835426 a007 Real Root Of 277*x^4+40*x^3+726*x^2+933*x+244 7014071976130863 a001 53316291173/2207*521^(7/13) 7014071978484953 a001 53316291173/3571*521^(8/13) 7014072018968946 a007 Real Root Of -14*x^4-971*x^3+783*x^2+950*x-31 7014072031279891 s002 sum(A182451[n]/(n^2*exp(n)-1),n=1..infinity) 7014072104529361 a007 Real Root Of -336*x^4+838*x^3+375*x^2+67*x+233 7014072107854484 a007 Real Root Of 196*x^4+124*x^3+256*x^2-501*x-482 7014072111000910 m005 (1/2*gamma-5/11)/(7/10*Pi+1/6) 7014072113297933 b008 3*Sqrt[3]*E^(3/10) 7014072119121779 m001 1/Ei(1)/ln(Riemann3rdZero)^2*GAMMA(19/24)^2 7014072119613016 q001 1595/2274 7014072122241160 r009 Re(z^3+c),c=-3/26+33/59*I,n=24 7014072123980115 a007 Real Root Of -808*x^4+524*x^3+519*x^2-462*x-203 7014072129018138 a007 Real Root Of 904*x^4-945*x^3+179*x^2-30*x-654 7014072140688425 r005 Re(z^2+c),c=-17/22+19/93*I,n=7 7014072157331421 a007 Real Root Of -278*x^4+876*x^3+460*x^2+423*x-758 7014072167533205 a007 Real Root Of -599*x^4+682*x^3-241*x^2+224*x+656 7014072168070954 m001 (GAMMA(23/24)+Gompertz)/(cos(1)+Pi^(1/2)) 7014072177808205 a007 Real Root Of -61*x^4+725*x^3-971*x^2-815*x+171 7014072178394655 p004 log(17627/8741) 7014072187897880 r005 Im(z^2+c),c=-29/50+20/49*I,n=14 7014072196907952 a007 Real Root Of 465*x^4-776*x^3+875*x^2+781*x-263 7014072226153349 a007 Real Root Of 857*x^4-990*x^3-146*x^2+227*x-318 7014072228737452 p003 LerchPhi(1/1024,6,52/155) 7014072234272226 a007 Real Root Of 607*x^4-929*x^3+777*x^2+818*x-276 7014072238619962 a007 Real Root Of -584*x^4+369*x^3-415*x^2-888*x-150 7014072248700943 r002 49th iterates of z^2 + 7014072268622722 a003 sin(Pi*9/61)/cos(Pi*7/25) 7014072275986078 a007 Real Root Of -12*x^4-832*x^3+687*x^2+518*x-218 7014072278626462 a007 Real Root Of 468*x^4-632*x^3+664*x^2-335*x-893 7014072291627766 a007 Real Root Of 258*x^4-45*x^3+181*x^2-767*x-705 7014072293355550 r005 Re(z^2+c),c=-25/106+42/53*I,n=26 7014072361006062 p003 LerchPhi(1/10,10,93/113) 7014072361200958 r009 Im(z^3+c),c=-37/66+4/15*I,n=47 7014072366889634 a007 Real Root Of -67*x^4-443*x^3+173*x^2-9*x+723 7014072382978681 l006 ln(2773/5592) 7014072391366802 a003 sin(Pi*1/21)+sin(Pi*19/102) 7014072427573376 m001 (Si(Pi)-gamma)/(-GAMMA(19/24)+FeigenbaumKappa) 7014072447246116 a007 Real Root Of 571*x^4-726*x^3+988*x^2+138*x-778 7014072450148428 m001 1/Paris^2*Si(Pi)^2/ln(sqrt(1+sqrt(3))) 7014072461853414 r008 a(0)=7,K{-n^6,-7+37*n^3-75*n^2-27*n} 7014072480408058 r008 a(0)=7,K{-n^6,-47+13*n^3-19*n^2-19*n} 7014072495115440 a007 Real Root Of -125*x^4-902*x^3-293*x^2-769*x+311 7014072497219715 r008 a(0)=7,K{-n^6,-21-50*n-2*n^2+17*n^3} 7014072527547292 m001 (-GAMMA(13/24)+DuboisRaymond)/(Catalan+ln(Pi)) 7014072530291547 m001 (-Magata+Rabbit)/(5^(1/2)+ln(5)) 7014072543527478 r005 Im(z^2+c),c=-61/94+23/55*I,n=63 7014072558532581 m005 (1/2*2^(1/2)+1/8)/(1+1/12*5^(1/2)) 7014072569559818 a001 4/987*233^(52/55) 7014072587255359 a007 Real Root Of -73*x^4-564*x^3-398*x^2-222*x+89 7014072587622837 m001 (FeigenbaumD+Lehmer)/(Pi+GAMMA(7/12)) 7014072601948890 m001 LaplaceLimit^Zeta(5)/(LaplaceLimit^ZetaP(3)) 7014072620574018 r005 Re(z^2+c),c=-91/118+2/35*I,n=63 7014072623109372 a007 Real Root Of 250*x^4-812*x^3-910*x^2-916*x+69 7014072641756342 m005 (1/2*Catalan+6/7)/(3/7*5^(1/2)+11/12) 7014072661708566 b008 ArcCsch[1/3+Sqrt[Tanh[2]]] 7014072693495326 m001 (Kac-Psi(1,1/3))/(-OrthogonalArrays+ZetaQ(2)) 7014072745406233 a007 Real Root Of 900*x^4-8*x^3+50*x^2-503*x-598 7014072758457592 r005 Re(z^2+c),c=23/122+16/53*I,n=49 7014072782846807 r005 Re(z^2+c),c=-15/26+5/11*I,n=4 7014072783872499 m001 ThueMorse*(sin(1)+Thue) 7014072787528048 a008 Real Root of x^4-35*x^2-104*x+31 7014072800158581 a007 Real Root Of -786*x^4+58*x^3-62*x^2-396*x-37 7014072829681869 v002 sum(1/(5^n+(29*n^2-81*n+70)),n=1..infinity) 7014072836790071 m001 Riemann1stZero/(sin(1)+GAMMA(19/24)) 7014072848635138 s004 Continued Fraction of A111462 7014072848635138 s004 Continued fraction of A111462 7014072850403357 r002 20th iterates of z^2 + 7014072860150039 b008 6+Zeta[2*Pi] 7014072868591227 s002 sum(A013461[n]/((2^n-1)/n),n=1..infinity) 7014072874846242 a007 Real Root Of -938*x^4-267*x^3-189*x^2-198*x+89 7014072877866532 r009 Re(z^3+c),c=-9/74+18/29*I,n=20 7014072883807958 a007 Real Root Of 64*x^4-16*x^3+541*x^2+475*x+46 7014072911082403 a007 Real Root Of -330*x^4+740*x^3-569*x^2+320*x-120 7014072991216449 r005 Im(z^2+c),c=-7/6+1/11*I,n=39 7014072998084743 m005 (1/15+1/6*5^(1/2))/(3*5^(1/2)-4/9) 7014073000858135 a003 cos(Pi*3/65)-cos(Pi*35/86) 7014073041464169 a005 (1/sin(1/187*Pi))^14 7014073102671043 a007 Real Root Of -976*x^4+467*x^3-153*x^2+605*x+897 7014073116563092 r002 4th iterates of z^2 + 7014073129529527 a001 29/121393*3^(50/51) 7014073131042005 r005 Re(z^2+c),c=-13/14+67/231*I,n=17 7014073143620488 l006 ln(2351/4741) 7014073178957184 a007 Real Root Of 895*x^4-927*x^3+479*x^2+398*x-493 7014073186534773 m009 (2*Pi^2-1)/(3/5*Psi(1,2/3)+5/6) 7014073196820161 m001 1/RenyiParking^2*Rabbit^2*exp(GAMMA(23/24))^2 7014073199786708 r005 Re(z^2+c),c=-18/23+1/22*I,n=17 7014073206046828 a001 139583862445/5778*521^(7/13) 7014073210756271 a001 1144206275/124*521^(9/13) 7014073219441974 r008 a(0)=7,K{-n^6,-61-32*n^2+20*n^3} 7014073219461815 m002 ProductLog[Pi]+Sinh[Pi]/2+Tanh[Pi]/6 7014073247452885 m001 1/BesselJ(1,1)^2*Artin/ln(log(2+sqrt(3))) 7014073249885408 r009 Im(z^3+c),c=-19/56+43/61*I,n=61 7014073250724266 m001 1/HardHexagonsEntropy/Artin*ln(FeigenbaumC)^2 7014073251368551 r008 a(0)=7,K{-n^6,-3+22*n^3-27*n^2-64*n} 7014073256570702 m001 1/exp(FeigenbaumKappa)^2*Cahen*GAMMA(13/24) 7014073257694967 r005 Re(z^2+c),c=23/122+16/53*I,n=50 7014073266077399 m001 (3^(1/3)-Shi(1)*LaplaceLimit)/Shi(1) 7014073276627993 a001 39603*233^(29/55) 7014073280917929 m006 (4*ln(Pi)-1/4)/(3/5*Pi^2+1/4) 7014073299962354 a007 Real Root Of -582*x^4+982*x^3+74*x^2-86*x+383 7014073313991192 r002 5th iterates of z^2 + 7014073313991192 r002 5th iterates of z^2 + 7014073316234058 m005 (1/2*5^(1/2)-1/5)/(9/10*3^(1/2)-1/4) 7014073330822357 r005 Im(z^2+c),c=-17/62+5/49*I,n=18 7014073343160531 a007 Real Root Of 281*x^4-459*x^3-609*x^2-860*x-530 7014073374507721 a001 21/521*47^(23/31) 7014073380831622 r002 2th iterates of z^2 + 7014073385489185 a001 365435296162/15127*521^(7/13) 7014073396104237 a001 3/13*1548008755920^(2/7) 7014073411669473 a001 956722026041/39603*521^(7/13) 7014073415489125 a001 2504730781961/103682*521^(7/13) 7014073416046405 a001 6557470319842/271443*521^(7/13) 7014073416177961 a001 10610209857723/439204*521^(7/13) 7014073416390823 a001 4052739537881/167761*521^(7/13) 7014073417849800 a001 1548008755920/64079*521^(7/13) 7014073422308361 m001 KhinchinLevy-Salem*ThueMorse 7014073425692164 m001 cosh(1)*ln(GAMMA(3/4))*sqrt(5) 7014073427849781 a001 591286729879/24476*521^(7/13) 7014073428561998 a007 Real Root Of -866*x^4+540*x^3-611*x^2+186*x+827 7014073462988171 r005 Re(z^2+c),c=-81/106+17/38*I,n=4 7014073484626525 a001 267913919*521^(2/13) 7014073487678821 m005 (1/2*3^(1/2)+5/6)/(gamma-3) 7014073492845719 a007 Real Root Of 918*x^4-245*x^3+964*x^2-715*x-55 7014073496037582 a003 cos(Pi*12/97)-sin(Pi*47/100) 7014073496388004 a007 Real Root Of -621*x^4+572*x^3-600*x^2-476*x+309 7014073496390665 a001 225851433717/9349*521^(7/13) 7014073534740655 a001 2889/17*377^(37/59) 7014073545991489 a007 Real Root Of 95*x^4-298*x^3-24*x^2-911*x-753 7014073555422743 a007 Real Root Of -821*x^4+146*x^3+630*x^2+888*x+562 7014073561851892 m005 (1/2*exp(1)+5/12)/(6/11*Pi+9/11) 7014073565676058 r005 Im(z^2+c),c=-15/86+21/31*I,n=43 7014073581246263 r005 Im(z^2+c),c=-2/3+29/226*I,n=47 7014073610541875 g002 Psi(2/11)+Psi(8/9)+Psi(5/7)-Psi(9/10) 7014073636433941 r002 42th iterates of z^2 + 7014073636438151 l006 ln(4280/8631) 7014073667541536 a001 1/144*233^(14/33) 7014073671069845 r002 59th iterates of z^2 + 7014073673489078 m009 (6*Catalan+3/4*Pi^2+2/3)/(2*Pi^2-2/5) 7014073703629062 r009 Im(z^3+c),c=-37/66+4/15*I,n=63 7014073729376042 r009 Im(z^3+c),c=-65/114+6/29*I,n=3 7014073733525501 r009 Im(z^3+c),c=-7/74+19/25*I,n=5 7014073750758477 r005 Re(z^2+c),c=23/122+16/53*I,n=54 7014073756033630 a007 Real Root Of 4*x^4+291*x^3+739*x^2+499*x+869 7014073776563779 m001 LaplaceLimit*Rabbit^Zeta(1,-1) 7014073783423741 m001 (Pi+gamma(3))/(OneNinth+PolyaRandomWalk3D) 7014073790937833 a007 Real Root Of 895*x^4+562*x^3+524*x^2-792*x-836 7014073792316470 q001 1844/2629 7014073819553104 a007 Real Root Of -280*x^4-49*x^3-386*x^2-329*x+10 7014073821639861 r005 Im(z^2+c),c=-3/38+3/37*I,n=5 7014073829392072 a007 Real Root Of -329*x^4-219*x^3+75*x^2+997*x-581 7014073841473766 a007 Real Root Of -76*x^4+848*x^3-572*x^2-444*x+281 7014073850209405 a007 Real Root Of -402*x^4+525*x^3+863*x^2+45*x-540 7014073893597215 m002 -Pi^(-6)-Cosh[Pi]+4*Log[Pi] 7014073905583133 r005 Im(z^2+c),c=-81/122+6/61*I,n=16 7014073938891362 r005 Re(z^2+c),c=17/38+17/47*I,n=5 7014073941345132 a001 233802911/281*1364^(14/15) 7014073943495491 a003 sin(Pi*17/104)/cos(Pi*21/83) 7014073950259743 p003 LerchPhi(1/512,6,52/155) 7014073963822823 a001 86267571272/2207*521^(6/13) 7014073964358217 m001 Pi/Psi(2,1/3)/StolarskyHarborth 7014073964379307 r005 Re(z^2+c),c=23/122+16/53*I,n=53 7014073966176913 a001 86267571272/3571*521^(7/13) 7014073986996618 m001 1/exp(GAMMA(5/6))^2*BesselK(1,1)^2/cos(1) 7014073988145564 r005 Re(z^2+c),c=23/122+16/53*I,n=58 7014073993903855 r002 64th iterates of z^2 + 7014073995935821 r005 Re(z^2+c),c=23/122+16/53*I,n=59 7014073999871689 r005 Re(z^2+c),c=23/122+16/53*I,n=55 7014074001468124 r005 Im(z^2+c),c=-65/102+23/50*I,n=17 7014074005986539 r008 a(0)=7,K{-n^6,-88-12*n^3+94*n^2-64*n} 7014074013714589 r008 a(0)=7,K{-n^6,11+57*n^3-90*n^2-45*n} 7014074027124588 a003 cos(Pi*29/112)+cos(Pi*54/109) 7014074027704448 r005 Re(z^2+c),c=23/122+16/53*I,n=63 7014074031741193 b008 8/15+Sqrt[42] 7014074037733479 r005 Re(z^2+c),c=23/122+16/53*I,n=64 7014074038858830 m001 (ln(3)*Stephens+Magata)/Stephens 7014074042054331 r005 Re(z^2+c),c=23/122+16/53*I,n=62 7014074045946260 r005 Re(z^2+c),c=23/122+16/53*I,n=46 7014074054773364 a007 Real Root Of -691*x^4+443*x^3-256*x^2+526*x+815 7014074056469818 r005 Re(z^2+c),c=23/122+16/53*I,n=60 7014074069457846 r005 Re(z^2+c),c=23/122+16/53*I,n=61 7014074087037857 r005 Im(z^2+c),c=-17/27+7/53*I,n=58 7014074101908705 r005 Re(z^2+c),c=23/122+16/53*I,n=57 7014074102449611 a001 505019158607*144^(9/17) 7014074118183780 m001 1/ln(GolombDickman)^2*Conway^2*Catalan 7014074125762110 a007 Real Root Of 889*x^4+610*x^3+780*x^2-487*x-730 7014074128867762 a007 Real Root Of 704*x^4-435*x^3-54*x^2-700*x-49 7014074131748084 a007 Real Root Of -941*x^4+876*x^3+583*x^2+748*x-886 7014074147359566 a007 Real Root Of -106*x^4-732*x^3+127*x^2+321*x-31 7014074162003466 r005 Re(z^2+c),c=-51/70+15/58*I,n=24 7014074171749629 r005 Re(z^2+c),c=-17/118+40/51*I,n=42 7014074179328296 r005 Re(z^2+c),c=23/122+16/53*I,n=56 7014074189590529 r009 Re(z^3+c),c=-1/19+39/46*I,n=5 7014074190568382 a007 Real Root Of 331*x^4-602*x^3+529*x^2-141*x-647 7014074192678411 a001 1134903170/843*1364^(13/15) 7014074211012041 a001 47*(1/2*5^(1/2)+1/2)^32*64079^(14/15) 7014074216047119 a001 76/123*(1/2*5^(1/2)+1/2)^4*123^(7/12) 7014074237067628 l006 ln(1929/3890) 7014074298899737 a007 Real Root Of -870*x^4-902*x^3-895*x^2+404*x+623 7014074331639884 a007 Real Root Of 473*x^4+15*x^3+703*x^2-523*x-822 7014074332432259 r009 Im(z^3+c),c=-37/66+4/15*I,n=59 7014074334791362 r005 Re(z^2+c),c=-11/14+3/92*I,n=37 7014074360358976 p001 sum(1/(187*n+15)/(2^n),n=0..infinity) 7014074369859815 m005 (-25/44+1/4*5^(1/2))/(5/8*5^(1/2)-1/11) 7014074431140893 g007 Psi(2,2/5)-Psi(2,4/11)-Psi(2,8/9)-Psi(2,1/7) 7014074438145571 r008 a(0)=7,K{-n^6,-19-30*n-50*n^2+27*n^3} 7014074439159205 r005 Re(z^2+c),c=-11/12+14/121*I,n=50 7014074444011700 a001 1836311903/843*1364^(4/5) 7014074468061236 r004 Re(z^2+c),c=9/26+1/14*I,z(0)=exp(5/8*I*Pi),n=3 7014074476441356 r008 a(0)=7,K{-n^6,17+43*n^3-63*n^2-70*n} 7014074480045375 r005 Re(z^2+c),c=23/122+16/53*I,n=51 7014074489003680 a007 Real Root Of -329*x^4+63*x^3-260*x^2+865*x+836 7014074512976623 a001 51841/305*89^(6/19) 7014074532495939 r008 a(0)=7,K{-n^6,-48-8*n^3+34*n^2-50*n} 7014074557716895 a007 Real Root Of -758*x^4-53*x^3-121*x^2-500*x-126 7014074565270348 r005 Im(z^2+c),c=27/70+5/34*I,n=48 7014074566936152 r005 Re(z^2+c),c=23/122+16/53*I,n=52 7014074568317490 r002 6th iterates of z^2 + 7014074602306375 a007 Real Root Of 796*x^4-117*x^3-766*x^2-935*x-512 7014074632251002 m001 (3^(1/3)+Zeta(1,-1))/(gamma(1)-MadelungNaCl) 7014074639776473 m005 (1/2*exp(1)-1/10)/(7/8*exp(1)-7/12) 7014074682886274 r009 Im(z^3+c),c=-37/118+2/45*I,n=7 7014074690266347 m005 (1/2*3^(1/2)+11/12)/(Pi-3/5) 7014074695344997 a001 2971215073/843*1364^(11/15) 7014074696005531 m001 (FeigenbaumKappa+Lehmer)/(GAMMA(23/24)-Conway) 7014074696316927 a007 Real Root Of -421*x^4-705*x^3-919*x^2-31*x+289 7014074732966196 a001 843/121393*377^(23/59) 7014074750390039 r005 Im(z^2+c),c=-65/106+3/23*I,n=53 7014074759327595 a007 Real Root Of -885*x^4+92*x^3-803*x^2+712*x-46 7014074783096439 h001 (7/11*exp(2)+7/12)/(10/11*exp(2)+9/11) 7014074809713118 m001 (-Paris+ZetaQ(3))/(sin(1)+BesselJ(1,1)) 7014074868610144 r005 Re(z^2+c),c=23/122+16/53*I,n=48 7014074902654922 r005 Im(z^2+c),c=11/78+11/17*I,n=19 7014074904765485 m001 BesselJ(0,1)/MinimumGamma*Totient 7014074905213877 m001 Niven^TwinPrimes/(Niven^PisotVijayaraghavan) 7014074908024442 r005 Im(z^2+c),c=-13/18+43/127*I,n=10 7014074908206725 a007 Real Root Of 933*x^4-609*x^3+993*x^2-72*x-975 7014074911134171 r005 Im(z^2+c),c=-23/27+13/41*I,n=6 7014074915211846 m005 (1/2*3^(1/2)-6/11)/(9/11*Pi+2) 7014074932131171 s002 sum(A289264[n]/((2*n)!),n=1..infinity) 7014074933850263 s002 sum(A289097[n]/((2*n)!),n=1..infinity) 7014074946678303 a001 1602508992/281*1364^(2/3) 7014074947005333 m001 Ei(1)^FeigenbaumC*GAMMA(7/12)^FeigenbaumC 7014074953587613 a007 Real Root Of 664*x^4+385*x^3+932*x^2-229*x-647 7014074959956612 m001 (-MasserGramain+Totient)/(Catalan-gamma(1)) 7014074960997854 a007 Real Root Of 107*x^4+691*x^3-550*x^2-963*x-230 7014074972751636 a007 Real Root Of 706*x^4-595*x^3+966*x^2+243*x-681 7014074975574352 m001 (-Mills+Robbin)/(5^(1/2)-ln(2+3^(1/2))) 7014074978428929 m001 exp(Sierpinski)^2/FeigenbaumAlpha/Zeta(9) 7014074985232352 l006 ln(3436/6929) 7014074998408167 m001 3^(1/2)*ln(2+3^(1/2))*HardyLittlewoodC4 7014074998904774 a001 591286729879/1364*199^(1/11) 7014075017111760 m009 (4*Catalan+1/2*Pi^2+3)/(1/10*Pi^2+2/3) 7014075028478513 a007 Real Root Of -684*x^4+264*x^3-473*x^2+671*x+960 7014075031845716 r008 a(0)=7,K{-n^6,-11+19*n^3-40*n^2-46*n} 7014075046379941 a007 Real Root Of 262*x^4-246*x^3+126*x^2-78*x-265 7014075059901090 p003 LerchPhi(1/256,3,131/54) 7014075061353188 a007 Real Root Of 178*x^4-225*x^3-964*x^2-696*x+997 7014075067024128 q001 2093/2984 7014075098986060 a001 1/225749145909*46368^(9/10) 7014075101675669 m005 (1/2*Zeta(3)-4)/(5/11*gamma+2/9) 7014075106665531 m008 (2*Pi^4+1/2)/(5/6*Pi+1/6) 7014075116703414 r005 Im(z^2+c),c=-47/98+3/25*I,n=15 7014075117599149 m005 (1/2*gamma+1/3)/(2/7*Catalan+5/8) 7014075156246283 r009 Im(z^3+c),c=-37/66+4/15*I,n=55 7014075179316210 a007 Real Root Of -893*x^4-871*x^3-666*x^2+118*x+326 7014075188486450 s001 sum(exp(-2*Pi/5)^n*A201496[n],n=1..infinity) 7014075188486450 s002 sum(A201496[n]/(exp(2/5*pi*n)),n=1..infinity) 7014075190912370 r009 Im(z^3+c),c=-1/36+45/58*I,n=11 7014075193739136 a001 75283811239/1926*521^(6/13) 7014075194982602 m001 Zeta(1,2)*polylog(4,1/2)+KhinchinLevy 7014075198011619 a001 7778742049/843*1364^(3/5) 7014075198448580 a001 10182505537/682*521^(8/13) 7014075199382865 m001 Si(Pi)^2*ln(Backhouse)/FeigenbaumKappa^2 7014075220352398 m001 (Porter-ZetaQ(4))/(GAMMA(11/12)-MertensB2) 7014075239063429 r005 Im(z^2+c),c=-2/11+49/57*I,n=5 7014075241130917 m005 (23/30+1/6*5^(1/2))/(9/10*Catalan+4/5) 7014075251697836 a007 Real Root Of 768*x^4-62*x^3-747*x^2-870*x-450 7014075257320517 m001 1/log(1+sqrt(2))^2/ErdosBorwein*exp(sqrt(5))^2 7014075277202750 l006 ln(4943/9968) 7014075299468381 m004 -9+(Sqrt[5]*Pi)/2-ProductLog[Sqrt[5]*Pi] 7014075337167607 m005 (1/2*Pi-11/12)/(7/12*Pi-9/10) 7014075360321643 r005 Re(z^2+c),c=-3/28+25/32*I,n=41 7014075365170559 a003 cos(Pi*12/107)*sin(Pi*18/67) 7014075373181544 a001 591286729879/15127*521^(6/13) 7014075389190568 a007 Real Root Of -832*x^4+766*x^3+463*x^2-794*x-319 7014075390392742 a007 Real Root Of -247*x^4+201*x^3-79*x^2+987*x-663 7014075399361839 a001 516002918640/13201*521^(6/13) 7014075403181492 a001 4052739537881/103682*521^(6/13) 7014075403738772 a001 3536736619241/90481*521^(6/13) 7014075404083190 a001 6557470319842/167761*521^(6/13) 7014075404696105 b008 ProductLog[Sqrt[1+Coth[4]]] 7014075405542168 a001 2504730781961/64079*521^(6/13) 7014075415542151 a001 956722026041/24476*521^(6/13) 7014075426817711 r009 Im(z^3+c),c=-37/66+4/15*I,n=51 7014075437086482 m001 TwinPrimes^2*exp(Bloch)*Zeta(9)^2 7014075449344943 a001 12586269025/843*1364^(8/15) 7014075453926172 r005 Re(z^2+c),c=-15/86+39/53*I,n=17 7014075472318912 a001 365435296162/843*521^(1/13) 7014075484083055 a001 365435296162/9349*521^(6/13) 7014075493747230 m005 (1/3*exp(1)-1/11)/(3/8*exp(1)+1/7) 7014075493932233 r008 a(0)=7,K{-n^6,-58+21*n^3-69*n^2+34*n} 7014075497153870 m001 (sin(1/5*Pi)*Mills+ZetaR(2))/Mills 7014075507704578 r005 Im(z^2+c),c=-1/27+50/63*I,n=41 7014075517077121 r009 Re(z^3+c),c=-11/118+15/41*I,n=11 7014075524814843 r005 Re(z^2+c),c=-131/122+5/23*I,n=22 7014075525192585 a007 Real Root Of -501*x^4+970*x^3+124*x^2+380*x-541 7014075556613627 a007 Real Root Of 38*x^4+424*x^3+980*x^2-902*x-203 7014075589805627 r005 Im(z^2+c),c=19/54+7/16*I,n=8 7014075590307114 s002 sum(A238854[n]/(n^3*pi^n+1),n=1..infinity) 7014075631844432 p003 LerchPhi(1/256,5,89/33) 7014075669223939 r002 22th iterates of z^2 + 7014075681811819 m001 (-GolombDickman+RenyiParking)/(Catalan+sin(1)) 7014075686010360 r008 a(0)=7,K{-n^6,-33-20*n-43*n^2+32*n^3} 7014075688943212 m005 (-1/20+1/4*5^(1/2))/(8/9*2^(1/2)+6) 7014075695406506 m001 Kolakoski-gamma(2)^arctan(1/3) 7014075700678276 a001 20365011074/843*1364^(7/15) 7014075720476542 a007 Real Root Of 959*x^4-30*x^3-359*x^2+389*x+207 7014075724777893 r005 Re(z^2+c),c=-121/114+2/15*I,n=32 7014075729365042 a007 Real Root Of -239*x^4-136*x^3+2*x^2+616*x+442 7014075731290262 a005 (1/sin(85/197*Pi))^1858 7014075758709348 h001 (-3*exp(8)-1)/(-6*exp(3)-7) 7014075766399736 r005 Im(z^2+c),c=-39/58+3/58*I,n=11 7014075794744634 a007 Real Root Of -621*x^4+708*x^3-698*x^2-365*x+482 7014075797526459 a007 Real Root Of -510*x^4+728*x^3+788*x^2+442*x+297 7014075800125447 r005 Re(z^2+c),c=-17/114+28/37*I,n=17 7014075820696901 r005 Im(z^2+c),c=-81/122+2/33*I,n=24 7014075822169646 r008 a(0)=7,K{-n^6,-53+15*n^3+30*n^2-62*n} 7014075824564793 m001 ErdosBorwein^exp(1/exp(1))-GlaisherKinkelin 7014075826578144 a001 24476/55*17711^(2/43) 7014075860965888 a007 Real Root Of -235*x^4+44*x^3+500*x^2+788*x-757 7014075864831250 r005 Re(z^2+c),c=-3/28+25/32*I,n=35 7014075875940042 p001 sum(1/(204*n+149)/(10^n),n=0..infinity) 7014075925671537 a007 Real Root Of 681*x^4+348*x^3+338*x^2-335*x-446 7014075932589588 r005 Re(z^2+c),c=-3/28+25/32*I,n=47 7014075939378311 a003 cos(Pi*6/103)*cos(Pi*22/89) 7014075942902976 l006 ln(1507/3039) 7014075949530021 s002 sum(A017604[n]/(n*exp(pi*n)+1),n=1..infinity) 7014075951515345 a001 139583862445/2207*521^(5/13) 7014075952011619 a001 10983760033/281*1364^(2/5) 7014075953869436 a001 139583862445/3571*521^(6/13) 7014075999171599 a003 sin(Pi*15/61)/sin(Pi*37/79) 7014076012060321 m001 (-HardyLittlewoodC5+Kac)/(5^(1/2)+sin(1)) 7014076019986406 a001 377/2207*(1/2+1/2*5^(1/2))^46 7014076019986406 a001 377/2207*10749957122^(23/24) 7014076019999999 a001 329/281*2537720636^(14/15) 7014076019999999 a001 329/281*17393796001^(6/7) 7014076019999999 a001 329/281*45537549124^(14/17) 7014076019999999 a001 329/281*817138163596^(14/19) 7014076019999999 a001 329/281*14662949395604^(2/3) 7014076019999999 a001 329/281*(1/2+1/2*5^(1/2))^42 7014076019999999 a001 329/281*505019158607^(3/4) 7014076019999999 a001 329/281*192900153618^(7/9) 7014076019999999 a001 329/281*10749957122^(7/8) 7014076019999999 a001 329/281*4106118243^(21/23) 7014076019999999 a001 329/281*1568397607^(21/22) 7014076042864777 a007 Real Root Of -73*x^4-441*x^3+493*x^2-104*x-474 7014076046367395 s002 sum(A079433[n]/(exp(2*pi*n)-1),n=1..infinity) 7014076055063385 a001 1836311903/322*322^(5/6) 7014076064443368 r009 Im(z^3+c),c=-17/62+31/46*I,n=6 7014076069675419 s002 sum(A190424[n]/(exp(2*pi*n)-1),n=1..infinity) 7014076070679844 q001 2342/3339 7014076094327982 a001 41/48*55^(31/59) 7014076097112721 m001 Bloch*ReciprocalLucas^sin(1/5*Pi) 7014076100174570 r008 a(0)=7,K{-n^6,-42+20*n^3-39*n^2-11*n} 7014076106012197 r005 Re(z^2+c),c=-3/28+25/32*I,n=53 7014076106033644 r008 a(0)=7,K{-n^6,-49+20*n^3-26*n^2-18*n} 7014076135661317 r005 Re(z^2+c),c=-3/28+25/32*I,n=59 7014076138012791 r005 Re(z^2+c),c=-3/28+25/32*I,n=62 7014076145028557 m001 (sin(1/12*Pi)+Bloch)/(Psi(1,1/3)+arctan(1/3)) 7014076146997006 a007 Real Root Of -690*x^4+581*x^3+383*x^2+94*x+245 7014076148024792 r005 Re(z^2+c),c=-3/28+25/32*I,n=56 7014076166105037 a007 Real Root Of -441*x^4+577*x^3-286*x^2+675*x+920 7014076171219095 m001 (Conway+Kac)/(KhinchinLevy-MinimumGamma) 7014076174357687 p001 sum((-1)^n/(417*n+25)/n/(32^n),n=1..infinity) 7014076177180532 m001 DuboisRaymond^2/exp(CopelandErdos)*GAMMA(1/24) 7014076185420413 a007 Real Root Of -840*x^4+24*x^3+413*x^2-290*x-195 7014076194740865 a007 Real Root Of 950*x^4+304*x^3+468*x^2-88*x-417 7014076197948238 s002 sum(A213097[n]/(n^2*exp(n)-1),n=1..infinity) 7014076203344970 a001 53316291173/843*1364^(1/3) 7014076210645367 a007 Real Root Of -354*x^4+959*x^3-175*x^2+354*x+751 7014076222714541 m001 (cos(1)+ZetaP(2))/(Chi(1)+gamma) 7014076224171806 r005 Re(z^2+c),c=-3/28+25/32*I,n=50 7014076225444382 m005 (2/3*Catalan+3)/(2/3*gamma-1/3) 7014076234033969 a007 Real Root Of -24*x^4+643*x^3+497*x^2+722*x-967 7014076250759386 m001 1/Catalan^2*ln(Riemann2ndZero)*GAMMA(11/24) 7014076253213064 m001 (Trott-ZetaP(2))/(arctan(1/3)-sin(1/12*Pi)) 7014076266613410 h001 (5/9*exp(1)+1/3)/(9/10*exp(1)+2/11) 7014076279634661 m001 GAMMA(23/24)^Porter/(Mills^Porter) 7014076282208134 s002 sum(A198006[n]/(n*exp(n)-1),n=1..infinity) 7014076303680677 m001 (OrthogonalArrays-Thue)/(ln(gamma)+Bloch) 7014076307107606 m001 RenyiParking^2*Cahen^2*ln(GAMMA(2/3)) 7014076328090271 r005 Re(z^2+c),c=-11/12+14/121*I,n=52 7014076348560540 a007 Real Root Of 538*x^4-597*x^3-387*x^2-436*x+572 7014076361202859 p004 log(31727/15733) 7014076377602485 r005 Re(z^2+c),c=-5/8+112/253*I,n=60 7014076378609279 m001 CareFree-cos(1/12*Pi)-TreeGrowth2nd 7014076387385746 s002 sum(A192196[n]/(exp(2*pi*n)-1),n=1..infinity) 7014076407766742 m001 (-GolombDickman+ZetaQ(2))/(Catalan-GaussAGM) 7014076408704960 r009 Re(z^3+c),c=-37/110+39/58*I,n=32 7014076449771325 m001 (Totient+ZetaP(2))/(FeigenbaumC+Sarnak) 7014076454678330 a001 86267571272/843*1364^(4/15) 7014076514865908 a007 Real Root Of 101*x^4+764*x^3+394*x^2+81*x+363 7014076527640354 m001 (1/2*GAMMA(17/24)+sin(Pi/12))/GAMMA(17/24) 7014076534335875 a007 Real Root Of 397*x^4+345*x^3+974*x^2-128*x-546 7014076538505495 m005 (1/2*3^(1/2)-1/4)/(2/9*gamma+3/4) 7014076567934426 a007 Real Root Of -527*x^4+746*x^3-507*x^2+65*x+680 7014076570624300 r005 Re(z^2+c),c=-3/28+25/32*I,n=44 7014076598567755 a007 Real Root Of 2*x^4-856*x^3-429*x^2-174*x+628 7014076602763270 b008 7+(1+Pi)^(-3) 7014076614363254 r005 Re(z^2+c),c=11/36+23/60*I,n=50 7014076626513465 a007 Real Root Of 323*x^4+389*x^3-120*x^2-847*x-479 7014076663629247 m001 (cos(1/12*Pi)+Artin)/(FeigenbaumAlpha-Lehmer) 7014076664888820 m001 (sin(1)+Lehmer)/(-Riemann2ndZero+Stephens) 7014076669276732 r005 Im(z^2+c),c=-25/44+7/55*I,n=63 7014076706011700 a001 139583862445/843*1364^(1/5) 7014076713549151 a007 Real Root Of 629*x^4-960*x^3+703*x^2+404*x-546 7014076714400090 a007 Real Root Of -814*x^4+615*x^3-980*x^2-193*x+756 7014076721135366 m005 (1/2*gamma+4/7)/(5/11*2^(1/2)+7/12) 7014076728018112 a007 Real Root Of -744*x^4-93*x^3+755*x^2+963*x+452 7014076730194081 a007 Real Root Of -796*x^4-6*x^3+192*x^2-23*x+80 7014076745673401 l006 ln(4099/8266) 7014076752866302 m001 (arctan(1/3)+BesselI(0,2))/(Pi+LambertW(1)) 7014076756001189 m009 (5*Psi(1,2/3)+1/4)/(8*Catalan+Pi^2+5) 7014076760460348 m001 FeigenbaumB^(GAMMA(11/12)*FeigenbaumC) 7014076774160018 r002 19th iterates of z^2 + 7014076789313751 r005 Im(z^2+c),c=13/98+25/43*I,n=27 7014076804502077 m001 KomornikLoreti*(polylog(4,1/2)+Magata) 7014076805653037 s002 sum(A025261[n]/(n^3*pi^n+1),n=1..infinity) 7014076826315156 r005 Im(z^2+c),c=5/17+12/23*I,n=3 7014076834679618 a007 Real Root Of 320*x^4-690*x^3+627*x^2+298*x-415 7014076862307012 b008 (3*(23+E))/11 7014076867590282 a007 Real Root Of -837*x^4+614*x^3-567*x^2+420*x+988 7014076881429344 q001 2591/3694 7014076884310984 h001 (-4*exp(-3)-2)/(-exp(-2)-3) 7014076892648460 s002 sum(A236625[n]/(exp(2*pi*n)-1),n=1..infinity) 7014076902724442 a005 (1/sin(81/220*Pi))^726 7014076909962429 a001 1120148082521/1597 7014076921751211 a007 Real Root Of 957*x^4-641*x^3-522*x^2-844*x-788 7014076922320725 a007 Real Root Of -195*x^4+622*x^3+233*x^2+637*x+594 7014076925225138 b008 -6+Cot[1/2+E] 7014076936141755 a003 sin(Pi*6/79)-sin(Pi*12/31) 7014076939807314 r002 20th iterates of z^2 + 7014076942331308 a001 267914296/843*3571^(16/17) 7014076943838887 a007 Real Root Of -788*x^4+276*x^3-343*x^2-577*x+50 7014076955013231 r005 Re(z^2+c),c=-83/82+19/56*I,n=8 7014076957345078 a001 267913919*1364^(2/15) 7014076973903955 m005 (1/6*exp(1)+4/5)/(-21/8+3/8*5^(1/2)) 7014076974686342 a001 433494437/843*3571^(15/17) 7014076975769481 m001 exp(FeigenbaumC)/FransenRobinson^2/GAMMA(5/6) 7014076987549661 r002 49th iterates of z^2 + 7014076994734348 r008 a(0)=7,K{-n^6,15+52*n^3-91*n^2-49*n} 7014076996281252 r005 Re(z^2+c),c=23/122+16/53*I,n=47 7014077007041375 a001 233802911/281*3571^(14/17) 7014077007069129 r005 Im(z^2+c),c=23/62+7/50*I,n=49 7014077030623426 s002 sum(A216158[n]/(exp(2*pi*n)-1),n=1..infinity) 7014077032566023 m001 Zeta(1,2)/(exp(-1/2*Pi)+GAMMA(5/6)) 7014077039396409 a001 1134903170/843*3571^(13/17) 7014077040699829 m005 (1/2*exp(1)-4)/(10/11*Pi+10/11) 7014077048366652 m001 (ln(3)+Cahen)/(Riemann3rdZero-ZetaP(3)) 7014077070546469 v002 sum(1/(5^n+(11+17/2*n^2-7/2*n)),n=1..infinity) 7014077071751443 a001 1836311903/843*3571^(12/17) 7014077099282672 a007 Real Root Of -256*x^4+615*x^3-831*x^2-221*x+528 7014077104106477 a001 2971215073/843*3571^(11/17) 7014077114021517 r005 Im(z^2+c),c=-9/10+9/163*I,n=32 7014077117302338 r005 Im(z^2+c),c=31/70+16/43*I,n=8 7014077129612412 a007 Real Root Of 997*x^4-672*x^3+355*x^2-177*x-772 7014077136461511 a001 1602508992/281*3571^(10/17) 7014077142676750 h001 (3/10*exp(1)+2/5)/(2/9*exp(2)+1/11) 7014077145275793 r005 Im(z^2+c),c=-45/44+21/61*I,n=11 7014077157269272 r009 Im(z^3+c),c=-27/58+2/47*I,n=2 7014077168816546 a001 7778742049/843*3571^(9/17) 7014077169453059 s001 sum(exp(-2*Pi)^(n-1)*A223094[n],n=1..infinity) 7014077178345676 r005 Re(z^2+c),c=-3/28+25/32*I,n=38 7014077181432007 a001 182717648081/2889*521^(5/13) 7014077182395693 a007 Real Root Of -323*x^4-165*x^3+778*x^2+327*x-477 7014077186141453 a001 32951280099/1364*521^(7/13) 7014077195201712 a007 Real Root Of 464*x^4-582*x^3+921*x^2+103*x-694 7014077201171580 a001 12586269025/843*3571^(8/17) 7014077206678238 a007 Real Root Of 514*x^4-714*x^3+52*x^2-517*x-759 7014077208678466 a001 365435296162/843*1364^(1/15) 7014077211872206 s002 sum(A117665[n]/(exp(2*pi*n)-1),n=1..infinity) 7014077212407565 l006 ln(2592/5227) 7014077213179326 s002 sum(A068777[n]/(exp(2*pi*n)-1),n=1..infinity) 7014077213380816 p003 LerchPhi(1/2,1,383/171) 7014077214775138 m005 (1/2*Zeta(3)+3/5)/(1/3*gamma-4/11) 7014077233526615 a001 20365011074/843*3571^(7/17) 7014077243232365 m001 (-Cahen+PolyaRandomWalk3D)/(Ei(1)-Si(Pi)) 7014077249903080 a001 377/5778*45537549124^(16/17) 7014077249903080 a001 377/5778*14662949395604^(16/21) 7014077249903080 a001 377/5778*(1/2+1/2*5^(1/2))^48 7014077249903080 a001 377/5778*192900153618^(8/9) 7014077249903080 a001 377/5778*73681302247^(12/13) 7014077249916963 a001 2584/843*2537720636^(8/9) 7014077249916963 a001 2584/843*312119004989^(8/11) 7014077249916963 a001 2584/843*(1/2+1/2*5^(1/2))^40 7014077249916963 a001 2584/843*23725150497407^(5/8) 7014077249916963 a001 2584/843*73681302247^(10/13) 7014077249916963 a001 2584/843*28143753123^(4/5) 7014077249916963 a001 2584/843*10749957122^(5/6) 7014077249916963 a001 2584/843*4106118243^(20/23) 7014077249916963 a001 2584/843*1568397607^(10/11) 7014077249916963 a001 2584/843*599074578^(20/21) 7014077256621380 m001 (sin(1/5*Pi)+DuboisRaymond)^exp(1/exp(1)) 7014077265881650 a001 10983760033/281*3571^(6/17) 7014077266665537 m008 (2*Pi^4-1)/(4/5*Pi+1/4) 7014077297190012 r005 Re(z^2+c),c=29/126+17/35*I,n=26 7014077298236685 a001 53316291173/843*3571^(5/17) 7014077329542390 a007 Real Root Of -709*x^4-524*x^3-961*x^2-122*x+378 7014077330591720 a001 86267571272/843*3571^(4/17) 7014077332598118 m005 (1/2*exp(1)+5/8)/(5/7*2^(1/2)-8/11) 7014077335242995 r005 Re(z^2+c),c=-11/14+7/234*I,n=49 7014077340056560 m004 (125*Sqrt[5])/Pi+100*Pi*Log[Sqrt[5]*Pi] 7014077344106433 a001 9062201101803/34*6557470319842^(11/19) 7014077348087626 a007 Real Root Of 522*x^4+318*x^3+516*x^2-591*x-685 7014077352860600 s002 sum(A003759[n]/(exp(2*pi*n)-1),n=1..infinity) 7014077360874465 a001 956722026041/15127*521^(5/13) 7014077362946755 a001 139583862445/843*3571^(3/17) 7014077375179782 r005 Im(z^2+c),c=-59/122+7/58*I,n=25 7014077379748863 a001 2932585752473/4181 7014077381186304 r008 a(0)=7,K{-n^6,-71+12*n^3-12*n^2-2*n} 7014077383986388 a001 34111385/281*9349^(18/19) 7014077387054768 a001 2504730781961/39603*521^(5/13) 7014077388210026 a001 165580141/843*9349^(17/19) 7014077390874423 a001 3278735159921/51841*521^(5/13) 7014077391776121 a001 10610209857723/167761*521^(5/13) 7014077392433663 a001 267914296/843*9349^(16/19) 7014077393235099 a001 4052739537881/64079*521^(5/13) 7014077393657215 p003 LerchPhi(1/256,6,52/155) 7014077395301791 a001 267913919*3571^(2/17) 7014077396657301 a001 433494437/843*9349^(15/19) 7014077400880938 a001 233802911/281*9349^(14/19) 7014077403235085 a001 387002188980/6119*521^(5/13) 7014077405104576 a001 1134903170/843*9349^(13/19) 7014077408307055 a007 Real Root Of 165*x^4-901*x^3-433*x^2-907*x-774 7014077409328213 a001 1836311903/843*9349^(12/19) 7014077413551850 a001 2971215073/843*9349^(11/19) 7014077417775488 a001 1602508992/281*9349^(10/19) 7014077421999125 a001 7778742049/843*9349^(9/19) 7014077423599708 r008 a(0)=7,K{-n^6,-20-29*n-50*n^2+27*n^3} 7014077426222763 a001 12586269025/843*9349^(8/19) 7014077427656826 a001 365435296162/843*3571^(1/17) 7014077429345541 a001 377/15127*312119004989^(10/11) 7014077429345541 a001 377/15127*(1/2+1/2*5^(1/2))^50 7014077429345541 a001 377/15127*3461452808002^(5/6) 7014077429359429 a001 2255/281*817138163596^(2/3) 7014077429359429 a001 2255/281*(1/2+1/2*5^(1/2))^38 7014077429359429 a001 2255/281*10749957122^(19/24) 7014077429359429 a001 2255/281*4106118243^(19/23) 7014077429359429 a001 2255/281*1568397607^(19/22) 7014077429359429 a001 2255/281*599074578^(19/21) 7014077429359429 a001 2255/281*228826127^(19/20) 7014077430446400 a001 20365011074/843*9349^(7/19) 7014077434670037 a001 10983760033/281*9349^(6/19) 7014077438893675 a001 53316291173/843*9349^(5/19) 7014077442585111 s001 sum(exp(-2*Pi)^n*A092438[n],n=1..infinity) 7014077443117312 a001 86267571272/843*9349^(4/19) 7014077447340950 a001 139583862445/843*9349^(3/19) 7014077448289786 a001 295292660573/421 7014077448861206 a001 39088169/843*24476^(20/21) 7014077449418740 a001 63245986/843*24476^(19/21) 7014077449976273 a001 34111385/281*24476^(6/7) 7014077450533805 a001 165580141/843*24476^(17/21) 7014077451091338 a001 267914296/843*24476^(16/21) 7014077451564587 a001 267913919*9349^(2/19) 7014077451648871 a001 433494437/843*24476^(5/7) 7014077451966260 a007 Real Root Of -299*x^4+957*x^3+711*x^2-326*x-379 7014077452206404 a001 233802911/281*24476^(2/3) 7014077452763936 a001 1134903170/843*24476^(13/21) 7014077453321469 a001 1836311903/843*24476^(4/7) 7014077453879002 a001 2971215073/843*24476^(11/21) 7014077454436535 a001 1602508992/281*24476^(10/21) 7014077454994067 a001 7778742049/843*24476^(3/7) 7014077455525844 a001 377/39603*(1/2+1/2*5^(1/2))^52 7014077455525844 a001 377/39603*23725150497407^(13/16) 7014077455525844 a001 377/39603*505019158607^(13/14) 7014077455539732 a001 17711/843*141422324^(12/13) 7014077455539732 a001 17711/843*2537720636^(4/5) 7014077455539732 a001 17711/843*45537549124^(12/17) 7014077455539732 a001 17711/843*14662949395604^(4/7) 7014077455539732 a001 17711/843*(1/2+1/2*5^(1/2))^36 7014077455539732 a001 17711/843*505019158607^(9/14) 7014077455539732 a001 17711/843*192900153618^(2/3) 7014077455539732 a001 17711/843*73681302247^(9/13) 7014077455539732 a001 17711/843*10749957122^(3/4) 7014077455539732 a001 17711/843*4106118243^(18/23) 7014077455539732 a001 17711/843*1568397607^(9/11) 7014077455539732 a001 17711/843*599074578^(6/7) 7014077455539732 a001 17711/843*228826127^(9/10) 7014077455539733 a001 17711/843*87403803^(18/19) 7014077455551600 a001 12586269025/843*24476^(8/21) 7014077455788224 a001 365435296162/843*9349^(1/19) 7014077455900140 a001 370248451/233*34^(8/19) 7014077456109133 a001 20365011074/843*24476^(1/3) 7014077456666665 a001 10983760033/281*24476^(2/7) 7014077457224198 a001 53316291173/843*24476^(5/21) 7014077457781731 a001 86267571272/843*24476^(4/21) 7014077458289772 a001 20100241772221/28657 7014077458339264 a001 139583862445/843*24476^(1/7) 7014077458377924 a001 4976784/281*64079^(22/23) 7014077458452202 a001 24157817/843*64079^(21/23) 7014077458526468 a001 39088169/843*64079^(20/23) 7014077458600739 a001 63245986/843*64079^(19/23) 7014077458675008 a001 34111385/281*64079^(18/23) 7014077458749278 a001 165580141/843*64079^(17/23) 7014077458823548 a001 267914296/843*64079^(16/23) 7014077458896796 a001 267913919*24476^(2/21) 7014077458897817 a001 433494437/843*64079^(15/23) 7014077458972087 a001 233802911/281*64079^(14/23) 7014077459046357 a001 1134903170/843*64079^(13/23) 7014077459120626 a001 1836311903/843*64079^(12/23) 7014077459194896 a001 2971215073/843*64079^(11/23) 7014077459269166 a001 1602508992/281*64079^(10/23) 7014077459343435 a001 7778742049/843*64079^(9/23) 7014077459345498 a001 377/103682*14662949395604^(6/7) 7014077459345498 a001 377/103682*(1/2+1/2*5^(1/2))^54 7014077459359387 a001 15456/281*45537549124^(2/3) 7014077459359387 a001 15456/281*(1/2+1/2*5^(1/2))^34 7014077459359387 a001 15456/281*10749957122^(17/24) 7014077459359387 a001 15456/281*4106118243^(17/23) 7014077459359387 a001 15456/281*1568397607^(17/22) 7014077459359387 a001 15456/281*599074578^(17/21) 7014077459359387 a001 15456/281*228826127^(17/20) 7014077459359388 a001 15456/281*87403803^(17/19) 7014077459359393 a001 15456/281*33385282^(17/18) 7014077459417705 a001 12586269025/843*64079^(8/23) 7014077459454329 a001 365435296162/843*24476^(1/21) 7014077459491974 a001 20365011074/843*64079^(7/23) 7014077459566244 a001 10983760033/281*64079^(6/23) 7014077459640514 a001 53316291173/843*64079^(5/23) 7014077459714783 a001 86267571272/843*64079^(4/23) 7014077459748750 a001 10524623228353/15005 7014077459789053 a001 139583862445/843*64079^(3/23) 7014077459812482 a001 39088169/843*167761^(4/5) 7014077459862328 a001 433494437/843*167761^(3/5) 7014077459863323 a001 267913919*64079^(2/23) 7014077459902778 a001 377/271443*14662949395604^(8/9) 7014077459902778 a001 377/271443*(1/2+1/2*5^(1/2))^56 7014077459912173 a001 1602508992/281*167761^(2/5) 7014077459916667 a001 121393/843*(1/2+1/2*5^(1/2))^32 7014077459916667 a001 121393/843*23725150497407^(1/2) 7014077459916667 a001 121393/843*505019158607^(4/7) 7014077459916667 a001 121393/843*73681302247^(8/13) 7014077459916667 a001 121393/843*10749957122^(2/3) 7014077459916667 a001 121393/843*4106118243^(16/23) 7014077459916667 a001 121393/843*1568397607^(8/11) 7014077459916667 a001 121393/843*599074578^(16/21) 7014077459916667 a001 121393/843*228826127^(4/5) 7014077459916668 a001 121393/843*87403803^(16/19) 7014077459916673 a001 121393/843*33385282^(8/9) 7014077459916708 a001 121393/843*12752043^(16/17) 7014077459937592 a001 365435296162/843*64079^(1/23) 7014077459961612 a001 68884553326537/98209 7014077459962017 a001 53316291173/843*167761^(1/5) 7014077459979498 a001 5702887/843*439204^(8/9) 7014077459983583 a001 24157817/843*439204^(7/9) 7014077459984084 a001 377/710647*(1/2+1/2*5^(1/2))^58 7014077459987621 a001 34111385/281*439204^(2/3) 7014077459991661 a001 433494437/843*439204^(5/9) 7014077459992668 a001 360684203817457/514229 7014077459995701 a001 1836311903/843*439204^(4/9) 7014077459995947 a001 377/1860498*14662949395604^(20/21) 7014077459995947 a001 377/1860498*(1/2+1/2*5^(1/2))^60 7014077459997199 a001 944283504799297/1346269 7014077459997678 a001 377/4870847*(1/2+1/2*5^(1/2))^62 7014077459997860 a001 1236083155290217/1762289 7014077459997871 a001 377*7881196^(10/11) 7014077459997930 a001 377/12752043*(1/2+1/2*5^(1/2))^64 7014077459997959 a001 377*20633239^(6/7) 7014077459997973 a001 377*141422324^(10/13) 7014077459997973 a001 377*2537720636^(2/3) 7014077459997973 a001 377*45537549124^(10/17) 7014077459997973 a001 377*312119004989^(6/11) 7014077459997973 a001 377*14662949395604^(10/21) 7014077459997973 a001 377*(1/2+1/2*5^(1/2))^30 7014077459997973 a001 377*192900153618^(5/9) 7014077459997973 a001 377*28143753123^(3/5) 7014077459997973 a001 377*10749957122^(5/8) 7014077459997973 a001 377*4106118243^(15/23) 7014077459997973 a001 377*1568397607^(15/22) 7014077459997973 a001 377*599074578^(5/7) 7014077459997973 a001 377*228826127^(3/4) 7014077459997974 a001 377*87403803^(15/19) 7014077459997978 a001 377*33385282^(5/6) 7014077459998011 a001 377*12752043^(15/17) 7014077459998016 a001 4000049116361571/5702887 7014077459998086 a001 377/7881196*(1/2+1/2*5^(1/2))^63 7014077459998250 a001 377*4870847^(15/16) 7014077459998269 a001 1527882805781137/2178309 7014077459998747 a001 377/3010349*(1/2+1/2*5^(1/2))^61 7014077459999742 a001 7778742049/843*439204^(1/3) 7014077460003278 a001 377/1149851*(1/2+1/2*5^(1/2))^59 7014077460003782 a001 10983760033/281*439204^(2/9) 7014077460007822 a001 139583862445/843*439204^(1/9) 7014077460009822 a001 832040/843*20633239^(4/5) 7014077460009836 a001 832040/843*17393796001^(4/7) 7014077460009836 a001 832040/843*14662949395604^(4/9) 7014077460009836 a001 832040/843*(1/2+1/2*5^(1/2))^28 7014077460009836 a001 832040/843*505019158607^(1/2) 7014077460009836 a001 832040/843*73681302247^(7/13) 7014077460009836 a001 832040/843*10749957122^(7/12) 7014077460009836 a001 832040/843*4106118243^(14/23) 7014077460009836 a001 832040/843*1568397607^(7/11) 7014077460009836 a001 832040/843*599074578^(2/3) 7014077460009836 a001 832040/843*228826127^(7/10) 7014077460009836 a001 832040/843*87403803^(14/19) 7014077460009840 a001 832040/843*33385282^(7/9) 7014077460009871 a001 832040/843*12752043^(14/17) 7014077460010094 a001 832040/843*4870847^(7/8) 7014077460011566 a001 726103/281*141422324^(2/3) 7014077460011566 a001 726103/281*(1/2+1/2*5^(1/2))^26 7014077460011566 a001 726103/281*73681302247^(1/2) 7014077460011566 a001 726103/281*10749957122^(13/24) 7014077460011566 a001 726103/281*4106118243^(13/23) 7014077460011566 a001 726103/281*1568397607^(13/22) 7014077460011566 a001 726103/281*599074578^(13/21) 7014077460011566 a001 726103/281*228826127^(13/20) 7014077460011567 a001 726103/281*87403803^(13/19) 7014077460011571 a001 726103/281*33385282^(13/18) 7014077460011599 a001 726103/281*12752043^(13/17) 7014077460011727 a001 832040/843*1860498^(14/15) 7014077460011737 a001 5702887/843*7881196^(8/11) 7014077460011780 a001 4976784/281*7881196^(2/3) 7014077460011792 a001 24157817/843*7881196^(7/11) 7014077460011800 a001 34111385/281*7881196^(6/11) 7014077460011806 a001 726103/281*4870847^(13/16) 7014077460011811 a001 433494437/843*7881196^(5/11) 7014077460011819 a001 5702887/843*141422324^(8/13) 7014077460011819 a001 5702887/843*2537720636^(8/15) 7014077460011819 a001 5702887/843*45537549124^(8/17) 7014077460011819 a001 5702887/843*14662949395604^(8/21) 7014077460011819 a001 5702887/843*(1/2+1/2*5^(1/2))^24 7014077460011819 a001 5702887/843*192900153618^(4/9) 7014077460011819 a001 5702887/843*73681302247^(6/13) 7014077460011819 a001 5702887/843*10749957122^(1/2) 7014077460011819 a001 5702887/843*4106118243^(12/23) 7014077460011819 a001 5702887/843*1568397607^(6/11) 7014077460011819 a001 5702887/843*599074578^(4/7) 7014077460011819 a001 5702887/843*228826127^(3/5) 7014077460011819 a001 5702887/843*87403803^(12/19) 7014077460011821 a001 1836311903/843*7881196^(4/11) 7014077460011823 a001 5702887/843*33385282^(2/3) 7014077460011824 a001 2971215073/843*7881196^(1/3) 7014077460011831 a001 7778742049/843*7881196^(3/11) 7014077460011841 a001 10983760033/281*7881196^(2/11) 7014077460011849 a001 5702887/843*12752043^(12/17) 7014077460011852 a001 39088169/843*20633239^(4/7) 7014077460011852 a001 139583862445/843*7881196^(1/11) 7014077460011854 a001 24157817/843*20633239^(3/5) 7014077460011855 a001 433494437/843*20633239^(3/7) 7014077460011855 a001 233802911/281*20633239^(2/5) 7014077460011856 a001 4976784/281*312119004989^(2/5) 7014077460011856 a001 4976784/281*(1/2+1/2*5^(1/2))^22 7014077460011856 a001 4976784/281*10749957122^(11/24) 7014077460011856 a001 4976784/281*4106118243^(11/23) 7014077460011856 a001 4976784/281*1568397607^(1/2) 7014077460011856 a001 4976784/281*599074578^(11/21) 7014077460011856 a001 4976784/281*228826127^(11/20) 7014077460011856 a001 4976784/281*87403803^(11/19) 7014077460011857 a001 1602508992/281*20633239^(2/7) 7014077460011859 a001 20365011074/843*20633239^(1/5) 7014077460011859 a001 4976784/281*33385282^(11/18) 7014077460011860 a001 53316291173/843*20633239^(1/7) 7014077460011861 a001 39088169/843*2537720636^(4/9) 7014077460011861 a001 39088169/843*(1/2+1/2*5^(1/2))^20 7014077460011861 a001 39088169/843*23725150497407^(5/16) 7014077460011861 a001 39088169/843*505019158607^(5/14) 7014077460011861 a001 39088169/843*73681302247^(5/13) 7014077460011861 a001 39088169/843*28143753123^(2/5) 7014077460011861 a001 39088169/843*10749957122^(5/12) 7014077460011861 a001 39088169/843*4106118243^(10/23) 7014077460011861 a001 39088169/843*1568397607^(5/11) 7014077460011861 a001 39088169/843*599074578^(10/21) 7014077460011861 a001 39088169/843*228826127^(1/2) 7014077460011861 a001 39088169/843*87403803^(10/19) 7014077460011862 a001 34111385/281*141422324^(6/13) 7014077460011862 a001 34111385/281*2537720636^(2/5) 7014077460011862 a001 34111385/281*45537549124^(6/17) 7014077460011862 a001 34111385/281*14662949395604^(2/7) 7014077460011862 a001 34111385/281*(1/2+1/2*5^(1/2))^18 7014077460011862 a001 34111385/281*192900153618^(1/3) 7014077460011862 a001 34111385/281*10749957122^(3/8) 7014077460011862 a001 34111385/281*4106118243^(9/23) 7014077460011862 a001 34111385/281*1568397607^(9/22) 7014077460011862 a001 433494437/843*141422324^(5/13) 7014077460011862 a001 34111385/281*599074578^(3/7) 7014077460011862 a001 1134903170/843*141422324^(1/3) 7014077460011862 a001 1836311903/843*141422324^(4/13) 7014077460011862 a001 7778742049/843*141422324^(3/13) 7014077460011862 a001 34111385/281*228826127^(9/20) 7014077460011862 a001 10983760033/281*141422324^(2/13) 7014077460011862 a001 139583862445/843*141422324^(1/13) 7014077460011862 a001 267914296/843*(1/2+1/2*5^(1/2))^16 7014077460011862 a001 267914296/843*23725150497407^(1/4) 7014077460011862 a001 267914296/843*73681302247^(4/13) 7014077460011862 a001 267914296/843*10749957122^(1/3) 7014077460011862 a001 267914296/843*4106118243^(8/23) 7014077460011862 a001 267914296/843*1568397607^(4/11) 7014077460011862 a001 267914296/843*599074578^(8/21) 7014077460011862 a001 233802911/281*17393796001^(2/7) 7014077460011862 a001 233802911/281*14662949395604^(2/9) 7014077460011862 a001 233802911/281*(1/2+1/2*5^(1/2))^14 7014077460011862 a001 233802911/281*505019158607^(1/4) 7014077460011862 a001 233802911/281*10749957122^(7/24) 7014077460011862 a001 233802911/281*4106118243^(7/23) 7014077460011862 a001 233802911/281*1568397607^(7/22) 7014077460011862 a001 1836311903/843*2537720636^(4/15) 7014077460011862 a001 1836311903/843*45537549124^(4/17) 7014077460011862 a001 1836311903/843*817138163596^(4/19) 7014077460011862 a001 1836311903/843*14662949395604^(4/21) 7014077460011862 a001 1836311903/843*(1/2+1/2*5^(1/2))^12 7014077460011862 a001 1836311903/843*192900153618^(2/9) 7014077460011862 a001 1836311903/843*73681302247^(3/13) 7014077460011862 a001 1836311903/843*10749957122^(1/4) 7014077460011862 a001 1836311903/843*4106118243^(6/23) 7014077460011862 a001 1602508992/281*2537720636^(2/9) 7014077460011862 a001 7778742049/843*2537720636^(1/5) 7014077460011862 a001 10983760033/281*2537720636^(2/15) 7014077460011862 a001 53316291173/843*2537720636^(1/9) 7014077460011862 a001 139583862445/843*2537720636^(1/15) 7014077460011862 a001 1602508992/281*312119004989^(2/11) 7014077460011862 a001 1602508992/281*(1/2+1/2*5^(1/2))^10 7014077460011862 a001 1602508992/281*28143753123^(1/5) 7014077460011862 a001 1602508992/281*10749957122^(5/24) 7014077460011862 a001 12586269025/843*(1/2+1/2*5^(1/2))^8 7014077460011862 a001 12586269025/843*23725150497407^(1/8) 7014077460011862 a001 12586269025/843*505019158607^(1/7) 7014077460011862 a001 12586269025/843*73681302247^(2/13) 7014077460011862 a001 10983760033/281*45537549124^(2/17) 7014077460011862 a001 10983760033/281*14662949395604^(2/21) 7014077460011862 a001 10983760033/281*(1/2+1/2*5^(1/2))^6 7014077460011862 a001 86267571272/843*(1/2+1/2*5^(1/2))^4 7014077460011862 a001 86267571272/843*23725150497407^(1/16) 7014077460011862 a001 139583862445/843*45537549124^(1/17) 7014077460011862 a001 86267571272/843*73681302247^(1/13) 7014077460011862 a001 267913919*(1/2+1/2*5^(1/2))^2 7014077460011862 a001 591286729879/843 7014077460011862 a001 20365011074/843*17393796001^(1/7) 7014077460011862 a001 139583862445/843*14662949395604^(1/21) 7014077460011862 a001 139583862445/843*(1/2+1/2*5^(1/2))^3 7014077460011862 a001 139583862445/843*192900153618^(1/18) 7014077460011862 a001 53316291173/843*312119004989^(1/11) 7014077460011862 a001 53316291173/843*(1/2+1/2*5^(1/2))^5 7014077460011862 a001 12586269025/843*10749957122^(1/6) 7014077460011862 a001 53316291173/843*28143753123^(1/10) 7014077460011862 a001 267913919*10749957122^(1/24) 7014077460011862 a001 20365011074/843*14662949395604^(1/9) 7014077460011862 a001 20365011074/843*(1/2+1/2*5^(1/2))^7 7014077460011862 a001 139583862445/843*10749957122^(1/16) 7014077460011862 a001 86267571272/843*10749957122^(1/12) 7014077460011862 a001 10983760033/281*10749957122^(1/8) 7014077460011862 a001 267913919*4106118243^(1/23) 7014077460011862 a001 7778742049/843*45537549124^(3/17) 7014077460011862 a001 7778742049/843*817138163596^(3/19) 7014077460011862 a001 7778742049/843*14662949395604^(1/7) 7014077460011862 a001 7778742049/843*(1/2+1/2*5^(1/2))^9 7014077460011862 a001 7778742049/843*192900153618^(1/6) 7014077460011862 a001 1602508992/281*4106118243^(5/23) 7014077460011862 a001 7778742049/843*10749957122^(3/16) 7014077460011862 a001 86267571272/843*4106118243^(2/23) 7014077460011862 a001 10983760033/281*4106118243^(3/23) 7014077460011862 a001 12586269025/843*4106118243^(4/23) 7014077460011862 a001 267913919*1568397607^(1/22) 7014077460011862 a001 2971215073/843*312119004989^(1/5) 7014077460011862 a001 2971215073/843*(1/2+1/2*5^(1/2))^11 7014077460011862 a001 86267571272/843*1568397607^(1/11) 7014077460011862 a001 1836311903/843*1568397607^(3/11) 7014077460011862 a001 10983760033/281*1568397607^(3/22) 7014077460011862 a001 12586269025/843*1568397607^(2/11) 7014077460011862 a001 1602508992/281*1568397607^(5/22) 7014077460011862 a001 2971215073/843*1568397607^(1/4) 7014077460011862 a001 267913919*599074578^(1/21) 7014077460011862 a001 1134903170/843*(1/2+1/2*5^(1/2))^13 7014077460011862 a001 1134903170/843*73681302247^(1/4) 7014077460011862 a001 139583862445/843*599074578^(1/14) 7014077460011862 a001 86267571272/843*599074578^(2/21) 7014077460011862 a001 10983760033/281*599074578^(1/7) 7014077460011862 a001 20365011074/843*599074578^(1/6) 7014077460011862 a001 233802911/281*599074578^(1/3) 7014077460011862 a001 12586269025/843*599074578^(4/21) 7014077460011862 a001 7778742049/843*599074578^(3/14) 7014077460011862 a001 1602508992/281*599074578^(5/21) 7014077460011862 a001 1836311903/843*599074578^(2/7) 7014077460011862 a001 267913919*228826127^(1/20) 7014077460011862 a001 433494437/843*2537720636^(1/3) 7014077460011862 a001 433494437/843*45537549124^(5/17) 7014077460011862 a001 433494437/843*312119004989^(3/11) 7014077460011862 a001 433494437/843*14662949395604^(5/21) 7014077460011862 a001 433494437/843*(1/2+1/2*5^(1/2))^15 7014077460011862 a001 433494437/843*192900153618^(5/18) 7014077460011862 a001 433494437/843*28143753123^(3/10) 7014077460011862 a001 433494437/843*10749957122^(5/16) 7014077460011862 a001 86267571272/843*228826127^(1/10) 7014077460011862 a001 433494437/843*599074578^(5/14) 7014077460011862 a001 53316291173/843*228826127^(1/8) 7014077460011862 a001 10983760033/281*228826127^(3/20) 7014077460011862 a001 12586269025/843*228826127^(1/5) 7014077460011862 a001 1602508992/281*228826127^(1/4) 7014077460011862 a001 267914296/843*228826127^(2/5) 7014077460011862 a001 1836311903/843*228826127^(3/10) 7014077460011862 a001 233802911/281*228826127^(7/20) 7014077460011862 a001 267913919*87403803^(1/19) 7014077460011862 a001 165580141/843*45537549124^(1/3) 7014077460011862 a001 165580141/843*(1/2+1/2*5^(1/2))^17 7014077460011862 a001 433494437/843*228826127^(3/8) 7014077460011862 a001 86267571272/843*87403803^(2/19) 7014077460011862 a001 10983760033/281*87403803^(3/19) 7014077460011862 a001 12586269025/843*87403803^(4/19) 7014077460011862 a001 1602508992/281*87403803^(5/19) 7014077460011862 a001 1836311903/843*87403803^(6/19) 7014077460011862 a001 34111385/281*87403803^(9/19) 7014077460011862 a001 233802911/281*87403803^(7/19) 7014077460011862 a001 267913919*33385282^(1/18) 7014077460011862 a001 63245986/843*817138163596^(1/3) 7014077460011862 a001 63245986/843*(1/2+1/2*5^(1/2))^19 7014077460011862 a001 267914296/843*87403803^(8/19) 7014077460011862 a001 139583862445/843*33385282^(1/12) 7014077460011863 a001 86267571272/843*33385282^(1/9) 7014077460011863 a001 63245986/843*87403803^(1/2) 7014077460011863 a001 10983760033/281*33385282^(1/6) 7014077460011863 a001 12586269025/843*33385282^(2/9) 7014077460011863 a001 7778742049/843*33385282^(1/4) 7014077460011864 a001 1602508992/281*33385282^(5/18) 7014077460011864 a001 1836311903/843*33385282^(1/3) 7014077460011864 a001 24157817/843*141422324^(7/13) 7014077460011864 a001 24157817/843*2537720636^(7/15) 7014077460011864 a001 24157817/843*17393796001^(3/7) 7014077460011864 a001 24157817/843*45537549124^(7/17) 7014077460011864 a001 24157817/843*14662949395604^(1/3) 7014077460011864 a001 24157817/843*(1/2+1/2*5^(1/2))^21 7014077460011864 a001 24157817/843*192900153618^(7/18) 7014077460011864 a001 24157817/843*10749957122^(7/16) 7014077460011864 a001 24157817/843*599074578^(1/2) 7014077460011864 a001 233802911/281*33385282^(7/18) 7014077460011864 a001 267913919*12752043^(1/17) 7014077460011864 a001 39088169/843*33385282^(5/9) 7014077460011865 a001 433494437/843*33385282^(5/12) 7014077460011865 a001 267914296/843*33385282^(4/9) 7014077460011865 a001 34111385/281*33385282^(1/2) 7014077460011867 a001 86267571272/843*12752043^(2/17) 7014077460011868 a001 24157817/843*33385282^(7/12) 7014077460011870 a001 10983760033/281*12752043^(3/17) 7014077460011872 a001 12586269025/843*12752043^(4/17) 7014077460011875 a001 1602508992/281*12752043^(5/17) 7014077460011877 a001 1836311903/843*12752043^(6/17) 7014077460011878 a001 9227465/843*(1/2+1/2*5^(1/2))^23 7014077460011878 a001 9227465/843*4106118243^(1/2) 7014077460011880 a001 233802911/281*12752043^(7/17) 7014077460011880 a001 267913919*4870847^(1/16) 7014077460011882 a001 267914296/843*12752043^(8/17) 7014077460011884 a001 4976784/281*12752043^(11/17) 7014077460011884 a001 165580141/843*12752043^(1/2) 7014077460011885 a001 34111385/281*12752043^(9/17) 7014077460011886 a001 39088169/843*12752043^(10/17) 7014077460011899 a001 86267571272/843*4870847^(1/8) 7014077460011917 a001 10983760033/281*4870847^(3/16) 7014077460011936 a001 12586269025/843*4870847^(1/4) 7014077460011954 a001 1602508992/281*4870847^(5/16) 7014077460011963 a001 3524578/843*20633239^(5/7) 7014077460011973 a001 1836311903/843*4870847^(3/8) 7014077460011975 a001 3524578/843*2537720636^(5/9) 7014077460011975 a001 3524578/843*312119004989^(5/11) 7014077460011975 a001 3524578/843*(1/2+1/2*5^(1/2))^25 7014077460011975 a001 3524578/843*3461452808002^(5/12) 7014077460011975 a001 3524578/843*28143753123^(1/2) 7014077460011975 a001 3524578/843*228826127^(5/8) 7014077460011991 a001 233802911/281*4870847^(7/16) 7014077460011997 a001 267913919*1860498^(1/15) 7014077460012010 a001 267914296/843*4870847^(1/2) 7014077460012028 a001 34111385/281*4870847^(9/16) 7014077460012040 a001 5702887/843*4870847^(3/4) 7014077460012046 a001 39088169/843*4870847^(5/8) 7014077460012059 a001 4976784/281*4870847^(11/16) 7014077460012065 a001 139583862445/843*1860498^(1/10) 7014077460012132 a001 86267571272/843*1860498^(2/15) 7014077460012200 a001 53316291173/843*1860498^(1/6) 7014077460012267 a001 10983760033/281*1860498^(1/5) 7014077460012402 a001 12586269025/843*1860498^(4/15) 7014077460012470 a001 7778742049/843*1860498^(3/10) 7014077460012537 a001 1602508992/281*1860498^(1/3) 7014077460012543 a001 1346269/843*7881196^(9/11) 7014077460012636 a001 1346269/843*141422324^(9/13) 7014077460012636 a001 1346269/843*2537720636^(3/5) 7014077460012636 a001 1346269/843*45537549124^(9/17) 7014077460012636 a001 1346269/843*817138163596^(9/19) 7014077460012636 a001 1346269/843*14662949395604^(3/7) 7014077460012636 a001 1346269/843*(1/2+1/2*5^(1/2))^27 7014077460012636 a001 1346269/843*192900153618^(1/2) 7014077460012636 a001 1346269/843*10749957122^(9/16) 7014077460012636 a001 1346269/843*599074578^(9/14) 7014077460012641 a001 1346269/843*33385282^(3/4) 7014077460012672 a001 1836311903/843*1860498^(2/5) 7014077460012808 a001 233802911/281*1860498^(7/15) 7014077460012854 a001 267913919*710647^(1/14) 7014077460012875 a001 433494437/843*1860498^(1/2) 7014077460012943 a001 267914296/843*1860498^(8/15) 7014077460013078 a001 34111385/281*1860498^(3/5) 7014077460013212 a001 39088169/843*1860498^(2/3) 7014077460013283 a001 24157817/843*1860498^(7/10) 7014077460013322 a001 726103/281*1860498^(13/15) 7014077460013342 a001 4976784/281*1860498^(11/15) 7014077460013440 a001 5702887/843*1860498^(4/5) 7014077460013663 a001 3524578/843*1860498^(5/6) 7014077460013846 a001 86267571272/843*710647^(1/7) 7014077460014460 a001 1346269/843*1860498^(9/10) 7014077460014838 a001 10983760033/281*710647^(3/14) 7014077460015334 a001 20365011074/843*710647^(1/4) 7014077460015830 a001 12586269025/843*710647^(2/7) 7014077460016822 a001 1602508992/281*710647^(5/14) 7014077460017167 a001 514229/843*(1/2+1/2*5^(1/2))^29 7014077460017167 a001 514229/843*1322157322203^(1/2) 7014077460017814 a001 1836311903/843*710647^(3/7) 7014077460018806 a001 233802911/281*710647^(1/2) 7014077460019185 a001 267913919*271443^(1/13) 7014077460019798 a001 267914296/843*710647^(4/7) 7014077460020790 a001 34111385/281*710647^(9/14) 7014077460021782 a001 39088169/843*710647^(5/7) 7014077460022281 a001 24157817/843*710647^(3/4) 7014077460022768 a001 4976784/281*710647^(11/14) 7014077460023723 a001 5702887/843*710647^(6/7) 7014077460024463 a001 726103/281*710647^(13/14) 7014077460026507 a001 86267571272/843*271443^(2/13) 7014077460033830 a001 10983760033/281*271443^(3/13) 7014077460034334 a001 377/439204*14662949395604^(19/21) 7014077460034334 a001 377/439204*(1/2+1/2*5^(1/2))^57 7014077460039048 a001 365435296162/843*103682^(1/24) 7014077460041153 a001 12586269025/843*271443^(4/13) 7014077460048223 a001 196418/843*(1/2+1/2*5^(1/2))^31 7014077460048223 a001 196418/843*9062201101803^(1/2) 7014077460048475 a001 1602508992/281*271443^(5/13) 7014077460055798 a001 1836311903/843*271443^(6/13) 7014077460059459 a001 1134903170/843*271443^(1/2) 7014077460063121 a001 233802911/281*271443^(7/13) 7014077460066235 a001 267913919*103682^(1/12) 7014077460070443 a001 267914296/843*271443^(8/13) 7014077460077766 a001 34111385/281*271443^(9/13) 7014077460085088 a001 39088169/843*271443^(10/13) 7014077460092405 a001 4976784/281*271443^(11/13) 7014077460093168 a001 85145990511309/121393 7014077460093421 a001 139583862445/843*103682^(1/8) 7014077460099691 a001 5702887/843*271443^(12/13) 7014077460120608 a001 86267571272/843*103682^(1/6) 7014077460147794 a001 53316291173/843*103682^(5/24) 7014077460174981 a001 10983760033/281*103682^(1/4) 7014077460202167 a001 20365011074/843*103682^(7/24) 7014077460215141 a001 365435296162/843*39603^(1/22) 7014077460229354 a001 12586269025/843*103682^(1/3) 7014077460247196 a001 377/167761*(1/2+1/2*5^(1/2))^55 7014077460247196 a001 377/167761*3461452808002^(11/12) 7014077460256540 a001 7778742049/843*103682^(3/8) 7014077460261085 a001 75025/843*141422324^(11/13) 7014077460261085 a001 75025/843*2537720636^(11/15) 7014077460261085 a001 75025/843*45537549124^(11/17) 7014077460261085 a001 75025/843*312119004989^(3/5) 7014077460261085 a001 75025/843*817138163596^(11/19) 7014077460261085 a001 75025/843*14662949395604^(11/21) 7014077460261085 a001 75025/843*(1/2+1/2*5^(1/2))^33 7014077460261085 a001 75025/843*192900153618^(11/18) 7014077460261085 a001 75025/843*10749957122^(11/16) 7014077460261085 a001 75025/843*1568397607^(3/4) 7014077460261085 a001 75025/843*599074578^(11/14) 7014077460261091 a001 75025/843*33385282^(11/12) 7014077460283726 a001 1602508992/281*103682^(5/12) 7014077460310913 a001 2971215073/843*103682^(11/24) 7014077460338099 a001 1836311903/843*103682^(1/2) 7014077460365286 a001 1134903170/843*103682^(13/24) 7014077460392472 a001 233802911/281*103682^(7/12) 7014077460418419 a001 267913919*39603^(1/11) 7014077460419659 a001 433494437/843*103682^(5/8) 7014077460446845 a001 267914296/843*103682^(2/3) 7014077460474032 a001 165580141/843*103682^(17/24) 7014077460501218 a001 34111385/281*103682^(3/4) 7014077460528405 a001 63245986/843*103682^(19/24) 7014077460555590 a001 39088169/843*103682^(5/6) 7014077460582780 a001 24157817/843*103682^(7/8) 7014077460609958 a001 4976784/281*103682^(11/12) 7014077460621698 a001 139583862445/843*39603^(3/22) 7014077460637167 a001 9227465/843*103682^(23/24) 7014077460650448 a001 4065359296193/5796 7014077460824976 a001 86267571272/843*39603^(2/11) 7014077461028255 a001 53316291173/843*39603^(5/22) 7014077461231534 a001 10983760033/281*39603^(3/11) 7014077461434812 a001 20365011074/843*39603^(7/22) 7014077461544484 a001 365435296162/843*15127^(1/20) 7014077461638091 a001 12586269025/843*39603^(4/11) 7014077461706175 a001 377/64079*(1/2+1/2*5^(1/2))^53 7014077461720063 a001 28657/843*2537720636^(7/9) 7014077461720063 a001 28657/843*17393796001^(5/7) 7014077461720063 a001 28657/843*312119004989^(7/11) 7014077461720063 a001 28657/843*14662949395604^(5/9) 7014077461720063 a001 28657/843*(1/2+1/2*5^(1/2))^35 7014077461720063 a001 28657/843*505019158607^(5/8) 7014077461720063 a001 28657/843*28143753123^(7/10) 7014077461720063 a001 28657/843*599074578^(5/6) 7014077461720064 a001 28657/843*228826127^(7/8) 7014077461841369 a001 7778742049/843*39603^(9/22) 7014077462044648 a001 1602508992/281*39603^(5/11) 7014077462247927 a001 2971215073/843*39603^(1/2) 7014077462451205 a001 1836311903/843*39603^(6/11) 7014077462654484 a001 1134903170/843*39603^(13/22) 7014077462857763 a001 233802911/281*39603^(7/11) 7014077463061041 a001 433494437/843*39603^(15/22) 7014077463077105 a001 267913919*15127^(1/10) 7014077463264320 a001 267914296/843*39603^(8/11) 7014077463467599 a001 165580141/843*39603^(17/22) 7014077463670877 a001 34111385/281*39603^(9/11) 7014077463874156 a001 63245986/843*39603^(19/22) 7014077464077433 a001 39088169/843*39603^(10/11) 7014077464280715 a001 24157817/843*39603^(21/22) 7014077464470103 a001 12422632597323/17711 7014077464609727 a001 139583862445/843*15127^(3/20) 7014077466142348 a001 86267571272/843*15127^(1/5) 7014077467674970 a001 53316291173/843*15127^(1/4) 7014077469207592 a001 10983760033/281*15127^(3/10) 7014077470740213 a001 20365011074/843*15127^(7/20) 7014077471683801 a001 365435296162/843*5778^(1/18) 7014077471706161 a001 13/844*817138163596^(17/19) 7014077471706161 a001 13/844*14662949395604^(17/21) 7014077471706161 a001 13/844*(1/2+1/2*5^(1/2))^51 7014077471706161 a001 13/844*192900153618^(17/18) 7014077471720049 a001 10946/843*(1/2+1/2*5^(1/2))^37 7014077471776008 a001 591286729879/9349*521^(5/13) 7014077472272835 a001 12586269025/843*15127^(2/5) 7014077473805457 a001 7778742049/843*15127^(9/20) 7014077475101351 r009 Im(z^3+c),c=-65/106+20/31*I,n=6 7014077475338078 a001 1602508992/281*15127^(1/2) 7014077476870700 a001 2971215073/843*15127^(11/20) 7014077478403322 a001 1836311903/843*15127^(3/5) 7014077479935943 a001 1134903170/843*15127^(13/20) 7014077481468565 a001 233802911/281*15127^(7/10) 7014077483001186 a001 433494437/843*15127^(3/4) 7014077483355739 a001 267913919*5778^(1/9) 7014077484533808 a001 267914296/843*15127^(4/5) 7014077484794434 r008 a(0)=7,K{-n^6,-67-17*n^3+54*n^2-42*n} 7014077486066430 a001 165580141/843*15127^(17/20) 7014077487599051 a001 34111385/281*15127^(9/10) 7014077489131673 a001 63245986/843*15127^(19/20) 7014077490650406 a001 86273153135/123 7014077495027678 a001 139583862445/843*5778^(1/6) 7014077506699617 a001 86267571272/843*5778^(2/9) 7014077511487349 a007 Real Root Of 330*x^4-711*x^3+77*x^2-141*x-462 7014077518371556 a001 53316291173/843*5778^(5/18) 7014077521551113 h001 (6/11*exp(1)+1/12)/(6/11*exp(1)+3/4) 7014077530043494 a001 10983760033/281*5778^(1/3) 7014077534932487 a007 Real Root Of 442*x^4-872*x^3+921*x^2-77*x-915 7014077540247085 a001 377/9349*14662949395604^(7/9) 7014077540247085 a001 377/9349*(1/2+1/2*5^(1/2))^49 7014077540247085 a001 377/9349*505019158607^(7/8) 7014077540260973 a001 4181/843*2537720636^(13/15) 7014077540260973 a001 4181/843*45537549124^(13/17) 7014077540260973 a001 4181/843*14662949395604^(13/21) 7014077540260973 a001 4181/843*(1/2+1/2*5^(1/2))^39 7014077540260973 a001 4181/843*192900153618^(13/18) 7014077540260973 a001 4181/843*73681302247^(3/4) 7014077540260973 a001 4181/843*10749957122^(13/16) 7014077540260973 a001 4181/843*599074578^(13/14) 7014077541715433 a001 20365011074/843*5778^(7/18) 7014077550012348 q001 284/4049 7014077550012595 a001 365435296162/843*2207^(1/16) 7014077550813495 m001 1/exp(BesselK(0,1))/Robbin/sqrt(2) 7014077553387372 a001 12586269025/843*5778^(4/9) 7014077565059311 a001 7778742049/843*5778^(1/2) 7014077576731250 a001 1602508992/281*5778^(5/9) 7014077576871490 a007 Real Root Of -536*x^4-675*x^3-436*x^2+634*x+556 7014077588403189 a001 2971215073/843*5778^(11/18) 7014077600075127 a001 1836311903/843*5778^(2/3) 7014077602194868 r008 a(0)=7,K{-n^6,-29-40*n-45*n^2+44*n^3} 7014077605977287 r008 a(0)=7,K{-n^6,-54-44*n+35*n^2-9*n^3} 7014077608322229 r008 a(0)=7,K{-n^6,-82+4*n^3+49*n^2-41*n} 7014077611747066 a001 1134903170/843*5778^(13/18) 7014077623419005 a001 233802911/281*5778^(7/9) 7014077623542583 a007 Real Root Of 3*x^4-64*x^3-544*x^2+391*x+160 7014077629969201 r005 Re(z^2+c),c=-79/78+13/47*I,n=24 7014077632007359 m001 ln(gamma)/(Thue^ErdosBorwein) 7014077635090944 a001 433494437/843*5778^(5/6) 7014077640013329 a001 267913919*2207^(1/8) 7014077642686717 m001 GolombDickman*(1+Champernowne) 7014077646762883 a001 267914296/843*5778^(8/9) 7014077658434822 a001 165580141/843*5778^(17/18) 7014077665824370 m001 (cos(1/5*Pi)+GAMMA(3/4))/(Conway-MertensB3) 7014077668624102 l006 ln(1335/1432) 7014077670092879 a001 226554708744/323 7014077708105056 a007 Real Root Of 424*x^4-701*x^3-265*x^2-749*x+795 7014077730014064 a001 139583862445/843*2207^(3/16) 7014077732382150 a001 271443/1597*89^(6/19) 7014077732707604 l006 ln(3677/7415) 7014077735183617 m001 (Shi(1)-Zeta(3)*AlladiGrinstead)/Zeta(3) 7014077747924374 m006 (1/4*ln(Pi)-4)/(1/5*exp(Pi)+2/3) 7014077764829356 s001 sum(exp(-2*Pi)^n*A285024[n],n=1..infinity) 7014077767886886 m005 (1/2*2^(1/2)-3)/(2/11*Zeta(3)-6/11) 7014077771120211 r005 Re(z^2+c),c=-21/94+47/64*I,n=29 7014077785695351 a007 Real Root Of -940*x^4+759*x^3-822*x^2-801*x+332 7014077796805706 m005 (1/3*gamma-3/5)/(-26/63+4/9*5^(1/2)) 7014077799414441 s002 sum(A099361[n]/(n^2*exp(n)+1),n=1..infinity) 7014077820014800 a001 86267571272/843*2207^(1/4) 7014077824277045 r005 Re(z^2+c),c=-19/26+25/89*I,n=17 7014077838305940 m001 FibonacciFactorial/Cahen/exp(1) 7014077842307409 m005 (1/2*Zeta(3)-3/4)/(7/8*Pi-5/8) 7014077844346560 a007 Real Root Of 418*x^4-629*x^3+292*x^2-157*x-572 7014077849903243 m001 (arctan(1/3)-ArtinRank2)/(Conway-Tribonacci) 7014077858625472 a007 Real Root Of -566*x^4-727*x^3-836*x^2-223*x+141 7014077859569660 s001 sum(exp(-2*Pi)^(n-1)*A282618[n],n=1..infinity) 7014077892524852 m001 1/exp(MinimumGamma)^2*Artin^2*cos(Pi/12)^2 7014077892812007 r009 Im(z^3+c),c=-61/102+34/59*I,n=15 7014077895614457 r004 Im(z^2+c),c=-7/46-9/19*I,z(0)=I,n=3 7014077900636771 a001 322/6765*28657^(18/37) 7014077910015537 a001 53316291173/843*2207^(5/16) 7014077933821927 m005 (2/3+1/6*5^(1/2))/(3/11*Pi+5/8) 7014077939208431 a001 225851433717/2207*521^(4/13) 7014077941562523 a001 225851433717/3571*521^(5/13) 7014077974038291 m001 1/Sierpinski*Salem^2*ln(Pi)^2 7014077989444832 r005 Re(z^2+c),c=11/102+16/33*I,n=35 7014078000016276 a001 10983760033/281*2207^(3/8) 7014078000143028 r005 Re(z^2+c),c=25/102+19/60*I,n=8 7014078000807532 m001 (ln(2^(1/2)+1)+Bloch)/(Conway+Kac) 7014078007486447 a007 Real Root Of -676*x^4-54*x^3+338*x^2+997*x+678 7014078010033604 a001 377/3571*(1/2+1/2*5^(1/2))^47 7014078010047449 a001 1597/843*(1/2+1/2*5^(1/2))^41 7014078015911646 l006 ln(4762/9603) 7014078087931465 s001 sum(exp(-2*Pi)^n*A230245[n],n=1..infinity) 7014078090017015 a001 20365011074/843*2207^(7/16) 7014078114442028 s002 sum(A242427[n]/(exp(2*pi*n)-1),n=1..infinity) 7014078117258793 a007 Real Root Of 436*x^4-916*x^3+711*x^2-65*x-817 7014078125957617 r005 Re(z^2+c),c=-23/30+3/109*I,n=7 7014078143118172 r008 a(0)=7,K{-n^6,3+56*n^3-65*n^2-64*n} 7014078148067991 m001 exp(Lehmer)*CareFree*GAMMA(1/24)^2 7014078152288624 a001 312119004989/8*5702887^(7/9) 7014078152288658 a001 370248451/8*32951280099^(7/9) 7014078152288658 a001 5374978561/4*433494437^(7/9) 7014078152288701 a001 12752043/8*2504730781961^(7/9) 7014078152482498 a001 9062201101803/8*75025^(7/9) 7014078165010554 a001 365435296162/843*843^(1/14) 7014078170592171 a007 Real Root Of 406*x^4-471*x^3-258*x^2-378*x-399 7014078180017756 a001 12586269025/843*2207^(1/2) 7014078191086912 a007 Real Root Of 974*x^4+294*x^3-893*x^2-898*x+732 7014078202087333 a001 710647/4181*89^(6/19) 7014078212115703 a007 Real Root Of 4*x^4+280*x^3-40*x^2-31*x+294 7014078234853515 r005 Re(z^2+c),c=-19/21+12/49*I,n=16 7014078256812208 a001 1149851/3*3524578^(22/23) 7014078270018498 a001 7778742049/843*2207^(9/16) 7014078270616401 a001 930249/5473*89^(6/19) 7014078276092374 h001 (1/4*exp(1)+8/9)/(2/7*exp(2)+1/8) 7014078280614658 a001 4870847/28657*89^(6/19) 7014078282073384 a001 12752043/75025*89^(6/19) 7014078282286209 a001 16692641/98209*89^(6/19) 7014078282317260 a001 87403803/514229*89^(6/19) 7014078282321790 a001 228826127/1346269*89^(6/19) 7014078282322451 a001 299537289/1762289*89^(6/19) 7014078282322547 a001 1568397607/9227465*89^(6/19) 7014078282322561 a001 4106118243/24157817*89^(6/19) 7014078282322563 a001 5374978561/31622993*89^(6/19) 7014078282322564 a001 28143753123/165580141*89^(6/19) 7014078282322564 a001 73681302247/433494437*89^(6/19) 7014078282322564 a001 96450076809/567451585*89^(6/19) 7014078282322564 a001 505019158607/2971215073*89^(6/19) 7014078282322564 a001 1322157322203/7778742049*89^(6/19) 7014078282322564 a001 1730726404001/10182505537*89^(6/19) 7014078282322564 a001 9062201101803/53316291173*89^(6/19) 7014078282322564 a001 23725150497407/139583862445*89^(6/19) 7014078282322564 a001 192933544679/1135099622*89^(6/19) 7014078282322564 a001 5600748293801/32951280099*89^(6/19) 7014078282322564 a001 2139295485799/12586269025*89^(6/19) 7014078282322564 a001 204284540899/1201881744*89^(6/19) 7014078282322564 a001 312119004989/1836311903*89^(6/19) 7014078282322564 a001 119218851371/701408733*89^(6/19) 7014078282322564 a001 11384387281/66978574*89^(6/19) 7014078282322564 a001 17393796001/102334155*89^(6/19) 7014078282322565 a001 6643838879/39088169*89^(6/19) 7014078282322570 a001 33391061/196452*89^(6/19) 7014078282322607 a001 969323029/5702887*89^(6/19) 7014078282322859 a001 370248451/2178309*89^(6/19) 7014078282324590 a001 35355581/208010*89^(6/19) 7014078282336450 a001 54018521/317811*89^(6/19) 7014078282417742 a001 20633239/121393*89^(6/19) 7014078282974926 a001 1970299/11592*89^(6/19) 7014078286793920 a001 3010349/17711*89^(6/19) 7014078288084472 m001 1/GAMMA(1/3)^2/BesselK(0,1)*ln(cos(Pi/5)) 7014078309378649 a007 Real Root Of 121*x^4-268*x^3+449*x^2-240*x-511 7014078310635947 r005 Re(z^2+c),c=-9/122+45/61*I,n=40 7014078312969695 a001 1149851/6765*89^(6/19) 7014078320366385 r005 Im(z^2+c),c=-13/10+12/209*I,n=18 7014078332995065 r005 Im(z^2+c),c=-13/22+5/38*I,n=19 7014078336606888 m005 (1/2*exp(1)-8/11)/(5/12*Zeta(3)+2/5) 7014078346161263 r008 a(0)=7,K{-n^6,-60+20*n^3-19*n^2-17*n} 7014078347813360 m001 (MasserGramainDelta-Rabbit)/(ln(3)-Khinchin) 7014078357831019 a007 Real Root Of -375*x^4+254*x^3-308*x^2+715*x-5 7014078360019241 a001 1602508992/281*2207^(5/8) 7014078362600200 m006 (3/4/Pi-1/3)/(1/4*exp(2*Pi)+1) 7014078366075255 r008 a(0)=7,K{-n^6,-20-39*n-45*n^2+31*n^3} 7014078371746240 s001 sum(exp(-2*Pi)^(n-1)*A230071[n],n=1..infinity) 7014078374382588 r008 a(0)=7,K{-n^6,-1+66*n^3-97*n^2-38*n} 7014078390119686 m008 (3/5*Pi+5)/(Pi^4+3/4) 7014078397656045 a007 Real Root Of 441*x^4-420*x^3-327*x^2+138*x+6 7014078413021198 m005 (1/2*3^(1/2)-3/7)/(2/5*Zeta(3)+1/7) 7014078429128183 m006 (3/4*ln(Pi)+1/6)/(1/5*Pi+5/6) 7014078430851256 b008 7+EulerGamma/41 7014078435575217 a007 Real Root Of -159*x^4+851*x^3-290*x^2-436*x+169 7014078448713704 m001 Pi/(Psi(1,1/3)+exp(gamma))-cos(1/12*Pi) 7014078450019986 a001 2971215073/843*2207^(11/16) 7014078458903758 r008 a(0)=7,K{-n^6,-8+11*n^3+6*n^2-81*n} 7014078460445963 r002 43th iterates of z^2 + 7014078475650061 r005 Re(z^2+c),c=31/126+13/22*I,n=7 7014078491245277 a001 305/38*18^(3/4) 7014078492381133 a001 5779/34*89^(6/19) 7014078513111293 r005 Im(z^2+c),c=-23/110+7/10*I,n=19 7014078524156534 r008 a(0)=7,K{-n^6,-7+4*n^3+5*n^2-74*n} 7014078531506513 a007 Real Root Of 4*x^4-525*x^3-519*x^2+92*x+371 7014078540020731 a001 1836311903/843*2207^(3/4) 7014078552546013 m001 (BesselI(0,2)-GAMMA(23/24))/(Pi-GAMMA(2/3)) 7014078557592919 a007 Real Root Of 257*x^4-507*x^3-108*x^2-623*x-621 7014078585118070 m005 (1/2*Zeta(3)-1/11)/(9/10*2^(1/2)+6) 7014078604266405 s002 sum(A162516[n]/((exp(n)+1)/n),n=1..infinity) 7014078615404722 a003 cos(Pi*31/103)+cos(Pi*25/54) 7014078630021478 a001 1134903170/843*2207^(13/16) 7014078640857985 m001 (-Artin+2)/(-BesselI(1,1)+1/3) 7014078646988234 r008 a(0)=7,K{-n^6,-69-5*n^3+15*n^2-13*n} 7014078682703932 r009 Re(z^3+c),c=-23/90+37/52*I,n=35 7014078712835581 a007 Real Root Of -178*x^4-375*x^3-394*x^2+687*x+50 7014078713954290 a007 Real Root Of 338*x^4+664*x^3+130*x^2-436*x-31 7014078720022225 a001 233802911/281*2207^(7/8) 7014078741117836 m005 (1/2*5^(1/2)-1/12)/(5/14+1/2*5^(1/2)) 7014078753014487 m005 (1/2*5^(1/2)+9/11)/(1/8*5^(1/2)-5/9) 7014078799758446 a007 Real Root Of 869*x^4-392*x^3+291*x^2-381*x-756 7014078810022974 a001 433494437/843*2207^(15/16) 7014078815365994 m006 (1/4*ln(Pi)-1/6)/(5/6*ln(Pi)+3/4) 7014078820676613 r005 Re(z^2+c),c=-11/12+14/121*I,n=48 7014078837365281 r008 a(0)=7,K{-n^6,-35+39*n^3-49*n^2-24*n} 7014078846899130 m005 (1/2*2^(1/2)-3)/(1/12*gamma-3/8) 7014078870009317 a001 267913919*843^(1/7) 7014078884628159 m001 (gamma(3)+Rabbit)/(ln(2)+arctan(1/3)) 7014078884855794 a007 Real Root Of -837*x^4-473*x^3-820*x^2+438*x+750 7014078886962241 a007 Real Root Of -610*x^4+994*x^3+171*x^2+839*x+995 7014078897667648 m001 (RenyiParking+Totient)/(ln(Pi)+FeigenbaumC) 7014078900010131 a001 692289587431/987 7014078919606269 a007 Real Root Of 569*x^4-976*x^3-514*x^2-606*x+877 7014078975673118 l006 ln(1085/2188) 7014078978995997 r009 Im(z^3+c),c=-35/78+54/59*I,n=2 7014079002897757 m001 PlouffeB*(BesselJ(1,1)+MertensB2) 7014079011287527 r005 Re(z^2+c),c=-9/82+39/50*I,n=29 7014079012702957 r005 Re(z^2+c),c=-11/12+14/121*I,n=54 7014079038535186 a007 Real Root Of -482*x^4+262*x^3+753*x^2+282*x-542 7014079053132011 m005 (1/3*5^(1/2)-1/3)/(8/11*Zeta(3)+5) 7014079054476993 a007 Real Root Of -88*x^4+427*x^3-562*x^2+850*x-57 7014079083524622 a001 13/370248451*47^(7/9) 7014079088455115 a007 Real Root Of -485*x^4+797*x^3-902*x^2-264*x+651 7014079094598434 r005 Im(z^2+c),c=-8/25+5/47*I,n=15 7014079113772980 a007 Real Root Of 583*x^4-288*x^3-466*x^2-829*x+769 7014079119601401 a007 Real Root Of 299*x^4-469*x^3-114*x^2-742*x+666 7014079137528483 a005 (1/cos(2/139*Pi))^1906 7014079138307229 r005 Im(z^2+c),c=-47/70+10/39*I,n=48 7014079139936684 a007 Real Root Of -682*x^4+601*x^3+180*x^2+651*x+45 7014079143793643 a007 Real Root Of 537*x^4-388*x^3+527*x^2-332*x-756 7014079147057233 m001 (GAMMA(2/3)+ln(Pi))/(Pi+BesselK(0,1)) 7014079147952752 m001 1/ln(LandauRamanujan)*MertensB1^2/GAMMA(1/4) 7014079151732424 m009 (1/2*Pi^2-1/5)/(1/5*Psi(1,3/4)+1/6) 7014079169125441 a001 591286729879/5778*521^(4/13) 7014079173834888 a001 53316291173/1364*521^(6/13) 7014079184063712 r009 Im(z^3+c),c=-49/94+25/56*I,n=8 7014079196084377 r005 Re(z^2+c),c=17/42+8/59*I,n=24 7014079204074624 a003 cos(Pi*23/77)-cos(Pi*14/43) 7014079249074166 a007 Real Root Of 336*x^4-798*x^3+776*x^2+330*x-507 7014079251359983 a007 Real Root Of 773*x^4-700*x^3+703*x^2+926*x-125 7014079259875507 r005 Re(z^2+c),c=5/54+20/49*I,n=6 7014079272739657 a007 Real Root Of 700*x^4+773*x^3+904*x^2+588*x+65 7014079312834164 m001 exp(1/exp(1))^GAMMA(2/3)/GAMMA(1/24) 7014079321897067 m001 (sin(1/12*Pi)+KhinchinLevy)/(Catalan+ln(Pi)) 7014079326867221 r002 24i'th iterates of 2*x/(1-x^2) of 7014079342209971 m001 (MertensB2-ZetaP(2))/(Backhouse-Kac) 7014079348567950 a001 1548008755920/15127*521^(4/13) 7014079353363040 a005 (1/cos(13/140*Pi))^1592 7014079355327823 s002 sum(A087973[n]/((exp(n)-1)/n),n=1..infinity) 7014079357187386 r005 Re(z^2+c),c=-11/12+14/121*I,n=64 7014079362020202 m001 (Pi^(1/2)-exp(1))/(GAMMA(23/24)+FellerTornier) 7014079374748261 a001 4052739537881/39603*521^(4/13) 7014079378567916 a001 225749145909/2206*521^(4/13) 7014079380614921 r005 Im(z^2+c),c=-5/16+42/59*I,n=5 7014079380928593 a001 6557470319842/64079*521^(4/13) 7014079390393747 r005 Re(z^2+c),c=-11/12+14/121*I,n=62 7014079390928582 a001 2504730781961/24476*521^(4/13) 7014079391930602 r002 39th iterates of z^2 + 7014079395859313 h001 (2/11*exp(2)+2/5)/(7/12*exp(1)+9/10) 7014079397997079 m001 ln(3)*GaussKuzminWirsing/PlouffeB 7014079402952965 r002 3th iterates of z^2 + 7014079407386375 m001 (PisotVijayaraghavan+TreeGrowth2nd)/(Pi-Kac) 7014079410232538 m001 (CopelandErdos+Lehmer)/(ln(3)-BesselI(0,2)) 7014079456912193 a001 199*(1/2*5^(1/2)+1/2)^10*3^(23/24) 7014079458150461 m008 (3/4*Pi-1/3)/(3*Pi^6-1/6) 7014079459469525 a001 956722026041/9349*521^(4/13) 7014079483837897 m008 (1/4*Pi^4-1/2)/(Pi^3+3) 7014079486061690 a007 Real Root Of -298*x^4+972*x^3+372*x^2+x-447 7014079486172890 r008 a(0)=7,K{-n^6,-33+20*n^3-18*n^2-42*n} 7014079488922914 m001 ln(gamma)+exp(Pi)^FeigenbaumKappa 7014079502176830 s002 sum(A002435[n]/(exp(2*pi*n)+1),n=1..infinity) 7014079506968003 a007 Real Root Of 119*x^4-814*x^3-18*x^2-897*x-930 7014079532812523 m004 -5-5*Pi+5*Sqrt[5]*Pi-5*Csc[Sqrt[5]*Pi] 7014079535828778 s002 sum(A073973[n]/(exp(2*pi*n)-1),n=1..infinity) 7014079551774192 m001 cos(1)*BesselJ(1,1)+arctan(1/2) 7014079552275486 h001 (3/5*exp(2)+7/10)/(11/12*exp(2)+6/11) 7014079575008151 a001 139583862445/843*843^(3/14) 7014079595955873 r008 a(0)=7,K{-n^6,-17+11*n^3+2*n^2-68*n} 7014079609044994 a007 Real Root Of 510*x^4-650*x^3-665*x^2-799*x-581 7014079616496240 a007 Real Root Of -862*x^4+542*x^3-202*x^2-174*x+373 7014079629995722 a007 Real Root Of -610*x^4+225*x^3-401*x^2-899*x-208 7014079654194908 a007 Real Root Of -832*x^4+428*x^3+487*x^2+492*x-531 7014079654649742 m001 (Tribonacci+Weierstrass)/(Magata-OneNinth) 7014079655972114 r005 Re(z^2+c),c=-11/12+14/121*I,n=60 7014079657106268 m001 exp(Zeta(3))^2/LaplaceLimit/cosh(1)^2 7014079660336523 r002 38th iterates of z^2 + 7014079663556062 m001 FibonacciFactorial^(Zeta(1/2)/sin(1)) 7014079697536729 m001 1/Champernowne*ErdosBorwein*exp(Zeta(1/2))^2 7014079722085667 a001 167761/987*89^(6/19) 7014079747498661 m001 (-StronglyCareFree+ZetaQ(4))/(Otter-Si(Pi)) 7014079754523293 b008 6+(3/2)^(1/29) 7014079775159875 a007 Real Root Of 120*x^4+888*x^3+227*x^2-762*x-532 7014079784524060 a007 Real Root Of 467*x^4-149*x^3-241*x^2-723*x-553 7014079800063024 a007 Real Root Of -151*x^4-362*x^3-904*x^2+18*x+369 7014079803182451 a007 Real Root Of -313*x^4+473*x^3-3*x^2+246*x+413 7014079826901430 m001 ln(LandauRamanujan)^2/Si(Pi)/GAMMA(1/6) 7014079830798086 m005 (1/2*Pi+3/11)/(1/5*Pi+2) 7014079889201742 l006 ln(5003/10089) 7014079905440962 r005 Im(z^2+c),c=-1/12+33/38*I,n=58 7014079926902080 a001 365435296162/2207*521^(3/13) 7014079929256172 a001 365435296162/3571*521^(4/13) 7014079936551650 a007 Real Root Of 96*x^4+618*x^3-475*x^2-661*x-368 7014079950083188 m001 (Rabbit+Tribonacci)/(exp(1)+Catalan) 7014079981791156 r002 32th iterates of z^2 + 7014080002682803 a007 Real Root Of 85*x^4-521*x^3+554*x^2+7*x-468 7014080012061150 a007 Real Root Of 906*x^4-25*x^3+389*x^2-788*x-972 7014080019978366 h001 (1/3*exp(1)+4/7)/(1/6*exp(2)+7/8) 7014080032298285 m005 (1/3*3^(1/2)+1/6)/(3/8*5^(1/2)+2/9) 7014080034986622 m001 Salem^2/ln(FransenRobinson)^2*cos(1) 7014080035468741 a007 Real Root Of -550*x^4+976*x^3+200*x^2-226*x+213 7014080078447738 m001 1/ln(GAMMA(17/24))^2/Porter^2*GAMMA(7/24)^2 7014080087414315 a007 Real Root Of 252*x^4+200*x^3+751*x^2+320*x-137 7014080096690502 a007 Real Root Of -658*x^4-78*x^3-611*x^2-526*x+64 7014080097115019 h001 (5/12*exp(1)+2/7)/(3/7*exp(1)+6/7) 7014080098161036 r005 Re(z^2+c),c=-11/12+14/121*I,n=58 7014080115567348 a001 1/76*7^(43/50) 7014080119521202 a007 Real Root Of 196*x^4+15*x^3+602*x^2-333*x-572 7014080142182472 l006 ln(3918/7901) 7014080145957647 m001 BesselK(1,1)*ErdosBorwein^FellerTornier 7014080151369402 r009 Re(z^3+c),c=-5/126+37/47*I,n=10 7014080166364926 a007 Real Root Of -98*x^4-282*x^3-504*x^2-116*x+93 7014080173169475 a007 Real Root Of -325*x^4-190*x^3-283*x^2-374*x-110 7014080187967061 r005 Re(z^2+c),c=-11/12+14/121*I,n=56 7014080195895654 m001 OrthogonalArrays/(Ei(1,1)+Grothendieck) 7014080223691305 m001 1/GAMMA(23/24)^2*ln(GAMMA(11/24))^2/sin(Pi/5) 7014080245608436 a007 Real Root Of 147*x^4-802*x^3-238*x^2-597*x+777 7014080252041258 h001 (6/11*exp(2)+3/10)/(8/11*exp(2)+4/5) 7014080267024772 r008 a(0)=7,K{-n^6,-35+46*n^3-70*n^2-10*n} 7014080268395012 a007 Real Root Of 68*x^4+607*x^3+992*x^2+671*x+777 7014080270292353 a001 2/1346269*21^(26/51) 7014080277975628 r002 7th iterates of z^2 + 7014080280007055 a001 86267571272/843*843^(2/7) 7014080314732468 m006 (5*Pi-1/3)/(2/5*exp(2*Pi)+5) 7014080323528441 a007 Real Root Of -911*x^4+445*x^3+921*x^2+961*x+595 7014080345312293 m001 (-Zeta(5)+ReciprocalLucas)/(5^(1/2)-Catalan) 7014080356513232 r002 10th iterates of z^2 + 7014080383100664 a003 cos(Pi*8/61)-sin(Pi*35/109) 7014080388986842 a007 Real Root Of -432*x^4+647*x^3+111*x^2+61*x+316 7014080404570481 m005 (1/2*exp(1)-2)/(1/6*3^(1/2)+5/8) 7014080409122476 a007 Real Root Of -654*x^4+479*x^3-259*x^2+957*x-66 7014080459784918 a001 5778/5*55^(9/20) 7014080462494928 h001 (7/8*exp(2)+8/9)/(2/9*exp(1)+4/9) 7014080468410212 a007 Real Root Of 532*x^4+520*x^3+233*x^2-428*x-31 7014080483506065 p001 sum((-1)^n/(226*n+215)/n/(32^n),n=1..infinity) 7014080501873051 r002 4th iterates of z^2 + 7014080517655830 a007 Real Root Of -341*x^4-317*x^3+205*x^2+854*x-6 7014080530946741 a001 34/123*24476^(8/25) 7014080533813603 r009 Re(z^3+c),c=-55/94+24/53*I,n=37 7014080561579549 m004 (25*Pi)/2+(15*Pi)/ProductLog[Sqrt[5]*Pi] 7014080562115710 m005 (1/3*Pi+2/11)/(9/11*Pi-9/11) 7014080576373707 r002 8th iterates of z^2 + 7014080576492960 r009 Re(z^3+c),c=-45/74+13/42*I,n=14 7014080578180353 a001 341/2*5^(29/33) 7014080580748200 r005 Im(z^2+c),c=-9/8+4/47*I,n=16 7014080588939459 l006 ln(2833/5713) 7014080591582318 m001 KhinchinHarmonic/(Landau^BesselI(0,2)) 7014080595039477 r008 a(0)=7,K{-n^6,-68-17*n^3+54*n^2-41*n} 7014080617066963 r005 Re(z^2+c),c=-11/9+21/118*I,n=10 7014080674101916 a007 Real Root Of 384*x^4-604*x^3+659*x^2-300*x-836 7014080715372142 a007 Real Root Of -441*x^4+992*x^3-771*x^2+239*x+996 7014080756166848 h001 (9/11*exp(1)+2/3)/(6/11*exp(2)+1/11) 7014080775462257 a007 Real Root Of 507*x^4-592*x^3-962*x^2-910*x-492 7014080778429212 a007 Real Root Of 28*x^4-501*x^3+618*x^2-143*x-584 7014080808348835 r005 Re(z^2+c),c=-4/7+20/31*I,n=39 7014080814693105 r005 Re(z^2+c),c=-31/34+3/23*I,n=42 7014080848088058 m001 1/exp(GAMMA(1/3))^2*MadelungNaCl/GAMMA(19/24) 7014080851835678 m001 (cos(1/5*Pi)+GolombDickman)/(sin(1)+Zeta(3)) 7014080864730114 r005 Im(z^2+c),c=-7/10+11/157*I,n=33 7014080874606072 r008 a(0)=7,K{-n^6,-18-34*n-56*n^2+35*n^3} 7014080888376194 m001 (5^(1/2)-GAMMA(5/6))/(-QuadraticClass+Sarnak) 7014080909804692 m001 TwinPrimes^2/ln(Riemann2ndZero)^2/sin(Pi/12)^2 7014080932321606 m005 (1/2*Zeta(3)+4/5)/(6/11*5^(1/2)+7/9) 7014080967455162 a007 Real Root Of 203*x^4-217*x^3+493*x^2+467*x-39 7014080967826490 a001 139583862445/521*199^(2/11) 7014080971038085 l006 ln(4581/9238) 7014080978070559 a007 Real Root Of -992*x^4+705*x^3+911*x^2+489*x-39 7014080985006031 a001 53316291173/843*843^(5/14) 7014080993186130 a001 199/196418*20365011074^(21/22) 7014081003498760 b008 (11*7^(1/3))/3 7014081029902043 m001 1/ln(LandauRamanujan)^2*CareFree*FeigenbaumD^2 7014081082122712 s002 sum(A118321[n]/((2^n+1)/n),n=1..infinity) 7014081099428050 a007 Real Root Of 361*x^4-766*x^3-614*x^2-623*x+916 7014081106874325 m001 (-ln(2^(1/2)+1)+Otter)/(3^(1/2)+GAMMA(3/4)) 7014081113172646 a003 sin(Pi*17/69)/sin(Pi*9/19) 7014081118400657 r005 Im(z^2+c),c=-1/62+19/25*I,n=10 7014081139498574 a001 34/123*2207^(21/50) 7014081142073853 p004 log(12763/6329) 7014081144107539 r005 Re(z^2+c),c=-23/30+9/125*I,n=51 7014081144222237 m001 Pi*exp(Pi)-5^(1/2)-arctan(1/3) 7014081156819439 a001 956722026041/5778*521^(3/13) 7014081161528887 a001 21566892818/341*521^(5/13) 7014081180144683 r005 Im(z^2+c),c=-11/18+13/83*I,n=14 7014081207669830 r008 a(0)=7,K{-n^6,-16+52*n^3-62*n^2-44*n} 7014081222233117 m009 (1/6*Pi^2+3/4)/(16*Catalan+2*Pi^2-1/4) 7014081230000000 a001 377/1364*45537549124^(15/17) 7014081230000000 a001 377/1364*312119004989^(9/11) 7014081230000000 a001 377/1364*14662949395604^(5/7) 7014081230000000 a001 377/1364*(1/2+1/2*5^(1/2))^45 7014081230000000 a001 377/1364*192900153618^(5/6) 7014081230000000 a001 377/1364*28143753123^(9/10) 7014081230000000 a001 377/1364*10749957122^(15/16) 7014081230011862 a001 610/843*(1/2+1/2*5^(1/2))^43 7014081231939754 m001 GAMMA(1/4)/Magata^2*exp(cos(Pi/5)) 7014081272532858 m005 (1/2*Zeta(3)-7/11)/(5/9*3^(1/2)-6) 7014081274836458 r005 Im(z^2+c),c=11/54+2/63*I,n=19 7014081280136380 r002 3th iterates of z^2 + 7014081284067923 r005 Im(z^2+c),c=5/82+17/27*I,n=32 7014081299416960 r002 14th iterates of z^2 + 7014081302086387 m005 (5/6*exp(1)-1/4)/(2/5*exp(1)-4/5) 7014081318615520 r005 Re(z^2+c),c=6/19+8/13*I,n=9 7014081321990057 r008 a(0)=7,K{-n^6,-62-37*n+22*n^2+9*n^3} 7014081336261999 a001 2504730781961/15127*521^(3/13) 7014081362442316 a001 6557470319842/39603*521^(3/13) 7014081368622651 a001 10610209857723/64079*521^(3/13) 7014081378622643 a001 4052739537881/24476*521^(3/13) 7014081380506899 r005 Re(z^2+c),c=-69/50+1/57*I,n=24 7014081407480227 r008 a(0)=7,K{-n^6,-20+60*n^3-88*n^2-22*n} 7014081427130483 m001 CareFree-Tribonacci*ZetaQ(4) 7014081440817756 a007 Real Root Of -87*x^4-596*x^3+198*x^2+736*x+330 7014081447163605 a001 1548008755920/9349*521^(3/13) 7014081456239730 r005 Re(z^2+c),c=3/16+33/52*I,n=7 7014081461816420 m005 (1/2*gamma-8/9)/(2/5*Zeta(3)+3/8) 7014081477904471 m001 (ln(gamma)+GlaisherKinkelin)/(MertensB1-Mills) 7014081482330622 r008 a(0)=7,K{-n^6,-2+60*n^3-79*n^2-49*n} 7014081514100278 a007 Real Root Of 292*x^4-328*x^3-294*x^2-533*x+561 7014081523972918 r005 Im(z^2+c),c=-35/62+8/63*I,n=60 7014081525812298 r005 Im(z^2+c),c=-2/13+39/56*I,n=49 7014081526659485 a007 Real Root Of -79*x^4-619*x^3-559*x^2-802*x-515 7014081550994961 a003 cos(Pi*26/97)/sin(Pi*47/118) 7014081568653074 m001 1/ln(arctan(1/2))^2*Khintchine*cosh(1) 7014081576813018 a007 Real Root Of 895*x^4-672*x^3-36*x^2+570*x-31 7014081588199719 m005 (1/2*3^(1/2)+1/12)/(8/11*5^(1/2)-3/11) 7014081590308882 l006 ln(1748/3525) 7014081602299014 r008 a(0)=7,K{-n^6,-88+8*n^3-17*n^2+25*n} 7014081616069653 a005 (1/cos(20/237*Pi))^1026 7014081631312845 m001 GolombDickman^LandauRamanujan2nd-MinimumGamma 7014081642472250 a003 sin(Pi*8/117)/cos(Pi*47/117) 7014081663359172 r002 7th iterates of z^2 + 7014081678373706 b008 Sqrt[AiryBi[1+E]] 7014081684583287 a003 sin(Pi*22/89)/sin(Pi*19/39) 7014081690005077 a001 10983760033/281*843^(3/7) 7014081692529427 a001 567451585/161*322^(11/12) 7014081746671083 p004 log(36587/18143) 7014081763269391 r008 a(0)=7,K{-n^6,-48+12*n^3+26*n^2-59*n} 7014081775642342 a007 Real Root Of -803*x^4+534*x^3-387*x^2+57*x+609 7014081784283164 r005 Re(z^2+c),c=-55/78+11/40*I,n=12 7014081790594390 s004 Continued Fraction of A045713 7014081790594390 s004 Continued fraction of A045713 7014081790594390 s004 Continued Fraction of A090155 7014081790594390 s004 Continued fraction of A090155 7014081810353996 h005 exp(cos(Pi*5/51)+sin(Pi*22/47)) 7014081828334485 a001 199/832040*4181^(4/31) 7014081855942101 m001 1/Rabbit*ln(KhintchineLevy)^2/sin(Pi/5) 7014081859099927 a007 Real Root Of 978*x^4-947*x^3+867*x^2+596*x-572 7014081862890422 s004 Continued Fraction of A326740 7014081873874456 a007 Real Root Of 9*x^4-64*x^3-294*x^2-464*x+490 7014081883879161 r008 a(0)=7,K{-n^6,-45-23*n-17*n^2+13*n^3} 7014081886342781 r005 Im(z^2+c),c=-15/98+23/33*I,n=40 7014081890833145 r008 a(0)=7,K{-n^6,-12-52*n-30*n^2+22*n^3} 7014081896401240 r005 Im(z^2+c),c=-7/30+5/51*I,n=9 7014081913551573 a007 Real Root Of 108*x^4-816*x^3-35*x^2-638*x-738 7014081914596292 a001 591286729879/2207*521^(2/13) 7014081914688759 r002 24th iterates of z^2 + 7014081916950385 a001 591286729879/3571*521^(3/13) 7014081922888204 a007 Real Root Of -14*x^4-996*x^3-977*x^2+501*x+837 7014081939062411 m001 1/3*3^(1/2)*GAMMA(5/6)^ErdosBorwein 7014081944307195 m001 (2^(1/2)+2*Pi/GAMMA(5/6))/(-Bloch+Porter) 7014081945149143 r002 5th iterates of z^2 + 7014081969864331 a007 Real Root Of -159*x^4-995*x^3+762*x^2-569*x+12 7014081972445919 a001 1/311187*377^(5/38) 7014081996601280 s004 Continued Fraction of A107163 7014081996601280 s004 Continued fraction of A107163 7014082038310957 m001 BesselK(0,1)^2/exp((3^(1/3)))^2*sin(1)^2 7014082054825014 m001 (Zeta(1,-1)+Otter)/(2^(1/3)+exp(1)) 7014082065218481 h001 (7/10*exp(1)+1/10)/(11/12*exp(1)+4/11) 7014082067069199 r005 Re(z^2+c),c=9/106+5/11*I,n=28 7014082119983606 a001 427859009319/610 7014082122759867 m001 1/GAMMA(23/24)*GAMMA(1/4)^2/ln(sin(Pi/12))^2 7014082164590421 a007 Real Root Of -736*x^4+594*x^3+192*x^2+644*x-573 7014082228290320 a007 Real Root Of 838*x^4-802*x^3+209*x^2+923*x+65 7014082250802874 r004 Im(z^2+c),c=-13/34+1/10*I,z(0)=-1,n=9 7014082251667049 r005 Re(z^2+c),c=23/122+16/53*I,n=39 7014082272414998 l006 ln(4159/8387) 7014082272414998 p004 log(8387/4159) 7014082272955884 r005 Im(z^2+c),c=-43/58+1/40*I,n=47 7014082275249330 a007 Real Root Of 597*x^4-888*x^3+657*x^2+532*x-401 7014082282092538 a007 Real Root Of 282*x^4-852*x^3+53*x^2-758*x-920 7014082297534220 a007 Real Root Of -632*x^4-721*x^3-990*x^2+672*x-42 7014082315506478 b008 -1/3+Cos[E^(2/3)] 7014082329135889 m008 (1/3*Pi^4-5)/(2/5*Pi^4+1/5) 7014082354546614 m001 (gamma(2)+ZetaQ(2))/(arctan(1/2)-Zeta(1,-1)) 7014082357154263 a007 Real Root Of -801*x^4+305*x^3-36*x^2+475*x+650 7014082370122794 a007 Real Root Of 175*x^4-832*x^3+712*x^2+386*x-409 7014082371315448 a001 1836311903/2207*1364^(14/15) 7014082395004195 a001 20365011074/843*843^(1/2) 7014082403684479 a007 Real Root Of -781*x^4+602*x^3-650*x^2-745*x+194 7014082419260432 s004 Continued Fraction of A179784 7014082419260432 s004 Continued fraction of A179784 7014082430113448 a001 3571/233*28657^(19/51) 7014082433910247 r008 a(0)=7,K{-n^6,-23-55*n-16*n^2+21*n^3} 7014082437712276 a001 2207/89*514229^(21/22) 7014082446116593 a007 Real Root Of 306*x^4+29*x^3+727*x^2-411*x-710 7014082462666995 r008 a(0)=7,K{-n^6,-92+23*n^3-56*n^2+52*n} 7014082474581084 m006 (1/5*Pi^2+1/3)/(2*ln(Pi)+1) 7014082508906348 m001 1/MinimumGamma*FeigenbaumB/exp(GAMMA(5/24)) 7014082546550529 s002 sum(A016711[n]/((2*n+1)!),n=1..infinity) 7014082555932221 a007 Real Root Of -372*x^4+309*x^3-983*x^2+88*x+742 7014082560832681 m001 (BesselJ(0,1)+ln(2))/(Artin+Niven) 7014082581462761 s004 Continued Fraction of A142037 7014082581462761 s004 Continued fraction of A142037 7014082590389226 m001 (MasserGramainDelta+Paris)/Trott2nd 7014082622649029 a001 2971215073/2207*1364^(13/15) 7014082635205866 r005 Im(z^2+c),c=-23/70+3/28*I,n=16 7014082636086858 m001 (Niven-ZetaQ(2))/(Pi^(1/2)+LandauRamanujan2nd) 7014082645027476 m001 (Pi*StolarskyHarborth-PlouffeB)/Pi 7014082684316119 a007 Real Root Of 6*x^4+420*x^3-67*x^2-532*x+733 7014082717689916 r002 16th iterates of z^2 + 7014082722628196 a003 cos(Pi*1/110)*cos(Pi*26/103) 7014082731077237 r005 Im(z^2+c),c=-5/4+17/225*I,n=7 7014082765756047 a001 1860498/89*63245986^(17/24) 7014082766948976 l006 ln(2411/4862) 7014082778076322 a007 Real Root Of -102*x^4-634*x^3+680*x^2+680*x-583 7014082779153890 m001 sin(1)/(gamma(3)^TravellingSalesman) 7014082792223201 m001 FeigenbaumKappa*exp(Robbin)^2*GAMMA(19/24)^2 7014082798662111 s002 sum(A023404[n]/((2*n+1)!),n=1..infinity) 7014082854277346 r008 a(0)=7,K{-n^6,-38-n-61*n^2+28*n^3} 7014082857306808 m001 sin(1)*GAMMA(23/24)*StolarskyHarborth 7014082873982619 a001 4807526976/2207*1364^(4/5) 7014082884021786 a007 Real Root Of -897*x^4+712*x^3+972*x^2+438*x-814 7014082898206202 a007 Real Root Of 174*x^4-773*x^3+307*x^2-147*x-563 7014082917223246 r005 Im(z^2+c),c=-11/18+14/107*I,n=52 7014082925129011 a007 Real Root Of -339*x^4+482*x^3-692*x^2-513*x+229 7014082929878077 m005 (1/3*5^(1/2)-1/4)/(-3/10+9/20*5^(1/2)) 7014082947682333 m001 1/GAMMA(3/4)*exp(Sierpinski)/cosh(1) 7014082976604861 a007 Real Root Of 321*x^4-941*x^3-416*x^2-652*x+909 7014083030277198 r008 a(0)=7,K{-n^6,-48-8*n^3+35*n^2-51*n} 7014083097479033 a001 365435296162/843*322^(1/12) 7014083100003383 a001 12586269025/843*843^(4/7) 7014083111211516 m005 (1/2*exp(1)-1/11)/(4/7*2^(1/2)+1) 7014083125316219 a001 7778742049/2207*1364^(11/15) 7014083144513999 a001 86000486440/321*521^(2/13) 7014083149223449 a001 139583862445/1364*521^(4/13) 7014083152525203 a007 Real Root Of -612*x^4+441*x^3-539*x^2+15*x+576 7014083167477417 r002 15th iterates of z^2 + 7014083188172428 r008 a(0)=7,K{-n^6,-29-37*n-37*n^2+29*n^3} 7014083190947226 a003 cos(Pi*8/49)-cos(Pi*41/92) 7014083210728232 m001 Zeta(7)*exp(GAMMA(2/3))^2*arctan(1/2) 7014083214633328 m001 (GAMMA(19/24)+ZetaQ(4))/(Ei(1)-Ei(1,1)) 7014083216390249 m002 -2/Pi+ProductLog[Pi]/Pi+Tanh[Pi] 7014083244634874 m005 (1/2*2^(1/2)-2)/(exp(1)-7/8) 7014083268403038 m001 Pi/(Psi(2,1/3)^Artin) 7014083274157157 r005 Re(z^2+c),c=-27/23+59/62*I,n=2 7014083277173470 a007 Real Root Of 651*x^4-327*x^3-864*x^2-326*x-74 7014083279220764 m001 (3^(1/2)+exp(1/Pi))/(-CareFree+MertensB1) 7014083284617815 r005 Re(z^2+c),c=-2/3+115/198*I,n=6 7014083297362465 p004 log(23459/11633) 7014083313811910 m001 GAMMA(11/12)/FibonacciFactorial^2 7014083323956611 a001 4052739537881/15127*521^(2/13) 7014083349901639 a001 213929542172/305 7014083350136935 a001 3536736619241/13201*521^(2/13) 7014083360470684 s004 Continued Fraction of A087390 7014083360470684 s004 Continued fraction of A087390 7014083365099838 r002 10th iterates of z^2 + 7014083366317266 a001 3278735159921/12238*521^(2/13) 7014083376649827 a001 12586269025/2207*1364^(2/3) 7014083383351090 a007 Real Root Of -412*x^4-373*x^3-880*x^2+750*x+930 7014083434858248 a001 2504730781961/9349*521^(2/13) 7014083436033782 l006 ln(3074/6199) 7014083443160948 a007 Real Root Of 773*x^4-717*x^3+631*x^2+958*x-73 7014083496265307 a007 Real Root Of -821*x^4-170*x^3-956*x^2-126*x+522 7014083501757948 r002 4th iterates of z^2 + 7014083510280897 s004 Continued Fraction of A142928 7014083510280897 s004 Continued fraction of A142928 7014083510665907 r005 Im(z^2+c),c=-37/90+6/53*I,n=11 7014083516714345 a001 199/2*6765^(29/39) 7014083524940366 m001 (DuboisRaymond+Lehmer)/(Rabbit+ThueMorse) 7014083529344262 a001 42785909529/61 7014083529971285 a007 Real Root Of 237*x^4-519*x^3+756*x^2-363*x-863 7014083535477011 m001 ln(MinimumGamma)/FeigenbaumDelta/OneNinth^2 7014083541163401 r005 Re(z^2+c),c=23/122+16/53*I,n=43 7014083555524590 a001 427859096887/610 7014083558388985 g005 GAMMA(8/9)*GAMMA(7/9)*GAMMA(1/9)/GAMMA(4/7) 7014083559344262 a001 42785909712/61 7014083559901639 a001 213929548577/305 7014083559983606 a001 427859097159/610 7014083559996721 a001 2139295485799/610*8^(1/3) 7014083559996721 a001 1/305*(1/2+1/2*5^(1/2))^59 7014083560032786 a001 213929548581/305 7014083560245901 a001 85571819435/122 7014083561704918 a001 213929548632/305 7014083562972183 r002 53th iterates of z^2 + 7014083571704918 a001 213929548937/305 7014083575785919 b008 7+Tanh[1/71] 7014083575822860 b008 7+ArcTan[1/71] 7014083591507418 r005 Im(z^2+c),c=-9/56+35/46*I,n=18 7014083601233235 a001 267084832/321*1364^(14/15) 7014083601524602 a007 Real Root Of 550*x^4-520*x^3-645*x^2-329*x-226 7014083615371349 m001 (2^(1/3))^Cahen/Zeta(1,-1) 7014083617532576 s004 Continued Fraction of A201261 7014083617532576 s004 Continued fraction of A201261 7014083621956396 r008 a(0)=7,K{-n^6,-27-40*n-36*n^2+29*n^3} 7014083627983445 a001 20365011074/2207*1364^(3/5) 7014083629906709 r001 45i'th iterates of 2*x^2-1 of 7014083640245901 a001 85571820411/122 7014083669952137 r009 Im(z^3+c),c=-5/31+49/60*I,n=25 7014083673099043 a007 Real Root Of 312*x^4-703*x^3+749*x^2+65*x-641 7014083688868076 m001 1/exp(LambertW(1))*Sierpinski^2/cos(1) 7014083694610827 r008 a(0)=7,K{-n^6,-91+4*n^3+29*n^2-11*n} 7014083696276113 r009 Im(z^3+c),c=-13/106+29/39*I,n=3 7014083725673226 r005 Im(z^2+c),c=17/54+17/33*I,n=24 7014083729755648 m001 KhintchineHarmonic^2/ln(ErdosBorwein)/Catalan 7014083775076352 s004 Continued Fraction of A069619 7014083775076352 s004 Continued fraction of A069619 7014083775076352 s004 Continued Fraction of A069634 7014083775076352 s004 Continued fraction of A069634 7014083780675858 a001 12586269025/15127*1364^(14/15) 7014083781311941 a001 5/1364*2^(44/47) 7014083790755732 m001 (exp(1/Pi)+GAMMA(23/24))/(Kolakoski-ZetaP(2)) 7014083791514663 m001 1/Tribonacci/ln(Porter)^2*Ei(1) 7014083791592584 a007 Real Root Of -922*x^4+710*x^3-179*x^2-160*x+444 7014083800901148 r005 Im(z^2+c),c=-1/48+29/43*I,n=5 7014083801123249 s004 Continued Fraction of A137443 7014083801123249 s004 Continued fraction of A137443 7014083804807942 m001 (ln(gamma)-Bloch)/(Kolakoski+Robbin) 7014083805002642 a001 7778742049/843*843^(9/14) 7014083806856185 a001 10983760033/13201*1364^(14/15) 7014083807231467 s002 sum(A147814[n]/((2*n+1)!),n=1..infinity) 7014083810675843 a001 43133785636/51841*1364^(14/15) 7014083811233124 a001 75283811239/90481*1364^(14/15) 7014083811314430 a001 591286729879/710647*1364^(14/15) 7014083811326292 a001 832040*1364^(14/15) 7014083811328023 a001 4052739537881/4870847*1364^(14/15) 7014083811328275 a001 3536736619241/4250681*1364^(14/15) 7014083811328431 a001 3278735159921/3940598*1364^(14/15) 7014083811329092 a001 2504730781961/3010349*1364^(14/15) 7014083811333623 a001 956722026041/1149851*1364^(14/15) 7014083811364680 a001 182717648081/219602*1364^(14/15) 7014083811577542 a001 139583862445/167761*1364^(14/15) 7014083813036522 a001 53316291173/64079*1364^(14/15) 7014083823036517 a001 10182505537/12238*1364^(14/15) 7014083835456910 r008 a(0)=7,K{-n^6,-20-30*n-49*n^2+27*n^3} 7014083841961687 a007 Real Root Of -286*x^4+482*x^3-698*x^2-104*x+506 7014083852566861 a001 7778742049/5778*1364^(13/15) 7014083860485774 a003 sin(Pi*2/9)-sin(Pi*24/95) 7014083867707150 l006 ln(3737/7536) 7014083872977208 a007 Real Root Of -794*x^4+743*x^3+613*x^2+221*x+302 7014083879317071 a001 32951280099/2207*1364^(8/15) 7014083891577503 a001 7778742049/9349*1364^(14/15) 7014083902291068 a001 956722026041/2207*521^(1/13) 7014083904645162 a001 956722026041/3571*521^(2/13) 7014083907946394 m001 (ln(3)-BesselK(1,1))/(Rabbit-ZetaQ(4)) 7014083911196089 r008 a(0)=7,K{-n^6,-37-35*n-39*n^2+41*n^3} 7014083918691895 m001 (-BesselI(1,2)+Sarnak)/(1-5^(1/2)) 7014083918691895 m001 cos(1/5*Pi)*(BesselI(1,2)-Sarnak) 7014083940285438 s004 Continued Fraction of A107601 7014083940285438 s004 Continued fraction of A107601 7014083963739360 r005 Re(z^2+c),c=-11/16+13/51*I,n=23 7014083967327842 m001 BesselK(1,1)^KhinchinHarmonic/sin(1/5*Pi) 7014083993264762 m002 -Pi^3+E^Pi*Pi^5-Pi*Cosh[Pi] 7014084032009490 a001 20365011074/15127*1364^(13/15) 7014084034609955 a007 Real Root Of -732*x^4+661*x^3+53*x^2+858*x+981 7014084041381758 b008 7+Sin[1/71] 7014084041418703 b008 7+ArcCsch[71] 7014084041418703 b008 7+ArcSinh[1/71] 7014084058189818 a001 53316291173/39603*1364^(13/15) 7014084062009476 a001 139583862445/103682*1364^(13/15) 7014084062566756 a001 365435296162/271443*1364^(13/15) 7014084062648063 a001 956722026041/710647*1364^(13/15) 7014084062659925 a001 2504730781961/1860498*1364^(13/15) 7014084062661656 a001 6557470319842/4870847*1364^(13/15) 7014084062662064 a001 10610209857723/7881196*1364^(13/15) 7014084062662725 a001 1346269*1364^(13/15) 7014084062667256 a001 1548008755920/1149851*1364^(13/15) 7014084062698313 a001 591286729879/439204*1364^(13/15) 7014084062911175 a001 225851433717/167761*1364^(13/15) 7014084064370155 a001 86267571272/64079*1364^(13/15) 7014084074370150 a001 32951280099/24476*1364^(13/15) 7014084085399972 r008 a(0)=7,K{-n^6,-19+43*n^3-36*n^2-58*n} 7014084087433116 a005 (1/sin(86/235*Pi))^651 7014084096403425 r005 Im(z^2+c),c=5/122+33/52*I,n=52 7014084098878804 s004 Continued Fraction of A319963 7014084103900495 a001 12586269025/5778*1364^(4/5) 7014084110032786 a001 213929565356/305 7014084110870558 r008 a(0)=7,K{-n^6,-43-15*n-41*n^2+26*n^3} 7014084130650706 a001 53316291173/2207*1364^(7/15) 7014084142911139 a001 12586269025/9349*1364^(13/15) 7014084143947501 m005 (-1/66+1/6*5^(1/2))/(-11/15+1/10*5^(1/2)) 7014084151004044 a007 Real Root Of -345*x^4+256*x^3-730*x^2+154*x+639 7014084169289852 l006 ln(4400/8873) 7014084200444158 s004 Continued Fraction of A198966 7014084200444158 s004 Continued fraction of A198966 7014084222529625 a007 Real Root Of 802*x^4-699*x^3+974*x^2+926*x-265 7014084224061779 s004 Continued Fraction of A069591 7014084224061779 s004 Continued fraction of A069591 7014084227110246 h001 (-8*exp(3/2)-5)/(-4*exp(1/3)+5) 7014084230761739 s004 Continued Fraction of A039920 7014084230761739 s004 Continued fraction of A039920 7014084231145988 s004 Continued Fraction of A048552 7014084231145988 s004 Continued Fraction of A065537 7014084231145988 s004 Continued Fraction of A100895 7014084231145988 s004 Continued fraction of A048552 7014084231145988 s004 Continued fraction of A065537 7014084231287404 a003 sin(Pi*1/116)/cos(Pi*40/107) 7014084236025290 a007 Real Root Of -141*x^4-934*x^3+442*x^2+285*x-772 7014084248748410 s004 Continued Fraction of A067307 7014084248748410 s004 Continued fraction of A067307 7014084253796721 a007 Real Root Of 383*x^4-434*x^3-228*x^2-289*x-333 7014084262403536 a007 Real Root Of 771*x^4+307*x^3+550*x^2+468*x-23 7014084266228552 a007 Real Root Of 160*x^4-38*x^3-894*x^2-560*x+807 7014084275842445 b008 6+E^(2/143) 7014084276049544 a007 Real Root Of 629*x^4-861*x^3-479*x^2-287*x-415 7014084283343131 a001 32951280099/15127*1364^(4/5) 7014084289292259 s004 Continued Fraction of A268702 7014084289292259 s004 Continued fraction of A268702 7014084309523459 a001 86267571272/39603*1364^(4/5) 7014084313343118 a001 225851433717/103682*1364^(4/5) 7014084313900398 a001 591286729879/271443*1364^(4/5) 7014084313981705 a001 1548008755920/710647*1364^(4/5) 7014084313993567 a001 4052739537881/1860498*1364^(4/5) 7014084313995298 a001 2178309*1364^(4/5) 7014084313996367 a001 6557470319842/3010349*1364^(4/5) 7014084314000898 a001 2504730781961/1149851*1364^(4/5) 7014084314031955 a001 956722026041/439204*1364^(4/5) 7014084314244817 a001 365435296162/167761*1364^(4/5) 7014084315703797 a001 139583862445/64079*1364^(4/5) 7014084325703792 a001 53316291173/24476*1364^(4/5) 7014084337639220 s004 Continued Fraction of A022518 7014084337639220 s004 Continued fraction of A022518 7014084351821472 b008 7+SinIntegral[1/71] 7014084352697663 a003 cos(Pi*24/95)/sin(Pi*35/71) 7014084355234139 a001 10182505537/2889*1364^(11/15) 7014084361364447 a001 2971215073/3571*1364^(14/15) 7014084361805487 b008 7+E/193 7014084369884532 a007 Real Root Of -77*x^4+707*x^3+611*x^2+549*x-911 7014084381984351 a001 86267571272/2207*1364^(2/5) 7014084389433577 r005 Re(z^2+c),c=1/106+28/29*I,n=4 7014084394244783 a001 20365011074/9349*1364^(4/5) 7014084413953550 s004 Continued Fraction of A113053 7014084413953550 s004 Continued fraction of A113053 7014084429196663 a007 Real Root Of 92*x^4-545*x^3+334*x^2-725*x+510 7014084449972813 a001 987/2207*312119004989^(4/5) 7014084449972813 a001 987/2207*(1/2+1/2*5^(1/2))^44 7014084449972813 a001 987/2207*23725150497407^(11/16) 7014084449972813 a001 987/2207*73681302247^(11/13) 7014084449972813 a001 987/2207*10749957122^(11/12) 7014084449972813 a001 987/2207*4106118243^(22/23) 7014084460112764 a007 Real Root Of 528*x^4-568*x^3-262*x^2-425*x-493 7014084479145622 s004 Continued Fraction of A022503 7014084479145622 s004 Continued fraction of A022503 7014084482668623 p004 log(21757/10789) 7014084507039476 s004 Continued Fraction of A242827 7014084507042253 q001 249/355 7014084507042253 r005 Im(z^2+c),c=-11/10+83/142*I,n=2 7014084508213139 m001 (BesselK(0,1)-Chi(1))/(-gamma(3)+Gompertz) 7014084510001972 a001 1602508992/281*843^(5/7) 7014084528092344 m001 (CareFree+Rabbit)/(Riemann2ndZero-Thue) 7014084534676781 a001 53316291173/15127*1364^(11/15) 7014084560857110 a001 139583862445/39603*1364^(11/15) 7014084562231305 r008 a(0)=7,K{-n^6,3+56*n^3-64*n^2-65*n} 7014084564676769 a001 182717648081/51841*1364^(11/15) 7014084565234049 a001 956722026041/271443*1364^(11/15) 7014084565315356 a001 2504730781961/710647*1364^(11/15) 7014084565327218 a001 3278735159921/930249*1364^(11/15) 7014084565330018 a001 10610209857723/3010349*1364^(11/15) 7014084565334549 a001 4052739537881/1149851*1364^(11/15) 7014084565365606 a001 387002188980/109801*1364^(11/15) 7014084565578468 a001 591286729879/167761*1364^(11/15) 7014084567037448 a001 225851433717/64079*1364^(11/15) 7014084568083875 r008 a(0)=7,K{-n^6,-52-10*n-57*n^2+37*n^3} 7014084577037444 a001 21566892818/6119*1364^(11/15) 7014084579661735 r005 Re(z^2+c),c=-1/13+39/47*I,n=3 7014084606567791 a001 10983760033/1926*1364^(2/3) 7014084612546240 p003 LerchPhi(1/125,6,52/155) 7014084612698100 a001 4807526976/3571*1364^(13/15) 7014084617110140 m001 (Conway-FeigenbaumAlpha)/(ln(Pi)+BesselI(1,1)) 7014084628278169 r002 3th iterates of z^2 + 7014084633318004 a001 139583862445/2207*1364^(1/3) 7014084645578437 a001 32951280099/9349*1364^(11/15) 7014084651020815 m001 (Mills+Sarnak)/(BesselI(1,2)+Conway) 7014084659298523 r002 54th iterates of z^2 + 7014084693830630 r005 Im(z^2+c),c=-9/10+9/163*I,n=31 7014084696000379 r005 Im(z^2+c),c=-43/34+3/85*I,n=12 7014084703849016 a001 9/17*17711^(14/53) 7014084706096193 a007 Real Root Of 329*x^4-916*x^3+453*x^2-367*x-876 7014084721357022 a007 Real Root Of 533*x^4-726*x^3+x^2+442*x-70 7014084723361289 a007 Real Root Of 192*x^4-139*x^3-60*x^2-981*x-753 7014084732255281 m001 (ln(3)-GAMMA(17/24))/(Khinchin-Trott2nd) 7014084733604235 a007 Real Root Of -821*x^4+282*x^3-732*x^2-887*x+34 7014084744312150 a007 Real Root Of 611*x^4-981*x^3+393*x^2+674*x-207 7014084746285060 h001 (-exp(4)-7)/(-8*exp(7)-9) 7014084749999579 r005 Re(z^2+c),c=-1/29+14/61*I,n=9 7014084753385431 a007 Real Root Of 526*x^4+51*x^3+307*x^2-36*x-286 7014084763793519 r009 Re(z^3+c),c=-7/58+35/58*I,n=35 7014084782529340 a007 Real Root Of 34*x^4-592*x^3-574*x^2-534*x+853 7014084784605586 r005 Im(z^2+c),c=-5/8+43/207*I,n=15 7014084785551282 r002 48th iterates of z^2 + 7014084786010440 a001 86267571272/15127*1364^(2/3) 7014084812190770 a001 75283811239/13201*1364^(2/3) 7014084816010429 a001 591286729879/103682*1364^(2/3) 7014084816139002 r002 8th iterates of z^2 + 7014084816567709 a001 516002918640/90481*1364^(2/3) 7014084816649016 a001 4052739537881/710647*1364^(2/3) 7014084816660878 a001 3536736619241/620166*1364^(2/3) 7014084816668209 a001 6557470319842/1149851*1364^(2/3) 7014084816699266 a001 2504730781961/439204*1364^(2/3) 7014084816912128 a001 956722026041/167761*1364^(2/3) 7014084818371108 a001 365435296162/64079*1364^(2/3) 7014084818483581 a007 Real Root Of -950*x^4+468*x^3+562*x^2+392*x-483 7014084828371104 a001 139583862445/24476*1364^(2/3) 7014084832767648 r005 Re(z^2+c),c=-43/40+1/58*I,n=8 7014084850946499 m001 (Rabbit+Totient)/(GAMMA(19/24)-QuadraticClass) 7014084857901452 a001 53316291173/5778*1364^(3/5) 7014084859641490 r005 Re(z^2+c),c=-107/126+31/44*I,n=3 7014084864031761 a001 7778742049/3571*1364^(4/5) 7014084877011956 a003 sin(Pi*14/57)/sin(Pi*27/58) 7014084884651667 a001 225851433717/2207*1364^(4/15) 7014084896912100 a001 53316291173/9349*1364^(2/3) 7014084911826644 h001 (-7*exp(-1)+8)/(-4*exp(3)+3) 7014084972711986 b008 7+Sinh[1/71] 7014084972748941 b008 7+ArcSin[1/71] 7014084994977742 m001 (BesselI(1,2)-ThueMorse)/(Zeta(1/2)-Ei(1,1)) 7014085014238193 m001 (2^(1/2)-Ei(1,1))/(GAMMA(7/12)+ZetaP(3)) 7014085020613998 r008 a(0)=7,K{-n^6,-37-59*n+14*n^2+9*n^3} 7014085023465226 a007 Real Root Of 648*x^4-336*x^3+501*x^2+756*x+11 7014085028877494 a007 Real Root Of 576*x^4+140*x^3+91*x^2-90*x-199 7014085033606661 r005 Re(z^2+c),c=-16/25+29/59*I,n=12 7014085037344107 a001 139583862445/15127*1364^(3/5) 7014085043136947 a007 Real Root Of 761*x^4+6*x^3+137*x^2+15*x-239 7014085043171850 r002 24th iterates of z^2 + 7014085054306437 m001 (ln(gamma)+GlaisherKinkelin)/(Lehmer+ZetaP(2)) 7014085059526664 m001 GAMMA(11/24)*(2/3-GaussKuzminWirsing) 7014085061378749 a007 Real Root Of 282*x^4-88*x^3+268*x^2-802*x-793 7014085061618451 a008 Real Root of x^4-x^3-34*x^2+124*x-223 7014085063524439 a001 365435296162/39603*1364^(3/5) 7014085067344098 a001 956722026041/103682*1364^(3/5) 7014085067901378 a001 2504730781961/271443*1364^(3/5) 7014085067982685 a001 6557470319842/710647*1364^(3/5) 7014085068001878 a001 10610209857723/1149851*1364^(3/5) 7014085068032935 a001 4052739537881/439204*1364^(3/5) 7014085068245797 a001 140728068720/15251*1364^(3/5) 7014085069384659 r002 15th iterates of z^2 + 7014085069704777 a001 591286729879/64079*1364^(3/5) 7014085079704773 a001 7787980473/844*1364^(3/5) 7014085109235123 a001 43133785636/2889*1364^(8/15) 7014085115365432 a001 12586269025/3571*1364^(11/15) 7014085132209123 a001 2504730781961/5778*521^(1/13) 7014085135985338 a001 365435296162/2207*1364^(1/5) 7014085136918575 a001 225851433717/1364*521^(3/13) 7014085141679512 r002 23th iterates of z^2 + 7014085148245772 a001 86267571272/9349*1364^(3/5) 7014085159260811 a007 Real Root Of -954*x^4+82*x^3+423*x^2+784*x+601 7014085171185033 b008 InverseErfc[Sqrt[1/10+E]] 7014085172782833 m005 (1/2*Pi+3/5)/(5/11*2^(1/2)-1/3) 7014085187629699 m001 Conway^2/exp(Backhouse)^2/log(2+sqrt(3)) 7014085197568051 r005 Re(z^2+c),c=-9/46+13/19*I,n=59 7014085202337827 a007 Real Root Of 71*x^4-983*x^3-27*x^2-634*x+780 7014085215001372 a001 2971215073/843*843^(11/14) 7014085236712934 m001 1/Catalan*LaplaceLimit^2/exp(GAMMA(1/6))^2 7014085237551518 a007 Real Root Of 102*x^4+688*x^3-157*x^2+264*x+108 7014085238808253 a007 Real Root Of 891*x^4-963*x^3+160*x^2+624*x-189 7014085250998178 r005 Im(z^2+c),c=15/44+4/7*I,n=23 7014085258911268 r002 9th iterates of z^2 + 7014085261027910 m001 1/FeigenbaumC/exp(LandauRamanujan)/GAMMA(1/4) 7014085272288012 a001 34/123*843^(12/25) 7014085283628375 m001 PrimesInBinary^2*FeigenbaumDelta/ln(Pi) 7014085286676486 a007 Real Root Of 965*x^4-992*x^3+403*x^2-936*x+567 7014085288677784 a001 32264490531/2161*1364^(8/15) 7014085297112730 r005 Re(z^2+c),c=-7/66+55/64*I,n=11 7014085303634137 a007 Real Root Of -838*x^4-471*x^3-903*x^2+566*x+44 7014085311651786 a001 6557470319842/15127*521^(1/13) 7014085314858117 a001 591286729879/39603*1364^(8/15) 7014085318677776 a001 774004377960/51841*1364^(8/15) 7014085319235056 a001 4052739537881/271443*1364^(8/15) 7014085319316363 a001 1515744265389/101521*1364^(8/15) 7014085319366613 a001 3278735159921/219602*1364^(8/15) 7014085319579475 a001 2504730781961/167761*1364^(8/15) 7014085321038455 a001 956722026041/64079*1364^(8/15) 7014085321660704 s002 sum(A263619[n]/((2*n+1)!),n=1..infinity) 7014085331038452 a001 182717648081/12238*1364^(8/15) 7014085339949906 a001 1120149428790/1597 7014085353844604 a001 41/48*701408733^(5/9) 7014085354012453 a001 10610209857723/24476*521^(1/13) 7014085354749173 r005 Re(z^2+c),c=-87/118+17/52*I,n=6 7014085355932168 m001 (3^(1/3))^2/MadelungNaCl^2/ln(GAMMA(1/3))^2 7014085360568802 a001 139583862445/5778*1364^(7/15) 7014085366699112 a001 20365011074/3571*1364^(2/3) 7014085372305230 a001 701408733/2207*3571^(16/17) 7014085380034872 m001 Zeta(9)^2*Paris^2/exp(log(2+sqrt(3)))^2 7014085387297858 m002 -2+3*E^Pi-E^Pi*Pi^5 7014085387319019 a001 591286729879/2207*1364^(2/15) 7014085395127181 r005 Re(z^2+c),c=23/122+16/53*I,n=42 7014085399579453 a001 139583862445/9349*1364^(8/15) 7014085404660303 a001 1134903170/2207*3571^(15/17) 7014085406684162 m005 (1/3*Pi-2/7)/(10/11*2^(1/2)-1/5) 7014085411408259 r005 Re(z^2+c),c=-69/98+5/18*I,n=34 7014085422553454 a001 4052739537881/9349*521^(1/13) 7014085424384134 r008 a(0)=7,K{-n^6,-82-18*n^3+51*n^2-23*n} 7014085425110119 m001 KhinchinHarmonic/(Bloch^Si(Pi)) 7014085436172497 a001 6643838879/89*610^(17/24) 7014085437015375 a001 1836311903/2207*3571^(14/17) 7014085438446388 b008 7+Tan[1/71] 7014085438483348 b008 7+ArcCoth[71] 7014085438483348 b008 7+ArcTanh[1/71] 7014085438691511 r008 a(0)=7,K{-n^6,-48+n^3+45*n^2-74*n} 7014085447093726 m001 ArtinRank2^arctan(1/3)*ArtinRank2^LaplaceLimit 7014085451617371 a008 Real Root of (6+4*x-10*x^2-5*x^3) 7014085463439502 a007 Real Root Of -101*x^4-650*x^3+560*x^2+949*x-734 7014085469370448 a001 2971215073/2207*3571^(13/17) 7014085490301729 a007 Real Root Of 79*x^4+522*x^3-151*x^2+390*x-917 7014085501725521 a001 4807526976/2207*3571^(12/17) 7014085534080594 a001 7778742049/2207*3571^(11/17) 7014085540011470 a001 365435296162/15127*1364^(7/15) 7014085542468256 a007 Real Root Of -594*x^4-681*x^3-238*x^2+877*x+641 7014085552059864 a008 Real Root of x^4-2*x^3-42*x^2+4*x+308 7014085561787040 m008 (1/4*Pi^2+4)/(3*Pi^5+4) 7014085566191803 a001 956722026041/39603*1364^(7/15) 7014085566435667 a001 12586269025/2207*3571^(10/17) 7014085569830738 a007 Real Root Of 504*x^4+611*x^3+802*x^2-632*x-749 7014085570011463 a001 2504730781961/103682*1364^(7/15) 7014085570568743 a001 6557470319842/271443*1364^(7/15) 7014085570700300 a001 10610209857723/439204*1364^(7/15) 7014085570913162 a001 4052739537881/167761*1364^(7/15) 7014085572372142 a001 1548008755920/64079*1364^(7/15) 7014085582372139 a001 591286729879/24476*1364^(7/15) 7014085584334765 l006 ln(8822/9463) 7014085598790740 a001 20365011074/2207*3571^(9/17) 7014085611811546 r008 a(0)=7,K{-n^6,-66-7*n^3+60*n^2-62*n} 7014085611902491 a001 75283811239/1926*1364^(2/5) 7014085618032800 a001 32951280099/3571*1364^(3/5) 7014085624059648 a007 Real Root Of -907*x^4+574*x^3+528*x^2-312*x-61 7014085631145814 a001 32951280099/2207*3571^(8/17) 7014085638652708 a001 956722026041/2207*1364^(1/15) 7014085650913143 a001 225851433717/9349*1364^(7/15) 7014085657597187 a007 Real Root Of -675*x^4+903*x^3+62*x^2+159*x+556 7014085663500887 a001 53316291173/2207*3571^(7/17) 7014085679734265 r002 8th iterates of z^2 + 7014085679890965 a001 329/1926*(1/2+1/2*5^(1/2))^46 7014085679890965 a001 329/1926*10749957122^(23/24) 7014085679891255 a001 2584/2207*2537720636^(14/15) 7014085679891255 a001 2584/2207*17393796001^(6/7) 7014085679891255 a001 2584/2207*45537549124^(14/17) 7014085679891255 a001 2584/2207*817138163596^(14/19) 7014085679891255 a001 2584/2207*14662949395604^(2/3) 7014085679891255 a001 2584/2207*(1/2+1/2*5^(1/2))^42 7014085679891255 a001 2584/2207*505019158607^(3/4) 7014085679891255 a001 2584/2207*192900153618^(7/9) 7014085679891255 a001 2584/2207*10749957122^(7/8) 7014085679891255 a001 2584/2207*4106118243^(21/23) 7014085679891255 a001 2584/2207*1568397607^(21/22) 7014085695855961 a001 86267571272/2207*3571^(6/17) 7014085707076951 a007 Real Root Of -555*x^4+834*x^3+92*x^2-754*x-152 7014085720656380 a007 Real Root Of 714*x^4-765*x^3-973*x^2-918*x-602 7014085728211035 a001 139583862445/2207*3571^(5/17) 7014085760566109 a001 225851433717/2207*3571^(4/17) 7014085761341451 h001 (4/9*exp(1)+9/11)/(4/5*exp(1)+5/7) 7014085767454540 m001 (Ei(1)-BesselI(1,1))/(BesselJ(1,1)+Backhouse) 7014085782428005 r002 5th iterates of z^2 + 7014085791345165 a001 591286729879/15127*1364^(2/5) 7014085792921183 a001 365435296162/2207*3571^(3/17) 7014085798651649 a007 Real Root Of 78*x^4-960*x^3-783*x^2-136*x+793 7014085809736905 a001 2932589277051/4181 7014085813960842 a001 267914296/2207*9349^(18/19) 7014085815639620 r005 Re(z^2+c),c=-1/44+6/23*I,n=14 7014085817525499 a001 516002918640/13201*1364^(2/5) 7014085818184484 a001 433494437/2207*9349^(17/19) 7014085820347362 r008 a(0)=7,K{-n^6,-60-8*n^3+30*n^2-34*n} 7014085821345159 a001 4052739537881/103682*1364^(2/5) 7014085821902439 a001 3536736619241/90481*1364^(2/5) 7014085822246858 a001 6557470319842/167761*1364^(2/5) 7014085822408127 a001 701408733/2207*9349^(16/19) 7014085823291022 r008 a(0)=7,K{-n^6,-62-15*n^3+64*n^2-60*n} 7014085823705838 a001 2504730781961/64079*1364^(2/5) 7014085825276257 a001 591286729879/2207*3571^(2/17) 7014085826631769 a001 1134903170/2207*9349^(15/19) 7014085830469529 a007 Real Root Of 584*x^4+387*x^3-85*x^2-221*x-121 7014085830855412 a001 1836311903/2207*9349^(14/19) 7014085833705836 a001 956722026041/24476*1364^(2/5) 7014085835079054 a001 2971215073/2207*9349^(13/19) 7014085839302697 a001 4807526976/2207*9349^(12/19) 7014085843526339 a001 7778742049/2207*9349^(11/19) 7014085847749981 a001 12586269025/2207*9349^(10/19) 7014085851973624 a001 20365011074/2207*9349^(9/19) 7014085856197266 a001 32951280099/2207*9349^(8/19) 7014085857631332 a001 956722026041/2207*3571^(1/17) 7014085859333641 a001 141/2161*45537549124^(16/17) 7014085859333641 a001 141/2161*14662949395604^(16/21) 7014085859333641 a001 141/2161*(1/2+1/2*5^(1/2))^48 7014085859333641 a001 141/2161*192900153618^(8/9) 7014085859333641 a001 141/2161*73681302247^(12/13) 7014085859333937 a001 6765/2207*2537720636^(8/9) 7014085859333937 a001 6765/2207*312119004989^(8/11) 7014085859333937 a001 6765/2207*(1/2+1/2*5^(1/2))^40 7014085859333937 a001 6765/2207*23725150497407^(5/8) 7014085859333937 a001 6765/2207*73681302247^(10/13) 7014085859333937 a001 6765/2207*28143753123^(4/5) 7014085859333937 a001 6765/2207*10749957122^(5/6) 7014085859333937 a001 6765/2207*4106118243^(20/23) 7014085859333937 a001 6765/2207*1568397607^(10/11) 7014085859333937 a001 6765/2207*599074578^(20/21) 7014085860420909 a001 53316291173/2207*9349^(7/19) 7014085863236188 a001 182717648081/2889*1364^(1/3) 7014085864644551 a001 86267571272/2207*9349^(6/19) 7014085868868194 a001 139583862445/2207*9349^(5/19) 7014085869160806 l006 ln(663/1337) 7014085869366498 a001 53316291173/3571*1364^(8/15) 7014085873091836 a001 225851433717/2207*9349^(4/19) 7014085877315479 a001 365435296162/2207*9349^(3/19) 7014085878277909 a001 590586030951/842 7014085878835738 a001 102334155/2207*24476^(20/21) 7014085879393272 a001 165580141/2207*24476^(19/21) 7014085879950805 a001 267914296/2207*24476^(6/7) 7014085880508338 a001 433494437/2207*24476^(17/21) 7014085881065872 a001 701408733/2207*24476^(16/21) 7014085881539121 a001 591286729879/2207*9349^(2/19) 7014085881623405 a001 1134903170/2207*24476^(5/7) 7014085882180939 a001 1836311903/2207*24476^(2/3) 7014085882738472 a001 2971215073/2207*24476^(13/21) 7014085883296006 a001 4807526976/2207*24476^(4/7) 7014085883853539 a001 7778742049/2207*24476^(11/21) 7014085884411072 a001 12586269025/2207*24476^(10/21) 7014085884968606 a001 20365011074/2207*24476^(3/7) 7014085885513976 a001 329/13201*312119004989^(10/11) 7014085885513976 a001 329/13201*(1/2+1/2*5^(1/2))^50 7014085885513976 a001 329/13201*3461452808002^(5/6) 7014085885514271 a001 17711/2207*817138163596^(2/3) 7014085885514271 a001 17711/2207*(1/2+1/2*5^(1/2))^38 7014085885514271 a001 17711/2207*10749957122^(19/24) 7014085885514271 a001 17711/2207*4106118243^(19/23) 7014085885514271 a001 17711/2207*1568397607^(19/22) 7014085885514271 a001 17711/2207*599074578^(19/21) 7014085885514271 a001 17711/2207*228826127^(19/20) 7014085885526139 a001 32951280099/2207*24476^(8/21) 7014085885762764 a001 956722026041/2207*9349^(1/19) 7014085886083673 a001 53316291173/2207*24476^(1/3) 7014085886641206 a001 86267571272/2207*24476^(2/7) 7014085887198739 a001 139583862445/2207*24476^(5/21) 7014085887756273 a001 225851433717/2207*24476^(4/21) 7014085888277907 a001 20100265930038/28657 7014085888313806 a001 365435296162/2207*24476^(1/7) 7014085888352472 a001 39088169/2207*64079^(22/23) 7014085888426743 a001 63245986/2207*64079^(21/23) 7014085888501012 a001 102334155/2207*64079^(20/23) 7014085888575282 a001 165580141/2207*64079^(19/23) 7014085888649551 a001 267914296/2207*64079^(18/23) 7014085888723821 a001 433494437/2207*64079^(17/23) 7014085888798091 a001 701408733/2207*64079^(16/23) 7014085888871340 a001 591286729879/2207*24476^(2/21) 7014085888872361 a001 1134903170/2207*64079^(15/23) 7014085888946630 a001 1836311903/2207*64079^(14/23) 7014085889020900 a001 2971215073/2207*64079^(13/23) 7014085889095170 a001 4807526976/2207*64079^(12/23) 7014085889169439 a001 7778742049/2207*64079^(11/23) 7014085889243709 a001 12586269025/2207*64079^(10/23) 7014085889317979 a001 20365011074/2207*64079^(9/23) 7014085889333635 a001 21/2206*(1/2+1/2*5^(1/2))^52 7014085889333635 a001 21/2206*23725150497407^(13/16) 7014085889333635 a001 21/2206*505019158607^(13/14) 7014085889333930 a001 46368/2207*141422324^(12/13) 7014085889333931 a001 46368/2207*2537720636^(4/5) 7014085889333931 a001 46368/2207*45537549124^(12/17) 7014085889333931 a001 46368/2207*14662949395604^(4/7) 7014085889333931 a001 46368/2207*(1/2+1/2*5^(1/2))^36 7014085889333931 a001 46368/2207*505019158607^(9/14) 7014085889333931 a001 46368/2207*192900153618^(2/3) 7014085889333931 a001 46368/2207*73681302247^(9/13) 7014085889333931 a001 46368/2207*10749957122^(3/4) 7014085889333931 a001 46368/2207*4106118243^(18/23) 7014085889333931 a001 46368/2207*1568397607^(9/11) 7014085889333931 a001 46368/2207*599074578^(6/7) 7014085889333931 a001 46368/2207*228826127^(9/10) 7014085889333932 a001 46368/2207*87403803^(18/19) 7014085889392249 a001 32951280099/2207*64079^(8/23) 7014085889428873 a001 956722026041/2207*24476^(1/21) 7014085889466518 a001 53316291173/2207*64079^(7/23) 7014085889540788 a001 86267571272/2207*64079^(6/23) 7014085889615058 a001 139583862445/2207*64079^(5/23) 7014085889689328 a001 225851433717/2207*64079^(4/23) 7014085889736887 a001 52623179387751/75025 7014085889763597 a001 365435296162/2207*64079^(3/23) 7014085889787027 a001 102334155/2207*167761^(4/5) 7014085889831866 r009 Re(z^3+c),c=-17/114+36/53*I,n=19 7014085889836872 a001 1134903170/2207*167761^(3/5) 7014085889837867 a001 591286729879/2207*64079^(2/23) 7014085889886717 a001 12586269025/2207*167761^(2/5) 7014085889890916 a001 329/90481*14662949395604^(6/7) 7014085889890916 a001 329/90481*(1/2+1/2*5^(1/2))^54 7014085889891211 a001 121393/2207*45537549124^(2/3) 7014085889891211 a001 121393/2207*(1/2+1/2*5^(1/2))^34 7014085889891211 a001 121393/2207*10749957122^(17/24) 7014085889891211 a001 121393/2207*4106118243^(17/23) 7014085889891211 a001 121393/2207*1568397607^(17/22) 7014085889891211 a001 121393/2207*599074578^(17/21) 7014085889891212 a001 121393/2207*228826127^(17/20) 7014085889891212 a001 121393/2207*87403803^(17/19) 7014085889891217 a001 121393/2207*33385282^(17/18) 7014085889912137 a001 956722026041/2207*64079^(1/23) 7014085889936562 a001 139583862445/2207*167761^(1/5) 7014085889949750 a001 137769272233215/196418 7014085889954079 a001 14930352/2207*439204^(8/9) 7014085889958126 a001 63245986/2207*439204^(7/9) 7014085889962166 a001 267914296/2207*439204^(2/3) 7014085889966206 a001 1134903170/2207*439204^(5/9) 7014085889970246 a001 4807526976/2207*439204^(4/9) 7014085889972222 a001 141/101521*14662949395604^(8/9) 7014085889972222 a001 141/101521*(1/2+1/2*5^(1/2))^56 7014085889972518 a001 317811/2207*(1/2+1/2*5^(1/2))^32 7014085889972518 a001 317811/2207*23725150497407^(1/2) 7014085889972518 a001 317811/2207*505019158607^(4/7) 7014085889972518 a001 317811/2207*73681302247^(8/13) 7014085889972518 a001 317811/2207*10749957122^(2/3) 7014085889972518 a001 317811/2207*4106118243^(16/23) 7014085889972518 a001 317811/2207*1568397607^(8/11) 7014085889972518 a001 317811/2207*599074578^(16/21) 7014085889972518 a001 317811/2207*228826127^(4/5) 7014085889972518 a001 317811/2207*87403803^(16/19) 7014085889972523 a001 317811/2207*33385282^(8/9) 7014085889972558 a001 317811/2207*12752043^(16/17) 7014085889974286 a001 20365011074/2207*439204^(1/3) 7014085889978326 a001 86267571272/2207*439204^(2/9) 7014085889980806 a001 360684637311894/514229 7014085889982366 a001 365435296162/2207*439204^(1/9) 7014085889984084 a001 329/620166*(1/2+1/2*5^(1/2))^58 7014085889984277 a001 832040/2207*7881196^(10/11) 7014085889984366 a001 832040/2207*20633239^(6/7) 7014085889984380 a001 832040/2207*141422324^(10/13) 7014085889984380 a001 832040/2207*2537720636^(2/3) 7014085889984380 a001 832040/2207*45537549124^(10/17) 7014085889984380 a001 832040/2207*312119004989^(6/11) 7014085889984380 a001 832040/2207*14662949395604^(10/21) 7014085889984380 a001 832040/2207*(1/2+1/2*5^(1/2))^30 7014085889984380 a001 832040/2207*192900153618^(5/9) 7014085889984380 a001 832040/2207*28143753123^(3/5) 7014085889984380 a001 832040/2207*10749957122^(5/8) 7014085889984380 a001 832040/2207*4106118243^(15/23) 7014085889984380 a001 832040/2207*1568397607^(15/22) 7014085889984380 a001 832040/2207*599074578^(5/7) 7014085889984380 a001 832040/2207*228826127^(3/4) 7014085889984381 a001 832040/2207*87403803^(15/19) 7014085889984385 a001 832040/2207*33385282^(5/6) 7014085889984418 a001 832040/2207*12752043^(15/17) 7014085889984657 a001 832040/2207*4870847^(15/16) 7014085889985337 a001 944284639702467/1346269 7014085889985815 a001 987/4870847*14662949395604^(20/21) 7014085889985815 a001 987/4870847*(1/2+1/2*5^(1/2))^60 7014085889985998 a001 2472169281795507/3524578 7014085889986068 a001 329/4250681*(1/2+1/2*5^(1/2))^62 7014085889986094 a001 497863323514158/709805 7014085889986098 a001 987*20633239^(4/5) 7014085889986104 a001 141/4769326*(1/2+1/2*5^(1/2))^64 7014085889986111 a001 987*17393796001^(4/7) 7014085889986111 a001 987*14662949395604^(4/9) 7014085889986111 a001 987*(1/2+1/2*5^(1/2))^28 7014085889986111 a001 987*505019158607^(1/2) 7014085889986111 a001 987*73681302247^(7/13) 7014085889986111 a001 987*10749957122^(7/12) 7014085889986111 a001 987*4106118243^(14/23) 7014085889986111 a001 987*1568397607^(7/11) 7014085889986111 a001 987*599074578^(2/3) 7014085889986111 a001 987*228826127^(7/10) 7014085889986111 a001 987*87403803^(14/19) 7014085889986116 a001 987*33385282^(7/9) 7014085889986117 a001 1163586347730289/1658928 7014085889986127 a001 987/20633239*(1/2+1/2*5^(1/2))^63 7014085889986146 a001 987*12752043^(14/17) 7014085889986154 a001 4000053923888547/5702887 7014085889986224 a001 987/7881196*(1/2+1/2*5^(1/2))^61 7014085889986318 a001 14930352/2207*7881196^(8/11) 7014085889986330 a001 39088169/2207*7881196^(2/3) 7014085889986335 a001 63245986/2207*7881196^(7/11) 7014085889986345 a001 267914296/2207*7881196^(6/11) 7014085889986355 a001 1134903170/2207*7881196^(5/11) 7014085889986363 a001 5702887/2207*141422324^(2/3) 7014085889986363 a001 5702887/2207*(1/2+1/2*5^(1/2))^26 7014085889986363 a001 5702887/2207*73681302247^(1/2) 7014085889986363 a001 5702887/2207*10749957122^(13/24) 7014085889986363 a001 5702887/2207*4106118243^(13/23) 7014085889986363 a001 5702887/2207*1568397607^(13/22) 7014085889986363 a001 5702887/2207*599074578^(13/21) 7014085889986363 a001 5702887/2207*228826127^(13/20) 7014085889986364 a001 5702887/2207*87403803^(13/19) 7014085889986365 a001 4807526976/2207*7881196^(4/11) 7014085889986368 a001 5702887/2207*33385282^(13/18) 7014085889986369 a001 7778742049/2207*7881196^(1/3) 7014085889986369 a001 987*4870847^(7/8) 7014085889986376 a001 20365011074/2207*7881196^(3/11) 7014085889986386 a001 86267571272/2207*7881196^(2/11) 7014085889986396 a001 365435296162/2207*7881196^(1/11) 7014085889986396 a001 5702887/2207*12752043^(13/17) 7014085889986397 a001 102334155/2207*20633239^(4/7) 7014085889986397 a001 63245986/2207*20633239^(3/5) 7014085889986399 a001 1134903170/2207*20633239^(3/7) 7014085889986400 a001 1836311903/2207*20633239^(2/5) 7014085889986400 a001 14930352/2207*141422324^(8/13) 7014085889986400 a001 14930352/2207*2537720636^(8/15) 7014085889986400 a001 14930352/2207*45537549124^(8/17) 7014085889986400 a001 14930352/2207*14662949395604^(8/21) 7014085889986400 a001 14930352/2207*(1/2+1/2*5^(1/2))^24 7014085889986400 a001 14930352/2207*192900153618^(4/9) 7014085889986400 a001 14930352/2207*73681302247^(6/13) 7014085889986400 a001 14930352/2207*10749957122^(1/2) 7014085889986400 a001 14930352/2207*4106118243^(12/23) 7014085889986400 a001 14930352/2207*1568397607^(6/11) 7014085889986400 a001 14930352/2207*599074578^(4/7) 7014085889986400 a001 14930352/2207*228826127^(3/5) 7014085889986401 a001 14930352/2207*87403803^(12/19) 7014085889986402 a001 12586269025/2207*20633239^(2/7) 7014085889986403 a001 53316291173/2207*20633239^(1/5) 7014085889986404 a001 139583862445/2207*20633239^(1/7) 7014085889986404 a001 14930352/2207*33385282^(2/3) 7014085889986405 a001 39088169/2207*312119004989^(2/5) 7014085889986405 a001 39088169/2207*(1/2+1/2*5^(1/2))^22 7014085889986405 a001 39088169/2207*10749957122^(11/24) 7014085889986405 a001 39088169/2207*4106118243^(11/23) 7014085889986405 a001 39088169/2207*1568397607^(1/2) 7014085889986405 a001 39088169/2207*599074578^(11/21) 7014085889986406 a001 39088169/2207*228826127^(11/20) 7014085889986406 a001 39088169/2207*87403803^(11/19) 7014085889986406 a001 267914296/2207*141422324^(6/13) 7014085889986406 a001 102334155/2207*2537720636^(4/9) 7014085889986406 a001 102334155/2207*(1/2+1/2*5^(1/2))^20 7014085889986406 a001 102334155/2207*23725150497407^(5/16) 7014085889986406 a001 102334155/2207*505019158607^(5/14) 7014085889986406 a001 102334155/2207*73681302247^(5/13) 7014085889986406 a001 102334155/2207*28143753123^(2/5) 7014085889986406 a001 102334155/2207*10749957122^(5/12) 7014085889986406 a001 1134903170/2207*141422324^(5/13) 7014085889986406 a001 102334155/2207*4106118243^(10/23) 7014085889986406 a001 102334155/2207*1568397607^(5/11) 7014085889986406 a001 102334155/2207*599074578^(10/21) 7014085889986406 a001 2971215073/2207*141422324^(1/3) 7014085889986406 a001 4807526976/2207*141422324^(4/13) 7014085889986406 a001 20365011074/2207*141422324^(3/13) 7014085889986406 a001 102334155/2207*228826127^(1/2) 7014085889986406 a001 86267571272/2207*141422324^(2/13) 7014085889986406 a001 365435296162/2207*141422324^(1/13) 7014085889986406 a001 267914296/2207*2537720636^(2/5) 7014085889986406 a001 267914296/2207*45537549124^(6/17) 7014085889986406 a001 267914296/2207*14662949395604^(2/7) 7014085889986406 a001 267914296/2207*(1/2+1/2*5^(1/2))^18 7014085889986406 a001 267914296/2207*192900153618^(1/3) 7014085889986406 a001 267914296/2207*10749957122^(3/8) 7014085889986406 a001 267914296/2207*4106118243^(9/23) 7014085889986406 a001 267914296/2207*1568397607^(9/22) 7014085889986406 a001 267914296/2207*599074578^(3/7) 7014085889986406 a001 701408733/2207*(1/2+1/2*5^(1/2))^16 7014085889986406 a001 701408733/2207*23725150497407^(1/4) 7014085889986406 a001 701408733/2207*73681302247^(4/13) 7014085889986406 a001 701408733/2207*10749957122^(1/3) 7014085889986406 a001 701408733/2207*4106118243^(8/23) 7014085889986406 a001 701408733/2207*1568397607^(4/11) 7014085889986406 a001 1836311903/2207*17393796001^(2/7) 7014085889986406 a001 1836311903/2207*14662949395604^(2/9) 7014085889986406 a001 1836311903/2207*(1/2+1/2*5^(1/2))^14 7014085889986406 a001 1836311903/2207*505019158607^(1/4) 7014085889986406 a001 1836311903/2207*10749957122^(7/24) 7014085889986406 a001 4807526976/2207*2537720636^(4/15) 7014085889986406 a001 1836311903/2207*4106118243^(7/23) 7014085889986406 a001 12586269025/2207*2537720636^(2/9) 7014085889986406 a001 20365011074/2207*2537720636^(1/5) 7014085889986406 a001 86267571272/2207*2537720636^(2/15) 7014085889986406 a001 139583862445/2207*2537720636^(1/9) 7014085889986406 a001 365435296162/2207*2537720636^(1/15) 7014085889986406 a001 4807526976/2207*45537549124^(4/17) 7014085889986406 a001 4807526976/2207*817138163596^(4/19) 7014085889986406 a001 4807526976/2207*14662949395604^(4/21) 7014085889986406 a001 4807526976/2207*(1/2+1/2*5^(1/2))^12 7014085889986406 a001 4807526976/2207*192900153618^(2/9) 7014085889986406 a001 4807526976/2207*73681302247^(3/13) 7014085889986406 a001 4807526976/2207*10749957122^(1/4) 7014085889986406 a001 12586269025/2207*312119004989^(2/11) 7014085889986406 a001 12586269025/2207*(1/2+1/2*5^(1/2))^10 7014085889986406 a001 12586269025/2207*28143753123^(1/5) 7014085889986406 a001 53316291173/2207*17393796001^(1/7) 7014085889986406 a001 32951280099/2207*(1/2+1/2*5^(1/2))^8 7014085889986406 a001 32951280099/2207*23725150497407^(1/8) 7014085889986406 a001 32951280099/2207*505019158607^(1/7) 7014085889986406 a001 32951280099/2207*73681302247^(2/13) 7014085889986406 a001 86267571272/2207*45537549124^(2/17) 7014085889986406 a001 86267571272/2207*(1/2+1/2*5^(1/2))^6 7014085889986406 a001 365435296162/2207*45537549124^(1/17) 7014085889986406 a001 225851433717/2207*(1/2+1/2*5^(1/2))^4 7014085889986406 a001 225851433717/2207*23725150497407^(1/16) 7014085889986406 a001 1548008755920/2207 7014085889986406 a001 956722026041/4414+956722026041/4414*5^(1/2) 7014085889986406 a001 365435296162/2207*14662949395604^(1/21) 7014085889986406 a001 365435296162/2207*192900153618^(1/18) 7014085889986406 a001 139583862445/2207*312119004989^(1/11) 7014085889986406 a001 225851433717/2207*73681302247^(1/13) 7014085889986406 a001 139583862445/2207*(1/2+1/2*5^(1/2))^5 7014085889986406 a001 53316291173/2207*14662949395604^(1/9) 7014085889986406 a001 53316291173/2207*(1/2+1/2*5^(1/2))^7 7014085889986406 a001 139583862445/2207*28143753123^(1/10) 7014085889986406 a001 591286729879/2207*10749957122^(1/24) 7014085889986406 a001 20365011074/2207*45537549124^(3/17) 7014085889986406 a001 20365011074/2207*817138163596^(3/19) 7014085889986406 a001 20365011074/2207*14662949395604^(1/7) 7014085889986406 a001 20365011074/2207*(1/2+1/2*5^(1/2))^9 7014085889986406 a001 20365011074/2207*192900153618^(1/6) 7014085889986406 a001 12586269025/2207*10749957122^(5/24) 7014085889986406 a001 365435296162/2207*10749957122^(1/16) 7014085889986406 a001 225851433717/2207*10749957122^(1/12) 7014085889986406 a001 86267571272/2207*10749957122^(1/8) 7014085889986406 a001 32951280099/2207*10749957122^(1/6) 7014085889986406 a001 20365011074/2207*10749957122^(3/16) 7014085889986406 a001 591286729879/2207*4106118243^(1/23) 7014085889986406 a001 7778742049/2207*312119004989^(1/5) 7014085889986406 a001 7778742049/2207*(1/2+1/2*5^(1/2))^11 7014085889986406 a001 225851433717/2207*4106118243^(2/23) 7014085889986406 a001 4807526976/2207*4106118243^(6/23) 7014085889986406 a001 86267571272/2207*4106118243^(3/23) 7014085889986406 a001 32951280099/2207*4106118243^(4/23) 7014085889986406 a001 12586269025/2207*4106118243^(5/23) 7014085889986406 a001 591286729879/2207*1568397607^(1/22) 7014085889986406 a001 2971215073/2207*(1/2+1/2*5^(1/2))^13 7014085889986406 a001 2971215073/2207*73681302247^(1/4) 7014085889986406 a001 225851433717/2207*1568397607^(1/11) 7014085889986406 a001 86267571272/2207*1568397607^(3/22) 7014085889986406 a001 1836311903/2207*1568397607^(7/22) 7014085889986406 a001 32951280099/2207*1568397607^(2/11) 7014085889986406 a001 12586269025/2207*1568397607^(5/22) 7014085889986406 a001 4807526976/2207*1568397607^(3/11) 7014085889986406 a001 1134903170/2207*2537720636^(1/3) 7014085889986406 a001 7778742049/2207*1568397607^(1/4) 7014085889986406 a001 591286729879/2207*599074578^(1/21) 7014085889986406 a001 1134903170/2207*45537549124^(5/17) 7014085889986406 a001 1134903170/2207*312119004989^(3/11) 7014085889986406 a001 1134903170/2207*14662949395604^(5/21) 7014085889986406 a001 1134903170/2207*(1/2+1/2*5^(1/2))^15 7014085889986406 a001 1134903170/2207*192900153618^(5/18) 7014085889986406 a001 1134903170/2207*28143753123^(3/10) 7014085889986406 a001 1134903170/2207*10749957122^(5/16) 7014085889986406 a001 365435296162/2207*599074578^(1/14) 7014085889986406 a001 225851433717/2207*599074578^(2/21) 7014085889986406 a001 86267571272/2207*599074578^(1/7) 7014085889986406 a001 53316291173/2207*599074578^(1/6) 7014085889986406 a001 32951280099/2207*599074578^(4/21) 7014085889986406 a001 20365011074/2207*599074578^(3/14) 7014085889986406 a001 701408733/2207*599074578^(8/21) 7014085889986406 a001 12586269025/2207*599074578^(5/21) 7014085889986406 a001 4807526976/2207*599074578^(2/7) 7014085889986406 a001 1836311903/2207*599074578^(1/3) 7014085889986406 a001 591286729879/2207*228826127^(1/20) 7014085889986406 a001 433494437/2207*45537549124^(1/3) 7014085889986406 a001 433494437/2207*(1/2+1/2*5^(1/2))^17 7014085889986406 a001 1134903170/2207*599074578^(5/14) 7014085889986406 a001 225851433717/2207*228826127^(1/10) 7014085889986406 a001 139583862445/2207*228826127^(1/8) 7014085889986406 a001 86267571272/2207*228826127^(3/20) 7014085889986406 a001 32951280099/2207*228826127^(1/5) 7014085889986406 a001 12586269025/2207*228826127^(1/4) 7014085889986406 a001 4807526976/2207*228826127^(3/10) 7014085889986406 a001 267914296/2207*228826127^(9/20) 7014085889986406 a001 1836311903/2207*228826127^(7/20) 7014085889986406 a001 591286729879/2207*87403803^(1/19) 7014085889986406 a001 701408733/2207*228826127^(2/5) 7014085889986406 a001 165580141/2207*817138163596^(1/3) 7014085889986406 a001 165580141/2207*(1/2+1/2*5^(1/2))^19 7014085889986406 a001 1134903170/2207*228826127^(3/8) 7014085889986406 a001 225851433717/2207*87403803^(2/19) 7014085889986407 a001 86267571272/2207*87403803^(3/19) 7014085889986407 a001 63245986/2207*141422324^(7/13) 7014085889986407 a001 32951280099/2207*87403803^(4/19) 7014085889986407 a001 12586269025/2207*87403803^(5/19) 7014085889986407 a001 4807526976/2207*87403803^(6/19) 7014085889986407 a001 1836311903/2207*87403803^(7/19) 7014085889986407 a001 102334155/2207*87403803^(10/19) 7014085889986407 a001 591286729879/2207*33385282^(1/18) 7014085889986407 a001 63245986/2207*2537720636^(7/15) 7014085889986407 a001 63245986/2207*17393796001^(3/7) 7014085889986407 a001 63245986/2207*45537549124^(7/17) 7014085889986407 a001 63245986/2207*14662949395604^(1/3) 7014085889986407 a001 63245986/2207*(1/2+1/2*5^(1/2))^21 7014085889986407 a001 63245986/2207*192900153618^(7/18) 7014085889986407 a001 63245986/2207*10749957122^(7/16) 7014085889986407 a001 63245986/2207*599074578^(1/2) 7014085889986407 a001 701408733/2207*87403803^(8/19) 7014085889986407 a001 267914296/2207*87403803^(9/19) 7014085889986407 a001 165580141/2207*87403803^(1/2) 7014085889986407 a001 365435296162/2207*33385282^(1/12) 7014085889986407 a001 225851433717/2207*33385282^(1/9) 7014085889986407 a001 86267571272/2207*33385282^(1/6) 7014085889986408 a001 32951280099/2207*33385282^(2/9) 7014085889986408 a001 20365011074/2207*33385282^(1/4) 7014085889986408 a001 12586269025/2207*33385282^(5/18) 7014085889986408 a001 4807526976/2207*33385282^(1/3) 7014085889986409 a001 24157817/2207*(1/2+1/2*5^(1/2))^23 7014085889986409 a001 24157817/2207*4106118243^(1/2) 7014085889986409 a001 1836311903/2207*33385282^(7/18) 7014085889986409 a001 591286729879/2207*12752043^(1/17) 7014085889986409 a001 1134903170/2207*33385282^(5/12) 7014085889986409 a001 701408733/2207*33385282^(4/9) 7014085889986409 a001 39088169/2207*33385282^(11/18) 7014085889986410 a001 267914296/2207*33385282^(1/2) 7014085889986410 a001 102334155/2207*33385282^(5/9) 7014085889986410 a001 63245986/2207*33385282^(7/12) 7014085889986411 a001 9227465/2207*20633239^(5/7) 7014085889986411 a001 225851433717/2207*12752043^(2/17) 7014085889986414 a001 86267571272/2207*12752043^(3/17) 7014085889986417 a001 32951280099/2207*12752043^(4/17) 7014085889986419 a001 12586269025/2207*12752043^(5/17) 7014085889986422 a001 4807526976/2207*12752043^(6/17) 7014085889986423 a001 9227465/2207*2537720636^(5/9) 7014085889986423 a001 9227465/2207*312119004989^(5/11) 7014085889986423 a001 9227465/2207*(1/2+1/2*5^(1/2))^25 7014085889986423 a001 9227465/2207*3461452808002^(5/12) 7014085889986423 a001 9227465/2207*28143753123^(1/2) 7014085889986423 a001 9227465/2207*228826127^(5/8) 7014085889986424 a001 1836311903/2207*12752043^(7/17) 7014085889986425 a001 591286729879/2207*4870847^(1/16) 7014085889986427 a001 701408733/2207*12752043^(8/17) 7014085889986427 a001 3524578/2207*7881196^(9/11) 7014085889986428 a001 433494437/2207*12752043^(1/2) 7014085889986429 a001 267914296/2207*12752043^(9/17) 7014085889986431 a001 14930352/2207*12752043^(12/17) 7014085889986432 a001 102334155/2207*12752043^(10/17) 7014085889986433 a001 39088169/2207*12752043^(11/17) 7014085889986443 a001 225851433717/2207*4870847^(1/8) 7014085889986462 a001 86267571272/2207*4870847^(3/16) 7014085889986480 a001 32951280099/2207*4870847^(1/4) 7014085889986499 a001 12586269025/2207*4870847^(5/16) 7014085889986517 a001 4807526976/2207*4870847^(3/8) 7014085889986519 a001 3524578/2207*141422324^(9/13) 7014085889986519 a001 3524578/2207*2537720636^(3/5) 7014085889986519 a001 3524578/2207*45537549124^(9/17) 7014085889986519 a001 3524578/2207*817138163596^(9/19) 7014085889986519 a001 3524578/2207*14662949395604^(3/7) 7014085889986519 a001 3524578/2207*(1/2+1/2*5^(1/2))^27 7014085889986519 a001 3524578/2207*192900153618^(1/2) 7014085889986519 a001 3524578/2207*10749957122^(9/16) 7014085889986519 a001 3524578/2207*599074578^(9/14) 7014085889986524 a001 3524578/2207*33385282^(3/4) 7014085889986536 a001 1836311903/2207*4870847^(7/16) 7014085889986541 a001 591286729879/2207*1860498^(1/15) 7014085889986554 a001 701408733/2207*4870847^(1/2) 7014085889986573 a001 267914296/2207*4870847^(9/16) 7014085889986591 a001 102334155/2207*4870847^(5/8) 7014085889986603 a001 5702887/2207*4870847^(13/16) 