8024900012842453 a007 Real Root Of 923*x^4+144*x^3+748*x^2+673*x-250 8024900052884540 r008 a(0)=8,K{-n^6,3+93*n^3-38*n^2-98*n} 8024900060489007 r005 Im(z^2+c),c=5/21+1/46*I,n=37 8024900097794631 m008 (4*Pi^5+3/5)/(5*Pi^5-4) 8024900103392823 m006 (3*exp(Pi)+3)/(5/6*Pi^2+4/5) 8024900128479586 a001 7/1346269*610^(11/14) 8024900163840550 r005 Im(z^2+c),c=-25/18+2/97*I,n=28 8024900183557172 m008 (4/5*Pi^4-3/4)/(Pi^6+1/3) 8024900186845461 r008 a(0)=8,K{-n^6,-39+2*n-27*n^2+25*n^3} 8024900208568680 m001 (-ReciprocalLucas+ZetaP(3))/(Catalan-ln(2)) 8024900212766520 m005 (1/2*5^(1/2)+7/11)/(3*gamma+5/11) 8024900260702447 a001 1597/24476*521^(10/13) 8024900270878610 a007 Real Root Of 763*x^4-854*x^3-696*x^2-431*x+919 8024900291627876 r008 a(0)=8,K{-n^6,-74+75*n^3-22*n^2-19*n} 8024900293345272 m001 GAMMA(17/24)^ArtinRank2/ZetaR(2) 8024900297811682 r008 a(0)=8,K{-n^6,-90+95*n^3-90*n^2+45*n} 8024900302915233 a007 Real Root Of -706*x^4+50*x^3-2*x^2+754*x+925 8024900321088826 m001 (ErdosBorwein+PlouffeB)/(Champernowne-exp(1)) 8024900322967884 a001 329/281*521^(4/13) 8024900336427402 a001 987/9349*521^(9/13) 8024900356310146 p001 sum(1/(508*n+125)/(64^n),n=0..infinity) 8024900392523400 a001 377/843*2207^(3/8) 8024900399229463 a003 sin(Pi*2/97)/sin(Pi*23/77) 8024900406721976 l006 ln(1441/3215) 8024900409736792 a007 Real Root Of -781*x^4-224*x^3-646*x^2-303*x+381 8024900421743632 b008 -26*Pi+ProductLog[6] 8024900475992852 r005 Re(z^2+c),c=-67/74+14/53*I,n=10 8024900477751850 a007 Real Root Of -674*x^4+838*x^3-355*x^2-247*x+743 8024900478344743 a003 sin(Pi*41/98)/cos(Pi*6/13) 8024900494399714 m001 (ln(5)-exp(1/Pi))/(MadelungNaCl+Salem) 8024900499167815 r009 Im(z^3+c),c=-73/126+17/55*I,n=11 8024900538365060 m001 Ei(1,1)-MertensB2^HardyLittlewoodC3 8024900628121525 m001 (gamma+sin(1/5*Pi))/(Lehmer+Thue) 8024900663473522 h001 (2/7*exp(1)+5/8)/(3/8*exp(1)+8/11) 8024900694527256 r005 Re(z^2+c),c=-5/6+15/221*I,n=11 8024900704556576 r005 Im(z^2+c),c=-2/17+13/16*I,n=19 8024900713990294 r008 a(0)=8,K{-n^6,-87+13*n^3-63*n^2+95*n} 8024900733065597 r005 Re(z^2+c),c=-73/90+5/43*I,n=33 8024900742842973 p001 sum(1/(519*n+275)/n/(16^n),n=1..infinity) 8024900785761100 m001 BesselJ(0,1)^2/ln(Robbin)^2*GAMMA(7/12)^2 8024900785771051 h001 (5/12*exp(1)+4/7)/(5/7*exp(1)+2/11) 8024900793544776 r005 Im(z^2+c),c=-147/122+3/32*I,n=23 8024900819875507 m001 (Si(Pi)-Zeta(3))/(-Backhouse+MasserGramain) 8024900855495935 m001 gamma^BesselI(0,1)*Backhouse^BesselI(0,1) 8024900902061947 r008 a(0)=8,K{-n^6,-33-5*n-27*n^2+26*n^3} 8024900905997657 a007 Real Root Of -475*x^4+577*x^3-141*x^2+5*x+590 8024900914283559 a007 Real Root Of -842*x^4-218*x^3-415*x^2-77*x+442 8024900930237905 a007 Real Root Of 87*x^4-707*x^3-404*x^2-609*x-630 8024900962082625 q001 1418/1767 8024900963171755 m002 -4+Cosh[Pi]+5*Csch[Pi] 8024900965665092 r002 22th iterates of z^2 + 8024900986586347 a007 Real Root Of -761*x^4-806*x^3-314*x^2+771*x+720 8024900998937060 m002 -3+5/Pi^2+Cosh[Pi]-ProductLog[Pi] 8024901010676637 r005 Re(z^2+c),c=-2/17+41/54*I,n=15 8024901040128943 a001 7/610*5702887^(8/19) 8024901042944692 r008 a(0)=8,K{-n^6,-19+98*n^3-62*n^2-57*n} 8024901104200593 a007 Real Root Of -804*x^4+481*x^3+540*x^2+845*x-941 8024901108634769 r008 a(0)=8,K{-n^6,-36+34*n-49*n^2+10*n^3} 8024901139354422 m001 exp(Khintchine)^2/DuboisRaymond/GAMMA(19/24)^2 8024901200923634 r005 Re(z^2+c),c=-23/28+10/33*I,n=3 8024901213862234 a007 Real Root Of -589*x^4+897*x^3-363*x^2-83*x+875 8024901216621672 p004 log(17137/7681) 8024901217431922 r005 Re(z^2+c),c=-31/60+35/64*I,n=39 8024901247499096 r008 a(0)=8,K{-n^6,-57+31*n^3-54*n^2+41*n} 8024901261116285 a003 sin(Pi*11/39)/sin(Pi*42/101) 8024901274881023 a005 (1/cos(13/213*Pi))^1482 8024901276042964 a007 Real Root Of -862*x^4-150*x^3-757*x^2-190*x+615 8024901276235710 r008 a(0)=8,K{-n^6,-88+76*n^3-30*n^2+2*n} 8024901287251607 r008 a(0)=8,K{-n^6,-20+98*n^3-62*n^2-56*n} 8024901308444630 h005 exp(cos(Pi*4/53)/cos(Pi*27/58)) 8024901348763957 s002 sum(A249511[n]/(pi^n+1),n=1..infinity) 8024901349701077 a007 Real Root Of 712*x^4-890*x^3-904*x^2+254*x+543 8024901369366450 a007 Real Root Of -279*x^4+754*x^3-62*x^2+390*x-547 8024901379283553 a007 Real Root Of 781*x^4-407*x^3-617*x^2+198*x+22 8024901402659740 a007 Real Root Of -610*x^4+980*x^3-987*x^2+450*x+43 8024901403651384 l006 ln(3120/6961) 8024901444909703 m005 (1/3*gamma+1/3)/(3/4*gamma+2/9) 8024901472861604 m001 (MinimumGamma+Trott2nd)/(3^(1/2)+Champernowne) 8024901477794896 r008 a(0)=8,K{-n^6,-5-46*n+16*n^2-6*n^3} 8024901505682557 m001 (Pi-Catalan)/(GAMMA(23/24)+MadelungNaCl) 8024901519417712 r008 a(0)=8,K{-n^6,-89+76*n^3-30*n^2+3*n} 8024901522719372 a007 Real Root Of 599*x^4-540*x^3-469*x^2-539*x-658 8024901533689220 a007 Real Root Of -697*x^4+745*x^3+330*x^2-144*x+346 8024901540100880 r008 a(0)=8,K{-n^6,-24-15*n^3+62*n^2-67*n} 8024901577126924 r005 Re(z^2+c),c=-5/6+13/238*I,n=41 8024901603049556 h001 (3/4*exp(1)+7/12)/(7/8*exp(1)+8/9) 8024901605668018 r005 Im(z^2+c),c=23/66+23/45*I,n=31 8024901612124827 m005 (1/3*Pi-1/5)/(3/11*3^(1/2)+7/12) 8024901620046024 a007 Real Root Of -938*x^4+886*x^3+403*x^2-869*x-110 8024901622094088 a001 610/15127*521^(11/13) 8024901634959788 m001 Ei(1)^2/FibonacciFactorial*exp(Zeta(7)) 8024901637793564 p003 LerchPhi(1/12,1,106/81) 8024901651235628 h001 (1/5*exp(1)+4/11)/(2/11*exp(1)+7/11) 8024901665173621 a001 646/6119*521^(9/13) 8024901673660465 h001 (1/4*exp(1)+7/9)/(6/11*exp(1)+1/3) 8024901681654029 m002 -5+Pi^3-5*Pi*Log[Pi] 8024901691754166 m001 (Magata-ThueMorse)/(Zeta(1,2)+FeigenbaumDelta) 8024901722712708 r008 a(0)=8,K{-n^6,-59+28*n^2-12*n^3+n} 8024901752430467 r008 a(0)=8,K{-n^6,-88+53*n^3+40*n^2-45*n} 8024901772360749 r008 a(0)=8,K{-n^6,-20+98*n^3-61*n^2-57*n} 8024901773332534 m001 BesselI(1,1)*PisotVijayaraghavan+ZetaQ(2) 8024901775747158 m001 HardyLittlewoodC5^Salem+ZetaP(2) 8024901775861918 a007 Real Root Of 400*x^4-335*x^3+401*x^2-138*x-708 8024901797222999 a007 Real Root Of -671*x^4+159*x^3-23*x^2+457*x+742 8024901818043274 a007 Real Root Of -802*x^4-432*x^3-74*x^2+800*x+799 8024901835545203 s002 sum(A045190[n]/(n*2^n+1),n=1..infinity) 8024901859035079 a001 6765/64079*521^(9/13) 8024901864427380 r005 Re(z^2+c),c=-103/82+11/38*I,n=7 8024901867010600 r005 Im(z^2+c),c=-19/34+10/69*I,n=53 8024901887319085 a001 17711/167761*521^(9/13) 8024901891445665 a001 11592/109801*521^(9/13) 8024901892047725 a001 121393/1149851*521^(9/13) 8024901892135565 a001 317811/3010349*521^(9/13) 8024901892148380 a001 208010/1970299*521^(9/13) 8024901892150250 a001 2178309/20633239*521^(9/13) 8024901892150523 a001 5702887/54018521*521^(9/13) 8024901892150563 a001 3732588/35355581*521^(9/13) 8024901892150569 a001 39088169/370248451*521^(9/13) 8024901892150569 a001 102334155/969323029*521^(9/13) 8024901892150570 a001 66978574/634430159*521^(9/13) 8024901892150570 a001 701408733/6643838879*521^(9/13) 8024901892150570 a001 1836311903/17393796001*521^(9/13) 8024901892150570 a001 1201881744/11384387281*521^(9/13) 8024901892150570 a001 12586269025/119218851371*521^(9/13) 8024901892150570 a001 32951280099/312119004989*521^(9/13) 8024901892150570 a001 21566892818/204284540899*521^(9/13) 8024901892150570 a001 225851433717/2139295485799*521^(9/13) 8024901892150570 a001 182717648081/1730726404001*521^(9/13) 8024901892150570 a001 139583862445/1322157322203*521^(9/13) 8024901892150570 a001 53316291173/505019158607*521^(9/13) 8024901892150570 a001 10182505537/96450076809*521^(9/13) 8024901892150570 a001 7778742049/73681302247*521^(9/13) 8024901892150570 a001 2971215073/28143753123*521^(9/13) 8024901892150570 a001 567451585/5374978561*521^(9/13) 8024901892150570 a001 433494437/4106118243*521^(9/13) 8024901892150570 a001 165580141/1568397607*521^(9/13) 8024901892150570 a001 31622993/299537289*521^(9/13) 8024901892150572 a001 24157817/228826127*521^(9/13) 8024901892150587 a001 9227465/87403803*521^(9/13) 8024901892150692 a001 1762289/16692641*521^(9/13) 8024901892151406 a001 1346269/12752043*521^(9/13) 8024901892156301 a001 514229/4870847*521^(9/13) 8024901892189853 a001 98209/930249*521^(9/13) 8024901892419819 a001 75025/710647*521^(9/13) 8024901893996033 a001 28657/271443*521^(9/13) 8024901904799561 a001 5473/51841*521^(9/13) 8024901935251801 r005 Im(z^2+c),c=-11/14+7/213*I,n=41 8024901958557310 a007 Real Root Of -839*x^4-192*x^3-845*x^2+40*x+825 8024901972222660 a007 Real Root Of 252*x^4-730*x^3-707*x^2-534*x-455 8024901974842115 a007 Real Root Of -495*x^4-246*x^3-371*x^2+451*x+679 8024901978848049 a001 4181/39603*521^(9/13) 8024901993296308 r008 a(0)=8,K{-n^6,-89+53*n^3+40*n^2-44*n} 8024902002324709 r008 a(0)=8,K{-n^6,-89+76*n^3-29*n^2+2*n} 8024902003858113 a007 Real Root Of -65*x^4-638*x^3-882*x^2+541*x+996 8024902036605832 m005 (1/2*exp(1)-4/7)/(2/11*3^(1/2)+2/3) 8024902048083216 a001 1/76*322^(42/59) 8024902048607212 a007 Real Root Of -979*x^4+91*x^3-481*x^2-x+762 8024902052618823 r005 Re(z^2+c),c=-79/64+20/59*I,n=11 8024902070117609 a007 Real Root Of 112*x^4+261*x^3+495*x^2-827*x-894 8024902077627220 a007 Real Root Of 844*x^4-706*x^3+809*x^2+431*x-890 8024902081913740 a001 47/843*(1/2*5^(1/2)+1/2)^22*843^(8/15) 8024902111827147 a007 Real Root Of -846*x^4+869*x^3-806*x^2-405*x+994 8024902111942292 r008 a(0)=8,K{-n^6,-44+15*n^3-66*n^2+54*n} 8024902128312538 m001 Trott2nd/BesselK(1,1)/LambertW(1) 8024902139375482 r009 Im(z^3+c),c=-5/29+32/33*I,n=14 8024902182359308 r002 8th iterates of z^2 + 8024902210135757 r008 a(0)=8,K{-n^6,-45+32*n^3-51*n^2+25*n} 8024902211655108 m001 FeigenbaumD/(CopelandErdos+Paris) 8024902237776506 m001 (Magata-ZetaQ(2))/(exp(-1/2*Pi)-Kac) 8024902252436231 r008 a(0)=8,K{-n^6,-14+96*n^3-51*n^2-71*n} 8024902259264930 l006 ln(1679/3746) 8024902262428827 a007 Real Root Of -374*x^4-18*x^3-530*x^2+193*x+642 8024902275260445 a007 Real Root Of -816*x^4-440*x^3-120*x^2+842*x+864 8024902278387708 a001 329/1926*521^(8/13) 8024902290438969 a008 Real Root of x^4-54*x^2-108*x+197 8024902293728273 a007 Real Root Of 28*x^4+158*x^3-447*x^2+663*x-362 8024902303855113 a001 10946/2207*199^(1/11) 8024902306118535 a007 Real Root Of -409*x^4+849*x^3-916*x^2-272*x+980 8024902315944625 m001 Cahen-cos(1/5*Pi)*KomornikLoreti 8024902318580861 r002 39th iterates of z^2 + 8024902323757634 r005 Im(z^2+c),c=-23/34+7/101*I,n=3 8024902343750000 r002 2th iterates of z^2 + 8024902343750000 r005 Re(z^2+c),c=-53/64+13/16*I,n=2 8024902355086430 r008 a(0)=8,K{-n^6,80+34*n^3-57*n^2-98*n} 8024902360904582 a007 Real Root Of -192*x^4+204*x^3+636*x^2+250*x-636 8024902367199780 r005 Re(z^2+c),c=9/118+1/24*I,n=6 8024902374959884 a007 Real Root Of -639*x^4+98*x^3-243*x^2+183*x+619 8024902388727896 r009 Im(z^3+c),c=-61/126+35/57*I,n=3 8024902396971378 a008 Real Root of (-7+2*x+2*x^2+7*x^4+7*x^8) 8024902397952311 a007 Real Root Of -937*x^4+336*x^3+745*x^2+696*x+641 8024902403014821 a007 Real Root Of 279*x^4-468*x^3+880*x^2+996*x-125 8024902417602531 a007 Real Root Of 316*x^4-844*x^3+698*x^2+857*x-329 8024902433266505 m001 (Psi(2,1/3)+GAMMA(17/24))/(-MertensB3+Robbin) 8024902459891590 a007 Real Root Of 41*x^4+399*x^3+613*x^2+311*x-816 8024902471641209 r008 a(0)=8,K{-n^6,-89+53*n^3+41*n^2-45*n} 8024902483282549 r005 Re(z^2+c),c=9/38+20/59*I,n=52 8024902486383933 a001 1597/15127*521^(9/13) 8024902490814002 r008 a(0)=8,K{-n^6,-15+96*n^3-51*n^2-70*n} 8024902509646524 m001 GAMMA(2/3)^2/exp(FransenRobinson)^2*Zeta(3) 8024902511428148 l006 ln(7456/8079) 8024902524005701 r005 Im(z^2+c),c=-5/46+38/45*I,n=28 8024902532054699 a007 Real Root Of 211*x^4-370*x^3+17*x^2-257*x+299 8024902573546754 r008 a(0)=8,K{-n^6,7-37*n-17*n^2+18*n^3} 8024902671472663 m001 Champernowne/(FeigenbaumD-ln(Pi)) 8024902698657659 m008 (3/5*Pi^6-2/3)/(2/3*Pi^2+3/5) 8024902713925482 r005 Re(z^2+c),c=-17/14+81/253*I,n=7 8024902728689685 r008 a(0)=8,K{-n^6,-20+99*n^3-62*n^2-57*n} 8024902736388826 a007 Real Root Of 478*x^4+487*x^3+894*x^2+677*x+21 8024902737818851 a003 sin(Pi*17/66)/sin(Pi*39/109) 8024902741124065 a007 Real Root Of -987*x^4-441*x^3+366*x^2+753*x+550 8024902809462227 m001 ln(Bloch)/FransenRobinson*sqrt(3)^2 8024902809908476 r009 Im(z^3+c),c=-13/27+35/62*I,n=32 8024902880146816 m001 1/LaplaceLimit*exp(ErdosBorwein)/Zeta(1,2) 8024902910363590 a007 Real Root Of -935*x^4+408*x^3+847*x^2-546*x-385 8024902911290362 a007 Real Root Of -180*x^4+979*x^3-289*x^2+249*x-445 8024902928439569 r008 a(0)=8,K{-n^6,-14-9*n^3+21*n^2-39*n} 8024902953122271 r008 a(0)=8,K{-n^6,-69+70*n^3+n^2-42*n} 8024902954409005 r008 a(0)=8,K{-n^6,-89+77*n^3-30*n^2+2*n} 8024902964191787 r008 a(0)=8,K{-n^6,-15+96*n^3-50*n^2-71*n} 8024902975682808 r008 a(0)=8,K{-n^6,9+37*n^3-67*n^2-24*n} 8024902977660554 a001 1/416020*6557470319842^(6/17) 8024902978404741 a001 1/23184*1836311903^(6/17) 8024903001621450 l006 ln(3596/8023) 8024903003540811 a008 Real Root of x^3-x^2-48*x+196 8024903042500800 a007 Real Root Of -414*x^4+991*x^3-10*x^2+719*x-911 8024903050954982 a007 Real Root Of 559*x^4+71*x^3-228*x^2-599*x-529 8024903077496224 a007 Real Root Of -485*x^4+284*x^3+272*x^2+343*x+448 8024903081246661 r002 7th iterates of z^2 + 8024903091595316 m006 (3/5*exp(Pi)+1/2)/(1/3*exp(2*Pi)+3/4) 8024903101951520 r005 Im(z^2+c),c=-37/32+10/37*I,n=17 8024903138422910 m005 (1/2*Pi-3/7)/(4/11*2^(1/2)+10/11) 8024903138454972 p004 log(20323/9109) 8024903143887951 s001 sum(exp(-Pi/2)^n*A230171[n],n=1..infinity) 8024903160664421 r008 a(0)=8,K{-n^6,-36+5*n^3+35*n^2-43*n} 8024903179089071 r005 Re(z^2+c),c=19/78+21/61*I,n=31 8024903188122509 r008 a(0)=8,K{-n^6,-70+70*n^3+n^2-41*n} 8024903188356985 r008 a(0)=8,K{-n^6,-54+68*n^3+15*n^2-69*n} 8024903193425004 m001 ln(2)/BesselJ(0,1)/GAMMA(5/6) 8024903196025850 a003 sin(Pi*29/93)*sin(Pi*48/115) 8024903202126526 r004 Im(z^2+c),c=-1/5-3/4*I,z(0)=exp(7/24*I*Pi),n=6 8024903218032863 a001 1/1292*514229^(6/17) 8024903218377346 a007 Real Root Of -463*x^4+142*x^3+14*x^2+407*x+583 8024903239662526 a008 Real Root of x^4-x^3-5*x^2+49*x-36 8024903243255415 r005 Im(z^2+c),c=-17/118+39/47*I,n=58 8024903244139540 r005 Re(z^2+c),c=5/23+5/9*I,n=15 8024903264602707 a007 Real Root Of 664*x^4+192*x^3+781*x^2-117*x-773 8024903288631402 m001 (Zeta(1,-1)-FeigenbaumKappa)/(Zeta(3)+ln(2)) 8024903311373781 m001 1/LandauRamanujan^2/ln(Backhouse)^2*Robbin 8024903322597303 a007 Real Root Of -823*x^4+149*x^3+202*x^2-576*x-174 8024903326638456 a007 Real Root Of -863*x^4+973*x^3+501*x^2+36*x+567 8024903337979102 r008 a(0)=8,K{-n^6,-74-24*n^3+69*n^2-4*n} 8024903344972980 a001 22768774562/305*144^(16/17) 8024903346998392 a007 Real Root Of -924*x^4-704*x^3-941*x^2+331*x+891 8024903381994446 a007 Real Root Of 449*x^4+85*x^3+667*x^2+492*x-177 8024903390804735 m001 (ln(2)-ln(5))/(polylog(4,1/2)+GolombDickman) 8024903391790477 r005 Re(z^2+c),c=-17/19+35/46*I,n=3 8024903392013739 q001 1869/2329 8024903399676326 m005 (1/2*3^(1/2)+2/9)/(3/4*Zeta(3)+5/11) 8024903414852992 r008 a(0)=8,K{-n^6,-89+54*n^3+40*n^2-45*n} 8024903450329151 m001 cos(1/12*Pi)^(Psi(1,1/3)/BesselI(1,2)) 8024903479911666 r005 Re(z^2+c),c=-4/5+13/100*I,n=35 8024903510132035 r005 Im(z^2+c),c=-43/118+7/10*I,n=4 8024903555295778 a007 Real Root Of 988*x^4-499*x^3-715*x^2-246*x+506 8024903651812641 l006 ln(1917/4277) 8024903654840067 r008 a(0)=8,K{-n^6,-70+70*n^3+2*n^2-42*n} 8024903660195711 r005 Im(z^2+c),c=-3/19+50/61*I,n=46 8024903660248630 m001 LandauRamanujan^ln(Pi)/Catalan 8024903670805378 m001 (GAMMA(3/4)+Bloch)/(Conway-GlaisherKinkelin) 8024903681881894 m001 exp(Robbin)*CareFree*sin(Pi/5) 8024903699578828 a001 28657/5778*199^(1/11) 8024903722037495 m001 (arctan(1/2)-polylog(4,1/2))/(Cahen+Trott2nd) 8024903734910251 m001 Pi*(sin(1/12*Pi)+UniversalParabolic) 8024903737578431 r005 Re(z^2+c),c=43/106+9/56*I,n=10 8024903770917441 a007 Real Root Of 907*x^4-896*x^3+275*x^2+844*x-339 8024903773025809 m001 1/ln(PisotVijayaraghavan)/MertensB1^2*cosh(1) 8024903775173926 r002 2th iterates of z^2 + 8024903825487905 r005 Re(z^2+c),c=-13/16+13/125*I,n=57 8024903829724307 r005 Re(z^2+c),c=-63/118+23/44*I,n=9 8024903847344419 a007 Real Root Of 936*x^4-197*x^3-341*x^2-245*x-467 8024903853033566 r002 6th iterates of z^2 + 8024903854226475 r008 a(0)=8,K{-n^6,-96-33*n^3+85*n^2} 8024903855986123 a007 Real Root Of -679*x^4+893*x^3+73*x^2+35*x-255 8024903863376689 m006 (2/3*ln(Pi)-4/5)/(5/Pi+3) 8024903865788114 m001 (BesselJ(1,1)-Psi(2,1/3)*Kolakoski)/Psi(2,1/3) 8024903882521165 a001 843/514229*75025^(16/29) 8024903890855496 a001 2584/15127*521^(8/13) 8024903892376497 v002 sum(1/(3^n*(13*n^2-5*n+44)),n=1..infinity) 8024903897557939 r008 a(0)=8,K{-n^6,-15+97*n^3-51*n^2-71*n} 8024903903212215 a001 75025/15127*199^(1/11) 8024903923390373 a007 Real Root Of -873*x^4+373*x^3+653*x^2-439*x-218 8024903932921927 a001 196418/39603*199^(1/11) 8024903937256515 a001 514229/103682*199^(1/11) 8024903937888923 a001 1346269/271443*199^(1/11) 8024903937981190 a001 3524578/710647*199^(1/11) 8024903937994652 a001 9227465/1860498*199^(1/11) 8024903937996616 a001 24157817/4870847*199^(1/11) 8024903937996902 a001 63245986/12752043*199^(1/11) 8024903937996944 a001 165580141/33385282*199^(1/11) 8024903937996950 a001 433494437/87403803*199^(1/11) 8024903937996951 a001 1134903170/228826127*199^(1/11) 8024903937996951 a001 2971215073/599074578*199^(1/11) 8024903937996951 a001 7778742049/1568397607*199^(1/11) 8024903937996951 a001 20365011074/4106118243*199^(1/11) 8024903937996951 a001 53316291173/10749957122*199^(1/11) 8024903937996951 a001 139583862445/28143753123*199^(1/11) 8024903937996951 a001 365435296162/73681302247*199^(1/11) 8024903937996951 a001 956722026041/192900153618*199^(1/11) 8024903937996951 a001 2504730781961/505019158607*199^(1/11) 8024903937996951 a001 10610209857723/2139295485799*199^(1/11) 8024903937996951 a001 4052739537881/817138163596*199^(1/11) 8024903937996951 a001 140728068720/28374454999*199^(1/11) 8024903937996951 a001 591286729879/119218851371*199^(1/11) 8024903937996951 a001 225851433717/45537549124*199^(1/11) 8024903937996951 a001 86267571272/17393796001*199^(1/11) 8024903937996951 a001 32951280099/6643838879*199^(1/11) 8024903937996951 a001 1144206275/230701876*199^(1/11) 8024903937996951 a001 4807526976/969323029*199^(1/11) 8024903937996951 a001 1836311903/370248451*199^(1/11) 8024903937996952 a001 701408733/141422324*199^(1/11) 8024903937996954 a001 267914296/54018521*199^(1/11) 8024903937996970 a001 9303105/1875749*199^(1/11) 8024903937997079 a001 39088169/7881196*199^(1/11) 8024903937997829 a001 14930352/3010349*199^(1/11) 8024903938002971 a001 5702887/1149851*199^(1/11) 8024903938038214 a001 2178309/439204*199^(1/11) 8024903938279773 a001 75640/15251*199^(1/11) 8024903939935438 a001 317811/64079*199^(1/11) 8024903951283538 a001 121393/24476*199^(1/11) 8024903961326500 m005 (1/2*gamma+3/5)/(4*exp(1)+1/5) 8024903969244432 r005 Re(z^2+c),c=-89/86+21/43*I,n=4 8024904009665809 a001 610/843*521^(5/13) 8024904013756013 m005 (1/2*3^(1/2)-2)/(6*5^(1/2)+5/7) 8024904023125333 a001 610/9349*521^(10/13) 8024904029064574 a001 46368/9349*199^(1/11) 8024904031910293 a007 Real Root Of 271*x^4-732*x^3+509*x^2+352*x-536 8024904043005746 m002 -6*Cosh[Pi]+Pi^2*Sech[Pi]-Sinh[Pi] 8024904043168483 m005 (1/2*Catalan-4/9)/(103/126+7/18*5^(1/2)) 8024904047535594 r008 a(0)=8,K{-n^6,-3-23*n-29*n^2+14*n^3} 8024904048167837 a007 Real Root Of 996*x^4+329*x^3+706*x^2-892*x-76 8024904056780666 r008 a(0)=8,K{-n^6,-35-7*n^3+72*n^2-69*n} 8024904070385296 m001 (Rabbit+Riemann2ndZero)/(ln(3)+ln(5)) 8024904082415537 m001 GAMMA(1/24)^2*Riemann2ndZero^2/ln(GAMMA(2/3)) 8024904085755356 r005 Im(z^2+c),c=-2/3+18/115*I,n=55 8024904116594947 p004 log(22447/10061) 8024904126111383 a001 2255/13201*521^(8/13) 8024904145186442 a003 cos(Pi*50/111)*cos(Pi*44/91) 8024904148955223 m002 Pi^5-Log[Pi]+6*Pi^6*Sech[Pi] 8024904156339019 r008 a(0)=8,K{-n^6,21+28*n^3-6*n^2-82*n} 8024904160434755 a001 17711/103682*521^(8/13) 8024904165442467 a001 15456/90481*521^(8/13) 8024904166173082 a001 121393/710647*521^(8/13) 8024904166263105 a007 Real Root Of 635*x^4-906*x^3-249*x^2-396*x-889 8024904166279678 a001 105937/620166*521^(8/13) 8024904166295230 a001 832040/4870847*521^(8/13) 8024904166297499 a001 726103/4250681*521^(8/13) 8024904166297830 a001 5702887/33385282*521^(8/13) 8024904166297878 a001 4976784/29134601*521^(8/13) 8024904166297885 a001 39088169/228826127*521^(8/13) 8024904166297886 a001 34111385/199691526*521^(8/13) 8024904166297886 a001 267914296/1568397607*521^(8/13) 8024904166297886 a001 233802911/1368706081*521^(8/13) 8024904166297886 a001 1836311903/10749957122*521^(8/13) 8024904166297886 a001 1602508992/9381251041*521^(8/13) 8024904166297886 a001 12586269025/73681302247*521^(8/13) 8024904166297886 a001 10983760033/64300051206*521^(8/13) 8024904166297886 a001 86267571272/505019158607*521^(8/13) 8024904166297886 a001 75283811239/440719107401*521^(8/13) 8024904166297886 a001 2504730781961/14662949395604*521^(8/13) 8024904166297886 a001 139583862445/817138163596*521^(8/13) 8024904166297886 a001 53316291173/312119004989*521^(8/13) 8024904166297886 a001 20365011074/119218851371*521^(8/13) 8024904166297886 a001 7778742049/45537549124*521^(8/13) 8024904166297886 a001 2971215073/17393796001*521^(8/13) 8024904166297886 a001 1134903170/6643838879*521^(8/13) 8024904166297886 a001 433494437/2537720636*521^(8/13) 8024904166297886 a001 165580141/969323029*521^(8/13) 8024904166297887 a001 63245986/370248451*521^(8/13) 8024904166297889 a001 24157817/141422324*521^(8/13) 8024904166297908 a001 9227465/54018521*521^(8/13) 8024904166298034 a001 3524578/20633239*521^(8/13) 8024904166298901 a001 1346269/7881196*521^(8/13) 8024904166304841 a001 514229/3010349*521^(8/13) 8024904166345557 a001 196418/1149851*521^(8/13) 8024904166624627 a001 75025/439204*521^(8/13) 8024904168537403 a001 28657/167761*521^(8/13) 8024904173312289 a007 Real Root Of 142*x^4+29*x^3+880*x^2-74*x-670 8024904181647765 a001 10946/64079*521^(8/13) 8024904186441035 a007 Real Root Of 89*x^4-375*x^3+527*x^2+278*x-347 8024904197742461 m001 Si(Pi)^Kolakoski*Si(Pi)^Sierpinski 8024904219862878 r008 a(0)=8,K{-n^6,-64+7*n+39*n^2-23*n^3} 8024904221197083 r005 Re(z^2+c),c=-49/102+20/31*I,n=16 8024904225999128 l006 ln(4072/9085) 8024904262177607 a007 Real Root Of 701*x^4-612*x^3+101*x^2+339*x-400 8024904268712929 r009 Im(z^3+c),c=-15/98+43/53*I,n=5 8024904271507518 a001 4181/24476*521^(8/13) 8024904309969038 m001 (FeigenbaumD+KhinchinLevy)/(5^(1/2)-exp(1)) 8024904318360686 m001 (-FeigenbaumDelta+5)/(-sin(Pi/5)+1) 8024904319364366 b008 EulerGamma-Tan[E]/2 8024904336012063 r005 Im(z^2+c),c=-7/12+5/34*I,n=50 8024904336130863 m001 (Pi^(1/2)+Magata)/(5^(1/2)-BesselI(1,2)) 8024904343569737 r008 a(0)=8,K{-n^6,-67+61*n^3+32*n^2-66*n} 8024904348741222 a007 Real Root Of 226*x^4+59*x^3+883*x^2+193*x-477 8024904349435069 r008 a(0)=8,K{-n^6,-53+76*n^3-6*n^2-57*n} 8024904428594692 r009 Im(z^3+c),c=-29/60+32/55*I,n=29 8024904430468995 m001 (-Zeta(1,2)+GaussAGM)/(Shi(1)-exp(Pi)) 8024904459385578 a007 Real Root Of 345*x^4-812*x^3-298*x^2+325*x-110 8024904467965044 a007 Real Root Of 376*x^4-392*x^3+630*x^2+14*x-753 8024904481981853 m001 (MertensB2+Robbin)/(Backhouse-FeigenbaumMu) 8024904492550916 m005 (1/3*Pi+2/7)/(6*exp(1)+3/10) 8024904546386124 m002 6*Log[Pi]*Sinh[Pi]+Tanh[Pi]/ProductLog[Pi] 8024904557337041 r002 49th iterates of z^2 + 8024904562183768 a001 17711/3571*199^(1/11) 8024904575231570 r008 a(0)=8,K{-n^6,-70+71*n^3+n^2-42*n} 8024904577239825 b008 79+ArcTan[3] 8024904585698240 a007 Real Root Of 868*x^4-569*x^3+251*x^2+32*x-790 8024904596450609 r008 a(0)=8,K{-n^6,-30-50*n+35*n^2+6*n^3} 8024904614288910 a001 377/843*843^(3/7) 8024904628551604 r008 a(0)=8,K{-n^6,-1-30*n-27*n^2+23*n^3} 8024904642015909 m001 (Landau+QuadraticClass)/(Bloch+Conway) 8024904645953456 r002 30th iterates of z^2 + 8024904654309131 a001 1/41*76^(11/40) 8024904658991341 a001 21/47*2^(49/58) 8024904676496770 a007 Real Root Of -283*x^4+851*x^3-631*x^2-610*x+474 8024904699400578 a007 Real Root Of 896*x^4+535*x^3+751*x^2-424*x-919 8024904707623045 r002 49th iterates of z^2 + 8024904712466792 a003 cos(Pi*7/111)*cos(Pi*15/77) 8024904724302056 m001 (-Bloch+ErdosBorwein)/(3^(1/2)-BesselI(1,2)) 8024904729912970 a007 Real Root Of -472*x^4+819*x^3+692*x^2-307*x-73 8024904735005314 r008 a(0)=8,K{-n^6,-35-10*n^3+53*n^2-48*n} 8024904736771953 l006 ln(2155/4808) 8024904745650115 r002 42th iterates of z^2 + 8024904777949324 a007 Real Root Of 848*x^4-380*x^3-768*x^2+114*x+38 8024904789030614 m001 GaussAGM^KhinchinLevy-ln(5) 8024904805638843 m001 MertensB1^MinimumGamma+Robbin 8024904807060238 a003 sin(Pi*9/31)/sin(Pi*45/101) 8024904813324558 m001 (1+ln(2))/(FellerTornier+KomornikLoreti) 8024904827204863 m003 4/3+Sqrt[5]/16+(5*Cosh[1/2+Sqrt[5]/2])/2 8024904842830507 m001 Lehmer/exp(Si(Pi))/OneNinth^2 8024904862001470 g002 -gamma-2*ln(2)+Psi(5/12)+Psi(5/11)-Psi(2/11) 8024904873955911 a001 1597/843*521^(3/13) 8024904877205119 q001 232/2891 8024904877205119 r002 2th iterates of z^2 + 8024904877205119 r002 2th iterates of z^2 + 8024904877205119 r002 2th iterates of z^2 + 8024904877205119 r005 Im(z^2+c),c=-53/98+58/59*I,n=2 8024904887415437 a001 1597/9349*521^(8/13) 8024904906863426 g001 abs(GAMMA(79/60+I*9/20)) 8024904913251616 r008 a(0)=8,K{-n^6,34+5*n^3-2*n^2-78*n} 8024904955828445 a007 Real Root Of -235*x^4+943*x^3+386*x^2+153*x+459 8024904960239478 m001 Zeta(1/2)*Tribonacci^2/ln(cos(1)) 8024904976696048 a008 Real Root of (2+x-2*x^2-5*x^3-2*x^4+5*x^5) 8024904994905574 m001 1/sqrt(1+sqrt(3))^2*exp(CopelandErdos)*sqrt(3) 8024905018418919 r008 a(0)=8,K{-n^6,-47-29*n+41*n^2-3*n^3} 8024905022663935 m005 (2*2^(1/2)+1/3)/(3/4*2^(1/2)-2/3) 8024905038701569 a007 Real Root Of 525*x^4-932*x^3-97*x^2+770*x-19 8024905094584072 a007 Real Root Of 936*x^4+583*x^3+49*x^2-544*x-555 8024905143326943 a007 Real Root Of -810*x^4-361*x^3-311*x^2+464*x+722 8024905148764290 m009 (4/5*Psi(1,2/3)-5/6)/(1/6*Psi(1,1/3)+1/3) 8024905163611707 r005 Im(z^2+c),c=-15/22+11/80*I,n=40 8024905166418676 r005 Im(z^2+c),c=-7/5+4/35*I,n=21 8024905175520427 r009 Im(z^3+c),c=-7/54+45/47*I,n=4 8024905207393127 a007 Real Root Of 719*x^4-928*x^3+420*x^2+743*x-452 8024905211693054 r005 Re(z^2+c),c=-24/29+5/63*I,n=15 8024905250961879 r008 a(0)=8,K{-n^6,-67+62*n^3+31*n^2-66*n} 8024905257221867 r008 a(0)=8,K{-n^6,-67+14*n^3-21*n^2+36*n} 8024905268764849 a007 Real Root Of -99*x^4-720*x^3+657*x^2+547*x+563 8024905270283058 r008 a(0)=8,K{-n^6,13+34*n^3-28*n^2-58*n} 8024905279865390 p004 log(25633/11489) 8024905287273536 m001 (FibonacciFactorial+Thue)/(1-2^(1/3)) 8024905288239765 m001 (Cahen+Sierpinski)/(Pi+ln(2^(1/2)+1)) 8024905293770294 m005 (13/4+1/4*5^(1/2))/(5*Catalan+1/6) 8024905303246639 a007 Real Root Of 231*x^4-851*x^3+384*x^2-45*x-819 8024905323468863 m009 (Psi(1,1/3)-1/5)/(20/3*Catalan+5/6*Pi^2-2) 8024905323873911 a007 Real Root Of -835*x^4+348*x^3-817*x^2-434*x+704 8024905330602391 m001 (LambertW(1)+ln(2))/(ln(3)+Bloch) 8024905351482658 a001 7/28657*53316291173^(8/19) 8024905357523569 m001 Robbin-Totient^Conway 8024905371693961 r005 Re(z^2+c),c=-5/6+11/202*I,n=33 8024905374651684 a007 Real Root Of 805*x^4+436*x^3+932*x^2+52*x-667 8024905419517820 a001 987/2207*521^(6/13) 8024905422211170 a001 987/3571*521^(7/13) 8024905422249614 a008 Real Root of x^4-x^3-45*x^2+61*x+77 8024905432670723 r008 a(0)=8,K{-n^6,-51+15*n^3-32*n^2+24*n} 8024905441659474 a007 Real Root Of 848*x^4-746*x^3-845*x^2+339*x+79 8024905455109417 a007 Real Root Of -61*x^4-543*x^3-323*x^2+794*x-466 8024905483529734 a007 Real Root Of 770*x^4+292*x^3+746*x^2-60*x-697 8024905485875052 a007 Real Root Of 490*x^4+31*x^3-810*x^2-483*x+690 8024905498219101 a007 Real Root Of 101*x^4+885*x^3+579*x^2-132*x+147 8024905502756924 a007 Real Root Of 742*x^4-787*x^3+597*x^2+284*x-871 8024905526846784 a007 Real Root Of 653*x^4-703*x^3+330*x^2+498*x-447 8024905530533236 a007 Real Root Of 472*x^4-843*x^3-494*x^2-852*x-997 8024905577730200 r005 Re(z^2+c),c=-51/110+32/43*I,n=2 8024905583014315 m005 (1/3*2^(1/2)-1/3)/(3/7*exp(1)+5/9) 8024905596785291 a007 Real Root Of -119*x^4-906*x^3+282*x^2-874*x+130 8024905605918129 l006 ln(2393/5339) 8024905635703419 r009 Re(z^3+c),c=-59/102+9/50*I,n=7 8024905639521457 a007 Real Root Of 871*x^4+258*x^3+912*x^2+647*x-296 8024905662564044 m001 1/exp(TreeGrowth2nd)*Artin*gamma^2 8024905666680039 a007 Real Root Of 131*x^4-116*x^3+270*x^2-259*x-496 8024905667994739 a007 Real Root Of -683*x^4-54*x^3+124*x^2+524*x+596 8024905669011953 r008 a(0)=8,K{-n^6,-22-6*n^3+46*n^2-60*n} 8024905685091598 a007 Real Root Of -863*x^4+334*x^3-270*x^2+2*x+706 8024905689992821 m001 Pi*(1+Zeta(5)+polylog(4,1/2)) 8024905697289627 m001 (-Pi^(1/2)+Magata)/(1+Zeta(5)) 8024905698055059 r008 a(0)=8,K{-n^6,-67+62*n^3+32*n^2-67*n} 8024905713677590 r008 a(0)=8,K{-n^6,4+2*n^3-3*n^2-3*n} 8024905720291675 m001 (TravellingSalesman-TwinPrimes)/(Kac-Mills) 8024905725732111 m005 (1/2*3^(1/2)-2/5)/(1/9*Zeta(3)-5/7) 8024905748327363 m001 (BesselI(0,1)+CareFree)/(exp(Pi)+2^(1/2)) 8024905753019955 a007 Real Root Of 339*x^4+61*x^3-799*x^2-549*x+783 8024905760316475 a007 Real Root Of -721*x^4-307*x^3-249*x^2+115*x+393 8024905793715236 a007 Real Root Of -361*x^4+901*x^3-773*x^2-303*x+870 8024905794947006 m001 (FeigenbaumAlpha+FeigenbaumD)/MasserGramain 8024905832050504 a007 Real Root Of -832*x^4+769*x^3+547*x^2-323*x+131 8024905836243849 m001 1/exp(Catalan)*Sierpinski^2/gamma^2 8024905876628637 a007 Real Root Of 590*x^4-756*x^3+521*x^2+765*x-357 8024905878945844 q001 2771/3453 8024905899196469 a007 Real Root Of -761*x^4+808*x^3-151*x^2-8*x+824 8024905899815921 r009 Im(z^3+c),c=-23/60+1/31*I,n=5 8024905919966043 r008 a(0)=8,K{-n^6,-68+62*n^3+32*n^2-66*n} 8024905929868672 a003 cos(Pi*11/63)*sin(Pi*30/77) 8024905954242291 a007 Real Root Of -319*x^4+914*x^3-2*x^2-537*x+175 8024905961166670 a007 Real Root Of -586*x^4+42*x^3-187*x^2+578*x+849 8024905965086531 a001 305/2889*521^(9/13) 8024905999336121 a007 Real Root Of 541*x^4+910*x^3+825*x^2+150*x-165 8024905999686426 a007 Real Root Of 834*x^4-725*x^3+596*x^2+874*x-403 8024906038965908 m001 ln((3^(1/3)))*Kolakoski/GAMMA(1/4) 8024906040074615 a007 Real Root Of 254*x^4-939*x^3-415*x^2+156*x+522 8024906099632379 a007 Real Root Of -888*x^4+941*x^3+66*x^2-754*x+207 8024906107180730 a007 Real Root Of -612*x^4+709*x^3+927*x^2+867*x+719 8024906123610572 a003 sin(Pi*14/55)/sin(Pi*19/54) 8024906129880948 m005 (1/2*Zeta(3)+5/11)/(93/154+7/22*5^(1/2)) 8024906141057530 r008 a(0)=8,K{-n^6,-71+63*n^3+28*n^2-60*n} 8024906142046684 r008 a(0)=8,K{-n^6,-65+65*n^3+25*n^2-65*n} 8024906150774066 m001 FeigenbaumDelta^(2^(1/3))+GAMMA(11/12) 8024906150774066 m001 GAMMA(11/12)+FeigenbaumDelta^(2^(1/3)) 8024906158130236 a001 4/1836311903*55^(9/10) 8024906177187652 r008 a(0)=8,K{-n^6,-56+3*n+31*n^2-19*n^3} 8024906189924408 m001 StronglyCareFree/GAMMA(11/12)/Catalan 8024906199625473 r005 Im(z^2+c),c=-13/102+24/29*I,n=22 8024906216385850 a008 Real Root of (-5+5*x+9*x^2+9*x^4-3*x^8) 8024906238426666 b008 Cos[4*ArcCsc[2*Pi]] 8024906249919769 a007 Real Root Of -111*x^4-846*x^3+452*x^2+811*x+534 8024906276671589 b008 Log[ArcCosh[8]/3] 8024906278427892 a001 2584/843*521^(2/13) 8024906279087335 r005 Im(z^2+c),c=-151/126+10/63*I,n=39 8024906291887420 a001 2584/9349*521^(7/13) 8024906293555668 m001 exp(BesselK(0,1))*Riemann2ndZero^2/Catalan^2 8024906301120581 a007 Real Root Of -809*x^4+394*x^3+189*x^2-970*x-361 8024906317818494 l006 ln(2631/5870) 8024906354111028 m005 (1/2*gamma-2/5)/(8/9*gamma+7/8) 8024906354577221 r005 Re(z^2+c),c=-5/6+11/191*I,n=19 8024906396214855 r009 Re(z^3+c),c=-31/58+24/53*I,n=6 8024906414106369 r002 15th iterates of z^2 + 8024906418771465 a001 6765/24476*521^(7/13) 8024906437283598 a001 17711/64079*521^(7/13) 8024906439984482 a001 46368/167761*521^(7/13) 8024906440378535 a001 121393/439204*521^(7/13) 8024906440436027 a001 317811/1149851*521^(7/13) 8024906440444415 a001 832040/3010349*521^(7/13) 8024906440445638 a001 2178309/7881196*521^(7/13) 8024906440445817 a001 5702887/20633239*521^(7/13) 8024906440445843 a001 14930352/54018521*521^(7/13) 8024906440445847 a001 39088169/141422324*521^(7/13) 8024906440445847 a001 102334155/370248451*521^(7/13) 8024906440445848 a001 267914296/969323029*521^(7/13) 8024906440445848 a001 701408733/2537720636*521^(7/13) 8024906440445848 a001 1836311903/6643838879*521^(7/13) 8024906440445848 a001 4807526976/17393796001*521^(7/13) 8024906440445848 a001 12586269025/45537549124*521^(7/13) 8024906440445848 a001 32951280099/119218851371*521^(7/13) 8024906440445848 a001 86267571272/312119004989*521^(7/13) 8024906440445848 a001 225851433717/817138163596*521^(7/13) 8024906440445848 a001 1548008755920/5600748293801*521^(7/13) 8024906440445848 a001 139583862445/505019158607*521^(7/13) 8024906440445848 a001 53316291173/192900153618*521^(7/13) 8024906440445848 a001 20365011074/73681302247*521^(7/13) 8024906440445848 a001 7778742049/28143753123*521^(7/13) 8024906440445848 a001 2971215073/10749957122*521^(7/13) 8024906440445848 a001 1134903170/4106118243*521^(7/13) 8024906440445848 a001 433494437/1568397607*521^(7/13) 8024906440445848 a001 165580141/599074578*521^(7/13) 8024906440445848 a001 63245986/228826127*521^(7/13) 8024906440445849 a001 24157817/87403803*521^(7/13) 8024906440445859 a001 9227465/33385282*521^(7/13) 8024906440445927 a001 3524578/12752043*521^(7/13) 8024906440446395 a001 1346269/4870847*521^(7/13) 8024906440449599 a001 514229/1860498*521^(7/13) 8024906440471559 a001 196418/710647*521^(7/13) 8024906440622074 a001 75025/271443*521^(7/13) 8024906441653719 a001 28657/103682*521^(7/13) 8024906448724725 a001 10946/39603*521^(7/13) 8024906464498353 r005 Re(z^2+c),c=5/32+24/49*I,n=5 8024906466994746 a007 Real Root Of -421*x^4+844*x^3+934*x^2-758*x-599 8024906473006114 a001 47/2207*(1/2*5^(1/2)+1/2)^24*2207^(7/15) 8024906476771038 r002 34th iterates of z^2 + 8024906478378653 a007 Real Root Of 607*x^4-927*x^3-784*x^2+851*x+457 8024906483621093 r005 Im(z^2+c),c=35/82+16/45*I,n=4 8024906493218415 h001 (-11*exp(3)-2)/(-2*exp(2)+12) 8024906497190117 a001 4181/15127*521^(7/13) 8024906500749296 r005 Re(z^2+c),c=-3/16+23/29*I,n=5 8024906533763978 m006 (3/5/Pi+1/6)/(1/6*exp(Pi)+3/5) 8024906540664852 a007 Real Root Of 143*x^4+248*x^3+424*x^2-244*x-400 8024906544004434 h001 (1/2*exp(2)+2/11)/(6/11*exp(2)+4/5) 8024906582450078 v002 sum(1/(2^n+(53+6*n)),n=1..infinity) 8024906586530574 r005 Im(z^2+c),c=-57/94+23/61*I,n=34 8024906588608082 r008 a(0)=8,K{-n^6,-67+92*n^3-56*n^2-9*n} 8024906595814687 r005 Im(z^2+c),c=-2/3+32/119*I,n=28 8024906600249066 q001 3222/4015 8024906663821458 m003 25/2+(9*Sqrt[5])/32+Tan[1/2+Sqrt[5]/2] 8024906670590354 m001 Catalan*Backhouse^2*ln(GAMMA(3/4))^2 8024906751251256 m009 (8/5*Catalan+1/5*Pi^2-1)/(1/3*Pi^2-1/4) 8024906753769026 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^23 8024906770539078 r002 42th iterates of z^2 + 8024906773972452 a001 233/322*322^(5/12) 8024906783065528 m001 (Kolakoski+Sarnak)/(Catalan-FransenRobinson) 8024906791346873 a007 Real Root Of -759*x^4-54*x^3+127*x^2+770*x+823 8024906801905518 m002 80+Tanh[Pi]/4 8024906806331055 r008 a(0)=8,K{-n^6,-68+92*n^3-56*n^2-8*n} 8024906829376844 a001 1597/5778*521^(7/13) 8024906837391732 r009 Im(z^3+c),c=-59/110+25/53*I,n=29 8024906844380206 a008 Real Root of x^4-44*x^2-148*x-126 8024906850749144 a008 Real Root of x^3-32*x-260 8024906868788222 p003 LerchPhi(1/2,1,241/126) 8024906886077439 a007 Real Root Of 77*x^4+614*x^3+33*x^2+598*x+649 8024906890203753 a001 47*(1/2*5^(1/2)+1/2)^3*3571^(11/15) 8024906902982161 p003 LerchPhi(1/12,2,57/161) 8024906911606386 l006 ln(2869/6401) 8024906950050172 a007 Real Root Of 715*x^4-19*x^3+757*x^2-141*x-907 8024906972883187 a003 cos(Pi*33/103)*cos(Pi*33/73) 8024906988485209 m006 (2/5*exp(2*Pi)+3/5)/(5*exp(2*Pi)-5/6) 8024906993763090 m008 (2*Pi^5-1/6)/(5/6*Pi^2-3/5) 8024907028978654 a001 119218851371/1597*144^(16/17) 8024907036206556 a001 377/39603*1364^(14/15) 8024907059402987 m001 (MertensB2-Thue)/(BesselJ(1,1)+MadelungNaCl) 8024907060239345 s001 sum(exp(-2*Pi/5)^n*A139381[n],n=1..infinity) 8024907060239345 s002 sum(A139381[n]/(exp(2/5*pi*n)),n=1..infinity) 8024907090225330 m001 (ln(3)-Otter)/(Tribonacci+Weierstrass) 8024907119110025 a001 377/2207*1364^(8/15) 8024907124269940 a007 Real Root Of -342*x^4+693*x^3-426*x^2-368*x+479 8024907142927341 m006 (1/2*ln(Pi)+4/5)/(1/3*Pi^2-5) 8024907181791525 m001 BesselK(0,1)^2/ln(GolombDickman)*Zeta(1/2)^2 8024907186340101 r009 Im(z^3+c),c=-3/29+51/53*I,n=10 8024907195914310 m001 (-FeigenbaumMu+ZetaQ(2))/(Catalan-GAMMA(2/3)) 8024907197115171 a007 Real Root Of 718*x^4-326*x^3+723*x^2+102*x-850 8024907201650452 m001 (KomornikLoreti+OneNinth)/(exp(Pi)+Bloch) 8024907227264290 m005 (1/2*2^(1/2)-3/7)/(11/12*gamma-4) 8024907238833409 r008 a(0)=8,K{-n^6,-68+92*n^3-55*n^2-9*n} 8024907255686191 l006 ln(2609/2827) 8024907275514994 a001 124/615*4181^(28/39) 8024907315654221 a007 Real Root Of -757*x^4-15*x^3-865*x^2-19*x+848 8024907322336583 a001 36/341*322^(3/4) 8024907342272859 a001 13/844*1364^(13/15) 8024907345993267 a001 1/17*5^(11/57) 8024907351823401 a001 47/64079*(1/2*5^(1/2)+1/2)^17*64079^(14/15) 8024907352034218 a001 47*(1/2*5^(1/2)+1/2)^14*39603^(1/15) 8024907363934998 a001 47/9349*(1/2*5^(1/2)+1/2)^18*9349^(13/15) 8024907366728693 r002 27th iterates of z^2 + 8024907398651608 m001 (GAMMA(11/12)-exp(1))/(GAMMA(7/12)+Landau) 8024907410418686 m001 GAMMA(13/24)*exp(MinimumGamma)/log(1+sqrt(2)) 8024907414424492 l006 ln(3107/6932) 8024907420225607 a007 Real Root Of -970*x^4+881*x^3+799*x^2+790*x+977 8024907453367905 a007 Real Root Of 998*x^4-392*x^3-499*x^2-350*x-576 8024907466033727 a001 5778*144^(9/17) 8024907480531973 h001 (4/7*exp(1)+1/2)/(7/9*exp(1)+4/9) 8024907493626939 m001 (GAMMA(3/4)+2/3)/(-LandauRamanujan+1) 8024907502657946 a007 Real Root Of -944*x^4-716*x^3-717*x^2+315*x+736 8024907519507427 a001 47/3571*(1/2*5^(1/2)+1/2)^20*3571^(11/15) 8024907524477998 a007 Real Root Of -414*x^4+956*x^3+824*x^2+841*x+810 8024907525344650 a007 Real Root Of -155*x^4+989*x^3-323*x^2+159*x+911 8024907559635238 r005 Re(z^2+c),c=-19/106+27/32*I,n=5 8024907560376632 s002 sum(A064485[n]/(n^3*exp(n)-1),n=1..infinity) 8024907566468121 a001 312119004989/4181*144^(16/17) 8024907571213878 a001 47/317811*6765^(39/40) 8024907578911274 m001 exp(1)^2*LambertW(1)/exp(sqrt(1+sqrt(3))) 8024907581361640 a001 377/15127*1364^(4/5) 8024907590332989 m005 (1/2*gamma-3/5)/(3/11*gamma-6/11) 8024907603071087 s002 sum(A063735[n]/(n^2*exp(n)-1),n=1..infinity) 8024907608239929 a007 Real Root Of 136*x^4-879*x^3+561*x^2+380*x-567 8024907611273567 m001 (AlladiGrinstead+Thue)/(TwinPrimes-ZetaP(2)) 8024907629558995 r005 Im(z^2+c),c=-2/25+45/56*I,n=40 8024907642996272 m001 Riemann2ndZero*ln(Porter)/Zeta(9)^2 8024907644886783 a001 408569081798/5473*144^(16/17) 8024907656327912 a001 2139295485799/28657*144^(16/17) 8024907656557798 a007 Real Root Of -621*x^4+297*x^3-175*x^2+429*x+868 8024907657997150 a001 5600748293801/75025*144^(16/17) 8024907658240689 a001 7331474697802/98209*144^(16/17) 8024907658298181 a001 23725150497407/317811*144^(16/17) 8024907658391204 a001 9062201101803/121393*144^(16/17) 8024907659028796 a001 10749853441/144*144^(16/17) 8024907663398919 a001 1322157322203/17711*144^(16/17) 8024907664731785 r005 Im(z^2+c),c=1/29+12/19*I,n=18 8024907669368722 r008 a(0)=8,K{-n^6,6-55*n-5*n^2+12*n^3} 8024907693263568 a001 34/370248451*18^(3/4) 8024907693352183 a001 505019158607/6765*144^(16/17) 8024907694602399 a001 1364/701408733*89^(6/19) 8024907714240536 a007 Real Root Of -644*x^4+147*x^3-967*x^2-77*x+904 8024907717951848 a007 Real Root Of -19*x^4-65*x^3+821*x^2+874*x-652 8024907728472739 r005 Im(z^2+c),c=-17/26+3/34*I,n=19 8024907778560036 m005 (1/2*Pi-1/10)/(10/11*5^(1/2)-1/5) 8024907811390807 a001 144/2207*322^(5/6) 8024907816610686 r008 a(0)=8,K{-n^6,-16-63*n+60*n^2-22*n^3} 8024907818869161 a001 47/89*5^(13/50) 8024907836992487 m001 Riemann2ndZero/(FeigenbaumB+KomornikLoreti) 8024907845690586 l006 ln(3345/7463) 8024907864811476 r005 Re(z^2+c),c=25/106+19/52*I,n=14 8024907878960030 m001 1/GAMMA(5/6)/exp(Si(Pi))*gamma 8024907898654916 a001 96450076809/1292*144^(16/17) 8024907899826255 a007 Real Root Of -974*x^4-312*x^3-376*x^2+881*x+73 8024907900509789 a007 Real Root Of -940*x^4+360*x^3+87*x^2+136*x+629 8024907926160500 a001 55/7*3^(1/52) 8024907951167294 a001 377/5778*1364^(2/3) 8024907962210881 a007 Real Root Of 939*x^4-281*x^3+894*x^2+793*x-474 8024907995799896 a001 377/9349*1364^(11/15) 8024908010927545 r005 Im(z^2+c),c=-59/46+2/49*I,n=62 8024908047255543 r005 Im(z^2+c),c=-11/118+33/41*I,n=16 8024908056726700 a007 Real Root Of 707*x^4-420*x^3+80*x^2-247*x-760 8024908092154636 r008 a(0)=8,K{-n^6,-68+93*n^3-56*n^2-9*n} 8024908120544309 a001 47*(1/2*5^(1/2)+1/2)^8*2207^(7/15) 8024908135670785 m001 MadelungNaCl^CareFree/(MadelungNaCl^ln(3)) 8024908151438553 a007 Real Root Of 687*x^4-765*x^3-932*x^2-375*x-381 8024908177825228 a007 Real Root Of -869*x^4+767*x^3+454*x^2+498*x-728 8024908216239003 a001 615/124*199^(1/11) 8024908219663150 l006 ln(3583/7994) 8024908233849167 a001 1292/2889*521^(6/13) 8024908236754781 m001 Conway-TreeGrowth2nd^sin(1) 8024908261546927 m001 Robbin^(StronglyCareFree/Backhouse) 8024908269342325 a001 329/281*1364^(4/15) 8024908271640530 b008 Pi-34*CoshIntegral[2] 8024908335608229 r008 a(0)=8,K{-n^6,-28-39*n+45*n^2-19*n^3} 8024908341968996 a007 Real Root Of -508*x^4+583*x^3-743*x^2-666*x+456 8024908356902144 m008 (5/6*Pi^5+1/5)/(1/3*Pi^4-2/3) 8024908357246883 r009 Re(z^3+c),c=-21/106+17/27*I,n=9 8024908362857262 a007 Real Root Of -869*x^4+465*x^3-213*x^2-593*x+262 8024908457625260 a007 Real Root Of -26*x^4+365*x^3-620*x^2+125*x+699 8024908473929224 a007 Real Root Of -964*x^4+723*x^3+679*x^2+735*x+926 8024908483695337 m001 BesselK(0,1)^(arctan(1/2)/MasserGramainDelta) 8024908485843240 m005 (1/2*Zeta(3)-5)/(3/10*gamma+3/8) 8024908486048694 a007 Real Root Of 841*x^4+208*x^3-236*x^2-599*x-570 8024908525029053 a003 sin(Pi*1/71)-sin(Pi*9/28) 8024908535773571 m004 25*Pi-Cos[Sqrt[5]*Pi]/6+2*Tan[Sqrt[5]*Pi] 8024908537456936 a007 Real Root Of -915*x^4-78*x^3+147*x^2+443*x+600 8024908547048175 l006 ln(3821/8525) 8024908552426961 a007 Real Root Of 536*x^4-999*x^3-624*x^2-272*x-555 8024908583567634 a007 Real Root Of -619*x^4+166*x^3-975*x^2+2*x+972 8024908585103447 m005 (1/3*2^(1/2)-1/3)/(5/6*5^(1/2)-1/7) 8024908591196978 m001 Thue^(FeigenbaumD/Si(Pi)) 8024908615843428 m001 (Paris+Robbin)/(arctan(1/3)+Kac) 8024908644454659 a001 6765/15127*521^(6/13) 8024908696462826 r008 a(0)=8,K{-n^6,-8-2*n^3+5*n^2+6*n} 8024908704361195 a001 17711/39603*521^(6/13) 8024908713101441 a001 23184/51841*521^(6/13) 8024908714376626 a001 121393/271443*521^(6/13) 8024908714562673 a001 317811/710647*521^(6/13) 8024908714589816 a001 416020/930249*521^(6/13) 8024908714593777 a001 2178309/4870847*521^(6/13) 8024908714594354 a001 5702887/12752043*521^(6/13) 8024908714594439 a001 7465176/16692641*521^(6/13) 8024908714594451 a001 39088169/87403803*521^(6/13) 8024908714594453 a001 102334155/228826127*521^(6/13) 8024908714594453 a001 133957148/299537289*521^(6/13) 8024908714594453 a001 701408733/1568397607*521^(6/13) 8024908714594453 a001 1836311903/4106118243*521^(6/13) 8024908714594453 a001 2403763488/5374978561*521^(6/13) 8024908714594453 a001 12586269025/28143753123*521^(6/13) 8024908714594453 a001 32951280099/73681302247*521^(6/13) 8024908714594453 a001 43133785636/96450076809*521^(6/13) 8024908714594453 a001 225851433717/505019158607*521^(6/13) 8024908714594453 a001 591286729879/1322157322203*521^(6/13) 8024908714594453 a001 10610209857723/23725150497407*521^(6/13) 8024908714594453 a001 182717648081/408569081798*521^(6/13) 8024908714594453 a001 139583862445/312119004989*521^(6/13) 8024908714594453 a001 53316291173/119218851371*521^(6/13) 8024908714594453 a001 10182505537/22768774562*521^(6/13) 8024908714594453 a001 7778742049/17393796001*521^(6/13) 8024908714594453 a001 2971215073/6643838879*521^(6/13) 8024908714594453 a001 567451585/1268860318*521^(6/13) 8024908714594453 a001 433494437/969323029*521^(6/13) 8024908714594453 a001 165580141/370248451*521^(6/13) 8024908714594454 a001 31622993/70711162*521^(6/13) 8024908714594459 a001 24157817/54018521*521^(6/13) 8024908714594491 a001 9227465/20633239*521^(6/13) 8024908714594712 a001 1762289/3940598*521^(6/13) 8024908714596224 a001 1346269/3010349*521^(6/13) 8024908714606592 a001 514229/1149851*521^(6/13) 8024908714677656 a001 98209/219602*521^(6/13) 8024908715164733 a001 75025/167761*521^(6/13) 8024908718503210 a001 28657/64079*521^(6/13) 8024908720759830 r008 a(0)=8,K{-n^6,-97+94*n^3-72*n^2+35*n} 8024908741385471 a001 5473/12238*521^(6/13) 8024908745798934 a007 Real Root Of -496*x^4+454*x^3+166*x^2+230*x+518 8024908787306615 r005 Im(z^2+c),c=-4/23+32/39*I,n=19 8024908803973780 r008 a(0)=8,K{-n^6,2+21*n^3-8*n^2-53*n} 8024908816027647 a007 Real Root Of -450*x^4+984*x^3-68*x^2-942*x-17 8024908836040664 l006 ln(4059/9056) 8024908838826578 r002 30th iterates of z^2 + 8024908847467223 l006 ln(8812/8883) 8024908876027778 r008 a(0)=8,K{-n^6,-38+11*n-24*n^2+16*n^3} 8024908883505340 a007 Real Root Of -731*x^4-582*x^3+426*x^2+698*x+53 8024908883857466 m001 gamma(3)/(FibonacciFactorial+MertensB3) 8024908884763288 a001 4181/843*521^(1/13) 8024908898222820 a001 4181/9349*521^(6/13) 8024908928667001 r008 a(0)=8,K{-n^6,-98+94*n^3-72*n^2+36*n} 8024908963426591 m005 (1/3*Pi-1/10)/(1/3*Catalan+7/8) 8024908994548053 r002 4th iterates of z^2 + 8024909009087222 r008 a(0)=8,K{-n^6,-12-56*n+25*n^2+6*n^3} 8024909093020014 l006 ln(4297/9587) 8024909093020014 p004 log(9587/4297) 8024909106218086 a001 610/2207*521^(7/13) 8024909108397931 a001 377/3571*1364^(3/5) 8024909108911437 a001 610/3571*521^(8/13) 8024909109179310 m001 (exp(1/exp(1))-gamma(2))/(Kac+KhinchinLevy) 8024909123400705 a001 377/2207*3571^(8/17) 8024909136216147 r008 a(0)=8,K{-n^6,5-18*n-58*n^2+29*n^3} 8024909162371755 r009 Re(z^3+c),c=-4/31+22/41*I,n=21 8024909177557840 r005 Im(z^2+c),c=9/106+40/61*I,n=8 8024909196845921 r005 Im(z^2+c),c=51/122+17/48*I,n=9 8024909203212194 a007 Real Root Of -39*x^4+850*x^3-131*x^2+556*x+986 8024909219021136 m005 (1/3*Pi+5)/(1/4*2^(1/2)+2/5) 8024909227351639 a001 5600748293801/233*144^(12/17) 8024909238869448 r005 Im(z^2+c),c=-37/64+5/34*I,n=40 8024909271487746 a001 329/281*3571^(4/17) 8024909275059322 a007 Real Root Of 105*x^4+747*x^3-676*x^2+843*x+885 8024909305821066 a001 10525900321/141*144^(16/17) 8024909316990222 r008 a(0)=8,K{-n^6,-51-15*n^3+65*n^2-43*n} 8024909318524700 q001 5/62306 8024909332503639 r008 a(0)=8,K{-n^6,-64+55*n^3+63*n^2-94*n} 8024909341735061 r008 a(0)=8,K{-n^6,-98+94*n^3-71*n^2+35*n} 8024909352648229 a003 cos(Pi*7/115)-cos(Pi*27/61) 8024909365630837 r005 Re(z^2+c),c=-7/10+41/161*I,n=10 8024909380885080 a001 377/2207*9349^(8/19) 8024909400229935 a001 329/281*9349^(4/19) 8024909405869991 m001 1/LambertW(1)^2/ln(PrimesInBinary)^2*sqrt(2)^2 8024909414440635 a001 377/2207*24476^(8/21) 8024909417007713 a001 329/281*24476^(4/21) 8024909417632588 a007 Real Root Of 35*x^4+161*x^3-924*x^2+226*x-631 8024909418863903 a001 377/2207*64079^(8/23) 8024909419219347 a001 329/281*64079^(4/23) 8024909419543687 a001 377/2207*(1/2+1/2*5^(1/2))^8 8024909419543687 a001 377/2207*23725150497407^(1/8) 8024909419543687 a001 377/2207*505019158607^(1/7) 8024909419543687 a001 377/2207*73681302247^(2/13) 8024909419543687 a001 377/2207*10749957122^(1/6) 8024909419543687 a001 377/2207*4106118243^(4/23) 8024909419543687 a001 377/2207*1568397607^(2/11) 8024909419543687 a001 377/2207*599074578^(4/21) 8024909419543687 a001 377/2207*228826127^(1/5) 8024909419543687 a001 377/2207*87403803^(4/19) 8024909419543688 a001 377/2207*33385282^(2/9) 8024909419543698 a001 377/2207*12752043^(4/17) 8024909419543771 a001 377/2207*4870847^(1/4) 8024909419544305 a001 377/2207*1860498^(4/15) 8024909419548227 a001 377/2207*710647^(2/7) 8024909419559239 a001 329/281*(1/2+1/2*5^(1/2))^4 8024909419559239 a001 329/281*23725150497407^(1/16) 8024909419559239 a001 329/281*73681302247^(1/13) 8024909419559239 a001 329/281*10749957122^(1/12) 8024909419559239 a001 329/281*4106118243^(2/23) 8024909419559239 a001 329/281*1568397607^(1/11) 8024909419559239 a001 329/281*599074578^(2/21) 8024909419559239 a001 329/281*228826127^(1/10) 8024909419559239 a001 329/281*87403803^(2/19) 8024909419559239 a001 329/281*33385282^(1/9) 8024909419559245 a001 329/281*12752043^(2/17) 8024909419559281 a001 329/281*4870847^(1/8) 8024909419559548 a001 329/281*1860498^(2/15) 8024909419561509 a001 329/281*710647^(1/7) 8024909419575995 a001 329/281*271443^(2/13) 8024909419577199 a001 377/2207*271443^(4/13) 8024909419683656 a001 329/281*103682^(1/6) 8024909419792522 a001 377/2207*103682^(1/3) 8024909420289855 a001 17719/2208 8024909420489535 a001 329/281*39603^(2/11) 8024909421404279 a001 377/2207*39603^(4/11) 8024909426573219 a001 329/281*15127^(1/5) 8024909433571647 a001 377/2207*15127^(2/5) 8024909440308929 r005 Im(z^2+c),c=-11/8+20/143*I,n=8 8024909447669688 a007 Real Root Of 224*x^4-862*x^3+932*x^2+473*x-759 8024909462218108 r005 Im(z^2+c),c=-5/106+35/43*I,n=62 8024909470134748 a001 1/47*(1/2*5^(1/2)+1/2)*11^(6/17) 8024909472975387 a001 329/281*5778^(2/9) 8024909475245346 a007 Real Root Of -928*x^4+489*x^3-46*x^2-804*x+22 8024909479301320 g004 Re(GAMMA(2/3+I*203/60)) 8024909483017145 m005 (1/2*5^(1/2)-7/10)/(1/5*gamma-7/11) 8024909495242659 m004 -5*Pi+(5*Log[Sqrt[5]*Pi])/Pi+5*Tan[Sqrt[5]*Pi] 8024909499001113 m001 (arctan(1/3)+AlladiGrinstead)/(Pi-3^(1/2)) 8024909514548260 m001 (exp(Pi)+Ei(1))/(-LandauRamanujan+ZetaP(2)) 8024909516740339 m004 (15*Sqrt[5])/Pi+10*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 8024909521769374 a007 Real Root Of -424*x^4+416*x^3-864*x^2-257*x+741 8024909526375984 a001 377/2207*5778^(4/9) 8024909537656254 r008 a(0)=8,K{-n^6,-65+55*n^3+63*n^2-93*n} 8024909559392900 r008 a(0)=8,K{-n^6,-55+10*n^3-34*n^2+33*n} 8024909570795997 m002 (5*Sech[Pi]^3)/4 8024909582067163 r002 37th iterates of z^2 + 8024909607342445 a007 Real Root Of -133*x^4+253*x^3-932*x^2+117*x+880 8024909657334565 a003 sin(Pi*5/103)-sin(Pi*23/57) 8024909664977767 a007 Real Root Of -448*x^4+68*x^3+577*x^2+660*x+379 8024909678639509 a001 1/1292*6557470319842^(4/17) 8024909695077424 r002 51th iterates of z^2 + 8024909706487782 m001 (BesselK(0,1)-CareFree)/(Otter+Stephens) 8024909711940280 m001 (Robbin+Totient)/(ln(3)+HardHexagonsEntropy) 8024909723253809 r005 Re(z^2+c),c=-21/110+47/58*I,n=35 8024909725141967 m001 (ln(Pi)-Weierstrass)/GaussAGM 8024909753644741 a007 Real Root Of 713*x^4+12*x^3+452*x^2-489*x-973 8024909766236482 m001 PrimesInBinary/(Magata^Totient) 8024909778037351 m001 Niven^ZetaQ(2)/GlaisherKinkelin 8024909780637266 a007 Real Root Of -53*x^4+702*x^3-40*x^2-53*x+368 8024909798170697 r009 Im(z^3+c),c=-3/20+22/27*I,n=41 8024909829069823 p001 sum(1/(191*n+130)/(10^n),n=0..infinity) 8024909831443907 a001 329/281*2207^(1/4) 8024909868325342 r005 Im(z^2+c),c=-3/98+17/24*I,n=55 8024909904599441 a007 Real Root Of 377*x^4-658*x^3+551*x^2-143*x-966 8024909908733682 r009 Im(z^3+c),c=-47/110+1/50*I,n=35 8024909935166480 v003 sum((2*n^3-6*n^2+19*n+4)*n!/n^n,n=1..infinity) 8024909942354327 a007 Real Root Of 272*x^4-833*x^3-453*x^2-494*x-648 8024909945289064 r008 a(0)=8,K{-n^6,-65+55*n^3+64*n^2-94*n} 8024909970508737 a001 1597/2207*521^(5/13) 8024909971461823 m001 Tribonacci^2*exp(TreeGrowth2nd)/cos(Pi/5)^2 8024909973202089 a001 1597/3571*521^(6/13) 8024909985172501 a007 Real Root Of -527*x^4+675*x^3-641*x^2-561*x+530 8024910000915729 r005 Re(z^2+c),c=-7/8+174/209*I,n=2 8024910000976038 a007 Real Root Of -772*x^4+871*x^3+646*x^2+890*x-76 8024910004236904 a007 Real Root Of 805*x^4+109*x^3-876*x^2-969*x-491 8024910068107719 m001 (Ei(1)+MasserGramain)/(MinimumGamma+Niven) 8024910081449179 m001 FeigenbaumB^(ErdosBorwein/Totient) 8024910124813127 r005 Re(z^2+c),c=-53/60+41/57*I,n=3 8024910138739678 a008 Real Root of x^4+14*x^2-68*x-64 8024910155111076 r005 Im(z^2+c),c=-15/98+50/61*I,n=49 8024910156966001 r008 a(0)=8,K{-n^6,-98+95*n^3-72*n^2+35*n} 8024910173050584 m005 (1/2*Pi+4)/(27/55+1/11*5^(1/2)) 8024910180488829 r005 Im(z^2+c),c=-9/122+30/37*I,n=22 8024910186923220 a007 Real Root Of -318*x^4-995*x^3-613*x^2+949*x+774 8024910191437199 r008 a(0)=8,K{-n^6,-60+21*n^3-25*n^2+25*n} 8024910194171971 a007 Real Root Of -68*x^4-640*x^3-857*x^2-840*x-288 8024910220533580 r002 53th iterates of z^2 + 8024910233398793 m003 -E^(1/2+Sqrt[5]/2)+6*Sinh[1/2+Sqrt[5]/2]^3 8024910243313044 a001 377/2207*2207^(1/2) 8024910251617078 a001 2584/843*1364^(2/15) 8024910263952942 m001 Salem^2/ln(Porter)^2/GAMMA(19/24) 8024910268840495 r005 Im(z^2+c),c=-31/52+4/27*I,n=49 8024910290014374 a007 Real Root Of -247*x^4+530*x^3-118*x^2+670*x+990 8024910333204450 r002 4th iterates of z^2 + 8024910337242793 a007 Real Root Of 876*x^4-360*x^3-472*x^2-7*x-251 8024910356485661 r002 49th iterates of z^2 + 8024910375671308 m001 Tribonacci/exp(GlaisherKinkelin)^2*LambertW(1) 8024910403420435 a007 Real Root Of -650*x^4+573*x^3-582*x^2-843*x+264 8024910408203361 a003 sin(Pi*35/118)*sin(Pi*33/67) 8024910417390474 r008 a(0)=8,K{-n^6,3+24*n^3-37*n^2-33*n} 8024910428175954 a003 sin(Pi*5/93)*sin(Pi*16/101) 8024910428484246 r005 Im(z^2+c),c=-65/98+7/40*I,n=44 8024910431353418 m005 (13/12+1/4*5^(1/2))/(5/6*Pi-4/7) 8024910437778533 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^25 8024910438924765 m006 (1/2*exp(Pi)-2/3)/(1/4*exp(2*Pi)+2) 8024910445432620 m005 (1/2*Catalan+3)/(1/2*Catalan-8/9) 8024910449555645 h001 (2/3*exp(1)+1/3)/(11/12*exp(1)+2/11) 8024910456530982 a001 377/5778*3571^(10/17) 8024910474049905 a001 377/103682*3571^(16/17) 8024910482752271 m001 (ln(2+3^(1/2))+gamma(2))/(FellerTornier+Mills) 8024910485854059 r002 50th iterates of z^2 + 8024910498135304 r005 Re(z^2+c),c=29/114+16/45*I,n=40 8024910513768669 a001 377/64079*3571^(15/17) 8024910543715538 a001 377/39603*3571^(14/17) 8024910545052579 r008 a(0)=8,K{-n^6,-86+43*n^3+91*n^2-88*n} 8024910554058270 a007 Real Root Of -826*x^4+790*x^3+556*x^2+171*x+530 8024910555982185 m005 (1/2*5^(1/2)-2/11)/(4*Pi-9/10) 8024910577722256 a001 3010349/8*987^(7/9) 8024910587798021 a001 377/15127*3571^(12/17) 8024910599245559 a001 13/844*3571^(13/17) 8024910629913609 a007 Real Root Of -860*x^4+468*x^3+454*x^2-222*x+128 8024910630885483 r005 Re(z^2+c),c=23/102+17/52*I,n=40 8024910661803642 a007 Real Root Of -79*x^4-569*x^3+438*x^2-660*x+72 8024910665005386 a007 Real Root Of 81*x^4-598*x^3-190*x^2-209*x-388 8024910672166972 s002 sum(A120479[n]/((10^n-1)/n),n=1..infinity) 8024910680949632 m001 CopelandErdos*Champernowne/ln(Zeta(5)) 8024910684627777 b008 8+ArcCot[2*Pi]^2 8024910693605738 a007 Real Root Of -381*x^4+951*x^3-544*x^2-87*x+930 8024910700331539 a008 Real Root of x^3-x^2-16*x-324 8024910708174925 r008 a(0)=8,K{-n^6,-47-28*n^3+63*n^2-29*n} 8024910744770223 r008 a(0)=8,K{-n^6,-87+43*n^3+91*n^2-87*n} 8024910749917865 r008 a(0)=8,K{-n^6,-65+56*n^3+63*n^2-94*n} 8024910751700011 a001 377/9349*3571^(11/17) 8024910752689896 a001 2584/843*3571^(2/17) 8024910772428593 r005 Re(z^2+c),c=1/90+14/17*I,n=12 8024910772443419 a008 Real Root of (-3-2*x+3*x^2+2*x^3+2*x^4+x^5) 8024910778386506 a001 377/5778*9349^(10/19) 8024910783107152 a007 Real Root Of 894*x^4-244*x^3-703*x^2-507*x-451 8024910812405338 r005 Re(z^2+c),c=3/82+26/53*I,n=11 8024910817061002 a001 2584/843*9349^(2/19) 8024910820330957 a001 377/5778*24476^(10/21) 8024910821620488 a007 Real Root Of -145*x^4+830*x^3-503*x^2-805*x+167 8024910825449893 a001 2584/843*24476^(2/21) 8024910825860043 a001 377/5778*64079^(10/23) 8024910826555710 a001 2584/843*64079^(2/23) 8024910826595717 a001 377/5778*167761^(2/5) 8024910826709767 a001 377/5778*20633239^(2/7) 8024910826709773 a001 377/5778*2537720636^(2/9) 8024910826709773 a001 377/5778*312119004989^(2/11) 8024910826709773 a001 377/5778*(1/2+1/2*5^(1/2))^10 8024910826709773 a001 377/5778*28143753123^(1/5) 8024910826709773 a001 377/5778*10749957122^(5/24) 8024910826709773 a001 377/5778*4106118243^(5/23) 8024910826709773 a001 377/5778*1568397607^(5/22) 8024910826709773 a001 377/5778*599074578^(5/21) 8024910826709773 a001 377/5778*228826127^(1/4) 8024910826709773 a001 377/5778*87403803^(5/19) 8024910826709775 a001 377/5778*33385282^(5/18) 8024910826709787 a001 377/5778*12752043^(5/17) 8024910826709878 a001 377/5778*4870847^(5/16) 8024910826710546 a001 377/5778*1860498^(1/3) 8024910826715448 a001 377/5778*710647^(5/14) 8024910826725656 a001 2584/843*(1/2+1/2*5^(1/2))^2 8024910826725656 a001 2584/843*10749957122^(1/24) 8024910826725656 a001 2584/843*4106118243^(1/23) 8024910826725656 a001 2584/843*1568397607^(1/22) 8024910826725656 a001 2584/843*599074578^(1/21) 8024910826725656 a001 2584/843*228826127^(1/20) 8024910826725656 a001 2584/843*87403803^(1/19) 8024910826725656 a001 2584/843*33385282^(1/18) 8024910826725659 a001 2584/843*12752043^(1/17) 8024910826725677 a001 2584/843*4870847^(1/16) 8024910826725810 a001 2584/843*1860498^(1/15) 8024910826726791 a001 2584/843*710647^(1/14) 8024910826734034 a001 2584/843*271443^(1/13) 8024910826751663 a001 377/5778*271443^(5/13) 8024910826787865 a001 2584/843*103682^(1/12) 8024910826818679 a001 974168/121393 8024910827020817 a001 377/5778*103682^(5/12) 8024910827190804 a001 2584/843*39603^(1/11) 8024910829035514 a001 377/5778*39603^(5/11) 8024910830232646 a001 2584/843*15127^(1/10) 8024910833739384 a001 1597/843*1364^(1/5) 8024910840185198 a001 4181/5778*521^(5/13) 8024910844244726 a001 377/5778*15127^(1/2) 8024910853433735 a001 2584/843*5778^(1/9) 8024910870709087 r008 a(0)=8,K{-n^6,-49+38*n-51*n^2+25*n^3} 8024910871358280 a001 4181/843*1364^(1/15) 8024910897743758 r005 Im(z^2+c),c=-15/22+3/53*I,n=13 8024910910035020 r008 a(0)=8,K{-n^6,-20-45*n+40*n^2-16*n^3} 8024910928266770 r002 2th iterates of z^2 + 8024910929571465 a001 3571/17711*4181^(28/39) 8024910934489221 a001 20633239/34*701408733^(11/19) 8024910934654321 a001 4106118243/34*75025^(11/19) 8024910935235746 a001 51841/17*6557470319842^(11/19) 8024910960250168 a001 377/5778*5778^(5/9) 8024910967069309 a001 10946/15127*521^(5/13) 8024910974024658 a001 377/15127*9349^(12/19) 8024910975268277 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^27 8024910979991690 a001 377/271443*9349^(18/19) 8024910985218071 a001 377/167761*9349^(17/19) 8024910985581452 a001 28657/39603*521^(5/13) 8024910985660878 a007 Real Root Of 676*x^4-88*x^3-196*x^2-317*x-454 8024910988282337 a001 75025/103682*521^(5/13) 8024910988676391 a001 196418/271443*521^(5/13) 8024910988733883 a001 514229/710647*521^(5/13) 8024910988742271 a001 1346269/1860498*521^(5/13) 8024910988743494 a001 3524578/4870847*521^(5/13) 8024910988743673 a001 9227465/12752043*521^(5/13) 8024910988743699 a001 24157817/33385282*521^(5/13) 8024910988743703 a001 63245986/87403803*521^(5/13) 8024910988743703 a001 165580141/228826127*521^(5/13) 8024910988743703 a001 433494437/599074578*521^(5/13) 8024910988743703 a001 1134903170/1568397607*521^(5/13) 8024910988743703 a001 2971215073/4106118243*521^(5/13) 8024910988743703 a001 7778742049/10749957122*521^(5/13) 8024910988743703 a001 20365011074/28143753123*521^(5/13) 8024910988743703 a001 53316291173/73681302247*521^(5/13) 8024910988743703 a001 139583862445/192900153618*521^(5/13) 8024910988743703 a001 365435296162/505019158607*521^(5/13) 8024910988743703 a001 10610209857723/14662949395604*521^(5/13) 8024910988743703 a001 591286729879/817138163596*521^(5/13) 8024910988743703 a001 225851433717/312119004989*521^(5/13) 8024910988743703 a001 86267571272/119218851371*521^(5/13) 8024910988743703 a001 32951280099/45537549124*521^(5/13) 8024910988743703 a001 12586269025/17393796001*521^(5/13) 8024910988743703 a001 4807526976/6643838879*521^(5/13) 8024910988743703 a001 1836311903/2537720636*521^(5/13) 8024910988743703 a001 701408733/969323029*521^(5/13) 8024910988743703 a001 267914296/370248451*521^(5/13) 8024910988743704 a001 102334155/141422324*521^(5/13) 8024910988743705 a001 39088169/54018521*521^(5/13) 8024910988743715 a001 14930352/20633239*521^(5/13) 8024910988743783 a001 5702887/7881196*521^(5/13) 8024910988744251 a001 2178309/3010349*521^(5/13) 8024910988747455 a001 832040/1149851*521^(5/13) 8024910988769414 a001 317811/439204*521^(5/13) 8024910988919930 a001 121393/167761*521^(5/13) 8024910989018751 a001 377/103682*9349^(16/19) 8024910989951576 a001 46368/64079*521^(5/13) 8024910991498455 m005 (1/2*3^(1/2)+7/10)/(1/10*Catalan-1/9) 8024910994313280 a001 377/39603*9349^(14/19) 8024910996551963 a001 377/64079*9349^(15/19) 8024910997022585 a001 17711/24476*521^(5/13) 8024910997378675 r008 a(0)=8,K{-n^6,-23+37*n^3-76*n^2+13*n} 8024911017657750 a001 13/844*9349^(13/19) 8024911018248074 h001 (-8*exp(6)+6)/(-exp(6)+2) 8024911024358000 a001 377/15127*24476^(4/7) 8024911025384988 a007 Real Root Of -767*x^4+558*x^3-469*x^2-843*x+232 8024911030992903 a001 377/15127*64079^(12/23) 8024911031994090 a001 377/15127*439204^(4/9) 8024911032012532 a001 377/15127*7881196^(4/11) 8024911032012579 a001 377/15127*141422324^(4/13) 8024911032012579 a001 377/15127*2537720636^(4/15) 8024911032012579 a001 377/15127*45537549124^(4/17) 8024911032012579 a001 377/15127*817138163596^(4/19) 8024911032012579 a001 377/15127*14662949395604^(4/21) 8024911032012579 a001 377/15127*(1/2+1/2*5^(1/2))^12 8024911032012579 a001 377/15127*192900153618^(2/9) 8024911032012579 a001 377/15127*73681302247^(3/13) 8024911032012579 a001 377/15127*10749957122^(1/4) 8024911032012579 a001 377/15127*4106118243^(6/23) 8024911032012579 a001 377/15127*1568397607^(3/11) 8024911032012579 a001 377/15127*599074578^(2/7) 8024911032012579 a001 377/15127*228826127^(3/10) 8024911032012579 a001 377/15127*87403803^(6/19) 8024911032012581 a001 377/15127*33385282^(1/3) 8024911032012597 a001 377/15127*12752043^(6/17) 8024911032012706 a001 377/15127*4870847^(3/8) 8024911032013506 a001 377/15127*1860498^(2/5) 8024911032019389 a001 377/15127*710647^(3/7) 8024911032028469 a001 2255/281 8024911032028469 q001 451/562 8024911032062847 a001 377/15127*271443^(6/13) 8024911032385832 a001 377/15127*103682^(1/2) 8024911032668023 a001 2584/843*2207^(1/8) 8024911034803468 a001 377/15127*39603^(6/11) 8024911045488005 a001 6765/9349*521^(5/13) 8024911046934014 r002 22th iterates of z^2 + 8024911053035514 a001 377/39603*24476^(2/3) 8024911053054523 a001 377/15127*15127^(3/5) 8024911053414088 a007 Real Root Of 556*x^4-505*x^3-173*x^2-961*x+913 8024911053686974 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^29 8024911054308965 a001 377/710647*24476^(20/21) 8024911055004338 a001 377/439204*24476^(19/21) 8024911055491705 a001 377/271443*24476^(6/7) 8024911056129875 a001 377/103682*24476^(16/21) 8024911056523640 a001 377/167761*24476^(17/21) 8024911059468642 a001 377/64079*24476^(5/7) 8024911060330801 a001 521/28657*34^(8/19) 8024911060776234 a001 377/39603*64079^(14/23) 8024911061965848 a001 377/39603*20633239^(2/5) 8024911061965856 a001 377/39603*17393796001^(2/7) 8024911061965856 a001 377/39603*14662949395604^(2/9) 8024911061965856 a001 377/39603*(1/2+1/2*5^(1/2))^14 8024911061965856 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^14/Lucas(22) 8024911061965856 a001 377/39603*505019158607^(1/4) 8024911061965856 a001 377/39603*10749957122^(7/24) 8024911061965856 a001 377/39603*4106118243^(7/23) 8024911061965856 a001 377/39603*1568397607^(7/22) 8024911061965856 a001 377/39603*599074578^(1/3) 8024911061965856 a001 377/39603*228826127^(7/20) 8024911061965856 a001 377/39603*87403803^(7/19) 8024911061965859 a001 377/39603*33385282^(7/18) 8024911061965876 a001 377/39603*12752043^(7/17) 8024911061966004 a001 377/39603*4870847^(7/16) 8024911061966938 a001 377/39603*1860498^(7/15) 8024911061968174 a001 6677047/832040 8024911061973801 a001 377/39603*710647^(1/2) 8024911061981746 a004 Fibonacci(22)/Lucas(14)/(1/2+sqrt(5)/2)^2 8024911062024502 a001 377/39603*271443^(7/13) 8024911062401318 a001 377/39603*103682^(7/12) 8024911064976412 a001 377/103682*64079^(16/23) 8024911065128107 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^31 8024911065210762 a001 377/1860498*64079^(22/23) 8024911065221893 a001 377/39603*39603^(7/11) 8024911065304123 a001 377/1149851*64079^(21/23) 8024911065367136 a001 377/710647*64079^(20/23) 8024911065444058 a001 377/271443*64079^(18/23) 8024911065509601 a001 377/439204*64079^(19/23) 8024911065923085 a001 377/167761*64079^(17/23) 8024911066335980 a001 377/103682*(1/2+1/2*5^(1/2))^16 8024911066335980 a001 377/103682*23725150497407^(1/4) 8024911066335980 a001 377/103682*73681302247^(4/13) 8024911066335980 a001 377/103682*10749957122^(1/3) 8024911066335980 a001 377/103682*4106118243^(8/23) 8024911066335980 a001 377/103682*1568397607^(4/11) 8024911066335980 a001 377/103682*599074578^(8/21) 8024911066335980 a001 377/103682*228826127^(2/5) 8024911066335980 a001 377/103682*87403803^(8/19) 8024911066335983 a001 377/103682*33385282^(4/9) 8024911066336003 a001 377/103682*12752043^(8/17) 8024911066336149 a001 377/103682*4870847^(1/2) 8024911066336318 a001 832416/103729 8024911066337216 a001 377/103682*1860498^(8/15) 8024911066345060 a001 377/103682*710647^(4/7) 8024911066351870 a004 Fibonacci(24)/Lucas(14)/(1/2+sqrt(5)/2)^4 8024911066403004 a001 377/103682*271443^(8/13) 8024911066797346 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^33 8024911066833651 a001 377/103682*103682^(2/3) 8024911066838484 a001 377/710647*167761^(4/5) 8024911066945838 a001 377/271443*439204^(2/3) 8024911066973502 a001 377/271443*7881196^(6/11) 8024911066973572 a001 377/271443*141422324^(6/13) 8024911066973572 a001 377/271443*2537720636^(2/5) 8024911066973572 a001 377/271443*45537549124^(6/17) 8024911066973572 a001 377/271443*14662949395604^(2/7) 8024911066973572 a001 377/271443*(1/2+1/2*5^(1/2))^18 8024911066973572 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^18/Lucas(26) 8024911066973572 a001 377/271443*192900153618^(1/3) 8024911066973572 a001 377/271443*10749957122^(3/8) 8024911066973572 a001 377/271443*4106118243^(9/23) 8024911066973572 a001 377/271443*1568397607^(9/22) 8024911066973572 a001 377/271443*599074578^(3/7) 8024911066973573 a001 377/271443*228826127^(9/20) 8024911066973573 a001 377/271443*87403803^(9/19) 8024911066973576 a001 377/271443*33385282^(1/2) 8024911066973599 a001 377/271443*12752043^(9/17) 8024911066973622 a001 45765161/5702887 8024911066973763 a001 377/271443*4870847^(9/16) 8024911066974963 a001 377/271443*1860498^(3/5) 8024911066983788 a001 377/271443*710647^(9/14) 8024911066989463 a004 Fibonacci(26)/Lucas(14)/(1/2+sqrt(5)/2)^6 8024911067040885 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^35 8024911067045169 a001 377/4870847*439204^(8/9) 8024911067048974 a001 377/271443*271443^(9/13) 8024911067056199 a001 377/1149851*439204^(7/9) 8024911067066585 a001 377/710647*20633239^(4/7) 8024911067066596 a001 377/710647*2537720636^(4/9) 8024911067066596 a001 377/710647*(1/2+1/2*5^(1/2))^20 8024911067066596 a001 377/710647*23725150497407^(5/16) 8024911067066596 a001 377/710647*505019158607^(5/14) 8024911067066596 a001 377/710647*73681302247^(5/13) 8024911067066596 a001 377/710647*28143753123^(2/5) 8024911067066596 a001 377/710647*10749957122^(5/12) 8024911067066596 a001 377/710647*4106118243^(10/23) 8024911067066596 a001 377/710647*1568397607^(5/11) 8024911067066596 a001 377/710647*599074578^(10/21) 8024911067066596 a001 377/710647*228826127^(1/2) 8024911067066597 a001 377/710647*87403803^(10/19) 8024911067066600 a001 377/710647*33385282^(5/9) 8024911067066603 a001 39938249/4976784 8024911067066625 a001 377/710647*12752043^(10/17) 8024911067066807 a001 377/710647*4870847^(5/8) 8024911067068142 a001 377/710647*1860498^(2/3) 8024911067076417 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^37 8024911067077946 a001 377/710647*710647^(5/7) 8024911067080082 a001 377/1860498*7881196^(2/3) 8024911067080168 a001 377/1860498*312119004989^(2/5) 8024911067080168 a001 377/1860498*(1/2+1/2*5^(1/2))^22 8024911067080168 a001 377/1860498*10749957122^(11/24) 8024911067080168 a001 377/1860498*4106118243^(11/23) 8024911067080168 a001 377/1860498*1568397607^(1/2) 8024911067080168 a001 377/1860498*599074578^(11/21) 8024911067080168 a001 377/1860498*228826127^(11/20) 8024911067080169 a001 377/1860498*87403803^(11/19) 8024911067080169 a001 313679080/39088169 8024911067080172 a001 377/1860498*33385282^(11/18) 8024911067080200 a001 377/1860498*12752043^(11/17) 8024911067080400 a001 377/1860498*4870847^(11/16) 8024911067081601 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^39 8024911067081868 a001 377/1860498*1860498^(11/15) 8024911067082054 a001 377/4870847*7881196^(8/11) 8024911067082148 a001 377/4870847*141422324^(8/13) 8024911067082148 a001 377/4870847*2537720636^(8/15) 8024911067082148 a001 377/4870847*45537549124^(8/17) 8024911067082148 a001 377/4870847*14662949395604^(8/21) 8024911067082148 a001 377/4870847*(1/2+1/2*5^(1/2))^24 8024911067082148 a001 377/4870847*192900153618^(4/9) 8024911067082148 a001 377/4870847*73681302247^(6/13) 8024911067082148 a001 377/4870847*10749957122^(1/2) 8024911067082148 a001 377/4870847*4106118243^(12/23) 8024911067082148 a001 377/4870847*1568397607^(6/11) 8024911067082148 a001 377/4870847*599074578^(4/7) 8024911067082148 a001 377/4870847*228826127^(3/5) 8024911067082148 a001 39105833/4873055 8024911067082149 a001 377/4870847*87403803^(12/19) 8024911067082153 a001 377/4870847*33385282^(2/3) 8024911067082183 a001 377/4870847*12752043^(12/17) 8024911067082357 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^41 8024911067082368 a001 377/87403803*7881196^(10/11) 8024911067082399 a001 13/711491*7881196^(9/11) 8024911067082402 a001 377/4870847*4870847^(3/4) 8024911067082437 a001 377/12752043*141422324^(2/3) 8024911067082437 a001 377/12752043*(1/2+1/2*5^(1/2))^26 8024911067082437 a001 377/12752043*73681302247^(1/2) 8024911067082437 a001 377/12752043*10749957122^(13/24) 8024911067082437 a001 377/12752043*4106118243^(13/23) 8024911067082437 a001 377/12752043*1568397607^(13/22) 8024911067082437 a001 377/12752043*599074578^(13/21) 8024911067082437 a001 5702887/710648 8024911067082437 a001 377/12752043*228826127^(13/20) 8024911067082438 a001 377/12752043*87403803^(13/19) 8024911067082442 a001 377/12752043*33385282^(13/18) 8024911067082464 a001 377/33385282*20633239^(4/5) 8024911067082467 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^43 8024911067082469 a001 377/87403803*20633239^(6/7) 8024911067082475 a001 377/12752043*12752043^(13/17) 8024911067082479 a001 377/33385282*17393796001^(4/7) 8024911067082479 a001 377/33385282*14662949395604^(4/9) 8024911067082479 a001 377/33385282*(1/2+1/2*5^(1/2))^28 8024911067082479 a001 377/33385282*505019158607^(1/2) 8024911067082479 a001 377/33385282*73681302247^(7/13) 8024911067082479 a001 377/33385282*10749957122^(7/12) 8024911067082479 a001 377/33385282*4106118243^(14/23) 8024911067082479 a001 377/33385282*1568397607^(7/11) 8024911067082479 a001 1876247568/233802911 8024911067082479 a001 377/33385282*599074578^(2/3) 8024911067082479 a001 377/33385282*228826127^(7/10) 8024911067082480 a001 377/33385282*87403803^(14/19) 8024911067082484 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^45 8024911067082485 a001 377/33385282*33385282^(7/9) 8024911067082485 a001 377/87403803*141422324^(10/13) 8024911067082485 a001 377/87403803*2537720636^(2/3) 8024911067082485 a001 377/87403803*45537549124^(10/17) 8024911067082485 a001 377/87403803*312119004989^(6/11) 8024911067082485 a001 377/87403803*14662949395604^(10/21) 8024911067082485 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^30/Lucas(38) 8024911067082485 a001 377/87403803*192900153618^(5/9) 8024911067082485 a001 377/87403803*28143753123^(3/5) 8024911067082485 a001 377/87403803*10749957122^(5/8) 8024911067082485 a001 377/87403803*4106118243^(15/23) 8024911067082485 a001 14736239713/1836311903 8024911067082485 a001 377/87403803*1568397607^(15/22) 8024911067082485 a001 377/87403803*599074578^(5/7) 8024911067082485 a001 377/87403803*228826127^(3/4) 8024911067082486 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^47 8024911067082486 a001 377/1568397607*141422324^(12/13) 8024911067082486 a001 377/370248451*141422324^(11/13) 8024911067082486 a001 377/87403803*87403803^(15/19) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^32/Lucas(40) 8024911067082486 a001 377/228826127*23725150497407^(1/2) 8024911067082486 a001 377/228826127*505019158607^(4/7) 8024911067082486 a001 377/228826127*73681302247^(8/13) 8024911067082486 a001 377/228826127*10749957122^(2/3) 8024911067082486 a001 1837141735/228929856 8024911067082486 a001 377/228826127*4106118243^(16/23) 8024911067082486 a001 377/228826127*1568397607^(8/11) 8024911067082486 a001 377/228826127*599074578^(16/21) 8024911067082486 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^49 8024911067082486 a001 377/228826127*228826127^(4/5) 8024911067082486 a001 377/599074578*45537549124^(2/3) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^34/Lucas(42) 8024911067082486 a001 101003689592/12586269025 8024911067082486 a001 377/599074578*10749957122^(17/24) 8024911067082486 a001 377/599074578*4106118243^(17/23) 8024911067082486 a001 377/599074578*1568397607^(17/22) 8024911067082486 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^51 8024911067082486 a001 377/1568397607*2537720636^(4/5) 8024911067082486 a001 377/599074578*599074578^(17/21) 8024911067082486 a001 377/1568397607*45537549124^(12/17) 8024911067082486 a001 377/1568397607*14662949395604^(4/7) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^36/Lucas(44) 8024911067082486 a001 377/1568397607*505019158607^(9/14) 8024911067082486 a001 377/1568397607*192900153618^(2/3) 8024911067082486 a001 377/1568397607*73681302247^(9/13) 8024911067082486 a001 88143697447/10983760033 8024911067082486 a001 377/1568397607*10749957122^(3/4) 8024911067082486 a001 377/1568397607*4106118243^(18/23) 8024911067082486 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^53 8024911067082486 a001 377/10749957122*2537720636^(8/9) 8024911067082486 a001 377/28143753123*2537720636^(14/15) 8024911067082486 a001 377/6643838879*2537720636^(13/15) 8024911067082486 a001 377/1568397607*1568397607^(9/11) 8024911067082486 a001 377/4106118243*817138163596^(2/3) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^38/Lucas(46) 8024911067082486 a001 692289587431/86267571272 8024911067082486 a001 377/4106118243*10749957122^(19/24) 8024911067082486 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^55 8024911067082486 a001 377/4106118243*4106118243^(19/23) 8024911067082486 a001 377/10749957122*312119004989^(8/11) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^40/Lucas(48) 8024911067082486 a001 377/10749957122*23725150497407^(5/8) 8024911067082486 a001 228929856/28527401 8024911067082486 a001 377/10749957122*73681302247^(10/13) 8024911067082486 a001 377/10749957122*28143753123^(4/5) 8024911067082486 a001 377/28143753123*17393796001^(6/7) 8024911067082486 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^57 8024911067082486 a001 377/28143753123*45537549124^(14/17) 8024911067082486 a001 377/10749957122*10749957122^(5/6) 8024911067082486 a001 377/28143753123*817138163596^(14/19) 8024911067082486 a001 377/28143753123*14662949395604^(2/3) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(50) 8024911067082486 a001 377/28143753123*505019158607^(3/4) 8024911067082486 a001 377/28143753123*192900153618^(7/9) 8024911067082486 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^59 8024911067082486 a001 377/505019158607*45537549124^(16/17) 8024911067082486 a001 377/119218851371*45537549124^(15/17) 8024911067082486 a001 377/73681302247*312119004989^(4/5) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(52) 8024911067082486 a001 377/73681302247*23725150497407^(11/16) 8024911067082486 a001 4140877532441/516002918640 8024911067082486 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^61 8024911067082486 a001 377/73681302247*73681302247^(11/13) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(54) 8024911067082486 a001 32522874369544/4052739537881 8024911067082486 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^63 8024911067082486 a001 377/1322157322203*312119004989^(10/11) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(56) 8024911067082486 a001 4054570976729/505248088463 8024911067082486 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^65 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(58) 8024911067082486 a001 377/1322157322203*3461452808002^(5/6) 8024911067082486 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^67 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(60) 8024911067082486 a001 377/3461452808002*23725150497407^(13/16) 8024911067082486 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^69 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(62) 8024911067082486 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^71 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(64) 8024911067082486 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^73 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(66) 8024911067082486 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^75 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(68) 8024911067082486 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^77 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(70) 8024911067082486 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^79 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(72) 8024911067082486 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^81 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(74) 8024911067082486 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^83 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(76) 8024911067082486 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^85 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(78) 8024911067082486 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^87 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(80) 8024911067082486 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^89 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(82) 8024911067082486 a004 Fibonacci(14)*Lucas(83)/(1/2+sqrt(5)/2)^91 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(84) 8024911067082486 a004 Fibonacci(14)*Lucas(85)/(1/2+sqrt(5)/2)^93 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(86) 8024911067082486 a004 Fibonacci(14)*Lucas(87)/(1/2+sqrt(5)/2)^95 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(88) 8024911067082486 a004 Fibonacci(14)*Lucas(89)/(1/2+sqrt(5)/2)^97 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^82/Lucas(90) 8024911067082486 a004 Fibonacci(14)*Lucas(91)/(1/2+sqrt(5)/2)^99 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^84/Lucas(92) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^86/Lucas(94) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^88/Lucas(96) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^90/Lucas(98) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^91/Lucas(99) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^92/Lucas(100) 8024911067082486 a004 Fibonacci(7)*Lucas(7)/(1/2+sqrt(5)/2)^8 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^89/Lucas(97) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^87/Lucas(95) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^85/Lucas(93) 8024911067082486 a004 Fibonacci(14)*Lucas(92)/(1/2+sqrt(5)/2)^100 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^83/Lucas(91) 8024911067082486 a004 Fibonacci(14)*Lucas(90)/(1/2+sqrt(5)/2)^98 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(89) 8024911067082486 a004 Fibonacci(14)*Lucas(88)/(1/2+sqrt(5)/2)^96 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(87) 8024911067082486 a004 Fibonacci(14)*Lucas(86)/(1/2+sqrt(5)/2)^94 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(85) 8024911067082486 a004 Fibonacci(14)*Lucas(84)/(1/2+sqrt(5)/2)^92 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(83) 8024911067082486 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^90 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(81) 8024911067082486 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^88 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(79) 8024911067082486 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^86 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(77) 8024911067082486 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^84 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(75) 8024911067082486 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^82 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(73) 8024911067082486 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^80 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(71) 8024911067082486 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^78 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(69) 8024911067082486 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^76 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(67) 8024911067082486 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^74 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(65) 8024911067082486 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^72 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(63) 8024911067082486 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^70 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(61) 8024911067082486 a001 13/505618944676*3461452808002^(11/12) 8024911067082486 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^68 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(59) 8024911067082486 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^66 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(57) 8024911067082486 a001 377/3461452808002*505019158607^(13/14) 8024911067082486 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^64 8024911067082486 a001 377/817138163596*505019158607^(7/8) 8024911067082486 a001 4047932010905/504420793834 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(55) 8024911067082486 a001 377/505019158607*192900153618^(8/9) 8024911067082486 a001 377/2139295485799*192900153618^(17/18) 8024911067082486 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^62 8024911067082486 a001 377/119218851371*312119004989^(9/11) 8024911067082486 a001 20100241772221/2504730781961 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(53) 8024911067082486 a001 377/119218851371*192900153618^(5/6) 8024911067082486 a001 377/505019158607*73681302247^(12/13) 8024911067082486 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^60 8024911067082486 a001 7677609174898/956722026041 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(51) 8024911067082486 a001 377/119218851371*28143753123^(9/10) 8024911067082486 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^58 8024911067082486 a001 2932585752473/365435296162 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(49) 8024911067082486 a001 377/28143753123*10749957122^(7/8) 8024911067082486 a001 377/73681302247*10749957122^(11/12) 8024911067082486 a001 377/119218851371*10749957122^(15/16) 8024911067082486 a001 377/192900153618*10749957122^(23/24) 8024911067082486 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^56 8024911067082486 a001 377/6643838879*45537549124^(13/17) 8024911067082486 a001 1120148082521/139583862445 8024911067082486 a001 377/6643838879*14662949395604^(13/21) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(47) 8024911067082486 a001 377/6643838879*192900153618^(13/18) 8024911067082486 a001 377/6643838879*73681302247^(3/4) 8024911067082486 a001 377/6643838879*10749957122^(13/16) 8024911067082486 a001 377/10749957122*4106118243^(20/23) 8024911067082486 a001 377/28143753123*4106118243^(21/23) 8024911067082486 a001 377/73681302247*4106118243^(22/23) 8024911067082486 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^54 8024911067082486 a001 427858495090/53316291173 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^37/Lucas(45) 8024911067082486 a001 377/4106118243*1568397607^(19/22) 8024911067082486 a001 377/10749957122*1568397607^(10/11) 8024911067082486 a001 377/28143753123*1568397607^(21/22) 8024911067082486 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^52 8024911067082486 a001 377/969323029*2537720636^(7/9) 8024911067082486 a001 377/969323029*17393796001^(5/7) 8024911067082486 a001 163427402749/20365011074 8024911067082486 a001 377/969323029*312119004989^(7/11) 8024911067082486 a001 377/969323029*14662949395604^(5/9) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^35/Lucas(43) 8024911067082486 a001 377/969323029*505019158607^(5/8) 8024911067082486 a001 377/969323029*28143753123^(7/10) 8024911067082486 a001 377/1568397607*599074578^(6/7) 8024911067082486 a001 377/4106118243*599074578^(19/21) 8024911067082486 a001 377/6643838879*599074578^(13/14) 8024911067082486 a001 377/10749957122*599074578^(20/21) 8024911067082486 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^50 8024911067082486 a001 377/969323029*599074578^(5/6) 8024911067082486 a001 377/370248451*2537720636^(11/15) 8024911067082486 a001 4801824089/598364773 8024911067082486 a001 377/370248451*45537549124^(11/17) 8024911067082486 a001 377/370248451*312119004989^(3/5) 8024911067082486 a001 377/370248451*817138163596^(11/19) 8024911067082486 a001 377/370248451*14662949395604^(11/21) 8024911067082486 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^33/Lucas(41) 8024911067082486 a001 377/370248451*192900153618^(11/18) 8024911067082486 a001 377/370248451*10749957122^(11/16) 8024911067082486 a001 377/370248451*1568397607^(3/4) 8024911067082486 a001 377/370248451*599074578^(11/14) 8024911067082486 a001 377/599074578*228826127^(17/20) 8024911067082486 a001 377/1568397607*228826127^(9/10) 8024911067082486 a001 377/969323029*228826127^(7/8) 8024911067082486 a001 377/4106118243*228826127^(19/20) 8024911067082486 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^48 8024911067082487 a001 23843736722/2971215073 8024911067082487 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^31/Lucas(39) 8024911067082487 a001 377/141422324*9062201101803^(1/2) 8024911067082487 a001 377/228826127*87403803^(16/19) 8024911067082487 a001 377/599074578*87403803^(17/19) 8024911067082487 a001 377/1568397607*87403803^(18/19) 8024911067082487 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^46 8024911067082489 a001 9107497009/1134903170 8024911067082489 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^29/Lucas(37) 8024911067082489 a001 377/54018521*1322157322203^(1/2) 8024911067082491 a001 377/87403803*33385282^(5/6) 8024911067082493 a001 377/228826127*33385282^(8/9) 8024911067082493 a001 377/370248451*33385282^(11/12) 8024911067082493 a001 377/599074578*33385282^(17/18) 8024911067082493 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^44 8024911067082505 a001 13/711491*141422324^(9/13) 8024911067082505 a001 3478754305/433494437 8024911067082505 a001 13/711491*2537720636^(3/5) 8024911067082505 a001 13/711491*45537549124^(9/17) 8024911067082505 a001 13/711491*817138163596^(9/19) 8024911067082505 a001 13/711491*14662949395604^(3/7) 8024911067082505 a001 13/711491*(1/2+1/2*5^(1/2))^27 8024911067082505 a001 13/711491*192900153618^(1/2) 8024911067082505 a001 13/711491*10749957122^(9/16) 8024911067082505 a001 13/711491*599074578^(9/14) 8024911067082511 a001 13/711491*33385282^(3/4) 8024911067082520 a001 377/33385282*12752043^(14/17) 8024911067082529 a001 377/87403803*12752043^(15/17) 8024911067082533 a001 377/228826127*12752043^(16/17) 8024911067082536 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^42 8024911067082602 a001 377/7881196*20633239^(5/7) 8024911067082615 a001 1328765906/165580141 8024911067082615 a001 377/7881196*2537720636^(5/9) 8024911067082615 a001 377/7881196*312119004989^(5/11) 8024911067082615 a001 377/7881196*(1/2+1/2*5^(1/2))^25 8024911067082615 a001 377/7881196*3461452808002^(5/12) 8024911067082615 a001 377/7881196*28143753123^(1/2) 8024911067082616 a001 377/7881196*228826127^(5/8) 8024911067082712 a001 377/12752043*4870847^(13/16) 8024911067082775 a001 377/33385282*4870847^(7/8) 8024911067082802 a001 377/87403803*4870847^(15/16) 8024911067082825 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^40 8024911067083371 a001 507543413/63245986 8024911067083372 a001 377/3010349*(1/2+1/2*5^(1/2))^23 8024911067083372 a001 377/3010349*4106118243^(1/2) 8024911067084003 a001 377/4870847*1860498^(4/5) 8024911067084446 a001 377/12752043*1860498^(13/15) 8024911067084547 a001 377/7881196*1860498^(5/6) 8024911067084592 a001 13/711491*1860498^(9/10) 8024911067084643 a001 377/33385282*1860498^(14/15) 8024911067084805 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^38 8024911067088474 a001 377/1149851*7881196^(7/11) 8024911067088545 a001 377/1149851*20633239^(3/5) 8024911067088553 a001 193864333/24157817 8024911067088556 a001 377/1149851*141422324^(7/13) 8024911067088556 a001 377/1149851*2537720636^(7/15) 8024911067088556 a001 377/1149851*17393796001^(3/7) 8024911067088556 a001 377/1149851*45537549124^(7/17) 8024911067088556 a001 377/1149851*14662949395604^(1/3) 8024911067088556 a001 377/1149851*(1/2+1/2*5^(1/2))^21 8024911067088556 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^21/Lucas(29) 8024911067088556 a001 377/1149851*192900153618^(7/18) 8024911067088556 a001 377/1149851*10749957122^(7/16) 8024911067088556 a001 377/1149851*599074578^(1/2) 8024911067088560 a001 377/1149851*33385282^(7/12) 8024911067090179 a001 377/1149851*1860498^(7/10) 8024911067092653 a001 377/1860498*710647^(11/14) 8024911067095768 a001 377/4870847*710647^(6/7) 8024911067096058 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2)^10 8024911067097192 a001 377/12752043*710647^(13/14) 8024911067098038 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^12 8024911067098327 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^14 8024911067098369 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^16 8024911067098376 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^18 8024911067098376 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^20 8024911067098377 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^22 8024911067098377 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^24 8024911067098377 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^26 8024911067098377 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^28 8024911067098377 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^30 8024911067098377 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^32 8024911067098377 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^34 8024911067098377 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^36 8024911067098377 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^38 8024911067098377 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^40 8024911067098377 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^42 8024911067098377 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^44 8024911067098377 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^46 8024911067098377 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^48 8024911067098377 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^50 8024911067098377 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^52 8024911067098377 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^54 8024911067098377 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^56 8024911067098377 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^58 8024911067098377 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^60 8024911067098377 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^62 8024911067098377 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^64 8024911067098377 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^66 8024911067098377 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^68 8024911067098377 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^70 8024911067098377 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^72 8024911067098377 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^74 8024911067098377 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^76 8024911067098377 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^78 8024911067098377 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^80 8024911067098377 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^79 8024911067098377 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^77 8024911067098377 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^75 8024911067098377 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^73 8024911067098377 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^71 8024911067098377 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^69 8024911067098377 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^67 8024911067098377 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^65 8024911067098377 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^63 8024911067098377 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^61 8024911067098377 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^59 8024911067098377 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^57 8024911067098377 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^55 8024911067098377 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^53 8024911067098377 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^51 8024911067098377 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^49 8024911067098377 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^47 8024911067098377 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^45 8024911067098377 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^43 8024911067098377 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^41 8024911067098377 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^39 8024911067098377 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^37 8024911067098377 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^35 8024911067098377 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^33 8024911067098377 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^31 8024911067098377 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^29 8024911067098377 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^27 8024911067098377 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^25 8024911067098377 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^23 8024911067098377 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^21 8024911067098377 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^19 8024911067098379 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^17 8024911067098395 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^15 8024911067098506 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^13 8024911067099262 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^11 8024911067100474 a001 377/1149851*710647^(3/4) 8024911067104446 a004 Fibonacci(29)/Lucas(14)/(1/2+sqrt(5)/2)^9 8024911067124069 a001 5696122/709805 8024911067124088 a001 377/439204*817138163596^(1/3) 8024911067124088 a001 377/439204*(1/2+1/2*5^(1/2))^19 8024911067124088 a001 377/439204*87403803^(1/2) 8024911067139978 a004 Fibonacci(27)/Lucas(14)/(1/2+sqrt(5)/2)^7 8024911067150376 a001 377/710647*271443^(10/13) 8024911067172326 a001 377/1860498*271443^(11/13) 8024911067182684 a001 377/4870847*271443^(12/13) 8024911067191400 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^34 8024911067367497 a001 28284425/3524578 8024911067367626 a001 377/167761*45537549124^(1/3) 8024911067367626 a001 377/167761*(1/2+1/2*5^(1/2))^17 8024911067367651 a001 377/167761*12752043^(1/2) 8024911067383517 a004 Fibonacci(25)/Lucas(14)/(1/2+sqrt(5)/2)^5 8024911067533452 a001 377/271443*103682^(3/4) 8024911067688685 a001 377/710647*103682^(5/6) 8024911067715072 a001 377/439204*103682^(19/24) 8024911067741749 a001 377/1149851*103682^(7/8) 8024911067762270 a001 377/64079*64079^(15/23) 8024911067764465 a001 377/1860498*103682^(11/12) 8024911067798774 a001 377/3010349*103682^(23/24) 8024911067828993 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^32 8024911067896402 a001 377/167761*103682^(17/24) 8024911068865781 a001 377/64079*167761^(3/5) 8024911069013753 a001 377/64079*439204^(5/9) 8024911069035980 a001 10803689/1346269 8024911069036806 a001 377/64079*7881196^(5/11) 8024911069036857 a001 377/64079*20633239^(3/7) 8024911069036865 a001 377/64079*141422324^(5/13) 8024911069036865 a001 377/64079*2537720636^(1/3) 8024911069036865 a001 377/64079*45537549124^(5/17) 8024911069036865 a001 377/64079*312119004989^(3/11) 8024911069036865 a001 377/64079*14662949395604^(5/21) 8024911069036865 a001 377/64079*(1/2+1/2*5^(1/2))^15 8024911069036865 a001 377/64079*192900153618^(5/18) 8024911069036865 a001 377/64079*28143753123^(3/10) 8024911069036865 a001 377/64079*10749957122^(5/16) 8024911069036865 a001 377/64079*599074578^(5/14) 8024911069036865 a001 377/64079*228826127^(3/8) 8024911069036868 a001 377/64079*33385282^(5/12) 8024911069038024 a001 377/64079*1860498^(1/2) 8024911069052756 a004 Fibonacci(23)/Lucas(14)/(1/2+sqrt(5)/2)^3 8024911069503432 a001 377/64079*103682^(5/8) 8024911070057166 a001 377/103682*39603^(8/11) 8024911071159907 a001 377/271443*39603^(9/11) 8024911071321386 a001 377/167761*39603^(17/22) 8024911071542996 a001 377/439204*39603^(19/22) 8024911071718078 a001 377/710647*39603^(10/11) 8024911071972612 a001 377/1149851*39603^(21/22) 8024911072185539 a001 13/844*24476^(13/21) 8024911072199117 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^30 8024911072525477 a001 377/64079*39603^(15/22) 8024911079373350 a001 13/844*64079^(13/23) 8024911080471929 a001 4126642/514229 8024911080477999 a001 13/844*141422324^(1/3) 8024911080477999 a001 13/844*(1/2+1/2*5^(1/2))^13 8024911080477999 a001 13/844*73681302247^(1/4) 8024911080493889 a004 Fibonacci(21)/Lucas(14)/(1/2+sqrt(5)/2) 8024911080532456 a001 13/844*271443^(1/2) 8024911080882356 a001 13/844*103682^(13/24) 8024911083501462 a001 13/844*39603^(13/22) 8024911086514791 a001 377/39603*15127^(7/10) 8024911094391906 a001 377/103682*15127^(4/5) 8024911095339296 a001 377/64079*15127^(3/4) 8024911097177048 a001 377/167761*15127^(17/20) 8024911098536489 a001 377/271443*15127^(9/10) 8024911100440500 a001 377/439204*15127^(19/20) 8024911102152394 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^28 8024911103273439 a001 13/844*15127^(13/20) 8024911105741101 a001 377/9349*9349^(11/19) 8024911121894705 a001 4181/843*3571^(1/17) 8024911141648894 r008 a(0)=8,K{-n^6,-87+43*n^3+92*n^2-88*n} 8024911151880000 a001 377/9349*24476^(11/21) 8024911154080259 a001 4181/843*9349^(1/19) 8024911156961624 a007 Real Root Of -113*x^4-320*x^3-649*x^2+787*x+931 8024911157961994 a001 377/9349*64079^(11/23) 8024911158274704 a001 4181/843*24476^(1/21) 8024911158827613 a001 4181/843*64079^(1/23) 8024911158855094 a001 1576237/196418 8024911158896654 a001 377/9349*7881196^(1/3) 8024911158896697 a001 377/9349*312119004989^(1/5) 8024911158896697 a001 377/9349*(1/2+1/2*5^(1/2))^11 8024911158896697 a001 377/9349*1568397607^(1/4) 8024911158912586 a001 4181/1686+4181/1686*5^(1/2) 8024911158943690 a001 4181/843*103682^(1/24) 8024911159145160 a001 4181/843*39603^(1/22) 8024911159238845 a001 377/9349*103682^(11/24) 8024911160666081 a001 4181/843*15127^(1/20) 8024911161455012 a001 377/9349*39603^(1/2) 8024911164417551 b008 Pi*InverseJacobiDS[4,-1/2] 8024911164417551 b008 Pi*InverseJacobiSD[1/4,-1/2] 8024911172266626 a001 4181/843*5778^(1/18) 8024911178185146 a001 377/9349*15127^(11/20) 8024911192261058 a001 377/15127*5778^(2/3) 8024911217986974 m001 1/arctan(1/2)*exp(OneNinth)^2*sqrt(3)^2 8024911218275261 m001 (GAMMA(5/6)+Conway)/(FellerTornier-Kac) 8024911229838573 a001 3571/8*5702887^(7/9) 8024911229936986 a007 Real Root Of 756*x^4-498*x^3+453*x^2+412*x-532 8024911240451865 m001 (BesselI(0,2)+Paris)/(GAMMA(2/3)+ln(5)) 8024911248922416 a001 377/39603*5778^(7/9) 8024911254080519 a001 13/844*5778^(13/18) 8024911261883773 a001 4181/843*2207^(1/16) 8024911269347465 a001 377/64079*5778^(5/6) 8024911280000620 a001 377/103682*5778^(8/9) 8024911286556828 r005 Im(z^2+c),c=-47/114+8/61*I,n=12 8024911294386307 a001 377/167761*5778^(17/18) 8024911305791138 a001 377/9349*5778^(11/18) 8024911307455207 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^26 8024911309411868 r009 Im(z^3+c),c=-11/19+26/43*I,n=19 8024911311551383 a007 Real Root Of -893*x^4-532*x^3-790*x^2-870*x-94 8024911313161997 a007 Real Root Of 762*x^4-159*x^3-303*x^2+25*x-183 8024911354749164 m001 GolombDickman/(BesselI(1,1)^TreeGrowth2nd) 8024911363225540 a001 377/3571*3571^(9/17) 8024911374981610 a001 2584/2207*521^(4/13) 8024911377674962 a001 2584/3571*521^(5/13) 8024911378612339 a001 3571/1836311903*89^(6/19) 8024911380095344 m005 (1/2*5^(1/2)-2/5)/(6/7*gamma+2/5) 8024911394061809 m005 (4/5*exp(1)-1/4)/(3*gamma+2/3) 8024911397613070 a007 Real Root Of 106*x^4+773*x^3-587*x^2+328*x+310 8024911421376172 m006 (4*exp(2*Pi)+1/4)/(1/2*exp(2*Pi)-4/5) 8024911438978411 m001 1/FeigenbaumC/exp(Kolakoski)^2*FeigenbaumD^2 8024911462691117 a001 9349/46368*4181^(28/39) 8024911468027813 a007 Real Root Of 591*x^4+97*x^3+969*x^2+643*x-303 8024911480095938 r009 Im(z^3+c),c=-11/106+17/21*I,n=19 8024911483959596 a007 Real Root Of 224*x^4-685*x^3+56*x^2-785*x+855 8024911500209668 p004 log(21269/9533) 8024911526821799 a007 Real Root Of 791*x^4+429*x^3+524*x^2+158*x-317 8024911540472226 a001 24476/121393*4181^(28/39) 8024911545923019 r008 a(0)=8,K{-n^6,-91+83*n^3-29*n^2-3*n} 8024911558446363 m001 (StronglyCareFree+Trott)/(cos(1)+BesselJ(1,1)) 8024911558833855 a001 39603/196418*4181^(28/39) 8024911564163094 a007 Real Root Of 238*x^4-44*x^3+529*x^2-355*x-747 8024911570541809 l006 ln(8198/8883) 8024911580295213 a007 Real Root Of 828*x^4+797*x^3+429*x^2-9*x-215 8024911585348678 a001 1597/843*3571^(3/17) 8024911588543595 a001 15127/75025*4181^(28/39) 8024911604085331 a001 3/11*199^(23/36) 8024911650496177 m001 1/ln(GAMMA(19/24))/MertensB1^2*Zeta(1,2)^2 8024911652895544 a001 377/3571*9349^(9/19) 8024911679748487 r008 a(0)=8,K{-n^6,36-48*n-56*n^2+27*n^3} 8024911681905348 a001 1597/843*9349^(3/19) 8024911690473237 s002 sum(A140950[n]/(10^n-1),n=1..infinity) 8024911690645554 a001 377/3571*24476^(3/7) 8024911694488685 a001 1597/843*24476^(1/7) 8024911695621731 a001 377/3571*64079^(9/23) 8024911696101299 a001 602069/75025 8024911696147410 a001 1597/843*64079^(3/23) 8024911696372621 a001 377/3571*439204^(1/3) 8024911696386453 a001 377/3571*7881196^(3/11) 8024911696386488 a001 377/3571*141422324^(3/13) 8024911696386488 a001 377/3571*2537720636^(1/5) 8024911696386488 a001 377/3571*45537549124^(3/17) 8024911696386488 a001 377/3571*817138163596^(3/19) 8024911696386488 a001 377/3571*14662949395604^(1/7) 8024911696386488 a001 377/3571*(1/2+1/2*5^(1/2))^9 8024911696386488 a001 377/3571*192900153618^(1/6) 8024911696386488 a001 377/3571*10749957122^(3/16) 8024911696386488 a001 377/3571*599074578^(3/14) 8024911696386490 a001 377/3571*33385282^(1/4) 8024911696387184 a001 377/3571*1860498^(3/10) 8024911696397707 a001 1597/843*439204^(1/9) 8024911696402318 a001 1597/843*7881196^(1/11) 8024911696402329 a001 1597/843*141422324^(1/13) 8024911696402329 a001 1597/843*2537720636^(1/15) 8024911696402329 a001 1597/843*45537549124^(1/17) 8024911696402329 a001 1597/843*14662949395604^(1/21) 8024911696402329 a001 1597/843*(1/2+1/2*5^(1/2))^3 8024911696402329 a001 1597/843*192900153618^(1/18) 8024911696402329 a001 1597/843*10749957122^(1/16) 8024911696402329 a001 1597/843*599074578^(1/14) 8024911696402330 a001 1597/843*33385282^(1/12) 8024911696402561 a001 1597/843*1860498^(1/10) 8024911696495643 a001 1597/843*103682^(1/8) 8024911696666428 a001 377/3571*103682^(3/8) 8024911697100052 a001 1597/843*39603^(3/22) 8024911698479656 a001 377/3571*39603^(9/22) 8024911698856124 a007 Real Root Of 206*x^4-995*x^3+90*x^2+83*x-591 8024911701662816 a001 1597/843*15127^(3/20) 8024911712167948 a001 377/3571*15127^(9/20) 8024911736464452 a001 1597/843*5778^(1/6) 8024911741174863 r008 a(0)=8,K{-n^6,-92+83*n^3-29*n^2-2*n} 8024911771975085 m001 Zeta(3)/(Psi(1,1/3)^ZetaP(3)) 8024911777326021 a007 Real Root Of 764*x^4+177*x^3+641*x^2+713*x-66 8024911779634949 m009 (5/6*Psi(1,3/4)+1/4)/(3/8*Pi^2-3/4) 8024911792177182 a001 5778/28657*4181^(28/39) 8024911797788976 a007 Real Root Of -892*x^4-188*x^3-848*x^2+157*x+18 8024911804719701 m001 1/ln(Trott)^2/GaussKuzminWirsing^2/TwinPrimes 8024911813341722 a007 Real Root Of -339*x^4-178*x^3-70*x^2+449*x+454 8024911816572857 a001 377/3571*5778^(1/2) 8024911816744036 b008 8+(37+Pi)^(-1) 8024911829508389 m001 (Riemann3rdZero+Trott)/(Si(Pi)+BesselI(0,1)) 8024911855928502 r005 Re(z^2+c),c=-73/98+4/33*I,n=22 8024911856421663 a001 377/5778*2207^(5/8) 8024911860110909 a001 51841/4*75025^(7/9) 8024911886094166 a007 Real Root Of 739*x^4-102*x^3-156*x^2-910*x-989 8024911916102146 a001 9349/4807526976*89^(6/19) 8024911925215350 r008 a(0)=8,K{-n^6,-87+44*n^3+91*n^2-88*n} 8024911932923711 r008 a(0)=8,K{-n^6,-97+73*n^3-n^2-15*n} 8024911942591161 r002 15th iterates of z^2 + 8024911946941066 m001 (-Khinchin+TwinPrimes)/(DuboisRaymond-exp(1)) 8024911953566361 m001 1/GAMMA(11/24)*exp(GAMMA(1/24))*Zeta(9) 8024911965512157 a001 4181/843*843^(1/14) 8024911972862905 b008 -1/2+Pi/(4+Sqrt[2]) 8024911992998023 h001 (11/12*exp(1)+8/11)/(4/9*exp(2)+8/11) 8024911994520852 a001 24476/12586269025*89^(6/19) 8024912005315916 a001 1597/843*2207^(3/16) 8024912005961987 a001 64079/32951280099*89^(6/19) 8024912007631226 a001 167761/86267571272*89^(6/19) 8024912007874764 a001 439204/225851433717*89^(6/19) 8024912007910296 a001 1/514229*89^(6/19) 8024912007915480 a001 3010349/1548008755920*89^(6/19) 8024912007916237 a001 7881196/4052739537881*89^(6/19) 8024912007916347 a001 20633239/10610209857723*89^(6/19) 8024912007916415 a001 12752043/6557470319842*89^(6/19) 8024912007916704 a001 4870847/2504730781961*89^(6/19) 8024912007918684 a001 1860498/956722026041*89^(6/19) 8024912007932256 a001 710647/365435296162*89^(6/19) 8024912008025280 a001 271443/139583862445*89^(6/19) 8024912008662872 a001 103682/53316291173*89^(6/19) 8024912011181367 m001 (sin(1)+3^(1/3))/(exp(-1/2*Pi)+ZetaP(4)) 8024912013032997 a001 39603/20365011074*89^(6/19) 8024912042986277 a001 15127/7778742049*89^(6/19) 8024912050249320 m008 (4/5*Pi^6+4)/(Pi^6+2) 8024912106965166 r005 Re(z^2+c),c=-103/126+3/31*I,n=33 8024912126477991 r008 a(0)=8,K{-n^6,-98+73*n^3-n^2-14*n} 8024912129182595 r008 a(0)=8,K{-n^6,-92+83*n^3-28*n^2-3*n} 8024912153291657 a007 Real Root Of 427*x^4-309*x^3-346*x^2-258*x-321 8024912172257181 a001 1364/21*144^(2/47) 8024912194812220 r005 Re(z^2+c),c=-21/34+50/119*I,n=27 8024912211033561 a007 Real Root Of 420*x^4-596*x^3+71*x^2+289*x-296 8024912248289115 a001 5778/2971215073*89^(6/19) 8024912267666895 a001 377/15127*2207^(3/4) 8024912279720197 m001 1/Bloch^2*CopelandErdos*ln(log(2+sqrt(3)))^2 8024912283612003 r005 Re(z^2+c),c=-19/18+47/227*I,n=62 8024912291579831 a001 377/9349*2207^(11/16) 8024912291696210 a001 2255/6*7^(23/59) 8024912300806706 m001 (MinimumGamma-Trott2nd)/KomornikLoreti 8024912302626735 m001 (GAMMA(3/4)+Ei(1))/(Conway+Sierpinski) 8024912331675330 m001 Riemann1stZero/(ln(3)+LaplaceLimit) 8024912336500535 a007 Real Root Of -936*x^4+221*x^3+34*x^2-843*x-196 8024912346190290 p004 log(37199/16673) 8024912395768385 a003 sin(Pi*1/89)+sin(Pi*27/97) 8024912419103525 a001 13/844*2207^(13/16) 8024912423687967 m005 (1/2*3^(1/2)+7/9)/(4/7*gamma-1/8) 8024912435011931 a007 Real Root Of 844*x^4-669*x^3-368*x^2-571*x-917 8024912439924812 a001 2584/843*843^(1/7) 8024912503562582 a001 377/39603*2207^(7/8) 8024912511128518 r008 a(0)=8,K{-n^6,-98+73*n^3-15*n} 8024912537703634 a007 Real Root Of -50*x^4+256*x^3-923*x^2-980*x-39 8024912567380382 p001 sum(1/(533*n+443)/n/(128^n),n=1..infinity) 8024912607384473 a003 sin(Pi*28/111)/sin(Pi*41/118) 8024912613604797 a001 377/64079*2207^(15/16) 8024912621002025 m009 (1/8*Pi^2+2/5)/(2*Psi(1,1/3)+1/6) 8024912622075937 p003 LerchPhi(1/25,1,218/171) 8024912623127285 a001 377/3571*2207^(9/16) 8024912645957310 a001 329/281*843^(2/7) 8024912648517924 r005 Re(z^2+c),c=7/64+36/55*I,n=5 8024912659322070 r002 4th iterates of z^2 + 8024912667216719 m005 (1/2*gamma-3/5)/(5/12*Zeta(3)-8/9) 8024912673546740 a007 Real Root Of -954*x^4-994*x^3-611*x^2+630*x+781 8024912674001196 a007 Real Root Of 807*x^4-276*x^3+379*x^2-83*x-788 8024912689213906 r009 Re(z^3+c),c=-39/98+28/45*I,n=39 8024912692955290 a007 Real Root Of -868*x^4-289*x^3-623*x^2-897*x-108 8024912694570033 r005 Im(z^2+c),c=-15/22+35/59*I,n=5 8024912701985004 m001 exp(1)*Otter+gamma(2) 8024912706551808 m001 OneNinth^2/FeigenbaumAlpha^2*ln(cosh(1)) 8024912714621624 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^24 8024912757546619 a007 Real Root Of -79*x^4+624*x^3-561*x^2-853*x+32 8024912769034454 b008 Gamma[9^(-2+Pi)] 8024912785053548 a007 Real Root Of 178*x^4+19*x^3+801*x^2+16*x-567 8024912804005230 m001 (PrimesInBinary+Sierpinski)/(Pi+Gompertz) 8024912852867221 p003 LerchPhi(1/1024,4,419/223) 8024912892419413 a007 Real Root Of -129*x^4+390*x^3+616*x^2+100*x-625 8024912895277627 r008 a(0)=8,K{-n^6,-92+84*n^3-29*n^2-3*n} 8024912920379788 p003 LerchPhi(1/2,5,21/80) 8024912930907030 r005 Re(z^2+c),c=19/82+19/56*I,n=19 8024912944984886 a007 Real Root Of -568*x^4+443*x^3+341*x^2+410*x-542 8024912967634134 a007 Real Root Of 822*x^4-430*x^3-26*x^2-488*x-938 8024912978004004 m001 (Conway-GaussAGM)/(GAMMA(11/12)-GAMMA(13/24)) 8024912981971260 m001 ln(OneNinth)^2/CopelandErdos^2/GAMMA(11/12)^2 8024912987450903 a001 2255/1926*521^(4/13) 8024912992418456 a003 sin(Pi*33/101)*sin(Pi*43/111) 8024913003049888 a007 Real Root Of 237*x^4-802*x^3+227*x^2+461*x-289 8024913006088573 r005 Im(z^2+c),c=-89/78+2/19*I,n=13 8024913062715377 r005 Im(z^2+c),c=-27/44+7/47*I,n=47 8024913085312705 m005 (3/4*gamma-5)/(2/5*gamma-4/5) 8024913085312705 m007 (-3/4*gamma+5)/(-2/5*gamma+4/5) 8024913144828853 a007 Real Root Of -748*x^4-521*x^3-607*x^2-107*x+346 8024913149597433 r005 Im(z^2+c),c=-15/86+48/59*I,n=49 8024913158611365 a007 Real Root Of 773*x^4-797*x^3+916*x^2+469*x-946 8024913165844672 a003 sin(Pi*15/53)/sin(Pi*49/117) 8024913176942101 a007 Real Root Of 41*x^4-781*x^3-406*x^2+111*x+559 8024913187902547 a001 2207/10946*4181^(28/39) 8024913196720739 h001 (-6*exp(3/2)-9)/(-7*exp(2)+7) 8024913210889044 a007 Real Root Of 498*x^4-382*x^3+383*x^2-241*x-844 8024913222707049 a001 17711/15127*521^(4/13) 8024913225066352 a007 Real Root Of -776*x^4+289*x^3-32*x^2+566*x+946 8024913237436865 m005 (1/3*Pi-1/9)/(3/11*Catalan+11/12) 8024913257030459 a001 15456/13201*521^(4/13) 8024913262038178 a001 121393/103682*521^(4/13) 8024913262768794 a001 105937/90481*521^(4/13) 8024913262875389 a001 832040/710647*521^(4/13) 8024913262890941 a001 726103/620166*521^(4/13) 8024913262893210 a001 5702887/4870847*521^(4/13) 8024913262893541 a001 4976784/4250681*521^(4/13) 8024913262893590 a001 39088169/33385282*521^(4/13) 8024913262893597 a001 34111385/29134601*521^(4/13) 8024913262893598 a001 267914296/228826127*521^(4/13) 8024913262893598 a001 233802911/199691526*521^(4/13) 8024913262893598 a001 1836311903/1568397607*521^(4/13) 8024913262893598 a001 1602508992/1368706081*521^(4/13) 8024913262893598 a001 12586269025/10749957122*521^(4/13) 8024913262893598 a001 10983760033/9381251041*521^(4/13) 8024913262893598 a001 86267571272/73681302247*521^(4/13) 8024913262893598 a001 75283811239/64300051206*521^(4/13) 8024913262893598 a001 2504730781961/2139295485799*521^(4/13) 8024913262893598 a001 365435296162/312119004989*521^(4/13) 8024913262893598 a001 139583862445/119218851371*521^(4/13) 8024913262893598 a001 53316291173/45537549124*521^(4/13) 8024913262893598 a001 20365011074/17393796001*521^(4/13) 8024913262893598 a001 7778742049/6643838879*521^(4/13) 8024913262893598 a001 2971215073/2537720636*521^(4/13) 8024913262893598 a001 1134903170/969323029*521^(4/13) 8024913262893598 a001 433494437/370248451*521^(4/13) 8024913262893598 a001 165580141/141422324*521^(4/13) 8024913262893601 a001 63245986/54018521*521^(4/13) 8024913262893620 a001 24157817/20633239*521^(4/13) 8024913262893746 a001 9227465/7881196*521^(4/13) 8024913262894613 a001 3524578/3010349*521^(4/13) 8024913262900553 a001 1346269/1149851*521^(4/13) 8024913262941269 a001 514229/439204*521^(4/13) 8024913263220339 a001 196418/167761*521^(4/13) 8024913264007959 a007 Real Root Of 578*x^4+677*x^3+442*x^2-448*x-534 8024913265133118 a001 75025/64079*521^(4/13) 8024913270652560 r008 a(0)=8,K{-n^6,-98+74*n^3-n^2-15*n} 8024913278243494 a001 28657/24476*521^(4/13) 8024913297685667 a007 Real Root Of 230*x^4-781*x^3+532*x^2+245*x-645 8024913305577719 r004 Im(z^2+c),c=-4/9-2/3*I,z(0)=exp(1/8*I*Pi),n=13 8024913310111780 m001 Porter^2/Magata^2/ln((2^(1/3))) 8024913321888587 m001 (Conway-FeigenbaumMu)/(OneNinth+ZetaP(3)) 8024913326714102 r005 Re(z^2+c),c=-3/4+35/243*I,n=18 8024913330771710 a007 Real Root Of -114*x^4-823*x^3+636*x^2-839*x-228 8024913335311888 r005 Im(z^2+c),c=17/48+29/48*I,n=7 8024913336330571 a007 Real Root Of -856*x^4-901*x^3-68*x^2+497*x+332 8024913342177913 a007 Real Root Of 245*x^4-535*x^3-238*x^2-502*x+731 8024913357031975 b008 80+SinIntegral[1/4] 8024913367517280 a001 377/1364*1364^(7/15) 8024913368103350 a001 10946/9349*521^(4/13) 8024913374302340 a001 47*(1/2*5^(1/2)+1/2)^8*843^(8/15) 8024913387706302 m001 (-Gompertz+Tetranacci)/(5^(1/2)-gamma) 8024913390311325 m001 (ln(Pi)+2*Pi/GAMMA(5/6))/(GaussAGM+ZetaQ(4)) 8024913425515126 a007 Real Root Of 811*x^4+326*x^3+681*x^2+813*x+46 8024913426578614 r008 a(0)=8,K{-n^6,22+30*n^3-72*n^2-21*n} 8024913475704641 l006 ln(238/531) 8024913479215888 m001 (-GAMMA(13/24)+Trott2nd)/(LambertW(1)+3^(1/3)) 8024913509337833 h001 (3/10*exp(2)+6/11)/(5/11*exp(2)+1/12) 8024913530548325 a007 Real Root Of 413*x^4-484*x^3+624*x^2+748*x-223 8024913530856113 m002 3/4+Pi^3/5+ProductLog[Pi] 8024913565441537 s002 sum(A197606[n]/(exp(n)-1),n=1..infinity) 8024913584758655 l006 ln(5589/6056) 8024913596500959 r002 7th iterates of z^2 + 8024913597624971 a007 Real Root Of 228*x^4-554*x^3-312*x^2-211*x+562 8024913599543730 r002 16th iterates of z^2 + 8024913609870700 m001 (exp(1)+Si(Pi))/(GAMMA(23/24)+FeigenbaumDelta) 8024913614069700 a007 Real Root Of 875*x^4-295*x^3-463*x^2-573*x-677 8024913649321968 r002 38th iterates of z^2 + 8024913652690972 a007 Real Root Of -98*x^4-703*x^3+565*x^2-838*x+12 8024913654519433 a001 987/1364*521^(5/13) 8024913655455697 a001 2207/1134903170*89^(6/19) 8024913681338336 a007 Real Root Of 865*x^4+385*x^3+291*x^2-11*x-356 8024913683019898 m001 gamma(2)^sin(1)/(gamma(2)^KomornikLoreti) 8024913684501136 m001 (Backhouse+ZetaQ(3))/(cos(1)+GAMMA(17/24)) 8024913718488488 m001 Pi/(1-sin(1/5*Pi)/cos(1/12*Pi)) 8024913741311410 m001 Zeta(1/2)^2/TwinPrimes/ln(Zeta(9))^2 8024913742915014 r005 Im(z^2+c),c=-15/23+3/47*I,n=9 8024913751946535 a007 Real Root Of -495*x^4+587*x^3-431*x^2+919*x-558 8024913780281250 a007 Real Root Of -732*x^4+449*x^3+359*x^2+149*x+424 8024913803984577 r008 a(0)=8,K{-n^6,-46+10*n+3*n^2-8*n^3} 8024913818359571 a007 Real Root Of -470*x^4+481*x^3-299*x^2+299*x+876 8024913830479643 b008 ArcCsch[Coth[ArcTan[7]]] 8024913942639653 a001 610/843*1364^(1/3) 8024913952452913 a007 Real Root Of -160*x^4+389*x^3+411*x^2+277*x+225 8024913981318661 a001 4181/2207*521^(3/13) 8024913983442660 a008 Real Root of (-7+3*x+9*x^4+5*x^8) 8024913984012014 a001 4181/3571*521^(4/13) 8024914020339733 r002 60th iterates of z^2 + 8024914026961924 a007 Real Root Of 516*x^4-997*x^3-242*x^2+803*x+71 8024914045107162 a007 Real Root Of -801*x^4+757*x^3+740*x^2-264*x+35 8024914059356536 a007 Real Root Of 49*x^4-382*x^3+525*x^2+335*x-287 8024914116201448 a001 1597/843*843^(3/14) 8024914133162207 h001 (-exp(1)-3)/(-3*exp(3)-11) 8024914138784607 r001 42i'th iterates of 2*x^2-1 of 8024914168503202 r002 5th iterates of z^2 + 8024914172885514 a007 Real Root Of -79*x^4+710*x^3+798*x^2-349*x-568 8024914188699641 a007 Real Root Of -418*x^4+964*x^3-606*x^2+890*x-68 8024914250538289 m005 (1/3*gamma-3)/(1/5*Catalan+1/6) 8024914250870684 h001 (2/3*exp(1)+7/8)/(3/7*exp(2)+2/11) 8024914260599576 m001 (-HardyLittlewoodC5+Niven)/(gamma+Zeta(5)) 8024914306828625 m001 Pi^2*ln(FeigenbaumKappa)^2*Zeta(1,2)^2 8024914330832255 a005 (1/cos(8/239*Pi))^1623 8024914341130113 h001 (2/3*exp(1)+1/11)/(4/7*exp(1)+9/11) 8024914365183080 a003 sin(Pi*12/59)/cos(Pi*7/30) 8024914430604843 m001 LandauRamanujan/(HardyLittlewoodC3^OneNinth) 8024914456331615 m001 (AlladiGrinstead-Shi(1))/(Grothendieck+Mills) 8024914460272699 a007 Real Root Of 478*x^4-520*x^3+382*x^2-686*x+375 8024914483639291 m001 (Ei(1,1)-BesselI(0,2))/(Riemann3rdZero+Robbin) 8024914485435552 r009 Re(z^3+c),c=-9/62+37/57*I,n=33 8024914554477888 m001 1/Bloch*Cahen*exp(sqrt(Pi)) 8024914560980531 r005 Im(z^2+c),c=-9/74+47/57*I,n=22 8024914561641916 r009 Im(z^3+c),c=-29/52+29/56*I,n=6 8024914564215167 r005 Im(z^2+c),c=-81/122+12/59*I,n=6 8024914571098603 r009 Im(z^3+c),c=-57/118+44/49*I,n=2 8024914611641543 r005 Re(z^2+c),c=-53/94+15/32*I,n=35 8024914618844652 m005 (-23/12+1/12*5^(1/2))/(3/4*Pi-1/5) 8024914626844359 a007 Real Root Of 932*x^4+870*x^3+414*x^2+210*x-35 8024914632745054 m001 gamma^Salem/(gamma^StronglyCareFree) 8024914653894437 a001 956722026041/47*969323029^(22/23) 8024914653894437 a001 2504730781961/47*2537720636^(20/23) 8024914653894437 a001 591286729879/47*45537549124^(19/23) 8024914653894437 a001 591286729879/47*817138163596^(17/23) 8024914653894437 a001 2504730781961/47*3461452808002^(15/23) 8024914653894437 a001 365435296162/47*9062201101803^(16/23) 8024914653894437 a001 2504730781961/47*28143753123^(18/23) 8024914653894437 a001 7778742049/47*505019158607^(21/23) 8024914669542149 a007 Real Root Of 513*x^4-865*x^3-191*x^2-328*x-800 8024914677393001 h001 (5/9*exp(1)+2/9)/(8/11*exp(1)+2/11) 8024914694498246 m001 1/TwinPrimes^2*Salem^2*exp(arctan(1/2))^2 8024914731086308 a007 Real Root Of -909*x^4+923*x^3+550*x^2-239*x+308 8024914745376161 m006 (3/5*exp(2*Pi)+4/5)/(3/4*exp(2*Pi)-1/4) 8024914746186864 r005 Re(z^2+c),c=7/118+40/43*I,n=2 8024914756089980 m001 (-Trott+ZetaQ(4))/(Chi(1)+HardyLittlewoodC4) 8024914768541006 s001 sum(exp(-Pi)^(n-1)*A027558[n],n=1..infinity) 8024914789958685 a007 Real Root Of -243*x^4+75*x^3-717*x^2+128*x+704 8024914809211635 a007 Real Root Of 535*x^4-333*x^3-897*x^2-437*x-167 8024914817411813 a007 Real Root Of 816*x^4-436*x^3-296*x^2-193*x-528 8024914840157436 r008 a(0)=8,K{-n^6,-53+42*n-43*n^2+13*n^3} 8024914846565992 m001 (HardHexagonsEntropy-ZetaQ(2))/(ln(5)-3^(1/3)) 8024914861241244 m001 1/exp(Tribonacci)^2/RenyiParking/BesselK(0,1) 8024914878288325 r005 Re(z^2+c),c=-13/14+37/163*I,n=18 8024914887246777 m001 BesselJ(1,1)^ZetaR(2)/(BesselJ(1,1)^Khinchin) 8024914917870269 b008 -8+ExpIntegralEi[-5/2] 8024914931922394 r008 a(0)=8,K{-n^6,-57+68*n^3+42*n^2-93*n} 8024914963030299 a007 Real Root Of -689*x^4+314*x^3+893*x^2+106*x-42 8024915000791414 m001 (MertensB2+ZetaP(4))/(Kac-LandauRamanujan) 8024915007044971 m001 ZetaP(4)*(FellerTornier+Sarnak) 8024915020154266 r009 Re(z^3+c),c=-35/62+3/35*I,n=5 8024915020536179 r002 32th iterates of z^2 + 8024915034497859 a007 Real Root Of 933*x^4+46*x^3-856*x^2+365*x+481 8024915036395425 r005 Re(z^2+c),c=-1+15/53*I,n=18 8024915047647192 r005 Im(z^2+c),c=8/21+7/22*I,n=8 8024915057297615 m005 (1/2*Pi-2/9)/(7/9*3^(1/2)+1/3) 8024915063832516 m001 polylog(4,1/2)^(exp(-1/2*Pi)*ErdosBorwein) 8024915066889675 a007 Real Root Of 423*x^4-446*x^3+403*x^2+823*x-5 8024915088660490 a007 Real Root Of -882*x^4+483*x^3+774*x^2-623*x-383 8024915109503366 a001 1/3524667*514229^(21/22) 8024915121272963 a001 377/1364*3571^(7/17) 8024915162500964 s002 sum(A213107[n]/(2^n-1),n=1..infinity) 8024915170843027 m001 1/GAMMA(7/24)/exp(Lehmer)^2*cos(Pi/5) 8024915178253149 a007 Real Root Of 126*x^4-396*x^3+541*x^2-37*x-635 8024915180257614 a007 Real Root Of 177*x^4-879*x^3-367*x^2-270*x-508 8024915193585442 m001 (Bloch-GAMMA(7/12))/ln(2+3^(1/2)) 8024915195322335 a001 610/843*3571^(5/17) 8024915213843665 a007 Real Root Of -937*x^4+684*x^3+721*x^2+333*x+545 8024915218032545 a007 Real Root Of -367*x^4+661*x^3+702*x^2+672*x+581 8024915238188741 a003 cos(Pi*14/65)/sin(Pi*39/92) 8024915244561336 a003 cos(Pi*7/54)*sin(Pi*22/65) 8024915296077879 r008 a(0)=8,K{-n^6,-97+92*n^3-49*n^2+14*n} 8024915302704306 h001 (7/10*exp(1)+8/9)/(5/12*exp(2)+2/5) 8024915307678756 a003 cos(Pi*31/88)*cos(Pi*27/61) 8024915310066809 a001 5473/2889*521^(3/13) 8024915323635209 r008 a(0)=8,K{-n^6,-57-15*n^3+19*n^2+12*n} 8024915326283365 a007 Real Root Of 960*x^4-135*x^3-672*x^2-264*x-247 8024915346571959 a001 377/1364*9349^(7/19) 8024915356250190 a001 610/843*9349^(5/19) 8024915361112735 a007 Real Root Of -861*x^4-124*x^3-357*x^2+521*x+941 8024915361280090 m001 (Kac+MadelungNaCl)/(Otter+ZetaQ(4)) 8024915375933092 a001 377/1364*24476^(1/3) 8024915377048603 m009 (5/6*Psi(1,3/4)+1/4)/(4/5*Psi(1,2/3)+1/2) 8024915377222428 a001 610/843*24476^(5/21) 8024915378441567 a001 229970/28657 8024915379803454 a001 377/1364*64079^(7/23) 8024915379986972 a001 610/843*64079^(5/23) 8024915380354809 a001 610/843*167761^(1/5) 8024915380398262 a001 377/1364*20633239^(1/5) 8024915380398265 a001 377/1364*17393796001^(1/7) 8024915380398265 a001 377/1364*14662949395604^(1/9) 8024915380398265 a001 377/1364*(1/2+1/2*5^(1/2))^7 8024915380398265 a001 377/1364*599074578^(1/6) 8024915380402238 a001 377/1364*710647^(1/4) 8024915380411835 a001 610/843*20633239^(1/7) 8024915380411837 a001 610/843*2537720636^(1/9) 8024915380411837 a001 610/843*312119004989^(1/11) 8024915380411837 a001 610/843*(1/2+1/2*5^(1/2))^5 8024915380411837 a001 610/843*28143753123^(1/10) 8024915380411837 a001 610/843*228826127^(1/8) 8024915380412224 a001 610/843*1860498^(1/6) 8024915380567360 a001 610/843*103682^(5/24) 8024915380615997 a001 377/1364*103682^(7/24) 8024915381574709 a001 610/843*39603^(5/22) 8024915382026285 a001 377/1364*39603^(7/22) 8024915385018514 a007 Real Root Of -244*x^4+913*x^3-408*x^2+283*x-335 8024915389179319 a001 610/843*15127^(1/4) 8024915392672740 a001 377/1364*15127^(7/20) 8024915403726043 a007 Real Root Of -173*x^4+578*x^3+914*x^2-149*x-696 8024915427069698 m001 (GAMMA(19/24)-Gompertz)/(Porter-RenyiParking) 8024915434675157 m001 (QuadraticClass+TwinPrimes)/(MertensB2-Otter) 8024915444656568 r009 Re(z^3+c),c=-11/46+39/56*I,n=44 8024915447182073 a001 610/843*5778^(5/18) 8024915463610785 m001 1/ln(GAMMA(5/6))/DuboisRaymond^2/exp(1) 8024915473876595 a001 377/1364*5778^(7/18) 8024915475133606 r008 a(0)=8,K{-n^6,-98+92*n^3-49*n^2+15*n} 8024915485941473 r002 3th iterates of z^2 + 8024915495649404 r008 a(0)=8,K{-n^6,-49-2*n+26*n^2-16*n^3} 8024915503928590 a001 28657/15127*521^(3/13) 8024915511768736 l006 ln(8569/9285) 8024915528388969 a007 Real Root Of -613*x^4-338*x^3-145*x^2+992*x+969 8024915532212644 a001 75025/39603*521^(3/13) 8024915536339232 a001 98209/51841*521^(3/13) 8024915536941293 a001 514229/271443*521^(3/13) 8024915537029132 a001 1346269/710647*521^(3/13) 8024915537041948 a001 1762289/930249*521^(3/13) 8024915537043818 a001 9227465/4870847*521^(3/13) 8024915537044090 a001 24157817/12752043*521^(3/13) 8024915537044130 a001 31622993/16692641*521^(3/13) 8024915537044136 a001 165580141/87403803*521^(3/13) 8024915537044137 a001 433494437/228826127*521^(3/13) 8024915537044137 a001 567451585/299537289*521^(3/13) 8024915537044137 a001 2971215073/1568397607*521^(3/13) 8024915537044137 a001 7778742049/4106118243*521^(3/13) 8024915537044137 a001 10182505537/5374978561*521^(3/13) 8024915537044137 a001 53316291173/28143753123*521^(3/13) 8024915537044137 a001 139583862445/73681302247*521^(3/13) 8024915537044137 a001 182717648081/96450076809*521^(3/13) 8024915537044137 a001 956722026041/505019158607*521^(3/13) 8024915537044137 a001 10610209857723/5600748293801*521^(3/13) 8024915537044137 a001 591286729879/312119004989*521^(3/13) 8024915537044137 a001 225851433717/119218851371*521^(3/13) 8024915537044137 a001 21566892818/11384387281*521^(3/13) 8024915537044137 a001 32951280099/17393796001*521^(3/13) 8024915537044137 a001 12586269025/6643838879*521^(3/13) 8024915537044137 a001 1201881744/634430159*521^(3/13) 8024915537044137 a001 1836311903/969323029*521^(3/13) 8024915537044137 a001 701408733/370248451*521^(3/13) 8024915537044137 a001 66978574/35355581*521^(3/13) 8024915537044140 a001 102334155/54018521*521^(3/13) 8024915537044155 a001 39088169/20633239*521^(3/13) 8024915537044259 a001 3732588/1970299*521^(3/13) 8024915537044973 a001 5702887/3010349*521^(3/13) 8024915537049868 a001 2178309/1149851*521^(3/13) 8024915537083420 a001 208010/109801*521^(3/13) 8024915537313387 a001 317811/167761*521^(3/13) 8024915538889603 a001 121393/64079*521^(3/13) 8024915541916000 m009 (1/4*Pi^2+1/5)/(1/4*Psi(1,1/3)+4/5) 8024915549693150 a001 11592/6119*521^(3/13) 8024915577220511 r002 14th iterates of z^2 + 8024915595425163 m005 (1/2*2^(1/2)-4/7)/(2/3*5^(1/2)+1/5) 8024915605237620 a007 Real Root Of -423*x^4+425*x^3-72*x^2-737*x-150 8024915606975567 a007 Real Root Of 714*x^4-893*x^3+225*x^2+367*x-608 8024915607611987 a005 (1/cos(55/223*Pi))^61 8024915623741765 a001 17711/9349*521^(3/13) 8024915650142745 q001 3092/3853 8024915652403341 r001 41i'th iterates of 2*x^2-1 of 8024915653505665 a007 Real Root Of 916*x^4-689*x^3-661*x^2+34*x-283 8024915660327230 r008 a(0)=8,K{-n^6,-29-38*n+45*n^2-19*n^3} 8024915674543724 a007 Real Root Of 423*x^4-314*x^3+809*x^2+680*x-313 8024915700764668 m001 (GAMMA(13/24)+Niven)/(BesselK(0,1)-Chi(1)) 8024915702990787 m001 ZetaQ(2)^Khinchin*gamma(3) 8024915709745894 a001 1597/521*199^(2/11) 8024915725859221 a007 Real Root Of -50*x^4-345*x^3+467*x^2+189*x+510 8024915733856739 m005 (1/2*5^(1/2)-5/7)/(6/7*gamma-4/9) 8024915736158209 p003 LerchPhi(1/3,5,269/101) 8024915762093344 a007 Real Root Of 828*x^4-175*x^3-764*x^2-780*x+865 8024915805940740 m001 (Si(Pi)+ln(2))/(-polylog(4,1/2)+GaussAGM) 8024915818379932 r005 Im(z^2+c),c=19/50+6/19*I,n=48 8024915831048156 r008 a(0)=8,K{-n^6,-98+92*n^3-48*n^2+14*n} 8024915841262687 m001 1/Zeta(5)/ln(GAMMA(1/4))/cos(Pi/12)^2 8024915844370516 m005 (1/2*Catalan-1/12)/(5/9*Catalan-5/9) 8024915867708432 a007 Real Root Of 102*x^4+862*x^3+421*x^2+552*x-223 8024915872341127 a001 377/2207*843^(4/7) 8024915895268058 a001 610/843*2207^(5/16) 8024915896463165 r002 48th iterates of z^2 + 8024915909632803 a007 Real Root Of -673*x^4-537*x^3-379*x^2+697*x+805 8024915932500914 m004 1+25*Pi+(Cot[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi])/3 8024915952672862 p004 log(16963/7603) 8024915957752984 m005 (1/3*gamma+1/3)/(4/11*exp(1)-1/3) 8024915967734593 r002 14th iterates of z^2 + 8024915986233995 r008 a(0)=8,K{-n^6,4-59*n-11*n^2+27*n^3} 8024916058745497 a007 Real Root Of -946*x^4-929*x^3-637*x^2-742*x-273 8024916071665519 a007 Real Root Of -358*x^4-398*x^3+314*x^2+894*x+458 8024916077478967 r005 Im(z^2+c),c=-15/38+29/45*I,n=27 8024916078404676 m005 (1/2*Zeta(3)-11/12)/(4*Zeta(3)-7/8) 8024916079524922 m001 (Totient+ZetaQ(2))/(exp(-1/2*Pi)+GAMMA(7/12)) 8024916090685577 m005 (1/3*3^(1/2)+2/9)/(11/12*2^(1/2)-3/10) 8024916101196984 a001 377/1364*2207^(7/16) 8024916104093560 m001 (5^(1/2)-cos(1/12*Pi))/(Sarnak+Thue) 8024916108755006 a007 Real Root Of 639*x^4+528*x^3-233*x^2-927*x-586 8024916110106721 r008 a(0)=7,K{-n^6,-16+30*n-34*n^2+20*n^3} 8024916118105262 p004 log(15901/7127) 8024916127982650 m001 cos(1/12*Pi)^Rabbit/(ln(2+3^(1/2))^Rabbit) 8024916128585207 a001 6765/2207*521^(2/13) 8024916131278560 a001 6765/3571*521^(3/13) 8024916168332124 r005 Re(z^2+c),c=-99/122+7/59*I,n=13 8024916168357521 m001 (Chi(1)-GAMMA(2/3))/(-KhinchinLevy+Landau) 8024916185632873 m001 1/exp(Paris)*LandauRamanujan*OneNinth^2 8024916191975841 p004 log(34313/31667) 8024916228331274 a007 Real Root Of -86*x^4-730*x^3-217*x^2+743*x-661 8024916237725778 h001 (7/10*exp(2)+1/4)/(1/11*exp(1)+3/7) 8024916240027982 a007 Real Root Of 740*x^4+375*x^3+186*x^2+193*x-78 8024916266453427 m001 (3^(1/2)+5^(1/2))/(exp(1/Pi)+FeigenbaumMu) 8024916299196070 m002 -18+Pi^3-5*Tanh[Pi] 8024916304731470 a007 Real Root Of 263*x^4-925*x^3+287*x^2+537*x-341 8024916310331689 m001 (Lehmer+Mills)/(GaussKuzminWirsing-cos(1)) 8024916334542445 a007 Real Root Of 129*x^4+932*x^3-932*x^2-929*x-776 8024916398639520 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^25 8024916422208548 r008 a(0)=8,K{-n^6,-12-18*n-36*n^2+28*n^3} 8024916424673869 m008 (4*Pi^5-1/5)/(5*Pi^5-5) 8024916438772409 q001 2641/3291 8024916442336489 a007 Real Root Of 49*x^4-512*x^3-348*x^2-75*x-121 8024916483248325 p003 LerchPhi(1/5,4,442/233) 8024916494225494 a007 Real Root Of 773*x^4-569*x^3+155*x^2+747*x-115 8024916507773950 a007 Real Root Of 493*x^4+70*x^3+405*x^2+121*x-332 8024916512326446 m001 (-GAMMA(5/6)+ZetaP(4))/(3^(1/2)-BesselK(0,1)) 8024916534145504 r008 a(0)=8,K{-n^6,-98+93*n^3-49*n^2+14*n} 8024916538142985 a001 144/3571*322^(11/12) 8024916546615392 m006 (3/4*exp(2*Pi)-4)/(5*Pi^2+1/5) 8024916579178933 a001 4/89*2^(46/55) 8024916603983306 a007 Real Root Of -292*x^4+858*x^3-611*x^2-800*x+316 8024916636411021 h003 exp(Pi*(6^(2/3)*(7^(1/4)+2^(3/4)))) 8024916644961727 r005 Im(z^2+c),c=4/11+3/34*I,n=6 8024916653197534 r005 Im(z^2+c),c=-11/27+37/59*I,n=9 8024916685447517 a001 21/2206*1364^(14/15) 8024916695035565 m001 Bloch*(GAMMA(3/4)-HardHexagonsEntropy) 8024916705545648 r009 Im(z^3+c),c=-39/94+18/29*I,n=63 8024916709290532 r008 a(0)=8,K{-n^6,-87+98*n^3-58*n^2+7*n} 8024916747046376 a007 Real Root Of -574*x^4+911*x^3-248*x^2+947*x-833 8024916754785315 s002 sum(A041796[n]/((exp(n)+1)/n),n=1..infinity) 8024916758381786 p003 LerchPhi(1/100,6,111/107) 8024916766869006 m005 (1/2*3^(1/2)-6)/(5/8*5^(1/2)+5) 8024916789940828 r005 Re(z^2+c),c=-23/48+29/39*I,n=2 8024916797600878 r009 Im(z^3+c),c=-33/64+31/58*I,n=23 8024916806528704 r002 34th iterates of z^2 + 8024916819567631 r005 Im(z^2+c),c=13/40+26/41*I,n=6 8024916857062773 r005 Re(z^2+c),c=-21/29+11/61*I,n=33 8024916860621143 m001 Paris*ln(LaplaceLimit)^2/(3^(1/3))^2 8024916862819889 a007 Real Root Of -604*x^4+810*x^3-806*x^2-546*x+750 8024916882423082 r008 a(0)=8,K{-n^6,-70+95*n^3-40*n^2-25*n} 8024916891729599 a007 Real Root Of -80*x^4-531*x^3+982*x^2+837*x+838 8024916898177059 m001 (ln(3)+LandauRamanujan2nd)/(Shi(1)+Zeta(5)) 8024916899410937 m001 cos(1/12*Pi)^GAMMA(5/6)-ln(2^(1/2)+1) 8024916899410937 m001 cos(Pi/12)^GAMMA(5/6)-ln(1+sqrt(2)) 8024916929429632 r002 5th iterates of z^2 + 8024916949876443 a007 Real Root Of -696*x^4-24*x^3+840*x^2+930*x-80 8024916956617944 a007 Real Root Of 558*x^4-885*x^3-799*x^2-281*x+966 8024916975702919 a001 987/64079*1364^(13/15) 8024916993777239 a007 Real Root Of -172*x^4+225*x^3-560*x^2+462*x+919 8024916994824674 m005 (1/3*Catalan-1/5)/(7/10*3^(1/2)+1/10) 8024916999349642 m008 (2/5*Pi^6+2/3)/(1/6*Pi^5-3) 8024917015210800 r002 48th iterates of z^2 + 8024917016899853 p001 sum(1/(341*n+122)/n/(3^n),n=1..infinity) 8024917051812836 m001 (AlladiGrinstead+Rabbit)/(Tribonacci+ZetaQ(2)) 8024917056243828 m001 (2^(1/2)+3^(1/2))/(-KhinchinLevy+Kolakoski) 8024917083695499 m001 (BesselK(0,1)-ln(2))/(-GAMMA(19/24)+GaussAGM) 8024917089901507 m001 BesselK(1,1)*Trott-cos(1/5*Pi) 8024917111932047 a007 Real Root Of 630*x^4-879*x^3+262*x^2-52*x-926 8024917112288255 a007 Real Root Of 465*x^4-852*x^3-610*x^2-913*x-973 8024917119476934 s002 sum(A065780[n]/((2^n-1)/n),n=1..infinity) 8024917119476934 s002 sum(A065780[n]/(2^n-1),n=1..infinity) 8024917120661336 r005 Re(z^2+c),c=-13/12+8/119*I,n=32 8024917132360806 a001 199/2971215073*6557470319842^(17/24) 8024917132363124 a001 199/832040*63245986^(17/24) 8024917136588772 p003 LerchPhi(1/5,6,62/189) 8024917163122790 b008 8+ArcCot[10]/4 8024917163701081 a007 Real Root Of -849*x^4-202*x^3+359*x^2-448*x-343 8024917190615334 m001 (-GAMMA(23/24)+Paris)/(2^(1/2)-sin(1/12*Pi)) 8024917191686050 a007 Real Root Of 89*x^4+670*x^3-332*x^2+163*x-163 8024917193995535 a007 Real Root Of 978*x^4-87*x^3-246*x^2-264*x-504 8024917215918889 m001 (CareFree+MertensB1)/(Salem+Trott2nd) 8024917222521364 a007 Real Root Of -87*x^4-681*x^3+206*x^2+560*x+100 8024917223424517 m001 GAMMA(7/24)*exp(GAMMA(1/6))/Zeta(9)^2 8024917256186429 a001 329/13201*1364^(4/5) 8024917298032308 a007 Real Root Of 283*x^4-757*x^3+388*x^2-891*x+739 8024917303507973 a007 Real Root Of -37*x^4+65*x^3-338*x^2+479*x+651 8024917326940474 m001 (-MertensB2+Sarnak)/(Chi(1)-GAMMA(3/4)) 8024917333397023 m001 MinimumGamma^2/exp(LandauRamanujan)^2*sqrt(3) 8024917339090003 a001 987/2207*1364^(2/5) 8024917341223483 a001 305/682*521^(6/13) 8024917341592689 r002 62i'th iterates of 2*x/(1-x^2) of 8024917353079840 a007 Real Root Of -874*x^4+659*x^3-704*x^2+439*x-31 8024917374970062 r008 a(0)=8,K{-n^6,38+42*n^3-59*n^2-58*n} 8024917379851365 r005 Re(z^2+c),c=15/74+24/47*I,n=49 8024917392713713 a007 Real Root Of 946*x^4+49*x^3+275*x^2-198*x-703 8024917398844905 r008 a(0)=8,K{-n^6,-26-38*n+30*n^2-8*n^3} 8024917423230371 a003 sin(Pi*4/91)*sin(Pi*21/106) 8024917433182756 m001 BesselI(0,1)-ReciprocalFibonacci^Tribonacci 8024917489843692 a007 Real Root Of -866*x^4+530*x^3+109*x^2-988*x-230 8024917514584285 r002 21th iterates of z^2 + 8024917547614558 a007 Real Root Of -546*x^4+955*x^3-802*x^2-428*x+893 8024917552216929 q001 219/2729 8024917562253122 a001 987/24476*1364^(11/15) 8024917565705770 a001 17711/5778*521^(2/13) 8024917570951303 r009 Re(z^3+c),c=-5/38+4/7*I,n=10 8024917592321885 m001 GAMMA(5/6)/GAMMA(11/12)/MertensB3 8024917602710606 r005 Im(z^2+c),c=-5/36+47/57*I,n=37 8024917608617416 r001 7i'th iterates of 2*x^2-1 of 8024917608823279 a001 4181/843*322^(1/12) 8024917623627643 a007 Real Root Of -260*x^4+623*x^3+158*x^2+785*x+958 8024917628691860 a007 Real Root Of -166*x^4+828*x^3+288*x^2+528*x+735 8024917629075743 a007 Real Root Of -465*x^4+924*x^3-974*x^2-650*x+776 8024917641370919 a008 Real Root of (-4+2*x+5*x^2-3*x^3-2*x^4-5*x^5) 8024917652326460 l006 ln(4509/10060) 8024917679840552 m004 5/3+750/Pi+Sinh[Sqrt[5]*Pi] 8024917684355017 m001 PisotVijayaraghavan/(GAMMA(13/24)+Trott) 8024917688184313 r008 a(0)=8,K{-n^6,-23+5*n^3+42*n^2-63*n} 8024917742832249 r005 Im(z^2+c),c=-7/10+1/191*I,n=13 8024917775282122 r002 5th iterates of z^2 + 8024917775378877 a001 6624/2161*521^(2/13) 8024917782408546 m001 (Shi(1)+Riemann1stZero)/(Tribonacci+ZetaQ(2)) 8024917801342207 a001 141/2161*1364^(2/3) 8024917805807161 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^27 8024917805969772 a001 121393/39603*521^(2/13) 8024917810432923 a001 317811/103682*521^(2/13) 8024917810447316 m001 (exp(1/exp(1))-gamma)/(-CareFree+Gompertz) 8024917811084088 a001 832040/271443*521^(2/13) 8024917811179092 a001 311187/101521*521^(2/13) 8024917811192953 a001 5702887/1860498*521^(2/13) 8024917811194975 a001 14930352/4870847*521^(2/13) 8024917811195270 a001 39088169/12752043*521^(2/13) 8024917811195313 a001 14619165/4769326*521^(2/13) 8024917811195319 a001 267914296/87403803*521^(2/13) 8024917811195320 a001 701408733/228826127*521^(2/13) 8024917811195320 a001 1836311903/599074578*521^(2/13) 8024917811195321 a001 686789568/224056801*521^(2/13) 8024917811195321 a001 12586269025/4106118243*521^(2/13) 8024917811195321 a001 32951280099/10749957122*521^(2/13) 8024917811195321 a001 86267571272/28143753123*521^(2/13) 8024917811195321 a001 32264490531/10525900321*521^(2/13) 8024917811195321 a001 591286729879/192900153618*521^(2/13) 8024917811195321 a001 1548008755920/505019158607*521^(2/13) 8024917811195321 a001 1515744265389/494493258286*521^(2/13) 8024917811195321 a001 2504730781961/817138163596*521^(2/13) 8024917811195321 a001 956722026041/312119004989*521^(2/13) 8024917811195321 a001 365435296162/119218851371*521^(2/13) 8024917811195321 a001 139583862445/45537549124*521^(2/13) 8024917811195321 a001 53316291173/17393796001*521^(2/13) 8024917811195321 a001 20365011074/6643838879*521^(2/13) 8024917811195321 a001 7778742049/2537720636*521^(2/13) 8024917811195321 a001 2971215073/969323029*521^(2/13) 8024917811195321 a001 1134903170/370248451*521^(2/13) 8024917811195321 a001 433494437/141422324*521^(2/13) 8024917811195323 a001 165580141/54018521*521^(2/13) 8024917811195340 a001 63245986/20633239*521^(2/13) 8024917811195452 a001 24157817/7881196*521^(2/13) 8024917811196225 a001 9227465/3010349*521^(2/13) 8024917811201519 a001 3524578/1149851*521^(2/13) 8024917811237807 a001 1346269/439204*521^(2/13) 8024917811486530 a001 514229/167761*521^(2/13) 8024917813191303 a001 196418/64079*521^(2/13) 8024917824875985 a001 75025/24476*521^(2/13) 8024917865343820 m001 ln(Zeta(9))^2/FibonacciFactorial^2*sqrt(3)^2 8024917870939706 m001 (Chi(1)+GAMMA(11/12))/(-Gompertz+Otter) 8024917883994794 m001 (Si(Pi)-sin(1/12*Pi))/(-exp(1/Pi)+Salem) 8024917885067217 l006 ln(4271/9529) 8024917895147131 a007 Real Root Of -127*x^4-964*x^3+356*x^2-596*x+800 8024917904963989 a001 28657/9349*521^(2/13) 8024917922090379 a007 Real Root Of 835*x^4+379*x^3+759*x^2+490*x-246 8024917926189135 r009 Im(z^3+c),c=-5/114+43/52*I,n=33 8024917946616115 a007 Real Root Of -132*x^4+953*x^3+569*x^2+794*x+818 8024917962350803 m001 GAMMA(1/6)^2/LaplaceLimit*exp(cos(1)) 8024917971461219 a007 Real Root Of -683*x^4-859*x^3-479*x^2+630*x-47 8024917983646261 a007 Real Root Of 64*x^4-946*x^3+976*x^2+390*x-831 8024917986098508 r008 a(0)=8,K{-n^6,12+34*n^3-28*n^2-57*n} 8024918011110153 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^29 8024918027876917 r005 Re(z^2+c),c=-13/12+8/119*I,n=30 8024918028151970 r008 a(0)=8,K{-n^6,-48-28*n^3+63*n^2-28*n} 8024918029243152 a007 Real Root Of -900*x^4+798*x^3+713*x^2+113*x-589 8024918037398036 a007 Real Root Of -383*x^4+817*x^3-233*x^2-207*x+565 8024918041063456 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^31 8024918045433584 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^33 8024918046071177 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^35 8024918046164200 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^37 8024918046177772 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^39 8024918046179752 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^41 8024918046180041 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^43 8024918046180083 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^45 8024918046180090 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^47 8024918046180090 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^49 8024918046180091 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^51 8024918046180091 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^53 8024918046180091 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^55 8024918046180091 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^57 8024918046180091 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^59 8024918046180091 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^61 8024918046180091 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^63 8024918046180091 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^65 8024918046180091 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^67 8024918046180091 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^69 8024918046180091 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^71 8024918046180091 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^73 8024918046180091 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^75 8024918046180091 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^77 8024918046180091 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^79 8024918046180091 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^81 8024918046180091 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^83 8024918046180091 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^85 8024918046180091 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^87 8024918046180091 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^89 8024918046180091 a004 Fibonacci(82)*Lucas(15)/(1/2+sqrt(5)/2)^91 8024918046180091 a004 Fibonacci(84)*Lucas(15)/(1/2+sqrt(5)/2)^93 8024918046180091 a004 Fibonacci(86)*Lucas(15)/(1/2+sqrt(5)/2)^95 8024918046180091 a004 Fibonacci(88)*Lucas(15)/(1/2+sqrt(5)/2)^97 8024918046180091 a004 Fibonacci(90)*Lucas(15)/(1/2+sqrt(5)/2)^99 8024918046180091 a004 Fibonacci(91)*Lucas(15)/(1/2+sqrt(5)/2)^100 8024918046180091 a004 Fibonacci(89)*Lucas(15)/(1/2+sqrt(5)/2)^98 8024918046180091 a004 Fibonacci(87)*Lucas(15)/(1/2+sqrt(5)/2)^96 8024918046180091 a004 Fibonacci(85)*Lucas(15)/(1/2+sqrt(5)/2)^94 8024918046180091 a004 Fibonacci(83)*Lucas(15)/(1/2+sqrt(5)/2)^92 8024918046180091 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^90 8024918046180091 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^88 8024918046180091 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^86 8024918046180091 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^84 8024918046180091 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^82 8024918046180091 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^80 8024918046180091 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^78 8024918046180091 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^76 8024918046180091 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^74 8024918046180091 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^72 8024918046180091 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^70 8024918046180091 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^68 8024918046180091 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^66 8024918046180091 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^64 8024918046180091 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^62 8024918046180091 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^60 8024918046180091 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^58 8024918046180091 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^56 8024918046180091 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^54 8024918046180091 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^52 8024918046180091 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^50 8024918046180091 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^48 8024918046180093 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^46 8024918046180109 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^44 8024918046180220 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^42 8024918046180976 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^40 8024918046182409 a001 1/305*(1/2+1/2*5^(1/2))^21 8024918046186160 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^38 8024918046221692 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^36 8024918046465231 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^34 8024918047839921 h001 (5/9*exp(1)+5/11)/(7/10*exp(1)+6/11) 8024918048134471 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^32 8024918050607751 a007 Real Root Of 888*x^4-583*x^3+160*x^2+245*x-576 8024918059575615 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^30 8024918093252802 a001 2584/271443*1364^(14/15) 8024918137994380 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^28 8024918145277494 l006 ln(4033/8998) 8024918148606192 r008 a(0)=8,K{-n^6,-18-9*n^3+67*n^2-76*n} 8024918171148332 a001 329/1926*1364^(8/15) 8024918205515021 a001 1597/1364*521^(4/13) 8024918215780991 a001 987/9349*1364^(3/5) 8024918242190393 a008 Real Root of (-1+x-x^2+x^3+x^7+x^8+x^9-x^10-x^11) 8024918289038515 r005 Im(z^2+c),c=25/98+19/33*I,n=14 8024918298648824 a001 6765/710647*1364^(14/15) 8024918303812428 m001 1/BesselJ(1,1)/exp(TwinPrimes)^2*GAMMA(1/12)^2 8024918315474240 a007 Real Root Of 69*x^4+491*x^3-525*x^2-53*x+971 8024918315513325 r009 Im(z^3+c),c=-33/64+31/58*I,n=44 8024918317931829 r009 Im(z^3+c),c=-33/64+31/58*I,n=47 8024918317943780 r009 Im(z^3+c),c=-33/64+31/58*I,n=41 8024918319476118 r009 Im(z^3+c),c=-33/64+31/58*I,n=50 8024918320066759 r009 Im(z^3+c),c=-33/64+31/58*I,n=53 8024918320230982 r009 Im(z^3+c),c=-33/64+31/58*I,n=56 8024918320260164 r009 Im(z^3+c),c=-33/64+31/58*I,n=62 8024918320260582 r009 Im(z^3+c),c=-33/64+31/58*I,n=59 8024918328615700 a001 17711/1860498*1364^(14/15) 8024918332987809 a001 46368/4870847*1364^(14/15) 8024918333625691 a001 121393/12752043*1364^(14/15) 8024918333718756 a001 317811/33385282*1364^(14/15) 8024918333732334 a001 832040/87403803*1364^(14/15) 8024918333734315 a001 46347/4868641*1364^(14/15) 8024918333734604 a001 5702887/599074578*1364^(14/15) 8024918333734647 a001 14930352/1568397607*1364^(14/15) 8024918333734653 a001 39088169/4106118243*1364^(14/15) 8024918333734654 a001 102334155/10749957122*1364^(14/15) 8024918333734654 a001 267914296/28143753123*1364^(14/15) 8024918333734654 a001 701408733/73681302247*1364^(14/15) 8024918333734654 a001 1836311903/192900153618*1364^(14/15) 8024918333734654 a001 102287808/10745088481*1364^(14/15) 8024918333734654 a001 12586269025/1322157322203*1364^(14/15) 8024918333734654 a001 32951280099/3461452808002*1364^(14/15) 8024918333734654 a001 86267571272/9062201101803*1364^(14/15) 8024918333734654 a001 225851433717/23725150497407*1364^(14/15) 8024918333734654 a001 139583862445/14662949395604*1364^(14/15) 8024918333734654 a001 53316291173/5600748293801*1364^(14/15) 8024918333734654 a001 20365011074/2139295485799*1364^(14/15) 8024918333734654 a001 7778742049/817138163596*1364^(14/15) 8024918333734654 a001 2971215073/312119004989*1364^(14/15) 8024918333734654 a001 1134903170/119218851371*1364^(14/15) 8024918333734654 a001 433494437/45537549124*1364^(14/15) 8024918333734654 a001 165580141/17393796001*1364^(14/15) 8024918333734654 a001 63245986/6643838879*1364^(14/15) 8024918333734657 a001 24157817/2537720636*1364^(14/15) 8024918333734673 a001 9227465/969323029*1364^(14/15) 8024918333734783 a001 3524578/370248451*1364^(14/15) 8024918333735540 a001 1346269/141422324*1364^(14/15) 8024918333740726 a001 514229/54018521*1364^(14/15) 8024918333776274 a001 196418/20633239*1364^(14/15) 8024918334019923 a001 75025/7881196*1364^(14/15) 8024918335689920 a001 28657/3010349*1364^(14/15) 8024918347136248 a001 10946/1149851*1364^(14/15) 8024918355366996 r009 Im(z^3+c),c=-33/64+31/58*I,n=38 8024918356194981 a007 Real Root Of -905*x^4+266*x^3+250*x^2+723*x+932 8024918356464598 r008 a(0)=8,K{-n^6,-21-44*n+40*n^2-16*n^3} 8024918357236074 a003 sin(Pi*11/102)/sin(Pi*14/103) 8024918381201421 a001 2584/167761*1364^(13/15) 8024918383052485 a007 Real Root Of -639*x^4-815*x^3-129*x^2+845*x+605 8024918425590548 a001 4181/439204*1364^(14/15) 8024918438125469 l006 ln(3795/8467) 8024918451202022 a001 10946/2207*521^(1/13) 8024918453895377 a001 10946/3571*521^(2/13) 8024918458125213 m001 (Chi(1)-Zeta(1,2))/(Pi^(1/2)+TreeGrowth2nd) 8024918463902570 a003 sin(Pi*10/93)/cos(Pi*39/107) 8024918468638962 r005 Re(z^2+c),c=7/78+19/39*I,n=46 8024918486589394 m001 (gamma(1)-gamma)/(Zeta(1,2)+MadelungNaCl) 8024918533285842 r009 Im(z^3+c),c=-33/64+31/58*I,n=35 8024918582275062 m005 (1/3*Zeta(3)-1/4)/(7/9*2^(1/2)+7/9) 8024918586260888 a001 6765/439204*1364^(13/15) 8024918588022211 a007 Real Root Of -965*x^4-577*x^3-326*x^2+658*x+840 8024918609692889 h001 (-3*exp(2)-5)/(-8*exp(3/2)+2) 8024918611980708 r008 a(0)=8,K{-n^6,-31-25*n+29*n^2-14*n^3} 8024918614566043 m001 1/arctan(1/2)/exp(Sierpinski)^2*cos(Pi/5)^2 8024918616178662 a001 17711/1149851*1364^(13/15) 8024918620543606 a001 46368/3010349*1364^(13/15) 8024918621180443 a001 121393/7881196*1364^(13/15) 8024918621273356 a001 10959/711491*1364^(13/15) 8024918621286912 a001 832040/54018521*1364^(13/15) 8024918621288890 a001 2178309/141422324*1364^(13/15) 8024918621289178 a001 5702887/370248451*1364^(13/15) 8024918621289220 a001 14930352/969323029*1364^(13/15) 8024918621289226 a001 39088169/2537720636*1364^(13/15) 8024918621289227 a001 102334155/6643838879*1364^(13/15) 8024918621289227 a001 9238424/599786069*1364^(13/15) 8024918621289227 a001 701408733/45537549124*1364^(13/15) 8024918621289227 a001 1836311903/119218851371*1364^(13/15) 8024918621289227 a001 4807526976/312119004989*1364^(13/15) 8024918621289227 a001 12586269025/817138163596*1364^(13/15) 8024918621289227 a001 32951280099/2139295485799*1364^(13/15) 8024918621289227 a001 86267571272/5600748293801*1364^(13/15) 8024918621289227 a001 7787980473/505618944676*1364^(13/15) 8024918621289227 a001 365435296162/23725150497407*1364^(13/15) 8024918621289227 a001 139583862445/9062201101803*1364^(13/15) 8024918621289227 a001 53316291173/3461452808002*1364^(13/15) 8024918621289227 a001 20365011074/1322157322203*1364^(13/15) 8024918621289227 a001 7778742049/505019158607*1364^(13/15) 8024918621289227 a001 2971215073/192900153618*1364^(13/15) 8024918621289227 a001 1134903170/73681302247*1364^(13/15) 8024918621289227 a001 433494437/28143753123*1364^(13/15) 8024918621289227 a001 165580141/10749957122*1364^(13/15) 8024918621289228 a001 63245986/4106118243*1364^(13/15) 8024918621289230 a001 24157817/1568397607*1364^(13/15) 8024918621289246 a001 9227465/599074578*1364^(13/15) 8024918621289356 a001 3524578/228826127*1364^(13/15) 8024918621290112 a001 1346269/87403803*1364^(13/15) 8024918621295290 a001 514229/33385282*1364^(13/15) 8024918621330779 a001 196418/12752043*1364^(13/15) 8024918621574029 a001 75025/4870847*1364^(13/15) 8024918623241290 a001 28657/1860498*1364^(13/15) 8024918634668862 a001 10946/710647*1364^(13/15) 8024918634740065 a007 Real Root Of 868*x^4-427*x^3-905*x^2-946*x-757 8024918641473863 a001 89/322*199^(7/11) 8024918667724349 a001 1292/51841*1364^(4/5) 8024918674574520 a007 Real Root Of -803*x^4-437*x^3+184*x^2+606*x+475 8024918675484591 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^26 8024918699385879 m001 1/Tribonacci*FeigenbaumAlpha^2/ln(GAMMA(7/12)) 8024918708170991 r005 Re(z^2+c),c=-21/22+14/47*I,n=9 8024918709948984 r008 a(0)=8,K{-n^6,16-25*n-57*n^2+34*n^3} 8024918712994609 a001 4181/271443*1364^(13/15) 8024918716357876 a007 Real Root Of -821*x^4-200*x^3-680*x^2-420*x+338 8024918748106933 a007 Real Root Of -376*x^4+186*x^3+181*x^2+843*x+812 8024918763566626 a007 Real Root Of -69*x^4-562*x^3-55*x^2+18*x-593 8024918770162535 l006 ln(3557/7936) 8024918780051844 m001 Rabbit*exp(GolombDickman)/GAMMA(17/24)^2 8024918781310549 m001 (2^(1/3)+2)/(-Artin+1/3) 8024918796840194 m001 (1+Ei(1,1))/(-Zeta(1,2)+LandauRamanujan2nd) 8024918807485334 a007 Real Root Of -323*x^4+871*x^3+904*x^2+22*x-916 8024918842309881 a001 987/2207*3571^(6/17) 8024918860670306 r002 9th iterates of z^2 + 8024918873069720 a007 Real Root Of -711*x^4-787*x^3-15*x^2+854*x-68 8024918873664956 a001 2255/90481*1364^(4/5) 8024918875734110 a007 Real Root Of 805*x^4-735*x^3+393*x^2+639*x-454 8024918892708798 a001 377/5778*843^(5/7) 8024918903711285 a001 17711/710647*1364^(4/5) 8024918908094986 a001 2576/103361*1364^(4/5) 8024918908734559 a001 121393/4870847*1364^(4/5) 8024918908827872 a001 105937/4250681*1364^(4/5) 8024918908841486 a001 416020/16692641*1364^(4/5) 8024918908843472 a001 726103/29134601*1364^(4/5) 8024918908843762 a001 5702887/228826127*1364^(4/5) 8024918908843804 a001 829464/33281921*1364^(4/5) 8024918908843810 a001 39088169/1568397607*1364^(4/5) 8024918908843811 a001 34111385/1368706081*1364^(4/5) 8024918908843811 a001 133957148/5374978561*1364^(4/5) 8024918908843811 a001 233802911/9381251041*1364^(4/5) 8024918908843811 a001 1836311903/73681302247*1364^(4/5) 8024918908843811 a001 267084832/10716675201*1364^(4/5) 8024918908843811 a001 12586269025/505019158607*1364^(4/5) 8024918908843811 a001 10983760033/440719107401*1364^(4/5) 8024918908843811 a001 43133785636/1730726404001*1364^(4/5) 8024918908843811 a001 75283811239/3020733700601*1364^(4/5) 8024918908843811 a001 182717648081/7331474697802*1364^(4/5) 8024918908843811 a001 139583862445/5600748293801*1364^(4/5) 8024918908843811 a001 53316291173/2139295485799*1364^(4/5) 8024918908843811 a001 10182505537/408569081798*1364^(4/5) 8024918908843811 a001 7778742049/312119004989*1364^(4/5) 8024918908843811 a001 2971215073/119218851371*1364^(4/5) 8024918908843811 a001 567451585/22768774562*1364^(4/5) 8024918908843811 a001 433494437/17393796001*1364^(4/5) 8024918908843811 a001 165580141/6643838879*1364^(4/5) 8024918908843812 a001 31622993/1268860318*1364^(4/5) 8024918908843814 a001 24157817/969323029*1364^(4/5) 8024918908843830 a001 9227465/370248451*1364^(4/5) 8024918908843941 a001 1762289/70711162*1364^(4/5) 8024918908844700 a001 1346269/54018521*1364^(4/5) 8024918908849900 a001 514229/20633239*1364^(4/5) 8024918908885542 a001 98209/3940598*1364^(4/5) 8024918909129837 a001 75025/3010349*1364^(4/5) 8024918910804262 a001 28657/1149851*1364^(4/5) 8024918911425937 a001 408569081798/305*144^(14/17) 8024918922280938 a001 5473/219602*1364^(4/5) 8024918923308341 m005 (21/20+1/4*5^(1/2))/(4/7*5^(1/2)+8/11) 8024918931302460 b008 8+ArcCsc[Pi]/13 8024918950694628 a001 28143753123/377*144^(16/17) 8024918955786034 a001 377/3571*843^(9/14) 8024918957979822 a001 2584/64079*1364^(11/15) 8024918963324317 a001 1597/167761*1364^(14/15) 8024918977003252 a007 Real Root Of 514*x^4-440*x^3-171*x^2-584*x+593 8024918991358662 a007 Real Root Of -125*x^4+379*x^3+721*x^2+22*x-626 8024919000943251 a001 4181/167761*1364^(4/5) 8024919034184149 a007 Real Root Of 12*x^4+957*x^3-487*x^2-514*x-776 8024919035423395 a001 987/2207*9349^(6/19) 8024919041694081 a007 Real Root Of -68*x^4+859*x^3-936*x^2+343*x+34 8024919051203113 r005 Re(z^2+c),c=23/110+29/54*I,n=61 8024919060590092 a001 987/2207*24476^(2/7) 8024919063907546 a001 987/2207*64079^(6/23) 8024919064408140 a001 987/2207*439204^(2/9) 8024919064417361 a001 987/2207*7881196^(2/11) 8024919064417385 a001 987/2207*141422324^(2/13) 8024919064417385 a001 987/2207*2537720636^(2/15) 8024919064417385 a001 987/2207*45537549124^(2/17) 8024919064417385 a001 987/2207*14662949395604^(2/21) 8024919064417385 a001 987/2207*(1/2+1/2*5^(1/2))^6 8024919064417385 a001 987/2207*10749957122^(1/8) 8024919064417385 a001 987/2207*4106118243^(3/23) 8024919064417385 a001 987/2207*1568397607^(3/22) 8024919064417385 a001 987/2207*599074578^(1/7) 8024919064417385 a001 987/2207*228826127^(3/20) 8024919064417385 a001 987/2207*87403803^(3/19) 8024919064417386 a001 987/2207*33385282^(1/6) 8024919064417394 a001 987/2207*12752043^(3/17) 8024919064417448 a001 987/2207*4870847^(3/16) 8024919064417849 a001 987/2207*1860498^(1/5) 8024919064420790 a001 987/2207*710647^(3/14) 8024919064442519 a001 987/2207*271443^(3/13) 8024919064525961 a001 974169/121393 8024919064604012 a001 987/2207*103682^(1/4) 8024919065812831 a001 987/2207*39603^(3/11) 8024919074938368 a001 987/2207*15127^(3/10) 8024919080362011 a001 2178309/199*76^(23/50) 8024919090392234 a007 Real Root Of -x^4-802*x^3+395*x^2+197*x-960 8024919115520790 m005 (1/3*exp(1)+2/11)/(6/11*Zeta(3)+7/10) 8024919119420046 r009 Im(z^3+c),c=-33/64+31/58*I,n=32 8024919125882508 l006 ln(2980/3229) 8024919144541704 a001 987/2207*5778^(1/3) 8024919149819245 l006 ln(3319/7405) 8024919161613603 a001 615/15251*1364^(11/15) 8024919191323371 a001 17711/439204*1364^(11/15) 8024919195657968 a001 46368/1149851*1364^(11/15) 8024919196290377 a001 121393/3010349*1364^(11/15) 8024919196382644 a001 317811/7881196*1364^(11/15) 8024919196396106 a001 75640/1875749*1364^(11/15) 8024919196398070 a001 2178309/54018521*1364^(11/15) 8024919196398356 a001 5702887/141422324*1364^(11/15) 8024919196398398 a001 14930352/370248451*1364^(11/15) 8024919196398404 a001 39088169/969323029*1364^(11/15) 8024919196398405 a001 9303105/230701876*1364^(11/15) 8024919196398405 a001 267914296/6643838879*1364^(11/15) 8024919196398405 a001 701408733/17393796001*1364^(11/15) 8024919196398405 a001 1836311903/45537549124*1364^(11/15) 8024919196398405 a001 4807526976/119218851371*1364^(11/15) 8024919196398405 a001 1144206275/28374454999*1364^(11/15) 8024919196398405 a001 32951280099/817138163596*1364^(11/15) 8024919196398405 a001 86267571272/2139295485799*1364^(11/15) 8024919196398405 a001 225851433717/5600748293801*1364^(11/15) 8024919196398405 a001 591286729879/14662949395604*1364^(11/15) 8024919196398405 a001 365435296162/9062201101803*1364^(11/15) 8024919196398405 a001 139583862445/3461452808002*1364^(11/15) 8024919196398405 a001 53316291173/1322157322203*1364^(11/15) 8024919196398405 a001 20365011074/505019158607*1364^(11/15) 8024919196398405 a001 7778742049/192900153618*1364^(11/15) 8024919196398405 a001 2971215073/73681302247*1364^(11/15) 8024919196398405 a001 1134903170/28143753123*1364^(11/15) 8024919196398405 a001 433494437/10749957122*1364^(11/15) 8024919196398405 a001 165580141/4106118243*1364^(11/15) 8024919196398406 a001 63245986/1568397607*1364^(11/15) 8024919196398408 a001 24157817/599074578*1364^(11/15) 8024919196398424 a001 9227465/228826127*1364^(11/15) 8024919196398534 a001 3524578/87403803*1364^(11/15) 8024919196399284 a001 1346269/33385282*1364^(11/15) 8024919196404426 a001 514229/12752043*1364^(11/15) 8024919196439669 a001 196418/4870847*1364^(11/15) 8024919196681227 a001 75025/1860498*1364^(11/15) 8024919198336896 a001 28657/710647*1364^(11/15) 8024919200181021 m001 (exp(-1/2*Pi)-Khinchin)/(MadelungNaCl+Totient) 8024919209685018 a001 10946/271443*1364^(11/15) 8024919211841078 a007 Real Root Of -808*x^4-995*x^3-740*x^2+225*x+478 8024919222438991 m001 KomornikLoreti*Paris^Totient 8024919238463401 a001 2584/39603*1364^(2/3) 8024919243193354 q001 1739/2167 8024919249847266 a001 1597/103682*1364^(13/15) 8024919262221439 a007 Real Root Of 741*x^4-818*x^3+838*x^2+771*x-651 8024919287466201 a001 4181/103682*1364^(11/15) 8024919321366996 a001 2584/2207*1364^(4/15) 8024919328380443 a001 987/3571*1364^(7/15) 8024919328518305 r005 Re(z^2+c),c=-13/12+8/119*I,n=36 8024919348183717 m001 Backhouse*(Psi(2,1/3)+ZetaQ(3)) 8024919351480348 m001 (Kolakoski+Sarnak)/(BesselI(0,1)+Kac) 8024919363319762 r009 Im(z^3+c),c=-1/25+39/47*I,n=11 8024919383272249 a007 Real Root Of 990*x^4-216*x^3+927*x^2+237*x-929 8024919387161583 a007 Real Root Of -108*x^4-880*x^3-150*x^2-400*x-428 8024919396828379 p001 sum(1/(178*n+149)/(3^n),n=0..infinity) 8024919413412625 a001 610/843*843^(5/14) 8024919448136559 a001 6765/103682*1364^(2/3) 8024919456113143 r009 Re(z^3+c),c=-13/94+17/28*I,n=23 8024919457867244 a003 sin(Pi*11/37)*sin(Pi*37/77) 8024919478727460 a001 17711/271443*1364^(2/3) 8024919482582240 a007 Real Root Of 620*x^4+674*x^3+378*x^2-948*x-913 8024919483190612 a001 6624/101521*1364^(2/3) 8024919483841778 a001 121393/1860498*1364^(2/3) 8024919483936781 a001 317811/4870847*1364^(2/3) 8024919483950642 a001 832040/12752043*1364^(2/3) 8024919483952664 a001 311187/4769326*1364^(2/3) 8024919483952959 a001 5702887/87403803*1364^(2/3) 8024919483953002 a001 14930352/228826127*1364^(2/3) 8024919483953009 a001 39088169/599074578*1364^(2/3) 8024919483953010 a001 14619165/224056801*1364^(2/3) 8024919483953010 a001 267914296/4106118243*1364^(2/3) 8024919483953010 a001 701408733/10749957122*1364^(2/3) 8024919483953010 a001 1836311903/28143753123*1364^(2/3) 8024919483953010 a001 686789568/10525900321*1364^(2/3) 8024919483953010 a001 12586269025/192900153618*1364^(2/3) 8024919483953010 a001 32951280099/505019158607*1364^(2/3) 8024919483953010 a001 86267571272/1322157322203*1364^(2/3) 8024919483953010 a001 32264490531/494493258286*1364^(2/3) 8024919483953010 a001 591286729879/9062201101803*1364^(2/3) 8024919483953010 a001 1548008755920/23725150497407*1364^(2/3) 8024919483953010 a001 365435296162/5600748293801*1364^(2/3) 8024919483953010 a001 139583862445/2139295485799*1364^(2/3) 8024919483953010 a001 53316291173/817138163596*1364^(2/3) 8024919483953010 a001 20365011074/312119004989*1364^(2/3) 8024919483953010 a001 7778742049/119218851371*1364^(2/3) 8024919483953010 a001 2971215073/45537549124*1364^(2/3) 8024919483953010 a001 1134903170/17393796001*1364^(2/3) 8024919483953010 a001 433494437/6643838879*1364^(2/3) 8024919483953010 a001 165580141/2537720636*1364^(2/3) 8024919483953010 a001 63245986/969323029*1364^(2/3) 8024919483953013 a001 24157817/370248451*1364^(2/3) 8024919483953029 a001 9227465/141422324*1364^(2/3) 8024919483953142 a001 3524578/54018521*1364^(2/3) 8024919483953914 a001 1346269/20633239*1364^(2/3) 8024919483959209 a001 514229/7881196*1364^(2/3) 8024919483995497 a001 196418/3010349*1364^(2/3) 8024919484244220 a001 75025/1149851*1364^(2/3) 8024919485948992 a001 28657/439204*1364^(2/3) 8024919497633677 a001 10946/167761*1364^(2/3) 8024919502106819 a007 Real Root Of -711*x^4-9*x^3+663*x^2+300*x+104 8024919539374361 a001 139583862445/18*23725150497407^(14/17) 8024919539374361 a001 139583862445/18*505019158607^(16/17) 8024919539374361 a001 53316291173/18*9062201101803^(15/17) 8024919540102760 a001 1597/64079*1364^(4/5) 8024919544530170 a001 646/6119*1364^(3/5) 8024919577721696 a001 4181/64079*1364^(2/3) 8024919578765760 a007 Real Root Of -203*x^4-429*x^3-326*x^2+873*x+773 8024919585086725 r005 Re(z^2+c),c=-12/23+36/61*I,n=35 8024919588131112 l006 ln(3081/6874) 8024919609989335 a001 646/341*521^(3/13) 8024919624150838 a007 Real Root Of 624*x^4-690*x^3-734*x^2-43*x+605 8024919631016469 m001 GAMMA(23/24)/GAMMA(1/6)/exp(exp(1))^2 8024919673154379 a001 144/521*322^(7/12) 8024919682245138 a001 987/2207*2207^(3/8) 8024919694046353 a007 Real Root Of 24*x^4-650*x^3+920*x^2+59*x-891 8024919697384755 a007 Real Root Of -745*x^4+740*x^3+164*x^2-477*x+203 8024919715677071 r005 Im(z^2+c),c=-103/90+5/31*I,n=4 8024919723017334 r005 Im(z^2+c),c=-5/54+38/47*I,n=58 8024919738392060 a001 6765/64079*1364^(3/5) 8024919754981401 b008 9+CosIntegral[(3*Pi)/44] 8024919766676129 a001 17711/167761*1364^(3/5) 8024919770802719 a001 11592/109801*1364^(3/5) 8024919771404780 a001 121393/1149851*1364^(3/5) 8024919771492620 a001 317811/3010349*1364^(3/5) 8024919771505435 a001 208010/1970299*1364^(3/5) 8024919771507305 a001 2178309/20633239*1364^(3/5) 8024919771507578 a001 5702887/54018521*1364^(3/5) 8024919771507618 a001 3732588/35355581*1364^(3/5) 8024919771507624 a001 39088169/370248451*1364^(3/5) 8024919771507624 a001 102334155/969323029*1364^(3/5) 8024919771507625 a001 66978574/634430159*1364^(3/5) 8024919771507625 a001 701408733/6643838879*1364^(3/5) 8024919771507625 a001 1836311903/17393796001*1364^(3/5) 8024919771507625 a001 1201881744/11384387281*1364^(3/5) 8024919771507625 a001 12586269025/119218851371*1364^(3/5) 8024919771507625 a001 32951280099/312119004989*1364^(3/5) 8024919771507625 a001 21566892818/204284540899*1364^(3/5) 8024919771507625 a001 225851433717/2139295485799*1364^(3/5) 8024919771507625 a001 182717648081/1730726404001*1364^(3/5) 8024919771507625 a001 139583862445/1322157322203*1364^(3/5) 8024919771507625 a001 53316291173/505019158607*1364^(3/5) 8024919771507625 a001 10182505537/96450076809*1364^(3/5) 8024919771507625 a001 7778742049/73681302247*1364^(3/5) 8024919771507625 a001 2971215073/28143753123*1364^(3/5) 8024919771507625 a001 567451585/5374978561*1364^(3/5) 8024919771507625 a001 433494437/4106118243*1364^(3/5) 8024919771507625 a001 165580141/1568397607*1364^(3/5) 8024919771507625 a001 31622993/299537289*1364^(3/5) 8024919771507627 a001 24157817/228826127*1364^(3/5) 8024919771507642 a001 9227465/87403803*1364^(3/5) 8024919771507747 a001 1762289/16692641*1364^(3/5) 8024919771508461 a001 1346269/12752043*1364^(3/5) 8024919771513356 a001 514229/4870847*1364^(3/5) 8024919771546908 a001 98209/930249*1364^(3/5) 8024919771776875 a001 75025/710647*1364^(3/5) 8024919773353092 a001 28657/271443*1364^(3/5) 8024919783619314 a001 2584/15127*1364^(8/15) 8024919784156645 a001 5473/51841*1364^(3/5) 8024919788944682 r008 a(0)=8,K{-n^6,35-47*n-56*n^2+27*n^3} 8024919789760588 m005 (1/3*exp(1)-1/12)/(1/8*Zeta(3)+7/8) 8024919793899891 r005 Im(z^2+c),c=-11/118+40/49*I,n=13 8024919795235819 a007 Real Root Of -729*x^4-116*x^3-510*x^2-411*x+241 8024919816937256 a007 Real Root Of -746*x^4+352*x^3+23*x^2-838*x-196 8024919820586360 a001 1597/39603*1364^(11/15) 8024919846928546 a001 28657/5778*521^(1/13) 8024919852723600 a007 Real Root Of -711*x^4+340*x^3+121*x^2+297*x+631 8024919858205297 a001 4181/39603*1364^(3/5) 8024919862070380 r005 Im(z^2+c),c=-31/28+19/47*I,n=4 8024919903489960 a001 1597/2207*1364^(1/3) 8024919910029235 m001 (ln(5)+2*Pi/GAMMA(5/6))/(3^(1/2)-Chi(1)) 8024919920269632 m001 (ReciprocalLucas+Trott)/(exp(1)-sin(1/12*Pi)) 8024919922081919 a007 Real Root Of -591*x^4+832*x^3+736*x^2-683*x-347 8024919923413891 a007 Real Root Of 640*x^4-650*x^3-960*x^2-517*x-398 8024919941108898 a001 4181/2207*1364^(1/5) 8024919948157364 a007 Real Root Of 879*x^4+259*x^3-783*x^2-944*x-484 8024919965557940 m001 FeigenbaumB*GolombDickman/ln(sqrt(5))^2 8024919977725045 a007 Real Root Of -413*x^4+4*x^3-887*x^2-711*x+174 8024919985670717 a007 Real Root Of 256*x^4-272*x^3+731*x^2+762*x-106 8024919994291644 b008 -10+Erfc[-3+Sqrt[2]] 8024920006517502 m001 1/ln(BesselJ(1,1))/Champernowne^2*Zeta(9)^2 8024920018875667 a001 2255/13201*1364^(8/15) 8024920031496438 a001 377/9349*843^(11/14) 8024920050562342 a001 75025/15127*521^(1/13) 8024920053199106 a001 17711/103682*1364^(8/15) 8024920058206829 a001 15456/90481*1364^(8/15) 8024920058937445 a001 121393/710647*1364^(8/15) 8024920059044041 a001 105937/620166*1364^(8/15) 8024920059059593 a001 832040/4870847*1364^(8/15) 8024920059061862 a001 726103/4250681*1364^(8/15) 8024920059062193 a001 5702887/33385282*1364^(8/15) 8024920059062241 a001 4976784/29134601*1364^(8/15) 8024920059062248 a001 39088169/228826127*1364^(8/15) 8024920059062249 a001 34111385/199691526*1364^(8/15) 8024920059062250 a001 267914296/1568397607*1364^(8/15) 8024920059062250 a001 233802911/1368706081*1364^(8/15) 8024920059062250 a001 1836311903/10749957122*1364^(8/15) 8024920059062250 a001 1602508992/9381251041*1364^(8/15) 8024920059062250 a001 12586269025/73681302247*1364^(8/15) 8024920059062250 a001 10983760033/64300051206*1364^(8/15) 8024920059062250 a001 86267571272/505019158607*1364^(8/15) 8024920059062250 a001 75283811239/440719107401*1364^(8/15) 8024920059062250 a001 2504730781961/14662949395604*1364^(8/15) 8024920059062250 a001 139583862445/817138163596*1364^(8/15) 8024920059062250 a001 53316291173/312119004989*1364^(8/15) 8024920059062250 a001 20365011074/119218851371*1364^(8/15) 8024920059062250 a001 7778742049/45537549124*1364^(8/15) 8024920059062250 a001 2971215073/17393796001*1364^(8/15) 8024920059062250 a001 1134903170/6643838879*1364^(8/15) 8024920059062250 a001 433494437/2537720636*1364^(8/15) 8024920059062250 a001 165580141/969323029*1364^(8/15) 8024920059062250 a001 63245986/370248451*1364^(8/15) 8024920059062253 a001 24157817/141422324*1364^(8/15) 8024920059062271 a001 9227465/54018521*1364^(8/15) 8024920059062398 a001 3524578/20633239*1364^(8/15) 8024920059063264 a001 1346269/7881196*1364^(8/15) 8024920059069205 a001 514229/3010349*1364^(8/15) 8024920059109921 a001 196418/1149851*1364^(8/15) 8024920059388991 a001 75025/439204*1364^(8/15) 8024920061301771 a001 28657/167761*1364^(8/15) 8024920074412158 a001 10946/64079*1364^(8/15) 8024920075250607 m002 3*Pi^3+(Pi^5*Cosh[Pi])/5 8024920080272114 a001 196418/39603*521^(1/13) 8024920081877239 a007 Real Root Of 123*x^4+864*x^3-912*x^2+595*x-93 8024920082653456 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^27 8024920084606711 a001 514229/103682*521^(1/13) 8024920085239120 a001 1346269/271443*521^(1/13) 8024920085331387 a001 3524578/710647*521^(1/13) 8024920085344849 a001 9227465/1860498*521^(1/13) 8024920085346813 a001 24157817/4870847*521^(1/13) 8024920085347100 a001 63245986/12752043*521^(1/13) 8024920085347141 a001 165580141/33385282*521^(1/13) 8024920085347147 a001 433494437/87403803*521^(1/13) 8024920085347148 a001 1134903170/228826127*521^(1/13) 8024920085347148 a001 2971215073/599074578*521^(1/13) 8024920085347148 a001 7778742049/1568397607*521^(1/13) 8024920085347149 a001 20365011074/4106118243*521^(1/13) 8024920085347149 a001 53316291173/10749957122*521^(1/13) 8024920085347149 a001 139583862445/28143753123*521^(1/13) 8024920085347149 a001 365435296162/73681302247*521^(1/13) 8024920085347149 a001 956722026041/192900153618*521^(1/13) 8024920085347149 a001 2504730781961/505019158607*521^(1/13) 8024920085347149 a001 10610209857723/2139295485799*521^(1/13) 8024920085347149 a001 4052739537881/817138163596*521^(1/13) 8024920085347149 a001 140728068720/28374454999*521^(1/13) 8024920085347149 a001 591286729879/119218851371*521^(1/13) 8024920085347149 a001 225851433717/45537549124*521^(1/13) 8024920085347149 a001 86267571272/17393796001*521^(1/13) 8024920085347149 a001 32951280099/6643838879*521^(1/13) 8024920085347149 a001 1144206275/230701876*521^(1/13) 8024920085347149 a001 4807526976/969323029*521^(1/13) 8024920085347149 a001 1836311903/370248451*521^(1/13) 8024920085347149 a001 701408733/141422324*521^(1/13) 8024920085347151 a001 267914296/54018521*521^(1/13) 8024920085347167 a001 9303105/1875749*521^(1/13) 8024920085347277 a001 39088169/7881196*521^(1/13) 8024920085348027 a001 14930352/3010349*521^(1/13) 8024920085353169 a001 5702887/1149851*521^(1/13) 8024920085388412 a001 2178309/439204*521^(1/13) 8024920085629971 a001 75640/15251*521^(1/13) 8024920087285639 a001 317811/64079*521^(1/13) 8024920098633762 a001 121393/24476*521^(1/13) 8024920099828973 l006 ln(2843/6343) 8024920099828973 p004 log(6343/2843) 8024920101779269 a001 6765/2207*1364^(2/15) 8024920112570406 m001 GAMMA(13/24)/(sin(1)+Zeta(3)) 8024920119562464 a001 329/90481*3571^(16/17) 8024920124984040 a007 Real Root Of 220*x^4-776*x^3+809*x^2+348*x-734 8024920126653150 a001 1597/24476*1364^(2/3) 8024920131057013 a007 Real Root Of 498*x^4-849*x^3+566*x^2+320*x-753 8024920153425530 a001 1292/2889*1364^(2/5) 8024920156974441 a001 987/167761*3571^(15/17) 8024920161192962 m001 (Ei(1,1)-ln(2)/ln(10))/(BesselI(1,1)+ZetaP(2)) 8024920164272090 a001 4181/24476*1364^(8/15) 8024920175441772 a001 329/1926*3571^(8/17) 8024920176414955 a001 46368/9349*521^(1/13) 8024920185424724 l006 ln(9929/10009) 8024920185424724 p004 log(10009/9929) 8024920192960717 a001 21/2206*3571^(14/17) 8024920198058200 a001 2584/9349*1364^(7/15) 8024920203251057 a007 Real Root Of 16*x^4+22*x^3-862*x^2-97*x-253 8024920210886832 r002 3th iterates of z^2 + 8024920232679529 a001 987/64079*3571^(13/17) 8024920251929031 m001 (KhinchinLevy+Paris)/(gamma(1)-GAMMA(7/12)) 8024920252338960 m007 (-3/5*gamma-6/5*ln(2)+1)/(-5*gamma+2/3) 8024920253432703 r005 Re(z^2+c),c=-41/98+10/17*I,n=3 8024920262626434 a001 329/13201*3571^(12/17) 8024920280765279 a008 Real Root of (1+4*x-2*x^2-5*x^3+4*x^4-6*x^5) 8024920301057437 r005 Re(z^2+c),c=-37/70+39/64*I,n=19 8024920306708970 a001 141/2161*3571^(10/17) 8024920311712878 a007 Real Root Of 85*x^4+789*x^3+784*x^2-657*x-525 8024920318156522 a001 987/24476*3571^(11/17) 8024920323513797 a001 2584/2207*3571^(4/17) 8024920324942465 a001 6765/24476*1364^(7/15) 8024920343454630 a001 17711/64079*1364^(7/15) 8024920346155518 a001 46368/167761*1364^(7/15) 8024920346549572 a001 121393/439204*1364^(7/15) 8024920346607064 a001 317811/1149851*1364^(7/15) 8024920346615452 a001 832040/3010349*1364^(7/15) 8024920346616676 a001 2178309/7881196*1364^(7/15) 8024920346616854 a001 5702887/20633239*1364^(7/15) 8024920346616881 a001 14930352/54018521*1364^(7/15) 8024920346616884 a001 39088169/141422324*1364^(7/15) 8024920346616885 a001 102334155/370248451*1364^(7/15) 8024920346616885 a001 267914296/969323029*1364^(7/15) 8024920346616885 a001 701408733/2537720636*1364^(7/15) 8024920346616885 a001 1836311903/6643838879*1364^(7/15) 8024920346616885 a001 4807526976/17393796001*1364^(7/15) 8024920346616885 a001 12586269025/45537549124*1364^(7/15) 8024920346616885 a001 32951280099/119218851371*1364^(7/15) 8024920346616885 a001 86267571272/312119004989*1364^(7/15) 8024920346616885 a001 225851433717/817138163596*1364^(7/15) 8024920346616885 a001 1548008755920/5600748293801*1364^(7/15) 8024920346616885 a001 139583862445/505019158607*1364^(7/15) 8024920346616885 a001 53316291173/192900153618*1364^(7/15) 8024920346616885 a001 20365011074/73681302247*1364^(7/15) 8024920346616885 a001 7778742049/28143753123*1364^(7/15) 8024920346616885 a001 2971215073/10749957122*1364^(7/15) 8024920346616885 a001 1134903170/4106118243*1364^(7/15) 8024920346616885 a001 433494437/1568397607*1364^(7/15) 8024920346616885 a001 165580141/599074578*1364^(7/15) 8024920346616885 a001 63245986/228826127*1364^(7/15) 8024920346616887 a001 24157817/87403803*1364^(7/15) 8024920346616897 a001 9227465/33385282*1364^(7/15) 8024920346616965 a001 3524578/12752043*1364^(7/15) 8024920346617432 a001 1346269/4870847*1364^(7/15) 8024920346620636 a001 514229/1860498*1364^(7/15) 8024920346642596 a001 196418/710647*1364^(7/15) 8024920346793111 a001 75025/271443*1364^(7/15) 8024920347824759 a001 28657/103682*1364^(7/15) 8024920354895777 a001 10946/39603*1364^(7/15) 8024920356343414 s002 sum(A195987[n]/(2^n+1),n=1..infinity) 8024920357967130 r008 a(0)=8,K{-n^6,-71+86*n^3-3*n^2-52*n} 8024920358950394 a007 Real Root Of 324*x^4-524*x^3+278*x^2+323*x-325 8024920360995554 a007 Real Root Of 55*x^4-201*x^3+123*x^2-683*x-754 8024920365742312 a001 1597/15127*1364^(3/5) 8024920388080859 r005 Re(z^2+c),c=-53/58+4/43*I,n=16 8024920388680497 m009 (2/5*Psi(1,1/3)-6)/(2/3*Psi(1,3/4)+3/4) 8024920391221856 m001 (Psi(1,1/3)+gamma)/(-Ei(1)+BesselI(1,1)) 8024920403361252 a001 4181/15127*1364^(7/15) 8024920432926502 a001 329/1926*9349^(8/19) 8024920437799383 a001 10946/2207*1364^(1/15) 8024920452175008 r005 Re(z^2+c),c=-13/12+8/119*I,n=42 8024920452256163 a001 2584/2207*9349^(4/19) 8024920452731840 a007 Real Root Of -584*x^4+537*x^3-644*x^2-423*x+595 8024920460966567 a007 Real Root Of -867*x^4+478*x^3-811*x^2-593*x+653 8024920463286176 a005 (1/cos(19/202*Pi))^47 8024920466482104 a001 329/1926*24476^(8/21) 8024920466595970 q001 3027/3772 8024920469033964 a001 2584/2207*24476^(4/21) 8024920470611159 a001 987/9349*3571^(9/17) 8024920470905377 a001 329/1926*64079^(8/23) 8024920471245601 a001 2584/2207*64079^(4/23) 8024920471585162 a001 329/1926*(1/2+1/2*5^(1/2))^8 8024920471585162 a001 329/1926*23725150497407^(1/8) 8024920471585162 a001 329/1926*505019158607^(1/7) 8024920471585162 a001 329/1926*73681302247^(2/13) 8024920471585162 a001 329/1926*10749957122^(1/6) 8024920471585162 a001 329/1926*4106118243^(4/23) 8024920471585162 a001 329/1926*1568397607^(2/11) 8024920471585162 a001 329/1926*599074578^(4/21) 8024920471585162 a001 329/1926*228826127^(1/5) 8024920471585162 a001 329/1926*87403803^(4/19) 8024920471585164 a001 329/1926*33385282^(2/9) 8024920471585174 a001 329/1926*12752043^(4/17) 8024920471585247 a001 329/1926*4870847^(1/4) 8024920471585493 a001 2584/2207*(1/2+1/2*5^(1/2))^4 8024920471585493 a001 2584/2207*23725150497407^(1/16) 8024920471585493 a001 2584/2207*73681302247^(1/13) 8024920471585493 a001 2584/2207*10749957122^(1/12) 8024920471585493 a001 2584/2207*4106118243^(2/23) 8024920471585493 a001 2584/2207*1568397607^(1/11) 8024920471585493 a001 2584/2207*599074578^(2/21) 8024920471585493 a001 2584/2207*228826127^(1/10) 8024920471585493 a001 2584/2207*87403803^(2/19) 8024920471585494 a001 2584/2207*33385282^(1/9) 8024920471585499 a001 2584/2207*12752043^(2/17) 8024920471585536 a001 2584/2207*4870847^(1/8) 8024920471585781 a001 329/1926*1860498^(4/15) 8024920471585802 a001 2584/2207*1860498^(2/15) 8024920471587763 a001 2584/2207*710647^(1/7) 8024920471589702 a001 329/1926*710647^(2/7) 8024920471601045 a001 850136/105937 8024920471602249 a001 2584/2207*271443^(2/13) 8024920471618674 a001 329/1926*271443^(4/13) 8024920471709911 a001 2584/2207*103682^(1/6) 8024920471833998 a001 329/1926*103682^(1/3) 8024920472515791 a001 2584/2207*39603^(2/11) 8024920473445757 a001 329/1926*39603^(4/11) 8024920478599483 a001 2584/2207*15127^(1/5) 8024920485613142 a001 329/1926*15127^(2/5) 8024920490223824 r009 Re(z^3+c),c=-13/19+16/51*I,n=2 8024920500944768 a007 Real Root Of -572*x^4+952*x^3-228*x^2+61*x+925 8024920501828682 r009 Im(z^3+c),c=-33/64+31/58*I,n=29 8024920505146967 m001 GAMMA(2/3)^MertensB2/Niven 8024920505644157 r005 Re(z^2+c),c=-13/12+8/119*I,n=46 8024920512957433 a007 Real Root Of 213*x^4-473*x^3+200*x^2+73*x-403 8024920514430092 m001 (Mills+ZetaQ(2))/(ln(3)+Gompertz) 8024920519699901 r005 Re(z^2+c),c=-13/12+8/119*I,n=52 8024920520733502 r005 Re(z^2+c),c=-13/12+8/119*I,n=56 8024920520892420 r005 Re(z^2+c),c=-13/12+8/119*I,n=62 8024920520920064 r005 Re(z^2+c),c=-13/12+8/119*I,n=64 8024920520920678 r005 Re(z^2+c),c=-13/12+8/119*I,n=58 8024920520938900 r005 Re(z^2+c),c=-13/12+8/119*I,n=60 8024920521513153 r005 Re(z^2+c),c=-13/12+8/119*I,n=54 8024920522039764 r005 Re(z^2+c),c=-13/12+8/119*I,n=50 8024920523420968 r005 Re(z^2+c),c=-13/12+8/119*I,n=48 8024920525001715 a001 2584/2207*5778^(2/9) 8024920542779940 r005 Re(z^2+c),c=-13/12+8/119*I,n=40 8024920560105526 a007 Real Root Of 542*x^4-990*x^3-233*x^2-602*x+920 8024920562725537 r005 Re(z^2+c),c=-13/12+8/119*I,n=44 8024920564031633 a001 6765/15127*1364^(2/5) 8024920572319989 m008 (5*Pi^3+2/3)/(2*Pi^4-4/5) 8024920578417607 a001 329/1926*5778^(4/9) 8024920586929371 r005 Re(z^2+c),c=21/86+25/53*I,n=10 8024920588342217 r002 35th iterates of z^2 + 8024920602852703 a001 6765/2207*3571^(2/17) 8024920608576338 a003 sin(Pi*1/84)+sin(Pi*33/119) 8024920620143845 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^29 8024920623938257 a001 17711/39603*1364^(2/5) 8024920624960287 a001 141/101521*9349^(18/19) 8024920628564889 a001 141/2161*9349^(10/19) 8024920629850112 a001 987/439204*9349^(17/19) 8024920632678516 a001 23184/51841*1364^(2/5) 8024920633953703 a001 121393/271443*1364^(2/5) 8024920634139750 a001 317811/710647*1364^(2/5) 8024920634166894 a001 416020/930249*1364^(2/5) 8024920634170854 a001 2178309/4870847*1364^(2/5) 8024920634171432 a001 5702887/12752043*1364^(2/5) 8024920634171516 a001 7465176/16692641*1364^(2/5) 8024920634171529 a001 39088169/87403803*1364^(2/5) 8024920634171530 a001 102334155/228826127*1364^(2/5) 8024920634171531 a001 133957148/299537289*1364^(2/5) 8024920634171531 a001 701408733/1568397607*1364^(2/5) 8024920634171531 a001 1836311903/4106118243*1364^(2/5) 8024920634171531 a001 2403763488/5374978561*1364^(2/5) 8024920634171531 a001 12586269025/28143753123*1364^(2/5) 8024920634171531 a001 32951280099/73681302247*1364^(2/5) 8024920634171531 a001 43133785636/96450076809*1364^(2/5) 8024920634171531 a001 225851433717/505019158607*1364^(2/5) 8024920634171531 a001 591286729879/1322157322203*1364^(2/5) 8024920634171531 a001 10610209857723/23725150497407*1364^(2/5) 8024920634171531 a001 182717648081/408569081798*1364^(2/5) 8024920634171531 a001 139583862445/312119004989*1364^(2/5) 8024920634171531 a001 53316291173/119218851371*1364^(2/5) 8024920634171531 a001 10182505537/22768774562*1364^(2/5) 8024920634171531 a001 7778742049/17393796001*1364^(2/5) 8024920634171531 a001 2971215073/6643838879*1364^(2/5) 8024920634171531 a001 567451585/1268860318*1364^(2/5) 8024920634171531 a001 433494437/969323029*1364^(2/5) 8024920634171531 a001 165580141/370248451*1364^(2/5) 8024920634171531 a001 31622993/70711162*1364^(2/5) 8024920634171536 a001 24157817/54018521*1364^(2/5) 8024920634171568 a001 9227465/20633239*1364^(2/5) 8024920634171789 a001 1762289/3940598*1364^(2/5) 8024920634173302 a001 1346269/3010349*1364^(2/5) 8024920634183670 a001 514229/1149851*1364^(2/5) 8024920634254733 a001 98209/219602*1364^(2/5) 8024920634531929 a001 329/90481*9349^(16/19) 8024920634741811 a001 75025/167761*1364^(2/5) 8024920638080293 a001 28657/64079*1364^(2/5) 8024920639758316 a001 987/167761*9349^(15/19) 8024920643559001 a001 21/2206*9349^(14/19) 8024920648853537 a001 329/13201*9349^(12/19) 8024920648903553 a007 Real Root Of 56*x^4+335*x^3-905*x^2+7*x-782 8024920651092222 a001 987/64079*9349^(13/19) 8024920652647540 m005 (1/2*3^(1/2)+5/11)/(3/8*gamma-1/5) 8024920655126215 a001 7/610*75025^(14/37) 8024920660962588 a001 5473/12238*1364^(2/5) 8024920667223888 a001 6765/2207*9349^(2/19) 8024920670509392 a001 141/2161*24476^(10/21) 8024920672198034 a001 987/24476*9349^(11/19) 8024920675612789 a001 6765/2207*24476^(2/21) 8024920675806589 r002 57th iterates of z^2 + 8024920676038484 a001 141/2161*64079^(10/23) 8024920676207481 r005 Im(z^2+c),c=-13/70+37/46*I,n=28 8024920676718607 a001 6765/2207*64079^(2/23) 8024920676774159 a001 141/2161*167761^(2/5) 8024920676888210 a001 141/2161*20633239^(2/7) 8024920676888215 a001 141/2161*2537720636^(2/9) 8024920676888215 a001 141/2161*312119004989^(2/11) 8024920676888215 a001 141/2161*(1/2+1/2*5^(1/2))^10 8024920676888215 a001 141/2161*28143753123^(1/5) 8024920676888215 a001 141/2161*10749957122^(5/24) 8024920676888215 a001 141/2161*4106118243^(5/23) 8024920676888215 a001 141/2161*1568397607^(5/22) 8024920676888215 a001 141/2161*599074578^(5/21) 8024920676888215 a001 141/2161*228826127^(1/4) 8024920676888216 a001 141/2161*87403803^(5/19) 8024920676888217 a001 141/2161*33385282^(5/18) 8024920676888230 a001 141/2161*12752043^(5/17) 8024920676888321 a001 141/2161*4870847^(5/16) 8024920676888553 a001 6765/2207*(1/2+1/2*5^(1/2))^2 8024920676888553 a001 6765/2207*10749957122^(1/24) 8024920676888553 a001 6765/2207*4106118243^(1/23) 8024920676888553 a001 6765/2207*1568397607^(1/22) 8024920676888553 a001 6765/2207*599074578^(1/21) 8024920676888553 a001 6765/2207*228826127^(1/20) 8024920676888554 a001 6765/2207*87403803^(1/19) 8024920676888554 a001 6765/2207*33385282^(1/18) 8024920676888556 a001 6765/2207*12752043^(1/17) 8024920676888575 a001 6765/2207*4870847^(1/16) 8024920676888708 a001 6765/2207*1860498^(1/15) 8024920676888988 a001 141/2161*1860498^(1/3) 8024920676889689 a001 6765/2207*710647^(1/14) 8024920676890534 a001 121401/15128 8024920676893891 a001 141/2161*710647^(5/14) 8024920676896931 a001 6765/2207*271443^(1/13) 8024920676930105 a001 141/2161*271443^(5/13) 8024920676950762 a001 6765/2207*103682^(1/12) 8024920677199260 a001 141/2161*103682^(5/12) 8024920677353702 a001 6765/2207*39603^(1/11) 8024920679213959 a001 141/2161*39603^(5/11) 8024920680395548 a001 6765/2207*15127^(1/10) 8024920688336106 a001 10946/2207*3571^(1/17) 8024920692719046 a001 4181/2207*3571^(3/17) 8024920694423190 a001 141/2161*15127^(1/2) 8024920698562636 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^31 8024920699186940 a001 329/13201*24476^(4/7) 8024920699198200 a001 329/620166*24476^(20/21) 8024920699844470 a001 987/1149851*24476^(19/21) 8024920700460393 a001 141/101521*24476^(6/7) 8024920701155767 a001 987/439204*24476^(17/21) 8024920701643134 a001 329/90481*24476^(16/21) 8024920702281305 a001 21/2206*24476^(2/3) 8024920702675070 a001 987/167761*24476^(5/7) 8024920703596665 a001 6765/2207*5778^(1/9) 8024920705027062 l006 ln(2605/5812) 8024920705620076 a001 987/64079*24476^(13/21) 8024920705821851 a001 329/13201*64079^(12/23) 8024920706823039 a001 329/13201*439204^(4/9) 8024920706841481 a001 329/13201*7881196^(4/11) 8024920706841528 a001 329/13201*141422324^(4/13) 8024920706841528 a001 329/13201*2537720636^(4/15) 8024920706841528 a001 329/13201*45537549124^(4/17) 8024920706841528 a001 329/13201*817138163596^(4/19) 8024920706841528 a001 329/13201*14662949395604^(4/21) 8024920706841528 a001 329/13201*(1/2+1/2*5^(1/2))^12 8024920706841528 a001 329/13201*192900153618^(2/9) 8024920706841528 a001 329/13201*73681302247^(3/13) 8024920706841528 a001 329/13201*10749957122^(1/4) 8024920706841528 a001 329/13201*4106118243^(6/23) 8024920706841528 a001 329/13201*1568397607^(3/11) 8024920706841528 a001 329/13201*599074578^(2/7) 8024920706841528 a001 329/13201*228826127^(3/10) 8024920706841528 a001 329/13201*87403803^(6/19) 8024920706841530 a001 329/13201*33385282^(1/3) 8024920706841545 a001 329/13201*12752043^(6/17) 8024920706841655 a001 329/13201*4870847^(3/8) 8024920706841866 a001 17711/2207 8024920706842455 a001 329/13201*1860498^(2/5) 8024920706848338 a001 329/13201*710647^(3/7) 8024920706891796 a001 329/13201*271443^(6/13) 8024920707214782 a001 329/13201*103682^(1/2) 8024920708946737 r008 a(0)=8,K{-n^6,24+47*n^3-61*n^2-49*n} 8024920709535221 a001 17711/3571*521^(1/13) 8024920709632421 a001 329/13201*39603^(6/11) 8024920710003783 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^33 8024920710022034 a001 21/2206*64079^(14/23) 8024920710088418 a001 987/4870847*64079^(22/23) 8024920710174615 a001 987/3010349*64079^(21/23) 8024920710256384 a001 329/620166*64079^(20/23) 8024920710349745 a001 987/1149851*64079^(19/23) 8024920710412759 a001 141/101521*64079^(18/23) 8024920710489681 a001 329/90481*64079^(16/23) 8024920710555223 a001 987/439204*64079^(17/23) 8024920710968709 a001 987/167761*64079^(15/23) 8024920711211650 a001 21/2206*20633239^(2/5) 8024920711211657 a001 21/2206*17393796001^(2/7) 8024920711211657 a001 21/2206*14662949395604^(2/9) 8024920711211657 a001 21/2206*(1/2+1/2*5^(1/2))^14 8024920711211657 a001 21/2206*505019158607^(1/4) 8024920711211657 a001 21/2206*10749957122^(7/24) 8024920711211657 a001 21/2206*4106118243^(7/23) 8024920711211657 a001 21/2206*1568397607^(7/22) 8024920711211657 a001 21/2206*599074578^(1/3) 8024920711211658 a001 21/2206*228826127^(7/20) 8024920711211658 a001 21/2206*87403803^(7/19) 8024920711211660 a001 21/2206*33385282^(7/18) 8024920711211678 a001 21/2206*12752043^(7/17) 8024920711211707 a001 45765216/5702887 8024920711211805 a001 21/2206*4870847^(7/16) 8024920711211996 a004 Fibonacci(24)/Lucas(16)/(1/2+sqrt(5)/2)^2 8024920711212631 a001 377/15127*843^(6/7) 8024920711212739 a001 21/2206*1860498^(7/15) 8024920711219603 a001 21/2206*710647^(1/2) 8024920711270303 a001 21/2206*271443^(7/13) 8024920711647120 a001 21/2206*103682^(7/12) 8024920711673024 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^35 8024920711727734 a001 329/620166*167761^(4/5) 8024920711849251 a001 329/90481*(1/2+1/2*5^(1/2))^16 8024920711849251 a001 329/90481*23725150497407^(1/4) 8024920711849251 a001 329/90481*73681302247^(4/13) 8024920711849251 a001 329/90481*10749957122^(1/3) 8024920711849251 a001 329/90481*4106118243^(8/23) 8024920711849251 a001 329/90481*1568397607^(4/11) 8024920711849251 a001 329/90481*599074578^(8/21) 8024920711849251 a001 329/90481*228826127^(2/5) 8024920711849251 a001 329/90481*87403803^(8/19) 8024920711849254 a001 329/90481*33385282^(4/9) 8024920711849258 a001 39938297/4976784 8024920711849274 a001 329/90481*12752043^(8/17) 8024920711849420 a001 329/90481*4870847^(1/2) 8024920711849589 a004 Fibonacci(26)/Lucas(16)/(1/2+sqrt(5)/2)^4 8024920711850487 a001 329/90481*1860498^(8/15) 8024920711858331 a001 329/90481*710647^(4/7) 8024920711914540 a001 141/101521*439204^(2/3) 8024920711916275 a001 329/90481*271443^(8/13) 8024920711916563 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^37 8024920711921136 a001 329/4250681*439204^(8/9) 8024920711926694 a001 987/3010349*439204^(7/9) 8024920711942204 a001 141/101521*7881196^(6/11) 8024920711942274 a001 141/101521*141422324^(6/13) 8024920711942274 a001 141/101521*2537720636^(2/5) 8024920711942274 a001 141/101521*45537549124^(6/17) 8024920711942274 a001 141/101521*14662949395604^(2/7) 8024920711942274 a001 141/101521*(1/2+1/2*5^(1/2))^18 8024920711942274 a001 141/101521*192900153618^(1/3) 8024920711942274 a001 141/101521*10749957122^(3/8) 8024920711942274 a001 141/101521*4106118243^(9/23) 8024920711942274 a001 141/101521*1568397607^(9/22) 8024920711942274 a001 141/101521*599074578^(3/7) 8024920711942274 a001 141/101521*228826127^(9/20) 8024920711942275 a001 141/101521*87403803^(9/19) 8024920711942275 a001 313679457/39088169 8024920711942278 a001 141/101521*33385282^(1/2) 8024920711942301 a001 141/101521*12752043^(9/17) 8024920711942465 a001 141/101521*4870847^(9/16) 8024920711942613 a004 Fibonacci(28)/Lucas(16)/(1/2+sqrt(5)/2)^6 8024920711943665 a001 141/101521*1860498^(3/5) 8024920711952095 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^39 8024920711952490 a001 141/101521*710647^(9/14) 8024920711955836 a001 329/620166*20633239^(4/7) 8024920711955846 a001 329/620166*2537720636^(4/9) 8024920711955846 a001 329/620166*(1/2+1/2*5^(1/2))^20 8024920711955846 a001 329/620166*23725150497407^(5/16) 8024920711955846 a001 329/620166*505019158607^(5/14) 8024920711955846 a001 329/620166*73681302247^(5/13) 8024920711955846 a001 329/620166*28143753123^(2/5) 8024920711955846 a001 329/620166*10749957122^(5/12) 8024920711955846 a001 329/620166*4106118243^(10/23) 8024920711955846 a001 329/620166*1568397607^(5/11) 8024920711955846 a001 329/620166*599074578^(10/21) 8024920711955846 a001 329/620166*228826127^(1/2) 8024920711955846 a001 711016/88601 8024920711955847 a001 329/620166*87403803^(10/19) 8024920711955850 a001 329/620166*33385282^(5/9) 8024920711955875 a001 329/620166*12752043^(10/17) 8024920711956058 a001 329/620166*4870847^(5/8) 8024920711956185 a004 Fibonacci(30)/Lucas(16)/(1/2+sqrt(5)/2)^8 8024920711957279 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^41 8024920711957392 a001 329/620166*1860498^(2/3) 8024920711957740 a001 987/4870847*7881196^(2/3) 8024920711957826 a001 987/4870847*312119004989^(2/5) 8024920711957826 a001 987/4870847*(1/2+1/2*5^(1/2))^22 8024920711957826 a001 987/4870847*10749957122^(11/24) 8024920711957826 a001 987/4870847*4106118243^(11/23) 8024920711957826 a001 987/4870847*1568397607^(1/2) 8024920711957826 a001 987/4870847*599074578^(11/21) 8024920711957826 a001 2149990983/267914296 8024920711957827 a001 987/4870847*228826127^(11/20) 8024920711957827 a001 987/4870847*87403803^(11/19) 8024920711957831 a001 987/4870847*33385282^(11/18) 8024920711957858 a001 987/4870847*12752043^(11/17) 8024920711958021 a001 329/4250681*7881196^(8/11) 8024920711958036 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^43 8024920711958047 a001 21/4868641*7881196^(10/11) 8024920711958059 a001 987/4870847*4870847^(11/16) 8024920711958062 a001 987/54018521*7881196^(9/11) 8024920711958115 a001 329/4250681*141422324^(8/13) 8024920711958115 a001 329/4250681*2537720636^(8/15) 8024920711958115 a001 329/4250681*45537549124^(8/17) 8024920711958115 a001 329/4250681*14662949395604^(8/21) 8024920711958115 a001 329/4250681*(1/2+1/2*5^(1/2))^24 8024920711958115 a001 329/4250681*192900153618^(4/9) 8024920711958115 a001 329/4250681*73681302247^(6/13) 8024920711958115 a001 329/4250681*10749957122^(1/2) 8024920711958115 a001 329/4250681*4106118243^(12/23) 8024920711958115 a001 329/4250681*1568397607^(6/11) 8024920711958115 a001 1876249823/233802911 8024920711958115 a001 329/4250681*599074578^(4/7) 8024920711958115 a001 329/4250681*228826127^(3/5) 8024920711958116 a001 329/4250681*87403803^(12/19) 8024920711958120 a001 329/4250681*33385282^(2/3) 8024920711958146 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^45 8024920711958148 a001 21/4868641*20633239^(6/7) 8024920711958149 a001 329/29134601*20633239^(4/5) 8024920711958150 a001 329/4250681*12752043^(12/17) 8024920711958157 a001 141/4769326*141422324^(2/3) 8024920711958158 a001 141/4769326*(1/2+1/2*5^(1/2))^26 8024920711958158 a001 141/4769326*73681302247^(1/2) 8024920711958158 a001 141/4769326*10749957122^(13/24) 8024920711958158 a001 141/4769326*4106118243^(13/23) 8024920711958158 a001 14736257424/1836311903 8024920711958158 a001 141/4769326*1568397607^(13/22) 8024920711958158 a001 141/4769326*599074578^(13/21) 8024920711958158 a001 141/4769326*228826127^(13/20) 8024920711958158 a001 141/4769326*87403803^(13/19) 8024920711958162 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^47 8024920711958163 a001 141/4769326*33385282^(13/18) 8024920711958164 a001 329/29134601*17393796001^(4/7) 8024920711958164 a001 329/29134601*14662949395604^(4/9) 8024920711958164 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^28/Lucas(38) 8024920711958164 a001 329/29134601*505019158607^(1/2) 8024920711958164 a001 329/29134601*73681302247^(7/13) 8024920711958164 a001 329/29134601*10749957122^(7/12) 8024920711958164 a001 39088169/4870848 8024920711958164 a001 329/29134601*4106118243^(14/23) 8024920711958164 a001 329/29134601*1568397607^(7/11) 8024920711958164 a001 329/29134601*599074578^(2/3) 8024920711958164 a001 329/29134601*228826127^(7/10) 8024920711958164 a001 21/4868641*141422324^(10/13) 8024920711958164 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^49 8024920711958164 a001 329/1368706081*141422324^(12/13) 8024920711958164 a001 987/969323029*141422324^(11/13) 8024920711958164 a001 329/29134601*87403803^(14/19) 8024920711958165 a001 21/4868641*2537720636^(2/3) 8024920711958165 a001 21/4868641*45537549124^(10/17) 8024920711958165 a001 21/4868641*312119004989^(6/11) 8024920711958165 a001 21/4868641*14662949395604^(10/21) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^30/Lucas(40) 8024920711958165 a001 21/4868641*192900153618^(5/9) 8024920711958165 a001 21/4868641*28143753123^(3/5) 8024920711958165 a001 1836432927/228841255 8024920711958165 a001 21/4868641*10749957122^(5/8) 8024920711958165 a001 21/4868641*4106118243^(15/23) 8024920711958165 a001 21/4868641*1568397607^(15/22) 8024920711958165 a001 21/4868641*599074578^(5/7) 8024920711958165 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^51 8024920711958165 a001 21/4868641*228826127^(3/4) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^32/Lucas(42) 8024920711958165 a001 329/199691526*23725150497407^(1/2) 8024920711958165 a001 329/199691526*505019158607^(4/7) 8024920711958165 a001 329/199691526*73681302247^(8/13) 8024920711958165 a001 88143803384/10983760033 8024920711958165 a001 329/199691526*10749957122^(2/3) 8024920711958165 a001 329/199691526*4106118243^(16/23) 8024920711958165 a001 329/199691526*1568397607^(8/11) 8024920711958165 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^53 8024920711958165 a001 329/199691526*599074578^(16/21) 8024920711958165 a001 141/224056801*45537549124^(2/3) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^34/Lucas(44) 8024920711958165 a001 692290419471/86267571272 8024920711958165 a001 141/224056801*10749957122^(17/24) 8024920711958165 a001 141/224056801*4106118243^(17/23) 8024920711958165 a001 329/1368706081*2537720636^(4/5) 8024920711958165 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^55 8024920711958165 a001 141/10525900321*2537720636^(14/15) 8024920711958165 a001 329/9381251041*2537720636^(8/9) 8024920711958165 a001 987/17393796001*2537720636^(13/15) 8024920711958165 a001 141/224056801*1568397607^(17/22) 8024920711958165 a001 329/1368706081*45537549124^(12/17) 8024920711958165 a001 329/1368706081*14662949395604^(4/7) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(46) 8024920711958165 a001 329/1368706081*505019158607^(9/14) 8024920711958165 a001 86306659441/10754830177 8024920711958165 a001 329/1368706081*192900153618^(2/3) 8024920711958165 a001 329/1368706081*73681302247^(9/13) 8024920711958165 a001 329/1368706081*10749957122^(3/4) 8024920711958165 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^57 8024920711958165 a001 329/1368706081*4106118243^(18/23) 8024920711958165 a001 987/10749957122*817138163596^(2/3) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(48) 8024920711958165 a001 4745029125312/591286729879 8024920711958165 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^59 8024920711958165 a001 141/10525900321*17393796001^(6/7) 8024920711958165 a001 987/10749957122*10749957122^(19/24) 8024920711958165 a001 329/9381251041*312119004989^(8/11) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(50) 8024920711958165 a001 329/9381251041*23725150497407^(5/8) 8024920711958165 a001 75288772895/9381871248 8024920711958165 a001 329/9381251041*73681302247^(10/13) 8024920711958165 a001 141/10525900321*45537549124^(14/17) 8024920711958165 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^61 8024920711958165 a001 329/440719107401*45537549124^(16/17) 8024920711958165 a001 987/312119004989*45537549124^(15/17) 8024920711958165 a001 329/9381251041*28143753123^(4/5) 8024920711958165 a001 141/10525900321*817138163596^(14/19) 8024920711958165 a001 141/10525900321*14662949395604^(2/3) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(52) 8024920711958165 a001 32522913457713/4052739537881 8024920711958165 a001 141/10525900321*505019158607^(3/4) 8024920711958165 a001 141/10525900321*192900153618^(7/9) 8024920711958165 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^63 8024920711958165 a001 329/64300051206*312119004989^(4/5) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(54) 8024920711958165 a001 329/64300051206*23725150497407^(11/16) 8024920711958165 a001 86267571272/10749959329 8024920711958165 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^65 8024920711958165 a001 141/494493258286*312119004989^(10/11) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(56) 8024920711958165 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^67 8024920711958165 a001 987/5600748293801*817138163596^(17/19) 8024920711958165 a001 329/440719107401*14662949395604^(16/21) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(58) 8024920711958165 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^69 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(60) 8024920711958165 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^71 8024920711958165 a001 141/494493258286*3461452808002^(5/6) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(62) 8024920711958165 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^73 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(64) 8024920711958165 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^75 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(66) 8024920711958165 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^77 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(68) 8024920711958165 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^79 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(70) 8024920711958165 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^81 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(72) 8024920711958165 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^83 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(74) 8024920711958165 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^85 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(76) 8024920711958165 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^87 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(78) 8024920711958165 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^89 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(80) 8024920711958165 a004 Fibonacci(16)*Lucas(81)/(1/2+sqrt(5)/2)^91 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(82) 8024920711958165 a004 Fibonacci(16)*Lucas(83)/(1/2+sqrt(5)/2)^93 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(84) 8024920711958165 a004 Fibonacci(16)*Lucas(85)/(1/2+sqrt(5)/2)^95 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(86) 8024920711958165 a004 Fibonacci(16)*Lucas(87)/(1/2+sqrt(5)/2)^97 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(88) 8024920711958165 a004 Fibonacci(16)*Lucas(89)/(1/2+sqrt(5)/2)^99 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(90) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^82/Lucas(92) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^84/Lucas(94) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^86/Lucas(96) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^88/Lucas(98) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^90/Lucas(100) 8024920711958165 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2)^10 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^89/Lucas(99) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(97) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(95) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(93) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(91) 8024920711958165 a004 Fibonacci(16)*Lucas(90)/(1/2+sqrt(5)/2)^100 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(89) 8024920711958165 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^98 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(87) 8024920711958165 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^96 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(85) 8024920711958165 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^94 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(83) 8024920711958165 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^92 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(81) 8024920711958165 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^90 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(79) 8024920711958165 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^88 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(77) 8024920711958165 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^86 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(75) 8024920711958165 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^84 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(73) 8024920711958165 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^82 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(71) 8024920711958165 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^80 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(69) 8024920711958165 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^78 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(67) 8024920711958165 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^76 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(65) 8024920711958165 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^74 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(63) 8024920711958165 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^72 8024920711958165 a001 987/5600748293801*14662949395604^(17/21) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(61) 8024920711958165 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^70 8024920711958165 a001 987/2139295485799*14662949395604^(7/9) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(59) 8024920711958165 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^68 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(57) 8024920711958165 a001 329/3020733700601*505019158607^(13/14) 8024920711958165 a001 987/2139295485799*505019158607^(7/8) 8024920711958165 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^66 8024920711958165 a001 987/312119004989*14662949395604^(5/7) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(55) 8024920711958165 a001 329/440719107401*192900153618^(8/9) 8024920711958165 a001 987/5600748293801*192900153618^(17/18) 8024920711958165 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^64 8024920711958165 a001 987/312119004989*192900153618^(5/6) 8024920711958165 a001 52623179387751/6557470319842 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(53) 8024920711958165 a001 329/64300051206*73681302247^(11/13) 8024920711958165 a001 329/440719107401*73681302247^(12/13) 8024920711958165 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^62 8024920711958165 a001 20100265930038/2504730781961 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(51) 8024920711958165 a001 987/312119004989*28143753123^(9/10) 8024920711958165 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^60 