7014085889986609 a001 39088169/2207*4870847^(11/16) 7014085889986609 a001 365435296162/2207*1860498^(1/10) 7014085889986622 a001 14930352/2207*4870847^(3/4) 7014085889986677 a001 225851433717/2207*1860498^(2/15) 7014085889986744 a001 139583862445/2207*1860498^(1/6) 7014085889986812 a001 86267571272/2207*1860498^(1/5) 7014085889986885 a001 987/3010349*(1/2+1/2*5^(1/2))^59 7014085889986947 a001 32951280099/2207*1860498^(4/15) 7014085889987014 a001 20365011074/2207*1860498^(3/10) 7014085889987082 a001 12586269025/2207*1860498^(1/3) 7014085889987180 a001 1346269/2207*(1/2+1/2*5^(1/2))^29 7014085889987180 a001 1346269/2207*1322157322203^(1/2) 7014085889987217 a001 4807526976/2207*1860498^(2/5) 7014085889987352 a001 1836311903/2207*1860498^(7/15) 7014085889987398 a001 591286729879/2207*710647^(1/14) 7014085889987420 a001 1134903170/2207*1860498^(1/2) 7014085889987487 a001 701408733/2207*1860498^(8/15) 7014085889987622 a001 267914296/2207*1860498^(3/5) 7014085889987757 a001 102334155/2207*1860498^(2/3) 7014085889987825 a001 63245986/2207*1860498^(7/10) 7014085889987891 a001 39088169/2207*1860498^(11/15) 7014085889988002 a001 987*1860498^(14/15) 7014085889988021 a001 14930352/2207*1860498^(4/5) 7014085889988111 a001 9227465/2207*1860498^(5/6) 7014085889988119 a001 5702887/2207*1860498^(13/15) 7014085889988137 a001 583600002390573/832040 7014085889988343 a001 3524578/2207*1860498^(9/10) 7014085889988390 a001 225851433717/2207*710647^(1/7) 7014085889989383 a001 86267571272/2207*710647^(3/14) 7014085889989879 a001 53316291173/2207*710647^(1/4) 7014085889990375 a001 32951280099/2207*710647^(2/7) 7014085889991367 a001 12586269025/2207*710647^(5/14) 7014085889991416 a001 987/1149851*14662949395604^(19/21) 7014085889991416 a001 987/1149851*(1/2+1/2*5^(1/2))^57 7014085889991711 a001 514229/2207*(1/2+1/2*5^(1/2))^31 7014085889991711 a001 514229/2207*9062201101803^(1/2) 7014085889992359 a001 4807526976/2207*710647^(3/7) 7014085889993351 a001 1836311903/2207*710647^(1/2) 7014085889993729 a001 591286729879/2207*271443^(1/13) 7014085889994343 a001 701408733/2207*710647^(4/7) 7014085889995335 a001 267914296/2207*710647^(9/14) 7014085889996327 a001 102334155/2207*710647^(5/7) 7014085889996823 a001 63245986/2207*710647^(3/4) 7014085889997318 a001 39088169/2207*710647^(11/14) 7014085889998305 a001 14930352/2207*710647^(6/7) 7014085889999260 a001 5702887/2207*710647^(13/14) 7014085890001052 a001 225851433717/2207*271443^(2/13) 7014085890008374 a001 86267571272/2207*271443^(3/13) 7014085890013593 a001 956722026041/2207*103682^(1/24) 7014085890015697 a001 32951280099/2207*271443^(4/13) 7014085890022472 a001 987/439204*(1/2+1/2*5^(1/2))^55 7014085890022472 a001 987/439204*3461452808002^(11/12) 7014085890022767 a001 196418/2207*141422324^(11/13) 7014085890022768 a001 196418/2207*2537720636^(11/15) 7014085890022768 a001 196418/2207*45537549124^(11/17) 7014085890022768 a001 196418/2207*312119004989^(3/5) 7014085890022768 a001 196418/2207*817138163596^(11/19) 7014085890022768 a001 196418/2207*14662949395604^(11/21) 7014085890022768 a001 196418/2207*(1/2+1/2*5^(1/2))^33 7014085890022768 a001 196418/2207*192900153618^(11/18) 7014085890022768 a001 196418/2207*10749957122^(11/16) 7014085890022768 a001 196418/2207*1568397607^(3/4) 7014085890022768 a001 196418/2207*599074578^(11/14) 7014085890022773 a001 196418/2207*33385282^(11/12) 7014085890023020 a001 12586269025/2207*271443^(5/13) 7014085890030343 a001 4807526976/2207*271443^(6/13) 7014085890034004 a001 2971215073/2207*271443^(1/2) 7014085890037665 a001 1836311903/2207*271443^(7/13) 7014085890040779 a001 591286729879/2207*103682^(1/12) 7014085890044988 a001 701408733/2207*271443^(8/13) 7014085890052311 a001 267914296/2207*271443^(9/13) 7014085890059633 a001 102334155/2207*271443^(10/13) 7014085890066955 a001 39088169/2207*271443^(11/13) 7014085890067966 a001 365435296162/2207*103682^(1/8) 7014085890074272 a001 14930352/2207*271443^(12/13) 7014085890081306 a001 85146092845464/121393 7014085890095152 a001 225851433717/2207*103682^(1/6) 7014085890122339 a001 139583862445/2207*103682^(5/24) 7014085890149525 a001 86267571272/2207*103682^(1/4) 7014085890176712 a001 53316291173/2207*103682^(7/24) 7014085890189685 a001 956722026041/2207*39603^(1/22) 7014085890203898 a001 32951280099/2207*103682^(1/3) 7014085890231085 a001 20365011074/2207*103682^(3/8) 7014085890235334 a001 987/167761*(1/2+1/2*5^(1/2))^53 7014085890235630 a001 75025/2207*2537720636^(7/9) 7014085890235630 a001 75025/2207*17393796001^(5/7) 7014085890235630 a001 75025/2207*312119004989^(7/11) 7014085890235630 a001 75025/2207*14662949395604^(5/9) 7014085890235630 a001 75025/2207*(1/2+1/2*5^(1/2))^35 7014085890235630 a001 75025/2207*505019158607^(5/8) 7014085890235630 a001 75025/2207*28143753123^(7/10) 7014085890235630 a001 75025/2207*599074578^(5/6) 7014085890235630 a001 75025/2207*228826127^(7/8) 7014085890258271 a001 12586269025/2207*103682^(5/12) 7014085890285458 a001 7778742049/2207*103682^(11/24) 7014085890312644 a001 4807526976/2207*103682^(1/2) 7014085890339831 a001 2971215073/2207*103682^(13/24) 7014085890367017 a001 1836311903/2207*103682^(7/12) 7014085890392964 a001 591286729879/2207*39603^(1/11) 7014085890394204 a001 1134903170/2207*103682^(5/8) 7014085890421390 a001 701408733/2207*103682^(2/3) 7014085890448577 a001 433494437/2207*103682^(17/24) 7014085890475763 a001 267914296/2207*103682^(3/4) 7014085890502950 a001 165580141/2207*103682^(19/24) 7014085890530136 a001 102334155/2207*103682^(5/6) 7014085890557323 a001 63245986/2207*103682^(7/8) 7014085890584508 a001 39088169/2207*103682^(11/12) 7014085890596243 a001 365435296162/2207*39603^(3/22) 7014085890611698 a001 24157817/2207*103682^(23/24) 7014085890799522 a001 225851433717/2207*39603^(2/11) 7014085891002801 a001 139583862445/2207*39603^(5/22) 7014085891206080 a001 86267571272/2207*39603^(3/11) 7014085891409358 a001 53316291173/2207*39603^(7/22) 7014085891519030 a001 956722026041/2207*15127^(1/20) 7014085891612637 a001 32951280099/2207*39603^(4/11) 7014085891694314 a001 987/64079*817138163596^(17/19) 7014085891694314 a001 987/64079*14662949395604^(17/21) 7014085891694314 a001 987/64079*(1/2+1/2*5^(1/2))^51 7014085891694314 a001 987/64079*192900153618^(17/18) 7014085891694610 a001 28657/2207*(1/2+1/2*5^(1/2))^37 7014085891815916 a001 20365011074/2207*39603^(9/22) 7014085892019195 a001 12586269025/2207*39603^(5/11) 7014085892222474 a001 7778742049/2207*39603^(1/2) 7014085892340501 a001 1548008755920/3571*521^(1/13) 7014085892425753 a001 4807526976/2207*39603^(6/11) 7014085892629032 a001 2971215073/2207*39603^(13/22) 7014085892832311 a001 1836311903/2207*39603^(7/11) 7014085893035589 a001 1134903170/2207*39603^(15/22) 7014085893051653 a001 591286729879/2207*15127^(1/10) 7014085893238868 a001 701408733/2207*39603^(8/11) 7014085893442147 a001 433494437/2207*39603^(17/22) 7014085893645426 a001 267914296/2207*39603^(9/11) 7014085893848705 a001 165580141/2207*39603^(19/22) 7014085894051984 a001 102334155/2207*39603^(10/11) 7014085894255263 a001 63245986/2207*39603^(21/22) 7014085894458246 a001 12422647527675/17711 7014085894584277 a001 365435296162/2207*15127^(3/20) 7014085896116900 a001 225851433717/2207*15127^(1/5) 7014085897649524 a001 139583862445/2207*15127^(1/4) 7014085897775925 b008 7+ProductLog[1/70] 7014085899182147 a001 86267571272/2207*15127^(3/10) 7014085900714771 a001 53316291173/2207*15127^(7/20) 7014085901658359 a001 956722026041/2207*5778^(1/18) 7014085901694312 a001 987/24476*14662949395604^(7/9) 7014085901694312 a001 987/24476*(1/2+1/2*5^(1/2))^49 7014085901694312 a001 987/24476*505019158607^(7/8) 7014085901694608 a001 10946/2207*2537720636^(13/15) 7014085901694608 a001 10946/2207*45537549124^(13/17) 7014085901694608 a001 10946/2207*14662949395604^(13/21) 7014085901694608 a001 10946/2207*(1/2+1/2*5^(1/2))^39 7014085901694608 a001 10946/2207*192900153618^(13/18) 7014085901694608 a001 10946/2207*73681302247^(3/4) 7014085901694608 a001 10946/2207*10749957122^(13/16) 7014085901694608 a001 10946/2207*599074578^(13/14) 7014085902246842 a001 365435296162/9349*1364^(2/5) 7014085902247394 a001 32951280099/2207*15127^(2/5) 7014085903780018 a001 20365011074/2207*15127^(9/20) 7014085905312641 a001 12586269025/2207*15127^(1/2) 7014085906845265 a001 7778742049/2207*15127^(11/20) 7014085908377888 a001 4807526976/2207*15127^(3/5) 7014085908577047 b008 5*(-143+E) 7014085909910512 a001 2971215073/2207*15127^(13/20) 7014085911443135 a001 1836311903/2207*15127^(7/10) 7014085912975759 a001 1134903170/2207*15127^(3/4) 7014085913330312 a001 591286729879/2207*5778^(1/9) 7014085913461283 m001 Riemann2ndZero*ln(CareFree)^2*exp(1) 7014085914508382 a001 701408733/2207*15127^(4/5) 7014085916041006 a001 433494437/2207*15127^(17/20) 7014085916934379 a003 sin(Pi*18/71)*sin(Pi*46/105) 7014085917573629 a001 267914296/2207*15127^(9/10) 7014085919106253 a001 165580141/2207*15127^(19/20) 7014085920000844 a001 1836311903/843*843^(6/7) 7014085920638580 a001 1581676375104/2255 7014085925002265 a001 365435296162/2207*5778^(1/6) 7014085934569469 m001 Magata^2/exp(MertensB1)/GAMMA(5/6)^2 7014085936674217 a001 225851433717/2207*5778^(2/9) 7014085948346170 a001 139583862445/2207*5778^(5/18) 7014085952062021 a007 Real Root Of 324*x^4-59*x^3+535*x^2+345*x-120 7014085960018123 a001 86267571272/2207*5778^(1/3) 7014085964595967 a007 Real Root Of 100*x^4+615*x^3-478*x^2+786*x-788 7014085970235319 a001 987/9349*(1/2+1/2*5^(1/2))^47 7014085970235614 a001 4181/2207*(1/2+1/2*5^(1/2))^41 7014085971690076 a001 53316291173/2207*5778^(7/18) 7014085977282458 m001 1/exp(CareFree)^2/Bloch*GAMMA(2/3) 7014085979987247 a001 956722026041/2207*2207^(1/16) 7014085983362029 a001 32951280099/2207*5778^(4/9) 7014085986722213 r002 9th iterates of z^2 + 7014085995033982 a001 20365011074/2207*5778^(1/2) 7014086006705934 a001 12586269025/2207*5778^(5/9) 7014086009833104 a007 Real Root Of -371*x^4-612*x^3-927*x^2+163*x+449 7014086017791681 r005 Im(z^2+c),c=-67/94+3/34*I,n=51 7014086018377887 a001 7778742049/2207*5778^(11/18) 7014086022585273 m001 (Salem+Trott2nd)/(BesselK(0,1)-Lehmer) 7014086030049840 a001 4807526976/2207*5778^(2/3) 7014086041721793 a001 2971215073/2207*5778^(13/18) 7014086042678869 a001 956722026041/15127*1364^(1/3) 7014086053393746 a001 1836311903/2207*5778^(7/9) 7014086065065699 a001 1134903170/2207*5778^(5/6) 7014086068859204 a001 2504730781961/39603*1364^(1/3) 7014086069988089 a001 591286729879/2207*2207^(1/8) 7014086070638127 r005 Im(z^2+c),c=-79/110+2/53*I,n=23 7014086072678864 a001 3278735159921/51841*1364^(1/3) 7014086073580563 a001 10610209857723/167761*1364^(1/3) 7014086075039543 a001 4052739537881/64079*1364^(1/3) 7014086076737652 a001 701408733/2207*5778^(8/9) 7014086077630651 m005 (1/3*Zeta(3)-3/5)/(5/7*exp(1)+9/10) 7014086084945388 a007 Real Root Of 931*x^4-535*x^3-821*x^2-680*x-483 7014086085039541 a001 387002188980/6119*1364^(1/3) 7014086088409605 a001 433494437/2207*5778^(17/18) 7014086100081269 a001 1812439848261/2584 7014086101357535 m001 (polylog(4,1/2)+Niven)/(Si(Pi)+ln(2+3^(1/2))) 7014086102695938 r005 Im(z^2+c),c=-71/60+2/39*I,n=6 7014086106123641 r009 Re(z^3+c),c=-41/74+5/38*I,n=8 7014086114569895 a001 591286729879/5778*1364^(4/15) 7014086120700205 a001 86267571272/3571*1364^(7/15) 7014086128539808 r008 a(0)=7,K{-n^6,-72+27*n^3-14*n^2-11*n} 7014086135978309 a007 Real Root Of -775*x^4-47*x^3-439*x^2+825*x+966 7014086148469529 r008 a(0)=7,K{-n^6,-31-19*n-48*n^2+34*n^3} 7014086153580549 a001 591286729879/9349*1364^(1/3) 7014086159988933 a001 365435296162/2207*2207^(3/16) 7014086167468460 r005 Im(z^2+c),c=-137/118+5/56*I,n=30 7014086188294882 m001 (CareFree+LandauRamanujan)/(GAMMA(2/3)-ln(Pi)) 7014086233218977 a001 161/305*7778742049^(6/19) 7014086233868786 a001 341/36*832040^(6/19) 7014086249989777 a001 225851433717/2207*2207^(1/4) 7014086276210204 m001 MadelungNaCl*ln(KhintchineLevy)*GAMMA(1/24) 7014086294012582 a001 1548008755920/15127*1364^(4/15) 7014086320192918 a001 4052739537881/39603*1364^(4/15) 7014086320344775 a007 Real Root Of -952*x^4+668*x^3-906*x^2+29*x+927 7014086324012578 a001 225749145909/2206*1364^(4/15) 7014086326373257 a001 6557470319842/64079*1364^(4/15) 7014086336373256 a001 2504730781961/24476*1364^(4/15) 7014086339990622 a001 139583862445/2207*2207^(5/16) 7014086341141968 r005 Im(z^2+c),c=37/94+21/55*I,n=13 7014086348532735 a001 8/123*47^(1/51) 7014086365903610 a001 956722026041/5778*1364^(1/5) 7014086372033920 a001 139583862445/3571*1364^(2/5) 7014086400213379 m005 (1/2*5^(1/2)+5/7)/(2/7*Pi-7/11) 7014086404914266 a001 956722026041/9349*1364^(4/15) 7014086422381893 r008 a(0)=7,K{-n^6,-44-64*n+31*n^2+9*n^3} 7014086429991469 a001 86267571272/2207*2207^(3/8) 7014086431059863 b008 Pi*Gamma[-3+Pi,E] 7014086440022402 a001 987/3571*45537549124^(15/17) 7014086440022402 a001 987/3571*312119004989^(9/11) 7014086440022402 a001 987/3571*14662949395604^(5/7) 7014086440022402 a001 987/3571*(1/2+1/2*5^(1/2))^45 7014086440022402 a001 987/3571*192900153618^(5/6) 7014086440022402 a001 987/3571*28143753123^(9/10) 7014086440022402 a001 987/3571*10749957122^(15/16) 7014086440022655 a001 1597/2207*(1/2+1/2*5^(1/2))^43 7014086443502887 a007 Real Root Of 629*x^4-838*x^3+747*x^2-565*x-4 7014086470934739 r005 Re(z^2+c),c=-53/50+16/63*I,n=36 7014086480459645 m005 (5/8+1/4*5^(1/2))/(6/11*2^(1/2)+11/12) 7014086482334297 m001 (Zeta(5)+FeigenbaumC)/(Kac-MertensB2) 7014086488040061 a007 Real Root Of -63*x^4+984*x^3-615*x^2+95*x+724 7014086497295540 r002 8th iterates of z^2 + 7014086510149064 r008 a(0)=7,K{-n^6,-17-54*n-31*n^2+34*n^3} 7014086511789906 m001 sqrt(2)/Sierpinski^2/ln(sqrt(3))^2 7014086519992317 a001 53316291173/2207*2207^(7/16) 7014086525819370 m005 (1/3*2^(1/2)-2/5)/(5/12*Catalan+7/11) 7014086545346304 a001 2504730781961/15127*1364^(1/5) 7014086569868503 a001 1120149625208/1597 7014086571526641 a001 6557470319842/39603*1364^(1/5) 7014086577706980 a001 10610209857723/64079*1364^(1/5) 7014086587706979 a001 4052739537881/24476*1364^(1/5) 7014086594985946 a001 956722026041/2207*843^(1/14) 7014086602223544 a001 1836311903/5778*3571^(16/17) 7014086604723380 m001 Backhouse^Zeta(1,-1)/Totient 7014086609993166 a001 32951280099/2207*2207^(1/2) 7014086617237335 a001 86000486440/321*1364^(2/15) 7014086621485402 m001 (BesselI(0,1)+GAMMA(3/4))/(Gompertz+Otter) 7014086623367645 a001 225851433717/3571*1364^(1/3) 7014086625000386 a001 1134903170/843*843^(13/14) 7014086634578622 a001 2971215073/5778*3571^(15/17) 7014086650369750 a007 Real Root Of 826*x^4-206*x^3+525*x^2-500*x-880 7014086650613283 m001 1/exp(GAMMA(5/12))^2*Robbin^2*GAMMA(5/6) 7014086656247992 a001 1548008755920/9349*1364^(1/5) 7014086656557874 r002 64th iterates of z^2 + 7014086666933700 a001 267084832/321*3571^(14/17) 7014086684240526 m001 Zeta(7)^2/ln(GAMMA(1/3))^2*sin(Pi/12)^2 7014086686367148 r008 a(0)=7,K{-n^6,-26+31*n^3-3*n^2-72*n} 7014086699288779 a001 7778742049/5778*3571^(13/17) 7014086699994016 a001 20365011074/2207*2207^(9/16) 7014086723245463 m005 (1/2*Pi-4/5)/(5/8*exp(1)-3/5) 7014086731215933 r005 Im(z^2+c),c=-35/62+8/63*I,n=58 7014086731643857 a001 12586269025/5778*3571^(12/17) 7014086733588710 r008 a(0)=7,K{-n^6,16+43*n^3-63*n^2-69*n} 7014086746450453 r009 Im(z^3+c),c=-11/86+40/53*I,n=18 7014086749311208 a001 1120149653865/1597 7014086753377383 a007 Real Root Of 126*x^4+990*x^3+808*x^2+348*x-655 7014086762851243 m005 (39/44+1/4*5^(1/2))/(3/7*Pi+5/7) 7014086763998936 a001 10182505537/2889*3571^(11/17) 7014086774796406 m005 (1/2*Pi+1/12)/(5/7*exp(1)+5/12) 7014086775491546 a001 1120149658046/1597 7014086779311208 a001 1120149658656/1597 7014086779868503 a001 1120149658745/1597 7014086779949906 a001 1120149658758/1597 7014086779962429 a001 1120149658760/1597 7014086779963681 a001 5600748293801/1597*8^(1/3) 7014086779963681 a001 2/1597*(1/2+1/2*5^(1/2))^61 7014086779968691 a001 1120149658761/1597 7014086780212899 a001 1120149658800/1597 7014086780925827 r009 Re(z^3+c),c=-18/29+7/24*I,n=2 7014086781666244 a001 686789568/2161*3571^(16/17) 7014086781671884 a001 1120149659033/1597 7014086784286641 a007 Real Root Of 371*x^4-627*x^3-641*x^2-127*x+531 7014086789994867 a001 12586269025/2207*2207^(5/8) 7014086791671884 a001 1120149660630/1597 7014086794860874 r005 Im(z^2+c),c=-9/56+38/55*I,n=58 7014086796354015 a001 10983760033/1926*3571^(10/17) 7014086796680035 a001 4052739537881/15127*1364^(2/15) 7014086796968108 m001 (-Sarnak+ZetaQ(2))/(cos(1)+PrimesInBinary) 7014086807846582 a001 12586269025/39603*3571^(16/17) 7014086811666241 a001 32951280099/103682*3571^(16/17) 7014086812223522 a001 86267571272/271443*3571^(16/17) 7014086812304828 a001 317811*3571^(16/17) 7014086812316691 a001 591286729879/1860498*3571^(16/17) 7014086812318422 a001 1548008755920/4870847*3571^(16/17) 7014086812318674 a001 4052739537881/12752043*3571^(16/17) 7014086812318711 a001 1515744265389/4769326*3571^(16/17) 7014086812318734 a001 6557470319842/20633239*3571^(16/17) 7014086812318830 a001 2504730781961/7881196*3571^(16/17) 7014086812319491 a001 956722026041/3010349*3571^(16/17) 7014086812324022 a001 365435296162/1149851*3571^(16/17) 7014086812355078 a001 139583862445/439204*3571^(16/17) 7014086812567941 a001 53316291173/167761*3571^(16/17) 7014086813799336 r005 Re(z^2+c),c=-85/122+19/53*I,n=50 7014086814021323 a001 7778742049/15127*3571^(15/17) 7014086814026921 a001 20365011074/64079*3571^(16/17) 7014086820076985 p004 log(31723/15731) 7014086822860373 a001 3536736619241/13201*1364^(2/15) 7014086824026920 a001 7778742049/24476*3571^(16/17) 7014086828709094 a001 53316291173/5778*3571^(9/17) 7014086839040712 a001 3278735159921/12238*1364^(2/15) 7014086840201661 a001 20365011074/39603*3571^(15/17) 7014086844021320 a001 53316291173/103682*3571^(15/17) 7014086844578601 a001 139583862445/271443*3571^(15/17) 7014086844659907 a001 365435296162/710647*3571^(15/17) 7014086844671770 a001 956722026041/1860498*3571^(15/17) 7014086844673501 a001 2504730781961/4870847*3571^(15/17) 7014086844673753 a001 6557470319842/12752043*3571^(15/17) 7014086844673813 a001 10610209857723/20633239*3571^(15/17) 7014086844673909 a001 4052739537881/7881196*3571^(15/17) 7014086844674570 a001 1548008755920/3010349*3571^(15/17) 7014086844679101 a001 514229*3571^(15/17) 7014086844710157 a001 225851433717/439204*3571^(15/17) 7014086844923020 a001 86267571272/167761*3571^(15/17) 7014086846376402 a001 12586269025/15127*3571^(14/17) 7014086846382000 a001 32951280099/64079*3571^(15/17) 7014086856381999 a001 12586269025/24476*3571^(15/17) 7014086860212899 a001 1120149671576/1597 7014086861064173 a001 43133785636/2889*3571^(8/17) 7014086868571068 a001 2504730781961/5778*1364^(1/15) 7014086872556740 a001 10983760033/13201*3571^(14/17) 7014086874701379 a001 365435296162/3571*1364^(4/15) 7014086876376400 a001 43133785636/51841*3571^(14/17) 7014086876933680 a001 75283811239/90481*3571^(14/17) 7014086877014987 a001 591286729879/710647*3571^(14/17) 7014086877026849 a001 832040*3571^(14/17) 7014086877028580 a001 4052739537881/4870847*3571^(14/17) 7014086877028832 a001 3536736619241/4250681*3571^(14/17) 7014086877028988 a001 3278735159921/3940598*3571^(14/17) 7014086877029649 a001 2504730781961/3010349*3571^(14/17) 7014086877034180 a001 956722026041/1149851*3571^(14/17) 7014086877065237 a001 182717648081/219602*3571^(14/17) 7014086877278099 a001 139583862445/167761*3571^(14/17) 7014086878731481 a001 20365011074/15127*3571^(13/17) 7014086878737079 a001 53316291173/64079*3571^(14/17) 7014086879995720 a001 7778742049/2207*2207^(11/16) 7014086888737079 a001 10182505537/12238*3571^(14/17) 7014086892567936 a001 2971215073/9349*3571^(16/17) 7014086893419252 a001 139583862445/5778*3571^(7/17) 7014086904911819 a001 53316291173/39603*3571^(13/17) 7014086907581727 a001 2504730781961/9349*1364^(2/15) 7014086908731479 a001 139583862445/103682*3571^(13/17) 7014086909288760 a001 365435296162/271443*3571^(13/17) 7014086909370066 a001 956722026041/710647*3571^(13/17) 7014086909381928 a001 2504730781961/1860498*3571^(13/17) 7014086909383659 a001 6557470319842/4870847*3571^(13/17) 7014086909384068 a001 10610209857723/7881196*3571^(13/17) 7014086909384729 a001 1346269*3571^(13/17) 7014086909389260 a001 1548008755920/1149851*3571^(13/17) 7014086909420316 a001 591286729879/439204*3571^(13/17) 7014086909633178 a001 225851433717/167761*3571^(13/17) 7014086909809622 a001 1292/2889*312119004989^(4/5) 7014086909809622 a001 1292/2889*(1/2+1/2*5^(1/2))^44 7014086909809622 a001 1292/2889*23725150497407^(11/16) 7014086909809622 a001 1292/2889*73681302247^(11/13) 7014086909809622 a001 1292/2889*10749957122^(11/12) 7014086909809622 a001 1292/2889*4106118243^(22/23) 7014086909874078 a003 cos(Pi*21/52)-sin(Pi*49/101) 7014086911086560 a001 32951280099/15127*3571^(12/17) 7014086911092159 a001 86267571272/64079*3571^(13/17) 7014086912018292 m005 (1/2*gamma+7/10)/(-37/88+1/8*5^(1/2)) 7014086919832560 r005 Im(z^2+c),c=-35/62+4/31*I,n=27 7014086921092158 a001 32951280099/24476*3571^(13/17) 7014086924923015 a001 4807526976/9349*3571^(15/17) 7014086925774331 a001 75283811239/1926*3571^(6/17) 7014086930768861 r002 20th iterates of z^2 + 7014086937266898 a001 86267571272/39603*3571^(12/17) 7014086941086558 a001 225851433717/103682*3571^(12/17) 7014086941643839 a001 591286729879/271443*3571^(12/17) 7014086941725145 a001 1548008755920/710647*3571^(12/17) 7014086941737008 a001 4052739537881/1860498*3571^(12/17) 7014086941738739 a001 2178309*3571^(12/17) 7014086941739808 a001 6557470319842/3010349*3571^(12/17) 7014086941744339 a001 2504730781961/1149851*3571^(12/17) 7014086941775395 a001 956722026041/439204*3571^(12/17) 7014086941988258 a001 365435296162/167761*3571^(12/17) 7014086943160487 r005 Re(z^2+c),c=-49/54+26/49*I,n=4 7014086943441640 a001 53316291173/15127*3571^(11/17) 7014086943447238 a001 139583862445/64079*3571^(12/17) 7014086953447237 a001 53316291173/24476*3571^(12/17) 7014086954438026 a001 161/5473*233^(32/55) 7014086956517894 m001 (GAMMA(23/24)-Otter)/(ln(3)+(1+3^(1/2))^(1/2)) 7014086957278095 a001 7778742049/9349*3571^(14/17) 7014086958129411 a001 182717648081/2889*3571^(5/17) 7014086958235386 r008 a(0)=7,K{-n^6,-56-21*n-20*n^2+21*n^3} 7014086969621978 a001 139583862445/39603*3571^(11/17) 7014086969996574 a001 4807526976/2207*2207^(3/4) 7014086971527273 a003 sin(Pi*2/69)-sin(Pi*23/79) 7014086973441638 a001 182717648081/51841*3571^(11/17) 7014086973998919 a001 956722026041/271443*3571^(11/17) 7014086974080225 a001 2504730781961/710647*3571^(11/17) 7014086974092087 a001 3278735159921/930249*3571^(11/17) 7014086974094888 a001 10610209857723/3010349*3571^(11/17) 7014086974099419 a001 4052739537881/1149851*3571^(11/17) 7014086974130475 a001 387002188980/109801*3571^(11/17) 7014086974343337 a001 591286729879/167761*3571^(11/17) 7014086975796719 a001 86267571272/15127*3571^(10/17) 7014086975802318 a001 225851433717/64079*3571^(11/17) 7014086981918055 r008 a(0)=7,K{-n^6,-70+46*n^3-70*n^2+24*n} 7014086985802317 a001 21566892818/6119*3571^(11/17) 7014086987947734 m001 GAMMA(11/12)/BesselI(0,2)/TwinPrimes 7014086989633174 a001 12586269025/9349*3571^(13/17) 7014086990484491 a001 591286729879/5778*3571^(4/17) 7014086991923607 r009 Re(z^3+c),c=-13/98+28/39*I,n=2 7014086995777698 l006 ln(7487/8031) 7014087001977058 a001 75283811239/13201*3571^(10/17) 7014087005796718 a001 591286729879/103682*3571^(10/17) 7014087006353999 a001 516002918640/90481*3571^(10/17) 7014087006435305 a001 4052739537881/710647*3571^(10/17) 7014087006447167 a001 3536736619241/620166*3571^(10/17) 7014087006454499 a001 6557470319842/1149851*3571^(10/17) 7014087006485555 a001 2504730781961/439204*3571^(10/17) 7014087006698417 a001 956722026041/167761*3571^(10/17) 7014087008151799 a001 139583862445/15127*3571^(9/17) 7014087008157397 a001 365435296162/64079*3571^(10/17) 7014087009001409 m001 (BesselK(1,1)+FeigenbaumMu*ZetaP(3))/ZetaP(3) 7014087018157397 a001 139583862445/24476*3571^(10/17) 7014087021988254 a001 20365011074/9349*3571^(12/17) 7014087022839570 a001 956722026041/5778*3571^(3/17) 7014087028089419 a001 439204*34^(11/14) 7014087034332138 a001 365435296162/39603*3571^(9/17) 7014087038151798 a001 956722026041/103682*3571^(9/17) 7014087038709079 a001 2504730781961/271443*3571^(9/17) 7014087038790385 a001 6557470319842/710647*3571^(9/17) 7014087038809579 a001 10610209857723/1149851*3571^(9/17) 7014087038840635 a001 4052739537881/439204*3571^(9/17) 7014087039053497 a001 140728068720/15251*3571^(9/17) 7014087039655584 a001 2932589791280/4181 7014087040506879 a001 32264490531/2161*3571^(8/17) 7014087040512477 a001 591286729879/64079*3571^(9/17) 7014087043879233 a001 233802911/1926*9349^(18/19) 7014087048013775 a001 6557470319842/15127*1364^(1/15) 7014087048102876 a001 567451585/2889*9349^(17/19) 7014087050512477 a001 7787980473/844*3571^(9/17) 7014087052326519 a001 1836311903/5778*9349^(16/19) 7014087054343334 a001 32951280099/9349*3571^(11/17) 7014087055194650 a001 86000486440/321*3571^(2/17) 7014087056550162 a001 2971215073/5778*9349^(15/19) 7014087059997428 a001 2971215073/2207*2207^(13/16) 7014087060773806 a001 267084832/321*9349^(14/19) 7014087064997449 a001 7778742049/5778*9349^(13/19) 7014087066687218 a001 591286729879/39603*3571^(8/17) 7014087069221092 a001 12586269025/5778*9349^(12/19) 7014087070506878 a001 774004377960/51841*3571^(8/17) 7014087071064159 a001 4052739537881/271443*3571^(8/17) 7014087071145465 a001 1515744265389/101521*3571^(8/17) 7014087071195715 a001 3278735159921/219602*3571^(8/17) 7014087071408577 a001 2504730781961/167761*3571^(8/17) 7014087072861959 a001 365435296162/15127*3571^(7/17) 7014087072867557 a001 956722026041/64079*3571^(8/17) 7014087073444735 a001 10182505537/2889*9349^(11/19) 7014087077668379 a001 10983760033/1926*9349^(10/19) 7014087081892022 a001 53316291173/5778*9349^(9/19) 7014087082867557 a001 182717648081/12238*3571^(8/17) 7014087084924942 a007 Real Root Of 783*x^4-802*x^3-322*x^2-177*x-432 7014087086115665 a001 43133785636/2889*9349^(8/19) 7014087086698414 a001 53316291173/9349*3571^(10/17) 7014087087549731 a001 2504730781961/5778*3571^(1/17) 7014087089252330 a001 2584/15127*(1/2+1/2*5^(1/2))^46 7014087089252330 a001 2584/15127*10749957122^(23/24) 7014087089252336 a001 2255/1926*2537720636^(14/15) 7014087089252336 a001 2255/1926*17393796001^(6/7) 7014087089252336 a001 2255/1926*45537549124^(14/17) 7014087089252336 a001 2255/1926*817138163596^(14/19) 7014087089252336 a001 2255/1926*14662949395604^(2/3) 7014087089252336 a001 2255/1926*(1/2+1/2*5^(1/2))^42 7014087089252336 a001 2255/1926*505019158607^(3/4) 7014087089252336 a001 2255/1926*192900153618^(7/9) 7014087089252336 a001 2255/1926*10749957122^(7/8) 7014087089252336 a001 2255/1926*4106118243^(21/23) 7014087089252336 a001 2255/1926*1568397607^(21/22) 7014087090339308 a001 139583862445/5778*9349^(7/19) 7014087090374453 a001 10610209857723/24476*1364^(1/15) 7014087090614635 m001 (Catalan+MertensB2)/(-Otter+ZetaP(3)) 7014087094562951 a001 75283811239/1926*9349^(6/19) 7014087098786595 a001 182717648081/2889*9349^(5/19) 7014087099042298 a001 956722026041/39603*3571^(7/17) 7014087102861958 a001 2504730781961/103682*3571^(7/17) 7014087103010238 a001 591286729879/5778*9349^(4/19) 7014087103373924 b008 Zeta[11/62] 7014087103419239 a001 6557470319842/271443*3571^(7/17) 7014087103550795 a001 10610209857723/439204*3571^(7/17) 7014087103763657 a001 4052739537881/167761*3571^(7/17) 7014087105217039 a001 591286729879/15127*3571^(6/17) 7014087105222638 a001 1548008755920/64079*3571^(7/17) 7014087106699797 a007 Real Root Of -740*x^4+520*x^3-130*x^2+139*x+520 7014087107233881 a001 956722026041/5778*9349^(3/19) 7014087108196601 a001 3838809874316/5473 7014087108754141 a001 133957148/2889*24476^(20/21) 7014087109311674 a001 433494437/5778*24476^(19/21) 7014087109869208 a001 233802911/1926*24476^(6/7) 7014087110426741 a001 567451585/2889*24476^(17/21) 7014087110984275 a001 1836311903/5778*24476^(16/21) 7014087111457524 a001 86000486440/321*9349^(2/19) 7014087111541808 a001 2971215073/5778*24476^(5/7) 7014087112099342 a001 267084832/321*24476^(2/3) 7014087112656875 a001 7778742049/5778*24476^(13/21) 7014087113214409 a001 12586269025/5778*24476^(4/7) 7014087113771942 a001 10182505537/2889*24476^(11/21) 7014087114329476 a001 10983760033/1926*24476^(10/21) 7014087114867193 a007 Real Root Of -894*x^4+183*x^3-346*x^2+944*x+68 7014087114887009 a001 53316291173/5778*24476^(3/7) 7014087115222637 a001 591286729879/24476*3571^(7/17) 7014087115432669 a001 2584/39603*45537549124^(16/17) 7014087115432669 a001 2584/39603*14662949395604^(16/21) 7014087115432669 a001 2584/39603*(1/2+1/2*5^(1/2))^48 7014087115432669 a001 2584/39603*192900153618^(8/9) 7014087115432669 a001 2584/39603*73681302247^(12/13) 7014087115432675 a001 17711/5778*2537720636^(8/9) 7014087115432675 a001 17711/5778*312119004989^(8/11) 7014087115432675 a001 17711/5778*(1/2+1/2*5^(1/2))^40 7014087115432675 a001 17711/5778*23725150497407^(5/8) 7014087115432675 a001 17711/5778*73681302247^(10/13) 7014087115432675 a001 17711/5778*28143753123^(4/5) 7014087115432675 a001 17711/5778*10749957122^(5/6) 7014087115432675 a001 17711/5778*4106118243^(20/23) 7014087115432675 a001 17711/5778*1568397607^(10/11) 7014087115432675 a001 17711/5778*599074578^(20/21) 7014087115444543 a001 43133785636/2889*24476^(8/21) 7014087115681168 a001 2504730781961/5778*9349^(1/19) 7014087116002076 a001 139583862445/5778*24476^(1/3) 7014087116559610 a001 75283811239/1926*24476^(2/7) 7014087117117143 a001 182717648081/2889*24476^(5/21) 7014087117674677 a001 591286729879/5778*24476^(4/21) 7014087118196601 a001 20100269454616/28657 7014087118232210 a001 956722026041/5778*24476^(1/7) 7014087118270877 a001 34111385/1926*64079^(22/23) 7014087118345146 a001 165580141/5778*64079^(21/23) 7014087118419416 a001 133957148/2889*64079^(20/23) 7014087118493686 a001 433494437/5778*64079^(19/23) 7014087118567956 a001 233802911/1926*64079^(18/23) 7014087118642225 a001 567451585/2889*64079^(17/23) 7014087118716495 a001 1836311903/5778*64079^(16/23) 7014087118789744 a001 86000486440/321*24476^(2/21) 7014087118790765 a001 2971215073/5778*64079^(15/23) 7014087118865035 a001 267084832/321*64079^(14/23) 7014087118939304 a001 7778742049/5778*64079^(13/23) 7014087119013574 a001 12586269025/5778*64079^(12/23) 7014087119053495 a001 86267571272/9349*3571^(9/17) 7014087119087844 a001 10182505537/2889*64079^(11/23) 7014087119162114 a001 10983760033/1926*64079^(10/23) 7014087119236383 a001 53316291173/5778*64079^(9/23) 7014087119252329 a001 1292/51841*312119004989^(10/11) 7014087119252329 a001 1292/51841*(1/2+1/2*5^(1/2))^50 7014087119252329 a001 1292/51841*3461452808002^(5/6) 7014087119252335 a001 2576/321*817138163596^(2/3) 7014087119252335 a001 2576/321*(1/2+1/2*5^(1/2))^38 7014087119252335 a001 2576/321*10749957122^(19/24) 7014087119252335 a001 2576/321*4106118243^(19/23) 7014087119252335 a001 2576/321*1568397607^(19/22) 7014087119252335 a001 2576/321*599074578^(19/21) 7014087119252335 a001 2576/321*228826127^(19/20) 7014087119310653 a001 43133785636/2889*64079^(8/23) 7014087119347277 a001 2504730781961/5778*24476^(1/21) 7014087119384923 a001 139583862445/5778*64079^(7/23) 7014087119459192 a001 75283811239/1926*64079^(6/23) 7014087119533462 a001 182717648081/2889*64079^(5/23) 7014087119607732 a001 591286729879/5778*64079^(4/23) 7014087119655581 a001 52623188615216/75025 7014087119682002 a001 956722026041/5778*64079^(3/23) 7014087119705432 a001 133957148/2889*167761^(4/5) 7014087119755277 a001 2971215073/5778*167761^(3/5) 7014087119756271 a001 86000486440/321*64079^(2/23) 7014087119805121 a001 10983760033/1926*167761^(2/5) 7014087119809610 a001 2584/271443*(1/2+1/2*5^(1/2))^52 7014087119809610 a001 2584/271443*23725150497407^(13/16) 7014087119809610 a001 2584/271443*505019158607^(13/14) 7014087119809616 a001 121393/5778*141422324^(12/13) 7014087119809616 a001 121393/5778*2537720636^(4/5) 7014087119809616 a001 121393/5778*45537549124^(12/17) 7014087119809616 a001 121393/5778*14662949395604^(4/7) 7014087119809616 a001 121393/5778*(1/2+1/2*5^(1/2))^36 7014087119809616 a001 121393/5778*505019158607^(9/14) 7014087119809616 a001 121393/5778*192900153618^(2/3) 7014087119809616 a001 121393/5778*73681302247^(9/13) 7014087119809616 a001 121393/5778*10749957122^(3/4) 7014087119809616 a001 121393/5778*4106118243^(18/23) 7014087119809616 a001 121393/5778*1568397607^(9/11) 7014087119809616 a001 121393/5778*599074578^(6/7) 7014087119809616 a001 121393/5778*228826127^(9/10) 7014087119809617 a001 121393/5778*87403803^(18/19) 7014087119830541 a001 2504730781961/5778*64079^(1/23) 7014087119854966 a001 182717648081/2889*167761^(1/5) 7014087119868443 a001 4052038129148/5777 7014087119872489 a001 39088169/5778*439204^(8/9) 7014087119876530 a001 165580141/5778*439204^(7/9) 7014087119880570 a001 233802911/1926*439204^(2/3) 7014087119884610 a001 2971215073/5778*439204^(5/9) 7014087119888650 a001 12586269025/5778*439204^(4/9) 7014087119890916 a001 2584/710647*14662949395604^(6/7) 7014087119890916 a001 2584/710647*(1/2+1/2*5^(1/2))^54 7014087119890922 a001 105937/1926*45537549124^(2/3) 7014087119890922 a001 105937/1926*(1/2+1/2*5^(1/2))^34 7014087119890922 a001 105937/1926*10749957122^(17/24) 7014087119890922 a001 105937/1926*4106118243^(17/23) 7014087119890922 a001 105937/1926*1568397607^(17/22) 7014087119890922 a001 105937/1926*599074578^(17/21) 7014087119890922 a001 105937/1926*228826127^(17/20) 7014087119890923 a001 105937/1926*87403803^(17/19) 7014087119890928 a001 105937/1926*33385282^(17/18) 7014087119892690 a001 53316291173/5778*439204^(1/3) 7014087119896731 a001 75283811239/1926*439204^(2/9) 7014087119899500 a001 360684700557880/514229 7014087119900771 a001 956722026041/5778*439204^(1/9) 7014087119902778 a001 1292/930249*14662949395604^(8/9) 7014087119902778 a001 1292/930249*(1/2+1/2*5^(1/2))^56 7014087119902785 a001 416020/2889*(1/2+1/2*5^(1/2))^32 7014087119902785 a001 416020/2889*23725150497407^(1/2) 7014087119902785 a001 416020/2889*505019158607^(4/7) 7014087119902785 a001 416020/2889*73681302247^(8/13) 7014087119902785 a001 416020/2889*10749957122^(2/3) 7014087119902785 a001 416020/2889*4106118243^(16/23) 7014087119902785 a001 416020/2889*1568397607^(8/11) 7014087119902785 a001 416020/2889*599074578^(16/21) 7014087119902785 a001 416020/2889*228826127^(4/5) 7014087119902785 a001 416020/2889*87403803^(16/19) 7014087119902790 a001 416020/2889*33385282^(8/9) 7014087119902825 a001 416020/2889*12752043^(16/17) 7014087119904031 a001 944284805282608/1346269 7014087119904413 a001 726103/1926*7881196^(10/11) 7014087119904501 a001 726103/1926*20633239^(6/7) 7014087119904509 a001 2584/4870847*(1/2+1/2*5^(1/2))^58 7014087119904515 a001 726103/1926*141422324^(10/13) 7014087119904515 a001 726103/1926*2537720636^(2/3) 7014087119904515 a001 726103/1926*45537549124^(10/17) 7014087119904515 a001 726103/1926*312119004989^(6/11) 7014087119904515 a001 726103/1926*14662949395604^(10/21) 7014087119904515 a001 726103/1926*(1/2+1/2*5^(1/2))^30 7014087119904515 a001 726103/1926*192900153618^(5/9) 7014087119904515 a001 726103/1926*28143753123^(3/5) 7014087119904515 a001 726103/1926*10749957122^(5/8) 7014087119904515 a001 726103/1926*4106118243^(15/23) 7014087119904515 a001 726103/1926*1568397607^(15/22) 7014087119904515 a001 726103/1926*599074578^(5/7) 7014087119904515 a001 726103/1926*228826127^(3/4) 7014087119904516 a001 726103/1926*87403803^(15/19) 7014087119904520 a001 726103/1926*33385282^(5/6) 7014087119904553 a001 726103/1926*12752043^(15/17) 7014087119904692 a001 1236084857644972/1762289 7014087119904728 a001 39088169/5778*7881196^(8/11) 7014087119904735 a001 9227465/5778*7881196^(9/11) 7014087119904735 a001 34111385/1926*7881196^(2/3) 7014087119904739 a001 165580141/5778*7881196^(7/11) 7014087119904749 a001 233802911/1926*7881196^(6/11) 7014087119904755 a001 5702887/5778*20633239^(4/5) 7014087119904760 a001 2971215073/5778*7881196^(5/11) 7014087119904761 a001 2584/12752043*14662949395604^(20/21) 7014087119904761 a001 2584/12752043*(1/2+1/2*5^(1/2))^60 7014087119904768 a001 5702887/5778*17393796001^(4/7) 7014087119904768 a001 5702887/5778*14662949395604^(4/9) 7014087119904768 a001 5702887/5778*(1/2+1/2*5^(1/2))^28 7014087119904768 a001 5702887/5778*505019158607^(1/2) 7014087119904768 a001 5702887/5778*73681302247^(7/13) 7014087119904768 a001 5702887/5778*10749957122^(7/12) 7014087119904768 a001 5702887/5778*4106118243^(14/23) 7014087119904768 a001 5702887/5778*1568397607^(7/11) 7014087119904768 a001 5702887/5778*599074578^(2/3) 7014087119904768 a001 5702887/5778*228826127^(7/10) 7014087119904768 a001 5702887/5778*87403803^(14/19) 7014087119904770 a001 12586269025/5778*7881196^(4/11) 7014087119904773 a001 5702887/5778*33385282^(7/9) 7014087119904773 a001 10182505537/2889*7881196^(1/3) 7014087119904780 a001 53316291173/5778*7881196^(3/11) 7014087119904788 a001 6472224340587224/9227465 7014087119904790 a001 75283811239/1926*7881196^(2/11) 7014087119904792 a001 726103/1926*4870847^(15/16) 7014087119904798 a001 1292/16692641*(1/2+1/2*5^(1/2))^62 7014087119904801 a001 956722026041/5778*7881196^(1/11) 7014087119904801 a001 165580141/5778*20633239^(3/5) 7014087119904801 a001 133957148/2889*20633239^(4/7) 7014087119904801 a001 24157817/5778*20633239^(5/7) 7014087119904802 a001 16944503306471728/24157817 7014087119904803 a001 5702887/5778*12752043^(14/17) 7014087119904804 a001 2971215073/5778*20633239^(3/7) 7014087119904804 a001 267084832/321*20633239^(2/5) 7014087119904804 a001 2584*141422324^(2/3) 7014087119904805 a001 2584*(1/2+1/2*5^(1/2))^26 7014087119904805 a001 2584*73681302247^(1/2) 7014087119904805 a001 2584*10749957122^(13/24) 7014087119904805 a001 2584*4106118243^(13/23) 7014087119904805 a001 2584*1568397607^(13/22) 7014087119904805 a001 2584*599074578^(13/21) 7014087119904805 a001 2584*228826127^(13/20) 7014087119904805 a001 2584*87403803^(13/19) 7014087119904805 a001 27416782272356232/39088169 7014087119904806 a001 10983760033/1926*20633239^(2/7) 7014087119904808 a001 139583862445/5778*20633239^(1/5) 7014087119904808 a001 182717648081/2889*20633239^(1/7) 7014087119904809 a001 2584*33385282^(13/18) 7014087119904810 a001 39088169/5778*141422324^(8/13) 7014087119904810 a001 39088169/5778*2537720636^(8/15) 7014087119904810 a001 39088169/5778*45537549124^(8/17) 7014087119904810 a001 39088169/5778*14662949395604^(8/21) 7014087119904810 a001 39088169/5778*(1/2+1/2*5^(1/2))^24 7014087119904810 a001 39088169/5778*192900153618^(4/9) 7014087119904810 a001 39088169/5778*73681302247^(6/13) 7014087119904810 a001 39088169/5778*10749957122^(1/2) 7014087119904810 a001 39088169/5778*4106118243^(12/23) 7014087119904810 a001 39088169/5778*1568397607^(6/11) 7014087119904810 a001 39088169/5778*599074578^(4/7) 7014087119904810 a001 39088169/5778*228826127^(3/5) 7014087119904811 a001 39088169/5778*87403803^(12/19) 7014087119904811 a001 233802911/1926*141422324^(6/13) 7014087119904811 a001 165580141/5778*141422324^(7/13) 7014087119904811 a001 2971215073/5778*141422324^(5/13) 7014087119904811 a001 34111385/1926*312119004989^(2/5) 7014087119904811 a001 34111385/1926*(1/2+1/2*5^(1/2))^22 7014087119904811 a001 34111385/1926*10749957122^(11/24) 7014087119904811 a001 34111385/1926*4106118243^(11/23) 7014087119904811 a001 34111385/1926*1568397607^(1/2) 7014087119904811 a001 34111385/1926*599074578^(11/21) 7014087119904811 a001 7778742049/5778*141422324^(1/3) 7014087119904811 a001 12586269025/5778*141422324^(4/13) 7014087119904811 a001 53316291173/5778*141422324^(3/13) 7014087119904811 a001 34111385/1926*228826127^(11/20) 7014087119904811 a001 75283811239/1926*141422324^(2/13) 7014087119904811 a001 956722026041/5778*141422324^(1/13) 7014087119904811 a001 133957148/2889*2537720636^(4/9) 7014087119904811 a001 133957148/2889*(1/2+1/2*5^(1/2))^20 7014087119904811 a001 133957148/2889*23725150497407^(5/16) 7014087119904811 a001 133957148/2889*505019158607^(5/14) 7014087119904811 a001 133957148/2889*73681302247^(5/13) 7014087119904811 a001 133957148/2889*28143753123^(2/5) 7014087119904811 a001 133957148/2889*10749957122^(5/12) 7014087119904811 a001 133957148/2889*4106118243^(10/23) 7014087119904811 a001 133957148/2889*1568397607^(5/11) 7014087119904811 a001 133957148/2889*599074578^(10/21) 7014087119904811 a001 233802911/1926*2537720636^(2/5) 7014087119904811 a001 233802911/1926*45537549124^(6/17) 7014087119904811 a001 233802911/1926*14662949395604^(2/7) 7014087119904811 a001 233802911/1926*(1/2+1/2*5^(1/2))^18 7014087119904811 a001 233802911/1926*192900153618^(1/3) 7014087119904811 a001 233802911/1926*10749957122^(3/8) 7014087119904811 a001 233802911/1926*4106118243^(9/23) 7014087119904811 a001 233802911/1926*1568397607^(9/22) 7014087119904811 a001 1836311903/5778*(1/2+1/2*5^(1/2))^16 7014087119904811 a001 1836311903/5778*23725150497407^(1/4) 7014087119904811 a001 1836311903/5778*73681302247^(4/13) 7014087119904811 a001 1836311903/5778*10749957122^(1/3) 7014087119904811 a001 12586269025/5778*2537720636^(4/15) 7014087119904811 a001 1836311903/5778*4106118243^(8/23) 7014087119904811 a001 10983760033/1926*2537720636^(2/9) 7014087119904811 a001 53316291173/5778*2537720636^(1/5) 7014087119904811 a001 2971215073/5778*2537720636^(1/3) 7014087119904811 a001 75283811239/1926*2537720636^(2/15) 7014087119904811 a001 182717648081/2889*2537720636^(1/9) 7014087119904811 a001 956722026041/5778*2537720636^(1/15) 7014087119904811 a001 267084832/321*17393796001^(2/7) 7014087119904811 a001 267084832/321*14662949395604^(2/9) 7014087119904811 a001 267084832/321*(1/2+1/2*5^(1/2))^14 7014087119904811 a001 267084832/321*505019158607^(1/4) 7014087119904811 a001 267084832/321*10749957122^(7/24) 7014087119904811 a001 12586269025/5778*45537549124^(4/17) 7014087119904811 a001 12586269025/5778*817138163596^(4/19) 7014087119904811 a001 12586269025/5778*14662949395604^(4/21) 7014087119904811 a001 12586269025/5778*(1/2+1/2*5^(1/2))^12 7014087119904811 a001 12586269025/5778*192900153618^(2/9) 7014087119904811 a001 12586269025/5778*73681302247^(3/13) 7014087119904811 a001 139583862445/5778*17393796001^(1/7) 7014087119904811 a001 10983760033/1926*312119004989^(2/11) 7014087119904811 a001 10983760033/1926*(1/2+1/2*5^(1/2))^10 7014087119904811 a001 75283811239/1926*45537549124^(2/17) 7014087119904811 a001 956722026041/5778*45537549124^(1/17) 7014087119904811 a001 43133785636/2889*(1/2+1/2*5^(1/2))^8 7014087119904811 a001 43133785636/2889*23725150497407^(1/8) 7014087119904811 a001 43133785636/2889*505019158607^(1/7) 7014087119904811 a001 53316291173/5778*45537549124^(3/17) 7014087119904811 a001 75283811239/1926*14662949395604^(2/21) 7014087119904811 a001 75283811239/1926*(1/2+1/2*5^(1/2))^6 7014087119904811 a001 591286729879/5778*23725150497407^(1/16) 7014087119904811 a001 86000486440/321*(1/2+1/2*5^(1/2))^2 7014087119904811 a001 956722026041/5778*(1/2+1/2*5^(1/2))^3 7014087119904811 a001 182717648081/2889*312119004989^(1/11) 7014087119904811 a001 43133785636/2889*73681302247^(2/13) 7014087119904811 a001 182717648081/2889*(1/2+1/2*5^(1/2))^5 7014087119904811 a001 956722026041/5778*192900153618^(1/18) 7014087119904811 a001 139583862445/5778*14662949395604^(1/9) 7014087119904811 a001 139583862445/5778*(1/2+1/2*5^(1/2))^7 7014087119904811 a001 591286729879/5778*73681302247^(1/13) 7014087119904811 a001 10983760033/1926*28143753123^(1/5) 7014087119904811 a001 53316291173/5778*817138163596^(3/19) 7014087119904811 a001 53316291173/5778*14662949395604^(1/7) 7014087119904811 a001 53316291173/5778*(1/2+1/2*5^(1/2))^9 7014087119904811 a001 53316291173/5778*192900153618^(1/6) 7014087119904811 a001 182717648081/2889*28143753123^(1/10) 7014087119904811 a001 86000486440/321*10749957122^(1/24) 7014087119904811 a001 10182505537/2889*312119004989^(1/5) 7014087119904811 a001 10182505537/2889*(1/2+1/2*5^(1/2))^11 7014087119904811 a001 956722026041/5778*10749957122^(1/16) 7014087119904811 a001 591286729879/5778*10749957122^(1/12) 7014087119904811 a001 12586269025/5778*10749957122^(1/4) 7014087119904811 a001 75283811239/1926*10749957122^(1/8) 7014087119904811 a001 43133785636/2889*10749957122^(1/6) 7014087119904811 a001 10983760033/1926*10749957122^(5/24) 7014087119904811 a001 53316291173/5778*10749957122^(3/16) 7014087119904811 a001 86000486440/321*4106118243^(1/23) 7014087119904811 a001 7778742049/5778*(1/2+1/2*5^(1/2))^13 7014087119904811 a001 7778742049/5778*73681302247^(1/4) 7014087119904811 a001 591286729879/5778*4106118243^(2/23) 7014087119904811 a001 75283811239/1926*4106118243^(3/23) 7014087119904811 a001 267084832/321*4106118243^(7/23) 7014087119904811 a001 43133785636/2889*4106118243^(4/23) 7014087119904811 a001 10983760033/1926*4106118243^(5/23) 7014087119904811 a001 12586269025/5778*4106118243^(6/23) 7014087119904811 a001 86000486440/321*1568397607^(1/22) 7014087119904811 a001 2971215073/5778*45537549124^(5/17) 7014087119904811 a001 2971215073/5778*312119004989^(3/11) 7014087119904811 a001 2971215073/5778*14662949395604^(5/21) 7014087119904811 a001 2971215073/5778*(1/2+1/2*5^(1/2))^15 7014087119904811 a001 2971215073/5778*192900153618^(5/18) 7014087119904811 a001 2971215073/5778*28143753123^(3/10) 7014087119904811 a001 2971215073/5778*10749957122^(5/16) 7014087119904811 a001 591286729879/5778*1568397607^(1/11) 7014087119904811 a001 75283811239/1926*1568397607^(3/22) 7014087119904811 a001 43133785636/2889*1568397607^(2/11) 7014087119904811 a001 1836311903/5778*1568397607^(4/11) 7014087119904811 a001 10983760033/1926*1568397607^(5/22) 7014087119904811 a001 10182505537/2889*1568397607^(1/4) 7014087119904811 a001 12586269025/5778*1568397607^(3/11) 7014087119904811 a001 267084832/321*1568397607^(7/22) 7014087119904811 a001 86000486440/321*599074578^(1/21) 7014087119904811 a001 567451585/2889*45537549124^(1/3) 7014087119904811 a001 567451585/2889*(1/2+1/2*5^(1/2))^17 7014087119904811 a001 956722026041/5778*599074578^(1/14) 7014087119904811 a001 591286729879/5778*599074578^(2/21) 7014087119904811 a001 75283811239/1926*599074578^(1/7) 7014087119904811 a001 139583862445/5778*599074578^(1/6) 7014087119904811 a001 43133785636/2889*599074578^(4/21) 7014087119904811 a001 53316291173/5778*599074578^(3/14) 7014087119904811 a001 10983760033/1926*599074578^(5/21) 7014087119904811 a001 233802911/1926*599074578^(3/7) 7014087119904811 a001 12586269025/5778*599074578^(2/7) 7014087119904811 a001 267084832/321*599074578^(1/3) 7014087119904811 a001 86000486440/321*228826127^(1/20) 7014087119904811 a001 1836311903/5778*599074578^(8/21) 7014087119904811 a001 2971215073/5778*599074578^(5/14) 7014087119904811 a001 433494437/5778*817138163596^(1/3) 7014087119904811 a001 433494437/5778*(1/2+1/2*5^(1/2))^19 7014087119904811 a001 591286729879/5778*228826127^(1/10) 7014087119904811 a001 182717648081/2889*228826127^(1/8) 7014087119904811 a001 75283811239/1926*228826127^(3/20) 7014087119904811 a001 43133785636/2889*228826127^(1/5) 7014087119904811 a001 10983760033/1926*228826127^(1/4) 7014087119904811 a001 12586269025/5778*228826127^(3/10) 7014087119904811 a001 267084832/321*228826127^(7/20) 7014087119904811 a001 133957148/2889*228826127^(1/2) 7014087119904811 a001 86000486440/321*87403803^(1/19) 7014087119904811 a001 2971215073/5778*228826127^(3/8) 7014087119904811 a001 165580141/5778*2537720636^(7/15) 7014087119904811 a001 165580141/5778*17393796001^(3/7) 7014087119904811 a001 165580141/5778*45537549124^(7/17) 7014087119904811 a001 165580141/5778*14662949395604^(1/3) 7014087119904811 a001 165580141/5778*(1/2+1/2*5^(1/2))^21 7014087119904811 a001 165580141/5778*192900153618^(7/18) 7014087119904811 a001 165580141/5778*10749957122^(7/16) 7014087119904811 a001 1836311903/5778*228826127^(2/5) 7014087119904811 a001 233802911/1926*228826127^(9/20) 7014087119904811 a001 165580141/5778*599074578^(1/2) 7014087119904811 a001 591286729879/5778*87403803^(2/19) 7014087119904811 a001 75283811239/1926*87403803^(3/19) 7014087119904811 a001 43133785636/2889*87403803^(4/19) 7014087119904811 a001 10983760033/1926*87403803^(5/19) 7014087119904811 a001 12586269025/5778*87403803^(6/19) 7014087119904811 a001 267084832/321*87403803^(7/19) 7014087119904811 a001 86000486440/321*33385282^(1/18) 7014087119904811 a001 31622993/2889*(1/2+1/2*5^(1/2))^23 7014087119904811 a001 31622993/2889*4106118243^(1/2) 7014087119904811 a001 1836311903/5778*87403803^(8/19) 7014087119904811 a001 34111385/1926*87403803^(11/19) 7014087119904811 a001 233802911/1926*87403803^(9/19) 7014087119904811 a001 133957148/2889*87403803^(10/19) 7014087119904811 a001 433494437/5778*87403803^(1/2) 7014087119904811 a001 956722026041/5778*33385282^(1/12) 7014087119904812 a001 591286729879/5778*33385282^(1/9) 7014087119904812 a001 75283811239/1926*33385282^(1/6) 7014087119904812 a001 43133785636/2889*33385282^(2/9) 7014087119904812 a001 53316291173/5778*33385282^(1/4) 7014087119904813 a001 10983760033/1926*33385282^(5/18) 7014087119904813 a001 12586269025/5778*33385282^(1/3) 7014087119904813 a001 24157817/5778*2537720636^(5/9) 7014087119904813 a001 24157817/5778*312119004989^(5/11) 7014087119904813 a001 24157817/5778*(1/2+1/2*5^(1/2))^25 7014087119904813 a001 24157817/5778*3461452808002^(5/12) 7014087119904813 a001 24157817/5778*28143753123^(1/2) 7014087119904813 a001 267084832/321*33385282^(7/18) 7014087119904813 a001 24157817/5778*228826127^(5/8) 7014087119904813 a001 86000486440/321*12752043^(1/17) 7014087119904813 a001 2971215073/5778*33385282^(5/12) 7014087119904814 a001 1836311903/5778*33385282^(4/9) 7014087119904814 a001 233802911/1926*33385282^(1/2) 7014087119904814 a001 39088169/5778*33385282^(2/3) 7014087119904814 a001 133957148/2889*33385282^(5/9) 7014087119904815 a001 34111385/1926*33385282^(11/18) 7014087119904815 a001 165580141/5778*33385282^(7/12) 7014087119904816 a001 591286729879/5778*12752043^(2/17) 7014087119904818 a001 75283811239/1926*12752043^(3/17) 7014087119904821 a001 43133785636/2889*12752043^(4/17) 7014087119904821 a001 2584/20633239*(1/2+1/2*5^(1/2))^61 7014087119904824 a001 10983760033/1926*12752043^(5/17) 7014087119904826 a001 12586269025/5778*12752043^(6/17) 7014087119904827 a001 9227465/5778*141422324^(9/13) 7014087119904827 a001 9227465/5778*2537720636^(3/5) 7014087119904827 a001 9227465/5778*45537549124^(9/17) 7014087119904827 a001 9227465/5778*817138163596^(9/19) 7014087119904827 a001 9227465/5778*14662949395604^(3/7) 7014087119904827 a001 9227465/5778*(1/2+1/2*5^(1/2))^27 7014087119904827 a001 9227465/5778*192900153618^(1/2) 7014087119904827 a001 9227465/5778*10749957122^(9/16) 7014087119904827 a001 9227465/5778*599074578^(9/14) 7014087119904829 a001 267084832/321*12752043^(7/17) 7014087119904829 a001 86000486440/321*4870847^(1/16) 7014087119904831 a001 1836311903/5778*12752043^(8/17) 7014087119904832 a001 9227465/5778*33385282^(3/4) 7014087119904832 a001 567451585/2889*12752043^(1/2) 7014087119904834 a001 233802911/1926*12752043^(9/17) 7014087119904836 a001 133957148/2889*12752043^(10/17) 7014087119904838 a001 2584*12752043^(13/17) 7014087119904839 a001 34111385/1926*12752043^(11/17) 7014087119904840 a001 39088169/5778*12752043^(12/17) 7014087119904848 a001 4000054625297280/5702887 7014087119904848 a001 591286729879/5778*4870847^(1/8) 7014087119904866 a001 75283811239/1926*4870847^(3/16) 7014087119904885 a001 43133785636/2889*4870847^(1/4) 7014087119904903 a001 10983760033/1926*4870847^(5/16) 7014087119904917 a001 646/1970299*(1/2+1/2*5^(1/2))^59 7014087119904922 a001 12586269025/5778*4870847^(3/8) 7014087119904924 a001 1762289/2889*(1/2+1/2*5^(1/2))^29 7014087119904924 a001 1762289/2889*1322157322203^(1/2) 7014087119904940 a001 267084832/321*4870847^(7/16) 7014087119904946 a001 86000486440/321*1860498^(1/15) 7014087119904959 a001 1836311903/5778*4870847^(1/2) 7014087119904977 a001 233802911/1926*4870847^(9/16) 7014087119904996 a001 133957148/2889*4870847^(5/8) 7014087119905013 a001 956722026041/5778*1860498^(1/10) 7014087119905014 a001 34111385/1926*4870847^(11/16) 7014087119905026 a001 5702887/5778*4870847^(7/8) 7014087119905032 a001 39088169/5778*4870847^(3/4) 7014087119905045 a001 2584*4870847^(13/16) 7014087119905081 a001 591286729879/5778*1860498^(2/15) 7014087119905100 a001 1527884910007336/2178309 7014087119905149 a001 182717648081/2889*1860498^(1/6) 7014087119905216 a001 75283811239/1926*1860498^(1/5) 7014087119905351 a001 43133785636/2889*1860498^(4/15) 7014087119905419 a001 53316291173/5778*1860498^(3/10) 7014087119905486 a001 10983760033/1926*1860498^(1/3) 7014087119905579 a001 2584/3010349*14662949395604^(19/21) 7014087119905579 a001 2584/3010349*(1/2+1/2*5^(1/2))^57 7014087119905585 a001 1346269/5778*(1/2+1/2*5^(1/2))^31 7014087119905585 a001 1346269/5778*9062201101803^(1/2) 7014087119905621 a001 12586269025/5778*1860498^(2/5) 7014087119905756 a001 267084832/321*1860498^(7/15) 7014087119905803 a001 86000486440/321*710647^(1/14) 7014087119905824 a001 2971215073/5778*1860498^(1/2) 7014087119905892 a001 1836311903/5778*1860498^(8/15) 7014087119906027 a001 233802911/1926*1860498^(3/5) 7014087119906162 a001 133957148/2889*1860498^(2/3) 7014087119906229 a001 165580141/5778*1860498^(7/10) 7014087119906297 a001 34111385/1926*1860498^(11/15) 7014087119906431 a001 39088169/5778*1860498^(4/5) 7014087119906502 a001 24157817/5778*1860498^(5/6) 7014087119906561 a001 2584*1860498^(13/15) 7014087119906651 a001 9227465/5778*1860498^(9/10) 7014087119906659 a001 5702887/5778*1860498^(14/15) 7014087119906795 a001 591286729879/5778*710647^(1/7) 7014087119906831 a001 72950013090591/104005 7014087119907787 a001 75283811239/1926*710647^(3/14) 7014087119908283 a001 139583862445/5778*710647^(1/4) 7014087119908779 a001 43133785636/2889*710647^(2/7) 7014087119909771 a001 10983760033/1926*710647^(5/14) 7014087119910110 a001 2584/1149851*(1/2+1/2*5^(1/2))^55 7014087119910110 a001 2584/1149851*3461452808002^(11/12) 7014087119910116 a001 514229/5778*141422324^(11/13) 7014087119910116 a001 514229/5778*2537720636^(11/15) 7014087119910116 a001 514229/5778*45537549124^(11/17) 7014087119910116 a001 514229/5778*312119004989^(3/5) 7014087119910116 a001 514229/5778*817138163596^(11/19) 7014087119910116 a001 514229/5778*14662949395604^(11/21) 7014087119910116 a001 514229/5778*(1/2+1/2*5^(1/2))^33 7014087119910116 a001 514229/5778*192900153618^(11/18) 7014087119910116 a001 514229/5778*10749957122^(11/16) 7014087119910116 a001 514229/5778*1568397607^(3/4) 7014087119910116 a001 514229/5778*599074578^(11/14) 7014087119910122 a001 514229/5778*33385282^(11/12) 7014087119910763 a001 12586269025/5778*710647^(3/7) 7014087119911755 a001 267084832/321*710647^(1/2) 7014087119912134 a001 86000486440/321*271443^(1/13) 7014087119912747 a001 1836311903/5778*710647^(4/7) 7014087119913739 a001 233802911/1926*710647^(9/14) 7014087119914731 a001 133957148/2889*710647^(5/7) 7014087119915227 a001 165580141/5778*710647^(3/4) 7014087119915723 a001 34111385/1926*710647^(11/14) 7014087119916715 a001 39088169/5778*710647^(6/7) 7014087119917701 a001 2584*710647^(13/14) 7014087119918693 a001 222915404166848/317811 7014087119919456 a001 591286729879/5778*271443^(2/13) 7014087119926779 a001 75283811239/1926*271443^(3/13) 7014087119931997 a001 2504730781961/5778*103682^(1/24) 7014087119934102 a001 43133785636/2889*271443^(4/13) 7014087119941166 a001 34/5779*(1/2+1/2*5^(1/2))^53 7014087119941172 a001 98209/2889*2537720636^(7/9) 7014087119941172 a001 98209/2889*17393796001^(5/7) 7014087119941172 a001 98209/2889*312119004989^(7/11) 7014087119941172 a001 98209/2889*14662949395604^(5/9) 7014087119941172 a001 98209/2889*(1/2+1/2*5^(1/2))^35 7014087119941172 a001 98209/2889*505019158607^(5/8) 7014087119941172 a001 98209/2889*28143753123^(7/10) 7014087119941172 a001 98209/2889*599074578^(5/6) 7014087119941172 a001 98209/2889*228826127^(7/8) 7014087119941424 a001 10983760033/1926*271443^(5/13) 7014087119948747 a001 12586269025/5778*271443^(6/13) 7014087119952408 a001 7778742049/5778*271443^(1/2) 7014087119956070 a001 267084832/321*271443^(7/13) 7014087119959184 a001 86000486440/321*103682^(1/12) 7014087119963392 a001 1836311903/5778*271443^(8/13) 7014087119970715 a001 233802911/1926*271443^(9/13) 7014087119978038 a001 133957148/2889*271443^(10/13) 7014087119985360 a001 34111385/1926*271443^(11/13) 7014087119986370 a001 956722026041/5778*103682^(1/8) 7014087119992682 a001 39088169/5778*271443^(12/13) 7014087120013557 a001 591286729879/5778*103682^(1/6) 7014087120040743 a001 182717648081/2889*103682^(5/24) 7014087120067930 a001 75283811239/1926*103682^(1/4) 7014087120095116 a001 139583862445/5778*103682^(7/24) 7014087120108090 a001 2504730781961/5778*39603^(1/22) 7014087120122303 a001 43133785636/2889*103682^(1/3) 7014087120149489 a001 53316291173/5778*103682^(3/8) 7014087120154028 a001 2584/167761*817138163596^(17/19) 7014087120154028 a001 2584/167761*14662949395604^(17/21) 7014087120154028 a001 2584/167761*(1/2+1/2*5^(1/2))^51 7014087120154028 a001 2584/167761*192900153618^(17/18) 7014087120154034 a001 75025/5778*(1/2+1/2*5^(1/2))^37 7014087120176676 a001 10983760033/1926*103682^(5/12) 7014087120203862 a001 10182505537/2889*103682^(11/24) 7014087120231049 a001 12586269025/5778*103682^(1/2) 7014087120258235 a001 7778742049/5778*103682^(13/24) 7014087120285422 a001 267084832/321*103682^(7/12) 7014087120311369 a001 86000486440/321*39603^(1/11) 7014087120312608 a001 2971215073/5778*103682^(5/8) 7014087120339795 a001 1836311903/5778*103682^(2/3) 7014087120366981 a001 567451585/2889*103682^(17/24) 7014087120394168 a001 233802911/1926*103682^(3/4) 7014087120421354 a001 433494437/5778*103682^(19/24) 7014087120448541 a001 133957148/2889*103682^(5/6) 7014087120475727 a001 165580141/5778*103682^(7/8) 7014087120502914 a001 34111385/1926*103682^(11/12) 7014087120514648 a001 956722026041/5778*39603^(3/22) 7014087120530101 a001 31622993/2889*103682^(23/24) 7014087120557280 a001 4065364895075/5796 7014087120598857 a007 Real Root Of 473*x^4-639*x^3-927*x^2-583*x+971 7014087120717926 a001 591286729879/5778*39603^(2/11) 7014087120921205 a001 182717648081/2889*39603^(5/22) 7014087121124484 a001 75283811239/1926*39603^(3/11) 7014087121327763 a001 139583862445/5778*39603^(7/22) 7014087121437435 a001 2504730781961/5778*15127^(1/20) 7014087121531042 a001 43133785636/2889*39603^(4/11) 7014087121613008 a001 2584/64079*14662949395604^(7/9) 7014087121613008 a001 2584/64079*(1/2+1/2*5^(1/2))^49 7014087121613008 a001 2584/64079*505019158607^(7/8) 7014087121613015 a001 28657/5778*2537720636^(13/15) 7014087121613015 a001 28657/5778*45537549124^(13/17) 7014087121613015 a001 28657/5778*14662949395604^(13/21) 7014087121613015 a001 28657/5778*(1/2+1/2*5^(1/2))^39 7014087121613015 a001 28657/5778*192900153618^(13/18) 7014087121613015 a001 28657/5778*73681302247^(3/4) 7014087121613015 a001 28657/5778*10749957122^(13/16) 7014087121613015 a001 28657/5778*599074578^(13/14) 7014087121734321 a001 53316291173/5778*39603^(9/22) 7014087121937600 a001 10983760033/1926*39603^(5/11) 7014087122140879 a001 10182505537/2889*39603^(1/2) 7014087122344158 a001 12586269025/5778*39603^(6/11) 7014087122547437 a001 7778742049/5778*39603^(13/22) 7014087122750715 a001 267084832/321*39603^(7/11) 7014087122953994 a001 2971215073/5778*39603^(15/22) 7014087122970058 a001 86000486440/321*15127^(1/10) 7014087123157273 a001 1836311903/5778*39603^(8/11) 7014087123360552 a001 567451585/2889*39603^(17/22) 7014087123563831 a001 233802911/1926*39603^(9/11) 7014087123767110 a001 433494437/5778*39603^(19/22) 7014087123970389 a001 133957148/2889*39603^(10/11) 7014087124173668 a001 165580141/5778*39603^(21/22) 7014087124376940 a001 12422649705984/17711 7014087124502682 a001 956722026041/5778*15127^(3/20) 7014087124614264 a001 182717648081/682*521^(2/13) 7014087126035122 a001 591286729879/3571*1364^(1/5) 7014087126035306 a001 591286729879/5778*15127^(1/5) 7014087127567930 a001 182717648081/2889*15127^(1/4) 7014087129100553 a001 75283811239/1926*15127^(3/10) 7014087130633177 a001 139583862445/5778*15127^(7/20) 7014087131397378 a001 516002918640/13201*3571^(6/17) 7014087131576766 a001 2504730781961/5778*5778^(1/18) 7014087131613008 a001 646/6119*(1/2+1/2*5^(1/2))^47 7014087131613014 a001 5473/2889*(1/2+1/2*5^(1/2))^41 7014087132165801 a001 43133785636/2889*15127^(2/5) 7014087133698425 a001 53316291173/5778*15127^(9/20) 7014087135217038 a001 4052739537881/103682*3571^(6/17) 7014087135231048 a001 10983760033/1926*15127^(1/2) 7014087135774319 a001 3536736619241/90481*3571^(6/17) 7014087136118738 a001 6557470319842/167761*3571^(6/17) 7014087136763672 a001 10182505537/2889*15127^(11/20) 7014087137572120 a001 956722026041/15127*3571^(5/17) 7014087137577718 a001 2504730781961/64079*3571^(6/17) 7014087138296296 a001 12586269025/5778*15127^(3/5) 7014087138423826 m001 Pi-(Psi(1,1/3)-ln(3))*GAMMA(5/6) 7014087139828920 a001 7778742049/5778*15127^(13/20) 7014087141361543 a001 267084832/321*15127^(7/10) 7014087142894167 a001 2971215073/5778*15127^(3/4) 7014087143248720 a001 86000486440/321*5778^(1/9) 7014087144426791 a001 1836311903/5778*15127^(4/5) 7014087145959415 a001 567451585/2889*15127^(17/20) 7014087147492038 a001 233802911/1926*15127^(9/10) 7014087147577718 a001 956722026041/24476*3571^(6/17) 7014087149024662 a001 433494437/5778*15127^(19/20) 7014087149998284 a001 1836311903/2207*2207^(7/8) 7014087150557280 a001 4745029957352/6765 7014087151408575 a001 139583862445/9349*3571^(8/17) 7014087153363874 a003 cos(Pi*1/112)-sin(Pi*8/83) 7014087154920675 a001 956722026041/5778*5778^(1/6) 7014087158915471 a001 4052739537881/9349*1364^(1/15) 7014087163752459 a001 2504730781961/39603*3571^(5/17) 7014087166592630 a001 591286729879/5778*5778^(2/9) 7014087167572119 a001 3278735159921/51841*3571^(5/17) 7014087168473818 a001 10610209857723/167761*3571^(5/17) 7014087169927200 a001 1548008755920/15127*3571^(4/17) 7014087169932799 a001 4052739537881/64079*3571^(5/17) 7014087171378631 m001 (ln(5)*KomornikLoreti-MadelungNaCl)/ln(5) 7014087171572212 m001 (Bloch+MasserGramain)/(Ei(1)-ln(2)/ln(10)) 7014087178264585 a001 182717648081/2889*5778^(5/18) 7014087179932798 a001 387002188980/6119*3571^(5/17) 7014087181015848 a007 Real Root Of 382*x^4-440*x^3-213*x^2-638*x-587 7014087183763656 a001 225851433717/9349*3571^(7/17) 7014087189936540 a001 75283811239/1926*5778^(1/3) 7014087196107539 a001 4052739537881/39603*3571^(4/17) 7014087199927200 a001 225749145909/2206*3571^(4/17) 7014087200154027 a001 2584/9349*45537549124^(15/17) 7014087200154027 a001 2584/9349*312119004989^(9/11) 7014087200154027 a001 2584/9349*14662949395604^(5/7) 7014087200154027 a001 2584/9349*(1/2+1/2*5^(1/2))^45 7014087200154027 a001 2584/9349*192900153618^(5/6) 7014087200154027 a001 2584/9349*28143753123^(9/10) 7014087200154027 a001 2584/9349*10749957122^(15/16) 7014087200154032 a001 4181/5778*(1/2+1/2*5^(1/2))^43 7014087201608495 a001 139583862445/5778*5778^(7/18) 7014087201901371 m005 (1/2*Pi-1/4)/(11/12*5^(1/2)-1/6) 7014087202282281 a001 2504730781961/15127*3571^(3/17) 7014087202287879 a001 6557470319842/64079*3571^(4/17) 7014087203093467 r005 Im(z^2+c),c=29/82+17/39*I,n=21 7014087209905668 a001 2504730781961/5778*2207^(1/16) 7014087212287879 a001 2504730781961/24476*3571^(4/17) 7014087213280449 a001 43133785636/2889*5778^(4/9) 7014087213451600 a003 sin(Pi*7/101)*sin(Pi*2/19) 7014087216118736 a001 365435296162/9349*3571^(6/17) 7014087219098301 a001 2932589866305/4181 7014087223321944 a001 1836311903/15127*9349^(18/19) 7014087224952404 a001 53316291173/5778*5778^(1/2) 7014087227545587 a001 2971215073/15127*9349^(17/19) 7014087228462620 a001 6557470319842/39603*3571^(3/17) 7014087231769230 a001 686789568/2161*9349^(16/19) 7014087234637362 a001 4052739537881/15127*3571^(2/17) 7014087234642960 a001 10610209857723/64079*3571^(3/17) 7014087235992874 a001 7778742049/15127*9349^(15/19) 7014087236624359 a001 10983760033/1926*5778^(5/9) 7014087239999141 a001 1134903170/2207*2207^(15/16) 7014087240088667 a007 Real Root Of 679*x^4-447*x^3+70*x^2-191*x-487 7014087240216517 a001 12586269025/15127*9349^(14/19) 7014087242801320 a001 1/123*199^(16/19) 7014087243783819 a007 Real Root Of 251*x^4-712*x^3-989*x^2-139*x+769 7014087244440160 a001 20365011074/15127*9349^(13/19) 7014087244642960 a001 4052739537881/24476*3571^(3/17) 7014087245278641 a001 2932589877251/4181 7014087248296314 a001 10182505537/2889*5778^(11/18) 7014087248473817 a001 591286729879/9349*3571^(5/17) 7014087248663804 a001 32951280099/15127*9349^(12/19) 7014087249098301 a001 2932589878848/4181 7014087249502283 a001 1602508992/13201*9349^(18/19) 7014087249655584 a001 2932589879081/4181 7014087249736905 a001 2932589879115/4181 7014087249748863 a001 2932589879120/4181 7014087249750777 a001 14662949395604/4181*8^(1/3) 7014087249750777 a001 2/4181*(1/2+1/2*5^(1/2))^63 7014087249751255 a001 2932589879121/4181 7014087249756039 a001 2932589879123/4181 7014087249787132 a001 2932589879136/4181 7014087249889180 m001 Sierpinski/MertensB1^2/exp(Zeta(1/2))^2 7014087251458981 a001 2932589879835/4181 7014087251763083 m001 (-gamma(2)+BesselI(1,2))/(3^(1/2)-ln(gamma)) 7014087252887447 a001 53316291173/15127*9349^(11/19) 7014087253321943 a001 12586269025/103682*9349^(18/19) 7014087253725927 a001 7778742049/39603*9349^(17/19) 7014087253879224 a001 121393*9349^(18/19) 7014087253960530 a001 86267571272/710647*9349^(18/19) 7014087253972393 a001 75283811239/620166*9349^(18/19) 7014087253974124 a001 591286729879/4870847*9349^(18/19) 7014087253974376 a001 516002918640/4250681*9349^(18/19) 7014087253974413 a001 4052739537881/33385282*9349^(18/19) 7014087253974418 a001 3536736619241/29134601*9349^(18/19) 7014087253974422 a001 6557470319842/54018521*9349^(18/19) 7014087253974436 a001 2504730781961/20633239*9349^(18/19) 7014087253974532 a001 956722026041/7881196*9349^(18/19) 7014087253975193 a001 365435296162/3010349*9349^(18/19) 7014087253979724 a001 139583862445/1149851*9349^(18/19) 7014087254010780 a001 53316291173/439204*9349^(18/19) 7014087254223643 a001 20365011074/167761*9349^(18/19) 7014087255682623 a001 7778742049/64079*9349^(18/19) 7014087257111090 a001 86267571272/15127*9349^(10/19) 7014087257545587 a001 10182505537/51841*9349^(17/19) 7014087257949570 a001 12586269025/39603*9349^(16/19) 7014087258102868 a001 53316291173/271443*9349^(17/19) 7014087258184174 a001 139583862445/710647*9349^(17/19) 7014087258196036 a001 182717648081/930249*9349^(17/19) 7014087258197767 a001 956722026041/4870847*9349^(17/19) 7014087258198019 a001 2504730781961/12752043*9349^(17/19) 7014087258198056 a001 3278735159921/16692641*9349^(17/19) 7014087258198065 a001 10610209857723/54018521*9349^(17/19) 7014087258198079 a001 4052739537881/20633239*9349^(17/19) 7014087258198175 a001 387002188980/1970299*9349^(17/19) 7014087258198837 a001 591286729879/3010349*9349^(17/19) 7014087258203368 a001 225851433717/1149851*9349^(17/19) 7014087258234424 a001 196418*9349^(17/19) 7014087258447286 a001 32951280099/167761*9349^(17/19) 7014087259906266 a001 12586269025/64079*9349^(17/19) 7014087259968269 a001 12586269025/5778*5778^(2/3) 7014087260817701 a001 3536736619241/13201*3571^(2/17) 7014087261334734 a001 139583862445/15127*9349^(9/19) 7014087261458981 a001 2932589884016/4181 7014087261769230 a001 32951280099/103682*9349^(16/19) 7014087262173213 a001 20365011074/39603*9349^(15/19) 7014087262326511 a001 86267571272/271443*9349^(16/19) 7014087262407817 a001 317811*9349^(16/19) 7014087262419680 a001 591286729879/1860498*9349^(16/19) 7014087262421410 a001 1548008755920/4870847*9349^(16/19) 7014087262421663 a001 4052739537881/12752043*9349^(16/19) 7014087262421700 a001 1515744265389/4769326*9349^(16/19) 7014087262421722 a001 6557470319842/20633239*9349^(16/19) 7014087262421819 a001 2504730781961/7881196*9349^(16/19) 7014087262422480 a001 956722026041/3010349*9349^(16/19) 7014087262427011 a001 365435296162/1149851*9349^(16/19) 7014087262458067 a001 139583862445/439204*9349^(16/19) 7014087262670929 a001 53316291173/167761*9349^(16/19) 7014087264129910 a001 20365011074/64079*9349^(16/19) 7014087265558377 a001 32264490531/2161*9349^(8/19) 7014087265682623 a001 2971215073/24476*9349^(18/19) 7014087265992873 a001 53316291173/103682*9349^(15/19) 7014087266198988 a007 Real Root Of -910*x^4-387*x^3-746*x^2+267*x+641 7014087266396857 a001 10983760033/13201*9349^(14/19) 7014087266550154 a001 139583862445/271443*9349^(15/19) 7014087266631460 a001 365435296162/710647*9349^(15/19) 7014087266643323 a001 956722026041/1860498*9349^(15/19) 7014087266645054 a001 2504730781961/4870847*9349^(15/19) 7014087266645306 a001 6557470319842/12752043*9349^(15/19) 7014087266645366 a001 10610209857723/20633239*9349^(15/19) 7014087266645462 a001 4052739537881/7881196*9349^(15/19) 7014087266646123 a001 1548008755920/3010349*9349^(15/19) 7014087266650654 a001 514229*9349^(15/19) 7014087266681710 a001 225851433717/439204*9349^(15/19) 7014087266894573 a001 86267571272/167761*9349^(15/19) 7014087266992443 a001 6557470319842/15127*3571^(1/17) 7014087267533249 m001 (GAMMA(11/12)+Riemann3rdZero)^Conway 7014087268353553 a001 32951280099/64079*9349^(15/19) 7014087268695048 a001 6765/15127*312119004989^(4/5) 7014087268695048 a001 6765/15127*(1/2+1/2*5^(1/2))^44 7014087268695048 a001 6765/15127*23725150497407^(11/16) 7014087268695048 a001 6765/15127*73681302247^(11/13) 7014087268695048 a001 6765/15127*10749957122^(11/12) 7014087268695048 a001 6765/15127*4106118243^(22/23) 7014087269782020 a001 365435296162/15127*9349^(7/19) 7014087269906266 a001 1201881744/6119*9349^(17/19) 7014087270216517 a001 43133785636/51841*9349^(14/19) 7014087270408216 a007 Real Root Of -209*x^4-908*x^3-841*x^2+633*x+595 7014087270620500 a001 53316291173/39603*9349^(13/19) 7014087270773798 a001 75283811239/90481*9349^(14/19) 7014087270855104 a001 591286729879/710647*9349^(14/19) 7014087270866966 a001 832040*9349^(14/19) 7014087270868697 a001 4052739537881/4870847*9349^(14/19) 7014087270868949 a001 3536736619241/4250681*9349^(14/19) 7014087270869105 a001 3278735159921/3940598*9349^(14/19) 7014087270869767 a001 2504730781961/3010349*9349^(14/19) 7014087270874298 a001 956722026041/1149851*9349^(14/19) 7014087270905354 a001 182717648081/219602*9349^(14/19) 7014087271118216 a001 139583862445/167761*9349^(14/19) 7014087271640224 a001 7778742049/5778*5778^(13/18) 7014087272577196 a001 53316291173/64079*9349^(14/19) 7014087274005664 a001 591286729879/15127*9349^(6/19) 7014087274129910 a001 7778742049/24476*9349^(16/19) 7014087274440160 a001 139583862445/103682*9349^(13/19) 7014087274844143 a001 86267571272/39603*9349^(12/19) 7014087274997441 a001 365435296162/271443*9349^(13/19) 7014087275078747 a001 956722026041/710647*9349^(13/19) 7014087275090610 a001 2504730781961/1860498*9349^(13/19) 7014087275092340 a001 6557470319842/4870847*9349^(13/19) 7014087275092749 a001 10610209857723/7881196*9349^(13/19) 7014087275093410 a001 1346269*9349^(13/19) 7014087275097941 a001 1548008755920/1149851*9349^(13/19) 7014087275128997 a001 591286729879/439204*9349^(13/19) 7014087275341859 a001 225851433717/167761*9349^(13/19) 7014087276800840 a001 86267571272/64079*9349^(13/19) 7014087276998041 a001 3278735159921/12238*3571^(2/17) 7014087278229307 a001 956722026041/15127*9349^(5/19) 7014087278353553 a001 12586269025/24476*9349^(15/19) 7014087278663803 a001 225851433717/103682*9349^(12/19) 7014087279067787 a001 139583862445/39603*9349^(11/19) 7014087279221084 a001 591286729879/271443*9349^(12/19) 7014087279302390 a001 1548008755920/710647*9349^(12/19) 7014087279314253 a001 4052739537881/1860498*9349^(12/19) 7014087279315984 a001 2178309*9349^(12/19) 7014087279317053 a001 6557470319842/3010349*9349^(12/19) 7014087279321584 a001 2504730781961/1149851*9349^(12/19) 7014087279352640 a001 956722026041/439204*9349^(12/19) 7014087279497976 a001 199/6765*987^(23/50) 7014087279565503 a001 365435296162/167761*9349^(12/19) 7014087280828898 a001 956722026041/9349*3571^(4/17) 7014087281024483 a001 139583862445/64079*9349^(12/19) 7014087282452950 a001 1548008755920/15127*9349^(4/19) 7014087282577196 a001 10182505537/12238*9349^(14/19) 7014087282887447 a001 182717648081/51841*9349^(11/19) 7014087283291430 a001 75283811239/13201*9349^(10/19) 7014087283312179 a001 267084832/321*5778^(7/9) 7014087283444728 a001 956722026041/271443*9349^(11/19) 7014087283526034 a001 2504730781961/710647*9349^(11/19) 7014087283537896 a001 3278735159921/930249*9349^(11/19) 7014087283540697 a001 10610209857723/3010349*9349^(11/19) 7014087283545228 a001 4052739537881/1149851*9349^(11/19) 7014087283576284 a001 387002188980/109801*9349^(11/19) 7014087283789146 a001 591286729879/167761*9349^(11/19) 7014087283841798 a007 Real Root Of -780*x^4+137*x^3+28*x^2+78*x+277 7014087285248126 a001 225851433717/64079*9349^(11/19) 7014087286676594 a001 2504730781961/15127*9349^(3/19) 7014087286800840 a001 32951280099/24476*9349^(13/19) 7014087287111090 a001 591286729879/103682*9349^(10/19) 7014087287515073 a001 365435296162/39603*9349^(9/19) 7014087287639320 a001 3838809972525/5473 7014087287668371 a001 516002918640/90481*9349^(10/19) 7014087287749677 a001 4052739537881/710647*9349^(10/19) 7014087287761540 a001 3536736619241/620166*9349^(10/19) 7014087287768871 a001 6557470319842/1149851*9349^(10/19) 7014087287799927 a001 2504730781961/439204*9349^(10/19) 7014087288012790 a001 956722026041/167761*9349^(10/19) 7014087288196853 a001 701408733/15127*24476^(20/21) 7014087288754387 a001 1134903170/15127*24476^(19/21) 7014087289311920 a001 1836311903/15127*24476^(6/7) 7014087289471770 a001 365435296162/64079*9349^(10/19) 7014087289869454 a001 2971215073/15127*24476^(17/21) 7014087290426988 a001 686789568/2161*24476^(16/21) 7014087290900237 a001 4052739537881/15127*9349^(2/19) 7014087290984521 a001 7778742049/15127*24476^(5/7) 7014087291024483 a001 53316291173/24476*9349^(12/19) 7014087291334733 a001 956722026041/103682*9349^(9/19) 7014087291542055 a001 12586269025/15127*24476^(2/3) 7014087291738717 a001 591286729879/39603*9349^(8/19) 7014087291892014 a001 2504730781961/271443*9349^(9/19) 7014087291973321 a001 6557470319842/710647*9349^(9/19) 7014087291992514 a001 10610209857723/1149851*9349^(9/19) 7014087292023570 a001 4052739537881/439204*9349^(9/19) 7014087292099588 a001 20365011074/15127*24476^(13/21) 7014087292236433 a001 140728068720/15251*9349^(9/19) 7014087292657122 a001 32951280099/15127*24476^(4/7) 7014087293214655 a001 53316291173/15127*24476^(11/21) 7014087293695413 a001 591286729879/64079*9349^(9/19) 7014087293772189 a001 86267571272/15127*24476^(10/21) 7014087294329722 a001 139583862445/15127*24476^(3/7) 7014087294875388 a001 2255/13201*(1/2+1/2*5^(1/2))^46 7014087294875388 a001 2255/13201*10749957122^(23/24) 7014087294875388 a001 17711/15127*2537720636^(14/15) 7014087294875388 a001 17711/15127*17393796001^(6/7) 7014087294875388 a001 17711/15127*45537549124^(14/17) 7014087294875388 a001 17711/15127*817138163596^(14/19) 7014087294875388 a001 17711/15127*14662949395604^(2/3) 7014087294875388 a001 17711/15127*(1/2+1/2*5^(1/2))^42 7014087294875388 a001 17711/15127*505019158607^(3/4) 7014087294875388 a001 17711/15127*192900153618^(7/9) 7014087294875388 a001 17711/15127*10749957122^(7/8) 7014087294875388 a001 17711/15127*4106118243^(21/23) 7014087294875388 a001 17711/15127*1568397607^(21/22) 7014087294887256 a001 32264490531/2161*24476^(8/21) 7014087294984134 a001 2971215073/5778*5778^(5/6) 7014087295123880 a001 6557470319842/15127*9349^(1/19) 7014087295248126 a001 21566892818/6119*9349^(11/19) 7014087295444789 a001 365435296162/15127*24476^(1/3) 7014087295558377 a001 774004377960/51841*9349^(8/19) 7014087295962360 a001 956722026041/39603*9349^(7/19) 7014087296002323 a001 591286729879/15127*24476^(2/7) 7014087296115658 a001 4052739537881/271443*9349^(8/19) 7014087296196964 a001 1515744265389/101521*9349^(8/19) 7014087296247214 a001 3278735159921/219602*9349^(8/19) 7014087296460076 a001 2504730781961/167761*9349^(8/19) 7014087296526011 b008 (1/2+Sqrt[2])^3 7014087296559856 a001 956722026041/15127*24476^(5/21) 7014087297117390 a001 1548008755920/15127*24476^(4/21) 7014087297639320 a001 20100269968845/28657 7014087297674923 a001 2504730781961/15127*24476^(1/7) 7014087297713590 a001 267914296/15127*64079^(22/23) 7014087297787859 a001 433494437/15127*64079^(21/23) 7014087297862129 a001 701408733/15127*64079^(20/23) 7014087297919057 a001 956722026041/64079*9349^(8/19) 7014087297936399 a001 1134903170/15127*64079^(19/23) 7014087298010669 a001 1836311903/15127*64079^(18/23) 7014087298084938 a001 2971215073/15127*64079^(17/23) 7014087298159208 a001 686789568/2161*64079^(16/23) 7014087298232457 a001 4052739537881/15127*24476^(2/21) 7014087298233478 a001 7778742049/15127*64079^(15/23) 7014087298307747 a001 12586269025/15127*64079^(14/23) 7014087298382017 a001 20365011074/15127*64079^(13/23) 7014087298456287 a001 32951280099/15127*64079^(12/23) 7014087298530557 a001 53316291173/15127*64079^(11/23) 7014087298604826 a001 86267571272/15127*64079^(10/23) 7014087298679096 a001 139583862445/15127*64079^(9/23) 7014087298695048 a001 6765/103682*45537549124^(16/17) 7014087298695048 a001 6765/103682*14662949395604^(16/21) 7014087298695048 a001 6765/103682*(1/2+1/2*5^(1/2))^48 7014087298695048 a001 6765/103682*192900153618^(8/9) 7014087298695048 a001 6765/103682*73681302247^(12/13) 7014087298695048 a001 6624/2161*2537720636^(8/9) 7014087298695048 a001 6624/2161*312119004989^(8/11) 7014087298695048 a001 6624/2161*(1/2+1/2*5^(1/2))^40 7014087298695048 a001 6624/2161*23725150497407^(5/8) 7014087298695048 a001 6624/2161*73681302247^(10/13) 7014087298695048 a001 6624/2161*28143753123^(4/5) 7014087298695048 a001 6624/2161*10749957122^(5/6) 7014087298695048 a001 6624/2161*4106118243^(20/23) 7014087298695048 a001 6624/2161*1568397607^(10/11) 7014087298695048 a001 6624/2161*599074578^(20/21) 7014087298753366 a001 32264490531/2161*64079^(8/23) 7014087298789990 a001 6557470319842/15127*24476^(1/21) 7014087298827636 a001 365435296162/15127*64079^(7/23) 7014087298901905 a001 591286729879/15127*64079^(6/23) 7014087298976175 a001 956722026041/15127*64079^(5/23) 7014087299050445 a001 1548008755920/15127*64079^(4/23) 7014087299098300 a001 10524637992297/15005 7014087299124715 a001 2504730781961/15127*64079^(3/23) 7014087299148145 a001 701408733/15127*167761^(4/5) 7014087299197990 a001 7778742049/15127*167761^(3/5) 7014087299198984 a001 4052739537881/15127*64079^(2/23) 7014087299247834 a001 86267571272/15127*167761^(2/5) 7014087299252329 a001 2255/90481*312119004989^(10/11) 7014087299252329 a001 2255/90481*(1/2+1/2*5^(1/2))^50 7014087299252329 a001 2255/90481*3461452808002^(5/6) 7014087299252329 a001 121393/15127*817138163596^(2/3) 7014087299252329 a001 121393/15127*(1/2+1/2*5^(1/2))^38 7014087299252329 a001 121393/15127*10749957122^(19/24) 7014087299252329 a001 121393/15127*4106118243^(19/23) 7014087299252329 a001 121393/15127*1568397607^(19/22) 7014087299252329 a001 121393/15127*599074578^(19/21) 7014087299252329 a001 121393/15127*228826127^(19/20) 7014087299273254 a001 6557470319842/15127*64079^(1/23) 7014087299297679 a001 956722026041/15127*167761^(1/5) 7014087299311162 a001 68884649957805/98209 7014087299315203 a001 6765*439204^(8/9) 7014087299319243 a001 433494437/15127*439204^(7/9) 7014087299323283 a001 1836311903/15127*439204^(2/3) 7014087299327323 a001 7778742049/15127*439204^(5/9) 7014087299331363 a001 32951280099/15127*439204^(4/9) 7014087299333635 a001 317811/15127*141422324^(12/13) 7014087299333635 a001 6765/710647*(1/2+1/2*5^(1/2))^52 7014087299333635 a001 6765/710647*23725150497407^(13/16) 7014087299333635 a001 6765/710647*505019158607^(13/14) 7014087299333635 a001 317811/15127*2537720636^(4/5) 7014087299333635 a001 317811/15127*45537549124^(12/17) 7014087299333635 a001 317811/15127*14662949395604^(4/7) 7014087299333635 a001 317811/15127*(1/2+1/2*5^(1/2))^36 7014087299333635 a001 317811/15127*505019158607^(9/14) 7014087299333635 a001 317811/15127*192900153618^(2/3) 7014087299333635 a001 317811/15127*73681302247^(9/13) 7014087299333635 a001 317811/15127*10749957122^(3/4) 7014087299333635 a001 317811/15127*4106118243^(18/23) 7014087299333635 a001 317811/15127*1568397607^(9/11) 7014087299333635 a001 317811/15127*599074578^(6/7) 7014087299333635 a001 317811/15127*228826127^(9/10) 7014087299333636 a001 317811/15127*87403803^(18/19) 7014087299335403 a001 139583862445/15127*439204^(1/3) 7014087299339444 a001 591286729879/15127*439204^(2/9) 7014087299342219 a001 360684709785345/514229 7014087299343484 a001 2504730781961/15127*439204^(1/9) 7014087299345497 a001 55/15126*14662949395604^(6/7) 7014087299345497 a001 55/15126*(1/2+1/2*5^(1/2))^54 7014087299345497 a001 832040/15127*45537549124^(2/3) 7014087299345497 a001 832040/15127*(1/2+1/2*5^(1/2))^34 7014087299345497 a001 832040/15127*10749957122^(17/24) 7014087299345497 a001 832040/15127*4106118243^(17/23) 7014087299345497 a001 832040/15127*1568397607^(17/22) 7014087299345497 a001 832040/15127*599074578^(17/21) 7014087299345498 a001 832040/15127*228826127^(17/20) 7014087299345498 a001 832040/15127*87403803^(17/19) 7014087299345503 a001 832040/15127*33385282^(17/18) 7014087299346750 a001 944284829440425/1346269 7014087299347228 a001 6765/4870847*14662949395604^(8/9) 7014087299347228 a001 6765/4870847*(1/2+1/2*5^(1/2))^56 7014087299347228 a001 311187/2161*(1/2+1/2*5^(1/2))^32 7014087299347228 a001 311187/2161*23725150497407^(1/2) 7014087299347228 a001 311187/2161*505019158607^(4/7) 7014087299347228 a001 311187/2161*73681302247^(8/13) 7014087299347228 a001 311187/2161*10749957122^(2/3) 7014087299347228 a001 311187/2161*4106118243^(16/23) 7014087299347228 a001 311187/2161*1568397607^(8/11) 7014087299347228 a001 311187/2161*599074578^(16/21) 7014087299347228 a001 311187/2161*228826127^(4/5) 7014087299347229 a001 311187/2161*87403803^(16/19) 7014087299347234 a001 311187/2161*33385282^(8/9) 7014087299347269 a001 311187/2161*12752043^(16/17) 7014087299347378 a001 5702887/15127*7881196^(10/11) 7014087299347411 a001 1236084889267965/1762289 7014087299347434 a001 24157817/15127*7881196^(9/11) 7014087299347442 a001 6765*7881196^(8/11) 7014087299347448 a001 267914296/15127*7881196^(2/3) 7014087299347452 a001 433494437/15127*7881196^(7/11) 7014087299347462 a001 1836311903/15127*7881196^(6/11) 7014087299347467 a001 5702887/15127*20633239^(6/7) 7014087299347472 a001 7778742049/15127*7881196^(5/11) 7014087299347480 a001 5702887/15127*141422324^(10/13) 7014087299347481 a001 2255/4250681*(1/2+1/2*5^(1/2))^58 7014087299347481 a001 5702887/15127*2537720636^(2/3) 7014087299347481 a001 5702887/15127*45537549124^(10/17) 7014087299347481 a001 5702887/15127*312119004989^(6/11) 7014087299347481 a001 5702887/15127*14662949395604^(10/21) 7014087299347481 a001 5702887/15127*(1/2+1/2*5^(1/2))^30 7014087299347481 a001 5702887/15127*192900153618^(5/9) 7014087299347481 a001 5702887/15127*28143753123^(3/5) 7014087299347481 a001 5702887/15127*10749957122^(5/8) 7014087299347481 a001 5702887/15127*4106118243^(15/23) 7014087299347481 a001 5702887/15127*1568397607^(15/22) 7014087299347481 a001 5702887/15127*599074578^(5/7) 7014087299347481 a001 5702887/15127*228826127^(3/4) 7014087299347481 a001 5702887/15127*87403803^(15/19) 7014087299347483 a001 32951280099/15127*7881196^(4/11) 7014087299347486 a001 5702887/15127*33385282^(5/6) 7014087299347486 a001 53316291173/15127*7881196^(1/3) 7014087299347493 a001 139583862445/15127*7881196^(3/11) 7014087299347503 a001 591286729879/15127*7881196^(2/11) 7014087299347504 a001 14930352/15127*20633239^(4/5) 7014087299347507 a001 1294444901233473/1845493 7014087299347512 a001 63245986/15127*20633239^(5/7) 7014087299347514 a001 2504730781961/15127*7881196^(1/11) 7014087299347514 a001 433494437/15127*20633239^(3/5) 7014087299347514 a001 701408733/15127*20633239^(4/7) 7014087299347517 a001 7778742049/15127*20633239^(3/7) 7014087299347517 a001 12586269025/15127*20633239^(2/5) 7014087299347517 a001 6765/33385282*14662949395604^(20/21) 7014087299347517 a001 6765/33385282*(1/2+1/2*5^(1/2))^60 7014087299347518 a001 14930352/15127*17393796001^(4/7) 7014087299347518 a001 14930352/15127*14662949395604^(4/9) 7014087299347518 a001 14930352/15127*(1/2+1/2*5^(1/2))^28 7014087299347518 a001 14930352/15127*505019158607^(1/2) 7014087299347518 a001 14930352/15127*73681302247^(7/13) 7014087299347518 a001 14930352/15127*10749957122^(7/12) 7014087299347518 a001 14930352/15127*4106118243^(14/23) 7014087299347518 a001 14930352/15127*1568397607^(7/11) 7014087299347518 a001 14930352/15127*599074578^(2/3) 7014087299347518 a001 14930352/15127*228826127^(7/10) 7014087299347518 a001 14930352/15127*87403803^(14/19) 7014087299347519 a001 5702887/15127*12752043^(15/17) 7014087299347519 a001 86267571272/15127*20633239^(2/7) 7014087299347520 a001 365435296162/15127*20633239^(1/5) 7014087299347521 a001 16944503739966165/24157817 7014087299347521 a001 956722026041/15127*20633239^(1/7) 7014087299347522 a001 14930352/15127*33385282^(7/9) 7014087299347523 a001 39088169/15127*141422324^(2/3) 7014087299347523 a001 39088169/15127*(1/2+1/2*5^(1/2))^26 7014087299347523 a001 39088169/15127*73681302247^(1/2) 7014087299347523 a001 39088169/15127*10749957122^(13/24) 7014087299347523 a001 39088169/15127*4106118243^(13/23) 7014087299347523 a001 39088169/15127*1568397607^(13/22) 7014087299347523 a001 39088169/15127*599074578^(13/21) 7014087299347523 a001 39088169/15127*228826127^(13/20) 7014087299347523 a001 22180643356865565/31622993 7014087299347523 a001 6765*141422324^(8/13) 7014087299347524 a001 39088169/15127*87403803^(13/19) 7014087299347524 a001 433494437/15127*141422324^(7/13) 7014087299347524 a001 1836311903/15127*141422324^(6/13) 7014087299347524 a001 7778742049/15127*141422324^(5/13) 7014087299347524 a001 6765*2537720636^(8/15) 7014087299347524 a001 6765*45537549124^(8/17) 7014087299347524 a001 6765*14662949395604^(8/21) 7014087299347524 a001 6765*(1/2+1/2*5^(1/2))^24 7014087299347524 a001 6765*192900153618^(4/9) 7014087299347524 a001 6765*73681302247^(6/13) 7014087299347524 a001 6765*10749957122^(1/2) 7014087299347524 a001 6765*4106118243^(12/23) 7014087299347524 a001 6765*1568397607^(6/11) 7014087299347524 a001 6765*599074578^(4/7) 7014087299347524 a001 20365011074/15127*141422324^(1/3) 7014087299347524 a001 32951280099/15127*141422324^(4/13) 7014087299347524 a001 139583862445/15127*141422324^(3/13) 7014087299347524 a001 591286729879/15127*141422324^(2/13) 7014087299347524 a001 6765*228826127^(3/5) 7014087299347524 a001 2504730781961/15127*141422324^(1/13) 7014087299347524 a001 267914296/15127*312119004989^(2/5) 7014087299347524 a001 267914296/15127*(1/2+1/2*5^(1/2))^22 7014087299347524 a001 267914296/15127*10749957122^(11/24) 7014087299347524 a001 267914296/15127*4106118243^(11/23) 7014087299347524 a001 267914296/15127*1568397607^(1/2) 7014087299347524 a001 267914296/15127*599074578^(11/21) 7014087299347524 a001 701408733/15127*2537720636^(4/9) 7014087299347524 a001 701408733/15127*(1/2+1/2*5^(1/2))^20 7014087299347524 a001 701408733/15127*23725150497407^(5/16) 7014087299347524 a001 701408733/15127*505019158607^(5/14) 7014087299347524 a001 701408733/15127*73681302247^(5/13) 7014087299347524 a001 701408733/15127*28143753123^(2/5) 7014087299347524 a001 701408733/15127*10749957122^(5/12) 7014087299347524 a001 701408733/15127*4106118243^(10/23) 7014087299347524 a001 701408733/15127*1568397607^(5/11) 7014087299347524 a001 1836311903/15127*2537720636^(2/5) 7014087299347524 a001 1836311903/15127*45537549124^(6/17) 7014087299347524 a001 1836311903/15127*14662949395604^(2/7) 7014087299347524 a001 1836311903/15127*(1/2+1/2*5^(1/2))^18 7014087299347524 a001 1836311903/15127*192900153618^(1/3) 7014087299347524 a001 1836311903/15127*10749957122^(3/8) 7014087299347524 a001 7778742049/15127*2537720636^(1/3) 7014087299347524 a001 32951280099/15127*2537720636^(4/15) 7014087299347524 a001 1836311903/15127*4106118243^(9/23) 7014087299347524 a001 86267571272/15127*2537720636^(2/9) 7014087299347524 a001 139583862445/15127*2537720636^(1/5) 7014087299347524 a001 591286729879/15127*2537720636^(2/15) 7014087299347524 a001 956722026041/15127*2537720636^(1/9) 7014087299347524 a001 2504730781961/15127*2537720636^(1/15) 7014087299347524 a001 686789568/2161*(1/2+1/2*5^(1/2))^16 7014087299347524 a001 686789568/2161*23725150497407^(1/4) 7014087299347524 a001 686789568/2161*73681302247^(4/13) 7014087299347524 a001 686789568/2161*10749957122^(1/3) 7014087299347524 a001 12586269025/15127*17393796001^(2/7) 7014087299347524 a001 12586269025/15127*14662949395604^(2/9) 7014087299347524 a001 12586269025/15127*(1/2+1/2*5^(1/2))^14 7014087299347524 a001 365435296162/15127*17393796001^(1/7) 7014087299347524 a001 32951280099/15127*45537549124^(4/17) 7014087299347524 a001 32951280099/15127*817138163596^(4/19) 7014087299347524 a001 32951280099/15127*14662949395604^(4/21) 7014087299347524 a001 32951280099/15127*(1/2+1/2*5^(1/2))^12 7014087299347524 a001 32951280099/15127*192900153618^(2/9) 7014087299347524 a001 32951280099/15127*73681302247^(3/13) 7014087299347524 a001 139583862445/15127*45537549124^(3/17) 7014087299347524 a001 591286729879/15127*45537549124^(2/17) 7014087299347524 a001 86267571272/15127*312119004989^(2/11) 7014087299347524 a001 2504730781961/15127*45537549124^(1/17) 7014087299347524 a001 86267571272/15127*(1/2+1/2*5^(1/2))^10 7014087299347524 a001 32264490531/2161*(1/2+1/2*5^(1/2))^8 7014087299347524 a001 32264490531/2161*23725150497407^(1/8) 7014087299347524 a001 956722026041/15127*312119004989^(1/11) 7014087299347524 a001 1548008755920/15127*(1/2+1/2*5^(1/2))^4 7014087299347524 a001 1548008755920/15127*23725150497407^(1/16) 7014087299347524 a001 1515744265389/2161 7014087299347524 a001 2504730781961/15127*14662949395604^(1/21) 7014087299347524 a001 2504730781961/15127*(1/2+1/2*5^(1/2))^3 7014087299347524 a001 2504730781961/15127*192900153618^(1/18) 7014087299347524 a001 139583862445/15127*817138163596^(3/19) 7014087299347524 a001 139583862445/15127*14662949395604^(1/7) 7014087299347524 a001 139583862445/15127*(1/2+1/2*5^(1/2))^9 7014087299347524 a001 139583862445/15127*192900153618^(1/6) 7014087299347524 a001 32264490531/2161*73681302247^(2/13) 7014087299347524 a001 53316291173/15127*312119004989^(1/5) 7014087299347524 a001 956722026041/15127*28143753123^(1/10) 7014087299347524 a001 86267571272/15127*28143753123^(1/5) 7014087299347524 a001 4052739537881/15127*10749957122^(1/24) 7014087299347524 a001 20365011074/15127*(1/2+1/2*5^(1/2))^13 7014087299347524 a001 20365011074/15127*73681302247^(1/4) 7014087299347524 a001 2504730781961/15127*10749957122^(1/16) 7014087299347524 a001 1548008755920/15127*10749957122^(1/12) 7014087299347524 a001 591286729879/15127*10749957122^(1/8) 7014087299347524 a001 12586269025/15127*10749957122^(7/24) 7014087299347524 a001 32264490531/2161*10749957122^(1/6) 7014087299347524 a001 139583862445/15127*10749957122^(3/16) 7014087299347524 a001 86267571272/15127*10749957122^(5/24) 7014087299347524 a001 32951280099/15127*10749957122^(1/4) 7014087299347524 a001 4052739537881/15127*4106118243^(1/23) 7014087299347524 a001 7778742049/15127*45537549124^(5/17) 7014087299347524 a001 7778742049/15127*312119004989^(3/11) 7014087299347524 a001 7778742049/15127*14662949395604^(5/21) 7014087299347524 a001 7778742049/15127*(1/2+1/2*5^(1/2))^15 7014087299347524 a001 7778742049/15127*192900153618^(5/18) 7014087299347524 a001 7778742049/15127*28143753123^(3/10) 7014087299347524 a001 1548008755920/15127*4106118243^(2/23) 7014087299347524 a001 7778742049/15127*10749957122^(5/16) 7014087299347524 a001 591286729879/15127*4106118243^(3/23) 7014087299347524 a001 32264490531/2161*4106118243^(4/23) 7014087299347524 a001 686789568/2161*4106118243^(8/23) 7014087299347524 a001 86267571272/15127*4106118243^(5/23) 7014087299347524 a001 32951280099/15127*4106118243^(6/23) 7014087299347524 a001 12586269025/15127*4106118243^(7/23) 7014087299347524 a001 4052739537881/15127*1568397607^(1/22) 7014087299347524 a001 2971215073/15127*45537549124^(1/3) 7014087299347524 a001 2971215073/15127*(1/2+1/2*5^(1/2))^17 7014087299347524 a001 1548008755920/15127*1568397607^(1/11) 7014087299347524 a001 591286729879/15127*1568397607^(3/22) 7014087299347524 a001 32264490531/2161*1568397607^(2/11) 7014087299347524 a001 86267571272/15127*1568397607^(5/22) 7014087299347524 a001 53316291173/15127*1568397607^(1/4) 7014087299347524 a001 1836311903/15127*1568397607^(9/22) 7014087299347524 a001 32951280099/15127*1568397607^(3/11) 7014087299347524 a001 12586269025/15127*1568397607^(7/22) 7014087299347524 a001 4052739537881/15127*599074578^(1/21) 7014087299347524 a001 686789568/2161*1568397607^(4/11) 7014087299347524 a001 1134903170/15127*817138163596^(1/3) 7014087299347524 a001 1134903170/15127*(1/2+1/2*5^(1/2))^19 7014087299347524 a001 2504730781961/15127*599074578^(1/14) 7014087299347524 a001 1548008755920/15127*599074578^(2/21) 7014087299347524 a001 591286729879/15127*599074578^(1/7) 7014087299347524 a001 365435296162/15127*599074578^(1/6) 7014087299347524 a001 32264490531/2161*599074578^(4/21) 7014087299347524 a001 139583862445/15127*599074578^(3/14) 7014087299347524 a001 86267571272/15127*599074578^(5/21) 7014087299347524 a001 32951280099/15127*599074578^(2/7) 7014087299347524 a001 701408733/15127*599074578^(10/21) 7014087299347524 a001 12586269025/15127*599074578^(1/3) 7014087299347524 a001 4052739537881/15127*228826127^(1/20) 7014087299347524 a001 433494437/15127*2537720636^(7/15) 7014087299347524 a001 7778742049/15127*599074578^(5/14) 7014087299347524 a001 686789568/2161*599074578^(8/21) 7014087299347524 a001 433494437/15127*17393796001^(3/7) 7014087299347524 a001 433494437/15127*45537549124^(7/17) 7014087299347524 a001 433494437/15127*14662949395604^(1/3) 7014087299347524 a001 433494437/15127*(1/2+1/2*5^(1/2))^21 7014087299347524 a001 433494437/15127*192900153618^(7/18) 7014087299347524 a001 433494437/15127*10749957122^(7/16) 7014087299347524 a001 1836311903/15127*599074578^(3/7) 7014087299347524 a001 1548008755920/15127*228826127^(1/10) 7014087299347524 a001 956722026041/15127*228826127^(1/8) 7014087299347524 a001 433494437/15127*599074578^(1/2) 7014087299347524 a001 591286729879/15127*228826127^(3/20) 7014087299347524 a001 32264490531/2161*228826127^(1/5) 7014087299347524 a001 86267571272/15127*228826127^(1/4) 7014087299347524 a001 32951280099/15127*228826127^(3/10) 7014087299347524 a001 12586269025/15127*228826127^(7/20) 7014087299347524 a001 4052739537881/15127*87403803^(1/19) 7014087299347524 a001 7778742049/15127*228826127^(3/8) 7014087299347524 a001 165580141/15127*(1/2+1/2*5^(1/2))^23 7014087299347524 a001 165580141/15127*4106118243^(1/2) 7014087299347524 a001 686789568/2161*228826127^(2/5) 7014087299347524 a001 267914296/15127*228826127^(11/20) 7014087299347524 a001 1836311903/15127*228826127^(9/20) 7014087299347524 a001 701408733/15127*228826127^(1/2) 7014087299347524 a001 1548008755920/15127*87403803^(2/19) 7014087299347524 a001 591286729879/15127*87403803^(3/19) 7014087299347524 a001 32264490531/2161*87403803^(4/19) 7014087299347524 a001 86267571272/15127*87403803^(5/19) 7014087299347524 a001 32951280099/15127*87403803^(6/19) 7014087299347524 a001 12586269025/15127*87403803^(7/19) 7014087299347524 a001 4052739537881/15127*33385282^(1/18) 7014087299347524 a001 63245986/15127*2537720636^(5/9) 7014087299347524 a001 63245986/15127*312119004989^(5/11) 7014087299347524 a001 63245986/15127*(1/2+1/2*5^(1/2))^25 7014087299347524 a001 63245986/15127*3461452808002^(5/12) 7014087299347524 a001 63245986/15127*28143753123^(1/2) 7014087299347524 a001 686789568/2161*87403803^(8/19) 7014087299347524 a001 63245986/15127*228826127^(5/8) 7014087299347524 a001 1836311903/15127*87403803^(9/19) 7014087299347524 a001 6765*87403803^(12/19) 7014087299347524 a001 1134903170/15127*87403803^(1/2) 7014087299347524 a001 701408733/15127*87403803^(10/19) 7014087299347524 a001 267914296/15127*87403803^(11/19) 7014087299347524 a001 2504730781961/15127*33385282^(1/12) 7014087299347524 a001 1548008755920/15127*33385282^(1/9) 7014087299347525 a001 27416782973764965/39088169 7014087299347525 a001 591286729879/15127*33385282^(1/6) 7014087299347525 a001 32264490531/2161*33385282^(2/9) 7014087299347525 a001 139583862445/15127*33385282^(1/4) 7014087299347526 a001 86267571272/15127*33385282^(5/18) 7014087299347526 a001 32951280099/15127*33385282^(1/3) 7014087299347526 a001 24157817/15127*141422324^(9/13) 7014087299347526 a001 24157817/15127*2537720636^(3/5) 7014087299347526 a001 24157817/15127*45537549124^(9/17) 7014087299347526 a001 24157817/15127*817138163596^(9/19) 7014087299347526 a001 24157817/15127*14662949395604^(3/7) 7014087299347526 a001 24157817/15127*(1/2+1/2*5^(1/2))^27 7014087299347526 a001 24157817/15127*192900153618^(1/2) 7014087299347526 a001 24157817/15127*10749957122^(9/16) 7014087299347526 a001 24157817/15127*599074578^(9/14) 7014087299347526 a001 12586269025/15127*33385282^(7/18) 7014087299347526 a001 4052739537881/15127*12752043^(1/17) 7014087299347526 a001 7778742049/15127*33385282^(5/12) 7014087299347527 a001 686789568/2161*33385282^(4/9) 7014087299347527 a001 1836311903/15127*33385282^(1/2) 7014087299347527 a001 701408733/15127*33385282^(5/9) 7014087299347527 a001 39088169/15127*33385282^(13/18) 7014087299347527 a001 433494437/15127*33385282^(7/12) 7014087299347528 a001 267914296/15127*33385282^(11/18) 7014087299347528 a001 6765*33385282^(2/3) 7014087299347529 a001 1548008755920/15127*12752043^(2/17) 7014087299347530 a001 24241387115275/34561 7014087299347531 a001 24157817/15127*33385282^(3/4) 7014087299347531 a001 591286729879/15127*12752043^(3/17) 7014087299347534 a001 32264490531/2161*12752043^(4/17) 7014087299347536 a001 86267571272/15127*12752043^(5/17) 7014087299347539 a001 32951280099/15127*12752043^(6/17) 7014087299347540 a001 615/1875749*(1/2+1/2*5^(1/2))^59 7014087299347540 a001 9227465/15127*(1/2+1/2*5^(1/2))^29 7014087299347540 a001 9227465/15127*1322157322203^(1/2) 7014087299347542 a001 12586269025/15127*12752043^(7/17) 7014087299347542 a001 4052739537881/15127*4870847^(1/16) 7014087299347544 a001 686789568/2161*12752043^(8/17) 7014087299347545 a001 2971215073/15127*12752043^(1/2) 7014087299347547 a001 1836311903/15127*12752043^(9/17) 7014087299347549 a001 701408733/15127*12752043^(10/17) 7014087299347552 a001 267914296/15127*12752043^(11/17) 7014087299347553 a001 14930352/15127*12752043^(14/17) 7014087299347554 a001 6765*12752043^(12/17) 7014087299347556 a001 39088169/15127*12752043^(13/17) 7014087299347561 a001 1548008755920/15127*4870847^(1/8) 7014087299347567 a001 4000054727631435/5702887 7014087299347579 a001 591286729879/15127*4870847^(3/16) 7014087299347598 a001 32264490531/2161*4870847^(1/4) 7014087299347616 a001 86267571272/15127*4870847^(5/16) 7014087299347635 a001 32951280099/15127*4870847^(3/8) 7014087299347637 a001 6765/7881196*14662949395604^(19/21) 7014087299347637 a001 6765/7881196*(1/2+1/2*5^(1/2))^57 7014087299347637 a001 3524578/15127*(1/2+1/2*5^(1/2))^31 7014087299347637 a001 3524578/15127*9062201101803^(1/2) 7014087299347653 a001 12586269025/15127*4870847^(7/16) 7014087299347659 a001 4052739537881/15127*1860498^(1/15) 7014087299347672 a001 686789568/2161*4870847^(1/2) 7014087299347690 a001 1836311903/15127*4870847^(9/16) 7014087299347709 a001 701408733/15127*4870847^(5/8) 7014087299347726 a001 2504730781961/15127*1860498^(1/10) 7014087299347727 a001 267914296/15127*4870847^(11/16) 7014087299347745 a001 6765*4870847^(3/4) 7014087299347758 a001 5702887/15127*4870847^(15/16) 7014087299347763 a001 39088169/15127*4870847^(13/16) 7014087299347776 a001 14930352/15127*4870847^(7/8) 7014087299347794 a001 1548008755920/15127*1860498^(2/15) 7014087299347819 a001 72756426147405/103729 7014087299347862 a001 956722026041/15127*1860498^(1/6) 7014087299347929 a001 591286729879/15127*1860498^(1/5) 7014087299348064 a001 32264490531/2161*1860498^(4/15) 7014087299348132 a001 139583862445/15127*1860498^(3/10) 7014087299348199 a001 86267571272/15127*1860498^(1/3) 7014087299348297 a001 1346269/15127*141422324^(11/13) 7014087299348298 a001 6765/3010349*(1/2+1/2*5^(1/2))^55 7014087299348298 a001 6765/3010349*3461452808002^(11/12) 7014087299348298 a001 1346269/15127*2537720636^(11/15) 7014087299348298 a001 1346269/15127*45537549124^(11/17) 7014087299348298 a001 1346269/15127*312119004989^(3/5) 7014087299348298 a001 1346269/15127*14662949395604^(11/21) 7014087299348298 a001 1346269/15127*(1/2+1/2*5^(1/2))^33 7014087299348298 a001 1346269/15127*192900153618^(11/18) 7014087299348298 a001 1346269/15127*10749957122^(11/16) 7014087299348298 a001 1346269/15127*1568397607^(3/4) 7014087299348298 a001 1346269/15127*599074578^(11/14) 7014087299348304 a001 1346269/15127*33385282^(11/12) 7014087299348334 a001 32951280099/15127*1860498^(2/5) 7014087299348469 a001 12586269025/15127*1860498^(7/15) 7014087299348516 a001 4052739537881/15127*710647^(1/14) 7014087299348537 a001 7778742049/15127*1860498^(1/2) 7014087299348605 a001 686789568/2161*1860498^(8/15) 7014087299348740 a001 1836311903/15127*1860498^(3/5) 7014087299348875 a001 701408733/15127*1860498^(2/3) 7014087299348942 a001 433494437/15127*1860498^(7/10) 7014087299349010 a001 267914296/15127*1860498^(11/15) 7014087299349145 a001 6765*1860498^(4/5) 7014087299349213 a001 63245986/15127*1860498^(5/6) 7014087299349279 a001 39088169/15127*1860498^(13/15) 7014087299349350 a001 24157817/15127*1860498^(9/10) 7014087299349409 a001 14930352/15127*1860498^(14/15) 7014087299349508 a001 1548008755920/15127*710647^(1/7) 7014087299349550 a001 1326363908307/1891 7014087299350500 a001 591286729879/15127*710647^(3/14) 7014087299350996 a001 365435296162/15127*710647^(1/4) 7014087299351492 a001 32264490531/2161*710647^(2/7) 7014087299352484 a001 86267571272/15127*710647^(5/14) 7014087299352829 a001 6765/1149851*(1/2+1/2*5^(1/2))^53 7014087299352829 a001 514229/15127*2537720636^(7/9) 7014087299352829 a001 514229/15127*17393796001^(5/7) 7014087299352829 a001 514229/15127*312119004989^(7/11) 7014087299352829 a001 514229/15127*14662949395604^(5/9) 7014087299352829 a001 514229/15127*(1/2+1/2*5^(1/2))^35 7014087299352829 a001 514229/15127*505019158607^(5/8) 7014087299352829 a001 514229/15127*28143753123^(7/10) 7014087299352829 a001 514229/15127*599074578^(5/6) 7014087299352829 a001 514229/15127*228826127^(7/8) 7014087299353476 a001 32951280099/15127*710647^(3/7) 7014087299354468 a001 12586269025/15127*710647^(1/2) 7014087299354846 a001 4052739537881/15127*271443^(1/13) 7014087299355460 a001 686789568/2161*710647^(4/7) 7014087299356452 a001 1836311903/15127*710647^(9/14) 7014087299357444 a001 701408733/15127*710647^(5/7) 7014087299357940 a001 433494437/15127*710647^(3/4) 7014087299358436 a001 267914296/15127*710647^(11/14) 7014087299359428 a001 6765*710647^(6/7) 7014087299360420 a001 39088169/15127*710647^(13/14) 7014087299361412 a001 74305136623245/105937 7014087299362169 a001 1548008755920/15127*271443^(2/13) 7014087299369492 a001 591286729879/15127*271443^(3/13) 7014087299374710 a001 6557470319842/15127*103682^(1/24) 7014087299376815 a001 32264490531/2161*271443^(4/13) 7014087299383885 a001 6765/439204*817138163596^(17/19) 7014087299383885 a001 6765/439204*14662949395604^(17/21) 7014087299383885 a001 6765/439204*(1/2+1/2*5^(1/2))^51 7014087299383885 a001 6765/439204*192900153618^(17/18) 7014087299383885 a001 196418/15127*(1/2+1/2*5^(1/2))^37 7014087299384137 a001 86267571272/15127*271443^(5/13) 7014087299391460 a001 32951280099/15127*271443^(6/13) 7014087299395121 a001 20365011074/15127*271443^(1/2) 7014087299398783 a001 12586269025/15127*271443^(7/13) 7014087299401897 a001 4052739537881/15127*103682^(1/12) 7014087299406105 a001 686789568/2161*271443^(8/13) 7014087299413428 a001 1836311903/15127*271443^(9/13) 7014087299420751 a001 701408733/15127*271443^(10/13) 7014087299428073 a001 267914296/15127*271443^(11/13) 7014087299429083 a001 2504730781961/15127*103682^(1/8) 7014087299435396 a001 6765*271443^(12/13) 7014087299442719 a001 85146109954125/121393 7014087299456270 a001 1548008755920/15127*103682^(1/6) 7014087299471770 a001 139583862445/24476*9349^(10/19) 7014087299483456 a001 956722026041/15127*103682^(5/24) 7014087299510643 a001 591286729879/15127*103682^(1/4) 7014087299537829 a001 365435296162/15127*103682^(7/24) 7014087299550803 a001 6557470319842/15127*39603^(1/22) 7014087299565016 a001 32264490531/2161*103682^(1/3) 7014087299592202 a001 139583862445/15127*103682^(3/8) 7014087299596747 a001 615/15251*14662949395604^(7/9) 7014087299596747 a001 615/15251*(1/2+1/2*5^(1/2))^49 7014087299596747 a001 615/15251*505019158607^(7/8) 7014087299596747 a001 75025/15127*2537720636^(13/15) 7014087299596747 a001 75025/15127*45537549124^(13/17) 7014087299596747 a001 75025/15127*14662949395604^(13/21) 7014087299596747 a001 75025/15127*(1/2+1/2*5^(1/2))^39 7014087299596747 a001 75025/15127*192900153618^(13/18) 7014087299596747 a001 75025/15127*73681302247^(3/4) 7014087299596747 a001 75025/15127*10749957122^(13/16) 7014087299596747 a001 75025/15127*599074578^(13/14) 7014087299619389 a001 86267571272/15127*103682^(5/12) 7014087299646575 a001 53316291173/15127*103682^(11/24) 7014087299673762 a001 32951280099/15127*103682^(1/2) 7014087299700948 a001 20365011074/15127*103682^(13/24) 7014087299728135 a001 12586269025/15127*103682^(7/12) 7014087299754082 a001 4052739537881/15127*39603^(1/11) 7014087299755321 a001 7778742049/15127*103682^(5/8) 7014087299782020 a001 2504730781961/103682*9349^(7/19) 7014087299782508 a001 686789568/2161*103682^(2/3) 7014087299809694 a001 2971215073/15127*103682^(17/24) 7014087299836881 a001 1836311903/15127*103682^(3/4) 7014087299864067 a001 1134903170/15127*103682^(19/24) 7014087299891254 a001 701408733/15127*103682^(5/6) 7014087299906525 a001 86000486440/321*2207^(1/8) 7014087299918440 a001 433494437/15127*103682^(7/8) 7014087299945627 a001 267914296/15127*103682^(11/12) 7014087299957361 a001 2504730781961/15127*39603^(3/22) 7014087299972813 a001 165580141/15127*103682^(23/24) 7014087299985556 a001 591286729879/2207*843^(1/7) 7014087300160639 a001 1548008755920/15127*39603^(2/11) 7014087300186003 a001 516002918640/13201*9349^(6/19) 7014087300339301 a001 6557470319842/271443*9349^(7/19) 7014087300363918 a001 956722026041/15127*39603^(5/22) 7014087300470857 a001 10610209857723/439204*9349^(7/19) 7014087300567197 a001 591286729879/15127*39603^(3/11) 7014087300683720 a001 4052739537881/167761*9349^(7/19) 7014087300770476 a001 365435296162/15127*39603^(7/22) 7014087300880148 a001 6557470319842/15127*15127^(1/20) 7014087300973755 a001 32264490531/2161*39603^(4/11) 7014087301055728 a001 6765/64079*(1/2+1/2*5^(1/2))^47 7014087301055728 a001 28657/15127*(1/2+1/2*5^(1/2))^41 7014087301177034 a001 139583862445/15127*39603^(9/22) 7014087301380313 a001 86267571272/15127*39603^(5/11) 7014087301583592 a001 53316291173/15127*39603^(1/2) 7014087301786871 a001 32951280099/15127*39603^(6/11) 7014087301990150 a001 20365011074/15127*39603^(13/22) 7014087302026911 r005 Im(z^2+c),c=-2/23+13/20*I,n=35 7014087302142700 a001 1548008755920/64079*9349^(7/19) 7014087302193428 a001 12586269025/15127*39603^(7/11) 7014087302396707 a001 7778742049/15127*39603^(15/22) 7014087302412771 a001 4052739537881/15127*15127^(1/10) 7014087302599986 a001 686789568/2161*39603^(8/11) 7014087302803265 a001 2971215073/15127*39603^(17/22) 7014087303006544 a001 1836311903/15127*39603^(9/11) 7014087303209823 a001 1134903170/15127*39603^(19/22) 7014087303413102 a001 701408733/15127*39603^(10/11) 7014087303616381 a001 433494437/15127*39603^(21/22) 7014087303695413 a001 7787980473/844*9349^(9/19) 7014087303819660 a001 12422650023795/17711 7014087303945395 a001 2504730781961/15127*15127^(3/20) 7014087304005663 a001 4052739537881/103682*9349^(6/19) 7014087304409647 a001 2504730781961/39603*9349^(5/19) 7014087304562944 a001 3536736619241/90481*9349^(6/19) 7014087304907363 a001 6557470319842/167761*9349^(6/19) 7014087305478019 a001 1548008755920/15127*15127^(1/5) 7014087306366343 a001 2504730781961/64079*9349^(6/19) 7014087306656089 a001 1836311903/5778*5778^(8/9) 7014087307010643 a001 956722026041/15127*15127^(1/4) 7014087307919057 a001 182717648081/12238*9349^(8/19) 7014087308229307 a001 3278735159921/51841*9349^(5/19) 7014087308543266 a001 591286729879/15127*15127^(3/10) 7014087308633290 a001 4052739537881/39603*9349^(4/19) 7014087309131006 a001 10610209857723/167761*9349^(5/19) 7014087309353122 a001 10610209857723/24476*3571^(1/17) 7014087310075890 a001 365435296162/15127*15127^(7/20) 7014087310589987 a001 4052739537881/64079*9349^(5/19) 7014087311019479 a001 6557470319842/15127*5778^(1/18) 7014087311055728 a001 6765/24476*45537549124^(15/17) 7014087311055728 a001 6765/24476*312119004989^(9/11) 7014087311055728 a001 6765/24476*14662949395604^(5/7) 7014087311055728 a001 6765/24476*(1/2+1/2*5^(1/2))^45 7014087311055728 a001 6765/24476*192900153618^(5/6) 7014087311055728 a001 6765/24476*28143753123^(9/10) 7014087311055728 a001 6765/24476*10749957122^(15/16) 7014087311055728 a001 10946/15127*(1/2+1/2*5^(1/2))^43 7014087311608514 a001 32264490531/2161*15127^(2/5) 7014087312142700 a001 591286729879/24476*9349^(7/19) 7014087312452950 a001 225749145909/2206*9349^(4/19) 7014087312856933 a001 6557470319842/39603*9349^(3/19) 7014087313141138 a001 139583862445/15127*15127^(9/20) 7014087313183980 a001 1548008755920/9349*3571^(3/17) 7014087313819660 a001 7677619973707/10946 7014087314377193 a001 1836311903/39603*24476^(20/21) 7014087314673762 a001 86267571272/15127*15127^(1/2) 7014087314813630 a001 6557470319842/64079*9349^(4/19) 7014087314934727 a001 2971215073/39603*24476^(19/21) 7014087315492260 a001 1602508992/13201*24476^(6/7) 7014087316049794 a001 7778742049/39603*24476^(17/21) 7014087316206385 a001 53316291173/15127*15127^(11/20) 7014087316366343 a001 956722026041/24476*9349^(6/19) 7014087316607327 a001 12586269025/39603*24476^(16/21) 7014087317080577 a001 3536736619241/13201*9349^(2/19) 7014087317164861 a001 20365011074/39603*24476^(5/7) 7014087317639320 a001 3838809988944/5473 7014087317722394 a001 10983760033/13201*24476^(2/3) 7014087317739009 a001 32951280099/15127*15127^(3/5) 7014087318196601 a001 3838809989249/5473 7014087318196853 a001 46368*24476^(20/21) 7014087318277909 a001 590586152199/842 7014087318279928 a001 53316291173/39603*24476^(13/21) 7014087318289786 a001 295293076100/421 7014087318291613 a001 3838809989301/5473 7014087318292526 a001 7677619978603/10946 7014087318297094 a001 3838809989304/5473 7014087318328044 a001 567451585/2889*5778^(17/18) 7014087318328156 a001 3838809989321/5473 7014087318541019 a001 7677619978875/10946 7014087318754134 a001 12586269025/271443*24476^(20/21) 7014087318754387 a001 7778742049/103682*24476^(19/21) 7014087318835440 a001 32951280099/710647*24476^(20/21) 7014087318837461 a001 86267571272/39603*24476^(4/7) 7014087318847303 a001 43133785636/930249*24476^(20/21) 7014087318849033 a001 225851433717/4870847*24476^(20/21) 7014087318849286 a001 591286729879/12752043*24476^(20/21) 7014087318849323 a001 774004377960/16692641*24476^(20/21) 7014087318849328 a001 4052739537881/87403803*24476^(20/21) 7014087318849329 a001 225749145909/4868641*24476^(20/21) 7014087318849329 a001 3278735159921/70711162*24476^(20/21) 7014087318849331 a001 2504730781961/54018521*24476^(20/21) 7014087318849346 a001 956722026041/20633239*24476^(20/21) 7014087318849442 a001 182717648081/3940598*24476^(20/21) 7014087318850103 a001 139583862445/3010349*24476^(20/21) 7014087318854634 a001 53316291173/1149851*24476^(20/21) 7014087318885690 a001 10182505537/219602*24476^(20/21) 7014087319037273 a001 10610209857723/64079*9349^(3/19) 7014087319098553 a001 7778742049/167761*24476^(20/21) 7014087319271633 a001 20365011074/15127*15127^(13/20) 7014087319311668 a001 20365011074/271443*24476^(19/21) 7014087319311920 a001 12586269025/103682*24476^(6/7) 7014087319392974 a001 53316291173/710647*24476^(19/21) 7014087319394995 a001 139583862445/39603*24476^(11/21) 7014087319404836 a001 139583862445/1860498*24476^(19/21) 7014087319406567 a001 365435296162/4870847*24476^(19/21) 7014087319406819 a001 956722026041/12752043*24476^(19/21) 7014087319406856 a001 2504730781961/33385282*24476^(19/21) 7014087319406862 a001 6557470319842/87403803*24476^(19/21) 7014087319406863 a001 10610209857723/141422324*24476^(19/21) 7014087319406865 a001 4052739537881/54018521*24476^(19/21) 7014087319406879 a001 140728068720/1875749*24476^(19/21) 7014087319406976 a001 591286729879/7881196*24476^(19/21) 7014087319407637 a001 225851433717/3010349*24476^(19/21) 7014087319412168 a001 86267571272/1149851*24476^(19/21) 7014087319443224 a001 32951280099/439204*24476^(19/21) 7014087319656086 a001 75025*24476^(19/21) 7014087319869201 a001 121393*24476^(6/7) 7014087319869454 a001 10182505537/51841*24476^(17/21) 7014087319950507 a001 86267571272/710647*24476^(6/7) 7014087319952528 a001 75283811239/13201*24476^(10/21) 7014087319962370 a001 75283811239/620166*24476^(6/7) 7014087319964100 a001 591286729879/4870847*24476^(6/7) 7014087319964353 a001 516002918640/4250681*24476^(6/7) 7014087319964390 a001 4052739537881/33385282*24476^(6/7) 7014087319964395 a001 3536736619241/29134601*24476^(6/7) 7014087319964399 a001 6557470319842/54018521*24476^(6/7) 7014087319964413 a001 2504730781961/20633239*24476^(6/7) 7014087319964509 a001 956722026041/7881196*24476^(6/7) 7014087319965170 a001 365435296162/3010349*24476^(6/7) 7014087319969701 a001 139583862445/1149851*24476^(6/7) 7014087320000757 a001 53316291173/439204*24476^(6/7) 7014087320213620 a001 20365011074/167761*24476^(6/7) 7014087320426735 a001 53316291173/271443*24476^(17/21) 7014087320426987 a001 32951280099/103682*24476^(16/21) 7014087320508041 a001 139583862445/710647*24476^(17/21) 7014087320510062 a001 365435296162/39603*24476^(3/7) 7014087320519903 a001 182717648081/930249*24476^(17/21) 7014087320521634 a001 956722026041/4870847*24476^(17/21) 7014087320521887 a001 2504730781961/12752043*24476^(17/21) 7014087320521923 a001 3278735159921/16692641*24476^(17/21) 7014087320521932 a001 10610209857723/54018521*24476^(17/21) 7014087320521946 a001 4052739537881/20633239*24476^(17/21) 7014087320522043 a001 387002188980/1970299*24476^(17/21) 7014087320522704 a001 591286729879/3010349*24476^(17/21) 7014087320527235 a001 225851433717/1149851*24476^(17/21) 7014087320557533 a001 2971215073/64079*24476^(20/21) 7014087320558291 a001 196418*24476^(17/21) 7014087320589987 a001 387002188980/6119*9349^(5/19) 7014087320771153 a001 32951280099/167761*24476^(17/21) 7014087320804257 a001 12586269025/15127*15127^(7/10) 7014087320984268 a001 86267571272/271443*24476^(16/21) 7014087320984521 a001 53316291173/103682*24476^(5/7) 7014087321055728 a001 17711/39603*312119004989^(4/5) 7014087321055728 a001 17711/39603*(1/2+1/2*5^(1/2))^44 7014087321055728 a001 17711/39603*23725150497407^(11/16) 7014087321055728 a001 17711/39603*73681302247^(11/13) 7014087321055728 a001 17711/39603*10749957122^(11/12) 7014087321055728 a001 17711/39603*4106118243^(22/23) 7014087321065574 a001 317811*24476^(16/21) 7014087321067595 a001 591286729879/39603*24476^(8/21) 7014087321077437 a001 591286729879/1860498*24476^(16/21) 7014087321079168 a001 1548008755920/4870847*24476^(16/21) 7014087321079420 a001 4052739537881/12752043*24476^(16/21) 7014087321079457 a001 1515744265389/4769326*24476^(16/21) 7014087321079480 a001 6557470319842/20633239*24476^(16/21) 7014087321079576 a001 2504730781961/7881196*24476^(16/21) 7014087321080237 a001 956722026041/3010349*24476^(16/21) 7014087321084768 a001 365435296162/1149851*24476^(16/21) 7014087321115067 a001 4807526976/64079*24476^(19/21) 7014087321115824 a001 139583862445/439204*24476^(16/21) 7014087321328687 a001 53316291173/167761*24476^(16/21) 7014087321541802 a001 139583862445/271443*24476^(5/7) 7014087321542054 a001 43133785636/51841*24476^(2/3) 7014087321623108 a001 365435296162/710647*24476^(5/7) 7014087321625129 a001 956722026041/39603*24476^(1/3) 7014087321634970 a001 956722026041/1860498*24476^(5/7) 7014087321636701 a001 2504730781961/4870847*24476^(5/7) 7014087321636954 a001 6557470319842/12752043*24476^(5/7) 7014087321637013 a001 10610209857723/20633239*24476^(5/7) 7014087321637110 a001 4052739537881/7881196*24476^(5/7) 7014087321637771 a001 1548008755920/3010349*24476^(5/7) 7014087321642302 a001 514229*24476^(5/7) 7014087321672600 a001 7778742049/64079*24476^(6/7) 7014087321673358 a001 225851433717/439204*24476^(5/7) 7014087321886220 a001 86267571272/167761*24476^(5/7) 7014087322099335 a001 75283811239/90481*24476^(2/3) 7014087322099588 a001 139583862445/103682*24476^(13/21) 7014087322180641 a001 591286729879/710647*24476^(2/3) 7014087322182662 a001 516002918640/13201*24476^(2/7) 7014087322192504 a001 832040*24476^(2/3) 7014087322194235 a001 4052739537881/4870847*24476^(2/3) 7014087322194487 a001 3536736619241/4250681*24476^(2/3) 7014087322194643 a001 3278735159921/3940598*24476^(2/3) 7014087322195304 a001 2504730781961/3010349*24476^(2/3) 7014087322199835 a001 956722026041/1149851*24476^(2/3) 7014087322230134 a001 12586269025/64079*24476^(17/21) 7014087322230891 a001 182717648081/219602*24476^(2/3) 7014087322336881 a001 7778742049/15127*15127^(3/4) 7014087322443754 a001 139583862445/167761*24476^(2/3) 7014087322656869 a001 365435296162/271443*24476^(13/21) 7014087322657121 a001 225851433717/103682*24476^(4/7) 7014087322691434 a001 4052739537881/15127*5778^(1/9) 7014087322738175 a001 956722026041/710647*24476^(13/21) 7014087322740196 a001 2504730781961/39603*24476^(5/21) 7014087322750037 a001 2504730781961/1860498*24476^(13/21) 7014087322751768 a001 6557470319842/4870847*24476^(13/21) 7014087322752177 a001 10610209857723/7881196*24476^(13/21) 7014087322752838 a001 1346269*24476^(13/21) 7014087322757369 a001 1548008755920/1149851*24476^(13/21) 7014087322787667 a001 20365011074/64079*24476^(16/21) 7014087322788425 a001 591286729879/439204*24476^(13/21) 7014087323001287 a001 225851433717/167761*24476^(13/21) 7014087323214402 a001 591286729879/271443*24476^(4/7) 7014087323214655 a001 182717648081/51841*24476^(11/21) 7014087323295708 a001 1548008755920/710647*24476^(4/7) 7014087323297729 a001 4052739537881/39603*24476^(4/21) 7014087323307571 a001 4052739537881/1860498*24476^(4/7) 7014087323309302 a001 2178309*24476^(4/7) 7014087323310371 a001 6557470319842/3010349*24476^(4/7) 7014087323314902 a001 2504730781961/1149851*24476^(4/7) 7014087323345201 a001 32951280099/64079*24476^(5/7) 7014087323345958 a001 956722026041/439204*24476^(4/7) 7014087323558821 a001 365435296162/167761*24476^(4/7) 7014087323598079 m001 Catalan*Zeta(5)/GAMMA(2/3) 7014087323771936 a001 956722026041/271443*24476^(11/21) 7014087323772188 a001 591286729879/103682*24476^(10/21) 7014087323819660 a001 20100270043870/28657 7014087323853242 a001 2504730781961/710647*24476^(11/21) 7014087323855263 a001 6557470319842/39603*24476^(1/7) 7014087323865104 a001 3278735159921/930249*24476^(11/21) 7014087323867905 a001 10610209857723/3010349*24476^(11/21) 7014087323869504 a001 686789568/2161*15127^(4/5) 7014087323872436 a001 4052739537881/1149851*24476^(11/21) 7014087323893929 a001 17711*64079^(22/23) 7014087323902734 a001 53316291173/64079*24476^(2/3) 7014087323903492 a001 387002188980/109801*24476^(11/21) 7014087323968199 a001 1134903170/39603*64079^(21/23) 7014087324042469 a001 1836311903/39603*64079^(20/23) 7014087324116354 a001 591286729879/167761*24476^(11/21) 7014087324116739 a001 2971215073/39603*64079^(19/23) 7014087324191008 a001 1602508992/13201*64079^(18/23) 7014087324265278 a001 7778742049/39603*64079^(17/23) 7014087324329469 a001 516002918640/90481*24476^(10/21) 7014087324329722 a001 956722026041/103682*24476^(3/7) 7014087324339548 a001 12586269025/39603*64079^(16/23) 7014087324410776 a001 4052739537881/710647*24476^(10/21) 7014087324412797 a001 3536736619241/13201*24476^(2/21) 7014087324413818 a001 20365011074/39603*64079^(15/23) 7014087324422638 a001 3536736619241/620166*24476^(10/21) 7014087324429969 a001 6557470319842/1149851*24476^(10/21) 7014087324460268 a001 86267571272/64079*24476^(13/21) 7014087324461026 a001 2504730781961/439204*24476^(10/21) 7014087324488087 a001 10983760033/13201*64079^(14/23) 7014087324562357 a001 53316291173/39603*64079^(13/23) 7014087324636627 a001 86267571272/39603*64079^(12/23) 7014087324673888 a001 956722026041/167761*24476^(10/21) 7014087324710896 a001 139583862445/39603*64079^(11/23) 7014087324785166 a001 75283811239/13201*64079^(10/23) 7014087324813630 a001 2504730781961/24476*9349^(4/19) 7014087324859436 a001 365435296162/39603*64079^(9/23) 7014087324875388 a001 17711/103682*(1/2+1/2*5^(1/2))^46 7014087324875388 a001 17711/103682*10749957122^(23/24) 7014087324875388 a001 15456/13201*2537720636^(14/15) 7014087324875388 a001 15456/13201*17393796001^(6/7) 7014087324875388 a001 15456/13201*45537549124^(14/17) 7014087324875388 a001 15456/13201*817138163596^(14/19) 7014087324875388 a001 15456/13201*14662949395604^(2/3) 7014087324875388 a001 15456/13201*(1/2+1/2*5^(1/2))^42 7014087324875388 a001 15456/13201*505019158607^(3/4) 7014087324875388 a001 15456/13201*192900153618^(7/9) 7014087324875388 a001 15456/13201*10749957122^(7/8) 7014087324875388 a001 15456/13201*4106118243^(21/23) 7014087324875388 a001 15456/13201*1568397607^(21/22) 7014087324887003 a001 2504730781961/271443*24476^(3/7) 7014087324887255 a001 774004377960/51841*24476^(8/21) 7014087324933706 a001 591286729879/39603*64079^(8/23) 7014087324968309 a001 6557470319842/710647*24476^(3/7) 7014087324987503 a001 10610209857723/1149851*24476^(3/7) 7014087325007975 a001 956722026041/39603*64079^(7/23) 7014087325017801 a001 139583862445/64079*24476^(4/7) 7014087325018559 a001 4052739537881/439204*24476^(3/7) 7014087325082245 a001 516002918640/13201*64079^(6/23) 7014087325156515 a001 2504730781961/39603*64079^(5/23) 7014087325230785 a001 4052739537881/39603*64079^(4/23) 7014087325231421 a001 140728068720/15251*24476^(3/7) 7014087325278640 a001 52623190157903/75025 7014087325305054 a001 6557470319842/39603*64079^(3/23) 7014087325328485 a001 1836311903/39603*167761^(4/5) 7014087325378329 a001 20365011074/39603*167761^(3/5) 7014087325379324 a001 3536736619241/13201*64079^(2/23) 7014087325402128 a001 2971215073/15127*15127^(17/20) 7014087325428174 a001 75283811239/13201*167761^(2/5) 7014087325432669 a001 17711/271443*45537549124^(16/17) 7014087325432669 a001 17711/271443*14662949395604^(16/21) 7014087325432669 a001 17711/271443*(1/2+1/2*5^(1/2))^48 7014087325432669 a001 17711/271443*192900153618^(8/9) 7014087325432669 a001 17711/271443*73681302247^(12/13) 7014087325432669 a001 121393/39603*2537720636^(8/9) 7014087325432669 a001 121393/39603*312119004989^(8/11) 7014087325432669 a001 121393/39603*(1/2+1/2*5^(1/2))^40 7014087325432669 a001 121393/39603*23725150497407^(5/8) 7014087325432669 a001 121393/39603*73681302247^(10/13) 7014087325432669 a001 121393/39603*28143753123^(4/5) 7014087325432669 a001 121393/39603*10749957122^(5/6) 7014087325432669 a001 121393/39603*4106118243^(20/23) 7014087325432669 a001 121393/39603*1568397607^(10/11) 7014087325432669 a001 121393/39603*599074578^(20/21) 7014087325444536 a001 4052739537881/271443*24476^(8/21) 7014087325444789 a001 2504730781961/103682*24476^(1/3) 7014087325478019 a001 2504730781961/39603*167761^(1/5) 7014087325491502 a001 137769300429839/196418 7014087325495542 a001 267914296/39603*439204^(8/9) 7014087325499583 a001 1134903170/39603*439204^(7/9) 7014087325503623 a001 1602508992/13201*439204^(2/3) 7014087325507663 a001 20365011074/39603*439204^(5/9) 7014087325511703 a001 86267571272/39603*439204^(4/9) 7014087325513975 a001 17711/710647*312119004989^(10/11) 7014087325513975 a001 17711/710647*(1/2+1/2*5^(1/2))^50 7014087325513975 a001 17711/710647*3461452808002^(5/6) 7014087325513975 a001 105937/13201*817138163596^(2/3) 7014087325513975 a001 105937/13201*(1/2+1/2*5^(1/2))^38 7014087325513975 a001 105937/13201*10749957122^(19/24) 7014087325513975 a001 105937/13201*4106118243^(19/23) 7014087325513975 a001 105937/13201*1568397607^(19/22) 7014087325513975 a001 105937/13201*599074578^(19/21) 7014087325513975 a001 105937/13201*228826127^(19/20) 7014087325515743 a001 365435296162/39603*439204^(1/3) 7014087325519783 a001 516002918640/13201*439204^(2/9) 7014087325522559 a001 360684711131614/514229 7014087325523823 a001 6557470319842/39603*439204^(1/9) 7014087325525837 a001 832040/39603*141422324^(12/13) 7014087325525837 a001 17711/1860498*(1/2+1/2*5^(1/2))^52 7014087325525837 a001 17711/1860498*23725150497407^(13/16) 7014087325525837 a001 17711/1860498*505019158607^(13/14) 7014087325525837 a001 832040/39603*2537720636^(4/5) 7014087325525837 a001 832040/39603*45537549124^(12/17) 7014087325525837 a001 832040/39603*14662949395604^(4/7) 7014087325525837 a001 832040/39603*(1/2+1/2*5^(1/2))^36 7014087325525837 a001 832040/39603*505019158607^(9/14) 7014087325525837 a001 832040/39603*192900153618^(2/3) 7014087325525837 a001 832040/39603*73681302247^(9/13) 7014087325525837 a001 832040/39603*10749957122^(3/4) 7014087325525837 a001 832040/39603*4106118243^(18/23) 7014087325525837 a001 832040/39603*1568397607^(9/11) 7014087325525837 a001 832040/39603*599074578^(6/7) 7014087325525837 a001 832040/39603*228826127^(9/10) 7014087325525838 a001 832040/39603*87403803^(18/19) 7014087325525843 a001 1515744265389/101521*24476^(8/21) 7014087325527090 a001 944284832965003/1346269 7014087325527568 a001 17711/4870847*14662949395604^(6/7) 7014087325527568 a001 17711/4870847*(1/2+1/2*5^(1/2))^54 7014087325527568 a001 726103/13201*45537549124^(2/3) 7014087325527568 a001 726103/13201*(1/2+1/2*5^(1/2))^34 7014087325527568 a001 726103/13201*10749957122^(17/24) 7014087325527568 a001 726103/13201*4106118243^(17/23) 7014087325527568 a001 726103/13201*1568397607^(17/22) 7014087325527568 a001 726103/13201*599074578^(17/21) 7014087325527568 a001 726103/13201*228826127^(17/20) 7014087325527569 a001 726103/13201*87403803^(17/19) 7014087325527574 a001 726103/13201*33385282^(17/18) 7014087325527751 a001 27777188626555/39602 7014087325527755 a001 4976784/13201*7881196^(10/11) 7014087325527772 a001 63245986/39603*7881196^(9/11) 7014087325527781 a001 267914296/39603*7881196^(8/11) 7014087325527788 a001 17711*7881196^(2/3) 7014087325527792 a001 1134903170/39603*7881196^(7/11) 7014087325527802 a001 1602508992/13201*7881196^(6/11) 7014087325527812 a001 20365011074/39603*7881196^(5/11) 7014087325527820 a001 17711/12752043*14662949395604^(8/9) 7014087325527820 a001 17711/12752043*(1/2+1/2*5^(1/2))^56 7014087325527820 a001 5702887/39603*(1/2+1/2*5^(1/2))^32 7014087325527820 a001 5702887/39603*23725150497407^(1/2) 7014087325527820 a001 5702887/39603*505019158607^(4/7) 7014087325527820 a001 5702887/39603*73681302247^(8/13) 7014087325527820 a001 5702887/39603*10749957122^(2/3) 7014087325527820 a001 5702887/39603*4106118243^(16/23) 7014087325527820 a001 5702887/39603*1568397607^(8/11) 7014087325527820 a001 5702887/39603*599074578^(16/21) 7014087325527821 a001 5702887/39603*228826127^(4/5) 7014087325527821 a001 5702887/39603*87403803^(16/19) 7014087325527822 a001 86267571272/39603*7881196^(4/11) 7014087325527826 a001 139583862445/39603*7881196^(1/3) 7014087325527826 a001 5702887/39603*33385282^(8/9) 7014087325527833 a001 365435296162/39603*7881196^(3/11) 7014087325527843 a001 516002918640/13201*7881196^(2/11) 7014087325527843 a001 4976784/13201*20633239^(6/7) 7014087325527847 a001 6472224530325182/9227465 7014087325527849 a001 39088169/39603*20633239^(4/5) 7014087325527852 a001 165580141/39603*20633239^(5/7) 7014087325527853 a001 6557470319842/39603*7881196^(1/11) 7014087325527854 a001 1134903170/39603*20633239^(3/5) 7014087325527854 a001 1836311903/39603*20633239^(4/7) 7014087325527856 a001 20365011074/39603*20633239^(3/7) 7014087325527857 a001 10983760033/13201*20633239^(2/5) 7014087325527857 a001 4976784/13201*141422324^(10/13) 7014087325527857 a001 17711/33385282*(1/2+1/2*5^(1/2))^58 7014087325527857 a001 4976784/13201*2537720636^(2/3) 7014087325527857 a001 4976784/13201*45537549124^(10/17) 7014087325527857 a001 4976784/13201*312119004989^(6/11) 7014087325527857 a001 4976784/13201*14662949395604^(10/21) 7014087325527857 a001 4976784/13201*(1/2+1/2*5^(1/2))^30 7014087325527857 a001 4976784/13201*192900153618^(5/9) 7014087325527857 a001 4976784/13201*28143753123^(3/5) 7014087325527857 a001 4976784/13201*10749957122^(5/8) 7014087325527857 a001 4976784/13201*4106118243^(15/23) 7014087325527857 a001 4976784/13201*1568397607^(15/22) 7014087325527857 a001 4976784/13201*599074578^(5/7) 7014087325527857 a001 4976784/13201*228826127^(3/4) 7014087325527858 a001 4976784/13201*87403803^(15/19) 7014087325527859 a001 75283811239/13201*20633239^(2/7) 7014087325527860 a001 956722026041/39603*20633239^(1/5) 7014087325527861 a001 5702887/39603*12752043^(16/17) 7014087325527861 a001 16944503803212151/24157817 7014087325527861 a001 2504730781961/39603*20633239^(1/7) 7014087325527863 a001 4976784/13201*33385282^(5/6) 7014087325527863 a001 17711/87403803*14662949395604^(20/21) 7014087325527863 a001 39088169/39603*17393796001^(4/7) 7014087325527863 a001 39088169/39603*14662949395604^(4/9) 7014087325527863 a001 39088169/39603*(1/2+1/2*5^(1/2))^28 7014087325527863 a001 39088169/39603*505019158607^(1/2) 7014087325527863 a001 39088169/39603*73681302247^(7/13) 7014087325527863 a001 39088169/39603*10749957122^(7/12) 7014087325527863 a001 39088169/39603*4106118243^(14/23) 7014087325527863 a001 39088169/39603*1568397607^(7/11) 7014087325527863 a001 39088169/39603*599074578^(2/3) 7014087325527863 a001 39088169/39603*228826127^(7/10) 7014087325527863 a001 34111385/13201*141422324^(2/3) 7014087325527863 a001 44361286879311271/63245986 7014087325527863 a001 39088169/39603*87403803^(14/19) 7014087325527863 a001 267914296/39603*141422324^(8/13) 7014087325527863 a001 1134903170/39603*141422324^(7/13) 7014087325527863 a001 1602508992/13201*141422324^(6/13) 7014087325527863 a001 20365011074/39603*141422324^(5/13) 7014087325527863 a001 34111385/13201*(1/2+1/2*5^(1/2))^26 7014087325527863 a001 34111385/13201*73681302247^(1/2) 7014087325527863 a001 34111385/13201*10749957122^(13/24) 7014087325527863 a001 34111385/13201*4106118243^(13/23) 7014087325527863 a001 34111385/13201*1568397607^(13/22) 7014087325527863 a001 34111385/13201*599074578^(13/21) 7014087325527863 a001 53316291173/39603*141422324^(1/3) 7014087325527863 a001 86267571272/39603*141422324^(4/13) 7014087325527863 a001 365435296162/39603*141422324^(3/13) 7014087325527863 a001 116139356834721662/165580141 7014087325527863 a001 516002918640/13201*141422324^(2/13) 7014087325527864 a001 34111385/13201*228826127^(13/20) 7014087325527864 a001 6557470319842/39603*141422324^(1/13) 7014087325527864 a001 267914296/39603*2537720636^(8/15) 7014087325527864 a001 267914296/39603*45537549124^(8/17) 7014087325527864 a001 267914296/39603*14662949395604^(8/21) 7014087325527864 a001 267914296/39603*(1/2+1/2*5^(1/2))^24 7014087325527864 a001 267914296/39603*192900153618^(4/9) 7014087325527864 a001 267914296/39603*73681302247^(6/13) 7014087325527864 a001 267914296/39603*10749957122^(1/2) 7014087325527864 a001 267914296/39603*4106118243^(12/23) 7014087325527864 a001 267914296/39603*1568397607^(6/11) 7014087325527864 a001 267914296/39603*599074578^(4/7) 7014087325527864 a001 17711*312119004989^(2/5) 7014087325527864 a001 17711*(1/2+1/2*5^(1/2))^22 7014087325527864 a001 17711*10749957122^(11/24) 7014087325527864 a001 17711*4106118243^(11/23) 7014087325527864 a001 17711*1568397607^(1/2) 7014087325527864 a001 1836311903/39603*2537720636^(4/9) 7014087325527864 a001 1602508992/13201*2537720636^(2/5) 7014087325527864 a001 1836311903/39603*(1/2+1/2*5^(1/2))^20 7014087325527864 a001 1836311903/39603*23725150497407^(5/16) 7014087325527864 a001 1836311903/39603*505019158607^(5/14) 7014087325527864 a001 1836311903/39603*73681302247^(5/13) 7014087325527864 a001 1836311903/39603*28143753123^(2/5) 7014087325527864 a001 1836311903/39603*10749957122^(5/12) 7014087325527864 a001 20365011074/39603*2537720636^(1/3) 7014087325527864 a001 86267571272/39603*2537720636^(4/15) 7014087325527864 a001 75283811239/13201*2537720636^(2/9) 7014087325527864 a001 1836311903/39603*4106118243^(10/23) 7014087325527864 a001 365435296162/39603*2537720636^(1/5) 7014087325527864 a001 516002918640/13201*2537720636^(2/15) 7014087325527864 a001 2504730781961/39603*2537720636^(1/9) 7014087325527864 a001 6557470319842/39603*2537720636^(1/15) 7014087325527864 a001 1602508992/13201*45537549124^(6/17) 7014087325527864 a001 1602508992/13201*14662949395604^(2/7) 7014087325527864 a001 1602508992/13201*(1/2+1/2*5^(1/2))^18 7014087325527864 a001 1602508992/13201*192900153618^(1/3) 7014087325527864 a001 1602508992/13201*10749957122^(3/8) 7014087325527864 a001 12586269025/39603*(1/2+1/2*5^(1/2))^16 7014087325527864 a001 12586269025/39603*23725150497407^(1/4) 7014087325527864 a001 12586269025/39603*73681302247^(4/13) 7014087325527864 a001 10983760033/13201*17393796001^(2/7) 7014087325527864 a001 956722026041/39603*17393796001^(1/7) 7014087325527864 a001 10983760033/13201*14662949395604^(2/9) 7014087325527864 a001 10983760033/13201*(1/2+1/2*5^(1/2))^14 7014087325527864 a001 10983760033/13201*505019158607^(1/4) 7014087325527864 a001 86267571272/39603*45537549124^(4/17) 7014087325527864 a001 365435296162/39603*45537549124^(3/17) 7014087325527864 a001 516002918640/13201*45537549124^(2/17) 7014087325527864 a001 6557470319842/39603*45537549124^(1/17) 7014087325527864 a001 86267571272/39603*817138163596^(4/19) 7014087325527864 a001 86267571272/39603*14662949395604^(4/21) 7014087325527864 a001 86267571272/39603*(1/2+1/2*5^(1/2))^12 7014087325527864 a001 75283811239/13201*312119004989^(2/11) 7014087325527864 a001 75283811239/13201*(1/2+1/2*5^(1/2))^10 7014087325527864 a001 2504730781961/39603*312119004989^(1/11) 7014087325527864 a001 516002918640/13201*14662949395604^(2/21) 7014087325527864 a001 516002918640/13201*(1/2+1/2*5^(1/2))^6 7014087325527864 a001 4052739537881/39603*(1/2+1/2*5^(1/2))^4 7014087325527864 a001 4052739537881/39603*23725150497407^(1/16) 7014087325527864 a001 591286729879/39603*505019158607^(1/7) 7014087325527864 a001 3536736619241/13201*(1/2+1/2*5^(1/2))^2 7014087325527864 a001 6557470319842/39603*14662949395604^(1/21) 7014087325527864 a001 6557470319842/39603*(1/2+1/2*5^(1/2))^3 7014087325527864 a001 2504730781961/39603*(1/2+1/2*5^(1/2))^5 7014087325527864 a001 365435296162/39603*817138163596^(3/19) 7014087325527864 a001 365435296162/39603*14662949395604^(1/7) 7014087325527864 a001 365435296162/39603*192900153618^(1/6) 7014087325527864 a001 139583862445/39603*312119004989^(1/5) 7014087325527864 a001 139583862445/39603*(1/2+1/2*5^(1/2))^11 7014087325527864 a001 4052739537881/39603*73681302247^(1/13) 7014087325527864 a001 86267571272/39603*73681302247^(3/13) 7014087325527864 a001 591286729879/39603*73681302247^(2/13) 7014087325527864 a001 53316291173/39603*(1/2+1/2*5^(1/2))^13 7014087325527864 a001 53316291173/39603*73681302247^(1/4) 7014087325527864 a001 2504730781961/39603*28143753123^(1/10) 7014087325527864 a001 75283811239/13201*28143753123^(1/5) 7014087325527864 a001 20365011074/39603*45537549124^(5/17) 7014087325527864 a001 3536736619241/13201*10749957122^(1/24) 7014087325527864 a001 20365011074/39603*312119004989^(3/11) 7014087325527864 a001 20365011074/39603*14662949395604^(5/21) 7014087325527864 a001 20365011074/39603*(1/2+1/2*5^(1/2))^15 7014087325527864 a001 20365011074/39603*192900153618^(5/18) 7014087325527864 a001 6557470319842/39603*10749957122^(1/16) 7014087325527864 a001 4052739537881/39603*10749957122^(1/12) 7014087325527864 a001 20365011074/39603*28143753123^(3/10) 7014087325527864 a001 516002918640/13201*10749957122^(1/8) 7014087325527864 a001 591286729879/39603*10749957122^(1/6) 7014087325527864 a001 12586269025/39603*10749957122^(1/3) 7014087325527864 a001 365435296162/39603*10749957122^(3/16) 7014087325527864 a001 75283811239/13201*10749957122^(5/24) 7014087325527864 a001 86267571272/39603*10749957122^(1/4) 7014087325527864 a001 10983760033/13201*10749957122^(7/24) 7014087325527864 a001 3536736619241/13201*4106118243^(1/23) 7014087325527864 a001 7778742049/39603*45537549124^(1/3) 7014087325527864 a001 20365011074/39603*10749957122^(5/16) 7014087325527864 a001 7778742049/39603*(1/2+1/2*5^(1/2))^17 7014087325527864 a001 4052739537881/39603*4106118243^(2/23) 7014087325527864 a001 516002918640/13201*4106118243^(3/23) 7014087325527864 a001 591286729879/39603*4106118243^(4/23) 7014087325527864 a001 75283811239/13201*4106118243^(5/23) 7014087325527864 a001 1602508992/13201*4106118243^(9/23) 7014087325527864 a001 86267571272/39603*4106118243^(6/23) 7014087325527864 a001 10983760033/13201*4106118243^(7/23) 7014087325527864 a001 3536736619241/13201*1568397607^(1/22) 7014087325527864 a001 12586269025/39603*4106118243^(8/23) 7014087325527864 a001 2971215073/39603*817138163596^(1/3) 7014087325527864 a001 2971215073/39603*(1/2+1/2*5^(1/2))^19 7014087325527864 a001 4052739537881/39603*1568397607^(1/11) 7014087325527864 a001 516002918640/13201*1568397607^(3/22) 7014087325527864 a001 591286729879/39603*1568397607^(2/11) 7014087325527864 a001 1134903170/39603*2537720636^(7/15) 7014087325527864 a001 75283811239/13201*1568397607^(5/22) 7014087325527864 a001 139583862445/39603*1568397607^(1/4) 7014087325527864 a001 86267571272/39603*1568397607^(3/11) 7014087325527864 a001 1836311903/39603*1568397607^(5/11) 7014087325527864 a001 10983760033/13201*1568397607^(7/22) 7014087325527864 a001 3536736619241/13201*599074578^(1/21) 7014087325527864 a001 12586269025/39603*1568397607^(4/11) 7014087325527864 a001 1134903170/39603*17393796001^(3/7) 7014087325527864 a001 1134903170/39603*45537549124^(7/17) 7014087325527864 a001 1134903170/39603*14662949395604^(1/3) 7014087325527864 a001 1134903170/39603*(1/2+1/2*5^(1/2))^21 7014087325527864 a001 1134903170/39603*192900153618^(7/18) 7014087325527864 a001 1602508992/13201*1568397607^(9/22) 7014087325527864 a001 1134903170/39603*10749957122^(7/16) 7014087325527864 a001 6557470319842/39603*599074578^(1/14) 7014087325527864 a001 4052739537881/39603*599074578^(2/21) 7014087325527864 a001 516002918640/13201*599074578^(1/7) 7014087325527864 a001 956722026041/39603*599074578^(1/6) 7014087325527864 a001 591286729879/39603*599074578^(4/21) 7014087325527864 a001 365435296162/39603*599074578^(3/14) 7014087325527864 a001 75283811239/13201*599074578^(5/21) 7014087325527864 a001 86267571272/39603*599074578^(2/7) 7014087325527864 a001 10983760033/13201*599074578^(1/3) 7014087325527864 a001 3536736619241/13201*228826127^(1/20) 7014087325527864 a001 20365011074/39603*599074578^(5/14) 7014087325527864 a001 17711*599074578^(11/21) 7014087325527864 a001 12586269025/39603*599074578^(8/21) 7014087325527864 a001 433494437/39603*(1/2+1/2*5^(1/2))^23 7014087325527864 a001 433494437/39603*4106118243^(1/2) 7014087325527864 a001 1602508992/13201*599074578^(3/7) 7014087325527864 a001 1836311903/39603*599074578^(10/21) 7014087325527864 a001 1134903170/39603*599074578^(1/2) 7014087325527864 a001 4052739537881/39603*228826127^(1/10) 7014087325527864 a001 187917426790132053/267914296 7014087325527864 a001 2504730781961/39603*228826127^(1/8) 7014087325527864 a001 516002918640/13201*228826127^(3/20) 7014087325527864 a001 591286729879/39603*228826127^(1/5) 7014087325527864 a001 75283811239/13201*228826127^(1/4) 7014087325527864 a001 86267571272/39603*228826127^(3/10) 7014087325527864 a001 10983760033/13201*228826127^(7/20) 7014087325527864 a001 3536736619241/13201*87403803^(1/19) 7014087325527864 a001 20365011074/39603*228826127^(3/8) 7014087325527864 a001 165580141/39603*2537720636^(5/9) 7014087325527864 a001 165580141/39603*312119004989^(5/11) 7014087325527864 a001 165580141/39603*(1/2+1/2*5^(1/2))^25 7014087325527864 a001 165580141/39603*3461452808002^(5/12) 7014087325527864 a001 165580141/39603*28143753123^(1/2) 7014087325527864 a001 12586269025/39603*228826127^(2/5) 7014087325527864 a001 1602508992/13201*228826127^(9/20) 7014087325527864 a001 267914296/39603*228826127^(3/5) 7014087325527864 a001 1836311903/39603*228826127^(1/2) 7014087325527864 a001 17711*228826127^(11/20) 7014087325527864 a001 4052739537881/39603*87403803^(2/19) 7014087325527864 a001 63245986/39603*141422324^(9/13) 7014087325527864 a001 71778069955410391/102334155 7014087325527864 a001 165580141/39603*228826127^(5/8) 7014087325527864 a001 516002918640/13201*87403803^(3/19) 7014087325527864 a001 591286729879/39603*87403803^(4/19) 7014087325527864 a001 75283811239/13201*87403803^(5/19) 7014087325527864 a001 86267571272/39603*87403803^(6/19) 7014087325527864 a001 10983760033/13201*87403803^(7/19) 7014087325527864 a001 3536736619241/13201*33385282^(1/18) 7014087325527864 a001 63245986/39603*2537720636^(3/5) 7014087325527864 a001 63245986/39603*45537549124^(9/17) 7014087325527864 a001 63245986/39603*817138163596^(9/19) 7014087325527864 a001 63245986/39603*14662949395604^(3/7) 7014087325527864 a001 63245986/39603*(1/2+1/2*5^(1/2))^27 7014087325527864 a001 63245986/39603*192900153618^(1/2) 7014087325527864 a001 63245986/39603*10749957122^(9/16) 7014087325527864 a001 63245986/39603*599074578^(9/14) 7014087325527864 a001 12586269025/39603*87403803^(8/19) 7014087325527864 a001 1602508992/13201*87403803^(9/19) 7014087325527864 a001 2971215073/39603*87403803^(1/2) 7014087325527864 a001 1836311903/39603*87403803^(10/19) 7014087325527864 a001 34111385/13201*87403803^(13/19) 7014087325527864 a001 6557470319842/39603*33385282^(1/12) 7014087325527864 a001 17711*87403803^(11/19) 7014087325527864 a001 267914296/39603*87403803^(12/19) 7014087325527864 a001 4052739537881/39603*33385282^(1/9) 7014087325527864 a001 27416783076099120/39088169 7014087325527865 a001 516002918640/13201*33385282^(1/6) 7014087325527865 a001 591286729879/39603*33385282^(2/9) 7014087325527865 a001 365435296162/39603*33385282^(1/4) 7014087325527865 a001 75283811239/13201*33385282^(5/18) 7014087325527866 a001 86267571272/39603*33385282^(1/3) 7014087325527866 a001 24157817/39603*(1/2+1/2*5^(1/2))^29 7014087325527866 a001 24157817/39603*1322157322203^(1/2) 7014087325527866 a001 10983760033/13201*33385282^(7/18) 7014087325527866 a001 3536736619241/13201*12752043^(1/17) 7014087325527866 a001 20365011074/39603*33385282^(5/12) 7014087325527866 a001 12586269025/39603*33385282^(4/9) 7014087325527867 a001 1602508992/13201*33385282^(1/2) 7014087325527867 a001 1836311903/39603*33385282^(5/9) 7014087325527867 a001 1134903170/39603*33385282^(7/12) 7014087325527867 a001 17711*33385282^(11/18) 7014087325527868 a001 39088169/39603*33385282^(7/9) 7014087325527868 a001 267914296/39603*33385282^(2/3) 7014087325527868 a001 34111385/13201*33385282^(13/18) 7014087325527869 a001 63245986/39603*33385282^(3/4) 7014087325527869 a001 4052739537881/39603*12752043^(2/17) 7014087325527870 a001 10472279272886969/14930352 7014087325527871 a001 516002918640/13201*12752043^(3/17) 7014087325527874 a001 591286729879/39603*12752043^(4/17) 7014087325527876 a001 75283811239/13201*12752043^(5/17) 7014087325527879 a001 86267571272/39603*12752043^(6/17) 7014087325527880 a001 17711/20633239*14662949395604^(19/21) 7014087325527880 a001 17711/20633239*(1/2+1/2*5^(1/2))^57 7014087325527880 a001 9227465/39603*(1/2+1/2*5^(1/2))^31 7014087325527880 a001 9227465/39603*9062201101803^(1/2) 7014087325527881 a001 10983760033/13201*12752043^(7/17) 7014087325527882 a001 3536736619241/13201*4870847^(1/16) 7014087325527884 a001 12586269025/39603*12752043^(8/17) 7014087325527885 a001 7778742049/39603*12752043^(1/2) 7014087325527886 a001 1602508992/13201*12752043^(9/17) 7014087325527889 a001 1836311903/39603*12752043^(10/17) 7014087325527891 a001 17711*12752043^(11/17) 7014087325527894 a001 267914296/39603*12752043^(12/17) 7014087325527895 a001 4976784/13201*12752043^(15/17) 7014087325527896 a001 34111385/13201*12752043^(13/17) 7014087325527898 a001 39088169/39603*12752043^(14/17) 7014087325527901 a001 4052739537881/39603*4870847^(1/8) 7014087325527907 a001 4000054742561787/5702887 7014087325527919 a001 516002918640/13201*4870847^(3/16) 7014087325527937 a001 591286729879/39603*4870847^(1/4) 7014087325527956 a001 75283811239/13201*4870847^(5/16) 7014087325527974 a001 86267571272/39603*4870847^(3/8) 7014087325527976 a001 3524578/39603*141422324^(11/13) 7014087325527976 a001 89/39604*(1/2+1/2*5^(1/2))^55 7014087325527976 a001 89/39604*3461452808002^(11/12) 7014087325527976 a001 3524578/39603*2537720636^(11/15) 7014087325527976 a001 3524578/39603*45537549124^(11/17) 7014087325527976 a001 3524578/39603*312119004989^(3/5) 7014087325527976 a001 3524578/39603*817138163596^(11/19) 7014087325527976 a001 3524578/39603*14662949395604^(11/21) 7014087325527976 a001 3524578/39603*(1/2+1/2*5^(1/2))^33 7014087325527976 a001 3524578/39603*192900153618^(11/18) 7014087325527976 a001 3524578/39603*10749957122^(11/16) 7014087325527976 a001 3524578/39603*1568397607^(3/4) 7014087325527976 a001 3524578/39603*599074578^(11/14) 7014087325527982 a001 3524578/39603*33385282^(11/12) 7014087325527993 a001 10983760033/13201*4870847^(7/16) 7014087325527999 a001 3536736619241/13201*1860498^(1/15) 7014087325528011 a001 12586269025/39603*4870847^(1/2) 7014087325528030 a001 1602508992/13201*4870847^(9/16) 7014087325528048 a001 1836311903/39603*4870847^(5/8) 7014087325528066 a001 6557470319842/39603*1860498^(1/10) 7014087325528067 a001 17711*4870847^(11/16) 7014087325528085 a001 267914296/39603*4870847^(3/4) 7014087325528104 a001 34111385/13201*4870847^(13/16) 7014087325528121 a001 39088169/39603*4870847^(7/8) 7014087325528134 a001 4052739537881/39603*1860498^(2/15) 7014087325528134 a001 4976784/13201*4870847^(15/16) 7014087325528159 a001 1527884954798392/2178309 7014087325528201 a001 2504730781961/39603*1860498^(1/6) 7014087325528269 a001 516002918640/13201*1860498^(1/5) 7014087325528404 a001 591286729879/39603*1860498^(4/15) 7014087325528471 a001 365435296162/39603*1860498^(3/10) 7014087325528539 a001 75283811239/13201*1860498^(1/3) 7014087325528638 a001 17711/3010349*(1/2+1/2*5^(1/2))^53 7014087325528638 a001 1346269/39603*2537720636^(7/9) 7014087325528638 a001 1346269/39603*17393796001^(5/7) 7014087325528638 a001 1346269/39603*312119004989^(7/11) 7014087325528638 a001 1346269/39603*14662949395604^(5/9) 7014087325528638 a001 1346269/39603*(1/2+1/2*5^(1/2))^35 7014087325528638 a001 1346269/39603*505019158607^(5/8) 7014087325528638 a001 1346269/39603*28143753123^(7/10) 7014087325528638 a001 1346269/39603*599074578^(5/6) 7014087325528638 a001 1346269/39603*228826127^(7/8) 7014087325528674 a001 86267571272/39603*1860498^(2/5) 7014087325528809 a001 10983760033/13201*1860498^(7/15) 7014087325528856 a001 3536736619241/13201*710647^(1/14) 7014087325528877 a001 20365011074/39603*1860498^(1/2) 7014087325528944 a001 12586269025/39603*1860498^(8/15) 7014087325529079 a001 1602508992/13201*1860498^(3/5) 7014087325529214 a001 1836311903/39603*1860498^(2/3) 7014087325529282 a001 1134903170/39603*1860498^(7/10) 7014087325529350 a001 17711*1860498^(11/15) 7014087325529485 a001 267914296/39603*1860498^(4/5) 7014087325529552 a001 165580141/39603*1860498^(5/6) 7014087325529620 a001 34111385/13201*1860498^(13/15) 7014087325529688 a001 63245986/39603*1860498^(9/10) 7014087325529754 a001 39088169/39603*1860498^(14/15) 7014087325529848 a001 4052739537881/39603*710647^(1/7) 7014087325529890 a001 583600121833389/832040 7014087325530840 a001 516002918640/13201*710647^(3/14) 7014087325531336 a001 956722026041/39603*710647^(1/4) 7014087325531832 a001 591286729879/39603*710647^(2/7) 7014087325532824 a001 75283811239/13201*710647^(5/14) 7014087325533169 a001 17711/1149851*817138163596^(17/19) 7014087325533169 a001 17711/1149851*14662949395604^(17/21) 7014087325533169 a001 17711/1149851*(1/2+1/2*5^(1/2))^51 7014087325533169 a001 17711/1149851*192900153618^(17/18) 7014087325533169 a001 514229/39603*(1/2+1/2*5^(1/2))^37 7014087325533816 a001 86267571272/39603*710647^(3/7) 7014087325534808 a001 10983760033/13201*710647^(1/2) 7014087325535186 a001 3536736619241/13201*271443^(1/13) 7014087325535800 a001 12586269025/39603*710647^(4/7) 7014087325536792 a001 1602508992/13201*710647^(9/14) 7014087325537784 a001 1836311903/39603*710647^(5/7) 7014087325538280 a001 1134903170/39603*710647^(3/4) 7014087325538776 a001 17711*710647^(11/14) 7014087325539768 a001 267914296/39603*710647^(6/7) 7014087325540760 a001 34111385/13201*710647^(13/14) 7014087325541752 a001 222915410701775/317811 7014087325542509 a001 4052739537881/39603*271443^(2/13) 7014087325549832 a001 516002918640/13201*271443^(3/13) 7014087325557154 a001 591286729879/39603*271443^(4/13) 7014087325564225 a001 17711/439204*14662949395604^(7/9) 7014087325564225 a001 17711/439204*(1/2+1/2*5^(1/2))^49 7014087325564225 a001 17711/439204*505019158607^(7/8) 7014087325564225 a001 196418/39603*2537720636^(13/15) 7014087325564225 a001 196418/39603*45537549124^(13/17) 7014087325564225 a001 196418/39603*14662949395604^(13/21) 7014087325564225 a001 196418/39603*(1/2+1/2*5^(1/2))^39 7014087325564225 a001 196418/39603*192900153618^(13/18) 7014087325564225 a001 196418/39603*73681302247^(3/4) 7014087325564225 a001 196418/39603*10749957122^(13/16) 7014087325564225 a001 196418/39603*599074578^(13/14) 7014087325564477 a001 75283811239/13201*271443^(5/13) 7014087325571800 a001 86267571272/39603*271443^(6/13) 7014087325575335 a001 225851433717/64079*24476^(11/21) 7014087325575461 a001 53316291173/39603*271443^(1/2) 7014087325576093 a001 3278735159921/219602*24476^(8/21) 7014087325579122 a001 10983760033/13201*271443^(7/13) 7014087325582237 a001 3536736619241/13201*103682^(1/12) 7014087325586445 a001 12586269025/39603*271443^(8/13) 7014087325593768 a001 1602508992/13201*271443^(9/13) 7014087325601090 a001 1836311903/39603*271443^(10/13) 7014087325608413 a001 17711*271443^(11/13) 7014087325609423 a001 6557470319842/39603*103682^(1/8) 7014087325615736 a001 267914296/39603*271443^(12/13) 7014087325623058 a001 85146110271936/121393 7014087325636610 a001 4052739537881/39603*103682^(1/6) 7014087325663796 a001 2504730781961/39603*103682^(5/24) 7014087325690983 a001 516002918640/13201*103682^(1/4) 7014087325718169 a001 956722026041/39603*103682^(7/24) 7014087325745355 a001 591286729879/39603*103682^(1/3) 7014087325772542 a001 365435296162/39603*103682^(3/8) 7014087325777087 a001 17711/167761*(1/2+1/2*5^(1/2))^47 7014087325777087 a001 75025/39603*(1/2+1/2*5^(1/2))^41 7014087325788955 a001 2504730781961/167761*24476^(8/21) 7014087325799728 a001 75283811239/13201*103682^(5/12) 7014087325826915 a001 139583862445/39603*103682^(11/24) 7014087325854101 a001 86267571272/39603*103682^(1/2) 7014087325881288 a001 53316291173/39603*103682^(13/24) 7014087325908474 a001 10983760033/13201*103682^(7/12) 7014087325934421 a001 3536736619241/13201*39603^(1/11) 7014087325935661 a001 20365011074/39603*103682^(5/8) 7014087325962847 a001 12586269025/39603*103682^(2/3) 7014087325990034 a001 7778742049/39603*103682^(17/24) 7014087326002070 a001 6557470319842/271443*24476^(1/3) 7014087326002323 a001 4052739537881/103682*24476^(2/7) 7014087326017220 a001 1602508992/13201*103682^(3/4) 7014087326044407 a001 2971215073/39603*103682^(19/24) 7014087326071593 a001 1836311903/39603*103682^(5/6) 7014087326098780 a001 1134903170/39603*103682^(7/8) 7014087326125966 a001 17711*103682^(11/12) 7014087326132868 a001 365435296162/64079*24476^(10/21) 7014087326133626 a001 10610209857723/439204*24476^(1/3) 7014087326137700 a001 6557470319842/39603*39603^(3/22) 7014087326153153 a001 433494437/39603*103682^(23/24) 7014087326180339 a001 32522920114033/46368 7014087326340979 a001 4052739537881/39603*39603^(2/11) 7014087326346488 a001 4052739537881/167761*24476^(1/3) 7014087326544258 a001 2504730781961/39603*39603^(5/22) 7014087326559603 a001 3536736619241/90481*24476^(2/7) 7014087326559856 a001 3278735159921/51841*24476^(5/21) 7014087326690402 a001 591286729879/64079*24476^(3/7) 7014087326747537 a001 516002918640/13201*39603^(3/11) 7014087326904022 a001 6557470319842/167761*24476^(2/7) 7014087326934752 a001 1836311903/15127*15127^(9/10) 7014087326950816 a001 956722026041/39603*39603^(7/22) 7014087327117390 a001 225749145909/2206*24476^(4/21) 7014087327154095 a001 591286729879/39603*39603^(4/11) 7014087327236067 a001 17711/64079*45537549124^(15/17) 7014087327236067 a001 17711/64079*312119004989^(9/11) 7014087327236067 a001 17711/64079*14662949395604^(5/7) 7014087327236067 a001 17711/64079*(1/2+1/2*5^(1/2))^45 7014087327236067 a001 17711/64079*192900153618^(5/6) 7014087327236067 a001 17711/64079*28143753123^(9/10) 7014087327236067 a001 17711/64079*10749957122^(15/16) 7014087327236067 a001 28657/39603*(1/2+1/2*5^(1/2))^43 7014087327247935 a001 956722026041/64079*24476^(8/21) 7014087327357374 a001 365435296162/39603*39603^(9/22) 7014087327461555 a001 10610209857723/167761*24476^(5/21) 7014087327560653 a001 75283811239/13201*39603^(5/11) 7014087327639320 a001 20100270054816/28657 7014087327713589 a001 1836311903/103682*64079^(22/23) 7014087327763932 a001 139583862445/39603*39603^(1/2) 7014087327787859 a001 2971215073/103682*64079^(21/23) 7014087327805469 a001 1548008755920/64079*24476^(1/3) 7014087327862129 a001 46368*64079^(20/23) 7014087327936399 a001 7778742049/103682*64079^(19/23) 7014087327967210 a001 86267571272/39603*39603^(6/11) 7014087328010668 a001 12586269025/103682*64079^(18/23) 7014087328084938 a001 10182505537/51841*64079^(17/23) 7014087328159208 a001 32951280099/103682*64079^(16/23) 7014087328170489 a001 53316291173/39603*39603^(13/22) 7014087328196601 a001 20100270056413/28657 7014087328233478 a001 53316291173/103682*64079^(15/23) 7014087328270870 a001 1602508992/90481*64079^(22/23) 7014087328277907 a001 20100270056646/28657 7014087328289772 a001 20100270056680/28657 7014087328291516 a001 20100270056685/28657 7014087328291865 a001 20100270056686/28657 7014087328292563 a001 20100270056688/28657 7014087328297100 a001 20100270056701/28657 7014087328307747 a001 43133785636/51841*64079^(14/23) 7014087328328157 a001 20100270056790/28657 7014087328345140 a001 7778742049/271443*64079^(21/23) 7014087328352177 a001 12586269025/710647*64079^(22/23) 7014087328363002 a001 2504730781961/64079*24476^(2/7) 7014087328364039 a001 10983760033/620166*64079^(22/23) 7014087328365770 a001 86267571272/4870847*64079^(22/23) 7014087328366022 a001 75283811239/4250681*64079^(22/23) 7014087328366059 a001 591286729879/33385282*64079^(22/23) 7014087328366064 a001 516002918640/29134601*64079^(22/23) 7014087328366065 a001 4052739537881/228826127*64079^(22/23) 7014087328366065 a001 3536736619241/199691526*64079^(22/23) 7014087328366065 a001 6557470319842/370248451*64079^(22/23) 7014087328366066 a001 2504730781961/141422324*64079^(22/23) 7014087328366068 a001 956722026041/54018521*64079^(22/23) 7014087328366082 a001 365435296162/20633239*64079^(22/23) 7014087328366178 a001 139583862445/7881196*64079^(22/23) 7014087328366839 a001 53316291173/3010349*64079^(22/23) 7014087328371370 a001 20365011074/1149851*64079^(22/23) 7014087328373768 a001 10983760033/13201*39603^(7/11) 7014087328382017 a001 139583862445/103682*64079^(13/23) 7014087328402427 a001 7778742049/439204*64079^(22/23) 7014087328419410 a001 12586269025/271443*64079^(20/23) 7014087328426446 a001 20365011074/710647*64079^(21/23) 7014087328438309 a001 53316291173/1860498*64079^(21/23) 7014087328440039 a001 139583862445/4870847*64079^(21/23) 7014087328440292 a001 365435296162/12752043*64079^(21/23) 7014087328440329 a001 956722026041/33385282*64079^(21/23) 7014087328440334 a001 2504730781961/87403803*64079^(21/23) 7014087328440335 a001 6557470319842/228826127*64079^(21/23) 7014087328440335 a001 10610209857723/370248451*64079^(21/23) 7014087328440335 a001 4052739537881/141422324*64079^(21/23) 7014087328440337 a001 1548008755920/54018521*64079^(21/23) 7014087328440352 a001 591286729879/20633239*64079^(21/23) 7014087328440448 a001 225851433717/7881196*64079^(21/23) 7014087328441109 a001 86267571272/3010349*64079^(21/23) 7014087328445640 a001 32951280099/1149851*64079^(21/23) 7014087328456287 a001 225851433717/103682*64079^(12/23) 7014087328467376 a001 1134903170/15127*15127^(19/20) 7014087328476696 a001 12586269025/439204*64079^(21/23) 7014087328493680 a001 20365011074/271443*64079^(19/23) 7014087328500716 a001 32951280099/710647*64079^(20/23) 7014087328512578 a001 43133785636/930249*64079^(20/23) 7014087328514309 a001 225851433717/4870847*64079^(20/23) 7014087328514562 a001 591286729879/12752043*64079^(20/23) 7014087328514598 a001 774004377960/16692641*64079^(20/23) 7014087328514604 a001 4052739537881/87403803*64079^(20/23) 7014087328514605 a001 225749145909/4868641*64079^(20/23) 7014087328514605 a001 3278735159921/70711162*64079^(20/23) 7014087328514607 a001 2504730781961/54018521*64079^(20/23) 7014087328514621 a001 956722026041/20633239*64079^(20/23) 7014087328514718 a001 182717648081/3940598*64079^(20/23) 7014087328515379 a001 139583862445/3010349*64079^(20/23) 7014087328519910 a001 53316291173/1149851*64079^(20/23) 7014087328530557 a001 182717648081/51841*64079^(11/23) 7014087328541019 a001 20100270057400/28657 7014087328550966 a001 10182505537/219602*64079^(20/23) 7014087328567949 a001 121393*64079^(18/23) 7014087328574986 a001 53316291173/710647*64079^(19/23) 7014087328577047 a001 20365011074/39603*39603^(15/22) 7014087328586848 a001 139583862445/1860498*64079^(19/23) 7014087328588579 a001 365435296162/4870847*64079^(19/23) 7014087328588831 a001 956722026041/12752043*64079^(19/23) 7014087328588868 a001 2504730781961/33385282*64079^(19/23) 7014087328588874 a001 6557470319842/87403803*64079^(19/23) 7014087328588875 a001 10610209857723/141422324*64079^(19/23) 7014087328588877 a001 4052739537881/54018521*64079^(19/23) 7014087328588891 a001 140728068720/1875749*64079^(19/23) 7014087328588987 a001 591286729879/7881196*64079^(19/23) 7014087328589649 a001 225851433717/3010349*64079^(19/23) 7014087328593111 a001 3536736619241/13201*15127^(1/10) 7014087328594180 a001 86267571272/1149851*64079^(19/23) 7014087328604826 a001 591286729879/103682*64079^(10/23) 7014087328615289 a001 2971215073/167761*64079^(22/23) 7014087328625236 a001 32951280099/439204*64079^(19/23) 7014087328642219 a001 53316291173/271443*64079^(17/23) 7014087328649255 a001 86267571272/710647*64079^(18/23) 7014087328661118 a001 75283811239/620166*64079^(18/23) 7014087328662849 a001 591286729879/4870847*64079^(18/23) 7014087328663101 a001 516002918640/4250681*64079^(18/23) 7014087328663138 a001 4052739537881/33385282*64079^(18/23) 7014087328663143 a001 3536736619241/29134601*64079^(18/23) 7014087328663147 a001 6557470319842/54018521*64079^(18/23) 7014087328663161 a001 2504730781961/20633239*64079^(18/23) 7014087328663257 a001 956722026041/7881196*64079^(18/23) 7014087328663918 a001 365435296162/3010349*64079^(18/23) 7014087328668449 a001 139583862445/1149851*64079^(18/23) 7014087328679096 a001 956722026041/103682*64079^(9/23) 7014087328689559 a001 4807526976/167761*64079^(21/23) 7014087328695048 a001 23184/51841*312119004989^(4/5) 7014087328695048 a001 23184/51841*(1/2+1/2*5^(1/2))^44 7014087328695048 a001 23184/51841*23725150497407^(11/16) 7014087328695048 a001 23184/51841*73681302247^(11/13) 7014087328695048 a001 23184/51841*10749957122^(11/12) 7014087328695048 a001 23184/51841*4106118243^(22/23) 7014087328699505 a001 53316291173/439204*64079^(18/23) 7014087328716489 a001 86267571272/271443*64079^(16/23) 7014087328723525 a001 139583862445/710647*64079^(17/23) 7014087328735388 a001 182717648081/930249*64079^(17/23) 7014087328737118 a001 956722026041/4870847*64079^(17/23) 7014087328737371 a001 2504730781961/12752043*64079^(17/23) 7014087328737408 a001 3278735159921/16692641*64079^(17/23) 7014087328737416 a001 10610209857723/54018521*64079^(17/23) 7014087328737430 a001 4052739537881/20633239*64079^(17/23) 7014087328737527 a001 387002188980/1970299*64079^(17/23) 7014087328738188 a001 591286729879/3010349*64079^(17/23) 7014087328742719 a001 225851433717/1149851*64079^(17/23) 7014087328753366 a001 774004377960/51841*64079^(8/23) 7014087328763828 a001 7778742049/167761*64079^(20/23) 7014087328773775 a001 196418*64079^(17/23) 7014087328780326 a001 12586269025/39603*39603^(8/11) 7014087328790759 a001 139583862445/271443*64079^(15/23) 7014087328797795 a001 317811*64079^(16/23) 7014087328809657 a001 591286729879/1860498*64079^(16/23) 7014087328811388 a001 1548008755920/4870847*64079^(16/23) 7014087328811641 a001 4052739537881/12752043*64079^(16/23) 7014087328811677 a001 1515744265389/4769326*64079^(16/23) 7014087328811700 a001 6557470319842/20633239*64079^(16/23) 7014087328811797 a001 2504730781961/7881196*64079^(16/23) 7014087328812458 a001 956722026041/3010349*64079^(16/23) 7014087328816989 a001 365435296162/1149851*64079^(16/23) 7014087328827636 a001 2504730781961/103682*64079^(7/23) 7014087328838098 a001 75025*64079^(19/23) 7014087328848045 a001 139583862445/439204*64079^(16/23) 7014087328865028 a001 75283811239/90481*64079^(14/23) 7014087328872065 a001 365435296162/710647*64079^(15/23) 7014087328883927 a001 956722026041/1860498*64079^(15/23) 7014087328885658 a001 2504730781961/4870847*64079^(15/23) 7014087328885910 a001 6557470319842/12752043*64079^(15/23) 7014087328885970 a001 10610209857723/20633239*64079^(15/23) 7014087328886066 a001 4052739537881/7881196*64079^(15/23) 7014087328886727 a001 1548008755920/3010349*64079^(15/23) 7014087328891258 a001 514229*64079^(15/23) 7014087328901905 a001 4052739537881/103682*64079^(6/23) 7014087328912368 a001 20365011074/167761*64079^(18/23) 7014087328920536 a001 4052739537881/64079*24476^(5/21) 7014087328922315 a001 225851433717/439204*64079^(15/23) 7014087328939298 a001 365435296162/271443*64079^(13/23) 7014087328946334 a001 591286729879/710647*64079^(14/23) 7014087328958197 a001 832040*64079^(14/23) 7014087328959928 a001 4052739537881/4870847*64079^(14/23) 7014087328960180 a001 3536736619241/4250681*64079^(14/23) 7014087328960336 a001 3278735159921/3940598*64079^(14/23) 7014087328960997 a001 2504730781961/3010349*64079^(14/23) 7014087328965528 a001 956722026041/1149851*64079^(14/23) 7014087328976175 a001 3278735159921/51841*64079^(5/23) 7014087328983605 a001 7778742049/39603*39603^(17/22) 7014087328986638 a001 32951280099/167761*64079^(17/23) 7014087328996584 a001 182717648081/219602*64079^(14/23) 7014087329013568 a001 591286729879/271443*64079^(12/23) 7014087329020604 a001 956722026041/710647*64079^(13/23) 7014087329032467 a001 2504730781961/1860498*64079^(13/23) 7014087329034197 a001 6557470319842/4870847*64079^(13/23) 7014087329034606 a001 10610209857723/7881196*64079^(13/23) 7014087329035267 a001 1346269*64079^(13/23) 7014087329037273 a001 4052739537881/24476*9349^(3/19) 7014087329039798 a001 1548008755920/1149851*64079^(13/23) 7014087329050445 a001 225749145909/2206*64079^(4/23) 7014087329060907 a001 53316291173/167761*64079^(16/23) 7014087329070854 a001 591286729879/439204*64079^(13/23) 7014087329087837 a001 956722026041/271443*64079^(11/23) 7014087329094874 a001 1548008755920/710647*64079^(12/23) 7014087329098300 a001 10524638037312/15005 7014087329106736 a001 4052739537881/1860498*64079^(12/23) 7014087329108467 a001 2178309*64079^(12/23) 7014087329109537 a001 6557470319842/3010349*64079^(12/23) 7014087329114068 a001 2504730781961/1149851*64079^(12/23) 7014087329135177 a001 86267571272/167761*64079^(15/23) 7014087329145124 a001 956722026041/439204*64079^(12/23) 7014087329148145 a001 46368*167761^(4/5) 7014087329162107 a001 516002918640/90481*64079^(10/23) 7014087329169144 a001 2504730781961/710647*64079^(11/23) 7014087329181006 a001 3278735159921/930249*64079^(11/23) 7014087329183806 a001 10610209857723/3010349*64079^(11/23) 7014087329186884 a001 1602508992/13201*39603^(9/11) 7014087329188337 a001 4052739537881/1149851*64079^(11/23) 7014087329197990 a001 53316291173/103682*167761^(3/5) 7014087329209447 a001 139583862445/167761*64079^(14/23) 7014087329219394 a001 387002188980/109801*64079^(11/23) 7014087329236377 a001 2504730781961/271443*64079^(9/23) 7014087329243413 a001 4052739537881/710647*64079^(10/23) 7014087329247834 a001 591286729879/103682*167761^(2/5) 7014087329252329 a001 121393/103682*2537720636^(14/15) 7014087329252329 a001 15456/90481*(1/2+1/2*5^(1/2))^46 7014087329252329 a001 121393/103682*17393796001^(6/7) 7014087329252329 a001 121393/103682*45537549124^(14/17) 7014087329252329 a001 15456/90481*10749957122^(23/24) 7014087329252329 a001 121393/103682*817138163596^(14/19) 7014087329252329 a001 121393/103682*14662949395604^(2/3) 7014087329252329 a001 121393/103682*(1/2+1/2*5^(1/2))^42 7014087329252329 a001 121393/103682*505019158607^(3/4) 7014087329252329 a001 121393/103682*192900153618^(7/9) 7014087329252329 a001 121393/103682*10749957122^(7/8) 7014087329252329 a001 121393/103682*4106118243^(21/23) 7014087329252329 a001 121393/103682*1568397607^(21/22) 7014087329255276 a001 3536736619241/620166*64079^(10/23) 7014087329262607 a001 6557470319842/1149851*64079^(10/23) 7014087329283717 a001 225851433717/167761*64079^(13/23) 7014087329293663 a001 2504730781961/439204*64079^(10/23) 7014087329297679 a001 3278735159921/51841*167761^(1/5) 7014087329310647 a001 4052739537881/271443*64079^(8/23) 7014087329311162 a001 68884650252432/98209 7014087329315203 a001 701408733/103682*439204^(8/9) 7014087329317683 a001 6557470319842/710647*64079^(9/23) 7014087329319243 a001 2971215073/103682*439204^(7/9) 7014087329323283 a001 12586269025/103682*439204^(2/3) 7014087329327323 a001 53316291173/103682*439204^(5/9) 7014087329331363 a001 225851433717/103682*439204^(4/9) 7014087329333635 a001 317811/103682*2537720636^(8/9) 7014087329333635 a001 6624/101521*45537549124^(16/17) 7014087329333635 a001 6624/101521*14662949395604^(16/21) 7014087329333635 a001 6624/101521*(1/2+1/2*5^(1/2))^48 7014087329333635 a001 6624/101521*192900153618^(8/9) 7014087329333635 a001 6624/101521*73681302247^(12/13) 7014087329333635 a001 317811/103682*312119004989^(8/11) 7014087329333635 a001 317811/103682*(1/2+1/2*5^(1/2))^40 7014087329333635 a001 317811/103682*23725150497407^(5/8) 7014087329333635 a001 317811/103682*73681302247^(10/13) 7014087329333635 a001 317811/103682*28143753123^(4/5) 7014087329333635 a001 317811/103682*10749957122^(5/6) 7014087329333635 a001 317811/103682*4106118243^(20/23) 7014087329333635 a001 317811/103682*1568397607^(10/11) 7014087329333635 a001 317811/103682*599074578^(20/21) 7014087329335403 a001 956722026041/103682*439204^(1/3) 7014087329336877 a001 10610209857723/1149851*64079^(9/23) 7014087329339443 a001 4052739537881/103682*439204^(2/9) 7014087329342219 a001 360684711328032/514229 7014087329345497 a001 2576/103361*312119004989^(10/11) 7014087329345497 a001 2576/103361*(1/2+1/2*5^(1/2))^50 7014087329345497 a001 2576/103361*3461452808002^(5/6) 7014087329345497 a001 416020/51841*817138163596^(2/3) 7014087329345497 a001 416020/51841*(1/2+1/2*5^(1/2))^38 7014087329345497 a001 416020/51841*10749957122^(19/24) 7014087329345497 a001 416020/51841*4106118243^(19/23) 7014087329345497 a001 416020/51841*1568397607^(19/22) 7014087329345497 a001 416020/51841*599074578^(19/21) 7014087329345497 a001 416020/51841*228826127^(19/20) 7014087329346750 a001 944284833479232/1346269 7014087329347228 a001 46347/2206*141422324^(12/13) 7014087329347228 a001 46347/2206*2537720636^(4/5) 7014087329347228 a001 46368/4870847*(1/2+1/2*5^(1/2))^52 7014087329347228 a001 46368/4870847*23725150497407^(13/16) 7014087329347228 a001 46368/4870847*505019158607^(13/14) 7014087329347228 a001 46347/2206*45537549124^(12/17) 7014087329347228 a001 46347/2206*14662949395604^(4/7) 7014087329347228 a001 46347/2206*(1/2+1/2*5^(1/2))^36 7014087329347228 a001 46347/2206*505019158607^(9/14) 7014087329347228 a001 46347/2206*192900153618^(2/3) 7014087329347228 a001 46347/2206*73681302247^(9/13) 7014087329347228 a001 46347/2206*10749957122^(3/4) 7014087329347228 a001 46347/2206*4106118243^(18/23) 7014087329347228 a001 46347/2206*1568397607^(9/11) 7014087329347228 a001 46347/2206*599074578^(6/7) 7014087329347228 a001 46347/2206*228826127^(9/10) 7014087329347229 a001 46347/2206*87403803^(18/19) 7014087329347411 a001 1236084894554832/1762289 7014087329347420 a001 39088169/103682*7881196^(10/11) 7014087329347431 a001 165580141/103682*7881196^(9/11) 7014087329347442 a001 701408733/103682*7881196^(8/11) 7014087329347448 a001 1836311903/103682*7881196^(2/3) 7014087329347452 a001 2971215073/103682*7881196^(7/11) 7014087329347462 a001 12586269025/103682*7881196^(6/11) 7014087329347472 a001 53316291173/103682*7881196^(5/11) 7014087329347481 a001 15456/4250681*14662949395604^(6/7) 7014087329347481 a001 15456/4250681*(1/2+1/2*5^(1/2))^54 7014087329347481 a001 5702887/103682*45537549124^(2/3) 7014087329347481 a001 5702887/103682*(1/2+1/2*5^(1/2))^34 7014087329347481 a001 5702887/103682*10749957122^(17/24) 7014087329347481 a001 5702887/103682*4106118243^(17/23) 7014087329347481 a001 5702887/103682*1568397607^(17/22) 7014087329347481 a001 5702887/103682*599074578^(17/21) 7014087329347481 a001 5702887/103682*228826127^(17/20) 7014087329347481 a001 5702887/103682*87403803^(17/19) 7014087329347483 a001 225851433717/103682*7881196^(4/11) 7014087329347486 a001 182717648081/51841*7881196^(1/3) 7014087329347486 a001 5702887/103682*33385282^(17/18) 7014087329347493 a001 956722026041/103682*7881196^(3/11) 7014087329347503 a001 4052739537881/103682*7881196^(2/11) 7014087329347507 a001 1294444906769952/1845493 7014087329347509 a001 39088169/103682*20633239^(6/7) 7014087329347510 a001 102334155/103682*20633239^(4/5) 7014087329347512 a001 433494437/103682*20633239^(5/7) 7014087329347514 a001 2971215073/103682*20633239^(3/5) 7014087329347514 a001 46368*20633239^(4/7) 7014087329347517 a001 53316291173/103682*20633239^(3/7) 7014087329347517 a001 43133785636/51841*20633239^(2/5) 7014087329347517 a001 144/103681*14662949395604^(8/9) 7014087329347517 a001 144/103681*(1/2+1/2*5^(1/2))^56 7014087329347517 a001 7465176/51841*(1/2+1/2*5^(1/2))^32 7014087329347517 a001 7465176/51841*23725150497407^(1/2) 7014087329347517 a001 7465176/51841*505019158607^(4/7) 7014087329347517 a001 7465176/51841*73681302247^(8/13) 7014087329347517 a001 7465176/51841*10749957122^(2/3) 7014087329347517 a001 7465176/51841*4106118243^(16/23) 7014087329347517 a001 7465176/51841*1568397607^(8/11) 7014087329347517 a001 7465176/51841*599074578^(16/21) 7014087329347517 a001 7465176/51841*228826127^(4/5) 7014087329347518 a001 7465176/51841*87403803^(16/19) 7014087329347519 a001 591286729879/103682*20633239^(2/7) 7014087329347520 a001 2504730781961/103682*20633239^(1/5) 7014087329347521 a001 16944503812439616/24157817 7014087329347521 a001 3278735159921/51841*20633239^(1/7) 7014087329347522 a001 39088169/103682*141422324^(10/13) 7014087329347523 a001 39088169/103682*2537720636^(2/3) 7014087329347523 a001 39088169/103682*45537549124^(10/17) 7014087329347523 a001 39088169/103682*312119004989^(6/11) 7014087329347523 a001 39088169/103682*14662949395604^(10/21) 7014087329347523 a001 39088169/103682*(1/2+1/2*5^(1/2))^30 7014087329347523 a001 39088169/103682*192900153618^(5/9) 7014087329347523 a001 39088169/103682*28143753123^(3/5) 7014087329347523 a001 39088169/103682*10749957122^(5/8) 7014087329347523 a001 39088169/103682*4106118243^(15/23) 7014087329347523 a001 39088169/103682*1568397607^(15/22) 7014087329347523 a001 39088169/103682*599074578^(5/7) 7014087329347523 a001 39088169/103682*228826127^(3/4) 7014087329347523 a001 7465176/51841*33385282^(8/9) 7014087329347523 a001 22180643451734544/31622993 7014087329347523 a001 133957148/51841*141422324^(2/3) 7014087329347523 a001 701408733/103682*141422324^(8/13) 7014087329347523 a001 39088169/103682*87403803^(15/19) 7014087329347523 a001 165580141/103682*141422324^(9/13) 7014087329347523 a001 2971215073/103682*141422324^(7/13) 7014087329347523 a001 12586269025/103682*141422324^(6/13) 7014087329347524 a001 53316291173/103682*141422324^(5/13) 7014087329347524 a001 46368/228826127*14662949395604^(20/21) 7014087329347524 a001 102334155/103682*17393796001^(4/7) 7014087329347524 a001 102334155/103682*14662949395604^(4/9) 7014087329347524 a001 102334155/103682*(1/2+1/2*5^(1/2))^28 7014087329347524 a001 102334155/103682*505019158607^(1/2) 7014087329347524 a001 102334155/103682*73681302247^(7/13) 7014087329347524 a001 102334155/103682*10749957122^(7/12) 7014087329347524 a001 102334155/103682*4106118243^(14/23) 7014087329347524 a001 102334155/103682*1568397607^(7/11) 7014087329347524 a001 102334155/103682*599074578^(2/3) 7014087329347524 a001 139583862445/103682*141422324^(1/3) 7014087329347524 a001 225851433717/103682*141422324^(4/13) 7014087329347524 a001 956722026041/103682*141422324^(3/13) 7014087329347524 a001 4052739537881/103682*141422324^(2/13) 7014087329347524 a001 116139356897967648/165580141 7014087329347524 a001 102334155/103682*228826127^(7/10) 7014087329347524 a001 133957148/51841*(1/2+1/2*5^(1/2))^26 7014087329347524 a001 133957148/51841*73681302247^(1/2) 7014087329347524 a001 133957148/51841*10749957122^(13/24) 7014087329347524 a001 133957148/51841*4106118243^(13/23) 7014087329347524 a001 133957148/51841*1568397607^(13/22) 7014087329347524 a001 304056783790433856/433494437 7014087329347524 a001 133957148/51841*599074578^(13/21) 7014087329347524 a001 701408733/103682*2537720636^(8/15) 7014087329347524 a001 701408733/103682*45537549124^(8/17) 7014087329347524 a001 701408733/103682*14662949395604^(8/21) 7014087329347524 a001 701408733/103682*(1/2+1/2*5^(1/2))^24 7014087329347524 a001 701408733/103682*192900153618^(4/9) 7014087329347524 a001 701408733/103682*73681302247^(6/13) 7014087329347524 a001 701408733/103682*10749957122^(1/2) 7014087329347524 a001 701408733/103682*4106118243^(12/23) 7014087329347524 a001 701408733/103682*1568397607^(6/11) 7014087329347524 a001 46368*2537720636^(4/9) 7014087329347524 a001 12586269025/103682*2537720636^(2/5) 7014087329347524 a001 1836311903/103682*312119004989^(2/5) 7014087329347524 a001 1836311903/103682*(1/2+1/2*5^(1/2))^22 7014087329347524 a001 1836311903/103682*10749957122^(11/24) 7014087329347524 a001 53316291173/103682*2537720636^(1/3) 7014087329347524 a001 2971215073/103682*2537720636^(7/15) 7014087329347524 a001 225851433717/103682*2537720636^(4/15) 7014087329347524 a001 591286729879/103682*2537720636^(2/9) 7014087329347524 a001 956722026041/103682*2537720636^(1/5) 7014087329347524 a001 1836311903/103682*4106118243^(11/23) 7014087329347524 a001 4052739537881/103682*2537720636^(2/15) 7014087329347524 a001 3278735159921/51841*2537720636^(1/9) 7014087329347524 a001 46368*(1/2+1/2*5^(1/2))^20 7014087329347524 a001 46368*23725150497407^(5/16) 7014087329347524 a001 46368*505019158607^(5/14) 7014087329347524 a001 46368*73681302247^(5/13) 7014087329347524 a001 46368*28143753123^(2/5) 7014087329347524 a001 46368*10749957122^(5/12) 7014087329347524 a001 12586269025/103682*45537549124^(6/17) 7014087329347524 a001 12586269025/103682*14662949395604^(2/7) 7014087329347524 a001 12586269025/103682*(1/2+1/2*5^(1/2))^18 7014087329347524 a001 12586269025/103682*192900153618^(1/3) 7014087329347524 a001 43133785636/51841*17393796001^(2/7) 7014087329347524 a001 2504730781961/103682*17393796001^(1/7) 7014087329347524 a001 32951280099/103682*(1/2+1/2*5^(1/2))^16 7014087329347524 a001 32951280099/103682*23725150497407^(1/4) 7014087329347524 a001 32951280099/103682*73681302247^(4/13) 7014087329347524 a001 225851433717/103682*45537549124^(4/17) 7014087329347524 a001 956722026041/103682*45537549124^(3/17) 7014087329347524 a001 53316291173/103682*45537549124^(5/17) 7014087329347524 a001 4052739537881/103682*45537549124^(2/17) 7014087329347524 a001 43133785636/51841*(1/2+1/2*5^(1/2))^14 7014087329347524 a001 43133785636/51841*505019158607^(1/4) 7014087329347524 a001 225851433717/103682*817138163596^(4/19) 7014087329347524 a001 225851433717/103682*14662949395604^(4/21) 7014087329347524 a001 225851433717/103682*(1/2+1/2*5^(1/2))^12 7014087329347524 a001 3278735159921/51841*312119004989^(1/11) 7014087329347524 a001 591286729879/103682*(1/2+1/2*5^(1/2))^10 7014087329347524 a001 182717648081/51841*312119004989^(1/5) 7014087329347524 a001 774004377960/51841*(1/2+1/2*5^(1/2))^8 7014087329347524 a001 4052739537881/103682*(1/2+1/2*5^(1/2))^6 7014087329347524 a001 225749145909/2206*(1/2+1/2*5^(1/2))^4 7014087329347524 a001 225749145909/2206*23725150497407^(1/16) 7014087329347524 a001 3278735159921/51841*(1/2+1/2*5^(1/2))^5 7014087329347524 a001 2504730781961/103682*14662949395604^(1/9) 7014087329347524 a001 2504730781961/103682*(1/2+1/2*5^(1/2))^7 7014087329347524 a001 956722026041/103682*(1/2+1/2*5^(1/2))^9 7014087329347524 a001 139583862445/103682*(1/2+1/2*5^(1/2))^13 7014087329347524 a001 225749145909/2206*73681302247^(1/13) 7014087329347524 a001 774004377960/51841*73681302247^(2/13) 7014087329347524 a001 225851433717/103682*73681302247^(3/13) 7014087329347524 a001 139583862445/103682*73681302247^(1/4) 7014087329347524 a001 53316291173/103682*312119004989^(3/11) 7014087329347524 a001 53316291173/103682*14662949395604^(5/21) 7014087329347524 a001 53316291173/103682*(1/2+1/2*5^(1/2))^15 7014087329347524 a001 53316291173/103682*192900153618^(5/18) 7014087329347524 a001 3278735159921/51841*28143753123^(1/10) 7014087329347524 a001 591286729879/103682*28143753123^(1/5) 7014087329347524 a001 10182505537/51841*45537549124^(1/3) 7014087329347524 a001 53316291173/103682*28143753123^(3/10) 7014087329347524 a001 10182505537/51841*(1/2+1/2*5^(1/2))^17 7014087329347524 a001 225749145909/2206*10749957122^(1/12) 7014087329347524 a001 4052739537881/103682*10749957122^(1/8) 7014087329347524 a001 774004377960/51841*10749957122^(1/6) 7014087329347524 a001 956722026041/103682*10749957122^(3/16) 7014087329347524 a001 591286729879/103682*10749957122^(5/24) 7014087329347524 a001 12586269025/103682*10749957122^(3/8) 7014087329347524 a001 225851433717/103682*10749957122^(1/4) 7014087329347524 a001 43133785636/51841*10749957122^(7/24) 7014087329347524 a001 32951280099/103682*10749957122^(1/3) 7014087329347524 a001 53316291173/103682*10749957122^(5/16) 7014087329347524 a001 7778742049/103682*817138163596^(1/3) 7014087329347524 a001 7778742049/103682*(1/2+1/2*5^(1/2))^19 7014087329347524 a001 225749145909/2206*4106118243^(2/23) 7014087329347524 a001 4052739537881/103682*4106118243^(3/23) 7014087329347524 a001 774004377960/51841*4106118243^(4/23) 7014087329347524 a001 591286729879/103682*4106118243^(5/23) 7014087329347524 a001 225851433717/103682*4106118243^(6/23) 7014087329347524 a001 46368*4106118243^(10/23) 7014087329347524 a001 43133785636/51841*4106118243^(7/23) 7014087329347524 a001 32951280099/103682*4106118243^(8/23) 7014087329347524 a001 2971215073/103682*17393796001^(3/7) 7014087329347524 a001 12586269025/103682*4106118243^(9/23) 7014087329347524 a001 2971215073/103682*45537549124^(7/17) 7014087329347524 a001 2971215073/103682*14662949395604^(1/3) 7014087329347524 a001 2971215073/103682*(1/2+1/2*5^(1/2))^21 7014087329347524 a001 2971215073/103682*192900153618^(7/18) 7014087329347524 a001 2971215073/103682*10749957122^(7/16) 7014087329347524 a001 225749145909/2206*1568397607^(1/11) 7014087329347524 a001 4052739537881/103682*1568397607^(3/22) 7014087329347524 a001 774004377960/51841*1568397607^(2/11) 7014087329347524 a001 591286729879/103682*1568397607^(5/22) 7014087329347524 a001 182717648081/51841*1568397607^(1/4) 7014087329347524 a001 225851433717/103682*1568397607^(3/11) 7014087329347524 a001 43133785636/51841*1568397607^(7/22) 7014087329347524 a001 1836311903/103682*1568397607^(1/2) 7014087329347524 a001 32951280099/103682*1568397607^(4/11) 7014087329347524 a001 567451585/51841*(1/2+1/2*5^(1/2))^23 7014087329347524 a001 12586269025/103682*1568397607^(9/22) 7014087329347524 a001 46368*1568397607^(5/11) 7014087329347524 a001 567451585/51841*4106118243^(1/2) 7014087329347524 a001 225749145909/2206*599074578^(2/21) 7014087329347524 a001 163991403560966688/233802911 7014087329347524 a001 4052739537881/103682*599074578^(1/7) 7014087329347524 a001 2504730781961/103682*599074578^(1/6) 7014087329347524 a001 774004377960/51841*599074578^(4/21) 7014087329347524 a001 956722026041/103682*599074578^(3/14) 7014087329347524 a001 591286729879/103682*599074578^(5/21) 7014087329347524 a001 225851433717/103682*599074578^(2/7) 7014087329347524 a001 43133785636/51841*599074578^(1/3) 7014087329347524 a001 433494437/103682*2537720636^(5/9) 7014087329347524 a001 53316291173/103682*599074578^(5/14) 7014087329347524 a001 32951280099/103682*599074578^(8/21) 7014087329347524 a001 433494437/103682*312119004989^(5/11) 7014087329347524 a001 433494437/103682*(1/2+1/2*5^(1/2))^25 7014087329347524 a001 433494437/103682*3461452808002^(5/12) 7014087329347524 a001 433494437/103682*28143753123^(1/2) 7014087329347524 a001 701408733/103682*599074578^(4/7) 7014087329347524 a001 12586269025/103682*599074578^(3/7) 7014087329347524 a001 46368*599074578^(10/21) 7014087329347524 a001 1836311903/103682*599074578^(11/21) 7014087329347524 a001 2971215073/103682*599074578^(1/2) 7014087329347524 a001 225749145909/2206*228826127^(1/10) 7014087329347524 a001 3278735159921/51841*228826127^(1/8) 7014087329347524 a001 23489678361558276/33489287 7014087329347524 a001 4052739537881/103682*228826127^(3/20) 7014087329347524 a001 774004377960/51841*228826127^(1/5) 7014087329347524 a001 591286729879/103682*228826127^(1/4) 7014087329347524 a001 225851433717/103682*228826127^(3/10) 7014087329347524 a001 43133785636/51841*228826127^(7/20) 7014087329347524 a001 53316291173/103682*228826127^(3/8) 7014087329347524 a001 165580141/103682*2537720636^(3/5) 7014087329347524 a001 165580141/103682*45537549124^(9/17) 7014087329347524 a001 165580141/103682*817138163596^(9/19) 7014087329347524 a001 165580141/103682*14662949395604^(3/7) 7014087329347524 a001 165580141/103682*(1/2+1/2*5^(1/2))^27 7014087329347524 a001 165580141/103682*192900153618^(1/2) 7014087329347524 a001 165580141/103682*10749957122^(9/16) 7014087329347524 a001 32951280099/103682*228826127^(2/5) 7014087329347524 a001 12586269025/103682*228826127^(9/20) 7014087329347524 a001 165580141/103682*599074578^(9/14) 7014087329347524 a001 46368*228826127^(1/2) 7014087329347524 a001 133957148/51841*228826127^(13/20) 7014087329347524 a001 1836311903/103682*228826127^(11/20) 7014087329347524 a001 701408733/103682*228826127^(3/5) 7014087329347524 a001 433494437/103682*228826127^(5/8) 7014087329347524 a001 225749145909/2206*87403803^(2/19) 7014087329347524 a001 1515744271872/2161 7014087329347524 a001 4052739537881/103682*87403803^(3/19) 7014087329347524 a001 774004377960/51841*87403803^(4/19) 7014087329347524 a001 591286729879/103682*87403803^(5/19) 7014087329347524 a001 225851433717/103682*87403803^(6/19) 7014087329347524 a001 43133785636/51841*87403803^(7/19) 7014087329347524 a001 31622993/51841*(1/2+1/2*5^(1/2))^29 7014087329347524 a001 31622993/51841*1322157322203^(1/2) 7014087329347524 a001 32951280099/103682*87403803^(8/19) 7014087329347524 a001 12586269025/103682*87403803^(9/19) 7014087329347524 a001 7778742049/103682*87403803^(1/2) 7014087329347524 a001 46368*87403803^(10/19) 7014087329347524 a001 1836311903/103682*87403803^(11/19) 7014087329347524 a001 102334155/103682*87403803^(14/19) 7014087329347524 a001 701408733/103682*87403803^(12/19) 7014087329347524 a001 133957148/51841*87403803^(13/19) 7014087329347524 a001 225749145909/2206*33385282^(1/9) 7014087329347525 a001 27416783091029472/39088169 7014087329347525 a001 4052739537881/103682*33385282^(1/6) 7014087329347525 a001 774004377960/51841*33385282^(2/9) 7014087329347525 a001 956722026041/103682*33385282^(1/4) 7014087329347525 a001 591286729879/103682*33385282^(5/18) 7014087329347526 a001 225851433717/103682*33385282^(1/3) 7014087329347526 a001 46368/54018521*14662949395604^(19/21) 7014087329347526 a001 24157817/103682*(1/2+1/2*5^(1/2))^31 7014087329347526 a001 24157817/103682*9062201101803^(1/2) 7014087329347526 a001 43133785636/51841*33385282^(7/18) 7014087329347526 a001 53316291173/103682*33385282^(5/12) 7014087329347526 a001 32951280099/103682*33385282^(4/9) 7014087329347527 a001 12586269025/103682*33385282^(1/2) 7014087329347527 a001 46368*33385282^(5/9) 7014087329347527 a001 2971215073/103682*33385282^(7/12) 7014087329347528 a001 1836311903/103682*33385282^(11/18) 7014087329347528 a001 701408733/103682*33385282^(2/3) 7014087329347528 a001 39088169/103682*33385282^(5/6) 7014087329347528 a001 133957148/51841*33385282^(13/18) 7014087329347528 a001 102334155/103682*33385282^(7/9) 7014087329347528 a001 165580141/103682*33385282^(3/4) 7014087329347529 a001 225749145909/2206*12752043^(2/17) 7014087329347530 a001 24241387218958/34561 7014087329347531 a001 4052739537881/103682*12752043^(3/17) 7014087329347534 a001 774004377960/51841*12752043^(4/17) 7014087329347536 a001 591286729879/103682*12752043^(5/17) 7014087329347539 a001 225851433717/103682*12752043^(6/17) 7014087329347540 a001 9227465/103682*141422324^(11/13) 7014087329347540 a001 9227465/103682*2537720636^(11/15) 7014087329347540 a001 46368/20633239*(1/2+1/2*5^(1/2))^55 7014087329347540 a001 46368/20633239*3461452808002^(11/12) 7014087329347540 a001 9227465/103682*45537549124^(11/17) 7014087329347540 a001 9227465/103682*312119004989^(3/5) 7014087329347540 a001 9227465/103682*817138163596^(11/19) 7014087329347540 a001 9227465/103682*14662949395604^(11/21) 7014087329347540 a001 9227465/103682*(1/2+1/2*5^(1/2))^33 7014087329347540 a001 9227465/103682*192900153618^(11/18) 7014087329347540 a001 9227465/103682*10749957122^(11/16) 7014087329347540 a001 9227465/103682*1568397607^(3/4) 7014087329347540 a001 9227465/103682*599074578^(11/14) 7014087329347541 a001 43133785636/51841*12752043^(7/17) 7014087329347544 a001 32951280099/103682*12752043^(8/17) 7014087329347545 a001 10182505537/51841*12752043^(1/2) 7014087329347546 a001 9227465/103682*33385282^(11/12) 7014087329347546 a001 12586269025/103682*12752043^(9/17) 7014087329347549 a001 46368*12752043^(10/17) 7014087329347552 a001 1836311903/103682*12752043^(11/17) 7014087329347554 a001 701408733/103682*12752043^(12/17) 7014087329347557 a001 133957148/51841*12752043^(13/17) 7014087329347558 a001 7465176/51841*12752043^(16/17) 7014087329347559 a001 102334155/103682*12752043^(14/17) 7014087329347561 a001 225749145909/2206*4870847^(1/8) 7014087329347561 a001 39088169/103682*12752043^(15/17) 7014087329347567 a001 4000054744740096/5702887 7014087329347579 a001 4052739537881/103682*4870847^(3/16) 7014087329347598 a001 774004377960/51841*4870847^(1/4) 7014087329347616 a001 591286729879/103682*4870847^(5/16) 7014087329347635 a001 225851433717/103682*4870847^(3/8) 7014087329347637 a001 1762289/51841*2537720636^(7/9) 7014087329347637 a001 11592/1970299*(1/2+1/2*5^(1/2))^53 7014087329347637 a001 1762289/51841*17393796001^(5/7) 7014087329347637 a001 1762289/51841*312119004989^(7/11) 7014087329347637 a001 1762289/51841*14662949395604^(5/9) 7014087329347637 a001 1762289/51841*(1/2+1/2*5^(1/2))^35 7014087329347637 a001 1762289/51841*505019158607^(5/8) 7014087329347637 a001 1762289/51841*28143753123^(7/10) 7014087329347637 a001 1762289/51841*599074578^(5/6) 7014087329347637 a001 1762289/51841*228826127^(7/8) 7014087329347653 a001 43133785636/51841*4870847^(7/16) 7014087329347671 a001 32951280099/103682*4870847^(1/2) 7014087329347690 a001 12586269025/103682*4870847^(9/16) 7014087329347708 a001 46368*4870847^(5/8) 7014087329347727 a001 1836311903/103682*4870847^(11/16) 7014087329347745 a001 701408733/103682*4870847^(3/4) 7014087329347764 a001 133957148/51841*4870847^(13/16) 7014087329347782 a001 102334155/103682*4870847^(7/8) 7014087329347794 a001 225749145909/2206*1860498^(2/15) 7014087329347800 a001 39088169/103682*4870847^(15/16) 7014087329347819 a001 72756426458592/103729 7014087329347861 a001 3278735159921/51841*1860498^(1/6) 7014087329347929 a001 4052739537881/103682*1860498^(1/5) 7014087329348064 a001 774004377960/51841*1860498^(4/15) 7014087329348132 a001 956722026041/103682*1860498^(3/10) 7014087329348199 a001 591286729879/103682*1860498^(1/3) 7014087329348298 a001 46368/3010349*817138163596^(17/19) 7014087329348298 a001 46368/3010349*14662949395604^(17/21) 7014087329348298 a001 46368/3010349*(1/2+1/2*5^(1/2))^51 7014087329348298 a001 46368/3010349*192900153618^(17/18) 7014087329348298 a001 1346269/103682*(1/2+1/2*5^(1/2))^37 7014087329348334 a001 225851433717/103682*1860498^(2/5) 7014087329348469 a001 43133785636/51841*1860498^(7/15) 7014087329348537 a001 53316291173/103682*1860498^(1/2) 7014087329348604 a001 32951280099/103682*1860498^(8/15) 7014087329348739 a001 12586269025/103682*1860498^(3/5) 7014087329348875 a001 46368*1860498^(2/3) 7014087329348942 a001 2971215073/103682*1860498^(7/10) 7014087329349010 a001 1836311903/103682*1860498^(11/15) 7014087329349145 a001 701408733/103682*1860498^(4/5) 7014087329349212 a001 433494437/103682*1860498^(5/6) 7014087329349280 a001 133957148/51841*1860498^(13/15) 7014087329349347 a001 165580141/103682*1860498^(9/10) 7014087329349415 a001 102334155/103682*1860498^(14/15) 7014087329349508 a001 225749145909/2206*710647^(1/7) 7014087329349550 a001 1326363913980/1891 7014087329350500 a001 4052739537881/103682*710647^(3/14) 7014087329350996 a001 2504730781961/103682*710647^(1/4) 7014087329351492 a001 774004377960/51841*710647^(2/7) 7014087329352484 a001 591286729879/103682*710647^(5/14) 7014087329352829 a001 514229/103682*2537720636^(13/15) 7014087329352829 a001 46368/1149851*14662949395604^(7/9) 7014087329352829 a001 46368/1149851*(1/2+1/2*5^(1/2))^49 7014087329352829 a001 46368/1149851*505019158607^(7/8) 7014087329352829 a001 514229/103682*45537549124^(13/17) 7014087329352829 a001 514229/103682*14662949395604^(13/21) 7014087329352829 a001 514229/103682*(1/2+1/2*5^(1/2))^39 7014087329352829 a001 514229/103682*192900153618^(13/18) 7014087329352829 a001 514229/103682*73681302247^(3/4) 7014087329352829 a001 514229/103682*10749957122^(13/16) 7014087329352829 a001 514229/103682*599074578^(13/14) 7014087329353476 a001 225851433717/103682*710647^(3/7) 7014087329354468 a001 43133785636/51841*710647^(1/2) 7014087329355460 a001 32951280099/103682*710647^(4/7) 7014087329356452 a001 12586269025/103682*710647^(9/14) 7014087329357444 a001 46368*710647^(5/7) 7014087329357940 a001 2971215073/103682*710647^(3/4) 7014087329357986 a001 365435296162/167761*64079^(12/23) 7014087329358436 a001 1836311903/103682*710647^(11/14) 7014087329359428 a001 701408733/103682*710647^(6/7) 7014087329360420 a001 133957148/51841*710647^(13/14) 7014087329361412 a001 74305136941056/105937 7014087329362169 a001 225749145909/2206*271443^(2/13) 7014087329367933 a001 4052739537881/439204*64079^(9/23) 7014087329369492 a001 4052739537881/103682*271443^(3/13) 7014087329376814 a001 774004377960/51841*271443^(4/13) 7014087329383885 a001 11592/109801*(1/2+1/2*5^(1/2))^47 7014087329383885 a001 98209/51841*(1/2+1/2*5^(1/2))^41 7014087329384137 a001 591286729879/103682*271443^(5/13) 7014087329384916 a001 6557470319842/271443*64079^(7/23) 7014087329390163 a001 2971215073/39603*39603^(19/22) 7014087329391460 a001 225851433717/103682*271443^(6/13) 7014087329391953 a001 1515744265389/101521*64079^(8/23) 7014087329395121 a001 139583862445/103682*271443^(1/2) 7014087329398782 a001 43133785636/51841*271443^(7/13) 7014087329406105 a001 32951280099/103682*271443^(8/13) 7014087329413428 a001 12586269025/103682*271443^(9/13) 7014087329420751 a001 46368*271443^(10/13) 7014087329428073 a001 1836311903/103682*271443^(11/13) 7014087329432256 a001 591286729879/167761*64079^(11/23) 7014087329435396 a001 701408733/103682*271443^(12/13) 7014087329442203 a001 3278735159921/219602*64079^(8/23) 7014087329442719 a001 85146110318304/121393 7014087329456270 a001 225749145909/2206*103682^(1/6) 7014087329459186 a001 3536736619241/90481*64079^(6/23) 7014087329478069 a001 6557470319842/64079*24476^(4/21) 7014087329483456 a001 3278735159921/51841*103682^(5/24) 7014087329506526 a001 956722026041/167761*64079^(10/23) 7014087329510643 a001 4052739537881/103682*103682^(1/4) 7014087329516473 a001 10610209857723/439204*64079^(7/23) 7014087329537829 a001 2504730781961/103682*103682^(7/24) 7014087329565016 a001 774004377960/51841*103682^(1/3) 7014087329580795 a001 140728068720/15251*64079^(9/23) 7014087329592202 a001 956722026041/103682*103682^(3/8) 7014087329593442 a001 1836311903/39603*39603^(10/11) 7014087329596747 a001 46368/167761*45537549124^(15/17) 7014087329596747 a001 46368/167761*312119004989^(9/11) 7014087329596747 a001 46368/167761*14662949395604^(5/7) 7014087329596747 a001 46368/167761*(1/2+1/2*5^(1/2))^45 7014087329596747 a001 46368/167761*192900153618^(5/6) 7014087329596747 a001 46368/167761*28143753123^(9/10) 7014087329596747 a001 75025/103682*(1/2+1/2*5^(1/2))^43 7014087329596747 a001 46368/167761*10749957122^(15/16) 7014087329619389 a001 591286729879/103682*103682^(5/12) 7014087329646575 a001 182717648081/51841*103682^(11/24) 7014087329655065 a001 2504730781961/167761*64079^(8/23) 7014087329655581 a001 52623190190741/75025 7014087329673762 a001 225851433717/103682*103682^(1/2) 7014087329700948 a001 139583862445/103682*103682^(13/24) 7014087329705426 a001 12586269025/271443*167761^(4/5) 7014087329728135 a001 43133785636/51841*103682^(7/12) 7014087329729335 a001 4052739537881/167761*64079^(7/23) 7014087329736887 a001 52623190191351/75025 7014087329748750 a001 10524638038288/15005 7014087329750483 a001 52623190191453/75025 7014087329750749 a001 10524638038291/15005 7014087329750883 a001 52623190191456/75025 7014087329751549 a001 52623190191461/75025 7014087329755270 a001 139583862445/271443*167761^(3/5) 7014087329755321 a001 53316291173/103682*103682^(5/8) 7014087329756081 a001 10524638038299/15005 7014087329782508 a001 32951280099/103682*103682^(2/3) 7014087329786732 a001 32951280099/710647*167761^(4/5) 7014087329787137 a001 52623190191728/75025 7014087329796721 a001 1134903170/39603*39603^(21/22) 7014087329798594 a001 43133785636/930249*167761^(4/5) 7014087329800325 a001 225851433717/4870847*167761^(4/5) 7014087329800577 a001 591286729879/12752043*167761^(4/5) 7014087329800614 a001 774004377960/16692641*167761^(4/5) 7014087329800620 a001 4052739537881/87403803*167761^(4/5) 7014087329800620 a001 225749145909/4868641*167761^(4/5) 7014087329800621 a001 3278735159921/70711162*167761^(4/5) 7014087329800623 a001 2504730781961/54018521*167761^(4/5) 7014087329800637 a001 956722026041/20633239*167761^(4/5) 7014087329800734 a001 182717648081/3940598*167761^(4/5) 7014087329801395 a001 139583862445/3010349*167761^(4/5) 7014087329803605 a001 6557470319842/167761*64079^(6/23) 7014087329805115 a001 516002918640/90481*167761^(2/5) 7014087329805926 a001 53316291173/1149851*167761^(4/5) 7014087329809610 a001 121393/271443*312119004989^(4/5) 7014087329809610 a001 121393/271443*(1/2+1/2*5^(1/2))^44 7014087329809610 a001 121393/271443*23725150497407^(11/16) 7014087329809610 a001 121393/271443*73681302247^(11/13) 7014087329809610 a001 121393/271443*10749957122^(11/12) 7014087329809610 a001 121393/271443*4106118243^(22/23) 7014087329809694 a001 10182505537/51841*103682^(17/24) 7014087329836577 a001 365435296162/710647*167761^(3/5) 7014087329836881 a001 12586269025/103682*103682^(3/4) 7014087329836982 a001 10182505537/219602*167761^(4/5) 7014087329848439 a001 956722026041/1860498*167761^(3/5) 7014087329850170 a001 2504730781961/4870847*167761^(3/5) 7014087329850422 a001 6557470319842/12752043*167761^(3/5) 7014087329850482 a001 10610209857723/20633239*167761^(3/5) 7014087329850578 a001 4052739537881/7881196*167761^(3/5) 7014087329851239 a001 1548008755920/3010349*167761^(3/5) 7014087329855770 a001 514229*167761^(3/5) 7014087329864067 a001 7778742049/103682*103682^(19/24) 7014087329868443 a001 4052038250465/5777 7014087329872483 a001 1836311903/271443*439204^(8/9) 7014087329876524 a001 7778742049/271443*439204^(7/9) 7014087329877874 a001 10610209857723/167761*64079^(5/23) 7014087329880564 a001 121393*439204^(2/3) 7014087329884604 a001 139583862445/271443*439204^(5/9) 7014087329886421 a001 4052739537881/710647*167761^(2/5) 7014087329886827 a001 225851433717/439204*167761^(3/5) 7014087329888644 a001 591286729879/271443*439204^(4/9) 7014087329890916 a001 105937/90481*2537720636^(14/15) 7014087329890916 a001 105937/90481*17393796001^(6/7) 7014087329890916 a001 105937/90481*45537549124^(14/17) 7014087329890916 a001 121393/710647*(1/2+1/2*5^(1/2))^46 7014087329890916 a001 105937/90481*817138163596^(14/19) 7014087329890916 a001 105937/90481*14662949395604^(2/3) 7014087329890916 a001 105937/90481*(1/2+1/2*5^(1/2))^42 7014087329890916 a001 105937/90481*505019158607^(3/4) 7014087329890916 a001 105937/90481*192900153618^(7/9) 7014087329890916 a001 105937/90481*10749957122^(7/8) 7014087329890916 a001 121393/710647*10749957122^(23/24) 7014087329890916 a001 105937/90481*4106118243^(21/23) 7014087329890916 a001 105937/90481*1568397607^(21/22) 7014087329891254 a001 46368*103682^(5/6) 7014087329892684 a001 2504730781961/271443*439204^(1/3) 7014087329896724 a001 3536736619241/90481*439204^(2/9) 7014087329898284 a001 3536736619241/620166*167761^(2/5) 7014087329899500 a001 360684711356689/514229 7014087329902778 a001 832040/271443*2537720636^(8/9) 7014087329902778 a001 121393/1860498*45537549124^(16/17) 7014087329902778 a001 121393/1860498*14662949395604^(16/21) 7014087329902778 a001 121393/1860498*(1/2+1/2*5^(1/2))^48 7014087329902778 a001 121393/1860498*192900153618^(8/9) 7014087329902778 a001 121393/1860498*73681302247^(12/13) 7014087329902778 a001 832040/271443*312119004989^(8/11) 7014087329902778 a001 832040/271443*(1/2+1/2*5^(1/2))^40 7014087329902778 a001 832040/271443*23725150497407^(5/8) 7014087329902778 a001 832040/271443*73681302247^(10/13) 7014087329902778 a001 832040/271443*28143753123^(4/5) 7014087329902778 a001 832040/271443*10749957122^(5/6) 7014087329902778 a001 832040/271443*4106118243^(20/23) 7014087329902778 a001 832040/271443*1568397607^(10/11) 7014087329902778 a001 832040/271443*599074578^(20/21) 7014087329904031 a001 944284833554257/1346269 7014087329904509 a001 121393/4870847*312119004989^(10/11) 7014087329904509 a001 121393/4870847*(1/2+1/2*5^(1/2))^50 7014087329904509 a001 121393/4870847*3461452808002^(5/6) 7014087329904509 a001 726103/90481*817138163596^(2/3) 7014087329904509 a001 726103/90481*(1/2+1/2*5^(1/2))^38 7014087329904509 a001 726103/90481*10749957122^(19/24) 7014087329904509 a001 726103/90481*4106118243^(19/23) 7014087329904509 a001 726103/90481*1568397607^(19/22) 7014087329904509 a001 726103/90481*599074578^(19/21) 7014087329904509 a001 726103/90481*228826127^(19/20) 7014087329904692 a001 1236084894653041/1762289 7014087329904702 a001 34111385/90481*7881196^(10/11) 7014087329904712 a001 433494437/271443*7881196^(9/11) 7014087329904722 a001 1836311903/271443*7881196^(8/11) 7014087329904729 a001 1602508992/90481*7881196^(2/3) 7014087329904733 a001 7778742049/271443*7881196^(7/11) 7014087329904743 a001 121393*7881196^(6/11) 7014087329904753 a001 139583862445/271443*7881196^(5/11) 7014087329904761 a001 5702887/271443*141422324^(12/13) 7014087329904761 a001 5702887/271443*2537720636^(4/5) 7014087329904761 a001 5702887/271443*45537549124^(12/17) 7014087329904761 a001 121393/12752043*(1/2+1/2*5^(1/2))^52 7014087329904761 a001 121393/12752043*23725150497407^(13/16) 7014087329904761 a001 121393/12752043*505019158607^(13/14) 7014087329904761 a001 5702887/271443*14662949395604^(4/7) 7014087329904761 a001 5702887/271443*(1/2+1/2*5^(1/2))^36 7014087329904761 a001 5702887/271443*505019158607^(9/14) 7014087329904761 a001 5702887/271443*192900153618^(2/3) 7014087329904761 a001 5702887/271443*73681302247^(9/13) 7014087329904761 a001 5702887/271443*10749957122^(3/4) 7014087329904761 a001 5702887/271443*4106118243^(18/23) 7014087329904761 a001 5702887/271443*1568397607^(9/11) 7014087329904761 a001 5702887/271443*599074578^(6/7) 7014087329904762 a001 5702887/271443*228826127^(9/10) 7014087329904762 a001 5702887/271443*87403803^(18/19) 7014087329904763 a001 591286729879/271443*7881196^(4/11) 7014087329904767 a001 956722026041/271443*7881196^(1/3) 7014087329904774 a001 2504730781961/271443*7881196^(3/11) 7014087329904784 a001 3536736619241/90481*7881196^(2/11) 7014087329904788 a001 6472224534363989/9227465 7014087329904790 a001 34111385/90481*20633239^(6/7) 7014087329904791 a001 267914296/271443*20633239^(4/5) 7014087329904793 a001 1134903170/271443*20633239^(5/7) 7014087329904795 a001 7778742049/271443*20633239^(3/5) 7014087329904795 a001 12586269025/271443*20633239^(4/7) 7014087329904797 a001 139583862445/271443*20633239^(3/7) 7014087329904798 a001 75283811239/90481*20633239^(2/5) 7014087329904798 a001 4976784/90481*45537549124^(2/3) 7014087329904798 a001 121393/33385282*14662949395604^(6/7) 7014087329904798 a001 121393/33385282*(1/2+1/2*5^(1/2))^54 7014087329904798 a001 4976784/90481*(1/2+1/2*5^(1/2))^34 7014087329904798 a001 4976784/90481*10749957122^(17/24) 7014087329904798 a001 4976784/90481*4106118243^(17/23) 7014087329904798 a001 4976784/90481*1568397607^(17/22) 7014087329904798 a001 4976784/90481*599074578^(17/21) 7014087329904798 a001 4976784/90481*228826127^(17/20) 7014087329904799 a001 4976784/90481*87403803^(17/19) 7014087329904800 a001 516002918640/90481*20633239^(2/7) 7014087329904801 a001 6557470319842/271443*20633239^(1/5) 7014087329904802 a001 16944503813785885/24157817 7014087329904804 a001 121393/87403803*14662949395604^(8/9) 7014087329904804 a001 39088169/271443*(1/2+1/2*5^(1/2))^32 7014087329904804 a001 39088169/271443*23725150497407^(1/2) 7014087329904804 a001 39088169/271443*505019158607^(4/7) 7014087329904804 a001 39088169/271443*73681302247^(8/13) 7014087329904804 a001 39088169/271443*10749957122^(2/3) 7014087329904804 a001 39088169/271443*4106118243^(16/23) 7014087329904804 a001 39088169/271443*1568397607^(8/11) 7014087329904804 a001 39088169/271443*599074578^(16/21) 7014087329904804 a001 39088169/271443*228826127^(4/5) 7014087329904804 a001 34111385/90481*141422324^(10/13) 7014087329904804 a001 95195894650201/135721 7014087329904804 a001 4976784/90481*33385282^(17/18) 7014087329904804 a001 233802911/90481*141422324^(2/3) 7014087329904804 a001 433494437/271443*141422324^(9/13) 7014087329904804 a001 1836311903/271443*141422324^(8/13) 7014087329904804 a001 7778742049/271443*141422324^(7/13) 7014087329904804 a001 121393*141422324^(6/13) 7014087329904804 a001 39088169/271443*87403803^(16/19) 7014087329904804 a001 139583862445/271443*141422324^(5/13) 7014087329904804 a001 34111385/90481*2537720636^(2/3) 7014087329904804 a001 34111385/90481*45537549124^(10/17) 7014087329904804 a001 34111385/90481*312119004989^(6/11) 7014087329904804 a001 34111385/90481*14662949395604^(10/21) 7014087329904804 a001 34111385/90481*(1/2+1/2*5^(1/2))^30 7014087329904804 a001 34111385/90481*192900153618^(5/9) 7014087329904804 a001 34111385/90481*28143753123^(3/5) 7014087329904804 a001 34111385/90481*10749957122^(5/8) 7014087329904804 a001 34111385/90481*4106118243^(15/23) 7014087329904804 a001 34111385/90481*1568397607^(15/22) 7014087329904804 a001 34111385/90481*599074578^(5/7) 7014087329904804 a001 365435296162/271443*141422324^(1/3) 7014087329904804 a001 591286729879/271443*141422324^(4/13) 7014087329904804 a001 2504730781961/271443*141422324^(3/13) 7014087329904805 a001 3536736619241/90481*141422324^(2/13) 7014087329904805 a001 116139356907195113/165580141 7014087329904805 a001 34111385/90481*228826127^(3/4) 7014087329904805 a001 267914296/271443*17393796001^(4/7) 7014087329904805 a001 121393/599074578*14662949395604^(20/21) 7014087329904805 a001 267914296/271443*14662949395604^(4/9) 7014087329904805 a001 267914296/271443*(1/2+1/2*5^(1/2))^28 7014087329904805 a001 267914296/271443*505019158607^(1/2) 7014087329904805 a001 267914296/271443*73681302247^(7/13) 7014087329904805 a001 267914296/271443*10749957122^(7/12) 7014087329904805 a001 267914296/271443*4106118243^(14/23) 7014087329904805 a001 267914296/271443*1568397607^(7/11) 7014087329904805 a001 304056783814591673/433494437 7014087329904805 a001 267914296/271443*599074578^(2/3) 7014087329904805 a001 233802911/90481*(1/2+1/2*5^(1/2))^26 7014087329904805 a001 233802911/90481*73681302247^(1/2) 7014087329904805 a001 233802911/90481*10749957122^(13/24) 7014087329904805 a001 233802911/90481*4106118243^(13/23) 7014087329904805 a001 233802911/90481*1568397607^(13/22) 7014087329904805 a001 23412676309899409/33379505 7014087329904805 a001 1836311903/271443*2537720636^(8/15) 7014087329904805 a001 12586269025/271443*2537720636^(4/9) 7014087329904805 a001 7778742049/271443*2537720636^(7/15) 7014087329904805 a001 121393*2537720636^(2/5) 7014087329904805 a001 1836311903/271443*45537549124^(8/17) 7014087329904805 a001 1836311903/271443*14662949395604^(8/21) 7014087329904805 a001 1836311903/271443*(1/2+1/2*5^(1/2))^24 7014087329904805 a001 1836311903/271443*192900153618^(4/9) 7014087329904805 a001 1836311903/271443*73681302247^(6/13) 7014087329904805 a001 1836311903/271443*10749957122^(1/2) 7014087329904805 a001 139583862445/271443*2537720636^(1/3) 7014087329904805 a001 591286729879/271443*2537720636^(4/15) 7014087329904805 a001 516002918640/90481*2537720636^(2/9) 7014087329904805 a001 2504730781961/271443*2537720636^(1/5) 7014087329904805 a001 1836311903/271443*4106118243^(12/23) 7014087329904805 a001 3536736619241/90481*2537720636^(2/15) 7014087329904805 a001 1602508992/90481*312119004989^(2/5) 7014087329904805 a001 1602508992/90481*(1/2+1/2*5^(1/2))^22 7014087329904805 a001 1602508992/90481*10749957122^(11/24) 7014087329904805 a001 12586269025/271443*(1/2+1/2*5^(1/2))^20 7014087329904805 a001 12586269025/271443*23725150497407^(5/16) 7014087329904805 a001 12586269025/271443*505019158607^(5/14) 7014087329904805 a001 12586269025/271443*73681302247^(5/13) 7014087329904805 a001 75283811239/90481*17393796001^(2/7) 7014087329904805 a001 12586269025/271443*28143753123^(2/5) 7014087329904805 a001 6557470319842/271443*17393796001^(1/7) 7014087329904805 a001 121393*45537549124^(6/17) 7014087329904805 a001 121393*14662949395604^(2/7) 7014087329904805 a001 121393*(1/2+1/2*5^(1/2))^18 7014087329904805 a001 121393*192900153618^(1/3) 7014087329904805 a001 139583862445/271443*45537549124^(5/17) 7014087329904805 a001 591286729879/271443*45537549124^(4/17) 7014087329904805 a001 53316291173/271443*45537549124^(1/3) 7014087329904805 a001 2504730781961/271443*45537549124^(3/17) 7014087329904805 a001 3536736619241/90481*45537549124^(2/17) 7014087329904805 a001 86267571272/271443*(1/2+1/2*5^(1/2))^16 7014087329904805 a001 86267571272/271443*23725150497407^(1/4) 7014087329904805 a001 75283811239/90481*14662949395604^(2/9) 7014087329904805 a001 75283811239/90481*(1/2+1/2*5^(1/2))^14 7014087329904805 a001 75283811239/90481*505019158607^(1/4) 7014087329904805 a001 591286729879/271443*14662949395604^(4/21) 7014087329904805 a001 2504730781961/271443*817138163596^(3/19) 7014087329904805 a001 516002918640/90481*(1/2+1/2*5^(1/2))^10 7014087329904805 a001 4052739537881/271443*23725150497407^(1/8) 7014087329904805 a001 3536736619241/90481*(1/2+1/2*5^(1/2))^6 7014087329904805 a001 2504730781961/271443*14662949395604^(1/7) 7014087329904805 a001 2504730781961/271443*(1/2+1/2*5^(1/2))^9 7014087329904805 a001 956722026041/271443*(1/2+1/2*5^(1/2))^11 7014087329904805 a001 591286729879/271443*192900153618^(2/9) 7014087329904805 a001 139583862445/271443*312119004989^(3/11) 7014087329904805 a001 139583862445/271443*14662949395604^(5/21) 7014087329904805 a001 139583862445/271443*(1/2+1/2*5^(1/2))^15 7014087329904805 a001 139583862445/271443*192900153618^(5/18) 7014087329904805 a001 4052739537881/271443*73681302247^(2/13) 7014087329904805 a001 86267571272/271443*73681302247^(4/13) 7014087329904805 a001 591286729879/271443*73681302247^(3/13) 7014087329904805 a001 365435296162/271443*73681302247^(1/4) 7014087329904805 a001 516002918640/90481*28143753123^(1/5) 7014087329904805 a001 139583862445/271443*28143753123^(3/10) 7014087329904805 a001 20365011074/271443*817138163596^(1/3) 7014087329904805 a001 20365011074/271443*(1/2+1/2*5^(1/2))^19 7014087329904805 a001 3536736619241/90481*10749957122^(1/8) 7014087329904805 a001 4052739537881/271443*10749957122^(1/6) 7014087329904805 a001 2504730781961/271443*10749957122^(3/16) 7014087329904805 a001 516002918640/90481*10749957122^(5/24) 7014087329904805 a001 7778742049/271443*17393796001^(3/7) 7014087329904805 a001 591286729879/271443*10749957122^(1/4) 7014087329904805 a001 12586269025/271443*10749957122^(5/12) 7014087329904805 a001 75283811239/90481*10749957122^(7/24) 7014087329904805 a001 139583862445/271443*10749957122^(5/16) 7014087329904805 a001 86267571272/271443*10749957122^(1/3) 7014087329904805 a001 121393*10749957122^(3/8) 7014087329904805 a001 7778742049/271443*45537549124^(7/17) 7014087329904805 a001 7778742049/271443*14662949395604^(1/3) 7014087329904805 a001 7778742049/271443*(1/2+1/2*5^(1/2))^21 7014087329904805 a001 7778742049/271443*192900153618^(7/18) 7014087329904805 a001 7778742049/271443*10749957122^(7/16) 7014087329904805 a001 3536736619241/90481*4106118243^(3/23) 7014087329904805 a001 4052739537881/271443*4106118243^(4/23) 7014087329904805 a001 516002918640/90481*4106118243^(5/23) 7014087329904805 a001 591286729879/271443*4106118243^(6/23) 7014087329904805 a001 75283811239/90481*4106118243^(7/23) 7014087329904805 a001 1602508992/90481*4106118243^(11/23) 7014087329904805 a001 86267571272/271443*4106118243^(8/23) 7014087329904805 a001 2971215073/271443*(1/2+1/2*5^(1/2))^23 7014087329904805 a001 121393*4106118243^(9/23) 7014087329904805 a001 12586269025/271443*4106118243^(10/23) 7014087329904805 a001 2971215073/271443*4106118243^(1/2) 7014087329904805 a001 3536736619241/90481*1568397607^(3/22) 7014087329904805 a001 1288005205258568139/1836311903 7014087329904805 a001 1134903170/271443*2537720636^(5/9) 7014087329904805 a001 4052739537881/271443*1568397607^(2/11) 7014087329904805 a001 516002918640/90481*1568397607^(5/22) 7014087329904805 a001 956722026041/271443*1568397607^(1/4) 7014087329904805 a001 591286729879/271443*1568397607^(3/11) 7014087329904805 a001 75283811239/90481*1568397607^(7/22) 7014087329904805 a001 86267571272/271443*1568397607^(4/11) 7014087329904805 a001 1134903170/271443*312119004989^(5/11) 7014087329904805 a001 1134903170/271443*(1/2+1/2*5^(1/2))^25 7014087329904805 a001 1134903170/271443*3461452808002^(5/12) 7014087329904805 a001 1134903170/271443*28143753123^(1/2) 7014087329904805 a001 1836311903/271443*1568397607^(6/11) 7014087329904805 a001 121393*1568397607^(9/22) 7014087329904805 a001 12586269025/271443*1568397607^(5/11) 7014087329904805 a001 1602508992/90481*1568397607^(1/2) 7014087329904805 a001 3536736619241/90481*599074578^(1/7) 7014087329904805 a001 491974210721988233/701408733 7014087329904805 a001 6557470319842/271443*599074578^(1/6) 7014087329904805 a001 4052739537881/271443*599074578^(4/21) 7014087329904805 a001 2504730781961/271443*599074578^(3/14) 7014087329904805 a001 516002918640/90481*599074578^(5/21) 7014087329904805 a001 591286729879/271443*599074578^(2/7) 7014087329904805 a001 75283811239/90481*599074578^(1/3) 7014087329904805 a001 433494437/271443*2537720636^(3/5) 7014087329904805 a001 139583862445/271443*599074578^(5/14) 7014087329904805 a001 86267571272/271443*599074578^(8/21) 7014087329904805 a001 433494437/271443*45537549124^(9/17) 7014087329904805 a001 433494437/271443*817138163596^(9/19) 7014087329904805 a001 433494437/271443*14662949395604^(3/7) 7014087329904805 a001 433494437/271443*(1/2+1/2*5^(1/2))^27 7014087329904805 a001 433494437/271443*192900153618^(1/2) 7014087329904805 a001 433494437/271443*10749957122^(9/16) 7014087329904805 a001 121393*599074578^(3/7) 7014087329904805 a001 233802911/90481*599074578^(13/21) 7014087329904805 a001 12586269025/271443*599074578^(10/21) 7014087329904805 a001 7778742049/271443*599074578^(1/2) 7014087329904805 a001 1602508992/90481*599074578^(11/21) 7014087329904805 a001 1836311903/271443*599074578^(4/7) 7014087329904805 a001 23489678363424570/33489287 7014087329904805 a001 433494437/271443*599074578^(9/14) 7014087329904805 a001 3536736619241/90481*228826127^(3/20) 7014087329904805 a001 4052739537881/271443*228826127^(1/5) 7014087329904805 a001 516002918640/90481*228826127^(1/4) 7014087329904805 a001 591286729879/271443*228826127^(3/10) 7014087329904805 a001 75283811239/90481*228826127^(7/20) 7014087329904805 a001 139583862445/271443*228826127^(3/8) 7014087329904805 a001 165580141/271443*(1/2+1/2*5^(1/2))^29 7014087329904805 a001 165580141/271443*1322157322203^(1/2) 7014087329904805 a001 86267571272/271443*228826127^(2/5) 7014087329904805 a001 121393*228826127^(9/20) 7014087329904805 a001 12586269025/271443*228826127^(1/2) 7014087329904805 a001 1602508992/90481*228826127^(11/20) 7014087329904805 a001 267914296/271443*228826127^(7/10) 7014087329904805 a001 1836311903/271443*228826127^(3/5) 7014087329904805 a001 233802911/90481*228826127^(13/20) 7014087329904805 a001 1134903170/271443*228826127^(5/8) 7014087329904805 a001 71778070000201447/102334155 7014087329904805 a001 3536736619241/90481*87403803^(3/19) 7014087329904805 a001 4052739537881/271443*87403803^(4/19) 7014087329904805 a001 516002918640/90481*87403803^(5/19) 7014087329904805 a001 591286729879/271443*87403803^(6/19) 7014087329904805 a001 75283811239/90481*87403803^(7/19) 7014087329904805 a001 233/271444*14662949395604^(19/21) 7014087329904805 a001 63245986/271443*(1/2+1/2*5^(1/2))^31 7014087329904805 a001 63245986/271443*9062201101803^(1/2) 7014087329904805 a001 86267571272/271443*87403803^(8/19) 7014087329904805 a001 121393*87403803^(9/19) 7014087329904805 a001 20365011074/271443*87403803^(1/2) 7014087329904805 a001 12586269025/271443*87403803^(10/19) 7014087329904805 a001 1602508992/90481*87403803^(11/19) 7014087329904805 a001 1836311903/271443*87403803^(12/19) 7014087329904805 a001 34111385/90481*87403803^(15/19) 7014087329904805 a001 233802911/90481*87403803^(13/19) 7014087329904805 a001 267914296/271443*87403803^(14/19) 7014087329904805 a001 27416783093207781/39088169 7014087329904806 a001 3536736619241/90481*33385282^(1/6) 7014087329904806 a001 4052739537881/271443*33385282^(2/9) 7014087329904806 a001 2504730781961/271443*33385282^(1/4) 7014087329904806 a001 516002918640/90481*33385282^(5/18) 7014087329904807 a001 591286729879/271443*33385282^(1/3) 7014087329904807 a001 24157817/271443*141422324^(11/13) 7014087329904807 a001 24157817/271443*2537720636^(11/15) 7014087329904807 a001 24157817/271443*45537549124^(11/17) 7014087329904807 a001 121393/54018521*3461452808002^(11/12) 7014087329904807 a001 24157817/271443*312119004989^(3/5) 7014087329904807 a001 24157817/271443*817138163596^(11/19) 7014087329904807 a001 24157817/271443*14662949395604^(11/21) 7014087329904807 a001 24157817/271443*(1/2+1/2*5^(1/2))^33 7014087329904807 a001 24157817/271443*192900153618^(11/18) 7014087329904807 a001 24157817/271443*10749957122^(11/16) 7014087329904807 a001 24157817/271443*1568397607^(3/4) 7014087329904807 a001 24157817/271443*599074578^(11/14) 7014087329904807 a001 75283811239/90481*33385282^(7/18) 7014087329904807 a001 139583862445/271443*33385282^(5/12) 7014087329904807 a001 86267571272/271443*33385282^(4/9) 7014087329904808 a001 121393*33385282^(1/2) 7014087329904808 a001 12586269025/271443*33385282^(5/9) 7014087329904808 a001 7778742049/271443*33385282^(7/12) 7014087329904808 a001 1602508992/90481*33385282^(11/18) 7014087329904809 a001 1836311903/271443*33385282^(2/3) 7014087329904809 a001 233802911/90481*33385282^(13/18) 7014087329904809 a001 39088169/271443*33385282^(8/9) 7014087329904809 a001 433494437/271443*33385282^(3/4) 7014087329904809 a001 267914296/271443*33385282^(7/9) 7014087329904810 a001 34111385/90481*33385282^(5/6) 7014087329904811 a001 4052739659219/5778 7014087329904812 a001 3536736619241/90481*12752043^(3/17) 7014087329904813 a001 24157817/271443*33385282^(11/12) 7014087329904815 a001 4052739537881/271443*12752043^(4/17) 7014087329904817 a001 516002918640/90481*12752043^(5/17) 7014087329904820 a001 591286729879/271443*12752043^(6/17) 7014087329904821 a001 9227465/271443*2537720636^(7/9) 7014087329904821 a001 9227465/271443*17393796001^(5/7) 7014087329904821 a001 121393/20633239*(1/2+1/2*5^(1/2))^53 7014087329904821 a001 9227465/271443*312119004989^(7/11) 7014087329904821 a001 9227465/271443*14662949395604^(5/9) 7014087329904821 a001 9227465/271443*(1/2+1/2*5^(1/2))^35 7014087329904821 a001 9227465/271443*505019158607^(5/8) 7014087329904821 a001 9227465/271443*28143753123^(7/10) 7014087329904821 a001 9227465/271443*599074578^(5/6) 7014087329904821 a001 9227465/271443*228826127^(7/8) 7014087329904822 a001 75283811239/90481*12752043^(7/17) 7014087329904825 a001 86267571272/271443*12752043^(8/17) 7014087329904826 a001 53316291173/271443*12752043^(1/2) 7014087329904827 a001 121393*12752043^(9/17) 7014087329904830 a001 12586269025/271443*12752043^(10/17) 7014087329904832 a001 1602508992/90481*12752043^(11/17) 7014087329904835 a001 1836311903/271443*12752043^(12/17) 7014087329904838 a001 233802911/90481*12752043^(13/17) 7014087329904840 a001 267914296/271443*12752043^(14/17) 7014087329904842 a001 34111385/90481*12752043^(15/17) 7014087329904844 a001 39088169/271443*12752043^(16/17) 7014087329904848 a001 4000054745057907/5702887 7014087329904860 a001 3536736619241/90481*4870847^(3/16) 7014087329904878 a001 4052739537881/271443*4870847^(1/4) 7014087329904897 a001 516002918640/90481*4870847^(5/16) 7014087329904915 a001 591286729879/271443*4870847^(3/8) 7014087329904917 a001 121393/7881196*817138163596^(17/19) 7014087329904917 a001 121393/7881196*14662949395604^(17/21) 7014087329904917 a001 121393/7881196*(1/2+1/2*5^(1/2))^51 7014087329904917 a001 121393/7881196*192900153618^(17/18) 7014087329904934 a001 75283811239/90481*4870847^(7/16) 7014087329904952 a001 86267571272/271443*4870847^(1/2) 7014087329904971 a001 121393*4870847^(9/16) 7014087329904989 a001 12586269025/271443*4870847^(5/8) 7014087329905008 a001 1602508992/90481*4870847^(11/16) 7014087329905026 a001 1836311903/271443*4870847^(3/4) 7014087329905045 a001 233802911/90481*4870847^(13/16) 7014087329905063 a001 267914296/271443*4870847^(7/8) 7014087329905082 a001 34111385/90481*4870847^(15/16) 7014087329905100 a001 1527884955751825/2178309 7014087329905210 a001 3536736619241/90481*1860498^(1/5) 7014087329905345 a001 4052739537881/271443*1860498^(4/15) 7014087329905412 a001 2504730781961/271443*1860498^(3/10) 7014087329905480 a001 516002918640/90481*1860498^(1/3) 7014087329905579 a001 1346269/271443*2537720636^(13/15) 7014087329905579 a001 1346269/271443*45537549124^(13/17) 7014087329905579 a001 121393/3010349*14662949395604^(7/9) 7014087329905579 a001 121393/3010349*(1/2+1/2*5^(1/2))^49 7014087329905579 a001 121393/3010349*505019158607^(7/8) 7014087329905579 a001 1346269/271443*14662949395604^(13/21) 7014087329905579 a001 1346269/271443*(1/2+1/2*5^(1/2))^39 7014087329905579 a001 1346269/271443*192900153618^(13/18) 7014087329905579 a001 1346269/271443*73681302247^(3/4) 7014087329905579 a001 1346269/271443*10749957122^(13/16) 7014087329905579 a001 1346269/271443*599074578^(13/14) 7014087329905615 a001 6557470319842/1149851*167761^(2/5) 7014087329905615 a001 591286729879/271443*1860498^(2/5) 7014087329905750 a001 75283811239/90481*1860498^(7/15) 7014087329905818 a001 139583862445/271443*1860498^(1/2) 7014087329905885 a001 86267571272/271443*1860498^(8/15) 7014087329906020 a001 121393*1860498^(3/5) 7014087329906155 a001 12586269025/271443*1860498^(2/3) 7014087329906223 a001 7778742049/271443*1860498^(7/10) 7014087329906291 a001 1602508992/90481*1860498^(11/15) 7014087329906426 a001 1836311903/271443*1860498^(4/5) 7014087329906493 a001 1134903170/271443*1860498^(5/6) 7014087329906561 a001 233802911/90481*1860498^(13/15) 7014087329906628 a001 433494437/271443*1860498^(9/10) 7014087329906696 a001 267914296/271443*1860498^(14/15) 7014087329906831 a001 72950015274696/104005 7014087329907781 a001 3536736619241/90481*710647^(3/14) 7014087329908277 a001 6557470319842/271443*710647^(1/4) 7014087329908773 a001 4052739537881/271443*710647^(2/7) 7014087329909765 a001 516002918640/90481*710647^(5/14) 7014087329910110 a001 121393/1149851*(1/2+1/2*5^(1/2))^47 7014087329910110 a001 514229/271443*(1/2+1/2*5^(1/2))^41 7014087329910757 a001 591286729879/271443*710647^(3/7) 7014087329911749 a001 75283811239/90481*710647^(1/2) 7014087329912741 a001 86267571272/271443*710647^(4/7) 7014087329913733 a001 121393*710647^(9/14) 7014087329914725 a001 12586269025/271443*710647^(5/7) 7014087329915221 a001 7778742049/271443*710647^(3/4) 7014087329915717 a001 1602508992/90481*710647^(11/14) 7014087329916709 a001 1836311903/271443*710647^(6/7) 7014087329917701 a001 233802911/90481*710647^(13/14) 7014087329918440 a001 2971215073/103682*103682^(7/8) 7014087329918693 a001 222915410840879/317811 7014087329926773 a001 3536736619241/90481*271443^(3/13) 7014087329934095 a001 4052739537881/271443*271443^(4/13) 7014087329936671 a001 2504730781961/439204*167761^(2/5) 7014087329941166 a001 121393/439204*45537549124^(15/17) 7014087329941166 a001 121393/439204*312119004989^(9/11) 7014087329941166 a001 121393/439204*14662949395604^(5/7) 7014087329941166 a001 121393/439204*(1/2+1/2*5^(1/2))^45 7014087329941166 a001 121393/439204*192900153618^(5/6) 7014087329941166 a001 196418/271443*(1/2+1/2*5^(1/2))^43 7014087329941166 a001 121393/439204*28143753123^(9/10) 7014087329941166 a001 121393/439204*10749957122^(15/16) 7014087329941418 a001 516002918640/90481*271443^(5/13) 7014087329945627 a001 1836311903/103682*103682^(11/12) 7014087329948741 a001 591286729879/271443*271443^(6/13) 7014087329949750 a001 137769300517407/196418 7014087329952402 a001 365435296162/271443*271443^(1/2) 7014087329953790 a001 686789568/101521*439204^(8/9) 7014087329956063 a001 75283811239/90481*271443^(7/13) 7014087329957830 a001 20365011074/710647*439204^(7/9) 7014087329961612 a001 68884650258820/98209 7014087329961870 a001 86267571272/710647*439204^(2/3) 7014087329963343 a001 68884650258837/98209 7014087329963386 a001 86267571272/271443*271443^(8/13) 7014087329963598 a001 137769300517679/196418 7014087329963648 a001 4052038250520/5777 7014087329963750 a001 68884650258841/98209 7014087329964412 a001 137769300517695/196418 7014087329965652 a001 12586269025/1860498*439204^(8/9) 7014087329965910 a001 365435296162/710647*439204^(5/9) 7014087329967383 a001 32951280099/4870847*439204^(8/9) 7014087329967635 a001 86267571272/12752043*439204^(8/9) 7014087329967672 a001 32264490531/4769326*439204^(8/9) 7014087329967677 a001 591286729879/87403803*439204^(8/9) 7014087329967678 a001 1548008755920/228826127*439204^(8/9) 7014087329967678 a001 4052739537881/599074578*439204^(8/9) 7014087329967678 a001 1515744265389/224056801*439204^(8/9) 7014087329967678 a001 6557470319842/969323029*439204^(8/9) 7014087329967678 a001 2504730781961/370248451*439204^(8/9) 7014087329967679 a001 956722026041/141422324*439204^(8/9) 7014087329967681 a001 365435296162/54018521*439204^(8/9) 7014087329967695 a001 139583862445/20633239*439204^(8/9) 7014087329967791 a001 53316291173/7881196*439204^(8/9) 7014087329968452 a001 20365011074/3010349*439204^(8/9) 7014087329968943 a001 68884650258892/98209 7014087329969692 a001 53316291173/1860498*439204^(7/9) 7014087329969950 a001 1548008755920/710647*439204^(4/9) 7014087329970709 a001 121393*271443^(9/13) 7014087329971423 a001 139583862445/4870847*439204^(7/9) 7014087329971675 a001 365435296162/12752043*439204^(7/9) 7014087329971712 a001 956722026041/33385282*439204^(7/9) 7014087329971718 a001 2504730781961/87403803*439204^(7/9) 7014087329971718 a001 6557470319842/228826127*439204^(7/9) 7014087329971719 a001 10610209857723/370248451*439204^(7/9) 7014087329971719 a001 4052739537881/141422324*439204^(7/9) 7014087329971721 a001 1548008755920/54018521*439204^(7/9) 7014087329971735 a001 591286729879/20633239*439204^(7/9) 7014087329971831 a001 225851433717/7881196*439204^(7/9) 7014087329972222 a001 317811/710647*312119004989^(4/5) 7014087329972222 a001 317811/710647*(1/2+1/2*5^(1/2))^44 7014087329972222 a001 317811/710647*23725150497407^(11/16) 7014087329972222 a001 317811/710647*73681302247^(11/13) 7014087329972222 a001 317811/710647*10749957122^(11/12) 7014087329972222 a001 317811/710647*4106118243^(22/23) 7014087329972493 a001 86267571272/3010349*439204^(7/9) 7014087329972813 a001 567451585/51841*103682^(23/24) 7014087329972983 a001 7778742049/1149851*439204^(8/9) 7014087329973732 a001 75283811239/620166*439204^(2/3) 7014087329973990 a001 6557470319842/710647*439204^(1/3) 7014087329975463 a001 591286729879/4870847*439204^(2/3) 7014087329975716 a001 516002918640/4250681*439204^(2/3) 7014087329975752 a001 4052739537881/33385282*439204^(2/3) 7014087329975758 a001 3536736619241/29134601*439204^(2/3) 7014087329975761 a001 6557470319842/54018521*439204^(2/3) 7014087329975775 a001 2504730781961/20633239*439204^(2/3) 7014087329975872 a001 956722026041/7881196*439204^(2/3) 7014087329976533 a001 365435296162/3010349*439204^(2/3) 7014087329977024 a001 32951280099/1149851*439204^(7/9) 7014087329977772 a001 956722026041/1860498*439204^(5/9) 7014087329978031 a001 12586269025/271443*271443^(10/13) 7014087329979503 a001 2504730781961/4870847*439204^(5/9) 7014087329979756 a001 6557470319842/12752043*439204^(5/9) 7014087329979815 a001 10610209857723/20633239*439204^(5/9) 7014087329979912 a001 4052739537881/7881196*439204^(5/9) 7014087329980573 a001 1548008755920/3010349*439204^(5/9) 7014087329980806 a001 360684711360870/514229 7014087329981064 a001 139583862445/1149851*439204^(2/3) 7014087329981813 a001 4052739537881/1860498*439204^(4/9) 7014087329983543 a001 2178309*439204^(4/9) 7014087329984084 a001 832040/710647*2537720636^(14/15) 7014087329984084 a001 832040/710647*17393796001^(6/7) 7014087329984084 a001 832040/710647*45537549124^(14/17) 7014087329984084 a001 105937/620166*(1/2+1/2*5^(1/2))^46 7014087329984084 a001 832040/710647*817138163596^(14/19) 7014087329984084 a001 832040/710647*14662949395604^(2/3) 7014087329984084 a001 832040/710647*(1/2+1/2*5^(1/2))^42 7014087329984084 a001 832040/710647*505019158607^(3/4) 7014087329984084 a001 832040/710647*192900153618^(7/9) 7014087329984084 a001 832040/710647*10749957122^(7/8) 7014087329984084 a001 105937/620166*10749957122^(23/24) 7014087329984084 a001 832040/710647*4106118243^(21/23) 7014087329984084 a001 832040/710647*1568397607^(21/22) 7014087329984613 a001 6557470319842/3010349*439204^(4/9) 7014087329985104 a001 514229*439204^(5/9) 7014087329985337 a001 944284833565203/1346269 7014087329985354 a001 1602508992/90481*271443^(11/13) 7014087329985815 a001 311187/101521*2537720636^(8/9) 7014087329985815 a001 317811/4870847*45537549124^(16/17) 7014087329985815 a001 311187/101521*312119004989^(8/11) 7014087329985815 a001 317811/4870847*14662949395604^(16/21) 7014087329985815 a001 317811/4870847*(1/2+1/2*5^(1/2))^48 7014087329985815 a001 311187/101521*(1/2+1/2*5^(1/2))^40 7014087329985815 a001 311187/101521*23725150497407^(5/8) 7014087329985815 a001 317811/4870847*192900153618^(8/9) 7014087329985815 a001 311187/101521*73681302247^(10/13) 7014087329985815 a001 317811/4870847*73681302247^(12/13) 7014087329985815 a001 311187/101521*28143753123^(4/5) 7014087329985815 a001 311187/101521*10749957122^(5/6) 7014087329985815 a001 311187/101521*4106118243^(20/23) 7014087329985815 a001 311187/101521*1568397607^(10/11) 7014087329985815 a001 311187/101521*599074578^(20/21) 7014087329985998 a001 2472169789334739/3524578 7014087329986008 a001 267914296/710647*7881196^(10/11) 7014087329986018 a001 1134903170/710647*7881196^(9/11) 7014087329986029 a001 686789568/101521*7881196^(8/11) 7014087329986035 a001 12586269025/710647*7881196^(2/3) 7014087329986039 a001 20365011074/710647*7881196^(7/11) 7014087329986049 a001 86267571272/710647*7881196^(6/11) 7014087329986059 a001 365435296162/710647*7881196^(5/11) 7014087329986068 a001 105937/4250681*312119004989^(10/11) 7014087329986068 a001 105937/4250681*(1/2+1/2*5^(1/2))^50 7014087329986068 a001 105937/4250681*3461452808002^(5/6) 7014087329986068 a001 5702887/710647*(1/2+1/2*5^(1/2))^38 7014087329986068 a001 5702887/710647*10749957122^(19/24) 7014087329986068 a001 5702887/710647*4106118243^(19/23) 7014087329986068 a001 5702887/710647*1568397607^(19/22) 7014087329986068 a001 5702887/710647*599074578^(19/21) 7014087329986068 a001 5702887/710647*228826127^(19/20) 7014087329986070 a001 1548008755920/710647*7881196^(4/11) 7014087329986073 a001 2504730781961/710647*7881196^(1/3) 7014087329986080 a001 6557470319842/710647*7881196^(3/11) 7014087329986094 a001 497863425726078/709805 7014087329986097 a001 267914296/710647*20633239^(6/7) 7014087329986098 a001 701408733/710647*20633239^(4/5) 7014087329986099 a001 2971215073/710647*20633239^(5/7) 7014087329986101 a001 20365011074/710647*20633239^(3/5) 7014087329986101 a001 32951280099/710647*20633239^(4/7) 7014087329986104 a001 365435296162/710647*20633239^(3/7) 7014087329986104 a001 14930352/710647*141422324^(12/13) 7014087329986104 a001 591286729879/710647*20633239^(2/5) 7014087329986104 a001 14930352/710647*2537720636^(4/5) 7014087329986104 a001 14930352/710647*45537549124^(12/17) 7014087329986104 a001 317811/33385282*(1/2+1/2*5^(1/2))^52 7014087329986104 a001 317811/33385282*23725150497407^(13/16) 7014087329986104 a001 317811/33385282*505019158607^(13/14) 7014087329986104 a001 14930352/710647*14662949395604^(4/7) 7014087329986104 a001 14930352/710647*(1/2+1/2*5^(1/2))^36 7014087329986104 a001 14930352/710647*505019158607^(9/14) 7014087329986104 a001 14930352/710647*192900153618^(2/3) 7014087329986104 a001 14930352/710647*73681302247^(9/13) 7014087329986104 a001 14930352/710647*10749957122^(3/4) 7014087329986104 a001 14930352/710647*4106118243^(18/23) 7014087329986104 a001 14930352/710647*1568397607^(9/11) 7014087329986104 a001 14930352/710647*599074578^(6/7) 7014087329986105 a001 14930352/710647*228826127^(9/10) 7014087329986105 a001 14930352/710647*87403803^(18/19) 7014087329986106 a001 4052739537881/710647*20633239^(2/7) 7014087329986108 a001 16944503813982303/24157817 7014087329986110 a001 39088169/710647*45537549124^(2/3) 7014087329986110 a001 105937/29134601*14662949395604^(6/7) 7014087329986110 a001 39088169/710647*(1/2+1/2*5^(1/2))^34 7014087329986110 a001 39088169/710647*10749957122^(17/24) 7014087329986110 a001 39088169/710647*4106118243^(17/23) 7014087329986110 a001 39088169/710647*1568397607^(17/22) 7014087329986110 a001 39088169/710647*599074578^(17/21) 7014087329986110 a001 39088169/710647*228826127^(17/20) 7014087329986110 a001 44361286907507895/63245986 7014087329986110 a001 267914296/710647*141422324^(10/13) 7014087329986111 a001 1134903170/710647*141422324^(9/13) 7014087329986111 a001 1836311903/710647*141422324^(2/3) 7014087329986111 a001 686789568/101521*141422324^(8/13) 7014087329986111 a001 20365011074/710647*141422324^(7/13) 7014087329986111 a001 86267571272/710647*141422324^(6/13) 7014087329986111 a001 365435296162/710647*141422324^(5/13) 7014087329986111 a001 317811/228826127*14662949395604^(8/9) 7014087329986111 a001 14619165/101521*(1/2+1/2*5^(1/2))^32 7014087329986111 a001 14619165/101521*23725150497407^(1/2) 7014087329986111 a001 14619165/101521*505019158607^(4/7) 7014087329986111 a001 14619165/101521*73681302247^(8/13) 7014087329986111 a001 14619165/101521*10749957122^(2/3) 7014087329986111 a001 14619165/101521*4106118243^(16/23) 7014087329986111 a001 14619165/101521*1568397607^(8/11) 7014087329986111 a001 14619165/101521*599074578^(16/21) 7014087329986111 a001 956722026041/710647*141422324^(1/3) 7014087329986111 a001 1548008755920/710647*141422324^(4/13) 7014087329986111 a001 39088169/710647*87403803^(17/19) 7014087329986111 a001 6557470319842/710647*141422324^(3/13) 7014087329986111 a001 116139356908541382/165580141 7014087329986111 a001 14619165/101521*228826127^(4/5) 7014087329986111 a001 267914296/710647*2537720636^(2/3) 7014087329986111 a001 267914296/710647*45537549124^(10/17) 7014087329986111 a001 267914296/710647*312119004989^(6/11) 7014087329986111 a001 267914296/710647*14662949395604^(10/21) 7014087329986111 a001 267914296/710647*(1/2+1/2*5^(1/2))^30 7014087329986111 a001 267914296/710647*192900153618^(5/9) 7014087329986111 a001 267914296/710647*28143753123^(3/5) 7014087329986111 a001 267914296/710647*10749957122^(5/8) 7014087329986111 a001 267914296/710647*4106118243^(15/23) 7014087329986111 a001 267914296/710647*1568397607^(15/22) 7014087329986111 a001 304056783818116251/433494437 7014087329986111 a001 267914296/710647*599074578^(5/7) 7014087329986111 a001 701408733/710647*17393796001^(4/7) 7014087329986111 a001 317811/1568397607*14662949395604^(20/21) 7014087329986111 a001 701408733/710647*14662949395604^(4/9) 7014087329986111 a001 701408733/710647*(1/2+1/2*5^(1/2))^28 7014087329986111 a001 701408733/710647*505019158607^(1/2) 7014087329986111 a001 701408733/710647*73681302247^(7/13) 7014087329986111 a001 701408733/710647*10749957122^(7/12) 7014087329986111 a001 701408733/710647*4106118243^(14/23) 7014087329986111 a001 796030994545807371/1134903170 7014087329986111 a001 701408733/710647*1568397607^(7/11) 7014087329986111 a001 686789568/101521*2537720636^(8/15) 7014087329986111 a001 20365011074/710647*2537720636^(7/15) 7014087329986111 a001 32951280099/710647*2537720636^(4/9) 7014087329986111 a001 2971215073/710647*2537720636^(5/9) 7014087329986111 a001 86267571272/710647*2537720636^(2/5) 7014087329986111 a001 1836311903/710647*(1/2+1/2*5^(1/2))^26 7014087329986111 a001 1836311903/710647*73681302247^(1/2) 7014087329986111 a001 1836311903/710647*10749957122^(13/24) 7014087329986111 a001 365435296162/710647*2537720636^(1/3) 7014087329986111 a001 1548008755920/710647*2537720636^(4/15) 7014087329986111 a001 4052739537881/710647*2537720636^(2/9) 7014087329986111 a001 6557470319842/710647*2537720636^(1/5) 7014087329986111 a001 1836311903/710647*4106118243^(13/23) 7014087329986111 a001 2084036199819305862/2971215073 7014087329986111 a001 686789568/101521*45537549124^(8/17) 7014087329986111 a001 686789568/101521*14662949395604^(8/21) 7014087329986111 a001 686789568/101521*(1/2+1/2*5^(1/2))^24 7014087329986111 a001 686789568/101521*192900153618^(4/9) 7014087329986111 a001 686789568/101521*73681302247^(6/13) 7014087329986111 a001 686789568/101521*10749957122^(1/2) 7014087329986111 a001 12586269025/710647*312119004989^(2/5) 7014087329986111 a001 12586269025/710647*(1/2+1/2*5^(1/2))^22 7014087329986111 a001 591286729879/710647*17393796001^(2/7) 7014087329986111 a001 20365011074/710647*17393796001^(3/7) 7014087329986111 a001 86267571272/710647*45537549124^(6/17) 7014087329986111 a001 32951280099/710647*(1/2+1/2*5^(1/2))^20 7014087329986111 a001 32951280099/710647*23725150497407^(5/16) 7014087329986111 a001 32951280099/710647*505019158607^(5/14) 7014087329986111 a001 139583862445/710647*45537549124^(1/3) 7014087329986111 a001 365435296162/710647*45537549124^(5/17) 7014087329986111 a001 1548008755920/710647*45537549124^(4/17) 7014087329986111 a001 6557470319842/710647*45537549124^(3/17) 7014087329986111 a001 86267571272/710647*14662949395604^(2/7) 7014087329986111 a001 86267571272/710647*(1/2+1/2*5^(1/2))^18 7014087329986111 a001 86267571272/710647*192900153618^(1/3) 7014087329986111 a001 317811*(1/2+1/2*5^(1/2))^16 7014087329986111 a001 4052739537881/710647*312119004989^(2/11) 7014087329986111 a001 365435296162/710647*312119004989^(3/11) 7014087329986111 a001 591286729879/710647*(1/2+1/2*5^(1/2))^14 7014087329986111 a001 1548008755920/710647*817138163596^(4/19) 7014087329986111 a001 1548008755920/710647*14662949395604^(4/21) 7014087329986111 a001 1548008755920/710647*(1/2+1/2*5^(1/2))^12 7014087329986111 a001 4052739537881/710647*(1/2+1/2*5^(1/2))^10 7014087329986111 a001 1515744265389/101521*(1/2+1/2*5^(1/2))^8 7014087329986111 a001 1515744265389/101521*23725150497407^(1/8) 7014087329986111 a001 6557470319842/710647*(1/2+1/2*5^(1/2))^9 7014087329986111 a001 2504730781961/710647*(1/2+1/2*5^(1/2))^11 7014087329986111 a001 956722026041/710647*(1/2+1/2*5^(1/2))^13 7014087329986111 a001 1515744265389/101521*505019158607^(1/7) 7014087329986111 a001 1548008755920/710647*192900153618^(2/9) 7014087329986111 a001 365435296162/710647*192900153618^(5/18) 7014087329986111 a001 139583862445/710647*(1/2+1/2*5^(1/2))^17 7014087329986111 a001 1515744265389/101521*73681302247^(2/13) 7014087329986111 a001 1548008755920/710647*73681302247^(3/13) 7014087329986111 a001 956722026041/710647*73681302247^(1/4) 7014087329986111 a001 317811*73681302247^(4/13) 7014087329986111 a001 53316291173/710647*817138163596^(1/3) 7014087329986111 a001 53316291173/710647*(1/2+1/2*5^(1/2))^19 7014087329986111 a001 4052739537881/710647*28143753123^(1/5) 7014087329986111 a001 20365011074/710647*45537549124^(7/17) 7014087329986111 a001 32951280099/710647*28143753123^(2/5) 7014087329986111 a001 365435296162/710647*28143753123^(3/10) 7014087329986111 a001 20365011074/710647*14662949395604^(1/3) 7014087329986111 a001 20365011074/710647*(1/2+1/2*5^(1/2))^21 7014087329986111 a001 20365011074/710647*192900153618^(7/18) 7014087329986111 a001 1515744265389/101521*10749957122^(1/6) 7014087329986111 a001 6557470319842/710647*10749957122^(3/16) 7014087329986111 a001 4052739537881/710647*10749957122^(5/24) 7014087329986111 a001 1548008755920/710647*10749957122^(1/4) 7014087329986111 a001 591286729879/710647*10749957122^(7/24) 7014087329986111 a001 12586269025/710647*10749957122^(11/24) 7014087329986111 a001 365435296162/710647*10749957122^(5/16) 7014087329986111 a001 317811*10749957122^(1/3) 7014087329986111 a001 86267571272/710647*10749957122^(3/8) 7014087329986111 a001 7778742049/710647*(1/2+1/2*5^(1/2))^23 7014087329986111 a001 32951280099/710647*10749957122^(5/12) 7014087329986111 a001 20365011074/710647*10749957122^(7/16) 7014087329986111 a001 1138818441436273/1623616 7014087329986111 a001 1515744265389/101521*4106118243^(4/23) 7014087329986111 a001 4052739537881/710647*4106118243^(5/23) 7014087329986111 a001 1548008755920/710647*4106118243^(6/23) 7014087329986111 a001 591286729879/710647*4106118243^(7/23) 7014087329986111 a001 317811*4106118243^(8/23) 7014087329986111 a001 686789568/101521*4106118243^(12/23) 7014087329986111 a001 2971215073/710647*312119004989^(5/11) 7014087329986111 a001 2971215073/710647*(1/2+1/2*5^(1/2))^25 7014087329986111 a001 2971215073/710647*3461452808002^(5/12) 7014087329986111 a001 86267571272/710647*4106118243^(9/23) 7014087329986111 a001 2971215073/710647*28143753123^(1/2) 7014087329986111 a001 32951280099/710647*4106118243^(10/23) 7014087329986111 a001 12586269025/710647*4106118243^(11/23) 7014087329986111 a001 7778742049/710647*4106118243^(1/2) 7014087329986111 a001 1288005205273498491/1836311903 7014087329986111 a001 1134903170/710647*2537720636^(3/5) 7014087329986111 a001 1515744265389/101521*1568397607^(2/11) 7014087329986111 a001 4052739537881/710647*1568397607^(5/22) 7014087329986111 a001 2504730781961/710647*1568397607^(1/4) 7014087329986111 a001 1548008755920/710647*1568397607^(3/11) 7014087329986111 a001 591286729879/710647*1568397607^(7/22) 7014087329986111 a001 317811*1568397607^(4/11) 7014087329986111 a001 1134903170/710647*45537549124^(9/17) 7014087329986111 a001 1134903170/710647*817138163596^(9/19) 7014087329986111 a001 1134903170/710647*14662949395604^(3/7) 7014087329986111 a001 1134903170/710647*(1/2+1/2*5^(1/2))^27 7014087329986111 a001 1134903170/710647*192900153618^(1/2) 7014087329986111 a001 1134903170/710647*10749957122^(9/16) 7014087329986111 a001 86267571272/710647*1568397607^(9/22) 7014087329986111 a001 1836311903/710647*1568397607^(13/22) 7014087329986111 a001 32951280099/710647*1568397607^(5/11) 7014087329986111 a001 12586269025/710647*1568397607^(1/2) 7014087329986111 a001 686789568/101521*1568397607^(6/11) 7014087329986111 a001 163991403575897040/233802911 7014087329986111 a001 1515744265389/101521*599074578^(4/21) 7014087329986111 a001 6557470319842/710647*599074578^(3/14) 7014087329986111 a001 4052739537881/710647*599074578^(5/21) 7014087329986111 a001 1548008755920/710647*599074578^(2/7) 7014087329986111 a001 591286729879/710647*599074578^(1/3) 7014087329986111 a001 365435296162/710647*599074578^(5/14) 7014087329986111 a001 317811*599074578^(8/21) 7014087329986111 a001 433494437/710647*(1/2+1/2*5^(1/2))^29 7014087329986111 a001 433494437/710647*1322157322203^(1/2) 7014087329986111 a001 86267571272/710647*599074578^(3/7) 7014087329986111 a001 32951280099/710647*599074578^(10/21) 7014087329986111 a001 20365011074/710647*599074578^(1/2) 7014087329986111 a001 701408733/710647*599074578^(2/3) 7014087329986111 a001 12586269025/710647*599074578^(11/21) 7014087329986111 a001 686789568/101521*599074578^(4/7) 7014087329986111 a001 1836311903/710647*599074578^(13/21) 7014087329986111 a001 1134903170/710647*599074578^(9/14) 7014087329986111 a001 498454713287997/710648 7014087329986111 a001 1515744265389/101521*228826127^(1/5) 7014087329986111 a001 4052739537881/710647*228826127^(1/4) 7014087329986111 a001 1548008755920/710647*228826127^(3/10) 7014087329986111 a001 591286729879/710647*228826127^(7/20) 7014087329986111 a001 365435296162/710647*228826127^(3/8) 7014087329986111 a001 317811/370248451*14662949395604^(19/21) 7014087329986111 a001 165580141/710647*(1/2+1/2*5^(1/2))^31 7014087329986111 a001 165580141/710647*9062201101803^(1/2) 7014087329986111 a001 317811*228826127^(2/5) 7014087329986111 a001 63245986/710647*141422324^(11/13) 7014087329986111 a001 86267571272/710647*228826127^(9/20) 7014087329986111 a001 32951280099/710647*228826127^(1/2) 7014087329986111 a001 12586269025/710647*228826127^(11/20) 7014087329986111 a001 686789568/101521*228826127^(3/5) 7014087329986111 a001 267914296/710647*228826127^(3/4) 7014087329986111 a001 2971215073/710647*228826127^(5/8) 7014087329986111 a001 1836311903/710647*228826127^(13/20) 7014087329986111 a001 701408733/710647*228826127^(7/10) 7014087329986111 a001 3418003333382547/4873055 7014087329986111 a001 1515744265389/101521*87403803^(4/19) 7014087329986111 a001 4052739537881/710647*87403803^(5/19) 7014087329986111 a001 1548008755920/710647*87403803^(6/19) 7014087329986111 a001 591286729879/710647*87403803^(7/19) 7014087329986111 a001 63245986/710647*2537720636^(11/15) 7014087329986111 a001 63245986/710647*45537549124^(11/17) 7014087329986111 a001 63245986/710647*312119004989^(3/5) 7014087329986111 a001 317811/141422324*3461452808002^(11/12) 7014087329986111 a001 63245986/710647*817138163596^(11/19) 7014087329986111 a001 63245986/710647*14662949395604^(11/21) 7014087329986111 a001 63245986/710647*(1/2+1/2*5^(1/2))^33 7014087329986111 a001 63245986/710647*192900153618^(11/18) 7014087329986111 a001 63245986/710647*10749957122^(11/16) 7014087329986111 a001 63245986/710647*1568397607^(3/4) 7014087329986111 a001 63245986/710647*599074578^(11/14) 7014087329986111 a001 317811*87403803^(8/19) 7014087329986111 a001 86267571272/710647*87403803^(9/19) 7014087329986111 a001 53316291173/710647*87403803^(1/2) 7014087329986111 a001 32951280099/710647*87403803^(10/19) 7014087329986111 a001 12586269025/710647*87403803^(11/19) 7014087329986111 a001 686789568/101521*87403803^(12/19) 7014087329986111 a001 1836311903/710647*87403803^(13/19) 7014087329986111 a001 14619165/101521*87403803^(16/19) 7014087329986111 a001 701408733/710647*87403803^(14/19) 7014087329986111 a001 267914296/710647*87403803^(15/19) 7014087329986112 a001 27416783093525592/39088169 7014087329986112 a001 1515744265389/101521*33385282^(2/9) 7014087329986112 a001 6557470319842/710647*33385282^(1/4) 7014087329986112 a001 4052739537881/710647*33385282^(5/18) 7014087329986113 a001 1548008755920/710647*33385282^(1/3) 7014087329986113 a001 24157817/710647*2537720636^(7/9) 7014087329986113 a001 24157817/710647*17393796001^(5/7) 7014087329986113 a001 24157817/710647*312119004989^(7/11) 7014087329986113 a001 24157817/710647*14662949395604^(5/9) 7014087329986113 a001 24157817/710647*(1/2+1/2*5^(1/2))^35 7014087329986113 a001 24157817/710647*505019158607^(5/8) 7014087329986113 a001 24157817/710647*28143753123^(7/10) 7014087329986113 a001 24157817/710647*599074578^(5/6) 7014087329986113 a001 591286729879/710647*33385282^(7/18) 7014087329986113 a001 24157817/710647*228826127^(7/8) 7014087329986113 a001 365435296162/710647*33385282^(5/12) 7014087329986114 a001 317811*33385282^(4/9) 7014087329986114 a001 86267571272/710647*33385282^(1/2) 7014087329986114 a001 32951280099/710647*33385282^(5/9) 7014087329986114 a001 20365011074/710647*33385282^(7/12) 7014087329986115 a001 12586269025/710647*33385282^(11/18) 7014087329986115 a001 686789568/101521*33385282^(2/3) 7014087329986115 a001 1836311903/710647*33385282^(13/18) 7014087329986115 a001 1134903170/710647*33385282^(3/4) 7014087329986116 a001 701408733/710647*33385282^(7/9) 7014087329986116 a001 39088169/710647*33385282^(17/18) 7014087329986116 a001 267914296/710647*33385282^(5/6) 7014087329986116 a001 14619165/101521*33385282^(8/9) 7014087329986117 a001 63245986/710647*33385282^(11/12) 7014087329986117 a001 1163586586615921/1658928 7014087329986121 a001 1515744265389/101521*12752043^(4/17) 7014087329986123 a001 4052739537881/710647*12752043^(5/17) 7014087329986126 a001 1548008755920/710647*12752043^(6/17) 7014087329986127 a001 10959/711491*817138163596^(17/19) 7014087329986127 a001 10959/711491*14662949395604^(17/21) 7014087329986127 a001 10959/711491*(1/2+1/2*5^(1/2))^51 7014087329986127 a001 9227465/710647*(1/2+1/2*5^(1/2))^37 7014087329986127 a001 10959/711491*192900153618^(17/18) 7014087329986129 a001 591286729879/710647*12752043^(7/17) 7014087329986131 a001 317811*12752043^(8/17) 7014087329986132 a001 139583862445/710647*12752043^(1/2) 7014087329986134 a001 86267571272/710647*12752043^(9/17) 7014087329986136 a001 32951280099/710647*12752043^(10/17) 7014087329986139 a001 12586269025/710647*12752043^(11/17) 7014087329986141 a001 686789568/101521*12752043^(12/17) 7014087329986144 a001 1836311903/710647*12752043^(13/17) 7014087329986146 a001 701408733/710647*12752043^(14/17) 7014087329986149 a001 267914296/710647*12752043^(15/17) 7014087329986151 a001 14619165/101521*12752043^(16/17) 7014087329986154 a001 4000054745104275/5702887 7014087329986185 a001 1515744265389/101521*4870847^(1/4) 7014087329986203 a001 4052739537881/710647*4870847^(5/16) 7014087329986222 a001 1548008755920/710647*4870847^(3/8) 7014087329986224 a001 3524578/710647*2537720636^(13/15) 7014087329986224 a001 3524578/710647*45537549124^(13/17) 7014087329986224 a001 317811/7881196*14662949395604^(7/9) 7014087329986224 a001 317811/7881196*(1/2+1/2*5^(1/2))^49 7014087329986224 a001 317811/7881196*505019158607^(7/8) 7014087329986224 a001 3524578/710647*14662949395604^(13/21) 7014087329986224 a001 3524578/710647*(1/2+1/2*5^(1/2))^39 7014087329986224 a001 3524578/710647*192900153618^(13/18) 7014087329986224 a001 3524578/710647*73681302247^(3/4) 7014087329986224 a001 3524578/710647*10749957122^(13/16) 7014087329986224 a001 3524578/710647*599074578^(13/14) 7014087329986240 a001 591286729879/710647*4870847^(7/16) 7014087329986259 a001 317811*4870847^(1/2) 7014087329986277 a001 86267571272/710647*4870847^(9/16) 7014087329986296 a001 32951280099/710647*4870847^(5/8) 7014087329986314 a001 12586269025/710647*4870847^(11/16) 7014087329986332 a001 686789568/101521*4870847^(3/4) 7014087329986351 a001 1836311903/710647*4870847^(13/16) 7014087329986369 a001 701408733/710647*4870847^(7/8) 7014087329986388 a001 267914296/710647*4870847^(15/16) 7014087329986406 a001 1548009073728/2207 7014087329986651 a001 1515744265389/101521*1860498^(4/15) 7014087329986719 a001 6557470319842/710647*1860498^(3/10) 7014087329986786 a001 4052739537881/710647*1860498^(1/3) 7014087329986885 a001 317811/3010349*(1/2+1/2*5^(1/2))^47 7014087329986885 a001 1346269/710647*(1/2+1/2*5^(1/2))^41 7014087329986921 a001 1548008755920/710647*1860498^(2/5) 7014087329987056 a001 591286729879/710647*1860498^(7/15) 7014087329987124 a001 365435296162/710647*1860498^(1/2) 7014087329987191 a001 317811*1860498^(8/15) 7014087329987327 a001 86267571272/710647*1860498^(3/5) 7014087329987462 a001 32951280099/710647*1860498^(2/3) 7014087329987529 a001 20365011074/710647*1860498^(7/10) 7014087329987597 a001 12586269025/710647*1860498^(11/15) 7014087329987732 a001 686789568/101521*1860498^(4/5) 7014087329987799 a001 2971215073/710647*1860498^(5/6) 7014087329987867 a001 1836311903/710647*1860498^(13/15) 7014087329987934 a001 1134903170/710647*1860498^(9/10) 7014087329988002 a001 701408733/710647*1860498^(14/15) 7014087329988137 a001 583600122204333/832040 7014087329989144 a001 2504730781961/1149851*439204^(4/9) 7014087329990079 a001 1515744265389/101521*710647^(2/7) 7014087329991071 a001 4052739537881/710647*710647^(5/14) 7014087329991416 a001 317811/1149851*45537549124^(15/17) 7014087329991416 a001 317811/1149851*312119004989^(9/11) 7014087329991416 a001 317811/1149851*14662949395604^(5/7) 7014087329991416 a001 317811/1149851*(1/2+1/2*5^(1/2))^45 7014087329991416 a001 514229/710647*(1/2+1/2*5^(1/2))^43 7014087329991416 a001 317811/1149851*192900153618^(5/6) 7014087329991416 a001 317811/1149851*28143753123^(9/10) 7014087329991416 a001 317811/1149851*10749957122^(15/16) 7014087329992063 a001 1548008755920/710647*710647^(3/7) 7014087329992668 a001 360684711361480/514229 7014087329992677 a001 1836311903/271443*271443^(12/13) 7014087329993055 a001 591286729879/710647*710647^(1/2) 7014087329993184 a001 10610209857723/1149851*439204^(1/3) 7014087329994047 a001 317811*710647^(4/7) 7014087329994399 a001 360684711361569/514229 7014087329994652 a001 360684711361582/514229 7014087329994691 a001 360684711361584/514229 7014087329994710 a001 360684711361585/514229 7014087329994807 a001 360684711361590/514229 7014087329995039 a001 86267571272/710647*710647^(9/14) 7014087329995468 a001 360684711361624/514229 7014087329995947 a001 416020/930249*312119004989^(4/5) 7014087329995947 a001 416020/930249*(1/2+1/2*5^(1/2))^44 7014087329995947 a001 416020/930249*23725150497407^(11/16) 7014087329995947 a001 416020/930249*73681302247^(11/13) 7014087329995947 a001 416020/930249*10749957122^(11/12) 7014087329995947 a001 416020/930249*4106118243^(22/23) 7014087329996031 a001 32951280099/710647*710647^(5/7) 7014087329996527 a001 20365011074/710647*710647^(3/4) 7014087329997023 a001 12586269025/710647*710647^(11/14) 7014087329997199 a001 944284833566800/1346269 7014087329997678 a001 726103/620166*2537720636^(14/15) 7014087329997678 a001 726103/620166*17393796001^(6/7) 7014087329997678 a001 726103/620166*45537549124^(14/17) 7014087329997678 a001 726103/620166*817138163596^(14/19) 7014087329997678 a001 832040/4870847*(1/2+1/2*5^(1/2))^46 7014087329997678 a001 726103/620166*14662949395604^(2/3) 7014087329997678 a001 726103/620166*(1/2+1/2*5^(1/2))^42 7014087329997678 a001 726103/620166*505019158607^(3/4) 7014087329997678 a001 726103/620166*192900153618^(7/9) 7014087329997678 a001 726103/620166*10749957122^(7/8) 7014087329997678 a001 832040/4870847*10749957122^(23/24) 7014087329997678 a001 726103/620166*4106118243^(21/23) 7014087329997678 a001 726103/620166*1568397607^(21/22) 7014087329997860 a001 1236084894669460/1762289 7014087329997870 a001 233802911/620166*7881196^(10/11) 7014087329997881 a001 2971215073/1860498*7881196^(9/11) 7014087329997891 a001 12586269025/1860498*7881196^(8/11) 7014087329997898 a001 10983760033/620166*7881196^(2/3) 7014087329997901 a001 53316291173/1860498*7881196^(7/11) 7014087329997912 a001 75283811239/620166*7881196^(6/11) 7014087329997922 a001 956722026041/1860498*7881196^(5/11) 7014087329997930 a001 5702887/1860498*2537720636^(8/9) 7014087329997930 a001 832040/12752043*45537549124^(16/17) 7014087329997930 a001 5702887/1860498*312119004989^(8/11) 7014087329997930 a001 832040/12752043*14662949395604^(16/21) 7014087329997930 a001 832040/12752043*(1/2+1/2*5^(1/2))^48 7014087329997930 a001 5702887/1860498*(1/2+1/2*5^(1/2))^40 7014087329997930 a001 5702887/1860498*23725150497407^(5/8) 7014087329997930 a001 832040/12752043*192900153618^(8/9) 7014087329997930 a001 5702887/1860498*73681302247^(10/13) 7014087329997930 a001 832040/12752043*73681302247^(12/13) 7014087329997930 a001 5702887/1860498*28143753123^(4/5) 7014087329997930 a001 5702887/1860498*10749957122^(5/6) 7014087329997930 a001 5702887/1860498*4106118243^(20/23) 7014087329997930 a001 5702887/1860498*1568397607^(10/11) 7014087329997930 a001 5702887/1860498*599074578^(20/21) 7014087329997932 a001 4052739537881/1860498*7881196^(4/11) 7014087329997936 a001 3278735159921/930249*7881196^(1/3) 7014087329997957 a001 99572685145384/141961 7014087329997959 a001 233802911/620166*20633239^(6/7) 7014087329997960 a001 1836311903/1860498*20633239^(4/5) 7014087329997961 a001 7778742049/1860498*20633239^(5/7) 7014087329997963 a001 53316291173/1860498*20633239^(3/5) 7014087329997964 a001 43133785636/930249*20633239^(4/7) 7014087329997966 a001 956722026041/1860498*20633239^(3/7) 7014087329997967 a001 832040*20633239^(2/5) 7014087329997967 a001 416020/16692641*312119004989^(10/11) 7014087329997967 a001 829464/103361*817138163596^(2/3) 7014087329997967 a001 416020/16692641*(1/2+1/2*5^(1/2))^50 7014087329997967 a001 416020/16692641*3461452808002^(5/6) 7014087329997967 a001 829464/103361*(1/2+1/2*5^(1/2))^38 7014087329997967 a001 829464/103361*10749957122^(19/24) 7014087329997967 a001 829464/103361*4106118243^(19/23) 7014087329997967 a001 829464/103361*1568397607^(19/22) 7014087329997967 a001 829464/103361*599074578^(19/21) 7014087329997967 a001 829464/103361*228826127^(19/20) 7014087329997968 a001 3536736619241/620166*20633239^(2/7) 7014087329997971 a001 16944503814010960/24157817 7014087329997972 a001 39088169/1860498*141422324^(12/13) 7014087329997972 a001 39088169/1860498*2537720636^(4/5) 7014087329997972 a001 39088169/1860498*45537549124^(12/17) 7014087329997972 a001 832040/87403803*23725150497407^(13/16) 7014087329997972 a001 39088169/1860498*14662949395604^(4/7) 7014087329997972 a001 39088169/1860498*(1/2+1/2*5^(1/2))^36 7014087329997972 a001 39088169/1860498*505019158607^(9/14) 7014087329997972 a001 832040/87403803*505019158607^(13/14) 7014087329997972 a001 39088169/1860498*192900153618^(2/3) 7014087329997972 a001 39088169/1860498*73681302247^(9/13) 7014087329997972 a001 39088169/1860498*10749957122^(3/4) 7014087329997972 a001 39088169/1860498*4106118243^(18/23) 7014087329997972 a001 39088169/1860498*1568397607^(9/11) 7014087329997972 a001 39088169/1860498*599074578^(6/7) 7014087329997972 a001 39088169/1860498*228826127^(9/10) 7014087329997973 a001 22180643453791460/31622993 7014087329997973 a001 233802911/620166*141422324^(10/13) 7014087329997973 a001 165580141/1860498*141422324^(11/13) 7014087329997973 a001 2971215073/1860498*141422324^(9/13) 7014087329997973 a001 267084832/103361*141422324^(2/3) 7014087329997973 a001 12586269025/1860498*141422324^(8/13) 7014087329997973 a001 53316291173/1860498*141422324^(7/13) 7014087329997973 a001 75283811239/620166*141422324^(6/13) 7014087329997973 a001 956722026041/1860498*141422324^(5/13) 7014087329997973 a001 831985/15126*45537549124^(2/3) 7014087329997973 a001 832040/228826127*14662949395604^(6/7) 7014087329997973 a001 831985/15126*(1/2+1/2*5^(1/2))^34 7014087329997973 a001 831985/15126*10749957122^(17/24) 7014087329997973 a001 831985/15126*4106118243^(17/23) 7014087329997973 a001 831985/15126*1568397607^(17/22) 7014087329997973 a001 831985/15126*599074578^(17/21) 7014087329997973 a001 2504730781961/1860498*141422324^(1/3) 7014087329997973 a001 4052739537881/1860498*141422324^(4/13) 7014087329997973 a001 116139356908737800/165580141 7014087329997973 a001 39088169/1860498*87403803^(18/19) 7014087329997973 a001 831985/15126*228826127^(17/20) 7014087329997973 a001 416020/299537289*14662949395604^(8/9) 7014087329997973 a001 133957148/930249*(1/2+1/2*5^(1/2))^32 7014087329997973 a001 133957148/930249*23725150497407^(1/2) 7014087329997973 a001 133957148/930249*505019158607^(4/7) 7014087329997973 a001 133957148/930249*73681302247^(8/13) 7014087329997973 a001 133957148/930249*10749957122^(2/3) 7014087329997973 a001 133957148/930249*4106118243^(16/23) 7014087329997973 a001 133957148/930249*1568397607^(8/11) 7014087329997973 a001 304056783818630480/433494437 7014087329997973 a001 133957148/930249*599074578^(16/21) 7014087329997973 a001 233802911/620166*2537720636^(2/3) 7014087329997973 a001 233802911/620166*45537549124^(10/17) 7014087329997973 a001 233802911/620166*312119004989^(6/11) 7014087329997973 a001 233802911/620166*14662949395604^(10/21) 7014087329997973 a001 233802911/620166*(1/2+1/2*5^(1/2))^30 7014087329997973 a001 233802911/620166*192900153618^(5/9) 7014087329997973 a001 233802911/620166*28143753123^(3/5) 7014087329997973 a001 233802911/620166*10749957122^(5/8) 7014087329997973 a001 233802911/620166*4106118243^(15/23) 7014087329997973 a001 1304968843519924/1860497 7014087329997973 a001 233802911/620166*1568397607^(15/22) 7014087329997973 a001 12586269025/1860498*2537720636^(8/15) 7014087329997973 a001 7778742049/1860498*2537720636^(5/9) 7014087329997973 a001 53316291173/1860498*2537720636^(7/15) 7014087329997973 a001 2971215073/1860498*2537720636^(3/5) 7014087329997973 a001 43133785636/930249*2537720636^(4/9) 7014087329997973 a001 75283811239/620166*2537720636^(2/5) 7014087329997973 a001 1836311903/1860498*17393796001^(4/7) 7014087329997973 a001 1836311903/1860498*14662949395604^(4/9) 7014087329997973 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^28 7014087329997973 a001 1836311903/1860498*505019158607^(1/2) 7014087329997973 a001 1836311903/1860498*73681302247^(7/13) 7014087329997973 a001 1836311903/1860498*10749957122^(7/12) 7014087329997973 a001 956722026041/1860498*2537720636^(1/3) 7014087329997973 a001 4052739537881/1860498*2537720636^(4/15) 7014087329997973 a001 3536736619241/620166*2537720636^(2/9) 7014087329997973 a001 1836311903/1860498*4106118243^(14/23) 7014087329997973 a001 2084036199822830440/2971215073 7014087329997973 a001 267084832/103361*(1/2+1/2*5^(1/2))^26 7014087329997973 a001 267084832/103361*73681302247^(1/2) 7014087329997973 a001 267084832/103361*10749957122^(13/24) 7014087329997973 a001 419698277301641360/598364773 7014087329997973 a001 12586269025/1860498*45537549124^(8/17) 7014087329997973 a001 53316291173/1860498*17393796001^(3/7) 7014087329997973 a001 12586269025/1860498*14662949395604^(8/21) 7014087329997973 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^24 7014087329997973 a001 12586269025/1860498*192900153618^(4/9) 7014087329997973 a001 12586269025/1860498*73681302247^(6/13) 7014087329997973 a001 832040*17393796001^(2/7) 7014087329997973 a001 10983760033/620166*312119004989^(2/5) 7014087329997973 a001 10983760033/620166*(1/2+1/2*5^(1/2))^22 7014087329997973 a001 75283811239/620166*45537549124^(6/17) 7014087329997973 a001 182717648081/930249*45537549124^(1/3) 7014087329997973 a001 956722026041/1860498*45537549124^(5/17) 7014087329997973 a001 53316291173/1860498*45537549124^(7/17) 7014087329997973 a001 4052739537881/1860498*45537549124^(4/17) 7014087329997973 a001 43133785636/930249*(1/2+1/2*5^(1/2))^20 7014087329997973 a001 43133785636/930249*23725150497407^(5/16) 7014087329997973 a001 43133785636/930249*505019158607^(5/14) 7014087329997973 a001 75283811239/620166*14662949395604^(2/7) 7014087329997973 a001 75283811239/620166*(1/2+1/2*5^(1/2))^18 7014087329997973 a001 956722026041/1860498*312119004989^(3/11) 7014087329997973 a001 3278735159921/930249*312119004989^(1/5) 7014087329997973 a001 3536736619241/620166*312119004989^(2/11) 7014087329997973 a001 832040*(1/2+1/2*5^(1/2))^14 7014087329997973 a001 3278735159921/930249*(1/2+1/2*5^(1/2))^11 7014087329997973 a001 2504730781961/1860498*(1/2+1/2*5^(1/2))^13 7014087329997973 a001 832040*505019158607^(1/4) 7014087329997973 a001 4052739537881/1860498*192900153618^(2/9) 7014087329997973 a001 139583862445/1860498*817138163596^(1/3) 7014087329997973 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^19 7014087329997973 a001 4052739537881/1860498*73681302247^(3/13) 7014087329997973 a001 2504730781961/1860498*73681302247^(1/4) 7014087329997973 a001 591286729879/1860498*73681302247^(4/13) 7014087329997973 a001 53316291173/1860498*14662949395604^(1/3) 7014087329997973 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^21 7014087329997973 a001 53316291173/1860498*192900153618^(7/18) 7014087329997973 a001 3536736619241/620166*28143753123^(1/5) 7014087329997973 a001 956722026041/1860498*28143753123^(3/10) 7014087329997973 a001 43133785636/930249*28143753123^(2/5) 7014087329997973 a001 10182505537/930249*(1/2+1/2*5^(1/2))^23 7014087329997973 a001 160511254727633544/228841255 7014087329997973 a001 3536736619241/620166*10749957122^(5/24) 7014087329997973 a001 4052739537881/1860498*10749957122^(1/4) 7014087329997973 a001 832040*10749957122^(7/24) 7014087329997973 a001 956722026041/1860498*10749957122^(5/16) 7014087329997973 a001 591286729879/1860498*10749957122^(1/3) 7014087329997973 a001 12586269025/1860498*10749957122^(1/2) 7014087329997973 a001 75283811239/620166*10749957122^(3/8) 7014087329997973 a001 7778742049/1860498*312119004989^(5/11) 7014087329997973 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^25 7014087329997973 a001 7778742049/1860498*3461452808002^(5/12) 7014087329997973 a001 43133785636/930249*10749957122^(5/12) 7014087329997973 a001 10983760033/620166*10749957122^(11/24) 7014087329997973 a001 53316291173/1860498*10749957122^(7/16) 7014087329997973 a001 7778742049/1860498*28143753123^(1/2) 7014087329997973 a001 421505175637313405/600940872 7014087329997973 a001 3536736619241/620166*4106118243^(5/23) 7014087329997973 a001 4052739537881/1860498*4106118243^(6/23) 7014087329997973 a001 832040*4106118243^(7/23) 7014087329997973 a001 591286729879/1860498*4106118243^(8/23) 7014087329997973 a001 2971215073/1860498*45537549124^(9/17) 7014087329997973 a001 2971215073/1860498*817138163596^(9/19) 7014087329997973 a001 2971215073/1860498*14662949395604^(3/7) 7014087329997973 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^27 7014087329997973 a001 2971215073/1860498*192900153618^(1/2) 7014087329997973 a001 75283811239/620166*4106118243^(9/23) 7014087329997973 a001 267084832/103361*4106118243^(13/23) 7014087329997973 a001 43133785636/930249*4106118243^(10/23) 7014087329997973 a001 2971215073/1860498*10749957122^(9/16) 7014087329997973 a001 10983760033/620166*4106118243^(11/23) 7014087329997973 a001 12586269025/1860498*4106118243^(12/23) 7014087329997973 a001 10182505537/930249*4106118243^(1/2) 7014087329997973 a001 1288005205275676800/1836311903 7014087329997973 a001 3536736619241/620166*1568397607^(5/22) 7014087329997973 a001 3278735159921/930249*1568397607^(1/4) 7014087329997973 a001 4052739537881/1860498*1568397607^(3/11) 7014087329997973 a001 832040*1568397607^(7/22) 7014087329997973 a001 591286729879/1860498*1568397607^(4/11) 7014087329997973 a001 567451585/930249*(1/2+1/2*5^(1/2))^29 7014087329997973 a001 567451585/930249*1322157322203^(1/2) 7014087329997973 a001 75283811239/620166*1568397607^(9/22) 7014087329997973 a001 43133785636/930249*1568397607^(5/11) 7014087329997973 a001 1836311903/1860498*1568397607^(7/11) 7014087329997973 a001 10983760033/620166*1568397607^(1/2) 7014087329997973 a001 12586269025/1860498*1568397607^(6/11) 7014087329997973 a001 267084832/103361*1568397607^(13/22) 7014087329997973 a001 491974210728523160/701408733 7014087329997973 a001 3536736619241/620166*599074578^(5/21) 7014087329997973 a001 4052739537881/1860498*599074578^(2/7) 7014087329997973 a001 832040*599074578^(1/3) 7014087329997973 a001 956722026041/1860498*599074578^(5/14) 7014087329997973 a001 591286729879/1860498*599074578^(8/21) 7014087329997973 a001 832040/969323029*14662949395604^(19/21) 7014087329997973 a001 433494437/1860498*(1/2+1/2*5^(1/2))^31 7014087329997973 a001 433494437/1860498*9062201101803^(1/2) 7014087329997973 a001 75283811239/620166*599074578^(3/7) 7014087329997973 a001 43133785636/930249*599074578^(10/21) 7014087329997973 a001 53316291173/1860498*599074578^(1/2) 7014087329997973 a001 10983760033/620166*599074578^(11/21) 7014087329997973 a001 233802911/620166*599074578^(5/7) 7014087329997973 a001 12586269025/1860498*599074578^(4/7) 7014087329997973 a001 267084832/103361*599074578^(13/21) 7014087329997973 a001 1836311903/1860498*599074578^(2/3) 7014087329997973 a001 2971215073/1860498*599074578^(9/14) 7014087329997973 a001 62306839161105/88831 7014087329997973 a001 3536736619241/620166*228826127^(1/4) 7014087329997973 a001 4052739537881/1860498*228826127^(3/10) 7014087329997973 a001 832040*228826127^(7/20) 7014087329997973 a001 956722026041/1860498*228826127^(3/8) 7014087329997973 a001 165580141/1860498*2537720636^(11/15) 7014087329997973 a001 165580141/1860498*45537549124^(11/17) 7014087329997973 a001 165580141/1860498*312119004989^(3/5) 7014087329997973 a001 165580141/1860498*817138163596^(11/19) 7014087329997973 a001 165580141/1860498*14662949395604^(11/21) 7014087329997973 a001 165580141/1860498*(1/2+1/2*5^(1/2))^33 7014087329997973 a001 165580141/1860498*192900153618^(11/18) 7014087329997973 a001 165580141/1860498*10749957122^(11/16) 7014087329997973 a001 165580141/1860498*1568397607^(3/4) 7014087329997973 a001 591286729879/1860498*228826127^(2/5) 7014087329997973 a001 75283811239/620166*228826127^(9/20) 7014087329997973 a001 165580141/1860498*599074578^(11/14) 7014087329997973 a001 43133785636/930249*228826127^(1/2) 7014087329997973 a001 10983760033/620166*228826127^(11/20) 7014087329997973 a001 12586269025/1860498*228826127^(3/5) 7014087329997973 a001 7778742049/1860498*228826127^(5/8) 7014087329997973 a001 267084832/103361*228826127^(13/20) 7014087329997973 a001 133957148/930249*228826127^(4/5) 7014087329997973 a001 1836311903/1860498*228826127^(7/10) 7014087329997973 a001 233802911/620166*228826127^(3/4) 7014087329997973 a001 1305055818202816/1860621 7014087329997973 a001 3536736619241/620166*87403803^(5/19) 7014087329997973 a001 4052739537881/1860498*87403803^(6/19) 7014087329997973 a001 832040*87403803^(7/19) 7014087329997974 a001 31622993/930249*2537720636^(7/9) 7014087329997974 a001 31622993/930249*17393796001^(5/7) 7014087329997974 a001 31622993/930249*312119004989^(7/11) 7014087329997974 a001 31622993/930249*14662949395604^(5/9) 7014087329997974 a001 31622993/930249*(1/2+1/2*5^(1/2))^35 7014087329997974 a001 31622993/930249*505019158607^(5/8) 7014087329997974 a001 31622993/930249*28143753123^(7/10) 7014087329997974 a001 31622993/930249*599074578^(5/6) 7014087329997974 a001 591286729879/1860498*87403803^(8/19) 7014087329997974 a001 75283811239/620166*87403803^(9/19) 7014087329997974 a001 139583862445/1860498*87403803^(1/2) 7014087329997974 a001 31622993/930249*228826127^(7/8) 7014087329997974 a001 43133785636/930249*87403803^(10/19) 7014087329997974 a001 10983760033/620166*87403803^(11/19) 7014087329997974 a001 12586269025/1860498*87403803^(12/19) 7014087329997974 a001 267084832/103361*87403803^(13/19) 7014087329997974 a001 1836311903/1860498*87403803^(14/19) 7014087329997974 a001 831985/15126*87403803^(17/19) 7014087329997974 a001 233802911/620166*87403803^(15/19) 7014087329997974 a001 133957148/930249*87403803^(16/19) 7014087329997974 a001 27416783093571960/39088169 7014087329997975 a001 3536736619241/620166*33385282^(5/18) 7014087329997975 a001 4052739537881/1860498*33385282^(1/3) 7014087329997976 a001 832040/54018521*817138163596^(17/19) 7014087329997976 a001 832040/54018521*14662949395604^(17/21) 7014087329997976 a001 24157817/1860498*(1/2+1/2*5^(1/2))^37 7014087329997976 a001 832040/54018521*192900153618^(17/18) 7014087329997976 a001 832040*33385282^(7/18) 7014087329997976 a001 956722026041/1860498*33385282^(5/12) 7014087329997976 a001 591286729879/1860498*33385282^(4/9) 7014087329997976 a001 75283811239/620166*33385282^(1/2) 7014087329997977 a001 43133785636/930249*33385282^(5/9) 7014087329997977 a001 53316291173/1860498*33385282^(7/12) 7014087329997977 a001 10983760033/620166*33385282^(11/18) 7014087329997977 a001 12586269025/1860498*33385282^(2/3) 7014087329997978 a001 267084832/103361*33385282^(13/18) 7014087329997978 a001 2971215073/1860498*33385282^(3/4) 7014087329997978 a001 1836311903/1860498*33385282^(7/9) 7014087329997978 a001 233802911/620166*33385282^(5/6) 7014087329997979 a001 133957148/930249*33385282^(8/9) 7014087329997979 a001 831985/15126*33385282^(17/18) 7014087329997979 a001 165580141/1860498*33385282^(11/12) 7014087329997979 a001 1309034909945125/1866294 7014087329997986 a001 3536736619241/620166*12752043^(5/17) 7014087329997988 a001 4052739537881/1860498*12752043^(6/17) 7014087329997990 a001 9227465/1860498*2537720636^(13/15) 7014087329997990 a001 9227465/1860498*45537549124^(13/17) 7014087329997990 a001 75640/1875749*14662949395604^(7/9) 7014087329997990 a001 75640/1875749*(1/2+1/2*5^(1/2))^49 7014087329997990 a001 9227465/1860498*14662949395604^(13/21) 7014087329997990 a001 9227465/1860498*(1/2+1/2*5^(1/2))^39 7014087329997990 a001 75640/1875749*505019158607^(7/8) 7014087329997990 a001 9227465/1860498*192900153618^(13/18) 7014087329997990 a001 9227465/1860498*73681302247^(3/4) 7014087329997990 a001 9227465/1860498*10749957122^(13/16) 7014087329997990 a001 9227465/1860498*599074578^(13/14) 7014087329997991 a001 832040*12752043^(7/17) 7014087329997993 a001 591286729879/1860498*12752043^(8/17) 7014087329997995 a001 182717648081/930249*12752043^(1/2) 7014087329997996 a001 75283811239/620166*12752043^(9/17) 7014087329997999 a001 43133785636/930249*12752043^(10/17) 7014087329998001 a001 10983760033/620166*12752043^(11/17) 7014087329998004 a001 12586269025/1860498*12752043^(12/17) 7014087329998006 a001 267084832/103361*12752043^(13/17) 7014087329998009 a001 1836311903/1860498*12752043^(14/17) 7014087329998011 a001 233802911/620166*12752043^(15/17) 7014087329998014 a001 133957148/930249*12752043^(16/17) 7014087329998015 a001 686789568/101521*710647^(6/7) 7014087329998016 a001 4000054745111040/5702887 7014087329998066 a001 3536736619241/620166*4870847^(5/16) 7014087329998084 a001 4052739537881/1860498*4870847^(3/8) 7014087329998086 a001 208010/1970299*(1/2+1/2*5^(1/2))^47 7014087329998086 a001 1762289/930249*(1/2+1/2*5^(1/2))^41 7014087329998103 a001 832040*4870847^(7/16) 7014087329998121 a001 591286729879/1860498*4870847^(1/2) 7014087329998139 a001 75283811239/620166*4870847^(9/16) 7014087329998158 a001 43133785636/930249*4870847^(5/8) 7014087329998176 a001 10983760033/620166*4870847^(11/16) 7014087329998195 a001 12586269025/1860498*4870847^(3/4) 7014087329998213 a001 267084832/103361*4870847^(13/16) 7014087329998232 a001 1836311903/1860498*4870847^(7/8) 7014087329998250 a001 233802911/620166*4870847^(15/16) 7014087329998269 a001 1527884955772120/2178309 7014087329998649 a001 3536736619241/620166*1860498^(1/3) 7014087329998747 a001 832040/3010349*45537549124^(15/17) 7014087329998747 a001 832040/3010349*312119004989^(9/11) 7014087329998747 a001 832040/3010349*14662949395604^(5/7) 7014087329998747 a001 832040/3010349*(1/2+1/2*5^(1/2))^45 7014087329998747 a001 1346269/1860498*(1/2+1/2*5^(1/2))^43 7014087329998747 a001 832040/3010349*192900153618^(5/6) 7014087329998747 a001 832040/3010349*28143753123^(9/10) 7014087329998747 a001 832040/3010349*10749957122^(15/16) 7014087329998784 a001 4052739537881/1860498*1860498^(2/5) 7014087329998919 a001 832040*1860498^(7/15) 7014087329998930 a001 944284833567033/1346269 7014087329998986 a001 956722026041/1860498*1860498^(1/2) 7014087329999007 a001 1836311903/710647*710647^(13/14) 7014087329999054 a001 591286729879/1860498*1860498^(8/15) 7014087329999182 a001 944284833567067/1346269 7014087329999189 a001 75283811239/620166*1860498^(3/5) 7014087329999220 a001 944284833567072/1346269 7014087329999227 a001 944284833567073/1346269 7014087329999242 a001 944284833567075/1346269 7014087329999324 a001 43133785636/930249*1860498^(2/3) 7014087329999338 a001 944284833567088/1346269 7014087329999392 a001 53316291173/1860498*1860498^(7/10) 7014087329999408 a001 2178309/4870847*312119004989^(4/5) 7014087329999408 a001 2178309/4870847*(1/2+1/2*5^(1/2))^44 7014087329999408 a001 2178309/4870847*23725150497407^(11/16) 7014087329999408 a001 2178309/4870847*73681302247^(11/13) 7014087329999408 a001 2178309/4870847*10749957122^(11/12) 7014087329999408 a001 2178309/4870847*4106118243^(22/23) 7014087329999459 a001 10983760033/620166*1860498^(11/15) 7014087329999591 a001 1236084894669765/1762289 7014087329999594 a001 12586269025/1860498*1860498^(4/5) 7014087329999601 a001 1836311903/4870847*7881196^(10/11) 7014087329999611 a001 7778742049/4870847*7881196^(9/11) 7014087329999622 a001 32951280099/4870847*7881196^(8/11) 7014087329999629 a001 86267571272/4870847*7881196^(2/3) 7014087329999632 a001 139583862445/4870847*7881196^(7/11) 7014087329999642 a001 591286729879/4870847*7881196^(6/11) 7014087329999653 a001 2504730781961/4870847*7881196^(5/11) 7014087329999661 a001 5702887/4870847*2537720636^(14/15) 7014087329999661 a001 5702887/4870847*17393796001^(6/7) 7014087329999661 a001 5702887/4870847*45537549124^(14/17) 7014087329999661 a001 5702887/4870847*817138163596^(14/19) 7014087329999661 a001 5702887/4870847*14662949395604^(2/3) 7014087329999661 a001 726103/4250681*(1/2+1/2*5^(1/2))^46 7014087329999661 a001 5702887/4870847*(1/2+1/2*5^(1/2))^42 7014087329999661 a001 5702887/4870847*505019158607^(3/4) 7014087329999661 a001 5702887/4870847*192900153618^(7/9) 7014087329999661 a001 5702887/4870847*10749957122^(7/8) 7014087329999661 a001 726103/4250681*10749957122^(23/24) 7014087329999661 a001 5702887/4870847*4106118243^(21/23) 7014087329999661 a001 5702887/4870847*1568397607^(21/22) 7014087329999662 a001 7778742049/1860498*1860498^(5/6) 7014087329999663 a001 2178309*7881196^(4/11) 7014087329999687 a001 6472224534451557/9227465 7014087329999690 a001 1836311903/4870847*20633239^(6/7) 7014087329999691 a001 4807526976/4870847*20633239^(4/5) 7014087329999692 a001 20365011074/4870847*20633239^(5/7) 7014087329999694 a001 139583862445/4870847*20633239^(3/5) 7014087329999694 a001 225851433717/4870847*20633239^(4/7) 7014087329999697 a001 2504730781961/4870847*20633239^(3/7) 7014087329999697 a001 4052739537881/4870847*20633239^(2/5) 7014087329999698 a001 14930352/4870847*2537720636^(8/9) 7014087329999698 a001 311187/4769326*45537549124^(16/17) 7014087329999698 a001 14930352/4870847*312119004989^(8/11) 7014087329999698 a001 311187/4769326*(1/2+1/2*5^(1/2))^48 7014087329999698 a001 14930352/4870847*(1/2+1/2*5^(1/2))^40 7014087329999698 a001 14930352/4870847*23725150497407^(5/8) 7014087329999698 a001 311187/4769326*192900153618^(8/9) 7014087329999698 a001 14930352/4870847*73681302247^(10/13) 7014087329999698 a001 311187/4769326*73681302247^(12/13) 7014087329999698 a001 14930352/4870847*28143753123^(4/5) 7014087329999698 a001 14930352/4870847*10749957122^(5/6) 7014087329999698 a001 14930352/4870847*4106118243^(20/23) 7014087329999698 a001 14930352/4870847*1568397607^(10/11) 7014087329999698 a001 14930352/4870847*599074578^(20/21) 7014087329999701 a001 16944503814015141/24157817 7014087329999703 a001 726103/29134601*312119004989^(10/11) 7014087329999703 a001 39088169/4870847*817138163596^(2/3) 7014087329999703 a001 39088169/4870847*(1/2+1/2*5^(1/2))^38 7014087329999703 a001 726103/29134601*3461452808002^(5/6) 7014087329999703 a001 39088169/4870847*10749957122^(19/24) 7014087329999703 a001 39088169/4870847*4106118243^(19/23) 7014087329999703 a001 39088169/4870847*1568397607^(19/22) 7014087329999703 a001 39088169/4870847*599074578^(19/21) 7014087329999703 a001 39088169/4870847*228826127^(19/20) 7014087329999703 a001 102334155/4870847*141422324^(12/13) 7014087329999704 a001 22180643453796933/31622993 7014087329999704 a001 433494437/4870847*141422324^(11/13) 7014087329999704 a001 1836311903/4870847*141422324^(10/13) 7014087329999704 a001 7778742049/4870847*141422324^(9/13) 7014087329999704 a001 12586269025/4870847*141422324^(2/3) 7014087329999704 a001 32951280099/4870847*141422324^(8/13) 7014087329999704 a001 139583862445/4870847*141422324^(7/13) 7014087329999704 a001 591286729879/4870847*141422324^(6/13) 7014087329999704 a001 2504730781961/4870847*141422324^(5/13) 7014087329999704 a001 102334155/4870847*2537720636^(4/5) 7014087329999704 a001 102334155/4870847*45537549124^(12/17) 7014087329999704 a001 102334155/4870847*14662949395604^(4/7) 7014087329999704 a001 102334155/4870847*(1/2+1/2*5^(1/2))^36 7014087329999704 a001 102334155/4870847*505019158607^(9/14) 7014087329999704 a001 46347/4868641*505019158607^(13/14) 7014087329999704 a001 102334155/4870847*192900153618^(2/3) 7014087329999704 a001 102334155/4870847*73681302247^(9/13) 7014087329999704 a001 102334155/4870847*10749957122^(3/4) 7014087329999704 a001 102334155/4870847*4106118243^(18/23) 7014087329999704 a001 102334155/4870847*1568397607^(9/11) 7014087329999704 a001 102334155/4870847*599074578^(6/7) 7014087329999704 a001 6557470319842/4870847*141422324^(1/3) 7014087329999704 a001 2178309*141422324^(4/13) 7014087329999704 a001 116139356908766457/165580141 7014087329999704 a001 267914296/4870847*45537549124^(2/3) 7014087329999704 a001 726103/199691526*14662949395604^(6/7) 7014087329999704 a001 267914296/4870847*(1/2+1/2*5^(1/2))^34 7014087329999704 a001 267914296/4870847*10749957122^(17/24) 7014087329999704 a001 267914296/4870847*4106118243^(17/23) 7014087329999704 a001 267914296/4870847*1568397607^(17/22) 7014087329999704 a001 102334155/4870847*228826127^(9/10) 7014087329999704 a001 304056783818705505/433494437 7014087329999704 a001 267914296/4870847*599074578^(17/21) 7014087329999704 a001 311187/224056801*14662949395604^(8/9) 7014087329999704 a001 701408733/4870847*(1/2+1/2*5^(1/2))^32 7014087329999704 a001 701408733/4870847*23725150497407^(1/2) 7014087329999704 a001 701408733/4870847*73681302247^(8/13) 7014087329999704 a001 701408733/4870847*10749957122^(2/3) 7014087329999704 a001 701408733/4870847*4106118243^(16/23) 7014087329999704 a001 1836311903/4870847*2537720636^(2/3) 7014087329999704 a001 398015497273675029/567451585 7014087329999704 a001 701408733/4870847*1568397607^(8/11) 7014087329999704 a001 7778742049/4870847*2537720636^(3/5) 7014087329999704 a001 20365011074/4870847*2537720636^(5/9) 7014087329999704 a001 32951280099/4870847*2537720636^(8/15) 7014087329999704 a001 139583862445/4870847*2537720636^(7/15) 7014087329999704 a001 225851433717/4870847*2537720636^(4/9) 7014087329999704 a001 591286729879/4870847*2537720636^(2/5) 7014087329999704 a001 1836311903/4870847*45537549124^(10/17) 7014087329999704 a001 1836311903/4870847*312119004989^(6/11) 7014087329999704 a001 1836311903/4870847*14662949395604^(10/21) 7014087329999704 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^30 7014087329999704 a001 1836311903/4870847*192900153618^(5/9) 7014087329999704 a001 1836311903/4870847*28143753123^(3/5) 7014087329999704 a001 1836311903/4870847*10749957122^(5/8) 7014087329999704 a001 2504730781961/4870847*2537720636^(1/3) 7014087329999704 a001 2178309*2537720636^(4/15) 7014087329999704 a001 2084036199823344669/2971215073 7014087329999704 a001 1836311903/4870847*4106118243^(15/23) 7014087329999704 a001 4807526976/4870847*17393796001^(4/7) 7014087329999704 a001 4807526976/4870847*14662949395604^(4/9) 7014087329999704 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^28 7014087329999704 