8024920711958165 a001 987/17393796001*45537549124^(13/17) 8024920711958165 a001 7677618402363/956722026041 8024920711958165 a001 987/17393796001*14662949395604^(13/21) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(49) 8024920711958165 a001 987/17393796001*192900153618^(13/18) 8024920711958165 a001 987/17393796001*73681302247^(3/4) 8024920711958165 a001 329/9381251041*10749957122^(5/6) 8024920711958165 a001 141/10525900321*10749957122^(7/8) 8024920711958165 a001 329/64300051206*10749957122^(11/12) 8024920711958165 a001 987/312119004989*10749957122^(15/16) 8024920711958165 a001 21/10745088481*10749957122^(23/24) 8024920711958165 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^58 8024920711958165 a001 987/17393796001*10749957122^(13/16) 8024920711958165 a001 2932589277051/365435296162 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(47) 8024920711958165 a001 987/2537720636*2537720636^(7/9) 8024920711958165 a001 987/10749957122*4106118243^(19/23) 8024920711958165 a001 329/9381251041*4106118243^(20/23) 8024920711958165 a001 141/10525900321*4106118243^(21/23) 8024920711958165 a001 329/64300051206*4106118243^(22/23) 8024920711958165 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^56 8024920711958165 a001 987/2537720636*17393796001^(5/7) 8024920711958165 a001 224029885758/27916772489 8024920711958165 a001 987/2537720636*312119004989^(7/11) 8024920711958165 a001 987/2537720636*14662949395604^(5/9) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^35/Lucas(45) 8024920711958165 a001 987/2537720636*505019158607^(5/8) 8024920711958165 a001 987/2537720636*28143753123^(7/10) 8024920711958165 a001 329/1368706081*1568397607^(9/11) 8024920711958165 a001 987/10749957122*1568397607^(19/22) 8024920711958165 a001 329/9381251041*1568397607^(10/11) 8024920711958165 a001 141/10525900321*1568397607^(21/22) 8024920711958165 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^54 8024920711958165 a001 987/969323029*2537720636^(11/15) 8024920711958165 a001 987/969323029*45537549124^(11/17) 8024920711958165 a001 427859009319/53316291173 8024920711958165 a001 987/969323029*312119004989^(3/5) 8024920711958165 a001 987/969323029*817138163596^(11/19) 8024920711958165 a001 987/969323029*14662949395604^(11/21) 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^33/Lucas(43) 8024920711958165 a001 987/969323029*192900153618^(11/18) 8024920711958165 a001 987/969323029*10749957122^(11/16) 8024920711958165 a001 987/969323029*1568397607^(3/4) 8024920711958165 a001 141/224056801*599074578^(17/21) 8024920711958165 a001 329/1368706081*599074578^(6/7) 8024920711958165 a001 987/2537720636*599074578^(5/6) 8024920711958165 a001 987/10749957122*599074578^(19/21) 8024920711958165 a001 987/17393796001*599074578^(13/14) 8024920711958165 a001 329/9381251041*599074578^(20/21) 8024920711958165 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^52 8024920711958165 a001 987/969323029*599074578^(11/14) 8024920711958165 a001 163427599167/20365011074 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^31/Lucas(41) 8024920711958165 a001 987/370248451*9062201101803^(1/2) 8024920711958165 a001 329/199691526*228826127^(4/5) 8024920711958165 a001 141/224056801*228826127^(17/20) 8024920711958165 a001 987/2537720636*228826127^(7/8) 8024920711958165 a001 329/1368706081*228826127^(9/10) 8024920711958165 a001 987/10749957122*228826127^(19/20) 8024920711958165 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^50 8024920711958165 a001 62423788182/7778742049 8024920711958165 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^29/Lucas(39) 8024920711958165 a001 987/141422324*1322157322203^(1/2) 8024920711958165 a001 21/4868641*87403803^(15/19) 8024920711958166 a001 329/199691526*87403803^(16/19) 8024920711958166 a001 141/224056801*87403803^(17/19) 8024920711958166 a001 329/1368706081*87403803^(18/19) 8024920711958166 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^48 8024920711958167 a001 987/54018521*141422324^(9/13) 8024920711958167 a001 987/54018521*2537720636^(3/5) 8024920711958167 a001 23843765379/2971215073 8024920711958167 a001 987/54018521*45537549124^(9/17) 8024920711958167 a001 987/54018521*817138163596^(9/19) 8024920711958167 a001 987/54018521*14662949395604^(3/7) 8024920711958167 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^27/Lucas(37) 8024920711958167 a001 987/54018521*192900153618^(1/2) 8024920711958167 a001 987/54018521*10749957122^(9/16) 8024920711958167 a001 987/54018521*599074578^(9/14) 8024920711958169 a001 329/29134601*33385282^(7/9) 8024920711958170 a001 987/20633239*20633239^(5/7) 8024920711958171 a001 21/4868641*33385282^(5/6) 8024920711958171 a001 329/199691526*33385282^(8/9) 8024920711958171 a001 987/969323029*33385282^(11/12) 8024920711958172 a001 141/224056801*33385282^(17/18) 8024920711958172 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^46 8024920711958173 a001 987/54018521*33385282^(3/4) 8024920711958184 a001 1821501591/226980634 8024920711958184 a001 987/20633239*2537720636^(5/9) 8024920711958184 a001 987/20633239*312119004989^(5/11) 8024920711958184 a001 987/20633239*(1/2+1/2*5^(1/2))^25 8024920711958184 a001 987/20633239*3461452808002^(5/12) 8024920711958184 a001 987/20633239*28143753123^(1/2) 8024920711958184 a001 987/20633239*228826127^(5/8) 8024920711958195 a001 141/4769326*12752043^(13/17) 8024920711958204 a001 329/29134601*12752043^(14/17) 8024920711958208 a001 21/4868641*12752043^(15/17) 8024920711958211 a001 329/199691526*12752043^(16/17) 8024920711958214 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^44 8024920711958294 a001 3478758486/433494437 8024920711958294 a001 987/7881196*(1/2+1/2*5^(1/2))^23 8024920711958294 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^23/Lucas(33) 8024920711958294 a001 987/7881196*4106118243^(1/2) 8024920711958369 a001 329/4250681*4870847^(3/4) 8024920711958432 a001 141/4769326*4870847^(13/16) 8024920711958454 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^12 8024920711958460 a001 329/29134601*4870847^(7/8) 8024920711958482 a001 21/4868641*4870847^(15/16) 8024920711958496 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^14 8024920711958502 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^16 8024920711958503 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^18 8024920711958503 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^20 8024920711958503 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^22 8024920711958503 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^24 8024920711958503 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^26 8024920711958503 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^28 8024920711958503 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^30 8024920711958503 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^32 8024920711958503 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^34 8024920711958503 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^36 8024920711958503 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^38 8024920711958503 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^40 8024920711958503 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^42 8024920711958503 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^44 8024920711958503 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^46 8024920711958503 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^48 8024920711958503 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^50 8024920711958503 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^52 8024920711958503 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^54 8024920711958503 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^56 8024920711958503 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^58 8024920711958503 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^60 8024920711958503 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^62 8024920711958503 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^64 8024920711958503 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^66 8024920711958503 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^68 8024920711958503 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^70 8024920711958503 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^72 8024920711958503 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^74 8024920711958503 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^78 8024920711958503 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^76 8024920711958503 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^77 8024920711958503 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^75 8024920711958503 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^73 8024920711958503 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^71 8024920711958503 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^69 8024920711958503 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^67 8024920711958503 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^65 8024920711958503 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^63 8024920711958503 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^61 8024920711958503 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^59 8024920711958503 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^57 8024920711958503 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^55 8024920711958503 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^53 8024920711958503 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^51 8024920711958503 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^49 8024920711958503 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^47 8024920711958503 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^45 8024920711958503 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^43 8024920711958503 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^41 8024920711958503 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^39 8024920711958503 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^37 8024920711958503 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^35 8024920711958503 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^33 8024920711958503 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^31 8024920711958503 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^29 8024920711958503 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^27 8024920711958503 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^25 8024920711958503 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^23 8024920711958503 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^21 8024920711958503 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^19 8024920711958503 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^17 8024920711958506 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^15 8024920711958522 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^13 8024920711958632 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^11 8024920711958968 a001 987/3010349*7881196^(7/11) 8024920711959039 a001 987/3010349*20633239^(3/5) 8024920711959050 a001 987/3010349*141422324^(7/13) 8024920711959050 a001 1328767503/165580141 8024920711959050 a001 987/3010349*2537720636^(7/15) 8024920711959050 a001 987/3010349*17393796001^(3/7) 8024920711959050 a001 987/3010349*45537549124^(7/17) 8024920711959050 a001 987/3010349*14662949395604^(1/3) 8024920711959050 a001 987/3010349*(1/2+1/2*5^(1/2))^21 8024920711959050 a001 987/3010349*192900153618^(7/18) 8024920711959050 a001 987/3010349*10749957122^(7/16) 8024920711959050 a001 987/3010349*599074578^(1/2) 8024920711959054 a001 987/3010349*33385282^(7/12) 8024920711959388 a004 Fibonacci(31)/Lucas(16)/(1/2+sqrt(5)/2)^9 8024920711959527 a001 987/4870847*1860498^(11/15) 8024920711959970 a001 329/4250681*1860498^(4/5) 8024920711960116 a001 987/20633239*1860498^(5/6) 8024920711960167 a001 141/4769326*1860498^(13/15) 8024920711960254 a001 987/54018521*1860498^(9/10) 8024920711960327 a001 329/29134601*1860498^(14/15) 8024920711960483 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^40 8024920711960673 a001 987/3010349*1860498^(7/10) 8024920711964234 a001 507544023/63245986 8024920711964234 a001 987/1149851*817138163596^(1/3) 8024920711964234 a001 987/1149851*(1/2+1/2*5^(1/2))^19 8024920711964235 a001 987/1149851*87403803^(1/2) 8024920711964573 a004 Fibonacci(29)/Lucas(16)/(1/2+sqrt(5)/2)^7 8024920711967197 a001 329/620166*710647^(5/7) 8024920711970312 a001 987/4870847*710647^(11/14) 8024920711970968 a001 987/3010349*710647^(3/4) 8024920711971736 a001 329/4250681*710647^(6/7) 8024920711972913 a001 141/4769326*710647^(13/14) 8024920711974055 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^38 8024920711999763 a001 193864566/24157817 8024920711999766 a001 987/439204*45537549124^(1/3) 8024920711999766 a001 987/439204*(1/2+1/2*5^(1/2))^17 8024920711999791 a001 987/439204*12752043^(1/2) 8024920712000104 a004 Fibonacci(27)/Lucas(16)/(1/2+sqrt(5)/2)^5 8024920712017676 a001 141/101521*271443^(9/13) 8024920712039626 a001 329/620166*271443^(10/13) 8024920712049984 a001 987/4870847*271443^(11/13) 8024920712058651 a001 329/4250681*271443^(12/13) 8024920712067079 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^36 8024920712072221 a001 987/167761*167761^(3/5) 8024920712220193 a001 987/167761*439204^(5/9) 8024920712243246 a001 987/167761*7881196^(5/11) 8024920712243286 a001 14809935/1845493 8024920712243297 a001 987/167761*20633239^(3/7) 8024920712243305 a001 987/167761*141422324^(5/13) 8024920712243305 a001 987/167761*2537720636^(1/3) 8024920712243305 a001 987/167761*45537549124^(5/17) 8024920712243305 a001 987/167761*312119004989^(3/11) 8024920712243305 a001 987/167761*14662949395604^(5/21) 8024920712243305 a001 987/167761*(1/2+1/2*5^(1/2))^15 8024920712243305 a001 987/167761*192900153618^(5/18) 8024920712243305 a001 987/167761*28143753123^(3/10) 8024920712243305 a001 987/167761*10749957122^(5/16) 8024920712243305 a001 987/167761*599074578^(5/14) 8024920712243305 a001 987/167761*228826127^(3/8) 8024920712243308 a001 987/167761*33385282^(5/12) 8024920712243643 a004 Fibonacci(25)/Lucas(16)/(1/2+sqrt(5)/2)^3 8024920712244464 a001 987/167761*1860498^(1/2) 8024920712346922 a001 329/90481*103682^(2/3) 8024920712502155 a001 141/101521*103682^(3/4) 8024920712528542 a001 987/439204*103682^(17/24) 8024920712555219 a001 987/1149851*103682^(19/24) 8024920712577936 a001 329/620166*103682^(5/6) 8024920712612244 a001 987/3010349*103682^(7/8) 8024920712642125 a001 987/4870847*103682^(11/12) 8024920712673697 a001 987/7881196*103682^(23/24) 8024920712704672 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^34 8024920712709872 a001 987/167761*103682^(5/8) 8024920712807896 a001 987/64079*64079^(13/23) 8024920713912417 a001 28284459/3524578 8024920713912546 a001 987/64079*141422324^(1/3) 8024920713912546 a001 987/64079*(1/2+1/2*5^(1/2))^13 8024920713912546 a001 987/64079*73681302247^(1/4) 8024920713912884 a004 Fibonacci(23)/Lucas(16)/(1/2+sqrt(5)/2) 8024920713967003 a001 987/64079*271443^(1/2) 8024920714316904 a001 987/64079*103682^(13/24) 8024920714467699 a001 21/2206*39603^(7/11) 8024920715518498 r002 20th iterates of z^2 + 8024920715570441 a001 329/90481*39603^(8/11) 8024920715731921 a001 987/167761*39603^(15/22) 8024920715953531 a001 987/439204*39603^(17/22) 8024920716128613 a001 141/101521*39603^(9/11) 8024920716383148 a001 987/1149851*39603^(19/22) 8024920716607334 a001 329/620166*39603^(10/11) 8024920716843113 a001 987/3010349*39603^(21/22) 8024920716936013 a001 987/64079*39603^(13/22) 8024920717074801 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^32 8024920718336988 a001 987/24476*24476^(11/21) 8024920720521699 a001 10946/2207*9349^(1/19) 8024920724418989 a001 987/24476*64079^(11/23) 8024920724716149 a001 10946/2207*24476^(1/21) 8024920725269059 a001 10946/2207*64079^(1/23) 8024920725352808 a001 10803702/1346269 8024920725353650 a001 987/24476*7881196^(1/3) 8024920725353693 a001 987/24476*312119004989^(1/5) 8024920725353693 a001 987/24476*(1/2+1/2*5^(1/2))^11 8024920725353693 a001 987/24476*1568397607^(1/4) 8024920725354032 a001 5473/2207+5473/2207*5^(1/2) 8024920725385136 a001 10946/2207*103682^(1/24) 8024920725586606 a001 10946/2207*39603^(1/22) 8024920725695843 a001 987/24476*103682^(11/24) 8024920727107529 a001 10946/2207*15127^(1/20) 8024920727883498 a001 329/13201*15127^(3/5) 8024920727912012 a001 987/24476*39603^(1/2) 8024920730681672 a001 2/377*1836311903^(4/17) 8024920735548555 a001 1597/5778*1364^(7/15) 8024920735760622 a001 21/2206*15127^(7/10) 8024920735920726 a007 Real Root Of 210*x^4+750*x^3+482*x^2-683*x-558 8024920736708013 a001 987/64079*15127^(13/20) 8024920738545767 a001 987/167761*15127^(3/4) 8024920738708088 a001 10946/2207*5778^(1/18) 8024920739905210 a001 329/90481*15127^(4/5) 8024920741809223 a001 987/439204*15127^(17/20) 8024920743505229 a001 141/101521*15127^(9/10) 8024920744642166 a001 987/24476*15127^(11/20) 8024920745280686 a001 987/1149851*15127^(19/20) 8024920747028114 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^30 8024920756970321 r005 Im(z^2+c),c=-2/31+41/51*I,n=37 8024920760281491 a001 987/9349*9349^(9/19) 8024920773167497 a001 4181/5778*1364^(1/3) 8024920780181228 a001 1597/9349*1364^(8/15) 8024920789275825 a001 4181/2207*9349^(3/19) 8024920798031545 a001 987/9349*24476^(3/7) 8024920801859176 a001 4181/2207*24476^(1/7) 8024920803007728 a001 987/9349*64079^(9/23) 8024920803517903 a001 4181/2207*64079^(3/23) 8024920803758618 a001 987/9349*439204^(1/3) 8024920803766415 a001 4126647/514229 8024920803768200 a001 4181/2207*439204^(1/9) 8024920803772450 a001 987/9349*7881196^(3/11) 8024920803772485 a001 987/9349*141422324^(3/13) 8024920803772485 a001 987/9349*2537720636^(1/5) 8024920803772485 a001 987/9349*45537549124^(3/17) 8024920803772485 a001 987/9349*817138163596^(3/19) 8024920803772485 a001 987/9349*14662949395604^(1/7) 8024920803772485 a001 987/9349*(1/2+1/2*5^(1/2))^9 8024920803772485 a001 987/9349*192900153618^(1/6) 8024920803772485 a001 987/9349*10749957122^(3/16) 8024920803772485 a001 987/9349*599074578^(3/14) 8024920803772487 a001 987/9349*33385282^(1/4) 8024920803772811 a001 4181/2207*7881196^(1/11) 8024920803772823 a001 4181/2207*141422324^(1/13) 8024920803772823 a001 4181/2207*2537720636^(1/15) 8024920803772823 a001 4181/2207*45537549124^(1/17) 8024920803772823 a001 4181/2207*14662949395604^(1/21) 8024920803772823 a001 4181/2207*(1/2+1/2*5^(1/2))^3 8024920803772823 a001 4181/2207*192900153618^(1/18) 8024920803772823 a001 4181/2207*10749957122^(1/16) 8024920803772823 a001 4181/2207*599074578^(1/14) 8024920803772823 a001 4181/2207*33385282^(1/12) 8024920803773054 a001 4181/2207*1860498^(1/10) 8024920803773181 a001 987/9349*1860498^(3/10) 8024920803866136 a001 4181/2207*103682^(1/8) 8024920804052426 a001 987/9349*103682^(3/8) 8024920804470546 a001 4181/2207*39603^(3/22) 8024920805865655 a001 987/9349*39603^(9/22) 8024920809033315 a001 4181/2207*15127^(3/20) 8024920810428775 a001 141/2161*5778^(5/9) 8024920814768188 m001 gamma*GlaisherKinkelin*Trott 8024920816177539 r005 Re(z^2+c),c=-13/12+8/119*I,n=38 8024920817800170 a001 4181/9349*1364^(2/5) 8024920819553963 a001 987/9349*15127^(9/20) 8024920828325342 a001 10946/2207*2207^(1/16) 8024920829558164 a001 29/55*433494437^(18/19) 8024920843834991 a001 4181/2207*5778^(1/6) 8024920853215329 a001 514229/18*199^(8/41) 8024920860723767 r008 a(0)=8,K{-n^6,18+49*n^3-70*n^2-36*n} 8024920867090200 a001 329/13201*5778^(2/3) 8024920870254765 m005 (5*exp(1)-2/5)/(3/4*Pi-4) 8024920872248310 a001 987/24476*5778^(11/18) 8024920881516960 a007 Real Root Of 19*x^4-304*x^3+287*x^2-75*x-410 8024920882831174 a001 6765/2207*2207^(1/8) 8024920883470729 a001 2584/2207*2207^(1/4) 8024920887515275 a001 987/64079*5778^(13/18) 8024920893449412 b008 35*Pi*Sinh[Khinchin] 8024920898168442 a001 21/2206*5778^(7/9) 8024920900051765 a001 10946/15127*1364^(1/3) 8024920901151890 m001 sin(1/12*Pi)^(sin(1)/CopelandErdos) 8024920908685072 m001 (Shi(1)+Cahen)/(Kolakoski+PisotVijayaraghavan) 8024920912554146 a001 987/167761*5778^(5/6) 8024920918563931 a001 28657/39603*1364^(1/3) 8024920921264820 a001 75025/103682*1364^(1/3) 8024920921658874 a001 196418/271443*1364^(1/3) 8024920921716366 a001 514229/710647*1364^(1/3) 8024920921724754 a001 1346269/1860498*1364^(1/3) 8024920921725978 a001 3524578/4870847*1364^(1/3) 8024920921726156 a001 9227465/12752043*1364^(1/3) 8024920921726182 a001 24157817/33385282*1364^(1/3) 8024920921726186 a001 63245986/87403803*1364^(1/3) 8024920921726186 a001 165580141/228826127*1364^(1/3) 8024920921726187 a001 433494437/599074578*1364^(1/3) 8024920921726187 a001 1134903170/1568397607*1364^(1/3) 8024920921726187 a001 2971215073/4106118243*1364^(1/3) 8024920921726187 a001 7778742049/10749957122*1364^(1/3) 8024920921726187 a001 20365011074/28143753123*1364^(1/3) 8024920921726187 a001 53316291173/73681302247*1364^(1/3) 8024920921726187 a001 139583862445/192900153618*1364^(1/3) 8024920921726187 a001 365435296162/505019158607*1364^(1/3) 8024920921726187 a001 10610209857723/14662949395604*1364^(1/3) 8024920921726187 a001 591286729879/817138163596*1364^(1/3) 8024920921726187 a001 225851433717/312119004989*1364^(1/3) 8024920921726187 a001 86267571272/119218851371*1364^(1/3) 8024920921726187 a001 32951280099/45537549124*1364^(1/3) 8024920921726187 a001 12586269025/17393796001*1364^(1/3) 8024920921726187 a001 4807526976/6643838879*1364^(1/3) 8024920921726187 a001 1836311903/2537720636*1364^(1/3) 8024920921726187 a001 701408733/969323029*1364^(1/3) 8024920921726187 a001 267914296/370248451*1364^(1/3) 8024920921726187 a001 102334155/141422324*1364^(1/3) 8024920921726188 a001 39088169/54018521*1364^(1/3) 8024920921726198 a001 14930352/20633239*1364^(1/3) 8024920921726266 a001 5702887/7881196*1364^(1/3) 8024920921726734 a001 2178309/3010349*1364^(1/3) 8024920921729938 a001 832040/1149851*1364^(1/3) 8024920921751898 a001 317811/439204*1364^(1/3) 8024920921902413 a001 121393/167761*1364^(1/3) 8024920922934061 a001 46368/64079*1364^(1/3) 8024920923958991 a001 987/9349*5778^(1/2) 8024920925514148 a001 329/90481*5778^(8/9) 8024920930005079 a001 17711/24476*1364^(1/3) 8024920933837885 a001 2255/1926*1364^(4/15) 8024920939018719 a001 987/439204*5778^(17/18) 8024920944001448 a008 Real Root of (16+9*x-4*x^2+12*x^3) 8024920945502120 r002 64th iterates of z^2 + 8024920952331174 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^28 8024920954751699 m008 (5*Pi^3-3/4)/(2*Pi^6-1/4) 8024920978470559 a001 6765/9349*1364^(1/3) 8024920991734173 r008 a(0)=8,K{-n^6,-56+2*n+32*n^2-19*n^3} 8024921008342845 r008 a(0)=8,K{-n^6,-45-15*n^3+53*n^2-37*n} 8024921026599936 a001 377/1364*843^(1/2) 8024921082137428 a001 987/3571*3571^(7/17) 8024921106058993 a007 Real Root Of 562*x^4+539*x^3+614*x^2-187*x-500 8024921112686760 a001 4181/2207*2207^(3/16) 8024921139558528 a007 Real Root Of 938*x^4+455*x^3+665*x^2+131*x-477 8024921144555611 r008 a(0)=8,K{-n^6,-74+94*n^3-26*n^2-34*n} 8024921153866270 p004 log(16547/15271) 8024921156173572 a001 1597/2207*3571^(5/17) 8024921168939467 m005 (1/2*2^(1/2)+1/4)/(41/55+1/5*5^(1/2)) 8024921169094264 a001 17711/15127*1364^(4/15) 8024921178915346 a007 Real Root Of -904*x^4+313*x^3+505*x^2+58*x+258 8024921186753174 a003 cos(Pi*1/85)-sin(Pi*7/111) 8024921188878847 r005 Re(z^2+c),c=-5/6+3/55*I,n=37 8024921203417709 a001 15456/13201*1364^(4/15) 8024921208425432 a001 121393/103682*1364^(4/15) 8024921209156049 a001 105937/90481*1364^(4/15) 8024921209262644 a001 832040/710647*1364^(4/15) 8024921209278196 a001 726103/620166*1364^(4/15) 8024921209280465 a001 5702887/4870847*1364^(4/15) 8024921209280796 a001 4976784/4250681*1364^(4/15) 8024921209280845 a001 39088169/33385282*1364^(4/15) 8024921209280852 a001 34111385/29134601*1364^(4/15) 8024921209280853 a001 267914296/228826127*1364^(4/15) 8024921209280853 a001 233802911/199691526*1364^(4/15) 8024921209280853 a001 1836311903/1568397607*1364^(4/15) 8024921209280853 a001 1602508992/1368706081*1364^(4/15) 8024921209280853 a001 12586269025/10749957122*1364^(4/15) 8024921209280853 a001 10983760033/9381251041*1364^(4/15) 8024921209280853 a001 86267571272/73681302247*1364^(4/15) 8024921209280853 a001 75283811239/64300051206*1364^(4/15) 8024921209280853 a001 2504730781961/2139295485799*1364^(4/15) 8024921209280853 a001 365435296162/312119004989*1364^(4/15) 8024921209280853 a001 139583862445/119218851371*1364^(4/15) 8024921209280853 a001 53316291173/45537549124*1364^(4/15) 8024921209280853 a001 20365011074/17393796001*1364^(4/15) 8024921209280853 a001 7778742049/6643838879*1364^(4/15) 8024921209280853 a001 2971215073/2537720636*1364^(4/15) 8024921209280853 a001 1134903170/969323029*1364^(4/15) 8024921209280853 a001 433494437/370248451*1364^(4/15) 8024921209280853 a001 165580141/141422324*1364^(4/15) 8024921209280856 a001 63245986/54018521*1364^(4/15) 8024921209280874 a001 24157817/20633239*1364^(4/15) 8024921209281001 a001 9227465/7881196*1364^(4/15) 8024921209281868 a001 3524578/3010349*1364^(4/15) 8024921209287808 a001 1346269/1149851*1364^(4/15) 8024921209328524 a001 514229/439204*1364^(4/15) 8024921209607595 a001 196418/167761*1364^(4/15) 8024921211520375 a001 75025/64079*1364^(4/15) 8024921224630764 a001 28657/24476*1364^(4/15) 8024921230967004 r002 7th iterates of z^2 + 8024921243136818 r005 Im(z^2+c),c=-3/22+44/53*I,n=43 8024921256007552 a003 cos(Pi*1/59)*cos(Pi*14/69) 8024921262797708 r009 Re(z^3+c),c=-9/74+23/30*I,n=24 8024921269858033 a001 5473/2889*1364^(1/5) 8024921280975506 a008 Real Root of (-4+4*x+2*x^2-6*x^3+6*x^4-x^5) 8024921295355654 a001 329/1926*2207^(1/2) 8024921299754135 r008 a(0)=8,K{-n^6,-75+94*n^3-26*n^2-33*n} 8024921299969113 a007 Real Root Of 704*x^4-470*x^3-243*x^2+150*x-258 8024921307436592 a001 987/3571*9349^(7/19) 8024921310657927 a001 2584/3571*1364^(1/3) 8024921313156316 a007 Real Root Of -995*x^4+689*x^3+645*x^2+741*x+948 8024921314490709 a001 10946/9349*1364^(4/15) 8024921317101547 a001 1597/2207*9349^(5/19) 8024921322476184 r002 34th iterates of z^2 + 8024921335781671 r009 Im(z^3+c),c=-2/29+43/53*I,n=21 8024921336797747 a001 987/3571*24476^(1/3) 8024921338073800 a001 1597/2207*24476^(5/21) 8024921340668112 a001 987/3571*64079^(7/23) 8024921340838347 a001 1597/2207*64079^(5/23) 8024921341206184 a001 1597/2207*167761^(1/5) 8024921341221272 a001 1576239/196418 8024921341262920 a001 987/3571*20633239^(1/5) 8024921341262923 a001 987/3571*17393796001^(1/7) 8024921341262923 a001 987/3571*14662949395604^(1/9) 8024921341262923 a001 987/3571*(1/2+1/2*5^(1/2))^7 8024921341262923 a001 987/3571*599074578^(1/6) 8024921341263209 a001 1597/2207*20633239^(1/7) 8024921341263212 a001 1597/2207*2537720636^(1/9) 8024921341263212 a001 1597/2207*312119004989^(1/11) 8024921341263212 a001 1597/2207*(1/2+1/2*5^(1/2))^5 8024921341263212 a001 1597/2207*28143753123^(1/10) 8024921341263212 a001 1597/2207*228826127^(1/8) 8024921341263599 a001 1597/2207*1860498^(1/6) 8024921341266896 a001 987/3571*710647^(1/4) 8024921341418735 a001 1597/2207*103682^(5/24) 8024921341480655 a001 987/3571*103682^(7/24) 8024921342426084 a001 1597/2207*39603^(5/22) 8024921342890944 a001 987/3571*39603^(7/22) 8024921347746495 a007 Real Root Of 124*x^4+946*x^3-433*x^2-405*x-735 8024921350030700 a001 1597/2207*15127^(1/4) 8024921353537407 a001 987/3571*15127^(7/20) 8024921389884346 m001 (exp(1)+ln(5))/(FeigenbaumDelta+Sarnak) 8024921397224706 r008 a(0)=8,K{-n^6,-47+11*n+3*n^2-8*n^3} 8024921408033497 a001 1597/2207*5778^(5/18) 8024921430053720 m005 (-11/20+1/4*5^(1/2))/(11/12*Catalan-8/11) 8024921431929492 l006 ln(2367/5281) 8024921434741322 a001 987/3571*5778^(7/18) 8024921451964953 p001 sum((-1)^n/(267*n+124)/(64^n),n=0..infinity) 8024921463719958 a001 28657/15127*1364^(1/5) 8024921467290628 a007 Real Root Of -954*x^4+272*x^3-761*x^2-120*x+930 8024921483014021 m001 exp(Zeta(3))^2/Cahen^2/gamma^2 8024921486108610 a007 Real Root Of -457*x^4+246*x^3-917*x^2-885*x+197 8024921489821742 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^29 8024921492004033 a001 75025/39603*1364^(1/5) 8024921496130624 a001 98209/51841*1364^(1/5) 8024921496732685 a001 514229/271443*1364^(1/5) 8024921496820525 a001 1346269/710647*1364^(1/5) 8024921496833340 a001 1762289/930249*1364^(1/5) 8024921496835210 a001 9227465/4870847*1364^(1/5) 8024921496835483 a001 24157817/12752043*1364^(1/5) 8024921496835523 a001 31622993/16692641*1364^(1/5) 8024921496835528 a001 165580141/87403803*1364^(1/5) 8024921496835529 a001 433494437/228826127*1364^(1/5) 8024921496835529 a001 567451585/299537289*1364^(1/5) 8024921496835529 a001 2971215073/1568397607*1364^(1/5) 8024921496835529 a001 7778742049/4106118243*1364^(1/5) 8024921496835529 a001 10182505537/5374978561*1364^(1/5) 8024921496835529 a001 53316291173/28143753123*1364^(1/5) 8024921496835529 a001 139583862445/73681302247*1364^(1/5) 8024921496835529 a001 182717648081/96450076809*1364^(1/5) 8024921496835529 a001 956722026041/505019158607*1364^(1/5) 8024921496835529 a001 10610209857723/5600748293801*1364^(1/5) 8024921496835529 a001 591286729879/312119004989*1364^(1/5) 8024921496835529 a001 225851433717/119218851371*1364^(1/5) 8024921496835529 a001 21566892818/11384387281*1364^(1/5) 8024921496835529 a001 32951280099/17393796001*1364^(1/5) 8024921496835529 a001 12586269025/6643838879*1364^(1/5) 8024921496835529 a001 1201881744/634430159*1364^(1/5) 8024921496835529 a001 1836311903/969323029*1364^(1/5) 8024921496835529 a001 701408733/370248451*1364^(1/5) 8024921496835530 a001 66978574/35355581*1364^(1/5) 8024921496835532 a001 102334155/54018521*1364^(1/5) 8024921496835547 a001 39088169/20633239*1364^(1/5) 8024921496835651 a001 3732588/1970299*1364^(1/5) 8024921496836366 a001 5702887/3010349*1364^(1/5) 8024921496841261 a001 2178309/1149851*1364^(1/5) 8024921496874812 a001 208010/109801*1364^(1/5) 8024921497104780 a001 317811/167761*1364^(1/5) 8024921498680997 a001 121393/64079*1364^(1/5) 8024921509215386 r008 a(0)=8,K{-n^6,9+9*n^3-21*n^2-38*n} 8024921509484552 a001 11592/6119*1364^(1/5) 8024921519869869 g007 Psi(2,7/12)-2*Psi(2,9/10)-Psi(2,5/9) 8024921522232428 a007 Real Root Of 719*x^4-927*x^3+166*x^2+227*x-702 8024921522752675 m001 (-ln(5)+2/3)/(sin(1)+1/3) 8024921526496941 r008 a(0)=8,K{-n^6,21+30*n^3-72*n^2-20*n} 8024921526823781 a001 2584/710647*3571^(16/17) 8024921531954564 a001 10946/2207*843^(1/14) 8024921534815910 r005 Im(z^2+c),c=-129/118+7/22*I,n=8 8024921538900545 a001 17711/5778*1364^(2/15) 8024921563899202 a001 34/5779*3571^(15/17) 8024921566278645 a001 13/844*843^(13/14) 8024921567003206 m001 1/exp(GolombDickman)*Si(Pi)*cos(Pi/5) 8024921583533222 a001 17711/9349*1364^(1/5) 8024921590404838 r005 Im(z^2+c),c=-7/74+7/8*I,n=16 8024921600766617 a001 2584/271443*3571^(14/17) 8024921603514572 m001 GolombDickman^(1/3*3^(1/2)*cos(1/5*Pi)) 8024921603514572 m001 GolombDickman^(cos(Pi/5)/sqrt(3)) 8024921608374572 r008 a(0)=8,K{-n^6,-75+94*n^3-25*n^2-34*n} 8024921611538691 h001 (-2*exp(1)+1)/(-4*exp(-1)+7) 8024921636028309 a007 Real Root Of 792*x^4-98*x^3-231*x^2-422*x-569 8024921638178601 a001 2584/167761*3571^(13/17) 8024921656645935 a001 1292/2889*3571^(6/17) 8024921674164883 a001 1292/51841*3571^(12/17) 8024921693199014 m001 1/TwinPrimes*MadelungNaCl*ln(GAMMA(2/3)) 8024921695124829 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^31 8024921698319789 m005 (1/4*Catalan-2/5)/(3/5*exp(1)+1/2) 8024921706601370 a001 141/2161*2207^(5/8) 8024921713883702 a001 2584/64079*3571^(11/17) 8024921723973829 m001 (Lehmer-Robbin)/(Thue+ZetaQ(4)) 8024921725078145 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^33 8024921726453494 m001 2/3-sin(Pi/5)-ln(1+sqrt(2)) 8024921728240450 a001 64079/1597*8^(1/3) 8024921729448275 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^35 8024921730085869 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^37 8024921730178892 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^39 8024921730192464 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^41 8024921730194444 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^43 8024921730194733 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^45 8024921730194775 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^47 8024921730194781 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^49 8024921730194782 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^51 8024921730194783 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^53 8024921730194783 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^55 8024921730194783 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^57 8024921730194783 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^59 8024921730194783 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^61 8024921730194783 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^63 8024921730194783 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^65 8024921730194783 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^67 8024921730194783 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^69 8024921730194783 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^71 8024921730194783 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^73 8024921730194783 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^75 8024921730194783 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^77 8024921730194783 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^79 8024921730194783 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^81 8024921730194783 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^83 8024921730194783 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^85 8024921730194783 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^87 8024921730194783 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^89 8024921730194783 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^91 8024921730194783 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^93 8024921730194783 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^95 8024921730194783 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^97 8024921730194783 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^99 8024921730194783 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^100 8024921730194783 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^98 8024921730194783 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^96 8024921730194783 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^94 8024921730194783 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^92 8024921730194783 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^90 8024921730194783 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^88 8024921730194783 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^86 8024921730194783 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^84 8024921730194783 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^82 8024921730194783 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^80 8024921730194783 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^78 8024921730194783 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^76 8024921730194783 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^74 8024921730194783 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^72 8024921730194783 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^70 8024921730194783 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^68 8024921730194783 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^66 8024921730194783 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^64 8024921730194783 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^62 8024921730194783 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^60 8024921730194783 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^58 8024921730194783 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^56 8024921730194783 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^54 8024921730194783 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^52 8024921730194783 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^50 8024921730194785 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^48 8024921730194801 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^46 8024921730194832 a001 2/1597*(1/2+1/2*5^(1/2))^23 8024921730194912 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^44 8024921730195668 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^42 8024921730200852 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^40 8024921730236384 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^38 8024921730479923 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^36 8024921730514333 a001 987/9349*2207^(9/16) 8024921732140440 a001 55/15126*3571^(16/17) 8024921732149164 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^34 8024921742748950 r009 Im(z^3+c),c=-37/114+36/53*I,n=14 8024921743590313 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^32 8024921743830613 a001 2584/39603*3571^(10/17) 8024921748573755 a001 6624/2161*1364^(2/15) 8024921759351284 r008 a(0)=8,K{-n^6,-98+82*n^3-24*n} 8024921762095737 a001 17711/4870847*3571^(16/17) 8024921766466156 a001 15456/4250681*3571^(16/17) 8024921767103792 a001 121393/33385282*3571^(16/17) 8024921767196821 a001 105937/29134601*3571^(16/17) 8024921767210394 a001 832040/228826127*3571^(16/17) 8024921767212375 a001 726103/199691526*3571^(16/17) 8024921767212663 a001 5702887/1568397607*3571^(16/17) 8024921767212706 a001 4976784/1368706081*3571^(16/17) 8024921767212712 a001 39088169/10749957122*3571^(16/17) 8024921767212713 a001 831985/228811001*3571^(16/17) 8024921767212713 a001 267914296/73681302247*3571^(16/17) 8024921767212713 a001 233802911/64300051206*3571^(16/17) 8024921767212713 a001 1836311903/505019158607*3571^(16/17) 8024921767212713 a001 1602508992/440719107401*3571^(16/17) 8024921767212713 a001 12586269025/3461452808002*3571^(16/17) 8024921767212713 a001 10983760033/3020733700601*3571^(16/17) 8024921767212713 a001 86267571272/23725150497407*3571^(16/17) 8024921767212713 a001 53316291173/14662949395604*3571^(16/17) 8024921767212713 a001 20365011074/5600748293801*3571^(16/17) 8024921767212713 a001 7778742049/2139295485799*3571^(16/17) 8024921767212713 a001 2971215073/817138163596*3571^(16/17) 8024921767212713 a001 1134903170/312119004989*3571^(16/17) 8024921767212713 a001 433494437/119218851371*3571^(16/17) 8024921767212713 a001 165580141/45537549124*3571^(16/17) 8024921767212713 a001 63245986/17393796001*3571^(16/17) 8024921767212716 a001 24157817/6643838879*3571^(16/17) 8024921767212732 a001 9227465/2537720636*3571^(16/17) 8024921767212842 a001 3524578/969323029*3571^(16/17) 8024921767213598 a001 1346269/370248451*3571^(16/17) 8024921767218783 a001 514229/141422324*3571^(16/17) 8024921767254317 a001 196418/54018521*3571^(16/17) 8024921767497872 a001 75025/20633239*3571^(16/17) 8024921769166759 a001 6765/1149851*3571^(15/17) 8024921769167224 a001 28657/7881196*3571^(16/17) 8024921779164665 a001 121393/39603*1364^(2/15) 8024921780609129 a001 10946/3010349*3571^(16/17) 8024921783627819 a001 317811/103682*1364^(2/15) 8024921784278984 a001 832040/271443*1364^(2/15) 8024921784373988 a001 311187/101521*1364^(2/15) 8024921784387849 a001 5702887/1860498*1364^(2/15) 8024921784389871 a001 14930352/4870847*1364^(2/15) 8024921784390166 a001 39088169/12752043*1364^(2/15) 8024921784390209 a001 14619165/4769326*1364^(2/15) 8024921784390215 a001 267914296/87403803*1364^(2/15) 8024921784390216 a001 701408733/228826127*1364^(2/15) 8024921784390216 a001 1836311903/599074578*1364^(2/15) 8024921784390216 a001 686789568/224056801*1364^(2/15) 8024921784390216 a001 12586269025/4106118243*1364^(2/15) 8024921784390216 a001 32951280099/10749957122*1364^(2/15) 8024921784390216 a001 86267571272/28143753123*1364^(2/15) 8024921784390216 a001 32264490531/10525900321*1364^(2/15) 8024921784390216 a001 591286729879/192900153618*1364^(2/15) 8024921784390216 a001 1548008755920/505019158607*1364^(2/15) 8024921784390216 a001 1515744265389/494493258286*1364^(2/15) 8024921784390216 a001 2504730781961/817138163596*1364^(2/15) 8024921784390216 a001 956722026041/312119004989*1364^(2/15) 8024921784390216 a001 365435296162/119218851371*1364^(2/15) 8024921784390216 a001 139583862445/45537549124*1364^(2/15) 8024921784390216 a001 53316291173/17393796001*1364^(2/15) 8024921784390216 a001 20365011074/6643838879*1364^(2/15) 8024921784390216 a001 7778742049/2537720636*1364^(2/15) 8024921784390216 a001 2971215073/969323029*1364^(2/15) 8024921784390216 a001 1134903170/370248451*1364^(2/15) 8024921784390217 a001 433494437/141422324*1364^(2/15) 8024921784390219 a001 165580141/54018521*1364^(2/15) 8024921784390236 a001 63245986/20633239*1364^(2/15) 8024921784390348 a001 24157817/7881196*1364^(2/15) 8024921784391121 a001 9227465/3010349*1364^(2/15) 8024921784396415 a001 3524578/1149851*1364^(2/15) 8024921784432703 a001 1346269/439204*1364^(2/15) 8024921784681426 a001 514229/167761*1364^(2/15) 8024921786386199 a001 196418/64079*1364^(2/15) 8024921787913157 a001 2584/15127*3571^(8/17) 8024921797710747 a007 Real Root Of 75*x^4+651*x^3+381*x^2-107*x-4 8024921798070887 a001 75025/24476*1364^(2/15) 8024921799114891 a001 17711/3010349*3571^(15/17) 8024921799360711 a001 646/6119*3571^(9/17) 8024921803484265 a001 11592/1970299*3571^(15/17) 8024921804121748 a001 121393/20633239*3571^(15/17) 8024921804214756 a001 317811/54018521*3571^(15/17) 8024921804228325 a001 208010/35355581*3571^(15/17) 8024921804230305 a001 2178309/370248451*3571^(15/17) 8024921804230594 a001 5702887/969323029*3571^(15/17) 8024921804230636 a001 196452/33391061*3571^(15/17) 8024921804230642 a001 39088169/6643838879*3571^(15/17) 8024921804230643 a001 102334155/17393796001*3571^(15/17) 8024921804230643 a001 66978574/11384387281*3571^(15/17) 8024921804230643 a001 701408733/119218851371*3571^(15/17) 8024921804230643 a001 1836311903/312119004989*3571^(15/17) 8024921804230643 a001 1201881744/204284540899*3571^(15/17) 8024921804230643 a001 12586269025/2139295485799*3571^(15/17) 8024921804230643 a001 32951280099/5600748293801*3571^(15/17) 8024921804230643 a001 1135099622/192933544679*3571^(15/17) 8024921804230643 a001 139583862445/23725150497407*3571^(15/17) 8024921804230643 a001 53316291173/9062201101803*3571^(15/17) 8024921804230643 a001 10182505537/1730726404001*3571^(15/17) 8024921804230643 a001 7778742049/1322157322203*3571^(15/17) 8024921804230643 a001 2971215073/505019158607*3571^(15/17) 8024921804230643 a001 567451585/96450076809*3571^(15/17) 8024921804230643 a001 433494437/73681302247*3571^(15/17) 8024921804230643 a001 165580141/28143753123*3571^(15/17) 8024921804230644 a001 31622993/5374978561*3571^(15/17) 8024921804230646 a001 24157817/4106118243*3571^(15/17) 8024921804230662 a001 9227465/1568397607*3571^(15/17) 8024921804230773 a001 1762289/299537289*3571^(15/17) 8024921804231529 a001 1346269/228826127*3571^(15/17) 8024921804236712 a001 514229/87403803*3571^(15/17) 8024921804272238 a001 98209/16692641*3571^(15/17) 8024921804515734 a001 75025/12752043*3571^(15/17) 8024921806162729 a001 6765/710647*3571^(14/17) 8024921806184687 a001 28657/4870847*3571^(15/17) 8024921817623855 a001 5473/930249*3571^(15/17) 8024921822009114 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^30 8024921833526252 a001 28657/5778*1364^(1/15) 8024921836129618 a001 17711/1860498*3571^(14/17) 8024921840501728 a001 46368/4870847*3571^(14/17) 8024921841139611 a001 121393/12752043*3571^(14/17) 8024921841232676 a001 317811/33385282*3571^(14/17) 8024921841246255 a001 832040/87403803*3571^(14/17) 8024921841248236 a001 46347/4868641*3571^(14/17) 8024921841248525 a001 5702887/599074578*3571^(14/17) 8024921841248567 a001 14930352/1568397607*3571^(14/17) 8024921841248573 a001 39088169/4106118243*3571^(14/17) 8024921841248574 a001 102334155/10749957122*3571^(14/17) 8024921841248574 a001 267914296/28143753123*3571^(14/17) 8024921841248574 a001 701408733/73681302247*3571^(14/17) 8024921841248574 a001 1836311903/192900153618*3571^(14/17) 8024921841248574 a001 102287808/10745088481*3571^(14/17) 8024921841248574 a001 12586269025/1322157322203*3571^(14/17) 8024921841248574 a001 32951280099/3461452808002*3571^(14/17) 8024921841248574 a001 86267571272/9062201101803*3571^(14/17) 8024921841248574 a001 225851433717/23725150497407*3571^(14/17) 8024921841248574 a001 139583862445/14662949395604*3571^(14/17) 8024921841248574 a001 53316291173/5600748293801*3571^(14/17) 8024921841248574 a001 20365011074/2139295485799*3571^(14/17) 8024921841248574 a001 7778742049/817138163596*3571^(14/17) 8024921841248574 a001 2971215073/312119004989*3571^(14/17) 8024921841248574 a001 1134903170/119218851371*3571^(14/17) 8024921841248574 a001 433494437/45537549124*3571^(14/17) 8024921841248574 a001 165580141/17393796001*3571^(14/17) 8024921841248574 a001 63245986/6643838879*3571^(14/17) 8024921841248577 a001 24157817/2537720636*3571^(14/17) 8024921841248593 a001 9227465/969323029*3571^(14/17) 8024921841248703 a001 3524578/370248451*3571^(14/17) 8024921841249460 a001 1346269/141422324*3571^(14/17) 8024921841254646 a001 514229/54018521*3571^(14/17) 8024921841290194 a001 196418/20633239*3571^(14/17) 8024921841533844 a001 75025/7881196*3571^(14/17) 8024921843203841 a001 28657/3010349*3571^(14/17) 8024921843238152 a001 6765/439204*3571^(13/17) 8024921849759517 a001 1292/2889*9349^(6/19) 8024921853099581 l006 ln(4496/10031) 8024921854650174 a001 10946/1149851*3571^(14/17) 8024921856119816 a001 1597/2207*2207^(5/16) 8024921858038178 a001 987/24476*2207^(11/16) 8024921859033114 a001 4181/1149851*3571^(16/17) 8024921873155937 a001 17711/1149851*3571^(13/17) 8024921874926223 a001 1292/2889*24476^(2/7) 8024921877520883 a001 46368/3010349*3571^(13/17) 8024921878157720 a001 121393/7881196*3571^(13/17) 8024921878158931 a001 28657/9349*1364^(2/15) 8024921878243679 a001 1292/2889*64079^(6/23) 8024921878250633 a001 10959/711491*3571^(13/17) 8024921878264189 a001 832040/54018521*3571^(13/17) 8024921878266167 a001 2178309/141422324*3571^(13/17) 8024921878266455 a001 5702887/370248451*3571^(13/17) 8024921878266498 a001 14930352/969323029*3571^(13/17) 8024921878266504 a001 39088169/2537720636*3571^(13/17) 8024921878266505 a001 102334155/6643838879*3571^(13/17) 8024921878266505 a001 9238424/599786069*3571^(13/17) 8024921878266505 a001 701408733/45537549124*3571^(13/17) 8024921878266505 a001 1836311903/119218851371*3571^(13/17) 8024921878266505 a001 4807526976/312119004989*3571^(13/17) 8024921878266505 a001 12586269025/817138163596*3571^(13/17) 8024921878266505 a001 32951280099/2139295485799*3571^(13/17) 8024921878266505 a001 86267571272/5600748293801*3571^(13/17) 8024921878266505 a001 7787980473/505618944676*3571^(13/17) 8024921878266505 a001 365435296162/23725150497407*3571^(13/17) 8024921878266505 a001 139583862445/9062201101803*3571^(13/17) 8024921878266505 a001 53316291173/3461452808002*3571^(13/17) 8024921878266505 a001 20365011074/1322157322203*3571^(13/17) 8024921878266505 a001 7778742049/505019158607*3571^(13/17) 8024921878266505 a001 2971215073/192900153618*3571^(13/17) 8024921878266505 a001 1134903170/73681302247*3571^(13/17) 8024921878266505 a001 433494437/28143753123*3571^(13/17) 8024921878266505 a001 165580141/10749957122*3571^(13/17) 8024921878266505 a001 63245986/4106118243*3571^(13/17) 8024921878266508 a001 24157817/1568397607*3571^(13/17) 8024921878266524 a001 9227465/599074578*3571^(13/17) 8024921878266634 a001 3524578/228826127*3571^(13/17) 8024921878267389 a001 1346269/87403803*3571^(13/17) 8024921878272567 a001 514229/33385282*3571^(13/17) 8024921878308057 a001 196418/12752043*3571^(13/17) 8024921878551307 a001 75025/4870847*3571^(13/17) 8024921878744273 a001 1292/2889*439204^(2/9) 8024921878753494 a001 1292/2889*7881196^(2/11) 8024921878753517 a001 1292/2889*141422324^(2/13) 8024921878753517 a001 1292/2889*2537720636^(2/15) 8024921878753517 a001 1292/2889*45537549124^(2/17) 8024921878753517 a001 1292/2889*14662949395604^(2/21) 8024921878753517 a001 1292/2889*(1/2+1/2*5^(1/2))^6 8024921878753517 a001 1292/2889*10749957122^(1/8) 8024921878753517 a001 1292/2889*4106118243^(3/23) 8024921878753517 a001 1292/2889*1568397607^(3/22) 8024921878753517 a001 1292/2889*599074578^(1/7) 8024921878753517 a001 1292/2889*228826127^(3/20) 8024921878753518 a001 1292/2889*87403803^(3/19) 8024921878753519 a001 1292/2889*33385282^(1/6) 8024921878753526 a001 1292/2889*12752043^(3/17) 8024921878753581 a001 1292/2889*4870847^(3/16) 8024921878753981 a001 1292/2889*1860498^(1/5) 8024921878755829 a001 834632/104005 8024921878756922 a001 1292/2889*710647^(3/14) 8024921878778651 a001 1292/2889*271443^(3/13) 8024921878940144 a001 1292/2889*103682^(1/4) 8024921880105567 a001 2255/90481*3571^(12/17) 8024921880148964 a001 1292/2889*39603^(3/11) 8024921880218568 a001 28657/1860498*3571^(13/17) 8024921889274504 a001 1292/2889*15127^(3/10) 8024921891646145 a001 10946/710647*3571^(13/17) 8024921892781036 a001 1597/3571*1364^(2/5) 8024921896029085 a001 4181/710647*3571^(15/17) 8024921910151908 a001 17711/710647*3571^(12/17) 8024921913666416 a007 Real Root Of 826*x^4-151*x^3-7*x^2-203*x-579 8024921914535610 a001 2576/103361*3571^(12/17) 8024921915175184 a001 121393/4870847*3571^(12/17) 8024921915268496 a001 105937/4250681*3571^(12/17) 8024921915282110 a001 416020/16692641*3571^(12/17) 8024921915284096 a001 726103/29134601*3571^(12/17) 8024921915284386 a001 5702887/228826127*3571^(12/17) 8024921915284429 a001 829464/33281921*3571^(12/17) 8024921915284435 a001 39088169/1568397607*3571^(12/17) 8024921915284436 a001 34111385/1368706081*3571^(12/17) 8024921915284436 a001 133957148/5374978561*3571^(12/17) 8024921915284436 a001 233802911/9381251041*3571^(12/17) 8024921915284436 a001 1836311903/73681302247*3571^(12/17) 8024921915284436 a001 267084832/10716675201*3571^(12/17) 8024921915284436 a001 12586269025/505019158607*3571^(12/17) 8024921915284436 a001 10983760033/440719107401*3571^(12/17) 8024921915284436 a001 43133785636/1730726404001*3571^(12/17) 8024921915284436 a001 75283811239/3020733700601*3571^(12/17) 8024921915284436 a001 182717648081/7331474697802*3571^(12/17) 8024921915284436 a001 139583862445/5600748293801*3571^(12/17) 8024921915284436 a001 53316291173/2139295485799*3571^(12/17) 8024921915284436 a001 10182505537/408569081798*3571^(12/17) 8024921915284436 a001 7778742049/312119004989*3571^(12/17) 8024921915284436 a001 2971215073/119218851371*3571^(12/17) 8024921915284436 a001 567451585/22768774562*3571^(12/17) 8024921915284436 a001 433494437/17393796001*3571^(12/17) 8024921915284436 a001 165580141/6643838879*3571^(12/17) 8024921915284436 a001 31622993/1268860318*3571^(12/17) 8024921915284439 a001 24157817/969323029*3571^(12/17) 8024921915284455 a001 9227465/370248451*3571^(12/17) 8024921915284565 a001 1762289/70711162*3571^(12/17) 8024921915285324 a001 1346269/54018521*3571^(12/17) 8024921915290524 a001 514229/20633239*3571^(12/17) 8024921915326166 a001 98209/3940598*3571^(12/17) 8024921915570462 a001 75025/3010349*3571^(12/17) 8024921917244887 a001 28657/1149851*3571^(12/17) 8024921917517552 a001 615/15251*3571^(11/17) 8024921928721568 a001 5473/219602*3571^(12/17) 8024921930399983 a001 4181/3571*1364^(4/15) 8024921933104508 a001 4181/439204*3571^(14/17) 8024921935984888 a001 2255/1926*3571^(4/17) 8024921942497334 a001 329/13201*2207^(3/4) 8024921947227331 a001 17711/439204*3571^(11/17) 8024921951561929 a001 46368/1149851*3571^(11/17) 8024921951815376 a001 2584/9349*3571^(7/17) 8024921952194339 a001 121393/3010349*3571^(11/17) 8024921952286606 a001 317811/7881196*3571^(11/17) 8024921952300067 a001 75640/1875749*3571^(11/17) 8024921952302031 a001 2178309/54018521*3571^(11/17) 8024921952302318 a001 5702887/141422324*3571^(11/17) 8024921952302360 a001 14930352/370248451*3571^(11/17) 8024921952302366 a001 39088169/969323029*3571^(11/17) 8024921952302367 a001 9303105/230701876*3571^(11/17) 8024921952302367 a001 267914296/6643838879*3571^(11/17) 8024921952302367 a001 701408733/17393796001*3571^(11/17) 8024921952302367 a001 1836311903/45537549124*3571^(11/17) 8024921952302367 a001 4807526976/119218851371*3571^(11/17) 8024921952302367 a001 1144206275/28374454999*3571^(11/17) 8024921952302367 a001 32951280099/817138163596*3571^(11/17) 8024921952302367 a001 86267571272/2139295485799*3571^(11/17) 8024921952302367 a001 225851433717/5600748293801*3571^(11/17) 8024921952302367 a001 591286729879/14662949395604*3571^(11/17) 8024921952302367 a001 365435296162/9062201101803*3571^(11/17) 8024921952302367 a001 139583862445/3461452808002*3571^(11/17) 8024921952302367 a001 53316291173/1322157322203*3571^(11/17) 8024921952302367 a001 20365011074/505019158607*3571^(11/17) 8024921952302367 a001 7778742049/192900153618*3571^(11/17) 8024921952302367 a001 2971215073/73681302247*3571^(11/17) 8024921952302367 a001 1134903170/28143753123*3571^(11/17) 8024921952302367 a001 433494437/10749957122*3571^(11/17) 8024921952302367 a001 165580141/4106118243*3571^(11/17) 8024921952302367 a001 63245986/1568397607*3571^(11/17) 8024921952302370 a001 24157817/599074578*3571^(11/17) 8024921952302386 a001 9227465/228826127*3571^(11/17) 8024921952302495 a001 3524578/87403803*3571^(11/17) 8024921952303245 a001 1346269/33385282*3571^(11/17) 8024921952308387 a001 514229/12752043*3571^(11/17) 8024921952343630 a001 196418/4870847*3571^(11/17) 8024921952585189 a001 75025/1860498*3571^(11/17) 8024921953503836 a001 6765/103682*3571^(10/17) 8024921954240858 a001 28657/710647*3571^(11/17) 8024921957083690 a001 41/7*5^(9/46) 8024921958877865 a001 1292/2889*5778^(1/3) 8024921965588984 a001 10946/271443*3571^(11/17) 8024921969971924 a001 4181/271443*3571^(13/17) 8024921984094747 a001 17711/271443*3571^(10/17) 8024921988557901 a001 6624/101521*3571^(10/17) 8024921989209066 a001 121393/1860498*3571^(10/17) 8024921989304070 a001 317811/4870847*3571^(10/17) 8024921989317931 a001 832040/12752043*3571^(10/17) 8024921989319953 a001 311187/4769326*3571^(10/17) 8024921989320248 a001 5702887/87403803*3571^(10/17) 8024921989320291 a001 14930352/228826127*3571^(10/17) 8024921989320297 a001 39088169/599074578*3571^(10/17) 8024921989320298 a001 14619165/224056801*3571^(10/17) 8024921989320298 a001 267914296/4106118243*3571^(10/17) 8024921989320298 a001 701408733/10749957122*3571^(10/17) 8024921989320298 a001 1836311903/28143753123*3571^(10/17) 8024921989320298 a001 686789568/10525900321*3571^(10/17) 8024921989320298 a001 12586269025/192900153618*3571^(10/17) 8024921989320298 a001 32951280099/505019158607*3571^(10/17) 8024921989320298 a001 86267571272/1322157322203*3571^(10/17) 8024921989320298 a001 32264490531/494493258286*3571^(10/17) 8024921989320298 a001 591286729879/9062201101803*3571^(10/17) 8024921989320298 a001 1548008755920/23725150497407*3571^(10/17) 8024921989320298 a001 365435296162/5600748293801*3571^(10/17) 8024921989320298 a001 139583862445/2139295485799*3571^(10/17) 8024921989320298 a001 53316291173/817138163596*3571^(10/17) 8024921989320298 a001 20365011074/312119004989*3571^(10/17) 8024921989320298 a001 7778742049/119218851371*3571^(10/17) 8024921989320298 a001 2971215073/45537549124*3571^(10/17) 8024921989320298 a001 1134903170/17393796001*3571^(10/17) 8024921989320298 a001 433494437/6643838879*3571^(10/17) 8024921989320298 a001 165580141/2537720636*3571^(10/17) 8024921989320299 a001 63245986/969323029*3571^(10/17) 8024921989320301 a001 24157817/370248451*3571^(10/17) 8024921989320318 a001 9227465/141422324*3571^(10/17) 8024921989320430 a001 3524578/54018521*3571^(10/17) 8024921989321203 a001 1346269/20633239*3571^(10/17) 8024921989326497 a001 514229/7881196*3571^(10/17) 8024921989362785 a001 196418/3010349*3571^(10/17) 8024921989611508 a001 75025/1149851*3571^(10/17) 8024921991316281 a001 28657/439204*3571^(10/17) 8024921993222656 a001 6765/64079*3571^(9/17) 8024922003000970 a001 10946/167761*3571^(10/17) 8024922007383910 a001 4181/167761*3571^(12/17) 8024922016968779 m005 (1/2*Zeta(3)-1/9)/(2/11*gamma+6) 8024922021468305 a001 5473/2889*3571^(3/17) 8024922021506733 a001 17711/167761*3571^(9/17) 8024922023169569 a001 2255/13201*3571^(8/17) 8024922025633324 a001 11592/109801*3571^(9/17) 8024922025851245 a001 4181/5778*3571^(5/17) 8024922026235385 a001 121393/1149851*3571^(9/17) 8024922026323225 a001 317811/3010349*3571^(9/17) 8024922026336041 a001 208010/1970299*3571^(9/17) 8024922026337910 a001 2178309/20633239*3571^(9/17) 8024922026338183 a001 5702887/54018521*3571^(9/17) 8024922026338223 a001 3732588/35355581*3571^(9/17) 8024922026338229 a001 39088169/370248451*3571^(9/17) 8024922026338230 a001 102334155/969323029*3571^(9/17) 8024922026338230 a001 66978574/634430159*3571^(9/17) 8024922026338230 a001 701408733/6643838879*3571^(9/17) 8024922026338230 a001 1836311903/17393796001*3571^(9/17) 8024922026338230 a001 1201881744/11384387281*3571^(9/17) 8024922026338230 a001 12586269025/119218851371*3571^(9/17) 8024922026338230 a001 32951280099/312119004989*3571^(9/17) 8024922026338230 a001 21566892818/204284540899*3571^(9/17) 8024922026338230 a001 225851433717/2139295485799*3571^(9/17) 8024922026338230 a001 182717648081/1730726404001*3571^(9/17) 8024922026338230 a001 139583862445/1322157322203*3571^(9/17) 8024922026338230 a001 53316291173/505019158607*3571^(9/17) 8024922026338230 a001 10182505537/96450076809*3571^(9/17) 8024922026338230 a001 7778742049/73681302247*3571^(9/17) 8024922026338230 a001 2971215073/28143753123*3571^(9/17) 8024922026338230 a001 567451585/5374978561*3571^(9/17) 8024922026338230 a001 433494437/4106118243*3571^(9/17) 8024922026338230 a001 165580141/1568397607*3571^(9/17) 8024922026338230 a001 31622993/299537289*3571^(9/17) 8024922026338232 a001 24157817/228826127*3571^(9/17) 8024922026338248 a001 9227465/87403803*3571^(9/17) 8024922026338352 a001 1762289/16692641*3571^(9/17) 8024922026339066 a001 1346269/12752043*3571^(9/17) 8024922026343961 a001 514229/4870847*3571^(9/17) 8024922026377513 a001 98209/930249*3571^(9/17) 8024922026607480 a001 75025/710647*3571^(9/17) 8024922027312226 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^31 8024922028183697 a001 28657/271443*3571^(9/17) 8024922032142241 a001 1292/930249*9349^(18/19) 8024922036982963 a001 2584/1149851*9349^(17/19) 8024922037067417 a007 Real Root Of -826*x^4+183*x^3-385*x^2-673*x+145 8024922037160099 a001 75025/15127*1364^(1/15) 8024922038987253 a001 5473/51841*3571^(9/17) 8024922039974068 a001 17711/5778*3571^(2/17) 8024922041793336 a001 2584/710647*9349^(16/19) 8024922043370193 a001 4181/103682*3571^(11/17) 8024922045397939 a001 2584/15127*9349^(8/19) 8024922045582498 m001 (1-Zeta(3))/(-Bloch+Sarnak) 8024922046683161 a001 34/5779*9349^(15/19) 8024922051364979 a001 2584/271443*9349^(14/19) 8024922052539679 a001 987/64079*2207^(13/16) 8024922056591367 a001 2584/167761*9349^(13/19) 8024922057136693 a007 Real Root Of 366*x^4-666*x^3+581*x^2+698*x-310 8024922057493017 a001 17711/103682*3571^(8/17) 8024922058734090 m005 (1/2*exp(1)+7/11)/(11/12*gamma-7/9) 8024922060392053 a001 1292/51841*9349^(12/19) 8024922062062177 a001 987/3571*2207^(7/16) 8024922062500740 a001 15456/90481*3571^(8/17) 8024922063231357 a001 121393/710647*3571^(8/17) 8024922063337953 a001 105937/620166*3571^(8/17) 8024922063353505 a001 832040/4870847*3571^(8/17) 8024922063355774 a001 726103/4250681*3571^(8/17) 8024922063356105 a001 5702887/33385282*3571^(8/17) 8024922063356153 a001 4976784/29134601*3571^(8/17) 8024922063356160 a001 39088169/228826127*3571^(8/17) 8024922063356161 a001 34111385/199691526*3571^(8/17) 8024922063356161 a001 267914296/1568397607*3571^(8/17) 8024922063356161 a001 233802911/1368706081*3571^(8/17) 8024922063356161 a001 1836311903/10749957122*3571^(8/17) 8024922063356161 a001 1602508992/9381251041*3571^(8/17) 8024922063356161 a001 12586269025/73681302247*3571^(8/17) 8024922063356161 a001 10983760033/64300051206*3571^(8/17) 8024922063356161 a001 86267571272/505019158607*3571^(8/17) 8024922063356161 a001 75283811239/440719107401*3571^(8/17) 8024922063356161 a001 2504730781961/14662949395604*3571^(8/17) 8024922063356161 a001 139583862445/817138163596*3571^(8/17) 8024922063356161 a001 53316291173/312119004989*3571^(8/17) 8024922063356161 a001 20365011074/119218851371*3571^(8/17) 8024922063356161 a001 7778742049/45537549124*3571^(8/17) 8024922063356161 a001 2971215073/17393796001*3571^(8/17) 8024922063356161 a001 1134903170/6643838879*3571^(8/17) 8024922063356161 a001 433494437/2537720636*3571^(8/17) 8024922063356162 a001 165580141/969323029*3571^(8/17) 8024922063356162 a001 63245986/370248451*3571^(8/17) 8024922063356165 a001 24157817/141422324*3571^(8/17) 8024922063356183 a001 9227465/54018521*3571^(8/17) 8024922063356309 a001 3524578/20633239*3571^(8/17) 8024922063357176 a001 1346269/7881196*3571^(8/17) 8024922063363117 a001 514229/3010349*3571^(8/17) 8024922063403832 a001 196418/1149851*3571^(8/17) 8024922063682903 a001 75025/439204*3571^(8/17) 8024922064727280 a001 2255/1926*9349^(4/19) 8024922065595684 a001 28657/167761*3571^(8/17) 8024922065686590 a001 2584/39603*9349^(10/19) 8024922066869877 a001 196418/39603*1364^(1/15) 8024922067252114 a001 6765/15127*3571^(6/17) 8024922067925275 a001 2584/64079*9349^(11/19) 8024922068142321 h001 (5/9*exp(1)+9/11)/(6/7*exp(1)+4/7) 8024922070016060 r009 Im(z^3+c),c=-9/110+46/57*I,n=53 8024922071204476 a001 514229/103682*1364^(1/15) 8024922071836885 a001 1346269/271443*1364^(1/15) 8024922071929152 a001 3524578/710647*1364^(1/15) 8024922071942614 a001 9227465/1860498*1364^(1/15) 8024922071944578 a001 24157817/4870847*1364^(1/15) 8024922071944865 a001 63245986/12752043*1364^(1/15) 8024922071944906 a001 165580141/33385282*1364^(1/15) 8024922071944912 a001 433494437/87403803*1364^(1/15) 8024922071944913 a001 1134903170/228826127*1364^(1/15) 8024922071944913 a001 2971215073/599074578*1364^(1/15) 8024922071944913 a001 7778742049/1568397607*1364^(1/15) 8024922071944913 a001 20365011074/4106118243*1364^(1/15) 8024922071944913 a001 53316291173/10749957122*1364^(1/15) 8024922071944913 a001 139583862445/28143753123*1364^(1/15) 8024922071944913 a001 365435296162/73681302247*1364^(1/15) 8024922071944913 a001 956722026041/192900153618*1364^(1/15) 8024922071944913 a001 2504730781961/505019158607*1364^(1/15) 8024922071944913 a001 10610209857723/2139295485799*1364^(1/15) 8024922071944913 a001 4052739537881/817138163596*1364^(1/15) 8024922071944913 a001 140728068720/28374454999*1364^(1/15) 8024922071944913 a001 591286729879/119218851371*1364^(1/15) 8024922071944913 a001 225851433717/45537549124*1364^(1/15) 8024922071944913 a001 86267571272/17393796001*1364^(1/15) 8024922071944913 a001 32951280099/6643838879*1364^(1/15) 8024922071944913 a001 1144206275/230701876*1364^(1/15) 8024922071944913 a001 4807526976/969323029*1364^(1/15) 8024922071944914 a001 1836311903/370248451*1364^(1/15) 8024922071944914 a001 701408733/141422324*1364^(1/15) 8024922071944916 a001 267914296/54018521*1364^(1/15) 8024922071944932 a001 9303105/1875749*1364^(1/15) 8024922071945042 a001 39088169/7881196*1364^(1/15) 8024922071945792 a001 14930352/3010349*1364^(1/15) 8024922071950934 a001 5702887/1149851*1364^(1/15) 8024922071986177 a001 2178309/439204*1364^(1/15) 8024922072227736 a001 75640/15251*1364^(1/15) 8024922072722649 a003 cos(Pi*3/107)*cos(Pi*22/109) 8024922073883405 a001 317811/64079*1364^(1/15) 8024922078699669 a001 6765/24476*3571^(7/17) 8024922078706074 a001 10946/64079*3571^(8/17) 8024922078953547 a001 2584/15127*24476^(8/21) 8024922081505084 a001 2255/1926*24476^(4/21) 8024922082131465 r009 Im(z^3+c),c=-13/56+31/42*I,n=42 8024922083089014 a001 4181/64079*3571^(10/17) 8024922083376822 a001 2584/15127*64079^(8/23) 8024922083416613 m001 Pi^(1/2)/(ThueMorse^Niven) 8024922083716721 a001 2255/1926*64079^(4/23) 8024922084056606 a001 2584/15127*(1/2+1/2*5^(1/2))^8 8024922084056606 a001 2584/15127*23725150497407^(1/8) 8024922084056606 a001 2584/15127*505019158607^(1/7) 8024922084056606 a001 2584/15127*73681302247^(2/13) 8024922084056606 a001 2584/15127*10749957122^(1/6) 8024922084056606 a001 2584/15127*4106118243^(4/23) 8024922084056606 a001 2584/15127*1568397607^(2/11) 8024922084056607 a001 2584/15127*599074578^(4/21) 8024922084056607 a001 2584/15127*228826127^(1/5) 8024922084056607 a001 2584/15127*87403803^(4/19) 8024922084056608 a001 2584/15127*33385282^(2/9) 8024922084056614 a001 2255/1926*(1/2+1/2*5^(1/2))^4 8024922084056614 a001 2255/1926*23725150497407^(1/16) 8024922084056614 a001 2255/1926*73681302247^(1/13) 8024922084056614 a001 2255/1926*10749957122^(1/12) 8024922084056614 a001 2255/1926*4106118243^(2/23) 8024922084056614 a001 2255/1926*1568397607^(1/11) 8024922084056614 a001 2255/1926*599074578^(2/21) 8024922084056614 a001 2255/1926*228826127^(1/10) 8024922084056614 a001 2255/1926*87403803^(2/19) 8024922084056614 a001 2255/1926*33385282^(1/9) 8024922084056618 a001 2584/15127*12752043^(4/17) 8024922084056619 a001 2255/1926*12752043^(2/17) 8024922084056656 a001 2255/1926*4870847^(1/8) 8024922084056691 a001 2584/15127*4870847^(1/4) 8024922084056923 a001 2255/1926*1860498^(2/15) 8024922084056945 a001 5826920/726103 8024922084057225 a001 2584/15127*1860498^(4/15) 8024922084058884 a001 2255/1926*710647^(1/7) 8024922084061147 a001 2584/15127*710647^(2/7) 8024922084063019 a001 28657/5778*3571^(1/17) 8024922084073370 a001 2255/1926*271443^(2/13) 8024922084090118 a001 2584/15127*271443^(4/13) 8024922084181031 a001 2255/1926*103682^(1/6) 8024922084305442 a001 2584/15127*103682^(1/3) 8024922084986911 a001 2255/1926*39603^(2/11) 8024922085231531 a001 121393/24476*1364^(1/15) 8024922085917202 a001 2584/15127*39603^(4/11) 8024922089031092 a001 646/6119*9349^(9/19) 8024922090338686 r009 Im(z^3+c),c=-33/64+31/58*I,n=26 8024922091070394 a001 6765/3571*1364^(1/5) 8024922091070605 a001 2255/1926*15127^(1/5) 8024922097211837 a001 17711/64079*3571^(7/17) 8024922098084589 a001 2584/15127*15127^(2/5) 8024922099912726 a001 46368/167761*3571^(7/17) 8024922100306781 a001 121393/439204*3571^(7/17) 8024922100364273 a001 317811/1149851*3571^(7/17) 8024922100372660 a001 832040/3010349*3571^(7/17) 8024922100373884 a001 2178309/7881196*3571^(7/17) 8024922100374063 a001 5702887/20633239*3571^(7/17) 8024922100374089 a001 14930352/54018521*3571^(7/17) 8024922100374093 a001 39088169/141422324*3571^(7/17) 8024922100374093 a001 102334155/370248451*3571^(7/17) 8024922100374093 a001 267914296/969323029*3571^(7/17) 8024922100374093 a001 701408733/2537720636*3571^(7/17) 8024922100374093 a001 1836311903/6643838879*3571^(7/17) 8024922100374093 a001 4807526976/17393796001*3571^(7/17) 8024922100374093 a001 12586269025/45537549124*3571^(7/17) 8024922100374093 a001 32951280099/119218851371*3571^(7/17) 8024922100374093 a001 86267571272/312119004989*3571^(7/17) 8024922100374093 a001 225851433717/817138163596*3571^(7/17) 8024922100374093 a001 1548008755920/5600748293801*3571^(7/17) 8024922100374093 a001 139583862445/505019158607*3571^(7/17) 8024922100374093 a001 53316291173/192900153618*3571^(7/17) 8024922100374093 a001 20365011074/73681302247*3571^(7/17) 8024922100374093 a001 7778742049/28143753123*3571^(7/17) 8024922100374093 a001 2971215073/10749957122*3571^(7/17) 8024922100374093 a001 1134903170/4106118243*3571^(7/17) 8024922100374093 a001 433494437/1568397607*3571^(7/17) 8024922100374093 a001 165580141/599074578*3571^(7/17) 8024922100374094 a001 63245986/228826127*3571^(7/17) 8024922100374095 a001 24157817/87403803*3571^(7/17) 8024922100374105 a001 9227465/33385282*3571^(7/17) 8024922100374173 a001 3524578/12752043*3571^(7/17) 8024922100374641 a001 1346269/4870847*3571^(7/17) 8024922100377844 a001 514229/1860498*3571^(7/17) 8024922100399804 a001 196418/710647*3571^(7/17) 8024922100550320 a001 75025/271443*3571^(7/17) 8024922101581968 a001 28657/103682*3571^(7/17) 8024922104345265 a001 17711/5778*9349^(2/19) 8024922105731031 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^33 8024922106368575 a001 2584/4870847*24476^(20/21) 8024922107007681 a001 2584/3010349*24476^(19/21) 8024922107631100 a001 2584/39603*24476^(10/21) 8024922107642360 a001 1292/930249*24476^(6/7) 8024922108288630 a001 2584/1149851*24476^(17/21) 8024922108652987 a001 10946/39603*3571^(7/17) 8024922108904553 a001 2584/710647*24476^(16/21) 8024922109599927 a001 34/5779*24476^(5/7) 8024922110087294 a001 2584/271443*24476^(2/3) 8024922110725465 a001 1292/51841*24476^(4/7) 8024922111119231 a001 2584/167761*24476^(13/21) 8024922112734167 a001 17711/5778*24476^(2/21) 8024922113035927 a001 4181/39603*3571^(9/17) 8024922113160193 a001 2584/39603*64079^(10/23) 8024922113839985 a001 17711/5778*64079^(2/23) 8024922113895868 a001 2584/39603*167761^(2/5) 8024922114009919 a001 2584/39603*20633239^(2/7) 8024922114009924 a001 2584/39603*2537720636^(2/9) 8024922114009924 a001 2584/39603*312119004989^(2/11) 8024922114009924 a001 2584/39603*(1/2+1/2*5^(1/2))^10 8024922114009924 a001 2584/39603*28143753123^(1/5) 8024922114009924 a001 2584/39603*10749957122^(5/24) 8024922114009924 a001 2584/39603*4106118243^(5/23) 8024922114009924 a001 2584/39603*1568397607^(5/22) 8024922114009924 a001 2584/39603*599074578^(5/21) 8024922114009924 a001 2584/39603*228826127^(1/4) 8024922114009925 a001 2584/39603*87403803^(5/19) 8024922114009926 a001 2584/39603*33385282^(5/18) 8024922114009932 a001 17711/5778*(1/2+1/2*5^(1/2))^2 8024922114009932 a001 17711/5778*10749957122^(1/24) 8024922114009932 a001 17711/5778*4106118243^(1/23) 8024922114009932 a001 17711/5778*1568397607^(1/22) 8024922114009932 a001 17711/5778*599074578^(1/21) 8024922114009932 a001 17711/5778*228826127^(1/20) 8024922114009932 a001 17711/5778*87403803^(1/19) 8024922114009932 a001 17711/5778*33385282^(1/18) 8024922114009934 a001 17711/5778*12752043^(1/17) 8024922114009939 a001 2584/39603*12752043^(5/17) 8024922114009953 a001 17711/5778*4870847^(1/16) 8024922114009974 a001 45765224/5702887 8024922114010030 a001 2584/39603*4870847^(5/16) 8024922114010086 a001 17711/5778*1860498^(1/15) 8024922114010697 a001 2584/39603*1860498^(1/3) 8024922114011067 a001 17711/5778*710647^(1/14) 8024922114015600 a001 2584/39603*710647^(5/14) 8024922114018310 a001 17711/5778*271443^(1/13) 8024922114051814 a001 2584/39603*271443^(5/13) 8024922114064237 a001 2584/64079*24476^(11/21) 8024922114072141 a001 17711/5778*103682^(1/12) 8024922114320969 a001 2584/39603*103682^(5/12) 8024922114475080 a001 17711/5778*39603^(1/11) 8024922116248617 a001 28657/5778*9349^(1/19) 8024922116335669 a001 2584/39603*39603^(5/11) 8024922117172180 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^35 8024922117257104 a001 2584/12752043*64079^(22/23) 8024922117342256 a001 646/1970299*64079^(21/23) 8024922117360377 a001 1292/51841*64079^(12/23) 8024922117426761 a001 2584/4870847*64079^(20/23) 8024922117512958 a001 2584/3010349*64079^(19/23) 8024922117516927 a001 17711/5778*15127^(1/10) 8024922117594728 a001 1292/930249*64079^(18/23) 8024922117688089 a001 2584/1149851*64079^(17/23) 8024922117751102 a001 2584/710647*64079^(16/23) 8024922117828024 a001 2584/271443*64079^(14/23) 8024922117893567 a001 34/5779*64079^(15/23) 8024922118025100 a001 5473/2889*9349^(3/19) 8024922118307052 a001 2584/167761*64079^(13/23) 8024922118361565 a001 1292/51841*439204^(4/9) 8024922118380008 a001 1292/51841*7881196^(4/11) 8024922118380054 a001 1292/51841*141422324^(4/13) 8024922118380055 a001 1292/51841*2537720636^(4/15) 8024922118380055 a001 1292/51841*45537549124^(4/17) 8024922118380055 a001 1292/51841*817138163596^(4/19) 8024922118380055 a001 1292/51841*14662949395604^(4/21) 8024922118380055 a001 1292/51841*(1/2+1/2*5^(1/2))^12 8024922118380055 a001 1292/51841*192900153618^(2/9) 8024922118380055 a001 1292/51841*73681302247^(3/13) 8024922118380055 a001 1292/51841*10749957122^(1/4) 8024922118380055 a001 1292/51841*4106118243^(6/23) 8024922118380055 a001 1292/51841*1568397607^(3/11) 8024922118380055 a001 1292/51841*599074578^(2/7) 8024922118380055 a001 1292/51841*228826127^(3/10) 8024922118380055 a001 1292/51841*87403803^(6/19) 8024922118380057 a001 1292/51841*33385282^(1/3) 8024922118380062 a001 2576/321 8024922118380062 q001 1288/1605 8024922118380062 r005 Im(z^2+c),c=-43/30+46/107*I,n=2 8024922118380072 a001 1292/51841*12752043^(6/17) 8024922118380181 a001 1292/51841*4870847^(3/8) 8024922118380982 a001 1292/51841*1860498^(2/5) 8024922118386865 a001 1292/51841*710647^(3/7) 8024922118430323 a001 1292/51841*271443^(6/13) 8024922118753308 a001 1292/51841*103682^(1/2) 8024922118841422 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^37 8024922118898111 a001 2584/4870847*167761^(4/5) 8024922118997079 a001 34/5779*167761^(3/5) 8024922119017640 a001 2584/271443*20633239^(2/5) 8024922119017648 a001 2584/271443*17393796001^(2/7) 8024922119017648 a001 2584/271443*14662949395604^(2/9) 8024922119017648 a001 2584/271443*(1/2+1/2*5^(1/2))^14 8024922119017648 a001 2584/271443*10749957122^(7/24) 8024922119017648 a001 2584/271443*4106118243^(7/23) 8024922119017648 a001 2584/271443*1568397607^(7/22) 8024922119017648 a001 2584/271443*599074578^(1/3) 8024922119017648 a001 2584/271443*228826127^(7/20) 8024922119017648 a001 2584/271443*87403803^(7/19) 8024922119017649 a001 313679512/39088169 8024922119017651 a001 2584/271443*33385282^(7/18) 8024922119017655 a004 Fibonacci(26)/Lucas(18)/(1/2+sqrt(5)/2)^2 8024922119017668 a001 2584/271443*12752043^(7/17) 8024922119017796 a001 2584/271443*4870847^(7/16) 8024922119018730 a001 2584/271443*1860498^(7/15) 8024922119025593 a001 2584/271443*710647^(1/2) 8024922119076294 a001 2584/271443*271443^(7/13) 8024922119084961 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^39 8024922119089576 a001 1292/16692641*439204^(8/9) 8024922119094334 a001 646/1970299*439204^(7/9) 8024922119096509 a001 1292/930249*439204^(2/3) 8024922119110672 a001 2584/710647*(1/2+1/2*5^(1/2))^16 8024922119110672 a001 2584/710647*23725150497407^(1/4) 8024922119110672 a001 2584/710647*73681302247^(4/13) 8024922119110672 a001 2584/710647*10749957122^(1/3) 8024922119110672 a001 2584/710647*4106118243^(8/23) 8024922119110672 a001 2584/710647*1568397607^(4/11) 8024922119110672 a001 2584/710647*599074578^(8/21) 8024922119110672 a001 2584/710647*228826127^(2/5) 8024922119110672 a001 273741208/34111385 8024922119110672 a001 2584/710647*87403803^(8/19) 8024922119110675 a001 2584/710647*33385282^(4/9) 8024922119110679 a004 Fibonacci(28)/Lucas(18)/(1/2+sqrt(5)/2)^4 8024922119110695 a001 2584/710647*12752043^(8/17) 8024922119110841 a001 2584/710647*4870847^(1/2) 8024922119111908 a001 2584/710647*1860498^(8/15) 8024922119119752 a001 2584/710647*710647^(4/7) 8024922119120492 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^41 8024922119124173 a001 1292/930249*7881196^(6/11) 8024922119124243 a001 1292/930249*141422324^(6/13) 8024922119124244 a001 1292/930249*2537720636^(2/5) 8024922119124244 a001 1292/930249*45537549124^(6/17) 8024922119124244 a001 1292/930249*14662949395604^(2/7) 8024922119124244 a001 1292/930249*(1/2+1/2*5^(1/2))^18 8024922119124244 a001 1292/930249*192900153618^(1/3) 8024922119124244 a001 1292/930249*10749957122^(3/8) 8024922119124244 a001 1292/930249*4106118243^(9/23) 8024922119124244 a001 1292/930249*1568397607^(9/22) 8024922119124244 a001 1292/930249*599074578^(3/7) 8024922119124244 a001 268748920/33489287 8024922119124244 a001 1292/930249*228826127^(9/20) 8024922119124244 a001 1292/930249*87403803^(9/19) 8024922119124247 a001 1292/930249*33385282^(1/2) 8024922119124251 a004 Fibonacci(30)/Lucas(18)/(1/2+sqrt(5)/2)^6 8024922119124270 a001 1292/930249*12752043^(9/17) 8024922119124434 a001 1292/930249*4870847^(9/16) 8024922119125635 a001 1292/930249*1860498^(3/5) 8024922119125676 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^43 8024922119126213 a001 2584/4870847*20633239^(4/7) 8024922119126224 a001 2584/4870847*2537720636^(4/9) 8024922119126224 a001 2584/4870847*(1/2+1/2*5^(1/2))^20 8024922119126224 a001 2584/4870847*23725150497407^(5/16) 8024922119126224 a001 2584/4870847*505019158607^(5/14) 8024922119126224 a001 2584/4870847*73681302247^(5/13) 8024922119126224 a001 2584/4870847*28143753123^(2/5) 8024922119126224 a001 2584/4870847*10749957122^(5/12) 8024922119126224 a001 2584/4870847*4106118243^(10/23) 8024922119126224 a001 2584/4870847*1568397607^(5/11) 8024922119126224 a001 1876250152/233802911 8024922119126224 a001 2584/4870847*599074578^(10/21) 8024922119126224 a001 2584/4870847*228826127^(1/2) 8024922119126224 a001 2584/4870847*87403803^(10/19) 8024922119126228 a001 2584/4870847*33385282^(5/9) 8024922119126231 a004 Fibonacci(32)/Lucas(18)/(1/2+sqrt(5)/2)^8 8024922119126253 a001 2584/4870847*12752043^(10/17) 8024922119126426 a001 2584/12752043*7881196^(2/3) 8024922119126433 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^45 8024922119126435 a001 2584/4870847*4870847^(5/8) 8024922119126444 a001 1292/299537289*7881196^(10/11) 8024922119126457 a001 646/35355581*7881196^(9/11) 8024922119126461 a001 1292/16692641*7881196^(8/11) 8024922119126513 a001 2584/12752043*312119004989^(2/5) 8024922119126513 a001 2584/12752043*(1/2+1/2*5^(1/2))^22 8024922119126513 a001 2584/12752043*10749957122^(11/24) 8024922119126513 a001 2584/12752043*4106118243^(11/23) 8024922119126513 a001 14736260008/1836311903 8024922119126513 a001 2584/12752043*1568397607^(1/2) 8024922119126513 a001 2584/12752043*599074578^(11/21) 8024922119126513 a001 2584/12752043*228826127^(11/20) 8024922119126513 a001 2584/12752043*87403803^(11/19) 8024922119126517 a001 2584/12752043*33385282^(11/18) 8024922119126520 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2)^10 8024922119126543 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^47 8024922119126545 a001 2584/12752043*12752043^(11/17) 8024922119126546 a001 1292/299537289*20633239^(6/7) 8024922119126547 a001 2584/228826127*20633239^(4/5) 8024922119126551 a001 2584/54018521*20633239^(5/7) 8024922119126555 a001 1292/16692641*141422324^(8/13) 8024922119126555 a001 1292/16692641*2537720636^(8/15) 8024922119126555 a001 1292/16692641*45537549124^(8/17) 8024922119126555 a001 1292/16692641*14662949395604^(8/21) 8024922119126555 a001 1292/16692641*(1/2+1/2*5^(1/2))^24 8024922119126555 a001 1292/16692641*192900153618^(4/9) 8024922119126555 a001 1292/16692641*73681302247^(6/13) 8024922119126555 a001 1292/16692641*10749957122^(1/2) 8024922119126555 a001 66979218/8346401 8024922119126555 a001 1292/16692641*4106118243^(12/23) 8024922119126555 a001 1292/16692641*1568397607^(6/11) 8024922119126555 a001 1292/16692641*599074578^(4/7) 8024922119126555 a001 1292/16692641*228826127^(3/5) 8024922119126555 a001 1292/16692641*87403803^(12/19) 8024922119126559 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^49 8024922119126560 a001 1292/16692641*33385282^(2/3) 8024922119126561 a001 2584/87403803*141422324^(2/3) 8024922119126561 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^26/Lucas(38) 8024922119126561 a001 2584/87403803*73681302247^(1/2) 8024922119126561 a001 101003828696/12586269025 8024922119126561 a001 2584/87403803*10749957122^(13/24) 8024922119126561 a001 2584/87403803*4106118243^(13/23) 8024922119126561 a001 2584/87403803*1568397607^(13/22) 8024922119126561 a001 2584/87403803*599074578^(13/21) 8024922119126561 a001 2584/87403803*228826127^(13/20) 8024922119126562 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^51 8024922119126562 a001 1292/5374978561*141422324^(12/13) 8024922119126562 a001 34/33391061*141422324^(11/13) 8024922119126562 a001 2584/87403803*87403803^(13/19) 8024922119126562 a001 1292/299537289*141422324^(10/13) 8024922119126562 a001 2584/228826127*17393796001^(4/7) 8024922119126562 a001 2584/228826127*14662949395604^(4/9) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^28/Lucas(40) 8024922119126562 a001 2584/228826127*505019158607^(1/2) 8024922119126562 a001 2584/228826127*73681302247^(7/13) 8024922119126562 a001 88143818840/10983760033 8024922119126562 a001 2584/228826127*10749957122^(7/12) 8024922119126562 a001 2584/228826127*4106118243^(14/23) 8024922119126562 a001 2584/228826127*1568397607^(7/11) 8024922119126562 a001 2584/228826127*599074578^(2/3) 8024922119126562 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^53 8024922119126562 a001 2584/228826127*228826127^(7/10) 8024922119126562 a001 1292/299537289*2537720636^(2/3) 8024922119126562 a001 1292/299537289*45537549124^(10/17) 8024922119126562 a001 1292/299537289*312119004989^(6/11) 8024922119126562 a001 1292/299537289*14662949395604^(10/21) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^30/Lucas(42) 8024922119126562 a001 1292/299537289*192900153618^(5/9) 8024922119126562 a001 267914296/33385283 8024922119126562 a001 1292/299537289*28143753123^(3/5) 8024922119126562 a001 1292/299537289*10749957122^(5/8) 8024922119126562 a001 1292/299537289*4106118243^(15/23) 8024922119126562 a001 1292/299537289*1568397607^(15/22) 8024922119126562 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^55 8024922119126562 a001 1292/299537289*599074578^(5/7) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^32/Lucas(44) 8024922119126562 a001 2584/1568397607*23725150497407^(1/2) 8024922119126562 a001 2584/1568397607*505019158607^(4/7) 8024922119126562 a001 604146722024/75283811239 8024922119126562 a001 2584/1568397607*73681302247^(8/13) 8024922119126562 a001 2584/1568397607*10749957122^(2/3) 8024922119126562 a001 2584/1568397607*4106118243^(16/23) 8024922119126562 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^57 8024922119126562 a001 1292/96450076809*2537720636^(14/15) 8024922119126562 a001 2584/73681302247*2537720636^(8/9) 8024922119126562 a001 646/11384387281*2537720636^(13/15) 8024922119126562 a001 1292/5374978561*2537720636^(4/5) 8024922119126562 a001 2584/1568397607*1568397607^(8/11) 8024922119126562 a001 2584/6643838879*2537720636^(7/9) 8024922119126562 a001 2584/4106118243*45537549124^(2/3) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(46) 8024922119126562 a001 4745029957352/591286729879 8024922119126562 a001 2584/4106118243*10749957122^(17/24) 8024922119126562 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^59 8024922119126562 a001 2584/4106118243*4106118243^(17/23) 8024922119126562 a001 1292/5374978561*45537549124^(12/17) 8024922119126562 a001 1292/5374978561*14662949395604^(4/7) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(48) 8024922119126562 a001 86268400736/10750060805 8024922119126562 a001 1292/5374978561*505019158607^(9/14) 8024922119126562 a001 1292/5374978561*192900153618^(2/3) 8024922119126562 a001 1292/5374978561*73681302247^(9/13) 8024922119126562 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^61 8024922119126562 a001 1292/96450076809*17393796001^(6/7) 8024922119126562 a001 1292/5374978561*10749957122^(3/4) 8024922119126562 a001 2584/28143753123*817138163596^(2/3) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(50) 8024922119126562 a001 32522919160600/4052739537881 8024922119126562 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^63 8024922119126562 a001 1292/1730726404001*45537549124^(16/17) 8024922119126562 a001 1292/96450076809*45537549124^(14/17) 8024922119126562 a001 646/204284540899*45537549124^(15/17) 8024922119126562 a001 2584/73681302247*312119004989^(8/11) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(52) 8024922119126562 a001 2584/73681302247*23725150497407^(5/8) 8024922119126562 a001 28382035925272/3536736619241 8024922119126562 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^65 8024922119126562 a001 2584/73681302247*73681302247^(10/13) 8024922119126562 a001 1292/96450076809*817138163596^(14/19) 8024922119126562 a001 1292/96450076809*14662949395604^(2/3) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(54) 8024922119126562 a001 1292/96450076809*505019158607^(3/4) 8024922119126562 a001 2584/505019158607*312119004989^(4/5) 8024922119126562 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^67 8024922119126562 a001 2584/9062201101803*312119004989^(10/11) 8024922119126562 a001 1292/96450076809*192900153618^(7/9) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(56) 8024922119126562 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^69 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(58) 8024922119126562 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^71 8024922119126562 a001 1292/1730726404001*14662949395604^(16/21) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(60) 8024922119126562 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^73 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(62) 8024922119126562 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^75 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(64) 8024922119126562 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^77 8024922119126562 a001 2584/23725150497407*23725150497407^(13/16) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(66) 8024922119126562 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^79 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(68) 8024922119126562 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^81 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(70) 8024922119126562 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^83 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(72) 8024922119126562 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^85 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(74) 8024922119126562 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^87 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(76) 8024922119126562 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^89 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(78) 8024922119126562 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^91 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(80) 8024922119126562 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^93 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(82) 8024922119126562 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^95 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(84) 8024922119126562 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^97 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(86) 8024922119126562 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^99 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(88) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(90) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(92) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(94) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(96) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(98) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(99) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(100) 8024922119126562 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^12 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(97) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(95) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(93) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(91) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(89) 8024922119126562 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^100 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(87) 8024922119126562 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^98 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(85) 8024922119126562 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^96 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(83) 8024922119126562 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^94 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(81) 8024922119126562 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^92 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(79) 8024922119126562 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^90 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(77) 8024922119126562 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^88 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(75) 8024922119126562 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^86 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(73) 8024922119126562 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^84 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(71) 8024922119126562 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^82 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(69) 8024922119126562 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^80 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(67) 8024922119126562 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^78 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(65) 8024922119126562 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^76 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(63) 8024922119126562 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^74 8024922119126562 a001 2584/5600748293801*14662949395604^(7/9) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(61) 8024922119126562 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^72 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(59) 8024922119126562 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^70 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(57) 8024922119126562 a001 2584/5600748293801*505019158607^(7/8) 8024922119126562 a001 2584/23725150497407*505019158607^(13/14) 8024922119126562 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^68 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(55) 8024922119126562 a001 1292/1730726404001*192900153618^(8/9) 8024922119126562 a001 646/204284540899*192900153618^(5/6) 8024922119126562 a001 34/192933544679*192900153618^(17/18) 8024922119126562 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^66 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(53) 8024922119126562 a001 646/11384387281*45537549124^(13/17) 8024922119126562 a001 2584/505019158607*73681302247^(11/13) 8024922119126562 a001 1292/1730726404001*73681302247^(12/13) 8024922119126562 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^64 8024922119126562 a001 1547740841624/192866774113 8024922119126562 a001 646/11384387281*14662949395604^(13/21) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(51) 8024922119126562 a001 646/11384387281*192900153618^(13/18) 8024922119126562 a001 646/11384387281*73681302247^(3/4) 8024922119126562 a001 2584/73681302247*28143753123^(4/5) 8024922119126562 a001 646/204284540899*28143753123^(9/10) 8024922119126562 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^62 8024922119126562 a001 20100269454616/2504730781961 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(49) 8024922119126562 a001 2584/28143753123*10749957122^(19/24) 8024922119126562 a001 2584/73681302247*10749957122^(5/6) 8024922119126562 a001 646/11384387281*10749957122^(13/16) 8024922119126562 a001 1292/96450076809*10749957122^(7/8) 8024922119126562 a001 2584/505019158607*10749957122^(11/12) 8024922119126562 a001 646/204284540899*10749957122^(15/16) 8024922119126562 a001 2584/1322157322203*10749957122^(23/24) 8024922119126562 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^60 8024922119126562 a001 2584/6643838879*17393796001^(5/7) 8024922119126562 a001 2584/6643838879*312119004989^(7/11) 8024922119126562 a001 7677619748632/956722026041 8024922119126562 a001 2584/6643838879*14662949395604^(5/9) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(47) 8024922119126562 a001 2584/6643838879*505019158607^(5/8) 8024922119126562 a001 2584/6643838879*28143753123^(7/10) 8024922119126562 a001 1292/5374978561*4106118243^(18/23) 8024922119126562 a001 34/33391061*2537720636^(11/15) 8024922119126562 a001 2584/28143753123*4106118243^(19/23) 8024922119126562 a001 2584/73681302247*4106118243^(20/23) 8024922119126562 a001 1292/96450076809*4106118243^(21/23) 8024922119126562 a001 2584/505019158607*4106118243^(22/23) 8024922119126562 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^58 8024922119126562 a001 34/33391061*45537549124^(11/17) 8024922119126562 a001 34/33391061*312119004989^(3/5) 8024922119126562 a001 1466294895640/182717648081 8024922119126562 a001 34/33391061*817138163596^(11/19) 8024922119126562 a001 34/33391061*14662949395604^(11/21) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(45) 8024922119126562 a001 34/33391061*192900153618^(11/18) 8024922119126562 a001 34/33391061*10749957122^(11/16) 8024922119126562 a001 2584/4106118243*1568397607^(17/22) 8024922119126562 a001 1292/5374978561*1568397607^(9/11) 8024922119126562 a001 2584/28143753123*1568397607^(19/22) 8024922119126562 a001 2584/73681302247*1568397607^(10/11) 8024922119126562 a001 1292/96450076809*1568397607^(21/22) 8024922119126562 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^56 8024922119126562 a001 34/33391061*1568397607^(3/4) 8024922119126562 a001 1120149625208/139583862445 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^31/Lucas(43) 8024922119126562 a001 2584/969323029*9062201101803^(1/2) 8024922119126562 a001 2584/1568397607*599074578^(16/21) 8024922119126562 a001 2584/4106118243*599074578^(17/21) 8024922119126562 a001 34/33391061*599074578^(11/14) 8024922119126562 a001 2584/6643838879*599074578^(5/6) 8024922119126562 a001 1292/5374978561*599074578^(6/7) 8024922119126562 a001 2584/28143753123*599074578^(19/21) 8024922119126562 a001 646/11384387281*599074578^(13/14) 8024922119126562 a001 2584/73681302247*599074578^(20/21) 8024922119126562 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^54 8024922119126562 a001 427859084344/53316291173 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^29/Lucas(41) 8024922119126562 a001 2584/370248451*1322157322203^(1/2) 8024922119126562 a001 1292/299537289*228826127^(3/4) 8024922119126562 a001 2584/1568397607*228826127^(4/5) 8024922119126562 a001 646/35355581*141422324^(9/13) 8024922119126562 a001 2584/4106118243*228826127^(17/20) 8024922119126562 a001 2584/6643838879*228826127^(7/8) 8024922119126562 a001 1292/5374978561*228826127^(9/10) 8024922119126562 a001 2584/28143753123*228826127^(19/20) 8024922119126562 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^52 8024922119126562 a001 646/35355581*2537720636^(3/5) 8024922119126562 a001 81713813912/10182505537 8024922119126562 a001 646/35355581*45537549124^(9/17) 8024922119126562 a001 646/35355581*817138163596^(9/19) 8024922119126562 a001 646/35355581*14662949395604^(3/7) 8024922119126562 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^27/Lucas(39) 8024922119126562 a001 646/35355581*192900153618^(1/2) 8024922119126562 a001 646/35355581*10749957122^(9/16) 8024922119126562 a001 646/35355581*599074578^(9/14) 8024922119126563 a001 2584/228826127*87403803^(14/19) 8024922119126563 a001 1292/299537289*87403803^(15/19) 8024922119126563 a001 2584/1568397607*87403803^(16/19) 8024922119126563 a001 2584/4106118243*87403803^(17/19) 8024922119126563 a001 1292/5374978561*87403803^(18/19) 8024922119126563 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^50 8024922119126565 a001 2584/54018521*2537720636^(5/9) 8024922119126565 a001 62423799128/7778742049 8024922119126565 a001 2584/54018521*312119004989^(5/11) 8024922119126565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^25/Lucas(37) 8024922119126565 a001 2584/54018521*3461452808002^(5/12) 8024922119126565 a001 2584/54018521*28143753123^(1/2) 8024922119126565 a001 2584/54018521*228826127^(5/8) 8024922119126566 a001 2584/87403803*33385282^(13/18) 8024922119126567 a001 2584/228826127*33385282^(7/9) 8024922119126568 a001 646/35355581*33385282^(3/4) 8024922119126568 a001 1292/299537289*33385282^(5/6) 8024922119126568 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^14 8024922119126568 a001 2584/1568397607*33385282^(8/9) 8024922119126569 a001 34/33391061*33385282^(11/12) 8024922119126569 a001 2584/4106118243*33385282^(17/18) 8024922119126569 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^16 8024922119126569 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^18 8024922119126569 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^20 8024922119126569 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^22 8024922119126569 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^24 8024922119126569 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^26 8024922119126569 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^28 8024922119126569 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^30 8024922119126569 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^32 8024922119126569 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^34 8024922119126569 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^36 8024922119126569 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^38 8024922119126569 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^40 8024922119126569 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^42 8024922119126569 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^44 8024922119126569 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^46 8024922119126569 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^48 8024922119126569 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^50 8024922119126569 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^52 8024922119126569 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^54 8024922119126569 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^56 8024922119126569 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^58 8024922119126569 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^60 8024922119126569 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^62 8024922119126569 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^64 8024922119126569 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^66 8024922119126569 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^68 8024922119126569 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^70 8024922119126569 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^72 8024922119126569 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^74 8024922119126569 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^76 8024922119126569 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^75 8024922119126569 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^73 8024922119126569 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^71 8024922119126569 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^69 8024922119126569 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^67 8024922119126569 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^65 8024922119126569 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^63 8024922119126569 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^61 8024922119126569 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^59 8024922119126569 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^57 8024922119126569 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^55 8024922119126569 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^53 8024922119126569 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^51 8024922119126569 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^49 8024922119126569 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^47 8024922119126569 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^45 8024922119126569 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^43 8024922119126569 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^41 8024922119126569 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^39 8024922119126569 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^37 8024922119126569 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^35 8024922119126569 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^33 8024922119126569 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^31 8024922119126569 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^29 8024922119126569 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^27 8024922119126569 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^25 8024922119126569 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^23 8024922119126569 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^21 8024922119126569 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^19 8024922119126569 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^17 8024922119126570 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^15 8024922119126572 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^13 8024922119126581 a001 23843769560/2971215073 8024922119126581 a001 2584/20633239*(1/2+1/2*5^(1/2))^23 8024922119126581 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^23/Lucas(35) 8024922119126581 a001 2584/20633239*4106118243^(1/2) 8024922119126588 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^11 8024922119126590 a001 1292/16692641*12752043^(12/17) 8024922119126599 a001 2584/87403803*12752043^(13/17) 8024922119126602 a001 2584/228826127*12752043^(14/17) 8024922119126605 a001 1292/299537289*12752043^(15/17) 8024922119126608 a001 2584/1568397607*12752043^(16/17) 8024922119126609 a001 646/1970299*7881196^(7/11) 8024922119126611 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^46 8024922119126680 a001 646/1970299*20633239^(3/5) 8024922119126691 a001 646/1970299*141422324^(7/13) 8024922119126691 a001 267867928/33379505 8024922119126691 a001 646/1970299*2537720636^(7/15) 8024922119126691 a001 646/1970299*17393796001^(3/7) 8024922119126691 a001 646/1970299*45537549124^(7/17) 8024922119126691 a001 646/1970299*14662949395604^(1/3) 8024922119126691 a001 646/1970299*(1/2+1/2*5^(1/2))^21 8024922119126691 a001 646/1970299*192900153618^(7/18) 8024922119126691 a001 646/1970299*10749957122^(7/16) 8024922119126691 a001 646/1970299*599074578^(1/2) 8024922119126695 a001 646/1970299*33385282^(7/12) 8024922119126698 a004 Fibonacci(33)/Lucas(18)/(1/2+sqrt(5)/2)^9 8024922119126745 a001 2584/12752043*4870847^(11/16) 8024922119126808 a001 1292/16692641*4870847^(3/4) 8024922119126836 a001 2584/87403803*4870847^(13/16) 8024922119126858 a001 2584/228826127*4870847^(7/8) 8024922119126879 a001 1292/299537289*4870847^(15/16) 8024922119126900 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^44 8024922119127447 a001 3478759096/433494437 8024922119127448 a001 2584/3010349*817138163596^(1/3) 8024922119127448 a001 2584/3010349*(1/2+1/2*5^(1/2))^19 8024922119127448 a001 2584/3010349*87403803^(1/2) 8024922119127455 a004 Fibonacci(31)/Lucas(18)/(1/2+sqrt(5)/2)^7 8024922119127769 a001 2584/4870847*1860498^(2/3) 8024922119128213 a001 2584/12752043*1860498^(11/15) 8024922119128314 a001 646/1970299*1860498^(7/10) 8024922119128409 a001 1292/16692641*1860498^(4/5) 8024922119128497 a001 2584/54018521*1860498^(5/6) 8024922119128570 a001 2584/87403803*1860498^(13/15) 8024922119128649 a001 646/35355581*1860498^(9/10) 8024922119128726 a001 2584/228826127*1860498^(14/15) 8024922119128880 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^42 8024922119132631 a001 1328767736/165580141 8024922119132632 a001 2584/1149851*45537549124^(1/3) 8024922119132632 a001 2584/1149851*(1/2+1/2*5^(1/2))^17 8024922119132639 a004 Fibonacci(29)/Lucas(18)/(1/2+sqrt(5)/2)^5 8024922119132656 a001 2584/1149851*12752043^(1/2) 8024922119134459 a001 1292/930249*710647^(9/14) 8024922119137574 a001 2584/4870847*710647^(5/7) 8024922119138609 a001 646/1970299*710647^(3/4) 8024922119138998 a001 2584/12752043*710647^(11/14) 8024922119140175 a001 1292/16692641*710647^(6/7) 8024922119141316 a001 2584/87403803*710647^(13/14) 8024922119142452 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^40 8024922119145051 a001 34/5779*439204^(5/9) 8024922119168105 a001 34/5779*7881196^(5/11) 8024922119168155 a001 34/5779*20633239^(3/7) 8024922119168163 a001 253772056/31622993 8024922119168163 a001 34/5779*141422324^(5/13) 8024922119168163 a001 34/5779*2537720636^(1/3) 8024922119168163 a001 34/5779*45537549124^(5/17) 8024922119168163 a001 34/5779*312119004989^(3/11) 8024922119168163 a001 34/5779*14662949395604^(5/21) 8024922119168163 a001 34/5779*(1/2+1/2*5^(1/2))^15 8024922119168163 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^15/Lucas(27) 8024922119168163 a001 34/5779*192900153618^(5/18) 8024922119168163 a001 34/5779*28143753123^(3/10) 8024922119168163 a001 34/5779*10749957122^(5/16) 8024922119168163 a001 34/5779*599074578^(5/14) 8024922119168163 a001 34/5779*228826127^(3/8) 8024922119168166 a001 34/5779*33385282^(5/12) 8024922119168171 a004 Fibonacci(27)/Lucas(18)/(1/2+sqrt(5)/2)^3 8024922119169323 a001 34/5779*1860498^(1/2) 8024922119177696 a001 2584/710647*271443^(8/13) 8024922119199646 a001 1292/930249*271443^(9/13) 8024922119210004 a001 2584/4870847*271443^(10/13) 8024922119218671 a001 2584/12752043*271443^(11/13) 8024922119227091 a001 1292/16692641*271443^(12/13) 8024922119235476 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^38 8024922119411700 a001 193864600/24157817 8024922119411702 a001 2584/167761*141422324^(1/3) 8024922119411702 a001 2584/167761*(1/2+1/2*5^(1/2))^13 8024922119411702 a001 2584/167761*73681302247^(1/4) 8024922119411710 a004 Fibonacci(25)/Lucas(18)/(1/2+sqrt(5)/2) 8024922119453111 a001 2584/271443*103682^(7/12) 8024922119466159 a001 2584/167761*271443^(1/2) 8024922119608343 a001 2584/710647*103682^(2/3) 8024922119634730 a001 34/5779*103682^(5/8) 8024922119661408 a001 2584/1149851*103682^(17/24) 8024922119684124 a001 1292/930249*103682^(3/4) 8024922119718432 a001 2584/3010349*103682^(19/24) 8024922119748313 a001 2584/4870847*103682^(5/6) 8024922119779885 a001 646/1970299*103682^(7/8) 8024922119810811 a001 2584/12752043*103682^(11/12) 8024922119816061 a001 2584/167761*103682^(13/24) 8024922119841984 a001 2584/20633239*103682^(23/24) 8024922119873069 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^36 8024922120146239 a001 2584/64079*64079^(11/23) 8024922120443068 a001 28657/5778*24476^(1/21) 8024922120995978 a001 28657/5778*64079^(1/23) 8024922121080901 a001 2584/64079*7881196^(1/3) 8024922121080925 a001 74049688/9227465 8024922121080944 a001 2584/64079*312119004989^(1/5) 8024922121080944 a001 2584/64079*(1/2+1/2*5^(1/2))^11 8024922121080944 a001 2584/64079*1568397607^(1/4) 8024922121080951 a001 28657/11556+28657/11556*5^(1/2) 8024922121112055 a001 28657/5778*103682^(1/24) 8024922121170948 a001 1292/51841*39603^(6/11) 8024922121313525 a001 28657/5778*39603^(1/22) 8024922121423093 a001 2584/64079*103682^(11/24) 8024922122273690 a001 2584/271443*39603^(7/11) 8024922122435170 a001 2584/167761*39603^(13/22) 8024922122656780 a001 34/5779*39603^(15/22) 8024922122831863 a001 2584/710647*39603^(8/11) 8024922122834449 a001 28657/5778*15127^(1/20) 8024922123086397 a001 2584/1149851*39603^(17/22) 8024922123310583 a001 1292/930249*39603^(9/11) 8024922123546362 a001 2584/3010349*39603^(19/22) 8024922123639262 a001 2584/64079*39603^(1/2) 8024922123777712 a001 2584/4870847*39603^(10/11) 8024922124010754 a001 646/1970299*39603^(21/22) 8024922124243200 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^34 8024922126781151 a001 646/6119*24476^(3/7) 8024922127158750 a001 17711/39603*3571^(6/17) 8024922127906959 p004 log(24281/10883) 8024922130608453 a001 5473/2889*24476^(1/7) 8024922131544902 a001 2584/39603*15127^(1/2) 8024922131757335 a001 646/6119*64079^(9/23) 8024922132267181 a001 5473/2889*64079^(3/23) 8024922132508226 a001 646/6119*439204^(1/3) 8024922132517478 a001 5473/2889*439204^(1/9) 8024922132521964 a001 14142232/1762289 8024922132522058 a001 646/6119*7881196^(3/11) 8024922132522088 a001 5473/2889*7881196^(1/11) 8024922132522093 a001 646/6119*141422324^(3/13) 8024922132522093 a001 646/6119*2537720636^(1/5) 8024922132522093 a001 646/6119*45537549124^(3/17) 8024922132522093 a001 646/6119*817138163596^(3/19) 8024922132522093 a001 646/6119*14662949395604^(1/7) 8024922132522093 a001 646/6119*(1/2+1/2*5^(1/2))^9 8024922132522093 a001 646/6119*192900153618^(1/6) 8024922132522093 a001 646/6119*10749957122^(3/16) 8024922132522093 a001 646/6119*599074578^(3/14) 8024922132522095 a001 646/6119*33385282^(1/4) 8024922132522100 a001 5473/2889*141422324^(1/13) 8024922132522100 a001 5473/2889*2537720636^(1/15) 8024922132522100 a001 5473/2889*45537549124^(1/17) 8024922132522100 a001 5473/2889*14662949395604^(1/21) 8024922132522100 a001 5473/2889*(1/2+1/2*5^(1/2))^3 8024922132522100 a001 5473/2889*192900153618^(1/18) 8024922132522100 a001 5473/2889*10749957122^(1/16) 8024922132522100 a001 5473/2889*599074578^(1/14) 8024922132522101 a001 5473/2889*33385282^(1/12) 8024922132522332 a001 5473/2889*1860498^(1/10) 8024922132522789 a001 646/6119*1860498^(3/10) 8024922132615414 a001 5473/2889*103682^(1/8) 8024922132802033 a001 646/6119*103682^(3/8) 8024922133219824 a001 5473/2889*39603^(3/22) 8024922134435009 a001 28657/5778*5778^(1/18) 8024922134615263 a001 646/6119*39603^(9/22) 8024922135899011 a001 23184/51841*3571^(6/17) 8024922137174197 a001 121393/271443*3571^(6/17) 8024922137360245 a001 317811/710647*3571^(6/17) 8024922137387389 a001 416020/930249*3571^(6/17) 8024922137391349 a001 2178309/4870847*3571^(6/17) 8024922137391927 a001 5702887/12752043*3571^(6/17) 8024922137392011 a001 7465176/16692641*3571^(6/17) 8024922137392023 a001 39088169/87403803*3571^(6/17) 8024922137392025 a001 102334155/228826127*3571^(6/17) 8024922137392025 a001 133957148/299537289*3571^(6/17) 8024922137392025 a001 701408733/1568397607*3571^(6/17) 8024922137392025 a001 1836311903/4106118243*3571^(6/17) 8024922137392025 a001 2403763488/5374978561*3571^(6/17) 8024922137392025 a001 12586269025/28143753123*3571^(6/17) 8024922137392025 a001 32951280099/73681302247*3571^(6/17) 8024922137392025 a001 43133785636/96450076809*3571^(6/17) 8024922137392025 a001 225851433717/505019158607*3571^(6/17) 8024922137392025 a001 591286729879/1322157322203*3571^(6/17) 8024922137392025 a001 10610209857723/23725150497407*3571^(6/17) 8024922137392025 a001 182717648081/408569081798*3571^(6/17) 8024922137392025 a001 139583862445/312119004989*3571^(6/17) 8024922137392025 a001 53316291173/119218851371*3571^(6/17) 8024922137392025 a001 10182505537/22768774562*3571^(6/17) 8024922137392025 a001 7778742049/17393796001*3571^(6/17) 8024922137392025 a001 2971215073/6643838879*3571^(6/17) 8024922137392025 a001 567451585/1268860318*3571^(6/17) 8024922137392025 a001 433494437/969323029*3571^(6/17) 8024922137392025 a001 165580141/370248451*3571^(6/17) 8024922137392026 a001 31622993/70711162*3571^(6/17) 8024922137392031 a001 24157817/54018521*3571^(6/17) 8024922137392063 a001 9227465/20633239*3571^(6/17) 8024922137392284 a001 1762289/3940598*3571^(6/17) 8024922137393796 a001 1346269/3010349*3571^(6/17) 8024922137404164 a001 514229/1149851*3571^(6/17) 8024922137472846 a001 2255/1926*5778^(2/9) 8024922137475228 a001 98209/219602*3571^(6/17) 8024922137782594 a001 5473/2889*15127^(3/20) 8024922137962306 a001 75025/167761*3571^(6/17) 8024922139422028 a001 1292/51841*15127^(3/5) 8024922140369419 a001 2584/64079*15127^(11/20) 8024922140718048 a001 17711/5778*5778^(1/9) 8024922141300789 a001 28657/64079*3571^(6/17) 8024922142207174 a001 2584/167761*15127^(13/20) 8024922143566617 a001 2584/271443*15127^(7/10) 8024922144471896 a007 Real Root Of -465*x^4-219*x^3-257*x^2+411*x+575 8024922145470630 a001 34/5779*15127^(3/4) 8024922147166636 a001 2584/710647*15127^(4/5) 8024922148303573 a001 646/6119*15127^(9/20) 8024922148942094 a001 2584/1149851*15127^(17/20) 8024922150687204 a001 1292/930249*15127^(9/10) 8024922152344628 a007 Real Root Of -90*x^4-804*x^3-762*x^2-895*x-362 8024922152443905 a001 2584/3010349*15127^(19/20) 8024922152735533 a001 10946/15127*3571^(5/17) 8024922152810117 a001 21/2206*2207^(7/8) 8024922154196518 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^32 8024922157118473 a001 4181/15127*3571^(7/17) 8024922163012742 a001 46368/9349*1364^(1/15) 8024922164183088 a001 5473/12238*3571^(6/17) 8024922168566028 a001 4181/24476*3571^(8/17) 8024922171241296 a001 17711/15127*3571^(4/17) 8024922171247702 a001 28657/39603*3571^(5/17) 8024922172584275 a001 5473/2889*5778^(1/6) 8024922173948591 a001 75025/103682*3571^(5/17) 8024922174342645 a001 196418/271443*3571^(5/17) 8024922174400137 a001 514229/710647*3571^(5/17) 8024922174408525 a001 1346269/1860498*3571^(5/17) 8024922174409748 a001 3524578/4870847*3571^(5/17) 8024922174409927 a001 9227465/12752043*3571^(5/17) 8024922174409953 a001 24157817/33385282*3571^(5/17) 8024922174409957 a001 63245986/87403803*3571^(5/17) 8024922174409957 a001 165580141/228826127*3571^(5/17) 8024922174409957 a001 433494437/599074578*3571^(5/17) 8024922174409957 a001 1134903170/1568397607*3571^(5/17) 8024922174409957 a001 2971215073/4106118243*3571^(5/17) 8024922174409957 a001 7778742049/10749957122*3571^(5/17) 8024922174409957 a001 20365011074/28143753123*3571^(5/17) 8024922174409957 a001 53316291173/73681302247*3571^(5/17) 8024922174409957 a001 139583862445/192900153618*3571^(5/17) 8024922174409957 a001 365435296162/505019158607*3571^(5/17) 8024922174409957 a001 10610209857723/14662949395604*3571^(5/17) 8024922174409957 a001 591286729879/817138163596*3571^(5/17) 8024922174409957 a001 225851433717/312119004989*3571^(5/17) 8024922174409957 a001 86267571272/119218851371*3571^(5/17) 8024922174409957 a001 32951280099/45537549124*3571^(5/17) 8024922174409957 a001 12586269025/17393796001*3571^(5/17) 8024922174409957 a001 4807526976/6643838879*3571^(5/17) 8024922174409957 a001 1836311903/2537720636*3571^(5/17) 8024922174409957 a001 701408733/969323029*3571^(5/17) 8024922174409958 a001 267914296/370248451*3571^(5/17) 8024922174409958 a001 102334155/141422324*3571^(5/17) 8024922174409959 a001 39088169/54018521*3571^(5/17) 8024922174409969 a001 14930352/20633239*3571^(5/17) 8024922174410037 a001 5702887/7881196*3571^(5/17) 8024922174410505 a001 2178309/3010349*3571^(5/17) 8024922174413709 a001 832040/1149851*3571^(5/17) 8024922174435669 a001 317811/439204*3571^(5/17) 8024922174586184 a001 121393/167761*3571^(5/17) 8024922175617832 a001 46368/64079*3571^(5/17) 8024922177114564 a001 2584/9349*9349^(7/19) 8024922182688851 a001 17711/24476*3571^(5/17) 8024922186779237 a001 4181/5778*9349^(5/19) 8024922190889073 a001 2584/15127*5778^(4/9) 8024922196064212 r005 Im(z^2+c),c=-13/18+3/59*I,n=45 8024922205564745 a001 15456/13201*3571^(4/17) 8024922206475722 a001 2584/9349*24476^(1/3) 8024922207751493 a001 4181/5778*24476^(5/21) 8024922210346087 a001 2584/9349*64079^(7/23) 8024922210516039 a001 4181/5778*64079^(5/23) 8024922210572469 a001 121393/103682*3571^(4/17) 8024922210883877 a001 4181/5778*167761^(1/5) 8024922210940012 a001 10803704/1346269 8024922210940895 a001 2584/9349*20633239^(1/5) 8024922210940899 a001 2584/9349*17393796001^(1/7) 8024922210940899 a001 2584/9349*14662949395604^(1/9) 8024922210940899 a001 2584/9349*(1/2+1/2*5^(1/2))^7 8024922210940899 a001 2584/9349*599074578^(1/6) 8024922210940902 a001 4181/5778*20633239^(1/7) 8024922210940905 a001 4181/5778*2537720636^(1/9) 8024922210940905 a001 4181/5778*312119004989^(1/11) 8024922210940905 a001 4181/5778*(1/2+1/2*5^(1/2))^5 8024922210940905 a001 4181/5778*28143753123^(1/10) 8024922210940905 a001 4181/5778*228826127^(1/8) 8024922210941291 a001 4181/5778*1860498^(1/6) 8024922210944871 a001 2584/9349*710647^(1/4) 8024922211096427 a001 4181/5778*103682^(5/24) 8024922211158630 a001 2584/9349*103682^(7/24) 8024922211303086 a001 105937/90481*3571^(4/17) 8024922211409681 a001 832040/710647*3571^(4/17) 8024922211425233 a001 726103/620166*3571^(4/17) 8024922211427502 a001 5702887/4870847*3571^(4/17) 8024922211427833 a001 4976784/4250681*3571^(4/17) 8024922211427882 a001 39088169/33385282*3571^(4/17) 8024922211427889 a001 34111385/29134601*3571^(4/17) 8024922211427890 a001 267914296/228826127*3571^(4/17) 8024922211427890 a001 233802911/199691526*3571^(4/17) 8024922211427890 a001 1836311903/1568397607*3571^(4/17) 8024922211427890 a001 1602508992/1368706081*3571^(4/17) 8024922211427890 a001 12586269025/10749957122*3571^(4/17) 8024922211427890 a001 10983760033/9381251041*3571^(4/17) 8024922211427890 a001 86267571272/73681302247*3571^(4/17) 8024922211427890 a001 75283811239/64300051206*3571^(4/17) 8024922211427890 a001 2504730781961/2139295485799*3571^(4/17) 8024922211427890 a001 365435296162/312119004989*3571^(4/17) 8024922211427890 a001 139583862445/119218851371*3571^(4/17) 8024922211427890 a001 53316291173/45537549124*3571^(4/17) 8024922211427890 a001 20365011074/17393796001*3571^(4/17) 8024922211427890 a001 7778742049/6643838879*3571^(4/17) 8024922211427890 a001 2971215073/2537720636*3571^(4/17) 8024922211427890 a001 1134903170/969323029*3571^(4/17) 8024922211427890 a001 433494437/370248451*3571^(4/17) 8024922211427890 a001 165580141/141422324*3571^(4/17) 8024922211427893 a001 63245986/54018521*3571^(4/17) 8024922211427911 a001 24157817/20633239*3571^(4/17) 8024922211428038 a001 9227465/7881196*3571^(4/17) 8024922211428905 a001 3524578/3010349*3571^(4/17) 8024922211434845 a001 1346269/1149851*3571^(4/17) 8024922211475561 a001 514229/439204*3571^(4/17) 8024922211754632 a001 196418/167761*3571^(4/17) 8024922212103777 a001 4181/5778*39603^(5/22) 8024922212568920 a001 2584/9349*39603^(7/22) 8024922213667412 a001 75025/64079*3571^(4/17) 8024922215330248 a001 28657/15127*3571^(3/17) 8024922216329060 a001 4181/1364*521^(2/13) 8024922218551209 r008 a(0)=8,K{-n^6,-75+95*n^3-26*n^2-34*n} 8024922219708394 a001 4181/5778*15127^(1/4) 8024922223215383 a001 2584/9349*15127^(7/20) 8024922224052279 a001 28657/5778*2207^(1/16) 8024922226777803 a001 28657/24476*3571^(4/17) 8024922231154339 a001 6765/9349*3571^(5/17) 8024922232615326 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^33 8024922237447321 a001 6765/4870847*9349^(18/19) 8024922242280879 a001 6765/3010349*9349^(17/19) 8024922243614325 a001 75025/39603*3571^(3/17) 8024922247110008 a001 55/15126*9349^(16/19) 8024922247550508 a001 2584/39603*5778^(5/9) 8024922247740916 a001 98209/51841*3571^(3/17) 8024922248342978 a001 514229/271443*3571^(3/17) 8024922248430818 a001 1346269/710647*3571^(3/17) 8024922248443633 a001 1762289/930249*3571^(3/17) 8024922248445503 a001 9227465/4870847*3571^(3/17) 8024922248445776 a001 24157817/12752043*3571^(3/17) 8024922248445816 a001 31622993/16692641*3571^(3/17) 8024922248445821 a001 165580141/87403803*3571^(3/17) 8024922248445822 a001 433494437/228826127*3571^(3/17) 8024922248445822 a001 567451585/299537289*3571^(3/17) 8024922248445822 a001 2971215073/1568397607*3571^(3/17) 8024922248445822 a001 7778742049/4106118243*3571^(3/17) 8024922248445822 a001 10182505537/5374978561*3571^(3/17) 8024922248445822 a001 53316291173/28143753123*3571^(3/17) 8024922248445822 a001 139583862445/73681302247*3571^(3/17) 8024922248445822 a001 182717648081/96450076809*3571^(3/17) 8024922248445822 a001 956722026041/505019158607*3571^(3/17) 8024922248445822 a001 10610209857723/5600748293801*3571^(3/17) 8024922248445822 a001 591286729879/312119004989*3571^(3/17) 8024922248445822 a001 225851433717/119218851371*3571^(3/17) 8024922248445822 a001 21566892818/11384387281*3571^(3/17) 8024922248445822 a001 32951280099/17393796001*3571^(3/17) 8024922248445822 a001 12586269025/6643838879*3571^(3/17) 8024922248445822 a001 1201881744/634430159*3571^(3/17) 8024922248445822 a001 1836311903/969323029*3571^(3/17) 8024922248445822 a001 701408733/370248451*3571^(3/17) 8024922248445823 a001 66978574/35355581*3571^(3/17) 8024922248445825 a001 102334155/54018521*3571^(3/17) 8024922248445840 a001 39088169/20633239*3571^(3/17) 8024922248445944 a001 3732588/1970299*3571^(3/17) 8024922248446659 a001 5702887/3010349*3571^(3/17) 8024922248451554 a001 2178309/1149851*3571^(3/17) 8024922248485105 a001 208010/109801*3571^(3/17) 8024922248715072 a001 317811/167761*3571^(3/17) 8024922249647291 a001 6624/2161*3571^(2/17) 8024922250291290 a001 121393/64079*3571^(3/17) 8024922251950730 a001 6765/1149851*9349^(15/19) 8024922252708618 a001 646/6119*5778^(1/2) 8024922256761104 a001 6765/710647*9349^(14/19) 8024922256813093 a001 987/167761*2207^(15/16) 8024922260365706 a001 6765/15127*9349^(6/19) 8024922261094846 a001 11592/6119*3571^(3/17) 8024922261262847 m002 -4-E^Pi+6*Pi^3-Pi^6 8024922261650929 a001 6765/439204*9349^(13/19) 8024922262568645 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^35 8024922266332747 a001 2255/90481*9349^(12/19) 8024922266938775 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^37 8024922267400929 a001 17711/12752043*9349^(18/19) 8024922267576368 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^39 8024922267669392 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^41 8024922267682964 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^43 8024922267684944 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^45 8024922267685233 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^47 8024922267685275 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^49 8024922267685281 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^51 8024922267685282 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^53 8024922267685282 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^55 8024922267685282 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^57 8024922267685282 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^59 8024922267685282 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^61 8024922267685282 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^63 8024922267685282 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^65 8024922267685282 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^67 8024922267685282 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^69 8024922267685282 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^71 8024922267685282 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^73 8024922267685282 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^75 8024922267685282 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^77 8024922267685282 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^79 8024922267685282 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^81 8024922267685282 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^83 8024922267685282 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^85 8024922267685282 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^87 8024922267685282 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^89 8024922267685282 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^91 8024922267685282 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^93 8024922267685282 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^95 8024922267685282 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^97 8024922267685282 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^99 8024922267685282 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^100 8024922267685282 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^98 8024922267685282 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^96 8024922267685282 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^94 8024922267685282 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^92 8024922267685282 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^90 8024922267685282 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^88 8024922267685282 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^86 8024922267685282 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^84 8024922267685282 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^82 8024922267685282 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^80 8024922267685282 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^78 8024922267685282 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^76 8024922267685282 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^74 8024922267685282 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^72 8024922267685282 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^70 8024922267685282 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^68 8024922267685282 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^66 8024922267685282 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^64 8024922267685282 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^62 8024922267685282 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^60 8024922267685282 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^58 8024922267685282 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^56 8024922267685282 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^54 8024922267685283 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^52 8024922267685283 a001 2/4181*(1/2+1/2*5^(1/2))^25 8024922267685285 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^50 8024922267685301 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^48 8024922267685412 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^46 8024922267686168 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^44 8024922267691352 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^42 8024922267726884 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^40 8024922267970423 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^38 8024922267975586 a001 2584/64079*5778^(11/18) 8024922269639664 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^36 8024922271559135 a001 615/15251*9349^(11/19) 8024922271771101 a001 144/103681*9349^(18/19) 8024922272233441 a001 89/39604*9349^(17/19) 8024922272408701 a001 121393/87403803*9349^(18/19) 8024922272501725 a001 317811/228826127*9349^(18/19) 8024922272515298 a001 416020/299537289*9349^(18/19) 8024922272517278 a001 311187/224056801*9349^(18/19) 8024922272517567 a001 5702887/4106118243*9349^(18/19) 8024922272517609 a001 7465176/5374978561*9349^(18/19) 8024922272517615 a001 39088169/28143753123*9349^(18/19) 8024922272517616 a001 14619165/10525900321*9349^(18/19) 8024922272517616 a001 133957148/96450076809*9349^(18/19) 8024922272517616 a001 701408733/505019158607*9349^(18/19) 8024922272517616 a001 1836311903/1322157322203*9349^(18/19) 8024922272517616 a001 14930208/10749853441*9349^(18/19) 8024922272517616 a001 12586269025/9062201101803*9349^(18/19) 8024922272517616 a001 32951280099/23725150497407*9349^(18/19) 8024922272517616 a001 10182505537/7331474697802*9349^(18/19) 8024922272517616 a001 7778742049/5600748293801*9349^(18/19) 8024922272517616 a001 2971215073/2139295485799*9349^(18/19) 8024922272517616 a001 567451585/408569081798*9349^(18/19) 8024922272517616 a001 433494437/312119004989*9349^(18/19) 8024922272517616 a001 165580141/119218851371*9349^(18/19) 8024922272517616 a001 31622993/22768774562*9349^(18/19) 8024922272517619 a001 24157817/17393796001*9349^(18/19) 8024922272517635 a001 9227465/6643838879*9349^(18/19) 8024922272517745 a001 1762289/1268860318*9349^(18/19) 8024922272518502 a001 1346269/969323029*9349^(18/19) 8024922272523686 a001 514229/370248451*9349^(18/19) 8024922272559218 a001 98209/70711162*9349^(18/19) 8024922272802759 a001 75025/54018521*9349^(18/19) 8024922274472017 a001 28657/20633239*9349^(18/19) 8024922275359821 a001 6765/103682*9349^(10/19) 8024922276603461 a001 46368/20633239*9349^(17/19) 8024922277065307 a001 17711/4870847*9349^(16/19) 8024922277241038 a001 121393/54018521*9349^(17/19) 8024922277334060 a001 317811/141422324*9349^(17/19) 8024922277347631 a001 832040/370248451*9349^(17/19) 8024922277349611 a001 2178309/969323029*9349^(17/19) 8024922277349900 a001 5702887/2537720636*9349^(17/19) 8024922277349942 a001 14930352/6643838879*9349^(17/19) 8024922277349949 a001 39088169/17393796001*9349^(17/19) 8024922277349949 a001 102334155/45537549124*9349^(17/19) 8024922277349950 a001 267914296/119218851371*9349^(17/19) 8024922277349950 a001 3524667/1568437211*9349^(17/19) 8024922277349950 a001 1836311903/817138163596*9349^(17/19) 8024922277349950 a001 4807526976/2139295485799*9349^(17/19) 8024922277349950 a001 12586269025/5600748293801*9349^(17/19) 8024922277349950 a001 32951280099/14662949395604*9349^(17/19) 8024922277349950 a001 53316291173/23725150497407*9349^(17/19) 8024922277349950 a001 20365011074/9062201101803*9349^(17/19) 8024922277349950 a001 7778742049/3461452808002*9349^(17/19) 8024922277349950 a001 2971215073/1322157322203*9349^(17/19) 8024922277349950 a001 1134903170/505019158607*9349^(17/19) 8024922277349950 a001 433494437/192900153618*9349^(17/19) 8024922277349950 a001 165580141/73681302247*9349^(17/19) 8024922277349950 a001 63245986/28143753123*9349^(17/19) 8024922277349952 a001 24157817/10749957122*9349^(17/19) 8024922277349968 a001 9227465/4106118243*9349^(17/19) 8024922277350079 a001 3524578/1568397607*9349^(17/19) 8024922277350835 a001 1346269/599074578*9349^(17/19) 8024922277356019 a001 514229/228826127*9349^(17/19) 8024922277391550 a001 196418/87403803*9349^(17/19) 8024922277635083 a001 75025/33385282*9349^(17/19) 8024922277711197 a001 4181/5778*5778^(5/18) 8024922278628755 a001 1292/51841*5778^(2/3) 8024922279304282 a001 28657/12752043*9349^(17/19) 8024922280238203 a001 121393/39603*3571^(2/17) 8024922280654358 a001 2255/13201*9349^(8/19) 8024922281080814 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^34 8024922281435726 a001 15456/4250681*9349^(16/19) 8024922281898865 a001 17711/3010349*9349^(15/19) 8024922282073362 a001 121393/33385282*9349^(16/19) 8024922282166392 a001 105937/29134601*9349^(16/19) 8024922282179965 a001 832040/228826127*9349^(16/19) 8024922282181945 a001 726103/199691526*9349^(16/19) 8024922282182234 a001 5702887/1568397607*9349^(16/19) 8024922282182276 a001 4976784/1368706081*9349^(16/19) 8024922282182282 a001 39088169/10749957122*9349^(16/19) 8024922282182283 a001 831985/228811001*9349^(16/19) 8024922282182283 a001 267914296/73681302247*9349^(16/19) 8024922282182283 a001 233802911/64300051206*9349^(16/19) 8024922282182283 a001 1836311903/505019158607*9349^(16/19) 8024922282182283 a001 1602508992/440719107401*9349^(16/19) 8024922282182283 a001 12586269025/3461452808002*9349^(16/19) 8024922282182283 a001 10983760033/3020733700601*9349^(16/19) 8024922282182283 a001 86267571272/23725150497407*9349^(16/19) 8024922282182283 a001 53316291173/14662949395604*9349^(16/19) 8024922282182283 a001 20365011074/5600748293801*9349^(16/19) 8024922282182283 a001 7778742049/2139295485799*9349^(16/19) 8024922282182283 a001 2971215073/817138163596*9349^(16/19) 8024922282182283 a001 1134903170/312119004989*9349^(16/19) 8024922282182283 a001 433494437/119218851371*9349^(16/19) 8024922282182283 a001 165580141/45537549124*9349^(16/19) 8024922282182284 a001 63245986/17393796001*9349^(16/19) 8024922282182286 a001 24157817/6643838879*9349^(16/19) 8024922282182302 a001 9227465/2537720636*9349^(16/19) 8024922282182412 a001 3524578/969323029*9349^(16/19) 8024922282183169 a001 1346269/370248451*9349^(16/19) 8024922282188353 a001 514229/141422324*9349^(16/19) 8024922282223887 a001 196418/54018521*9349^(16/19) 8024922282467442 a001 75025/20633239*9349^(16/19) 8024922282893044 a001 6765/64079*9349^(9/19) 8024922284136794 a001 28657/7881196*9349^(16/19) 8024922284701357 a001 317811/103682*3571^(2/17) 8024922285352523 a001 832040/271443*3571^(2/17) 8024922285447526 a001 311187/101521*3571^(2/17) 8024922285461387 a001 5702887/1860498*3571^(2/17) 8024922285463410 a001 14930352/4870847*3571^(2/17) 8024922285463705 a001 39088169/12752043*3571^(2/17) 8024922285463748 a001 14619165/4769326*3571^(2/17) 8024922285463754 a001 267914296/87403803*3571^(2/17) 8024922285463755 a001 701408733/228826127*3571^(2/17) 8024922285463755 a001 1836311903/599074578*3571^(2/17) 8024922285463755 a001 686789568/224056801*3571^(2/17) 8024922285463755 a001 12586269025/4106118243*3571^(2/17) 8024922285463755 a001 32951280099/10749957122*3571^(2/17) 8024922285463755 a001 86267571272/28143753123*3571^(2/17) 8024922285463755 a001 32264490531/10525900321*3571^(2/17) 8024922285463755 a001 591286729879/192900153618*3571^(2/17) 8024922285463755 a001 1548008755920/505019158607*3571^(2/17) 8024922285463755 a001 1515744265389/494493258286*3571^(2/17) 8024922285463755 a001 2504730781961/817138163596*3571^(2/17) 8024922285463755 a001 956722026041/312119004989*3571^(2/17) 8024922285463755 a001 365435296162/119218851371*3571^(2/17) 8024922285463755 a001 139583862445/45537549124*3571^(2/17) 8024922285463755 a001 53316291173/17393796001*3571^(2/17) 8024922285463755 a001 20365011074/6643838879*3571^(2/17) 8024922285463755 a001 7778742049/2537720636*3571^(2/17) 8024922285463755 a001 2971215073/969323029*3571^(2/17) 8024922285463755 a001 1134903170/370248451*3571^(2/17) 8024922285463755 a001 433494437/141422324*3571^(2/17) 8024922285463758 a001 165580141/54018521*3571^(2/17) 8024922285463774 a001 63245986/20633239*3571^(2/17) 8024922285463887 a001 24157817/7881196*3571^(2/17) 8024922285464659 a001 9227465/3010349*3571^(2/17) 8024922285469954 a001 3524578/1149851*3571^(2/17) 8024922285506242 a001 1346269/439204*3571^(2/17) 8024922285532413 a001 6765/15127*24476^(2/7) 8024922285754965 a001 514229/167761*3571^(2/17) 8024922285913277 a001 5473/3940598*9349^(18/19) 8024922286268239 a001 11592/1970299*9349^(15/19) 8024922286727994 a001 17711/1860498*9349^(14/19) 8024922286905722 a001 121393/20633239*9349^(15/19) 8024922286998729 a001 317811/54018521*9349^(15/19) 8024922287012299 a001 208010/35355581*9349^(15/19) 8024922287014279 a001 2178309/370248451*9349^(15/19) 8024922287014567 a001 5702887/969323029*9349^(15/19) 8024922287014610 a001 196452/33391061*9349^(15/19) 8024922287014616 a001 39088169/6643838879*9349^(15/19) 8024922287014617 a001 102334155/17393796001*9349^(15/19) 8024922287014617 a001 66978574/11384387281*9349^(15/19) 8024922287014617 a001 701408733/119218851371*9349^(15/19) 8024922287014617 a001 1836311903/312119004989*9349^(15/19) 8024922287014617 a001 1201881744/204284540899*9349^(15/19) 8024922287014617 a001 12586269025/2139295485799*9349^(15/19) 8024922287014617 a001 32951280099/5600748293801*9349^(15/19) 8024922287014617 a001 1135099622/192933544679*9349^(15/19) 8024922287014617 a001 139583862445/23725150497407*9349^(15/19) 8024922287014617 a001 53316291173/9062201101803*9349^(15/19) 8024922287014617 a001 10182505537/1730726404001*9349^(15/19) 8024922287014617 a001 7778742049/1322157322203*9349^(15/19) 8024922287014617 a001 2971215073/505019158607*9349^(15/19) 8024922287014617 a001 567451585/96450076809*9349^(15/19) 8024922287014617 a001 433494437/73681302247*9349^(15/19) 8024922287014617 a001 165580141/28143753123*9349^(15/19) 8024922287014617 a001 31622993/5374978561*9349^(15/19) 8024922287014619 a001 24157817/4106118243*9349^(15/19) 8024922287014636 a001 9227465/1568397607*9349^(15/19) 8024922287014746 a001 1762289/299537289*9349^(15/19) 8024922287015502 a001 1346269/228826127*9349^(15/19) 8024922287020685 a001 514229/87403803*9349^(15/19) 8024922287056211 a001 98209/16692641*9349^(15/19) 8024922287299708 a001 75025/12752043*9349^(15/19) 8024922287459738 a001 196418/64079*3571^(2/17) 8024922287696872 a001 75025/15127*3571^(1/17) 8024922288849869 a001 6765/15127*64079^(6/23) 8024922288968660 a001 28657/4870847*9349^(15/19) 8024922289060444 a007 Real Root Of -408*x^4+675*x^3-794*x^2-955*x+263 8024922289350463 a001 6765/15127*439204^(2/9) 8024922289359684 a001 6765/15127*7881196^(2/11) 8024922289359708 a001 6765/15127*141422324^(2/13) 8024922289359708 a001 6765/15127*2537720636^(2/15) 8024922289359708 a001 6765/15127*45537549124^(2/17) 8024922289359708 a001 6765/15127*14662949395604^(2/21) 8024922289359708 a001 6765/15127*(1/2+1/2*5^(1/2))^6 8024922289359708 a001 6765/15127*10749957122^(1/8) 8024922289359708 a001 6765/15127*4106118243^(3/23) 8024922289359708 a001 6765/15127*1568397607^(3/22) 8024922289359708 a001 6765/15127*599074578^(1/7) 8024922289359708 a001 6765/15127*228826127^(3/20) 8024922289359708 a001 6765/15127*87403803^(3/19) 8024922289359709 a001 6765/15127*33385282^(1/6) 8024922289359717 a001 6765/15127*12752043^(3/17) 8024922289359757 a001 45765225/5702887 8024922289359771 a001 6765/15127*4870847^(3/16) 8024922289360172 a001 6765/15127*1860498^(1/5) 8024922289363113 a001 6765/15127*710647^(3/14) 8024922289384842 a001 6765/15127*271443^(3/13) 8024922289546335 a001 6765/15127*103682^(1/4) 8024922290089690 a001 6765/2207*843^(1/7) 8024922290745143 a001 10946/4870847*9349^(17/19) 8024922290755155 a001 6765/15127*39603^(3/11) 8024922291100105 a001 46368/4870847*9349^(14/19) 8024922291568716 a001 17711/1149851*9349^(13/19) 8024922291737987 a001 121393/12752043*9349^(14/19) 8024922291831053 a001 317811/33385282*9349^(14/19) 8024922291844631 a001 832040/87403803*9349^(14/19) 8024922291846612 a001 46347/4868641*9349^(14/19) 8024922291846901 a001 5702887/599074578*9349^(14/19) 8024922291846943 a001 14930352/1568397607*9349^(14/19) 8024922291846949 a001 39088169/4106118243*9349^(14/19) 8024922291846950 a001 102334155/10749957122*9349^(14/19) 8024922291846950 a001 267914296/28143753123*9349^(14/19) 8024922291846950 a001 701408733/73681302247*9349^(14/19) 8024922291846950 a001 1836311903/192900153618*9349^(14/19) 8024922291846950 a001 102287808/10745088481*9349^(14/19) 8024922291846950 a001 12586269025/1322157322203*9349^(14/19) 8024922291846950 a001 32951280099/3461452808002*9349^(14/19) 8024922291846950 a001 86267571272/9062201101803*9349^(14/19) 8024922291846950 a001 225851433717/23725150497407*9349^(14/19) 8024922291846950 a001 139583862445/14662949395604*9349^(14/19) 8024922291846950 a001 53316291173/5600748293801*9349^(14/19) 8024922291846950 a001 20365011074/2139295485799*9349^(14/19) 8024922291846950 a001 7778742049/817138163596*9349^(14/19) 8024922291846950 a001 2971215073/312119004989*9349^(14/19) 8024922291846950 a001 1134903170/119218851371*9349^(14/19) 8024922291846950 a001 433494437/45537549124*9349^(14/19) 8024922291846950 a001 165580141/17393796001*9349^(14/19) 8024922291846951 a001 63245986/6643838879*9349^(14/19) 8024922291846953 a001 24157817/2537720636*9349^(14/19) 8024922291846969 a001 9227465/969323029*9349^(14/19) 8024922291847080 a001 3524578/370248451*9349^(14/19) 8024922291847836 a001 1346269/141422324*9349^(14/19) 8024922291853023 a001 514229/54018521*9349^(14/19) 8024922291888571 a001 196418/20633239*9349^(14/19) 8024922292132220 a001 75025/7881196*9349^(14/19) 8024922292913297 m001 GAMMA(1/3)^2*BesselK(1,1)^2/exp(sin(Pi/5))^2 8024922293014461 a001 2584/167761*5778^(13/18) 8024922293802218 a001 28657/3010349*9349^(14/19) 8024922295578700 a001 10946/3010349*9349^(16/19) 8024922295933662 a001 46368/3010349*9349^(13/19) 8024922296379090 a001 17711/710647*9349^(12/19) 8024922296570499 a001 121393/7881196*9349^(13/19) 8024922296663412 a001 10959/711491*9349^(13/19) 8024922296676968 a001 832040/54018521*9349^(13/19) 8024922296678946 a001 2178309/141422324*9349^(13/19) 8024922296679235 a001 5702887/370248451*9349^(13/19) 8024922296679277 a001 14930352/969323029*9349^(13/19) 8024922296679283 a001 39088169/2537720636*9349^(13/19) 8024922296679284 a001 102334155/6643838879*9349^(13/19) 8024922296679284 a001 9238424/599786069*9349^(13/19) 8024922296679284 a001 701408733/45537549124*9349^(13/19) 8024922296679284 a001 1836311903/119218851371*9349^(13/19) 8024922296679284 a001 4807526976/312119004989*9349^(13/19) 8024922296679284 a001 12586269025/817138163596*9349^(13/19) 8024922296679284 a001 32951280099/2139295485799*9349^(13/19) 8024922296679284 a001 86267571272/5600748293801*9349^(13/19) 8024922296679284 a001 7787980473/505618944676*9349^(13/19) 8024922296679284 a001 365435296162/23725150497407*9349^(13/19) 8024922296679284 a001 139583862445/9062201101803*9349^(13/19) 8024922296679284 a001 53316291173/3461452808002*9349^(13/19) 8024922296679284 a001 20365011074/1322157322203*9349^(13/19) 8024922296679284 a001 7778742049/505019158607*9349^(13/19) 8024922296679284 a001 2971215073/192900153618*9349^(13/19) 8024922296679284 a001 1134903170/73681302247*9349^(13/19) 8024922296679284 a001 433494437/28143753123*9349^(13/19) 8024922296679284 a001 165580141/10749957122*9349^(13/19) 8024922296679284 a001 63245986/4106118243*9349^(13/19) 8024922296679287 a001 24157817/1568397607*9349^(13/19) 8024922296679303 a001 9227465/599074578*9349^(13/19) 8024922296679413 a001 3524578/228826127*9349^(13/19) 8024922296680168 a001 1346269/87403803*9349^(13/19) 8024922296685346 a001 514229/33385282*9349^(13/19) 8024922296720836 a001 196418/12752043*9349^(13/19) 8024922296964086 a001 75025/4870847*9349^(13/19) 8024922298631347 a001 28657/1860498*9349^(13/19) 8024922299144427 a001 75025/24476*3571^(2/17) 8024922299880695 a001 6765/15127*15127^(3/10) 8024922299983692 a001 17711/15127*9349^(4/19) 8024922300407830 a001 5473/930249*9349^(15/19) 8024922300762792 a001 2576/103361*9349^(12/19) 8024922301268915 a001 17711/439204*9349^(11/19) 8024922301402365 a001 121393/4870847*9349^(12/19) 8024922301495678 a001 105937/4250681*9349^(12/19) 8024922301509292 a001 416020/16692641*9349^(12/19) 8024922301511278 a001 726103/29134601*9349^(12/19) 8024922301511568 a001 5702887/228826127*9349^(12/19) 8024922301511610 a001 829464/33281921*9349^(12/19) 8024922301511616 a001 39088169/1568397607*9349^(12/19) 8024922301511617 a001 34111385/1368706081*9349^(12/19) 8024922301511618 a001 133957148/5374978561*9349^(12/19) 8024922301511618 a001 233802911/9381251041*9349^(12/19) 8024922301511618 a001 1836311903/73681302247*9349^(12/19) 8024922301511618 a001 267084832/10716675201*9349^(12/19) 8024922301511618 a001 12586269025/505019158607*9349^(12/19) 8024922301511618 a001 10983760033/440719107401*9349^(12/19) 8024922301511618 a001 43133785636/1730726404001*9349^(12/19) 8024922301511618 a001 75283811239/3020733700601*9349^(12/19) 8024922301511618 a001 182717648081/7331474697802*9349^(12/19) 8024922301511618 a001 139583862445/5600748293801*9349^(12/19) 8024922301511618 a001 53316291173/2139295485799*9349^(12/19) 8024922301511618 a001 10182505537/408569081798*9349^(12/19) 8024922301511618 a001 7778742049/312119004989*9349^(12/19) 8024922301511618 a001 2971215073/119218851371*9349^(12/19) 8024922301511618 a001 567451585/22768774562*9349^(12/19) 8024922301511618 a001 433494437/17393796001*9349^(12/19) 8024922301511618 a001 165580141/6643838879*9349^(12/19) 8024922301511618 a001 31622993/1268860318*9349^(12/19) 8024922301511620 a001 24157817/969323029*9349^(12/19) 8024922301511636 a001 9227465/370248451*9349^(12/19) 8024922301511747 a001 1762289/70711162*9349^(12/19) 8024922301512506 a001 1346269/54018521*9349^(12/19) 8024922301517706 a001 514229/20633239*9349^(12/19) 8024922301553348 a001 98209/3940598*9349^(12/19) 8024922301797644 a001 75025/3010349*9349^(12/19) 8024922303472069 a001 28657/1149851*9349^(12/19) 8024922303998860 a001 6765/24476*9349^(7/19) 8024922304419308 a001 2584/9349*5778^(7/18) 8024922305248551 a001 10946/1149851*9349^(14/19) 8024922305603513 a001 46368/1149851*9349^(11/19) 8024922305950733 a001 17711/271443*9349^(10/19) 8024922305974465 a001 2584/271443*5778^(7/9) 8024922306235923 a001 121393/3010349*9349^(11/19) 8024922306328190 a001 317811/7881196*9349^(11/19) 8024922306341652 a001 75640/1875749*9349^(11/19) 8024922306343616 a001 2178309/54018521*9349^(11/19) 8024922306343902 a001 5702887/141422324*9349^(11/19) 8024922306343944 a001 14930352/370248451*9349^(11/19) 8024922306343950 a001 39088169/969323029*9349^(11/19) 8024922306343951 a001 9303105/230701876*9349^(11/19) 8024922306343951 a001 267914296/6643838879*9349^(11/19) 8024922306343951 a001 701408733/17393796001*9349^(11/19) 8024922306343951 a001 1836311903/45537549124*9349^(11/19) 8024922306343951 a001 4807526976/119218851371*9349^(11/19) 8024922306343951 a001 1144206275/28374454999*9349^(11/19) 8024922306343951 a001 32951280099/817138163596*9349^(11/19) 8024922306343951 a001 86267571272/2139295485799*9349^(11/19) 8024922306343951 a001 225851433717/5600748293801*9349^(11/19) 8024922306343951 a001 591286729879/14662949395604*9349^(11/19) 8024922306343951 a001 365435296162/9062201101803*9349^(11/19) 8024922306343951 a001 139583862445/3461452808002*9349^(11/19) 8024922306343951 a001 53316291173/1322157322203*9349^(11/19) 8024922306343951 a001 20365011074/505019158607*9349^(11/19) 8024922306343951 a001 7778742049/192900153618*9349^(11/19) 8024922306343951 a001 2971215073/73681302247*9349^(11/19) 8024922306343951 a001 1134903170/28143753123*9349^(11/19) 8024922306343951 a001 433494437/10749957122*9349^(11/19) 8024922306343951 a001 165580141/4106118243*9349^(11/19) 8024922306343952 a001 63245986/1568397607*9349^(11/19) 8024922306343954 a001 24157817/599074578*9349^(11/19) 8024922306343970 a001 9227465/228826127*9349^(11/19) 8024922306344079 a001 3524578/87403803*9349^(11/19) 8024922306344829 a001 1346269/33385282*9349^(11/19) 8024922306349971 a001 514229/12752043*9349^(11/19) 8024922306385214 a001 196418/4870847*9349^(11/19) 8024922306626773 a001 75025/1860498*9349^(11/19) 8024922307615393 r005 Im(z^2+c),c=-77/122+23/36*I,n=6 8024922308282442 a001 28657/710647*9349^(11/19) 8024922310058925 a001 10946/710647*9349^(13/19) 8024922310413887 a001 6624/101521*9349^(10/19) 8024922311034133 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^35 8024922311065052 a001 121393/1860498*9349^(10/19) 8024922311160056 a001 317811/4870847*9349^(10/19) 8024922311173917 a001 832040/12752043*9349^(10/19) 8024922311175939 a001 311187/4769326*9349^(10/19) 8024922311176234 a001 5702887/87403803*9349^(10/19) 8024922311176277 a001 14930352/228826127*9349^(10/19) 8024922311176284 a001 39088169/599074578*9349^(10/19) 8024922311176285 a001 14619165/224056801*9349^(10/19) 8024922311176285 a001 267914296/4106118243*9349^(10/19) 8024922311176285 a001 701408733/10749957122*9349^(10/19) 8024922311176285 a001 1836311903/28143753123*9349^(10/19) 8024922311176285 a001 686789568/10525900321*9349^(10/19) 8024922311176285 a001 12586269025/192900153618*9349^(10/19) 8024922311176285 a001 32951280099/505019158607*9349^(10/19) 8024922311176285 a001 86267571272/1322157322203*9349^(10/19) 8024922311176285 a001 32264490531/494493258286*9349^(10/19) 8024922311176285 a001 591286729879/9062201101803*9349^(10/19) 8024922311176285 a001 1548008755920/23725150497407*9349^(10/19) 8024922311176285 a001 365435296162/5600748293801*9349^(10/19) 8024922311176285 a001 139583862445/2139295485799*9349^(10/19) 8024922311176285 a001 53316291173/817138163596*9349^(10/19) 8024922311176285 a001 20365011074/312119004989*9349^(10/19) 8024922311176285 a001 7778742049/119218851371*9349^(10/19) 8024922311176285 a001 2971215073/45537549124*9349^(10/19) 8024922311176285 a001 1134903170/17393796001*9349^(10/19) 8024922311176285 a001 433494437/6643838879*9349^(10/19) 8024922311176285 a001 165580141/2537720636*9349^(10/19) 8024922311176285 a001 63245986/969323029*9349^(10/19) 8024922311176288 a001 24157817/370248451*9349^(10/19) 8024922311176304 a001 9227465/141422324*9349^(10/19) 8024922311176417 a001 3524578/54018521*9349^(10/19) 8024922311177121 a001 17711/167761*9349^(9/19) 8024922311177189 a001 1346269/20633239*9349^(10/19) 8024922311182484 a001 514229/7881196*9349^(10/19) 8024922311218772 a001 196418/3010349*9349^(10/19) 8024922311467495 a001 75025/1149851*9349^(10/19) 8024922311671966 a001 2255/4250681*24476^(20/21) 8024922311887045 a001 28657/15127*9349^(3/19) 8024922312310027 a001 6765/7881196*24476^(19/21) 8024922312947442 a001 6765/4870847*24476^(6/7) 8024922313172268 a001 28657/439204*9349^(10/19) 8024922313586548 a001 6765/3010349*24476^(17/21) 8024922313663528 a001 10946/15127*9349^(5/19) 8024922314018490 a001 6624/2161*9349^(2/19) 8024922314209967 a001 2255/13201*24476^(8/21) 8024922314221227 a001 55/15126*24476^(16/21) 8024922314867497 a001 6765/1149851*24476^(5/7) 8024922314948750 a001 5473/219602*9349^(12/19) 8024922314977807 a001 17711/103682*9349^(8/19) 8024922315303712 a001 11592/109801*9349^(9/19) 8024922315483420 a001 6765/710647*24476^(2/3) 8024922315905774 a001 121393/1149851*9349^(9/19) 8024922315993614 a001 317811/3010349*9349^(9/19) 8024922316006429 a001 208010/1970299*9349^(9/19) 8024922316008299 a001 2178309/20633239*9349^(9/19) 8024922316008572 a001 5702887/54018521*9349^(9/19) 8024922316008612 a001 3732588/35355581*9349^(9/19) 8024922316008617 a001 39088169/370248451*9349^(9/19) 8024922316008618 a001 102334155/969323029*9349^(9/19) 8024922316008618 a001 66978574/634430159*9349^(9/19) 8024922316008618 a001 701408733/6643838879*9349^(9/19) 8024922316008618 a001 1836311903/17393796001*9349^(9/19) 8024922316008618 a001 1201881744/11384387281*9349^(9/19) 8024922316008618 a001 12586269025/119218851371*9349^(9/19) 8024922316008618 a001 32951280099/312119004989*9349^(9/19) 8024922316008618 a001 21566892818/204284540899*9349^(9/19) 8024922316008618 a001 225851433717/2139295485799*9349^(9/19) 8024922316008618 a001 182717648081/1730726404001*9349^(9/19) 8024922316008618 a001 139583862445/1322157322203*9349^(9/19) 8024922316008618 a001 53316291173/505019158607*9349^(9/19) 8024922316008618 a001 10182505537/96450076809*9349^(9/19) 8024922316008618 a001 7778742049/73681302247*9349^(9/19) 8024922316008618 a001 2971215073/28143753123*9349^(9/19) 8024922316008618 a001 567451585/5374978561*9349^(9/19) 8024922316008618 a001 433494437/4106118243*9349^(9/19) 8024922316008618 a001 165580141/1568397607*9349^(9/19) 8024922316008619 a001 31622993/299537289*9349^(9/19) 8024922316008621 a001 24157817/228826127*9349^(9/19) 8024922316008636 a001 9227465/87403803*9349^(9/19) 8024922316008740 a001 1762289/16692641*9349^(9/19) 8024922316009455 a001 1346269/12752043*9349^(9/19) 8024922316014350 a001 514229/4870847*9349^(9/19) 8024922316047901 a001 98209/930249*9349^(9/19) 8024922316178794 a001 6765/439204*24476^(13/21) 8024922316277868 a001 75025/710647*9349^(9/19) 8024922316637759 a001 10946/9349*3571^(4/17) 8024922316666161 a001 2255/90481*24476^(4/7) 8024922316761497 a001 17711/15127*24476^(4/21) 8024922317304332 a001 6765/103682*24476^(10/21) 8024922317406652 a001 196418/39603*3571^(1/17) 8024922317698098 a001 615/15251*24476^(11/21) 8024922317854086 a001 28657/271443*9349^(9/19) 8024922318633242 a001 2255/13201*64079^(8/23) 8024922318973134 a001 17711/15127*64079^(4/23) 8024922319313027 a001 2255/13201*(1/2+1/2*5^(1/2))^8 8024922319313027 a001 2255/13201*23725150497407^(1/8) 8024922319313027 a001 2255/13201*505019158607^(1/7) 8024922319313027 a001 2255/13201*73681302247^(2/13) 8024922319313027 a001 2255/13201*10749957122^(1/6) 8024922319313027 a001 2255/13201*4106118243^(4/23) 8024922319313027 a001 2255/13201*1568397607^(2/11) 8024922319313027 a001 2255/13201*599074578^(4/21) 8024922319313027 a001 2255/13201*228826127^(1/5) 8024922319313027 a001 17711/15127*(1/2+1/2*5^(1/2))^4 8024922319313027 a001 17711/15127*23725150497407^(1/16) 8024922319313027 a001 17711/15127*73681302247^(1/13) 8024922319313027 a001 17711/15127*10749957122^(1/12) 8024922319313027 a001 17711/15127*4106118243^(2/23) 8024922319313027 a001 17711/15127*1568397607^(1/11) 8024922319313027 a001 17711/15127*599074578^(2/21) 8024922319313027 a001 17711/15127*228826127^(1/10) 8024922319313027 a001 2255/13201*87403803^(4/19) 8024922319313027 a001 17711/15127*87403803^(2/19) 8024922319313028 a001 17711/15127*33385282^(1/9) 8024922319313028 a001 2255/13201*33385282^(2/9) 8024922319313033 a001 17711/15127*12752043^(2/17) 8024922319313034 a001 39938305/4976784 8024922319313038 a001 2255/13201*12752043^(4/17) 8024922319313069 a001 17711/15127*4870847^(1/8) 8024922319313111 a001 2255/13201*4870847^(1/4) 8024922319313336 a001 17711/15127*1860498^(2/15) 8024922319313645 a001 2255/13201*1860498^(4/15) 8024922319315297 a001 17711/15127*710647^(1/7) 8024922319317567 a001 2255/13201*710647^(2/7) 8024922319329783 a001 17711/15127*271443^(2/13) 8024922319346539 a001 2255/13201*271443^(4/13) 8024922319437445 a001 17711/15127*103682^(1/6) 8024922319479039 a001 34/5779*5778^(5/6) 8024922319561862 a001 2255/13201*103682^(1/3) 8024922319630569 a001 10946/271443*9349^(11/19) 8024922319882471 a001 75025/15127*9349^(1/19) 8024922319952589 a001 17711/5778*2207^(1/8) 8024922319985531 a001 15456/90481*9349^(8/19) 8024922320243324 a001 17711/15127*39603^(2/11) 8024922320272344 a001 17711/39603*9349^(6/19) 8024922320643104 a001 6765/64079*24476^(3/7) 8024922320716148 a001 121393/710647*9349^(8/19) 8024922320822743 a001 105937/620166*9349^(8/19) 8024922320838295 a001 832040/4870847*9349^(8/19) 8024922320840564 a001 726103/4250681*9349^(8/19) 8024922320840895 a001 5702887/33385282*9349^(8/19) 8024922320840944 a001 4976784/29134601*9349^(8/19) 8024922320840951 a001 39088169/228826127*9349^(8/19) 8024922320840952 a001 34111385/199691526*9349^(8/19) 8024922320840952 a001 267914296/1568397607*9349^(8/19) 8024922320840952 a001 233802911/1368706081*9349^(8/19) 8024922320840952 a001 1836311903/10749957122*9349^(8/19) 8024922320840952 a001 1602508992/9381251041*9349^(8/19) 8024922320840952 a001 12586269025/73681302247*9349^(8/19) 8024922320840952 a001 10983760033/64300051206*9349^(8/19) 8024922320840952 a001 86267571272/505019158607*9349^(8/19) 8024922320840952 a001 75283811239/440719107401*9349^(8/19) 8024922320840952 a001 2504730781961/14662949395604*9349^(8/19) 8024922320840952 a001 139583862445/817138163596*9349^(8/19) 8024922320840952 a001 53316291173/312119004989*9349^(8/19) 8024922320840952 a001 20365011074/119218851371*9349^(8/19) 8024922320840952 a001 7778742049/45537549124*9349^(8/19) 8024922320840952 a001 2971215073/17393796001*9349^(8/19) 8024922320840952 a001 1134903170/6643838879*9349^(8/19) 8024922320840952 a001 433494437/2537720636*9349^(8/19) 8024922320840952 a001 165580141/969323029*9349^(8/19) 8024922320840952 a001 63245986/370248451*9349^(8/19) 8024922320840955 a001 24157817/141422324*9349^(8/19) 8024922320840974 a001 9227465/54018521*9349^(8/19) 8024922320841100 a001 3524578/20633239*9349^(8/19) 8024922320841967 a001 1346269/7881196*9349^(8/19) 8024922320847907 a001 514229/3010349*9349^(8/19) 8024922320888623 a001 196418/1149851*9349^(8/19) 8024922321020699 a001 4181/9349*3571^(6/17) 8024922321167694 a001 75025/439204*9349^(8/19) 8024922321173622 a001 2255/13201*39603^(4/11) 8024922321352074 l006 ln(2129/4750) 8024922321741250 a001 514229/103682*3571^(1/17) 8024922322373659 a001 1346269/271443*3571^(1/17) 8024922322407392 a001 6624/2161*24476^(2/21) 8024922322465927 a001 3524578/710647*3571^(1/17) 8024922322475283 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^37 8024922322479388 a001 9227465/1860498*3571^(1/17) 8024922322481352 a001 24157817/4870847*3571^(1/17) 8024922322481639 a001 63245986/12752043*3571^(1/17) 8024922322481681 a001 165580141/33385282*3571^(1/17) 8024922322481687 a001 433494437/87403803*3571^(1/17) 8024922322481688 a001 1134903170/228826127*3571^(1/17) 8024922322481688 a001 2971215073/599074578*3571^(1/17) 8024922322481688 a001 7778742049/1568397607*3571^(1/17) 8024922322481688 a001 20365011074/4106118243*3571^(1/17) 8024922322481688 a001 53316291173/10749957122*3571^(1/17) 8024922322481688 a001 139583862445/28143753123*3571^(1/17) 8024922322481688 a001 365435296162/73681302247*3571^(1/17) 8024922322481688 a001 956722026041/192900153618*3571^(1/17) 8024922322481688 a001 2504730781961/505019158607*3571^(1/17) 8024922322481688 a001 10610209857723/2139295485799*3571^(1/17) 8024922322481688 a001 4052739537881/817138163596*3571^(1/17) 8024922322481688 a001 140728068720/28374454999*3571^(1/17) 8024922322481688 a001 591286729879/119218851371*3571^(1/17) 8024922322481688 a001 225851433717/45537549124*3571^(1/17) 8024922322481688 a001 86267571272/17393796001*3571^(1/17) 8024922322481688 a001 32951280099/6643838879*3571^(1/17) 8024922322481688 a001 1144206275/230701876*3571^(1/17) 8024922322481688 a001 4807526976/969323029*3571^(1/17) 8024922322481688 a001 1836311903/370248451*3571^(1/17) 8024922322481688 a001 701408733/141422324*3571^(1/17) 8024922322481691 a001 267914296/54018521*3571^(1/17) 8024922322481707 a001 9303105/1875749*3571^(1/17) 8024922322481816 a001 39088169/7881196*3571^(1/17) 8024922322482566 a001 14930352/3010349*3571^(1/17) 8024922322487708 a001 5702887/1149851*3571^(1/17) 8024922322511030 a001 17711/64079*9349^(7/19) 8024922322522951 a001 2178309/439204*3571^(1/17) 8024922322560249 a001 6765/33385282*64079^(22/23) 8024922322645248 a001 615/1875749*64079^(21/23) 8024922322730153 a001 2255/4250681*64079^(20/23) 8024922322764510 a001 75640/15251*3571^(1/17) 8024922322815304 a001 6765/7881196*64079^(19/23) 8024922322833426 a001 6765/103682*64079^(10/23) 8024922322899810 a001 6765/4870847*64079^(18/23) 8024922322986007 a001 6765/3010349*64079^(17/23) 8024922323067776 a001 55/15126*64079^(16/23) 8024922323080474 a001 28657/167761*9349^(8/19) 8024922323161137 a001 6765/1149851*64079^(15/23) 8024922323224150 a001 6765/710647*64079^(14/23) 8024922323301073 a001 2255/90481*64079^(12/23) 8024922323366615 a001 6765/439204*64079^(13/23) 8024922323513211 a001 6624/2161*64079^(2/23) 8024922323569101 a001 6765/103682*167761^(2/5) 8024922323683152 a001 6765/103682*20633239^(2/7) 8024922323683157 a001 6765/103682*2537720636^(2/9) 8024922323683157 a001 6765/103682*312119004989^(2/11) 8024922323683157 a001 6765/103682*(1/2+1/2*5^(1/2))^10 8024922323683157 a001 6765/103682*28143753123^(1/5) 8024922323683157 a001 6765/103682*10749957122^(5/24) 8024922323683157 a001 6765/103682*4106118243^(5/23) 8024922323683157 a001 6765/103682*1568397607^(5/22) 8024922323683157 a001 6765/103682*599074578^(5/21) 8024922323683157 a001 6765/103682*228826127^(1/4) 8024922323683157 a001 6624/2161*(1/2+1/2*5^(1/2))^2 8024922323683157 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^2/Lucas(20) 8024922323683157 a001 6624/2161*10749957122^(1/24) 8024922323683157 a001 6624/2161*4106118243^(1/23) 8024922323683157 a001 6624/2161*1568397607^(1/22) 8024922323683157 a001 6624/2161*599074578^(1/21) 8024922323683157 a001 6624/2161*228826127^(1/20) 8024922323683157 a001 6624/2161*87403803^(1/19) 8024922323683157 a001 6765/103682*87403803^(5/19) 8024922323683157 a001 6624/2161*33385282^(1/18) 8024922323683158 a001 313679520/39088169 8024922323683159 a001 6765/103682*33385282^(5/18) 8024922323683160 a001 6624/2161*12752043^(1/17) 8024922323683171 a001 6765/103682*12752043^(5/17) 8024922323683178 a001 6624/2161*4870847^(1/16) 8024922323683263 a001 6765/103682*4870847^(5/16) 8024922323683312 a001 6624/2161*1860498^(1/15) 8024922323683930 a001 6765/103682*1860498^(1/3) 8024922323684292 a001 6624/2161*710647^(1/14) 8024922323688832 a001 6765/103682*710647^(5/14) 8024922323691535 a001 6624/2161*271443^(1/13) 8024922323725047 a001 6765/103682*271443^(5/13) 8024922323745366 a001 6624/2161*103682^(1/12) 8024922323780100 a001 615/15251*64079^(11/23) 8024922323994202 a001 6765/103682*103682^(5/12) 8024922324076922 a001 75025/15127*24476^(1/21) 8024922324144524 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^39 8024922324148306 a001 6624/2161*39603^(1/11) 8024922324201503 a001 2255/4250681*167761^(4/5) 8024922324264650 a001 6765/1149851*167761^(3/5) 8024922324302261 a001 2255/90481*439204^(4/9) 8024922324320703 a001 2255/90481*7881196^(4/11) 8024922324320750 a001 2255/90481*141422324^(4/13) 8024922324320750 a001 2255/90481*2537720636^(4/15) 8024922324320750 a001 2255/90481*45537549124^(4/17) 8024922324320750 a001 2255/90481*817138163596^(4/19) 8024922324320750 a001 2255/90481*14662949395604^(4/21) 8024922324320750 a001 2255/90481*(1/2+1/2*5^(1/2))^12 8024922324320750 a001 2255/90481*192900153618^(2/9) 8024922324320750 a001 2255/90481*73681302247^(3/13) 8024922324320750 a001 2255/90481*10749957122^(1/4) 8024922324320750 a001 2255/90481*4106118243^(6/23) 8024922324320750 a001 2255/90481*1568397607^(3/11) 8024922324320750 a001 2255/90481*599074578^(2/7) 8024922324320750 a001 2255/90481*228826127^(3/10) 8024922324320750 a001 121393/15127 8024922324320751 a001 2255/90481*87403803^(6/19) 8024922324320753 a001 2255/90481*33385282^(1/3) 8024922324320768 a001 2255/90481*12752043^(6/17) 8024922324320877 a001 2255/90481*4870847^(3/8) 8024922324321678 a001 2255/90481*1860498^(2/5) 8024922324327560 a001 2255/90481*710647^(3/7) 8024922324371018 a001 2255/90481*271443^(6/13) 8024922324388063 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^41 8024922324392684 a001 2255/29134601*439204^(8/9) 8024922324397326 a001 615/1875749*439204^(7/9) 8024922324401592 a001 6765/4870847*439204^(2/3) 8024922324412622 a001 6765/1149851*439204^(5/9) 8024922324413766 a001 6765/710647*20633239^(2/5) 8024922324413774 a001 6765/710647*17393796001^(2/7) 8024922324413774 a001 6765/710647*14662949395604^(2/9) 8024922324413774 a001 6765/710647*(1/2+1/2*5^(1/2))^14 8024922324413774 a001 6765/710647*505019158607^(1/4) 8024922324413774 a001 6765/710647*10749957122^(7/24) 8024922324413774 a001 6765/710647*4106118243^(7/23) 8024922324413774 a001 6765/710647*1568397607^(7/22) 8024922324413774 a001 6765/710647*599074578^(1/3) 8024922324413774 a001 5702895/710648 8024922324413774 a001 6765/710647*228826127^(7/20) 8024922324413774 a004 Fibonacci(28)/Lucas(20)/(1/2+sqrt(5)/2)^2 8024922324413774 a001 6765/710647*87403803^(7/19) 8024922324413777 a001 6765/710647*33385282^(7/18) 8024922324413794 a001 6765/710647*12752043^(7/17) 8024922324413922 a001 6765/710647*4870847^(7/16) 8024922324414856 a001 6765/710647*1860498^(7/15) 8024922324420179 a001 317811/64079*3571^(1/17) 8024922324421719 a001 6765/710647*710647^(1/2) 8024922324423595 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^43 8024922324427346 a001 55/15126*(1/2+1/2*5^(1/2))^16 8024922324427346 a001 55/15126*23725150497407^(1/4) 8024922324427346 a001 55/15126*73681302247^(4/13) 8024922324427346 a001 55/15126*10749957122^(1/3) 8024922324427346 a001 55/15126*4106118243^(8/23) 8024922324427346 a001 55/15126*1568397607^(4/11) 8024922324427346 a001 1876250200/233802911 8024922324427346 a001 55/15126*599074578^(8/21) 8024922324427346 a001 55/15126*228826127^(2/5) 8024922324427346 a004 Fibonacci(30)/Lucas(20)/(1/2+sqrt(5)/2)^4 8024922324427346 a001 55/15126*87403803^(8/19) 8024922324427349 a001 55/15126*33385282^(4/9) 8024922324427369 a001 55/15126*12752043^(8/17) 8024922324427515 a001 55/15126*4870847^(1/2) 8024922324428582 a001 55/15126*1860498^(8/15) 8024922324428779 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^45 8024922324429256 a001 6765/4870847*7881196^(6/11) 8024922324429326 a001 6765/4870847*141422324^(6/13) 8024922324429326 a001 6765/4870847*2537720636^(2/5) 8024922324429326 a001 6765/4870847*45537549124^(6/17) 8024922324429326 a001 6765/4870847*14662949395604^(2/7) 8024922324429326 a001 6765/4870847*(1/2+1/2*5^(1/2))^18 8024922324429326 a001 6765/4870847*192900153618^(1/3) 8024922324429326 a001 6765/4870847*10749957122^(3/8) 8024922324429326 a001 6765/4870847*4106118243^(9/23) 8024922324429326 a001 14736260385/1836311903 8024922324429326 a001 6765/4870847*1568397607^(9/22) 8024922324429326 a001 6765/4870847*599074578^(3/7) 8024922324429326 a001 6765/4870847*228826127^(9/20) 8024922324429326 a004 Fibonacci(32)/Lucas(20)/(1/2+sqrt(5)/2)^6 8024922324429327 a001 6765/4870847*87403803^(9/19) 8024922324429330 a001 6765/4870847*33385282^(1/2) 8024922324429352 a001 6765/4870847*12752043^(9/17) 8024922324429516 a001 6765/4870847*4870847^(9/16) 8024922324429535 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^47 8024922324429547 a001 6765/1568397607*7881196^(10/11) 8024922324429559 a001 6765/370248451*7881196^(9/11) 8024922324429569 a001 2255/29134601*7881196^(8/11) 8024922324429571 a001 6765/33385282*7881196^(2/3) 8024922324429601 a001 615/1875749*7881196^(7/11) 8024922324429604 a001 2255/4250681*20633239^(4/7) 8024922324429615 a001 2255/4250681*2537720636^(4/9) 8024922324429615 a001 2255/4250681*(1/2+1/2*5^(1/2))^20 8024922324429615 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^20/Lucas(34) 8024922324429615 a001 2255/4250681*23725150497407^(5/16) 8024922324429615 a001 2255/4250681*505019158607^(5/14) 8024922324429615 a001 2255/4250681*73681302247^(5/13) 8024922324429615 a001 2255/4250681*28143753123^(2/5) 8024922324429615 a001 2255/4250681*10749957122^(5/12) 8024922324429615 a001 12860010185/1602508992 8024922324429615 a001 2255/4250681*4106118243^(10/23) 8024922324429615 a001 2255/4250681*1568397607^(5/11) 8024922324429615 a001 2255/4250681*599074578^(10/21) 8024922324429615 a001 2255/4250681*228826127^(1/2) 8024922324429615 a004 Fibonacci(34)/Lucas(20)/(1/2+sqrt(5)/2)^8 8024922324429615 a001 2255/4250681*87403803^(10/19) 8024922324429619 a001 2255/4250681*33385282^(5/9) 8024922324429644 a001 2255/4250681*12752043^(10/17) 8024922324429645 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^49 8024922324429648 a001 6765/1568397607*20633239^(6/7) 8024922324429649 a001 2255/199691526*20633239^(4/5) 8024922324429651 a001 6765/141422324*20633239^(5/7) 8024922324429657 a001 6765/33385282*312119004989^(2/5) 8024922324429657 a001 6765/33385282*(1/2+1/2*5^(1/2))^22 8024922324429657 a001 1836433296/228841255 8024922324429657 a001 6765/33385282*10749957122^(11/24) 8024922324429657 a001 6765/33385282*4106118243^(11/23) 8024922324429657 a001 6765/33385282*1568397607^(1/2) 8024922324429657 a001 6765/33385282*599074578^(11/21) 8024922324429657 a001 6765/33385282*228826127^(11/20) 8024922324429657 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2)^10 8024922324429658 a001 6765/33385282*87403803^(11/19) 8024922324429661 a001 6765/33385282*33385282^(11/18) 8024922324429662 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^51 8024922324429663 a001 2255/29134601*141422324^(8/13) 8024922324429663 a001 2255/29134601*2537720636^(8/15) 8024922324429663 a001 2255/29134601*45537549124^(8/17) 8024922324429663 a001 2255/29134601*14662949395604^(8/21) 8024922324429663 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^24/Lucas(38) 8024922324429663 a001 2255/29134601*192900153618^(4/9) 8024922324429663 a001 2255/29134601*73681302247^(6/13) 8024922324429663 a001 88143821095/10983760033 8024922324429663 a001 2255/29134601*10749957122^(1/2) 8024922324429663 a001 2255/29134601*4106118243^(12/23) 8024922324429663 a001 2255/29134601*1568397607^(6/11) 8024922324429663 a001 2255/29134601*599074578^(4/7) 8024922324429663 a001 2255/29134601*228826127^(3/5) 8024922324429663 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^12 8024922324429664 a001 6765/228826127*141422324^(2/3) 8024922324429664 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^53 8024922324429664 a001 2255/29134601*87403803^(12/19) 8024922324429664 a001 55/228811001*141422324^(12/13) 8024922324429664 a001 6765/6643838879*141422324^(11/13) 8024922324429664 a001 6765/1568397607*141422324^(10/13) 8024922324429664 a001 6765/370248451*141422324^(9/13) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^26/Lucas(40) 8024922324429664 a001 692290558575/86267571272 8024922324429664 a001 6765/228826127*73681302247^(1/2) 8024922324429664 a001 6765/228826127*10749957122^(13/24) 8024922324429664 a001 6765/228826127*4106118243^(13/23) 8024922324429664 a001 6765/228826127*1568397607^(13/22) 8024922324429664 a001 6765/228826127*599074578^(13/21) 8024922324429664 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^55 8024922324429664 a001 6765/228826127*228826127^(13/20) 8024922324429664 a001 2255/199691526*17393796001^(4/7) 8024922324429664 a001 2255/199691526*14662949395604^(4/9) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^28/Lucas(42) 8024922324429664 a001 2255/199691526*505019158607^(1/2) 8024922324429664 a001 1602511240/199691807 8024922324429664 a001 2255/199691526*73681302247^(7/13) 8024922324429664 a001 2255/199691526*10749957122^(7/12) 8024922324429664 a001 2255/199691526*4106118243^(14/23) 8024922324429664 a001 2255/199691526*1568397607^(7/11) 8024922324429664 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^57 8024922324429664 a001 2255/199691526*599074578^(2/3) 8024922324429664 a001 6765/1568397607*2537720636^(2/3) 8024922324429664 a001 6765/1568397607*45537549124^(10/17) 8024922324429664 a001 6765/1568397607*312119004989^(6/11) 8024922324429664 a001 6765/1568397607*14662949395604^(10/21) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^30/Lucas(44) 8024922324429664 a001 4745030078745/591286729879 8024922324429664 a001 6765/1568397607*192900153618^(5/9) 8024922324429664 a001 6765/1568397607*28143753123^(3/5) 8024922324429664 a001 6765/1568397607*10749957122^(5/8) 8024922324429664 a001 6765/1568397607*4106118243^(15/23) 8024922324429664 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^59 8024922324429664 a001 6765/505019158607*2537720636^(14/15) 8024922324429664 a001 2255/64300051206*2537720636^(8/9) 8024922324429664 a001 6765/119218851371*2537720636^(13/15) 8024922324429664 a001 6765/1568397607*1568397607^(15/22) 8024922324429664 a001 55/228811001*2537720636^(4/5) 8024922324429664 a001 6765/17393796001*2537720636^(7/9) 8024922324429664 a001 6765/6643838879*2537720636^(11/15) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(46) 8024922324429664 a001 2255/1368706081*23725150497407^(1/2) 8024922324429664 a001 1836311903/228826128 8024922324429664 a001 2255/1368706081*73681302247^(8/13) 8024922324429664 a001 2255/1368706081*10749957122^(2/3) 8024922324429664 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^61 8024922324429664 a001 2255/1368706081*4106118243^(16/23) 8024922324429664 a001 6765/10749957122*45537549124^(2/3) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(48) 8024922324429664 a001 32522919992640/4052739537881 8024922324429664 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^63 8024922324429664 a001 6765/505019158607*17393796001^(6/7) 8024922324429664 a001 6765/10749957122*10749957122^(17/24) 8024922324429664 a001 55/228811001*45537549124^(12/17) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(50) 8024922324429664 a001 28382036651375/3536736619241 8024922324429664 a001 55/228811001*505019158607^(9/14) 8024922324429664 a001 55/228811001*192900153618^(2/3) 8024922324429664 a001 55/228811001*73681302247^(9/13) 8024922324429664 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^65 8024922324429664 a001 2255/3020733700601*45537549124^(16/17) 8024922324429664 a001 6765/2139295485799*45537549124^(15/17) 8024922324429664 a001 6765/505019158607*45537549124^(14/17) 8024922324429664 a001 6765/119218851371*45537549124^(13/17) 8024922324429664 a001 6765/73681302247*817138163596^(2/3) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(52) 8024922324429664 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^67 8024922324429664 a001 2255/64300051206*312119004989^(8/11) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(54) 8024922324429664 a001 2255/64300051206*23725150497407^(5/8) 8024922324429664 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^69 8024922324429664 a001 2255/440719107401*312119004989^(4/5) 8024922324429664 a001 6765/2139295485799*312119004989^(9/11) 8024922324429664 a001 6765/505019158607*817138163596^(14/19) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(56) 8024922324429664 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^71 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(58) 8024922324429664 a001 2255/440719107401*23725150497407^(11/16) 8024922324429664 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^73 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(60) 8024922324429664 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^75 8024922324429664 a001 2255/3020733700601*14662949395604^(16/21) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(62) 8024922324429664 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^77 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(64) 8024922324429664 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^79 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(66) 8024922324429664 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^81 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(68) 8024922324429664 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^83 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(70) 8024922324429664 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^85 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(72) 8024922324429664 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^87 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(74) 8024922324429664 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^89 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(76) 8024922324429664 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^91 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(78) 8024922324429664 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^93 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(80) 8024922324429664 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^95 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(82) 8024922324429664 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^97 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(84) 8024922324429664 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^99 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(86) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(88) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(90) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(92) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(94) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(96) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(98) 8024922324429664 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^14 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(100) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(99) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(97) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(95) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(93) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(91) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(89) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(87) 8024922324429664 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^100 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(85) 8024922324429664 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^98 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(83) 8024922324429664 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^96 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(81) 8024922324429664 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^94 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(79) 8024922324429664 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^92 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(77) 8024922324429664 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^90 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(75) 8024922324429664 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^88 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(73) 8024922324429664 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^86 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(71) 8024922324429664 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^84 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(69) 8024922324429664 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^82 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(67) 8024922324429664 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^80 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(65) 8024922324429664 a001 6765/14662949395604*14662949395604^(7/9) 8024922324429664 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^78 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(63) 8024922324429664 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^76 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(61) 8024922324429664 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^74 8024922324429664 a001 6765/2139295485799*14662949395604^(5/7) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(59) 8024922324429664 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^72 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(57) 8024922324429664 a001 6765/14662949395604*505019158607^(7/8) 8024922324429664 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^70 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(55) 8024922324429664 a001 6765/505019158607*192900153618^(7/9) 8024922324429664 a001 6765/2139295485799*192900153618^(5/6) 8024922324429664 a001 2255/3020733700601*192900153618^(8/9) 8024922324429664 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^68 8024922324429664 a001 6765/119218851371*14662949395604^(13/21) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(53) 8024922324429664 a001 6765/119218851371*192900153618^(13/18) 8024922324429664 a001 2255/64300051206*73681302247^(10/13) 8024922324429664 a001 2255/440719107401*73681302247^(11/13) 8024922324429664 a001 2255/3020733700601*73681302247^(12/13) 8024922324429664 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^66 8024922324429664 a001 6765/119218851371*73681302247^(3/4) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(51) 8024922324429664 a001 6765/17393796001*17393796001^(5/7) 8024922324429664 a001 2255/64300051206*28143753123^(4/5) 8024922324429664 a001 6765/2139295485799*28143753123^(9/10) 8024922324429664 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^64 8024922324429664 a001 6765/17393796001*312119004989^(7/11) 8024922324429664 a001 4047937689345/504420793834 8024922324429664 a001 6765/17393796001*14662949395604^(5/9) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(49) 8024922324429664 a001 6765/17393796001*505019158607^(5/8) 8024922324429664 a001 6765/17393796001*28143753123^(7/10) 8024922324429664 a001 55/228811001*10749957122^(3/4) 8024922324429664 a001 6765/73681302247*10749957122^(19/24) 8024922324429664 a001 6765/119218851371*10749957122^(13/16) 8024922324429664 a001 2255/64300051206*10749957122^(5/6) 8024922324429664 a001 6765/505019158607*10749957122^(7/8) 8024922324429664 a001 2255/440719107401*10749957122^(11/12) 8024922324429664 a001 6765/2139295485799*10749957122^(15/16) 8024922324429664 a001 6765/3461452808002*10749957122^(23/24) 8024922324429664 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^62 8024922324429664 a001 6765/6643838879*45537549124^(11/17) 8024922324429664 a001 6765/6643838879*312119004989^(3/5) 8024922324429664 a001 6765/6643838879*817138163596^(11/19) 8024922324429664 a001 20100269968845/2504730781961 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(47) 8024922324429664 a001 6765/6643838879*192900153618^(11/18) 8024922324429664 a001 6765/6643838879*10749957122^(11/16) 8024922324429664 a001 6765/10749957122*4106118243^(17/23) 8024922324429664 a001 55/228811001*4106118243^(18/23) 8024922324429664 a001 6765/73681302247*4106118243^(19/23) 8024922324429664 a001 2255/64300051206*4106118243^(20/23) 8024922324429664 a001 6765/505019158607*4106118243^(21/23) 8024922324429664 a001 2255/440719107401*4106118243^(22/23) 8024922324429664 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^60 8024922324429664 a001 7677619945050/956722026041 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^31/Lucas(45) 8024922324429664 a001 615/230701876*9062201101803^(1/2) 8024922324429664 a001 2255/1368706081*1568397607^(8/11) 8024922324429664 a001 6765/10749957122*1568397607^(17/22) 8024922324429664 a001 6765/6643838879*1568397607^(3/4) 8024922324429664 a001 55/228811001*1568397607^(9/11) 8024922324429664 a001 6765/73681302247*1568397607^(19/22) 8024922324429664 a001 2255/64300051206*1568397607^(10/11) 8024922324429664 a001 6765/505019158607*1568397607^(21/22) 8024922324429664 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^58 8024922324429664 a001 2932589866305/365435296162 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^29/Lucas(43) 8024922324429664 a001 6765/969323029*1322157322203^(1/2) 8024922324429664 a001 6765/1568397607*599074578^(5/7) 8024922324429664 a001 2255/1368706081*599074578^(16/21) 8024922324429664 a001 6765/6643838879*599074578^(11/14) 8024922324429664 a001 6765/10749957122*599074578^(17/21) 8024922324429664 a001 6765/17393796001*599074578^(5/6) 8024922324429664 a001 55/228811001*599074578^(6/7) 8024922324429664 a001 6765/73681302247*599074578^(19/21) 8024922324429664 a001 6765/119218851371*599074578^(13/14) 8024922324429664 a001 2255/64300051206*599074578^(20/21) 8024922324429664 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^56 8024922324429664 a001 6765/370248451*2537720636^(3/5) 8024922324429664 a001 6765/370248451*45537549124^(9/17) 8024922324429664 a001 224029930773/27916772489 8024922324429664 a001 6765/370248451*817138163596^(9/19) 8024922324429664 a001 6765/370248451*14662949395604^(3/7) 8024922324429664 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^27/Lucas(41) 8024922324429664 a001 6765/370248451*192900153618^(1/2) 8024922324429664 a001 6765/370248451*10749957122^(9/16) 8024922324429664 a001 6765/370248451*599074578^(9/14) 8024922324429664 a001 2255/199691526*228826127^(7/10) 8024922324429664 a001 6765/1568397607*228826127^(3/4) 8024922324429664 a001 2255/1368706081*228826127^(4/5) 8024922324429664 a001 6765/10749957122*228826127^(17/20) 8024922324429664 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^16 8024922324429664 a001 6765/17393796001*228826127^(7/8) 8024922324429664 a001 55/228811001*228826127^(9/10) 8024922324429664 a001 6765/73681302247*228826127^(19/20) 8024922324429664 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^18 8024922324429664 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^20 8024922324429664 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^22 8024922324429664 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^24 8024922324429664 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^26 8024922324429664 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^28 8024922324429664 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^30 8024922324429664 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^32 8024922324429664 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^34 8024922324429664 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^36 8024922324429664 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^38 8024922324429664 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^40 8024922324429664 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^42 8024922324429664 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^44 8024922324429664 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^46 8024922324429664 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^48 8024922324429664 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^50 8024922324429664 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^52 8024922324429664 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^54 8024922324429664 a004 Fibonacci(80)/Lucas(20)/(1/2+sqrt(5)/2)^54 8024922324429664 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^56 8024922324429664 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^58 8024922324429664 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^60 8024922324429664 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^62 8024922324429664 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^64 8024922324429664 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^66 8024922324429664 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^68 8024922324429664 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^70 8024922324429664 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^72 8024922324429664 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^74 8024922324429664 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^73 8024922324429664 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^71 8024922324429664 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^69 8024922324429664 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^67 8024922324429664 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^65 8024922324429664 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^63 8024922324429664 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^61 8024922324429664 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^59 8024922324429664 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^57 8024922324429664 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^55 8024922324429664 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^53 8024922324429664 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^51 8024922324429664 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^49 8024922324429664 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^47 8024922324429664 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^45 8024922324429664 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^43 8024922324429664 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^41 8024922324429664 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^39 8024922324429664 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^37 8024922324429664 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^35 8024922324429664 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^33 8024922324429664 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^31 8024922324429664 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^29 8024922324429664 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^27 8024922324429664 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^25 8024922324429664 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^23 8024922324429664 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^21 8024922324429664 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^19 8024922324429664 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^17 8024922324429664 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^15 8024922324429665 a001 6765/141422324*2537720636^(5/9) 8024922324429665 a001 427859095290/53316291173 8024922324429665 a001 6765/141422324*312119004989^(5/11) 8024922324429665 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^25/Lucas(39) 8024922324429665 a001 6765/141422324*3461452808002^(5/12) 8024922324429665 a001 6765/141422324*28143753123^(1/2) 8024922324429665 a001 6765/141422324*228826127^(5/8) 8024922324429665 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^13 8024922324429665 a001 6765/228826127*87403803^(13/19) 8024922324429665 a001 2255/199691526*87403803^(14/19) 8024922324429665 a001 6765/1568397607*87403803^(15/19) 8024922324429665 a001 2255/1368706081*87403803^(16/19) 8024922324429665 a001 6765/10749957122*87403803^(17/19) 8024922324429665 a001 55/228811001*87403803^(18/19) 8024922324429665 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^52 8024922324429667 a001 163427632005/20365011074 8024922324429667 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^23/Lucas(37) 8024922324429667 a001 6765/54018521*4106118243^(1/2) 8024922324429667 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^11 8024922324429668 a001 2255/29134601*33385282^(2/3) 8024922324429669 a001 6765/228826127*33385282^(13/18) 8024922324429670 a001 6765/370248451*33385282^(3/4) 8024922324429670 a001 2255/199691526*33385282^(7/9) 8024922324429670 a001 6765/1568397607*33385282^(5/6) 8024922324429671 a001 2255/1368706081*33385282^(8/9) 8024922324429671 a001 6765/6643838879*33385282^(11/12) 8024922324429671 a001 6765/10749957122*33385282^(17/18) 8024922324429671 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^50 8024922324429672 a001 615/1875749*20633239^(3/5) 8024922324429683 a001 615/1875749*141422324^(7/13) 8024922324429683 a001 615/1875749*2537720636^(7/15) 8024922324429683 a001 4801830825/598364773 8024922324429683 a001 615/1875749*17393796001^(3/7) 8024922324429683 a001 615/1875749*45537549124^(7/17) 8024922324429683 a001 615/1875749*14662949395604^(1/3) 8024922324429683 a001 615/1875749*(1/2+1/2*5^(1/2))^21 8024922324429683 a001 615/1875749*192900153618^(7/18) 8024922324429683 a001 615/1875749*10749957122^(7/16) 8024922324429683 a001 615/1875749*599074578^(1/2) 8024922324429683 a004 Fibonacci(35)/Lucas(20)/(1/2+sqrt(5)/2)^9 8024922324429687 a001 615/1875749*33385282^(7/12) 8024922324429689 a001 6765/33385282*12752043^(11/17) 8024922324429698 a001 2255/29134601*12752043^(12/17) 8024922324429702 a001 6765/228826127*12752043^(13/17) 8024922324429705 a001 2255/199691526*12752043^(14/17) 8024922324429708 a001 6765/1568397607*12752043^(15/17) 8024922324429711 a001 2255/1368706081*12752043^(16/17) 8024922324429714 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^48 8024922324429793 a001 23843770170/2971215073 8024922324429793 a001 6765/7881196*817138163596^(1/3) 8024922324429793 a001 6765/7881196*(1/2+1/2*5^(1/2))^19 8024922324429794 a004 Fibonacci(33)/Lucas(20)/(1/2+sqrt(5)/2)^7 8024922324429794 a001 6765/7881196*87403803^(1/2) 8024922324429826 a001 2255/4250681*4870847^(5/8) 8024922324429890 a001 6765/33385282*4870847^(11/16) 8024922324429917 a001 2255/29134601*4870847^(3/4) 8024922324429939 a001 6765/228826127*4870847^(13/16) 8024922324429960 a001 2255/199691526*4870847^(7/8) 8024922324429981 a001 6765/1568397607*4870847^(15/16) 8024922324430003 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^46 8024922324430550 a001 1821501957/226980634 8024922324430550 a001 6765/3010349*45537549124^(1/3) 8024922324430550 a001 6765/3010349*(1/2+1/2*5^(1/2))^17 8024922324430550 a004 Fibonacci(31)/Lucas(20)/(1/2+sqrt(5)/2)^5 8024922324430574 a001 6765/3010349*12752043^(1/2) 8024922324430717 a001 6765/4870847*1860498^(3/5) 8024922324431161 a001 2255/4250681*1860498^(2/3) 8024922324431306 a001 615/1875749*1860498^(7/10) 8024922324431357 a001 6765/33385282*1860498^(11/15) 8024922324431518 a001 2255/29134601*1860498^(4/5) 8024922324431597 a001 6765/141422324*1860498^(5/6) 8024922324431673 a001 6765/228826127*1860498^(13/15) 8024922324431751 a001 6765/370248451*1860498^(9/10) 8024922324431828 a001 2255/199691526*1860498^(14/15) 8024922324431983 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^44 8024922324435675 a001 6765/1149851*7881196^(5/11) 8024922324435726 a001 6765/1149851*20633239^(3/7) 8024922324435734 a001 6765/1149851*141422324^(5/13) 8024922324435734 a001 3478759185/433494437 8024922324435734 a001 6765/1149851*2537720636^(1/3) 8024922324435734 a001 6765/1149851*45537549124^(5/17) 8024922324435734 a001 6765/1149851*312119004989^(3/11) 8024922324435734 a001 6765/1149851*14662949395604^(5/21) 8024922324435734 a001 6765/1149851*(1/2+1/2*5^(1/2))^15 8024922324435734 a001 6765/1149851*192900153618^(5/18) 8024922324435734 a001 6765/1149851*28143753123^(3/10) 8024922324435734 a001 6765/1149851*10749957122^(5/16) 8024922324435734 a001 6765/1149851*599074578^(5/14) 8024922324435734 a001 6765/1149851*228826127^(3/8) 8024922324435734 a004 Fibonacci(29)/Lucas(20)/(1/2+sqrt(5)/2)^3 8024922324435737 a001 6765/1149851*33385282^(5/12) 8024922324436426 a001 55/15126*710647^(4/7) 8024922324436893 a001 6765/1149851*1860498^(1/2) 8024922324439541 a001 6765/4870847*710647^(9/14) 8024922324440965 a001 2255/4250681*710647^(5/7) 8024922324441601 a001 615/1875749*710647^(3/4) 8024922324442142 a001 6765/33385282*710647^(11/14) 8024922324443284 a001 2255/29134601*710647^(6/7) 8024922324444419 a001 6765/228826127*710647^(13/14) 8024922324445555 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^42 8024922324470399 a001 28657/15127*24476^(1/7) 8024922324471266 a001 6765/439204*141422324^(1/3) 8024922324471266 a001 1328767770/165580141 8024922324471266 a001 6765/439204*(1/2+1/2*5^(1/2))^13 8024922324471266 a001 6765/439204*73681302247^(1/4) 8024922324471266 a004 Fibonacci(27)/Lucas(20)/(1/2+sqrt(5)/2) 8024922324472420 a001 6765/710647*271443^(7/13) 8024922324494370 a001 55/15126*271443^(8/13) 8024922324504728 a001 6765/4870847*271443^(9/13) 8024922324513395 a001 2255/4250681*271443^(10/13) 8024922324521815 a001 6765/33385282*271443^(11/13) 8024922324525723 a001 6765/439204*271443^(1/2) 8024922324530199 a001 2255/29134601*271443^(12/13) 8024922324538578 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^40 8024922324629832 a001 75025/15127*64079^(1/23) 8024922324694004 a001 2255/90481*103682^(1/2) 8024922324714762 a001 615/15251*7881196^(1/3) 8024922324714804 a001 507544125/63245986 8024922324714805 a001 615/15251*312119004989^(1/5) 8024922324714805 a001 615/15251*(1/2+1/2*5^(1/2))^11 8024922324714805 a001 615/15251*1568397607^(1/4) 8024922324714805 a001 75025/30254+75025/30254*5^(1/2) 8024922324745909 a001 75025/15127*103682^(1/24) 8024922324849237 a001 6765/710647*103682^(7/12) 8024922324856957 a001 10946/167761*9349^(10/19) 8024922324875624 a001 6765/439204*103682^(13/24) 8024922324902301 a001 6765/1149851*103682^(5/8) 8024922324925017 a001 55/15126*103682^(2/3) 8024922324947379 a001 75025/15127*39603^(1/22) 8024922324959326 a001 6765/3010349*103682^(17/24) 8024922324989207 a001 6765/4870847*103682^(3/4) 8024922325020778 a001 6765/7881196*103682^(19/24) 8024922325051704 a001 2255/4250681*103682^(5/6) 8024922325056954 a001 615/15251*103682^(11/24) 8024922325082877 a001 615/1875749*103682^(7/8) 8024922325113956 a001 6765/33385282*103682^(11/12) 8024922325145070 a001 6765/54018521*103682^(23/24) 8024922325176172 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^38 8024922325211919 a001 46368/167761*9349^(7/19) 8024922325605973 a001 121393/439204*9349^(7/19) 8024922325619288 a001 6765/64079*64079^(9/23) 8024922325663465 a001 317811/1149851*9349^(7/19) 8024922325671853 a001 832040/3010349*9349^(7/19) 8024922325673077 a001 2178309/7881196*9349^(7/19) 8024922325673255 a001 5702887/20633239*9349^(7/19) 8024922325673281 a001 14930352/54018521*9349^(7/19) 8024922325673285 a001 39088169/141422324*9349^(7/19) 8024922325673285 a001 102334155/370248451*9349^(7/19) 8024922325673286 a001 267914296/969323029*9349^(7/19) 8024922325673286 a001 701408733/2537720636*9349^(7/19) 8024922325673286 a001 1836311903/6643838879*9349^(7/19) 8024922325673286 a001 4807526976/17393796001*9349^(7/19) 8024922325673286 a001 12586269025/45537549124*9349^(7/19) 8024922325673286 a001 32951280099/119218851371*9349^(7/19) 8024922325673286 a001 86267571272/312119004989*9349^(7/19) 8024922325673286 a001 225851433717/817138163596*9349^(7/19) 8024922325673286 a001 1548008755920/5600748293801*9349^(7/19) 8024922325673286 a001 139583862445/505019158607*9349^(7/19) 8024922325673286 a001 53316291173/192900153618*9349^(7/19) 8024922325673286 a001 20365011074/73681302247*9349^(7/19) 8024922325673286 a001 7778742049/28143753123*9349^(7/19) 8024922325673286 a001 2971215073/10749957122*9349^(7/19) 8024922325673286 a001 1134903170/4106118243*9349^(7/19) 8024922325673286 a001 433494437/1568397607*9349^(7/19) 8024922325673286 a001 165580141/599074578*9349^(7/19) 8024922325673286 a001 63245986/228826127*9349^(7/19) 8024922325673287 a001 24157817/87403803*9349^(7/19) 8024922325673297 a001 9227465/33385282*9349^(7/19) 8024922325673365 a001 3524578/12752043*9349^(7/19) 8024922325673833 a001 1346269/4870847*9349^(7/19) 8024922325677037 a001 514229/1860498*9349^(7/19) 8024922325698997 a001 196418/710647*9349^(7/19) 8024922325849512 a001 75025/271443*9349^(7/19) 8024922326008901 a001 6765/103682*39603^(5/11) 8024922326129127 a001 28657/15127*64079^(3/23) 8024922326327018 a001 17711/15127*15127^(1/5) 8024922326370179 a001 6765/64079*439204^(1/3) 8024922326379424 a001 28657/15127*439204^(1/9) 8024922326384011 a001 6765/64079*7881196^(3/11) 8024922326384034 a001 28657/15127*7881196^(1/11) 8024922326384043 a001 193864605/24157817 8024922326384046 a001 6765/64079*141422324^(3/13) 8024922326384046 a001 6765/64079*2537720636^(1/5) 8024922326384046 a001 6765/64079*45537549124^(3/17) 8024922326384046 a001 6765/64079*817138163596^(3/19) 8024922326384046 a001 6765/64079*14662949395604^(1/7) 8024922326384046 a001 6765/64079*(1/2+1/2*5^(1/2))^9 8024922326384046 a001 6765/64079*192900153618^(1/6) 8024922326384046 a001 6765/64079*10749957122^(3/16) 8024922326384046 a001 6765/64079*599074578^(3/14) 8024922326384046 a001 28657/15127*141422324^(1/13) 8024922326384046 a001 28657/15127*2537720636^(1/15) 8024922326384046 a001 28657/15127*45537549124^(1/17) 8024922326384046 a001 28657/15127*14662949395604^(1/21) 8024922326384046 a001 28657/15127*(1/2+1/2*5^(1/2))^3 8024922326384046 a001 28657/15127*192900153618^(1/18) 8024922326384046 a001 28657/15127*10749957122^(1/16) 8024922326384046 a001 28657/15127*599074578^(1/14) 8024922326384047 a001 28657/15127*33385282^(1/12) 8024922326384048 a001 6765/64079*33385282^(1/4) 8024922326384278 a001 28657/15127*1860498^(1/10) 8024922326384741 a001 6765/64079*1860498^(3/10) 8024922326468303 a001 75025/15127*15127^(1/20) 8024922326477360 a001 28657/15127*103682^(1/8) 8024922326663986 a001 6765/64079*103682^(3/8) 8024922326881160 a001 28657/103682*9349^(7/19) 8024922327081769 a001 28657/15127*39603^(3/22) 8024922327111644 a001 2255/90481*39603^(6/11) 8024922327190153 a001 6624/2161*15127^(1/10) 8024922327273124 a001 615/15251*39603^(1/2) 8024922327494733 a001 6765/439204*39603^(13/22) 8024922327669816 a001 6765/710647*39603^(7/11) 8024922327924350 a001 6765/1149851*39603^(15/22) 8024922328148537 a001 55/15126*39603^(8/11) 8024922328384315 a001 6765/3010349*39603^(17/22) 8024922328477216 a001 6765/64079*39603^(9/22) 8024922328615666 a001 6765/4870847*39603^(9/11) 8024922328657642 a001 5473/51841*9349^(9/19) 8024922328848708 a001 6765/7881196*39603^(19/22) 8024922329012604 a001 23184/51841*9349^(6/19) 8024922329081104 a001 2255/4250681*39603^(10/11) 8024922329313746 a001 615/1875749*39603^(21/22) 8024922329546302 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^36 8024922330287791 a001 121393/271443*9349^(6/19) 8024922330344664 a007 Real Root Of 853*x^4-235*x^3+399*x^2+708*x-164 8024922330473839 a001 317811/710647*9349^(6/19) 8024922330500982 a001 416020/930249*9349^(6/19) 8024922330504943 a001 2178309/4870847*9349^(6/19) 8024922330505520 a001 5702887/12752043*9349^(6/19) 8024922330505605 a001 7465176/16692641*9349^(6/19) 8024922330505617 a001 39088169/87403803*9349^(6/19) 8024922330505619 a001 102334155/228826127*9349^(6/19) 8024922330505619 a001 133957148/299537289*9349^(6/19) 8024922330505619 a001 701408733/1568397607*9349^(6/19) 8024922330505619 a001 1836311903/4106118243*9349^(6/19) 8024922330505619 a001 2403763488/5374978561*9349^(6/19) 8024922330505619 a001 12586269025/28143753123*9349^(6/19) 8024922330505619 a001 32951280099/73681302247*9349^(6/19) 8024922330505619 a001 43133785636/96450076809*9349^(6/19) 8024922330505619 a001 225851433717/505019158607*9349^(6/19) 8024922330505619 a001 591286729879/1322157322203*9349^(6/19) 8024922330505619 a001 10610209857723/23725150497407*9349^(6/19) 8024922330505619 a001 182717648081/408569081798*9349^(6/19) 8024922330505619 a001 139583862445/312119004989*9349^(6/19) 8024922330505619 a001 53316291173/119218851371*9349^(6/19) 8024922330505619 a001 10182505537/22768774562*9349^(6/19) 8024922330505619 a001 7778742049/17393796001*9349^(6/19) 8024922330505619 a001 2971215073/6643838879*9349^(6/19) 8024922330505619 a001 567451585/1268860318*9349^(6/19) 8024922330505619 a001 433494437/969323029*9349^(6/19) 8024922330505619 a001 165580141/370248451*9349^(6/19) 8024922330505620 a001 31622993/70711162*9349^(6/19) 8024922330505625 a001 24157817/54018521*9349^(6/19) 8024922330505657 a001 9227465/20633239*9349^(6/19) 8024922330505878 a001 1762289/3940598*9349^(6/19) 8024922330507390 a001 1346269/3010349*9349^(6/19) 8024922330517758 a001 514229/1149851*9349^(6/19) 8024922330588822 a001 98209/219602*9349^(6/19) 8024922331075900 a001 75025/167761*9349^(6/19) 8024922331644540 a001 28657/15127*15127^(3/20) 8024922332175697 a001 28657/39603*9349^(5/19) 8024922332775606 a001 2584/710647*5778^(8/9) 8024922333341009 a001 2255/13201*15127^(2/5) 8024922333360019 a001 6765/24476*24476^(1/3) 8024922333952179 a001 10946/39603*9349^(7/19) 8024922334307141 a001 15456/13201*9349^(4/19) 8024922334414383 a001 28657/64079*9349^(6/19) 8024922334635784 a001 10946/15127*24476^(5/21) 8024922334876586 a001 75025/103682*9349^(5/19) 8024922335143523 a001 17711/9349*3571^(3/17) 8024922335270640 a001 196418/271443*9349^(5/19) 8024922335328132 a001 514229/710647*9349^(5/19) 8024922335336520 a001 1346269/1860498*9349^(5/19) 8024922335337744 a001 3524578/4870847*9349^(5/19) 8024922335337922 a001 9227465/12752043*9349^(5/19) 8024922335337948 a001 24157817/33385282*9349^(5/19) 8024922335337952 a001 63245986/87403803*9349^(5/19) 8024922335337953 a001 165580141/228826127*9349^(5/19) 8024922335337953 a001 433494437/599074578*9349^(5/19) 8024922335337953 a001 1134903170/1568397607*9349^(5/19) 8024922335337953 a001 2971215073/4106118243*9349^(5/19) 8024922335337953 a001 7778742049/10749957122*9349^(5/19) 8024922335337953 a001 20365011074/28143753123*9349^(5/19) 8024922335337953 a001 53316291173/73681302247*9349^(5/19) 8024922335337953 a001 139583862445/192900153618*9349^(5/19) 8024922335337953 a001 365435296162/505019158607*9349^(5/19) 8024922335337953 a001 10610209857723/14662949395604*9349^(5/19) 8024922335337953 a001 591286729879/817138163596*9349^(5/19) 8024922335337953 a001 225851433717/312119004989*9349^(5/19) 8024922335337953 a001 86267571272/119218851371*9349^(5/19) 8024922335337953 a001 32951280099/45537549124*9349^(5/19) 8024922335337953 a001 12586269025/17393796001*9349^(5/19) 8024922335337953 a001 4807526976/6643838879*9349^(5/19) 8024922335337953 a001 1836311903/2537720636*9349^(5/19) 8024922335337953 a001 701408733/969323029*9349^(5/19) 8024922335337953 a001 267914296/370248451*9349^(5/19) 8024922335337953 a001 102334155/141422324*9349^(5/19) 8024922335337955 a001 39088169/54018521*9349^(5/19) 8024922335337964 a001 14930352/20633239*9349^(5/19) 8024922335338033 a001 5702887/7881196*9349^(5/19) 8024922335338500 a001 2178309/3010349*9349^(5/19) 8024922335341704 a001 832040/1149851*9349^(5/19) 8024922335363664 a001 317811/439204*9349^(5/19) 8024922335514179 a001 121393/167761*9349^(5/19) 8024922335768305 a001 121393/24476*3571^(1/17) 8024922336190865 a001 10946/64079*9349^(8/19) 8024922336545827 a001 46368/64079*9349^(5/19) 8024922337230384 a001 6765/24476*64079^(7/23) 8024922337400330 a001 10946/15127*64079^(5/23) 8024922337768168 a001 10946/15127*167761^(1/5) 8024922337825177 a001 1139226/141961 8024922337825192 a001 6765/24476*20633239^(1/5) 8024922337825193 a001 10946/15127*20633239^(1/7) 8024922337825196 a001 6765/24476*17393796001^(1/7) 8024922337825196 a001 6765/24476*14662949395604^(1/9) 8024922337825196 a001 6765/24476*(1/2+1/2*5^(1/2))^7 8024922337825196 a001 6765/24476*599074578^(1/6) 8024922337825196 a001 10946/15127*2537720636^(1/9) 8024922337825196 a001 10946/15127*312119004989^(1/11) 8024922337825196 a001 10946/15127*(1/2+1/2*5^(1/2))^5 8024922337825196 a001 10946/15127*28143753123^(1/10) 8024922337825196 a001 10946/15127*228826127^(1/8) 8024922337825582 a001 10946/15127*1860498^(1/6) 8024922337829168 a001 6765/24476*710647^(1/4) 8024922337980718 a001 10946/15127*103682^(5/24) 8024922338042927 a001 6765/24476*103682^(7/24) 8024922338068863 a001 75025/15127*5778^(1/18) 8024922338974474 r005 Re(z^2+c),c=-7/66+27/32*I,n=56 8024922338988068 a001 10946/15127*39603^(5/22) 8024922339314865 a001 121393/103682*9349^(4/19) 8024922339453217 a001 6765/24476*39603^(7/22) 8024922340045482 a001 105937/90481*9349^(4/19) 8024922340152078 a001 832040/710647*9349^(4/19) 8024922340167630 a001 726103/620166*9349^(4/19) 8024922340169899 a001 5702887/4870847*9349^(4/19) 8024922340170230 a001 4976784/4250681*9349^(4/19) 8024922340170278 a001 39088169/33385282*9349^(4/19) 8024922340170285 a001 34111385/29134601*9349^(4/19) 8024922340170286 a001 267914296/228826127*9349^(4/19) 8024922340170286 a001 233802911/199691526*9349^(4/19) 8024922340170286 a001 1836311903/1568397607*9349^(4/19) 8024922340170286 a001 1602508992/1368706081*9349^(4/19) 8024922340170286 a001 12586269025/10749957122*9349^(4/19) 8024922340170286 a001 10983760033/9381251041*9349^(4/19) 8024922340170286 a001 86267571272/73681302247*9349^(4/19) 8024922340170286 a001 75283811239/64300051206*9349^(4/19) 8024922340170286 a001 2504730781961/2139295485799*9349^(4/19) 8024922340170286 a001 365435296162/312119004989*9349^(4/19) 8024922340170286 a001 139583862445/119218851371*9349^(4/19) 8024922340170286 a001 53316291173/45537549124*9349^(4/19) 8024922340170286 a001 20365011074/17393796001*9349^(4/19) 8024922340170286 a001 7778742049/6643838879*9349^(4/19) 8024922340170286 a001 2971215073/2537720636*9349^(4/19) 8024922340170286 a001 1134903170/969323029*9349^(4/19) 8024922340170287 a001 433494437/370248451*9349^(4/19) 8024922340170287 a001 165580141/141422324*9349^(4/19) 8024922340170290 a001 63245986/54018521*9349^(4/19) 8024922340170308 a001 24157817/20633239*9349^(4/19) 8024922340170434 a001 9227465/7881196*9349^(4/19) 8024922340171123 a001 75025/39603*9349^(3/19) 8024922340171301 a001 3524578/3010349*9349^(4/19) 8024922340177242 a001 1346269/1149851*9349^(4/19) 8024922340217957 a001 514229/439204*9349^(4/19) 8024922340497028 a001 196418/167761*9349^(4/19) 8024922340987452 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^37 8024922341218135 a001 6765/103682*15127^(1/2) 8024922341625327 a001 17711/33385282*24476^(20/21) 8024922342165526 a001 6765/64079*15127^(9/20) 8024922342263236 a001 17711/20633239*24476^(19/21) 8024922342409809 a001 75025/64079*9349^(4/19) 8024922342901050 a001 17711/12752043*24476^(6/7) 8024922343539111 a001 89/39604*24476^(17/21) 8024922343616847 a001 17711/24476*9349^(5/19) 8024922344003281 a001 615/15251*15127^(11/20) 8024922344176526 a001 17711/4870847*24476^(16/21) 8024922344297714 a001 98209/51841*9349^(3/19) 8024922344609402 a001 121393/39603*9349^(2/19) 8024922344815632 a001 17711/3010349*24476^(5/7) 8024922344899776 a001 514229/271443*9349^(3/19) 8024922344987615 a001 1346269/710647*9349^(3/19) 8024922345000431 a001 1762289/930249*9349^(3/19) 8024922345002301 a001 9227465/4870847*9349^(3/19) 8024922345002573 a001 24157817/12752043*9349^(3/19) 8024922345002613 a001 31622993/16692641*9349^(3/19) 8024922345002619 a001 165580141/87403803*9349^(3/19) 8024922345002620 a001 433494437/228826127*9349^(3/19) 8024922345002620 a001 567451585/299537289*9349^(3/19) 8024922345002620 a001 2971215073/1568397607*9349^(3/19) 8024922345002620 a001 7778742049/4106118243*9349^(3/19) 8024922345002620 a001 10182505537/5374978561*9349^(3/19) 8024922345002620 a001 53316291173/28143753123*9349^(3/19) 8024922345002620 a001 139583862445/73681302247*9349^(3/19) 8024922345002620 a001 182717648081/96450076809*9349^(3/19) 8024922345002620 a001 956722026041/505019158607*9349^(3/19) 8024922345002620 a001 10610209857723/5600748293801*9349^(3/19) 8024922345002620 a001 591286729879/312119004989*9349^(3/19) 8024922345002620 a001 225851433717/119218851371*9349^(3/19) 8024922345002620 a001 21566892818/11384387281*9349^(3/19) 8024922345002620 a001 32951280099/17393796001*9349^(3/19) 8024922345002620 a001 12586269025/6643838879*9349^(3/19) 8024922345002620 a001 1201881744/634430159*9349^(3/19) 8024922345002620 a001 1836311903/969323029*9349^(3/19) 8024922345002620 a001 701408733/370248451*9349^(3/19) 8024922345002620 a001 66978574/35355581*9349^(3/19) 8024922345002623 a001 102334155/54018521*9349^(3/19) 8024922345002638 a001 39088169/20633239*9349^(3/19) 8024922345002742 a001 3732588/1970299*9349^(3/19) 8024922345003456 a001 5702887/3010349*9349^(3/19) 8024922345008351 a001 2178309/1149851*9349^(3/19) 8024922345041903 a001 208010/109801*9349^(3/19) 8024922345271870 a001 317811/167761*9349^(3/19) 8024922345357582 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^39 8024922345362724 a001 2255/90481*15127^(3/5) 8024922345439051 a001 17711/39603*24476^(2/7) 8024922345450311 a001 17711/1860498*24476^(2/3) 8024922345995176 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^41 8024922345995464 a001 15456/29134601*24476^(20/21) 8024922346088199 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^43 8024922346096581 a001 17711/1149851*24476^(13/21) 8024922346101771 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^45 8024922346103751 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^47 8024922346104040 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^49 8024922346104082 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^51 8024922346104088 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^53 8024922346104089 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^55 8024922346104089 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^57 8024922346104089 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^59 8024922346104089 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^61 8024922346104089 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^63 8024922346104089 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^65 8024922346104089 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^67 8024922346104089 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^69 8024922346104089 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^71 8024922346104089 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^73 8024922346104089 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^75 8024922346104089 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^77 8024922346104089 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^79 8024922346104089 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^81 8024922346104089 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^83 8024922346104089 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^85 8024922346104089 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^87 8024922346104089 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^89 8024922346104089 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^91 8024922346104089 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^93 8024922346104089 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^95 8024922346104089 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^97 8024922346104089 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^99 8024922346104089 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^100 8024922346104089 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^98 8024922346104089 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^96 8024922346104089 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^94 8024922346104089 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^92 8024922346104089 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^90 8024922346104089 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^88 8024922346104089 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^86 8024922346104089 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^84 8024922346104089 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^82 8024922346104089 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^80 8024922346104089 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^78 8024922346104089 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^76 8024922346104089 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^74 8024922346104089 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^72 8024922346104089 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^70 8024922346104089 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^68 8024922346104089 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^66 8024922346104089 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^64 8024922346104089 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^62 8024922346104089 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^60 8024922346104089 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^58 8024922346104090 a001 1/5473*(1/2+1/2*5^(1/2))^27 8024922346104090 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^56 8024922346104090 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^54 8024922346104092 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^52 8024922346104108 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^50 8024922346104219 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^48 8024922346104975 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^46 8024922346110159 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^44 8024922346145691 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^42 8024922346151625 a001 2584/1149851*5778^(17/18) 8024922346389230 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^40 8024922346592685 a001 10946/15127*15127^(1/4) 8024922346633058 a001 121393/228826127*24476^(20/21) 8024922346633350 a001 46368/54018521*24476^(19/21) 8024922346712503 a001 17711/710647*24476^(4/7) 8024922346726082 a001 377/710646*24476^(20/21) 8024922346739654 a001 832040/1568397607*24476^(20/21) 8024922346741634 a001 726103/1368706081*24476^(20/21) 8024922346741923 a001 5702887/10749957122*24476^(20/21) 8024922346741965 a001 4976784/9381251041*24476^(20/21) 8024922346741971 a001 39088169/73681302247*24476^(20/21) 8024922346741972 a001 34111385/64300051206*24476^(20/21) 8024922346741972 a001 267914296/505019158607*24476^(20/21) 8024922346741972 a001 233802911/440719107401*24476^(20/21) 8024922346741972 a001 1836311903/3461452808002*24476^(20/21) 8024922346741972 a001 1602508992/3020733700601*24476^(20/21) 8024922346741972 a001 12586269025/23725150497407*24476^(20/21) 8024922346741972 a001 7778742049/14662949395604*24476^(20/21) 8024922346741972 a001 2971215073/5600748293801*24476^(20/21) 8024922346741972 a001 1134903170/2139295485799*24476^(20/21) 8024922346741972 a001 433494437/817138163596*24476^(20/21) 8024922346741972 a001 165580141/312119004989*24476^(20/21) 8024922346741972 a001 63245986/119218851371*24476^(20/21) 8024922346741975 a001 24157817/45537549124*24476^(20/21) 8024922346741991 a001 9227465/17393796001*24476^(20/21) 8024922346742101 a001 3524578/6643838879*24476^(20/21) 8024922346742857 a001 1346269/2537720636*24476^(20/21) 8024922346748042 a001 514229/969323029*24476^(20/21) 8024922346783573 a001 196418/370248451*24476^(20/21) 8024922346848088 a001 121393/64079*9349^(3/19) 8024922347027113 a001 75025/141422324*24476^(20/21) 8024922347266737 a001 6765/439204*15127^(13/20) 8024922347270941 a001 233/271444*24476^(19/21) 8024922347271222 a001 144/103681*24476^(6/7) 8024922347363964 a001 317811/370248451*24476^(19/21) 8024922347377536 a001 832040/969323029*24476^(19/21) 8024922347379516 a001 2178309/2537720636*24476^(19/21) 8024922347379805 a001 5702887/6643838879*24476^(19/21) 8024922347379847 a001 14930352/17393796001*24476^(19/21) 8024922347379853 a001 39088169/45537549124*24476^(19/21) 8024922347379854 a001 102334155/119218851371*24476^(19/21) 8024922347379854 a001 267914296/312119004989*24476^(19/21) 8024922347379854 a001 701408733/817138163596*24476^(19/21) 8024922347379854 a001 1836311903/2139295485799*24476^(19/21) 8024922347379854 a001 4807526976/5600748293801*24476^(19/21) 8024922347379854 a001 12586269025/14662949395604*24476^(19/21) 8024922347379854 a001 20365011074/23725150497407*24476^(19/21) 8024922347379854 a001 7778742049/9062201101803*24476^(19/21) 8024922347379854 a001 2971215073/3461452808002*24476^(19/21) 8024922347379854 a001 1134903170/1322157322203*24476^(19/21) 8024922347379854 a001 433494437/505019158607*24476^(19/21) 8024922347379854 a001 165580141/192900153618*24476^(19/21) 8024922347379855 a001 63245986/73681302247*24476^(19/21) 8024922347379857 a001 24157817/28143753123*24476^(19/21) 8024922347379873 a001 9227465/10749957122*24476^(19/21) 8024922347379984 a001 3524578/4106118243*24476^(19/21) 8024922347380740 a001 1346269/1568397607*24476^(19/21) 8024922347385924 a001 514229/599074578*24476^(19/21) 8024922347407878 a001 17711/439204*24476^(11/21) 8024922347421456 a001 196418/228826127*24476^(19/21) 8024922347664994 a001 75025/87403803*24476^(19/21) 8024922347895245 a001 17711/271443*24476^(10/21) 8024922347908822 a001 121393/87403803*24476^(6/7) 8024922347909131 a001 46368/20633239*24476^(17/21) 8024922348001846 a001 317811/228826127*24476^(6/7) 8024922348015418 a001 416020/299537289*24476^(6/7) 8024922348017399 a001 311187/224056801*24476^(6/7) 8024922348017687 a001 5702887/4106118243*24476^(6/7) 8024922348017730 a001 7465176/5374978561*24476^(6/7) 8024922348017736 a001 39088169/28143753123*24476^(6/7) 8024922348017737 a001 14619165/10525900321*24476^(6/7) 8024922348017737 a001 133957148/96450076809*24476^(6/7) 8024922348017737 a001 701408733/505019158607*24476^(6/7) 8024922348017737 a001 1836311903/1322157322203*24476^(6/7) 8024922348017737 a001 14930208/10749853441*24476^(6/7) 8024922348017737 a001 12586269025/9062201101803*24476^(6/7) 8024922348017737 a001 32951280099/23725150497407*24476^(6/7) 8024922348017737 a001 10182505537/7331474697802*24476^(6/7) 8024922348017737 a001 7778742049/5600748293801*24476^(6/7) 8024922348017737 a001 2971215073/2139295485799*24476^(6/7) 8024922348017737 a001 567451585/408569081798*24476^(6/7) 8024922348017737 a001 433494437/312119004989*24476^(6/7) 8024922348017737 a001 165580141/119218851371*24476^(6/7) 8024922348017737 a001 31622993/22768774562*24476^(6/7) 8024922348017740 a001 24157817/17393796001*24476^(6/7) 8024922348017756 a001 9227465/6643838879*24476^(6/7) 8024922348017866 a001 1762289/1268860318*24476^(6/7) 8024922348018622 a001 1346269/969323029*24476^(6/7) 8024922348023806 a001 514229/370248451*24476^(6/7) 8024922348058471 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^38 8024922348059339 a001 98209/70711162*24476^(6/7) 8024922348302880 a001 75025/54018521*24476^(6/7) 8024922348533416 a001 17711/103682*24476^(8/21) 8024922348546708 a001 121393/54018521*24476^(17/21) 8024922348546945 a001 15456/4250681*24476^(16/21) 8024922348639729 a001 317811/141422324*24476^(17/21) 8024922348653301 a001 832040/370248451*24476^(17/21) 8024922348655281 a001 2178309/969323029*24476^(17/21) 8024922348655570 a001 5702887/2537720636*24476^(17/21) 8024922348655612 a001 14930352/6643838879*24476^(17/21) 8024922348655618 a001 39088169/17393796001*24476^(17/21) 8024922348655619 a001 102334155/45537549124*24476^(17/21) 8024922348655619 a001 267914296/119218851371*24476^(17/21) 8024922348655619 a001 3524667/1568437211*24476^(17/21) 8024922348655619 a001 1836311903/817138163596*24476^(17/21) 8024922348655619 a001 4807526976/2139295485799*24476^(17/21) 8024922348655619 a001 12586269025/5600748293801*24476^(17/21) 8024922348655619 a001 32951280099/14662949395604*24476^(17/21) 8024922348655619 a001 53316291173/23725150497407*24476^(17/21) 8024922348655619 a001 20365011074/9062201101803*24476^(17/21) 8024922348655619 a001 7778742049/3461452808002*24476^(17/21) 8024922348655619 a001 2971215073/1322157322203*24476^(17/21) 8024922348655619 a001 1134903170/505019158607*24476^(17/21) 8024922348655619 a001 433494437/192900153618*24476^(17/21) 8024922348655619 a001 165580141/73681302247*24476^(17/21) 8024922348655620 a001 63245986/28143753123*24476^(17/21) 8024922348655622 a001 24157817/10749957122*24476^(17/21) 8024922348655638 a001 9227465/4106118243*24476^(17/21) 8024922348655748 a001 3524578/1568397607*24476^(17/21) 8024922348656505 a001 1346269/599074578*24476^(17/21) 8024922348661689 a001 514229/228826127*24476^(17/21) 8024922348696356 a001 28657/54018521*24476^(20/21) 8024922348697220 a001 196418/87403803*24476^(17/21) 8024922348756507 a001 17711/39603*64079^(6/23) 8024922348927182 a001 17711/167761*24476^(3/7) 8024922348940753 a001 75025/33385282*24476^(17/21) 8024922348962743 a001 6765/710647*15127^(7/10) 8024922349072556 a001 317811/103682*9349^(2/19) 8024922349184581 a001 121393/33385282*24476^(16/21) 8024922349185006 a001 11592/1970299*24476^(5/7) 8024922349257101 a001 17711/39603*439204^(2/9) 8024922349266322 a001 17711/39603*7881196^(2/11) 8024922349266345 a001 17711/39603*141422324^(2/13) 8024922349266346 a001 17711/39603*2537720636^(2/15) 8024922349266346 a001 17711/39603*45537549124^(2/17) 8024922349266346 a001 17711/39603*14662949395604^(2/21) 8024922349266346 a001 17711/39603*(1/2+1/2*5^(1/2))^6 8024922349266346 a001 17711/39603*10749957122^(1/8) 8024922349266346 a001 17711/39603*4106118243^(3/23) 8024922349266346 a001 17711/39603*1568397607^(3/22) 8024922349266346 a001 17711/39603*599074578^(1/7) 8024922349266346 a001 17711/39603*228826127^(3/20) 8024922349266346 a001 17711/39603*87403803^(3/19) 8024922349266347 a001 313679521/39088169 8024922349266347 a001 17711/39603*33385282^(1/6) 8024922349266354 a001 17711/39603*12752043^(3/17) 8024922349266409 a001 17711/39603*4870847^(3/16) 8024922349266809 a001 17711/39603*1860498^(1/5) 8024922349269751 a001 17711/39603*710647^(3/14) 8024922349277610 a001 105937/29134601*24476^(16/21) 8024922349291183 a001 832040/228826127*24476^(16/21) 8024922349291480 a001 17711/39603*271443^(3/13) 8024922349293163 a001 726103/199691526*24476^(16/21) 8024922349293452 a001 5702887/1568397607*24476^(16/21) 8024922349293495 a001 4976784/1368706081*24476^(16/21) 8024922349293501 a001 39088169/10749957122*24476^(16/21) 8024922349293502 a001 831985/228811001*24476^(16/21) 8024922349293502 a001 267914296/73681302247*24476^(16/21) 8024922349293502 a001 233802911/64300051206*24476^(16/21) 8024922349293502 a001 1836311903/505019158607*24476^(16/21) 8024922349293502 a001 1602508992/440719107401*24476^(16/21) 8024922349293502 a001 12586269025/3461452808002*24476^(16/21) 8024922349293502 a001 10983760033/3020733700601*24476^(16/21) 8024922349293502 a001 86267571272/23725150497407*24476^(16/21) 8024922349293502 a001 53316291173/14662949395604*24476^(16/21) 8024922349293502 a001 20365011074/5600748293801*24476^(16/21) 8024922349293502 a001 7778742049/2139295485799*24476^(16/21) 8024922349293502 a001 2971215073/817138163596*24476^(16/21) 8024922349293502 a001 1134903170/312119004989*24476^(16/21) 8024922349293502 a001 433494437/119218851371*24476^(16/21) 8024922349293502 a001 165580141/45537549124*24476^(16/21) 8024922349293502 a001 63245986/17393796001*24476^(16/21) 8024922349293504 a001 24157817/6643838879*24476^(16/21) 8024922349293521 a001 9227465/2537720636*24476^(16/21) 8024922349293631 a001 3524578/969323029*24476^(16/21) 8024922349294387 a001 1346269/370248451*24476^(16/21) 8024922349299572 a001 514229/141422324*24476^(16/21) 8024922349334229 a001 28657/33385282*24476^(19/21) 8024922349335106 a001 196418/54018521*24476^(16/21) 8024922349452972 a001 17711/39603*103682^(1/4) 8024922349578661 a001 75025/20633239*24476^(16/21) 8024922349592251 a001 196418/39603*9349^(1/19) 8024922349723721 a001 832040/271443*9349^(2/19) 8024922349818725 a001 311187/101521*9349^(2/19) 8024922349822421 a001 46368/4870847*24476^(2/3) 8024922349822489 a001 121393/20633239*24476^(5/7) 8024922349832586 a001 5702887/1860498*9349^(2/19) 8024922349834608 a001 14930352/4870847*9349^(2/19) 8024922349834903 a001 39088169/12752043*9349^(2/19) 8024922349834946 a001 14619165/4769326*9349^(2/19) 8024922349834953 a001 267914296/87403803*9349^(2/19) 8024922349834954 a001 701408733/228826127*9349^(2/19) 8024922349834954 a001 1836311903/599074578*9349^(2/19) 8024922349834954 a001 686789568/224056801*9349^(2/19) 8024922349834954 a001 12586269025/4106118243*9349^(2/19) 8024922349834954 a001 32951280099/10749957122*9349^(2/19) 8024922349834954 a001 86267571272/28143753123*9349^(2/19) 8024922349834954 a001 32264490531/10525900321*9349^(2/19) 8024922349834954 a001 591286729879/192900153618*9349^(2/19) 8024922349834954 a001 1548008755920/505019158607*9349^(2/19) 8024922349834954 a001 1515744265389/494493258286*9349^(2/19) 8024922349834954 a001 2504730781961/817138163596*9349^(2/19) 8024922349834954 a001 956722026041/312119004989*9349^(2/19) 8024922349834954 a001 365435296162/119218851371*9349^(2/19) 8024922349834954 a001 139583862445/45537549124*9349^(2/19) 8024922349834954 a001 53316291173/17393796001*9349^(2/19) 8024922349834954 a001 20365011074/6643838879*9349^(2/19) 8024922349834954 a001 7778742049/2537720636*9349^(2/19) 8024922349834954 a001 2971215073/969323029*9349^(2/19) 8024922349834954 a001 1134903170/370248451*9349^(2/19) 8024922349834954 a001 433494437/141422324*9349^(2/19) 8024922349834956 a001 165580141/54018521*9349^(2/19) 8024922349834973 a001 63245986/20633239*9349^(2/19) 8024922349835086 a001 24157817/7881196*9349^(2/19) 8024922349835858 a001 9227465/3010349*9349^(2/19) 8024922349841152 a001 3524578/1149851*9349^(2/19) 8024922349877441 a001 1346269/439204*9349^(2/19) 8024922349915497 a001 317811/54018521*24476^(5/7) 8024922349929066 a001 208010/35355581*24476^(5/7) 8024922349931046 a001 2178309/370248451*24476^(5/7) 8024922349931335 a001 5702887/969323029*24476^(5/7) 8024922349931377 a001 196452/33391061*24476^(5/7) 8024922349931383 a001 39088169/6643838879*24476^(5/7) 8024922349931384 a001 102334155/17393796001*24476^(5/7) 8024922349931384 a001 66978574/11384387281*24476^(5/7) 8024922349931384 a001 701408733/119218851371*24476^(5/7) 8024922349931384 a001 1836311903/312119004989*24476^(5/7) 8024922349931384 a001 1201881744/204284540899*24476^(5/7) 8024922349931384 a001 12586269025/2139295485799*24476^(5/7) 8024922349931384 a001 32951280099/5600748293801*24476^(5/7) 8024922349931384 a001 1135099622/192933544679*24476^(5/7) 8024922349931384 a001 139583862445/23725150497407*24476^(5/7) 8024922349931384 a001 53316291173/9062201101803*24476^(5/7) 8024922349931384 a001 10182505537/1730726404001*24476^(5/7) 8024922349931384 a001 7778742049/1322157322203*24476^(5/7) 8024922349931384 a001 2971215073/505019158607*24476^(5/7) 8024922349931384 a001 567451585/96450076809*24476^(5/7) 8024922349931384 a001 433494437/73681302247*24476^(5/7) 8024922349931384 a001 165580141/28143753123*24476^(5/7) 8024922349931385 a001 31622993/5374978561*24476^(5/7) 8024922349931387 a001 24157817/4106118243*24476^(5/7) 8024922349931403 a001 9227465/1568397607*24476^(5/7) 8024922349931513 a001 1762289/299537289*24476^(5/7) 8024922349932270 a001 1346269/228826127*24476^(5/7) 8024922349937453 a001 514229/87403803*24476^(5/7) 8024922349972137 a001 28657/20633239*24476^(6/7) 8024922349972978 a001 98209/16692641*24476^(5/7) 8024922350099680 a001 6765/24476*15127^(7/20) 8024922350126164 a001 514229/167761*9349^(2/19) 8024922350216475 a001 75025/12752043*24476^(5/7) 8024922350391274 a001 6624/2161*5778^(1/9) 8024922350460303 a001 121393/12752043*24476^(2/3) 8024922350461527 a001 46368/3010349*24476^(13/21) 8024922350553369 a001 317811/33385282*24476^(2/3) 8024922350566947 a001 832040/87403803*24476^(2/3) 8024922350568928 a001 46347/4868641*24476^(2/3) 8024922350569217 a001 5702887/599074578*24476^(2/3) 8024922350569259 a001 14930352/1568397607*24476^(2/3) 8024922350569266 a001 39088169/4106118243*24476^(2/3) 8024922350569266 a001 102334155/10749957122*24476^(2/3) 8024922350569267 a001 267914296/28143753123*24476^(2/3) 8024922350569267 a001 701408733/73681302247*24476^(2/3) 8024922350569267 a001 1836311903/192900153618*24476^(2/3) 8024922350569267 a001 102287808/10745088481*24476^(2/3) 8024922350569267 a001 12586269025/1322157322203*24476^(2/3) 8024922350569267 a001 32951280099/3461452808002*24476^(2/3) 8024922350569267 a001 86267571272/9062201101803*24476^(2/3) 8024922350569267 a001 225851433717/23725150497407*24476^(2/3) 8024922350569267 a001 139583862445/14662949395604*24476^(2/3) 8024922350569267 a001 53316291173/5600748293801*24476^(2/3) 8024922350569267 a001 20365011074/2139295485799*24476^(2/3) 8024922350569267 a001 7778742049/817138163596*24476^(2/3) 8024922350569267 a001 2971215073/312119004989*24476^(2/3) 8024922350569267 a001 1134903170/119218851371*24476^(2/3) 8024922350569267 a001 433494437/45537549124*24476^(2/3) 8024922350569267 a001 165580141/17393796001*24476^(2/3) 8024922350569267 a001 63245986/6643838879*24476^(2/3) 8024922350569269 a001 24157817/2537720636*24476^(2/3) 8024922350569285 a001 9227465/969323029*24476^(2/3) 8024922350569396 a001 3524578/370248451*24476^(2/3) 8024922350570153 a001 1346269/141422324*24476^(2/3) 8024922350575339 a001 514229/54018521*24476^(2/3) 8024922350609952 a001 28657/12752043*24476^(17/21) 8024922350610887 a001 196418/20633239*24476^(2/3) 8024922350661792 a001 17711/39603*39603^(3/11) 8024922350738201 a001 6765/1149851*15127^(3/4) 8024922350854536 a001 75025/7881196*24476^(2/3) 8024922351084946 a001 15456/13201*24476^(4/21) 8024922351096206 a001 2576/103361*24476^(4/7) 8024922351098364 a001 121393/7881196*24476^(13/21) 8024922351191278 a001 10959/711491*24476^(13/21) 8024922351204833 a001 832040/54018521*24476^(13/21) 8024922351206811 a001 2178309/141422324*24476^(13/21) 8024922351207100 a001 5702887/370248451*24476^(13/21) 8024922351207142 a001 14930352/969323029*24476^(13/21) 8024922351207148 a001 39088169/2537720636*24476^(13/21) 8024922351207149 a001 102334155/6643838879*24476^(13/21) 8024922351207149 a001 9238424/599786069*24476^(13/21) 8024922351207149 a001 701408733/45537549124*24476^(13/21) 8024922351207149 a001 1836311903/119218851371*24476^(13/21) 8024922351207149 a001 4807526976/312119004989*24476^(13/21) 8024922351207149 a001 12586269025/817138163596*24476^(13/21) 8024922351207149 a001 32951280099/2139295485799*24476^(13/21) 8024922351207149 a001 86267571272/5600748293801*24476^(13/21) 8024922351207149 a001 7787980473/505618944676*24476^(13/21) 8024922351207149 a001 365435296162/23725150497407*24476^(13/21) 8024922351207149 a001 139583862445/9062201101803*24476^(13/21) 8024922351207149 a001 53316291173/3461452808002*24476^(13/21) 8024922351207149 a001 20365011074/1322157322203*24476^(13/21) 8024922351207149 a001 7778742049/505019158607*24476^(13/21) 8024922351207149 a001 2971215073/192900153618*24476^(13/21) 8024922351207149 a001 1134903170/73681302247*24476^(13/21) 8024922351207149 a001 433494437/28143753123*24476^(13/21) 8024922351207149 a001 165580141/10749957122*24476^(13/21) 8024922351207149 a001 63245986/4106118243*24476^(13/21) 8024922351207152 a001 24157817/1568397607*24476^(13/21) 8024922351207168 a001 9227465/599074578*24476^(13/21) 8024922351207278 a001 3524578/228826127*24476^(13/21) 8024922351208034 a001 1346269/87403803*24476^(13/21) 8024922351213211 a001 514229/33385282*24476^(13/21) 8024922351248013 a001 28657/7881196*24476^(16/21) 8024922351248701 a001 196418/12752043*24476^(13/21) 8024922351491951 a001 75025/4870847*24476^(13/21) 8024922351735779 a001 121393/4870847*24476^(4/7) 8024922351742476 a001 46368/1149851*24476^(11/21) 8024922351829092 a001 105937/4250681*24476^(4/7) 8024922351830937 a001 196418/64079*9349^(2/19) 8024922351842706 a001 416020/16692641*24476^(4/7) 8024922351844692 a001 726103/29134601*24476^(4/7) 8024922351844982 a001 5702887/228826127*24476^(4/7) 8024922351845024 a001 829464/33281921*24476^(4/7) 8024922351845030 a001 39088169/1568397607*24476^(4/7) 8024922351845031 a001 34111385/1368706081*24476^(4/7) 8024922351845032 a001 133957148/5374978561*24476^(4/7) 8024922351845032 a001 233802911/9381251041*24476^(4/7) 8024922351845032 a001 1836311903/73681302247*24476^(4/7) 8024922351845032 a001 267084832/10716675201*24476^(4/7) 8024922351845032 a001 12586269025/505019158607*24476^(4/7) 8024922351845032 a001 10983760033/440719107401*24476^(4/7) 8024922351845032 a001 43133785636/1730726404001*24476^(4/7) 8024922351845032 a001 75283811239/3020733700601*24476^(4/7) 8024922351845032 a001 182717648081/7331474697802*24476^(4/7) 8024922351845032 a001 139583862445/5600748293801*24476^(4/7) 8024922351845032 a001 53316291173/2139295485799*24476^(4/7) 8024922351845032 a001 10182505537/408569081798*24476^(4/7) 8024922351845032 a001 7778742049/312119004989*24476^(4/7) 8024922351845032 a001 2971215073/119218851371*24476^(4/7) 8024922351845032 a001 567451585/22768774562*24476^(4/7) 8024922351845032 a001 433494437/17393796001*24476^(4/7) 8024922351845032 a001 165580141/6643838879*24476^(4/7) 8024922351845032 a001 31622993/1268860318*24476^(4/7) 8024922351845034 a001 24157817/969323029*24476^(4/7) 8024922351845050 a001 9227465/370248451*24476^(4/7) 8024922351845161 a001 1762289/70711162*24476^(4/7) 8024922351845920 a001 1346269/54018521*24476^(4/7) 8024922351851120 a001 514229/20633239*24476^(4/7) 8024922351872188 a001 17711/64079*24476^(1/3) 8024922351885428 a001 28657/4870847*24476^(5/7) 8024922351886762 a001 98209/3940598*24476^(4/7) 8024922352131058 a001 75025/3010349*24476^(4/7) 8024922352358399 a001 6624/101521*24476^(10/21) 8024922352374886 a001 121393/3010349*24476^(11/21) 8024922352428602 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^39 8024922352467153 a001 317811/7881196*24476^(11/21) 8024922352480614 a001 75640/1875749*24476^(11/21) 8024922352482578 a001 2178309/54018521*24476^(11/21) 8024922352482865 a001 5702887/141422324*24476^(11/21) 8024922352482907 a001 14930352/370248451*24476^(11/21) 8024922352482913 a001 39088169/969323029*24476^(11/21) 8024922352482914 a001 9303105/230701876*24476^(11/21) 8024922352482914 a001 267914296/6643838879*24476^(11/21) 8024922352482914 a001 701408733/17393796001*24476^(11/21) 8024922352482914 a001 1836311903/45537549124*24476^(11/21) 8024922352482914 a001 4807526976/119218851371*24476^(11/21) 8024922352482914 a001 1144206275/28374454999*24476^(11/21) 8024922352482914 a001 32951280099/817138163596*24476^(11/21) 8024922352482914 a001 86267571272/2139295485799*24476^(11/21) 8024922352482914 a001 225851433717/5600748293801*24476^(11/21) 8024922352482914 a001 591286729879/14662949395604*24476^(11/21) 8024922352482914 a001 365435296162/9062201101803*24476^(11/21) 8024922352482914 a001 139583862445/3461452808002*24476^(11/21) 8024922352482914 a001 53316291173/1322157322203*24476^(11/21) 8024922352482914 a001 20365011074/505019158607*24476^(11/21) 8024922352482914 a001 7778742049/192900153618*24476^(11/21) 8024922352482914 a001 2971215073/73681302247*24476^(11/21) 8024922352482914 a001 1134903170/28143753123*24476^(11/21) 8024922352482914 a001 433494437/10749957122*24476^(11/21) 8024922352482914 a001 165580141/4106118243*24476^(11/21) 8024922352482914 a001 63245986/1568397607*24476^(11/21) 8024922352482917 a001 24157817/599074578*24476^(11/21) 8024922352482933 a001 9227465/228826127*24476^(11/21) 8024922352483042 a001 3524578/87403803*24476^(11/21) 8024922352483311 a001 55/15126*15127^(4/5) 8024922352483792 a001 1346269/33385282*24476^(11/21) 8024922352488934 a001 514229/12752043*24476^(11/21) 8024922352513574 a001 17711/87403803*64079^(22/23) 8024922352524177 a001 196418/4870847*24476^(11/21) 8024922352524534 a001 28657/3010349*24476^(2/3) 8024922352598551 a001 17711/54018521*64079^(21/23) 8024922352683514 a001 17711/33385282*64079^(20/23) 8024922352754476 a001 75025/39603*24476^(1/7) 8024922352765736 a001 75025/1860498*24476^(11/21) 8024922352768513 a001 17711/20633239*64079^(19/23) 8024922352853418 a001 17711/12752043*64079^(18/23) 8024922352938569 a001 89/39604*64079^(17/23) 8024922352956691 a001 17711/103682*64079^(8/23) 8024922352998304 a001 121393/39603*24476^(2/21) 8024922353009564 a001 121393/1860498*24476^(10/21) 8024922353023075 a001 17711/4870847*64079^(16/23) 8024922353053773 a001 11592/109801*24476^(3/7) 8024922353104568 a001 317811/4870847*24476^(10/21) 8024922353109272 a001 17711/3010349*64079^(15/23) 8024922353118429 a001 832040/12752043*24476^(10/21) 8024922353120451 a001 311187/4769326*24476^(10/21) 8024922353120746 a001 5702887/87403803*24476^(10/21) 8024922353120789 a001 14930352/228826127*24476^(10/21) 8024922353120795 a001 39088169/599074578*24476^(10/21) 8024922353120796 a001 14619165/224056801*24476^(10/21) 8024922353120796 a001 267914296/4106118243*24476^(10/21) 8024922353120796 a001 701408733/10749957122*24476^(10/21) 8024922353120796 a001 1836311903/28143753123*24476^(10/21) 8024922353120796 a001 686789568/10525900321*24476^(10/21) 8024922353120796 a001 12586269025/192900153618*24476^(10/21) 8024922353120796 a001 32951280099/505019158607*24476^(10/21) 8024922353120796 a001 86267571272/1322157322203*24476^(10/21) 8024922353120796 a001 32264490531/494493258286*24476^(10/21) 8024922353120796 a001 591286729879/9062201101803*24476^(10/21) 8024922353120796 a001 1548008755920/23725150497407*24476^(10/21) 8024922353120796 a001 365435296162/5600748293801*24476^(10/21) 8024922353120796 a001 139583862445/2139295485799*24476^(10/21) 8024922353120796 a001 53316291173/817138163596*24476^(10/21) 8024922353120796 a001 20365011074/312119004989*24476^(10/21) 8024922353120796 a001 7778742049/119218851371*24476^(10/21) 8024922353120796 a001 2971215073/45537549124*24476^(10/21) 8024922353120796 a001 1134903170/17393796001*24476^(10/21) 8024922353120796 a001 433494437/6643838879*24476^(10/21) 8024922353120797 a001 165580141/2537720636*24476^(10/21) 8024922353120797 a001 63245986/969323029*24476^(10/21) 8024922353120799 a001 24157817/370248451*24476^(10/21) 8024922353120816 a001 9227465/141422324*24476^(10/21) 8024922353120928 a001 3524578/54018521*24476^(10/21) 8024922353121701 a001 1346269/20633239*24476^(10/21) 8024922353126995 a001 514229/7881196*24476^(10/21) 8024922353147953 a001 28657/39603*24476^(5/21) 8024922353159212 a001 28657/1860498*24476^(13/21) 8024922353163283 a001 196418/3010349*24476^(10/21) 8024922353191041 a001 17711/1860498*64079^(14/23) 8024922353284402 a001 17711/1149851*64079^(13/23) 8024922353296583 a001 15456/13201*64079^(4/23) 8024922353347415 a001 17711/710647*64079^(12/23) 8024922353412006 a001 75025/1149851*24476^(10/21) 8024922353424338 a001 17711/271443*64079^(10/23) 8024922353489880 a001 17711/439204*64079^(11/23) 8024922353541140 a001 15456/90481*24476^(8/21) 8024922353636476 a001 17711/103682*(1/2+1/2*5^(1/2))^8 8024922353636476 a001 17711/103682*23725150497407^(1/8) 8024922353636476 a001 17711/103682*505019158607^(1/7) 8024922353636476 a001 17711/103682*73681302247^(2/13) 8024922353636476 a001 17711/103682*10749957122^(1/6) 8024922353636476 a001 17711/103682*4106118243^(4/23) 8024922353636476 a001 17711/103682*1568397607^(2/11) 8024922353636476 a001 15456/13201*(1/2+1/2*5^(1/2))^4 8024922353636476 a001 15456/13201*23725150497407^(1/16) 8024922353636476 a001 15456/13201*73681302247^(1/13) 8024922353636476 a001 15456/13201*10749957122^(1/12) 8024922353636476 a001 15456/13201*4106118243^(2/23) 8024922353636476 a001 15456/13201*1568397607^(1/11) 8024922353636476 a001 17711/103682*599074578^(4/21) 8024922353636476 a001 15456/13201*599074578^(2/21) 8024922353636476 a001 15456/13201*228826127^(1/10) 8024922353636476 a001 17711/103682*228826127^(1/5) 8024922353636476 a001 15456/13201*87403803^(2/19) 8024922353636476 a001 39105888/4873055 8024922353636476 a001 17711/103682*87403803^(4/19) 8024922353636477 a001 15456/13201*33385282^(1/9) 8024922353636477 a001 17711/103682*33385282^(2/9) 8024922353636482 a001 15456/13201*12752043^(2/17) 8024922353636487 a001 17711/103682*12752043^(4/17) 8024922353636518 a001 15456/13201*4870847^(1/8) 8024922353636560 a001 17711/103682*4870847^(1/4) 8024922353636785 a001 15456/13201*1860498^(2/15) 8024922353637094 a001 17711/103682*1860498^(4/15) 8024922353638746 a001 15456/13201*710647^(1/7) 8024922353641016 a001 17711/103682*710647^(2/7) 8024922353653232 a001 15456/13201*271443^(2/13) 8024922353655835 a001 121393/1149851*24476^(3/7) 8024922353669988 a001 17711/103682*271443^(4/13) 8024922353743674 a001 317811/3010349*24476^(3/7) 8024922353756490 a001 208010/1970299*24476^(3/7) 8024922353758359 a001 2178309/20633239*24476^(3/7) 8024922353758632 a001 5702887/54018521*24476^(3/7) 8024922353758672 a001 3732588/35355581*24476^(3/7) 8024922353758678 a001 39088169/370248451*24476^(3/7) 8024922353758679 a001 102334155/969323029*24476^(3/7) 8024922353758679 a001 66978574/634430159*24476^(3/7) 8024922353758679 a001 701408733/6643838879*24476^(3/7) 8024922353758679 a001 1836311903/17393796001*24476^(3/7) 8024922353758679 a001 1201881744/11384387281*24476^(3/7) 8024922353758679 a001 12586269025/119218851371*24476^(3/7) 8024922353758679 a001 32951280099/312119004989*24476^(3/7) 8024922353758679 a001 21566892818/204284540899*24476^(3/7) 8024922353758679 a001 225851433717/2139295485799*24476^(3/7) 8024922353758679 a001 182717648081/1730726404001*24476^(3/7) 8024922353758679 a001 139583862445/1322157322203*24476^(3/7) 8024922353758679 a001 53316291173/505019158607*24476^(3/7) 8024922353758679 a001 10182505537/96450076809*24476^(3/7) 8024922353758679 a001 7778742049/73681302247*24476^(3/7) 8024922353758679 a001 2971215073/28143753123*24476^(3/7) 8024922353758679 a001 567451585/5374978561*24476^(3/7) 8024922353758679 a001 433494437/4106118243*24476^(3/7) 8024922353758679 a001 165580141/1568397607*24476^(3/7) 8024922353758679 a001 31622993/299537289*24476^(3/7) 8024922353758681 a001 24157817/228826127*24476^(3/7) 8024922353758697 a001 9227465/87403803*24476^(3/7) 8024922353758801 a001 1762289/16692641*24476^(3/7) 8024922353759515 a001 1346269/12752043*24476^(3/7) 8024922353760894 a001 15456/13201*103682^(1/6) 8024922353764410 a001 514229/4870847*24476^(3/7) 8024922353786702 a001 196418/39603*24476^(1/21) 8024922353797962 a001 98209/930249*24476^(3/7) 8024922353805483 a001 28657/1149851*24476^(4/7) 8024922353885312 a001 17711/103682*103682^(1/3) 8024922353903366 a001 17711/167761*64079^(9/23) 8024922353926850 a001 514229/103682*9349^(1/19) 8024922354027929 a001 75025/710647*24476^(3/7) 8024922354097843 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^41 8024922354104123 a001 121393/39603*64079^(2/23) 8024922354154864 a001 17711/33385282*167761^(4/5) 8024922354160013 a001 17711/271443*167761^(2/5) 8024922354179311 a001 23184/51841*24476^(2/7) 8024922354212785 a001 17711/3010349*167761^(3/5) 8024922354240013 a001 6765/3010349*15127^(17/20) 8024922354271757 a001 121393/710647*24476^(8/21) 8024922354274064 a001 17711/271443*20633239^(2/7) 8024922354274069 a001 17711/271443*2537720636^(2/9) 8024922354274069 a001 17711/271443*312119004989^(2/11) 8024922354274069 a001 17711/271443*(1/2+1/2*5^(1/2))^10 8024922354274069 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^10/Lucas(26) 8024922354274069 a001 17711/271443*28143753123^(1/5) 8024922354274069 a001 17711/271443*10749957122^(5/24) 8024922354274069 a001 17711/271443*4106118243^(5/23) 8024922354274069 a001 17711/271443*1568397607^(5/22) 8024922354274069 a001 121393/39603*(1/2+1/2*5^(1/2))^2 8024922354274069 a001 121393/39603*10749957122^(1/24) 8024922354274069 a001 121393/39603*4106118243^(1/23) 8024922354274069 a001 121393/39603*1568397607^(1/22) 8024922354274069 a001 121393/39603*599074578^(1/21) 8024922354274069 a001 17711/271443*599074578^(5/21) 8024922354274069 a001 121393/39603*228826127^(1/20) 8024922354274069 a001 2149991423/267914296 8024922354274069 a001 17711/271443*228826127^(1/4) 8024922354274069 a001 121393/39603*87403803^(1/19) 8024922354274070 a001 17711/271443*87403803^(5/19) 8024922354274070 a001 121393/39603*33385282^(1/18) 8024922354274071 a001 17711/271443*33385282^(5/18) 8024922354274072 a001 121393/39603*12752043^(1/17) 8024922354274084 a001 17711/271443*12752043^(5/17) 8024922354274090 a001 121393/39603*4870847^(1/16) 8024922354274175 a001 17711/271443*4870847^(5/16) 8024922354274224 a001 121393/39603*1860498^(1/15) 8024922354274842 a001 17711/271443*1860498^(1/3) 8024922354275204 a001 121393/39603*710647^(1/14) 8024922354279744 a001 17711/271443*710647^(5/14) 8024922354282447 a001 121393/39603*271443^(1/13) 8024922354315959 a001 17711/271443*271443^(5/13) 8024922354336278 a001 121393/39603*103682^(1/12) 8024922354339612 a001 196418/39603*64079^(1/23) 8024922354341382 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^43 8024922354346004 a001 17711/228826127*439204^(8/9) 8024922354348603 a001 17711/710647*439204^(4/9) 8024922354350629 a001 17711/54018521*439204^(7/9) 8024922354355200 a001 17711/12752043*439204^(2/3) 8024922354360757 a001 17711/3010349*439204^(5/9) 8024922354367046 a001 17711/710647*7881196^(4/11) 8024922354367093 a001 17711/710647*141422324^(4/13) 8024922354367093 a001 17711/710647*2537720636^(4/15) 8024922354367093 a001 17711/710647*45537549124^(4/17) 8024922354367093 a001 17711/710647*817138163596^(4/19) 8024922354367093 a001 17711/710647*14662949395604^(4/21) 8024922354367093 a001 17711/710647*(1/2+1/2*5^(1/2))^12 8024922354367093 a001 17711/710647*192900153618^(2/9) 8024922354367093 a001 17711/710647*73681302247^(3/13) 8024922354367093 a001 17711/710647*10749957122^(1/4) 8024922354367093 a001 17711/710647*4106118243^(6/23) 8024922354367093 a001 17711/710647*1568397607^(3/11) 8024922354367093 a001 105937/13201 8024922354367093 a001 17711/710647*599074578^(2/7) 8024922354367093 a001 17711/710647*228826127^(3/10) 8024922354367093 a001 17711/710647*87403803^(6/19) 8024922354367095 a001 17711/710647*33385282^(1/3) 8024922354367110 a001 17711/710647*12752043^(6/17) 8024922354367220 a001 17711/710647*4870847^(3/8) 8024922354368020 a001 17711/710647*1860498^(2/5) 8024922354373903 a001 17711/710647*710647^(3/7) 8024922354376914 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^45 8024922354378353 a001 105937/620166*24476^(8/21) 8024922354380657 a001 17711/1860498*20633239^(2/5) 8024922354380665 a001 17711/1860498*17393796001^(2/7) 8024922354380665 a001 17711/1860498*14662949395604^(2/9) 8024922354380665 a001 17711/1860498*(1/2+1/2*5^(1/2))^14 8024922354380665 a001 17711/1860498*505019158607^(1/4) 8024922354380665 a001 17711/1860498*10749957122^(7/24) 8024922354380665 a001 17711/1860498*4106118243^(7/23) 8024922354380665 a001 14736260440/1836311903 8024922354380665 a001 17711/1860498*1568397607^(7/22) 8024922354380665 a004 Fibonacci(30)/Lucas(22)/(1/2+sqrt(5)/2)^2 8024922354380665 a001 17711/1860498*599074578^(1/3) 8024922354380665 a001 17711/1860498*228826127^(7/20) 8024922354380665 a001 17711/1860498*87403803^(7/19) 8024922354380668 a001 17711/1860498*33385282^(7/18) 8024922354380685 a001 17711/1860498*12752043^(7/17) 8024922354380813 a001 17711/1860498*4870847^(7/16) 8024922354381747 a001 17711/1860498*1860498^(7/15) 8024922354382098 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^47 8024922354382645 a001 17711/4870847*(1/2+1/2*5^(1/2))^16 8024922354382645 a001 17711/4870847*23725150497407^(1/4) 8024922354382645 a001 17711/4870847*73681302247^(4/13) 8024922354382645 a001 17711/4870847*10749957122^(1/3) 8024922354382645 a001 39088177/4870848 8024922354382645 a001 17711/4870847*4106118243^(8/23) 8024922354382645 a001 17711/4870847*1568397607^(4/11) 8024922354382645 a004 Fibonacci(32)/Lucas(22)/(1/2+sqrt(5)/2)^4 8024922354382645 a001 17711/4870847*599074578^(8/21) 8024922354382645 a001 17711/4870847*228826127^(2/5) 8024922354382645 a001 17711/4870847*87403803^(8/19) 8024922354382648 a001 17711/4870847*33385282^(4/9) 8024922354382668 a001 17711/4870847*12752043^(8/17) 8024922354382814 a001 17711/4870847*4870847^(1/2) 8024922354382854 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^49 8024922354382863 a001 17711/12752043*7881196^(6/11) 8024922354382866 a001 17711/4106118243*7881196^(10/11) 8024922354382878 a001 17711/969323029*7881196^(9/11) 8024922354382889 a001 17711/228826127*7881196^(8/11) 8024922354382896 a001 17711/87403803*7881196^(2/3) 8024922354382904 a001 17711/54018521*7881196^(7/11) 8024922354382934 a001 17711/12752043*141422324^(6/13) 8024922354382934 a001 17711/12752043*2537720636^(2/5) 8024922354382934 a001 17711/12752043*45537549124^(6/17) 8024922354382934 a001 17711/12752043*14662949395604^(2/7) 8024922354382934 a001 17711/12752043*(1/2+1/2*5^(1/2))^18 8024922354382934 a001 17711/12752043*192900153618^(1/3) 8024922354382934 a001 101003831657/12586269025 8024922354382934 a001 17711/12752043*10749957122^(3/8) 8024922354382934 a001 17711/12752043*4106118243^(9/23) 8024922354382934 a001 17711/12752043*1568397607^(9/22) 8024922354382934 a004 Fibonacci(34)/Lucas(22)/(1/2+sqrt(5)/2)^6 8024922354382934 a001 17711/12752043*599074578^(3/7) 8024922354382934 a001 17711/12752043*228826127^(9/20) 8024922354382934 a001 17711/12752043*87403803^(9/19) 8024922354382937 a001 17711/12752043*33385282^(1/2) 8024922354382960 a001 17711/12752043*12752043^(9/17) 8024922354382964 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^51 8024922354382965 a001 17711/33385282*20633239^(4/7) 8024922354382967 a001 17711/4106118243*20633239^(6/7) 8024922354382968 a001 17711/1568397607*20633239^(4/5) 8024922354382970 a001 17711/370248451*20633239^(5/7) 8024922354382975 a001 17711/54018521*20633239^(3/5) 8024922354382976 a001 17711/33385282*2537720636^(4/9) 8024922354382976 a001 17711/33385282*(1/2+1/2*5^(1/2))^20 8024922354382976 a001 17711/33385282*23725150497407^(5/16) 8024922354382976 a001 17711/33385282*505019158607^(5/14) 8024922354382976 a001 17711/33385282*73681302247^(5/13) 8024922354382976 a001 88143821424/10983760033 8024922354382976 a001 17711/33385282*28143753123^(2/5) 8024922354382976 a001 17711/33385282*10749957122^(5/12) 8024922354382976 a001 17711/33385282*4106118243^(10/23) 8024922354382976 a001 17711/33385282*1568397607^(5/11) 8024922354382976 a004 Fibonacci(36)/Lucas(22)/(1/2+sqrt(5)/2)^8 8024922354382976 a001 17711/33385282*599074578^(10/21) 8024922354382976 a001 17711/33385282*228826127^(1/2) 8024922354382977 a001 17711/33385282*87403803^(10/19) 8024922354382980 a001 17711/33385282*33385282^(5/9) 8024922354382980 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^53 8024922354382982 a001 17711/87403803*312119004989^(2/5) 8024922354382982 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^22/Lucas(38) 8024922354382982 a001 692290561159/86267571272 8024922354382982 a001 17711/87403803*10749957122^(11/24) 8024922354382982 a001 17711/87403803*4106118243^(11/23) 8024922354382982 a001 17711/87403803*1568397607^(1/2) 8024922354382982 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2)^10 8024922354382982 a001 17711/87403803*599074578^(11/21) 8024922354382982 a001 17711/87403803*228826127^(11/20) 8024922354382983 a001 17711/87403803*87403803^(11/19) 8024922354382983 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^55 8024922354382983 a001 17711/228826127*141422324^(8/13) 8024922354382983 a001 17711/73681302247*141422324^(12/13) 8024922354382983 a001 17711/17393796001*141422324^(11/13) 8024922354382983 a001 17711/4106118243*141422324^(10/13) 8024922354382983 a001 17711/599074578*141422324^(2/3) 8024922354382983 a001 17711/969323029*141422324^(9/13) 8024922354382983 a001 17711/228826127*2537720636^(8/15) 8024922354382983 a001 17711/228826127*45537549124^(8/17) 8024922354382983 a001 17711/228826127*14662949395604^(8/21) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^24/Lucas(40) 8024922354382983 a001 86306677105/10754830177 8024922354382983 a001 17711/228826127*192900153618^(4/9) 8024922354382983 a001 17711/228826127*73681302247^(6/13) 8024922354382983 a001 17711/228826127*10749957122^(1/2) 8024922354382983 a001 17711/228826127*4106118243^(12/23) 8024922354382983 a001 17711/228826127*1568397607^(6/11) 8024922354382983 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^12 8024922354382983 a001 17711/228826127*599074578^(4/7) 8024922354382983 a001 17711/228826127*228826127^(3/5) 8024922354382983 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^57 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^26/Lucas(42) 8024922354382983 a001 4745030096456/591286729879 8024922354382983 a001 17711/599074578*73681302247^(1/2) 8024922354382983 a001 17711/599074578*10749957122^(13/24) 8024922354382983 a001 17711/599074578*4106118243^(13/23) 8024922354382983 a001 17711/599074578*1568397607^(13/22) 8024922354382983 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^14 8024922354382983 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^59 8024922354382983 a001 17711/599074578*599074578^(13/21) 8024922354382983 a001 17711/1568397607*17393796001^(4/7) 8024922354382983 a001 17711/1568397607*14662949395604^(4/9) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^28/Lucas(44) 8024922354382983 a001 4140883356721/516002918640 8024922354382983 a001 17711/1568397607*505019158607^(1/2) 8024922354382983 a001 17711/1568397607*73681302247^(7/13) 8024922354382983 a001 17711/1568397607*10749957122^(7/12) 8024922354382983 a001 17711/1568397607*4106118243^(14/23) 8024922354382983 a001 17711/4106118243*2537720636^(2/3) 8024922354382983 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^61 8024922354382983 a001 17711/1568397607*1568397607^(7/11) 8024922354382983 a001 17711/1322157322203*2537720636^(14/15) 8024922354382983 a001 17711/505019158607*2537720636^(8/9) 8024922354382983 a001 89/1568437211*2537720636^(13/15) 8024922354382983 a001 17711/73681302247*2537720636^(4/5) 8024922354382983 a001 17711/45537549124*2537720636^(7/9) 8024922354382983 a001 17711/17393796001*2537720636^(11/15) 8024922354382983 a001 17711/4106118243*45537549124^(10/17) 8024922354382983 a001 17711/4106118243*312119004989^(6/11) 8024922354382983 a001 17711/4106118243*14662949395604^(10/21) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(46) 8024922354382983 a001 32522920114033/4052739537881 8024922354382983 a001 17711/4106118243*192900153618^(5/9) 8024922354382983 a001 17711/4106118243*28143753123^(3/5) 8024922354382983 a001 17711/4106118243*10749957122^(5/8) 8024922354382983 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^63 8024922354382983 a001 17711/4106118243*4106118243^(15/23) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(48) 8024922354382983 a001 17711/10749957122*23725150497407^(1/2) 8024922354382983 a001 17711/10749957122*505019158607^(4/7) 8024922354382983 a001 17711/10749957122*73681302247^(8/13) 8024922354382983 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^65 8024922354382983 a001 17711/10749957122*10749957122^(2/3) 8024922354382983 a001 17711/1322157322203*17393796001^(6/7) 8024922354382983 a001 17711/45537549124*17393796001^(5/7) 8024922354382983 a001 17711/28143753123*45537549124^(2/3) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(50) 8024922354382983 a001 17711/73681302247*45537549124^(12/17) 8024922354382983 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^67 8024922354382983 a001 17711/23725150497407*45537549124^(16/17) 8024922354382983 a001 17711/5600748293801*45537549124^(15/17) 8024922354382983 a001 17711/1322157322203*45537549124^(14/17) 8024922354382983 a001 89/1568437211*45537549124^(13/17) 8024922354382983 a001 17711/73681302247*14662949395604^(4/7) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(52) 8024922354382983 a001 17711/73681302247*505019158607^(9/14) 8024922354382983 a001 17711/73681302247*192900153618^(2/3) 8024922354382983 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^69 8024922354382983 a001 17711/73681302247*73681302247^(9/13) 8024922354382983 a001 17711/192900153618*817138163596^(2/3) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(54) 8024922354382983 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^71 8024922354382983 a001 17711/5600748293801*312119004989^(9/11) 8024922354382983 a001 17711/3461452808002*312119004989^(4/5) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(56) 8024922354382983 a001 17711/1322157322203*817138163596^(14/19) 8024922354382983 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^73 8024922354382983 a001 17711/1322157322203*14662949395604^(2/3) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(58) 8024922354382983 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^75 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(60) 8024922354382983 a001 17711/3461452808002*23725150497407^(11/16) 8024922354382983 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^77 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(62) 8024922354382983 a001 17711/23725150497407*14662949395604^(16/21) 8024922354382983 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^79 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(64) 8024922354382983 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^81 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(66) 8024922354382983 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^83 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(68) 8024922354382983 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^85 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(70) 8024922354382983 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^87 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(72) 8024922354382983 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^89 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(74) 8024922354382983 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^91 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(76) 8024922354382983 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^93 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(78) 8024922354382983 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^95 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(80) 8024922354382983 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^97 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(82) 8024922354382983 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^99 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(84) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(86) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(88) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(90) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(92) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(94) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(96) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(98) 8024922354382983 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^16 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(99) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(100) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(97) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(95) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(93) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(91) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(89) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(87) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(85) 8024922354382983 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^100 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(83) 8024922354382983 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^98 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(81) 8024922354382983 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^96 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(79) 8024922354382983 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^94 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(77) 8024922354382983 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^92 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(75) 8024922354382983 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^90 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(73) 8024922354382983 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^88 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(71) 8024922354382983 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^86 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(69) 8024922354382983 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^84 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(67) 8024922354382983 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^82 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(65) 8024922354382983 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^80 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(63) 8024922354382983 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^78 8024922354382983 a001 17711/5600748293801*14662949395604^(5/7) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(61) 8024922354382983 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^76 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(59) 8024922354382983 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^74 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(57) 8024922354382983 a001 17711/1322157322203*505019158607^(3/4) 8024922354382983 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^72 8024922354382983 a001 89/1568437211*14662949395604^(13/21) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(55) 8024922354382983 a001 17711/1322157322203*192900153618^(7/9) 8024922354382983 a001 17711/5600748293801*192900153618^(5/6) 8024922354382983 a001 17711/23725150497407*192900153618^(8/9) 8024922354382983 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^70 8024922354382983 a001 89/1568437211*192900153618^(13/18) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(53) 8024922354382983 a001 17711/505019158607*73681302247^(10/13) 8024922354382983 a001 89/1568437211*73681302247^(3/4) 8024922354382983 a001 17711/3461452808002*73681302247^(11/13) 8024922354382983 a001 17711/23725150497407*73681302247^(12/13) 8024922354382983 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^68 8024922354382983 a001 17711/45537549124*312119004989^(7/11) 8024922354382983 a001 17711/45537549124*14662949395604^(5/9) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(51) 8024922354382983 a001 17711/45537549124*505019158607^(5/8) 8024922354382983 a001 17711/505019158607*28143753123^(4/5) 8024922354382983 a001 17711/5600748293801*28143753123^(9/10) 8024922354382983 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^66 8024922354382983 a001 17711/45537549124*28143753123^(7/10) 8024922354382983 a001 17711/17393796001*45537549124^(11/17) 8024922354382983 a001 17711/17393796001*312119004989^(3/5) 8024922354382983 a001 17711/17393796001*817138163596^(11/19) 8024922354382983 a001 17711/17393796001*14662949395604^(11/21) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(49) 8024922354382983 a001 17711/17393796001*192900153618^(11/18) 8024922354382983 a001 17711/28143753123*10749957122^(17/24) 8024922354382983 a001 17711/73681302247*10749957122^(3/4) 8024922354382983 a001 17711/192900153618*10749957122^(19/24) 8024922354382983 a001 89/1568437211*10749957122^(13/16) 8024922354382983 a001 17711/505019158607*10749957122^(5/6) 8024922354382983 a001 17711/1322157322203*10749957122^(7/8) 8024922354382983 a001 17711/3461452808002*10749957122^(11/12) 8024922354382983 a001 17711/5600748293801*10749957122^(15/16) 8024922354382983 a001 17711/9062201101803*10749957122^(23/24) 8024922354382983 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^64 8024922354382983 a001 17711/17393796001*10749957122^(11/16) 8024922354382983 a001 52623190157903/6557470319842 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(47) 8024922354382983 a001 17711/6643838879*9062201101803^(1/2) 8024922354382983 a001 17711/10749957122*4106118243^(16/23) 8024922354382983 a001 17711/28143753123*4106118243^(17/23) 8024922354382983 a001 17711/73681302247*4106118243^(18/23) 8024922354382983 a001 17711/192900153618*4106118243^(19/23) 8024922354382983 a001 17711/505019158607*4106118243^(20/23) 8024922354382983 a001 17711/1322157322203*4106118243^(21/23) 8024922354382983 a001 17711/3461452808002*4106118243^(22/23) 8024922354382983 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^62 8024922354382983 a001 20100270043870/2504730781961 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^29/Lucas(45) 8024922354382983 a001 17711/2537720636*1322157322203^(1/2) 8024922354382983 a001 17711/4106118243*1568397607^(15/22) 8024922354382983 a001 17711/10749957122*1568397607^(8/11) 8024922354382983 a001 17711/17393796001*1568397607^(3/4) 8024922354382983 a001 17711/28143753123*1568397607^(17/22) 8024922354382983 a001 17711/73681302247*1568397607^(9/11) 8024922354382983 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^18 8024922354382983 a001 17711/192900153618*1568397607^(19/22) 8024922354382983 a001 17711/505019158607*1568397607^(10/11) 8024922354382983 a001 17711/1322157322203*1568397607^(21/22) 8024922354382983 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^20 8024922354382983 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^22 8024922354382983 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^24 8024922354382983 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^26 8024922354382983 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^28 8024922354382983 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^30 8024922354382983 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^32 8024922354382983 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^34 8024922354382983 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^36 8024922354382983 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^38 8024922354382983 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^40 8024922354382983 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^42 8024922354382983 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^44 8024922354382983 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^46 8024922354382983 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^48 8024922354382983 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^50 8024922354382983 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^52 8024922354382983 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^54 8024922354382983 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^56 8024922354382983 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^58 8024922354382983 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^60 8024922354382983 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^62 8024922354382983 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^64 8024922354382983 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^66 8024922354382983 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^68 8024922354382983 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^70 8024922354382983 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^72 8024922354382983 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^71 8024922354382983 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^69 8024922354382983 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^67 8024922354382983 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^65 8024922354382983 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^63 8024922354382983 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^61 8024922354382983 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^59 8024922354382983 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^57 8024922354382983 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^55 8024922354382983 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^53 8024922354382983 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^51 8024922354382983 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^49 8024922354382983 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^47 8024922354382983 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^45 8024922354382983 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^43 8024922354382983 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^41 8024922354382983 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^39 8024922354382983 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^37 8024922354382983 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^35 8024922354382983 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^33 8024922354382983 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^31 8024922354382983 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^29 8024922354382983 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^27 8024922354382983 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^25 8024922354382983 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^23 8024922354382983 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^21 8024922354382983 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^19 8024922354382983 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^17 8024922354382983 a001 17711/969323029*2537720636^(3/5) 8024922354382983 a001 17711/969323029*45537549124^(9/17) 8024922354382983 a001 17711/969323029*817138163596^(9/19) 8024922354382983 a001 7677619973707/956722026041 8024922354382983 a001 17711/969323029*14662949395604^(3/7) 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^27/Lucas(43) 8024922354382983 a001 17711/969323029*192900153618^(1/2) 8024922354382983 a001 17711/969323029*10749957122^(9/16) 8024922354382983 a001 17711/1568397607*599074578^(2/3) 8024922354382983 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^15 8024922354382983 a001 17711/4106118243*599074578^(5/7) 8024922354382983 a001 17711/10749957122*599074578^(16/21) 8024922354382983 a001 17711/17393796001*599074578^(11/14) 8024922354382983 a001 17711/28143753123*599074578^(17/21) 8024922354382983 a001 17711/45537549124*599074578^(5/6) 8024922354382983 a001 17711/73681302247*599074578^(6/7) 8024922354382983 a001 17711/192900153618*599074578^(19/21) 8024922354382983 a001 89/1568437211*599074578^(13/14) 8024922354382983 a001 17711/505019158607*599074578^(20/21) 8024922354382983 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^58 8024922354382983 a001 17711/969323029*599074578^(9/14) 8024922354382983 a001 17711/370248451*2537720636^(5/9) 8024922354382983 a001 17711/370248451*312119004989^(5/11) 8024922354382983 a001 2932589877251/365435296162 8024922354382983 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^25/Lucas(41) 8024922354382983 a001 17711/370248451*3461452808002^(5/12) 8024922354382983 a001 17711/370248451*28143753123^(1/2) 8024922354382983 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^13 8024922354382983 a001 17711/599074578*228826127^(13/20) 8024922354382983 a001 17711/1568397607*228826127^(7/10) 8024922354382983 a001 17711/4106118243*228826127^(3/4) 8024922354382983 a001 17711/10749957122*228826127^(4/5) 8024922354382983 a001 17711/28143753123*228826127^(17/20) 8024922354382983 a001 17711/45537549124*228826127^(7/8) 8024922354382983 a001 17711/73681302247*228826127^(9/10) 8024922354382983 a001 17711/192900153618*228826127^(19/20) 8024922354382983 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^56 8024922354382983 a001 17711/370248451*228826127^(5/8) 8024922354382984 a001 12585951214/1568358005 8024922354382984 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^23/Lucas(39) 8024922354382984 a001 17711/141422324*4106118243^(1/2) 8024922354382984 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^11 8024922354382984 a001 17711/228826127*87403803^(12/19) 8024922354382984 a001 17711/599074578*87403803^(13/19) 8024922354382984 a001 17711/1568397607*87403803^(14/19) 8024922354382984 a001 17711/4106118243*87403803^(15/19) 8024922354382984 a001 17711/10749957122*87403803^(16/19) 8024922354382984 a001 17711/28143753123*87403803^(17/19) 8024922354382984 a001 17711/73681302247*87403803^(18/19) 8024922354382984 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^54 8024922354382986 a001 17711/54018521*141422324^(7/13) 8024922354382986 a001 17711/54018521*2537720636^(7/15) 8024922354382986 a001 17711/54018521*17393796001^(3/7) 8024922354382986 a001 17711/54018521*45537549124^(7/17) 8024922354382986 a001 427859096887/53316291173 8024922354382986 a001 17711/54018521*14662949395604^(1/3) 8024922354382986 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^21/Lucas(37) 8024922354382986 a001 17711/54018521*192900153618^(7/18) 8024922354382986 a001 17711/54018521*10749957122^(7/16) 8024922354382986 a004 Fibonacci(37)/Lucas(22)/(1/2+sqrt(5)/2)^9 8024922354382986 a001 17711/54018521*599074578^(1/2) 8024922354382987 a001 17711/87403803*33385282^(11/18) 8024922354382988 a001 17711/228826127*33385282^(2/3) 8024922354382988 a001 17711/599074578*33385282^(13/18) 8024922354382989 a001 17711/969323029*33385282^(3/4) 8024922354382989 a001 17711/1568397607*33385282^(7/9) 8024922354382989 a001 17711/4106118243*33385282^(5/6) 8024922354382990 a001 17711/10749957122*33385282^(8/9) 8024922354382990 a001 17711/17393796001*33385282^(11/12) 8024922354382990 a001 17711/28143753123*33385282^(17/18) 8024922354382990 a001 17711/54018521*33385282^(7/12) 8024922354382990 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^52 8024922354383002 a001 163427632615/20365011074 8024922354383002 a001 17711/20633239*817138163596^(1/3) 8024922354383002 a001 17711/20633239*(1/2+1/2*5^(1/2))^19 8024922354383002 a004 Fibonacci(35)/Lucas(22)/(1/2+sqrt(5)/2)^7 8024922354383003 a001 17711/20633239*87403803^(1/2) 8024922354383005 a001 17711/33385282*12752043^(10/17) 8024922354383014 a001 17711/87403803*12752043^(11/17) 8024922354383018 a001 17711/228826127*12752043^(12/17) 8024922354383021 a001 17711/599074578*12752043^(13/17) 8024922354383024 a001 17711/1568397607*12752043^(14/17) 8024922354383027 a001 17711/4106118243*12752043^(15/17) 8024922354383030 a001 17711/10749957122*12752043^(16/17) 8024922354383033 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^50 8024922354383112 a001 62423800958/7778742049 8024922354383112 a001 89/39604*45537549124^(1/3) 8024922354383112 a001 89/39604*(1/2+1/2*5^(1/2))^17 8024922354383112 a004 Fibonacci(33)/Lucas(22)/(1/2+sqrt(5)/2)^5 8024922354383124 a001 17711/12752043*4870847^(9/16) 8024922354383137 a001 89/39604*12752043^(1/2) 8024922354383187 a001 17711/33385282*4870847^(5/8) 8024922354383215 a001 17711/87403803*4870847^(11/16) 8024922354383237 a001 17711/228826127*4870847^(3/4) 8024922354383258 a001 17711/599074578*4870847^(13/16) 8024922354383279 a001 17711/1568397607*4870847^(7/8) 8024922354383300 a001 17711/4106118243*4870847^(15/16) 8024922354383321 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^48 8024922354383810 a001 17711/3010349*7881196^(5/11) 8024922354383861 a001 17711/3010349*20633239^(3/7) 8024922354383869 a001 17711/3010349*141422324^(5/13) 8024922354383869 a001 17711/3010349*2537720636^(1/3) 8024922354383869 a001 23843770259/2971215073 8024922354383869 a001 17711/3010349*45537549124^(5/17) 8024922354383869 a001 17711/3010349*312119004989^(3/11) 8024922354383869 a001 17711/3010349*14662949395604^(5/21) 8024922354383869 a001 17711/3010349*(1/2+1/2*5^(1/2))^15 8024922354383869 a001 17711/3010349*192900153618^(5/18) 8024922354383869 a001 17711/3010349*28143753123^(3/10) 8024922354383869 a001 17711/3010349*10749957122^(5/16) 8024922354383869 a004 Fibonacci(31)/Lucas(22)/(1/2+sqrt(5)/2)^3 8024922354383869 a001 17711/3010349*599074578^(5/14) 8024922354383869 a001 17711/3010349*228826127^(3/8) 8024922354383872 a001 17711/3010349*33385282^(5/12) 8024922354383881 a001 17711/4870847*1860498^(8/15) 8024922354384325 a001 17711/12752043*1860498^(3/5) 8024922354384522 a001 17711/33385282*1860498^(2/3) 8024922354384609 a001 17711/54018521*1860498^(7/10) 8024922354384682 a001 17711/87403803*1860498^(11/15) 8024922354384838 a001 17711/228826127*1860498^(4/5) 8024922354384915 a001 17711/370248451*1860498^(5/6) 8024922354384992 a001 17711/599074578*1860498^(13/15) 8024922354385028 a001 17711/3010349*1860498^(1/2) 8024922354385070 a001 17711/969323029*1860498^(9/10) 8024922354385147 a001 17711/1568397607*1860498^(14/15) 8024922354385302 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^46 8024922354388610 a001 17711/1860498*710647^(1/2) 8024922354389053 a001 17711/1149851*141422324^(1/3) 8024922354389053 a001 9107509819/1134903170 8024922354389053 a001 17711/1149851*(1/2+1/2*5^(1/2))^13 8024922354389053 a001 17711/1149851*73681302247^(1/4) 8024922354389053 a004 Fibonacci(29)/Lucas(22)/(1/2+sqrt(5)/2) 8024922354391725 a001 17711/4870847*710647^(4/7) 8024922354393149 a001 17711/12752043*710647^(9/14) 8024922354393905 a001 832040/4870847*24476^(8/21) 8024922354394326 a001 17711/33385282*710647^(5/7) 8024922354394904 a001 17711/54018521*710647^(3/4) 8024922354395467 a001 17711/87403803*710647^(11/14) 8024922354396174 a001 726103/4250681*24476^(8/21) 8024922354396505 a001 5702887/33385282*24476^(8/21) 8024922354396553 a001 4976784/29134601*24476^(8/21) 8024922354396560 a001 39088169/228826127*24476^(8/21) 8024922354396561 a001 34111385/199691526*24476^(8/21) 8024922354396561 a001 267914296/1568397607*24476^(8/21) 8024922354396561 a001 233802911/1368706081*24476^(8/21) 8024922354396561 a001 1836311903/10749957122*24476^(8/21) 8024922354396561 a001 1602508992/9381251041*24476^(8/21) 8024922354396561 a001 12586269025/73681302247*24476^(8/21) 8024922354396561 a001 10983760033/64300051206*24476^(8/21) 8024922354396561 a001 86267571272/505019158607*24476^(8/21) 8024922354396561 a001 75283811239/440719107401*24476^(8/21) 8024922354396561 a001 2504730781961/14662949395604*24476^(8/21) 8024922354396561 a001 139583862445/817138163596*24476^(8/21) 8024922354396561 a001 53316291173/312119004989*24476^(8/21) 8024922354396561 a001 20365011074/119218851371*24476^(8/21) 8024922354396561 a001 7778742049/45537549124*24476^(8/21) 8024922354396561 a001 2971215073/17393796001*24476^(8/21) 8024922354396561 a001 1134903170/6643838879*24476^(8/21) 8024922354396561 a001 433494437/2537720636*24476^(8/21) 8024922354396561 a001 165580141/969323029*24476^(8/21) 8024922354396562 a001 63245986/370248451*24476^(8/21) 8024922354396564 a001 24157817/141422324*24476^(8/21) 8024922354396583 a001 9227465/54018521*24476^(8/21) 8024922354396603 a001 17711/228826127*710647^(6/7) 8024922354396709 a001 3524578/20633239*24476^(8/21) 8024922354397576 a001 1346269/7881196*24476^(8/21) 8024922354397739 a001 17711/599074578*710647^(13/14) 8024922354398874 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^44 8024922354403516 a001 514229/3010349*24476^(8/21) 8024922354413204 a001 75025/39603*64079^(3/23) 8024922354417361 a001 17711/710647*271443^(6/13) 8024922354421405 a001 28657/710647*24476^(11/21) 8024922354424542 a001 17711/439204*7881196^(1/3) 8024922354424585 a001 3478759198/433494437 8024922354424585 a001 17711/439204*312119004989^(1/5) 8024922354424585 a001 17711/439204*(1/2+1/2*5^(1/2))^11 8024922354424585 a001 17711/439204*1568397607^(1/4) 8024922354424585 a001 98209/39603+98209/39603*5^(1/2) 8024922354439311 a001 17711/1860498*271443^(7/13) 8024922354443510 a001 17711/1149851*271443^(1/2) 8024922354444232 a001 196418/1149851*24476^(8/21) 8024922354449669 a001 17711/4870847*271443^(8/13) 8024922354455689 a001 196418/39603*103682^(1/24) 8024922354458336 a001 17711/12752043*271443^(9/13) 8024922354466756 a001 17711/33385282*271443^(10/13) 8024922354475140 a001 17711/87403803*271443^(11/13) 8024922354483519 a001 17711/228826127*271443^(12/13) 8024922354491897 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^42 8024922354559259 a001 1346269/271443*9349^(1/19) 8024922354566774 a001 15456/13201*39603^(2/11) 8024922354573077 a001 46368/167761*24476^(1/3) 8024922354585114 a001 17711/271443*103682^(5/12) 8024922354651526 a001 3524578/710647*9349^(1/19) 8024922354654257 a001 17711/167761*439204^(1/3) 8024922354657159 a001 196418/39603*39603^(1/22) 8024922354663501 a001 75025/39603*439204^(1/9) 8024922354664988 a001 9227465/1860498*9349^(1/19) 8024922354666952 a001 24157817/4870847*9349^(1/19) 8024922354667238 a001 63245986/12752043*9349^(1/19) 8024922354667280 a001 165580141/33385282*9349^(1/19) 8024922354667286 a001 433494437/87403803*9349^(1/19) 8024922354667287 a001 1134903170/228826127*9349^(1/19) 8024922354667287 a001 2971215073/599074578*9349^(1/19) 8024922354667287 a001 7778742049/1568397607*9349^(1/19) 8024922354667287 a001 20365011074/4106118243*9349^(1/19) 8024922354667287 a001 53316291173/10749957122*9349^(1/19) 8024922354667287 a001 139583862445/28143753123*9349^(1/19) 8024922354667287 a001 365435296162/73681302247*9349^(1/19) 8024922354667287 a001 956722026041/192900153618*9349^(1/19) 8024922354667287 a001 2504730781961/505019158607*9349^(1/19) 8024922354667287 a001 10610209857723/2139295485799*9349^(1/19) 8024922354667287 a001 4052739537881/817138163596*9349^(1/19) 8024922354667287 a001 140728068720/28374454999*9349^(1/19) 8024922354667287 a001 591286729879/119218851371*9349^(1/19) 8024922354667287 a001 225851433717/45537549124*9349^(1/19) 8024922354667287 a001 86267571272/17393796001*9349^(1/19) 8024922354667287 a001 32951280099/6643838879*9349^(1/19) 8024922354667287 a001 1144206275/230701876*9349^(1/19) 8024922354667287 a001 4807526976/969323029*9349^(1/19) 8024922354667287 a001 1836311903/370248451*9349^(1/19) 8024922354667288 a001 701408733/141422324*9349^(1/19) 8024922354667290 a001 267914296/54018521*9349^(1/19) 8024922354667306 a001 9303105/1875749*9349^(1/19) 8024922354667415 a001 39088169/7881196*9349^(1/19) 8024922354668088 a001 17711/167761*7881196^(3/11) 8024922354668112 a001 75025/39603*7881196^(1/11) 8024922354668124 a001 17711/167761*141422324^(3/13) 8024922354668124 a001 1328767775/165580141 8024922354668124 a001 75025/39603*141422324^(1/13) 8024922354668124 a001 17711/167761*2537720636^(1/5) 8024922354668124 a001 17711/167761*45537549124^(3/17) 8024922354668124 a001 17711/167761*817138163596^(3/19) 8024922354668124 a001 17711/167761*14662949395604^(1/7) 8024922354668124 a001 17711/167761*(1/2+1/2*5^(1/2))^9 8024922354668124 a001 17711/167761*192900153618^(1/6) 8024922354668124 a001 17711/167761*10749957122^(3/16) 8024922354668124 a001 75025/39603*2537720636^(1/15) 8024922354668124 a001 75025/39603*45537549124^(1/17) 8024922354668124 a001 75025/39603*14662949395604^(1/21) 8024922354668124 a001 75025/39603*(1/2+1/2*5^(1/2))^3 8024922354668124 a001 75025/39603*192900153618^(1/18) 8024922354668124 a001 75025/39603*10749957122^(1/16) 8024922354668124 a001 17711/167761*599074578^(3/14) 8024922354668124 a001 75025/39603*599074578^(1/14) 8024922354668124 a001 75025/39603*33385282^(1/12) 8024922354668125 a001 17711/167761*33385282^(1/4) 8024922354668166 a001 14930352/3010349*9349^(1/19) 8024922354668356 a001 75025/39603*1860498^(1/10) 8024922354668819 a001 17711/167761*1860498^(3/10) 8024922354673308 a001 5702887/1149851*9349^(1/19) 8024922354708551 a001 2178309/439204*9349^(1/19) 8024922354723303 a001 75025/439204*24476^(8/21) 8024922354739218 a001 121393/39603*39603^(1/11) 8024922354740347 a001 17711/710647*103682^(1/2) 8024922354761437 a001 75025/39603*103682^(1/8) 8024922354766734 a001 17711/439204*103682^(11/24) 8024922354793411 a001 17711/1149851*103682^(13/24) 8024922354816128 a001 17711/1860498*103682^(7/12) 8024922354850436 a001 17711/3010349*103682^(5/8) 8024922354880317 a001 17711/4870847*103682^(2/3) 8024922354911888 a001 89/39604*103682^(17/24) 8024922354942814 a001 17711/12752043*103682^(3/4) 8024922354948064 a001 17711/167761*103682^(3/8) 8024922354950109 a001 75640/15251*9349^(1/19) 8024922354967131 a001 121393/439204*24476^(1/3) 8024922354973987 a001 17711/20633239*103682^(19/24) 8024922355005066 a001 17711/33385282*103682^(5/6) 8024922355024623 a001 317811/1149851*24476^(1/3) 8024922355033011 a001 832040/3010349*24476^(1/3) 8024922355034235 a001 2178309/7881196*24476^(1/3) 8024922355034413 a001 5702887/20633239*24476^(1/3) 8024922355034439 a001 14930352/54018521*24476^(1/3) 8024922355034443 a001 39088169/141422324*24476^(1/3) 8024922355034444 a001 102334155/370248451*24476^(1/3) 8024922355034444 a001 267914296/969323029*24476^(1/3) 8024922355034444 a001 701408733/2537720636*24476^(1/3) 8024922355034444 a001 1836311903/6643838879*24476^(1/3) 8024922355034444 a001 4807526976/17393796001*24476^(1/3) 8024922355034444 a001 12586269025/45537549124*24476^(1/3) 8024922355034444 a001 32951280099/119218851371*24476^(1/3) 8024922355034444 a001 86267571272/312119004989*24476^(1/3) 8024922355034444 a001 225851433717/817138163596*24476^(1/3) 8024922355034444 a001 1548008755920/5600748293801*24476^(1/3) 8024922355034444 a001 139583862445/505019158607*24476^(1/3) 8024922355034444 a001 53316291173/192900153618*24476^(1/3) 8024922355034444 a001 20365011074/73681302247*24476^(1/3) 8024922355034444 a001 7778742049/28143753123*24476^(1/3) 8024922355034444 a001 2971215073/10749957122*24476^(1/3) 8024922355034444 a001 1134903170/4106118243*24476^(1/3) 8024922355034444 a001 433494437/1568397607*24476^(1/3) 8024922355034444 a001 165580141/599074578*24476^(1/3) 8024922355034444 a001 63245986/228826127*24476^(1/3) 8024922355034445 a001 24157817/87403803*24476^(1/3) 8024922355034455 a001 9227465/33385282*24476^(1/3) 8024922355034524 a001 3524578/12752043*24476^(1/3) 8024922355034991 a001 1346269/4870847*24476^(1/3) 8024922355036180 a001 17711/54018521*103682^(7/8) 8024922355038195 a001 514229/1860498*24476^(1/3) 8024922355060155 a001 196418/710647*24476^(1/3) 8024922355067281 a001 17711/87403803*103682^(11/12) 8024922355098387 a001 17711/141422324*103682^(23/24) 8024922355116780 a001 28657/439204*24476^(10/21) 8024922355129491 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^40 8024922355210670 a001 75025/271443*24476^(1/3) 8024922355365847 a001 75025/39603*39603^(3/22) 8024922355454498 a001 121393/271443*24476^(2/7) 8024922355497071 a001 17711/103682*39603^(4/11) 8024922355520200 a001 28657/24476*9349^(4/19) 8024922355604147 a001 28657/271443*24476^(3/7) 8024922355640546 a001 317811/710647*24476^(2/7) 8024922355667690 a001 416020/930249*24476^(2/7) 8024922355671650 a001 2178309/4870847*24476^(2/7) 8024922355672228 a001 5702887/12752043*24476^(2/7) 8024922355672312 a001 7465176/16692641*24476^(2/7) 8024922355672324 a001 39088169/87403803*24476^(2/7) 8024922355672326 a001 102334155/228826127*24476^(2/7) 8024922355672326 a001 133957148/299537289*24476^(2/7) 8024922355672326 a001 701408733/1568397607*24476^(2/7) 8024922355672326 a001 1836311903/4106118243*24476^(2/7) 8024922355672326 a001 2403763488/5374978561*24476^(2/7) 8024922355672326 a001 12586269025/28143753123*24476^(2/7) 8024922355672326 a001 32951280099/73681302247*24476^(2/7) 8024922355672326 a001 43133785636/96450076809*24476^(2/7) 8024922355672326 a001 225851433717/505019158607*24476^(2/7) 8024922355672326 a001 591286729879/1322157322203*24476^(2/7) 8024922355672326 a001 10610209857723/23725150497407*24476^(2/7) 8024922355672326 a001 182717648081/408569081798*24476^(2/7) 8024922355672326 a001 139583862445/312119004989*24476^(2/7) 8024922355672326 a001 53316291173/119218851371*24476^(2/7) 8024922355672326 a001 10182505537/22768774562*24476^(2/7) 8024922355672326 a001 7778742049/17393796001*24476^(2/7) 8024922355672326 a001 2971215073/6643838879*24476^(2/7) 8024922355672326 a001 567451585/1268860318*24476^(2/7) 8024922355672326 a001 433494437/969323029*24476^(2/7) 8024922355672326 a001 165580141/370248451*24476^(2/7) 8024922355672327 a001 31622993/70711162*24476^(2/7) 8024922355672332 a001 24157817/54018521*24476^(2/7) 8024922355672364 a001 9227465/20633239*24476^(2/7) 8024922355672585 a001 1762289/3940598*24476^(2/7) 8024922355674097 a001 1346269/3010349*24476^(2/7) 8024922355684465 a001 514229/1149851*24476^(2/7) 8024922355742553 a001 17711/64079*64079^(7/23) 8024922355755529 a001 98209/219602*24476^(2/7) 8024922355848842 a001 75025/103682*24476^(5/21) 8024922355912499 a001 28657/39603*64079^(5/23) 8024922355992287 a001 6765/4870847*15127^(9/10) 8024922356092670 a001 121393/103682*24476^(4/21) 8024922356178082 a001 196418/39603*15127^(1/20) 8024922356242318 a001 28657/103682*24476^(1/3) 8024922356242607 a001 75025/167761*24476^(2/7) 8024922356242896 a001 196418/271443*24476^(5/21) 8024922356280337 a001 28657/39603*167761^(1/5) 8024922356300388 a001 514229/710647*24476^(5/21) 8024922356308776 a001 1346269/1860498*24476^(5/21) 8024922356310000 a001 3524578/4870847*24476^(5/21) 8024922356310178 a001 9227465/12752043*24476^(5/21) 8024922356310204 a001 24157817/33385282*24476^(5/21) 8024922356310208 a001 63245986/87403803*24476^(5/21) 8024922356310209 a001 165580141/228826127*24476^(5/21) 8024922356310209 a001 433494437/599074578*24476^(5/21) 8024922356310209 a001 1134903170/1568397607*24476^(5/21) 8024922356310209 a001 2971215073/4106118243*24476^(5/21) 8024922356310209 a001 7778742049/10749957122*24476^(5/21) 8024922356310209 a001 20365011074/28143753123*24476^(5/21) 8024922356310209 a001 53316291173/73681302247*24476^(5/21) 8024922356310209 a001 139583862445/192900153618*24476^(5/21) 8024922356310209 a001 365435296162/505019158607*24476^(5/21) 8024922356310209 a001 10610209857723/14662949395604*24476^(5/21) 8024922356310209 a001 591286729879/817138163596*24476^(5/21) 8024922356310209 a001 225851433717/312119004989*24476^(5/21) 8024922356310209 a001 86267571272/119218851371*24476^(5/21) 8024922356310209 a001 32951280099/45537549124*24476^(5/21) 8024922356310209 a001 12586269025/17393796001*24476^(5/21) 8024922356310209 a001 4807526976/6643838879*24476^(5/21) 8024922356310209 a001 1836311903/2537720636*24476^(5/21) 8024922356310209 a001 701408733/969323029*24476^(5/21) 8024922356310209 a001 267914296/370248451*24476^(5/21) 8024922356310209 a001 102334155/141422324*24476^(5/21) 8024922356310210 a001 39088169/54018521*24476^(5/21) 8024922356310220 a001 14930352/20633239*24476^(5/21) 8024922356310289 a001 5702887/7881196*24476^(5/21) 8024922356310756 a001 2178309/3010349*24476^(5/21) 8024922356313960 a001 832040/1149851*24476^(5/21) 8024922356335920 a001 317811/439204*24476^(5/21) 8024922356337361 a001 17711/64079*20633239^(1/5) 8024922356337362 a001 28657/39603*20633239^(1/7) 8024922356337365 a001 507544127/63245986 8024922356337365 a001 17711/64079*17393796001^(1/7) 8024922356337365 a001 17711/64079*14662949395604^(1/9) 8024922356337365 a001 17711/64079*(1/2+1/2*5^(1/2))^7 8024922356337365 a001 28657/39603*2537720636^(1/9) 8024922356337365 a001 28657/39603*312119004989^(1/11) 8024922356337365 a001 28657/39603*(1/2+1/2*5^(1/2))^5 8024922356337365 a001 28657/39603*28143753123^(1/10) 8024922356337365 a001 17711/64079*599074578^(1/6) 8024922356337365 a001 28657/39603*228826127^(1/8) 8024922356337751 a001 28657/39603*1860498^(1/6) 8024922356341338 a001 17711/64079*710647^(1/4) 8024922356486435 a001 121393/167761*24476^(5/21) 8024922356492887 a001 28657/39603*103682^(5/24) 8024922356555096 a001 17711/64079*103682^(7/24) 8024922356599814 a001 17711/271443*39603^(5/11) 8024922356605779 a001 317811/64079*9349^(1/19) 8024922356636083 a001 28657/167761*24476^(8/21) 8024922356761294 a001 17711/167761*39603^(9/22) 8024922356798732 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^41 8024922356823287 a001 105937/90481*24476^(4/21) 8024922356881068 a001 98209/51841*24476^(1/7) 8024922356883705 a001 46368/228826127*64079^(22/23) 8024922356929882 a001 832040/710647*24476^(4/21) 8024922356945435 a001 726103/620166*24476^(4/21) 8024922356947704 a001 5702887/4870847*24476^(4/21) 8024922356948035 a001 4976784/4250681*24476^(4/21) 8024922356948083 a001 39088169/33385282*24476^(4/21) 8024922356948090 a001 34111385/29134601*24476^(4/21) 8024922356948091 a001 267914296/228826127*24476^(4/21) 8024922356948091 a001 233802911/199691526*24476^(4/21) 8024922356948091 a001 1836311903/1568397607*24476^(4/21) 8024922356948091 a001 1602508992/1368706081*24476^(4/21) 8024922356948091 a001 12586269025/10749957122*24476^(4/21) 8024922356948091 a001 10983760033/9381251041*24476^(4/21) 8024922356948091 a001 86267571272/73681302247*24476^(4/21) 8024922356948091 a001 75283811239/64300051206*24476^(4/21) 8024922356948091 a001 2504730781961/2139295485799*24476^(4/21) 8024922356948091 a001 365435296162/312119004989*24476^(4/21) 8024922356948091 a001 139583862445/119218851371*24476^(4/21) 8024922356948091 a001 53316291173/45537549124*24476^(4/21) 8024922356948091 a001 20365011074/17393796001*24476^(4/21) 8024922356948091 a001 7778742049/6643838879*24476^(4/21) 8024922356948091 a001 2971215073/2537720636*24476^(4/21) 8024922356948091 a001 1134903170/969323029*24476^(4/21) 8024922356948091 a001 433494437/370248451*24476^(4/21) 8024922356948092 a001 165580141/141422324*24476^(4/21) 8024922356948094 a001 63245986/54018521*24476^(4/21) 8024922356948113 a001 24157817/20633239*24476^(4/21) 8024922356948239 a001 9227465/7881196*24476^(4/21) 8024922356949106 a001 3524578/3010349*24476^(4/21) 8024922356955046 a001 1346269/1149851*24476^(4/21) 8024922356968679 a001 11592/35355581*64079^(21/23) 8024922356982904 a001 17711/439204*39603^(1/2) 8024922356995762 a001 514229/439204*24476^(4/21) 8024922357053650 a001 15456/29134601*64079^(20/23) 8024922357138627 a001 46368/54018521*64079^(19/23) 8024922357157986 a001 17711/710647*39603^(6/11) 8024922357223590 a001 144/103681*64079^(18/23) 8024922357274833 a001 196418/167761*24476^(4/21) 8024922357296682 a001 5473/12238*9349^(6/19) 8024922357308589 a001 46368/20633239*64079^(17/23) 8024922357393494 a001 15456/4250681*64079^(16/23) 8024922357412521 a001 17711/1149851*39603^(13/22) 8024922357436325 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^43 8024922357461458 a001 317811/103682*24476^(2/21) 8024922357478646 a001 11592/1970299*64079^(15/23) 8024922357483129 a001 514229/271443*24476^(1/7) 8024922357496767 a001 23184/51841*64079^(6/23) 8024922357500237 a001 28657/39603*39603^(5/22) 8024922357518083 a001 46368/64079*24476^(5/21) 8024922357521298 a001 121393/599074578*64079^(22/23) 8024922357529349 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^45 8024922357542921 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^47 8024922357544901 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^49 8024922357545190 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^51 8024922357545232 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^53 8024922357545238 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^55 8024922357545239 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^57 8024922357545239 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^59 8024922357545239 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^61 8024922357545239 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^63 8024922357545239 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^65 8024922357545239 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^67 8024922357545239 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^69 8024922357545239 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^71 8024922357545239 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^73 8024922357545239 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^75 8024922357545239 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^77 8024922357545239 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^79 8024922357545239 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^81 8024922357545239 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^83 8024922357545239 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^85 8024922357545239 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^87 8024922357545239 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^89 8024922357545239 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^91 8024922357545239 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^93 8024922357545239 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^95 8024922357545239 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^97 8024922357545239 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^99 8024922357545239 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^100 8024922357545239 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^98 8024922357545239 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^96 8024922357545239 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^94 8024922357545239 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^92 8024922357545239 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^90 8024922357545239 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^88 8024922357545239 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^86 8024922357545239 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^84 8024922357545239 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^82 8024922357545239 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^80 8024922357545239 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^78 8024922357545239 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^76 8024922357545239 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^74 8024922357545239 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^72 8024922357545239 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^70 8024922357545239 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^68 8024922357545239 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^66 8024922357545239 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^64 8024922357545239 a001 2/28657*(1/2+1/2*5^(1/2))^29 8024922357545239 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^62 8024922357545239 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^60 8024922357545239 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^58 8024922357545240 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^56 8024922357545242 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^54 8024922357545258 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^52 8024922357545368 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^50 8024922357546125 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^48 8024922357551309 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^46 8024922357563152 a001 46368/4870847*64079^(14/23) 8024922357570969 a001 1346269/710647*24476^(1/7) 8024922357583784 a001 1762289/930249*24476^(1/7) 8024922357585654 a001 9227465/4870847*24476^(1/7) 8024922357585927 a001 24157817/12752043*24476^(1/7) 8024922357585967 a001 31622993/16692641*24476^(1/7) 8024922357585973 a001 165580141/87403803*24476^(1/7) 8024922357585973 a001 433494437/228826127*24476^(1/7) 8024922357585974 a001 567451585/299537289*24476^(1/7) 8024922357585974 a001 2971215073/1568397607*24476^(1/7) 8024922357585974 a001 7778742049/4106118243*24476^(1/7) 8024922357585974 a001 10182505537/5374978561*24476^(1/7) 8024922357585974 a001 53316291173/28143753123*24476^(1/7) 8024922357585974 a001 139583862445/73681302247*24476^(1/7) 8024922357585974 a001 182717648081/96450076809*24476^(1/7) 8024922357585974 a001 956722026041/505019158607*24476^(1/7) 8024922357585974 a001 10610209857723/5600748293801*24476^(1/7) 8024922357585974 a001 591286729879/312119004989*24476^(1/7) 8024922357585974 a001 225851433717/119218851371*24476^(1/7) 8024922357585974 a001 21566892818/11384387281*24476^(1/7) 8024922357585974 a001 32951280099/17393796001*24476^(1/7) 8024922357585974 a001 12586269025/6643838879*24476^(1/7) 8024922357585974 a001 1201881744/634430159*24476^(1/7) 8024922357585974 a001 1836311903/969323029*24476^(1/7) 8024922357585974 a001 701408733/370248451*24476^(1/7) 8024922357585974 a001 66978574/35355581*24476^(1/7) 8024922357585976 a001 102334155/54018521*24476^(1/7) 8024922357585991 a001 39088169/20633239*24476^(1/7) 8024922357586096 a001 3732588/1970299*24476^(1/7) 8024922357586810 a001 5702887/3010349*24476^(1/7) 8024922357586841 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^44 8024922357591705 a001 2178309/1149851*24476^(1/7) 8024922357606272 a001 121393/370248451*64079^(21/23) 8024922357614322 a001 317811/1568397607*64079^(22/23) 8024922357625257 a001 208010/109801*24476^(1/7) 8024922357627894 a001 832040/4106118243*64079^(22/23) 8024922357629874 a001 987/4870846*64079^(22/23) 8024922357630163 a001 5702887/28143753123*64079^(22/23) 8024922357630205 a001 14930352/73681302247*64079^(22/23) 8024922357630211 a001 39088169/192900153618*64079^(22/23) 8024922357630212 a001 102334155/505019158607*64079^(22/23) 8024922357630212 a001 267914296/1322157322203*64079^(22/23) 8024922357630212 a001 701408733/3461452808002*64079^(22/23) 8024922357630212 a001 1836311903/9062201101803*64079^(22/23) 8024922357630212 a001 4807526976/23725150497407*64079^(22/23) 8024922357630212 a001 2971215073/14662949395604*64079^(22/23) 8024922357630212 a001 1134903170/5600748293801*64079^(22/23) 8024922357630212 a001 433494437/2139295485799*64079^(22/23) 8024922357630212 a001 165580141/817138163596*64079^(22/23) 8024922357630213 a001 63245986/312119004989*64079^(22/23) 8024922357630215 a001 24157817/119218851371*64079^(22/23) 8024922357630231 a001 9227465/45537549124*64079^(22/23) 8024922357630342 a001 3524578/17393796001*64079^(22/23) 8024922357631098 a001 1346269/6643838879*64079^(22/23) 8024922357636282 a001 514229/2537720636*64079^(22/23) 8024922357636707 a001 17711/1860498*39603^(7/11) 8024922357649349 a001 46368/3010349*64079^(13/23) 8024922357651644 a001 11592/6119*9349^(3/19) 8024922357671814 a001 196418/969323029*64079^(22/23) 8024922357691244 a001 121393/228826127*64079^(20/23) 8024922357699295 a001 317811/969323029*64079^(21/23) 8024922357712867 a001 610/1860499*64079^(21/23) 8024922357714847 a001 2178309/6643838879*64079^(21/23) 8024922357715136 a001 5702887/17393796001*64079^(21/23) 8024922357715178 a001 3732588/11384387281*64079^(21/23) 8024922357715184 a001 39088169/119218851371*64079^(21/23) 8024922357715185 a001 9303105/28374454999*64079^(21/23) 8024922357715185 a001 66978574/204284540899*64079^(21/23) 8024922357715185 a001 701408733/2139295485799*64079^(21/23) 8024922357715185 a001 1836311903/5600748293801*64079^(21/23) 8024922357715185 a001 1201881744/3665737348901*64079^(21/23) 8024922357715185 a001 7778742049/23725150497407*64079^(21/23) 8024922357715185 a001 2971215073/9062201101803*64079^(21/23) 8024922357715185 a001 567451585/1730726404001*64079^(21/23) 8024922357715185 a001 433494437/1322157322203*64079^(21/23) 8024922357715186 a001 165580141/505019158607*64079^(21/23) 8024922357715186 a001 31622993/96450076809*64079^(21/23) 8024922357715188 a001 24157817/73681302247*64079^(21/23) 8024922357715204 a001 9227465/28143753123*64079^(21/23) 8024922357715315 a001 1762289/5374978561*64079^(21/23) 8024922357716071 a001 1346269/4106118243*64079^(21/23) 8024922357721255 a001 514229/1568397607*64079^(21/23) 8024922357731118 a001 2576/103361*64079^(12/23) 8024922357746252 a001 6765/7881196*15127^(19/20) 8024922357756787 a001 98209/299537289*64079^(21/23) 8024922357776218 a001 233/271444*64079^(19/23) 8024922357781065 a001 121393/39603*15127^(1/10) 8024922357784268 a001 377/710646*64079^(20/23) 8024922357797840 a001 832040/1568397607*64079^(20/23) 8024922357799820 a001 726103/1368706081*64079^(20/23) 8024922357800109 a001 5702887/10749957122*64079^(20/23) 8024922357800151 a001 4976784/9381251041*64079^(20/23) 8024922357800158 a001 39088169/73681302247*64079^(20/23) 8024922357800158 a001 34111385/64300051206*64079^(20/23) 8024922357800159 a001 267914296/505019158607*64079^(20/23) 8024922357800159 a001 233802911/440719107401*64079^(20/23) 8024922357800159 a001 1836311903/3461452808002*64079^(20/23) 8024922357800159 a001 1602508992/3020733700601*64079^(20/23) 8024922357800159 a001 12586269025/23725150497407*64079^(20/23) 8024922357800159 a001 7778742049/14662949395604*64079^(20/23) 8024922357800159 a001 2971215073/5600748293801*64079^(20/23) 8024922357800159 a001 1134903170/2139295485799*64079^(20/23) 8024922357800159 a001 433494437/817138163596*64079^(20/23) 8024922357800159 a001 165580141/312119004989*64079^(20/23) 8024922357800159 a001 63245986/119218851371*64079^(20/23) 8024922357800161 a001 24157817/45537549124*64079^(20/23) 8024922357800177 a001 9227465/17393796001*64079^(20/23) 8024922357800288 a001 3524578/6643838879*64079^(20/23) 8024922357801044 a001 1346269/2537720636*64079^(20/23) 8024922357806228 a001 514229/969323029*64079^(20/23) 8024922357824479 a001 46368/1149851*64079^(11/23) 8024922357830380 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^42 8024922357841760 a001 196418/370248451*64079^(20/23) 8024922357855224 a001 317811/167761*24476^(1/7) 8024922357861190 a001 121393/87403803*64079^(18/23) 8024922357869241 a001 317811/370248451*64079^(19/23) 8024922357872485 a001 17711/3010349*39603^(15/22) 8024922357882813 a001 832040/969323029*64079^(19/23) 8024922357884793 a001 2178309/2537720636*64079^(19/23) 8024922357885082 a001 5702887/6643838879*64079^(19/23) 8024922357885125 a001 14930352/17393796001*64079^(19/23) 8024922357885131 a001 39088169/45537549124*64079^(19/23) 8024922357885132 a001 102334155/119218851371*64079^(19/23) 8024922357885132 a001 267914296/312119004989*64079^(19/23) 8024922357885132 a001 701408733/817138163596*64079^(19/23) 8024922357885132 a001 1836311903/2139295485799*64079^(19/23) 8024922357885132 a001 4807526976/5600748293801*64079^(19/23) 8024922357885132 a001 12586269025/14662949395604*64079^(19/23) 8024922357885132 a001 20365011074/23725150497407*64079^(19/23) 8024922357885132 a001 7778742049/9062201101803*64079^(19/23) 8024922357885132 a001 2971215073/3461452808002*64079^(19/23) 8024922357885132 a001 1134903170/1322157322203*64079^(19/23) 8024922357885132 a001 433494437/505019158607*64079^(19/23) 8024922357885132 a001 165580141/192900153618*64079^(19/23) 8024922357885132 a001 63245986/73681302247*64079^(19/23) 8024922357885134 a001 24157817/28143753123*64079^(19/23) 8024922357885151 a001 9227465/10749957122*64079^(19/23) 8024922357885261 a001 3524578/4106118243*64079^(19/23) 8024922357886017 a001 1346269/1568397607*64079^(19/23) 8024922357887492 a001 6624/101521*64079^(10/23) 8024922357891201 a001 514229/599074578*64079^(19/23) 8024922357915353 a001 75025/370248451*64079^(22/23) 8024922357926733 a001 196418/228826127*64079^(19/23) 8024922357946167 a001 121393/54018521*64079^(17/23) 8024922357954214 a001 317811/228826127*64079^(18/23) 8024922357964415 a001 15456/90481*64079^(8/23) 8024922357965386 a001 17711/64079*39603^(7/22) 8024922357967786 a001 416020/299537289*64079^(18/23) 8024922357969767 a001 311187/224056801*64079^(18/23) 8024922357970055 a001 5702887/4106118243*64079^(18/23) 8024922357970098 a001 7465176/5374978561*64079^(18/23) 8024922357970104 a001 39088169/28143753123*64079^(18/23) 8024922357970105 a001 14619165/10525900321*64079^(18/23) 8024922357970105 a001 133957148/96450076809*64079^(18/23) 8024922357970105 a001 701408733/505019158607*64079^(18/23) 8024922357970105 a001 1836311903/1322157322203*64079^(18/23) 8024922357970105 a001 14930208/10749853441*64079^(18/23) 8024922357970105 a001 12586269025/9062201101803*64079^(18/23) 8024922357970105 a001 32951280099/23725150497407*64079^(18/23) 8024922357970105 a001 10182505537/7331474697802*64079^(18/23) 8024922357970105 a001 7778742049/5600748293801*64079^(18/23) 8024922357970105 a001 2971215073/2139295485799*64079^(18/23) 8024922357970105 a001 567451585/408569081798*64079^(18/23) 8024922357970105 a001 433494437/312119004989*64079^(18/23) 8024922357970105 a001 165580141/119218851371*64079^(18/23) 8024922357970105 a001 31622993/22768774562*64079^(18/23) 8024922357970108 a001 24157817/17393796001*64079^(18/23) 8024922357970124 a001 9227465/6643838879*64079^(18/23) 8024922357970234 a001 1762289/1268860318*64079^(18/23) 8024922357970990 a001 1346269/969323029*64079^(18/23) 8024922357976174 a001 514229/370248451*64079^(18/23) 8024922357997361 a001 23184/51841*439204^(2/9) 8024922358000326 a001 75025/228826127*64079^(21/23) 8024922358006583 a001 23184/51841*7881196^(2/11) 8024922358006606 a001 23184/51841*141422324^(2/13) 8024922358006606 a001 23184/51841*2537720636^(2/15) 8024922358006606 a001 23184/51841*45537549124^(2/17) 8024922358006606 a001 23184/51841*14662949395604^(2/21) 8024922358006606 a001 23184/51841*(1/2+1/2*5^(1/2))^6 8024922358006606 a001 23184/51841*10749957122^(1/8) 8024922358006606 a001 23184/51841*4106118243^(3/23) 8024922358006606 a001 23184/51841*1568397607^(3/22) 8024922358006606 a001 23184/51841*599074578^(1/7) 8024922358006606 a001 268748928/33489287 8024922358006606 a001 23184/51841*228826127^(3/20) 8024922358006606 a001 23184/51841*87403803^(3/19) 8024922358006607 a001 23184/51841*33385282^(1/6) 8024922358006615 a001 23184/51841*12752043^(3/17) 8024922358006670 a001 23184/51841*4870847^(3/16) 8024922358007070 a001 23184/51841*1860498^(1/5) 8024922358010011 a001 23184/51841*710647^(3/14) 8024922358011707 a001 98209/70711162*64079^(18/23) 8024922358029957 a001 11592/109801*64079^(9/23) 8024922358031130 a001 121393/33385282*64079^(16/23) 8024922358031740 a001 23184/51841*271443^(3/13) 8024922358039188 a001 317811/141422324*64079^(17/23) 8024922358052760 a001 832040/370248451*64079^(17/23) 8024922358054740 a001 2178309/969323029*64079^(17/23) 8024922358055029 a001 5702887/2537720636*64079^(17/23) 8024922358055071 a001 14930352/6643838879*64079^(17/23) 8024922358055077 a001 39088169/17393796001*64079^(17/23) 8024922358055078 a001 102334155/45537549124*64079^(17/23) 8024922358055078 a001 267914296/119218851371*64079^(17/23) 8024922358055078 a001 3524667/1568437211*64079^(17/23) 8024922358055078 a001 1836311903/817138163596*64079^(17/23) 8024922358055078 a001 4807526976/2139295485799*64079^(17/23) 8024922358055078 a001 12586269025/5600748293801*64079^(17/23) 8024922358055078 a001 32951280099/14662949395604*64079^(17/23) 8024922358055078 a001 53316291173/23725150497407*64079^(17/23) 8024922358055078 a001 20365011074/9062201101803*64079^(17/23) 8024922358055078 a001 7778742049/3461452808002*64079^(17/23) 8024922358055078 a001 2971215073/1322157322203*64079^(17/23) 8024922358055078 a001 1134903170/505019158607*64079^(17/23) 8024922358055078 a001 433494437/192900153618*64079^(17/23) 8024922358055078 a001 165580141/73681302247*64079^(17/23) 8024922358055078 a001 63245986/28143753123*64079^(17/23) 8024922358055081 a001 24157817/10749957122*64079^(17/23) 8024922358055097 a001 9227465/4106118243*64079^(17/23) 8024922358055207 a001 3524578/1568397607*64079^(17/23) 8024922358055963 a001 1346269/599074578*64079^(17/23) 8024922358061147 a001 514229/228826127*64079^(17/23) 8024922358085299 a001 75025/141422324*64079^(20/23) 8024922358096678 a001 196418/87403803*64079^(17/23) 8024922358103836 a001 17711/4870847*39603^(8/11) 8024922358112624 a001 832040/271443*24476^(2/21) 8024922358116129 a001 121393/20633239*64079^(15/23) 8024922358121301 a001 514229/103682*24476^(1/21) 8024922358124160 a001 105937/29134601*64079^(16/23) 8024922358137733 a001 832040/228826127*64079^(16/23) 8024922358139713 a001 726103/199691526*64079^(16/23) 8024922358140002 a001 5702887/1568397607*64079^(16/23) 8024922358140044 a001 4976784/1368706081*64079^(16/23) 8024922358140050 a001 39088169/10749957122*64079^(16/23) 8024922358140051 a001 831985/228811001*64079^(16/23) 8024922358140051 a001 267914296/73681302247*64079^(16/23) 8024922358140051 a001 233802911/64300051206*64079^(16/23) 8024922358140051 a001 1836311903/505019158607*64079^(16/23) 8024922358140051 a001 1602508992/440719107401*64079^(16/23) 8024922358140051 a001 12586269025/3461452808002*64079^(16/23) 8024922358140051 a001 10983760033/3020733700601*64079^(16/23) 8024922358140051 a001 86267571272/23725150497407*64079^(16/23) 8024922358140051 a001 53316291173/14662949395604*64079^(16/23) 8024922358140051 a001 20365011074/5600748293801*64079^(16/23) 8024922358140051 a001 7778742049/2139295485799*64079^(16/23) 8024922358140051 a001 2971215073/817138163596*64079^(16/23) 8024922358140051 a001 1134903170/312119004989*64079^(16/23) 8024922358140051 a001 433494437/119218851371*64079^(16/23) 8024922358140051 a001 165580141/45537549124*64079^(16/23) 8024922358140051 a001 63245986/17393796001*64079^(16/23) 8024922358140054 a001 24157817/6643838879*64079^(16/23) 8024922358140070 a001 9227465/2537720636*64079^(16/23) 8024922358140180 a001 3524578/969323029*64079^(16/23) 8024922358140937 a001 1346269/370248451*64079^(16/23) 8024922358146121 a001 514229/141422324*64079^(16/23) 8024922358170271 a001 75025/87403803*64079^(19/23) 8024922358181655 a001 196418/54018521*64079^(16/23) 8024922358193233 a001 23184/51841*103682^(1/4) 8024922358201034 a001 121393/12752043*64079^(14/23) 8024922358207627 a001 311187/101521*24476^(2/21) 8024922358209137 a001 317811/54018521*64079^(15/23) 8024922358221488 a001 5702887/1860498*24476^(2/21) 8024922358222706 a001 208010/35355581*64079^(15/23) 8024922358223511 a001 14930352/4870847*24476^(2/21) 8024922358223806 a001 39088169/12752043*24476^(2/21) 8024922358223849 a001 14619165/4769326*24476^(2/21) 8024922358223855 a001 267914296/87403803*24476^(2/21) 8024922358223856 a001 701408733/228826127*24476^(2/21) 8024922358223856 a001 1836311903/599074578*24476^(2/21) 8024922358223856 a001 686789568/224056801*24476^(2/21) 8024922358223856 a001 12586269025/4106118243*24476^(2/21) 8024922358223856 a001 32951280099/10749957122*24476^(2/21) 8024922358223856 a001 86267571272/28143753123*24476^(2/21) 8024922358223856 a001 32264490531/10525900321*24476^(2/21) 8024922358223856 a001 591286729879/192900153618*24476^(2/21) 8024922358223856 a001 1548008755920/505019158607*24476^(2/21) 8024922358223856 a001 1515744265389/494493258286*24476^(2/21) 8024922358223856 a001 2504730781961/817138163596*24476^(2/21) 8024922358223856 a001 956722026041/312119004989*24476^(2/21) 8024922358223856 a001 365435296162/119218851371*24476^(2/21) 8024922358223856 a001 139583862445/45537549124*24476^(2/21) 8024922358223856 a001 53316291173/17393796001*24476^(2/21) 8024922358223856 a001 20365011074/6643838879*24476^(2/21) 8024922358223856 a001 7778742049/2537720636*24476^(2/21) 8024922358223856 a001 2971215073/969323029*24476^(2/21) 8024922358223856 a001 1134903170/370248451*24476^(2/21) 8024922358223856 a001 433494437/141422324*24476^(2/21) 8024922358223859 a001 165580141/54018521*24476^(2/21) 8024922358223875 a001 63245986/20633239*24476^(2/21) 8024922358223988 a001 24157817/7881196*24476^(2/21) 8024922358224686 a001 2178309/370248451*64079^(15/23) 8024922358224760 a001 9227465/3010349*24476^(2/21) 8024922358224975 a001 5702887/969323029*64079^(15/23) 8024922358225017 a001 196452/33391061*64079^(15/23) 8024922358225023 a001 39088169/6643838879*64079^(15/23) 8024922358225024 a001 102334155/17393796001*64079^(15/23) 8024922358225024 a001 66978574/11384387281*64079^(15/23) 8024922358225024 a001 701408733/119218851371*64079^(15/23) 8024922358225024 a001 1836311903/312119004989*64079^(15/23) 8024922358225024 a001 1201881744/204284540899*64079^(15/23) 8024922358225024 a001 12586269025/2139295485799*64079^(15/23) 8024922358225024 a001 32951280099/5600748293801*64079^(15/23) 8024922358225024 a001 1135099622/192933544679*64079^(15/23) 8024922358225024 a001 139583862445/23725150497407*64079^(15/23) 8024922358225024 a001 53316291173/9062201101803*64079^(15/23) 8024922358225024 a001 10182505537/1730726404001*64079^(15/23) 8024922358225024 a001 7778742049/1322157322203*64079^(15/23) 8024922358225024 a001 2971215073/505019158607*64079^(15/23) 8024922358225024 a001 567451585/96450076809*64079^(15/23) 8024922358225024 a001 433494437/73681302247*64079^(15/23) 8024922358225024 a001 165580141/28143753123*64079^(15/23) 8024922358225025 a001 31622993/5374978561*64079^(15/23) 8024922358225027 a001 24157817/4106118243*64079^(15/23) 8024922358225043 a001 9227465/1568397607*64079^(15/23) 8024922358225153 a001 1762289/299537289*64079^(15/23) 8024922358225910 a001 1346269/228826127*64079^(15/23) 8024922358230055 a001 3524578/1149851*24476^(2/21) 8024922358231093 a001 514229/87403803*64079^(15/23) 8024922358255248 a001 75025/54018521*64079^(18/23) 8024922358266343 a001 1346269/439204*24476^(2/21) 8024922358266618 a001 98209/16692641*64079^(15/23) 8024922358286186 a001 121393/7881196*64079^(13/23) 8024922358294100 a001 317811/33385282*64079^(14/23) 8024922358304307 a001 121393/103682*64079^(4/23) 8024922358307678 a001 832040/87403803*64079^(14/23) 8024922358309659 a001 46347/4868641*64079^(14/23) 8024922358309948 a001 5702887/599074578*64079^(14/23) 8024922358309990 a001 14930352/1568397607*64079^(14/23) 8024922358309996 a001 39088169/4106118243*64079^(14/23) 8024922358309997 a001 102334155/10749957122*64079^(14/23) 8024922358309997 a001 267914296/28143753123*64079^(14/23) 8024922358309997 a001 701408733/73681302247*64079^(14/23) 8024922358309997 a001 1836311903/192900153618*64079^(14/23) 8024922358309997 a001 102287808/10745088481*64079^(14/23) 8024922358309997 a001 12586269025/1322157322203*64079^(14/23) 8024922358309997 a001 32951280099/3461452808002*64079^(14/23) 8024922358309997 a001 86267571272/9062201101803*64079^(14/23) 8024922358309997 a001 225851433717/23725150497407*64079^(14/23) 8024922358309997 a001 139583862445/14662949395604*64079^(14/23) 8024922358309997 a001 53316291173/5600748293801*64079^(14/23) 8024922358309997 a001 20365011074/2139295485799*64079^(14/23) 8024922358309997 a001 7778742049/817138163596*64079^(14/23) 8024922358309997 a001 2971215073/312119004989*64079^(14/23) 8024922358309997 a001 1134903170/119218851371*64079^(14/23) 8024922358309997 a001 433494437/45537549124*64079^(14/23) 8024922358309997 a001 165580141/17393796001*64079^(14/23) 8024922358309998 a001 63245986/6643838879*64079^(14/23) 8024922358310000 a001 24157817/2537720636*64079^(14/23) 8024922358310016 a001 9227465/969323029*64079^(14/23) 8024922358310127 a001 3524578/370248451*64079^(14/23) 8024922358310883 a001 1346269/141422324*64079^(14/23) 8024922358316070 a001 514229/54018521*64079^(14/23) 8024922358336878 a001 89/39604*39603^(17/22) 8024922358340211 a001 75025/33385282*64079^(17/23) 8024922358351618 a001 196418/20633239*64079^(14/23) 8024922358370691 a001 121393/4870847*64079^(12/23) 8024922358379099 a001 10959/711491*64079^(13/23) 8024922358392655 a001 832040/54018521*64079^(13/23) 8024922358394633 a001 2178309/141422324*64079^(13/23) 8024922358394921 a001 5702887/370248451*64079^(13/23) 8024922358394963 a001 14930352/969323029*64079^(13/23) 8024922358394969 a001 39088169/2537720636*64079^(13/23) 8024922358394970 a001 102334155/6643838879*64079^(13/23) 8024922358394970 a001 9238424/599786069*64079^(13/23) 8024922358394970 a001 701408733/45537549124*64079^(13/23) 8024922358394970 a001 1836311903/119218851371*64079^(13/23) 8024922358394970 a001 4807526976/312119004989*64079^(13/23) 8024922358394970 a001 12586269025/817138163596*64079^(13/23) 8024922358394970 a001 32951280099/2139295485799*64079^(13/23) 8024922358394970 a001 86267571272/5600748293801*64079^(13/23) 8024922358394970 a001 7787980473/505618944676*64079^(13/23) 8024922358394970 a001 365435296162/23725150497407*64079^(13/23) 8024922358394970 a001 139583862445/9062201101803*64079^(13/23) 8024922358394970 a001 53316291173/3461452808002*64079^(13/23) 8024922358394970 a001 20365011074/1322157322203*64079^(13/23) 8024922358394970 a001 7778742049/505019158607*64079^(13/23) 8024922358394970 a001 2971215073/192900153618*64079^(13/23) 8024922358394970 a001 1134903170/73681302247*64079^(13/23) 8024922358394970 a001 433494437/28143753123*64079^(13/23) 8024922358394970 a001 165580141/10749957122*64079^(13/23) 8024922358394971 a001 63245986/4106118243*64079^(13/23) 8024922358394973 a001 24157817/1568397607*64079^(13/23) 8024922358394989 a001 9227465/599074578*64079^(13/23) 8024922358395099 a001 3524578/228826127*64079^(13/23) 8024922358395855 a001 1346269/87403803*64079^(13/23) 8024922358401033 a001 514229/33385282*64079^(13/23) 8024922358425210 a001 75025/20633239*64079^(16/23) 8024922358436523 a001 196418/12752043*64079^(13/23) 8024922358443442 a001 46368/167761*64079^(7/23) 8024922358456888 a001 121393/3010349*64079^(11/23) 8024922358464004 a001 105937/4250681*64079^(12/23) 8024922358467973 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^43 8024922358477618 a001 416020/16692641*64079^(12/23) 8024922358479604 a001 726103/29134601*64079^(12/23) 8024922358479894 a001 5702887/228826127*64079^(12/23) 8024922358479936 a001 829464/33281921*64079^(12/23) 8024922358479942 a001 39088169/1568397607*64079^(12/23) 8024922358479943 a001 34111385/1368706081*64079^(12/23) 8024922358479944 a001 133957148/5374978561*64079^(12/23) 8024922358479944 a001 233802911/9381251041*64079^(12/23) 8024922358479944 a001 1836311903/73681302247*64079^(12/23) 8024922358479944 a001 267084832/10716675201*64079^(12/23) 8024922358479944 a001 12586269025/505019158607*64079^(12/23) 8024922358479944 a001 10983760033/440719107401*64079^(12/23) 8024922358479944 a001 43133785636/1730726404001*64079^(12/23) 8024922358479944 a001 75283811239/3020733700601*64079^(12/23) 8024922358479944 a001 182717648081/7331474697802*64079^(12/23) 8024922358479944 a001 139583862445/5600748293801*64079^(12/23) 8024922358479944 a001 53316291173/2139295485799*64079^(12/23) 8024922358479944 a001 10182505537/408569081798*64079^(12/23) 8024922358479944 a001 7778742049/312119004989*64079^(12/23) 8024922358479944 a001 2971215073/119218851371*64079^(12/23) 8024922358479944 a001 567451585/22768774562*64079^(12/23) 8024922358479944 a001 433494437/17393796001*64079^(12/23) 8024922358479944 a001 165580141/6643838879*64079^(12/23) 8024922358479944 a001 31622993/1268860318*64079^(12/23) 8024922358479946 a001 24157817/969323029*64079^(12/23) 8024922358479962 a001 9227465/370248451*64079^(12/23) 8024922358480073 a001 1762289/70711162*64079^(12/23) 8024922358480832 a001 1346269/54018521*64079^(12/23) 8024922358486032 a001 514229/20633239*64079^(12/23) 8024922358510115 a001 75025/12752043*64079^(15/23) 8024922358515066 a001 514229/167761*24476^(2/21) 8024922358521674 a001 98209/3940598*64079^(12/23) 8024922358525000 a001 15456/29134601*167761^(4/5) 8024922358538657 a001 121393/1860498*64079^(10/23) 8024922358539796 a001 98209/51841*64079^(3/23) 8024922358549156 a001 317811/7881196*64079^(11/23) 8024922358562617 a001 75640/1875749*64079^(11/23) 8024922358564581 a001 2178309/54018521*64079^(11/23) 8024922358564868 a001 5702887/141422324*64079^(11/23) 8024922358564910 a001 14930352/370248451*64079^(11/23) 8024922358564916 a001 39088169/969323029*64079^(11/23) 8024922358564917 a001 9303105/230701876*64079^(11/23) 8024922358564917 a001 267914296/6643838879*64079^(11/23) 8024922358564917 a001 701408733/17393796001*64079^(11/23) 8024922358564917 a001 1836311903/45537549124*64079^(11/23) 8024922358564917 a001 4807526976/119218851371*64079^(11/23) 8024922358564917 a001 1144206275/28374454999*64079^(11/23) 8024922358564917 a001 32951280099/817138163596*64079^(11/23) 8024922358564917 a001 86267571272/2139295485799*64079^(11/23) 8024922358564917 a001 225851433717/5600748293801*64079^(11/23) 8024922358564917 a001 591286729879/14662949395604*64079^(11/23) 8024922358564917 a001 365435296162/9062201101803*64079^(11/23) 8024922358564917 a001 139583862445/3461452808002*64079^(11/23) 8024922358564917 a001 53316291173/1322157322203*64079^(11/23) 8024922358564917 a001 20365011074/505019158607*64079^(11/23) 8024922358564917 a001 7778742049/192900153618*64079^(11/23) 8024922358564917 a001 2971215073/73681302247*64079^(11/23) 8024922358564917 a001 1134903170/28143753123*64079^(11/23) 8024922358564917 a001 433494437/10749957122*64079^(11/23) 8024922358564917 a001 165580141/4106118243*64079^(11/23) 8024922358564917 a001 63245986/1568397607*64079^(11/23) 8024922358564919 a001 24157817/599074578*64079^(11/23) 8024922358564935 a001 9227465/228826127*64079^(11/23) 8024922358565045 a001 3524578/87403803*64079^(11/23) 8024922358565795 a001 1346269/33385282*64079^(11/23) 8024922358567277 a001 317811/103682*64079^(2/23) 8024922358569274 a001 17711/12752043*39603^(9/11) 8024922358570937 a001 514229/12752043*64079^(11/23) 8024922358582159 a001 11592/1970299*167761^(3/5) 8024922358595267 a001 75025/7881196*64079^(14/23) 8024922358606180 a001 196418/4870847*64079^(11/23) 8024922358613388 a001 75025/103682*64079^(5/23) 8024922358623167 a001 6624/101521*167761^(2/5) 8024922358632019 a001 121393/1149851*64079^(9/23) 8024922358633661 a001 317811/4870847*64079^(10/23) 8024922358644200 a001 15456/90481*(1/2+1/2*5^(1/2))^8 8024922358644200 a001 15456/90481*23725150497407^(1/8) 8024922358644200 a001 15456/90481*505019158607^(1/7) 8024922358644200 a001 15456/90481*73681302247^(2/13) 8024922358644200 a001 15456/90481*10749957122^(1/6) 8024922358644200 a001 121393/103682*(1/2+1/2*5^(1/2))^4 8024922358644200 a001 121393/103682*23725150497407^(1/16) 8024922358644200 a001 121393/103682*73681302247^(1/13) 8024922358644200 a001 121393/103682*10749957122^(1/12) 8024922358644200 a001 15456/90481*4106118243^(4/23) 8024922358644200 a001 121393/103682*4106118243^(2/23) 8024922358644200 a001 121393/103682*1568397607^(1/11) 8024922358644200 a001 15456/90481*1568397607^(2/11) 8024922358644200 a001 121393/103682*599074578^(2/21) 8024922358644200 a001 1876250208/233802911 8024922358644200 a001 15456/90481*599074578^(4/21) 8024922358644200 a001 121393/103682*228826127^(1/10) 8024922358644200 a001 15456/90481*228826127^(1/5) 8024922358644200 a001 121393/103682*87403803^(2/19) 8024922358644200 a001 15456/90481*87403803^(4/19) 8024922358644200 a001 121393/103682*33385282^(1/9) 8024922358644201 a001 15456/90481*33385282^(2/9) 8024922358644205 a001 121393/103682*12752043^(2/17) 8024922358644211 a001 15456/90481*12752043^(4/17) 8024922358644242 a001 121393/103682*4870847^(1/8) 8024922358644284 a001 15456/90481*4870847^(1/4) 8024922358644509 a001 121393/103682*1860498^(2/15) 8024922358644818 a001 15456/90481*1860498^(4/15) 8024922358646470 a001 121393/103682*710647^(1/7) 8024922358647522 a001 832040/12752043*64079^(10/23) 8024922358648740 a001 15456/90481*710647^(2/7) 8024922358649544 a001 311187/4769326*64079^(10/23) 8024922358649839 a001 5702887/87403803*64079^(10/23) 8024922358649882 a001 14930352/228826127*64079^(10/23) 8024922358649889 a001 39088169/599074578*64079^(10/23) 8024922358649890 a001 14619165/224056801*64079^(10/23) 8024922358649890 a001 267914296/4106118243*64079^(10/23) 8024922358649890 a001 701408733/10749957122*64079^(10/23) 8024922358649890 a001 1836311903/28143753123*64079^(10/23) 8024922358649890 a001 686789568/10525900321*64079^(10/23) 8024922358649890 a001 12586269025/192900153618*64079^(10/23) 8024922358649890 a001 32951280099/505019158607*64079^(10/23) 8024922358649890 a001 86267571272/1322157322203*64079^(10/23) 8024922358649890 a001 32264490531/494493258286*64079^(10/23) 8024922358649890 a001 591286729879/9062201101803*64079^(10/23) 8024922358649890 a001 1548008755920/23725150497407*64079^(10/23) 8024922358649890 a001 365435296162/5600748293801*64079^(10/23) 8024922358649890 a001 139583862445/2139295485799*64079^(10/23) 8024922358649890 a001 53316291173/817138163596*64079^(10/23) 8024922358649890 a001 20365011074/312119004989*64079^(10/23) 8024922358649890 a001 7778742049/119218851371*64079^(10/23) 8024922358649890 a001 2971215073/45537549124*64079^(10/23) 8024922358649890 a001 1134903170/17393796001*64079^(10/23) 8024922358649890 a001 433494437/6643838879*64079^(10/23) 8024922358649890 a001 165580141/2537720636*64079^(10/23) 8024922358649890 a001 63245986/969323029*64079^(10/23) 8024922358649893 a001 24157817/370248451*64079^(10/23) 8024922358649909 a001 9227465/141422324*64079^(10/23) 8024922358650022 a001 3524578/54018521*64079^(10/23) 8024922358650794 a001 1346269/20633239*64079^(10/23) 8024922358656089 a001 514229/7881196*64079^(10/23) 8024922358660956 a001 121393/103682*271443^(2/13) 8024922358674210 a001 514229/103682*64079^(1/23) 8024922358677712 a001 15456/90481*271443^(4/13) 8024922358679773 a001 75025/4870847*64079^(13/23) 8024922358692377 a001 196418/3010349*64079^(10/23) 8024922358695032 a001 121393/710647*64079^(8/23) 8024922358711512 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^45 8024922358716134 a001 2576/33281921*439204^(8/9) 8024922358719858 a001 317811/3010349*64079^(9/23) 8024922358720757 a001 11592/35355581*439204^(7/9) 8024922358725372 a001 144/103681*439204^(2/3) 8024922358730131 a001 11592/1970299*439204^(5/9) 8024922358732306 a001 2576/103361*439204^(4/9) 8024922358732674 a001 208010/1970299*64079^(9/23) 8024922358734544 a001 2178309/20633239*64079^(9/23) 8024922358734816 a001 5702887/54018521*64079^(9/23) 8024922358734856 a001 3732588/35355581*64079^(9/23) 8024922358734862 a001 39088169/370248451*64079^(9/23) 8024922358734863 a001 102334155/969323029*64079^(9/23) 8024922358734863 a001 66978574/634430159*64079^(9/23) 8024922358734863 a001 701408733/6643838879*64079^(9/23) 8024922358734863 a001 1836311903/17393796001*64079^(9/23) 8024922358734863 a001 1201881744/11384387281*64079^(9/23) 8024922358734863 a001 12586269025/119218851371*64079^(9/23) 8024922358734863 a001 32951280099/312119004989*64079^(9/23) 8024922358734863 a001 21566892818/204284540899*64079^(9/23) 8024922358734863 a001 225851433717/2139295485799*64079^(9/23) 8024922358734863 a001 182717648081/1730726404001*64079^(9/23) 8024922358734863 a001 139583862445/1322157322203*64079^(9/23) 8024922358734863 a001 53316291173/505019158607*64079^(9/23) 8024922358734863 a001 10182505537/96450076809*64079^(9/23) 8024922358734863 a001 7778742049/73681302247*64079^(9/23) 8024922358734863 a001 2971215073/28143753123*64079^(9/23) 8024922358734863 a001 567451585/5374978561*64079^(9/23) 8024922358734863 a001 433494437/4106118243*64079^(9/23) 8024922358734863 a001 165580141/1568397607*64079^(9/23) 8024922358734863 a001 31622993/299537289*64079^(9/23) 8024922358734865 a001 24157817/228826127*64079^(9/23) 8024922358734881 a001 9227465/87403803*64079^(9/23) 8024922358734985 a001 1762289/16692641*64079^(9/23) 8024922358735699 a001 1346269/12752043*64079^(9/23) 8024922358737218 a001 6624/101521*20633239^(2/7) 8024922358737223 a001 6624/101521*2537720636^(2/9) 8024922358737223 a001 6624/101521*312119004989^(2/11) 8024922358737223 a001 6624/101521*(1/2+1/2*5^(1/2))^10 8024922358737223 a001 6624/101521*28143753123^(1/5) 8024922358737223 a001 6624/101521*10749957122^(5/24) 8024922358737223 a001 317811/103682*(1/2+1/2*5^(1/2))^2 8024922358737223 a001 317811/103682*10749957122^(1/24) 8024922358737223 a001 317811/103682*4106118243^(1/23) 8024922358737223 a001 6624/101521*4106118243^(5/23) 8024922358737223 a001 317811/103682*1568397607^(1/22) 8024922358737223 a001 14736260448/1836311903 8024922358737223 a001 6624/101521*1568397607^(5/22) 8024922358737223 a001 317811/103682*599074578^(1/21) 8024922358737223 a001 6624/101521*599074578^(5/21) 8024922358737223 a001 317811/103682*228826127^(1/20) 8024922358737223 a001 6624/101521*228826127^(1/4) 8024922358737223 a001 317811/103682*87403803^(1/19) 8024922358737224 a001 6624/101521*87403803^(5/19) 8024922358737224 a001 317811/103682*33385282^(1/18) 8024922358737225 a001 6624/101521*33385282^(5/18) 8024922358737226 a001 317811/103682*12752043^(1/17) 8024922358737238 a001 6624/101521*12752043^(5/17) 8024922358737244 a001 317811/103682*4870847^(1/16) 8024922358737329 a001 6624/101521*4870847^(5/16) 8024922358737378 a001 317811/103682*1860498^(1/15) 8024922358737996 a001 6624/101521*1860498^(1/3) 8024922358738358 a001 317811/103682*710647^(1/14) 8024922358740594 a001 514229/4870847*64079^(9/23) 8024922358742898 a001 6624/101521*710647^(5/14) 8024922358745601 a001 317811/103682*271443^(1/13) 8024922358747044 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^47 8024922358750748 a001 2576/103361*7881196^(4/11) 8024922358750795 a001 2576/103361*141422324^(4/13) 8024922358750795 a001 2576/103361*2537720636^(4/15) 8024922358750795 a001 2576/103361*45537549124^(4/17) 8024922358750795 a001 2576/103361*817138163596^(4/19) 8024922358750795 a001 2576/103361*14662949395604^(4/21) 8024922358750795 a001 2576/103361*(1/2+1/2*5^(1/2))^12 8024922358750795 a001 2576/103361*192900153618^(2/9) 8024922358750795 a001 2576/103361*73681302247^(3/13) 8024922358750795 a001 2576/103361*10749957122^(1/4) 8024922358750795 a001 416020/51841 8024922358750795 a001 2576/103361*4106118243^(6/23) 8024922358750795 a001 2576/103361*1568397607^(3/11) 8024922358750795 a001 2576/103361*599074578^(2/7) 8024922358750795 a001 2576/103361*228826127^(3/10) 8024922358750796 a001 2576/103361*87403803^(6/19) 8024922358750798 a001 2576/103361*33385282^(1/3) 8024922358750813 a001 2576/103361*12752043^(6/17) 8024922358750922 a001 2576/103361*4870847^(3/8) 8024922358751723 a001 2576/103361*1860498^(2/5) 8024922358752228 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^49 8024922358752768 a001 46368/4870847*20633239^(2/5) 8024922358752775 a001 46368/4870847*17393796001^(2/7) 8024922358752775 a001 46368/4870847*14662949395604^(2/9) 8024922358752775 a001 46368/4870847*(1/2+1/2*5^(1/2))^14 8024922358752775 a001 46368/4870847*505019158607^(1/4) 8024922358752775 a001 101003831712/12586269025 8024922358752775 a001 46368/4870847*10749957122^(7/24) 8024922358752775 a004 Fibonacci(32)/Lucas(24)/(1/2+sqrt(5)/2)^2 8024922358752775 a001 46368/4870847*4106118243^(7/23) 8024922358752775 a001 46368/4870847*1568397607^(7/22) 8024922358752775 a001 46368/4870847*599074578^(1/3) 8024922358752775 a001 46368/4870847*228826127^(7/20) 8024922358752776 a001 46368/4870847*87403803^(7/19) 8024922358752778 a001 46368/4870847*33385282^(7/18) 8024922358752796 a001 46368/4870847*12752043^(7/17) 8024922358752923 a001 46368/4870847*4870847^(7/16) 8024922358752984 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^51 8024922358752996 a001 23184/5374978561*7881196^(10/11) 8024922358753008 a001 11592/634430159*7881196^(9/11) 8024922358753020 a001 2576/33281921*7881196^(8/11) 8024922358753027 a001 46368/228826127*7881196^(2/3) 8024922358753032 a001 11592/35355581*7881196^(7/11) 8024922358753036 a001 144/103681*7881196^(6/11) 8024922358753064 a001 15456/4250681*(1/2+1/2*5^(1/2))^16 8024922358753064 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^16/Lucas(34) 8024922358753064 a001 15456/4250681*23725150497407^(1/4) 8024922358753064 a001 15456/4250681*73681302247^(4/13) 8024922358753064 a001 88143821472/10983760033 8024922358753064 a001 15456/4250681*10749957122^(1/3) 8024922358753064 a004 Fibonacci(34)/Lucas(24)/(1/2+sqrt(5)/2)^4 8024922358753064 a001 15456/4250681*4106118243^(8/23) 8024922358753064 a001 15456/4250681*1568397607^(4/11) 8024922358753064 a001 15456/4250681*599074578^(8/21) 8024922358753064 a001 15456/4250681*228826127^(2/5) 8024922358753065 a001 15456/4250681*87403803^(8/19) 8024922358753067 a001 15456/4250681*33385282^(4/9) 8024922358753087 a001 15456/4250681*12752043^(8/17) 8024922358753095 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^53 8024922358753097 a001 23184/5374978561*20633239^(6/7) 8024922358753098 a001 15456/1368706081*20633239^(4/5) 8024922358753100 a001 46368/969323029*20633239^(5/7) 8024922358753102 a001 15456/29134601*20633239^(4/7) 8024922358753103 a001 11592/35355581*20633239^(3/5) 8024922358753106 a001 144/103681*141422324^(6/13) 8024922358753106 a001 144/103681*2537720636^(2/5) 8024922358753106 a001 144/103681*45537549124^(6/17) 8024922358753106 a001 144/103681*14662949395604^(2/7) 8024922358753106 a001 144/103681*(1/2+1/2*5^(1/2))^18 8024922358753106 a001 144/103681*192900153618^(1/3) 8024922358753106 a001 267914304/33385283 8024922358753106 a001 144/103681*10749957122^(3/8) 8024922358753106 a004 Fibonacci(36)/Lucas(24)/(1/2+sqrt(5)/2)^6 8024922358753106 a001 144/103681*4106118243^(9/23) 8024922358753106 a001 144/103681*1568397607^(9/22) 8024922358753106 a001 144/103681*599074578^(3/7) 8024922358753106 a001 144/103681*228826127^(9/20) 8024922358753107 a001 144/103681*87403803^(9/19) 8024922358753110 a001 144/103681*33385282^(1/2) 8024922358753111 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^55 8024922358753113 a001 15456/29134601*2537720636^(4/9) 8024922358753113 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^20/Lucas(38) 8024922358753113 a001 15456/29134601*23725150497407^(5/16) 8024922358753113 a001 15456/29134601*505019158607^(5/14) 8024922358753113 a001 15456/29134601*73681302247^(5/13) 8024922358753113 a001 15456/29134601*28143753123^(2/5) 8024922358753113 a001 15456/29134601*10749957122^(5/12) 8024922358753113 a004 Fibonacci(38)/Lucas(24)/(1/2+sqrt(5)/2)^8 8024922358753113 a001 15456/29134601*4106118243^(10/23) 8024922358753113 a001 15456/29134601*1568397607^(5/11) 8024922358753113 a001 15456/29134601*599074578^(10/21) 8024922358753113 a001 15456/29134601*228826127^(1/2) 8024922358753113 a001 15456/29134601*87403803^(10/19) 8024922358753113 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^57 8024922358753113 a001 2576/10716675201*141422324^(12/13) 8024922358753113 a001 11592/11384387281*141422324^(11/13) 8024922358753113 a001 23184/5374978561*141422324^(10/13) 8024922358753113 a001 11592/634430159*141422324^(9/13) 8024922358753113 a001 6624/224056801*141422324^(2/3) 8024922358753113 a001 2576/33281921*141422324^(8/13) 8024922358753113 a001 46368/228826127*312119004989^(2/5) 8024922358753113 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^22/Lucas(40) 8024922358753113 a001 4745030099040/591286729879 8024922358753113 a001 46368/228826127*10749957122^(11/24) 8024922358753113 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2)^10 8024922358753113 a001 46368/228826127*4106118243^(11/23) 8024922358753113 a001 46368/228826127*1568397607^(1/2) 8024922358753113 a001 46368/228826127*599074578^(11/21) 8024922358753114 a001 46368/228826127*228826127^(11/20) 8024922358753114 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^59 8024922358753114 a001 2576/33281921*2537720636^(8/15) 8024922358753114 a001 2576/33281921*45537549124^(8/17) 8024922358753114 a001 2576/33281921*14662949395604^(8/21) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^24/Lucas(42) 8024922358753114 a001 86268403312/10750060805 8024922358753114 a001 2576/33281921*192900153618^(4/9) 8024922358753114 a001 2576/33281921*73681302247^(6/13) 8024922358753114 a001 2576/33281921*10749957122^(1/2) 8024922358753114 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^12 8024922358753114 a001 2576/33281921*4106118243^(12/23) 8024922358753114 a001 2576/33281921*1568397607^(6/11) 8024922358753114 a001 2576/33281921*599074578^(4/7) 8024922358753114 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^61 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^26/Lucas(44) 8024922358753114 a001 32522920131744/4052739537881 8024922358753114 a001 6624/224056801*73681302247^(1/2) 8024922358753114 a001 6624/224056801*10749957122^(13/24) 8024922358753114 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^14 8024922358753114 a001 6624/224056801*4106118243^(13/23) 8024922358753114 a001 6624/224056801*1568397607^(13/22) 8024922358753114 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^63 8024922358753114 a001 144/10749853441*2537720636^(14/15) 8024922358753114 a001 15456/440719107401*2537720636^(8/9) 8024922358753114 a001 11592/204284540899*2537720636^(13/15) 8024922358753114 a001 2576/10716675201*2537720636^(4/5) 8024922358753114 a001 46368/119218851371*2537720636^(7/9) 8024922358753114 a001 11592/11384387281*2537720636^(11/15) 8024922358753114 a001 23184/5374978561*2537720636^(2/3) 8024922358753114 a001 15456/1368706081*17393796001^(4/7) 8024922358753114 a001 15456/1368706081*14662949395604^(4/9) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(46) 8024922358753114 a001 4054576681824/505248088463 8024922358753114 a001 15456/1368706081*505019158607^(1/2) 8024922358753114 a001 15456/1368706081*73681302247^(7/13) 8024922358753114 a001 15456/1368706081*10749957122^(7/12) 8024922358753114 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^16 8024922358753114 a001 15456/1368706081*4106118243^(14/23) 8024922358753114 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^65 8024922358753114 a001 23184/5374978561*45537549124^(10/17) 8024922358753114 a001 23184/5374978561*312119004989^(6/11) 8024922358753114 a001 23184/5374978561*14662949395604^(10/21) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(48) 8024922358753114 a001 23184/5374978561*192900153618^(5/9) 8024922358753114 a001 23184/5374978561*28143753123^(3/5) 8024922358753114 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^67 8024922358753114 a001 23184/5374978561*10749957122^(5/8) 8024922358753114 a001 144/10749853441*17393796001^(6/7) 8024922358753114 a001 46368/119218851371*17393796001^(5/7) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(50) 8024922358753114 a001 15456/9381251041*23725150497407^(1/2) 8024922358753114 a001 15456/9381251041*505019158607^(4/7) 8024922358753114 a001 15456/9381251041*73681302247^(8/13) 8024922358753114 a001 6624/10525900321*45537549124^(2/3) 8024922358753114 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^69 8024922358753114 a001 11592/3665737348901*45537549124^(15/17) 8024922358753114 a001 144/10749853441*45537549124^(14/17) 8024922358753114 a001 2576/10716675201*45537549124^(12/17) 8024922358753114 a001 11592/204284540899*45537549124^(13/17) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(52) 8024922358753114 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^71 8024922358753114 a001 2576/10716675201*14662949395604^(4/7) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(54) 8024922358753114 a001 2576/10716675201*505019158607^(9/14) 8024922358753114 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^73 8024922358753114 a001 11592/3665737348901*312119004989^(9/11) 8024922358753114 a001 15456/3020733700601*312119004989^(4/5) 8024922358753114 a001 15456/440719107401*312119004989^(8/11) 8024922358753114 a001 46368/505019158607*817138163596^(2/3) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(56) 8024922358753114 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^75 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(58) 8024922358753114 a001 15456/440719107401*23725150497407^(5/8) 8024922358753114 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^77 8024922358753114 a001 144/10749853441*14662949395604^(2/3) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(60) 8024922358753114 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^79 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(62) 8024922358753114 a001 15456/3020733700601*23725150497407^(11/16) 8024922358753114 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^81 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(64) 8024922358753114 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^83 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(66) 8024922358753114 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^85 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(68) 8024922358753114 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^87 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(70) 8024922358753114 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^89 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(72) 8024922358753114 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^91 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(74) 8024922358753114 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^93 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(76) 8024922358753114 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^95 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(78) 8024922358753114 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^97 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(80) 8024922358753114 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^99 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(82) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(84) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(86) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(88) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(90) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(92) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(94) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(96) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(98) 8024922358753114 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^18 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(100) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(99) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(97) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(95) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(93) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(91) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(89) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(87) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(85) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(83) 8024922358753114 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^100 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(81) 8024922358753114 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^98 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(79) 8024922358753114 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^96 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(77) 8024922358753114 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^94 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(75) 8024922358753114 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^92 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(73) 8024922358753114 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^90 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(71) 8024922358753114 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^88 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(69) 8024922358753114 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^86 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(67) 8024922358753114 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^84 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(65) 8024922358753114 a001 11592/3665737348901*14662949395604^(5/7) 8024922358753114 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^82 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(63) 8024922358753114 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^80 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(61) 8024922358753114 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^78 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(59) 8024922358753114 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^76 8024922358753114 a001 11592/204284540899*14662949395604^(13/21) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(57) 8024922358753114 a001 144/10749853441*505019158607^(3/4) 8024922358753114 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^74 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(55) 8024922358753114 a001 11592/204284540899*192900153618^(13/18) 8024922358753114 a001 11592/3665737348901*192900153618^(5/6) 8024922358753114 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^72 8024922358753114 a001 46368/119218851371*312119004989^(7/11) 8024922358753114 a001 46368/119218851371*14662949395604^(5/9) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(53) 8024922358753114 a001 46368/119218851371*505019158607^(5/8) 8024922358753114 a001 2576/10716675201*73681302247^(9/13) 8024922358753114 a001 11592/204284540899*73681302247^(3/4) 8024922358753114 a001 15456/440719107401*73681302247^(10/13) 8024922358753114 a001 15456/3020733700601*73681302247^(11/13) 8024922358753114 a001 11592/11384387281*45537549124^(11/17) 8024922358753114 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^70 8024922358753114 a001 11592/11384387281*312119004989^(3/5) 8024922358753114 a001 11592/11384387281*817138163596^(11/19) 8024922358753114 a001 11592/11384387281*14662949395604^(11/21) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(51) 8024922358753114 a001 11592/11384387281*192900153618^(11/18) 8024922358753114 a001 46368/119218851371*28143753123^(7/10) 8024922358753114 a001 15456/440719107401*28143753123^(4/5) 8024922358753114 a001 11592/3665737348901*28143753123^(9/10) 8024922358753114 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^68 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(49) 8024922358753114 a001 46368/17393796001*9062201101803^(1/2) 8024922358753114 a001 15456/9381251041*10749957122^(2/3) 8024922358753114 a001 6624/10525900321*10749957122^(17/24) 8024922358753114 a001 11592/11384387281*10749957122^(11/16) 8024922358753114 a001 2576/10716675201*10749957122^(3/4) 8024922358753114 a001 46368/505019158607*10749957122^(19/24) 8024922358753114 a001 11592/204284540899*10749957122^(13/16) 8024922358753114 a001 15456/440719107401*10749957122^(5/6) 8024922358753114 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^20 8024922358753114 a001 144/10749853441*10749957122^(7/8) 8024922358753114 a001 15456/3020733700601*10749957122^(11/12) 8024922358753114 a001 11592/3665737348901*10749957122^(15/16) 8024922358753114 a001 46368/23725150497407*10749957122^(23/24) 8024922358753114 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^22 8024922358753114 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^24 8024922358753114 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^26 8024922358753114 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^28 8024922358753114 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^30 8024922358753114 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^32 8024922358753114 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^34 8024922358753114 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^36 8024922358753114 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^38 8024922358753114 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^40 8024922358753114 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^42 8024922358753114 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^44 8024922358753114 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^46 8024922358753114 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^48 8024922358753114 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^50 8024922358753114 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^52 8024922358753114 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^54 8024922358753114 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^56 8024922358753114 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^58 8024922358753114 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^60 8024922358753114 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^62 8024922358753114 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^64 8024922358753114 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^66 8024922358753114 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^68 8024922358753114 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^70 8024922358753114 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^69 8024922358753114 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^67 8024922358753114 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^65 8024922358753114 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^63 8024922358753114 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^61 8024922358753114 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^59 8024922358753114 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^57 8024922358753114 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^55 8024922358753114 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^53 8024922358753114 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^51 8024922358753114 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^49 8024922358753114 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^47 8024922358753114 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^45 8024922358753114 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^43 8024922358753114 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^41 8024922358753114 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^39 8024922358753114 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^37 8024922358753114 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^35 8024922358753114 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^33 8024922358753114 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^31 8024922358753114 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^29 8024922358753114 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^27 8024922358753114 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^25 8024922358753114 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^23 8024922358753114 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^21 8024922358753114 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^19 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(47) 8024922358753114 a001 46368/6643838879*1322157322203^(1/2) 8024922358753114 a001 23184/5374978561*4106118243^(15/23) 8024922358753114 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^17 8024922358753114 a001 15456/9381251041*4106118243^(16/23) 8024922358753114 a001 6624/10525900321*4106118243^(17/23) 8024922358753114 a001 2576/10716675201*4106118243^(18/23) 8024922358753114 a001 46368/505019158607*4106118243^(19/23) 8024922358753114 a001 15456/440719107401*4106118243^(20/23) 8024922358753114 a001 144/10749853441*4106118243^(21/23) 8024922358753114 a001 15456/3020733700601*4106118243^(22/23) 8024922358753114 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^64 8024922358753114 a001 11592/634430159*2537720636^(3/5) 8024922358753114 a001 11592/634430159*45537549124^(9/17) 8024922358753114 a001 11592/634430159*817138163596^(9/19) 8024922358753114 a001 11592/634430159*14662949395604^(3/7) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^27/Lucas(45) 8024922358753114 a001 11592/634430159*192900153618^(1/2) 8024922358753114 a001 11592/634430159*10749957122^(9/16) 8024922358753114 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^15 8024922358753114 a001 15456/1368706081*1568397607^(7/11) 8024922358753114 a001 23184/5374978561*1568397607^(15/22) 8024922358753114 a001 15456/9381251041*1568397607^(8/11) 8024922358753114 a001 11592/11384387281*1568397607^(3/4) 8024922358753114 a001 6624/10525900321*1568397607^(17/22) 8024922358753114 a001 2576/10716675201*1568397607^(9/11) 8024922358753114 a001 46368/505019158607*1568397607^(19/22) 8024922358753114 a001 15456/440719107401*1568397607^(10/11) 8024922358753114 a001 144/10749853441*1568397607^(21/22) 8024922358753114 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^62 8024922358753114 a001 46368/969323029*2537720636^(5/9) 8024922358753114 a001 46368/969323029*312119004989^(5/11) 8024922358753114 a001 20100270054816/2504730781961 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^25/Lucas(43) 8024922358753114 a001 46368/969323029*3461452808002^(5/12) 8024922358753114 a001 46368/969323029*28143753123^(1/2) 8024922358753114 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^13 8024922358753114 a001 6624/224056801*599074578^(13/21) 8024922358753114 a001 15456/1368706081*599074578^(2/3) 8024922358753114 a001 11592/634430159*599074578^(9/14) 8024922358753114 a001 23184/5374978561*599074578^(5/7) 8024922358753114 a001 15456/9381251041*599074578^(16/21) 8024922358753114 a001 11592/11384387281*599074578^(11/14) 8024922358753114 a001 6624/10525900321*599074578^(17/21) 8024922358753114 a001 46368/119218851371*599074578^(5/6) 8024922358753114 a001 2576/10716675201*599074578^(6/7) 8024922358753114 a001 46368/505019158607*599074578^(19/21) 8024922358753114 a001 11592/204284540899*599074578^(13/14) 8024922358753114 a001 15456/440719107401*599074578^(20/21) 8024922358753114 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^60 8024922358753114 a001 7677619977888/956722026041 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^23/Lucas(41) 8024922358753114 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^11 8024922358753114 a001 46368/370248451*4106118243^(1/2) 8024922358753114 a001 2576/33281921*228826127^(3/5) 8024922358753114 a001 6624/224056801*228826127^(13/20) 8024922358753114 a001 46368/969323029*228826127^(5/8) 8024922358753114 a001 15456/1368706081*228826127^(7/10) 8024922358753114 a001 23184/5374978561*228826127^(3/4) 8024922358753114 a001 15456/9381251041*228826127^(4/5) 8024922358753114 a001 6624/10525900321*228826127^(17/20) 8024922358753114 a001 46368/119218851371*228826127^(7/8) 8024922358753114 a001 2576/10716675201*228826127^(9/10) 8024922358753114 a001 46368/505019158607*228826127^(19/20) 8024922358753114 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^58 8024922358753114 a001 11592/35355581*141422324^(7/13) 8024922358753114 a001 11592/35355581*2537720636^(7/15) 8024922358753114 a001 11592/35355581*17393796001^(3/7) 8024922358753114 a001 11592/35355581*45537549124^(7/17) 8024922358753114 a001 1466294939424/182717648081 8024922358753114 a001 11592/35355581*14662949395604^(1/3) 8024922358753114 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^21/Lucas(39) 8024922358753114 a001 11592/35355581*192900153618^(7/18) 8024922358753114 a001 11592/35355581*10749957122^(7/16) 8024922358753114 a004 Fibonacci(39)/Lucas(24)/(1/2+sqrt(5)/2)^9 8024922358753114 a001 11592/35355581*599074578^(1/2) 8024922358753114 a001 46368/228826127*87403803^(11/19) 8024922358753114 a001 2576/33281921*87403803^(12/19) 8024922358753114 a001 6624/224056801*87403803^(13/19) 8024922358753114 a001 15456/1368706081*87403803^(14/19) 8024922358753114 a001 23184/5374978561*87403803^(15/19) 8024922358753114 a001 15456/9381251041*87403803^(16/19) 8024922358753115 a001 6624/10525900321*87403803^(17/19) 8024922358753115 a001 2576/10716675201*87403803^(18/19) 8024922358753115 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^56 8024922358753116 a001 1120149658656/139583862445 8024922358753116 a001 46368/54018521*817138163596^(1/3) 8024922358753116 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^19/Lucas(37) 8024922358753116 a004 Fibonacci(37)/Lucas(24)/(1/2+sqrt(5)/2)^7 8024922358753117 a001 15456/29134601*33385282^(5/9) 8024922358753117 a001 46368/54018521*87403803^(1/2) 8024922358753118 a001 46368/228826127*33385282^(11/18) 8024922358753118 a001 11592/35355581*33385282^(7/12) 8024922358753118 a001 2576/33281921*33385282^(2/3) 8024922358753119 a001 6624/224056801*33385282^(13/18) 8024922358753119 a001 11592/634430159*33385282^(3/4) 8024922358753119 a001 15456/1368706081*33385282^(7/9) 8024922358753120 a001 23184/5374978561*33385282^(5/6) 8024922358753120 a001 15456/9381251041*33385282^(8/9) 8024922358753120 a001 11592/11384387281*33385282^(11/12) 8024922358753120 a001 6624/10525900321*33385282^(17/18) 8024922358753121 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^54 8024922358753132 a001 46368/20633239*45537549124^(1/3) 8024922358753132 a001 427859097120/53316291173 8024922358753132 a001 46368/20633239*(1/2+1/2*5^(1/2))^17 8024922358753132 a004 Fibonacci(35)/Lucas(24)/(1/2+sqrt(5)/2)^5 8024922358753132 a001 144/103681*12752043^(9/17) 8024922358753142 a001 15456/29134601*12752043^(10/17) 8024922358753145 a001 46368/228826127*12752043^(11/17) 8024922358753148 a001 2576/33281921*12752043^(12/17) 8024922358753151 a001 6624/224056801*12752043^(13/17) 8024922358753154 a001 15456/1368706081*12752043^(14/17) 8024922358753157 a001 46368/20633239*12752043^(1/2) 8024922358753157 a001 23184/5374978561*12752043^(15/17) 8024922358753160 a001 15456/9381251041*12752043^(16/17) 8024922358753163 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^52 8024922358753184 a001 11592/1970299*7881196^(5/11) 8024922358753233 a001 15456/4250681*4870847^(1/2) 8024922358753235 a001 11592/1970299*20633239^(3/7) 8024922358753243 a001 11592/1970299*141422324^(5/13) 8024922358753243 a001 11592/1970299*2537720636^(1/3) 8024922358753243 a001 81713816352/10182505537 8024922358753243 a001 11592/1970299*45537549124^(5/17) 8024922358753243 a001 11592/1970299*312119004989^(3/11) 8024922358753243 a001 11592/1970299*14662949395604^(5/21) 8024922358753243 a001 11592/1970299*(1/2+1/2*5^(1/2))^15 8024922358753243 a001 11592/1970299*192900153618^(5/18) 8024922358753243 a001 11592/1970299*28143753123^(3/10) 8024922358753243 a001 11592/1970299*10749957122^(5/16) 8024922358753243 a004 Fibonacci(33)/Lucas(24)/(1/2+sqrt(5)/2)^3 8024922358753243 a001 11592/1970299*599074578^(5/14) 8024922358753243 a001 11592/1970299*228826127^(3/8) 8024922358753246 a001 11592/1970299*33385282^(5/12) 8024922358753297 a001 144/103681*4870847^(9/16) 8024922358753324 a001 15456/29134601*4870847^(5/8) 8024922358753346 a001 46368/228826127*4870847^(11/16) 8024922358753367 a001 2576/33281921*4870847^(3/4) 8024922358753388 a001 6624/224056801*4870847^(13/16) 8024922358753410 a001 15456/1368706081*4870847^(7/8) 8024922358753431 a001 23184/5374978561*4870847^(15/16) 8024922358753452 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^50 8024922358753710 a001 1346269/271443*24476^(1/21) 8024922358753857 a001 46368/4870847*1860498^(7/15) 8024922358753999 a001 46368/3010349*141422324^(1/3) 8024922358753999 a001 62423800992/7778742049 8024922358753999 a001 46368/3010349*(1/2+1/2*5^(1/2))^13 8024922358753999 a001 46368/3010349*73681302247^(1/4) 8024922358753999 a004 Fibonacci(31)/Lucas(24)/(1/2+sqrt(5)/2) 8024922358754301 a001 15456/4250681*1860498^(8/15) 8024922358754402 a001 11592/1970299*1860498^(1/2) 8024922358754497 a001 144/103681*1860498^(3/5) 8024922358754658 a001 15456/29134601*1860498^(2/3) 8024922358754737 a001 11592/35355581*1860498^(7/10) 8024922358754814 a001 46368/228826127*1860498^(11/15) 8024922358754968 a001 2576/33281921*1860498^(4/5) 8024922358755046 a001 46368/969323029*1860498^(5/6) 8024922358755123 a001 6624/224056801*1860498^(13/15) 8024922358755200 a001 11592/634430159*1860498^(9/10) 8024922358755277 a001 15456/1368706081*1860498^(14/15) 8024922358755432 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^48 8024922358757605 a001 2576/103361*710647^(3/7) 8024922358759140 a001 46368/1149851*7881196^(1/3) 8024922358759183 a001 23843770272/2971215073 8024922358759183 a001 46368/1149851*312119004989^(1/5) 8024922358759183 a001 46368/1149851*(1/2+1/2*5^(1/2))^11 8024922358759183 a001 514229/207364+514229/207364*5^(1/2) 8024922358759183 a001 46368/1149851*1568397607^(1/4) 8024922358760720 a001 46368/4870847*710647^(1/2) 8024922358762144 a001 15456/4250681*710647^(4/7) 8024922358763322 a001 144/103681*710647^(9/14) 8024922358764463 a001 15456/29134601*710647^(5/7) 8024922358765032 a001 11592/35355581*710647^(3/4) 8024922358765599 a001 46368/228826127*710647^(11/14) 8024922358765970 a001 75025/3010349*64079^(12/23) 8024922358766734 a001 2576/33281921*710647^(6/7) 8024922358767869 a001 6624/224056801*710647^(13/14) 8024922358768618 a001 121393/103682*103682^(1/6) 8024922358769004 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^46 8024922358771954 a001 121393/271443*64079^(6/23) 8024922358774146 a001 98209/930249*64079^(9/23) 8024922358779113 a001 6624/101521*271443^(5/13) 8024922358780848 a001 11592/109801*439204^(1/3) 8024922358790093 a001 98209/51841*439204^(1/9) 8024922358790288 a001 514229/103682*103682^(1/24) 8024922358794680 a001 11592/109801*7881196^(3/11) 8024922358794703 a001 98209/51841*7881196^(1/11) 8024922358794715 a001 11592/109801*141422324^(3/13) 8024922358794715 a001 98209/51841*141422324^(1/13) 8024922358794715 a001 267867936/33379505 8024922358794715 a001 11592/109801*2537720636^(1/5) 8024922358794715 a001 98209/51841*2537720636^(1/15) 8024922358794715 a001 11592/109801*45537549124^(3/17) 8024922358794715 a001 11592/109801*817138163596^(3/19) 8024922358794715 a001 11592/109801*14662949395604^(1/7) 8024922358794715 a001 11592/109801*(1/2+1/2*5^(1/2))^9 8024922358794715 a001 11592/109801*192900153618^(1/6) 8024922358794715 a001 11592/109801*10749957122^(3/16) 8024922358794715 a001 98209/51841*45537549124^(1/17) 8024922358794715 a001 98209/51841*14662949395604^(1/21) 8024922358794715 a001 98209/51841*(1/2+1/2*5^(1/2))^3 8024922358794715 a001 98209/51841*192900153618^(1/18) 8024922358794715 a001 98209/51841*10749957122^(1/16) 8024922358794715 a001 98209/51841*599074578^(1/14) 8024922358794715 a001 11592/109801*599074578^(3/14) 8024922358794716 a001 98209/51841*33385282^(1/12) 8024922358794717 a001 11592/109801*33385282^(1/4) 8024922358794947 a001 98209/51841*1860498^(1/10) 8024922358795411 a001 11592/109801*1860498^(3/10) 8024922358799432 a001 317811/103682*103682^(1/12) 8024922358801063 a001 2576/103361*271443^(6/13) 8024922358801627 a001 105937/620166*64079^(8/23) 8024922358801916 a001 17711/20633239*39603^(19/22) 8024922358808456 a001 46368/3010349*271443^(1/2) 8024922358811421 a001 46368/4870847*271443^(7/13) 8024922358817179 a001 832040/4870847*64079^(8/23) 8024922358819448 a001 726103/4250681*64079^(8/23) 8024922358819779 a001 5702887/33385282*64079^(8/23) 8024922358819828 a001 4976784/29134601*64079^(8/23) 8024922358819835 a001 39088169/228826127*64079^(8/23) 8024922358819836 a001 34111385/199691526*64079^(8/23) 8024922358819836 a001 267914296/1568397607*64079^(8/23) 8024922358819836 a001 233802911/1368706081*64079^(8/23) 8024922358819836 a001 1836311903/10749957122*64079^(8/23) 8024922358819836 a001 1602508992/9381251041*64079^(8/23) 8024922358819836 a001 12586269025/73681302247*64079^(8/23) 8024922358819836 a001 10983760033/64300051206*64079^(8/23) 8024922358819836 a001 86267571272/505019158607*64079^(8/23) 8024922358819836 a001 75283811239/440719107401*64079^(8/23) 8024922358819836 a001 2504730781961/14662949395604*64079^(8/23) 8024922358819836 a001 139583862445/817138163596*64079^(8/23) 8024922358819836 a001 53316291173/312119004989*64079^(8/23) 8024922358819836 a001 20365011074/119218851371*64079^(8/23) 8024922358819836 a001 7778742049/45537549124*64079^(8/23) 8024922358819836 a001 2971215073/17393796001*64079^(8/23) 8024922358819836 a001 1134903170/6643838879*64079^(8/23) 8024922358819836 a001 433494437/2537720636*64079^(8/23) 8024922358819836 a001 165580141/969323029*64079^(8/23) 8024922358819836 a001 63245986/370248451*64079^(8/23) 8024922358819839 a001 24157817/141422324*64079^(8/23) 8024922358819858 a001 9227465/54018521*64079^(8/23) 8024922358819984 a001 3524578/20633239*64079^(8/23) 8024922358820088 a001 15456/4250681*271443^(8/13) 8024922358820851 a001 1346269/7881196*64079^(8/23) 8024922358826791 a001 514229/3010349*64079^(8/23) 8024922358828508 a001 144/103681*271443^(9/13) 8024922358836892 a001 15456/29134601*271443^(10/13) 8024922358837497 a001 121393/439204*64079^(7/23) 8024922358845271 a001 46368/228826127*271443^(11/13) 8024922358845977 a001 3524578/710647*24476^(1/21) 8024922358847739 a001 75025/1860498*64079^(11/23) 8024922358853650 a001 2576/33281921*271443^(12/13) 8024922358859439 a001 9227465/1860498*24476^(1/21) 8024922358861403 a001 24157817/4870847*24476^(1/21) 8024922358861690 a001 63245986/12752043*24476^(1/21) 8024922358861731 a001 165580141/33385282*24476^(1/21) 8024922358861737 a001 433494437/87403803*24476^(1/21) 8024922358861738 a001 1134903170/228826127*24476^(1/21) 8024922358861738 a001 2971215073/599074578*24476^(1/21) 8024922358861738 a001 7778742049/1568397607*24476^(1/21) 8024922358861739 a001 20365011074/4106118243*24476^(1/21) 8024922358861739 a001 53316291173/10749957122*24476^(1/21) 8024922358861739 a001 139583862445/28143753123*24476^(1/21) 8024922358861739 a001 365435296162/73681302247*24476^(1/21) 8024922358861739 a001 956722026041/192900153618*24476^(1/21) 8024922358861739 a001 2504730781961/505019158607*24476^(1/21) 8024922358861739 a001 10610209857723/2139295485799*24476^(1/21) 8024922358861739 a001 4052739537881/817138163596*24476^(1/21) 8024922358861739 a001 140728068720/28374454999*24476^(1/21) 8024922358861739 a001 591286729879/119218851371*24476^(1/21) 8024922358861739 a001 225851433717/45537549124*24476^(1/21) 8024922358861739 a001 86267571272/17393796001*24476^(1/21) 8024922358861739 a001 32951280099/6643838879*24476^(1/21) 8024922358861739 a001 1144206275/230701876*24476^(1/21) 8024922358861739 a001 4807526976/969323029*24476^(1/21) 8024922358861739 a001 1836311903/370248451*24476^(1/21) 8024922358861739 a001 701408733/141422324*24476^(1/21) 8024922358861741 a001 267914296/54018521*24476^(1/21) 8024922358861757 a001 9303105/1875749*24476^(1/21) 8024922358861867 a001 39088169/7881196*24476^(1/21) 8024922358862028 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^44 8024922358862617 a001 14930352/3010349*24476^(1/21) 8024922358867507 a001 196418/1149851*64079^(8/23) 8024922358867759 a001 5702887/1149851*24476^(1/21) 8024922358888028 a001 98209/51841*103682^(1/8) 8024922358893035 a001 15456/90481*103682^(1/3) 8024922358894988 a001 317811/1149851*64079^(7/23) 8024922358903002 a001 2178309/439204*24476^(1/21) 8024922358903376 a001 832040/3010349*64079^(7/23) 8024922358904600 a001 2178309/7881196*64079^(7/23) 8024922358904779 a001 5702887/20633239*64079^(7/23) 8024922358904805 a001 14930352/54018521*64079^(7/23) 8024922358904808 a001 39088169/141422324*64079^(7/23) 8024922358904809 a001 102334155/370248451*64079^(7/23) 8024922358904809 a001 267914296/969323029*64079^(7/23) 8024922358904809 a001 701408733/2537720636*64079^(7/23) 8024922358904809 a001 1836311903/6643838879*64079^(7/23) 8024922358904809 a001 4807526976/17393796001*64079^(7/23) 8024922358904809 a001 12586269025/45537549124*64079^(7/23) 8024922358904809 a001 32951280099/119218851371*64079^(7/23) 8024922358904809 a001 86267571272/312119004989*64079^(7/23) 8024922358904809 a001 225851433717/817138163596*64079^(7/23) 8024922358904809 a001 1548008755920/5600748293801*64079^(7/23) 8024922358904809 a001 139583862445/505019158607*64079^(7/23) 8024922358904809 a001 53316291173/192900153618*64079^(7/23) 8024922358904809 a001 20365011074/73681302247*64079^(7/23) 8024922358904809 a001 7778742049/28143753123*64079^(7/23) 8024922358904809 a001 2971215073/10749957122*64079^(7/23) 8024922358904809 a001 1134903170/4106118243*64079^(7/23) 8024922358904809 a001 433494437/1568397607*64079^(7/23) 8024922358904809 a001 165580141/599074578*64079^(7/23) 8024922358904809 a001 63245986/228826127*64079^(7/23) 8024922358904811 a001 24157817/87403803*64079^(7/23) 8024922358904821 a001 9227465/33385282*64079^(7/23) 8024922358904889 a001 3524578/12752043*64079^(7/23) 8024922358905356 a001 1346269/4870847*64079^(7/23) 8024922358908560 a001 514229/1860498*64079^(7/23) 8024922358930520 a001 196418/710647*64079^(7/23) 8024922358941100 a001 75025/1149851*64079^(10/23) 8024922358958002 a001 317811/710647*64079^(6/23) 8024922358981226 a001 75025/103682*167761^(1/5) 8024922358985146 a001 416020/930249*64079^(6/23) 8024922358989106 a001 2178309/4870847*64079^(6/23) 8024922358989684 a001 5702887/12752043*64079^(6/23) 8024922358989768 a001 7465176/16692641*64079^(6/23) 8024922358989780 a001 39088169/87403803*64079^(6/23) 8024922358989782 a001 102334155/228826127*64079^(6/23) 8024922358989782 a001 133957148/299537289*64079^(6/23) 8024922358989782 a001 701408733/1568397607*64079^(6/23) 8024922358989782 a001 1836311903/4106118243*64079^(6/23) 8024922358989782 a001 2403763488/5374978561*64079^(6/23) 8024922358989782 a001 12586269025/28143753123*64079^(6/23) 8024922358989782 a001 32951280099/73681302247*64079^(6/23) 8024922358989782 a001 43133785636/96450076809*64079^(6/23) 8024922358989782 a001 225851433717/505019158607*64079^(6/23) 8024922358989782 a001 591286729879/1322157322203*64079^(6/23) 8024922358989782 a001 10610209857723/23725150497407*64079^(6/23) 8024922358989782 a001 182717648081/408569081798*64079^(6/23) 8024922358989782 a001 139583862445/312119004989*64079^(6/23) 8024922358989782 a001 53316291173/119218851371*64079^(6/23) 8024922358989782 a001 10182505537/22768774562*64079^(6/23) 8024922358989782 a001 7778742049/17393796001*64079^(6/23) 8024922358989782 a001 2971215073/6643838879*64079^(6/23) 8024922358989782 a001 567451585/1268860318*64079^(6/23) 8024922358989782 a001 433494437/969323029*64079^(6/23) 8024922358989782 a001 165580141/370248451*64079^(6/23) 8024922358989783 a001 31622993/70711162*64079^(6/23) 8024922358989788 a001 24157817/54018521*64079^(6/23) 8024922358989820 a001 9227465/20633239*64079^(6/23) 8024922358990041 a001 1762289/3940598*64079^(6/23) 8024922358991553 a001 1346269/3010349*64079^(6/23) 8024922358991758 a001 514229/103682*39603^(1/22) 8024922359001921 a001 514229/1149851*64079^(6/23) 8024922359004113 a001 75025/710647*64079^(9/23) 8024922359007443 a001 196418/271443*64079^(5/23) 8024922359034465 a001 17711/33385282*39603^(10/11) 8024922359034924 a001 105937/90481*64079^(4/23) 8024922359038250 a001 46368/167761*20633239^(1/5) 8024922359038251 a001 75025/103682*20633239^(1/7) 8024922359038254 a001 3478759200/433494437 8024922359038254 a001 75025/103682*2537720636^(1/9) 8024922359038254 a001 46368/167761*17393796001^(1/7) 8024922359038254 a001 46368/167761*14662949395604^(1/9) 8024922359038254 a001 46368/167761*(1/2+1/2*5^(1/2))^7 8024922359038254 a001 75025/103682*312119004989^(1/11) 8024922359038254 a001 75025/103682*(1/2+1/2*5^(1/2))^5 8024922359038254 a001 75025/103682*28143753123^(1/10) 8024922359038254 a001 46368/167761*599074578^(1/6) 8024922359038254 a001 75025/103682*228826127^(1/8) 8024922359038640 a001 75025/103682*1860498^(1/6) 8024922359042227 a001 46368/167761*710647^(1/4) 8024922359048268 a001 6624/101521*103682^(5/12) 8024922359064935 a001 514229/710647*64079^(5/23) 8024922359072985 a001 98209/219602*64079^(6/23) 8024922359073323 a001 1346269/1860498*64079^(5/23) 8024922359074546 a001 3524578/4870847*64079^(5/23) 8024922359074655 a001 11592/109801*103682^(3/8) 8024922359074725 a001 9227465/12752043*64079^(5/23) 8024922359074751 a001 24157817/33385282*64079^(5/23) 8024922359074755 a001 63245986/87403803*64079^(5/23) 8024922359074755 a001 165580141/228826127*64079^(5/23) 8024922359074755 a001 433494437/599074578*64079^(5/23) 8024922359074755 a001 1134903170/1568397607*64079^(5/23) 8024922359074755 a001 2971215073/4106118243*64079^(5/23) 8024922359074755 a001 7778742049/10749957122*64079^(5/23) 8024922359074755 a001 20365011074/28143753123*64079^(5/23) 8024922359074755 a001 53316291173/73681302247*64079^(5/23) 8024922359074755 a001 139583862445/192900153618*64079^(5/23) 8024922359074755 a001 365435296162/505019158607*64079^(5/23) 8024922359074755 a001 10610209857723/14662949395604*64079^(5/23) 8024922359074755 a001 591286729879/817138163596*64079^(5/23) 8024922359074755 a001 225851433717/312119004989*64079^(5/23) 8024922359074755 a001 86267571272/119218851371*64079^(5/23) 8024922359074755 a001 32951280099/45537549124*64079^(5/23) 8024922359074755 a001 12586269025/17393796001*64079^(5/23) 8024922359074755 a001 4807526976/6643838879*64079^(5/23) 8024922359074755 a001 1836311903/2537720636*64079^(5/23) 8024922359074755 a001 701408733/969323029*64079^(5/23) 8024922359074755 a001 267914296/370248451*64079^(5/23) 8024922359074756 a001 102334155/141422324*64079^(5/23) 8024922359074757 a001 39088169/54018521*64079^(5/23) 8024922359074767 a001 14930352/20633239*64079^(5/23) 8024922359074835 a001 5702887/7881196*64079^(5/23) 8024922359075303 a001 2178309/3010349*64079^(5/23) 8024922359078507 a001 832040/1149851*64079^(5/23) 8024922359081036 a001 75025/271443*64079^(7/23) 8024922359100466 a001 317811/439204*64079^(5/23) 8024922359101332 a001 46368/1149851*103682^(11/24) 8024922359105567 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^45 8024922359124049 a001 2576/103361*103682^(1/2) 8024922359141520 a001 832040/710647*64079^(4/23) 8024922359141857 a001 514229/271443*64079^(3/23) 8024922359144561 a001 75640/15251*24476^(1/21) 8024922359146578 a001 75025/439204*64079^(8/23) 8024922359157072 a001 726103/620166*64079^(4/23) 8024922359158357 a001 46368/3010349*103682^(13/24) 8024922359159341 a001 5702887/4870847*64079^(4/23) 8024922359159672 a001 4976784/4250681*64079^(4/23) 8024922359159720 a001 39088169/33385282*64079^(4/23) 8024922359159727 a001 34111385/29134601*64079^(4/23) 8024922359159728 a001 267914296/228826127*64079^(4/23) 8024922359159728 a001 233802911/199691526*64079^(4/23) 8024922359159728 a001 1836311903/1568397607*64079^(4/23) 8024922359159728 a001 1602508992/1368706081*64079^(4/23) 8024922359159728 a001 12586269025/10749957122*64079^(4/23) 8024922359159728 a001 10983760033/9381251041*64079^(4/23) 8024922359159728 a001 86267571272/73681302247*64079^(4/23) 8024922359159728 a001 75283811239/64300051206*64079^(4/23) 8024922359159728 a001 2504730781961/2139295485799*64079^(4/23) 8024922359159728 a001 365435296162/312119004989*64079^(4/23) 8024922359159728 a001 139583862445/119218851371*64079^(4/23) 8024922359159728 a001 53316291173/45537549124*64079^(4/23) 8024922359159728 a001 20365011074/17393796001*64079^(4/23) 8024922359159728 a001 7778742049/6643838879*64079^(4/23) 8024922359159728 a001 2971215073/2537720636*64079^(4/23) 8024922359159728 a001 1134903170/969323029*64079^(4/23) 8024922359159729 a001 433494437/370248451*64079^(4/23) 8024922359159729 a001 165580141/141422324*64079^(4/23) 8024922359159732 a001 63245986/54018521*64079^(4/23) 8024922359159750 a001 24157817/20633239*64079^(4/23) 8024922359159877 a001 9227465/7881196*64079^(4/23) 8024922359160743 a001 3524578/3010349*64079^(4/23) 8024922359162594 a001 121393/228826127*167761^(4/5) 8024922359166684 a001 1346269/1149851*64079^(4/23) 8024922359187613 a001 75025/64079*24476^(4/21) 8024922359188238 a001 46368/4870847*103682^(7/12) 8024922359193776 a001 75025/103682*103682^(5/24) 8024922359198590 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^47 8024922359202372 a001 317811/103682*39603^(1/11) 8024922359207399 a001 514229/439204*64079^(4/23) 8024922359212162 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^49 8024922359214142 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^51 8024922359214431 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^53 8024922359214473 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^55 8024922359214479 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^57 8024922359214480 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^59 8024922359214480 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^61 8024922359214481 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^63 8024922359214481 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^65 8024922359214481 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^67 8024922359214481 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^69 8024922359214481 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^71 8024922359214481 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^73 8024922359214481 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^75 8024922359214481 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^77 8024922359214481 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^79 8024922359214481 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^81 8024922359214481 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^83 8024922359214481 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^85 8024922359214481 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^87 8024922359214481 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^89 8024922359214481 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^91 8024922359214481 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^93 8024922359214481 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^95 8024922359214481 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^97 8024922359214481 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^99 8024922359214481 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^100 8024922359214481 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^98 8024922359214481 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^96 8024922359214481 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^94 8024922359214481 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^92 8024922359214481 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^90 8024922359214481 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^88 8024922359214481 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^86 8024922359214481 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^84 8024922359214481 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^82 8024922359214481 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^80 8024922359214481 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^78 8024922359214481 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^76 8024922359214481 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^74 8024922359214481 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^72 8024922359214481 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^70 8024922359214481 a001 2/75025*(1/2+1/2*5^(1/2))^31 8024922359214481 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^68 8024922359214481 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^66 8024922359214481 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^64 8024922359214481 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^62 8024922359214481 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^60 8024922359214481 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^58 8024922359214483 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^56 8024922359214499 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^54 8024922359214610 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^52 8024922359215366 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^50 8024922359218442 a001 832040/271443*64079^(2/23) 8024922359219642 a001 121393/20633239*167761^(3/5) 8024922359219810 a001 11592/1970299*103682^(5/8) 8024922359220550 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^48 8024922359229697 a001 1346269/710647*64079^(3/23) 8024922359242512 a001 1762289/930249*64079^(3/23) 8024922359244382 a001 9227465/4870847*64079^(3/23) 8024922359244655 a001 24157817/12752043*64079^(3/23) 8024922359244695 a001 31622993/16692641*64079^(3/23) 8024922359244701 a001 165580141/87403803*64079^(3/23) 8024922359244701 a001 433494437/228826127*64079^(3/23) 8024922359244702 a001 567451585/299537289*64079^(3/23) 8024922359244702 a001 2971215073/1568397607*64079^(3/23) 8024922359244702 a001 7778742049/4106118243*64079^(3/23) 8024922359244702 a001 10182505537/5374978561*64079^(3/23) 8024922359244702 a001 53316291173/28143753123*64079^(3/23) 8024922359244702 a001 139583862445/73681302247*64079^(3/23) 8024922359244702 a001 182717648081/96450076809*64079^(3/23) 8024922359244702 a001 956722026041/505019158607*64079^(3/23) 8024922359244702 a001 10610209857723/5600748293801*64079^(3/23) 8024922359244702 a001 591286729879/312119004989*64079^(3/23) 8024922359244702 a001 225851433717/119218851371*64079^(3/23) 8024922359244702 a001 21566892818/11384387281*64079^(3/23) 8024922359244702 a001 32951280099/17393796001*64079^(3/23) 8024922359244702 a001 12586269025/6643838879*64079^(3/23) 8024922359244702 a001 1201881744/634430159*64079^(3/23) 8024922359244702 a001 1836311903/969323029*64079^(3/23) 8024922359244702 a001 701408733/370248451*64079^(3/23) 8024922359244702 a001 66978574/35355581*64079^(3/23) 8024922359244704 a001 102334155/54018521*64079^(3/23) 8024922359244719 a001 39088169/20633239*64079^(3/23) 8024922359244824 a001 3732588/1970299*64079^(3/23) 8024922359245538 a001 5702887/3010349*64079^(3/23) 8024922359250433 a001 2178309/1149851*64079^(3/23) 8024922359250736 a001 15456/4250681*103682^(2/3) 8024922359250982 a001 121393/167761*64079^(5/23) 8024922359255618 a001 377/710646*167761^(4/5) 8024922359255985 a001 46368/167761*103682^(7/24) 8024922359256082 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^46 8024922359267049 a001 17711/54018521*39603^(21/22) 8024922359269190 a001 832040/1568397607*167761^(4/5) 8024922359271170 a001 726103/1368706081*167761^(4/5) 8024922359271459 a001 5702887/10749957122*167761^(4/5) 8024922359271501 a001 4976784/9381251041*167761^(4/5) 8024922359271508 a001 39088169/73681302247*167761^(4/5) 8024922359271508 a001 34111385/64300051206*167761^(4/5) 8024922359271509 a001 267914296/505019158607*167761^(4/5) 8024922359271509 a001 233802911/440719107401*167761^(4/5) 8024922359271509 a001 1836311903/3461452808002*167761^(4/5) 8024922359271509 a001 1602508992/3020733700601*167761^(4/5) 8024922359271509 a001 12586269025/23725150497407*167761^(4/5) 8024922359271509 a001 7778742049/14662949395604*167761^(4/5) 8024922359271509 a001 2971215073/5600748293801*167761^(4/5) 8024922359271509 a001 1134903170/2139295485799*167761^(4/5) 8024922359271509 a001 433494437/817138163596*167761^(4/5) 8024922359271509 a001 165580141/312119004989*167761^(4/5) 8024922359271509 a001 63245986/119218851371*167761^(4/5) 8024922359271511 a001 24157817/45537549124*167761^(4/5) 8024922359271527 a001 9227465/17393796001*167761^(4/5) 8024922359271638 a001 3524578/6643838879*167761^(4/5) 8024922359272394 a001 1346269/2537720636*167761^(4/5) 8024922359272548 a001 121393/271443*439204^(2/9) 8024922359274332 a001 121393/1860498*167761^(2/5) 8024922359277578 a001 514229/969323029*167761^(4/5) 8024922359281770 a001 121393/271443*7881196^(2/11) 8024922359281793 a001 121393/271443*141422324^(2/13) 8024922359281793 a001 121393/271443*2537720636^(2/15) 8024922359281793 a001 121393/271443*45537549124^(2/17) 8024922359281793 a001 121393/271443*14662949395604^(2/21) 8024922359281793 a001 121393/271443*(1/2+1/2*5^(1/2))^6 8024922359281793 a001 121393/271443*10749957122^(1/8) 8024922359281793 a001 121393/271443*4106118243^(3/23) 8024922359281793 a001 121393/271443*1568397607^(3/22) 8024922359281793 a001 14736260449/1836311903 8024922359281793 a001 121393/271443*599074578^(1/7) 8024922359281793 a001 121393/271443*228826127^(3/20) 8024922359281793 a001 121393/271443*87403803^(3/19) 8024922359281794 a001 121393/271443*33385282^(1/6) 8024922359281802 a001 121393/271443*12752043^(3/17) 8024922359281856 a001 121393/271443*4870847^(3/16) 8024922359281908 a001 46368/20633239*103682^(17/24) 8024922359282257 a001 121393/271443*1860498^(1/5) 8024922359283985 a001 208010/109801*64079^(3/23) 8024922359285198 a001 121393/271443*710647^(3/14) 8024922359306619 a001 1346269/271443*64079^(1/23) 8024922359306927 a001 121393/271443*271443^(3/13) 8024922359312649 a001 317811/54018521*167761^(3/5) 8024922359312987 a001 144/103681*103682^(3/4) 8024922359313110 a001 196418/370248451*167761^(4/5) 8024922359313446 a001 311187/101521*64079^(2/23) 8024922359326219 a001 208010/35355581*167761^(3/5) 8024922359327307 a001 5702887/1860498*64079^(2/23) 8024922359328198 a001 2178309/370248451*167761^(3/5) 8024922359328487 a001 5702887/969323029*167761^(3/5) 8024922359328529 a001 196452/33391061*167761^(3/5) 8024922359328536 a001 39088169/6643838879*167761^(3/5) 8024922359328537 a001 102334155/17393796001*167761^(3/5) 8024922359328537 a001 66978574/11384387281*167761^(3/5) 8024922359328537 a001 701408733/119218851371*167761^(3/5) 8024922359328537 a001 1836311903/312119004989*167761^(3/5) 8024922359328537 a001 1201881744/204284540899*167761^(3/5) 8024922359328537 a001 12586269025/2139295485799*167761^(3/5) 8024922359328537 a001 32951280099/5600748293801*167761^(3/5) 8024922359328537 a001 1135099622/192933544679*167761^(3/5) 8024922359328537 a001 139583862445/23725150497407*167761^(3/5) 8024922359328537 a001 53316291173/9062201101803*167761^(3/5) 8024922359328537 a001 10182505537/1730726404001*167761^(3/5) 8024922359328537 a001 7778742049/1322157322203*167761^(3/5) 8024922359328537 a001 2971215073/505019158607*167761^(3/5) 8024922359328537 a001 567451585/96450076809*167761^(3/5) 8024922359328537 a001 433494437/73681302247*167761^(3/5) 8024922359328537 a001 165580141/28143753123*167761^(3/5) 8024922359328537 a001 31622993/5374978561*167761^(3/5) 8024922359328539 a001 24157817/4106118243*167761^(3/5) 8024922359328556 a001 9227465/1568397607*167761^(3/5) 8024922359328666 a001 1762289/299537289*167761^(3/5) 8024922359329329 a001 14930352/4870847*64079^(2/23) 8024922359329422 a001 1346269/228826127*167761^(3/5) 8024922359329624 a001 39088169/12752043*64079^(2/23) 8024922359329667 a001 14619165/4769326*64079^(2/23) 8024922359329674 a001 267914296/87403803*64079^(2/23) 8024922359329675 a001 701408733/228826127*64079^(2/23) 8024922359329675 a001 1836311903/599074578*64079^(2/23) 8024922359329675 a001 686789568/224056801*64079^(2/23) 8024922359329675 a001 12586269025/4106118243*64079^(2/23) 8024922359329675 a001 32951280099/10749957122*64079^(2/23) 8024922359329675 a001 86267571272/28143753123*64079^(2/23) 8024922359329675 a001 32264490531/10525900321*64079^(2/23) 8024922359329675 a001 591286729879/192900153618*64079^(2/23) 8024922359329675 a001 1548008755920/505019158607*64079^(2/23) 8024922359329675 a001 1515744265389/494493258286*64079^(2/23) 8024922359329675 a001 2504730781961/817138163596*64079^(2/23) 8024922359329675 a001 956722026041/312119004989*64079^(2/23) 8024922359329675 a001 365435296162/119218851371*64079^(2/23) 8024922359329675 a001 139583862445/45537549124*64079^(2/23) 8024922359329675 a001 53316291173/17393796001*64079^(2/23) 8024922359329675 a001 20365011074/6643838879*64079^(2/23) 8024922359329675 a001 7778742049/2537720636*64079^(2/23) 8024922359329675 a001 2971215073/969323029*64079^(2/23) 8024922359329675 a001 1134903170/370248451*64079^(2/23) 8024922359329675 a001 433494437/141422324*64079^(2/23) 8024922359329678 a001 165580141/54018521*64079^(2/23) 8024922359329694 a001 63245986/20633239*64079^(2/23) 8024922359329807 a001 24157817/7881196*64079^(2/23) 8024922359330579 a001 9227465/3010349*64079^(2/23) 8024922359334605 a001 514229/87403803*167761^(3/5) 8024922359335873 a001 3524578/1149851*64079^(2/23) 8024922359344101 a001 46368/54018521*103682^(19/24) 8024922359349106 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^47 8024922359353728 a001 121393/1568397607*439204^(8/9) 8024922359358350 a001 121393/370248451*439204^(7/9) 8024922359362972 a001 121393/87403803*439204^(2/3) 8024922359367614 a001 121393/20633239*439204^(5/9) 8024922359369336 a001 317811/4870847*167761^(2/5) 8024922359370131 a001 98209/16692641*167761^(3/5) 8024922359371879 a001 121393/4870847*439204^(4/9) 8024922359372162 a001 1346269/439204*64079^(2/23) 8024922359374817 a001 121393/710647*(1/2+1/2*5^(1/2))^8 8024922359374817 a001 121393/710647*23725150497407^(1/8) 8024922359374817 a001 121393/710647*505019158607^(1/7) 8024922359374817 a001 121393/710647*73681302247^(2/13) 8024922359374817 a001 105937/90481*(1/2+1/2*5^(1/2))^4 8024922359374817 a001 105937/90481*23725150497407^(1/16) 8024922359374817 a001 105937/90481*73681302247^(1/13) 8024922359374817 a001 105937/90481*10749957122^(1/12) 8024922359374817 a001 121393/710647*10749957122^(1/6) 8024922359374817 a001 105937/90481*4106118243^(2/23) 8024922359374817 a001 12860010241/1602508992 8024922359374817 a001 121393/710647*4106118243^(4/23) 8024922359374817 a001 105937/90481*1568397607^(1/11) 8024922359374817 a001 121393/710647*1568397607^(2/11) 8024922359374817 a001 105937/90481*599074578^(2/21) 8024922359374817 a001 121393/710647*599074578^(4/21) 8024922359374817 a001 105937/90481*228826127^(1/10) 8024922359374817 a001 121393/710647*228826127^(1/5) 8024922359374817 a001 105937/90481*87403803^(2/19) 8024922359374817 a001 121393/710647*87403803^(4/19) 8024922359374817 a001 105937/90481*33385282^(1/9) 8024922359374818 a001 121393/710647*33385282^(2/9) 8024922359374822 a001 105937/90481*12752043^(2/17) 8024922359374828 a001 121393/710647*12752043^(4/17) 8024922359374859 a001 105937/90481*4870847^(1/8) 8024922359374901 a001 121393/710647*4870847^(1/4) 8024922359375126 a001 105937/90481*1860498^(2/15) 8024922359375202 a001 15456/29134601*103682^(5/6) 8024922359375280 a001 196418/271443*167761^(1/5) 8024922359375435 a001 121393/710647*1860498^(4/15) 8024922359377087 a001 105937/90481*710647^(1/7) 8024922359379357 a001 121393/710647*710647^(2/7) 8024922359382909 a001 121393/1149851*439204^(1/3) 8024922359383197 a001 832040/12752043*167761^(2/5) 8024922359384637 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^49 8024922359385219 a001 311187/4769326*167761^(2/5) 8024922359385514 a001 5702887/87403803*167761^(2/5) 8024922359385557 a001 14930352/228826127*167761^(2/5) 8024922359385564 a001 39088169/599074578*167761^(2/5) 8024922359385565 a001 14619165/224056801*167761^(2/5) 8024922359385565 a001 267914296/4106118243*167761^(2/5) 8024922359385565 a001 701408733/10749957122*167761^(2/5) 8024922359385565 a001 1836311903/28143753123*167761^(2/5) 8024922359385565 a001 686789568/10525900321*167761^(2/5) 8024922359385565 a001 12586269025/192900153618*167761^(2/5) 8024922359385565 a001 32951280099/505019158607*167761^(2/5) 8024922359385565 a001 86267571272/1322157322203*167761^(2/5) 8024922359385565 a001 32264490531/494493258286*167761^(2/5) 8024922359385565 a001 591286729879/9062201101803*167761^(2/5) 8024922359385565 a001 1548008755920/23725150497407*167761^(2/5) 8024922359385565 a001 365435296162/5600748293801*167761^(2/5) 8024922359385565 a001 139583862445/2139295485799*167761^(2/5) 8024922359385565 a001 53316291173/817138163596*167761^(2/5) 8024922359385565 a001 20365011074/312119004989*167761^(2/5) 8024922359385565 a001 7778742049/119218851371*167761^(2/5) 8024922359385565 a001 2971215073/45537549124*167761^(2/5) 8024922359385565 a001 1134903170/17393796001*167761^(2/5) 8024922359385565 a001 433494437/6643838879*167761^(2/5) 8024922359385565 a001 165580141/2537720636*167761^(2/5) 8024922359385565 a001 63245986/969323029*167761^(2/5) 8024922359385568 a001 24157817/370248451*167761^(2/5) 8024922359385584 a001 9227465/141422324*167761^(2/5) 8024922359385697 a001 3524578/54018521*167761^(2/5) 8024922359386469 a001 1346269/20633239*167761^(2/5) 8024922359388383 a001 121393/1860498*20633239^(2/7) 8024922359388389 a001 121393/1860498*2537720636^(2/9) 8024922359388389 a001 121393/1860498*312119004989^(2/11) 8024922359388389 a001 121393/1860498*(1/2+1/2*5^(1/2))^10 8024922359388389 a001 832040/271443*(1/2+1/2*5^(1/2))^2 8024922359388389 a001 121393/1860498*28143753123^(1/5) 8024922359388389 a001 832040/271443*10749957122^(1/24) 8024922359388389 a001 1836433304/228841255 8024922359388389 a001 121393/1860498*10749957122^(5/24) 8024922359388389 a001 832040/271443*4106118243^(1/23) 8024922359388389 a001 121393/1860498*4106118243^(5/23) 8024922359388389 a001 832040/271443*1568397607^(1/22) 8024922359388389 a001 121393/1860498*1568397607^(5/22) 8024922359388389 a001 832040/271443*599074578^(1/21) 8024922359388389 a001 121393/1860498*599074578^(5/21) 8024922359388389 a001 832040/271443*228826127^(1/20) 8024922359388389 a001 121393/1860498*228826127^(1/4) 8024922359388389 a001 832040/271443*87403803^(1/19) 8024922359388389 a001 121393/1860498*87403803^(5/19) 8024922359388389 a001 832040/271443*33385282^(1/18) 8024922359388391 a001 121393/1860498*33385282^(5/18) 8024922359388392 a001 832040/271443*12752043^(1/17) 8024922359388403 a001 121393/1860498*12752043^(5/17) 8024922359388410 a001 832040/271443*4870847^(1/16) 8024922359388494 a001 121393/1860498*4870847^(5/16) 8024922359388543 a001 832040/271443*1860498^(1/15) 8024922359389161 a001 121393/1860498*1860498^(1/3) 8024922359389524 a001 832040/271443*710647^(1/14) 8024922359389821 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^51 8024922359390322 a001 121393/4870847*7881196^(4/11) 8024922359390369 a001 121393/4870847*141422324^(4/13) 8024922359390369 a001 121393/4870847*2537720636^(4/15) 8024922359390369 a001 121393/4870847*45537549124^(4/17) 8024922359390369 a001 121393/4870847*817138163596^(4/19) 8024922359390369 a001 121393/4870847*14662949395604^(4/21) 8024922359390369 a001 121393/4870847*(1/2+1/2*5^(1/2))^12 8024922359390369 a001 121393/4870847*192900153618^(2/9) 8024922359390369 a001 121393/4870847*73681302247^(3/13) 8024922359390369 a001 726103/90481 8024922359390369 a006 5^(1/2)*Fibonacci(32)/Lucas(26)/sqrt(5) 8024922359390369 a001 121393/4870847*10749957122^(1/4) 8024922359390369 a001 121393/4870847*4106118243^(6/23) 8024922359390369 a001 121393/4870847*1568397607^(3/11) 8024922359390369 a001 121393/4870847*599074578^(2/7) 8024922359390369 a001 121393/4870847*228826127^(3/10) 8024922359390369 a001 121393/4870847*87403803^(6/19) 8024922359390371 a001 121393/4870847*33385282^(1/3) 8024922359390386 a001 121393/4870847*12752043^(6/17) 8024922359390496 a001 121393/4870847*4870847^(3/8) 8024922359390578 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^53 8024922359390590 a001 121393/28143753123*7881196^(10/11) 8024922359390601 a001 121393/6643838879*7881196^(9/11) 8024922359390613 a001 121393/1568397607*7881196^(8/11) 8024922359390621 a001 121393/599074578*7881196^(2/3) 8024922359390625 a001 121393/370248451*7881196^(7/11) 8024922359390635 a001 121393/87403803*7881196^(6/11) 8024922359390650 a001 121393/12752043*20633239^(2/5) 8024922359390658 a001 121393/12752043*17393796001^(2/7) 8024922359390658 a001 121393/12752043*14662949395604^(2/9) 8024922359390658 a001 121393/12752043*(1/2+1/2*5^(1/2))^14 8024922359390658 a001 121393/12752043*505019158607^(1/4) 8024922359390658 a001 692290561591/86267571272 8024922359390658 a004 Fibonacci(34)/Lucas(26)/(1/2+sqrt(5)/2)^2 8024922359390658 a001 121393/12752043*10749957122^(7/24) 8024922359390658 a001 121393/12752043*4106118243^(7/23) 8024922359390658 a001 121393/12752043*1568397607^(7/22) 8024922359390658 a001 121393/12752043*599074578^(1/3) 8024922359390658 a001 121393/12752043*228826127^(7/20) 8024922359390658 a001 121393/12752043*87403803^(7/19) 8024922359390660 a001 121393/12752043*33385282^(7/18) 8024922359390667 a001 121393/20633239*7881196^(5/11) 8024922359390678 a001 121393/12752043*12752043^(7/17) 8024922359390688 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^55 8024922359390691 a001 121393/28143753123*20633239^(6/7) 8024922359390692 a001 121393/10749957122*20633239^(4/5) 8024922359390694 a001 121393/2537720636*20633239^(5/7) 8024922359390696 a001 121393/370248451*20633239^(3/5) 8024922359390696 a001 121393/228826127*20633239^(4/7) 8024922359390700 a001 121393/33385282*(1/2+1/2*5^(1/2))^16 8024922359390700 a001 121393/33385282*23725150497407^(1/4) 8024922359390700 a001 604146740112/75283811239 8024922359390700 a001 121393/33385282*73681302247^(4/13) 8024922359390700 a004 Fibonacci(36)/Lucas(26)/(1/2+sqrt(5)/2)^4 8024922359390700 a001 121393/33385282*10749957122^(1/3) 8024922359390700 a001 121393/33385282*4106118243^(8/23) 8024922359390700 a001 121393/33385282*1568397607^(4/11) 8024922359390700 a001 121393/33385282*599074578^(8/21) 8024922359390700 a001 121393/33385282*228826127^(2/5) 8024922359390700 a001 121393/33385282*87403803^(8/19) 8024922359390703 a001 121393/33385282*33385282^(4/9) 8024922359390704 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^57 8024922359390706 a001 121393/87403803*141422324^(6/13) 8024922359390706 a001 121393/87403803*2537720636^(2/5) 8024922359390706 a001 121393/87403803*45537549124^(6/17) 8024922359390706 a001 121393/87403803*14662949395604^(2/7) 8024922359390706 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^18/Lucas(38) 8024922359390706 a001 4745030099417/591286729879 8024922359390706 a001 121393/87403803*192900153618^(1/3) 8024922359390706 a004 Fibonacci(38)/Lucas(26)/(1/2+sqrt(5)/2)^6 8024922359390706 a001 121393/87403803*10749957122^(3/8) 8024922359390706 a001 121393/87403803*4106118243^(9/23) 8024922359390706 a001 121393/87403803*1568397607^(9/22) 8024922359390706 a001 121393/87403803*599074578^(3/7) 8024922359390706 a001 121393/87403803*228826127^(9/20) 8024922359390706 a001 121393/87403803*87403803^(9/19) 8024922359390707 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^59 8024922359390707 a001 121393/505019158607*141422324^(12/13) 8024922359390707 a001 121393/119218851371*141422324^(11/13) 8024922359390707 a001 121393/28143753123*141422324^(10/13) 8024922359390707 a001 121393/6643838879*141422324^(9/13) 8024922359390707 a001 121393/4106118243*141422324^(2/3) 8024922359390707 a001 121393/1568397607*141422324^(8/13) 8024922359390707 a001 121393/370248451*141422324^(7/13) 8024922359390707 a001 121393/228826127*2537720636^(4/9) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^20/Lucas(40) 8024922359390707 a001 121393/228826127*23725150497407^(5/16) 8024922359390707 a001 1836311911/228826128 8024922359390707 a001 121393/228826127*505019158607^(5/14) 8024922359390707 a001 121393/228826127*73681302247^(5/13) 8024922359390707 a004 Fibonacci(40)/Lucas(26)/(1/2+sqrt(5)/2)^8 8024922359390707 a001 121393/228826127*28143753123^(2/5) 8024922359390707 a001 121393/228826127*10749957122^(5/12) 8024922359390707 a001 121393/228826127*4106118243^(10/23) 8024922359390707 a001 121393/228826127*1568397607^(5/11) 8024922359390707 a001 121393/228826127*599074578^(10/21) 8024922359390707 a001 121393/228826127*228826127^(1/2) 8024922359390707 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^61 8024922359390707 a001 121393/599074578*312119004989^(2/5) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^22/Lucas(42) 8024922359390707 a001 32522920134328/4052739537881 8024922359390707 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2)^10 8024922359390707 a001 121393/599074578*10749957122^(11/24) 8024922359390707 a001 121393/599074578*4106118243^(11/23) 8024922359390707 a001 121393/599074578*1568397607^(1/2) 8024922359390707 a001 121393/599074578*599074578^(11/21) 8024922359390707 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^63 8024922359390707 a001 121393/1568397607*2537720636^(8/15) 8024922359390707 a001 121393/1568397607*45537549124^(8/17) 8024922359390707 a001 121393/1568397607*14662949395604^(8/21) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^24/Lucas(44) 8024922359390707 a001 28382036775023/3536736619241 8024922359390707 a001 121393/1568397607*192900153618^(4/9) 8024922359390707 a001 121393/1568397607*73681302247^(6/13) 8024922359390707 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^12 8024922359390707 a001 121393/1568397607*10749957122^(1/2) 8024922359390707 a001 121393/1568397607*4106118243^(12/23) 8024922359390707 a001 121393/1568397607*1568397607^(6/11) 8024922359390707 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^65 8024922359390707 a001 121393/9062201101803*2537720636^(14/15) 8024922359390707 a001 121393/3461452808002*2537720636^(8/9) 8024922359390707 a001 121393/2139295485799*2537720636^(13/15) 8024922359390707 a001 121393/505019158607*2537720636^(4/5) 8024922359390707 a001 121393/312119004989*2537720636^(7/9) 8024922359390707 a001 121393/119218851371*2537720636^(11/15) 8024922359390707 a001 121393/28143753123*2537720636^(2/3) 8024922359390707 a001 121393/6643838879*2537720636^(3/5) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(46) 8024922359390707 a001 121393/4106118243*73681302247^(1/2) 8024922359390707 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^14 8024922359390707 a001 121393/4106118243*10749957122^(13/24) 8024922359390707 a001 121393/4106118243*4106118243^(13/23) 8024922359390707 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^67 8024922359390707 a001 121393/10749957122*17393796001^(4/7) 8024922359390707 a001 121393/10749957122*14662949395604^(4/9) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(48) 8024922359390707 a001 121393/10749957122*505019158607^(1/2) 8024922359390707 a001 121393/10749957122*73681302247^(7/13) 8024922359390707 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^16 8024922359390707 a001 121393/10749957122*10749957122^(7/12) 8024922359390707 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^69 8024922359390707 a001 121393/9062201101803*17393796001^(6/7) 8024922359390707 a001 121393/312119004989*17393796001^(5/7) 8024922359390707 a001 121393/28143753123*45537549124^(10/17) 8024922359390707 a001 121393/28143753123*312119004989^(6/11) 8024922359390707 a001 121393/28143753123*14662949395604^(10/21) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(50) 8024922359390707 a001 121393/28143753123*192900153618^(5/9) 8024922359390707 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^18 8024922359390707 a001 121393/28143753123*28143753123^(3/5) 8024922359390707 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^71 8024922359390707 a001 121393/9062201101803*45537549124^(14/17) 8024922359390707 a001 121393/2139295485799*45537549124^(13/17) 8024922359390707 a001 121393/192900153618*45537549124^(2/3) 8024922359390707 a001 121393/505019158607*45537549124^(12/17) 8024922359390707 a001 121393/119218851371*45537549124^(11/17) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(52) 8024922359390707 a001 121393/73681302247*23725150497407^(1/2) 8024922359390707 a001 121393/73681302247*505019158607^(4/7) 8024922359390707 a001 121393/73681302247*73681302247^(8/13) 8024922359390707 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^73 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(54) 8024922359390707 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^75 8024922359390707 a001 121393/23725150497407*312119004989^(4/5) 8024922359390707 a001 121393/3461452808002*312119004989^(8/11) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(56) 8024922359390707 a001 121393/1322157322203*817138163596^(2/3) 8024922359390707 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^77 8024922359390707 a001 121393/505019158607*505019158607^(9/14) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(58) 8024922359390707 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^79 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(60) 8024922359390707 a001 121393/3461452808002*23725150497407^(5/8) 8024922359390707 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^81 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(62) 8024922359390707 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^83 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(64) 8024922359390707 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^85 8024922359390707 a001 121393/23725150497407*23725150497407^(11/16) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(66) 8024922359390707 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^87 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(68) 8024922359390707 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^89 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(70) 8024922359390707 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^91 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(72) 