a001 4807526976/4870847*505019158607^(1/2) 7014087329999704 a001 4807526976/4870847*73681302247^(7/13) 7014087329999704 a001 4807526976/4870847*10749957122^(7/12) 7014087329999704 a001 5456077604922683949/7778742049 7014087329999704 a001 139583862445/4870847*17393796001^(3/7) 7014087329999704 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^26 7014087329999704 a001 12586269025/4870847*73681302247^(1/2) 7014087329999704 a001 4052739537881/4870847*17393796001^(2/7) 7014087329999704 a001 7142098307472353589/10182505537 7014087329999704 a001 32951280099/4870847*45537549124^(8/17) 7014087329999704 a001 139583862445/4870847*45537549124^(7/17) 7014087329999704 a001 32951280099/4870847*14662949395604^(8/21) 7014087329999704 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^24 7014087329999704 a001 32951280099/4870847*192900153618^(4/9) 7014087329999704 a001 591286729879/4870847*45537549124^(6/17) 7014087329999704 a001 956722026041/4870847*45537549124^(1/3) 7014087329999704 a001 2504730781961/4870847*45537549124^(5/17) 7014087329999704 a001 2178309*45537549124^(4/17) 7014087329999704 a001 32951280099/4870847*73681302247^(6/13) 7014087329999704 a001 86267571272/4870847*312119004989^(2/5) 7014087329999704 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^22 7014087329999704 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^20 7014087329999704 a001 225851433717/4870847*23725150497407^(5/16) 7014087329999704 a001 2504730781961/4870847*312119004989^(3/11) 7014087329999704 a001 225851433717/4870847*505019158607^(5/14) 7014087329999704 a001 591286729879/4870847*14662949395604^(2/7) 7014087329999704 a001 591286729879/4870847*(1/2+1/2*5^(1/2))^18 7014087329999704 a001 2178309*817138163596^(4/19) 7014087329999704 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^16 7014087329999704 a001 1548008755920/4870847*23725150497407^(1/4) 7014087329999704 a001 4052739537881/4870847*(1/2+1/2*5^(1/2))^14 7014087329999704 a001 2178309*(1/2+1/2*5^(1/2))^12 7014087329999704 a001 6557470319842/4870847*(1/2+1/2*5^(1/2))^13 7014087329999704 a001 2504730781961/4870847*(1/2+1/2*5^(1/2))^15 7014087329999704 a001 956722026041/4870847*(1/2+1/2*5^(1/2))^17 7014087329999704 a001 2178309*192900153618^(2/9) 7014087329999704 a001 591286729879/4870847*192900153618^(1/3) 7014087329999704 a001 139583862445/4870847*14662949395604^(1/3) 7014087329999704 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^21 7014087329999704 a001 139583862445/4870847*192900153618^(7/18) 7014087329999704 a001 2178309*73681302247^(3/13) 7014087329999704 a001 6557470319842/4870847*73681302247^(1/4) 7014087329999704 a001 1548008755920/4870847*73681302247^(4/13) 7014087329999704 a001 225851433717/4870847*73681302247^(5/13) 7014087329999704 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^23 7014087329999704 a001 7704105208322243469/10983760033 7014087329999704 a001 20365011074/4870847*312119004989^(5/11) 7014087329999704 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^25 7014087329999704 a001 20365011074/4870847*3461452808002^(5/12) 7014087329999704 a001 225851433717/4870847*28143753123^(2/5) 7014087329999704 a001 20365011074/4870847*28143753123^(1/2) 7014087329999704 a001 8828119010022023229/12586269025 7014087329999704 a001 2178309*10749957122^(1/4) 7014087329999704 a001 4052739537881/4870847*10749957122^(7/24) 7014087329999704 a001 2504730781961/4870847*10749957122^(5/16) 7014087329999704 a001 1548008755920/4870847*10749957122^(1/3) 7014087329999704 a001 7778742049/4870847*45537549124^(9/17) 7014087329999704 a001 591286729879/4870847*10749957122^(3/8) 7014087329999704 a001 7778742049/4870847*817138163596^(9/19) 7014087329999704 a001 7778742049/4870847*14662949395604^(3/7) 7014087329999704 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^27 7014087329999704 a001 7778742049/4870847*192900153618^(1/2) 7014087329999704 a001 12586269025/4870847*10749957122^(13/24) 7014087329999704 a001 225851433717/4870847*10749957122^(5/12) 7014087329999704 a001 139583862445/4870847*10749957122^(7/16) 7014087329999704 a001 86267571272/4870847*10749957122^(11/24) 7014087329999704 a001 32951280099/4870847*10749957122^(1/2) 7014087329999704 a001 7778742049/4870847*10749957122^(9/16) 7014087329999704 a001 71176152589905/101476 7014087329999704 a001 2178309*4106118243^(6/23) 7014087329999704 a001 4052739537881/4870847*4106118243^(7/23) 7014087329999704 a001 1548008755920/4870847*4106118243^(8/23) 7014087329999704 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^29 7014087329999704 a001 2971215073/4870847*1322157322203^(1/2) 7014087329999704 a001 591286729879/4870847*4106118243^(9/23) 7014087329999704 a001 225851433717/4870847*4106118243^(10/23) 7014087329999704 a001 4807526976/4870847*4106118243^(14/23) 7014087329999704 a001 86267571272/4870847*4106118243^(11/23) 7014087329999704 a001 53316291173/4870847*4106118243^(1/2) 7014087329999704 a001 32951280099/4870847*4106118243^(12/23) 7014087329999704 a001 12586269025/4870847*4106118243^(13/23) 7014087329999704 a001 1288005205275994611/1836311903 7014087329999704 a001 2178309*1568397607^(3/11) 7014087329999704 a001 4052739537881/4870847*1568397607^(7/22) 7014087329999704 a001 1548008755920/4870847*1568397607^(4/11) 7014087329999704 a001 2178309/2537720636*14662949395604^(19/21) 7014087329999704 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^31 7014087329999704 a001 1134903170/4870847*9062201101803^(1/2) 7014087329999704 a001 591286729879/4870847*1568397607^(9/22) 7014087329999704 a001 225851433717/4870847*1568397607^(5/11) 7014087329999704 a001 86267571272/4870847*1568397607^(1/2) 7014087329999704 a001 1836311903/4870847*1568397607^(15/22) 7014087329999704 a001 32951280099/4870847*1568397607^(6/11) 7014087329999704 a001 12586269025/4870847*1568397607^(13/22) 7014087329999704 a001 4807526976/4870847*1568397607^(7/11) 7014087329999704 a001 163991403576214851/233802911 7014087329999704 a001 2178309*599074578^(2/7) 7014087329999704 a001 4052739537881/4870847*599074578^(1/3) 7014087329999704 a001 433494437/4870847*2537720636^(11/15) 7014087329999704 a001 2504730781961/4870847*599074578^(5/14) 7014087329999704 a001 1548008755920/4870847*599074578^(8/21) 7014087329999704 a001 433494437/4870847*45537549124^(11/17) 7014087329999704 a001 433494437/4870847*312119004989^(3/5) 7014087329999704 a001 433494437/4870847*14662949395604^(11/21) 7014087329999704 a001 433494437/4870847*(1/2+1/2*5^(1/2))^33 7014087329999704 a001 2178309/969323029*3461452808002^(11/12) 7014087329999704 a001 433494437/4870847*192900153618^(11/18) 7014087329999704 a001 433494437/4870847*10749957122^(11/16) 7014087329999704 a001 591286729879/4870847*599074578^(3/7) 7014087329999704 a001 225851433717/4870847*599074578^(10/21) 7014087329999704 a001 433494437/4870847*1568397607^(3/4) 7014087329999704 a001 139583862445/4870847*599074578^(1/2) 7014087329999704 a001 86267571272/4870847*599074578^(11/21) 7014087329999704 a001 32951280099/4870847*599074578^(4/7) 7014087329999704 a001 701408733/4870847*599074578^(16/21) 7014087329999704 a001 12586269025/4870847*599074578^(13/21) 7014087329999704 a001 7778742049/4870847*599074578^(9/14) 7014087329999704 a001 4807526976/4870847*599074578^(2/3) 7014087329999704 a001 1836311903/4870847*599074578^(5/7) 7014087329999704 a001 23489678363742381/33489287 7014087329999704 a001 433494437/4870847*599074578^(11/14) 7014087329999704 a001 2178309*228826127^(3/10) 7014087329999704 a001 4052739537881/4870847*228826127^(7/20) 7014087329999704 a001 2504730781961/4870847*228826127^(3/8) 7014087329999704 a001 165580141/4870847*2537720636^(7/9) 7014087329999704 a001 165580141/4870847*17393796001^(5/7) 7014087329999704 a001 165580141/4870847*312119004989^(7/11) 7014087329999704 a001 165580141/4870847*14662949395604^(5/9) 7014087329999704 a001 165580141/4870847*(1/2+1/2*5^(1/2))^35 7014087329999704 a001 165580141/4870847*505019158607^(5/8) 7014087329999704 a001 165580141/4870847*28143753123^(7/10) 7014087329999704 a001 1548008755920/4870847*228826127^(2/5) 7014087329999704 a001 591286729879/4870847*228826127^(9/20) 7014087329999704 a001 225851433717/4870847*228826127^(1/2) 7014087329999704 a001 165580141/4870847*599074578^(5/6) 7014087329999704 a001 86267571272/4870847*228826127^(11/20) 7014087329999704 a001 32951280099/4870847*228826127^(3/5) 7014087329999704 a001 20365011074/4870847*228826127^(5/8) 7014087329999704 a001 12586269025/4870847*228826127^(13/20) 7014087329999704 a001 4807526976/4870847*228826127^(7/10) 7014087329999704 a001 267914296/4870847*228826127^(17/20) 7014087329999704 a001 1836311903/4870847*228826127^(3/4) 7014087329999704 a001 701408733/4870847*228826127^(4/5) 7014087329999704 a001 3418003333389171/4873055 7014087329999704 a001 165580141/4870847*228826127^(7/8) 7014087329999704 a001 2178309*87403803^(6/19) 7014087329999704 a001 4052739537881/4870847*87403803^(7/19) 7014087329999704 a001 2178309/141422324*817138163596^(17/19) 7014087329999704 a001 2178309/141422324*14662949395604^(17/21) 7014087329999704 a001 63245986/4870847*(1/2+1/2*5^(1/2))^37 7014087329999704 a001 2178309/141422324*192900153618^(17/18) 7014087329999704 a001 1548008755920/4870847*87403803^(8/19) 7014087329999704 a001 591286729879/4870847*87403803^(9/19) 7014087329999704 a001 365435296162/4870847*87403803^(1/2) 7014087329999704 a001 225851433717/4870847*87403803^(10/19) 7014087329999704 a001 86267571272/4870847*87403803^(11/19) 7014087329999704 a001 32951280099/4870847*87403803^(12/19) 7014087329999704 a001 12586269025/4870847*87403803^(13/19) 7014087329999705 a001 4807526976/4870847*87403803^(14/19) 7014087329999705 a001 1836311903/4870847*87403803^(15/19) 7014087329999705 a001 102334155/4870847*87403803^(18/19) 7014087329999705 a001 701408733/4870847*87403803^(16/19) 7014087329999705 a001 267914296/4870847*87403803^(17/19) 7014087329999705 a001 27416783093578725/39088169 7014087329999706 a001 2178309*33385282^(1/3) 7014087329999706 a001 24157817/4870847*2537720636^(13/15) 7014087329999706 a001 24157817/4870847*45537549124^(13/17) 7014087329999706 a001 2178309/54018521*14662949395604^(7/9) 7014087329999706 a001 24157817/4870847*14662949395604^(13/21) 7014087329999706 a001 24157817/4870847*(1/2+1/2*5^(1/2))^39 7014087329999706 a001 2178309/54018521*505019158607^(7/8) 7014087329999706 a001 24157817/4870847*192900153618^(13/18) 7014087329999706 a001 24157817/4870847*73681302247^(3/4) 7014087329999706 a001 24157817/4870847*10749957122^(13/16) 7014087329999706 a001 24157817/4870847*599074578^(13/14) 7014087329999706 a001 4052739537881/4870847*33385282^(7/18) 7014087329999706 a001 2504730781961/4870847*33385282^(5/12) 7014087329999707 a001 1548008755920/4870847*33385282^(4/9) 7014087329999707 a001 591286729879/4870847*33385282^(1/2) 7014087329999707 a001 225851433717/4870847*33385282^(5/9) 7014087329999708 a001 139583862445/4870847*33385282^(7/12) 7014087329999708 a001 86267571272/4870847*33385282^(11/18) 7014087329999708 a001 32951280099/4870847*33385282^(2/3) 7014087329999708 a001 12586269025/4870847*33385282^(13/18) 7014087329999709 a001 7778742049/4870847*33385282^(3/4) 7014087329999709 a001 4807526976/4870847*33385282^(7/9) 7014087329999709 a001 1836311903/4870847*33385282^(5/6) 7014087329999709 a001 701408733/4870847*33385282^(8/9) 7014087329999710 a001 433494437/4870847*33385282^(11/12) 7014087329999710 a001 267914296/4870847*33385282^(17/18) 7014087329999710 a001 24241387221212/34561 7014087329999719 a001 2178309*12752043^(6/17) 7014087329999720 a001 2178309/20633239*(1/2+1/2*5^(1/2))^47 7014087329999720 a001 9227465/4870847*(1/2+1/2*5^(1/2))^41 7014087329999722 a001 4052739537881/4870847*12752043^(7/17) 7014087329999724 a001 1548008755920/4870847*12752043^(8/17) 7014087329999725 a001 956722026041/4870847*12752043^(1/2) 7014087329999727 a001 591286729879/4870847*12752043^(9/17) 7014087329999729 a001 225851433717/4870847*12752043^(10/17) 7014087329999729 a001 267084832/103361*1860498^(13/15) 7014087329999732 a001 86267571272/4870847*12752043^(11/17) 7014087329999734 a001 32951280099/4870847*12752043^(12/17) 7014087329999737 a001 12586269025/4870847*12752043^(13/17) 7014087329999739 a001 4807526976/4870847*12752043^(14/17) 7014087329999742 a001 1836311903/4870847*12752043^(15/17) 7014087329999744 a001 701408733/4870847*12752043^(16/17) 7014087329999747 a001 4000054745112027/5702887 7014087329999797 a001 2971215073/1860498*1860498^(9/10) 7014087329999815 a001 2178309*4870847^(3/8) 7014087329999817 a001 2178309/7881196*45537549124^(15/17) 7014087329999817 a001 2178309/7881196*312119004989^(9/11) 7014087329999817 a001 2178309/7881196*14662949395604^(5/7) 7014087329999817 a001 2178309/7881196*(1/2+1/2*5^(1/2))^45 7014087329999817 a001 3524578/4870847*(1/2+1/2*5^(1/2))^43 7014087329999817 a001 2178309/7881196*192900153618^(5/6) 7014087329999817 a001 2178309/7881196*28143753123^(9/10) 7014087329999817 a001 2178309/7881196*10749957122^(15/16) 7014087329999833 a001 4052739537881/4870847*4870847^(7/16) 7014087329999843 a001 2472169789339619/3524578 7014087329999852 a001 1548008755920/4870847*4870847^(1/2) 7014087329999854 a001 1602508992/4250681*7881196^(10/11) 7014087329999864 a001 20365011074/12752043*7881196^(9/11) 7014087329999864 a001 1836311903/1860498*1860498^(14/15) 7014087329999870 a001 591286729879/4870847*4870847^(9/16) 7014087329999874 a001 86267571272/12752043*7881196^(8/11) 7014087329999880 a001 1236084894669816/1762289 7014087329999881 a001 75283811239/4250681*7881196^(2/3) 7014087329999885 a001 365435296162/12752043*7881196^(7/11) 7014087329999886 a001 1236084894669817/1762289 7014087329999889 a001 225851433717/4870847*4870847^(5/8) 7014087329999889 a001 2472169789339635/3524578 7014087329999891 a001 12586269025/33385282*7881196^(10/11) 7014087329999895 a001 516002918640/4250681*7881196^(6/11) 7014087329999896 a001 10983760033/29134601*7881196^(10/11) 7014087329999897 a001 86267571272/228826127*7881196^(10/11) 7014087329999897 a001 267913919/710646*7881196^(10/11) 7014087329999897 a001 591286729879/1568397607*7881196^(10/11) 7014087329999897 a001 516002918640/1368706081*7881196^(10/11) 7014087329999897 a001 4052739537881/10749957122*7881196^(10/11) 7014087329999897 a001 3536736619241/9381251041*7881196^(10/11) 7014087329999897 a001 6557470319842/17393796001*7881196^(10/11) 7014087329999897 a001 2504730781961/6643838879*7881196^(10/11) 7014087329999897 a001 956722026041/2537720636*7881196^(10/11) 7014087329999897 a001 365435296162/969323029*7881196^(10/11) 7014087329999897 a001 139583862445/370248451*7881196^(10/11) 7014087329999897 a001 53316291173/141422324*7881196^(10/11) 7014087329999899 a001 20365011074/54018521*7881196^(10/11) 7014087329999901 a001 53316291173/33385282*7881196^(9/11) 7014087329999903 a001 1236084894669820/1762289 7014087329999905 a001 6557470319842/12752043*7881196^(5/11) 7014087329999906 a001 139583862445/87403803*7881196^(9/11) 7014087329999907 a001 365435296162/228826127*7881196^(9/11) 7014087329999907 a001 956722026041/599074578*7881196^(9/11) 7014087329999907 a001 2504730781961/1568397607*7881196^(9/11) 7014087329999907 a001 6557470319842/4106118243*7881196^(9/11) 7014087329999907 a001 10610209857723/6643838879*7881196^(9/11) 7014087329999907 a001 4052739537881/2537720636*7881196^(9/11) 7014087329999907 a001 86267571272/4870847*4870847^(11/16) 7014087329999907 a001 1548008755920/969323029*7881196^(9/11) 7014087329999907 a001 591286729879/370248451*7881196^(9/11) 7014087329999907 a001 225851433717/141422324*7881196^(9/11) 7014087329999910 a001 86267571272/54018521*7881196^(9/11) 7014087329999911 a001 32264490531/4769326*7881196^(8/11) 7014087329999913 a001 5702887/12752043*312119004989^(4/5) 7014087329999913 a001 5702887/12752043*(1/2+1/2*5^(1/2))^44 7014087329999913 a001 5702887/12752043*23725150497407^(11/16) 7014087329999913 a001 5702887/12752043*73681302247^(11/13) 7014087329999913 a001 5702887/12752043*10749957122^(11/12) 7014087329999913 a001 5702887/12752043*4106118243^(22/23) 7014087329999913 a001 7778742049/20633239*7881196^(10/11) 7014087329999916 a001 591286729879/87403803*7881196^(8/11) 7014087329999917 a001 1548008755920/228826127*7881196^(8/11) 7014087329999917 a001 4052739537881/599074578*7881196^(8/11) 7014087329999917 a001 1515744265389/224056801*7881196^(8/11) 7014087329999917 a001 6557470319842/969323029*7881196^(8/11) 7014087329999917 a001 2504730781961/370248451*7881196^(8/11) 7014087329999918 a001 956722026041/141422324*7881196^(8/11) 7014087329999918 a001 591286729879/33385282*7881196^(2/3) 7014087329999920 a001 365435296162/54018521*7881196^(8/11) 7014087329999921 a001 956722026041/33385282*7881196^(7/11) 7014087329999923 a001 516002918640/29134601*7881196^(2/3) 7014087329999924 a001 32951280099/20633239*7881196^(9/11) 7014087329999924 a001 4052739537881/228826127*7881196^(2/3) 7014087329999924 a001 3536736619241/199691526*7881196^(2/3) 7014087329999924 a001 6557470319842/370248451*7881196^(2/3) 7014087329999925 a001 2504730781961/141422324*7881196^(2/3) 7014087329999926 a001 32951280099/4870847*4870847^(3/4) 7014087329999927 a001 956722026041/54018521*7881196^(2/3) 7014087329999927 a001 2504730781961/87403803*7881196^(7/11) 7014087329999928 a001 6557470319842/228826127*7881196^(7/11) 7014087329999928 a001 10610209857723/370248451*7881196^(7/11) 7014087329999928 a001 4052739537881/141422324*7881196^(7/11) 7014087329999930 a001 1548008755920/54018521*7881196^(7/11) 7014087329999932 a001 4052739537881/33385282*7881196^(6/11) 7014087329999934 a001 139583862445/20633239*7881196^(8/11) 7014087329999937 a001 3536736619241/29134601*7881196^(6/11) 7014087329999940 a001 1294444906890358/1845493 7014087329999940 a001 6557470319842/54018521*7881196^(6/11) 7014087329999941 a001 365435296162/20633239*7881196^(2/3) 7014087329999942 a001 1602508992/4250681*20633239^(6/7) 7014087329999943 a001 12586269025/12752043*20633239^(4/5) 7014087329999944 a001 12586269025/4870847*4870847^(13/16) 7014087329999944 a001 591286729879/20633239*7881196^(7/11) 7014087329999945 a001 53316291173/12752043*20633239^(5/7) 7014087329999946 a001 365435296162/12752043*20633239^(3/5) 7014087329999947 a001 591286729879/12752043*20633239^(4/7) 7014087329999949 a001 6557470319842/12752043*20633239^(3/7) 7014087329999950 a001 3536736619241/4250681*20633239^(2/5) 7014087329999950 a001 4976784/4250681*2537720636^(14/15) 7014087329999950 a001 4976784/4250681*17393796001^(6/7) 7014087329999950 a001 4976784/4250681*45537549124^(14/17) 7014087329999950 a001 4976784/4250681*817138163596^(14/19) 7014087329999950 a001 4976784/4250681*14662949395604^(2/3) 7014087329999950 a001 5702887/33385282*(1/2+1/2*5^(1/2))^46 7014087329999950 a001 4976784/4250681*(1/2+1/2*5^(1/2))^42 7014087329999950 a001 4976784/4250681*505019158607^(3/4) 7014087329999950 a001 4976784/4250681*192900153618^(7/9) 7014087329999950 a001 4976784/4250681*10749957122^(7/8) 7014087329999950 a001 5702887/33385282*10749957122^(23/24) 7014087329999950 a001 4976784/4250681*4106118243^(21/23) 7014087329999950 a001 4976784/4250681*1568397607^(21/22) 7014087329999954 a001 16944503814015751/24157817 7014087329999954 a001 2504730781961/20633239*7881196^(6/11) 7014087329999955 a001 39088169/12752043*2537720636^(8/9) 7014087329999955 a001 5702887/87403803*45537549124^(16/17) 7014087329999955 a001 39088169/12752043*312119004989^(8/11) 7014087329999955 a001 5702887/87403803*14662949395604^(16/21) 7014087329999955 a001 39088169/12752043*(1/2+1/2*5^(1/2))^40 7014087329999955 a001 39088169/12752043*23725150497407^(5/8) 7014087329999955 a001 5702887/87403803*192900153618^(8/9) 7014087329999955 a001 39088169/12752043*73681302247^(10/13) 7014087329999955 a001 5702887/87403803*73681302247^(12/13) 7014087329999955 a001 39088169/12752043*28143753123^(4/5) 7014087329999955 a001 39088169/12752043*10749957122^(5/6) 7014087329999955 a001 39088169/12752043*4106118243^(20/23) 7014087329999955 a001 39088169/12752043*1568397607^(10/11) 7014087329999955 a001 39088169/12752043*599074578^(20/21) 7014087329999956 a001 44361286907595463/63245986 7014087329999956 a001 267914296/12752043*141422324^(12/13) 7014087329999956 a001 1134903170/12752043*141422324^(11/13) 7014087329999956 a001 1602508992/4250681*141422324^(10/13) 7014087329999956 a001 20365011074/12752043*141422324^(9/13) 7014087329999956 a001 10983760033/4250681*141422324^(2/3) 7014087329999956 a001 86267571272/12752043*141422324^(8/13) 7014087329999956 a001 365435296162/12752043*141422324^(7/13) 7014087329999956 a001 516002918640/4250681*141422324^(6/13) 7014087329999956 a001 6557470319842/12752043*141422324^(5/13) 7014087329999956 a001 5702887/228826127*312119004989^(10/11) 7014087329999956 a001 34111385/4250681*817138163596^(2/3) 7014087329999956 a001 34111385/4250681*(1/2+1/2*5^(1/2))^38 7014087329999956 a001 5702887/228826127*3461452808002^(5/6) 7014087329999956 a001 34111385/4250681*10749957122^(19/24) 7014087329999956 a001 34111385/4250681*4106118243^(19/23) 7014087329999956 a001 34111385/4250681*1568397607^(19/22) 7014087329999956 a001 34111385/4250681*599074578^(19/21) 7014087329999956 a001 116139356908770638/165580141 7014087329999956 a001 267914296/12752043*2537720636^(4/5) 7014087329999956 a001 267914296/12752043*45537549124^(12/17) 7014087329999956 a001 267914296/12752043*14662949395604^(4/7) 7014087329999956 a001 267914296/12752043*(1/2+1/2*5^(1/2))^36 7014087329999956 a001 267914296/12752043*505019158607^(9/14) 7014087329999956 a001 5702887/599074578*505019158607^(13/14) 7014087329999956 a001 267914296/12752043*192900153618^(2/3) 7014087329999956 a001 267914296/12752043*73681302247^(9/13) 7014087329999956 a001 267914296/12752043*10749957122^(3/4) 7014087329999956 a001 267914296/12752043*4106118243^(18/23) 7014087329999956 a001 267914296/12752043*1568397607^(9/11) 7014087329999956 a001 304056783818716451/433494437 7014087329999956 a001 34111385/4250681*228826127^(19/20) 7014087329999956 a001 233802911/4250681*45537549124^(2/3) 7014087329999956 a001 5702887/1568397607*14662949395604^(6/7) 7014087329999956 a001 233802911/4250681*(1/2+1/2*5^(1/2))^34 7014087329999956 a001 233802911/4250681*10749957122^(17/24) 7014087329999956 a001 267914296/12752043*599074578^(6/7) 7014087329999956 a001 233802911/4250681*4106118243^(17/23) 7014087329999956 a001 159206198909475743/226980634 7014087329999956 a001 1602508992/4250681*2537720636^(2/3) 7014087329999956 a001 20365011074/12752043*2537720636^(3/5) 7014087329999956 a001 233802911/4250681*1568397607^(17/22) 7014087329999956 a001 53316291173/12752043*2537720636^(5/9) 7014087329999956 a001 86267571272/12752043*2537720636^(8/15) 7014087329999956 a001 365435296162/12752043*2537720636^(7/15) 7014087329999956 a001 591286729879/12752043*2537720636^(4/9) 7014087329999956 a001 516002918640/4250681*2537720636^(2/5) 7014087329999956 a001 5702887/4106118243*14662949395604^(8/9) 7014087329999956 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^32 7014087329999956 a001 1836311903/12752043*23725150497407^(1/2) 7014087329999956 a001 1836311903/12752043*505019158607^(4/7) 7014087329999956 a001 1836311903/12752043*73681302247^(8/13) 7014087329999956 a001 1836311903/12752043*10749957122^(2/3) 7014087329999956 a001 6557470319842/12752043*2537720636^(1/3) 7014087329999956 a001 2084036199823419694/2971215073 7014087329999956 a001 1836311903/12752043*4106118243^(16/23) 7014087329999956 a001 1602508992/4250681*45537549124^(10/17) 7014087329999956 a001 1602508992/4250681*312119004989^(6/11) 7014087329999956 a001 1602508992/4250681*14662949395604^(10/21) 7014087329999956 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^30 7014087329999956 a001 1602508992/4250681*192900153618^(5/9) 7014087329999956 a001 1602508992/4250681*28143753123^(3/5) 7014087329999956 a001 5456077604922880367/7778742049 7014087329999956 a001 1602508992/4250681*10749957122^(5/8) 7014087329999956 a001 12586269025/12752043*17393796001^(4/7) 7014087329999956 a001 365435296162/12752043*17393796001^(3/7) 7014087329999956 a001 5702887/28143753123*14662949395604^(20/21) 7014087329999956 a001 12586269025/12752043*14662949395604^(4/9) 7014087329999956 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^28 7014087329999956 a001 12586269025/12752043*505019158607^(1/2) 7014087329999956 a001 12586269025/12752043*73681302247^(7/13) 7014087329999956 a001 3536736619241/4250681*17393796001^(2/7) 7014087329999956 a001 8944393622382731/12752042 7014087329999956 a001 86267571272/12752043*45537549124^(8/17) 7014087329999956 a001 365435296162/12752043*45537549124^(7/17) 7014087329999956 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^26 7014087329999956 a001 516002918640/4250681*45537549124^(6/17) 7014087329999956 a001 2504730781961/12752043*45537549124^(1/3) 7014087329999956 a001 6557470319842/12752043*45537549124^(5/17) 7014087329999956 a001 10983760033/4250681*73681302247^(1/2) 7014087329999956 a001 37396512239912783854/53316291173 7014087329999956 a001 86267571272/12752043*14662949395604^(8/21) 7014087329999956 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^24 7014087329999956 a001 86267571272/12752043*192900153618^(4/9) 7014087329999956 a001 75283811239/4250681*312119004989^(2/5) 7014087329999956 a001 6557470319842/12752043*312119004989^(3/11) 7014087329999956 a001 591286729879/12752043*(1/2+1/2*5^(1/2))^20 7014087329999956 a001 591286729879/12752043*23725150497407^(5/16) 7014087329999956 a001 516002918640/4250681*14662949395604^(2/7) 7014087329999956 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^18 7014087329999956 a001 4052739537881/12752043*(1/2+1/2*5^(1/2))^16 7014087329999956 a001 3536736619241/4250681*14662949395604^(2/9) 7014087329999956 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^14 7014087329999956 a001 5702887*(1/2+1/2*5^(1/2))^10 7014087329999956 a001 6557470319842/12752043*(1/2+1/2*5^(1/2))^15 7014087329999956 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^17 7014087329999956 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^19 7014087329999956 a001 3536736619241/4250681*505019158607^(1/4) 7014087329999956 a001 365435296162/12752043*14662949395604^(1/3) 7014087329999956 a001 365435296162/12752043*(1/2+1/2*5^(1/2))^21 7014087329999956 a001 6557470319842/12752043*192900153618^(5/18) 7014087329999956 a001 516002918640/4250681*192900153618^(1/3) 7014087329999956 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^23 7014087329999956 a001 365435296162/12752043*192900153618^(7/18) 7014087329999956 a001 60508827864880346301/86267571272 7014087329999956 a001 4052739537881/12752043*73681302247^(4/13) 7014087329999956 a001 86267571272/12752043*73681302247^(6/13) 7014087329999956 a001 53316291173/12752043*312119004989^(5/11) 7014087329999956 a001 591286729879/12752043*73681302247^(5/13) 7014087329999956 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^25 7014087329999956 a001 53316291173/12752043*3461452808002^(5/12) 7014087329999956 a001 23112315624967562447/32951280099 7014087329999956 a001 20365011074/12752043*45537549124^(9/17) 7014087329999956 a001 6557470319842/12752043*28143753123^(3/10) 7014087329999956 a001 20365011074/12752043*817138163596^(9/19) 7014087329999956 a001 20365011074/12752043*14662949395604^(3/7) 7014087329999956 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^27 7014087329999956 a001 20365011074/12752043*192900153618^(1/2) 7014087329999956 a001 591286729879/12752043*28143753123^(2/5) 7014087329999956 a001 53316291173/12752043*28143753123^(1/2) 7014087329999956 a001 160511254727678928/228841255 7014087329999956 a001 3536736619241/4250681*10749957122^(7/24) 7014087329999956 a001 6557470319842/12752043*10749957122^(5/16) 7014087329999956 a001 4052739537881/12752043*10749957122^(1/3) 7014087329999956 a001 516002918640/4250681*10749957122^(3/8) 7014087329999956 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^29 7014087329999956 a001 7778742049/12752043*1322157322203^(1/2) 7014087329999956 a001 591286729879/12752043*10749957122^(5/12) 7014087329999956 a001 12586269025/12752043*10749957122^(7/12) 7014087329999956 a001 365435296162/12752043*10749957122^(7/16) 7014087329999956 a001 75283811239/4250681*10749957122^(11/24) 7014087329999956 a001 86267571272/12752043*10749957122^(1/2) 7014087329999956 a001 10983760033/4250681*10749957122^(13/24) 7014087329999956 a001 20365011074/12752043*10749957122^(9/16) 7014087329999956 a001 3372041405099460673/4807526976 7014087329999956 a001 3536736619241/4250681*4106118243^(7/23) 7014087329999956 a001 4052739537881/12752043*4106118243^(8/23) 7014087329999956 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^31 7014087329999956 a001 2971215073/12752043*9062201101803^(1/2) 7014087329999956 a001 516002918640/4250681*4106118243^(9/23) 7014087329999956 a001 591286729879/12752043*4106118243^(10/23) 7014087329999956 a001 75283811239/4250681*4106118243^(11/23) 7014087329999956 a001 139583862445/12752043*4106118243^(1/2) 7014087329999956 a001 1602508992/4250681*4106118243^(15/23) 7014087329999956 a001 86267571272/12752043*4106118243^(12/23) 7014087329999956 a001 10983760033/4250681*4106118243^(13/23) 7014087329999956 a001 12586269025/12752043*4106118243^(14/23) 7014087329999956 a001 1134903170/12752043*2537720636^(11/15) 7014087329999956 a001 1288005205276040979/1836311903 7014087329999956 a001 3536736619241/4250681*1568397607^(7/22) 7014087329999956 a001 4052739537881/12752043*1568397607^(4/11) 7014087329999956 a001 1134903170/12752043*45537549124^(11/17) 7014087329999956 a001 1134903170/12752043*312119004989^(3/5) 7014087329999956 a001 1134903170/12752043*817138163596^(11/19) 7014087329999956 a001 1134903170/12752043*14662949395604^(11/21) 7014087329999956 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^33 7014087329999956 a001 5702887/2537720636*3461452808002^(11/12) 7014087329999956 a001 1134903170/12752043*192900153618^(11/18) 7014087329999956 a001 1134903170/12752043*10749957122^(11/16) 7014087329999956 a001 516002918640/4250681*1568397607^(9/22) 7014087329999956 a001 591286729879/12752043*1568397607^(5/11) 7014087329999956 a001 75283811239/4250681*1568397607^(1/2) 7014087329999956 a001 86267571272/12752043*1568397607^(6/11) 7014087329999956 a001 1836311903/12752043*1568397607^(8/11) 7014087329999956 a001 10983760033/4250681*1568397607^(13/22) 7014087329999956 a001 12586269025/12752043*1568397607^(7/11) 7014087329999956 a001 1602508992/4250681*1568397607^(15/22) 7014087329999956 a001 491974210728662264/701408733 7014087329999956 a001 1134903170/12752043*1568397607^(3/4) 7014087329999956 a001 3536736619241/4250681*599074578^(1/3) 7014087329999956 a001 433494437/12752043*2537720636^(7/9) 7014087329999956 a001 6557470319842/12752043*599074578^(5/14) 7014087329999956 a001 4052739537881/12752043*599074578^(8/21) 7014087329999956 a001 433494437/12752043*17393796001^(5/7) 7014087329999956 a001 433494437/12752043*312119004989^(7/11) 7014087329999956 a001 433494437/12752043*14662949395604^(5/9) 7014087329999956 a001 433494437/12752043*(1/2+1/2*5^(1/2))^35 7014087329999956 a001 433494437/12752043*505019158607^(5/8) 7014087329999956 a001 433494437/12752043*28143753123^(7/10) 7014087329999956 a001 516002918640/4250681*599074578^(3/7) 7014087329999956 a001 591286729879/12752043*599074578^(10/21) 7014087329999956 a001 365435296162/12752043*599074578^(1/2) 7014087329999956 a001 75283811239/4250681*599074578^(11/21) 7014087329999956 a001 86267571272/12752043*599074578^(4/7) 7014087329999956 a001 10983760033/4250681*599074578^(13/21) 7014087329999956 a001 20365011074/12752043*599074578^(9/14) 7014087329999956 a001 233802911/4250681*599074578^(17/21) 7014087329999956 a001 12586269025/12752043*599074578^(2/3) 7014087329999956 a001 1602508992/4250681*599074578^(5/7) 7014087329999956 a001 1836311903/12752043*599074578^(16/21) 7014087329999956 a001 1134903170/12752043*599074578^(11/14) 7014087329999956 a001 187917426909945813/267914296 7014087329999956 a001 433494437/12752043*599074578^(5/6) 7014087329999956 a001 3536736619241/4250681*228826127^(7/20) 7014087329999956 a001 6557470319842/12752043*228826127^(3/8) 7014087329999956 a001 5702887/370248451*817138163596^(17/19) 7014087329999956 a001 5702887/370248451*14662949395604^(17/21) 7014087329999956 a001 165580141/12752043*(1/2+1/2*5^(1/2))^37 7014087329999956 a001 5702887/370248451*192900153618^(17/18) 7014087329999956 a001 4052739537881/12752043*228826127^(2/5) 7014087329999956 a001 516002918640/4250681*228826127^(9/20) 7014087329999956 a001 591286729879/12752043*228826127^(1/2) 7014087329999956 a001 75283811239/4250681*228826127^(11/20) 7014087329999956 a001 86267571272/12752043*228826127^(3/5) 7014087329999956 a001 53316291173/12752043*228826127^(5/8) 7014087329999956 a001 10983760033/4250681*228826127^(13/20) 7014087329999956 a001 12586269025/12752043*228826127^(7/10) 7014087329999956 a001 1602508992/4250681*228826127^(3/4) 7014087329999956 a001 267914296/12752043*228826127^(9/10) 7014087329999956 a001 1836311903/12752043*228826127^(4/5) 7014087329999956 a001 233802911/4250681*228826127^(17/20) 7014087329999956 a001 433494437/12752043*228826127^(7/8) 7014087329999957 a001 1305055818203185/1860621 7014087329999957 a001 3536736619241/4250681*87403803^(7/19) 7014087329999957 a001 63245986/12752043*2537720636^(13/15) 7014087329999957 a001 63245986/12752043*45537549124^(13/17) 7014087329999957 a001 5702887/141422324*14662949395604^(7/9) 7014087329999957 a001 63245986/12752043*14662949395604^(13/21) 7014087329999957 a001 63245986/12752043*(1/2+1/2*5^(1/2))^39 7014087329999957 a001 5702887/141422324*505019158607^(7/8) 7014087329999957 a001 63245986/12752043*192900153618^(13/18) 7014087329999957 a001 63245986/12752043*73681302247^(3/4) 7014087329999957 a001 63245986/12752043*10749957122^(13/16) 7014087329999957 a001 63245986/12752043*599074578^(13/14) 7014087329999957 a001 4052739537881/12752043*87403803^(8/19) 7014087329999957 a001 516002918640/4250681*87403803^(9/19) 7014087329999957 a001 956722026041/12752043*87403803^(1/2) 7014087329999957 a001 591286729879/12752043*87403803^(10/19) 7014087329999957 a001 75283811239/4250681*87403803^(11/19) 7014087329999957 a001 86267571272/12752043*87403803^(12/19) 7014087329999957 a001 10983760033/4250681*87403803^(13/19) 7014087329999957 a001 12586269025/12752043*87403803^(14/19) 7014087329999957 a001 1602508992/4250681*87403803^(15/19) 7014087329999957 a001 1836311903/12752043*87403803^(16/19) 7014087329999957 a001 233802911/4250681*87403803^(17/19) 7014087329999957 a001 267914296/12752043*87403803^(18/19) 7014087329999957 a001 27416783093579712/39088169 7014087329999959 a001 24157817/12752043*(1/2+1/2*5^(1/2))^41 7014087329999959 a001 3536736619241/4250681*33385282^(7/18) 7014087329999959 a001 6557470319842/12752043*33385282^(5/12) 7014087329999959 a001 4052739537881/12752043*33385282^(4/9) 7014087329999960 a001 516002918640/4250681*33385282^(1/2) 7014087329999960 a001 591286729879/12752043*33385282^(5/9) 7014087329999960 a001 365435296162/12752043*33385282^(7/12) 7014087329999960 a001 75283811239/4250681*33385282^(11/18) 7014087329999961 a001 86267571272/12752043*33385282^(2/3) 7014087329999961 a001 10983760033/4250681*33385282^(13/18) 7014087329999961 a001 20365011074/12752043*33385282^(3/4) 7014087329999961 a001 12586269025/12752043*33385282^(7/9) 7014087329999962 a001 1602508992/4250681*33385282^(5/6) 7014087329999962 a001 1836311903/12752043*33385282^(8/9) 7014087329999962 a001 1134903170/12752043*33385282^(11/12) 7014087329999962 a001 233802911/4250681*33385282^(17/18) 7014087329999963 a001 4807526976/4870847*4870847^(7/8) 7014087329999963 a001 10472279279563961/14930352 7014087329999965 a001 10610209857723/20633239*7881196^(5/11) 7014087329999973 a001 5702887/20633239*45537549124^(15/17) 7014087329999973 a001 5702887/20633239*312119004989^(9/11) 7014087329999973 a001 5702887/20633239*14662949395604^(5/7) 7014087329999973 a001 5702887/20633239*(1/2+1/2*5^(1/2))^45 7014087329999973 a001 9227465/12752043*(1/2+1/2*5^(1/2))^43 7014087329999973 a001 5702887/20633239*192900153618^(5/6) 7014087329999973 a001 5702887/20633239*28143753123^(9/10) 7014087329999973 a001 5702887/20633239*10749957122^(15/16) 7014087329999974 a001 3536736619241/4250681*12752043^(7/17) 7014087329999977 a001 4052739537881/12752043*12752043^(8/17) 7014087329999977 a001 6472224534451824/9227465 7014087329999978 a001 2504730781961/12752043*12752043^(1/2) 7014087329999979 a001 12586269025/33385282*20633239^(6/7) 7014087329999979 a001 516002918640/4250681*12752043^(9/17) 7014087329999980 a001 32951280099/33385282*20633239^(4/5) 7014087329999981 a001 1836311903/4870847*4870847^(15/16) 7014087329999981 a001 139583862445/33385282*20633239^(5/7) 7014087329999982 a001 591286729879/12752043*12752043^(10/17) 7014087329999982 a001 6472224534451829/9227465 7014087329999983 a001 1294444906890366/1845493 7014087329999983 a001 956722026041/33385282*20633239^(3/5) 7014087329999984 a001 774004377960/16692641*20633239^(4/7) 7014087329999984 a001 75283811239/4250681*12752043^(11/17) 7014087329999984 a001 10983760033/29134601*20633239^(6/7) 7014087329999985 a001 86267571272/228826127*20633239^(6/7) 7014087329999985 a001 267913919/710646*20633239^(6/7) 7014087329999985 a001 591286729879/1568397607*20633239^(6/7) 7014087329999985 a001 516002918640/1368706081*20633239^(6/7) 7014087329999985 a001 4052739537881/10749957122*20633239^(6/7) 7014087329999985 a001 3536736619241/9381251041*20633239^(6/7) 7014087329999985 a001 6557470319842/17393796001*20633239^(6/7) 7014087329999985 a001 2504730781961/6643838879*20633239^(6/7) 7014087329999985 a001 956722026041/2537720636*20633239^(6/7) 7014087329999985 a001 365435296162/969323029*20633239^(6/7) 7014087329999985 a001 86267571272/87403803*20633239^(4/5) 7014087329999985 a001 497863425727064/709805 7014087329999985 a001 139583862445/370248451*20633239^(6/7) 7014087329999986 a001 53316291173/141422324*20633239^(6/7) 7014087329999986 a001 225851433717/228826127*20633239^(4/5) 7014087329999986 a001 591286729879/599074578*20633239^(4/5) 7014087329999986 a001 1548008755920/1568397607*20633239^(4/5) 7014087329999986 a001 4052739537881/4106118243*20633239^(4/5) 7014087329999986 a001 4807525989/4870846*20633239^(4/5) 7014087329999986 a001 6557470319842/6643838879*20633239^(4/5) 7014087329999986 a001 2504730781961/2537720636*20633239^(4/5) 7014087329999986 a001 956722026041/969323029*20633239^(4/5) 7014087329999986 a001 365435296162/370248451*20633239^(4/5) 7014087329999987 a001 139583862445/141422324*20633239^(4/5) 7014087329999987 a001 365435296162/87403803*20633239^(5/7) 7014087329999987 a001 86267571272/12752043*12752043^(12/17) 7014087329999987 a001 7465176/16692641*312119004989^(4/5) 7014087329999987 a001 7465176/16692641*(1/2+1/2*5^(1/2))^44 7014087329999987 a001 7465176/16692641*23725150497407^(11/16) 7014087329999987 a001 7465176/16692641*73681302247^(11/13) 7014087329999987 a001 7465176/16692641*10749957122^(11/12) 7014087329999987 a001 7465176/16692641*4106118243^(22/23) 7014087329999988 a001 956722026041/228826127*20633239^(5/7) 7014087329999988 a001 2504730781961/599074578*20633239^(5/7) 7014087329999988 a001 6557470319842/1568397607*20633239^(5/7) 7014087329999988 a001 10610209857723/2537720636*20633239^(5/7) 7014087329999988 a001 4052739537881/969323029*20633239^(5/7) 7014087329999988 a001 20365011074/54018521*20633239^(6/7) 7014087329999988 a001 1548008755920/370248451*20633239^(5/7) 7014087329999988 a001 591286729879/141422324*20633239^(5/7) 7014087329999989 a001 2504730781961/87403803*20633239^(3/5) 7014087329999989 a001 53316291173/54018521*20633239^(4/5) 7014087329999989 a001 4052739537881/87403803*20633239^(4/7) 7014087329999989 a001 10983760033/4250681*12752043^(13/17) 7014087329999989 a001 6557470319842/228826127*20633239^(3/5) 7014087329999990 a001 10610209857723/370248451*20633239^(3/5) 7014087329999990 a001 225749145909/4868641*20633239^(4/7) 7014087329999990 a001 4052739537881/141422324*20633239^(3/5) 7014087329999990 a001 225851433717/54018521*20633239^(5/7) 7014087329999990 a001 3278735159921/70711162*20633239^(4/7) 7014087329999991 a001 16944503814015840/24157817 7014087329999992 a001 12586269025/12752043*12752043^(14/17) 7014087329999992 a001 1548008755920/54018521*20633239^(3/5) 7014087329999992 a001 39088169/33385282*2537720636^(14/15) 7014087329999992 a001 39088169/33385282*17393796001^(6/7) 7014087329999992 a001 39088169/33385282*45537549124^(14/17) 7014087329999992 a001 39088169/33385282*817138163596^(14/19) 7014087329999992 a001 39088169/33385282*14662949395604^(2/3) 7014087329999992 a001 39088169/33385282*(1/2+1/2*5^(1/2))^42 7014087329999992 a001 39088169/33385282*505019158607^(3/4) 7014087329999992 a001 39088169/33385282*192900153618^(7/9) 7014087329999992 a001 39088169/33385282*10749957122^(7/8) 7014087329999992 a001 4976784/29134601*10749957122^(23/24) 7014087329999992 a001 39088169/33385282*4106118243^(21/23) 7014087329999992 a001 39088169/33385282*1568397607^(21/22) 7014087329999992 a001 2504730781961/54018521*20633239^(4/7) 7014087329999993 a001 22180643453797848/31622993 7014087329999993 a001 701408733/33385282*141422324^(12/13) 7014087329999993 a001 2971215073/33385282*141422324^(11/13) 7014087329999993 a001 12586269025/33385282*141422324^(10/13) 7014087329999993 a001 53316291173/33385282*141422324^(9/13) 7014087329999993 a001 43133785636/16692641*141422324^(2/3) 7014087329999993 a001 32264490531/4769326*141422324^(8/13) 7014087329999993 a001 956722026041/33385282*141422324^(7/13) 7014087329999993 a001 4052739537881/33385282*141422324^(6/13) 7014087329999993 a001 14619165/4769326*2537720636^(8/9) 7014087329999993 a001 14930352/228826127*45537549124^(16/17) 7014087329999993 a001 14619165/4769326*312119004989^(8/11) 7014087329999993 a001 14619165/4769326*(1/2+1/2*5^(1/2))^40 7014087329999993 a001 14619165/4769326*23725150497407^(5/8) 7014087329999993 a001 14930352/228826127*192900153618^(8/9) 7014087329999993 a001 14619165/4769326*73681302247^(10/13) 7014087329999993 a001 14930352/228826127*73681302247^(12/13) 7014087329999993 a001 14619165/4769326*28143753123^(4/5) 7014087329999993 a001 14619165/4769326*10749957122^(5/6) 7014087329999993 a001 14619165/4769326*4106118243^(20/23) 7014087329999993 a001 14619165/4769326*1568397607^(10/11) 7014087329999993 a001 14619165/4769326*599074578^(20/21) 7014087329999993 a001 116139356908771248/165580141 7014087329999993 a001 829464/33281921*312119004989^(10/11) 7014087329999993 a001 133957148/16692641*817138163596^(2/3) 7014087329999993 a001 133957148/16692641*(1/2+1/2*5^(1/2))^38 7014087329999993 a001 133957148/16692641*10749957122^(19/24) 7014087329999993 a001 133957148/16692641*4106118243^(19/23) 7014087329999993 a001 133957148/16692641*1568397607^(19/22) 7014087329999993 a001 304056783818718048/433494437 7014087329999993 a001 701408733/33385282*2537720636^(4/5) 7014087329999993 a001 701408733/33385282*45537549124^(12/17) 7014087329999993 a001 701408733/33385282*14662949395604^(4/7) 7014087329999993 a001 701408733/33385282*(1/2+1/2*5^(1/2))^36 7014087329999993 a001 14930352/1568397607*23725150497407^(13/16) 7014087329999993 a001 14930352/1568397607*505019158607^(13/14) 7014087329999993 a001 701408733/33385282*192900153618^(2/3) 7014087329999993 a001 701408733/33385282*73681302247^(9/13) 7014087329999993 a001 701408733/33385282*10749957122^(3/4) 7014087329999993 a001 701408733/33385282*4106118243^(18/23) 7014087329999993 a001 133957148/16692641*599074578^(19/21) 7014087329999993 a001 23412676310217144/33379505 7014087329999993 a001 12586269025/33385282*2537720636^(2/3) 7014087329999993 a001 53316291173/33385282*2537720636^(3/5) 7014087329999993 a001 2971215073/33385282*2537720636^(11/15) 7014087329999993 a001 139583862445/33385282*2537720636^(5/9) 7014087329999993 a001 32264490531/4769326*2537720636^(8/15) 7014087329999993 a001 701408733/33385282*1568397607^(9/11) 7014087329999993 a001 956722026041/33385282*2537720636^(7/15) 7014087329999993 a001 774004377960/16692641*2537720636^(4/9) 7014087329999993 a001 4052739537881/33385282*2537720636^(2/5) 7014087329999993 a001 1836311903/33385282*45537549124^(2/3) 7014087329999993 a001 4976784/1368706081*14662949395604^(6/7) 7014087329999993 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^34 7014087329999993 a001 1836311903/33385282*10749957122^(17/24) 7014087329999993 a001 2084036199823430640/2971215073 7014087329999993 a001 1836311903/33385282*4106118243^(17/23) 7014087329999993 a001 7465176/5374978561*14662949395604^(8/9) 7014087329999993 a001 14930208/103681*(1/2+1/2*5^(1/2))^32 7014087329999993 a001 14930208/103681*23725150497407^(1/2) 7014087329999993 a001 14930208/103681*505019158607^(4/7) 7014087329999993 a001 14930208/103681*73681302247^(8/13) 7014087329999993 a001 5456077604922909024/7778742049 7014087329999993 a001 14930208/103681*10749957122^(2/3) 7014087329999993 a001 32951280099/33385282*17393796001^(4/7) 7014087329999993 a001 12586269025/33385282*45537549124^(10/17) 7014087329999993 a001 956722026041/33385282*17393796001^(3/7) 7014087329999993 a001 12586269025/33385282*312119004989^(6/11) 7014087329999993 a001 12586269025/33385282*14662949395604^(10/21) 7014087329999993 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^30 7014087329999993 a001 12586269025/33385282*192900153618^(5/9) 7014087329999993 a001 12586269025/33385282*28143753123^(3/5) 7014087329999993 a001 7142098307472648216/10182505537 7014087329999993 a001 32264490531/4769326*45537549124^(8/17) 7014087329999993 a001 956722026041/33385282*45537549124^(7/17) 7014087329999993 a001 53316291173/33385282*45537549124^(9/17) 7014087329999993 a001 14930352/73681302247*14662949395604^(20/21) 7014087329999993 a001 32951280099/33385282*14662949395604^(4/9) 7014087329999993 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^28 7014087329999993 a001 32951280099/33385282*505019158607^(1/2) 7014087329999993 a001 4052739537881/33385282*45537549124^(6/17) 7014087329999993 a001 3278735159921/16692641*45537549124^(1/3) 7014087329999993 a001 32951280099/33385282*73681302247^(7/13) 7014087329999993 a001 37396512239912980272/53316291173 7014087329999993 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^26 7014087329999993 a001 97905340104793644384/139583862445 7014087329999993 a001 591286729879/33385282*312119004989^(2/5) 7014087329999993 a001 32264490531/4769326*14662949395604^(8/21) 7014087329999993 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^24 7014087329999993 a001 2504730781961/33385282*817138163596^(1/3) 7014087329999993 a001 4052739537881/33385282*14662949395604^(2/7) 7014087329999993 a001 4052739537881/33385282*(1/2+1/2*5^(1/2))^18 7014087329999993 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^16 7014087329999993 a001 1515744265389/4769326*23725150497407^(1/4) 7014087329999993 a001 14930352*(1/2+1/2*5^(1/2))^8 7014087329999993 a001 3278735159921/16692641*(1/2+1/2*5^(1/2))^17 7014087329999993 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^19 7014087329999993 a001 956722026041/33385282*(1/2+1/2*5^(1/2))^21 7014087329999993 a001 774004377960/16692641*505019158607^(5/14) 7014087329999993 a001 182717648081/16692641*(1/2+1/2*5^(1/2))^23 7014087329999993 a001 139583862445/33385282*312119004989^(5/11) 7014087329999993 a001 32264490531/4769326*192900153618^(4/9) 7014087329999993 a001 4052739537881/33385282*192900153618^(1/3) 7014087329999993 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^25 7014087329999993 a001 139583862445/33385282*3461452808002^(5/12) 7014087329999993 a001 956722026041/33385282*192900153618^(7/18) 7014087329999993 a001 23416729049876418/33385283 7014087329999993 a001 1515744265389/4769326*73681302247^(4/13) 7014087329999993 a001 43133785636/16692641*73681302247^(1/2) 7014087329999993 a001 53316291173/33385282*817138163596^(9/19) 7014087329999993 a001 53316291173/33385282*14662949395604^(3/7) 7014087329999993 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^27 7014087329999993 a001 774004377960/16692641*73681302247^(5/13) 7014087329999993 a001 32264490531/4769326*73681302247^(6/13) 7014087329999993 a001 53316291173/33385282*192900153618^(1/2) 7014087329999993 a001 7704105208322561280/10983760033 7014087329999993 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^29 7014087329999993 a001 10182505537/16692641*1322157322203^(1/2) 7014087329999993 a001 774004377960/16692641*28143753123^(2/5) 7014087329999993 a001 139583862445/33385282*28143753123^(1/2) 7014087329999993 a001 8828119010022387408/12586269025 7014087329999993 a001 1515744265389/4769326*10749957122^(1/3) 7014087329999993 a001 4052739537881/33385282*10749957122^(3/8) 7014087329999993 a001 14930352/17393796001*14662949395604^(19/21) 7014087329999993 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^31 7014087329999993 a001 7778742049/33385282*9062201101803^(1/2) 7014087329999993 a001 774004377960/16692641*10749957122^(5/12) 7014087329999993 a001 956722026041/33385282*10749957122^(7/16) 7014087329999993 a001 591286729879/33385282*10749957122^(11/24) 7014087329999993 a001 12586269025/33385282*10749957122^(5/8) 7014087329999993 a001 32264490531/4769326*10749957122^(1/2) 7014087329999993 a001 43133785636/16692641*10749957122^(13/24) 7014087329999993 a001 32951280099/33385282*10749957122^(7/12) 7014087329999993 a001 53316291173/33385282*10749957122^(9/16) 7014087329999993 a001 3345279171725673/4769372 7014087329999993 a001 1515744265389/4769326*4106118243^(8/23) 7014087329999993 a001 2971215073/33385282*45537549124^(11/17) 7014087329999993 a001 2971215073/33385282*312119004989^(3/5) 7014087329999993 a001 2971215073/33385282*14662949395604^(11/21) 7014087329999993 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^33 7014087329999993 a001 14930352/6643838879*3461452808002^(11/12) 7014087329999993 a001 2971215073/33385282*192900153618^(11/18) 7014087329999993 a001 4052739537881/33385282*4106118243^(9/23) 7014087329999993 a001 774004377960/16692641*4106118243^(10/23) 7014087329999993 a001 591286729879/33385282*4106118243^(11/23) 7014087329999993 a001 2971215073/33385282*10749957122^(11/16) 7014087329999993 a001 182717648081/16692641*4106118243^(1/2) 7014087329999993 a001 32264490531/4769326*4106118243^(12/23) 7014087329999993 a001 14930208/103681*4106118243^(16/23) 7014087329999993 a001 43133785636/16692641*4106118243^(13/23) 7014087329999993 a001 567451585/16692641*2537720636^(7/9) 7014087329999993 a001 32951280099/33385282*4106118243^(14/23) 7014087329999993 a001 12586269025/33385282*4106118243^(15/23) 7014087329999993 a001 1288005205276047744/1836311903 7014087329999993 a001 1515744265389/4769326*1568397607^(4/11) 7014087329999993 a001 567451585/16692641*17393796001^(5/7) 7014087329999993 a001 567451585/16692641*312119004989^(7/11) 7014087329999993 a001 567451585/16692641*14662949395604^(5/9) 7014087329999993 a001 567451585/16692641*(1/2+1/2*5^(1/2))^35 7014087329999993 a001 567451585/16692641*505019158607^(5/8) 7014087329999993 a001 567451585/16692641*28143753123^(7/10) 7014087329999993 a001 4052739537881/33385282*1568397607^(9/22) 7014087329999993 a001 774004377960/16692641*1568397607^(5/11) 7014087329999993 a001 591286729879/33385282*1568397607^(1/2) 7014087329999993 a001 32264490531/4769326*1568397607^(6/11) 7014087329999993 a001 43133785636/16692641*1568397607^(13/22) 7014087329999993 a001 1836311903/33385282*1568397607^(17/22) 7014087329999993 a001 32951280099/33385282*1568397607^(7/11) 7014087329999993 a001 12586269025/33385282*1568397607^(15/22) 7014087329999993 a001 14930208/103681*1568397607^(8/11) 7014087329999993 a001 2971215073/33385282*1568397607^(3/4) 7014087329999993 a001 163991403576221616/233802911 7014087329999993 a001 1515744265389/4769326*599074578^(8/21) 7014087329999993 a001 14930352/969323029*817138163596^(17/19) 7014087329999993 a001 14930352/969323029*14662949395604^(17/21) 7014087329999993 a001 433494437/33385282*(1/2+1/2*5^(1/2))^37 7014087329999993 a001 14930352/969323029*192900153618^(17/18) 7014087329999993 a001 4052739537881/33385282*599074578^(3/7) 7014087329999993 a001 774004377960/16692641*599074578^(10/21) 7014087329999993 a001 956722026041/33385282*599074578^(1/2) 7014087329999993 a001 591286729879/33385282*599074578^(11/21) 7014087329999993 a001 32264490531/4769326*599074578^(4/7) 7014087329999993 a001 43133785636/16692641*599074578^(13/21) 7014087329999993 a001 53316291173/33385282*599074578^(9/14) 7014087329999993 a001 32951280099/33385282*599074578^(2/3) 7014087329999993 a001 701408733/33385282*599074578^(6/7) 7014087329999993 a001 12586269025/33385282*599074578^(5/7) 7014087329999993 a001 14930208/103681*599074578^(16/21) 7014087329999993 a001 1836311903/33385282*599074578^(17/21) 7014087329999993 a001 2971215073/33385282*599074578^(11/14) 7014087329999993 a001 567451585/16692641*599074578^(5/6) 7014087329999993 a001 23489678363743350/33489287 7014087329999993 a001 165580141/33385282*2537720636^(13/15) 7014087329999993 a001 165580141/33385282*45537549124^(13/17) 7014087329999993 a001 14930352/370248451*14662949395604^(7/9) 7014087329999993 a001 165580141/33385282*14662949395604^(13/21) 7014087329999993 a001 165580141/33385282*(1/2+1/2*5^(1/2))^39 7014087329999993 a001 14930352/370248451*505019158607^(7/8) 7014087329999993 a001 165580141/33385282*192900153618^(13/18) 7014087329999993 a001 165580141/33385282*73681302247^(3/4) 7014087329999993 a001 165580141/33385282*10749957122^(13/16) 7014087329999993 a001 1515744265389/4769326*228826127^(2/5) 7014087329999993 a001 4052739537881/33385282*228826127^(9/20) 7014087329999993 a001 774004377960/16692641*228826127^(1/2) 7014087329999993 a001 165580141/33385282*599074578^(13/14) 7014087329999993 a001 591286729879/33385282*228826127^(11/20) 7014087329999993 a001 32264490531/4769326*228826127^(3/5) 7014087329999993 a001 139583862445/33385282*228826127^(5/8) 7014087329999993 a001 43133785636/16692641*228826127^(13/20) 7014087329999993 a001 32951280099/33385282*228826127^(7/10) 7014087329999993 a001 12586269025/33385282*228826127^(3/4) 7014087329999993 a001 14930208/103681*228826127^(4/5) 7014087329999993 a001 133957148/16692641*228826127^(19/20) 7014087329999993 a001 1836311903/33385282*228826127^(17/20) 7014087329999993 a001 701408733/33385282*228826127^(9/10) 7014087329999993 a001 567451585/16692641*228826127^(7/8) 7014087329999993 a001 3418003333389312/4873055 7014087329999994 a001 31622993/16692641*(1/2+1/2*5^(1/2))^41 7014087329999994 a001 1515744265389/4769326*87403803^(8/19) 7014087329999994 a001 4052739537881/33385282*87403803^(9/19) 7014087329999994 a001 2504730781961/33385282*87403803^(1/2) 7014087329999994 a001 774004377960/16692641*87403803^(10/19) 7014087329999994 a001 591286729879/33385282*87403803^(11/19) 7014087329999994 a001 32264490531/4769326*87403803^(12/19) 7014087329999994 a001 43133785636/16692641*87403803^(13/19) 7014087329999994 a001 32951280099/33385282*87403803^(14/19) 7014087329999994 a001 12586269025/33385282*87403803^(15/19) 7014087329999994 a001 14930208/103681*87403803^(16/19) 7014087329999994 a001 1836311903/33385282*87403803^(17/19) 7014087329999994 a001 701408733/33385282*87403803^(18/19) 7014087329999994 a001 27416783093579856/39088169 7014087329999994 a001 1602508992/4250681*12752043^(15/17) 7014087329999996 a001 14930352/54018521*45537549124^(15/17) 7014087329999996 a001 14930352/54018521*312119004989^(9/11) 7014087329999996 a001 14930352/54018521*14662949395604^(5/7) 7014087329999996 a001 24157817/33385282*(1/2+1/2*5^(1/2))^43 7014087329999996 a001 14930352/54018521*192900153618^(5/6) 7014087329999996 a001 14930352/54018521*28143753123^(9/10) 7014087329999996 a001 14930352/54018521*10749957122^(15/16) 7014087329999996 a001 1515744265389/4769326*33385282^(4/9) 7014087329999996 a001 16944503814015853/24157817 7014087329999996 a001 4052739537881/33385282*33385282^(1/2) 7014087329999997 a001 774004377960/16692641*33385282^(5/9) 7014087329999997 a001 956722026041/33385282*33385282^(7/12) 7014087329999997 a001 1836311903/12752043*12752043^(16/17) 7014087329999997 a001 16944503814015855/24157817 7014087329999997 a001 591286729879/33385282*33385282^(11/18) 7014087329999997 a001 32264490531/4769326*33385282^(2/3) 7014087329999997 a001 16944503814015856/24157817 7014087329999998 a001 39088169/87403803*312119004989^(4/5) 7014087329999998 a001 39088169/87403803*23725150497407^(11/16) 7014087329999998 a001 39088169/87403803*73681302247^(11/13) 7014087329999998 a001 39088169/87403803*10749957122^(11/12) 7014087329999998 a001 39088169/87403803*4106118243^(22/23) 7014087329999998 a001 43133785636/16692641*33385282^(13/18) 7014087329999998 a001 53316291173/33385282*33385282^(3/4) 7014087329999998 a001 32951280099/33385282*33385282^(7/9) 7014087329999998 a001 22180643453797865/31622993 7014087329999998 a001 1836311903/87403803*141422324^(12/13) 7014087329999998 a001 7778742049/87403803*141422324^(11/13) 7014087329999998 a001 10983760033/29134601*141422324^(10/13) 7014087329999998 a001 139583862445/87403803*141422324^(9/13) 7014087329999998 a001 75283811239/29134601*141422324^(2/3) 7014087329999998 a001 591286729879/87403803*141422324^(8/13) 7014087329999998 a001 2504730781961/87403803*141422324^(7/13) 7014087329999998 a001 3536736619241/29134601*141422324^(6/13) 7014087329999998 a001 34111385/29134601*2537720636^(14/15) 7014087329999998 a001 34111385/29134601*17393796001^(6/7) 7014087329999998 a001 34111385/29134601*45537549124^(14/17) 7014087329999998 a001 34111385/29134601*817138163596^(14/19) 7014087329999998 a001 34111385/29134601*14662949395604^(2/3) 7014087329999998 a001 34111385/29134601*505019158607^(3/4) 7014087329999998 a001 34111385/29134601*192900153618^(7/9) 7014087329999998 a001 34111385/29134601*10749957122^(7/8) 7014087329999998 a001 39088169/228826127*10749957122^(23/24) 7014087329999998 a001 34111385/29134601*4106118243^(21/23) 7014087329999998 a001 34111385/29134601*1568397607^(21/22) 7014087329999998 a001 12586269025/33385282*33385282^(5/6) 7014087329999999 a001 116139356908771337/165580141 7014087329999999 a001 267914296/87403803*2537720636^(8/9) 7014087329999999 a001 39088169/599074578*45537549124^(16/17) 7014087329999999 a001 267914296/87403803*312119004989^(8/11) 7014087329999999 a001 267914296/87403803*23725150497407^(5/8) 7014087329999999 a001 39088169/599074578*192900153618^(8/9) 7014087329999999 a001 267914296/87403803*73681302247^(10/13) 7014087329999999 a001 39088169/599074578*73681302247^(12/13) 7014087329999999 a001 267914296/87403803*28143753123^(4/5) 7014087329999999 a001 267914296/87403803*10749957122^(5/6) 7014087329999999 a001 267914296/87403803*4106118243^(20/23) 7014087329999999 a001 267914296/87403803*1568397607^(10/11) 7014087329999999 a001 304056783818718281/433494437 7014087329999999 a001 39088169/1568397607*312119004989^(10/11) 7014087329999999 a001 233802911/29134601*817138163596^(2/3) 7014087329999999 a001 39088169/1568397607*3461452808002^(5/6) 7014087329999999 a001 233802911/29134601*10749957122^(19/24) 7014087329999999 a001 233802911/29134601*4106118243^(19/23) 7014087329999999 a001 1836311903/87403803*2537720636^(4/5) 7014087329999999 a001 398015497273691753/567451585 7014087329999999 a001 267914296/87403803*599074578^(20/21) 7014087329999999 a001 7778742049/87403803*2537720636^(11/15) 7014087329999999 a001 10983760033/29134601*2537720636^(2/3) 7014087329999999 a001 2971215073/87403803*2537720636^(7/9) 7014087329999999 a001 139583862445/87403803*2537720636^(3/5) 7014087329999999 a001 365435296162/87403803*2537720636^(5/9) 7014087329999999 a001 591286729879/87403803*2537720636^(8/15) 7014087329999999 a001 2504730781961/87403803*2537720636^(7/15) 7014087329999999 a001 4052739537881/87403803*2537720636^(4/9) 7014087329999999 a001 3536736619241/29134601*2537720636^(2/5) 7014087329999999 a001 1836311903/87403803*45537549124^(12/17) 7014087329999999 a001 1836311903/87403803*14662949395604^(4/7) 7014087329999999 a001 1836311903/87403803*505019158607^(9/14) 7014087329999999 a001 39088169/4106118243*505019158607^(13/14) 7014087329999999 a001 1836311903/87403803*192900153618^(2/3) 7014087329999999 a001 1836311903/87403803*73681302247^(9/13) 7014087329999999 a001 233802911/29134601*1568397607^(19/22) 7014087329999999 a001 1836311903/87403803*10749957122^(3/4) 7014087329999999 a001 2084036199823432237/2971215073 7014087329999999 a001 1836311903/87403803*4106118243^(18/23) 7014087329999999 a001 1602508992/29134601*45537549124^(2/3) 7014087329999999 a001 39088169/10749957122*14662949395604^(6/7) 7014087329999999 a001 5456077604922913205/7778742049 7014087329999999 a001 1602508992/29134601*10749957122^(17/24) 7014087329999999 a001 86267571272/87403803*17393796001^(4/7) 7014087329999999 a001 2504730781961/87403803*17393796001^(3/7) 7014087329999999 a001 39088169/28143753123*14662949395604^(8/9) 7014087329999999 a001 12586269025/87403803*23725150497407^(1/2) 7014087329999999 a001 12586269025/87403803*505019158607^(4/7) 7014087329999999 a001 12586269025/87403803*73681302247^(8/13) 7014087329999999 a001 7142098307472653689/10182505537 7014087329999999 a001 10983760033/29134601*45537549124^(10/17) 7014087329999999 a001 139583862445/87403803*45537549124^(9/17) 7014087329999999 a001 591286729879/87403803*45537549124^(8/17) 7014087329999999 a001 2504730781961/87403803*45537549124^(7/17) 7014087329999999 a001 10983760033/29134601*312119004989^(6/11) 7014087329999999 a001 10983760033/29134601*14662949395604^(10/21) 7014087329999999 a001 3536736619241/29134601*45537549124^(6/17) 7014087329999999 a001 10983760033/29134601*192900153618^(5/9) 7014087329999999 a001 37396512239913008929/53316291173 7014087329999999 a001 86267571272/87403803*505019158607^(1/2) 7014087329999999 a001 97905340104793719409/139583862445 7014087329999999 a001 516002918640/29134601*312119004989^(2/5) 7014087329999999 a001 365435296162/87403803*312119004989^(5/11) 7014087329999999 a001 30652895010101429/43701901 7014087329999999 a001 591286729879/87403803*14662949395604^(8/21) 7014087329999999 a001 39088169*(1/2+1/2*5^(1/2))^6 7014087329999999 a001 2504730781961/87403803*14662949395604^(1/3) 7014087329999999 a001 4052739537881/87403803*505019158607^(5/14) 7014087329999999 a001 158414167969674429889/225851433717 7014087329999999 a001 3536736619241/29134601*192900153618^(1/3) 7014087329999999 a001 139583862445/87403803*817138163596^(9/19) 7014087329999999 a001 139583862445/87403803*14662949395604^(3/7) 7014087329999999 a001 2504730781961/87403803*192900153618^(7/18) 7014087329999999 a001 591286729879/87403803*192900153618^(4/9) 7014087329999999 a001 139583862445/87403803*192900153618^(1/2) 7014087329999999 a001 7563603483110088810/10783446409 7014087329999999 a001 53316291173/87403803*1322157322203^(1/2) 7014087329999999 a001 4052739537881/87403803*73681302247^(5/13) 7014087329999999 a001 591286729879/87403803*73681302247^(6/13) 7014087329999999 a001 75283811239/29134601*73681302247^(1/2) 7014087329999999 a001 23112315624967701551/32951280099 7014087329999999 a001 20365011074/87403803*9062201101803^(1/2) 7014087329999999 a001 4052739537881/87403803*28143753123^(2/5) 7014087329999999 a001 10983760033/29134601*28143753123^(3/5) 7014087329999999 a001 365435296162/87403803*28143753123^(1/2) 7014087329999999 a001 8828119010022394173/12586269025 7014087329999999 a001 7778742049/87403803*45537549124^(11/17) 7014087329999999 a001 3536736619241/29134601*10749957122^(3/8) 7014087329999999 a001 7778742049/87403803*312119004989^(3/5) 7014087329999999 a001 7778742049/87403803*817138163596^(11/19) 7014087329999999 a001 39088169/17393796001*3461452808002^(11/12) 7014087329999999 a001 7778742049/87403803*192900153618^(11/18) 7014087329999999 a001 4052739537881/87403803*10749957122^(5/12) 7014087329999999 a001 2504730781961/87403803*10749957122^(7/16) 7014087329999999 a001 516002918640/29134601*10749957122^(11/24) 7014087329999999 a001 591286729879/87403803*10749957122^(1/2) 7014087329999999 a001 12586269025/87403803*10749957122^(2/3) 7014087329999999 a001 75283811239/29134601*10749957122^(13/24) 7014087329999999 a001 139583862445/87403803*10749957122^(9/16) 7014087329999999 a001 86267571272/87403803*10749957122^(7/12) 7014087329999999 a001 10983760033/29134601*10749957122^(5/8) 7014087329999999 a001 421505175637435121/600940872 7014087329999999 a001 7778742049/87403803*10749957122^(11/16) 7014087329999999 a001 2971215073/87403803*17393796001^(5/7) 7014087329999999 a001 2971215073/87403803*312119004989^(7/11) 7014087329999999 a001 2971215073/87403803*14662949395604^(5/9) 7014087329999999 a001 2971215073/87403803*505019158607^(5/8) 7014087329999999 a001 3536736619241/29134601*4106118243^(9/23) 7014087329999999 a001 2971215073/87403803*28143753123^(7/10) 7014087329999999 a001 4052739537881/87403803*4106118243^(10/23) 7014087329999999 a001 516002918640/29134601*4106118243^(11/23) 7014087329999999 a001 956722026041/87403803*4106118243^(1/2) 7014087329999999 a001 591286729879/87403803*4106118243^(12/23) 7014087329999999 a001 75283811239/29134601*4106118243^(13/23) 7014087329999999 a001 1602508992/29134601*4106118243^(17/23) 7014087329999999 a001 86267571272/87403803*4106118243^(14/23) 7014087329999999 a001 10983760033/29134601*4106118243^(15/23) 7014087329999999 a001 12586269025/87403803*4106118243^(16/23) 7014087329999999 a001 1288005205276048731/1836311903 7014087329999999 a001 39088169/2537720636*817138163596^(17/19) 7014087329999999 a001 39088169/2537720636*14662949395604^(17/21) 7014087329999999 a001 39088169/2537720636*192900153618^(17/18) 7014087329999999 a001 3536736619241/29134601*1568397607^(9/22) 7014087329999999 a001 4052739537881/87403803*1568397607^(5/11) 7014087329999999 a001 516002918640/29134601*1568397607^(1/2) 7014087329999999 a001 591286729879/87403803*1568397607^(6/11) 7014087329999999 a001 75283811239/29134601*1568397607^(13/22) 7014087329999999 a001 86267571272/87403803*1568397607^(7/11) 7014087329999999 a001 1836311903/87403803*1568397607^(9/11) 7014087329999999 a001 10983760033/29134601*1568397607^(15/22) 7014087329999999 a001 12586269025/87403803*1568397607^(8/11) 7014087329999999 a001 1602508992/29134601*1568397607^(17/22) 7014087329999999 a001 7778742049/87403803*1568397607^(3/4) 7014087329999999 a001 491974210728665225/701408733 7014087329999999 a001 433494437/87403803*2537720636^(13/15) 7014087329999999 a001 433494437/87403803*45537549124^(13/17) 7014087329999999 a001 39088169/969323029*14662949395604^(7/9) 7014087329999999 a001 433494437/87403803*14662949395604^(13/21) 7014087329999999 a001 39088169/969323029*505019158607^(7/8) 7014087329999999 a001 433494437/87403803*192900153618^(13/18) 7014087329999999 a001 433494437/87403803*73681302247^(3/4) 7014087329999999 a001 433494437/87403803*10749957122^(13/16) 7014087329999999 a001 3536736619241/29134601*599074578^(3/7) 7014087329999999 a001 4052739537881/87403803*599074578^(10/21) 7014087329999999 a001 2504730781961/87403803*599074578^(1/2) 7014087329999999 a001 516002918640/29134601*599074578^(11/21) 7014087329999999 a001 591286729879/87403803*599074578^(4/7) 7014087329999999 a001 75283811239/29134601*599074578^(13/21) 7014087329999999 a001 139583862445/87403803*599074578^(9/14) 7014087329999999 a001 86267571272/87403803*599074578^(2/3) 7014087329999999 a001 10983760033/29134601*599074578^(5/7) 7014087329999999 a001 233802911/29134601*599074578^(19/21) 7014087329999999 a001 12586269025/87403803*599074578^(16/21) 7014087329999999 a001 7778742049/87403803*599074578^(11/14) 7014087329999999 a001 1602508992/29134601*599074578^(17/21) 7014087329999999 a001 1836311903/87403803*599074578^(6/7) 7014087329999999 a001 2971215073/87403803*599074578^(5/6) 7014087329999999 a001 23489678363743368/33489287 7014087329999999 a001 433494437/87403803*599074578^(13/14) 7014087329999999 a001 3536736619241/29134601*228826127^(9/20) 7014087329999999 a001 4052739537881/87403803*228826127^(1/2) 7014087329999999 a001 516002918640/29134601*228826127^(11/20) 7014087329999999 a001 591286729879/87403803*228826127^(3/5) 7014087329999999 a001 365435296162/87403803*228826127^(5/8) 7014087329999999 a001 75283811239/29134601*228826127^(13/20) 7014087329999999 a001 86267571272/87403803*228826127^(7/10) 7014087329999999 a001 10983760033/29134601*228826127^(3/4) 7014087329999999 a001 12586269025/87403803*228826127^(4/5) 7014087329999999 a001 1602508992/29134601*228826127^(17/20) 7014087329999999 a001 2971215073/87403803*228826127^(7/8) 7014087329999999 a001 1836311903/87403803*228826127^(9/10) 7014087329999999 a001 233802911/29134601*228826127^(19/20) 7014087329999999 a001 71778070001175607/102334155 7014087329999999 a001 14930208/103681*33385282^(8/9) 7014087329999999 a001 39088169/141422324*45537549124^(15/17) 7014087329999999 a001 39088169/141422324*312119004989^(9/11) 7014087329999999 a001 39088169/141422324*14662949395604^(5/7) 7014087329999999 a001 39088169/141422324*192900153618^(5/6) 7014087329999999 a001 39088169/141422324*28143753123^(9/10) 7014087329999999 a001 39088169/141422324*10749957122^(15/16) 7014087329999999 a001 2971215073/33385282*33385282^(11/12) 7014087329999999 a001 3536736619241/29134601*87403803^(9/19) 7014087329999999 a001 44361286907595735/63245986 7014087329999999 a001 6557470319842/87403803*87403803^(1/2) 7014087329999999 a001 102287808/4868641*141422324^(12/13) 7014087329999999 a001 4052739537881/87403803*87403803^(10/19) 7014087329999999 a001 20365011074/228826127*141422324^(11/13) 7014087329999999 a001 86267571272/228826127*141422324^(10/13) 7014087329999999 a001 516002918640/29134601*87403803^(11/19) 7014087329999999 a001 365435296162/228826127*141422324^(9/13) 7014087329999999 a001 591286729879/228826127*141422324^(2/3) 7014087329999999 a001 1836311903/33385282*33385282^(17/18) 7014087329999999 a001 1548008755920/228826127*141422324^(8/13) 7014087329999999 a001 12586269025/599074578*141422324^(12/13) 7014087329999999 a001 591286729879/87403803*87403803^(12/19) 7014087329999999 a001 32951280099/1568397607*141422324^(12/13) 7014087329999999 a001 86267571272/4106118243*141422324^(12/13) 7014087329999999 a001 225851433717/10749957122*141422324^(12/13) 7014087329999999 a001 591286729879/28143753123*141422324^(12/13) 7014087329999999 a001 1548008755920/73681302247*141422324^(12/13) 7014087329999999 a001 4052739537881/192900153618*141422324^(12/13) 7014087329999999 a001 225749145909/10745088481*141422324^(12/13) 7014087329999999 a001 6557470319842/312119004989*141422324^(12/13) 7014087329999999 a001 2504730781961/119218851371*141422324^(12/13) 7014087329999999 a001 956722026041/45537549124*141422324^(12/13) 7014087329999999 a001 365435296162/17393796001*141422324^(12/13) 7014087329999999 a001 139583862445/6643838879*141422324^(12/13) 7014087329999999 a001 6557470319842/228826127*141422324^(7/13) 7014087329999999 a001 53316291173/2537720636*141422324^(12/13) 7014087329999999 a001 22180643453797868/31622993 7014087329999999 a001 53316291173/599074578*141422324^(11/13) 7014087329999999 a001 20365011074/969323029*141422324^(12/13) 7014087329999999 a001 139583862445/1568397607*141422324^(11/13) 7014087329999999 a001 365435296162/4106118243*141422324^(11/13) 7014087329999999 a001 956722026041/10749957122*141422324^(11/13) 7014087329999999 a001 2504730781961/28143753123*141422324^(11/13) 7014087329999999 a001 6557470319842/73681302247*141422324^(11/13) 7014087329999999 a001 10610209857723/119218851371*141422324^(11/13) 7014087329999999 a001 4052739537881/45537549124*141422324^(11/13) 7014087329999999 a001 1548008755920/17393796001*141422324^(11/13) 7014087329999999 a001 591286729879/6643838879*141422324^(11/13) 7014087329999999 a001 225851433717/2537720636*141422324^(11/13) 7014087329999999 a001 75283811239/29134601*87403803^(13/19) 7014087329999999 a001 267913919/710646*141422324^(10/13) 7014087329999999 a001 86267571272/969323029*141422324^(11/13) 7014087329999999 a001 591286729879/1568397607*141422324^(10/13) 7014087329999999 a001 7778742049/370248451*141422324^(12/13) 7014087329999999 a001 516002918640/1368706081*141422324^(10/13) 7014087329999999 a001 4052739537881/10749957122*141422324^(10/13) 7014087329999999 a001 3536736619241/9381251041*141422324^(10/13) 7014087329999999 a001 6557470319842/17393796001*141422324^(10/13) 7014087329999999 a001 2504730781961/6643838879*141422324^(10/13) 7014087329999999 a001 956722026041/2537720636*141422324^(10/13) 7014087329999999 a001 102334155/228826127*312119004989^(4/5) 7014087329999999 a001 102334155/228826127*23725150497407^(11/16) 7014087329999999 a001 102334155/228826127*73681302247^(11/13) 7014087329999999 a001 102334155/228826127*10749957122^(11/12) 7014087329999999 a001 102334155/228826127*4106118243^(22/23) 7014087329999999 a001 956722026041/599074578*141422324^(9/13) 7014087329999999 a001 365435296162/969323029*141422324^(10/13) 7014087329999999 a001 86000486440/33281921*141422324^(2/3) 7014087329999999 a001 2504730781961/1568397607*141422324^(9/13) 7014087329999999 a001 32951280099/370248451*141422324^(11/13) 7014087329999999 a001 6557470319842/4106118243*141422324^(9/13) 7014087329999999 a001 10610209857723/6643838879*141422324^(9/13) 7014087329999999 a001 4052739537881/2537720636*141422324^(9/13) 7014087329999999 a001 86267571272/87403803*87403803^(14/19) 7014087329999999 a001 4052739537881/1568397607*141422324^(2/3) 7014087329999999 a001 4052739537881/599074578*141422324^(8/13) 7014087329999999 a001 1548008755920/969323029*141422324^(9/13) 7014087329999999 a001 3536736619241/1368706081*141422324^(2/3) 7014087329999999 a001 3278735159921/1268860318*141422324^(2/3) 7014087329999999 a001 2504730781961/969323029*141422324^(2/3) 7014087329999999 a001 1515744265389/224056801*141422324^(8/13) 7014087329999999 a001 139583862445/370248451*141422324^(10/13) 7014087329999999 a001 6557470319842/969323029*141422324^(8/13) 7014087329999999 a001 10983760033/29134601*87403803^(15/19) 7014087329999999 a001 591286729879/370248451*141422324^(9/13) 7014087329999999 a001 116139356908771350/165580141 7014087329999999 a001 956722026041/370248451*141422324^(2/3) 7014087329999999 a001 2504730781961/370248451*141422324^(8/13) 7014087329999999 a001 267914296/228826127*2537720636^(14/15) 7014087329999999 a001 267914296/228826127*17393796001^(6/7) 7014087329999999 a001 267914296/228826127*45537549124^(14/17) 7014087329999999 a001 267914296/228826127*817138163596^(14/19) 7014087329999999 a001 267914296/228826127*14662949395604^(2/3) 7014087329999999 a001 267914296/228826127*505019158607^(3/4) 7014087329999999 a001 267914296/228826127*192900153618^(7/9) 7014087329999999 a001 267914296/228826127*10749957122^(7/8) 7014087329999999 a001 34111385/199691526*10749957122^(23/24) 7014087329999999 a001 267914296/228826127*4106118243^(21/23) 7014087329999999 a001 267914296/228826127*1568397607^(21/22) 7014087329999999 a001 12586269025/87403803*87403803^(16/19) 7014087329999999 a001 304056783818718315/433494437 7014087329999999 a001 701408733/228826127*2537720636^(8/9) 7014087329999999 a001 10610209857723/370248451*141422324^(7/13) 7014087329999999 a001 14619165/224056801*45537549124^(16/17) 7014087329999999 a001 701408733/228826127*312119004989^(8/11) 7014087329999999 a001 14619165/224056801*14662949395604^(16/21) 7014087329999999 a001 701408733/228826127*23725150497407^(5/8) 7014087329999999 a001 14619165/224056801*192900153618^(8/9) 7014087329999999 a001 701408733/228826127*73681302247^(10/13) 7014087329999999 a001 14619165/224056801*73681302247^(12/13) 7014087329999999 a001 701408733/228826127*28143753123^(4/5) 7014087329999999 a001 701408733/228826127*10749957122^(5/6) 7014087329999999 a001 701408733/228826127*4106118243^(20/23) 7014087329999999 a001 159206198909476719/226980634 7014087329999999 a001 102287808/4868641*2537720636^(4/5) 7014087329999999 a001 7778742049/228826127*2537720636^(7/9) 7014087329999999 a001 20365011074/228826127*2537720636^(11/15) 7014087329999999 a001 86267571272/228826127*2537720636^(2/3) 7014087329999999 a001 365435296162/228826127*2537720636^(3/5) 7014087329999999 a001 956722026041/228826127*2537720636^(5/9) 7014087329999999 a001 1548008755920/228826127*2537720636^(8/15) 7014087329999999 a001 6557470319842/228826127*2537720636^(7/15) 7014087329999999 a001 225749145909/4868641*2537720636^(4/9) 7014087329999999 a001 34111385/1368706081*312119004989^(10/11) 7014087329999999 a001 1836311903/228826127*817138163596^(2/3) 7014087329999999 a001 34111385/1368706081*3461452808002^(5/6) 7014087329999999 a001 1836311903/228826127*10749957122^(19/24) 7014087329999999 a001 701408733/228826127*1568397607^(10/11) 7014087329999999 a001 2084036199823432470/2971215073 7014087329999999 a001 1836311903/228826127*4106118243^(19/23) 7014087329999999 a001 102287808/4868641*45537549124^(12/17) 7014087329999999 a001 102287808/4868641*14662949395604^(4/7) 7014087329999999 a001 102287808/4868641*505019158607^(9/14) 7014087329999999 a001 102334155/10749957122*505019158607^(13/14) 7014087329999999 a001 102287808/4868641*192900153618^(2/3) 7014087329999999 a001 102287808/4868641*73681302247^(9/13) 7014087329999999 a001 5456077604922913815/7778742049 7014087329999999 a001 102287808/4868641*10749957122^(3/4) 7014087329999999 a001 225851433717/228826127*17393796001^(4/7) 7014087329999999 a001 12586269025/228826127*45537549124^(2/3) 7014087329999999 a001 6557470319842/228826127*17393796001^(3/7) 7014087329999999 a001 831985/228811001*14662949395604^(6/7) 7014087329999999 a001 14284196614945308975/20365011074 7014087329999999 a001 86267571272/228826127*45537549124^(10/17) 7014087329999999 a001 365435296162/228826127*45537549124^(9/17) 7014087329999999 a001 1548008755920/228826127*45537549124^(8/17) 7014087329999999 a001 6557470319842/228826127*45537549124^(7/17) 7014087329999999 a001 14619165/10525900321*14662949395604^(8/9) 7014087329999999 a001 32951280099/228826127*23725150497407^(1/2) 7014087329999999 a001 32951280099/228826127*505019158607^(4/7) 7014087329999999 a001 32951280099/228826127*73681302247^(8/13) 7014087329999999 a001 86267571272/228826127*312119004989^(6/11) 7014087329999999 a001 86267571272/228826127*14662949395604^(10/21) 7014087329999999 a001 86267571272/228826127*192900153618^(5/9) 7014087329999999 a001 19581068020958746071/27916772489 7014087329999999 a001 102334155/505019158607*14662949395604^(20/21) 7014087329999999 a001 225851433717/228826127*14662949395604^(4/9) 7014087329999999 a001 256319508074468177955/365435296162 7014087329999999 a001 1548008755920/228826127*14662949395604^(8/21) 7014087329999999 a001 102334155*(1/2+1/2*5^(1/2))^4 7014087329999999 a001 414733676044142625555/591286729879 7014087329999999 a001 225749145909/4868641*505019158607^(5/14) 7014087329999999 a001 365435296162/228826127*14662949395604^(3/7) 7014087329999999 a001 6557470319842/228826127*192900153618^(7/18) 7014087329999999 a001 139583862445/228826127*1322157322203^(1/2) 7014087329999999 a001 1548008755920/228826127*192900153618^(4/9) 7014087329999999 a001 60508827864880717245/86267571272 7014087329999999 a001 102334155/119218851371*14662949395604^(19/21) 7014087329999999 a001 53316291173/228826127*9062201101803^(1/2) 7014087329999999 a001 1548008755920/228826127*73681302247^(6/13) 7014087329999999 a001 591286729879/228826127*73681302247^(1/2) 7014087329999999 a001 225851433717/228826127*73681302247^(7/13) 7014087329999999 a001 20365011074/228826127*45537549124^(11/17) 7014087329999999 a001 7704105208322568045/10983760033 7014087329999999 a001 20365011074/228826127*312119004989^(3/5) 7014087329999999 a001 20365011074/228826127*14662949395604^(11/21) 7014087329999999 a001 102334155/45537549124*3461452808002^(11/12) 7014087329999999 a001 20365011074/228826127*192900153618^(11/18) 7014087329999999 a001 225749145909/4868641*28143753123^(2/5) 7014087329999999 a001 956722026041/228826127*28143753123^(1/2) 7014087329999999 a001 86267571272/228826127*28143753123^(3/5) 7014087329999999 a001 7778742049/228826127*17393796001^(5/7) 7014087329999999 a001 160511254727679912/228841255 7014087329999999 a001 7778742049/228826127*312119004989^(7/11) 7014087329999999 a001 7778742049/228826127*14662949395604^(5/9) 7014087329999999 a001 7778742049/228826127*505019158607^(5/8) 7014087329999999 a001 225749145909/4868641*10749957122^(5/12) 7014087329999999 a001 6557470319842/228826127*10749957122^(7/16) 7014087329999999 a001 4052739537881/228826127*10749957122^(11/24) 7014087329999999 a001 7778742049/228826127*28143753123^(7/10) 7014087329999999 a001 1548008755920/228826127*10749957122^(1/2) 7014087329999999 a001 591286729879/228826127*10749957122^(13/24) 7014087329999999 a001 12586269025/228826127*10749957122^(17/24) 7014087329999999 a001 365435296162/228826127*10749957122^(9/16) 7014087329999999 a001 225851433717/228826127*10749957122^(7/12) 7014087329999999 a001 86267571272/228826127*10749957122^(5/8) 7014087329999999 a001 32951280099/228826127*10749957122^(2/3) 7014087329999999 a001 20365011074/228826127*10749957122^(11/16) 7014087329999999 a001 53524466747610815/76309952 7014087329999999 a001 1134903170/228826127*2537720636^(13/15) 7014087329999999 a001 102334155/6643838879*817138163596^(17/19) 7014087329999999 a001 102334155/6643838879*14662949395604^(17/21) 7014087329999999 a001 102334155/6643838879*192900153618^(17/18) 7014087329999999 a001 225749145909/4868641*4106118243^(10/23) 7014087329999999 a001 4052739537881/228826127*4106118243^(11/23) 7014087329999999 a001 2504730781961/228826127*4106118243^(1/2) 7014087329999999 a001 1548008755920/228826127*4106118243^(12/23) 7014087329999999 a001 591286729879/228826127*4106118243^(13/23) 7014087329999999 a001 225851433717/228826127*4106118243^(14/23) 7014087329999999 a001 102287808/4868641*4106118243^(18/23) 7014087329999999 a001 86267571272/228826127*4106118243^(15/23) 7014087329999999 a001 32951280099/228826127*4106118243^(16/23) 7014087329999999 a001 12586269025/228826127*4106118243^(17/23) 7014087329999999 a001 1288005205276048875/1836311903 7014087329999999 a001 1134903170/228826127*45537549124^(13/17) 7014087329999999 a001 9303105/230701876*14662949395604^(7/9) 7014087329999999 a001 1134903170/228826127*14662949395604^(13/21) 7014087329999999 a001 9303105/230701876*505019158607^(7/8) 7014087329999999 a001 1134903170/228826127*192900153618^(13/18) 7014087329999999 a001 1134903170/228826127*73681302247^(3/4) 7014087329999999 a001 1134903170/228826127*10749957122^(13/16) 7014087329999999 a001 225749145909/4868641*1568397607^(5/11) 7014087329999999 a001 4052739537881/228826127*1568397607^(1/2) 7014087329999999 a001 1548008755920/228826127*1568397607^(6/11) 7014087329999999 a001 591286729879/228826127*1568397607^(13/22) 7014087329999999 a001 225851433717/228826127*1568397607^(7/11) 7014087329999999 a001 86267571272/228826127*1568397607^(15/22) 7014087329999999 a001 1836311903/228826127*1568397607^(19/22) 7014087329999999 a001 32951280099/228826127*1568397607^(8/11) 7014087329999999 a001 20365011074/228826127*1568397607^(3/4) 7014087329999999 a001 12586269025/228826127*1568397607^(17/22) 7014087329999999 a001 102287808/4868641*1568397607^(9/11) 7014087329999999 a001 163991403576221760/233802911 7014087329999999 a001 225749145909/4868641*599074578^(10/21) 7014087329999999 a001 6557470319842/228826127*599074578^(1/2) 7014087329999999 a001 4052739537881/228826127*599074578^(11/21) 7014087329999999 a001 1548008755920/228826127*599074578^(4/7) 7014087329999999 a001 591286729879/228826127*599074578^(13/21) 7014087329999999 a001 365435296162/228826127*599074578^(9/14) 7014087329999999 a001 225851433717/228826127*599074578^(2/3) 7014087329999999 a001 86267571272/228826127*599074578^(5/7) 7014087329999999 a001 32951280099/228826127*599074578^(16/21) 7014087329999999 a001 20365011074/228826127*599074578^(11/14) 7014087329999999 a001 701408733/228826127*599074578^(20/21) 7014087329999999 a001 12586269025/228826127*599074578^(17/21) 7014087329999999 a001 7778742049/228826127*599074578^(5/6) 7014087329999999 a001 102287808/4868641*599074578^(6/7) 7014087329999999 a001 1836311903/228826127*599074578^(19/21) 7014087329999999 a001 187917426909946965/267914296 7014087329999999 a001 1134903170/228826127*599074578^(13/14) 7014087329999999 a001 1602508992/29134601*87403803^(17/19) 7014087329999999 a001 102334155/370248451*45537549124^(15/17) 7014087329999999 a001 102334155/370248451*312119004989^(9/11) 7014087329999999 a001 102334155/370248451*14662949395604^(5/7) 7014087329999999 a001 102334155/370248451*192900153618^(5/6) 7014087329999999 a001 102334155/370248451*28143753123^(9/10) 7014087329999999 a001 102334155/370248451*10749957122^(15/16) 7014087329999999 a001 225749145909/4868641*228826127^(1/2) 7014087329999999 a001 116139356908771352/165580141 7014087329999999 a001 4052739537881/228826127*228826127^(11/20) 7014087329999999 a001 1548008755920/228826127*228826127^(3/5) 7014087329999999 a001 956722026041/228826127*228826127^(5/8) 7014087329999999 a001 1836311903/87403803*87403803^(18/19) 7014087329999999 a001 591286729879/228826127*228826127^(13/20) 7014087329999999 a001 225851433717/228826127*228826127^(7/10) 7014087329999999 a001 133957148/299537289*312119004989^(4/5) 7014087329999999 a001 133957148/299537289*23725150497407^(11/16) 7014087329999999 a001 133957148/299537289*73681302247^(11/13) 7014087329999999 a001 133957148/299537289*10749957122^(11/12) 7014087329999999 a001 133957148/299537289*4106118243^(22/23) 7014087329999999 a001 86267571272/228826127*228826127^(3/4) 7014087329999999 a001 32951280099/228826127*228826127^(4/5) 7014087329999999 a001 304056783818718320/433494437 7014087329999999 a001 233802911/199691526*2537720636^(14/15) 7014087329999999 a001 233802911/199691526*17393796001^(6/7) 7014087329999999 a001 233802911/199691526*45537549124^(14/17) 7014087329999999 a001 233802911/199691526*817138163596^(14/19) 7014087329999999 a001 233802911/199691526*14662949395604^(2/3) 7014087329999999 a001 233802911/199691526*505019158607^(3/4) 7014087329999999 a001 233802911/199691526*192900153618^(7/9) 7014087329999999 a001 233802911/199691526*10749957122^(7/8) 7014087329999999 a001 267914296/1568397607*10749957122^(23/24) 7014087329999999 a001 233802911/199691526*4106118243^(21/23) 7014087329999999 a001 1836311903/599074578*2537720636^(8/9) 7014087329999999 a001 398015497273691804/567451585 7014087329999999 a001 12586269025/599074578*2537720636^(4/5) 7014087329999999 a001 10182505537/299537289*2537720636^(7/9) 7014087329999999 a001 53316291173/599074578*2537720636^(11/15) 7014087329999999 a001 2971215073/599074578*2537720636^(13/15) 7014087329999999 a001 267913919/710646*2537720636^(2/3) 7014087329999999 a001 956722026041/599074578*2537720636^(3/5) 7014087329999999 a001 2504730781961/599074578*2537720636^(5/9) 7014087329999999 a001 4052739537881/599074578*2537720636^(8/15) 7014087329999999 a001 12586269025/228826127*228826127^(17/20) 7014087329999999 a001 267914296/4106118243*45537549124^(16/17) 7014087329999999 a001 1836311903/599074578*312119004989^(8/11) 7014087329999999 a001 1836311903/599074578*23725150497407^(5/8) 7014087329999999 a001 267914296/4106118243*192900153618^(8/9) 7014087329999999 a001 1836311903/599074578*73681302247^(10/13) 7014087329999999 a001 267914296/4106118243*73681302247^(12/13) 7014087329999999 a001 1836311903/599074578*28143753123^(4/5) 7014087329999999 a001 1836311903/599074578*10749957122^(5/6) 7014087329999999 a001 2084036199823432504/2971215073 7014087329999999 a001 233802911/199691526*1568397607^(21/22) 7014087329999999 a001 133957148/5374978561*312119004989^(10/11) 7014087329999999 a001 267084832/33281921*817138163596^(2/3) 7014087329999999 a001 133957148/5374978561*3461452808002^(5/6) 7014087329999999 a001 1836311903/599074578*4106118243^(20/23) 7014087329999999 a001 419698277301762608/598364773 7014087329999999 a001 591286729879/599074578*17393796001^(4/7) 7014087329999999 a001 10182505537/299537289*17393796001^(5/7) 7014087329999999 a001 267084832/33281921*10749957122^(19/24) 7014087329999999 a001 12586269025/599074578*45537549124^(12/17) 7014087329999999 a001 12586269025/599074578*14662949395604^(4/7) 7014087329999999 a001 12586269025/599074578*505019158607^(9/14) 7014087329999999 a001 267914296/28143753123*505019158607^(13/14) 7014087329999999 a001 12586269025/599074578*192900153618^(2/3) 7014087329999999 a001 12586269025/599074578*73681302247^(9/13) 7014087329999999 a001 10983760033/199691526*45537549124^(2/3) 7014087329999999 a001 7142098307472654604/10182505537 7014087329999999 a001 267913919/710646*45537549124^(10/17) 7014087329999999 a001 956722026041/599074578*45537549124^(9/17) 7014087329999999 a001 53316291173/599074578*45537549124^(11/17) 7014087329999999 a001 4052739537881/599074578*45537549124^(8/17) 7014087329999999 a001 267914296/73681302247*14662949395604^(6/7) 7014087329999999 a001 37396512239913013720/53316291173 7014087329999999 a001 133957148/96450076809*14662949395604^(8/9) 7014087329999999 a001 43133785636/299537289*23725150497407^(1/2) 7014087329999999 a001 43133785636/299537289*505019158607^(4/7) 7014087329999999 a001 267913919/710646*312119004989^(6/11) 7014087329999999 a001 97905340104793731952/139583862445 7014087329999999 a001 2504730781961/599074578*312119004989^(5/11) 7014087329999999 a001 3536736619241/199691526*312119004989^(2/5) 7014087329999999 a001 128159754037234091068/182717648081 7014087329999999 a001 4052739537881/599074578*14662949395604^(8/21) 7014087329999999 a001 267914296*(1/2+1/2*5^(1/2))^2 7014087329999999 a001 135723357520344180847/193501094490 7014087329999999 a001 956722026041/599074578*14662949395604^(3/7) 7014087329999999 a001 182717648081/299537289*1322157322203^(1/2) 7014087329999999 a001 420196732015051592/599075421 7014087329999999 a001 139583862445/599074578*9062201101803^(1/2) 7014087329999999 a001 4052739537881/599074578*192900153618^(4/9) 7014087329999999 a001 956722026041/599074578*192900153618^(1/2) 7014087329999999 a001 7563603483110089779/10783446409 7014087329999999 a001 53316291173/599074578*312119004989^(3/5) 7014087329999999 a001 53316291173/599074578*817138163596^(11/19) 7014087329999999 a001 53316291173/599074578*14662949395604^(11/21) 7014087329999999 a001 267914296/119218851371*3461452808002^(11/12) 7014087329999999 a001 4052739537881/599074578*73681302247^(6/13) 7014087329999999 a001 43133785636/299537289*73681302247^(8/13) 7014087329999999 a001 86000486440/33281921*73681302247^(1/2) 7014087329999999 a001 591286729879/599074578*73681302247^(7/13) 7014087329999999 a001 23112315624967704512/32951280099 7014087329999999 a001 10182505537/299537289*312119004989^(7/11) 7014087329999999 a001 10182505537/299537289*14662949395604^(5/9) 7014087329999999 a001 10182505537/299537289*505019158607^(5/8) 7014087329999999 a001 2504730781961/599074578*28143753123^(1/2) 7014087329999999 a001 267913919/710646*28143753123^(3/5) 7014087329999999 a001 8828119010022395304/12586269025 7014087329999999 a001 10182505537/299537289*28143753123^(7/10) 7014087329999999 a001 9238424/599786069*817138163596^(17/19) 7014087329999999 a001 9238424/599786069*14662949395604^(17/21) 7014087329999999 a001 9238424/599786069*192900153618^(17/18) 7014087329999999 a001 3536736619241/199691526*10749957122^(11/24) 7014087329999999 a001 4052739537881/599074578*10749957122^(1/2) 7014087329999999 a001 86000486440/33281921*10749957122^(13/24) 7014087329999999 a001 956722026041/599074578*10749957122^(9/16) 7014087329999999 a001 591286729879/599074578*10749957122^(7/12) 7014087329999999 a001 12586269025/599074578*10749957122^(3/4) 7014087329999999 a001 267913919/710646*10749957122^(5/8) 7014087329999999 a001 43133785636/299537289*10749957122^(2/3) 7014087329999999 a001 10983760033/199691526*10749957122^(17/24) 7014087329999999 a001 53316291173/599074578*10749957122^(11/16) 7014087329999999 a001 421505175637435175/600940872 7014087329999999 a001 2971215073/599074578*45537549124^(13/17) 7014087329999999 a001 267914296/6643838879*14662949395604^(7/9) 7014087329999999 a001 2971215073/599074578*14662949395604^(13/21) 7014087329999999 a001 267914296/6643838879*505019158607^(7/8) 7014087329999999 a001 2971215073/599074578*192900153618^(13/18) 7014087329999999 a001 2971215073/599074578*73681302247^(3/4) 7014087329999999 a001 3536736619241/199691526*4106118243^(11/23) 7014087329999999 a001 3278735159921/299537289*4106118243^(1/2) 7014087329999999 a001 2971215073/599074578*10749957122^(13/16) 7014087329999999 a001 4052739537881/599074578*4106118243^(12/23) 7014087329999999 a001 86000486440/33281921*4106118243^(13/23) 7014087329999999 a001 591286729879/599074578*4106118243^(14/23) 7014087329999999 a001 267913919/710646*4106118243^(15/23) 7014087329999999 a001 267084832/33281921*4106118243^(19/23) 7014087329999999 a001 43133785636/299537289*4106118243^(16/23) 7014087329999999 a001 10983760033/199691526*4106118243^(17/23) 7014087329999999 a001 12586269025/599074578*4106118243^(18/23) 7014087329999999 a001 1288005205276048896/1836311903 7014087329999999 a001 3536736619241/199691526*1568397607^(1/2) 7014087329999999 a001 4052739537881/599074578*1568397607^(6/11) 7014087329999999 a001 86000486440/33281921*1568397607^(13/22) 7014087329999999 a001 591286729879/599074578*1568397607^(7/11) 7014087329999999 a001 267913919/710646*1568397607^(15/22) 7014087329999999 a001 43133785636/299537289*1568397607^(8/11) 7014087329999999 a001 53316291173/599074578*1568397607^(3/4) 7014087329999999 a001 1836311903/599074578*1568397607^(10/11) 7014087329999999 a001 10983760033/199691526*1568397607^(17/22) 7014087329999999 a001 12586269025/599074578*1568397607^(9/11) 7014087329999999 a001 267084832/33281921*1568397607^(19/22) 7014087329999999 a001 491974210728665288/701408733 7014087329999999 a001 7778742049/228826127*228826127^(7/8) 7014087329999999 a001 102287808/4868641*228826127^(9/10) 7014087329999999 a001 267914296/969323029*45537549124^(15/17) 7014087329999999 a001 267914296/969323029*312119004989^(9/11) 7014087329999999 a001 267914296/969323029*14662949395604^(5/7) 7014087329999999 a001 267914296/969323029*192900153618^(5/6) 7014087329999999 a001 267914296/969323029*28143753123^(9/10) 7014087329999999 a001 267914296/969323029*10749957122^(15/16) 7014087329999999 a001 3536736619241/199691526*599074578^(11/21) 7014087329999999 a001 4052739537881/599074578*599074578^(4/7) 7014087329999999 a001 86000486440/33281921*599074578^(13/21) 7014087329999999 a001 1836311903/228826127*228826127^(19/20) 7014087329999999 a001 956722026041/599074578*599074578^(9/14) 7014087329999999 a001 591286729879/599074578*599074578^(2/3) 7014087329999999 a001 701408733/1568397607*312119004989^(4/5) 7014087329999999 a001 701408733/1568397607*23725150497407^(11/16) 7014087329999999 a001 701408733/1568397607*73681302247^(11/13) 7014087329999999 a001 701408733/1568397607*10749957122^(11/12) 7014087329999999 a001 267913919/710646*599074578^(5/7) 7014087329999999 a001 701408733/1568397607*4106118243^(22/23) 7014087329999999 a001 43133785636/299537289*599074578^(16/21) 7014087329999999 a001 1836311903/1568397607*2537720636^(14/15) 7014087329999999 a001 53316291173/599074578*599074578^(11/14) 7014087329999999 a001 686789568/224056801*2537720636^(8/9) 7014087329999999 a001 7778742049/1568397607*2537720636^(13/15) 7014087329999999 a001 32951280099/1568397607*2537720636^(4/5) 7014087329999999 a001 10983760033/199691526*599074578^(17/21) 7014087329999999 a001 53316291173/1568397607*2537720636^(7/9) 7014087329999999 a001 139583862445/1568397607*2537720636^(11/15) 7014087329999999 a001 591286729879/1568397607*2537720636^(2/3) 7014087329999999 a001 2504730781961/1568397607*2537720636^(3/5) 7014087329999999 a001 6557470319842/1568397607*2537720636^(5/9) 7014087329999999 a001 1515744265389/224056801*2537720636^(8/15) 7014087329999999 a001 1836311903/1568397607*17393796001^(6/7) 7014087329999999 a001 1836311903/1568397607*45537549124^(14/17) 7014087329999999 a001 1836311903/1568397607*817138163596^(14/19) 7014087329999999 a001 1836311903/1568397607*14662949395604^(2/3) 7014087329999999 a001 1836311903/1568397607*505019158607^(3/4) 7014087329999999 a001 1836311903/1568397607*192900153618^(7/9) 7014087329999999 a001 10182505537/299537289*599074578^(5/6) 7014087329999999 a001 1836311903/1568397607*10749957122^(7/8) 7014087329999999 a001 233802911/1368706081*10749957122^(23/24) 7014087329999999 a001 701408733/10749957122*45537549124^(16/17) 7014087329999999 a001 686789568/224056801*312119004989^(8/11) 7014087329999999 a001 686789568/224056801*23725150497407^(5/8) 7014087329999999 a001 701408733/10749957122*192900153618^(8/9) 7014087329999999 a001 686789568/224056801*73681302247^(10/13) 7014087329999999 a001 701408733/10749957122*73681302247^(12/13) 7014087329999999 a001 686789568/224056801*28143753123^(4/5) 7014087329999999 a001 1836311903/1568397607*4106118243^(21/23) 7014087329999999 a001 53316291173/1568397607*17393796001^(5/7) 7014087329999999 a001 1548008755920/1568397607*17393796001^(4/7) 7014087329999999 a001 686789568/224056801*10749957122^(5/6) 7014087329999999 a001 233802911/9381251041*312119004989^(10/11) 7014087329999999 a001 12586269025/1568397607*817138163596^(2/3) 7014087329999999 a001 233802911/9381251041*3461452808002^(5/6) 7014087329999999 a001 32951280099/1568397607*45537549124^(12/17) 7014087329999999 a001 86267571272/1568397607*45537549124^(2/3) 7014087329999999 a001 139583862445/1568397607*45537549124^(11/17) 7014087329999999 a001 591286729879/1568397607*45537549124^(10/17) 7014087329999999 a001 2504730781961/1568397607*45537549124^(9/17) 7014087329999999 a001 1515744265389/224056801*45537549124^(8/17) 7014087329999999 a001 32951280099/1568397607*14662949395604^(4/7) 7014087329999999 a001 32951280099/1568397607*505019158607^(9/14) 7014087329999999 a001 701408733/73681302247*505019158607^(13/14) 7014087329999999 a001 32951280099/1568397607*192900153618^(2/3) 7014087329999999 a001 32951280099/1568397607*73681302247^(9/13) 7014087329999999 a001 233802911/64300051206*14662949395604^(6/7) 7014087329999999 a001 591286729879/1568397607*312119004989^(6/11) 7014087329999999 a001 6557470319842/1568397607*312119004989^(5/11) 7014087329999999 a001 2504730781961/1568397607*817138163596^(9/19) 7014087329999999 a001 1548008755920/1568397607*14662949395604^(4/9) 7014087329999999 a001 1515744265389/224056801*14662949395604^(8/21) 7014087330000000 a001 2504730781961/1568397607*14662949395604^(3/7) 7014087330000000 a001 956722026041/1568397607*1322157322203^(1/2) 7014087330000000 a001 1548008755920/1568397607*505019158607^(1/2) 7014087330000000 a001 139583862445/1568397607*312119004989^(3/5) 7014087330000000 a001 139583862445/1568397607*817138163596^(11/19) 7014087330000000 a001 139583862445/1568397607*14662949395604^(11/21) 7014087330000000 a001 1515744265389/224056801*192900153618^(4/9) 7014087330000000 a001 591286729879/1568397607*192900153618^(5/9) 7014087330000000 a001 139583862445/1568397607*192900153618^(11/18) 7014087330000000 a001 53316291173/1568397607*312119004989^(7/11) 7014087330000000 a001 53316291173/1568397607*14662949395604^(5/9) 7014087330000000 a001 53316291173/1568397607*505019158607^(5/8) 7014087330000000 a001 1515744265389/224056801*73681302247^(6/13) 7014087330000000 a001 4052739537881/1568397607*73681302247^(1/2) 7014087330000000 a001 1548008755920/1568397607*73681302247^(7/13) 7014087330000000 a001 32264490531/224056801*73681302247^(8/13) 7014087330000000 a001 701408733/45537549124*817138163596^(17/19) 7014087330000000 a001 701408733/45537549124*14662949395604^(17/21) 7014087330000000 a001 701408733/45537549124*192900153618^(17/18) 7014087330000000 a001 6557470319842/1568397607*28143753123^(1/2) 7014087330000000 a001 591286729879/1568397607*28143753123^(3/5) 7014087330000000 a001 53316291173/1568397607*28143753123^(7/10) 7014087330000000 a001 7778742049/1568397607*45537549124^(13/17) 7014087330000000 a001 701408733/17393796001*14662949395604^(7/9) 7014087330000000 a001 7778742049/1568397607*14662949395604^(13/21) 7014087330000000 a001 701408733/17393796001*505019158607^(7/8) 7014087330000000 a001 7778742049/1568397607*192900153618^(13/18) 7014087330000000 a001 7778742049/1568397607*73681302247^(3/4) 7014087330000000 a001 1515744265389/224056801*10749957122^(1/2) 7014087330000000 a001 4052739537881/1568397607*10749957122^(13/24) 7014087330000000 a001 2504730781961/1568397607*10749957122^(9/16) 7014087330000000 a001 1548008755920/1568397607*10749957122^(7/12) 7014087330000000 a001 591286729879/1568397607*10749957122^(5/8) 7014087330000000 a001 12586269025/1568397607*10749957122^(19/24) 7014087330000000 a001 32264490531/224056801*10749957122^(2/3) 7014087330000000 a001 139583862445/1568397607*10749957122^(11/16) 7014087330000000 a001 86267571272/1568397607*10749957122^(17/24) 7014087330000000 a001 32951280099/1568397607*10749957122^(3/4) 7014087330000000 a001 12586269025/599074578*599074578^(6/7) 7014087330000000 a001 7778742049/1568397607*10749957122^(13/16) 7014087330000000 a001 1515744265389/224056801*4106118243^(12/23) 7014087330000000 a001 4052739537881/1568397607*4106118243^(13/23) 7014087330000000 a001 1548008755920/1568397607*4106118243^(14/23) 7014087330000000 a001 591286729879/1568397607*4106118243^(15/23) 7014087330000000 a001 32264490531/224056801*4106118243^(16/23) 7014087330000000 a001 686789568/224056801*4106118243^(20/23) 7014087330000000 a001 86267571272/1568397607*4106118243^(17/23) 7014087330000000 a001 32951280099/1568397607*4106118243^(18/23) 7014087330000000 a001 12586269025/1568397607*4106118243^(19/23) 7014087330000000 a001 267084832/33281921*599074578^(19/21) 7014087330000000 a001 701408733/2537720636*45537549124^(15/17) 7014087330000000 a001 701408733/2537720636*312119004989^(9/11) 7014087330000000 a001 701408733/2537720636*14662949395604^(5/7) 7014087330000000 a001 701408733/2537720636*192900153618^(5/6) 7014087330000000 a001 701408733/2537720636*28143753123^(9/10) 7014087330000000 a001 701408733/2537720636*10749957122^(15/16) 7014087330000000 a001 1602508992/1368706081*2537720636^(14/15) 7014087330000000 a001 12586269025/4106118243*2537720636^(8/9) 7014087330000000 a001 20365011074/4106118243*2537720636^(13/15) 7014087330000000 a001 1836311903/599074578*599074578^(20/21) 7014087330000000 a001 1515744265389/224056801*1568397607^(6/11) 7014087330000000 a001 86267571272/4106118243*2537720636^(4/5) 7014087330000000 a001 139583862445/4106118243*2537720636^(7/9) 7014087330000000 a001 2971215073/599074578*599074578^(13/14) 7014087330000000 a001 365435296162/4106118243*2537720636^(11/15) 7014087330000000 a001 4052739537881/1568397607*1568397607^(13/22) 7014087330000000 a001 516002918640/1368706081*2537720636^(2/3) 7014087330000000 a001 12586269025/10749957122*2537720636^(14/15) 7014087330000000 a001 6557470319842/4106118243*2537720636^(3/5) 7014087330000000 a001 1548008755920/1568397607*1568397607^(7/11) 7014087330000000 a001 32951280099/10749957122*2537720636^(8/9) 7014087330000000 a001 10983760033/9381251041*2537720636^(14/15) 7014087330000000 a001 86267571272/73681302247*2537720636^(14/15) 7014087330000000 a001 75283811239/64300051206*2537720636^(14/15) 7014087330000000 a001 2504730781961/2139295485799*2537720636^(14/15) 7014087330000000 a001 365435296162/312119004989*2537720636^(14/15) 7014087330000000 a001 139583862445/119218851371*2537720636^(14/15) 7014087330000000 a001 53316291173/45537549124*2537720636^(14/15) 7014087330000000 a001 53316291173/10749957122*2537720636^(13/15) 7014087330000000 a001 20365011074/17393796001*2537720636^(14/15) 7014087330000000 a001 86267571272/28143753123*2537720636^(8/9) 7014087330000000 a001 32264490531/10525900321*2537720636^(8/9) 7014087330000000 a001 591286729879/192900153618*2537720636^(8/9) 7014087330000000 a001 1548008755920/505019158607*2537720636^(8/9) 7014087330000000 a001 1515744265389/494493258286*2537720636^(8/9) 7014087330000000 a001 2504730781961/817138163596*2537720636^(8/9) 7014087330000000 a001 956722026041/312119004989*2537720636^(8/9) 7014087330000000 a001 365435296162/119218851371*2537720636^(8/9) 7014087330000000 a001 139583862445/45537549124*2537720636^(8/9) 7014087330000000 a001 139583862445/28143753123*2537720636^(13/15) 7014087330000000 a001 365435296162/73681302247*2537720636^(13/15) 7014087330000000 a001 53316291173/17393796001*2537720636^(8/9) 7014087330000000 a001 956722026041/192900153618*2537720636^(13/15) 7014087330000000 a001 2504730781961/505019158607*2537720636^(13/15) 7014087330000000 a001 4052739537881/817138163596*2537720636^(13/15) 7014087330000000 a001 140728068720/28374454999*2537720636^(13/15) 7014087330000000 a001 591286729879/119218851371*2537720636^(13/15) 7014087330000000 a001 225851433717/45537549124*2537720636^(13/15) 7014087330000000 a001 225851433717/10749957122*2537720636^(4/5) 7014087330000000 a001 86267571272/17393796001*2537720636^(13/15) 7014087330000000 a001 182717648081/5374978561*2537720636^(7/9) 7014087330000000 a001 591286729879/1568397607*1568397607^(15/22) 7014087330000000 a001 591286729879/28143753123*2537720636^(4/5) 7014087330000000 a001 1548008755920/73681302247*2537720636^(4/5) 7014087330000000 a001 4052739537881/192900153618*2537720636^(4/5) 7014087330000000 a001 225749145909/10745088481*2537720636^(4/5) 7014087330000000 a001 6557470319842/312119004989*2537720636^(4/5) 7014087330000000 a001 2504730781961/119218851371*2537720636^(4/5) 7014087330000000 a001 956722026041/45537549124*2537720636^(4/5) 7014087330000000 a001 956722026041/10749957122*2537720636^(11/15) 7014087330000000 a001 956722026041/28143753123*2537720636^(7/9) 7014087330000000 a001 2504730781961/73681302247*2537720636^(7/9) 7014087330000000 a001 365435296162/17393796001*2537720636^(4/5) 7014087330000000 a001 3278735159921/96450076809*2537720636^(7/9) 7014087330000000 a001 10610209857723/312119004989*2537720636^(7/9) 7014087330000000 a001 4052739537881/119218851371*2537720636^(7/9) 7014087330000000 a001 387002188980/11384387281*2537720636^(7/9) 7014087330000000 a001 7778742049/6643838879*2537720636^(14/15) 7014087330000000 a001 1836311903/4106118243*312119004989^(4/5) 7014087330000000 a001 1836311903/4106118243*23725150497407^(11/16) 7014087330000000 a001 1836311903/4106118243*73681302247^(11/13) 7014087330000000 a001 591286729879/17393796001*2537720636^(7/9) 7014087330000000 a001 2504730781961/28143753123*2537720636^(11/15) 7014087330000000 a001 20365011074/6643838879*2537720636^(8/9) 7014087330000000 a001 6557470319842/73681302247*2537720636^(11/15) 7014087330000000 a001 10610209857723/119218851371*2537720636^(11/15) 7014087330000000 a001 4052739537881/45537549124*2537720636^(11/15) 7014087330000000 a001 4052739537881/10749957122*2537720636^(2/3) 7014087330000000 a001 32951280099/6643838879*2537720636^(13/15) 7014087330000000 a001 32264490531/224056801*1568397607^(8/11) 7014087330000000 a001 1836311903/4106118243*10749957122^(11/12) 7014087330000000 a001 1548008755920/17393796001*2537720636^(11/15) 7014087330000000 a001 3372041405099481409/4807526976 7014087330000000 a001 3536736619241/9381251041*2537720636^(2/3) 7014087330000000 a001 139583862445/1568397607*1568397607^(3/4) 7014087330000000 a001 139583862445/6643838879*2537720636^(4/5) 7014087330000000 a001 6557470319842/17393796001*2537720636^(2/3) 7014087330000000 a001 225851433717/6643838879*2537720636^(7/9) 7014087330000000 a001 86267571272/1568397607*1568397607^(17/22) 7014087330000000 a001 591286729879/6643838879*2537720636^(11/15) 7014087330000000 a001 2504730781961/6643838879*2537720636^(2/3) 7014087330000000 a001 1836311903/1568397607*1568397607^(21/22) 7014087330000000 a001 32951280099/1568397607*1568397607^(9/11) 7014087330000000 a001 1602508992/1368706081*17393796001^(6/7) 7014087330000000 a001 10610209857723/6643838879*2537720636^(3/5) 7014087330000000 a001 1602508992/1368706081*45537549124^(14/17) 7014087330000000 a001 1602508992/1368706081*817138163596^(14/19) 7014087330000000 a001 1602508992/1368706081*14662949395604^(2/3) 7014087330000000 a001 1602508992/1368706081*505019158607^(3/4) 7014087330000000 a001 1602508992/1368706081*192900153618^(7/9) 7014087330000000 a001 8828119010022395328/12586269025 7014087330000000 a001 1836311903/4106118243*4106118243^(22/23) 7014087330000000 a001 139583862445/4106118243*17393796001^(5/7) 7014087330000000 a001 4052739537881/4106118243*17393796001^(4/7) 7014087330000000 a001 1836311903/28143753123*45537549124^(16/17) 7014087330000000 a001 12586269025/4106118243*312119004989^(8/11) 7014087330000000 a001 12586269025/4106118243*23725150497407^(5/8) 7014087330000000 a001 1836311903/28143753123*192900153618^(8/9) 7014087330000000 a001 12586269025/4106118243*73681302247^(10/13) 7014087330000000 a001 1836311903/28143753123*73681302247^(12/13) 7014087330000000 a001 1602508992/1368706081*10749957122^(7/8) 7014087330000000 a001 23112315624967704575/32951280099 7014087330000000 a001 86267571272/4106118243*45537549124^(12/17) 7014087330000000 a001 1836311903/10749957122*10749957122^(23/24) 7014087330000000 a001 75283811239/1368706081*45537549124^(2/3) 7014087330000000 a001 365435296162/4106118243*45537549124^(11/17) 7014087330000000 a001 516002918640/1368706081*45537549124^(10/17) 7014087330000000 a001 6557470319842/4106118243*45537549124^(9/17) 7014087330000000 a001 12586269025/4106118243*28143753123^(4/5) 7014087330000000 a001 1836311903/73681302247*312119004989^(10/11) 7014087330000000 a001 10983760033/1368706081*817138163596^(2/3) 7014087330000000 a001 1836311903/73681302247*3461452808002^(5/6) 7014087330000000 a001 60508827864880718397/86267571272 7014087330000000 a001 86267571272/4106118243*14662949395604^(4/7) 7014087330000000 a001 1836311903/192900153618*23725150497407^(13/16) 7014087330000000 a001 1836311903/192900153618*505019158607^(13/14) 7014087330000000 a001 158414167969674450616/225851433717 7014087330000000 a001 86267571272/4106118243*192900153618^(2/3) 7014087330000000 a001 516002918640/1368706081*312119004989^(6/11) 7014087330000000 a001 365435296162/4106118243*312119004989^(3/5) 7014087330000000 a001 1836311903/505019158607*14662949395604^(6/7) 7014087330000000 a001 1836311903/1322157322203*14662949395604^(8/9) 7014087330000000 a001 1085786860162753449737/1548008755920 7014087330000000 a001 6557470319842/4106118243*14662949395604^(3/7) 7014087330000000 a001 139583862445/4106118243*312119004989^(7/11) 7014087330000000 a001 256319508074468182835/365435296162 7014087330000000 a001 139583862445/4106118243*14662949395604^(5/9) 7014087330000000 a001 139583862445/4106118243*505019158607^(5/8) 7014087330000000 a001 6557470319842/4106118243*192900153618^(1/2) 7014087330000000 a001 516002918640/1368706081*192900153618^(5/9) 7014087330000000 a001 365435296162/4106118243*192900153618^(11/18) 7014087330000000 a001 97905340104793732219/139583862445 7014087330000000 a001 1836311903/119218851371*817138163596^(17/19) 7014087330000000 a001 1836311903/119218851371*14662949395604^(17/21) 7014087330000000 a001 3536736619241/1368706081*73681302247^(1/2) 7014087330000000 a001 1836311903/119218851371*192900153618^(17/18) 7014087330000000 a001 4052739537881/4106118243*73681302247^(7/13) 7014087330000000 a001 86267571272/4106118243*73681302247^(9/13) 7014087330000000 a001 591286729879/4106118243*73681302247^(8/13) 7014087330000000 a001 20365011074/4106118243*45537549124^(13/17) 7014087330000000 a001 37396512239913013822/53316291173 7014087330000000 a001 1836311903/45537549124*14662949395604^(7/9) 7014087330000000 a001 20365011074/4106118243*14662949395604^(13/21) 7014087330000000 a001 1836311903/45537549124*505019158607^(7/8) 7014087330000000 a001 20365011074/4106118243*192900153618^(13/18) 7014087330000000 a001 20365011074/4106118243*73681302247^(3/4) 7014087330000000 a001 516002918640/1368706081*28143753123^(3/5) 7014087330000000 a001 139583862445/4106118243*28143753123^(7/10) 7014087330000000 a001 12586269025/1568397607*1568397607^(19/22) 7014087330000000 a001 14284196614945309247/20365011074 7014087330000000 a001 3536736619241/1368706081*10749957122^(13/24) 7014087330000000 a001 6557470319842/4106118243*10749957122^(9/16) 7014087330000000 a001 4052739537881/4106118243*10749957122^(7/12) 7014087330000000 a001 516002918640/1368706081*10749957122^(5/8) 7014087330000000 a001 591286729879/4106118243*10749957122^(2/3) 7014087330000000 a001 12586269025/4106118243*10749957122^(5/6) 7014087330000000 a001 365435296162/4106118243*10749957122^(11/16) 7014087330000000 a001 75283811239/1368706081*10749957122^(17/24) 7014087330000000 a001 86267571272/4106118243*10749957122^(3/4) 7014087330000000 a001 10983760033/1368706081*10749957122^(19/24) 7014087330000000 a001 20365011074/4106118243*10749957122^(13/16) 7014087330000000 a001 686789568/224056801*1568397607^(10/11) 7014087330000000 a001 5456077604922913919/7778742049 7014087330000000 a001 1836311903/6643838879*45537549124^(15/17) 7014087330000000 a001 1836311903/6643838879*312119004989^(9/11) 7014087330000000 a001 1836311903/6643838879*14662949395604^(5/7) 7014087330000000 a001 1836311903/6643838879*192900153618^(5/6) 7014087330000000 a001 1836311903/6643838879*28143753123^(9/10) 7014087330000000 a001 1836311903/6643838879*10749957122^(15/16) 7014087330000000 a001 3536736619241/1368706081*4106118243^(13/23) 7014087330000000 a001 4052739537881/4106118243*4106118243^(14/23) 7014087330000000 a001 516002918640/1368706081*4106118243^(15/23) 7014087330000000 a001 591286729879/4106118243*4106118243^(16/23) 7014087330000000 a001 2403763488/5374978561*312119004989^(4/5) 7014087330000000 a001 2403763488/5374978561*23725150497407^(11/16) 7014087330000000 a001 2403763488/5374978561*73681302247^(11/13) 7014087330000000 a001 7704105208322568192/10983760033 7014087330000000 a001 75283811239/1368706081*4106118243^(17/23) 7014087330000000 a001 1602508992/1368706081*4106118243^(21/23) 7014087330000000 a001 86267571272/4106118243*4106118243^(18/23) 7014087330000000 a001 12586269025/10749957122*17393796001^(6/7) 7014087330000000 a001 182717648081/5374978561*17393796001^(5/7) 7014087330000000 a001 4807525989/4870846*17393796001^(4/7) 7014087330000000 a001 10983760033/1368706081*4106118243^(19/23) 7014087330000000 a001 12586269025/10749957122*45537549124^(14/17) 7014087330000000 a001 12586269025/10749957122*817138163596^(14/19) 7014087330000000 a001 12586269025/10749957122*14662949395604^(2/3) 7014087330000000 a001 12586269025/10749957122*505019158607^(3/4) 7014087330000000 a001 12586269025/10749957122*192900153618^(7/9) 7014087330000000 a001 7563603483110089800/10783446409 7014087330000000 a001 2403763488/5374978561*10749957122^(11/12) 7014087330000000 a001 686789568/10525900321*45537549124^(16/17) 7014087330000000 a001 12586269025/4106118243*4106118243^(20/23) 7014087330000000 a001 225851433717/10749957122*45537549124^(12/17) 7014087330000000 a001 591286729879/10749957122*45537549124^(2/3) 7014087330000000 a001 956722026041/10749957122*45537549124^(11/17) 7014087330000000 a001 53316291173/10749957122*45537549124^(13/17) 7014087330000000 a001 4052739537881/10749957122*45537549124^(10/17) 7014087330000000 a001 32951280099/10749957122*312119004989^(8/11) 7014087330000000 a001 686789568/10525900321*14662949395604^(16/21) 7014087330000000 a001 32951280099/10749957122*23725150497407^(5/8) 7014087330000000 a001 7543531808079735744/10754830177 7014087330000000 a001 686789568/10525900321*192900153618^(8/9) 7014087330000000 a001 32951280099/10749957122*73681302247^(10/13) 7014087330000000 a001 267084832/10716675201*312119004989^(10/11) 7014087330000000 a001 43133785636/5374978561*817138163596^(2/3) 7014087330000000 a001 267084832/10716675201*3461452808002^(5/6) 7014087330000000 a001 414733676044142633472/591286729879 7014087330000000 a001 686789568/10525900321*73681302247^(12/13) 7014087330000000 a001 4052739537881/10749957122*312119004989^(6/11) 7014087330000000 a001 182717648081/5374978561*312119004989^(7/11) 7014087330000000 a001 225851433717/10749957122*14662949395604^(4/7) 7014087330000000 a001 102287808/10745088481*23725150497407^(13/16) 7014087330000000 a001 2842626904444117715904/4052739537881 7014087330000000 a001 102287808/10745088481*505019158607^(13/14) 7014087330000000 a001 14930208/10749853441*14662949395604^(8/9) 7014087330000000 a001 3278735159921/5374978561*1322157322203^(1/2) 7014087330000000 a001 1756840044281364266112/2504730781961 7014087330000000 a001 182717648081/5374978561*505019158607^(5/8) 7014087330000000 a001 4807526976/312119004989*817138163596^(17/19) 7014087330000000 a001 671053184118610816320/956722026041 7014087330000000 a001 4807526976/312119004989*14662949395604^(17/21) 7014087330000000 a001 225851433717/10749957122*192900153618^(2/3) 7014087330000000 a001 4052739537881/10749957122*192900153618^(5/9) 7014087330000000 a001 956722026041/10749957122*192900153618^(11/18) 7014087330000000 a001 4807526976/312119004989*192900153618^(17/18) 7014087330000000 a001 128159754037234091424/182717648081 7014087330000000 a001 4807526976/119218851371*14662949395604^(7/9) 7014087330000000 a001 53316291173/10749957122*14662949395604^(13/21) 7014087330000000 a001 4807526976/119218851371*505019158607^(7/8) 7014087330000000 a001 53316291173/10749957122*192900153618^(13/18) 7014087330000000 a001 4807525989/4870846*73681302247^(7/13) 7014087330000000 a001 774004377960/5374978561*73681302247^(8/13) 7014087330000000 a001 225851433717/10749957122*73681302247^(9/13) 7014087330000000 a001 53316291173/10749957122*73681302247^(3/4) 7014087330000000 a001 97905340104793732224/139583862445 7014087330000000 a001 4052739537881/10749957122*28143753123^(3/5) 7014087330000000 a001 32951280099/10749957122*28143753123^(4/5) 7014087330000000 a001 182717648081/5374978561*28143753123^(7/10) 7014087330000000 a001 4807526976/17393796001*45537549124^(15/17) 7014087330000000 a001 37396512239913013824/53316291173 7014087330000000 a001 4807526976/17393796001*312119004989^(9/11) 7014087330000000 a001 4807526976/17393796001*14662949395604^(5/7) 7014087330000000 a001 4807526976/17393796001*192900153618^(5/6) 7014087330000000 a001 10983760033/9381251041*17393796001^(6/7) 7014087330000000 a001 4807526976/17393796001*28143753123^(9/10) 7014087330000000 a001 956722026041/28143753123*17393796001^(5/7) 7014087330000000 a001 4807525989/4870846*10749957122^(7/12) 7014087330000000 a001 4052739537881/10749957122*10749957122^(5/8) 7014087330000000 a001 86267571272/73681302247*17393796001^(6/7) 7014087330000000 a001 774004377960/5374978561*10749957122^(2/3) 7014087330000000 a001 75283811239/64300051206*17393796001^(6/7) 7014087330000000 a001 2504730781961/2139295485799*17393796001^(6/7) 7014087330000000 a001 365435296162/312119004989*17393796001^(6/7) 7014087330000000 a001 139583862445/119218851371*17393796001^(6/7) 7014087330000000 a001 956722026041/10749957122*10749957122^(11/16) 7014087330000000 a001 2504730781961/73681302247*17393796001^(5/7) 7014087330000000 a001 12586269025/28143753123*312119004989^(4/5) 7014087330000000 a001 12586269025/28143753123*23725150497407^(11/16) 7014087330000000 a001 591286729879/10749957122*10749957122^(17/24) 7014087330000000 a001 3278735159921/96450076809*17393796001^(5/7) 7014087330000000 a001 12586269025/28143753123*73681302247^(11/13) 7014087330000000 a001 10610209857723/312119004989*17393796001^(5/7) 7014087330000000 a001 12586269025/10749957122*10749957122^(7/8) 7014087330000000 a001 4052739537881/119218851371*17393796001^(5/7) 7014087330000000 a001 53316291173/45537549124*17393796001^(6/7) 7014087330000000 a001 225851433717/10749957122*10749957122^(3/4) 7014087330000000 a001 387002188980/11384387281*17393796001^(5/7) 7014087330000000 a001 10983760033/9381251041*45537549124^(14/17) 7014087330000000 a001 43133785636/5374978561*10749957122^(19/24) 7014087330000000 a001 12586269025/192900153618*45537549124^(16/17) 7014087330000000 a001 32951280099/10749957122*10749957122^(5/6) 7014087330000000 a001 1602508992/9381251041*10749957122^(23/24) 7014087330000000 a001 139583862445/28143753123*45537549124^(13/17) 7014087330000000 a001 591286729879/28143753123*45537549124^(12/17) 7014087330000000 a001 12585437040/228811001*45537549124^(2/3) 7014087330000000 a001 2504730781961/28143753123*45537549124^(11/17) 7014087330000000 a001 53316291173/10749957122*10749957122^(13/16) 7014087330000000 a001 3536736619241/9381251041*45537549124^(10/17) 7014087330000000 a001 10983760033/9381251041*817138163596^(14/19) 7014087330000000 a001 10983760033/9381251041*14662949395604^(2/3) 7014087330000000 a001 10983760033/9381251041*505019158607^(3/4) 7014087330000000 a001 10983760033/9381251041*192900153618^(7/9) 7014087330000000 a001 86267571272/28143753123*312119004989^(8/11) 7014087330000000 a001 2467697409460803295/3518201718 7014087330000000 a001 12586269025/505019158607*312119004989^(10/11) 7014087330000000 a001 2504730781961/28143753123*312119004989^(3/5) 7014087330000000 a001 3536736619241/9381251041*312119004989^(6/11) 7014087330000000 a001 12586269025/505019158607*3461452808002^(5/6) 7014087330000000 a001 12586269025/192900153618*192900153618^(8/9) 7014087330000000 a001 12586269025/3461452808002*14662949395604^(6/7) 7014087330000000 a001 4052739537881/28143753123*23725150497407^(1/2) 7014087330000000 a001 12586269025/817138163596*817138163596^(17/19) 7014087330000000 a001 4052739537881/28143753123*505019158607^(4/7) 7014087330000000 a001 12586269025/1322157322203*505019158607^(13/14) 7014087330000000 a001 1756840044281364266125/2504730781961 7014087330000000 a001 1144206275/28374454999*14662949395604^(7/9) 7014087330000000 a001 1144206275/28374454999*505019158607^(7/8) 7014087330000000 a001 3536736619241/9381251041*192900153618^(5/9) 7014087330000000 a001 12586269025/817138163596*192900153618^(17/18) 7014087330000000 a001 139583862445/28143753123*192900153618^(13/18) 7014087330000000 a001 12586269025/45537549124*45537549124^(15/17) 7014087330000000 a001 671053184118610816325/956722026041 7014087330000000 a001 4052739537881/28143753123*73681302247^(8/13) 7014087330000000 a001 86267571272/28143753123*73681302247^(10/13) 7014087330000000 a001 591286729879/28143753123*73681302247^(9/13) 7014087330000000 a001 12586269025/192900153618*73681302247^(12/13) 7014087330000000 a001 139583862445/28143753123*73681302247^(3/4) 7014087330000000 a001 12586269025/45537549124*312119004989^(9/11) 7014087330000000 a001 12586269025/45537549124*14662949395604^(5/7) 7014087330000000 a001 12586269025/45537549124*192900153618^(5/6) 7014087330000000 a001 32951280099/505019158607*45537549124^(16/17) 7014087330000000 a001 86267571272/73681302247*45537549124^(14/17) 7014087330000000 a001 365435296162/73681302247*45537549124^(13/17) 7014087330000000 a001 32951280099/119218851371*45537549124^(15/17) 7014087330000000 a001 1548008755920/73681302247*45537549124^(12/17) 7014087330000000 a001 4052739537881/73681302247*45537549124^(2/3) 7014087330000000 a001 3536736619241/9381251041*28143753123^(3/5) 7014087330000000 a001 6557470319842/73681302247*45537549124^(11/17) 7014087330000000 a001 86267571272/1322157322203*45537549124^(16/17) 7014087330000000 a001 32264490531/494493258286*45537549124^(16/17) 7014087330000000 a001 591286729879/9062201101803*45537549124^(16/17) 7014087330000000 a001 365435296162/5600748293801*45537549124^(16/17) 7014087330000000 a001 139583862445/2139295485799*45537549124^(16/17) 7014087330000000 a001 86267571272/312119004989*45537549124^(15/17) 7014087330000000 a001 75283811239/64300051206*45537549124^(14/17) 7014087330000000 a001 225851433717/817138163596*45537549124^(15/17) 7014087330000000 a001 139583862445/505019158607*45537549124^(15/17) 7014087330000000 a001 956722026041/192900153618*45537549124^(13/17) 7014087330000000 a001 365435296162/312119004989*45537549124^(14/17) 7014087330000000 a001 53316291173/192900153618*45537549124^(15/17) 7014087330000000 a001 956722026041/28143753123*28143753123^(7/10) 7014087330000000 a001 32951280099/73681302247*312119004989^(4/5) 7014087330000000 a001 2504730781961/505019158607*45537549124^(13/17) 7014087330000000 a001 32951280099/73681302247*23725150497407^(11/16) 7014087330000000 a001 120642984462528161089/172000972880 7014087330000000 a001 4052739537881/192900153618*45537549124^(12/17) 7014087330000000 a001 140728068720/28374454999*45537549124^(13/17) 7014087330000000 a001 3536736619241/64300051206*45537549124^(2/3) 7014087330000000 a001 225749145909/10745088481*45537549124^(12/17) 7014087330000000 a001 6557470319842/312119004989*45537549124^(12/17) 7014087330000000 a001 139583862445/119218851371*45537549124^(14/17) 7014087330000000 a001 591286729879/119218851371*45537549124^(13/17) 7014087330000000 a001 86267571272/28143753123*28143753123^(4/5) 7014087330000000 a001 2504730781961/119218851371*45537549124^(12/17) 7014087330000000 a001 6557470319842/119218851371*45537549124^(2/3) 7014087330000000 a001 32951280099/73681302247*73681302247^(11/13) 7014087330000000 a001 86267571272/73681302247*817138163596^(14/19) 7014087330000000 a001 86267571272/73681302247*14662949395604^(2/3) 7014087330000000 a001 2842626904444117715928/4052739537881 7014087330000000 a001 32264490531/10525900321*312119004989^(8/11) 7014087330000000 a001 10983760033/440719107401*312119004989^(10/11) 7014087330000000 a001 2504730781961/73681302247*312119004989^(7/11) 7014087330000000 a001 32264490531/10525900321*23725150497407^(5/8) 7014087330000000 a001 10983760033/440719107401*3461452808002^(5/6) 7014087330000000 a001 1548008755920/73681302247*14662949395604^(4/7) 7014087330000000 a001 10983760033/3020733700601*14662949395604^(6/7) 7014087330000000 a001 1515744265389/10525900321*505019158607^(4/7) 7014087330000000 a001 1548008755920/73681302247*505019158607^(9/14) 7014087330000000 a001 32951280099/817138163596*505019158607^(7/8) 7014087330000000 a001 4599466948725481982055/6557470319842 7014087330000000 a001 1548008755920/73681302247*192900153618^(2/3) 7014087330000000 a001 32951280099/505019158607*192900153618^(8/9) 7014087330000000 a001 365435296162/73681302247*192900153618^(13/18) 7014087330000000 a001 32951280099/2139295485799*192900153618^(17/18) 7014087330000000 a001 20365011074/73681302247*45537549124^(15/17) 7014087330000000 a001 32951280099/119218851371*312119004989^(9/11) 7014087330000000 a001 1756840044281364266127/2504730781961 7014087330000000 a001 32951280099/119218851371*14662949395604^(5/7) 7014087330000000 a001 32951280099/119218851371*192900153618^(5/6) 7014087330000000 a001 1515744265389/10525900321*73681302247^(8/13) 7014087330000000 a001 43133785636/96450076809*312119004989^(4/5) 7014087330000000 a001 1548008755920/73681302247*73681302247^(9/13) 7014087330000000 a001 43133785636/96450076809*23725150497407^(11/16) 7014087330000000 a001 7442093853169599697984/10610209857723 7014087330000000 a001 32264490531/10525900321*73681302247^(10/13) 7014087330000000 a001 365435296162/73681302247*73681302247^(3/4) 7014087330000000 a001 43133785636/1730726404001*312119004989^(10/11) 7014087330000000 a001 3278735159921/96450076809*312119004989^(7/11) 7014087330000000 a001 86267571272/5600748293801*817138163596^(17/19) 7014087330000000 a001 591286729879/192900153618*23725150497407^(5/8) 7014087330000000 a001 43133785636/1730726404001*3461452808002^(5/6) 7014087330000000 a001 3278735159921/96450076809*14662949395604^(5/9) 7014087330000000 a001 3278735159921/96450076809*505019158607^(5/8) 7014087330000000 a001 86267571272/2139295485799*505019158607^(7/8) 7014087330000000 a001 32951280099/505019158607*73681302247^(12/13) 7014087330000000 a001 225851433717/505019158607*312119004989^(4/5) 7014087330000000 a001 75283811239/3020733700601*312119004989^(10/11) 7014087330000000 a001 225851433717/817138163596*312119004989^(9/11) 7014087330000000 a001 1515744265389/494493258286*312119004989^(8/11) 7014087330000000 a001 225749145909/10745088481*14662949395604^(4/7) 7014087330000000 a001 139583862445/505019158607*312119004989^(9/11) 7014087330000000 a001 139583862445/505019158607*14662949395604^(5/7) 7014087330000000 a001 365435296162/312119004989*14662949395604^(2/3) 7014087330000000 a001 139583862445/312119004989*312119004989^(4/5) 7014087330000000 a001 10610209857723/312119004989*505019158607^(5/8) 7014087330000000 a001 139583862445/3461452808002*505019158607^(7/8) 7014087330000000 a001 225851433717/817138163596*192900153618^(5/6) 7014087330000000 a001 365435296162/5600748293801*192900153618^(8/9) 7014087330000000 a001 6557470319842/312119004989*192900153618^(2/3) 7014087330000000 a001 139583862445/505019158607*192900153618^(5/6) 7014087330000000 a001 140728068720/28374454999*192900153618^(13/18) 7014087330000000 a001 365435296162/312119004989*192900153618^(7/9) 7014087330000000 a001 139583862445/2139295485799*192900153618^(8/9) 7014087330000000 a001 53316291173/192900153618*312119004989^(9/11) 7014087330000000 a001 20365011074/312119004989*45537549124^(16/17) 7014087330000000 a001 135278439668396528884/192866774113 7014087330000000 a001 53316291173/2139295485799*312119004989^(10/11) 7014087330000000 a001 10610209857723/119218851371*312119004989^(3/5) 7014087330000000 a001 365435296162/119218851371*312119004989^(8/11) 7014087330000000 a001 53316291173/192900153618*192900153618^(5/6) 7014087330000000 a001 4052739537881/119218851371*505019158607^(5/8) 7014087330000000 a001 2504730781961/119218851371*505019158607^(9/14) 7014087330000000 a001 53316291173/1322157322203*505019158607^(7/8) 7014087330000000 a001 139583862445/119218851371*817138163596^(14/19) 7014087330000000 a001 139583862445/119218851371*14662949395604^(2/3) 7014087330000000 a001 7442093853169599697985/10610209857723 7014087330000000 a001 591286729879/119218851371*192900153618^(13/18) 7014087330000000 a001 53316291173/3461452808002*192900153618^(17/18) 7014087330000000 a001 53316291173/817138163596*192900153618^(8/9) 7014087330000000 a001 139583862445/119218851371*192900153618^(7/9) 7014087330000000 a001 43133785636/96450076809*73681302247^(11/13) 7014087330000000 a001 225851433717/45537549124*45537549124^(13/17) 7014087330000000 a001 956722026041/192900153618*73681302247^(3/4) 7014087330000000 a001 591286729879/192900153618*73681302247^(10/13) 7014087330000000 a001 225749145909/10745088481*73681302247^(9/13) 7014087330000000 a001 53316291173/119218851371*312119004989^(4/5) 7014087330000000 a001 2504730781961/505019158607*73681302247^(3/4) 7014087330000000 a001 6557470319842/312119004989*73681302247^(9/13) 7014087330000000 a001 10610209857723/2139295485799*73681302247^(3/4) 7014087330000000 a001 1515744265389/494493258286*73681302247^(10/13) 7014087330000000 a001 86267571272/1322157322203*73681302247^(12/13) 7014087330000000 a001 2504730781961/817138163596*73681302247^(10/13) 7014087330000000 a001 225851433717/505019158607*73681302247^(11/13) 7014087330000000 a001 140728068720/28374454999*73681302247^(3/4) 7014087330000000 a001 956722026041/312119004989*73681302247^(10/13) 7014087330000000 a001 591286729879/1322157322203*73681302247^(11/13) 7014087330000000 a001 182717648081/408569081798*73681302247^(11/13) 7014087330000000 a001 2504730781961/45537549124*45537549124^(2/3) 7014087330000000 a001 32264490531/494493258286*73681302247^(12/13) 7014087330000000 a001 591286729879/9062201101803*73681302247^(12/13) 7014087330000000 a001 365435296162/5600748293801*73681302247^(12/13) 7014087330000000 a001 139583862445/312119004989*73681302247^(11/13) 7014087330000000 a001 139583862445/2139295485799*73681302247^(12/13) 7014087330000000 a001 2504730781961/119218851371*73681302247^(9/13) 7014087330000000 a001 591286729879/119218851371*73681302247^(3/4) 7014087330000000 a001 365435296162/119218851371*73681302247^(10/13) 7014087330000000 a001 53316291173/817138163596*73681302247^(12/13) 7014087330000000 a001 20365011074/73681302247*312119004989^(9/11) 7014087330000000 a001 53316291173/119218851371*73681302247^(11/13) 7014087330000000 a001 20365011074/73681302247*14662949395604^(5/7) 7014087330000000 a001 20365011074/73681302247*192900153618^(5/6) 7014087330000000 a001 12586269025/45537549124*28143753123^(9/10) 7014087330000000 a001 1756840044281364266128/2504730781961 7014087330000000 a001 10182505537/408569081798*312119004989^(10/11) 7014087330000000 a001 4052739537881/45537549124*312119004989^(3/5) 7014087330000000 a001 176902574950980076233/252210396917 7014087330000000 a001 10182505537/7331474697802*14662949395604^(8/9) 7014087330000000 a001 10610209857723/45537549124*9062201101803^(1/2) 7014087330000000 a001 10182505537/408569081798*3461452808002^(5/6) 7014087330000000 a001 139583862445/45537549124*312119004989^(8/11) 7014087330000000 a001 139583862445/45537549124*23725150497407^(5/8) 7014087330000000 a001 2842626904444117715930/4052739537881 7014087330000000 a001 225851433717/45537549124*192900153618^(13/18) 7014087330000000 a001 4052739537881/45537549124*192900153618^(11/18) 7014087330000000 a001 956722026041/45537549124*192900153618^(2/3) 7014087330000000 a001 20365011074/1322157322203*192900153618^(17/18) 7014087330000000 a001 20365011074/312119004989*192900153618^(8/9) 7014087330000000 a001 53316291173/45537549124*817138163596^(14/19) 7014087330000000 a001 53316291173/45537549124*14662949395604^(2/3) 7014087330000000 a001 53316291173/45537549124*505019158607^(3/4) 7014087330000000 a001 53316291173/45537549124*192900153618^(7/9) 7014087330000000 a001 3278735159921/22768774562*73681302247^(8/13) 7014087330000000 a001 956722026041/45537549124*73681302247^(9/13) 7014087330000000 a001 225851433717/45537549124*73681302247^(3/4) 7014087330000000 a001 139583862445/45537549124*73681302247^(10/13) 7014087330000000 a001 20365011074/312119004989*73681302247^(12/13) 7014087330000000 a001 2504730781961/73681302247*28143753123^(7/10) 7014087330000000 a001 32264490531/10525900321*28143753123^(4/5) 7014087330000000 a001 3278735159921/96450076809*28143753123^(7/10) 7014087330000000 a001 10610209857723/312119004989*28143753123^(7/10) 7014087330000000 a001 591286729879/17393796001*17393796001^(5/7) 7014087330000000 a001 4052739537881/119218851371*28143753123^(7/10) 7014087330000000 a001 20365011074/17393796001*17393796001^(6/7) 7014087330000000 a001 10182505537/22768774562*312119004989^(4/5) 7014087330000000 a001 10182505537/22768774562*23725150497407^(11/16) 7014087330000000 a001 414733676044142633476/591286729879 7014087330000000 a001 591286729879/192900153618*28143753123^(4/5) 7014087330000000 a001 1548008755920/505019158607*28143753123^(4/5) 7014087330000000 a001 1515744265389/494493258286*28143753123^(4/5) 7014087330000000 a001 2504730781961/817138163596*28143753123^(4/5) 7014087330000000 a001 956722026041/312119004989*28143753123^(4/5) 7014087330000000 a001 32951280099/119218851371*28143753123^(9/10) 7014087330000000 a001 365435296162/119218851371*28143753123^(4/5) 7014087330000000 a001 10182505537/22768774562*73681302247^(11/13) 7014087330000000 a001 225851433717/817138163596*28143753123^(9/10) 7014087330000000 a001 1548008755920/5600748293801*28143753123^(9/10) 7014087330000000 a001 139583862445/505019158607*28143753123^(9/10) 7014087330000000 a001 53316291173/192900153618*28143753123^(9/10) 7014087330000000 a001 387002188980/11384387281*28143753123^(7/10) 7014087330000000 a001 20365011074/73681302247*28143753123^(9/10) 7014087330000000 a001 139583862445/45537549124*28143753123^(4/5) 7014087330000000 a001 7778742049/28143753123*45537549124^(15/17) 7014087330000000 a001 19581068020958746445/27916772489 7014087330000000 a001 7778742049/28143753123*14662949395604^(5/7) 7014087330000000 a001 7778742049/28143753123*192900153618^(5/6) 7014087330000000 a001 4807526976/17393796001*10749957122^(15/16) 7014087330000000 a001 86267571272/17393796001*45537549124^(13/17) 7014087330000000 a001 7778742049/119218851371*45537549124^(16/17) 7014087330000000 a001 365435296162/17393796001*45537549124^(12/17) 7014087330000000 a001 956722026041/17393796001*45537549124^(2/3) 7014087330000000 a001 1548008755920/17393796001*45537549124^(11/17) 7014087330000000 a001 6557470319842/17393796001*45537549124^(10/17) 7014087330000000 a001 256319508074468182851/365435296162 7014087330000000 a001 7778742049/28143753123*28143753123^(9/10) 7014087330000000 a001 671053184118610816328/956722026041 7014087330000000 a001 7778742049/192900153618*14662949395604^(7/9) 7014087330000000 a001 86267571272/17393796001*14662949395604^(13/21) 7014087330000000 a001 7778742049/192900153618*505019158607^(7/8) 7014087330000000 a001 1548008755920/17393796001*312119004989^(3/5) 7014087330000000 a001 6557470319842/17393796001*312119004989^(6/11) 7014087330000000 a001 1756840044281364266133/2504730781961 7014087330000000 a001 1548008755920/17393796001*817138163596^(11/19) 7014087330000000 a001 7778742049/5600748293801*14662949395604^(8/9) 7014087330000000 a001 10610209857723/17393796001*1322157322203^(1/2) 7014087330000000 a001 2842626904444117715938/4052739537881 7014087330000000 a001 365435296162/17393796001*505019158607^(9/14) 7014087330000000 a001 139583862445/17393796001*817138163596^(2/3) 7014087330000000 a001 217157372032550689961/309601751184 7014087330000000 a001 6557470319842/17393796001*192900153618^(5/9) 7014087330000000 a001 1548008755920/17393796001*192900153618^(11/18) 7014087330000000 a001 365435296162/17393796001*192900153618^(2/3) 7014087330000000 a001 7778742049/505019158607*192900153618^(17/18) 7014087330000000 a001 53316291173/17393796001*312119004989^(8/11) 7014087330000000 a001 414733676044142633477/591286729879 7014087330000000 a001 20365011074/17393796001*45537549124^(14/17) 7014087330000000 a001 7778742049/119218851371*192900153618^(8/9) 7014087330000000 a001 2504730781961/17393796001*73681302247^(8/13) 7014087330000000 a001 365435296162/17393796001*73681302247^(9/13) 7014087330000000 a001 53316291173/17393796001*73681302247^(10/13) 7014087330000000 a001 7778742049/119218851371*73681302247^(12/13) 7014087330000000 a001 20365011074/17393796001*817138163596^(14/19) 7014087330000000 a001 20365011074/17393796001*14662949395604^(2/3) 7014087330000000 a001 20365011074/17393796001*505019158607^(3/4) 7014087330000000 a001 12185705228436496202/17373187209 7014087330000000 a001 20365011074/17393796001*192900153618^(7/9) 7014087330000000 a001 6557470319842/17393796001*28143753123^(3/5) 7014087330000000 a001 3536736619241/9381251041*10749957122^(5/8) 7014087330000000 a001 591286729879/17393796001*28143753123^(7/10) 7014087330000000 a001 53316291173/17393796001*28143753123^(4/5) 7014087330000000 a001 4052739537881/28143753123*10749957122^(2/3) 7014087330000000 a001 2504730781961/28143753123*10749957122^(11/16) 7014087330000000 a001 12585437040/228811001*10749957122^(17/24) 7014087330000000 a001 591286729879/28143753123*10749957122^(3/4) 7014087330000000 a001 12586269025/28143753123*10749957122^(11/12) 7014087330000000 a001 75283811239/9381251041*10749957122^(19/24) 7014087330000000 a001 1515744265389/10525900321*10749957122^(2/3) 7014087330000000 a001 6557470319842/73681302247*10749957122^(11/16) 7014087330000000 a001 139583862445/28143753123*10749957122^(13/16) 7014087330000000 a001 86267571272/28143753123*10749957122^(5/6) 7014087330000000 a001 4052739537881/73681302247*10749957122^(17/24) 7014087330000000 a001 3536736619241/64300051206*10749957122^(17/24) 7014087330000000 a001 10983760033/9381251041*10749957122^(7/8) 7014087330000000 a001 6557470319842/119218851371*10749957122^(17/24) 7014087330000000 a001 3278735159921/22768774562*10749957122^(2/3) 7014087330000000 a001 1548008755920/73681302247*10749957122^(3/4) 7014087330000000 a001 4052739537881/45537549124*10749957122^(11/16) 7014087330000000 a001 4052739537881/192900153618*10749957122^(3/4) 7014087330000000 a001 225749145909/10745088481*10749957122^(3/4) 7014087330000000 a001 6557470319842/312119004989*10749957122^(3/4) 