8024922359390707 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^93 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(74) 8024922359390707 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^95 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(76) 8024922359390707 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^97 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(78) 8024922359390707 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^99 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(80) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(82) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(84) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(86) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(88) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(90) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(92) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(94) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(96) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(98) 8024922359390707 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^20 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(99) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(100) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(97) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(95) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(93) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(91) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(89) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(87) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(85) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(83) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(81) 8024922359390707 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^100 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(79) 8024922359390707 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^98 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(77) 8024922359390707 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^96 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(75) 8024922359390707 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^94 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(73) 8024922359390707 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^92 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(71) 8024922359390707 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^90 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(69) 8024922359390707 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^88 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(67) 8024922359390707 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^86 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(65) 8024922359390707 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^84 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(63) 8024922359390707 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^82 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(61) 8024922359390707 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^80 8024922359390707 a001 121393/2139295485799*14662949395604^(13/21) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(59) 8024922359390707 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^78 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(57) 8024922359390707 a001 121393/9062201101803*505019158607^(3/4) 8024922359390707 a001 121393/312119004989*312119004989^(7/11) 8024922359390707 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^76 8024922359390707 a001 121393/312119004989*14662949395604^(5/9) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(55) 8024922359390707 a001 121393/312119004989*505019158607^(5/8) 8024922359390707 a001 121393/2139295485799*192900153618^(13/18) 8024922359390707 a001 121393/9062201101803*192900153618^(7/9) 8024922359390707 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^74 8024922359390707 a001 121393/119218851371*312119004989^(3/5) 8024922359390707 a001 121393/119218851371*817138163596^(11/19) 8024922359390707 a001 121393/119218851371*14662949395604^(11/21) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(53) 8024922359390707 a001 121393/119218851371*192900153618^(11/18) 8024922359390707 a001 121393/505019158607*73681302247^(9/13) 8024922359390707 a001 121393/2139295485799*73681302247^(3/4) 8024922359390707 a001 121393/3461452808002*73681302247^(10/13) 8024922359390707 a001 121393/23725150497407*73681302247^(11/13) 8024922359390707 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^22 8024922359390707 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^24 8024922359390707 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^26 8024922359390707 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^28 8024922359390707 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^30 8024922359390707 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^32 8024922359390707 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^34 8024922359390707 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^36 8024922359390707 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^38 8024922359390707 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^40 8024922359390707 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^42 8024922359390707 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^44 8024922359390707 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^46 8024922359390707 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^48 8024922359390707 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^50 8024922359390707 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^52 8024922359390707 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^54 8024922359390707 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^56 8024922359390707 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^58 8024922359390707 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^60 8024922359390707 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^62 8024922359390707 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^64 8024922359390707 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^66 8024922359390707 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^68 8024922359390707 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^72 8024922359390707 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^67 8024922359390707 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^65 8024922359390707 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^63 8024922359390707 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^61 8024922359390707 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^59 8024922359390707 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^57 8024922359390707 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^55 8024922359390707 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^53 8024922359390707 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^51 8024922359390707 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^49 8024922359390707 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^47 8024922359390707 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^45 8024922359390707 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^43 8024922359390707 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^41 8024922359390707 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^39 8024922359390707 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^37 8024922359390707 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^35 8024922359390707 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^33 8024922359390707 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^31 8024922359390707 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^29 8024922359390707 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^27 8024922359390707 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^25 8024922359390707 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^23 8024922359390707 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^21 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(51) 8024922359390707 a001 121393/45537549124*9062201101803^(1/2) 8024922359390707 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^19 8024922359390707 a001 121393/312119004989*28143753123^(7/10) 8024922359390707 a001 121393/3461452808002*28143753123^(4/5) 8024922359390707 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^70 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(49) 8024922359390707 a001 121393/17393796001*1322157322203^(1/2) 8024922359390707 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^17 8024922359390707 a001 121393/28143753123*10749957122^(5/8) 8024922359390707 a001 121393/73681302247*10749957122^(2/3) 8024922359390707 a001 121393/119218851371*10749957122^(11/16) 8024922359390707 a001 121393/192900153618*10749957122^(17/24) 8024922359390707 a001 121393/505019158607*10749957122^(3/4) 8024922359390707 a001 121393/1322157322203*10749957122^(19/24) 8024922359390707 a001 121393/2139295485799*10749957122^(13/16) 8024922359390707 a001 121393/3461452808002*10749957122^(5/6) 8024922359390707 a001 121393/9062201101803*10749957122^(7/8) 8024922359390707 a001 121393/23725150497407*10749957122^(11/12) 8024922359390707 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^68 8024922359390707 a001 121393/6643838879*45537549124^(9/17) 8024922359390707 a001 121393/6643838879*817138163596^(9/19) 8024922359390707 a001 121393/6643838879*14662949395604^(3/7) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(47) 8024922359390707 a001 121393/6643838879*192900153618^(1/2) 8024922359390707 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^15 8024922359390707 a001 121393/10749957122*4106118243^(14/23) 8024922359390707 a001 121393/6643838879*10749957122^(9/16) 8024922359390707 a001 121393/28143753123*4106118243^(15/23) 8024922359390707 a001 121393/73681302247*4106118243^(16/23) 8024922359390707 a001 121393/192900153618*4106118243^(17/23) 8024922359390707 a001 121393/505019158607*4106118243^(18/23) 8024922359390707 a001 121393/1322157322203*4106118243^(19/23) 8024922359390707 a001 121393/3461452808002*4106118243^(20/23) 8024922359390707 a001 121393/9062201101803*4106118243^(21/23) 8024922359390707 a001 121393/23725150497407*4106118243^(22/23) 8024922359390707 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^66 8024922359390707 a001 121393/2537720636*2537720636^(5/9) 8024922359390707 a001 121393/2537720636*312119004989^(5/11) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^25/Lucas(45) 8024922359390707 a001 121393/2537720636*3461452808002^(5/12) 8024922359390707 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^13 8024922359390707 a001 121393/2537720636*28143753123^(1/2) 8024922359390707 a001 121393/4106118243*1568397607^(13/22) 8024922359390707 a001 121393/10749957122*1568397607^(7/11) 8024922359390707 a001 121393/28143753123*1568397607^(15/22) 8024922359390707 a001 121393/73681302247*1568397607^(8/11) 8024922359390707 a001 121393/119218851371*1568397607^(3/4) 8024922359390707 a001 121393/192900153618*1568397607^(17/22) 8024922359390707 a001 121393/505019158607*1568397607^(9/11) 8024922359390707 a001 121393/1322157322203*1568397607^(19/22) 8024922359390707 a001 121393/3461452808002*1568397607^(10/11) 8024922359390707 a001 121393/9062201101803*1568397607^(21/22) 8024922359390707 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^64 8024922359390707 a001 52623190190741/6557470319842 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^23/Lucas(43) 8024922359390707 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^11 8024922359390707 a001 121393/969323029*4106118243^(1/2) 8024922359390707 a001 121393/1568397607*599074578^(4/7) 8024922359390707 a001 121393/4106118243*599074578^(13/21) 8024922359390707 a001 121393/6643838879*599074578^(9/14) 8024922359390707 a001 121393/10749957122*599074578^(2/3) 8024922359390707 a001 121393/28143753123*599074578^(5/7) 8024922359390707 a001 121393/73681302247*599074578^(16/21) 8024922359390707 a001 121393/119218851371*599074578^(11/14) 8024922359390707 a001 121393/192900153618*599074578^(17/21) 8024922359390707 a001 121393/312119004989*599074578^(5/6) 8024922359390707 a001 121393/505019158607*599074578^(6/7) 8024922359390707 a001 121393/1322157322203*599074578^(19/21) 8024922359390707 a001 121393/2139295485799*599074578^(13/14) 8024922359390707 a001 121393/3461452808002*599074578^(20/21) 8024922359390707 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^62 8024922359390707 a001 121393/370248451*2537720636^(7/15) 8024922359390707 a001 121393/370248451*17393796001^(3/7) 8024922359390707 a001 121393/370248451*45537549124^(7/17) 8024922359390707 a001 20100270056413/2504730781961 8024922359390707 a001 121393/370248451*14662949395604^(1/3) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^21/Lucas(41) 8024922359390707 a001 121393/370248451*192900153618^(7/18) 8024922359390707 a004 Fibonacci(41)/Lucas(26)/(1/2+sqrt(5)/2)^9 8024922359390707 a001 121393/370248451*10749957122^(7/16) 8024922359390707 a001 121393/599074578*228826127^(11/20) 8024922359390707 a001 121393/370248451*599074578^(1/2) 8024922359390707 a001 121393/1568397607*228826127^(3/5) 8024922359390707 a001 121393/2537720636*228826127^(5/8) 8024922359390707 a001 121393/4106118243*228826127^(13/20) 8024922359390707 a001 121393/10749957122*228826127^(7/10) 8024922359390707 a001 121393/28143753123*228826127^(3/4) 8024922359390707 a001 121393/73681302247*228826127^(4/5) 8024922359390707 a001 121393/192900153618*228826127^(17/20) 8024922359390707 a001 121393/312119004989*228826127^(7/8) 8024922359390707 a001 121393/505019158607*228826127^(9/10) 8024922359390707 a001 121393/1322157322203*228826127^(19/20) 8024922359390707 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^60 8024922359390707 a001 121393/228826127*87403803^(10/19) 8024922359390707 a001 233/271444*817138163596^(1/3) 8024922359390707 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^19/Lucas(39) 8024922359390707 a004 Fibonacci(39)/Lucas(26)/(1/2+sqrt(5)/2)^7 8024922359390708 a001 121393/599074578*87403803^(11/19) 8024922359390708 a001 121393/1568397607*87403803^(12/19) 8024922359390708 a001 121393/4106118243*87403803^(13/19) 8024922359390708 a001 121393/10749957122*87403803^(14/19) 8024922359390708 a001 121393/28143753123*87403803^(15/19) 8024922359390708 a001 121393/73681302247*87403803^(16/19) 8024922359390708 a001 233/271444*87403803^(1/2) 8024922359390708 a001 121393/192900153618*87403803^(17/19) 8024922359390708 a001 121393/505019158607*87403803^(18/19) 8024922359390708 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^58 8024922359390710 a001 121393/87403803*33385282^(1/2) 8024922359390710 a001 121393/54018521*45537549124^(1/3) 8024922359390710 a001 2932589879081/365435296162 8024922359390710 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^17/Lucas(37) 8024922359390710 a004 Fibonacci(37)/Lucas(26)/(1/2+sqrt(5)/2)^5 8024922359390711 a001 121393/228826127*33385282^(5/9) 8024922359390711 a001 121393/370248451*33385282^(7/12) 8024922359390711 a001 121393/599074578*33385282^(11/18) 8024922359390712 a001 121393/1568397607*33385282^(2/3) 8024922359390712 a001 121393/4106118243*33385282^(13/18) 8024922359390712 a001 121393/6643838879*33385282^(3/4) 8024922359390713 a001 121393/10749957122*33385282^(7/9) 8024922359390713 a001 121393/28143753123*33385282^(5/6) 8024922359390713 a001 121393/73681302247*33385282^(8/9) 8024922359390714 a001 121393/119218851371*33385282^(11/12) 8024922359390714 a001 121393/192900153618*33385282^(17/18) 8024922359390714 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^56 8024922359390718 a001 121393/20633239*20633239^(3/7) 8024922359390723 a001 121393/33385282*12752043^(8/17) 8024922359390726 a001 121393/20633239*141422324^(5/13) 8024922359390726 a001 121393/20633239*2537720636^(1/3) 8024922359390726 a001 121393/20633239*45537549124^(5/17) 8024922359390726 a001 224029931749/27916772489 8024922359390726 a001 121393/20633239*312119004989^(3/11) 8024922359390726 a001 121393/20633239*14662949395604^(5/21) 8024922359390726 a001 121393/20633239*(1/2+1/2*5^(1/2))^15 8024922359390726 a001 121393/20633239*192900153618^(5/18) 8024922359390726 a004 Fibonacci(35)/Lucas(26)/(1/2+sqrt(5)/2)^3 8024922359390726 a001 121393/20633239*28143753123^(3/10) 8024922359390726 a001 121393/20633239*10749957122^(5/16) 8024922359390726 a001 121393/20633239*599074578^(5/14) 8024922359390726 a001 121393/20633239*228826127^(3/8) 8024922359390729 a001 121393/20633239*33385282^(5/12) 8024922359390732 a001 121393/87403803*12752043^(9/17) 8024922359390734 a001 121393/54018521*12752043^(1/2) 8024922359390736 a001 121393/228826127*12752043^(10/17) 8024922359390739 a001 121393/599074578*12752043^(11/17) 8024922359390742 a001 121393/1568397607*12752043^(12/17) 8024922359390745 a001 121393/4106118243*12752043^(13/17) 8024922359390748 a001 121393/10749957122*12752043^(14/17) 8024922359390751 a001 121393/28143753123*12752043^(15/17) 8024922359390753 a001 121393/73681302247*12752043^(16/17) 8024922359390756 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^54 8024922359390806 a001 121393/12752043*4870847^(7/16) 8024922359390836 a001 121393/7881196*141422324^(1/3) 8024922359390836 a001 427859097154/53316291173 8024922359390836 a001 121393/7881196*(1/2+1/2*5^(1/2))^13 8024922359390836 a001 121393/7881196*73681302247^(1/4) 8024922359390836 a004 Fibonacci(33)/Lucas(26)/(1/2+sqrt(5)/2) 8024922359390869 a001 121393/33385282*4870847^(1/2) 8024922359390896 a001 121393/87403803*4870847^(9/16) 8024922359390918 a001 121393/228826127*4870847^(5/8) 8024922359390940 a001 121393/599074578*4870847^(11/16) 8024922359390961 a001 121393/1568397607*4870847^(3/4) 8024922359390982 a001 121393/4106118243*4870847^(13/16) 8024922359391003 a001 121393/10749957122*4870847^(7/8) 8024922359391024 a001 121393/28143753123*4870847^(15/16) 8024922359391045 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^52 8024922359391296 a001 121393/4870847*1860498^(2/5) 8024922359391549 a001 121393/3010349*7881196^(1/3) 8024922359391573 a001 105937/90481*271443^(2/13) 8024922359391593 a001 163427632717/20365011074 8024922359391593 a001 121393/3010349*312119004989^(1/5) 8024922359391593 a001 121393/3010349*(1/2+1/2*5^(1/2))^11 8024922359391593 a001 1346269/542886+1346269/542886*5^(1/2) 8024922359391593 a001 121393/3010349*1568397607^(1/4) 8024922359391740 a001 121393/12752043*1860498^(7/15) 8024922359391764 a001 514229/7881196*167761^(2/5) 8024922359391885 a001 121393/20633239*1860498^(1/2) 8024922359391936 a001 121393/33385282*1860498^(8/15) 8024922359392097 a001 121393/87403803*1860498^(3/5) 8024922359392154 a001 514229/271443*439204^(1/9) 8024922359392252 a001 121393/228826127*1860498^(2/3) 8024922359392330 a001 121393/370248451*1860498^(7/10) 8024922359392407 a001 121393/599074578*1860498^(11/15) 8024922359392562 a001 121393/1568397607*1860498^(4/5) 8024922359392639 a001 121393/2537720636*1860498^(5/6) 8024922359392716 a001 121393/4106118243*1860498^(13/15) 8024922359392794 a001 121393/6643838879*1860498^(9/10) 8024922359392871 a001 121393/10749957122*1860498^(14/15) 8024922359393025 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^50 8024922359394064 a001 121393/1860498*710647^(5/14) 8024922359396741 a001 121393/1149851*7881196^(3/11) 8024922359396765 a001 514229/271443*7881196^(1/11) 8024922359396767 a001 832040/271443*271443^(1/13) 8024922359396776 a001 121393/1149851*141422324^(3/13) 8024922359396777 a001 514229/271443*141422324^(1/13) 8024922359396777 a001 121393/1149851*2537720636^(1/5) 8024922359396777 a001 514229/271443*2537720636^(1/15) 8024922359396777 a001 62423800997/7778742049 8024922359396777 a001 121393/1149851*45537549124^(3/17) 8024922359396777 a001 121393/1149851*817138163596^(3/19) 8024922359396777 a001 121393/1149851*14662949395604^(1/7) 8024922359396777 a001 121393/1149851*(1/2+1/2*5^(1/2))^9 8024922359396777 a001 121393/1149851*192900153618^(1/6) 8024922359396777 a001 514229/271443*45537549124^(1/17) 8024922359396777 a001 514229/271443*14662949395604^(1/21) 8024922359396777 a001 514229/271443*(1/2+1/2*5^(1/2))^3 8024922359396777 a001 514229/271443*192900153618^(1/18) 8024922359396777 a001 514229/271443*10749957122^(1/16) 8024922359396777 a001 121393/1149851*10749957122^(3/16) 8024922359396777 a001 514229/271443*599074578^(1/14) 8024922359396777 a001 121393/1149851*599074578^(3/14) 8024922359396777 a001 514229/271443*33385282^(1/12) 8024922359396778 a001 121393/1149851*33385282^(1/4) 8024922359397008 a001 514229/271443*1860498^(1/10) 8024922359397179 a001 121393/4870847*710647^(3/7) 8024922359397472 a001 121393/1149851*1860498^(3/10) 8024922359398603 a001 121393/12752043*710647^(1/2) 8024922359398887 a001 3524578/710647*64079^(1/23) 8024922359399780 a001 121393/33385282*710647^(4/7) 8024922359400921 a001 121393/87403803*710647^(9/14) 8024922359402053 a001 23184/51841*39603^(3/11) 8024922359402057 a001 121393/228826127*710647^(5/7) 8024922359402625 a001 121393/370248451*710647^(3/4) 8024922359403192 a001 121393/599074578*710647^(11/14) 8024922359404327 a001 121393/1568397607*710647^(6/7) 8024922359405462 a001 121393/4106118243*710647^(13/14) 8024922359406308 a001 11592/35355581*103682^(7/8) 8024922359406597 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^48 8024922359408329 a001 121393/710647*271443^(4/13) 8024922359412348 a001 9227465/1860498*64079^(1/23) 8024922359414312 a001 24157817/4870847*64079^(1/23) 8024922359414599 a001 63245986/12752043*64079^(1/23) 8024922359414641 a001 165580141/33385282*64079^(1/23) 8024922359414647 a001 433494437/87403803*64079^(1/23) 8024922359414648 a001 1134903170/228826127*64079^(1/23) 8024922359414648 a001 2971215073/599074578*64079^(1/23) 8024922359414648 a001 7778742049/1568397607*64079^(1/23) 8024922359414648 a001 20365011074/4106118243*64079^(1/23) 8024922359414648 a001 53316291173/10749957122*64079^(1/23) 8024922359414648 a001 139583862445/28143753123*64079^(1/23) 8024922359414648 a001 365435296162/73681302247*64079^(1/23) 8024922359414648 a001 956722026041/192900153618*64079^(1/23) 8024922359414648 a001 2504730781961/505019158607*64079^(1/23) 8024922359414648 a001 10610209857723/2139295485799*64079^(1/23) 8024922359414648 a001 4052739537881/817138163596*64079^(1/23) 8024922359414648 a001 140728068720/28374454999*64079^(1/23) 8024922359414648 a001 591286729879/119218851371*64079^(1/23) 8024922359414648 a001 225851433717/45537549124*64079^(1/23) 8024922359414648 a001 86267571272/17393796001*64079^(1/23) 8024922359414648 a001 32951280099/6643838879*64079^(1/23) 8024922359414648 a001 1144206275/230701876*64079^(1/23) 8024922359414648 a001 4807526976/969323029*64079^(1/23) 8024922359414648 a001 1836311903/370248451*64079^(1/23) 8024922359414648 a001 701408733/141422324*64079^(1/23) 8024922359414651 a001 267914296/54018521*64079^(1/23) 8024922359414667 a001 9303105/1875749*64079^(1/23) 8024922359414776 a001 39088169/7881196*64079^(1/23) 8024922359415526 a001 14930352/3010349*64079^(1/23) 8024922359420668 a001 5702887/1149851*64079^(1/23) 8024922359422697 a001 1346269/271443*103682^(1/24) 8024922359428052 a001 196418/3010349*167761^(2/5) 8024922359430279 a001 121393/1860498*271443^(5/13) 8024922359431441 a001 121393/64079*24476^(1/7) 8024922359432305 a001 121393/439204*20633239^(1/5) 8024922359432306 a001 196418/271443*20633239^(1/7) 8024922359432308 a001 23843770274/2971215073 8024922359432308 a001 196418/271443*2537720636^(1/9) 8024922359432308 a001 121393/439204*17393796001^(1/7) 8024922359432308 a001 121393/439204*14662949395604^(1/9) 8024922359432308 a001 121393/439204*(1/2+1/2*5^(1/2))^7 8024922359432308 a001 196418/271443*312119004989^(1/11) 8024922359432308 a001 196418/271443*(1/2+1/2*5^(1/2))^5 8024922359432308 a001 196418/271443*28143753123^(1/10) 8024922359432308 a001 121393/439204*599074578^(1/6) 8024922359432308 a001 196418/271443*228826127^(1/8) 8024922359432695 a001 196418/271443*1860498^(1/6) 8024922359432772 a001 514229/710647*167761^(1/5) 8024922359436281 a001 121393/439204*710647^(1/4) 8024922359437412 a001 46368/228826127*103682^(11/12) 8024922359440637 a001 121393/4870847*271443^(6/13) 8024922359441160 a001 1346269/1860498*167761^(1/5) 8024922359442129 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^49 8024922359442384 a001 3524578/4870847*167761^(1/5) 8024922359442562 a001 9227465/12752043*167761^(1/5) 8024922359442588 a001 24157817/33385282*167761^(1/5) 8024922359442592 a001 63245986/87403803*167761^(1/5) 8024922359442593 a001 165580141/228826127*167761^(1/5) 8024922359442593 a001 433494437/599074578*167761^(1/5) 8024922359442593 a001 1134903170/1568397607*167761^(1/5) 8024922359442593 a001 2971215073/4106118243*167761^(1/5) 8024922359442593 a001 7778742049/10749957122*167761^(1/5) 8024922359442593 a001 20365011074/28143753123*167761^(1/5) 8024922359442593 a001 53316291173/73681302247*167761^(1/5) 8024922359442593 a001 139583862445/192900153618*167761^(1/5) 8024922359442593 a001 365435296162/505019158607*167761^(1/5) 8024922359442593 a001 10610209857723/14662949395604*167761^(1/5) 8024922359442593 a001 591286729879/817138163596*167761^(1/5) 8024922359442593 a001 225851433717/312119004989*167761^(1/5) 8024922359442593 a001 86267571272/119218851371*167761^(1/5) 8024922359442593 a001 32951280099/45537549124*167761^(1/5) 8024922359442593 a001 12586269025/17393796001*167761^(1/5) 8024922359442593 a001 4807526976/6643838879*167761^(1/5) 8024922359442593 a001 1836311903/2537720636*167761^(1/5) 8024922359442593 a001 701408733/969323029*167761^(1/5) 8024922359442593 a001 267914296/370248451*167761^(1/5) 8024922359442593 a001 102334155/141422324*167761^(1/5) 8024922359442595 a001 39088169/54018521*167761^(1/5) 8024922359442605 a001 14930352/20633239*167761^(1/5) 8024922359442673 a001 5702887/7881196*167761^(1/5) 8024922359443140 a001 2178309/3010349*167761^(1/5) 8024922359445293 a001 121393/7881196*271443^(1/2) 8024922359446344 a001 832040/1149851*167761^(1/5) 8024922359446752 a001 105937/1368706081*439204^(8/9) 8024922359449304 a001 121393/12752043*271443^(7/13) 8024922359450598 a001 832040/271443*103682^(1/12) 8024922359451374 a001 317811/969323029*439204^(7/9) 8024922359455701 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^51 8024922359455911 a001 2178309/439204*64079^(1/23) 8024922359455996 a001 317811/228826127*439204^(2/3) 8024922359457681 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^53 8024922359457724 a001 121393/33385282*271443^(8/13) 8024922359457970 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^55 8024922359458012 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^57 8024922359458018 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^59 8024922359458019 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^61 8024922359458020 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^63 8024922359458020 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^65 8024922359458020 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^67 8024922359458020 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^69 8024922359458020 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^71 8024922359458020 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^73 8024922359458020 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^75 8024922359458020 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^77 8024922359458020 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^79 8024922359458020 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^81 8024922359458020 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^83 8024922359458020 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^85 8024922359458020 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^87 8024922359458020 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^89 8024922359458020 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^91 8024922359458020 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^93 8024922359458020 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^95 8024922359458020 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^97 8024922359458020 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^99 8024922359458020 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^100 8024922359458020 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^98 8024922359458020 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^96 8024922359458020 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^94 8024922359458020 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^92 8024922359458020 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^90 8024922359458020 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^88 8024922359458020 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^86 8024922359458020 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^84 8024922359458020 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^82 8024922359458020 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^80 8024922359458020 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^78 8024922359458020 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^76 8024922359458020 a001 1/98209*(1/2+1/2*5^(1/2))^33 8024922359458020 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^74 8024922359458020 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^72 8024922359458020 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^70 8024922359458020 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^68 8024922359458020 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^66 8024922359458020 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^64 8024922359458020 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^62 8024922359458020 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^60 8024922359458022 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^58 8024922359458038 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^56 8024922359458149 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^54 8024922359458596 a001 317811/710647*439204^(2/9) 8024922359458905 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^52 8024922359460324 a001 416020/5374978561*439204^(8/9) 8024922359460621 a001 317811/54018521*439204^(5/9) 8024922359462304 a001 726103/9381251041*439204^(8/9) 8024922359462593 a001 5702887/73681302247*439204^(8/9) 8024922359462635 a001 2584/33385281*439204^(8/9) 8024922359462641 a001 39088169/505019158607*439204^(8/9) 8024922359462642 a001 34111385/440719107401*439204^(8/9) 8024922359462642 a001 133957148/1730726404001*439204^(8/9) 8024922359462642 a001 233802911/3020733700601*439204^(8/9) 8024922359462642 a001 1836311903/23725150497407*439204^(8/9) 8024922359462642 a001 567451585/7331474697802*439204^(8/9) 8024922359462642 a001 433494437/5600748293801*439204^(8/9) 8024922359462642 a001 165580141/2139295485799*439204^(8/9) 8024922359462642 a001 31622993/408569081798*439204^(8/9) 8024922359462645 a001 24157817/312119004989*439204^(8/9) 8024922359462661 a001 9227465/119218851371*439204^(8/9) 8024922359462771 a001 1762289/22768774562*439204^(8/9) 8024922359463527 a001 1346269/17393796001*439204^(8/9) 8024922359464089 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^50 8024922359464946 a001 610/1860499*439204^(7/9) 8024922359465192 a001 105937/4250681*439204^(4/9) 8024922359466108 a001 121393/87403803*271443^(9/13) 8024922359466926 a001 2178309/6643838879*439204^(7/9) 8024922359467215 a001 5702887/17393796001*439204^(7/9) 8024922359467257 a001 3732588/11384387281*439204^(7/9) 8024922359467263 a001 39088169/119218851371*439204^(7/9) 8024922359467264 a001 9303105/28374454999*439204^(7/9) 8024922359467264 a001 66978574/204284540899*439204^(7/9) 8024922359467264 a001 701408733/2139295485799*439204^(7/9) 8024922359467264 a001 1836311903/5600748293801*439204^(7/9) 8024922359467264 a001 1201881744/3665737348901*439204^(7/9) 8024922359467264 a001 7778742049/23725150497407*439204^(7/9) 8024922359467264 a001 2971215073/9062201101803*439204^(7/9) 8024922359467264 a001 567451585/1730726404001*439204^(7/9) 8024922359467264 a001 433494437/1322157322203*439204^(7/9) 8024922359467264 a001 165580141/505019158607*439204^(7/9) 8024922359467265 a001 31622993/96450076809*439204^(7/9) 8024922359467267 a001 24157817/73681302247*439204^(7/9) 8024922359467283 a001 9227465/28143753123*439204^(7/9) 8024922359467393 a001 1762289/5374978561*439204^(7/9) 8024922359467817 a001 317811/710647*7881196^(2/11) 8024922359467840 a001 317811/710647*141422324^(2/13) 8024922359467840 a001 317811/710647*2537720636^(2/15) 8024922359467840 a001 317811/710647*45537549124^(2/17) 8024922359467840 a001 317811/710647*14662949395604^(2/21) 8024922359467840 a001 317811/710647*(1/2+1/2*5^(1/2))^6 8024922359467840 a001 317811/710647*10749957122^(1/8) 8024922359467840 a001 101003831721/12586269025 8024922359467840 a001 317811/710647*4106118243^(3/23) 8024922359467840 a001 317811/710647*1568397607^(3/22) 8024922359467840 a001 317811/710647*599074578^(1/7) 8024922359467840 a001 317811/710647*228826127^(3/20) 8024922359467840 a001 317811/710647*87403803^(3/19) 8024922359467841 a001 317811/710647*33385282^(1/6) 8024922359467849 a001 317811/710647*12752043^(3/17) 8024922359467904 a001 317811/710647*4870847^(3/16) 8024922359468150 a001 1346269/4106118243*439204^(7/9) 8024922359468304 a001 317811/439204*167761^(1/5) 8024922359468304 a001 317811/710647*1860498^(1/5) 8024922359468420 a001 121393/271443*103682^(1/4) 8024922359468517 a001 46368/370248451*103682^(23/24) 8024922359468711 a001 514229/6643838879*439204^(8/9) 8024922359469568 a001 416020/299537289*439204^(2/3) 8024922359470749 a001 317811/3010349*439204^(1/3) 8024922359471245 a001 317811/710647*710647^(3/14) 8024922359471548 a001 311187/224056801*439204^(2/3) 8024922359471837 a001 5702887/4106118243*439204^(2/3) 8024922359471879 a001 7465176/5374978561*439204^(2/3) 8024922359471886 a001 39088169/28143753123*439204^(2/3) 8024922359471887 a001 14619165/10525900321*439204^(2/3) 8024922359471887 a001 133957148/96450076809*439204^(2/3) 8024922359471887 a001 701408733/505019158607*439204^(2/3) 8024922359471887 a001 1836311903/1322157322203*439204^(2/3) 8024922359471887 a001 14930208/10749853441*439204^(2/3) 8024922359471887 a001 12586269025/9062201101803*439204^(2/3) 8024922359471887 a001 32951280099/23725150497407*439204^(2/3) 8024922359471887 a001 10182505537/7331474697802*439204^(2/3) 8024922359471887 a001 7778742049/5600748293801*439204^(2/3) 8024922359471887 a001 2971215073/2139295485799*439204^(2/3) 8024922359471887 a001 567451585/408569081798*439204^(2/3) 8024922359471887 a001 433494437/312119004989*439204^(2/3) 8024922359471887 a001 165580141/119218851371*439204^(2/3) 8024922359471887 a001 31622993/22768774562*439204^(2/3) 8024922359471889 a001 24157817/17393796001*439204^(2/3) 8024922359471906 a001 9227465/6643838879*439204^(2/3) 8024922359472016 a001 1762289/1268860318*439204^(2/3) 8024922359472772 a001 1346269/969323029*439204^(2/3) 8024922359473334 a001 514229/1568397607*439204^(7/9) 8024922359474191 a001 208010/35355581*439204^(5/9) 8024922359474487 a001 121393/228826127*271443^(10/13) 8024922359476171 a001 2178309/370248451*439204^(5/9) 8024922359476460 a001 5702887/969323029*439204^(5/9) 8024922359476502 a001 196452/33391061*439204^(5/9) 8024922359476508 a001 39088169/6643838879*439204^(5/9) 8024922359476509 a001 102334155/17393796001*439204^(5/9) 8024922359476509 a001 66978574/11384387281*439204^(5/9) 8024922359476509 a001 701408733/119218851371*439204^(5/9) 8024922359476509 a001 1836311903/312119004989*439204^(5/9) 8024922359476509 a001 1201881744/204284540899*439204^(5/9) 8024922359476509 a001 12586269025/2139295485799*439204^(5/9) 8024922359476509 a001 32951280099/5600748293801*439204^(5/9) 8024922359476509 a001 1135099622/192933544679*439204^(5/9) 8024922359476509 a001 139583862445/23725150497407*439204^(5/9) 8024922359476509 a001 53316291173/9062201101803*439204^(5/9) 8024922359476509 a001 10182505537/1730726404001*439204^(5/9) 8024922359476509 a001 7778742049/1322157322203*439204^(5/9) 8024922359476509 a001 2971215073/505019158607*439204^(5/9) 8024922359476509 a001 567451585/96450076809*439204^(5/9) 8024922359476509 a001 433494437/73681302247*439204^(5/9) 8024922359476509 a001 165580141/28143753123*439204^(5/9) 8024922359476509 a001 31622993/5374978561*439204^(5/9) 8024922359476512 a001 24157817/4106118243*439204^(5/9) 8024922359476528 a001 9227465/1568397607*439204^(5/9) 8024922359476638 a001 1762289/299537289*439204^(5/9) 8024922359477394 a001 1346269/228826127*439204^(5/9) 8024922359477661 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^51 8024922359477956 a001 514229/370248451*439204^(2/3) 8024922359478806 a001 416020/16692641*439204^(4/9) 8024922359479994 a001 1346269/710647*439204^(1/9) 8024922359480792 a001 726103/29134601*439204^(4/9) 8024922359481082 a001 5702887/228826127*439204^(4/9) 8024922359481124 a001 829464/33281921*439204^(4/9) 8024922359481130 a001 39088169/1568397607*439204^(4/9) 8024922359481131 a001 34111385/1368706081*439204^(4/9) 8024922359481131 a001 133957148/5374978561*439204^(4/9) 8024922359481131 a001 233802911/9381251041*439204^(4/9) 8024922359481131 a001 1836311903/73681302247*439204^(4/9) 8024922359481131 a001 267084832/10716675201*439204^(4/9) 8024922359481131 a001 12586269025/505019158607*439204^(4/9) 8024922359481131 a001 10983760033/440719107401*439204^(4/9) 8024922359481131 a001 43133785636/1730726404001*439204^(4/9) 8024922359481131 a001 75283811239/3020733700601*439204^(4/9) 8024922359481131 a001 182717648081/7331474697802*439204^(4/9) 8024922359481131 a001 139583862445/5600748293801*439204^(4/9) 8024922359481131 a001 53316291173/2139295485799*439204^(4/9) 8024922359481131 a001 10182505537/408569081798*439204^(4/9) 8024922359481131 a001 7778742049/312119004989*439204^(4/9) 8024922359481131 a001 2971215073/119218851371*439204^(4/9) 8024922359481131 a001 567451585/22768774562*439204^(4/9) 8024922359481131 a001 433494437/17393796001*439204^(4/9) 8024922359481131 a001 165580141/6643838879*439204^(4/9) 8024922359481132 a001 31622993/1268860318*439204^(4/9) 8024922359481134 a001 24157817/969323029*439204^(4/9) 8024922359481150 a001 9227465/370248451*439204^(4/9) 8024922359481261 a001 1762289/70711162*439204^(4/9) 8024922359481412 a001 105937/620166*(1/2+1/2*5^(1/2))^8 8024922359481412 a001 105937/620166*23725150497407^(1/8) 8024922359481412 a001 105937/620166*505019158607^(1/7) 8024922359481412 a001 832040/710647*(1/2+1/2*5^(1/2))^4 8024922359481412 a001 832040/710647*23725150497407^(1/16) 8024922359481412 a001 832040/710647*73681302247^(1/13) 8024922359481412 a001 105937/620166*73681302247^(2/13) 8024922359481412 a001 88143821480/10983760033 8024922359481412 a001 832040/710647*10749957122^(1/12) 8024922359481412 a001 105937/620166*10749957122^(1/6) 8024922359481412 a001 832040/710647*4106118243^(2/23) 8024922359481412 a001 105937/620166*4106118243^(4/23) 8024922359481412 a001 832040/710647*1568397607^(1/11) 8024922359481412 a001 105937/620166*1568397607^(2/11) 8024922359481412 a001 832040/710647*599074578^(2/21) 8024922359481412 a001 105937/620166*599074578^(4/21) 8024922359481412 a001 832040/710647*228826127^(1/10) 8024922359481412 a001 105937/620166*228826127^(1/5) 8024922359481412 a001 832040/710647*87403803^(2/19) 8024922359481412 a001 105937/620166*87403803^(4/19) 8024922359481413 a001 832040/710647*33385282^(1/9) 8024922359481414 a001 105937/620166*33385282^(2/9) 8024922359481418 a001 832040/710647*12752043^(2/17) 8024922359481424 a001 105937/620166*12752043^(4/17) 8024922359481455 a001 832040/710647*4870847^(1/8) 8024922359481497 a001 105937/620166*4870847^(1/4) 8024922359481721 a001 832040/710647*1860498^(2/15) 8024922359482020 a001 1346269/54018521*439204^(4/9) 8024922359482030 a001 105937/620166*1860498^(4/15) 8024922359482578 a001 514229/87403803*439204^(5/9) 8024922359482845 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^53 8024922359482865 a001 121393/599074578*271443^(11/13) 8024922359483387 a001 317811/4870847*20633239^(2/7) 8024922359483392 a001 317811/4870847*2537720636^(2/9) 8024922359483392 a001 317811/4870847*312119004989^(2/11) 8024922359483392 a001 317811/4870847*(1/2+1/2*5^(1/2))^10 8024922359483392 a001 311187/101521*(1/2+1/2*5^(1/2))^2 8024922359483392 a001 692290561599/86267571272 8024922359483392 a001 317811/4870847*28143753123^(1/5) 8024922359483392 a001 311187/101521*10749957122^(1/24) 8024922359483392 a001 317811/4870847*10749957122^(5/24) 8024922359483392 a001 311187/101521*4106118243^(1/23) 8024922359483392 a001 317811/4870847*4106118243^(5/23) 8024922359483392 a001 311187/101521*1568397607^(1/22) 8024922359483392 a001 317811/4870847*1568397607^(5/22) 8024922359483392 a001 311187/101521*599074578^(1/21) 8024922359483392 a001 317811/4870847*599074578^(5/21) 8024922359483392 a001 311187/101521*228826127^(1/20) 8024922359483392 a001 317811/4870847*228826127^(1/4) 8024922359483392 a001 311187/101521*87403803^(1/19) 8024922359483393 a001 317811/4870847*87403803^(5/19) 8024922359483393 a001 311187/101521*33385282^(1/18) 8024922359483394 a001 317811/4870847*33385282^(5/18) 8024922359483395 a001 311187/101521*12752043^(1/17) 8024922359483407 a001 317811/4870847*12752043^(5/17) 8024922359483414 a001 311187/101521*4870847^(1/16) 8024922359483498 a001 317811/4870847*4870847^(5/16) 8024922359483547 a001 311187/101521*1860498^(1/15) 8024922359483565 a001 208010/1970299*439204^(1/3) 8024922359483601 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^55 8024922359483613 a001 317811/73681302247*7881196^(10/11) 8024922359483625 a001 10959/599786069*7881196^(9/11) 8024922359483634 a001 105937/4250681*7881196^(4/11) 8024922359483637 a001 105937/1368706081*7881196^(8/11) 8024922359483644 a001 317811/1568397607*7881196^(2/3) 8024922359483648 a001 317811/969323029*7881196^(7/11) 8024922359483660 a001 317811/228826127*7881196^(6/11) 8024922359483675 a001 317811/54018521*7881196^(5/11) 8024922359483681 a001 105937/4250681*141422324^(4/13) 8024922359483681 a001 105937/4250681*2537720636^(4/15) 8024922359483681 a001 105937/4250681*45537549124^(4/17) 8024922359483681 a001 105937/4250681*817138163596^(4/19) 8024922359483681 a001 105937/4250681*14662949395604^(4/21) 8024922359483681 a001 105937/4250681*(1/2+1/2*5^(1/2))^12 8024922359483681 a001 5702887/710647 8024922359483681 a001 105937/4250681*192900153618^(2/9) 8024922359483681 a001 105937/4250681*73681302247^(3/13) 8024922359483681 a001 105937/4250681*10749957122^(1/4) 8024922359483681 a001 105937/4250681*4106118243^(6/23) 8024922359483681 a001 105937/4250681*1568397607^(3/11) 8024922359483681 a001 105937/4250681*599074578^(2/7) 8024922359483681 a001 105937/4250681*228826127^(3/10) 8024922359483682 a001 105937/4250681*87403803^(6/19) 8024922359483682 a001 832040/710647*710647^(1/7) 8024922359483684 a001 105937/4250681*33385282^(1/3) 8024922359483699 a001 105937/4250681*12752043^(6/17) 8024922359483712 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^57 8024922359483714 a001 317811/73681302247*20633239^(6/7) 8024922359483716 a001 105937/9381251041*20633239^(4/5) 8024922359483716 a001 317811/33385282*20633239^(2/5) 8024922359483717 a001 317811/6643838879*20633239^(5/7) 8024922359483719 a001 317811/969323029*20633239^(3/5) 8024922359483720 a001 377/710646*20633239^(4/7) 8024922359483723 a001 317811/33385282*17393796001^(2/7) 8024922359483723 a001 317811/33385282*14662949395604^(2/9) 8024922359483723 a001 317811/33385282*(1/2+1/2*5^(1/2))^14 8024922359483723 a001 317811/33385282*505019158607^(1/4) 8024922359483723 a004 Fibonacci(36)/Lucas(28)/(1/2+sqrt(5)/2)^2 8024922359483723 a001 317811/33385282*10749957122^(7/24) 8024922359483723 a001 317811/33385282*4106118243^(7/23) 8024922359483723 a001 317811/33385282*1568397607^(7/22) 8024922359483723 a001 317811/33385282*599074578^(1/3) 8024922359483723 a001 317811/33385282*228826127^(7/20) 8024922359483724 a001 317811/33385282*87403803^(7/19) 8024922359483725 a001 317811/54018521*20633239^(3/7) 8024922359483726 a001 317811/33385282*33385282^(7/18) 8024922359483728 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^59 8024922359483730 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^16/Lucas(38) 8024922359483730 a001 105937/29134601*23725150497407^(1/4) 8024922359483730 a001 4140883359353/516002918640 8024922359483730 a004 Fibonacci(38)/Lucas(28)/(1/2+sqrt(5)/2)^4 8024922359483730 a001 105937/29134601*73681302247^(4/13) 8024922359483730 a001 105937/29134601*10749957122^(1/3) 8024922359483730 a001 105937/29134601*4106118243^(8/23) 8024922359483730 a001 105937/29134601*1568397607^(4/11) 8024922359483730 a001 105937/29134601*599074578^(8/21) 8024922359483730 a001 105937/29134601*228826127^(2/5) 8024922359483730 a001 105937/29134601*87403803^(8/19) 8024922359483730 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^61 8024922359483730 a001 105937/440719107401*141422324^(12/13) 8024922359483730 a001 317811/312119004989*141422324^(11/13) 8024922359483730 a001 317811/228826127*141422324^(6/13) 8024922359483730 a001 317811/73681302247*141422324^(10/13) 8024922359483730 a001 10959/599786069*141422324^(9/13) 8024922359483730 a001 317811/10749957122*141422324^(2/3) 8024922359483730 a001 105937/1368706081*141422324^(8/13) 8024922359483730 a001 317811/969323029*141422324^(7/13) 8024922359483730 a001 317811/228826127*2537720636^(2/5) 8024922359483730 a001 317811/228826127*45537549124^(6/17) 8024922359483730 a001 317811/228826127*14662949395604^(2/7) 8024922359483730 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^18/Lucas(40) 8024922359483730 a004 Fibonacci(40)/Lucas(28)/(1/2+sqrt(5)/2)^6 8024922359483730 a001 317811/228826127*192900153618^(1/3) 8024922359483730 a001 317811/228826127*10749957122^(3/8) 8024922359483730 a001 317811/228826127*4106118243^(9/23) 8024922359483730 a001 317811/228826127*1568397607^(9/22) 8024922359483730 a001 317811/228826127*599074578^(3/7) 8024922359483731 a001 317811/228826127*228826127^(9/20) 8024922359483731 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^63 8024922359483731 a001 377/710646*2537720636^(4/9) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^20/Lucas(42) 8024922359483731 a001 377/710646*23725150497407^(5/16) 8024922359483731 a001 28382036775352/3536736619241 8024922359483731 a001 377/710646*505019158607^(5/14) 8024922359483731 a004 Fibonacci(42)/Lucas(28)/(1/2+sqrt(5)/2)^8 8024922359483731 a001 377/710646*73681302247^(5/13) 8024922359483731 a001 377/710646*28143753123^(2/5) 8024922359483731 a001 377/710646*10749957122^(5/12) 8024922359483731 a001 377/710646*4106118243^(10/23) 8024922359483731 a001 377/710646*1568397607^(5/11) 8024922359483731 a001 377/710646*599074578^(10/21) 8024922359483731 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^65 8024922359483731 a001 317811/1568397607*312119004989^(2/5) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^22/Lucas(44) 8024922359483731 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2)^10 8024922359483731 a001 317811/1568397607*10749957122^(11/24) 8024922359483731 a001 317811/1568397607*4106118243^(11/23) 8024922359483731 a001 317811/1568397607*1568397607^(1/2) 8024922359483731 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^67 8024922359483731 a001 317811/23725150497407*2537720636^(14/15) 8024922359483731 a001 105937/1368706081*2537720636^(8/15) 8024922359483731 a001 105937/3020733700601*2537720636^(8/9) 8024922359483731 a001 317811/5600748293801*2537720636^(13/15) 8024922359483731 a001 105937/440719107401*2537720636^(4/5) 8024922359483731 a001 317811/817138163596*2537720636^(7/9) 8024922359483731 a001 317811/312119004989*2537720636^(11/15) 8024922359483731 a001 317811/73681302247*2537720636^(2/3) 8024922359483731 a001 10959/599786069*2537720636^(3/5) 8024922359483731 a001 317811/6643838879*2537720636^(5/9) 8024922359483731 a001 105937/1368706081*45537549124^(8/17) 8024922359483731 a001 105937/1368706081*14662949395604^(8/21) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(46) 8024922359483731 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^12 8024922359483731 a001 105937/1368706081*192900153618^(4/9) 8024922359483731 a001 105937/1368706081*73681302247^(6/13) 8024922359483731 a001 105937/1368706081*10749957122^(1/2) 8024922359483731 a001 105937/1368706081*4106118243^(12/23) 8024922359483731 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^69 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(48) 8024922359483731 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^14 8024922359483731 a001 317811/10749957122*73681302247^(1/2) 8024922359483731 a001 317811/10749957122*10749957122^(13/24) 8024922359483731 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^71 8024922359483731 a001 105937/9381251041*17393796001^(4/7) 8024922359483731 a001 317811/23725150497407*17393796001^(6/7) 8024922359483731 a001 317811/817138163596*17393796001^(5/7) 8024922359483731 a001 105937/9381251041*14662949395604^(4/9) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(50) 8024922359483731 a001 105937/9381251041*505019158607^(1/2) 8024922359483731 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^16 8024922359483731 a001 105937/9381251041*73681302247^(7/13) 8024922359483731 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^73 8024922359483731 a001 317811/73681302247*45537549124^(10/17) 8024922359483731 a001 317811/23725150497407*45537549124^(14/17) 8024922359483731 a001 317811/5600748293801*45537549124^(13/17) 8024922359483731 a001 105937/440719107401*45537549124^(12/17) 8024922359483731 a001 317811/505019158607*45537549124^(2/3) 8024922359483731 a001 317811/312119004989*45537549124^(11/17) 8024922359483731 a001 317811/73681302247*312119004989^(6/11) 8024922359483731 a001 317811/73681302247*14662949395604^(10/21) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(52) 8024922359483731 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^18 8024922359483731 a001 317811/73681302247*192900153618^(5/9) 8024922359483731 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^75 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(54) 8024922359483731 a001 105937/64300051206*23725150497407^(1/2) 8024922359483731 a001 105937/64300051206*505019158607^(4/7) 8024922359483731 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^20 8024922359483731 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^77 8024922359483731 a001 105937/3020733700601*312119004989^(8/11) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(56) 8024922359483731 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^79 8024922359483731 a001 105937/440719107401*14662949395604^(4/7) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(58) 8024922359483731 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^81 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(60) 8024922359483731 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^83 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(62) 8024922359483731 a001 105937/3020733700601*23725150497407^(5/8) 8024922359483731 a001 317811/23725150497407*14662949395604^(2/3) 8024922359483731 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^85 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(64) 8024922359483731 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^87 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(66) 8024922359483731 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^89 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(68) 8024922359483731 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^91 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(70) 8024922359483731 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^93 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(72) 8024922359483731 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^95 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(74) 8024922359483731 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^97 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(76) 8024922359483731 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^99 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(78) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(80) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(82) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(84) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(86) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(88) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(90) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(92) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(94) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(96) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(98) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(100) 8024922359483731 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^22 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(99) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(97) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(95) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(93) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(91) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(89) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(87) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(85) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(83) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(81) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(79) 8024922359483731 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^100 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(77) 8024922359483731 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^98 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(75) 8024922359483731 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^96 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(73) 8024922359483731 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^94 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(71) 8024922359483731 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^92 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(69) 8024922359483731 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^90 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(67) 8024922359483731 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^88 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(65) 8024922359483731 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^86 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(63) 8024922359483731 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^84 8024922359483731 a001 317811/5600748293801*14662949395604^(13/21) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(61) 8024922359483731 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^82 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(59) 8024922359483731 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^80 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(57) 8024922359483731 a001 105937/440719107401*505019158607^(9/14) 8024922359483731 a001 317811/23725150497407*505019158607^(3/4) 8024922359483731 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^24 8024922359483731 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^26 8024922359483731 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^28 8024922359483731 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^30 8024922359483731 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^32 8024922359483731 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^34 8024922359483731 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^36 8024922359483731 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^38 8024922359483731 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^40 8024922359483731 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^42 8024922359483731 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^44 8024922359483731 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^46 8024922359483731 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^48 8024922359483731 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^50 8024922359483731 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^52 8024922359483731 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^54 8024922359483731 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^56 8024922359483731 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^58 8024922359483731 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^60 8024922359483731 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^62 8024922359483731 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^64 8024922359483731 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^66 8024922359483731 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^78 8024922359483731 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^65 8024922359483731 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^63 8024922359483731 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^61 8024922359483731 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^59 8024922359483731 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^57 8024922359483731 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^55 8024922359483731 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^53 8024922359483731 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^51 8024922359483731 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^49 8024922359483731 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^47 8024922359483731 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^45 8024922359483731 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^43 8024922359483731 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^41 8024922359483731 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^39 8024922359483731 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^37 8024922359483731 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^35 8024922359483731 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^33 8024922359483731 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^31 8024922359483731 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^29 8024922359483731 a001 317811/817138163596*505019158607^(5/8) 8024922359483731 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^27 8024922359483731 a001 317811/312119004989*312119004989^(3/5) 8024922359483731 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^25 8024922359483731 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^23 8024922359483731 a001 317811/312119004989*817138163596^(11/19) 8024922359483731 a001 317811/312119004989*14662949395604^(11/21) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(55) 8024922359483731 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^21 8024922359483731 a001 105937/440719107401*192900153618^(2/3) 8024922359483731 a001 317811/23725150497407*192900153618^(7/9) 8024922359483731 a001 317811/312119004989*192900153618^(11/18) 8024922359483731 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^76 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(53) 8024922359483731 a001 317811/119218851371*9062201101803^(1/2) 8024922359483731 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^19 8024922359483731 a001 105937/64300051206*73681302247^(8/13) 8024922359483731 a001 105937/440719107401*73681302247^(9/13) 8024922359483731 a001 317811/5600748293801*73681302247^(3/4) 8024922359483731 a001 105937/3020733700601*73681302247^(10/13) 8024922359483731 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^74 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(51) 8024922359483731 a001 317811/45537549124*1322157322203^(1/2) 8024922359483731 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^17 8024922359483731 a001 317811/73681302247*28143753123^(3/5) 8024922359483731 a001 317811/817138163596*28143753123^(7/10) 8024922359483731 a001 105937/3020733700601*28143753123^(4/5) 8024922359483731 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^72 8024922359483731 a001 10959/599786069*45537549124^(9/17) 8024922359483731 a001 10959/599786069*817138163596^(9/19) 8024922359483731 a001 10959/599786069*14662949395604^(3/7) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(49) 8024922359483731 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^15 8024922359483731 a001 10959/599786069*192900153618^(1/2) 8024922359483731 a001 105937/9381251041*10749957122^(7/12) 8024922359483731 a001 317811/73681302247*10749957122^(5/8) 8024922359483731 a001 105937/64300051206*10749957122^(2/3) 8024922359483731 a001 317811/312119004989*10749957122^(11/16) 8024922359483731 a001 317811/505019158607*10749957122^(17/24) 8024922359483731 a001 105937/440719107401*10749957122^(3/4) 8024922359483731 a001 317811/3461452808002*10749957122^(19/24) 8024922359483731 a001 317811/5600748293801*10749957122^(13/16) 8024922359483731 a001 105937/3020733700601*10749957122^(5/6) 8024922359483731 a001 317811/23725150497407*10749957122^(7/8) 8024922359483731 a001 10959/599786069*10749957122^(9/16) 8024922359483731 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^70 8024922359483731 a001 317811/6643838879*312119004989^(5/11) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(47) 8024922359483731 a001 317811/6643838879*3461452808002^(5/12) 8024922359483731 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^13 8024922359483731 a001 317811/6643838879*28143753123^(1/2) 8024922359483731 a001 317811/10749957122*4106118243^(13/23) 8024922359483731 a001 105937/9381251041*4106118243^(14/23) 8024922359483731 a001 317811/73681302247*4106118243^(15/23) 8024922359483731 a001 105937/64300051206*4106118243^(16/23) 8024922359483731 a001 317811/505019158607*4106118243^(17/23) 8024922359483731 a001 105937/440719107401*4106118243^(18/23) 8024922359483731 a001 317811/3461452808002*4106118243^(19/23) 8024922359483731 a001 105937/3020733700601*4106118243^(20/23) 8024922359483731 a001 317811/23725150497407*4106118243^(21/23) 8024922359483731 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^68 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^23/Lucas(45) 8024922359483731 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^11 8024922359483731 a001 105937/1368706081*1568397607^(6/11) 8024922359483731 a001 317811/2537720636*4106118243^(1/2) 8024922359483731 a001 317811/10749957122*1568397607^(13/22) 8024922359483731 a001 105937/9381251041*1568397607^(7/11) 8024922359483731 a001 317811/73681302247*1568397607^(15/22) 8024922359483731 a001 105937/64300051206*1568397607^(8/11) 8024922359483731 a001 317811/312119004989*1568397607^(3/4) 8024922359483731 a001 317811/505019158607*1568397607^(17/22) 8024922359483731 a001 105937/440719107401*1568397607^(9/11) 8024922359483731 a001 317811/3461452808002*1568397607^(19/22) 8024922359483731 a001 105937/3020733700601*1568397607^(10/11) 8024922359483731 a001 317811/23725150497407*1568397607^(21/22) 8024922359483731 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^66 8024922359483731 a001 317811/969323029*2537720636^(7/15) 8024922359483731 a001 317811/1568397607*599074578^(11/21) 8024922359483731 a001 317811/969323029*17393796001^(3/7) 8024922359483731 a001 317811/969323029*45537549124^(7/17) 8024922359483731 a001 317811/969323029*14662949395604^(1/3) 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^21/Lucas(43) 8024922359483731 a004 Fibonacci(43)/Lucas(28)/(1/2+sqrt(5)/2)^9 8024922359483731 a001 317811/969323029*192900153618^(7/18) 8024922359483731 a001 317811/969323029*10749957122^(7/16) 8024922359483731 a001 105937/1368706081*599074578^(4/7) 8024922359483731 a001 317811/10749957122*599074578^(13/21) 8024922359483731 a001 10959/599786069*599074578^(9/14) 8024922359483731 a001 105937/9381251041*599074578^(2/3) 8024922359483731 a001 317811/73681302247*599074578^(5/7) 8024922359483731 a001 105937/64300051206*599074578^(16/21) 8024922359483731 a001 317811/312119004989*599074578^(11/14) 8024922359483731 a001 317811/505019158607*599074578^(17/21) 8024922359483731 a001 317811/817138163596*599074578^(5/6) 8024922359483731 a001 105937/440719107401*599074578^(6/7) 8024922359483731 a001 317811/969323029*599074578^(1/2) 8024922359483731 a001 317811/3461452808002*599074578^(19/21) 8024922359483731 a001 317811/5600748293801*599074578^(13/14) 8024922359483731 a001 105937/3020733700601*599074578^(20/21) 8024922359483731 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^64 8024922359483731 a001 377/710646*228826127^(1/2) 8024922359483731 a001 317811/370248451*817138163596^(1/3) 8024922359483731 a001 4047937707027/504420793834 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^19/Lucas(41) 8024922359483731 a004 Fibonacci(41)/Lucas(28)/(1/2+sqrt(5)/2)^7 8024922359483731 a001 317811/1568397607*228826127^(11/20) 8024922359483731 a001 105937/1368706081*228826127^(3/5) 8024922359483731 a001 317811/6643838879*228826127^(5/8) 8024922359483731 a001 317811/10749957122*228826127^(13/20) 8024922359483731 a001 105937/9381251041*228826127^(7/10) 8024922359483731 a001 317811/73681302247*228826127^(3/4) 8024922359483731 a001 105937/64300051206*228826127^(4/5) 8024922359483731 a001 317811/505019158607*228826127^(17/20) 8024922359483731 a001 317811/817138163596*228826127^(7/8) 8024922359483731 a001 105937/440719107401*228826127^(9/10) 8024922359483731 a001 317811/3461452808002*228826127^(19/20) 8024922359483731 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^62 8024922359483731 a001 317811/228826127*87403803^(9/19) 8024922359483731 a001 317811/141422324*45537549124^(1/3) 8024922359483731 a001 20100270056646/2504730781961 8024922359483731 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^17/Lucas(39) 8024922359483731 a004 Fibonacci(39)/Lucas(28)/(1/2+sqrt(5)/2)^5 8024922359483731 a001 377/710646*87403803^(10/19) 8024922359483731 a001 317811/370248451*87403803^(1/2) 8024922359483731 a001 317811/1568397607*87403803^(11/19) 8024922359483731 a001 105937/1368706081*87403803^(12/19) 8024922359483731 a001 317811/10749957122*87403803^(13/19) 8024922359483731 a001 105937/9381251041*87403803^(14/19) 8024922359483731 a001 317811/73681302247*87403803^(15/19) 8024922359483732 a001 105937/64300051206*87403803^(16/19) 8024922359483732 a001 317811/505019158607*87403803^(17/19) 8024922359483732 a001 105937/440719107401*87403803^(18/19) 8024922359483732 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^60 8024922359483733 a001 105937/29134601*33385282^(4/9) 8024922359483733 a001 317811/54018521*141422324^(5/13) 8024922359483733 a001 317811/54018521*2537720636^(1/3) 8024922359483733 a001 317811/54018521*45537549124^(5/17) 8024922359483733 a001 317811/54018521*312119004989^(3/11) 8024922359483733 a001 317811/54018521*14662949395604^(5/21) 8024922359483733 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^15/Lucas(37) 8024922359483733 a004 Fibonacci(37)/Lucas(28)/(1/2+sqrt(5)/2)^3 8024922359483733 a001 317811/54018521*192900153618^(5/18) 8024922359483733 a001 317811/54018521*28143753123^(3/10) 8024922359483733 a001 317811/54018521*10749957122^(5/16) 8024922359483733 a001 317811/54018521*599074578^(5/14) 8024922359483733 a001 317811/54018521*228826127^(3/8) 8024922359483734 a001 317811/228826127*33385282^(1/2) 8024922359483735 a001 377/710646*33385282^(5/9) 8024922359483735 a001 317811/969323029*33385282^(7/12) 8024922359483735 a001 317811/1568397607*33385282^(11/18) 8024922359483735 a001 105937/1368706081*33385282^(2/3) 8024922359483736 a001 317811/10749957122*33385282^(13/18) 8024922359483736 a001 10959/599786069*33385282^(3/4) 8024922359483736 a001 105937/9381251041*33385282^(7/9) 8024922359483736 a001 317811/54018521*33385282^(5/12) 8024922359483737 a001 317811/73681302247*33385282^(5/6) 8024922359483737 a001 105937/64300051206*33385282^(8/9) 8024922359483737 a001 317811/312119004989*33385282^(11/12) 8024922359483737 a001 317811/505019158607*33385282^(17/18) 8024922359483738 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^58 8024922359483744 a001 317811/33385282*12752043^(7/17) 8024922359483749 a001 10959/711491*141422324^(1/3) 8024922359483749 a001 2932589879115/365435296162 8024922359483749 a001 10959/711491*(1/2+1/2*5^(1/2))^13 8024922359483749 a004 Fibonacci(35)/Lucas(28)/(1/2+sqrt(5)/2) 8024922359483749 a001 10959/711491*73681302247^(1/4) 8024922359483753 a001 105937/29134601*12752043^(8/17) 8024922359483756 a001 317811/141422324*12752043^(1/2) 8024922359483757 a001 317811/228826127*12752043^(9/17) 8024922359483760 a001 377/710646*12752043^(10/17) 8024922359483763 a001 317811/1568397607*12752043^(11/17) 8024922359483765 a001 105937/1368706081*12752043^(12/17) 8024922359483768 a001 317811/10749957122*12752043^(13/17) 8024922359483771 a001 105937/9381251041*12752043^(14/17) 8024922359483774 a001 317811/73681302247*12752043^(15/17) 8024922359483777 a001 105937/64300051206*12752043^(16/17) 8024922359483780 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^56 8024922359483808 a001 105937/4250681*4870847^(3/8) 8024922359483817 a001 317811/7881196*7881196^(1/3) 8024922359483860 a001 12585951222/1568358005 8024922359483860 a001 317811/7881196*(1/2+1/2*5^(1/2))^11 8024922359483860 a001 1762289/710647+1762289/710647*5^(1/2) 8024922359483860 a001 317811/7881196*1568397607^(1/4) 8024922359483871 a001 317811/33385282*4870847^(7/16) 8024922359483899 a001 105937/29134601*4870847^(1/2) 8024922359483921 a001 317811/228826127*4870847^(9/16) 8024922359483942 a001 377/710646*4870847^(5/8) 8024922359483963 a001 317811/1568397607*4870847^(11/16) 8024922359483984 a001 105937/1368706081*4870847^(3/4) 8024922359484005 a001 317811/10749957122*4870847^(13/16) 8024922359484027 a001 105937/9381251041*4870847^(7/8) 8024922359484048 a001 317811/73681302247*4870847^(15/16) 8024922359484069 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^54 8024922359484165 a001 317811/4870847*1860498^(1/3) 8024922359484527 a001 311187/101521*710647^(1/14) 8024922359484581 a001 317811/3010349*7881196^(3/11) 8024922359484604 a001 1346269/710647*7881196^(1/11) 8024922359484609 a001 105937/4250681*1860498^(2/5) 8024922359484616 a001 317811/3010349*141422324^(3/13) 8024922359484616 a001 1346269/710647*141422324^(1/13) 8024922359484616 a001 317811/3010349*2537720636^(1/5) 8024922359484616 a001 1346269/710647*2537720636^(1/15) 8024922359484616 a001 317811/3010349*45537549124^(3/17) 8024922359484616 a001 427859097159/53316291173 8024922359484616 a001 1346269/710647*45537549124^(1/17) 8024922359484616 a001 317811/3010349*(1/2+1/2*5^(1/2))^9 8024922359484616 a001 1346269/710647*14662949395604^(1/21) 8024922359484616 a001 1346269/710647*(1/2+1/2*5^(1/2))^3 8024922359484616 a001 317811/3010349*192900153618^(1/6) 8024922359484616 a001 1346269/710647*192900153618^(1/18) 8024922359484616 a001 1346269/710647*10749957122^(1/16) 8024922359484616 a001 317811/3010349*10749957122^(3/16) 8024922359484616 a001 1346269/710647*599074578^(1/14) 8024922359484616 a001 317811/3010349*599074578^(3/14) 8024922359484617 a001 1346269/710647*33385282^(1/12) 8024922359484618 a001 317811/3010349*33385282^(1/4) 8024922359484805 a001 317811/33385282*1860498^(7/15) 8024922359484848 a001 1346269/710647*1860498^(1/10) 8024922359484893 a001 317811/54018521*1860498^(1/2) 8024922359484966 a001 105937/29134601*1860498^(8/15) 8024922359485121 a001 317811/228826127*1860498^(3/5) 8024922359485276 a001 377/710646*1860498^(2/3) 8024922359485312 a001 317811/3010349*1860498^(3/10) 8024922359485353 a001 317811/969323029*1860498^(7/10) 8024922359485431 a001 317811/1568397607*1860498^(11/15) 8024922359485434 a001 2178309/20633239*439204^(1/3) 8024922359485585 a001 105937/1368706081*1860498^(4/5) 8024922359485663 a001 317811/6643838879*1860498^(5/6) 8024922359485707 a001 5702887/54018521*439204^(1/3) 8024922359485739 a001 416020/930249*439204^(2/9) 8024922359485740 a001 317811/10749957122*1860498^(13/15) 8024922359485747 a001 3732588/35355581*439204^(1/3) 8024922359485753 a001 39088169/370248451*439204^(1/3) 8024922359485754 a001 102334155/969323029*439204^(1/3) 8024922359485754 a001 66978574/634430159*439204^(1/3) 8024922359485754 a001 701408733/6643838879*439204^(1/3) 8024922359485754 a001 1836311903/17393796001*439204^(1/3) 8024922359485754 a001 1201881744/11384387281*439204^(1/3) 8024922359485754 a001 12586269025/119218851371*439204^(1/3) 8024922359485754 a001 32951280099/312119004989*439204^(1/3) 8024922359485754 a001 21566892818/204284540899*439204^(1/3) 8024922359485754 a001 225851433717/2139295485799*439204^(1/3) 8024922359485754 a001 182717648081/1730726404001*439204^(1/3) 8024922359485754 a001 139583862445/1322157322203*439204^(1/3) 8024922359485754 a001 53316291173/505019158607*439204^(1/3) 8024922359485754 a001 10182505537/96450076809*439204^(1/3) 8024922359485754 a001 7778742049/73681302247*439204^(1/3) 8024922359485754 a001 2971215073/28143753123*439204^(1/3) 8024922359485754 a001 567451585/5374978561*439204^(1/3) 8024922359485754 a001 433494437/4106118243*439204^(1/3) 8024922359485754 a001 165580141/1568397607*439204^(1/3) 8024922359485754 a001 31622993/299537289*439204^(1/3) 8024922359485756 a001 24157817/228826127*439204^(1/3) 8024922359485772 a001 9227465/87403803*439204^(1/3) 8024922359485817 a001 10959/599786069*1860498^(9/10) 8024922359485876 a001 1762289/16692641*439204^(1/3) 8024922359485894 a001 105937/9381251041*1860498^(14/15) 8024922359485952 a001 105937/620166*710647^(2/7) 8024922359486049 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^52 8024922359486470 a001 196418/167761*64079^(4/23) 8024922359486590 a001 1346269/12752043*439204^(1/3) 8024922359487220 a001 514229/20633239*439204^(4/9) 8024922359489067 a001 317811/4870847*710647^(5/14) 8024922359489700 a001 2178309/4870847*439204^(2/9) 8024922359489796 a001 317811/1149851*20633239^(1/5) 8024922359489797 a001 514229/710647*20633239^(1/7) 8024922359489800 a001 514229/710647*2537720636^(1/9) 8024922359489800 a001 163427632719/20365011074 8024922359489800 a001 317811/1149851*17393796001^(1/7) 8024922359489800 a001 317811/1149851*14662949395604^(1/9) 8024922359489800 a001 317811/1149851*(1/2+1/2*5^(1/2))^7 8024922359489800 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^7/Lucas(29) 8024922359489800 a001 514229/710647*312119004989^(1/11) 8024922359489800 a001 514229/710647*(1/2+1/2*5^(1/2))^5 8024922359489800 a001 514229/710647*28143753123^(1/10) 8024922359489800 a001 317811/1149851*599074578^(1/6) 8024922359489800 a001 514229/710647*228826127^(1/8) 8024922359490090 a001 514229/271443*103682^(1/8) 8024922359490187 a001 514229/710647*1860498^(1/6) 8024922359490277 a001 5702887/12752043*439204^(2/9) 8024922359490362 a001 7465176/16692641*439204^(2/9) 8024922359490374 a001 39088169/87403803*439204^(2/9) 8024922359490376 a001 102334155/228826127*439204^(2/9) 8024922359490376 a001 133957148/299537289*439204^(2/9) 8024922359490376 a001 701408733/1568397607*439204^(2/9) 8024922359490376 a001 1836311903/4106118243*439204^(2/9) 8024922359490376 a001 2403763488/5374978561*439204^(2/9) 8024922359490376 a001 12586269025/28143753123*439204^(2/9) 8024922359490376 a001 32951280099/73681302247*439204^(2/9) 8024922359490376 a001 43133785636/96450076809*439204^(2/9) 8024922359490376 a001 225851433717/505019158607*439204^(2/9) 8024922359490376 a001 591286729879/1322157322203*439204^(2/9) 8024922359490376 a001 10610209857723/23725150497407*439204^(2/9) 8024922359490376 a001 182717648081/408569081798*439204^(2/9) 8024922359490376 a001 139583862445/312119004989*439204^(2/9) 8024922359490376 a001 53316291173/119218851371*439204^(2/9) 8024922359490376 a001 10182505537/22768774562*439204^(2/9) 8024922359490376 a001 7778742049/17393796001*439204^(2/9) 8024922359490376 a001 2971215073/6643838879*439204^(2/9) 8024922359490376 a001 567451585/1268860318*439204^(2/9) 8024922359490376 a001 433494437/969323029*439204^(2/9) 8024922359490376 a001 165580141/370248451*439204^(2/9) 8024922359490377 a001 31622993/70711162*439204^(2/9) 8024922359490382 a001 24157817/54018521*439204^(2/9) 8024922359490414 a001 9227465/20633239*439204^(2/9) 8024922359490491 a001 105937/4250681*710647^(3/7) 8024922359490635 a001 1762289/3940598*439204^(2/9) 8024922359491233 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^53 8024922359491243 a001 121393/1568397607*271443^(12/13) 8024922359491485 a001 514229/4870847*439204^(1/3) 8024922359491669 a001 317811/33385282*710647^(1/2) 8024922359491770 a001 311187/101521*271443^(1/13) 8024922359492147 a001 1346269/3010349*439204^(2/9) 8024922359492438 a001 98209/51841*39603^(3/22) 8024922359492809 a001 1762289/930249*439204^(1/9) 8024922359492810 a001 105937/29134601*710647^(4/7) 8024922359492974 a001 317811/710647*271443^(3/13) 8024922359493213 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^55 8024922359493502 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^57 8024922359493544 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^59 8024922359493550 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^61 8024922359493551 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^63 8024922359493551 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^65 8024922359493551 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^67 8024922359493551 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^69 8024922359493551 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^71 8024922359493551 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^73 8024922359493551 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^75 8024922359493551 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^77 8024922359493551 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^79 8024922359493551 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^81 8024922359493551 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^83 8024922359493551 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^85 8024922359493551 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^87 8024922359493551 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^89 8024922359493551 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^91 8024922359493551 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^93 8024922359493551 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^95 8024922359493551 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^97 8024922359493551 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^99 8024922359493551 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^100 8024922359493551 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^98 8024922359493551 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^96 8024922359493551 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^94 8024922359493551 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^92 8024922359493551 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^90 8024922359493551 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^88 8024922359493551 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^86 8024922359493551 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^84 8024922359493551 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^82 8024922359493551 a001 2/514229*(1/2+1/2*5^(1/2))^35 8024922359493551 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^80 8024922359493551 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^78 8024922359493551 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^76 8024922359493551 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^74 8024922359493551 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^72 8024922359493551 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^70 8024922359493551 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^68 8024922359493551 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^66 8024922359493551 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^64 8024922359493552 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^62 8024922359493554 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^60 8024922359493570 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^58 8024922359493681 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^56 8024922359493773 a001 317811/1149851*710647^(1/4) 8024922359493946 a001 317811/228826127*710647^(9/14) 8024922359494437 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^54 8024922359494679 a001 9227465/4870847*439204^(1/9) 8024922359494952 a001 24157817/12752043*439204^(1/9) 8024922359494961 a001 416020/930249*7881196^(2/11) 8024922359494984 a001 416020/930249*141422324^(2/13) 8024922359494984 a001 416020/930249*2537720636^(2/15) 8024922359494984 a001 416020/930249*45537549124^(2/17) 8024922359494984 a001 416020/930249*14662949395604^(2/21) 8024922359494984 a001 416020/930249*(1/2+1/2*5^(1/2))^6 8024922359494984 a001 86536320200/10783446409 8024922359494984 a001 416020/930249*10749957122^(1/8) 8024922359494984 a001 416020/930249*4106118243^(3/23) 8024922359494984 a001 416020/930249*1568397607^(3/22) 8024922359494984 a001 416020/930249*599074578^(1/7) 8024922359494984 a001 416020/930249*228826127^(3/20) 8024922359494984 a001 416020/930249*87403803^(3/19) 8024922359494985 a001 416020/930249*33385282^(1/6) 8024922359494992 a001 31622993/16692641*439204^(1/9) 8024922359494993 a001 416020/930249*12752043^(3/17) 8024922359494998 a001 165580141/87403803*439204^(1/9) 8024922359494998 a001 433494437/228826127*439204^(1/9) 8024922359494999 a001 567451585/299537289*439204^(1/9) 8024922359494999 a001 2971215073/1568397607*439204^(1/9) 8024922359494999 a001 7778742049/4106118243*439204^(1/9) 8024922359494999 a001 10182505537/5374978561*439204^(1/9) 8024922359494999 a001 53316291173/28143753123*439204^(1/9) 8024922359494999 a001 139583862445/73681302247*439204^(1/9) 8024922359494999 a001 182717648081/96450076809*439204^(1/9) 8024922359494999 a001 956722026041/505019158607*439204^(1/9) 8024922359494999 a001 10610209857723/5600748293801*439204^(1/9) 8024922359494999 a001 591286729879/312119004989*439204^(1/9) 8024922359494999 a001 225851433717/119218851371*439204^(1/9) 8024922359494999 a001 21566892818/11384387281*439204^(1/9) 8024922359494999 a001 32951280099/17393796001*439204^(1/9) 8024922359494999 a001 12586269025/6643838879*439204^(1/9) 8024922359494999 a001 1201881744/634430159*439204^(1/9) 8024922359494999 a001 1836311903/969323029*439204^(1/9) 8024922359494999 a001 701408733/370248451*439204^(1/9) 8024922359494999 a001 66978574/35355581*439204^(1/9) 8024922359495001 a001 102334155/54018521*439204^(1/9) 8024922359495016 a001 39088169/20633239*439204^(1/9) 8024922359495048 a001 416020/930249*4870847^(3/16) 8024922359495081 a001 377/710646*710647^(5/7) 8024922359495121 a001 3732588/1970299*439204^(1/9) 8024922359495448 a001 416020/930249*1860498^(1/5) 8024922359495648 a001 317811/969323029*710647^(3/4) 8024922359495835 a001 5702887/3010349*439204^(1/9) 8024922359496216 a001 317811/1568397607*710647^(11/14) 8024922359496417 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^55 8024922359496964 a001 832040/4870847*(1/2+1/2*5^(1/2))^8 8024922359496964 a001 726103/620166*(1/2+1/2*5^(1/2))^4 8024922359496964 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^4/Lucas(30) 8024922359496964 a001 726103/620166*23725150497407^(1/16) 8024922359496964 a001 832040/4870847*505019158607^(1/7) 8024922359496964 a001 86306677160/10754830177 8024922359496964 a001 726103/620166*73681302247^(1/13) 8024922359496964 a001 832040/4870847*73681302247^(2/13) 8024922359496964 a001 726103/620166*10749957122^(1/12) 8024922359496964 a001 832040/4870847*10749957122^(1/6) 8024922359496964 a001 726103/620166*4106118243^(2/23) 8024922359496964 a001 832040/4870847*4106118243^(4/23) 8024922359496964 a001 726103/620166*1568397607^(1/11) 8024922359496964 a001 832040/4870847*1568397607^(2/11) 8024922359496964 a001 726103/620166*599074578^(2/21) 8024922359496964 a001 832040/4870847*599074578^(4/21) 8024922359496964 a001 726103/620166*228826127^(1/10) 8024922359496964 a001 832040/4870847*228826127^(1/5) 8024922359496964 a001 726103/620166*87403803^(2/19) 8024922359496965 a001 832040/4870847*87403803^(4/19) 8024922359496965 a001 726103/620166*33385282^(1/9) 8024922359496966 a001 832040/4870847*33385282^(2/9) 8024922359496970 a001 726103/620166*12752043^(2/17) 8024922359496976 a001 832040/4870847*12752043^(4/17) 8024922359497007 a001 726103/620166*4870847^(1/8) 8024922359497049 a001 832040/4870847*4870847^(1/4) 8024922359497173 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^57 8024922359497185 a001 416020/96450076809*7881196^(10/11) 8024922359497197 a001 208010/11384387281*7881196^(9/11) 8024922359497209 a001 416020/5374978561*7881196^(8/11) 8024922359497216 a001 832040/4106118243*7881196^(2/3) 8024922359497220 a001 610/1860499*7881196^(7/11) 8024922359497232 a001 416020/299537289*7881196^(6/11) 8024922359497244 a001 208010/35355581*7881196^(5/11) 8024922359497248 a001 832040/12752043*20633239^(2/7) 8024922359497248 a001 416020/16692641*7881196^(4/11) 8024922359497253 a001 832040/12752043*2537720636^(2/9) 8024922359497253 a001 832040/12752043*312119004989^(2/11) 8024922359497253 a001 832040/12752043*(1/2+1/2*5^(1/2))^10 8024922359497253 a001 5702887/1860498*(1/2+1/2*5^(1/2))^2 8024922359497253 a001 4745030099480/591286729879 8024922359497253 a001 832040/12752043*28143753123^(1/5) 8024922359497253 a001 5702887/1860498*10749957122^(1/24) 8024922359497253 a001 832040/12752043*10749957122^(5/24) 8024922359497253 a001 5702887/1860498*4106118243^(1/23) 8024922359497253 a001 832040/12752043*4106118243^(5/23) 8024922359497253 a001 5702887/1860498*1568397607^(1/22) 8024922359497253 a001 832040/12752043*1568397607^(5/22) 8024922359497253 a001 5702887/1860498*599074578^(1/21) 8024922359497253 a001 832040/12752043*599074578^(5/21) 8024922359497253 a001 5702887/1860498*228826127^(1/20) 8024922359497253 a001 832040/12752043*228826127^(1/4) 8024922359497253 a001 5702887/1860498*87403803^(1/19) 8024922359497254 a001 832040/12752043*87403803^(5/19) 8024922359497254 a001 5702887/1860498*33385282^(1/18) 8024922359497255 a001 832040/12752043*33385282^(5/18) 8024922359497256 a001 5702887/1860498*12752043^(1/17) 8024922359497268 a001 832040/12752043*12752043^(5/17) 8024922359497273 a001 726103/620166*1860498^(2/15) 8024922359497274 a001 5702887/1860498*4870847^(1/16) 8024922359497278 a001 75640/1875749*7881196^(1/3) 8024922359497284 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^59 8024922359497286 a001 416020/96450076809*20633239^(6/7) 8024922359497288 a001 832040/73681302247*20633239^(4/5) 8024922359497289 a001 832040/17393796001*20633239^(5/7) 8024922359497291 a001 610/1860499*20633239^(3/5) 8024922359497292 a001 832040/1568397607*20633239^(4/7) 8024922359497294 a001 832040/87403803*20633239^(2/5) 8024922359497295 a001 208010/35355581*20633239^(3/7) 8024922359497295 a001 416020/16692641*141422324^(4/13) 8024922359497295 a001 416020/16692641*2537720636^(4/15) 8024922359497295 a001 416020/16692641*45537549124^(4/17) 8024922359497295 a001 416020/16692641*817138163596^(4/19) 8024922359497295 a001 416020/16692641*14662949395604^(4/21) 8024922359497295 a001 416020/16692641*(1/2+1/2*5^(1/2))^12 8024922359497295 a001 829464/103361 8024922359497295 a001 416020/16692641*192900153618^(2/9) 8024922359497295 a001 416020/16692641*73681302247^(3/13) 8024922359497295 a001 416020/16692641*10749957122^(1/4) 8024922359497295 a001 416020/16692641*4106118243^(6/23) 8024922359497295 a001 416020/16692641*1568397607^(3/11) 8024922359497295 a001 416020/16692641*599074578^(2/7) 8024922359497295 a001 416020/16692641*228826127^(3/10) 8024922359497296 a001 416020/16692641*87403803^(6/19) 8024922359497298 a001 416020/16692641*33385282^(1/3) 8024922359497300 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^61 8024922359497302 a001 832040/87403803*17393796001^(2/7) 8024922359497302 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^14/Lucas(38) 8024922359497302 a001 32522920134760/4052739537881 8024922359497302 a004 Fibonacci(38)/Lucas(30)/(1/2+sqrt(5)/2)^2 8024922359497302 a001 832040/87403803*505019158607^(1/4) 8024922359497302 a001 832040/87403803*10749957122^(7/24) 8024922359497302 a001 832040/87403803*4106118243^(7/23) 8024922359497302 a001 832040/87403803*1568397607^(7/22) 8024922359497302 a001 832040/87403803*599074578^(1/3) 8024922359497302 a001 832040/87403803*228826127^(7/20) 8024922359497302 a001 832040/87403803*87403803^(7/19) 8024922359497302 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^63 8024922359497302 a001 416020/1730726404001*141422324^(12/13) 8024922359497302 a001 208010/204284540899*141422324^(11/13) 8024922359497302 a001 416020/96450076809*141422324^(10/13) 8024922359497302 a001 208010/11384387281*141422324^(9/13) 8024922359497302 a001 832040/28143753123*141422324^(2/3) 8024922359497302 a001 416020/5374978561*141422324^(8/13) 8024922359497302 a001 610/1860499*141422324^(7/13) 8024922359497302 a001 416020/299537289*141422324^(6/13) 8024922359497302 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^16/Lucas(40) 8024922359497302 a001 832040/228826127*23725150497407^(1/4) 8024922359497302 a001 4054576682200/505248088463 8024922359497302 a004 Fibonacci(40)/Lucas(30)/(1/2+sqrt(5)/2)^4 8024922359497302 a001 832040/228826127*73681302247^(4/13) 8024922359497302 a001 832040/228826127*10749957122^(1/3) 8024922359497302 a001 832040/228826127*4106118243^(8/23) 8024922359497302 a001 832040/228826127*1568397607^(4/11) 8024922359497302 a001 832040/228826127*599074578^(8/21) 8024922359497302 a001 832040/228826127*228826127^(2/5) 8024922359497303 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^65 8024922359497303 a001 416020/299537289*2537720636^(2/5) 8024922359497303 a001 416020/299537289*45537549124^(6/17) 8024922359497303 a001 416020/299537289*14662949395604^(2/7) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^18/Lucas(42) 8024922359497303 a004 Fibonacci(42)/Lucas(30)/(1/2+sqrt(5)/2)^6 8024922359497303 a001 416020/299537289*192900153618^(1/3) 8024922359497303 a001 416020/299537289*10749957122^(3/8) 8024922359497303 a001 416020/299537289*4106118243^(9/23) 8024922359497303 a001 416020/299537289*1568397607^(9/22) 8024922359497303 a001 416020/299537289*599074578^(3/7) 8024922359497303 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^67 8024922359497303 a001 832040/1568397607*2537720636^(4/9) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^20/Lucas(44) 8024922359497303 a001 832040/1568397607*23725150497407^(5/16) 8024922359497303 a004 Fibonacci(44)/Lucas(30)/(1/2+sqrt(5)/2)^8 8024922359497303 a001 832040/1568397607*505019158607^(5/14) 8024922359497303 a001 832040/1568397607*73681302247^(5/13) 8024922359497303 a001 832040/1568397607*28143753123^(2/5) 8024922359497303 a001 832040/1568397607*10749957122^(5/12) 8024922359497303 a001 832040/1568397607*4106118243^(10/23) 8024922359497303 a001 832040/1568397607*1568397607^(5/11) 8024922359497303 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^69 8024922359497303 a001 832040/23725150497407*2537720636^(8/9) 8024922359497303 a001 208010/3665737348901*2537720636^(13/15) 8024922359497303 a001 416020/1730726404001*2537720636^(4/5) 8024922359497303 a001 832040/2139295485799*2537720636^(7/9) 8024922359497303 a001 208010/204284540899*2537720636^(11/15) 8024922359497303 a001 416020/96450076809*2537720636^(2/3) 8024922359497303 a001 208010/11384387281*2537720636^(3/5) 8024922359497303 a001 416020/5374978561*2537720636^(8/15) 8024922359497303 a001 832040/17393796001*2537720636^(5/9) 8024922359497303 a001 832040/4106118243*312119004989^(2/5) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(46) 8024922359497303 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2)^10 8024922359497303 a001 832040/4106118243*10749957122^(11/24) 8024922359497303 a001 832040/4106118243*4106118243^(11/23) 8024922359497303 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^71 8024922359497303 a001 416020/5374978561*45537549124^(8/17) 8024922359497303 a001 416020/5374978561*14662949395604^(8/21) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(48) 8024922359497303 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^12 8024922359497303 a001 416020/5374978561*192900153618^(4/9) 8024922359497303 a001 416020/5374978561*73681302247^(6/13) 8024922359497303 a001 416020/5374978561*10749957122^(1/2) 8024922359497303 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^73 8024922359497303 a001 832040/2139295485799*17393796001^(5/7) 8024922359497303 a001 832040/73681302247*17393796001^(4/7) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(50) 8024922359497303 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^14 8024922359497303 a001 832040/28143753123*73681302247^(1/2) 8024922359497303 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^75 8024922359497303 a001 208010/3665737348901*45537549124^(13/17) 8024922359497303 a001 416020/1730726404001*45537549124^(12/17) 8024922359497303 a001 832040/1322157322203*45537549124^(2/3) 8024922359497303 a001 416020/96450076809*45537549124^(10/17) 8024922359497303 a001 208010/204284540899*45537549124^(11/17) 8024922359497303 a001 832040/73681302247*14662949395604^(4/9) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(52) 8024922359497303 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^16 8024922359497303 a001 832040/73681302247*505019158607^(1/2) 8024922359497303 a001 832040/73681302247*73681302247^(7/13) 8024922359497303 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^77 8024922359497303 a001 416020/96450076809*312119004989^(6/11) 8024922359497303 a001 416020/96450076809*14662949395604^(10/21) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(54) 8024922359497303 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^18 8024922359497303 a001 416020/96450076809*192900153618^(5/9) 8024922359497303 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^79 8024922359497303 a001 832040/23725150497407*312119004989^(8/11) 8024922359497303 a001 832040/2139295485799*312119004989^(7/11) 8024922359497303 a001 208010/204284540899*312119004989^(3/5) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(56) 8024922359497303 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^20 8024922359497303 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^81 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(58) 8024922359497303 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^22 8024922359497303 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^83 8024922359497303 a001 416020/1730726404001*14662949395604^(4/7) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(60) 8024922359497303 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^85 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(62) 8024922359497303 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^87 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(64) 8024922359497303 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^89 8024922359497303 a001 832040/23725150497407*23725150497407^(5/8) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(66) 8024922359497303 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^91 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(68) 8024922359497303 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^93 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(70) 8024922359497303 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^95 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(72) 8024922359497303 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^97 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(74) 8024922359497303 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^99 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(76) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(78) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(80) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(82) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(84) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(86) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(88) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(90) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(92) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(94) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(96) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(98) 8024922359497303 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^24 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(99) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(100) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(97) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(95) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(93) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(91) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(89) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(87) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(85) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(83) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(81) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(79) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(77) 8024922359497303 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^100 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(75) 8024922359497303 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^98 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(73) 8024922359497303 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^96 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(71) 8024922359497303 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^94 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(69) 8024922359497303 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^92 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(67) 8024922359497303 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^90 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(65) 8024922359497303 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^88 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(63) 8024922359497303 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^86 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(61) 8024922359497303 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^26 8024922359497303 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^28 8024922359497303 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^30 8024922359497303 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^32 8024922359497303 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^34 8024922359497303 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^36 8024922359497303 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^38 8024922359497303 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^40 8024922359497303 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^42 8024922359497303 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^44 8024922359497303 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^46 8024922359497303 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^48 8024922359497303 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^50 8024922359497303 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^52 8024922359497303 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^54 8024922359497303 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^56 8024922359497303 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^58 8024922359497303 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^60 8024922359497303 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^64 8024922359497303 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^62 8024922359497303 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^84 8024922359497303 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^63 8024922359497303 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^61 8024922359497303 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^59 8024922359497303 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^57 8024922359497303 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^55 8024922359497303 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^53 8024922359497303 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^51 8024922359497303 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^49 8024922359497303 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^47 8024922359497303 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^45 8024922359497303 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^43 8024922359497303 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^41 8024922359497303 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^39 8024922359497303 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^37 8024922359497303 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^35 8024922359497303 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^33 8024922359497303 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^31 8024922359497303 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^29 8024922359497303 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^27 8024922359497303 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^25 8024922359497303 a001 832040/2139295485799*14662949395604^(5/9) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(59) 8024922359497303 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^23 8024922359497303 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^82 8024922359497303 a001 208010/204284540899*817138163596^(11/19) 8024922359497303 a001 208010/204284540899*14662949395604^(11/21) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(57) 8024922359497303 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^21 8024922359497303 a001 416020/1730726404001*505019158607^(9/14) 8024922359497303 a001 832040/2139295485799*505019158607^(5/8) 8024922359497303 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^80 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(55) 8024922359497303 a001 75640/28374454999*9062201101803^(1/2) 8024922359497303 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^19 8024922359497303 a001 208010/204284540899*192900153618^(11/18) 8024922359497303 a001 208010/3665737348901*192900153618^(13/18) 8024922359497303 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^78 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(53) 8024922359497303 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^17 8024922359497303 a001 832040/119218851371*1322157322203^(1/2) 8024922359497303 a001 832040/505019158607*73681302247^(8/13) 8024922359497303 a001 416020/1730726404001*73681302247^(9/13) 8024922359497303 a001 208010/3665737348901*73681302247^(3/4) 8024922359497303 a001 832040/23725150497407*73681302247^(10/13) 8024922359497303 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^76 8024922359497303 a001 208010/11384387281*45537549124^(9/17) 8024922359497303 a001 208010/11384387281*817138163596^(9/19) 8024922359497303 a001 208010/11384387281*14662949395604^(3/7) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(51) 8024922359497303 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^15 8024922359497303 a001 208010/11384387281*192900153618^(1/2) 8024922359497303 a001 416020/96450076809*28143753123^(3/5) 8024922359497303 a001 832040/2139295485799*28143753123^(7/10) 8024922359497303 a001 832040/23725150497407*28143753123^(4/5) 8024922359497303 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^74 8024922359497303 a001 832040/17393796001*312119004989^(5/11) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(49) 8024922359497303 a001 832040/17393796001*3461452808002^(5/12) 8024922359497303 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^13 8024922359497303 a001 832040/28143753123*10749957122^(13/24) 8024922359497303 a001 832040/17393796001*28143753123^(1/2) 8024922359497303 a001 832040/73681302247*10749957122^(7/12) 8024922359497303 a001 208010/11384387281*10749957122^(9/16) 8024922359497303 a001 416020/96450076809*10749957122^(5/8) 8024922359497303 a001 832040/505019158607*10749957122^(2/3) 8024922359497303 a001 208010/204284540899*10749957122^(11/16) 8024922359497303 a001 832040/1322157322203*10749957122^(17/24) 8024922359497303 a001 416020/1730726404001*10749957122^(3/4) 8024922359497303 a001 832040/9062201101803*10749957122^(19/24) 8024922359497303 a001 208010/3665737348901*10749957122^(13/16) 8024922359497303 a001 832040/23725150497407*10749957122^(5/6) 8024922359497303 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^72 8024922359497303 a001 416020/5374978561*4106118243^(12/23) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(47) 8024922359497303 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^11 8024922359497303 a001 832040/28143753123*4106118243^(13/23) 8024922359497303 a001 832040/73681302247*4106118243^(14/23) 8024922359497303 a001 416020/96450076809*4106118243^(15/23) 8024922359497303 a001 832040/505019158607*4106118243^(16/23) 8024922359497303 a001 832040/1322157322203*4106118243^(17/23) 8024922359497303 a001 416020/1730726404001*4106118243^(18/23) 8024922359497303 a001 832040/9062201101803*4106118243^(19/23) 8024922359497303 a001 832040/23725150497407*4106118243^(20/23) 8024922359497303 a001 832040/6643838879*4106118243^(1/2) 8024922359497303 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^70 8024922359497303 a001 610/1860499*2537720636^(7/15) 8024922359497303 a001 832040/4106118243*1568397607^(1/2) 8024922359497303 a001 610/1860499*17393796001^(3/7) 8024922359497303 a001 610/1860499*45537549124^(7/17) 8024922359497303 a001 610/1860499*14662949395604^(1/3) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^21/Lucas(45) 8024922359497303 a004 Fibonacci(45)/Lucas(30)/(1/2+sqrt(5)/2)^9 8024922359497303 a001 610/1860499*192900153618^(7/18) 8024922359497303 a001 610/1860499*10749957122^(7/16) 8024922359497303 a001 416020/5374978561*1568397607^(6/11) 8024922359497303 a001 832040/28143753123*1568397607^(13/22) 8024922359497303 a001 832040/73681302247*1568397607^(7/11) 8024922359497303 a001 416020/96450076809*1568397607^(15/22) 8024922359497303 a001 832040/505019158607*1568397607^(8/11) 8024922359497303 a001 208010/204284540899*1568397607^(3/4) 8024922359497303 a001 832040/1322157322203*1568397607^(17/22) 8024922359497303 a001 416020/1730726404001*1568397607^(9/11) 8024922359497303 a001 832040/9062201101803*1568397607^(19/22) 8024922359497303 a001 832040/23725150497407*1568397607^(10/11) 8024922359497303 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^68 8024922359497303 a001 832040/1568397607*599074578^(10/21) 8024922359497303 a001 832040/969323029*817138163596^(1/3) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^19/Lucas(43) 8024922359497303 a004 Fibonacci(43)/Lucas(30)/(1/2+sqrt(5)/2)^7 8024922359497303 a001 832040/4106118243*599074578^(11/21) 8024922359497303 a001 610/1860499*599074578^(1/2) 8024922359497303 a001 416020/5374978561*599074578^(4/7) 8024922359497303 a001 832040/28143753123*599074578^(13/21) 8024922359497303 a001 208010/11384387281*599074578^(9/14) 8024922359497303 a001 832040/73681302247*599074578^(2/3) 8024922359497303 a001 416020/96450076809*599074578^(5/7) 8024922359497303 a001 832040/505019158607*599074578^(16/21) 8024922359497303 a001 208010/204284540899*599074578^(11/14) 8024922359497303 a001 832040/1322157322203*599074578^(17/21) 8024922359497303 a001 832040/2139295485799*599074578^(5/6) 8024922359497303 a001 416020/1730726404001*599074578^(6/7) 8024922359497303 a001 832040/9062201101803*599074578^(19/21) 8024922359497303 a001 208010/3665737348901*599074578^(13/14) 8024922359497303 a001 832040/23725150497407*599074578^(20/21) 8024922359497303 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^66 8024922359497303 a001 416020/299537289*228826127^(9/20) 8024922359497303 a001 832040/370248451*45537549124^(1/3) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^17/Lucas(41) 8024922359497303 a004 Fibonacci(41)/Lucas(30)/(1/2+sqrt(5)/2)^5 8024922359497303 a001 832040/1568397607*228826127^(1/2) 8024922359497303 a001 832040/4106118243*228826127^(11/20) 8024922359497303 a001 416020/5374978561*228826127^(3/5) 8024922359497303 a001 832040/17393796001*228826127^(5/8) 8024922359497303 a001 832040/28143753123*228826127^(13/20) 8024922359497303 a001 832040/73681302247*228826127^(7/10) 8024922359497303 a001 416020/96450076809*228826127^(3/4) 8024922359497303 a001 832040/505019158607*228826127^(4/5) 8024922359497303 a001 832040/1322157322203*228826127^(17/20) 8024922359497303 a001 832040/2139295485799*228826127^(7/8) 8024922359497303 a001 416020/1730726404001*228826127^(9/10) 8024922359497303 a001 832040/9062201101803*228826127^(19/20) 8024922359497303 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^64 8024922359497303 a001 208010/35355581*141422324^(5/13) 8024922359497303 a001 832040/228826127*87403803^(8/19) 8024922359497303 a001 208010/35355581*2537720636^(1/3) 8024922359497303 a001 208010/35355581*45537549124^(5/17) 8024922359497303 a001 208010/35355581*312119004989^(3/11) 8024922359497303 a001 26311595095720/3278735159921 8024922359497303 a001 208010/35355581*14662949395604^(5/21) 8024922359497303 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^15/Lucas(39) 8024922359497303 a004 Fibonacci(39)/Lucas(30)/(1/2+sqrt(5)/2)^3 8024922359497303 a001 208010/35355581*192900153618^(5/18) 8024922359497303 a001 208010/35355581*28143753123^(3/10) 8024922359497303 a001 208010/35355581*10749957122^(5/16) 8024922359497303 a001 208010/35355581*599074578^(5/14) 8024922359497303 a001 208010/35355581*228826127^(3/8) 8024922359497303 a001 416020/299537289*87403803^(9/19) 8024922359497303 a001 832040/969323029*87403803^(1/2) 8024922359497303 a001 832040/1568397607*87403803^(10/19) 8024922359497303 a001 832040/4106118243*87403803^(11/19) 8024922359497303 a001 416020/5374978561*87403803^(12/19) 8024922359497303 a001 832040/28143753123*87403803^(13/19) 8024922359497303 a001 832040/73681302247*87403803^(14/19) 8024922359497303 a001 416020/96450076809*87403803^(15/19) 8024922359497303 a001 832040/505019158607*87403803^(16/19) 8024922359497304 a001 832040/1322157322203*87403803^(17/19) 8024922359497304 a001 416020/1730726404001*87403803^(18/19) 8024922359497304 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^62 8024922359497304 a001 832040/87403803*33385282^(7/18) 8024922359497305 a001 832040/54018521*141422324^(1/3) 8024922359497305 a001 20100270056680/2504730781961 8024922359497305 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^13/Lucas(37) 8024922359497305 a004 Fibonacci(37)/Lucas(30)/(1/2+sqrt(5)/2) 8024922359497305 a001 832040/54018521*73681302247^(1/4) 8024922359497306 a001 832040/228826127*33385282^(4/9) 8024922359497306 a001 208010/35355581*33385282^(5/12) 8024922359497306 a001 416020/299537289*33385282^(1/2) 8024922359497307 a001 832040/1568397607*33385282^(5/9) 8024922359497307 a001 610/1860499*33385282^(7/12) 8024922359497307 a001 832040/4106118243*33385282^(11/18) 8024922359497307 a001 416020/5374978561*33385282^(2/3) 8024922359497308 a001 832040/28143753123*33385282^(13/18) 8024922359497308 a001 208010/11384387281*33385282^(3/4) 8024922359497308 a001 832040/73681302247*33385282^(7/9) 8024922359497309 a001 416020/96450076809*33385282^(5/6) 8024922359497309 a001 832040/505019158607*33385282^(8/9) 8024922359497309 a001 208010/204284540899*33385282^(11/12) 8024922359497309 a001 832040/1322157322203*33385282^(17/18) 8024922359497310 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^60 8024922359497313 a001 416020/16692641*12752043^(6/17) 8024922359497321 a001 75640/1875749*312119004989^(1/5) 8024922359497321 a001 7677619978600/956722026041 8024922359497321 a001 75640/1875749*(1/2+1/2*5^(1/2))^11 8024922359497321 a001 9227465/3720996+9227465/3720996*5^(1/2) 8024922359497321 a004 Fibonacci(35)*(1/2+sqrt(5)/2)/Lucas(30) 8024922359497321 a001 75640/1875749*1568397607^(1/4) 8024922359497322 a001 832040/87403803*12752043^(7/17) 8024922359497326 a001 832040/228826127*12752043^(8/17) 8024922359497327 a001 832040/370248451*12752043^(1/2) 8024922359497329 a001 416020/299537289*12752043^(9/17) 8024922359497332 a001 832040/1568397607*12752043^(10/17) 8024922359497335 a001 832040/4106118243*12752043^(11/17) 8024922359497337 a001 416020/5374978561*12752043^(12/17) 8024922359497340 a001 832040/28143753123*12752043^(13/17) 8024922359497343 a001 832040/73681302247*12752043^(14/17) 8024922359497346 a001 416020/96450076809*12752043^(15/17) 8024922359497349 a001 832040/505019158607*12752043^(16/17) 8024922359497351 a001 105937/1368706081*710647^(6/7) 8024922359497352 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^58 8024922359497359 a001 832040/12752043*4870847^(5/16) 8024922359497397 a001 208010/1970299*7881196^(3/11) 8024922359497408 a001 5702887/1860498*1860498^(1/15) 8024922359497420 a001 1762289/930249*7881196^(1/11) 8024922359497422 a001 416020/16692641*4870847^(3/8) 8024922359497432 a001 208010/1970299*141422324^(3/13) 8024922359497432 a001 1762289/930249*141422324^(1/13) 8024922359497432 a001 208010/1970299*2537720636^(1/5) 8024922359497432 a001 1762289/930249*2537720636^(1/15) 8024922359497432 a001 208010/1970299*45537549124^(3/17) 8024922359497432 a001 1762289/930249*45537549124^(1/17) 8024922359497432 a001 1466294939560/182717648081 8024922359497432 a001 208010/1970299*817138163596^(3/19) 8024922359497432 a001 208010/1970299*14662949395604^(1/7) 8024922359497432 a001 208010/1970299*(1/2+1/2*5^(1/2))^9 8024922359497432 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^9/Lucas(33) 8024922359497432 a001 1762289/930249*(1/2+1/2*5^(1/2))^3 8024922359497432 a001 1762289/930249*192900153618^(1/18) 8024922359497432 a001 208010/1970299*192900153618^(1/6) 8024922359497432 a001 1762289/930249*10749957122^(1/16) 8024922359497432 a001 208010/1970299*10749957122^(3/16) 8024922359497432 a001 1762289/930249*599074578^(1/14) 8024922359497432 a001 208010/1970299*599074578^(3/14) 8024922359497432 a001 1762289/930249*33385282^(1/12) 8024922359497434 a001 208010/1970299*33385282^(1/4) 8024922359497450 a001 832040/87403803*4870847^(7/16) 8024922359497472 a001 832040/228826127*4870847^(1/2) 8024922359497493 a001 416020/299537289*4870847^(9/16) 8024922359497514 a001 832040/1568397607*4870847^(5/8) 8024922359497535 a001 832040/4106118243*4870847^(11/16) 8024922359497556 a001 416020/5374978561*4870847^(3/4) 8024922359497577 a001 832040/28143753123*4870847^(13/16) 8024922359497583 a001 832040/4870847*1860498^(4/15) 8024922359497599 a001 832040/73681302247*4870847^(7/8) 8024922359497620 a001 416020/96450076809*4870847^(15/16) 8024922359497641 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^56 8024922359497664 a001 1762289/930249*1860498^(1/10) 8024922359498026 a001 832040/12752043*1860498^(1/3) 8024922359498127 a001 208010/1970299*1860498^(3/10) 8024922359498168 a001 832040/710647*271443^(2/13) 8024922359498184 a001 832040/3010349*20633239^(1/5) 8024922359498185 a001 1346269/1860498*20633239^(1/7) 8024922359498188 a001 1346269/1860498*2537720636^(1/9) 8024922359498188 a001 832040/3010349*17393796001^(1/7) 8024922359498188 a001 224029931752/27916772489 8024922359498188 a001 1346269/1860498*312119004989^(1/11) 8024922359498188 a001 832040/3010349*14662949395604^(1/9) 8024922359498188 a001 832040/3010349*(1/2+1/2*5^(1/2))^7 8024922359498188 a001 1346269/1860498*(1/2+1/2*5^(1/2))^5 8024922359498188 a001 1346269/1860498*28143753123^(1/10) 8024922359498188 a001 832040/3010349*599074578^(1/6) 8024922359498188 a001 1346269/1860498*228826127^(1/8) 8024922359498223 a001 416020/16692641*1860498^(2/5) 8024922359498383 a001 832040/87403803*1860498^(7/15) 8024922359498388 a001 5702887/1860498*710647^(1/14) 8024922359498389 a001 416020/930249*710647^(3/14) 8024922359498397 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^57 8024922359498462 a001 208010/35355581*1860498^(1/2) 8024922359498486 a001 317811/10749957122*710647^(13/14) 8024922359498539 a001 832040/228826127*1860498^(8/15) 8024922359498575 a001 1346269/1860498*1860498^(1/6) 8024922359498686 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^59 8024922359498694 a001 416020/299537289*1860498^(3/5) 8024922359498728 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^61 8024922359498734 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^63 8024922359498735 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^65 8024922359498735 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^67 8024922359498735 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^69 8024922359498735 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^71 8024922359498735 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^73 8024922359498735 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^75 8024922359498735 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^77 8024922359498735 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^79 8024922359498735 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^81 8024922359498735 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^83 8024922359498735 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^85 8024922359498735 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^87 8024922359498735 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^89 8024922359498735 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^91 8024922359498735 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^93 8024922359498735 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^95 8024922359498735 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^97 8024922359498735 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^99 8024922359498735 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^100 8024922359498735 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^98 8024922359498735 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^96 8024922359498735 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^94 8024922359498735 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^92 8024922359498735 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^90 8024922359498735 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^88 8024922359498735 a001 2/1346269*(1/2+1/2*5^(1/2))^37 8024922359498735 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^86 8024922359498735 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^84 8024922359498735 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^82 8024922359498735 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^80 8024922359498735 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^78 8024922359498735 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^76 8024922359498735 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^74 8024922359498735 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^72 8024922359498735 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^70 8024922359498735 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^68 8024922359498735 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^66 8024922359498736 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^64 8024922359498738 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^62 8024922359498754 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^60 8024922359498848 a001 832040/1568397607*1860498^(2/3) 8024922359498865 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^58 8024922359498921 a001 2178309/4870847*7881196^(2/11) 8024922359498925 a001 610/1860499*1860498^(7/10) 8024922359498944 a001 2178309/4870847*141422324^(2/13) 8024922359498944 a001 2178309/4870847*2537720636^(2/15) 8024922359498944 a001 2178309/4870847*45537549124^(2/17) 8024922359498944 a001 2178309/4870847*14662949395604^(2/21) 8024922359498944 a001 2178309/4870847*(1/2+1/2*5^(1/2))^6 8024922359498944 a001 2178309/4870847*10749957122^(1/8) 8024922359498944 a001 2178309/4870847*4106118243^(3/23) 8024922359498944 a001 2178309/4870847*1568397607^(3/22) 8024922359498944 a001 2178309/4870847*599074578^(1/7) 8024922359498944 a001 2178309/4870847*228826127^(3/20) 8024922359498945 a001 2178309/4870847*87403803^(3/19) 8024922359498946 a001 2178309/4870847*33385282^(1/6) 8024922359498953 a001 2178309/4870847*12752043^(3/17) 8024922359499003 a001 832040/4106118243*1860498^(11/15) 8024922359499008 a001 2178309/4870847*4870847^(3/16) 8024922359499154 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^59 8024922359499157 a001 416020/5374978561*1860498^(4/5) 8024922359499165 a001 46347/10745088481*7881196^(10/11) 8024922359499177 a001 2178309/119218851371*7881196^(9/11) 8024922359499189 a001 726103/9381251041*7881196^(8/11) 8024922359499197 a001 987/4870846*7881196^(2/3) 8024922359499200 a001 2178309/6643838879*7881196^(7/11) 8024922359499212 a001 311187/224056801*7881196^(6/11) 8024922359499224 a001 2178309/370248451*7881196^(5/11) 8024922359499233 a001 726103/4250681*(1/2+1/2*5^(1/2))^8 8024922359499233 a001 726103/4250681*23725150497407^(1/8) 8024922359499233 a001 5702887/4870847*(1/2+1/2*5^(1/2))^4 8024922359499233 a001 5702887/4870847*23725150497407^(1/16) 8024922359499233 a001 4140883359361/516002918640 8024922359499233 a001 5702887/4870847*73681302247^(1/13) 8024922359499233 a001 726103/4250681*73681302247^(2/13) 8024922359499233 a001 5702887/4870847*10749957122^(1/12) 8024922359499233 a001 726103/4250681*10749957122^(1/6) 8024922359499233 a001 5702887/4870847*4106118243^(2/23) 8024922359499233 a001 726103/4250681*4106118243^(4/23) 8024922359499233 a001 5702887/4870847*1568397607^(1/11) 8024922359499233 a001 726103/4250681*1568397607^(2/11) 8024922359499233 a001 5702887/4870847*599074578^(2/21) 8024922359499233 a001 726103/4250681*599074578^(4/21) 8024922359499233 a001 5702887/4870847*228826127^(1/10) 8024922359499233 a001 726103/4250681*228826127^(1/5) 8024922359499233 a001 5702887/4870847*87403803^(2/19) 8024922359499234 a001 726103/4250681*87403803^(4/19) 8024922359499234 a001 5702887/4870847*33385282^(1/9) 8024922359499234 a001 726103/620166*710647^(1/7) 8024922359499235 a001 105937/90481*103682^(1/6) 8024922359499235 a001 832040/17393796001*1860498^(5/6) 8024922359499235 a001 726103/29134601*7881196^(4/11) 8024922359499235 a001 726103/4250681*33385282^(2/9) 8024922359499239 a001 5702887/4870847*12752043^(2/17) 8024922359499242 a001 2178309/54018521*7881196^(1/3) 8024922359499245 a001 726103/4250681*12752043^(4/17) 8024922359499264 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^61 8024922359499266 a001 2178309/20633239*7881196^(3/11) 8024922359499267 a001 46347/10745088481*20633239^(6/7) 8024922359499268 a001 726103/64300051206*20633239^(4/5) 8024922359499269 a001 2178309/45537549124*20633239^(5/7) 8024922359499270 a001 311187/4769326*20633239^(2/7) 8024922359499271 a001 2178309/6643838879*20633239^(3/5) 8024922359499272 a001 726103/1368706081*20633239^(4/7) 8024922359499275 a001 2178309/370248451*20633239^(3/7) 8024922359499275 a001 46347/4868641*20633239^(2/5) 8024922359499276 a001 311187/4769326*2537720636^(2/9) 8024922359499276 a001 311187/4769326*312119004989^(2/11) 8024922359499276 a001 311187/4769326*(1/2+1/2*5^(1/2))^10 8024922359499276 a001 14930352/4870847*(1/2+1/2*5^(1/2))^2 8024922359499276 a001 32522920134768/4052739537881 8024922359499276 a001 311187/4769326*28143753123^(1/5) 8024922359499276 a001 14930352/4870847*10749957122^(1/24) 8024922359499276 a001 311187/4769326*10749957122^(5/24) 8024922359499276 a001 14930352/4870847*4106118243^(1/23) 8024922359499276 a001 311187/4769326*4106118243^(5/23) 8024922359499276 a001 14930352/4870847*1568397607^(1/22) 8024922359499276 a001 311187/4769326*1568397607^(5/22) 8024922359499276 a001 14930352/4870847*599074578^(1/21) 8024922359499276 a001 311187/4769326*599074578^(5/21) 8024922359499276 a001 14930352/4870847*228826127^(1/20) 8024922359499276 a001 311187/4769326*228826127^(1/4) 8024922359499276 a001 14930352/4870847*87403803^(1/19) 8024922359499276 a001 5702887/4870847*4870847^(1/8) 8024922359499276 a001 311187/4769326*87403803^(5/19) 8024922359499276 a001 14930352/4870847*33385282^(1/18) 8024922359499278 a001 311187/4769326*33385282^(5/18) 8024922359499278 a001 14930352/4870847*12752043^(1/17) 8024922359499280 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^63 8024922359499282 a001 726103/29134601*141422324^(4/13) 8024922359499282 a001 726103/29134601*2537720636^(4/15) 8024922359499282 a001 726103/29134601*45537549124^(4/17) 8024922359499282 a001 726103/29134601*817138163596^(4/19) 8024922359499282 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^12/Lucas(38) 8024922359499282 a001 39088169/4870847 8024922359499282 a001 726103/29134601*192900153618^(2/9) 8024922359499282 a001 726103/29134601*73681302247^(3/13) 8024922359499282 a001 726103/29134601*10749957122^(1/4) 8024922359499282 a001 726103/29134601*4106118243^(6/23) 8024922359499282 a001 726103/29134601*1568397607^(3/11) 8024922359499282 a001 726103/29134601*599074578^(2/7) 8024922359499282 a001 726103/29134601*228826127^(3/10) 8024922359499282 a001 726103/29134601*87403803^(6/19) 8024922359499282 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^65 8024922359499282 a001 726103/3020733700601*141422324^(12/13) 8024922359499282 a001 2178309/2139295485799*141422324^(11/13) 8024922359499282 a001 46347/10745088481*141422324^(10/13) 8024922359499282 a001 2178309/119218851371*141422324^(9/13) 8024922359499282 a001 311187/10525900321*141422324^(2/3) 8024922359499282 a001 726103/9381251041*141422324^(8/13) 8024922359499282 a001 2178309/6643838879*141422324^(7/13) 8024922359499283 a001 311187/224056801*141422324^(6/13) 8024922359499283 a001 46347/4868641*17393796001^(2/7) 8024922359499283 a001 46347/4868641*14662949395604^(2/9) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^14/Lucas(40) 8024922359499283 a004 Fibonacci(40)/Lucas(32)/(1/2+sqrt(5)/2)^2 8024922359499283 a001 46347/4868641*505019158607^(1/4) 8024922359499283 a001 46347/4868641*10749957122^(7/24) 8024922359499283 a001 46347/4868641*4106118243^(7/23) 8024922359499283 a001 46347/4868641*1568397607^(7/22) 8024922359499283 a001 46347/4868641*599074578^(1/3) 8024922359499283 a001 46347/4868641*228826127^(7/20) 8024922359499283 a001 2178309/370248451*141422324^(5/13) 8024922359499283 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^67 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^16/Lucas(42) 8024922359499283 a001 726103/199691526*23725150497407^(1/4) 8024922359499283 a004 Fibonacci(42)/Lucas(32)/(1/2+sqrt(5)/2)^4 8024922359499283 a001 726103/199691526*73681302247^(4/13) 8024922359499283 a001 726103/199691526*10749957122^(1/3) 8024922359499283 a001 726103/199691526*4106118243^(8/23) 8024922359499283 a001 726103/199691526*1568397607^(4/11) 8024922359499283 a001 726103/199691526*599074578^(8/21) 8024922359499283 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^69 8024922359499283 a001 311187/224056801*2537720636^(2/5) 8024922359499283 a001 311187/224056801*45537549124^(6/17) 8024922359499283 a001 311187/224056801*14662949395604^(2/7) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^18/Lucas(44) 8024922359499283 a004 Fibonacci(44)/Lucas(32)/(1/2+sqrt(5)/2)^6 8024922359499283 a001 311187/224056801*192900153618^(1/3) 8024922359499283 a001 311187/224056801*10749957122^(3/8) 8024922359499283 a001 311187/224056801*4106118243^(9/23) 8024922359499283 a001 311187/224056801*1568397607^(9/22) 8024922359499283 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^71 8024922359499283 a001 726103/1368706081*2537720636^(4/9) 8024922359499283 a001 726103/3020733700601*2537720636^(4/5) 8024922359499283 a001 2178309/5600748293801*2537720636^(7/9) 8024922359499283 a001 2178309/2139295485799*2537720636^(11/15) 8024922359499283 a001 46347/10745088481*2537720636^(2/3) 8024922359499283 a001 2178309/119218851371*2537720636^(3/5) 8024922359499283 a001 2178309/45537549124*2537720636^(5/9) 8024922359499283 a001 726103/9381251041*2537720636^(8/15) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(46) 8024922359499283 a001 726103/1368706081*23725150497407^(5/16) 8024922359499283 a004 Fibonacci(46)/Lucas(32)/(1/2+sqrt(5)/2)^8 8024922359499283 a001 726103/1368706081*505019158607^(5/14) 8024922359499283 a001 726103/1368706081*73681302247^(5/13) 8024922359499283 a001 726103/1368706081*28143753123^(2/5) 8024922359499283 a001 726103/1368706081*10749957122^(5/12) 8024922359499283 a001 2178309/6643838879*2537720636^(7/15) 8024922359499283 a001 726103/1368706081*4106118243^(10/23) 8024922359499283 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^73 8024922359499283 a001 987/4870846*312119004989^(2/5) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(48) 8024922359499283 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2)^10 8024922359499283 a001 987/4870846*10749957122^(11/24) 8024922359499283 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^75 8024922359499283 a001 2178309/5600748293801*17393796001^(5/7) 8024922359499283 a001 726103/64300051206*17393796001^(4/7) 8024922359499283 a001 726103/9381251041*45537549124^(8/17) 8024922359499283 a001 726103/9381251041*14662949395604^(8/21) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(50) 8024922359499283 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^12 8024922359499283 a001 726103/9381251041*192900153618^(4/9) 8024922359499283 a001 726103/9381251041*73681302247^(6/13) 8024922359499283 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^77 8024922359499283 a001 726103/3020733700601*45537549124^(12/17) 8024922359499283 a001 311187/494493258286*45537549124^(2/3) 8024922359499283 a001 2178309/2139295485799*45537549124^(11/17) 8024922359499283 a001 46347/10745088481*45537549124^(10/17) 8024922359499283 a001 2178309/119218851371*45537549124^(9/17) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(52) 8024922359499283 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^14 8024922359499283 a001 311187/10525900321*73681302247^(1/2) 8024922359499283 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^79 8024922359499283 a001 726103/64300051206*14662949395604^(4/9) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(54) 8024922359499283 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^16 8024922359499283 a001 726103/64300051206*505019158607^(1/2) 8024922359499283 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^81 8024922359499283 a001 46347/10745088481*312119004989^(6/11) 8024922359499283 a001 2178309/5600748293801*312119004989^(7/11) 8024922359499283 a001 2178309/2139295485799*312119004989^(3/5) 8024922359499283 a001 46347/10745088481*14662949395604^(10/21) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(56) 8024922359499283 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^18 8024922359499283 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^83 8024922359499283 a001 2178309/2139295485799*817138163596^(11/19) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(58) 8024922359499283 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^20 8024922359499283 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^85 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(60) 8024922359499283 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^22 8024922359499283 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^87 8024922359499283 a001 726103/3020733700601*14662949395604^(4/7) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(62) 8024922359499283 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^24 8024922359499283 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^89 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(64) 8024922359499283 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^91 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(66) 8024922359499283 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^93 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(68) 8024922359499283 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^95 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(70) 8024922359499283 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^97 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(72) 8024922359499283 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^99 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(74) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(76) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(78) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(80) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(82) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(84) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(86) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(88) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(90) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(92) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(94) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(96) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(98) 8024922359499283 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^26 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(100) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(99) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(97) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(95) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(93) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(91) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(89) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(87) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(85) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(83) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(81) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(79) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(77) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(75) 8024922359499283 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^100 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(73) 8024922359499283 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^98 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(71) 8024922359499283 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^96 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(69) 8024922359499283 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^94 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(67) 8024922359499283 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^92 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(65) 8024922359499283 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^28 8024922359499283 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^30 8024922359499283 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^32 8024922359499283 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^34 8024922359499283 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^36 8024922359499283 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^38 8024922359499283 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^40 8024922359499283 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^42 8024922359499283 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^44 8024922359499283 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^46 8024922359499283 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^48 8024922359499283 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^50 8024922359499283 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^52 8024922359499283 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^54 8024922359499283 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^56 8024922359499283 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^58 8024922359499283 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^60 8024922359499283 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^62 8024922359499283 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^90 8024922359499283 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^61 8024922359499283 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^59 8024922359499283 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^57 8024922359499283 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^55 8024922359499283 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^53 8024922359499283 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^51 8024922359499283 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^49 8024922359499283 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^47 8024922359499283 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^45 8024922359499283 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^43 8024922359499283 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^41 8024922359499283 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^39 8024922359499283 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^37 8024922359499283 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^35 8024922359499283 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^33 8024922359499283 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^31 8024922359499283 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^29 8024922359499283 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^27 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(63) 8024922359499283 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^25 8024922359499283 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^88 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(61) 8024922359499283 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^23 8024922359499283 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^86 8024922359499283 a001 2178309/2139295485799*14662949395604^(11/21) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(59) 8024922359499283 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^21 8024922359499283 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^84 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(57) 8024922359499283 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^19 8024922359499283 a001 2178309/817138163596*9062201101803^(1/2) 8024922359499283 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^82 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(55) 8024922359499283 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^17 8024922359499283 a001 2178309/312119004989*1322157322203^(1/2) 8024922359499283 a001 46347/10745088481*192900153618^(5/9) 8024922359499283 a001 2178309/2139295485799*192900153618^(11/18) 8024922359499283 a001 726103/3020733700601*192900153618^(2/3) 8024922359499283 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^80 8024922359499283 a001 2178309/119218851371*817138163596^(9/19) 8024922359499283 a001 2178309/119218851371*14662949395604^(3/7) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(53) 8024922359499283 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^15 8024922359499283 a001 726103/64300051206*73681302247^(7/13) 8024922359499283 a001 2178309/119218851371*192900153618^(1/2) 8024922359499283 a001 726103/440719107401*73681302247^(8/13) 8024922359499283 a001 726103/3020733700601*73681302247^(9/13) 8024922359499283 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^78 8024922359499283 a001 2178309/45537549124*312119004989^(5/11) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(51) 8024922359499283 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^13 8024922359499283 a001 2178309/45537549124*3461452808002^(5/12) 8024922359499283 a001 46347/10745088481*28143753123^(3/5) 8024922359499283 a001 2178309/5600748293801*28143753123^(7/10) 8024922359499283 a001 2178309/45537549124*28143753123^(1/2) 8024922359499283 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^76 8024922359499283 a001 726103/9381251041*10749957122^(1/2) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(49) 8024922359499283 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^11 8024922359499283 a001 311187/10525900321*10749957122^(13/24) 8024922359499283 a001 2178309/119218851371*10749957122^(9/16) 8024922359499283 a001 726103/64300051206*10749957122^(7/12) 8024922359499283 a001 46347/10745088481*10749957122^(5/8) 8024922359499283 a001 726103/440719107401*10749957122^(2/3) 8024922359499283 a001 2178309/2139295485799*10749957122^(11/16) 8024922359499283 a001 311187/494493258286*10749957122^(17/24) 8024922359499283 a001 726103/3020733700601*10749957122^(3/4) 8024922359499283 a001 2178309/23725150497407*10749957122^(19/24) 8024922359499283 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^74 8024922359499283 a001 987/4870846*4106118243^(11/23) 8024922359499283 a001 2178309/6643838879*17393796001^(3/7) 8024922359499283 a001 2178309/6643838879*45537549124^(7/17) 8024922359499283 a001 2178309/6643838879*14662949395604^(1/3) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(47) 8024922359499283 a004 Fibonacci(47)/Lucas(32)/(1/2+sqrt(5)/2)^9 8024922359499283 a001 2178309/6643838879*192900153618^(7/18) 8024922359499283 a001 2178309/6643838879*10749957122^(7/16) 8024922359499283 a001 726103/9381251041*4106118243^(12/23) 8024922359499283 a001 2178309/17393796001*4106118243^(1/2) 8024922359499283 a001 311187/10525900321*4106118243^(13/23) 8024922359499283 a001 726103/64300051206*4106118243^(14/23) 8024922359499283 a001 46347/10745088481*4106118243^(15/23) 8024922359499283 a001 726103/440719107401*4106118243^(16/23) 8024922359499283 a001 311187/494493258286*4106118243^(17/23) 8024922359499283 a001 726103/3020733700601*4106118243^(18/23) 8024922359499283 a001 2178309/23725150497407*4106118243^(19/23) 8024922359499283 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^72 8024922359499283 a001 726103/1368706081*1568397607^(5/11) 8024922359499283 a001 2178309/2537720636*817138163596^(1/3) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(45) 8024922359499283 a004 Fibonacci(45)/Lucas(32)/(1/2+sqrt(5)/2)^7 8024922359499283 a001 987/4870846*1568397607^(1/2) 8024922359499283 a001 726103/9381251041*1568397607^(6/11) 8024922359499283 a001 311187/10525900321*1568397607^(13/22) 8024922359499283 a001 726103/64300051206*1568397607^(7/11) 8024922359499283 a001 46347/10745088481*1568397607^(15/22) 8024922359499283 a001 726103/440719107401*1568397607^(8/11) 8024922359499283 a001 2178309/2139295485799*1568397607^(3/4) 8024922359499283 a001 311187/494493258286*1568397607^(17/22) 8024922359499283 a001 726103/3020733700601*1568397607^(9/11) 8024922359499283 a001 2178309/23725150497407*1568397607^(19/22) 8024922359499283 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^70 8024922359499283 a001 311187/224056801*599074578^(3/7) 8024922359499283 a001 2178309/969323029*45537549124^(1/3) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^17/Lucas(43) 8024922359499283 a004 Fibonacci(43)/Lucas(32)/(1/2+sqrt(5)/2)^5 8024922359499283 a001 726103/1368706081*599074578^(10/21) 8024922359499283 a001 2178309/6643838879*599074578^(1/2) 8024922359499283 a001 987/4870846*599074578^(11/21) 8024922359499283 a001 726103/9381251041*599074578^(4/7) 8024922359499283 a001 311187/10525900321*599074578^(13/21) 8024922359499283 a001 2178309/119218851371*599074578^(9/14) 8024922359499283 a001 726103/64300051206*599074578^(2/3) 8024922359499283 a001 46347/10745088481*599074578^(5/7) 8024922359499283 a001 726103/440719107401*599074578^(16/21) 8024922359499283 a001 2178309/2139295485799*599074578^(11/14) 8024922359499283 a001 311187/494493258286*599074578^(17/21) 8024922359499283 a001 2178309/5600748293801*599074578^(5/6) 8024922359499283 a001 726103/3020733700601*599074578^(6/7) 8024922359499283 a001 2178309/23725150497407*599074578^(19/21) 8024922359499283 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^68 8024922359499283 a001 726103/199691526*228826127^(2/5) 8024922359499283 a001 2178309/370248451*2537720636^(1/3) 8024922359499283 a001 2178309/370248451*45537549124^(5/17) 8024922359499283 a001 2178309/370248451*312119004989^(3/11) 8024922359499283 a001 2178309/370248451*14662949395604^(5/21) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^15/Lucas(41) 8024922359499283 a004 Fibonacci(41)/Lucas(32)/(1/2+sqrt(5)/2)^3 8024922359499283 a001 2178309/370248451*192900153618^(5/18) 8024922359499283 a001 2178309/370248451*28143753123^(3/10) 8024922359499283 a001 2178309/370248451*10749957122^(5/16) 8024922359499283 a001 311187/224056801*228826127^(9/20) 8024922359499283 a001 2178309/370248451*599074578^(5/14) 8024922359499283 a001 726103/1368706081*228826127^(1/2) 8024922359499283 a001 987/4870846*228826127^(11/20) 8024922359499283 a001 726103/9381251041*228826127^(3/5) 8024922359499283 a001 2178309/45537549124*228826127^(5/8) 8024922359499283 a001 311187/10525900321*228826127^(13/20) 8024922359499283 a001 726103/64300051206*228826127^(7/10) 8024922359499283 a001 46347/10745088481*228826127^(3/4) 8024922359499283 a001 2178309/370248451*228826127^(3/8) 8024922359499283 a001 726103/440719107401*228826127^(4/5) 8024922359499283 a001 311187/494493258286*228826127^(17/20) 8024922359499283 a001 2178309/5600748293801*228826127^(7/8) 8024922359499283 a001 726103/3020733700601*228826127^(9/10) 8024922359499283 a001 2178309/23725150497407*228826127^(19/20) 8024922359499283 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^66 8024922359499283 a001 46347/4868641*87403803^(7/19) 8024922359499283 a001 2178309/141422324*141422324^(1/3) 8024922359499283 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^13/Lucas(39) 8024922359499283 a004 Fibonacci(39)/Lucas(32)/(1/2+sqrt(5)/2) 8024922359499283 a001 2178309/141422324*73681302247^(1/4) 8024922359499283 a001 726103/199691526*87403803^(8/19) 8024922359499283 a001 311187/224056801*87403803^(9/19) 8024922359499283 a001 2178309/2537720636*87403803^(1/2) 8024922359499283 a001 726103/1368706081*87403803^(10/19) 8024922359499283 a001 987/4870846*87403803^(11/19) 8024922359499283 a001 726103/9381251041*87403803^(12/19) 8024922359499283 a001 311187/10525900321*87403803^(13/19) 8024922359499283 a001 726103/64300051206*87403803^(14/19) 8024922359499284 a001 46347/10745088481*87403803^(15/19) 8024922359499284 a001 726103/440719107401*87403803^(16/19) 8024922359499284 a001 311187/494493258286*87403803^(17/19) 8024922359499284 a001 726103/3020733700601*87403803^(18/19) 8024922359499284 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^64 8024922359499284 a001 726103/29134601*33385282^(1/3) 8024922359499285 a001 46347/4868641*33385282^(7/18) 8024922359499285 a001 2178309/54018521*312119004989^(1/5) 8024922359499285 a001 52623190191453/6557470319842 8024922359499285 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^11/Lucas(37) 8024922359499285 a001 24157817/9741694+24157817/9741694*5^(1/2) 8024922359499285 a001 2178309/54018521*1568397607^(1/4) 8024922359499286 a001 2178309/370248451*33385282^(5/12) 8024922359499286 a001 726103/199691526*33385282^(4/9) 8024922359499286 a001 311187/224056801*33385282^(1/2) 8024922359499287 a001 726103/1368706081*33385282^(5/9) 8024922359499287 a001 2178309/6643838879*33385282^(7/12) 8024922359499287 a001 987/4870846*33385282^(11/18) 8024922359499288 a001 726103/9381251041*33385282^(2/3) 8024922359499288 a001 311187/10525900321*33385282^(13/18) 8024922359499288 a001 2178309/119218851371*33385282^(3/4) 8024922359499288 a001 726103/64300051206*33385282^(7/9) 8024922359499289 a001 46347/10745088481*33385282^(5/6) 8024922359499289 a001 726103/440719107401*33385282^(8/9) 8024922359499289 a001 2178309/2139295485799*33385282^(11/12) 8024922359499290 a001 311187/494493258286*33385282^(17/18) 8024922359499290 a001 9227465/4870847*7881196^(1/11) 8024922359499290 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^62 8024922359499290 a001 311187/4769326*12752043^(5/17) 8024922359499297 a001 14930352/4870847*4870847^(1/16) 8024922359499299 a001 726103/29134601*12752043^(6/17) 8024922359499301 a001 2178309/20633239*141422324^(3/13) 8024922359499302 a001 9227465/4870847*141422324^(1/13) 8024922359499302 a001 2178309/20633239*2537720636^(1/5) 8024922359499302 a001 9227465/4870847*2537720636^(1/15) 8024922359499302 a001 2178309/20633239*45537549124^(3/17) 8024922359499302 a001 9227465/4870847*45537549124^(1/17) 8024922359499302 a001 2178309/20633239*817138163596^(3/19) 8024922359499302 a001 20100270056685/2504730781961 8024922359499302 a001 2178309/20633239*14662949395604^(1/7) 8024922359499302 a001 2178309/20633239*(1/2+1/2*5^(1/2))^9 8024922359499302 a001 9227465/4870847*(1/2+1/2*5^(1/2))^3 8024922359499302 a001 2178309/20633239*192900153618^(1/6) 8024922359499302 a001 9227465/4870847*10749957122^(1/16) 8024922359499302 a001 2178309/20633239*10749957122^(3/16) 8024922359499302 a001 9227465/4870847*599074578^(1/14) 8024922359499302 a001 2178309/20633239*599074578^(3/14) 8024922359499302 a001 9227465/4870847*33385282^(1/12) 8024922359499303 a001 46347/4868641*12752043^(7/17) 8024922359499303 a001 2178309/20633239*33385282^(1/4) 8024922359499306 a001 726103/199691526*12752043^(8/17) 8024922359499307 a001 2178309/969323029*12752043^(1/2) 8024922359499309 a001 311187/224056801*12752043^(9/17) 8024922359499312 a001 726103/1368706081*12752043^(10/17) 8024922359499312 a001 832040/28143753123*1860498^(13/15) 8024922359499315 a001 987/4870846*12752043^(11/17) 8024922359499318 a001 726103/9381251041*12752043^(12/17) 8024922359499318 a001 726103/4250681*4870847^(1/4) 8024922359499320 a001 311187/10525900321*12752043^(13/17) 8024922359499323 a001 726103/64300051206*12752043^(14/17) 8024922359499326 a001 46347/10745088481*12752043^(15/17) 8024922359499329 a001 726103/440719107401*12752043^(16/17) 8024922359499332 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^60 8024922359499381 a001 311187/4769326*4870847^(5/16) 8024922359499389 a001 208010/11384387281*1860498^(9/10) 8024922359499408 a001 2178309/4870847*1860498^(1/5) 8024922359499408 a001 2178309/7881196*20633239^(1/5) 8024922359499408 a001 726103/29134601*4870847^(3/8) 8024922359499409 a001 3524578/4870847*20633239^(1/7) 8024922359499412 a001 3524578/4870847*2537720636^(1/9) 8024922359499412 a001 2178309/7881196*17393796001^(1/7) 8024922359499412 a001 3524578/4870847*312119004989^(1/11) 8024922359499412 a001 2178309/7881196*14662949395604^(1/9) 8024922359499412 a001 2178309/7881196*(1/2+1/2*5^(1/2))^7 8024922359499412 a001 3524578/4870847*(1/2+1/2*5^(1/2))^5 8024922359499412 a001 3524578/4870847*28143753123^(1/10) 8024922359499412 a001 2178309/7881196*599074578^(1/6) 8024922359499412 a001 3524578/4870847*228826127^(1/8) 8024922359499430 a001 14930352/4870847*1860498^(1/15) 8024922359499431 a001 46347/4868641*4870847^(7/16) 8024922359499442 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^61 8024922359499452 a001 726103/199691526*4870847^(1/2) 8024922359499454 a001 5702887/1322157322203*7881196^(10/11) 8024922359499466 a001 5702887/312119004989*7881196^(9/11) 8024922359499466 a001 832040/73681302247*1860498^(14/15) 8024922359499473 a001 311187/224056801*4870847^(9/16) 8024922359499478 a001 5702887/73681302247*7881196^(8/11) 8024922359499485 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^63 8024922359499485 a001 5702887/28143753123*7881196^(2/3) 8024922359499489 a001 5702887/17393796001*7881196^(7/11) 8024922359499491 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^65 8024922359499492 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^67 8024922359499492 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^69 8024922359499492 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^71 8024922359499492 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^73 8024922359499492 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^75 8024922359499492 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^77 8024922359499492 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^79 8024922359499492 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^81 8024922359499492 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^83 8024922359499492 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^85 8024922359499492 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^87 8024922359499492 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^89 8024922359499492 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^91 8024922359499492 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^93 8024922359499492 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^95 8024922359499492 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^97 8024922359499492 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^99 8024922359499492 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^100 8024922359499492 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^98 8024922359499492 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^96 8024922359499492 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^94 8024922359499492 a001 1/1762289*(1/2+1/2*5^(1/2))^39 8024922359499492 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^92 8024922359499492 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^90 8024922359499492 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^88 8024922359499492 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^86 8024922359499492 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^84 8024922359499492 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^82 8024922359499492 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^80 8024922359499492 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^78 8024922359499492 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^76 8024922359499492 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^74 8024922359499492 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^72 8024922359499492 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^70 8024922359499492 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^68 8024922359499492 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^66 8024922359499494 a001 726103/1368706081*4870847^(5/8) 8024922359499495 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^64 8024922359499496 a001 7465176/1730726404001*7881196^(10/11) 8024922359499499 a001 5702887/12752043*7881196^(2/11) 8024922359499501 a001 5702887/4106118243*7881196^(6/11) 8024922359499502 a001 39088169/9062201101803*7881196^(10/11) 8024922359499503 a001 102334155/23725150497407*7881196^(10/11) 8024922359499504 a001 31622993/7331474697802*7881196^(10/11) 8024922359499506 a001 24157817/5600748293801*7881196^(10/11) 8024922359499508 a001 3732588/204284540899*7881196^(9/11) 8024922359499511 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^62 8024922359499513 a001 5702887/969323029*7881196^(5/11) 8024922359499514 a001 39088169/2139295485799*7881196^(9/11) 8024922359499515 a001 102334155/5600748293801*7881196^(9/11) 8024922359499515 a001 10946/599074579*7881196^(9/11) 8024922359499515 a001 987/4870846*4870847^(11/16) 8024922359499515 a001 433494437/23725150497407*7881196^(9/11) 8024922359499515 a001 165580141/9062201101803*7881196^(9/11) 8024922359499516 a001 31622993/1730726404001*7881196^(9/11) 8024922359499518 a001 24157817/1322157322203*7881196^(9/11) 8024922359499520 a001 2584/33385281*7881196^(8/11) 8024922359499522 a001 5702887/12752043*141422324^(2/13) 8024922359499522 a001 5702887/12752043*2537720636^(2/15) 8024922359499522 a001 5702887/12752043*45537549124^(2/17) 8024922359499522 a001 5702887/12752043*(1/2+1/2*5^(1/2))^6 8024922359499522 a001 32522920134769/4052739537881 8024922359499522 a001 5702887/12752043*10749957122^(1/8) 8024922359499522 a001 5702887/12752043*4106118243^(3/23) 8024922359499522 a001 5702887/12752043*1568397607^(3/22) 8024922359499522 a001 5702887/12752043*599074578^(1/7) 8024922359499522 a001 5702887/12752043*228826127^(3/20) 8024922359499522 a001 9227465/2139295485799*7881196^(10/11) 8024922359499522 a001 5702887/12752043*87403803^(3/19) 8024922359499523 a001 5702887/12752043*33385282^(1/6) 8024922359499524 a001 5702887/228826127*7881196^(4/11) 8024922359499526 a001 39088169/505019158607*7881196^(8/11) 8024922359499527 a001 34111385/440719107401*7881196^(8/11) 8024922359499527 a001 133957148/1730726404001*7881196^(8/11) 8024922359499527 a001 233802911/3020733700601*7881196^(8/11) 8024922359499527 a001 1836311903/23725150497407*7881196^(8/11) 8024922359499527 a001 567451585/7331474697802*7881196^(8/11) 8024922359499527 a001 433494437/5600748293801*7881196^(8/11) 8024922359499527 a001 165580141/2139295485799*7881196^(8/11) 8024922359499527 a001 31622993/408569081798*7881196^(8/11) 8024922359499528 a001 14930352/73681302247*7881196^(2/3) 8024922359499529 a001 5702887/141422324*7881196^(1/3) 8024922359499530 a001 24157817/312119004989*7881196^(8/11) 8024922359499531 a001 5702887/12752043*12752043^(3/17) 8024922359499532 a001 3732588/11384387281*7881196^(7/11) 8024922359499533 a001 9227465/4870847*1860498^(1/10) 8024922359499534 a001 39088169/192900153618*7881196^(2/3) 8024922359499534 a001 9227465/505019158607*7881196^(9/11) 8024922359499535 a001 102334155/505019158607*7881196^(2/3) 8024922359499535 a001 267914296/1322157322203*7881196^(2/3) 8024922359499535 a001 701408733/3461452808002*7881196^(2/3) 8024922359499535 a001 1836311903/9062201101803*7881196^(2/3) 8024922359499535 a001 4807526976/23725150497407*7881196^(2/3) 8024922359499535 a001 2971215073/14662949395604*7881196^(2/3) 8024922359499535 a001 1134903170/5600748293801*7881196^(2/3) 8024922359499535 a001 433494437/2139295485799*7881196^(2/3) 8024922359499535 a001 165580141/817138163596*7881196^(2/3) 8024922359499535 a001 63245986/312119004989*7881196^(2/3) 8024922359499536 a001 726103/9381251041*4870847^(3/4) 8024922359499538 a001 24157817/119218851371*7881196^(2/3) 8024922359499538 a001 39088169/119218851371*7881196^(7/11) 8024922359499539 a001 9303105/28374454999*7881196^(7/11) 8024922359499539 a001 66978574/204284540899*7881196^(7/11) 8024922359499539 a001 701408733/2139295485799*7881196^(7/11) 8024922359499539 a001 1836311903/5600748293801*7881196^(7/11) 8024922359499539 a001 1201881744/3665737348901*7881196^(7/11) 8024922359499539 a001 7778742049/23725150497407*7881196^(7/11) 8024922359499539 a001 2971215073/9062201101803*7881196^(7/11) 8024922359499539 a001 567451585/1730726404001*7881196^(7/11) 8024922359499539 a001 433494437/1322157322203*7881196^(7/11) 8024922359499539 a001 165580141/505019158607*7881196^(7/11) 8024922359499539 a001 5702887/54018521*7881196^(3/11) 8024922359499539 a001 31622993/96450076809*7881196^(7/11) 8024922359499541 a001 24157817/73681302247*7881196^(7/11) 8024922359499542 a001 5702887/4870847*1860498^(2/15) 8024922359499543 a001 7465176/5374978561*7881196^(6/11) 8024922359499546 a001 9227465/119218851371*7881196^(8/11) 8024922359499549 a001 39088169/28143753123*7881196^(6/11) 8024922359499550 a001 14619165/10525900321*7881196^(6/11) 8024922359499550 a001 133957148/96450076809*7881196^(6/11) 8024922359499550 a001 701408733/505019158607*7881196^(6/11) 8024922359499550 a001 1836311903/1322157322203*7881196^(6/11) 8024922359499550 a001 14930208/10749853441*7881196^(6/11) 8024922359499550 a001 12586269025/9062201101803*7881196^(6/11) 8024922359499550 a001 32951280099/23725150497407*7881196^(6/11) 8024922359499550 a001 10182505537/7331474697802*7881196^(6/11) 8024922359499550 a001 7778742049/5600748293801*7881196^(6/11) 8024922359499550 a001 2971215073/2139295485799*7881196^(6/11) 8024922359499550 a001 567451585/408569081798*7881196^(6/11) 8024922359499550 a001 433494437/312119004989*7881196^(6/11) 8024922359499551 a001 165580141/119218851371*7881196^(6/11) 8024922359499551 a001 31622993/22768774562*7881196^(6/11) 8024922359499553 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^63 8024922359499553 a001 24157817/17393796001*7881196^(6/11) 8024922359499554 a001 9227465/45537549124*7881196^(2/3) 8024922359499555 a001 196452/33391061*7881196^(5/11) 8024922359499555 a001 5702887/1322157322203*20633239^(6/7) 8024922359499557 a001 5702887/505019158607*20633239^(4/5) 8024922359499558 a001 311187/10525900321*4870847^(13/16) 8024922359499558 a001 9227465/28143753123*7881196^(7/11) 8024922359499558 a001 5702887/119218851371*20633239^(5/7) 8024922359499560 a001 5702887/17393796001*20633239^(3/5) 8024922359499561 a001 5702887/10749957122*20633239^(4/7) 8024922359499561 a001 39088169/6643838879*7881196^(5/11) 8024922359499562 a001 102334155/17393796001*7881196^(5/11) 8024922359499562 a001 66978574/11384387281*7881196^(5/11) 8024922359499562 a001 701408733/119218851371*7881196^(5/11) 8024922359499562 a001 1836311903/312119004989*7881196^(5/11) 8024922359499562 a001 1201881744/204284540899*7881196^(5/11) 8024922359499562 a001 12586269025/2139295485799*7881196^(5/11) 8024922359499562 a001 32951280099/5600748293801*7881196^(5/11) 8024922359499562 a001 1135099622/192933544679*7881196^(5/11) 8024922359499562 a001 139583862445/23725150497407*7881196^(5/11) 8024922359499562 a001 53316291173/9062201101803*7881196^(5/11) 8024922359499562 a001 10182505537/1730726404001*7881196^(5/11) 8024922359499562 a001 7778742049/1322157322203*7881196^(5/11) 8024922359499562 a001 2971215073/505019158607*7881196^(5/11) 8024922359499562 a001 567451585/96450076809*7881196^(5/11) 8024922359499562 a001 433494437/73681302247*7881196^(5/11) 8024922359499562 a001 165580141/28143753123*7881196^(5/11) 8024922359499563 a001 24157817/12752043*7881196^(1/11) 8024922359499563 a001 31622993/5374978561*7881196^(5/11) 8024922359499564 a001 5702887/969323029*20633239^(3/7) 8024922359499564 a001 5702887/599074578*20633239^(2/5) 8024922359499564 a001 5702887/33385282*(1/2+1/2*5^(1/2))^8 8024922359499564 a001 4976784/4250681*(1/2+1/2*5^(1/2))^4 8024922359499564 a001 4976784/4250681*23725150497407^(1/16) 8024922359499564 a001 5702887/33385282*23725150497407^(1/8) 8024922359499564 a001 28382036775408/3536736619241 8024922359499564 a001 5702887/33385282*505019158607^(1/7) 8024922359499564 a001 4976784/4250681*73681302247^(1/13) 8024922359499564 a001 5702887/33385282*73681302247^(2/13) 8024922359499564 a001 4976784/4250681*10749957122^(1/12) 8024922359499564 a001 5702887/33385282*10749957122^(1/6) 8024922359499564 a001 4976784/4250681*4106118243^(2/23) 8024922359499564 a001 5702887/33385282*4106118243^(4/23) 8024922359499564 a001 4976784/4250681*1568397607^(1/11) 8024922359499564 a001 5702887/33385282*1568397607^(2/11) 8024922359499564 a001 4976784/4250681*599074578^(2/21) 8024922359499564 a001 5702887/33385282*599074578^(4/21) 8024922359499564 a001 4976784/4250681*228826127^(1/10) 8024922359499564 a001 5702887/33385282*228826127^(1/5) 8024922359499565 a001 4976784/4250681*87403803^(2/19) 8024922359499565 a001 5702887/33385282*87403803^(4/19) 8024922359499565 a001 24157817/4106118243*7881196^(5/11) 8024922359499565 a001 5702887/87403803*20633239^(2/7) 8024922359499565 a001 4976784/4250681*33385282^(1/9) 8024922359499566 a001 5702887/33385282*33385282^(2/9) 8024922359499567 a001 829464/33281921*7881196^(4/11) 8024922359499569 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^65 8024922359499569 a001 9227465/6643838879*7881196^(6/11) 8024922359499570 a001 4976784/4250681*12752043^(2/17) 8024922359499571 a001 5702887/87403803*2537720636^(2/9) 8024922359499571 a001 5702887/87403803*312119004989^(2/11) 8024922359499571 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^10/Lucas(38) 8024922359499571 a001 39088169/12752043*(1/2+1/2*5^(1/2))^2 8024922359499571 a001 5702887/87403803*28143753123^(1/5) 8024922359499571 a001 39088169/12752043*10749957122^(1/24) 8024922359499571 a001 5702887/87403803*10749957122^(5/24) 8024922359499571 a001 39088169/12752043*4106118243^(1/23) 8024922359499571 a001 5702887/87403803*4106118243^(5/23) 8024922359499571 a001 39088169/12752043*1568397607^(1/22) 8024922359499571 a001 5702887/87403803*1568397607^(5/22) 8024922359499571 a001 39088169/12752043*599074578^(1/21) 8024922359499571 a001 5702887/87403803*599074578^(5/21) 8024922359499571 a001 39088169/12752043*228826127^(1/20) 8024922359499571 a001 5702887/87403803*228826127^(1/4) 8024922359499571 a001 39088169/12752043*87403803^(1/19) 8024922359499571 a001 14930352/370248451*7881196^(1/3) 8024922359499571 a001 5702887/87403803*87403803^(5/19) 8024922359499571 a001 39088169/12752043*33385282^(1/18) 8024922359499571 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^67 8024922359499571 a001 5702887/23725150497407*141422324^(12/13) 8024922359499571 a001 5702887/5600748293801*141422324^(11/13) 8024922359499571 a001 5702887/1322157322203*141422324^(10/13) 8024922359499571 a001 5702887/312119004989*141422324^(9/13) 8024922359499571 a001 5702887/228826127*141422324^(4/13) 8024922359499571 a001 5702887/192900153618*141422324^(2/3) 8024922359499571 a001 5702887/73681302247*141422324^(8/13) 8024922359499571 a001 5702887/17393796001*141422324^(7/13) 8024922359499571 a001 5702887/4106118243*141422324^(6/13) 8024922359499571 a001 5702887/228826127*2537720636^(4/15) 8024922359499571 a001 5702887/228826127*45537549124^(4/17) 8024922359499571 a001 5702887/228826127*817138163596^(4/19) 8024922359499571 a001 5702887/228826127*14662949395604^(4/21) 8024922359499571 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^12/Lucas(40) 8024922359499571 a006 5^(1/2)*Fibonacci(40)/Lucas(34)/sqrt(5) 8024922359499571 a001 5702887/228826127*192900153618^(2/9) 8024922359499571 a001 5702887/228826127*73681302247^(3/13) 8024922359499571 a001 5702887/228826127*10749957122^(1/4) 8024922359499571 a001 5702887/228826127*4106118243^(6/23) 8024922359499571 a001 5702887/228826127*1568397607^(3/11) 8024922359499571 a001 5702887/228826127*599074578^(2/7) 8024922359499571 a001 5702887/969323029*141422324^(5/13) 8024922359499571 a001 5702887/228826127*228826127^(3/10) 8024922359499572 a001 5702887/370248451*141422324^(1/3) 8024922359499572 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^69 8024922359499572 a001 5702887/599074578*17393796001^(2/7) 8024922359499572 a001 5702887/599074578*14662949395604^(2/9) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^14/Lucas(42) 8024922359499572 a004 Fibonacci(42)/Lucas(34)/(1/2+sqrt(5)/2)^2 8024922359499572 a001 5702887/599074578*505019158607^(1/4) 8024922359499572 a001 5702887/599074578*10749957122^(7/24) 8024922359499572 a001 5702887/599074578*4106118243^(7/23) 8024922359499572 a001 5702887/599074578*1568397607^(7/22) 8024922359499572 a001 5702887/599074578*599074578^(1/3) 8024922359499572 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^71 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^16/Lucas(44) 8024922359499572 a004 Fibonacci(44)/Lucas(34)/(1/2+sqrt(5)/2)^4 8024922359499572 a001 5702887/1568397607*23725150497407^(1/4) 8024922359499572 a001 5702887/1568397607*73681302247^(4/13) 8024922359499572 a001 5702887/1568397607*10749957122^(1/3) 8024922359499572 a001 5702887/1568397607*4106118243^(8/23) 8024922359499572 a001 5702887/1568397607*1568397607^(4/11) 8024922359499572 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^73 8024922359499572 a001 5702887/23725150497407*2537720636^(4/5) 8024922359499572 a001 5702887/4106118243*2537720636^(2/5) 8024922359499572 a001 5702887/14662949395604*2537720636^(7/9) 8024922359499572 a001 5702887/5600748293801*2537720636^(11/15) 8024922359499572 a001 5702887/1322157322203*2537720636^(2/3) 8024922359499572 a001 5702887/312119004989*2537720636^(3/5) 8024922359499572 a001 5702887/119218851371*2537720636^(5/9) 8024922359499572 a001 5702887/73681302247*2537720636^(8/15) 8024922359499572 a001 5702887/10749957122*2537720636^(4/9) 8024922359499572 a001 5702887/17393796001*2537720636^(7/15) 8024922359499572 a001 5702887/4106118243*45537549124^(6/17) 8024922359499572 a001 5702887/4106118243*14662949395604^(2/7) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(46) 8024922359499572 a004 Fibonacci(46)/Lucas(34)/(1/2+sqrt(5)/2)^6 8024922359499572 a001 5702887/4106118243*192900153618^(1/3) 8024922359499572 a001 5702887/4106118243*10749957122^(3/8) 8024922359499572 a001 5702887/4106118243*4106118243^(9/23) 8024922359499572 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^75 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(48) 8024922359499572 a004 Fibonacci(48)/Lucas(34)/(1/2+sqrt(5)/2)^8 8024922359499572 a001 5702887/10749957122*23725150497407^(5/16) 8024922359499572 a001 5702887/10749957122*505019158607^(5/14) 8024922359499572 a001 5702887/10749957122*73681302247^(5/13) 8024922359499572 a001 5702887/10749957122*28143753123^(2/5) 8024922359499572 a001 5702887/10749957122*10749957122^(5/12) 8024922359499572 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^77 8024922359499572 a001 5702887/14662949395604*17393796001^(5/7) 8024922359499572 a001 5702887/505019158607*17393796001^(4/7) 8024922359499572 a001 5702887/28143753123*312119004989^(2/5) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(50) 8024922359499572 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2)^10 8024922359499572 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^79 8024922359499572 a001 5702887/73681302247*45537549124^(8/17) 8024922359499572 a001 5702887/23725150497407*45537549124^(12/17) 8024922359499572 a001 5702887/9062201101803*45537549124^(2/3) 8024922359499572 a001 5702887/5600748293801*45537549124^(11/17) 8024922359499572 a001 5702887/1322157322203*45537549124^(10/17) 8024922359499572 a001 5702887/312119004989*45537549124^(9/17) 8024922359499572 a001 5702887/73681302247*14662949395604^(8/21) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(52) 8024922359499572 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^12 8024922359499572 a001 5702887/73681302247*192900153618^(4/9) 8024922359499572 a001 5702887/73681302247*73681302247^(6/13) 8024922359499572 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^81 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(54) 8024922359499572 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^14 8024922359499572 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^83 8024922359499572 a001 5702887/1322157322203*312119004989^(6/11) 8024922359499572 a001 5702887/5600748293801*312119004989^(3/5) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(56) 8024922359499572 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^16 8024922359499572 a001 5702887/505019158607*505019158607^(1/2) 8024922359499572 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^85 8024922359499572 a001 5702887/1322157322203*14662949395604^(10/21) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(58) 8024922359499572 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^18 8024922359499572 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^87 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(60) 8024922359499572 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^20 8024922359499572 a001 5702887/3461452808002*23725150497407^(1/2) 8024922359499572 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^89 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(62) 8024922359499572 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^22 8024922359499572 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^91 8024922359499572 a001 5702887/23725150497407*14662949395604^(4/7) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(64) 8024922359499572 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^24 8024922359499572 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^93 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(66) 8024922359499572 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^26 8024922359499572 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^95 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(68) 8024922359499572 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^97 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(70) 8024922359499572 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^99 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(72) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(74) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(76) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(78) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(80) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(82) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(84) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(86) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(88) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(90) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(92) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(94) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(96) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(98) 8024922359499572 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^28 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(99) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(100) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(97) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(95) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(93) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(91) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(89) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(87) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(85) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(83) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(81) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(79) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(77) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(75) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(73) 8024922359499572 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^100 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(71) 8024922359499572 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^98 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(69) 8024922359499572 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^30 8024922359499572 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^32 8024922359499572 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^34 8024922359499572 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^36 8024922359499572 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^38 8024922359499572 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^40 8024922359499572 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^42 8024922359499572 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^44 8024922359499572 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^46 8024922359499572 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^48 8024922359499572 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^50 8024922359499572 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^52 8024922359499572 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^54 8024922359499572 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^56 8024922359499572 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^58 8024922359499572 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^60 8024922359499572 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^96 8024922359499572 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^59 8024922359499572 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^57 8024922359499572 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^55 8024922359499572 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^53 8024922359499572 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^51 8024922359499572 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^49 8024922359499572 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^47 8024922359499572 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^45 8024922359499572 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^43 8024922359499572 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^41 8024922359499572 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^39 8024922359499572 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^37 8024922359499572 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^35 8024922359499572 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^33 8024922359499572 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^31 8024922359499572 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^29 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(67) 8024922359499572 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^27 8024922359499572 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^94 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(65) 8024922359499572 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^25 8024922359499572 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^92 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(63) 8024922359499572 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^23 8024922359499572 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^90 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(61) 8024922359499572 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^21 8024922359499572 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^88 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(59) 8024922359499572 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^19 8024922359499572 a001 5702887/2139295485799*9062201101803^(1/2) 8024922359499572 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^86 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(57) 8024922359499572 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^17 8024922359499572 a001 5702887/3461452808002*505019158607^(4/7) 8024922359499572 a001 5702887/14662949395604*505019158607^(5/8) 8024922359499572 a001 5702887/23725150497407*505019158607^(9/14) 8024922359499572 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^84 8024922359499572 a001 5702887/312119004989*817138163596^(9/19) 8024922359499572 a001 5702887/312119004989*14662949395604^(3/7) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(55) 8024922359499572 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^15 8024922359499572 a001 5702887/1322157322203*192900153618^(5/9) 8024922359499572 a001 5702887/5600748293801*192900153618^(11/18) 8024922359499572 a001 5702887/23725150497407*192900153618^(2/3) 8024922359499572 a001 5702887/312119004989*192900153618^(1/2) 8024922359499572 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^82 8024922359499572 a001 5702887/192900153618*73681302247^(1/2) 8024922359499572 a001 5702887/119218851371*312119004989^(5/11) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(53) 8024922359499572 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^13 8024922359499572 a001 5702887/119218851371*3461452808002^(5/12) 8024922359499572 a001 5702887/505019158607*73681302247^(7/13) 8024922359499572 a001 5702887/3461452808002*73681302247^(8/13) 8024922359499572 a001 5702887/23725150497407*73681302247^(9/13) 8024922359499572 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^80 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(51) 8024922359499572 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^11 8024922359499572 a001 5702887/119218851371*28143753123^(1/2) 8024922359499572 a001 5702887/1322157322203*28143753123^(3/5) 8024922359499572 a001 5702887/14662949395604*28143753123^(7/10) 8024922359499572 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^78 8024922359499572 a001 5702887/17393796001*17393796001^(3/7) 8024922359499572 a001 5702887/28143753123*10749957122^(11/24) 8024922359499572 a001 5702887/17393796001*45537549124^(7/17) 8024922359499572 a001 5702887/17393796001*14662949395604^(1/3) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(49) 8024922359499572 a004 Fibonacci(49)/Lucas(34)/(1/2+sqrt(5)/2)^9 8024922359499572 a001 5702887/17393796001*192900153618^(7/18) 8024922359499572 a001 5702887/73681302247*10749957122^(1/2) 8024922359499572 a001 5702887/192900153618*10749957122^(13/24) 8024922359499572 a001 5702887/312119004989*10749957122^(9/16) 8024922359499572 a001 5702887/505019158607*10749957122^(7/12) 8024922359499572 a001 5702887/1322157322203*10749957122^(5/8) 8024922359499572 a001 5702887/3461452808002*10749957122^(2/3) 8024922359499572 a001 5702887/5600748293801*10749957122^(11/16) 8024922359499572 a001 5702887/9062201101803*10749957122^(17/24) 8024922359499572 a001 5702887/23725150497407*10749957122^(3/4) 8024922359499572 a001 5702887/17393796001*10749957122^(7/16) 8024922359499572 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^76 8024922359499572 a001 5702887/10749957122*4106118243^(10/23) 8024922359499572 a001 5702887/6643838879*817138163596^(1/3) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(47) 8024922359499572 a004 Fibonacci(47)/Lucas(34)/(1/2+sqrt(5)/2)^7 8024922359499572 a001 5702887/28143753123*4106118243^(11/23) 8024922359499572 a001 1597/12752044*4106118243^(1/2) 8024922359499572 a001 5702887/73681302247*4106118243^(12/23) 8024922359499572 a001 5702887/192900153618*4106118243^(13/23) 8024922359499572 a001 5702887/505019158607*4106118243^(14/23) 8024922359499572 a001 5702887/1322157322203*4106118243^(15/23) 8024922359499572 a001 5702887/3461452808002*4106118243^(16/23) 8024922359499572 a001 5702887/9062201101803*4106118243^(17/23) 8024922359499572 a001 5702887/23725150497407*4106118243^(18/23) 8024922359499572 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^74 8024922359499572 a001 5702887/4106118243*1568397607^(9/22) 8024922359499572 a001 5702887/2537720636*45537549124^(1/3) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^17/Lucas(45) 8024922359499572 a004 Fibonacci(45)/Lucas(34)/(1/2+sqrt(5)/2)^5 8024922359499572 a001 5702887/10749957122*1568397607^(5/11) 8024922359499572 a001 5702887/28143753123*1568397607^(1/2) 8024922359499572 a001 5702887/73681302247*1568397607^(6/11) 8024922359499572 a001 5702887/192900153618*1568397607^(13/22) 8024922359499572 a001 5702887/505019158607*1568397607^(7/11) 8024922359499572 a001 5702887/1322157322203*1568397607^(15/22) 8024922359499572 a001 5702887/3461452808002*1568397607^(8/11) 8024922359499572 a001 5702887/5600748293801*1568397607^(3/4) 8024922359499572 a001 5702887/9062201101803*1568397607^(17/22) 8024922359499572 a001 5702887/23725150497407*1568397607^(9/11) 8024922359499572 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^72 8024922359499572 a001 5702887/1568397607*599074578^(8/21) 8024922359499572 a001 5702887/969323029*2537720636^(1/3) 8024922359499572 a001 5702887/969323029*45537549124^(5/17) 8024922359499572 a001 5702887/969323029*312119004989^(3/11) 8024922359499572 a001 5702887/969323029*14662949395604^(5/21) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^15/Lucas(43) 8024922359499572 a004 Fibonacci(43)/Lucas(34)/(1/2+sqrt(5)/2)^3 8024922359499572 a001 5702887/969323029*192900153618^(5/18) 8024922359499572 a001 5702887/969323029*28143753123^(3/10) 8024922359499572 a001 5702887/969323029*10749957122^(5/16) 8024922359499572 a001 5702887/4106118243*599074578^(3/7) 8024922359499572 a001 5702887/10749957122*599074578^(10/21) 8024922359499572 a001 5702887/17393796001*599074578^(1/2) 8024922359499572 a001 5702887/28143753123*599074578^(11/21) 8024922359499572 a001 5702887/73681302247*599074578^(4/7) 8024922359499572 a001 5702887/192900153618*599074578^(13/21) 8024922359499572 a001 5702887/312119004989*599074578^(9/14) 8024922359499572 a001 5702887/505019158607*599074578^(2/3) 8024922359499572 a001 5702887/1322157322203*599074578^(5/7) 8024922359499572 a001 5702887/969323029*599074578^(5/14) 8024922359499572 a001 5702887/3461452808002*599074578^(16/21) 8024922359499572 a001 5702887/5600748293801*599074578^(11/14) 8024922359499572 a001 5702887/9062201101803*599074578^(17/21) 8024922359499572 a001 5702887/14662949395604*599074578^(5/6) 8024922359499572 a001 5702887/23725150497407*599074578^(6/7) 8024922359499572 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^70 8024922359499572 a001 5702887/599074578*228826127^(7/20) 8024922359499572 a001 5702887/1568397607*228826127^(2/5) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^13/Lucas(41) 8024922359499572 a004 Fibonacci(41)/Lucas(34)/(1/2+sqrt(5)/2) 8024922359499572 a001 5702887/370248451*73681302247^(1/4) 8024922359499572 a001 5702887/969323029*228826127^(3/8) 8024922359499572 a001 5702887/4106118243*228826127^(9/20) 8024922359499572 a001 5702887/10749957122*228826127^(1/2) 8024922359499572 a001 5702887/28143753123*228826127^(11/20) 8024922359499572 a001 5702887/73681302247*228826127^(3/5) 8024922359499572 a001 5702887/119218851371*228826127^(5/8) 8024922359499572 a001 5702887/192900153618*228826127^(13/20) 8024922359499572 a001 5702887/505019158607*228826127^(7/10) 8024922359499572 a001 5702887/1322157322203*228826127^(3/4) 8024922359499572 a001 5702887/3461452808002*228826127^(4/5) 8024922359499572 a001 5702887/9062201101803*228826127^(17/20) 8024922359499572 a001 5702887/14662949395604*228826127^(7/8) 8024922359499572 a001 5702887/23725150497407*228826127^(9/10) 8024922359499572 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^68 8024922359499572 a001 5702887/228826127*87403803^(6/19) 8024922359499572 a001 5702887/599074578*87403803^(7/19) 8024922359499572 a001 5702887/141422324*312119004989^(1/5) 8024922359499572 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^11/Lucas(39) 8024922359499572 a001 31622993/12752043+31622993/12752043*5^(1/2) 8024922359499572 a001 5702887/141422324*1568397607^(1/4) 8024922359499572 a001 5702887/1568397607*87403803^(8/19) 8024922359499572 a001 5702887/4106118243*87403803^(9/19) 8024922359499572 a001 5702887/6643838879*87403803^(1/2) 8024922359499572 a001 5702887/10749957122*87403803^(10/19) 8024922359499572 a001 5702887/28143753123*87403803^(11/19) 8024922359499572 a001 5702887/73681302247*87403803^(12/19) 8024922359499572 a001 5702887/192900153618*87403803^(13/19) 8024922359499572 a001 5702887/505019158607*87403803^(14/19) 8024922359499572 a001 5702887/1322157322203*87403803^(15/19) 8024922359499572 a001 5702887/3461452808002*87403803^(16/19) 8024922359499573 a001 5702887/9062201101803*87403803^(17/19) 8024922359499573 a001 5702887/87403803*33385282^(5/18) 8024922359499573 a001 5702887/23725150497407*87403803^(18/19) 8024922359499573 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^66 8024922359499573 a001 39088169/1568397607*7881196^(4/11) 8024922359499573 a001 39088169/12752043*12752043^(1/17) 8024922359499574 a001 34111385/1368706081*7881196^(4/11) 8024922359499574 a001 5702887/228826127*33385282^(1/3) 8024922359499574 a001 133957148/5374978561*7881196^(4/11) 8024922359499574 a001 233802911/9381251041*7881196^(4/11) 8024922359499574 a001 1836311903/73681302247*7881196^(4/11) 8024922359499574 a001 267084832/10716675201*7881196^(4/11) 8024922359499574 a001 12586269025/505019158607*7881196^(4/11) 8024922359499574 a001 10983760033/440719107401*7881196^(4/11) 8024922359499574 a001 43133785636/1730726404001*7881196^(4/11) 8024922359499574 a001 75283811239/3020733700601*7881196^(4/11) 8024922359499574 a001 182717648081/7331474697802*7881196^(4/11) 8024922359499574 a001 139583862445/5600748293801*7881196^(4/11) 8024922359499574 a001 53316291173/2139295485799*7881196^(4/11) 8024922359499574 a001 10182505537/408569081798*7881196^(4/11) 8024922359499574 a001 7778742049/312119004989*7881196^(4/11) 8024922359499574 a001 2971215073/119218851371*7881196^(4/11) 8024922359499574 a001 567451585/22768774562*7881196^(4/11) 8024922359499574 a001 433494437/17393796001*7881196^(4/11) 8024922359499574 a001 165580141/6643838879*7881196^(4/11) 8024922359499574 a001 5702887/54018521*141422324^(3/13) 8024922359499574 a001 24157817/12752043*141422324^(1/13) 8024922359499574 a001 5702887/54018521*2537720636^(1/5) 8024922359499574 a001 24157817/12752043*2537720636^(1/15) 8024922359499574 a001 5702887/54018521*45537549124^(3/17) 8024922359499574 a001 24157817/12752043*45537549124^(1/17) 8024922359499574 a001 5702887/54018521*14662949395604^(1/7) 8024922359499574 a001 24157817/12752043*14662949395604^(1/21) 8024922359499574 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^9/Lucas(37) 8024922359499574 a001 24157817/12752043*(1/2+1/2*5^(1/2))^3 8024922359499574 a001 24157817/12752043*192900153618^(1/18) 8024922359499574 a001 5702887/54018521*192900153618^(1/6) 8024922359499574 a001 24157817/12752043*10749957122^(1/16) 8024922359499574 a001 5702887/54018521*10749957122^(3/16) 8024922359499574 a001 24157817/12752043*599074578^(1/14) 8024922359499574 a001 5702887/54018521*599074578^(3/14) 8024922359499574 a001 31622993/1268860318*7881196^(4/11) 8024922359499574 a001 5702887/599074578*33385282^(7/18) 8024922359499575 a001 5702887/969323029*33385282^(5/12) 8024922359499575 a001 5702887/1568397607*33385282^(4/9) 8024922359499575 a001 24157817/12752043*33385282^(1/12) 8024922359499575 a001 5702887/4106118243*33385282^(1/2) 8024922359499576 a001 5702887/10749957122*33385282^(5/9) 8024922359499576 a001 5702887/17393796001*33385282^(7/12) 8024922359499576 a001 5702887/28143753123*33385282^(11/18) 8024922359499576 a001 5702887/33385282*12752043^(4/17) 8024922359499576 a001 5702887/54018521*33385282^(1/4) 8024922359499576 a001 5702887/73681302247*33385282^(2/3) 8024922359499577 a001 24157817/969323029*7881196^(4/11) 8024922359499577 a001 5702887/192900153618*33385282^(13/18) 8024922359499577 a001 39088169/969323029*7881196^(1/3) 8024922359499577 a001 5702887/312119004989*33385282^(3/4) 8024922359499577 a001 5702887/505019158607*33385282^(7/9) 8024922359499578 a001 5702887/1322157322203*33385282^(5/6) 8024922359499578 a001 9303105/230701876*7881196^(1/3) 8024922359499578 a001 267914296/6643838879*7881196^(1/3) 8024922359499578 a001 701408733/17393796001*7881196^(1/3) 8024922359499578 a001 1836311903/45537549124*7881196^(1/3) 8024922359499578 a001 4807526976/119218851371*7881196^(1/3) 8024922359499578 a001 1144206275/28374454999*7881196^(1/3) 8024922359499578 a001 32951280099/817138163596*7881196^(1/3) 8024922359499578 a001 86267571272/2139295485799*7881196^(1/3) 8024922359499578 a001 225851433717/5600748293801*7881196^(1/3) 8024922359499578 a001 591286729879/14662949395604*7881196^(1/3) 8024922359499578 a001 365435296162/9062201101803*7881196^(1/3) 8024922359499578 a001 139583862445/3461452808002*7881196^(1/3) 8024922359499578 a001 53316291173/1322157322203*7881196^(1/3) 8024922359499578 a001 20365011074/505019158607*7881196^(1/3) 8024922359499578 a001 7778742049/192900153618*7881196^(1/3) 8024922359499578 a001 2971215073/73681302247*7881196^(1/3) 8024922359499578 a001 1134903170/28143753123*7881196^(1/3) 8024922359499578 a001 433494437/10749957122*7881196^(1/3) 8024922359499578 a001 165580141/4106118243*7881196^(1/3) 8024922359499578 a001 5702887/3461452808002*33385282^(8/9) 8024922359499578 a001 5702887/5600748293801*33385282^(11/12) 8024922359499578 a001 63245986/1568397607*7881196^(1/3) 8024922359499578 a001 5702887/9062201101803*33385282^(17/18) 8024922359499579 a001 726103/64300051206*4870847^(7/8) 8024922359499579 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^64 8024922359499579 a001 3732588/35355581*7881196^(3/11) 8024922359499581 a001 24157817/599074578*7881196^(1/3) 8024922359499581 a001 9227465/1568397607*7881196^(5/11) 8024922359499583 a001 7465176/16692641*7881196^(2/11) 8024922359499585 a001 39088169/370248451*7881196^(3/11) 8024922359499585 a001 5702887/87403803*12752043^(5/17) 8024922359499586 a001 102334155/969323029*7881196^(3/11) 8024922359499586 a001 5702887/12752043*4870847^(3/16) 8024922359499586 a001 66978574/634430159*7881196^(3/11) 8024922359499586 a001 701408733/6643838879*7881196^(3/11) 8024922359499586 a001 1836311903/17393796001*7881196^(3/11) 8024922359499586 a001 1201881744/11384387281*7881196^(3/11) 8024922359499586 a001 12586269025/119218851371*7881196^(3/11) 8024922359499586 a001 32951280099/312119004989*7881196^(3/11) 8024922359499586 a001 21566892818/204284540899*7881196^(3/11) 8024922359499586 a001 225851433717/2139295485799*7881196^(3/11) 8024922359499586 a001 182717648081/1730726404001*7881196^(3/11) 8024922359499586 a001 139583862445/1322157322203*7881196^(3/11) 8024922359499586 a001 53316291173/505019158607*7881196^(3/11) 8024922359499586 a001 10182505537/96450076809*7881196^(3/11) 8024922359499586 a001 7778742049/73681302247*7881196^(3/11) 8024922359499586 a001 2971215073/28143753123*7881196^(3/11) 8024922359499586 a001 567451585/5374978561*7881196^(3/11) 8024922359499586 a001 433494437/4106118243*7881196^(3/11) 8024922359499586 a001 165580141/1568397607*7881196^(3/11) 8024922359499586 a001 31622993/299537289*7881196^(3/11) 8024922359499587 a001 5702887/20633239*20633239^(1/5) 8024922359499588 a001 9227465/12752043*20633239^(1/7) 8024922359499588 a001 24157817/228826127*7881196^(3/11) 8024922359499589 a001 5702887/228826127*12752043^(6/17) 8024922359499590 a001 9227465/12752043*2537720636^(1/9) 8024922359499590 a001 5702887/20633239*17393796001^(1/7) 8024922359499590 a001 9227465/12752043*312119004989^(1/11) 8024922359499590 a001 4047937707035/504420793834 8024922359499590 a001 5702887/20633239*(1/2+1/2*5^(1/2))^7 8024922359499590 a001 9227465/12752043*(1/2+1/2*5^(1/2))^5 8024922359499590 a001 9227465/12752043*28143753123^(1/10) 8024922359499590 a001 5702887/20633239*599074578^(1/6) 8024922359499590 a001 9227465/12752043*228826127^(1/8) 8024922359499592 a001 39088169/12752043*4870847^(1/16) 8024922359499592 a001 5702887/599074578*12752043^(7/17) 8024922359499593 a001 9227465/370248451*7881196^(4/11) 8024922359499595 a001 5702887/1568397607*12752043^(8/17) 8024922359499595 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^65 8024922359499595 a001 39088169/87403803*7881196^(2/11) 8024922359499596 a001 5702887/2537720636*12752043^(1/2) 8024922359499597 a001 9227465/228826127*7881196^(1/3) 8024922359499597 a001 102334155/228826127*7881196^(2/11) 8024922359499597 a001 133957148/299537289*7881196^(2/11) 8024922359499597 a001 701408733/1568397607*7881196^(2/11) 8024922359499597 a001 1836311903/4106118243*7881196^(2/11) 8024922359499597 a001 2403763488/5374978561*7881196^(2/11) 8024922359499597 a001 12586269025/28143753123*7881196^(2/11) 8024922359499597 a001 32951280099/73681302247*7881196^(2/11) 8024922359499597 a001 43133785636/96450076809*7881196^(2/11) 8024922359499597 a001 225851433717/505019158607*7881196^(2/11) 8024922359499597 a001 591286729879/1322157322203*7881196^(2/11) 8024922359499597 a001 10610209857723/23725150497407*7881196^(2/11) 8024922359499597 a001 182717648081/408569081798*7881196^(2/11) 8024922359499597 a001 139583862445/312119004989*7881196^(2/11) 8024922359499597 a001 53316291173/119218851371*7881196^(2/11) 8024922359499597 a001 10182505537/22768774562*7881196^(2/11) 8024922359499597 a001 7778742049/17393796001*7881196^(2/11) 8024922359499597 a001 2971215073/6643838879*7881196^(2/11) 8024922359499597 a001 567451585/1268860318*7881196^(2/11) 8024922359499597 a001 433494437/969323029*7881196^(2/11) 8024922359499598 a001 165580141/370248451*7881196^(2/11) 8024922359499598 a001 7465176/1730726404001*20633239^(6/7) 8024922359499598 a001 5702887/4106118243*12752043^(9/17) 8024922359499598 a001 31622993/70711162*7881196^(2/11) 8024922359499599 a001 4976784/440719107401*20633239^(4/5) 8024922359499600 a001 46347/10745088481*4870847^(15/16) 8024922359499600 a001 14930352/312119004989*20633239^(5/7) 8024922359499601 a001 5702887/10749957122*12752043^(10/17) 8024922359499601 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^67 8024922359499602 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^69 8024922359499602 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^71 8024922359499602 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^73 8024922359499602 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^75 8024922359499602 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^77 8024922359499602 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^79 8024922359499602 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^81 8024922359499602 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^83 8024922359499602 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^85 8024922359499602 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^87 8024922359499602 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^89 8024922359499602 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^91 8024922359499602 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^93 8024922359499602 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^95 8024922359499602 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^97 8024922359499602 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^99 8024922359499602 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^100 8024922359499602 a001 2/9227465*(1/2+1/2*5^(1/2))^41 8024922359499602 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^98 8024922359499602 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^96 8024922359499602 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^94 8024922359499602 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^92 8024922359499602 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^90 8024922359499602 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^88 8024922359499602 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^86 8024922359499602 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^84 8024922359499602 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^82 8024922359499602 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^80 8024922359499602 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^78 8024922359499602 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^76 8024922359499602 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^74 8024922359499602 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^72 8024922359499602 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^70 8024922359499602 a001 31622993/16692641*7881196^(1/11) 8024922359499602 a001 3732588/11384387281*20633239^(3/5) 8024922359499603 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^68 8024922359499603 a001 24157817/54018521*7881196^(2/11) 8024922359499603 a001 4976784/9381251041*20633239^(4/7) 8024922359499604 a001 9227465/87403803*7881196^(3/11) 8024922359499604 a001 5702887/28143753123*12752043^(11/17) 8024922359499604 a001 39088169/9062201101803*20633239^(6/7) 8024922359499605 a001 102334155/23725150497407*20633239^(6/7) 8024922359499605 a001 39088169/3461452808002*20633239^(4/5) 8024922359499605 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^66 8024922359499605 a001 31622993/7331474697802*20633239^(6/7) 8024922359499606 a001 196452/33391061*20633239^(3/7) 8024922359499606 a001 34111385/3020733700601*20633239^(4/5) 8024922359499606 a001 267914296/23725150497407*20633239^(4/5) 8024922359499606 a001 165580141/14662949395604*20633239^(4/5) 8024922359499606 a001 14930352/1568397607*20633239^(2/5) 8024922359499606 a001 63245986/5600748293801*20633239^(4/5) 8024922359499606 a001 4181/87403804*20633239^(5/7) 8024922359499606 a001 5702887/73681302247*12752043^(12/17) 8024922359499606 a001 7465176/16692641*141422324^(2/13) 8024922359499607 a001 7465176/16692641*2537720636^(2/15) 8024922359499607 a001 7465176/16692641*45537549124^(2/17) 8024922359499607 a001 7465176/16692641*14662949395604^(2/21) 8024922359499607 a001 7465176/16692641*(1/2+1/2*5^(1/2))^6 8024922359499607 a001 7465176/16692641*10749957122^(1/8) 8024922359499607 a001 7465176/16692641*4106118243^(3/23) 8024922359499607 a001 7465176/16692641*1568397607^(3/22) 8024922359499607 a001 7465176/16692641*599074578^(1/7) 8024922359499607 a001 7465176/16692641*228826127^(3/20) 8024922359499607 a001 4976784/4250681*4870847^(1/8) 8024922359499607 a001 7465176/16692641*87403803^(3/19) 8024922359499607 a001 102334155/2139295485799*20633239^(5/7) 8024922359499607 a001 267914296/5600748293801*20633239^(5/7) 8024922359499607 a001 701408733/14662949395604*20633239^(5/7) 8024922359499607 a001 1134903170/23725150497407*20633239^(5/7) 8024922359499607 a001 433494437/9062201101803*20633239^(5/7) 8024922359499608 a001 24157817/5600748293801*20633239^(6/7) 8024922359499608 a001 165580141/3461452808002*20633239^(5/7) 8024922359499608 a001 7465176/16692641*33385282^(1/6) 8024922359499608 a001 63245986/1322157322203*20633239^(5/7) 8024922359499608 a001 14930352/228826127*20633239^(2/7) 8024922359499608 a001 165580141/87403803*7881196^(1/11) 8024922359499609 a001 39088169/119218851371*20633239^(3/5) 8024922359499609 a001 24157817/2139295485799*20633239^(4/5) 8024922359499609 a001 433494437/228826127*7881196^(1/11) 8024922359499609 a001 39088169/73681302247*20633239^(4/7) 8024922359499609 a001 567451585/299537289*7881196^(1/11) 8024922359499609 a001 2971215073/1568397607*7881196^(1/11) 8024922359499609 a001 7778742049/4106118243*7881196^(1/11) 8024922359499609 a001 10182505537/5374978561*7881196^(1/11) 8024922359499609 a001 53316291173/28143753123*7881196^(1/11) 8024922359499609 a001 139583862445/73681302247*7881196^(1/11) 8024922359499609 a001 182717648081/96450076809*7881196^(1/11) 8024922359499609 a001 956722026041/505019158607*7881196^(1/11) 8024922359499609 a001 10610209857723/5600748293801*7881196^(1/11) 8024922359499609 a001 591286729879/312119004989*7881196^(1/11) 8024922359499609 a001 225851433717/119218851371*7881196^(1/11) 8024922359499609 a001 21566892818/11384387281*7881196^(1/11) 8024922359499609 a001 32951280099/17393796001*7881196^(1/11) 8024922359499609 a001 12586269025/6643838879*7881196^(1/11) 8024922359499609 a001 1201881744/634430159*7881196^(1/11) 8024922359499609 a001 1836311903/969323029*7881196^(1/11) 8024922359499609 a001 701408733/370248451*7881196^(1/11) 8024922359499609 a001 5702887/192900153618*12752043^(13/17) 8024922359499609 a001 9303105/28374454999*20633239^(3/5) 8024922359499610 a001 66978574/35355581*7881196^(1/11) 8024922359499610 a001 66978574/204284540899*20633239^(3/5) 8024922359499610 a001 701408733/2139295485799*20633239^(3/5) 8024922359499610 a001 1836311903/5600748293801*20633239^(3/5) 8024922359499610 a001 1201881744/3665737348901*20633239^(3/5) 8024922359499610 a001 7778742049/23725150497407*20633239^(3/5) 8024922359499610 a001 2971215073/9062201101803*20633239^(3/5) 8024922359499610 a001 567451585/1730726404001*20633239^(3/5) 8024922359499610 a001 433494437/1322157322203*20633239^(3/5) 8024922359499610 a001 165580141/505019158607*20633239^(3/5) 8024922359499610 a001 34111385/64300051206*20633239^(4/7) 8024922359499610 a001 31622993/96450076809*20633239^(3/5) 8024922359499610 a001 267914296/505019158607*20633239^(4/7) 8024922359499610 a001 233802911/440719107401*20633239^(4/7) 8024922359499610 a001 1836311903/3461452808002*20633239^(4/7) 8024922359499610 a001 1602508992/3020733700601*20633239^(4/7) 8024922359499610 a001 12586269025/23725150497407*20633239^(4/7) 8024922359499610 a001 7778742049/14662949395604*20633239^(4/7) 8024922359499610 a001 2971215073/5600748293801*20633239^(4/7) 8024922359499610 a001 1134903170/2139295485799*20633239^(4/7) 8024922359499610 a001 433494437/817138163596*20633239^(4/7) 8024922359499610 a001 24157817/505019158607*20633239^(5/7) 8024922359499610 a001 165580141/312119004989*20633239^(4/7) 8024922359499611 a001 63245986/119218851371*20633239^(4/7) 8024922359499611 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^67 8024922359499612 a001 102334155/54018521*7881196^(1/11) 8024922359499612 a001 39088169/6643838879*20633239^(3/7) 8024922359499612 a001 5702887/505019158607*12752043^(14/17) 8024922359499612 a001 39088169/4106118243*20633239^(2/5) 8024922359499612 a001 24157817/73681302247*20633239^(3/5) 8024922359499613 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^8/Lucas(38) 8024922359499613 a001 39088169/33385282*(1/2+1/2*5^(1/2))^4 8024922359499613 a001 39088169/33385282*23725150497407^(1/16) 8024922359499613 a001 4976784/29134601*23725150497407^(1/8) 8024922359499613 a001 4976784/29134601*505019158607^(1/7) 8024922359499613 a001 39088169/33385282*73681302247^(1/13) 8024922359499613 a001 4976784/29134601*73681302247^(2/13) 8024922359499613 a001 39088169/33385282*10749957122^(1/12) 8024922359499613 a001 4976784/29134601*10749957122^(1/6) 8024922359499613 a001 39088169/33385282*4106118243^(2/23) 8024922359499613 a001 4976784/29134601*4106118243^(4/23) 8024922359499613 a001 39088169/33385282*1568397607^(1/11) 8024922359499613 a001 4976784/29134601*1568397607^(2/11) 8024922359499613 a001 39088169/33385282*599074578^(2/21) 8024922359499613 a001 4976784/29134601*599074578^(4/21) 8024922359499613 a001 39088169/33385282*228826127^(1/10) 8024922359499613 a001 102334155/17393796001*20633239^(3/7) 8024922359499613 a001 14930352/54018521*20633239^(1/5) 8024922359499613 a001 39088169/33385282*87403803^(2/19) 8024922359499613 a001 66978574/11384387281*20633239^(3/7) 8024922359499613 a001 701408733/119218851371*20633239^(3/7) 8024922359499613 a001 1836311903/312119004989*20633239^(3/7) 8024922359499613 a001 1201881744/204284540899*20633239^(3/7) 8024922359499613 a001 12586269025/2139295485799*20633239^(3/7) 8024922359499613 a001 32951280099/5600748293801*20633239^(3/7) 8024922359499613 a001 1135099622/192933544679*20633239^(3/7) 8024922359499613 a001 139583862445/23725150497407*20633239^(3/7) 8024922359499613 a001 53316291173/9062201101803*20633239^(3/7) 8024922359499613 a001 10182505537/1730726404001*20633239^(3/7) 8024922359499613 a001 7778742049/1322157322203*20633239^(3/7) 8024922359499613 a001 2971215073/505019158607*20633239^(3/7) 8024922359499613 a001 567451585/96450076809*20633239^(3/7) 8024922359499613 a001 433494437/73681302247*20633239^(3/7) 8024922359499613 a001 4976784/29134601*87403803^(4/19) 8024922359499613 a001 24157817/45537549124*20633239^(4/7) 8024922359499613 a001 165580141/28143753123*20633239^(3/7) 8024922359499613 a001 102334155/10749957122*20633239^(2/5) 8024922359499613 a001 31622993/5374978561*20633239^(3/7) 8024922359499613 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^69 8024922359499613 a001 267914296/28143753123*20633239^(2/5) 8024922359499613 a001 701408733/73681302247*20633239^(2/5) 8024922359499613 a001 1836311903/192900153618*20633239^(2/5) 8024922359499613 a001 102287808/10745088481*20633239^(2/5) 8024922359499613 a001 12586269025/1322157322203*20633239^(2/5) 8024922359499613 a001 32951280099/3461452808002*20633239^(2/5) 8024922359499613 a001 86267571272/9062201101803*20633239^(2/5) 8024922359499613 a001 225851433717/23725150497407*20633239^(2/5) 8024922359499613 a001 139583862445/14662949395604*20633239^(2/5) 8024922359499613 a001 53316291173/5600748293801*20633239^(2/5) 8024922359499613 a001 20365011074/2139295485799*20633239^(2/5) 8024922359499613 a001 7778742049/817138163596*20633239^(2/5) 8024922359499613 a001 2971215073/312119004989*20633239^(2/5) 8024922359499613 a001 196452/192933544679*141422324^(11/13) 8024922359499613 a001 1134903170/119218851371*20633239^(2/5) 8024922359499613 a001 433494437/45537549124*20633239^(2/5) 8024922359499613 a001 7465176/1730726404001*141422324^(10/13) 8024922359499613 a001 165580141/17393796001*20633239^(2/5) 8024922359499613 a001 3732588/204284540899*141422324^(9/13) 8024922359499613 a001 14930352/505019158607*141422324^(2/3) 8024922359499614 a001 39088169/33385282*33385282^(1/9) 8024922359499614 a001 2584/33385281*141422324^(8/13) 8024922359499614 a001 3732588/11384387281*141422324^(7/13) 8024922359499614 a001 7465176/5374978561*141422324^(6/13) 8024922359499614 a001 14930352/228826127*2537720636^(2/9) 8024922359499614 a001 14930352/228826127*312119004989^(2/11) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^10/Lucas(40) 8024922359499614 a001 14619165/4769326*(1/2+1/2*5^(1/2))^2 8024922359499614 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^2/Lucas(36) 8024922359499614 a001 14930352/228826127*28143753123^(1/5) 8024922359499614 a001 14619165/4769326*10749957122^(1/24) 8024922359499614 a001 14930352/228826127*10749957122^(5/24) 8024922359499614 a001 14619165/4769326*4106118243^(1/23) 8024922359499614 a001 14930352/228826127*4106118243^(5/23) 8024922359499614 a001 14619165/4769326*1568397607^(1/22) 8024922359499614 a001 196452/33391061*141422324^(5/13) 8024922359499614 a001 14930352/228826127*1568397607^(5/22) 8024922359499614 a001 14619165/4769326*599074578^(1/21) 8024922359499614 a001 14930352/228826127*599074578^(5/21) 8024922359499614 a001 829464/33281921*141422324^(4/13) 8024922359499614 a001 14619165/4769326*228826127^(1/20) 8024922359499614 a001 14930352/969323029*141422324^(1/3) 8024922359499614 a001 14930352/228826127*228826127^(1/4) 8024922359499614 a001 14619165/4769326*87403803^(1/19) 8024922359499614 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^71 8024922359499614 a001 829464/33281921*2537720636^(4/15) 8024922359499614 a001 829464/33281921*45537549124^(4/17) 8024922359499614 a001 829464/33281921*817138163596^(4/19) 8024922359499614 a001 829464/33281921*14662949395604^(4/21) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^12/Lucas(42) 8024922359499614 a006 5^(1/2)*Fibonacci(42)/Lucas(36)/sqrt(5) 8024922359499614 a001 829464/33281921*192900153618^(2/9) 8024922359499614 a001 829464/33281921*73681302247^(3/13) 8024922359499614 a001 829464/33281921*10749957122^(1/4) 8024922359499614 a001 829464/33281921*4106118243^(6/23) 8024922359499614 a001 829464/33281921*1568397607^(3/11) 8024922359499614 a001 829464/33281921*599074578^(2/7) 8024922359499614 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^73 8024922359499614 a001 14930352/1568397607*17393796001^(2/7) 8024922359499614 a001 14930352/1568397607*14662949395604^(2/9) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^14/Lucas(44) 8024922359499614 a004 Fibonacci(44)/Lucas(36)/(1/2+sqrt(5)/2)^2 8024922359499614 a001 14930352/1568397607*505019158607^(1/4) 8024922359499614 a001 14930352/1568397607*10749957122^(7/24) 8024922359499614 a001 14930352/1568397607*4106118243^(7/23) 8024922359499614 a001 14930352/1568397607*1568397607^(7/22) 8024922359499614 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^75 8024922359499614 a001 196452/192933544679*2537720636^(11/15) 8024922359499614 a001 7465176/1730726404001*2537720636^(2/3) 8024922359499614 a001 3732588/204284540899*2537720636^(3/5) 8024922359499614 a001 14930352/312119004989*2537720636^(5/9) 8024922359499614 a001 2584/33385281*2537720636^(8/15) 8024922359499614 a001 3732588/11384387281*2537720636^(7/15) 8024922359499614 a001 7465176/5374978561*2537720636^(2/5) 8024922359499614 a001 4976784/9381251041*2537720636^(4/9) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(46) 8024922359499614 a004 Fibonacci(46)/Lucas(36)/(1/2+sqrt(5)/2)^4 8024922359499614 a001 4976784/1368706081*23725150497407^(1/4) 8024922359499614 a001 4976784/1368706081*73681302247^(4/13) 8024922359499614 a001 4976784/1368706081*10749957122^(1/3) 8024922359499614 a001 4976784/1368706081*4106118243^(8/23) 8024922359499614 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^77 8024922359499614 a001 7465176/5374978561*45537549124^(6/17) 8024922359499614 a001 7465176/5374978561*14662949395604^(2/7) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(48) 8024922359499614 a004 Fibonacci(48)/Lucas(36)/(1/2+sqrt(5)/2)^6 8024922359499614 a001 7465176/5374978561*192900153618^(1/3) 8024922359499614 a001 7465176/5374978561*10749957122^(3/8) 8024922359499614 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^79 8024922359499614 a001 4976784/440719107401*17393796001^(4/7) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(50) 8024922359499614 a004 Fibonacci(50)/Lucas(36)/(1/2+sqrt(5)/2)^8 8024922359499614 a001 4976784/9381251041*23725150497407^(5/16) 8024922359499614 a001 4976784/9381251041*505019158607^(5/14) 8024922359499614 a001 4976784/9381251041*73681302247^(5/13) 8024922359499614 a001 3732588/11384387281*17393796001^(3/7) 8024922359499614 a001 4976784/9381251041*28143753123^(2/5) 8024922359499614 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^81 8024922359499614 a001 14930352/23725150497407*45537549124^(2/3) 8024922359499614 a001 196452/192933544679*45537549124^(11/17) 8024922359499614 a001 7465176/1730726404001*45537549124^(10/17) 8024922359499614 a001 2584/33385281*45537549124^(8/17) 8024922359499614 a001 3732588/204284540899*45537549124^(9/17) 8024922359499614 a001 14930352/73681302247*312119004989^(2/5) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(52) 8024922359499614 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2)^10 8024922359499614 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^83 8024922359499614 a001 2584/33385281*14662949395604^(8/21) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(54) 8024922359499614 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^12 8024922359499614 a001 2584/33385281*192900153618^(4/9) 8024922359499614 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^85 8024922359499614 a001 196452/192933544679*312119004989^(3/5) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(56) 8024922359499614 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^14 8024922359499614 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^87 8024922359499614 a001 196452/192933544679*817138163596^(11/19) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(58) 8024922359499614 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^16 8024922359499614 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^89 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(60) 8024922359499614 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^18 8024922359499614 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^91 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(62) 8024922359499614 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^20 8024922359499614 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^93 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(64) 8024922359499614 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^22 8024922359499614 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^95 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(66) 8024922359499614 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^24 8024922359499614 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^97 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(68) 8024922359499614 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^26 8024922359499614 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^99 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(70) 8024922359499614 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^28 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(72) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(74) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(76) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(78) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(80) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(82) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(84) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(86) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(88) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(90) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(92) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(94) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(96) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(98) 8024922359499614 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^30 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(99) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(100) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(97) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(95) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(93) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(91) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(89) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(87) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(85) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(83) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(81) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(79) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(77) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(75) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(73) 8024922359499614 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^32 8024922359499614 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^34 8024922359499614 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^36 8024922359499614 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^38 8024922359499614 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^40 8024922359499614 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^42 8024922359499614 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^44 8024922359499614 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^46 8024922359499614 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^48 8024922359499614 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^50 8024922359499614 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^52 8024922359499614 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^54 8024922359499614 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^56 8024922359499614 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^58 8024922359499614 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^57 8024922359499614 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^55 8024922359499614 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^53 8024922359499614 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^51 8024922359499614 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^49 8024922359499614 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^47 8024922359499614 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^45 8024922359499614 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^43 8024922359499614 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^41 8024922359499614 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^39 8024922359499614 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^37 8024922359499614 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^35 8024922359499614 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^33 8024922359499614 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^31 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(71) 8024922359499614 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^29 8024922359499614 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^100 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(69) 8024922359499614 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^27 8024922359499614 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^98 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(67) 8024922359499614 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^25 8024922359499614 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^96 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(65) 8024922359499614 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^23 8024922359499614 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^94 8024922359499614 a001 196452/192933544679*14662949395604^(11/21) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(63) 8024922359499614 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^21 8024922359499614 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^92 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(61) 8024922359499614 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^19 8024922359499614 a001 14930352/5600748293801*9062201101803^(1/2) 8024922359499614 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^90 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(59) 8024922359499614 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^17 8024922359499614 a001 14930352/2139295485799*1322157322203^(1/2) 8024922359499614 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^88 8024922359499614 a001 3732588/204284540899*817138163596^(9/19) 8024922359499614 a001 4976784/440719107401*505019158607^(1/2) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(57) 8024922359499614 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^15 8024922359499614 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^86 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(55) 8024922359499614 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^13 8024922359499614 a001 14930352/312119004989*3461452808002^(5/12) 8024922359499614 a001 7465176/1730726404001*192900153618^(5/9) 8024922359499614 a001 196452/192933544679*192900153618^(11/18) 8024922359499614 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^84 8024922359499614 a001 2584/33385281*73681302247^(6/13) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(53) 8024922359499614 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^11 8024922359499614 a001 14930352/505019158607*73681302247^(1/2) 8024922359499614 a001 4976784/440719107401*73681302247^(7/13) 8024922359499614 a001 4976784/3020733700601*73681302247^(8/13) 8024922359499614 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^82 8024922359499614 a001 3732588/11384387281*45537549124^(7/17) 8024922359499614 a001 3732588/11384387281*14662949395604^(1/3) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(51) 8024922359499614 a004 Fibonacci(51)/Lucas(36)/(1/2+sqrt(5)/2)^9 8024922359499614 a001 3732588/11384387281*192900153618^(7/18) 8024922359499614 a001 14930352/312119004989*28143753123^(1/2) 8024922359499614 a001 7465176/1730726404001*28143753123^(3/5) 8024922359499614 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^80 8024922359499614 a001 4976784/9381251041*10749957122^(5/12) 8024922359499614 a001 14930352/17393796001*817138163596^(1/3) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(49) 8024922359499614 a004 Fibonacci(49)/Lucas(36)/(1/2+sqrt(5)/2)^7 8024922359499614 a001 14930352/73681302247*10749957122^(11/24) 8024922359499614 a001 3732588/11384387281*10749957122^(7/16) 8024922359499614 a001 2584/33385281*10749957122^(1/2) 8024922359499614 a001 14930352/505019158607*10749957122^(13/24) 8024922359499614 a001 3732588/204284540899*10749957122^(9/16) 8024922359499614 a001 4976784/440719107401*10749957122^(7/12) 8024922359499614 a001 7465176/1730726404001*10749957122^(5/8) 8024922359499614 a001 4976784/3020733700601*10749957122^(2/3) 8024922359499614 a001 196452/192933544679*10749957122^(11/16) 8024922359499614 a001 14930352/23725150497407*10749957122^(17/24) 8024922359499614 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^78 8024922359499614 a001 7465176/5374978561*4106118243^(9/23) 8024922359499614 a001 14930352/6643838879*45537549124^(1/3) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(47) 8024922359499614 a004 Fibonacci(47)/Lucas(36)/(1/2+sqrt(5)/2)^5 8024922359499614 a001 4976784/9381251041*4106118243^(10/23) 8024922359499614 a001 14930352/73681302247*4106118243^(11/23) 8024922359499614 a001 14930352/119218851371*4106118243^(1/2) 8024922359499614 a001 2584/33385281*4106118243^(12/23) 8024922359499614 a001 14930352/505019158607*4106118243^(13/23) 8024922359499614 a001 4976784/440719107401*4106118243^(14/23) 8024922359499614 a001 7465176/1730726404001*4106118243^(15/23) 8024922359499614 a001 4976784/3020733700601*4106118243^(16/23) 8024922359499614 a001 14930352/23725150497407*4106118243^(17/23) 8024922359499614 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^76 8024922359499614 a001 4976784/1368706081*1568397607^(4/11) 8024922359499614 a001 196452/33391061*2537720636^(1/3) 8024922359499614 a001 196452/33391061*45537549124^(5/17) 8024922359499614 a001 196452/33391061*312119004989^(3/11) 8024922359499614 a001 196452/33391061*14662949395604^(5/21) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^15/Lucas(45) 8024922359499614 a004 Fibonacci(45)/Lucas(36)/(1/2+sqrt(5)/2)^3 8024922359499614 a001 196452/33391061*192900153618^(5/18) 8024922359499614 a001 196452/33391061*28143753123^(3/10) 8024922359499614 a001 7465176/5374978561*1568397607^(9/22) 8024922359499614 a001 196452/33391061*10749957122^(5/16) 8024922359499614 a001 4976784/9381251041*1568397607^(5/11) 8024922359499614 a001 14930352/73681302247*1568397607^(1/2) 8024922359499614 a001 2584/33385281*1568397607^(6/11) 8024922359499614 a001 14930352/505019158607*1568397607^(13/22) 8024922359499614 a001 4976784/440719107401*1568397607^(7/11) 8024922359499614 a001 7465176/1730726404001*1568397607^(15/22) 8024922359499614 a001 4976784/3020733700601*1568397607^(8/11) 8024922359499614 a001 196452/192933544679*1568397607^(3/4) 8024922359499614 a001 14930352/23725150497407*1568397607^(17/22) 8024922359499614 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^74 8024922359499614 a001 14930352/1568397607*599074578^(1/3) 8024922359499614 a001 4976784/1368706081*599074578^(8/21) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^13/Lucas(43) 8024922359499614 a004 Fibonacci(43)/Lucas(36)/(1/2+sqrt(5)/2) 8024922359499614 a001 14930352/969323029*73681302247^(1/4) 8024922359499614 a001 196452/33391061*599074578^(5/14) 8024922359499614 a001 7465176/5374978561*599074578^(3/7) 8024922359499614 a001 4976784/9381251041*599074578^(10/21) 8024922359499614 a001 3732588/11384387281*599074578^(1/2) 8024922359499614 a001 14930352/73681302247*599074578^(11/21) 8024922359499614 a001 2584/33385281*599074578^(4/7) 8024922359499614 a001 14930352/505019158607*599074578^(13/21) 8024922359499614 a001 3732588/204284540899*599074578^(9/14) 8024922359499614 a001 4976784/440719107401*599074578^(2/3) 8024922359499614 a001 7465176/1730726404001*599074578^(5/7) 8024922359499614 a001 4976784/3020733700601*599074578^(16/21) 8024922359499614 a001 196452/192933544679*599074578^(11/14) 8024922359499614 a001 14930352/23725150497407*599074578^(17/21) 8024922359499614 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^72 8024922359499614 a001 829464/33281921*228826127^(3/10) 8024922359499614 a001 14930352/1568397607*228826127^(7/20) 8024922359499614 a001 24157817/33385282*20633239^(1/7) 8024922359499614 a001 14930352/370248451*312119004989^(1/5) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^11/Lucas(41) 8024922359499614 a001 165580141/66770564+165580141/66770564*5^(1/2) 8024922359499614 a001 196452/33391061*228826127^(3/8) 8024922359499614 a001 14930352/370248451*1568397607^(1/4) 8024922359499614 a001 4976784/1368706081*228826127^(2/5) 8024922359499614 a001 63245986/6643838879*20633239^(2/5) 8024922359499614 a001 7465176/5374978561*228826127^(9/20) 8024922359499614 a001 4976784/9381251041*228826127^(1/2) 8024922359499614 a001 14930352/73681302247*228826127^(11/20) 8024922359499614 a001 2584/33385281*228826127^(3/5) 8024922359499614 a001 14930352/312119004989*228826127^(5/8) 8024922359499614 a001 14930352/505019158607*228826127^(13/20) 8024922359499614 a001 4976784/440719107401*228826127^(7/10) 8024922359499614 a001 7465176/1730726404001*228826127^(3/4) 8024922359499614 a001 4976784/3020733700601*228826127^(4/5) 8024922359499614 a001 14930352/228826127*87403803^(5/19) 8024922359499614 a001 14930352/23725150497407*228826127^(17/20) 8024922359499614 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^70 8024922359499614 a001 14619165/4769326*33385282^(1/18) 8024922359499614 a001 3732588/35355581*141422324^(3/13) 8024922359499614 a001 829464/33281921*87403803^(6/19) 8024922359499614 a001 31622993/16692641*141422324^(1/13) 8024922359499614 a001 14930352/1568397607*87403803^(7/19) 8024922359499614 a001 3732588/35355581*2537720636^(1/5) 8024922359499614 a001 31622993/16692641*2537720636^(1/15) 8024922359499614 a001 3732588/35355581*45537549124^(3/17) 8024922359499614 a001 31622993/16692641*45537549124^(1/17) 8024922359499614 a001 3732588/35355581*817138163596^(3/19) 8024922359499614 a001 3732588/35355581*14662949395604^(1/7) 8024922359499614 a001 31622993/16692641*14662949395604^(1/21) 8024922359499614 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^9/Lucas(39) 8024922359499614 a001 31622993/16692641*(1/2+1/2*5^(1/2))^3 8024922359499614 a001 31622993/16692641*192900153618^(1/18) 8024922359499614 a001 3732588/35355581*192900153618^(1/6) 8024922359499614 a001 31622993/16692641*10749957122^(1/16) 8024922359499614 a001 3732588/35355581*10749957122^(3/16) 8024922359499614 a001 31622993/16692641*599074578^(1/14) 8024922359499614 a001 3732588/35355581*599074578^(3/14) 8024922359499614 a001 4976784/1368706081*87403803^(8/19) 8024922359499614 a001 7465176/5374978561*87403803^(9/19) 8024922359499614 a001 14930352/17393796001*87403803^(1/2) 8024922359499614 a001 4976784/29134601*33385282^(2/9) 8024922359499614 a001 4976784/9381251041*87403803^(10/19) 8024922359499614 a001 14930352/73681302247*87403803^(11/19) 8024922359499614 a001 2584/33385281*87403803^(12/19) 8024922359499614 a001 14930352/505019158607*87403803^(13/19) 8024922359499614 a001 39088169/599074578*20633239^(2/7) 8024922359499615 a001 4976784/440719107401*87403803^(14/19) 8024922359499615 a001 7465176/1730726404001*87403803^(15/19) 8024922359499615 a001 4976784/3020733700601*87403803^(16/19) 8024922359499615 a001 14930352/23725150497407*87403803^(17/19) 8024922359499615 a001 31622993/16692641*33385282^(1/12) 8024922359499615 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^68 8024922359499615 a001 5702887/1322157322203*12752043^(15/17) 8024922359499615 a001 7465176/16692641*12752043^(3/17) 8024922359499615 a001 14619165/224056801*20633239^(2/7) 8024922359499616 a001 267914296/4106118243*20633239^(2/7) 8024922359499616 a001 701408733/10749957122*20633239^(2/7) 8024922359499616 a001 1836311903/28143753123*20633239^(2/7) 8024922359499616 a001 686789568/10525900321*20633239^(2/7) 8024922359499616 a001 12586269025/192900153618*20633239^(2/7) 8024922359499616 a001 32951280099/505019158607*20633239^(2/7) 8024922359499616 a001 86267571272/1322157322203*20633239^(2/7) 8024922359499616 a001 32264490531/494493258286*20633239^(2/7) 8024922359499616 a001 591286729879/9062201101803*20633239^(2/7) 8024922359499616 a001 1548008755920/23725150497407*20633239^(2/7) 8024922359499616 a001 365435296162/5600748293801*20633239^(2/7) 8024922359499616 a001 139583862445/2139295485799*20633239^(2/7) 8024922359499616 a001 53316291173/817138163596*20633239^(2/7) 8024922359499616 a001 20365011074/312119004989*20633239^(2/7) 8024922359499616 a001 7778742049/119218851371*20633239^(2/7) 8024922359499616 a001 2971215073/45537549124*20633239^(2/7) 8024922359499616 a001 1134903170/17393796001*20633239^(2/7) 8024922359499616 a001 433494437/6643838879*20633239^(2/7) 8024922359499616 a001 14930352/228826127*33385282^(5/18) 8024922359499616 a001 24157817/4106118243*20633239^(3/7) 8024922359499616 a001 165580141/2537720636*20633239^(2/7) 8024922359499616 a001 3732588/35355581*33385282^(1/4) 8024922359499616 a001 63245986/969323029*20633239^(2/7) 8024922359499616 a001 829464/33281921*33385282^(1/3) 8024922359499616 a001 24157817/2537720636*20633239^(2/5) 8024922359499617 a001 14619165/4769326*12752043^(1/17) 8024922359499617 a001 24157817/33385282*2537720636^(1/9) 8024922359499617 a001 14930352/54018521*17393796001^(1/7) 8024922359499617 a001 24157817/33385282*312119004989^(1/11) 8024922359499617 a001 14930352/54018521*14662949395604^(1/9) 8024922359499617 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^7/Lucas(37) 8024922359499617 a001 24157817/33385282*(1/2+1/2*5^(1/2))^5 8024922359499617 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^5/Lucas(36) 8024922359499617 a001 24157817/33385282*28143753123^(1/10) 8024922359499617 a001 14930352/54018521*599074578^(1/6) 8024922359499617 a001 24157817/33385282*228826127^(1/8) 8024922359499617 a001 39088169/141422324*20633239^(1/5) 8024922359499617 a001 14930352/1568397607*33385282^(7/18) 8024922359499617 a001 196452/33391061*33385282^(5/12) 8024922359499617 a001 4976784/1368706081*33385282^(4/9) 8024922359499617 a001 102334155/370248451*20633239^(1/5) 8024922359499617 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^69 8024922359499617 a001 267914296/969323029*20633239^(1/5) 8024922359499617 a001 701408733/2537720636*20633239^(1/5) 8024922359499617 a001 1836311903/6643838879*20633239^(1/5) 8024922359499617 a001 4807526976/17393796001*20633239^(1/5) 8024922359499617 a001 12586269025/45537549124*20633239^(1/5) 8024922359499617 a001 32951280099/119218851371*20633239^(1/5) 8024922359499617 a001 86267571272/312119004989*20633239^(1/5) 8024922359499617 a001 225851433717/817138163596*20633239^(1/5) 8024922359499617 a001 1548008755920/5600748293801*20633239^(1/5) 8024922359499617 a001 139583862445/505019158607*20633239^(1/5) 8024922359499617 a001 53316291173/192900153618*20633239^(1/5) 8024922359499617 a001 20365011074/73681302247*20633239^(1/5) 8024922359499617 a001 7778742049/28143753123*20633239^(1/5) 8024922359499617 a001 2971215073/10749957122*20633239^(1/5) 8024922359499617 a001 1134903170/4106118243*20633239^(1/5) 8024922359499617 a001 433494437/1568397607*20633239^(1/5) 8024922359499617 a001 165580141/599074578*20633239^(1/5) 8024922359499617 a001 7465176/5374978561*33385282^(1/2) 8024922359499617 a001 63245986/228826127*20633239^(1/5) 8024922359499618 a001 63245986/87403803*20633239^(1/7) 8024922359499618 a001 4976784/9381251041*33385282^(5/9) 8024922359499618 a001 3732588/11384387281*33385282^(7/12) 8024922359499618 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^71 8024922359499618 a001 5702887/3461452808002*12752043^(16/17) 8024922359499618 a001 14930352/73681302247*33385282^(11/18) 8024922359499618 a001 165580141/228826127*20633239^(1/7) 8024922359499618 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^73 8024922359499618 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^75 8024922359499618 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^77 8024922359499618 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^79 8024922359499618 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^81 8024922359499618 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^83 8024922359499618 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^85 8024922359499618 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^87 8024922359499618 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^89 8024922359499618 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^91 8024922359499618 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^93 8024922359499618 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^95 8024922359499618 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^97 8024922359499618 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^99 8024922359499618 a001 2/24157817*(1/2+1/2*5^(1/2))^43 8024922359499618 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^100 8024922359499618 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^98 8024922359499618 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^96 8024922359499618 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^94 8024922359499618 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^92 8024922359499618 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^90 8024922359499618 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^88 8024922359499618 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^86 8024922359499618 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^84 8024922359499618 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^82 8024922359499618 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^80 8024922359499618 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^78 8024922359499618 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^76 8024922359499618 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^74 8024922359499618 a001 433494437/599074578*20633239^(1/7) 8024922359499618 a001 1134903170/1568397607*20633239^(1/7) 8024922359499618 a001 2971215073/4106118243*20633239^(1/7) 8024922359499618 a001 7778742049/10749957122*20633239^(1/7) 8024922359499618 a001 20365011074/28143753123*20633239^(1/7) 8024922359499618 a001 53316291173/73681302247*20633239^(1/7) 8024922359499618 a001 139583862445/192900153618*20633239^(1/7) 8024922359499618 a001 365435296162/505019158607*20633239^(1/7) 8024922359499618 a001 10610209857723/14662949395604*20633239^(1/7) 8024922359499618 a001 591286729879/817138163596*20633239^(1/7) 8024922359499618 a001 225851433717/312119004989*20633239^(1/7) 8024922359499618 a001 86267571272/119218851371*20633239^(1/7) 8024922359499618 a001 32951280099/45537549124*20633239^(1/7) 8024922359499618 a001 12586269025/17393796001*20633239^(1/7) 8024922359499618 a001 4807526976/6643838879*20633239^(1/7) 8024922359499618 a001 1836311903/2537720636*20633239^(1/7) 8024922359499618 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^72 8024922359499618 a001 701408733/969323029*20633239^(1/7) 8024922359499618 a001 267914296/370248451*20633239^(1/7) 8024922359499618 a001 24157817/370248451*20633239^(2/7) 8024922359499619 a001 102334155/141422324*20633239^(1/7) 8024922359499619 a001 39088169/33385282*12752043^(2/17) 8024922359499619 a001 2584/33385281*33385282^(2/3) 8024922359499619 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^70 8024922359499619 a001 39088169/87403803*141422324^(2/13) 8024922359499619 a001 39088169/87403803*2537720636^(2/15) 8024922359499619 a001 39088169/87403803*45537549124^(2/17) 8024922359499619 a001 39088169/87403803*14662949395604^(2/21) 8024922359499619 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^6/Lucas(38) 8024922359499619 a001 39088169/87403803*10749957122^(1/8) 8024922359499619 a001 39088169/87403803*4106118243^(3/23) 8024922359499619 a001 39088169/87403803*1568397607^(3/22) 8024922359499619 a001 39088169/87403803*599074578^(1/7) 8024922359499619 a001 39088169/87403803*228826127^(3/20) 8024922359499619 a001 24157817/87403803*20633239^(1/5) 8024922359499619 a001 14930352/505019158607*33385282^(13/18) 8024922359499619 a001 39088169/87403803*87403803^(3/19) 8024922359499619 a001 3732588/204284540899*33385282^(3/4) 8024922359499619 a001 4976784/440719107401*33385282^(7/9) 8024922359499620 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^71 8024922359499620 a001 39088169/9062201101803*141422324^(10/13) 8024922359499620 a001 39088169/2139295485799*141422324^(9/13) 8024922359499620 a001 39088169/1322157322203*141422324^(2/3) 8024922359499620 a001 39088169/505019158607*141422324^(8/13) 8024922359499620 a001 39088169/119218851371*141422324^(7/13) 8024922359499620 a001 39088169/28143753123*141422324^(6/13) 8024922359499620 a001 39088169/6643838879*141422324^(5/13) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^8/Lucas(40) 8024922359499620 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^4/Lucas(38) 8024922359499620 a001 34111385/29134601*23725150497407^(1/16) 8024922359499620 a001 39088169/228826127*23725150497407^(1/8) 8024922359499620 a001 34111385/29134601*73681302247^(1/13) 8024922359499620 a001 39088169/228826127*73681302247^(2/13) 8024922359499620 a001 34111385/29134601*10749957122^(1/12) 8024922359499620 a001 39088169/228826127*10749957122^(1/6) 8024922359499620 a001 34111385/29134601*4106118243^(2/23) 8024922359499620 a001 39088169/228826127*4106118243^(4/23) 8024922359499620 a001 34111385/29134601*1568397607^(1/11) 8024922359499620 a001 39088169/228826127*1568397607^(2/11) 8024922359499620 a001 34111385/29134601*599074578^(2/21) 8024922359499620 a001 7465176/1730726404001*33385282^(5/6) 8024922359499620 a001 39088169/228826127*599074578^(4/21) 8024922359499620 a001 34111385/29134601*228826127^(1/10) 8024922359499620 a001 39088169/2537720636*141422324^(1/3) 8024922359499620 a001 39088169/1568397607*141422324^(4/13) 8024922359499620 a001 39088169/228826127*228826127^(1/5) 8024922359499620 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^73 8024922359499620 a001 34111385/29134601*87403803^(2/19) 8024922359499620 a001 39088169/370248451*141422324^(3/13) 8024922359499620 a001 39088169/599074578*2537720636^(2/9) 8024922359499620 a001 39088169/599074578*312119004989^(2/11) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^10/Lucas(42) 8024922359499620 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^2/Lucas(38) 8024922359499620 a001 39088169/599074578*28143753123^(1/5) 8024922359499620 a001 267914296/87403803*10749957122^(1/24) 8024922359499620 a001 39088169/599074578*10749957122^(5/24) 8024922359499620 a001 267914296/87403803*4106118243^(1/23) 8024922359499620 a001 39088169/599074578*4106118243^(5/23) 8024922359499620 a001 267914296/87403803*1568397607^(1/22) 8024922359499620 a001 39088169/599074578*1568397607^(5/22) 8024922359499620 a001 267914296/87403803*599074578^(1/21) 8024922359499620 a001 39088169/599074578*599074578^(5/21) 8024922359499620 a001 267914296/87403803*228826127^(1/20) 8024922359499620 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^75 8024922359499620 a001 39088169/1568397607*2537720636^(4/15) 8024922359499620 a001 39088169/1568397607*45537549124^(4/17) 8024922359499620 a001 39088169/1568397607*817138163596^(4/19) 8024922359499620 a001 39088169/1568397607*14662949395604^(4/21) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^12/Lucas(44) 8024922359499620 a001 39088169/1568397607*192900153618^(2/9) 8024922359499620 a001 39088169/1568397607*73681302247^(3/13) 8024922359499620 a001 39088169/1568397607*10749957122^(1/4) 8024922359499620 a001 39088169/1568397607*4106118243^(6/23) 8024922359499620 a001 39088169/1568397607*1568397607^(3/11) 8024922359499620 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^77 8024922359499620 a001 39088169/9062201101803*2537720636^(2/3) 8024922359499620 a001 39088169/2139295485799*2537720636^(3/5) 8024922359499620 a001 4181/87403804*2537720636^(5/9) 8024922359499620 a001 39088169/505019158607*2537720636^(8/15) 8024922359499620 a001 39088169/119218851371*2537720636^(7/15) 8024922359499620 a001 39088169/73681302247*2537720636^(4/9) 8024922359499620 a001 39088169/28143753123*2537720636^(2/5) 8024922359499620 a001 39088169/4106118243*17393796001^(2/7) 8024922359499620 a001 39088169/4106118243*14662949395604^(2/9) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(46) 8024922359499620 a004 Fibonacci(46)/Lucas(38)/(1/2+sqrt(5)/2)^2 8024922359499620 a001 39088169/4106118243*505019158607^(1/4) 8024922359499620 a001 39088169/4106118243*10749957122^(7/24) 8024922359499620 a001 39088169/4106118243*4106118243^(7/23) 8024922359499620 a001 39088169/6643838879*2537720636^(1/3) 8024922359499620 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^79 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(48) 8024922359499620 a004 Fibonacci(48)/Lucas(38)/(1/2+sqrt(5)/2)^4 8024922359499620 a001 39088169/10749957122*23725150497407^(1/4) 8024922359499620 a001 39088169/10749957122*73681302247^(4/13) 8024922359499620 a001 39088169/10749957122*10749957122^(1/3) 8024922359499620 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^81 8024922359499620 a001 39088169/3461452808002*17393796001^(4/7) 8024922359499620 a001 39088169/28143753123*45537549124^(6/17) 8024922359499620 a001 39088169/119218851371*17393796001^(3/7) 8024922359499620 a001 39088169/28143753123*14662949395604^(2/7) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(50) 8024922359499620 a004 Fibonacci(50)/Lucas(38)/(1/2+sqrt(5)/2)^6 8024922359499620 a001 39088169/28143753123*192900153618^(1/3) 8024922359499620 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^83 8024922359499620 a001 39088169/9062201101803*45537549124^(10/17) 8024922359499620 a001 39088169/2139295485799*45537549124^(9/17) 8024922359499620 a001 39088169/505019158607*45537549124^(8/17) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(52) 8024922359499620 a004 Fibonacci(52)/Lucas(38)/(1/2+sqrt(5)/2)^8 8024922359499620 a001 39088169/73681302247*23725150497407^(5/16) 8024922359499620 a001 39088169/73681302247*505019158607^(5/14) 8024922359499620 a001 39088169/119218851371*45537549124^(7/17) 8024922359499620 a001 39088169/73681302247*73681302247^(5/13) 8024922359499620 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^85 8024922359499620 a001 39088169/192900153618*312119004989^(2/5) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(54) 8024922359499620 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2)^10 8024922359499620 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^87 8024922359499620 a001 39088169/9062201101803*312119004989^(6/11) 8024922359499620 a001 39088169/505019158607*14662949395604^(8/21) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(56) 8024922359499620 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^12 8024922359499620 a001 4181/87403804*312119004989^(5/11) 8024922359499620 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^89 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(58) 8024922359499620 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^14 8024922359499620 a001 39088169/2139295485799*817138163596^(9/19) 8024922359499620 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^91 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(60) 8024922359499620 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^16 8024922359499620 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^93 8024922359499620 a001 39088169/9062201101803*14662949395604^(10/21) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(62) 8024922359499620 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^18 8024922359499620 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^95 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(64) 8024922359499620 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^20 8024922359499620 a001 39088169/23725150497407*23725150497407^(1/2) 8024922359499620 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^97 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(66) 8024922359499620 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^22 8024922359499620 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^99 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(68) 8024922359499620 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^24 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(70) 8024922359499620 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^26 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(72) 8024922359499620 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^28 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(74) 8024922359499620 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^30 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(76) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(78) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(80) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(82) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(84) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(86) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(88) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(90) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(92) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(94) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(96) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(98) 8024922359499620 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^32 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(99) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(100) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(97) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(95) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(93) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(91) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(89) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(87) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(85) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(83) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(81) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(79) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(77) 8024922359499620 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^34 8024922359499620 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^36 8024922359499620 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^38 8024922359499620 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^40 8024922359499620 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^42 8024922359499620 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^44 8024922359499620 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^46 8024922359499620 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^48 8024922359499620 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^50 8024922359499620 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^52 8024922359499620 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^54 8024922359499620 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^56 8024922359499620 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^55 8024922359499620 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^53 8024922359499620 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^51 8024922359499620 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^49 8024922359499620 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^47 8024922359499620 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^45 8024922359499620 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^43 8024922359499620 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^41 8024922359499620 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^39 8024922359499620 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^37 8024922359499620 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^35 8024922359499620 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^33 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(75) 8024922359499620 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^31 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(73) 8024922359499620 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^29 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(71) 8024922359499620 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^27 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(69) 8024922359499620 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^25 8024922359499620 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^100 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(67) 8024922359499620 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^23 8024922359499620 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^98 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(65) 8024922359499620 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^21 8024922359499620 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^96 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(63) 8024922359499620 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^19 8024922359499620 a001 39088169/14662949395604*9062201101803^(1/2) 8024922359499620 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^94 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(61) 8024922359499620 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^17 8024922359499620 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^92 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(59) 8024922359499620 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^15 8024922359499620 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^90 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(57) 8024922359499620 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^13 8024922359499620 a001 39088169/3461452808002*505019158607^(1/2) 8024922359499620 a001 39088169/23725150497407*505019158607^(4/7) 8024922359499620 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^88 8024922359499620 a001 39088169/505019158607*192900153618^(4/9) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(55) 8024922359499620 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^11 8024922359499620 a001 39088169/2139295485799*192900153618^(1/2) 8024922359499620 a001 39088169/9062201101803*192900153618^(5/9) 8024922359499620 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^86 8024922359499620 a001 39088169/119218851371*14662949395604^(1/3) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(53) 8024922359499620 a004 Fibonacci(53)/Lucas(38)/(1/2+sqrt(5)/2)^9 8024922359499620 a001 39088169/119218851371*192900153618^(7/18) 8024922359499620 a001 39088169/1322157322203*73681302247^(1/2) 8024922359499620 a001 39088169/3461452808002*73681302247^(7/13) 8024922359499620 a001 39088169/23725150497407*73681302247^(8/13) 8024922359499620 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^84 8024922359499620 a001 39088169/73681302247*28143753123^(2/5) 8024922359499620 a001 39088169/45537549124*817138163596^(1/3) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(51) 8024922359499620 a004 Fibonacci(51)/Lucas(38)/(1/2+sqrt(5)/2)^7 8024922359499620 a001 4181/87403804*28143753123^(1/2) 8024922359499620 a001 39088169/9062201101803*28143753123^(3/5) 8024922359499620 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^82 8024922359499620 a001 39088169/28143753123*10749957122^(3/8) 8024922359499620 a001 39088169/17393796001*45537549124^(1/3) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(49) 8024922359499620 a004 Fibonacci(49)/Lucas(38)/(1/2+sqrt(5)/2)^5 8024922359499620 a001 39088169/73681302247*10749957122^(5/12) 8024922359499620 a001 39088169/119218851371*10749957122^(7/16) 8024922359499620 a001 39088169/192900153618*10749957122^(11/24) 8024922359499620 a001 39088169/505019158607*10749957122^(1/2) 8024922359499620 a001 39088169/1322157322203*10749957122^(13/24) 8024922359499620 a001 39088169/2139295485799*10749957122^(9/16) 8024922359499620 a001 39088169/3461452808002*10749957122^(7/12) 8024922359499620 a001 39088169/9062201101803*10749957122^(5/8) 8024922359499620 a001 39088169/23725150497407*10749957122^(2/3) 8024922359499620 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^80 8024922359499620 a001 39088169/10749957122*4106118243^(8/23) 8024922359499620 a001 39088169/28143753123*4106118243^(9/23) 8024922359499620 a001 39088169/6643838879*45537549124^(5/17) 8024922359499620 a001 39088169/6643838879*312119004989^(3/11) 8024922359499620 a001 39088169/6643838879*14662949395604^(5/21) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(47) 8024922359499620 a004 Fibonacci(47)/Lucas(38)/(1/2+sqrt(5)/2)^3 8024922359499620 a001 39088169/6643838879*192900153618^(5/18) 8024922359499620 a001 39088169/6643838879*28143753123^(3/10) 8024922359499620 a001 39088169/6643838879*10749957122^(5/16) 8024922359499620 a001 39088169/73681302247*4106118243^(10/23) 8024922359499620 a001 39088169/192900153618*4106118243^(11/23) 8024922359499620 a001 39088169/312119004989*4106118243^(1/2) 8024922359499620 a001 39088169/505019158607*4106118243^(12/23) 8024922359499620 a001 39088169/1322157322203*4106118243^(13/23) 8024922359499620 a001 39088169/3461452808002*4106118243^(14/23) 8024922359499620 a001 39088169/9062201101803*4106118243^(15/23) 8024922359499620 a001 39088169/23725150497407*4106118243^(16/23) 8024922359499620 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^78 8024922359499620 a001 39088169/4106118243*1568397607^(7/22) 8024922359499620 a001 39088169/10749957122*1568397607^(4/11) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^13/Lucas(45) 8024922359499620 a004 Fibonacci(45)/Lucas(38)/(1/2+sqrt(5)/2) 8024922359499620 a001 39088169/2537720636*73681302247^(1/4) 8024922359499620 a001 39088169/28143753123*1568397607^(9/22) 8024922359499620 a001 39088169/73681302247*1568397607^(5/11) 8024922359499620 a001 39088169/192900153618*1568397607^(1/2) 8024922359499620 a001 39088169/505019158607*1568397607^(6/11) 8024922359499620 a001 39088169/1322157322203*1568397607^(13/22) 8024922359499620 a001 39088169/3461452808002*1568397607^(7/11) 8024922359499620 a001 39088169/9062201101803*1568397607^(15/22) 8024922359499620 a001 39088169/23725150497407*1568397607^(8/11) 8024922359499620 a001 39088169/1568397607*599074578^(2/7) 8024922359499620 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^76 8024922359499620 a001 39088169/4106118243*599074578^(1/3) 8024922359499620 a001 39088169/6643838879*599074578^(5/14) 8024922359499620 a001 39088169/10749957122*599074578^(8/21) 8024922359499620 a001 39088169/969323029*312119004989^(1/5) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^11/Lucas(43) 8024922359499620 a004 Fibonacci(43)*(1/2+sqrt(5)/2)/Lucas(38) 8024922359499620 a001 39088169/969323029*1568397607^(1/4) 8024922359499620 a001 39088169/28143753123*599074578^(3/7) 8024922359499620 a001 39088169/73681302247*599074578^(10/21) 8024922359499620 a001 39088169/119218851371*599074578^(1/2) 8024922359499620 a001 39088169/192900153618*599074578^(11/21) 8024922359499620 a001 39088169/505019158607*599074578^(4/7) 8024922359499620 a001 39088169/1322157322203*599074578^(13/21) 8024922359499620 a001 39088169/2139295485799*599074578^(9/14) 8024922359499620 a001 39088169/3461452808002*599074578^(2/3) 8024922359499620 a001 39088169/599074578*228826127^(1/4) 8024922359499620 a001 39088169/9062201101803*599074578^(5/7) 8024922359499620 a001 39088169/23725150497407*599074578^(16/21) 8024922359499620 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^74 8024922359499620 a001 165580141/87403803*141422324^(1/13) 8024922359499620 a001 267914296/87403803*87403803^(1/19) 8024922359499620 a001 39088169/1568397607*228826127^(3/10) 8024922359499620 a001 39088169/4106118243*228826127^(7/20) 8024922359499620 a001 39088169/54018521*20633239^(1/7) 8024922359499620 a001 39088169/6643838879*228826127^(3/8) 8024922359499620 a001 39088169/370248451*2537720636^(1/5) 8024922359499620 a001 165580141/87403803*2537720636^(1/15) 8024922359499620 a001 39088169/370248451*45537549124^(3/17) 8024922359499620 a001 165580141/87403803*45537549124^(1/17) 8024922359499620 a001 39088169/370248451*817138163596^(3/19) 8024922359499620 a001 39088169/370248451*14662949395604^(1/7) 8024922359499620 a001 165580141/87403803*14662949395604^(1/21) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^9/Lucas(41) 8024922359499620 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^3/Lucas(38) 8024922359499620 a001 165580141/87403803*192900153618^(1/18) 8024922359499620 a001 39088169/370248451*192900153618^(1/6) 8024922359499620 a001 165580141/87403803*10749957122^(1/16) 8024922359499620 a001 39088169/370248451*10749957122^(3/16) 8024922359499620 a001 165580141/87403803*599074578^(1/14) 8024922359499620 a001 39088169/10749957122*228826127^(2/5) 8024922359499620 a001 39088169/370248451*599074578^(3/14) 8024922359499620 a001 39088169/228826127*87403803^(4/19) 8024922359499620 a001 39088169/28143753123*228826127^(9/20) 8024922359499620 a001 39088169/73681302247*228826127^(1/2) 8024922359499620 a001 39088169/192900153618*228826127^(11/20) 8024922359499620 a001 39088169/505019158607*228826127^(3/5) 8024922359499620 a001 4181/87403804*228826127^(5/8) 8024922359499620 a001 39088169/1322157322203*228826127^(13/20) 8024922359499620 a001 39088169/3461452808002*228826127^(7/10) 8024922359499620 a001 39088169/9062201101803*228826127^(3/4) 8024922359499620 a001 39088169/23725150497407*228826127^(4/5) 8024922359499620 a001 39088169/87403803*33385282^(1/6) 8024922359499620 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^72 8024922359499620 a001 4976784/3020733700601*33385282^(8/9) 8024922359499620 a001 39088169/599074578*87403803^(5/19) 8024922359499620 a001 39088169/1568397607*87403803^(6/19) 8024922359499620 a001 267914296/87403803*33385282^(1/18) 8024922359499620 a001 39088169/4106118243*87403803^(7/19) 8024922359499620 a001 63245986/87403803*2537720636^(1/9) 8024922359499620 a001 39088169/141422324*17393796001^(1/7) 8024922359499620 a001 63245986/87403803*312119004989^(1/11) 8024922359499620 a001 39088169/141422324*14662949395604^(1/9) 8024922359499620 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^7/Lucas(39) 8024922359499620 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^5/Lucas(38) 8024922359499620 a001 63245986/87403803*28143753123^(1/10) 8024922359499620 a001 39088169/141422324*599074578^(1/6) 8024922359499620 a001 63245986/87403803*228826127^(1/8) 8024922359499620 a001 39088169/10749957122*87403803^(8/19) 8024922359499620 a001 196452/192933544679*33385282^(11/12) 8024922359499620 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^73 8024922359499620 a001 39088169/28143753123*87403803^(9/19) 8024922359499620 a001 39088169/45537549124*87403803^(1/2) 8024922359499620 a001 39088169/73681302247*87403803^(10/19) 8024922359499620 a001 102334155/23725150497407*141422324^(10/13) 8024922359499621 a001 39088169/192900153618*87403803^(11/19) 8024922359499621 a001 102334155/5600748293801*141422324^(9/13) 8024922359499621 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^75 8024922359499621 a001 6765/228826126*141422324^(2/3) 8024922359499621 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^77 8024922359499621 a001 34111385/29134601*33385282^(1/9) 8024922359499621 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^79 8024922359499621 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^81 8024922359499621 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^83 8024922359499621 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^85 8024922359499621 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 1/31622993*(1/2+1/2*5^(1/2))^45 8024922359499621 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^88 8024922359499621 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^86 8024922359499621 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^84 8024922359499621 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^82 8024922359499621 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 34111385/440719107401*141422324^(8/13) 8024922359499621 a001 14930352/23725150497407*33385282^(17/18) 8024922359499621 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^78 8024922359499621 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^76 8024922359499621 a001 165580141/87403803*33385282^(1/12) 8024922359499621 a001 39088169/505019158607*87403803^(12/19) 8024922359499621 a001 9303105/28374454999*141422324^(7/13) 8024922359499621 a001 102334155/228826127*141422324^(2/13) 8024922359499621 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^74 8024922359499621 a001 14619165/10525900321*141422324^(6/13) 8024922359499621 a001 39088169/1322157322203*87403803^(13/19) 8024922359499621 a001 102334155/17393796001*141422324^(5/13) 8024922359499621 a001 102334155/228826127*2537720636^(2/15) 8024922359499621 a001 102334155/228826127*45537549124^(2/17) 8024922359499621 a001 102334155/228826127*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^6/Lucas(40) 8024922359499621 a001 102334155/228826127*10749957122^(1/8) 8024922359499621 a001 102334155/228826127*4106118243^(3/23) 8024922359499621 a001 102334155/228826127*1568397607^(3/22) 8024922359499621 a001 102334155/228826127*599074578^(1/7) 8024922359499621 a001 10946/599074579*141422324^(9/13) 8024922359499621 a001 267914296/9062201101803*141422324^(2/3) 8024922359499621 a001 102334155/6643838879*141422324^(1/3) 8024922359499621 a001 102334155/228826127*228826127^(3/20) 8024922359499621 a001 34111385/1368706081*141422324^(4/13) 8024922359499621 a001 39088169/3461452808002*87403803^(14/19) 8024922359499621 a001 701408733/23725150497407*141422324^(2/3) 8024922359499621 a001 133957148/1730726404001*141422324^(8/13) 8024922359499621 a001 433494437/23725150497407*141422324^(9/13) 8024922359499621 a001 433494437/14662949395604*141422324^(2/3) 8024922359499621 a001 233802911/3020733700601*141422324^(8/13) 8024922359499621 a001 1836311903/23725150497407*141422324^(8/13) 8024922359499621 a001 567451585/7331474697802*141422324^(8/13) 8024922359499621 a001 66978574/204284540899*141422324^(7/13) 8024922359499621 a001 433494437/5600748293801*141422324^(8/13) 8024922359499621 a001 102334155/969323029*141422324^(3/13) 8024922359499621 a001 39088169/9062201101803*87403803^(15/19) 8024922359499621 a001 701408733/2139295485799*141422324^(7/13) 8024922359499621 a001 165580141/9062201101803*141422324^(9/13) 8024922359499621 a001 1836311903/5600748293801*141422324^(7/13) 8024922359499621 a001 1201881744/3665737348901*141422324^(7/13) 8024922359499621 a001 7778742049/23725150497407*141422324^(7/13) 8024922359499621 a001 2971215073/9062201101803*141422324^(7/13) 8024922359499621 a001 567451585/1730726404001*141422324^(7/13) 8024922359499621 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^75 8024922359499621 a001 165580141/5600748293801*141422324^(2/3) 8024922359499621 a001 133957148/96450076809*141422324^(6/13) 8024922359499621 a001 433494437/1322157322203*141422324^(7/13) 8024922359499621 a001 701408733/505019158607*141422324^(6/13) 8024922359499621 a001 165580141/2139295485799*141422324^(8/13) 8024922359499621 a001 1836311903/1322157322203*141422324^(6/13) 8024922359499621 a001 14930208/10749853441*141422324^(6/13) 8024922359499621 a001 12586269025/9062201101803*141422324^(6/13) 8024922359499621 a001 32951280099/23725150497407*141422324^(6/13) 8024922359499621 a001 10182505537/7331474697802*141422324^(6/13) 8024922359499621 a001 7778742049/5600748293801*141422324^(6/13) 8024922359499621 a001 2971215073/2139295485799*141422324^(6/13) 8024922359499621 a001 567451585/408569081798*141422324^(6/13) 8024922359499621 a001 66978574/11384387281*141422324^(5/13) 8024922359499621 a001 433494437/312119004989*141422324^(6/13) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^8/Lucas(42) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^4/Lucas(40) 8024922359499621 a001 267914296/228826127*23725150497407^(1/16) 8024922359499621 a001 34111385/199691526*23725150497407^(1/8) 8024922359499621 a001 34111385/199691526*505019158607^(1/7) 8024922359499621 a001 267914296/228826127*73681302247^(1/13) 8024922359499621 a001 34111385/199691526*73681302247^(2/13) 8024922359499621 a001 267914296/228826127*10749957122^(1/12) 8024922359499621 a001 34111385/199691526*10749957122^(1/6) 8024922359499621 a001 433494437/228826127*141422324^(1/13) 8024922359499621 a001 267914296/228826127*4106118243^(2/23) 8024922359499621 a001 34111385/199691526*4106118243^(4/23) 8024922359499621 a001 267914296/228826127*1568397607^(1/11) 8024922359499621 a001 34111385/199691526*1568397607^(2/11) 8024922359499621 a001 267914296/228826127*599074578^(2/21) 8024922359499621 a001 34111385/199691526*599074578^(4/21) 8024922359499621 a001 39088169/23725150497407*87403803^(16/19) 8024922359499621 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^77 8024922359499621 a001 267914296/228826127*228826127^(1/10) 8024922359499621 a001 701408733/119218851371*141422324^(5/13) 8024922359499621 a001 165580141/505019158607*141422324^(7/13) 8024922359499621 a001 14619165/224056801*2537720636^(2/9) 8024922359499621 a001 14619165/224056801*312119004989^(2/11) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^10/Lucas(44) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^2/Lucas(40) 8024922359499621 a001 14619165/224056801*28143753123^(1/5) 8024922359499621 a001 701408733/228826127*10749957122^(1/24) 8024922359499621 a001 14619165/224056801*10749957122^(5/24) 8024922359499621 a001 701408733/228826127*4106118243^(1/23) 8024922359499621 a001 14619165/224056801*4106118243^(5/23) 8024922359499621 a001 701408733/228826127*1568397607^(1/22) 8024922359499621 a001 9238424/599786069*141422324^(1/3) 8024922359499621 a001 14619165/224056801*1568397607^(5/22) 8024922359499621 a001 701408733/228826127*599074578^(1/21) 8024922359499621 a001 1836311903/312119004989*141422324^(5/13) 8024922359499621 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 1201881744/204284540899*141422324^(5/13) 8024922359499621 a001 12586269025/2139295485799*141422324^(5/13) 8024922359499621 a001 32951280099/5600748293801*141422324^(5/13) 8024922359499621 a001 1135099622/192933544679*141422324^(5/13) 8024922359499621 a001 139583862445/23725150497407*141422324^(5/13) 8024922359499621 a001 53316291173/9062201101803*141422324^(5/13) 8024922359499621 a001 10182505537/1730726404001*141422324^(5/13) 8024922359499621 a001 7778742049/1322157322203*141422324^(5/13) 8024922359499621 a001 2971215073/505019158607*141422324^(5/13) 8024922359499621 a001 102334155/23725150497407*2537720636^(2/3) 8024922359499621 a001 34111385/1368706081*2537720636^(4/15) 8024922359499621 a001 102334155/5600748293801*2537720636^(3/5) 8024922359499621 a001 102334155/2139295485799*2537720636^(5/9) 8024922359499621 a001 34111385/440719107401*2537720636^(8/15) 8024922359499621 a001 9303105/28374454999*2537720636^(7/15) 8024922359499621 a001 34111385/64300051206*2537720636^(4/9) 8024922359499621 a001 14619165/10525900321*2537720636^(2/5) 8024922359499621 a001 34111385/1368706081*45537549124^(4/17) 8024922359499621 a001 34111385/1368706081*817138163596^(4/19) 8024922359499621 a001 34111385/1368706081*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(46) 8024922359499621 a006 5^(1/2)*Fibonacci(46)/Lucas(40)/sqrt(5) 8024922359499621 a001 34111385/1368706081*192900153618^(2/9) 8024922359499621 a001 34111385/1368706081*73681302247^(3/13) 8024922359499621 a001 34111385/1368706081*10749957122^(1/4) 8024922359499621 a001 102334155/17393796001*2537720636^(1/3) 8024922359499621 a001 34111385/1368706081*4106118243^(6/23) 8024922359499621 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 102334155/10749957122*17393796001^(2/7) 8024922359499621 a001 102334155/10749957122*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(48) 8024922359499621 a004 Fibonacci(48)/Lucas(40)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 102334155/10749957122*505019158607^(1/4) 8024922359499621 a001 102334155/10749957122*10749957122^(7/24) 8024922359499621 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 34111385/3020733700601*17393796001^(4/7) 8024922359499621 a001 9303105/28374454999*17393796001^(3/7) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(50) 8024922359499621 a004 Fibonacci(50)/Lucas(40)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 831985/228811001*23725150497407^(1/4) 8024922359499621 a001 831985/228811001*73681302247^(4/13) 8024922359499621 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 14619165/10525900321*45537549124^(6/17) 8024922359499621 a001 102334155/23725150497407*45537549124^(10/17) 8024922359499621 a001 102334155/5600748293801*45537549124^(9/17) 8024922359499621 a001 34111385/440719107401*45537549124^(8/17) 8024922359499621 a001 9303105/28374454999*45537549124^(7/17) 8024922359499621 a001 14619165/10525900321*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(40)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 14619165/10525900321*192900153618^(1/3) 8024922359499621 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(40)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 34111385/64300051206*23725150497407^(5/16) 8024922359499621 a001 34111385/64300051206*505019158607^(5/14) 8024922359499621 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 102334155/23725150497407*312119004989^(6/11) 8024922359499621 a001 102334155/2139295485799*312119004989^(5/11) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 34111385/3020733700601*14662949395604^(4/9) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(80) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(82) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(84) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(86) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(88) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(90) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(92) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(94) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(96) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(98) 8024922359499621 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(99) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(100) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(97) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(95) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(93) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(91) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(89) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(87) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(85) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(83) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(81) 8024922359499621 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^54 8024922359499621 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^52 8024922359499621 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^53 8024922359499621 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^51 8024922359499621 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^13 8024922359499621 a001 102334155/2139295485799*3461452808002^(5/12) 8024922359499621 a001 102334155/14662949395604*1322157322203^(1/2) 8024922359499621 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 9303105/28374454999*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(40)/(1/2+sqrt(5)/2)^9 8024922359499621 a001 34111385/440719107401*192900153618^(4/9) 8024922359499621 a001 102334155/5600748293801*192900153618^(1/2) 8024922359499621 a001 102334155/23725150497407*192900153618^(5/9) 8024922359499621 a001 9303105/28374454999*192900153618^(7/18) 8024922359499621 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 34111385/64300051206*73681302247^(5/13) 8024922359499621 a001 102334155/119218851371*817138163596^(1/3) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(40)/(1/2+sqrt(5)/2)^7 8024922359499621 a001 34111385/440719107401*73681302247^(6/13) 8024922359499621 a001 6765/228826126*73681302247^(1/2) 8024922359499621 a001 34111385/3020733700601*73681302247^(7/13) 8024922359499621 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 102334155/45537549124*45537549124^(1/3) 8024922359499621 a001 34111385/64300051206*28143753123^(2/5) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(51) 8024922359499621 a004 Fibonacci(51)/Lucas(40)/(1/2+sqrt(5)/2)^5 8024922359499621 a001 102334155/2139295485799*28143753123^(1/2) 8024922359499621 a001 102334155/23725150497407*28143753123^(3/5) 8024922359499621 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 831985/228811001*10749957122^(1/3) 8024922359499621 a001 14619165/10525900321*10749957122^(3/8) 8024922359499621 a001 102334155/17393796001*45537549124^(5/17) 8024922359499621 a001 102334155/17393796001*312119004989^(3/11) 8024922359499621 a001 102334155/17393796001*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(49) 8024922359499621 a004 Fibonacci(49)/Lucas(40)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 102334155/17393796001*192900153618^(5/18) 8024922359499621 a001 34111385/64300051206*10749957122^(5/12) 8024922359499621 a001 102334155/17393796001*28143753123^(3/10) 8024922359499621 a001 9303105/28374454999*10749957122^(7/16) 8024922359499621 a001 102334155/505019158607*10749957122^(11/24) 8024922359499621 a001 34111385/440719107401*10749957122^(1/2) 8024922359499621 a001 6765/228826126*10749957122^(13/24) 8024922359499621 a001 102334155/5600748293801*10749957122^(9/16) 8024922359499621 a001 34111385/3020733700601*10749957122^(7/12) 8024922359499621 a001 102334155/23725150497407*10749957122^(5/8) 8024922359499621 a001 102334155/17393796001*10749957122^(5/16) 8024922359499621 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 102334155/10749957122*4106118243^(7/23) 8024922359499621 a001 831985/228811001*4106118243^(8/23) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(47) 8024922359499621 a004 Fibonacci(47)/Lucas(40)/(1/2+sqrt(5)/2) 8024922359499621 a001 102334155/6643838879*73681302247^(1/4) 8024922359499621 a001 567451585/96450076809*141422324^(5/13) 8024922359499621 a001 14619165/10525900321*4106118243^(9/23) 8024922359499621 a001 34111385/64300051206*4106118243^(10/23) 8024922359499621 a001 102334155/505019158607*4106118243^(11/23) 8024922359499621 a001 102334155/817138163596*4106118243^(1/2) 8024922359499621 a001 34111385/440719107401*4106118243^(12/23) 8024922359499621 a001 6765/228826126*4106118243^(13/23) 8024922359499621 a001 34111385/3020733700601*4106118243^(14/23) 8024922359499621 a001 102334155/23725150497407*4106118243^(15/23) 8024922359499621 a001 34111385/1368706081*1568397607^(3/11) 8024922359499621 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 102334155/10749957122*1568397607^(7/22) 8024922359499621 a001 831985/228811001*1568397607^(4/11) 8024922359499621 a001 9303105/230701876*312119004989^(1/5) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^11/Lucas(45) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)/Lucas(40) 8024922359499621 a001 14619165/10525900321*1568397607^(9/22) 8024922359499621 a001 34111385/64300051206*1568397607^(5/11) 8024922359499621 a001 102334155/505019158607*1568397607^(1/2) 8024922359499621 a001 34111385/440719107401*1568397607^(6/11) 8024922359499621 a001 6765/228826126*1568397607^(13/22) 8024922359499621 a001 14619165/224056801*599074578^(5/21) 8024922359499621 a001 9303105/230701876*1568397607^(1/4) 8024922359499621 a001 34111385/3020733700601*1568397607^(7/11) 8024922359499621 a001 102334155/23725150497407*1568397607^(15/22) 8024922359499621 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^78 8024922359499621 a001 701408733/228826127*228826127^(1/20) 8024922359499621 a001 34111385/1368706081*599074578^(2/7) 8024922359499621 a001 133957148/5374978561*141422324^(4/13) 8024922359499621 a001 102334155/10749957122*599074578^(1/3) 8024922359499621 a001 433494437/73681302247*141422324^(5/13) 8024922359499621 a001 102334155/17393796001*599074578^(5/14) 8024922359499621 a001 34111385/199691526*228826127^(1/5) 8024922359499621 a001 102334155/969323029*2537720636^(1/5) 8024922359499621 a001 433494437/228826127*2537720636^(1/15) 8024922359499621 a001 831985/228811001*599074578^(8/21) 8024922359499621 a001 102334155/969323029*45537549124^(3/17) 8024922359499621 a001 433494437/228826127*45537549124^(1/17) 8024922359499621 a001 102334155/969323029*817138163596^(3/19) 8024922359499621 a001 102334155/969323029*14662949395604^(1/7) 8024922359499621 a001 433494437/228826127*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^9/Lucas(43) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^3/Lucas(40) 8024922359499621 a001 102334155/969323029*192900153618^(1/6) 8024922359499621 a001 433494437/228826127*10749957122^(1/16) 8024922359499621 a001 102334155/969323029*10749957122^(3/16) 8024922359499621 a001 14619165/10525900321*599074578^(3/7) 8024922359499621 a001 433494437/228826127*599074578^(1/14) 8024922359499621 a001 34111385/64300051206*599074578^(10/21) 8024922359499621 a001 9303105/28374454999*599074578^(1/2) 8024922359499621 a001 102334155/505019158607*599074578^(11/21) 8024922359499621 a001 102334155/228826127*87403803^(3/19) 8024922359499621 a001 34111385/440719107401*599074578^(4/7) 8024922359499621 a001 102334155/969323029*599074578^(3/14) 8024922359499621 a001 6765/228826126*599074578^(13/21) 8024922359499621 a001 102334155/5600748293801*599074578^(9/14) 8024922359499621 a001 34111385/3020733700601*599074578^(2/3) 8024922359499621 a001 102334155/23725150497407*599074578^(5/7) 8024922359499621 a001 701408733/45537549124*141422324^(1/3) 8024922359499621 a001 1836311903/119218851371*141422324^(1/3) 8024922359499621 a001 4807526976/312119004989*141422324^(1/3) 8024922359499621 a001 12586269025/817138163596*141422324^(1/3) 8024922359499621 a001 32951280099/2139295485799*141422324^(1/3) 8024922359499621 a001 86267571272/5600748293801*141422324^(1/3) 8024922359499621 a001 7787980473/505618944676*141422324^(1/3) 8024922359499621 a001 365435296162/23725150497407*141422324^(1/3) 8024922359499621 a001 139583862445/9062201101803*141422324^(1/3) 8024922359499621 a001 53316291173/3461452808002*141422324^(1/3) 8024922359499621 a001 20365011074/1322157322203*141422324^(1/3) 8024922359499621 a001 7778742049/505019158607*141422324^(1/3) 8024922359499621 a001 2971215073/192900153618*141422324^(1/3) 8024922359499621 a001 1134903170/73681302247*141422324^(1/3) 8024922359499621 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^76 8024922359499621 a001 233802911/9381251041*141422324^(4/13) 8024922359499621 a001 165580141/119218851371*141422324^(6/13) 8024922359499621 a001 433494437/28143753123*141422324^(1/3) 8024922359499621 a001 1836311903/73681302247*141422324^(4/13) 8024922359499621 a001 267084832/10716675201*141422324^(4/13) 8024922359499621 a001 12586269025/505019158607*141422324^(4/13) 8024922359499621 a001 10983760033/440719107401*141422324^(4/13) 8024922359499621 a001 43133785636/1730726404001*141422324^(4/13) 8024922359499621 a001 75283811239/3020733700601*141422324^(4/13) 8024922359499621 a001 182717648081/7331474697802*141422324^(4/13) 8024922359499621 a001 139583862445/5600748293801*141422324^(4/13) 8024922359499621 a001 53316291173/2139295485799*141422324^(4/13) 8024922359499621 a001 10182505537/408569081798*141422324^(4/13) 8024922359499621 a001 7778742049/312119004989*141422324^(4/13) 8024922359499621 a001 2971215073/119218851371*141422324^(4/13) 8024922359499621 a001 567451585/22768774562*141422324^(4/13) 8024922359499621 a001 14619165/224056801*228826127^(1/4) 8024922359499621 a001 433494437/17393796001*141422324^(4/13) 8024922359499621 a001 66978574/634430159*141422324^(3/13) 8024922359499621 a001 34111385/1368706081*228826127^(3/10) 8024922359499621 a001 133957148/299537289*141422324^(2/13) 8024922359499621 a001 701408733/228826127*87403803^(1/19) 8024922359499621 a001 102334155/10749957122*228826127^(7/20) 8024922359499621 a001 165580141/28143753123*141422324^(5/13) 8024922359499621 a001 102334155/17393796001*228826127^(3/8) 8024922359499621 a001 701408733/6643838879*141422324^(3/13) 8024922359499621 a001 165580141/228826127*2537720636^(1/9) 8024922359499621 a001 102334155/370248451*17393796001^(1/7) 8024922359499621 a001 165580141/228826127*312119004989^(1/11) 8024922359499621 a001 102334155/370248451*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^7/Lucas(41) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^5/Lucas(40) 8024922359499621 a001 165580141/228826127*28143753123^(1/10) 8024922359499621 a001 1836311903/17393796001*141422324^(3/13) 8024922359499621 a001 1201881744/11384387281*141422324^(3/13) 8024922359499621 a001 12586269025/119218851371*141422324^(3/13) 8024922359499621 a001 32951280099/312119004989*141422324^(3/13) 8024922359499621 a001 21566892818/204284540899*141422324^(3/13) 8024922359499621 a001 225851433717/2139295485799*141422324^(3/13) 8024922359499621 a001 182717648081/1730726404001*141422324^(3/13) 8024922359499621 a001 139583862445/1322157322203*141422324^(3/13) 8024922359499621 a001 53316291173/505019158607*141422324^(3/13) 8024922359499621 a001 10182505537/96450076809*141422324^(3/13) 8024922359499621 a001 7778742049/73681302247*141422324^(3/13) 8024922359499621 a001 2971215073/28143753123*141422324^(3/13) 8024922359499621 a001 831985/228811001*228826127^(2/5) 8024922359499621 a001 567451585/5374978561*141422324^(3/13) 8024922359499621 a001 102334155/370248451*599074578^(1/6) 8024922359499621 a001 433494437/4106118243*141422324^(3/13) 8024922359499621 a001 14619165/10525900321*228826127^(9/20) 8024922359499621 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^77 8024922359499621 a001 34111385/64300051206*228826127^(1/2) 8024922359499621 a001 165580141/228826127*228826127^(1/8) 8024922359499621 a001 165580141/10749957122*141422324^(1/3) 8024922359499621 a001 102334155/505019158607*228826127^(11/20) 8024922359499621 a001 701408733/1568397607*141422324^(2/13) 8024922359499621 a001 267914296/228826127*87403803^(2/19) 8024922359499621 a001 165580141/6643838879*141422324^(4/13) 8024922359499621 a001 1836311903/4106118243*141422324^(2/13) 8024922359499621 a001 2403763488/5374978561*141422324^(2/13) 8024922359499621 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 12586269025/28143753123*141422324^(2/13) 8024922359499621 a001 32951280099/73681302247*141422324^(2/13) 8024922359499621 a001 43133785636/96450076809*141422324^(2/13) 8024922359499621 a001 225851433717/505019158607*141422324^(2/13) 8024922359499621 a001 591286729879/1322157322203*141422324^(2/13) 8024922359499621 a001 10610209857723/23725150497407*141422324^(2/13) 8024922359499621 a001 182717648081/408569081798*141422324^(2/13) 8024922359499621 a001 139583862445/312119004989*141422324^(2/13) 8024922359499621 a001 53316291173/119218851371*141422324^(2/13) 8024922359499621 a001 10182505537/22768774562*141422324^(2/13) 8024922359499621 a001 7778742049/17393796001*141422324^(2/13) 8024922359499621 a001 2971215073/6643838879*141422324^(2/13) 8024922359499621 a001 34111385/440719107401*228826127^(3/5) 8024922359499621 a001 567451585/1268860318*141422324^(2/13) 8024922359499621 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^81 8024922359499621 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^83 8024922359499621 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^85 8024922359499621 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 2/165580141*(1/2+1/2*5^(1/2))^47 8024922359499621 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^88 8024922359499621 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^86 8024922359499621 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^84 8024922359499621 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 102334155/2139295485799*228826127^(5/8) 8024922359499621 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 6765/228826126*228826127^(13/20) 8024922359499621 a001 567451585/299537289*141422324^(1/13) 8024922359499621 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^78 8024922359499621 a001 34111385/3020733700601*228826127^(7/10) 8024922359499621 a001 133957148/299537289*2537720636^(2/15) 8024922359499621 a001 133957148/299537289*45537549124^(2/17) 8024922359499621 a001 133957148/299537289*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^6/Lucas(42) 8024922359499621 a001 133957148/299537289*10749957122^(1/8) 8024922359499621 a001 133957148/299537289*4106118243^(3/23) 8024922359499621 a001 433494437/969323029*141422324^(2/13) 8024922359499621 a001 133957148/299537289*1568397607^(3/22) 8024922359499621 a001 133957148/299537289*599074578^(1/7) 8024922359499621 a001 102334155/23725150497407*228826127^(3/4) 8024922359499621 a001 165580141/1568397607*141422324^(3/13) 8024922359499621 a001 2971215073/1568397607*141422324^(1/13) 8024922359499621 a001 7778742049/4106118243*141422324^(1/13) 8024922359499621 a001 10182505537/5374978561*141422324^(1/13) 8024922359499621 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 53316291173/28143753123*141422324^(1/13) 8024922359499621 a001 139583862445/73681302247*141422324^(1/13) 8024922359499621 a001 182717648081/96450076809*141422324^(1/13) 8024922359499621 a001 956722026041/505019158607*141422324^(1/13) 8024922359499621 a001 10610209857723/5600748293801*141422324^(1/13) 8024922359499621 a001 591286729879/312119004989*141422324^(1/13) 8024922359499621 a001 225851433717/119218851371*141422324^(1/13) 8024922359499621 a001 21566892818/11384387281*141422324^(1/13) 8024922359499621 a001 32951280099/17393796001*141422324^(1/13) 8024922359499621 a001 12586269025/6643838879*141422324^(1/13) 8024922359499621 a001 1201881744/634430159*141422324^(1/13) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(44) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^4/Lucas(42) 8024922359499621 a001 233802911/199691526*23725150497407^(1/16) 8024922359499621 a001 267914296/1568397607*23725150497407^(1/8) 8024922359499621 a001 233802911/199691526*73681302247^(1/13) 8024922359499621 a001 267914296/1568397607*73681302247^(2/13) 8024922359499621 a001 233802911/199691526*10749957122^(1/12) 8024922359499621 a001 267914296/1568397607*10749957122^(1/6) 8024922359499621 a001 233802911/199691526*4106118243^(2/23) 8024922359499621 a001 267914296/1568397607*4106118243^(4/23) 8024922359499621 a001 233802911/199691526*1568397607^(1/11) 8024922359499621 a001 267914296/1568397607*1568397607^(2/11) 8024922359499621 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 233802911/199691526*599074578^(2/21) 8024922359499621 a001 267914296/4106118243*2537720636^(2/9) 8024922359499621 a001 10946/599074579*2537720636^(3/5) 8024922359499621 a001 267914296/5600748293801*2537720636^(5/9) 8024922359499621 a001 133957148/1730726404001*2537720636^(8/15) 8024922359499621 a001 66978574/204284540899*2537720636^(7/15) 8024922359499621 a001 267914296/505019158607*2537720636^(4/9) 8024922359499621 a001 133957148/96450076809*2537720636^(2/5) 8024922359499621 a001 267914296/4106118243*312119004989^(2/11) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(46) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^2/Lucas(42) 8024922359499621 a001 267914296/4106118243*28143753123^(1/5) 8024922359499621 a001 1836311903/599074578*10749957122^(1/24) 8024922359499621 a001 267914296/4106118243*10749957122^(5/24) 8024922359499621 a001 1836311903/599074578*4106118243^(1/23) 8024922359499621 a001 1836311903/969323029*141422324^(1/13) 8024922359499621 a001 66978574/11384387281*2537720636^(1/3) 8024922359499621 a001 133957148/5374978561*2537720636^(4/15) 8024922359499621 a001 267914296/4106118243*4106118243^(5/23) 8024922359499621 a001 1836311903/599074578*1568397607^(1/22) 8024922359499621 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 133957148/5374978561*45537549124^(4/17) 8024922359499621 a001 133957148/5374978561*817138163596^(4/19) 8024922359499621 a001 133957148/5374978561*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(48) 8024922359499621 a006 5^(1/2)*Fibonacci(48)/Lucas(42)/sqrt(5) 8024922359499621 a001 133957148/5374978561*192900153618^(2/9) 8024922359499621 a001 133957148/5374978561*73681302247^(3/13) 8024922359499621 a001 133957148/5374978561*10749957122^(1/4) 8024922359499621 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 267914296/28143753123*17393796001^(2/7) 8024922359499621 a001 267914296/23725150497407*17393796001^(4/7) 8024922359499621 a001 66978574/204284540899*17393796001^(3/7) 8024922359499621 a001 267914296/28143753123*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(50) 8024922359499621 a004 Fibonacci(50)/Lucas(42)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 267914296/28143753123*505019158607^(1/4) 8024922359499621 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 10946/599074579*45537549124^(9/17) 8024922359499621 a001 133957148/1730726404001*45537549124^(8/17) 8024922359499621 a001 133957148/96450076809*45537549124^(6/17) 8024922359499621 a001 66978574/204284540899*45537549124^(7/17) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(42)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 267914296/73681302247*23725150497407^(1/4) 8024922359499621 a001 267914296/73681302247*73681302247^(4/13) 8024922359499621 a001 267914296/119218851371*45537549124^(1/3) 8024922359499621 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 133957148/96450076809*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(42)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 133957148/96450076809*192900153618^(1/3) 8024922359499621 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 267914296/5600748293801*312119004989^(5/11) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(42)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 267914296/505019158607*23725150497407^(5/16) 8024922359499621 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 10946/599074579*817138163596^(9/19) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 133957148/1730726404001*14662949395604^(8/21) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 267914296/23725150497407*14662949395604^(4/9) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(84) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(86) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(88) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(90) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(92) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(94) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(96) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(98) 8024922359499621 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(100) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(99) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(97) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(95) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(93) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(91) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(89) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(87) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(85) 8024922359499621 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^52 8024922359499621 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^51 8024922359499621 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 10946/599074579*14662949395604^(3/7) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^13 8024922359499621 a001 267914296/5600748293801*3461452808002^(5/12) 8024922359499621 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(42)/(1/2+sqrt(5)/2)^9 8024922359499621 a001 267914296/23725150497407*505019158607^(1/2) 8024922359499621 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 267914296/312119004989*817138163596^(1/3) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(42)/(1/2+sqrt(5)/2)^7 8024922359499621 a001 133957148/1730726404001*192900153618^(4/9) 8024922359499621 a001 10946/599074579*192900153618^(1/2) 8024922359499621 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 267914296/505019158607*73681302247^(5/13) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(42)/(1/2+sqrt(5)/2)^5 8024922359499621 a001 133957148/1730726404001*73681302247^(6/13) 8024922359499621 a001 267914296/9062201101803*73681302247^(1/2) 8024922359499621 a001 267914296/23725150497407*73681302247^(7/13) 8024922359499621 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 66978574/11384387281*45537549124^(5/17) 8024922359499621 a001 66978574/11384387281*312119004989^(3/11) 8024922359499621 a001 66978574/11384387281*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(51) 8024922359499621 a004 Fibonacci(51)/Lucas(42)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 66978574/11384387281*192900153618^(5/18) 8024922359499621 a001 267914296/505019158607*28143753123^(2/5) 8024922359499621 a001 267914296/5600748293801*28143753123^(1/2) 8024922359499621 a001 66978574/11384387281*28143753123^(3/10) 8024922359499621 a001 267914296/28143753123*10749957122^(7/24) 8024922359499621 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 267914296/73681302247*10749957122^(1/3) 8024922359499621 a001 66978574/11384387281*10749957122^(5/16) 8024922359499621 a001 133957148/96450076809*10749957122^(3/8) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(49) 8024922359499621 a004 Fibonacci(49)/Lucas(42)/(1/2+sqrt(5)/2) 8024922359499621 a001 9238424/599786069*73681302247^(1/4) 8024922359499621 a001 267914296/505019158607*10749957122^(5/12) 8024922359499621 a001 66978574/204284540899*10749957122^(7/16) 8024922359499621 a001 267914296/1322157322203*10749957122^(11/24) 8024922359499621 a001 133957148/1730726404001*10749957122^(1/2) 8024922359499621 a001 267914296/9062201101803*10749957122^(13/24) 8024922359499621 a001 10946/599074579*10749957122^(9/16) 8024922359499621 a001 267914296/23725150497407*10749957122^(7/12) 8024922359499621 a001 133957148/5374978561*4106118243^(6/23) 8024922359499621 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 267914296/28143753123*4106118243^(7/23) 8024922359499621 a001 267914296/73681302247*4106118243^(8/23) 8024922359499621 a001 267914296/6643838879*312119004989^(1/5) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(47) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)/Lucas(42) 8024922359499621 a001 133957148/96450076809*4106118243^(9/23) 8024922359499621 a001 267914296/505019158607*4106118243^(10/23) 8024922359499621 a001 267914296/1322157322203*4106118243^(11/23) 8024922359499621 a001 267914296/2139295485799*4106118243^(1/2) 8024922359499621 a001 133957148/1730726404001*4106118243^(12/23) 8024922359499621 a001 267914296/4106118243*1568397607^(5/22) 8024922359499621 a001 267914296/9062201101803*4106118243^(13/23) 8024922359499621 a001 267914296/23725150497407*4106118243^(14/23) 8024922359499621 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 1836311903/599074578*599074578^(1/21) 8024922359499621 a001 133957148/299537289*228826127^(3/20) 8024922359499621 a001 133957148/5374978561*1568397607^(3/11) 8024922359499621 a001 267914296/1568397607*599074578^(4/21) 8024922359499621 a001 66978574/634430159*2537720636^(1/5) 8024922359499621 a001 267914296/6643838879*1568397607^(1/4) 8024922359499621 a001 267914296/28143753123*1568397607^(7/22) 8024922359499621 a001 567451585/299537289*2537720636^(1/15) 8024922359499621 a001 267914296/73681302247*1568397607^(4/11) 8024922359499621 a001 66978574/634430159*45537549124^(3/17) 8024922359499621 a001 567451585/299537289*45537549124^(1/17) 8024922359499621 a001 66978574/634430159*817138163596^(3/19) 8024922359499621 a001 66978574/634430159*14662949395604^(1/7) 8024922359499621 a001 567451585/299537289*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^9/Lucas(45) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^3/Lucas(42) 8024922359499621 a001 567451585/299537289*192900153618^(1/18) 8024922359499621 a001 66978574/634430159*192900153618^(1/6) 8024922359499621 a001 567451585/299537289*10749957122^(1/16) 8024922359499621 a001 66978574/634430159*10749957122^(3/16) 8024922359499621 a001 133957148/96450076809*1568397607^(9/22) 8024922359499621 a001 267914296/505019158607*1568397607^(5/11) 8024922359499621 a001 267914296/1322157322203*1568397607^(1/2) 8024922359499621 a001 133957148/1730726404001*1568397607^(6/11) 8024922359499621 a001 267914296/9062201101803*1568397607^(13/22) 8024922359499621 a001 267914296/23725150497407*1568397607^(7/11) 8024922359499621 a001 567451585/299537289*599074578^(1/14) 8024922359499621 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 267914296/4106118243*599074578^(5/21) 8024922359499621 a001 66978574/634430159*599074578^(3/14) 8024922359499621 a001 133957148/5374978561*599074578^(2/7) 8024922359499621 a001 1836311903/599074578*228826127^(1/20) 8024922359499621 a001 267914296/28143753123*599074578^(1/3) 8024922359499621 a001 66978574/11384387281*599074578^(5/14) 8024922359499621 a001 433494437/599074578*2537720636^(1/9) 8024922359499621 a001 267914296/73681302247*599074578^(8/21) 8024922359499621 a001 267914296/969323029*17393796001^(1/7) 8024922359499621 a001 433494437/599074578*312119004989^(1/11) 8024922359499621 a001 267914296/969323029*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^7/Lucas(43) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^5/Lucas(42) 8024922359499621 a001 433494437/599074578*28143753123^(1/10) 8024922359499621 a001 133957148/96450076809*599074578^(3/7) 8024922359499621 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 267914296/505019158607*599074578^(10/21) 8024922359499621 a001 66978574/204284540899*599074578^(1/2) 8024922359499621 a001 267914296/1322157322203*599074578^(11/21) 8024922359499621 a001 233802911/199691526*228826127^(1/10) 8024922359499621 a001 267914296/969323029*599074578^(1/6) 8024922359499621 a001 133957148/1730726404001*599074578^(4/7) 8024922359499621 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^83 8024922359499621 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^85 8024922359499621 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 2/433494437*(1/2+1/2*5^(1/2))^49 8024922359499621 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 267914296/9062201101803*599074578^(13/21) 8024922359499621 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^86 8024922359499621 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 10946/599074579*599074578^(9/14) 8024922359499621 a001 267914296/23725150497407*599074578^(2/3) 8024922359499621 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 701408733/1568397607*2537720636^(2/15) 8024922359499621 a001 701408733/1568397607*45537549124^(2/17) 8024922359499621 a001 701408733/1568397607*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^6/Lucas(44) 8024922359499621 a001 701408733/1568397607*10749957122^(1/8) 8024922359499621 a001 701408733/1568397607*4106118243^(3/23) 8024922359499621 a001 701408733/1568397607*1568397607^(3/22) 8024922359499621 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 701408733/14662949395604*2537720636^(5/9) 8024922359499621 a001 233802911/3020733700601*2537720636^(8/15) 8024922359499621 a001 701408733/2139295485799*2537720636^(7/15) 8024922359499621 a001 233802911/440719107401*2537720636^(4/9) 8024922359499621 a001 701408733/505019158607*2537720636^(2/5) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(46) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^4/Lucas(44) 8024922359499621 a001 1836311903/1568397607*23725150497407^(1/16) 8024922359499621 a001 233802911/1368706081*23725150497407^(1/8) 8024922359499621 a001 233802911/1368706081*505019158607^(1/7) 8024922359499621 a001 1836311903/1568397607*73681302247^(1/13) 8024922359499621 a001 233802911/1368706081*73681302247^(2/13) 8024922359499621 a001 1836311903/1568397607*10749957122^(1/12) 8024922359499621 a001 233802911/1368706081*10749957122^(1/6) 8024922359499621 a001 1836311903/1568397607*4106118243^(2/23) 8024922359499621 a001 701408733/119218851371*2537720636^(1/3) 8024922359499621 a001 233802911/1368706081*4106118243^(4/23) 8024922359499621 a001 701408733/10749957122*2537720636^(2/9) 8024922359499621 a001 233802911/9381251041*2537720636^(4/15) 8024922359499621 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 1836311903/1568397607*1568397607^(1/11) 8024922359499621 a001 701408733/10749957122*312119004989^(2/11) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(48) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^2/Lucas(44) 8024922359499621 a001 701408733/1568397607*599074578^(1/7) 8024922359499621 a001 701408733/6643838879*2537720636^(1/5) 8024922359499621 a001 701408733/10749957122*28143753123^(1/5) 8024922359499621 a001 686789568/224056801*10749957122^(1/24) 8024922359499621 a001 701408733/10749957122*10749957122^(5/24) 8024922359499621 a001 686789568/224056801*4106118243^(1/23) 8024922359499621 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 701408733/2139295485799*17393796001^(3/7) 8024922359499621 a001 233802911/9381251041*45537549124^(4/17) 8024922359499621 a001 233802911/9381251041*817138163596^(4/19) 8024922359499621 a001 233802911/9381251041*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(50) 8024922359499621 a006 5^(1/2)*Fibonacci(50)/Lucas(44)/sqrt(5) 8024922359499621 a001 233802911/9381251041*192900153618^(2/9) 8024922359499621 a001 233802911/9381251041*73681302247^(3/13) 8024922359499621 a001 701408733/73681302247*17393796001^(2/7) 8024922359499621 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 233802911/3020733700601*45537549124^(8/17) 8024922359499621 a001 701408733/2139295485799*45537549124^(7/17) 8024922359499621 a001 701408733/73681302247*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(44)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 701408733/73681302247*505019158607^(1/4) 8024922359499621 a001 701408733/505019158607*45537549124^(6/17) 8024922359499621 a001 3524667/1568437211*45537549124^(1/3) 8024922359499621 a001 701408733/119218851371*45537549124^(5/17) 8024922359499621 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(44)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 233802911/64300051206*23725150497407^(1/4) 8024922359499621 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 701408733/14662949395604*312119004989^(5/11) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(44)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(44)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 233802911/440719107401*23725150497407^(5/16) 8024922359499621 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 233802911/3020733700601*14662949395604^(8/21) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(88) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(90) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(92) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(94) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(96) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(98) 8024922359499621 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(100) 8024922359499621 a004 Fibonacci(88)/Lucas(44)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(99) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(97) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(95) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(93) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(91) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(89) 8024922359499621 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^11 8024922359499621 a001 701408733/14662949395604*3461452808002^(5/12) 8024922359499621 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 701408733/2139295485799*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(44)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 233802911/440719107401*505019158607^(5/14) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(44)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 701408733/505019158607*192900153618^(1/3) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(44)/(1/2+sqrt(5)/2)^5 8024922359499621 a001 701408733/2139295485799*192900153618^(7/18) 8024922359499621 a001 233802911/3020733700601*192900153618^(4/9) 8024922359499621 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 233802911/64300051206*73681302247^(4/13) 8024922359499621 a001 701408733/119218851371*312119004989^(3/11) 8024922359499621 a001 233802911/440719107401*73681302247^(5/13) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(44)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 701408733/119218851371*192900153618^(5/18) 8024922359499621 a001 233802911/3020733700601*73681302247^(6/13) 8024922359499621 a001 701408733/23725150497407*73681302247^(1/2) 8024922359499621 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 701408733/119218851371*28143753123^(3/10) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(51) 8024922359499621 a004 Fibonacci(51)/Lucas(44)/(1/2+sqrt(5)/2) 8024922359499621 a001 233802911/440719107401*28143753123^(2/5) 8024922359499621 a001 701408733/45537549124*73681302247^(1/4) 8024922359499621 a001 701408733/14662949395604*28143753123^(1/2) 8024922359499621 a001 233802911/9381251041*10749957122^(1/4) 8024922359499621 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 701408733/73681302247*10749957122^(7/24) 8024922359499621 a001 701408733/119218851371*10749957122^(5/16) 8024922359499621 a001 233802911/64300051206*10749957122^(1/3) 8024922359499621 a001 701408733/505019158607*10749957122^(3/8) 8024922359499621 a001 701408733/17393796001*312119004989^(1/5) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(49) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)/Lucas(44) 8024922359499621 a001 233802911/440719107401*10749957122^(5/12) 8024922359499621 a001 701408733/2139295485799*10749957122^(7/16) 8024922359499621 a001 701408733/3461452808002*10749957122^(11/24) 8024922359499621 a001 701408733/10749957122*4106118243^(5/23) 8024922359499621 a001 233802911/3020733700601*10749957122^(1/2) 8024922359499621 a001 701408733/23725150497407*10749957122^(13/24) 8024922359499621 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 686789568/224056801*1568397607^(1/22) 8024922359499621 a001 2971215073/1568397607*2537720636^(1/15) 8024922359499621 a001 233802911/9381251041*4106118243^(6/23) 8024922359499621 a001 233802911/1368706081*1568397607^(2/11) 8024922359499621 a001 701408733/73681302247*4106118243^(7/23) 8024922359499621 a001 233802911/64300051206*4106118243^(8/23) 8024922359499621 a001 701408733/6643838879*45537549124^(3/17) 8024922359499621 a001 2971215073/1568397607*45537549124^(1/17) 8024922359499621 a001 701408733/6643838879*817138163596^(3/19) 8024922359499621 a001 2971215073/1568397607*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(47) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^3/Lucas(44) 8024922359499621 a001 2971215073/1568397607*192900153618^(1/18) 8024922359499621 a001 701408733/6643838879*192900153618^(1/6) 8024922359499621 a001 2971215073/1568397607*10749957122^(1/16) 8024922359499621 a001 701408733/505019158607*4106118243^(9/23) 8024922359499621 a001 701408733/6643838879*10749957122^(3/16) 8024922359499621 a001 233802911/440719107401*4106118243^(10/23) 8024922359499621 a001 701408733/3461452808002*4106118243^(11/23) 8024922359499621 a001 701408733/5600748293801*4106118243^(1/2) 8024922359499621 a001 233802911/3020733700601*4106118243^(12/23) 8024922359499621 a001 701408733/23725150497407*4106118243^(13/23) 8024922359499621 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 701408733/10749957122*1568397607^(5/22) 8024922359499621 a001 701408733/17393796001*1568397607^(1/4) 8024922359499621 a001 233802911/9381251041*1568397607^(3/11) 8024922359499621 a001 686789568/224056801*599074578^(1/21) 8024922359499621 a001 701408733/73681302247*1568397607^(7/22) 8024922359499621 a001 1134903170/1568397607*2537720636^(1/9) 8024922359499621 a001 233802911/64300051206*1568397607^(4/11) 8024922359499621 a001 701408733/2537720636*17393796001^(1/7) 8024922359499621 a001 1134903170/1568397607*312119004989^(1/11) 8024922359499621 a001 701408733/2537720636*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^7/Lucas(45) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^5/Lucas(44) 8024922359499621 a001 1134903170/1568397607*28143753123^(1/10) 8024922359499621 a001 701408733/505019158607*1568397607^(9/22) 8024922359499621 a001 233802911/440719107401*1568397607^(5/11) 8024922359499621 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 701408733/3461452808002*1568397607^(1/2) 8024922359499621 a001 1836311903/1568397607*599074578^(2/21) 8024922359499621 a001 2971215073/1568397607*599074578^(1/14) 8024922359499621 a001 233802911/3020733700601*1568397607^(6/11) 8024922359499621 a001 701408733/23725150497407*1568397607^(13/22) 8024922359499621 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 1/567451585*(1/2+1/2*5^(1/2))^51 8024922359499621 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 1836311903/23725150497407*2537720636^(8/15) 8024922359499621 a001 1836311903/4106118243*2537720636^(2/15) 8024922359499621 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 1836311903/5600748293801*2537720636^(7/15) 8024922359499621 a001 1836311903/3461452808002*2537720636^(4/9) 8024922359499621 a001 1836311903/1322157322203*2537720636^(2/5) 8024922359499621 a001 1836311903/4106118243*45537549124^(2/17) 8024922359499621 a001 1836311903/4106118243*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(46) 8024922359499621 a001 1836311903/4106118243*10749957122^(1/8) 8024922359499621 a001 1836311903/312119004989*2537720636^(1/3) 8024922359499621 a001 1836311903/4106118243*4106118243^(3/23) 8024922359499621 a001 1836311903/73681302247*2537720636^(4/15) 8024922359499621 a001 1836311903/28143753123*2537720636^(2/9) 8024922359499621 a001 1836311903/17393796001*2537720636^(1/5) 8024922359499621 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 1201881744/3665737348901*2537720636^(7/15) 8024922359499621 a001 1602508992/3020733700601*2537720636^(4/9) 8024922359499621 a001 14930208/10749853441*2537720636^(2/5) 8024922359499621 a001 12586269025/23725150497407*2537720636^(4/9) 8024922359499621 a001 7778742049/23725150497407*2537720636^(7/15) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(48) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(46) 8024922359499621 a001 1602508992/1368706081*23725150497407^(1/16) 8024922359499621 a001 1836311903/10749957122*23725150497407^(1/8) 8024922359499621 a001 1836311903/10749957122*505019158607^(1/7) 8024922359499621 a001 1602508992/1368706081*73681302247^(1/13) 8024922359499621 a001 1836311903/10749957122*73681302247^(2/13) 8024922359499621 a001 1602508992/1368706081*10749957122^(1/12) 8024922359499621 a001 1836311903/10749957122*10749957122^(1/6) 8024922359499621 a001 7778742049/4106118243*2537720636^(1/15) 8024922359499621 a001 7778742049/14662949395604*2537720636^(4/9) 8024922359499621 a001 12586269025/9062201101803*2537720636^(2/5) 8024922359499621 a001 1836311903/4106118243*1568397607^(3/22) 8024922359499621 a001 1602508992/1368706081*4106118243^(2/23) 8024922359499621 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 32951280099/23725150497407*2537720636^(2/5) 8024922359499621 a001 10182505537/7331474697802*2537720636^(2/5) 8024922359499621 a001 1836311903/5600748293801*17393796001^(3/7) 8024922359499621 a001 1836311903/28143753123*312119004989^(2/11) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(50) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(46) 8024922359499621 a001 1201881744/204284540899*2537720636^(1/3) 8024922359499621 a001 1836311903/28143753123*28143753123^(1/5) 8024922359499621 a001 1836311903/192900153618*17393796001^(2/7) 8024922359499621 a001 12586269025/4106118243*10749957122^(1/24) 8024922359499621 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 1836311903/73681302247*45537549124^(4/17) 8024922359499621 a001 1836311903/23725150497407*45537549124^(8/17) 8024922359499621 a001 1836311903/5600748293801*45537549124^(7/17) 8024922359499621 a001 1836311903/73681302247*817138163596^(4/19) 8024922359499621 a001 1836311903/73681302247*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(52) 8024922359499621 a006 5^(1/2)*Fibonacci(52)/Lucas(46)/sqrt(5) 8024922359499621 a001 1836311903/73681302247*192900153618^(2/9) 8024922359499621 a001 1836311903/1322157322203*45537549124^(6/17) 8024922359499621 a001 1836311903/817138163596*45537549124^(1/3) 8024922359499621 a001 1836311903/73681302247*73681302247^(3/13) 8024922359499621 a001 1836311903/312119004989*45537549124^(5/17) 8024922359499621 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 1836311903/192900153618*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(46)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 1836311903/192900153618*505019158607^(1/4) 8024922359499621 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 1836311903/9062201101803*312119004989^(2/5) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(46)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 1836311903/505019158607*23725150497407^(1/4) 8024922359499621 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 1836311903/1322157322203*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(46)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 1836311903/2139295485799*817138163596^(1/3) 8024922359499621 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(46)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(92) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(94) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(96) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(98) 8024922359499621 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(99) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(100) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(97) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(95) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(93) 8024922359499621 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^11 8024922359499621 a001 1836311903/5600748293801*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(46)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(46)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(46)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 1836311903/312119004989*312119004989^(3/11) 8024922359499621 a001 1836311903/1322157322203*192900153618^(1/3) 8024922359499621 a001 1836311903/312119004989*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(46)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 1836311903/5600748293801*192900153618^(7/18) 8024922359499621 a001 1836311903/23725150497407*192900153618^(4/9) 8024922359499621 a001 1836311903/312119004989*192900153618^(5/18) 8024922359499621 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 1836311903/505019158607*73681302247^(4/13) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(46)/(1/2+sqrt(5)/2) 8024922359499621 a001 1836311903/3461452808002*73681302247^(5/13) 8024922359499621 a001 1836311903/23725150497407*73681302247^(6/13) 8024922359499621 a001 1836311903/119218851371*73681302247^(1/4) 8024922359499621 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 1836311903/312119004989*28143753123^(3/10) 8024922359499621 a001 1836311903/45537549124*312119004989^(1/5) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(51) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(46) 8024922359499621 a001 1836311903/3461452808002*28143753123^(2/5) 8024922359499621 a001 7778742049/5600748293801*2537720636^(2/5) 8024922359499621 a001 1836311903/28143753123*10749957122^(5/24) 8024922359499621 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 12586269025/4106118243*4106118243^(1/23) 8024922359499621 a001 1836311903/10749957122*4106118243^(4/23) 8024922359499621 a001 1836311903/73681302247*10749957122^(1/4) 8024922359499621 a001 1836311903/192900153618*10749957122^(7/24) 8024922359499621 a001 1836311903/312119004989*10749957122^(5/16) 8024922359499621 a001 1836311903/505019158607*10749957122^(1/3) 8024922359499621 a001 1836311903/17393796001*45537549124^(3/17) 8024922359499621 a001 1836311903/1322157322203*10749957122^(3/8) 8024922359499621 a001 7778742049/4106118243*45537549124^(1/17) 8024922359499621 a001 1836311903/17393796001*817138163596^(3/19) 8024922359499621 a001 1836311903/17393796001*14662949395604^(1/7) 8024922359499621 a001 7778742049/4106118243*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(49) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(46) 8024922359499621 a001 1836311903/17393796001*192900153618^(1/6) 8024922359499621 a001 1836311903/3461452808002*10749957122^(5/12) 8024922359499621 a001 1836311903/5600748293801*10749957122^(7/16) 8024922359499621 a001 7778742049/4106118243*10749957122^(1/16) 8024922359499621 a001 1836311903/9062201101803*10749957122^(11/24) 8024922359499621 a001 1836311903/23725150497407*10749957122^(1/2) 8024922359499621 a001 1836311903/17393796001*10749957122^(3/16) 8024922359499621 a001 2971215073/4106118243*2537720636^(1/9) 8024922359499621 a001 12586269025/2139295485799*2537720636^(1/3) 8024922359499621 a001 32951280099/5600748293801*2537720636^(1/3) 8024922359499621 a001 1135099622/192933544679*2537720636^(1/3) 8024922359499621 a001 139583862445/23725150497407*2537720636^(1/3) 8024922359499621 a001 53316291173/9062201101803*2537720636^(1/3) 8024922359499621 a001 10182505537/1730726404001*2537720636^(1/3) 8024922359499621 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 267084832/10716675201*2537720636^(4/15) 8024922359499621 a001 2971215073/9062201101803*2537720636^(7/15) 8024922359499621 a001 7778742049/1322157322203*2537720636^(1/3) 8024922359499621 a001 1836311903/28143753123*4106118243^(5/23) 8024922359499621 a001 2971215073/5600748293801*2537720636^(4/9) 8024922359499621 a001 1836311903/73681302247*4106118243^(6/23) 8024922359499621 a001 686789568/10525900321*2537720636^(2/9) 8024922359499621 a001 12586269025/505019158607*2537720636^(4/15) 8024922359499621 a001 12586269025/4106118243*1568397607^(1/22) 8024922359499621 a001 10983760033/440719107401*2537720636^(4/15) 8024922359499621 a001 43133785636/1730726404001*2537720636^(4/15) 8024922359499621 a001 75283811239/3020733700601*2537720636^(4/15) 8024922359499621 a001 182717648081/7331474697802*2537720636^(4/15) 8024922359499621 a001 139583862445/5600748293801*2537720636^(4/15) 8024922359499621 a001 53316291173/2139295485799*2537720636^(4/15) 8024922359499621 a001 1836311903/192900153618*4106118243^(7/23) 8024922359499621 a001 10182505537/408569081798*2537720636^(4/15) 8024922359499621 a001 2971215073/2139295485799*2537720636^(2/5) 8024922359499621 a001 1201881744/11384387281*2537720636^(1/5) 8024922359499621 a001 1836311903/505019158607*4106118243^(8/23) 8024922359499621 a001 7778742049/312119004989*2537720636^(4/15) 8024922359499621 a001 2403763488/5374978561*2537720636^(2/15) 8024922359499621 a001 1836311903/6643838879*17393796001^(1/7) 8024922359499621 a001 2971215073/4106118243*312119004989^(1/11) 8024922359499621 a001 1836311903/6643838879*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(47) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(46) 8024922359499621 a001 2971215073/4106118243*28143753123^(1/10) 8024922359499621 a001 1836311903/1322157322203*4106118243^(9/23) 8024922359499621 a001 12586269025/192900153618*2537720636^(2/9) 8024922359499621 a001 32951280099/505019158607*2537720636^(2/9) 8024922359499621 a001 86267571272/1322157322203*2537720636^(2/9) 8024922359499621 a001 32264490531/494493258286*2537720636^(2/9) 8024922359499621 a001 591286729879/9062201101803*2537720636^(2/9) 8024922359499621 a001 1548008755920/23725150497407*2537720636^(2/9) 8024922359499621 a001 365435296162/5600748293801*2537720636^(2/9) 8024922359499621 a001 139583862445/2139295485799*2537720636^(2/9) 8024922359499621 a001 53316291173/817138163596*2537720636^(2/9) 8024922359499621 a001 20365011074/312119004989*2537720636^(2/9) 8024922359499621 a001 1836311903/3461452808002*4106118243^(10/23) 8024922359499621 a001 12586269025/119218851371*2537720636^(1/5) 8024922359499621 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 32951280099/312119004989*2537720636^(1/5) 8024922359499621 a001 7778742049/119218851371*2537720636^(2/9) 8024922359499621 a001 21566892818/204284540899*2537720636^(1/5) 8024922359499621 a001 225851433717/2139295485799*2537720636^(1/5) 8024922359499621 a001 182717648081/1730726404001*2537720636^(1/5) 8024922359499621 a001 139583862445/1322157322203*2537720636^(1/5) 8024922359499621 a001 1602508992/1368706081*1568397607^(1/11) 8024922359499621 a001 53316291173/505019158607*2537720636^(1/5) 8024922359499621 a001 1836311903/9062201101803*4106118243^(11/23) 8024922359499621 a001 10182505537/96450076809*2537720636^(1/5) 8024922359499621 a001 1836311903/14662949395604*4106118243^(1/2) 8024922359499621 a001 2971215073/505019158607*2537720636^(1/3) 8024922359499621 a001 1836311903/23725150497407*4106118243^(12/23) 8024922359499621 a001 7778742049/73681302247*2537720636^(1/5) 8024922359499621 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 12586269025/28143753123*2537720636^(2/15) 8024922359499621 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 2/2971215073*(1/2+1/2*5^(1/2))^53 8024922359499621 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 7778742049/10749957122*2537720636^(1/9) 8024922359499621 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 32951280099/73681302247*2537720636^(2/15) 8024922359499621 a001 43133785636/96450076809*2537720636^(2/15) 8024922359499621 a001 225851433717/505019158607*2537720636^(2/15) 8024922359499621 a001 591286729879/1322157322203*2537720636^(2/15) 8024922359499621 a001 182717648081/408569081798*2537720636^(2/15) 8024922359499621 a001 139583862445/312119004989*2537720636^(2/15) 8024922359499621 a001 53316291173/119218851371*2537720636^(2/15) 8024922359499621 a001 10182505537/22768774562*2537720636^(2/15) 8024922359499621 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 2971215073/119218851371*2537720636^(4/15) 8024922359499621 a001 10182505537/5374978561*2537720636^(1/15) 8024922359499621 a001 20365011074/28143753123*2537720636^(1/9) 8024922359499621 a001 53316291173/73681302247*2537720636^(1/9) 8024922359499621 a001 2403763488/5374978561*45537549124^(2/17) 8024922359499621 a001 2403763488/5374978561*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(48) 8024922359499621 a001 139583862445/192900153618*2537720636^(1/9) 8024922359499621 a001 365435296162/505019158607*2537720636^(1/9) 8024922359499621 a001 10610209857723/14662949395604*2537720636^(1/9) 8024922359499621 a001 591286729879/817138163596*2537720636^(1/9) 8024922359499621 a001 225851433717/312119004989*2537720636^(1/9) 8024922359499621 a001 86267571272/119218851371*2537720636^(1/9) 8024922359499621 a001 32951280099/45537549124*2537720636^(1/9) 8024922359499621 a001 2403763488/5374978561*10749957122^(1/8) 8024922359499621 a001 12586269025/17393796001*2537720636^(1/9) 8024922359499621 a001 7778742049/17393796001*2537720636^(2/15) 8024922359499621 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 53316291173/28143753123*2537720636^(1/15) 8024922359499621 a001 2971215073/45537549124*2537720636^(2/9) 8024922359499621 a001 139583862445/73681302247*2537720636^(1/15) 8024922359499621 a001 182717648081/96450076809*2537720636^(1/15) 8024922359499621 a001 956722026041/505019158607*2537720636^(1/15) 8024922359499621 a001 10610209857723/5600748293801*2537720636^(1/15) 8024922359499621 a001 591286729879/312119004989*2537720636^(1/15) 8024922359499621 a001 225851433717/119218851371*2537720636^(1/15) 8024922359499621 a001 1201881744/3665737348901*17393796001^(3/7) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(50) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(48) 8024922359499621 a001 12586269025/10749957122*23725150497407^(1/16) 8024922359499621 a001 1602508992/9381251041*505019158607^(1/7) 8024922359499621 a001 12586269025/10749957122*73681302247^(1/13) 8024922359499621 a001 21566892818/11384387281*2537720636^(1/15) 8024922359499621 a001 1602508992/9381251041*73681302247^(2/13) 8024922359499621 a001 2971215073/28143753123*2537720636^(1/5) 8024922359499621 a001 102287808/10745088481*17393796001^(2/7) 8024922359499621 a001 2403763488/5374978561*4106118243^(3/23) 8024922359499621 a001 12586269025/10749957122*10749957122^(1/12) 8024922359499621 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 1201881744/3665737348901*45537549124^(7/17) 8024922359499621 a001 686789568/10525900321*312119004989^(2/11) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(52) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(48) 8024922359499621 a001 14930208/10749853441*45537549124^(6/17) 8024922359499621 a001 4807526976/2139295485799*45537549124^(1/3) 8024922359499621 a001 267084832/10716675201*45537549124^(4/17) 8024922359499621 a001 1201881744/204284540899*45537549124^(5/17) 8024922359499621 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 267084832/10716675201*817138163596^(4/19) 8024922359499621 a001 267084832/10716675201*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(54) 8024922359499621 a006 5^(1/2)*Fibonacci(54)/Lucas(48)/sqrt(5) 8024922359499621 a001 267084832/10716675201*192900153618^(2/9) 8024922359499621 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 4807526976/23725150497407*312119004989^(2/5) 8024922359499621 a001 102287808/10745088481*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(48)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 102287808/10745088481*505019158607^(1/4) 8024922359499621 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(48)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 1602508992/440719107401*23725150497407^(1/4) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(48)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(48)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(96) 8024922359499621 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(98) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(100) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(99) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(97) 8024922359499621 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^11 8024922359499621 a001 1201881744/3665737348901*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(48)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(48)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(48)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 1201881744/204284540899*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(48)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 14930208/10749853441*192900153618^(1/3) 8024922359499621 a001 1201881744/204284540899*192900153618^(5/18) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(48)/(1/2+sqrt(5)/2) 8024922359499621 a001 1201881744/3665737348901*192900153618^(7/18) 8024922359499621 a001 267084832/10716675201*73681302247^(3/13) 8024922359499621 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 1602508992/440719107401*73681302247^(4/13) 8024922359499621 a001 686789568/10525900321*28143753123^(1/5) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(53) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(48) 8024922359499621 a001 1602508992/3020733700601*73681302247^(5/13) 8024922359499621 a001 32951280099/10749957122*10749957122^(1/24) 8024922359499621 a001 1602508992/9381251041*10749957122^(1/6) 8024922359499621 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 1201881744/204284540899*28143753123^(3/10) 8024922359499621 a001 1201881744/11384387281*45537549124^(3/17) 8024922359499621 a001 10182505537/5374978561*45537549124^(1/17) 8024922359499621 a001 1201881744/11384387281*817138163596^(3/19) 8024922359499621 a001 10182505537/5374978561*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(51) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(48) 8024922359499621 a001 10182505537/5374978561*192900153618^(1/18) 8024922359499621 a001 1201881744/11384387281*192900153618^(1/6) 8024922359499621 a001 1602508992/3020733700601*28143753123^(2/5) 8024922359499621 a001 10182505537/5374978561*10749957122^(1/16) 8024922359499621 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 32951280099/17393796001*2537720636^(1/15) 8024922359499621 a001 686789568/10525900321*10749957122^(5/24) 8024922359499621 a001 1201881744/11384387281*10749957122^(3/16) 8024922359499621 a001 267084832/10716675201*10749957122^(1/4) 8024922359499621 a001 32951280099/10749957122*4106118243^(1/23) 8024922359499621 a001 102287808/10745088481*10749957122^(7/24) 8024922359499621 a001 1201881744/204284540899*10749957122^(5/16) 8024922359499621 a001 4807526976/17393796001*17393796001^(1/7) 8024922359499621 a001 1602508992/440719107401*10749957122^(1/3) 8024922359499621 a001 14930208/10749853441*10749957122^(3/8) 8024922359499621 a001 7778742049/10749957122*312119004989^(1/11) 8024922359499621 a001 4807526976/17393796001*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(49) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(48) 8024922359499621 a001 7778742049/10749957122*28143753123^(1/10) 8024922359499621 a001 1602508992/3020733700601*10749957122^(5/12) 8024922359499621 a001 1201881744/3665737348901*10749957122^(7/16) 8024922359499621 a001 12586269025/10749957122*4106118243^(2/23) 8024922359499621 a001 4807526976/23725150497407*10749957122^(11/24) 8024922359499621 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 2/7778742049*(1/2+1/2*5^(1/2))^55 8024922359499621 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 4807526976/6643838879*2537720636^(1/9) 8024922359499621 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 12586269025/28143753123*45537549124^(2/17) 8024922359499621 a001 12586269025/28143753123*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(50) 8024922359499621 a001 12586269025/1322157322203*17393796001^(2/7) 8024922359499621 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(52) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(50) 8024922359499621 a001 10983760033/9381251041*23725150497407^(1/16) 8024922359499621 a001 12586269025/73681302247*23725150497407^(1/8) 8024922359499621 a001 12586269025/73681302247*505019158607^(1/7) 8024922359499621 a001 12586269025/28143753123*10749957122^(1/8) 8024922359499621 a001 12586269025/9062201101803*45537549124^(6/17) 8024922359499621 a001 10983760033/9381251041*73681302247^(1/13) 8024922359499621 a001 12586269025/5600748293801*45537549124^(1/3) 8024922359499621 a001 12586269025/73681302247*73681302247^(2/13) 8024922359499621 a001 12586269025/2139295485799*45537549124^(5/17) 8024922359499621 a001 12586269025/505019158607*45537549124^(4/17) 8024922359499621 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 12586269025/192900153618*312119004989^(2/11) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(54) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(50) 8024922359499621 a001 12586269025/119218851371*45537549124^(3/17) 8024922359499621 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 12586269025/505019158607*817138163596^(4/19) 8024922359499621 a001 12586269025/505019158607*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(56) 8024922359499621 a006 5^(1/2)*Fibonacci(56)/Lucas(50)/sqrt(5) 8024922359499621 a001 12586269025/2139295485799*312119004989^(3/11) 8024922359499621 a001 12586269025/1322157322203*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(50)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(50)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(50)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(50)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(98) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(100) 8024922359499621 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(50)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(50)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(50)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(50)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 12586269025/1322157322203*505019158607^(1/4) 8024922359499621 a001 12586269025/23725150497407*505019158607^(5/14) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(50)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 12586269025/2139295485799*192900153618^(5/18) 8024922359499621 a001 1144206275/28374454999*312119004989^(1/5) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(50) 8024922359499621 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 12586269025/505019158607*73681302247^(3/13) 8024922359499621 a001 53316291173/28143753123*45537549124^(1/17) 8024922359499621 a001 12586269025/817138163596*73681302247^(1/4) 8024922359499621 a001 12586269025/3461452808002*73681302247^(4/13) 8024922359499621 a001 12586269025/119218851371*817138163596^(3/19) 8024922359499621 a001 12586269025/119218851371*14662949395604^(1/7) 8024922359499621 a001 53316291173/28143753123*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(53) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(50) 8024922359499621 a001 12586269025/23725150497407*73681302247^(5/13) 8024922359499621 a001 53316291173/28143753123*192900153618^(1/18) 8024922359499621 a001 12586269025/119218851371*192900153618^(1/6) 8024922359499621 a001 32951280099/3461452808002*17393796001^(2/7) 8024922359499621 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 12586269025/192900153618*28143753123^(1/5) 8024922359499621 a001 86267571272/9062201101803*17393796001^(2/7) 8024922359499621 a001 225851433717/23725150497407*17393796001^(2/7) 8024922359499621 a001 139583862445/14662949395604*17393796001^(2/7) 8024922359499621 a001 86267571272/28143753123*10749957122^(1/24) 8024922359499621 a001 12586269025/2139295485799*28143753123^(3/10) 8024922359499621 a001 53316291173/5600748293801*17393796001^(2/7) 8024922359499621 a001 20365011074/28143753123*312119004989^(1/11) 8024922359499621 a001 12586269025/45537549124*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(51) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(50) 8024922359499621 a001 12586269025/23725150497407*28143753123^(2/5) 8024922359499621 a001 10983760033/9381251041*10749957122^(1/12) 8024922359499621 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 20365011074/28143753123*28143753123^(1/10) 8024922359499621 a001 53316291173/28143753123*10749957122^(1/16) 8024922359499621 a001 32951280099/119218851371*17393796001^(1/7) 8024922359499621 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 86267571272/312119004989*17393796001^(1/7) 8024922359499621 a001 408569081798/10182505537*8^(1/3) 8024922359499621 a001 1/10182505537*(1/2+1/2*5^(1/2))^57 8024922359499621 a001 225851433717/817138163596*17393796001^(1/7) 8024922359499621 a001 1548008755920/5600748293801*17393796001^(1/7) 8024922359499621 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 139583862445/505019158607*17393796001^(1/7) 8024922359499621 a001 20365011074/2139295485799*17393796001^(2/7) 8024922359499621 a001 53316291173/192900153618*17393796001^(1/7) 8024922359499621 a001 32951280099/73681302247*45537549124^(2/17) 8024922359499621 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 32951280099/73681302247*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(52) 8024922359499621 a001 32951280099/23725150497407*45537549124^(6/17) 8024922359499621 a001 32951280099/14662949395604*45537549124^(1/3) 8024922359499621 a001 32951280099/5600748293801*45537549124^(5/17) 8024922359499621 a001 10983760033/440719107401*45537549124^(4/17) 8024922359499621 a001 32951280099/312119004989*45537549124^(3/17) 8024922359499621 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(54) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(52) 8024922359499621 a001 86267571272/73681302247*23725150497407^(1/16) 8024922359499621 a001 10983760033/64300051206*23725150497407^(1/8) 8024922359499621 a001 10983760033/64300051206*505019158607^(1/7) 8024922359499621 a001 139583862445/73681302247*45537549124^(1/17) 8024922359499621 a001 86267571272/73681302247*73681302247^(1/13) 8024922359499621 a001 32951280099/505019158607*312119004989^(2/11) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(52) 8024922359499621 a001 32951280099/5600748293801*312119004989^(3/11) 8024922359499621 a001 10983760033/440719107401*817138163596^(4/19) 8024922359499621 a001 10983760033/440719107401*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(58) 8024922359499621 a006 5^(1/2)*Fibonacci(58)/Lucas(52)/sqrt(5) 8024922359499621 a001 32951280099/3461452808002*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(52)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(52)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 10983760033/3020733700601*23725150497407^(1/4) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(52)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(52)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(99) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(52)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(52)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(52)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(52)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(52)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(52) 8024922359499621 a001 10983760033/440719107401*192900153618^(2/9) 8024922359499621 a001 32951280099/23725150497407*192900153618^(1/3) 8024922359499621 a001 32951280099/312119004989*817138163596^(3/19) 8024922359499621 a001 139583862445/73681302247*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(52) 8024922359499621 a001 32951280099/312119004989*192900153618^(1/6) 8024922359499621 a001 1135099622/192933544679*45537549124^(5/17) 8024922359499621 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 10983760033/440719107401*73681302247^(3/13) 8024922359499621 a001 43133785636/1730726404001*45537549124^(4/17) 8024922359499621 a001 32951280099/2139295485799*73681302247^(1/4) 8024922359499621 a001 139583862445/23725150497407*45537549124^(5/17) 8024922359499621 a001 10983760033/3020733700601*73681302247^(4/13) 8024922359499621 a001 53316291173/73681302247*312119004989^(1/11) 8024922359499621 a001 32951280099/119218851371*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(53) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(52) 8024922359499621 a001 182717648081/7331474697802*45537549124^(4/17) 8024922359499621 a001 21566892818/204284540899*45537549124^(3/17) 8024922359499621 a001 139583862445/5600748293801*45537549124^(4/17) 8024922359499621 a001 53316291173/23725150497407*45537549124^(1/3) 8024922359499621 a001 225851433717/2139295485799*45537549124^(3/17) 8024922359499621 a001 182717648081/1730726404001*45537549124^(3/17) 8024922359499621 a001 139583862445/1322157322203*45537549124^(3/17) 8024922359499621 a001 53316291173/9062201101803*45537549124^(5/17) 8024922359499621 a001 2/53316291173*(1/2+1/2*5^(1/2))^59 8024922359499621 a001 225851433717/505019158607*45537549124^(2/17) 8024922359499621 a001 591286729879/1322157322203*45537549124^(2/17) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(54) 8024922359499621 a001 182717648081/408569081798*45537549124^(2/17) 8024922359499621 a001 53316291173/2139295485799*45537549124^(4/17) 8024922359499621 a001 139583862445/312119004989*45537549124^(2/17) 8024922359499621 a001 956722026041/505019158607*45537549124^(1/17) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(54) 8024922359499621 a001 75283811239/64300051206*23725150497407^(1/16) 8024922359499621 a001 1135099622/192933544679*312119004989^(3/11) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(54) 8024922359499621 a001 43133785636/1730726404001*817138163596^(4/19) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(60) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(54)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(54)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(54)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(54)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(99) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(54)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(54)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(54)/(1/2+sqrt(5)/2)^5 8024922359499621 a001 1135099622/192933544679*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(54)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(54)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(54) 8024922359499621 a001 21566892818/204284540899*14662949395604^(1/7) 8024922359499621 a001 182717648081/96450076809*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(54) 8024922359499621 a001 182717648081/96450076809*192900153618^(1/18) 8024922359499621 a001 21566892818/204284540899*192900153618^(1/6) 8024922359499621 a001 1135099622/192933544679*192900153618^(5/18) 8024922359499621 a001 53316291173/505019158607*45537549124^(3/17) 8024922359499621 a001 139583862445/192900153618*312119004989^(1/11) 8024922359499621 a001 75283811239/64300051206*73681302247^(1/13) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(54) 8024922359499621 a001 5600748293801/139583862445*8^(1/3) 8024922359499621 a001 2/139583862445*(1/2+1/2*5^(1/2))^61 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(56) 8024922359499621 a001 32264490531/494493258286*312119004989^(2/11) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(56) 8024922359499621 a001 225851433717/2139295485799*817138163596^(3/19) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(62) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(56)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(56)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(56)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(56)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(99) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(56)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(56)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(56)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(56)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(56)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(56) 8024922359499621 a001 225851433717/23725150497407*505019158607^(1/4) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(56) 8024922359499621 a001 1/182717648081*(1/2+1/2*5^(1/2))^63 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(64) 8024922359499621 a006 5^(1/2)*Fibonacci(64)/Lucas(58)/sqrt(5) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(58)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(58)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(58)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(58)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^52 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(98) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(100) 8024922359499621 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(58)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(58)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(58)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(58)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(58)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(58) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(66) 8024922359499621 a006 5^(1/2)*Fibonacci(66)/Lucas(60)/sqrt(5) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(60)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(60)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(60)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(60)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^54 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(100) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(60)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(60)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(60)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(60)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(60)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(60) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(68) 8024922359499621 a006 5^(1/2)*Fibonacci(68)/Lucas(62)/sqrt(5) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(62)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(62)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(62)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(62)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^56 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(99) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(62)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(62)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(62)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(62)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(62)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(62) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(70) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(64)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(64)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(64)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(64)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^58 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(99) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(64)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(64)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(64)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(64)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(64)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(64) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(72) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(66)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(66)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(66)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(66)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^60 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(100) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(66)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(66)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(66)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(66)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(66)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(66) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(74) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(68)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(68)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(68)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(68)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^62 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(99) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(68)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(68)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(68)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(68)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(68)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(68) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(74) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(76) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(70)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(70)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(70)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(70)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^64 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(99) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(70)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(70)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(70)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(70)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(70)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(75) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(70) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(74) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(76) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(78) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(72)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(72)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(72)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(72)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(98) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(100) 8024922359499621 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^66 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(72)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(72)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(72)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(72)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(72)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(77) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(75) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(72) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(74) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(76) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(78) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(80) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(82) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(84) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(86) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(88) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(74)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(92) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(74)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(96) 8024922359499621 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^68 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(98) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(100) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(99) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(97) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(95) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(93) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(91) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(89) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(87) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(74)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(83) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(81) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(79) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(77) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(75) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(76) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(78) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(80) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(82) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(84) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(86) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(88) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(90) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(76)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(94) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(96) 8024922359499621 a004 Fibonacci(100)/Lucas(76)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(98) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(100) 8024922359499621 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^70 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(99) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(97) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(95) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(93) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(91) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(89) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(87) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(85) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(83) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(81) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(79) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(77) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(78) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(80) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(82) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(84) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(86) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(88) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(90) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(92) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(94) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(96) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(98) 8024922359499621 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^72 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(99) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(100) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(97) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(95) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(93) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(91) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(89) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(87) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(85) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(83) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(81) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(79) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(80) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(80) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(84) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^12/Lucas(86) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^14/Lucas(88) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^16/Lucas(90) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^18/Lucas(92) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(94) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(96) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(98) 8024922359499621 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^74 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(99) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(100) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(97) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(95) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(93) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^17/Lucas(91) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^15/Lucas(89) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^13/Lucas(87) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^11/Lucas(85) 8024922359499621 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(83) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(80) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(82) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(84) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^10/Lucas(86) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^12/Lucas(88) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(90) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(92) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(94) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(82)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(98) 8024922359499621 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^76 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(99) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(100) 8024922359499621 a004 Fibonacci(82)*Lucas(1)/(1/2+sqrt(5)/2)^76 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(97) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(95) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^17/Lucas(93) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^15/Lucas(91) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^13/Lucas(89) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^11/Lucas(87) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^9/Lucas(85) 8024922359499621 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(83) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(84) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^8/Lucas(86) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^10/Lucas(88) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^12/Lucas(90) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^14/Lucas(92) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^16/Lucas(94) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(96) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(98) 8024922359499621 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^78 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(99) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(100) 8024922359499621 a004 Fibonacci(84)*Lucas(1)/(1/2+sqrt(5)/2)^78 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(97) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^17/Lucas(95) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^15/Lucas(93) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^13/Lucas(91) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^11/Lucas(89) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^9/Lucas(87) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^7/Lucas(85) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^6/Lucas(86) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^8/Lucas(88) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^10/Lucas(90) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^12/Lucas(92) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^14/Lucas(94) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^16/Lucas(96) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(98) 8024922359499621 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^80 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(99) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(100) 8024922359499621 a004 Fibonacci(86)*Lucas(1)/(1/2+sqrt(5)/2)^80 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^17/Lucas(97) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^15/Lucas(95) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^13/Lucas(93) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^11/Lucas(91) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^9/Lucas(89) 8024922359499621 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^7/Lucas(87) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^6/Lucas(88) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^8/Lucas(90) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^10/Lucas(92) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^12/Lucas(94) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^14/Lucas(96) 8024922359499621 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^82 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^16/Lucas(98) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^18/Lucas(100) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^17/Lucas(99) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^15/Lucas(97) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^13/Lucas(95) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^11/Lucas(93) 8024922359499621 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^9/Lucas(91) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^5/Lucas(88) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^6/Lucas(90) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^8/Lucas(92) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^10/Lucas(94) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^12/Lucas(96) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^14/Lucas(98) 8024922359499621 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^84 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^15/Lucas(99) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^16/Lucas(100) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^13/Lucas(97) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^11/Lucas(95) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^9/Lucas(93) 8024922359499621 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^7/Lucas(91) 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^6/Lucas(92) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^4/Lucas(92) 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^10/Lucas(96) 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^12/Lucas(98) 8024922359499621 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^86 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^14/Lucas(100) 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^13/Lucas(99) 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^11/Lucas(97) 8024922359499621 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^9/Lucas(95) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^5/Lucas(92) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^6/Lucas(94) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^8/Lucas(96) 8024922359499621 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^88 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^10/Lucas(98) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^12/Lucas(100) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^11/Lucas(99) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^9/Lucas(97) 8024922359499621 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^7/Lucas(95) 8024922359499621 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^6/Lucas(96) 8024922359499621 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^10/Lucas(100) 8024922359499621 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^8/Lucas(98) 8024922359499621 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^9/Lucas(99) 8024922359499621 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^7/Lucas(97) 8024922359499621 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^6/Lucas(98) 8024922359499621 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^6/Lucas(100) 8024922359499621 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^7/Lucas(99) 8024922359499621 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^8/Lucas(100) 8024922359499621 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^5/Lucas(99) 8024922359499621 a004 Fibonacci(100)*Lucas(1)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^6/Lucas(99) 8024922359499621 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^93 8024922359499621 b008 4+9/Sqrt[5] 8024922359499621 m005 1/6*5^(1/2)/(1/3*5^(1/2)-3/4) 8024922359499621 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^7/Lucas(98) 8024922359499621 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^8/Lucas(99) 8024922359499621 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^9/Lucas(100) 8024922359499621 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^6/Lucas(97) 8024922359499621 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^7/Lucas(96) 8024922359499621 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^9/Lucas(98) 8024922359499621 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^11/Lucas(100) 8024922359499621 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^10/Lucas(99) 8024922359499621 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^8/Lucas(97) 8024922359499621 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^6/Lucas(95) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^7/Lucas(94) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^9/Lucas(96) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^11/Lucas(98) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^13/Lucas(100) 8024922359499621 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^12/Lucas(99) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^10/Lucas(97) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^8/Lucas(95) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^6/Lucas(93) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^7/Lucas(92) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^9/Lucas(94) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^11/Lucas(96) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^13/Lucas(98) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^14/Lucas(99) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^15/Lucas(100) 8024922359499621 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^85 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^12/Lucas(97) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^10/Lucas(95) 8024922359499621 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^4/Lucas(91) 8024922359499621 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^6/Lucas(91) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^7/Lucas(90) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^9/Lucas(92) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^11/Lucas(94) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^13/Lucas(96) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^15/Lucas(98) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^17/Lucas(100) 8024922359499621 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^83 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^16/Lucas(99) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^14/Lucas(97) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^12/Lucas(95) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^10/Lucas(93) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^8/Lucas(91) 8024922359499621 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^6/Lucas(89) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^7/Lucas(88) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^9/Lucas(90) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^11/Lucas(92) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^13/Lucas(94) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^15/Lucas(96) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^17/Lucas(98) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(100) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(99) 8024922359499621 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^81 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^16/Lucas(97) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^14/Lucas(95) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^12/Lucas(93) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^10/Lucas(91) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^8/Lucas(89) 8024922359499621 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^6/Lucas(87) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^7/Lucas(86) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^9/Lucas(88) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^11/Lucas(90) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^13/Lucas(92) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^15/Lucas(94) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^17/Lucas(96) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(98) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(100) 8024922359499621 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^79 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(99) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(97) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^16/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(85)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^14/Lucas(93) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^12/Lucas(91) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^10/Lucas(89) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^8/Lucas(87) 8024922359499621 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^6/Lucas(85) 8024922359499621 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(83) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^9/Lucas(86) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^11/Lucas(88) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^13/Lucas(90) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^15/Lucas(92) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^17/Lucas(94) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(96) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(98) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(100) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(99) 8024922359499621 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^77 8024922359499621 a004 Fibonacci(99)/Lucas(83)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(97) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(95) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^16/Lucas(93) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^14/Lucas(91) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^12/Lucas(89) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^10/Lucas(87) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^8/Lucas(85) 8024922359499621 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(83) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(82) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(84) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^11/Lucas(86) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^13/Lucas(88) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(90) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(92) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(94) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(96) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(98) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(100) 8024922359499621 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^75 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(99) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(97) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(81)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(93) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^16/Lucas(91) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(89) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^12/Lucas(87) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^10/Lucas(85) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(83) 8024922359499621 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(81) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(80) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(82) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(84) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^13/Lucas(86) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(88) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(90) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(92) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(94) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(96) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(98) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(99) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(100) 8024922359499621 a004 Fibonacci(79)*Lucas(1)/(1/2+sqrt(5)/2)^73 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(97) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(95) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(93) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(91) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(89) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(87) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^12/Lucas(85) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(83) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(81) 8024922359499621 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(79) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(78) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(80) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(82) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(84) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(86) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(88) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(90) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(92) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(94) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(96) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(98) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(100) 8024922359499621 a004 Fibonacci(77)*Lucas(1)/(1/2+sqrt(5)/2)^71 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(99) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(97) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(95) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(93) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(91) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(89) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(87) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(85) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(83) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(81) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(79) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(77) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(76) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(78) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(80) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(82) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(84) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(86) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(75)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(90) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(92) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(94) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(96) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(98) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(100) 8024922359499621 a004 Fibonacci(75)*Lucas(1)/(1/2+sqrt(5)/2)^69 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(75)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(97) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(95) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(93) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(91) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(89) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(75)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(85) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(83) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(81) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(79) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(77) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(75) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(74) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(76) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(78) 8024922359499621 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(73)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(73)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(73)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(73)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(73)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(90) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(73)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(94) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(98) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(100) 8024922359499621 a004 Fibonacci(73)*Lucas(1)/(1/2+sqrt(5)/2)^67 8024922359499621 a004 Fibonacci(98)/Lucas(73)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(73)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(73)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(93) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(73)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(73)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(73)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(85) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(73)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(81) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(79) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(77) 8024922359499621 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(75) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(73) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(74) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(76) 8024922359499621 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(71)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(71)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(71)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(71)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(71)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(100) 8024922359499621 a004 Fibonacci(71)*Lucas(1)/(1/2+sqrt(5)/2)^65 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(71)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(71)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(71)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(71)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(77) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(75) 8024922359499621 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(71) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(74) 8024922359499621 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(69)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(69)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(69)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(69)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(69)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(99) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(69)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(69)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(69)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(69)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(75) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(73) 8024922359499621 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(69) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(72) 8024922359499621 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(67)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(67)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(67)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(67)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(67)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(98) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(100) 8024922359499621 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(67)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(67)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(67)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(67)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(73) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(71) 8024922359499621 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(67) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(70) 8024922359499621 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(65)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(65)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(65)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(65)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(65)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(99) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(65)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(65)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(65)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(65)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(71) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(69) 8024922359499621 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(65) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(68) 8024922359499621 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(63)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(63)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(63)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(63)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(63)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(100) 8024922359499621 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^57 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(63)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(63)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(63)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(63)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(69) 8024922359499621 a006 5^(1/2)*Fibonacci(69)/Lucas(63)/sqrt(5) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(67) 8024922359499621 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(63) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(66) 8024922359499621 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(61)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(61)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(61)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(61)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(61)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(99) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(61)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(61)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(61)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(61)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(67) 8024922359499621 a006 5^(1/2)*Fibonacci(67)/Lucas(61)/sqrt(5) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(65) 8024922359499621 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(61) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(64) 8024922359499621 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(59)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(59)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(59)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(59)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(59)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(99) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(59)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(59)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(59)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(59)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(65) 8024922359499621 a006 5^(1/2)*Fibonacci(65)/Lucas(59)/sqrt(5) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(63) 8024922359499621 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(59) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(62) 8024922359499621 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(57)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(57)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(57)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(57)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(57)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(99) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(57)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(57)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(57)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(57)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(63) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(61) 8024922359499621 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(57) 8024922359499621 a001 2/225851433717*(1/2+1/2*5^(1/2))^62 8024922359499621 a001 139583862445/505019158607*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(55) 8024922359499621 a001 139583862445/2139295485799*312119004989^(2/11) 8024922359499621 a001 139583862445/1322157322203*817138163596^(3/19) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(60) 8024922359499621 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(55)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(55)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(55)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(55)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(55)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(98) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(100) 8024922359499621 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(99) 8024922359499621 a004 Fibonacci(55)*Lucas(1)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(55)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(55)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(55)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(55)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(61) 8024922359499621 a006 5^(1/2)*Fibonacci(61)/Lucas(55)/sqrt(5) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(59) 8024922359499621 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(55) 8024922359499621 a001 139583862445/14662949395604*505019158607^(1/4) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(55) 8024922359499621 a001 139583862445/1322157322203*192900153618^(1/6) 8024922359499621 a001 139583862445/5600748293801*192900153618^(2/9) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(55) 8024922359499621 a001 75283811239/440719107401*73681302247^(2/13) 8024922359499621 a001 365435296162/312119004989*73681302247^(1/13) 8024922359499621 a001 1/43133785636*(1/2+1/2*5^(1/2))^60 8024922359499621 a001 225851433717/119218851371*45537549124^(1/17) 8024922359499621 a001 75283811239/3020733700601*73681302247^(3/13) 8024922359499621 a001 139583862445/817138163596*73681302247^(2/13) 8024922359499621 a001 53316291173/192900153618*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(54) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(53) 8024922359499621 a001 182717648081/7331474697802*73681302247^(3/13) 8024922359499621 a001 365435296162/23725150497407*73681302247^(1/4) 8024922359499621 a001 139583862445/5600748293801*73681302247^(3/13) 8024922359499621 a001 139583862445/9062201101803*73681302247^(1/4) 8024922359499621 a001 32951280099/505019158607*28143753123^(1/5) 8024922359499621 a001 53316291173/505019158607*14662949395604^(1/7) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(53) 8024922359499621 a001 53316291173/9062201101803*312119004989^(3/11) 8024922359499621 a001 53316291173/1322157322203*312119004989^(1/5) 8024922359499621 a001 225851433717/119218851371*192900153618^(1/18) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(58) 8024922359499621 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(53) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(53)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(53)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(53)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(53)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(53)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(99) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(100) 8024922359499621 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(53)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(53)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(53)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(53)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(59) 8024922359499621 a006 5^(1/2)*Fibonacci(59)/Lucas(53)/sqrt(5) 8024922359499621 a001 53316291173/505019158607*192900153618^(1/6) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(57) 8024922359499621 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(53) 8024922359499621 a001 53316291173/2139295485799*192900153618^(2/9) 8024922359499621 a001 53316291173/9062201101803*192900153618^(5/18) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(53) 8024922359499621 a001 53316291173/312119004989*23725150497407^(1/8) 8024922359499621 a001 53316291173/119218851371*45537549124^(2/17) 8024922359499621 a001 139583862445/119218851371*73681302247^(1/13) 8024922359499621 a001 53316291173/312119004989*73681302247^(2/13) 8024922359499621 a001 139583862445/192900153618*28143753123^(1/10) 8024922359499621 a001 53316291173/2139295485799*73681302247^(3/13) 8024922359499621 a001 365435296162/505019158607*28143753123^(1/10) 8024922359499621 a001 53316291173/14662949395604*73681302247^(4/13) 8024922359499621 a001 591286729879/817138163596*28143753123^(1/10) 8024922359499621 a001 225851433717/312119004989*28143753123^(1/10) 8024922359499621 a001 53316291173/119218851371*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(53) 8024922359499621 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 86267571272/119218851371*28143753123^(1/10) 8024922359499621 a001 32264490531/10525900321*10749957122^(1/24) 8024922359499621 a001 2/32951280099*(1/2+1/2*5^(1/2))^58 8024922359499621 a001 32951280099/5600748293801*28143753123^(3/10) 8024922359499621 a001 86267571272/1322157322203*28143753123^(1/5) 8024922359499621 a001 32264490531/494493258286*28143753123^(1/5) 8024922359499621 a001 591286729879/9062201101803*28143753123^(1/5) 8024922359499621 a001 1548008755920/23725150497407*28143753123^(1/5) 8024922359499621 a001 365435296162/5600748293801*28143753123^(1/5) 8024922359499621 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 139583862445/2139295485799*28143753123^(1/5) 8024922359499621 a001 32951280099/45537549124*312119004989^(1/11) 8024922359499621 a001 20365011074/73681302247*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(52) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(51) 8024922359499621 a001 10182505537/7331474697802*45537549124^(6/17) 8024922359499621 a001 20365011074/9062201101803*45537549124^(1/3) 8024922359499621 a001 591286729879/192900153618*10749957122^(1/24) 8024922359499621 a001 10182505537/1730726404001*45537549124^(5/17) 8024922359499621 a001 1135099622/192933544679*28143753123^(3/10) 8024922359499621 a001 1548008755920/505019158607*10749957122^(1/24) 8024922359499621 a001 1515744265389/494493258286*10749957122^(1/24) 8024922359499621 a001 2504730781961/817138163596*10749957122^(1/24) 8024922359499621 a001 139583862445/73681302247*10749957122^(1/16) 8024922359499621 a001 10182505537/96450076809*45537549124^(3/17) 8024922359499621 a001 10182505537/408569081798*45537549124^(4/17) 8024922359499621 a001 956722026041/312119004989*10749957122^(1/24) 8024922359499621 a001 139583862445/23725150497407*28143753123^(3/10) 8024922359499621 a001 1602508992/9381251041*4106118243^(4/23) 8024922359499621 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 32951280099/45537549124*28143753123^(1/10) 8024922359499621 a001 21566892818/11384387281*45537549124^(1/17) 8024922359499621 a001 12586269025/119218851371*10749957122^(3/16) 8024922359499621 a001 365435296162/119218851371*10749957122^(1/24) 8024922359499621 a001 53316291173/9062201101803*28143753123^(3/10) 8024922359499621 a001 10182505537/96450076809*817138163596^(3/19) 8024922359499621 a001 10182505537/96450076809*14662949395604^(1/7) 8024922359499621 a001 21566892818/11384387281*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(54) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(51) 8024922359499621 a001 21566892818/11384387281*192900153618^(1/18) 8024922359499621 a001 10182505537/96450076809*192900153618^(1/6) 8024922359499621 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 20365011074/505019158607*312119004989^(1/5) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(56) 8024922359499621 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(51) 8024922359499621 a001 10182505537/1730726404001*312119004989^(3/11) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(51)/(1/2+sqrt(5)/2) 8024922359499621 a001 20365011074/23725150497407*817138163596^(1/3) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(51)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(51)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(51)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(51)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(98) 8024922359499621 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(100) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(51)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 10182505537/7331474697802*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(51)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(51)/(1/2+sqrt(5)/2)^4 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(51)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 10182505537/408569081798*817138163596^(4/19) 8024922359499621 a001 10182505537/408569081798*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(57) 8024922359499621 a001 10182505537/1730726404001*192900153618^(5/18) 8024922359499621 a001 10182505537/408569081798*192900153618^(2/9) 8024922359499621 a001 10182505537/7331474697802*192900153618^(1/3) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(55) 8024922359499621 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(51) 8024922359499621 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 86267571272/73681302247*10749957122^(1/12) 8024922359499621 a001 12586269025/192900153618*10749957122^(5/24) 8024922359499621 a001 10182505537/408569081798*73681302247^(3/13) 8024922359499621 a001 20365011074/1322157322203*73681302247^(1/4) 8024922359499621 a001 956722026041/505019158607*10749957122^(1/16) 8024922359499621 a001 20365011074/5600748293801*73681302247^(4/13) 8024922359499621 a001 591286729879/312119004989*10749957122^(1/16) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(53) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(51) 8024922359499621 a001 53316291173/45537549124*23725150497407^(1/16) 8024922359499621 a001 20365011074/119218851371*23725150497407^(1/8) 8024922359499621 a001 20365011074/119218851371*505019158607^(1/7) 8024922359499621 a001 53316291173/45537549124*73681302247^(1/13) 8024922359499621 a001 20365011074/119218851371*73681302247^(2/13) 8024922359499621 a001 225851433717/119218851371*10749957122^(1/16) 8024922359499621 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 75283811239/64300051206*10749957122^(1/12) 8024922359499621 a001 32951280099/73681302247*10749957122^(1/8) 8024922359499621 a001 2504730781961/2139295485799*10749957122^(1/12) 8024922359499621 a001 365435296162/312119004989*10749957122^(1/12) 8024922359499621 a001 20365011074/312119004989*28143753123^(1/5) 8024922359499621 a001 139583862445/119218851371*10749957122^(1/12) 8024922359499621 a001 139583862445/45537549124*10749957122^(1/24) 8024922359499621 a001 10182505537/1730726404001*28143753123^(3/10) 8024922359499621 a001 12586269025/505019158607*10749957122^(1/4) 8024922359499621 a001 10182505537/22768774562*45537549124^(2/17) 8024922359499621 a001 10182505537/22768774562*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(51) 8024922359499621 a001 21566892818/11384387281*10749957122^(1/16) 8024922359499621 a001 43133785636/96450076809*10749957122^(1/8) 8024922359499621 a001 225851433717/505019158607*10749957122^(1/8) 8024922359499621 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 591286729879/1322157322203*10749957122^(1/8) 8024922359499621 a001 182717648081/408569081798*10749957122^(1/8) 8024922359499621 a001 139583862445/312119004989*10749957122^(1/8) 8024922359499621 a001 53316291173/119218851371*10749957122^(1/8) 8024922359499621 a001 10983760033/64300051206*10749957122^(1/6) 8024922359499621 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 12586269025/1322157322203*10749957122^(7/24) 8024922359499621 a001 2/12586269025*(1/2+1/2*5^(1/2))^56 8024922359499621 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 53316291173/45537549124*10749957122^(1/12) 8024922359499621 a001 86267571272/28143753123*4106118243^(1/23) 8024922359499621 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 86267571272/505019158607*10749957122^(1/6) 8024922359499621 a001 75283811239/440719107401*10749957122^(1/6) 8024922359499621 a001 12586269025/2139295485799*10749957122^(5/16) 8024922359499621 a001 2504730781961/14662949395604*10749957122^(1/6) 8024922359499621 a001 32951280099/312119004989*10749957122^(3/16) 8024922359499621 a001 139583862445/817138163596*10749957122^(1/6) 8024922359499621 a001 53316291173/312119004989*10749957122^(1/6) 8024922359499621 a001 7778742049/28143753123*17393796001^(1/7) 8024922359499621 a001 21566892818/204284540899*10749957122^(3/16) 8024922359499621 a001 32951280099/505019158607*10749957122^(5/24) 8024922359499621 a001 225851433717/2139295485799*10749957122^(3/16) 8024922359499621 a001 12586269025/3461452808002*10749957122^(1/3) 8024922359499621 a001 182717648081/1730726404001*10749957122^(3/16) 8024922359499621 a001 139583862445/1322157322203*10749957122^(3/16) 8024922359499621 a001 53316291173/505019158607*10749957122^(3/16) 8024922359499621 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 86267571272/1322157322203*10749957122^(5/24) 8024922359499621 a001 32264490531/494493258286*10749957122^(5/24) 8024922359499621 a001 591286729879/9062201101803*10749957122^(5/24) 8024922359499621 a001 365435296162/5600748293801*10749957122^(5/24) 8024922359499621 a001 139583862445/2139295485799*10749957122^(5/24) 8024922359499621 a001 53316291173/817138163596*10749957122^(5/24) 8024922359499621 a001 7778742049/23725150497407*17393796001^(3/7) 8024922359499621 a001 10983760033/440719107401*10749957122^(1/4) 8024922359499621 a001 12586269025/9062201101803*10749957122^(3/8) 8024922359499621 a001 20365011074/119218851371*10749957122^(1/6) 8024922359499621 a001 12586269025/17393796001*312119004989^(1/11) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(50) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(49) 8024922359499621 a001 10182505537/22768774562*10749957122^(1/8) 8024922359499621 a001 10182505537/96450076809*10749957122^(3/16) 8024922359499621 a001 43133785636/1730726404001*10749957122^(1/4) 8024922359499621 a001 75283811239/3020733700601*10749957122^(1/4) 8024922359499621 a001 182717648081/7331474697802*10749957122^(1/4) 8024922359499621 a001 12586269025/17393796001*28143753123^(1/10) 8024922359499621 a001 139583862445/5600748293801*10749957122^(1/4) 8024922359499621 a001 53316291173/2139295485799*10749957122^(1/4) 8024922359499621 a001 20365011074/312119004989*10749957122^(5/24) 8024922359499621 a001 32951280099/3461452808002*10749957122^(7/24) 8024922359499621 a001 12586269025/23725150497407*10749957122^(5/12) 8024922359499621 a001 7778742049/817138163596*17393796001^(2/7) 8024922359499621 a001 32264490531/10525900321*4106118243^(1/23) 8024922359499621 a001 86267571272/9062201101803*10749957122^(7/24) 8024922359499621 a001 225851433717/23725150497407*10749957122^(7/24) 8024922359499621 a001 32951280099/5600748293801*10749957122^(5/16) 8024922359499621 a001 139583862445/14662949395604*10749957122^(7/24) 8024922359499621 a001 591286729879/192900153618*4106118243^(1/23) 8024922359499621 a001 1548008755920/505019158607*4106118243^(1/23) 8024922359499621 a001 1515744265389/494493258286*4106118243^(1/23) 8024922359499621 a001 2504730781961/817138163596*4106118243^(1/23) 8024922359499621 a001 956722026041/312119004989*4106118243^(1/23) 8024922359499621 a001 53316291173/5600748293801*10749957122^(7/24) 8024922359499621 a001 10182505537/408569081798*10749957122^(1/4) 8024922359499621 a001 365435296162/119218851371*4106118243^(1/23) 8024922359499621 a001 1135099622/192933544679*10749957122^(5/16) 8024922359499621 a001 10983760033/3020733700601*10749957122^(1/3) 8024922359499621 a001 139583862445/23725150497407*10749957122^(5/16) 8024922359499621 a001 53316291173/9062201101803*10749957122^(5/16) 8024922359499621 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 86267571272/23725150497407*10749957122^(1/3) 8024922359499621 a001 53316291173/14662949395604*10749957122^(1/3) 8024922359499621 a001 20365011074/2139295485799*10749957122^(7/24) 8024922359499621 a001 7778742049/73681302247*45537549124^(3/17) 8024922359499621 a001 32951280099/23725150497407*10749957122^(3/8) 8024922359499621 a001 139583862445/45537549124*4106118243^(1/23) 8024922359499621 a001 32951280099/17393796001*45537549124^(1/17) 8024922359499621 a001 7778742049/23725150497407*45537549124^(7/17) 8024922359499621 a001 7778742049/73681302247*817138163596^(3/19) 8024922359499621 a001 32951280099/17393796001*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(52) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(49) 8024922359499621 a001 32951280099/17393796001*192900153618^(1/18) 8024922359499621 a001 7778742049/73681302247*192900153618^(1/6) 8024922359499621 a001 7778742049/5600748293801*45537549124^(6/17) 8024922359499621 a001 7778742049/3461452808002*45537549124^(1/3) 8024922359499621 a001 7778742049/1322157322203*45537549124^(5/17) 8024922359499621 a001 10182505537/1730726404001*10749957122^(5/16) 8024922359499621 a001 7778742049/312119004989*45537549124^(4/17) 8024922359499621 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 7778742049/192900153618*312119004989^(1/5) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(54) 8024922359499621 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(49) 8024922359499621 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(49)/(1/2+sqrt(5)/2) 8024922359499621 a001 7778742049/1322157322203*312119004989^(3/11) 8024922359499621 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 7778742049/1322157322203*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(49)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(49)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(49)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(49)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(94) 8024922359499621 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(96) 8024922359499621 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(98) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(100) 8024922359499621 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(99) 8024922359499621 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(97) 8024922359499621 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(95) 8024922359499621 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(49)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 7778742049/5600748293801*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(49)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(49)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 7778742049/14662949395604*505019158607^(5/14) 8024922359499621 a001 7778742049/817138163596*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(49)/(1/2+sqrt(5)/2)^2 8024922359499621 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 7778742049/1322157322203*192900153618^(5/18) 