7014087330000000 a001 2504730781961/119218851371*10749957122^(3/4) 7014087330000000 a001 7778742049/17393796001*312119004989^(4/5) 7014087330000000 a001 7778742049/17393796001*23725150497407^(11/16) 7014087330000000 a001 2504730781961/45537549124*10749957122^(17/24) 7014087330000000 a001 60508827864880718401/86267571272 7014087330000000 a001 591286729879/73681302247*10749957122^(19/24) 7014087330000000 a001 7778742049/17393796001*73681302247^(11/13) 7014087330000000 a001 86000486440/10716675201*10749957122^(19/24) 7014087330000000 a001 12586269025/73681302247*10749957122^(23/24) 7014087330000000 a001 4052739537881/505019158607*10749957122^(19/24) 7014087330000000 a001 365435296162/73681302247*10749957122^(13/16) 7014087330000000 a001 3536736619241/440719107401*10749957122^(19/24) 7014087330000000 a001 3278735159921/408569081798*10749957122^(19/24) 7014087330000000 a001 2504730781961/312119004989*10749957122^(19/24) 7014087330000000 a001 956722026041/119218851371*10749957122^(19/24) 7014087330000000 a001 956722026041/45537549124*10749957122^(3/4) 7014087330000000 a001 956722026041/192900153618*10749957122^(13/16) 7014087330000000 a001 32264490531/10525900321*10749957122^(5/6) 7014087330000000 a001 2504730781961/505019158607*10749957122^(13/16) 7014087330000000 a001 4052739537881/817138163596*10749957122^(13/16) 7014087330000000 a001 140728068720/28374454999*10749957122^(13/16) 7014087330000000 a001 591286729879/119218851371*10749957122^(13/16) 7014087330000000 a001 591286729879/192900153618*10749957122^(5/6) 7014087330000000 a001 1548008755920/505019158607*10749957122^(5/6) 7014087330000000 a001 1515744265389/494493258286*10749957122^(5/6) 7014087330000000 a001 2504730781961/817138163596*10749957122^(5/6) 7014087330000000 a001 956722026041/312119004989*10749957122^(5/6) 7014087330000000 a001 365435296162/119218851371*10749957122^(5/6) 7014087330000000 a001 12586269025/45537549124*10749957122^(15/16) 7014087330000000 a001 182717648081/22768774562*10749957122^(19/24) 7014087330000000 a001 86267571272/73681302247*10749957122^(7/8) 7014087330000000 a001 225851433717/45537549124*10749957122^(13/16) 7014087330000000 a001 75283811239/64300051206*10749957122^(7/8) 7014087330000000 a001 32951280099/73681302247*10749957122^(11/12) 7014087330000000 a001 2504730781961/2139295485799*10749957122^(7/8) 7014087330000000 a001 365435296162/312119004989*10749957122^(7/8) 7014087330000000 a001 139583862445/119218851371*10749957122^(7/8) 7014087330000000 a001 139583862445/45537549124*10749957122^(5/6) 7014087330000000 a001 43133785636/96450076809*10749957122^(11/12) 7014087330000000 a001 225851433717/505019158607*10749957122^(11/12) 7014087330000000 a001 591286729879/1322157322203*10749957122^(11/12) 7014087330000000 a001 182717648081/408569081798*10749957122^(11/12) 7014087330000000 a001 139583862445/312119004989*10749957122^(11/12) 7014087330000000 a001 32951280099/119218851371*10749957122^(15/16) 7014087330000000 a001 53316291173/119218851371*10749957122^(11/12) 7014087330000000 a001 10983760033/64300051206*10749957122^(23/24) 7014087330000000 a001 86267571272/312119004989*10749957122^(15/16) 7014087330000000 a001 225851433717/817138163596*10749957122^(15/16) 7014087330000000 a001 139583862445/505019158607*10749957122^(15/16) 7014087330000000 a001 53316291173/45537549124*10749957122^(7/8) 7014087330000000 a001 53316291173/192900153618*10749957122^(15/16) 7014087330000000 a001 86267571272/505019158607*10749957122^(23/24) 7014087330000000 a001 75283811239/440719107401*10749957122^(23/24) 7014087330000000 a001 139583862445/817138163596*10749957122^(23/24) 7014087330000000 a001 53316291173/312119004989*10749957122^(23/24) 7014087330000000 a001 20365011074/73681302247*10749957122^(15/16) 7014087330000000 a001 6557470319842/17393796001*10749957122^(5/8) 7014087330000000 a001 20365011074/119218851371*10749957122^(23/24) 7014087330000000 a001 10182505537/22768774562*10749957122^(11/12) 7014087330000000 a001 2504730781961/17393796001*10749957122^(2/3) 7014087330000000 a001 1548008755920/17393796001*10749957122^(11/16) 7014087330000000 a001 956722026041/17393796001*10749957122^(17/24) 7014087330000000 a001 365435296162/17393796001*10749957122^(3/4) 7014087330000000 a001 7778742049/28143753123*10749957122^(15/16) 7014087330000000 a001 139583862445/17393796001*10749957122^(19/24) 7014087330000000 a001 86267571272/17393796001*10749957122^(13/16) 7014087330000000 a001 53316291173/17393796001*10749957122^(5/6) 7014087330000000 a001 20365011074/17393796001*10749957122^(7/8) 7014087330000000 a001 7778742049/45537549124*10749957122^(23/24) 7014087330000000 a001 7142098307472654624/10182505537 7014087330000000 a001 2971215073/10749957122*45537549124^(15/17) 7014087330000000 a001 2971215073/10749957122*312119004989^(9/11) 7014087330000000 a001 2971215073/10749957122*14662949395604^(5/7) 7014087330000000 a001 2971215073/10749957122*192900153618^(5/6) 7014087330000000 a001 7778742049/17393796001*10749957122^(11/12) 7014087330000000 a001 2971215073/10749957122*28143753123^(9/10) 7014087330000000 a001 1144206275/230701876*2537720636^(13/15) 7014087330000000 a001 225851433717/6643838879*17393796001^(5/7) 7014087330000000 a001 7778742049/2537720636*2537720636^(8/9) 7014087330000000 a001 6557470319842/6643838879*17393796001^(4/7) 7014087330000000 a001 37396512239913013825/53316291173 7014087330000000 a001 32951280099/6643838879*45537549124^(13/17) 7014087330000000 a001 2971215073/10749957122*10749957122^(15/16) 7014087330000000 a001 139583862445/6643838879*45537549124^(12/17) 7014087330000000 a001 365435296162/6643838879*45537549124^(2/3) 7014087330000000 a001 591286729879/6643838879*45537549124^(11/17) 7014087330000000 a001 2504730781961/6643838879*45537549124^(10/17) 7014087330000000 a001 10610209857723/6643838879*45537549124^(9/17) 7014087330000000 a001 97905340104793732227/139583862445 7014087330000000 a001 2971215073/73681302247*14662949395604^(7/9) 7014087330000000 a001 32951280099/6643838879*14662949395604^(13/21) 7014087330000000 a001 2971215073/73681302247*505019158607^(7/8) 7014087330000000 a001 32951280099/6643838879*192900153618^(13/18) 7014087330000000 a001 32951280099/6643838879*73681302247^(3/4) 7014087330000000 a001 128159754037234091428/182717648081 7014087330000000 a001 2971215073/192900153618*14662949395604^(17/21) 7014087330000000 a001 225851433717/6643838879*312119004989^(7/11) 7014087330000000 a001 2504730781961/6643838879*312119004989^(6/11) 7014087330000000 a001 671053184118610816341/956722026041 7014087330000000 a001 225851433717/6643838879*14662949395604^(5/9) 7014087330000000 a001 10610209857723/6643838879*817138163596^(9/19) 7014087330000000 a001 1756840044281364266167/2504730781961 7014087330000000 a001 2299733474362740991080/3278735159921 7014087330000000 a001 1548008755920/6643838879*9062201101803^(1/2) 7014087330000000 a001 10610209857723/6643838879*14662949395604^(3/7) 7014087330000000 a001 956722026041/6643838879*505019158607^(4/7) 7014087330000000 a001 139583862445/6643838879*14662949395604^(4/7) 7014087330000000 a001 414733676044142633485/591286729879 7014087330000000 a001 139583862445/6643838879*505019158607^(9/14) 7014087330000000 a001 10610209857723/6643838879*192900153618^(1/2) 7014087330000000 a001 2504730781961/6643838879*192900153618^(5/9) 7014087330000000 a001 591286729879/6643838879*192900153618^(11/18) 7014087330000000 a001 139583862445/6643838879*192900153618^(2/3) 7014087330000000 a001 2971215073/45537549124*45537549124^(16/17) 7014087330000000 a001 2971215073/119218851371*312119004989^(10/11) 7014087330000000 a001 53316291173/6643838879*817138163596^(2/3) 7014087330000000 a001 2971215073/119218851371*3461452808002^(5/6) 7014087330000000 a001 158414167969674450629/225851433717 7014087330000000 a001 6557470319842/6643838879*73681302247^(7/13) 7014087330000000 a001 956722026041/6643838879*73681302247^(8/13) 7014087330000000 a001 139583862445/6643838879*73681302247^(9/13) 7014087330000000 a001 7778742049/6643838879*17393796001^(6/7) 7014087330000000 a001 20365011074/6643838879*312119004989^(8/11) 7014087330000000 a001 2971215073/45537549124*14662949395604^(16/21) 7014087330000000 a001 20365011074/6643838879*23725150497407^(5/8) 7014087330000000 a001 2971215073/45537549124*192900153618^(8/9) 7014087330000000 a001 30254413932440359201/43133785636 7014087330000000 a001 20365011074/6643838879*73681302247^(10/13) 7014087330000000 a001 2971215073/45537549124*73681302247^(12/13) 7014087330000000 a001 2504730781961/6643838879*28143753123^(3/5) 7014087330000000 a001 225851433717/6643838879*28143753123^(7/10) 7014087330000000 a001 20365011074/6643838879*28143753123^(4/5) 7014087330000000 a001 7778742049/6643838879*45537549124^(14/17) 7014087330000000 a001 7778742049/6643838879*817138163596^(14/19) 7014087330000000 a001 7778742049/6643838879*14662949395604^(2/3) 7014087330000000 a001 7778742049/6643838879*505019158607^(3/4) 7014087330000000 a001 7778742049/6643838879*192900153618^(7/9) 7014087330000000 a001 23112315624967704577/32951280099 7014087330000000 a001 4807525989/4870846*4106118243^(14/23) 7014087330000000 a001 10610209857723/6643838879*10749957122^(9/16) 7014087330000000 a001 6557470319842/6643838879*10749957122^(7/12) 7014087330000000 a001 2504730781961/6643838879*10749957122^(5/8) 7014087330000000 a001 956722026041/6643838879*10749957122^(2/3) 7014087330000000 a001 591286729879/6643838879*10749957122^(11/16) 7014087330000000 a001 365435296162/6643838879*10749957122^(17/24) 7014087330000000 a001 139583862445/6643838879*10749957122^(3/4) 7014087330000000 a001 32951280099/6643838879*10749957122^(13/16) 7014087330000000 a001 53316291173/6643838879*10749957122^(19/24) 7014087330000000 a001 4052739537881/10749957122*4106118243^(15/23) 7014087330000000 a001 20365011074/6643838879*10749957122^(5/6) 7014087330000000 a001 53316291173/2537720636*2537720636^(4/5) 7014087330000000 a001 774004377960/5374978561*4106118243^(16/23) 7014087330000000 a001 2971215073/2537720636*2537720636^(14/15) 7014087330000000 a001 7778742049/6643838879*10749957122^(7/8) 7014087330000000 a001 2971215073/17393796001*10749957122^(23/24) 7014087330000000 a001 1135099622/33391061*2537720636^(7/9) 7014087330000000 a001 591286729879/10749957122*4106118243^(17/23) 7014087330000000 a001 3536736619241/9381251041*4106118243^(15/23) 7014087330000000 a001 225851433717/10749957122*4106118243^(18/23) 7014087330000000 a001 2403763488/5374978561*4106118243^(22/23) 7014087330000000 a001 4052739537881/28143753123*4106118243^(16/23) 7014087330000000 a001 43133785636/5374978561*4106118243^(19/23) 7014087330000000 a001 1515744265389/10525900321*4106118243^(16/23) 7014087330000000 a001 225851433717/2537720636*2537720636^(11/15) 7014087330000000 a001 3278735159921/22768774562*4106118243^(16/23) 7014087330000000 a001 6557470319842/17393796001*4106118243^(15/23) 7014087330000000 a001 12585437040/228811001*4106118243^(17/23) 7014087330000000 a001 32951280099/10749957122*4106118243^(20/23) 7014087330000000 a001 4052739537881/73681302247*4106118243^(17/23) 7014087330000000 a001 3536736619241/64300051206*4106118243^(17/23) 7014087330000000 a001 6557470319842/119218851371*4106118243^(17/23) 7014087330000000 a001 12586269025/10749957122*4106118243^(21/23) 7014087330000000 a001 2504730781961/45537549124*4106118243^(17/23) 7014087330000000 a001 2504730781961/17393796001*4106118243^(16/23) 7014087330000000 a001 591286729879/28143753123*4106118243^(18/23) 7014087330000000 a001 2971215073/6643838879*312119004989^(4/5) 7014087330000000 a001 2971215073/6643838879*23725150497407^(11/16) 7014087330000000 a001 2971215073/6643838879*73681302247^(11/13) 7014087330000000 a001 1548008755920/73681302247*4106118243^(18/23) 7014087330000000 a001 4052739537881/192900153618*4106118243^(18/23) 7014087330000000 a001 225749145909/10745088481*4106118243^(18/23) 7014087330000000 a001 6557470319842/312119004989*4106118243^(18/23) 7014087330000000 a001 2504730781961/119218851371*4106118243^(18/23) 7014087330000000 a001 8828119010022395329/12586269025 7014087330000000 a001 956722026041/45537549124*4106118243^(18/23) 7014087330000000 a001 956722026041/17393796001*4106118243^(17/23) 7014087330000000 a001 75283811239/9381251041*4106118243^(19/23) 7014087330000000 a001 591286729879/73681302247*4106118243^(19/23) 7014087330000000 a001 86000486440/10716675201*4106118243^(19/23) 7014087330000000 a001 4052739537881/505019158607*4106118243^(19/23) 7014087330000000 a001 3536736619241/440719107401*4106118243^(19/23) 7014087330000000 a001 3278735159921/408569081798*4106118243^(19/23) 7014087330000000 a001 2504730781961/312119004989*4106118243^(19/23) 7014087330000000 a001 956722026041/119218851371*4106118243^(19/23) 7014087330000000 a001 182717648081/22768774562*4106118243^(19/23) 7014087330000000 a001 365435296162/17393796001*4106118243^(18/23) 7014087330000000 a001 86267571272/28143753123*4106118243^(20/23) 7014087330000000 a001 32264490531/10525900321*4106118243^(20/23) 7014087330000000 a001 591286729879/192900153618*4106118243^(20/23) 7014087330000000 a001 1548008755920/505019158607*4106118243^(20/23) 7014087330000000 a001 1515744265389/494493258286*4106118243^(20/23) 7014087330000000 a001 2504730781961/817138163596*4106118243^(20/23) 7014087330000000 a001 956722026041/312119004989*4106118243^(20/23) 7014087330000000 a001 365435296162/119218851371*4106118243^(20/23) 7014087330000000 a001 956722026041/2537720636*2537720636^(2/3) 7014087330000000 a001 139583862445/45537549124*4106118243^(20/23) 7014087330000000 a001 139583862445/17393796001*4106118243^(19/23) 7014087330000000 a001 10983760033/9381251041*4106118243^(21/23) 7014087330000000 a001 2971215073/6643838879*10749957122^(11/12) 7014087330000000 a001 86267571272/73681302247*4106118243^(21/23) 7014087330000000 a001 75283811239/64300051206*4106118243^(21/23) 7014087330000000 a001 2504730781961/2139295485799*4106118243^(21/23) 7014087330000000 a001 365435296162/312119004989*4106118243^(21/23) 7014087330000000 a001 12586269025/28143753123*4106118243^(22/23) 7014087330000000 a001 139583862445/119218851371*4106118243^(21/23) 7014087330000000 a001 53316291173/45537549124*4106118243^(21/23) 7014087330000000 a001 53316291173/17393796001*4106118243^(20/23) 7014087330000000 a001 32951280099/73681302247*4106118243^(22/23) 7014087330000000 a001 43133785636/96450076809*4106118243^(22/23) 7014087330000000 a001 225851433717/505019158607*4106118243^(22/23) 7014087330000000 a001 591286729879/1322157322203*4106118243^(22/23) 7014087330000000 a001 182717648081/408569081798*4106118243^(22/23) 7014087330000000 a001 139583862445/312119004989*4106118243^(22/23) 7014087330000000 a001 53316291173/119218851371*4106118243^(22/23) 7014087330000000 a001 10182505537/22768774562*4106118243^(22/23) 7014087330000000 a001 20365011074/17393796001*4106118243^(21/23) 7014087330000000 a001 6557470319842/6643838879*4106118243^(14/23) 7014087330000000 a001 2504730781961/6643838879*4106118243^(15/23) 7014087330000000 a001 4052739537881/2537720636*2537720636^(3/5) 7014087330000000 a001 7778742049/17393796001*4106118243^(22/23) 7014087330000000 a001 956722026041/6643838879*4106118243^(16/23) 7014087330000000 a001 365435296162/6643838879*4106118243^(17/23) 7014087330000000 a001 10610209857723/2537720636*2537720636^(5/9) 7014087330000000 a001 139583862445/6643838879*4106118243^(18/23) 7014087330000000 a001 53316291173/6643838879*4106118243^(19/23) 7014087330000000 a001 2084036199823432510/2971215073 7014087330000000 a001 20365011074/6643838879*4106118243^(20/23) 7014087330000000 a001 7778742049/6643838879*4106118243^(21/23) 7014087330000000 a001 1134903170/4106118243*45537549124^(15/17) 7014087330000000 a001 1134903170/4106118243*312119004989^(9/11) 7014087330000000 a001 1134903170/4106118243*14662949395604^(5/7) 7014087330000000 a001 1134903170/4106118243*192900153618^(5/6) 7014087330000000 a001 1134903170/4106118243*28143753123^(9/10) 7014087330000000 a001 2971215073/6643838879*4106118243^(22/23) 7014087330000000 a001 1134903170/4106118243*10749957122^(15/16) 7014087330000000 a001 5456077604922913920/7778742049 7014087330000000 a001 1135099622/33391061*17393796001^(5/7) 7014087330000000 a001 2504730781961/2537720636*17393796001^(4/7) 7014087330000000 a001 7142098307472654625/10182505537 7014087330000000 a001 1144206275/230701876*45537549124^(13/17) 7014087330000000 a001 1134903170/28143753123*14662949395604^(7/9) 7014087330000000 a001 1144206275/230701876*14662949395604^(13/21) 7014087330000000 a001 1134903170/28143753123*505019158607^(7/8) 7014087330000000 a001 1144206275/230701876*192900153618^(13/18) 7014087330000000 a001 1144206275/230701876*73681302247^(3/4) 7014087330000000 a001 225851433717/2537720636*45537549124^(11/17) 7014087330000000 a001 139583862445/2537720636*45537549124^(2/3) 7014087330000000 a001 956722026041/2537720636*45537549124^(10/17) 7014087330000000 a001 53316291173/2537720636*45537549124^(12/17) 7014087330000000 a001 37396512239913013830/53316291173 7014087330000000 a001 1134903170/73681302247*817138163596^(17/19) 7014087330000000 a001 1134903170/73681302247*14662949395604^(17/21) 7014087330000000 a001 1134903170/73681302247*192900153618^(17/18) 7014087330000000 a001 19581068020958746448/27916772489 7014087330000000 a001 1135099622/33391061*312119004989^(7/11) 7014087330000000 a001 1135099622/33391061*14662949395604^(5/9) 7014087330000000 a001 1135099622/33391061*505019158607^(5/8) 7014087330000000 a001 225851433717/2537720636*312119004989^(3/5) 7014087330000000 a001 128159754037234091445/182717648081 7014087330000000 a001 10610209857723/2537720636*312119004989^(5/11) 7014087330000000 a001 225851433717/2537720636*14662949395604^(11/21) 7014087330000000 a001 4052739537881/2537720636*14662949395604^(3/7) 7014087330000000 a001 10610209857723/2537720636*3461452808002^(5/12) 7014087330000000 a001 1134903780/1860499*1322157322203^(1/2) 7014087330000000 a001 182717648081/1268860318*505019158607^(4/7) 7014087330000000 a001 1134903170/312119004989*14662949395604^(6/7) 7014087330000000 a001 4052739537881/2537720636*192900153618^(1/2) 7014087330000000 a001 158414167969674450650/225851433717 7014087330000000 a001 53316291173/2537720636*14662949395604^(4/7) 7014087330000000 a001 1134903170/119218851371*23725150497407^(13/16) 7014087330000000 a001 1134903170/119218851371*505019158607^(13/14) 7014087330000000 a001 53316291173/2537720636*192900153618^(2/3) 7014087330000000 a001 3278735159921/1268860318*73681302247^(1/2) 7014087330000000 a001 1779671407790609365/2537281508 7014087330000000 a001 2504730781961/2537720636*73681302247^(7/13) 7014087330000000 a001 182717648081/1268860318*73681302247^(8/13) 7014087330000000 a001 53316291173/2537720636*73681302247^(9/13) 7014087330000000 a001 567451585/22768774562*312119004989^(10/11) 7014087330000000 a001 10182505537/1268860318*817138163596^(2/3) 7014087330000000 a001 567451585/22768774562*3461452808002^(5/6) 7014087330000000 a001 10610209857723/2537720636*28143753123^(1/2) 7014087330000000 a001 23112315624967704580/32951280099 7014087330000000 a001 956722026041/2537720636*28143753123^(3/5) 7014087330000000 a001 1135099622/33391061*28143753123^(7/10) 7014087330000000 a001 1134903170/17393796001*45537549124^(16/17) 7014087330000000 a001 7778742049/2537720636*312119004989^(8/11) 7014087330000000 a001 1134903170/17393796001*14662949395604^(16/21) 7014087330000000 a001 1134903170/17393796001*192900153618^(8/9) 7014087330000000 a001 7778742049/2537720636*73681302247^(10/13) 7014087330000000 a001 1134903170/17393796001*73681302247^(12/13) 7014087330000000 a001 7778742049/2537720636*28143753123^(4/5) 7014087330000000 a001 1765623802004479066/2517253805 7014087330000000 a001 3278735159921/1268860318*10749957122^(13/24) 7014087330000000 a001 4052739537881/2537720636*10749957122^(9/16) 7014087330000000 a001 2504730781961/2537720636*10749957122^(7/12) 7014087330000000 a001 956722026041/2537720636*10749957122^(5/8) 7014087330000000 a001 1144206275/230701876*10749957122^(13/16) 7014087330000000 a001 225851433717/2537720636*10749957122^(11/16) 7014087330000000 a001 139583862445/2537720636*10749957122^(17/24) 7014087330000000 a001 53316291173/2537720636*10749957122^(3/4) 7014087330000000 a001 10182505537/1268860318*10749957122^(19/24) 7014087330000000 a001 7778742049/2537720636*10749957122^(5/6) 7014087330000000 a001 2971215073/2537720636*17393796001^(6/7) 7014087330000000 a001 2971215073/2537720636*45537549124^(14/17) 7014087330000000 a001 2971215073/2537720636*817138163596^(14/19) 7014087330000000 a001 2971215073/2537720636*14662949395604^(2/3) 7014087330000000 a001 2971215073/2537720636*505019158607^(3/4) 7014087330000000 a001 2971215073/2537720636*192900153618^(7/9) 7014087330000000 a001 3536736619241/1368706081*1568397607^(13/22) 7014087330000000 a001 2971215073/2537720636*10749957122^(7/8) 7014087330000000 a001 1134903170/6643838879*10749957122^(23/24) 7014087330000000 a001 1686020702549740705/2403763488 7014087330000000 a001 3278735159921/1268860318*4106118243^(13/23) 7014087330000000 a001 2504730781961/2537720636*4106118243^(14/23) 7014087330000000 a001 956722026041/2537720636*4106118243^(15/23) 7014087330000000 a001 182717648081/1268860318*4106118243^(16/23) 7014087330000000 a001 139583862445/2537720636*4106118243^(17/23) 7014087330000000 a001 4052739537881/4106118243*1568397607^(7/11) 7014087330000000 a001 53316291173/2537720636*4106118243^(18/23) 7014087330000000 a001 10182505537/1268860318*4106118243^(19/23) 7014087330000000 a001 7778742049/2537720636*4106118243^(20/23) 7014087330000000 a001 516002918640/1368706081*1568397607^(15/22) 7014087330000000 a001 2971215073/2537720636*4106118243^(21/23) 7014087330000000 a001 591286729879/4106118243*1568397607^(8/11) 7014087330000000 a001 365435296162/4106118243*1568397607^(3/4) 7014087330000000 a001 4807525989/4870846*1568397607^(7/11) 7014087330000000 a001 75283811239/1368706081*1568397607^(17/22) 7014087330000000 a001 4052739537881/10749957122*1568397607^(15/22) 7014087330000000 a001 86267571272/4106118243*1568397607^(9/11) 7014087330000000 a001 3536736619241/9381251041*1568397607^(15/22) 7014087330000000 a001 6557470319842/17393796001*1568397607^(15/22) 7014087330000000 a001 6557470319842/6643838879*1568397607^(7/11) 7014087330000000 a001 774004377960/5374978561*1568397607^(8/11) 7014087330000000 a001 10983760033/1368706081*1568397607^(19/22) 7014087330000000 a001 4052739537881/28143753123*1568397607^(8/11) 7014087330000000 a001 1515744265389/10525900321*1568397607^(8/11) 7014087330000000 a001 3278735159921/22768774562*1568397607^(8/11) 7014087330000000 a001 956722026041/10749957122*1568397607^(3/4) 7014087330000000 a001 2504730781961/17393796001*1568397607^(8/11) 7014087330000000 a001 2504730781961/6643838879*1568397607^(15/22) 7014087330000000 a001 2504730781961/28143753123*1568397607^(3/4) 7014087330000000 a001 6557470319842/73681302247*1568397607^(3/4) 7014087330000000 a001 10610209857723/119218851371*1568397607^(3/4) 7014087330000000 a001 4052739537881/45537549124*1568397607^(3/4) 7014087330000000 a001 591286729879/10749957122*1568397607^(17/22) 7014087330000000 a001 1548008755920/17393796001*1568397607^(3/4) 7014087330000000 a001 12586269025/4106118243*1568397607^(10/11) 7014087330000000 a001 567451585/1268860318*312119004989^(4/5) 7014087330000000 a001 567451585/1268860318*23725150497407^(11/16) 7014087330000000 a001 567451585/1268860318*73681302247^(11/13) 7014087330000000 a001 12585437040/228811001*1568397607^(17/22) 7014087330000000 a001 4052739537881/73681302247*1568397607^(17/22) 7014087330000000 a001 3536736619241/64300051206*1568397607^(17/22) 7014087330000000 a001 6557470319842/119218851371*1568397607^(17/22) 7014087330000000 a001 2504730781961/45537549124*1568397607^(17/22) 7014087330000000 a001 956722026041/17393796001*1568397607^(17/22) 7014087330000000 a001 956722026041/6643838879*1568397607^(8/11) 7014087330000000 a001 567451585/1268860318*10749957122^(11/12) 7014087330000000 a001 1602508992/1368706081*1568397607^(21/22) 7014087330000000 a001 225851433717/10749957122*1568397607^(9/11) 7014087330000000 a001 591286729879/6643838879*1568397607^(3/4) 7014087330000000 a001 591286729879/28143753123*1568397607^(9/11) 7014087330000000 a001 1548008755920/73681302247*1568397607^(9/11) 7014087330000000 a001 4052739537881/192900153618*1568397607^(9/11) 7014087330000000 a001 225749145909/10745088481*1568397607^(9/11) 7014087330000000 a001 6557470319842/312119004989*1568397607^(9/11) 7014087330000000 a001 2504730781961/119218851371*1568397607^(9/11) 7014087330000000 a001 956722026041/45537549124*1568397607^(9/11) 7014087330000000 a001 365435296162/17393796001*1568397607^(9/11) 7014087330000000 a001 365435296162/6643838879*1568397607^(17/22) 7014087330000000 a001 43133785636/5374978561*1568397607^(19/22) 7014087330000000 a001 75283811239/9381251041*1568397607^(19/22) 7014087330000000 a001 591286729879/73681302247*1568397607^(19/22) 7014087330000000 a001 86000486440/10716675201*1568397607^(19/22) 7014087330000000 a001 4052739537881/505019158607*1568397607^(19/22) 7014087330000000 a001 3278735159921/408569081798*1568397607^(19/22) 7014087330000000 a001 2504730781961/312119004989*1568397607^(19/22) 7014087330000000 a001 956722026041/119218851371*1568397607^(19/22) 7014087330000000 a001 182717648081/22768774562*1568397607^(19/22) 7014087330000000 a001 139583862445/17393796001*1568397607^(19/22) 7014087330000000 a001 139583862445/6643838879*1568397607^(9/11) 7014087330000000 a001 32951280099/10749957122*1568397607^(10/11) 7014087330000000 a001 567451585/1268860318*4106118243^(22/23) 7014087330000000 a001 86267571272/28143753123*1568397607^(10/11) 7014087330000000 a001 32264490531/10525900321*1568397607^(10/11) 7014087330000000 a001 591286729879/192900153618*1568397607^(10/11) 7014087330000000 a001 1548008755920/505019158607*1568397607^(10/11) 7014087330000000 a001 1515744265389/494493258286*1568397607^(10/11) 7014087330000000 a001 2504730781961/817138163596*1568397607^(10/11) 7014087330000000 a001 956722026041/312119004989*1568397607^(10/11) 7014087330000000 a001 365435296162/119218851371*1568397607^(10/11) 7014087330000000 a001 1288005205276048900/1836311903 7014087330000000 a001 139583862445/45537549124*1568397607^(10/11) 7014087330000000 a001 53316291173/17393796001*1568397607^(10/11) 7014087330000000 a001 53316291173/6643838879*1568397607^(19/22) 7014087330000000 a001 12586269025/10749957122*1568397607^(21/22) 7014087330000000 a001 10983760033/9381251041*1568397607^(21/22) 7014087330000000 a001 86267571272/73681302247*1568397607^(21/22) 7014087330000000 a001 75283811239/64300051206*1568397607^(21/22) 7014087330000000 a001 2504730781961/2139295485799*1568397607^(21/22) 7014087330000000 a001 365435296162/312119004989*1568397607^(21/22) 7014087330000000 a001 139583862445/119218851371*1568397607^(21/22) 7014087330000000 a001 53316291173/45537549124*1568397607^(21/22) 7014087330000000 a001 20365011074/17393796001*1568397607^(21/22) 7014087330000000 a001 20365011074/6643838879*1568397607^(10/11) 7014087330000000 a001 3278735159921/1268860318*1568397607^(13/22) 7014087330000000 a001 1568397607/5*5^(1/2) 7014087330000000 a001 2504730781961/2537720636*1568397607^(7/11) 7014087330000000 a001 7778742049/6643838879*1568397607^(21/22) 7014087330000000 a001 956722026041/2537720636*1568397607^(15/22) 7014087330000000 a001 182717648081/1268860318*1568397607^(8/11) 7014087330000000 a001 225851433717/2537720636*1568397607^(3/4) 7014087330000000 a001 139583862445/2537720636*1568397607^(17/22) 7014087330000000 a001 53316291173/2537720636*1568397607^(9/11) 7014087330000000 a001 10182505537/1268860318*1568397607^(19/22) 7014087330000000 a001 7778742049/2537720636*1568397607^(10/11) 7014087330000000 a001 2971215073/2537720636*1568397607^(21/22) 7014087330000000 a001 433494437/1568397607*45537549124^(15/17) 7014087330000000 a001 433494437/1568397607*312119004989^(9/11) 7014087330000000 a001 433494437/1568397607*14662949395604^(5/7) 7014087330000000 a001 433494437/1568397607*192900153618^(5/6) 7014087330000000 a001 433494437/1568397607*28143753123^(9/10) 7014087330000000 a001 433494437/1568397607*10749957122^(15/16) 7014087330000000 a001 796030994547383611/1134903170 7014087330000000 a001 4807526976/969323029*2537720636^(13/15) 7014087330000000 a001 20365011074/969323029*2537720636^(4/5) 7014087330000000 a001 32951280099/969323029*2537720636^(7/9) 7014087330000000 a001 2971215073/969323029*2537720636^(8/9) 7014087330000000 a001 86267571272/969323029*2537720636^(11/15) 7014087330000000 a001 365435296162/969323029*2537720636^(2/3) 7014087330000000 a001 1548008755920/969323029*2537720636^(3/5) 7014087330000000 a001 4052739537881/969323029*2537720636^(5/9) 7014087330000000 a001 6557470319842/969323029*2537720636^(8/15) 7014087330000000 a001 2084036199823432512/2971215073 7014087330000000 a001 4807526976/969323029*45537549124^(13/17) 7014087330000000 a001 433494437/10749957122*14662949395604^(7/9) 7014087330000000 a001 4807526976/969323029*14662949395604^(13/21) 7014087330000000 a001 433494437/10749957122*505019158607^(7/8) 7014087330000000 a001 4807526976/969323029*192900153618^(13/18) 7014087330000000 a001 4807526976/969323029*73681302247^(3/4) 7014087330000000 a001 5456077604922913925/7778742049 7014087330000000 a001 32951280099/969323029*17393796001^(5/7) 7014087330000000 a001 956722026041/969323029*17393796001^(4/7) 7014087330000000 a001 4807526976/969323029*10749957122^(13/16) 7014087330000000 a001 433494437/28143753123*817138163596^(17/19) 7014087330000000 a001 433494437/28143753123*14662949395604^(17/21) 7014087330000000 a001 433494437/28143753123*192900153618^(17/18) 7014087330000000 a001 14284196614945309263/20365011074 7014087330000000 a001 86267571272/969323029*45537549124^(11/17) 7014087330000000 a001 365435296162/969323029*45537549124^(10/17) 7014087330000000 a001 1548008755920/969323029*45537549124^(9/17) 7014087330000000 a001 53316291173/969323029*45537549124^(2/3) 7014087330000000 a001 6557470319842/969323029*45537549124^(8/17) 7014087330000000 a001 32951280099/969323029*312119004989^(7/11) 7014087330000000 a001 32951280099/969323029*14662949395604^(5/9) 7014087330000000 a001 32951280099/969323029*505019158607^(5/8) 7014087330000000 a001 37396512239913013864/53316291173 7014087330000000 a001 86267571272/969323029*312119004989^(3/5) 7014087330000000 a001 86267571272/969323029*14662949395604^(11/21) 7014087330000000 a001 433494437/192900153618*3461452808002^(11/12) 7014087330000000 a001 97905340104793732329/139583862445 7014087330000000 a001 86267571272/969323029*192900153618^(11/18) 7014087330000000 a001 4052739537881/969323029*312119004989^(5/11) 7014087330000000 a001 225851433717/969323029*9062201101803^(1/2) 7014087330000000 a001 256319508074468183123/365435296162 7014087330000000 a001 591286729879/969323029*1322157322203^(1/2) 7014087330000000 a001 1548008755920/969323029*14662949395604^(3/7) 7014087330000000 a001 433494437/2+433494437/2*5^(1/2) 7014087330000000 a001 4052739537881/969323029*3461452808002^(5/12) 7014087330000000 a001 1085786860162753450957/1548008755920 7014087330000000 a001 158414167969674450794/225851433717 7014087330000000 a001 433494437/312119004989*14662949395604^(8/9) 7014087330000000 a001 139583862445/969323029*23725150497407^(1/2) 7014087330000000 a001 6557470319842/969323029*192900153618^(4/9) 7014087330000000 a001 139583862445/969323029*505019158607^(4/7) 7014087330000000 a001 1548008755920/969323029*192900153618^(1/2) 7014087330000000 a001 365435296162/969323029*192900153618^(5/9) 7014087330000000 a001 60508827864880718465/86267571272 7014087330000000 a001 433494437/119218851371*14662949395604^(6/7) 7014087330000000 a001 6557470319842/969323029*73681302247^(6/13) 7014087330000000 a001 2504730781961/969323029*73681302247^(1/2) 7014087330000000 a001 956722026041/969323029*73681302247^(7/13) 7014087330000000 a001 139583862445/969323029*73681302247^(8/13) 7014087330000000 a001 20365011074/969323029*45537549124^(12/17) 7014087330000000 a001 23112315624967704601/32951280099 7014087330000000 a001 20365011074/969323029*14662949395604^(4/7) 7014087330000000 a001 20365011074/969323029*505019158607^(9/14) 7014087330000000 a001 433494437/45537549124*505019158607^(13/14) 7014087330000000 a001 20365011074/969323029*192900153618^(2/3) 7014087330000000 a001 20365011074/969323029*73681302247^(9/13) 7014087330000000 a001 4052739537881/969323029*28143753123^(1/2) 7014087330000000 a001 32951280099/969323029*28143753123^(7/10) 7014087330000000 a001 365435296162/969323029*28143753123^(3/5) 7014087330000000 a001 8828119010022395338/12586269025 7014087330000000 a001 433494437/17393796001*312119004989^(10/11) 7014087330000000 a001 7778742049/969323029*817138163596^(2/3) 7014087330000000 a001 433494437/17393796001*3461452808002^(5/6) 7014087330000000 a001 6557470319842/969323029*10749957122^(1/2) 7014087330000000 a001 2504730781961/969323029*10749957122^(13/24) 7014087330000000 a001 1548008755920/969323029*10749957122^(9/16) 7014087330000000 a001 956722026041/969323029*10749957122^(7/12) 7014087330000000 a001 365435296162/969323029*10749957122^(5/8) 7014087330000000 a001 139583862445/969323029*10749957122^(2/3) 7014087330000000 a001 86267571272/969323029*10749957122^(11/16) 7014087330000000 a001 53316291173/969323029*10749957122^(17/24) 7014087330000000 a001 20365011074/969323029*10749957122^(3/4) 7014087330000000 a001 7778742049/969323029*10749957122^(19/24) 7014087330000000 a001 1134903170/969323029*2537720636^(14/15) 7014087330000000 a001 3372041405099481413/4807526976 7014087330000000 a001 433494437/6643838879*45537549124^(16/17) 7014087330000000 a001 2971215073/969323029*312119004989^(8/11) 7014087330000000 a001 433494437/6643838879*14662949395604^(16/21) 7014087330000000 a001 2971215073/969323029*23725150497407^(5/8) 7014087330000000 a001 433494437/6643838879*192900153618^(8/9) 7014087330000000 a001 2971215073/969323029*73681302247^(10/13) 7014087330000000 a001 433494437/6643838879*73681302247^(12/13) 7014087330000000 a001 2971215073/969323029*28143753123^(4/5) 7014087330000000 a001 10610209857723/969323029*4106118243^(1/2) 7014087330000000 a001 2971215073/969323029*10749957122^(5/6) 7014087330000000 a001 6557470319842/969323029*4106118243^(12/23) 7014087330000000 a001 2504730781961/969323029*4106118243^(13/23) 7014087330000000 a001 956722026041/969323029*4106118243^(14/23) 7014087330000000 a001 365435296162/969323029*4106118243^(15/23) 7014087330000000 a001 139583862445/969323029*4106118243^(16/23) 7014087330000000 a001 53316291173/969323029*4106118243^(17/23) 7014087330000000 a001 20365011074/969323029*4106118243^(18/23) 7014087330000000 a001 7778742049/969323029*4106118243^(19/23) 7014087330000000 a001 2971215073/969323029*4106118243^(20/23) 7014087330000000 a001 1288005205276048901/1836311903 7014087330000000 a001 1515744265389/224056801*599074578^(4/7) 7014087330000000 a001 1134903170/969323029*17393796001^(6/7) 7014087330000000 a001 1134903170/969323029*45537549124^(14/17) 7014087330000000 a001 1134903170/969323029*817138163596^(14/19) 7014087330000000 a001 1134903170/969323029*14662949395604^(2/3) 7014087330000000 a001 1134903170/969323029*505019158607^(3/4) 7014087330000000 a001 1134903170/969323029*192900153618^(7/9) 7014087330000000 a001 1134903170/969323029*10749957122^(7/8) 7014087330000000 a001 433494437/2537720636*10749957122^(23/24) 7014087330000000 a001 1134903170/969323029*4106118243^(21/23) 7014087330000000 a001 6557470319842/969323029*1568397607^(6/11) 7014087330000000 a001 2504730781961/969323029*1568397607^(13/22) 7014087330000000 a001 4052739537881/1568397607*599074578^(13/21) 7014087330000000 a001 956722026041/969323029*1568397607^(7/11) 7014087330000000 a001 365435296162/969323029*1568397607^(15/22) 7014087330000000 a001 139583862445/969323029*1568397607^(8/11) 7014087330000000 a001 86267571272/969323029*1568397607^(3/4) 7014087330000000 a001 53316291173/969323029*1568397607^(17/22) 7014087330000000 a001 2504730781961/1568397607*599074578^(9/14) 7014087330000000 a001 20365011074/969323029*1568397607^(9/11) 7014087330000000 a001 7778742049/969323029*1568397607^(19/22) 7014087330000000 a001 1548008755920/1568397607*599074578^(2/3) 7014087330000000 a001 2971215073/969323029*1568397607^(10/11) 7014087330000000 a001 591286729879/1568397607*599074578^(5/7) 7014087330000000 a001 1134903170/969323029*1568397607^(21/22) 7014087330000000 a001 491974210728665290/701408733 7014087330000000 a001 3536736619241/1368706081*599074578^(13/21) 7014087330000000 a001 32264490531/224056801*599074578^(16/21) 7014087330000000 a001 6557470319842/4106118243*599074578^(9/14) 7014087330000000 a001 139583862445/1568397607*599074578^(11/14) 7014087330000000 a001 4052739537881/4106118243*599074578^(2/3) 7014087330000000 a001 10610209857723/6643838879*599074578^(9/14) 7014087330000000 a001 4807525989/4870846*599074578^(2/3) 7014087330000000 a001 86267571272/1568397607*599074578^(17/21) 7014087330000000 a001 3278735159921/1268860318*599074578^(13/21) 7014087330000000 a001 6557470319842/6643838879*599074578^(2/3) 7014087330000000 a001 53316291173/1568397607*599074578^(5/6) 7014087330000000 a001 516002918640/1368706081*599074578^(5/7) 7014087330000000 a001 4052739537881/2537720636*599074578^(9/14) 7014087330000000 a001 32951280099/1568397607*599074578^(6/7) 7014087330000000 a001 4052739537881/10749957122*599074578^(5/7) 7014087330000000 a001 3536736619241/9381251041*599074578^(5/7) 7014087330000000 a001 6557470319842/17393796001*599074578^(5/7) 7014087330000000 a001 2504730781961/2537720636*599074578^(2/3) 7014087330000000 a001 2504730781961/6643838879*599074578^(5/7) 7014087330000000 a001 591286729879/4106118243*599074578^(16/21) 7014087330000000 a001 12586269025/1568397607*599074578^(19/21) 7014087330000000 a001 774004377960/5374978561*599074578^(16/21) 7014087330000000 a001 4052739537881/28143753123*599074578^(16/21) 7014087330000000 a001 1515744265389/10525900321*599074578^(16/21) 7014087330000000 a001 3278735159921/22768774562*599074578^(16/21) 7014087330000000 a001 2504730781961/17393796001*599074578^(16/21) 7014087330000000 a001 433494437/969323029*312119004989^(4/5) 7014087330000000 a001 433494437/969323029*23725150497407^(11/16) 7014087330000000 a001 433494437/969323029*73681302247^(11/13) 7014087330000000 a001 365435296162/4106118243*599074578^(11/14) 7014087330000000 a001 433494437/969323029*10749957122^(11/12) 7014087330000000 a001 956722026041/2537720636*599074578^(5/7) 7014087330000000 a001 956722026041/6643838879*599074578^(16/21) 7014087330000000 a001 956722026041/10749957122*599074578^(11/14) 7014087330000000 a001 7778742049/1568397607*599074578^(13/14) 7014087330000000 a001 433494437/969323029*4106118243^(22/23) 7014087330000000 a001 2504730781961/28143753123*599074578^(11/14) 7014087330000000 a001 6557470319842/73681302247*599074578^(11/14) 7014087330000000 a001 10610209857723/119218851371*599074578^(11/14) 7014087330000000 a001 4052739537881/45537549124*599074578^(11/14) 7014087330000000 a001 1548008755920/17393796001*599074578^(11/14) 7014087330000000 a001 75283811239/1368706081*599074578^(17/21) 7014087330000000 a001 591286729879/6643838879*599074578^(11/14) 7014087330000000 a001 686789568/224056801*599074578^(20/21) 7014087330000000 a001 591286729879/10749957122*599074578^(17/21) 7014087330000000 a001 12585437040/228811001*599074578^(17/21) 7014087330000000 a001 4052739537881/73681302247*599074578^(17/21) 7014087330000000 a001 3536736619241/64300051206*599074578^(17/21) 7014087330000000 a001 6557470319842/119218851371*599074578^(17/21) 7014087330000000 a001 2504730781961/45537549124*599074578^(17/21) 7014087330000000 a001 956722026041/17393796001*599074578^(17/21) 7014087330000000 a001 139583862445/4106118243*599074578^(5/6) 7014087330000000 a001 182717648081/1268860318*599074578^(16/21) 7014087330000000 a001 365435296162/6643838879*599074578^(17/21) 7014087330000000 a001 182717648081/5374978561*599074578^(5/6) 7014087330000000 a001 956722026041/28143753123*599074578^(5/6) 7014087330000000 a001 2504730781961/73681302247*599074578^(5/6) 7014087330000000 a001 3278735159921/96450076809*599074578^(5/6) 7014087330000000 a001 10610209857723/312119004989*599074578^(5/6) 7014087330000000 a001 4052739537881/119218851371*599074578^(5/6) 7014087330000000 a001 387002188980/11384387281*599074578^(5/6) 7014087330000000 a001 591286729879/17393796001*599074578^(5/6) 7014087330000000 a001 86267571272/4106118243*599074578^(6/7) 7014087330000000 a001 225851433717/2537720636*599074578^(11/14) 7014087330000000 a001 225851433717/6643838879*599074578^(5/6) 7014087330000000 a001 225851433717/10749957122*599074578^(6/7) 7014087330000000 a001 591286729879/28143753123*599074578^(6/7) 7014087330000000 a001 1548008755920/73681302247*599074578^(6/7) 7014087330000000 a001 4052739537881/192900153618*599074578^(6/7) 7014087330000000 a001 225749145909/10745088481*599074578^(6/7) 7014087330000000 a001 6557470319842/312119004989*599074578^(6/7) 7014087330000000 a001 2504730781961/119218851371*599074578^(6/7) 7014087330000000 a001 956722026041/45537549124*599074578^(6/7) 7014087330000000 a001 365435296162/17393796001*599074578^(6/7) 7014087330000000 a001 139583862445/2537720636*599074578^(17/21) 7014087330000000 a001 139583862445/6643838879*599074578^(6/7) 7014087330000000 a001 10983760033/1368706081*599074578^(19/21) 7014087330000000 a001 1135099622/33391061*599074578^(5/6) 7014087330000000 a001 43133785636/5374978561*599074578^(19/21) 7014087330000000 a001 75283811239/9381251041*599074578^(19/21) 7014087330000000 a001 591286729879/73681302247*599074578^(19/21) 7014087330000000 a001 86000486440/10716675201*599074578^(19/21) 7014087330000000 a001 4052739537881/505019158607*599074578^(19/21) 7014087330000000 a001 3536736619241/440719107401*599074578^(19/21) 7014087330000000 a001 3278735159921/408569081798*599074578^(19/21) 7014087330000000 a001 2504730781961/312119004989*599074578^(19/21) 7014087330000000 a001 956722026041/119218851371*599074578^(19/21) 7014087330000000 a001 182717648081/22768774562*599074578^(19/21) 7014087330000000 a001 139583862445/17393796001*599074578^(19/21) 7014087330000000 a001 20365011074/4106118243*599074578^(13/14) 7014087330000000 a001 53316291173/2537720636*599074578^(6/7) 7014087330000000 a001 53316291173/6643838879*599074578^(19/21) 7014087330000000 a001 53316291173/10749957122*599074578^(13/14) 7014087330000000 a001 139583862445/28143753123*599074578^(13/14) 7014087330000000 a001 365435296162/73681302247*599074578^(13/14) 7014087330000000 a001 956722026041/192900153618*599074578^(13/14) 7014087330000000 a001 2504730781961/505019158607*599074578^(13/14) 7014087330000000 a001 10610209857723/2139295485799*599074578^(13/14) 7014087330000000 a001 4052739537881/817138163596*599074578^(13/14) 7014087330000000 a001 140728068720/28374454999*599074578^(13/14) 7014087330000000 a001 591286729879/119218851371*599074578^(13/14) 7014087330000000 a001 225851433717/45537549124*599074578^(13/14) 7014087330000000 a001 86267571272/17393796001*599074578^(13/14) 7014087330000000 a001 12586269025/4106118243*599074578^(20/21) 7014087330000000 a001 32951280099/6643838879*599074578^(13/14) 7014087330000000 a001 32951280099/10749957122*599074578^(20/21) 7014087330000000 a001 86267571272/28143753123*599074578^(20/21) 7014087330000000 a001 32264490531/10525900321*599074578^(20/21) 7014087330000000 a001 591286729879/192900153618*599074578^(20/21) 7014087330000000 a001 1548008755920/505019158607*599074578^(20/21) 7014087330000000 a001 1515744265389/494493258286*599074578^(20/21) 7014087330000000 a001 2504730781961/817138163596*599074578^(20/21) 7014087330000000 a001 956722026041/312119004989*599074578^(20/21) 7014087330000000 a001 365435296162/119218851371*599074578^(20/21) 7014087330000000 a001 139583862445/45537549124*599074578^(20/21) 7014087330000000 a001 6557470319842/969323029*599074578^(4/7) 7014087330000000 a001 53316291173/17393796001*599074578^(20/21) 7014087330000000 a001 10182505537/1268860318*599074578^(19/21) 7014087330000000 a001 20365011074/6643838879*599074578^(20/21) 7014087330000000 a001 1144206275/230701876*599074578^(13/14) 7014087330000000 a001 2504730781961/969323029*599074578^(13/21) 7014087330000000 a001 7778742049/2537720636*599074578^(20/21) 7014087330000000 a001 1548008755920/969323029*599074578^(9/14) 7014087330000000 a001 956722026041/969323029*599074578^(2/3) 7014087330000000 a001 365435296162/969323029*599074578^(5/7) 7014087330000000 a001 139583862445/969323029*599074578^(16/21) 7014087330000000 a001 86267571272/969323029*599074578^(11/14) 7014087330000000 a001 53316291173/969323029*599074578^(17/21) 7014087330000000 a001 32951280099/969323029*599074578^(5/6) 7014087330000000 a001 20365011074/969323029*599074578^(6/7) 7014087330000000 a001 7778742049/969323029*599074578^(19/21) 7014087330000000 a001 4807526976/969323029*599074578^(13/14) 7014087330000000 a001 2971215073/969323029*599074578^(20/21) 7014087330000000 a001 2971215073/141422324*141422324^(12/13) 7014087330000000 a001 165580141/599074578*45537549124^(15/17) 7014087330000000 a001 165580141/599074578*312119004989^(9/11) 7014087330000000 a001 165580141/599074578*14662949395604^(5/7) 7014087330000000 a001 165580141/599074578*192900153618^(5/6) 7014087330000000 a001 165580141/599074578*28143753123^(9/10) 7014087330000000 a001 165580141/599074578*10749957122^(15/16) 7014087330000000 a001 187917426909946969/267914296 7014087330000000 a001 304056783818718323/433494437 7014087330000000 a001 1836311903/370248451*2537720636^(13/15) 7014087330000000 a001 398015497273691808/567451585 7014087330000000 a001 12586269025/370248451*2537720636^(7/9) 7014087330000000 a001 7778742049/370248451*2537720636^(4/5) 7014087330000000 a001 32951280099/370248451*2537720636^(11/15) 7014087330000000 a001 139583862445/370248451*2537720636^(2/3) 7014087330000000 a001 591286729879/370248451*2537720636^(3/5) 7014087330000000 a001 1548008755920/370248451*2537720636^(5/9) 7014087330000000 a001 2504730781961/370248451*2537720636^(8/15) 7014087330000000 a001 10610209857723/370248451*2537720636^(7/15) 7014087330000000 a001 1836311903/370248451*45537549124^(13/17) 7014087330000000 a001 165580141/4106118243*14662949395604^(7/9) 7014087330000000 a001 1836311903/370248451*14662949395604^(13/21) 7014087330000000 a001 165580141/4106118243*505019158607^(7/8) 7014087330000000 a001 1836311903/370248451*192900153618^(13/18) 7014087330000000 a001 1836311903/370248451*73681302247^(3/4) 7014087330000000 a001 1836311903/370248451*10749957122^(13/16) 7014087330000000 a001 2084036199823432525/2971215073 7014087330000000 a001 165580141/10749957122*817138163596^(17/19) 7014087330000000 a001 165580141/10749957122*14662949395604^(17/21) 7014087330000000 a001 165580141/10749957122*192900153618^(17/18) 7014087330000000 a001 12586269025/370248451*17393796001^(5/7) 7014087330000000 a001 5456077604922913959/7778742049 7014087330000000 a001 365435296162/370248451*17393796001^(4/7) 7014087330000000 a001 10610209857723/370248451*17393796001^(3/7) 7014087330000000 a001 12586269025/370248451*312119004989^(7/11) 7014087330000000 a001 12586269025/370248451*14662949395604^(5/9) 7014087330000000 a001 12586269025/370248451*505019158607^(5/8) 7014087330000000 a001 7142098307472654676/10182505537 7014087330000000 a001 32951280099/370248451*45537549124^(11/17) 7014087330000000 a001 12586269025/370248451*28143753123^(7/10) 7014087330000000 a001 139583862445/370248451*45537549124^(10/17) 7014087330000000 a001 591286729879/370248451*45537549124^(9/17) 7014087330000000 a001 2504730781961/370248451*45537549124^(8/17) 7014087330000000 a001 10610209857723/370248451*45537549124^(7/17) 7014087330000000 a001 32951280099/370248451*312119004989^(3/5) 7014087330000000 a001 32951280099/370248451*817138163596^(11/19) 7014087330000000 a001 32951280099/370248451*14662949395604^(11/21) 7014087330000000 a001 165580141/73681302247*3461452808002^(11/12) 7014087330000000 a001 32951280099/370248451*192900153618^(11/18) 7014087330000000 a001 37396512239913014097/53316291173 7014087330000000 a001 165580141/192900153618*14662949395604^(19/21) 7014087330000000 a001 86267571272/370248451*9062201101803^(1/2) 7014087330000000 a001 97905340104793732939/139583862445 7014087330000000 a001 1548008755920/370248451*312119004989^(5/11) 7014087330000000 a001 128159754037234092360/182717648081 7014087330000000 a001 10610209857723/370248451*14662949395604^(1/3) 7014087330000000 a001 165580141*(1/2+1/2*5^(1/2))^3 7014087330000000 a001 2504730781961/370248451*14662949395604^(8/21) 7014087330000000 a001 165580141/817138163596*14662949395604^(20/21) 7014087330000000 a001 158414167969674451781/225851433717 7014087330000000 a001 139583862445/370248451*312119004989^(6/11) 7014087330000000 a001 139583862445/370248451*14662949395604^(10/21) 7014087330000000 a001 10610209857723/370248451*192900153618^(7/18) 7014087330000000 a001 2504730781961/370248451*192900153618^(4/9) 7014087330000000 a001 591286729879/370248451*192900153618^(1/2) 7014087330000000 a001 139583862445/370248451*192900153618^(5/9) 7014087330000000 a001 30254413932440359421/43133785636 7014087330000000 a001 165580141/119218851371*14662949395604^(8/9) 7014087330000000 a001 53316291173/370248451*23725150497407^(1/2) 7014087330000000 a001 53316291173/370248451*505019158607^(4/7) 7014087330000000 a001 2504730781961/370248451*73681302247^(6/13) 7014087330000000 a001 956722026041/370248451*73681302247^(1/2) 7014087330000000 a001 365435296162/370248451*73681302247^(7/13) 7014087330000000 a001 20365011074/370248451*45537549124^(2/3) 7014087330000000 a001 53316291173/370248451*73681302247^(8/13) 7014087330000000 a001 23112315624967704745/32951280099 7014087330000000 a001 165580141/45537549124*14662949395604^(6/7) 7014087330000000 a001 1548008755920/370248451*28143753123^(1/2) 7014087330000000 a001 139583862445/370248451*28143753123^(3/5) 7014087330000000 a001 8828119010022395393/12586269025 7014087330000000 a001 7778742049/370248451*45537549124^(12/17) 7014087330000000 a001 7778742049/370248451*14662949395604^(4/7) 7014087330000000 a001 165580141/17393796001*23725150497407^(13/16) 7014087330000000 a001 165580141/17393796001*505019158607^(13/14) 7014087330000000 a001 7778742049/370248451*192900153618^(2/3) 7014087330000000 a001 7778742049/370248451*73681302247^(9/13) 7014087330000000 a001 10610209857723/370248451*10749957122^(7/16) 7014087330000000 a001 6557470319842/370248451*10749957122^(11/24) 7014087330000000 a001 2504730781961/370248451*10749957122^(1/2) 7014087330000000 a001 956722026041/370248451*10749957122^(13/24) 7014087330000000 a001 591286729879/370248451*10749957122^(9/16) 7014087330000000 a001 365435296162/370248451*10749957122^(7/12) 7014087330000000 a001 139583862445/370248451*10749957122^(5/8) 7014087330000000 a001 32951280099/370248451*10749957122^(11/16) 7014087330000000 a001 53316291173/370248451*10749957122^(2/3) 7014087330000000 a001 20365011074/370248451*10749957122^(17/24) 7014087330000000 a001 1686020702549740717/2403763488 7014087330000000 a001 7778742049/370248451*10749957122^(3/4) 7014087330000000 a001 1134903170/370248451*2537720636^(8/9) 7014087330000000 a001 165580141/6643838879*312119004989^(10/11) 7014087330000000 a001 2971215073/370248451*817138163596^(2/3) 7014087330000000 a001 165580141/6643838879*3461452808002^(5/6) 7014087330000000 a001 6557470319842/370248451*4106118243^(11/23) 7014087330000000 a001 2971215073/370248451*10749957122^(19/24) 7014087330000000 a001 4052739537881/370248451*4106118243^(1/2) 7014087330000000 a001 2504730781961/370248451*4106118243^(12/23) 7014087330000000 a001 956722026041/370248451*4106118243^(13/23) 7014087330000000 a001 365435296162/370248451*4106118243^(14/23) 7014087330000000 a001 139583862445/370248451*4106118243^(15/23) 7014087330000000 a001 53316291173/370248451*4106118243^(16/23) 7014087330000000 a001 20365011074/370248451*4106118243^(17/23) 7014087330000000 a001 7778742049/370248451*4106118243^(18/23) 7014087330000000 a001 1288005205276048909/1836311903 7014087330000000 a001 2971215073/370248451*4106118243^(19/23) 7014087330000000 a001 165580141/2537720636*45537549124^(16/17) 7014087330000000 a001 1134903170/370248451*312119004989^(8/11) 7014087330000000 a001 165580141/2537720636*14662949395604^(16/21) 7014087330000000 a001 1134903170/370248451*23725150497407^(5/8) 7014087330000000 a001 165580141/2537720636*192900153618^(8/9) 7014087330000000 a001 1134903170/370248451*73681302247^(10/13) 7014087330000000 a001 165580141/2537720636*73681302247^(12/13) 7014087330000000 a001 1134903170/370248451*28143753123^(4/5) 7014087330000000 a001 1134903170/370248451*10749957122^(5/6) 7014087330000000 a001 6557470319842/370248451*1568397607^(1/2) 7014087330000000 a001 1134903170/370248451*4106118243^(20/23) 7014087330000000 a001 2504730781961/370248451*1568397607^(6/11) 7014087330000000 a001 956722026041/370248451*1568397607^(13/22) 7014087330000000 a001 365435296162/370248451*1568397607^(7/11) 7014087330000000 a001 139583862445/370248451*1568397607^(15/22) 7014087330000000 a001 53316291173/370248451*1568397607^(8/11) 7014087330000000 a001 32951280099/370248451*1568397607^(3/4) 7014087330000000 a001 20365011074/370248451*1568397607^(17/22) 7014087330000000 a001 7778742049/370248451*1568397607^(9/11) 7014087330000000 a001 2971215073/370248451*1568397607^(19/22) 7014087330000000 a001 12586269025/141422324*141422324^(11/13) 7014087330000000 a001 3536736619241/199691526*228826127^(11/20) 7014087330000000 a001 491974210728665293/701408733 7014087330000000 a001 1134903170/370248451*1568397607^(10/11) 7014087330000000 a001 433494437/370248451*2537720636^(14/15) 7014087330000000 a001 433494437/370248451*17393796001^(6/7) 7014087330000000 a001 433494437/370248451*45537549124^(14/17) 7014087330000000 a001 433494437/370248451*817138163596^(14/19) 7014087330000000 a001 433494437/370248451*14662949395604^(2/3) 7014087330000000 a001 433494437/370248451*505019158607^(3/4) 7014087330000000 a001 433494437/370248451*192900153618^(7/9) 7014087330000000 a001 433494437/370248451*10749957122^(7/8) 7014087330000000 a001 165580141/969323029*10749957122^(23/24) 7014087330000000 a001 433494437/370248451*4106118243^(21/23) 7014087330000000 a001 4052739537881/599074578*228826127^(3/5) 7014087330000000 a001 10610209857723/370248451*599074578^(1/2) 7014087330000000 a001 433494437/370248451*1568397607^(21/22) 7014087330000000 a001 6557470319842/370248451*599074578^(11/21) 7014087330000000 a001 2504730781961/370248451*599074578^(4/7) 7014087330000000 a001 956722026041/370248451*599074578^(13/21) 7014087330000000 a001 591286729879/370248451*599074578^(9/14) 7014087330000000 a001 2504730781961/599074578*228826127^(5/8) 7014087330000000 a001 365435296162/370248451*599074578^(2/3) 7014087330000000 a001 139583862445/370248451*599074578^(5/7) 7014087330000000 a001 53316291173/370248451*599074578^(16/21) 7014087330000000 a001 32951280099/370248451*599074578^(11/14) 7014087330000000 a001 20365011074/370248451*599074578^(17/21) 7014087330000000 a001 12586269025/370248451*599074578^(5/6) 7014087330000000 a001 86000486440/33281921*228826127^(13/20) 7014087330000000 a001 7778742049/370248451*599074578^(6/7) 7014087330000000 a001 1836311903/370248451*599074578^(13/14) 7014087330000000 a001 2971215073/370248451*599074578^(19/21) 7014087330000000 a001 1134903170/370248451*599074578^(20/21) 7014087330000000 a001 93958713454973485/133957148 7014087330000000 a001 591286729879/599074578*228826127^(7/10) 7014087330000000 a001 1515744265389/224056801*228826127^(3/5) 7014087330000000 a001 6557470319842/1568397607*228826127^(5/8) 7014087330000000 a001 267913919/710646*228826127^(3/4) 7014087330000000 a001 53316291173/141422324*141422324^(10/13) 7014087330000000 a001 4052739537881/1568397607*228826127^(13/20) 7014087330000000 a001 10610209857723/2537720636*228826127^(5/8) 7014087330000000 a001 3536736619241/1368706081*228826127^(13/20) 7014087330000000 a001 43133785636/299537289*228826127^(4/5) 7014087330000000 a001 6557470319842/969323029*228826127^(3/5) 7014087330000000 a001 3278735159921/1268860318*228826127^(13/20) 7014087330000000 a001 1548008755920/1568397607*228826127^(7/10) 7014087330000000 a001 4052739537881/969323029*228826127^(5/8) 7014087330000000 a001 4052739537881/4106118243*228826127^(7/10) 7014087330000000 a001 4807525989/4870846*228826127^(7/10) 7014087330000000 a001 6557470319842/6643838879*228826127^(7/10) 7014087330000000 a001 10983760033/199691526*228826127^(17/20) 7014087330000000 a001 2504730781961/969323029*228826127^(13/20) 7014087330000000 a001 2504730781961/2537720636*228826127^(7/10) 7014087330000000 a001 71778070001175616/102334155 7014087330000000 a001 591286729879/1568397607*228826127^(3/4) 7014087330000000 a001 10182505537/299537289*228826127^(7/8) 7014087330000000 a001 516002918640/1368706081*228826127^(3/4) 7014087330000000 a001 4052739537881/10749957122*228826127^(3/4) 7014087330000000 a001 3536736619241/9381251041*228826127^(3/4) 7014087330000000 a001 6557470319842/17393796001*228826127^(3/4) 7014087330000000 a001 2504730781961/6643838879*228826127^(3/4) 7014087330000000 a001 12586269025/599074578*228826127^(9/10) 7014087330000000 a001 956722026041/969323029*228826127^(7/10) 7014087330000000 a001 956722026041/2537720636*228826127^(3/4) 7014087330000000 a001 165580141/370248451*312119004989^(4/5) 7014087330000000 a001 165580141/370248451*23725150497407^(11/16) 7014087330000000 a001 165580141/370248451*73681302247^(11/13) 7014087330000000 a001 165580141/370248451*10749957122^(11/12) 7014087330000000 a001 165580141/370248451*4106118243^(22/23) 7014087330000000 a001 32264490531/224056801*228826127^(4/5) 7014087330000000 a001 591286729879/4106118243*228826127^(4/5) 7014087330000000 a001 774004377960/5374978561*228826127^(4/5) 7014087330000000 a001 4052739537881/28143753123*228826127^(4/5) 7014087330000000 a001 1515744265389/10525900321*228826127^(4/5) 7014087330000000 a001 3278735159921/22768774562*228826127^(4/5) 7014087330000000 a001 2504730781961/17393796001*228826127^(4/5) 7014087330000000 a001 956722026041/6643838879*228826127^(4/5) 7014087330000000 a001 267084832/33281921*228826127^(19/20) 7014087330000000 a001 225851433717/141422324*141422324^(9/13) 7014087330000000 a001 365435296162/969323029*228826127^(3/4) 7014087330000000 a001 182717648081/1268860318*228826127^(4/5) 7014087330000000 a001 86267571272/1568397607*228826127^(17/20) 7014087330000000 a001 75283811239/1368706081*228826127^(17/20) 7014087330000000 a001 591286729879/10749957122*228826127^(17/20) 7014087330000000 a001 12585437040/228811001*228826127^(17/20) 7014087330000000 a001 4052739537881/73681302247*228826127^(17/20) 7014087330000000 a001 3536736619241/64300051206*228826127^(17/20) 7014087330000000 a001 6557470319842/119218851371*228826127^(17/20) 7014087330000000 a001 2504730781961/45537549124*228826127^(17/20) 7014087330000000 a001 956722026041/17393796001*228826127^(17/20) 7014087330000000 a001 365435296162/6643838879*228826127^(17/20) 7014087330000000 a001 53316291173/1568397607*228826127^(7/8) 7014087330000000 a001 139583862445/969323029*228826127^(4/5) 7014087330000000 a001 139583862445/2537720636*228826127^(17/20) 7014087330000000 a001 139583862445/4106118243*228826127^(7/8) 7014087330000000 a001 182717648081/70711162*141422324^(2/3) 7014087330000000 a001 182717648081/5374978561*228826127^(7/8) 7014087330000000 a001 956722026041/28143753123*228826127^(7/8) 7014087330000000 a001 2504730781961/73681302247*228826127^(7/8) 7014087330000000 a001 3278735159921/96450076809*228826127^(7/8) 7014087330000000 a001 10610209857723/312119004989*228826127^(7/8) 7014087330000000 a001 4052739537881/119218851371*228826127^(7/8) 7014087330000000 a001 387002188980/11384387281*228826127^(7/8) 7014087330000000 a001 591286729879/17393796001*228826127^(7/8) 7014087330000000 a001 225851433717/6643838879*228826127^(7/8) 7014087330000000 a001 32951280099/1568397607*228826127^(9/10) 7014087330000000 a001 1135099622/33391061*228826127^(7/8) 7014087330000000 a001 86267571272/4106118243*228826127^(9/10) 7014087330000000 a001 225851433717/10749957122*228826127^(9/10) 7014087330000000 a001 591286729879/28143753123*228826127^(9/10) 7014087330000000 a001 1548008755920/73681302247*228826127^(9/10) 7014087330000000 a001 4052739537881/192900153618*228826127^(9/10) 7014087330000000 a001 225749145909/10745088481*228826127^(9/10) 7014087330000000 a001 6557470319842/312119004989*228826127^(9/10) 7014087330000000 a001 2504730781961/119218851371*228826127^(9/10) 7014087330000000 a001 956722026041/45537549124*228826127^(9/10) 7014087330000000 a001 365435296162/17393796001*228826127^(9/10) 7014087330000000 a001 139583862445/6643838879*228826127^(9/10) 7014087330000000 a001 53316291173/969323029*228826127^(17/20) 7014087330000000 a001 53316291173/2537720636*228826127^(9/10) 7014087330000000 a001 12586269025/1568397607*228826127^(19/20) 7014087330000000 a001 32951280099/969323029*228826127^(7/8) 7014087330000000 a001 6557470319842/370248451*228826127^(11/20) 7014087330000000 a001 10983760033/1368706081*228826127^(19/20) 7014087330000000 a001 43133785636/5374978561*228826127^(19/20) 7014087330000000 a001 75283811239/9381251041*228826127^(19/20) 7014087330000000 a001 591286729879/73681302247*228826127^(19/20) 7014087330000000 a001 86000486440/10716675201*228826127^(19/20) 7014087330000000 a001 4052739537881/505019158607*228826127^(19/20) 7014087330000000 a001 3536736619241/440719107401*228826127^(19/20) 7014087330000000 a001 3278735159921/408569081798*228826127^(19/20) 7014087330000000 a001 2504730781961/312119004989*228826127^(19/20) 7014087330000000 a001 956722026041/119218851371*228826127^(19/20) 7014087330000000 a001 182717648081/22768774562*228826127^(19/20) 7014087330000000 a001 139583862445/17393796001*228826127^(19/20) 7014087330000000 a001 53316291173/6643838879*228826127^(19/20) 7014087330000000 a001 20365011074/969323029*228826127^(9/10) 7014087330000000 a001 10182505537/1268860318*228826127^(19/20) 7014087330000000 a001 2504730781961/370248451*228826127^(3/5) 7014087330000000 a001 7778742049/969323029*228826127^(19/20) 7014087330000000 a001 956722026041/141422324*141422324^(8/13) 7014087330000000 a001 1548008755920/370248451*228826127^(5/8) 7014087330000000 a001 956722026041/370248451*228826127^(13/20) 7014087330000000 a001 365435296162/370248451*228826127^(7/10) 7014087330000000 a001 139583862445/370248451*228826127^(3/4) 7014087330000000 a001 53316291173/370248451*228826127^(4/5) 7014087330000000 a001 4052739537881/141422324*141422324^(7/13) 7014087330000000 a001 20365011074/370248451*228826127^(17/20) 7014087330000000 a001 12586269025/370248451*228826127^(7/8) 7014087330000000 a001 7778742049/370248451*228826127^(9/10) 7014087330000000 a001 2971215073/370248451*228826127^(19/20) 7014087330000000 a001 71778070001175617/102334155 7014087330000000 a001 63245986/228826127*45537549124^(15/17) 7014087330000000 a001 63245986/228826127*312119004989^(9/11) 7014087330000000 a001 63245986/228826127*14662949395604^(5/7) 7014087330000000 a001 63245986/228826127*192900153618^(5/6) 7014087330000000 a001 63245986/228826127*28143753123^(9/10) 7014087330000000 a001 63245986/228826127*10749957122^(15/16) 7014087330000000 a001 116139356908771358/165580141 7014087330000000 a001 304056783818718336/433494437 7014087330000000 a001 701408733/141422324*2537720636^(13/15) 7014087330000000 a001 701408733/141422324*45537549124^(13/17) 7014087330000000 a001 63245986/1568397607*14662949395604^(7/9) 7014087330000000 a001 701408733/141422324*14662949395604^(13/21) 7014087330000000 a001 63245986/1568397607*505019158607^(7/8) 7014087330000000 a001 701408733/141422324*192900153618^(13/18) 7014087330000000 a001 701408733/141422324*73681302247^(3/4) 7014087330000000 a001 701408733/141422324*10749957122^(13/16) 7014087330000000 a001 225749145909/4868641*87403803^(10/19) 7014087330000000 a001 79603099454738365/113490317 7014087330000000 a001 1201881744/35355581*2537720636^(7/9) 7014087330000000 a001 12586269025/141422324*2537720636^(11/15) 7014087330000000 a001 53316291173/141422324*2537720636^(2/3) 7014087330000000 a001 2971215073/141422324*2537720636^(4/5) 7014087330000000 a001 225851433717/141422324*2537720636^(3/5) 7014087330000000 a001 591286729879/141422324*2537720636^(5/9) 7014087330000000 a001 956722026041/141422324*2537720636^(8/15) 7014087330000000 a001 4052739537881/141422324*2537720636^(7/15) 7014087330000000 a001 3278735159921/70711162*2537720636^(4/9) 7014087330000000 a001 63245986/4106118243*817138163596^(17/19) 7014087330000000 a001 63245986/4106118243*14662949395604^(17/21) 7014087330000000 a001 63245986/4106118243*192900153618^(17/18) 7014087330000000 a001 2084036199823432614/2971215073 7014087330000000 a001 1201881744/35355581*17393796001^(5/7) 7014087330000000 a001 1201881744/35355581*312119004989^(7/11) 7014087330000000 a001 1201881744/35355581*14662949395604^(5/9) 7014087330000000 a001 1201881744/35355581*505019158607^(5/8) 7014087330000000 a001 1201881744/35355581*28143753123^(7/10) 7014087330000000 a001 5456077604922914192/7778742049 7014087330000000 a001 139583862445/141422324*17393796001^(4/7) 7014087330000000 a001 12586269025/141422324*45537549124^(11/17) 7014087330000000 a001 4052739537881/141422324*17393796001^(3/7) 7014087330000000 a001 12586269025/141422324*312119004989^(3/5) 7014087330000000 a001 12586269025/141422324*817138163596^(11/19) 7014087330000000 a001 12586269025/141422324*14662949395604^(11/21) 7014087330000000 a001 63245986/28143753123*3461452808002^(11/12) 7014087330000000 a001 12586269025/141422324*192900153618^(11/18) 7014087330000000 a001 7142098307472654981/10182505537 7014087330000000 a001 225851433717/141422324*45537549124^(9/17) 7014087330000000 a001 956722026041/141422324*45537549124^(8/17) 7014087330000000 a001 53316291173/141422324*45537549124^(10/17) 7014087330000000 a001 4052739537881/141422324*45537549124^(7/17) 7014087330000000 a001 63245986/73681302247*14662949395604^(19/21) 7014087330000000 a001 63246219/271444*9062201101803^(1/2) 7014087330000000 a001 37396512239913015694/53316291173 7014087330000000 a001 21566892818/35355581*1322157322203^(1/2) 7014087330000000 a001 19581068020958747424/27916772489 7014087330000000 a001 591286729879/141422324*312119004989^(5/11) 7014087330000000 a001 225851433717/141422324*817138163596^(9/19) 7014087330000000 a001 225851433717/141422324*14662949395604^(3/7) 7014087330000000 a001 128159754037234097833/182717648081 7014087330000000 a001 10610209857723/141422324*817138163596^(1/3) 7014087330000000 a001 63245986*(1/2+1/2*5^(1/2))^5 7014087330000000 a001 414733676044142654212/591286729879 7014087330000000 a001 3278735159921/70711162*505019158607^(5/14) 7014087330000000 a001 158414167969674458546/225851433717 7014087330000000 a001 225851433717/141422324*192900153618^(1/2) 7014087330000000 a001 63245986/312119004989*14662949395604^(20/21) 7014087330000000 a001 139583862445/141422324*14662949395604^(4/9) 7014087330000000 a001 956722026041/141422324*192900153618^(4/9) 7014087330000000 a001 139583862445/141422324*505019158607^(1/2) 7014087330000000 a001 30254413932440360713/43133785636 7014087330000000 a001 53316291173/141422324*312119004989^(6/11) 7014087330000000 a001 53316291173/141422324*14662949395604^(10/21) 7014087330000000 a001 3278735159921/70711162*73681302247^(5/13) 7014087330000000 a001 956722026041/141422324*73681302247^(6/13) 7014087330000000 a001 53316291173/141422324*192900153618^(5/9) 7014087330000000 a001 182717648081/70711162*73681302247^(1/2) 7014087330000000 a001 139583862445/141422324*73681302247^(7/13) 7014087330000000 a001 99194487660805604/141421803 7014087330000000 a001 10182505537/70711162*23725150497407^(1/2) 7014087330000000 a001 10182505537/70711162*505019158607^(4/7) 7014087330000000 a001 3278735159921/70711162*28143753123^(2/5) 7014087330000000 a001 10182505537/70711162*73681302247^(8/13) 7014087330000000 a001 591286729879/141422324*28143753123^(1/2) 7014087330000000 a001 53316291173/141422324*28143753123^(3/5) 7014087330000000 a001 1765623802004479154/2517253805 7014087330000000 a001 7778742049/141422324*45537549124^(2/3) 7014087330000000 a001 63245986/17393796001*14662949395604^(6/7) 7014087330000000 a001 3278735159921/70711162*10749957122^(5/12) 7014087330000000 a001 4052739537881/141422324*10749957122^(7/16) 7014087330000000 a001 2504730781961/141422324*10749957122^(11/24) 7014087330000000 a001 956722026041/141422324*10749957122^(1/2) 7014087330000000 a001 12586269025/141422324*10749957122^(11/16) 7014087330000000 a001 182717648081/70711162*10749957122^(13/24) 7014087330000000 a001 225851433717/141422324*10749957122^(9/16) 7014087330000000 a001 139583862445/141422324*10749957122^(7/12) 7014087330000000 a001 53316291173/141422324*10749957122^(5/8) 7014087330000000 a001 10182505537/70711162*10749957122^(2/3) 7014087330000000 a001 1686020702549740789/2403763488 7014087330000000 a001 7778742049/141422324*10749957122^(17/24) 7014087330000000 a001 2971215073/141422324*45537549124^(12/17) 7014087330000000 a001 2971215073/141422324*14662949395604^(4/7) 7014087330000000 a001 2971215073/141422324*505019158607^(9/14) 7014087330000000 a001 63245986/6643838879*505019158607^(13/14) 7014087330000000 a001 2971215073/141422324*192900153618^(2/3) 7014087330000000 a001 2971215073/141422324*73681302247^(9/13) 7014087330000000 a001 3278735159921/70711162*4106118243^(10/23) 7014087330000000 a001 2504730781961/141422324*4106118243^(11/23) 7014087330000000 a001 2971215073/141422324*10749957122^(3/4) 7014087330000000 a001 387002188980/35355581*4106118243^(1/2) 7014087330000000 a001 956722026041/141422324*4106118243^(12/23) 7014087330000000 a001 182717648081/70711162*4106118243^(13/23) 7014087330000000 a001 139583862445/141422324*4106118243^(14/23) 7014087330000000 a001 53316291173/141422324*4106118243^(15/23) 7014087330000000 a001 10182505537/70711162*4106118243^(16/23) 7014087330000000 a001 7778742049/141422324*4106118243^(17/23) 7014087330000000 a001 1288005205276048964/1836311903 7014087330000000 a001 2971215073/141422324*4106118243^(18/23) 7014087330000000 a001 31622993/1268860318*312119004989^(10/11) 7014087330000000 a001 567451585/70711162*817138163596^(2/3) 7014087330000000 a001 31622993/1268860318*3461452808002^(5/6) 7014087330000000 a001 567451585/70711162*10749957122^(19/24) 7014087330000000 a001 3278735159921/70711162*1568397607^(5/11) 7014087330000000 a001 2504730781961/141422324*1568397607^(1/2) 7014087330000000 a001 567451585/70711162*4106118243^(19/23) 7014087330000000 a001 956722026041/141422324*1568397607^(6/11) 7014087330000000 a001 182717648081/70711162*1568397607^(13/22) 7014087330000000 a001 139583862445/141422324*1568397607^(7/11) 7014087330000000 a001 53316291173/141422324*1568397607^(15/22) 7014087330000000 a001 10182505537/70711162*1568397607^(8/11) 7014087330000000 a001 12586269025/141422324*1568397607^(3/4) 7014087330000000 a001 7778742049/141422324*1568397607^(17/22) 7014087330000000 a001 2971215073/141422324*1568397607^(9/11) 7014087330000000 a001 491974210728665314/701408733 7014087330000000 a001 567451585/70711162*1568397607^(19/22) 7014087330000000 a001 433494437/141422324*2537720636^(8/9) 7014087330000000 a001 63245986/969323029*45537549124^(16/17) 7014087330000000 a001 433494437/141422324*312119004989^(8/11) 7014087330000000 a001 63245986/969323029*14662949395604^(16/21) 7014087330000000 a001 433494437/141422324*23725150497407^(5/8) 7014087330000000 a001 63245986/969323029*192900153618^(8/9) 7014087330000000 a001 433494437/141422324*73681302247^(10/13) 7014087330000000 a001 63245986/969323029*73681302247^(12/13) 7014087330000000 a001 433494437/141422324*28143753123^(4/5) 7014087330000000 a001 433494437/141422324*10749957122^(5/6) 7014087330000000 a001 433494437/141422324*4106118243^(20/23) 7014087330000000 a001 3278735159921/70711162*599074578^(10/21) 7014087330000000 a001 4052739537881/141422324*599074578^(1/2) 7014087330000000 a001 433494437/141422324*1568397607^(10/11) 7014087330000000 a001 2504730781961/141422324*599074578^(11/21) 7014087330000000 a001 956722026041/141422324*599074578^(4/7) 7014087330000000 a001 182717648081/70711162*599074578^(13/21) 7014087330000000 a001 225851433717/141422324*599074578^(9/14) 7014087330000000 a001 139583862445/141422324*599074578^(2/3) 7014087330000000 a001 53316291173/141422324*599074578^(5/7) 7014087330000000 a001 10182505537/70711162*599074578^(16/21) 7014087330000000 a001 701408733/141422324*599074578^(13/14) 7014087330000000 a001 12586269025/141422324*599074578^(11/14) 7014087330000000 a001 7778742049/141422324*599074578^(17/21) 7014087330000000 a001 1201881744/35355581*599074578^(5/6) 7014087330000000 a001 2971215073/141422324*599074578^(6/7) 7014087330000000 a001 567451585/70711162*599074578^(19/21) 7014087330000000 a001 93958713454973489/133957148 7014087330000000 a001 433494437/141422324*599074578^(20/21) 7014087330000000 a001 4052739537881/228826127*87403803^(11/19) 7014087330000000 a001 165580141/141422324*2537720636^(14/15) 7014087330000000 a001 165580141/141422324*17393796001^(6/7) 7014087330000000 a001 165580141/141422324*45537549124^(14/17) 7014087330000000 a001 165580141/141422324*817138163596^(14/19) 7014087330000000 a001 165580141/141422324*14662949395604^(2/3) 7014087330000000 a001 165580141/141422324*505019158607^(3/4) 7014087330000000 a001 165580141/141422324*192900153618^(7/9) 7014087330000000 a001 165580141/141422324*10749957122^(7/8) 7014087330000000 a001 63245986/370248451*10749957122^(23/24) 7014087330000000 a001 165580141/141422324*4106118243^(21/23) 7014087330000000 a001 165580141/141422324*1568397607^(21/22) 7014087330000000 a001 3278735159921/70711162*228826127^(1/2) 7014087330000000 a001 2504730781961/141422324*228826127^(11/20) 7014087330000000 a001 956722026041/141422324*228826127^(3/5) 7014087330000000 a001 591286729879/141422324*228826127^(5/8) 7014087330000000 a001 182717648081/70711162*228826127^(13/20) 7014087330000000 a001 139583862445/141422324*228826127^(7/10) 7014087330000000 a001 1548008755920/228826127*87403803^(12/19) 7014087330000000 a001 53316291173/141422324*228826127^(3/4) 7014087330000000 a001 10182505537/70711162*228826127^(4/5) 7014087330000000 a001 7778742049/141422324*228826127^(17/20) 7014087330000000 a001 1201881744/35355581*228826127^(7/8) 7014087330000000 a001 2971215073/141422324*228826127^(9/10) 7014087330000000 a001 567451585/70711162*228826127^(19/20) 7014087330000000 a001 14355614000235124/20466831 7014087330000000 a001 591286729879/228826127*87403803^(13/19) 7014087330000000 a001 3536736619241/199691526*87403803^(11/19) 7014087330000000 a001 225851433717/228826127*87403803^(14/19) 7014087330000000 a001 4052739537881/599074578*87403803^(12/19) 7014087330000000 a001 1515744265389/224056801*87403803^(12/19) 7014087330000000 a001 6557470319842/370248451*87403803^(11/19) 7014087330000000 a001 6557470319842/969323029*87403803^(12/19) 7014087330000000 a001 86267571272/228826127*87403803^(15/19) 7014087330000000 a001 86000486440/33281921*87403803^(13/19) 7014087330000000 a001 4052739537881/1568397607*87403803^(13/19) 7014087330000000 a001 3536736619241/1368706081*87403803^(13/19) 7014087330000000 a001 3278735159921/1268860318*87403803^(13/19) 7014087330000000 a001 2504730781961/370248451*87403803^(12/19) 7014087330000000 a001 2504730781961/969323029*87403803^(13/19) 7014087330000000 a001 32951280099/228826127*87403803^(16/19) 7014087330000000 a001 591286729879/599074578*87403803^(14/19) 7014087330000000 a001 1548008755920/1568397607*87403803^(14/19) 7014087330000000 a001 4052739537881/4106118243*87403803^(14/19) 7014087330000000 a001 4807525989/4870846*87403803^(14/19) 7014087330000000 a001 6557470319842/6643838879*87403803^(14/19) 7014087330000000 a001 2504730781961/2537720636*87403803^(14/19) 7014087330000000 a001 956722026041/370248451*87403803^(13/19) 7014087330000000 a001 956722026041/969323029*87403803^(14/19) 7014087330000000 a001 12586269025/228826127*87403803^(17/19) 7014087330000000 a001 31622993/70711162*312119004989^(4/5) 7014087330000000 a001 31622993/70711162*23725150497407^(11/16) 7014087330000000 a001 31622993/70711162*73681302247^(11/13) 7014087330000000 a001 31622993/70711162*10749957122^(11/12) 7014087330000000 a001 31622993/70711162*4106118243^(22/23) 7014087330000000 a001 267913919/710646*87403803^(15/19) 7014087330000000 a001 591286729879/1568397607*87403803^(15/19) 7014087330000000 a001 516002918640/1368706081*87403803^(15/19) 7014087330000000 a001 4052739537881/10749957122*87403803^(15/19) 7014087330000000 a001 3536736619241/9381251041*87403803^(15/19) 7014087330000000 a001 6557470319842/17393796001*87403803^(15/19) 7014087330000000 a001 2504730781961/6643838879*87403803^(15/19) 7014087330000000 a001 956722026041/2537720636*87403803^(15/19) 7014087330000000 a001 365435296162/370248451*87403803^(14/19) 7014087330000000 a001 365435296162/969323029*87403803^(15/19) 7014087330000000 a001 102287808/4868641*87403803^(18/19) 7014087330000000 a001 43133785636/299537289*87403803^(16/19) 7014087330000000 a001 27416783093579880/39088169 7014087330000000 a001 32264490531/224056801*87403803^(16/19) 7014087330000000 a001 591286729879/4106118243*87403803^(16/19) 7014087330000000 a001 774004377960/5374978561*87403803^(16/19) 7014087330000000 a001 4052739537881/28143753123*87403803^(16/19) 7014087330000000 a001 1515744265389/10525900321*87403803^(16/19) 7014087330000000 a001 3278735159921/22768774562*87403803^(16/19) 7014087330000000 a001 2504730781961/17393796001*87403803^(16/19) 7014087330000000 a001 956722026041/6643838879*87403803^(16/19) 7014087330000000 a001 182717648081/1268860318*87403803^(16/19) 7014087330000000 a001 139583862445/370248451*87403803^(15/19) 7014087330000000 a001 139583862445/969323029*87403803^(16/19) 7014087330000000 a001 10983760033/199691526*87403803^(17/19) 7014087330000000 a001 10610209857723/141422324*87403803^(1/2) 7014087330000000 a001 86267571272/1568397607*87403803^(17/19) 7014087330000000 a001 75283811239/1368706081*87403803^(17/19) 7014087330000000 a001 591286729879/10749957122*87403803^(17/19) 7014087330000000 a001 12585437040/228811001*87403803^(17/19) 7014087330000000 a001 4052739537881/73681302247*87403803^(17/19) 7014087330000000 a001 3536736619241/64300051206*87403803^(17/19) 7014087330000000 a001 6557470319842/119218851371*87403803^(17/19) 7014087330000000 a001 2504730781961/45537549124*87403803^(17/19) 7014087330000000 a001 956722026041/17393796001*87403803^(17/19) 7014087330000000 a001 365435296162/6643838879*87403803^(17/19) 7014087330000000 a001 139583862445/2537720636*87403803^(17/19) 7014087330000000 a001 53316291173/370248451*87403803^(16/19) 7014087330000000 a001 53316291173/969323029*87403803^(17/19) 7014087330000000 a001 3278735159921/70711162*87403803^(10/19) 7014087330000000 a001 12586269025/599074578*87403803^(18/19) 7014087330000000 a001 32951280099/1568397607*87403803^(18/19) 7014087330000000 a001 86267571272/4106118243*87403803^(18/19) 7014087330000000 a001 225851433717/10749957122*87403803^(18/19) 7014087330000000 a001 591286729879/28143753123*87403803^(18/19) 7014087330000000 a001 1548008755920/73681302247*87403803^(18/19) 7014087330000000 a001 4052739537881/192900153618*87403803^(18/19) 7014087330000000 a001 225749145909/10745088481*87403803^(18/19) 7014087330000000 a001 6557470319842/312119004989*87403803^(18/19) 7014087330000000 a001 2504730781961/119218851371*87403803^(18/19) 7014087330000000 a001 956722026041/45537549124*87403803^(18/19) 7014087330000000 a001 365435296162/17393796001*87403803^(18/19) 7014087330000000 a001 139583862445/6643838879*87403803^(18/19) 7014087330000000 a001 53316291173/2537720636*87403803^(18/19) 7014087330000000 a001 20365011074/370248451*87403803^(17/19) 7014087330000000 a001 20365011074/969323029*87403803^(18/19) 7014087330000000 a001 2504730781961/141422324*87403803^(11/19) 7014087330000000 a001 7778742049/370248451*87403803^(18/19) 7014087330000000 a001 956722026041/141422324*87403803^(12/19) 7014087330000000 a001 182717648081/70711162*87403803^(13/19) 7014087330000001 a001 27416783093579881/39088169 7014087330000001 a001 139583862445/141422324*87403803^(14/19) 7014087330000001 a001 53316291173/141422324*87403803^(15/19) 7014087330000001 a001 10182505537/70711162*87403803^(16/19) 7014087330000001 a001 7778742049/141422324*87403803^(17/19) 7014087330000001 a001 2971215073/141422324*87403803^(18/19) 7014087330000001 a001 27416783093579882/39088169 7014087330000001 a001 24157817/87403803*45537549124^(15/17) 7014087330000001 a001 24157817/87403803*312119004989^(9/11) 7014087330000001 a001 24157817/87403803*14662949395604^(5/7) 7014087330000001 a001 24157817/87403803*192900153618^(5/6) 7014087330000001 a001 24157817/87403803*28143753123^(9/10) 7014087330000001 a001 24157817/87403803*10749957122^(15/16) 7014087330000002 a001 44361286907595751/63245986 7014087330000002 a001 1134903170/54018521*141422324^(12/13) 7014087330000002 a001 4807526976/54018521*141422324^(11/13) 7014087330000002 a001 20365011074/54018521*141422324^(10/13) 7014087330000002 a001 86267571272/54018521*141422324^(9/13) 7014087330000002 a001 139583862445/54018521*141422324^(2/3) 7014087330000002 a001 365435296162/54018521*141422324^(8/13) 7014087330000002 a001 1548008755920/54018521*141422324^(7/13) 7014087330000002 a001 3536736619241/29134601*33385282^(1/2) 7014087330000002 a001 6557470319842/54018521*141422324^(6/13) 7014087330000002 a001 116139356908771392/165580141 7014087330000002 a001 7778742049/20633239*20633239^(6/7) 7014087330000002 a001 267914296/54018521*2537720636^(13/15) 7014087330000002 a001 267914296/54018521*45537549124^(13/17) 7014087330000002 a001 24157817/599074578*14662949395604^(7/9) 7014087330000002 a001 267914296/54018521*14662949395604^(13/21) 7014087330000002 a001 24157817/599074578*505019158607^(7/8) 7014087330000002 a001 267914296/54018521*192900153618^(13/18) 7014087330000002 a001 267914296/54018521*73681302247^(3/4) 7014087330000002 a001 267914296/54018521*10749957122^(13/16) 7014087330000002 a001 304056783818718425/433494437 7014087330000002 a001 24157817/1568397607*817138163596^(17/19) 7014087330000002 a001 24157817/1568397607*14662949395604^(17/21) 7014087330000002 a001 24157817/1568397607*192900153618^(17/18) 7014087330000002 a001 267914296/54018521*599074578^(13/14) 7014087330000002 a001 1836311903/54018521*2537720636^(7/9) 7014087330000002 a001 796030994547383883/1134903170 7014087330000002 a001 4807526976/54018521*2537720636^(11/15) 7014087330000002 a001 20365011074/54018521*2537720636^(2/3) 7014087330000002 a001 86267571272/54018521*2537720636^(3/5) 7014087330000002 a001 225851433717/54018521*2537720636^(5/9) 7014087330000002 a001 365435296162/54018521*2537720636^(8/15) 7014087330000002 a001 1548008755920/54018521*2537720636^(7/15) 7014087330000002 a001 2504730781961/54018521*2537720636^(4/9) 7014087330000002 a001 6557470319842/54018521*2537720636^(2/5) 7014087330000002 a001 1836311903/54018521*17393796001^(5/7) 7014087330000002 a001 1836311903/54018521*312119004989^(7/11) 7014087330000002 a001 1836311903/54018521*14662949395604^(5/9) 7014087330000002 a001 1836311903/54018521*505019158607^(5/8) 7014087330000002 a001 1836311903/54018521*28143753123^(7/10) 7014087330000002 a001 2084036199823433224/2971215073 7014087330000002 a001 4807526976/54018521*45537549124^(11/17) 7014087330000002 a001 4807526976/54018521*312119004989^(3/5) 7014087330000002 a001 4807526976/54018521*817138163596^(11/19) 7014087330000002 a001 24157817/10749957122*3461452808002^(11/12) 7014087330000002 a001 4807526976/54018521*192900153618^(11/18) 7014087330000002 a001 419698277301762753/598364773 7014087330000002 a001 4807526976/54018521*10749957122^(11/16) 7014087330000002 a001 53316291173/54018521*17393796001^(4/7) 7014087330000002 a001 1548008755920/54018521*17393796001^(3/7) 7014087330000002 a001 24157817/28143753123*14662949395604^(19/21) 7014087330000002 a001 12586269025/54018521*9062201101803^(1/2) 7014087330000002 a001 14284196614945314143/20365011074 7014087330000002 a001 86267571272/54018521*45537549124^(9/17) 7014087330000002 a001 365435296162/54018521*45537549124^(8/17) 7014087330000002 a001 1548008755920/54018521*45537549124^(7/17) 7014087330000002 a001 32951280099/54018521*1322157322203^(1/2) 7014087330000002 a001 6557470319842/54018521*45537549124^(6/17) 7014087330000002 a001 10610209857723/54018521*45537549124^(1/3) 7014087330000002 a001 37396512239913026640/53316291173 7014087330000002 a001 86267571272/54018521*14662949395604^(3/7) 7014087330000002 a001 86267571272/54018521*192900153618^(1/2) 7014087330000002 a001 225851433717/54018521*312119004989^(5/11) 7014087330000002 a001 225851433717/54018521*3461452808002^(5/12) 7014087330000002 a001 1548008755920/54018521*14662949395604^(1/3) 7014087330000002 a001 24157817*(1/2+1/2*5^(1/2))^7 7014087330000002 a001 365435296162/54018521*14662949395604^(8/21) 7014087330000002 a001 12185705228436500378/17373187209 7014087330000002 a001 6557470319842/54018521*192900153618^(1/3) 7014087330000002 a001 1548008755920/54018521*192900153618^(7/18) 7014087330000002 a001 365435296162/54018521*192900153618^(4/9) 7014087330000002 a001 60508827864880739137/86267571272 7014087330000002 a001 24157817/119218851371*14662949395604^(20/21) 7014087330000002 a001 2504730781961/54018521*73681302247^(5/13) 7014087330000002 a001 53316291173/54018521*505019158607^(1/2) 7014087330000002 a001 365435296162/54018521*73681302247^(6/13) 7014087330000002 a001 139583862445/54018521*73681302247^(1/2) 7014087330000002 a001 53316291173/54018521*73681302247^(7/13) 7014087330000002 a001 23112315624967712497/32951280099 7014087330000002 a001 20365011074/54018521*45537549124^(10/17) 7014087330000002 a001 20365011074/54018521*312119004989^(6/11) 7014087330000002 a001 20365011074/54018521*14662949395604^(10/21) 7014087330000002 a001 20365011074/54018521*192900153618^(5/9) 7014087330000002 a001 2504730781961/54018521*28143753123^(2/5) 7014087330000002 a001 225851433717/54018521*28143753123^(1/2) 7014087330000002 a001 20365011074/54018521*28143753123^(3/5) 7014087330000002 a001 8828119010022398354/12586269025 7014087330000002 a001 6557470319842/54018521*10749957122^(3/8) 7014087330000002 a001 24157817/17393796001*14662949395604^(8/9) 7014087330000002 a001 7778742049/54018521*23725150497407^(1/2) 7014087330000002 a001 7778742049/54018521*505019158607^(4/7) 7014087330000002 a001 7778742049/54018521*73681302247^(8/13) 7014087330000002 a001 2504730781961/54018521*10749957122^(5/12) 7014087330000002 a001 1548008755920/54018521*10749957122^(7/16) 7014087330000002 a001 956722026041/54018521*10749957122^(11/24) 7014087330000002 a001 365435296162/54018521*10749957122^(1/2) 7014087330000002 a001 139583862445/54018521*10749957122^(13/24) 7014087330000002 a001 86267571272/54018521*10749957122^(9/16) 7014087330000002 a001 53316291173/54018521*10749957122^(7/12) 7014087330000002 a001 20365011074/54018521*10749957122^(5/8) 7014087330000002 a001 3372041405099482565/4807526976 7014087330000002 a001 7778742049/54018521*10749957122^(2/3) 7014087330000002 a001 2971215073/54018521*45537549124^(2/3) 7014087330000002 a001 24157817/6643838879*14662949395604^(6/7) 7014087330000002 a001 6557470319842/54018521*4106118243^(9/23) 7014087330000002 a001 2504730781961/54018521*4106118243^(10/23) 7014087330000002 a001 956722026041/54018521*4106118243^(11/23) 7014087330000002 a001 2971215073/54018521*10749957122^(17/24) 7014087330000002 a001 591286729879/54018521*4106118243^(1/2) 7014087330000002 a001 365435296162/54018521*4106118243^(12/23) 7014087330000002 a001 1134903170/54018521*2537720636^(4/5) 7014087330000002 a001 139583862445/54018521*4106118243^(13/23) 7014087330000002 a001 53316291173/54018521*4106118243^(14/23) 7014087330000002 a001 20365011074/54018521*4106118243^(15/23) 7014087330000002 a001 7778742049/54018521*4106118243^(16/23) 7014087330000002 a001 1288005205276049341/1836311903 7014087330000002 a001 2971215073/54018521*4106118243^(17/23) 7014087330000002 a001 1134903170/54018521*45537549124^(12/17) 7014087330000002 a001 1134903170/54018521*14662949395604^(4/7) 7014087330000002 a001 24157817/2537720636*23725150497407^(13/16) 7014087330000002 a001 1134903170/54018521*505019158607^(9/14) 7014087330000002 a001 1134903170/54018521*192900153618^(2/3) 7014087330000002 a001 1134903170/54018521*73681302247^(9/13) 7014087330000002 a001 1134903170/54018521*10749957122^(3/4) 7014087330000002 a001 6557470319842/54018521*1568397607^(9/22) 7014087330000002 a001 2504730781961/54018521*1568397607^(5/11) 7014087330000002 a001 1134903170/54018521*4106118243^(18/23) 7014087330000002 a001 956722026041/54018521*1568397607^(1/2) 7014087330000002 a001 365435296162/54018521*1568397607^(6/11) 7014087330000002 a001 139583862445/54018521*1568397607^(13/22) 7014087330000002 a001 53316291173/54018521*1568397607^(7/11) 7014087330000002 a001 20365011074/54018521*1568397607^(15/22) 7014087330000002 a001 4807526976/54018521*1568397607^(3/4) 7014087330000002 a001 7778742049/54018521*1568397607^(8/11) 7014087330000002 a001 2971215073/54018521*1568397607^(17/22) 7014087330000002 a001 491974210728665458/701408733 7014087330000002 a001 1134903170/54018521*1568397607^(9/11) 7014087330000002 a001 24157817/969323029*312119004989^(10/11) 7014087330000002 a001 433494437/54018521*817138163596^(2/3) 7014087330000002 a001 24157817/969323029*3461452808002^(5/6) 7014087330000002 a001 433494437/54018521*10749957122^(19/24) 7014087330000002 a001 433494437/54018521*4106118243^(19/23) 7014087330000002 a001 6557470319842/54018521*599074578^(3/7) 7014087330000002 a001 2504730781961/54018521*599074578^(10/21) 7014087330000002 a001 1548008755920/54018521*599074578^(1/2) 7014087330000002 a001 433494437/54018521*1568397607^(19/22) 7014087330000002 a001 956722026041/54018521*599074578^(11/21) 7014087330000002 a001 365435296162/54018521*599074578^(4/7) 7014087330000002 a001 139583862445/54018521*599074578^(13/21) 7014087330000002 a001 86267571272/54018521*599074578^(9/14) 7014087330000002 a001 53316291173/54018521*599074578^(2/3) 7014087330000002 a001 20365011074/54018521*599074578^(5/7) 7014087330000002 a001 7778742049/54018521*599074578^(16/21) 7014087330000002 a001 4807526976/54018521*599074578^(11/14) 7014087330000002 a001 1836311903/54018521*599074578^(5/6) 7014087330000002 a001 2971215073/54018521*599074578^(17/21) 7014087330000002 a001 1134903170/54018521*599074578^(6/7) 7014087330000002 a001 14455186685380541/20608792 7014087330000002 a001 433494437/54018521*599074578^(19/21) 7014087330000002 a001 165580141/54018521*2537720636^(8/9) 7014087330000002 a001 24157817/370248451*45537549124^(16/17) 7014087330000002 a001 165580141/54018521*312119004989^(8/11) 7014087330000002 a001 24157817/370248451*14662949395604^(16/21) 7014087330000002 a001 165580141/54018521*23725150497407^(5/8) 7014087330000002 a001 24157817/370248451*192900153618^(8/9) 7014087330000002 a001 165580141/54018521*73681302247^(10/13) 7014087330000002 a001 24157817/370248451*73681302247^(12/13) 7014087330000002 a001 165580141/54018521*28143753123^(4/5) 7014087330000002 a001 165580141/54018521*10749957122^(5/6) 7014087330000002 a001 165580141/54018521*4106118243^(20/23) 7014087330000002 a001 165580141/54018521*1568397607^(10/11) 7014087330000002 a001 6557470319842/54018521*228826127^(9/20) 7014087330000002 a001 2504730781961/54018521*228826127^(1/2) 7014087330000002 a001 165580141/54018521*599074578^(20/21) 7014087330000002 a001 956722026041/54018521*228826127^(11/20) 7014087330000002 a001 365435296162/54018521*228826127^(3/5) 7014087330000002 a001 225851433717/54018521*228826127^(5/8) 7014087330000002 a001 139583862445/54018521*228826127^(13/20) 7014087330000002 a001 53316291173/54018521*228826127^(7/10) 7014087330000002 a001 20365011074/54018521*228826127^(3/4) 7014087330000002 a001 7778742049/54018521*228826127^(4/5) 7014087330000002 a001 2971215073/54018521*228826127^(17/20) 7014087330000002 a001 1836311903/54018521*228826127^(7/8) 7014087330000002 a001 1134903170/54018521*228826127^(9/10) 7014087330000002 a001 71778070001175641/102334155 7014087330000002 a001 433494437/54018521*228826127^(19/20) 7014087330000002 a001 4052739537881/87403803*33385282^(5/9) 7014087330000002 a001 2504730781961/87403803*33385282^(7/12) 7014087330000002 a001 63245986/54018521*2537720636^(14/15) 7014087330000002 a001 63245986/54018521*17393796001^(6/7) 7014087330000002 a001 63245986/54018521*45537549124^(14/17) 7014087330000002 a001 63245986/54018521*817138163596^(14/19) 7014087330000002 a001 63245986/54018521*14662949395604^(2/3) 7014087330000002 a001 63245986/54018521*505019158607^(3/4) 7014087330000002 a001 63245986/54018521*192900153618^(7/9) 7014087330000002 a001 63245986/54018521*10749957122^(7/8) 7014087330000002 a001 24157817/141422324*10749957122^(23/24) 7014087330000002 a001 63245986/54018521*4106118243^(21/23) 7014087330000002 a001 63245986/54018521*1568397607^(21/22) 7014087330000002 a001 6557470319842/54018521*87403803^(9/19) 7014087330000002 a001 4052739537881/54018521*87403803^(1/2) 7014087330000002 a001 2504730781961/54018521*87403803^(10/19) 7014087330000002 a001 516002918640/29134601*33385282^(11/18) 7014087330000002 a001 956722026041/54018521*87403803^(11/19) 7014087330000002 a001 365435296162/54018521*87403803^(12/19) 7014087330000003 a001 139583862445/54018521*87403803^(13/19) 7014087330000003 a001 53316291173/54018521*87403803^(14/19) 7014087330000003 a001 20365011074/54018521*87403803^(15/19) 7014087330000003 a001 7778742049/54018521*87403803^(16/19) 7014087330000003 a001 2971215073/54018521*87403803^(17/19) 7014087330000003 a001 1134903170/54018521*87403803^(18/19) 7014087330000003 a001 591286729879/87403803*33385282^(2/3) 7014087330000003 a001 20365011074/20633239*20633239^(4/5) 7014087330000003 a001 27416783093579890/39088169 7014087330000003 a001 225749145909/4868641*33385282^(5/9) 7014087330000003 a001 6557470319842/228826127*33385282^(7/12) 7014087330000003 a001 75283811239/29134601*33385282^(13/18) 7014087330000003 a001 4052739537881/228826127*33385282^(11/18) 7014087330000003 a001 10610209857723/370248451*33385282^(7/12) 7014087330000003 a001 139583862445/87403803*33385282^(3/4) 7014087330000003 a001 3536736619241/199691526*33385282^(11/18) 7014087330000003 a001 3278735159921/70711162*33385282^(5/9) 7014087330000003 a001 6557470319842/370248451*33385282^(11/18) 7014087330000003 a001 86267571272/87403803*33385282^(7/9) 7014087330000004 a001 4052739537881/141422324*33385282^(7/12) 7014087330000004 a001 1548008755920/228826127*33385282^(2/3) 7014087330000004 a001 4052739537881/599074578*33385282^(2/3) 7014087330000004 a001 1515744265389/224056801*33385282^(2/3) 7014087330000004 a001 2504730781961/141422324*33385282^(11/18) 7014087330000004 a001 6557470319842/969323029*33385282^(2/3) 7014087330000004 a001 2504730781961/370248451*33385282^(2/3) 7014087330000004 a001 10983760033/29134601*33385282^(5/6) 7014087330000004 a001 591286729879/228826127*33385282^(13/18) 7014087330000004 a001 86000486440/33281921*33385282^(13/18) 7014087330000004 a001 4052739537881/1568397607*33385282^(13/18) 7014087330000004 a001 3536736619241/1368706081*33385282^(13/18) 7014087330000004 a001 956722026041/141422324*33385282^(2/3) 7014087330000004 a001 3278735159921/1268860318*33385282^(13/18) 7014087330000004 a001 2504730781961/969323029*33385282^(13/18) 7014087330000004 a001 365435296162/228826127*33385282^(3/4) 7014087330000004 a001 956722026041/370248451*33385282^(13/18) 7014087330000004 a001 12586269025/87403803*33385282^(8/9) 7014087330000004 a001 956722026041/599074578*33385282^(3/4) 7014087330000004 a001 86267571272/20633239*20633239^(5/7) 7014087330000004 a001 2504730781961/1568397607*33385282^(3/4) 7014087330000004 a001 6557470319842/4106118243*33385282^(3/4) 7014087330000004 a001 10610209857723/6643838879*33385282^(3/4) 7014087330000004 a001 4052739537881/2537720636*33385282^(3/4) 7014087330000004 a001 1548008755920/969323029*33385282^(3/4) 7014087330000004 a001 225851433717/228826127*33385282^(7/9) 7014087330000004 a001 591286729879/370248451*33385282^(3/4) 7014087330000004 a001 24157817/54018521*312119004989^(4/5) 7014087330000004 a001 24157817/54018521*23725150497407^(11/16) 7014087330000004 a001 24157817/54018521*73681302247^(11/13) 7014087330000004 a001 24157817/54018521*10749957122^(11/12) 7014087330000004 a001 24157817/54018521*4106118243^(22/23) 7014087330000004 a001 7778742049/87403803*33385282^(11/12) 7014087330000004 a001 591286729879/599074578*33385282^(7/9) 7014087330000004 a001 1548008755920/1568397607*33385282^(7/9) 7014087330000004 a001 4052739537881/4106118243*33385282^(7/9) 7014087330000004 a001 4807525989/4870846*33385282^(7/9) 7014087330000004 a001 6557470319842/6643838879*33385282^(7/9) 7014087330000004 a001 182717648081/70711162*33385282^(13/18) 7014087330000004 a001 2504730781961/2537720636*33385282^(7/9) 7014087330000004 a001 956722026041/969323029*33385282^(7/9) 7014087330000004 a001 365435296162/370248451*33385282^(7/9) 7014087330000005 a001 1602508992/29134601*33385282^(17/18) 7014087330000005 a001 225851433717/141422324*33385282^(3/4) 7014087330000005 a001 86267571272/228826127*33385282^(5/6) 7014087330000005 a001 267913919/710646*33385282^(5/6) 7014087330000005 a001 591286729879/1568397607*33385282^(5/6) 7014087330000005 a001 516002918640/1368706081*33385282^(5/6) 7014087330000005 a001 4052739537881/10749957122*33385282^(5/6) 7014087330000005 a001 3536736619241/9381251041*33385282^(5/6) 7014087330000005 a001 6557470319842/17393796001*33385282^(5/6) 7014087330000005 a001 2504730781961/6643838879*33385282^(5/6) 7014087330000005 a001 139583862445/141422324*33385282^(7/9) 7014087330000005 a001 956722026041/2537720636*33385282^(5/6) 7014087330000005 a001 365435296162/969323029*33385282^(5/6) 7014087330000005 a001 139583862445/370248451*33385282^(5/6) 7014087330000005 a001 1309034909945503/1866294 7014087330000005 a001 32951280099/228826127*33385282^(8/9) 7014087330000005 a001 6557470319842/54018521*33385282^(1/2) 7014087330000005 a001 43133785636/299537289*33385282^(8/9) 7014087330000005 a001 32264490531/224056801*33385282^(8/9) 7014087330000005 a001 591286729879/4106118243*33385282^(8/9) 7014087330000005 a001 774004377960/5374978561*33385282^(8/9) 7014087330000005 a001 4052739537881/28143753123*33385282^(8/9) 7014087330000005 a001 1515744265389/10525900321*33385282^(8/9) 7014087330000005 a001 3278735159921/22768774562*33385282^(8/9) 7014087330000005 a001 2504730781961/17393796001*33385282^(8/9) 7014087330000005 a001 956722026041/6643838879*33385282^(8/9) 7014087330000005 a001 53316291173/141422324*33385282^(5/6) 7014087330000005 a001 182717648081/1268860318*33385282^(8/9) 7014087330000005 a001 139583862445/969323029*33385282^(8/9) 7014087330000005 a001 20365011074/228826127*33385282^(11/12) 7014087330000005 a001 53316291173/370248451*33385282^(8/9) 7014087330000005 a001 53316291173/599074578*33385282^(11/12) 7014087330000005 a001 139583862445/1568397607*33385282^(11/12) 7014087330000005 a001 365435296162/4106118243*33385282^(11/12) 7014087330000005 a001 956722026041/10749957122*33385282^(11/12) 7014087330000005 a001 2504730781961/28143753123*33385282^(11/12) 7014087330000005 a001 6557470319842/73681302247*33385282^(11/12) 7014087330000005 a001 10610209857723/119218851371*33385282^(11/12) 7014087330000005 a001 4052739537881/45537549124*33385282^(11/12) 7014087330000005 a001 1548008755920/17393796001*33385282^(11/12) 7014087330000005 a001 591286729879/6643838879*33385282^(11/12) 7014087330000005 a001 225851433717/2537720636*33385282^(11/12) 7014087330000005 a001 86267571272/969323029*33385282^(11/12) 7014087330000005 a001 12586269025/228826127*33385282^(17/18) 7014087330000005 a001 32951280099/370248451*33385282^(11/12) 7014087330000005 a001 2504730781961/54018521*33385282^(5/9) 7014087330000005 a001 10983760033/199691526*33385282^(17/18) 7014087330000005 a001 86267571272/1568397607*33385282^(17/18) 7014087330000005 a001 75283811239/1368706081*33385282^(17/18) 7014087330000005 a001 591286729879/10749957122*33385282^(17/18) 7014087330000005 a001 12585437040/228811001*33385282^(17/18) 7014087330000005 a001 4052739537881/73681302247*33385282^(17/18) 7014087330000005 a001 3536736619241/64300051206*33385282^(17/18) 7014087330000005 a001 6557470319842/119218851371*33385282^(17/18) 7014087330000005 a001 2504730781961/45537549124*33385282^(17/18) 7014087330000005 a001 956722026041/17393796001*33385282^(17/18) 7014087330000005 a001 365435296162/6643838879*33385282^(17/18) 7014087330000005 a001 10182505537/70711162*33385282^(8/9) 7014087330000005 a001 139583862445/2537720636*33385282^(17/18) 7014087330000005 a001 53316291173/969323029*33385282^(17/18) 7014087330000005 a001 20365011074/370248451*33385282^(17/18) 7014087330000006 a001 1163586586618225/1658928 7014087330000006 a001 1548008755920/54018521*33385282^(7/12) 7014087330000006 a001 12586269025/141422324*33385282^(11/12) 7014087330000006 a001 956722026041/54018521*33385282^(11/18) 7014087330000006 a001 7778742049/141422324*33385282^(17/18) 7014087330000006 a001 591286729879/20633239*20633239^(3/5) 7014087330000006 a001 365435296162/54018521*33385282^(2/3) 7014087330000006 a001 5236139639782013/7465176 7014087330000006 a001 139583862445/54018521*33385282^(13/18) 7014087330000007 a001 956722026041/20633239*20633239^(4/7) 7014087330000007 a001 86267571272/54018521*33385282^(3/4) 7014087330000007 a001 53316291173/54018521*33385282^(7/9) 7014087330000007 a001 20365011074/54018521*33385282^(5/6) 7014087330000008 a001 7778742049/54018521*33385282^(8/9) 7014087330000008 a001 4807526976/54018521*33385282^(11/12) 7014087330000008 a001 2971215073/54018521*33385282^(17/18) 7014087330000008 a001 10472279279564029/14930352 7014087330000009 a001 10610209857723/20633239*20633239^(3/7) 7014087330000010 a001 9227465/33385282*45537549124^(15/17) 7014087330000010 a001 9227465/33385282*312119004989^(9/11) 7014087330000010 a001 9227465/33385282*14662949395604^(5/7) 7014087330000010 a001 9227465/33385282*(1/2+1/2*5^(1/2))^45 7014087330000010 a001 14930352/20633239*(1/2+1/2*5^(1/2))^43 7014087330000010 a001 9227465/33385282*192900153618^(5/6) 7014087330000010 a001 9227465/33385282*28143753123^(9/10) 7014087330000010 a001 9227465/33385282*10749957122^(15/16) 7014087330000010 a001 2971215073/7881196*7881196^(10/11) 7014087330000014 a001 1515744265389/4769326*12752043^(8/17) 7014087330000014 a001 16944503814015895/24157817 7014087330000015 a001 3278735159921/16692641*12752043^(1/2) 7014087330000015 a001 39088169/20633239*(1/2+1/2*5^(1/2))^41 7014087330000016 a001 22180643453797920/31622993 7014087330000016 a001 433494437/20633239*141422324^(12/13) 7014087330000016 a001 1836311903/20633239*141422324^(11/13) 7014087330000016 a001 7778742049/20633239*141422324^(10/13) 7014087330000016 a001 32951280099/20633239*141422324^(9/13) 7014087330000016 a001 53316291173/20633239*141422324^(2/3) 7014087330000016 a001 139583862445/20633239*141422324^(8/13) 7014087330000016 a001 591286729879/20633239*141422324^(7/13) 7014087330000016 a001 2504730781961/20633239*141422324^(6/13) 7014087330000016 a001 9303105/1875749*2537720636^(13/15) 7014087330000016 a001 10610209857723/20633239*141422324^(5/13) 7014087330000016 a001 9303105/1875749*45537549124^(13/17) 7014087330000016 a001 9227465/228826127*14662949395604^(7/9) 7014087330000016 a001 9303105/1875749*14662949395604^(13/21) 7014087330000016 a001 9303105/1875749*(1/2+1/2*5^(1/2))^39 7014087330000016 a001 9227465/228826127*505019158607^(7/8) 7014087330000016 a001 9303105/1875749*192900153618^(13/18) 7014087330000016 a001 9303105/1875749*73681302247^(3/4) 7014087330000016 a001 9303105/1875749*10749957122^(13/16) 7014087330000016 a001 9303105/1875749*599074578^(13/14) 7014087330000016 a001 116139356908771625/165580141 7014087330000016 a001 9227465/599074578*817138163596^(17/19) 7014087330000016 a001 9227465/599074578*14662949395604^(17/21) 7014087330000016 a001 9238424/711491*(1/2+1/2*5^(1/2))^37 7014087330000016 a001 9227465/599074578*192900153618^(17/18) 7014087330000016 a001 304056783818719035/433494437 7014087330000016 a001 701408733/20633239*2537720636^(7/9) 7014087330000016 a001 701408733/20633239*17393796001^(5/7) 7014087330000016 a001 701408733/20633239*312119004989^(7/11) 7014087330000016 a001 701408733/20633239*14662949395604^(5/9) 7014087330000016 a001 701408733/20633239*(1/2+1/2*5^(1/2))^35 7014087330000016 a001 701408733/20633239*505019158607^(5/8) 7014087330000016 a001 701408733/20633239*28143753123^(7/10) 7014087330000016 a001 1836311903/20633239*2537720636^(11/15) 7014087330000016 a001 4682535262043444/6675901 7014087330000016 a001 7778742049/20633239*2537720636^(2/3) 7014087330000016 a001 32951280099/20633239*2537720636^(3/5) 7014087330000016 a001 86267571272/20633239*2537720636^(5/9) 7014087330000016 a001 139583862445/20633239*2537720636^(8/15) 7014087330000016 a001 591286729879/20633239*2537720636^(7/15) 7014087330000016 a001 956722026041/20633239*2537720636^(4/9) 7014087330000016 a001 2504730781961/20633239*2537720636^(2/5) 7014087330000016 a001 1836311903/20633239*45537549124^(11/17) 7014087330000016 a001 1836311903/20633239*312119004989^(3/5) 7014087330000016 a001 1836311903/20633239*14662949395604^(11/21) 7014087330000016 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^33 7014087330000016 a001 9227465/4106118243*3461452808002^(11/12) 7014087330000016 a001 1836311903/20633239*192900153618^(11/18) 7014087330000016 a001 1836311903/20633239*10749957122^(11/16) 7014087330000016 a001 10610209857723/20633239*2537720636^(1/3) 7014087330000016 a001 2084036199823437405/2971215073 7014087330000016 a001 9227465/10749957122*14662949395604^(19/21) 7014087330000016 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^31 7014087330000016 a001 4807526976/20633239*9062201101803^(1/2) 7014087330000016 a001 419698277301763595/598364773 7014087330000016 a001 591286729879/20633239*17393796001^(3/7) 7014087330000016 a001 20365011074/20633239*17393796001^(4/7) 7014087330000016 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^29 7014087330000016 a001 1144206275/1875749*1322157322203^(1/2) 7014087330000016 a001 7142098307472671400/10182505537 7014087330000016 a001 32951280099/20633239*45537549124^(9/17) 7014087330000016 a001 139583862445/20633239*45537549124^(8/17) 7014087330000016 a001 591286729879/20633239*45537549124^(7/17) 7014087330000016 a001 32951280099/20633239*817138163596^(9/19) 7014087330000016 a001 32951280099/20633239*14662949395604^(3/7) 7014087330000016 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^27 7014087330000016 a001 32951280099/20633239*192900153618^(1/2) 7014087330000016 a001 2504730781961/20633239*45537549124^(6/17) 7014087330000016 a001 4052739537881/20633239*45537549124^(1/3) 7014087330000016 a001 10610209857723/20633239*45537549124^(5/17) 7014087330000016 a001 37396512239913101665/53316291173 7014087330000016 a001 86267571272/20633239*312119004989^(5/11) 7014087330000016 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^25 7014087330000016 a001 86267571272/20633239*3461452808002^(5/12) 7014087330000016 a001 19581068020958792439/27916772489 7014087330000016 a001 7787980473/711491*(1/2+1/2*5^(1/2))^23 7014087330000016 a001 10610209857723/20633239*312119004989^(3/11) 7014087330000016 a001 365435296162/20633239*312119004989^(2/5) 7014087330000016 a001 140728068720/1875749*817138163596^(1/3) 7014087330000016 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^19 7014087330000016 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^17 7014087330000016 a001 10610209857723/20633239*14662949395604^(5/21) 7014087330000016 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^15 7014087330000016 a001 9227465*(1/2+1/2*5^(1/2))^9 7014087330000016 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^18 7014087330000016 a001 956722026041/20633239*505019158607^(5/14) 7014087330000016 a001 10610209857723/20633239*192900153618^(5/18) 7014087330000016 a001 591286729879/20633239*192900153618^(7/18) 7014087330000016 a001 139583862445/20633239*14662949395604^(8/21) 7014087330000016 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^24 7014087330000016 a001 139583862445/20633239*192900153618^(4/9) 7014087330000016 a001 6557470319842/20633239*73681302247^(4/13) 7014087330000016 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^26 7014087330000016 a001 956722026041/20633239*73681302247^(5/13) 7014087330000016 a001 139583862445/20633239*73681302247^(6/13) 7014087330000016 a001 53316291173/20633239*73681302247^(1/2) 7014087330000016 a001 23112315624967758865/32951280099 7014087330000016 a001 10610209857723/20633239*28143753123^(3/10) 7014087330000016 a001 20365011074/20633239*14662949395604^(4/9) 7014087330000016 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^28 7014087330000016 a001 20365011074/20633239*505019158607^(1/2) 7014087330000016 a001 956722026041/20633239*28143753123^(2/5) 7014087330000016 a001 20365011074/20633239*73681302247^(7/13) 7014087330000016 a001 86267571272/20633239*28143753123^(1/2) 7014087330000016 a001 1765623802004483213/2517253805 7014087330000016 a001 10610209857723/20633239*10749957122^(5/16) 7014087330000016 a001 6557470319842/20633239*10749957122^(1/3) 7014087330000016 a001 7778742049/20633239*45537549124^(10/17) 7014087330000016 a001 2504730781961/20633239*10749957122^(3/8) 7014087330000016 a001 7778742049/20633239*312119004989^(6/11) 7014087330000016 a001 7778742049/20633239*14662949395604^(10/21) 7014087330000016 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^30 7014087330000016 a001 7778742049/20633239*192900153618^(5/9) 7014087330000016 a001 956722026041/20633239*10749957122^(5/12) 7014087330000016 a001 591286729879/20633239*10749957122^(7/16) 7014087330000016 a001 365435296162/20633239*10749957122^(11/24) 7014087330000016 a001 7778742049/20633239*28143753123^(3/5) 7014087330000016 a001 139583862445/20633239*10749957122^(1/2) 7014087330000016 a001 32951280099/20633239*10749957122^(9/16) 7014087330000016 a001 53316291173/20633239*10749957122^(13/24) 7014087330000016 a001 20365011074/20633239*10749957122^(7/12) 7014087330000016 a001 1686020702549744665/2403763488 7014087330000016 a001 7778742049/20633239*10749957122^(5/8) 7014087330000016 a001 6557470319842/20633239*4106118243^(8/23) 7014087330000016 a001 9227465/6643838879*14662949395604^(8/9) 7014087330000016 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^32 7014087330000016 a001 2971215073/20633239*23725150497407^(1/2) 7014087330000016 a001 2971215073/20633239*505019158607^(4/7) 7014087330000016 a001 2971215073/20633239*73681302247^(8/13) 7014087330000016 a001 2504730781961/20633239*4106118243^(9/23) 7014087330000016 a001 956722026041/20633239*4106118243^(10/23) 7014087330000016 a001 365435296162/20633239*4106118243^(11/23) 7014087330000016 a001 2971215073/20633239*10749957122^(2/3) 7014087330000016 a001 7787980473/711491*4106118243^(1/2) 7014087330000016 a001 139583862445/20633239*4106118243^(12/23) 7014087330000016 a001 53316291173/20633239*4106118243^(13/23) 7014087330000016 a001 20365011074/20633239*4106118243^(14/23) 7014087330000016 a001 7778742049/20633239*4106118243^(15/23) 7014087330000016 a001 1288005205276051925/1836311903 7014087330000016 a001 2971215073/20633239*4106118243^(16/23) 7014087330000016 a001 6557470319842/20633239*1568397607^(4/11) 7014087330000016 a001 1134903170/20633239*45537549124^(2/3) 7014087330000016 a001 9227465/2537720636*14662949395604^(6/7) 7014087330000016 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^34 7014087330000016 a001 1134903170/20633239*10749957122^(17/24) 7014087330000016 a001 2504730781961/20633239*1568397607^(9/22) 7014087330000016 a001 956722026041/20633239*1568397607^(5/11) 7014087330000016 a001 1134903170/20633239*4106118243^(17/23) 7014087330000016 a001 365435296162/20633239*1568397607^(1/2) 7014087330000016 a001 139583862445/20633239*1568397607^(6/11) 7014087330000016 a001 53316291173/20633239*1568397607^(13/22) 7014087330000016 a001 1836311903/20633239*1568397607^(3/4) 7014087330000016 a001 20365011074/20633239*1568397607^(7/11) 7014087330000016 a001 7778742049/20633239*1568397607^(15/22) 7014087330000016 a001 2971215073/20633239*1568397607^(8/11) 7014087330000016 a001 491974210728666445/701408733 7014087330000016 a001 1134903170/20633239*1568397607^(17/22) 7014087330000016 a001 433494437/20633239*2537720636^(4/5) 7014087330000016 a001 10610209857723/20633239*599074578^(5/14) 7014087330000016 a001 6557470319842/20633239*599074578^(8/21) 7014087330000016 a001 433494437/20633239*45537549124^(12/17) 7014087330000016 a001 433494437/20633239*14662949395604^(4/7) 7014087330000016 a001 433494437/20633239*(1/2+1/2*5^(1/2))^36 7014087330000016 a001 9227465/969323029*23725150497407^(13/16) 7014087330000016 a001 433494437/20633239*505019158607^(9/14) 7014087330000016 a001 9227465/969323029*505019158607^(13/14) 7014087330000016 a001 433494437/20633239*192900153618^(2/3) 7014087330000016 a001 433494437/20633239*73681302247^(9/13) 7014087330000016 a001 433494437/20633239*10749957122^(3/4) 7014087330000016 a001 433494437/20633239*4106118243^(18/23) 7014087330000016 a001 2504730781961/20633239*599074578^(3/7) 7014087330000016 a001 956722026041/20633239*599074578^(10/21) 7014087330000016 a001 591286729879/20633239*599074578^(1/2) 7014087330000016 a001 433494437/20633239*1568397607^(9/11) 7014087330000016 a001 365435296162/20633239*599074578^(11/21) 7014087330000016 a001 139583862445/20633239*599074578^(4/7) 7014087330000016 a001 53316291173/20633239*599074578^(13/21) 7014087330000016 a001 32951280099/20633239*599074578^(9/14) 7014087330000016 a001 20365011074/20633239*599074578^(2/3) 7014087330000016 a001 701408733/20633239*599074578^(5/6) 7014087330000016 a001 7778742049/20633239*599074578^(5/7) 7014087330000016 a001 1836311903/20633239*599074578^(11/14) 7014087330000016 a001 2971215073/20633239*599074578^(16/21) 7014087330000016 a001 1134903170/20633239*599074578^(17/21) 7014087330000016 a001 7227593342690285/10304396 7014087330000016 a001 433494437/20633239*599074578^(6/7) 7014087330000016 a001 10610209857723/20633239*228826127^(3/8) 7014087330000016 a001 9227465/370248451*312119004989^(10/11) 7014087330000016 a001 165580141/20633239*817138163596^(2/3) 7014087330000016 a001 165580141/20633239*(1/2+1/2*5^(1/2))^38 7014087330000016 a001 9227465/370248451*3461452808002^(5/6) 7014087330000016 a001 165580141/20633239*10749957122^(19/24) 7014087330000016 a001 165580141/20633239*4106118243^(19/23) 7014087330000016 a001 6557470319842/20633239*228826127^(2/5) 7014087330000016 a001 165580141/20633239*1568397607^(19/22) 7014087330000016 a001 2504730781961/20633239*228826127^(9/20) 7014087330000016 a001 4052739537881/33385282*12752043^(9/17) 7014087330000016 a001 956722026041/20633239*228826127^(1/2) 7014087330000016 a001 165580141/20633239*599074578^(19/21) 7014087330000016 a001 365435296162/20633239*228826127^(11/20) 7014087330000016 a001 139583862445/20633239*228826127^(3/5) 7014087330000016 a001 86267571272/20633239*228826127^(5/8) 7014087330000016 a001 53316291173/20633239*228826127^(13/20) 7014087330000016 a001 20365011074/20633239*228826127^(7/10) 7014087330000016 a001 7778742049/20633239*228826127^(3/4) 7014087330000016 a001 2971215073/20633239*228826127^(4/5) 7014087330000016 a001 701408733/20633239*228826127^(7/8) 7014087330000016 a001 1134903170/20633239*228826127^(17/20) 7014087330000016 a001 433494437/20633239*228826127^(9/10) 7014087330000016 a001 14355614000235157/20466831 7014087330000016 a001 165580141/20633239*228826127^(19/20) 7014087330000016 a001 63245986/20633239*2537720636^(8/9) 7014087330000016 a001 9227465/141422324*45537549124^(16/17) 7014087330000016 a001 63245986/20633239*312119004989^(8/11) 7014087330000016 a001 63245986/20633239*(1/2+1/2*5^(1/2))^40 7014087330000016 a001 63245986/20633239*23725150497407^(5/8) 7014087330000016 a001 9227465/141422324*192900153618^(8/9) 7014087330000016 a001 63245986/20633239*73681302247^(10/13) 7014087330000016 a001 9227465/141422324*73681302247^(12/13) 7014087330000016 a001 63245986/20633239*28143753123^(4/5) 7014087330000016 a001 63245986/20633239*10749957122^(5/6) 7014087330000016 a001 63245986/20633239*4106118243^(20/23) 7014087330000016 a001 63245986/20633239*1568397607^(10/11) 7014087330000016 a001 63245986/20633239*599074578^(20/21) 7014087330000016 a001 6557470319842/20633239*87403803^(8/19) 7014087330000016 a001 2504730781961/20633239*87403803^(9/19) 7014087330000016 a001 140728068720/1875749*87403803^(1/2) 7014087330000016 a001 956722026041/20633239*87403803^(10/19) 7014087330000017 a001 365435296162/20633239*87403803^(11/19) 7014087330000017 a001 139583862445/20633239*87403803^(12/19) 7014087330000017 a001 53316291173/20633239*87403803^(13/19) 7014087330000017 a001 20365011074/20633239*87403803^(14/19) 7014087330000017 a001 7778742049/20633239*87403803^(15/19) 7014087330000017 a001 2971215073/20633239*87403803^(16/19) 7014087330000017 a001 1134903170/20633239*87403803^(17/19) 7014087330000017 a001 433494437/20633239*87403803^(18/19) 7014087330000017 a001 27416783093579945/39088169 7014087330000018 a001 24157817/20633239*2537720636^(14/15) 7014087330000018 a001 24157817/20633239*17393796001^(6/7) 7014087330000018 a001 24157817/20633239*45537549124^(14/17) 7014087330000018 a001 24157817/20633239*817138163596^(14/19) 7014087330000018 a001 24157817/20633239*14662949395604^(2/3) 7014087330000018 a001 24157817/20633239*(1/2+1/2*5^(1/2))^42 7014087330000018 a001 24157817/20633239*505019158607^(3/4) 7014087330000018 a001 24157817/20633239*192900153618^(7/9) 7014087330000018 a001 24157817/20633239*10749957122^(7/8) 7014087330000018 a001 9227465/54018521*10749957122^(23/24) 7014087330000018 a001 24157817/20633239*4106118243^(21/23) 7014087330000018 a001 24157817/20633239*1568397607^(21/22) 7014087330000019 a001 774004377960/16692641*12752043^(10/17) 7014087330000019 a001 10610209857723/20633239*33385282^(5/12) 7014087330000019 a001 6557470319842/20633239*33385282^(4/9) 7014087330000019 a001 2504730781961/20633239*33385282^(1/2) 7014087330000019 a001 956722026041/20633239*33385282^(5/9) 7014087330000020 a001 591286729879/20633239*33385282^(7/12) 7014087330000020 a001 365435296162/20633239*33385282^(11/18) 7014087330000020 a001 12586269025/7881196*7881196^(9/11) 7014087330000020 a001 139583862445/20633239*33385282^(2/3) 7014087330000021 a001 53316291173/20633239*33385282^(13/18) 7014087330000021 a001 32951280099/20633239*33385282^(3/4) 7014087330000021 a001 20365011074/20633239*33385282^(7/9) 7014087330000021 a001 591286729879/33385282*12752043^(11/17) 7014087330000021 a001 7778742049/20633239*33385282^(5/6) 7014087330000021 a001 3536736619241/29134601*12752043^(9/17) 7014087330000022 a001 2971215073/20633239*33385282^(8/9) 7014087330000022 a001 1836311903/20633239*33385282^(11/12) 7014087330000022 a001 1134903170/20633239*33385282^(17/18) 7014087330000022 a001 308008214104825/439128 7014087330000023 a001 10610209857723/54018521*12752043^(1/2) 7014087330000024 a001 32264490531/4769326*12752043^(12/17) 7014087330000024 a001 4052739537881/87403803*12752043^(10/17) 7014087330000025 a001 225749145909/4868641*12752043^(10/17) 7014087330000025 a001 6557470319842/54018521*12752043^(9/17) 7014087330000025 a001 3278735159921/70711162*12752043^(10/17) 7014087330000026 a001 43133785636/16692641*12752043^(13/17) 7014087330000026 a001 516002918640/29134601*12752043^(11/17) 7014087330000027 a001 4052739537881/228826127*12752043^(11/17) 7014087330000027 a001 2504730781961/54018521*12752043^(10/17) 7014087330000027 a001 3536736619241/199691526*12752043^(11/17) 7014087330000027 a001 6557470319842/370248451*12752043^(11/17) 7014087330000028 a001 2504730781961/141422324*12752043^(11/17) 7014087330000029 a001 32951280099/33385282*12752043^(14/17) 7014087330000029 a001 591286729879/87403803*12752043^(12/17) 7014087330000030 a001 1548008755920/228826127*12752043^(12/17) 7014087330000030 a001 956722026041/54018521*12752043^(11/17) 7014087330000030 a001 4052739537881/599074578*12752043^(12/17) 7014087330000030 a001 1515744265389/224056801*12752043^(12/17) 7014087330000030 a001 6557470319842/969323029*12752043^(12/17) 7014087330000030 a001 2504730781961/370248451*12752043^(12/17) 7014087330000030 a001 53316291173/7881196*7881196^(8/11) 7014087330000030 a001 956722026041/141422324*12752043^(12/17) 7014087330000031 a001 12586269025/33385282*12752043^(15/17) 7014087330000032 a001 75283811239/29134601*12752043^(13/17) 7014087330000032 a001 591286729879/228826127*12752043^(13/17) 7014087330000032 a001 365435296162/54018521*12752043^(12/17) 7014087330000032 a001 9227465/20633239*312119004989^(4/5) 7014087330000032 a001 9227465/20633239*(1/2+1/2*5^(1/2))^44 7014087330000032 a001 9227465/20633239*23725150497407^(11/16) 7014087330000032 a001 9227465/20633239*73681302247^(11/13) 7014087330000032 a001 9227465/20633239*10749957122^(11/12) 7014087330000032 a001 9227465/20633239*4106118243^(22/23) 7014087330000032 a001 86000486440/33281921*12752043^(13/17) 7014087330000032 a001 4052739537881/1568397607*12752043^(13/17) 7014087330000032 a001 3536736619241/1368706081*12752043^(13/17) 7014087330000032 a001 3278735159921/1268860318*12752043^(13/17) 7014087330000032 a001 2504730781961/969323029*12752043^(13/17) 7014087330000033 a001 956722026041/370248451*12752043^(13/17) 7014087330000033 a001 182717648081/70711162*12752043^(13/17) 7014087330000034 a001 14930208/103681*12752043^(16/17) 7014087330000034 a001 86267571272/87403803*12752043^(14/17) 7014087330000035 a001 225851433717/228826127*12752043^(14/17) 7014087330000035 a001 139583862445/54018521*12752043^(13/17) 7014087330000035 a001 591286729879/599074578*12752043^(14/17) 7014087330000035 a001 1548008755920/1568397607*12752043^(14/17) 7014087330000035 a001 4052739537881/4106118243*12752043^(14/17) 7014087330000035 a001 4807525989/4870846*12752043^(14/17) 7014087330000035 a001 6557470319842/6643838879*12752043^(14/17) 7014087330000035 a001 2504730781961/2537720636*12752043^(14/17) 7014087330000035 a001 956722026041/969323029*12752043^(14/17) 7014087330000035 a001 365435296162/370248451*12752043^(14/17) 7014087330000035 a001 139583862445/141422324*12752043^(14/17) 7014087330000036 a001 6557470319842/20633239*12752043^(8/17) 7014087330000036 a001 4000054745112192/5702887 7014087330000037 a001 10983760033/29134601*12752043^(15/17) 7014087330000037 a001 139583862445/7881196*7881196^(2/3) 7014087330000037 a001 86267571272/228826127*12752043^(15/17) 7014087330000037 a001 53316291173/54018521*12752043^(14/17) 7014087330000038 a001 267913919/710646*12752043^(15/17) 7014087330000038 a001 4052739537881/20633239*12752043^(1/2) 7014087330000038 a001 591286729879/1568397607*12752043^(15/17) 7014087330000038 a001 516002918640/1368706081*12752043^(15/17) 7014087330000038 a001 4052739537881/10749957122*12752043^(15/17) 7014087330000038 a001 3536736619241/9381251041*12752043^(15/17) 7014087330000038 a001 6557470319842/17393796001*12752043^(15/17) 7014087330000038 a001 2504730781961/6643838879*12752043^(15/17) 7014087330000038 a001 956722026041/2537720636*12752043^(15/17) 7014087330000038 a001 365435296162/969323029*12752043^(15/17) 7014087330000038 a001 139583862445/370248451*12752043^(15/17) 7014087330000038 a001 53316291173/141422324*12752043^(15/17) 7014087330000039 a001 2504730781961/20633239*12752043^(9/17) 7014087330000039 a001 12586269025/87403803*12752043^(16/17) 7014087330000040 a001 32951280099/228826127*12752043^(16/17) 7014087330000040 a001 20365011074/54018521*12752043^(15/17) 7014087330000040 a001 43133785636/299537289*12752043^(16/17) 7014087330000040 a001 32264490531/224056801*12752043^(16/17) 7014087330000040 a001 591286729879/4106118243*12752043^(16/17) 7014087330000040 a001 774004377960/5374978561*12752043^(16/17) 7014087330000040 a001 4052739537881/28143753123*12752043^(16/17) 7014087330000040 a001 1515744265389/10525900321*12752043^(16/17) 7014087330000040 a001 3278735159921/22768774562*12752043^(16/17) 7014087330000040 a001 2504730781961/17393796001*12752043^(16/17) 7014087330000040 a001 956722026041/6643838879*12752043^(16/17) 7014087330000040 a001 182717648081/1268860318*12752043^(16/17) 7014087330000040 a001 139583862445/969323029*12752043^(16/17) 7014087330000040 a001 53316291173/370248451*12752043^(16/17) 7014087330000040 a001 10182505537/70711162*12752043^(16/17) 7014087330000041 a001 225851433717/7881196*7881196^(7/11) 7014087330000041 a001 956722026041/20633239*12752043^(10/17) 7014087330000042 a001 4000054745112195/5702887 7014087330000043 a001 7778742049/54018521*12752043^(16/17) 7014087330000043 a001 4000054745112196/5702887 7014087330000044 a001 365435296162/20633239*12752043^(11/17) 7014087330000045 a001 4000054745112197/5702887 7014087330000046 a001 139583862445/20633239*12752043^(12/17) 7014087330000049 a001 53316291173/20633239*12752043^(13/17) 7014087330000051 a001 956722026041/7881196*7881196^(6/11) 7014087330000051 a001 20365011074/20633239*12752043^(14/17) 7014087330000054 a001 7778742049/20633239*12752043^(15/17) 7014087330000057 a001 2971215073/20633239*12752043^(16/17) 7014087330000059 a001 4000054745112205/5702887 7014087330000061 a001 4052739537881/7881196*7881196^(5/11) 7014087330000069 a001 3524578/12752043*45537549124^(15/17) 7014087330000069 a001 3524578/12752043*312119004989^(9/11) 7014087330000069 a001 3524578/12752043*14662949395604^(5/7) 7014087330000069 a001 3524578/12752043*(1/2+1/2*5^(1/2))^45 7014087330000069 a001 5702887/7881196*(1/2+1/2*5^(1/2))^43 7014087330000069 a001 3524578/12752043*192900153618^(5/6) 7014087330000069 a001 3524578/12752043*28143753123^(9/10) 7014087330000069 a001 3524578/12752043*10749957122^(15/16) 7014087330000086 a001 3536736619241/4250681*4870847^(7/16) 7014087330000096 a001 6472224534451934/9227465 7014087330000098 a001 2971215073/7881196*20633239^(6/7) 7014087330000099 a001 7778742049/7881196*20633239^(4/5) 7014087330000101 a001 32951280099/7881196*20633239^(5/7) 7014087330000103 a001 225851433717/7881196*20633239^(3/5) 7014087330000103 a001 182717648081/3940598*20633239^(4/7) 7014087330000104 a001 4052739537881/12752043*4870847^(1/2) 7014087330000105 a001 4052739537881/7881196*20633239^(3/7) 7014087330000106 a001 3278735159921/3940598*20633239^(2/5) 7014087330000106 a001 1762289/16692641*(1/2+1/2*5^(1/2))^47 7014087330000106 a001 3732588/1970299*(1/2+1/2*5^(1/2))^41 7014087330000110 a001 16944503814016128/24157817 7014087330000112 a001 39088169/7881196*2537720636^(13/15) 7014087330000112 a001 39088169/7881196*45537549124^(13/17) 7014087330000112 a001 3524578/87403803*14662949395604^(7/9) 7014087330000112 a001 39088169/7881196*14662949395604^(13/21) 7014087330000112 a001 39088169/7881196*(1/2+1/2*5^(1/2))^39 7014087330000112 a001 3524578/87403803*505019158607^(7/8) 7014087330000112 a001 39088169/7881196*192900153618^(13/18) 7014087330000112 a001 39088169/7881196*73681302247^(3/4) 7014087330000112 a001 39088169/7881196*10749957122^(13/16) 7014087330000112 a001 39088169/7881196*599074578^(13/14) 7014087330000112 a001 22180643453798225/31622993 7014087330000112 a001 3524667/39604*141422324^(11/13) 7014087330000112 a001 165580141/7881196*141422324^(12/13) 7014087330000112 a001 2971215073/7881196*141422324^(10/13) 7014087330000112 a001 12586269025/7881196*141422324^(9/13) 7014087330000112 a001 10182505537/3940598*141422324^(2/3) 7014087330000112 a001 53316291173/7881196*141422324^(8/13) 7014087330000112 a001 225851433717/7881196*141422324^(7/13) 7014087330000112 a001 956722026041/7881196*141422324^(6/13) 7014087330000112 a001 4052739537881/7881196*141422324^(5/13) 7014087330000112 a001 3524578/228826127*817138163596^(17/19) 7014087330000112 a001 3524578/228826127*14662949395604^(17/21) 7014087330000112 a001 102334155/7881196*(1/2+1/2*5^(1/2))^37 7014087330000112 a001 3524578/228826127*192900153618^(17/18) 7014087330000112 a001 10610209857723/7881196*141422324^(1/3) 7014087330000112 a001 116139356908773222/165580141 7014087330000112 a001 66978574/1970299*2537720636^(7/9) 7014087330000112 a001 66978574/1970299*17393796001^(5/7) 7014087330000112 a001 66978574/1970299*312119004989^(7/11) 7014087330000112 a001 66978574/1970299*14662949395604^(5/9) 7014087330000112 a001 66978574/1970299*(1/2+1/2*5^(1/2))^35 7014087330000112 a001 66978574/1970299*505019158607^(5/8) 7014087330000112 a001 66978574/1970299*28143753123^(7/10) 7014087330000112 a001 304056783818723216/433494437 7014087330000112 a001 3524667/39604*2537720636^(11/15) 7014087330000112 a001 66978574/1970299*599074578^(5/6) 7014087330000112 a001 3524667/39604*45537549124^(11/17) 7014087330000112 a001 3524667/39604*312119004989^(3/5) 7014087330000112 a001 3524667/39604*817138163596^(11/19) 7014087330000112 a001 3524667/39604*(1/2+1/2*5^(1/2))^33 7014087330000112 a001 3524578/1568397607*3461452808002^(11/12) 7014087330000112 a001 3524667/39604*192900153618^(11/18) 7014087330000112 a001 3524667/39604*10749957122^(11/16) 7014087330000112 a001 398015497273698213/567451585 7014087330000112 a001 3524667/39604*1568397607^(3/4) 7014087330000112 a001 12586269025/7881196*2537720636^(3/5) 7014087330000112 a001 32951280099/7881196*2537720636^(5/9) 7014087330000112 a001 53316291173/7881196*2537720636^(8/15) 7014087330000112 a001 2971215073/7881196*2537720636^(2/3) 7014087330000112 a001 225851433717/7881196*2537720636^(7/15) 7014087330000112 a001 182717648081/3940598*2537720636^(4/9) 7014087330000112 a001 956722026041/7881196*2537720636^(2/5) 7014087330000112 a001 3524578/4106118243*14662949395604^(19/21) 7014087330000112 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^31 7014087330000112 a001 1836311903/7881196*9062201101803^(1/2) 7014087330000112 a001 4052739537881/7881196*2537720636^(1/3) 7014087330000112 a001 2084036199823466062/2971215073 7014087330000112 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^29 7014087330000112 a001 1201881744/1970299*1322157322203^(1/2) 7014087330000112 a001 5456077604923001760/7778742049 7014087330000112 a001 12586269025/7881196*45537549124^(9/17) 7014087330000112 a001 225851433717/7881196*17393796001^(3/7) 7014087330000112 a001 12586269025/7881196*817138163596^(9/19) 7014087330000112 a001 12586269025/7881196*14662949395604^(3/7) 7014087330000112 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^27 7014087330000112 a001 12586269025/7881196*192900153618^(1/2) 7014087330000112 a001 3278735159921/3940598*17393796001^(2/7) 7014087330000112 a001 7142098307472769609/10182505537 7014087330000112 a001 225851433717/7881196*45537549124^(7/17) 7014087330000112 a001 32951280099/7881196*312119004989^(5/11) 7014087330000112 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^25 7014087330000112 a001 32951280099/7881196*3461452808002^(5/12) 7014087330000112 a001 956722026041/7881196*45537549124^(6/17) 7014087330000112 a001 387002188980/1970299*45537549124^(1/3) 7014087330000112 a001 53316291173/7881196*45537549124^(8/17) 7014087330000112 a001 4052739537881/7881196*45537549124^(5/17) 7014087330000112 a001 37396512239913615894/53316291173 7014087330000112 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^23 7014087330000112 a001 225851433717/7881196*14662949395604^(1/3) 7014087330000112 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^21 7014087330000112 a001 591286729879/7881196*817138163596^(1/3) 7014087330000112 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^17 7014087330000112 a001 4052739537881/7881196*(1/2+1/2*5^(1/2))^15 7014087330000112 a001 10610209857723/7881196*(1/2+1/2*5^(1/2))^13 7014087330000112 a001 3524578*(1/2+1/2*5^(1/2))^11 7014087330000112 a001 3278735159921/3940598*(1/2+1/2*5^(1/2))^14 7014087330000112 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^16 7014087330000112 a001 956722026041/7881196*14662949395604^(2/7) 7014087330000112 a001 956722026041/7881196*(1/2+1/2*5^(1/2))^18 7014087330000112 a001 3278735159921/3940598*505019158607^(1/4) 7014087330000112 a001 182717648081/3940598*(1/2+1/2*5^(1/2))^20 7014087330000112 a001 182717648081/3940598*23725150497407^(5/16) 7014087330000112 a001 182717648081/3940598*505019158607^(5/14) 7014087330000112 a001 139583862445/7881196*312119004989^(2/5) 7014087330000112 a001 4052739537881/7881196*192900153618^(5/18) 7014087330000112 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^22 7014087330000112 a001 10610209857723/7881196*73681302247^(1/4) 7014087330000112 a001 2504730781961/7881196*73681302247^(4/13) 7014087330000112 a001 53316291173/7881196*14662949395604^(8/21) 7014087330000112 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^24 7014087330000112 a001 182717648081/3940598*73681302247^(5/13) 7014087330000112 a001 53316291173/7881196*192900153618^(4/9) 7014087330000112 a001 53316291173/7881196*73681302247^(6/13) 7014087330000112 a001 23112315624968076676/32951280099 7014087330000112 a001 32951280099/7881196*28143753123^(1/2) 7014087330000112 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^26 7014087330000112 a001 182717648081/3940598*28143753123^(2/5) 7014087330000112 a001 10182505537/3940598*73681302247^(1/2) 7014087330000112 a001 8828119010022537458/12586269025 7014087330000112 a001 7778742049/7881196*17393796001^(4/7) 7014087330000112 a001 3278735159921/3940598*10749957122^(7/24) 7014087330000112 a001 4052739537881/7881196*10749957122^(5/16) 7014087330000112 a001 2504730781961/7881196*10749957122^(1/3) 7014087330000112 a001 956722026041/7881196*10749957122^(3/8) 7014087330000112 a001 3524578/17393796001*14662949395604^(20/21) 7014087330000112 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^28 7014087330000112 a001 7778742049/7881196*505019158607^(1/2) 7014087330000112 a001 7778742049/7881196*73681302247^(7/13) 7014087330000112 a001 12586269025/7881196*10749957122^(9/16) 7014087330000112 a001 182717648081/3940598*10749957122^(5/12) 7014087330000112 a001 225851433717/7881196*10749957122^(7/16) 7014087330000112 a001 139583862445/7881196*10749957122^(11/24) 7014087330000112 a001 53316291173/7881196*10749957122^(1/2) 7014087330000112 a001 10182505537/3940598*10749957122^(13/24) 7014087330000112 a001 7778742049/7881196*10749957122^(7/12) 7014087330000112 a001 1686020702549767849/2403763488 7014087330000112 a001 3278735159921/3940598*4106118243^(7/23) 7014087330000112 a001 2504730781961/7881196*4106118243^(8/23) 7014087330000112 a001 2971215073/7881196*45537549124^(10/17) 7014087330000112 a001 2971215073/7881196*312119004989^(6/11) 7014087330000112 a001 2971215073/7881196*14662949395604^(10/21) 7014087330000112 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^30 7014087330000112 a001 2971215073/7881196*192900153618^(5/9) 7014087330000112 a001 956722026041/7881196*4106118243^(9/23) 7014087330000112 a001 2971215073/7881196*28143753123^(3/5) 7014087330000112 a001 182717648081/3940598*4106118243^(10/23) 7014087330000112 a001 2971215073/7881196*10749957122^(5/8) 7014087330000112 a001 139583862445/7881196*4106118243^(11/23) 7014087330000112 a001 21566892818/1970299*4106118243^(1/2) 7014087330000112 a001 53316291173/7881196*4106118243^(12/23) 7014087330000112 a001 10182505537/3940598*4106118243^(13/23) 7014087330000112 a001 7778742049/7881196*4106118243^(14/23) 7014087330000112 a001 1288005205276069636/1836311903 7014087330000112 a001 2971215073/7881196*4106118243^(15/23) 7014087330000112 a001 3278735159921/3940598*1568397607^(7/22) 7014087330000112 a001 2504730781961/7881196*1568397607^(4/11) 7014087330000112 a001 1762289/1268860318*14662949395604^(8/9) 7014087330000112 a001 567451585/3940598*(1/2+1/2*5^(1/2))^32 7014087330000112 a001 567451585/3940598*505019158607^(4/7) 7014087330000112 a001 567451585/3940598*73681302247^(8/13) 7014087330000112 a001 567451585/3940598*10749957122^(2/3) 7014087330000112 a001 956722026041/7881196*1568397607^(9/22) 7014087330000112 a001 182717648081/3940598*1568397607^(5/11) 7014087330000112 a001 567451585/3940598*4106118243^(16/23) 7014087330000112 a001 139583862445/7881196*1568397607^(1/2) 7014087330000112 a001 53316291173/7881196*1568397607^(6/11) 7014087330000112 a001 10182505537/3940598*1568397607^(13/22) 7014087330000112 a001 7778742049/7881196*1568397607^(7/11) 7014087330000112 a001 2971215073/7881196*1568397607^(15/22) 7014087330000112 a001 5527800120546890/7880997 7014087330000112 a001 567451585/3940598*1568397607^(8/11) 7014087330000112 a001 3278735159921/3940598*599074578^(1/3) 7014087330000112 a001 4052739537881/7881196*599074578^(5/14) 7014087330000112 a001 2504730781961/7881196*599074578^(8/21) 7014087330000112 a001 433494437/7881196*45537549124^(2/3) 7014087330000112 a001 3524578/969323029*14662949395604^(6/7) 7014087330000112 a001 433494437/7881196*(1/2+1/2*5^(1/2))^34 7014087330000112 a001 433494437/7881196*10749957122^(17/24) 7014087330000112 a001 433494437/7881196*4106118243^(17/23) 7014087330000112 a001 956722026041/7881196*599074578^(3/7) 7014087330000112 a001 182717648081/3940598*599074578^(10/21) 7014087330000112 a001 433494437/7881196*1568397607^(17/22) 7014087330000112 a001 225851433717/7881196*599074578^(1/2) 7014087330000112 a001 139583862445/7881196*599074578^(11/21) 7014087330000112 a001 53316291173/7881196*599074578^(4/7) 7014087330000112 a001 10182505537/3940598*599074578^(13/21) 7014087330000112 a001 3524667/39604*599074578^(11/14) 7014087330000112 a001 12586269025/7881196*599074578^(9/14) 7014087330000112 a001 7778742049/7881196*599074578^(2/3) 7014087330000112 a001 2971215073/7881196*599074578^(5/7) 7014087330000112 a001 567451585/3940598*599074578^(16/21) 7014087330000112 a001 93958713454974997/133957148 7014087330000112 a001 433494437/7881196*599074578^(17/21) 7014087330000112 a001 3278735159921/3940598*228826127^(7/20) 7014087330000112 a001 4052739537881/7881196*228826127^(3/8) 7014087330000112 a001 165580141/7881196*2537720636^(4/5) 7014087330000112 a001 165580141/7881196*45537549124^(12/17) 7014087330000112 a001 165580141/7881196*14662949395604^(4/7) 7014087330000112 a001 165580141/7881196*(1/2+1/2*5^(1/2))^36 7014087330000112 a001 165580141/7881196*505019158607^(9/14) 7014087330000112 a001 3524578/370248451*505019158607^(13/14) 7014087330000112 a001 165580141/7881196*192900153618^(2/3) 7014087330000112 a001 165580141/7881196*73681302247^(9/13) 7014087330000112 a001 165580141/7881196*10749957122^(3/4) 7014087330000112 a001 165580141/7881196*4106118243^(18/23) 7014087330000112 a001 165580141/7881196*1568397607^(9/11) 7014087330000112 a001 2504730781961/7881196*228826127^(2/5) 7014087330000112 a001 956722026041/7881196*228826127^(9/20) 7014087330000112 a001 182717648081/3940598*228826127^(1/2) 7014087330000112 a001 165580141/7881196*599074578^(6/7) 7014087330000113 a001 139583862445/7881196*228826127^(11/20) 7014087330000113 a001 53316291173/7881196*228826127^(3/5) 7014087330000113 a001 32951280099/7881196*228826127^(5/8) 7014087330000113 a001 10182505537/3940598*228826127^(13/20) 7014087330000113 a001 7778742049/7881196*228826127^(7/10) 7014087330000113 a001 66978574/1970299*228826127^(7/8) 7014087330000113 a001 2971215073/7881196*228826127^(3/4) 7014087330000113 a001 567451585/3940598*228826127^(4/5) 7014087330000113 a001 433494437/7881196*228826127^(17/20) 7014087330000113 a001 71778070001176772/102334155 7014087330000113 a001 165580141/7881196*228826127^(9/10) 7014087330000113 a001 3278735159921/3940598*87403803^(7/19) 7014087330000113 a001 