8024922359499621 a001 7778742049/312119004989*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(55) 8024922359499621 a001 7778742049/23725150497407*192900153618^(7/18) 8024922359499621 a001 7778742049/312119004989*192900153618^(2/9) 8024922359499621 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 7778742049/505019158607*73681302247^(1/4) 8024922359499621 a001 7778742049/312119004989*73681302247^(3/13) 8024922359499621 a001 7778742049/2139295485799*73681302247^(4/13) 8024922359499621 a001 20365011074/5600748293801*10749957122^(1/3) 8024922359499621 a001 7778742049/119218851371*312119004989^(2/11) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(53) 8024922359499621 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(49) 8024922359499621 a001 7778742049/14662949395604*73681302247^(5/13) 8024922359499621 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 7778742049/119218851371*28143753123^(1/5) 8024922359499621 a001 32951280099/17393796001*10749957122^(1/16) 8024922359499621 a001 7778742049/1322157322203*28143753123^(3/10) 8024922359499621 a001 10983760033/9381251041*4106118243^(2/23) 8024922359499621 a001 10182505537/7331474697802*10749957122^(3/8) 8024922359499621 a001 53316291173/17393796001*10749957122^(1/24) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(51) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(49) 8024922359499621 a001 20365011074/17393796001*23725150497407^(1/16) 8024922359499621 a001 7778742049/45537549124*23725150497407^(1/8) 8024922359499621 a001 7778742049/45537549124*505019158607^(1/7) 8024922359499621 a001 20365011074/17393796001*73681302247^(1/13) 8024922359499621 a001 7778742049/14662949395604*28143753123^(2/5) 8024922359499621 a001 7778742049/45537549124*73681302247^(2/13) 8024922359499621 a001 686789568/10525900321*4106118243^(5/23) 8024922359499621 a001 20365011074/17393796001*10749957122^(1/12) 8024922359499621 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 7778742049/73681302247*10749957122^(3/16) 8024922359499621 a001 86267571272/73681302247*4106118243^(2/23) 8024922359499621 a001 75283811239/64300051206*4106118243^(2/23) 8024922359499621 a001 2504730781961/2139295485799*4106118243^(2/23) 8024922359499621 a001 365435296162/312119004989*4106118243^(2/23) 8024922359499621 a001 7778742049/119218851371*10749957122^(5/24) 8024922359499621 a001 12586269025/28143753123*4106118243^(3/23) 8024922359499621 a001 7778742049/45537549124*10749957122^(1/6) 8024922359499621 a001 139583862445/119218851371*4106118243^(2/23) 8024922359499621 a001 7778742049/312119004989*10749957122^(1/4) 8024922359499621 a001 53316291173/45537549124*4106118243^(2/23) 8024922359499621 a001 7778742049/817138163596*10749957122^(7/24) 8024922359499621 a001 1836311903/10749957122*1568397607^(2/11) 8024922359499621 a001 53316291173/17393796001*4106118243^(1/23) 8024922359499621 a001 7778742049/1322157322203*10749957122^(5/16) 8024922359499621 a001 7778742049/2139295485799*10749957122^(1/3) 8024922359499621 a001 7778742049/5600748293801*10749957122^(3/8) 8024922359499621 a001 7778742049/17393796001*45537549124^(2/17) 8024922359499621 a001 7778742049/17393796001*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(49) 8024922359499621 a001 267084832/10716675201*4106118243^(6/23) 8024922359499621 a001 7778742049/14662949395604*10749957122^(5/12) 8024922359499621 a001 7778742049/23725150497407*10749957122^(7/16) 8024922359499621 a001 32951280099/73681302247*4106118243^(3/23) 8024922359499621 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 43133785636/96450076809*4106118243^(3/23) 8024922359499621 a001 7778742049/17393796001*10749957122^(1/8) 8024922359499621 a001 225851433717/505019158607*4106118243^(3/23) 8024922359499621 a001 591286729879/1322157322203*4106118243^(3/23) 8024922359499621 a001 182717648081/408569081798*4106118243^(3/23) 8024922359499621 a001 139583862445/312119004989*4106118243^(3/23) 8024922359499621 a001 53316291173/119218851371*4106118243^(3/23) 8024922359499621 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 1/2403763488*(1/2+1/2*5^(1/2))^54 8024922359499621 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 10182505537/22768774562*4106118243^(3/23) 8024922359499621 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 12586269025/73681302247*4106118243^(4/23) 8024922359499621 a001 20365011074/17393796001*4106118243^(2/23) 8024922359499621 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 102287808/10745088481*4106118243^(7/23) 8024922359499621 a001 32951280099/10749957122*1568397607^(1/22) 8024922359499621 a001 10983760033/64300051206*4106118243^(4/23) 8024922359499621 a001 86267571272/505019158607*4106118243^(4/23) 8024922359499621 a001 75283811239/440719107401*4106118243^(4/23) 8024922359499621 a001 2504730781961/14662949395604*4106118243^(4/23) 8024922359499621 a001 139583862445/817138163596*4106118243^(4/23) 8024922359499621 a001 53316291173/312119004989*4106118243^(4/23) 8024922359499621 a001 20365011074/119218851371*4106118243^(4/23) 8024922359499621 a001 12586269025/6643838879*2537720636^(1/15) 8024922359499621 a001 12586269025/192900153618*4106118243^(5/23) 8024922359499621 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 1602508992/440719107401*4106118243^(8/23) 8024922359499621 a001 32951280099/505019158607*4106118243^(5/23) 8024922359499621 a001 86267571272/1322157322203*4106118243^(5/23) 8024922359499621 a001 32264490531/494493258286*4106118243^(5/23) 8024922359499621 a001 591286729879/9062201101803*4106118243^(5/23) 8024922359499621 a001 1548008755920/23725150497407*4106118243^(5/23) 8024922359499621 a001 365435296162/5600748293801*4106118243^(5/23) 8024922359499621 a001 139583862445/2139295485799*4106118243^(5/23) 8024922359499621 a001 53316291173/817138163596*4106118243^(5/23) 8024922359499621 a001 20365011074/312119004989*4106118243^(5/23) 8024922359499621 a001 2971215073/10749957122*17393796001^(1/7) 8024922359499621 a001 4807526976/6643838879*312119004989^(1/11) 8024922359499621 a001 2971215073/10749957122*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(48) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(47) 8024922359499621 a001 7778742049/45537549124*4106118243^(4/23) 8024922359499621 a001 4807526976/6643838879*28143753123^(1/10) 8024922359499621 a001 12586269025/505019158607*4106118243^(6/23) 8024922359499621 a001 7778742049/17393796001*4106118243^(3/23) 8024922359499621 a001 14930208/10749853441*4106118243^(9/23) 8024922359499621 a001 10983760033/440719107401*4106118243^(6/23) 8024922359499621 a001 43133785636/1730726404001*4106118243^(6/23) 8024922359499621 a001 75283811239/3020733700601*4106118243^(6/23) 8024922359499621 a001 182717648081/7331474697802*4106118243^(6/23) 8024922359499621 a001 139583862445/5600748293801*4106118243^(6/23) 8024922359499621 a001 53316291173/2139295485799*4106118243^(6/23) 8024922359499621 a001 10182505537/408569081798*4106118243^(6/23) 8024922359499621 a001 7778742049/119218851371*4106118243^(5/23) 8024922359499621 a001 12586269025/1322157322203*4106118243^(7/23) 8024922359499621 a001 1602508992/3020733700601*4106118243^(10/23) 8024922359499621 a001 86267571272/28143753123*1568397607^(1/22) 8024922359499621 a001 32951280099/3461452808002*4106118243^(7/23) 8024922359499621 a001 86267571272/9062201101803*4106118243^(7/23) 8024922359499621 a001 225851433717/23725150497407*4106118243^(7/23) 8024922359499621 a001 139583862445/14662949395604*4106118243^(7/23) 8024922359499621 a001 53316291173/5600748293801*4106118243^(7/23) 8024922359499621 a001 32264490531/10525900321*1568397607^(1/22) 8024922359499621 a001 591286729879/192900153618*1568397607^(1/22) 8024922359499621 a001 1548008755920/505019158607*1568397607^(1/22) 8024922359499621 a001 1515744265389/494493258286*1568397607^(1/22) 8024922359499621 a001 2504730781961/817138163596*1568397607^(1/22) 8024922359499621 a001 956722026041/312119004989*1568397607^(1/22) 8024922359499621 a001 20365011074/2139295485799*4106118243^(7/23) 8024922359499621 a001 365435296162/119218851371*1568397607^(1/22) 8024922359499621 a001 7778742049/312119004989*4106118243^(6/23) 8024922359499621 a001 139583862445/45537549124*1568397607^(1/22) 8024922359499621 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 12586269025/3461452808002*4106118243^(8/23) 8024922359499621 a001 4807526976/23725150497407*4106118243^(11/23) 8024922359499621 a001 10983760033/3020733700601*4106118243^(8/23) 8024922359499621 a001 86267571272/23725150497407*4106118243^(8/23) 8024922359499621 a001 53316291173/14662949395604*4106118243^(8/23) 8024922359499621 a001 20365011074/5600748293801*4106118243^(8/23) 8024922359499621 a001 2971215073/9062201101803*17393796001^(3/7) 8024922359499621 a001 2971215073/28143753123*45537549124^(3/17) 8024922359499621 a001 7778742049/817138163596*4106118243^(7/23) 8024922359499621 a001 12586269025/6643838879*45537549124^(1/17) 8024922359499621 a001 2971215073/28143753123*817138163596^(3/19) 8024922359499621 a001 2971215073/28143753123*14662949395604^(1/7) 8024922359499621 a001 12586269025/6643838879*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(50) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(47) 8024922359499621 a001 12586269025/6643838879*192900153618^(1/18) 8024922359499621 a001 2971215073/28143753123*192900153618^(1/6) 8024922359499621 a001 2971215073/312119004989*17393796001^(2/7) 8024922359499621 a001 53316291173/17393796001*1568397607^(1/22) 8024922359499621 a001 12586269025/6643838879*10749957122^(1/16) 8024922359499621 a001 12586269025/9062201101803*4106118243^(9/23) 8024922359499621 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 2971215073/9062201101803*45537549124^(7/17) 8024922359499621 a001 2971215073/73681302247*312119004989^(1/5) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(52) 8024922359499621 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(47) 8024922359499621 a001 2971215073/2139295485799*45537549124^(6/17) 8024922359499621 a001 2971215073/1322157322203*45537549124^(1/3) 8024922359499621 a001 2971215073/505019158607*45537549124^(5/17) 8024922359499621 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 2971215073/119218851371*45537549124^(4/17) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(47)/(1/2+sqrt(5)/2) 8024922359499621 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 2971215073/505019158607*312119004989^(3/11) 8024922359499621 a001 2971215073/14662949395604*312119004989^(2/5) 8024922359499621 a001 2971215073/505019158607*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(47)/(1/2+sqrt(5)/2)^3 8024922359499621 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^98 8024922359499621 a001 2971215073/3461452808002*817138163596^(1/3) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(47)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(47)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(47)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(90) 8024922359499621 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(92) 8024922359499621 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(94) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(96) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(98) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(100) 8024922359499621 a004 Fibonacci(47)*Lucas(1)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(99) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(97) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(95) 8024922359499621 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(93) 8024922359499621 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(91) 8024922359499621 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(47)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 2971215073/2139295485799*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(47)/(1/2+sqrt(5)/2)^6 8024922359499621 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 2971215073/5600748293801*505019158607^(5/14) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(47)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 2971215073/505019158607*192900153618^(5/18) 8024922359499621 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 2971215073/2139295485799*192900153618^(1/3) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(47)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 2971215073/9062201101803*192900153618^(7/18) 8024922359499621 a001 2971215073/312119004989*505019158607^(1/4) 8024922359499621 a001 2971215073/192900153618*73681302247^(1/4) 8024922359499621 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 2971215073/817138163596*73681302247^(4/13) 8024922359499621 a001 2971215073/119218851371*817138163596^(4/19) 8024922359499621 a001 2971215073/119218851371*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(53) 8024922359499621 a006 5^(1/2)*Fibonacci(53)/Lucas(47)/sqrt(5) 8024922359499621 a001 2971215073/5600748293801*73681302247^(5/13) 8024922359499621 a001 2971215073/119218851371*192900153618^(2/9) 8024922359499621 a001 2971215073/119218851371*73681302247^(3/13) 8024922359499621 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 2971215073/28143753123*10749957122^(3/16) 8024922359499621 a001 32951280099/23725150497407*4106118243^(9/23) 8024922359499621 a001 2971215073/505019158607*28143753123^(3/10) 8024922359499621 a001 2971215073/45537549124*312119004989^(2/11) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(51) 8024922359499621 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(47) 8024922359499621 a001 2971215073/5600748293801*28143753123^(2/5) 8024922359499621 a001 2971215073/45537549124*28143753123^(1/5) 8024922359499621 a001 20365011074/6643838879*10749957122^(1/24) 8024922359499621 a001 10182505537/7331474697802*4106118243^(9/23) 8024922359499621 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 7778742049/2139295485799*4106118243^(8/23) 8024922359499621 a001 12586269025/23725150497407*4106118243^(10/23) 8024922359499621 a001 2971215073/6643838879*2537720636^(2/15) 8024922359499621 a001 2971215073/119218851371*10749957122^(1/4) 8024922359499621 a001 2971215073/45537549124*10749957122^(5/24) 8024922359499621 a001 2971215073/312119004989*10749957122^(7/24) 8024922359499621 a001 2971215073/505019158607*10749957122^(5/16) 8024922359499621 a001 2971215073/817138163596*10749957122^(1/3) 8024922359499621 a001 20365011074/6643838879*4106118243^(1/23) 8024922359499621 a001 2971215073/2139295485799*10749957122^(3/8) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(49) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(47) 8024922359499621 a001 7778742049/6643838879*23725150497407^(1/16) 8024922359499621 a001 2971215073/17393796001*23725150497407^(1/8) 8024922359499621 a001 2971215073/17393796001*505019158607^(1/7) 8024922359499621 a001 7778742049/6643838879*73681302247^(1/13) 8024922359499621 a001 2971215073/17393796001*73681302247^(2/13) 8024922359499621 a001 2971215073/5600748293801*10749957122^(5/12) 8024922359499621 a001 2971215073/9062201101803*10749957122^(7/16) 8024922359499621 a001 7778742049/5600748293801*4106118243^(9/23) 8024922359499621 a001 2971215073/14662949395604*10749957122^(11/24) 8024922359499621 a001 7778742049/6643838879*10749957122^(1/12) 8024922359499621 a001 12586269025/10749957122*1568397607^(1/11) 8024922359499621 a001 2971215073/17393796001*10749957122^(1/6) 8024922359499621 a001 7778742049/14662949395604*4106118243^(10/23) 8024922359499621 a001 7778742049/6643838879*4106118243^(2/23) 8024922359499621 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 1836311903/28143753123*1568397607^(5/22) 8024922359499621 a001 10983760033/9381251041*1568397607^(1/11) 8024922359499621 a001 2971215073/45537549124*4106118243^(5/23) 8024922359499621 a001 2971215073/17393796001*4106118243^(4/23) 8024922359499621 a001 86267571272/73681302247*1568397607^(1/11) 8024922359499621 a001 75283811239/64300051206*1568397607^(1/11) 8024922359499621 a001 2504730781961/2139295485799*1568397607^(1/11) 8024922359499621 a001 365435296162/312119004989*1568397607^(1/11) 8024922359499621 a001 139583862445/119218851371*1568397607^(1/11) 8024922359499621 a001 53316291173/45537549124*1568397607^(1/11) 8024922359499621 a001 2403763488/5374978561*1568397607^(3/22) 8024922359499621 a001 2971215073/119218851371*4106118243^(6/23) 8024922359499621 a001 2971215073/312119004989*4106118243^(7/23) 8024922359499621 a001 20365011074/17393796001*1568397607^(1/11) 8024922359499621 a001 20365011074/6643838879*1568397607^(1/22) 8024922359499621 a001 1836311903/45537549124*1568397607^(1/4) 8024922359499621 a001 2971215073/817138163596*4106118243^(8/23) 8024922359499621 a001 2971215073/6643838879*45537549124^(2/17) 8024922359499621 a001 2971215073/6643838879*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(47) 8024922359499621 a001 2971215073/2139295485799*4106118243^(9/23) 8024922359499621 a001 2971215073/6643838879*10749957122^(1/8) 8024922359499621 a001 2971215073/5600748293801*4106118243^(10/23) 8024922359499621 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 2971215073/14662949395604*4106118243^(11/23) 8024922359499621 a001 1836311903/73681302247*1568397607^(3/11) 8024922359499621 a001 2971215073/23725150497407*4106118243^(1/2) 8024922359499621 a001 12586269025/28143753123*1568397607^(3/22) 8024922359499621 a001 2971215073/6643838879*4106118243^(3/23) 8024922359499621 a001 32951280099/73681302247*1568397607^(3/22) 8024922359499621 a001 43133785636/96450076809*1568397607^(3/22) 8024922359499621 a001 225851433717/505019158607*1568397607^(3/22) 8024922359499621 a001 591286729879/1322157322203*1568397607^(3/22) 8024922359499621 a001 182717648081/408569081798*1568397607^(3/22) 8024922359499621 a001 139583862445/312119004989*1568397607^(3/22) 8024922359499621 a001 53316291173/119218851371*1568397607^(3/22) 8024922359499621 a001 10182505537/22768774562*1568397607^(3/22) 8024922359499621 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 2/1836311903*(1/2+1/2*5^(1/2))^52 8024922359499621 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 7778742049/17393796001*1568397607^(3/22) 8024922359499621 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 7778742049/6643838879*1568397607^(1/11) 8024922359499621 a001 1602508992/9381251041*1568397607^(2/11) 8024922359499621 a001 233802911/1368706081*599074578^(4/21) 8024922359499621 a001 1134903170/23725150497407*2537720636^(5/9) 8024922359499621 a001 1836311903/192900153618*1568397607^(7/22) 8024922359499621 a001 12586269025/4106118243*599074578^(1/21) 8024922359499621 a001 567451585/7331474697802*2537720636^(8/15) 8024922359499621 a001 12586269025/73681302247*1568397607^(2/11) 8024922359499621 a001 10983760033/64300051206*1568397607^(2/11) 8024922359499621 a001 86267571272/505019158607*1568397607^(2/11) 8024922359499621 a001 75283811239/440719107401*1568397607^(2/11) 8024922359499621 a001 2504730781961/14662949395604*1568397607^(2/11) 8024922359499621 a001 139583862445/817138163596*1568397607^(2/11) 8024922359499621 a001 53316291173/312119004989*1568397607^(2/11) 8024922359499621 a001 20365011074/119218851371*1568397607^(2/11) 8024922359499621 a001 7778742049/45537549124*1568397607^(2/11) 8024922359499621 a001 1836311903/2537720636*2537720636^(1/9) 8024922359499621 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 567451585/1730726404001*2537720636^(7/15) 8024922359499621 a001 686789568/10525900321*1568397607^(5/22) 8024922359499621 a001 1134903170/2139295485799*2537720636^(4/9) 8024922359499621 a001 1836311903/505019158607*1568397607^(4/11) 8024922359499621 a001 12586269025/192900153618*1568397607^(5/22) 8024922359499621 a001 32951280099/505019158607*1568397607^(5/22) 8024922359499621 a001 86267571272/1322157322203*1568397607^(5/22) 8024922359499621 a001 32264490531/494493258286*1568397607^(5/22) 8024922359499621 a001 591286729879/9062201101803*1568397607^(5/22) 8024922359499621 a001 1548008755920/23725150497407*1568397607^(5/22) 8024922359499621 a001 365435296162/5600748293801*1568397607^(5/22) 8024922359499621 a001 139583862445/2139295485799*1568397607^(5/22) 8024922359499621 a001 53316291173/817138163596*1568397607^(5/22) 8024922359499621 a001 20365011074/312119004989*1568397607^(5/22) 8024922359499621 a001 4807526976/119218851371*1568397607^(1/4) 8024922359499621 a001 567451585/408569081798*2537720636^(2/5) 8024922359499621 a001 1134903170/4106118243*17393796001^(1/7) 8024922359499621 a001 7778742049/119218851371*1568397607^(5/22) 8024922359499621 a001 1134903170/4106118243*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(46) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^5/Lucas(45) 8024922359499621 a001 1836311903/2537720636*28143753123^(1/10) 8024922359499621 a001 2971215073/17393796001*1568397607^(2/11) 8024922359499621 a001 1144206275/28374454999*1568397607^(1/4) 8024922359499621 a001 2971215073/6643838879*1568397607^(3/22) 8024922359499621 a001 32951280099/817138163596*1568397607^(1/4) 8024922359499621 a001 86267571272/2139295485799*1568397607^(1/4) 8024922359499621 a001 225851433717/5600748293801*1568397607^(1/4) 8024922359499621 a001 591286729879/14662949395604*1568397607^(1/4) 8024922359499621 a001 365435296162/9062201101803*1568397607^(1/4) 8024922359499621 a001 139583862445/3461452808002*1568397607^(1/4) 8024922359499621 a001 53316291173/1322157322203*1568397607^(1/4) 8024922359499621 a001 20365011074/505019158607*1568397607^(1/4) 8024922359499621 a001 267084832/10716675201*1568397607^(3/11) 8024922359499621 a001 567451585/96450076809*2537720636^(1/3) 8024922359499621 a001 7778742049/192900153618*1568397607^(1/4) 8024922359499621 a001 1836311903/1322157322203*1568397607^(9/22) 8024922359499621 a001 12586269025/505019158607*1568397607^(3/11) 8024922359499621 a001 10983760033/440719107401*1568397607^(3/11) 8024922359499621 a001 43133785636/1730726404001*1568397607^(3/11) 8024922359499621 a001 75283811239/3020733700601*1568397607^(3/11) 8024922359499621 a001 182717648081/7331474697802*1568397607^(3/11) 8024922359499621 a001 139583862445/5600748293801*1568397607^(3/11) 8024922359499621 a001 53316291173/2139295485799*1568397607^(3/11) 8024922359499621 a001 10182505537/408569081798*1568397607^(3/11) 8024922359499621 a001 7778742049/312119004989*1568397607^(3/11) 8024922359499621 a001 567451585/22768774562*2537720636^(4/15) 8024922359499621 a001 2971215073/45537549124*1568397607^(5/22) 8024922359499621 a001 567451585/5374978561*2537720636^(1/5) 8024922359499621 a001 102287808/10745088481*1568397607^(7/22) 8024922359499621 a001 32951280099/10749957122*599074578^(1/21) 8024922359499621 a001 1134903170/17393796001*2537720636^(2/9) 8024922359499621 a001 2971215073/73681302247*1568397607^(1/4) 8024922359499621 a001 1836311903/3461452808002*1568397607^(5/11) 8024922359499621 a001 12586269025/1322157322203*1568397607^(7/22) 8024922359499621 a001 32951280099/3461452808002*1568397607^(7/22) 8024922359499621 a001 86267571272/9062201101803*1568397607^(7/22) 8024922359499621 a001 225851433717/23725150497407*1568397607^(7/22) 8024922359499621 a001 139583862445/14662949395604*1568397607^(7/22) 8024922359499621 a001 53316291173/5600748293801*1568397607^(7/22) 8024922359499621 a001 20365011074/2139295485799*1568397607^(7/22) 8024922359499621 a001 86267571272/28143753123*599074578^(1/21) 8024922359499621 a001 32264490531/10525900321*599074578^(1/21) 8024922359499621 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 7778742049/817138163596*1568397607^(7/22) 8024922359499621 a001 591286729879/192900153618*599074578^(1/21) 8024922359499621 a001 1548008755920/505019158607*599074578^(1/21) 8024922359499621 a001 1515744265389/494493258286*599074578^(1/21) 8024922359499621 a001 2504730781961/817138163596*599074578^(1/21) 8024922359499621 a001 956722026041/312119004989*599074578^(1/21) 8024922359499621 a001 365435296162/119218851371*599074578^(1/21) 8024922359499621 a001 139583862445/45537549124*599074578^(1/21) 8024922359499621 a001 2971215073/119218851371*1568397607^(3/11) 8024922359499621 a001 53316291173/17393796001*599074578^(1/21) 8024922359499621 a001 1201881744/634430159*2537720636^(1/15) 8024922359499621 a001 1602508992/440719107401*1568397607^(4/11) 8024922359499621 a001 7778742049/4106118243*599074578^(1/14) 8024922359499621 a001 1836311903/9062201101803*1568397607^(1/2) 8024922359499621 a001 567451585/5374978561*45537549124^(3/17) 8024922359499621 a001 12586269025/3461452808002*1568397607^(4/11) 8024922359499621 a001 1201881744/634430159*45537549124^(1/17) 8024922359499621 a001 567451585/5374978561*817138163596^(3/19) 8024922359499621 a001 1201881744/634430159*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(48) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(45) 8024922359499621 a001 1201881744/634430159*192900153618^(1/18) 8024922359499621 a001 567451585/5374978561*192900153618^(1/6) 8024922359499621 a001 1201881744/634430159*10749957122^(1/16) 8024922359499621 a001 10983760033/3020733700601*1568397607^(4/11) 8024922359499621 a001 86267571272/23725150497407*1568397607^(4/11) 8024922359499621 a001 53316291173/14662949395604*1568397607^(4/11) 8024922359499621 a001 567451585/5374978561*10749957122^(3/16) 8024922359499621 a001 20365011074/5600748293801*1568397607^(4/11) 8024922359499621 a001 7778742049/2139295485799*1568397607^(4/11) 8024922359499621 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 2971215073/312119004989*1568397607^(7/22) 8024922359499621 a001 567451585/1730726404001*17393796001^(3/7) 8024922359499621 a001 1134903170/28143753123*312119004989^(1/5) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(50) 8024922359499621 a004 Fibonacci(50)*(1/2+sqrt(5)/2)/Lucas(45) 8024922359499621 a001 1134903170/119218851371*17393796001^(2/7) 8024922359499621 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 567451585/7331474697802*45537549124^(8/17) 8024922359499621 a001 567451585/1730726404001*45537549124^(7/17) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(45)/(1/2+sqrt(5)/2) 8024922359499621 a001 567451585/96450076809*45537549124^(5/17) 8024922359499621 a001 567451585/408569081798*45537549124^(6/17) 8024922359499621 a001 1134903170/505019158607*45537549124^(1/3) 8024922359499621 a001 1134903170/73681302247*73681302247^(1/4) 8024922359499621 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 567451585/96450076809*312119004989^(3/11) 8024922359499621 a001 567451585/96450076809*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(45)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 567451585/96450076809*192900153618^(5/18) 8024922359499621 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 1134903170/23725150497407*312119004989^(5/11) 8024922359499621 a001 1134903170/5600748293801*312119004989^(2/5) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(45)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 1134903170/1322157322203*817138163596^(1/3) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(45)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(45)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(86) 8024922359499621 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(88) 8024922359499621 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(90) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(92) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(94) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(96) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(98) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(99) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(100) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(97) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(95) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(93) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(91) 8024922359499621 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(89) 8024922359499621 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(87) 8024922359499621 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(45)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 1134903170/2139295485799*23725150497407^(5/16) 8024922359499621 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 567451585/408569081798*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(45)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 1134903170/2139295485799*505019158607^(5/14) 8024922359499621 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(45)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 1134903170/312119004989*23725150497407^(1/4) 8024922359499621 a001 567451585/1730726404001*192900153618^(7/18) 8024922359499621 a001 567451585/7331474697802*192900153618^(4/9) 8024922359499621 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 1134903170/312119004989*73681302247^(4/13) 8024922359499621 a001 1134903170/119218851371*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(45)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 1134903170/119218851371*505019158607^(1/4) 8024922359499621 a001 567451585/7331474697802*73681302247^(6/13) 8024922359499621 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 567451585/96450076809*28143753123^(3/10) 8024922359499621 a001 567451585/22768774562*45537549124^(4/17) 8024922359499621 a001 567451585/22768774562*817138163596^(4/19) 8024922359499621 a001 567451585/22768774562*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(51) 8024922359499621 a006 5^(1/2)*Fibonacci(51)/Lucas(45)/sqrt(5) 8024922359499621 a001 567451585/22768774562*192900153618^(2/9) 8024922359499621 a001 1134903170/2139295485799*28143753123^(2/5) 8024922359499621 a001 567451585/22768774562*73681302247^(3/13) 8024922359499621 a001 20365011074/6643838879*599074578^(1/21) 8024922359499621 a001 1134903170/23725150497407*28143753123^(1/2) 8024922359499621 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 14930208/10749853441*1568397607^(9/22) 8024922359499621 a001 1134903170/119218851371*10749957122^(7/24) 8024922359499621 a001 567451585/22768774562*10749957122^(1/4) 8024922359499621 a001 567451585/96450076809*10749957122^(5/16) 8024922359499621 a001 1134903170/312119004989*10749957122^(1/3) 8024922359499621 a001 567451585/408569081798*10749957122^(3/8) 8024922359499621 a001 1134903170/17393796001*312119004989^(2/11) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(49) 8024922359499621 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^2/Lucas(45) 8024922359499621 a001 1134903170/17393796001*28143753123^(1/5) 8024922359499621 a001 1134903170/2139295485799*10749957122^(5/12) 8024922359499621 a001 7778742049/2537720636*10749957122^(1/24) 8024922359499621 a001 567451585/1730726404001*10749957122^(7/16) 8024922359499621 a001 1134903170/5600748293801*10749957122^(11/24) 8024922359499621 a001 567451585/7331474697802*10749957122^(1/2) 8024922359499621 a001 1134903170/17393796001*10749957122^(5/24) 8024922359499621 a001 7778742049/2537720636*4106118243^(1/23) 8024922359499621 a001 1836311903/23725150497407*1568397607^(6/11) 8024922359499621 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 12586269025/9062201101803*1568397607^(9/22) 8024922359499621 a001 32951280099/23725150497407*1568397607^(9/22) 8024922359499621 a001 10182505537/7331474697802*1568397607^(9/22) 8024922359499621 a001 7778742049/5600748293801*1568397607^(9/22) 8024922359499621 a001 2971215073/817138163596*1568397607^(4/11) 8024922359499621 a001 567451585/22768774562*4106118243^(6/23) 8024922359499621 a001 1134903170/17393796001*4106118243^(5/23) 8024922359499621 a001 1134903170/119218851371*4106118243^(7/23) 8024922359499621 a001 1134903170/312119004989*4106118243^(8/23) 8024922359499621 a001 1602508992/3020733700601*1568397607^(5/11) 8024922359499621 a001 7778742049/2537720636*1568397607^(1/22) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(47) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^4/Lucas(45) 8024922359499621 a001 2971215073/2537720636*23725150497407^(1/16) 8024922359499621 a001 1134903170/6643838879*23725150497407^(1/8) 8024922359499621 a001 1134903170/6643838879*505019158607^(1/7) 8024922359499621 a001 2971215073/2537720636*73681302247^(1/13) 8024922359499621 a001 1134903170/6643838879*73681302247^(2/13) 8024922359499621 a001 567451585/408569081798*4106118243^(9/23) 8024922359499621 a001 2971215073/2537720636*10749957122^(1/12) 8024922359499621 a001 1134903170/6643838879*10749957122^(1/6) 8024922359499621 a001 1134903170/2139295485799*4106118243^(10/23) 8024922359499621 a001 2971215073/2537720636*4106118243^(2/23) 8024922359499621 a001 12586269025/23725150497407*1568397607^(5/11) 8024922359499621 a001 1134903170/5600748293801*4106118243^(11/23) 8024922359499621 a001 1134903170/9062201101803*4106118243^(1/2) 8024922359499621 a001 567451585/7331474697802*4106118243^(12/23) 8024922359499621 a001 7778742049/14662949395604*1568397607^(5/11) 8024922359499621 a001 1134903170/6643838879*4106118243^(4/23) 8024922359499621 a001 2971215073/2139295485799*1568397607^(9/22) 8024922359499621 a001 10182505537/5374978561*599074578^(1/14) 8024922359499621 a001 4807526976/23725150497407*1568397607^(1/2) 8024922359499621 a001 1602508992/1368706081*599074578^(2/21) 8024922359499621 a001 53316291173/28143753123*599074578^(1/14) 8024922359499621 a001 139583862445/73681302247*599074578^(1/14) 8024922359499621 a001 182717648081/96450076809*599074578^(1/14) 8024922359499621 a001 956722026041/505019158607*599074578^(1/14) 8024922359499621 a001 10610209857723/5600748293801*599074578^(1/14) 8024922359499621 a001 591286729879/312119004989*599074578^(1/14) 8024922359499621 a001 225851433717/119218851371*599074578^(1/14) 8024922359499621 a001 21566892818/11384387281*599074578^(1/14) 8024922359499621 a001 32951280099/17393796001*599074578^(1/14) 8024922359499621 a001 2971215073/5600748293801*1568397607^(5/11) 8024922359499621 a001 701408733/2537720636*599074578^(1/6) 8024922359499621 a001 701408733/6643838879*599074578^(3/14) 8024922359499621 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 2971215073/2537720636*1568397607^(1/11) 8024922359499621 a001 12586269025/6643838879*599074578^(1/14) 8024922359499621 a001 2971215073/14662949395604*1568397607^(1/2) 8024922359499621 a001 701408733/10749957122*599074578^(5/21) 8024922359499621 a001 1134903170/17393796001*1568397607^(5/22) 8024922359499621 a001 1134903170/6643838879*1568397607^(2/11) 8024922359499621 a001 12586269025/10749957122*599074578^(2/21) 8024922359499621 a001 1134903170/28143753123*1568397607^(1/4) 8024922359499621 a001 10983760033/9381251041*599074578^(2/21) 8024922359499621 a001 86267571272/73681302247*599074578^(2/21) 8024922359499621 a001 75283811239/64300051206*599074578^(2/21) 8024922359499621 a001 2504730781961/2139295485799*599074578^(2/21) 8024922359499621 a001 365435296162/312119004989*599074578^(2/21) 8024922359499621 a001 139583862445/119218851371*599074578^(2/21) 8024922359499621 a001 53316291173/45537549124*599074578^(2/21) 8024922359499621 a001 567451585/22768774562*1568397607^(3/11) 8024922359499621 a001 20365011074/17393796001*599074578^(2/21) 8024922359499621 a001 1836311903/4106118243*599074578^(1/7) 8024922359499621 a001 1134903170/119218851371*1568397607^(7/22) 8024922359499621 a001 567451585/1268860318*2537720636^(2/15) 8024922359499621 a001 7778742049/2537720636*599074578^(1/21) 8024922359499621 a001 7778742049/6643838879*599074578^(2/21) 8024922359499621 a001 1134903170/312119004989*1568397607^(4/11) 8024922359499621 a001 567451585/1268860318*45537549124^(2/17) 8024922359499621 a001 567451585/1268860318*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^6/Lucas(45) 8024922359499621 a001 567451585/1268860318*10749957122^(1/8) 8024922359499621 a001 567451585/1268860318*4106118243^(3/23) 8024922359499621 a001 567451585/408569081798*1568397607^(9/22) 8024922359499621 a001 1134903170/2139295485799*1568397607^(5/11) 8024922359499621 a001 1201881744/634430159*599074578^(1/14) 8024922359499621 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 1134903170/5600748293801*1568397607^(1/2) 8024922359499621 a001 567451585/1268860318*1568397607^(3/22) 8024922359499621 a001 567451585/7331474697802*1568397607^(6/11) 8024922359499621 a001 2403763488/5374978561*599074578^(1/7) 8024922359499621 a001 233802911/9381251041*599074578^(2/7) 8024922359499621 a001 12586269025/28143753123*599074578^(1/7) 8024922359499621 a001 32951280099/73681302247*599074578^(1/7) 8024922359499621 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 43133785636/96450076809*599074578^(1/7) 8024922359499621 a001 225851433717/505019158607*599074578^(1/7) 8024922359499621 a001 591286729879/1322157322203*599074578^(1/7) 8024922359499621 a001 10610209857723/23725150497407*599074578^(1/7) 8024922359499621 a001 182717648081/408569081798*599074578^(1/7) 8024922359499621 a001 139583862445/312119004989*599074578^(1/7) 8024922359499621 a001 53316291173/119218851371*599074578^(1/7) 8024922359499621 a001 10182505537/22768774562*599074578^(1/7) 8024922359499621 a001 7778742049/17393796001*599074578^(1/7) 8024922359499621 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^88 8024922359499621 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 2/701408733*(1/2+1/2*5^(1/2))^50 8024922359499621 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 1836311903/6643838879*599074578^(1/6) 8024922359499621 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 2971215073/2537720636*599074578^(2/21) 8024922359499621 a001 2971215073/6643838879*599074578^(1/7) 8024922359499621 a001 4807526976/17393796001*599074578^(1/6) 8024922359499621 a001 1836311903/10749957122*599074578^(4/21) 8024922359499621 a001 12586269025/45537549124*599074578^(1/6) 8024922359499621 a001 32951280099/119218851371*599074578^(1/6) 8024922359499621 a001 86267571272/312119004989*599074578^(1/6) 8024922359499621 a001 225851433717/817138163596*599074578^(1/6) 8024922359499621 a001 1548008755920/5600748293801*599074578^(1/6) 8024922359499621 a001 139583862445/505019158607*599074578^(1/6) 8024922359499621 a001 53316291173/192900153618*599074578^(1/6) 8024922359499621 a001 20365011074/73681302247*599074578^(1/6) 8024922359499621 a001 7778742049/28143753123*599074578^(1/6) 8024922359499621 a001 2971215073/10749957122*599074578^(1/6) 8024922359499621 a001 1602508992/9381251041*599074578^(4/21) 8024922359499621 a001 701408733/73681302247*599074578^(1/3) 8024922359499621 a001 12586269025/73681302247*599074578^(4/21) 8024922359499621 a001 10983760033/64300051206*599074578^(4/21) 8024922359499621 a001 86267571272/505019158607*599074578^(4/21) 8024922359499621 a001 75283811239/440719107401*599074578^(4/21) 8024922359499621 a001 2504730781961/14662949395604*599074578^(4/21) 8024922359499621 a001 139583862445/817138163596*599074578^(4/21) 8024922359499621 a001 53316291173/312119004989*599074578^(4/21) 8024922359499621 a001 20365011074/119218851371*599074578^(4/21) 8024922359499621 a001 7778742049/45537549124*599074578^(4/21) 8024922359499621 a001 686789568/224056801*228826127^(1/20) 8024922359499621 a001 1836311903/17393796001*599074578^(3/14) 8024922359499621 a001 2971215073/17393796001*599074578^(4/21) 8024922359499621 a001 1134903170/4106118243*599074578^(1/6) 8024922359499621 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 701408733/119218851371*599074578^(5/14) 8024922359499621 a001 1201881744/11384387281*599074578^(3/14) 8024922359499621 a001 12586269025/119218851371*599074578^(3/14) 8024922359499621 a001 32951280099/312119004989*599074578^(3/14) 8024922359499621 a001 21566892818/204284540899*599074578^(3/14) 8024922359499621 a001 225851433717/2139295485799*599074578^(3/14) 8024922359499621 a001 182717648081/1730726404001*599074578^(3/14) 8024922359499621 a001 139583862445/1322157322203*599074578^(3/14) 8024922359499621 a001 53316291173/505019158607*599074578^(3/14) 8024922359499621 a001 10182505537/96450076809*599074578^(3/14) 8024922359499621 a001 7778742049/73681302247*599074578^(3/14) 8024922359499621 a001 1836311903/28143753123*599074578^(5/21) 8024922359499621 a001 2971215073/28143753123*599074578^(3/14) 8024922359499621 a001 267914296/1568397607*228826127^(1/5) 8024922359499621 a001 701408733/969323029*2537720636^(1/9) 8024922359499621 a001 686789568/10525900321*599074578^(5/21) 8024922359499621 a001 233802911/64300051206*599074578^(8/21) 8024922359499621 a001 433494437/1568397607*17393796001^(1/7) 8024922359499621 a001 433494437/1568397607*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^7/Lucas(44) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^5/Lucas(43) 8024922359499621 a001 701408733/969323029*28143753123^(1/10) 8024922359499621 a001 12586269025/192900153618*599074578^(5/21) 8024922359499621 a001 32951280099/505019158607*599074578^(5/21) 8024922359499621 a001 86267571272/1322157322203*599074578^(5/21) 8024922359499621 a001 32264490531/494493258286*599074578^(5/21) 8024922359499621 a001 591286729879/9062201101803*599074578^(5/21) 8024922359499621 a001 1548008755920/23725150497407*599074578^(5/21) 8024922359499621 a001 365435296162/5600748293801*599074578^(5/21) 8024922359499621 a001 139583862445/2139295485799*599074578^(5/21) 8024922359499621 a001 53316291173/817138163596*599074578^(5/21) 8024922359499621 a001 20365011074/312119004989*599074578^(5/21) 8024922359499621 a001 433494437/599074578*228826127^(1/8) 8024922359499621 a001 7778742049/119218851371*599074578^(5/21) 8024922359499621 a001 2971215073/45537549124*599074578^(5/21) 8024922359499621 a001 567451585/1268860318*599074578^(1/7) 8024922359499621 a001 1134903170/6643838879*599074578^(4/21) 8024922359499621 a001 1836311903/73681302247*599074578^(2/7) 8024922359499621 a001 567451585/5374978561*599074578^(3/14) 8024922359499621 a001 267084832/10716675201*599074578^(2/7) 8024922359499621 a001 701408733/505019158607*599074578^(3/7) 8024922359499621 a001 12586269025/505019158607*599074578^(2/7) 8024922359499621 a001 10983760033/440719107401*599074578^(2/7) 8024922359499621 a001 43133785636/1730726404001*599074578^(2/7) 8024922359499621 a001 75283811239/3020733700601*599074578^(2/7) 8024922359499621 a001 182717648081/7331474697802*599074578^(2/7) 8024922359499621 a001 139583862445/5600748293801*599074578^(2/7) 8024922359499621 a001 53316291173/2139295485799*599074578^(2/7) 8024922359499621 a001 10182505537/408569081798*599074578^(2/7) 8024922359499621 a001 7778742049/312119004989*599074578^(2/7) 8024922359499621 a001 2971215073/119218851371*599074578^(2/7) 8024922359499621 a001 1134903170/17393796001*599074578^(5/21) 8024922359499621 a001 1836311903/192900153618*599074578^(1/3) 8024922359499621 a001 12586269025/4106118243*228826127^(1/20) 8024922359499621 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 102287808/10745088481*599074578^(1/3) 8024922359499621 a001 233802911/440719107401*599074578^(10/21) 8024922359499621 a001 12586269025/1322157322203*599074578^(1/3) 8024922359499621 a001 32951280099/3461452808002*599074578^(1/3) 8024922359499621 a001 86267571272/9062201101803*599074578^(1/3) 8024922359499621 a001 225851433717/23725150497407*599074578^(1/3) 8024922359499621 a001 139583862445/14662949395604*599074578^(1/3) 8024922359499621 a001 53316291173/5600748293801*599074578^(1/3) 8024922359499621 a001 20365011074/2139295485799*599074578^(1/3) 8024922359499621 a001 7778742049/817138163596*599074578^(1/3) 8024922359499621 a001 1836311903/312119004989*599074578^(5/14) 8024922359499621 a001 32951280099/10749957122*228826127^(1/20) 8024922359499621 a001 2971215073/312119004989*599074578^(1/3) 8024922359499621 a001 567451585/22768774562*599074578^(2/7) 8024922359499621 a001 86267571272/28143753123*228826127^(1/20) 8024922359499621 a001 32264490531/10525900321*228826127^(1/20) 8024922359499621 a001 591286729879/192900153618*228826127^(1/20) 8024922359499621 a001 1548008755920/505019158607*228826127^(1/20) 8024922359499621 a001 1515744265389/494493258286*228826127^(1/20) 8024922359499621 a001 2504730781961/817138163596*228826127^(1/20) 8024922359499621 a001 956722026041/312119004989*228826127^(1/20) 8024922359499621 a001 365435296162/119218851371*228826127^(1/20) 8024922359499621 a001 139583862445/45537549124*228826127^(1/20) 8024922359499621 a001 53316291173/17393796001*228826127^(1/20) 8024922359499621 a001 433494437/23725150497407*2537720636^(3/5) 8024922359499621 a001 433494437/4106118243*2537720636^(1/5) 8024922359499621 a001 433494437/9062201101803*2537720636^(5/9) 8024922359499621 a001 20365011074/6643838879*228826127^(1/20) 8024922359499621 a001 433494437/5600748293801*2537720636^(8/15) 8024922359499621 a001 1201881744/204284540899*599074578^(5/14) 8024922359499621 a001 701408733/2139295485799*599074578^(1/2) 8024922359499621 a001 433494437/1322157322203*2537720636^(7/15) 8024922359499621 a001 12586269025/2139295485799*599074578^(5/14) 8024922359499621 a001 1836311903/969323029*2537720636^(1/15) 8024922359499621 a001 32951280099/5600748293801*599074578^(5/14) 8024922359499621 a001 1135099622/192933544679*599074578^(5/14) 8024922359499621 a001 139583862445/23725150497407*599074578^(5/14) 8024922359499621 a001 53316291173/9062201101803*599074578^(5/14) 8024922359499621 a001 433494437/817138163596*2537720636^(4/9) 8024922359499621 a001 10182505537/1730726404001*599074578^(5/14) 8024922359499621 a001 7778742049/1322157322203*599074578^(5/14) 8024922359499621 a001 1836311903/505019158607*599074578^(8/21) 8024922359499621 a001 433494437/312119004989*2537720636^(2/5) 8024922359499621 a001 433494437/4106118243*45537549124^(3/17) 8024922359499621 a001 1836311903/969323029*45537549124^(1/17) 8024922359499621 a001 433494437/4106118243*817138163596^(3/19) 8024922359499621 a001 433494437/4106118243*14662949395604^(1/7) 8024922359499621 a001 1836311903/969323029*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(46) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^3/Lucas(43) 8024922359499621 a001 1836311903/969323029*192900153618^(1/18) 8024922359499621 a001 433494437/4106118243*192900153618^(1/6) 8024922359499621 a001 1836311903/969323029*10749957122^(1/16) 8024922359499621 a001 433494437/4106118243*10749957122^(3/16) 8024922359499621 a001 433494437/73681302247*2537720636^(1/3) 8024922359499621 a001 2971215073/505019158607*599074578^(5/14) 8024922359499621 a001 433494437/17393796001*2537720636^(4/15) 8024922359499621 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 433494437/6643838879*2537720636^(2/9) 8024922359499621 a001 1602508992/440719107401*599074578^(8/21) 8024922359499621 a001 701408733/3461452808002*599074578^(11/21) 8024922359499621 a001 433494437/10749957122*312119004989^(1/5) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(48) 8024922359499621 a004 Fibonacci(48)*(1/2+sqrt(5)/2)/Lucas(43) 8024922359499621 a001 12586269025/3461452808002*599074578^(8/21) 8024922359499621 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 10983760033/3020733700601*599074578^(8/21) 8024922359499621 a001 86267571272/23725150497407*599074578^(8/21) 8024922359499621 a001 53316291173/14662949395604*599074578^(8/21) 8024922359499621 a001 20365011074/5600748293801*599074578^(8/21) 8024922359499621 a001 433494437/1322157322203*17393796001^(3/7) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(50) 8024922359499621 a004 Fibonacci(50)/Lucas(43)/(1/2+sqrt(5)/2) 8024922359499621 a001 433494437/28143753123*73681302247^(1/4) 8024922359499621 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 433494437/45537549124*17393796001^(2/7) 8024922359499621 a001 433494437/73681302247*45537549124^(5/17) 8024922359499621 a001 433494437/23725150497407*45537549124^(9/17) 8024922359499621 a001 433494437/5600748293801*45537549124^(8/17) 8024922359499621 a001 433494437/1322157322203*45537549124^(7/17) 8024922359499621 a001 433494437/192900153618*45537549124^(1/3) 8024922359499621 a001 433494437/73681302247*312119004989^(3/11) 8024922359499621 a001 433494437/73681302247*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(43)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 433494437/73681302247*192900153618^(5/18) 8024922359499621 a001 433494437/312119004989*45537549124^(6/17) 8024922359499621 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(43)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 433494437/9062201101803*312119004989^(5/11) 8024922359499621 a001 433494437/505019158607*817138163596^(1/3) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(43)/(1/2+sqrt(5)/2)^7 8024922359499621 a001 433494437/2139295485799*312119004989^(2/5) 8024922359499621 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^94 8024922359499621 a001 433494437/23725150497407*817138163596^(9/19) 8024922359499621 a001 433494437/1322157322203*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(43)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 433494437/23725150497407*14662949395604^(3/7) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(82) 8024922359499621 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(84) 8024922359499621 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(86) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(88) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(90) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(92) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(94) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(96) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(98) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(100) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(99) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(97) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(95) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(93) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(91) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(89) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(87) 8024922359499621 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^51 8024922359499621 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(85) 8024922359499621 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(83) 8024922359499621 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 433494437/9062201101803*3461452808002^(5/12) 8024922359499621 a001 433494437/5600748293801*14662949395604^(8/21) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2)^10 8024922359499621 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(43)/(1/2+sqrt(5)/2)^8 8024922359499621 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^93 8024922359499621 a001 433494437/1322157322203*192900153618^(7/18) 8024922359499621 a001 433494437/312119004989*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(43)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 433494437/5600748293801*192900153618^(4/9) 8024922359499621 a001 433494437/23725150497407*192900153618^(1/2) 8024922359499621 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(43)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 433494437/119218851371*23725150497407^(1/4) 8024922359499621 a001 433494437/5600748293801*73681302247^(6/13) 8024922359499621 a001 433494437/14662949395604*73681302247^(1/2) 8024922359499621 a001 433494437/119218851371*73681302247^(4/13) 8024922359499621 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 433494437/73681302247*28143753123^(3/10) 8024922359499621 a001 7778742049/2139295485799*599074578^(8/21) 8024922359499621 a001 433494437/45537549124*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(51) 8024922359499621 a004 Fibonacci(51)/Lucas(43)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 433494437/45537549124*505019158607^(1/4) 8024922359499621 a001 433494437/817138163596*28143753123^(2/5) 8024922359499621 a001 433494437/9062201101803*28143753123^(1/2) 8024922359499621 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 433494437/73681302247*10749957122^(5/16) 8024922359499621 a001 433494437/119218851371*10749957122^(1/3) 8024922359499621 a001 433494437/45537549124*10749957122^(7/24) 8024922359499621 a001 433494437/17393796001*45537549124^(4/17) 8024922359499621 a001 433494437/312119004989*10749957122^(3/8) 8024922359499621 a001 433494437/17393796001*817138163596^(4/19) 8024922359499621 a001 433494437/17393796001*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(49) 8024922359499621 a006 5^(1/2)*Fibonacci(49)/Lucas(43)/sqrt(5) 8024922359499621 a001 433494437/17393796001*192900153618^(2/9) 8024922359499621 a001 433494437/17393796001*73681302247^(3/13) 8024922359499621 a001 433494437/817138163596*10749957122^(5/12) 8024922359499621 a001 433494437/1322157322203*10749957122^(7/16) 8024922359499621 a001 433494437/2139295485799*10749957122^(11/24) 8024922359499621 a001 433494437/5600748293801*10749957122^(1/2) 8024922359499621 a001 433494437/14662949395604*10749957122^(13/24) 8024922359499621 a001 433494437/23725150497407*10749957122^(9/16) 8024922359499621 a001 433494437/17393796001*10749957122^(1/4) 8024922359499621 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 433494437/45537549124*4106118243^(7/23) 8024922359499621 a001 433494437/17393796001*4106118243^(6/23) 8024922359499621 a001 2971215073/817138163596*599074578^(8/21) 8024922359499621 a001 1134903170/119218851371*599074578^(1/3) 8024922359499621 a001 433494437/119218851371*4106118243^(8/23) 8024922359499621 a001 433494437/6643838879*312119004989^(2/11) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(47) 8024922359499621 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^2/Lucas(43) 8024922359499621 a001 433494437/6643838879*28143753123^(1/5) 8024922359499621 a001 2971215073/969323029*10749957122^(1/24) 8024922359499621 a001 433494437/312119004989*4106118243^(9/23) 8024922359499621 a001 433494437/6643838879*10749957122^(5/24) 8024922359499621 a001 2971215073/969323029*4106118243^(1/23) 8024922359499621 a001 433494437/817138163596*4106118243^(10/23) 8024922359499621 a001 433494437/2139295485799*4106118243^(11/23) 8024922359499621 a001 433494437/3461452808002*4106118243^(1/2) 8024922359499621 a001 433494437/5600748293801*4106118243^(12/23) 8024922359499621 a001 433494437/14662949395604*4106118243^(13/23) 8024922359499621 a001 433494437/6643838879*4106118243^(5/23) 8024922359499621 a001 2971215073/969323029*1568397607^(1/22) 8024922359499621 a001 7778742049/2537720636*228826127^(1/20) 8024922359499621 a001 433494437/1568397607*599074578^(1/6) 8024922359499621 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 1836311903/1322157322203*599074578^(3/7) 8024922359499621 a001 567451585/96450076809*599074578^(5/14) 8024922359499621 a001 433494437/10749957122*1568397607^(1/4) 8024922359499621 a001 433494437/17393796001*1568397607^(3/11) 8024922359499621 a001 433494437/6643838879*1568397607^(5/22) 8024922359499621 a001 14930208/10749853441*599074578^(3/7) 8024922359499621 a001 233802911/3020733700601*599074578^(4/7) 8024922359499621 a001 12586269025/9062201101803*599074578^(3/7) 8024922359499621 a001 32951280099/23725150497407*599074578^(3/7) 8024922359499621 a001 433494437/45537549124*1568397607^(7/22) 8024922359499621 a001 10182505537/7331474697802*599074578^(3/7) 8024922359499621 a001 7778742049/5600748293801*599074578^(3/7) 8024922359499621 a001 1836311903/969323029*599074578^(1/14) 8024922359499621 a001 433494437/119218851371*1568397607^(4/11) 8024922359499621 a001 1134903170/312119004989*599074578^(8/21) 8024922359499621 a001 2971215073/2139295485799*599074578^(3/7) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^8/Lucas(45) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^4/Lucas(43) 8024922359499621 a001 1134903170/969323029*23725150497407^(1/16) 8024922359499621 a001 433494437/2537720636*23725150497407^(1/8) 8024922359499621 a001 433494437/2537720636*505019158607^(1/7) 8024922359499621 a001 1134903170/969323029*73681302247^(1/13) 8024922359499621 a001 433494437/2537720636*73681302247^(2/13) 8024922359499621 a001 2971215073/969323029*599074578^(1/21) 8024922359499621 a001 1134903170/969323029*10749957122^(1/12) 8024922359499621 a001 433494437/2537720636*10749957122^(1/6) 8024922359499621 a001 1134903170/969323029*4106118243^(2/23) 8024922359499621 a001 433494437/2537720636*4106118243^(4/23) 8024922359499621 a001 433494437/312119004989*1568397607^(9/22) 8024922359499621 a001 433494437/817138163596*1568397607^(5/11) 8024922359499621 a001 1134903170/969323029*1568397607^(1/11) 8024922359499621 a001 1836311903/3461452808002*599074578^(10/21) 8024922359499621 a001 433494437/2139295485799*1568397607^(1/2) 8024922359499621 a001 433494437/5600748293801*1568397607^(6/11) 8024922359499621 a001 433494437/2537720636*1568397607^(2/11) 8024922359499621 a001 433494437/14662949395604*1568397607^(13/22) 8024922359499621 a001 1602508992/3020733700601*599074578^(10/21) 8024922359499621 a001 701408733/23725150497407*599074578^(13/21) 8024922359499621 a001 12586269025/23725150497407*599074578^(10/21) 8024922359499621 a001 7778742049/14662949395604*599074578^(10/21) 8024922359499621 a001 1836311903/5600748293801*599074578^(1/2) 8024922359499621 a001 567451585/408569081798*599074578^(3/7) 8024922359499621 a001 2971215073/5600748293801*599074578^(10/21) 8024922359499621 a001 1201881744/3665737348901*599074578^(1/2) 8024922359499621 a001 7778742049/23725150497407*599074578^(1/2) 8024922359499621 a001 1836311903/9062201101803*599074578^(11/21) 8024922359499621 a001 2971215073/9062201101803*599074578^(1/2) 8024922359499621 a001 1836311903/1568397607*228826127^(1/10) 8024922359499621 a001 4807526976/23725150497407*599074578^(11/21) 8024922359499621 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 1134903170/2139295485799*599074578^(10/21) 8024922359499621 a001 2971215073/14662949395604*599074578^(11/21) 8024922359499621 a001 1134903170/969323029*599074578^(2/21) 8024922359499621 a001 1836311903/23725150497407*599074578^(4/7) 8024922359499621 a001 567451585/1730726404001*599074578^(1/2) 8024922359499621 a001 433494437/4106118243*599074578^(3/14) 8024922359499621 a001 1134903170/5600748293801*599074578^(11/21) 8024922359499621 a001 567451585/7331474697802*599074578^(4/7) 8024922359499621 a001 433494437/2537720636*599074578^(4/21) 8024922359499621 a001 433494437/6643838879*599074578^(5/21) 8024922359499621 a001 1602508992/1368706081*228826127^(1/10) 8024922359499621 a001 433494437/17393796001*599074578^(2/7) 8024922359499621 a001 12586269025/10749957122*228826127^(1/10) 8024922359499621 a001 10983760033/9381251041*228826127^(1/10) 8024922359499621 a001 86267571272/73681302247*228826127^(1/10) 8024922359499621 a001 75283811239/64300051206*228826127^(1/10) 8024922359499621 a001 2504730781961/2139295485799*228826127^(1/10) 8024922359499621 a001 365435296162/312119004989*228826127^(1/10) 8024922359499621 a001 139583862445/119218851371*228826127^(1/10) 8024922359499621 a001 53316291173/45537549124*228826127^(1/10) 8024922359499621 a001 20365011074/17393796001*228826127^(1/10) 8024922359499621 a001 267914296/4106118243*228826127^(1/4) 8024922359499621 a001 7778742049/6643838879*228826127^(1/10) 8024922359499621 a001 433494437/45537549124*599074578^(1/3) 8024922359499621 a001 2971215073/969323029*228826127^(1/20) 8024922359499621 a001 701408733/1568397607*228826127^(3/20) 8024922359499621 a001 433494437/73681302247*599074578^(5/14) 8024922359499621 a001 2971215073/2537720636*228826127^(1/10) 8024922359499621 a001 433494437/969323029*2537720636^(2/15) 8024922359499621 a001 433494437/119218851371*599074578^(8/21) 8024922359499621 a001 433494437/969323029*45537549124^(2/17) 8024922359499621 a001 433494437/969323029*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^6/Lucas(43) 8024922359499621 a001 433494437/969323029*10749957122^(1/8) 8024922359499621 a001 1134903170/1568397607*228826127^(1/8) 8024922359499621 a001 433494437/969323029*4106118243^(3/23) 8024922359499621 a001 433494437/969323029*1568397607^(3/22) 8024922359499621 a001 433494437/312119004989*599074578^(3/7) 8024922359499621 a001 2971215073/4106118243*228826127^(1/8) 8024922359499621 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 7778742049/10749957122*228826127^(1/8) 8024922359499621 a001 20365011074/28143753123*228826127^(1/8) 8024922359499621 a001 53316291173/73681302247*228826127^(1/8) 8024922359499621 a001 139583862445/192900153618*228826127^(1/8) 8024922359499621 a001 365435296162/505019158607*228826127^(1/8) 8024922359499621 a001 10610209857723/14662949395604*228826127^(1/8) 8024922359499621 a001 591286729879/817138163596*228826127^(1/8) 8024922359499621 a001 225851433717/312119004989*228826127^(1/8) 8024922359499621 a001 86267571272/119218851371*228826127^(1/8) 8024922359499621 a001 32951280099/45537549124*228826127^(1/8) 8024922359499621 a001 12586269025/17393796001*228826127^(1/8) 8024922359499621 a001 433494437/817138163596*599074578^(10/21) 8024922359499621 a001 4807526976/6643838879*228826127^(1/8) 8024922359499621 a001 433494437/1322157322203*599074578^(1/2) 8024922359499621 a001 1836311903/2537720636*228826127^(1/8) 8024922359499621 a001 433494437/2139295485799*599074578^(11/21) 8024922359499621 a001 433494437/969323029*599074578^(1/7) 8024922359499621 a001 433494437/5600748293801*599074578^(4/7) 8024922359499621 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 1836311903/4106118243*228826127^(3/20) 8024922359499621 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^84 8024922359499621 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^86 8024922359499621 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^88 8024922359499621 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 1/133957148*(1/2+1/2*5^(1/2))^48 8024922359499621 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^87 8024922359499621 a001 433494437/14662949395604*599074578^(13/21) 8024922359499621 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^85 8024922359499621 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 2403763488/5374978561*228826127^(3/20) 8024922359499621 a001 433494437/23725150497407*599074578^(9/14) 8024922359499621 a001 12586269025/28143753123*228826127^(3/20) 8024922359499621 a001 32951280099/73681302247*228826127^(3/20) 8024922359499621 a001 43133785636/96450076809*228826127^(3/20) 8024922359499621 a001 225851433717/505019158607*228826127^(3/20) 8024922359499621 a001 591286729879/1322157322203*228826127^(3/20) 8024922359499621 a001 10610209857723/23725150497407*228826127^(3/20) 8024922359499621 a001 182717648081/408569081798*228826127^(3/20) 8024922359499621 a001 139583862445/312119004989*228826127^(3/20) 8024922359499621 a001 53316291173/119218851371*228826127^(3/20) 8024922359499621 a001 10182505537/22768774562*228826127^(3/20) 8024922359499621 a001 7778742049/17393796001*228826127^(3/20) 8024922359499621 a001 2971215073/6643838879*228826127^(3/20) 8024922359499621 a001 133957148/5374978561*228826127^(3/10) 8024922359499621 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 701408733/370248451*141422324^(1/13) 8024922359499621 a001 701408733/969323029*228826127^(1/8) 8024922359499621 a001 1134903170/969323029*228826127^(1/10) 8024922359499621 a001 567451585/1268860318*228826127^(3/20) 8024922359499621 a001 233802911/1368706081*228826127^(1/5) 8024922359499621 a001 1836311903/10749957122*228826127^(1/5) 8024922359499621 a001 1602508992/9381251041*228826127^(1/5) 8024922359499621 a001 12586269025/73681302247*228826127^(1/5) 8024922359499621 a001 10983760033/64300051206*228826127^(1/5) 8024922359499621 a001 86267571272/505019158607*228826127^(1/5) 8024922359499621 a001 75283811239/440719107401*228826127^(1/5) 8024922359499621 a001 2504730781961/14662949395604*228826127^(1/5) 8024922359499621 a001 139583862445/817138163596*228826127^(1/5) 8024922359499621 a001 53316291173/312119004989*228826127^(1/5) 8024922359499621 a001 20365011074/119218851371*228826127^(1/5) 8024922359499621 a001 7778742049/45537549124*228826127^(1/5) 8024922359499621 a001 2971215073/17393796001*228826127^(1/5) 8024922359499621 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 267914296/28143753123*228826127^(7/20) 8024922359499621 a001 1134903170/6643838879*228826127^(1/5) 8024922359499621 a001 1836311903/599074578*87403803^(1/19) 8024922359499621 a001 701408733/10749957122*228826127^(1/4) 8024922359499621 a001 66978574/11384387281*228826127^(3/8) 8024922359499621 a001 267914296/370248451*2537720636^(1/9) 8024922359499621 a001 165580141/599074578*17393796001^(1/7) 8024922359499621 a001 267914296/370248451*312119004989^(1/11) 8024922359499621 a001 165580141/599074578*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^7/Lucas(42) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^5/Lucas(41) 8024922359499621 a001 267914296/370248451*28143753123^(1/10) 8024922359499621 a001 1836311903/28143753123*228826127^(1/4) 8024922359499621 a001 686789568/10525900321*228826127^(1/4) 8024922359499621 a001 12586269025/192900153618*228826127^(1/4) 8024922359499621 a001 32951280099/505019158607*228826127^(1/4) 8024922359499621 a001 86267571272/1322157322203*228826127^(1/4) 8024922359499621 a001 32264490531/494493258286*228826127^(1/4) 8024922359499621 a001 591286729879/9062201101803*228826127^(1/4) 8024922359499621 a001 1548008755920/23725150497407*228826127^(1/4) 8024922359499621 a001 365435296162/5600748293801*228826127^(1/4) 8024922359499621 a001 139583862445/2139295485799*228826127^(1/4) 8024922359499621 a001 53316291173/817138163596*228826127^(1/4) 8024922359499621 a001 20365011074/312119004989*228826127^(1/4) 8024922359499621 a001 7778742049/119218851371*228826127^(1/4) 8024922359499621 a001 2971215073/45537549124*228826127^(1/4) 8024922359499621 a001 267914296/73681302247*228826127^(2/5) 8024922359499621 a001 1134903170/17393796001*228826127^(1/4) 8024922359499621 a001 165580141/599074578*599074578^(1/6) 8024922359499621 a001 433494437/969323029*228826127^(3/20) 8024922359499621 a001 433494437/2537720636*228826127^(1/5) 8024922359499621 a001 233802911/9381251041*228826127^(3/10) 8024922359499621 a001 1836311903/73681302247*228826127^(3/10) 8024922359499621 a001 34111385/199691526*87403803^(4/19) 8024922359499621 a001 267084832/10716675201*228826127^(3/10) 8024922359499621 a001 12586269025/505019158607*228826127^(3/10) 8024922359499621 a001 10983760033/440719107401*228826127^(3/10) 8024922359499621 a001 43133785636/1730726404001*228826127^(3/10) 8024922359499621 a001 75283811239/3020733700601*228826127^(3/10) 8024922359499621 a001 182717648081/7331474697802*228826127^(3/10) 8024922359499621 a001 139583862445/5600748293801*228826127^(3/10) 8024922359499621 a001 53316291173/2139295485799*228826127^(3/10) 8024922359499621 a001 10182505537/408569081798*228826127^(3/10) 8024922359499621 a001 7778742049/312119004989*228826127^(3/10) 8024922359499621 a001 2971215073/119218851371*228826127^(3/10) 8024922359499621 a001 133957148/96450076809*228826127^(9/20) 8024922359499621 a001 433494437/6643838879*228826127^(1/4) 8024922359499621 a001 567451585/22768774562*228826127^(3/10) 8024922359499621 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^78 8024922359499621 a001 701408733/73681302247*228826127^(7/20) 8024922359499621 a001 686789568/224056801*87403803^(1/19) 8024922359499621 a001 1836311903/192900153618*228826127^(7/20) 8024922359499621 a001 102287808/10745088481*228826127^(7/20) 8024922359499621 a001 12586269025/1322157322203*228826127^(7/20) 8024922359499621 a001 32951280099/3461452808002*228826127^(7/20) 8024922359499621 a001 86267571272/9062201101803*228826127^(7/20) 8024922359499621 a001 225851433717/23725150497407*228826127^(7/20) 8024922359499621 a001 139583862445/14662949395604*228826127^(7/20) 8024922359499621 a001 53316291173/5600748293801*228826127^(7/20) 8024922359499621 a001 20365011074/2139295485799*228826127^(7/20) 8024922359499621 a001 7778742049/817138163596*228826127^(7/20) 8024922359499621 a001 2971215073/312119004989*228826127^(7/20) 8024922359499621 a001 701408733/119218851371*228826127^(3/8) 8024922359499621 a001 267914296/505019158607*228826127^(1/2) 8024922359499621 a001 433494437/17393796001*228826127^(3/10) 8024922359499621 a001 12586269025/4106118243*87403803^(1/19) 8024922359499621 a001 1134903170/119218851371*228826127^(7/20) 8024922359499621 a001 165580141/1568397607*2537720636^(1/5) 8024922359499621 a001 701408733/370248451*2537720636^(1/15) 8024922359499621 a001 32951280099/10749957122*87403803^(1/19) 8024922359499621 a001 86267571272/28143753123*87403803^(1/19) 8024922359499621 a001 165580141/1568397607*45537549124^(3/17) 8024922359499621 a001 701408733/370248451*45537549124^(1/17) 8024922359499621 a001 165580141/1568397607*817138163596^(3/19) 8024922359499621 a001 165580141/1568397607*14662949395604^(1/7) 8024922359499621 a001 701408733/370248451*14662949395604^(1/21) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^9/Lucas(44) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^3/Lucas(41) 8024922359499621 a001 165580141/1568397607*192900153618^(1/6) 8024922359499621 a001 701408733/370248451*10749957122^(1/16) 8024922359499621 a001 32264490531/10525900321*87403803^(1/19) 8024922359499621 a001 591286729879/192900153618*87403803^(1/19) 8024922359499621 a001 1548008755920/505019158607*87403803^(1/19) 8024922359499621 a001 1515744265389/494493258286*87403803^(1/19) 8024922359499621 a001 2504730781961/817138163596*87403803^(1/19) 8024922359499621 a001 956722026041/312119004989*87403803^(1/19) 8024922359499621 a001 365435296162/119218851371*87403803^(1/19) 8024922359499621 a001 165580141/1568397607*10749957122^(3/16) 8024922359499621 a001 139583862445/45537549124*87403803^(1/19) 8024922359499621 a001 53316291173/17393796001*87403803^(1/19) 8024922359499621 a001 267914296/370248451*228826127^(1/8) 8024922359499621 a001 165580141/370248451*141422324^(2/13) 8024922359499621 a001 20365011074/6643838879*87403803^(1/19) 8024922359499621 a001 7778742049/2537720636*87403803^(1/19) 8024922359499621 a001 701408733/370248451*599074578^(1/14) 8024922359499621 a001 1836311903/312119004989*228826127^(3/8) 8024922359499621 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 1201881744/204284540899*228826127^(3/8) 8024922359499621 a001 12586269025/2139295485799*228826127^(3/8) 8024922359499621 a001 32951280099/5600748293801*228826127^(3/8) 8024922359499621 a001 1135099622/192933544679*228826127^(3/8) 8024922359499621 a001 139583862445/23725150497407*228826127^(3/8) 8024922359499621 a001 53316291173/9062201101803*228826127^(3/8) 8024922359499621 a001 10182505537/1730726404001*228826127^(3/8) 8024922359499621 a001 7778742049/1322157322203*228826127^(3/8) 8024922359499621 a001 2971215073/505019158607*228826127^(3/8) 8024922359499621 a001 165580141/9062201101803*2537720636^(3/5) 8024922359499621 a001 165580141/3461452808002*2537720636^(5/9) 8024922359499621 a001 165580141/2139295485799*2537720636^(8/15) 8024922359499621 a001 165580141/505019158607*2537720636^(7/15) 8024922359499621 a001 165580141/312119004989*2537720636^(4/9) 8024922359499621 a001 233802911/64300051206*228826127^(2/5) 8024922359499621 a001 165580141/119218851371*2537720636^(2/5) 8024922359499621 a001 165580141/4106118243*312119004989^(1/5) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(46) 8024922359499621 a004 Fibonacci(46)*(1/2+sqrt(5)/2)/Lucas(41) 8024922359499621 a001 165580141/28143753123*2537720636^(1/3) 8024922359499621 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 165580141/6643838879*2537720636^(4/15) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(48) 8024922359499621 a004 Fibonacci(48)/Lucas(41)/(1/2+sqrt(5)/2) 8024922359499621 a001 165580141/10749957122*73681302247^(1/4) 8024922359499621 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 165580141/14662949395604*17393796001^(4/7) 8024922359499621 a001 165580141/505019158607*17393796001^(3/7) 8024922359499621 a001 165580141/28143753123*45537549124^(5/17) 8024922359499621 a001 165580141/28143753123*312119004989^(3/11) 8024922359499621 a001 165580141/28143753123*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(50) 8024922359499621 a004 Fibonacci(50)/Lucas(41)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 165580141/28143753123*192900153618^(5/18) 8024922359499621 a001 165580141/28143753123*28143753123^(3/10) 8024922359499621 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 165580141/73681302247*45537549124^(1/3) 8024922359499621 a001 165580141/9062201101803*45537549124^(9/17) 8024922359499621 a001 165580141/2139295485799*45537549124^(8/17) 8024922359499621 a001 165580141/505019158607*45537549124^(7/17) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(41)/(1/2+sqrt(5)/2)^5 8024922359499621 a001 165580141/119218851371*45537549124^(6/17) 8024922359499621 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 165580141/192900153618*817138163596^(1/3) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(41)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 165580141/3461452808002*312119004989^(5/11) 8024922359499621 a001 165580141/505019158607*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(41)/(1/2+sqrt(5)/2)^9 8024922359499621 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^96 8024922359499621 a001 165580141/9062201101803*14662949395604^(3/7) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(78) 8024922359499621 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(80) 8024922359499621 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(82) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(84) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(86) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(88) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(90) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(92) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(94) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(96) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(98) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(99) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(100) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(97) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(95) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(93) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(91) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(89) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(87) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(85) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(83) 8024922359499621 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^51 8024922359499621 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^53 8024922359499621 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^52 8024922359499621 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(81) 8024922359499621 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(79) 8024922359499621 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^99 8024922359499621 a001 165580141/14662949395604*14662949395604^(4/9) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 165580141/2139295485799*14662949395604^(8/21) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^12 8024922359499621 a001 165580141/23725150497407*1322157322203^(1/2) 8024922359499621 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2)^10 8024922359499621 a001 165580141/14662949395604*505019158607^(1/2) 8024922359499621 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(41)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 165580141/312119004989*23725150497407^(5/16) 8024922359499621 a001 165580141/312119004989*505019158607^(5/14) 8024922359499621 a001 165580141/2139295485799*192900153618^(4/9) 8024922359499621 a001 165580141/9062201101803*192900153618^(1/2) 8024922359499621 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 165580141/119218851371*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(41)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 165580141/119218851371*192900153618^(1/3) 8024922359499621 a001 165580141/312119004989*73681302247^(5/13) 8024922359499621 a001 165580141/2139295485799*73681302247^(6/13) 8024922359499621 a001 165580141/5600748293801*73681302247^(1/2) 8024922359499621 a001 165580141/14662949395604*73681302247^(7/13) 8024922359499621 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(51) 8024922359499621 a004 Fibonacci(51)/Lucas(41)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 165580141/45537549124*23725150497407^(1/4) 8024922359499621 a001 165580141/312119004989*28143753123^(2/5) 8024922359499621 a001 165580141/45537549124*73681302247^(4/13) 8024922359499621 a001 165580141/3461452808002*28143753123^(1/2) 8024922359499621 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 165580141/28143753123*10749957122^(5/16) 8024922359499621 a001 165580141/17393796001*17393796001^(2/7) 8024922359499621 a001 165580141/17393796001*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(49) 8024922359499621 a004 Fibonacci(49)/Lucas(41)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 165580141/17393796001*505019158607^(1/4) 8024922359499621 a001 165580141/119218851371*10749957122^(3/8) 8024922359499621 a001 165580141/45537549124*10749957122^(1/3) 8024922359499621 a001 165580141/312119004989*10749957122^(5/12) 8024922359499621 a001 165580141/505019158607*10749957122^(7/16) 8024922359499621 a001 165580141/817138163596*10749957122^(11/24) 8024922359499621 a001 165580141/2139295485799*10749957122^(1/2) 8024922359499621 a001 165580141/5600748293801*10749957122^(13/24) 8024922359499621 a001 165580141/9062201101803*10749957122^(9/16) 8024922359499621 a001 165580141/14662949395604*10749957122^(7/12) 8024922359499621 a001 165580141/17393796001*10749957122^(7/24) 8024922359499621 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^83 8024922359499621 a001 165580141/45537549124*4106118243^(8/23) 8024922359499621 a001 165580141/17393796001*4106118243^(7/23) 8024922359499621 a001 567451585/96450076809*228826127^(3/8) 8024922359499621 a001 165580141/6643838879*45537549124^(4/17) 8024922359499621 a001 165580141/6643838879*817138163596^(4/19) 8024922359499621 a001 165580141/6643838879*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(47) 8024922359499621 a006 5^(1/2)*Fibonacci(47)/Lucas(41)/sqrt(5) 8024922359499621 a001 165580141/6643838879*192900153618^(2/9) 8024922359499621 a001 165580141/6643838879*73681302247^(3/13) 8024922359499621 a001 165580141/119218851371*4106118243^(9/23) 8024922359499621 a001 165580141/6643838879*10749957122^(1/4) 8024922359499621 a001 165580141/312119004989*4106118243^(10/23) 8024922359499621 a001 165580141/817138163596*4106118243^(11/23) 8024922359499621 a001 165580141/1322157322203*4106118243^(1/2) 8024922359499621 a001 165580141/2139295485799*4106118243^(12/23) 8024922359499621 a001 165580141/5600748293801*4106118243^(13/23) 8024922359499621 a001 165580141/14662949395604*4106118243^(14/23) 8024922359499621 a001 165580141/6643838879*4106118243^(6/23) 8024922359499621 a001 165580141/4106118243*1568397607^(1/4) 8024922359499621 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 165580141/2537720636*2537720636^(2/9) 8024922359499621 a001 165580141/17393796001*1568397607^(7/22) 8024922359499621 a001 165580141/6643838879*1568397607^(3/11) 8024922359499621 a001 165580141/45537549124*1568397607^(4/11) 8024922359499621 a001 165580141/2537720636*312119004989^(2/11) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^10/Lucas(45) 8024922359499621 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^2/Lucas(41) 8024922359499621 a001 165580141/2537720636*28143753123^(1/5) 8024922359499621 a001 1134903170/370248451*10749957122^(1/24) 8024922359499621 a001 165580141/2537720636*10749957122^(5/24) 8024922359499621 a001 1134903170/370248451*4106118243^(1/23) 8024922359499621 a001 165580141/119218851371*1568397607^(9/22) 8024922359499621 a001 165580141/2537720636*4106118243^(5/23) 8024922359499621 a001 1134903170/370248451*1568397607^(1/22) 8024922359499621 a001 165580141/312119004989*1568397607^(5/11) 8024922359499621 a001 165580141/1568397607*599074578^(3/14) 8024922359499621 a001 165580141/817138163596*1568397607^(1/2) 8024922359499621 a001 165580141/2139295485799*1568397607^(6/11) 8024922359499621 a001 165580141/5600748293801*1568397607^(13/22) 8024922359499621 a001 165580141/2537720636*1568397607^(5/22) 8024922359499621 a001 165580141/14662949395604*1568397607^(7/11) 8024922359499621 a001 1836311903/505019158607*228826127^(2/5) 8024922359499621 a001 1134903170/370248451*599074578^(1/21) 8024922359499621 a001 1602508992/440719107401*228826127^(2/5) 8024922359499621 a001 12586269025/3461452808002*228826127^(2/5) 8024922359499621 a001 10983760033/3020733700601*228826127^(2/5) 8024922359499621 a001 86267571272/23725150497407*228826127^(2/5) 8024922359499621 a001 53316291173/14662949395604*228826127^(2/5) 8024922359499621 a001 20365011074/5600748293801*228826127^(2/5) 8024922359499621 a001 7778742049/2139295485799*228826127^(2/5) 8024922359499621 a001 2971215073/817138163596*228826127^(2/5) 8024922359499621 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 267914296/1322157322203*228826127^(11/20) 8024922359499621 a001 433494437/45537549124*228826127^(7/20) 8024922359499621 a001 1134903170/312119004989*228826127^(2/5) 8024922359499621 a001 2971215073/969323029*87403803^(1/19) 8024922359499621 a001 165580141/2537720636*599074578^(5/21) 8024922359499621 a001 165580141/6643838879*599074578^(2/7) 8024922359499621 a001 701408733/505019158607*228826127^(9/20) 8024922359499621 a001 433494437/73681302247*228826127^(3/8) 8024922359499621 a001 165580141/17393796001*599074578^(1/3) 8024922359499621 a001 165580141/28143753123*599074578^(5/14) 8024922359499621 a001 165580141/45537549124*599074578^(8/21) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^8/Lucas(43) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^4/Lucas(41) 8024922359499621 a001 165580141/969323029*23725150497407^(1/8) 8024922359499621 a001 165580141/969323029*505019158607^(1/7) 8024922359499621 a001 433494437/370248451*73681302247^(1/13) 8024922359499621 a001 165580141/969323029*73681302247^(2/13) 8024922359499621 a001 433494437/370248451*10749957122^(1/12) 8024922359499621 a001 165580141/969323029*10749957122^(1/6) 8024922359499621 a001 433494437/370248451*4106118243^(2/23) 8024922359499621 a001 165580141/969323029*4106118243^(4/23) 8024922359499621 a001 433494437/370248451*1568397607^(1/11) 8024922359499621 a001 1134903170/370248451*228826127^(1/20) 8024922359499621 a001 165580141/969323029*1568397607^(2/11) 8024922359499621 a001 165580141/119218851371*599074578^(3/7) 8024922359499621 a001 1836311903/1322157322203*228826127^(9/20) 8024922359499621 a001 14930208/10749853441*228826127^(9/20) 8024922359499621 a001 12586269025/9062201101803*228826127^(9/20) 8024922359499621 a001 32951280099/23725150497407*228826127^(9/20) 8024922359499621 a001 10182505537/7331474697802*228826127^(9/20) 8024922359499621 a001 7778742049/5600748293801*228826127^(9/20) 8024922359499621 a001 2971215073/2139295485799*228826127^(9/20) 8024922359499621 a001 165580141/312119004989*599074578^(10/21) 8024922359499621 a001 433494437/370248451*599074578^(2/21) 8024922359499621 a001 133957148/1730726404001*228826127^(3/5) 8024922359499621 a001 165580141/505019158607*599074578^(1/2) 8024922359499621 a001 433494437/119218851371*228826127^(2/5) 8024922359499621 a001 567451585/408569081798*228826127^(9/20) 8024922359499621 a001 165580141/817138163596*599074578^(11/21) 8024922359499621 a001 165580141/2139295485799*599074578^(4/7) 8024922359499621 a001 165580141/969323029*599074578^(4/21) 8024922359499621 a001 165580141/5600748293801*599074578^(13/21) 8024922359499621 a001 165580141/9062201101803*599074578^(9/14) 8024922359499621 a001 233802911/440719107401*228826127^(1/2) 8024922359499621 a001 267914296/5600748293801*228826127^(5/8) 8024922359499621 a001 165580141/14662949395604*599074578^(2/3) 8024922359499621 a001 1836311903/3461452808002*228826127^(1/2) 8024922359499621 a001 1602508992/3020733700601*228826127^(1/2) 8024922359499621 a001 12586269025/23725150497407*228826127^(1/2) 8024922359499621 a001 7778742049/14662949395604*228826127^(1/2) 8024922359499621 a001 2971215073/5600748293801*228826127^(1/2) 8024922359499621 a001 267914296/9062201101803*228826127^(13/20) 8024922359499621 a001 433494437/312119004989*228826127^(9/20) 8024922359499621 a001 1134903170/2139295485799*228826127^(1/2) 8024922359499621 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^77 8024922359499621 a001 701408733/3461452808002*228826127^(11/20) 8024922359499621 a001 433494437/370248451*228826127^(1/10) 8024922359499621 a001 1836311903/9062201101803*228826127^(11/20) 8024922359499621 a001 4807526976/23725150497407*228826127^(11/20) 8024922359499621 a001 2971215073/14662949395604*228826127^(11/20) 8024922359499621 a001 267914296/23725150497407*228826127^(7/10) 8024922359499621 a001 233802911/199691526*87403803^(2/19) 8024922359499621 a001 433494437/817138163596*228826127^(1/2) 8024922359499621 a001 1134903170/5600748293801*228826127^(11/20) 8024922359499621 a001 233802911/3020733700601*228826127^(3/5) 8024922359499621 a001 1836311903/23725150497407*228826127^(3/5) 8024922359499621 a001 701408733/14662949395604*228826127^(5/8) 8024922359499621 a001 31622993/7331474697802*141422324^(10/13) 8024922359499621 a001 433494437/2139295485799*228826127^(11/20) 8024922359499621 a001 567451585/7331474697802*228826127^(3/5) 8024922359499621 a001 701408733/23725150497407*228826127^(13/20) 8024922359499621 a001 1134903170/23725150497407*228826127^(5/8) 8024922359499621 a001 165580141/969323029*228826127^(1/5) 8024922359499621 a001 165580141/2537720636*228826127^(1/4) 8024922359499621 a001 433494437/5600748293801*228826127^(3/5) 8024922359499621 a001 433494437/9062201101803*228826127^(5/8) 8024922359499621 a001 165580141/6643838879*228826127^(3/10) 8024922359499621 a001 1836311903/1568397607*87403803^(2/19) 8024922359499621 a001 433494437/14662949395604*228826127^(13/20) 8024922359499621 a001 1602508992/1368706081*87403803^(2/19) 8024922359499621 a001 12586269025/10749957122*87403803^(2/19) 8024922359499621 a001 10983760033/9381251041*87403803^(2/19) 8024922359499621 a001 86267571272/73681302247*87403803^(2/19) 8024922359499621 a001 75283811239/64300051206*87403803^(2/19) 8024922359499621 a001 2504730781961/2139295485799*87403803^(2/19) 8024922359499621 a001 365435296162/312119004989*87403803^(2/19) 8024922359499621 a001 139583862445/119218851371*87403803^(2/19) 8024922359499621 a001 53316291173/45537549124*87403803^(2/19) 8024922359499621 a001 20365011074/17393796001*87403803^(2/19) 8024922359499621 a001 7778742049/6643838879*87403803^(2/19) 8024922359499621 a001 2971215073/2537720636*87403803^(2/19) 8024922359499621 a001 165580141/17393796001*228826127^(7/20) 8024922359499621 a001 1134903170/370248451*87403803^(1/19) 8024922359499621 a001 165580141/28143753123*228826127^(3/8) 8024922359499621 a001 165580141/370248451*2537720636^(2/15) 8024922359499621 a001 165580141/370248451*45537549124^(2/17) 8024922359499621 a001 165580141/370248451*14662949395604^(2/21) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^6/Lucas(41) 8024922359499621 a001 165580141/370248451*10749957122^(1/8) 8024922359499621 a001 165580141/370248451*4106118243^(3/23) 8024922359499621 a001 165580141/370248451*1568397607^(3/22) 8024922359499621 a001 165580141/45537549124*228826127^(2/5) 8024922359499621 a001 14619165/224056801*87403803^(5/19) 8024922359499621 a001 165580141/370248451*599074578^(1/7) 8024922359499621 a001 1134903170/969323029*87403803^(2/19) 8024922359499621 a001 133957148/299537289*87403803^(3/19) 8024922359499621 a001 31622993/1730726404001*141422324^(9/13) 8024922359499621 a001 165580141/119218851371*228826127^(9/20) 8024922359499621 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^76 8024922359499621 a001 63245986/2139295485799*141422324^(2/3) 8024922359499621 a001 165580141/312119004989*228826127^(1/2) 8024922359499621 a001 165580141/370248451*228826127^(3/20) 8024922359499621 a001 165580141/817138163596*228826127^(11/20) 8024922359499621 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^78 8024922359499621 a001 165580141/2139295485799*228826127^(3/5) 8024922359499621 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^80 8024922359499621 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^82 8024922359499621 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^84 8024922359499621 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^86 8024922359499621 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^88 8024922359499621 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^90 8024922359499621 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^92 8024922359499621 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^100 8024922359499621 a001 2/102334155*(1/2+1/2*5^(1/2))^46 8024922359499621 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^97 8024922359499621 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^95 8024922359499621 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^91 8024922359499621 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^89 8024922359499621 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^85 8024922359499621 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^83 8024922359499621 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 31622993/408569081798*141422324^(8/13) 8024922359499621 a001 165580141/3461452808002*228826127^(5/8) 8024922359499621 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 165580141/5600748293801*228826127^(13/20) 8024922359499621 a001 701408733/1568397607*87403803^(3/19) 8024922359499621 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^77 8024922359499621 a001 1836311903/4106118243*87403803^(3/19) 8024922359499621 a001 2403763488/5374978561*87403803^(3/19) 8024922359499621 a001 165580141/14662949395604*228826127^(7/10) 8024922359499621 a001 12586269025/28143753123*87403803^(3/19) 8024922359499621 a001 32951280099/73681302247*87403803^(3/19) 8024922359499621 a001 43133785636/96450076809*87403803^(3/19) 8024922359499621 a001 225851433717/505019158607*87403803^(3/19) 8024922359499621 a001 591286729879/1322157322203*87403803^(3/19) 8024922359499621 a001 10610209857723/23725150497407*87403803^(3/19) 8024922359499621 a001 182717648081/408569081798*87403803^(3/19) 8024922359499621 a001 139583862445/312119004989*87403803^(3/19) 8024922359499621 a001 53316291173/119218851371*87403803^(3/19) 8024922359499621 a001 10182505537/22768774562*87403803^(3/19) 8024922359499621 a001 7778742049/17393796001*87403803^(3/19) 8024922359499621 a001 2971215073/6643838879*87403803^(3/19) 8024922359499621 a001 567451585/1268860318*87403803^(3/19) 8024922359499621 a001 433494437/370248451*87403803^(2/19) 8024922359499621 a001 34111385/1368706081*87403803^(6/19) 8024922359499621 a001 433494437/969323029*87403803^(3/19) 8024922359499621 a001 31622993/96450076809*141422324^(7/13) 8024922359499621 a001 267914296/1568397607*87403803^(4/19) 8024922359499621 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^75 8024922359499621 a001 31622993/22768774562*141422324^(6/13) 8024922359499621 a001 233802911/1368706081*87403803^(4/19) 8024922359499621 a001 1836311903/10749957122*87403803^(4/19) 8024922359499621 a001 1602508992/9381251041*87403803^(4/19) 8024922359499621 a001 12586269025/73681302247*87403803^(4/19) 8024922359499621 a001 10983760033/64300051206*87403803^(4/19) 8024922359499621 a001 86267571272/505019158607*87403803^(4/19) 8024922359499621 a001 75283811239/440719107401*87403803^(4/19) 8024922359499621 a001 2504730781961/14662949395604*87403803^(4/19) 8024922359499621 a001 139583862445/817138163596*87403803^(4/19) 8024922359499621 a001 53316291173/312119004989*87403803^(4/19) 8024922359499621 a001 20365011074/119218851371*87403803^(4/19) 8024922359499621 a001 7778742049/45537549124*87403803^(4/19) 8024922359499621 a001 2971215073/17393796001*87403803^(4/19) 8024922359499621 a001 1134903170/6643838879*87403803^(4/19) 8024922359499621 a001 433494437/2537720636*87403803^(4/19) 8024922359499621 a001 102334155/10749957122*87403803^(7/19) 8024922359499621 a001 701408733/228826127*33385282^(1/18) 8024922359499621 a001 31622993/5374978561*141422324^(5/13) 8024922359499621 a001 102334155/141422324*2537720636^(1/9) 8024922359499621 a001 63245986/228826127*17393796001^(1/7) 8024922359499621 a001 102334155/141422324*312119004989^(1/11) 8024922359499621 a001 63245986/228826127*14662949395604^(1/9) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^7/Lucas(40) 8024922359499621 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^5/Lucas(39) 8024922359499621 a001 102334155/141422324*28143753123^(1/10) 8024922359499621 a001 63245986/228826127*599074578^(1/6) 8024922359499621 a001 267914296/4106118243*87403803^(5/19) 8024922359499621 a001 63245986/4106118243*141422324^(1/3) 8024922359499621 a001 102334155/141422324*228826127^(1/8) 8024922359499621 a001 701408733/10749957122*87403803^(5/19) 8024922359499621 a001 1836311903/28143753123*87403803^(5/19) 8024922359499621 a001 686789568/10525900321*87403803^(5/19) 8024922359499621 a001 12586269025/192900153618*87403803^(5/19) 8024922359499621 a001 32951280099/505019158607*87403803^(5/19) 8024922359499621 a001 86267571272/1322157322203*87403803^(5/19) 8024922359499621 a001 32264490531/494493258286*87403803^(5/19) 8024922359499621 a001 591286729879/9062201101803*87403803^(5/19) 8024922359499621 a001 1548008755920/23725150497407*87403803^(5/19) 8024922359499621 a001 365435296162/5600748293801*87403803^(5/19) 8024922359499621 a001 139583862445/2139295485799*87403803^(5/19) 8024922359499621 a001 53316291173/817138163596*87403803^(5/19) 8024922359499621 a001 20365011074/312119004989*87403803^(5/19) 8024922359499621 a001 7778742049/119218851371*87403803^(5/19) 8024922359499621 a001 2971215073/45537549124*87403803^(5/19) 8024922359499621 a001 1134903170/17393796001*87403803^(5/19) 8024922359499621 a001 31622993/1268860318*141422324^(4/13) 8024922359499621 a001 165580141/370248451*87403803^(3/19) 8024922359499621 a001 433494437/6643838879*87403803^(5/19) 8024922359499621 a001 31622993/299537289*141422324^(3/13) 8024922359499621 a001 165580141/969323029*87403803^(4/19) 8024922359499621 a001 831985/228811001*87403803^(8/19) 8024922359499621 a001 133957148/5374978561*87403803^(6/19) 8024922359499621 a001 233802911/9381251041*87403803^(6/19) 8024922359499621 a001 1836311903/73681302247*87403803^(6/19) 8024922359499621 a001 267084832/10716675201*87403803^(6/19) 8024922359499621 a001 12586269025/505019158607*87403803^(6/19) 8024922359499621 a001 10983760033/440719107401*87403803^(6/19) 8024922359499621 a001 43133785636/1730726404001*87403803^(6/19) 8024922359499621 a001 75283811239/3020733700601*87403803^(6/19) 8024922359499621 a001 182717648081/7331474697802*87403803^(6/19) 8024922359499621 a001 139583862445/5600748293801*87403803^(6/19) 8024922359499621 a001 53316291173/2139295485799*87403803^(6/19) 8024922359499621 a001 10182505537/408569081798*87403803^(6/19) 8024922359499621 a001 7778742049/312119004989*87403803^(6/19) 8024922359499621 a001 2971215073/119218851371*87403803^(6/19) 8024922359499621 a001 567451585/22768774562*87403803^(6/19) 8024922359499621 a001 165580141/2537720636*87403803^(5/19) 8024922359499621 a001 433494437/17393796001*87403803^(6/19) 8024922359499621 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^74 8024922359499621 a001 14619165/10525900321*87403803^(9/19) 8024922359499621 a001 66978574/35355581*141422324^(1/13) 8024922359499621 a001 267914296/28143753123*87403803^(7/19) 8024922359499621 a001 102334155/119218851371*87403803^(1/2) 8024922359499621 a001 1836311903/599074578*33385282^(1/18) 8024922359499621 a001 31622993/299537289*2537720636^(1/5) 8024922359499621 a001 66978574/35355581*2537720636^(1/15) 8024922359499621 a001 31622993/299537289*45537549124^(3/17) 8024922359499621 a001 66978574/35355581*45537549124^(1/17) 8024922359499621 a001 31622993/299537289*817138163596^(3/19) 8024922359499621 a001 31622993/299537289*14662949395604^(1/7) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^9/Lucas(42) 8024922359499621 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^3/Lucas(39) 8024922359499621 a001 66978574/35355581*192900153618^(1/18) 8024922359499621 a001 31622993/299537289*192900153618^(1/6) 8024922359499621 a001 66978574/35355581*10749957122^(1/16) 8024922359499621 a001 31622993/299537289*10749957122^(3/16) 8024922359499621 a001 66978574/35355581*599074578^(1/14) 8024922359499621 a001 31622993/299537289*599074578^(3/14) 8024922359499621 a001 701408733/73681302247*87403803^(7/19) 8024922359499621 a001 1836311903/192900153618*87403803^(7/19) 8024922359499621 a001 102287808/10745088481*87403803^(7/19) 8024922359499621 a001 12586269025/1322157322203*87403803^(7/19) 8024922359499621 a001 32951280099/3461452808002*87403803^(7/19) 8024922359499621 a001 86267571272/9062201101803*87403803^(7/19) 8024922359499621 a001 225851433717/23725150497407*87403803^(7/19) 8024922359499621 a001 139583862445/14662949395604*87403803^(7/19) 8024922359499621 a001 53316291173/5600748293801*87403803^(7/19) 8024922359499621 a001 20365011074/2139295485799*87403803^(7/19) 8024922359499621 a001 7778742049/817138163596*87403803^(7/19) 8024922359499621 a001 2971215073/312119004989*87403803^(7/19) 8024922359499621 a001 1134903170/119218851371*87403803^(7/19) 8024922359499621 a001 165580141/6643838879*87403803^(6/19) 8024922359499621 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^76 8024922359499621 a001 433494437/45537549124*87403803^(7/19) 8024922359499621 a001 39088169/228826127*33385282^(2/9) 8024922359499621 a001 686789568/224056801*33385282^(1/18) 8024922359499621 a001 63245986/1568397607*312119004989^(1/5) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^11/Lucas(44) 8024922359499621 a004 Fibonacci(44)*(1/2+sqrt(5)/2)/Lucas(39) 8024922359499621 a001 63245986/1568397607*1568397607^(1/4) 8024922359499621 a001 12586269025/4106118243*33385282^(1/18) 8024922359499621 a001 34111385/64300051206*87403803^(10/19) 8024922359499621 a001 32951280099/10749957122*33385282^(1/18) 8024922359499621 a001 86267571272/28143753123*33385282^(1/18) 8024922359499621 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^78 8024922359499621 a001 32264490531/10525900321*33385282^(1/18) 8024922359499621 a001 591286729879/192900153618*33385282^(1/18) 8024922359499621 a001 1548008755920/505019158607*33385282^(1/18) 8024922359499621 a001 1515744265389/494493258286*33385282^(1/18) 8024922359499621 a001 2504730781961/817138163596*33385282^(1/18) 8024922359499621 a001 956722026041/312119004989*33385282^(1/18) 8024922359499621 a001 365435296162/119218851371*33385282^(1/18) 8024922359499621 a001 139583862445/45537549124*33385282^(1/18) 8024922359499621 a001 53316291173/17393796001*33385282^(1/18) 8024922359499621 a001 20365011074/6643838879*33385282^(1/18) 8024922359499621 a001 31622993/7331474697802*2537720636^(2/3) 8024922359499621 a001 31622993/1730726404001*2537720636^(3/5) 8024922359499621 a001 63245986/1322157322203*2537720636^(5/9) 8024922359499621 a001 31622993/408569081798*2537720636^(8/15) 8024922359499621 a001 31622993/96450076809*2537720636^(7/15) 8024922359499621 a001 63245986/119218851371*2537720636^(4/9) 8024922359499621 a001 31622993/22768774562*2537720636^(2/5) 8024922359499621 a001 31622993/5374978561*2537720636^(1/3) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(46) 8024922359499621 a004 Fibonacci(46)/Lucas(39)/(1/2+sqrt(5)/2) 8024922359499621 a001 63245986/4106118243*73681302247^(1/4) 8024922359499621 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^80 8024922359499621 a001 31622993/5374978561*45537549124^(5/17) 8024922359499621 a001 31622993/5374978561*312119004989^(3/11) 8024922359499621 a001 31622993/5374978561*14662949395604^(5/21) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(48) 8024922359499621 a004 Fibonacci(48)/Lucas(39)/(1/2+sqrt(5)/2)^3 8024922359499621 a001 31622993/5374978561*192900153618^(5/18) 8024922359499621 a001 31622993/5374978561*28143753123^(3/10) 8024922359499621 a001 31622993/5374978561*10749957122^(5/16) 8024922359499621 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^82 8024922359499621 a001 63245986/5600748293801*17393796001^(4/7) 8024922359499621 a001 31622993/96450076809*17393796001^(3/7) 8024922359499621 a001 63245986/28143753123*45537549124^(1/3) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(50) 8024922359499621 a004 Fibonacci(50)/Lucas(39)/(1/2+sqrt(5)/2)^5 8024922359499621 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^84 8024922359499621 a001 31622993/7331474697802*45537549124^(10/17) 8024922359499621 a001 31622993/1730726404001*45537549124^(9/17) 8024922359499621 a001 31622993/96450076809*45537549124^(7/17) 8024922359499621 a001 31622993/408569081798*45537549124^(8/17) 8024922359499621 a001 63245986/73681302247*817138163596^(1/3) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(52) 8024922359499621 a004 Fibonacci(52)/Lucas(39)/(1/2+sqrt(5)/2)^7 8024922359499621 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^86 8024922359499621 a001 31622993/96450076809*14662949395604^(1/3) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(54) 8024922359499621 a004 Fibonacci(54)/Lucas(39)/(1/2+sqrt(5)/2)^9 8024922359499621 a001 31622993/96450076809*192900153618^(7/18) 8024922359499621 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^88 8024922359499621 a001 31622993/7331474697802*312119004989^(6/11) 8024922359499621 a001 63245986/1322157322203*312119004989^(5/11) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(56) 8024922359499621 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^11 8024922359499621 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^90 8024922359499621 a001 31622993/1730726404001*817138163596^(9/19) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(58) 8024922359499621 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^13 8024922359499621 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^92 8024922359499621 a001 31622993/1730726404001*14662949395604^(3/7) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(60) 8024922359499621 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^15 8024922359499621 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^94 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(62) 8024922359499621 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^17 8024922359499621 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^96 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(64) 8024922359499621 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^19 8024922359499621 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^98 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(66) 8024922359499621 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^21 8024922359499621 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^100 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(68) 8024922359499621 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^23 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(70) 8024922359499621 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^25 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(72) 8024922359499621 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^27 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(74) 8024922359499621 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^29 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(76) 8024922359499621 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^31 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(78) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(80) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(82) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(84) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(86) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(88) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(90) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(92) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(94) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(96) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(98) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(100) 8024922359499621 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^33 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(99) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(97) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(95) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(93) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(91) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(89) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(87) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(85) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(83) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(81) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(79) 8024922359499621 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^35 8024922359499621 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^37 8024922359499621 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^39 8024922359499621 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^41 8024922359499621 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^43 8024922359499621 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^45 8024922359499621 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^47 8024922359499621 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^49 8024922359499621 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^51 8024922359499621 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^53 8024922359499621 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^55 8024922359499621 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^54 8024922359499621 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^52 8024922359499621 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^50 8024922359499621 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^48 8024922359499621 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^46 8024922359499621 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^44 8024922359499621 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^42 8024922359499621 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^40 8024922359499621 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^38 8024922359499621 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^36 8024922359499621 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^34 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(77) 8024922359499621 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^32 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(75) 8024922359499621 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^30 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(73) 8024922359499621 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^28 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(71) 8024922359499621 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^26 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(69) 8024922359499621 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^24 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(67) 8024922359499621 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^22 8024922359499621 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^99 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(65) 8024922359499621 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^20 8024922359499621 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^97 8024922359499621 a001 31622993/7331474697802*14662949395604^(10/21) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(63) 8024922359499621 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^18 8024922359499621 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^95 8024922359499621 a001 63245986/5600748293801*14662949395604^(4/9) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(61) 8024922359499621 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^16 8024922359499621 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^93 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(59) 8024922359499621 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^14 8024922359499621 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^91 8024922359499621 a001 31622993/408569081798*14662949395604^(8/21) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(57) 8024922359499621 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^12 8024922359499621 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^89 8024922359499621 a001 63245986/312119004989*312119004989^(2/5) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(55) 8024922359499621 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2)^10 8024922359499621 a001 31622993/1730726404001*192900153618^(1/2) 8024922359499621 a001 31622993/408569081798*192900153618^(4/9) 8024922359499621 a001 31622993/7331474697802*192900153618^(5/9) 8024922359499621 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^87 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(53) 8024922359499621 a004 Fibonacci(53)/Lucas(39)/(1/2+sqrt(5)/2)^8 8024922359499621 a001 63245986/119218851371*23725150497407^(5/16) 8024922359499621 a001 63245986/119218851371*505019158607^(5/14) 8024922359499621 a001 31622993/408569081798*73681302247^(6/13) 8024922359499621 a001 63245986/2139295485799*73681302247^(1/2) 8024922359499621 a001 63245986/5600748293801*73681302247^(7/13) 8024922359499621 a001 63245986/119218851371*73681302247^(5/13) 8024922359499621 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^85 8024922359499621 a001 31622993/22768774562*45537549124^(6/17) 8024922359499621 a001 31622993/22768774562*14662949395604^(2/7) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(51) 8024922359499621 a004 Fibonacci(51)/Lucas(39)/(1/2+sqrt(5)/2)^6 8024922359499621 a001 31622993/22768774562*192900153618^(1/3) 8024922359499621 a001 63245986/119218851371*28143753123^(2/5) 8024922359499621 a001 63245986/1322157322203*28143753123^(1/2) 8024922359499621 a001 31622993/7331474697802*28143753123^(3/5) 8024922359499621 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^83 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(49) 8024922359499621 a004 Fibonacci(49)/Lucas(39)/(1/2+sqrt(5)/2)^4 8024922359499621 a001 63245986/17393796001*23725150497407^(1/4) 8024922359499621 a001 63245986/17393796001*73681302247^(4/13) 8024922359499621 a001 63245986/119218851371*10749957122^(5/12) 8024922359499621 a001 31622993/22768774562*10749957122^(3/8) 8024922359499621 a001 31622993/96450076809*10749957122^(7/16) 8024922359499621 a001 7778742049/2537720636*33385282^(1/18) 8024922359499621 a001 63245986/312119004989*10749957122^(11/24) 8024922359499621 a001 31622993/408569081798*10749957122^(1/2) 8024922359499621 a001 63245986/2139295485799*10749957122^(13/24) 8024922359499621 a001 31622993/1730726404001*10749957122^(9/16) 8024922359499621 a001 63245986/5600748293801*10749957122^(7/12) 8024922359499621 a001 31622993/7331474697802*10749957122^(5/8) 8024922359499621 a001 63245986/17393796001*10749957122^(1/3) 8024922359499621 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^81 8024922359499621 a001 63245986/6643838879*17393796001^(2/7) 8024922359499621 a001 63245986/6643838879*14662949395604^(2/9) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(47) 8024922359499621 a004 Fibonacci(47)/Lucas(39)/(1/2+sqrt(5)/2)^2 8024922359499621 a001 63245986/6643838879*505019158607^(1/4) 8024922359499621 a001 31622993/22768774562*4106118243^(9/23) 8024922359499621 a001 63245986/17393796001*4106118243^(8/23) 8024922359499621 a001 63245986/6643838879*10749957122^(7/24) 8024922359499621 a001 63245986/119218851371*4106118243^(10/23) 8024922359499621 a001 63245986/312119004989*4106118243^(11/23) 8024922359499621 a001 63245986/505019158607*4106118243^(1/2) 8024922359499621 a001 31622993/408569081798*4106118243^(12/23) 8024922359499621 a001 63245986/2139295485799*4106118243^(13/23) 8024922359499621 a001 63245986/5600748293801*4106118243^(14/23) 8024922359499621 a001 31622993/7331474697802*4106118243^(15/23) 8024922359499621 a001 63245986/6643838879*4106118243^(7/23) 8024922359499621 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^79 8024922359499621 a001 31622993/1268860318*2537720636^(4/15) 8024922359499621 a001 63245986/17393796001*1568397607^(4/11) 8024922359499621 a001 63245986/6643838879*1568397607^(7/22) 8024922359499621 a001 31622993/1268860318*45537549124^(4/17) 8024922359499621 a001 31622993/1268860318*817138163596^(4/19) 8024922359499621 a001 31622993/1268860318*14662949395604^(4/21) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^12/Lucas(45) 8024922359499621 a001 31622993/1268860318*192900153618^(2/9) 8024922359499621 a001 31622993/1268860318*73681302247^(3/13) 8024922359499621 a001 31622993/1268860318*10749957122^(1/4) 8024922359499621 a001 31622993/22768774562*1568397607^(9/22) 8024922359499621 a001 31622993/1268860318*4106118243^(6/23) 8024922359499621 a001 63245986/119218851371*1568397607^(5/11) 8024922359499621 a001 63245986/312119004989*1568397607^(1/2) 8024922359499621 a001 31622993/408569081798*1568397607^(6/11) 8024922359499621 a001 63245986/2139295485799*1568397607^(13/22) 8024922359499621 a001 63245986/5600748293801*1568397607^(7/11) 8024922359499621 a001 31622993/1268860318*1568397607^(3/11) 8024922359499621 a001 31622993/7331474697802*1568397607^(15/22) 8024922359499621 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^77 8024922359499621 a001 2971215073/969323029*33385282^(1/18) 8024922359499621 a001 31622993/1268860318*599074578^(2/7) 8024922359499621 a001 63245986/6643838879*599074578^(1/3) 8024922359499621 a001 31622993/5374978561*599074578^(5/14) 8024922359499621 a001 63245986/969323029*2537720636^(2/9) 8024922359499621 a001 63245986/969323029*312119004989^(2/11) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^10/Lucas(43) 8024922359499621 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^2/Lucas(39) 8024922359499621 a001 63245986/969323029*28143753123^(1/5) 8024922359499621 a001 433494437/141422324*10749957122^(1/24) 8024922359499621 a001 63245986/17393796001*599074578^(8/21) 8024922359499621 a001 63245986/969323029*10749957122^(5/24) 8024922359499621 a001 433494437/141422324*4106118243^(1/23) 8024922359499621 a001 63245986/969323029*4106118243^(5/23) 8024922359499621 a001 433494437/141422324*1568397607^(1/22) 8024922359499621 a001 63245986/969323029*1568397607^(5/22) 8024922359499621 a001 31622993/22768774562*599074578^(3/7) 8024922359499621 a001 433494437/141422324*599074578^(1/21) 8024922359499621 a001 63245986/119218851371*599074578^(10/21) 8024922359499621 a001 31622993/96450076809*599074578^(1/2) 8024922359499621 a001 63245986/312119004989*599074578^(11/21) 8024922359499621 a001 31622993/408569081798*599074578^(4/7) 8024922359499621 a001 63245986/2139295485799*599074578^(13/21) 8024922359499621 a001 63245986/969323029*599074578^(5/21) 8024922359499621 a001 31622993/1730726404001*599074578^(9/14) 8024922359499621 a001 63245986/5600748293801*599074578^(2/3) 8024922359499621 a001 31622993/7331474697802*599074578^(5/7) 8024922359499621 a001 433494437/141422324*228826127^(1/20) 8024922359499621 a001 267914296/73681302247*87403803^(8/19) 8024922359499621 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^75 8024922359499621 a001 233802911/64300051206*87403803^(8/19) 8024922359499621 a001 1836311903/505019158607*87403803^(8/19) 8024922359499621 a001 1602508992/440719107401*87403803^(8/19) 8024922359499621 a001 12586269025/3461452808002*87403803^(8/19) 8024922359499621 a001 10983760033/3020733700601*87403803^(8/19) 8024922359499621 a001 86267571272/23725150497407*87403803^(8/19) 8024922359499621 a001 53316291173/14662949395604*87403803^(8/19) 8024922359499621 a001 20365011074/5600748293801*87403803^(8/19) 8024922359499621 a001 7778742049/2139295485799*87403803^(8/19) 8024922359499621 a001 2971215073/817138163596*87403803^(8/19) 8024922359499621 a001 1134903170/312119004989*87403803^(8/19) 8024922359499621 a001 165580141/17393796001*87403803^(7/19) 8024922359499621 a001 63245986/969323029*228826127^(1/4) 8024922359499621 a001 31622993/1268860318*228826127^(3/10) 8024922359499621 a001 433494437/119218851371*87403803^(8/19) 8024922359499621 a001 102334155/505019158607*87403803^(11/19) 8024922359499621 a001 63245986/6643838879*228826127^(7/20) 8024922359499621 a001 433494437/228826127*33385282^(1/12) 8024922359499621 a001 31622993/5374978561*228826127^(3/8) 8024922359499621 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^8/Lucas(41) 8024922359499621 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^4/Lucas(39) 8024922359499621 a001 165580141/141422324*23725150497407^(1/16) 8024922359499621 a001 63245986/370248451*23725150497407^(1/8) 8024922359499621 a001 63245986/370248451*505019158607^(1/7) 8024922359499621 a001 165580141/141422324*73681302247^(1/13) 8024922359499621 a001 63245986/370248451*73681302247^(2/13) 8024922359499621 a001 1134903170/370248451*33385282^(1/18) 8024922359499621 a001 165580141/141422324*10749957122^(1/12) 8024922359499621 a001 63245986/370248451*10749957122^(1/6) 8024922359499621 a001 165580141/141422324*4106118243^(2/23) 8024922359499621 a001 63245986/370248451*4106118243^(4/23) 8024922359499621 a001 165580141/141422324*1568397607^(1/11) 8024922359499621 a001 63245986/370248451*1568397607^(2/11) 8024922359499621 a001 165580141/141422324*599074578^(2/21) 8024922359499621 a001 63245986/17393796001*228826127^(2/5) 8024922359499621 a001 63245986/370248451*599074578^(4/21) 8024922359499621 a001 433494437/141422324*87403803^(1/19) 8024922359499621 a001 31622993/22768774562*228826127^(9/20) 8024922359499621 a001 165580141/141422324*228826127^(1/10) 8024922359499621 a001 133957148/96450076809*87403803^(9/19) 8024922359499621 a001 63245986/119218851371*228826127^(1/2) 8024922359499621 a001 63245986/312119004989*228826127^(11/20) 8024922359499621 a001 63245986/370248451*228826127^(1/5) 8024922359499621 a001 31622993/408569081798*228826127^(3/5) 8024922359499621 a001 701408733/505019158607*87403803^(9/19) 8024922359499621 a001 63245986/1322157322203*228826127^(5/8) 8024922359499621 a001 1836311903/1322157322203*87403803^(9/19) 8024922359499621 a001 14930208/10749853441*87403803^(9/19) 8024922359499621 a001 12586269025/9062201101803*87403803^(9/19) 8024922359499621 a001 32951280099/23725150497407*87403803^(9/19) 8024922359499621 a001 10182505537/7331474697802*87403803^(9/19) 8024922359499621 a001 7778742049/5600748293801*87403803^(9/19) 8024922359499621 a001 2971215073/2139295485799*87403803^(9/19) 8024922359499621 a001 567451585/408569081798*87403803^(9/19) 8024922359499621 a001 165580141/45537549124*87403803^(8/19) 8024922359499621 a001 63245986/2139295485799*228826127^(13/20) 8024922359499621 a001 267914296/312119004989*87403803^(1/2) 8024922359499621 a001 433494437/312119004989*87403803^(9/19) 8024922359499621 a001 63245986/5600748293801*228826127^(7/10) 8024922359499621 a001 34111385/440719107401*87403803^(12/19) 8024922359499621 a001 31622993/7331474697802*228826127^(3/4) 8024922359499621 a001 701408733/817138163596*87403803^(1/2) 8024922359499621 a001 1836311903/2139295485799*87403803^(1/2) 8024922359499621 a001 4807526976/5600748293801*87403803^(1/2) 8024922359499621 a001 12586269025/14662949395604*87403803^(1/2) 8024922359499621 a001 20365011074/23725150497407*87403803^(1/2) 8024922359499621 a001 7778742049/9062201101803*87403803^(1/2) 8024922359499621 a001 2971215073/3461452808002*87403803^(1/2) 8024922359499621 a001 1134903170/1322157322203*87403803^(1/2) 8024922359499621 a001 267914296/505019158607*87403803^(10/19) 8024922359499621 a001 433494437/505019158607*87403803^(1/2) 8024922359499622 a001 233802911/440719107401*87403803^(10/19) 8024922359499622 a001 1836311903/3461452808002*87403803^(10/19) 8024922359499622 a001 1602508992/3020733700601*87403803^(10/19) 8024922359499622 a001 12586269025/23725150497407*87403803^(10/19) 8024922359499622 a001 7778742049/14662949395604*87403803^(10/19) 8024922359499622 a001 2971215073/5600748293801*87403803^(10/19) 8024922359499622 a001 1134903170/2139295485799*87403803^(10/19) 8024922359499622 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^73 8024922359499622 a001 165580141/119218851371*87403803^(9/19) 8024922359499622 a001 433494437/817138163596*87403803^(10/19) 8024922359499622 a001 6765/228826126*87403803^(13/19) 8024922359499622 a001 165580141/141422324*87403803^(2/19) 8024922359499622 a001 567451585/299537289*33385282^(1/12) 8024922359499622 a001 165580141/192900153618*87403803^(1/2) 8024922359499622 a001 267914296/1322157322203*87403803^(11/19) 8024922359499622 a001 2971215073/1568397607*33385282^(1/12) 8024922359499622 a001 7778742049/4106118243*33385282^(1/12) 8024922359499622 a001 10182505537/5374978561*33385282^(1/12) 8024922359499622 a001 53316291173/28143753123*33385282^(1/12) 8024922359499622 a001 139583862445/73681302247*33385282^(1/12) 8024922359499622 a001 182717648081/96450076809*33385282^(1/12) 8024922359499622 a001 956722026041/505019158607*33385282^(1/12) 8024922359499622 a001 10610209857723/5600748293801*33385282^(1/12) 8024922359499622 a001 591286729879/312119004989*33385282^(1/12) 8024922359499622 a001 225851433717/119218851371*33385282^(1/12) 8024922359499622 a001 21566892818/11384387281*33385282^(1/12) 8024922359499622 a001 32951280099/17393796001*33385282^(1/12) 8024922359499622 a001 12586269025/6643838879*33385282^(1/12) 8024922359499622 a001 1201881744/634430159*33385282^(1/12) 8024922359499622 a001 701408733/3461452808002*87403803^(11/19) 8024922359499622 a001 1836311903/9062201101803*87403803^(11/19) 8024922359499622 a001 1836311903/969323029*33385282^(1/12) 8024922359499622 a001 4807526976/23725150497407*87403803^(11/19) 8024922359499622 a001 2971215073/14662949395604*87403803^(11/19) 8024922359499622 a001 1134903170/5600748293801*87403803^(11/19) 8024922359499622 a001 165580141/312119004989*87403803^(10/19) 8024922359499622 a001 433494437/2139295485799*87403803^(11/19) 8024922359499622 a001 34111385/3020733700601*87403803^(14/19) 8024922359499622 a001 267914296/228826127*33385282^(1/9) 8024922359499622 a001 133957148/1730726404001*87403803^(12/19) 8024922359499622 a001 701408733/370248451*33385282^(1/12) 8024922359499622 a001 233802911/3020733700601*87403803^(12/19) 8024922359499622 a001 1836311903/23725150497407*87403803^(12/19) 8024922359499622 a001 567451585/7331474697802*87403803^(12/19) 8024922359499622 a001 165580141/817138163596*87403803^(11/19) 8024922359499622 a001 433494437/5600748293801*87403803^(12/19) 8024922359499622 a001 102334155/23725150497407*87403803^(15/19) 8024922359499622 a001 63245986/370248451*87403803^(4/19) 8024922359499622 a001 63245986/969323029*87403803^(5/19) 8024922359499622 a001 267914296/9062201101803*87403803^(13/19) 8024922359499622 a001 701408733/23725150497407*87403803^(13/19) 8024922359499622 a001 165580141/2139295485799*87403803^(12/19) 8024922359499622 a001 433494437/14662949395604*87403803^(13/19) 8024922359499622 a001 31622993/1268860318*87403803^(6/19) 8024922359499622 a001 31622993/70711162*141422324^(2/13) 8024922359499622 a001 267914296/23725150497407*87403803^(14/19) 8024922359499622 a001 233802911/199691526*33385282^(1/9) 8024922359499622 a001 165580141/5600748293801*87403803^(13/19) 8024922359499622 a001 63245986/6643838879*87403803^(7/19) 8024922359499622 a001 1836311903/1568397607*33385282^(1/9) 8024922359499622 a001 1602508992/1368706081*33385282^(1/9) 8024922359499622 a001 12586269025/10749957122*33385282^(1/9) 8024922359499622 a001 10983760033/9381251041*33385282^(1/9) 8024922359499622 a001 86267571272/73681302247*33385282^(1/9) 8024922359499622 a001 75283811239/64300051206*33385282^(1/9) 8024922359499622 a001 2504730781961/2139295485799*33385282^(1/9) 8024922359499622 a001 365435296162/312119004989*33385282^(1/9) 8024922359499622 a001 139583862445/119218851371*33385282^(1/9) 8024922359499622 a001 53316291173/45537549124*33385282^(1/9) 8024922359499622 a001 20365011074/17393796001*33385282^(1/9) 8024922359499622 a001 7778742049/6643838879*33385282^(1/9) 8024922359499622 a001 2971215073/2537720636*33385282^(1/9) 8024922359499622 a001 31622993/70711162*2537720636^(2/15) 8024922359499622 a001 31622993/70711162*45537549124^(2/17) 8024922359499622 a001 31622993/70711162*14662949395604^(2/21) 8024922359499622 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^6/Lucas(39) 8024922359499622 a001 31622993/70711162*10749957122^(1/8) 8024922359499622 a001 31622993/70711162*4106118243^(3/23) 8024922359499622 a001 31622993/70711162*1568397607^(3/22) 8024922359499622 a001 31622993/70711162*599074578^(1/7) 8024922359499622 a001 39088169/370248451*33385282^(1/4) 8024922359499622 a001 433494437/141422324*33385282^(1/18) 8024922359499622 a001 1134903170/969323029*33385282^(1/9) 8024922359499622 a001 31622993/70711162*228826127^(3/20) 8024922359499622 a001 165580141/14662949395604*87403803^(14/19) 8024922359499622 a001 63245986/17393796001*87403803^(8/19) 8024922359499622 a001 433494437/370248451*33385282^(1/9) 8024922359499622 a001 102334155/228826127*33385282^(1/6) 8024922359499622 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^72 8024922359499622 a001 31622993/22768774562*87403803^(9/19) 8024922359499622 a001 63245986/73681302247*87403803^(1/2) 8024922359499622 a001 39088169/599074578*33385282^(5/18) 8024922359499622 a001 63245986/119218851371*87403803^(10/19) 8024922359499622 a001 31622993/70711162*87403803^(3/19) 8024922359499622 a001 66978574/35355581*33385282^(1/12) 8024922359499622 a001 63245986/312119004989*87403803^(11/19) 8024922359499622 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^74 8024922359499622 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^76 8024922359499622 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^78 8024922359499622 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^80 8024922359499622 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^82 8024922359499622 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^84 8024922359499622 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^86 8024922359499622 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^88 8024922359499622 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^90 8024922359499622 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^92 8024922359499622 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^94 8024922359499622 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^96 8024922359499622 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^98 8024922359499622 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^100 8024922359499622 a001 2/39088169*(1/2+1/2*5^(1/2))^44 8024922359499622 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^99 8024922359499622 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^97 8024922359499622 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^95 8024922359499622 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^93 8024922359499622 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^91 8024922359499622 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^89 8024922359499622 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^87 8024922359499622 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^85 8024922359499622 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^83 8024922359499622 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^81 8024922359499622 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^79 8024922359499622 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^77 8024922359499622 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^75 8024922359499622 a001 31622993/408569081798*87403803^(12/19) 8024922359499622 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^73 8024922359499622 a001 63245986/2139295485799*87403803^(13/19) 8024922359499622 a001 133957148/299537289*33385282^(1/6) 8024922359499622 a001 63245986/5600748293801*87403803^(14/19) 8024922359499622 a001 701408733/1568397607*33385282^(1/6) 8024922359499622 a001 1836311903/4106118243*33385282^(1/6) 8024922359499622 a001 2403763488/5374978561*33385282^(1/6) 8024922359499622 a001 12586269025/28143753123*33385282^(1/6) 8024922359499622 a001 32951280099/73681302247*33385282^(1/6) 8024922359499622 a001 43133785636/96450076809*33385282^(1/6) 8024922359499622 a001 225851433717/505019158607*33385282^(1/6) 8024922359499622 a001 591286729879/1322157322203*33385282^(1/6) 8024922359499622 a001 10610209857723/23725150497407*33385282^(1/6) 8024922359499622 a001 182717648081/408569081798*33385282^(1/6) 8024922359499622 a001 139583862445/312119004989*33385282^(1/6) 8024922359499622 a001 53316291173/119218851371*33385282^(1/6) 8024922359499622 a001 10182505537/22768774562*33385282^(1/6) 8024922359499622 a001 7778742049/17393796001*33385282^(1/6) 8024922359499622 a001 2971215073/6643838879*33385282^(1/6) 8024922359499622 a001 567451585/1268860318*33385282^(1/6) 8024922359499622 a001 433494437/969323029*33385282^(1/6) 8024922359499622 a001 31622993/7331474697802*87403803^(15/19) 8024922359499622 a001 165580141/141422324*33385282^(1/9) 8024922359499622 a001 165580141/370248451*33385282^(1/6) 8024922359499622 a001 39088169/1568397607*33385282^(1/3) 8024922359499622 a001 34111385/199691526*33385282^(2/9) 8024922359499622 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^71 8024922359499623 a001 267914296/1568397607*33385282^(2/9) 8024922359499623 a001 233802911/1368706081*33385282^(2/9) 8024922359499623 a001 1836311903/10749957122*33385282^(2/9) 8024922359499623 a001 1602508992/9381251041*33385282^(2/9) 8024922359499623 a001 12586269025/73681302247*33385282^(2/9) 8024922359499623 a001 10983760033/64300051206*33385282^(2/9) 8024922359499623 a001 86267571272/505019158607*33385282^(2/9) 8024922359499623 a001 75283811239/440719107401*33385282^(2/9) 8024922359499623 a001 2504730781961/14662949395604*33385282^(2/9) 8024922359499623 a001 139583862445/817138163596*33385282^(2/9) 8024922359499623 a001 53316291173/312119004989*33385282^(2/9) 8024922359499623 a001 20365011074/119218851371*33385282^(2/9) 8024922359499623 a001 7778742049/45537549124*33385282^(2/9) 8024922359499623 a001 2971215073/17393796001*33385282^(2/9) 8024922359499623 a001 1134903170/6643838879*33385282^(2/9) 8024922359499623 a001 433494437/2537720636*33385282^(2/9) 8024922359499623 a001 102334155/969323029*33385282^(1/4) 8024922359499623 a001 165580141/969323029*33385282^(2/9) 8024922359499623 a001 39088169/54018521*2537720636^(1/9) 8024922359499623 a001 24157817/87403803*17393796001^(1/7) 8024922359499623 a001 39088169/54018521*312119004989^(1/11) 8024922359499623 a001 24157817/87403803*14662949395604^(1/9) 8024922359499623 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^7/Lucas(38) 8024922359499623 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^5/Lucas(37) 8024922359499623 a001 39088169/54018521*28143753123^(1/10) 8024922359499623 a001 24157817/87403803*599074578^(1/6) 8024922359499623 a001 39088169/54018521*228826127^(1/8) 8024922359499623 a001 39088169/4106118243*33385282^(7/18) 8024922359499623 a001 66978574/634430159*33385282^(1/4) 8024922359499623 a001 701408733/6643838879*33385282^(1/4) 8024922359499623 a001 1836311903/17393796001*33385282^(1/4) 8024922359499623 a001 1201881744/11384387281*33385282^(1/4) 8024922359499623 a001 12586269025/119218851371*33385282^(1/4) 8024922359499623 a001 32951280099/312119004989*33385282^(1/4) 8024922359499623 a001 21566892818/204284540899*33385282^(1/4) 8024922359499623 a001 225851433717/2139295485799*33385282^(1/4) 8024922359499623 a001 182717648081/1730726404001*33385282^(1/4) 8024922359499623 a001 139583862445/1322157322203*33385282^(1/4) 8024922359499623 a001 53316291173/505019158607*33385282^(1/4) 8024922359499623 a001 10182505537/96450076809*33385282^(1/4) 8024922359499623 a001 7778742049/73681302247*33385282^(1/4) 8024922359499623 a001 2971215073/28143753123*33385282^(1/4) 8024922359499623 a001 567451585/5374978561*33385282^(1/4) 8024922359499623 a001 433494437/4106118243*33385282^(1/4) 8024922359499623 a001 267914296/87403803*12752043^(1/17) 8024922359499623 a001 14619165/224056801*33385282^(5/18) 8024922359499623 a001 165580141/1568397607*33385282^(1/4) 8024922359499623 a001 39088169/6643838879*33385282^(5/12) 8024922359499623 a001 267914296/4106118243*33385282^(5/18) 8024922359499623 a001 701408733/10749957122*33385282^(5/18) 8024922359499623 a001 1836311903/28143753123*33385282^(5/18) 8024922359499623 a001 686789568/10525900321*33385282^(5/18) 8024922359499623 a001 12586269025/192900153618*33385282^(5/18) 8024922359499623 a001 32951280099/505019158607*33385282^(5/18) 8024922359499623 a001 86267571272/1322157322203*33385282^(5/18) 8024922359499623 a001 32264490531/494493258286*33385282^(5/18) 8024922359499623 a001 591286729879/9062201101803*33385282^(5/18) 8024922359499623 a001 1548008755920/23725150497407*33385282^(5/18) 8024922359499623 a001 365435296162/5600748293801*33385282^(5/18) 8024922359499623 a001 139583862445/2139295485799*33385282^(5/18) 8024922359499623 a001 53316291173/817138163596*33385282^(5/18) 8024922359499623 a001 20365011074/312119004989*33385282^(5/18) 8024922359499623 a001 7778742049/119218851371*33385282^(5/18) 8024922359499623 a001 2971215073/45537549124*33385282^(5/18) 8024922359499623 a001 1134903170/17393796001*33385282^(5/18) 8024922359499623 a001 31622993/70711162*33385282^(1/6) 8024922359499623 a001 433494437/6643838879*33385282^(5/18) 8024922359499623 a001 63245986/370248451*33385282^(2/9) 8024922359499623 a001 165580141/2537720636*33385282^(5/18) 8024922359499623 a001 39088169/10749957122*33385282^(4/9) 8024922359499623 a001 31622993/299537289*33385282^(1/4) 8024922359499623 a001 34111385/1368706081*33385282^(1/3) 8024922359499623 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^70 8024922359499623 a001 133957148/5374978561*33385282^(1/3) 8024922359499623 a001 233802911/9381251041*33385282^(1/3) 8024922359499623 a001 1836311903/73681302247*33385282^(1/3) 8024922359499623 a001 267084832/10716675201*33385282^(1/3) 8024922359499623 a001 12586269025/505019158607*33385282^(1/3) 8024922359499623 a001 10983760033/440719107401*33385282^(1/3) 8024922359499623 a001 43133785636/1730726404001*33385282^(1/3) 8024922359499623 a001 75283811239/3020733700601*33385282^(1/3) 8024922359499623 a001 182717648081/7331474697802*33385282^(1/3) 8024922359499623 a001 139583862445/5600748293801*33385282^(1/3) 8024922359499623 a001 53316291173/2139295485799*33385282^(1/3) 8024922359499623 a001 10182505537/408569081798*33385282^(1/3) 8024922359499623 a001 7778742049/312119004989*33385282^(1/3) 8024922359499623 a001 2971215073/119218851371*33385282^(1/3) 8024922359499623 a001 567451585/22768774562*33385282^(1/3) 8024922359499623 a001 433494437/17393796001*33385282^(1/3) 8024922359499623 a001 63245986/969323029*33385282^(5/18) 8024922359499623 a001 24157817/23725150497407*141422324^(11/13) 8024922359499623 a001 24157817/5600748293801*141422324^(10/13) 8024922359499623 a001 165580141/6643838879*33385282^(1/3) 8024922359499623 a001 24157817/1322157322203*141422324^(9/13) 8024922359499623 a001 24157817/817138163596*141422324^(2/3) 8024922359499623 a001 24157817/312119004989*141422324^(8/13) 8024922359499623 a001 24157817/228826127*141422324^(3/13) 8024922359499623 a001 24157817/73681302247*141422324^(7/13) 8024922359499624 a001 39088169/28143753123*33385282^(1/2) 8024922359499624 a001 24157817/17393796001*141422324^(6/13) 8024922359499624 a001 102334155/54018521*141422324^(1/13) 8024922359499624 a001 24157817/4106118243*141422324^(5/13) 8024922359499624 a001 24157817/228826127*2537720636^(1/5) 8024922359499624 a001 102334155/54018521*2537720636^(1/15) 8024922359499624 a001 24157817/228826127*45537549124^(3/17) 8024922359499624 a001 102334155/54018521*45537549124^(1/17) 8024922359499624 a001 24157817/228826127*817138163596^(3/19) 8024922359499624 a001 102334155/54018521*14662949395604^(1/21) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^9/Lucas(40) 8024922359499624 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^3/Lucas(37) 8024922359499624 a001 102334155/54018521*192900153618^(1/18) 8024922359499624 a001 24157817/228826127*192900153618^(1/6) 8024922359499624 a001 102334155/54018521*10749957122^(1/16) 8024922359499624 a001 24157817/228826127*10749957122^(3/16) 8024922359499624 a001 102334155/54018521*599074578^(1/14) 8024922359499624 a001 24157817/228826127*599074578^(3/14) 8024922359499624 a001 24157817/1568397607*141422324^(1/3) 8024922359499624 a001 24157817/969323029*141422324^(4/13) 8024922359499624 a001 102334155/10749957122*33385282^(7/18) 8024922359499624 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^72 8024922359499624 a001 9227465/2139295485799*20633239^(6/7) 8024922359499624 a001 24157817/599074578*312119004989^(1/5) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^11/Lucas(42) 8024922359499624 a004 Fibonacci(42)*(1/2+sqrt(5)/2)/Lucas(37) 8024922359499624 a001 24157817/599074578*1568397607^(1/4) 8024922359499624 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^74 8024922359499624 a001 701408733/228826127*12752043^(1/17) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^13/Lucas(44) 8024922359499624 a004 Fibonacci(44)/Lucas(37)/(1/2+sqrt(5)/2) 8024922359499624 a001 24157817/1568397607*73681302247^(1/4) 8024922359499624 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^76 8024922359499624 a001 24157817/23725150497407*2537720636^(11/15) 8024922359499624 a001 24157817/4106118243*2537720636^(1/3) 8024922359499624 a001 24157817/5600748293801*2537720636^(2/3) 8024922359499624 a001 24157817/1322157322203*2537720636^(3/5) 8024922359499624 a001 24157817/505019158607*2537720636^(5/9) 8024922359499624 a001 24157817/312119004989*2537720636^(8/15) 8024922359499624 a001 24157817/73681302247*2537720636^(7/15) 8024922359499624 a001 24157817/45537549124*2537720636^(4/9) 8024922359499624 a001 24157817/4106118243*45537549124^(5/17) 8024922359499624 a001 24157817/4106118243*312119004989^(3/11) 8024922359499624 a001 24157817/4106118243*14662949395604^(5/21) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(46) 8024922359499624 a004 Fibonacci(46)/Lucas(37)/(1/2+sqrt(5)/2)^3 8024922359499624 a001 24157817/4106118243*192900153618^(5/18) 8024922359499624 a001 24157817/4106118243*28143753123^(3/10) 8024922359499624 a001 24157817/17393796001*2537720636^(2/5) 8024922359499624 a001 24157817/4106118243*10749957122^(5/16) 8024922359499624 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^78 8024922359499624 a001 24157817/10749957122*45537549124^(1/3) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(48) 8024922359499624 a004 Fibonacci(48)/Lucas(37)/(1/2+sqrt(5)/2)^5 8024922359499624 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^80 8024922359499624 a001 24157817/2139295485799*17393796001^(4/7) 8024922359499624 a001 24157817/73681302247*17393796001^(3/7) 8024922359499624 a001 24157817/28143753123*817138163596^(1/3) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(50) 8024922359499624 a004 Fibonacci(50)/Lucas(37)/(1/2+sqrt(5)/2)^7 8024922359499624 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^82 8024922359499624 a001 24157817/73681302247*45537549124^(7/17) 8024922359499624 a001 24157817/23725150497407*45537549124^(11/17) 8024922359499624 a001 24157817/5600748293801*45537549124^(10/17) 8024922359499624 a001 24157817/1322157322203*45537549124^(9/17) 8024922359499624 a001 24157817/312119004989*45537549124^(8/17) 8024922359499624 a001 24157817/73681302247*14662949395604^(1/3) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(52) 8024922359499624 a004 Fibonacci(52)/Lucas(37)/(1/2+sqrt(5)/2)^9 8024922359499624 a001 24157817/73681302247*192900153618^(7/18) 8024922359499624 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^84 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(54) 8024922359499624 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^11 8024922359499624 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^86 8024922359499624 a001 24157817/505019158607*312119004989^(5/11) 8024922359499624 a001 24157817/23725150497407*312119004989^(3/5) 8024922359499624 a001 24157817/5600748293801*312119004989^(6/11) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(56) 8024922359499624 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^13 8024922359499624 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^88 8024922359499624 a001 24157817/1322157322203*817138163596^(9/19) 8024922359499624 a001 24157817/1322157322203*14662949395604^(3/7) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(58) 8024922359499624 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^15 8024922359499624 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^90 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(60) 8024922359499624 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^17 8024922359499624 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^92 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(62) 8024922359499624 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^19 8024922359499624 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^94 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(64) 8024922359499624 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^21 8024922359499624 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^96 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(66) 8024922359499624 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^23 8024922359499624 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^98 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(68) 8024922359499624 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^25 8024922359499624 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^100 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(70) 8024922359499624 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^27 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(72) 8024922359499624 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^29 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(74) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(76) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(78) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(80) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(82) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(84) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(86) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(88) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(90) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(92) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(94) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(96) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(98) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(100) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(99) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(97) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(95) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(93) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(91) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(89) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(87) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(85) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(83) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(81) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(79) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(77) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(75) 8024922359499624 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^33 8024922359499624 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^35 8024922359499624 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^37 8024922359499624 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^39 8024922359499624 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^41 8024922359499624 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^43 8024922359499624 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^45 8024922359499624 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^47 8024922359499624 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^49 8024922359499624 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^51 8024922359499624 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^53 8024922359499624 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^57 8024922359499624 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^55 8024922359499624 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^56 8024922359499624 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^54 8024922359499624 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^52 8024922359499624 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^50 8024922359499624 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^48 8024922359499624 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^46 8024922359499624 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^44 8024922359499624 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^42 8024922359499624 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^40 8024922359499624 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^38 8024922359499624 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^36 8024922359499624 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^34 8024922359499624 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^32 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(73) 8024922359499624 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^30 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(71) 8024922359499624 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^28 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(69) 8024922359499624 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^26 8024922359499624 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^99 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(67) 8024922359499624 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^24 8024922359499624 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^97 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(65) 8024922359499624 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^22 8024922359499624 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^95 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(63) 8024922359499624 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^20 8024922359499624 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^93 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(61) 8024922359499624 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^18 8024922359499624 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^91 8024922359499624 a001 24157817/2139295485799*14662949395604^(4/9) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(59) 8024922359499624 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^16 8024922359499624 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^89 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(57) 8024922359499624 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^14 8024922359499624 a001 24157817/2139295485799*505019158607^(1/2) 8024922359499624 a001 24157817/14662949395604*505019158607^(4/7) 8024922359499624 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^87 8024922359499624 a001 24157817/312119004989*14662949395604^(8/21) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(55) 8024922359499624 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^12 8024922359499624 a001 24157817/1322157322203*192900153618^(1/2) 8024922359499624 a001 24157817/23725150497407*192900153618^(11/18) 8024922359499624 a001 24157817/312119004989*192900153618^(4/9) 8024922359499624 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^85 8024922359499624 a001 24157817/119218851371*312119004989^(2/5) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(53) 8024922359499624 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2)^10 8024922359499624 a001 24157817/817138163596*73681302247^(1/2) 8024922359499624 a001 24157817/312119004989*73681302247^(6/13) 8024922359499624 a001 24157817/2139295485799*73681302247^(7/13) 8024922359499624 a001 24157817/14662949395604*73681302247^(8/13) 8024922359499624 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^83 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(51) 8024922359499624 a004 Fibonacci(51)/Lucas(37)/(1/2+sqrt(5)/2)^8 8024922359499624 a001 24157817/45537549124*23725150497407^(5/16) 8024922359499624 a001 24157817/45537549124*505019158607^(5/14) 8024922359499624 a001 24157817/45537549124*73681302247^(5/13) 8024922359499624 a001 24157817/505019158607*28143753123^(1/2) 8024922359499624 a001 24157817/5600748293801*28143753123^(3/5) 8024922359499624 a001 24157817/45537549124*28143753123^(2/5) 8024922359499624 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^81 8024922359499624 a001 24157817/17393796001*45537549124^(6/17) 8024922359499624 a001 24157817/17393796001*14662949395604^(2/7) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(49) 8024922359499624 a004 Fibonacci(49)/Lucas(37)/(1/2+sqrt(5)/2)^6 8024922359499624 a001 24157817/17393796001*192900153618^(1/3) 8024922359499624 a001 24157817/73681302247*10749957122^(7/16) 8024922359499624 a001 24157817/119218851371*10749957122^(11/24) 8024922359499624 a001 24157817/45537549124*10749957122^(5/12) 8024922359499624 a001 24157817/312119004989*10749957122^(1/2) 8024922359499624 a001 24157817/817138163596*10749957122^(13/24) 8024922359499624 a001 24157817/1322157322203*10749957122^(9/16) 8024922359499624 a001 24157817/2139295485799*10749957122^(7/12) 8024922359499624 a001 24157817/5600748293801*10749957122^(5/8) 8024922359499624 a001 24157817/14662949395604*10749957122^(2/3) 8024922359499624 a001 24157817/23725150497407*10749957122^(11/16) 8024922359499624 a001 24157817/17393796001*10749957122^(3/8) 8024922359499624 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^79 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(47) 8024922359499624 a004 Fibonacci(47)/Lucas(37)/(1/2+sqrt(5)/2)^4 8024922359499624 a001 24157817/6643838879*23725150497407^(1/4) 8024922359499624 a001 24157817/6643838879*73681302247^(4/13) 8024922359499624 a001 24157817/6643838879*10749957122^(1/3) 8024922359499624 a001 24157817/45537549124*4106118243^(10/23) 8024922359499624 a001 24157817/17393796001*4106118243^(9/23) 8024922359499624 a001 24157817/119218851371*4106118243^(11/23) 8024922359499624 a001 24157817/192900153618*4106118243^(1/2) 8024922359499624 a001 24157817/312119004989*4106118243^(12/23) 8024922359499624 a001 24157817/817138163596*4106118243^(13/23) 8024922359499624 a001 24157817/2139295485799*4106118243^(14/23) 8024922359499624 a001 24157817/5600748293801*4106118243^(15/23) 8024922359499624 a001 24157817/14662949395604*4106118243^(16/23) 8024922359499624 a001 24157817/6643838879*4106118243^(8/23) 8024922359499624 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^77 8024922359499624 a001 24157817/2537720636*17393796001^(2/7) 8024922359499624 a001 24157817/2537720636*14662949395604^(2/9) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^14/Lucas(45) 8024922359499624 a004 Fibonacci(45)/Lucas(37)/(1/2+sqrt(5)/2)^2 8024922359499624 a001 24157817/2537720636*505019158607^(1/4) 8024922359499624 a001 24157817/2537720636*10749957122^(7/24) 8024922359499624 a001 24157817/17393796001*1568397607^(9/22) 8024922359499624 a001 24157817/6643838879*1568397607^(4/11) 8024922359499624 a001 24157817/2537720636*4106118243^(7/23) 8024922359499624 a001 24157817/45537549124*1568397607^(5/11) 8024922359499624 a001 24157817/119218851371*1568397607^(1/2) 8024922359499624 a001 24157817/312119004989*1568397607^(6/11) 8024922359499624 a001 24157817/817138163596*1568397607^(13/22) 8024922359499624 a001 24157817/2139295485799*1568397607^(7/11) 8024922359499624 a001 24157817/5600748293801*1568397607^(15/22) 8024922359499624 a001 24157817/2537720636*1568397607^(7/22) 8024922359499624 a001 24157817/14662949395604*1568397607^(8/11) 8024922359499624 a001 24157817/23725150497407*1568397607^(3/4) 8024922359499624 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^75 8024922359499624 a001 24157817/4106118243*599074578^(5/14) 8024922359499624 a001 24157817/969323029*2537720636^(4/15) 8024922359499624 a001 24157817/969323029*45537549124^(4/17) 8024922359499624 a001 24157817/969323029*817138163596^(4/19) 8024922359499624 a001 24157817/969323029*14662949395604^(4/21) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^12/Lucas(43) 8024922359499624 a006 5^(1/2)*Fibonacci(43)/Lucas(37)/sqrt(5) 8024922359499624 a001 24157817/969323029*192900153618^(2/9) 8024922359499624 a001 24157817/969323029*73681302247^(3/13) 8024922359499624 a001 24157817/969323029*10749957122^(1/4) 8024922359499624 a001 24157817/969323029*4106118243^(6/23) 8024922359499624 a001 24157817/2537720636*599074578^(1/3) 8024922359499624 a001 24157817/6643838879*599074578^(8/21) 8024922359499624 a001 24157817/969323029*1568397607^(3/11) 8024922359499624 a001 24157817/17393796001*599074578^(3/7) 8024922359499624 a001 24157817/45537549124*599074578^(10/21) 8024922359499624 a001 24157817/73681302247*599074578^(1/2) 8024922359499624 a001 24157817/119218851371*599074578^(11/21) 8024922359499624 a001 24157817/312119004989*599074578^(4/7) 8024922359499624 a001 24157817/817138163596*599074578^(13/21) 8024922359499624 a001 24157817/1322157322203*599074578^(9/14) 8024922359499624 a001 24157817/2139295485799*599074578^(2/3) 8024922359499624 a001 24157817/969323029*599074578^(2/7) 8024922359499624 a001 24157817/5600748293801*599074578^(5/7) 8024922359499624 a001 24157817/14662949395604*599074578^(16/21) 8024922359499624 a001 24157817/23725150497407*599074578^(11/14) 8024922359499624 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^73 8024922359499624 a001 267914296/28143753123*33385282^(7/18) 8024922359499624 a001 701408733/73681302247*33385282^(7/18) 8024922359499624 a001 1836311903/192900153618*33385282^(7/18) 8024922359499624 a001 102287808/10745088481*33385282^(7/18) 8024922359499624 a001 12586269025/1322157322203*33385282^(7/18) 8024922359499624 a001 32951280099/3461452808002*33385282^(7/18) 8024922359499624 a001 86267571272/9062201101803*33385282^(7/18) 8024922359499624 a001 225851433717/23725150497407*33385282^(7/18) 8024922359499624 a001 139583862445/14662949395604*33385282^(7/18) 8024922359499624 a001 53316291173/5600748293801*33385282^(7/18) 8024922359499624 a001 20365011074/2139295485799*33385282^(7/18) 8024922359499624 a001 7778742049/817138163596*33385282^(7/18) 8024922359499624 a001 2971215073/312119004989*33385282^(7/18) 8024922359499624 a001 1134903170/119218851371*33385282^(7/18) 8024922359499624 a001 31622993/1268860318*33385282^(1/3) 8024922359499624 a001 24157817/969323029*228826127^(3/10) 8024922359499624 a001 24157817/2537720636*228826127^(7/20) 8024922359499624 a001 24157817/4106118243*228826127^(3/8) 8024922359499624 a001 24157817/370248451*2537720636^(2/9) 8024922359499624 a001 433494437/45537549124*33385282^(7/18) 8024922359499624 a001 24157817/370248451*312119004989^(2/11) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^10/Lucas(41) 8024922359499624 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^2/Lucas(37) 8024922359499624 a001 24157817/370248451*28143753123^(1/5) 8024922359499624 a001 165580141/54018521*10749957122^(1/24) 8024922359499624 a001 24157817/370248451*10749957122^(5/24) 8024922359499624 a001 165580141/54018521*4106118243^(1/23) 8024922359499624 a001 24157817/370248451*4106118243^(5/23) 8024922359499624 a001 165580141/54018521*1568397607^(1/22) 8024922359499624 a001 24157817/370248451*1568397607^(5/22) 8024922359499624 a001 165580141/54018521*599074578^(1/21) 8024922359499624 a001 24157817/6643838879*228826127^(2/5) 8024922359499624 a001 24157817/370248451*599074578^(5/21) 8024922359499624 a001 165580141/54018521*228826127^(1/20) 8024922359499624 a001 24157817/17393796001*228826127^(9/20) 8024922359499624 a001 24157817/45537549124*228826127^(1/2) 8024922359499624 a001 24157817/119218851371*228826127^(11/20) 8024922359499624 a001 24157817/312119004989*228826127^(3/5) 8024922359499624 a001 24157817/505019158607*228826127^(5/8) 8024922359499624 a001 102334155/17393796001*33385282^(5/12) 8024922359499624 a001 24157817/370248451*228826127^(1/4) 8024922359499624 a001 24157817/817138163596*228826127^(13/20) 8024922359499624 a001 24157817/2139295485799*228826127^(7/10) 8024922359499624 a001 165580141/17393796001*33385282^(7/18) 8024922359499624 a001 165580141/54018521*87403803^(1/19) 8024922359499624 a001 24157817/5600748293801*228826127^(3/4) 8024922359499624 a001 24157817/14662949395604*228826127^(4/5) 8024922359499624 a001 1836311903/599074578*12752043^(1/17) 8024922359499624 a001 686789568/224056801*12752043^(1/17) 8024922359499624 a001 12586269025/4106118243*12752043^(1/17) 8024922359499624 a001 32951280099/10749957122*12752043^(1/17) 8024922359499624 a001 86267571272/28143753123*12752043^(1/17) 8024922359499624 a001 32264490531/10525900321*12752043^(1/17) 8024922359499624 a001 591286729879/192900153618*12752043^(1/17) 8024922359499624 a001 1548008755920/505019158607*12752043^(1/17) 8024922359499624 a001 1515744265389/494493258286*12752043^(1/17) 8024922359499624 a001 2504730781961/817138163596*12752043^(1/17) 8024922359499624 a001 956722026041/312119004989*12752043^(1/17) 8024922359499624 a001 365435296162/119218851371*12752043^(1/17) 8024922359499624 a001 139583862445/45537549124*12752043^(1/17) 8024922359499624 a001 53316291173/17393796001*12752043^(1/17) 8024922359499624 a001 20365011074/6643838879*12752043^(1/17) 8024922359499624 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^71 8024922359499624 a001 7778742049/2537720636*12752043^(1/17) 8024922359499624 a001 2971215073/969323029*12752043^(1/17) 8024922359499624 a001 39088169/73681302247*33385282^(5/9) 8024922359499624 a001 1134903170/370248451*12752043^(1/17) 8024922359499624 a001 66978574/11384387281*33385282^(5/12) 8024922359499624 a001 701408733/119218851371*33385282^(5/12) 8024922359499624 a001 1836311903/312119004989*33385282^(5/12) 8024922359499624 a001 1201881744/204284540899*33385282^(5/12) 8024922359499624 a001 12586269025/2139295485799*33385282^(5/12) 8024922359499624 a001 32951280099/5600748293801*33385282^(5/12) 8024922359499624 a001 1135099622/192933544679*33385282^(5/12) 8024922359499624 a001 139583862445/23725150497407*33385282^(5/12) 8024922359499624 a001 53316291173/9062201101803*33385282^(5/12) 8024922359499624 a001 10182505537/1730726404001*33385282^(5/12) 8024922359499624 a001 7778742049/1322157322203*33385282^(5/12) 8024922359499624 a001 2971215073/505019158607*33385282^(5/12) 8024922359499624 a001 567451585/96450076809*33385282^(5/12) 8024922359499624 a001 433494437/73681302247*33385282^(5/12) 8024922359499624 a001 831985/228811001*33385282^(4/9) 8024922359499624 a001 165580141/28143753123*33385282^(5/12) 8024922359499624 a001 24157817/370248451*87403803^(5/19) 8024922359499624 a001 24157817/969323029*87403803^(6/19) 8024922359499624 a001 24157817/2537720636*87403803^(7/19) 8024922359499624 a001 39088169/119218851371*33385282^(7/12) 8024922359499624 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^8/Lucas(39) 8024922359499624 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^4/Lucas(37) 8024922359499624 a001 63245986/54018521*23725150497407^(1/16) 8024922359499624 a001 24157817/141422324*23725150497407^(1/8) 8024922359499624 a001 24157817/141422324*505019158607^(1/7) 8024922359499624 a001 63245986/54018521*73681302247^(1/13) 8024922359499624 a001 24157817/141422324*73681302247^(2/13) 8024922359499624 a001 63245986/54018521*10749957122^(1/12) 8024922359499624 a001 24157817/141422324*10749957122^(1/6) 8024922359499624 a001 63245986/54018521*4106118243^(2/23) 8024922359499624 a001 24157817/141422324*4106118243^(4/23) 8024922359499624 a001 63245986/54018521*1568397607^(1/11) 8024922359499624 a001 24157817/141422324*1568397607^(2/11) 8024922359499624 a001 63245986/54018521*599074578^(2/21) 8024922359499624 a001 24157817/141422324*599074578^(4/21) 8024922359499624 a001 63245986/54018521*228826127^(1/10) 8024922359499624 a001 267914296/73681302247*33385282^(4/9) 8024922359499624 a001 24157817/141422324*228826127^(1/5) 8024922359499624 a001 24157817/6643838879*87403803^(8/19) 8024922359499624 a001 233802911/64300051206*33385282^(4/9) 8024922359499624 a001 102334155/54018521*33385282^(1/12) 8024922359499624 a001 1836311903/505019158607*33385282^(4/9) 8024922359499624 a001 1602508992/440719107401*33385282^(4/9) 8024922359499624 a001 12586269025/3461452808002*33385282^(4/9) 8024922359499624 a001 10983760033/3020733700601*33385282^(4/9) 8024922359499624 a001 86267571272/23725150497407*33385282^(4/9) 8024922359499624 a001 53316291173/14662949395604*33385282^(4/9) 8024922359499624 a001 20365011074/5600748293801*33385282^(4/9) 8024922359499624 a001 7778742049/2139295485799*33385282^(4/9) 8024922359499624 a001 2971215073/817138163596*33385282^(4/9) 8024922359499624 a001 1134903170/312119004989*33385282^(4/9) 8024922359499624 a001 63245986/6643838879*33385282^(7/18) 8024922359499624 a001 433494437/119218851371*33385282^(4/9) 8024922359499624 a001 165580141/54018521*33385282^(1/18) 8024922359499624 a001 24157817/17393796001*87403803^(9/19) 8024922359499624 a001 165580141/45537549124*33385282^(4/9) 8024922359499624 a001 63245986/54018521*87403803^(2/19) 8024922359499624 a001 24157817/28143753123*87403803^(1/2) 8024922359499624 a001 24157817/45537549124*87403803^(10/19) 8024922359499624 a001 433494437/141422324*12752043^(1/17) 8024922359499624 a001 39088169/192900153618*33385282^(11/18) 8024922359499624 a001 24157817/119218851371*87403803^(11/19) 8024922359499624 a001 4976784/29134601*12752043^(4/17) 8024922359499624 a001 24157817/141422324*87403803^(4/19) 8024922359499624 a001 31622993/5374978561*33385282^(5/12) 8024922359499624 a001 24157817/312119004989*87403803^(12/19) 8024922359499624 a001 14619165/10525900321*33385282^(1/2) 8024922359499624 a001 24157817/817138163596*87403803^(13/19) 8024922359499624 a001 24157817/2139295485799*87403803^(14/19) 8024922359499625 a001 133957148/96450076809*33385282^(1/2) 8024922359499625 a001 24157817/5600748293801*87403803^(15/19) 8024922359499625 a001 701408733/505019158607*33385282^(1/2) 8024922359499625 a001 1836311903/1322157322203*33385282^(1/2) 8024922359499625 a001 14930208/10749853441*33385282^(1/2) 8024922359499625 a001 12586269025/9062201101803*33385282^(1/2) 8024922359499625 a001 32951280099/23725150497407*33385282^(1/2) 8024922359499625 a001 10182505537/7331474697802*33385282^(1/2) 8024922359499625 a001 7778742049/5600748293801*33385282^(1/2) 8024922359499625 a001 2971215073/2139295485799*33385282^(1/2) 8024922359499625 a001 567451585/408569081798*33385282^(1/2) 8024922359499625 a001 63245986/17393796001*33385282^(4/9) 8024922359499625 a001 433494437/312119004989*33385282^(1/2) 8024922359499625 a001 24157817/14662949395604*87403803^(16/19) 8024922359499625 a001 165580141/119218851371*33385282^(1/2) 8024922359499625 a001 39088169/505019158607*33385282^(2/3) 8024922359499625 a001 9227465/817138163596*20633239^(4/5) 8024922359499625 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^69 8024922359499625 a001 34111385/64300051206*33385282^(5/9) 8024922359499625 a001 63245986/54018521*33385282^(1/9) 8024922359499625 a001 267914296/505019158607*33385282^(5/9) 8024922359499625 a001 233802911/440719107401*33385282^(5/9) 8024922359499625 a001 1836311903/3461452808002*33385282^(5/9) 8024922359499625 a001 1602508992/3020733700601*33385282^(5/9) 8024922359499625 a001 12586269025/23725150497407*33385282^(5/9) 8024922359499625 a001 7778742049/14662949395604*33385282^(5/9) 8024922359499625 a001 2971215073/5600748293801*33385282^(5/9) 8024922359499625 a001 1134903170/2139295485799*33385282^(5/9) 8024922359499625 a001 31622993/22768774562*33385282^(1/2) 8024922359499625 a001 433494437/817138163596*33385282^(5/9) 8024922359499625 a001 9303105/28374454999*33385282^(7/12) 8024922359499625 a001 165580141/312119004989*33385282^(5/9) 8024922359499625 a001 39088169/1322157322203*33385282^(13/18) 8024922359499625 a001 66978574/204284540899*33385282^(7/12) 8024922359499625 a001 701408733/2139295485799*33385282^(7/12) 8024922359499625 a001 1836311903/5600748293801*33385282^(7/12) 8024922359499625 a001 1201881744/3665737348901*33385282^(7/12) 8024922359499625 a001 7778742049/23725150497407*33385282^(7/12) 8024922359499625 a001 2971215073/9062201101803*33385282^(7/12) 8024922359499625 a001 567451585/1730726404001*33385282^(7/12) 8024922359499625 a001 433494437/1322157322203*33385282^(7/12) 8024922359499625 a001 102334155/505019158607*33385282^(11/18) 8024922359499625 a001 165580141/505019158607*33385282^(7/12) 8024922359499625 a001 39088169/2139295485799*33385282^(3/4) 8024922359499625 a001 267914296/1322157322203*33385282^(11/18) 8024922359499625 a001 701408733/3461452808002*33385282^(11/18) 8024922359499625 a001 24157817/228826127*33385282^(1/4) 8024922359499625 a001 1836311903/9062201101803*33385282^(11/18) 8024922359499625 a001 4807526976/23725150497407*33385282^(11/18) 8024922359499625 a001 2971215073/14662949395604*33385282^(11/18) 8024922359499625 a001 63245986/119218851371*33385282^(5/9) 8024922359499625 a001 1134903170/5600748293801*33385282^(11/18) 8024922359499625 a001 433494437/2139295485799*33385282^(11/18) 8024922359499625 a001 165580141/817138163596*33385282^(11/18) 8024922359499626 a001 39088169/3461452808002*33385282^(7/9) 8024922359499626 a001 31622993/96450076809*33385282^(7/12) 8024922359499626 a001 34111385/29134601*12752043^(2/17) 8024922359499626 a001 34111385/440719107401*33385282^(2/3) 8024922359499626 a001 24157817/141422324*33385282^(2/9) 8024922359499626 a001 133957148/1730726404001*33385282^(2/3) 8024922359499626 a001 233802911/3020733700601*33385282^(2/3) 8024922359499626 a001 1836311903/23725150497407*33385282^(2/3) 8024922359499626 a001 63245986/312119004989*33385282^(11/18) 8024922359499626 a001 567451585/7331474697802*33385282^(2/3) 8024922359499626 a001 433494437/5600748293801*33385282^(2/3) 8024922359499626 a001 24157817/370248451*33385282^(5/18) 8024922359499626 a001 165580141/2139295485799*33385282^(2/3) 8024922359499626 a001 39088169/9062201101803*33385282^(5/6) 8024922359499626 a001 6765/228826126*33385282^(13/18) 8024922359499626 a001 24157817/969323029*33385282^(1/3) 8024922359499626 a001 267914296/9062201101803*33385282^(13/18) 8024922359499626 a001 701408733/23725150497407*33385282^(13/18) 8024922359499626 a001 31622993/408569081798*33385282^(2/3) 8024922359499626 a001 433494437/14662949395604*33385282^(13/18) 8024922359499626 a001 102334155/5600748293801*33385282^(3/4) 8024922359499626 a001 165580141/5600748293801*33385282^(13/18) 8024922359499626 a001 39088169/23725150497407*33385282^(8/9) 8024922359499626 a001 10946/599074579*33385282^(3/4) 8024922359499626 a001 9227465/192900153618*20633239^(5/7) 8024922359499626 a001 433494437/23725150497407*33385282^(3/4) 8024922359499626 a001 24157817/54018521*141422324^(2/13) 8024922359499626 a001 34111385/3020733700601*33385282^(7/9) 8024922359499626 a001 165580141/9062201101803*33385282^(3/4) 8024922359499626 a001 24157817/54018521*2537720636^(2/15) 8024922359499626 a001 24157817/54018521*45537549124^(2/17) 8024922359499626 a001 24157817/54018521*14662949395604^(2/21) 8024922359499626 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^6/Lucas(37) 8024922359499626 a001 24157817/54018521*10749957122^(1/8) 8024922359499626 a001 24157817/54018521*4106118243^(3/23) 8024922359499626 a001 24157817/54018521*1568397607^(3/22) 8024922359499626 a001 24157817/54018521*599074578^(1/7) 8024922359499626 a001 24157817/54018521*228826127^(3/20) 8024922359499627 a001 24157817/2537720636*33385282^(7/18) 8024922359499627 a001 267914296/23725150497407*33385282^(7/9) 8024922359499627 a001 63245986/2139295485799*33385282^(13/18) 8024922359499627 a001 267914296/228826127*12752043^(2/17) 8024922359499627 a001 165580141/14662949395604*33385282^(7/9) 8024922359499627 a001 24157817/54018521*87403803^(3/19) 8024922359499627 a001 165580141/54018521*12752043^(1/17) 8024922359499627 a001 24157817/4106118243*33385282^(5/12) 8024922359499627 a001 233802911/199691526*12752043^(2/17) 8024922359499627 a001 31622993/1730726404001*33385282^(3/4) 8024922359499627 a001 1836311903/1568397607*12752043^(2/17) 8024922359499627 a001 1602508992/1368706081*12752043^(2/17) 8024922359499627 a001 12586269025/10749957122*12752043^(2/17) 8024922359499627 a001 10983760033/9381251041*12752043^(2/17) 8024922359499627 a001 86267571272/73681302247*12752043^(2/17) 8024922359499627 a001 75283811239/64300051206*12752043^(2/17) 8024922359499627 a001 2504730781961/2139295485799*12752043^(2/17) 8024922359499627 a001 365435296162/312119004989*12752043^(2/17) 8024922359499627 a001 139583862445/119218851371*12752043^(2/17) 8024922359499627 a001 53316291173/45537549124*12752043^(2/17) 8024922359499627 a001 20365011074/17393796001*12752043^(2/17) 8024922359499627 a001 7778742049/6643838879*12752043^(2/17) 8024922359499627 a001 2971215073/2537720636*12752043^(2/17) 8024922359499627 a001 1134903170/969323029*12752043^(2/17) 8024922359499627 a001 102334155/23725150497407*33385282^(5/6) 8024922359499627 a001 433494437/370248451*12752043^(2/17) 8024922359499627 a001 24157817/6643838879*33385282^(4/9) 8024922359499627 a001 63245986/5600748293801*33385282^(7/9) 8024922359499627 a001 39088169/20633239*7881196^(1/11) 8024922359499627 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^68 8024922359499627 a001 165580141/141422324*12752043^(2/17) 8024922359499627 a001 24157817/17393796001*33385282^(1/2) 8024922359499627 a001 31622993/7331474697802*33385282^(5/6) 8024922359499628 a001 39088169/87403803*12752043^(3/17) 8024922359499628 a001 24157817/54018521*33385282^(1/6) 8024922359499628 a001 24157817/45537549124*33385282^(5/9) 8024922359499628 a001 24157817/73681302247*33385282^(7/12) 8024922359499628 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^70 8024922359499628 a001 24157817/119218851371*33385282^(11/18) 8024922359499628 a001 14930352/228826127*12752043^(5/17) 8024922359499628 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^72 8024922359499628 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^74 8024922359499628 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^76 8024922359499628 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^78 8024922359499628 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^80 8024922359499628 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^82 8024922359499628 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^84 8024922359499628 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^86 8024922359499628 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^88 8024922359499628 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^90 8024922359499628 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^92 8024922359499628 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^94 8024922359499628 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^96 8024922359499628 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^98 8024922359499628 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^100 8024922359499628 a001 1/7465176*(1/2+1/2*5^(1/2))^42 8024922359499628 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^99 8024922359499628 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^97 8024922359499628 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^95 8024922359499628 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^93 8024922359499628 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^91 8024922359499628 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^89 8024922359499628 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^87 8024922359499628 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^85 8024922359499628 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^83 8024922359499628 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^81 8024922359499628 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^79 8024922359499628 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^77 8024922359499628 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^75 8024922359499628 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^73 8024922359499628 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^71 8024922359499628 a001 9227465/28143753123*20633239^(3/5) 8024922359499629 a001 24157817/312119004989*33385282^(2/3) 8024922359499629 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^69 8024922359499629 a001 9227465/33385282*20633239^(1/5) 8024922359499629 a001 24157817/817138163596*33385282^(13/18) 8024922359499629 a001 9227465/17393796001*20633239^(4/7) 8024922359499629 a001 24157817/1322157322203*33385282^(3/4) 8024922359499629 a001 24157817/2139295485799*33385282^(7/9) 8024922359499629 a001 102334155/228826127*12752043^(3/17) 8024922359499630 a001 133957148/299537289*12752043^(3/17) 8024922359499630 a001 701408733/1568397607*12752043^(3/17) 8024922359499630 a001 1836311903/4106118243*12752043^(3/17) 8024922359499630 a001 2403763488/5374978561*12752043^(3/17) 8024922359499630 a001 12586269025/28143753123*12752043^(3/17) 8024922359499630 a001 32951280099/73681302247*12752043^(3/17) 8024922359499630 a001 43133785636/96450076809*12752043^(3/17) 8024922359499630 a001 225851433717/505019158607*12752043^(3/17) 8024922359499630 a001 591286729879/1322157322203*12752043^(3/17) 8024922359499630 a001 10610209857723/23725150497407*12752043^(3/17) 8024922359499630 a001 182717648081/408569081798*12752043^(3/17) 8024922359499630 a001 139583862445/312119004989*12752043^(3/17) 8024922359499630 a001 53316291173/119218851371*12752043^(3/17) 8024922359499630 a001 10182505537/22768774562*12752043^(3/17) 8024922359499630 a001 7778742049/17393796001*12752043^(3/17) 8024922359499630 a001 2971215073/6643838879*12752043^(3/17) 8024922359499630 a001 567451585/1268860318*12752043^(3/17) 8024922359499630 a001 433494437/969323029*12752043^(3/17) 8024922359499630 a001 24157817/5600748293801*33385282^(5/6) 8024922359499630 a001 165580141/370248451*12752043^(3/17) 8024922359499630 a001 14930352/20633239*20633239^(1/7) 8024922359499630 a001 63245986/54018521*12752043^(2/17) 8024922359499630 a001 24157817/14662949395604*33385282^(8/9) 8024922359499630 a001 24157817/23725150497407*33385282^(11/12) 8024922359499630 a001 31622993/70711162*12752043^(3/17) 8024922359499631 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^67 8024922359499631 a001 829464/33281921*12752043^(6/17) 8024922359499631 a001 39088169/228826127*12752043^(4/17) 8024922359499632 a001 9227465/1568397607*20633239^(3/7) 8024922359499632 a001 9227465/969323029*20633239^(2/5) 8024922359499632 a001 34111385/199691526*12752043^(4/17) 8024922359499633 a001 267914296/1568397607*12752043^(4/17) 8024922359499633 a001 233802911/1368706081*12752043^(4/17) 8024922359499633 a001 1836311903/10749957122*12752043^(4/17) 8024922359499633 a001 1602508992/9381251041*12752043^(4/17) 8024922359499633 a001 12586269025/73681302247*12752043^(4/17) 8024922359499633 a001 10983760033/64300051206*12752043^(4/17) 8024922359499633 a001 86267571272/505019158607*12752043^(4/17) 8024922359499633 a001 75283811239/440719107401*12752043^(4/17) 8024922359499633 a001 2504730781961/14662949395604*12752043^(4/17) 8024922359499633 a001 139583862445/817138163596*12752043^(4/17) 8024922359499633 a001 53316291173/312119004989*12752043^(4/17) 8024922359499633 a001 20365011074/119218851371*12752043^(4/17) 8024922359499633 a001 7778742049/45537549124*12752043^(4/17) 8024922359499633 a001 2971215073/17393796001*12752043^(4/17) 8024922359499633 a001 1134903170/6643838879*12752043^(4/17) 8024922359499633 a001 433494437/2537720636*12752043^(4/17) 8024922359499633 a001 14930352/20633239*2537720636^(1/9) 8024922359499633 a001 9227465/33385282*17393796001^(1/7) 8024922359499633 a001 14930352/20633239*312119004989^(1/11) 8024922359499633 a001 9227465/33385282*14662949395604^(1/9) 8024922359499633 a001 9227465/33385282*(1/2+1/2*5^(1/2))^7 8024922359499633 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^7/Lucas(36) 8024922359499633 a001 14930352/20633239*(1/2+1/2*5^(1/2))^5 8024922359499633 a001 14930352/20633239*28143753123^(1/10) 8024922359499633 a001 9227465/33385282*599074578^(1/6) 8024922359499633 a001 14930352/20633239*228826127^(1/8) 8024922359499633 a001 165580141/969323029*12752043^(4/17) 8024922359499633 a001 1762289/408569081798*7881196^(10/11) 8024922359499633 a001 63245986/370248451*12752043^(4/17) 8024922359499634 a001 14930352/1568397607*12752043^(7/17) 8024922359499634 a001 39088169/599074578*12752043^(5/17) 8024922359499635 a001 14619165/4769326*4870847^(1/16) 8024922359499635 a001 9227465/141422324*20633239^(2/7) 8024922359499635 a001 9227465/20633239*7881196^(2/11) 8024922359499635 a001 24157817/54018521*12752043^(3/17) 8024922359499635 a001 14619165/224056801*12752043^(5/17) 8024922359499635 a001 267914296/4106118243*12752043^(5/17) 8024922359499635 a001 701408733/10749957122*12752043^(5/17) 8024922359499635 a001 1836311903/28143753123*12752043^(5/17) 8024922359499635 a001 686789568/10525900321*12752043^(5/17) 8024922359499635 a001 12586269025/192900153618*12752043^(5/17) 8024922359499635 a001 32951280099/505019158607*12752043^(5/17) 8024922359499635 a001 86267571272/1322157322203*12752043^(5/17) 8024922359499635 a001 32264490531/494493258286*12752043^(5/17) 8024922359499635 a001 591286729879/9062201101803*12752043^(5/17) 8024922359499635 a001 1548008755920/23725150497407*12752043^(5/17) 8024922359499635 a001 365435296162/5600748293801*12752043^(5/17) 8024922359499635 a001 139583862445/2139295485799*12752043^(5/17) 8024922359499635 a001 53316291173/817138163596*12752043^(5/17) 8024922359499635 a001 20365011074/312119004989*12752043^(5/17) 8024922359499635 a001 7778742049/119218851371*12752043^(5/17) 8024922359499635 a001 2971215073/45537549124*12752043^(5/17) 8024922359499635 a001 1134903170/17393796001*12752043^(5/17) 8024922359499635 a001 433494437/6643838879*12752043^(5/17) 8024922359499636 a001 165580141/2537720636*12752043^(5/17) 8024922359499636 a001 24157817/141422324*12752043^(4/17) 8024922359499636 a001 63245986/969323029*12752043^(5/17) 8024922359499637 a001 4976784/1368706081*12752043^(8/17) 8024922359499637 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^66 8024922359499637 a001 39088169/1568397607*12752043^(6/17) 8024922359499638 a001 34111385/1368706081*12752043^(6/17) 8024922359499638 a001 24157817/370248451*12752043^(5/17) 8024922359499638 a001 133957148/5374978561*12752043^(6/17) 8024922359499638 a001 233802911/9381251041*12752043^(6/17) 8024922359499638 a001 1836311903/73681302247*12752043^(6/17) 8024922359499638 a001 267084832/10716675201*12752043^(6/17) 8024922359499638 a001 12586269025/505019158607*12752043^(6/17) 8024922359499638 a001 10983760033/440719107401*12752043^(6/17) 8024922359499638 a001 43133785636/1730726404001*12752043^(6/17) 8024922359499638 a001 75283811239/3020733700601*12752043^(6/17) 8024922359499638 a001 182717648081/7331474697802*12752043^(6/17) 8024922359499638 a001 139583862445/5600748293801*12752043^(6/17) 8024922359499638 a001 53316291173/2139295485799*12752043^(6/17) 8024922359499638 a001 10182505537/408569081798*12752043^(6/17) 8024922359499638 a001 7778742049/312119004989*12752043^(6/17) 8024922359499638 a001 2971215073/119218851371*12752043^(6/17) 8024922359499638 a001 567451585/22768774562*12752043^(6/17) 8024922359499638 a001 433494437/17393796001*12752043^(6/17) 8024922359499638 a001 14930352/6643838879*12752043^(1/2) 8024922359499638 a001 165580141/6643838879*12752043^(6/17) 8024922359499639 a001 9227465/87403803*141422324^(3/13) 8024922359499639 a001 39088169/20633239*141422324^(1/13) 8024922359499639 a001 9227465/87403803*2537720636^(1/5) 8024922359499639 a001 39088169/20633239*2537720636^(1/15) 8024922359499639 a001 9227465/87403803*45537549124^(3/17) 8024922359499639 a001 39088169/20633239*45537549124^(1/17) 8024922359499639 a001 9227465/87403803*817138163596^(3/19) 8024922359499639 a001 9227465/87403803*14662949395604^(1/7) 8024922359499639 a001 39088169/20633239*14662949395604^(1/21) 8024922359499639 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^9/Lucas(38) 8024922359499639 a001 39088169/20633239*(1/2+1/2*5^(1/2))^3 8024922359499639 a001 39088169/20633239*192900153618^(1/18) 8024922359499639 a001 9227465/87403803*192900153618^(1/6) 8024922359499639 a001 39088169/20633239*10749957122^(1/16) 8024922359499639 a001 9227465/87403803*10749957122^(3/16) 8024922359499639 a001 39088169/20633239*599074578^(1/14) 8024922359499639 a001 9227465/87403803*599074578^(3/14) 8024922359499639 a001 31622993/1268860318*12752043^(6/17) 8024922359499639 a001 39088169/20633239*33385282^(1/12) 8024922359499639 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^68 8024922359499639 a001 9227465/9062201101803*141422324^(11/13) 8024922359499639 a001 9227465/2139295485799*141422324^(10/13) 8024922359499640 a001 9227465/505019158607*141422324^(9/13) 8024922359499640 a001 9227465/312119004989*141422324^(2/3) 8024922359499640 a001 9227465/119218851371*141422324^(8/13) 8024922359499640 a001 9227465/28143753123*141422324^(7/13) 8024922359499640 a001 9227465/6643838879*141422324^(6/13) 8024922359499640 a001 9227465/1568397607*141422324^(5/13) 8024922359499640 a001 9227465/599074578*141422324^(1/3) 8024922359499640 a001 9227465/228826127*312119004989^(1/5) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^11/Lucas(40) 8024922359499640 a001 9303105/3751498+9303105/3751498*5^(1/2) 8024922359499640 a001 9227465/228826127*1568397607^(1/4) 8024922359499640 a001 9227465/370248451*141422324^(4/13) 8024922359499640 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^70 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^13/Lucas(42) 8024922359499640 a004 Fibonacci(42)/Lucas(35)/(1/2+sqrt(5)/2) 8024922359499640 a001 9227465/599074578*73681302247^(1/4) 8024922359499640 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^72 8024922359499640 a001 9227465/1568397607*2537720636^(1/3) 8024922359499640 a001 9227465/1568397607*45537549124^(5/17) 8024922359499640 a001 9227465/1568397607*312119004989^(3/11) 8024922359499640 a001 9227465/1568397607*14662949395604^(5/21) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^15/Lucas(44) 8024922359499640 a004 Fibonacci(44)/Lucas(35)/(1/2+sqrt(5)/2)^3 8024922359499640 a001 9227465/1568397607*192900153618^(5/18) 8024922359499640 a001 9227465/1568397607*28143753123^(3/10) 8024922359499640 a001 9227465/1568397607*10749957122^(5/16) 8024922359499640 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^74 8024922359499640 a001 9227465/23725150497407*2537720636^(7/9) 8024922359499640 a001 9227465/9062201101803*2537720636^(11/15) 8024922359499640 a001 9227465/2139295485799*2537720636^(2/3) 8024922359499640 a001 9227465/505019158607*2537720636^(3/5) 8024922359499640 a001 9227465/192900153618*2537720636^(5/9) 8024922359499640 a001 9227465/119218851371*2537720636^(8/15) 8024922359499640 a001 9227465/28143753123*2537720636^(7/15) 8024922359499640 a001 9227465/17393796001*2537720636^(4/9) 8024922359499640 a001 9227465/4106118243*45537549124^(1/3) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(46) 8024922359499640 a004 Fibonacci(46)/Lucas(35)/(1/2+sqrt(5)/2)^5 8024922359499640 a001 9227465/6643838879*2537720636^(2/5) 8024922359499640 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^76 8024922359499640 a001 9227465/10749957122*817138163596^(1/3) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(48) 8024922359499640 a004 Fibonacci(48)/Lucas(35)/(1/2+sqrt(5)/2)^7 8024922359499640 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^78 8024922359499640 a001 9227465/28143753123*17393796001^(3/7) 8024922359499640 a001 9227465/23725150497407*17393796001^(5/7) 8024922359499640 a001 9227465/817138163596*17393796001^(4/7) 8024922359499640 a001 9227465/28143753123*45537549124^(7/17) 8024922359499640 a001 9227465/28143753123*14662949395604^(1/3) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(50) 8024922359499640 a004 Fibonacci(50)/Lucas(35)/(1/2+sqrt(5)/2)^9 8024922359499640 a001 9227465/28143753123*192900153618^(7/18) 8024922359499640 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^80 8024922359499640 a001 9227465/14662949395604*45537549124^(2/3) 8024922359499640 a001 9227465/9062201101803*45537549124^(11/17) 8024922359499640 a001 9227465/2139295485799*45537549124^(10/17) 8024922359499640 a001 9227465/505019158607*45537549124^(9/17) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(52) 8024922359499640 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^11 8024922359499640 a001 9227465/119218851371*45537549124^(8/17) 8024922359499640 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^82 8024922359499640 a001 9227465/192900153618*312119004989^(5/11) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(54) 8024922359499640 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^13 8024922359499640 a001 9227465/192900153618*3461452808002^(5/12) 8024922359499640 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^84 8024922359499640 a001 9227465/23725150497407*312119004989^(7/11) 8024922359499640 a001 9227465/9062201101803*312119004989^(3/5) 8024922359499640 a001 9227465/2139295485799*312119004989^(6/11) 8024922359499640 a001 9227465/505019158607*14662949395604^(3/7) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(56) 8024922359499640 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^15 8024922359499640 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^86 8024922359499640 a001 9227465/9062201101803*817138163596^(11/19) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(58) 8024922359499640 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^17 8024922359499640 a001 9227465/1322157322203*1322157322203^(1/2) 8024922359499640 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^88 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(60) 8024922359499640 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^19 8024922359499640 a001 9227465/3461452808002*9062201101803^(1/2) 8024922359499640 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^90 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(62) 8024922359499640 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^21 8024922359499640 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^92 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(64) 8024922359499640 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^23 8024922359499640 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^94 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(66) 8024922359499640 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^25 8024922359499640 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^96 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(68) 8024922359499640 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^27 8024922359499640 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^98 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(70) 8024922359499640 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^100 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(72) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(74) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(76) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(78) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(80) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(82) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(84) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(86) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(88) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(90) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(92) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(94) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(96) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(98) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(100) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(99) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(97) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(95) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(93) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(91) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(89) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(87) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(85) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(83) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(81) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(79) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(77) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(75) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(73) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(71) 8024922359499640 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^31 8024922359499640 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^33 8024922359499640 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^35 8024922359499640 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^37 8024922359499640 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^39 8024922359499640 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^41 8024922359499640 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^43 8024922359499640 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^45 8024922359499640 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^47 8024922359499640 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^49 8024922359499640 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^51 8024922359499640 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^53 8024922359499640 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^55 8024922359499640 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^57 8024922359499640 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^59 8024922359499640 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^99 8024922359499640 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^58 8024922359499640 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^56 8024922359499640 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^54 8024922359499640 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^52 8024922359499640 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^50 8024922359499640 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^48 8024922359499640 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^46 8024922359499640 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^44 8024922359499640 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^42 8024922359499640 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^40 8024922359499640 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^38 8024922359499640 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^36 8024922359499640 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^34 8024922359499640 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^32 8024922359499640 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^30 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(69) 8024922359499640 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^28 8024922359499640 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^97 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(67) 8024922359499640 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^26 8024922359499640 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^95 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(65) 8024922359499640 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^24 8024922359499640 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^93 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(63) 8024922359499640 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^22 8024922359499640 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^91 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(61) 8024922359499640 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^20 8024922359499640 a001 9227465/5600748293801*23725150497407^(1/2) 8024922359499640 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^89 8024922359499640 a001 9227465/2139295485799*14662949395604^(10/21) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(59) 8024922359499640 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^18 8024922359499640 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^87 8024922359499640 a001 9227465/817138163596*14662949395604^(4/9) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(57) 8024922359499640 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^16 8024922359499640 a001 9227465/23725150497407*505019158607^(5/8) 8024922359499640 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^85 8024922359499640 a001 9227465/505019158607*192900153618^(1/2) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(55) 8024922359499640 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^14 8024922359499640 a001 9227465/2139295485799*192900153618^(5/9) 8024922359499640 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^83 8024922359499640 a001 9227465/119218851371*14662949395604^(8/21) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(53) 8024922359499640 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^12 8024922359499640 a001 9227465/119218851371*192900153618^(4/9) 8024922359499640 a001 9227465/817138163596*73681302247^(7/13) 8024922359499640 a001 9227465/312119004989*73681302247^(1/2) 8024922359499640 a001 9227465/5600748293801*73681302247^(8/13) 8024922359499640 a001 9227465/119218851371*73681302247^(6/13) 8024922359499640 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^81 8024922359499640 a001 9227465/45537549124*312119004989^(2/5) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(51) 8024922359499640 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2)^10 8024922359499640 a001 9227465/192900153618*28143753123^(1/2) 8024922359499640 a001 9227465/2139295485799*28143753123^(3/5) 8024922359499640 a001 9227465/23725150497407*28143753123^(7/10) 8024922359499640 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^79 8024922359499640 a001 9227465/28143753123*10749957122^(7/16) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(49) 8024922359499640 a004 Fibonacci(49)/Lucas(35)/(1/2+sqrt(5)/2)^8 8024922359499640 a001 9227465/17393796001*23725150497407^(5/16) 8024922359499640 a001 9227465/17393796001*505019158607^(5/14) 8024922359499640 a001 9227465/17393796001*73681302247^(5/13) 8024922359499640 a001 9227465/17393796001*28143753123^(2/5) 8024922359499640 a001 9227465/119218851371*10749957122^(1/2) 8024922359499640 a001 9227465/45537549124*10749957122^(11/24) 8024922359499640 a001 9227465/312119004989*10749957122^(13/24) 8024922359499640 a001 9227465/505019158607*10749957122^(9/16) 8024922359499640 a001 9227465/817138163596*10749957122^(7/12) 8024922359499640 a001 9227465/2139295485799*10749957122^(5/8) 8024922359499640 a001 9227465/5600748293801*10749957122^(2/3) 8024922359499640 a001 9227465/9062201101803*10749957122^(11/16) 8024922359499640 a001 9227465/14662949395604*10749957122^(17/24) 8024922359499640 a001 9227465/17393796001*10749957122^(5/12) 8024922359499640 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^77 8024922359499640 a001 9227465/6643838879*45537549124^(6/17) 8024922359499640 a001 9227465/6643838879*14662949395604^(2/7) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(47) 8024922359499640 a004 Fibonacci(47)/Lucas(35)/(1/2+sqrt(5)/2)^6 8024922359499640 a001 9227465/6643838879*192900153618^(1/3) 8024922359499640 a001 9227465/6643838879*10749957122^(3/8) 8024922359499640 a001 9227465/45537549124*4106118243^(11/23) 8024922359499640 a001 9227465/17393796001*4106118243^(10/23) 8024922359499640 a001 9227465/73681302247*4106118243^(1/2) 8024922359499640 a001 9227465/119218851371*4106118243^(12/23) 8024922359499640 a001 9227465/312119004989*4106118243^(13/23) 8024922359499640 a001 9227465/817138163596*4106118243^(14/23) 8024922359499640 a001 9227465/2139295485799*4106118243^(15/23) 8024922359499640 a001 9227465/5600748293801*4106118243^(16/23) 8024922359499640 a001 9227465/14662949395604*4106118243^(17/23) 8024922359499640 a001 9227465/6643838879*4106118243^(9/23) 8024922359499640 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^75 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^16/Lucas(45) 8024922359499640 a004 Fibonacci(45)/Lucas(35)/(1/2+sqrt(5)/2)^4 8024922359499640 a001 9227465/2537720636*23725150497407^(1/4) 8024922359499640 a001 9227465/2537720636*73681302247^(4/13) 8024922359499640 a001 9227465/2537720636*10749957122^(1/3) 8024922359499640 a001 9227465/2537720636*4106118243^(8/23) 8024922359499640 a001 9227465/17393796001*1568397607^(5/11) 8024922359499640 a001 9227465/6643838879*1568397607^(9/22) 8024922359499640 a001 9227465/45537549124*1568397607^(1/2) 8024922359499640 a001 9227465/119218851371*1568397607^(6/11) 8024922359499640 a001 9227465/312119004989*1568397607^(13/22) 8024922359499640 a001 9227465/817138163596*1568397607^(7/11) 8024922359499640 a001 9227465/2139295485799*1568397607^(15/22) 8024922359499640 a001 9227465/5600748293801*1568397607^(8/11) 8024922359499640 a001 9227465/2537720636*1568397607^(4/11) 8024922359499640 a001 9227465/9062201101803*1568397607^(3/4) 8024922359499640 a001 9227465/14662949395604*1568397607^(17/22) 8024922359499640 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^73 8024922359499640 a001 9227465/1568397607*599074578^(5/14) 8024922359499640 a001 9227465/969323029*17393796001^(2/7) 8024922359499640 a001 9227465/969323029*14662949395604^(2/9) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^14/Lucas(43) 8024922359499640 a004 Fibonacci(43)/Lucas(35)/(1/2+sqrt(5)/2)^2 8024922359499640 a001 9227465/969323029*505019158607^(1/4) 8024922359499640 a001 9227465/969323029*10749957122^(7/24) 8024922359499640 a001 9227465/969323029*4106118243^(7/23) 8024922359499640 a001 9227465/969323029*1568397607^(7/22) 8024922359499640 a001 9227465/2537720636*599074578^(8/21) 8024922359499640 a001 9227465/6643838879*599074578^(3/7) 8024922359499640 a001 9227465/17393796001*599074578^(10/21) 8024922359499640 a001 9227465/28143753123*599074578^(1/2) 8024922359499640 a001 9227465/45537549124*599074578^(11/21) 8024922359499640 a001 9227465/119218851371*599074578^(4/7) 8024922359499640 a001 9227465/312119004989*599074578^(13/21) 8024922359499640 a001 9227465/505019158607*599074578^(9/14) 8024922359499640 a001 9227465/817138163596*599074578^(2/3) 8024922359499640 a001 9227465/2139295485799*599074578^(5/7) 8024922359499640 a001 9227465/969323029*599074578^(1/3) 8024922359499640 a001 9227465/5600748293801*599074578^(16/21) 8024922359499640 a001 9227465/9062201101803*599074578^(11/14) 8024922359499640 a001 9227465/14662949395604*599074578^(17/21) 8024922359499640 a001 9227465/23725150497407*599074578^(5/6) 8024922359499640 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^71 8024922359499640 a001 9227465/1568397607*228826127^(3/8) 8024922359499640 a001 9227465/370248451*2537720636^(4/15) 8024922359499640 a001 9227465/370248451*45537549124^(4/17) 8024922359499640 a001 9227465/370248451*817138163596^(4/19) 8024922359499640 a001 9227465/370248451*14662949395604^(4/21) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^12/Lucas(41) 8024922359499640 a006 5^(1/2)*Fibonacci(41)/Lucas(35)/sqrt(5) 8024922359499640 a001 9227465/370248451*192900153618^(2/9) 8024922359499640 a001 9227465/370248451*73681302247^(3/13) 8024922359499640 a001 9227465/370248451*10749957122^(1/4) 8024922359499640 a001 9227465/370248451*4106118243^(6/23) 8024922359499640 a001 9227465/370248451*1568397607^(3/11) 8024922359499640 a001 9227465/969323029*228826127^(7/20) 8024922359499640 a001 9227465/2537720636*228826127^(2/5) 8024922359499640 a001 9227465/370248451*599074578^(2/7) 8024922359499640 a001 9227465/6643838879*228826127^(9/20) 8024922359499640 a001 7465176/5374978561*12752043^(9/17) 8024922359499640 a001 9227465/17393796001*228826127^(1/2) 8024922359499640 a001 9227465/45537549124*228826127^(11/20) 8024922359499640 a001 9227465/119218851371*228826127^(3/5) 8024922359499640 a001 9227465/192900153618*228826127^(5/8) 8024922359499640 a001 9227465/312119004989*228826127^(13/20) 8024922359499640 a001 9227465/370248451*228826127^(3/10) 8024922359499640 a001 9227465/817138163596*228826127^(7/10) 8024922359499640 a001 9227465/2139295485799*228826127^(3/4) 8024922359499640 a001 9227465/5600748293801*228826127^(4/5) 8024922359499640 a001 9227465/14662949395604*228826127^(17/20) 8024922359499640 a001 9227465/23725150497407*228826127^(7/8) 8024922359499640 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^69 8024922359499640 a001 9227465/370248451*87403803^(6/19) 8024922359499640 a001 9227465/969323029*87403803^(7/19) 8024922359499640 a001 9227465/141422324*2537720636^(2/9) 8024922359499640 a001 9227465/141422324*312119004989^(2/11) 8024922359499640 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^10/Lucas(39) 8024922359499640 a001 63245986/20633239*(1/2+1/2*5^(1/2))^2 8024922359499640 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^2/Lucas(35) 8024922359499640 a001 9227465/141422324*28143753123^(1/5) 8024922359499640 a001 63245986/20633239*10749957122^(1/24) 8024922359499640 a001 9227465/141422324*10749957122^(5/24) 8024922359499640 a001 63245986/20633239*4106118243^(1/23) 8024922359499640 a001 9227465/141422324*4106118243^(5/23) 8024922359499640 a001 63245986/20633239*1568397607^(1/22) 8024922359499640 a001 9227465/141422324*1568397607^(5/22) 8024922359499640 a001 63245986/20633239*599074578^(1/21) 8024922359499640 a001 9227465/141422324*599074578^(5/21) 8024922359499640 a001 63245986/20633239*228826127^(1/20) 8024922359499640 a001 39088169/4106118243*12752043^(7/17) 8024922359499640 a001 9227465/141422324*228826127^(1/4) 8024922359499640 a001 9227465/2537720636*87403803^(8/19) 