1762289/70711162*312119004989^(10/11) 7014087330000113 a001 31622993/3940598*817138163596^(2/3) 7014087330000113 a001 31622993/3940598*(1/2+1/2*5^(1/2))^38 7014087330000113 a001 1762289/70711162*3461452808002^(5/6) 7014087330000113 a001 31622993/3940598*10749957122^(19/24) 7014087330000113 a001 31622993/3940598*4106118243^(19/23) 7014087330000113 a001 31622993/3940598*1568397607^(19/22) 7014087330000113 a001 31622993/3940598*599074578^(19/21) 7014087330000113 a001 2504730781961/7881196*87403803^(8/19) 7014087330000113 a001 956722026041/7881196*87403803^(9/19) 7014087330000113 a001 591286729879/7881196*87403803^(1/2) 7014087330000113 a001 31622993/3940598*228826127^(19/20) 7014087330000113 a001 182717648081/3940598*87403803^(10/19) 7014087330000113 a001 139583862445/7881196*87403803^(11/19) 7014087330000113 a001 53316291173/7881196*87403803^(12/19) 7014087330000113 a001 10182505537/3940598*87403803^(13/19) 7014087330000113 a001 7778742049/7881196*87403803^(14/19) 7014087330000113 a001 2971215073/7881196*87403803^(15/19) 7014087330000113 a001 567451585/3940598*87403803^(16/19) 7014087330000113 a001 433494437/7881196*87403803^(17/19) 7014087330000113 a001 27416783093580322/39088169 7014087330000113 a001 165580141/7881196*87403803^(18/19) 7014087330000115 a001 24157817/7881196*2537720636^(8/9) 7014087330000115 a001 3524578/54018521*45537549124^(16/17) 7014087330000115 a001 24157817/7881196*312119004989^(8/11) 7014087330000115 a001 24157817/7881196*(1/2+1/2*5^(1/2))^40 7014087330000115 a001 24157817/7881196*23725150497407^(5/8) 7014087330000115 a001 3524578/54018521*192900153618^(8/9) 7014087330000115 a001 24157817/7881196*73681302247^(10/13) 7014087330000115 a001 3524578/54018521*73681302247^(12/13) 7014087330000115 a001 24157817/7881196*28143753123^(4/5) 7014087330000115 a001 24157817/7881196*10749957122^(5/6) 7014087330000115 a001 24157817/7881196*4106118243^(20/23) 7014087330000115 a001 24157817/7881196*1568397607^(10/11) 7014087330000115 a001 24157817/7881196*599074578^(20/21) 7014087330000115 a001 3278735159921/3940598*33385282^(7/18) 7014087330000115 a001 4052739537881/7881196*33385282^(5/12) 7014087330000115 a001 2504730781961/7881196*33385282^(4/9) 7014087330000116 a001 956722026041/7881196*33385282^(1/2) 7014087330000116 a001 182717648081/3940598*33385282^(5/9) 7014087330000116 a001 225851433717/7881196*33385282^(7/12) 7014087330000116 a001 139583862445/7881196*33385282^(11/18) 7014087330000117 a001 53316291173/7881196*33385282^(2/3) 7014087330000117 a001 10182505537/3940598*33385282^(13/18) 7014087330000117 a001 12586269025/7881196*33385282^(3/4) 7014087330000117 a001 7778742049/7881196*33385282^(7/9) 7014087330000118 a001 2971215073/7881196*33385282^(5/6) 7014087330000118 a001 567451585/3940598*33385282^(8/9) 7014087330000118 a001 3524667/39604*33385282^(11/12) 7014087330000118 a001 433494437/7881196*33385282^(17/18) 7014087330000119 a001 5236139639782097/7465176 7014087330000123 a001 516002918640/4250681*4870847^(9/16) 7014087330000129 a001 9227465/7881196*2537720636^(14/15) 7014087330000129 a001 9227465/7881196*17393796001^(6/7) 7014087330000129 a001 9227465/7881196*45537549124^(14/17) 7014087330000129 a001 9227465/7881196*817138163596^(14/19) 7014087330000129 a001 9227465/7881196*14662949395604^(2/3) 7014087330000129 a001 3524578/20633239*(1/2+1/2*5^(1/2))^46 7014087330000129 a001 9227465/7881196*(1/2+1/2*5^(1/2))^42 7014087330000129 a001 9227465/7881196*505019158607^(3/4) 7014087330000129 a001 9227465/7881196*192900153618^(7/9) 7014087330000129 a001 9227465/7881196*10749957122^(7/8) 7014087330000129 a001 3524578/20633239*10749957122^(23/24) 7014087330000129 a001 9227465/7881196*4106118243^(21/23) 7014087330000129 a001 9227465/7881196*1568397607^(21/22) 7014087330000130 a001 3278735159921/3940598*12752043^(7/17) 7014087330000133 a001 2504730781961/7881196*12752043^(8/17) 7014087330000134 a001 387002188980/1970299*12752043^(1/2) 7014087330000135 a001 956722026041/7881196*12752043^(9/17) 7014087330000138 a001 182717648081/3940598*12752043^(10/17) 7014087330000140 a001 139583862445/7881196*12752043^(11/17) 7014087330000141 a001 1515744265389/4769326*4870847^(1/2) 7014087330000141 a001 591286729879/12752043*4870847^(5/8) 7014087330000143 a001 53316291173/7881196*12752043^(12/17) 7014087330000145 a001 10182505537/3940598*12752043^(13/17) 7014087330000148 a001 7778742049/7881196*12752043^(14/17) 7014087330000150 a001 2971215073/7881196*12752043^(15/17) 7014087330000153 a001 567451585/3940598*12752043^(16/17) 7014087330000156 a001 4000054745112260/5702887 7014087330000160 a001 4052739537881/33385282*4870847^(9/16) 7014087330000160 a001 75283811239/4250681*4870847^(11/16) 7014087330000164 a001 6557470319842/20633239*4870847^(1/2) 7014087330000165 a001 3536736619241/29134601*4870847^(9/16) 7014087330000168 a001 6557470319842/54018521*4870847^(9/16) 7014087330000178 a001 774004377960/16692641*4870847^(5/8) 7014087330000178 a001 86267571272/12752043*4870847^(3/4) 7014087330000182 a001 2504730781961/20633239*4870847^(9/16) 7014087330000183 a001 4052739537881/87403803*4870847^(5/8) 7014087330000184 a001 225749145909/4868641*4870847^(5/8) 7014087330000185 a001 3278735159921/70711162*4870847^(5/8) 7014087330000187 a001 2504730781961/54018521*4870847^(5/8) 7014087330000196 a001 591286729879/33385282*4870847^(11/16) 7014087330000197 a001 10983760033/4250681*4870847^(13/16) 7014087330000201 a001 956722026041/20633239*4870847^(5/8) 7014087330000202 a001 516002918640/29134601*4870847^(11/16) 7014087330000203 a001 4052739537881/228826127*4870847^(11/16) 7014087330000203 a001 3536736619241/199691526*4870847^(11/16) 7014087330000203 a001 6557470319842/370248451*4870847^(11/16) 7014087330000203 a001 2504730781961/141422324*4870847^(11/16) 7014087330000205 a001 956722026041/54018521*4870847^(11/16) 7014087330000215 a001 32264490531/4769326*4870847^(3/4) 7014087330000215 a001 12586269025/12752043*4870847^(7/8) 7014087330000219 a001 365435296162/20633239*4870847^(11/16) 7014087330000220 a001 591286729879/87403803*4870847^(3/4) 7014087330000221 a001 1548008755920/228826127*4870847^(3/4) 7014087330000221 a001 4052739537881/599074578*4870847^(3/4) 7014087330000221 a001 1515744265389/224056801*4870847^(3/4) 7014087330000221 a001 6557470319842/969323029*4870847^(3/4) 7014087330000221 a001 2504730781961/370248451*4870847^(3/4) 7014087330000222 a001 956722026041/141422324*4870847^(3/4) 7014087330000224 a001 365435296162/54018521*4870847^(3/4) 7014087330000225 a001 1762289/3940598*312119004989^(4/5) 7014087330000225 a001 1762289/3940598*(1/2+1/2*5^(1/2))^44 7014087330000225 a001 1762289/3940598*23725150497407^(11/16) 7014087330000225 a001 1762289/3940598*73681302247^(11/13) 7014087330000225 a001 1762289/3940598*10749957122^(11/12) 7014087330000225 a001 1762289/3940598*4106118243^(22/23) 7014087330000233 a001 43133785636/16692641*4870847^(13/16) 7014087330000234 a001 1602508992/4250681*4870847^(15/16) 7014087330000238 a001 139583862445/20633239*4870847^(3/4) 7014087330000239 a001 75283811239/29134601*4870847^(13/16) 7014087330000240 a001 591286729879/228826127*4870847^(13/16) 7014087330000240 a001 86000486440/33281921*4870847^(13/16) 7014087330000240 a001 4052739537881/1568397607*4870847^(13/16) 7014087330000240 a001 3536736619241/1368706081*4870847^(13/16) 7014087330000240 a001 3278735159921/1268860318*4870847^(13/16) 7014087330000240 a001 2504730781961/969323029*4870847^(13/16) 7014087330000240 a001 956722026041/370248451*4870847^(13/16) 7014087330000240 a001 182717648081/70711162*4870847^(13/16) 7014087330000242 a001 3278735159921/3940598*4870847^(7/16) 7014087330000242 a001 139583862445/54018521*4870847^(13/16) 7014087330000252 a001 32951280099/33385282*4870847^(7/8) 7014087330000252 a001 1527884955772552/2178309 7014087330000256 a001 53316291173/20633239*4870847^(13/16) 7014087330000257 a001 86267571272/87403803*4870847^(7/8) 7014087330000258 a001 225851433717/228826127*4870847^(7/8) 7014087330000258 a001 591286729879/599074578*4870847^(7/8) 7014087330000258 a001 1548008755920/1568397607*4870847^(7/8) 7014087330000258 a001 4052739537881/4106118243*4870847^(7/8) 7014087330000258 a001 4807525989/4870846*4870847^(7/8) 7014087330000258 a001 6557470319842/6643838879*4870847^(7/8) 7014087330000258 a001 2504730781961/2537720636*4870847^(7/8) 7014087330000258 a001 956722026041/969323029*4870847^(7/8) 7014087330000258 a001 365435296162/370248451*4870847^(7/8) 7014087330000259 a001 139583862445/141422324*4870847^(7/8) 7014087330000260 a001 2504730781961/7881196*4870847^(1/2) 7014087330000261 a001 53316291173/54018521*4870847^(7/8) 7014087330000270 a001 12586269025/33385282*4870847^(15/16) 7014087330000275 a001 20365011074/20633239*4870847^(7/8) 7014087330000276 a001 10983760033/29134601*4870847^(15/16) 7014087330000277 a001 86267571272/228826127*4870847^(15/16) 7014087330000277 a001 267913919/710646*4870847^(15/16) 7014087330000277 a001 591286729879/1568397607*4870847^(15/16) 7014087330000277 a001 516002918640/1368706081*4870847^(15/16) 7014087330000277 a001 4052739537881/10749957122*4870847^(15/16) 7014087330000277 a001 3536736619241/9381251041*4870847^(15/16) 7014087330000277 a001 6557470319842/17393796001*4870847^(15/16) 7014087330000277 a001 2504730781961/6643838879*4870847^(15/16) 7014087330000277 a001 956722026041/2537720636*4870847^(15/16) 7014087330000277 a001 365435296162/969323029*4870847^(15/16) 7014087330000277 a001 139583862445/370248451*4870847^(15/16) 7014087330000277 a001 53316291173/141422324*4870847^(15/16) 7014087330000279 a001 956722026041/7881196*4870847^(9/16) 7014087330000279 a001 20365011074/54018521*4870847^(15/16) 7014087330000289 a001 72756426465360/103729 7014087330000293 a001 7778742049/20633239*4870847^(15/16) 7014087330000293 a001 1527884955772561/2178309 7014087330000297 a001 182717648081/3940598*4870847^(5/8) 7014087330000298 a001 1527884955772562/2178309 7014087330000312 a001 1527884955772565/2178309 7014087330000316 a001 139583862445/7881196*4870847^(11/16) 7014087330000334 a001 53316291173/7881196*4870847^(3/4) 7014087330000353 a001 10182505537/3940598*4870847^(13/16) 7014087330000371 a001 7778742049/7881196*4870847^(7/8) 7014087330000390 a001 2971215073/7881196*4870847^(15/16) 7014087330000408 a001 1527884955772586/2178309 7014087330000478 a001 1346269/4870847*45537549124^(15/17) 7014087330000478 a001 1346269/4870847*312119004989^(9/11) 7014087330000478 a001 1346269/4870847*14662949395604^(5/7) 7014087330000478 a001 1346269/4870847*(1/2+1/2*5^(1/2))^45 7014087330000478 a001 2178309/3010349*(1/2+1/2*5^(1/2))^43 7014087330000478 a001 1346269/4870847*192900153618^(5/6) 7014087330000478 a001 1346269/4870847*28143753123^(9/10) 7014087330000478 a001 1346269/4870847*10749957122^(15/16) 7014087330000514 a001 2178309*1860498^(2/5) 7014087330000649 a001 4052739537881/4870847*1860498^(7/15) 7014087330000661 a001 2472169789339907/3524578 7014087330000671 a001 1134903170/3010349*7881196^(10/11) 7014087330000681 a001 4807526976/3010349*7881196^(9/11) 7014087330000691 a001 20365011074/3010349*7881196^(8/11) 7014087330000698 a001 53316291173/3010349*7881196^(2/3) 7014087330000702 a001 86267571272/3010349*7881196^(7/11) 7014087330000712 a001 365435296162/3010349*7881196^(6/11) 7014087330000717 a001 2504730781961/4870847*1860498^(1/2) 7014087330000722 a001 1548008755920/3010349*7881196^(5/11) 7014087330000730 a001 1346269/12752043*(1/2+1/2*5^(1/2))^47 7014087330000730 a001 5702887/3010349*(1/2+1/2*5^(1/2))^41 7014087330000732 a001 6557470319842/3010349*7881196^(4/11) 7014087330000736 a001 10610209857723/3010349*7881196^(1/3) 7014087330000757 a001 6472224534452544/9227465 7014087330000759 a001 1134903170/3010349*20633239^(6/7) 7014087330000760 a001 2971215073/3010349*20633239^(4/5) 7014087330000762 a001 12586269025/3010349*20633239^(5/7) 7014087330000764 a001 86267571272/3010349*20633239^(3/5) 7014087330000764 a001 139583862445/3010349*20633239^(4/7) 7014087330000766 a001 1548008755920/3010349*20633239^(3/7) 7014087330000767 a001 2504730781961/3010349*20633239^(2/5) 7014087330000767 a001 14930352/3010349*2537720636^(13/15) 7014087330000767 a001 14930352/3010349*45537549124^(13/17) 7014087330000767 a001 1346269/33385282*14662949395604^(7/9) 7014087330000767 a001 1346269/33385282*(1/2+1/2*5^(1/2))^49 7014087330000767 a001 14930352/3010349*14662949395604^(13/21) 7014087330000767 a001 14930352/3010349*(1/2+1/2*5^(1/2))^39 7014087330000767 a001 1346269/33385282*505019158607^(7/8) 7014087330000767 a001 14930352/3010349*192900153618^(13/18) 7014087330000767 a001 14930352/3010349*73681302247^(3/4) 7014087330000767 a001 14930352/3010349*10749957122^(13/16) 7014087330000767 a001 14930352/3010349*599074578^(13/14) 7014087330000771 a001 16944503814017725/24157817 7014087330000773 a001 1346269/87403803*817138163596^(17/19) 7014087330000773 a001 1346269/87403803*14662949395604^(17/21) 7014087330000773 a001 39088169/3010349*(1/2+1/2*5^(1/2))^37 7014087330000773 a001 1346269/87403803*192900153618^(17/18) 7014087330000773 a001 190391789303007/271442 7014087330000773 a001 267914296/3010349*141422324^(11/13) 7014087330000773 a001 1134903170/3010349*141422324^(10/13) 7014087330000773 a001 4807526976/3010349*141422324^(9/13) 7014087330000773 a001 7778742049/3010349*141422324^(2/3) 7014087330000773 a001 20365011074/3010349*141422324^(8/13) 7014087330000773 a001 86267571272/3010349*141422324^(7/13) 7014087330000773 a001 365435296162/3010349*141422324^(6/13) 7014087330000773 a001 1548008755920/3010349*141422324^(5/13) 7014087330000773 a001 102334155/3010349*2537720636^(7/9) 7014087330000773 a001 102334155/3010349*17393796001^(5/7) 7014087330000773 a001 102334155/3010349*312119004989^(7/11) 7014087330000773 a001 102334155/3010349*14662949395604^(5/9) 7014087330000773 a001 102334155/3010349*(1/2+1/2*5^(1/2))^35 7014087330000773 a001 102334155/3010349*505019158607^(5/8) 7014087330000773 a001 102334155/3010349*28143753123^(7/10) 7014087330000773 a001 102334155/3010349*599074578^(5/6) 7014087330000773 a001 1346269*141422324^(1/3) 7014087330000773 a001 6557470319842/3010349*141422324^(4/13) 7014087330000773 a001 116139356908784168/165580141 7014087330000773 a001 267914296/3010349*2537720636^(11/15) 7014087330000773 a001 267914296/3010349*45537549124^(11/17) 7014087330000773 a001 267914296/3010349*312119004989^(3/5) 7014087330000773 a001 267914296/3010349*14662949395604^(11/21) 7014087330000773 a001 267914296/3010349*(1/2+1/2*5^(1/2))^33 7014087330000773 a001 1346269/599074578*3461452808002^(11/12) 7014087330000773 a001 267914296/3010349*192900153618^(11/18) 7014087330000773 a001 267914296/3010349*10749957122^(11/16) 7014087330000773 a001 267914296/3010349*1568397607^(3/4) 7014087330000773 a001 102334155/3010349*228826127^(7/8) 7014087330000773 a001 304056783818751873/433494437 7014087330000773 a001 267914296/3010349*599074578^(11/14) 7014087330000773 a001 1346269/1568397607*14662949395604^(19/21) 7014087330000773 a001 701408733/3010349*(1/2+1/2*5^(1/2))^31 7014087330000773 a001 701408733/3010349*9062201101803^(1/2) 7014087330000773 a001 796030994547471451/1134903170 7014087330000773 a001 4807526976/3010349*2537720636^(3/5) 7014087330000773 a001 12586269025/3010349*2537720636^(5/9) 7014087330000773 a001 20365011074/3010349*2537720636^(8/15) 7014087330000773 a001 86267571272/3010349*2537720636^(7/15) 7014087330000773 a001 139583862445/3010349*2537720636^(4/9) 7014087330000773 a001 365435296162/3010349*2537720636^(2/5) 7014087330000773 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^29 7014087330000773 a001 1836311903/3010349*1322157322203^(1/2) 7014087330000773 a001 1548008755920/3010349*2537720636^(1/3) 7014087330000773 a001 6557470319842/3010349*2537720636^(4/15) 7014087330000773 a001 2084036199823662480/2971215073 7014087330000773 a001 4807526976/3010349*45537549124^(9/17) 7014087330000773 a001 4807526976/3010349*817138163596^(9/19) 7014087330000773 a001 4807526976/3010349*14662949395604^(3/7) 7014087330000773 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^27 7014087330000773 a001 4807526976/3010349*192900153618^(1/2) 7014087330000773 a001 4807526976/3010349*10749957122^(9/16) 7014087330000773 a001 5456077604923515989/7778742049 7014087330000773 a001 86267571272/3010349*17393796001^(3/7) 7014087330000773 a001 12586269025/3010349*312119004989^(5/11) 7014087330000773 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^25 7014087330000773 a001 12586269025/3010349*3461452808002^(5/12) 7014087330000773 a001 2504730781961/3010349*17393796001^(2/7) 7014087330000773 a001 12586269025/3010349*28143753123^(1/2) 7014087330000773 a001 14284196614946885487/20365011074 7014087330000773 a001 86267571272/3010349*45537549124^(7/17) 7014087330000773 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^23 7014087330000773 a001 365435296162/3010349*45537549124^(6/17) 7014087330000773 a001 591286729879/3010349*45537549124^(1/3) 7014087330000773 a001 1548008755920/3010349*45537549124^(5/17) 7014087330000773 a001 6557470319842/3010349*45537549124^(4/17) 7014087330000773 a001 86267571272/3010349*14662949395604^(1/3) 7014087330000773 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^21 7014087330000773 a001 86267571272/3010349*192900153618^(7/18) 7014087330000773 a001 225851433717/3010349*817138163596^(1/3) 7014087330000773 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^19 7014087330000773 a001 1548008755920/3010349*312119004989^(3/11) 7014087330000773 a001 10610209857723/3010349*312119004989^(1/5) 7014087330000773 a001 1548008755920/3010349*14662949395604^(5/21) 7014087330000773 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^15 7014087330000773 a001 1346269*(1/2+1/2*5^(1/2))^13 7014087330000773 a001 10610209857723/3010349*(1/2+1/2*5^(1/2))^11 7014087330000773 a001 6557470319842/3010349*(1/2+1/2*5^(1/2))^12 7014087330000773 a001 2504730781961/3010349*14662949395604^(2/9) 7014087330000773 a001 2504730781961/3010349*(1/2+1/2*5^(1/2))^14 7014087330000773 a001 365435296162/3010349*14662949395604^(2/7) 7014087330000773 a001 365435296162/3010349*(1/2+1/2*5^(1/2))^18 7014087330000773 a001 6557470319842/3010349*192900153618^(2/9) 7014087330000773 a001 1548008755920/3010349*192900153618^(5/18) 7014087330000773 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^20 7014087330000773 a001 139583862445/3010349*23725150497407^(5/16) 7014087330000773 a001 365435296162/3010349*192900153618^(1/3) 7014087330000773 a001 139583862445/3010349*505019158607^(5/14) 7014087330000773 a001 6557470319842/3010349*73681302247^(3/13) 7014087330000773 a001 1346269*73681302247^(1/4) 7014087330000773 a001 956722026041/3010349*73681302247^(4/13) 7014087330000773 a001 53316291173/3010349*312119004989^(2/5) 7014087330000773 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^22 7014087330000773 a001 139583862445/3010349*73681302247^(5/13) 7014087330000773 a001 20365011074/3010349*45537549124^(8/17) 7014087330000773 a001 1548008755920/3010349*28143753123^(3/10) 7014087330000773 a001 20365011074/3010349*14662949395604^(8/21) 7014087330000773 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^24 7014087330000773 a001 20365011074/3010349*192900153618^(4/9) 7014087330000773 a001 139583862445/3010349*28143753123^(2/5) 7014087330000773 a001 20365011074/3010349*73681302247^(6/13) 7014087330000773 a001 8828119010023369498/12586269025 7014087330000773 a001 6557470319842/3010349*10749957122^(1/4) 7014087330000773 a001 2504730781961/3010349*10749957122^(7/24) 7014087330000773 a001 1548008755920/3010349*10749957122^(5/16) 7014087330000773 a001 956722026041/3010349*10749957122^(1/3) 7014087330000773 a001 365435296162/3010349*10749957122^(3/8) 7014087330000773 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^26 7014087330000773 a001 7778742049/3010349*73681302247^(1/2) 7014087330000773 a001 139583862445/3010349*10749957122^(5/12) 7014087330000773 a001 86267571272/3010349*10749957122^(7/16) 7014087330000773 a001 53316291173/3010349*10749957122^(11/24) 7014087330000773 a001 20365011074/3010349*10749957122^(1/2) 7014087330000773 a001 7778742049/3010349*10749957122^(13/24) 7014087330000773 a001 3372041405099853509/4807526976 7014087330000773 a001 6557470319842/3010349*4106118243^(6/23) 7014087330000773 a001 2504730781961/3010349*4106118243^(7/23) 7014087330000773 a001 956722026041/3010349*4106118243^(8/23) 7014087330000773 a001 2971215073/3010349*17393796001^(4/7) 7014087330000773 a001 1346269/6643838879*14662949395604^(20/21) 7014087330000773 a001 2971215073/3010349*14662949395604^(4/9) 7014087330000773 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^28 7014087330000773 a001 2971215073/3010349*505019158607^(1/2) 7014087330000773 a001 2971215073/3010349*73681302247^(7/13) 7014087330000773 a001 365435296162/3010349*4106118243^(9/23) 7014087330000773 a001 139583862445/3010349*4106118243^(10/23) 7014087330000773 a001 2971215073/3010349*10749957122^(7/12) 7014087330000773 a001 53316291173/3010349*4106118243^(11/23) 7014087330000773 a001 32951280099/3010349*4106118243^(1/2) 7014087330000773 a001 20365011074/3010349*4106118243^(12/23) 7014087330000773 a001 7778742049/3010349*4106118243^(13/23) 7014087330000773 a001 1134903170/3010349*2537720636^(2/3) 7014087330000773 a001 2971215073/3010349*4106118243^(14/23) 7014087330000773 a001 1288005205276191029/1836311903 7014087330000773 a001 10610209857723/3010349*1568397607^(1/4) 7014087330000773 a001 6557470319842/3010349*1568397607^(3/11) 7014087330000773 a001 2504730781961/3010349*1568397607^(7/22) 7014087330000773 a001 956722026041/3010349*1568397607^(4/11) 7014087330000773 a001 1134903170/3010349*45537549124^(10/17) 7014087330000773 a001 1134903170/3010349*312119004989^(6/11) 7014087330000773 a001 1134903170/3010349*14662949395604^(10/21) 7014087330000773 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^30 7014087330000773 a001 1134903170/3010349*192900153618^(5/9) 7014087330000773 a001 1134903170/3010349*28143753123^(3/5) 7014087330000773 a001 1134903170/3010349*10749957122^(5/8) 7014087330000773 a001 365435296162/3010349*1568397607^(9/22) 7014087330000773 a001 139583862445/3010349*1568397607^(5/11) 7014087330000773 a001 1134903170/3010349*4106118243^(15/23) 7014087330000773 a001 53316291173/3010349*1568397607^(1/2) 7014087330000773 a001 20365011074/3010349*1568397607^(6/11) 7014087330000773 a001 7778742049/3010349*1568397607^(13/22) 7014087330000773 a001 2971215073/3010349*1568397607^(7/11) 7014087330000773 a001 491974210728719578/701408733 7014087330000773 a001 1134903170/3010349*1568397607^(15/22) 7014087330000774 a001 6557470319842/3010349*599074578^(2/7) 7014087330000774 a001 2504730781961/3010349*599074578^(1/3) 7014087330000774 a001 1548008755920/3010349*599074578^(5/14) 7014087330000774 a001 956722026041/3010349*599074578^(8/21) 7014087330000774 a001 1346269/969323029*14662949395604^(8/9) 7014087330000774 a001 433494437/3010349*(1/2+1/2*5^(1/2))^32 7014087330000774 a001 433494437/3010349*23725150497407^(1/2) 7014087330000774 a001 433494437/3010349*505019158607^(4/7) 7014087330000774 a001 433494437/3010349*73681302247^(8/13) 7014087330000774 a001 433494437/3010349*10749957122^(2/3) 7014087330000774 a001 433494437/3010349*4106118243^(16/23) 7014087330000774 a001 365435296162/3010349*599074578^(3/7) 7014087330000774 a001 139583862445/3010349*599074578^(10/21) 7014087330000774 a001 433494437/3010349*1568397607^(8/11) 7014087330000774 a001 86267571272/3010349*599074578^(1/2) 7014087330000774 a001 53316291173/3010349*599074578^(11/21) 7014087330000774 a001 20365011074/3010349*599074578^(4/7) 7014087330000774 a001 7778742049/3010349*599074578^(13/21) 7014087330000774 a001 4807526976/3010349*599074578^(9/14) 7014087330000774 a001 2971215073/3010349*599074578^(2/3) 7014087330000774 a001 1134903170/3010349*599074578^(5/7) 7014087330000774 a001 187917426909967705/267914296 7014087330000774 a001 433494437/3010349*599074578^(16/21) 7014087330000774 a001 63245986/3010349*141422324^(12/13) 7014087330000774 a001 6557470319842/3010349*228826127^(3/10) 7014087330000774 a001 2504730781961/3010349*228826127^(7/20) 7014087330000774 a001 1548008755920/3010349*228826127^(3/8) 7014087330000774 a001 165580141/3010349*45537549124^(2/3) 7014087330000774 a001 1346269/370248451*14662949395604^(6/7) 7014087330000774 a001 165580141/3010349*(1/2+1/2*5^(1/2))^34 7014087330000774 a001 165580141/3010349*10749957122^(17/24) 7014087330000774 a001 165580141/3010349*4106118243^(17/23) 7014087330000774 a001 165580141/3010349*1568397607^(17/22) 7014087330000774 a001 956722026041/3010349*228826127^(2/5) 7014087330000774 a001 365435296162/3010349*228826127^(9/20) 7014087330000774 a001 139583862445/3010349*228826127^(1/2) 7014087330000774 a001 165580141/3010349*599074578^(17/21) 7014087330000774 a001 53316291173/3010349*228826127^(11/20) 7014087330000774 a001 20365011074/3010349*228826127^(3/5) 7014087330000774 a001 12586269025/3010349*228826127^(5/8) 7014087330000774 a001 7778742049/3010349*228826127^(13/20) 7014087330000774 a001 2971215073/3010349*228826127^(7/10) 7014087330000774 a001 1134903170/3010349*228826127^(3/4) 7014087330000774 a001 433494437/3010349*228826127^(4/5) 7014087330000774 a001 71778070001183537/102334155 7014087330000774 a001 165580141/3010349*228826127^(17/20) 7014087330000774 a001 6557470319842/3010349*87403803^(6/19) 7014087330000774 a001 2504730781961/3010349*87403803^(7/19) 7014087330000774 a001 63245986/3010349*2537720636^(4/5) 7014087330000774 a001 63245986/3010349*45537549124^(12/17) 7014087330000774 a001 1346269/141422324*23725150497407^(13/16) 7014087330000774 a001 63245986/3010349*(1/2+1/2*5^(1/2))^36 7014087330000774 a001 63245986/3010349*505019158607^(9/14) 7014087330000774 a001 1346269/141422324*505019158607^(13/14) 7014087330000774 a001 63245986/3010349*192900153618^(2/3) 7014087330000774 a001 63245986/3010349*73681302247^(9/13) 7014087330000774 a001 63245986/3010349*10749957122^(3/4) 7014087330000774 a001 63245986/3010349*4106118243^(18/23) 7014087330000774 a001 63245986/3010349*1568397607^(9/11) 7014087330000774 a001 63245986/3010349*599074578^(6/7) 7014087330000774 a001 956722026041/3010349*87403803^(8/19) 7014087330000774 a001 365435296162/3010349*87403803^(9/19) 7014087330000774 a001 225851433717/3010349*87403803^(1/2) 7014087330000774 a001 63245986/3010349*228826127^(9/10) 7014087330000774 a001 139583862445/3010349*87403803^(10/19) 7014087330000774 a001 53316291173/3010349*87403803^(11/19) 7014087330000774 a001 20365011074/3010349*87403803^(12/19) 7014087330000774 a001 7778742049/3010349*87403803^(13/19) 7014087330000774 a001 2971215073/3010349*87403803^(14/19) 7014087330000774 a001 1134903170/3010349*87403803^(15/19) 7014087330000774 a001 433494437/3010349*87403803^(16/19) 7014087330000774 a001 165580141/3010349*87403803^(17/19) 7014087330000774 a001 27416783093582906/39088169 7014087330000775 a001 63245986/3010349*87403803^(18/19) 7014087330000776 a001 6557470319842/3010349*33385282^(1/3) 7014087330000776 a001 1346269/54018521*312119004989^(10/11) 7014087330000776 a001 24157817/3010349*817138163596^(2/3) 7014087330000776 a001 24157817/3010349*(1/2+1/2*5^(1/2))^38 7014087330000776 a001 1346269/54018521*3461452808002^(5/6) 7014087330000776 a001 24157817/3010349*10749957122^(19/24) 7014087330000776 a001 24157817/3010349*4106118243^(19/23) 7014087330000776 a001 24157817/3010349*1568397607^(19/22) 7014087330000776 a001 24157817/3010349*599074578^(19/21) 7014087330000776 a001 2504730781961/3010349*33385282^(7/18) 7014087330000776 a001 24157817/3010349*228826127^(19/20) 7014087330000776 a001 1548008755920/3010349*33385282^(5/12) 7014087330000776 a001 956722026041/3010349*33385282^(4/9) 7014087330000777 a001 365435296162/3010349*33385282^(1/2) 7014087330000777 a001 139583862445/3010349*33385282^(5/9) 7014087330000777 a001 86267571272/3010349*33385282^(7/12) 7014087330000777 a001 53316291173/3010349*33385282^(11/18) 7014087330000778 a001 20365011074/3010349*33385282^(2/3) 7014087330000778 a001 7778742049/3010349*33385282^(13/18) 7014087330000778 a001 4807526976/3010349*33385282^(3/4) 7014087330000778 a001 2971215073/3010349*33385282^(7/9) 7014087330000779 a001 1134903170/3010349*33385282^(5/6) 7014087330000779 a001 433494437/3010349*33385282^(8/9) 7014087330000779 a001 267914296/3010349*33385282^(11/12) 7014087330000779 a001 165580141/3010349*33385282^(17/18) 7014087330000780 a001 10472279279565181/14930352 7014087330000785 a001 1548008755920/4870847*1860498^(8/15) 7014087330000789 a001 6557470319842/3010349*12752043^(6/17) 7014087330000790 a001 9227465/3010349*2537720636^(8/9) 7014087330000790 a001 1346269/20633239*45537549124^(16/17) 7014087330000790 a001 9227465/3010349*312119004989^(8/11) 7014087330000790 a001 1346269/20633239*14662949395604^(16/21) 7014087330000790 a001 1346269/20633239*(1/2+1/2*5^(1/2))^48 7014087330000790 a001 9227465/3010349*(1/2+1/2*5^(1/2))^40 7014087330000790 a001 9227465/3010349*23725150497407^(5/8) 7014087330000790 a001 1346269/20633239*192900153618^(8/9) 7014087330000790 a001 9227465/3010349*73681302247^(10/13) 7014087330000790 a001 1346269/20633239*73681302247^(12/13) 7014087330000790 a001 9227465/3010349*28143753123^(4/5) 7014087330000790 a001 9227465/3010349*10749957122^(5/6) 7014087330000790 a001 9227465/3010349*4106118243^(20/23) 7014087330000790 a001 9227465/3010349*1568397607^(10/11) 7014087330000790 a001 9227465/3010349*599074578^(20/21) 7014087330000791 a001 2504730781961/3010349*12752043^(7/17) 7014087330000794 a001 956722026041/3010349*12752043^(8/17) 7014087330000795 a001 591286729879/3010349*12752043^(1/2) 7014087330000796 a001 365435296162/3010349*12752043^(9/17) 7014087330000799 a001 139583862445/3010349*12752043^(10/17) 7014087330000801 a001 53316291173/3010349*12752043^(11/17) 7014087330000804 a001 20365011074/3010349*12752043^(12/17) 7014087330000806 a001 7778742049/3010349*12752043^(13/17) 7014087330000809 a001 2971215073/3010349*12752043^(14/17) 7014087330000812 a001 1134903170/3010349*12752043^(15/17) 7014087330000814 a001 433494437/3010349*12752043^(16/17) 7014087330000817 a001 4000054745112637/5702887 7014087330000884 a001 6557470319842/3010349*4870847^(3/8) 7014087330000886 a001 3524578/3010349*2537720636^(14/15) 7014087330000886 a001 3524578/3010349*17393796001^(6/7) 7014087330000886 a001 3524578/3010349*45537549124^(14/17) 7014087330000886 a001 3524578/3010349*817138163596^(14/19) 7014087330000886 a001 1346269/7881196*(1/2+1/2*5^(1/2))^46 7014087330000886 a001 3524578/3010349*14662949395604^(2/3) 7014087330000886 a001 3524578/3010349*(1/2+1/2*5^(1/2))^42 7014087330000886 a001 3524578/3010349*505019158607^(3/4) 7014087330000886 a001 3524578/3010349*192900153618^(7/9) 7014087330000886 a001 3524578/3010349*10749957122^(7/8) 7014087330000886 a001 1346269/7881196*10749957122^(23/24) 7014087330000886 a001 3524578/3010349*4106118243^(21/23) 7014087330000886 a001 3524578/3010349*1568397607^(21/22) 7014087330000902 a001 3536736619241/4250681*1860498^(7/15) 7014087330000903 a001 2504730781961/3010349*4870847^(7/16) 7014087330000920 a001 591286729879/4870847*1860498^(3/5) 7014087330000921 a001 956722026041/3010349*4870847^(1/2) 7014087330000940 a001 365435296162/3010349*4870847^(9/16) 7014087330000958 a001 139583862445/3010349*4870847^(5/8) 7014087330000970 a001 6557470319842/12752043*1860498^(1/2) 7014087330000977 a001 53316291173/3010349*4870847^(11/16) 7014087330000995 a001 20365011074/3010349*4870847^(3/4) 7014087330001014 a001 7778742049/3010349*4870847^(13/16) 7014087330001029 a001 10610209857723/20633239*1860498^(1/2) 7014087330001032 a001 2971215073/3010349*4870847^(7/8) 7014087330001037 a001 4052739537881/12752043*1860498^(8/15) 7014087330001051 a001 1134903170/3010349*4870847^(15/16) 7014087330001055 a001 225851433717/4870847*1860498^(2/3) 7014087330001058 a001 3278735159921/3940598*1860498^(7/15) 7014087330001069 a001 1527884955772730/2178309 7014087330001074 a001 1515744265389/4769326*1860498^(8/15) 7014087330001097 a001 6557470319842/20633239*1860498^(8/15) 7014087330001122 a001 139583862445/4870847*1860498^(7/10) 7014087330001126 a001 4052739537881/7881196*1860498^(1/2) 7014087330001172 a001 516002918640/4250681*1860498^(3/5) 7014087330001190 a001 86267571272/4870847*1860498^(11/15) 7014087330001193 a001 2504730781961/7881196*1860498^(8/15) 7014087330001209 a001 4052739537881/33385282*1860498^(3/5) 7014087330001214 a001 3536736619241/29134601*1860498^(3/5) 7014087330001218 a001 6557470319842/54018521*1860498^(3/5) 7014087330001232 a001 2504730781961/20633239*1860498^(3/5) 7014087330001307 a001 591286729879/12752043*1860498^(2/3) 7014087330001325 a001 32951280099/4870847*1860498^(4/5) 7014087330001328 a001 956722026041/7881196*1860498^(3/5) 7014087330001344 a001 774004377960/16692641*1860498^(2/3) 7014087330001349 a001 4052739537881/87403803*1860498^(2/3) 7014087330001350 a001 225749145909/4868641*1860498^(2/3) 7014087330001351 a001 3278735159921/70711162*1860498^(2/3) 7014087330001353 a001 2504730781961/54018521*1860498^(2/3) 7014087330001367 a001 956722026041/20633239*1860498^(2/3) 7014087330001375 a001 365435296162/12752043*1860498^(7/10) 7014087330001392 a001 20365011074/4870847*1860498^(5/6) 7014087330001412 a001 956722026041/33385282*1860498^(7/10) 7014087330001417 a001 2504730781961/87403803*1860498^(7/10) 7014087330001418 a001 6557470319842/228826127*1860498^(7/10) 7014087330001418 a001 10610209857723/370248451*1860498^(7/10) 7014087330001418 a001 4052739537881/141422324*1860498^(7/10) 7014087330001420 a001 1548008755920/54018521*1860498^(7/10) 7014087330001434 a001 591286729879/20633239*1860498^(7/10) 7014087330001442 a001 75283811239/4250681*1860498^(11/15) 7014087330001460 a001 12586269025/4870847*1860498^(13/15) 7014087330001463 a001 182717648081/3940598*1860498^(2/3) 7014087330001479 a001 591286729879/33385282*1860498^(11/15) 7014087330001485 a001 516002918640/29134601*1860498^(11/15) 7014087330001485 a001 4052739537881/228826127*1860498^(11/15) 7014087330001485 a001 3536736619241/199691526*1860498^(11/15) 7014087330001486 a001 6557470319842/370248451*1860498^(11/15) 7014087330001486 a001 2504730781961/141422324*1860498^(11/15) 7014087330001488 a001 956722026041/54018521*1860498^(11/15) 7014087330001502 a001 365435296162/20633239*1860498^(11/15) 7014087330001528 a001 7778742049/4870847*1860498^(9/10) 7014087330001531 a001 225851433717/7881196*1860498^(7/10) 7014087330001547 a001 1346269/3010349*312119004989^(4/5) 7014087330001547 a001 1346269/3010349*(1/2+1/2*5^(1/2))^44 7014087330001547 a001 1346269/3010349*23725150497407^(11/16) 7014087330001547 a001 1346269/3010349*73681302247^(11/13) 7014087330001547 a001 1346269/3010349*10749957122^(11/12) 7014087330001547 a001 1346269/3010349*4106118243^(22/23) 7014087330001577 a001 86267571272/12752043*1860498^(4/5) 7014087330001584 a001 6557470319842/3010349*1860498^(2/5) 7014087330001595 a001 4807526976/4870847*1860498^(14/15) 7014087330001598 a001 139583862445/7881196*1860498^(11/15) 7014087330001614 a001 32264490531/4769326*1860498^(4/5) 7014087330001620 a001 591286729879/87403803*1860498^(4/5) 7014087330001620 a001 1548008755920/228826127*1860498^(4/5) 7014087330001621 a001 4052739537881/599074578*1860498^(4/5) 7014087330001621 a001 1515744265389/224056801*1860498^(4/5) 7014087330001621 a001 6557470319842/969323029*1860498^(4/5) 7014087330001621 a001 2504730781961/370248451*1860498^(4/5) 7014087330001621 a001 956722026041/141422324*1860498^(4/5) 7014087330001623 a001 365435296162/54018521*1860498^(4/5) 7014087330001637 a001 139583862445/20633239*1860498^(4/5) 7014087330001645 a001 53316291173/12752043*1860498^(5/6) 7014087330001682 a001 139583862445/33385282*1860498^(5/6) 7014087330001687 a001 365435296162/87403803*1860498^(5/6) 7014087330001688 a001 956722026041/228826127*1860498^(5/6) 7014087330001688 a001 2504730781961/599074578*1860498^(5/6) 7014087330001688 a001 6557470319842/1568397607*1860498^(5/6) 7014087330001688 a001 10610209857723/2537720636*1860498^(5/6) 7014087330001688 a001 4052739537881/969323029*1860498^(5/6) 7014087330001688 a001 1548008755920/370248451*1860498^(5/6) 7014087330001688 a001 591286729879/141422324*1860498^(5/6) 7014087330001691 a001 225851433717/54018521*1860498^(5/6) 7014087330001705 a001 86267571272/20633239*1860498^(5/6) 7014087330001713 a001 10983760033/4250681*1860498^(13/15) 7014087330001719 a001 2504730781961/3010349*1860498^(7/15) 7014087330001730 a001 72950015275683/104005 7014087330001734 a001 53316291173/7881196*1860498^(4/5) 7014087330001749 a001 43133785636/16692641*1860498^(13/15) 7014087330001755 a001 75283811239/29134601*1860498^(13/15) 7014087330001756 a001 591286729879/228826127*1860498^(13/15) 7014087330001756 a001 86000486440/33281921*1860498^(13/15) 7014087330001756 a001 4052739537881/1568397607*1860498^(13/15) 7014087330001756 a001 3536736619241/1368706081*1860498^(13/15) 7014087330001756 a001 3278735159921/1268860318*1860498^(13/15) 7014087330001756 a001 2504730781961/969323029*1860498^(13/15) 7014087330001756 a001 956722026041/370248451*1860498^(13/15) 7014087330001756 a001 182717648081/70711162*1860498^(13/15) 7014087330001758 a001 139583862445/54018521*1860498^(13/15) 7014087330001772 a001 53316291173/20633239*1860498^(13/15) 7014087330001780 a001 20365011074/12752043*1860498^(9/10) 7014087330001787 a001 1548008755920/3010349*1860498^(1/2) 7014087330001801 a001 32951280099/7881196*1860498^(5/6) 7014087330001817 a001 53316291173/33385282*1860498^(9/10) 7014087330001822 a001 139583862445/87403803*1860498^(9/10) 7014087330001823 a001 365435296162/228826127*1860498^(9/10) 7014087330001823 a001 956722026041/599074578*1860498^(9/10) 7014087330001823 a001 2504730781961/1568397607*1860498^(9/10) 7014087330001823 a001 6557470319842/4106118243*1860498^(9/10) 7014087330001823 a001 10610209857723/6643838879*1860498^(9/10) 7014087330001823 a001 4052739537881/2537720636*1860498^(9/10) 7014087330001823 a001 1548008755920/969323029*1860498^(9/10) 7014087330001823 a001 591286729879/370248451*1860498^(9/10) 7014087330001824 a001 225851433717/141422324*1860498^(9/10) 7014087330001826 a001 86267571272/54018521*1860498^(9/10) 7014087330001840 a001 32951280099/20633239*1860498^(9/10) 7014087330001848 a001 12586269025/12752043*1860498^(14/15) 7014087330001854 a001 956722026041/3010349*1860498^(8/15) 7014087330001869 a001 10182505537/3940598*1860498^(13/15) 7014087330001884 a001 32951280099/33385282*1860498^(14/15) 7014087330001890 a001 86267571272/87403803*1860498^(14/15) 7014087330001891 a001 225851433717/228826127*1860498^(14/15) 7014087330001891 a001 591286729879/599074578*1860498^(14/15) 7014087330001891 a001 1548008755920/1568397607*1860498^(14/15) 7014087330001891 a001 4052739537881/4106118243*1860498^(14/15) 7014087330001891 a001 4807525989/4870846*1860498^(14/15) 7014087330001891 a001 6557470319842/6643838879*1860498^(14/15) 7014087330001891 a001 2504730781961/2537720636*1860498^(14/15) 7014087330001891 a001 956722026041/969323029*1860498^(14/15) 7014087330001891 a001 365435296162/370248451*1860498^(14/15) 7014087330001891 a001 139583862445/141422324*1860498^(14/15) 7014087330001893 a001 53316291173/54018521*1860498^(14/15) 7014087330001907 a001 20365011074/20633239*1860498^(14/15) 7014087330001936 a001 12586269025/7881196*1860498^(9/10) 7014087330001983 a001 10610911312827/15128 7014087330001989 a001 365435296162/3010349*1860498^(3/5) 7014087330002004 a001 7778742049/7881196*1860498^(14/15) 7014087330002019 a001 72950015275686/104005 7014087330002031 a001 583600122205489/832040 7014087330002043 a001 58360012220549/83204 7014087330002124 a001 139583862445/3010349*1860498^(2/3) 7014087330002139 a001 291800061102749/416020 7014087330002192 a001 86267571272/3010349*1860498^(7/10) 7014087330002259 a001 53316291173/3010349*1860498^(11/15) 7014087330002395 a001 20365011074/3010349*1860498^(4/5) 7014087330002462 a001 12586269025/3010349*1860498^(5/6) 7014087330002530 a001 7778742049/3010349*1860498^(13/15) 7014087330002597 a001 4807526976/3010349*1860498^(9/10) 7014087330002665 a001 2971215073/3010349*1860498^(14/15) 7014087330002800 a001 583600122205553/832040 7014087330002933 a001 3536736619241/620166*710647^(5/14) 7014087330003278 a001 514229/1860498*45537549124^(15/17) 7014087330003278 a001 514229/1860498*312119004989^(9/11) 7014087330003278 a001 514229/1860498*14662949395604^(5/7) 7014087330003278 a001 514229/1860498*(1/2+1/2*5^(1/2))^45 7014087330003278 a001 832040/1149851*(1/2+1/2*5^(1/2))^43 7014087330003278 a001 514229/1860498*192900153618^(5/6) 7014087330003278 a001 514229/1860498*28143753123^(9/10) 7014087330003278 a001 514229/1860498*10749957122^(15/16) 7014087330003925 a001 4052739537881/1860498*710647^(3/7) 7014087330004040 a001 2971215073/439204*439204^(8/9) 7014087330004531 a001 944284833567787/1346269 7014087330004918 a001 832040*710647^(1/2) 7014087330005009 a001 514229/4870847*(1/2+1/2*5^(1/2))^47 7014087330005009 a001 2178309/1149851*(1/2+1/2*5^(1/2))^41 7014087330005192 a001 1236084894670752/1762289 7014087330005202 a001 433494437/1149851*7881196^(10/11) 7014087330005212 a001 1836311903/1149851*7881196^(9/11) 7014087330005222 a001 7778742049/1149851*7881196^(8/11) 7014087330005229 a001 20365011074/1149851*7881196^(2/3) 7014087330005233 a001 32951280099/1149851*7881196^(7/11) 7014087330005243 a001 139583862445/1149851*7881196^(6/11) 7014087330005253 a001 514229*7881196^(5/11) 7014087330005261 a001 5702887/1149851*2537720636^(13/15) 7014087330005261 a001 5702887/1149851*45537549124^(13/17) 7014087330005261 a001 514229/12752043*14662949395604^(7/9) 7014087330005261 a001 514229/12752043*(1/2+1/2*5^(1/2))^49 7014087330005261 a001 5702887/1149851*14662949395604^(13/21) 7014087330005261 a001 5702887/1149851*(1/2+1/2*5^(1/2))^39 7014087330005261 a001 514229/12752043*505019158607^(7/8) 7014087330005261 a001 5702887/1149851*192900153618^(13/18) 7014087330005261 a001 5702887/1149851*73681302247^(3/4) 7014087330005261 a001 5702887/1149851*10749957122^(13/16) 7014087330005261 a001 5702887/1149851*599074578^(13/14) 7014087330005263 a001 2504730781961/1149851*7881196^(4/11) 7014087330005267 a001 4052739537881/1149851*7881196^(1/3) 7014087330005274 a001 10610209857723/1149851*7881196^(3/11) 7014087330005288 a001 1294444906891345/1845493 7014087330005290 a001 433494437/1149851*20633239^(6/7) 7014087330005291 a001 1134903170/1149851*20633239^(4/5) 7014087330005293 a001 4807526976/1149851*20633239^(5/7) 7014087330005295 a001 32951280099/1149851*20633239^(3/5) 7014087330005295 a001 53316291173/1149851*20633239^(4/7) 7014087330005297 a001 514229*20633239^(3/7) 7014087330005298 a001 956722026041/1149851*20633239^(2/5) 7014087330005298 a001 514229/33385282*817138163596^(17/19) 7014087330005298 a001 514229/33385282*14662949395604^(17/21) 7014087330005298 a001 514229/33385282*(1/2+1/2*5^(1/2))^51 7014087330005298 a001 14930352/1149851*(1/2+1/2*5^(1/2))^37 7014087330005298 a001 514229/33385282*192900153618^(17/18) 7014087330005300 a001 6557470319842/1149851*20633239^(2/7) 7014087330005302 a001 16944503814028671/24157817 7014087330005304 a001 39088169/1149851*2537720636^(7/9) 7014087330005304 a001 39088169/1149851*17393796001^(5/7) 7014087330005304 a001 39088169/1149851*312119004989^(7/11) 7014087330005304 a001 39088169/1149851*14662949395604^(5/9) 7014087330005304 a001 39088169/1149851*(1/2+1/2*5^(1/2))^35 7014087330005304 a001 39088169/1149851*505019158607^(5/8) 7014087330005304 a001 39088169/1149851*28143753123^(7/10) 7014087330005304 a001 39088169/1149851*599074578^(5/6) 7014087330005304 a001 39088169/1149851*228826127^(7/8) 7014087330005304 a001 102334155/1149851*141422324^(11/13) 7014087330005304 a001 22180643453814644/31622993 7014087330005304 a001 433494437/1149851*141422324^(10/13) 7014087330005304 a001 1836311903/1149851*141422324^(9/13) 7014087330005304 a001 2971215073/1149851*141422324^(2/3) 7014087330005304 a001 7778742049/1149851*141422324^(8/13) 7014087330005304 a001 32951280099/1149851*141422324^(7/13) 7014087330005304 a001 139583862445/1149851*141422324^(6/13) 7014087330005304 a001 514229*141422324^(5/13) 7014087330005304 a001 102334155/1149851*2537720636^(11/15) 7014087330005304 a001 102334155/1149851*45537549124^(11/17) 7014087330005304 a001 102334155/1149851*312119004989^(3/5) 7014087330005304 a001 102334155/1149851*817138163596^(11/19) 7014087330005304 a001 102334155/1149851*14662949395604^(11/21) 7014087330005304 a001 102334155/1149851*(1/2+1/2*5^(1/2))^33 7014087330005304 a001 102334155/1149851*192900153618^(11/18) 7014087330005304 a001 102334155/1149851*10749957122^(11/16) 7014087330005304 a001 102334155/1149851*1568397607^(3/4) 7014087330005304 a001 102334155/1149851*599074578^(11/14) 7014087330005304 a001 1548008755920/1149851*141422324^(1/3) 7014087330005304 a001 2504730781961/1149851*141422324^(4/13) 7014087330005304 a001 10610209857723/1149851*141422324^(3/13) 7014087330005304 a001 116139356908859193/165580141 7014087330005305 a001 514229/599074578*14662949395604^(19/21) 7014087330005305 a001 267914296/1149851*(1/2+1/2*5^(1/2))^31 7014087330005305 a001 267914296/1149851*9062201101803^(1/2) 7014087330005305 a001 304056783818948291/433494437 7014087330005305 a001 701408733/1149851*(1/2+1/2*5^(1/2))^29 7014087330005305 a001 701408733/1149851*1322157322203^(1/2) 7014087330005305 a001 1304968843521288/1860497 7014087330005305 a001 1836311903/1149851*2537720636^(3/5) 7014087330005305 a001 4807526976/1149851*2537720636^(5/9) 7014087330005305 a001 7778742049/1149851*2537720636^(8/15) 7014087330005305 a001 32951280099/1149851*2537720636^(7/15) 7014087330005305 a001 53316291173/1149851*2537720636^(4/9) 7014087330005305 a001 139583862445/1149851*2537720636^(2/5) 7014087330005305 a001 1836311903/1149851*45537549124^(9/17) 7014087330005305 a001 1836311903/1149851*817138163596^(9/19) 7014087330005305 a001 1836311903/1149851*14662949395604^(3/7) 7014087330005305 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^27 7014087330005305 a001 1836311903/1149851*192900153618^(1/2) 7014087330005305 a001 1836311903/1149851*10749957122^(9/16) 7014087330005305 a001 514229*2537720636^(1/3) 7014087330005305 a001 2504730781961/1149851*2537720636^(4/15) 7014087330005305 a001 6557470319842/1149851*2537720636^(2/9) 7014087330005305 a001 10610209857723/1149851*2537720636^(1/5) 7014087330005305 a001 2084036199825008749/2971215073 7014087330005305 a001 4807526976/1149851*312119004989^(5/11) 7014087330005305 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^25 7014087330005305 a001 4807526976/1149851*3461452808002^(5/12) 7014087330005305 a001 4807526976/1149851*28143753123^(1/2) 7014087330005305 a001 5456077604927040567/7778742049 7014087330005305 a001 32951280099/1149851*17393796001^(3/7) 7014087330005305 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^23 7014087330005305 a001 956722026041/1149851*17393796001^(2/7) 7014087330005305 a001 32951280099/1149851*45537549124^(7/17) 7014087330005305 a001 32951280099/1149851*14662949395604^(1/3) 7014087330005305 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^21 7014087330005305 a001 32951280099/1149851*192900153618^(7/18) 7014087330005305 a001 225851433717/1149851*45537549124^(1/3) 7014087330005305 a001 139583862445/1149851*45537549124^(6/17) 7014087330005305 a001 514229*45537549124^(5/17) 7014087330005305 a001 2504730781961/1149851*45537549124^(4/17) 7014087330005305 a001 10610209857723/1149851*45537549124^(3/17) 7014087330005305 a001 86267571272/1149851*817138163596^(1/3) 7014087330005305 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^19 7014087330005305 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^17 7014087330005305 a001 514229*312119004989^(3/11) 7014087330005305 a001 4052739537881/1149851*312119004989^(1/5) 7014087330005305 a001 514229*(1/2+1/2*5^(1/2))^15 7014087330005305 a001 2504730781961/1149851*817138163596^(4/19) 7014087330005305 a001 10610209857723/1149851*817138163596^(3/19) 7014087330005305 a001 1548008755920/1149851*(1/2+1/2*5^(1/2))^13 7014087330005305 a001 4052739537881/1149851*(1/2+1/2*5^(1/2))^11 7014087330005305 a001 10610209857723/1149851*14662949395604^(1/7) 7014087330005305 a001 10610209857723/1149851*(1/2+1/2*5^(1/2))^9 7014087330005305 a001 6557470319842/1149851*(1/2+1/2*5^(1/2))^10 7014087330005305 a001 2504730781961/1149851*(1/2+1/2*5^(1/2))^12 7014087330005305 a001 956722026041/1149851*(1/2+1/2*5^(1/2))^14 7014087330005305 a001 10610209857723/1149851*192900153618^(1/6) 7014087330005305 a001 2504730781961/1149851*192900153618^(2/9) 7014087330005305 a001 139583862445/1149851*14662949395604^(2/7) 7014087330005305 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^18 7014087330005305 a001 139583862445/1149851*192900153618^(1/3) 7014087330005305 a001 2504730781961/1149851*73681302247^(3/13) 7014087330005305 a001 1548008755920/1149851*73681302247^(1/4) 7014087330005305 a001 365435296162/1149851*73681302247^(4/13) 7014087330005305 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^20 7014087330005305 a001 53316291173/1149851*23725150497407^(5/16) 7014087330005305 a001 53316291173/1149851*505019158607^(5/14) 7014087330005305 a001 53316291173/1149851*73681302247^(5/13) 7014087330005305 a001 6557470319842/1149851*28143753123^(1/5) 7014087330005305 a001 514229*28143753123^(3/10) 7014087330005305 a001 20365011074/1149851*312119004989^(2/5) 7014087330005305 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^22 7014087330005305 a001 53316291173/1149851*28143753123^(2/5) 7014087330005305 a001 10610209857723/1149851*10749957122^(3/16) 7014087330005305 a001 6557470319842/1149851*10749957122^(5/24) 7014087330005305 a001 2504730781961/1149851*10749957122^(1/4) 7014087330005305 a001 956722026041/1149851*10749957122^(7/24) 7014087330005305 a001 514229*10749957122^(5/16) 7014087330005305 a001 365435296162/1149851*10749957122^(1/3) 7014087330005305 a001 7778742049/1149851*45537549124^(8/17) 7014087330005305 a001 139583862445/1149851*10749957122^(3/8) 7014087330005305 a001 7778742049/1149851*14662949395604^(8/21) 7014087330005305 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^24 7014087330005305 a001 7778742049/1149851*192900153618^(4/9) 7014087330005305 a001 7778742049/1149851*73681302247^(6/13) 7014087330005305 a001 32951280099/1149851*10749957122^(7/16) 7014087330005305 a001 53316291173/1149851*10749957122^(5/12) 7014087330005305 a001 20365011074/1149851*10749957122^(11/24) 7014087330005305 a001 7778742049/1149851*10749957122^(1/2) 7014087330005305 a001 1686020702551015909/2403763488 7014087330005305 a001 6557470319842/1149851*4106118243^(5/23) 7014087330005305 a001 2504730781961/1149851*4106118243^(6/23) 7014087330005305 a001 956722026041/1149851*4106118243^(7/23) 7014087330005305 a001 365435296162/1149851*4106118243^(8/23) 7014087330005305 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^26 7014087330005305 a001 2971215073/1149851*73681302247^(1/2) 7014087330005305 a001 139583862445/1149851*4106118243^(9/23) 7014087330005305 a001 53316291173/1149851*4106118243^(10/23) 7014087330005305 a001 2971215073/1149851*10749957122^(13/24) 7014087330005305 a001 12586269025/1149851*4106118243^(1/2) 7014087330005305 a001 20365011074/1149851*4106118243^(11/23) 7014087330005305 a001 7778742049/1149851*4106118243^(12/23) 7014087330005305 a001 2971215073/1149851*4106118243^(13/23) 7014087330005305 a001 1288005205277023069/1836311903 7014087330005305 a001 6557470319842/1149851*1568397607^(5/22) 7014087330005305 a001 4052739537881/1149851*1568397607^(1/4) 7014087330005305 a001 2504730781961/1149851*1568397607^(3/11) 7014087330005305 a001 956722026041/1149851*1568397607^(7/22) 7014087330005305 a001 365435296162/1149851*1568397607^(4/11) 7014087330005305 a001 1134903170/1149851*17393796001^(4/7) 7014087330005305 a001 514229/2537720636*14662949395604^(20/21) 7014087330005305 a001 1134903170/1149851*14662949395604^(4/9) 7014087330005305 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^28 7014087330005305 a001 1134903170/1149851*505019158607^(1/2) 7014087330005305 a001 1134903170/1149851*73681302247^(7/13) 7014087330005305 a001 1134903170/1149851*10749957122^(7/12) 7014087330005305 a001 139583862445/1149851*1568397607^(9/22) 7014087330005305 a001 53316291173/1149851*1568397607^(5/11) 7014087330005305 a001 1134903170/1149851*4106118243^(14/23) 7014087330005305 a001 20365011074/1149851*1568397607^(1/2) 7014087330005305 a001 7778742049/1149851*1568397607^(6/11) 7014087330005305 a001 2971215073/1149851*1568397607^(13/22) 7014087330005305 a001 491974210729037389/701408733 7014087330005305 a001 1134903170/1149851*1568397607^(7/11) 7014087330005305 a001 10610209857723/1149851*599074578^(3/14) 7014087330005305 a001 6557470319842/1149851*599074578^(5/21) 7014087330005305 a001 2504730781961/1149851*599074578^(2/7) 7014087330005305 a001 956722026041/1149851*599074578^(1/3) 7014087330005305 a001 433494437/1149851*2537720636^(2/3) 7014087330005305 a001 514229*599074578^(5/14) 7014087330005305 a001 365435296162/1149851*599074578^(8/21) 7014087330005305 a001 433494437/1149851*45537549124^(10/17) 7014087330005305 a001 433494437/1149851*312119004989^(6/11) 7014087330005305 a001 433494437/1149851*14662949395604^(10/21) 7014087330005305 a001 433494437/1149851*(1/2+1/2*5^(1/2))^30 7014087330005305 a001 433494437/1149851*192900153618^(5/9) 7014087330005305 a001 433494437/1149851*28143753123^(3/5) 7014087330005305 a001 433494437/1149851*10749957122^(5/8) 7014087330005305 a001 433494437/1149851*4106118243^(15/23) 7014087330005305 a001 139583862445/1149851*599074578^(3/7) 7014087330005305 a001 53316291173/1149851*599074578^(10/21) 7014087330005305 a001 433494437/1149851*1568397607^(15/22) 7014087330005305 a001 32951280099/1149851*599074578^(1/2) 7014087330005305 a001 20365011074/1149851*599074578^(11/21) 7014087330005305 a001 7778742049/1149851*599074578^(4/7) 7014087330005305 a001 1836311903/1149851*599074578^(9/14) 7014087330005305 a001 2971215073/1149851*599074578^(13/21) 7014087330005305 a001 1134903170/1149851*599074578^(2/3) 7014087330005305 a001 93958713455044549/133957148 7014087330005305 a001 433494437/1149851*599074578^(5/7) 7014087330005305 a001 6557470319842/1149851*228826127^(1/4) 7014087330005305 a001 2504730781961/1149851*228826127^(3/10) 7014087330005305 a001 956722026041/1149851*228826127^(7/20) 7014087330005305 a001 514229*228826127^(3/8) 7014087330005305 a001 514229/370248451*14662949395604^(8/9) 7014087330005305 a001 165580141/1149851*(1/2+1/2*5^(1/2))^32 7014087330005305 a001 165580141/1149851*23725150497407^(1/2) 7014087330005305 a001 165580141/1149851*505019158607^(4/7) 7014087330005305 a001 165580141/1149851*73681302247^(8/13) 7014087330005305 a001 165580141/1149851*10749957122^(2/3) 7014087330005305 a001 165580141/1149851*4106118243^(16/23) 7014087330005305 a001 165580141/1149851*1568397607^(8/11) 7014087330005305 a001 365435296162/1149851*228826127^(2/5) 7014087330005305 a001 139583862445/1149851*228826127^(9/20) 7014087330005305 a001 165580141/1149851*599074578^(16/21) 7014087330005305 a001 53316291173/1149851*228826127^(1/2) 7014087330005305 a001 20365011074/1149851*228826127^(11/20) 7014087330005305 a001 7778742049/1149851*228826127^(3/5) 7014087330005305 a001 4807526976/1149851*228826127^(5/8) 7014087330005305 a001 2971215073/1149851*228826127^(13/20) 7014087330005305 a001 1134903170/1149851*228826127^(7/10) 7014087330005305 a001 433494437/1149851*228826127^(3/4) 7014087330005305 a001 14355614000245981/20466831 7014087330005305 a001 165580141/1149851*228826127^(4/5) 7014087330005305 a001 6557470319842/1149851*87403803^(5/19) 7014087330005305 a001 2504730781961/1149851*87403803^(6/19) 7014087330005305 a001 956722026041/1149851*87403803^(7/19) 7014087330005305 a001 63245986/1149851*45537549124^(2/3) 7014087330005305 a001 514229/141422324*14662949395604^(6/7) 7014087330005305 a001 63245986/1149851*(1/2+1/2*5^(1/2))^34 7014087330005305 a001 63245986/1149851*10749957122^(17/24) 7014087330005305 a001 63245986/1149851*4106118243^(17/23) 7014087330005305 a001 63245986/1149851*1568397607^(17/22) 7014087330005305 a001 63245986/1149851*599074578^(17/21) 7014087330005305 a001 365435296162/1149851*87403803^(8/19) 7014087330005305 a001 139583862445/1149851*87403803^(9/19) 7014087330005305 a001 86267571272/1149851*87403803^(1/2) 7014087330005305 a001 63245986/1149851*228826127^(17/20) 7014087330005305 a001 53316291173/1149851*87403803^(10/19) 7014087330005305 a001 20365011074/1149851*87403803^(11/19) 7014087330005305 a001 7778742049/1149851*87403803^(12/19) 7014087330005305 a001 2971215073/1149851*87403803^(13/19) 7014087330005305 a001 1134903170/1149851*87403803^(14/19) 7014087330005305 a001 433494437/1149851*87403803^(15/19) 7014087330005305 a001 165580141/1149851*87403803^(16/19) 7014087330005305 a001 27416783093600617/39088169 7014087330005306 a001 63245986/1149851*87403803^(17/19) 7014087330005306 a001 10610209857723/1149851*33385282^(1/4) 7014087330005306 a001 6557470319842/1149851*33385282^(5/18) 7014087330005307 a001 24157817/1149851*141422324^(12/13) 7014087330005307 a001 2504730781961/1149851*33385282^(1/3) 7014087330005307 a001 24157817/1149851*2537720636^(4/5) 7014087330005307 a001 24157817/1149851*45537549124^(12/17) 7014087330005307 a001 514229/54018521*23725150497407^(13/16) 7014087330005307 a001 24157817/1149851*14662949395604^(4/7) 7014087330005307 a001 24157817/1149851*(1/2+1/2*5^(1/2))^36 7014087330005307 a001 24157817/1149851*505019158607^(9/14) 7014087330005307 a001 24157817/1149851*192900153618^(2/3) 7014087330005307 a001 24157817/1149851*73681302247^(9/13) 7014087330005307 a001 24157817/1149851*10749957122^(3/4) 7014087330005307 a001 24157817/1149851*4106118243^(18/23) 7014087330005307 a001 24157817/1149851*1568397607^(9/11) 7014087330005307 a001 24157817/1149851*599074578^(6/7) 7014087330005307 a001 956722026041/1149851*33385282^(7/18) 7014087330005307 a001 24157817/1149851*228826127^(9/10) 7014087330005307 a001 514229*33385282^(5/12) 7014087330005307 a001 365435296162/1149851*33385282^(4/9) 7014087330005308 a001 139583862445/1149851*33385282^(1/2) 7014087330005308 a001 24157817/1149851*87403803^(18/19) 7014087330005308 a001 53316291173/1149851*33385282^(5/9) 7014087330005308 a001 32951280099/1149851*33385282^(7/12) 7014087330005308 a001 20365011074/1149851*33385282^(11/18) 7014087330005309 a001 7778742049/1149851*33385282^(2/3) 7014087330005309 a001 2971215073/1149851*33385282^(13/18) 7014087330005309 a001 1836311903/1149851*33385282^(3/4) 7014087330005309 a001 1134903170/1149851*33385282^(7/9) 7014087330005310 a001 433494437/1149851*33385282^(5/6) 7014087330005310 a001 102334155/1149851*33385282^(11/12) 7014087330005310 a001 165580141/1149851*33385282^(8/9) 7014087330005311 a001 5236139639785973/7465176 7014087330005311 a001 63245986/1149851*33385282^(17/18) 7014087330005317 a001 6557470319842/1149851*12752043^(5/17) 7014087330005320 a001 2504730781961/1149851*12752043^(6/17) 7014087330005321 a001 514229/20633239*312119004989^(10/11) 7014087330005321 a001 9227465/1149851*817138163596^(2/3) 7014087330005321 a001 514229/20633239*(1/2+1/2*5^(1/2))^50 7014087330005321 a001 514229/20633239*3461452808002^(5/6) 7014087330005321 a001 9227465/1149851*(1/2+1/2*5^(1/2))^38 7014087330005321 a001 9227465/1149851*10749957122^(19/24) 7014087330005321 a001 9227465/1149851*4106118243^(19/23) 7014087330005321 a001 9227465/1149851*1568397607^(19/22) 7014087330005321 a001 9227465/1149851*599074578^(19/21) 7014087330005321 a001 9227465/1149851*228826127^(19/20) 7014087330005322 a001 956722026041/1149851*12752043^(7/17) 7014087330005325 a001 365435296162/1149851*12752043^(8/17) 7014087330005326 a001 225851433717/1149851*12752043^(1/2) 7014087330005327 a001 139583862445/1149851*12752043^(9/17) 7014087330005330 a001 53316291173/1149851*12752043^(10/17) 7014087330005332 a001 20365011074/1149851*12752043^(11/17) 7014087330005335 a001 7778742049/1149851*12752043^(12/17) 7014087330005338 a001 2971215073/1149851*12752043^(13/17) 7014087330005340 a001 1134903170/1149851*12752043^(14/17) 7014087330005343 a001 433494437/1149851*12752043^(15/17) 7014087330005345 a001 165580141/1149851*12752043^(16/17) 7014087330005348 a001 4000054745115221/5702887 7014087330005397 a001 6557470319842/1149851*4870847^(5/16) 7014087330005415 a001 2504730781961/1149851*4870847^(3/8) 7014087330005417 a001 3524578/1149851*2537720636^(8/9) 7014087330005417 a001 514229/7881196*45537549124^(16/17) 7014087330005417 a001 3524578/1149851*312119004989^(8/11) 7014087330005417 a001 514229/7881196*(1/2+1/2*5^(1/2))^48 7014087330005417 a001 3524578/1149851*(1/2+1/2*5^(1/2))^40 7014087330005417 a001 3524578/1149851*23725150497407^(5/8) 7014087330005417 a001 514229/7881196*192900153618^(8/9) 7014087330005417 a001 3524578/1149851*73681302247^(10/13) 7014087330005417 a001 514229/7881196*73681302247^(12/13) 7014087330005417 a001 3524578/1149851*28143753123^(4/5) 7014087330005417 a001 3524578/1149851*10749957122^(5/6) 7014087330005417 a001 3524578/1149851*4106118243^(20/23) 7014087330005417 a001 3524578/1149851*1568397607^(10/11) 7014087330005417 a001 3524578/1149851*599074578^(20/21) 7014087330005434 a001 956722026041/1149851*4870847^(7/16) 7014087330005452 a001 365435296162/1149851*4870847^(1/2) 7014087330005471 a001 139583862445/1149851*4870847^(9/16) 7014087330005489 a001 53316291173/1149851*4870847^(5/8) 7014087330005508 a001 20365011074/1149851*4870847^(11/16) 7014087330005526 a001 7778742049/1149851*4870847^(3/4) 7014087330005545 a001 2971215073/1149851*4870847^(13/16) 7014087330005563 a001 1134903170/1149851*4870847^(7/8) 7014087330005582 a001 433494437/1149851*4870847^(15/16) 7014087330005600 a001 1527884955773717/2178309 7014087330005656 a001 2178309*710647^(3/7) 7014087330005910 a001 591286729879/1860498*710647^(4/7) 7014087330005912 a001 10610209857723/1149851*1860498^(3/10) 7014087330005980 a001 6557470319842/1149851*1860498^(1/3) 7014087330006079 a001 1346269/1149851*2537720636^(14/15) 7014087330006079 a001 1346269/1149851*17393796001^(6/7) 7014087330006079 a001 1346269/1149851*45537549124^(14/17) 7014087330006079 a001 1346269/1149851*817138163596^(14/19) 7014087330006079 a001 514229/3010349*(1/2+1/2*5^(1/2))^46 7014087330006079 a001 1346269/1149851*14662949395604^(2/3) 7014087330006079 a001 1346269/1149851*(1/2+1/2*5^(1/2))^42 7014087330006079 a001 1346269/1149851*505019158607^(3/4) 7014087330006079 a001 1346269/1149851*192900153618^(7/9) 7014087330006079 a001 1346269/1149851*10749957122^(7/8) 7014087330006079 a001 514229/3010349*10749957122^(23/24) 7014087330006079 a001 1346269/1149851*4106118243^(21/23) 7014087330006079 a001 1346269/1149851*1568397607^(21/22) 7014087330006115 a001 2504730781961/1149851*1860498^(2/5) 7014087330006250 a001 956722026041/1149851*1860498^(7/15) 7014087330006318 a001 514229*1860498^(1/2) 7014087330006385 a001 365435296162/1149851*1860498^(8/15) 7014087330006520 a001 139583862445/1149851*1860498^(3/5) 7014087330006648 a001 4052739537881/4870847*710647^(1/2) 7014087330006655 a001 53316291173/1149851*1860498^(2/3) 7014087330006723 a001 32951280099/1149851*1860498^(7/10) 7014087330006726 a001 6557470319842/3010349*710647^(3/7) 7014087330006791 a001 20365011074/1149851*1860498^(11/15) 7014087330006901 a001 3536736619241/4250681*710647^(1/2) 7014087330006902 a001 75283811239/620166*710647^(9/14) 7014087330006926 a001 7778742049/1149851*1860498^(4/5) 7014087330006993 a001 4807526976/1149851*1860498^(5/6) 7014087330007057 a001 3278735159921/3940598*710647^(1/2) 7014087330007061 a001 2971215073/1149851*1860498^(13/15) 7014087330007128 a001 1836311903/1149851*1860498^(9/10) 7014087330007196 a001 1134903170/1149851*1860498^(14/15) 7014087330007331 a001 956721511813/1364 7014087330007640 a001 1548008755920/4870847*710647^(4/7) 7014087330007718 a001 2504730781961/3010349*710647^(1/2) 7014087330007893 a001 4052739537881/12752043*710647^(4/7) 7014087330007894 a001 43133785636/930249*710647^(5/7) 7014087330007930 a001 1515744265389/4769326*710647^(4/7) 7014087330007952 a001 6557470319842/20633239*710647^(4/7) 7014087330008049 a001 2504730781961/7881196*710647^(4/7) 7014087330008080 a001 12586269025/439204*439204^(7/9) 7014087330008390 a001 53316291173/1860498*710647^(3/4) 7014087330008632 a001 591286729879/4870847*710647^(9/14) 7014087330008710 a001 956722026041/3010349*710647^(4/7) 7014087330008885 a001 516002918640/4250681*710647^(9/14) 7014087330008886 a001 10983760033/620166*710647^(11/14) 7014087330008922 a001 4052739537881/33385282*710647^(9/14) 7014087330008927 a001 3536736619241/29134601*710647^(9/14) 7014087330008930 a001 6557470319842/54018521*710647^(9/14) 7014087330008944 a001 2504730781961/20633239*710647^(9/14) 7014087330009041 a001 956722026041/7881196*710647^(9/14) 7014087330009624 a001 225851433717/4870847*710647^(5/7) 7014087330009702 a001 365435296162/3010349*710647^(9/14) 7014087330009877 a001 591286729879/12752043*710647^(5/7) 7014087330009878 a001 12586269025/1860498*710647^(6/7) 7014087330009914 a001 774004377960/16692641*710647^(5/7) 7014087330009919 a001 4052739537881/87403803*710647^(5/7) 7014087330009920 a001 225749145909/4868641*710647^(5/7) 7014087330009920 a001 3278735159921/70711162*710647^(5/7) 7014087330009922 a001 2504730781961/54018521*710647^(5/7) 7014087330009937 a001 956722026041/20633239*710647^(5/7) 7014087330010033 a001 182717648081/3940598*710647^(5/7) 7014087330010120 a001 139583862445/4870847*710647^(3/4) 7014087330010265 a001 6557470319842/1149851*710647^(5/14) 7014087330010373 a001 365435296162/12752043*710647^(3/4) 7014087330010410 a001 956722026041/33385282*710647^(3/4) 7014087330010415 a001 2504730781961/87403803*710647^(3/4) 7014087330010416 a001 6557470319842/228826127*710647^(3/4) 7014087330010416 a001 10610209857723/370248451*710647^(3/4) 7014087330010416 a001 4052739537881/141422324*710647^(3/4) 7014087330010418 a001 1548008755920/54018521*710647^(3/4) 7014087330010433 a001 591286729879/20633239*710647^(3/4) 7014087330010529 a001 225851433717/7881196*710647^(3/4) 7014087330010610 a001 514229/1149851*312119004989^(4/5) 7014087330010610 a001 514229/1149851*(1/2+1/2*5^(1/2))^44 7014087330010610 a001 514229/1149851*23725150497407^(11/16) 7014087330010610 a001 514229/1149851*73681302247^(11/13) 7014087330010610 a001 514229/1149851*10749957122^(11/12) 7014087330010610 a001 514229/1149851*4106118243^(22/23) 7014087330010616 a001 86267571272/4870847*710647^(11/14) 7014087330010694 a001 139583862445/3010349*710647^(5/7) 7014087330010869 a001 75283811239/4250681*710647^(11/14) 7014087330010870 a001 267084832/103361*710647^(13/14) 7014087330010906 a001 591286729879/33385282*710647^(11/14) 7014087330010911 a001 516002918640/29134601*710647^(11/14) 7014087330010912 a001 4052739537881/228826127*710647^(11/14) 7014087330010912 a001 3536736619241/199691526*710647^(11/14) 7014087330010912 a001 6557470319842/370248451*710647^(11/14) 7014087330010912 a001 2504730781961/141422324*710647^(11/14) 7014087330010914 a001 956722026041/54018521*710647^(11/14) 7014087330010929 a001 365435296162/20633239*710647^(11/14) 7014087330011025 a001 139583862445/7881196*710647^(11/14) 7014087330011190 a001 86267571272/3010349*710647^(3/4) 7014087330011257 a001 2504730781961/1149851*710647^(3/7) 7014087330011609 a001 32951280099/4870847*710647^(6/7) 7014087330011686 a001 53316291173/3010349*710647^(11/14) 7014087330011861 a001 86267571272/12752043*710647^(6/7) 7014087330011862 a001 591287561920/843 7014087330011898 a001 32264490531/4769326*710647^(6/7) 7014087330011903 a001 591286729879/87403803*710647^(6/7) 7014087330011904 a001 1548008755920/228826127*710647^(6/7) 7014087330011904 a001 4052739537881/599074578*710647^(6/7) 7014087330011904 a001 1515744265389/224056801*710647^(6/7) 7014087330011904 a001 6557470319842/969323029*710647^(6/7) 7014087330011904 a001 2504730781961/370248451*710647^(6/7) 7014087330011905 a001 956722026041/141422324*710647^(6/7) 7014087330011907 a001 365435296162/54018521*710647^(6/7) 7014087330011921 a001 139583862445/20633239*710647^(6/7) 7014087330012017 a001 53316291173/7881196*710647^(6/7) 7014087330012120 a001 53316291173/439204*439204^(2/3) 7014087330012249 a001 956722026041/1149851*710647^(1/2) 7014087330012601 a001 12586269025/4870847*710647^(13/14) 7014087330012678 a001 20365011074/3010349*710647^(6/7) 7014087330012853 a001 10983760033/4250681*710647^(13/14) 7014087330012890 a001 43133785636/16692641*710647^(13/14) 7014087330012895 a001 75283811239/29134601*710647^(13/14) 7014087330012896 a001 591286729879/228826127*710647^(13/14) 7014087330012896 a001 86000486440/33281921*710647^(13/14) 7014087330012896 a001 4052739537881/1568397607*710647^(13/14) 7014087330012896 a001 3536736619241/1368706081*710647^(13/14) 7014087330012896 a001 3278735159921/1268860318*710647^(13/14) 7014087330012896 a001 2504730781961/969323029*710647^(13/14) 7014087330012896 a001 956722026041/370248451*710647^(13/14) 7014087330012897 a001 182717648081/70711162*710647^(13/14) 7014087330012899 a001 139583862445/54018521*710647^(13/14) 7014087330012913 a001 53316291173/20633239*710647^(13/14) 7014087330013009 a001 10182505537/3940598*710647^(13/14) 7014087330013241 a001 365435296162/1149851*710647^(4/7) 7014087330013592 a001 74305136947965/105937 7014087330013670 a001 7778742049/3010349*710647^(13/14) 7014087330013844 a001 222915410843903/317811 7014087330013876 a001 74305136947968/105937 7014087330013907 a001 17147339295685/24447 7014087330014002 a001 222915410843908/317811 7014087330014233 a001 139583862445/1149851*710647^(9/14) 7014087330014662 a001 222915410843929/317811 7014087330015225 a001 53316291173/1149851*710647^(5/7) 7014087330015401 a001 1515744265389/101521*271443^(4/13) 7014087330015721 a001 32951280099/1149851*710647^(3/4) 7014087330016160 a001 225851433717/439204*439204^(5/9) 7014087330016217 a001 20365011074/1149851*710647^(11/14) 7014087330017209 a001 7778742049/1149851*710647^(6/7) 7014087330018201 a001 2971215073/1149851*710647^(13/14) 7014087330019193 a001 222915410844073/317811 7014087330020200 a001 956722026041/439204*439204^(4/9) 7014087330022472 a001 196418/710647*45537549124^(15/17) 7014087330022472 a001 196418/710647*312119004989^(9/11) 7014087330022472 a001 196418/710647*14662949395604^(5/7) 7014087330022472 a001 196418/710647*(1/2+1/2*5^(1/2))^45 7014087330022472 a001 196418/710647*192900153618^(5/6) 7014087330022472 a001 317811/439204*(1/2+1/2*5^(1/2))^43 7014087330022472 a001 196418/710647*28143753123^(9/10) 7014087330022472 a001 196418/710647*10749957122^(15/16) 7014087330022724 a001 4052739537881/710647*271443^(5/13) 7014087330024240 a001 4052739537881/439204*439204^(1/3) 7014087330030047 a001 1548008755920/710647*271443^(6/13) 7014087330031056 a001 360684711363454/514229 7014087330033708 a001 956722026041/710647*271443^(1/2) 7014087330034334 a001 98209/930249*(1/2+1/2*5^(1/2))^47 7014087330034334 a001 208010/109801*(1/2+1/2*5^(1/2))^41 7014087330034587 a001 3536736619241/620166*271443^(5/13) 7014087330035587 a001 944284833571968/1346269 7014087330035603 a001 10610209857723/64079*24476^(1/7) 7014087330036065 a001 2178309/439204*2537720636^(13/15) 7014087330036065 a001 2178309/439204*45537549124^(13/17) 7014087330036065 a001 196418/4870847*14662949395604^(7/9) 7014087330036065 a001 196418/4870847*(1/2+1/2*5^(1/2))^49 7014087330036065 a001 196418/4870847*505019158607^(7/8) 7014087330036065 a001 2178309/439204*14662949395604^(13/21) 7014087330036065 a001 2178309/439204*(1/2+1/2*5^(1/2))^39 7014087330036065 a001 2178309/439204*192900153618^(13/18) 7014087330036065 a001 2178309/439204*73681302247^(3/4) 7014087330036065 a001 2178309/439204*10749957122^(13/16) 7014087330036065 a001 2178309/439204*599074578^(13/14) 7014087330036248 a001 1236084894676225/1762289 7014087330036258 a001 165580141/439204*7881196^(10/11) 7014087330036268 a001 701408733/439204*7881196^(9/11) 7014087330036279 a001 2971215073/439204*7881196^(8/11) 7014087330036285 a001 7778742049/439204*7881196^(2/3) 7014087330036289 a001 12586269025/439204*7881196^(7/11) 7014087330036299 a001 53316291173/439204*7881196^(6/11) 7014087330036309 a001 225851433717/439204*7881196^(5/11) 7014087330036318 a001 196418/12752043*817138163596^(17/19) 7014087330036318 a001 196418/12752043*14662949395604^(17/21) 7014087330036318 a001 196418/12752043*(1/2+1/2*5^(1/2))^51 7014087330036318 a001 196418/12752043*192900153618^(17/18) 7014087330036318 a001 5702887/439204*(1/2+1/2*5^(1/2))^37 7014087330036320 a001 956722026041/439204*7881196^(4/11) 7014087330036323 a001 387002188980/109801*7881196^(1/3) 7014087330036330 a001 4052739537881/439204*7881196^(3/11) 7014087330036344 a001 6472224534485382/9227465 7014087330036347 a001 165580141/439204*20633239^(6/7) 7014087330036348 a001 433494437/439204*20633239^(4/5) 7014087330036349 a001 1836311903/439204*20633239^(5/7) 7014087330036351 a001 12586269025/439204*20633239^(3/5) 7014087330036351 a001 10182505537/219602*20633239^(4/7) 7014087330036354 a001 225851433717/439204*20633239^(3/7) 7014087330036354 a001 182717648081/219602*20633239^(2/5) 7014087330036354 a001 196452/5779*2537720636^(7/9) 7014087330036354 a001 196452/5779*17393796001^(5/7) 7014087330036354 a001 98209/16692641*(1/2+1/2*5^(1/2))^53 7014087330036354 a001 196452/5779*312119004989^(7/11) 7014087330036354 a001 196452/5779*14662949395604^(5/9) 7014087330036354 a001 196452/5779*(1/2+1/2*5^(1/2))^35 7014087330036354 a001 196452/5779*505019158607^(5/8) 7014087330036354 a001 196452/5779*28143753123^(7/10) 7014087330036354 a001 196452/5779*599074578^(5/6) 7014087330036355 a001 196452/5779*228826127^(7/8) 7014087330036356 a001 2504730781961/439204*20633239^(2/7) 7014087330036357 a001 10610209857723/439204*20633239^(1/5) 7014087330036358 a001 16944503814103696/24157817 7014087330036360 a001 39088169/439204*141422324^(11/13) 7014087330036360 a001 39088169/439204*2537720636^(11/15) 7014087330036360 a001 39088169/439204*45537549124^(11/17) 7014087330036360 a001 196418/87403803*3461452808002^(11/12) 7014087330036360 a001 39088169/439204*312119004989^(3/5) 7014087330036360 a001 39088169/439204*817138163596^(11/19) 7014087330036360 a001 39088169/439204*14662949395604^(11/21) 7014087330036360 a001 39088169/439204*(1/2+1/2*5^(1/2))^33 7014087330036360 a001 39088169/439204*192900153618^(11/18) 7014087330036360 a001 39088169/439204*10749957122^(11/16) 7014087330036360 a001 39088169/439204*1568397607^(3/4) 7014087330036360 a001 39088169/439204*599074578^(11/14) 7014087330036360 a001 22180643453912853/31622993 7014087330036360 a001 701408733/439204*141422324^(9/13) 7014087330036361 a001 567451585/219602*141422324^(2/3) 7014087330036361 a001 165580141/439204*141422324^(10/13) 7014087330036361 a001 2971215073/439204*141422324^(8/13) 7014087330036361 a001 12586269025/439204*141422324^(7/13) 7014087330036361 a001 53316291173/439204*141422324^(6/13) 7014087330036361 a001 225851433717/439204*141422324^(5/13) 7014087330036361 a001 196418/228826127*14662949395604^(19/21) 7014087330036361 a001 102334155/439204*(1/2+1/2*5^(1/2))^31 7014087330036361 a001 102334155/439204*9062201101803^(1/2) 7014087330036361 a001 591286729879/439204*141422324^(1/3) 7014087330036361 a001 956722026041/439204*141422324^(4/13) 7014087330036361 a001 4052739537881/439204*141422324^(3/13) 7014087330036361 a001 116139356909373422/165580141 7014087330036361 a001 66978574/109801*(1/2+1/2*5^(1/2))^29 7014087330036361 a001 66978574/109801*1322157322203^(1/2) 7014087330036361 a001 304056783820294560/433494437 7014087330036361 a001 701408733/439204*2537720636^(3/5) 7014087330036361 a001 701408733/439204*45537549124^(9/17) 7014087330036361 a001 701408733/439204*817138163596^(9/19) 7014087330036361 a001 701408733/439204*14662949395604^(3/7) 7014087330036361 a001 701408733/439204*(1/2+1/2*5^(1/2))^27 7014087330036361 a001 701408733/439204*192900153618^(1/2) 7014087330036361 a001 701408733/439204*10749957122^(9/16) 7014087330036361 a001 23412676310338537/33379505 7014087330036361 a001 1836311903/439204*2537720636^(5/9) 7014087330036361 a001 12586269025/439204*2537720636^(7/15) 7014087330036361 a001 10182505537/219602*2537720636^(4/9) 7014087330036361 a001 53316291173/439204*2537720636^(2/5) 7014087330036361 a001 2971215073/439204*2537720636^(8/15) 7014087330036361 a001 1836311903/439204*312119004989^(5/11) 7014087330036361 a001 1836311903/439204*(1/2+1/2*5^(1/2))^25 7014087330036361 a001 1836311903/439204*3461452808002^(5/12) 7014087330036361 a001 1836311903/439204*28143753123^(1/2) 7014087330036361 a001 225851433717/439204*2537720636^(1/3) 7014087330036361 a001 956722026041/439204*2537720636^(4/15) 7014087330036361 a001 2504730781961/439204*2537720636^(2/9) 7014087330036361 a001 4052739537881/439204*2537720636^(1/5) 7014087330036361 a001 2084036199834236214/2971215073 7014087330036361 a001 1201881744/109801*(1/2+1/2*5^(1/2))^23 7014087330036361 a001 12586269025/439204*17393796001^(3/7) 7014087330036361 a001 12586269025/439204*45537549124^(7/17) 7014087330036361 a001 12586269025/439204*14662949395604^(1/3) 7014087330036361 a001 12586269025/439204*(1/2+1/2*5^(1/2))^21 7014087330036361 a001 12586269025/439204*192900153618^(7/18) 7014087330036361 a001 182717648081/219602*17393796001^(2/7) 7014087330036361 a001 10610209857723/439204*17393796001^(1/7) 7014087330036361 a001 196418*45537549124^(1/3) 7014087330036361 a001 32951280099/439204*817138163596^(1/3) 7014087330036361 a001 32951280099/439204*(1/2+1/2*5^(1/2))^19 7014087330036361 a001 225851433717/439204*45537549124^(5/17) 7014087330036361 a001 956722026041/439204*45537549124^(4/17) 7014087330036361 a001 53316291173/439204*45537549124^(6/17) 7014087330036361 a001 4052739537881/439204*45537549124^(3/17) 7014087330036361 a001 196418*(1/2+1/2*5^(1/2))^17 7014087330036361 a001 225851433717/439204*312119004989^(3/11) 7014087330036361 a001 225851433717/439204*14662949395604^(5/21) 7014087330036361 a001 225851433717/439204*(1/2+1/2*5^(1/2))^15 7014087330036361 a001 4052739537881/439204*817138163596^(3/19) 7014087330036361 a001 387002188980/109801*(1/2+1/2*5^(1/2))^11 7014087330036361 a001 4052739537881/439204*14662949395604^(1/7) 7014087330036361 a001 4052739537881/439204*(1/2+1/2*5^(1/2))^9 7014087330036361 a001 10610209857723/439204*14662949395604^(1/9) 7014087330036361 a001 10610209857723/439204*(1/2+1/2*5^(1/2))^7 7014087330036361 a001 3278735159921/219602*(1/2+1/2*5^(1/2))^8 7014087330036361 a001 2504730781961/439204*(1/2+1/2*5^(1/2))^10 7014087330036361 a001 956722026041/439204*(1/2+1/2*5^(1/2))^12 7014087330036361 a001 182717648081/219602*14662949395604^(2/9) 7014087330036361 a001 182717648081/219602*(1/2+1/2*5^(1/2))^14 7014087330036361 a001 182717648081/219602*505019158607^(1/4) 7014087330036361 a001 225851433717/439204*192900153618^(5/18) 7014087330036361 a001 139583862445/439204*(1/2+1/2*5^(1/2))^16 7014087330036361 a001 139583862445/439204*23725150497407^(1/4) 7014087330036361 a001 3278735159921/219602*73681302247^(2/13) 7014087330036361 a001 956722026041/439204*73681302247^(3/13) 7014087330036361 a001 591286729879/439204*73681302247^(1/4) 7014087330036361 a001 139583862445/439204*73681302247^(4/13) 7014087330036361 a001 53316291173/439204*14662949395604^(2/7) 7014087330036361 a001 53316291173/439204*(1/2+1/2*5^(1/2))^18 7014087330036361 a001 53316291173/439204*192900153618^(1/3) 7014087330036361 a001 2504730781961/439204*28143753123^(1/5) 7014087330036361 a001 225851433717/439204*28143753123^(3/10) 7014087330036361 a001 10182505537/219602*(1/2+1/2*5^(1/2))^20 7014087330036361 a001 10182505537/219602*23725150497407^(5/16) 7014087330036361 a001 10182505537/219602*505019158607^(5/14) 7014087330036361 a001 10182505537/219602*73681302247^(5/13) 7014087330036361 a001 10182505537/219602*28143753123^(2/5) 7014087330036361 a001 3278735159921/219602*10749957122^(1/6) 7014087330036361 a001 4052739537881/439204*10749957122^(3/16) 7014087330036361 a001 2504730781961/439204*10749957122^(5/24) 7014087330036361 a001 956722026041/439204*10749957122^(1/4) 7014087330036361 a001 12586269025/439204*10749957122^(7/16) 7014087330036361 a001 225851433717/439204*10749957122^(5/16) 7014087330036361 a001 139583862445/439204*10749957122^(1/3) 7014087330036361 a001 7778742049/439204*312119004989^(2/5) 7014087330036361 a001 7778742049/439204*(1/2+1/2*5^(1/2))^22 7014087330036361 a001 53316291173/439204*10749957122^(3/8) 7014087330036361 a001 10182505537/219602*10749957122^(5/12) 7014087330036361 a001 7778742049/439204*10749957122^(11/24) 7014087330036361 a001 3278735159921/219602*4106118243^(4/23) 7014087330036361 a001 2504730781961/439204*4106118243^(5/23) 7014087330036361 a001 956722026041/439204*4106118243^(6/23) 7014087330036361 a001 182717648081/219602*4106118243^(7/23) 7014087330036361 a001 139583862445/439204*4106118243^(8/23) 7014087330036361 a001 1201881744/109801*4106118243^(1/2) 7014087330036361 a001 2971215073/439204*45537549124^(8/17) 7014087330036361 a001 2971215073/439204*14662949395604^(8/21) 7014087330036361 a001 2971215073/439204*(1/2+1/2*5^(1/2))^24 7014087330036361 a001 2971215073/439204*192900153618^(4/9) 7014087330036361 a001 2971215073/439204*73681302247^(6/13) 7014087330036361 a001 53316291173/439204*4106118243^(9/23) 7014087330036361 a001 10182505537/219602*4106118243^(10/23) 7014087330036361 a001 2971215073/439204*10749957122^(1/2) 7014087330036361 a001 7778742049/439204*4106118243^(11/23) 7014087330036361 a001 2971215073/439204*4106118243^(12/23) 7014087330036361 a001 1288005205282725956/1836311903 7014087330036361 a001 3278735159921/219602*1568397607^(2/11) 7014087330036361 a001 2504730781961/439204*1568397607^(5/22) 7014087330036361 a001 387002188980/109801*1568397607^(1/4) 7014087330036361 a001 956722026041/439204*1568397607^(3/11) 7014087330036361 a001 182717648081/219602*1568397607^(7/22) 7014087330036361 a001 139583862445/439204*1568397607^(4/11) 7014087330036361 a001 567451585/219602*(1/2+1/2*5^(1/2))^26 7014087330036361 a001 567451585/219602*73681302247^(1/2) 7014087330036361 a001 567451585/219602*10749957122^(13/24) 7014087330036361 a001 53316291173/439204*1568397607^(9/22) 7014087330036361 a001 10182505537/219602*1568397607^(5/11) 7014087330036361 a001 567451585/219602*4106118243^(13/23) 7014087330036361 a001 7778742049/439204*1568397607^(1/2) 7014087330036361 a001 2971215073/439204*1568397607^(6/11) 7014087330036361 a001 567451585/219602*1568397607^(13/22) 7014087330036361 a001 491974210731215698/701408733 7014087330036361 a001 10610209857723/439204*599074578^(1/6) 7014087330036361 a001 3278735159921/219602*599074578^(4/21) 7014087330036361 a001 4052739537881/439204*599074578^(3/14) 7014087330036361 a001 2504730781961/439204*599074578^(5/21) 7014087330036361 a001 956722026041/439204*599074578^(2/7) 7014087330036361 a001 182717648081/219602*599074578^(1/3) 7014087330036361 a001 225851433717/439204*599074578^(5/14) 7014087330036361 a001 139583862445/439204*599074578^(8/21) 7014087330036361 a001 433494437/439204*17393796001^(4/7) 7014087330036361 a001 196418/969323029*14662949395604^(20/21) 7014087330036361 a001 433494437/439204*14662949395604^(4/9) 7014087330036361 a001 433494437/439204*(1/2+1/2*5^(1/2))^28 7014087330036361 a001 433494437/439204*505019158607^(1/2) 7014087330036361 a001 433494437/439204*73681302247^(7/13) 7014087330036361 a001 433494437/439204*10749957122^(7/12) 7014087330036361 a001 433494437/439204*4106118243^(14/23) 7014087330036361 a001 53316291173/439204*599074578^(3/7) 7014087330036361 a001 433494437/439204*1568397607^(7/11) 7014087330036361 a001 10182505537/219602*599074578^(10/21) 7014087330036361 a001 701408733/439204*599074578^(9/14) 7014087330036361 a001 12586269025/439204*599074578^(1/2) 7014087330036361 a001 7778742049/439204*599074578^(11/21) 7014087330036361 a001 2971215073/439204*599074578^(4/7) 7014087330036361 a001 567451585/219602*599074578^(13/21) 7014087330036361 a001 93958713455460569/133957148 7014087330036361 a001 433494437/439204*599074578^(2/3) 7014087330036361 a001 3278735159921/219602*228826127^(1/5) 7014087330036361 a001 2504730781961/439204*228826127^(1/4) 7014087330036361 a001 956722026041/439204*228826127^(3/10) 7014087330036361 a001 182717648081/219602*228826127^(7/20) 7014087330036361 a001 225851433717/439204*228826127^(3/8) 7014087330036361 a001 165580141/439204*2537720636^(2/3) 7014087330036361 a001 165580141/439204*45537549124^(10/17) 7014087330036361 a001 165580141/439204*312119004989^(6/11) 7014087330036361 a001 165580141/439204*14662949395604^(10/21) 7014087330036361 a001 165580141/439204*(1/2+1/2*5^(1/2))^30 7014087330036361 a001 165580141/439204*192900153618^(5/9) 7014087330036361 a001 165580141/439204*28143753123^(3/5) 7014087330036361 a001 165580141/439204*10749957122^(5/8) 7014087330036361 a001 165580141/439204*4106118243^(15/23) 7014087330036361 a001 165580141/439204*1568397607^(15/22) 7014087330036361 a001 139583862445/439204*228826127^(2/5) 7014087330036361 a001 53316291173/439204*228826127^(9/20) 7014087330036361 a001 165580141/439204*599074578^(5/7) 7014087330036361 a001 10182505537/219602*228826127^(1/2) 7014087330036361 a001 7778742049/439204*228826127^(11/20) 7014087330036361 a001 2971215073/439204*228826127^(3/5) 7014087330036361 a001 1836311903/439204*228826127^(5/8) 7014087330036361 a001 567451585/219602*228826127^(13/20) 7014087330036361 a001 433494437/439204*228826127^(7/10) 7014087330036361 a001 71778070001547716/102334155 7014087330036361 a001 165580141/439204*228826127^(3/4) 7014087330036361 a001 3278735159921/219602*87403803^(4/19) 7014087330036361 a001 2504730781961/439204*87403803^(5/19) 7014087330036361 a001 956722026041/439204*87403803^(6/19) 7014087330036361 a001 182717648081/219602*87403803^(7/19) 7014087330036361 a001 98209/70711162*14662949395604^(8/9) 7014087330036361 a001 31622993/219602*(1/2+1/2*5^(1/2))^32 7014087330036361 a001 31622993/219602*23725150497407^(1/2) 7014087330036361 a001 31622993/219602*505019158607^(4/7) 7014087330036361 a001 31622993/219602*73681302247^(8/13) 7014087330036361 a001 31622993/219602*10749957122^(2/3) 7014087330036361 a001 31622993/219602*4106118243^(16/23) 7014087330036361 a001 31622993/219602*1568397607^(8/11) 7014087330036361 a001 31622993/219602*599074578^(16/21) 7014087330036361 a001 139583862445/439204*87403803^(8/19) 7014087330036361 a001 53316291173/439204*87403803^(9/19) 7014087330036361 a001 31622993/219602*228826127^(4/5) 7014087330036361 a001 32951280099/439204*87403803^(1/2) 7014087330036361 a001 10182505537/219602*87403803^(10/19) 7014087330036361 a001 7778742049/439204*87403803^(11/19) 7014087330036361 a001 2971215073/439204*87403803^(12/19) 7014087330036361 a001 567451585/219602*87403803^(13/19) 7014087330036361 a001 433494437/439204*87403803^(14/19) 7014087330036362 a001 165580141/439204*87403803^(15/19) 7014087330036362 a001 27416783093722010/39088169 7014087330036362 a001 31622993/219602*87403803^(16/19) 7014087330036362 a001 3278735159921/219602*33385282^(2/9) 7014087330036362 a001 4052739537881/439204*33385282^(1/4) 7014087330036362 a001 2504730781961/439204*33385282^(5/18) 7014087330036363 a001 956722026041/439204*33385282^(1/3) 7014087330036363 a001 24157817/439204*45537549124^(2/3) 7014087330036363 a001 196418/54018521*14662949395604^(6/7) 7014087330036363 a001 24157817/439204*(1/2+1/2*5^(1/2))^34 7014087330036363 a001 24157817/439204*10749957122^(17/24) 7014087330036363 a001 24157817/439204*4106118243^(17/23) 7014087330036363 a001 24157817/439204*1568397607^(17/22) 7014087330036363 a001 24157817/439204*599074578^(17/21) 7014087330036363 a001 182717648081/219602*33385282^(7/18) 7014087330036363 a001 24157817/439204*228826127^(17/20) 7014087330036363 a001 225851433717/439204*33385282^(5/12) 7014087330036364 a001 139583862445/439204*33385282^(4/9) 7014087330036364 a001 53316291173/439204*33385282^(1/2) 7014087330036364 a001 24157817/439204*87403803^(17/19) 7014087330036364 a001 10182505537/219602*33385282^(5/9) 7014087330036364 a001 12586269025/439204*33385282^(7/12) 7014087330036365 a001 7778742049/439204*33385282^(11/18) 7014087330036365 a001 2971215073/439204*33385282^(2/3) 7014087330036365 a001 567451585/219602*33385282^(13/18) 7014087330036365 a001 701408733/439204*33385282^(3/4) 7014087330036366 a001 39088169/439204*33385282^(11/12) 7014087330036366 a001 433494437/439204*33385282^(7/9) 7014087330036366 a001 165580141/439204*33385282^(5/6) 7014087330036367 a001 31622993/219602*33385282^(8/9) 7014087330036367 a001 308008214106421/439128 7014087330036369 a001 24157817/439204*33385282^(17/18) 7014087330036371 a001 3278735159921/219602*12752043^(4/17) 7014087330036373 a001 2504730781961/439204*12752043^(5/17) 7014087330036376 a001 956722026041/439204*12752043^(6/17) 7014087330036377 a001 9227465/439204*141422324^(12/13) 7014087330036377 a001 9227465/439204*2537720636^(4/5) 7014087330036377 a001 9227465/439204*45537549124^(12/17) 7014087330036377 a001 196418/20633239*(1/2+1/2*5^(1/2))^52 7014087330036377 a001 196418/20633239*23725150497407^(13/16) 7014087330036377 a001 196418/20633239*505019158607^(13/14) 7014087330036377 a001 9227465/439204*14662949395604^(4/7) 7014087330036377 a001 9227465/439204*(1/2+1/2*5^(1/2))^36 7014087330036377 a001 9227465/439204*505019158607^(9/14) 7014087330036377 a001 9227465/439204*192900153618^(2/3) 7014087330036377 a001 9227465/439204*73681302247^(9/13) 7014087330036377 a001 9227465/439204*10749957122^(3/4) 7014087330036377 a001 9227465/439204*4106118243^(18/23) 7014087330036377 a001 9227465/439204*1568397607^(9/11) 7014087330036377 a001 9227465/439204*599074578^(6/7) 7014087330036377 a001 9227465/439204*228826127^(9/10) 7014087330036378 a001 9227465/439204*87403803^(18/19) 7014087330036378 a001 182717648081/219602*12752043^(7/17) 7014087330036381 a001 139583862445/439204*12752043^(8/17) 7014087330036382 a001 196418*12752043^(1/2) 7014087330036384 a001 53316291173/439204*12752043^(9/17) 7014087330036386 a001 10182505537/219602*12752043^(10/17) 7014087330036389 a001 7778742049/439204*12752043^(11/17) 7014087330036391 a001 2971215073/439204*12752043^(12/17) 7014087330036394 a001 567451585/219602*12752043^(13/17) 7014087330036396 a001 433494437/439204*12752043^(14/17) 7014087330036399 a001 165580141/439204*12752043^(15/17) 7014087330036402 a001 31622993/219602*12752043^(16/17) 7014087330036404 a001 2504730585556/3571 7014087330036435 a001 3278735159921/219602*4870847^(1/4) 7014087330036453 a001 2504730781961/439204*4870847^(5/16) 7014087330036472 a001 956722026041/439204*4870847^(3/8) 7014087330036474 a001 98209/3940598*312119004989^(10/11) 7014087330036474 a001 98209/3940598*(1/2+1/2*5^(1/2))^50 7014087330036474 a001 98209/3940598*3461452808002^(5/6) 7014087330036474 a001 1762289/219602*817138163596^(2/3) 7014087330036474 a001 1762289/219602*(1/2+1/2*5^(1/2))^38 7014087330036474 a001 1762289/219602*10749957122^(19/24) 7014087330036474 a001 1762289/219602*4106118243^(19/23) 7014087330036474 a001 1762289/219602*1568397607^(19/22) 7014087330036474 a001 1762289/219602*599074578^(19/21) 7014087330036474 a001 1762289/219602*228826127^(19/20) 7014087330036490 a001 182717648081/219602*4870847^(7/16) 7014087330036509 a001 139583862445/439204*4870847^(1/2) 7014087330036527 a001 53316291173/439204*4870847^(9/16) 7014087330036546 a001 10182505537/219602*4870847^(5/8) 7014087330036564 a001 7778742049/439204*4870847^(11/16) 7014087330036582 a001 2971215073/439204*4870847^(3/4) 7014087330036601 a001 567451585/219602*4870847^(13/16) 7014087330036619 a001 433494437/439204*4870847^(7/8) 7014087330036638 a001 165580141/439204*4870847^(15/16) 7014087330036656 a001 1527884955780482/2178309 7014087330036901 a001 3278735159921/219602*1860498^(4/15) 7014087330036969 a001 4052739537881/439204*1860498^(3/10) 7014087330037036 a001 2504730781961/439204*1860498^(1/3) 7014087330037135 a001 1346269/439204*2537720636^(8/9) 7014087330037135 a001 196418/3010349*45537549124^(16/17) 7014087330037135 a001 196418/3010349*14662949395604^(16/21) 7014087330037135 a001 196418/3010349*(1/2+1/2*5^(1/2))^48 7014087330037135 a001 1346269/439204*312119004989^(8/11) 7014087330037135 a001 196418/3010349*192900153618^(8/9) 7014087330037135 a001 1346269/439204*(1/2+1/2*5^(1/2))^40 7014087330037135 a001 1346269/439204*23725150497407^(5/8) 7014087330037135 a001 1346269/439204*73681302247^(10/13) 7014087330037135 a001 1346269/439204*28143753123^(4/5) 7014087330037135 a001 1346269/439204*10749957122^(5/6) 7014087330037135 a001 1346269/439204*4106118243^(20/23) 7014087330037135 a001 1346269/439204*1568397607^(10/11) 7014087330037135 a001 1346269/439204*599074578^(20/21) 7014087330037171 a001 956722026041/439204*1860498^(2/5) 7014087330037306 a001 182717648081/219602*1860498^(7/15) 7014087330037370 a001 591286729879/710647*271443^(7/13) 7014087330037374 a001 225851433717/439204*1860498^(1/2) 7014087330037441 a001 139583862445/439204*1860498^(8/15) 7014087330037577 a001 53316291173/439204*1860498^(3/5) 7014087330037712 a001 10182505537/219602*1860498^(2/3) 7014087330037779 a001 12586269025/439204*1860498^(7/10) 7014087330037847 a001 7778742049/439204*1860498^(11/15) 7014087330037982 a001 2971215073/439204*1860498^(4/5) 7014087330038049 a001 1836311903/439204*1860498^(5/6) 7014087330038117 a001 567451585/219602*1860498^(13/15) 7014087330038184 a001 701408733/439204*1860498^(9/10) 7014087330038252 a001 433494437/439204*1860498^(14/15) 7014087330038387 a001 291800061104257/416020 7014087330039833 a001 10610209857723/439204*710647^(1/4) 7014087330040329 a001 3278735159921/219602*710647^(2/7) 7014087330041321 a001 2504730781961/439204*710647^(5/14) 7014087330041666 a001 514229/439204*2537720636^(14/15) 7014087330041666 a001 514229/439204*17393796001^(6/7) 7014087330041666 a001 514229/439204*45537549124^(14/17) 7014087330041666 a001 196418/1149851*(1/2+1/2*5^(1/2))^46 7014087330041666 a001 514229/439204*817138163596^(14/19) 7014087330041666 a001 514229/439204*14662949395604^(2/3) 7014087330041666 a001 514229/439204*(1/2+1/2*5^(1/2))^42 7014087330041666 a001 514229/439204*505019158607^(3/4) 7014087330041666 a001 514229/439204*192900153618^(7/9) 7014087330041666 a001 514229/439204*10749957122^(7/8) 7014087330041666 a001 196418/1149851*10749957122^(23/24) 7014087330041666 a001 514229/439204*4106118243^(21/23) 7014087330041666 a001 514229/439204*1568397607^(21/22) 7014087330041909 a001 4052739537881/1860498*271443^(6/13) 7014087330041918 a001 6557470319842/1149851*271443^(5/13) 7014087330042313 a001 956722026041/439204*710647^(3/7) 7014087330043305 a001 182717648081/219602*710647^(1/2) 7014087330043640 a001 2178309*271443^(6/13) 7014087330044297 a001 139583862445/439204*710647^(4/7) 7014087330044692 a001 317811*271443^(8/13) 7014087330044710 a001 6557470319842/3010349*271443^(6/13) 7014087330045289 a001 53316291173/439204*710647^(9/14) 7014087330045571 a001 2504730781961/1860498*271443^(1/2) 7014087330046281 a001 10182505537/219602*710647^(5/7) 7014087330046777 a001 12586269025/439204*710647^(3/4) 7014087330047273 a001 7778742049/439204*710647^(11/14) 7014087330047301 a001 6557470319842/4870847*271443^(1/2) 7014087330047710 a001 10610209857723/7881196*271443^(1/2) 7014087330048265 a001 2971215073/439204*710647^(6/7) 7014087330048371 a001 1346269*271443^(1/2) 7014087330049232 a001 832040*271443^(7/13) 7014087330049241 a001 2504730781961/1149851*271443^(6/13) 7014087330049257 a001 567451585/219602*710647^(13/14) 7014087330049844 a001 7778742049/167761*167761^(4/5) 7014087330050249 a001 222915410845060/317811 7014087330050963 a001 4052739537881/4870847*271443^(7/13) 7014087330051215 a001 3536736619241/4250681*271443^(7/13) 7014087330051371 a001 3278735159921/3940598*271443^(7/13) 7014087330052015 a001 86267571272/710647*271443^(9/13) 7014087330052032 a001 2504730781961/3010349*271443^(7/13) 7014087330052902 a001 1548008755920/1149851*271443^(1/2) 7014087330056555 a001 591286729879/1860498*271443^(8/13) 7014087330056563 a001 956722026041/1149851*271443^(7/13) 7014087330058285 a001 1548008755920/4870847*271443^(8/13) 7014087330058538 a001 4052739537881/12752043*271443^(8/13) 7014087330058575 a001 1515744265389/4769326*271443^(8/13) 7014087330058597 a001 6557470319842/20633239*271443^(8/13) 7014087330058694 a001 2504730781961/7881196*271443^(8/13) 7014087330059338 a001 32951280099/710647*271443^(10/13) 7014087330059355 a001 956722026041/3010349*271443^(8/13) 7014087330063877 a001 75283811239/620166*271443^(9/13) 7014087330063886 a001 365435296162/1149851*271443^(8/13) 7014087330065608 a001 591286729879/4870847*271443^(9/13) 7014087330065651 a001 3278735159921/219602*271443^(4/13) 7014087330065861 a001 516002918640/4250681*271443^(9/13) 7014087330065897 a001 4052739537881/33385282*271443^(9/13) 7014087330065903 a001 3536736619241/29134601*271443^(9/13) 7014087330065906 a001 6557470319842/54018521*271443^(9/13) 7014087330065920 a001 2504730781961/20633239*271443^(9/13) 7014087330066017 a001 956722026041/7881196*271443^(9/13) 7014087330066660 a001 12586269025/710647*271443^(11/13) 7014087330066678 a001 365435296162/3010349*271443^(9/13) 7014087330067924 a001 3536736619241/90481*103682^(1/4) 7014087330071200 a001 43133785636/930249*271443^(10/13) 7014087330071209 a001 139583862445/1149851*271443^(9/13) 7014087330072722 a001 98209/219602*312119004989^(4/5) 7014087330072722 a001 98209/219602*(1/2+1/2*5^(1/2))^44 7014087330072722 a001 98209/219602*23725150497407^(11/16) 7014087330072722 a001 98209/219602*73681302247^(11/13) 7014087330072722 a001 98209/219602*10749957122^(11/12) 7014087330072722 a001 98209/219602*4106118243^(22/23) 7014087330072931 a001 225851433717/4870847*271443^(10/13) 7014087330072974 a001 2504730781961/439204*271443^(5/13) 7014087330073183 a001 591286729879/12752043*271443^(10/13) 7014087330073220 a001 774004377960/16692641*271443^(10/13) 7014087330073225 a001 4052739537881/87403803*271443^(10/13) 7014087330073226 a001 225749145909/4868641*271443^(10/13) 7014087330073227 a001 3278735159921/70711162*271443^(10/13) 7014087330073229 a001 2504730781961/54018521*271443^(10/13) 7014087330073243 a001 956722026041/20633239*271443^(10/13) 7014087330073339 a001 182717648081/3940598*271443^(10/13) 7014087330073983 a001 686789568/101521*271443^(12/13) 7014087330074000 a001 139583862445/3010349*271443^(10/13) 7014087330074269 a001 1134903170/64079*64079^(22/23) 7014087330078523 a001 10983760033/620166*271443^(11/13) 7014087330078531 a001 53316291173/1149851*271443^(10/13) 7014087330080253 a001 86267571272/4870847*271443^(11/13) 7014087330080297 a001 956722026041/439204*271443^(6/13) 7014087330080506 a001 75283811239/4250681*271443^(11/13) 7014087330080543 a001 591286729879/33385282*271443^(11/13) 7014087330080548 a001 516002918640/29134601*271443^(11/13) 7014087330080549 a001 4052739537881/228826127*271443^(11/13) 7014087330080549 a001 3536736619241/199691526*271443^(11/13) 7014087330080549 a001 6557470319842/370248451*271443^(11/13) 7014087330080549 a001 2504730781961/141422324*271443^(11/13) 7014087330080551 a001 956722026041/54018521*271443^(11/13) 7014087330080566 a001 365435296162/20633239*271443^(11/13) 7014087330080662 a001 139583862445/7881196*271443^(11/13) 7014087330081306 a001 85146110326056/121393 7014087330081323 a001 53316291173/3010349*271443^(11/13) 7014087330083958 a001 591286729879/439204*271443^(1/2) 7014087330085845 a001 12586269025/1860498*271443^(12/13) 7014087330085854 a001 20365011074/1149851*271443^(11/13) 7014087330087576 a001 32951280099/4870847*271443^(12/13) 7014087330087620 a001 182717648081/219602*271443^(7/13) 7014087330087829 a001 86267571272/12752043*271443^(12/13) 7014087330087865 a001 32264490531/4769326*271443^(12/13) 7014087330087871 a001 591286729879/87403803*271443^(12/13) 7014087330087872 a001 1548008755920/228826127*271443^(12/13) 7014087330087872 a001 4052739537881/599074578*271443^(12/13) 7014087330087872 a001 1515744265389/224056801*271443^(12/13) 7014087330087872 a001 6557470319842/969323029*271443^(12/13) 7014087330087872 a001 2504730781961/370248451*271443^(12/13) 7014087330087872 a001 956722026041/141422324*271443^(12/13) 7014087330087874 a001 365435296162/54018521*271443^(12/13) 7014087330087888 a001 139583862445/20633239*271443^(12/13) 7014087330087985 a001 53316291173/7881196*271443^(12/13) 7014087330088646 a001 20365011074/3010349*271443^(12/13) 7014087330093168 a001 85146110326200/121393 7014087330093177 a001 7778742049/1149851*271443^(12/13) 7014087330094898 a001 85146110326221/121393 7014087330094942 a001 139583862445/439204*271443^(8/13) 7014087330095110 a001 6557470319842/271443*103682^(7/24) 7014087330095145 a001 85146110326224/121393 7014087330095227 a001 85146110326225/121393 7014087330095310 a001 85146110326226/121393 7014087330095969 a001 365433949898/521 7014087330099689 a001 86267571272/167761*167761^(3/5) 7014087330100500 a001 85146110326289/121393 7014087330102265 a001 53316291173/439204*271443^(9/13) 7014087330109588 a001 10182505537/219602*271443^(10/13) 7014087330116910 a001 7778742049/439204*271443^(11/13) 7014087330122297 a001 4052739537881/271443*103682^(1/3) 7014087330124233 a001 2971215073/439204*271443^(12/13) 7014087330125735 a001 6557470319842/39603*15127^(3/20) 7014087330131556 a001 85146110326666/121393 7014087330148539 a001 28657*64079^(21/23) 7014087330149483 a001 2504730781961/271443*103682^(3/8) 7014087330149534 a001 956722026041/167761*167761^(2/5) 7014087330154028 a001 75025/271443*45537549124^(15/17) 7014087330154028 a001 75025/271443*312119004989^(9/11) 7014087330154028 a001 75025/271443*14662949395604^(5/7) 7014087330154028 a001 75025/271443*(1/2+1/2*5^(1/2))^45 7014087330154028 a001 75025/271443*192900153618^(5/6) 7014087330154028 a001 121393/167761*(1/2+1/2*5^(1/2))^43 7014087330154028 a001 75025/271443*28143753123^(9/10) 7014087330154028 a001 75025/271443*10749957122^(15/16) 7014087330160639 a001 225749145909/2206*39603^(2/11) 7014087330176669 a001 516002918640/90481*103682^(5/12) 7014087330199378 a001 10610209857723/167761*167761^(1/5) 7014087330203603 a001 1515744265389/101521*103682^(1/3) 7014087330203856 a001 956722026041/271443*103682^(11/24) 7014087330212862 a001 137769300522575/196418 7014087330216902 a001 1134903170/167761*439204^(8/9) 7014087330220942 a001 4807526976/167761*439204^(7/9) 7014087330222809 a001 2971215073/64079*64079^(20/23) 7014087330224982 a001 20365011074/167761*439204^(2/3) 7014087330226666 a001 10610209857723/439204*103682^(7/24) 7014087330229022 a001 86267571272/167761*439204^(5/9) 7014087330230789 a001 6557470319842/710647*103682^(3/8) 7014087330231042 a001 591286729879/271443*103682^(1/2) 7014087330233063 a001 365435296162/167761*439204^(4/9) 7014087330235334 a001 75025/710647*(1/2+1/2*5^(1/2))^47 7014087330235334 a001 317811/167761*(1/2+1/2*5^(1/2))^41 7014087330237103 a001 140728068720/15251*439204^(1/3) 7014087330241143 a001 6557470319842/167761*439204^(2/9) 7014087330243918 a001 360684711374400/514229 7014087330247197 a001 75640/15251*2537720636^(13/15) 7014087330247197 a001 75025/1860498*14662949395604^(7/9) 7014087330247197 a001 75025/1860498*(1/2+1/2*5^(1/2))^49 7014087330247197 a001 75025/1860498*505019158607^(7/8) 7014087330247197 a001 75640/15251*45537549124^(13/17) 7014087330247197 a001 75640/15251*14662949395604^(13/21) 7014087330247197 a001 75640/15251*(1/2+1/2*5^(1/2))^39 7014087330247197 a001 75640/15251*192900153618^(13/18) 7014087330247197 a001 75640/15251*73681302247^(3/4) 7014087330247197 a001 75640/15251*10749957122^(13/16) 7014087330247197 a001 75640/15251*599074578^(13/14) 7014087330248449 a001 944284833600625/1346269 7014087330248927 a001 75025/4870847*817138163596^(17/19) 7014087330248927 a001 75025/4870847*14662949395604^(17/21) 7014087330248927 a001 75025/4870847*(1/2+1/2*5^(1/2))^51 7014087330248927 a001 75025/4870847*192900153618^(17/18) 7014087330248927 a001 2178309/167761*(1/2+1/2*5^(1/2))^37 7014087330249110 a001 2472169789427475/3524578 7014087330249121 a001 63245986/167761*7881196^(10/11) 7014087330249131 a001 267914296/167761*7881196^(9/11) 7014087330249141 a001 1134903170/167761*7881196^(8/11) 7014087330249148 a001 2971215073/167761*7881196^(2/3) 7014087330249151 a001 4807526976/167761*7881196^(7/11) 7014087330249162 a001 20365011074/167761*7881196^(6/11) 7014087330249172 a001 86267571272/167761*7881196^(5/11) 7014087330249180 a001 5702887/167761*2537720636^(7/9) 7014087330249180 a001 5702887/167761*17393796001^(5/7) 7014087330249180 a001 75025/12752043*(1/2+1/2*5^(1/2))^53 7014087330249180 a001 5702887/167761*312119004989^(7/11) 7014087330249180 a001 5702887/167761*14662949395604^(5/9) 7014087330249180 a001 5702887/167761*(1/2+1/2*5^(1/2))^35 7014087330249180 a001 5702887/167761*505019158607^(5/8) 7014087330249180 a001 5702887/167761*28143753123^(7/10) 7014087330249180 a001 5702887/167761*599074578^(5/6) 7014087330249180 a001 5702887/167761*228826127^(7/8) 7014087330249182 a001 365435296162/167761*7881196^(4/11) 7014087330249185 a001 591286729879/167761*7881196^(1/3) 7014087330249192 a001 140728068720/15251*7881196^(3/11) 7014087330249203 a001 6557470319842/167761*7881196^(2/11) 7014087330249207 a001 1294444906936360/1845493 7014087330249209 a001 63245986/167761*20633239^(6/7) 7014087330249210 a001 165580141/167761*20633239^(4/5) 7014087330249211 a001 701408733/167761*20633239^(5/7) 7014087330249213 a001 4807526976/167761*20633239^(3/5) 7014087330249214 a001 7778742049/167761*20633239^(4/7) 7014087330249216 a001 86267571272/167761*20633239^(3/7) 7014087330249217 a001 139583862445/167761*20633239^(2/5) 7014087330249217 a001 14930352/167761*141422324^(11/13) 7014087330249217 a001 14930352/167761*2537720636^(11/15) 7014087330249217 a001 75025/33385282*(1/2+1/2*5^(1/2))^55 7014087330249217 a001 75025/33385282*3461452808002^(11/12) 7014087330249217 a001 14930352/167761*45537549124^(11/17) 7014087330249217 a001 14930352/167761*312119004989^(3/5) 7014087330249217 a001 14930352/167761*817138163596^(11/19) 7014087330249217 a001 14930352/167761*14662949395604^(11/21) 7014087330249217 a001 14930352/167761*(1/2+1/2*5^(1/2))^33 7014087330249217 a001 14930352/167761*192900153618^(11/18) 7014087330249217 a001 14930352/167761*10749957122^(11/16) 7014087330249217 a001 14930352/167761*1568397607^(3/4) 7014087330249217 a001 14930352/167761*599074578^(11/14) 7014087330249218 a001 956722026041/167761*20633239^(2/7) 7014087330249220 a001 4052739537881/167761*20633239^(1/5) 7014087330249221 a001 16944503814617925/24157817 7014087330249221 a001 10610209857723/167761*20633239^(1/7) 7014087330249222 a001 75025/87403803*14662949395604^(19/21) 7014087330249222 a001 39088169/167761*(1/2+1/2*5^(1/2))^31 7014087330249222 a001 39088169/167761*9062201101803^(1/2) 7014087330249223 a001 14930352/167761*33385282^(11/12) 7014087330249223 a001 44361286909171975/63245986 7014087330249223 a001 267914296/167761*141422324^(9/13) 7014087330249223 a001 433494437/167761*141422324^(2/3) 7014087330249223 a001 1134903170/167761*141422324^(8/13) 7014087330249223 a001 4807526976/167761*141422324^(7/13) 7014087330249223 a001 20365011074/167761*141422324^(6/13) 7014087330249223 a001 86267571272/167761*141422324^(5/13) 7014087330249223 a001 9303105/15251*(1/2+1/2*5^(1/2))^29 7014087330249223 a001 9303105/15251*1322157322203^(1/2) 7014087330249223 a001 225851433717/167761*141422324^(1/3) 7014087330249223 a001 365435296162/167761*141422324^(4/13) 7014087330249223 a001 140728068720/15251*141422324^(3/13) 7014087330249223 a001 6557470319842/167761*141422324^(2/13) 7014087330249223 a001 116139356912898000/165580141 7014087330249223 a001 267914296/167761*2537720636^(3/5) 7014087330249223 a001 267914296/167761*45537549124^(9/17) 7014087330249223 a001 267914296/167761*817138163596^(9/19) 7014087330249223 a001 267914296/167761*14662949395604^(3/7) 7014087330249223 a001 267914296/167761*(1/2+1/2*5^(1/2))^27 7014087330249223 a001 267914296/167761*192900153618^(1/2) 7014087330249223 a001 267914296/167761*10749957122^(9/16) 7014087330249223 a001 304056783829522025/433494437 7014087330249223 a001 267914296/167761*599074578^(9/14) 7014087330249223 a001 701408733/167761*2537720636^(5/9) 7014087330249223 a001 701408733/167761*312119004989^(5/11) 7014087330249223 a001 701408733/167761*(1/2+1/2*5^(1/2))^25 7014087330249223 a001 701408733/167761*3461452808002^(5/12) 7014087330249223 a001 701408733/167761*28143753123^(1/2) 7014087330249223 a001 159206198915133615/226980634 7014087330249223 a001 4807526976/167761*2537720636^(7/15) 7014087330249223 a001 7778742049/167761*2537720636^(4/9) 7014087330249223 a001 20365011074/167761*2537720636^(2/5) 7014087330249223 a001 1836311903/167761*(1/2+1/2*5^(1/2))^23 7014087330249223 a001 86267571272/167761*2537720636^(1/3) 7014087330249223 a001 365435296162/167761*2537720636^(4/15) 7014087330249223 a001 956722026041/167761*2537720636^(2/9) 7014087330249223 a001 140728068720/15251*2537720636^(1/5) 7014087330249223 a001 1836311903/167761*4106118243^(1/2) 7014087330249223 a001 6557470319842/167761*2537720636^(2/15) 7014087330249223 a001 10610209857723/167761*2537720636^(1/9) 7014087330249223 a001 4807526976/167761*17393796001^(3/7) 7014087330249223 a001 4807526976/167761*45537549124^(7/17) 7014087330249223 a001 4807526976/167761*14662949395604^(1/3) 7014087330249223 a001 4807526976/167761*(1/2+1/2*5^(1/2))^21 7014087330249223 a001 4807526976/167761*192900153618^(7/18) 7014087330249223 a001 4807526976/167761*10749957122^(7/16) 7014087330249223 a001 75025*817138163596^(1/3) 7014087330249223 a001 75025*(1/2+1/2*5^(1/2))^19 7014087330249223 a001 139583862445/167761*17393796001^(2/7) 7014087330249223 a001 4052739537881/167761*17393796001^(1/7) 7014087330249223 a001 32951280099/167761*45537549124^(1/3) 7014087330249223 a001 32951280099/167761*(1/2+1/2*5^(1/2))^17 7014087330249223 a001 86267571272/167761*45537549124^(5/17) 7014087330249223 a001 365435296162/167761*45537549124^(4/17) 7014087330249223 a001 140728068720/15251*45537549124^(3/17) 7014087330249223 a001 6557470319842/167761*45537549124^(2/17) 7014087330249223 a001 86267571272/167761*312119004989^(3/11) 7014087330249223 a001 86267571272/167761*(1/2+1/2*5^(1/2))^15 7014087330249223 a001 225851433717/167761*(1/2+1/2*5^(1/2))^13 7014087330249223 a001 10610209857723/167761*312119004989^(1/11) 7014087330249223 a001 140728068720/15251*817138163596^(3/19) 7014087330249223 a001 140728068720/15251*14662949395604^(1/7) 7014087330249223 a001 140728068720/15251*(1/2+1/2*5^(1/2))^9 7014087330249223 a001 4052739537881/167761*(1/2+1/2*5^(1/2))^7 7014087330249223 a001 10610209857723/167761*(1/2+1/2*5^(1/2))^5 7014087330249223 a001 956722026041/167761*(1/2+1/2*5^(1/2))^10 7014087330249223 a001 365435296162/167761*14662949395604^(4/21) 7014087330249223 a001 140728068720/15251*192900153618^(1/6) 7014087330249223 a001 139583862445/167761*14662949395604^(2/9) 7014087330249223 a001 139583862445/167761*(1/2+1/2*5^(1/2))^14 7014087330249223 a001 139583862445/167761*505019158607^(1/4) 7014087330249223 a001 2504730781961/167761*73681302247^(2/13) 7014087330249223 a001 225851433717/167761*73681302247^(1/4) 7014087330249223 a001 365435296162/167761*73681302247^(3/13) 7014087330249223 a001 53316291173/167761*23725150497407^(1/4) 7014087330249223 a001 10610209857723/167761*28143753123^(1/10) 7014087330249223 a001 53316291173/167761*73681302247^(4/13) 7014087330249223 a001 956722026041/167761*28143753123^(1/5) 7014087330249223 a001 20365011074/167761*45537549124^(6/17) 7014087330249223 a001 86267571272/167761*28143753123^(3/10) 7014087330249223 a001 20365011074/167761*14662949395604^(2/7) 7014087330249223 a001 20365011074/167761*(1/2+1/2*5^(1/2))^18 7014087330249223 a001 20365011074/167761*192900153618^(1/3) 7014087330249223 a001 6557470319842/167761*10749957122^(1/8) 7014087330249223 a001 2504730781961/167761*10749957122^(1/6) 7014087330249223 a001 140728068720/15251*10749957122^(3/16) 7014087330249223 a001 956722026041/167761*10749957122^(5/24) 7014087330249223 a001 365435296162/167761*10749957122^(1/4) 7014087330249223 a001 139583862445/167761*10749957122^(7/24) 7014087330249223 a001 86267571272/167761*10749957122^(5/16) 7014087330249223 a001 53316291173/167761*10749957122^(1/3) 7014087330249223 a001 7778742049/167761*(1/2+1/2*5^(1/2))^20 7014087330249223 a001 7778742049/167761*23725150497407^(5/16) 7014087330249223 a001 7778742049/167761*505019158607^(5/14) 7014087330249223 a001 7778742049/167761*73681302247^(5/13) 7014087330249223 a001 20365011074/167761*10749957122^(3/8) 7014087330249223 a001 7778742049/167761*28143753123^(2/5) 7014087330249223 a001 7778742049/167761*10749957122^(5/12) 7014087330249223 a001 6557470319842/167761*4106118243^(3/23) 7014087330249223 a001 2504730781961/167761*4106118243^(4/23) 7014087330249223 a001 956722026041/167761*4106118243^(5/23) 7014087330249223 a001 365435296162/167761*4106118243^(6/23) 7014087330249223 a001 139583862445/167761*4106118243^(7/23) 7014087330249223 a001 53316291173/167761*4106118243^(8/23) 7014087330249223 a001 2971215073/167761*312119004989^(2/5) 7014087330249223 a001 2971215073/167761*(1/2+1/2*5^(1/2))^22 7014087330249223 a001 20365011074/167761*4106118243^(9/23) 7014087330249223 a001 2971215073/167761*10749957122^(11/24) 7014087330249223 a001 7778742049/167761*4106118243^(10/23) 7014087330249223 a001 2971215073/167761*4106118243^(11/23) 7014087330249223 a001 6557470319842/167761*1568397607^(3/22) 7014087330249223 a001 1134903170/167761*2537720636^(8/15) 7014087330249223 a001 2504730781961/167761*1568397607^(2/11) 7014087330249223 a001 956722026041/167761*1568397607^(5/22) 7014087330249223 a001 591286729879/167761*1568397607^(1/4) 7014087330249223 a001 365435296162/167761*1568397607^(3/11) 7014087330249223 a001 139583862445/167761*1568397607^(7/22) 7014087330249223 a001 53316291173/167761*1568397607^(4/11) 7014087330249223 a001 1134903170/167761*45537549124^(8/17) 7014087330249223 a001 1134903170/167761*14662949395604^(8/21) 7014087330249223 a001 1134903170/167761*(1/2+1/2*5^(1/2))^24 7014087330249223 a001 1134903170/167761*192900153618^(4/9) 7014087330249223 a001 1134903170/167761*73681302247^(6/13) 7014087330249223 a001 1134903170/167761*10749957122^(1/2) 7014087330249223 a001 20365011074/167761*1568397607^(9/22) 7014087330249223 a001 1134903170/167761*4106118243^(12/23) 7014087330249223 a001 7778742049/167761*1568397607^(5/11) 7014087330249223 a001 2971215073/167761*1568397607^(1/2) 7014087330249223 a001 1134903170/167761*1568397607^(6/11) 7014087330249223 a001 6557470319842/167761*599074578^(1/7) 7014087330249223 a001 491974210746146050/701408733 7014087330249223 a001 4052739537881/167761*599074578^(1/6) 7014087330249223 a001 2504730781961/167761*599074578^(4/21) 7014087330249223 a001 140728068720/15251*599074578^(3/14) 7014087330249223 a001 956722026041/167761*599074578^(5/21) 7014087330249223 a001 365435296162/167761*599074578^(2/7) 7014087330249223 a001 139583862445/167761*599074578^(1/3) 7014087330249223 a001 86267571272/167761*599074578^(5/14) 7014087330249223 a001 53316291173/167761*599074578^(8/21) 7014087330249223 a001 433494437/167761*(1/2+1/2*5^(1/2))^26 7014087330249223 a001 433494437/167761*73681302247^(1/2) 7014087330249223 a001 433494437/167761*10749957122^(13/24) 7014087330249223 a001 433494437/167761*4106118243^(13/23) 7014087330249223 a001 20365011074/167761*599074578^(3/7) 7014087330249223 a001 433494437/167761*1568397607^(13/22) 7014087330249223 a001 7778742049/167761*599074578^(10/21) 7014087330249223 a001 4807526976/167761*599074578^(1/2) 7014087330249223 a001 2971215073/167761*599074578^(11/21) 7014087330249223 a001 1134903170/167761*599074578^(4/7) 7014087330249223 a001 10610209857723/167761*228826127^(1/8) 7014087330249223 a001 187917426916624025/267914296 7014087330249223 a001 433494437/167761*599074578^(13/21) 7014087330249223 a001 6557470319842/167761*228826127^(3/20) 7014087330249223 a001 2504730781961/167761*228826127^(1/5) 7014087330249223 a001 956722026041/167761*228826127^(1/4) 7014087330249223 a001 365435296162/167761*228826127^(3/10) 7014087330249223 a001 139583862445/167761*228826127^(7/20) 7014087330249223 a001 86267571272/167761*228826127^(3/8) 7014087330249223 a001 165580141/167761*17393796001^(4/7) 7014087330249223 a001 75025/370248451*14662949395604^(20/21) 7014087330249223 a001 165580141/167761*14662949395604^(4/9) 7014087330249223 a001 165580141/167761*(1/2+1/2*5^(1/2))^28 7014087330249223 a001 165580141/167761*505019158607^(1/2) 7014087330249223 a001 165580141/167761*73681302247^(7/13) 7014087330249223 a001 165580141/167761*10749957122^(7/12) 7014087330249223 a001 165580141/167761*4106118243^(14/23) 7014087330249223 a001 165580141/167761*1568397607^(7/11) 7014087330249223 a001 53316291173/167761*228826127^(2/5) 7014087330249223 a001 20365011074/167761*228826127^(9/20) 7014087330249223 a001 165580141/167761*599074578^(2/3) 7014087330249223 a001 7778742049/167761*228826127^(1/2) 7014087330249223 a001 2971215073/167761*228826127^(11/20) 7014087330249223 a001 701408733/167761*228826127^(5/8) 7014087330249223 a001 63245986/167761*141422324^(10/13) 7014087330249223 a001 1134903170/167761*228826127^(3/5) 7014087330249223 a001 433494437/167761*228826127^(13/20) 7014087330249223 a001 14355614000745205/20466831 7014087330249223 a001 165580141/167761*228826127^(7/10) 7014087330249223 a001 6557470319842/167761*87403803^(3/19) 7014087330249223 a001 2504730781961/167761*87403803^(4/19) 7014087330249223 a001 956722026041/167761*87403803^(5/19) 7014087330249223 a001 365435296162/167761*87403803^(6/19) 7014087330249223 a001 139583862445/167761*87403803^(7/19) 7014087330249223 a001 63245986/167761*2537720636^(2/3) 7014087330249223 a001 63245986/167761*45537549124^(10/17) 7014087330249223 a001 63245986/167761*312119004989^(6/11) 7014087330249223 a001 63245986/167761*14662949395604^(10/21) 7014087330249223 a001 63245986/167761*(1/2+1/2*5^(1/2))^30 7014087330249223 a001 63245986/167761*192900153618^(5/9) 7014087330249223 a001 63245986/167761*28143753123^(3/5) 7014087330249223 a001 63245986/167761*10749957122^(5/8) 7014087330249223 a001 63245986/167761*4106118243^(15/23) 7014087330249223 a001 63245986/167761*1568397607^(15/22) 7014087330249223 a001 63245986/167761*599074578^(5/7) 7014087330249223 a001 53316291173/167761*87403803^(8/19) 7014087330249224 a001 20365011074/167761*87403803^(9/19) 7014087330249224 a001 63245986/167761*228826127^(3/4) 7014087330249224 a001 75025*87403803^(1/2) 7014087330249224 a001 7778742049/167761*87403803^(10/19) 7014087330249224 a001 2971215073/167761*87403803^(11/19) 7014087330249224 a001 1134903170/167761*87403803^(12/19) 7014087330249224 a001 433494437/167761*87403803^(13/19) 7014087330249224 a001 165580141/167761*87403803^(14/19) 7014087330249224 a001 6557470245050/9349 7014087330249224 a001 6557470319842/167761*33385282^(1/6) 7014087330249224 a001 63245986/167761*87403803^(15/19) 7014087330249224 a001 2504730781961/167761*33385282^(2/9) 7014087330249225 a001 140728068720/15251*33385282^(1/4) 7014087330249225 a001 956722026041/167761*33385282^(5/18) 7014087330249225 a001 365435296162/167761*33385282^(1/3) 7014087330249226 a001 75025/54018521*14662949395604^(8/9) 7014087330249226 a001 24157817/167761*(1/2+1/2*5^(1/2))^32 7014087330249226 a001 24157817/167761*23725150497407^(1/2) 7014087330249226 a001 24157817/167761*505019158607^(4/7) 7014087330249226 a001 24157817/167761*73681302247^(8/13) 7014087330249226 a001 24157817/167761*10749957122^(2/3) 7014087330249226 a001 24157817/167761*4106118243^(16/23) 7014087330249226 a001 24157817/167761*1568397607^(8/11) 7014087330249226 a001 24157817/167761*599074578^(16/21) 7014087330249226 a001 139583862445/167761*33385282^(7/18) 7014087330249226 a001 24157817/167761*228826127^(4/5) 7014087330249226 a001 86267571272/167761*33385282^(5/12) 7014087330249226 a001 53316291173/167761*33385282^(4/9) 7014087330249226 a001 20365011074/167761*33385282^(1/2) 7014087330249226 a001 24157817/167761*87403803^(16/19) 7014087330249227 a001 7778742049/167761*33385282^(5/9) 7014087330249227 a001 4807526976/167761*33385282^(7/12) 7014087330249227 a001 2971215073/167761*33385282^(11/18) 7014087330249227 a001 1134903170/167761*33385282^(2/3) 7014087330249228 a001 433494437/167761*33385282^(13/18) 7014087330249228 a001 267914296/167761*33385282^(3/4) 7014087330249228 a001 165580141/167761*33385282^(7/9) 7014087330249229 a001 63245986/167761*33385282^(5/6) 7014087330249229 a001 10472279279936125/14930352 7014087330249231 a001 6557470319842/167761*12752043^(3/17) 7014087330249231 a001 24157817/167761*33385282^(8/9) 7014087330249233 a001 2504730781961/167761*12752043^(4/17) 7014087330249236 a001 956722026041/167761*12752043^(5/17) 7014087330249238 a001 365435296162/167761*12752043^(6/17) 7014087330249240 a001 75025/20633239*14662949395604^(6/7) 7014087330249240 a001 75025/20633239*(1/2+1/2*5^(1/2))^54 7014087330249240 a001 9227465/167761*45537549124^(2/3) 7014087330249240 a001 9227465/167761*(1/2+1/2*5^(1/2))^34 7014087330249240 a001 9227465/167761*10749957122^(17/24) 7014087330249240 a001 9227465/167761*4106118243^(17/23) 7014087330249240 a001 9227465/167761*1568397607^(17/22) 7014087330249240 a001 9227465/167761*599074578^(17/21) 7014087330249240 a001 9227465/167761*228826127^(17/20) 7014087330249240 a001 9227465/167761*87403803^(17/19) 7014087330249241 a001 139583862445/167761*12752043^(7/17) 7014087330249243 a001 53316291173/167761*12752043^(8/17) 7014087330249245 a001 32951280099/167761*12752043^(1/2) 7014087330249246 a001 9227465/167761*33385282^(17/18) 7014087330249246 a001 20365011074/167761*12752043^(9/17) 7014087330249248 a001 7778742049/167761*12752043^(10/17) 7014087330249251 a001 2971215073/167761*12752043^(11/17) 7014087330249254 a001 1134903170/167761*12752043^(12/17) 7014087330249256 a001 433494437/167761*12752043^(13/17) 7014087330249259 a001 165580141/167761*12752043^(14/17) 7014087330249262 a001 63245986/167761*12752043^(15/17) 7014087330249266 a001 24157817/167761*12752043^(16/17) 7014087330249266 a001 4000054745254325/5702887 7014087330249279 a001 6557470319842/167761*4870847^(3/16) 7014087330249297 a001 2504730781961/167761*4870847^(1/4) 7014087330249315 a001 956722026041/167761*4870847^(5/16) 7014087330249334 a001 365435296162/167761*4870847^(3/8) 7014087330249336 a001 3524578/167761*141422324^(12/13) 7014087330249336 a001 3524578/167761*2537720636^(4/5) 7014087330249336 a001 75025/7881196*(1/2+1/2*5^(1/2))^52 7014087330249336 a001 75025/7881196*23725150497407^(13/16) 7014087330249336 a001 75025/7881196*505019158607^(13/14) 7014087330249336 a001 3524578/167761*45537549124^(12/17) 7014087330249336 a001 3524578/167761*14662949395604^(4/7) 7014087330249336 a001 3524578/167761*(1/2+1/2*5^(1/2))^36 7014087330249336 a001 3524578/167761*505019158607^(9/14) 7014087330249336 a001 3524578/167761*192900153618^(2/3) 7014087330249336 a001 3524578/167761*73681302247^(9/13) 7014087330249336 a001 3524578/167761*10749957122^(3/4) 7014087330249336 a001 3524578/167761*4106118243^(18/23) 7014087330249336 a001 3524578/167761*1568397607^(9/11) 7014087330249336 a001 3524578/167761*599074578^(6/7) 7014087330249336 a001 3524578/167761*228826127^(9/10) 7014087330249337 a001 3524578/167761*87403803^(18/19) 7014087330249352 a001 139583862445/167761*4870847^(7/16) 7014087330249371 a001 53316291173/167761*4870847^(1/2) 7014087330249389 a001 20365011074/167761*4870847^(9/16) 7014087330249408 a001 7778742049/167761*4870847^(5/8) 7014087330249426 a001 2971215073/167761*4870847^(11/16) 7014087330249445 a001 1134903170/167761*4870847^(3/4) 7014087330249463 a001 433494437/167761*4870847^(13/16) 7014087330249482 a001 165580141/167761*4870847^(7/8) 7014087330249501 a001 63245986/167761*4870847^(15/16) 7014087330249519 a001 1527884955826850/2178309 7014087330249561 a001 10610209857723/167761*1860498^(1/6) 7014087330249628 a001 6557470319842/167761*1860498^(1/5) 7014087330249763 a001 2504730781961/167761*1860498^(4/15) 7014087330249831 a001 140728068720/15251*1860498^(3/10) 7014087330249899 a001 956722026041/167761*1860498^(1/3) 7014087330249983 a001 10610209857723/1149851*103682^(3/8) 7014087330249997 a001 75025/3010349*312119004989^(10/11) 7014087330249997 a001 75025/3010349*(1/2+1/2*5^(1/2))^50 7014087330249997 a001 75025/3010349*3461452808002^(5/6) 7014087330249997 a001 1346269/167761*817138163596^(2/3) 7014087330249997 a001 1346269/167761*(1/2+1/2*5^(1/2))^38 7014087330249997 a001 1346269/167761*10749957122^(19/24) 7014087330249997 a001 1346269/167761*4106118243^(19/23) 7014087330249997 a001 1346269/167761*1568397607^(19/22) 7014087330249997 a001 1346269/167761*599074578^(19/21) 7014087330249997 a001 1346269/167761*228826127^(19/20) 7014087330250034 a001 365435296162/167761*1860498^(2/5) 7014087330250169 a001 139583862445/167761*1860498^(7/15) 7014087330250236 a001 86267571272/167761*1860498^(1/2) 7014087330250304 a001 53316291173/167761*1860498^(8/15) 7014087330250439 a001 20365011074/167761*1860498^(3/5) 7014087330250574 a001 7778742049/167761*1860498^(2/3) 7014087330250642 a001 4807526976/167761*1860498^(7/10) 7014087330250709 a001 2971215073/167761*1860498^(11/15) 7014087330250844 a001 1134903170/167761*1860498^(4/5) 7014087330250912 a001 701408733/167761*1860498^(5/6) 7014087330250979 a001 433494437/167761*1860498^(13/15) 7014087330251047 a001 267914296/167761*1860498^(9/10) 7014087330251114 a001 165580141/167761*1860498^(14/15) 7014087330251249 a001 116720024445245/166408 7014087330252199 a001 6557470319842/167761*710647^(3/14) 7014087330252695 a001 4052739537881/167761*710647^(1/4) 7014087330253191 a001 2504730781961/167761*710647^(2/7) 7014087330253853 a001 3278735159921/219602*103682^(1/3) 7014087330254183 a001 956722026041/167761*710647^(5/14) 7014087330254528 a001 514229/167761*2537720636^(8/9) 7014087330254528 a001 75025/1149851*45537549124^(16/17) 7014087330254528 a001 75025/1149851*14662949395604^(16/21) 7014087330254528 a001 75025/1149851*(1/2+1/2*5^(1/2))^48 7014087330254528 a001 75025/1149851*192900153618^(8/9) 7014087330254528 a001 75025/1149851*73681302247^(12/13) 7014087330254528 a001 514229/167761*312119004989^(8/11) 7014087330254528 a001 514229/167761*(1/2+1/2*5^(1/2))^40 7014087330254528 a001 514229/167761*23725150497407^(5/8) 7014087330254528 a001 514229/167761*73681302247^(10/13) 7014087330254528 a001 514229/167761*28143753123^(4/5) 7014087330254528 a001 514229/167761*10749957122^(5/6) 7014087330254528 a001 514229/167761*4106118243^(20/23) 7014087330254528 a001 514229/167761*1568397607^(10/11) 7014087330254528 a001 514229/167761*599074578^(20/21) 7014087330255175 a001 365435296162/167761*710647^(3/7) 7014087330256167 a001 139583862445/167761*710647^(1/2) 7014087330257160 a001 53316291173/167761*710647^(4/7) 7014087330257976 a001 4052739537881/710647*103682^(5/12) 7014087330258152 a001 20365011074/167761*710647^(9/14) 7014087330258229 a001 365435296162/271443*103682^(13/24) 7014087330259144 a001 7778742049/167761*710647^(5/7) 7014087330259640 a001 4807526976/167761*710647^(3/4) 7014087330260136 a001 2971215073/167761*710647^(11/14) 7014087330261128 a001 1134903170/167761*710647^(6/7) 7014087330262120 a001 433494437/167761*710647^(13/14) 7014087330263112 a001 222915410851825/317811 7014087330269838 a001 3536736619241/620166*103682^(5/12) 7014087330271191 a001 6557470319842/167761*271443^(3/13) 7014087330277169 a001 6557470319842/1149851*103682^(5/12) 7014087330278514 a001 2504730781961/167761*271443^(4/13) 7014087330281039 a001 4052739537881/439204*103682^(3/8) 7014087330285162 a001 2504730781961/710647*103682^(11/24) 7014087330285415 a001 75283811239/90481*103682^(7/12) 7014087330285584 a001 196418/167761*2537720636^(14/15) 7014087330285584 a001 196418/167761*17393796001^(6/7) 7014087330285584 a001 75025/439204*(1/2+1/2*5^(1/2))^46 7014087330285584 a001 196418/167761*45537549124^(14/17) 7014087330285584 a001 196418/167761*817138163596^(14/19) 7014087330285584 a001 196418/167761*14662949395604^(2/3) 7014087330285584 a001 196418/167761*(1/2+1/2*5^(1/2))^42 7014087330285584 a001 196418/167761*505019158607^(3/4) 7014087330285584 a001 196418/167761*192900153618^(7/9) 7014087330285584 a001 75025/439204*10749957122^(23/24) 7014087330285584 a001 196418/167761*10749957122^(7/8) 7014087330285584 a001 196418/167761*4106118243^(21/23) 7014087330285584 a001 196418/167761*1568397607^(21/22) 7014087330285837 a001 956722026041/167761*271443^(5/13) 7014087330293159 a001 365435296162/167761*271443^(6/13) 7014087330296821 a001 225851433717/167761*271443^(1/2) 7014087330297025 a001 3278735159921/930249*103682^(11/24) 7014087330297078 a001 4807526976/64079*64079^(19/23) 7014087330299825 a001 10610209857723/3010349*103682^(11/24) 7014087330300482 a001 139583862445/167761*271443^(7/13) 7014087330304356 a001 4052739537881/1149851*103682^(11/24) 7014087330307805 a001 53316291173/167761*271443^(8/13) 7014087330308226 a001 2504730781961/439204*103682^(5/12) 7014087330312349 a001 1548008755920/710647*103682^(1/2) 7014087330312602 a001 139583862445/271443*103682^(5/8) 7014087330315127 a001 20365011074/167761*271443^(9/13) 7014087330322450 a001 7778742049/167761*271443^(10/13) 7014087330324211 a001 4052739537881/1860498*103682^(1/2) 7014087330325942 a001 2178309*103682^(1/2) 7014087330327011 a001 6557470319842/3010349*103682^(1/2) 7014087330329773 a001 2971215073/167761*271443^(11/13) 7014087330331542 a001 2504730781961/1149851*103682^(1/2) 7014087330335412 a001 387002188980/109801*103682^(11/24) 7014087330337095 a001 1134903170/167761*271443^(12/13) 7014087330339535 a001 956722026041/710647*103682^(13/24) 7014087330339788 a001 86267571272/271443*103682^(2/3) 7014087330344418 a001 85146110329250/121393 7014087330351398 a001 2504730781961/1860498*103682^(13/24) 7014087330353128 a001 6557470319842/4870847*103682^(13/24) 7014087330353537 a001 10610209857723/7881196*103682^(13/24) 7014087330354198 a001 1346269*103682^(13/24) 7014087330358729 a001 1548008755920/1149851*103682^(13/24) 7014087330362599 a001 956722026041/439204*103682^(1/2) 7014087330363918 a001 3278735159921/51841*39603^(5/22) 7014087330366722 a001 591286729879/710647*103682^(7/12) 7014087330366975 a001 53316291173/271443*103682^(17/24) 7014087330371348 a001 7778742049/64079*64079^(18/23) 7014087330378584 a001 832040*103682^(7/12) 7014087330380315 a001 4052739537881/4870847*103682^(7/12) 7014087330380567 a001 3536736619241/4250681*103682^(7/12) 7014087330380723 a001 3278735159921/3940598*103682^(7/12) 7014087330381384 a001 2504730781961/3010349*103682^(7/12) 7014087330385156 a001 10610209857723/167761*103682^(5/24) 7014087330385915 a001 956722026041/1149851*103682^(7/12) 7014087330389785 a001 591286729879/439204*103682^(13/24) 7014087330393908 a001 365435296162/710647*103682^(5/8) 7014087330394161 a001 121393*103682^(3/4) 7014087330405771 a001 956722026041/1860498*103682^(5/8) 7014087330407501 a001 2504730781961/4870847*103682^(5/8) 7014087330407754 a001 6557470319842/12752043*103682^(5/8) 7014087330407813 a001 10610209857723/20633239*103682^(5/8) 7014087330407910 a001 4052739537881/7881196*103682^(5/8) 7014087330408571 a001 1548008755920/3010349*103682^(5/8) 7014087330412342 a001 6557470319842/167761*103682^(1/4) 7014087330413102 a001 514229*103682^(5/8) 7014087330416972 a001 182717648081/219602*103682^(7/12) 7014087330421095 a001 317811*103682^(2/3) 7014087330421348 a001 20365011074/271443*103682^(19/24) 7014087330432957 a001 591286729879/1860498*103682^(2/3) 7014087330434688 a001 1548008755920/4870847*103682^(2/3) 7014087330434940 a001 4052739537881/12752043*103682^(2/3) 7014087330434977 a001 1515744265389/4769326*103682^(2/3) 7014087330435000 a001 6557470319842/20633239*103682^(2/3) 7014087330435096 a001 2504730781961/7881196*103682^(2/3) 7014087330435757 a001 956722026041/3010349*103682^(2/3) 7014087330439529 a001 4052739537881/167761*103682^(7/24) 7014087330440288 a001 365435296162/1149851*103682^(2/3) 7014087330444158 a001 225851433717/439204*103682^(5/8) 7014087330445618 a001 12586269025/64079*64079^(17/23) 7014087330448281 a001 139583862445/710647*103682^(17/24) 7014087330448534 a001 12586269025/271443*103682^(5/6) 7014087330460144 a001 182717648081/930249*103682^(17/24) 7014087330461874 a001 956722026041/4870847*103682^(17/24) 7014087330462127 a001 2504730781961/12752043*103682^(17/24) 7014087330462164 a001 3278735159921/16692641*103682^(17/24) 7014087330462172 a001 10610209857723/54018521*103682^(17/24) 7014087330462186 a001 4052739537881/20633239*103682^(17/24) 7014087330462283 a001 387002188980/1970299*103682^(17/24) 7014087330462944 a001 591286729879/3010349*103682^(17/24) 7014087330466715 a001 2504730781961/167761*103682^(1/3) 7014087330467475 a001 225851433717/1149851*103682^(17/24) 7014087330471345 a001 139583862445/439204*103682^(2/3) 7014087330475468 a001 86267571272/710647*103682^(3/4) 7014087330475721 a001 7778742049/271443*103682^(7/8) 7014087330487330 a001 75283811239/620166*103682^(3/4) 7014087330489061 a001 591286729879/4870847*103682^(3/4) 7014087330489313 a001 516002918640/4250681*103682^(3/4) 7014087330489350 a001 4052739537881/33385282*103682^(3/4) 7014087330489355 a001 3536736619241/29134601*103682^(3/4) 7014087330489359 a001 6557470319842/54018521*103682^(3/4) 7014087330489373 a001 2504730781961/20633239*103682^(3/4) 7014087330489469 a001 956722026041/7881196*103682^(3/4) 7014087330490130 a001 365435296162/3010349*103682^(3/4) 7014087330493902 a001 140728068720/15251*103682^(3/8) 7014087330494661 a001 139583862445/1149851*103682^(3/4) 7014087330498447 a001 75025/167761*312119004989^(4/5) 7014087330498447 a001 75025/167761*(1/2+1/2*5^(1/2))^44 7014087330498447 a001 75025/167761*23725150497407^(11/16) 7014087330498447 a001 75025/167761*73681302247^(11/13) 7014087330498447 a001 75025/167761*10749957122^(11/12) 7014087330498447 a001 75025/167761*4106118243^(22/23) 7014087330498531 a001 196418*103682^(17/24) 7014087330502654 a001 53316291173/710647*103682^(19/24) 7014087330502907 a001 1602508992/90481*103682^(11/12) 7014087330514517 a001 139583862445/1860498*103682^(19/24) 7014087330516247 a001 365435296162/4870847*103682^(19/24) 7014087330516500 a001 956722026041/12752043*103682^(19/24) 7014087330516537 a001 2504730781961/33385282*103682^(19/24) 7014087330516542 a001 6557470319842/87403803*103682^(19/24) 7014087330516543 a001 10610209857723/141422324*103682^(19/24) 7014087330516545 a001 4052739537881/54018521*103682^(19/24) 7014087330516559 a001 140728068720/1875749*103682^(19/24) 7014087330516656 a001 591286729879/7881196*103682^(19/24) 7014087330517317 a001 225851433717/3010349*103682^(19/24) 7014087330519888 a001 20365011074/64079*64079^(16/23) 7014087330521088 a001 956722026041/167761*103682^(5/12) 7014087330521848 a001 86267571272/1149851*103682^(19/24) 7014087330525718 a001 53316291173/439204*103682^(3/4) 7014087330529841 a001 32951280099/710647*103682^(5/6) 7014087330530094 a001 2971215073/271443*103682^(23/24) 7014087330541703 a001 43133785636/930249*103682^(5/6) 7014087330543434 a001 225851433717/4870847*103682^(5/6) 7014087330543686 a001 591286729879/12752043*103682^(5/6) 7014087330543723 a001 774004377960/16692641*103682^(5/6) 7014087330543728 a001 4052739537881/87403803*103682^(5/6) 7014087330543729 a001 225749145909/4868641*103682^(5/6) 7014087330543730 a001 3278735159921/70711162*103682^(5/6) 7014087330543732 a001 2504730781961/54018521*103682^(5/6) 7014087330543746 a001 956722026041/20633239*103682^(5/6) 7014087330543842 a001 182717648081/3940598*103682^(5/6) 7014087330544503 a001 139583862445/3010349*103682^(5/6) 7014087330548275 a001 591286729879/167761*103682^(11/24) 7014087330549034 a001 53316291173/1149851*103682^(5/6) 7014087330552904 a001 32951280099/439204*103682^(19/24) 7014087330557027 a001 20365011074/710647*103682^(7/8) 7014087330557280 a001 4065365016791/5796 7014087330557533 a001 567451585/12238*24476^(20/21) 7014087330567197 a001 4052739537881/103682*39603^(3/11) 7014087330568890 a001 53316291173/1860498*103682^(7/8) 7014087330570620 a001 139583862445/4870847*103682^(7/8) 7014087330570873 a001 365435296162/12752043*103682^(7/8) 7014087330570910 a001 956722026041/33385282*103682^(7/8) 7014087330570915 a001 2504730781961/87403803*103682^(7/8) 7014087330570916 a001 6557470319842/228826127*103682^(7/8) 7014087330570916 a001 10610209857723/370248451*103682^(7/8) 7014087330570916 a001 4052739537881/141422324*103682^(7/8) 7014087330570918 a001 1548008755920/54018521*103682^(7/8) 7014087330570932 a001 591286729879/20633239*103682^(7/8) 7014087330571029 a001 225851433717/7881196*103682^(7/8) 7014087330571690 a001 86267571272/3010349*103682^(7/8) 7014087330575461 a001 365435296162/167761*103682^(1/2) 7014087330576221 a001 32951280099/1149851*103682^(7/8) 7014087330580091 a001 10182505537/219602*103682^(5/6) 7014087330584214 a001 12586269025/710647*103682^(11/12) 7014087330594157 a001 32951280099/64079*64079^(15/23) 7014087330596076 a001 10983760033/620166*103682^(11/12) 7014087330597807 a001 86267571272/4870847*103682^(11/12) 7014087330598059 a001 75283811239/4250681*103682^(11/12) 7014087330598096 a001 591286729879/33385282*103682^(11/12) 7014087330598101 a001 516002918640/29134601*103682^(11/12) 7014087330598102 a001 4052739537881/228826127*103682^(11/12) 7014087330598102 a001 3536736619241/199691526*103682^(11/12) 7014087330598102 a001 6557470319842/370248451*103682^(11/12) 7014087330598103 a001 2504730781961/141422324*103682^(11/12) 7014087330598105 a001 956722026041/54018521*103682^(11/12) 7014087330598119 a001 365435296162/20633239*103682^(11/12) 7014087330598215 a001 139583862445/7881196*103682^(11/12) 7014087330598876 a001 53316291173/3010349*103682^(11/12) 7014087330602648 a001 225851433717/167761*103682^(13/24) 7014087330603407 a001 20365011074/1149851*103682^(11/12) 7014087330607277 a001 12586269025/439204*103682^(7/8) 7014087330611400 a001 7778742049/710647*103682^(23/24) 7014087330623263 a001 10182505537/930249*103682^(23/24) 7014087330624993 a001 53316291173/4870847*103682^(23/24) 7014087330625246 a001 139583862445/12752043*103682^(23/24) 7014087330625283 a001 182717648081/16692641*103682^(23/24) 7014087330625288 a001 956722026041/87403803*103682^(23/24) 7014087330625289 a001 2504730781961/228826127*103682^(23/24) 7014087330625289 a001 3278735159921/299537289*103682^(23/24) 7014087330625289 a001 10610209857723/969323029*103682^(23/24) 7014087330625289 a001 4052739537881/370248451*103682^(23/24) 7014087330625289 a001 387002188980/35355581*103682^(23/24) 7014087330625291 a001 591286729879/54018521*103682^(23/24) 7014087330625305 a001 7787980473/711491*103682^(23/24) 7014087330625402 a001 21566892818/1970299*103682^(23/24) 7014087330626063 a001 32951280099/3010349*103682^(23/24) 7014087330629834 a001 139583862445/167761*103682^(7/12) 7014087330630594 a001 12586269025/1149851*103682^(23/24) 7014087330634464 a001 7778742049/439204*103682^(11/12) 7014087330650448 a001 4065365016845/5796 7014087330652389 a001 32522920134769/46368 7014087330652605 a001 16261460067385/23184 7014087330653252 a001 32522920134773/46368 7014087330657020 a001 86267571272/167761*103682^(5/8) 7014087330657781 a001 16261460067397/23184 7014087330661650 a001 1201881744/109801*103682^(23/24) 7014087330668427 a001 53316291173/64079*64079^(14/23) 7014087330684207 a001 53316291173/167761*103682^(2/3) 7014087330688837 a001 16261460067469/23184 7014087330711393 a001 32951280099/167761*103682^(17/24) 7014087330738580 a001 20365011074/167761*103682^(3/4) 7014087330742697 a001 86267571272/64079*64079^(13/23) 7014087330765766 a001 75025*103682^(19/24) 7014087330770476 a001 2504730781961/103682*39603^(7/22) 7014087330792953 a001 7778742049/167761*103682^(5/6) 7014087330816967 a001 139583862445/64079*64079^(12/23) 7014087330820139 a001 4807526976/167761*103682^(7/8) 7014087330847326 a001 2971215073/167761*103682^(11/12) 7014087330874512 a001 