8024922359499640 a001 63245986/20633239*87403803^(1/19) 8024922359499640 a001 9227465/6643838879*87403803^(9/19) 8024922359499640 a001 9227465/10749957122*87403803^(1/2) 8024922359499640 a001 9227465/17393796001*87403803^(10/19) 8024922359499640 a001 9227465/45537549124*87403803^(11/19) 8024922359499640 a001 9227465/119218851371*87403803^(12/19) 8024922359499640 a001 9227465/141422324*87403803^(5/19) 8024922359499641 a001 9227465/312119004989*87403803^(13/19) 8024922359499641 a001 9227465/87403803*33385282^(1/4) 8024922359499641 a001 9227465/817138163596*87403803^(14/19) 8024922359499641 a001 63245986/20633239*33385282^(1/18) 8024922359499641 a001 9227465/2139295485799*87403803^(15/19) 8024922359499641 a001 9227465/5600748293801*87403803^(16/19) 8024922359499641 a001 9227465/14662949395604*87403803^(17/19) 8024922359499641 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^67 8024922359499641 a001 267914296/87403803*4870847^(1/16) 8024922359499641 a001 102334155/10749957122*12752043^(7/17) 8024922359499641 a001 24157817/969323029*12752043^(6/17) 8024922359499641 a001 267914296/28143753123*12752043^(7/17) 8024922359499641 a001 701408733/73681302247*12752043^(7/17) 8024922359499641 a001 1836311903/192900153618*12752043^(7/17) 8024922359499641 a001 102287808/10745088481*12752043^(7/17) 8024922359499641 a001 12586269025/1322157322203*12752043^(7/17) 8024922359499641 a001 32951280099/3461452808002*12752043^(7/17) 8024922359499641 a001 86267571272/9062201101803*12752043^(7/17) 8024922359499641 a001 225851433717/23725150497407*12752043^(7/17) 8024922359499641 a001 139583862445/14662949395604*12752043^(7/17) 8024922359499641 a001 53316291173/5600748293801*12752043^(7/17) 8024922359499641 a001 20365011074/2139295485799*12752043^(7/17) 8024922359499641 a001 7778742049/817138163596*12752043^(7/17) 8024922359499641 a001 2971215073/312119004989*12752043^(7/17) 8024922359499641 a001 1134903170/119218851371*12752043^(7/17) 8024922359499641 a001 433494437/45537549124*12752043^(7/17) 8024922359499641 a001 165580141/17393796001*12752043^(7/17) 8024922359499642 a001 63245986/6643838879*12752043^(7/17) 8024922359499642 a001 701408733/228826127*4870847^(1/16) 8024922359499642 a001 1836311903/599074578*4870847^(1/16) 8024922359499642 a001 686789568/224056801*4870847^(1/16) 8024922359499642 a001 12586269025/4106118243*4870847^(1/16) 8024922359499642 a001 32951280099/10749957122*4870847^(1/16) 8024922359499642 a001 86267571272/28143753123*4870847^(1/16) 8024922359499642 a001 32264490531/10525900321*4870847^(1/16) 8024922359499642 a001 591286729879/192900153618*4870847^(1/16) 8024922359499642 a001 1548008755920/505019158607*4870847^(1/16) 8024922359499642 a001 1515744265389/494493258286*4870847^(1/16) 8024922359499642 a001 2504730781961/817138163596*4870847^(1/16) 8024922359499642 a001 956722026041/312119004989*4870847^(1/16) 8024922359499642 a001 365435296162/119218851371*4870847^(1/16) 8024922359499642 a001 139583862445/45537549124*4870847^(1/16) 8024922359499642 a001 53316291173/17393796001*4870847^(1/16) 8024922359499642 a001 20365011074/6643838879*4870847^(1/16) 8024922359499642 a001 7778742049/2537720636*4870847^(1/16) 8024922359499642 a001 2971215073/969323029*4870847^(1/16) 8024922359499642 a001 1134903170/370248451*4870847^(1/16) 8024922359499642 a001 9227465/141422324*33385282^(5/18) 8024922359499642 a001 9227465/370248451*33385282^(1/3) 8024922359499643 a001 433494437/141422324*4870847^(1/16) 8024922359499643 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^8/Lucas(37) 8024922359499643 a001 24157817/20633239*(1/2+1/2*5^(1/2))^4 8024922359499643 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^4/Lucas(35) 8024922359499643 a001 24157817/20633239*23725150497407^(1/16) 8024922359499643 a001 9227465/54018521*23725150497407^(1/8) 8024922359499643 a001 9227465/54018521*505019158607^(1/7) 8024922359499643 a001 24157817/20633239*73681302247^(1/13) 8024922359499643 a001 9227465/54018521*73681302247^(2/13) 8024922359499643 a001 24157817/20633239*10749957122^(1/12) 8024922359499643 a001 9227465/54018521*10749957122^(1/6) 8024922359499643 a001 24157817/20633239*4106118243^(2/23) 8024922359499643 a001 9227465/54018521*4106118243^(4/23) 8024922359499643 a001 24157817/20633239*1568397607^(1/11) 8024922359499643 a001 9227465/54018521*1568397607^(2/11) 8024922359499643 a001 24157817/20633239*599074578^(2/21) 8024922359499643 a001 9227465/54018521*599074578^(4/21) 8024922359499643 a001 24157817/20633239*228826127^(1/10) 8024922359499643 a001 9227465/54018521*228826127^(1/5) 8024922359499643 a001 9227465/969323029*33385282^(7/18) 8024922359499643 a001 24157817/20633239*87403803^(2/19) 8024922359499643 a001 9227465/54018521*87403803^(4/19) 8024922359499643 a001 4976784/9381251041*12752043^(10/17) 8024922359499643 a001 9227465/1568397607*33385282^(5/12) 8024922359499643 a001 9227465/2537720636*33385282^(4/9) 8024922359499643 a001 63245986/20633239*12752043^(1/17) 8024922359499643 a001 39088169/10749957122*12752043^(8/17) 8024922359499643 a001 24157817/20633239*33385282^(1/9) 8024922359499643 a001 9227465/6643838879*33385282^(1/2) 8024922359499644 a001 9227465/17393796001*33385282^(5/9) 8024922359499644 a001 9227465/28143753123*33385282^(7/12) 8024922359499644 a001 831985/228811001*12752043^(8/17) 8024922359499644 a001 24157817/2537720636*12752043^(7/17) 8024922359499644 a001 9227465/54018521*33385282^(2/9) 8024922359499644 a001 267914296/73681302247*12752043^(8/17) 8024922359499644 a001 233802911/64300051206*12752043^(8/17) 8024922359499644 a001 1836311903/505019158607*12752043^(8/17) 8024922359499644 a001 1602508992/440719107401*12752043^(8/17) 8024922359499644 a001 12586269025/3461452808002*12752043^(8/17) 8024922359499644 a001 10983760033/3020733700601*12752043^(8/17) 8024922359499644 a001 86267571272/23725150497407*12752043^(8/17) 8024922359499644 a001 53316291173/14662949395604*12752043^(8/17) 8024922359499644 a001 20365011074/5600748293801*12752043^(8/17) 8024922359499644 a001 7778742049/2139295485799*12752043^(8/17) 8024922359499644 a001 2971215073/817138163596*12752043^(8/17) 8024922359499644 a001 1134903170/312119004989*12752043^(8/17) 8024922359499644 a001 433494437/119218851371*12752043^(8/17) 8024922359499644 a001 9227465/45537549124*33385282^(11/18) 8024922359499644 a001 165580141/45537549124*12752043^(8/17) 8024922359499644 a001 1762289/96450076809*7881196^(9/11) 8024922359499645 a001 39088169/17393796001*12752043^(1/2) 8024922359499645 a001 63245986/17393796001*12752043^(8/17) 8024922359499645 a001 9227465/119218851371*33385282^(2/3) 8024922359499645 a001 165580141/54018521*4870847^(1/16) 8024922359499645 a001 9227465/312119004989*33385282^(13/18) 8024922359499645 a001 9227465/505019158607*33385282^(3/4) 8024922359499645 a001 9227465/817138163596*33385282^(7/9) 8024922359499645 a001 102334155/45537549124*12752043^(1/2) 8024922359499646 a001 267914296/119218851371*12752043^(1/2) 8024922359499646 a001 3524667/1568437211*12752043^(1/2) 8024922359499646 a001 1836311903/817138163596*12752043^(1/2) 8024922359499646 a001 4807526976/2139295485799*12752043^(1/2) 8024922359499646 a001 12586269025/5600748293801*12752043^(1/2) 8024922359499646 a001 32951280099/14662949395604*12752043^(1/2) 8024922359499646 a001 53316291173/23725150497407*12752043^(1/2) 8024922359499646 a001 20365011074/9062201101803*12752043^(1/2) 8024922359499646 a001 7778742049/3461452808002*12752043^(1/2) 8024922359499646 a001 2971215073/1322157322203*12752043^(1/2) 8024922359499646 a001 1134903170/505019158607*12752043^(1/2) 8024922359499646 a001 433494437/192900153618*12752043^(1/2) 8024922359499646 a001 14930352/73681302247*12752043^(11/17) 8024922359499646 a001 165580141/73681302247*12752043^(1/2) 8024922359499646 a001 9227465/2139295485799*33385282^(5/6) 8024922359499646 a001 39088169/28143753123*12752043^(9/17) 8024922359499646 a001 63245986/28143753123*12752043^(1/2) 8024922359499646 a001 9227465/5600748293801*33385282^(8/9) 8024922359499646 a001 9227465/9062201101803*33385282^(11/12) 8024922359499647 a001 9227465/14662949395604*33385282^(17/18) 8024922359499647 a001 14619165/10525900321*12752043^(9/17) 8024922359499647 a001 24157817/6643838879*12752043^(8/17) 8024922359499647 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^65 8024922359499647 a001 133957148/96450076809*12752043^(9/17) 8024922359499647 a001 701408733/505019158607*12752043^(9/17) 8024922359499647 a001 1836311903/1322157322203*12752043^(9/17) 8024922359499647 a001 14930208/10749853441*12752043^(9/17) 8024922359499647 a001 12586269025/9062201101803*12752043^(9/17) 8024922359499647 a001 32951280099/23725150497407*12752043^(9/17) 8024922359499647 a001 10182505537/7331474697802*12752043^(9/17) 8024922359499647 a001 7778742049/5600748293801*12752043^(9/17) 8024922359499647 a001 2971215073/2139295485799*12752043^(9/17) 8024922359499647 a001 567451585/408569081798*12752043^(9/17) 8024922359499647 a001 433494437/312119004989*12752043^(9/17) 8024922359499647 a001 165580141/119218851371*12752043^(9/17) 8024922359499647 a001 31622993/22768774562*12752043^(9/17) 8024922359499648 a001 24157817/20633239*12752043^(2/17) 8024922359499648 a001 24157817/10749957122*12752043^(1/2) 8024922359499649 a001 2584/33385281*12752043^(12/17) 8024922359499649 a001 39088169/73681302247*12752043^(10/17) 8024922359499649 a001 5702887/33385282*4870847^(1/4) 8024922359499650 a001 34111385/64300051206*12752043^(10/17) 8024922359499650 a001 24157817/17393796001*12752043^(9/17) 8024922359499650 a001 267914296/505019158607*12752043^(10/17) 8024922359499650 a001 233802911/440719107401*12752043^(10/17) 8024922359499650 a001 1836311903/3461452808002*12752043^(10/17) 8024922359499650 a001 1602508992/3020733700601*12752043^(10/17) 8024922359499650 a001 12586269025/23725150497407*12752043^(10/17) 8024922359499650 a001 7778742049/14662949395604*12752043^(10/17) 8024922359499650 a001 2971215073/5600748293801*12752043^(10/17) 8024922359499650 a001 1134903170/2139295485799*12752043^(10/17) 8024922359499650 a001 433494437/817138163596*12752043^(10/17) 8024922359499650 a001 165580141/312119004989*12752043^(10/17) 8024922359499650 a001 63245986/119218851371*12752043^(10/17) 8024922359499651 a001 14930352/505019158607*12752043^(13/17) 8024922359499652 a001 39088169/192900153618*12752043^(11/17) 8024922359499653 a001 102334155/505019158607*12752043^(11/17) 8024922359499653 a001 24157817/45537549124*12752043^(10/17) 8024922359499653 a001 267914296/1322157322203*12752043^(11/17) 8024922359499653 a001 701408733/3461452808002*12752043^(11/17) 8024922359499653 a001 1836311903/9062201101803*12752043^(11/17) 8024922359499653 a001 4807526976/23725150497407*12752043^(11/17) 8024922359499653 a001 2971215073/14662949395604*12752043^(11/17) 8024922359499653 a001 1134903170/5600748293801*12752043^(11/17) 8024922359499653 a001 433494437/2139295485799*12752043^(11/17) 8024922359499653 a001 165580141/817138163596*12752043^(11/17) 8024922359499653 a001 63245986/312119004989*12752043^(11/17) 8024922359499654 a001 9227465/54018521*12752043^(4/17) 8024922359499654 a001 4976784/440719107401*12752043^(14/17) 8024922359499655 a001 9227465/141422324*12752043^(5/17) 8024922359499655 a001 39088169/505019158607*12752043^(12/17) 8024922359499655 a001 39088169/33385282*4870847^(1/8) 8024922359499656 a001 34111385/440719107401*12752043^(12/17) 8024922359499656 a001 24157817/119218851371*12752043^(11/17) 8024922359499656 a001 133957148/1730726404001*12752043^(12/17) 8024922359499656 a001 233802911/3020733700601*12752043^(12/17) 8024922359499656 a001 1836311903/23725150497407*12752043^(12/17) 8024922359499656 a001 567451585/7331474697802*12752043^(12/17) 8024922359499656 a001 433494437/5600748293801*12752043^(12/17) 8024922359499656 a001 165580141/2139295485799*12752043^(12/17) 8024922359499656 a001 1762289/22768774562*7881196^(8/11) 8024922359499656 a001 31622993/408569081798*12752043^(12/17) 8024922359499657 a001 9227465/370248451*12752043^(6/17) 8024922359499657 a001 7465176/1730726404001*12752043^(15/17) 8024922359499658 a001 39088169/1322157322203*12752043^(13/17) 8024922359499659 a001 6765/228826126*12752043^(13/17) 8024922359499659 a001 24157817/312119004989*12752043^(12/17) 8024922359499659 a001 9227465/20633239*141422324^(2/13) 8024922359499659 a001 9227465/20633239*2537720636^(2/15) 8024922359499659 a001 9227465/20633239*45537549124^(2/17) 8024922359499659 a001 9227465/20633239*14662949395604^(2/21) 8024922359499659 a001 9227465/20633239*(1/2+1/2*5^(1/2))^6 8024922359499659 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^6/Lucas(35) 8024922359499659 a001 85146110326225/10610209857723 8024922359499659 a001 9227465/20633239*10749957122^(1/8) 8024922359499659 a001 9227465/20633239*4106118243^(3/23) 8024922359499659 a001 9227465/20633239*1568397607^(3/22) 8024922359499659 a001 9227465/20633239*599074578^(1/7) 8024922359499659 a001 267914296/9062201101803*12752043^(13/17) 8024922359499659 a001 9227465/20633239*228826127^(3/20) 8024922359499659 a001 701408733/23725150497407*12752043^(13/17) 8024922359499659 a001 433494437/14662949395604*12752043^(13/17) 8024922359499659 a001 165580141/5600748293801*12752043^(13/17) 8024922359499659 a001 9227465/20633239*87403803^(3/19) 8024922359499659 a001 63245986/2139295485799*12752043^(13/17) 8024922359499660 a001 9227465/20633239*33385282^(1/6) 8024922359499660 a001 9227465/969323029*12752043^(7/17) 8024922359499660 a001 4976784/3020733700601*12752043^(16/17) 8024922359499661 a001 39088169/3461452808002*12752043^(14/17) 8024922359499661 a001 63245986/20633239*4870847^(1/16) 8024922359499661 a001 34111385/3020733700601*12752043^(14/17) 8024922359499661 a001 24157817/817138163596*12752043^(13/17) 8024922359499662 a001 267914296/23725150497407*12752043^(14/17) 8024922359499662 a001 165580141/14662949395604*12752043^(14/17) 8024922359499662 a001 63245986/5600748293801*12752043^(14/17) 8024922359499662 a001 34111385/29134601*4870847^(1/8) 8024922359499663 a001 9227465/2537720636*12752043^(8/17) 8024922359499663 a001 267914296/228826127*4870847^(1/8) 8024922359499663 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^64 8024922359499663 a001 233802911/199691526*4870847^(1/8) 8024922359499663 a001 1836311903/1568397607*4870847^(1/8) 8024922359499663 a001 1602508992/1368706081*4870847^(1/8) 8024922359499663 a001 12586269025/10749957122*4870847^(1/8) 8024922359499663 a001 10983760033/9381251041*4870847^(1/8) 8024922359499663 a001 86267571272/73681302247*4870847^(1/8) 8024922359499663 a001 75283811239/64300051206*4870847^(1/8) 8024922359499663 a001 2504730781961/2139295485799*4870847^(1/8) 8024922359499663 a001 365435296162/312119004989*4870847^(1/8) 8024922359499663 a001 139583862445/119218851371*4870847^(1/8) 8024922359499663 a001 53316291173/45537549124*4870847^(1/8) 8024922359499663 a001 20365011074/17393796001*4870847^(1/8) 8024922359499663 a001 7778742049/6643838879*4870847^(1/8) 8024922359499663 a001 2971215073/2537720636*4870847^(1/8) 8024922359499663 a001 1134903170/969323029*4870847^(1/8) 8024922359499663 a001 433494437/370248451*4870847^(1/8) 8024922359499663 a001 39088169/9062201101803*12752043^(15/17) 8024922359499664 a001 165580141/141422324*4870847^(1/8) 8024922359499664 a001 3524578/17393796001*7881196^(2/3) 8024922359499664 a001 102334155/23725150497407*12752043^(15/17) 8024922359499664 a001 24157817/2139295485799*12752043^(14/17) 8024922359499664 a001 9227465/4106118243*12752043^(1/2) 8024922359499665 a001 31622993/7331474697802*12752043^(15/17) 8024922359499666 a001 9227465/6643838879*12752043^(9/17) 8024922359499666 a001 39088169/23725150497407*12752043^(16/17) 8024922359499666 a001 63245986/54018521*4870847^(1/8) 8024922359499667 a001 24157817/5600748293801*12752043^(15/17) 8024922359499667 a001 9227465/20633239*12752043^(3/17) 8024922359499668 a001 1762289/5374978561*7881196^(7/11) 8024922359499669 a001 9227465/17393796001*12752043^(10/17) 8024922359499669 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^66 8024922359499670 a001 7465176/16692641*4870847^(3/16) 8024922359499670 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^68 8024922359499670 a001 24157817/14662949395604*12752043^(16/17) 8024922359499670 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^70 8024922359499670 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^72 8024922359499670 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^74 8024922359499670 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^76 8024922359499670 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^78 8024922359499670 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^80 8024922359499670 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^82 8024922359499670 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^84 8024922359499670 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^86 8024922359499670 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^88 8024922359499670 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^90 8024922359499670 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^92 8024922359499670 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^94 8024922359499670 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^96 8024922359499670 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^98 8024922359499670 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^100 8024922359499670 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^99 8024922359499670 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^97 8024922359499670 a001 2/5702887*(1/2+1/2*5^(1/2))^40 8024922359499670 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^95 8024922359499670 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^93 8024922359499670 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^91 8024922359499670 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^89 8024922359499670 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^87 8024922359499670 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^85 8024922359499670 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^83 8024922359499670 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^81 8024922359499670 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^79 8024922359499670 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^77 8024922359499670 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^75 8024922359499670 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^73 8024922359499670 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^71 8024922359499670 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^69 8024922359499671 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^67 8024922359499672 a001 9227465/45537549124*12752043^(11/17) 8024922359499673 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^65 8024922359499675 a001 9227465/119218851371*12752043^(12/17) 8024922359499676 a001 5702887/87403803*4870847^(5/16) 8024922359499678 a001 9227465/312119004989*12752043^(13/17) 8024922359499680 a001 1762289/1268860318*7881196^(6/11) 8024922359499680 a001 9227465/817138163596*12752043^(14/17) 8024922359499682 a001 39088169/87403803*4870847^(3/16) 8024922359499683 a001 9227465/2139295485799*12752043^(15/17) 8024922359499684 a001 102334155/228826127*4870847^(3/16) 8024922359499684 a001 133957148/299537289*4870847^(3/16) 8024922359499684 a001 701408733/1568397607*4870847^(3/16) 8024922359499684 a001 1836311903/4106118243*4870847^(3/16) 8024922359499684 a001 2403763488/5374978561*4870847^(3/16) 8024922359499684 a001 12586269025/28143753123*4870847^(3/16) 8024922359499684 a001 32951280099/73681302247*4870847^(3/16) 8024922359499684 a001 43133785636/96450076809*4870847^(3/16) 8024922359499684 a001 225851433717/505019158607*4870847^(3/16) 8024922359499684 a001 591286729879/1322157322203*4870847^(3/16) 8024922359499684 a001 10610209857723/23725150497407*4870847^(3/16) 8024922359499684 a001 182717648081/408569081798*4870847^(3/16) 8024922359499684 a001 139583862445/312119004989*4870847^(3/16) 8024922359499684 a001 53316291173/119218851371*4870847^(3/16) 8024922359499684 a001 10182505537/22768774562*4870847^(3/16) 8024922359499684 a001 7778742049/17393796001*4870847^(3/16) 8024922359499684 a001 2971215073/6643838879*4870847^(3/16) 8024922359499684 a001 567451585/1268860318*4870847^(3/16) 8024922359499684 a001 433494437/969323029*4870847^(3/16) 8024922359499684 a001 165580141/370248451*4870847^(3/16) 8024922359499685 a001 24157817/20633239*4870847^(1/8) 8024922359499685 a001 31622993/70711162*4870847^(3/16) 8024922359499686 a001 9227465/5600748293801*12752043^(16/17) 8024922359499689 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^63 8024922359499690 a001 24157817/54018521*4870847^(3/16) 8024922359499691 a001 1762289/299537289*7881196^(5/11) 8024922359499697 a001 3524578/12752043*20633239^(1/5) 8024922359499697 a001 4976784/29134601*4870847^(1/4) 8024922359499698 a001 5702887/7881196*20633239^(1/7) 8024922359499698 a001 5702887/228826127*4870847^(3/8) 8024922359499701 a001 5702887/7881196*2537720636^(1/9) 8024922359499701 a001 3524578/12752043*17393796001^(1/7) 8024922359499701 a001 5702887/7881196*312119004989^(1/11) 8024922359499701 a001 20100270056686/2504730781961 8024922359499701 a001 3524578/12752043*(1/2+1/2*5^(1/2))^7 8024922359499701 a001 5702887/7881196*(1/2+1/2*5^(1/2))^5 8024922359499701 a001 5702887/7881196*28143753123^(1/10) 8024922359499701 a001 3524578/12752043*599074578^(1/6) 8024922359499701 a001 5702887/7881196*228826127^(1/8) 8024922359499704 a001 1762289/70711162*7881196^(4/11) 8024922359499704 a001 39088169/228826127*4870847^(1/4) 8024922359499705 a001 34111385/199691526*4870847^(1/4) 8024922359499705 a001 267914296/1568397607*4870847^(1/4) 8024922359499706 a001 233802911/1368706081*4870847^(1/4) 8024922359499706 a001 1836311903/10749957122*4870847^(1/4) 8024922359499706 a001 1602508992/9381251041*4870847^(1/4) 8024922359499706 a001 12586269025/73681302247*4870847^(1/4) 8024922359499706 a001 10983760033/64300051206*4870847^(1/4) 8024922359499706 a001 86267571272/505019158607*4870847^(1/4) 8024922359499706 a001 75283811239/440719107401*4870847^(1/4) 8024922359499706 a001 2504730781961/14662949395604*4870847^(1/4) 8024922359499706 a001 139583862445/817138163596*4870847^(1/4) 8024922359499706 a001 53316291173/312119004989*4870847^(1/4) 8024922359499706 a001 20365011074/119218851371*4870847^(1/4) 8024922359499706 a001 7778742049/45537549124*4870847^(1/4) 8024922359499706 a001 2971215073/17393796001*4870847^(1/4) 8024922359499706 a001 1134903170/6643838879*4870847^(1/4) 8024922359499706 a001 433494437/2537720636*4870847^(1/4) 8024922359499706 a001 165580141/969323029*4870847^(1/4) 8024922359499706 a001 63245986/370248451*4870847^(1/4) 8024922359499706 a001 3524578/87403803*7881196^(1/3) 8024922359499708 a001 1762289/16692641*7881196^(3/11) 8024922359499709 a001 24157817/141422324*4870847^(1/4) 8024922359499719 a001 14930352/228826127*4870847^(5/16) 8024922359499720 a001 5702887/599074578*4870847^(7/16) 8024922359499722 a001 9227465/20633239*4870847^(3/16) 8024922359499725 a001 39088169/12752043*1860498^(1/15) 8024922359499726 a001 39088169/599074578*4870847^(5/16) 8024922359499726 a001 14619165/224056801*4870847^(5/16) 8024922359499727 a001 267914296/4106118243*4870847^(5/16) 8024922359499727 a001 701408733/10749957122*4870847^(5/16) 8024922359499727 a001 1836311903/28143753123*4870847^(5/16) 8024922359499727 a001 686789568/10525900321*4870847^(5/16) 8024922359499727 a001 12586269025/192900153618*4870847^(5/16) 8024922359499727 a001 32951280099/505019158607*4870847^(5/16) 8024922359499727 a001 86267571272/1322157322203*4870847^(5/16) 8024922359499727 a001 32264490531/494493258286*4870847^(5/16) 8024922359499727 a001 591286729879/9062201101803*4870847^(5/16) 8024922359499727 a001 1548008755920/23725150497407*4870847^(5/16) 8024922359499727 a001 365435296162/5600748293801*4870847^(5/16) 8024922359499727 a001 139583862445/2139295485799*4870847^(5/16) 8024922359499727 a001 53316291173/817138163596*4870847^(5/16) 8024922359499727 a001 20365011074/312119004989*4870847^(5/16) 8024922359499727 a001 7778742049/119218851371*4870847^(5/16) 8024922359499727 a001 2971215073/45537549124*4870847^(5/16) 8024922359499727 a001 1134903170/17393796001*4870847^(5/16) 8024922359499727 a001 433494437/6643838879*4870847^(5/16) 8024922359499727 a001 165580141/2537720636*4870847^(5/16) 8024922359499727 a001 63245986/969323029*4870847^(5/16) 8024922359499727 a001 9227465/54018521*4870847^(1/4) 8024922359499729 a001 24157817/370248451*4870847^(5/16) 8024922359499731 a001 3732588/1970299*7881196^(1/11) 8024922359499731 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^62 8024922359499734 a001 1762289/408569081798*20633239^(6/7) 8024922359499735 a001 3524578/312119004989*20633239^(4/5) 8024922359499737 a001 3524578/73681302247*20633239^(5/7) 8024922359499739 a001 1762289/5374978561*20633239^(3/5) 8024922359499739 a001 3524578/6643838879*20633239^(4/7) 8024922359499741 a001 829464/33281921*4870847^(3/8) 8024922359499741 a001 5702887/1568397607*4870847^(1/2) 8024922359499742 a001 1762289/299537289*20633239^(3/7) 8024922359499743 a001 3524578/370248451*20633239^(2/5) 8024922359499743 a001 1762289/16692641*141422324^(3/13) 8024922359499743 a001 3732588/1970299*141422324^(1/13) 8024922359499743 a001 1762289/16692641*2537720636^(1/5) 8024922359499743 a001 3732588/1970299*2537720636^(1/15) 8024922359499743 a001 1762289/16692641*45537549124^(3/17) 8024922359499743 a001 3732588/1970299*45537549124^(1/17) 8024922359499743 a001 1762289/16692641*817138163596^(3/19) 8024922359499743 a001 1547740887984/192866774113 8024922359499743 a001 1762289/16692641*14662949395604^(1/7) 8024922359499743 a001 1762289/16692641*(1/2+1/2*5^(1/2))^9 8024922359499743 a001 3732588/1970299*14662949395604^(1/21) 8024922359499743 a001 3732588/1970299*(1/2+1/2*5^(1/2))^3 8024922359499743 a001 3732588/1970299*10749957122^(1/16) 8024922359499743 a001 1762289/16692641*10749957122^(3/16) 8024922359499743 a001 3732588/1970299*599074578^(1/14) 8024922359499743 a001 1762289/16692641*599074578^(3/14) 8024922359499744 a001 3732588/1970299*33385282^(1/12) 8024922359499745 a001 1762289/16692641*33385282^(1/4) 8024922359499746 a001 9227465/141422324*4870847^(5/16) 8024922359499747 a001 39088169/1568397607*4870847^(3/8) 8024922359499747 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^64 8024922359499748 a001 3524578/54018521*20633239^(2/7) 8024922359499748 a001 34111385/1368706081*4870847^(3/8) 8024922359499748 a001 133957148/5374978561*4870847^(3/8) 8024922359499748 a001 233802911/9381251041*4870847^(3/8) 8024922359499748 a001 1836311903/73681302247*4870847^(3/8) 8024922359499748 a001 267084832/10716675201*4870847^(3/8) 8024922359499748 a001 12586269025/505019158607*4870847^(3/8) 8024922359499748 a001 10983760033/440719107401*4870847^(3/8) 8024922359499748 a001 43133785636/1730726404001*4870847^(3/8) 8024922359499748 a001 75283811239/3020733700601*4870847^(3/8) 8024922359499748 a001 182717648081/7331474697802*4870847^(3/8) 8024922359499748 a001 139583862445/5600748293801*4870847^(3/8) 8024922359499748 a001 53316291173/2139295485799*4870847^(3/8) 8024922359499748 a001 10182505537/408569081798*4870847^(3/8) 8024922359499748 a001 7778742049/312119004989*4870847^(3/8) 8024922359499748 a001 2971215073/119218851371*4870847^(3/8) 8024922359499748 a001 567451585/22768774562*4870847^(3/8) 8024922359499748 a001 433494437/17393796001*4870847^(3/8) 8024922359499748 a001 165580141/6643838879*4870847^(3/8) 8024922359499748 a001 31622993/1268860318*4870847^(3/8) 8024922359499749 a001 3524578/87403803*312119004989^(1/5) 8024922359499749 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^11/Lucas(38) 8024922359499749 a001 39088169/15762392+39088169/15762392*5^(1/2) 8024922359499749 a001 3524578/87403803*1568397607^(1/4) 8024922359499750 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^66 8024922359499750 a001 1762289/7331474697802*141422324^(12/13) 8024922359499750 a001 1762289/1730726404001*141422324^(11/13) 8024922359499750 a001 1762289/408569081798*141422324^(10/13) 8024922359499750 a001 3524578/228826127*141422324^(1/3) 8024922359499750 a001 1762289/96450076809*141422324^(9/13) 8024922359499750 a001 3524578/119218851371*141422324^(2/3) 8024922359499750 a001 1762289/22768774562*141422324^(8/13) 8024922359499750 a001 1762289/5374978561*141422324^(7/13) 8024922359499750 a001 1762289/1268860318*141422324^(6/13) 8024922359499750 a001 1762289/299537289*141422324^(5/13) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^13/Lucas(40) 8024922359499750 a004 Fibonacci(40)/Lucas(33)/(1/2+sqrt(5)/2) 8024922359499750 a001 3524578/228826127*73681302247^(1/4) 8024922359499750 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^68 8024922359499750 a001 1762289/299537289*2537720636^(1/3) 8024922359499750 a001 1762289/299537289*45537549124^(5/17) 8024922359499750 a001 1762289/299537289*312119004989^(3/11) 8024922359499750 a001 1762289/299537289*14662949395604^(5/21) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^15/Lucas(42) 8024922359499750 a004 Fibonacci(42)/Lucas(33)/(1/2+sqrt(5)/2)^3 8024922359499750 a001 1762289/299537289*192900153618^(5/18) 8024922359499750 a001 1762289/299537289*28143753123^(3/10) 8024922359499750 a001 1762289/299537289*10749957122^(5/16) 8024922359499750 a001 1762289/299537289*599074578^(5/14) 8024922359499750 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^70 8024922359499750 a001 3524578/1568397607*45537549124^(1/3) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^17/Lucas(44) 8024922359499750 a004 Fibonacci(44)/Lucas(33)/(1/2+sqrt(5)/2)^5 8024922359499750 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^72 8024922359499750 a001 1762289/7331474697802*2537720636^(4/5) 8024922359499750 a001 3524578/9062201101803*2537720636^(7/9) 8024922359499750 a001 1762289/1730726404001*2537720636^(11/15) 8024922359499750 a001 1762289/408569081798*2537720636^(2/3) 8024922359499750 a001 1762289/96450076809*2537720636^(3/5) 8024922359499750 a001 3524578/73681302247*2537720636^(5/9) 8024922359499750 a001 1762289/22768774562*2537720636^(8/15) 8024922359499750 a001 1762289/5374978561*2537720636^(7/15) 8024922359499750 a001 3524578/4106118243*817138163596^(1/3) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(46) 8024922359499750 a004 Fibonacci(46)/Lucas(33)/(1/2+sqrt(5)/2)^7 8024922359499750 a001 3524578/6643838879*2537720636^(4/9) 8024922359499750 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^74 8024922359499750 a001 1762289/5374978561*17393796001^(3/7) 8024922359499750 a001 1762289/5374978561*45537549124^(7/17) 8024922359499750 a001 1762289/5374978561*14662949395604^(1/3) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(48) 8024922359499750 a004 Fibonacci(48)/Lucas(33)/(1/2+sqrt(5)/2)^9 8024922359499750 a001 1762289/5374978561*192900153618^(7/18) 8024922359499750 a001 1762289/5374978561*10749957122^(7/16) 8024922359499750 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^76 8024922359499750 a001 3524578/9062201101803*17393796001^(5/7) 8024922359499750 a001 3524578/312119004989*17393796001^(4/7) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(50) 8024922359499750 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^11 8024922359499750 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^78 8024922359499750 a001 1762289/7331474697802*45537549124^(12/17) 8024922359499750 a001 3524578/5600748293801*45537549124^(2/3) 8024922359499750 a001 1762289/1730726404001*45537549124^(11/17) 8024922359499750 a001 1762289/96450076809*45537549124^(9/17) 8024922359499750 a001 1762289/408569081798*45537549124^(10/17) 8024922359499750 a001 3524578/73681302247*312119004989^(5/11) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(52) 8024922359499750 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^13 8024922359499750 a001 3524578/73681302247*3461452808002^(5/12) 8024922359499750 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^80 8024922359499750 a001 1762289/96450076809*817138163596^(9/19) 8024922359499750 a001 1762289/96450076809*14662949395604^(3/7) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(54) 8024922359499750 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^15 8024922359499750 a001 1762289/96450076809*192900153618^(1/2) 8024922359499750 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^82 8024922359499750 a001 3524578/9062201101803*312119004989^(7/11) 8024922359499750 a001 1762289/1730726404001*312119004989^(3/5) 8024922359499750 a001 1762289/408569081798*312119004989^(6/11) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(56) 8024922359499750 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^17 8024922359499750 a001 3524578/505019158607*1322157322203^(1/2) 8024922359499750 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^84 8024922359499750 a001 1762289/1730726404001*817138163596^(11/19) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(58) 8024922359499750 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^19 8024922359499750 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^86 8024922359499750 a001 1762289/1730726404001*14662949395604^(11/21) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(60) 8024922359499750 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^21 8024922359499750 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^88 8024922359499750 a001 3524578/9062201101803*14662949395604^(5/9) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(62) 8024922359499750 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^23 8024922359499750 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^90 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(64) 8024922359499750 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^25 8024922359499750 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^92 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(66) 8024922359499750 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^94 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(68) 8024922359499750 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^96 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(70) 8024922359499750 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^98 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(72) 8024922359499750 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^100 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(74) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(76) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(78) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(80) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(82) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(84) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(86) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(88) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(90) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(92) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(94) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(96) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(98) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(100) 8024922359499750 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^27 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(99) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(97) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(95) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(93) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(91) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(89) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(87) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(85) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(83) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(81) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(79) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(77) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(75) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(73) 8024922359499750 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^99 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(71) 8024922359499750 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^97 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(69) 8024922359499750 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^95 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(67) 8024922359499750 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^29 8024922359499750 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^31 8024922359499750 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^33 8024922359499750 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^35 8024922359499750 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^37 8024922359499750 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^39 8024922359499750 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^41 8024922359499750 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^43 8024922359499750 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^45 8024922359499750 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^47 8024922359499750 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^49 8024922359499750 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^51 8024922359499750 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^53 8024922359499750 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^55 8024922359499750 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^57 8024922359499750 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^59 8024922359499750 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^61 8024922359499750 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^93 8024922359499750 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^60 8024922359499750 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^58 8024922359499750 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^56 8024922359499750 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^54 8024922359499750 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^52 8024922359499750 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^50 8024922359499750 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^48 8024922359499750 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^46 8024922359499750 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^44 8024922359499750 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^42 8024922359499750 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^40 8024922359499750 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^38 8024922359499750 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^36 8024922359499750 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^34 8024922359499750 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^32 8024922359499750 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^30 8024922359499750 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^28 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(65) 8024922359499750 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^26 8024922359499750 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^91 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(63) 8024922359499750 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^24 8024922359499750 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^89 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(61) 8024922359499750 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^22 8024922359499750 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^87 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(59) 8024922359499750 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^20 8024922359499750 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^85 8024922359499750 a001 1762289/408569081798*14662949395604^(10/21) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(57) 8024922359499750 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^18 8024922359499750 a001 1762289/7331474697802*505019158607^(9/14) 8024922359499750 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^83 8024922359499750 a001 3524578/312119004989*14662949395604^(4/9) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(55) 8024922359499750 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^16 8024922359499750 a001 3524578/312119004989*505019158607^(1/2) 8024922359499750 a001 1762289/1730726404001*192900153618^(11/18) 8024922359499750 a001 1762289/408569081798*192900153618^(5/9) 8024922359499750 a001 1762289/7331474697802*192900153618^(2/3) 8024922359499750 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^81 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(53) 8024922359499750 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^14 8024922359499750 a001 3524578/312119004989*73681302247^(7/13) 8024922359499750 a001 3524578/2139295485799*73681302247^(8/13) 8024922359499750 a001 1762289/7331474697802*73681302247^(9/13) 8024922359499750 a001 3524578/119218851371*73681302247^(1/2) 8024922359499750 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^79 8024922359499750 a001 1762289/22768774562*45537549124^(8/17) 8024922359499750 a001 3524578/73681302247*28143753123^(1/2) 8024922359499750 a001 1762289/22768774562*14662949395604^(8/21) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(51) 8024922359499750 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^12 8024922359499750 a001 1762289/22768774562*192900153618^(4/9) 8024922359499750 a001 1762289/22768774562*73681302247^(6/13) 8024922359499750 a001 1762289/408569081798*28143753123^(3/5) 8024922359499750 a001 3524578/9062201101803*28143753123^(7/10) 8024922359499750 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^77 8024922359499750 a001 3524578/17393796001*312119004989^(2/5) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(49) 8024922359499750 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2)^10 8024922359499750 a001 3524578/119218851371*10749957122^(13/24) 8024922359499750 a001 1762289/22768774562*10749957122^(1/2) 8024922359499750 a001 1762289/96450076809*10749957122^(9/16) 8024922359499750 a001 3524578/312119004989*10749957122^(7/12) 8024922359499750 a001 1762289/408569081798*10749957122^(5/8) 8024922359499750 a001 3524578/2139295485799*10749957122^(2/3) 8024922359499750 a001 1762289/1730726404001*10749957122^(11/16) 8024922359499750 a001 3524578/5600748293801*10749957122^(17/24) 8024922359499750 a001 1762289/7331474697802*10749957122^(3/4) 8024922359499750 a001 3524578/17393796001*10749957122^(11/24) 8024922359499750 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^75 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(47) 8024922359499750 a004 Fibonacci(47)/Lucas(33)/(1/2+sqrt(5)/2)^8 8024922359499750 a001 3524578/6643838879*23725150497407^(5/16) 8024922359499750 a001 3524578/6643838879*505019158607^(5/14) 8024922359499750 a001 3524578/6643838879*73681302247^(5/13) 8024922359499750 a001 3524578/6643838879*28143753123^(2/5) 8024922359499750 a001 3524578/6643838879*10749957122^(5/12) 8024922359499750 a001 3524578/28143753123*4106118243^(1/2) 8024922359499750 a001 1762289/22768774562*4106118243^(12/23) 8024922359499750 a001 3524578/17393796001*4106118243^(11/23) 8024922359499750 a001 3524578/119218851371*4106118243^(13/23) 8024922359499750 a001 3524578/312119004989*4106118243^(14/23) 8024922359499750 a001 1762289/408569081798*4106118243^(15/23) 8024922359499750 a001 3524578/2139295485799*4106118243^(16/23) 8024922359499750 a001 3524578/5600748293801*4106118243^(17/23) 8024922359499750 a001 1762289/7331474697802*4106118243^(18/23) 8024922359499750 a001 3524578/6643838879*4106118243^(10/23) 8024922359499750 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^73 8024922359499750 a001 1762289/1268860318*2537720636^(2/5) 8024922359499750 a001 1762289/1268860318*45537549124^(6/17) 8024922359499750 a001 1762289/1268860318*14662949395604^(2/7) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^18/Lucas(45) 8024922359499750 a004 Fibonacci(45)/Lucas(33)/(1/2+sqrt(5)/2)^6 8024922359499750 a001 1762289/1268860318*192900153618^(1/3) 8024922359499750 a001 1762289/1268860318*10749957122^(3/8) 8024922359499750 a001 1762289/1268860318*4106118243^(9/23) 8024922359499750 a001 3524578/17393796001*1568397607^(1/2) 8024922359499750 a001 3524578/6643838879*1568397607^(5/11) 8024922359499750 a001 1762289/22768774562*1568397607^(6/11) 8024922359499750 a001 3524578/119218851371*1568397607^(13/22) 8024922359499750 a001 3524578/312119004989*1568397607^(7/11) 8024922359499750 a001 1762289/408569081798*1568397607^(15/22) 8024922359499750 a001 3524578/2139295485799*1568397607^(8/11) 8024922359499750 a001 1762289/1730726404001*1568397607^(3/4) 8024922359499750 a001 3524578/5600748293801*1568397607^(17/22) 8024922359499750 a001 1762289/1268860318*1568397607^(9/22) 8024922359499750 a001 1762289/7331474697802*1568397607^(9/11) 8024922359499750 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^71 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^16/Lucas(43) 8024922359499750 a004 Fibonacci(43)/Lucas(33)/(1/2+sqrt(5)/2)^4 8024922359499750 a001 3524578/969323029*23725150497407^(1/4) 8024922359499750 a001 3524578/969323029*73681302247^(4/13) 8024922359499750 a001 3524578/969323029*10749957122^(1/3) 8024922359499750 a001 3524578/969323029*4106118243^(8/23) 8024922359499750 a001 3524578/969323029*1568397607^(4/11) 8024922359499750 a001 1762289/1268860318*599074578^(3/7) 8024922359499750 a001 3524578/6643838879*599074578^(10/21) 8024922359499750 a001 1762289/5374978561*599074578^(1/2) 8024922359499750 a001 3524578/17393796001*599074578^(11/21) 8024922359499750 a001 1762289/22768774562*599074578^(4/7) 8024922359499750 a001 3524578/119218851371*599074578^(13/21) 8024922359499750 a001 1762289/96450076809*599074578^(9/14) 8024922359499750 a001 3524578/312119004989*599074578^(2/3) 8024922359499750 a001 1762289/408569081798*599074578^(5/7) 8024922359499750 a001 3524578/2139295485799*599074578^(16/21) 8024922359499750 a001 3524578/969323029*599074578^(8/21) 8024922359499750 a001 1762289/1730726404001*599074578^(11/14) 8024922359499750 a001 3524578/5600748293801*599074578^(17/21) 8024922359499750 a001 3524578/9062201101803*599074578^(5/6) 8024922359499750 a001 1762289/7331474697802*599074578^(6/7) 8024922359499750 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^69 8024922359499750 a001 1762289/299537289*228826127^(3/8) 8024922359499750 a001 3524578/370248451*17393796001^(2/7) 8024922359499750 a001 3524578/370248451*14662949395604^(2/9) 8024922359499750 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^14/Lucas(41) 8024922359499750 a004 Fibonacci(41)/Lucas(33)/(1/2+sqrt(5)/2)^2 8024922359499750 a001 3524578/370248451*505019158607^(1/4) 8024922359499750 a001 3524578/370248451*10749957122^(7/24) 8024922359499750 a001 3524578/370248451*4106118243^(7/23) 8024922359499750 a001 3524578/370248451*1568397607^(7/22) 8024922359499750 a001 3524578/370248451*599074578^(1/3) 8024922359499750 a001 3524578/969323029*228826127^(2/5) 8024922359499750 a001 1762289/1268860318*228826127^(9/20) 8024922359499750 a001 3524578/6643838879*228826127^(1/2) 8024922359499750 a001 3524578/17393796001*228826127^(11/20) 8024922359499750 a001 1762289/22768774562*228826127^(3/5) 8024922359499750 a001 3524578/73681302247*228826127^(5/8) 8024922359499750 a001 3524578/119218851371*228826127^(13/20) 8024922359499750 a001 3524578/312119004989*228826127^(7/10) 8024922359499750 a001 3524578/370248451*228826127^(7/20) 8024922359499750 a001 1762289/408569081798*228826127^(3/4) 8024922359499750 a001 3524578/2139295485799*228826127^(4/5) 8024922359499750 a001 3524578/5600748293801*228826127^(17/20) 8024922359499750 a001 3524578/9062201101803*228826127^(7/8) 8024922359499750 a001 1762289/7331474697802*228826127^(9/10) 8024922359499750 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^67 8024922359499750 a001 1762289/70711162*141422324^(4/13) 8024922359499751 a001 1762289/70711162*2537720636^(4/15) 8024922359499751 a001 1762289/70711162*45537549124^(4/17) 8024922359499751 a001 1762289/70711162*817138163596^(4/19) 8024922359499751 a001 1762289/70711162*14662949395604^(4/21) 8024922359499751 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^12/Lucas(39) 8024922359499751 a001 1762289/70711162*192900153618^(2/9) 8024922359499751 a001 1762289/70711162*73681302247^(3/13) 8024922359499751 a001 1762289/70711162*10749957122^(1/4) 8024922359499751 a001 1762289/70711162*4106118243^(6/23) 8024922359499751 a001 1762289/70711162*1568397607^(3/11) 8024922359499751 a001 24157817/969323029*4870847^(3/8) 8024922359499751 a001 1762289/70711162*599074578^(2/7) 8024922359499751 a001 3524578/370248451*87403803^(7/19) 8024922359499751 a001 1762289/70711162*228826127^(3/10) 8024922359499751 a001 3524578/969323029*87403803^(8/19) 8024922359499751 a001 1762289/1268860318*87403803^(9/19) 8024922359499751 a001 3524578/4106118243*87403803^(1/2) 8024922359499751 a001 3524578/6643838879*87403803^(10/19) 8024922359499751 a001 3524578/17393796001*87403803^(11/19) 8024922359499751 a001 1762289/22768774562*87403803^(12/19) 8024922359499751 a001 3524578/119218851371*87403803^(13/19) 8024922359499751 a001 1762289/70711162*87403803^(6/19) 8024922359499751 a001 3524578/312119004989*87403803^(14/19) 8024922359499751 a001 1762289/408569081798*87403803^(15/19) 8024922359499751 a001 3524578/2139295485799*87403803^(16/19) 8024922359499751 a001 3524578/5600748293801*87403803^(17/19) 8024922359499751 a001 1762289/7331474697802*87403803^(18/19) 8024922359499751 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^65 8024922359499753 a001 3524578/54018521*2537720636^(2/9) 8024922359499753 a001 3524578/54018521*312119004989^(2/11) 8024922359499753 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^10/Lucas(37) 8024922359499753 a001 24157817/7881196*(1/2+1/2*5^(1/2))^2 8024922359499753 a001 85146110326226/10610209857723 8024922359499753 a001 3524578/54018521*28143753123^(1/5) 8024922359499753 a001 24157817/7881196*10749957122^(1/24) 8024922359499753 a001 3524578/54018521*10749957122^(5/24) 8024922359499753 a001 24157817/7881196*4106118243^(1/23) 8024922359499753 a001 3524578/54018521*4106118243^(5/23) 8024922359499753 a001 24157817/7881196*1568397607^(1/22) 8024922359499753 a001 3524578/54018521*1568397607^(5/22) 8024922359499753 a001 24157817/7881196*599074578^(1/21) 8024922359499753 a001 3524578/54018521*599074578^(5/21) 8024922359499753 a001 24157817/7881196*228826127^(1/20) 8024922359499753 a001 3524578/54018521*228826127^(1/4) 8024922359499753 a001 1762289/70711162*33385282^(1/3) 8024922359499753 a001 24157817/7881196*87403803^(1/19) 8024922359499753 a001 3524578/370248451*33385282^(7/18) 8024922359499753 a001 1762289/299537289*33385282^(5/12) 8024922359499753 a001 3524578/54018521*87403803^(5/19) 8024922359499753 a001 24157817/7881196*33385282^(1/18) 8024922359499753 a001 3524578/969323029*33385282^(4/9) 8024922359499754 a001 1762289/1268860318*33385282^(1/2) 8024922359499754 a001 3524578/6643838879*33385282^(5/9) 8024922359499754 a001 1762289/5374978561*33385282^(7/12) 8024922359499755 a001 3524578/17393796001*33385282^(11/18) 8024922359499755 a001 3524578/54018521*33385282^(5/18) 8024922359499755 a001 1762289/22768774562*33385282^(2/3) 8024922359499755 a001 3524578/119218851371*33385282^(13/18) 8024922359499756 a001 1762289/96450076809*33385282^(3/4) 8024922359499756 a001 3524578/312119004989*33385282^(7/9) 8024922359499756 a001 24157817/7881196*12752043^(1/17) 8024922359499756 a001 1762289/408569081798*33385282^(5/6) 8024922359499757 a001 3524578/2139295485799*33385282^(8/9) 8024922359499757 a001 1762289/1730726404001*33385282^(11/12) 8024922359499757 a001 3524578/5600748293801*33385282^(17/18) 8024922359499757 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^63 8024922359499762 a001 14930352/1568397607*4870847^(7/16) 8024922359499762 a001 5702887/4106118243*4870847^(9/16) 8024922359499767 a001 9227465/370248451*4870847^(3/8) 8024922359499767 a001 3524578/54018521*12752043^(5/17) 8024922359499768 a001 39088169/4106118243*4870847^(7/16) 8024922359499768 a001 1762289/70711162*12752043^(6/17) 8024922359499768 a001 14619165/4769326*1860498^(1/15) 8024922359499769 a001 102334155/10749957122*4870847^(7/16) 8024922359499769 a001 267914296/28143753123*4870847^(7/16) 8024922359499769 a001 701408733/73681302247*4870847^(7/16) 8024922359499769 a001 1836311903/192900153618*4870847^(7/16) 8024922359499769 a001 102287808/10745088481*4870847^(7/16) 8024922359499769 a001 12586269025/1322157322203*4870847^(7/16) 8024922359499769 a001 32951280099/3461452808002*4870847^(7/16) 8024922359499769 a001 86267571272/9062201101803*4870847^(7/16) 8024922359499769 a001 225851433717/23725150497407*4870847^(7/16) 8024922359499769 a001 139583862445/14662949395604*4870847^(7/16) 8024922359499769 a001 53316291173/5600748293801*4870847^(7/16) 8024922359499769 a001 20365011074/2139295485799*4870847^(7/16) 8024922359499769 a001 7778742049/817138163596*4870847^(7/16) 8024922359499769 a001 2971215073/312119004989*4870847^(7/16) 8024922359499769 a001 1134903170/119218851371*4870847^(7/16) 8024922359499769 a001 433494437/45537549124*4870847^(7/16) 8024922359499769 a001 165580141/17393796001*4870847^(7/16) 8024922359499769 a001 3524578/20633239*(1/2+1/2*5^(1/2))^8 8024922359499769 a001 3524578/20633239*23725150497407^(1/8) 8024922359499769 a001 9227465/7881196*(1/2+1/2*5^(1/2))^4 8024922359499769 a001 9227465/7881196*23725150497407^(1/16) 8024922359499769 a001 32522920134770/4052739537881 8024922359499769 a001 3524578/20633239*505019158607^(1/7) 8024922359499769 a001 9227465/7881196*73681302247^(1/13) 8024922359499769 a001 3524578/20633239*73681302247^(2/13) 8024922359499769 a001 9227465/7881196*10749957122^(1/12) 8024922359499769 a001 3524578/20633239*10749957122^(1/6) 8024922359499769 a001 9227465/7881196*4106118243^(2/23) 8024922359499769 a001 3524578/20633239*4106118243^(4/23) 8024922359499769 a001 9227465/7881196*1568397607^(1/11) 8024922359499769 a001 3524578/20633239*1568397607^(2/11) 8024922359499769 a001 9227465/7881196*599074578^(2/21) 8024922359499769 a001 3524578/20633239*599074578^(4/21) 8024922359499769 a001 9227465/7881196*228826127^(1/10) 8024922359499769 a001 3524578/20633239*228826127^(1/5) 8024922359499769 a001 9227465/7881196*87403803^(2/19) 8024922359499769 a001 3524578/20633239*87403803^(4/19) 8024922359499769 a001 63245986/6643838879*4870847^(7/16) 8024922359499770 a001 9227465/7881196*33385282^(1/9) 8024922359499771 a001 3524578/370248451*12752043^(7/17) 8024922359499771 a001 3524578/20633239*33385282^(2/9) 8024922359499772 a001 24157817/2537720636*4870847^(7/16) 8024922359499773 a001 3524578/969323029*12752043^(8/17) 8024922359499774 a001 24157817/7881196*4870847^(1/16) 8024922359499774 a001 267914296/87403803*1860498^(1/15) 8024922359499775 a001 9227465/7881196*12752043^(2/17) 8024922359499775 a001 3524578/1568397607*12752043^(1/2) 8024922359499775 a001 701408733/228826127*1860498^(1/15) 8024922359499775 a001 1836311903/599074578*1860498^(1/15) 8024922359499776 a001 686789568/224056801*1860498^(1/15) 8024922359499776 a001 12586269025/4106118243*1860498^(1/15) 8024922359499776 a001 32951280099/10749957122*1860498^(1/15) 8024922359499776 a001 86267571272/28143753123*1860498^(1/15) 8024922359499776 a001 32264490531/10525900321*1860498^(1/15) 8024922359499776 a001 591286729879/192900153618*1860498^(1/15) 8024922359499776 a001 1548008755920/505019158607*1860498^(1/15) 8024922359499776 a001 1515744265389/494493258286*1860498^(1/15) 8024922359499776 a001 2504730781961/817138163596*1860498^(1/15) 8024922359499776 a001 956722026041/312119004989*1860498^(1/15) 8024922359499776 a001 365435296162/119218851371*1860498^(1/15) 8024922359499776 a001 139583862445/45537549124*1860498^(1/15) 8024922359499776 a001 53316291173/17393796001*1860498^(1/15) 8024922359499776 a001 20365011074/6643838879*1860498^(1/15) 8024922359499776 a001 7778742049/2537720636*1860498^(1/15) 8024922359499776 a001 2971215073/969323029*1860498^(1/15) 8024922359499776 a001 1134903170/370248451*1860498^(1/15) 8024922359499776 a001 433494437/141422324*1860498^(1/15) 8024922359499776 a001 1762289/1268860318*12752043^(9/17) 8024922359499778 a001 165580141/54018521*1860498^(1/15) 8024922359499779 a001 3524578/6643838879*12752043^(10/17) 8024922359499781 a001 3524578/20633239*12752043^(4/17) 8024922359499782 a001 3524578/17393796001*12752043^(11/17) 8024922359499783 a001 4976784/1368706081*4870847^(1/2) 8024922359499783 a001 5702887/10749957122*4870847^(5/8) 8024922359499785 a001 1762289/22768774562*12752043^(12/17) 8024922359499788 a001 9227465/969323029*4870847^(7/16) 8024922359499788 a001 3524578/119218851371*12752043^(13/17) 8024922359499789 a001 39088169/10749957122*4870847^(1/2) 8024922359499790 a001 831985/228811001*4870847^(1/2) 8024922359499790 a001 267914296/73681302247*4870847^(1/2) 8024922359499790 a001 233802911/64300051206*4870847^(1/2) 8024922359499790 a001 1836311903/505019158607*4870847^(1/2) 8024922359499790 a001 1602508992/440719107401*4870847^(1/2) 8024922359499790 a001 12586269025/3461452808002*4870847^(1/2) 8024922359499790 a001 10983760033/3020733700601*4870847^(1/2) 8024922359499790 a001 86267571272/23725150497407*4870847^(1/2) 8024922359499790 a001 53316291173/14662949395604*4870847^(1/2) 8024922359499790 a001 20365011074/5600748293801*4870847^(1/2) 8024922359499790 a001 7778742049/2139295485799*4870847^(1/2) 8024922359499790 a001 2971215073/817138163596*4870847^(1/2) 8024922359499790 a001 1134903170/312119004989*4870847^(1/2) 8024922359499790 a001 433494437/119218851371*4870847^(1/2) 8024922359499790 a001 165580141/45537549124*4870847^(1/2) 8024922359499790 a001 63245986/17393796001*4870847^(1/2) 8024922359499791 a001 3524578/312119004989*12752043^(14/17) 8024922359499793 a001 24157817/6643838879*4870847^(1/2) 8024922359499794 a001 1762289/408569081798*12752043^(15/17) 8024922359499795 a001 63245986/20633239*1860498^(1/15) 8024922359499797 a001 3524578/2139295485799*12752043^(16/17) 8024922359499798 a001 3524578/4870847*1860498^(1/6) 8024922359499800 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^61 8024922359499804 a001 7465176/5374978561*4870847^(9/16) 8024922359499804 a001 5702887/28143753123*4870847^(11/16) 8024922359499806 a001 24157817/12752043*1860498^(1/10) 8024922359499809 a001 9227465/2537720636*4870847^(1/2) 8024922359499810 a001 39088169/28143753123*4870847^(9/16) 8024922359499811 a001 14619165/10525900321*4870847^(9/16) 8024922359499811 a001 133957148/96450076809*4870847^(9/16) 8024922359499811 a001 701408733/505019158607*4870847^(9/16) 8024922359499811 a001 1836311903/1322157322203*4870847^(9/16) 8024922359499811 a001 14930208/10749853441*4870847^(9/16) 8024922359499811 a001 12586269025/9062201101803*4870847^(9/16) 8024922359499811 a001 32951280099/23725150497407*4870847^(9/16) 8024922359499811 a001 10182505537/7331474697802*4870847^(9/16) 8024922359499811 a001 7778742049/5600748293801*4870847^(9/16) 8024922359499811 a001 2971215073/2139295485799*4870847^(9/16) 8024922359499811 a001 567451585/408569081798*4870847^(9/16) 8024922359499811 a001 433494437/312119004989*4870847^(9/16) 8024922359499811 a001 165580141/119218851371*4870847^(9/16) 8024922359499811 a001 9227465/7881196*4870847^(1/8) 8024922359499812 a001 31622993/22768774562*4870847^(9/16) 8024922359499814 a001 24157817/17393796001*4870847^(9/16) 8024922359499825 a001 4976784/9381251041*4870847^(5/8) 8024922359499825 a001 5702887/73681302247*4870847^(3/4) 8024922359499830 a001 9227465/6643838879*4870847^(9/16) 8024922359499831 a001 39088169/73681302247*4870847^(5/8) 8024922359499832 a001 34111385/64300051206*4870847^(5/8) 8024922359499832 a001 267914296/505019158607*4870847^(5/8) 8024922359499832 a001 233802911/440719107401*4870847^(5/8) 8024922359499832 a001 1836311903/3461452808002*4870847^(5/8) 8024922359499832 a001 1602508992/3020733700601*4870847^(5/8) 8024922359499832 a001 12586269025/23725150497407*4870847^(5/8) 8024922359499832 a001 7778742049/14662949395604*4870847^(5/8) 8024922359499832 a001 2971215073/5600748293801*4870847^(5/8) 8024922359499832 a001 1134903170/2139295485799*4870847^(5/8) 8024922359499832 a001 433494437/817138163596*4870847^(5/8) 8024922359499832 a001 165580141/312119004989*4870847^(5/8) 8024922359499833 a001 63245986/119218851371*4870847^(5/8) 8024922359499835 a001 24157817/45537549124*4870847^(5/8) 8024922359499846 a001 31622993/16692641*1860498^(1/10) 8024922359499846 a001 14930352/73681302247*4870847^(11/16) 8024922359499846 a001 5702887/192900153618*4870847^(13/16) 8024922359499851 a001 9227465/17393796001*4870847^(5/8) 8024922359499852 a001 726103/4250681*1860498^(4/15) 8024922359499852 a001 165580141/87403803*1860498^(1/10) 8024922359499852 a001 39088169/192900153618*4870847^(11/16) 8024922359499853 a001 433494437/228826127*1860498^(1/10) 8024922359499853 a001 567451585/299537289*1860498^(1/10) 8024922359499853 a001 2971215073/1568397607*1860498^(1/10) 8024922359499853 a001 7778742049/4106118243*1860498^(1/10) 8024922359499853 a001 10182505537/5374978561*1860498^(1/10) 8024922359499853 a001 53316291173/28143753123*1860498^(1/10) 8024922359499853 a001 139583862445/73681302247*1860498^(1/10) 8024922359499853 a001 182717648081/96450076809*1860498^(1/10) 8024922359499853 a001 956722026041/505019158607*1860498^(1/10) 8024922359499853 a001 10610209857723/5600748293801*1860498^(1/10) 8024922359499853 a001 591286729879/312119004989*1860498^(1/10) 8024922359499853 a001 225851433717/119218851371*1860498^(1/10) 8024922359499853 a001 21566892818/11384387281*1860498^(1/10) 8024922359499853 a001 32951280099/17393796001*1860498^(1/10) 8024922359499853 a001 12586269025/6643838879*1860498^(1/10) 8024922359499853 a001 1201881744/634430159*1860498^(1/10) 8024922359499853 a001 1836311903/969323029*1860498^(1/10) 8024922359499853 a001 701408733/370248451*1860498^(1/10) 8024922359499853 a001 66978574/35355581*1860498^(1/10) 8024922359499853 a001 102334155/505019158607*4870847^(11/16) 8024922359499853 a001 267914296/1322157322203*4870847^(11/16) 8024922359499853 a001 701408733/3461452808002*4870847^(11/16) 8024922359499853 a001 1836311903/9062201101803*4870847^(11/16) 8024922359499853 a001 4807526976/23725150497407*4870847^(11/16) 8024922359499853 a001 2971215073/14662949395604*4870847^(11/16) 8024922359499853 a001 1134903170/5600748293801*4870847^(11/16) 8024922359499854 a001 433494437/2139295485799*4870847^(11/16) 8024922359499854 a001 165580141/817138163596*4870847^(11/16) 8024922359499854 a001 3524578/20633239*4870847^(1/4) 8024922359499854 a001 63245986/312119004989*4870847^(11/16) 8024922359499855 a001 102334155/54018521*1860498^(1/10) 8024922359499856 a001 1762289/3940598*7881196^(2/11) 8024922359499856 a001 24157817/119218851371*4870847^(11/16) 8024922359499859 a001 3524578/54018521*4870847^(5/16) 8024922359499867 a001 2584/33385281*4870847^(3/4) 8024922359499868 a001 5702887/505019158607*4870847^(7/8) 8024922359499871 a001 39088169/20633239*1860498^(1/10) 8024922359499872 a001 9227465/45537549124*4870847^(11/16) 8024922359499874 a001 4976784/4250681*1860498^(2/15) 8024922359499874 a001 39088169/505019158607*4870847^(3/4) 8024922359499874 a001 34111385/440719107401*4870847^(3/4) 8024922359499875 a001 133957148/1730726404001*4870847^(3/4) 8024922359499875 a001 233802911/3020733700601*4870847^(3/4) 8024922359499875 a001 1836311903/23725150497407*4870847^(3/4) 8024922359499875 a001 567451585/7331474697802*4870847^(3/4) 8024922359499875 a001 433494437/5600748293801*4870847^(3/4) 8024922359499875 a001 165580141/2139295485799*4870847^(3/4) 8024922359499875 a001 31622993/408569081798*4870847^(3/4) 8024922359499877 a001 24157817/312119004989*4870847^(3/4) 8024922359499877 a001 1762289/70711162*4870847^(3/8) 8024922359499879 a001 1762289/3940598*141422324^(2/13) 8024922359499879 a001 1762289/3940598*2537720636^(2/15) 8024922359499879 a001 1762289/3940598*45537549124^(2/17) 8024922359499879 a001 1762289/3940598*14662949395604^(2/21) 8024922359499879 a001 1762289/3940598*(1/2+1/2*5^(1/2))^6 8024922359499879 a001 1762289/3940598*10749957122^(1/8) 8024922359499879 a001 1762289/3940598*4106118243^(3/23) 8024922359499879 a001 1762289/3940598*1568397607^(3/22) 8024922359499879 a001 1762289/3940598*599074578^(1/7) 8024922359499879 a001 1762289/3940598*228826127^(3/20) 8024922359499880 a001 1762289/3940598*87403803^(3/19) 8024922359499881 a001 1762289/3940598*33385282^(1/6) 8024922359499888 a001 1762289/3940598*12752043^(3/17) 8024922359499889 a001 14930352/505019158607*4870847^(13/16) 8024922359499889 a001 5702887/1322157322203*4870847^(15/16) 8024922359499893 a001 9227465/119218851371*4870847^(3/4) 8024922359499895 a001 39088169/1322157322203*4870847^(13/16) 8024922359499896 a001 6765/228826126*4870847^(13/16) 8024922359499896 a001 267914296/9062201101803*4870847^(13/16) 8024922359499896 a001 701408733/23725150497407*4870847^(13/16) 8024922359499896 a001 433494437/14662949395604*4870847^(13/16) 8024922359499896 a001 165580141/5600748293801*4870847^(13/16) 8024922359499896 a001 63245986/2139295485799*4870847^(13/16) 8024922359499898 a001 3524578/370248451*4870847^(7/16) 8024922359499899 a001 24157817/817138163596*4870847^(13/16) 8024922359499907 a001 24157817/7881196*1860498^(1/15) 8024922359499910 a001 4976784/440719107401*4870847^(7/8) 8024922359499910 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^60 8024922359499915 a001 9227465/312119004989*4870847^(13/16) 8024922359499916 a001 39088169/3461452808002*4870847^(7/8) 8024922359499917 a001 34111385/3020733700601*4870847^(7/8) 8024922359499917 a001 267914296/23725150497407*4870847^(7/8) 8024922359499917 a001 165580141/14662949395604*4870847^(7/8) 8024922359499917 a001 63245986/5600748293801*4870847^(7/8) 8024922359499919 a001 3524578/969323029*4870847^(1/2) 8024922359499920 a001 24157817/2139295485799*4870847^(7/8) 8024922359499922 a001 39088169/33385282*1860498^(2/15) 8024922359499929 a001 34111385/29134601*1860498^(2/15) 8024922359499930 a001 267914296/228826127*1860498^(2/15) 8024922359499930 a001 233802911/199691526*1860498^(2/15) 8024922359499930 a001 1836311903/1568397607*1860498^(2/15) 8024922359499930 a001 1602508992/1368706081*1860498^(2/15) 8024922359499930 a001 12586269025/10749957122*1860498^(2/15) 8024922359499930 a001 10983760033/9381251041*1860498^(2/15) 8024922359499930 a001 86267571272/73681302247*1860498^(2/15) 8024922359499930 a001 75283811239/64300051206*1860498^(2/15) 8024922359499930 a001 2504730781961/2139295485799*1860498^(2/15) 8024922359499930 a001 365435296162/312119004989*1860498^(2/15) 8024922359499930 a001 139583862445/119218851371*1860498^(2/15) 8024922359499930 a001 53316291173/45537549124*1860498^(2/15) 8024922359499930 a001 20365011074/17393796001*1860498^(2/15) 8024922359499930 a001 7778742049/6643838879*1860498^(2/15) 8024922359499930 a001 2971215073/2537720636*1860498^(2/15) 8024922359499930 a001 1134903170/969323029*1860498^(2/15) 8024922359499930 a001 433494437/370248451*1860498^(2/15) 8024922359499931 a001 165580141/141422324*1860498^(2/15) 8024922359499931 a001 7465176/1730726404001*4870847^(15/16) 8024922359499933 a001 63245986/54018521*1860498^(2/15) 8024922359499936 a001 9227465/817138163596*4870847^(7/8) 8024922359499937 a001 39088169/9062201101803*4870847^(15/16) 8024922359499938 a001 102334155/23725150497407*4870847^(15/16) 8024922359499938 a001 31622993/7331474697802*4870847^(15/16) 8024922359499940 a001 1762289/1268860318*4870847^(9/16) 8024922359499941 a001 24157817/5600748293801*4870847^(15/16) 8024922359499943 a001 1762289/3940598*4870847^(3/16) 8024922359499952 a001 24157817/20633239*1860498^(2/15) 8024922359499952 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^62 8024922359499957 a001 9227465/2139295485799*4870847^(15/16) 8024922359499958 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^64 8024922359499959 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^66 8024922359499959 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^68 8024922359499959 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^70 8024922359499959 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^72 8024922359499959 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^74 8024922359499959 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^76 8024922359499959 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^78 8024922359499959 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^80 8024922359499959 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^82 8024922359499959 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^84 8024922359499959 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^86 8024922359499959 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^88 8024922359499959 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^90 8024922359499959 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^92 8024922359499959 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^94 8024922359499959 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^96 8024922359499959 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^98 8024922359499959 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^100 8024922359499959 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^99 8024922359499959 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^97 8024922359499959 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^95 8024922359499959 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^93 8024922359499959 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^91 8024922359499959 a001 2/2178309*(1/2+1/2*5^(1/2))^38 8024922359499959 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^89 8024922359499959 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^87 8024922359499959 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^85 8024922359499959 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^83 8024922359499959 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^81 8024922359499959 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^79 8024922359499959 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^77 8024922359499959 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^75 8024922359499959 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^73 8024922359499959 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^71 8024922359499959 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^69 8024922359499959 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^67 8024922359499960 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^65 8024922359499962 a001 3524578/6643838879*4870847^(5/8) 8024922359499962 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^63 8024922359499975 a001 3732588/1970299*1860498^(1/10) 8024922359499977 a001 9227465/12752043*1860498^(1/6) 8024922359499978 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^61 8024922359499983 a001 3524578/17393796001*4870847^(11/16) 8024922359499986 a001 5702887/12752043*1860498^(1/5) 8024922359499997 a001 2178309/20633239*1860498^(3/10) 8024922359500003 a001 24157817/33385282*1860498^(1/6) 8024922359500004 a001 1762289/22768774562*4870847^(3/4) 8024922359500007 a001 63245986/87403803*1860498^(1/6) 8024922359500007 a001 165580141/228826127*1860498^(1/6) 8024922359500007 a001 433494437/599074578*1860498^(1/6) 8024922359500007 a001 1134903170/1568397607*1860498^(1/6) 8024922359500007 a001 2971215073/4106118243*1860498^(1/6) 8024922359500007 a001 7778742049/10749957122*1860498^(1/6) 8024922359500007 a001 20365011074/28143753123*1860498^(1/6) 8024922359500007 a001 53316291173/73681302247*1860498^(1/6) 8024922359500007 a001 139583862445/192900153618*1860498^(1/6) 8024922359500007 a001 365435296162/505019158607*1860498^(1/6) 8024922359500007 a001 10610209857723/14662949395604*1860498^(1/6) 8024922359500007 a001 591286729879/817138163596*1860498^(1/6) 8024922359500007 a001 225851433717/312119004989*1860498^(1/6) 8024922359500007 a001 86267571272/119218851371*1860498^(1/6) 8024922359500007 a001 32951280099/45537549124*1860498^(1/6) 8024922359500007 a001 12586269025/17393796001*1860498^(1/6) 8024922359500007 a001 4807526976/6643838879*1860498^(1/6) 8024922359500007 a001 1836311903/2537720636*1860498^(1/6) 8024922359500007 a001 701408733/969323029*1860498^(1/6) 8024922359500007 a001 267914296/370248451*1860498^(1/6) 8024922359500008 a001 102334155/141422324*1860498^(1/6) 8024922359500009 a001 39088169/54018521*1860498^(1/6) 8024922359500019 a001 14930352/20633239*1860498^(1/6) 8024922359500025 a001 3524578/119218851371*4870847^(13/16) 8024922359500046 a001 3524578/312119004989*4870847^(7/8) 8024922359500048 a001 311187/4769326*1860498^(1/3) 8024922359500067 a001 1762289/408569081798*4870847^(15/16) 8024922359500070 a001 7465176/16692641*1860498^(1/5) 8024922359500078 a001 9227465/7881196*1860498^(2/15) 8024922359500083 a001 39088169/87403803*1860498^(1/5) 8024922359500084 a001 102334155/228826127*1860498^(1/5) 8024922359500085 a001 133957148/299537289*1860498^(1/5) 8024922359500085 a001 701408733/1568397607*1860498^(1/5) 8024922359500085 a001 1836311903/4106118243*1860498^(1/5) 8024922359500085 a001 2403763488/5374978561*1860498^(1/5) 8024922359500085 a001 12586269025/28143753123*1860498^(1/5) 8024922359500085 a001 32951280099/73681302247*1860498^(1/5) 8024922359500085 a001 43133785636/96450076809*1860498^(1/5) 8024922359500085 a001 225851433717/505019158607*1860498^(1/5) 8024922359500085 a001 591286729879/1322157322203*1860498^(1/5) 8024922359500085 a001 10610209857723/23725150497407*1860498^(1/5) 8024922359500085 a001 182717648081/408569081798*1860498^(1/5) 8024922359500085 a001 139583862445/312119004989*1860498^(1/5) 8024922359500085 a001 53316291173/119218851371*1860498^(1/5) 8024922359500085 a001 10182505537/22768774562*1860498^(1/5) 8024922359500085 a001 7778742049/17393796001*1860498^(1/5) 8024922359500085 a001 2971215073/6643838879*1860498^(1/5) 8024922359500085 a001 567451585/1268860318*1860498^(1/5) 8024922359500085 a001 433494437/969323029*1860498^(1/5) 8024922359500085 a001 165580141/370248451*1860498^(1/5) 8024922359500085 a001 31622993/70711162*1860498^(1/5) 8024922359500087 a001 5702887/7881196*1860498^(1/6) 8024922359500088 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^59 8024922359500090 a001 24157817/54018521*1860498^(1/5) 8024922359500122 a001 9227465/20633239*1860498^(1/5) 8024922359500164 a001 1346269/4870847*20633239^(1/5) 8024922359500166 a001 2178309/3010349*20633239^(1/7) 8024922359500168 a001 2178309/3010349*2537720636^(1/9) 8024922359500168 a001 1346269/4870847*17393796001^(1/7) 8024922359500168 a001 2932589879121/365435296162 8024922359500168 a001 2178309/3010349*312119004989^(1/11) 8024922359500168 a001 1346269/4870847*14662949395604^(1/9) 8024922359500168 a001 1346269/4870847*(1/2+1/2*5^(1/2))^7 8024922359500168 a001 2178309/3010349*(1/2+1/2*5^(1/2))^5 8024922359500168 a001 2178309/3010349*28143753123^(1/10) 8024922359500168 a001 1346269/4870847*599074578^(1/6) 8024922359500168 a001 2178309/3010349*228826127^(1/8) 8024922359500183 a001 5702887/33385282*1860498^(4/15) 8024922359500209 a001 726103/29134601*1860498^(2/5) 8024922359500231 a001 4976784/29134601*1860498^(4/15) 8024922359500238 a001 39088169/228826127*1860498^(4/15) 8024922359500239 a001 34111385/199691526*1860498^(4/15) 8024922359500239 a001 267914296/1568397607*1860498^(4/15) 8024922359500239 a001 233802911/1368706081*1860498^(4/15) 8024922359500239 a001 1836311903/10749957122*1860498^(4/15) 8024922359500239 a001 1602508992/9381251041*1860498^(4/15) 8024922359500239 a001 12586269025/73681302247*1860498^(4/15) 8024922359500239 a001 10983760033/64300051206*1860498^(4/15) 8024922359500239 a001 86267571272/505019158607*1860498^(4/15) 8024922359500239 a001 75283811239/440719107401*1860498^(4/15) 8024922359500239 a001 2504730781961/14662949395604*1860498^(4/15) 8024922359500239 a001 139583862445/817138163596*1860498^(4/15) 8024922359500239 a001 53316291173/312119004989*1860498^(4/15) 8024922359500239 a001 20365011074/119218851371*1860498^(4/15) 8024922359500239 a001 7778742049/45537549124*1860498^(4/15) 8024922359500239 a001 2971215073/17393796001*1860498^(4/15) 8024922359500239 a001 1134903170/6643838879*1860498^(4/15) 8024922359500239 a001 433494437/2537720636*1860498^(4/15) 8024922359500239 a001 165580141/969323029*1860498^(4/15) 8024922359500240 a001 63245986/370248451*1860498^(4/15) 8024922359500242 a001 24157817/141422324*1860498^(4/15) 8024922359500261 a001 9227465/54018521*1860498^(4/15) 8024922359500270 a001 5702887/54018521*1860498^(3/10) 8024922359500310 a001 3732588/35355581*1860498^(3/10) 8024922359500315 a001 39088169/370248451*1860498^(3/10) 8024922359500316 a001 102334155/969323029*1860498^(3/10) 8024922359500316 a001 66978574/634430159*1860498^(3/10) 8024922359500316 a001 701408733/6643838879*1860498^(3/10) 8024922359500316 a001 1836311903/17393796001*1860498^(3/10) 8024922359500316 a001 1201881744/11384387281*1860498^(3/10) 8024922359500316 a001 12586269025/119218851371*1860498^(3/10) 8024922359500316 a001 32951280099/312119004989*1860498^(3/10) 8024922359500316 a001 21566892818/204284540899*1860498^(3/10) 8024922359500316 a001 225851433717/2139295485799*1860498^(3/10) 8024922359500316 a001 182717648081/1730726404001*1860498^(3/10) 8024922359500316 a001 139583862445/1322157322203*1860498^(3/10) 8024922359500316 a001 53316291173/505019158607*1860498^(3/10) 8024922359500316 a001 10182505537/96450076809*1860498^(3/10) 8024922359500316 a001 7778742049/73681302247*1860498^(3/10) 8024922359500316 a001 2971215073/28143753123*1860498^(3/10) 8024922359500316 a001 567451585/5374978561*1860498^(3/10) 8024922359500316 a001 433494437/4106118243*1860498^(3/10) 8024922359500317 a001 165580141/1568397607*1860498^(3/10) 8024922359500317 a001 31622993/299537289*1860498^(3/10) 8024922359500319 a001 24157817/228826127*1860498^(3/10) 8024922359500334 a001 9227465/87403803*1860498^(3/10) 8024922359500343 a001 1762289/3940598*1860498^(1/5) 8024922359500343 a001 5702887/87403803*1860498^(1/3) 8024922359500364 a001 46347/4868641*1860498^(7/15) 8024922359500377 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^58 8024922359500386 a001 14930352/228826127*1860498^(1/3) 8024922359500387 a001 3524578/20633239*1860498^(4/15) 8024922359500389 a001 1346269/312119004989*7881196^(10/11) 8024922359500393 a001 39088169/599074578*1860498^(1/3) 8024922359500394 a001 14619165/224056801*1860498^(1/3) 8024922359500394 a001 267914296/4106118243*1860498^(1/3) 8024922359500394 a001 701408733/10749957122*1860498^(1/3) 8024922359500394 a001 1836311903/28143753123*1860498^(1/3) 8024922359500394 a001 686789568/10525900321*1860498^(1/3) 8024922359500394 a001 12586269025/192900153618*1860498^(1/3) 8024922359500394 a001 32951280099/505019158607*1860498^(1/3) 8024922359500394 a001 86267571272/1322157322203*1860498^(1/3) 8024922359500394 a001 32264490531/494493258286*1860498^(1/3) 8024922359500394 a001 591286729879/9062201101803*1860498^(1/3) 8024922359500394 a001 1548008755920/23725150497407*1860498^(1/3) 8024922359500394 a001 365435296162/5600748293801*1860498^(1/3) 8024922359500394 a001 139583862445/2139295485799*1860498^(1/3) 8024922359500394 a001 53316291173/817138163596*1860498^(1/3) 8024922359500394 a001 20365011074/312119004989*1860498^(1/3) 8024922359500394 a001 7778742049/119218851371*1860498^(1/3) 8024922359500394 a001 2971215073/45537549124*1860498^(1/3) 8024922359500394 a001 1134903170/17393796001*1860498^(1/3) 8024922359500394 a001 433494437/6643838879*1860498^(1/3) 8024922359500394 a001 165580141/2537720636*1860498^(1/3) 8024922359500394 a001 63245986/969323029*1860498^(1/3) 8024922359500397 a001 24157817/370248451*1860498^(1/3) 8024922359500401 a001 1346269/73681302247*7881196^(9/11) 8024922359500411 a001 14930352/4870847*710647^(1/14) 8024922359500413 a001 1346269/17393796001*7881196^(8/11) 8024922359500413 a001 9227465/141422324*1860498^(1/3) 8024922359500420 a001 1346269/6643838879*7881196^(2/3) 8024922359500422 a001 1346269/12752043*7881196^(3/11) 8024922359500424 a001 1346269/4106118243*7881196^(7/11) 8024922359500436 a001 1346269/969323029*7881196^(6/11) 8024922359500438 a001 1762289/16692641*1860498^(3/10) 8024922359500442 a001 2178309/370248451*1860498^(1/2) 8024922359500445 a001 5702887/3010349*7881196^(1/11) 8024922359500448 a001 1346269/228826127*7881196^(5/11) 8024922359500456 a001 1346269/33385282*7881196^(1/3) 8024922359500457 a001 1346269/12752043*141422324^(3/13) 8024922359500457 a001 5702887/3010349*141422324^(1/13) 8024922359500457 a001 1346269/12752043*2537720636^(1/5) 8024922359500457 a001 5702887/3010349*2537720636^(1/15) 8024922359500457 a001 1346269/12752043*45537549124^(3/17) 8024922359500457 a001 5702887/3010349*45537549124^(1/17) 8024922359500457 a001 1346269/12752043*817138163596^(3/19) 8024922359500457 a001 7677619978603/956722026041 8024922359500457 a001 1346269/12752043*14662949395604^(1/7) 8024922359500457 a001 1346269/12752043*(1/2+1/2*5^(1/2))^9 8024922359500457 a001 5702887/3010349*(1/2+1/2*5^(1/2))^3 8024922359500457 a001 5702887/3010349*192900153618^(1/18) 8024922359500457 a001 1346269/12752043*192900153618^(1/6) 8024922359500457 a001 5702887/3010349*10749957122^(1/16) 8024922359500457 a001 1346269/12752043*10749957122^(3/16) 8024922359500457 a001 5702887/3010349*599074578^(1/14) 8024922359500457 a001 1346269/12752043*599074578^(3/14) 8024922359500458 a001 5702887/3010349*33385282^(1/12) 8024922359500459 a001 1346269/12752043*33385282^(1/4) 8024922359500462 a001 1346269/54018521*7881196^(4/11) 8024922359500488 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^60 8024922359500490 a001 1346269/312119004989*20633239^(6/7) 8024922359500491 a001 1346269/119218851371*20633239^(4/5) 8024922359500493 a001 1346269/28143753123*20633239^(5/7) 8024922359500495 a001 1346269/4106118243*20633239^(3/5) 8024922359500496 a001 1346269/2537720636*20633239^(4/7) 8024922359500498 a001 1346269/228826127*20633239^(3/7) 8024922359500499 a001 5702887/228826127*1860498^(2/5) 8024922359500499 a001 1346269/33385282*312119004989^(1/5) 8024922359500499 a001 20100270056688/2504730781961 8024922359500499 a001 1346269/33385282*(1/2+1/2*5^(1/2))^11 8024922359500499 a001 7465176/3010349+7465176/3010349*5^(1/2) 8024922359500499 a004 Fibonacci(36)*(1/2+sqrt(5)/2)/Lucas(31) 8024922359500499 a001 1346269/33385282*1568397607^(1/4) 8024922359500499 a001 1346269/141422324*20633239^(2/5) 8024922359500504 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^62 8024922359500505 a001 1346269/87403803*141422324^(1/3) 8024922359500505 a001 52623190191461/6557470319842 8024922359500505 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^13/Lucas(38) 8024922359500505 a004 Fibonacci(38)/Lucas(31)/(1/2+sqrt(5)/2) 8024922359500505 a001 1346269/87403803*73681302247^(1/4) 8024922359500506 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^64 8024922359500506 a001 1346269/5600748293801*141422324^(12/13) 8024922359500506 a001 1346269/1322157322203*141422324^(11/13) 8024922359500506 a001 1346269/312119004989*141422324^(10/13) 8024922359500506 a001 1346269/228826127*141422324^(5/13) 8024922359500506 a001 1346269/73681302247*141422324^(9/13) 8024922359500506 a001 1346269/45537549124*141422324^(2/3) 8024922359500506 a001 1346269/17393796001*141422324^(8/13) 8024922359500506 a001 1346269/4106118243*141422324^(7/13) 8024922359500506 a001 1346269/969323029*141422324^(6/13) 8024922359500506 a001 1346269/228826127*2537720636^(1/3) 8024922359500506 a001 1346269/228826127*45537549124^(5/17) 8024922359500506 a001 1346269/228826127*312119004989^(3/11) 8024922359500506 a001 1346269/228826127*14662949395604^(5/21) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^15/Lucas(40) 8024922359500506 a004 Fibonacci(40)/Lucas(31)/(1/2+sqrt(5)/2)^3 8024922359500506 a001 1346269/228826127*192900153618^(5/18) 8024922359500506 a001 1346269/228826127*28143753123^(3/10) 8024922359500506 a001 1346269/228826127*10749957122^(5/16) 8024922359500506 a001 1346269/228826127*599074578^(5/14) 8024922359500506 a001 1346269/228826127*228826127^(3/8) 8024922359500506 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^66 8024922359500506 a001 1346269/599074578*45537549124^(1/3) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^17/Lucas(42) 8024922359500506 a004 Fibonacci(42)/Lucas(31)/(1/2+sqrt(5)/2)^5 8024922359500506 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^68 8024922359500506 a001 1346269/1568397607*817138163596^(1/3) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^19/Lucas(44) 8024922359500506 a004 Fibonacci(44)/Lucas(31)/(1/2+sqrt(5)/2)^7 8024922359500506 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^70 8024922359500506 a001 1346269/23725150497407*2537720636^(13/15) 8024922359500506 a001 1346269/4106118243*2537720636^(7/15) 8024922359500506 a001 1346269/5600748293801*2537720636^(4/5) 8024922359500506 a001 1346269/3461452808002*2537720636^(7/9) 8024922359500506 a001 1346269/1322157322203*2537720636^(11/15) 8024922359500506 a001 1346269/312119004989*2537720636^(2/3) 8024922359500506 a001 1346269/73681302247*2537720636^(3/5) 8024922359500506 a001 1346269/28143753123*2537720636^(5/9) 8024922359500506 a001 1346269/17393796001*2537720636^(8/15) 8024922359500506 a001 1346269/4106118243*17393796001^(3/7) 8024922359500506 a001 1346269/4106118243*45537549124^(7/17) 8024922359500506 a001 1346269/4106118243*14662949395604^(1/3) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(46) 8024922359500506 a004 Fibonacci(46)/Lucas(31)/(1/2+sqrt(5)/2)^9 8024922359500506 a001 1346269/4106118243*192900153618^(7/18) 8024922359500506 a001 1346269/4106118243*10749957122^(7/16) 8024922359500506 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^72 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(48) 8024922359500506 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^11 8024922359500506 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^74 8024922359500506 a001 1346269/3461452808002*17393796001^(5/7) 8024922359500506 a001 1346269/119218851371*17393796001^(4/7) 8024922359500506 a001 1346269/28143753123*312119004989^(5/11) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(50) 8024922359500506 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^13 8024922359500506 a001 1346269/28143753123*3461452808002^(5/12) 8024922359500506 a001 1346269/28143753123*28143753123^(1/2) 8024922359500506 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^76 8024922359500506 a001 1346269/73681302247*45537549124^(9/17) 8024922359500506 a001 1346269/23725150497407*45537549124^(13/17) 8024922359500506 a001 1346269/5600748293801*45537549124^(12/17) 8024922359500506 a001 1346269/2139295485799*45537549124^(2/3) 8024922359500506 a001 1346269/1322157322203*45537549124^(11/17) 8024922359500506 a001 1346269/312119004989*45537549124^(10/17) 8024922359500506 a001 1346269/73681302247*817138163596^(9/19) 8024922359500506 a001 1346269/73681302247*14662949395604^(3/7) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(52) 8024922359500506 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^15 8024922359500506 a001 1346269/73681302247*192900153618^(1/2) 8024922359500506 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^78 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(54) 8024922359500506 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^17 8024922359500506 a001 1346269/192900153618*1322157322203^(1/2) 8024922359500506 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^80 8024922359500506 a001 1346269/1322157322203*312119004989^(3/5) 8024922359500506 a001 1346269/3461452808002*312119004989^(7/11) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(56) 8024922359500506 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^19 8024922359500506 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^82 8024922359500506 a001 1346269/1322157322203*817138163596^(11/19) 8024922359500506 a001 1346269/14662949395604*817138163596^(2/3) 8024922359500506 a001 1346269/1322157322203*14662949395604^(11/21) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(58) 8024922359500506 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^21 8024922359500506 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^84 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(60) 8024922359500506 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^23 8024922359500506 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^86 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(62) 8024922359500506 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^88 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(64) 8024922359500506 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^90 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(66) 8024922359500506 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^92 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(68) 8024922359500506 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^94 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(70) 8024922359500506 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^96 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(72) 8024922359500506 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^98 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(74) 8024922359500506 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^100 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(76) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(78) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(80) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(82) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(84) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(86) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(88) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(90) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(92) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(94) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(96) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(98) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(99) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(100) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(97) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(95) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(93) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(91) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(89) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(87) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(85) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(83) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(81) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(79) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(77) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(75) 8024922359500506 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^99 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(73) 8024922359500506 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^97 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(71) 8024922359500506 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^95 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(69) 8024922359500506 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^93 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(67) 8024922359500506 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^91 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(65) 8024922359500506 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^89 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(63) 8024922359500506 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^27 8024922359500506 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^29 8024922359500506 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^31 8024922359500506 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^33 8024922359500506 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^35 8024922359500506 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^37 8024922359500506 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^39 8024922359500506 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^41 8024922359500506 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^43 8024922359500506 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^45 8024922359500506 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^47 8024922359500506 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^49 8024922359500506 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^51 8024922359500506 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^53 8024922359500506 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^55 8024922359500506 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^57 8024922359500506 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^59 8024922359500506 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^61 8024922359500506 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^63 8024922359500506 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^87 8024922359500506 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^62 8024922359500506 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^60 8024922359500506 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^58 8024922359500506 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^56 8024922359500506 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^54 8024922359500506 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^52 8024922359500506 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^50 8024922359500506 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^48 8024922359500506 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^46 8024922359500506 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^44 8024922359500506 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^42 8024922359500506 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^40 8024922359500506 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^38 8024922359500506 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^36 8024922359500506 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^34 8024922359500506 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^32 8024922359500506 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^30 8024922359500506 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^28 8024922359500506 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^26 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(61) 8024922359500506 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^24 8024922359500506 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^85 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(59) 8024922359500506 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^22 8024922359500506 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^83 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(57) 8024922359500506 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^20 8024922359500506 a001 1346269/3461452808002*505019158607^(5/8) 8024922359500506 a001 1346269/5600748293801*505019158607^(9/14) 8024922359500506 a001 1346269/817138163596*505019158607^(4/7) 8024922359500506 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^81 8024922359500506 a001 1346269/312119004989*312119004989^(6/11) 8024922359500506 a001 1346269/312119004989*14662949395604^(10/21) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(55) 8024922359500506 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^18 8024922359500506 a001 1346269/1322157322203*192900153618^(11/18) 8024922359500506 a001 1346269/5600748293801*192900153618^(2/3) 8024922359500506 a001 1346269/23725150497407*192900153618^(13/18) 8024922359500506 a001 1346269/312119004989*192900153618^(5/9) 8024922359500506 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^79 8024922359500506 a001 1346269/119218851371*14662949395604^(4/9) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(53) 8024922359500506 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^16 8024922359500506 a001 1346269/119218851371*505019158607^(1/2) 8024922359500506 a001 1346269/817138163596*73681302247^(8/13) 8024922359500506 a001 1346269/5600748293801*73681302247^(9/13) 8024922359500506 a001 1346269/23725150497407*73681302247^(3/4) 8024922359500506 a001 1346269/119218851371*73681302247^(7/13) 8024922359500506 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^77 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(51) 8024922359500506 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^14 8024922359500506 a001 1346269/45537549124*73681302247^(1/2) 8024922359500506 a001 1346269/312119004989*28143753123^(3/5) 8024922359500506 a001 1346269/3461452808002*28143753123^(7/10) 8024922359500506 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^75 8024922359500506 a001 1346269/17393796001*45537549124^(8/17) 8024922359500506 a001 1346269/17393796001*14662949395604^(8/21) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(49) 8024922359500506 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^12 8024922359500506 a001 1346269/17393796001*192900153618^(4/9) 8024922359500506 a001 1346269/17393796001*73681302247^(6/13) 8024922359500506 a001 1346269/73681302247*10749957122^(9/16) 8024922359500506 a001 1346269/119218851371*10749957122^(7/12) 8024922359500506 a001 1346269/45537549124*10749957122^(13/24) 8024922359500506 a001 1346269/312119004989*10749957122^(5/8) 8024922359500506 a001 1346269/817138163596*10749957122^(2/3) 8024922359500506 a001 1346269/1322157322203*10749957122^(11/16) 8024922359500506 a001 1346269/2139295485799*10749957122^(17/24) 8024922359500506 a001 1346269/5600748293801*10749957122^(3/4) 8024922359500506 a001 1346269/14662949395604*10749957122^(19/24) 8024922359500506 a001 1346269/23725150497407*10749957122^(13/16) 8024922359500506 a001 1346269/17393796001*10749957122^(1/2) 8024922359500506 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^73 8024922359500506 a001 1346269/10749957122*4106118243^(1/2) 8024922359500506 a001 1346269/6643838879*312119004989^(2/5) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(47) 8024922359500506 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2)^10 8024922359500506 a001 1346269/6643838879*10749957122^(11/24) 8024922359500506 a001 1346269/45537549124*4106118243^(13/23) 8024922359500506 a001 1346269/17393796001*4106118243^(12/23) 8024922359500506 a001 1346269/119218851371*4106118243^(14/23) 8024922359500506 a001 1346269/312119004989*4106118243^(15/23) 8024922359500506 a001 1346269/817138163596*4106118243^(16/23) 8024922359500506 a001 1346269/2139295485799*4106118243^(17/23) 8024922359500506 a001 1346269/5600748293801*4106118243^(18/23) 8024922359500506 a001 1346269/14662949395604*4106118243^(19/23) 8024922359500506 a001 1346269/6643838879*4106118243^(11/23) 8024922359500506 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^71 8024922359500506 a001 1346269/2537720636*2537720636^(4/9) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^20/Lucas(45) 8024922359500506 a001 1346269/2537720636*23725150497407^(5/16) 8024922359500506 a004 Fibonacci(45)/Lucas(31)/(1/2+sqrt(5)/2)^8 8024922359500506 a001 1346269/2537720636*505019158607^(5/14) 8024922359500506 a001 1346269/2537720636*73681302247^(5/13) 8024922359500506 a001 1346269/2537720636*28143753123^(2/5) 8024922359500506 a001 1346269/2537720636*10749957122^(5/12) 8024922359500506 a001 1346269/2537720636*4106118243^(10/23) 8024922359500506 a001 1346269/17393796001*1568397607^(6/11) 8024922359500506 a001 1346269/6643838879*1568397607^(1/2) 8024922359500506 a001 1346269/45537549124*1568397607^(13/22) 8024922359500506 a001 1346269/119218851371*1568397607^(7/11) 8024922359500506 a001 1346269/312119004989*1568397607^(15/22) 8024922359500506 a001 1346269/817138163596*1568397607^(8/11) 8024922359500506 a001 1346269/1322157322203*1568397607^(3/4) 8024922359500506 a001 1346269/2139295485799*1568397607^(17/22) 8024922359500506 a001 1346269/5600748293801*1568397607^(9/11) 8024922359500506 a001 1346269/2537720636*1568397607^(5/11) 8024922359500506 a001 1346269/14662949395604*1568397607^(19/22) 8024922359500506 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^69 8024922359500506 a001 1346269/969323029*2537720636^(2/5) 8024922359500506 a001 1346269/969323029*45537549124^(6/17) 8024922359500506 a001 1346269/969323029*14662949395604^(2/7) 8024922359500506 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^18/Lucas(43) 8024922359500506 a004 Fibonacci(43)/Lucas(31)/(1/2+sqrt(5)/2)^6 8024922359500506 a001 1346269/969323029*192900153618^(1/3) 8024922359500506 a001 1346269/969323029*10749957122^(3/8) 8024922359500507 a001 1346269/969323029*4106118243^(9/23) 8024922359500507 a001 1346269/969323029*1568397607^(9/22) 8024922359500507 a001 1346269/4106118243*599074578^(1/2) 8024922359500507 a001 1346269/2537720636*599074578^(10/21) 8024922359500507 a001 1346269/6643838879*599074578^(11/21) 8024922359500507 a001 1346269/17393796001*599074578^(4/7) 8024922359500507 a001 1346269/45537549124*599074578^(13/21) 8024922359500507 a001 1346269/73681302247*599074578^(9/14) 8024922359500507 a001 1346269/119218851371*599074578^(2/3) 8024922359500507 a001 1346269/312119004989*599074578^(5/7) 8024922359500507 a001 1346269/817138163596*599074578^(16/21) 8024922359500507 a001 1346269/1322157322203*599074578^(11/14) 8024922359500507 a001 1346269/2139295485799*599074578^(17/21) 8024922359500507 a001 1346269/969323029*599074578^(3/7) 8024922359500507 a001 1346269/3461452808002*599074578^(5/6) 8024922359500507 a001 1346269/5600748293801*599074578^(6/7) 8024922359500507 a001 1346269/14662949395604*599074578^(19/21) 8024922359500507 a001 1346269/23725150497407*599074578^(13/14) 8024922359500507 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^67 8024922359500507 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^16/Lucas(41) 8024922359500507 a001 1346269/370248451*23725150497407^(1/4) 8024922359500507 a004 Fibonacci(41)/Lucas(31)/(1/2+sqrt(5)/2)^4 8024922359500507 a001 1346269/370248451*73681302247^(4/13) 8024922359500507 a001 1346269/370248451*10749957122^(1/3) 8024922359500507 a001 1346269/370248451*4106118243^(8/23) 8024922359500507 a001 1346269/370248451*1568397607^(4/11) 8024922359500507 a001 1346269/370248451*599074578^(8/21) 8024922359500507 a001 1346269/969323029*228826127^(9/20) 8024922359500507 a001 1346269/2537720636*228826127^(1/2) 8024922359500507 a001 1346269/6643838879*228826127^(11/20) 8024922359500507 a001 1346269/17393796001*228826127^(3/5) 8024922359500507 a001 1346269/28143753123*228826127^(5/8) 8024922359500507 a001 1346269/45537549124*228826127^(13/20) 8024922359500507 a001 1346269/119218851371*228826127^(7/10) 8024922359500507 a001 1346269/312119004989*228826127^(3/4) 8024922359500507 a001 1346269/370248451*228826127^(2/5) 8024922359500507 a001 1346269/817138163596*228826127^(4/5) 8024922359500507 a001 1346269/2139295485799*228826127^(17/20) 8024922359500507 a001 1346269/3461452808002*228826127^(7/8) 8024922359500507 a001 1346269/5600748293801*228826127^(9/10) 8024922359500507 a001 1346269/14662949395604*228826127^(19/20) 8024922359500507 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^65 8024922359500507 a001 1346269/141422324*17393796001^(2/7) 8024922359500507 a001 1346269/141422324*14662949395604^(2/9) 8024922359500507 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^14/Lucas(39) 8024922359500507 a004 Fibonacci(39)/Lucas(31)/(1/2+sqrt(5)/2)^2 8024922359500507 a001 1346269/141422324*505019158607^(1/4) 8024922359500507 a001 1346269/141422324*10749957122^(7/24) 8024922359500507 a001 1346269/141422324*4106118243^(7/23) 8024922359500507 a001 1346269/141422324*1568397607^(7/22) 8024922359500507 a001 1346269/141422324*599074578^(1/3) 8024922359500507 a001 1346269/141422324*228826127^(7/20) 8024922359500507 a001 1346269/370248451*87403803^(8/19) 8024922359500507 a001 1346269/969323029*87403803^(9/19) 8024922359500507 a001 1346269/1568397607*87403803^(1/2) 8024922359500507 a001 1346269/2537720636*87403803^(10/19) 8024922359500507 a001 1346269/6643838879*87403803^(11/19) 8024922359500507 a001 1346269/17393796001*87403803^(12/19) 8024922359500507 a001 1346269/45537549124*87403803^(13/19) 8024922359500507 a001 1346269/119218851371*87403803^(14/19) 8024922359500507 a001 1346269/141422324*87403803^(7/19) 8024922359500507 a001 1346269/312119004989*87403803^(15/19) 8024922359500507 a001 1346269/817138163596*87403803^(16/19) 8024922359500507 a001 1346269/2139295485799*87403803^(17/19) 8024922359500507 a001 1346269/5600748293801*87403803^(18/19) 8024922359500508 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^63 8024922359500509 a001 1346269/54018521*141422324^(4/13) 8024922359500509 a001 1346269/54018521*2537720636^(4/15) 8024922359500509 a001 1346269/54018521*45537549124^(4/17) 8024922359500509 a001 1346269/54018521*817138163596^(4/19) 8024922359500509 a001 1346269/54018521*14662949395604^(4/21) 8024922359500509 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^12/Lucas(37) 8024922359500509 a001 24157817/3010349 8024922359500509 a001 1346269/54018521*192900153618^(2/9) 8024922359500509 a001 1346269/54018521*73681302247^(3/13) 8024922359500509 a001 1346269/54018521*10749957122^(1/4) 8024922359500509 a001 1346269/54018521*4106118243^(6/23) 8024922359500509 a001 1346269/54018521*1568397607^(3/11) 8024922359500509 a001 1346269/54018521*599074578^(2/7) 8024922359500509 a001 1346269/54018521*228826127^(3/10) 8024922359500509 a001 1346269/228826127*33385282^(5/12) 8024922359500510 a001 1346269/54018521*87403803^(6/19) 8024922359500510 a001 1346269/141422324*33385282^(7/18) 8024922359500510 a001 1346269/370248451*33385282^(4/9) 8024922359500510 a001 1346269/969323029*33385282^(1/2) 8024922359500510 a001 1346269/2537720636*33385282^(5/9) 8024922359500511 a001 1346269/4106118243*33385282^(7/12) 8024922359500511 a001 1346269/6643838879*33385282^(11/18) 8024922359500511 a001 1346269/17393796001*33385282^(2/3) 8024922359500512 a001 1346269/54018521*33385282^(1/3) 8024922359500512 a001 1346269/45537549124*33385282^(13/18) 8024922359500512 a001 1346269/73681302247*33385282^(3/4) 8024922359500512 a001 1346269/119218851371*33385282^(7/9) 8024922359500512 a001 1346269/312119004989*33385282^(5/6) 8024922359500513 a001 1346269/817138163596*33385282^(8/9) 8024922359500513 a001 1346269/1322157322203*33385282^(11/12) 8024922359500513 a001 1346269/2139295485799*33385282^(17/18) 8024922359500514 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^61 8024922359500519 a001 726103/199691526*1860498^(8/15) 8024922359500520 a001 1346269/20633239*20633239^(2/7) 8024922359500525 a001 1346269/20633239*2537720636^(2/9) 8024922359500525 a001 1346269/20633239*312119004989^(2/11) 8024922359500525 a001 1346269/20633239*(1/2+1/2*5^(1/2))^10 8024922359500525 a001 9227465/3010349*(1/2+1/2*5^(1/2))^2 8024922359500525 a001 2484530015617/309601751184 8024922359500525 a001 1346269/20633239*28143753123^(1/5) 8024922359500525 a001 9227465/3010349*10749957122^(1/24) 8024922359500525 a001 1346269/20633239*10749957122^(5/24) 8024922359500525 a001 9227465/3010349*4106118243^(1/23) 8024922359500525 a001 1346269/20633239*4106118243^(5/23) 8024922359500525 a001 9227465/3010349*1568397607^(1/22) 8024922359500525 a001 1346269/20633239*1568397607^(5/22) 8024922359500525 a001 9227465/3010349*599074578^(1/21) 8024922359500525 a001 1346269/20633239*599074578^(5/21) 8024922359500525 a001 9227465/3010349*228826127^(1/20) 8024922359500525 a001 1346269/20633239*228826127^(1/4) 8024922359500525 a001 9227465/3010349*87403803^(1/19) 8024922359500526 a001 1346269/20633239*87403803^(5/19) 8024922359500526 a001 3524578/54018521*1860498^(1/3) 8024922359500526 a001 9227465/3010349*33385282^(1/18) 8024922359500527 a001 1346269/54018521*12752043^(6/17) 8024922359500527 a001 1346269/141422324*12752043^(7/17) 8024922359500527 a001 1346269/20633239*33385282^(5/18) 8024922359500528 a001 9227465/3010349*12752043^(1/17) 8024922359500530 a001 1346269/370248451*12752043^(8/17) 8024922359500531 a001 1346269/599074578*12752043^(1/2) 8024922359500533 a001 1346269/969323029*12752043^(9/17) 8024922359500536 a001 1346269/2537720636*12752043^(10/17) 8024922359500538 a001 1346269/6643838879*12752043^(11/17) 8024922359500540 a001 1346269/20633239*12752043^(5/17) 8024922359500541 a001 829464/33281921*1860498^(2/5) 8024922359500541 a001 1346269/17393796001*12752043^(12/17) 8024922359500544 a001 1346269/45537549124*12752043^(13/17) 8024922359500546 a001 9227465/3010349*4870847^(1/16) 8024922359500547 a001 1346269/119218851371*12752043^(14/17) 8024922359500547 a001 39088169/1568397607*1860498^(2/5) 8024922359500548 a001 34111385/1368706081*1860498^(2/5) 8024922359500548 a001 133957148/5374978561*1860498^(2/5) 8024922359500548 a001 233802911/9381251041*1860498^(2/5) 8024922359500548 a001 1836311903/73681302247*1860498^(2/5) 8024922359500548 a001 267084832/10716675201*1860498^(2/5) 8024922359500548 a001 12586269025/505019158607*1860498^(2/5) 8024922359500548 a001 10983760033/440719107401*1860498^(2/5) 8024922359500548 a001 43133785636/1730726404001*1860498^(2/5) 8024922359500548 a001 75283811239/3020733700601*1860498^(2/5) 8024922359500548 a001 182717648081/7331474697802*1860498^(2/5) 8024922359500548 a001 139583862445/5600748293801*1860498^(2/5) 8024922359500548 a001 53316291173/2139295485799*1860498^(2/5) 8024922359500548 a001 10182505537/408569081798*1860498^(2/5) 8024922359500548 a001 7778742049/312119004989*1860498^(2/5) 8024922359500548 a001 2971215073/119218851371*1860498^(2/5) 8024922359500548 a001 567451585/22768774562*1860498^(2/5) 8024922359500548 a001 433494437/17393796001*1860498^(2/5) 8024922359500548 a001 165580141/6643838879*1860498^(2/5) 8024922359500549 a001 31622993/1268860318*1860498^(2/5) 8024922359500550 a001 1346269/312119004989*12752043^(15/17) 8024922359500551 a001 24157817/969323029*1860498^(2/5) 8024922359500553 a001 1346269/817138163596*12752043^(16/17) 8024922359500555 a001 2178309/3010349*1860498^(1/6) 8024922359500556 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^59 8024922359500567 a001 9227465/370248451*1860498^(2/5) 8024922359500631 a001 1346269/20633239*4870847^(5/16) 8024922359500636 a001 1346269/7881196*(1/2+1/2*5^(1/2))^8 8024922359500636 a001 1346269/7881196*23725150497407^(1/8) 8024922359500636 a001 3524578/3010349*(1/2+1/2*5^(1/2))^4 8024922359500636 a001 1346269/7881196*505019158607^(1/7) 8024922359500636 a001 4745030099482/591286729879 8024922359500636 a001 3524578/3010349*73681302247^(1/13) 8024922359500636 a001 1346269/7881196*73681302247^(2/13) 8024922359500636 a001 3524578/3010349*10749957122^(1/12) 8024922359500636 a001 1346269/7881196*10749957122^(1/6) 8024922359500636 a001 3524578/3010349*4106118243^(2/23) 8024922359500636 a001 1346269/7881196*4106118243^(4/23) 8024922359500636 a001 3524578/3010349*1568397607^(1/11) 8024922359500636 a001 1346269/7881196*1568397607^(2/11) 8024922359500636 a001 3524578/3010349*599074578^(2/21) 8024922359500636 a001 1346269/7881196*599074578^(4/21) 8024922359500636 a001 3524578/3010349*228826127^(1/10) 8024922359500636 a001 1346269/7881196*228826127^(1/5) 8024922359500636 a001 3524578/3010349*87403803^(2/19) 8024922359500636 a001 1346269/7881196*87403803^(4/19) 8024922359500636 a001 1346269/54018521*4870847^(3/8) 8024922359500636 a001 3524578/3010349*33385282^(1/9) 8024922359500637 a001 1346269/7881196*33385282^(2/9) 8024922359500641 a001 3524578/3010349*12752043^(2/17) 8024922359500647 a001 1346269/7881196*12752043^(4/17) 8024922359500653 a001 5702887/599074578*1860498^(7/15) 8024922359500655 a001 1346269/141422324*4870847^(7/16) 8024922359500674 a001 311187/224056801*1860498^(3/5) 8024922359500676 a001 1346269/370248451*4870847^(1/2) 8024922359500678 a001 1762289/70711162*1860498^(2/5) 8024922359500678 a001 3524578/3010349*4870847^(1/8) 8024922359500680 a001 9227465/3010349*1860498^(1/15) 8024922359500689 a001 5702887/3010349*1860498^(1/10) 8024922359500696 a001 14930352/1568397607*1860498^(7/15) 8024922359500697 a001 1346269/969323029*4870847^(9/16) 8024922359500702 a001 39088169/4106118243*1860498^(7/15) 8024922359500703 a001 102334155/10749957122*1860498^(7/15) 8024922359500703 a001 267914296/28143753123*1860498^(7/15) 8024922359500703 a001 701408733/73681302247*1860498^(7/15) 8024922359500703 a001 1836311903/192900153618*1860498^(7/15) 8024922359500703 a001 102287808/10745088481*1860498^(7/15) 8024922359500703 a001 12586269025/1322157322203*1860498^(7/15) 8024922359500703 a001 32951280099/3461452808002*1860498^(7/15) 8024922359500703 a001 86267571272/9062201101803*1860498^(7/15) 8024922359500703 a001 225851433717/23725150497407*1860498^(7/15) 8024922359500703 a001 139583862445/14662949395604*1860498^(7/15) 8024922359500703 a001 53316291173/5600748293801*1860498^(7/15) 8024922359500703 a001 20365011074/2139295485799*1860498^(7/15) 8024922359500703 a001 7778742049/817138163596*1860498^(7/15) 8024922359500703 a001 2971215073/312119004989*1860498^(7/15) 8024922359500703 a001 1134903170/119218851371*1860498^(7/15) 8024922359500703 a001 433494437/45537549124*1860498^(7/15) 8024922359500703 a001 165580141/17393796001*1860498^(7/15) 8024922359500703 a001 63245986/6643838879*1860498^(7/15) 8024922359500706 a001 39088169/12752043*710647^(1/14) 8024922359500706 a001 24157817/2537720636*1860498^(7/15) 8024922359500718 a001 1346269/2537720636*4870847^(5/8) 8024922359500720 a001 1346269/7881196*4870847^(1/4) 8024922359500722 a001 9227465/969323029*1860498^(7/15) 8024922359500730 a001 2178309/1149851*439204^(1/9) 8024922359500731 a001 5702887/969323029*1860498^(1/2) 8024922359500739 a001 1346269/6643838879*4870847^(11/16) 8024922359500749 a001 14619165/4769326*710647^(1/14) 8024922359500755 a001 267914296/87403803*710647^(1/14) 8024922359500756 a001 701408733/228826127*710647^(1/14) 8024922359500756 a001 1836311903/599074578*710647^(1/14) 8024922359500756 a001 686789568/224056801*710647^(1/14) 8024922359500756 a001 12586269025/4106118243*710647^(1/14) 8024922359500756 a001 32951280099/10749957122*710647^(1/14) 8024922359500756 a001 86267571272/28143753123*710647^(1/14) 8024922359500756 a001 32264490531/10525900321*710647^(1/14) 8024922359500756 a001 591286729879/192900153618*710647^(1/14) 8024922359500756 a001 1548008755920/505019158607*710647^(1/14) 8024922359500756 a001 1515744265389/494493258286*710647^(1/14) 8024922359500756 a001 2504730781961/817138163596*710647^(1/14) 8024922359500756 a001 956722026041/312119004989*710647^(1/14) 8024922359500756 a001 365435296162/119218851371*710647^(1/14) 8024922359500756 a001 139583862445/45537549124*710647^(1/14) 8024922359500756 a001 53316291173/17393796001*710647^(1/14) 8024922359500756 a001 20365011074/6643838879*710647^(1/14) 8024922359500756 a001 7778742049/2537720636*710647^(1/14) 8024922359500756 a001 2971215073/969323029*710647^(1/14) 8024922359500756 a001 1134903170/370248451*710647^(1/14) 8024922359500756 a001 433494437/141422324*710647^(1/14) 8024922359500759 a001 165580141/54018521*710647^(1/14) 8024922359500760 a001 1346269/17393796001*4870847^(3/4) 8024922359500773 a001 196452/33391061*1860498^(1/2) 8024922359500775 a001 63245986/20633239*710647^(1/14) 8024922359500779 a001 39088169/6643838879*1860498^(1/2) 8024922359500780 a001 102334155/17393796001*1860498^(1/2) 8024922359500780 a001 66978574/11384387281*1860498^(1/2) 8024922359500780 a001 701408733/119218851371*1860498^(1/2) 8024922359500780 a001 1836311903/312119004989*1860498^(1/2) 8024922359500780 a001 1201881744/204284540899*1860498^(1/2) 8024922359500780 a001 12586269025/2139295485799*1860498^(1/2) 8024922359500780 a001 32951280099/5600748293801*1860498^(1/2) 8024922359500780 a001 1135099622/192933544679*1860498^(1/2) 8024922359500780 a001 139583862445/23725150497407*1860498^(1/2) 8024922359500780 a001 53316291173/9062201101803*1860498^(1/2) 8024922359500780 a001 10182505537/1730726404001*1860498^(1/2) 8024922359500780 a001 7778742049/1322157322203*1860498^(1/2) 8024922359500780 a001 2971215073/505019158607*1860498^(1/2) 8024922359500780 a001 567451585/96450076809*1860498^(1/2) 8024922359500780 a001 433494437/73681302247*1860498^(1/2) 8024922359500780 a001 165580141/28143753123*1860498^(1/2) 8024922359500781 a001 31622993/5374978561*1860498^(1/2) 8024922359500781 a001 1346269/45537549124*4870847^(13/16) 8024922359500783 a001 24157817/4106118243*1860498^(1/2) 8024922359500799 a001 9227465/1568397607*1860498^(1/2) 8024922359500802 a001 1346269/119218851371*4870847^(7/8) 8024922359500808 a001 5702887/1568397607*1860498^(8/15) 8024922359500824 a001 1346269/312119004989*4870847^(15/16) 8024922359500828 a001 726103/1368706081*1860498^(2/3) 8024922359500832 a001 3524578/370248451*1860498^(7/15) 8024922359500845 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^57 8024922359500850 a001 4976784/1368706081*1860498^(8/15) 8024922359500856 a001 39088169/10749957122*1860498^(8/15) 8024922359500857 a001 831985/228811001*1860498^(8/15) 8024922359500857 a001 267914296/73681302247*1860498^(8/15) 8024922359500857 a001 233802911/64300051206*1860498^(8/15) 8024922359500857 a001 1836311903/505019158607*1860498^(8/15) 8024922359500857 a001 1602508992/440719107401*1860498^(8/15) 8024922359500857 a001 12586269025/3461452808002*1860498^(8/15) 8024922359500857 a001 10983760033/3020733700601*1860498^(8/15) 8024922359500857 a001 86267571272/23725150497407*1860498^(8/15) 8024922359500857 a001 53316291173/14662949395604*1860498^(8/15) 8024922359500857 a001 20365011074/5600748293801*1860498^(8/15) 8024922359500857 a001 7778742049/2139295485799*1860498^(8/15) 8024922359500857 a001 2971215073/817138163596*1860498^(8/15) 8024922359500857 a001 1134903170/312119004989*1860498^(8/15) 8024922359500857 a001 433494437/119218851371*1860498^(8/15) 8024922359500857 a001 165580141/45537549124*1860498^(8/15) 8024922359500858 a001 63245986/17393796001*1860498^(8/15) 8024922359500860 a001 24157817/6643838879*1860498^(8/15) 8024922359500876 a001 9227465/2537720636*1860498^(8/15) 8024922359500888 a001 24157817/7881196*710647^(1/14) 8024922359500906 a001 2178309/6643838879*1860498^(7/10) 8024922359500909 a001 1762289/299537289*1860498^(1/2) 8024922359500945 a001 3524578/3010349*1860498^(2/15) 8024922359500963 a001 5702887/4106118243*1860498^(3/5) 8024922359500983 a001 987/4870846*1860498^(11/15) 8024922359500987 a001 3524578/969323029*1860498^(8/15) 8024922359501005 a001 7465176/5374978561*1860498^(3/5) 8024922359501011 a001 39088169/28143753123*1860498^(3/5) 8024922359501012 a001 14619165/10525900321*1860498^(3/5) 8024922359501012 a001 133957148/96450076809*1860498^(3/5) 8024922359501012 a001 701408733/505019158607*1860498^(3/5) 8024922359501012 a001 1836311903/1322157322203*1860498^(3/5) 8024922359501012 a001 14930208/10749853441*1860498^(3/5) 8024922359501012 a001 12586269025/9062201101803*1860498^(3/5) 8024922359501012 a001 32951280099/23725150497407*1860498^(3/5) 8024922359501012 a001 10182505537/7331474697802*1860498^(3/5) 8024922359501012 a001 7778742049/5600748293801*1860498^(3/5) 8024922359501012 a001 2971215073/2139295485799*1860498^(3/5) 8024922359501012 a001 567451585/408569081798*1860498^(3/5) 8024922359501012 a001 433494437/312119004989*1860498^(3/5) 8024922359501012 a001 165580141/119218851371*1860498^(3/5) 8024922359501012 a001 31622993/22768774562*1860498^(3/5) 8024922359501015 a001 24157817/17393796001*1860498^(3/5) 8024922359501031 a001 9227465/6643838879*1860498^(3/5) 8024922359501117 a001 5702887/10749957122*1860498^(2/3) 8024922359501137 a001 726103/9381251041*1860498^(4/5) 8024922359501141 a001 1762289/1268860318*1860498^(3/5) 8024922359501153 a001 1346269/12752043*1860498^(3/10) 8024922359501159 a001 4976784/9381251041*1860498^(2/3) 8024922359501165 a001 39088169/73681302247*1860498^(2/3) 8024922359501166 a001 34111385/64300051206*1860498^(2/3) 8024922359501167 a001 267914296/505019158607*1860498^(2/3) 8024922359501167 a001 233802911/440719107401*1860498^(2/3) 8024922359501167 a001 1836311903/3461452808002*1860498^(2/3) 8024922359501167 a001 1602508992/3020733700601*1860498^(2/3) 8024922359501167 a001 12586269025/23725150497407*1860498^(2/3) 8024922359501167 a001 7778742049/14662949395604*1860498^(2/3) 8024922359501167 a001 2971215073/5600748293801*1860498^(2/3) 8024922359501167 a001 1134903170/2139295485799*1860498^(2/3) 8024922359501167 a001 433494437/817138163596*1860498^(2/3) 8024922359501167 a001 165580141/312119004989*1860498^(2/3) 8024922359501167 a001 63245986/119218851371*1860498^(2/3) 8024922359501169 a001 24157817/45537549124*1860498^(2/3) 8024922359501185 a001 9227465/17393796001*1860498^(2/3) 8024922359501194 a001 5702887/17393796001*1860498^(7/10) 8024922359501215 a001 2178309/45537549124*1860498^(5/6) 8024922359501237 a001 3732588/11384387281*1860498^(7/10) 8024922359501243 a001 39088169/119218851371*1860498^(7/10) 8024922359501244 a001 9303105/28374454999*1860498^(7/10) 8024922359501244 a001 66978574/204284540899*1860498^(7/10) 8024922359501244 a001 701408733/2139295485799*1860498^(7/10) 8024922359501244 a001 1836311903/5600748293801*1860498^(7/10) 8024922359501244 a001 1201881744/3665737348901*1860498^(7/10) 8024922359501244 a001 7778742049/23725150497407*1860498^(7/10) 8024922359501244 a001 2971215073/9062201101803*1860498^(7/10) 8024922359501244 a001 567451585/1730726404001*1860498^(7/10) 8024922359501244 a001 433494437/1322157322203*1860498^(7/10) 8024922359501244 a001 165580141/505019158607*1860498^(7/10) 8024922359501244 a001 31622993/96450076809*1860498^(7/10) 8024922359501247 a001 24157817/73681302247*1860498^(7/10) 8024922359501254 a001 1346269/7881196*1860498^(4/15) 8024922359501263 a001 9227465/28143753123*1860498^(7/10) 8024922359501272 a001 5702887/28143753123*1860498^(11/15) 8024922359501292 a001 311187/10525900321*1860498^(13/15) 8024922359501296 a001 3524578/6643838879*1860498^(2/3) 8024922359501298 a001 1346269/20633239*1860498^(1/3) 8024922359501314 a001 14930352/73681302247*1860498^(11/15) 8024922359501320 a001 39088169/192900153618*1860498^(11/15) 8024922359501321 a001 102334155/505019158607*1860498^(11/15) 8024922359501321 a001 267914296/1322157322203*1860498^(11/15) 8024922359501321 a001 701408733/3461452808002*1860498^(11/15) 8024922359501321 a001 1836311903/9062201101803*1860498^(11/15) 8024922359501321 a001 4807526976/23725150497407*1860498^(11/15) 8024922359501321 a001 2971215073/14662949395604*1860498^(11/15) 8024922359501321 a001 1134903170/5600748293801*1860498^(11/15) 8024922359501321 a001 433494437/2139295485799*1860498^(11/15) 8024922359501321 a001 165580141/817138163596*1860498^(11/15) 8024922359501321 a001 63245986/312119004989*1860498^(11/15) 8024922359501324 a001 24157817/119218851371*1860498^(11/15) 8024922359501340 a001 9227465/45537549124*1860498^(11/15) 8024922359501369 a001 1346269/3010349*7881196^(2/11) 8024922359501369 a001 2178309/119218851371*1860498^(9/10) 8024922359501373 a001 1762289/5374978561*1860498^(7/10) 8024922359501392 a001 1346269/3010349*141422324^(2/13) 8024922359501392 a001 1346269/3010349*2537720636^(2/15) 8024922359501392 a001 1346269/3010349*45537549124^(2/17) 8024922359501392 a001 1346269/3010349*14662949395604^(2/21) 8024922359501392 a001 1346269/3010349*(1/2+1/2*5^(1/2))^6 8024922359501392 a001 1812440220361/225851433717 8024922359501392 a001 1346269/3010349*10749957122^(1/8) 8024922359501392 a001 1346269/3010349*4106118243^(3/23) 8024922359501392 a001 1346269/3010349*1568397607^(3/22) 8024922359501392 a001 1346269/3010349*599074578^(1/7) 8024922359501392 a001 1346269/3010349*228826127^(3/20) 8024922359501392 a001 1346269/3010349*87403803^(3/19) 8024922359501393 a001 1346269/3010349*33385282^(1/6) 8024922359501401 a001 1346269/3010349*12752043^(3/17) 8024922359501426 a001 5702887/73681302247*1860498^(4/5) 8024922359501437 a001 1346269/54018521*1860498^(2/5) 8024922359501447 a001 726103/64300051206*1860498^(14/15) 8024922359501450 a001 3524578/17393796001*1860498^(11/15) 8024922359501455 a001 1346269/3010349*4870847^(3/16) 8024922359501468 a001 2584/33385281*1860498^(4/5) 8024922359501475 a001 39088169/505019158607*1860498^(4/5) 8024922359501475 a001 34111385/440719107401*1860498^(4/5) 8024922359501476 a001 133957148/1730726404001*1860498^(4/5) 8024922359501476 a001 233802911/3020733700601*1860498^(4/5) 8024922359501476 a001 1836311903/23725150497407*1860498^(4/5) 8024922359501476 a001 567451585/7331474697802*1860498^(4/5) 8024922359501476 a001 433494437/5600748293801*1860498^(4/5) 8024922359501476 a001 165580141/2139295485799*1860498^(4/5) 8024922359501476 a001 31622993/408569081798*1860498^(4/5) 8024922359501478 a001 24157817/312119004989*1860498^(4/5) 8024922359501494 a001 9227465/119218851371*1860498^(4/5) 8024922359501503 a001 5702887/4870847*710647^(1/7) 8024922359501504 a001 5702887/119218851371*1860498^(5/6) 8024922359501504 a001 832040/4870847*710647^(2/7) 8024922359501546 a001 14930352/312119004989*1860498^(5/6) 8024922359501552 a001 4181/87403804*1860498^(5/6) 8024922359501553 a001 102334155/2139295485799*1860498^(5/6) 8024922359501553 a001 267914296/5600748293801*1860498^(5/6) 8024922359501553 a001 701408733/14662949395604*1860498^(5/6) 8024922359501553 a001 1134903170/23725150497407*1860498^(5/6) 8024922359501553 a001 433494437/9062201101803*1860498^(5/6) 8024922359501553 a001 165580141/3461452808002*1860498^(5/6) 8024922359501553 a001 63245986/1322157322203*1860498^(5/6) 8024922359501556 a001 24157817/505019158607*1860498^(5/6) 8024922359501572 a001 9227465/192900153618*1860498^(5/6) 8024922359501581 a001 5702887/192900153618*1860498^(13/15) 8024922359501589 a001 1346269/141422324*1860498^(7/15) 8024922359501601 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^56 8024922359501605 a001 1762289/22768774562*1860498^(4/5) 8024922359501623 a001 14930352/505019158607*1860498^(13/15) 8024922359501629 a001 39088169/1322157322203*1860498^(13/15) 8024922359501630 a001 6765/228826126*1860498^(13/15) 8024922359501630 a001 267914296/9062201101803*1860498^(13/15) 8024922359501630 a001 701408733/23725150497407*1860498^(13/15) 8024922359501630 a001 433494437/14662949395604*1860498^(13/15) 8024922359501630 a001 165580141/5600748293801*1860498^(13/15) 8024922359501631 a001 63245986/2139295485799*1860498^(13/15) 8024922359501633 a001 24157817/817138163596*1860498^(13/15) 8024922359501649 a001 9227465/312119004989*1860498^(13/15) 8024922359501658 a001 5702887/312119004989*1860498^(9/10) 8024922359501660 a001 9227465/3010349*710647^(1/14) 8024922359501666 a001 1346269/228826127*1860498^(1/2) 8024922359501682 a001 3524578/73681302247*1860498^(5/6) 8024922359501700 a001 3732588/204284540899*1860498^(9/10) 8024922359501706 a001 39088169/2139295485799*1860498^(9/10) 8024922359501707 a001 102334155/5600748293801*1860498^(9/10) 8024922359501707 a001 10946/599074579*1860498^(9/10) 8024922359501707 a001 433494437/23725150497407*1860498^(9/10) 8024922359501708 a001 165580141/9062201101803*1860498^(9/10) 8024922359501708 a001 31622993/1730726404001*1860498^(9/10) 8024922359501710 a001 24157817/1322157322203*1860498^(9/10) 8024922359501726 a001 9227465/505019158607*1860498^(9/10) 8024922359501735 a001 5702887/505019158607*1860498^(14/15) 8024922359501743 a001 1346269/370248451*1860498^(8/15) 8024922359501759 a001 3524578/119218851371*1860498^(13/15) 8024922359501778 a001 4976784/440719107401*1860498^(14/15) 8024922359501784 a001 39088169/3461452808002*1860498^(14/15) 8024922359501785 a001 34111385/3020733700601*1860498^(14/15) 8024922359501785 a001 267914296/23725150497407*1860498^(14/15) 8024922359501785 a001 165580141/14662949395604*1860498^(14/15) 8024922359501785 a001 63245986/5600748293801*1860498^(14/15) 8024922359501788 a001 24157817/2139295485799*1860498^(14/15) 8024922359501804 a001 9227465/817138163596*1860498^(14/15) 8024922359501834 a001 4976784/4250681*710647^(1/7) 8024922359501837 a001 1762289/96450076809*1860498^(9/10) 8024922359501856 a001 1346269/3010349*1860498^(1/5) 8024922359501883 a001 39088169/33385282*710647^(1/7) 8024922359501890 a001 34111385/29134601*710647^(1/7) 8024922359501890 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^58 8024922359501891 a001 267914296/228826127*710647^(1/7) 8024922359501891 a001 233802911/199691526*710647^(1/7) 8024922359501891 a001 1836311903/1568397607*710647^(1/7) 8024922359501891 a001 1602508992/1368706081*710647^(1/7) 8024922359501891 a001 12586269025/10749957122*710647^(1/7) 8024922359501891 a001 10983760033/9381251041*710647^(1/7) 8024922359501891 a001 86267571272/73681302247*710647^(1/7) 8024922359501891 a001 75283811239/64300051206*710647^(1/7) 8024922359501891 a001 2504730781961/2139295485799*710647^(1/7) 8024922359501891 a001 365435296162/312119004989*710647^(1/7) 8024922359501891 a001 139583862445/119218851371*710647^(1/7) 8024922359501891 a001 53316291173/45537549124*710647^(1/7) 8024922359501891 a001 20365011074/17393796001*710647^(1/7) 8024922359501891 a001 7778742049/6643838879*710647^(1/7) 8024922359501891 a001 2971215073/2537720636*710647^(1/7) 8024922359501891 a001 1134903170/969323029*710647^(1/7) 8024922359501891 a001 433494437/370248451*710647^(1/7) 8024922359501891 a001 165580141/141422324*710647^(1/7) 8024922359501894 a001 63245986/54018521*710647^(1/7) 8024922359501898 a001 1346269/969323029*1860498^(3/5) 8024922359501913 a001 24157817/20633239*710647^(1/7) 8024922359501914 a001 3524578/312119004989*1860498^(14/15) 8024922359501932 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^60 8024922359501938 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^62 8024922359501939 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^64 8024922359501939 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^66 8024922359501939 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^68 8024922359501939 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^70 8024922359501939 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^72 8024922359501939 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^74 8024922359501939 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^76 8024922359501939 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^78 8024922359501939 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^80 8024922359501939 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^82 8024922359501939 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^84 8024922359501939 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^86 8024922359501939 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^88 8024922359501939 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^90 8024922359501939 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^92 8024922359501939 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^94 8024922359501939 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^96 8024922359501939 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^98 8024922359501939 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^100 8024922359501939 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^99 8024922359501939 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^97 8024922359501939 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^95 8024922359501939 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^93 8024922359501939 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^91 8024922359501939 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^89 8024922359501939 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^87 8024922359501939 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^85 8024922359501939 a001 1/416020*(1/2+1/2*5^(1/2))^36 8024922359501939 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^83 8024922359501939 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^81 8024922359501939 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^79 8024922359501939 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^77 8024922359501939 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^75 8024922359501939 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^73 8024922359501939 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^71 8024922359501939 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^69 8024922359501939 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^67 8024922359501939 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^65 8024922359501940 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^63 8024922359501942 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^61 8024922359501958 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^59 8024922359502039 a001 9227465/7881196*710647^(1/7) 8024922359502052 a001 1346269/2537720636*1860498^(2/3) 8024922359502069 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^57 8024922359502129 a001 1346269/4106118243*1860498^(7/10) 8024922359502161 a001 832040/3010349*710647^(1/4) 8024922359502207 a001 1346269/6643838879*1860498^(11/15) 8024922359502350 a001 2178309/4870847*710647^(3/14) 8024922359502361 a001 1346269/17393796001*1860498^(4/5) 8024922359502438 a001 1346269/28143753123*1860498^(5/6) 8024922359502515 a001 514229/1149851*439204^(2/9) 8024922359502516 a001 1346269/45537549124*1860498^(13/15) 8024922359502593 a001 1346269/73681302247*1860498^(9/10) 8024922359502670 a001 1346269/119218851371*1860498^(14/15) 8024922359502825 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^55 8024922359502906 a001 3524578/3010349*710647^(1/7) 8024922359502927 a001 5702887/12752043*710647^(3/14) 8024922359502928 a001 832040/12752043*710647^(5/14) 8024922359503012 a001 7465176/16692641*710647^(3/14) 8024922359503024 a001 39088169/87403803*710647^(3/14) 8024922359503026 a001 102334155/228826127*710647^(3/14) 8024922359503026 a001 133957148/299537289*710647^(3/14) 8024922359503026 a001 701408733/1568397607*710647^(3/14) 8024922359503026 a001 1836311903/4106118243*710647^(3/14) 8024922359503026 a001 2403763488/5374978561*710647^(3/14) 8024922359503026 a001 12586269025/28143753123*710647^(3/14) 8024922359503026 a001 32951280099/73681302247*710647^(3/14) 8024922359503026 a001 43133785636/96450076809*710647^(3/14) 8024922359503026 a001 225851433717/505019158607*710647^(3/14) 8024922359503026 a001 591286729879/1322157322203*710647^(3/14) 8024922359503026 a001 10610209857723/23725150497407*710647^(3/14) 8024922359503026 a001 182717648081/408569081798*710647^(3/14) 8024922359503026 a001 139583862445/312119004989*710647^(3/14) 8024922359503026 a001 53316291173/119218851371*710647^(3/14) 8024922359503026 a001 10182505537/22768774562*710647^(3/14) 8024922359503026 a001 7778742049/17393796001*710647^(3/14) 8024922359503026 a001 2971215073/6643838879*710647^(3/14) 8024922359503026 a001 567451585/1268860318*710647^(3/14) 8024922359503026 a001 433494437/969323029*710647^(3/14) 8024922359503026 a001 165580141/370248451*710647^(3/14) 8024922359503027 a001 31622993/70711162*710647^(3/14) 8024922359503032 a001 24157817/54018521*710647^(3/14) 8024922359503064 a001 9227465/20633239*710647^(3/14) 8024922359503284 a001 1762289/3940598*710647^(3/14) 8024922359503368 a001 514229/1860498*20633239^(1/5) 8024922359503369 a001 832040/1149851*20633239^(1/7) 8024922359503372 a001 832040/1149851*2537720636^(1/9) 8024922359503372 a001 514229/1860498*17393796001^(1/7) 8024922359503372 a001 427859097160/53316291173 8024922359503372 a001 832040/1149851*312119004989^(1/11) 8024922359503372 a001 514229/1860498*14662949395604^(1/9) 8024922359503372 a001 514229/1860498*(1/2+1/2*5^(1/2))^7 8024922359503372 a001 832040/1149851*(1/2+1/2*5^(1/2))^5 8024922359503372 a001 832040/1149851*28143753123^(1/10) 8024922359503372 a001 514229/1860498*599074578^(1/6) 8024922359503372 a001 832040/1149851*228826127^(1/8) 8024922359503384 a001 2178309/7881196*710647^(1/4) 8024922359503563 a001 5702887/20633239*710647^(1/4) 8024922359503589 a001 14930352/54018521*710647^(1/4) 8024922359503593 a001 39088169/141422324*710647^(1/4) 8024922359503593 a001 102334155/370248451*710647^(1/4) 8024922359503594 a001 267914296/969323029*710647^(1/4) 8024922359503594 a001 701408733/2537720636*710647^(1/4) 8024922359503594 a001 1836311903/6643838879*710647^(1/4) 8024922359503594 a001 4807526976/17393796001*710647^(1/4) 8024922359503594 a001 12586269025/45537549124*710647^(1/4) 8024922359503594 a001 32951280099/119218851371*710647^(1/4) 8024922359503594 a001 86267571272/312119004989*710647^(1/4) 8024922359503594 a001 225851433717/817138163596*710647^(1/4) 8024922359503594 a001 1548008755920/5600748293801*710647^(1/4) 8024922359503594 a001 139583862445/505019158607*710647^(1/4) 8024922359503594 a001 53316291173/192900153618*710647^(1/4) 8024922359503594 a001 20365011074/73681302247*710647^(1/4) 8024922359503594 a001 7778742049/28143753123*710647^(1/4) 8024922359503594 a001 2971215073/10749957122*710647^(1/4) 8024922359503594 a001 1134903170/4106118243*710647^(1/4) 8024922359503594 a001 433494437/1568397607*710647^(1/4) 8024922359503594 a001 165580141/599074578*710647^(1/4) 8024922359503594 a001 63245986/228826127*710647^(1/4) 8024922359503595 a001 24157817/87403803*710647^(1/4) 8024922359503605 a001 9227465/33385282*710647^(1/4) 8024922359503673 a001 3524578/12752043*710647^(1/4) 8024922359503759 a001 832040/1149851*1860498^(1/6) 8024922359503773 a001 726103/4250681*710647^(2/7) 8024922359504104 a001 5702887/33385282*710647^(2/7) 8024922359504106 a001 416020/16692641*710647^(3/7) 8024922359504141 a001 1346269/4870847*710647^(1/4) 8024922359504153 a001 4976784/29134601*710647^(2/7) 8024922359504160 a001 39088169/228826127*710647^(2/7) 8024922359504161 a001 34111385/199691526*710647^(2/7) 8024922359504161 a001 267914296/1568397607*710647^(2/7) 8024922359504161 a001 233802911/1368706081*710647^(2/7) 8024922359504161 a001 1836311903/10749957122*710647^(2/7) 8024922359504161 a001 1602508992/9381251041*710647^(2/7) 8024922359504161 a001 12586269025/73681302247*710647^(2/7) 8024922359504161 a001 10983760033/64300051206*710647^(2/7) 8024922359504161 a001 86267571272/505019158607*710647^(2/7) 8024922359504161 a001 75283811239/440719107401*710647^(2/7) 8024922359504161 a001 2504730781961/14662949395604*710647^(2/7) 8024922359504161 a001 139583862445/817138163596*710647^(2/7) 8024922359504161 a001 53316291173/312119004989*710647^(2/7) 8024922359504161 a001 20365011074/119218851371*710647^(2/7) 8024922359504161 a001 7778742049/45537549124*710647^(2/7) 8024922359504161 a001 2971215073/17393796001*710647^(2/7) 8024922359504161 a001 1134903170/6643838879*710647^(2/7) 8024922359504161 a001 433494437/2537720636*710647^(2/7) 8024922359504161 a001 165580141/969323029*710647^(2/7) 8024922359504162 a001 63245986/370248451*710647^(2/7) 8024922359504164 a001 24157817/141422324*710647^(2/7) 8024922359504183 a001 9227465/54018521*710647^(2/7) 8024922359504243 a001 98209/1268860318*439204^(8/9) 8024922359504309 a001 3524578/20633239*710647^(2/7) 8024922359504797 a001 1346269/3010349*710647^(3/14) 8024922359504805 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^54 8024922359504951 a001 311187/4769326*710647^(5/14) 8024922359505176 a001 1346269/7881196*710647^(2/7) 8024922359505246 a001 5702887/87403803*710647^(5/14) 8024922359505247 a001 832040/87403803*710647^(1/2) 8024922359505289 a001 14930352/228826127*710647^(5/14) 8024922359505295 a001 39088169/599074578*710647^(5/14) 8024922359505296 a001 14619165/224056801*710647^(5/14) 8024922359505296 a001 267914296/4106118243*710647^(5/14) 8024922359505296 a001 701408733/10749957122*710647^(5/14) 8024922359505296 a001 1836311903/28143753123*710647^(5/14) 8024922359505296 a001 686789568/10525900321*710647^(5/14) 8024922359505296 a001 12586269025/192900153618*710647^(5/14) 8024922359505296 a001 32951280099/505019158607*710647^(5/14) 8024922359505296 a001 86267571272/1322157322203*710647^(5/14) 8024922359505296 a001 32264490531/494493258286*710647^(5/14) 8024922359505296 a001 591286729879/9062201101803*710647^(5/14) 8024922359505296 a001 1548008755920/23725150497407*710647^(5/14) 8024922359505296 a001 365435296162/5600748293801*710647^(5/14) 8024922359505296 a001 139583862445/2139295485799*710647^(5/14) 8024922359505296 a001 53316291173/817138163596*710647^(5/14) 8024922359505296 a001 20365011074/312119004989*710647^(5/14) 8024922359505296 a001 7778742049/119218851371*710647^(5/14) 8024922359505296 a001 2971215073/45537549124*710647^(5/14) 8024922359505296 a001 1134903170/17393796001*710647^(5/14) 8024922359505296 a001 433494437/6643838879*710647^(5/14) 8024922359505296 a001 165580141/2537720636*710647^(5/14) 8024922359505296 a001 63245986/969323029*710647^(5/14) 8024922359505299 a001 24157817/370248451*710647^(5/14) 8024922359505315 a001 9227465/141422324*710647^(5/14) 8024922359505317 a001 514229/4870847*7881196^(3/11) 8024922359505341 a001 2178309/1149851*7881196^(1/11) 8024922359505352 a001 514229/4870847*141422324^(3/13) 8024922359505352 a001 2178309/1149851*141422324^(1/13) 8024922359505352 a001 514229/4870847*2537720636^(1/5) 8024922359505352 a001 2178309/1149851*2537720636^(1/15) 8024922359505352 a001 514229/4870847*45537549124^(3/17) 8024922359505352 a001 2178309/1149851*45537549124^(1/17) 8024922359505352 a001 1120149658761/139583862445 8024922359505352 a001 514229/4870847*817138163596^(3/19) 8024922359505352 a001 514229/4870847*14662949395604^(1/7) 8024922359505352 a001 514229/4870847*(1/2+1/2*5^(1/2))^9 8024922359505352 a001 2178309/1149851*14662949395604^(1/21) 8024922359505352 a001 2178309/1149851*(1/2+1/2*5^(1/2))^3 8024922359505352 a001 2178309/1149851*192900153618^(1/18) 8024922359505352 a001 2178309/1149851*10749957122^(1/16) 8024922359505352 a001 514229/4870847*10749957122^(3/16) 8024922359505352 a001 2178309/1149851*599074578^(1/14) 8024922359505352 a001 514229/4870847*599074578^(3/14) 8024922359505353 a001 2178309/1149851*33385282^(1/12) 8024922359505354 a001 514229/4870847*33385282^(1/4) 8024922359505428 a001 3524578/54018521*710647^(5/14) 8024922359505561 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^56 8024922359505573 a001 514229/119218851371*7881196^(10/11) 8024922359505584 a001 2178309/1149851*1860498^(1/10) 8024922359505585 a001 514229/28143753123*7881196^(9/11) 8024922359505597 a001 514229/6643838879*7881196^(8/11) 8024922359505598 a001 514229/12752043*7881196^(1/3) 8024922359505604 a001 514229/2537720636*7881196^(2/3) 8024922359505608 a001 514229/1568397607*7881196^(7/11) 8024922359505620 a001 514229/370248451*7881196^(6/11) 8024922359505631 a001 514229/87403803*7881196^(5/11) 8024922359505631 a001 5702887/1860498*271443^(1/13) 8024922359505641 a001 2932589879123/365435296162 8024922359505641 a001 514229/12752043*(1/2+1/2*5^(1/2))^11 8024922359505641 a001 5702887/2299702+5702887/2299702*5^(1/2) 8024922359505641 a001 514229/12752043*1568397607^(1/4) 8024922359505662 a001 514229/20633239*7881196^(4/11) 8024922359505672 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^58 8024922359505674 a001 514229/119218851371*20633239^(6/7) 8024922359505675 a001 514229/45537549124*20633239^(4/5) 8024922359505677 a001 514229/10749957122*20633239^(5/7) 8024922359505679 a001 514229/1568397607*20633239^(3/5) 8024922359505680 a001 514229/969323029*20633239^(4/7) 8024922359505681 a001 514229/87403803*20633239^(3/7) 8024922359505683 a001 514229/33385282*141422324^(1/3) 8024922359505683 a001 7677619978608/956722026041 8024922359505683 a001 514229/33385282*(1/2+1/2*5^(1/2))^13 8024922359505683 a004 Fibonacci(36)/Lucas(29)/(1/2+sqrt(5)/2) 8024922359505683 a001 514229/33385282*73681302247^(1/4) 8024922359505686 a001 514229/54018521*20633239^(2/5) 8024922359505688 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^60 8024922359505689 a001 514229/87403803*141422324^(5/13) 8024922359505689 a001 514229/87403803*2537720636^(1/3) 8024922359505689 a001 514229/87403803*45537549124^(5/17) 8024922359505689 a001 514229/87403803*312119004989^(3/11) 8024922359505689 a001 20100270056701/2504730781961 8024922359505689 a001 514229/87403803*14662949395604^(5/21) 8024922359505689 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^15/Lucas(38) 8024922359505689 a004 Fibonacci(38)/Lucas(29)/(1/2+sqrt(5)/2)^3 8024922359505689 a001 514229/87403803*192900153618^(5/18) 8024922359505689 a001 514229/87403803*28143753123^(3/10) 8024922359505689 a001 514229/87403803*10749957122^(5/16) 8024922359505689 a001 514229/87403803*599074578^(5/14) 8024922359505690 a001 514229/87403803*228826127^(3/8) 8024922359505690 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^62 8024922359505690 a001 514229/2139295485799*141422324^(12/13) 8024922359505690 a001 514229/505019158607*141422324^(11/13) 8024922359505690 a001 514229/119218851371*141422324^(10/13) 8024922359505690 a001 514229/28143753123*141422324^(9/13) 8024922359505690 a001 514229/17393796001*141422324^(2/3) 8024922359505690 a001 514229/6643838879*141422324^(8/13) 8024922359505690 a001 514229/1568397607*141422324^(7/13) 8024922359505690 a001 514229/228826127*45537549124^(1/3) 8024922359505690 a001 52623190191495/6557470319842 8024922359505690 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^17/Lucas(40) 8024922359505690 a004 Fibonacci(40)/Lucas(29)/(1/2+sqrt(5)/2)^5 8024922359505690 a001 514229/370248451*141422324^(6/13) 8024922359505690 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^64 8024922359505690 a001 514229/599074578*817138163596^(1/3) 8024922359505690 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^19/Lucas(42) 8024922359505690 a004 Fibonacci(42)/Lucas(29)/(1/2+sqrt(5)/2)^7 8024922359505691 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^66 8024922359505691 a001 514229/1568397607*2537720636^(7/15) 8024922359505691 a001 514229/1568397607*17393796001^(3/7) 8024922359505691 a001 514229/1568397607*45537549124^(7/17) 8024922359505691 a001 514229/1568397607*14662949395604^(1/3) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^21/Lucas(44) 8024922359505691 a004 Fibonacci(44)/Lucas(29)/(1/2+sqrt(5)/2)^9 8024922359505691 a001 514229/1568397607*192900153618^(7/18) 8024922359505691 a001 514229/1568397607*10749957122^(7/16) 8024922359505691 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^68 8024922359505691 a001 514229/14662949395604*2537720636^(8/9) 8024922359505691 a001 514229/9062201101803*2537720636^(13/15) 8024922359505691 a001 514229/2139295485799*2537720636^(4/5) 8024922359505691 a001 514229/1322157322203*2537720636^(7/9) 8024922359505691 a001 514229/505019158607*2537720636^(11/15) 8024922359505691 a001 514229/119218851371*2537720636^(2/3) 8024922359505691 a001 514229/10749957122*2537720636^(5/9) 8024922359505691 a001 514229/28143753123*2537720636^(3/5) 8024922359505691 a001 514229/6643838879*2537720636^(8/15) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(46) 8024922359505691 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^11 8024922359505691 a001 514229/4106118243*4106118243^(1/2) 8024922359505691 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^70 8024922359505691 a001 514229/10749957122*312119004989^(5/11) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(48) 8024922359505691 a001 514229/10749957122*3461452808002^(5/12) 8024922359505691 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^13 8024922359505691 a001 514229/10749957122*28143753123^(1/2) 8024922359505691 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^72 8024922359505691 a001 514229/1322157322203*17393796001^(5/7) 8024922359505691 a001 514229/28143753123*45537549124^(9/17) 8024922359505691 a001 514229/45537549124*17393796001^(4/7) 8024922359505691 a001 514229/28143753123*817138163596^(9/19) 8024922359505691 a001 514229/28143753123*14662949395604^(3/7) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(50) 8024922359505691 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^15 8024922359505691 a001 514229/28143753123*192900153618^(1/2) 8024922359505691 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^74 8024922359505691 a001 514229/9062201101803*45537549124^(13/17) 8024922359505691 a001 514229/2139295485799*45537549124^(12/17) 8024922359505691 a001 514229/817138163596*45537549124^(2/3) 8024922359505691 a001 514229/505019158607*45537549124^(11/17) 8024922359505691 a001 514229/119218851371*45537549124^(10/17) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(52) 8024922359505691 a001 514229/73681302247*1322157322203^(1/2) 8024922359505691 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^17 8024922359505691 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^76 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(54) 8024922359505691 a001 514229/192900153618*9062201101803^(1/2) 8024922359505691 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^19 8024922359505691 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^78 8024922359505691 a001 514229/505019158607*312119004989^(3/5) 8024922359505691 a001 514229/1322157322203*312119004989^(7/11) 8024922359505691 a001 514229/505019158607*817138163596^(11/19) 8024922359505691 a001 514229/505019158607*14662949395604^(11/21) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(56) 8024922359505691 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^21 8024922359505691 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^80 8024922359505691 a001 514229/5600748293801*817138163596^(2/3) 8024922359505691 a001 514229/1322157322203*14662949395604^(5/9) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(58) 8024922359505691 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^82 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(60) 8024922359505691 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^84 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(62) 8024922359505691 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^86 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(64) 8024922359505691 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^88 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(66) 8024922359505691 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^90 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(68) 8024922359505691 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^92 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(70) 8024922359505691 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^94 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(72) 8024922359505691 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^96 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(74) 8024922359505691 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^98 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(76) 8024922359505691 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^100 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(78) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(80) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(82) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(84) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(86) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(88) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(90) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(92) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(94) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(96) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(98) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(99) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(100) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(97) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(95) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(93) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(91) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(89) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(87) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(85) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(83) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(81) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(79) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(77) 8024922359505691 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^99 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(75) 8024922359505691 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^97 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(73) 8024922359505691 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^95 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(71) 8024922359505691 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^93 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(69) 8024922359505691 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^91 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(67) 8024922359505691 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^89 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(65) 8024922359505691 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^87 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(63) 8024922359505691 a001 514229/14662949395604*23725150497407^(5/8) 8024922359505691 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^85 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(61) 8024922359505691 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^83 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(59) 8024922359505691 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^25 8024922359505691 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^27 8024922359505691 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^29 8024922359505691 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^31 8024922359505691 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^33 8024922359505691 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^35 8024922359505691 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^37 8024922359505691 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^39 8024922359505691 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^41 8024922359505691 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^43 8024922359505691 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^45 8024922359505691 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^47 8024922359505691 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^49 8024922359505691 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^51 8024922359505691 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^53 8024922359505691 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^55 8024922359505691 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^57 8024922359505691 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^59 8024922359505691 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^61 8024922359505691 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^63 8024922359505691 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^65 8024922359505691 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^81 8024922359505691 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^64 8024922359505691 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^62 8024922359505691 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^60 8024922359505691 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^58 8024922359505691 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^56 8024922359505691 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^54 8024922359505691 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^52 8024922359505691 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^50 8024922359505691 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^48 8024922359505691 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^46 8024922359505691 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^44 8024922359505691 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^42 8024922359505691 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^40 8024922359505691 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^38 8024922359505691 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^36 8024922359505691 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^34 8024922359505691 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^32 8024922359505691 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^30 8024922359505691 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^28 8024922359505691 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^26 8024922359505691 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^24 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(57) 8024922359505691 a001 514229/1322157322203*505019158607^(5/8) 8024922359505691 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^22 8024922359505691 a001 514229/2139295485799*505019158607^(9/14) 8024922359505691 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^79 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(55) 8024922359505691 a001 514229/312119004989*23725150497407^(1/2) 8024922359505691 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^20 8024922359505691 a001 514229/505019158607*192900153618^(11/18) 8024922359505691 a001 514229/312119004989*505019158607^(4/7) 8024922359505691 a001 514229/2139295485799*192900153618^(2/3) 8024922359505691 a001 514229/9062201101803*192900153618^(13/18) 8024922359505691 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^77 8024922359505691 a001 514229/119218851371*312119004989^(6/11) 8024922359505691 a001 514229/119218851371*14662949395604^(10/21) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(53) 8024922359505691 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^18 8024922359505691 a001 514229/119218851371*192900153618^(5/9) 8024922359505691 a001 514229/312119004989*73681302247^(8/13) 8024922359505691 a001 514229/2139295485799*73681302247^(9/13) 8024922359505691 a001 514229/9062201101803*73681302247^(3/4) 8024922359505691 a001 514229/14662949395604*73681302247^(10/13) 8024922359505691 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^75 8024922359505691 a001 514229/45537549124*14662949395604^(4/9) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(51) 8024922359505691 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^16 8024922359505691 a001 514229/45537549124*505019158607^(1/2) 8024922359505691 a001 514229/45537549124*73681302247^(7/13) 8024922359505691 a001 514229/119218851371*28143753123^(3/5) 8024922359505691 a001 514229/1322157322203*28143753123^(7/10) 8024922359505691 a001 514229/14662949395604*28143753123^(4/5) 8024922359505691 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^73 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(49) 8024922359505691 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^14 8024922359505691 a001 514229/17393796001*73681302247^(1/2) 8024922359505691 a001 514229/28143753123*10749957122^(9/16) 8024922359505691 a001 514229/119218851371*10749957122^(5/8) 8024922359505691 a001 514229/45537549124*10749957122^(7/12) 8024922359505691 a001 514229/312119004989*10749957122^(2/3) 8024922359505691 a001 514229/505019158607*10749957122^(11/16) 8024922359505691 a001 514229/817138163596*10749957122^(17/24) 8024922359505691 a001 514229/2139295485799*10749957122^(3/4) 8024922359505691 a001 514229/5600748293801*10749957122^(19/24) 8024922359505691 a001 514229/9062201101803*10749957122^(13/16) 8024922359505691 a001 514229/14662949395604*10749957122^(5/6) 8024922359505691 a001 514229/17393796001*10749957122^(13/24) 8024922359505691 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^71 8024922359505691 a001 514229/6643838879*45537549124^(8/17) 8024922359505691 a001 514229/6643838879*14662949395604^(8/21) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(47) 8024922359505691 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^12 8024922359505691 a001 514229/6643838879*192900153618^(4/9) 8024922359505691 a001 514229/6643838879*73681302247^(6/13) 8024922359505691 a001 514229/6643838879*10749957122^(1/2) 8024922359505691 a001 514229/45537549124*4106118243^(14/23) 8024922359505691 a001 514229/17393796001*4106118243^(13/23) 8024922359505691 a001 514229/119218851371*4106118243^(15/23) 8024922359505691 a001 514229/312119004989*4106118243^(16/23) 8024922359505691 a001 514229/817138163596*4106118243^(17/23) 8024922359505691 a001 514229/2139295485799*4106118243^(18/23) 8024922359505691 a001 514229/5600748293801*4106118243^(19/23) 8024922359505691 a001 514229/14662949395604*4106118243^(20/23) 8024922359505691 a001 514229/6643838879*4106118243^(12/23) 8024922359505691 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^69 8024922359505691 a001 514229/2537720636*312119004989^(2/5) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(45) 8024922359505691 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2)^10 8024922359505691 a001 514229/2537720636*10749957122^(11/24) 8024922359505691 a001 514229/2537720636*4106118243^(11/23) 8024922359505691 a001 514229/17393796001*1568397607^(13/22) 8024922359505691 a001 514229/6643838879*1568397607^(6/11) 8024922359505691 a001 514229/45537549124*1568397607^(7/11) 8024922359505691 a001 514229/119218851371*1568397607^(15/22) 8024922359505691 a001 514229/312119004989*1568397607^(8/11) 8024922359505691 a001 514229/505019158607*1568397607^(3/4) 8024922359505691 a001 514229/817138163596*1568397607^(17/22) 8024922359505691 a001 514229/2139295485799*1568397607^(9/11) 8024922359505691 a001 514229/5600748293801*1568397607^(19/22) 8024922359505691 a001 514229/2537720636*1568397607^(1/2) 8024922359505691 a001 514229/14662949395604*1568397607^(10/11) 8024922359505691 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^67 8024922359505691 a001 514229/1568397607*599074578^(1/2) 8024922359505691 a001 514229/969323029*2537720636^(4/9) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^20/Lucas(43) 8024922359505691 a001 514229/969323029*23725150497407^(5/16) 8024922359505691 a004 Fibonacci(43)/Lucas(29)/(1/2+sqrt(5)/2)^8 8024922359505691 a001 514229/969323029*505019158607^(5/14) 8024922359505691 a001 514229/969323029*73681302247^(5/13) 8024922359505691 a001 514229/969323029*28143753123^(2/5) 8024922359505691 a001 514229/969323029*10749957122^(5/12) 8024922359505691 a001 514229/969323029*4106118243^(10/23) 8024922359505691 a001 514229/969323029*1568397607^(5/11) 8024922359505691 a001 514229/2537720636*599074578^(11/21) 8024922359505691 a001 514229/6643838879*599074578^(4/7) 8024922359505691 a001 514229/17393796001*599074578^(13/21) 8024922359505691 a001 514229/28143753123*599074578^(9/14) 8024922359505691 a001 514229/45537549124*599074578^(2/3) 8024922359505691 a001 514229/119218851371*599074578^(5/7) 8024922359505691 a001 514229/312119004989*599074578^(16/21) 8024922359505691 a001 514229/505019158607*599074578^(11/14) 8024922359505691 a001 514229/817138163596*599074578^(17/21) 8024922359505691 a001 514229/1322157322203*599074578^(5/6) 8024922359505691 a001 514229/2139295485799*599074578^(6/7) 8024922359505691 a001 514229/969323029*599074578^(10/21) 8024922359505691 a001 514229/5600748293801*599074578^(19/21) 8024922359505691 a001 514229/9062201101803*599074578^(13/14) 8024922359505691 a001 514229/14662949395604*599074578^(20/21) 8024922359505691 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^65 8024922359505691 a001 514229/370248451*2537720636^(2/5) 8024922359505691 a001 514229/370248451*45537549124^(6/17) 8024922359505691 a001 514229/370248451*14662949395604^(2/7) 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^18/Lucas(41) 8024922359505691 a001 85146110326289/10610209857723 8024922359505691 a004 Fibonacci(41)/Lucas(29)/(1/2+sqrt(5)/2)^6 8024922359505691 a001 514229/370248451*192900153618^(1/3) 8024922359505691 a001 514229/370248451*10749957122^(3/8) 8024922359505691 a001 514229/370248451*4106118243^(9/23) 8024922359505691 a001 514229/370248451*1568397607^(9/22) 8024922359505691 a001 514229/370248451*599074578^(3/7) 8024922359505691 a001 514229/969323029*228826127^(1/2) 8024922359505691 a001 514229/2537720636*228826127^(11/20) 8024922359505691 a001 514229/6643838879*228826127^(3/5) 8024922359505691 a001 514229/10749957122*228826127^(5/8) 8024922359505691 a001 514229/17393796001*228826127^(13/20) 8024922359505691 a001 514229/45537549124*228826127^(7/10) 8024922359505691 a001 514229/119218851371*228826127^(3/4) 8024922359505691 a001 514229/312119004989*228826127^(4/5) 8024922359505691 a001 514229/370248451*228826127^(9/20) 8024922359505691 a001 514229/817138163596*228826127^(17/20) 8024922359505691 a001 514229/1322157322203*228826127^(7/8) 8024922359505691 a001 514229/2139295485799*228826127^(9/10) 8024922359505691 a001 514229/5600748293801*228826127^(19/20) 8024922359505691 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^63 8024922359505691 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^16/Lucas(39) 8024922359505691 a001 32522920134794/4052739537881 8024922359505691 a004 Fibonacci(39)/Lucas(29)/(1/2+sqrt(5)/2)^4 8024922359505691 a001 514229/141422324*73681302247^(4/13) 8024922359505691 a001 514229/141422324*10749957122^(1/3) 8024922359505691 a001 514229/141422324*4106118243^(8/23) 8024922359505691 a001 514229/141422324*1568397607^(4/11) 8024922359505691 a001 514229/141422324*599074578^(8/21) 8024922359505691 a001 514229/141422324*228826127^(2/5) 8024922359505691 a001 514229/599074578*87403803^(1/2) 8024922359505691 a001 514229/370248451*87403803^(9/19) 8024922359505691 a001 514229/969323029*87403803^(10/19) 8024922359505691 a001 514229/2537720636*87403803^(11/19) 8024922359505691 a001 514229/6643838879*87403803^(12/19) 8024922359505691 a001 514229/17393796001*87403803^(13/19) 8024922359505691 a001 514229/45537549124*87403803^(14/19) 8024922359505691 a001 514229/119218851371*87403803^(15/19) 8024922359505691 a001 514229/141422324*87403803^(8/19) 8024922359505691 a001 514229/312119004989*87403803^(16/19) 8024922359505691 a001 514229/817138163596*87403803^(17/19) 8024922359505692 a001 514229/2139295485799*87403803^(18/19) 8024922359505692 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^61 8024922359505692 a001 514229/87403803*33385282^(5/12) 8024922359505693 a001 514229/54018521*17393796001^(2/7) 8024922359505693 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^14/Lucas(37) 8024922359505693 a001 12422650078093/1548008755920 8024922359505693 a004 Fibonacci(37)/Lucas(29)/(1/2+sqrt(5)/2)^2 8024922359505693 a001 514229/54018521*505019158607^(1/4) 8024922359505693 a001 514229/54018521*10749957122^(7/24) 8024922359505693 a001 514229/54018521*4106118243^(7/23) 8024922359505693 a001 514229/54018521*1568397607^(7/22) 8024922359505693 a001 514229/54018521*599074578^(1/3) 8024922359505693 a001 514229/54018521*228826127^(7/20) 8024922359505694 a001 514229/54018521*87403803^(7/19) 8024922359505694 a001 514229/141422324*33385282^(4/9) 8024922359505694 a001 514229/370248451*33385282^(1/2) 8024922359505695 a001 514229/969323029*33385282^(5/9) 8024922359505695 a001 514229/1568397607*33385282^(7/12) 8024922359505695 a001 514229/2537720636*33385282^(11/18) 8024922359505695 a001 514229/6643838879*33385282^(2/3) 8024922359505696 a001 514229/17393796001*33385282^(13/18) 8024922359505696 a001 514229/28143753123*33385282^(3/4) 8024922359505696 a001 514229/54018521*33385282^(7/18) 8024922359505696 a001 514229/45537549124*33385282^(7/9) 8024922359505697 a001 514229/119218851371*33385282^(5/6) 8024922359505697 a001 514229/312119004989*33385282^(8/9) 8024922359505697 a001 514229/505019158607*33385282^(11/12) 8024922359505697 a001 514229/817138163596*33385282^(17/18) 8024922359505698 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^59 8024922359505709 a001 514229/20633239*141422324^(4/13) 8024922359505709 a001 514229/20633239*2537720636^(4/15) 8024922359505709 a001 514229/20633239*45537549124^(4/17) 8024922359505709 a001 514229/20633239*817138163596^(4/19) 8024922359505709 a001 514229/20633239*14662949395604^(4/21) 8024922359505709 a001 514229/20633239*(1/2+1/2*5^(1/2))^12 8024922359505709 a006 5^(1/2)*Fibonacci(35)/Lucas(29)/sqrt(5) 8024922359505709 a001 514229/20633239*192900153618^(2/9) 8024922359505709 a001 514229/20633239*73681302247^(3/13) 8024922359505709 a001 514229/20633239*10749957122^(1/4) 8024922359505709 a001 514229/20633239*4106118243^(6/23) 8024922359505709 a001 514229/20633239*1568397607^(3/11) 8024922359505709 a001 514229/20633239*599074578^(2/7) 8024922359505709 a001 514229/20633239*228826127^(3/10) 8024922359505710 a001 514229/20633239*87403803^(6/19) 8024922359505712 a001 514229/20633239*33385282^(1/3) 8024922359505714 a001 514229/54018521*12752043^(7/17) 8024922359505714 a001 514229/141422324*12752043^(8/17) 8024922359505715 a001 514229/228826127*12752043^(1/2) 8024922359505717 a001 514229/370248451*12752043^(9/17) 8024922359505720 a001 514229/969323029*12752043^(10/17) 8024922359505722 a001 514229/2537720636*12752043^(11/17) 8024922359505725 a001 514229/6643838879*12752043^(12/17) 8024922359505727 a001 514229/20633239*12752043^(6/17) 8024922359505728 a001 514229/17393796001*12752043^(13/17) 8024922359505731 a001 514229/45537549124*12752043^(14/17) 8024922359505734 a001 514229/119218851371*12752043^(15/17) 8024922359505737 a001 514229/312119004989*12752043^(16/17) 8024922359505740 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^57 8024922359505814 a001 514229/7881196*20633239^(2/7) 8024922359505820 a001 514229/7881196*2537720636^(2/9) 8024922359505820 a001 514229/7881196*312119004989^(2/11) 8024922359505820 a001 514229/7881196*(1/2+1/2*5^(1/2))^10 8024922359505820 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^10/Lucas(33) 8024922359505820 a001 3524578/1149851*(1/2+1/2*5^(1/2))^2 8024922359505820 a001 1812440220362/225851433717 8024922359505820 a001 514229/7881196*28143753123^(1/5) 8024922359505820 a001 3524578/1149851*10749957122^(1/24) 8024922359505820 a001 514229/7881196*10749957122^(5/24) 8024922359505820 a001 3524578/1149851*4106118243^(1/23) 8024922359505820 a001 514229/7881196*4106118243^(5/23) 8024922359505820 a001 3524578/1149851*1568397607^(1/22) 8024922359505820 a001 514229/7881196*1568397607^(5/22) 8024922359505820 a001 3524578/1149851*599074578^(1/21) 8024922359505820 a001 514229/7881196*599074578^(5/21) 8024922359505820 a001 3524578/1149851*228826127^(1/20) 8024922359505820 a001 514229/7881196*228826127^(1/4) 8024922359505820 a001 3524578/1149851*87403803^(1/19) 8024922359505820 a001 514229/7881196*87403803^(5/19) 8024922359505820 a001 3524578/1149851*33385282^(1/18) 8024922359505822 a001 514229/7881196*33385282^(5/18) 8024922359505823 a001 3524578/1149851*12752043^(1/17) 8024922359505834 a001 514229/7881196*12752043^(5/17) 8024922359505836 a001 514229/20633239*4870847^(3/8) 8024922359505841 a001 3524578/1149851*4870847^(1/16) 8024922359505841 a001 514229/54018521*4870847^(7/16) 8024922359505860 a001 514229/141422324*4870847^(1/2) 8024922359505881 a001 514229/370248451*4870847^(9/16) 8024922359505902 a001 514229/969323029*4870847^(5/8) 8024922359505923 a001 514229/2537720636*4870847^(11/16) 8024922359505925 a001 514229/7881196*4870847^(5/16) 8024922359505944 a001 514229/6643838879*4870847^(3/4) 8024922359505965 a001 514229/17393796001*4870847^(13/16) 8024922359505974 a001 3524578/1149851*1860498^(1/15) 8024922359505986 a001 514229/45537549124*4870847^(7/8) 8024922359506008 a001 514229/119218851371*4870847^(15/16) 8024922359506029 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^55 8024922359506048 a001 514229/4870847*1860498^(3/10) 8024922359506092 a001 726103/29134601*710647^(3/7) 8024922359506200 a001 1346269/20633239*710647^(5/14) 8024922359506382 a001 5702887/228826127*710647^(3/7) 8024922359506383 a001 832040/228826127*710647^(4/7) 8024922359506424 a001 829464/33281921*710647^(3/7) 8024922359506430 a001 39088169/1568397607*710647^(3/7) 8024922359506431 a001 34111385/1368706081*710647^(3/7) 8024922359506431 a001 133957148/5374978561*710647^(3/7) 8024922359506431 a001 233802911/9381251041*710647^(3/7) 8024922359506431 a001 1836311903/73681302247*710647^(3/7) 8024922359506431 a001 267084832/10716675201*710647^(3/7) 8024922359506431 a001 12586269025/505019158607*710647^(3/7) 8024922359506431 a001 10983760033/440719107401*710647^(3/7) 8024922359506431 a001 43133785636/1730726404001*710647^(3/7) 8024922359506431 a001 75283811239/3020733700601*710647^(3/7) 8024922359506431 a001 182717648081/7331474697802*710647^(3/7) 8024922359506431 a001 139583862445/5600748293801*710647^(3/7) 8024922359506431 a001 53316291173/2139295485799*710647^(3/7) 8024922359506431 a001 10182505537/408569081798*710647^(3/7) 8024922359506431 a001 7778742049/312119004989*710647^(3/7) 8024922359506431 a001 2971215073/119218851371*710647^(3/7) 8024922359506431 a001 567451585/22768774562*710647^(3/7) 8024922359506431 a001 433494437/17393796001*710647^(3/7) 8024922359506431 a001 165580141/6643838879*710647^(3/7) 8024922359506431 a001 31622993/1268860318*710647^(3/7) 8024922359506434 a001 24157817/969323029*710647^(3/7) 8024922359506450 a001 9227465/370248451*710647^(3/7) 8024922359506561 a001 1762289/70711162*710647^(3/7) 8024922359506576 a001 514229/3010349*(1/2+1/2*5^(1/2))^8 8024922359506576 a001 514229/3010349*23725150497407^(1/8) 8024922359506576 a001 1346269/1149851*(1/2+1/2*5^(1/2))^4 8024922359506576 a001 1346269/1149851*23725150497407^(1/16) 8024922359506576 a001 514229/3010349*505019158607^(1/7) 8024922359506576 a001 1346269/1149851*73681302247^(1/13) 8024922359506576 a001 692290561601/86267571272 8024922359506576 a001 514229/3010349*73681302247^(2/13) 8024922359506576 a001 1346269/1149851*10749957122^(1/12) 8024922359506576 a001 514229/3010349*10749957122^(1/6) 8024922359506576 a001 1346269/1149851*4106118243^(2/23) 8024922359506576 a001 514229/3010349*4106118243^(4/23) 8024922359506576 a001 1346269/1149851*1568397607^(1/11) 8024922359506576 a001 514229/3010349*1568397607^(2/11) 8024922359506576 a001 1346269/1149851*599074578^(2/21) 8024922359506576 a001 514229/3010349*599074578^(4/21) 8024922359506576 a001 1346269/1149851*228826127^(1/10) 8024922359506576 a001 514229/3010349*228826127^(1/5) 8024922359506576 a001 1346269/1149851*87403803^(2/19) 8024922359506576 a001 514229/3010349*87403803^(4/19) 8024922359506577 a001 1346269/1149851*33385282^(1/9) 8024922359506578 a001 514229/3010349*33385282^(2/9) 8024922359506582 a001 1346269/1149851*12752043^(2/17) 8024922359506588 a001 514229/3010349*12752043^(4/17) 8024922359506593 a001 514229/7881196*1860498^(1/3) 8024922359506618 a001 1346269/1149851*4870847^(1/8) 8024922359506637 a001 514229/20633239*1860498^(2/5) 8024922359506661 a001 514229/3010349*4870847^(1/4) 8024922359506775 a001 514229/54018521*1860498^(7/15) 8024922359506849 a001 514229/87403803*1860498^(1/2) 8024922359506885 a001 1346269/1149851*1860498^(2/15) 8024922359506927 a001 514229/141422324*1860498^(8/15) 8024922359506955 a001 3524578/1149851*710647^(1/14) 8024922359507082 a001 514229/370248451*1860498^(3/5) 8024922359507194 a001 514229/3010349*1860498^(4/15) 8024922359507228 a001 46347/4868641*710647^(1/2) 8024922359507236 a001 514229/969323029*1860498^(2/3) 8024922359507313 a001 514229/1568397607*1860498^(7/10) 8024922359507319 a001 1346269/54018521*710647^(3/7) 8024922359507345 a001 514229/1860498*710647^(1/4) 8024922359507391 a001 514229/2537720636*1860498^(11/15) 8024922359507517 a001 5702887/599074578*710647^(1/2) 8024922359507518 a001 416020/299537289*710647^(9/14) 8024922359507545 a001 514229/6643838879*1860498^(4/5) 8024922359507559 a001 14930352/1568397607*710647^(1/2) 8024922359507565 a001 39088169/4106118243*710647^(1/2) 8024922359507566 a001 102334155/10749957122*710647^(1/2) 8024922359507566 a001 267914296/28143753123*710647^(1/2) 8024922359507566 a001 701408733/73681302247*710647^(1/2) 8024922359507566 a001 1836311903/192900153618*710647^(1/2) 8024922359507566 a001 102287808/10745088481*710647^(1/2) 8024922359507566 a001 12586269025/1322157322203*710647^(1/2) 8024922359507566 a001 32951280099/3461452808002*710647^(1/2) 8024922359507566 a001 86267571272/9062201101803*710647^(1/2) 8024922359507566 a001 225851433717/23725150497407*710647^(1/2) 8024922359507566 a001 139583862445/14662949395604*710647^(1/2) 8024922359507566 a001 53316291173/5600748293801*710647^(1/2) 8024922359507566 a001 20365011074/2139295485799*710647^(1/2) 8024922359507566 a001 7778742049/817138163596*710647^(1/2) 8024922359507566 a001 2971215073/312119004989*710647^(1/2) 8024922359507566 a001 1134903170/119218851371*710647^(1/2) 8024922359507566 a001 433494437/45537549124*710647^(1/2) 8024922359507566 a001 165580141/17393796001*710647^(1/2) 8024922359507567 a001 63245986/6643838879*710647^(1/2) 8024922359507569 a001 24157817/2537720636*710647^(1/2) 8024922359507585 a001 9227465/969323029*710647^(1/2) 8024922359507622 a001 514229/10749957122*1860498^(5/6) 8024922359507654 a001 14930352/4870847*271443^(1/13) 8024922359507695 a001 3524578/370248451*710647^(1/2) 8024922359507700 a001 514229/17393796001*1860498^(13/15) 8024922359507777 a001 514229/28143753123*1860498^(9/10) 8024922359507854 a001 514229/45537549124*1860498^(14/15) 8024922359507949 a001 39088169/12752043*271443^(1/13) 8024922359507992 a001 14619165/4769326*271443^(1/13) 8024922359507998 a001 267914296/87403803*271443^(1/13) 8024922359507999 a001 701408733/228826127*271443^(1/13) 8024922359507999 a001 1836311903/599074578*271443^(1/13) 8024922359507999 a001 686789568/224056801*271443^(1/13) 8024922359507999 a001 12586269025/4106118243*271443^(1/13) 8024922359507999 a001 32951280099/10749957122*271443^(1/13) 8024922359507999 a001 86267571272/28143753123*271443^(1/13) 8024922359507999 a001 32264490531/10525900321*271443^(1/13) 8024922359507999 a001 591286729879/192900153618*271443^(1/13) 8024922359507999 a001 1548008755920/505019158607*271443^(1/13) 8024922359507999 a001 1515744265389/494493258286*271443^(1/13) 8024922359507999 a001 2504730781961/817138163596*271443^(1/13) 8024922359507999 a001 956722026041/312119004989*271443^(1/13) 8024922359507999 a001 365435296162/119218851371*271443^(1/13) 8024922359507999 a001 139583862445/45537549124*271443^(1/13) 8024922359507999 a001 53316291173/17393796001*271443^(1/13) 8024922359507999 a001 20365011074/6643838879*271443^(1/13) 8024922359507999 a001 7778742049/2537720636*271443^(1/13) 8024922359507999 a001 2971215073/969323029*271443^(1/13) 8024922359507999 a001 1134903170/370248451*271443^(1/13) 8024922359507999 a001 433494437/141422324*271443^(1/13) 8024922359508002 a001 165580141/54018521*271443^(1/13) 8024922359508009 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^53 8024922359508018 a001 63245986/20633239*271443^(1/13) 8024922359508131 a001 24157817/7881196*271443^(1/13) 8024922359508363 a001 726103/199691526*710647^(4/7) 8024922359508452 a001 1346269/141422324*710647^(1/2) 8024922359508652 a001 5702887/1568397607*710647^(4/7) 8024922359508653 a001 832040/1568397607*710647^(5/7) 8024922359508694 a001 4976784/1368706081*710647^(4/7) 8024922359508700 a001 39088169/10749957122*710647^(4/7) 8024922359508701 a001 831985/228811001*710647^(4/7) 8024922359508701 a001 267914296/73681302247*710647^(4/7) 8024922359508701 a001 233802911/64300051206*710647^(4/7) 8024922359508701 a001 1836311903/505019158607*710647^(4/7) 8024922359508701 a001 1602508992/440719107401*710647^(4/7) 8024922359508701 a001 12586269025/3461452808002*710647^(4/7) 8024922359508701 a001 10983760033/3020733700601*710647^(4/7) 8024922359508701 a001 86267571272/23725150497407*710647^(4/7) 8024922359508701 a001 53316291173/14662949395604*710647^(4/7) 8024922359508701 a001 20365011074/5600748293801*710647^(4/7) 8024922359508701 a001 7778742049/2139295485799*710647^(4/7) 8024922359508701 a001 2971215073/817138163596*710647^(4/7) 8024922359508701 a001 1134903170/312119004989*710647^(4/7) 8024922359508701 a001 433494437/119218851371*710647^(4/7) 8024922359508701 a001 165580141/45537549124*710647^(4/7) 8024922359508702 a001 63245986/17393796001*710647^(4/7) 8024922359508704 a001 24157817/6643838879*710647^(4/7) 8024922359508720 a001 9227465/2537720636*710647^(4/7) 8024922359508830 a001 3524578/969323029*710647^(4/7) 8024922359508846 a001 1346269/1149851*710647^(1/7) 8024922359508866 a001 98209/299537289*439204^(7/9) 8024922359508903 a001 9227465/3010349*271443^(1/13) 8024922359509220 a001 610/1860499*710647^(3/4) 8024922359509498 a001 311187/224056801*710647^(9/14) 8024922359509587 a001 1346269/370248451*710647^(4/7) 8024922359509787 a001 5702887/4106118243*710647^(9/14) 8024922359509788 a001 832040/4106118243*710647^(11/14) 8024922359509829 a001 7465176/5374978561*710647^(9/14) 8024922359509835 a001 39088169/28143753123*710647^(9/14) 8024922359509836 a001 14619165/10525900321*710647^(9/14) 8024922359509836 a001 133957148/96450076809*710647^(9/14) 8024922359509836 a001 701408733/505019158607*710647^(9/14) 8024922359509836 a001 1836311903/1322157322203*710647^(9/14) 8024922359509836 a001 14930208/10749853441*710647^(9/14) 8024922359509836 a001 12586269025/9062201101803*710647^(9/14) 8024922359509836 a001 32951280099/23725150497407*710647^(9/14) 8024922359509836 a001 10182505537/7331474697802*710647^(9/14) 8024922359509836 a001 7778742049/5600748293801*710647^(9/14) 8024922359509836 a001 2971215073/2139295485799*710647^(9/14) 8024922359509836 a001 567451585/408569081798*710647^(9/14) 8024922359509836 a001 433494437/312119004989*710647^(9/14) 8024922359509836 a001 165580141/119218851371*710647^(9/14) 8024922359509837 a001 31622993/22768774562*710647^(9/14) 8024922359509839 a001 24157817/17393796001*710647^(9/14) 8024922359509855 a001 9227465/6643838879*710647^(9/14) 8024922359509965 a001 1762289/1268860318*710647^(9/14) 8024922359510633 a001 726103/1368706081*710647^(5/7) 8024922359510722 a001 1346269/969323029*710647^(9/14) 8024922359510922 a001 5702887/10749957122*710647^(5/7) 8024922359510923 a001 416020/5374978561*710647^(6/7) 8024922359510964 a001 4976784/9381251041*710647^(5/7) 8024922359510970 a001 39088169/73681302247*710647^(5/7) 8024922359510971 a001 34111385/64300051206*710647^(5/7) 8024922359510971 a001 267914296/505019158607*710647^(5/7) 8024922359510971 a001 233802911/440719107401*710647^(5/7) 8024922359510971 a001 1836311903/3461452808002*710647^(5/7) 8024922359510971 a001 1602508992/3020733700601*710647^(5/7) 8024922359510971 a001 12586269025/23725150497407*710647^(5/7) 8024922359510971 a001 7778742049/14662949395604*710647^(5/7) 8024922359510971 a001 2971215073/5600748293801*710647^(5/7) 8024922359510971 a001 1134903170/2139295485799*710647^(5/7) 8024922359510971 a001 433494437/817138163596*710647^(5/7) 8024922359510971 a001 165580141/312119004989*710647^(5/7) 8024922359510972 a001 63245986/119218851371*710647^(5/7) 8024922359510974 a001 24157817/45537549124*710647^(5/7) 8024922359510990 a001 9227465/17393796001*710647^(5/7) 8024922359511100 a001 3524578/6643838879*710647^(5/7) 8024922359511116 a001 514229/3010349*710647^(2/7) 8024922359511200 a001 2178309/6643838879*710647^(3/4) 8024922359511489 a001 5702887/17393796001*710647^(3/4) 8024922359511495 a001 514229/7881196*710647^(5/14) 8024922359511532 a001 3732588/11384387281*710647^(3/4) 8024922359511538 a001 39088169/119218851371*710647^(3/4) 8024922359511539 a001 9303105/28374454999*710647^(3/4) 8024922359511539 a001 66978574/204284540899*710647^(3/4) 8024922359511539 a001 701408733/2139295485799*710647^(3/4) 8024922359511539 a001 1836311903/5600748293801*710647^(3/4) 8024922359511539 a001 1201881744/3665737348901*710647^(3/4) 8024922359511539 a001 7778742049/23725150497407*710647^(3/4) 8024922359511539 a001 2971215073/9062201101803*710647^(3/4) 8024922359511539 a001 567451585/1730726404001*710647^(3/4) 8024922359511539 a001 433494437/1322157322203*710647^(3/4) 8024922359511539 a001 165580141/505019158607*710647^(3/4) 8024922359511539 a001 31622993/96450076809*710647^(3/4) 8024922359511541 a001 24157817/73681302247*710647^(3/4) 8024922359511558 a001 9227465/28143753123*710647^(3/4) 8024922359511668 a001 1762289/5374978561*710647^(3/4) 8024922359511737 a001 514229/1149851*7881196^(2/11) 8024922359511760 a001 514229/1149851*141422324^(2/13) 8024922359511760 a001 514229/1149851*2537720636^(2/15) 8024922359511760 a001 514229/1149851*45537549124^(2/17) 8024922359511760 a001 514229/1149851*14662949395604^(2/21) 8024922359511760 a001 514229/1149851*(1/2+1/2*5^(1/2))^6 8024922359511760 a001 264431464441/32951280099 8024922359511760 a001 514229/1149851*10749957122^(1/8) 8024922359511760 a001 514229/1149851*4106118243^(3/23) 8024922359511760 a001 514229/1149851*1568397607^(3/22) 8024922359511760 a001 514229/1149851*599074578^(1/7) 8024922359511760 a001 514229/1149851*228826127^(3/20) 8024922359511760 a001 514229/1149851*87403803^(3/19) 8024922359511761 a001 514229/1149851*33385282^(1/6) 8024922359511768 a001 987/4870846*710647^(11/14) 8024922359511769 a001 514229/1149851*12752043^(3/17) 8024922359511824 a001 514229/1149851*4870847^(3/16) 8024922359511857 a001 1346269/2537720636*710647^(5/7) 8024922359512057 a001 5702887/28143753123*710647^(11/14) 8024922359512058 a001 832040/28143753123*710647^(13/14) 8024922359512099 a001 14930352/73681302247*710647^(11/14) 8024922359512105 a001 39088169/192900153618*710647^(11/14) 8024922359512106 a001 102334155/505019158607*710647^(11/14) 8024922359512106 a001 267914296/1322157322203*710647^(11/14) 8024922359512106 a001 701408733/3461452808002*710647^(11/14) 8024922359512106 a001 1836311903/9062201101803*710647^(11/14) 8024922359512106 a001 4807526976/23725150497407*710647^(11/14) 8024922359512106 a001 2971215073/14662949395604*710647^(11/14) 8024922359512106 a001 1134903170/5600748293801*710647^(11/14) 8024922359512106 a001 433494437/2139295485799*710647^(11/14) 8024922359512106 a001 165580141/817138163596*710647^(11/14) 8024922359512107 a001 63245986/312119004989*710647^(11/14) 8024922359512109 a001 24157817/119218851371*710647^(11/14) 8024922359512125 a001 9227465/45537549124*710647^(11/14) 8024922359512224 a001 514229/1149851*1860498^(1/5) 8024922359512235 a001 3524578/17393796001*710647^(11/14) 8024922359512424 a001 1346269/4106118243*710647^(3/4) 8024922359512520 a001 514229/20633239*710647^(3/7) 8024922359512903 a001 726103/9381251041*710647^(6/7) 8024922359512992 a001 1346269/6643838879*710647^(11/14) 8024922359513192 a001 5702887/73681302247*710647^(6/7) 8024922359513193 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^52 8024922359513234 a001 2584/33385281*710647^(6/7) 8024922359513240 a001 39088169/505019158607*710647^(6/7) 8024922359513241 a001 34111385/440719107401*710647^(6/7) 8024922359513241 a001 133957148/1730726404001*710647^(6/7) 8024922359513241 a001 233802911/3020733700601*710647^(6/7) 8024922359513241 a001 1836311903/23725150497407*710647^(6/7) 8024922359513241 a001 567451585/7331474697802*710647^(6/7) 8024922359513241 a001 433494437/5600748293801*710647^(6/7) 8024922359513241 a001 165580141/2139295485799*710647^(6/7) 8024922359513242 a001 31622993/408569081798*710647^(6/7) 8024922359513244 a001 24157817/312119004989*710647^(6/7) 8024922359513260 a001 9227465/119218851371*710647^(6/7) 8024922359513370 a001 1762289/22768774562*710647^(6/7) 8024922359513488 a001 98209/70711162*439204^(2/3) 8024922359513638 a001 514229/54018521*710647^(1/2) 8024922359513720 a001 726103/620166*271443^(2/13) 8024922359513952 a001 317811/167761*64079^(3/23) 8024922359514038 a001 311187/10525900321*710647^(13/14) 8024922359514127 a001 1346269/17393796001*710647^(6/7) 8024922359514198 a001 3524578/1149851*271443^(1/13) 8024922359514327 a001 5702887/192900153618*710647^(13/14) 8024922359514369 a001 14930352/505019158607*710647^(13/14) 8024922359514375 a001 39088169/1322157322203*710647^(13/14) 8024922359514376 a001 6765/228826126*710647^(13/14) 8024922359514376 a001 267914296/9062201101803*710647^(13/14) 8024922359514376 a001 701408733/23725150497407*710647^(13/14) 8024922359514376 a001 433494437/14662949395604*710647^(13/14) 8024922359514376 a001 165580141/5600748293801*710647^(13/14) 8024922359514377 a001 63245986/2139295485799*710647^(13/14) 8024922359514379 a001 24157817/817138163596*710647^(13/14) 8024922359514395 a001 9227465/312119004989*710647^(13/14) 8024922359514505 a001 3524578/119218851371*710647^(13/14) 8024922359514771 a001 514229/141422324*710647^(4/7) 8024922359514924 a001 105937/620166*271443^(4/13) 8024922359514964 a001 3524578/710647*103682^(1/24) 8024922359515165 a001 514229/1149851*710647^(3/14) 8024922359515173 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^54 8024922359515262 a001 1346269/45537549124*710647^(13/14) 8024922359515462 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^56 8024922359515504 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^58 8024922359515510 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^60 8024922359515511 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^62 8024922359515511 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^64 8024922359515511 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^66 8024922359515511 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^68 8024922359515511 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^70 8024922359515511 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^72 8024922359515511 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^74 8024922359515511 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^76 8024922359515511 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^78 8024922359515511 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^80 8024922359515511 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^82 8024922359515511 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^84 8024922359515511 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^86 8024922359515511 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^88 8024922359515511 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^90 8024922359515511 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^92 8024922359515511 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^94 8024922359515511 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^96 8024922359515511 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^98 8024922359515511 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^100 8024922359515511 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^99 8024922359515511 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^97 8024922359515511 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^95 8024922359515511 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^93 8024922359515511 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^91 8024922359515511 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^89 8024922359515511 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^87 8024922359515511 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^85 8024922359515511 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^83 8024922359515511 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^81 8024922359515511 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^79 8024922359515511 a001 2/317811*(1/2+1/2*5^(1/2))^34 8024922359515511 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^77 8024922359515511 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^75 8024922359515511 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^73 8024922359515511 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^71 8024922359515511 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^69 8024922359515511 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^67 8024922359515511 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^65 8024922359515511 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^63 8024922359515512 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^61 8024922359515514 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^59 8024922359515530 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^57 8024922359515640 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^55 8024922359515906 a001 514229/370248451*710647^(9/14) 8024922359515989 a001 5702887/4870847*271443^(2/13) 8024922359516320 a001 4976784/4250681*271443^(2/13) 8024922359516369 a001 39088169/33385282*271443^(2/13) 8024922359516376 a001 34111385/29134601*271443^(2/13) 8024922359516377 a001 267914296/228826127*271443^(2/13) 8024922359516377 a001 233802911/199691526*271443^(2/13) 8024922359516377 a001 1836311903/1568397607*271443^(2/13) 8024922359516377 a001 1602508992/1368706081*271443^(2/13) 8024922359516377 a001 12586269025/10749957122*271443^(2/13) 8024922359516377 a001 10983760033/9381251041*271443^(2/13) 8024922359516377 a001 86267571272/73681302247*271443^(2/13) 8024922359516377 a001 75283811239/64300051206*271443^(2/13) 8024922359516377 a001 2504730781961/2139295485799*271443^(2/13) 8024922359516377 a001 365435296162/312119004989*271443^(2/13) 8024922359516377 a001 139583862445/119218851371*271443^(2/13) 8024922359516377 a001 53316291173/45537549124*271443^(2/13) 8024922359516377 a001 20365011074/17393796001*271443^(2/13) 8024922359516377 a001 7778742049/6643838879*271443^(2/13) 8024922359516377 a001 2971215073/2537720636*271443^(2/13) 8024922359516377 a001 1134903170/969323029*271443^(2/13) 8024922359516377 a001 433494437/370248451*271443^(2/13) 8024922359516377 a001 165580141/141422324*271443^(2/13) 8024922359516380 a001 63245986/54018521*271443^(2/13) 8024922359516397 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^53 8024922359516399 a001 24157817/20633239*271443^(2/13) 8024922359516525 a001 9227465/7881196*271443^(2/13) 8024922359517041 a001 514229/969323029*710647^(5/7) 8024922359517392 a001 3524578/3010349*271443^(2/13) 8024922359517608 a001 514229/1568397607*710647^(3/4) 8024922359518103 a001 98209/16692641*439204^(5/9) 8024922359518176 a001 514229/2537720636*710647^(11/14) 8024922359519311 a001 514229/6643838879*710647^(6/7) 8024922359520118 a001 416020/930249*271443^(3/13) 8024922359520446 a001 514229/17393796001*710647^(13/14) 8024922359521581 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^51 8024922359522862 a001 98209/3940598*439204^(4/9) 8024922359523332 a001 1346269/1149851*271443^(2/13) 8024922359524078 a001 2178309/4870847*271443^(3/13) 8024922359524656 a001 5702887/12752043*271443^(3/13) 8024922359524741 a001 7465176/16692641*271443^(3/13) 8024922359524753 a001 39088169/87403803*271443^(3/13) 8024922359524755 a001 102334155/228826127*271443^(3/13) 8024922359524755 a001 133957148/299537289*271443^(3/13) 8024922359524755 a001 701408733/1568397607*271443^(3/13) 8024922359524755 a001 1836311903/4106118243*271443^(3/13) 8024922359524755 a001 2403763488/5374978561*271443^(3/13) 8024922359524755 a001 12586269025/28143753123*271443^(3/13) 8024922359524755 a001 32951280099/73681302247*271443^(3/13) 8024922359524755 a001 43133785636/96450076809*271443^(3/13) 8024922359524755 a001 225851433717/505019158607*271443^(3/13) 8024922359524755 a001 591286729879/1322157322203*271443^(3/13) 8024922359524755 a001 10610209857723/23725150497407*271443^(3/13) 8024922359524755 a001 182717648081/408569081798*271443^(3/13) 8024922359524755 a001 139583862445/312119004989*271443^(3/13) 8024922359524755 a001 53316291173/119218851371*271443^(3/13) 8024922359524755 a001 10182505537/22768774562*271443^(3/13) 8024922359524755 a001 7778742049/17393796001*271443^(3/13) 8024922359524755 a001 2971215073/6643838879*271443^(3/13) 8024922359524755 a001 567451585/1268860318*271443^(3/13) 8024922359524755 a001 433494437/969323029*271443^(3/13) 8024922359524755 a001 165580141/370248451*271443^(3/13) 8024922359524756 a001 31622993/70711162*271443^(3/13) 8024922359524760 a001 24157817/54018521*271443^(3/13) 8024922359524793 a001 9227465/20633239*271443^(3/13) 8024922359525013 a001 1762289/3940598*271443^(3/13) 8024922359525037 a001 98209/930249*439204^(1/3) 8024922359525282 a001 317811/4870847*271443^(5/13) 8024922359525328 a001 196418/710647*20633239^(1/5) 8024922359525329 a001 317811/439204*20633239^(1/7) 8024922359525332 a001 317811/439204*2537720636^(1/9) 8024922359525332 a001 4801830846/598364773 8024922359525332 a001 196418/710647*17393796001^(1/7) 8024922359525332 a001 196418/710647*14662949395604^(1/9) 8024922359525332 a001 196418/710647*(1/2+1/2*5^(1/2))^7 8024922359525332 a001 317811/439204*312119004989^(1/11) 8024922359525332 a001 317811/439204*(1/2+1/2*5^(1/2))^5 8024922359525332 a001 317811/439204*28143753123^(1/10) 8024922359525332 a001 196418/710647*599074578^(1/6) 8024922359525332 a001 317811/439204*228826127^(1/8) 8024922359525718 a001 317811/439204*1860498^(1/6) 8024922359526526 a001 1346269/3010349*271443^(3/13) 8024922359528426 a001 9227465/1860498*103682^(1/24) 8024922359529305 a001 196418/710647*710647^(1/4) 8024922359530390 a001 24157817/4870847*103682^(1/24) 8024922359530476 a001 832040/4870847*271443^(4/13) 8024922359530676 a001 63245986/12752043*103682^(1/24) 8024922359530718 a001 165580141/33385282*103682^(1/24) 8024922359530724 a001 433494437/87403803*103682^(1/24) 8024922359530725 a001 1134903170/228826127*103682^(1/24) 8024922359530725 a001 2971215073/599074578*103682^(1/24) 8024922359530725 a001 7778742049/1568397607*103682^(1/24) 8024922359530725 a001 20365011074/4106118243*103682^(1/24) 8024922359530725 a001 53316291173/10749957122*103682^(1/24) 8024922359530725 a001 139583862445/28143753123*103682^(1/24) 8024922359530725 a001 365435296162/73681302247*103682^(1/24) 8024922359530725 a001 956722026041/192900153618*103682^(1/24) 8024922359530725 a001 2504730781961/505019158607*103682^(1/24) 8024922359530725 a001 10610209857723/2139295485799*103682^(1/24) 8024922359530725 a001 4052739537881/817138163596*103682^(1/24) 8024922359530725 a001 140728068720/28374454999*103682^(1/24) 8024922359530725 a001 591286729879/119218851371*103682^(1/24) 8024922359530725 a001 225851433717/45537549124*103682^(1/24) 8024922359530725 a001 86267571272/17393796001*103682^(1/24) 8024922359530725 a001 32951280099/6643838879*103682^(1/24) 8024922359530725 a001 1144206275/230701876*103682^(1/24) 8024922359530725 a001 4807526976/969323029*103682^(1/24) 8024922359530725 a001 1836311903/370248451*103682^(1/24) 8024922359530726 a001 701408733/141422324*103682^(1/24) 8024922359530728 a001 267914296/54018521*103682^(1/24) 8024922359530744 a001 9303105/1875749*103682^(1/24) 8024922359530854 a001 39088169/7881196*103682^(1/24) 8024922359531604 a001 14930352/3010349*103682^(1/24) 8024922359532745 a001 726103/4250681*271443^(4/13) 8024922359533076 a001 5702887/33385282*271443^(4/13) 8024922359533125 a001 4976784/29134601*271443^(4/13) 8024922359533132 a001 39088169/228826127*271443^(4/13) 8024922359533133 a001 34111385/199691526*271443^(4/13) 8024922359533133 a001 267914296/1568397607*271443^(4/13) 8024922359533133 a001 233802911/1368706081*271443^(4/13) 8024922359533133 a001 1836311903/10749957122*271443^(4/13) 8024922359533133 a001 1602508992/9381251041*271443^(4/13) 8024922359533133 a001 12586269025/73681302247*271443^(4/13) 8024922359533133 a001 10983760033/64300051206*271443^(4/13) 8024922359533133 a001 86267571272/505019158607*271443^(4/13) 8024922359533133 a001 75283811239/440719107401*271443^(4/13) 8024922359533133 a001 2504730781961/14662949395604*271443^(4/13) 8024922359533133 a001 139583862445/817138163596*271443^(4/13) 8024922359533133 a001 53316291173/312119004989*271443^(4/13) 8024922359533133 a001 20365011074/119218851371*271443^(4/13) 8024922359533133 a001 7778742049/45537549124*271443^(4/13) 8024922359533133 a001 2971215073/17393796001*271443^(4/13) 8024922359533133 a001 1134903170/6643838879*271443^(4/13) 8024922359533133 a001 433494437/2537720636*271443^(4/13) 8024922359533133 a001 165580141/969323029*271443^(4/13) 8024922359533133 a001 63245986/370248451*271443^(4/13) 8024922359533136 a001 24157817/141422324*271443^(4/13) 8024922359533155 a001 9227465/54018521*271443^(4/13) 8024922359533281 a001 3524578/20633239*271443^(4/13) 8024922359533949 a001 105937/4250681*271443^(6/13) 8024922359534148 a001 1346269/7881196*271443^(4/13) 8024922359534282 a001 208010/109801*439204^(1/9) 8024922359535153 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^50 8024922359536746 a001 5702887/1149851*103682^(1/24) 8024922359536894 a001 514229/1149851*271443^(3/13) 8024922359538206 a001 10959/711491*271443^(1/2) 8024922359538869 a001 98209/930249*7881196^(3/11) 8024922359538892 a001 208010/109801*7881196^(1/11) 8024922359538904 a001 98209/930249*141422324^(3/13) 8024922359538904 a001 208010/109801*141422324^(1/13) 8024922359538904 a001 98209/930249*2537720636^(1/5) 8024922359538904 a001 208010/109801*2537720636^(1/15) 8024922359538904 a001 81713816360/10182505537 8024922359538904 a001 98209/930249*45537549124^(3/17) 8024922359538904 a001 208010/109801*45537549124^(1/17) 8024922359538904 a001 98209/930249*817138163596^(3/19) 8024922359538904 a001 98209/930249*14662949395604^(1/7) 8024922359538904 a001 98209/930249*(1/2+1/2*5^(1/2))^9 8024922359538904 a001 98209/930249*192900153618^(1/6) 8024922359538904 a001 208010/109801*14662949395604^(1/21) 8024922359538904 a001 208010/109801*(1/2+1/2*5^(1/2))^3 8024922359538904 a001 208010/109801*192900153618^(1/18) 8024922359538904 a001 208010/109801*10749957122^(1/16) 8024922359538904 a001 98209/930249*10749957122^(3/16) 8024922359538904 a001 208010/109801*599074578^(1/14) 8024922359538904 a001 98209/930249*599074578^(3/14) 8024922359538905 a001 208010/109801*33385282^(1/12) 8024922359538906 a001 98209/930249*33385282^(1/4) 8024922359539136 a001 208010/109801*1860498^(1/10) 8024922359539143 a001 832040/12752043*271443^(5/13) 8024922359539600 a001 98209/930249*1860498^(3/10) 8024922359540088 a001 514229/3010349*271443^(4/13) 8024922359540337 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^52 8024922359540841 a001 196418/4870847*7881196^(1/3) 8024922359540884 a001 427859097162/53316291173 8024922359540884 a001 196418/4870847*312119004989^(1/5) 8024922359540884 a001 196418/4870847*(1/2+1/2*5^(1/2))^11 8024922359540884 a001 2178309/878408+2178309/878408*5^(1/2) 8024922359540884 a001 196418/4870847*1568397607^(1/4) 8024922359541093 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^54 8024922359541105 a001 98209/22768774562*7881196^(10/11) 8024922359541117 a001 98209/5374978561*7881196^(9/11) 8024922359541128 a001 98209/1268860318*7881196^(8/11) 8024922359541136 a001 196418/969323029*7881196^(2/3) 8024922359541140 