1836311903/167761*103682^(23/24) 7014087330891236 a001 225851433717/64079*64079^(11/23) 7014087330901699 a001 32522920135925/46368 7014087330965506 a001 365435296162/64079*64079^(10/23) 7014087330973755 a001 774004377960/51841*39603^(4/11) 7014087331039776 a001 591286729879/64079*64079^(9/23) 7014087331055728 a001 28657/103682*45537549124^(15/17) 7014087331055728 a001 28657/103682*312119004989^(9/11) 7014087331055728 a001 28657/103682*14662949395604^(5/7) 7014087331055728 a001 28657/103682*(1/2+1/2*5^(1/2))^45 7014087331055728 a001 28657/103682*192900153618^(5/6) 7014087331055728 a001 28657/103682*28143753123^(9/10) 7014087331055728 a001 28657/103682*10749957122^(15/16) 7014087331055728 a001 46368/64079*(1/2+1/2*5^(1/2))^43 7014087331114046 a001 956722026041/64079*64079^(8/23) 7014087331115067 a001 1836311903/24476*24476^(19/21) 7014087331124478 a001 3536736619241/90481*39603^(3/11) 7014087331177034 a001 956722026041/103682*39603^(9/22) 7014087331188315 a001 1548008755920/64079*64079^(7/23) 7014087331262585 a001 2504730781961/64079*64079^(6/23) 7014087331265618 a001 10610209857723/167761*39603^(5/22) 7014087331327757 a001 6557470319842/271443*39603^(7/22) 7014087331336855 a001 4052739537881/64079*64079^(5/23) 7014087331380313 a001 591286729879/103682*39603^(5/11) 7014087331411124 a001 6557470319842/64079*64079^(4/23) 7014087331458980 a001 52623190204271/75025 7014087331459313 a001 10610209857723/439204*39603^(7/22) 7014087331468897 a001 6557470319842/167761*39603^(3/11) 7014087331485394 a001 10610209857723/64079*64079^(3/23) 7014087331508825 a001 2971215073/64079*167761^(4/5) 7014087331531036 a001 4052739537881/271443*39603^(4/11) 7014087331558669 a001 32951280099/64079*167761^(3/5) 7014087331583592 a001 182717648081/51841*39603^(1/2) 7014087331608514 a001 365435296162/64079*167761^(2/5) 7014087331612342 a001 1515744265389/101521*39603^(4/11) 7014087331613008 a001 28657/271443*(1/2+1/2*5^(1/2))^47 7014087331613008 a001 121393/64079*(1/2+1/2*5^(1/2))^41 7014087331658359 a001 4052739537881/39603*15127^(1/5) 7014087331658359 a001 4052739537881/64079*167761^(1/5) 7014087331662592 a001 3278735159921/219602*39603^(4/11) 7014087331671842 a001 68884650275616/98209 7014087331672175 a001 4052739537881/167761*39603^(7/22) 7014087331672600 a001 2971215073/24476*24476^(6/7) 7014087331675882 a001 433494437/64079*439204^(8/9) 7014087331679922 a001 28657*439204^(7/9) 7014087331683963 a001 7778742049/64079*439204^(2/3) 7014087331688003 a001 32951280099/64079*439204^(5/9) 7014087331692043 a001 139583862445/64079*439204^(4/9) 7014087331694315 a001 317811/64079*2537720636^(13/15) 7014087331694315 a001 28657/710647*14662949395604^(7/9) 7014087331694315 a001 28657/710647*(1/2+1/2*5^(1/2))^49 7014087331694315 a001 28657/710647*505019158607^(7/8) 7014087331694315 a001 317811/64079*45537549124^(13/17) 7014087331694315 a001 317811/64079*14662949395604^(13/21) 7014087331694315 a001 317811/64079*(1/2+1/2*5^(1/2))^39 7014087331694315 a001 317811/64079*192900153618^(13/18) 7014087331694315 a001 317811/64079*73681302247^(3/4) 7014087331694315 a001 317811/64079*10749957122^(13/16) 7014087331694315 a001 317811/64079*599074578^(13/14) 7014087331696083 a001 591286729879/64079*439204^(1/3) 7014087331700123 a001 2504730781961/64079*439204^(2/9) 7014087331702898 a001 360684711449425/514229 7014087331704163 a001 10610209857723/64079*439204^(1/9) 7014087331706177 a001 28657/1860498*817138163596^(17/19) 7014087331706177 a001 28657/1860498*14662949395604^(17/21) 7014087331706177 a001 28657/1860498*(1/2+1/2*5^(1/2))^51 7014087331706177 a001 28657/1860498*192900153618^(17/18) 7014087331706177 a001 832040/64079*(1/2+1/2*5^(1/2))^37 7014087331707429 a001 944284833797043/1346269 7014087331707908 a001 2178309/64079*2537720636^(7/9) 7014087331707908 a001 28657/4870847*(1/2+1/2*5^(1/2))^53 7014087331707908 a001 2178309/64079*17393796001^(5/7) 7014087331707908 a001 2178309/64079*312119004989^(7/11) 7014087331707908 a001 2178309/64079*14662949395604^(5/9) 7014087331707908 a001 2178309/64079*(1/2+1/2*5^(1/2))^35 7014087331707908 a001 2178309/64079*505019158607^(5/8) 7014087331707908 a001 2178309/64079*28143753123^(7/10) 7014087331707908 a001 2178309/64079*599074578^(5/6) 7014087331707908 a001 2178309/64079*228826127^(7/8) 7014087331708091 a001 1236084894970852/1762289 7014087331708103 a001 24157817/64079*7881196^(10/11) 7014087331708111 a001 102334155/64079*7881196^(9/11) 7014087331708121 a001 433494437/64079*7881196^(8/11) 7014087331708128 a001 1134903170/64079*7881196^(2/3) 7014087331708132 a001 28657*7881196^(7/11) 7014087331708142 a001 7778742049/64079*7881196^(6/11) 7014087331708152 a001 32951280099/64079*7881196^(5/11) 7014087331708160 a001 5702887/64079*141422324^(11/13) 7014087331708160 a001 5702887/64079*2537720636^(11/15) 7014087331708160 a001 28657/12752043*(1/2+1/2*5^(1/2))^55 7014087331708160 a001 28657/12752043*3461452808002^(11/12) 7014087331708160 a001 5702887/64079*45537549124^(11/17) 7014087331708160 a001 5702887/64079*312119004989^(3/5) 7014087331708160 a001 5702887/64079*817138163596^(11/19) 7014087331708160 a001 5702887/64079*14662949395604^(11/21) 7014087331708160 a001 5702887/64079*(1/2+1/2*5^(1/2))^33 7014087331708160 a001 5702887/64079*192900153618^(11/18) 7014087331708160 a001 5702887/64079*10749957122^(11/16) 7014087331708160 a001 5702887/64079*1568397607^(3/4) 7014087331708160 a001 5702887/64079*599074578^(11/14) 7014087331708162 a001 139583862445/64079*7881196^(4/11) 7014087331708166 a001 225851433717/64079*7881196^(1/3) 7014087331708166 a001 5702887/64079*33385282^(11/12) 7014087331708173 a001 591286729879/64079*7881196^(3/11) 7014087331708183 a001 2504730781961/64079*7881196^(2/11) 7014087331708187 a001 497863425848313/709805 7014087331708191 a001 63245986/64079*20633239^(4/5) 7014087331708192 a001 267914296/64079*20633239^(5/7) 7014087331708192 a001 24157817/64079*20633239^(6/7) 7014087331708193 a001 10610209857723/64079*7881196^(1/11) 7014087331708194 a001 28657*20633239^(3/5) 7014087331708194 a001 2971215073/64079*20633239^(4/7) 7014087331708196 a001 32951280099/64079*20633239^(3/7) 7014087331708197 a001 53316291173/64079*20633239^(2/5) 7014087331708197 a001 28657/33385282*14662949395604^(19/21) 7014087331708197 a001 28657/33385282*(1/2+1/2*5^(1/2))^57 7014087331708197 a001 14930352/64079*(1/2+1/2*5^(1/2))^31 7014087331708197 a001 14930352/64079*9062201101803^(1/2) 7014087331708199 a001 365435296162/64079*20633239^(2/7) 7014087331708200 a001 1548008755920/64079*20633239^(1/5) 7014087331708201 a001 16944503818142503/24157817 7014087331708201 a001 4052739537881/64079*20633239^(1/7) 7014087331708203 a001 39088169/64079*(1/2+1/2*5^(1/2))^29 7014087331708203 a001 39088169/64079*1322157322203^(1/2) 7014087331708203 a001 102334155/64079*141422324^(9/13) 7014087331708203 a001 22180643459199720/31622993 7014087331708203 a001 433494437/64079*141422324^(8/13) 7014087331708203 a001 28657*141422324^(7/13) 7014087331708203 a001 165580141/64079*141422324^(2/3) 7014087331708203 a001 7778742049/64079*141422324^(6/13) 7014087331708203 a001 32951280099/64079*141422324^(5/13) 7014087331708203 a001 102334155/64079*2537720636^(3/5) 7014087331708203 a001 102334155/64079*45537549124^(9/17) 7014087331708203 a001 102334155/64079*817138163596^(9/19) 7014087331708203 a001 102334155/64079*14662949395604^(3/7) 7014087331708203 a001 102334155/64079*(1/2+1/2*5^(1/2))^27 7014087331708203 a001 102334155/64079*192900153618^(1/2) 7014087331708203 a001 102334155/64079*10749957122^(9/16) 7014087331708203 a001 102334155/64079*599074578^(9/14) 7014087331708203 a001 86267571272/64079*141422324^(1/3) 7014087331708203 a001 139583862445/64079*141422324^(4/13) 7014087331708203 a001 591286729879/64079*141422324^(3/13) 7014087331708203 a001 2504730781961/64079*141422324^(2/13) 7014087331708203 a001 116139356937055817/165580141 7014087331708203 a001 10610209857723/64079*141422324^(1/13) 7014087331708203 a001 267914296/64079*2537720636^(5/9) 7014087331708203 a001 267914296/64079*312119004989^(5/11) 7014087331708203 a001 267914296/64079*(1/2+1/2*5^(1/2))^25 7014087331708203 a001 267914296/64079*3461452808002^(5/12) 7014087331708203 a001 267914296/64079*28143753123^(1/2) 7014087331708203 a001 304056783892768011/433494437 7014087331708203 a001 701408733/64079*(1/2+1/2*5^(1/2))^23 7014087331708203 a001 701408733/64079*4106118243^(1/2) 7014087331708203 a001 28657*2537720636^(7/15) 7014087331708203 a001 28657*17393796001^(3/7) 7014087331708203 a001 28657*45537549124^(7/17) 7014087331708203 a001 28657*14662949395604^(1/3) 7014087331708203 a001 28657*(1/2+1/2*5^(1/2))^21 7014087331708203 a001 28657*192900153618^(7/18) 7014087331708203 a001 7778742049/64079*2537720636^(2/5) 7014087331708203 a001 28657*10749957122^(7/16) 7014087331708203 a001 32951280099/64079*2537720636^(1/3) 7014087331708203 a001 2971215073/64079*2537720636^(4/9) 7014087331708203 a001 139583862445/64079*2537720636^(4/15) 7014087331708203 a001 365435296162/64079*2537720636^(2/9) 7014087331708203 a001 591286729879/64079*2537720636^(1/5) 7014087331708203 a001 2504730781961/64079*2537720636^(2/15) 7014087331708203 a001 4052739537881/64079*2537720636^(1/9) 7014087331708203 a001 10610209857723/64079*2537720636^(1/15) 7014087331708203 a001 4807526976/64079*817138163596^(1/3) 7014087331708203 a001 4807526976/64079*(1/2+1/2*5^(1/2))^19 7014087331708203 a001 12586269025/64079*45537549124^(1/3) 7014087331708203 a001 12586269025/64079*(1/2+1/2*5^(1/2))^17 7014087331708203 a001 53316291173/64079*17393796001^(2/7) 7014087331708203 a001 1548008755920/64079*17393796001^(1/7) 7014087331708203 a001 32951280099/64079*45537549124^(5/17) 7014087331708203 a001 32951280099/64079*312119004989^(3/11) 7014087331708203 a001 32951280099/64079*14662949395604^(5/21) 7014087331708203 a001 32951280099/64079*(1/2+1/2*5^(1/2))^15 7014087331708203 a001 32951280099/64079*192900153618^(5/18) 7014087331708203 a001 139583862445/64079*45537549124^(4/17) 7014087331708203 a001 591286729879/64079*45537549124^(3/17) 7014087331708203 a001 2504730781961/64079*45537549124^(2/17) 7014087331708203 a001 10610209857723/64079*45537549124^(1/17) 7014087331708203 a001 86267571272/64079*(1/2+1/2*5^(1/2))^13 7014087331708203 a001 225851433717/64079*312119004989^(1/5) 7014087331708203 a001 225851433717/64079*(1/2+1/2*5^(1/2))^11 7014087331708203 a001 4052739537881/64079*312119004989^(1/11) 7014087331708203 a001 591286729879/64079*(1/2+1/2*5^(1/2))^9 7014087331708203 a001 1548008755920/64079*14662949395604^(1/9) 7014087331708203 a001 4052739537881/64079*(1/2+1/2*5^(1/2))^5 7014087331708203 a001 10610209857723/64079*14662949395604^(1/21) 7014087331708203 a001 10610209857723/64079*(1/2+1/2*5^(1/2))^3 7014087331708203 a001 6557470319842/64079*(1/2+1/2*5^(1/2))^4 7014087331708203 a001 2504730781961/64079*14662949395604^(2/21) 7014087331708203 a001 2504730781961/64079*(1/2+1/2*5^(1/2))^6 7014087331708203 a001 956722026041/64079*(1/2+1/2*5^(1/2))^8 7014087331708203 a001 10610209857723/64079*192900153618^(1/18) 7014087331708203 a001 365435296162/64079*(1/2+1/2*5^(1/2))^10 7014087331708203 a001 591286729879/64079*192900153618^(1/6) 7014087331708203 a001 139583862445/64079*817138163596^(4/19) 7014087331708203 a001 139583862445/64079*14662949395604^(4/21) 7014087331708203 a001 139583862445/64079*(1/2+1/2*5^(1/2))^12 7014087331708203 a001 6557470319842/64079*73681302247^(1/13) 7014087331708203 a001 139583862445/64079*192900153618^(2/9) 7014087331708203 a001 86267571272/64079*73681302247^(1/4) 7014087331708203 a001 956722026041/64079*73681302247^(2/13) 7014087331708203 a001 139583862445/64079*73681302247^(3/13) 7014087331708203 a001 53316291173/64079*14662949395604^(2/9) 7014087331708203 a001 53316291173/64079*505019158607^(1/4) 7014087331708203 a001 4052739537881/64079*28143753123^(1/10) 7014087331708203 a001 32951280099/64079*28143753123^(3/10) 7014087331708203 a001 365435296162/64079*28143753123^(1/5) 7014087331708203 a001 20365011074/64079*(1/2+1/2*5^(1/2))^16 7014087331708203 a001 20365011074/64079*23725150497407^(1/4) 7014087331708203 a001 20365011074/64079*73681302247^(4/13) 7014087331708203 a001 10610209857723/64079*10749957122^(1/16) 7014087331708203 a001 6557470319842/64079*10749957122^(1/12) 7014087331708203 a001 2504730781961/64079*10749957122^(1/8) 7014087331708203 a001 956722026041/64079*10749957122^(1/6) 7014087331708203 a001 591286729879/64079*10749957122^(3/16) 7014087331708203 a001 365435296162/64079*10749957122^(5/24) 7014087331708203 a001 139583862445/64079*10749957122^(1/4) 7014087331708203 a001 32951280099/64079*10749957122^(5/16) 7014087331708203 a001 53316291173/64079*10749957122^(7/24) 7014087331708203 a001 7778742049/64079*45537549124^(6/17) 7014087331708203 a001 7778742049/64079*14662949395604^(2/7) 7014087331708203 a001 7778742049/64079*(1/2+1/2*5^(1/2))^18 7014087331708203 a001 7778742049/64079*192900153618^(1/3) 7014087331708203 a001 20365011074/64079*10749957122^(1/3) 7014087331708203 a001 6557470319842/64079*4106118243^(2/23) 7014087331708203 a001 7778742049/64079*10749957122^(3/8) 7014087331708203 a001 2504730781961/64079*4106118243^(3/23) 7014087331708203 a001 956722026041/64079*4106118243^(4/23) 7014087331708203 a001 365435296162/64079*4106118243^(5/23) 7014087331708203 a001 139583862445/64079*4106118243^(6/23) 7014087331708203 a001 53316291173/64079*4106118243^(7/23) 7014087331708203 a001 20365011074/64079*4106118243^(8/23) 7014087331708203 a001 2971215073/64079*(1/2+1/2*5^(1/2))^20 7014087331708203 a001 2971215073/64079*23725150497407^(5/16) 7014087331708203 a001 2971215073/64079*505019158607^(5/14) 7014087331708203 a001 2971215073/64079*73681302247^(5/13) 7014087331708203 a001 2971215073/64079*28143753123^(2/5) 7014087331708203 a001 2971215073/64079*10749957122^(5/12) 7014087331708203 a001 7778742049/64079*4106118243^(9/23) 7014087331708203 a001 6557470319842/64079*1568397607^(1/11) 7014087331708203 a001 2971215073/64079*4106118243^(10/23) 7014087331708203 a001 2504730781961/64079*1568397607^(3/22) 7014087331708203 a001 956722026041/64079*1568397607^(2/11) 7014087331708203 a001 365435296162/64079*1568397607^(5/22) 7014087331708203 a001 225851433717/64079*1568397607^(1/4) 7014087331708203 a001 139583862445/64079*1568397607^(3/11) 7014087331708203 a001 53316291173/64079*1568397607^(7/22) 7014087331708203 a001 20365011074/64079*1568397607^(4/11) 7014087331708203 a001 1134903170/64079*312119004989^(2/5) 7014087331708203 a001 1134903170/64079*(1/2+1/2*5^(1/2))^22 7014087331708203 a001 1134903170/64079*10749957122^(11/24) 7014087331708203 a001 7778742049/64079*1568397607^(9/22) 7014087331708203 a001 1134903170/64079*4106118243^(11/23) 7014087331708203 a001 10610209857723/64079*599074578^(1/14) 7014087331708203 a001 2971215073/64079*1568397607^(5/11) 7014087331708203 a001 6557470319842/64079*599074578^(2/21) 7014087331708203 a001 1134903170/64079*1568397607^(1/2) 7014087331708203 a001 2504730781961/64079*599074578^(1/7) 7014087331708203 a001 1548008755920/64079*599074578^(1/6) 7014087331708203 a001 956722026041/64079*599074578^(4/21) 7014087331708203 a001 591286729879/64079*599074578^(3/14) 7014087331708203 a001 365435296162/64079*599074578^(5/21) 7014087331708203 a001 139583862445/64079*599074578^(2/7) 7014087331708203 a001 53316291173/64079*599074578^(1/3) 7014087331708203 a001 433494437/64079*2537720636^(8/15) 7014087331708203 a001 32951280099/64079*599074578^(5/14) 7014087331708203 a001 20365011074/64079*599074578^(8/21) 7014087331708203 a001 433494437/64079*45537549124^(8/17) 7014087331708203 a001 433494437/64079*14662949395604^(8/21) 7014087331708203 a001 433494437/64079*(1/2+1/2*5^(1/2))^24 7014087331708203 a001 433494437/64079*192900153618^(4/9) 7014087331708203 a001 433494437/64079*73681302247^(6/13) 7014087331708203 a001 433494437/64079*10749957122^(1/2) 7014087331708203 a001 433494437/64079*4106118243^(12/23) 7014087331708203 a001 7778742049/64079*599074578^(3/7) 7014087331708203 a001 433494437/64079*1568397607^(6/11) 7014087331708203 a001 28657*599074578^(1/2) 7014087331708203 a001 2971215073/64079*599074578^(10/21) 7014087331708203 a001 1134903170/64079*599074578^(11/21) 7014087331708203 a001 6557470319842/64079*228826127^(1/10) 7014087331708203 a001 4052739537881/64079*228826127^(1/8) 7014087331708203 a001 433494437/64079*599074578^(4/7) 7014087331708203 a001 17167680153089/24476 7014087331708203 a001 2504730781961/64079*228826127^(3/20) 7014087331708203 a001 956722026041/64079*228826127^(1/5) 7014087331708203 a001 365435296162/64079*228826127^(1/4) 7014087331708203 a001 139583862445/64079*228826127^(3/10) 7014087331708203 a001 53316291173/64079*228826127^(7/20) 7014087331708203 a001 32951280099/64079*228826127^(3/8) 7014087331708203 a001 165580141/64079*(1/2+1/2*5^(1/2))^26 7014087331708203 a001 165580141/64079*73681302247^(1/2) 7014087331708203 a001 165580141/64079*10749957122^(13/24) 7014087331708203 a001 165580141/64079*4106118243^(13/23) 7014087331708203 a001 165580141/64079*1568397607^(13/22) 7014087331708203 a001 20365011074/64079*228826127^(2/5) 7014087331708203 a001 7778742049/64079*228826127^(9/20) 7014087331708203 a001 165580141/64079*599074578^(13/21) 7014087331708203 a001 267914296/64079*228826127^(5/8) 7014087331708204 a001 2971215073/64079*228826127^(1/2) 7014087331708204 a001 1134903170/64079*228826127^(11/20) 7014087331708204 a001 433494437/64079*228826127^(3/5) 7014087331708204 a001 6557470319842/64079*87403803^(2/19) 7014087331708204 a001 71778070018656377/102334155 7014087331708204 a001 165580141/64079*228826127^(13/20) 7014087331708204 a001 2504730781961/64079*87403803^(3/19) 7014087331708204 a001 956722026041/64079*87403803^(4/19) 7014087331708204 a001 365435296162/64079*87403803^(5/19) 7014087331708204 a001 139583862445/64079*87403803^(6/19) 7014087331708204 a001 53316291173/64079*87403803^(7/19) 7014087331708204 a001 28657/141422324*14662949395604^(20/21) 7014087331708204 a001 63245986/64079*17393796001^(4/7) 7014087331708204 a001 63245986/64079*14662949395604^(4/9) 7014087331708204 a001 63245986/64079*(1/2+1/2*5^(1/2))^28 7014087331708204 a001 63245986/64079*505019158607^(1/2) 7014087331708204 a001 63245986/64079*73681302247^(7/13) 7014087331708204 a001 63245986/64079*10749957122^(7/12) 7014087331708204 a001 63245986/64079*4106118243^(14/23) 7014087331708204 a001 63245986/64079*1568397607^(7/11) 7014087331708204 a001 63245986/64079*599074578^(2/3) 7014087331708204 a001 20365011074/64079*87403803^(8/19) 7014087331708204 a001 7778742049/64079*87403803^(9/19) 7014087331708204 a001 63245986/64079*228826127^(7/10) 7014087331708204 a001 4807526976/64079*87403803^(1/2) 7014087331708204 a001 2971215073/64079*87403803^(10/19) 7014087331708204 a001 10610209857723/64079*33385282^(1/12) 7014087331708204 a001 1134903170/64079*87403803^(11/19) 7014087331708204 a001 433494437/64079*87403803^(12/19) 7014087331708204 a001 165580141/64079*87403803^(13/19) 7014087331708204 a001 6557470319842/64079*33385282^(1/9) 7014087331708204 a001 27416783100256937/39088169 7014087331708204 a001 63245986/64079*87403803^(14/19) 7014087331708204 a001 2504730781961/64079*33385282^(1/6) 7014087331708205 a001 956722026041/64079*33385282^(2/9) 7014087331708205 a001 591286729879/64079*33385282^(1/4) 7014087331708205 a001 365435296162/64079*33385282^(5/18) 7014087331708206 a001 139583862445/64079*33385282^(1/3) 7014087331708206 a001 24157817/64079*141422324^(10/13) 7014087331708206 a001 24157817/64079*2537720636^(2/3) 7014087331708206 a001 24157817/64079*45537549124^(10/17) 7014087331708206 a001 24157817/64079*312119004989^(6/11) 7014087331708206 a001 24157817/64079*14662949395604^(10/21) 7014087331708206 a001 24157817/64079*(1/2+1/2*5^(1/2))^30 7014087331708206 a001 24157817/64079*192900153618^(5/9) 7014087331708206 a001 24157817/64079*28143753123^(3/5) 7014087331708206 a001 24157817/64079*10749957122^(5/8) 7014087331708206 a001 24157817/64079*4106118243^(15/23) 7014087331708206 a001 24157817/64079*1568397607^(15/22) 7014087331708206 a001 24157817/64079*599074578^(5/7) 7014087331708206 a001 53316291173/64079*33385282^(7/18) 7014087331708206 a001 24157817/64079*228826127^(3/4) 7014087331708206 a001 32951280099/64079*33385282^(5/12) 7014087331708206 a001 20365011074/64079*33385282^(4/9) 7014087331708207 a001 24157817/64079*87403803^(15/19) 7014087331708207 a001 7778742049/64079*33385282^(1/2) 7014087331708207 a001 2971215073/64079*33385282^(5/9) 7014087331708207 a001 28657*33385282^(7/12) 7014087331708207 a001 1134903170/64079*33385282^(11/18) 7014087331708208 a001 433494437/64079*33385282^(2/3) 7014087331708208 a001 102334155/64079*33385282^(3/4) 7014087331708208 a001 165580141/64079*33385282^(13/18) 7014087331708209 a001 6557470319842/64079*12752043^(2/17) 7014087331708209 a001 63245986/64079*33385282^(7/9) 7014087331708210 a001 5236139641057217/7465176 7014087331708211 a001 2504730781961/64079*12752043^(3/17) 7014087331708211 a001 24157817/64079*33385282^(5/6) 7014087331708214 a001 956722026041/64079*12752043^(4/17) 7014087331708216 a001 365435296162/64079*12752043^(5/17) 7014087331708219 a001 139583862445/64079*12752043^(6/17) 7014087331708220 a001 28657/20633239*14662949395604^(8/9) 7014087331708220 a001 28657/20633239*(1/2+1/2*5^(1/2))^56 7014087331708220 a001 9227465/64079*(1/2+1/2*5^(1/2))^32 7014087331708220 a001 9227465/64079*23725150497407^(1/2) 7014087331708220 a001 9227465/64079*505019158607^(4/7) 7014087331708220 a001 9227465/64079*73681302247^(8/13) 7014087331708220 a001 9227465/64079*10749957122^(2/3) 7014087331708220 a001 9227465/64079*4106118243^(16/23) 7014087331708220 a001 9227465/64079*1568397607^(8/11) 7014087331708220 a001 9227465/64079*599074578^(16/21) 7014087331708220 a001 9227465/64079*228826127^(4/5) 7014087331708221 a001 9227465/64079*87403803^(16/19) 7014087331708221 a001 53316291173/64079*12752043^(7/17) 7014087331708224 a001 20365011074/64079*12752043^(8/17) 7014087331708225 a001 12586269025/64079*12752043^(1/2) 7014087331708226 a001 9227465/64079*33385282^(8/9) 7014087331708226 a001 7778742049/64079*12752043^(9/17) 7014087331708229 a001 2971215073/64079*12752043^(10/17) 7014087331708231 a001 1134903170/64079*12752043^(11/17) 7014087331708234 a001 433494437/64079*12752043^(12/17) 7014087331708236 a001 165580141/64079*12752043^(13/17) 7014087331708239 a001 63245986/64079*12752043^(14/17) 7014087331708240 a001 6557470319842/64079*4870847^(1/8) 7014087331708244 a001 24157817/64079*12752043^(15/17) 7014087331708247 a001 4000054746086365/5702887 7014087331708259 a001 2504730781961/64079*4870847^(3/16) 7014087331708261 a001 9227465/64079*12752043^(16/17) 7014087331708277 a001 956722026041/64079*4870847^(1/4) 7014087331708296 a001 365435296162/64079*4870847^(5/16) 7014087331708314 a001 139583862445/64079*4870847^(3/8) 7014087331708316 a001 28657/7881196*14662949395604^(6/7) 7014087331708316 a001 28657/7881196*(1/2+1/2*5^(1/2))^54 7014087331708316 a001 3524578/64079*45537549124^(2/3) 7014087331708316 a001 3524578/64079*(1/2+1/2*5^(1/2))^34 7014087331708316 a001 3524578/64079*10749957122^(17/24) 7014087331708316 a001 3524578/64079*4106118243^(17/23) 7014087331708316 a001 3524578/64079*1568397607^(17/22) 7014087331708316 a001 3524578/64079*599074578^(17/21) 7014087331708316 a001 3524578/64079*228826127^(17/20) 7014087331708317 a001 3524578/64079*87403803^(17/19) 7014087331708322 a001 3524578/64079*33385282^(17/18) 7014087331708333 a001 53316291173/64079*4870847^(7/16) 7014087331708351 a001 20365011074/64079*4870847^(1/2) 7014087331708370 a001 7778742049/64079*4870847^(9/16) 7014087331708388 a001 2971215073/64079*4870847^(5/8) 7014087331708406 a001 10610209857723/64079*1860498^(1/10) 7014087331708407 a001 1134903170/64079*4870847^(11/16) 7014087331708425 a001 433494437/64079*4870847^(3/4) 7014087331708444 a001 165580141/64079*4870847^(13/16) 7014087331708462 a001 63245986/64079*4870847^(7/8) 7014087331708474 a001 6557470319842/64079*1860498^(2/15) 7014087331708483 a001 24157817/64079*4870847^(15/16) 7014087331708499 a001 1527884956144661/2178309 7014087331708541 a001 4052739537881/64079*1860498^(1/6) 7014087331708609 a001 2504730781961/64079*1860498^(1/5) 7014087331708744 a001 956722026041/64079*1860498^(4/15) 7014087331708811 a001 591286729879/64079*1860498^(3/10) 7014087331708879 a001 365435296162/64079*1860498^(1/3) 7014087331708977 a001 1346269/64079*141422324^(12/13) 7014087331708977 a001 1346269/64079*2537720636^(4/5) 7014087331708977 a001 28657/3010349*(1/2+1/2*5^(1/2))^52 7014087331708977 a001 28657/3010349*23725150497407^(13/16) 7014087331708977 a001 28657/3010349*505019158607^(13/14) 7014087331708977 a001 1346269/64079*45537549124^(12/17) 7014087331708977 a001 1346269/64079*14662949395604^(4/7) 7014087331708977 a001 1346269/64079*(1/2+1/2*5^(1/2))^36 7014087331708977 a001 1346269/64079*505019158607^(9/14) 7014087331708977 a001 1346269/64079*192900153618^(2/3) 7014087331708977 a001 1346269/64079*73681302247^(9/13) 7014087331708977 a001 1346269/64079*10749957122^(3/4) 7014087331708977 a001 1346269/64079*4106118243^(18/23) 7014087331708977 a001 1346269/64079*1568397607^(9/11) 7014087331708977 a001 1346269/64079*599074578^(6/7) 7014087331708978 a001 1346269/64079*228826127^(9/10) 7014087331708978 a001 1346269/64079*87403803^(18/19) 7014087331709014 a001 139583862445/64079*1860498^(2/5) 7014087331709149 a001 53316291173/64079*1860498^(7/15) 7014087331709217 a001 32951280099/64079*1860498^(1/2) 7014087331709284 a001 20365011074/64079*1860498^(8/15) 7014087331709419 a001 7778742049/64079*1860498^(3/5) 7014087331709554 a001 2971215073/64079*1860498^(2/3) 7014087331709622 a001 28657*1860498^(7/10) 7014087331709689 a001 1134903170/64079*1860498^(11/15) 7014087331709825 a001 433494437/64079*1860498^(4/5) 7014087331709892 a001 267914296/64079*1860498^(5/6) 7014087331709960 a001 165580141/64079*1860498^(13/15) 7014087331710027 a001 102334155/64079*1860498^(9/10) 7014087331710095 a001 63245986/64079*1860498^(14/15) 7014087331710188 a001 6557470319842/64079*710647^(1/7) 7014087331710230 a001 291800061173809/416020 7014087331711180 a001 2504730781961/64079*710647^(3/14) 7014087331711676 a001 1548008755920/64079*710647^(1/4) 7014087331712172 a001 956722026041/64079*710647^(2/7) 7014087331713164 a001 365435296162/64079*710647^(5/14) 7014087331713508 a001 28657/1149851*312119004989^(10/11) 7014087331713508 a001 28657/1149851*(1/2+1/2*5^(1/2))^50 7014087331713508 a001 28657/1149851*3461452808002^(5/6) 7014087331713508 a001 514229/64079*817138163596^(2/3) 7014087331713508 a001 514229/64079*(1/2+1/2*5^(1/2))^38 7014087331713508 a001 514229/64079*10749957122^(19/24) 7014087331713508 a001 514229/64079*4106118243^(19/23) 7014087331713508 a001 514229/64079*1568397607^(19/22) 7014087331713508 a001 514229/64079*599074578^(19/21) 7014087331713509 a001 514229/64079*228826127^(19/20) 7014087331714156 a001 139583862445/64079*710647^(3/7) 7014087331715148 a001 53316291173/64079*710647^(1/2) 7014087331716140 a001 20365011074/64079*710647^(4/7) 7014087331717132 a001 7778742049/64079*710647^(9/14) 7014087331718124 a001 2971215073/64079*710647^(5/7) 7014087331718620 a001 28657*710647^(3/4) 7014087331719116 a001 1134903170/64079*710647^(11/14) 7014087331720108 a001 433494437/64079*710647^(6/7) 7014087331721100 a001 165580141/64079*710647^(13/14) 7014087331722092 a001 17147339299861/24447 7014087331722849 a001 6557470319842/64079*271443^(2/13) 7014087331730171 a001 2504730781961/64079*271443^(3/13) 7014087331734315 a001 2504730781961/271443*39603^(9/22) 7014087331737494 a001 956722026041/64079*271443^(4/13) 7014087331744565 a001 196418/64079*2537720636^(8/9) 7014087331744565 a001 28657/439204*45537549124^(16/17) 7014087331744565 a001 28657/439204*14662949395604^(16/21) 7014087331744565 a001 28657/439204*(1/2+1/2*5^(1/2))^48 7014087331744565 a001 28657/439204*192900153618^(8/9) 7014087331744565 a001 28657/439204*73681302247^(12/13) 7014087331744565 a001 196418/64079*312119004989^(8/11) 7014087331744565 a001 196418/64079*(1/2+1/2*5^(1/2))^40 7014087331744565 a001 196418/64079*23725150497407^(5/8) 7014087331744565 a001 196418/64079*73681302247^(10/13) 7014087331744565 a001 196418/64079*28143753123^(4/5) 7014087331744565 a001 196418/64079*10749957122^(5/6) 7014087331744565 a001 196418/64079*4106118243^(20/23) 7014087331744565 a001 196418/64079*1568397607^(10/11) 7014087331744565 a001 196418/64079*599074578^(20/21) 7014087331744817 a001 365435296162/64079*271443^(5/13) 7014087331752140 a001 139583862445/64079*271443^(6/13) 7014087331755801 a001 86267571272/64079*271443^(1/2) 7014087331759462 a001 53316291173/64079*271443^(7/13) 7014087331766785 a001 20365011074/64079*271443^(8/13) 7014087331774108 a001 7778742049/64079*271443^(9/13) 7014087331781430 a001 2971215073/64079*271443^(10/13) 7014087331786871 a001 225851433717/103682*39603^(6/11) 7014087331788753 a001 1134903170/64079*271443^(11/13) 7014087331789763 a001 10610209857723/64079*103682^(1/8) 7014087331796076 a001 433494437/64079*271443^(12/13) 7014087331803398 a001 85146110346961/121393 7014087331815621 a001 6557470319842/710647*39603^(9/22) 7014087331816949 a001 6557470319842/64079*103682^(1/6) 7014087331834815 a001 10610209857723/1149851*39603^(9/22) 7014087331844136 a001 4052739537881/64079*103682^(5/24) 7014087331865871 a001 4052739537881/439204*39603^(9/22) 7014087331871322 a001 2504730781961/64079*103682^(1/4) 7014087331875454 a001 2504730781961/167761*39603^(4/11) 7014087331898509 a001 1548008755920/64079*103682^(7/24) 7014087331925695 a001 956722026041/64079*103682^(1/3) 7014087331937594 a001 516002918640/90481*39603^(5/11) 7014087331952882 a001 591286729879/64079*103682^(3/8) 7014087331957427 a001 75025/64079*2537720636^(14/15) 7014087331957427 a001 28657/167761*(1/2+1/2*5^(1/2))^46 7014087331957427 a001 28657/167761*10749957122^(23/24) 7014087331957427 a001 75025/64079*17393796001^(6/7) 7014087331957427 a001 75025/64079*45537549124^(14/17) 7014087331957427 a001 75025/64079*817138163596^(14/19) 7014087331957427 a001 75025/64079*14662949395604^(2/3) 7014087331957427 a001 75025/64079*(1/2+1/2*5^(1/2))^42 7014087331957427 a001 75025/64079*505019158607^(3/4) 7014087331957427 a001 75025/64079*192900153618^(7/9) 7014087331957427 a001 75025/64079*10749957122^(7/8) 7014087331957427 a001 75025/64079*4106118243^(21/23) 7014087331957427 a001 75025/64079*1568397607^(21/22) 7014087331980068 a001 365435296162/64079*103682^(5/12) 7014087331990149 a001 139583862445/103682*39603^(13/22) 7014087332007255 a001 225851433717/64079*103682^(11/24) 7014087332018900 a001 4052739537881/710647*39603^(5/11) 7014087332030762 a001 3536736619241/620166*39603^(5/11) 7014087332034441 a001 139583862445/64079*103682^(1/2) 7014087332038094 a001 6557470319842/1149851*39603^(5/11) 7014087332061628 a001 86267571272/64079*103682^(13/24) 7014087332069150 a001 2504730781961/439204*39603^(5/11) 7014087332078733 a001 140728068720/15251*39603^(9/22) 7014087332088814 a001 53316291173/64079*103682^(7/12) 7014087332116001 a001 32951280099/64079*103682^(5/8) 7014087332140873 a001 956722026041/271443*39603^(1/2) 7014087332143187 a001 20365011074/64079*103682^(2/3) 7014087332170374 a001 12586269025/64079*103682^(17/24) 7014087332193428 a001 43133785636/51841*39603^(7/11) 7014087332197560 a001 7778742049/64079*103682^(3/4) 7014087332222179 a001 2504730781961/710647*39603^(1/2) 7014087332224747 a001 4807526976/64079*103682^(19/24) 7014087332230134 a001 1201881744/6119*24476^(17/21) 7014087332234041 a001 3278735159921/930249*39603^(1/2) 7014087332236841 a001 10610209857723/3010349*39603^(1/2) 7014087332241373 a001 4052739537881/1149851*39603^(1/2) 7014087332251933 a001 2971215073/64079*103682^(5/6) 7014087332272429 a001 387002188980/109801*39603^(1/2) 7014087332279120 a001 28657*103682^(7/8) 7014087332282012 a001 956722026041/167761*39603^(5/11) 7014087332306306 a001 1134903170/64079*103682^(11/12) 7014087332318040 a001 10610209857723/64079*39603^(3/22) 7014087332333493 a001 701408733/64079*103682^(23/24) 7014087332344151 a001 591286729879/271443*39603^(6/11) 7014087332360679 a001 16261460071345/23184 7014087332396707 a001 53316291173/103682*39603^(15/22) 7014087332425458 a001 1548008755920/710647*39603^(6/11) 7014087332437320 a001 4052739537881/1860498*39603^(6/11) 7014087332439051 a001 2178309*39603^(6/11) 7014087332440120 a001 6557470319842/3010349*39603^(6/11) 7014087332444651 a001 2504730781961/1149851*39603^(6/11) 7014087332475708 a001 956722026041/439204*39603^(6/11) 7014087332485291 a001 591286729879/167761*39603^(1/2) 7014087332521319 a001 6557470319842/64079*39603^(2/11) 7014087332547430 a001 365435296162/271443*39603^(13/22) 7014087332599986 a001 32951280099/103682*39603^(8/11) 7014087332628737 a001 956722026041/710647*39603^(13/22) 7014087332640599 a001 2504730781961/1860498*39603^(13/22) 7014087332642330 a001 6557470319842/4870847*39603^(13/22) 7014087332642738 a001 10610209857723/7881196*39603^(13/22) 7014087332643399 a001 1346269*39603^(13/22) 7014087332647930 a001 1548008755920/1149851*39603^(13/22) 7014087332678987 a001 591286729879/439204*39603^(13/22) 7014087332688570 a001 365435296162/167761*39603^(6/11) 7014087332724598 a001 4052739537881/64079*39603^(5/22) 7014087332750709 a001 75283811239/90481*39603^(7/11) 7014087332787667 a001 7778742049/24476*24476^(16/21) 7014087332803265 a001 10182505537/51841*39603^(17/22) 7014087332832015 a001 591286729879/710647*39603^(7/11) 7014087332843878 a001 832040*39603^(7/11) 7014087332845609 a001 4052739537881/4870847*39603^(7/11) 7014087332845861 a001 3536736619241/4250681*39603^(7/11) 7014087332846017 a001 3278735159921/3940598*39603^(7/11) 7014087332846678 a001 2504730781961/3010349*39603^(7/11) 7014087332851209 a001 956722026041/1149851*39603^(7/11) 7014087332882265 a001 182717648081/219602*39603^(7/11) 7014087332891849 a001 225851433717/167761*39603^(13/22) 7014087332927877 a001 2504730781961/64079*39603^(3/11) 7014087332953988 a001 139583862445/271443*39603^(15/22) 7014087333006544 a001 12586269025/103682*39603^(9/11) 7014087333035294 a001 365435296162/710647*39603^(15/22) 7014087333047157 a001 956722026041/1860498*39603^(15/22) 7014087333048887 a001 2504730781961/4870847*39603^(15/22) 7014087333049140 a001 6557470319842/12752043*39603^(15/22) 7014087333049200 a001 10610209857723/20633239*39603^(15/22) 7014087333049296 a001 4052739537881/7881196*39603^(15/22) 7014087333049957 a001 1548008755920/3010349*39603^(15/22) 7014087333054488 a001 514229*39603^(15/22) 7014087333085544 a001 225851433717/439204*39603^(15/22) 7014087333095128 a001 139583862445/167761*39603^(7/11) 7014087333131156 a001 1548008755920/64079*39603^(7/22) 7014087333157267 a001 86267571272/271443*39603^(8/11) 7014087333190982 a001 2504730781961/39603*15127^(1/4) 7014087333209823 a001 7778742049/103682*39603^(19/22) 7014087333238573 a001 317811*39603^(8/11) 7014087333250436 a001 591286729879/1860498*39603^(8/11) 7014087333252166 a001 1548008755920/4870847*39603^(8/11) 7014087333252419 a001 4052739537881/12752043*39603^(8/11) 7014087333252456 a001 1515744265389/4769326*39603^(8/11) 7014087333252478 a001 6557470319842/20633239*39603^(8/11) 7014087333252575 a001 2504730781961/7881196*39603^(8/11) 7014087333253236 a001 956722026041/3010349*39603^(8/11) 7014087333257767 a001 365435296162/1149851*39603^(8/11) 7014087333260917 a001 3278735159921/12238*9349^(2/19) 7014087333288823 a001 139583862445/439204*39603^(8/11) 7014087333298407 a001 86267571272/167761*39603^(15/22) 7014087333334435 a001 956722026041/64079*39603^(4/11) 7014087333345201 a001 12586269025/24476*24476^(5/7) 7014087333360546 a001 53316291173/271443*39603^(17/22) 7014087333413102 a001 46368*39603^(10/11) 7014087333416407 a001 28657/64079*312119004989^(4/5) 7014087333416407 a001 28657/64079*(1/2+1/2*5^(1/2))^44 7014087333416407 a001 28657/64079*23725150497407^(11/16) 7014087333416407 a001 28657/64079*73681302247^(11/13) 7014087333416407 a001 28657/64079*10749957122^(11/12) 7014087333416407 a001 28657/64079*4106118243^(22/23) 7014087333441852 a001 139583862445/710647*39603^(17/22) 7014087333453715 a001 182717648081/930249*39603^(17/22) 7014087333455445 a001 956722026041/4870847*39603^(17/22) 7014087333455698 a001 2504730781961/12752043*39603^(17/22) 7014087333455735 a001 3278735159921/16692641*39603^(17/22) 7014087333455743 a001 10610209857723/54018521*39603^(17/22) 7014087333455757 a001 4052739537881/20633239*39603^(17/22) 7014087333455854 a001 387002188980/1970299*39603^(17/22) 7014087333456515 a001 591286729879/3010349*39603^(17/22) 7014087333461046 a001 225851433717/1149851*39603^(17/22) 7014087333492102 a001 196418*39603^(17/22) 7014087333501686 a001 53316291173/167761*39603^(8/11) 7014087333537714 a001 591286729879/64079*39603^(9/22) 7014087333563825 a001 121393*39603^(9/11) 7014087333616381 a001 2971215073/103682*39603^(21/22) 7014087333645131 a001 86267571272/710647*39603^(9/11) 7014087333656993 a001 75283811239/620166*39603^(9/11) 7014087333658724 a001 591286729879/4870847*39603^(9/11) 7014087333658977 a001 516002918640/4250681*39603^(9/11) 7014087333659014 a001 4052739537881/33385282*39603^(9/11) 7014087333659019 a001 3536736619241/29134601*39603^(9/11) 7014087333659022 a001 6557470319842/54018521*39603^(9/11) 7014087333659036 a001 2504730781961/20633239*39603^(9/11) 7014087333659133 a001 956722026041/7881196*39603^(9/11) 7014087333659794 a001 365435296162/3010349*39603^(9/11) 7014087333664325 a001 139583862445/1149851*39603^(9/11) 7014087333695381 a001 53316291173/439204*39603^(9/11) 7014087333704965 a001 32951280099/167761*39603^(17/22) 7014087333740993 a001 365435296162/64079*39603^(5/11) 7014087333767104 a001 20365011074/271443*39603^(19/22) 7014087333819660 a001 12422650076928/17711 7014087333848410 a001 53316291173/710647*39603^(19/22) 7014087333860272 a001 139583862445/1860498*39603^(19/22) 7014087333862003 a001 365435296162/4870847*39603^(19/22) 7014087333862256 a001 956722026041/12752043*39603^(19/22) 7014087333862292 a001 2504730781961/33385282*39603^(19/22) 7014087333862298 a001 6557470319842/87403803*39603^(19/22) 7014087333862299 a001 10610209857723/141422324*39603^(19/22) 7014087333862301 a001 4052739537881/54018521*39603^(19/22) 7014087333862315 a001 140728068720/1875749*39603^(19/22) 7014087333862412 a001 591286729879/7881196*39603^(19/22) 7014087333863073 a001 225851433717/3010349*39603^(19/22) 7014087333867604 a001 86267571272/1149851*39603^(19/22) 7014087333898660 a001 32951280099/439204*39603^(19/22) 7014087333902734 a001 10182505537/12238*24476^(2/3) 7014087333908243 a001 20365011074/167761*39603^(9/11) 7014087333944271 a001 225851433717/64079*39603^(1/2) 7014087333970383 a001 12586269025/271443*39603^(10/11) 7014087334051689 a001 32951280099/710647*39603^(10/11) 7014087334063551 a001 43133785636/930249*39603^(10/11) 7014087334065282 a001 225851433717/4870847*39603^(10/11) 7014087334065535 a001 591286729879/12752043*39603^(10/11) 7014087334065571 a001 774004377960/16692641*39603^(10/11) 7014087334065577 a001 4052739537881/87403803*39603^(10/11) 7014087334065578 a001 225749145909/4868641*39603^(10/11) 7014087334065578 a001 3278735159921/70711162*39603^(10/11) 7014087334065580 a001 2504730781961/54018521*39603^(10/11) 7014087334065594 a001 956722026041/20633239*39603^(10/11) 7014087334065691 a001 182717648081/3940598*39603^(10/11) 7014087334066352 a001 139583862445/3010349*39603^(10/11) 7014087334070883 a001 53316291173/1149851*39603^(10/11) 7014087334101939 a001 10182505537/219602*39603^(10/11) 7014087334111522 a001 75025*39603^(19/22) 7014087334147550 a001 139583862445/64079*39603^(6/11) 7014087334173662 a001 7778742049/271443*39603^(21/22) 7014087334223643 a001 1134903170/9349*9349^(18/19) 7014087334254968 a001 20365011074/710647*39603^(21/22) 7014087334266830 a001 53316291173/1860498*39603^(21/22) 7014087334268561 a001 139583862445/4870847*39603^(21/22) 7014087334268813 a001 365435296162/12752043*39603^(21/22) 7014087334268850 a001 956722026041/33385282*39603^(21/22) 7014087334268856 a001 2504730781961/87403803*39603^(21/22) 7014087334268856 a001 6557470319842/228826127*39603^(21/22) 7014087334268857 a001 10610209857723/370248451*39603^(21/22) 7014087334268857 a001 4052739537881/141422324*39603^(21/22) 7014087334268859 a001 1548008755920/54018521*39603^(21/22) 7014087334268873 a001 591286729879/20633239*39603^(21/22) 7014087334268969 a001 225851433717/7881196*39603^(21/22) 7014087334269631 a001 86267571272/3010349*39603^(21/22) 7014087334274162 a001 32951280099/1149851*39603^(21/22) 7014087334305218 a001 12586269025/439204*39603^(21/22) 7014087334314801 a001 7778742049/167761*39603^(10/11) 7014087334350829 a001 86267571272/64079*39603^(13/22) 7014087334363389 a001 2504730781961/15127*5778^(1/6) 7014087334376940 a001 12422650077915/17711 7014087334458246 a001 12422650078059/17711 7014087334460268 a001 32951280099/24476*24476^(13/21) 7014087334470103 a001 12422650078080/17711 7014087334471797 a001 12422650078083/17711 7014087334472361 a001 139580337956/199 7014087334472926 a001 12422650078085/17711 7014087334477443 a001 12422650078093/17711 7014087334508497 a001 12422650078148/17711 7014087334518080 a001 4807526976/167761*39603^(21/22) 7014087334554108 a001 53316291173/64079*39603^(7/11) 7014087334721359 a001 12422650078525/17711 7014087334723606 a001 516002918640/13201*15127^(3/10) 7014087334757387 a001 32951280099/64079*39603^(15/22) 7014087334960666 a001 20365011074/64079*39603^(8/11) 7014087335017801 a001 53316291173/24476*24476^(4/7) 7014087335163945 a001 12586269025/64079*39603^(17/22) 7014087335367224 a001 7778742049/64079*39603^(9/11) 7014087335478019 a001 225749145909/2206*15127^(1/5) 7014087335570503 a001 4807526976/64079*39603^(19/22) 7014087335575335 a001 21566892818/6119*24476^(11/21) 7014087335773782 a001 2971215073/64079*39603^(10/11) 7014087335977060 a001 28657*39603^(21/22) 7014087336132868 a001 139583862445/24476*24476^(10/21) 7014087336180339 a001 12422650081109/17711 7014087336256230 a001 956722026041/39603*15127^(7/20) 7014087336306075 a001 10610209857723/64079*15127^(3/20) 7014087336690402 a001 7787980473/844*24476^(3/7) 7014087337010643 a001 3278735159921/51841*15127^(1/4) 7014087337236067 a001 10946/39603*45537549124^(15/17) 7014087337236067 a001 10946/39603*312119004989^(9/11) 7014087337236067 a001 10946/39603*14662949395604^(5/7) 7014087337236067 a001 10946/39603*(1/2+1/2*5^(1/2))^45 7014087337236067 a001 10946/39603*192900153618^(5/6) 7014087337236067 a001 10946/39603*28143753123^(9/10) 7014087337236067 a001 10946/39603*10749957122^(15/16) 7014087337236067 a001 17711/24476*(1/2+1/2*5^(1/2))^43 7014087337247935 a001 182717648081/12238*24476^(8/21) 7014087337484560 a001 10610209857723/24476*9349^(1/19) 7014087337788854 a001 591286729879/39603*15127^(2/5) 7014087337805469 a001 591286729879/24476*24476^(1/3) 7014087337838699 a001 6557470319842/64079*15127^(1/5) 7014087337912342 a001 10610209857723/167761*15127^(1/4) 7014087338363002 a001 956722026041/24476*24476^(2/7) 7014087338447286 a001 1836311903/9349*9349^(17/19) 7014087338543266 a001 4052739537881/103682*15127^(3/10) 7014087338920536 a001 387002188980/6119*24476^(5/21) 7014087339100547 a001 3536736619241/90481*15127^(3/10) 7014087339321478 a001 365435296162/39603*15127^(9/20) 7014087339371322 a001 4052739537881/64079*15127^(1/4) 7014087339444966 a001 6557470319842/167761*15127^(3/10) 7014087339478069 a001 2504730781961/24476*24476^(4/21) 7014087340035603 a001 4052739537881/24476*24476^(1/7) 7014087340074269 a001 433494437/24476*64079^(22/23) 7014087340075890 a001 2504730781961/103682*15127^(7/20) 7014087340148539 a001 701408733/24476*64079^(21/23) 7014087340222809 a001 567451585/12238*64079^(20/23) 7014087340297078 a001 1836311903/24476*64079^(19/23) 7014087340371348 a001 2971215073/24476*64079^(18/23) 7014087340445618 a001 1201881744/6119*64079^(17/23) 7014087340519888 a001 7778742049/24476*64079^(16/23) 7014087340593136 a001 3278735159921/12238*24476^(2/21) 7014087340594157 a001 12586269025/24476*64079^(15/23) 7014087340633171 a001 6557470319842/271443*15127^(7/20) 7014087340668427 a001 10182505537/12238*64079^(14/23) 7014087340742697 a001 32951280099/24476*64079^(13/23) 7014087340764727 a001 10610209857723/439204*15127^(7/20) 7014087340816967 a001 53316291173/24476*64079^(12/23) 7014087340854101 a001 75283811239/13201*15127^(1/2) 7014087340891236 a001 21566892818/6119*64079^(11/23) 7014087340903946 a001 2504730781961/64079*15127^(3/10) 7014087340965506 a001 139583862445/24476*64079^(10/23) 7014087340977590 a001 4052739537881/167761*15127^(7/20) 7014087341039776 a001 7787980473/844*64079^(9/23) 7014087341055728 a001 5473/51841*(1/2+1/2*5^(1/2))^47 7014087341055728 a001 11592/6119*(1/2+1/2*5^(1/2))^41 7014087341114046 a001 182717648081/12238*64079^(8/23) 7014087341150670 a001 10610209857723/24476*24476^(1/21) 7014087341188315 a001 591286729879/24476*64079^(7/23) 7014087341262585 a001 956722026041/24476*64079^(6/23) 7014087341336855 a001 387002188980/6119*64079^(5/23) 7014087341411125 a001 2504730781961/24476*64079^(4/23) 7014087341458980 a001 52623190279296/75025 7014087341485394 a001 4052739537881/24476*64079^(3/23) 7014087341508825 a001 567451585/12238*167761^(4/5) 7014087341558669 a001 12586269025/24476*167761^(3/5) 7014087341559664 a001 3278735159921/12238*64079^(2/23) 7014087341608514 a001 774004377960/51841*15127^(2/5) 7014087341608514 a001 139583862445/24476*167761^(2/5) 7014087341613008 a001 10946/271443*14662949395604^(7/9) 7014087341613008 a001 10946/271443*(1/2+1/2*5^(1/2))^49 7014087341613008 a001 10946/271443*505019158607^(7/8) 7014087341613009 a001 121393/24476*2537720636^(13/15) 7014087341613009 a001 121393/24476*45537549124^(13/17) 7014087341613009 a001 121393/24476*14662949395604^(13/21) 7014087341613009 a001 121393/24476*(1/2+1/2*5^(1/2))^39 7014087341613009 a001 121393/24476*192900153618^(13/18) 7014087341613009 a001 121393/24476*73681302247^(3/4) 7014087341613009 a001 121393/24476*10749957122^(13/16) 7014087341613009 a001 121393/24476*599074578^(13/14) 7014087341633934 a001 10610209857723/24476*64079^(1/23) 7014087341658359 a001 387002188980/6119*167761^(1/5) 7014087341671842 a001 68884650373825/98209 7014087341675882 a001 165580141/24476*439204^(8/9) 7014087341679922 a001 701408733/24476*439204^(7/9) 7014087341683963 a001 2971215073/24476*439204^(2/3) 7014087341688003 a001 12586269025/24476*439204^(5/9) 7014087341692043 a001 53316291173/24476*439204^(4/9) 7014087341694315 a001 10946/710647*817138163596^(17/19) 7014087341694315 a001 10946/710647*14662949395604^(17/21) 7014087341694315 a001 10946/710647*(1/2+1/2*5^(1/2))^51 7014087341694315 a001 10946/710647*192900153618^(17/18) 7014087341694315 a001 10959/844*(1/2+1/2*5^(1/2))^37 7014087341696083 a001 7787980473/844*439204^(1/3) 7014087341700123 a001 956722026041/24476*439204^(2/9) 7014087341702898 a001 360684711963654/514229 7014087341704163 a001 4052739537881/24476*439204^(1/9) 7014087341706177 a001 5473/930249*(1/2+1/2*5^(1/2))^53 7014087341706177 a001 208010/6119*2537720636^(7/9) 7014087341706177 a001 208010/6119*17393796001^(5/7) 7014087341706177 a001 208010/6119*312119004989^(7/11) 7014087341706177 a001 208010/6119*14662949395604^(5/9) 7014087341706177 a001 208010/6119*(1/2+1/2*5^(1/2))^35 7014087341706177 a001 208010/6119*505019158607^(5/8) 7014087341706177 a001 208010/6119*28143753123^(7/10) 7014087341706177 a001 208010/6119*599074578^(5/6) 7014087341706177 a001 208010/6119*228826127^(7/8) 7014087341707429 a001 944284835143312/1346269 7014087341707908 a001 2178309/24476*141422324^(11/13) 7014087341707908 a001 10946/4870847*(1/2+1/2*5^(1/2))^55 7014087341707908 a001 10946/4870847*3461452808002^(11/12) 7014087341707908 a001 2178309/24476*2537720636^(11/15) 7014087341707908 a001 2178309/24476*45537549124^(11/17) 7014087341707908 a001 2178309/24476*312119004989^(3/5) 7014087341707908 a001 2178309/24476*817138163596^(11/19) 7014087341707908 a001 2178309/24476*14662949395604^(11/21) 7014087341707908 a001 2178309/24476*(1/2+1/2*5^(1/2))^33 7014087341707908 a001 2178309/24476*192900153618^(11/18) 7014087341707908 a001 2178309/24476*10749957122^(11/16) 7014087341707908 a001 2178309/24476*1568397607^(3/4) 7014087341707908 a001 2178309/24476*599074578^(11/14) 7014087341707914 a001 2178309/24476*33385282^(11/12) 7014087341708091 a001 1236084896733141/1762289 7014087341708110 a001 39088169/24476*7881196^(9/11) 7014087341708117 a001 9227465/24476*7881196^(10/11) 7014087341708121 a001 165580141/24476*7881196^(8/11) 7014087341708128 a001 433494437/24476*7881196^(2/3) 7014087341708132 a001 701408733/24476*7881196^(7/11) 7014087341708142 a001 2971215073/24476*7881196^(6/11) 7014087341708152 a001 12586269025/24476*7881196^(5/11) 7014087341708160 a001 10946/12752043*14662949395604^(19/21) 7014087341708160 a001 10946/12752043*(1/2+1/2*5^(1/2))^57 7014087341708160 a001 5702887/24476*(1/2+1/2*5^(1/2))^31 7014087341708160 a001 5702887/24476*9062201101803^(1/2) 7014087341708162 a001 53316291173/24476*7881196^(4/11) 7014087341708166 a001 21566892818/6119*7881196^(1/3) 7014087341708173 a001 7787980473/844*7881196^(3/11) 7014087341708183 a001 956722026041/24476*7881196^(2/11) 7014087341708187 a001 497863426558118/709805 7014087341708192 a001 102334155/24476*20633239^(5/7) 7014087341708193 a001 24157817/24476*20633239^(4/5) 7014087341708193 a001 4052739537881/24476*7881196^(1/11) 7014087341708194 a001 701408733/24476*20633239^(3/5) 7014087341708194 a001 567451585/12238*20633239^(4/7) 7014087341708196 a001 12586269025/24476*20633239^(3/7) 7014087341708197 a001 10182505537/12238*20633239^(2/5) 7014087341708197 a001 5473/16692641*(1/2+1/2*5^(1/2))^59 7014087341708197 a001 3732588/6119*(1/2+1/2*5^(1/2))^29 7014087341708197 a001 3732588/6119*1322157322203^(1/2) 7014087341708199 a001 139583862445/24476*20633239^(2/7) 7014087341708200 a001 591286729879/24476*20633239^(1/5) 7014087341708201 a001 16944503842300320/24157817 7014087341708201 a001 387002188980/6119*20633239^(1/7) 7014087341708202 a001 39088169/24476*141422324^(9/13) 7014087341708203 a001 39088169/24476*2537720636^(3/5) 7014087341708203 a001 39088169/24476*45537549124^(9/17) 7014087341708203 a001 39088169/24476*817138163596^(9/19) 7014087341708203 a001 39088169/24476*14662949395604^(3/7) 7014087341708203 a001 39088169/24476*(1/2+1/2*5^(1/2))^27 7014087341708203 a001 39088169/24476*192900153618^(1/2) 7014087341708203 a001 39088169/24476*10749957122^(9/16) 7014087341708203 a001 39088169/24476*599074578^(9/14) 7014087341708203 a001 22180643490822713/31622993 7014087341708203 a001 701408733/24476*141422324^(7/13) 7014087341708203 a001 165580141/24476*141422324^(8/13) 7014087341708203 a001 2971215073/24476*141422324^(6/13) 7014087341708203 a001 12586269025/24476*141422324^(5/13) 7014087341708203 a001 102334155/24476*2537720636^(5/9) 7014087341708203 a001 102334155/24476*312119004989^(5/11) 7014087341708203 a001 102334155/24476*(1/2+1/2*5^(1/2))^25 7014087341708203 a001 102334155/24476*3461452808002^(5/12) 7014087341708203 a001 102334155/24476*28143753123^(1/2) 7014087341708203 a001 32951280099/24476*141422324^(1/3) 7014087341708203 a001 53316291173/24476*141422324^(4/13) 7014087341708203 a001 7787980473/844*141422324^(3/13) 7014087341708203 a001 116139357102635958/165580141 7014087341708203 a001 956722026041/24476*141422324^(2/13) 7014087341708203 a001 102334155/24476*228826127^(5/8) 7014087341708203 a001 4052739537881/24476*141422324^(1/13) 7014087341708203 a001 10946*(1/2+1/2*5^(1/2))^23 7014087341708203 a001 10946*4106118243^(1/2) 7014087341708203 a001 701408733/24476*2537720636^(7/15) 7014087341708203 a001 701408733/24476*17393796001^(3/7) 7014087341708203 a001 701408733/24476*45537549124^(7/17) 7014087341708203 a001 701408733/24476*14662949395604^(1/3) 7014087341708203 a001 701408733/24476*(1/2+1/2*5^(1/2))^21 7014087341708203 a001 701408733/24476*192900153618^(7/18) 7014087341708203 a001 701408733/24476*10749957122^(7/16) 7014087341708203 a001 1836311903/24476*817138163596^(1/3) 7014087341708203 a001 1836311903/24476*(1/2+1/2*5^(1/2))^19 7014087341708203 a001 12586269025/24476*2537720636^(1/3) 7014087341708203 a001 53316291173/24476*2537720636^(4/15) 7014087341708203 a001 2971215073/24476*2537720636^(2/5) 7014087341708203 a001 139583862445/24476*2537720636^(2/9) 7014087341708203 a001 7787980473/844*2537720636^(1/5) 7014087341708203 a001 956722026041/24476*2537720636^(2/15) 7014087341708203 a001 387002188980/6119*2537720636^(1/9) 7014087341708203 a001 4052739537881/24476*2537720636^(1/15) 7014087341708203 a001 1201881744/6119*45537549124^(1/3) 7014087341708203 a001 1201881744/6119*(1/2+1/2*5^(1/2))^17 7014087341708203 a001 12586269025/24476*45537549124^(5/17) 7014087341708203 a001 12586269025/24476*312119004989^(3/11) 7014087341708203 a001 12586269025/24476*14662949395604^(5/21) 7014087341708203 a001 12586269025/24476*(1/2+1/2*5^(1/2))^15 7014087341708203 a001 12586269025/24476*192900153618^(5/18) 7014087341708203 a001 12586269025/24476*28143753123^(3/10) 7014087341708203 a001 591286729879/24476*17393796001^(1/7) 7014087341708203 a001 10182505537/12238*17393796001^(2/7) 7014087341708203 a001 32951280099/24476*(1/2+1/2*5^(1/2))^13 7014087341708203 a001 32951280099/24476*73681302247^(1/4) 7014087341708203 a001 7787980473/844*45537549124^(3/17) 7014087341708203 a001 956722026041/24476*45537549124^(2/17) 7014087341708203 a001 53316291173/24476*45537549124^(4/17) 7014087341708203 a001 21566892818/6119*312119004989^(1/5) 7014087341708203 a001 21566892818/6119*(1/2+1/2*5^(1/2))^11 7014087341708203 a001 7787980473/844*14662949395604^(1/7) 7014087341708203 a001 7787980473/844*(1/2+1/2*5^(1/2))^9 7014087341708203 a001 387002188980/6119*312119004989^(1/11) 7014087341708203 a001 591286729879/24476*14662949395604^(1/9) 7014087341708203 a001 591286729879/24476*(1/2+1/2*5^(1/2))^7 7014087341708203 a001 387002188980/6119*(1/2+1/2*5^(1/2))^5 7014087341708203 a001 4052739537881/24476*14662949395604^(1/21) 7014087341708203 a001 3278735159921/12238*(1/2+1/2*5^(1/2))^2 7014087341708203 a001 2504730781961/24476*(1/2+1/2*5^(1/2))^4 7014087341708203 a001 2504730781961/24476*23725150497407^(1/16) 7014087341708203 a001 4052739537881/24476*192900153618^(1/18) 7014087341708203 a001 182717648081/12238*23725150497407^(1/8) 7014087341708203 a001 182717648081/12238*505019158607^(1/7) 7014087341708203 a001 139583862445/24476*312119004989^(2/11) 7014087341708203 a001 139583862445/24476*(1/2+1/2*5^(1/2))^10 7014087341708203 a001 2504730781961/24476*73681302247^(1/13) 7014087341708203 a001 182717648081/12238*73681302247^(2/13) 7014087341708203 a001 53316291173/24476*817138163596^(4/19) 7014087341708203 a001 53316291173/24476*14662949395604^(4/21) 7014087341708203 a001 53316291173/24476*(1/2+1/2*5^(1/2))^12 7014087341708203 a001 53316291173/24476*192900153618^(2/9) 7014087341708203 a001 53316291173/24476*73681302247^(3/13) 7014087341708203 a001 387002188980/6119*28143753123^(1/10) 7014087341708203 a001 139583862445/24476*28143753123^(1/5) 7014087341708203 a001 3278735159921/12238*10749957122^(1/24) 7014087341708203 a001 10182505537/12238*14662949395604^(2/9) 7014087341708203 a001 10182505537/12238*(1/2+1/2*5^(1/2))^14 7014087341708203 a001 10182505537/12238*505019158607^(1/4) 7014087341708203 a001 4052739537881/24476*10749957122^(1/16) 7014087341708203 a001 2504730781961/24476*10749957122^(1/12) 7014087341708203 a001 956722026041/24476*10749957122^(1/8) 7014087341708203 a001 12586269025/24476*10749957122^(5/16) 7014087341708203 a001 182717648081/12238*10749957122^(1/6) 7014087341708203 a001 7787980473/844*10749957122^(3/16) 7014087341708203 a001 139583862445/24476*10749957122^(5/24) 7014087341708203 a001 53316291173/24476*10749957122^(1/4) 7014087341708203 a001 3278735159921/12238*4106118243^(1/23) 7014087341708203 a001 10182505537/12238*10749957122^(7/24) 7014087341708203 a001 7778742049/24476*(1/2+1/2*5^(1/2))^16 7014087341708203 a001 7778742049/24476*23725150497407^(1/4) 7014087341708203 a001 7778742049/24476*73681302247^(4/13) 7014087341708203 a001 2504730781961/24476*4106118243^(2/23) 7014087341708203 a001 7778742049/24476*10749957122^(1/3) 7014087341708203 a001 956722026041/24476*4106118243^(3/23) 7014087341708203 a001 182717648081/12238*4106118243^(4/23) 7014087341708203 a001 139583862445/24476*4106118243^(5/23) 7014087341708203 a001 53316291173/24476*4106118243^(6/23) 7014087341708203 a001 3278735159921/12238*1568397607^(1/22) 7014087341708203 a001 10182505537/12238*4106118243^(7/23) 7014087341708203 a001 2971215073/24476*45537549124^(6/17) 7014087341708203 a001 2971215073/24476*14662949395604^(2/7) 7014087341708203 a001 2971215073/24476*(1/2+1/2*5^(1/2))^18 7014087341708203 a001 2971215073/24476*192900153618^(1/3) 7014087341708203 a001 7778742049/24476*4106118243^(8/23) 7014087341708203 a001 2971215073/24476*10749957122^(3/8) 7014087341708203 a001 2504730781961/24476*1568397607^(1/11) 7014087341708203 a001 2971215073/24476*4106118243^(9/23) 7014087341708203 a001 956722026041/24476*1568397607^(3/22) 7014087341708203 a001 182717648081/12238*1568397607^(2/11) 7014087341708203 a001 567451585/12238*2537720636^(4/9) 7014087341708203 a001 139583862445/24476*1568397607^(5/22) 7014087341708203 a001 21566892818/6119*1568397607^(1/4) 7014087341708203 a001 53316291173/24476*1568397607^(3/11) 7014087341708203 a001 10182505537/12238*1568397607^(7/22) 7014087341708203 a001 3278735159921/12238*599074578^(1/21) 7014087341708203 a001 7778742049/24476*1568397607^(4/11) 7014087341708203 a001 567451585/12238*(1/2+1/2*5^(1/2))^20 7014087341708203 a001 567451585/12238*23725150497407^(5/16) 7014087341708203 a001 567451585/12238*505019158607^(5/14) 7014087341708203 a001 567451585/12238*73681302247^(5/13) 7014087341708203 a001 567451585/12238*28143753123^(2/5) 7014087341708203 a001 567451585/12238*10749957122^(5/12) 7014087341708203 a001 567451585/12238*4106118243^(10/23) 7014087341708203 a001 2971215073/24476*1568397607^(9/22) 7014087341708203 a001 4052739537881/24476*599074578^(1/14) 7014087341708203 a001 2504730781961/24476*599074578^(2/21) 7014087341708203 a001 567451585/12238*1568397607^(5/11) 7014087341708203 a001 956722026041/24476*599074578^(1/7) 7014087341708203 a001 591286729879/24476*599074578^(1/6) 7014087341708203 a001 182717648081/12238*599074578^(4/21) 7014087341708203 a001 7787980473/844*599074578^(3/14) 7014087341708203 a001 139583862445/24476*599074578^(5/21) 7014087341708203 a001 53316291173/24476*599074578^(2/7) 7014087341708203 a001 10182505537/12238*599074578^(1/3) 7014087341708203 a001 3278735159921/12238*228826127^(1/20) 7014087341708203 a001 701408733/24476*599074578^(1/2) 7014087341708203 a001 12586269025/24476*599074578^(5/14) 7014087341708203 a001 433494437/24476*312119004989^(2/5) 7014087341708203 a001 433494437/24476*(1/2+1/2*5^(1/2))^22 7014087341708203 a001 7778742049/24476*599074578^(8/21) 7014087341708203 a001 433494437/24476*10749957122^(11/24) 7014087341708203 a001 433494437/24476*4106118243^(11/23) 7014087341708203 a001 2971215073/24476*599074578^(3/7) 7014087341708203 a001 433494437/24476*1568397607^(1/2) 7014087341708203 a001 567451585/12238*599074578^(10/21) 7014087341708203 a001 2504730781961/24476*228826127^(1/10) 7014087341708203 a001 387002188980/6119*228826127^(1/8) 7014087341708203 a001 433494437/24476*599074578^(11/21) 7014087341708203 a001 956722026041/24476*228826127^(3/20) 7014087341708203 a001 182717648081/12238*228826127^(1/5) 7014087341708203 a001 139583862445/24476*228826127^(1/4) 7014087341708203 a001 53316291173/24476*228826127^(3/10) 7014087341708204 a001 10182505537/12238*228826127^(7/20) 7014087341708204 a001 3278735159921/12238*87403803^(1/19) 7014087341708204 a001 12586269025/24476*228826127^(3/8) 7014087341708204 a001 165580141/24476*2537720636^(8/15) 7014087341708204 a001 165580141/24476*45537549124^(8/17) 7014087341708204 a001 165580141/24476*14662949395604^(8/21) 7014087341708204 a001 165580141/24476*(1/2+1/2*5^(1/2))^24 7014087341708204 a001 165580141/24476*192900153618^(4/9) 7014087341708204 a001 165580141/24476*73681302247^(6/13) 7014087341708204 a001 165580141/24476*10749957122^(1/2) 7014087341708204 a001 165580141/24476*4106118243^(12/23) 7014087341708204 a001 165580141/24476*1568397607^(6/11) 7014087341708204 a001 7778742049/24476*228826127^(2/5) 7014087341708204 a001 2971215073/24476*228826127^(9/20) 7014087341708204 a001 165580141/24476*599074578^(4/7) 7014087341708204 a001 567451585/12238*228826127^(1/2) 7014087341708204 a001 433494437/24476*228826127^(11/20) 7014087341708204 a001 2504730781961/24476*87403803^(2/19) 7014087341708204 a001 71778070120990532/102334155 7014087341708204 a001 31622993/12238*141422324^(2/3) 7014087341708204 a001 165580141/24476*228826127^(3/5) 7014087341708204 a001 956722026041/24476*87403803^(3/19) 7014087341708204 a001 182717648081/12238*87403803^(4/19) 7014087341708204 a001 139583862445/24476*87403803^(5/19) 7014087341708204 a001 53316291173/24476*87403803^(6/19) 7014087341708204 a001 10182505537/12238*87403803^(7/19) 7014087341708204 a001 3278735159921/12238*33385282^(1/18) 7014087341708204 a001 31622993/12238*(1/2+1/2*5^(1/2))^26 7014087341708204 a001 31622993/12238*73681302247^(1/2) 7014087341708204 a001 31622993/12238*10749957122^(13/24) 7014087341708204 a001 31622993/12238*4106118243^(13/23) 7014087341708204 a001 31622993/12238*1568397607^(13/22) 7014087341708204 a001 31622993/12238*599074578^(13/21) 7014087341708204 a001 7778742049/24476*87403803^(8/19) 7014087341708204 a001 2971215073/24476*87403803^(9/19) 7014087341708204 a001 31622993/12238*228826127^(13/20) 7014087341708204 a001 1836311903/24476*87403803^(1/2) 7014087341708204 a001 567451585/12238*87403803^(10/19) 7014087341708204 a001 4052739537881/24476*33385282^(1/12) 7014087341708204 a001 433494437/24476*87403803^(11/19) 7014087341708204 a001 165580141/24476*87403803^(12/19) 7014087341708204 a001 2504730781961/24476*33385282^(1/9) 7014087341708204 a001 27416783139345106/39088169 7014087341708204 a001 31622993/12238*87403803^(13/19) 7014087341708205 a001 956722026041/24476*33385282^(1/6) 7014087341708205 a001 182717648081/12238*33385282^(2/9) 7014087341708205 a001 7787980473/844*33385282^(1/4) 7014087341708205 a001 139583862445/24476*33385282^(5/18) 7014087341708206 a001 53316291173/24476*33385282^(1/3) 7014087341708206 a001 9227465/24476*20633239^(6/7) 7014087341708206 a001 10946/54018521*14662949395604^(20/21) 7014087341708206 a001 24157817/24476*17393796001^(4/7) 7014087341708206 a001 24157817/24476*14662949395604^(4/9) 7014087341708206 a001 24157817/24476*(1/2+1/2*5^(1/2))^28 7014087341708206 a001 24157817/24476*505019158607^(1/2) 7014087341708206 a001 24157817/24476*73681302247^(7/13) 7014087341708206 a001 24157817/24476*10749957122^(7/12) 7014087341708206 a001 24157817/24476*4106118243^(14/23) 7014087341708206 a001 24157817/24476*1568397607^(7/11) 7014087341708206 a001 24157817/24476*599074578^(2/3) 7014087341708206 a001 10182505537/12238*33385282^(7/18) 7014087341708206 a001 24157817/24476*228826127^(7/10) 7014087341708206 a001 3278735159921/12238*12752043^(1/17) 7014087341708206 a001 12586269025/24476*33385282^(5/12) 7014087341708206 a001 7778742049/24476*33385282^(4/9) 7014087341708207 a001 24157817/24476*87403803^(14/19) 7014087341708207 a001 2971215073/24476*33385282^(1/2) 7014087341708207 a001 567451585/12238*33385282^(5/9) 7014087341708207 a001 701408733/24476*33385282^(7/12) 7014087341708207 a001 39088169/24476*33385282^(3/4) 7014087341708207 a001 433494437/24476*33385282^(11/18) 7014087341708208 a001 165580141/24476*33385282^(2/3) 7014087341708208 a001 31622993/12238*33385282^(13/18) 7014087341708209 a001 2504730781961/24476*12752043^(2/17) 7014087341708210 a001 5236139648522393/7465176 7014087341708211 a001 24157817/24476*33385282^(7/9) 7014087341708211 a001 956722026041/24476*12752043^(3/17) 7014087341708214 a001 182717648081/12238*12752043^(4/17) 7014087341708216 a001 139583862445/24476*12752043^(5/17) 7014087341708219 a001 53316291173/24476*12752043^(6/17) 7014087341708220 a001 9227465/24476*141422324^(10/13) 7014087341708220 a001 10946/20633239*(1/2+1/2*5^(1/2))^58 7014087341708220 a001 9227465/24476*2537720636^(2/3) 7014087341708220 a001 9227465/24476*45537549124^(10/17) 7014087341708220 a001 9227465/24476*312119004989^(6/11) 7014087341708220 a001 9227465/24476*14662949395604^(10/21) 7014087341708220 a001 9227465/24476*(1/2+1/2*5^(1/2))^30 7014087341708220 a001 9227465/24476*192900153618^(5/9) 7014087341708220 a001 9227465/24476*28143753123^(3/5) 7014087341708220 a001 9227465/24476*10749957122^(5/8) 7014087341708220 a001 9227465/24476*4106118243^(15/23) 7014087341708220 a001 9227465/24476*1568397607^(15/22) 7014087341708220 a001 9227465/24476*599074578^(5/7) 7014087341708220 a001 9227465/24476*228826127^(3/4) 7014087341708221 a001 9227465/24476*87403803^(15/19) 7014087341708221 a001 10182505537/12238*12752043^(7/17) 7014087341708222 a001 3278735159921/12238*4870847^(1/16) 7014087341708224 a001 7778742049/24476*12752043^(8/17) 7014087341708225 a001 1201881744/6119*12752043^(1/2) 7014087341708225 a001 9227465/24476*33385282^(5/6) 7014087341708226 a001 2971215073/24476*12752043^(9/17) 7014087341708229 a001 567451585/12238*12752043^(10/17) 7014087341708231 a001 433494437/24476*12752043^(11/17) 7014087341708234 a001 165580141/24476*12752043^(12/17) 7014087341708237 a001 31622993/12238*12752043^(13/17) 7014087341708240 a001 2504730781961/24476*4870847^(1/8) 7014087341708241 a001 24157817/24476*12752043^(14/17) 7014087341708247 a001 4000054751789252/5702887 7014087341708258 a001 9227465/24476*12752043^(15/17) 7014087341708259 a001 956722026041/24476*4870847^(3/16) 7014087341708277 a001 182717648081/12238*4870847^(1/4) 7014087341708296 a001 139583862445/24476*4870847^(5/16) 7014087341708314 a001 53316291173/24476*4870847^(3/8) 7014087341708316 a001 5473/3940598*14662949395604^(8/9) 7014087341708316 a001 5473/3940598*(1/2+1/2*5^(1/2))^56 7014087341708316 a001 1762289/12238*(1/2+1/2*5^(1/2))^32 7014087341708316 a001 1762289/12238*23725150497407^(1/2) 7014087341708316 a001 1762289/12238*505019158607^(4/7) 7014087341708316 a001 1762289/12238*73681302247^(8/13) 7014087341708316 a001 1762289/12238*10749957122^(2/3) 7014087341708316 a001 1762289/12238*4106118243^(16/23) 7014087341708316 a001 1762289/12238*1568397607^(8/11) 7014087341708316 a001 1762289/12238*599074578^(16/21) 7014087341708316 a001 1762289/12238*228826127^(4/5) 7014087341708317 a001 1762289/12238*87403803^(16/19) 7014087341708322 a001 1762289/12238*33385282^(8/9) 7014087341708333 a001 10182505537/12238*4870847^(7/16) 7014087341708339 a001 3278735159921/12238*1860498^(1/15) 7014087341708351 a001 7778742049/24476*4870847^(1/2) 7014087341708357 a001 1762289/12238*12752043^(16/17) 7014087341708370 a001 2971215073/24476*4870847^(9/16) 7014087341708388 a001 567451585/12238*4870847^(5/8) 7014087341708406 a001 4052739537881/24476*1860498^(1/10) 7014087341708407 a001 433494437/24476*4870847^(11/16) 7014087341708425 a001 165580141/24476*4870847^(3/4) 7014087341708444 a001 31622993/12238*4870847^(13/16) 7014087341708465 a001 24157817/24476*4870847^(7/8) 7014087341708474 a001 2504730781961/24476*1860498^(2/15) 7014087341708497 a001 9227465/24476*4870847^(15/16) 7014087341708499 a001 1527884958322970/2178309 7014087341708541 a001 387002188980/6119*1860498^(1/6) 7014087341708609 a001 956722026041/24476*1860498^(1/5) 7014087341708744 a001 182717648081/12238*1860498^(4/15) 7014087341708811 a001 7787980473/844*1860498^(3/10) 7014087341708879 a001 139583862445/24476*1860498^(1/3) 7014087341708977 a001 10946/3010349*14662949395604^(6/7) 7014087341708977 a001 10946/3010349*(1/2+1/2*5^(1/2))^54 7014087341708977 a001 1346269/24476*45537549124^(2/3) 7014087341708977 a001 1346269/24476*(1/2+1/2*5^(1/2))^34 7014087341708977 a001 1346269/24476*10749957122^(17/24) 7014087341708977 a001 1346269/24476*4106118243^(17/23) 7014087341708977 a001 1346269/24476*1568397607^(17/22) 7014087341708977 a001 1346269/24476*599074578^(17/21) 7014087341708978 a001 1346269/24476*228826127^(17/20) 7014087341708978 a001 1346269/24476*87403803^(17/19) 7014087341708983 a001 1346269/24476*33385282^(17/18) 7014087341709014 a001 53316291173/24476*1860498^(2/5) 7014087341709149 a001 10182505537/12238*1860498^(7/15) 7014087341709196 a001 3278735159921/12238*710647^(1/14) 7014087341709217 a001 12586269025/24476*1860498^(1/2) 7014087341709284 a001 7778742049/24476*1860498^(8/15) 7014087341709419 a001 2971215073/24476*1860498^(3/5) 7014087341709554 a001 567451585/12238*1860498^(2/3) 7014087341709622 a001 701408733/24476*1860498^(7/10) 7014087341709689 a001 433494437/24476*1860498^(11/15) 7014087341709825 a001 165580141/24476*1860498^(4/5) 7014087341709892 a001 102334155/24476*1860498^(5/6) 7014087341709960 a001 31622993/12238*1860498^(13/15) 7014087341710026 a001 39088169/24476*1860498^(9/10) 7014087341710097 a001 24157817/24476*1860498^(14/15) 7014087341710188 a001 2504730781961/24476*710647^(1/7) 7014087341710230 a001 291800061589829/416020 7014087341711180 a001 956722026041/24476*710647^(3/14) 7014087341711676 a001 591286729879/24476*710647^(1/4) 7014087341712172 a001 182717648081/12238*710647^(2/7) 7014087341713164 a001 139583862445/24476*710647^(5/14) 7014087341713508 a001 514229/24476*141422324^(12/13) 7014087341713508 a001 10946/1149851*(1/2+1/2*5^(1/2))^52 7014087341713508 a001 10946/1149851*23725150497407^(13/16) 7014087341713508 a001 10946/1149851*505019158607^(13/14) 7014087341713508 a001 514229/24476*2537720636^(4/5) 7014087341713508 a001 514229/24476*45537549124^(12/17) 7014087341713508 a001 514229/24476*14662949395604^(4/7) 7014087341713508 a001 514229/24476*(1/2+1/2*5^(1/2))^36 7014087341713508 a001 514229/24476*505019158607^(9/14) 7014087341713508 a001 514229/24476*192900153618^(2/3) 7014087341713508 a001 514229/24476*73681302247^(9/13) 7014087341713508 a001 514229/24476*10749957122^(3/4) 7014087341713508 a001 514229/24476*4106118243^(18/23) 7014087341713508 a001 514229/24476*1568397607^(9/11) 7014087341713509 a001 514229/24476*599074578^(6/7) 7014087341713509 a001 514229/24476*228826127^(9/10) 7014087341713509 a001 514229/24476*87403803^(18/19) 7014087341714156 a001 53316291173/24476*710647^(3/7) 7014087341715148 a001 10182505537/12238*710647^(1/2) 7014087341715526 a001 3278735159921/12238*271443^(1/13) 7014087341716140 a001 7778742049/24476*710647^(4/7) 7014087341717132 a001 2971215073/24476*710647^(9/14) 7014087341718124 a001 567451585/12238*710647^(5/7) 7014087341718620 a001 701408733/24476*710647^(3/4) 7014087341719116 a001 433494437/24476*710647^(11/14) 7014087341720108 a001 165580141/24476*710647^(6/7) 7014087341721101 a001 31622993/12238*710647^(13/14) 7014087341722092 a001 17147339324308/24447 7014087341722849 a001 2504730781961/24476*271443^(2/13) 7014087341730172 a001 956722026041/24476*271443^(3/13) 7014087341735390 a001 10610209857723/24476*103682^(1/24) 7014087341737494 a001 182717648081/12238*271443^(4/13) 7014087341744565 a001 5473/219602*312119004989^(10/11) 7014087341744565 a001 5473/219602*(1/2+1/2*5^(1/2))^50 7014087341744565 a001 5473/219602*3461452808002^(5/6) 7014087341744565 a001 98209/12238*817138163596^(2/3) 7014087341744565 a001 98209/12238*(1/2+1/2*5^(1/2))^38 7014087341744565 a001 98209/12238*10749957122^(19/24) 7014087341744565 a001 98209/12238*4106118243^(19/23) 7014087341744565 a001 98209/12238*1568397607^(19/22) 7014087341744565 a001 98209/12238*599074578^(19/21) 7014087341744565 a001 98209/12238*228826127^(19/20) 7014087341744817 a001 139583862445/24476*271443^(5/13) 7014087341752140 a001 53316291173/24476*271443^(6/13) 7014087341755801 a001 32951280099/24476*271443^(1/2) 7014087341759462 a001 10182505537/12238*271443^(7/13) 7014087341762576 a001 3278735159921/12238*103682^(1/12) 7014087341766785 a001 7778742049/24476*271443^(8/13) 7014087341774108 a001 2971215073/24476*271443^(9/13) 7014087341781430 a001 567451585/12238*271443^(10/13) 7014087341788753 a001 433494437/24476*271443^(11/13) 7014087341789763 a001 4052739537881/24476*103682^(1/8) 7014087341796076 a001 165580141/24476*271443^(12/13) 7014087341803398 a001 85146110468354/121393 7014087341816949 a001 2504730781961/24476*103682^(1/6) 7014087341844136 a001 387002188980/6119*103682^(5/24) 7014087341871322 a001 956722026041/24476*103682^(1/4) 7014087341898509 a001 591286729879/24476*103682^(7/24) 7014087341911482 a001 10610209857723/24476*39603^(1/22) 7014087341925695 a001 182717648081/12238*103682^(1/3) 7014087341952882 a001 7787980473/844*103682^(3/8) 7014087341957427 a001 10946/167761*45537549124^(16/17) 7014087341957427 a001 10946/167761*14662949395604^(16/21) 7014087341957427 a001 10946/167761*(1/2+1/2*5^(1/2))^48 7014087341957427 a001 10946/167761*192900153618^(8/9) 7014087341957427 a001 10946/167761*73681302247^(12/13) 7014087341957427 a001 75025/24476*2537720636^(8/9) 7014087341957427 a001 75025/24476*312119004989^(8/11) 7014087341957427 a001 75025/24476*(1/2+1/2*5^(1/2))^40 7014087341957427 a001 75025/24476*23725150497407^(5/8) 7014087341957427 a001 75025/24476*73681302247^(10/13) 7014087341957427 a001 75025/24476*28143753123^(4/5) 7014087341957427 a001 75025/24476*10749957122^(5/6) 7014087341957427 a001 75025/24476*4106118243^(20/23) 7014087341957427 a001 75025/24476*1568397607^(10/11) 7014087341957427 a001 75025/24476*599074578^(20/21) 7014087341980068 a001 139583862445/24476*103682^(5/12) 7014087342007255 a001 21566892818/6119*103682^(11/24) 7014087342034441 a001 53316291173/24476*103682^(1/2) 7014087342061628 a001 32951280099/24476*103682^(13/24) 7014087342088814 a001 10182505537/12238*103682^(7/12) 7014087342114761 a001 3278735159921/12238*39603^(1/11) 7014087342116001 a001 12586269025/24476*103682^(5/8) 7014087342143187 a001 7778742049/24476*103682^(2/3) 7014087342165795 a001 4052739537881/271443*15127^(2/5) 7014087342170374 a001 1201881744/6119*103682^(17/24) 7014087342197560 a001 2971215073/24476*103682^(3/4) 7014087342224747 a001 1836311903/24476*103682^(19/24) 7014087342247101 a001 1515744265389/101521*15127^(2/5) 7014087342251933 a001 567451585/12238*103682^(5/6) 7014087342279120 a001 701408733/24476*103682^(7/8) 7014087342297351 a001 3278735159921/219602*15127^(2/5) 7014087342306306 a001 433494437/24476*103682^(11/12) 7014087342318040 a001 4052739537881/24476*39603^(3/22) 7014087342333493 a001 10946*103682^(23/24) 7014087342360679 a001 16261460094529/23184 7014087342386725 a001 139583862445/39603*15127^(11/20) 7014087342436570 a001 1548008755920/64079*15127^(7/20) 7014087342510213 a001 2504730781961/167761*15127^(2/5) 7014087342521319 a001 2504730781961/24476*39603^(2/11) 7014087342670930 a001 2971215073/9349*9349^(16/19) 7014087342724598 a001 387002188980/6119*39603^(5/22) 7014087342927877 a001 956722026041/24476*39603^(3/11) 7014087343131156 a001 591286729879/24476*39603^(7/22) 7014087343141138 a001 956722026041/103682*15127^(9/20) 7014087343240827 a001 10610209857723/24476*15127^(1/20) 7014087343334435 a001 182717648081/12238*39603^(4/11) 7014087343416407 a001 10946/64079*(1/2+1/2*5^(1/2))^46 7014087343416407 a001 10946/64079*10749957122^(23/24) 7014087343416407 a001 28657/24476*2537720636^(14/15) 7014087343416407 a001 28657/24476*17393796001^(6/7) 7014087343416407 a001 28657/24476*45537549124^(14/17) 7014087343416407 a001 28657/24476*817138163596^(14/19) 7014087343416407 a001 28657/24476*14662949395604^(2/3) 7014087343416407 a001 28657/24476*(1/2+1/2*5^(1/2))^42 7014087343416407 a001 28657/24476*505019158607^(3/4) 7014087343416407 a001 28657/24476*192900153618^(7/9) 7014087343416407 a001 28657/24476*10749957122^(7/8) 7014087343416407 a001 28657/24476*4106118243^(21/23) 7014087343416407 a001 28657/24476*1568397607^(21/22) 7014087343537714 a001 7787980473/844*39603^(9/22) 7014087343698419 a001 2504730781961/271443*15127^(9/20) 7014087343740993 a001 139583862445/24476*39603^(5/11) 7014087343779725 a001 6557470319842/710647*15127^(9/20) 7014087343798919 a001 10610209857723/1149851*15127^(9/20) 7014087343829975 a001 4052739537881/439204*15127^(9/20) 7014087343919349 a001 86267571272/39603*15127^(3/5) 7014087343944271 a001 21566892818/6119*39603^(1/2) 7014087343969194 a001 956722026041/64079*15127^(2/5) 7014087344042837 a001 140728068720/15251*15127^(9/20) 7014087344147550 a001 53316291173/24476*39603^(6/11) 7014087344350829 a001 32951280099/24476*39603^(13/22) 7014087344554108 a001 10182505537/12238*39603^(7/11) 7014087344673762 a001 591286729879/103682*15127^(1/2) 7014087344757387 a001 12586269025/24476*39603^(15/22) 7014087344773451 a001 3278735159921/12238*15127^(1/10) 7014087344960666 a001 7778742049/24476*39603^(8/11) 7014087345163945 a001 1201881744/6119*39603^(17/22) 7014087345231042 a001 516002918640/90481*15127^(1/2) 7014087345312349 a001 4052739537881/710647*15127^(1/2) 7014087345324211 a001 3536736619241/620166*15127^(1/2) 7014087345331542 a001 6557470319842/1149851*15127^(1/2) 7014087345362599 a001 2504730781961/439204*15127^(1/2) 7014087345367224 a001 2971215073/24476*39603^(9/11) 7014087345451973 a001 53316291173/39603*15127^(13/20) 7014087345501818 a001 591286729879/64079*15127^(9/20) 7014087345539061 a001 2504730781961/9349*3571^(2/17) 7014087345570503 a001 1836311903/24476*39603^(19/22) 7014087345575461 a001 956722026041/167761*15127^(1/2) 7014087345773782 a001 567451585/12238*39603^(10/11) 7014087345977061 a001 701408733/24476*39603^(21/22) 7014087346035344 a001 1548008755920/15127*5778^(2/9) 7014087346180339 a001 12422650098820/17711 7014087346206385 a001 182717648081/51841*15127^(11/20) 7014087346306075 a001 4052739537881/24476*15127^(3/20) 7014087346763666 a001 956722026041/271443*15127^(11/20) 7014087346844972 a001 2504730781961/710647*15127^(11/20) 7014087346856835 a001 3278735159921/930249*15127^(11/20) 7014087346859635 a001 10610209857723/3010349*15127^(11/20) 7014087346864166 a001 4052739537881/1149851*15127^(11/20) 7014087346894573 a001 4807526976/9349*9349^(15/19) 7014087346895222 a001 387002188980/109801*15127^(11/20) 7014087346984597 a001 10983760033/13201*15127^(7/10) 7014087347034441 a001 365435296162/64079*15127^(1/2) 7014087347108085 a001 591286729879/167761*15127^(11/20) 7014087347739009 a001 225851433717/103682*15127^(3/5) 7014087347838699 a001 2504730781961/24476*15127^(1/5) 7014087348123714 r005 Re(z^2+c),c=-5/78+49/62*I,n=3 7014087348296290 a001 591286729879/271443*15127^(3/5) 7014087348377596 a001 1548008755920/710647*15127^(3/5) 7014087348389459 a001 4052739537881/1860498*15127^(3/5) 7014087348391189 a001 2178309*15127^(3/5) 7014087348392259 a001 6557470319842/3010349*15127^(3/5) 7014087348396790 a001 2504730781961/1149851*15127^(3/5) 7014087348427846 a001 956722026041/439204*15127^(3/5) 7014087348517220 a001 20365011074/39603*15127^(3/4) 7014087348567065 a001 225851433717/64079*15127^(11/20) 7014087348640709 a001 365435296162/167761*15127^(3/5) 7014087348871774 a001 3536736619241/13201*5778^(1/9) 7014087349271633 a001 139583862445/103682*15127^(13/20) 7014087349371322 a001 387002188980/6119*15127^(1/4) 7014087349828914 a001 365435296162/271443*15127^(13/20) 7014087349910220 a001 956722026041/710647*15127^(13/20) 7014087349922082 a001 2504730781961/1860498*15127^(13/20) 7014087349923813 a001 6557470319842/4870847*15127^(13/20) 7014087349924222 a001 10610209857723/7881196*15127^(13/20) 7014087349924883 a001 1346269*15127^(13/20) 7014087349929414 a001 1548008755920/1149851*15127^(13/20) 7014087349960470 a001 591286729879/439204*15127^(13/20) 7014087350049844 a001 12586269025/39603*15127^(4/5) 7014087350099689 a001 139583862445/64079*15127^(3/5) 7014087350173332 a001 225851433717/167761*15127^(13/20) 7014087350804257 a001 43133785636/51841*15127^(7/10) 7014087350903946 a001 956722026041/24476*15127^(3/10) 7014087351118216 a001 7778742049/9349*9349^(14/19) 7014087351361538 a001 75283811239/90481*15127^(7/10) 7014087351442844 a001 591286729879/710647*15127^(7/10) 7014087351454706 a001 832040*15127^(7/10) 7014087351456437 a001 4052739537881/4870847*15127^(7/10) 7014087351456689 a001 3536736619241/4250681*15127^(7/10) 7014087351456846 a001 3278735159921/3940598*15127^(7/10) 7014087351457507 a001 2504730781961/3010349*15127^(7/10) 7014087351462038 a001 956722026041/1149851*15127^(7/10) 7014087351493094 a001 182717648081/219602*15127^(7/10) 7014087351582468 a001 7778742049/39603*15127^(17/20) 7014087351632313 a001 86267571272/64079*15127^(13/20) 7014087351705956 a001 139583862445/167761*15127^(7/10) 7014087352336881 a001 53316291173/103682*15127^(3/4) 7014087352436570 a001 591286729879/24476*15127^(7/20) 7014087352894161 a001 139583862445/271443*15127^(3/4) 7014087352975468 a001 365435296162/710647*15127^(3/4) 7014087352987330 a001 956722026041/1860498*15127^(3/4) 7014087352989061 a001 2504730781961/4870847*15127^(3/4) 7014087352989313 a001 6557470319842/12752043*15127^(3/4) 7014087352989373 a001 10610209857723/20633239*15127^(3/4) 7014087352989469 a001 4052739537881/7881196*15127^(3/4) 7014087352990130 a001 1548008755920/3010349*15127^(3/4) 7014087352994661 a001 514229*15127^(3/4) 7014087353025718 a001 225851433717/439204*15127^(3/4) 7014087353115092 a001 1602508992/13201*15127^(9/10) 7014087353164937 a001 53316291173/64079*15127^(7/10) 7014087353238580 a001 86267571272/167761*15127^(3/4) 7014087353380159 a001 10610209857723/24476*5778^(1/18) 7014087353416407 a001 5473/12238*312119004989^(4/5) 7014087353416407 a001 5473/12238*(1/2+1/2*5^(1/2))^44 7014087353416407 a001 5473/12238*23725150497407^(11/16) 7014087353416407 a001 5473/12238*73681302247^(11/13) 7014087353416407 a001 5473/12238*10749957122^(11/12) 7014087353416407 a001 5473/12238*4106118243^(22/23) 7014087353869504 a001 32951280099/103682*15127^(4/5) 7014087353969194 a001 182717648081/12238*15127^(2/5) 7014087354426785 a001 86267571272/271443*15127^(4/5) 7014087354508091 a001 317811*15127^(4/5) 7014087354519954 a001 591286729879/1860498*15127^(4/5) 7014087354521685 a001 1548008755920/4870847*15127^(4/5) 7014087354521937 a001 4052739537881/12752043*15127^(4/5) 7014087354521974 a001 1515744265389/4769326*15127^(4/5) 7014087354521997 a001 6557470319842/20633239*15127^(4/5) 7014087354522093 a001 2504730781961/7881196*15127^(4/5) 7014087354522754 a001 956722026041/3010349*15127^(4/5) 7014087354527285 a001 365435296162/1149851*15127^(4/5) 7014087354558341 a001 139583862445/439204*15127^(4/5) 7014087354647716 a001 2971215073/39603*15127^(19/20) 7014087354697560 a001 32951280099/64079*15127^(3/4) 7014087354771204 a001 53316291173/167761*15127^(4/5) 7014087355341860 a001 12586269025/9349*9349^(13/19) 7014087355402128 a001 10182505537/51841*15127^(17/20) 7014087355501818 a001 7787980473/844*15127^(9/20) 7014087355959409 a001 53316291173/271443*15127^(17/20) 7014087356040715 a001 139583862445/710647*15127^(17/20) 7014087356052578 a001 182717648081/930249*15127^(17/20) 7014087356054308 a001 956722026041/4870847*15127^(17/20) 7014087356054561 a001 2504730781961/12752043*15127^(17/20) 7014087356054598 a001 3278735159921/16692641*15127^(17/20) 7014087356054606 a001 10610209857723/54018521*15127^(17/20) 7014087356054620 a001 4052739537881/20633239*15127^(17/20) 7014087356054717 a001 387002188980/1970299*15127^(17/20) 7014087356055378 a001 591286729879/3010349*15127^(17/20) 7014087356059909 a001 225851433717/1149851*15127^(17/20) 7014087356090965 a001 196418*15127^(17/20) 7014087356180339 a001 4745030096456/6765 7014087356230184 a001 20365011074/64079*15127^(4/5) 7014087356303828 a001 32951280099/167761*15127^(17/20) 7014087356934752 a001 12586269025/103682*15127^(9/10) 7014087357034441 a001 139583862445/24476*15127^(1/2) 7014087357492033 a001 121393*15127^(9/10) 7014087357573339 a001 86267571272/710647*15127^(9/10) 7014087357585201 a001 75283811239/620166*15127^(9/10) 7014087357586932 a001 591286729879/4870847*15127^(9/10) 7014087357587185 a001 516002918640/4250681*15127^(9/10) 7014087357587221 a001 4052739537881/33385282*15127^(9/10) 7014087357587227 a001 3536736619241/29134601*15127^(9/10) 7014087357587230 a001 6557470319842/54018521*15127^(9/10) 7014087357587244 a001 2504730781961/20633239*15127^(9/10) 7014087357587341 a001 956722026041/7881196*15127^(9/10) 7014087357588002 a001 365435296162/3010349*15127^(9/10) 7014087357592533 a001 139583862445/1149851*15127^(9/10) 7014087357623589 a001 53316291173/439204*15127^(9/10) 7014087357707299 a001 956722026041/15127*5778^(5/18) 7014087357762808 a001 12586269025/64079*15127^(17/20) 7014087357836451 a001 20365011074/167761*15127^(9/10) 7014087358467376 a001 7778742049/103682*15127^(19/20) 7014087358567065 a001 21566892818/6119*15127^(11/20) 7014087359024657 a001 20365011074/271443*15127^(19/20) 7014087359105963 a001 53316291173/710647*15127^(19/20) 7014087359117825 a001 139583862445/1860498*15127^(19/20) 7014087359119556 a001 365435296162/4870847*15127^(19/20) 7014087359119808 a001 956722026041/12752043*15127^(19/20) 7014087359119845 a001 2504730781961/33385282*15127^(19/20) 7014087359119851 a001 6557470319842/87403803*15127^(19/20) 7014087359119852 a001 10610209857723/141422324*15127^(19/20) 7014087359119854 a001 4052739537881/54018521*15127^(19/20) 7014087359119868 a001 140728068720/1875749*15127^(19/20) 7014087359119964 a001 591286729879/7881196*15127^(19/20) 7014087359120626 a001 225851433717/3010349*15127^(19/20) 7014087359125157 a001 86267571272/1149851*15127^(19/20) 7014087359156213 a001 32951280099/439204*15127^(19/20) 7014087359295432 a001 7778742049/64079*15127^(9/10) 7014087359369075 a001 75025*15127^(19/20) 7014087359565503 a001 20365011074/9349*9349^(12/19) 7014087360099689 a001 53316291173/24476*15127^(3/5) 7014087360543729 a001 6557470319842/39603*5778^(1/6) 7014087360557280 a001 4745030099417/6765 7014087360638580 a001 1581676699824/2255 7014087360650406 a001 86273274536/123 7014087360651884 a001 1581676699827/2255 7014087360652475 a001 2/6765*(1/2+1/2*5^(1/2))^64 7014087360652475 a001 23725150497407/6765*8^(1/3) 7014087360653362 a001 4745030099482/6765 7014087360657797 a001 949006019897/1353 7014087360688839 a001 4745030099506/6765 7014087360828055 a001 4807526976/64079*15127^(19/20) 7014087360901699 a001 949006019930/1353 7014087361473582 r005 Re(z^2+c),c=-11/32+32/35*I,n=3 7014087361632313 a001 32951280099/24476*15127^(13/20) 7014087362355081 a001 1134903170/3571*3571^(16/17) 7014087362360679 a001 4745030100637/6765 7014087363164937 a001 10182505537/12238*15127^(7/10) 7014087363789147 a001 32951280099/9349*9349^(11/19) 7014087364697560 a001 12586269025/24476*15127^(3/4) 7014087365052114 a001 3278735159921/12238*5778^(1/9) 7014087366230184 a001 7778742049/24476*15127^(4/5) 7014087366724069 a001 10610209857723/64079*5778^(1/6) 7014087367762808 a001 1201881744/6119*15127^(17/20) 7014087368012790 a001 53316291173/9349*9349^(10/19) 7014087369295432 a001 2971215073/24476*15127^(9/10) 7014087369379254 a001 591286729879/15127*5778^(1/3) 7014087370828056 a001 1836311903/24476*15127^(19/20) 7014087371156066 r008 a(0)=7,K{-n^6,-14+49*n^3-51*n^2-54*n} 7014087372215684 a001 4052739537881/39603*5778^(2/9) 7014087372236433 a001 86267571272/9349*9349^(9/19) 7014087372360679 a001 4745030107402/6765 7014087374540232 m001 (Pi^(1/2)+GAMMA(23/24))/(FeigenbaumD+Mills) 7014087376035344 a001 225749145909/2206*5778^(2/9) 7014087376460077 a001 139583862445/9349*9349^(8/19) 7014087376724069 a001 4052739537881/24476*5778^(1/6) 7014087377368873 a001 956722026041/3571*1364^(2/15) 7014087377894142 a001 4052739537881/9349*3571^(1/17) 7014087378396024 a001 6557470319842/64079*5778^(2/9) 7014087379596747 a001 4181/15127*45537549124^(15/17) 7014087379596747 a001 4181/15127*312119004989^(9/11) 7014087379596747 a001 4181/15127*14662949395604^(5/7) 7014087379596747 a001 4181/15127*(1/2+1/2*5^(1/2))^45 7014087379596747 a001 4181/15127*192900153618^(5/6) 7014087379596747 a001 4181/15127*28143753123^(9/10) 7014087379596747 a001 4181/15127*10749957122^(15/16) 7014087379596748 a001 6765/9349*(1/2+1/2*5^(1/2))^43 7014087380683720 a001 225851433717/9349*9349^(7/19) 7014087381051210 a001 365435296162/15127*5778^(7/18) 7014087383887639 a001 2504730781961/39603*5778^(5/18) 7014087384907364 a001 365435296162/9349*9349^(6/19) 7014087387707299 a001 3278735159921/51841*5778^(5/18) 7014087388396024 a001 2504730781961/24476*5778^(2/9) 7014087388608999 a001 10610209857723/167761*5778^(5/18) 7014087388993964 p003 LerchPhi(1/8,1,173/112) 7014087389131007 a001 591286729879/9349*9349^(5/19) 7014087389348383 a001 6557470319842/15127*2207^(1/16) 7014087389810638 r008 a(0)=7,K{-n^6,-22-38*n-61*n^2+51*n^3} 7014087389907384 a001 956722026041/5778*2207^(3/16) 7014087390067979 a001 4052739537881/64079*5778^(5/18) 7014087392723165 a001 32264490531/2161*5778^(4/9) 7014087393354650 a001 956722026041/9349*9349^(4/19) 7014087394710162 a001 1836311903/3571*3571^(15/17) 7014087395559594 a001 516002918640/13201*5778^(1/3) 7014087397578294 a001 1548008755920/9349*9349^(3/19) 7014087398541019 a001 7677620066443/10946 7014087399098553 a001 433494437/9349*24476^(20/21) 7014087399379255 a001 4052739537881/103682*5778^(1/3) 7014087399656087 a001 701408733/9349*24476^(19/21) 7014087399936536 a001 3536736619241/90481*5778^(1/3) 7014087400067979 a001 387002188980/6119*5778^(5/18) 7014087400213621 a001 1134903170/9349*24476^(6/7) 7014087400280954 a001 6557470319842/167761*5778^(1/3) 7014087400771154 a001 1836311903/9349*24476^(17/21) 7014087401203205 l006 ln(4882/9845) 7014087401328688 a001 2971215073/9349*24476^(16/21) 7014087401739934 a001 2504730781961/64079*5778^(1/3) 7014087401801937 a001 2504730781961/9349*9349^(2/19) 7014087401886221 a001 4807526976/9349*24476^(5/7) 7014087402443755 a001 7778742049/9349*24476^(2/3) 7014087403001288 a001 12586269025/9349*24476^(13/21) 7014087403558822 a001 20365011074/9349*24476^(4/7) 7014087404116355 a001 32951280099/9349*24476^(11/21) 7014087404395120 a001 139583862445/15127*5778^(1/2) 7014087404673889 a001 53316291173/9349*24476^(10/21) 7014087405231422 a001 86267571272/9349*24476^(3/7) 7014087405777087 a001 4181/39603*(1/2+1/2*5^(1/2))^47 7014087405777088 a001 17711/9349*(1/2+1/2*5^(1/2))^41 7014087405788956 a001 139583862445/9349*24476^(8/21) 7014087406025581 a001 4052739537881/9349*9349^(1/19) 7014087406346489 a001 225851433717/9349*24476^(1/3) 7014087406904023 a001 365435296162/9349*24476^(2/7) 7014087407231550 a001 956722026041/39603*5778^(7/18) 7014087407461556 a001 591286729879/9349*24476^(5/21) 7014087408019090 a001 956722026041/9349*24476^(4/21) 7014087408541019 a001 20100270286656/28657 7014087408576623 a001 1548008755920/9349*24476^(1/7) 7014087408615290 a001 165580141/9349*64079^(22/23) 7014087408689560 a001 267914296/9349*64079^(21/23) 7014087408763829 a001 433494437/9349*64079^(20/23) 7014087408838099 a001 701408733/9349*64079^(19/23) 7014087408912369 a001 1134903170/9349*64079^(18/23) 7014087408986638 a001 1836311903/9349*64079^(17/23) 7014087409060908 a001 2971215073/9349*64079^(16/23) 7014087409134157 a001 2504730781961/9349*24476^(2/21) 7014087409135178 a001 4807526976/9349*64079^(15/23) 7014087409209448 a001 7778742049/9349*64079^(14/23) 7014087409283717 a001 12586269025/9349*64079^(13/23) 7014087409357987 a001 20365011074/9349*64079^(12/23) 7014087409432257 a001 32951280099/9349*64079^(11/23) 7014087409506527 a001 53316291173/9349*64079^(10/23) 7014087409580796 a001 86267571272/9349*64079^(9/23) 7014087409596747 a001 4181/103682*14662949395604^(7/9) 7014087409596747 a001 4181/103682*(1/2+1/2*5^(1/2))^49 7014087409596747 a001 4181/103682*505019158607^(7/8) 7014087409596748 a001 46368/9349*2537720636^(13/15) 7014087409596748 a001 46368/9349*45537549124^(13/17) 7014087409596748 a001 46368/9349*14662949395604^(13/21) 7014087409596748 a001 46368/9349*(1/2+1/2*5^(1/2))^39 7014087409596748 a001 46368/9349*192900153618^(13/18) 7014087409596748 a001 46368/9349*73681302247^(3/4) 7014087409596748 a001 46368/9349*10749957122^(13/16) 7014087409596748 a001 46368/9349*599074578^(13/14) 7014087409655066 a001 139583862445/9349*64079^(8/23) 7014087409691690 a001 4052739537881/9349*24476^(1/21) 7014087409729336 a001 225851433717/9349*64079^(7/23) 7014087409803606 a001 365435296162/9349*64079^(6/23) 7014087409877875 a001 591286729879/9349*64079^(5/23) 7014087409952145 a001 956722026041/9349*64079^(4/23) 7014087410026415 a001 1548008755920/9349*64079^(3/23) 7014087410049845 a001 433494437/9349*167761^(4/5) 7014087410099690 a001 4807526976/9349*167761^(3/5) 7014087410100685 a001 2504730781961/9349*64079^(2/23) 7014087410149535 a001 53316291173/9349*167761^(2/5) 7014087410154028 a001 4181/271443*817138163596^(17/19) 7014087410154028 a001 4181/271443*14662949395604^(17/21) 7014087410154028 a001 4181/271443*(1/2+1/2*5^(1/2))^51 7014087410154028 a001 4181/271443*192900153618^(17/18) 7014087410154029 a001 121393/9349*(1/2+1/2*5^(1/2))^37 7014087410174954 a001 4052739537881/9349*64079^(1/23) 7014087410199379 a001 591286729879/9349*167761^(1/5) 7014087410212862 a001 137769302093919/196418 7014087410216903 a001 63245986/9349*439204^(8/9) 7014087410220943 a001 267914296/9349*439204^(7/9) 7014087410224983 a001 1134903170/9349*439204^(2/3) 7014087410229023 a001 4807526976/9349*439204^(5/9) 7014087410233063 a001 20365011074/9349*439204^(4/9) 7014087410235334 a001 4181/710647*(1/2+1/2*5^(1/2))^53 7014087410235335 a001 317811/9349*2537720636^(7/9) 7014087410235335 a001 317811/9349*17393796001^(5/7) 7014087410235335 a001 317811/9349*312119004989^(7/11) 7014087410235335 a001 317811/9349*14662949395604^(5/9) 7014087410235335 a001 317811/9349*(1/2+1/2*5^(1/2))^35 7014087410235335 a001 317811/9349*505019158607^(5/8) 7014087410235335 a001 317811/9349*28143753123^(7/10) 7014087410235335 a001 317811/9349*599074578^(5/6) 7014087410235335 a001 317811/9349*228826127^(7/8) 7014087410237104 a001 86267571272/9349*439204^(1/3) 7014087410241144 a001 365435296162/9349*439204^(2/9) 7014087410243918 a001 360684715488232/514229 7014087410245184 a001 1548008755920/9349*439204^(1/9) 7014087410247197 a001 4181/1860498*(1/2+1/2*5^(1/2))^55 7014087410247197 a001 4181/1860498*3461452808002^(11/12) 7014087410247197 a001 832040/9349*141422324^(11/13) 7014087410247198 a001 832040/9349*2537720636^(11/15) 7014087410247198 a001 832040/9349*45537549124^(11/17) 7014087410247198 a001 832040/9349*312119004989^(3/5) 7014087410247198 a001 832040/9349*817138163596^(11/19) 7014087410247198 a001 832040/9349*14662949395604^(11/21) 7014087410247198 a001 832040/9349*(1/2+1/2*5^(1/2))^33 7014087410247198 a001 832040/9349*192900153618^(11/18) 7014087410247198 a001 832040/9349*10749957122^(11/16) 7014087410247198 a001 832040/9349*1568397607^(3/4) 7014087410247198 a001 832040/9349*599074578^(11/14) 7014087410247203 a001 832040/9349*33385282^(11/12) 7014087410248449 a001 944284844370777/1346269 7014087410248927 a001 4181/4870847*14662949395604^(19/21) 7014087410248927 a001 4181/4870847*(1/2+1/2*5^(1/2))^57 7014087410248928 a001 2178309/9349*(1/2+1/2*5^(1/2))^31 7014087410248928 a001 2178309/9349*9062201101803^(1/2) 7014087410249110 a001 2472169817624099/3524578 7014087410249125 a001 14930352/9349*7881196^(9/11) 7014087410249142 a001 63245986/9349*7881196^(8/11) 7014087410249149 a001 165580141/9349*7881196^(2/3) 7014087410249152 a001 267914296/9349*7881196^(7/11) 7014087410249162 a001 1134903170/9349*7881196^(6/11) 7014087410249173 a001 4807526976/9349*7881196^(5/11) 7014087410249180 a001 4181/12752043*(1/2+1/2*5^(1/2))^59 7014087410249181 a001 5702887/9349*(1/2+1/2*5^(1/2))^29 7014087410249181 a001 5702887/9349*1322157322203^(1/2) 7014087410249183 a001 20365011074/9349*7881196^(4/11) 7014087410249186 a001 32951280099/9349*7881196^(1/3) 7014087410249193 a001 86267571272/9349*7881196^(3/11) 7014087410249203 a001 365435296162/9349*7881196^(2/11) 7014087410249207 a001 1294444921700304/1845493 7014087410249211 a001 4181*20633239^(5/7) 7014087410249214 a001 1548008755920/9349*7881196^(1/11) 7014087410249214 a001 267914296/9349*20633239^(3/5) 7014087410249215 a001 433494437/9349*20633239^(4/7) 7014087410249217 a001 4181/33385282*(1/2+1/2*5^(1/2))^61 7014087410249217 a001 4807526976/9349*20633239^(3/7) 7014087410249217 a001 7778742049/9349*20633239^(2/5) 7014087410249217 a001 14930352/9349*141422324^(9/13) 7014087410249218 a001 14930352/9349*2537720636^(3/5) 7014087410249218 a001 14930352/9349*45537549124^(9/17) 7014087410249218 a001 14930352/9349*817138163596^(9/19) 7014087410249218 a001 14930352/9349*14662949395604^(3/7) 7014087410249218 a001 14930352/9349*(1/2+1/2*5^(1/2))^27 7014087410249218 a001 14930352/9349*192900153618^(1/2) 7014087410249218 a001 14930352/9349*10749957122^(9/16) 7014087410249218 a001 14930352/9349*599074578^(9/14) 7014087410249219 a001 53316291173/9349*20633239^(2/7) 7014087410249221 a001 16944504007880461/24157817 7014087410249221 a001 225851433717/9349*20633239^(1/5) 7014087410249222 a001 591286729879/9349*20633239^(1/7) 7014087410249222 a001 14930352/9349*33385282^(3/4) 7014087410249223 a001 44361287415139863/63245986 7014087410249223 a001 4181*2537720636^(5/9) 7014087410249223 a001 4181*312119004989^(5/11) 7014087410249223 a001 4181*(1/2+1/2*5^(1/2))^25 7014087410249223 a001 4181*3461452808002^(5/12) 7014087410249223 a001 4181*28143753123^(1/2) 7014087410249223 a001 4181*228826127^(5/8) 7014087410249224 a001 267914296/9349*141422324^(7/13) 7014087410249224 a001 1134903170/9349*141422324^(6/13) 7014087410249224 a001 4807526976/9349*141422324^(5/13) 7014087410249224 a001 102334155/9349*(1/2+1/2*5^(1/2))^23 7014087410249224 a001 102334155/9349*4106118243^(1/2) 7014087410249224 a001 12586269025/9349*141422324^(1/3) 7014087410249224 a001 20365011074/9349*141422324^(4/13) 7014087410249224 a001 86267571272/9349*141422324^(3/13) 7014087410249224 a001 365435296162/9349*141422324^(2/13) 7014087410249224 a001 1548008755920/9349*141422324^(1/13) 7014087410249224 a001 267914296/9349*2537720636^(7/15) 7014087410249224 a001 267914296/9349*17393796001^(3/7) 7014087410249224 a001 267914296/9349*45537549124^(7/17) 7014087410249224 a001 267914296/9349*14662949395604^(1/3) 7014087410249224 a001 267914296/9349*(1/2+1/2*5^(1/2))^21 7014087410249224 a001 267914296/9349*192900153618^(7/18) 7014087410249224 a001 267914296/9349*10749957122^(7/16) 7014087410249224 a001 267914296/9349*599074578^(1/2) 7014087410249224 a001 701408733/9349*817138163596^(1/3) 7014087410249224 a001 701408733/9349*(1/2+1/2*5^(1/2))^19 7014087410249224 a001 4807526976/9349*2537720636^(1/3) 7014087410249224 a001 1836311903/9349*45537549124^(1/3) 7014087410249224 a001 1836311903/9349*(1/2+1/2*5^(1/2))^17 7014087410249224 a001 20365011074/9349*2537720636^(4/15) 7014087410249224 a001 53316291173/9349*2537720636^(2/9) 7014087410249224 a001 86267571272/9349*2537720636^(1/5) 7014087410249224 a001 365435296162/9349*2537720636^(2/15) 7014087410249224 a001 591286729879/9349*2537720636^(1/9) 7014087410249224 a001 1548008755920/9349*2537720636^(1/15) 7014087410249224 a001 4807526976/9349*45537549124^(5/17) 7014087410249224 a001 4807526976/9349*312119004989^(3/11) 7014087410249224 a001 4807526976/9349*14662949395604^(5/21) 7014087410249224 a001 4807526976/9349*(1/2+1/2*5^(1/2))^15 7014087410249224 a001 4807526976/9349*192900153618^(5/18) 7014087410249224 a001 4807526976/9349*28143753123^(3/10) 7014087410249224 a001 4807526976/9349*10749957122^(5/16) 7014087410249224 a001 12586269025/9349*(1/2+1/2*5^(1/2))^13 7014087410249224 a001 12586269025/9349*73681302247^(1/4) 7014087410249224 a001 225851433717/9349*17393796001^(1/7) 7014087410249224 a001 32951280099/9349*312119004989^(1/5) 7014087410249224 a001 32951280099/9349*(1/2+1/2*5^(1/2))^11 7014087410249224 a001 86267571272/9349*45537549124^(3/17) 7014087410249224 a001 365435296162/9349*45537549124^(2/17) 7014087410249224 a001 1548008755920/9349*45537549124^(1/17) 7014087410249224 a001 86267571272/9349*817138163596^(3/19) 7014087410249224 a001 86267571272/9349*(1/2+1/2*5^(1/2))^9 7014087410249224 a001 225851433717/9349*14662949395604^(1/9) 7014087410249224 a001 225851433717/9349*(1/2+1/2*5^(1/2))^7 7014087410249224 a001 591286729879/9349*312119004989^(1/11) 7014087410249224 a001 591286729879/9349*(1/2+1/2*5^(1/2))^5 7014087410249224 a001 1548008755920/9349*14662949395604^(1/21) 7014087410249224 a001 1548008755920/9349*(1/2+1/2*5^(1/2))^3 7014087410249224 a001 2504730781961/9349*(1/2+1/2*5^(1/2))^2 7014087410249224 a001 956722026041/9349*(1/2+1/2*5^(1/2))^4 7014087410249224 a001 956722026041/9349*23725150497407^(1/16) 7014087410249224 a001 1548008755920/9349*192900153618^(1/18) 7014087410249224 a001 365435296162/9349*14662949395604^(2/21) 7014087410249224 a001 365435296162/9349*(1/2+1/2*5^(1/2))^6 7014087410249224 a001 139583862445/9349*(1/2+1/2*5^(1/2))^8 7014087410249224 a001 139583862445/9349*23725150497407^(1/8) 7014087410249224 a001 139583862445/9349*505019158607^(1/7) 7014087410249224 a001 956722026041/9349*73681302247^(1/13) 7014087410249224 a001 139583862445/9349*73681302247^(2/13) 7014087410249224 a001 53316291173/9349*312119004989^(2/11) 7014087410249224 a001 53316291173/9349*(1/2+1/2*5^(1/2))^10 7014087410249224 a001 591286729879/9349*28143753123^(1/10) 7014087410249224 a001 53316291173/9349*28143753123^(1/5) 7014087410249224 a001 2504730781961/9349*10749957122^(1/24) 7014087410249224 a001 20365011074/9349*45537549124^(4/17) 7014087410249224 a001 20365011074/9349*817138163596^(4/19) 7014087410249224 a001 20365011074/9349*14662949395604^(4/21) 7014087410249224 a001 20365011074/9349*(1/2+1/2*5^(1/2))^12 7014087410249224 a001 20365011074/9349*192900153618^(2/9) 7014087410249224 a001 20365011074/9349*73681302247^(3/13) 7014087410249224 a001 1548008755920/9349*10749957122^(1/16) 7014087410249224 a001 956722026041/9349*10749957122^(1/12) 7014087410249224 a001 365435296162/9349*10749957122^(1/8) 7014087410249224 a001 139583862445/9349*10749957122^(1/6) 7014087410249224 a001 86267571272/9349*10749957122^(3/16) 7014087410249224 a001 53316291173/9349*10749957122^(5/24) 7014087410249224 a001 7778742049/9349*17393796001^(2/7) 7014087410249224 a001 2504730781961/9349*4106118243^(1/23) 7014087410249224 a001 20365011074/9349*10749957122^(1/4) 7014087410249224 a001 7778742049/9349*14662949395604^(2/9) 7014087410249224 a001 7778742049/9349*(1/2+1/2*5^(1/2))^14 7014087410249224 a001 7778742049/9349*505019158607^(1/4) 7014087410249224 a001 956722026041/9349*4106118243^(2/23) 7014087410249224 a001 7778742049/9349*10749957122^(7/24) 7014087410249224 a001 365435296162/9349*4106118243^(3/23) 7014087410249224 a001 139583862445/9349*4106118243^(4/23) 7014087410249224 a001 53316291173/9349*4106118243^(5/23) 7014087410249224 a001 20365011074/9349*4106118243^(6/23) 7014087410249224 a001 2504730781961/9349*1568397607^(1/22) 7014087410249224 a001 7778742049/9349*4106118243^(7/23) 7014087410249224 a001 2971215073/9349*(1/2+1/2*5^(1/2))^16 7014087410249224 a001 2971215073/9349*23725150497407^(1/4) 7014087410249224 a001 2971215073/9349*73681302247^(4/13) 7014087410249224 a001 2971215073/9349*10749957122^(1/3) 7014087410249224 a001 956722026041/9349*1568397607^(1/11) 7014087410249224 a001 2971215073/9349*4106118243^(8/23) 7014087410249224 a001 365435296162/9349*1568397607^(3/22) 7014087410249224 a001 139583862445/9349*1568397607^(2/11) 7014087410249224 a001 53316291173/9349*1568397607^(5/22) 7014087410249224 a001 1134903170/9349*2537720636^(2/5) 7014087410249224 a001 32951280099/9349*1568397607^(1/4) 7014087410249224 a001 20365011074/9349*1568397607^(3/11) 7014087410249224 a001 7778742049/9349*1568397607^(7/22) 7014087410249224 a001 2504730781961/9349*599074578^(1/21) 7014087410249224 a001 1134903170/9349*45537549124^(6/17) 7014087410249224 a001 1134903170/9349*14662949395604^(2/7) 7014087410249224 a001 1134903170/9349*(1/2+1/2*5^(1/2))^18 7014087410249224 a001 1134903170/9349*192900153618^(1/3) 7014087410249224 a001 1134903170/9349*10749957122^(3/8) 7014087410249224 a001 2971215073/9349*1568397607^(4/11) 7014087410249224 a001 1134903170/9349*4106118243^(9/23) 7014087410249224 a001 1548008755920/9349*599074578^(1/14) 7014087410249224 a001 956722026041/9349*599074578^(2/21) 7014087410249224 a001 1134903170/9349*1568397607^(9/22) 7014087410249224 a001 365435296162/9349*599074578^(1/7) 7014087410249224 a001 225851433717/9349*599074578^(1/6) 7014087410249224 a001 139583862445/9349*599074578^(4/21) 7014087410249224 a001 86267571272/9349*599074578^(3/14) 7014087410249224 a001 53316291173/9349*599074578^(5/21) 7014087410249224 a001 20365011074/9349*599074578^(2/7) 7014087410249224 a001 7778742049/9349*599074578^(1/3) 7014087410249224 a001 2504730781961/9349*228826127^(1/20) 7014087410249224 a001 4807526976/9349*599074578^(5/14) 7014087410249224 a001 433494437/9349*2537720636^(4/9) 7014087410249224 a001 433494437/9349*(1/2+1/2*5^(1/2))^20 7014087410249224 a001 433494437/9349*23725150497407^(5/16) 7014087410249224 a001 433494437/9349*505019158607^(5/14) 7014087410249224 a001 433494437/9349*73681302247^(5/13) 7014087410249224 a001 433494437/9349*28143753123^(2/5) 7014087410249224 a001 433494437/9349*10749957122^(5/12) 7014087410249224 a001 2971215073/9349*599074578^(8/21) 7014087410249224 a001 433494437/9349*4106118243^(10/23) 7014087410249224 a001 433494437/9349*1568397607^(5/11) 7014087410249224 a001 1134903170/9349*599074578^(3/7) 7014087410249224 a001 956722026041/9349*228826127^(1/10) 7014087410249224 a001 591286729879/9349*228826127^(1/8) 7014087410249224 a001 433494437/9349*599074578^(10/21) 7014087410249224 a001 365435296162/9349*228826127^(3/20) 7014087410249224 a001 139583862445/9349*228826127^(1/5) 7014087410249224 a001 53316291173/9349*228826127^(1/4) 7014087410249224 a001 20365011074/9349*228826127^(3/10) 7014087410249224 a001 7778742049/9349*228826127^(7/20) 7014087410249224 a001 2504730781961/9349*87403803^(1/19) 7014087410249224 a001 4807526976/9349*228826127^(3/8) 7014087410249224 a001 165580141/9349*312119004989^(2/5) 7014087410249224 a001 165580141/9349*(1/2+1/2*5^(1/2))^22 7014087410249224 a001 165580141/9349*10749957122^(11/24) 7014087410249224 a001 165580141/9349*4106118243^(11/23) 7014087410249224 a001 165580141/9349*1568397607^(1/2) 7014087410249224 a001 2971215073/9349*228826127^(2/5) 7014087410249224 a001 1134903170/9349*228826127^(9/20) 7014087410249224 a001 165580141/9349*599074578^(11/21) 7014087410249224 a001 433494437/9349*228826127^(1/2) 7014087410249224 a001 956722026041/9349*87403803^(2/19) 7014087410249224 a001 165580141/9349*228826127^(11/20) 7014087410249224 a001 63245986/9349*141422324^(8/13) 7014087410249224 a001 365435296162/9349*87403803^(3/19) 7014087410249224 a001 139583862445/9349*87403803^(4/19) 7014087410249224 a001 53316291173/9349*87403803^(5/19) 7014087410249224 a001 20365011074/9349*87403803^(6/19) 7014087410249224 a001 7778742049/9349*87403803^(7/19) 7014087410249224 a001 2504730781961/9349*33385282^(1/18) 7014087410249224 a001 63245986/9349*2537720636^(8/15) 7014087410249224 a001 63245986/9349*45537549124^(8/17) 7014087410249224 a001 63245986/9349*14662949395604^(8/21) 7014087410249224 a001 63245986/9349*(1/2+1/2*5^(1/2))^24 7014087410249224 a001 63245986/9349*192900153618^(4/9) 7014087410249224 a001 63245986/9349*73681302247^(6/13) 7014087410249224 a001 63245986/9349*10749957122^(1/2) 7014087410249224 a001 63245986/9349*4106118243^(12/23) 7014087410249224 a001 63245986/9349*1568397607^(6/11) 7014087410249224 a001 63245986/9349*599074578^(4/7) 7014087410249224 a001 2971215073/9349*87403803^(8/19) 7014087410249224 a001 63245986/9349*228826127^(3/5) 7014087410249224 a001 1134903170/9349*87403803^(9/19) 7014087410249224 a001 701408733/9349*87403803^(1/2) 7014087410249225 a001 433494437/9349*87403803^(10/19) 7014087410249225 a001 1548008755920/9349*33385282^(1/12) 7014087410249225 a001 165580141/9349*87403803^(11/19) 7014087410249225 a001 956722026041/9349*33385282^(1/9) 7014087410249225 a001 63245986/9349*87403803^(12/19) 7014087410249225 a001 365435296162/9349*33385282^(1/6) 7014087410249225 a001 139583862445/9349*33385282^(2/9) 7014087410249226 a001 86267571272/9349*33385282^(1/4) 7014087410249226 a001 53316291173/9349*33385282^(5/18) 7014087410249226 a001 20365011074/9349*33385282^(1/3) 7014087410249226 a001 24157817/9349*141422324^(2/3) 7014087410249226 a001 24157817/9349*(1/2+1/2*5^(1/2))^26 7014087410249226 a001 24157817/9349*73681302247^(1/2) 7014087410249226 a001 24157817/9349*10749957122^(13/24) 7014087410249226 a001 24157817/9349*4106118243^(13/23) 7014087410249226 a001 24157817/9349*1568397607^(13/22) 7014087410249226 a001 24157817/9349*599074578^(13/21) 7014087410249226 a001 7778742049/9349*33385282^(7/18) 7014087410249227 a001 24157817/9349*228826127^(13/20) 7014087410249227 a001 2504730781961/9349*12752043^(1/17) 7014087410249227 a001 4807526976/9349*33385282^(5/12) 7014087410249227 a001 2971215073/9349*33385282^(4/9) 7014087410249227 a001 24157817/9349*87403803^(13/19) 7014087410249227 a001 1134903170/9349*33385282^(1/2) 7014087410249227 a001 9227465/9349*20633239^(4/5) 7014087410249228 a001 433494437/9349*33385282^(5/9) 7014087410249228 a001 267914296/9349*33385282^(7/12) 7014087410249228 a001 165580141/9349*33385282^(11/18) 7014087410249229 a001 63245986/9349*33385282^(2/3) 7014087410249229 a001 956722026041/9349*12752043^(2/17) 7014087410249229 a001 10472279399378941/14930352 7014087410249231 a001 24157817/9349*33385282^(13/18) 7014087410249232 a001 365435296162/9349*12752043^(3/17) 7014087410249234 a001 139583862445/9349*12752043^(4/17) 7014087410249234 a001 3524578/9349*7881196^(10/11) 7014087410249237 a001 53316291173/9349*12752043^(5/17) 7014087410249239 a001 20365011074/9349*12752043^(6/17) 7014087410249240 a001 4181/20633239*14662949395604^(20/21) 7014087410249240 a001 4181/20633239*(1/2+1/2*5^(1/2))^60 7014087410249240 a001 9227465/9349*17393796001^(4/7) 7014087410249240 a001 9227465/9349*14662949395604^(4/9) 7014087410249240 a001 9227465/9349*(1/2+1/2*5^(1/2))^28 7014087410249240 a001 9227465/9349*505019158607^(1/2) 7014087410249240 a001 9227465/9349*73681302247^(7/13) 7014087410249240 a001 9227465/9349*10749957122^(7/12) 7014087410249240 a001 9227465/9349*4106118243^(14/23) 7014087410249240 a001 9227465/9349*1568397607^(7/11) 7014087410249241 a001 9227465/9349*599074578^(2/3) 7014087410249241 a001 9227465/9349*228826127^(7/10) 7014087410249241 a001 9227465/9349*87403803^(14/19) 7014087410249242 a001 7778742049/9349*12752043^(7/17) 7014087410249242 a001 2504730781961/9349*4870847^(1/16) 7014087410249244 a001 2971215073/9349*12752043^(8/17) 7014087410249245 a001 9227465/9349*33385282^(7/9) 7014087410249246 a001 1836311903/9349*12752043^(1/2) 7014087410249247 a001 1134903170/9349*12752043^(9/17) 7014087410249249 a001 433494437/9349*12752043^(10/17) 7014087410249252 a001 165580141/9349*12752043^(11/17) 7014087410249255 a001 63245986/9349*12752043^(12/17) 7014087410249259 a001 24157817/9349*12752043^(13/17) 7014087410249261 a001 956722026041/9349*4870847^(1/8) 7014087410249266 a001 4000054790877421/5702887 7014087410249276 a001 9227465/9349*12752043^(14/17) 7014087410249279 a001 365435296162/9349*4870847^(3/16) 7014087410249298 a001 139583862445/9349*4870847^(1/4) 7014087410249316 a001 53316291173/9349*4870847^(5/16) 7014087410249323 a001 3524578/9349*20633239^(6/7) 7014087410249335 a001 20365011074/9349*4870847^(3/8) 7014087410249336 a001 4181/7881196*(1/2+1/2*5^(1/2))^58 7014087410249337 a001 3524578/9349*141422324^(10/13) 7014087410249337 a001 3524578/9349*2537720636^(2/3) 7014087410249337 a001 3524578/9349*45537549124^(10/17) 7014087410249337 a001 3524578/9349*312119004989^(6/11) 7014087410249337 a001 3524578/9349*14662949395604^(10/21) 7014087410249337 a001 3524578/9349*(1/2+1/2*5^(1/2))^30 7014087410249337 a001 3524578/9349*192900153618^(5/9) 7014087410249337 a001 3524578/9349*28143753123^(3/5) 7014087410249337 a001 3524578/9349*10749957122^(5/8) 7014087410249337 a001 3524578/9349*4106118243^(15/23) 7014087410249337 a001 3524578/9349*1568397607^(15/22) 7014087410249337 a001 3524578/9349*599074578^(5/7) 7014087410249337 a001 3524578/9349*228826127^(3/4) 7014087410249338 a001 3524578/9349*87403803^(15/19) 7014087410249342 a001 3524578/9349*33385282^(5/6) 7014087410249353 a001 7778742049/9349*4870847^(7/16) 7014087410249359 a001 2504730781961/9349*1860498^(1/15) 7014087410249372 a001 2971215073/9349*4870847^(1/2) 7014087410249375 a001 3524578/9349*12752043^(15/17) 7014087410249390 a001 1134903170/9349*4870847^(9/16) 7014087410249409 a001 433494437/9349*4870847^(5/8) 7014087410249427 a001 1548008755920/9349*1860498^(1/10) 7014087410249427 a001 165580141/9349*4870847^(11/16) 7014087410249446 a001 63245986/9349*4870847^(3/4) 7014087410249467 a001 24157817/9349*4870847^(13/16) 7014087410249494 a001 956722026041/9349*1860498^(2/15) 7014087410249499 a001 9227465/9349*4870847^(7/8) 7014087410249519 a001 1527884973253322/2178309 7014087410249562 a001 591286729879/9349*1860498^(1/6) 7014087410249614 a001 3524578/9349*4870847^(15/16) 7014087410249629 a001 365435296162/9349*1860498^(1/5) 7014087410249764 a001 139583862445/9349*1860498^(4/15) 7014087410249832 a001 86267571272/9349*1860498^(3/10) 7014087410249899 a001 53316291173/9349*1860498^(1/3) 7014087410249997 a001 4181/3010349*14662949395604^(8/9) 7014087410249997 a001 4181/3010349*(1/2+1/2*5^(1/2))^56 7014087410249998 a001 1346269/9349*(1/2+1/2*5^(1/2))^32 7014087410249998 a001 1346269/9349*23725150497407^(1/2) 7014087410249998 a001 1346269/9349*505019158607^(4/7) 7014087410249998 a001 1346269/9349*73681302247^(8/13) 7014087410249998 a001 1346269/9349*10749957122^(2/3) 7014087410249998 a001 1346269/9349*4106118243^(16/23) 7014087410249998 a001 1346269/9349*1568397607^(8/11) 7014087410249998 a001 1346269/9349*599074578^(16/21) 7014087410249998 a001 1346269/9349*228826127^(4/5) 7014087410249999 a001 1346269/9349*87403803^(16/19) 7014087410250004 a001 1346269/9349*33385282^(8/9) 7014087410250035 a001 20365011074/9349*1860498^(2/5) 7014087410250039 a001 1346269/9349*12752043^(16/17) 7014087410250170 a001 7778742049/9349*1860498^(7/15) 7014087410250216 a001 2504730781961/9349*710647^(1/14) 7014087410250237 a001 4807526976/9349*1860498^(1/2) 7014087410250305 a001 2971215073/9349*1860498^(8/15) 7014087410250440 a001 1134903170/9349*1860498^(3/5) 7014087410250575 a001 433494437/9349*1860498^(2/3) 7014087410250642 a001 267914296/9349*1860498^(7/10) 7014087410250710 a001 165580141/9349*1860498^(11/15) 7014087410250845 a001 63245986/9349*1860498^(4/5) 7014087410250912 a001 4181*1860498^(5/6) 7014087410250983 a001 24157817/9349*1860498^(13/15) 7014087410251041 a001 14930352/9349*1860498^(9/10) 7014087410251132 a001 9227465/9349*1860498^(14/15) 7014087410251208 a001 956722026041/9349*710647^(1/7) 7014087410251249 a001 116720025776509/166408 7014087410252200 a001 365435296162/9349*710647^(3/14) 7014087410252696 a001 225851433717/9349*710647^(1/4) 7014087410253192 a001 139583862445/9349*710647^(2/7) 7014087410254184 a001 53316291173/9349*710647^(5/14) 7014087410254528 a001 4181/1149851*14662949395604^(6/7) 7014087410254528 a001 4181/1149851*(1/2+1/2*5^(1/2))^54 7014087410254529 a001 514229/9349*45537549124^(2/3) 7014087410254529 a001 514229/9349*(1/2+1/2*5^(1/2))^34 7014087410254529 a001 514229/9349*10749957122^(17/24) 7014087410254529 a001 514229/9349*4106118243^(17/23) 7014087410254529 a001 514229/9349*1568397607^(17/22) 7014087410254529 a001 514229/9349*599074578^(17/21) 7014087410254529 a001 514229/9349*228826127^(17/20) 7014087410254530 a001 514229/9349*87403803^(17/19) 7014087410254535 a001 514229/9349*33385282^(17/18) 7014087410255176 a001 20365011074/9349*710647^(3/7) 7014087410256168 a001 7778742049/9349*710647^(1/2) 7014087410256547 a001 2504730781961/9349*271443^(1/13) 7014087410257160 a001 2971215073/9349*710647^(4/7) 7014087410258153 a001 1134903170/9349*710647^(9/14) 7014087410259145 a001 433494437/9349*710647^(5/7) 7014087410259641 a001 267914296/9349*710647^(3/4) 7014087410260137 a001 165580141/9349*710647^(11/14) 7014087410261129 a001 63245986/9349*710647^(6/7) 7014087410262123 a001 24157817/9349*710647^(13/14) 7014087410263112 a001 222915413394313/317811 7014087410263869 a001 956722026041/9349*271443^(2/13) 7014087410271192 a001 365435296162/9349*271443^(3/13) 7014087410276411 a001 4052739537881/9349*103682^(1/24) 7014087410278515 a001 139583862445/9349*271443^(4/13) 7014087410285584 a001 4181/439204*(1/2+1/2*5^(1/2))^52 7014087410285584 a001 4181/439204*23725150497407^(13/16) 7014087410285584 a001 4181/439204*505019158607^(13/14) 7014087410285585 a001 196418/9349*141422324^(12/13) 7014087410285585 a001 196418/9349*2537720636^(4/5) 7014087410285585 a001 196418/9349*45537549124^(12/17) 7014087410285585 a001 196418/9349*14662949395604^(4/7) 7014087410285585 a001 196418/9349*(1/2+1/2*5^(1/2))^36 7014087410285585 a001 196418/9349*505019158607^(9/14) 7014087410285585 a001 196418/9349*192900153618^(2/3) 7014087410285585 a001 196418/9349*73681302247^(9/13) 7014087410285585 a001 196418/9349*10749957122^(3/4) 7014087410285585 a001 196418/9349*4106118243^(18/23) 7014087410285585 a001 196418/9349*1568397607^(9/11) 7014087410285585 a001 196418/9349*599074578^(6/7) 7014087410285585 a001 196418/9349*228826127^(9/10) 7014087410285586 a001 196418/9349*87403803^(18/19) 7014087410285837 a001 53316291173/9349*271443^(5/13) 7014087410293160 a001 20365011074/9349*271443^(6/13) 7014087410296821 a001 12586269025/9349*271443^(1/2) 7014087410300483 a001 7778742049/9349*271443^(7/13) 7014087410303597 a001 2504730781961/9349*103682^(1/12) 7014087410307806 a001 2971215073/9349*271443^(8/13) 7014087410315128 a001 1134903170/9349*271443^(9/13) 7014087410322451 a001 433494437/9349*271443^(10/13) 7014087410329774 a001 165580141/9349*271443^(11/13) 7014087410330783 a001 1548008755920/9349*103682^(1/8) 7014087410337097 a001 63245986/9349*271443^(12/13) 7014087410344418 a001 85146111300394/121393 7014087410357970 a001 956722026041/9349*103682^(1/6) 7014087410385156 a001 591286729879/9349*103682^(5/24) 7014087410412343 a001 365435296162/9349*103682^(1/4) 7014087410439529 a001 225851433717/9349*103682^(7/24) 7014087410452503 a001 4052739537881/9349*39603^(1/22) 7014087410466716 a001 139583862445/9349*103682^(1/3) 7014087410493902 a001 86267571272/9349*103682^(3/8) 7014087410498447 a001 4181/167761*312119004989^(10/11) 7014087410498447 a001 4181/167761*(1/2+1/2*5^(1/2))^50 7014087410498447 a001 4181/167761*3461452808002^(5/6) 7014087410498448 a001 75025/9349*817138163596^(2/3) 7014087410498448 a001 75025/9349*(1/2+1/2*5^(1/2))^38 7014087410498448 a001 75025/9349*10749957122^(19/24) 7014087410498448 a001 75025/9349*4106118243^(19/23) 7014087410498448 a001 75025/9349*1568397607^(19/22) 7014087410498448 a001 75025/9349*599074578^(19/21) 7014087410498448 a001 75025/9349*228826127^(19/20) 7014087410521089 a001 53316291173/9349*103682^(5/12) 7014087410548275 a001 32951280099/9349*103682^(11/24) 7014087410575462 a001 20365011074/9349*103682^(1/2) 7014087410602648 a001 12586269025/9349*103682^(13/24) 7014087410629835 a001 7778742049/9349*103682^(7/12) 7014087410655782 a001 2504730781961/9349*39603^(1/11) 7014087410657021 a001 4807526976/9349*103682^(5/8) 7014087410684208 a001 2971215073/9349*103682^(2/3) 7014087410711394 a001 1836311903/9349*103682^(17/24) 7014087410738581 a001 1134903170/9349*103682^(3/4) 7014087410765767 a001 701408733/9349*103682^(19/24) 7014087410792954 a001 433494437/9349*103682^(5/6) 7014087410820140 a001 267914296/9349*103682^(7/8) 7014087410847327 a001 165580141/9349*103682^(11/12) 7014087410859061 a001 1548008755920/9349*39603^(3/22) 7014087410874513 a001 102334155/9349*103682^(23/24) 7014087410901699 a001 32522920506869/46368 7014087411051210 a001 2504730781961/103682*5778^(7/18) 7014087411062340 a001 956722026041/9349*39603^(2/11) 7014087411265619 a001 591286729879/9349*39603^(5/22) 7014087411468897 a001 365435296162/9349*39603^(3/11) 7014087411608491 a001 6557470319842/271443*5778^(7/18) 7014087411672176 a001 225851433717/9349*39603^(7/22) 7014087411739935 a001 956722026041/24476*5778^(1/3) 7014087411740047 a001 10610209857723/439204*5778^(7/18) 7014087411781848 a001 4052739537881/9349*15127^(1/20) 7014087411875455 a001 139583862445/9349*39603^(4/11) 7014087411952909 a001 4052739537881/167761*5778^(7/18) 7014087411957427 a001 4181/64079*45537549124^(16/17) 7014087411957427 a001 4181/64079*14662949395604^(16/21) 7014087411957427 a001 4181/64079*(1/2+1/2*5^(1/2))^48 7014087411957427 a001 4181/64079*192900153618^(8/9) 7014087411957427 a001 4181/64079*73681302247^(12/13) 7014087411957428 a001 28657/9349*2537720636^(8/9) 7014087411957428 a001 28657/9349*312119004989^(8/11) 7014087411957428 a001 28657/9349*(1/2+1/2*5^(1/2))^40 7014087411957428 a001 28657/9349*23725150497407^(5/8) 7014087411957428 a001 28657/9349*73681302247^(10/13) 7014087411957428 a001 28657/9349*28143753123^(4/5) 7014087411957428 a001 28657/9349*10749957122^(5/6) 7014087411957428 a001 28657/9349*4106118243^(20/23) 7014087411957428 a001 28657/9349*1568397607^(10/11) 7014087411957428 a001 28657/9349*599074578^(20/21) 7014087412078734 a001 86267571272/9349*39603^(9/22) 7014087412282013 a001 53316291173/9349*39603^(5/11) 7014087412485292 a001 32951280099/9349*39603^(1/2) 7014087412688571 a001 20365011074/9349*39603^(6/11) 7014087412891850 a001 12586269025/9349*39603^(13/22) 7014087413095129 a001 7778742049/9349*39603^(7/11) 7014087413298408 a001 4807526976/9349*39603^(15/22) 7014087413314472 a001 2504730781961/9349*15127^(1/10) 7014087413411890 a001 1548008755920/64079*5778^(7/18) 7014087413501687 a001 2971215073/9349*39603^(8/11) 7014087413704965 a001 1836311903/9349*39603^(17/22) 7014087413908244 a001 1134903170/9349*39603^(9/11) 7014087414111523 a001 701408733/9349*39603^(19/22) 7014087414314802 a001 433494437/9349*39603^(10/11) 7014087414518081 a001 267914296/9349*39603^(21/22) 7014087414721359 a001 12422650220213/17711 7014087414847095 a001 1548008755920/9349*15127^(3/20) 7014087416067075 a001 86267571272/15127*5778^(5/9) 7014087416379719 a001 956722026041/9349*15127^(1/5) 7014087417912343 a001 591286729879/9349*15127^(1/4) 7014087418903505 a001 591286729879/39603*5778^(4/9) 7014087419444967 a001 365435296162/9349*15127^(3/10) 7014087420977591 a001 225851433717/9349*15127^(7/20) 7014087421921179 a001 4052739537881/9349*5778^(1/18) 7014087421957427 a001 4181/24476*(1/2+1/2*5^(1/2))^46 7014087421957427 a001 4181/24476*10749957122^(23/24) 7014087421957428 a001 10946/9349*2537720636^(14/15) 7014087421957428 a001 10946/9349*17393796001^(6/7) 7014087421957428 a001 10946/9349*45537549124^(14/17) 7014087421957428 a001 10946/9349*817138163596^(14/19) 7014087421957428 a001 10946/9349*14662949395604^(2/3) 7014087421957428 a001 10946/9349*(1/2+1/2*5^(1/2))^42 7014087421957428 a001 10946/9349*505019158607^(3/4) 7014087421957428 a001 10946/9349*192900153618^(7/9) 7014087421957428 a001 10946/9349*10749957122^(7/8) 7014087421957428 a001 10946/9349*4106118243^(21/23) 7014087421957428 a001 10946/9349*1568397607^(21/22) 7014087422510214 a001 139583862445/9349*15127^(2/5) 7014087422723165 a001 774004377960/51841*5778^(4/9) 7014087423280446 a001 4052739537881/271443*5778^(4/9) 7014087423361752 a001 1515744265389/101521*5778^(4/9) 7014087423411890 a001 591286729879/24476*5778^(7/18) 7014087423412002 a001 3278735159921/219602*5778^(4/9) 7014087423624865 a001 2504730781961/167761*5778^(4/9) 7014087424042838 a001 86267571272/9349*15127^(9/20) 7014087425083845 a001 956722026041/64079*5778^(4/9) 7014087425575462 a001 53316291173/9349*15127^(1/2) 7014087427065244 a001 2971215073/3571*3571^(14/17) 7014087427108086 a001 32951280099/9349*15127^(11/20) 7014087427739031 a001 53316291173/15127*5778^(11/18) 7014087428640710 a001 20365011074/9349*15127^(3/5) 7014087430173334 a001 12586269025/9349*15127^(13/20) 7014087430575460 a001 365435296162/39603*5778^(1/2) 7014087431705957 a001 7778742049/9349*15127^(7/10) 7014087431709063 a001 10610209857723/24476*2207^(1/16) 7014087432467145 r008 a(0)=7,K{-n^6,-42+25*n^3-10*n^2-42*n} 7014087433238581 a001 4807526976/9349*15127^(3/4) 7014087433593135 a001 2504730781961/9349*5778^(1/9) 7014087434395120 a001 956722026041/103682*5778^(1/2) 7014087434771205 a001 2971215073/9349*15127^(4/5) 7014087434952401 a001 2504730781961/271443*5778^(1/2) 7014087435033707 a001 6557470319842/710647*5778^(1/2) 7014087435052901 a001 10610209857723/1149851*5778^(1/2) 7014087435083845 a001 182717648081/12238*5778^(4/9) 7014087435083957 a001 4052739537881/439204*5778^(1/2) 7014087435296820 a001 140728068720/15251*5778^(1/2) 7014087436303829 a001 1836311903/9349*15127^(17/20) 7014087436755800 a001 591286729879/64079*5778^(1/2) 7014087437836453 a001 1134903170/9349*15127^(9/10) 7014087439369076 a001 701408733/9349*15127^(19/20) 7014087439410986 a001 32951280099/15127*5778^(2/3) 7014087439530414 r005 Re(z^2+c),c=-19/30+50/111*I,n=37 7014087440901699 a001 949006030754/1353 7014087442247415 a001 75283811239/13201*5778^(5/9) 7014087445265090 a001 1548008755920/9349*5778^(1/6) 7014087446067076 a001 591286729879/103682*5778^(5/9) 7014087446624357 a001 516002918640/90481*5778^(5/9) 7014087446705663 a001 4052739537881/710647*5778^(5/9) 7014087446717525 a001 3536736619241/620166*5778^(5/9) 7014087446724857 a001 6557470319842/1149851*5778^(5/9) 7014087446755800 a001 7787980473/844*5778^(1/2) 7014087446755913 a001 2504730781961/439204*5778^(5/9) 7014087446968775 a001 956722026041/167761*5778^(5/9) 7014087448427755 a001 365435296162/64079*5778^(5/9) 7014087451082941 a001 20365011074/15127*5778^(13/18) 7014087453919371 a001 139583862445/39603*5778^(11/18) 7014087456937045 a001 956722026041/9349*5778^(2/9) 7014087457739031 a001 182717648081/51841*5778^(11/18) 7014087458296312 a001 956722026041/271443*5778^(11/18) 7014087458377618 a001 2504730781961/710647*5778^(11/18) 7014087458389480 a001 3278735159921/930249*5778^(11/18) 7014087458392281 a001 10610209857723/3010349*5778^(11/18) 7014087458396812 a001 4052739537881/1149851*5778^(11/18) 7014087458427756 a001 139583862445/24476*5778^(5/9) 7014087458427868 a001 387002188980/109801*5778^(11/18) 7014087458640730 a001 591286729879/167761*5778^(11/18) 7014087459420326 a001 4807526976/3571*3571^(13/17) 7014087460099711 a001 225851433717/64079*5778^(11/18) 7014087462754896 a001 12586269025/15127*5778^(7/9) 7014087465591326 a001 86267571272/39603*5778^(2/3) 7014087468609000 a001 591286729879/9349*5778^(5/18) 7014087469410986 a001 225851433717/103682*5778^(2/3) 7014087469968267 a001 591286729879/271443*5778^(2/3) 7014087470049573 a001 1548008755920/710647*5778^(2/3) 7014087470061436 a001 4052739537881/1860498*5778^(2/3) 7014087470063166 a001 2178309*5778^(2/3) 7014087470064236 a001 6557470319842/3010349*5778^(2/3) 7014087470068767 a001 2504730781961/1149851*5778^(2/3) 7014087470099711 a001 21566892818/6119*5778^(11/18) 7014087470099823 a001 956722026041/439204*5778^(2/3) 7014087470312686 a001 365435296162/167761*5778^(2/3) 7014087471771666 a001 139583862445/64079*5778^(2/3) 7014087474426852 a001 7778742049/15127*5778^(5/6) 7014087476515396 r008 a(0)=7,K{-n^6,9-16*n^3+39*n^2-21*n} 7014087477263281 a001 53316291173/39603*5778^(13/18) 7014087479349243 a001 4052739537881/15127*2207^(1/8) 7014087479908245 a001 591286729879/5778*2207^(1/4) 7014087480280956 a001 365435296162/9349*5778^(1/3) 7014087481082942 a001 139583862445/103682*5778^(13/18) 7014087481363751 m001 Kolakoski^2/ArtinRank2^2*ln(GAMMA(11/12)) 7014087481640222 a001 365435296162/271443*5778^(13/18) 7014087481721529 a001 956722026041/710647*5778^(13/18) 7014087481733391 a001 2504730781961/1860498*5778^(13/18) 7014087481735122 a001 6557470319842/4870847*5778^(13/18) 7014087481735530 a001 10610209857723/7881196*5778^(13/18) 7014087481736191 a001 1346269*5778^(13/18) 7014087481740722 a001 1548008755920/1149851*5778^(13/18) 7014087481771666 a001 53316291173/24476*5778^(2/3) 7014087481771779 a001 591286729879/439204*5778^(13/18) 7014087481984641 a001 225851433717/167761*5778^(13/18) 7014087483443621 a001 86267571272/64079*5778^(13/18) 7014087486098807 a001 686789568/2161*5778^(8/9) 7014087488935237 a001 10983760033/13201*5778^(7/9) 7014087490498449 a001 4181/9349*312119004989^(4/5) 7014087490498449 a001 4181/9349*(1/2+1/2*5^(1/2))^44 7014087490498449 a001 4181/9349*23725150497407^(11/16) 7014087490498449 a001 4181/9349*73681302247^(11/13) 7014087490498449 a001 4181/9349*10749957122^(11/12) 7014087490498449 a001 4181/9349*4106118243^(22/23) 7014087491775408 a001 7778742049/3571*3571^(12/17) 7014087491952911 a001 225851433717/9349*5778^(7/18) 7014087492754897 a001 43133785636/51841*5778^(7/9) 7014087493312178 a001 75283811239/90481*5778^(7/9) 7014087493393484 a001 591286729879/710647*5778^(7/9) 7014087493405346 a001 832040*5778^(7/9) 7014087493407077 a001 4052739537881/4870847*5778^(7/9) 7014087493407330 a001 3536736619241/4250681*5778^(7/9) 7014087493407486 a001 3278735159921/3940598*5778^(7/9) 7014087493408147 a001 2504730781961/3010349*5778^(7/9) 7014087493412678 a001 956722026041/1149851*5778^(7/9) 7014087493443622 a001 32951280099/24476*5778^(13/18) 7014087493443734 a001 182717648081/219602*5778^(7/9) 7014087493656596 a001 139583862445/167761*5778^(7/9) 7014087495115577 a001 53316291173/64079*5778^(7/9) 7014087497770762 a001 2971215073/15127*5778^(17/18) 7014087500250084 a001 4052739537881/9349*2207^(1/16) 7014087500607192 a001 20365011074/39603*5778^(5/6) 7014087503624867 a001 139583862445/9349*5778^(4/9) 7014087504426852 a001 53316291173/103682*5778^(5/6) 7014087504984133 a001 139583862445/271443*5778^(5/6) 7014087505065439 a001 365435296162/710647*5778^(5/6) 7014087505077302 a001 956722026041/1860498*5778^(5/6) 7014087505079033 a001 2504730781961/4870847*5778^(5/6) 7014087505079285 a001 6557470319842/12752043*5778^(5/6) 7014087505079345 a001 10610209857723/20633239*5778^(5/6) 7014087505079441 a001 4052739537881/7881196*5778^(5/6) 7014087505080102 a001 1548008755920/3010349*5778^(5/6) 7014087505084633 a001 514229*5778^(5/6) 7014087505115577 a001 10182505537/12238*5778^(7/9) 7014087505115689 a001 225851433717/439204*5778^(5/6) 7014087505286545 a007 Real Root Of 615*x^4+228*x^3+641*x^2-829*x-967 7014087505328552 a001 86267571272/167761*5778^(5/6) 7014087505529583 a001 3536736619241/13201*2207^(1/8) 7014087506787532 a001 32951280099/64079*5778^(5/6) 7014087509442724 a001 226555026555/323 7014087512279148 a001 12586269025/39603*5778^(8/9) 7014087513928433 a007 Real Root Of -895*x^4-159*x^3-627*x^2-515*x+109 7014087515296822 a001 86267571272/9349*5778^(1/2) 7014087515546201 r005 Im(z^2+c),c=-15/26+11/83*I,n=25 7014087516098808 a001 32951280099/103682*5778^(8/9) 7014087516656089 a001 86267571272/271443*5778^(8/9) 7014087516737395 a001 317811*5778^(8/9) 7014087516749257 a001 591286729879/1860498*5778^(8/9) 7014087516750988 a001 1548008755920/4870847*5778^(8/9) 7014087516751240 a001 4052739537881/12752043*5778^(8/9) 7014087516751277 a001 1515744265389/4769326*5778^(8/9) 7014087516751300 a001 6557470319842/20633239*5778^(8/9) 7014087516751397 a001 2504730781961/7881196*5778^(8/9) 7014087516752058 a001 956722026041/3010349*5778^(8/9) 7014087516756589 a001 365435296162/1149851*5778^(8/9) 7014087516787532 a001 12586269025/24476*5778^(5/6) 7014087516787645 a001 139583862445/439204*5778^(8/9) 7014087517000507 a001 53316291173/167761*5778^(8/9) 7014087518459488 a001 20365011074/64079*5778^(8/9) 7014087521709924 a001 3278735159921/12238*2207^(1/8) 7014087523951103 a001 7778742049/39603*5778^(17/18) 7014087524130490 a001 12586269025/3571*3571^(11/17) 7014087526968777 a001 53316291173/9349*5778^(5/9) 7014087527770763 a001 10182505537/51841*5778^(17/18) 7014087528328044 a001 53316291173/271443*5778^(17/18) 7014087528409350 a001 139583862445/710647*5778^(17/18) 7014087528421213 a001 182717648081/930249*5778^(17/18) 7014087528422943 a001 956722026041/4870847*5778^(17/18) 7014087528423196 a001 2504730781961/12752043*5778^(17/18) 7014087528423233 a001 3278735159921/16692641*5778^(17/18) 7014087528423241 a001 10610209857723/54018521*5778^(17/18) 7014087528423255 a001 4052739537881/20633239*5778^(17/18) 7014087528423352 a001 387002188980/1970299*5778^(17/18) 7014087528424013 a001 591286729879/3010349*5778^(17/18) 7014087528428544 a001 225851433717/1149851*5778^(17/18) 7014087528459488 a001 7778742049/24476*5778^(8/9) 7014087528459600 a001 196418*5778^(17/18) 7014087528672463 a001 32951280099/167761*5778^(17/18) 7014087530131443 a001 12586269025/64079*5778^(17/18) 7014087535623065 a001 1812440219205/2584 7014087538640733 a001 32951280099/9349*5778^(11/18) 7014087539193331 m001 Zeta(1,2)^2*GAMMA(3/4)^2*ln(sin(Pi/5)) 7014087539417111 r008 a(0)=7,K{-n^6,-58+28*n^3-27*n^2-12*n} 7014087539442724 a001 226555027524/323 7014087540081269 a001 1812440220357/2584 7014087540092879 a001 226555027545/323 7014087540095201 a001 1/1292*(1/2+1/2*5^(1/2))^62 7014087540095201 a001 9062201101803/2584*8^(1/3) 7014087540096749 a001 1812440220361/2584 7014087540100619 a001 906220110181/1292 7014087540131443 a001 1201881744/6119*5778^(17/18) 7014087540344427 a001 1812440220425/2584 7014087541803405 a001 906220110401/1292 7014087546434732 r008 a(0)=7,K{-n^6,-38+16*n^3-42*n^2-8*n} 7014087550312688 a001 20365011074/9349*5778^(2/3) 7014087551803405 a001 906220111693/1292 7014087556485573 a001 20365011074/3571*3571^(10/17) 7014087561984644 a001 12586269025/9349*5778^(13/18) 7014087569350104 a001 2504730781961/15127*2207^(3/16) 7014087569909106 a001 182717648081/2889*2207^(5/16) 7014087570505331 r002 4th iterates of z^2 + 7014087573656599 a001 7778742049/9349*5778^(7/9) 7014087581333759 a001 567451585/682*1364^(14/15) 7014087585328555 a001 4807526976/9349*5778^(5/6) 7014087588840655 a001 32951280099/3571*3571^(9/17) 7014087590250946 a001 2504730781961/9349*2207^(1/8) 7014087595530445 a001 6557470319842/39603*2207^(3/16) 7014087597000510 a001 2971215073/9349*5778^(8/9) 7014087599983618 r002 6th iterates of z^2 + 7014087601710785 a001 10610209857723/64079*2207^(3/16) 7014087608672466 a001 1836311903/9349*5778^(17/18) 7014087611710786 a001 4052739537881/24476*2207^(3/16) 7014087620344427 a001 1812440241097/2584 7014087621068244 r008 a(0)=7,K{-n^6,2+56*n^3-64*n^2-64*n} 7014087621195738 a001 53316291173/3571*3571^(8/17) 7014087625138655 r009 Re(z^3+c),c=-23/78+39/46*I,n=4 7014087628701118 r005 Re(z^2+c),c=-23/29+21/41*I,n=3 7014087628702634 a001 1548008755920/3571*1364^(1/15) 7014087641957891 l006 ln(4219/8508) 7014087650447279 r005 Re(z^2+c),c=-53/82+15/31*I,n=22 7014087653550820 a001 86267571272/3571*3571^(7/17) 7014087659350967 a001 1548008755920/15127*2207^(1/4) 7014087659909968 a001 75283811239/1926*2207^(3/8) 7014087669941156 a001 1597/5778*45537549124^(15/17) 7014087669941156 a001 1597/5778*312119004989^(9/11) 7014087669941156 a001 1597/5778*14662949395604^(5/7) 7014087669941156 a001 1597/5778*(1/2+1/2*5^(1/2))^45 7014087669941156 a001 1597/5778*192900153618^(5/6) 7014087669941156 a001 1597/5778*28143753123^(9/10) 7014087669941156 a001 1597/5778*10749957122^(15/16) 7014087669941192 a001 2584/3571*(1/2+1/2*5^(1/2))^43 7014087677344321 a007 Real Root Of 375*x^4-704*x^3+640*x^2+966*x+29 7014087680251809 a001 1548008755920/9349*2207^(3/16) 7014087685531308 a001 4052739537881/39603*2207^(1/4) 7014087685905903 a001 139583862445/3571*3571^(6/17) 7014087688220713 r002 64th iterates of z^2 + 7014087689350968 a001 225749145909/2206*2207^(1/4) 7014087691711648 a001 6557470319842/64079*2207^(1/4) 7014087701711649 a001 2504730781961/24476*2207^(1/4) 7014087708128067 a001 9062201101803*144^(7/17) 7014087718260986 a001 225851433717/3571*3571^(5/17) 7014087747551230 a007 Real Root Of 287*x^4-265*x^3+725*x^2-645*x-970 7014087749351830 a001 956722026041/15127*2207^(5/16) 7014087749910832 a001 139583862445/5778*2207^(7/16) 7014087750616070 a001 365435296162/3571*3571^(4/17) 7014087752548720 r005 Re(z^2+c),c=-1/15+33/41*I,n=38 7014087757668127 m005 (1/2*gamma-3/8)/(5/12*5^(1/2)+3/10) 7014087770252673 a001 956722026041/9349*2207^(1/4) 7014087775532172 a001 2504730781961/39603*2207^(5/16) 7014087779351832 a001 3278735159921/51841*2207^(5/16) 7014087779390187 a003 cos(Pi*19/98)-sin(Pi*36/103) 7014087780253532 a001 10610209857723/167761*2207^(5/16) 7014087781712512 a001 4052739537881/64079*2207^(5/16) 7014087782971153 a001 591286729879/3571*3571^(3/17) 7014087785214669 a007 Real Root Of 170*x^4-541*x^3-783*x^2-103*x+603 7014087791712513 a001 387002188980/6119*2207^(5/16) 7014087799787132 a001 2932590109091/4181 7014087800830067 m001 (Zeta(1,2)+GAMMA(17/24))/(exp(1)+5^(1/2)) 7014087804010818 a001 433494437/3571*9349^(18/19) 7014087808234461 a001 701408733/3571*9349^(17/19) 7014087812458105 a001 1134903170/3571*9349^(16/19) 7014087815326236 a001 956722026041/3571*3571^(2/17) 7014087816681749 a001 1836311903/3571*9349^(15/19) 7014087820478656 m001 1/GAMMA(7/12)/OneNinth^2/ln(sqrt(5)) 7014087820905392 a001 2971215073/3571*9349^(14/19) 7014087824904474 a001 2504730781961/5778*843^(1/14) 7014087825129036 a001 4807526976/3571*9349^(13/19) 7014087829352680 a001 7778742049/3571*9349^(12/19) 7014087832667527 a001 1836311903/1364*1364^(13/15) 7014087833576323 a001 12586269025/3571*9349^(11/19) 7014087835580971 r002 36i'th iterates of 2*x/(1-x^2) of 7014087837799967 a001 20365011074/3571*9349^(10/19) 7014087839352695 a001 591286729879/15127*2207^(3/8) 7014087839911697 a001 43133785636/2889*2207^(1/2) 7014087842023611 a001 32951280099/3571*9349^(9/19) 7014087844802133 a007 Real Root Of -345*x^4+488*x^3+491*x^2+681*x+488 7014087846247254 a001 53316291173/3571*9349^(8/19) 7014087847681320 a001 1548008755920/3571*3571^(1/17) 7014087849383883 a001 1597/15127*(1/2+1/2*5^(1/2))^47 7014087849383926 a001 6765/3571*(1/2+1/2*5^(1/2))^41 7014087850470898 a001 86267571272/3571*9349^(7/19) 7014087854694542 a001 139583862445/3571*9349^(6/19) 7014087858173191 r008 a(0)=7,K{-n^6,-65+7*n^3+50*n^2-62*n} 7014087858918185 a001 225851433717/3571*9349^(5/19) 7014087859433138 b008 7+Pi/223 7014087860253538 a001 591286729879/9349*2207^(5/16) 7014087863141829 a001 365435296162/3571*9349^(4/19) 7014087865533037 a001 516002918640/13201*2207^(3/8) 7014087867365473 a001 591286729879/3571*9349^(3/19) 7014087868328156 a001 3838810290336/5473 7014087868885733 a001 165580141/3571*24476^(20/21) 7014087869352697 a001 4052739537881/103682*2207^(3/8) 7014087869443266 a001 267914296/3571*24476^(19/21) 7014087869909978 a001 3536736619241/90481*2207^(3/8) 7014087870000800 a001 433494437/3571*24476^(6/7) 7014087870254397 a001 6557470319842/167761*2207^(3/8) 7014087870558333 a001 701408733/3571*24476^(17/21) 7014087871115867 a001 1134903170/3571*24476^(16/21) 7014087871589116 a001 956722026041/3571*9349^(2/19) 7014087871673400 a001 1836311903/3571*24476^(5/7) 7014087871713377 a001 2504730781961/64079*2207^(3/8) 7014087872230934 a001 2971215073/3571*24476^(2/3) 7014087872788468 a001 4807526976/3571*24476^(13/21) 7014087873346001 a001 7778742049/3571*24476^(4/7) 7014087873545115 m004 -25*Pi+Sqrt[5]*Pi+(3*Tan[Sqrt[5]*Pi])/2 7014087873903535 a001 12586269025/3571*24476^(11/21) 7014087874461068 a001 20365011074/3571*24476^(10/21) 7014087875018602 a001 32951280099/3571*24476^(3/7) 7014087875564224 a001 1597/39603*14662949395604^(7/9) 7014087875564224 a001 1597/39603*(1/2+1/2*5^(1/2))^49 7014087875564224 a001 1597/39603*505019158607^(7/8) 7014087875564268 a001 17711/3571*2537720636^(13/15) 7014087875564268 a001 17711/3571*45537549124^(13/17) 7014087875564268 a001 17711/3571*14662949395604^(13/21) 7014087875564268 a001 17711/3571*(1/2+1/2*5^(1/2))^39 7014087875564268 a001 17711/3571*192900153618^(13/18) 7014087875564268 a001 17711/3571*73681302247^(3/4) 7014087875564268 a001 17711/3571*10749957122^(13/16) 7014087875564268 a001 17711/3571*599074578^(13/14) 7014087875576135 a001 53316291173/3571*24476^(8/21) 7014087875812760 a001 1548008755920/3571*9349^(1/19) 7014087876133669 a001 86267571272/3571*24476^(1/3) 7014087876691202 a001 139583862445/3571*24476^(2/7) 7014087877248736 a001 225851433717/3571*24476^(5/21) 7014087877806270 a001 365435296162/3571*24476^(4/21) 7014087878328157 a001 20100271632925/28657 7014087878363803 a001 591286729879/3571*24476^(1/7) 7014087878402470 a001 63245986/3571*64079^(22/23) 7014087878476739 a001 102334155/3571*64079^(21/23) 7014087878551009 a001 165580141/3571*64079^(20/23) 7014087878625279 a001 267914296/3571*64079^(19/23) 7014087878699549 a001 433494437/3571*64079^(18/23) 7014087878773818 a001 701408733/3571*64079^(17/23) 7014087878848088 a001 1134903170/3571*64079^(16/23) 7014087878921337 a001 956722026041/3571*24476^(2/21) 7014087878922358 a001 1836311903/3571*64079^(15/23) 7014087878996627 a001 2971215073/3571*64079^(14/23) 7014087879070897 a001 4807526976/3571*64079^(13/23) 7014087879145167 a001 7778742049/3571*64079^(12/23) 7014087879219437 a001 12586269025/3571*64079^(11/23) 7014087879293706 a001 20365011074/3571*64079^(10/23) 7014087879367976 a001 32951280099/3571*64079^(9/23) 7014087879383885 a001 1597/103682*817138163596^(17/19) 7014087879383885 a001 1597/103682*14662949395604^(17/21) 7014087879383885 a001 1597/103682*(1/2+1/2*5^(1/2))^51 7014087879383885 a001 1597/103682*192900153618^(17/18) 7014087879383928 a001 46368/3571*(1/2+1/2*5^(1/2))^37 7014087879442246 a001 53316291173/3571*64079^(8/23) 7014087879478870 a001 1548008755920/3571*24476^(1/21) 7014087879516516 a001 86267571272/3571*64079^(7/23) 7014087879590785 a001 139583862445/3571*64079^(6/23) 7014087879665055 a001 225851433717/3571*64079^(5/23) 7014087879739325 a001 365435296162/3571*64079^(4/23) 7014087879787137 a001 52623194318103/75025 7014087879813595 a001 591286729879/3571*64079^(3/23) 7014087879837025 a001 165580141/3571*167761^(4/5) 7014087879886870 a001 1836311903/3571*167761^(3/5) 7014087879887864 a001 956722026041/3571*64079^(2/23) 7014087879936714 a001 20365011074/3571*167761^(2/5) 7014087879941166 a001 1597/271443*(1/2+1/2*5^(1/2))^53 7014087879941209 a001 121393/3571*2537720636^(7/9) 7014087879941209 a001 121393/3571*17393796001^(5/7) 7014087879941209 a001 121393/3571*312119004989^(7/11) 7014087879941209 a001 121393/3571*14662949395604^(5/9) 7014087879941209 a001 121393/3571*(1/2+1/2*5^(1/2))^35 7014087879941209 a001 121393/3571*505019158607^(5/8) 7014087879941209 a001 121393/3571*28143753123^(7/10) 7014087879941209 a001 121393/3571*599074578^(5/6) 7014087879941209 a001 121393/3571*228826127^(7/8) 7014087879962134 a001 1548008755920/3571*64079^(1/23) 7014087879986559 a001 225851433717/3571*167761^(1/5) 7014087880004085 a001 24157817/3571*439204^(8/9) 7014087880008123 a001 102334155/3571*439204^(7/9) 7014087880012163 a001 433494437/3571*439204^(2/3) 7014087880016203 a001 1836311903/3571*439204^(5/9) 7014087880020243 a001 7778742049/3571*439204^(4/9) 7014087880022472 a001 1597/710647*(1/2+1/2*5^(1/2))^55 7014087880022472 a001 1597/710647*3461452808002^(11/12) 7014087880022515 a001 317811/3571*141422324^(11/13) 7014087880022515 a001 317811/3571*2537720636^(11/15) 7014087880022515 a001 317811/3571*45537549124^(11/17) 7014087880022515 a001 317811/3571*312119004989^(3/5) 7014087880022515 a001 317811/3571*817138163596^(11/19) 7014087880022515 a001 317811/3571*14662949395604^(11/21) 7014087880022515 a001 317811/3571*(1/2+1/2*5^(1/2))^33 7014087880022515 a001 317811/3571*192900153618^(11/18) 7014087880022515 a001 317811/3571*10749957122^(11/16) 7014087880022515 a001 317811/3571*1568397607^(3/4) 7014087880022515 a001 317811/3571*599074578^(11/14) 7014087880022521 a001 317811/3571*33385282^(11/12) 7014087880024283 a001 32951280099/3571*439204^(1/3) 7014087880028324 a001 139583862445/3571*439204^(2/9) 7014087880031056 a001 360684739646049/514229 7014087880032364 a001 591286729879/3571*439204^(1/9) 7014087880034334 a001 1597/1860498*14662949395604^(19/21) 7014087880034334 a001 1597/1860498*(1/2+1/2*5^(1/2))^57 7014087880034378 a001 832040/3571*(1/2+1/2*5^(1/2))^31 7014087880034378 a001 832040/3571*9062201101803^(1/2) 7014087880035587 a001 944284907616763/1346269 7014087880036065 a001 1597/4870847*(1/2+1/2*5^(1/2))^59 7014087880036108 a001 2178309/3571*(1/2+1/2*5^(1/2))^29 7014087880036108 a001 2178309/3571*1322157322203^(1/2) 7014087880036248 a001 1236084991602120/1762289 7014087880036268 a001 1597*7881196^(9/11) 7014087880036318 a001 1597/12752043*(1/2+1/2*5^(1/2))^61 7014087880036324 a001 24157817/3571*7881196^(8/11) 7014087880036329 a001 63245986/3571*7881196^(2/3) 7014087880036332 a001 102334155/3571*7881196^(7/11) 7014087880036342 a001 433494437/3571*7881196^(6/11) 7014087880036344 a001 6472225041995957/9227465 7014087880036353 a001 1836311903/3571*7881196^(5/11) 7014087880036354 a001 1597/33385282*(1/2+1/2*5^(1/2))^63 7014087880036358 a001 16944505142783631/24157817 7014087880036360 a001 1597*141422324^(9/13) 7014087880036361 a001 1597*2537720636^(3/5) 7014087880036361 a001 1597*45537549124^(9/17) 7014087880036361 a001 1597*817138163596^(9/19) 7014087880036361 a001 1597*14662949395604^(3/7) 7014087880036361 a001 1597*(1/2+1/2*5^(1/2))^27 7014087880036361 a001 1597*192900153618^(1/2) 7014087880036361 a001 1597*10749957122^(9/16) 7014087880036361 a001 1597*599074578^(9/14) 7014087880036363 a001 7778742049/3571*7881196^(4/11) 7014087880036365 a001 1597*33385282^(3/4) 7014087880036366 a001 12586269025/3571*7881196^(1/3) 7014087880036367 a001 308008238258461/439128 7014087880036373 a001 32951280099/3571*7881196^(3/11) 7014087880036377 a001 1597/20633239*(1/2+1/2*5^(1/2))^62 7014087880036383 a001 139583862445/3571*7881196^(2/11) 7014087880036386 a001 14930352/3571*20633239^(5/7) 7014087880036394 a001 591286729879/3571*7881196^(1/11) 7014087880036394 a001 102334155/3571*20633239^(3/5) 7014087880036395 a001 165580141/3571*20633239^(4/7) 7014087880036397 a001 1836311903/3571*20633239^(3/7) 7014087880036397 a001 2971215073/3571*20633239^(2/5) 7014087880036398 a001 14930352/3571*2537720636^(5/9) 7014087880036398 a001 14930352/3571*312119004989^(5/11) 7014087880036398 a001 14930352/3571*(1/2+1/2*5^(1/2))^25 7014087880036398 a001 14930352/3571*3461452808002^(5/12) 7014087880036398 a001 14930352/3571*28143753123^(1/2) 7014087880036398 a001 14930352/3571*228826127^(5/8) 7014087880036399 a001 20365011074/3571*20633239^(2/7) 7014087880036401 a001 86267571272/3571*20633239^(1/5) 7014087880036402 a001 225851433717/3571*20633239^(1/7) 7014087880036403 a001 39088169/3571*(1/2+1/2*5^(1/2))^23 7014087880036403 a001 39088169/3571*4106118243^(1/2) 7014087880036404 a001 102334155/3571*141422324^(7/13) 7014087880036404 a001 433494437/3571*141422324^(6/13) 7014087880036404 a001 1836311903/3571*141422324^(5/13) 7014087880036404 a001 102334155/3571*2537720636^(7/15) 7014087880036404 a001 102334155/3571*17393796001^(3/7) 7014087880036404 a001 102334155/3571*45537549124^(7/17) 7014087880036404 a001 102334155/3571*14662949395604^(1/3) 7014087880036404 a001 102334155/3571*(1/2+1/2*5^(1/2))^21 7014087880036404 a001 102334155/3571*192900153618^(7/18) 7014087880036404 a001 102334155/3571*10749957122^(7/16) 7014087880036404 a001 102334155/3571*599074578^(1/2) 7014087880036404 a001 4807526976/3571*141422324^(1/3) 7014087880036404 a001 7778742049/3571*141422324^(4/13) 7014087880036404 a001 32951280099/3571*141422324^(3/13) 7014087880036404 a001 139583862445/3571*141422324^(2/13) 7014087880036404 a001 591286729879/3571*141422324^(1/13) 7014087880036404 a001 267914296/3571*817138163596^(1/3) 7014087880036404 a001 267914296/3571*(1/2+1/2*5^(1/2))^19 7014087880036404 a001 701408733/3571*45537549124^(1/3) 7014087880036404 a001 701408733/3571*(1/2+1/2*5^(1/2))^17 7014087880036404 a001 1836311903/3571*2537720636^(1/3) 7014087880036404 a001 1836311903/3571*45537549124^(5/17) 7014087880036404 a001 1836311903/3571*312119004989^(3/11) 7014087880036404 a001 1836311903/3571*14662949395604^(5/21) 7014087880036404 a001 1836311903/3571*(1/2+1/2*5^(1/2))^15 7014087880036404 a001 1836311903/3571*192900153618^(5/18) 7014087880036404 a001 1836311903/3571*28143753123^(3/10) 7014087880036404 a001 1836311903/3571*10749957122^(5/16) 7014087880036404 a001 7778742049/3571*2537720636^(4/15) 7014087880036404 a001 20365011074/3571*2537720636^(2/9) 7014087880036404 a001 32951280099/3571*2537720636^(1/5) 7014087880036404 a001 139583862445/3571*2537720636^(2/15) 7014087880036404 a001 225851433717/3571*2537720636^(1/9) 7014087880036404 a001 591286729879/3571*2537720636^(1/15) 7014087880036404 a001 4807526976/3571*(1/2+1/2*5^(1/2))^13 7014087880036404 a001 4807526976/3571*73681302247^(1/4) 7014087880036404 a001 12586269025/3571*312119004989^(1/5) 7014087880036404 a001 12586269025/3571*(1/2+1/2*5^(1/2))^11 7014087880036404 a001 86267571272/3571*17393796001^(1/7) 7014087880036404 a001 32951280099/3571*45537549124^(3/17) 7014087880036404 a001 32951280099/3571*817138163596^(3/19) 7014087880036404 a001 32951280099/3571*14662949395604^(1/7) 7014087880036404 a001 32951280099/3571*(1/2+1/2*5^(1/2))^9 7014087880036404 a001 32951280099/3571*192900153618^(1/6) 7014087880036404 a001 139583862445/3571*45537549124^(2/17) 7014087880036404 a001 591286729879/3571*45537549124^(1/17) 7014087880036404 a001 86267571272/3571*14662949395604^(1/9) 7014087880036404 a001 86267571272/3571*(1/2+1/2*5^(1/2))^7 7014087880036404 a001 225851433717/3571*312119004989^(1/11) 7014087880036404 a001 225851433717/3571*(1/2+1/2*5^(1/2))^5 7014087880036404 a001 591286729879/3571*14662949395604^(1/21) 7014087880036404 a001 591286729879/3571*(1/2+1/2*5^(1/2))^3 7014087880036404 a001 774004377960/3571+774004377960/3571*5^(1/2) 7014087880036404 a001 2504730781961/3571 7014087880036404 a001 591286729879/3571*192900153618^(1/18) 7014087880036404 a001 365435296162/3571*23725150497407^(1/16) 7014087880036404 a001 139583862445/3571*14662949395604^(2/21) 7014087880036404 a001 139583862445/3571*(1/2+1/2*5^(1/2))^6 7014087880036404 a001 365435296162/3571*73681302247^(1/13) 7014087880036404 a001 53316291173/3571*(1/2+1/2*5^(1/2))^8 7014087880036404 a001 53316291173/3571*23725150497407^(1/8) 7014087880036404 a001 53316291173/3571*505019158607^(1/7) 7014087880036404 a001 53316291173/3571*73681302247^(2/13) 7014087880036404 a001 225851433717/3571*28143753123^(1/10) 7014087880036404 a001 956722026041/3571*10749957122^(1/24) 7014087880036404 a001 20365011074/3571*312119004989^(2/11) 7014087880036404 a001 20365011074/3571*(1/2+1/2*5^(1/2))^10 7014087880036404 a001 591286729879/3571*10749957122^(1/16) 7014087880036404 a001 365435296162/3571*10749957122^(1/12) 7014087880036404 a001 20365011074/3571*28143753123^(1/5) 7014087880036404 a001 139583862445/3571*10749957122^(1/8) 7014087880036404 a001 32951280099/3571*10749957122^(3/16) 7014087880036404 a001 53316291173/3571*10749957122^(1/6) 7014087880036404 a001 20365011074/3571*10749957122^(5/24) 7014087880036404 a001 956722026041/3571*4106118243^(1/23) 7014087880036404 a001 7778742049/3571*45537549124^(4/17) 7014087880036404 a001 7778742049/3571*817138163596^(4/19) 7014087880036404 a001 7778742049/3571*14662949395604^(4/21) 7014087880036404 a001 7778742049/3571*(1/2+1/2*5^(1/2))^12 7014087880036404 a001 7778742049/3571*192900153618^(2/9) 7014087880036404 a001 7778742049/3571*73681302247^(3/13) 7014087880036404 a001 365435296162/3571*4106118243^(2/23) 7014087880036404 a001 7778742049/3571*10749957122^(1/4) 7014087880036404 a001 139583862445/3571*4106118243^(3/23) 7014087880036404 a001 53316291173/3571*4106118243^(4/23) 7014087880036404 a001 20365011074/3571*4106118243^(5/23) 7014087880036404 a001 956722026041/3571*1568397607^(1/22) 7014087880036404 a001 7778742049/3571*4106118243^(6/23) 7014087880036404 a001 2971215073/3571*17393796001^(2/7) 7014087880036404 a001 2971215073/3571*14662949395604^(2/9) 7014087880036404 a001 2971215073/3571*(1/2+1/2*5^(1/2))^14 7014087880036404 a001 2971215073/3571*505019158607^(1/4) 7014087880036404 a001 2971215073/3571*10749957122^(7/24) 7014087880036404 a001 365435296162/3571*1568397607^(1/11) 7014087880036404 a001 2971215073/3571*4106118243^(7/23) 7014087880036404 a001 139583862445/3571*1568397607^(3/22) 7014087880036404 a001 53316291173/3571*1568397607^(2/11) 7014087880036404 a001 20365011074/3571*1568397607^(5/22) 7014087880036404 a001 12586269025/3571*1568397607^(1/4) 7014087880036404 a001 7778742049/3571*1568397607^(3/11) 7014087880036404 a001 956722026041/3571*599074578^(1/21) 7014087880036404 a001 2971215073/3571*1568397607^(7/22) 7014087880036404 a001 1134903170/3571*(1/2+1/2*5^(1/2))^16 7014087880036404 a001 1134903170/3571*23725150497407^(1/4) 7014087880036404 a001 1134903170/3571*73681302247^(4/13) 7014087880036404 a001 1134903170/3571*10749957122^(1/3) 7014087880036404 a001 1134903170/3571*4106118243^(8/23) 7014087880036404 a001 591286729879/3571*599074578^(1/14) 7014087880036404 a001 365435296162/3571*599074578^(2/21) 7014087880036404 a001 1134903170/3571*1568397607^(4/11) 7014087880036404 a001 139583862445/3571*599074578^(1/7) 7014087880036404 a001 86267571272/3571*599074578^(1/6) 7014087880036404 a001 53316291173/3571*599074578^(4/21) 7014087880036404 a001 32951280099/3571*599074578^(3/14) 7014087880036404 a001 20365011074/3571*599074578^(5/21) 7014087880036404 a001 7778742049/3571*599074578^(2/7) 7014087880036404 a001 1836311903/3571*599074578^(5/14) 7014087880036404 a001 2971215073/3571*599074578^(1/3) 7014087880036404 a001 956722026041/3571*228826127^(1/20) 7014087880036404 a001 433494437/3571*2537720636^(2/5) 7014087880036404 a001 433494437/3571*45537549124^(6/17) 7014087880036404 a001 433494437/3571*14662949395604^(2/7) 7014087880036404 a001 433494437/3571*(1/2+1/2*5^(1/2))^18 7014087880036404 a001 433494437/3571*192900153618^(1/3) 7014087880036404 a001 433494437/3571*10749957122^(3/8) 7014087880036404 a001 433494437/3571*4106118243^(9/23) 7014087880036404 a001 1134903170/3571*599074578^(8/21) 7014087880036404 a001 433494437/3571*1568397607^(9/22) 7014087880036404 a001 365435296162/3571*228826127^(1/10) 7014087880036404 a001 433494437/3571*599074578^(3/7) 7014087880036404 a001 225851433717/3571*228826127^(1/8) 7014087880036404 a001 139583862445/3571*228826127^(3/20) 7014087880036404 a001 53316291173/3571*228826127^(1/5) 7014087880036404 a001 20365011074/3571*228826127^(1/4) 7014087880036404 a001 7778742049/3571*228826127^(3/10) 7014087880036404 a001 2971215073/3571*228826127^(7/20) 7014087880036404 a001 956722026041/3571*87403803^(1/19) 7014087880036404 a001 1836311903/3571*228826127^(3/8) 7014087880036404 a001 165580141/3571*2537720636^(4/9) 7014087880036404 a001 165580141/3571*(1/2+1/2*5^(1/2))^20 7014087880036404 a001 165580141/3571*23725150497407^(5/16) 7014087880036404 a001 165580141/3571*505019158607^(5/14) 7014087880036404 a001 165580141/3571*73681302247^(5/13) 7014087880036404 a001 165580141/3571*28143753123^(2/5) 7014087880036404 a001 165580141/3571*10749957122^(5/12) 7014087880036404 a001 165580141/3571*4106118243^(10/23) 7014087880036404 a001 165580141/3571*1568397607^(5/11) 7014087880036404 a001 1134903170/3571*228826127^(2/5) 7014087880036404 a001 165580141/3571*599074578^(10/21) 7014087880036404 a001 433494437/3571*228826127^(9/20) 7014087880036404 a001 365435296162/3571*87403803^(2/19) 7014087880036404 a001 165580141/3571*228826127^(1/2) 7014087880036404 a001 139583862445/3571*87403803^(3/19) 7014087880036404 a001 53316291173/3571*87403803^(4/19) 7014087880036404 a001 20365011074/3571*87403803^(5/19) 7014087880036404 a001 7778742049/3571*87403803^(6/19) 7014087880036404 a001 2971215073/3571*87403803^(7/19) 7014087880036404 a001 956722026041/3571*33385282^(1/18) 7014087880036404 a001 63245986/3571*312119004989^(2/5) 7014087880036404 a001 63245986/3571*(1/2+1/2*5^(1/2))^22 7014087880036404 a001 63245986/3571*10749957122^(11/24) 7014087880036404 a001 63245986/3571*4106118243^(11/23) 7014087880036404 a001 63245986/3571*1568397607^(1/2) 7014087880036404 a001 63245986/3571*599074578^(11/21) 7014087880036404 a001 1134903170/3571*87403803^(8/19) 7014087880036404 a001 63245986/3571*228826127^(11/20) 7014087880036404 a001 267914296/3571*87403803^(1/2) 7014087880036404 a001 433494437/3571*87403803^(9/19) 7014087880036404 a001 591286729879/3571*33385282^(1/12) 7014087880036404 a001 165580141/3571*87403803^(10/19) 7014087880036405 a001 365435296162/3571*33385282^(1/9) 7014087880036405 a001 63245986/3571*87403803^(11/19) 7014087880036405 a001 139583862445/3571*33385282^(1/6) 7014087880036405 a001 53316291173/3571*33385282^(2/9) 7014087880036405 a001 32951280099/3571*33385282^(1/4) 7014087880036406 a001 20365011074/3571*33385282^(5/18) 7014087880036406 a001 7778742049/3571*33385282^(1/3) 7014087880036406 a001 24157817/3571*141422324^(8/13) 7014087880036406 a001 24157817/3571*2537720636^(8/15) 7014087880036406 a001 24157817/3571*45537549124^(8/17) 7014087880036406 a001 24157817/3571*14662949395604^(8/21) 7014087880036406 a001 24157817/3571*(1/2+1/2*5^(1/2))^24 7014087880036406 a001 24157817/3571*192900153618^(4/9) 7014087880036406 a001 24157817/3571*73681302247^(6/13) 7014087880036406 a001 24157817/3571*10749957122^(1/2) 7014087880036406 a001 24157817/3571*4106118243^(12/23) 7014087880036406 a001 24157817/3571*1568397607^(6/11) 7014087880036406 a001 24157817/3571*599074578^(4/7) 7014087880036406 a001 2971215073/3571*33385282^(7/18) 7014087880036406 a001 24157817/3571*228826127^(3/5) 7014087880036406 a001 956722026041/3571*12752043^(1/17) 7014087880036406 a001 1836311903/3571*33385282^(5/12) 7014087880036407 a001 1134903170/3571*33385282^(4/9) 7014087880036407 a001 24157817/3571*87403803^(12/19) 7014087880036407 a001 433494437/3571*33385282^(1/2) 7014087880036407 a001 102334155/3571*33385282^(7/12) 7014087880036407 a001 165580141/3571*33385282^(5/9) 7014087880036408 a001 63245986/3571*33385282^(11/18) 7014087880036409 a001 365435296162/3571*12752043^(2/17) 7014087880036410 a001 24157817/3571*33385282^(2/3) 7014087880036411 a001 139583862445/3571*12752043^(3/17) 7014087880036414 a001 53316291173/3571*12752043^(4/17) 7014087880036417 a001 20365011074/3571*12752043^(5/17) 7014087880036419 a001 7778742049/3571*12752043^(6/17) 7014087880036420 a001 9227465/3571*141422324^(2/3) 7014087880036420 a001 9227465/3571*(1/2+1/2*5^(1/2))^26 7014087880036420 a001 9227465/3571*73681302247^(1/2) 7014087880036420 a001 9227465/3571*10749957122^(13/24) 7014087880036420 a001 9227465/3571*4106118243^(13/23) 7014087880036420 a001 9227465/3571*1568397607^(13/22) 7014087880036420 a001 9227465/3571*599074578^(13/21) 7014087880036420 a001 9227465/3571*228826127^(13/20) 7014087880036421 a001 9227465/3571*87403803^(13/19) 7014087880036422 a001 2971215073/3571*12752043^(7/17) 7014087880036422 a001 956722026041/3571*4870847^(1/16) 7014087880036424 a001 1134903170/3571*12752043^(8/17) 7014087880036425 a001 9227465/3571*33385282^(13/18) 7014087880036425 a001 701408733/3571*12752043^(1/2) 7014087880036427 a001 433494437/3571*12752043^(9/17) 7014087880036429 a001 165580141/3571*12752043^(10/17) 7014087880036432 a001 63245986/3571*12752043^(11/17) 7014087880036437 a001 24157817/3571*12752043^(12/17) 7014087880036441 a001 365435296162/3571*4870847^(1/8) 7014087880036453 a001 9227465/3571*12752043^(13/17) 7014087880036459 a001 139583862445/3571*4870847^(3/16) 7014087880036474 a001 1597/7881196*14662949395604^(20/21) 7014087880036474 a001 1597/7881196*(1/2+1/2*5^(1/2))^60 7014087880036478 a001 53316291173/3571*4870847^(1/4) 7014087880036496 a001 20365011074/3571*4870847^(5/16) 7014087880036504 a001 3524578/3571*20633239^(4/5) 7014087880036515 a001 7778742049/3571*4870847^(3/8) 7014087880036517 a001 3524578/3571*17393796001^(4/7) 7014087880036517 a001 3524578/3571*14662949395604^(4/9) 7014087880036517 a001 3524578/3571*(1/2+1/2*5^(1/2))^28 7014087880036517 a001 3524578/3571*73681302247^(7/13) 7014087880036517 a001 3524578/3571*10749957122^(7/12) 7014087880036517 a001 3524578/3571*4106118243^(14/23) 7014087880036517 a001 3524578/3571*1568397607^(7/11) 7014087880036517 a001 3524578/3571*599074578^(2/3) 7014087880036517 a001 3524578/3571*228826127^(7/10) 7014087880036517 a001 3524578/3571*87403803^(14/19) 7014087880036522 a001 3524578/3571*33385282^(7/9) 7014087880036533 a001 2971215073/3571*4870847^(7/16) 7014087880036539 a001 956722026041/3571*1860498^(1/15) 7014087880036552 a001 1134903170/3571*4870847^(1/2) 7014087880036552 a001 3524578/3571*12752043^(14/17) 7014087880036570 a001 433494437/3571*4870847^(9/16) 7014087880036589 a001 165580141/3571*4870847^(5/8) 7014087880036607 a001 591286729879/3571*1860498^(1/10) 7014087880036607 a001 63245986/3571*4870847^(11/16) 7014087880036628 a001 24157817/3571*4870847^(3/4) 7014087880036656 a001 1527885075587477/2178309 7014087880036661 a001 9227465/3571*4870847^(13/16) 7014087880036674 a001 365435296162/3571*1860498^(2/15) 7014087880036742 a001 225851433717/3571*1860498^(1/6) 7014087880036775 a001 3524578/3571*4870847^(7/8) 7014087880036809 a001 139583862445/3571*1860498^(1/5) 7014087880036944 a001 53316291173/3571*1860498^(4/15) 7014087880037012 a001 32951280099/3571*1860498^(3/10) 7014087880037075 a001 1346269/3571*7881196^(10/11) 7014087880037079 a001 20365011074/3571*1860498^(1/3) 7014087880037135 a001 1597/3010349*(1/2+1/2*5^(1/2))^58 7014087880037164 a001 1346269/3571*20633239^(6/7) 7014087880037178 a001 1346269/3571*141422324^(10/13) 7014087880037178 a001 1346269/3571*2537720636^(2/3) 7014087880037178 a001 1346269/3571*45537549124^(10/17) 7014087880037178 a001 1346269/3571*312119004989^(6/11) 7014087880037178 a001 1346269/3571*14662949395604^(10/21) 7014087880037178 a001 1346269/3571*(1/2+1/2*5^(1/2))^30 7014087880037178 a001 1346269/3571*192900153618^(5/9) 7014087880037178 a001 1346269/3571*28143753123^(3/5) 7014087880037178 a001 1346269/3571*10749957122^(5/8) 7014087880037178 a001 1346269/3571*4106118243^(15/23) 7014087880037178 a001 1346269/3571*1568397607^(15/22) 7014087880037178 a001 1346269/3571*599074578^(5/7) 7014087880037178 a001 1346269/3571*228826127^(3/4) 7014087880037179 a001 1346269/3571*87403803^(15/19) 7014087880037183 a001 1346269/3571*33385282^(5/6) 7014087880037214 a001 7778742049/3571*1860498^(2/5) 7014087880037216 a001 1346269/3571*12752043^(15/17) 7014087880037349 a001 2971215073/3571*1860498^(7/15) 7014087880037396 a001 956722026041/3571*710647^(1/14) 7014087880037417 a001 1836311903/3571*1860498^(1/2) 7014087880037455 a001 1346269/3571*4870847^(15/16) 7014087880037485 a001 1134903170/3571*1860498^(8/15) 7014087880037620 a001 433494437/3571*1860498^(3/5) 7014087880037755 a001 165580141/3571*1860498^(2/3) 7014087880037822 a001 102334155/3571*1860498^(7/10) 7014087880037890 a001 63245986/3571*1860498^(11/15) 7014087880038027 a001 24157817/3571*1860498^(4/5) 7014087880038086 a001 14930352/3571*1860498^(5/6) 7014087880038177 a001 9227465/3571*1860498^(13/15) 7014087880038184 a001 1597*1860498^(9/10) 7014087880038387 a001 291800083985357/416020 7014087880038388 a001 365435296162/3571*710647^(1/7) 7014087880038408 a001 3524578/3571*1860498^(14/15) 7014087880039380 a001 139583862445/3571*710647^(3/14) 7014087880039876 a001 86267571272/3571*710647^(1/4) 7014087880040372 a001 53316291173/3571*710647^(2/7) 7014087880041364 a001 20365011074/3571*710647^(5/14) 7014087880041666 a001 1597/1149851*14662949395604^(8/9) 7014087880041666 a001 1597/1149851*(1/2+1/2*5^(1/2))^56 7014087880041709 a001 514229/3571*(1/2+1/2*5^(1/2))^32 7014087880041709 a001 514229/3571*23725150497407^(1/2) 7014087880041709 a001 514229/3571*505019158607^(4/7) 7014087880041709 a001 514229/3571*73681302247^(8/13) 7014087880041709 a001 514229/3571*10749957122^(2/3) 7014087880041709 a001 514229/3571*4106118243^(16/23) 7014087880041709 a001 514229/3571*1568397607^(8/11) 7014087880041709 a001 514229/3571*599074578^(16/21) 7014087880041709 a001 514229/3571*228826127^(4/5) 7014087880041710 a001 514229/3571*87403803^(16/19) 7014087880041714 a001 514229/3571*33385282^(8/9) 7014087880041749 a001 514229/3571*12752043^(16/17) 7014087880042356 a001 7778742049/3571*710647^(3/7) 7014087880043348 a001 2971215073/3571*710647^(1/2) 7014087880043727 a001 956722026041/3571*271443^(1/13) 7014087880044340 a001 1134903170/3571*710647^(4/7) 7014087880045332 a001 433494437/3571*710647^(9/14) 7014087880046324 a001 165580141/3571*710647^(5/7) 7014087880046820 a001 102334155/3571*710647^(3/4) 7014087880047317 a001 63245986/3571*710647^(11/14) 7014087880048311 a001 24157817/3571*710647^(6/7) 7014087880049317 a001 9227465/3571*710647^(13/14) 7014087880050249 a001 222915428324665/317811 7014087880051049 a001 365435296162/3571*271443^(2/13) 7014087880058372 a001 139583862445/3571*271443^(3/13) 7014087880063590 a001 1548008755920/3571*103682^(1/24) 7014087880065695 a001 53316291173/3571*271443^(4/13) 7014087880072722 a001 1597/439204*14662949395604^(6/7) 7014087880072722 a001 1597/439204*(1/2+1/2*5^(1/2))^54 7014087880072765 a001 196418/3571*45537549124^(2/3) 7014087880072765 a001 196418/3571*(1/2+1/2*5^(1/2))^34 7014087880072765 a001 196418/3571*10749957122^(17/24) 7014087880072765 a001 196418/3571*4106118243^(17/23) 7014087880072765 a001 196418/3571*1568397607^(17/22) 7014087880072765 a001 196418/3571*599074578^(17/21) 7014087880072765 a001 196418/3571*228826127^(17/20) 7014087880072766 a001 196418/3571*87403803^(17/19) 7014087880072771 a001 196418/3571*33385282^(17/18) 7014087880073017 a001 20365011074/3571*271443^(5/13) 7014087880080340 a001 7778742049/3571*271443^(6/13) 7014087880084001 a001 4807526976/3571*271443^(1/2) 7014087880087663 a001 2971215073/3571*271443^(7/13) 7014087880090777 a001 956722026041/3571*103682^(1/12) 7014087880094985 a001 1134903170/3571*271443^(8/13) 7014087880102308 a001 433494437/3571*271443^(9/13) 7014087880109631 a001 165580141/3571*271443^(10/13) 7014087880116954 a001 63245986/3571*271443^(11/13) 7014087880117963 a001 591286729879/3571*103682^(1/8) 7014087880124279 a001 24157817/3571*271443^(12/13) 7014087880131556 a001 85146117003281/121393 7014087880145150 a001 365435296162/3571*103682^(1/6) 7014087880172336 a001 225851433717/3571*103682^(5/24) 7014087880199523 a001 139583862445/3571*103682^(1/4) 7014087880226709 a001 86267571272/3571*103682^(7/24) 7014087880239683 a001 1548008755920/3571*39603^(1/22) 7014087880253896 a001 53316291173/3571*103682^(1/3) 7014087880281082 a001 32951280099/3571*103682^(3/8) 7014087880285584 a001 1597/167761*(1/2+1/2*5^(1/2))^52 7014087880285584 a001 1597/167761*23725150497407^(13/16) 7014087880285584 a001 1597/167761*505019158607^(13/14) 7014087880285627 a001 75025/3571*141422324^(12/13) 7014087880285627 a001 75025/3571*2537720636^(4/5) 7014087880285627 a001 75025/3571*45537549124^(12/17) 7014087880285627 a001 75025/3571*14662949395604^(4/7) 7014087880285627 a001 75025/3571*(1/2+1/2*5^(1/2))^36 7014087880285627 a001 75025/3571*505019158607^(9/14) 7014087880285627 a001 75025/3571*192900153618^(2/3) 7014087880285627 a001 75025/3571*73681302247^(9/13) 7014087880285627 a001 75025/3571*10749957122^(3/4) 7014087880285627 a001 75025/3571*4106118243^(18/23) 7014087880285627 a001 75025/3571*1568397607^(9/11) 7014087880285627 a001 75025/3571*599074578^(6/7) 7014087880285628 a001 75025/3571*228826127^(9/10) 7014087880285628 a001 75025/3571*87403803^(18/19) 7014087880308269 a001 20365011074/3571*103682^(5/12) 7014087880335455 a001 12586269025/3571*103682^(11/24) 7014087880362642 a001 7778742049/3571*103682^(1/2) 7014087880389828 a001 4807526976/3571*103682^(13/24) 7014087880417015 a001 2971215073/3571*103682^(7/12) 7014087880442962 a001 956722026041/3571*39603^(1/11) 7014087880444201 a001 1836311903/3571*103682^(5/8) 7014087880471388 a001 1134903170/3571*103682^(2/3) 7014087880498574 a001 701408733/3571*103682^(17/24) 7014087880525761 a001 433494437/3571*103682^(3/4) 7014087880552947 a001 267914296/3571*103682^(19/24) 7014087880580134 a001 165580141/3571*103682^(5/6) 7014087880607320 a001 102334155/3571*103682^(7/8) 7014087880634507 a001 63245986/3571*103682^(11/12) 7014087880646241 a001 591286729879/3571*39603^(3/22) 7014087880661692 a001 39088169/3571*103682^(23/24) 7014087880688837 a001 16261461342589/23184 7014087880849520 a001 365435296162/3571*39603^(2/11) 7014087881052798 a001 225851433717/3571*39603^(5/22) 7014087881256077 a001 139583862445/3571*39603^(3/11) 7014087881459356 a001 86267571272/3571*39603^(7/22) 7014087881569028 a001 1548008755920/3571*15127^(1/20) 7014087881662635 a001 53316291173/3571*39603^(4/11) 7014087881713378 a001 956722026041/24476*2207^(3/8) 7014087881744565 a001 1597/64079*312119004989^(10/11) 7014087881744565 a001 1597/64079*(1/2+1/2*5^(1/2))^50 7014087881744565 a001 1597/64079*3461452808002^(5/6) 7014087881744608 a001 28657/3571*817138163596^(2/3) 7014087881744608 a001 28657/3571*(1/2+1/2*5^(1/2))^38 7014087881744608 a001 28657/3571*10749957122^(19/24) 7014087881744608 a001 28657/3571*4106118243^(19/23) 7014087881744608 a001 28657/3571*1568397607^(19/22) 7014087881744608 a001 28657/3571*599074578^(19/21) 7014087881744608 a001 28657/3571*228826127^(19/20) 7014087881865914 a001 32951280099/3571*39603^(9/22) 7014087882069193 a001 20365011074/3571*39603^(5/11) 7014087882272472 a001 12586269025/3571*39603^(1/2) 7014087882475751 a001 7778742049/3571*39603^(6/11) 7014087882679030 a001 4807526976/3571*39603^(13/22) 7014087882882309 a001 2971215073/3571*39603^(7/11) 7014087883085588 a001 1836311903/3571*39603^(15/22) 7014087883101652 a001 956722026041/3571*15127^(1/10) 7014087883288867 a001 1134903170/3571*39603^(8/11) 7014087883492146 a001 701408733/3571*39603^(17/22) 7014087883695424 a001 433494437/3571*39603^(9/11) 7014087883898703 a001 267914296/3571*39603^(19/22) 7014087884101982 a001 165580141/3571*39603^(10/11) 7014087884305261 a001 102334155/3571*39603^(21/22) 7014087884508497 a001 12422651052253/17711 7014087884634276 a001 591286729879/3571*15127^(3/20) 7014087886166900 a001 365435296162/3571*15127^(1/5) 7014087887699523 a001 225851433717/3571*15127^(1/4) 7014087889232147 a001 139583862445/3571*15127^(3/10) 7014087890764771 a001 86267571272/3571*15127^(7/20) 7014087891708360 a001 1548008755920/3571*5778^(1/18) 7014087891744566 a001 1597/24476*45537549124^(16/17) 7014087891744566 a001 1597/24476*14662949395604^(16/21) 7014087891744566 a001 1597/24476*(1/2+1/2*5^(1/2))^48 7014087891744566 a001 1597/24476*192900153618^(8/9) 7014087891744566 a001 1597/24476*73681302247^(12/13) 7014087891744609 a001 10946/3571*2537720636^(8/9) 7014087891744609 a001 10946/3571*312119004989^(8/11) 7014087891744609 a001 10946/3571*(1/2+1/2*5^(1/2))^40 7014087891744609 a001 10946/3571*23725150497407^(5/8) 7014087891744609 a001 10946/3571*73681302247^(10/13) 7014087891744609 a001 10946/3571*28143753123^(4/5) 7014087891744609 a001 10946/3571*10749957122^(5/6) 7014087891744609 a001 10946/3571*4106118243^(20/23) 7014087891744609 a001 10946/3571*1568397607^(10/11) 7014087891744609 a001 10946/3571*599074578^(20/21) 7014087892297395 a001 53316291173/3571*15127^(2/5) 7014087893830019 a001 32951280099/3571*15127^(9/20) 7014087895362643 a001 20365011074/3571*15127^(1/2) 7014087896895267 a001 12586269025/3571*15127^(11/20) 7014087898427891 a001 7778742049/3571*15127^(3/5) 7014087899960515 a001 4807526976/3571*15127^(13/20) 7014087901493139 a001 2971215073/3571*15127^(7/10) 7014087902575445 a001 1/322*(1/2*5^(1/2)+1/2)^30*3^(3/17) 7014087903025763 a001 1836311903/3571*15127^(3/4) 7014087903380316 a001 956722026041/3571*5778^(1/9) 7014087904558386 a001 1134903170/3571*15127^(4/5) 7014087906091010 a001 701408733/3571*15127^(17/20) 7014087907623634 a001 433494437/3571*15127^(9/10) 7014087909156258 a001 267914296/3571*15127^(19/20) 7014087910688839 a001 4745030471581/6765 7014087915052272 a001 591286729879/3571*5778^(1/6) 7014087919331691 m001 (gamma(3)+ZetaQ(2))/(ln(3)-Ei(1)) 7014087926724228 a001 365435296162/3571*5778^(2/9) 7014087929353561 a001 365435296162/15127*2207^(7/16) 7014087929912563 a001 53316291173/5778*2207^(9/16) 7014087934928450 m003 -15/2+Sqrt[5]/8+Csch[1/2+Sqrt[5]/2]/2 7014087935537503 r008 a(0)=7,K{-n^6,-38+35*n^3-44*n^2-35*n} 7014087938396184 a001 225851433717/3571*5778^(5/18) 7014087950068140 a001 139583862445/3571*5778^(1/3) 7014087950254404 a001 365435296162/9349*2207^(3/8) 7014087955533903 a001 956722026041/39603*2207^(7/16) 7014087959353564 a001 2504730781961/103682*2207^(7/16) 7014087959910845 a001 6557470319842/271443*2207^(7/16) 7014087960042401 a001 10610209857723/439204*2207^(7/16) 7014087960255263 a001 4052739537881/167761*2207^(7/16) 7014087960285592 a001 1597/9349*(1/2+1/2*5^(1/2))^46 7014087960285592 a001 1597/9349*10749957122^(23/24) 7014087960285634 a001 4181/3571*2537720636^(14/15) 7014087960285634 a001 4181/3571*17393796001^(6/7) 7014087960285634 a001 4181/3571*45537549124^(14/17) 7014087960285634 a001 4181/3571*817138163596^(14/19) 7014087960285634 a001 4181/3571*14662949395604^(2/3) 7014087960285634 a001 4181/3571*(1/2+1/2*5^(1/2))^42 7014087960285634 a001 4181/3571*505019158607^(3/4) 7014087960285634 a001 4181/3571*192900153618^(7/9) 7014087960285634 a001 4181/3571*10749957122^(7/8) 7014087960285634 a001 4181/3571*4106118243^(21/23) 7014087960285634 a001 4181/3571*1568397607^(21/22) 7014087961714244 a001 1548008755920/64079*2207^(7/16) 7014087961740096 a001 86267571272/3571*5778^(7/18) 7014087970037270 a001 1548008755920/3571*2207^(1/16) 7014087971714244 a001 591286729879/24476*2207^(7/16) 7014087972487796 l006 ln(3556/7171) 7014087973412053 a001 53316291173/3571*5778^(4/9) 7014087985084009 a001 32951280099/3571*5778^(1/2) 7014087996755965 a001 20365011074/3571*5778^(5/9) 7014088004347205 a001 6557470319842/15127*843^(1/14) 7014088004985237 a001 365435296162/2207*843^(3/14) 7014088005486168 r009 Im(z^3+c),c=-16/19+13/57*I,n=2 7014088008427921 a001 12586269025/3571*5778^(11/18) 7014088017109541 m001 (FeigenbaumB-ZetaP(3))/Zeta(1,2) 7014088019354428 a001 32264490531/2161*2207^(1/2) 7014088019913430 a001 10983760033/1926*2207^(5/8) 7014088020099877 a001 7778742049/3571*5778^(2/3) 7014088031771834 a001 4807526976/3571*5778^(13/18) 7014088038275885 a007 Real Root Of -215*x^4+593*x^3-318*x^2-579*x+7 7014088040255271 a001 225851433717/9349*2207^(7/16) 7014088042454312 m001 (Psi(1,1/3)-Rabbit)/(-Totient+ZetaQ(4)) 7014088043443790 a001 2971215073/3571*5778^(7/9) 7014088045534771 a001 591286729879/39603*2207^(1/2) 7014088046707889 a001 10610209857723/24476*843^(1/14) 7014088049354431 a001 774004377960/51841*2207^(1/2) 7014088049911712 a001 4052739537881/271443*2207^(1/2) 7014088049993018 a001 1515744265389/101521*2207^(1/2) 7014088050043268 a001 3278735159921/219602*2207^(1/2) 7014088050256131 a001 2504730781961/167761*2207^(1/2) 7014088051715111 a001 956722026041/64079*2207^(1/2) 7014088055115746 a001 1836311903/3571*5778^(5/6) 7014088060038138 a001 956722026041/3571*2207^(1/8) 7014088061715112 a001 182717648081/12238*2207^(1/2) 7014088066787703 a001 1134903170/3571*5778^(8/9) 7014088069516928 m008 (1/4*Pi^3+5)/(5/6*Pi-4/5) 7014088078093452 m005 (1/2*3^(1/2)-5)/(131/264+1/24*5^(1/2)) 7014088078459659 a001 701408733/3571*5778^(17/18) 7014088084001304 a001 2971215073/1364*1364^(4/5) 7014088089609621 r005 Im(z^2+c),c=-23/20+5/56*I,n=41 7014088109355296 a001 139583862445/15127*2207^(9/16) 7014088109914298 a001 10182505537/2889*2207^(11/16) 7014088114092859 a007 Real Root Of 634*x^4-369*x^3-728*x^2-548*x-307 7014088115248916 a001 4052739537881/9349*843^(1/14) 7014088126205923 a007 Real Root Of -885*x^4+832*x^3+109*x^2+297*x+656 7014088130256140 a001 139583862445/9349*2207^(1/2) 7014088135535639 a001 365435296162/39603*2207^(9/16) 7014088139355300 a001 956722026041/103682*2207^(9/16) 7014088139912581 a001 2504730781961/271443*2207^(9/16) 7014088139993887 a001 6557470319842/710647*2207^(9/16) 7014088140013081 a001 10610209857723/1149851*2207^(9/16) 7014088140044137 a001 4052739537881/439204*2207^(9/16) 7014088140084686 p003 LerchPhi(1/100,6,52/155) 7014088140256999 a001 140728068720/15251*2207^(9/16) 7014088141715980 a001 591286729879/64079*2207^(9/16) 7014088150039007 a001 591286729879/3571*2207^(3/16) 7014088150617543 a001 64079/377*89^(6/19) 7014088151715981 a001 7787980473/844*2207^(9/16) 7014088175589185 m001 Zeta(1,-1)^(Psi(2,1/3)*GAMMA(7/12)) 7014088181577867 a003 sin(Pi*1/71)-sin(Pi*15/56) 7014088191643471 a005 (1/cos(17/218*Pi))^520 7014088199356166 a001 86267571272/15127*2207^(5/8) 7014088199915167 a001 12586269025/5778*2207^(3/4) 7014088204037325 a007 Real Root Of 571*x^4-453*x^3+830*x^2-311*x-921 7014088220257009 a001 86267571272/9349*2207^(9/16) 7014088225536509 a001 75283811239/13201*2207^(5/8) 7014088229356169 a001 591286729879/103682*2207^(5/8) 7014088229913450 a001 516002918640/90481*2207^(5/8) 7014088229994757 a001 4052739537881/710647*2207^(5/8) 7014088230006619 a001 3536736619241/620166*2207^(5/8) 7014088230013950 a001 6557470319842/1149851*2207^(5/8) 7014088230045007 a001 2504730781961/439204*2207^(5/8) 7014088230257869 a001 956722026041/167761*2207^(5/8) 7014088231716849 a001 365435296162/64079*2207^(5/8) 7014088233403345 r004 Re(z^2+c),c=3/46-3/7*I,z(0)=exp(5/12*I*Pi),n=2 7014088240039877 a001 365435296162/3571*2207^(1/4) 7014088241716851 a001 139583862445/24476*2207^(5/8) 7014088245402613 a003 sin(Pi*1/46)-sin(Pi*26/93) 7014088281064489 a007 Real Root Of -992*x^4-312*x^3+69*x^2+448*x+31 7014088289357036 a001 53316291173/15127*2207^(11/16) 7014088289916038 a001 7778742049/5778*2207^(13/16) 7014088293687679 m001 1/Catalan/DuboisRaymond^2/exp(sqrt(2)) 7014088304820049 m001 (OrthogonalArrays+ZetaP(2))/(Zeta(5)+ln(5)) 7014088308393596 m001 exp(GAMMA(2/3))^2*CopelandErdos^2*sin(1) 7014088310257880 a001 53316291173/9349*2207^(5/8) 7014088315537380 a001 139583862445/39603*2207^(11/16) 7014088315543881 r005 Re(z^2+c),c=-1/23+13/64*I,n=7 7014088319357040 a001 182717648081/51841*2207^(11/16) 7014088319914321 a001 956722026041/271443*2207^(11/16) 7014088319995628 a001 2504730781961/710647*2207^(11/16) 7014088320007490 a001 3278735159921/930249*2207^(11/16) 7014088320010290 a001 10610209857723/3010349*2207^(11/16) 7014088320014821 a001 4052739537881/1149851*2207^(11/16) 7014088320045878 a001 387002188980/109801*2207^(11/16) 7014088320258740 a001 591286729879/167761*2207^(11/16) 7014088320708727 m005 (1/3*Catalan-3/4)/(1/8*exp(1)+6) 7014088321717720 a001 225851433717/64079*2207^(11/16) 7014088323044633 a007 Real Root Of 875*x^4-632*x^3-274*x^2+50*x-260 7014088330040748 a001 225851433717/3571*2207^(5/16) 7014088331717722 a001 21566892818/6119*2207^(11/16) 7014088335335090 a001 1201881744/341*1364^(11/15) 7014088358992733 m001 (2^(1/3)-GAMMA(7/12))/(-Backhouse+Tribonacci) 7014088371976415 m001 Stephens^MasserGramain+HeathBrownMoroz 7014088377096867 r005 Im(z^2+c),c=-37/58+8/59*I,n=48 7014088379357908 a001 32951280099/15127*2207^(3/4) 7014088379916910 a001 267084832/321*2207^(7/8) 7014088400258752 a001 32951280099/9349*2207^(11/16) 7014088405538252 a001 86267571272/39603*2207^(3/4) 7014088409357912 a001 225851433717/103682*2207^(3/4) 7014088409915193 a001 591286729879/271443*2207^(3/4) 7014088409996500 a001 1548008755920/710647*2207^(3/4) 7014088410008362 a001 4052739537881/1860498*2207^(3/4) 7014088410010093 a001 2178309*2207^(3/4) 7014088410011162 a001 6557470319842/3010349*2207^(3/4) 7014088410015693 a001 2504730781961/1149851*2207^(3/4) 7014088410046750 a001 956722026041/439204*2207^(3/4) 7014088410259612 a001 365435296162/167761*2207^(3/4) 7014088411718593 a001 139583862445/64079*2207^(3/4) 7014088418770121 a007 Real Root Of 197*x^4-639*x^3+694*x^2-929*x+483 7014088420041620 a001 139583862445/3571*2207^(3/8) 7014088421718594 a001 53316291173/24476*2207^(3/4) 7014088426885847 m006 (4/5/Pi-1)/(1/5*exp(2*Pi)-5/6) 7014088429380341 r009 Re(z^3+c),c=-7/82+25/59*I,n=3 7014088430072808 a001 1597/3571*312119004989^(4/5) 7014088430072808 a001 1597/3571*(1/2+1/2*5^(1/2))^44 7014088430072808 a001 1597/3571*23725150497407^(11/16) 7014088430072808 a001 1597/3571*73681302247^(11/13) 7014088430072808 a001 1597/3571*10749957122^(11/12) 7014088430072808 a001 1597/3571*4106118243^(22/23) 7014088448105212 m001 sin(1)^BesselJ(0,1)*RenyiParking^BesselJ(0,1) 7014088452939270 a007 Real Root Of -886*x^4-363*x^3-671*x^2-709*x-78 7014088454515316 l006 ln(2893/5834) 7014088469358781 a001 20365011074/15127*2207^(13/16) 7014088469917782 a001 2971215073/5778*2207^(15/16) 7014088480866963 m001 TwinPrimes*exp(MadelungNaCl)/cos(1) 7014088484705592 m001 ErdosBorwein^(exp(1)/Robbin) 7014088490259625 a001 20365011074/9349*2207^(3/4) 7014088495539125 a001 53316291173/39603*2207^(13/16) 7014088496532690 r005 Im(z^2+c),c=-2/3+119/243*I,n=5 7014088499358786 a001 139583862445/103682*2207^(13/16) 7014088499916067 a001 365435296162/271443*2207^(13/16) 7014088499997373 a001 956722026041/710647*2207^(13/16) 7014088500009235 a001 2504730781961/1860498*2207^(13/16) 7014088500010966 a001 6557470319842/4870847*2207^(13/16) 7014088500011375 a001 10610209857723/7881196*2207^(13/16) 7014088500012036 a001 1346269*2207^(13/16) 7014088500016567 a001 1548008755920/1149851*2207^(13/16) 7014088500047623 a001 591286729879/439204*2207^(13/16) 7014088500260485 a001 225851433717/167761*2207^(13/16) 7014088501719466 a001 86267571272/64079*2207^(13/16) 7014088502413930 r008 a(0)=7,K{-n^6,18+36*n^3-57*n^2-69*n} 7014088510042493 a001 86267571272/3571*2207^(7/16) 7014088511719468 a001 32951280099/24476*2207^(13/16) 7014088529084657 m001 (Tribonacci+Trott2nd)/(Si(Pi)+AlladiGrinstead) 7014088529904208 a001 86000486440/321*843^(1/7) 7014088547214374 r002 9th iterates of z^2 + 7014088555226575 a007 Real Root Of 141*x^4-668*x^3+680*x^2-14*x-609 7014088556206248 m001 (HeathBrownMoroz+Mills)/(ln(3)-GAMMA(17/24)) 7014088559359655 a001 12586269025/15127*2207^(7/8) 7014088559918946 a001 692290540864/987 7014088580260499 a001 12586269025/9349*2207^(13/16) 7014088585036143 a001 1548008755920/3571*843^(1/14) 7014088585539999 a001 10983760033/13201*2207^(7/8) 7014088586668885 a001 7778742049/1364*1364^(2/3) 7014088589359660 a001 43133785636/51841*2207^(7/8) 7014088589916941 a001 75283811239/90481*2207^(7/8) 7014088589998247 a001 591286729879/710647*2207^(7/8) 7014088590010110 a001 832040*2207^(7/8) 7014088590011840 a001 4052739537881/4870847*2207^(7/8) 7014088590012093 a001 3536736619241/4250681*2207^(7/8) 7014088590012249 a001 3278735159921/3940598*2207^(7/8) 7014088590012910 a001 2504730781961/3010349*2207^(7/8) 7014088590017441 a001 956722026041/1149851*2207^(7/8) 7014088590048497 a001 182717648081/219602*2207^(7/8) 7014088590261360 a001 139583862445/167761*2207^(7/8) 7014088591720340 a001 53316291173/64079*2207^(7/8) 7014088598411278 a007 Real Root Of -884*x^4-235*x^3-724*x^2+171*x+609 7014088600043368 a001 53316291173/3571*2207^(1/2) 7014088601720342 a001 10182505537/12238*2207^(7/8) 7014088630812885 a001 39603/233*2178309^(13/51) 7014088634005640 r005 Im(z^2+c),c=1/14+11/17*I,n=12 7014088649360530 a001 7778742049/15127*2207^(15/16) 7014088670261375 a001 7778742049/9349*2207^(7/8) 7014088675540875 a001 20365011074/39603*2207^(15/16) 7014088679360536 a001 53316291173/103682*2207^(15/16) 7014088679917817 a001 139583862445/271443*2207^(15/16) 7014088679999123 a001 365435296162/710647*2207^(15/16) 7014088680010985 a001 956722026041/1860498*2207^(15/16) 7014088680012716 a001 2504730781961/4870847*2207^(15/16) 7014088680012968 a001 6557470319842/12752043*2207^(15/16) 7014088680013028 a001 10610209857723/20633239*2207^(15/16) 7014088680013124 a001 4052739537881/7881196*2207^(15/16) 7014088680013786 a001 1548008755920/3010349*2207^(15/16) 7014088680018317 a001 514229*2207^(15/16) 7014088680049373 a001 225851433717/439204*2207^(15/16) 7014088680262235 a001 86267571272/167761*2207^(15/16) 7014088681721216 a001 32951280099/64079*2207^(15/16) 7014088689239261 a007 Real Root Of -719*x^4+580*x^3-585*x^2+231*x+824 7014088690044243 a001 32951280099/3571*2207^(9/16) 7014088690369012 m001 (Salem-ZetaQ(2))/(FeigenbaumKappa-Otter) 7014088691721218 a001 12586269025/24476*2207^(15/16) 7014088695708654 a007 Real Root Of -218*x^4+770*x^3-386*x^2+373*x+770 7014088701276767 m001 (KomornikLoreti+OneNinth)/(Pi-BesselJ(1,1)) 7014088709346957 a001 4052739537881/15127*843^(1/7) 7014088709984989 a001 225851433717/2207*843^(2/7) 7014088734950735 a001 267913919*322^(1/6) 7014088735527302 a001 3536736619241/13201*843^(1/7) 7014088751707645 a001 3278735159921/12238*843^(1/7) 7014088758283914 a001 38/17*5^(27/38) 7014088760262252 a001 4807526976/9349*2207^(15/16) 7014088765542046 a001 692290561159/987 7014088769918946 a001 692290561591/987 7014088770010131 a001 692290561600/987 7014088770014184 a001 2/987*(1/2+1/2*5^(1/2))^60 7014088770014184 a001 494493258286/141*8^(1/3) 7014088770020263 a001 692290561601/987 7014088770050658 a001 692290561604/987 7014088770263424 a001 692290561625/987 7014088771722391 a001 692290561769/987 7014088775617045 m001 1/exp(FeigenbaumKappa)/Porter^2*BesselJ(0,1)^2 7014088775851468 a007 Real Root Of -582*x^4-105*x^3-994*x^2+173*x+715 7014088780045120 a001 20365011074/3571*2207^(5/8) 7014088781722391 a001 692290562756/987 7014088788454919 a007 Real Root Of 770*x^4-830*x^3+512*x^2-19*x-738 7014088800142418 m005 (1/2*exp(1)-2/11)/(5/6*2^(1/2)+1/2) 7014088800875536 r009 Re(z^3+c),c=-53/94+27/52*I,n=12 7014088820248679 a001 2504730781961/9349*843^(1/7) 7014088829650577 r008 a(0)=7,K{-n^6,-50+20*n^3-26*n^2-17*n} 7014088838002689 a001 1144206275/124*1364^(3/5) 7014088841216622 r008 a(0)=7,K{-n^6,-32+12*n^3-7*n^2-45*n} 7014088845149992 m005 (1/2*Zeta(3)+1/5)/(5/22+9/22*5^(1/2)) 7014088850263424 a001 692290569521/987 7014088870045998 a001 12586269025/3571*2207^(11/16) 7014088919782381 m001 ln(5)^ln(3)/BesselJZeros(0,1) 7014088960046877 a001 7778742049/3571*2207^(3/4) 7014088970344183 m001 Gompertz*MertensB3^BesselI(1,1) 7014088985028560 b008 5*ProductLog[2/15]^2 7014089002628381 a007 Real Root Of 214*x^4+143*x^3+871*x^2-596*x-849 7014089012721699 r005 Re(z^2+c),c=-59/66+4/23*I,n=56 7014089018414495 r005 Im(z^2+c),c=-15/98+23/33*I,n=43 7014089019794172 l006 ln(6152/6599) 7014089026791304 r009 Im(z^3+c),c=-29/106+40/57*I,n=58 7014089028595100 m001 OneNinth*Khintchine^2/exp(Zeta(3))^2 7014089030870404 a007 Real Root Of 339*x^4-502*x^3-593*x^2+169*x+155 7014089039405766 r005 Re(z^2+c),c=-3/34+15/19*I,n=47 7014089041301086 m001 (KhinchinLevy-Porter)/(GAMMA(5/6)-GAMMA(7/12)) 7014089043878721 a007 Real Root Of -400*x^4-106*x^3-422*x^2-178*x+143 7014089050047758 a001 4807526976/3571*2207^(13/16) 7014089089336502 a001 10182505537/682*1364^(8/15) 7014089094195682 b008 7+(-1+3*Pi)^(-2) 7014089102984663 p004 log(37313/18503) 7014089110789220 r009 Re(z^3+c),c=-6/31+16/25*I,n=4 7014089112310516 a001 591286729879/1364*521^(1/13) 7014089137116980 h001 (-7*exp(3)+6)/(-8*exp(1/2)-6) 7014089140048639 a001 2971215073/3571*2207^(7/8) 7014089144413398 m001 (BesselI(1,1)+GolombDickman)^Psi(2,1/3) 7014089182007269 m001 (FeigenbaumMu+Khinchin)/(ln(Pi)-GAMMA(11/12)) 7014089221482629 m004 -100*Sqrt[5]*Pi+(Sqrt[5]*Pi*Tan[Sqrt[5]*Pi])/6 7014089223165429 l006 ln(2230/4497) 7014089225671797 r008 a(0)=7,K{-n^6,-59-11*n-7*n^2+5*n^3} 7014089230049522 a001 1836311903/3571*2207^(15/16) 7014089234904013 a001 956722026041/5778*843^(3/14) 7014089263846127 a007 Real Root Of -113*x^4-713*x^3+565*x^2-50*x-682 7014089290035954 a001 956722026041/3571*843^(1/7) 7014089290974927 m001 (Tetranacci-ZetaP(3))/(Ei(1,1)+BesselI(0,2)) 7014089308562385 m001 (1+Zeta(3))/(-GAMMA(23/24)+Totient) 7014089309146808 m001 (3^(1/2)-Pi*Rabbit)/Rabbit 7014089317696310 a001 1134903170/521*521^(12/13) 7014089317894377 m001 BesselI(1,2)*TreeGrowth2nd+ZetaQ(4) 7014089320050658 a001 692290615889/987 7014089320962988 a007 Real Root Of -656*x^4+414*x^3+485*x^2-164*x-52 7014089324044874 a003 cos(Pi*5/92)*sin(Pi*30/119) 7014089340670324 a001 32951280099/1364*1364^(7/15) 7014089374624540 r005 Re(z^2+c),c=-31/30+21/101*I,n=28 7014089376249805 r005 Re(z^2+c),c=-89/122+13/31*I,n=7 7014089412022117 r005 Re(z^2+c),c=-16/27+33/47*I,n=3 7014089414346780 a001 2504730781961/15127*843^(3/14) 7014089414984812 a001 139583862445/2207*843^(5/14) 7014089427702270 m001 (LaplaceLimit+ZetaQ(4))/(BesselI(1,2)-Cahen) 7014089430215733 r005 Im(z^2+c),c=-9/10+9/163*I,n=34 7014089437989763 a007 Real Root Of -53*x^4-276*x^3+713*x^2+351*x+424 7014089440527127 a001 6557470319842/39603*843^(3/14) 7014089446707469 a001 10610209857723/64079*843^(3/14) 7014089456707472 a001 4052739537881/24476*843^(3/14) 7014089459986415 a007 Real Root Of -557*x^4-425*x^3-502*x^2-589*x-178 7014089466944237 m001 (BesselI(0,1)+Otter)/BesselK(1,1) 7014089500437887 r008 a(0)=7,K{-n^6,-89+8*n^3-17*n^2+26*n} 7014089508644327 m003 3/2+(3*Sqrt[5])/64+5*Coth[1/2+Sqrt[5]/2] 7014089511356369 r002 6th iterates of z^2 + 7014089521563769 a007 Real Root Of 923*x^4-474*x^3-33*x^2+165*x-255 7014089525248513 a001 1548008755920/9349*843^(3/14) 7014089545039862 a003 cos(Pi*13/103)*sin(Pi*11/40) 7014089579371165 a007 Real Root Of 144*x^4+921*x^3-694*x^2-451*x+258 7014089589731589 a001 199/34*317811^(17/45) 7014089592004155 a001 53316291173/1364*1364^(2/5) 7014089597559750 a001 233/123*7^(37/55) 7014089616997361 a007 Real Root Of 552*x^4-504*x^3+501*x^2-211*x-702 7014089632522865 a003 cos(Pi*12/29)-sin(Pi*37/88) 7014089649749530 r005 Re(z^2+c),c=-12/11+11/58*I,n=8 7014089659990937 a001 610/2207*45537549124^(15/17) 7014089659990937 a001 610/2207*312119004989^(9/11) 7014089659990937 a001 610/2207*14662949395604^(5/7) 7014089659990937 a001 610/2207*(1/2+1/2*5^(1/2))^45 7014089659990937 a001 610/2207*192900153618^(5/6) 7014089659990937 a001 610/2207*28143753123^(9/10) 7014089659990937 a001 610/2207*10749957122^(15/16) 7014089659992668 a001 987/1364*(1/2+1/2*5^(1/2))^43 7014089663523861 a007 Real Root Of -145*x^4+367*x^3-215*x^2-293*x+62 7014089680821316 m005 (1/2*3^(1/2)-6/7)/(2/5*Catalan+9/10) 7014089687049005 r008 a(0)=7,K{-n^6,-27+31*n^3-3*n^2-71*n} 7014089694832287 a007 Real Root Of 686*x^4-329*x^3-659*x^2-882*x-574 7014089711142763 m001 (-Khinchin+Landau)/(2^(1/2)+GAMMA(13/24)) 7014089722190411 v002 sum(1/(2^n*(3/2*n^2+67/2*n-27)),n=1..infinity) 7014089722941518 r005 Re(z^2+c),c=17/52+22/57*I,n=60 7014089750343641 m001 (Rabbit+Tetranacci)/(gamma(3)+Artin) 7014089808813211 l006 ln(3797/7657) 7014089838573832 m009 (6*Psi(1,2/3)-2/5)/(Psi(1,2/3)-1/2) 7014089843337995 a001 21566892818/341*1364^(1/3) 7014089846020024 r005 Re(z^2+c),c=-5/29+54/59*I,n=9 7014089855804270 m003 -1/12+(17*Sqrt[5])/64+Sech[1/2+Sqrt[5]/2]/2 7014089911697113 m001 Zeta(3)*exp(Trott)*gamma 7014089939903888 a001 591286729879/5778*843^(2/7) 7014089944813460 m001 (gamma+FeigenbaumD)/(Khinchin+ReciprocalLucas) 7014089955119249 r009 Im(z^3+c),c=-10/19+23/50*I,n=32 7014089969489870 m001 GaussKuzminWirsing-Grothendieck^ZetaQ(3) 7014089978604126 m001 LaplaceLimit^(ArtinRank2/cos(1/5*Pi)) 7014089995035835 a001 591286729879/3571*843^(3/14) 7014089999335440 a007 Real Root Of 624*x^4+459*x^3-514*x^2-956*x+614 7014090012563847 r008 a(0)=7,K{-n^6,16+54*n^3-96*n^2-47*n} 7014090032098588 m001 (3^(1/2))^Rabbit/((3^(1/2))^FeigenbaumKappa) 7014090055121473 a007 Real Root Of -539*x^4-501*x^3-936*x^2+593*x+834 7014090094671844 a001 139583862445/1364*1364^(4/15) 7014090106741457 m001 ln(Cahen)^2*Backhouse^2/sin(Pi/5) 7014090111049523 m001 (ZetaQ(3)+ZetaQ(4))/(Zeta(3)-Khinchin) 7014090119346673 a001 1548008755920/15127*843^(2/7) 7014090119984706 a001 86267571272/2207*843^(3/7) 7014090138786248 a007 Real Root Of -824*x^4-230*x^3-266*x^2-27*x+232 7014090145527023 a001 4052739537881/39603*843^(2/7) 7014090149346685 a001 225749145909/2206*843^(2/7) 7014090151707366 a001 6557470319842/64079*843^(2/7) 7014090152998844 r005 Re(z^2+c),c=-25/34+4/37*I,n=30 7014090161707370 a001 2504730781961/24476*843^(2/7) 7014090165240818 r008 a(0)=7,K{-n^6,-29-40*n-46*n^2+45*n^3} 7014090193232940 r005 Re(z^2+c),c=-23/30+2/73*I,n=7 7014090201144010 a007 Real Root Of 820*x^4-256*x^3+496*x^2-475*x-864 7014090230248418 a001 956722026041/9349*843^(2/7) 7014090242630062 a007 Real Root Of 982*x^4+260*x^3+951*x^2-938*x+61 7014090286152224 m005 (1/3*Zeta(3)-1/2)/(Pi-3) 7014090294634216 a007 Real Root Of 727*x^4-669*x^3-11*x^2+856*x+199 7014090301097289 r009 Re(z^3+c),c=-47/98+18/19*I,n=2 7014090304071592 m005 (1/2*3^(1/2)-9/11)/(5*2^(1/2)-1/4) 7014090307010431 m003 1+(19*Sqrt[5])/64-2*Log[1/2+Sqrt[5]/2] 7014090307898451 a007 Real Root Of -40*x^4+975*x^3+829*x^2+203*x-877 7014090310949591 a007 Real Root Of 806*x^4-79*x^3+118*x^2+424*x+17 7014090320625241 a007 Real Root Of -830*x^4+858*x^3-158*x^2-922*x-72 7014090327642966 a007 Real Root Of 441*x^4+632*x^3+752*x^2-769*x-798 7014090334282937 a007 Real Root Of -864*x^4-745*x^3-228*x^2+915*x+706 7014090346005702 a001 225851433717/1364*1364^(1/5) 7014090347109662 r008 a(0)=7,K{-n^6,-15+49*n^3-51*n^2-53*n} 7014090373013267 m005 (1/2*Catalan-3/4)/(6*gamma+7/10) 7014090414298221 s002 sum(A074010[n]/(exp(2*pi*n)-1),n=1..infinity) 7014090434494329 r002 4th iterates of z^2 + 7014090434833382 m005 (1/2*Pi-1/6)/(10/11*Zeta(3)+10/11) 7014090444286791 a007 Real Root Of 843*x^4-630*x^3+644*x^2+900*x-107 7014090451369647 r005 Im(z^2+c),c=-1/34+12/17*I,n=31 7014090453273423 r005 Re(z^2+c),c=-7/82+34/39*I,n=29 7014090497679223 a007 Real Root Of 391*x^4-512*x^3-403*x^2-958*x-745 7014090536626109 r002 6th iterates of z^2 + 7014090549968691 a001 1120150260830/1597 7014090552263704 m001 (QuadraticClass+Thue)/(Zeta(5)+exp(1/exp(1))) 7014090571767480 r005 Im(z^2+c),c=-8/23+19/30*I,n=14 7014090582325770 a001 433494437/1364*3571^(16/17) 7014090597339570 a001 182717648081/682*1364^(2/15) 7014090601189403 a007 Real Root Of -979*x^4-76*x^3-795*x^2+532*x+975 7014090614680867 a001 701408733/1364*3571^(15/17) 7014090634079665 r008 a(0)=7,K{-n^6,-54-43*n+23*n^2+8*n^3} 7014090642249369 l006 ln(1567/3160) 7014090643573949 m005 (1/2*Zeta(3)-1/11)/(1/7*Zeta(3)+5/9) 7014090644903835 a001 182717648081/2889*843^(5/14) 7014090647035963 a001 567451585/682*3571^(14/17) 7014090652953135 a007 Real Root Of -521*x^4+823*x^3+323*x^2-207*x+106 7014090658981413 a007 Real Root Of -686*x^4+855*x^3-830*x^2-722*x+363 7014090679391060 a001 1836311903/1364*3571^(13/17) 7014090685479827 r005 Im(z^2+c),c=-31/52+13/34*I,n=23 7014090697694249 r005 Re(z^2+c),c=-2/11+8/11*I,n=47 7014090700035787 a001 365435296162/3571*843^(2/7) 7014090701972479 m001 GAMMA(1/6)*(BesselJZeros(0,1)-ln(Pi)) 7014090711746157 a001 2971215073/1364*3571^(12/17) 7014090713365944 m001 (BesselK(0,1)+ln(5))/(GAMMA(11/12)+Tribonacci) 7014090730315239 s002 sum(A282451[n]/((2*n)!),n=1..infinity) 7014090730363034 s002 sum(A282652[n]/((2*n)!),n=1..infinity) 7014090731831862 a007 Real Root Of 638*x^4-646*x^3-498*x^2-283*x+512 7014090731988802 a007 Real Root Of -664*x^4+110*x^3+762*x^2+831*x-835 7014090744101254 a001 1201881744/341*3571^(11/17) 7014090776456351 a001 7778742049/1364*3571^(10/17) 7014090776709855 r005 Re(z^2+c),c=-65/118+15/32*I,n=23 7014090803653435 r002 4th iterates of z^2 + 7014090808569824 r009 Re(z^3+c),c=-39/82+34/59*I,n=25 7014090808811448 a001 1144206275/124*3571^(9/17) 7014090824346638 a001 956722026041/15127*843^(5/14) 7014090824984670 a001 53316291173/2207*843^(1/2) 7014090827445892 a007 Real Root Of -94*x^4-285*x^3-358*x^2+474*x+433 7014090841099628 r005 Im(z^2+c),c=-93/110+2/45*I,n=47 7014090841166546 a001 10182505537/682*3571^(8/17) 7014090843824591 m005 (1/2*5^(1/2)+3/7)/(2/3*5^(1/2)+5/7) 7014090848673446 a001 591286729879/1364*1364^(1/15) 7014090850526991 a001 2504730781961/39603*843^(5/14) 7014090851163432 r008 a(0)=7,K{-n^6,-18-64*n-11*n^2+26*n^3} 7014090854346653 a001 3278735159921/51841*843^(5/14) 7014090854354912 a007 Real Root Of -892*x^4+933*x^3+614*x^2+831*x-991 7014090855248353 a001 10610209857723/167761*843^(5/14) 7014090856707334 a001 4052739537881/64079*843^(5/14) 7014090863247972 a007 Real Root Of -589*x^4+235*x^3-651*x^2+405*x+828 7014090866707339 a001 387002188980/6119*843^(5/14) 7014090868732047 m001 (1-HardyLittlewoodC5)/(-Kac+Porter) 7014090873521643 a001 32951280099/1364*3571^(7/17) 7014090889910003 a001 305/2889*(1/2+1/2*5^(1/2))^47 7014090889912023 a001 646/341*(1/2+1/2*5^(1/2))^41 7014090905876741 a001 53316291173/1364*3571^(6/17) 7014090916790334 r005 Re(z^2+c),c=-79/106+8/63*I,n=32 7014090935248394 a001 591286729879/9349*843^(5/14) 7014090938231839 a001 21566892818/341*3571^(5/17) 7014090944450986 m001 1/LaplaceLimit^2/Artin^2/exp(BesselK(0,1))^2 7014090947710115 m005 (1/3*exp(1)+1/4)/(6/11*5^(1/2)+3/7) 7014090962987731 m008 (1/5*Pi^4-1)/(3/5*Pi+3/4) 7014090970586937 a001 139583862445/1364*3571^(4/17) 7014090996416746 g007 Psi(2,7/10)+Psi(2,4/7)+Psi(2,1/7)-Psi(2,9/11) 7014090998509463 a001 4/121393*2584^(5/52) 7014091002942035 a001 225851433717/1364*3571^(3/17) 7014091019756039 a001 2932591455360/4181 7014091023981710 a001 165580141/1364*9349^(18/19) 7014091028205355 a001 66978574/341*9349^(17/19) 7014091032429001 a001 433494437/1364*9349^(16/19) 7014091035297134 a001 182717648081/682*3571^(2/17) 7014091036499172 r001 37i'th iterates of 2*x^2-1 of 7014091036652647 a001 701408733/1364*9349^(15/19) 7014091040876292 a001 567451585/682*9349^(14/19) 7014091045099938 a001 1836311903/1364*9349^(13/19) 7014091049323583 a001 2971215073/1364*9349^(12/19) 7014091053547229 a001 1201881744/341*9349^(11/19) 7014091057770875 a001 7778742049/1364*9349^(10/19) 7014091061994520 a001 1144206275/124*9349^(9/19) 7014091066218166 a001 10182505537/682*9349^(8/19) 7014091067582330 r005 Im(z^2+c),c=-93/110+2/45*I,n=45 7014091067652232 a001 591286729879/1364*3571^(1/17) 7014091069352812 a001 610/15127*14662949395604^(7/9) 7014091069352812 a001 610/15127*(1/2+1/2*5^(1/2))^49 7014091069352812 a001 610/15127*505019158607^(7/8) 7014091069354839 a001 615/124*2537720636^(13/15) 7014091069354839 a001 615/124*45537549124^(13/17) 7014091069354839 a001 615/124*14662949395604^(13/21) 7014091069354839 a001 615/124*(1/2+1/2*5^(1/2))^39 7014091069354839 a001 615/124*192900153618^(13/18) 7014091069354839 a001 615/124*73681302247^(3/4) 7014091069354839 a001 615/124*10749957122^(13/16) 7014091069354839 a001 615/124*599074578^(13/14) 7014091070441811 a001 32951280099/1364*9349^(7/19) 7014091073852140 r008 a(0)=7,K{-n^6,-35-55*n+12*n^2+6*n^3} 7014091074665457 a001 53316291173/1364*9349^(6/19) 7014091076318101 r005 Im(z^2+c),c=-87/118+2/51*I,n=56 7014091078889103 a001 21566892818/341*9349^(5/19) 7014091083112748 a001 139583862445/1364*9349^(4/19) 7014091085497030 m001 Bloch^MinimumGamma/PlouffeB 7014091087336394 a001 225851433717/1364*9349^(3/19) 7014091088297094 a001 3838812052625/5473 7014091088774998 m001 Otter^KomornikLoreti+ZetaP(4) 7014091088856655 a001 31622993/682*24476^(20/21) 7014091089414188 a001 9303105/124*24476^(19/21) 7014091089971722 a001 165580141/1364*24476^(6/7) 7014091090529256 a001 66978574/341*24476^(17/21) 7014091091086790 a001 433494437/1364*24476^(16/21) 7014091091560040 a001 182717648081/682*9349^(2/19) 7014091091644324 a001 701408733/1364*24476^(5/7) 7014091092201857 a001 567451585/682*24476^(2/3) 7014091092759391 a001 1836311903/1364*24476^(13/21) 7014091093316925 a001 2971215073/1364*24476^(4/7) 7014091093874459 a001 1201881744/341*24476^(11/21) 7014091094431993 a001 7778742049/1364*24476^(10/21) 7014091094989526 a001 1144206275/124*24476^(3/7) 7014091095533166 a001 610/39603*817138163596^(17/19) 7014091095533166 a001 610/39603*14662949395604^(17/21) 7014091095533166 a001 610/39603*(1/2+1/2*5^(1/2))^51 7014091095533166 a001 610/39603*192900153618^(17/18) 7014091095535193 a001 17711/1364*(1/2+1/2*5^(1/2))^37 7014091095547060 a001 10182505537/682*24476^(8/21) 7014091095783685 a001 591286729879/1364*9349^(1/19) 7014091096104594 a001 32951280099/1364*24476^(1/3) 7014091096662128 a001 53316291173/1364*24476^(2/7) 7014091097219662 a001 21566892818/341*24476^(5/21) 7014091097777196 a001 139583862445/1364*24476^(4/21) 7014091098297100 a001 20100280860390/28657 7014091098334729 a001 225851433717/1364*24476^(1/7) 7014091098373398 a001 24157817/1364*64079^(22/23) 7014091098447665 a001 39088169/1364*64079^(21/23) 7014091098521936 a001 31622993/682*64079^(20/23) 7014091098596205 a001 9303105/124*64079^(19/23) 7014091098670475 a001 165580141/1364*64079^(18/23) 7014091098744745 a001 66978574/341*64079^(17/23) 7014091098819014 a001 433494437/1364*64079^(16/23) 7014091098892263 a001 182717648081/682*24476^(2/21) 7014091098893284 a001 701408733/1364*64079^(15/23) 7014091098967554 a001 567451585/682*64079^(14/23) 7014091099041824 a001 1836311903/1364*64079^(13/23) 7014091099116094 a001 2971215073/1364*64079^(12/23) 7014091099190363 a001 1201881744/341*64079^(11/23) 7014091099264633 a001 7778742049/1364*64079^(10/23) 7014091099338903 a001 1144206275/124*64079^(9/23) 7014091099352828 a001 305/51841*(1/2+1/2*5^(1/2))^53 7014091099354855 a001 11592/341*2537720636^(7/9) 7014091099354855 a001 11592/341*17393796001^(5/7) 7014091099354855 a001 11592/341*312119004989^(7/11) 7014091099354855 a001 11592/341*14662949395604^(5/9) 7014091099354855 a001 11592/341*(1/2+1/2*5^(1/2))^35 7014091099354855 a001 11592/341*505019158607^(5/8) 7014091099354855 a001 11592/341*28143753123^(7/10) 7014091099354855 a001 11592/341*599074578^(5/6) 7014091099354855 a001 11592/341*228826127^(7/8) 7014091099413173 a001 10182505537/682*64079^(8/23) 7014091099449797 a001 591286729879/1364*24476^(1/21) 7014091099487442 a001 32951280099/1364*64079^(7/23) 7014091099561712 a001 53316291173/1364*64079^(6/23) 7014091099635982 a001 21566892818/341*64079^(5/23) 7014091099710252 a001 139583862445/1364*64079^(4/23) 7014091099756081 a001 10524643695184/15005 7014091099784522 a001 225851433717/1364*64079^(3/23) 7014091099807952 a001 31622993/682*167761^(4/5) 7014091099857797 a001 701408733/1364*167761^(3/5) 7014091099858791 a001 182717648081/682*64079^(2/23) 7014091099907641 a001 7778742049/1364*167761^(2/5) 7014091099910110 a001 610/271443*(1/2+1/2*5^(1/2))^55 7014091099910110 a001 610/271443*3461452808002^(11/12) 7014091099912136 a001 121393/1364*141422324^(11/13) 7014091099912136 a001 121393/1364*2537720636^(11/15) 7014091099912136 a001 121393/1364*45537549124^(11/17) 7014091099912136 a001 121393/1364*312119004989^(3/5) 7014091099912136 a001 121393/1364*14662949395604^(11/21) 7014091099912136 a001 121393/1364*(1/2+1/2*5^(1/2))^33 7014091099912136 a001 121393/1364*192900153618^(11/18) 7014091099912136 a001 121393/1364*10749957122^(11/16) 7014091099912136 a001 121393/1364*1568397607^(3/4) 7014091099912136 a001 121393/1364*599074578^(11/14) 7014091099912142 a001 121393/1364*33385282^(11/12) 7014091099933061 a001 591286729879/1364*64079^(1/23) 7014091099957486 a001 21566892818/341*167761^(1/5) 7014091099968943 a001 68884687283685/98209 7014091099975026 a001 9227465/1364*439204^(8/9) 7014091099979049 a001 39088169/1364*439204^(7/9) 7014091099983090 a001 165580141/1364*439204^(2/3) 7014091099987130 a001 701408733/1364*439204^(5/9) 7014091099991170 a001 2971215073/1364*439204^(4/9) 7014091099991416 a001 610/710647*14662949395604^(19/21) 7014091099991416 a001 610/710647*(1/2+1/2*5^(1/2))^57 7014091099993442 a001 317811/1364*(1/2+1/2*5^(1/2))^31 7014091099993442 a001 317811/1364*9062201101803^(1/2) 7014091099995210 a001 1144206275/124*439204^(1/3) 7014091099999251 a001 53316291173/1364*439204^(2/9) 7014091100003278 a001 305/930249*(1/2+1/2*5^(1/2))^59 7014091100003291 a001 225851433717/1364*439204^(1/9) 7014091100004531 a001 944285341111200/1346269 7014091100005009 a001 610/4870847*(1/2+1/2*5^(1/2))^61 7014091100005192 a001 1236085559053705/1762289 7014091100005261 a001 610/12752043*(1/2+1/2*5^(1/2))^63 7014091100005288 a001 1294445602642206/1845493 7014091100005305 a001 610*(1/2+1/2*5^(1/2))^29 7014091100005305 a001 610*1322157322203^(1/2) 7014091100005321 a001 610/20633239*(1/2+1/2*5^(1/2))^64 7014091100005348 a001 4000056895103620/5702887 7014091100005417 a001 305/3940598*(1/2+1/2*5^(1/2))^62 7014091100005600 a001 1527885776996210/2178309 7014091100006079 a001 610/3010349*14662949395604^(20/21) 7014091100006079 a001 610/3010349*(1/2+1/2*5^(1/2))^60 7014091100006943 a001 2178309/1364*7881196^(9/11) 7014091100007035 a001 2178309/1364*141422324^(9/13) 7014091100007035 a001 2178309/1364*2537720636^(3/5) 7014091100007035 a001 2178309/1364*45537549124^(9/17) 7014091100007035 a001 2178309/1364*817138163596^(9/19) 7014091100007035 a001 2178309/1364*14662949395604^(3/7) 7014091100007035 a001 2178309/1364*(1/2+1/2*5^(1/2))^27 7014091100007035 a001 2178309/1364*192900153618^(1/2) 7014091100007035 a001 2178309/1364*10749957122^(9/16) 7014091100007035 a001 2178309/1364*599074578^(9/14) 7014091100007040 a001 2178309/1364*33385282^(3/4) 7014091100007258 a001 24157817/1364*7881196^(2/3) 7014091100007258 a001 39088169/1364*7881196^(7/11) 7014091100007265 a001 9227465/1364*7881196^(8/11) 7014091100007269 a001 165580141/1364*7881196^(6/11) 7014091100007276 a001 5702887/1364*20633239^(5/7) 7014091100007280 a001 701408733/1364*7881196^(5/11) 7014091100007288 a001 5702887/1364*2537720636^(5/9) 7014091100007288 a001 5702887/1364*312119004989^(5/11) 7014091100007288 a001 5702887/1364*(1/2+1/2*5^(1/2))^25 7014091100007288 a001 5702887/1364*3461452808002^(5/12) 7014091100007288 a001 5702887/1364*28143753123^(1/2) 7014091100007288 a001 5702887/1364*228826127^(5/8) 7014091100007290 a001 2971215073/1364*7881196^(4/11) 7014091100007293 a001 1201881744/341*7881196^(1/3) 7014091100007300 a001 1144206275/124*7881196^(3/11) 7014091100007310 a001 53316291173/1364*7881196^(2/11) 7014091100007320 a001 39088169/1364*20633239^(3/5) 7014091100007321 a001 225851433717/1364*7881196^(1/11) 7014091100007322 a001 31622993/682*20633239^(4/7) 7014091100007324 a001 701408733/1364*20633239^(3/7) 7014091100007324 a001 567451585/682*20633239^(2/5) 7014091100007325 a001 3732588/341*(1/2+1/2*5^(1/2))^23 7014091100007325 a001 3732588/341*4106118243^(1/2) 7014091100007326 a001 7778742049/1364*20633239^(2/7) 7014091100007328 a001 32951280099/1364*20633239^(1/5) 7014091100007329 a001 21566892818/341*20633239^(1/7) 7014091100007330 a001 39088169/1364*141422324^(7/13) 7014091100007330 a001 39088169/1364*2537720636^(7/15) 7014091100007330 a001 39088169/1364*17393796001^(3/7) 7014091100007330 a001 39088169/1364*45537549124^(7/17) 7014091100007330 a001 39088169/1364*14662949395604^(1/3) 7014091100007330 a001 39088169/1364*(1/2+1/2*5^(1/2))^21 7014091100007330 a001 39088169/1364*192900153618^(7/18) 7014091100007330 a001 39088169/1364*10749957122^(7/16) 7014091100007330 a001 39088169/1364*599074578^(1/2) 7014091100007331 a001 701408733/1364*141422324^(5/13) 7014091100007331 a001 9303105/124*817138163596^(1/3) 7014091100007331 a001 9303105/124*(1/2+1/2*5^(1/2))^19 7014091100007331 a001 1836311903/1364*141422324^(1/3) 7014091100007331 a001 165580141/1364*141422324^(6/13) 7014091100007331 a001 2971215073/1364*141422324^(4/13) 7014091100007331 a001 1144206275/124*141422324^(3/13) 7014091100007331 a001 53316291173/1364*141422324^(2/13) 7014091100007331 a001 225851433717/1364*141422324^(1/13) 7014091100007331 a001 66978574/341*45537549124^(1/3) 7014091100007331 a001 66978574/341*(1/2+1/2*5^(1/2))^17 7014091100007331 a001 701408733/1364*2537720636^(1/3) 7014091100007331 a001 701408733/1364*45537549124^(5/17) 7014091100007331 a001 701408733/1364*312119004989^(3/11) 7014091100007331 a001 701408733/1364*14662949395604^(5/21) 7014091100007331 a001 701408733/1364*(1/2+1/2*5^(1/2))^15 7014091100007331 a001 701408733/1364*192900153618^(5/18) 7014091100007331 a001 701408733/1364*28143753123^(3/10) 7014091100007331 a001 701408733/1364*10749957122^(5/16) 7014091100007331 a001 1836311903/1364*(1/2+1/2*5^(1/2))^13 7014091100007331 a001 1836311903/1364*73681302247^(1/4) 7014091100007331 a001 1144206275/124*2537720636^(1/5) 7014091100007331 a001 7778742049/1364*2537720636^(2/9) 7014091100007331 a001 53316291173/1364*2537720636^(2/15) 7014091100007331 a001 2971215073/1364*2537720636^(4/15) 7014091100007331 a001 21566892818/341*2537720636^(1/9) 7014091100007331 a001 225851433717/1364*2537720636^(1/15) 7014091100007331 a001 1201881744/341*312119004989^(1/5) 7014091100007331 a001 1201881744/341*(1/2+1/2*5^(1/2))^11 7014091100007331 a001 1144206275/124*45537549124^(3/17) 7014091100007331 a001 1144206275/124*817138163596^(3/19) 7014091100007331 a001 1144206275/124*14662949395604^(1/7) 7014091100007331 a001 1144206275/124*(1/2+1/2*5^(1/2))^9 7014091100007331 a001 1144206275/124*192900153618^(1/6) 7014091100007331 a001 32951280099/1364*17393796001^(1/7) 7014091100007331 a001 32951280099/1364*14662949395604^(1/9) 7014091100007331 a001 32951280099/1364*(1/2+1/2*5^(1/2))^7 7014091100007331 a001 225851433717/1364*45537549124^(1/17) 7014091100007331 a001 21566892818/341*312119004989^(1/11) 7014091100007331 a001 21566892818/341*(1/2+1/2*5^(1/2))^5 7014091100007331 a001 225851433717/1364*14662949395604^(1/21) 7014091100007331 a001 225851433717/1364*(1/2+1/2*5^(1/2))^3 7014091100007331 a001 225851433717/1364*192900153618^(1/18) 7014091100007331 a001 591286729879/2728+591286729879/2728*5^(1/2) 7014091100007331 a001 956722026041/1364 7014091100007331 a001 182717648081/682*(1/2+1/2*5^(1/2))^2 7014091100007331 a001 139583862445/1364*(1/2+1/2*5^(1/2))^4 7014091100007331 a001 139583862445/1364*23725150497407^(1/16) 7014091100007331 a001 53316291173/1364*45537549124^(2/17) 7014091100007331 a001 139583862445/1364*73681302247^(1/13) 7014091100007331 a001 53316291173/1364*14662949395604^(2/21) 7014091100007331 a001 53316291173/1364*(1/2+1/2*5^(1/2))^6 7014091100007331 a001 21566892818/341*28143753123^(1/10) 7014091100007331 a001 1144206275/124*10749957122^(3/16) 7014091100007331 a001 10182505537/682*(1/2+1/2*5^(1/2))^8 7014091100007331 a001 10182505537/682*23725150497407^(1/8) 7014091100007331 a001 10182505537/682*505019158607^(1/7) 7014091100007331 a001 10182505537/682*73681302247^(2/13) 7014091100007331 a001 225851433717/1364*10749957122^(1/16) 7014091100007331 a001 139583862445/1364*10749957122^(1/12) 7014091100007331 a001 53316291173/1364*10749957122^(1/8) 7014091100007331 a001 10182505537/682*10749957122^(1/6) 7014091100007331 a001 182717648081/682*4106118243^(1/23) 7014091100007331 a001 7778742049/1364*312119004989^(2/11) 7014091100007331 a001 7778742049/1364*(1/2+1/2*5^(1/2))^10 7014091100007331 a001 7778742049/1364*28143753123^(1/5) 7014091100007331 a001 7778742049/1364*10749957122^(5/24) 7014091100007331 a001 139583862445/1364*4106118243^(2/23) 7014091100007331 a001 53316291173/1364*4106118243^(3/23) 7014091100007331 a001 10182505537/682*4106118243^(4/23) 7014091100007331 a001 7778742049/1364*4106118243^(5/23) 7014091100007331 a001 182717648081/682*1568397607^(1/22) 7014091100007331 a001 2971215073/1364*45537549124^(4/17) 7014091100007331 a001 2971215073/1364*817138163596^(4/19) 7014091100007331 a001 2971215073/1364*14662949395604^(4/21) 7014091100007331 a001 2971215073/1364*(1/2+1/2*5^(1/2))^12 7014091100007331 a001 2971215073/1364*192900153618^(2/9) 7014091100007331 a001 2971215073/1364*73681302247^(3/13) 7014091100007331 a001 2971215073/1364*10749957122^(1/4) 7014091100007331 a001 139583862445/1364*1568397607^(1/11) 7014091100007331 a001 2971215073/1364*4106118243^(6/23) 7014091100007331 a001 53316291173/1364*1568397607^(3/22) 7014091100007331 a001 10182505537/682*1568397607^(2/11) 7014091100007331 a001 1201881744/341*1568397607^(1/4) 7014091100007331 a001 7778742049/1364*1568397607^(5/22) 7014091100007331 a001 182717648081/682*599074578^(1/21) 7014091100007331 a001 2971215073/1364*1568397607^(3/11) 7014091100007331 a001 567451585/682*17393796001^(2/7) 7014091100007331 a001 567451585/682*14662949395604^(2/9) 7014091100007331 a001 567451585/682*(1/2+1/2*5^(1/2))^14 7014091100007331 a001 567451585/682*505019158607^(1/4) 7014091100007331 a001 567451585/682*10749957122^(7/24) 7014091100007331 a001 567451585/682*4106118243^(7/23) 7014091100007331 a001 225851433717/1364*599074578^(1/14) 7014091100007331 a001 139583862445/1364*599074578^(2/21) 7014091100007331 a001 567451585/682*1568397607^(7/22) 7014091100007331 a001 53316291173/1364*599074578^(1/7) 7014091100007331 a001 32951280099/1364*599074578^(1/6) 7014091100007331 a001 10182505537/682*599074578^(4/21) 7014091100007331 a001 701408733/1364*599074578^(5/14) 7014091100007331 a001 1144206275/124*599074578^(3/14) 7014091100007331 a001 7778742049/1364*599074578^(5/21) 7014091100007331 a001 2971215073/1364*599074578^(2/7) 7014091100007331 a001 182717648081/682*228826127^(1/20) 7014091100007331 a001 433494437/1364*(1/2+1/2*5^(1/2))^16 7014091100007331 a001 433494437/1364*23725150497407^(1/4) 7014091100007331 a001 433494437/1364*73681302247^(4/13) 7014091100007331 a001 433494437/1364*10749957122^(1/3) 7014091100007331 a001 567451585/682*599074578^(1/3) 7014091100007331 a001 433494437/1364*4106118243^(8/23) 7014091100007331 a001 433494437/1364*1568397607^(4/11) 7014091100007331 a001 139583862445/1364*228826127^(1/10) 7014091100007331 a001 433494437/1364*599074578^(8/21) 7014091100007331 a001 21566892818/341*228826127^(1/8) 7014091100007331 a001 53316291173/1364*228826127^(3/20) 7014091100007331 a001 10182505537/682*228826127^(1/5) 7014091100007331 a001 7778742049/1364*228826127^(1/4) 7014091100007331 a001 2971215073/1364*228826127^(3/10) 7014091100007331 a001 701408733/1364*228826127^(3/8) 7014091100007331 a001 567451585/682*228826127^(7/20) 7014091100007331 a001 182717648081/682*87403803^(1/19) 7014091100007331 a001 165580141/1364*2537720636^(2/5) 7014091100007331 a001 165580141/1364*45537549124^(6/17) 7014091100007331 a001 165580141/1364*14662949395604^(2/7) 7014091100007331 a001 165580141/1364*(1/2+1/2*5^(1/2))^18 7014091100007331 a001 165580141/1364*192900153618^(1/3) 7014091100007331 a001 165580141/1364*10749957122^(3/8) 7014091100007331 a001 165580141/1364*4106118243^(9/23) 7014091100007331 a001 165580141/1364*1568397607^(9/22) 7014091100007331 a001 165580141/1364*599074578^(3/7) 7014091100007331 a001 433494437/1364*228826127^(2/5) 7014091100007331 a001 139583862445/1364*87403803^(2/19) 7014091100007331 a001 165580141/1364*228826127^(9/20) 7014091100007331 a001 53316291173/1364*87403803^(3/19) 7014091100007331 a001 10182505537/682*87403803^(4/19) 7014091100007331 a001 7778742049/1364*87403803^(5/19) 7014091100007331 a001 2971215073/1364*87403803^(6/19) 7014091100007331 a001 9303105/124*87403803^(1/2) 7014091100007331 a001 567451585/682*87403803^(7/19) 7014091100007331 a001 182717648081/682*33385282^(1/18) 7014091100007331 a001 31622993/682*2537720636^(4/9) 7014091100007331 a001 31622993/682*(1/2+1/2*5^(1/2))^20 7014091100007331 a001 31622993/682*23725150497407^(5/16) 7014091100007331 a001 31622993/682*505019158607^(5/14) 7014091100007331 a001 31622993/682*73681302247^(5/13) 7014091100007331 a001 31622993/682*28143753123^(2/5) 7014091100007331 a001 31622993/682*10749957122^(5/12) 7014091100007331 a001 31622993/682*4106118243^(10/23) 7014091100007331 a001 31622993/682*1568397607^(5/11) 7014091100007331 a001 31622993/682*599074578^(10/21) 7014091100007331 a001 433494437/1364*87403803^(8/19) 7014091100007331 a001 31622993/682*228826127^(1/2) 7014091100007331 a001 165580141/1364*87403803^(9/19) 7014091100007331 a001 225851433717/1364*33385282^(1/12) 7014091100007332 a001 139583862445/1364*33385282^(1/9) 7014091100007332 a001 31622993/682*87403803^(10/19) 7014091100007332 a001 53316291173/1364*33385282^(1/6) 7014091100007332 a001 10182505537/682*33385282^(2/9) 7014091100007332 a001 1144206275/124*33385282^(1/4) 7014091100007333 a001 7778742049/1364*33385282^(5/18) 7014091100007333 a001 2971215073/1364*33385282^(1/3) 7014091100007333 a001 24157817/1364*312119004989^(2/5) 7014091100007333 a001 24157817/1364*(1/2+1/2*5^(1/2))^22 7014091100007333 a001 24157817/1364*10749957122^(11/24) 7014091100007333 a001 24157817/1364*4106118243^(11/23) 7014091100007333 a001 24157817/1364*1568397607^(1/2) 7014091100007333 a001 24157817/1364*599074578^(11/21) 7014091100007333 a001 567451585/682*33385282^(7/18) 7014091100007333 a001 24157817/1364*228826127^(11/20) 7014091100007333 a001 182717648081/682*12752043^(1/17) 7014091100007333 a001 701408733/1364*33385282^(5/12) 7014091100007334 a001 39088169/1364*33385282^(7/12) 7014091100007334 a001 433494437/1364*33385282^(4/9) 7014091100007334 a001 24157817/1364*87403803^(11/19) 7014091100007334 a001 165580141/1364*33385282^(1/2) 7014091100007335 a001 31622993/682*33385282^(5/9) 7014091100007336 a001 139583862445/1364*12752043^(2/17) 7014091100007337 a001 24157817/1364*33385282^(11/18) 7014091100007338 a001 53316291173/1364*12752043^(3/17) 7014091100007341 a001 10182505537/682*12752043^(4/17) 7014091100007344 a001 7778742049/1364*12752043^(5/17) 7014091100007346 a001 2971215073/1364*12752043^(6/17) 7014091100007347 a001 9227465/1364*141422324^(8/13) 7014091100007347 a001 9227465/1364*2537720636^(8/15) 7014091100007347 a001 9227465/1364*45537549124^(8/17) 7014091100007347 a001 9227465/1364*14662949395604^(8/21) 7014091100007347 a001 9227465/1364*(1/2+1/2*5^(1/2))^24 7014091100007347 a001 9227465/1364*192900153618^(4/9) 7014091100007347 a001 9227465/1364*73681302247^(6/13) 7014091100007347 a001 9227465/1364*10749957122^(1/2) 7014091100007347 a001 9227465/1364*4106118243^(12/23) 7014091100007347 a001 9227465/1364*1568397607^(6/11) 7014091100007347 a001 9227465/1364*599074578^(4/7) 7014091100007347 a001 9227465/1364*228826127^(3/5) 7014091100007348 a001 9227465/1364*87403803^(12/19) 7014091100007349 a001 567451585/682*12752043^(7/17) 7014091100007349 a001 182717648081/682*4870847^(1/16) 7014091100007351 a001 433494437/1364*12752043^(8/17) 7014091100007352 a001 9227465/1364*33385282^(2/3) 7014091100007352 a001 66978574/341*12752043^(1/2) 7014091100007354 a001 165580141/1364*12752043^(9/17) 7014091100007357 a001 31622993/682*12752043^(10/17) 7014091100007361 a001 24157817/1364*12752043^(11/17) 7014091100007368 a001 139583862445/1364*4870847^(1/8) 7014091100007378 a001 9227465/1364*12752043^(12/17) 7014091100007386 a001 53316291173/1364*4870847^(3/16) 7014091100007405 a001 10182505537/682*4870847^(1/4) 7014091100007423 a001 7778742049/1364*4870847^(5/16) 7014091100007442 a001 2971215073/1364*4870847^(3/8) 7014091100007444 a001 1762289/682*141422324^(2/3) 7014091100007444 a001 1762289/682*(1/2+1/2*5^(1/2))^26 7014091100007444 a001 1762289/682*73681302247^(1/2) 7014091100007444 a001 1762289/682*10749957122^(13/24) 7014091100007444 a001 1762289/682*4106118243^(13/23) 7014091100007444 a001 1762289/682*1568397607^(13/22) 7014091100007444 a001 1762289/682*599074578^(13/21) 7014091100007444 a001 1762289/682*228826127^(13/20) 7014091100007444 a001 1762289/682*87403803^(13/19) 7014091100007448 a001 1762289/682*33385282^(13/18) 7014091100007460 a001 567451585/682*4870847^(7/16) 7014091100007466 a001 182717648081/682*1860498^(1/15) 7014091100007477 a001 1762289/682*12752043^(13/17) 7014091100007479 a001 433494437/1364*4870847^(1/2) 7014091100007497 a001 165580141/1364*4870847^(9/16) 7014091100007516 a001 31622993/682*4870847^(5/8) 7014091100007534 a001 225851433717/1364*1860498^(1/10) 7014091100007537 a001 24157817/1364*4870847^(11/16) 7014091100007569 a001 9227465/1364*4870847^(3/4) 7014091100007601 a001 139583862445/1364*1860498^(2/15) 7014091100007669 a001 21566892818/341*1860498^(1/6) 7014091100007684 a001 1762289/682*4870847^(13/16) 7014091100007736 a001 53316291173/1364*1860498^(1/5) 7014091100007871 a001 10182505537/682*1860498^(4/15) 7014091100007939 a001 1144206275/124*1860498^(3/10) 7014091100008006 a001 7778742049/1364*1860498^(1/3) 7014091100008092 a001 1346269/1364*20633239^(4/5) 7014091100008105 a001 1346269/1364*17393796001^(4/7) 7014091100008105 a001 1346269/1364*14662949395604^(4/9) 7014091100008105 a001 1346269/1364*(1/2+1/2*5^(1/2))^28 7014091100008105 a001 1346269/1364*505019158607^(1/2) 7014091100008105 a001 1346269/1364*73681302247^(7/13) 7014091100008105 a001 1346269/1364*10749957122^(7/12) 7014091100008105 a001 1346269/1364*4106118243^(14/23) 7014091100008105 a001 1346269/1364*1568397607^(7/11) 7014091100008105 a001 1346269/1364*599074578^(2/3) 7014091100008105 a001 1346269/1364*228826127^(7/10) 7014091100008106 a001 1346269/1364*87403803^(14/19) 7014091100008110 a001 1346269/1364*33385282^(7/9) 7014091100008140 a001 1346269/1364*12752043^(14/17) 7014091100008141 a001 2971215073/1364*1860498^(2/5) 7014091100008277 a001 567451585/682*1860498^(7/15) 7014091100008323 a001 182717648081/682*710647^(1/14) 7014091100008344 a001 701408733/1364*1860498^(1/2) 7014091100008364 a001 1346269/1364*4870847^(7/8) 7014091100008412 a001 433494437/1364*1860498^(8/15) 7014091100008547 a001 165580141/1364*1860498^(3/5) 7014091100008682 a001 31622993/682*1860498^(2/3) 7014091100008748 a001 39088169/1364*1860498^(7/10) 7014091100008819 a001 24157817/1364*1860498^(11/15) 7014091100008859 a001 2178309/1364*1860498^(9/10) 7014091100008968 a001 9227465/1364*1860498^(4/5) 7014091100008976 a001 5702887/1364*1860498^(5/6) 7014091100009200 a001 1762289/682*1860498^(13/15) 7014091100009315 a001 139583862445/1364*710647^(1/7) 7014091100009996 a001 1346269/1364*1860498^(14/15) 7014091100010307 a001 53316291173/1364*710647^(3/14) 7014091100010610 a001 610/1149851*(1/2+1/2*5^(1/2))^58 7014091100010803 a001 32951280099/1364*710647^(1/4) 7014091100011299 a001 10182505537/682*710647^(2/7) 7014091100012291 a001 7778742049/1364*710647^(5/14) 7014091100012533 a001 514229/1364*7881196^(10/11) 7014091100012622 a001 514229/1364*20633239^(6/7) 7014091100012636 a001 514229/1364*141422324^(10/13) 7014091100012636 a001 514229/1364*2537720636^(2/3) 7014091100012636 a001 514229/1364*45537549124^(10/17) 7014091100012636 a001 514229/1364*312119004989^(6/11) 7014091100012636 a001 514229/1364*14662949395604^(10/21) 7014091100012636 a001 514229/1364*(1/2+1/2*5^(1/2))^30 7014091100012636 a001 514229/1364*192900153618^(5/9) 7014091100012636 a001 514229/1364*28143753123^(3/5) 7014091100012636 a001 514229/1364*10749957122^(5/8) 7014091100012636 a001 514229/1364*4106118243^(15/23) 7014091100012636 a001 514229/1364*1568397607^(15/22) 7014091100012636 a001 514229/1364*599074578^(5/7) 7014091100012636 a001 514229/1364*228826127^(3/4) 7014091100012637 a001 514229/1364*87403803^(15/19) 7014091100012641 a001 514229/1364*33385282^(5/6) 7014091100012674 a001 514229/1364*12752043^(15/17) 7014091100012913 a001 514229/1364*4870847^(15/16) 7014091100013283 a001 2971215073/1364*710647^(3/7) 7014091100014275 a001 567451585/682*710647^(1/2) 7014091100014654 a001 182717648081/682*271443^(1/13) 7014091100015267 a001 433494437/1364*710647^(4/7) 7014091100016259 a001 165580141/1364*710647^(9/14) 7014091100017252 a001 31622993/682*710647^(5/7) 7014091100017747 a001 39088169/1364*710647^(3/4) 7014091100018246 a001 24157817/1364*710647^(11/14) 7014091100019193 a001 222915530658820/317811 7014091100019252 a001 9227465/1364*710647^(6/7) 7014091100020341 a001 1762289/682*710647^(13/14) 7014091100021976 a001 139583862445/1364*271443^(2/13) 7014091100029299 a001 53316291173/1364*271443^(3/13) 7014091100034517 a001 591286729879/1364*103682^(1/24) 7014091100036622 a001 10182505537/682*271443^(4/13) 7014091100041666 a001 305/219602*14662949395604^(8/9) 7014091100041666 a001 305/219602*(1/2+1/2*5^(1/2))^56 7014091100043692 a001 98209/682*(1/2+1/2*5^(1/2))^32 7014091100043692 a001 98209/682*23725150497407^(1/2) 7014091100043692 a001 98209/682*505019158607^(4/7) 7014091100043692 a001 98209/682*73681302247^(8/13) 7014091100043692 a001 98209/682*10749957122^(2/3) 7014091100043692 a001 98209/682*4106118243^(16/23) 7014091100043692 a001 98209/682*1568397607^(8/11) 7014091100043692 a001 98209/682*599074578^(16/21) 7014091100043692 a001 98209/682*228826127^(4/5) 7014091100043693 a001 98209/682*87403803^(16/19) 7014091100043698 a001 98209/682*33385282^(8/9) 7014091100043733 a001 98209/682*12752043^(16/17) 7014091100043944 a001 7778742049/1364*271443^(5/13) 7014091100051267 a001 2971215073/1364*271443^(6/13) 7014091100054928 a001 1836311903/1364*271443^(1/2) 7014091100058590 a001 567451585/682*271443^(7/13) 7014091100061704 a001 182717648081/682*103682^(1/12) 7014091100065912 a001 433494437/1364*271443^(8/13) 7014091100073235 a001 165580141/1364*271443^(9/13) 7014091100080558 a001 31622993/682*271443^(10/13) 7014091100087883 a001 24157817/1364*271443^(11/13) 7014091100088890 a001 225851433717/1364*103682^(1/8) 7014091100095220 a001 9227465/1364*271443^(12/13) 7014091100100500 a001 85146156091450/121393 7014091100116077 a001 139583862445/1364*103682^(1/6) 7014091100143263 a001 21566892818/341*103682^(5/24) 7014091100170450 a001 53316291173/1364*103682^(1/4) 7014091100197636 a001 32951280099/1364*103682^(7/24) 7014091100210610 a001 591286729879/1364*39603^(1/22) 7014091100224823 a001 10182505537/682*103682^(1/3) 7014091100252009 a001 1144206275/124*103682^(3/8) 7014091100254528 a001 610/167761*14662949395604^(6/7) 7014091100254528 a001 610/167761*(1/2+1/2*5^(1/2))^54 7014091100256555 a001 75025/1364*45537549124^(2/3) 7014091100256555 a001 75025/1364*(1/2+1/2*5^(1/2))^34 7014091100256555 a001 75025/1364*10749957122^(17/24) 7014091100256555 a001 75025/1364*4106118243^(17/23) 7014091100256555 a001 75025/1364*1568397607^(17/22) 7014091100256555 a001 75025/1364*599074578^(17/21) 7014091100256555 a001 75025/1364*228826127^(17/20) 7014091100256555 a001 75025/1364*87403803^(17/19) 7014091100256561 a001 75025/1364*33385282^(17/18) 7014091100279196 a001 7778742049/1364*103682^(5/12) 7014091100306382 a001 1201881744/341*103682^(11/24) 7014091100333569 a001 2971215073/1364*103682^(1/2) 7014091100360755 a001 1836311903/1364*103682^(13/24) 7014091100387942 a001 567451585/682*103682^(7/12) 7014091100413889 a001 182717648081/682*39603^(1/11) 7014091100415128 a001 701408733/1364*103682^(5/8) 7014091100442315 a001 433494437/1364*103682^(2/3) 7014091100469501 a001 66978574/341*103682^(17/24) 7014091100496688 a001 165580141/1364*103682^(3/4) 7014091100523874 a001 9303105/124*103682^(19/24) 7014091100551061 a001 31622993/682*103682^(5/6) 7014091100578247 a001 39088169/1364*103682^(7/8) 7014091100605436 a001 24157817/1364*103682^(11/12) 7014091100617168 a001 225851433717/1364*39603^(3/22) 7014091100632614 a001 3732588/341*103682^(23/24) 7014091100657781 a001 16261468807765/23184 7014091100820447 a001 139583862445/1364*39603^(2/11) 7014091101023726 a001 21566892818/341*39603^(5/22) 7014091101227005 a001 53316291173/1364*39603^(3/11) 7014091101430284 a001 32951280099/1364*39603^(7/22) 7014091101539955 a001 591286729879/1364*15127^(1/20) 7014091101633563 a001 10182505537/682*39603^(4/11) 7014091101713509 a001 610/64079*(1/2+1/2*5^(1/2))^52 7014091101713509 a001 610/64079*23725150497407^(13/16) 7014091101713509 a001 610/64079*505019158607^(13/14) 7014091101715535 a001 28657/1364*141422324^(12/13) 7014091101715536 a001 28657/1364*2537720636^(4/5) 7014091101715536 a001 28657/1364*45537549124^(12/17) 7014091101715536 a001 28657/1364*14662949395604^(4/7) 7014091101715536 a001 28657/1364*(1/2+1/2*5^(1/2))^36 7014091101715536 a001 28657/1364*505019158607^(9/14) 7014091101715536 a001 28657/1364*192900153618^(2/3) 7014091101715536 a001 28657/1364*73681302247^(9/13) 7014091101715536 a001 28657/1364*10749957122^(3/4) 7014091101715536 a001 28657/1364*4106118243^(18/23) 7014091101715536 a001 28657/1364*1568397607^(9/11) 7014091101715536 a001 28657/1364*599074578^(6/7) 7014091101715536 a001 28657/1364*228826127^(9/10) 7014091101715537 a001 28657/1364*87403803^(18/19) 7014091101836842 a001 1144206275/124*39603^(9/22) 7014091102040121 a001 7778742049/1364*39603^(5/11) 7014091102243400 a001 1201881744/341*39603^(1/2) 7014091102446679 a001 2971215073/1364*39603^(6/11) 7014091102649958 a001 1836311903/1364*39603^(13/22) 7014091102853237 a001 567451585/682*39603^(7/11) 7014091103056516 a001 701408733/1364*39603^(15/22) 7014091103072580 a001 182717648081/682*15127^(1/10) 7014091103259795 a001 433494437/1364*39603^(8/11) 7014091103463074 a001 66978574/341*39603^(17/22) 7014091103666353 a001 165580141/1364*39603^(9/11) 7014091103869632 a001 9303105/124*39603^(19/22) 7014091104072912 a001 31622993/682*39603^(10/11) 7014091104276189 a001 39088169/1364*39603^(21/22) 7014091104477443 a001 12422656755140/17711 7014091104605205 a001 225851433717/1364*15127^(3/20) 7014091106137829 a001 139583862445/1364*15127^(1/5) 7014091107670454 a001 21566892818/341*15127^(1/4) 7014091109203079 a001 53316291173/1364*15127^(3/10) 7014091110735703 a001 32951280099/1364*15127^(7/20) 7014091111679292 a001 591286729879/1364*5778^(1/18) 7014091111713515 a001 305/12238*312119004989^(10/11) 7014091111713515 a001 305/12238*(1/2+1/2*5^(1/2))^50 7014091111713515 a001 305/12238*3461452808002^(5/6) 7014091111715541 a001 5473/682*817138163596^(2/3) 7014091111715541 a001 5473/682*(1/2+1/2*5^(1/2))^38 7014091111715541 a001 5473/682*10749957122^(19/24) 7014091111715541 a001 5473/682*4106118243^(19/23) 7014091111715541 a001 5473/682*1568397607^(19/22) 7014091111715541 a001 5473/682*599074578^(19/21) 7014091111715541 a001 5473/682*228826127^(19/20) 7014091112268328 a001 10182505537/682*15127^(2/5) 7014091113800952 a001 1144206275/124*15127^(9/20) 7014091115333577 a001 7778742049/1364*15127^(1/2) 7014091116866202 a001 1201881744/341*15127^(11/20) 7014091118398826 a001 2971215073/1364*15127^(3/5) 7014091119931451 a001 1836311903/1364*15127^(13/20) 7014091121464075 a001 567451585/682*15127^(7/10) 7014091122996700 a001 701408733/1364*15127^(3/4) 7014091123351254 a001 182717648081/682*5778^(1/9) 7014091124529325 a001 433494437/1364*15127^(4/5) 7014091126061949 a001 66978574/341*15127^(17/20) 7014091127594574 a001 165580141/1364*15127^(9/10) 7014091129127198 a001 9303105/124*15127^(19/20) 7014091130657797 a001 949006529978/1353 7014091135023215 a001 225851433717/1364*5778^(1/6) 7014091144963747 r002 4th iterates of z^2 + 7014091146695177 a001 139583862445/1364*5778^(2/9) 7014091158367138 a001 21566892818/341*5778^(5/18) 7014091170039099 a001 53316291173/1364*5778^(1/3) 7014091180254572 a001 610/9349*45537549124^(16/17) 7014091180254572 a001 610/9349*14662949395604^(16/21) 7014091180254572 a001 610/9349*(1/2+1/2*5^(1/2))^48 7014091180254572 a001 610/9349*192900153618^(8/9) 7014091180254572 a001 610/9349*73681302247^(12/13) 7014091180256598 a001 4181/1364*2537720636^(8/9) 7014091180256598 a001 4181/1364*312119004989^(8/11) 7014091180256598 a001 4181/1364*(1/2+1/2*5^(1/2))^40 7014091180256598 a001 4181/1364*23725150497407^(5/8) 7014091180256598 a001 4181/1364*73681302247^(10/13) 7014091180256598 a001 4181/1364*28143753123^(4/5) 7014091180256598 a001 4181/1364*10749957122^(5/6) 7014091180256598 a001 4181/1364*4106118243^(20/23) 7014091180256598 a001 4181/1364*1568397607^(10/11) 7014091180256598 a001 4181/1364*599074578^(20/21) 7014091181711061 a001 32951280099/1364*5778^(7/18) 7014091190008239 a001 591286729879/1364*2207^(1/16) 7014091192302073 a007 Real Root Of 71*x^4+516*x^3+145*x^2+102*x-207 7014091193383022 a001 10182505537/682*5778^(4/9) 7014091197681248 r005 Im(z^2+c),c=-11/28+39/62*I,n=9 7014091205054984 a001 1144206275/124*5778^(1/2) 7014091216726946 a001 7778742049/1364*5778^(5/9) 7014091228398907 a001 1201881744/341*5778^(11/18) 7014091240070869 a001 2971215073/1364*5778^(2/3) 7014091251742830 a001 1836311903/1364*5778^(13/18) 7014091260444839 r002 3th iterates of z^2 + 7014091262993344 a007 Real Root Of 516*x^4+71*x^3+659*x^2-567*x-43 7014091263414792 a001 567451585/682*5778^(7/9) 7014091264616012 m005 (1/3*5^(1/2)+3/4)/(2*Catalan+3/10) 7014091266427150 a007 Real Root Of 783*x^4+444*x^3+426*x^2-224*x-403 7014091271858221 a007 Real Root Of -826*x^4+536*x^3-631*x^2+269*x+884 7014091275086754 a001 701408733/1364*5778^(5/6) 7014091280009148 a001 182717648081/682*2207^(1/8) 7014091282556681 r005 Re(z^2+c),c=23/122+16/53*I,n=37 7014091286758715 a001 433494437/1364*5778^(8/9) 7014091289517237 h001 (5/8*exp(1)+3/11)/(4/5*exp(1)+7/11) 7014091298430677 a001 66978574/341*5778^(17/18) 7014091305393183 a001 1836311903/521*521^(11/13) 7014091310100619 a001 906220597265/1292 7014091317597128 s002 sum(A091369[n]/(n^2*2^n+1),n=1..infinity) 7014091339583866 a007 Real Root Of -322*x^4+863*x^3+807*x^2+80*x-673 7014091340478950 a001 377/3571*18^(19/29) 7014091349903852 a001 75283811239/1926*843^(3/7) 7014091351992447 a007 Real Root Of -527*x^4+588*x^3+657*x^2+860*x+6 7014091360411443 r005 Im(z^2+c),c=-9/10+9/163*I,n=33 7014091370010058 a001 225851433717/1364*2207^(3/16) 7014091378114417 m001 (arctan(1/3)+BesselJ(1,1))^Conway 7014091405035810 a001 225851433717/3571*843^(5/14) 7014091408093055 a007 Real Root Of -493*x^4+219*x^3+426*x^2+974*x-849 7014091425943485 l006 ln(4038/8143) 7014091460010969 a001 139583862445/1364*2207^(1/4) 7014091493226508 a003 sin(Pi*3/29)/sin(Pi*17/113) 7014091506159402 r008 a(0)=7,K{-n^6,-42+21*n^3-40*n^2-11*n} 7014091519411232 r009 Im(z^3+c),c=-1/48+40/51*I,n=23 7014091527460353 a001 956722026041/2207*322^(1/12) 7014091529346673 a001 591286729879/15127*843^(3/7) 7014091529984706 a001 32951280099/2207*843^(4/7) 7014091546475550 m005 (1/3*Zeta(3)+2/9)/(8/9*gamma+3/8) 7014091550011881 a001 21566892818/341*2207^(5/16) 7014091553775840 r009 Re(z^3+c),c=-7/50+19/30*I,n=13 7014091555527029 a001 516002918640/13201*843^(3/7) 7014091559346691 a001 4052739537881/103682*843^(3/7) 7014091559903972 a001 3536736619241/90481*843^(3/7) 7014091560248391 a001 6557470319842/167761*843^(3/7) 7014091561707372 a001 2504730781961/64079*843^(3/7) 7014091565423658 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)-Psi(1,1/3) 7014091565423658 m001 Psi(1,1/3)-Pi*csc(7/24*Pi)/GAMMA(17/24) 7014091566879032 m001 exp(LaplaceLimit)*Backhouse^2*Niven 7014091569300283 a007 Real Root Of -795*x^4+514*x^3-185*x^2+351*x+707 7014091571707378 a001 956722026041/24476*843^(3/7) 7014091580303175 a007 Real Root Of 344*x^4-86*x^3+814*x^2-209*x-660 7014091604479717 m001 1/FeigenbaumC*LaplaceLimit*exp(Robbin) 7014091626974468 a007 Real Root Of -725*x^4+184*x^3+876*x^2+566*x+205 7014091639610267 a007 Real Root Of 743*x^4+557*x^3+820*x^2-747*x-915 7014091640012795 a001 53316291173/1364*2207^(3/8) 7014091640248440 a001 365435296162/9349*843^(3/7) 7014091643937932 a007 Real Root Of -203*x^4+944*x^3+614*x^2+220*x-733 7014091650042005 a001 610/3571*(1/2+1/2*5^(1/2))^46 7014091650042005 a001 610/3571*10749957122^(23/24) 7014091650043988 a001 1597/1364*2537720636^(14/15) 7014091650043988 a001 1597/1364*17393796001^(6/7) 7014091650043988 a001 1597/1364*45537549124^(14/17) 7014091650043988 a001 1597/1364*817138163596^(14/19) 7014091650043988 a001 1597/1364*14662949395604^(2/3) 7014091650043988 a001 1597/1364*(1/2+1/2*5^(1/2))^42 7014091650043988 a001 1597/1364*505019158607^(3/4) 7014091650043988 a001 1597/1364*192900153618^(7/9) 7014091650043988 a001 1597/1364*10749957122^(7/8) 7014091650043988 a001 1597/1364*4106118243^(21/23) 7014091650043988 a001 1597/1364*1568397607^(21/22) 7014091658783378 a001 199*610^(11/56) 7014091667902494 r005 Re(z^2+c),c=11/74+29/51*I,n=9 7014091670210183 a007 Real Root Of -713*x^4+729*x^3+383*x^2-999*x-465 7014091672040888 a007 Real Root Of -557*x^4-31*x^3-310*x^2+404*x+560 7014091675897365 r002 22th iterates of z^2 + 7014091687673871 a001 34/7*24476^(2/55) 7014091692125681 m001 (-Pi*2^(1/2)/GAMMA(3/4)+TwinPrimes)/(1-gamma) 7014091699846772 r005 Im(z^2+c),c=-71/94+23/47*I,n=3 7014091708414095 r002 18th iterates of z^2 + 7014091730013709 a001 32951280099/1364*2207^(7/16) 7014091733688288 a007 Real Root Of -98*x^4+689*x^3+365*x^2+491*x-738 7014091734785968 p001 sum(1/(219*n+145)/(24^n),n=0..infinity) 7014091754128335 a003 sin(Pi*7/117)+sin(Pi*16/93) 7014091765004514 m001 Champernowne*exp(Artin)^2*GAMMA(13/24)^2 7014091784922656 m005 (3/4*Pi-1/4)/(2/5*Catalan-2/3) 7014091790735075 a007 Real Root Of -568*x^4-162*x^3+691*x^2+799*x-707 7014091805007394 a001 591286729879/1364*843^(1/14) 7014091806260159 r005 Re(z^2+c),c=-3/38+23/29*I,n=53 7014091820014625 a001 10182505537/682*2207^(1/2) 7014091821436155 s002 sum(A150174[n]/((2^n+1)/n),n=1..infinity) 7014091841429671 a007 Real Root Of 465*x^4+450*x^3+874*x^2-674*x-860 7014091854327243 a007 Real Root Of 483*x^4-74*x^3-344*x^2-589*x+491 7014091868361254 r005 Re(z^2+c),c=-89/114+2/35*I,n=15 7014091868859472 r002 8th iterates of z^2 + 7014091879473467 m001 FellerTornier^exp(1)-RenyiParking 7014091909218269 a007 Real Root Of -282*x^4+647*x^3-551*x^2+2*x+564 7014091910015542 a001 1144206275/124*2207^(9/16) 7014091914631685 r005 Re(z^2+c),c=11/106+27/56*I,n=54 7014091922927944 l006 ln(2471/4983) 7014091942432049 a007 Real Root Of -426*x^4-617*x^3-860*x^2+500*x+664 7014091956854461 r005 Re(z^2+c),c=9/29+25/58*I,n=44 7014091991202108 a007 Real Root Of 484*x^4-366*x^3+140*x^2+86*x-252 7014091996809359 q001 2638/3761 7014092000016460 a001 7778742049/1364*2207^(5/8) 7014092016735520 s002 sum(A150174[n]/((2^n-1)/n),n=1..infinity) 7014092040351961 a007 Real Root Of -707*x^4+541*x^3-495*x^2-96*x+534 7014092042039957 m005 (1/2*5^(1/2)+2/9)/(5/6*Zeta(3)+10/11) 7014092050568496 a007 Real Root Of 990*x^4-469*x^3-856*x^2-902*x-613 7014092054903940 a001 139583862445/5778*843^(1/2) 7014092058158111 r005 Im(z^2+c),c=-1/106+23/35*I,n=5 7014092090017380 a001 1201881744/341*2207^(11/16) 7014092109230943 h001 (3/8*exp(1)+1/8)/(1/6*exp(2)+2/5) 7014092110035903 a001 139583862445/3571*843^(3/7) 7014092110105864 r002 15th iterates of z^2 + 7014092113766229 m001 (3^(1/3)+arctan(1/2))/(MertensB2-Mills) 7014092135741296 r005 Re(z^2+c),c=23/110+15/46*I,n=39 7014092165696382 l006 ln(4817/5167) 7014092165696382 p004 log(5167/4817) 7014092180018300 a001 2971215073/1364*2207^(3/4) 7014092192551762 m001 (-LandauRamanujan+4)/(exp(sqrt(2))+1/2) 7014092193321040 r005 Im(z^2+c),c=-27/50+13/22*I,n=33 7014092194748053 m001 GAMMA(17/24)^GaussAGM(1,1/sqrt(2))*LambertW(1) 7014092204011461 a007 Real Root Of -222*x^4+546*x^3-476*x^2-230*x+315 7014092205716009 a003 cos(Pi*1/77)*sin(Pi*27/109) 7014092212756529 m005 (1/2*5^(1/2)+3/5)/(1/4*Zeta(3)-6/11) 7014092221277292 r005 Im(z^2+c),c=4/29+41/61*I,n=7 7014092224482385 a003 cos(Pi*4/67)*cos(Pi*20/81) 7014092226463348 a001 34/7*843^(3/55) 7014092234346779 a001 365435296162/15127*843^(1/2) 7014092234984812 a001 20365011074/2207*843^(9/14) 7014092240279143 r008 a(0)=7,K{-n^6,-48-13*n^3+79*n^2-76*n} 7014092260527137 a001 956722026041/39603*843^(1/2) 7014092264346800 a001 2504730781961/103682*843^(1/2) 7014092264904082 a001 6557470319842/271443*843^(1/2) 7014092265035638 a001 10610209857723/439204*843^(1/2) 7014092265248500 a001 4052739537881/167761*843^(1/2) 7014092266707482 a001 1548008755920/64079*843^(1/2) 7014092270019222 a001 1836311903/1364*2207^(13/16) 7014092276022180 r009 Im(z^3+c),c=-19/82+27/31*I,n=27 7014092276707489 a001 591286729879/24476*843^(1/2) 7014092281844623 m008 (2*Pi^6+1/5)/(Pi-2/5) 7014092285629678 p001 sum(1/(489*n+112)/n/(24^n),n=1..infinity) 7014092289812390 m001 (arctan(1/3)+BesselJ(1,1))/(cos(1/5*Pi)-Ei(1)) 7014092331545390 m001 1/Niven/ErdosBorwein^2/exp(sinh(1)) 7014092334055283 m005 (1/2*3^(1/2)-2/7)/(1/3*3^(1/2)+1/4) 7014092345248558 a001 225851433717/9349*843^(1/2) 7014092356780761 m005 (1/2*Catalan-5/7)/(1/5*Zeta(3)+1/8) 7014092360020145 a001 567451585/682*2207^(7/8) 7014092393081100 m005 (1/2*Catalan+2/9)/(2^(1/2)-4/9) 7014092405501927 a007 Real Root Of 661*x^4-892*x^3+308*x^2-125*x-707 7014092420983663 r009 Re(z^3+c),c=-3/110+47/58*I,n=52 7014092423826714 a007 Real Root Of 682*x^4-526*x^3+680*x^2-409*x-968 7014092437986041 a007 Real Root Of -567*x^4+472*x^3+255*x^2-137*x-55 7014092441460708 m001 (-BesselI(1,2)+ZetaQ(3))/(exp(Pi)-sin(1/5*Pi)) 7014092450021069 a001 701408733/1364*2207^(15/16) 7014092450335375 a007 Real Root Of -493*x^4+689*x^3-631*x^2-581*x+260 7014092483238735 b008 -8+LogGamma[EulerGamma^2] 7014092488125483 a007 Real Root Of -44*x^4+172*x^3+616*x^2+880*x-969 7014092498437453 r008 a(0)=7,K{-n^6,-5-52*n-55*n^2+44*n^3} 7014092499113931 r009 Re(z^3+c),c=-7/13+6/43*I,n=33 7014092505815251 r008 a(0)=7,K{-n^6,-36+30*n^3-4*n^2-60*n} 7014092510007528 a001 182717648081/682*843^(1/7) 7014092517542208 l006 ln(3375/6806) 7014092520193886 a001 24476/3*514229^(31/45) 7014092525414667 a005 (1/sin(55/127*Pi))^1018 7014092538636714 r002 62th iterates of z^2 + 7014092540020263 a001 692290933700/987 7014092569898024 m009 (1/2*Psi(1,3/4)+3/5)/(1/4*Pi^2+1/5) 7014092578240702 r005 Im(z^2+c),c=25/74+23/57*I,n=56 7014092583060228 s002 sum(A036612[n]/(n*exp(n)-1),n=1..infinity) 7014092583986411 m001 1/KhintchineLevy/Cahen*exp(Pi)^2 7014092584897495 r009 Re(z^3+c),c=-37/114+19/31*I,n=2 7014092587422347 a007 Real Root Of -461*x^4-392*x^3-958*x^2+126*x+536 7014092588796625 a007 Real Root Of 92*x^4+739*x^3+789*x^2+853*x-499 7014092598479558 m001 Psi(2,1/3)+Otter*Riemann2ndZero 7014092612033727 r008 a(0)=7,K{-n^6,-98+43*n^3-74*n^2+59*n} 7014092670121163 m001 (Niven+ZetaQ(2))/(GAMMA(3/4)+GlaisherKinkelin) 7014092688912865 r009 Im(z^3+c),c=-9/26+19/27*I,n=31 7014092717619968 m001 (sin(1)+Zeta(3))/(-exp(1/Pi)+OrthogonalArrays) 7014092722053287 m001 (Niven-Otter)/(Gompertz+KhinchinLevy) 7014092725208385 r009 Re(z^3+c),c=-37/122+25/33*I,n=6 7014092737150745 m001 1/Riemann2ndZero/ln(Niven)^2/cosh(1)^2 7014092739183839 m003 119/20+Sqrt[5]/16+Tanh[1/2+Sqrt[5]/2] 7014092739992334 r005 Re(z^2+c),c=-5/94+32/39*I,n=23 7014092752951760 m005 (1/2*Zeta(3)+8/9)/(7/9*Catalan-1/2) 7014092756518929 a007 Real Root Of 423*x^4-508*x^3-513*x^2-711*x-524 7014092757379746 a001 2504730781961/5778*322^(1/12) 7014092759904099 a001 43133785636/2889*843^(4/7) 7014092777451556 q001 2389/3406 7014092788574330 r009 Re(z^3+c),c=-11/19+34/59*I,n=30 7014092795710121 r008 a(0)=7,K{-n^6,-44-22*n-29*n^2+22*n^3} 7014092815036068 a001 86267571272/3571*843^(1/2) 7014092820018771 b008 Log[-9/8+Pi] 7014092822822363 s002 sum(A282800[n]/((2*n)!),n=1..infinity) 7014092830943016 a007 Real Root Of -738*x^4+845*x^3-37*x^2-367*x+231 7014092840104038 m009 (2*Pi^2-3/5)/(3*Psi(1,1/3)-3) 7014092842326500 r002 32th iterates of z^2 + 7014092860914906 l006 ln(4279/8629) 7014092865969335 m001 (MertensB1+Sarnak)/(2^(1/2)+gamma(2)) 7014092871463057 b008 LogGamma[Gamma[ArcCosh[2]]] 7014092881565508 a007 Real Root Of 571*x^4-493*x^3+220*x^2+966*x+261 7014092883874960 r008 a(0)=7,K{-n^6,-58+n-57*n^2+44*n^3} 7014092902097731 a007 Real Root Of -25*x^4+812*x^3-970*x^2-829*x+182 7014092922313646 a007 Real Root Of 890*x^4-905*x^3-538*x^2+941*x+397 7014092923224176 r005 Im(z^2+c),c=-9/10+9/163*I,n=50 7014092924971838 r005 Im(z^2+c),c=-9/10+9/163*I,n=52 7014092926364800 r005 Im(z^2+c),c=-9/10+9/163*I,n=49 7014092927823646 r005 Im(z^2+c),c=-9/10+9/163*I,n=51 7014092928134756 r005 Im(z^2+c),c=-9/10+9/163*I,n=54 7014092928987883 a007 Real Root Of -555*x^4-390*x^3-298*x^2-327*x-83 7014092929760507 r005 Im(z^2+c),c=-9/10+9/163*I,n=53 7014092930051884 r005 Im(z^2+c),c=-9/10+9/163*I,n=47 7014092930300216 r005 Im(z^2+c),c=-9/10+9/163*I,n=56 7014092931005420 r005 Im(z^2+c),c=-9/10+9/163*I,n=55 7014092931372234 r005 Im(z^2+c),c=-9/10+9/163*I,n=58 7014092931596976 r005 Im(z^2+c),c=-9/10+9/163*I,n=57 7014092931677093 r005 Im(z^2+c),c=-9/10+9/163*I,n=48 7014092931777747 r005 Im(z^2+c),c=-9/10+9/163*I,n=60 7014092931810309 r005 Im(z^2+c),c=-9/10+9/163*I,n=59 7014092931850661 r005 Im(z^2+c),c=-9/10+9/163*I,n=63 7014092931857471 r005 Im(z^2+c),c=-9/10+9/163*I,n=61 7014092931874157 r005 Im(z^2+c),c=-9/10+9/163*I,n=64 7014092931878343 r005 Im(z^2+c),c=-9/10+9/163*I,n=62 7014092935102654 a007 Real Root Of 372*x^4-96*x^3+814*x^2-260*x-706 7014092936822603 a001 6557470319842/15127*322^(1/12) 7014092939346956 a001 32264490531/2161*843^(4/7) 7014092939984989 a001 12586269025/2207*843^(5/7) 7014092948976648 m001 (BesselI(1,2)-Weierstrass)/BesselI(1,2) 7014092951167615 r005 Im(z^2+c),c=-9/10+9/163*I,n=45 7014092958260362 r005 Re(z^2+c),c=-57/110+31/63*I,n=4 7014092965527317 a001 591286729879/39603*843^(4/7) 7014092969346980 a001 774004377960/51841*843^(4/7) 7014092969904262 a001 4052739537881/271443*843^(4/7) 7014092969985568 a001 1515744265389/101521*843^(4/7) 7014092970035818 a001 3278735159921/219602*843^(4/7) 7014092970248681 a001 2504730781961/167761*843^(4/7) 7014092971707662 a001 956722026041/64079*843^(4/7) 7014092972437945 r005 Im(z^2+c),c=-9/10+9/163*I,n=46 7014092975127721 a001 64079*514229^(15/17) 7014092979183317 a001 10610209857723/24476*322^(1/12) 7014092981707670 a001 182717648081/12238*843^(4/7) 7014093005696595 a007 Real Root Of 505*x^4-869*x^3-407*x^2-733*x-736 7014093014418815 r005 Im(z^2+c),c=-9/10+9/163*I,n=43 7014093047724392 a001 4052739537881/9349*322^(1/12) 7014093050248746 a001 139583862445/9349*843^(4/7) 7014093052405330 a007 Real Root Of -113*x^4-827*x^3-365*x^2-986*x-832 7014093059049395 m001 1/MinimumGamma^2/ln(CareFree)^2*Tribonacci 7014093076148769 r002 8th iterates of z^2 + 7014093088138301 r005 Im(z^2+c),c=-9/10+9/163*I,n=44 7014093092684059 s002 sum(A225911[n]/(exp(n)),n=1..infinity) 7014093101021914 a007 Real Root Of 803*x^4-220*x^3+950*x^2-106*x-812 7014093124987929 r009 Im(z^3+c),c=-59/110+21/52*I,n=45 7014093142658739 p004 log(33179/16453) 7014093155646033 r005 Im(z^2+c),c=-9/10+9/163*I,n=41 7014093206842449 r002 15th iterates of z^2 + 7014093215007733 a001 225851433717/1364*843^(3/14) 7014093282947509 r005 Im(z^2+c),c=-93/118+2/51*I,n=13 7014093293090620 a001 2971215073/521*521^(10/13) 7014093306260180 m001 (1/2+sin(Pi/12))^GAMMA(17/24) 7014093309928171 r002 4th iterates of z^2 + 7014093336245237 r005 Im(z^2+c),c=-9/10+9/163*I,n=42 7014093350367599 m001 sin(1)^(Pi*csc(5/12*Pi)/GAMMA(7/12))+ZetaQ(3) 7014093350387388 r005 Im(z^2+c),c=-47/102+5/42*I,n=17 7014093351313184 r008 a(0)=7,K{-n^6,-90+n^3+39*n^2-19*n} 7014093377272940 r005 Re(z^2+c),c=-5/54+41/60*I,n=61 7014093379163740 r005 Im(z^2+c),c=-37/52+1/64*I,n=50 7014093393843623 r005 Im(z^2+c),c=-9/10+9/163*I,n=39 7014093394608807 r005 Im(z^2+c),c=-9/10+9/163*I,n=35 7014093422695299 m001 (3^(1/3)+Grothendieck)/(Zeta(5)-gamma) 7014093432954971 r005 Im(z^2+c),c=-9/10+9/163*I,n=36 7014093438962679 m001 GAMMA(3/4)^cos(1)-PrimesInBinary 7014093439200504 r008 a(0)=7,K{-n^6,-32+12*n^3+28*n^2-76*n} 7014093448662644 a007 Real Root Of 354*x^4-883*x^3-866*x^2+50*x+610 7014093453890875 m001 GAMMA(7/12)^2*Sierpinski^2*ln(cos(Pi/5))^2 7014093464904329 a001 53316291173/5778*843^(9/14) 7014093471670226 r008 a(0)=7,K{-n^6,-62+17*n^3-2*n^2-21*n} 7014093482254306 h001 (1/8*exp(2)+4/7)/(1/6*exp(2)+9/10) 7014093485584454 m001 GAMMA(7/24)/MinimumGamma*exp(Zeta(3)) 7014093491423344 a007 Real Root Of 921*x^4-388*x^3-765*x^2-403*x+570 7014093517511950 a001 1548008755920/3571*322^(1/12) 7014093518624019 r002 3th iterates of z^2 + 7014093520036303 a001 53316291173/3571*843^(4/7) 7014093530973139 a005 (1/cos(17/236*Pi))^1591 7014093606643604 r005 Re(z^2+c),c=-11/12+14/121*I,n=46 7014093626757046 a007 Real Root Of -472*x^4+841*x^3-152*x^2-803*x-84 7014093627961046 r008 a(0)=7,K{-n^6,-19-33*n-56*n^2+35*n^3} 7014093630126659 r005 Im(z^2+c),c=-9/10+9/163*I,n=37 7014093630743824 m001 gamma(1)^exp(1/Pi)/(Khinchin^exp(1/Pi)) 7014093640762670 r008 a(0)=7,K{-n^6,2+64*n^3-87*n^2-49*n} 7014093644347204 a001 139583862445/15127*843^(9/14) 7014093644985237 a001 7778742049/2207*843^(11/14) 7014093660703357 s002 sum(A199704[n]/(n*exp(n)-1),n=1..infinity) 7014093662942889 a007 Real Root Of 49*x^4+308*x^3-177*x^2+497*x-122 7014093666328757 m001 gamma(2)^(arctan(1/2)/cos(1/5*Pi)) 7014093670527568 a001 365435296162/39603*843^(9/14) 7014093674347231 a001 956722026041/103682*843^(9/14) 7014093674904513 a001 2504730781961/271443*843^(9/14) 7014093674985819 a001 6557470319842/710647*843^(9/14) 7014093675005013 a001 10610209857723/1149851*843^(9/14) 7014093675036069 a001 4052739537881/439204*843^(9/14) 7014093675248932 a001 140728068720/15251*843^(9/14) 7014093676499238 r008 a(0)=7,K{-n^6,2-51*n-42*n^2+20*n^3} 7014093676707913 a001 591286729879/64079*843^(9/14) 7014093677179055 r005 Im(z^2+c),c=-93/110+2/45*I,n=52 7014093680416333 a007 Real Root Of 683*x^4+194*x^3-780*x^2-548*x-99 7014093686707922 a001 7787980473/844*843^(9/14) 7014093701195871 a007 Real Root Of -768*x^4+907*x^3+751*x^2+286*x+330 7014093708855265 m005 (1/2*Pi+6/11)/(5/6*Zeta(3)-7/10) 7014093712598055 m001 (Landau+Salem)/(exp(Pi)+exp(1/Pi)) 7014093714367605 a007 Real Root Of -124*x^4-889*x^3-115*x^2+271*x+915 7014093720816979 a007 Real Root Of 48*x^4+475*x^3+995*x^2+100*x-518 7014093726259721 a007 Real Root Of -939*x^4+733*x^3+393*x^2+944*x+949 7014093732766560 r005 Im(z^2+c),c=-9/10+9/163*I,n=40 7014093732934494 r009 Im(z^3+c),c=-25/66+1/47*I,n=10 7014093739757456 q001 214/3051 7014093755249005 a001 86267571272/9349*843^(9/14) 7014093759556123 a007 Real Root Of -667*x^4+468*x^3+214*x^2+317*x+440 7014093779795329 a007 Real Root Of -854*x^4+344*x^3-782*x^2-23*x+694 7014093800524916 r008 a(0)=7,K{-n^6,-93+22*n^3-53*n^2+51*n} 7014093805347077 m001 1/Lehmer/exp(KhintchineHarmonic)*cosh(1)^2 7014093834313722 a007 Real Root Of -592*x^4+638*x^3-602*x^2-862*x+55 7014093841008709 a003 cos(Pi*1/94)-cos(Pi*44/109) 7014093901282847 a007 Real Root Of 609*x^4-932*x^3-938*x^2-297*x+844 7014093905039501 m001 (-Paris+Trott)/(Shi(1)+DuboisRaymond) 7014093920008008 a001 139583862445/1364*843^(2/7) 7014093934795922 b008 7*(E^(-3))!! 7014093938741195 a005 (1/sin(92/221*Pi))^648 7014093960644244 m001 Zeta(5)-sin(1/12*Pi)-ZetaP(4) 7014093961646294 b008 Pi+ArcCosh[17*Sqrt[2]] 7014093981982742 m001 (3^(1/2)-ln(5))/(Ei(1,1)+GAMMA(7/12)) 7014094034197492 m001 (-KhinchinHarmonic+Porter)/(3^(1/2)+5^(1/2)) 7014094039801475 a007 Real Root Of 522*x^4-639*x^3-498*x^2-878*x+955 7014094060928984 m001 (Pi*2^(1/2)/GAMMA(3/4))^Mills/ZetaP(4) 7014094063787584 r005 Im(z^2+c),c=-9/10+9/163*I,n=38 7014094079433216 a007 Real Root Of -963*x^4+590*x^3-656*x^2-578*x+354 7014094090494917 m005 (1/2*Pi-5/11)/(7/10*Zeta(3)+3/4) 7014094091521139 a007 Real Root Of 881*x^4-x^3+471*x^2+853*x+153 7014094101984464 a007 Real Root Of -891*x^4-652*x^3-603*x^2+902*x+920 7014094103308852 a007 Real Root Of -579*x^4+697*x^3+143*x^2+634*x+755 7014094122483290 r002 17th iterates of z^2 + 7014094125672466 a007 Real Root Of -90*x^4-642*x^3-227*x^2-968*x+675 7014094130744148 r002 5th iterates of z^2 + 7014094142124141 a003 cos(Pi*16/83)*sin(Pi*27/83) 7014094142864865 l006 ln(904/1823) 7014094147739486 a007 Real Root Of -527*x^4+920*x^3+438*x^2-213*x-256 7014094155716191 a007 Real Root Of 785*x^4+228*x^3+75*x^2-694*x-635 7014094161948485 m001 (BesselI(1,1)-MertensB3)^Totient 7014094169904630 a001 10983760033/1926*843^(5/7) 7014094200328341 a007 Real Root Of 731*x^4+87*x^3+226*x^2-74*x-310 7014094222662879 r008 a(0)=7,K{-n^6,-60+12*n^3-31*n^2+6*n} 7014094225036610 a001 32951280099/3571*843^(9/14) 7014094236861597 a007 Real Root Of -726*x^4+988*x^3+483*x^2-874*x-334 7014094270885671 m009 (4*Psi(1,3/4)+1/3)/(3/2*Pi^2+1/6) 7014094303405830 a007 Real Root Of 237*x^4-688*x^3+383*x^2-637*x-930 7014094307754719 r005 Im(z^2+c),c=-79/122+3/53*I,n=7 7014094309389806 m001 (Backhouse-TwinPrimes)/(GAMMA(2/3)-Ei(1,1)) 7014094343450024 r008 a(0)=7,K{-n^6,-61+34*n^3-89*n^2+44*n} 7014094349347523 a001 86267571272/15127*843^(5/7) 7014094349985556 a001 4807526976/2207*843^(6/7) 7014094360614263 m001 (-Artin+RenyiParking)/(Psi(2,1/3)+Si(Pi)) 7014094372426968 a001 139583862445/843*322^(1/4) 7014094375527889 a001 75283811239/13201*843^(5/7) 7014094379347553 a001 591286729879/103682*843^(5/7) 7014094379904835 a001 516002918640/90481*843^(5/7) 7014094379986141 a001 4052739537881/710647*843^(5/7) 7014094379998003 a001 3536736619241/620166*843^(5/7) 7014094380005335 a001 6557470319842/1149851*843^(5/7) 7014094380036391 a001 2504730781961/439204*843^(5/7) 7014094380249254 a001 956722026041/167761*843^(5/7) 7014094381708235 a001 365435296162/64079*843^(5/7) 7014094391708245 a001 139583862445/24476*843^(5/7) 7014094460249335 a001 53316291173/9349*843^(5/7) 7014094472340943 a007 Real Root Of -540*x^4+63*x^3-122*x^2-186*x+82 7014094489516047 m006 (4/5*exp(Pi)+4)/(3/5*exp(2*Pi)-1/3) 7014094494428389 m001 (Bloch-MasserGramain)/(Zeta(1/2)-GAMMA(23/24)) 7014094497735165 l006 ln(8299/8902) 7014094502952404 m009 (3/4*Psi(1,2/3)+3)/(5/6*Psi(1,2/3)+5) 7014094512226990 r005 Im(z^2+c),c=-1/22+37/54*I,n=29 7014094512980095 a003 cos(Pi*25/99)*sin(Pi*57/115) 7014094527595477 r008 a(0)=7,K{-n^6,-51-18*n+20*n^2+2*n^3} 7014094529100441 r008 a(0)=7,K{-n^6,-57-25*n^3+86*n^2-76*n} 7014094590744506 a007 Real Root Of 715*x^4-915*x^3+562*x^2+66*x-719 7014094610616104 r002 58i'th iterates of 2*x/(1-x^2) of 7014094625008355 a001 21566892818/341*843^(5/14) 7014094636353559 r008 a(0)=7,K{-n^6,-60-10*n-7*n^2+5*n^3} 7014094659320983 m001 ln(GAMMA(1/4))^2*CareFree^2/GAMMA(19/24) 7014094690782996 a007 Real Root Of 887*x^4-177*x^3+984*x^2+831*x-177 7014094757172398 m001 FeigenbaumKappa/Artin*exp(TwinPrimes) 7014094812633459 m001 (BesselJ(1,1)+GAMMA(7/12))/(Porter+Totient) 7014094828206076 a007 Real Root Of 946*x^4-216*x^3-783*x^2-788*x-471 7014094834940248 g002 Psi(1/9)+Psi(2/5)-Psi(3/10)-Psi(5/8) 7014094847400856 m001 Robbin^2*GolombDickman*ln(GAMMA(19/24))^2 7014094856139978 m001 (-Niven+Riemann3rdZero)/(3^(1/2)+BesselI(1,2)) 7014094859835955 a007 Real Root Of -305*x^4+380*x^3-646*x^2+457*x-29 7014094865877641 m001 (ln(3)+ArtinRank2)/(Gompertz+Riemann3rdZero) 7014094870014662 a001 305/682*312119004989^(4/5) 7014094870014662 a001 305/682*(1/2+1/2*5^(1/2))^44 7014094870014662 a001 305/682*23725150497407^(11/16) 7014094870014662 a001 305/682*73681302247^(11/13) 7014094870014662 a001 305/682*10749957122^(11/12) 7014094870014662 a001 305/682*4106118243^(22/23) 7014094874905001 a001 10182505537/2889*843^(11/14) 7014094887386805 r008 a(0)=7,K{-n^6,-11-43*n-55*n^2+36*n^3} 7014094906952589 a007 Real Root Of -213*x^4+538*x^3-340*x^2-906*x-231 7014094930036987 a001 20365011074/3571*843^(5/7) 7014094952882515 a007 Real Root Of 61*x^4-995*x^3+817*x^2-171*x-880 7014094955489614 q001 1891/2696 7014094987827217 m001 ln(gamma*Thue) 7014094994072586 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)-Ei(1))^Backhouse 7014094994072586 m001 (Ei(1)-GAMMA(1/3))^Backhouse 7014095013621583 m001 (Landau-MinimumGamma)/(Ei(1,1)-GAMMA(7/12)) 7014095037893516 a007 Real Root Of -985*x^4-371*x^3+132*x^2-32*x+23 7014095050217473 a007 Real Root Of 650*x^4-717*x^3-895*x^2-604*x+47 7014095054347913 a001 53316291173/15127*843^(11/14) 7014095054985946 a001 2971215073/2207*843^(13/14) 7014095069862026 a007 Real Root Of -98*x^4+181*x^3-882*x^2+496*x+868 7014095079466284 a007 Real Root Of 359*x^4-592*x^3+736*x^2+689*x-170 7014095080528282 a001 139583862445/39603*843^(11/14) 7014095084347946 a001 182717648081/51841*843^(11/14) 7014095084905227 a001 956722026041/271443*843^(11/14) 7014095084986534 a001 2504730781961/710647*843^(11/14) 7014095084998396 a001 3278735159921/930249*843^(11/14) 7014095085001196 a001 10610209857723/3010349*843^(11/14) 7014095085005727 a001 4052739537881/1149851*843^(11/14) 7014095085036784 a001 387002188980/109801*843^(11/14) 7014095085249646 a001 591286729879/167761*843^(11/14) 7014095086708628 a001 225851433717/64079*843^(11/14) 7014095091119626 a007 Real Root Of -539*x^4+549*x^3-859*x^2-293*x+537 7014095096708639 a001 21566892818/6119*843^(11/14) 7014095100214409 s002 sum(A180880[n]/(16^n),n=1..infinity) 7014095103318043 r008 a(0)=7,K{-n^6,-60-8*n^3+31*n^2-35*n} 7014095113616727 r002 39th iterates of z^2 + 7014095146668879 a007 Real Root Of 350*x^4-429*x^3-206*x^2-919*x-776 7014095151065534 a007 Real Root Of 104*x^4+185*x^3+451*x^2-888*x+60 7014095156261024 a003 sin(Pi*11/105)+sin(Pi*10/81) 7014095165249736 a001 32951280099/9349*843^(11/14) 7014095171043994 m006 (2*exp(2*Pi)-3/5)/(2/3*exp(Pi)-1/6) 7014095186798722 a007 Real Root Of 226*x^4-812*x^3-134*x^2+623*x+168 7014095188088882 m001 exp(1)/(Robbin^UniversalParabolic) 7014095221702068 r002 14th iterates of z^2 + 7014095223138487 m001 (gamma+BesselJ(0,1))/(MinimumGamma+ZetaP(2)) 7014095240862318 r002 22th iterates of z^2 + 7014095280788620 a001 4807526976/521*521^(9/13) 7014095294074381 a007 Real Root Of -76*x^4-391*x^3+881*x^2-878*x-476 7014095295031050 l006 ln(4761/9601) 7014095296650125 m009 (2*Psi(1,3/4)-4/5)/(6*Psi(1,1/3)+1/2) 7014095312927732 a001 33385282*34^(4/19) 7014095314753463 l006 ln(5/5561) 7014095318660261 a007 Real Root Of -757*x^4-18*x^3-478*x^2+513*x+772 7014095323986041 m001 polylog(4,1/2)*(GAMMA(2/3)+HeathBrownMoroz) 7014095330008772 a001 53316291173/1364*843^(3/7) 7014095378591105 a007 Real Root Of -278*x^4+517*x^3+359*x^2+871*x+680 7014095381607068 r005 Re(z^2+c),c=-35/102+29/47*I,n=63 7014095397855488 a007 Real Root Of 908*x^4+101*x^3-62*x^2+12*x-146 7014095405886100 a007 Real Root Of 939*x^4+616*x^3+400*x^2-72*x-262 7014095412572518 a007 Real Root Of 26*x^4+139*x^3+761*x^2-411*x-621 7014095414697382 m001 (3^(1/2)+GAMMA(3/4))/(AlladiGrinstead+Magata) 7014095433831280 m001 HardyLittlewoodC3^Paris/(exp(Pi)^Paris) 7014095436919750 r002 2th iterates of z^2 + 7014095437039508 r008 a(0)=7,K{-n^6,-27+31*n^3-2*n^2-72*n} 7014095437693679 r008 a(0)=7,K{-n^6,-99+43*n^3-74*n^2+60*n} 7014095470629628 r002 2th iterates of z^2 + 7014095493419132 m005 (1/2*exp(1)-5/7)/(1/10*Pi-2/9) 7014095518842050 m005 (1/2*5^(1/2)-7/10)/(5/9*gamma-11/12) 7014095521046119 r008 a(0)=7,K{-n^6,-8+12*n^3+5*n^2-81*n} 7014095537517555 a007 Real Root Of 372*x^4+214*x^3-955*x^2-673*x+778 7014095538335661 p001 sum(1/(334*n+143)/(100^n),n=0..infinity) 7014095553661652 a007 Real Root Of 605*x^4-920*x^3-467*x^2-389*x-507 7014095565074648 l006 ln(3857/7778) 7014095578042526 m005 (1/2*Catalan+1/10)/(6/7*2^(1/2)-5/12) 7014095578595206 a007 Real Root Of 704*x^4-383*x^3-159*x^2+806*x+341 7014095579905444 a001 12586269025/5778*843^(6/7) 7014095602833981 r005 Im(z^2+c),c=-35/36+8/21*I,n=4 7014095604830049 a007 Real Root Of 12*x^4+855*x^3+939*x^2+378*x-679 7014095615043439 r005 Im(z^2+c),c=-23/18+5/154*I,n=26 7014095635037435 a001 12586269025/3571*843^(11/14) 7014095654280072 r009 Im(z^3+c),c=-1/122+26/33*I,n=61 7014095661249913 a007 Real Root Of -622*x^4+620*x^3+780*x^2-252*x-196 7014095672253686 a007 Real Root Of 43*x^4-276*x^3-222*x^2-688*x-479 7014095698604186 a007 Real Root Of -196*x^4-716*x^3-843*x^2+851*x+812 7014095699869116 r008 a(0)=7,K{-n^6,-59+2*n-57*n^2+44*n^3} 7014095702678126 m001 (ArtinRank2-Porter)^GAMMA(2/3) 7014095719997099 r008 a(0)=7,K{-n^6,-67+15*n^3-32*n^2+12*n} 7014095759348373 a001 32951280099/15127*843^(6/7) 7014095763099646 r005 Re(z^2+c),c=-23/122+38/53*I,n=29 7014095770437398 s002 sum(A103718[n]/(16^n),n=1..infinity) 7014095785528745 a001 86267571272/39603*843^(6/7) 7014095789348409 a001 225851433717/103682*843^(6/7) 7014095789905691 a001 591286729879/271443*843^(6/7) 7014095789986997 a001 1548008755920/710647*843^(6/7) 7014095789998860 a001 4052739537881/1860498*843^(6/7) 7014095790000590 a001 2178309*843^(6/7) 7014095790001660 a001 6557470319842/3010349*843^(6/7) 7014095790006191 a001 2504730781961/1149851*843^(6/7) 7014095790037247 a001 956722026041/439204*843^(6/7) 7014095790250110 a001 365435296162/167761*843^(6/7) 7014095791709092 a001 139583862445/64079*843^(6/7) 7014095794499331 p001 sum((-1)^n/(302*n+261)/n/(25^n),n=1..infinity) 7014095801709104 a001 53316291173/24476*843^(6/7) 7014095802316499 a007 Real Root Of -649*x^4+832*x^3-271*x^2+62*x+621 7014095803358419 m001 (-ln(2)+1)/(exp(1/Pi)+3) 7014095832918486 r002 32th iterates of z^2 + 7014095837810706 a001 29/139583862445*987^(3/17) 7014095853056350 a007 Real Root Of -815*x^4-635*x^3-884*x^2-174*x+291 7014095853574504 m001 Niven/(ZetaP(2)^Grothendieck) 7014095867678065 a007 Real Root Of -692*x^4+362*x^3+11*x^2-211*x+139 7014095870250207 a001 20365011074/9349*843^(6/7) 7014095889297684 r002 5th iterates of z^2 + 7014095901507228 m001 (Psi(2,1/3)+Chi(1))/(-ln(2)+Porter) 7014095937085755 m008 (5/6*Pi+3)/(5/6*Pi^6-1/5) 7014096000454778 l006 ln(2953/5955) 7014096013929003 r002 3th iterates of z^2 + 7014096024697862 a007 Real Root Of 795*x^4+423*x^3+363*x^2-680*x-702 7014096029114151 a007 Real Root Of 53*x^4+253*x^3-681*x^2+942*x-866 7014096030584516 a007 Real Root Of 335*x^4-435*x^3+64*x^2-796*x-821 7014096035009260 a001 32951280099/1364*843^(1/2) 7014096047149799 r008 a(0)=7,K{-n^6,-15+49*n^3-50*n^2-54*n} 7014096060094264 m001 HardHexagonsEntropy/TreeGrowth2nd/ZetaP(2) 7014096084025746 a007 Real Root Of -308*x^4+993*x^3-146*x^2+366*x-453 7014096089777032 m001 CopelandErdos-Ei(1,1)+ZetaQ(2) 7014096091931143 a001 29/2504730781961*12586269025^(3/17) 7014096091931163 a001 29/591286729879*3524578^(3/17) 7014096105565458 a007 Real Root Of -643*x^4+69*x^3-362*x^2+896*x+986 7014096142078771 m001 BesselI(1,1)-GAMMA(2/3)+Thue 7014096156928307 a007 Real Root Of 473*x^4-636*x^3+921*x^2+683*x-308 7014096166661203 m005 (1/2*2^(1/2)+2/9)/(3/5*3^(1/2)+2/7) 7014096166935556 a007 Real Root Of -568*x^4+650*x^3+956*x^2-177*x-433 7014096176241772 a007 Real Root Of -744*x^4+356*x^3-767*x^2+376*x+944 7014096184377934 m001 (Niven+ZetaP(3))/(2^(1/2)+BesselI(0,1)) 7014096186716675 r005 Re(z^2+c),c=19/40+5/28*I,n=4 7014096196773937 a007 Real Root Of 860*x^4-755*x^3-312*x^2-858*x-917 7014096227031320 m001 Khintchine*ArtinRank2*exp(TwinPrimes)^2 7014096228609693 a007 Real Root Of 430*x^4-570*x^3-147*x^2-390*x-502 7014096254614352 m001 (FeigenbaumD-Pi)^Magata 7014096284905957 a001 7778742049/5778*843^(13/14) 7014096308829572 m005 (1/2*5^(1/2)-7/9)/(4/11*Catalan-9/11) 7014096325516709 a001 64079/21*610^(39/46) 7014096327671794 a007 Real Root Of 55*x^4+399*x^3+13*x^2-494*x+459 7014096330005081 p001 sum((-1)^n/(380*n+141)/(24^n),n=0..infinity) 7014096336172710 l006 ln(5002/10087) 7014096340037954 a001 7778742049/3571*843^(6/7) 7014096375494424 a003 cos(Pi*16/65)*cos(Pi*15/32) 7014096378677624 p001 sum((-1)^n/(143*n+85)/n/(625^n),n=0..infinity) 7014096382412739 m001 (BesselK(0,1)-MertensB3)/(Sarnak+Stephens) 7014096384449820 a007 Real Root Of 881*x^4-27*x^3-605*x^2-703*x-418 7014096385062011 a007 Real Root Of 137*x^4+256*x^3+520*x^2-605*x-625 7014096390914944 m001 exp(Paris)/MinimumGamma/OneNinth 7014096434127044 a007 Real Root Of 99*x^4+758*x^3+416*x^2-86*x+879 7014096437540234 m001 (2^(1/3))-GAMMA(2/3)*ThueMorse 7014096437540234 m001 2^(1/3)-GAMMA(2/3)*ThueMorse 7014096450400583 m005 (1/2*Catalan+2/11)/(6*2^(1/2)+7/11) 7014096457859167 a007 Real Root Of -919*x^4+188*x^3-951*x^2-197*x+617 7014096464348905 a001 20365011074/15127*843^(13/14) 7014096477340435 a007 Real Root Of -510*x^4+568*x^3-770*x^2-46*x+666 7014096480268956 a005 (1/cos(13/135*Pi))^141 7014096489769962 m001 (2^(1/3)+GAMMA(11/12))/(Pi^(1/2)+GAMMA(7/12)) 7014096490529279 a001 53316291173/39603*843^(13/14) 7014096490673779 a007 Real Root Of 830*x^4-940*x^3-287*x^2+261*x-201 7014096491676852 m005 (1/2*3^(1/2)-1/5)/(4/5*2^(1/2)-2/11) 7014096494348944 a001 139583862445/103682*843^(13/14) 7014096494906225 a001 365435296162/271443*843^(13/14) 7014096494987532 a001 956722026041/710647*843^(13/14) 7014096494999394 a001 2504730781961/1860498*843^(13/14) 7014096495001125 a001 6557470319842/4870847*843^(13/14) 7014096495001533 a001 10610209857723/7881196*843^(13/14) 7014096495002195 a001 1346269*843^(13/14) 7014096495006726 a001 1548008755920/1149851*843^(13/14) 7014096495037782 a001 591286729879/439204*843^(13/14) 7014096495250644 a001 225851433717/167761*843^(13/14) 7014096496709627 a001 86267571272/64079*843^(13/14) 7014096506709640 a001 32951280099/24476*843^(13/14) 7014096517303752 s002 sum(A048795[n]/((pi^n+1)/n),n=1..infinity) 7014096539940196 q001 1642/2341 7014096552121273 m001 1/exp((3^(1/3)))^2/FeigenbaumB^2/GAMMA(1/12) 7014096575250750 a001 12586269025/9349*843^(13/14) 7014096583954950 a007 Real Root Of -272*x^4-231*x^3+316*x^2+863*x-62 7014096600307415 h001 (1/3*exp(1)+8/9)/(8/9*exp(1)+1/7) 7014096602338725 r005 Im(z^2+c),c=-11/28+7/62*I,n=24 7014096602934309 p004 log(22483/11149) 7014096612323157 m005 (1/2*3^(1/2)-7/8)/(1+1/8*5^(1/2)) 7014096635586937 b008 -8+ArcSinh[E^(1/7)] 7014096664303862 a007 Real Root Of -676*x^4+812*x^3+932*x^2-3*x-573 7014096667640135 r005 Re(z^2+c),c=3/44+8/15*I,n=18 7014096685604113 r005 Im(z^2+c),c=-5/6+37/125*I,n=7 7014096688023541 m001 (Catalan-Kolakoski)/(-OneNinth+Tribonacci) 7014096704610837 a007 Real Root Of 659*x^4+92*x^3-232*x^2-625*x-452 7014096705689871 r005 Im(z^2+c),c=-73/56+2/33*I,n=45 7014096709965778 m001 (BesselJ(0,1)-polylog(4,1/2))/(Otter+Stephens) 7014096737485465 a001 591286729879/1364*322^(1/12) 7014096740009820 a001 10182505537/682*843^(4/7) 7014096746520025 m001 (GAMMA(3/4)+MertensB1)/(Niven+PrimesInBinary) 7014096781892087 r002 30th iterates of z^2 + 7014096812769720 m001 (cos(1/5*Pi)+ErdosBorwein)/(Sierpinski+Thue) 7014096820006294 l006 ln(2049/4132) 7014096833511921 a007 Real Root Of -541*x^4+606*x^3+930*x^2-78*x-481 7014096853968326 s002 sum(A249556[n]/((exp(n)+1)*n),n=1..infinity) 7014096878017705 m001 (Paris+Rabbit)/(GAMMA(3/4)+gamma(1)) 7014096896268309 r008 a(0)=7,K{-n^6,-44+21*n^3-6*n^2-52*n} 7014096949590220 a007 Real Root Of 662*x^4-523*x^3-97*x^2+556*x+97 7014096954748628 r002 40th iterates of z^2 + 7014096970521885 r002 4th iterates of z^2 + 7014096978072332 a007 Real Root Of 961*x^4-997*x^3-631*x^2-493*x-612 7014096988166351 m001 BesselJ(0,1)^(Pi*2^(1/2)/GAMMA(3/4))/cos(1) 7014096988166351 m001 BesselJ(0,1)^GAMMA(1/4)/cos(1) 7014096989002247 a007 Real Root Of -710*x^4+183*x^3-841*x^2+391*x+923 7014096989920424 a001 264431456520/377 7014097002905292 a007 Real Root Of -468*x^4+201*x^3-672*x^2-314*x+293 7014097026498168 r002 14th iterates of z^2 + 7014097045038544 a001 4807526976/3571*843^(13/14) 7014097068942749 a001 225851433717/521*199^(1/11) 7014097081608442 b008 71*InverseErf[1/9] 7014097111745467 m002 -5/Pi^3+10*Sech[Pi] 7014097123720864 r009 Re(z^3+c),c=-16/25+14/43*I,n=4 7014097146514990 m001 (Ei(1,1)-sin(1))/(arctan(1/3)+BesselI(1,1)) 7014097153852295 m001 (Riemann2ndZero+Totient)/(3^(1/2)+Backhouse) 7014097164938830 a001 591286729879/2207*322^(1/6) 7014097169363395 a001 264431463285/377 7014097195368696 m001 (Shi(1)+Zeta(1,2))/(-FeigenbaumB+Robbin) 7014097195543766 a001 264431464272/377 7014097199363395 a001 264431464416/377 7014097199920424 a001 264431464437/377 7014097200015915 a001 2/377*(1/2+1/2*5^(1/2))^58 7014097200015915 a001 1322157322203/377*8^(1/3) 7014097200026525 a001 264431464441/377 7014097200053050 a001 264431464442/377 7014097200265251 a001 264431464450/377 7014097202807276 r009 Re(z^3+c),c=-3/17+43/64*I,n=15 7014097222363671 a007 Real Root Of -546*x^4+793*x^3+387*x^2+564*x+611 7014097260616979 a007 Real Root Of -966*x^4+413*x^3-586*x^2+337*x+901 7014097264740769 m001 (Zeta(1,2)-Magata)/(Robbin-Sarnak) 7014097268487183 a001 7778742049/521*521^(8/13) 7014097280265251 a001 264431467466/377 7014097285945727 a007 Real Root Of 408*x^4+368*x^3+88*x^2-881*x-633 7014097308856368 m002 -Pi^3/4-3*Sech[Pi]+Tanh[Pi] 7014097328974587 m005 (1/2*exp(1)+7/9)/(27/140+1/20*5^(1/2)) 7014097348379700 a003 cos(Pi*2/105)/sin(Pi*1/22) 7014097355131082 m001 (GaussAGM+Stephens)/(Zeta(3)+cos(1/5*Pi)) 7014097357459411 a007 Real Root Of -140*x^4+311*x^3+471*x^2+955*x-975 7014097357567413 r005 Re(z^2+c),c=-57/64+11/56*I,n=52 7014097359100544 m005 (1/3*2^(1/2)+1/12)/(8/11*Zeta(3)-1/12) 7014097438266447 a007 Real Root Of -857*x^4+111*x^3-187*x^2+900*x+969 7014097445010450 a001 1144206275/124*843^(9/14) 7014097497807903 m001 (3^(1/2)-GAMMA(2/3))/(-Lehmer+ZetaQ(2)) 7014097543609825 r002 2th iterates of z^2 + 7014097543694327 a001 9*21^(29/43) 7014097577719329 l006 ln(3194/6441) 7014097585823168 r005 Im(z^2+c),c=-57/86+31/49*I,n=4 7014097587953998 m001 GAMMA(19/24)*FeigenbaumDelta^2*exp(Zeta(7)) 7014097591169802 m005 (1/2*Pi-6/11)/(7/8*exp(1)-11/12) 7014097598841832 a007 Real Root Of 936*x^4-406*x^3+501*x^2+589*x-200 7014097617921028 r008 a(0)=7,K{-n^6,-32+12*n^3-6*n^2-46*n} 7014097618939182 r008 a(0)=7,K{-n^6,-1+38*n^3-50*n^2-61*n} 7014097622377440 a007 Real Root Of -121*x^4+623*x^3+632*x^2+692*x-982 7014097672631199 r005 Re(z^2+c),c=-71/90+1/59*I,n=63 7014097673735954 a007 Real Root Of 170*x^4-666*x^3+13*x^2-299*x+392 7014097686437730 a007 Real Root Of 440*x^4+291*x^3+884*x^2+700*x+50 7014097701374973 a007 Real Root Of 46*x^4-42*x^3-98*x^2-487*x-319 7014097723878332 l006 ln(3482/3735) 7014097733755200 r008 a(0)=7,K{-n^6,95-97*n^3-71*n^2+2*n} 7014097737235368 r002 50th iterates of z^2 + 7014097738583388 a003 cos(Pi*11/37)*cos(Pi*43/93) 7014097750053050 a001 264431485177/377 7014097765725941 r008 a(0)=7,K{-n^6,-72+28*n^3-15*n^2-11*n} 7014097784264177 g001 abs(GAMMA(-19/12+I*73/30)) 7014097803922218 r009 Im(z^3+c),c=-17/90+8/11*I,n=26 7014097808504407 r005 Re(z^2+c),c=9/110+37/56*I,n=6 7014097845024780 a003 sin(Pi*9/41)/sin(Pi*17/47) 7014097845361960 r005 Im(z^2+c),c=-11/8+27/115*I,n=5 7014097860477084 a001 1/21*514229^(9/44) 7014097865522493 m005 (1/2*3^(1/2)-1/12)/(4*exp(1)+2/7) 7014097885102952 a007 Real Root Of -25*x^4+445*x^3+441*x^2+802*x-927 7014097886117787 a003 sin(Pi*5/82)+sin(Pi*7/41) 7014097893735901 r005 Im(z^2+c),c=-33/26+3/112*I,n=34 7014097894799154 a003 cos(Pi*6/49)*cos(Pi*22/97) 7014097917380092 a007 Real Root Of -123*x^4-886*x^3-195*x^2-283*x-420 7014097928722723 r009 Re(z^3+c),c=-7/30+35/48*I,n=13 7014097929465581 m005 (1/2*2^(1/2)-4)/(1/3*Catalan-5) 7014097935533094 l006 ln(4339/8750) 7014097963627479 m001 gamma(1)/(MertensB2^ln(3)) 7014097971520190 r005 Im(z^2+c),c=-7/6+22/241*I,n=23 7014097974647411 r009 Re(z^3+c),c=-13/118+33/64*I,n=21 7014097976230931 a007 Real Root Of 225*x^4-874*x^3-614*x^2-205*x+693 7014097987634271 b008 63+13*ArcCoth[2] 7014098012897861 r005 Re(z^2+c),c=-26/31+41/61*I,n=3 7014098027293819 a007 Real Root Of -588*x^4+915*x^3+440*x^2+713*x-890 7014098042541166 a001 1/416020*514229^(43/55) 7014098043306394 a007 Real Root Of -387*x^4+808*x^3-440*x^2-114*x+509 7014098056824469 m001 (PlouffeB+Robbin)/(Zeta(1,-1)-Backhouse) 7014098059097479 m005 (1/2*Catalan-10/11)/(1/8*5^(1/2)+4/11) 7014098063940112 p003 LerchPhi(1/64,6,52/155) 7014098107486437 r002 6th iterates of z^2 + 7014098110831009 r002 11th iterates of z^2 + 7014098113448230 r002 3th iterates of z^2 + 7014098150011150 a001 7778742049/1364*843^(5/7) 7014098158547942 a007 Real Root Of 932*x^4-91*x^3+738*x^2-382*x-888 7014098167797996 a007 Real Root Of -759*x^4+118*x^3-565*x^2+430*x+804 7014098169788693 b008 -70+CosIntegral[4] 7014098178972424 r008 a(0)=7,K{-n^6,-58-25*n^3+86*n^2-75*n} 7014098189027769 a007 Real Root Of -939*x^4+877*x^3+393*x^2-611*x-92 7014098223720822 r009 Im(z^3+c),c=-27/52+4/47*I,n=13 7014098242575541 m001 (2^(1/3)-exp(1/Pi))/(-gamma(3)+GAMMA(13/24)) 7014098267761778 a007 Real Root Of -103*x^4+538*x^3-180*x^2+754*x+828 7014098273949356 r008 a(0)=7,K{-n^6,-36-51*n-18*n^2+35*n^3} 7014098298613931 a001 5/2207*39603^(42/43) 7014098319067478 h001 (2/9*exp(2)+1/3)/(8/9*exp(1)+2/5) 7014098329434892 h001 (-7*exp(2/3)+5)/(-6*exp(1)+4) 7014098337658693 q001 1/14257 7014098339181902 r008 a(0)=7,K{-n^6,95-90*n^3-71*n^2-5*n} 7014098348862643 r005 Im(z^2+c),c=-13/22+35/113*I,n=6 7014098374162194 m002 -30+Pi^4-E^Pi*Pi^5 7014098376379491 r005 Re(z^2+c),c=-3/28+25/32*I,n=29 7014098377564237 m001 (ln(gamma)+ln(5))/(exp(1/exp(1))-Otter) 7014098378613026 m004 -5-125*Sqrt[5]*Pi+Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 7014098385017326 h001 (1/5*exp(2)+2/3)/(9/11*exp(1)+5/6) 7014098394859212 a001 86000486440/321*322^(1/6) 7014098404444222 r008 a(0)=7,K{-n^6,-20-30*n-50*n^2+28*n^3} 7014098411540338 m002 3+Pi^3+36*Coth[Pi] 7014098433458185 a007 Real Root Of 903*x^4+708*x^3+337*x^2-891*x-765 7014098440781516 r008 a(0)=7,K{-n^6,-35+7*n^3+33*n^2-81*n} 7014098462437939 a007 Real Root Of 802*x^4-322*x^3+946*x^2+383*x-502 7014098489658472 r005 Re(z^2+c),c=-35/74+39/58*I,n=2 7014098491149518 a007 Real Root Of -881*x^4+6*x^3+710*x^2+422*x+162 7014098492881461 m001 FeigenbaumB^gamma/GlaisherKinkelin 7014098498848091 a007 Real Root Of -186*x^4+653*x^3-531*x^2+501*x+883 7014098520367327 a003 cos(Pi*7/68)*sin(Pi*22/83) 7014098571863456 m001 Pi*2^(1/2)/(cos(1)-GAMMA(19/24)) 7014098574302213 a001 4052739537881/15127*322^(1/6) 7014098600482595 a001 3536736619241/13201*322^(1/6) 7014098608767089 a007 Real Root Of -270*x^4+638*x^3-435*x^2+994*x-638 7014098616662961 a001 3278735159921/12238*322^(1/6) 7014098623670321 a001 3010349*514229^(13/17) 7014098625222575 l006 ln(7126/7131) 7014098627224652 m001 ThueMorse^(Rabbit/Pi^(1/2)) 7014098643517588 m001 MertensB2/(gamma(1)^ln(5)) 7014098654380475 r008 a(0)=7,K{-n^6,-37-30*n-21*n^2+16*n^3} 7014098654830936 s002 sum(A278923[n]/(16^n),n=1..infinity) 7014098656457264 s002 sum(A278923[n]/(16^n-1),n=1..infinity) 7014098661803809 m001 1/FransenRobinson^3*exp(TreeGrowth2nd) 7014098671966190 r008 a(0)=7,K{-n^6,-49-10*n^3+79*n^2-85*n} 7014098680510689 m005 (1/2*exp(1)-5/12)/(4/9*Catalan-3/11) 7014098685204092 a001 2504730781961/9349*322^(1/6) 7014098690835850 q001 1393/1986 7014098691860520 s001 sum(exp(-2*Pi/5)^n*A055378[n],n=1..infinity) 7014098691860520 s002 sum(A055378[n]/(exp(2/5*pi*n)),n=1..infinity) 7014098702293793 a007 Real Root Of -99*x^4-747*x^3-250*x^2+929*x+663 7014098710020622 m001 gamma(1)/(KhinchinLevy-ZetaR(2)) 7014098718330263 a007 Real Root Of -925*x^4-403*x^3-93*x^2-266*x-56 7014098726578825 r008 a(0)=7,K{-n^6,86-89*n^3-66*n^2-2*n} 7014098781828592 m001 (AlladiGrinstead+Otter)/(Psi(2,1/3)+3^(1/3)) 7014098808543283 h001 (7/11*exp(2)+3/5)/(9/10*exp(2)+10/11) 7014098816444646 a007 Real Root Of -939*x^4-15*x^3-503*x^2-45*x+438 7014098833762571 a001 5778*1836311903^(13/17) 7014098839006823 r008 a(0)=7,K{-n^6,75-83*n^3-86*n^2+23*n} 7014098845476647 r004 Re(z^2+c),c=-5/7+4/19*I,z(0)=-1,n=13 7014098855011922 a001 1201881744/341*843^(11/14) 7014098872717008 m005 (1/3*Catalan+3/7)/(5/12*Zeta(3)+6/11) 7014098887722828 r008 a(0)=7,K{-n^6,94-86*n^3-66*n^2-13*n} 7014098904033255 r008 a(0)=7,K{-n^6,93-86*n^3-66*n^2-12*n} 7014098933661553 l006 ln(1145/2309) 7014098936768308 r008 a(0)=7,K{-n^6,93-86*n^3-65*n^2-13*n} 7014098958853247 m005 (1/2*Catalan-1/2)/(-23/48+3/16*5^(1/2)) 7014098964425368 m001 (ln(Pi)-GAMMA(5/24))/arctan(1/2) 7014098985961793 r008 a(0)=7,K{-n^6,14-95*n^3-76*n^2+86*n} 7014099002495727 r008 a(0)=7,K{-n^6,13-95*n^3-76*n^2+87*n} 7014099002696147 r008 a(0)=7,K{-n^6,93-85*n^3-66*n^2-13*n} 7014099035679900 r008 a(0)=7,K{-n^6,13-95*n^3-75*n^2+86*n} 7014099036605560 m001 Zeta(5)-arctan(1/2)*Sarnak 7014099072841335 m005 (1/3*Catalan+3/5)/(8/9*Zeta(3)+2/9) 7014099077837695 a003 cos(Pi*5/89)*sin(Pi*26/103) 7014099094008193 m001 (-ReciprocalLucas+Weierstrass)/(Chi(1)-Kac) 7014099102514668 r008 a(0)=7,K{-n^6,13-94*n^3-76*n^2+86*n} 7014099115808988 m005 (1/2*gamma+7/12)/(145/176+3/16*5^(1/2)) 7014099137287853 r005 Im(z^2+c),c=13/64+22/41*I,n=59 7014099149922060 r005 Im(z^2+c),c=-19/30+9/35*I,n=4 7014099154992027 a001 956722026041/3571*322^(1/6) 7014099155280883 r001 41i'th iterates of 2*x^2-1 of 7014099157063340 b008 4+3/Erf[2] 7014099160149727 r009 Im(z^3+c),c=-37/118+29/43*I,n=19 7014099170162865 r008 a(0)=7,K{-n^6,71-81*n^3-84*n^2+23*n} 7014099186506395 m005 (1/2*5^(1/2)-8/11)/(3/11*3^(1/2)-5/12) 7014099187000977 r008 a(0)=7,K{-n^6,100-99*n^3-15*n^2-57*n} 7014099196262895 r005 Re(z^2+c),c=-85/114+4/39*I,n=36 7014099203997709 r008 a(0)=7,K{-n^6,99-99*n^3-15*n^2-56*n} 7014099219840416 m001 Psi(1,1/3)*Chi(1)-exp(1/exp(1)) 7014099225800465 a005 (1/cos(3/211*Pi))^1952 7014099226130875 a007 Real Root Of 941*x^4-794*x^3+856*x^2+342*x-683 7014099236241653 r005 Im(z^2+c),c=-5/23+43/62*I,n=28 7014099238112557 r008 a(0)=7,K{-n^6,99-99*n^3-14*n^2-57*n} 7014099256186310 a001 12586269025/521*521^(7/13) 7014099263884773 r002 4th iterates of z^2 + 7014099266900540 m005 (1/2*Pi+7/9)/(29/12+5/12*5^(1/2)) 7014099293657234 m001 Paris*(sin(1/12*Pi)+ZetaP(2)) 7014099300695794 a001 987/9349*18^(19/29) 7014099306828972 r008 a(0)=7,K{-n^6,99-98*n^3-15*n^2-57*n} 7014099323497140 a007 Real Root Of 25*x^4+131*x^3-255*x^2+470*x+537 7014099329592728 m001 HeathBrownMoroz^(2^(1/3)*ln(Pi)) 7014099344952589 a007 Real Root Of 497*x^4-129*x^3+524*x^2+996*x+276 7014099367083470 r002 28th iterates of z^2 + 7014099376034208 r008 a(0)=7,K{-n^6,3-98*n^3-61*n^2+85*n} 7014099394068596 r008 a(0)=7,K{-n^6,-43+25*n^3-10*n^2-41*n} 7014099397963914 a001 123/121393*514229^(39/58) 7014099403752002 a007 Real Root Of 580*x^4-181*x^3+471*x^2-310*x-652 7014099414089492 m001 Gompertz^HardyLittlewoodC5-OneNinth 7014099424338464 m001 (GAMMA(2/3)+gamma(3))/(Bloch+MinimumGamma) 7014099432430701 r005 Re(z^2+c),c=-24/25+16/59*I,n=59 7014099444707459 m002 -E^Pi-Pi^2+Pi^5/3+Log[Pi] 7014099463846278 r008 a(0)=7,K{-n^6,86-90*n^3-41*n^2-26*n} 7014099480678505 r008 a(0)=7,K{-n^6,-54-44*n+34*n^2-8*n^3} 7014099483590054 r005 Re(z^2+c),c=-11/12+14/121*I,n=42 7014099525852677 a001 969323029/610*34^(8/19) 7014099546660271 m001 PrimesInBinary^2*exp(Bloch)^2*(2^(1/3))^2 7014099549429383 a003 cos(Pi*27/103)-sin(Pi*17/63) 7014099556271323 a008 Real Root of (14+9*x-3*x^2+18*x^3) 7014099560012765 a001 2971215073/1364*843^(6/7) 7014099574955936 m001 (Kac+MertensB2)/(3^(1/2)+HardyLittlewoodC3) 7014099604784647 m001 (exp(-1/2*Pi)-MinimumGamma)/(Pi-GAMMA(2/3)) 7014099605118062 a001 281/7*2584^(23/35) 7014099613144177 r005 Re(z^2+c),c=-1/5+20/29*I,n=53 7014099628976936 m001 (Rabbit-Thue)/((1+3^(1/2))^(1/2)+PlouffeB) 7014099647278768 m001 1/Sierpinski^2/exp(Paris)/GAMMA(5/24)^2 7014099648071625 m005 (7/20+1/4*5^(1/2))/(7/10*Zeta(3)+5/11) 7014099670389147 r008 a(0)=7,K{-n^6,-61-8*n^3+31*n^2-34*n} 7014099681376397 m001 1/ln(GAMMA(11/12))^2*Niven*Zeta(3) 7014099698443138 a007 Real Root Of 237*x^4-237*x^3-707*x^2-818*x+946 7014099703440834 m001 1/Khintchine/MertensB1^2*ln(GAMMA(1/4)) 7014099711038017 a007 Real Root Of -325*x^4+614*x^3-687*x^2-658*x+167 7014099714859588 r008 a(0)=7,K{-n^6,86-79*n^3-67*n^2-11*n} 7014099732878805 r008 a(0)=7,K{-n^6,43-93*n^3-46*n^2+25*n} 7014099732923177 r008 a(0)=7,K{-n^6,51-90*n^3-51*n^2+19*n} 7014099733101872 r008 a(0)=7,K{-n^6,85-79*n^3-67*n^2-10*n} 7014099741684007 m001 (1-gamma(3))/(-FellerTornier+KhinchinHarmonic) 7014099746920100 a007 Real Root Of -547*x^4-174*x^3-227*x^2-164*x+69 7014099750323477 m001 (KomornikLoreti-ZetaQ(2))/(ln(3)-FeigenbaumMu) 7014099751208592 r008 a(0)=7,K{-n^6,50-90*n^3-51*n^2+20*n} 7014099755550550 a007 Real Root Of -776*x^4-166*x^3-991*x^2-914*x-23 7014099757550078 r005 Re(z^2+c),c=-31/21+2/51*I,n=2 7014099762194031 a007 Real Root Of 362*x^4-534*x^3+686*x^2-507*x-965 7014099769721805 r008 a(0)=7,K{-n^6,85-79*n^3-66*n^2-11*n} 7014099770280800 a007 Real Root Of 561*x^4-283*x^3+737*x^2-335*x-831 7014099786054488 r002 13i'th iterates of 2*x/(1-x^2) of 7014099787914999 r008 a(0)=7,K{-n^6,50-90*n^3-50*n^2+19*n} 7014099816397919 a007 Real Root Of 86*x^4+473*x^3-867*x^2+286*x-273 7014099831110136 m001 (gamma+Zeta(1/2))/(Gompertz+LaplaceLimit) 7014099831117782 r008 a(0)=7,K{-n^6,-33+37*n^3-61*n^2-5*n} 7014099831997785 l006 ln(4821/9722) 7014099836674789 r005 Im(z^2+c),c=-5/102+37/51*I,n=30 7014099838050001 r008 a(0)=7,K{-n^6,-55-40*n+30*n^2-7*n^3} 7014099843504285 r008 a(0)=7,K{-n^6,85-78*n^3-67*n^2-11*n} 7014099849850938 a007 Real Root Of -464*x^4+425*x^3-71*x^2+713*x+794 7014099850347805 a007 Real Root Of -435*x^4+802*x^3-686*x^2+330*x+951 7014099855512335 m001 GAMMA(11/24)*GAMMA(1/6)/exp(Zeta(1,2))^2 7014099855655539 a003 cos(Pi*22/75)+cos(Pi*38/81) 7014099861871516 r008 a(0)=7,K{-n^6,50-89*n^3-51*n^2+19*n} 7014099861882257 r008 a(0)=7,K{-n^6,14-82*n^3-90*n^2+87*n} 7014099861893033 r008 a(0)=7,K{-n^6,44-86*n^3-63*n^2+34*n} 7014099874166572 m001 (LandauRamanujan2nd-Rabbit)/MasserGramainDelta 7014099880478999 r008 a(0)=7,K{-n^6,13-82*n^3-90*n^2+88*n} 7014099880489817 r008 a(0)=7,K{-n^6,43-86*n^3-63*n^2+35*n} 7014099917811598 r008 a(0)=7,K{-n^6,13-82*n^3-89*n^2+87*n} 7014099917822516 r008 a(0)=7,K{-n^6,43-86*n^3-62*n^2+34*n} 7014099933332752 a007 Real Root Of 648*x^4-186*x^3+9*x^2+464*x+100 7014099934699306 a007 Real Root Of -515*x^4+449*x^3-727*x^2-324*x+410 7014099955484897 r008 a(0)=7,K{-n^6,67-77*n^3-76*n^2+15*n} 7014099962249141 r008 a(0)=7,K{-n^6,-25-50*n-12*n^2+15*n^3} 7014099993034669 r008 a(0)=7,K{-n^6,13-81*n^3-90*n^2+87*n} 7014099993045841 r008 a(0)=7,K{-n^6,43-85*n^3-63*n^2+34*n} 7014099994797044 r005 Im(z^2+c),c=17/62+17/36*I,n=64