a001 98209/299537289*7881196^(7/11) 8024922359541152 a001 98209/70711162*7881196^(6/11) 8024922359541156 a001 98209/16692641*7881196^(5/11) 8024922359541165 a001 311187/4769326*271443^(5/13) 8024922359541173 a001 196418/12752043*141422324^(1/3) 8024922359541173 a001 1120149658766/139583862445 8024922359541173 a001 196418/12752043*(1/2+1/2*5^(1/2))^13 8024922359541173 a004 Fibonacci(34)/Lucas(27)/(1/2+sqrt(5)/2) 8024922359541173 a001 196418/12752043*73681302247^(1/4) 8024922359541204 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^56 8024922359541206 a001 98209/22768774562*20633239^(6/7) 8024922359541207 a001 98209/16692641*20633239^(3/7) 8024922359541207 a001 196418/17393796001*20633239^(4/5) 8024922359541209 a001 196418/4106118243*20633239^(5/7) 8024922359541211 a001 98209/299537289*20633239^(3/5) 8024922359541212 a001 196418/370248451*20633239^(4/7) 8024922359541215 a001 98209/16692641*141422324^(5/13) 8024922359541215 a001 98209/16692641*2537720636^(1/3) 8024922359541215 a001 98209/16692641*45537549124^(5/17) 8024922359541215 a001 98209/16692641*312119004989^(3/11) 8024922359541215 a001 1466294939568/182717648081 8024922359541215 a001 98209/16692641*14662949395604^(5/21) 8024922359541215 a001 98209/16692641*(1/2+1/2*5^(1/2))^15 8024922359541215 a001 98209/16692641*192900153618^(5/18) 8024922359541215 a004 Fibonacci(36)/Lucas(27)/(1/2+sqrt(5)/2)^3 8024922359541215 a001 98209/16692641*28143753123^(3/10) 8024922359541215 a001 98209/16692641*10749957122^(5/16) 8024922359541215 a001 98209/16692641*599074578^(5/14) 8024922359541215 a001 98209/16692641*228826127^(3/8) 8024922359541218 a001 98209/16692641*33385282^(5/12) 8024922359541220 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^58 8024922359541221 a001 196418/87403803*45537549124^(1/3) 8024922359541221 a001 7677619978642/956722026041 8024922359541221 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^17/Lucas(38) 8024922359541221 a004 Fibonacci(38)/Lucas(27)/(1/2+sqrt(5)/2)^5 8024922359541222 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^60 8024922359541222 a001 98209/408569081798*141422324^(12/13) 8024922359541222 a001 98209/96450076809*141422324^(11/13) 8024922359541222 a001 98209/22768774562*141422324^(10/13) 8024922359541222 a001 98209/5374978561*141422324^(9/13) 8024922359541222 a001 196418/6643838879*141422324^(2/3) 8024922359541222 a001 98209/1268860318*141422324^(8/13) 8024922359541222 a001 98209/299537289*141422324^(7/13) 8024922359541222 a001 196418/228826127*817138163596^(1/3) 8024922359541222 a001 20100270056790/2504730781961 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^19/Lucas(40) 8024922359541222 a004 Fibonacci(40)/Lucas(27)/(1/2+sqrt(5)/2)^7 8024922359541222 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^62 8024922359541222 a001 98209/299537289*2537720636^(7/15) 8024922359541222 a001 98209/299537289*17393796001^(3/7) 8024922359541222 a001 98209/299537289*45537549124^(7/17) 8024922359541222 a001 282795704/35239681 8024922359541222 a001 98209/299537289*14662949395604^(1/3) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^21/Lucas(42) 8024922359541222 a001 98209/299537289*192900153618^(7/18) 8024922359541222 a004 Fibonacci(42)/Lucas(27)/(1/2+sqrt(5)/2)^9 8024922359541222 a001 98209/299537289*10749957122^(7/16) 8024922359541222 a001 98209/299537289*599074578^(1/2) 8024922359541222 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^64 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^23/Lucas(44) 8024922359541222 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^11 8024922359541222 a001 196418/1568397607*4106118243^(1/2) 8024922359541222 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^66 8024922359541222 a001 196418/4106118243*2537720636^(5/9) 8024922359541222 a001 98209/7331474697802*2537720636^(14/15) 8024922359541222 a001 196418/5600748293801*2537720636^(8/9) 8024922359541222 a001 98209/1730726404001*2537720636^(13/15) 8024922359541222 a001 98209/408569081798*2537720636^(4/5) 8024922359541222 a001 196418/505019158607*2537720636^(7/9) 8024922359541222 a001 98209/96450076809*2537720636^(11/15) 8024922359541222 a001 98209/22768774562*2537720636^(2/3) 8024922359541222 a001 98209/5374978561*2537720636^(3/5) 8024922359541222 a001 196418/4106118243*312119004989^(5/11) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(46) 8024922359541222 a001 196418/4106118243*3461452808002^(5/12) 8024922359541222 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^13 8024922359541222 a001 196418/4106118243*28143753123^(1/2) 8024922359541222 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^68 8024922359541222 a001 98209/5374978561*45537549124^(9/17) 8024922359541222 a001 98209/5374978561*817138163596^(9/19) 8024922359541222 a001 98209/5374978561*14662949395604^(3/7) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(48) 8024922359541222 a001 98209/5374978561*192900153618^(1/2) 8024922359541222 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^15 8024922359541222 a001 98209/5374978561*10749957122^(9/16) 8024922359541222 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^70 8024922359541222 a001 98209/7331474697802*17393796001^(6/7) 8024922359541222 a001 196418/505019158607*17393796001^(5/7) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(50) 8024922359541222 a001 196418/28143753123*1322157322203^(1/2) 8024922359541222 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^17 8024922359541222 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^72 8024922359541222 a001 98209/7331474697802*45537549124^(14/17) 8024922359541222 a001 98209/1730726404001*45537549124^(13/17) 8024922359541222 a001 98209/408569081798*45537549124^(12/17) 8024922359541222 a001 196418/312119004989*45537549124^(2/3) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(52) 8024922359541222 a001 196418/73681302247*9062201101803^(1/2) 8024922359541222 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^19 8024922359541222 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^74 8024922359541222 a001 98209/96450076809*312119004989^(3/5) 8024922359541222 a001 98209/96450076809*817138163596^(11/19) 8024922359541222 a001 98209/96450076809*14662949395604^(11/21) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(54) 8024922359541222 a001 196418/505019158607*312119004989^(7/11) 8024922359541222 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^76 8024922359541222 a001 196418/5600748293801*312119004989^(8/11) 8024922359541222 a001 196418/505019158607*14662949395604^(5/9) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(56) 8024922359541222 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^78 8024922359541222 a001 196418/505019158607*505019158607^(5/8) 8024922359541222 a001 196418/2139295485799*817138163596^(2/3) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(58) 8024922359541222 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^80 8024922359541222 a001 98209/1730726404001*14662949395604^(13/21) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(60) 8024922359541222 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^82 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(62) 8024922359541222 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^84 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(64) 8024922359541222 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^86 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(66) 8024922359541222 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^88 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(68) 8024922359541222 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^90 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(70) 8024922359541222 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^92 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(72) 8024922359541222 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^94 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(74) 8024922359541222 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^96 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(76) 8024922359541222 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^98 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(78) 8024922359541222 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^100 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(80) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(82) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(84) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(86) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(88) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(90) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(92) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(94) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(96) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(98) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(100) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(99) 8024922359541222 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^21 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(97) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(95) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(93) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(91) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(89) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(87) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(85) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(83) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(81) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(79) 8024922359541222 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^99 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(77) 8024922359541222 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^97 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(75) 8024922359541222 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^95 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(73) 8024922359541222 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^93 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(71) 8024922359541222 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^91 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(69) 8024922359541222 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^89 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(67) 8024922359541222 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^87 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(65) 8024922359541222 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^85 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(63) 8024922359541222 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^83 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(61) 8024922359541222 a001 196418/5600748293801*23725150497407^(5/8) 8024922359541222 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^81 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(59) 8024922359541222 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^79 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(57) 8024922359541222 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^77 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(55) 8024922359541222 a001 98209/1730726404001*192900153618^(13/18) 8024922359541222 a001 98209/408569081798*192900153618^(2/3) 8024922359541222 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^23 8024922359541222 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^25 8024922359541222 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^27 8024922359541222 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^29 8024922359541222 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^31 8024922359541222 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^33 8024922359541222 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^35 8024922359541222 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^37 8024922359541222 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^39 8024922359541222 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^41 8024922359541222 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^43 8024922359541222 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^45 8024922359541222 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^47 8024922359541222 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^49 8024922359541222 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^51 8024922359541222 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^53 8024922359541222 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^55 8024922359541222 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^57 8024922359541222 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^59 8024922359541222 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^61 8024922359541222 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^63 8024922359541222 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^65 8024922359541222 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^67 8024922359541222 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^75 8024922359541222 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^66 8024922359541222 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^64 8024922359541222 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^62 8024922359541222 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^60 8024922359541222 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^58 8024922359541222 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^56 8024922359541222 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^54 8024922359541222 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^52 8024922359541222 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^50 8024922359541222 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^48 8024922359541222 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^46 8024922359541222 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^44 8024922359541222 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^42 8024922359541222 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^40 8024922359541222 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^38 8024922359541222 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^36 8024922359541222 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^34 8024922359541222 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^32 8024922359541222 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^30 8024922359541222 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^28 8024922359541222 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^26 8024922359541222 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^24 8024922359541222 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^22 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(53) 8024922359541222 a001 196418/119218851371*23725150497407^(1/2) 8024922359541222 a001 196418/119218851371*505019158607^(4/7) 8024922359541222 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^20 8024922359541222 a001 98209/408569081798*73681302247^(9/13) 8024922359541222 a001 98209/1730726404001*73681302247^(3/4) 8024922359541222 a001 196418/5600748293801*73681302247^(10/13) 8024922359541222 a001 196418/119218851371*73681302247^(8/13) 8024922359541222 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^73 8024922359541222 a001 98209/22768774562*45537549124^(10/17) 8024922359541222 a001 98209/22768774562*312119004989^(6/11) 8024922359541222 a001 98209/22768774562*14662949395604^(10/21) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(51) 8024922359541222 a001 98209/22768774562*192900153618^(5/9) 8024922359541222 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^18 8024922359541222 a001 196418/505019158607*28143753123^(7/10) 8024922359541222 a001 196418/5600748293801*28143753123^(4/5) 8024922359541222 a001 98209/22768774562*28143753123^(3/5) 8024922359541222 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^71 8024922359541222 a001 196418/17393796001*17393796001^(4/7) 8024922359541222 a001 196418/17393796001*14662949395604^(4/9) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(49) 8024922359541222 a001 196418/17393796001*505019158607^(1/2) 8024922359541222 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^16 8024922359541222 a001 196418/17393796001*73681302247^(7/13) 8024922359541222 a001 196418/119218851371*10749957122^(2/3) 8024922359541222 a001 98209/22768774562*10749957122^(5/8) 8024922359541222 a001 98209/96450076809*10749957122^(11/16) 8024922359541222 a001 196418/312119004989*10749957122^(17/24) 8024922359541222 a001 98209/408569081798*10749957122^(3/4) 8024922359541222 a001 196418/2139295485799*10749957122^(19/24) 8024922359541222 a001 98209/1730726404001*10749957122^(13/16) 8024922359541222 a001 196418/5600748293801*10749957122^(5/6) 8024922359541222 a001 98209/7331474697802*10749957122^(7/8) 8024922359541222 a001 196418/17393796001*10749957122^(7/12) 8024922359541222 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^69 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(47) 8024922359541222 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^14 8024922359541222 a001 196418/6643838879*73681302247^(1/2) 8024922359541222 a001 196418/6643838879*10749957122^(13/24) 8024922359541222 a001 98209/22768774562*4106118243^(15/23) 8024922359541222 a001 196418/17393796001*4106118243^(14/23) 8024922359541222 a001 196418/119218851371*4106118243^(16/23) 8024922359541222 a001 196418/312119004989*4106118243^(17/23) 8024922359541222 a001 98209/408569081798*4106118243^(18/23) 8024922359541222 a001 196418/2139295485799*4106118243^(19/23) 8024922359541222 a001 196418/5600748293801*4106118243^(20/23) 8024922359541222 a001 98209/7331474697802*4106118243^(21/23) 8024922359541222 a001 196418/6643838879*4106118243^(13/23) 8024922359541222 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^67 8024922359541222 a001 98209/1268860318*2537720636^(8/15) 8024922359541222 a001 98209/1268860318*45537549124^(8/17) 8024922359541222 a001 98209/1268860318*14662949395604^(8/21) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(45) 8024922359541222 a001 98209/1268860318*192900153618^(4/9) 8024922359541222 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^12 8024922359541222 a001 98209/1268860318*73681302247^(6/13) 8024922359541222 a001 98209/1268860318*10749957122^(1/2) 8024922359541222 a001 98209/1268860318*4106118243^(12/23) 8024922359541222 a001 196418/17393796001*1568397607^(7/11) 8024922359541222 a001 196418/6643838879*1568397607^(13/22) 8024922359541222 a001 98209/22768774562*1568397607^(15/22) 8024922359541222 a001 196418/119218851371*1568397607^(8/11) 8024922359541222 a001 98209/96450076809*1568397607^(3/4) 8024922359541222 a001 196418/312119004989*1568397607^(17/22) 8024922359541222 a001 98209/408569081798*1568397607^(9/11) 8024922359541222 a001 196418/2139295485799*1568397607^(19/22) 8024922359541222 a001 196418/5600748293801*1568397607^(10/11) 8024922359541222 a001 98209/1268860318*1568397607^(6/11) 8024922359541222 a001 98209/7331474697802*1568397607^(21/22) 8024922359541222 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^65 8024922359541222 a001 196418/969323029*312119004989^(2/5) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^22/Lucas(43) 8024922359541222 a001 85146110326666/10610209857723 8024922359541222 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2)^10 8024922359541222 a001 196418/969323029*10749957122^(11/24) 8024922359541222 a001 196418/969323029*4106118243^(11/23) 8024922359541222 a001 196418/969323029*1568397607^(1/2) 8024922359541222 a001 98209/1268860318*599074578^(4/7) 8024922359541222 a001 196418/6643838879*599074578^(13/21) 8024922359541222 a001 98209/5374978561*599074578^(9/14) 8024922359541222 a001 196418/17393796001*599074578^(2/3) 8024922359541222 a001 98209/22768774562*599074578^(5/7) 8024922359541222 a001 196418/119218851371*599074578^(16/21) 8024922359541222 a001 98209/96450076809*599074578^(11/14) 8024922359541222 a001 196418/312119004989*599074578^(17/21) 8024922359541222 a001 196418/505019158607*599074578^(5/6) 8024922359541222 a001 98209/408569081798*599074578^(6/7) 8024922359541222 a001 196418/2139295485799*599074578^(19/21) 8024922359541222 a001 196418/969323029*599074578^(11/21) 8024922359541222 a001 98209/1730726404001*599074578^(13/14) 8024922359541222 a001 196418/5600748293801*599074578^(20/21) 8024922359541222 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^63 8024922359541222 a001 196418/370248451*2537720636^(4/9) 8024922359541222 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^20/Lucas(41) 8024922359541222 a001 196418/370248451*23725150497407^(5/16) 8024922359541222 a001 32522920134938/4052739537881 8024922359541222 a001 196418/370248451*505019158607^(5/14) 8024922359541222 a004 Fibonacci(41)/Lucas(27)/(1/2+sqrt(5)/2)^8 8024922359541222 a001 196418/370248451*73681302247^(5/13) 8024922359541222 a001 196418/370248451*28143753123^(2/5) 8024922359541222 a001 196418/370248451*10749957122^(5/12) 8024922359541222 a001 196418/370248451*4106118243^(10/23) 8024922359541222 a001 196418/370248451*1568397607^(5/11) 8024922359541222 a001 196418/370248451*599074578^(10/21) 8024922359541222 a001 196418/969323029*228826127^(11/20) 8024922359541222 a001 98209/1268860318*228826127^(3/5) 8024922359541222 a001 196418/4106118243*228826127^(5/8) 8024922359541222 a001 196418/6643838879*228826127^(13/20) 8024922359541222 a001 196418/17393796001*228826127^(7/10) 8024922359541222 a001 98209/22768774562*228826127^(3/4) 8024922359541223 a001 196418/119218851371*228826127^(4/5) 8024922359541223 a001 196418/312119004989*228826127^(17/20) 8024922359541223 a001 196418/505019158607*228826127^(7/8) 8024922359541223 a001 196418/370248451*228826127^(1/2) 8024922359541223 a001 98209/408569081798*228826127^(9/10) 8024922359541223 a001 196418/2139295485799*228826127^(19/20) 8024922359541223 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^61 8024922359541223 a001 98209/70711162*141422324^(6/13) 8024922359541223 a001 196418/228826127*87403803^(1/2) 8024922359541223 a001 98209/70711162*2537720636^(2/5) 8024922359541223 a001 98209/70711162*45537549124^(6/17) 8024922359541223 a001 98209/70711162*14662949395604^(2/7) 8024922359541223 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^18/Lucas(39) 8024922359541223 a001 3105662519537/387002188980 8024922359541223 a001 98209/70711162*192900153618^(1/3) 8024922359541223 a004 Fibonacci(39)/Lucas(27)/(1/2+sqrt(5)/2)^6 8024922359541223 a001 98209/70711162*10749957122^(3/8) 8024922359541223 a001 98209/70711162*4106118243^(9/23) 8024922359541223 a001 98209/70711162*1568397607^(9/22) 8024922359541223 a001 98209/70711162*599074578^(3/7) 8024922359541223 a001 98209/70711162*228826127^(9/20) 8024922359541223 a001 196418/370248451*87403803^(10/19) 8024922359541223 a001 196418/969323029*87403803^(11/19) 8024922359541223 a001 98209/1268860318*87403803^(12/19) 8024922359541223 a001 196418/6643838879*87403803^(13/19) 8024922359541223 a001 196418/17393796001*87403803^(14/19) 8024922359541223 a001 98209/22768774562*87403803^(15/19) 8024922359541223 a001 196418/119218851371*87403803^(16/19) 8024922359541223 a001 98209/70711162*87403803^(9/19) 8024922359541223 a001 196418/312119004989*87403803^(17/19) 8024922359541223 a001 98209/408569081798*87403803^(18/19) 8024922359541223 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^59 8024922359541225 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^16/Lucas(37) 8024922359541225 a001 196418/54018521*23725150497407^(1/4) 8024922359541225 a004 Fibonacci(37)/Lucas(27)/(1/2+sqrt(5)/2)^4 8024922359541225 a001 196418/54018521*73681302247^(4/13) 8024922359541225 a001 196418/54018521*10749957122^(1/3) 8024922359541225 a001 196418/54018521*4106118243^(8/23) 8024922359541225 a001 196418/54018521*1568397607^(4/11) 8024922359541225 a001 196418/54018521*599074578^(8/21) 8024922359541225 a001 196418/54018521*228826127^(2/5) 8024922359541226 a001 196418/54018521*87403803^(8/19) 8024922359541226 a001 98209/70711162*33385282^(1/2) 8024922359541226 a001 196418/370248451*33385282^(5/9) 8024922359541227 a001 98209/299537289*33385282^(7/12) 8024922359541227 a001 196418/969323029*33385282^(11/18) 8024922359541227 a001 98209/1268860318*33385282^(2/3) 8024922359541228 a001 196418/6643838879*33385282^(13/18) 8024922359541228 a001 98209/5374978561*33385282^(3/4) 8024922359541228 a001 196418/17393796001*33385282^(7/9) 8024922359541228 a001 196418/54018521*33385282^(4/9) 8024922359541228 a001 98209/22768774562*33385282^(5/6) 8024922359541229 a001 196418/119218851371*33385282^(8/9) 8024922359541229 a001 98209/96450076809*33385282^(11/12) 8024922359541229 a001 196418/312119004989*33385282^(17/18) 8024922359541230 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^57 8024922359541234 a001 196418/20633239*20633239^(2/5) 8024922359541241 a001 196418/20633239*17393796001^(2/7) 8024922359541241 a001 196418/20633239*14662949395604^(2/9) 8024922359541241 a001 196418/20633239*(1/2+1/2*5^(1/2))^14 8024922359541241 a001 196418/20633239*505019158607^(1/4) 8024922359541241 a001 139418478490/17373187209 8024922359541241 a004 Fibonacci(35)/Lucas(27)/(1/2+sqrt(5)/2)^2 8024922359541241 a001 196418/20633239*10749957122^(7/24) 8024922359541241 a001 196418/20633239*4106118243^(7/23) 8024922359541241 a001 196418/20633239*1568397607^(7/22) 8024922359541241 a001 196418/20633239*599074578^(1/3) 8024922359541241 a001 196418/20633239*228826127^(7/20) 8024922359541242 a001 196418/20633239*87403803^(7/19) 8024922359541244 a001 196418/20633239*33385282^(7/18) 8024922359541246 a001 196418/87403803*12752043^(1/2) 8024922359541248 a001 196418/54018521*12752043^(8/17) 8024922359541249 a001 98209/70711162*12752043^(9/17) 8024922359541251 a001 196418/370248451*12752043^(10/17) 8024922359541254 a001 196418/969323029*12752043^(11/17) 8024922359541257 a001 98209/1268860318*12752043^(12/17) 8024922359541260 a001 196418/6643838879*12752043^(13/17) 8024922359541262 a001 196418/20633239*12752043^(7/17) 8024922359541263 a001 196418/17393796001*12752043^(14/17) 8024922359541266 a001 98209/22768774562*12752043^(15/17) 8024922359541269 a001 196418/119218851371*12752043^(16/17) 8024922359541272 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^55 8024922359541305 a001 98209/3940598*7881196^(4/11) 8024922359541351 a001 98209/3940598*141422324^(4/13) 8024922359541352 a001 98209/3940598*2537720636^(4/15) 8024922359541352 a001 98209/3940598*45537549124^(4/17) 8024922359541352 a001 98209/3940598*817138163596^(4/19) 8024922359541352 a001 98209/3940598*14662949395604^(4/21) 8024922359541352 a001 98209/3940598*(1/2+1/2*5^(1/2))^12 8024922359541352 a001 98209/3940598*192900153618^(2/9) 8024922359541352 a001 1762289/219602 8024922359541352 a001 98209/3940598*73681302247^(3/13) 8024922359541352 a001 98209/3940598*10749957122^(1/4) 8024922359541352 a001 98209/3940598*4106118243^(6/23) 8024922359541352 a001 98209/3940598*1568397607^(3/11) 8024922359541352 a001 98209/3940598*599074578^(2/7) 8024922359541352 a001 98209/3940598*228826127^(3/10) 8024922359541352 a001 98209/3940598*87403803^(6/19) 8024922359541354 a001 98209/3940598*33385282^(1/3) 8024922359541369 a001 98209/3940598*12752043^(6/17) 8024922359541389 a001 196418/20633239*4870847^(7/16) 8024922359541394 a001 196418/54018521*4870847^(1/2) 8024922359541413 a001 98209/70711162*4870847^(9/16) 8024922359541434 a001 196418/370248451*4870847^(5/8) 8024922359541455 a001 196418/969323029*4870847^(11/16) 8024922359541461 a001 5702887/87403803*271443^(5/13) 8024922359541476 a001 98209/1268860318*4870847^(3/4) 8024922359541478 a001 98209/3940598*4870847^(3/8) 8024922359541497 a001 196418/6643838879*4870847^(13/16) 8024922359541504 a001 14930352/228826127*271443^(5/13) 8024922359541510 a001 39088169/599074578*271443^(5/13) 8024922359541511 a001 14619165/224056801*271443^(5/13) 8024922359541511 a001 267914296/4106118243*271443^(5/13) 8024922359541511 a001 701408733/10749957122*271443^(5/13) 8024922359541511 a001 1836311903/28143753123*271443^(5/13) 8024922359541511 a001 686789568/10525900321*271443^(5/13) 8024922359541511 a001 12586269025/192900153618*271443^(5/13) 8024922359541511 a001 32951280099/505019158607*271443^(5/13) 8024922359541511 a001 86267571272/1322157322203*271443^(5/13) 8024922359541511 a001 32264490531/494493258286*271443^(5/13) 8024922359541511 a001 591286729879/9062201101803*271443^(5/13) 8024922359541511 a001 1548008755920/23725150497407*271443^(5/13) 8024922359541511 a001 365435296162/5600748293801*271443^(5/13) 8024922359541511 a001 139583862445/2139295485799*271443^(5/13) 8024922359541511 a001 53316291173/817138163596*271443^(5/13) 8024922359541511 a001 20365011074/312119004989*271443^(5/13) 8024922359541511 a001 7778742049/119218851371*271443^(5/13) 8024922359541511 a001 2971215073/45537549124*271443^(5/13) 8024922359541511 a001 1134903170/17393796001*271443^(5/13) 8024922359541511 a001 433494437/6643838879*271443^(5/13) 8024922359541511 a001 165580141/2537720636*271443^(5/13) 8024922359541511 a001 63245986/969323029*271443^(5/13) 8024922359541514 a001 24157817/370248451*271443^(5/13) 8024922359541518 a001 196418/17393796001*4870847^(7/8) 8024922359541530 a001 9227465/141422324*271443^(5/13) 8024922359541539 a001 98209/22768774562*4870847^(15/16) 8024922359541561 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^53 8024922359541643 a001 3524578/54018521*271443^(5/13) 8024922359542103 a001 196418/3010349*20633239^(2/7) 8024922359542108 a001 196418/3010349*2537720636^(2/9) 8024922359542108 a001 196418/3010349*312119004989^(2/11) 8024922359542108 a001 196418/3010349*(1/2+1/2*5^(1/2))^10 8024922359542108 a001 1346269/439204*(1/2+1/2*5^(1/2))^2 8024922359542108 a001 264431464442/32951280099 8024922359542108 a001 196418/3010349*28143753123^(1/5) 8024922359542108 a001 1346269/439204*10749957122^(1/24) 8024922359542108 a001 196418/3010349*10749957122^(5/24) 8024922359542108 a001 1346269/439204*4106118243^(1/23) 8024922359542108 a001 196418/3010349*4106118243^(5/23) 8024922359542108 a001 1346269/439204*1568397607^(1/22) 8024922359542108 a001 196418/3010349*1568397607^(5/22) 8024922359542108 a001 1346269/439204*599074578^(1/21) 8024922359542108 a001 196418/3010349*599074578^(5/21) 8024922359542108 a001 1346269/439204*228826127^(1/20) 8024922359542108 a001 196418/3010349*228826127^(1/4) 8024922359542108 a001 1346269/439204*87403803^(1/19) 8024922359542108 a001 196418/3010349*87403803^(5/19) 8024922359542108 a001 1346269/439204*33385282^(1/18) 8024922359542110 a001 196418/3010349*33385282^(5/18) 8024922359542111 a001 1346269/439204*12752043^(1/17) 8024922359542122 a001 196418/3010349*12752043^(5/17) 8024922359542129 a001 1346269/439204*4870847^(1/16) 8024922359542214 a001 196418/3010349*4870847^(5/16) 8024922359542262 a001 1346269/439204*1860498^(1/15) 8024922359542279 a001 98209/3940598*1860498^(2/5) 8024922359542323 a001 196418/20633239*1860498^(7/15) 8024922359542369 a001 317811/33385282*271443^(7/13) 8024922359542374 a001 98209/16692641*1860498^(1/2) 8024922359542415 a001 1346269/20633239*271443^(5/13) 8024922359542462 a001 196418/54018521*1860498^(8/15) 8024922359542614 a001 98209/70711162*1860498^(3/5) 8024922359542768 a001 196418/370248451*1860498^(2/3) 8024922359542845 a001 98209/299537289*1860498^(7/10) 8024922359542881 a001 196418/3010349*1860498^(1/3) 8024922359542923 a001 196418/969323029*1860498^(11/15) 8024922359543077 a001 98209/1268860318*1860498^(4/5) 8024922359543154 a001 196418/4106118243*1860498^(5/6) 8024922359543232 a001 196418/6643838879*1860498^(13/15) 8024922359543243 a001 1346269/439204*710647^(1/14) 8024922359543309 a001 98209/5374978561*1860498^(9/10) 8024922359543386 a001 196418/17393796001*1860498^(14/15) 8024922359543541 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^51 8024922359545601 a001 311187/101521*103682^(1/12) 8024922359547292 a001 196418/1149851*(1/2+1/2*5^(1/2))^8 8024922359547292 a001 196418/1149851*23725150497407^(1/8) 8024922359547292 a001 196418/1149851*505019158607^(1/7) 8024922359547292 a001 514229/439204*(1/2+1/2*5^(1/2))^4 8024922359547292 a001 514229/439204*23725150497407^(1/16) 8024922359547292 a001 196418/1149851*73681302247^(2/13) 8024922359547292 a001 514229/439204*73681302247^(1/13) 8024922359547292 a001 514229/439204*10749957122^(1/12) 8024922359547292 a001 101003831722/12586269025 8024922359547292 a001 196418/1149851*10749957122^(1/6) 8024922359547292 a001 514229/439204*4106118243^(2/23) 8024922359547292 a001 196418/1149851*4106118243^(4/23) 8024922359547292 a001 514229/439204*1568397607^(1/11) 8024922359547292 a001 196418/1149851*1568397607^(2/11) 8024922359547292 a001 514229/439204*599074578^(2/21) 8024922359547292 a001 196418/1149851*599074578^(4/21) 8024922359547292 a001 514229/439204*228826127^(1/10) 8024922359547292 a001 196418/1149851*228826127^(1/5) 8024922359547292 a001 514229/439204*87403803^(2/19) 8024922359547292 a001 196418/1149851*87403803^(4/19) 8024922359547293 a001 514229/439204*33385282^(1/9) 8024922359547294 a001 196418/1149851*33385282^(2/9) 8024922359547298 a001 514229/439204*12752043^(2/17) 8024922359547304 a001 196418/1149851*12752043^(4/17) 8024922359547334 a001 514229/439204*4870847^(1/8) 8024922359547377 a001 196418/1149851*4870847^(1/4) 8024922359547563 a001 416020/16692641*271443^(6/13) 8024922359547601 a001 514229/439204*1860498^(2/15) 8024922359547710 a001 514229/7881196*271443^(5/13) 8024922359547783 a001 196418/3010349*710647^(5/14) 8024922359547910 a001 196418/1149851*1860498^(4/15) 8024922359548162 a001 98209/3940598*710647^(3/7) 8024922359549186 a001 196418/20633239*710647^(1/2) 8024922359549550 a001 726103/29134601*271443^(6/13) 8024922359549562 a001 514229/439204*710647^(1/7) 8024922359549839 a001 5702887/228826127*271443^(6/13) 8024922359549882 a001 829464/33281921*271443^(6/13) 8024922359549888 a001 39088169/1568397607*271443^(6/13) 8024922359549889 a001 34111385/1368706081*271443^(6/13) 8024922359549889 a001 133957148/5374978561*271443^(6/13) 8024922359549889 a001 233802911/9381251041*271443^(6/13) 8024922359549889 a001 1836311903/73681302247*271443^(6/13) 8024922359549889 a001 267084832/10716675201*271443^(6/13) 8024922359549889 a001 12586269025/505019158607*271443^(6/13) 8024922359549889 a001 10983760033/440719107401*271443^(6/13) 8024922359549889 a001 43133785636/1730726404001*271443^(6/13) 8024922359549889 a001 75283811239/3020733700601*271443^(6/13) 8024922359549889 a001 182717648081/7331474697802*271443^(6/13) 8024922359549889 a001 139583862445/5600748293801*271443^(6/13) 8024922359549889 a001 53316291173/2139295485799*271443^(6/13) 8024922359549889 a001 10182505537/408569081798*271443^(6/13) 8024922359549889 a001 7778742049/312119004989*271443^(6/13) 8024922359549889 a001 2971215073/119218851371*271443^(6/13) 8024922359549889 a001 567451585/22768774562*271443^(6/13) 8024922359549889 a001 433494437/17393796001*271443^(6/13) 8024922359549889 a001 165580141/6643838879*271443^(6/13) 8024922359549889 a001 31622993/1268860318*271443^(6/13) 8024922359549892 a001 24157817/969323029*271443^(6/13) 8024922359549908 a001 9227465/370248451*271443^(6/13) 8024922359550019 a001 1762289/70711162*271443^(6/13) 8024922359550305 a001 196418/54018521*710647^(4/7) 8024922359550486 a001 1346269/439204*271443^(1/13) 8024922359550754 a001 105937/29134601*271443^(8/13) 8024922359550777 a001 1346269/54018521*271443^(6/13) 8024922359551438 a001 98209/70711162*710647^(9/14) 8024922359551762 a001 832040/54018521*271443^(1/2) 8024922359551832 a001 196418/1149851*710647^(2/7) 8024922359552573 a001 196418/370248451*710647^(5/7) 8024922359553140 a001 98209/299537289*710647^(3/4) 8024922359553708 a001 196418/969323029*710647^(11/14) 8024922359553740 a001 2178309/141422324*271443^(1/2) 8024922359554029 a001 5702887/370248451*271443^(1/2) 8024922359554071 a001 14930352/969323029*271443^(1/2) 8024922359554077 a001 39088169/2537720636*271443^(1/2) 8024922359554078 a001 102334155/6643838879*271443^(1/2) 8024922359554078 a001 9238424/599786069*271443^(1/2) 8024922359554078 a001 701408733/45537549124*271443^(1/2) 8024922359554078 a001 1836311903/119218851371*271443^(1/2) 8024922359554078 a001 4807526976/312119004989*271443^(1/2) 8024922359554078 a001 12586269025/817138163596*271443^(1/2) 8024922359554078 a001 32951280099/2139295485799*271443^(1/2) 8024922359554078 a001 86267571272/5600748293801*271443^(1/2) 8024922359554078 a001 7787980473/505618944676*271443^(1/2) 8024922359554078 a001 365435296162/23725150497407*271443^(1/2) 8024922359554078 a001 139583862445/9062201101803*271443^(1/2) 8024922359554078 a001 53316291173/3461452808002*271443^(1/2) 8024922359554078 a001 20365011074/1322157322203*271443^(1/2) 8024922359554078 a001 7778742049/505019158607*271443^(1/2) 8024922359554078 a001 2971215073/192900153618*271443^(1/2) 8024922359554078 a001 1134903170/73681302247*271443^(1/2) 8024922359554078 a001 433494437/28143753123*271443^(1/2) 8024922359554078 a001 165580141/10749957122*271443^(1/2) 8024922359554078 a001 63245986/4106118243*271443^(1/2) 8024922359554081 a001 24157817/1568397607*271443^(1/2) 8024922359554097 a001 9227465/599074578*271443^(1/2) 8024922359554207 a001 3524578/228826127*271443^(1/2) 8024922359554843 a001 98209/1268860318*710647^(6/7) 8024922359554962 a001 1346269/87403803*271443^(1/2) 8024922359555948 a001 832040/87403803*271443^(7/13) 8024922359555977 a001 514229/20633239*271443^(6/13) 8024922359555978 a001 196418/6643838879*710647^(13/14) 8024922359556649 a001 75025/141422324*167761^(4/5) 8024922359557113 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^49 8024922359557929 a001 46347/4868641*271443^(7/13) 8024922359558218 a001 5702887/599074578*271443^(7/13) 8024922359558260 a001 14930352/1568397607*271443^(7/13) 8024922359558266 a001 39088169/4106118243*271443^(7/13) 8024922359558267 a001 102334155/10749957122*271443^(7/13) 8024922359558267 a001 267914296/28143753123*271443^(7/13) 8024922359558267 a001 701408733/73681302247*271443^(7/13) 8024922359558267 a001 1836311903/192900153618*271443^(7/13) 8024922359558267 a001 102287808/10745088481*271443^(7/13) 8024922359558267 a001 12586269025/1322157322203*271443^(7/13) 8024922359558267 a001 32951280099/3461452808002*271443^(7/13) 8024922359558267 a001 86267571272/9062201101803*271443^(7/13) 8024922359558267 a001 225851433717/23725150497407*271443^(7/13) 8024922359558267 a001 139583862445/14662949395604*271443^(7/13) 8024922359558267 a001 53316291173/5600748293801*271443^(7/13) 8024922359558267 a001 20365011074/2139295485799*271443^(7/13) 8024922359558267 a001 7778742049/817138163596*271443^(7/13) 8024922359558267 a001 2971215073/312119004989*271443^(7/13) 8024922359558267 a001 1134903170/119218851371*271443^(7/13) 8024922359558267 a001 433494437/45537549124*271443^(7/13) 8024922359558267 a001 165580141/17393796001*271443^(7/13) 8024922359558267 a001 63245986/6643838879*271443^(7/13) 8024922359558270 a001 24157817/2537720636*271443^(7/13) 8024922359558286 a001 9227465/969323029*271443^(7/13) 8024922359558396 a001 3524578/370248451*271443^(7/13) 8024922359559132 a001 317811/228826127*271443^(9/13) 8024922359559153 a001 1346269/141422324*271443^(7/13) 8024922359559462 a001 5702887/1860498*103682^(1/12) 8024922359560063 a001 75025/167761*64079^(6/23) 8024922359560140 a001 514229/33385282*271443^(1/2) 8024922359561484 a001 14930352/4870847*103682^(1/12) 8024922359561780 a001 39088169/12752043*103682^(1/12) 8024922359561823 a001 14619165/4769326*103682^(1/12) 8024922359561829 a001 267914296/87403803*103682^(1/12) 8024922359561830 a001 701408733/228826127*103682^(1/12) 8024922359561830 a001 1836311903/599074578*103682^(1/12) 8024922359561830 a001 686789568/224056801*103682^(1/12) 8024922359561830 a001 12586269025/4106118243*103682^(1/12) 8024922359561830 a001 32951280099/10749957122*103682^(1/12) 8024922359561830 a001 86267571272/28143753123*103682^(1/12) 8024922359561830 a001 32264490531/10525900321*103682^(1/12) 8024922359561830 a001 591286729879/192900153618*103682^(1/12) 8024922359561830 a001 1548008755920/505019158607*103682^(1/12) 8024922359561830 a001 1515744265389/494493258286*103682^(1/12) 8024922359561830 a001 2504730781961/817138163596*103682^(1/12) 8024922359561830 a001 956722026041/312119004989*103682^(1/12) 8024922359561830 a001 365435296162/119218851371*103682^(1/12) 8024922359561830 a001 139583862445/45537549124*103682^(1/12) 8024922359561830 a001 53316291173/17393796001*103682^(1/12) 8024922359561830 a001 20365011074/6643838879*103682^(1/12) 8024922359561830 a001 7778742049/2537720636*103682^(1/12) 8024922359561830 a001 2971215073/969323029*103682^(1/12) 8024922359561830 a001 1134903170/370248451*103682^(1/12) 8024922359561830 a001 433494437/141422324*103682^(1/12) 8024922359561833 a001 165580141/54018521*103682^(1/12) 8024922359561849 a001 63245986/20633239*103682^(1/12) 8024922359561962 a001 24157817/7881196*103682^(1/12) 8024922359562734 a001 9227465/3010349*103682^(1/12) 8024922359564048 a001 514229/439204*271443^(2/13) 8024922359564326 a001 832040/228826127*271443^(8/13) 8024922359564339 a001 514229/54018521*271443^(7/13) 8024922359566307 a001 726103/199691526*271443^(8/13) 8024922359566596 a001 5702887/1568397607*271443^(8/13) 8024922359566638 a001 4976784/1368706081*271443^(8/13) 8024922359566644 a001 39088169/10749957122*271443^(8/13) 8024922359566645 a001 831985/228811001*271443^(8/13) 8024922359566645 a001 267914296/73681302247*271443^(8/13) 8024922359566645 a001 233802911/64300051206*271443^(8/13) 8024922359566645 a001 1836311903/505019158607*271443^(8/13) 8024922359566645 a001 1602508992/440719107401*271443^(8/13) 8024922359566645 a001 12586269025/3461452808002*271443^(8/13) 8024922359566645 a001 10983760033/3020733700601*271443^(8/13) 8024922359566645 a001 86267571272/23725150497407*271443^(8/13) 8024922359566645 a001 53316291173/14662949395604*271443^(8/13) 8024922359566645 a001 20365011074/5600748293801*271443^(8/13) 8024922359566645 a001 7778742049/2139295485799*271443^(8/13) 8024922359566645 a001 2971215073/817138163596*271443^(8/13) 8024922359566645 a001 1134903170/312119004989*271443^(8/13) 8024922359566645 a001 433494437/119218851371*271443^(8/13) 8024922359566645 a001 165580141/45537549124*271443^(8/13) 8024922359566645 a001 63245986/17393796001*271443^(8/13) 8024922359566648 a001 24157817/6643838879*271443^(8/13) 8024922359566664 a001 9227465/2537720636*271443^(8/13) 8024922359566774 a001 3524578/969323029*271443^(8/13) 8024922359567511 a001 377/710646*271443^(10/13) 8024922359567531 a001 1346269/370248451*271443^(8/13) 8024922359568029 a001 3524578/1149851*103682^(1/12) 8024922359571989 a001 2178309/439204*103682^(1/24) 8024922359572705 a001 416020/299537289*271443^(9/13) 8024922359572715 a001 514229/141422324*271443^(8/13) 8024922359573579 a001 98209/219602*439204^(2/9) 8024922359574497 a001 121393/103682*39603^(2/11) 8024922359574685 a001 311187/224056801*271443^(9/13) 8024922359574974 a001 5702887/4106118243*271443^(9/13) 8024922359575016 a001 7465176/5374978561*271443^(9/13) 8024922359575022 a001 39088169/28143753123*271443^(9/13) 8024922359575023 a001 14619165/10525900321*271443^(9/13) 8024922359575023 a001 133957148/96450076809*271443^(9/13) 8024922359575023 a001 701408733/505019158607*271443^(9/13) 8024922359575023 a001 1836311903/1322157322203*271443^(9/13) 8024922359575023 a001 14930208/10749853441*271443^(9/13) 8024922359575023 a001 12586269025/9062201101803*271443^(9/13) 8024922359575023 a001 32951280099/23725150497407*271443^(9/13) 8024922359575023 a001 10182505537/7331474697802*271443^(9/13) 8024922359575023 a001 7778742049/5600748293801*271443^(9/13) 8024922359575023 a001 2971215073/2139295485799*271443^(9/13) 8024922359575023 a001 567451585/408569081798*271443^(9/13) 8024922359575023 a001 433494437/312119004989*271443^(9/13) 8024922359575023 a001 165580141/119218851371*271443^(9/13) 8024922359575023 a001 31622993/22768774562*271443^(9/13) 8024922359575026 a001 24157817/17393796001*271443^(9/13) 8024922359575042 a001 9227465/6643838879*271443^(9/13) 8024922359575152 a001 1762289/1268860318*271443^(9/13) 8024922359575889 a001 317811/1568397607*271443^(11/13) 8024922359575908 a001 1346269/969323029*271443^(9/13) 8024922359577930 a001 1346269/710647*103682^(1/8) 8024922359580804 a001 196418/1149851*271443^(4/13) 8024922359581083 a001 832040/1568397607*271443^(10/13) 8024922359581090 a001 28657/64079*24476^(2/7) 8024922359581093 a001 514229/370248451*271443^(9/13) 8024922359582800 a001 98209/219602*7881196^(2/11) 8024922359582824 a001 98209/219602*141422324^(2/13) 8024922359582824 a001 98209/219602*2537720636^(2/15) 8024922359582824 a001 98209/219602*45537549124^(2/17) 8024922359582824 a001 98209/219602*14662949395604^(2/21) 8024922359582824 a001 98209/219602*(1/2+1/2*5^(1/2))^6 8024922359582824 a001 98209/219602*10749957122^(1/8) 8024922359582824 a001 98209/219602*4106118243^(3/23) 8024922359582824 a001 9645007681/1201881744 8024922359582824 a001 98209/219602*1568397607^(3/22) 8024922359582824 a001 98209/219602*599074578^(1/7) 8024922359582824 a001 98209/219602*228826127^(3/20) 8024922359582824 a001 98209/219602*87403803^(3/19) 8024922359582825 a001 98209/219602*33385282^(1/6) 8024922359582833 a001 98209/219602*12752043^(3/17) 8024922359582887 a001 98209/219602*4870847^(3/16) 8024922359583063 a001 726103/1368706081*271443^(10/13) 8024922359583287 a001 98209/219602*1860498^(1/5) 8024922359583352 a001 5702887/10749957122*271443^(10/13) 8024922359583394 a001 4976784/9381251041*271443^(10/13) 8024922359583400 a001 39088169/73681302247*271443^(10/13) 8024922359583401 a001 34111385/64300051206*271443^(10/13) 8024922359583401 a001 267914296/505019158607*271443^(10/13) 8024922359583401 a001 233802911/440719107401*271443^(10/13) 8024922359583401 a001 1836311903/3461452808002*271443^(10/13) 8024922359583401 a001 1602508992/3020733700601*271443^(10/13) 8024922359583401 a001 12586269025/23725150497407*271443^(10/13) 8024922359583401 a001 7778742049/14662949395604*271443^(10/13) 8024922359583401 a001 2971215073/5600748293801*271443^(10/13) 8024922359583401 a001 1134903170/2139295485799*271443^(10/13) 8024922359583401 a001 433494437/817138163596*271443^(10/13) 8024922359583401 a001 165580141/312119004989*271443^(10/13) 8024922359583401 a001 63245986/119218851371*271443^(10/13) 8024922359583404 a001 24157817/45537549124*271443^(10/13) 8024922359583420 a001 9227465/17393796001*271443^(10/13) 8024922359583530 a001 3524578/6643838879*271443^(10/13) 8024922359583998 a001 196418/3010349*271443^(5/13) 8024922359584267 a001 105937/1368706081*271443^(12/13) 8024922359584286 a001 1346269/2537720636*271443^(10/13) 8024922359584594 a001 28657/141422324*64079^(22/23) 8024922359586229 a001 98209/219602*710647^(3/14) 8024922359587831 a001 196418/271443*103682^(5/24) 8024922359589461 a001 832040/4106118243*271443^(11/13) 8024922359589470 a001 514229/969323029*271443^(10/13) 8024922359590745 a001 1762289/930249*103682^(1/8) 8024922359591441 a001 987/4870846*271443^(11/13) 8024922359591620 a001 98209/3940598*271443^(6/13) 8024922359591730 a001 5702887/28143753123*271443^(11/13) 8024922359591772 a001 14930352/73681302247*271443^(11/13) 8024922359591778 a001 39088169/192900153618*271443^(11/13) 8024922359591779 a001 102334155/505019158607*271443^(11/13) 8024922359591779 a001 267914296/1322157322203*271443^(11/13) 8024922359591779 a001 701408733/3461452808002*271443^(11/13) 8024922359591779 a001 1836311903/9062201101803*271443^(11/13) 8024922359591779 a001 4807526976/23725150497407*271443^(11/13) 8024922359591779 a001 2971215073/14662949395604*271443^(11/13) 8024922359591779 a001 1134903170/5600748293801*271443^(11/13) 8024922359591779 a001 433494437/2139295485799*271443^(11/13) 8024922359591779 a001 165580141/817138163596*271443^(11/13) 8024922359591779 a001 63245986/312119004989*271443^(11/13) 8024922359591782 a001 24157817/119218851371*271443^(11/13) 8024922359591798 a001 9227465/45537549124*271443^(11/13) 8024922359591908 a001 3524578/17393796001*271443^(11/13) 8024922359592615 a001 9227465/4870847*103682^(1/8) 8024922359592645 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^48 8024922359592664 a001 1346269/6643838879*271443^(11/13) 8024922359592888 a001 24157817/12752043*103682^(1/8) 8024922359592928 a001 31622993/16692641*103682^(1/8) 8024922359592933 a001 165580141/87403803*103682^(1/8) 8024922359592934 a001 433494437/228826127*103682^(1/8) 8024922359592934 a001 567451585/299537289*103682^(1/8) 8024922359592934 a001 2971215073/1568397607*103682^(1/8) 8024922359592934 a001 7778742049/4106118243*103682^(1/8) 8024922359592934 a001 10182505537/5374978561*103682^(1/8) 8024922359592934 a001 53316291173/28143753123*103682^(1/8) 8024922359592934 a001 139583862445/73681302247*103682^(1/8) 8024922359592934 a001 182717648081/96450076809*103682^(1/8) 8024922359592934 a001 956722026041/505019158607*103682^(1/8) 8024922359592934 a001 10610209857723/5600748293801*103682^(1/8) 8024922359592934 a001 591286729879/312119004989*103682^(1/8) 8024922359592934 a001 225851433717/119218851371*103682^(1/8) 8024922359592934 a001 21566892818/11384387281*103682^(1/8) 8024922359592934 a001 32951280099/17393796001*103682^(1/8) 8024922359592934 a001 12586269025/6643838879*103682^(1/8) 8024922359592934 a001 1201881744/634430159*103682^(1/8) 8024922359592934 a001 1836311903/969323029*103682^(1/8) 8024922359592934 a001 701408733/370248451*103682^(1/8) 8024922359592935 a001 66978574/35355581*103682^(1/8) 8024922359592937 a001 102334155/54018521*103682^(1/8) 8024922359592952 a001 39088169/20633239*103682^(1/8) 8024922359593056 a001 3732588/1970299*103682^(1/8) 8024922359593771 a001 5702887/3010349*103682^(1/8) 8024922359595630 a001 196418/12752043*271443^(1/2) 8024922359597839 a001 416020/5374978561*271443^(12/13) 8024922359597848 a001 514229/2537720636*271443^(11/13) 8024922359598666 a001 2178309/1149851*103682^(1/8) 8024922359599819 a001 726103/9381251041*271443^(12/13) 8024922359599887 a001 196418/20633239*271443^(7/13) 8024922359600108 a001 5702887/73681302247*271443^(12/13) 8024922359600150 a001 2584/33385281*271443^(12/13) 8024922359600156 a001 39088169/505019158607*271443^(12/13) 8024922359600157 a001 34111385/440719107401*271443^(12/13) 8024922359600157 a001 133957148/1730726404001*271443^(12/13) 8024922359600157 a001 233802911/3020733700601*271443^(12/13) 8024922359600157 a001 1836311903/23725150497407*271443^(12/13) 8024922359600157 a001 567451585/7331474697802*271443^(12/13) 8024922359600157 a001 433494437/5600748293801*271443^(12/13) 8024922359600157 a001 165580141/2139295485799*271443^(12/13) 8024922359600157 a001 31622993/408569081798*271443^(12/13) 8024922359600160 a001 24157817/312119004989*271443^(12/13) 8024922359600176 a001 9227465/119218851371*271443^(12/13) 8024922359600286 a001 1762289/22768774562*271443^(12/13) 8024922359601042 a001 1346269/17393796001*271443^(12/13) 8024922359604317 a001 1346269/439204*103682^(1/12) 8024922359605830 a001 832040/710647*103682^(1/6) 8024922359606217 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^50 8024922359606226 a001 514229/6643838879*271443^(12/13) 8024922359607958 a001 98209/219602*271443^(3/13) 8024922359608197 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^52 8024922359608249 a001 196418/54018521*271443^(8/13) 8024922359608486 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^54 8024922359608528 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^56 8024922359608534 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^58 8024922359608535 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^60 8024922359608535 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^62 8024922359608535 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^64 8024922359608535 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^66 8024922359608535 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^68 8024922359608535 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^70 8024922359608535 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^72 8024922359608535 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^74 8024922359608535 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^76 8024922359608535 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^78 8024922359608535 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^80 8024922359608535 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^82 8024922359608535 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^84 8024922359608535 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^86 8024922359608535 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^88 8024922359608535 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^90 8024922359608535 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^92 8024922359608535 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^94 8024922359608535 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^96 8024922359608535 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^98 8024922359608535 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^100 8024922359608535 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^99 8024922359608535 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^97 8024922359608535 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^95 8024922359608535 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^93 8024922359608535 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^91 8024922359608535 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^89 8024922359608535 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^87 8024922359608535 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^85 8024922359608535 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^83 8024922359608535 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^81 8024922359608535 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^79 8024922359608535 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^77 8024922359608535 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^75 8024922359608535 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^73 8024922359608535 a001 2/121393*(1/2+1/2*5^(1/2))^32 8024922359608535 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^71 8024922359608535 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^69 8024922359608535 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^67 8024922359608535 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^65 8024922359608535 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^63 8024922359608535 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^61 8024922359608535 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^59 8024922359608538 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^57 8024922359608554 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^55 8024922359608664 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^53 8024922359609420 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^51 8024922359613628 a001 75025/12752043*167761^(3/5) 8024922359614604 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^49 8024922359616625 a001 98209/70711162*271443^(9/13) 8024922359618819 a001 121393/167761*167761^(1/5) 8024922359620885 a001 514229/167761*64079^(2/23) 8024922359621382 a001 726103/620166*103682^(1/6) 8024922359623651 a001 5702887/4870847*103682^(1/6) 8024922359623652 a001 121393/710647*103682^(1/3) 8024922359623982 a001 4976784/4250681*103682^(1/6) 8024922359624031 a001 39088169/33385282*103682^(1/6) 8024922359624038 a001 34111385/29134601*103682^(1/6) 8024922359624039 a001 267914296/228826127*103682^(1/6) 8024922359624039 a001 233802911/199691526*103682^(1/6) 8024922359624039 a001 1836311903/1568397607*103682^(1/6) 8024922359624039 a001 1602508992/1368706081*103682^(1/6) 8024922359624039 a001 12586269025/10749957122*103682^(1/6) 8024922359624039 a001 10983760033/9381251041*103682^(1/6) 8024922359624039 a001 86267571272/73681302247*103682^(1/6) 8024922359624039 a001 75283811239/64300051206*103682^(1/6) 8024922359624039 a001 2504730781961/2139295485799*103682^(1/6) 8024922359624039 a001 365435296162/312119004989*103682^(1/6) 8024922359624039 a001 139583862445/119218851371*103682^(1/6) 8024922359624039 a001 53316291173/45537549124*103682^(1/6) 8024922359624039 a001 20365011074/17393796001*103682^(1/6) 8024922359624039 a001 7778742049/6643838879*103682^(1/6) 8024922359624039 a001 2971215073/2537720636*103682^(1/6) 8024922359624039 a001 1134903170/969323029*103682^(1/6) 8024922359624039 a001 433494437/370248451*103682^(1/6) 8024922359624039 a001 165580141/141422324*103682^(1/6) 8024922359624042 a001 63245986/54018521*103682^(1/6) 8024922359624060 a001 24157817/20633239*103682^(1/6) 8024922359624167 a001 1346269/271443*39603^(1/22) 8024922359624187 a001 9227465/7881196*103682^(1/6) 8024922359625002 a001 196418/370248451*271443^(10/13) 8024922359625054 a001 3524578/3010349*103682^(1/6) 8024922359630994 a001 1346269/1149851*103682^(1/6) 8024922359632217 a001 208010/109801*103682^(1/8) 8024922359633380 a001 196418/969323029*271443^(11/13) 8024922359641758 a001 98209/1268860318*271443^(12/13) 8024922359645323 a001 514229/710647*103682^(5/24) 8024922359650040 a001 121393/439204*103682^(7/24) 8024922359650136 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^47 8024922359653710 a001 1346269/1860498*103682^(5/24) 8024922359654467 a001 317811/710647*103682^(1/4) 8024922359654934 a001 3524578/4870847*103682^(5/24) 8024922359655113 a001 9227465/12752043*103682^(5/24) 8024922359655139 a001 24157817/33385282*103682^(5/24) 8024922359655143 a001 63245986/87403803*103682^(5/24) 8024922359655143 a001 165580141/228826127*103682^(5/24) 8024922359655143 a001 433494437/599074578*103682^(5/24) 8024922359655143 a001 1134903170/1568397607*103682^(5/24) 8024922359655143 a001 2971215073/4106118243*103682^(5/24) 8024922359655143 a001 7778742049/10749957122*103682^(5/24) 8024922359655143 a001 20365011074/28143753123*103682^(5/24) 8024922359655143 a001 53316291173/73681302247*103682^(5/24) 8024922359655143 a001 139583862445/192900153618*103682^(5/24) 8024922359655143 a001 365435296162/505019158607*103682^(5/24) 8024922359655143 a001 10610209857723/14662949395604*103682^(5/24) 8024922359655143 a001 591286729879/817138163596*103682^(5/24) 8024922359655143 a001 225851433717/312119004989*103682^(5/24) 8024922359655143 a001 86267571272/119218851371*103682^(5/24) 8024922359655143 a001 32951280099/45537549124*103682^(5/24) 8024922359655143 a001 12586269025/17393796001*103682^(5/24) 8024922359655143 a001 4807526976/6643838879*103682^(5/24) 8024922359655143 a001 1836311903/2537720636*103682^(5/24) 8024922359655143 a001 701408733/969323029*103682^(5/24) 8024922359655143 a001 267914296/370248451*103682^(5/24) 8024922359655144 a001 102334155/141422324*103682^(5/24) 8024922359655145 a001 39088169/54018521*103682^(5/24) 8024922359655155 a001 14930352/20633239*103682^(5/24) 8024922359655223 a001 5702887/7881196*103682^(5/24) 8024922359655691 a001 2178309/3010349*103682^(5/24) 8024922359658895 a001 832040/1149851*103682^(5/24) 8024922359669566 a001 28657/87403803*64079^(21/23) 8024922359671710 a001 514229/439204*103682^(1/6) 8024922359675844 a001 75025/271443*20633239^(1/5) 8024922359675845 a001 121393/167761*20633239^(1/7) 8024922359675847 a001 1821501965/226980634 8024922359675847 a001 121393/167761*2537720636^(1/9) 8024922359675847 a001 75025/271443*17393796001^(1/7) 8024922359675847 a001 75025/271443*14662949395604^(1/9) 8024922359675847 a001 75025/271443*(1/2+1/2*5^(1/2))^7 8024922359675847 a001 121393/167761*312119004989^(1/11) 8024922359675847 a001 121393/167761*(1/2+1/2*5^(1/2))^5 8024922359675847 a001 121393/167761*28143753123^(1/10) 8024922359675847 a001 75025/271443*599074578^(1/6) 8024922359675847 a001 121393/167761*228826127^(1/8) 8024922359676234 a001 121393/167761*1860498^(1/6) 8024922359676717 a001 121393/1149851*103682^(3/8) 8024922359676775 a001 75025/1149851*167761^(2/5) 8024922359679820 a001 75025/271443*710647^(1/4) 8024922359680854 a001 317811/439204*103682^(5/24) 8024922359681611 a001 416020/930249*103682^(1/4) 8024922359685571 a001 2178309/4870847*103682^(1/4) 8024922359686149 a001 5702887/12752043*103682^(1/4) 8024922359686233 a001 7465176/16692641*103682^(1/4) 8024922359686246 a001 39088169/87403803*103682^(1/4) 8024922359686247 a001 102334155/228826127*103682^(1/4) 8024922359686248 a001 133957148/299537289*103682^(1/4) 8024922359686248 a001 701408733/1568397607*103682^(1/4) 8024922359686248 a001 1836311903/4106118243*103682^(1/4) 8024922359686248 a001 2403763488/5374978561*103682^(1/4) 8024922359686248 a001 12586269025/28143753123*103682^(1/4) 8024922359686248 a001 32951280099/73681302247*103682^(1/4) 8024922359686248 a001 43133785636/96450076809*103682^(1/4) 8024922359686248 a001 225851433717/505019158607*103682^(1/4) 8024922359686248 a001 591286729879/1322157322203*103682^(1/4) 8024922359686248 a001 10610209857723/23725150497407*103682^(1/4) 8024922359686248 a001 182717648081/408569081798*103682^(1/4) 8024922359686248 a001 139583862445/312119004989*103682^(1/4) 8024922359686248 a001 53316291173/119218851371*103682^(1/4) 8024922359686248 a001 10182505537/22768774562*103682^(1/4) 8024922359686248 a001 7778742049/17393796001*103682^(1/4) 8024922359686248 a001 2971215073/6643838879*103682^(1/4) 8024922359686248 a001 567451585/1268860318*103682^(1/4) 8024922359686248 a001 433494437/969323029*103682^(1/4) 8024922359686248 a001 165580141/370248451*103682^(1/4) 8024922359686249 a001 31622993/70711162*103682^(1/4) 8024922359686253 a001 24157817/54018521*103682^(1/4) 8024922359686285 a001 9227465/20633239*103682^(1/4) 8024922359686506 a001 1762289/3940598*103682^(1/4) 8024922359688019 a001 1346269/3010349*103682^(1/4) 8024922359697470 a001 75640/15251*64079^(1/23) 8024922359698387 a001 514229/1149851*103682^(1/4) 8024922359699433 a001 121393/1860498*103682^(5/12) 8024922359707532 a001 317811/1149851*103682^(7/24) 8024922359715919 a001 832040/3010349*103682^(7/24) 8024922359716434 a001 3524578/710647*39603^(1/22) 8024922359717143 a001 2178309/7881196*103682^(7/24) 8024922359717322 a001 5702887/20633239*103682^(7/24) 8024922359717348 a001 14930352/54018521*103682^(7/24) 8024922359717352 a001 39088169/141422324*103682^(7/24) 8024922359717352 a001 102334155/370248451*103682^(7/24) 8024922359717352 a001 267914296/969323029*103682^(7/24) 8024922359717352 a001 701408733/2537720636*103682^(7/24) 8024922359717352 a001 1836311903/6643838879*103682^(7/24) 8024922359717352 a001 4807526976/17393796001*103682^(7/24) 8024922359717352 a001 12586269025/45537549124*103682^(7/24) 8024922359717352 a001 32951280099/119218851371*103682^(7/24) 8024922359717352 a001 86267571272/312119004989*103682^(7/24) 8024922359717352 a001 225851433717/817138163596*103682^(7/24) 8024922359717352 a001 1548008755920/5600748293801*103682^(7/24) 8024922359717352 a001 139583862445/505019158607*103682^(7/24) 8024922359717352 a001 53316291173/192900153618*103682^(7/24) 8024922359717352 a001 20365011074/73681302247*103682^(7/24) 8024922359717352 a001 7778742049/28143753123*103682^(7/24) 8024922359717352 a001 2971215073/10749957122*103682^(7/24) 8024922359717352 a001 1134903170/4106118243*103682^(7/24) 8024922359717352 a001 433494437/1568397607*103682^(7/24) 8024922359717352 a001 165580141/599074578*103682^(7/24) 8024922359717353 a001 63245986/228826127*103682^(7/24) 8024922359717354 a001 24157817/87403803*103682^(7/24) 8024922359717364 a001 9227465/33385282*103682^(7/24) 8024922359717432 a001 3524578/12752043*103682^(7/24) 8024922359717900 a001 1346269/4870847*103682^(7/24) 8024922359721103 a001 514229/1860498*103682^(7/24) 8024922359729896 a001 9227465/1860498*39603^(1/22) 8024922359730248 a001 105937/620166*103682^(1/3) 8024922359731860 a001 24157817/4870847*39603^(1/22) 8024922359732146 a001 63245986/12752043*39603^(1/22) 8024922359732188 a001 165580141/33385282*39603^(1/22) 8024922359732194 a001 433494437/87403803*39603^(1/22) 8024922359732195 a001 1134903170/228826127*39603^(1/22) 8024922359732195 a001 2971215073/599074578*39603^(1/22) 8024922359732195 a001 7778742049/1568397607*39603^(1/22) 8024922359732195 a001 20365011074/4106118243*39603^(1/22) 8024922359732195 a001 53316291173/10749957122*39603^(1/22) 8024922359732195 a001 139583862445/28143753123*39603^(1/22) 8024922359732195 a001 365435296162/73681302247*39603^(1/22) 8024922359732195 a001 956722026041/192900153618*39603^(1/22) 8024922359732195 a001 2504730781961/505019158607*39603^(1/22) 8024922359732195 a001 10610209857723/2139295485799*39603^(1/22) 8024922359732195 a001 4052739537881/817138163596*39603^(1/22) 8024922359732195 a001 140728068720/28374454999*39603^(1/22) 8024922359732195 a001 591286729879/119218851371*39603^(1/22) 8024922359732195 a001 225851433717/45537549124*39603^(1/22) 8024922359732195 a001 86267571272/17393796001*39603^(1/22) 8024922359732195 a001 32951280099/6643838879*39603^(1/22) 8024922359732195 a001 1144206275/230701876*39603^(1/22) 8024922359732195 a001 4807526976/969323029*39603^(1/22) 8024922359732195 a001 1836311903/370248451*39603^(1/22) 8024922359732196 a001 701408733/141422324*39603^(1/22) 8024922359732198 a001 267914296/54018521*39603^(1/22) 8024922359732214 a001 9303105/1875749*39603^(1/22) 8024922359732324 a001 39088169/7881196*39603^(1/22) 8024922359733074 a001 14930352/3010349*39603^(1/22) 8024922359733742 a001 121393/3010349*103682^(11/24) 8024922359738216 a001 5702887/1149851*39603^(1/22) 8024922359743063 a001 196418/710647*103682^(7/24) 8024922359743160 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^46 8024922359745800 a001 832040/4870847*103682^(1/3) 8024922359747782 a001 75025/969323029*439204^(8/9) 8024922359748069 a001 726103/4250681*103682^(1/3) 8024922359748400 a001 5702887/33385282*103682^(1/3) 8024922359748448 a001 4976784/29134601*103682^(1/3) 8024922359748456 a001 39088169/228826127*103682^(1/3) 8024922359748457 a001 34111385/199691526*103682^(1/3) 8024922359748457 a001 267914296/1568397607*103682^(1/3) 8024922359748457 a001 233802911/1368706081*103682^(1/3) 8024922359748457 a001 1836311903/10749957122*103682^(1/3) 8024922359748457 a001 1602508992/9381251041*103682^(1/3) 8024922359748457 a001 12586269025/73681302247*103682^(1/3) 8024922359748457 a001 10983760033/64300051206*103682^(1/3) 8024922359748457 a001 86267571272/505019158607*103682^(1/3) 8024922359748457 a001 75283811239/440719107401*103682^(1/3) 8024922359748457 a001 2504730781961/14662949395604*103682^(1/3) 8024922359748457 a001 139583862445/817138163596*103682^(1/3) 8024922359748457 a001 53316291173/312119004989*103682^(1/3) 8024922359748457 a001 20365011074/119218851371*103682^(1/3) 8024922359748457 a001 7778742049/45537549124*103682^(1/3) 8024922359748457 a001 2971215073/17393796001*103682^(1/3) 8024922359748457 a001 1134903170/6643838879*103682^(1/3) 8024922359748457 a001 433494437/2537720636*103682^(1/3) 8024922359748457 a001 165580141/969323029*103682^(1/3) 8024922359748457 a001 63245986/370248451*103682^(1/3) 8024922359748460 a001 24157817/141422324*103682^(1/3) 8024922359748478 a001 9227465/54018521*103682^(1/3) 8024922359748605 a001 3524578/20633239*103682^(1/3) 8024922359749471 a001 1346269/7881196*103682^(1/3) 8024922359752405 a001 75025/228826127*439204^(7/9) 8024922359754543 a001 28657/54018521*64079^(20/23) 8024922359755004 a001 75025/710647*439204^(1/3) 8024922359755412 a001 514229/3010349*103682^(1/3) 8024922359757030 a001 75025/54018521*439204^(2/3) 8024922359761600 a001 75025/12752043*439204^(5/9) 8024922359763622 a001 121393/4870847*103682^(1/2) 8024922359764249 a001 317811/167761*439204^(1/9) 8024922359764556 a001 317811/3010349*103682^(3/8) 8024922359767157 a001 75025/3010349*439204^(4/9) 8024922359768836 a001 75025/710647*7881196^(3/11) 8024922359768859 a001 317811/167761*7881196^(1/11) 8024922359768871 a001 75025/710647*141422324^(3/13) 8024922359768871 a001 317811/167761*141422324^(1/13) 8024922359768871 a001 75025/710647*2537720636^(1/5) 8024922359768871 a001 23843770275/2971215073 8024922359768871 a001 317811/167761*2537720636^(1/15) 8024922359768871 a001 75025/710647*45537549124^(3/17) 8024922359768871 a001 75025/710647*817138163596^(3/19) 8024922359768871 a001 75025/710647*14662949395604^(1/7) 8024922359768871 a001 75025/710647*(1/2+1/2*5^(1/2))^9 8024922359768871 a001 75025/710647*192900153618^(1/6) 8024922359768871 a001 317811/167761*45537549124^(1/17) 8024922359768871 a001 317811/167761*14662949395604^(1/21) 8024922359768871 a001 317811/167761*(1/2+1/2*5^(1/2))^3 8024922359768871 a001 317811/167761*192900153618^(1/18) 8024922359768871 a001 75025/710647*10749957122^(3/16) 8024922359768871 a001 317811/167761*10749957122^(1/16) 8024922359768871 a001 317811/167761*599074578^(1/14) 8024922359768871 a001 75025/710647*599074578^(3/14) 8024922359768872 a001 317811/167761*33385282^(1/12) 8024922359768873 a001 75025/710647*33385282^(1/4) 8024922359769103 a001 317811/167761*1860498^(1/10) 8024922359769451 a001 98209/219602*103682^(1/4) 8024922359769567 a001 75025/710647*1860498^(3/10) 8024922359773459 a001 2178309/439204*39603^(1/22) 8024922359777372 a001 208010/1970299*103682^(3/8) 8024922359778692 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^48 8024922359779242 a001 2178309/20633239*103682^(3/8) 8024922359779515 a001 5702887/54018521*103682^(3/8) 8024922359779554 a001 3732588/35355581*103682^(3/8) 8024922359779560 a001 39088169/370248451*103682^(3/8) 8024922359779561 a001 102334155/969323029*103682^(3/8) 8024922359779561 a001 66978574/634430159*103682^(3/8) 8024922359779561 a001 701408733/6643838879*103682^(3/8) 8024922359779561 a001 1836311903/17393796001*103682^(3/8) 8024922359779561 a001 1201881744/11384387281*103682^(3/8) 8024922359779561 a001 12586269025/119218851371*103682^(3/8) 8024922359779561 a001 32951280099/312119004989*103682^(3/8) 8024922359779561 a001 21566892818/204284540899*103682^(3/8) 8024922359779561 a001 225851433717/2139295485799*103682^(3/8) 8024922359779561 a001 182717648081/1730726404001*103682^(3/8) 8024922359779561 a001 139583862445/1322157322203*103682^(3/8) 8024922359779561 a001 53316291173/505019158607*103682^(3/8) 8024922359779561 a001 10182505537/96450076809*103682^(3/8) 8024922359779561 a001 7778742049/73681302247*103682^(3/8) 8024922359779561 a001 2971215073/28143753123*103682^(3/8) 8024922359779561 a001 567451585/5374978561*103682^(3/8) 8024922359779561 a001 433494437/4106118243*103682^(3/8) 8024922359779561 a001 165580141/1568397607*103682^(3/8) 8024922359779562 a001 31622993/299537289*103682^(3/8) 8024922359779564 a001 24157817/228826127*103682^(3/8) 8024922359779579 a001 9227465/87403803*103682^(3/8) 8024922359779683 a001 1762289/16692641*103682^(3/8) 8024922359780397 a001 1346269/12752043*103682^(3/8) 8024922359782400 a001 75025/1860498*7881196^(1/3) 8024922359782443 a001 62423801000/7778742049 8024922359782443 a001 75025/1860498*312119004989^(1/5) 8024922359782443 a001 75025/1860498*(1/2+1/2*5^(1/2))^11 8024922359782443 a001 37820/15251+37820/15251*5^(1/2) 8024922359782443 a001 75025/1860498*1568397607^(1/4) 8024922359783876 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^50 8024922359784423 a001 75025/4870847*141422324^(1/3) 8024922359784423 a001 163427632725/20365011074 8024922359784423 a001 75025/4870847*(1/2+1/2*5^(1/2))^13 8024922359784423 a001 75025/4870847*73681302247^(1/4) 8024922359784423 a004 Fibonacci(32)/Lucas(25)/(1/2+sqrt(5)/2) 8024922359784632 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^52 8024922359784644 a001 75025/17393796001*7881196^(10/11) 8024922359784653 a001 75025/12752043*7881196^(5/11) 8024922359784656 a001 75025/4106118243*7881196^(9/11) 8024922359784667 a001 75025/969323029*7881196^(8/11) 8024922359784675 a001 75025/370248451*7881196^(2/3) 8024922359784679 a001 75025/228826127*7881196^(7/11) 8024922359784694 a001 75025/54018521*7881196^(6/11) 8024922359784704 a001 75025/12752043*20633239^(3/7) 8024922359784712 a001 75025/12752043*141422324^(5/13) 8024922359784712 a001 75025/12752043*2537720636^(1/3) 8024922359784712 a001 75025/12752043*45537549124^(5/17) 8024922359784712 a001 427859097175/53316291173 8024922359784712 a001 75025/12752043*312119004989^(3/11) 8024922359784712 a001 75025/12752043*14662949395604^(5/21) 8024922359784712 a001 75025/12752043*(1/2+1/2*5^(1/2))^15 8024922359784712 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^15/Lucas(34) 8024922359784712 a001 75025/12752043*192900153618^(5/18) 8024922359784712 a001 75025/12752043*28143753123^(3/10) 8024922359784712 a004 Fibonacci(34)/Lucas(25)/(1/2+sqrt(5)/2)^3 8024922359784712 a001 75025/12752043*10749957122^(5/16) 8024922359784712 a001 75025/12752043*599074578^(5/14) 8024922359784712 a001 75025/12752043*228826127^(3/8) 8024922359784715 a001 75025/12752043*33385282^(5/12) 8024922359784743 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^54 8024922359784745 a001 75025/17393796001*20633239^(6/7) 8024922359784746 a001 75025/6643838879*20633239^(4/5) 8024922359784748 a001 75025/1568397607*20633239^(5/7) 8024922359784750 a001 75025/228826127*20633239^(3/5) 8024922359784751 a001 75025/141422324*20633239^(4/7) 8024922359784754 a001 75025/33385282*45537549124^(1/3) 8024922359784754 a001 224029931760/27916772489 8024922359784754 a001 75025/33385282*(1/2+1/2*5^(1/2))^17 8024922359784754 a004 Fibonacci(36)/Lucas(25)/(1/2+sqrt(5)/2)^5 8024922359784759 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^56 8024922359784760 a001 701408725/87403802 8024922359784760 a001 75025/87403803*817138163596^(1/3) 8024922359784760 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^19/Lucas(38) 8024922359784760 a004 Fibonacci(38)/Lucas(25)/(1/2+sqrt(5)/2)^7 8024922359784761 a001 75025/87403803*87403803^(1/2) 8024922359784761 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^58 8024922359784761 a001 75025/312119004989*141422324^(12/13) 8024922359784761 a001 75025/228826127*141422324^(7/13) 8024922359784761 a001 75025/73681302247*141422324^(11/13) 8024922359784761 a001 75025/17393796001*141422324^(10/13) 8024922359784761 a001 75025/4106118243*141422324^(9/13) 8024922359784761 a001 75025/2537720636*141422324^(2/3) 8024922359784761 a001 75025/969323029*141422324^(8/13) 8024922359784761 a001 75025/228826127*2537720636^(7/15) 8024922359784761 a001 75025/228826127*17393796001^(3/7) 8024922359784761 a001 75025/228826127*45537549124^(7/17) 8024922359784761 a001 7677619978875/956722026041 8024922359784761 a001 75025/228826127*14662949395604^(1/3) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^21/Lucas(40) 8024922359784761 a001 75025/228826127*192900153618^(7/18) 8024922359784761 a004 Fibonacci(40)/Lucas(25)/(1/2+sqrt(5)/2)^9 8024922359784761 a001 75025/228826127*10749957122^(7/16) 8024922359784761 a001 75025/228826127*599074578^(1/2) 8024922359784761 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^60 8024922359784761 a001 20100270057400/2504730781961 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^23/Lucas(42) 8024922359784761 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^11 8024922359784761 a001 75025/599074578*4106118243^(1/2) 8024922359784761 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^62 8024922359784761 a001 75025/1568397607*2537720636^(5/9) 8024922359784761 a001 75025/1568397607*312119004989^(5/11) 8024922359784761 a001 52623190193325/6557470319842 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^25/Lucas(44) 8024922359784761 a001 75025/1568397607*28143753123^(1/2) 8024922359784761 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^13 8024922359784761 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^64 8024922359784761 a001 75025/4106118243*2537720636^(3/5) 8024922359784761 a001 75025/5600748293801*2537720636^(14/15) 8024922359784761 a001 75025/2139295485799*2537720636^(8/9) 8024922359784761 a001 75025/1322157322203*2537720636^(13/15) 8024922359784761 a001 75025/312119004989*2537720636^(4/5) 8024922359784761 a001 75025/192900153618*2537720636^(7/9) 8024922359784761 a001 75025/73681302247*2537720636^(11/15) 8024922359784761 a001 75025/17393796001*2537720636^(2/3) 8024922359784761 a001 75025/4106118243*45537549124^(9/17) 8024922359784761 a001 75025/4106118243*817138163596^(9/19) 8024922359784761 a001 75025/4106118243*14662949395604^(3/7) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(46) 8024922359784761 a001 75025/4106118243*192900153618^(1/2) 8024922359784761 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^15 8024922359784761 a001 75025/4106118243*10749957122^(9/16) 8024922359784761 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^66 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(48) 8024922359784761 a001 75025/10749957122*1322157322203^(1/2) 8024922359784761 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^17 8024922359784761 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^68 8024922359784761 a001 75025/5600748293801*17393796001^(6/7) 8024922359784761 a001 75025/192900153618*17393796001^(5/7) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(50) 8024922359784761 a001 75025/28143753123*9062201101803^(1/2) 8024922359784761 a001 75025/73681302247*45537549124^(11/17) 8024922359784761 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^70 8024922359784761 a001 75025/23725150497407*45537549124^(15/17) 8024922359784761 a001 75025/5600748293801*45537549124^(14/17) 8024922359784761 a001 75025/1322157322203*45537549124^(13/17) 8024922359784761 a001 75025/312119004989*45537549124^(12/17) 8024922359784761 a001 75025/119218851371*45537549124^(2/3) 8024922359784761 a001 75025/73681302247*312119004989^(3/5) 8024922359784761 a001 75025/73681302247*817138163596^(11/19) 8024922359784761 a001 75025/73681302247*14662949395604^(11/21) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(52) 8024922359784761 a001 75025/73681302247*192900153618^(11/18) 8024922359784761 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^72 8024922359784761 a001 75025/192900153618*312119004989^(7/11) 8024922359784761 a001 75025/192900153618*14662949395604^(5/9) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(54) 8024922359784761 a001 75025/192900153618*505019158607^(5/8) 8024922359784761 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^74 8024922359784761 a001 75025/23725150497407*312119004989^(9/11) 8024922359784761 a001 75025/14662949395604*312119004989^(4/5) 8024922359784761 a001 75025/2139295485799*312119004989^(8/11) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(56) 8024922359784761 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^76 8024922359784761 a001 75025/1322157322203*14662949395604^(13/21) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(58) 8024922359784761 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^78 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(60) 8024922359784761 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^80 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(62) 8024922359784761 a001 75025/23725150497407*14662949395604^(5/7) 8024922359784761 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^82 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(64) 8024922359784761 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^84 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(66) 8024922359784761 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^86 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(68) 8024922359784761 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^88 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(70) 8024922359784761 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^90 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(72) 8024922359784761 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^92 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(74) 8024922359784761 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^94 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(76) 8024922359784761 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^96 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(78) 8024922359784761 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^98 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(80) 8024922359784761 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^100 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(82) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(84) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(86) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(88) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(90) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(92) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(94) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(96) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(98) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(100) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(99) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(97) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(95) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(93) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(91) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(89) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(87) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(85) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(83) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(81) 8024922359784761 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^99 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(79) 8024922359784761 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^97 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(77) 8024922359784761 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^95 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(75) 8024922359784761 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^93 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(73) 8024922359784761 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^91 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(71) 8024922359784761 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^89 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(69) 8024922359784761 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^87 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(67) 8024922359784761 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^85 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(65) 8024922359784761 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^83 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(63) 8024922359784761 a001 75025/14662949395604*23725150497407^(11/16) 8024922359784761 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^81 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(61) 8024922359784761 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^79 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(59) 8024922359784761 a001 75025/2139295485799*23725150497407^(5/8) 8024922359784761 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^77 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(57) 8024922359784761 a001 75025/5600748293801*505019158607^(3/4) 8024922359784761 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^75 8024922359784761 a001 75025/312119004989*14662949395604^(4/7) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(55) 8024922359784761 a001 75025/312119004989*505019158607^(9/14) 8024922359784761 a001 75025/1322157322203*192900153618^(13/18) 8024922359784761 a001 75025/23725150497407*192900153618^(5/6) 8024922359784761 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^73 8024922359784761 a001 75025/312119004989*192900153618^(2/3) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(53) 8024922359784761 a001 75025/1322157322203*73681302247^(3/4) 8024922359784761 a001 75025/312119004989*73681302247^(9/13) 8024922359784761 a001 75025/2139295485799*73681302247^(10/13) 8024922359784761 a001 75025/14662949395604*73681302247^(11/13) 8024922359784761 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^71 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(51) 8024922359784761 a001 75025/45537549124*23725150497407^(1/2) 8024922359784761 a001 75025/45537549124*505019158607^(4/7) 8024922359784761 a001 75025/45537549124*73681302247^(8/13) 8024922359784761 a001 75025/192900153618*28143753123^(7/10) 8024922359784761 a001 75025/2139295485799*28143753123^(4/5) 8024922359784761 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^21 8024922359784761 a001 75025/23725150497407*28143753123^(9/10) 8024922359784761 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^23 8024922359784761 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^25 8024922359784761 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^27 8024922359784761 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^29 8024922359784761 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^31 8024922359784761 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^33 8024922359784761 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^35 8024922359784761 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^37 8024922359784761 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^39 8024922359784761 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^41 8024922359784761 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^43 8024922359784761 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^45 8024922359784761 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^47 8024922359784761 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^49 8024922359784761 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^51 8024922359784761 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^53 8024922359784761 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^55 8024922359784761 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^57 8024922359784761 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^59 8024922359784761 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^61 8024922359784761 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^63 8024922359784761 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^65 8024922359784761 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^69 8024922359784761 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^67 8024922359784761 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^68 8024922359784761 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^66 8024922359784761 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^64 8024922359784761 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^62 8024922359784761 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^60 8024922359784761 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^58 8024922359784761 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^56 8024922359784761 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^54 8024922359784761 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^52 8024922359784761 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^50 8024922359784761 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^48 8024922359784761 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^46 8024922359784761 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^44 8024922359784761 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^42 8024922359784761 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^40 8024922359784761 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^38 8024922359784761 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^36 8024922359784761 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^34 8024922359784761 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^32 8024922359784761 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^30 8024922359784761 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^28 8024922359784761 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^26 8024922359784761 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^24 8024922359784761 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^22 8024922359784761 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^20 8024922359784761 a001 75025/17393796001*45537549124^(10/17) 8024922359784761 a001 75025/17393796001*312119004989^(6/11) 8024922359784761 a001 75025/17393796001*14662949395604^(10/21) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(49) 8024922359784761 a001 75025/17393796001*192900153618^(5/9) 8024922359784761 a001 75025/17393796001*28143753123^(3/5) 8024922359784761 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^18 8024922359784761 a001 75025/73681302247*10749957122^(11/16) 8024922359784761 a001 75025/119218851371*10749957122^(17/24) 8024922359784761 a001 75025/45537549124*10749957122^(2/3) 8024922359784761 a001 75025/312119004989*10749957122^(3/4) 8024922359784761 a001 75025/817138163596*10749957122^(19/24) 8024922359784761 a001 75025/1322157322203*10749957122^(13/16) 8024922359784761 a001 75025/2139295485799*10749957122^(5/6) 8024922359784761 a001 75025/5600748293801*10749957122^(7/8) 8024922359784761 a001 75025/14662949395604*10749957122^(11/12) 8024922359784761 a001 75025/23725150497407*10749957122^(15/16) 8024922359784761 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^67 8024922359784761 a001 75025/17393796001*10749957122^(5/8) 8024922359784761 a001 75025/6643838879*17393796001^(4/7) 8024922359784761 a001 75025/6643838879*14662949395604^(4/9) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(47) 8024922359784761 a001 75025/6643838879*505019158607^(1/2) 8024922359784761 a001 75025/6643838879*73681302247^(7/13) 8024922359784761 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^16 8024922359784761 a001 75025/6643838879*10749957122^(7/12) 8024922359784761 a001 75025/45537549124*4106118243^(16/23) 8024922359784761 a001 75025/17393796001*4106118243^(15/23) 8024922359784761 a001 75025/119218851371*4106118243^(17/23) 8024922359784761 a001 75025/312119004989*4106118243^(18/23) 8024922359784761 a001 75025/817138163596*4106118243^(19/23) 8024922359784761 a001 75025/2139295485799*4106118243^(20/23) 8024922359784761 a001 75025/5600748293801*4106118243^(21/23) 8024922359784761 a001 75025/14662949395604*4106118243^(22/23) 8024922359784761 a001 75025/6643838879*4106118243^(14/23) 8024922359784761 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^65 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^26/Lucas(45) 8024922359784761 a001 85146110329250/10610209857723 8024922359784761 a001 75025/2537720636*73681302247^(1/2) 8024922359784761 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^14 8024922359784761 a001 75025/2537720636*10749957122^(13/24) 8024922359784761 a001 75025/2537720636*4106118243^(13/23) 8024922359784761 a001 75025/17393796001*1568397607^(15/22) 8024922359784761 a001 75025/6643838879*1568397607^(7/11) 8024922359784761 a001 75025/45537549124*1568397607^(8/11) 8024922359784761 a001 75025/73681302247*1568397607^(3/4) 8024922359784761 a001 75025/119218851371*1568397607^(17/22) 8024922359784761 a001 75025/312119004989*1568397607^(9/11) 8024922359784761 a001 75025/817138163596*1568397607^(19/22) 8024922359784761 a001 75025/2139295485799*1568397607^(10/11) 8024922359784761 a001 75025/5600748293801*1568397607^(21/22) 8024922359784761 a001 75025/2537720636*1568397607^(13/22) 8024922359784761 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^63 8024922359784761 a001 75025/969323029*2537720636^(8/15) 8024922359784761 a001 75025/969323029*45537549124^(8/17) 8024922359784761 a001 75025/969323029*14662949395604^(8/21) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^24/Lucas(43) 8024922359784761 a001 32522920135925/4052739537881 8024922359784761 a001 75025/969323029*192900153618^(4/9) 8024922359784761 a001 75025/969323029*73681302247^(6/13) 8024922359784761 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^12 8024922359784761 a001 75025/969323029*10749957122^(1/2) 8024922359784761 a001 75025/969323029*4106118243^(12/23) 8024922359784761 a001 75025/969323029*1568397607^(6/11) 8024922359784761 a001 75025/4106118243*599074578^(9/14) 8024922359784761 a001 75025/2537720636*599074578^(13/21) 8024922359784761 a001 75025/6643838879*599074578^(2/3) 8024922359784761 a001 75025/17393796001*599074578^(5/7) 8024922359784761 a001 75025/45537549124*599074578^(16/21) 8024922359784761 a001 75025/73681302247*599074578^(11/14) 8024922359784761 a001 75025/119218851371*599074578^(17/21) 8024922359784761 a001 75025/192900153618*599074578^(5/6) 8024922359784761 a001 75025/312119004989*599074578^(6/7) 8024922359784761 a001 75025/817138163596*599074578^(19/21) 8024922359784761 a001 75025/1322157322203*599074578^(13/14) 8024922359784761 a001 75025/2139295485799*599074578^(20/21) 8024922359784761 a001 75025/969323029*599074578^(4/7) 8024922359784761 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^61 8024922359784761 a001 75025/370248451*312119004989^(2/5) 8024922359784761 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^22/Lucas(41) 8024922359784761 a001 2484530015705/309601751184 8024922359784761 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2)^10 8024922359784761 a001 75025/370248451*10749957122^(11/24) 8024922359784761 a001 75025/370248451*4106118243^(11/23) 8024922359784761 a001 75025/370248451*1568397607^(1/2) 8024922359784761 a001 75025/370248451*599074578^(11/21) 8024922359784761 a001 75025/1568397607*228826127^(5/8) 8024922359784762 a001 75025/969323029*228826127^(3/5) 8024922359784762 a001 75025/2537720636*228826127^(13/20) 8024922359784762 a001 75025/6643838879*228826127^(7/10) 8024922359784762 a001 75025/17393796001*228826127^(3/4) 8024922359784762 a001 75025/45537549124*228826127^(4/5) 8024922359784762 a001 75025/119218851371*228826127^(17/20) 8024922359784762 a001 75025/192900153618*228826127^(7/8) 8024922359784762 a001 75025/312119004989*228826127^(9/10) 8024922359784762 a001 75025/370248451*228826127^(11/20) 8024922359784762 a001 75025/817138163596*228826127^(19/20) 8024922359784762 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^59 8024922359784762 a001 75025/141422324*2537720636^(4/9) 8024922359784762 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^20/Lucas(39) 8024922359784762 a001 75025/141422324*23725150497407^(5/16) 8024922359784762 a001 4745030099650/591286729879 8024922359784762 a001 75025/141422324*505019158607^(5/14) 8024922359784762 a001 75025/141422324*73681302247^(5/13) 8024922359784762 a001 75025/141422324*28143753123^(2/5) 8024922359784762 a004 Fibonacci(39)/Lucas(25)/(1/2+sqrt(5)/2)^8 8024922359784762 a001 75025/141422324*10749957122^(5/12) 8024922359784762 a001 75025/141422324*4106118243^(10/23) 8024922359784762 a001 75025/141422324*1568397607^(5/11) 8024922359784762 a001 75025/141422324*599074578^(10/21) 8024922359784762 a001 75025/141422324*228826127^(1/2) 8024922359784762 a001 75025/370248451*87403803^(11/19) 8024922359784762 a001 75025/969323029*87403803^(12/19) 8024922359784762 a001 75025/2537720636*87403803^(13/19) 8024922359784762 a001 75025/6643838879*87403803^(14/19) 8024922359784762 a001 75025/17393796001*87403803^(15/19) 8024922359784762 a001 75025/45537549124*87403803^(16/19) 8024922359784762 a001 75025/119218851371*87403803^(17/19) 8024922359784762 a001 75025/141422324*87403803^(10/19) 8024922359784762 a001 75025/312119004989*87403803^(18/19) 8024922359784762 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^57 8024922359784764 a001 75025/54018521*141422324^(6/13) 8024922359784764 a001 75025/54018521*2537720636^(2/5) 8024922359784764 a001 75025/54018521*45537549124^(6/17) 8024922359784764 a001 75025/54018521*14662949395604^(2/7) 8024922359784764 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^18/Lucas(37) 8024922359784764 a001 1812440220425/225851433717 8024922359784764 a001 75025/54018521*192900153618^(1/3) 8024922359784764 a004 Fibonacci(37)/Lucas(25)/(1/2+sqrt(5)/2)^6 8024922359784764 a001 75025/54018521*10749957122^(3/8) 8024922359784764 a001 75025/54018521*4106118243^(9/23) 8024922359784764 a001 75025/54018521*1568397607^(9/22) 8024922359784764 a001 75025/54018521*599074578^(3/7) 8024922359784764 a001 75025/54018521*228826127^(9/20) 8024922359784765 a001 75025/54018521*87403803^(9/19) 8024922359784765 a001 75025/228826127*33385282^(7/12) 8024922359784766 a001 75025/141422324*33385282^(5/9) 8024922359784766 a001 75025/370248451*33385282^(11/18) 8024922359784766 a001 75025/969323029*33385282^(2/3) 8024922359784767 a001 75025/2537720636*33385282^(13/18) 8024922359784767 a001 75025/4106118243*33385282^(3/4) 8024922359784767 a001 75025/6643838879*33385282^(7/9) 8024922359784767 a001 75025/17393796001*33385282^(5/6) 8024922359784768 a001 75025/54018521*33385282^(1/2) 8024922359784768 a001 75025/45537549124*33385282^(8/9) 8024922359784768 a001 75025/73681302247*33385282^(11/12) 8024922359784768 a001 75025/119218851371*33385282^(17/18) 8024922359784769 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^55 8024922359784779 a001 75025/33385282*12752043^(1/2) 8024922359784780 a001 75025/20633239*(1/2+1/2*5^(1/2))^16 8024922359784780 a001 75025/20633239*23725150497407^(1/4) 8024922359784780 a001 692290561625/86267571272 8024922359784780 a001 75025/20633239*73681302247^(4/13) 8024922359784780 a004 Fibonacci(35)/Lucas(25)/(1/2+sqrt(5)/2)^4 8024922359784780 a001 75025/20633239*10749957122^(1/3) 8024922359784780 a001 75025/20633239*4106118243^(8/23) 8024922359784780 a001 75025/20633239*1568397607^(4/11) 8024922359784780 a001 75025/20633239*599074578^(8/21) 8024922359784780 a001 75025/20633239*228826127^(2/5) 8024922359784781 a001 75025/20633239*87403803^(8/19) 8024922359784783 a001 75025/20633239*33385282^(4/9) 8024922359784790 a001 75025/54018521*12752043^(9/17) 8024922359784791 a001 75025/141422324*12752043^(10/17) 8024922359784793 a001 75025/370248451*12752043^(11/17) 8024922359784796 a001 75025/969323029*12752043^(12/17) 8024922359784799 a001 75025/2537720636*12752043^(13/17) 8024922359784802 a001 75025/6643838879*12752043^(14/17) 8024922359784803 a001 75025/20633239*12752043^(8/17) 8024922359784805 a001 75025/17393796001*12752043^(15/17) 8024922359784808 a001 75025/45537549124*12752043^(16/17) 8024922359784811 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^53 8024922359784883 a001 75025/7881196*20633239^(2/5) 8024922359784891 a001 75025/7881196*17393796001^(2/7) 8024922359784891 a001 75025/7881196*14662949395604^(2/9) 8024922359784891 a001 75025/7881196*(1/2+1/2*5^(1/2))^14 8024922359784891 a001 75025/7881196*505019158607^(1/4) 8024922359784891 a001 264431464450/32951280099 8024922359784891 a004 Fibonacci(33)/Lucas(25)/(1/2+sqrt(5)/2)^2 8024922359784891 a001 75025/7881196*10749957122^(7/24) 8024922359784891 a001 75025/7881196*4106118243^(7/23) 8024922359784891 a001 75025/7881196*1568397607^(7/22) 8024922359784891 a001 75025/7881196*599074578^(1/3) 8024922359784891 a001 75025/7881196*228826127^(7/20) 8024922359784891 a001 75025/7881196*87403803^(7/19) 8024922359784893 a001 75025/7881196*33385282^(7/18) 8024922359784911 a001 75025/7881196*12752043^(7/17) 8024922359784949 a001 75025/20633239*4870847^(1/2) 8024922359784954 a001 75025/54018521*4870847^(9/16) 8024922359784973 a001 75025/141422324*4870847^(5/8) 8024922359784994 a001 75025/370248451*4870847^(11/16) 8024922359785015 a001 75025/969323029*4870847^(3/4) 8024922359785036 a001 75025/2537720636*4870847^(13/16) 8024922359785039 a001 75025/7881196*4870847^(7/16) 8024922359785057 a001 75025/6643838879*4870847^(7/8) 8024922359785079 a001 75025/17393796001*4870847^(15/16) 8024922359785100 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^51 8024922359785293 a001 514229/4870847*103682^(3/8) 8024922359785600 a001 75025/3010349*7881196^(4/11) 8024922359785647 a001 75025/3010349*141422324^(4/13) 8024922359785647 a001 75025/3010349*2537720636^(4/15) 8024922359785647 a001 75025/3010349*45537549124^(4/17) 8024922359785647 a001 75025/3010349*817138163596^(4/19) 8024922359785647 a001 75025/3010349*14662949395604^(4/21) 8024922359785647 a001 75025/3010349*(1/2+1/2*5^(1/2))^12 8024922359785647 a001 75025/3010349*192900153618^(2/9) 8024922359785647 a001 75025/3010349*73681302247^(3/13) 8024922359785647 a001 1346269/167761 8024922359785647 a001 75025/3010349*10749957122^(1/4) 8024922359785647 a001 75025/3010349*4106118243^(6/23) 8024922359785647 a001 75025/3010349*1568397607^(3/11) 8024922359785647 a001 75025/3010349*599074578^(2/7) 8024922359785647 a001 75025/3010349*228826127^(3/10) 8024922359785647 a001 75025/3010349*87403803^(6/19) 8024922359785649 a001 75025/3010349*33385282^(1/3) 8024922359785664 a001 75025/3010349*12752043^(6/17) 8024922359785774 a001 75025/3010349*4870847^(3/8) 8024922359785871 a001 75025/12752043*1860498^(1/2) 8024922359785973 a001 75025/7881196*1860498^(7/15) 8024922359786017 a001 75025/20633239*1860498^(8/15) 8024922359786155 a001 75025/54018521*1860498^(3/5) 8024922359786307 a001 75025/141422324*1860498^(2/3) 8024922359786384 a001 75025/228826127*1860498^(7/10) 8024922359786462 a001 75025/370248451*1860498^(11/15) 8024922359786574 a001 75025/3010349*1860498^(2/5) 8024922359786616 a001 75025/969323029*1860498^(4/5) 8024922359786693 a001 75025/1568397607*1860498^(5/6) 8024922359786771 a001 75025/2537720636*1860498^(13/15) 8024922359786848 a001 75025/4106118243*1860498^(9/10) 8024922359786925 a001 75025/6643838879*1860498^(14/15) 8024922359787080 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^49 8024922359787332 a001 17711/39603*15127^(3/10) 8024922359790826 a001 75025/1149851*20633239^(2/7) 8024922359790831 a001 75025/1149851*2537720636^(2/9) 8024922359790831 a001 75025/1149851*312119004989^(2/11) 8024922359790831 a001 75025/1149851*(1/2+1/2*5^(1/2))^10 8024922359790831 a001 75025/1149851*28143753123^(1/5) 8024922359790831 a001 514229/167761*(1/2+1/2*5^(1/2))^2 8024922359790831 a001 514229/167761*10749957122^(1/24) 8024922359790831 a001 75025/1149851*10749957122^(5/24) 8024922359790831 a001 514229/167761*4106118243^(1/23) 8024922359790831 a001 38580030725/4807526976 8024922359790831 a001 75025/1149851*4106118243^(5/23) 8024922359790831 a001 514229/167761*1568397607^(1/22) 8024922359790831 a001 75025/1149851*1568397607^(5/22) 8024922359790831 a001 514229/167761*599074578^(1/21) 8024922359790831 a001 75025/1149851*599074578^(5/21) 8024922359790831 a001 514229/167761*228826127^(1/20) 8024922359790831 a001 75025/1149851*228826127^(1/4) 8024922359790831 a001 514229/167761*87403803^(1/19) 8024922359790831 a001 75025/1149851*87403803^(5/19) 8024922359790831 a001 514229/167761*33385282^(1/18) 8024922359790833 a001 75025/1149851*33385282^(5/18) 8024922359790834 a001 514229/167761*12752043^(1/17) 8024922359790845 a001 75025/1149851*12752043^(5/17) 8024922359790852 a001 514229/167761*4870847^(1/16) 8024922359790937 a001 75025/1149851*4870847^(5/16) 8024922359790986 a001 514229/167761*1860498^(1/15) 8024922359791604 a001 75025/1149851*1860498^(1/3) 8024922359791966 a001 514229/167761*710647^(1/14) 8024922359792457 a001 75025/3010349*710647^(3/7) 8024922359792836 a001 75025/7881196*710647^(1/2) 8024922359793860 a001 75025/20633239*710647^(4/7) 8024922359794437 a001 317811/4870847*103682^(5/12) 8024922359794979 a001 75025/54018521*710647^(9/14) 8024922359795194 a001 121393/7881196*103682^(13/24) 8024922359796112 a001 75025/141422324*710647^(5/7) 8024922359796128 a001 196418/1149851*103682^(1/3) 8024922359796506 a001 75025/1149851*710647^(5/14) 8024922359796679 a001 75025/228826127*710647^(3/4) 8024922359797247 a001 75025/370248451*710647^(11/14) 8024922359798382 a001 75025/969323029*710647^(6/7) 8024922359799209 a001 514229/167761*271443^(1/13) 8024922359799517 a001 75025/2537720636*710647^(13/14) 8024922359800652 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^47 8024922359808298 a001 832040/12752043*103682^(5/12) 8024922359810320 a001 311187/4769326*103682^(5/12) 8024922359810615 a001 5702887/87403803*103682^(5/12) 8024922359810658 a001 14930352/228826127*103682^(5/12) 8024922359810665 a001 39088169/599074578*103682^(5/12) 8024922359810666 a001 14619165/224056801*103682^(5/12) 8024922359810666 a001 267914296/4106118243*103682^(5/12) 8024922359810666 a001 701408733/10749957122*103682^(5/12) 8024922359810666 a001 1836311903/28143753123*103682^(5/12) 8024922359810666 a001 686789568/10525900321*103682^(5/12) 8024922359810666 a001 12586269025/192900153618*103682^(5/12) 8024922359810666 a001 32951280099/505019158607*103682^(5/12) 8024922359810666 a001 86267571272/1322157322203*103682^(5/12) 8024922359810666 a001 32264490531/494493258286*103682^(5/12) 8024922359810666 a001 591286729879/9062201101803*103682^(5/12) 8024922359810666 a001 1548008755920/23725150497407*103682^(5/12) 8024922359810666 a001 365435296162/5600748293801*103682^(5/12) 8024922359810666 a001 139583862445/2139295485799*103682^(5/12) 8024922359810666 a001 53316291173/817138163596*103682^(5/12) 8024922359810666 a001 20365011074/312119004989*103682^(5/12) 8024922359810666 a001 7778742049/119218851371*103682^(5/12) 8024922359810666 a001 2971215073/45537549124*103682^(5/12) 8024922359810666 a001 1134903170/17393796001*103682^(5/12) 8024922359810666 a001 433494437/6643838879*103682^(5/12) 8024922359810666 a001 165580141/2537720636*103682^(5/12) 8024922359810666 a001 63245986/969323029*103682^(5/12) 8024922359810669 a001 24157817/370248451*103682^(5/12) 8024922359810685 a001 9227465/141422324*103682^(5/12) 8024922359810798 a001 3524578/54018521*103682^(5/12) 8024922359811570 a001 1346269/20633239*103682^(5/12) 8024922359813548 a001 75640/15251*103682^(1/24) 8024922359816864 a001 514229/7881196*103682^(5/12) 8024922359818844 a001 98209/930249*103682^(3/8) 8024922359826009 a001 317811/7881196*103682^(11/24) 8024922359826120 a001 121393/12752043*103682^(7/12) 8024922359826363 a001 75025/439204*(1/2+1/2*5^(1/2))^8 8024922359826363 a001 75025/439204*23725150497407^(1/8) 8024922359826363 a001 75025/439204*505019158607^(1/7) 8024922359826363 a001 75025/439204*73681302247^(2/13) 8024922359826363 a001 196418/167761*(1/2+1/2*5^(1/2))^4 8024922359826363 a001 196418/167761*23725150497407^(1/16) 8024922359826363 a001 196418/167761*73681302247^(1/13) 8024922359826363 a001 75025/439204*10749957122^(1/6) 8024922359826363 a001 196418/167761*10749957122^(1/12) 8024922359826363 a001 196418/167761*4106118243^(2/23) 8024922359826363 a001 75025/439204*4106118243^(4/23) 8024922359826363 a001 196418/167761*1568397607^(1/11) 8024922359826363 a001 14736260450/1836311903 8024922359826363 a001 75025/439204*1568397607^(2/11) 8024922359826363 a001 196418/167761*599074578^(2/21) 8024922359826363 a001 75025/439204*599074578^(4/21) 8024922359826363 a001 196418/167761*228826127^(1/10) 8024922359826363 a001 75025/439204*228826127^(1/5) 8024922359826363 a001 196418/167761*87403803^(2/19) 8024922359826363 a001 75025/439204*87403803^(4/19) 8024922359826364 a001 196418/167761*33385282^(1/9) 8024922359826364 a001 75025/439204*33385282^(2/9) 8024922359826369 a001 196418/167761*12752043^(2/17) 8024922359826374 a001 75025/439204*12752043^(4/17) 8024922359826405 a001 196418/167761*4870847^(1/8) 8024922359826447 a001 75025/439204*4870847^(1/4) 8024922359826672 a001 196418/167761*1860498^(2/15) 8024922359826981 a001 75025/439204*1860498^(4/15) 8024922359828633 a001 196418/167761*710647^(1/7) 8024922359830903 a001 75025/439204*710647^(2/7) 8024922359831370 a001 121393/167761*103682^(5/24) 8024922359832721 a001 75025/1149851*271443^(5/13) 8024922359835915 a001 75025/3010349*271443^(6/13) 8024922359838880 a001 75025/4870847*271443^(1/2) 8024922359839471 a001 75640/1875749*103682^(11/24) 8024922359839506 a001 28657/33385282*64079^(19/23) 8024922359841435 a001 2178309/54018521*103682^(11/24) 8024922359841721 a001 5702887/141422324*103682^(11/24) 8024922359841763 a001 14930352/370248451*103682^(11/24) 8024922359841769 a001 39088169/969323029*103682^(11/24) 8024922359841770 a001 9303105/230701876*103682^(11/24) 8024922359841770 a001 267914296/6643838879*103682^(11/24) 8024922359841770 a001 701408733/17393796001*103682^(11/24) 8024922359841770 a001 1836311903/45537549124*103682^(11/24) 8024922359841770 a001 4807526976/119218851371*103682^(11/24) 8024922359841770 a001 1144206275/28374454999*103682^(11/24) 8024922359841770 a001 32951280099/817138163596*103682^(11/24) 8024922359841770 a001 86267571272/2139295485799*103682^(11/24) 8024922359841770 a001 225851433717/5600748293801*103682^(11/24) 8024922359841770 a001 591286729879/14662949395604*103682^(11/24) 8024922359841770 a001 365435296162/9062201101803*103682^(11/24) 8024922359841770 a001 139583862445/3461452808002*103682^(11/24) 8024922359841770 a001 53316291173/1322157322203*103682^(11/24) 8024922359841770 a001 20365011074/505019158607*103682^(11/24) 8024922359841770 a001 7778742049/192900153618*103682^(11/24) 8024922359841770 a001 2971215073/73681302247*103682^(11/24) 8024922359841770 a001 1134903170/28143753123*103682^(11/24) 8024922359841770 a001 433494437/10749957122*103682^(11/24) 8024922359841770 a001 165580141/4106118243*103682^(11/24) 8024922359841771 a001 63245986/1568397607*103682^(11/24) 8024922359841773 a001 24157817/599074578*103682^(11/24) 8024922359841789 a001 9227465/228826127*103682^(11/24) 8024922359841898 a001 3524578/87403803*103682^(11/24) 8024922359842649 a001 1346269/33385282*103682^(11/24) 8024922359843119 a001 196418/167761*271443^(2/13) 8024922359843537 a001 75025/7881196*271443^(7/13) 8024922359847790 a001 514229/12752043*103682^(11/24) 8024922359851804 a001 75025/20633239*271443^(8/13) 8024922359853040 a001 514229/167761*103682^(1/12) 8024922359853153 a001 196418/3010349*103682^(5/12) 8024922359853538 a001 832040/271443*39603^(1/11) 8024922359856935 a001 105937/4250681*103682^(1/2) 8024922359857293 a001 121393/20633239*103682^(5/8) 8024922359859875 a001 75025/439204*271443^(4/13) 8024922359860166 a001 75025/54018521*271443^(9/13) 8024922359862184 a001 317811/167761*103682^(1/8) 8024922359868542 a001 75025/141422324*271443^(10/13) 8024922359870549 a001 416020/16692641*103682^(1/2) 8024922359872535 a001 726103/29134601*103682^(1/2) 8024922359872825 a001 5702887/228826127*103682^(1/2) 8024922359872867 a001 829464/33281921*103682^(1/2) 8024922359872874 a001 39088169/1568397607*103682^(1/2) 8024922359872874 a001 34111385/1368706081*103682^(1/2) 8024922359872875 a001 133957148/5374978561*103682^(1/2) 8024922359872875 a001 233802911/9381251041*103682^(1/2) 8024922359872875 a001 1836311903/73681302247*103682^(1/2) 8024922359872875 a001 267084832/10716675201*103682^(1/2) 8024922359872875 a001 12586269025/505019158607*103682^(1/2) 8024922359872875 a001 10983760033/440719107401*103682^(1/2) 8024922359872875 a001 43133785636/1730726404001*103682^(1/2) 8024922359872875 a001 75283811239/3020733700601*103682^(1/2) 8024922359872875 a001 182717648081/7331474697802*103682^(1/2) 8024922359872875 a001 139583862445/5600748293801*103682^(1/2) 8024922359872875 a001 53316291173/2139295485799*103682^(1/2) 8024922359872875 a001 10182505537/408569081798*103682^(1/2) 8024922359872875 a001 7778742049/312119004989*103682^(1/2) 8024922359872875 a001 2971215073/119218851371*103682^(1/2) 8024922359872875 a001 567451585/22768774562*103682^(1/2) 8024922359872875 a001 433494437/17393796001*103682^(1/2) 8024922359872875 a001 165580141/6643838879*103682^(1/2) 8024922359872875 a001 31622993/1268860318*103682^(1/2) 8024922359872877 a001 24157817/969323029*103682^(1/2) 8024922359872894 a001 9227465/370248451*103682^(1/2) 8024922359873004 a001 1762289/70711162*103682^(1/2) 8024922359873763 a001 1346269/54018521*103682^(1/2) 8024922359876919 a001 75025/370248451*271443^(11/13) 8024922359878963 a001 514229/20633239*103682^(1/2) 8024922359883033 a001 196418/4870847*103682^(11/24) 8024922359885297 a001 75025/969323029*271443^(12/13) 8024922359888108 a001 10959/711491*103682^(13/24) 8024922359888371 a001 121393/33385282*103682^(2/3) 8024922359893579 a001 75025/271443*103682^(7/24) 8024922359893675 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^45 8024922359901664 a001 832040/54018521*103682^(13/24) 8024922359903641 a001 2178309/141422324*103682^(13/24) 8024922359903930 a001 5702887/370248451*103682^(13/24) 8024922359903972 a001 14930352/969323029*103682^(13/24) 8024922359903978 a001 39088169/2537720636*103682^(13/24) 8024922359903979 a001 102334155/6643838879*103682^(13/24) 8024922359903979 a001 9238424/599786069*103682^(13/24) 8024922359903979 a001 701408733/45537549124*103682^(13/24) 8024922359903979 a001 1836311903/119218851371*103682^(13/24) 8024922359903979 a001 4807526976/312119004989*103682^(13/24) 8024922359903979 a001 12586269025/817138163596*103682^(13/24) 8024922359903979 a001 32951280099/2139295485799*103682^(13/24) 8024922359903979 a001 86267571272/5600748293801*103682^(13/24) 8024922359903979 a001 7787980473/505618944676*103682^(13/24) 8024922359903979 a001 365435296162/23725150497407*103682^(13/24) 8024922359903979 a001 139583862445/9062201101803*103682^(13/24) 8024922359903979 a001 53316291173/3461452808002*103682^(13/24) 8024922359903979 a001 20365011074/1322157322203*103682^(13/24) 8024922359903979 a001 7778742049/505019158607*103682^(13/24) 8024922359903979 a001 2971215073/192900153618*103682^(13/24) 8024922359903979 a001 1134903170/73681302247*103682^(13/24) 8024922359903979 a001 433494437/28143753123*103682^(13/24) 8024922359903979 a001 165580141/10749957122*103682^(13/24) 8024922359903980 a001 63245986/4106118243*103682^(13/24) 8024922359903982 a001 24157817/1568397607*103682^(13/24) 8024922359903998 a001 9227465/599074578*103682^(13/24) 8024922359904108 a001 3524578/228826127*103682^(13/24) 8024922359904864 a001 1346269/87403803*103682^(13/24) 8024922359910041 a001 514229/33385282*103682^(13/24) 8024922359914605 a001 98209/3940598*103682^(1/2) 8024922359919186 a001 317811/33385282*103682^(7/12) 8024922359919486 a001 121393/54018521*103682^(17/24) 8024922359924505 a001 28657/20633239*64079^(18/23) 8024922359928617 a001 75025/39603*15127^(3/20) 8024922359932764 a001 832040/87403803*103682^(7/12) 8024922359934745 a001 46347/4868641*103682^(7/12) 8024922359935034 a001 5702887/599074578*103682^(7/12) 8024922359935076 a001 14930352/1568397607*103682^(7/12) 8024922359935083 a001 39088169/4106118243*103682^(7/12) 8024922359935083 a001 102334155/10749957122*103682^(7/12) 8024922359935084 a001 267914296/28143753123*103682^(7/12) 8024922359935084 a001 701408733/73681302247*103682^(7/12) 8024922359935084 a001 1836311903/192900153618*103682^(7/12) 8024922359935084 a001 102287808/10745088481*103682^(7/12) 8024922359935084 a001 12586269025/1322157322203*103682^(7/12) 8024922359935084 a001 32951280099/3461452808002*103682^(7/12) 8024922359935084 a001 86267571272/9062201101803*103682^(7/12) 8024922359935084 a001 225851433717/23725150497407*103682^(7/12) 8024922359935084 a001 139583862445/14662949395604*103682^(7/12) 8024922359935084 a001 53316291173/5600748293801*103682^(7/12) 8024922359935084 a001 20365011074/2139295485799*103682^(7/12) 8024922359935084 a001 7778742049/817138163596*103682^(7/12) 8024922359935084 a001 2971215073/312119004989*103682^(7/12) 8024922359935084 a001 1134903170/119218851371*103682^(7/12) 8024922359935084 a001 433494437/45537549124*103682^(7/12) 8024922359935084 a001 165580141/17393796001*103682^(7/12) 8024922359935084 a001 63245986/6643838879*103682^(7/12) 8024922359935086 a001 24157817/2537720636*103682^(7/12) 8024922359935102 a001 9227465/969323029*103682^(7/12) 8024922359935213 a001 3524578/370248451*103682^(7/12) 8024922359935970 a001 1346269/141422324*103682^(7/12) 8024922359941156 a001 514229/54018521*103682^(7/12) 8024922359945531 a001 196418/12752043*103682^(13/24) 8024922359948541 a001 311187/101521*39603^(1/11) 8024922359950300 a001 317811/54018521*103682^(5/8) 8024922359950586 a001 121393/87403803*103682^(3/4) 8024922359950781 a001 196418/167761*103682^(1/6) 8024922359962402 a001 5702887/1860498*39603^(1/11) 8024922359963870 a001 208010/35355581*103682^(5/8) 8024922359964424 a001 14930352/4870847*39603^(1/11) 8024922359964719 a001 39088169/12752043*39603^(1/11) 8024922359964762 a001 14619165/4769326*39603^(1/11) 8024922359964769 a001 267914296/87403803*39603^(1/11) 8024922359964770 a001 701408733/228826127*39603^(1/11) 8024922359964770 a001 1836311903/599074578*39603^(1/11) 8024922359964770 a001 686789568/224056801*39603^(1/11) 8024922359964770 a001 12586269025/4106118243*39603^(1/11) 8024922359964770 a001 32951280099/10749957122*39603^(1/11) 8024922359964770 a001 86267571272/28143753123*39603^(1/11) 8024922359964770 a001 32264490531/10525900321*39603^(1/11) 8024922359964770 a001 591286729879/192900153618*39603^(1/11) 8024922359964770 a001 1548008755920/505019158607*39603^(1/11) 8024922359964770 a001 1515744265389/494493258286*39603^(1/11) 8024922359964770 a001 2504730781961/817138163596*39603^(1/11) 8024922359964770 a001 956722026041/312119004989*39603^(1/11) 8024922359964770 a001 365435296162/119218851371*39603^(1/11) 8024922359964770 a001 139583862445/45537549124*39603^(1/11) 8024922359964770 a001 53316291173/17393796001*39603^(1/11) 8024922359964770 a001 20365011074/6643838879*39603^(1/11) 8024922359964770 a001 7778742049/2537720636*39603^(1/11) 8024922359964770 a001 2971215073/969323029*39603^(1/11) 8024922359964770 a001 1134903170/370248451*39603^(1/11) 8024922359964770 a001 433494437/141422324*39603^(1/11) 8024922359964773 a001 165580141/54018521*39603^(1/11) 8024922359964789 a001 63245986/20633239*39603^(1/11) 8024922359964902 a001 24157817/7881196*39603^(1/11) 8024922359965674 a001 9227465/3010349*39603^(1/11) 8024922359965850 a001 2178309/370248451*103682^(5/8) 8024922359966139 a001 5702887/969323029*103682^(5/8) 8024922359966181 a001 196452/33391061*103682^(5/8) 8024922359966187 a001 39088169/6643838879*103682^(5/8) 8024922359966188 a001 102334155/17393796001*103682^(5/8) 8024922359966188 a001 66978574/11384387281*103682^(5/8) 8024922359966188 a001 701408733/119218851371*103682^(5/8) 8024922359966188 a001 1836311903/312119004989*103682^(5/8) 8024922359966188 a001 1201881744/204284540899*103682^(5/8) 8024922359966188 a001 12586269025/2139295485799*103682^(5/8) 8024922359966188 a001 32951280099/5600748293801*103682^(5/8) 8024922359966188 a001 1135099622/192933544679*103682^(5/8) 8024922359966188 a001 139583862445/23725150497407*103682^(5/8) 8024922359966188 a001 53316291173/9062201101803*103682^(5/8) 8024922359966188 a001 10182505537/1730726404001*103682^(5/8) 8024922359966188 a001 7778742049/1322157322203*103682^(5/8) 8024922359966188 a001 2971215073/505019158607*103682^(5/8) 8024922359966188 a001 567451585/96450076809*103682^(5/8) 8024922359966188 a001 433494437/73681302247*103682^(5/8) 8024922359966188 a001 165580141/28143753123*103682^(5/8) 8024922359966188 a001 31622993/5374978561*103682^(5/8) 8024922359966191 a001 24157817/4106118243*103682^(5/8) 8024922359966207 a001 9227465/1568397607*103682^(5/8) 8024922359966317 a001 1762289/299537289*103682^(5/8) 8024922359967073 a001 1346269/228826127*103682^(5/8) 8024922359970969 a001 3524578/1149851*39603^(1/11) 8024922359972257 a001 514229/87403803*103682^(5/8) 8024922359976704 a001 196418/20633239*103682^(7/12) 8024922359981401 a001 105937/29134601*103682^(2/3) 8024922359981692 a001 233/271444*103682^(19/24) 8024922359994974 a001 832040/228826127*103682^(2/3) 8024922359996954 a001 726103/199691526*103682^(2/3) 8024922359997243 a001 5702887/1568397607*103682^(2/3) 8024922359997285 a001 4976784/1368706081*103682^(2/3) 8024922359997291 a001 39088169/10749957122*103682^(2/3) 8024922359997292 a001 831985/228811001*103682^(2/3) 8024922359997293 a001 267914296/73681302247*103682^(2/3) 8024922359997293 a001 233802911/64300051206*103682^(2/3) 8024922359997293 a001 1836311903/505019158607*103682^(2/3) 8024922359997293 a001 1602508992/440719107401*103682^(2/3) 8024922359997293 a001 12586269025/3461452808002*103682^(2/3) 8024922359997293 a001 10983760033/3020733700601*103682^(2/3) 8024922359997293 a001 86267571272/23725150497407*103682^(2/3) 8024922359997293 a001 53316291173/14662949395604*103682^(2/3) 8024922359997293 a001 20365011074/5600748293801*103682^(2/3) 8024922359997293 a001 7778742049/2139295485799*103682^(2/3) 8024922359997293 a001 2971215073/817138163596*103682^(2/3) 8024922359997293 a001 1134903170/312119004989*103682^(2/3) 8024922359997293 a001 433494437/119218851371*103682^(2/3) 8024922359997293 a001 165580141/45537549124*103682^(2/3) 8024922359997293 a001 63245986/17393796001*103682^(2/3) 8024922359997295 a001 24157817/6643838879*103682^(2/3) 8024922359997311 a001 9227465/2537720636*103682^(2/3) 8024922359997422 a001 3524578/969323029*103682^(2/3) 8024922359998178 a001 1346269/370248451*103682^(2/3) 8024922360003363 a001 514229/141422324*103682^(2/3) 8024922360007257 a001 1346269/439204*39603^(1/11) 8024922360007782 a001 98209/16692641*103682^(5/8) 8024922360009410 a001 28657/12752043*64079^(17/23) 8024922360012507 a001 317811/141422324*103682^(17/24) 8024922360012796 a001 121393/228826127*103682^(5/6) 8024922360015017 a001 75640/15251*39603^(1/22) 8024922360026079 a001 832040/370248451*103682^(17/24) 8024922360028059 a001 2178309/969323029*103682^(17/24) 8024922360028348 a001 5702887/2537720636*103682^(17/24) 8024922360028390 a001 14930352/6643838879*103682^(17/24) 8024922360028396 a001 39088169/17393796001*103682^(17/24) 8024922360028397 a001 102334155/45537549124*103682^(17/24) 8024922360028397 a001 267914296/119218851371*103682^(17/24) 8024922360028397 a001 3524667/1568437211*103682^(17/24) 8024922360028397 a001 1836311903/817138163596*103682^(17/24) 8024922360028397 a001 4807526976/2139295485799*103682^(17/24) 8024922360028397 a001 12586269025/5600748293801*103682^(17/24) 8024922360028397 a001 32951280099/14662949395604*103682^(17/24) 8024922360028397 a001 53316291173/23725150497407*103682^(17/24) 8024922360028397 a001 20365011074/9062201101803*103682^(17/24) 8024922360028397 a001 7778742049/3461452808002*103682^(17/24) 8024922360028397 a001 2971215073/1322157322203*103682^(17/24) 8024922360028397 a001 1134903170/505019158607*103682^(17/24) 8024922360028397 a001 433494437/192900153618*103682^(17/24) 8024922360028397 a001 165580141/73681302247*103682^(17/24) 8024922360028397 a001 63245986/28143753123*103682^(17/24) 8024922360028400 a001 24157817/10749957122*103682^(17/24) 8024922360028416 a001 9227465/4106118243*103682^(17/24) 8024922360028526 a001 3524578/1568397607*103682^(17/24) 8024922360029283 a001 1346269/599074578*103682^(17/24) 8024922360034466 a001 514229/228826127*103682^(17/24) 8024922360038897 a001 196418/54018521*103682^(2/3) 8024922360043611 a001 317811/228826127*103682^(3/4) 8024922360043901 a001 121393/370248451*103682^(7/8) 8024922360048811 a001 75025/710647*103682^(3/8) 8024922360057183 a001 416020/299537289*103682^(3/4) 8024922360059163 a001 311187/224056801*103682^(3/4) 8024922360059452 a001 5702887/4106118243*103682^(3/4) 8024922360059494 a001 7465176/5374978561*103682^(3/4) 8024922360059500 a001 39088169/28143753123*103682^(3/4) 8024922360059501 a001 14619165/10525900321*103682^(3/4) 8024922360059501 a001 133957148/96450076809*103682^(3/4) 8024922360059501 a001 701408733/505019158607*103682^(3/4) 8024922360059501 a001 1836311903/1322157322203*103682^(3/4) 8024922360059501 a001 14930208/10749853441*103682^(3/4) 8024922360059501 a001 12586269025/9062201101803*103682^(3/4) 8024922360059501 a001 32951280099/23725150497407*103682^(3/4) 8024922360059501 a001 10182505537/7331474697802*103682^(3/4) 8024922360059501 a001 7778742049/5600748293801*103682^(3/4) 8024922360059501 a001 2971215073/2139295485799*103682^(3/4) 8024922360059501 a001 567451585/408569081798*103682^(3/4) 8024922360059501 a001 433494437/312119004989*103682^(3/4) 8024922360059502 a001 165580141/119218851371*103682^(3/4) 8024922360059502 a001 31622993/22768774562*103682^(3/4) 8024922360059504 a001 24157817/17393796001*103682^(3/4) 8024922360059520 a001 9227465/6643838879*103682^(3/4) 8024922360059631 a001 1762289/1268860318*103682^(3/4) 8024922360060387 a001 1346269/969323029*103682^(3/4) 8024922360060657 a001 75025/167761*439204^(2/9) 8024922360065571 a001 514229/370248451*103682^(3/4) 8024922360069878 a001 75025/167761*7881196^(2/11) 8024922360069902 a001 75025/167761*141422324^(2/13) 8024922360069902 a001 75025/167761*2537720636^(2/15) 8024922360069902 a001 75025/167761*45537549124^(2/17) 8024922360069902 a001 75025/167761*14662949395604^(2/21) 8024922360069902 a001 75025/167761*(1/2+1/2*5^(1/2))^6 8024922360069902 a001 75025/167761*10749957122^(1/8) 8024922360069902 a001 75025/167761*4106118243^(3/23) 8024922360069902 a001 75025/167761*1568397607^(3/22) 8024922360069902 a001 75025/167761*599074578^(1/7) 8024922360069902 a001 5628750625/701408733 8024922360069902 a001 75025/167761*228826127^(3/20) 8024922360069902 a001 75025/167761*87403803^(3/19) 8024922360069903 a001 75025/167761*33385282^(1/6) 8024922360069911 a001 75025/167761*12752043^(3/17) 8024922360069965 a001 75025/167761*4870847^(3/16) 8024922360069997 a001 196418/87403803*103682^(17/24) 8024922360070366 a001 75025/167761*1860498^(1/5) 8024922360073307 a001 75025/167761*710647^(3/14) 8024922360074716 a001 317811/370248451*103682^(19/24) 8024922360075005 a001 121393/599074578*103682^(11/12) 8024922360075199 a001 75025/439204*103682^(1/3) 8024922360088288 a001 832040/969323029*103682^(19/24) 8024922360090268 a001 2178309/2537720636*103682^(19/24) 8024922360090557 a001 5702887/6643838879*103682^(19/24) 8024922360090599 a001 14930352/17393796001*103682^(19/24) 8024922360090605 a001 39088169/45537549124*103682^(19/24) 8024922360090606 a001 102334155/119218851371*103682^(19/24) 8024922360090606 a001 267914296/312119004989*103682^(19/24) 8024922360090606 a001 701408733/817138163596*103682^(19/24) 8024922360090606 a001 1836311903/2139295485799*103682^(19/24) 8024922360090606 a001 4807526976/5600748293801*103682^(19/24) 8024922360090606 a001 12586269025/14662949395604*103682^(19/24) 8024922360090606 a001 20365011074/23725150497407*103682^(19/24) 8024922360090606 a001 7778742049/9062201101803*103682^(19/24) 8024922360090606 a001 2971215073/3461452808002*103682^(19/24) 8024922360090606 a001 1134903170/1322157322203*103682^(19/24) 8024922360090606 a001 433494437/505019158607*103682^(19/24) 8024922360090606 a001 165580141/192900153618*103682^(19/24) 8024922360090606 a001 63245986/73681302247*103682^(19/24) 8024922360090609 a001 24157817/28143753123*103682^(19/24) 8024922360090625 a001 9227465/10749957122*103682^(19/24) 8024922360090735 a001 3524578/4106118243*103682^(19/24) 8024922360091491 a001 1346269/1568397607*103682^(19/24) 8024922360094500 a001 514229/271443*39603^(3/22) 8024922360094562 a001 28657/7881196*64079^(16/23) 8024922360095036 a001 75025/167761*271443^(3/13) 8024922360096676 a001 514229/599074578*103682^(19/24) 8024922360101103 a001 98209/70711162*103682^(3/4) 8024922360101876 a001 75025/1149851*103682^(5/12) 8024922360105820 a001 377/710646*103682^(5/6) 8024922360106110 a001 121393/969323029*103682^(23/24) 8024922360112683 a001 28657/103682*64079^(7/23) 8024922360119392 a001 832040/1568397607*103682^(5/6) 8024922360121372 a001 726103/1368706081*103682^(5/6) 8024922360121661 a001 5702887/10749957122*103682^(5/6) 8024922360121703 a001 4976784/9381251041*103682^(5/6) 8024922360121709 a001 39088169/73681302247*103682^(5/6) 8024922360121710 a001 34111385/64300051206*103682^(5/6) 8024922360121710 a001 267914296/505019158607*103682^(5/6) 8024922360121710 a001 233802911/440719107401*103682^(5/6) 8024922360121710 a001 1836311903/3461452808002*103682^(5/6) 8024922360121710 a001 1602508992/3020733700601*103682^(5/6) 8024922360121710 a001 12586269025/23725150497407*103682^(5/6) 8024922360121710 a001 7778742049/14662949395604*103682^(5/6) 8024922360121710 a001 2971215073/5600748293801*103682^(5/6) 8024922360121710 a001 1134903170/2139295485799*103682^(5/6) 8024922360121710 a001 433494437/817138163596*103682^(5/6) 8024922360121710 a001 165580141/312119004989*103682^(5/6) 8024922360121711 a001 63245986/119218851371*103682^(5/6) 8024922360121713 a001 24157817/45537549124*103682^(5/6) 8024922360121729 a001 9227465/17393796001*103682^(5/6) 8024922360121840 a001 3524578/6643838879*103682^(5/6) 8024922360122596 a001 1346269/2537720636*103682^(5/6) 8024922360124592 a001 75025/1860498*103682^(11/24) 8024922360127780 a001 514229/969323029*103682^(5/6) 8024922360132207 a001 196418/228826127*103682^(19/24) 8024922360136925 a001 317811/969323029*103682^(7/8) 8024922360137214 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^44 8024922360137522 a001 10946/20633239*24476^(20/21) 8024922360150497 a001 610/1860499*103682^(7/8) 8024922360152477 a001 2178309/6643838879*103682^(7/8) 8024922360152766 a001 5702887/17393796001*103682^(7/8) 8024922360152808 a001 3732588/11384387281*103682^(7/8) 8024922360152814 a001 39088169/119218851371*103682^(7/8) 8024922360152815 a001 9303105/28374454999*103682^(7/8) 8024922360152815 a001 66978574/204284540899*103682^(7/8) 8024922360152815 a001 701408733/2139295485799*103682^(7/8) 8024922360152815 a001 1836311903/5600748293801*103682^(7/8) 8024922360152815 a001 1201881744/3665737348901*103682^(7/8) 8024922360152815 a001 7778742049/23725150497407*103682^(7/8) 8024922360152815 a001 2971215073/9062201101803*103682^(7/8) 8024922360152815 a001 567451585/1730726404001*103682^(7/8) 8024922360152815 a001 433494437/1322157322203*103682^(7/8) 8024922360152815 a001 165580141/505019158607*103682^(7/8) 8024922360152815 a001 31622993/96450076809*103682^(7/8) 8024922360152818 a001 24157817/73681302247*103682^(7/8) 8024922360152834 a001 9227465/28143753123*103682^(7/8) 8024922360152944 a001 1762289/5374978561*103682^(7/8) 8024922360153700 a001 1346269/4106118243*103682^(7/8) 8024922360158884 a001 514229/1568397607*103682^(7/8) 8024922360158901 a001 75025/3010349*103682^(1/2) 8024922360163312 a001 196418/370248451*103682^(5/6) 8024922360168029 a001 317811/1568397607*103682^(11/12) 8024922360179068 a001 28657/4870847*64079^(15/23) 8024922360181601 a001 832040/4106118243*103682^(11/12) 8024922360182339 a001 1346269/710647*39603^(3/22) 8024922360183581 a001 987/4870846*103682^(11/12) 8024922360183870 a001 5702887/28143753123*103682^(11/12) 8024922360183912 a001 14930352/73681302247*103682^(11/12) 8024922360183918 a001 39088169/192900153618*103682^(11/12) 8024922360183919 a001 102334155/505019158607*103682^(11/12) 8024922360183919 a001 267914296/1322157322203*103682^(11/12) 8024922360183919 a001 701408733/3461452808002*103682^(11/12) 8024922360183919 a001 1836311903/9062201101803*103682^(11/12) 8024922360183919 a001 4807526976/23725150497407*103682^(11/12) 8024922360183919 a001 2971215073/14662949395604*103682^(11/12) 8024922360183919 a001 1134903170/5600748293801*103682^(11/12) 8024922360183919 a001 433494437/2139295485799*103682^(11/12) 8024922360183919 a001 165580141/817138163596*103682^(11/12) 8024922360183920 a001 63245986/312119004989*103682^(11/12) 8024922360183922 a001 24157817/119218851371*103682^(11/12) 8024922360183938 a001 9227465/45537549124*103682^(11/12) 8024922360184049 a001 3524578/17393796001*103682^(11/12) 8024922360184805 a001 1346269/6643838879*103682^(11/12) 8024922360188781 a001 75025/4870847*103682^(13/24) 8024922360189989 a001 514229/2537720636*103682^(11/12) 8024922360194416 a001 98209/299537289*103682^(7/8) 8024922360195155 a001 1762289/930249*39603^(3/22) 8024922360197025 a001 9227465/4870847*39603^(3/22) 8024922360197298 a001 24157817/12752043*39603^(3/22) 8024922360197337 a001 31622993/16692641*39603^(3/22) 8024922360197343 a001 165580141/87403803*39603^(3/22) 8024922360197344 a001 433494437/228826127*39603^(3/22) 8024922360197344 a001 567451585/299537289*39603^(3/22) 8024922360197344 a001 2971215073/1568397607*39603^(3/22) 8024922360197344 a001 7778742049/4106118243*39603^(3/22) 8024922360197344 a001 10182505537/5374978561*39603^(3/22) 8024922360197344 a001 53316291173/28143753123*39603^(3/22) 8024922360197344 a001 139583862445/73681302247*39603^(3/22) 8024922360197344 a001 182717648081/96450076809*39603^(3/22) 8024922360197344 a001 956722026041/505019158607*39603^(3/22) 8024922360197344 a001 10610209857723/5600748293801*39603^(3/22) 8024922360197344 a001 591286729879/312119004989*39603^(3/22) 8024922360197344 a001 225851433717/119218851371*39603^(3/22) 8024922360197344 a001 21566892818/11384387281*39603^(3/22) 8024922360197344 a001 32951280099/17393796001*39603^(3/22) 8024922360197344 a001 12586269025/6643838879*39603^(3/22) 8024922360197344 a001 1201881744/634430159*39603^(3/22) 8024922360197344 a001 1836311903/969323029*39603^(3/22) 8024922360197344 a001 701408733/370248451*39603^(3/22) 8024922360197345 a001 66978574/35355581*39603^(3/22) 8024922360197347 a001 102334155/54018521*39603^(3/22) 8024922360197362 a001 39088169/20633239*39603^(3/22) 8024922360197466 a001 3732588/1970299*39603^(3/22) 8024922360198180 a001 5702887/3010349*39603^(3/22) 8024922360199134 a001 317811/2537720636*103682^(23/24) 8024922360201126 a001 75025/103682*39603^(5/22) 8024922360203076 a001 2178309/1149851*39603^(3/22) 8024922360212705 a001 832040/6643838879*103682^(23/24) 8024922360214686 a001 2178309/17393796001*103682^(23/24) 8024922360214975 a001 1597/12752044*103682^(23/24) 8024922360215017 a001 14930352/119218851371*103682^(23/24) 8024922360215023 a001 39088169/312119004989*103682^(23/24) 8024922360215024 a001 102334155/817138163596*103682^(23/24) 8024922360215024 a001 267914296/2139295485799*103682^(23/24) 8024922360215024 a001 701408733/5600748293801*103682^(23/24) 8024922360215024 a001 1836311903/14662949395604*103682^(23/24) 8024922360215024 a001 2971215073/23725150497407*103682^(23/24) 8024922360215024 a001 1134903170/9062201101803*103682^(23/24) 8024922360215024 a001 433494437/3461452808002*103682^(23/24) 8024922360215024 a001 165580141/1322157322203*103682^(23/24) 8024922360215024 a001 63245986/505019158607*103682^(23/24) 8024922360215027 a001 24157817/192900153618*103682^(23/24) 8024922360215043 a001 9227465/73681302247*103682^(23/24) 8024922360215153 a001 3524578/28143753123*103682^(23/24) 8024922360215909 a001 1346269/10749957122*103682^(23/24) 8024922360219839 a001 196418/64079*24476^(2/21) 8024922360220353 a001 75025/7881196*103682^(7/12) 8024922360221093 a001 514229/4106118243*103682^(23/24) 8024922360225521 a001 196418/969323029*103682^(11/12) 8024922360230238 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^46 8024922360236627 a001 208010/109801*39603^(3/22) 8024922360243810 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^48 8024922360245790 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^50 8024922360246079 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^52 8024922360246121 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^54 8024922360246127 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^56 8024922360246128 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^58 8024922360246128 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^60 8024922360246128 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^62 8024922360246128 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^64 8024922360246128 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^66 8024922360246128 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^68 8024922360246128 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^70 8024922360246128 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^72 8024922360246128 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^74 8024922360246128 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^76 8024922360246128 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^78 8024922360246128 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^80 8024922360246128 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^82 8024922360246128 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^84 8024922360246128 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^86 8024922360246128 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^88 8024922360246128 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^90 8024922360246128 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^92 8024922360246128 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^94 8024922360246128 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^96 8024922360246128 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^98 8024922360246128 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^100 8024922360246128 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^99 8024922360246128 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^97 8024922360246128 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^95 8024922360246128 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^93 8024922360246128 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^91 8024922360246128 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^89 8024922360246128 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^87 8024922360246128 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^85 8024922360246128 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^83 8024922360246128 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^81 8024922360246128 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^79 8024922360246128 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^77 8024922360246128 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^75 8024922360246128 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^73 8024922360246128 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^71 8024922360246128 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^69 8024922360246128 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^67 8024922360246128 a001 1/23184*(1/2+1/2*5^(1/2))^30 8024922360246128 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^65 8024922360246128 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^63 8024922360246128 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^61 8024922360246128 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^59 8024922360246129 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^57 8024922360246131 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^55 8024922360246147 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^53 8024922360246258 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^51 8024922360247014 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^49 8024922360251279 a001 75025/12752043*103682^(5/8) 8024922360252198 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^47 8024922360255839 m001 (exp(Pi)-ln(3))/((1+3^(1/2))^(1/2)-Tetranacci) 8024922360255980 a001 514229/167761*39603^(1/11) 8024922360256529 a001 75025/167761*103682^(1/4) 8024922360256625 a001 196418/1568397607*103682^(23/24) 8024922360265265 a001 28657/3010349*64079^(14/23) 8024922360282452 a001 75025/20633239*103682^(2/3) 8024922360282630 a001 46368/64079*64079^(5/23) 8024922360287730 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^45 8024922360305114 a001 105937/90481*39603^(2/11) 8024922360313530 a001 75025/33385282*103682^(17/24) 8024922360344645 a001 75025/54018521*103682^(3/4) 8024922360347034 a001 28657/1860498*64079^(13/23) 8024922360375745 a001 75025/87403803*103682^(19/24) 8024922360406851 a001 75025/141422324*103682^(5/6) 8024922360411710 a001 832040/710647*39603^(2/11) 8024922360427262 a001 726103/620166*39603^(2/11) 8024922360429531 a001 5702887/4870847*39603^(2/11) 8024922360429862 a001 4976784/4250681*39603^(2/11) 8024922360429910 a001 39088169/33385282*39603^(2/11) 8024922360429918 a001 34111385/29134601*39603^(2/11) 8024922360429919 a001 267914296/228826127*39603^(2/11) 8024922360429919 a001 233802911/199691526*39603^(2/11) 8024922360429919 a001 1836311903/1568397607*39603^(2/11) 8024922360429919 a001 1602508992/1368706081*39603^(2/11) 8024922360429919 a001 12586269025/10749957122*39603^(2/11) 8024922360429919 a001 10983760033/9381251041*39603^(2/11) 8024922360429919 a001 86267571272/73681302247*39603^(2/11) 8024922360429919 a001 75283811239/64300051206*39603^(2/11) 8024922360429919 a001 2504730781961/2139295485799*39603^(2/11) 8024922360429919 a001 365435296162/312119004989*39603^(2/11) 8024922360429919 a001 139583862445/119218851371*39603^(2/11) 8024922360429919 a001 53316291173/45537549124*39603^(2/11) 8024922360429919 a001 20365011074/17393796001*39603^(2/11) 8024922360429919 a001 7778742049/6643838879*39603^(2/11) 8024922360429919 a001 2971215073/2537720636*39603^(2/11) 8024922360429919 a001 1134903170/969323029*39603^(2/11) 8024922360429919 a001 433494437/370248451*39603^(2/11) 8024922360429919 a001 165580141/141422324*39603^(2/11) 8024922360429922 a001 63245986/54018521*39603^(2/11) 8024922360429940 a001 24157817/20633239*39603^(2/11) 8024922360430067 a001 9227465/7881196*39603^(2/11) 8024922360430933 a001 3524578/3010349*39603^(2/11) 8024922360436874 a001 1346269/1149851*39603^(2/11) 8024922360437955 a001 75025/228826127*103682^(7/8) 8024922360440395 a001 28657/1149851*64079^(12/23) 8024922360466594 a001 317811/167761*39603^(3/22) 8024922360469060 a001 75025/370248451*103682^(11/12) 8024922360477590 a001 514229/439204*39603^(2/11) 8024922360500164 a001 75025/599074578*103682^(23/24) 8024922360503408 a001 28657/710647*64079^(11/23) 8024922360504795 a001 15456/90481*39603^(4/11) 8024922360512681 a001 514229/103682*15127^(1/20) 8024922360531269 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^43 8024922360580331 a001 28657/271443*64079^(9/23) 8024922360595181 a001 196418/271443*39603^(5/22) 8024922360645873 a001 28657/439204*64079^(10/23) 8024922360650467 a001 15456/13201*15127^(1/5) 8024922360650467 a001 46368/64079*167761^(1/5) 8024922360652672 a001 514229/710647*39603^(5/22) 8024922360661060 a001 1346269/1860498*39603^(5/22) 8024922360662284 a001 3524578/4870847*39603^(5/22) 8024922360662463 a001 9227465/12752043*39603^(5/22) 8024922360662489 a001 24157817/33385282*39603^(5/22) 8024922360662493 a001 63245986/87403803*39603^(5/22) 8024922360662493 a001 165580141/228826127*39603^(5/22) 8024922360662493 a001 433494437/599074578*39603^(5/22) 8024922360662493 a001 1134903170/1568397607*39603^(5/22) 8024922360662493 a001 2971215073/4106118243*39603^(5/22) 8024922360662493 a001 7778742049/10749957122*39603^(5/22) 8024922360662493 a001 20365011074/28143753123*39603^(5/22) 8024922360662493 a001 53316291173/73681302247*39603^(5/22) 8024922360662493 a001 139583862445/192900153618*39603^(5/22) 8024922360662493 a001 365435296162/505019158607*39603^(5/22) 8024922360662493 a001 10610209857723/14662949395604*39603^(5/22) 8024922360662493 a001 591286729879/817138163596*39603^(5/22) 8024922360662493 a001 225851433717/312119004989*39603^(5/22) 8024922360662493 a001 86267571272/119218851371*39603^(5/22) 8024922360662493 a001 32951280099/45537549124*39603^(5/22) 8024922360662493 a001 12586269025/17393796001*39603^(5/22) 8024922360662493 a001 4807526976/6643838879*39603^(5/22) 8024922360662493 a001 1836311903/2537720636*39603^(5/22) 8024922360662493 a001 701408733/969323029*39603^(5/22) 8024922360662493 a001 267914296/370248451*39603^(5/22) 8024922360662493 a001 102334155/141422324*39603^(5/22) 8024922360662495 a001 39088169/54018521*39603^(5/22) 8024922360662505 a001 14930352/20633239*39603^(5/22) 8024922360662573 a001 5702887/7881196*39603^(5/22) 8024922360663040 a001 2178309/3010349*39603^(5/22) 8024922360666244 a001 832040/1149851*39603^(5/22) 8024922360666275 a001 46368/167761*39603^(7/22) 8024922360677240 a001 121393/271443*39603^(3/11) 8024922360688204 a001 317811/439204*39603^(5/22) 8024922360707492 a001 28657/103682*20633239^(1/5) 8024922360707493 a001 46368/64079*20633239^(1/7) 8024922360707495 a001 1328767776/165580141 8024922360707495 a001 28657/103682*17393796001^(1/7) 8024922360707495 a001 28657/103682*14662949395604^(1/9) 8024922360707495 a001 28657/103682*(1/2+1/2*5^(1/2))^7 8024922360707495 a001 46368/64079*2537720636^(1/9) 8024922360707495 a001 46368/64079*312119004989^(1/11) 8024922360707495 a001 46368/64079*(1/2+1/2*5^(1/2))^5 8024922360707495 a001 46368/64079*28143753123^(1/10) 8024922360707495 a001 28657/103682*599074578^(1/6) 8024922360707495 a001 46368/64079*228826127^(1/8) 8024922360707882 a001 46368/64079*1860498^(1/6) 8024922360711468 a001 28657/103682*710647^(1/4) 8024922360756661 a001 196418/167761*39603^(2/11) 8024922360775336 a001 10946/12752043*24476^(19/21) 8024922360800230 a001 317811/64079*24476^(1/21) 8024922360838720 a001 121393/167761*39603^(5/22) 8024922360863018 a001 46368/64079*103682^(5/24) 8024922360863287 a001 317811/710647*39603^(3/11) 8024922360887885 a001 11592/109801*39603^(9/22) 8024922360890431 a001 416020/930249*39603^(3/11) 8024922360894391 a001 2178309/4870847*39603^(3/11) 8024922360894969 a001 5702887/12752043*39603^(3/11) 8024922360895053 a001 7465176/16692641*39603^(3/11) 8024922360895066 a001 39088169/87403803*39603^(3/11) 8024922360895067 a001 102334155/228826127*39603^(3/11) 8024922360895068 a001 133957148/299537289*39603^(3/11) 8024922360895068 a001 701408733/1568397607*39603^(3/11) 8024922360895068 a001 1836311903/4106118243*39603^(3/11) 8024922360895068 a001 2403763488/5374978561*39603^(3/11) 8024922360895068 a001 12586269025/28143753123*39603^(3/11) 8024922360895068 a001 32951280099/73681302247*39603^(3/11) 8024922360895068 a001 43133785636/96450076809*39603^(3/11) 8024922360895068 a001 225851433717/505019158607*39603^(3/11) 8024922360895068 a001 591286729879/1322157322203*39603^(3/11) 8024922360895068 a001 10610209857723/23725150497407*39603^(3/11) 8024922360895068 a001 182717648081/408569081798*39603^(3/11) 8024922360895068 a001 139583862445/312119004989*39603^(3/11) 8024922360895068 a001 53316291173/119218851371*39603^(3/11) 8024922360895068 a001 10182505537/22768774562*39603^(3/11) 8024922360895068 a001 7778742049/17393796001*39603^(3/11) 8024922360895068 a001 2971215073/6643838879*39603^(3/11) 8024922360895068 a001 567451585/1268860318*39603^(3/11) 8024922360895068 a001 433494437/969323029*39603^(3/11) 8024922360895068 a001 165580141/370248451*39603^(3/11) 8024922360895068 a001 31622993/70711162*39603^(3/11) 8024922360895073 a001 24157817/54018521*39603^(3/11) 8024922360895105 a001 9227465/20633239*39603^(3/11) 8024922360895326 a001 1762289/3940598*39603^(3/11) 8024922360896839 a001 1346269/3010349*39603^(3/11) 8024922360907207 a001 514229/1149851*39603^(3/11) 8024922360925227 a001 28657/103682*103682^(7/24) 8024922360978270 a001 98209/219602*39603^(3/11) 8024922361059358 a001 28657/167761*64079^(8/23) 8024922361060330 a001 121393/439204*39603^(7/22) 8024922361062968 a001 6624/101521*39603^(5/11) 8024922361090169 a001 121393/64079*64079^(3/23) 8024922361117821 a001 317811/1149851*39603^(7/22) 8024922361126209 a001 832040/3010349*39603^(7/22) 8024922361127433 a001 2178309/7881196*39603^(7/22) 8024922361127612 a001 5702887/20633239*39603^(7/22) 8024922361127638 a001 14930352/54018521*39603^(7/22) 8024922361127641 a001 39088169/141422324*39603^(7/22) 8024922361127642 a001 102334155/370248451*39603^(7/22) 8024922361127642 a001 267914296/969323029*39603^(7/22) 8024922361127642 a001 701408733/2537720636*39603^(7/22) 8024922361127642 a001 1836311903/6643838879*39603^(7/22) 8024922361127642 a001 4807526976/17393796001*39603^(7/22) 8024922361127642 a001 12586269025/45537549124*39603^(7/22) 8024922361127642 a001 32951280099/119218851371*39603^(7/22) 8024922361127642 a001 86267571272/312119004989*39603^(7/22) 8024922361127642 a001 225851433717/817138163596*39603^(7/22) 8024922361127642 a001 1548008755920/5600748293801*39603^(7/22) 8024922361127642 a001 139583862445/505019158607*39603^(7/22) 8024922361127642 a001 53316291173/192900153618*39603^(7/22) 8024922361127642 a001 20365011074/73681302247*39603^(7/22) 8024922361127642 a001 7778742049/28143753123*39603^(7/22) 8024922361127642 a001 2971215073/10749957122*39603^(7/22) 8024922361127642 a001 1134903170/4106118243*39603^(7/22) 8024922361127642 a001 433494437/1568397607*39603^(7/22) 8024922361127642 a001 165580141/599074578*39603^(7/22) 8024922361127642 a001 63245986/228826127*39603^(7/22) 8024922361127644 a001 24157817/87403803*39603^(7/22) 8024922361127654 a001 9227465/33385282*39603^(7/22) 8024922361127722 a001 3524578/12752043*39603^(7/22) 8024922361128189 a001 1346269/4870847*39603^(7/22) 8024922361131393 a001 514229/1860498*39603^(7/22) 8024922361145090 a001 1346269/271443*15127^(1/20) 8024922361153353 a001 196418/710647*39603^(7/22) 8024922361168862 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^42 8024922361225893 a001 28657/54018521*167761^(4/5) 8024922361235412 a001 121393/710647*39603^(4/11) 8024922361237358 a001 3524578/710647*15127^(1/20) 8024922361250819 a001 9227465/1860498*15127^(1/20) 8024922361252783 a001 24157817/4870847*15127^(1/20) 8024922361253070 a001 63245986/12752043*15127^(1/20) 8024922361253112 a001 165580141/33385282*15127^(1/20) 8024922361253118 a001 433494437/87403803*15127^(1/20) 8024922361253119 a001 1134903170/228826127*15127^(1/20) 8024922361253119 a001 2971215073/599074578*15127^(1/20) 8024922361253119 a001 7778742049/1568397607*15127^(1/20) 8024922361253119 a001 20365011074/4106118243*15127^(1/20) 8024922361253119 a001 53316291173/10749957122*15127^(1/20) 8024922361253119 a001 139583862445/28143753123*15127^(1/20) 8024922361253119 a001 365435296162/73681302247*15127^(1/20) 8024922361253119 a001 956722026041/192900153618*15127^(1/20) 8024922361253119 a001 2504730781961/505019158607*15127^(1/20) 8024922361253119 a001 10610209857723/2139295485799*15127^(1/20) 8024922361253119 a001 4052739537881/817138163596*15127^(1/20) 8024922361253119 a001 140728068720/28374454999*15127^(1/20) 8024922361253119 a001 591286729879/119218851371*15127^(1/20) 8024922361253119 a001 225851433717/45537549124*15127^(1/20) 8024922361253119 a001 86267571272/17393796001*15127^(1/20) 8024922361253119 a001 32951280099/6643838879*15127^(1/20) 8024922361253119 a001 1144206275/230701876*15127^(1/20) 8024922361253119 a001 4807526976/969323029*15127^(1/20) 8024922361253119 a001 1836311903/370248451*15127^(1/20) 8024922361253119 a001 701408733/141422324*15127^(1/20) 8024922361253122 a001 267914296/54018521*15127^(1/20) 8024922361253137 a001 9303105/1875749*15127^(1/20) 8024922361253247 a001 39088169/7881196*15127^(1/20) 8024922361253997 a001 14930352/3010349*15127^(1/20) 8024922361259139 a001 5702887/1149851*15127^(1/20) 8024922361282580 a001 28657/4870847*167761^(3/5) 8024922361294382 a001 2178309/439204*15127^(1/20) 8024922361303869 a001 75025/271443*39603^(7/22) 8024922361317502 a001 46368/1149851*39603^(1/2) 8024922361325658 a001 196418/64079*64079^(2/23) 8024922361331222 a001 28657/271443*439204^(1/3) 8024922361340466 a001 121393/64079*439204^(1/9) 8024922361342008 a001 105937/620166*39603^(4/11) 8024922361345053 a001 28657/271443*7881196^(3/11) 8024922361345077 a001 121393/64079*7881196^(1/11) 8024922361345089 a001 28657/271443*141422324^(3/13) 8024922361345089 a001 121393/64079*141422324^(1/13) 8024922361345089 a001 3478759201/433494437 8024922361345089 a001 28657/271443*2537720636^(1/5) 8024922361345089 a001 28657/271443*45537549124^(3/17) 8024922361345089 a001 28657/271443*817138163596^(3/19) 8024922361345089 a001 28657/271443*14662949395604^(1/7) 8024922361345089 a001 28657/271443*(1/2+1/2*5^(1/2))^9 8024922361345089 a001 28657/271443*192900153618^(1/6) 8024922361345089 a001 28657/271443*10749957122^(3/16) 8024922361345089 a001 121393/64079*2537720636^(1/15) 8024922361345089 a001 121393/64079*45537549124^(1/17) 8024922361345089 a001 121393/64079*14662949395604^(1/21) 8024922361345089 a001 121393/64079*(1/2+1/2*5^(1/2))^3 8024922361345089 a001 121393/64079*192900153618^(1/18) 8024922361345089 a001 121393/64079*10749957122^(1/16) 8024922361345089 a001 121393/64079*599074578^(1/14) 8024922361345089 a001 28657/271443*599074578^(3/14) 8024922361345089 a001 121393/64079*33385282^(1/12) 8024922361345090 a001 28657/271443*33385282^(1/4) 8024922361345321 a001 121393/64079*1860498^(1/10) 8024922361345784 a001 28657/271443*1860498^(3/10) 8024922361353139 a001 317811/64079*64079^(1/23) 8024922361357560 a001 832040/4870847*39603^(4/11) 8024922361359829 a001 726103/4250681*39603^(4/11) 8024922361360160 a001 5702887/33385282*39603^(4/11) 8024922361360208 a001 4976784/29134601*39603^(4/11) 8024922361360215 a001 39088169/228826127*39603^(4/11) 8024922361360216 a001 34111385/199691526*39603^(4/11) 8024922361360216 a001 267914296/1568397607*39603^(4/11) 8024922361360216 a001 233802911/1368706081*39603^(4/11) 8024922361360216 a001 1836311903/10749957122*39603^(4/11) 8024922361360216 a001 1602508992/9381251041*39603^(4/11) 8024922361360216 a001 12586269025/73681302247*39603^(4/11) 8024922361360216 a001 10983760033/64300051206*39603^(4/11) 8024922361360216 a001 86267571272/505019158607*39603^(4/11) 8024922361360216 a001 75283811239/440719107401*39603^(4/11) 8024922361360216 a001 2504730781961/14662949395604*39603^(4/11) 8024922361360216 a001 139583862445/817138163596*39603^(4/11) 8024922361360216 a001 53316291173/312119004989*39603^(4/11) 8024922361360216 a001 20365011074/119218851371*39603^(4/11) 8024922361360216 a001 7778742049/45537549124*39603^(4/11) 8024922361360216 a001 2971215073/17393796001*39603^(4/11) 8024922361360216 a001 1134903170/6643838879*39603^(4/11) 8024922361360216 a001 433494437/2537720636*39603^(4/11) 8024922361360217 a001 165580141/969323029*39603^(4/11) 8024922361360217 a001 63245986/370248451*39603^(4/11) 8024922361360220 a001 24157817/141422324*39603^(4/11) 8024922361360238 a001 9227465/54018521*39603^(4/11) 8024922361360365 a001 3524578/20633239*39603^(4/11) 8024922361361231 a001 1346269/7881196*39603^(4/11) 8024922361367172 a001 514229/3010349*39603^(4/11) 8024922361381548 a001 28657/439204*167761^(2/5) 8024922361399251 a001 75025/64079*64079^(4/23) 8024922361407887 a001 196418/1149851*39603^(4/11) 8024922361412401 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^44 8024922361413397 a001 5473/3940598*24476^(6/7) 8024922361417024 a001 28657/370248451*439204^(8/9) 8024922361421645 a001 28657/87403803*439204^(7/9) 8024922361426287 a001 28657/20633239*439204^(2/3) 8024922361430553 a001 28657/4870847*439204^(5/9) 8024922361438069 a001 28657/710647*7881196^(1/3) 8024922361438112 a001 9107509827/1134903170 8024922361438112 a001 28657/710647*312119004989^(1/5) 8024922361438112 a001 28657/710647*(1/2+1/2*5^(1/2))^11 8024922361438112 a001 317811/128158+317811/128158*5^(1/2) 8024922361438112 a001 28657/710647*1568397607^(1/4) 8024922361438402 a001 121393/64079*103682^(1/8) 8024922361441583 a001 28657/1149851*439204^(4/9) 8024922361447933 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^46 8024922361451684 a001 28657/1860498*141422324^(1/3) 8024922361451684 a001 23843770280/2971215073 8024922361451684 a001 28657/1860498*(1/2+1/2*5^(1/2))^13 8024922361451684 a001 28657/1860498*73681302247^(1/4) 8024922361451684 a004 Fibonacci(30)/Lucas(23)/(1/2+sqrt(5)/2) 8024922361453117 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^48 8024922361453606 a001 28657/4870847*7881196^(5/11) 8024922361453656 a001 28657/4870847*20633239^(3/7) 8024922361453664 a001 28657/4870847*141422324^(5/13) 8024922361453664 a001 28657/4870847*2537720636^(1/3) 8024922361453664 a001 62423801013/7778742049 8024922361453664 a001 28657/4870847*45537549124^(5/17) 8024922361453664 a001 28657/4870847*312119004989^(3/11) 8024922361453664 a001 28657/4870847*14662949395604^(5/21) 8024922361453664 a001 28657/4870847*(1/2+1/2*5^(1/2))^15 8024922361453664 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^15/Lucas(32) 8024922361453664 a001 28657/4870847*192900153618^(5/18) 8024922361453664 a001 28657/4870847*28143753123^(3/10) 8024922361453664 a001 28657/4870847*10749957122^(5/16) 8024922361453664 a004 Fibonacci(32)/Lucas(23)/(1/2+sqrt(5)/2)^3 8024922361453664 a001 28657/4870847*599074578^(5/14) 8024922361453664 a001 28657/4870847*228826127^(3/8) 8024922361453667 a001 28657/4870847*33385282^(5/12) 8024922361453873 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^50 8024922361453885 a001 28657/6643838879*7881196^(10/11) 8024922361453897 a001 28657/1568397607*7881196^(9/11) 8024922361453909 a001 28657/370248451*7881196^(8/11) 8024922361453917 a001 28657/141422324*7881196^(2/3) 8024922361453919 a001 28657/87403803*7881196^(7/11) 8024922361453951 a001 28657/20633239*7881196^(6/11) 8024922361453953 a001 102334147/12752042 8024922361453953 a001 28657/12752043*45537549124^(1/3) 8024922361453953 a001 28657/12752043*(1/2+1/2*5^(1/2))^17 8024922361453953 a004 Fibonacci(34)/Lucas(23)/(1/2+sqrt(5)/2)^5 8024922361453978 a001 28657/12752043*12752043^(1/2) 8024922361453984 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^52 8024922361453986 a001 28657/6643838879*20633239^(6/7) 8024922361453988 a001 28657/2537720636*20633239^(4/5) 8024922361453989 a001 28657/599074578*20633239^(5/7) 8024922361453990 a001 28657/87403803*20633239^(3/5) 8024922361453995 a001 28657/54018521*20633239^(4/7) 8024922361453995 a001 427859097264/53316291173 8024922361453995 a001 28657/33385282*817138163596^(1/3) 8024922361453995 a001 28657/33385282*(1/2+1/2*5^(1/2))^19 8024922361453995 a004 Fibonacci(36)/Lucas(23)/(1/2+sqrt(5)/2)^7 8024922361453996 a001 28657/33385282*87403803^(1/2) 8024922361454000 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^54 8024922361454001 a001 28657/87403803*141422324^(7/13) 8024922361454002 a001 28657/87403803*2537720636^(7/15) 8024922361454002 a001 28657/87403803*17393796001^(3/7) 8024922361454002 a001 28657/87403803*45537549124^(7/17) 8024922361454002 a001 1120149659033/139583862445 8024922361454002 a001 28657/87403803*14662949395604^(1/3) 8024922361454002 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^21/Lucas(38) 8024922361454002 a001 28657/87403803*192900153618^(7/18) 8024922361454002 a001 28657/87403803*10749957122^(7/16) 8024922361454002 a004 Fibonacci(38)/Lucas(23)/(1/2+sqrt(5)/2)^9 8024922361454002 a001 28657/87403803*599074578^(1/2) 8024922361454002 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^56 8024922361454002 a001 28657/119218851371*141422324^(12/13) 8024922361454002 a001 28657/28143753123*141422324^(11/13) 8024922361454002 a001 28657/6643838879*141422324^(10/13) 8024922361454002 a001 28657/1568397607*141422324^(9/13) 8024922361454002 a001 28657/969323029*141422324^(2/3) 8024922361454002 a001 28657/370248451*141422324^(8/13) 8024922361454003 a001 2932589879835/365435296162 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^23/Lucas(40) 8024922361454003 a001 28657/228826127*4106118243^(1/2) 8024922361454003 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^11 8024922361454003 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^58 8024922361454003 a001 28657/599074578*2537720636^(5/9) 8024922361454003 a001 28657/599074578*312119004989^(5/11) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^25/Lucas(42) 8024922361454003 a001 28657/599074578*3461452808002^(5/12) 8024922361454003 a001 28657/599074578*28143753123^(1/2) 8024922361454003 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^13 8024922361454003 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^60 8024922361454003 a001 28657/1568397607*2537720636^(3/5) 8024922361454003 a001 28657/1568397607*45537549124^(9/17) 8024922361454003 a001 28657/1568397607*817138163596^(9/19) 8024922361454003 a001 20100270061581/2504730781961 8024922361454003 a001 28657/1568397607*14662949395604^(3/7) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^27/Lucas(44) 8024922361454003 a001 28657/1568397607*192900153618^(1/2) 8024922361454003 a001 28657/1568397607*10749957122^(9/16) 8024922361454003 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^15 8024922361454003 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^62 8024922361454003 a001 28657/2139295485799*2537720636^(14/15) 8024922361454003 a001 28657/817138163596*2537720636^(8/9) 8024922361454003 a001 28657/505019158607*2537720636^(13/15) 8024922361454003 a001 28657/119218851371*2537720636^(4/5) 8024922361454003 a001 28657/73681302247*2537720636^(7/9) 8024922361454003 a001 28657/28143753123*2537720636^(11/15) 8024922361454003 a001 28657/6643838879*2537720636^(2/3) 8024922361454003 a001 52623190204271/6557470319842 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(46) 8024922361454003 a001 28657/4106118243*1322157322203^(1/2) 8024922361454003 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^64 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(48) 8024922361454003 a001 28657/10749957122*9062201101803^(1/2) 8024922361454003 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^66 8024922361454003 a001 28657/2139295485799*17393796001^(6/7) 8024922361454003 a001 28657/73681302247*17393796001^(5/7) 8024922361454003 a001 28657/28143753123*45537549124^(11/17) 8024922361454003 a001 28657/28143753123*312119004989^(3/5) 8024922361454003 a001 28657/28143753123*817138163596^(11/19) 8024922361454003 a001 28657/28143753123*14662949395604^(11/21) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(50) 8024922361454003 a001 28657/28143753123*192900153618^(11/18) 8024922361454003 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^68 8024922361454003 a001 28657/9062201101803*45537549124^(15/17) 8024922361454003 a001 28657/2139295485799*45537549124^(14/17) 8024922361454003 a001 28657/505019158607*45537549124^(13/17) 8024922361454003 a001 28657/119218851371*45537549124^(12/17) 8024922361454003 a001 28657/73681302247*312119004989^(7/11) 8024922361454003 a001 28657/73681302247*14662949395604^(5/9) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(52) 8024922361454003 a001 28657/73681302247*505019158607^(5/8) 8024922361454003 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^70 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(54) 8024922361454003 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^72 8024922361454003 a001 28657/5600748293801*312119004989^(4/5) 8024922361454003 a001 28657/817138163596*312119004989^(8/11) 8024922361454003 a001 28657/505019158607*14662949395604^(13/21) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(56) 8024922361454003 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^74 8024922361454003 a001 28657/2139295485799*817138163596^(14/19) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(58) 8024922361454003 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^76 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(60) 8024922361454003 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^78 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(62) 8024922361454003 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^80 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(64) 8024922361454003 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^82 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(66) 8024922361454003 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^84 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(68) 8024922361454003 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^86 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(70) 8024922361454003 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^88 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(72) 8024922361454003 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^90 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(74) 8024922361454003 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^92 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(76) 8024922361454003 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^94 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(78) 8024922361454003 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^96 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(80) 8024922361454003 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^98 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(82) 8024922361454003 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^100 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(84) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(86) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(88) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(90) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(92) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(94) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(96) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(98) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(99) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(100) 8024922361454003 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^17 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(97) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(95) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(93) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(91) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(89) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(87) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(85) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(83) 8024922361454003 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^99 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(81) 8024922361454003 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^97 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(79) 8024922361454003 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^95 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(77) 8024922361454003 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^93 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(75) 8024922361454003 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^91 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(73) 8024922361454003 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^89 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(71) 8024922361454003 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^87 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(69) 8024922361454003 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^85 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(67) 8024922361454003 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^83 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(65) 8024922361454003 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^81 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(63) 8024922361454003 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^79 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(61) 8024922361454003 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^77 8024922361454003 a001 28657/2139295485799*14662949395604^(2/3) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(59) 8024922361454003 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^75 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(57) 8024922361454003 a001 28657/817138163596*23725150497407^(5/8) 8024922361454003 a001 28657/2139295485799*505019158607^(3/4) 8024922361454003 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^73 8024922361454003 a001 28657/312119004989*817138163596^(2/3) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(55) 8024922361454003 a001 28657/505019158607*192900153618^(13/18) 8024922361454003 a001 28657/2139295485799*192900153618^(7/9) 8024922361454003 a001 28657/9062201101803*192900153618^(5/6) 8024922361454003 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^71 8024922361454003 a001 28657/119218851371*14662949395604^(4/7) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(53) 8024922361454003 a001 28657/119218851371*505019158607^(9/14) 8024922361454003 a001 28657/119218851371*192900153618^(2/3) 8024922361454003 a001 28657/505019158607*73681302247^(3/4) 8024922361454003 a001 28657/817138163596*73681302247^(10/13) 8024922361454003 a001 28657/5600748293801*73681302247^(11/13) 8024922361454003 a001 28657/45537549124*45537549124^(2/3) 8024922361454003 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^69 8024922361454003 a001 28657/119218851371*73681302247^(9/13) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(51) 8024922361454003 a001 28657/73681302247*28143753123^(7/10) 8024922361454003 a001 28657/817138163596*28143753123^(4/5) 8024922361454003 a001 28657/9062201101803*28143753123^(9/10) 8024922361454003 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^67 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(49) 8024922361454003 a001 28657/17393796001*23725150497407^(1/2) 8024922361454003 a001 28657/17393796001*505019158607^(4/7) 8024922361454003 a001 28657/17393796001*73681302247^(8/13) 8024922361454003 a001 28657/28143753123*10749957122^(11/16) 8024922361454003 a001 28657/119218851371*10749957122^(3/4) 8024922361454003 a001 28657/45537549124*10749957122^(17/24) 8024922361454003 a001 28657/312119004989*10749957122^(19/24) 8024922361454003 a001 28657/505019158607*10749957122^(13/16) 8024922361454003 a001 28657/817138163596*10749957122^(5/6) 8024922361454003 a001 28657/2139295485799*10749957122^(7/8) 8024922361454003 a001 28657/5600748293801*10749957122^(11/12) 8024922361454003 a001 28657/9062201101803*10749957122^(15/16) 8024922361454003 a001 28657/14662949395604*10749957122^(23/24) 8024922361454003 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^65 8024922361454003 a001 28657/17393796001*10749957122^(2/3) 8024922361454003 a001 28657/6643838879*45537549124^(10/17) 8024922361454003 a001 28657/6643838879*312119004989^(6/11) 8024922361454003 a001 28657/6643838879*14662949395604^(10/21) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(47) 8024922361454003 a001 85146110346961/10610209857723 8024922361454003 a001 28657/6643838879*192900153618^(5/9) 8024922361454003 a001 28657/6643838879*28143753123^(3/5) 8024922361454003 a001 28657/6643838879*10749957122^(5/8) 8024922361454003 a001 28657/45537549124*4106118243^(17/23) 8024922361454003 a001 28657/17393796001*4106118243^(16/23) 8024922361454003 a001 28657/119218851371*4106118243^(18/23) 8024922361454003 a001 28657/312119004989*4106118243^(19/23) 8024922361454003 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^19 8024922361454003 a001 28657/817138163596*4106118243^(20/23) 8024922361454003 a001 28657/2139295485799*4106118243^(21/23) 8024922361454003 a001 28657/5600748293801*4106118243^(22/23) 8024922361454003 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^21 8024922361454003 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^23 8024922361454003 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^25 8024922361454003 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^27 8024922361454003 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^29 8024922361454003 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^31 8024922361454003 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^33 8024922361454003 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^35 8024922361454003 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^37 8024922361454003 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^39 8024922361454003 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^41 8024922361454003 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^43 8024922361454003 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^45 8024922361454003 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^47 8024922361454003 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^49 8024922361454003 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^51 8024922361454003 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^53 8024922361454003 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^55 8024922361454003 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^57 8024922361454003 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^59 8024922361454003 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^61 8024922361454003 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^63 8024922361454003 a004 Fibonacci(92)/Lucas(23)/(1/2+sqrt(5)/2)^63 8024922361454003 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^65 8024922361454003 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^67 8024922361454003 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^69 8024922361454003 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^71 8024922361454003 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^70 8024922361454003 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^68 8024922361454003 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^66 8024922361454003 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^64 8024922361454003 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^62 8024922361454003 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^60 8024922361454003 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^58 8024922361454003 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^56 8024922361454003 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^54 8024922361454003 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^52 8024922361454003 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^50 8024922361454003 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^48 8024922361454003 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^46 8024922361454003 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^44 8024922361454003 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^42 8024922361454003 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^40 8024922361454003 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^38 8024922361454003 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^36 8024922361454003 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^34 8024922361454003 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^32 8024922361454003 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^30 8024922361454003 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^28 8024922361454003 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^26 8024922361454003 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^24 8024922361454003 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^22 8024922361454003 a001 28657/6643838879*4106118243^(15/23) 8024922361454003 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^20 8024922361454003 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^18 8024922361454003 a001 28657/2537720636*17393796001^(4/7) 8024922361454003 a001 28657/2537720636*14662949395604^(4/9) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^28/Lucas(45) 8024922361454003 a001 32522920142690/4052739537881 8024922361454003 a001 28657/2537720636*505019158607^(1/2) 8024922361454003 a001 28657/2537720636*73681302247^(7/13) 8024922361454003 a001 28657/2537720636*10749957122^(7/12) 8024922361454003 a001 28657/2537720636*4106118243^(14/23) 8024922361454003 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^16 8024922361454003 a001 28657/17393796001*1568397607^(8/11) 8024922361454003 a001 28657/6643838879*1568397607^(15/22) 8024922361454003 a001 28657/28143753123*1568397607^(3/4) 8024922361454003 a001 28657/45537549124*1568397607^(17/22) 8024922361454003 a001 28657/119218851371*1568397607^(9/11) 8024922361454003 a001 28657/312119004989*1568397607^(19/22) 8024922361454003 a001 28657/817138163596*1568397607^(10/11) 8024922361454003 a001 28657/2139295485799*1568397607^(21/22) 8024922361454003 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^61 8024922361454003 a001 28657/2537720636*1568397607^(7/11) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^26/Lucas(43) 8024922361454003 a001 12422650081109/1548008755920 8024922361454003 a001 28657/969323029*73681302247^(1/2) 8024922361454003 a001 28657/969323029*10749957122^(13/24) 8024922361454003 a001 28657/969323029*4106118243^(13/23) 8024922361454003 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^14 8024922361454003 a001 28657/969323029*1568397607^(13/22) 8024922361454003 a001 28657/1568397607*599074578^(9/14) 8024922361454003 a001 28657/2537720636*599074578^(2/3) 8024922361454003 a001 28657/6643838879*599074578^(5/7) 8024922361454003 a001 28657/17393796001*599074578^(16/21) 8024922361454003 a001 28657/28143753123*599074578^(11/14) 8024922361454003 a001 28657/45537549124*599074578^(17/21) 8024922361454003 a001 28657/73681302247*599074578^(5/6) 8024922361454003 a001 28657/119218851371*599074578^(6/7) 8024922361454003 a001 28657/312119004989*599074578^(19/21) 8024922361454003 a001 28657/505019158607*599074578^(13/14) 8024922361454003 a001 28657/817138163596*599074578^(20/21) 8024922361454003 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^59 8024922361454003 a001 28657/969323029*599074578^(13/21) 8024922361454003 a001 28657/370248451*2537720636^(8/15) 8024922361454003 a001 28657/370248451*45537549124^(8/17) 8024922361454003 a001 28657/370248451*14662949395604^(8/21) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^24/Lucas(41) 8024922361454003 a001 4745030100637/591286729879 8024922361454003 a001 28657/370248451*192900153618^(4/9) 8024922361454003 a001 28657/370248451*73681302247^(6/13) 8024922361454003 a001 28657/370248451*10749957122^(1/2) 8024922361454003 a001 28657/370248451*4106118243^(12/23) 8024922361454003 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^12 8024922361454003 a001 28657/370248451*1568397607^(6/11) 8024922361454003 a001 28657/370248451*599074578^(4/7) 8024922361454003 a001 28657/599074578*228826127^(5/8) 8024922361454003 a001 28657/969323029*228826127^(13/20) 8024922361454003 a001 28657/2537720636*228826127^(7/10) 8024922361454003 a001 28657/6643838879*228826127^(3/4) 8024922361454003 a001 28657/17393796001*228826127^(4/5) 8024922361454003 a001 28657/45537549124*228826127^(17/20) 8024922361454003 a001 28657/73681302247*228826127^(7/8) 8024922361454003 a001 28657/119218851371*228826127^(9/10) 8024922361454003 a001 28657/312119004989*228826127^(19/20) 8024922361454003 a001 28657/370248451*228826127^(3/5) 8024922361454003 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^57 8024922361454003 a001 28657/141422324*312119004989^(2/5) 8024922361454003 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^22/Lucas(39) 8024922361454003 a001 1812440220802/225851433717 8024922361454003 a001 28657/141422324*10749957122^(11/24) 8024922361454003 a001 28657/141422324*4106118243^(11/23) 8024922361454003 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2)^10 8024922361454003 a001 28657/141422324*1568397607^(1/2) 8024922361454003 a001 28657/141422324*599074578^(11/21) 8024922361454003 a001 28657/141422324*228826127^(11/20) 8024922361454003 a001 28657/370248451*87403803^(12/19) 8024922361454003 a001 28657/969323029*87403803^(13/19) 8024922361454003 a001 28657/2537720636*87403803^(14/19) 8024922361454003 a001 28657/6643838879*87403803^(15/19) 8024922361454004 a001 28657/17393796001*87403803^(16/19) 8024922361454004 a001 28657/45537549124*87403803^(17/19) 8024922361454004 a001 28657/119218851371*87403803^(18/19) 8024922361454004 a001 28657/141422324*87403803^(11/19) 8024922361454004 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^55 8024922361454005 a001 28657/54018521*2537720636^(4/9) 8024922361454005 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^20/Lucas(37) 8024922361454005 a001 28657/54018521*23725150497407^(5/16) 8024922361454005 a001 28657/54018521*505019158607^(5/14) 8024922361454005 a001 692290561769/86267571272 8024922361454005 a001 28657/54018521*73681302247^(5/13) 8024922361454005 a001 28657/54018521*28143753123^(2/5) 8024922361454005 a001 28657/54018521*10749957122^(5/12) 8024922361454005 a001 28657/54018521*4106118243^(10/23) 8024922361454005 a004 Fibonacci(37)/Lucas(23)/(1/2+sqrt(5)/2)^8 8024922361454005 a001 28657/54018521*1568397607^(5/11) 8024922361454005 a001 28657/54018521*599074578^(10/21) 8024922361454005 a001 28657/54018521*228826127^(1/2) 8024922361454006 a001 28657/87403803*33385282^(7/12) 8024922361454006 a001 28657/54018521*87403803^(10/19) 8024922361454007 a001 28657/141422324*33385282^(11/18) 8024922361454008 a001 28657/370248451*33385282^(2/3) 8024922361454008 a001 28657/969323029*33385282^(13/18) 8024922361454008 a001 28657/1568397607*33385282^(3/4) 8024922361454008 a001 28657/2537720636*33385282^(7/9) 8024922361454009 a001 28657/6643838879*33385282^(5/6) 8024922361454009 a001 28657/17393796001*33385282^(8/9) 8024922361454009 a001 28657/28143753123*33385282^(11/12) 8024922361454009 a001 28657/54018521*33385282^(5/9) 8024922361454009 a001 28657/45537549124*33385282^(17/18) 8024922361454010 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^53 8024922361454021 a001 28657/20633239*141422324^(6/13) 8024922361454022 a001 28657/20633239*2537720636^(2/5) 8024922361454022 a001 28657/20633239*45537549124^(6/17) 8024922361454022 a001 28657/20633239*14662949395604^(2/7) 8024922361454022 a001 28657/20633239*(1/2+1/2*5^(1/2))^18 8024922361454022 a001 28657/20633239*192900153618^(1/3) 8024922361454022 a001 264431464505/32951280099 8024922361454022 a001 28657/20633239*10749957122^(3/8) 8024922361454022 a001 28657/20633239*4106118243^(9/23) 8024922361454022 a004 Fibonacci(35)/Lucas(23)/(1/2+sqrt(5)/2)^6 8024922361454022 a001 28657/20633239*1568397607^(9/22) 8024922361454022 a001 28657/20633239*599074578^(3/7) 8024922361454022 a001 28657/20633239*228826127^(9/20) 8024922361454022 a001 28657/20633239*87403803^(9/19) 8024922361454025 a001 28657/20633239*33385282^(1/2) 8024922361454034 a001 28657/54018521*12752043^(10/17) 8024922361454035 a001 28657/141422324*12752043^(11/17) 8024922361454038 a001 28657/370248451*12752043^(12/17) 8024922361454040 a001 28657/969323029*12752043^(13/17) 8024922361454043 a001 28657/2537720636*12752043^(14/17) 8024922361454046 a001 28657/6643838879*12752043^(15/17) 8024922361454048 a001 28657/20633239*12752043^(9/17) 8024922361454049 a001 28657/17393796001*12752043^(16/17) 8024922361454052 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^51 8024922361454132 a001 28657/7881196*(1/2+1/2*5^(1/2))^16 8024922361454132 a001 28657/7881196*23725150497407^(1/4) 8024922361454132 a001 28657/7881196*73681302247^(4/13) 8024922361454132 a001 101003831746/12586269025 8024922361454132 a001 28657/7881196*10749957122^(1/3) 8024922361454132 a001 28657/7881196*4106118243^(8/23) 8024922361454132 a004 Fibonacci(33)/Lucas(23)/(1/2+sqrt(5)/2)^4 8024922361454132 a001 28657/7881196*1568397607^(4/11) 8024922361454132 a001 28657/7881196*599074578^(8/21) 8024922361454132 a001 28657/7881196*228826127^(2/5) 8024922361454132 a001 28657/7881196*87403803^(8/19) 8024922361454135 a001 28657/7881196*33385282^(4/9) 8024922361454155 a001 28657/7881196*12752043^(8/17) 8024922361454212 a001 28657/20633239*4870847^(9/16) 8024922361454217 a001 28657/54018521*4870847^(5/8) 8024922361454236 a001 28657/141422324*4870847^(11/16) 8024922361454256 a001 28657/370248451*4870847^(3/4) 8024922361454277 a001 28657/969323029*4870847^(13/16) 8024922361454299 a001 28657/2537720636*4870847^(7/8) 8024922361454301 a001 28657/7881196*4870847^(1/2) 8024922361454320 a001 28657/6643838879*4870847^(15/16) 8024922361454341 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^49 8024922361454824 a001 28657/4870847*1860498^(1/2) 8024922361454881 a001 28657/3010349*20633239^(2/5) 8024922361454888 a001 28657/3010349*17393796001^(2/7) 8024922361454888 a001 28657/3010349*14662949395604^(2/9) 8024922361454888 a001 28657/3010349*(1/2+1/2*5^(1/2))^14 8024922361454888 a001 28657/3010349*505019158607^(1/4) 8024922361454888 a001 28657/3010349*10749957122^(7/24) 8024922361454888 a001 38580030733/4807526976 8024922361454888 a001 28657/3010349*4106118243^(7/23) 8024922361454888 a004 Fibonacci(31)/Lucas(23)/(1/2+sqrt(5)/2)^2 8024922361454888 a001 28657/3010349*1568397607^(7/22) 8024922361454888 a001 28657/3010349*599074578^(1/3) 8024922361454888 a001 28657/3010349*228826127^(7/20) 8024922361454889 a001 28657/3010349*87403803^(7/19) 8024922361454891 a001 28657/3010349*33385282^(7/18) 8024922361454909 a001 28657/3010349*12752043^(7/17) 8024922361455036 a001 28657/3010349*4870847^(7/16) 8024922361455368 a001 28657/7881196*1860498^(8/15) 8024922361455413 a001 28657/20633239*1860498^(3/5) 8024922361455551 a001 28657/54018521*1860498^(2/3) 8024922361455624 a001 28657/87403803*1860498^(7/10) 8024922361455703 a001 28657/141422324*1860498^(11/15) 8024922361455857 a001 28657/370248451*1860498^(4/5) 8024922361455935 a001 28657/599074578*1860498^(5/6) 8024922361455970 a001 28657/3010349*1860498^(7/15) 8024922361456012 a001 28657/969323029*1860498^(13/15) 8024922361456089 a001 28657/1568397607*1860498^(9/10) 8024922361456166 a001 28657/2537720636*1860498^(14/15) 8024922361456321 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^47 8024922361460025 a001 28657/1149851*7881196^(4/11) 8024922361460072 a001 28657/1149851*141422324^(4/13) 8024922361460072 a001 28657/1149851*2537720636^(4/15) 8024922361460072 a001 28657/1149851*45537549124^(4/17) 8024922361460072 a001 28657/1149851*817138163596^(4/19) 8024922361460072 a001 28657/1149851*14662949395604^(4/21) 8024922361460072 a001 28657/1149851*(1/2+1/2*5^(1/2))^12 8024922361460072 a001 28657/1149851*192900153618^(2/9) 8024922361460072 a001 28657/1149851*73681302247^(3/13) 8024922361460072 a001 28657/1149851*10749957122^(1/4) 8024922361460072 a001 28657/1149851*4106118243^(6/23) 8024922361460072 a001 514229/64079 8024922361460072 a001 28657/1149851*1568397607^(3/11) 8024922361460072 a001 28657/1149851*599074578^(2/7) 8024922361460072 a001 28657/1149851*228826127^(3/10) 8024922361460073 a001 28657/1149851*87403803^(6/19) 8024922361460075 a001 28657/1149851*33385282^(1/3) 8024922361460090 a001 28657/1149851*12752043^(6/17) 8024922361460199 a001 28657/1149851*4870847^(3/8) 8024922361461000 a001 28657/1149851*1860498^(2/5) 8024922361462833 a001 28657/3010349*710647^(1/2) 8024922361463212 a001 28657/7881196*710647^(4/7) 8024922361464237 a001 28657/20633239*710647^(9/14) 8024922361465348 a001 75025/167761*39603^(3/11) 8024922361465356 a001 28657/54018521*710647^(5/7) 8024922361465919 a001 28657/87403803*710647^(3/4) 8024922361466488 a001 28657/141422324*710647^(11/14) 8024922361466882 a001 28657/1149851*710647^(3/7) 8024922361467623 a001 28657/370248451*710647^(6/7) 8024922361468758 a001 28657/969323029*710647^(13/14) 8024922361469217 a001 317811/64079*103682^(1/24) 8024922361469893 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^45 8024922361489947 a001 121393/1149851*39603^(9/22) 8024922361495599 a001 28657/439204*20633239^(2/7) 8024922361495604 a001 28657/439204*2537720636^(2/9) 8024922361495604 a001 28657/439204*312119004989^(2/11) 8024922361495604 a001 28657/439204*(1/2+1/2*5^(1/2))^10 8024922361495604 a001 28657/439204*28143753123^(1/5) 8024922361495604 a001 28657/439204*10749957122^(5/24) 8024922361495604 a001 28657/439204*4106118243^(5/23) 8024922361495604 a001 196418/64079*(1/2+1/2*5^(1/2))^2 8024922361495604 a001 196418/64079*10749957122^(1/24) 8024922361495604 a001 196418/64079*4106118243^(1/23) 8024922361495604 a001 196418/64079*1568397607^(1/22) 8024922361495604 a001 28657/439204*1568397607^(5/22) 8024922361495604 a001 196418/64079*599074578^(1/21) 8024922361495604 a001 5628750626/701408733 8024922361495604 a001 28657/439204*599074578^(5/21) 8024922361495604 a001 196418/64079*228826127^(1/20) 8024922361495604 a001 28657/439204*228826127^(1/4) 8024922361495604 a001 196418/64079*87403803^(1/19) 8024922361495604 a001 28657/439204*87403803^(5/19) 8024922361495604 a001 196418/64079*33385282^(1/18) 8024922361495606 a001 28657/439204*33385282^(5/18) 8024922361495607 a001 196418/64079*12752043^(1/17) 8024922361495619 a001 28657/439204*12752043^(5/17) 8024922361495625 a001 196418/64079*4870847^(1/16) 8024922361495710 a001 28657/439204*4870847^(5/16) 8024922361495759 a001 196418/64079*1860498^(1/15) 8024922361496377 a001 28657/439204*1860498^(1/3) 8024922361496739 a001 196418/64079*710647^(1/14) 8024922361501279 a001 28657/439204*710647^(5/14) 8024922361503982 a001 196418/64079*271443^(1/13) 8024922361506141 a001 28657/1860498*271443^(1/2) 8024922361510340 a001 28657/1149851*271443^(6/13) 8024922361513534 a001 28657/3010349*271443^(7/13) 8024922361521156 a001 28657/7881196*271443^(8/13) 8024922361529423 a001 28657/20633239*271443^(9/13) 8024922361535941 a001 75640/15251*15127^(1/20) 8024922361537494 a001 28657/439204*271443^(5/13) 8024922361537785 a001 28657/54018521*271443^(10/13) 8024922361541689 a001 2576/103361*39603^(6/11) 8024922361546161 a001 28657/141422324*271443^(11/13) 8024922361554539 a001 28657/370248451*271443^(12/13) 8024922361557813 a001 196418/64079*103682^(1/12) 8024922361562917 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^43 8024922361577786 a001 317811/3010349*39603^(9/22) 8024922361590602 a001 208010/1970299*39603^(9/22) 8024922361592472 a001 2178309/20633239*39603^(9/22) 8024922361592744 a001 5702887/54018521*39603^(9/22) 8024922361592784 a001 3732588/35355581*39603^(9/22) 8024922361592790 a001 39088169/370248451*39603^(9/22) 8024922361592791 a001 102334155/969323029*39603^(9/22) 8024922361592791 a001 66978574/634430159*39603^(9/22) 8024922361592791 a001 701408733/6643838879*39603^(9/22) 8024922361592791 a001 1836311903/17393796001*39603^(9/22) 8024922361592791 a001 1201881744/11384387281*39603^(9/22) 8024922361592791 a001 12586269025/119218851371*39603^(9/22) 8024922361592791 a001 32951280099/312119004989*39603^(9/22) 8024922361592791 a001 21566892818/204284540899*39603^(9/22) 8024922361592791 a001 225851433717/2139295485799*39603^(9/22) 8024922361592791 a001 182717648081/1730726404001*39603^(9/22) 8024922361592791 a001 139583862445/1322157322203*39603^(9/22) 8024922361592791 a001 53316291173/505019158607*39603^(9/22) 8024922361592791 a001 10182505537/96450076809*39603^(9/22) 8024922361592791 a001 7778742049/73681302247*39603^(9/22) 8024922361592791 a001 2971215073/28143753123*39603^(9/22) 8024922361592791 a001 567451585/5374978561*39603^(9/22) 8024922361592791 a001 433494437/4106118243*39603^(9/22) 8024922361592791 a001 165580141/1568397607*39603^(9/22) 8024922361592791 a001 31622993/299537289*39603^(9/22) 8024922361592794 a001 24157817/228826127*39603^(9/22) 8024922361592809 a001 9227465/87403803*39603^(9/22) 8024922361592913 a001 1762289/16692641*39603^(9/22) 8024922361593627 a001 1346269/12752043*39603^(9/22) 8024922361598522 a001 514229/4870847*39603^(9/22) 8024922361625029 a001 28657/271443*103682^(3/8) 8024922361632074 a001 98209/930249*39603^(9/22) 8024922361670687 a001 317811/64079*39603^(1/22) 8024922361686958 a001 75025/439204*39603^(4/11) 8024922361714133 a001 121393/1860498*39603^(5/11) 8024922361739143 a001 28657/167761*(1/2+1/2*5^(1/2))^8 8024922361739143 a001 28657/167761*23725150497407^(1/8) 8024922361739143 a001 28657/167761*505019158607^(1/7) 8024922361739143 a001 28657/167761*73681302247^(2/13) 8024922361739143 a001 28657/167761*10749957122^(1/6) 8024922361739143 a001 28657/167761*4106118243^(4/23) 8024922361739143 a001 75025/64079*(1/2+1/2*5^(1/2))^4 8024922361739143 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^4/Lucas(23) 8024922361739143 a001 75025/64079*23725150497407^(1/16) 8024922361739143 a001 75025/64079*73681302247^(1/13) 8024922361739143 a001 75025/64079*10749957122^(1/12) 8024922361739143 a001 75025/64079*4106118243^(2/23) 8024922361739143 a001 28657/167761*1568397607^(2/11) 8024922361739143 a001 75025/64079*1568397607^(1/11) 8024922361739143 a001 75025/64079*599074578^(2/21) 8024922361739143 a001 28657/167761*599074578^(4/21) 8024922361739143 a001 75025/64079*228826127^(1/10) 8024922361739143 a001 2149991425/267914296 8024922361739143 a001 28657/167761*228826127^(1/5) 8024922361739143 a001 75025/64079*87403803^(2/19) 8024922361739143 a001 28657/167761*87403803^(4/19) 8024922361739144 a001 75025/64079*33385282^(1/9) 8024922361739145 a001 28657/167761*33385282^(2/9) 8024922361739149 a001 75025/64079*12752043^(2/17) 8024922361739155 a001 28657/167761*12752043^(4/17) 8024922361739185 a001 75025/64079*4870847^(1/8) 8024922361739228 a001 28657/167761*4870847^(1/4) 8024922361739452 a001 75025/64079*1860498^(2/15) 8024922361739761 a001 28657/167761*1860498^(4/15) 8024922361741413 a001 75025/64079*710647^(1/7) 8024922361743683 a001 28657/167761*710647^(2/7) 8024922361755899 a001 75025/64079*271443^(2/13) 8024922361772655 a001 28657/167761*271443^(4/13) 8024922361777467 a001 46368/3010349*39603^(13/22) 8024922361780262 a001 28657/710647*103682^(11/24) 8024922361806649 a001 28657/439204*103682^(5/12) 8024922361809137 a001 317811/4870847*39603^(5/11) 8024922361822998 a001 832040/12752043*39603^(5/11) 8024922361825020 a001 311187/4769326*39603^(5/11) 8024922361825315 a001 5702887/87403803*39603^(5/11) 8024922361825358 a001 14930352/228826127*39603^(5/11) 8024922361825364 a001 39088169/599074578*39603^(5/11) 8024922361825365 a001 14619165/224056801*39603^(5/11) 8024922361825365 a001 267914296/4106118243*39603^(5/11) 8024922361825365 a001 701408733/10749957122*39603^(5/11) 8024922361825365 a001 1836311903/28143753123*39603^(5/11) 8024922361825365 a001 686789568/10525900321*39603^(5/11) 8024922361825365 a001 12586269025/192900153618*39603^(5/11) 8024922361825365 a001 32951280099/505019158607*39603^(5/11) 8024922361825365 a001 86267571272/1322157322203*39603^(5/11) 8024922361825365 a001 32264490531/494493258286*39603^(5/11) 8024922361825365 a001 591286729879/9062201101803*39603^(5/11) 8024922361825365 a001 1548008755920/23725150497407*39603^(5/11) 8024922361825365 a001 365435296162/5600748293801*39603^(5/11) 8024922361825365 a001 139583862445/2139295485799*39603^(5/11) 8024922361825365 a001 53316291173/817138163596*39603^(5/11) 8024922361825365 a001 20365011074/312119004989*39603^(5/11) 8024922361825365 a001 7778742049/119218851371*39603^(5/11) 8024922361825365 a001 2971215073/45537549124*39603^(5/11) 8024922361825365 a001 1134903170/17393796001*39603^(5/11) 8024922361825365 a001 433494437/6643838879*39603^(5/11) 8024922361825365 a001 165580141/2537720636*39603^(5/11) 8024922361825366 a001 63245986/969323029*39603^(5/11) 8024922361825368 a001 24157817/370248451*39603^(5/11) 8024922361825385 a001 9227465/141422324*39603^(5/11) 8024922361825497 a001 3524578/54018521*39603^(5/11) 8024922361826270 a001 1346269/20633239*39603^(5/11) 8024922361831564 a001 514229/7881196*39603^(5/11) 8024922361833326 a001 28657/1149851*103682^(1/2) 8024922361856042 a001 28657/1860498*103682^(13/24) 8024922361862041 a001 75025/710647*39603^(9/22) 8024922361863561 a001 75025/64079*103682^(1/6) 8024922361867852 a001 196418/3010349*39603^(5/11) 8024922361870367 a001 46368/64079*39603^(5/22) 8024922361890351 a001 28657/3010349*103682^(7/12) 8024922361920232 a001 28657/4870847*103682^(5/8) 8024922361949911 a001 121393/3010349*39603^(1/2) 8024922361951803 a001 28657/7881196*103682^(2/3) 8024922361960753 a001 196418/64079*39603^(1/11) 8024922361982729 a001 28657/12752043*103682^(17/24) 8024922361987979 a001 28657/167761*103682^(1/3) 8024922362008818 a001 46368/4870847*39603^(7/11) 8024922362013902 a001 28657/20633239*103682^(3/4) 8024922362042179 a001 317811/7881196*39603^(1/2) 8024922362042812 a001 121393/64079*39603^(3/22) 8024922362044980 a001 28657/33385282*103682^(19/24) 8024922362050812 a001 10946/4870847*24476^(17/21) 8024922362055640 a001 75640/1875749*39603^(1/2) 8024922362057604 a001 2178309/54018521*39603^(1/2) 8024922362057891 a001 5702887/141422324*39603^(1/2) 8024922362057933 a001 14930352/370248451*39603^(1/2) 8024922362057939 a001 39088169/969323029*39603^(1/2) 8024922362057940 a001 9303105/230701876*39603^(1/2) 8024922362057940 a001 267914296/6643838879*39603^(1/2) 8024922362057940 a001 701408733/17393796001*39603^(1/2) 8024922362057940 a001 1836311903/45537549124*39603^(1/2) 8024922362057940 a001 4807526976/119218851371*39603^(1/2) 8024922362057940 a001 1144206275/28374454999*39603^(1/2) 8024922362057940 a001 32951280099/817138163596*39603^(1/2) 8024922362057940 a001 86267571272/2139295485799*39603^(1/2) 8024922362057940 a001 225851433717/5600748293801*39603^(1/2) 8024922362057940 a001 591286729879/14662949395604*39603^(1/2) 8024922362057940 a001 365435296162/9062201101803*39603^(1/2) 8024922362057940 a001 139583862445/3461452808002*39603^(1/2) 8024922362057940 a001 53316291173/1322157322203*39603^(1/2) 8024922362057940 a001 20365011074/505019158607*39603^(1/2) 8024922362057940 a001 7778742049/192900153618*39603^(1/2) 8024922362057940 a001 2971215073/73681302247*39603^(1/2) 8024922362057940 a001 1134903170/28143753123*39603^(1/2) 8024922362057940 a001 433494437/10749957122*39603^(1/2) 8024922362057940 a001 165580141/4106118243*39603^(1/2) 8024922362057940 a001 63245986/1568397607*39603^(1/2) 8024922362057943 a001 24157817/599074578*39603^(1/2) 8024922362057959 a001 9227465/228826127*39603^(1/2) 8024922362058068 a001 3524578/87403803*39603^(1/2) 8024922362058818 a001 1346269/33385282*39603^(1/2) 8024922362063960 a001 514229/12752043*39603^(1/2) 8024922362076095 a001 28657/54018521*103682^(5/6) 8024922362099203 a001 196418/4870847*39603^(1/2) 8024922362107196 a001 28657/87403803*103682^(7/8) 8024922362116575 a001 75025/1149851*39603^(5/11) 8024922362138301 a001 28657/141422324*103682^(11/12) 8024922362169405 a001 28657/228826127*103682^(23/24) 8024922362181262 a001 121393/4870847*39603^(6/11) 8024922362200510 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^41 8024922362241859 a001 11592/1970299*39603^(15/22) 8024922362244219 a001 317811/103682*15127^(1/10) 8024922362274575 a001 105937/4250681*39603^(6/11) 8024922362288189 a001 416020/16692641*39603^(6/11) 8024922362290175 a001 726103/29134601*39603^(6/11) 8024922362290465 a001 5702887/228826127*39603^(6/11) 8024922362290507 a001 829464/33281921*39603^(6/11) 8024922362290513 a001 39088169/1568397607*39603^(6/11) 8024922362290514 a001 34111385/1368706081*39603^(6/11) 8024922362290514 a001 133957148/5374978561*39603^(6/11) 8024922362290514 a001 233802911/9381251041*39603^(6/11) 8024922362290514 a001 1836311903/73681302247*39603^(6/11) 8024922362290514 a001 267084832/10716675201*39603^(6/11) 8024922362290514 a001 12586269025/505019158607*39603^(6/11) 8024922362290514 a001 10983760033/440719107401*39603^(6/11) 8024922362290514 a001 43133785636/1730726404001*39603^(6/11) 8024922362290514 a001 75283811239/3020733700601*39603^(6/11) 8024922362290514 a001 182717648081/7331474697802*39603^(6/11) 8024922362290514 a001 139583862445/5600748293801*39603^(6/11) 8024922362290514 a001 53316291173/2139295485799*39603^(6/11) 8024922362290514 a001 10182505537/408569081798*39603^(6/11) 8024922362290514 a001 7778742049/312119004989*39603^(6/11) 8024922362290514 a001 2971215073/119218851371*39603^(6/11) 8024922362290514 a001 567451585/22768774562*39603^(6/11) 8024922362290514 a001 433494437/17393796001*39603^(6/11) 8024922362290514 a001 165580141/6643838879*39603^(6/11) 8024922362290515 a001 31622993/1268860318*39603^(6/11) 8024922362290517 a001 24157817/969323029*39603^(6/11) 8024922362290533 a001 9227465/370248451*39603^(6/11) 8024922362290644 a001 1762289/70711162*39603^(6/11) 8024922362291403 a001 1346269/54018521*39603^(6/11) 8024922362296603 a001 514229/20633239*39603^(6/11) 8024922362332245 a001 98209/3940598*39603^(6/11) 8024922362335516 a001 28657/103682*39603^(7/22) 8024922362340762 a001 75025/1860498*39603^(1/2) 8024922362414304 a001 121393/7881196*39603^(13/22) 8024922362474255 a001 15456/4250681*39603^(8/11) 8024922362507217 a001 10959/711491*39603^(13/22) 8024922362520773 a001 832040/54018521*39603^(13/22) 8024922362522751 a001 2178309/141422324*39603^(13/22) 8024922362523039 a001 5702887/370248451*39603^(13/22) 8024922362523082 a001 14930352/969323029*39603^(13/22) 8024922362523088 a001 39088169/2537720636*39603^(13/22) 8024922362523089 a001 102334155/6643838879*39603^(13/22) 8024922362523089 a001 9238424/599786069*39603^(13/22) 8024922362523089 a001 701408733/45537549124*39603^(13/22) 8024922362523089 a001 1836311903/119218851371*39603^(13/22) 8024922362523089 a001 4807526976/312119004989*39603^(13/22) 8024922362523089 a001 12586269025/817138163596*39603^(13/22) 8024922362523089 a001 32951280099/2139295485799*39603^(13/22) 8024922362523089 a001 86267571272/5600748293801*39603^(13/22) 8024922362523089 a001 7787980473/505618944676*39603^(13/22) 8024922362523089 a001 365435296162/23725150497407*39603^(13/22) 8024922362523089 a001 139583862445/9062201101803*39603^(13/22) 8024922362523089 a001 53316291173/3461452808002*39603^(13/22) 8024922362523089 a001 20365011074/1322157322203*39603^(13/22) 8024922362523089 a001 7778742049/505019158607*39603^(13/22) 8024922362523089 a001 2971215073/192900153618*39603^(13/22) 8024922362523089 a001 1134903170/73681302247*39603^(13/22) 8024922362523089 a001 433494437/28143753123*39603^(13/22) 8024922362523089 a001 165580141/10749957122*39603^(13/22) 8024922362523089 a001 63245986/4106118243*39603^(13/22) 8024922362523091 a001 24157817/1568397607*39603^(13/22) 8024922362523108 a001 9227465/599074578*39603^(13/22) 8024922362523218 a001 3524578/228826127*39603^(13/22) 8024922362523973 a001 1346269/87403803*39603^(13/22) 8024922362529151 a001 514229/33385282*39603^(13/22) 8024922362564641 a001 196418/12752043*39603^(13/22) 8024922362576540 a001 75025/3010349*39603^(6/11) 8024922362646700 a001 121393/12752043*39603^(7/11) 8024922362669441 a001 75025/64079*39603^(2/11) 8024922362689919 a001 10946/3010349*24476^(16/21) 8024922362706898 a001 46368/20633239*39603^(17/22) 8024922362712477 r008 a(0)=8,K{-n^6,-26-37*n+24*n^2-n^3} 8024922362739766 a001 317811/33385282*39603^(7/11) 8024922362753344 a001 832040/87403803*39603^(7/11) 8024922362755325 a001 46347/4868641*39603^(7/11) 8024922362755614 a001 5702887/599074578*39603^(7/11) 8024922362755656 a001 14930352/1568397607*39603^(7/11) 8024922362755662 a001 39088169/4106118243*39603^(7/11) 8024922362755663 a001 102334155/10749957122*39603^(7/11) 8024922362755663 a001 267914296/28143753123*39603^(7/11) 8024922362755663 a001 701408733/73681302247*39603^(7/11) 8024922362755663 a001 1836311903/192900153618*39603^(7/11) 8024922362755663 a001 102287808/10745088481*39603^(7/11) 8024922362755663 a001 12586269025/1322157322203*39603^(7/11) 8024922362755663 a001 32951280099/3461452808002*39603^(7/11) 8024922362755663 a001 86267571272/9062201101803*39603^(7/11) 8024922362755663 a001 225851433717/23725150497407*39603^(7/11) 8024922362755663 a001 139583862445/14662949395604*39603^(7/11) 8024922362755663 a001 53316291173/5600748293801*39603^(7/11) 8024922362755663 a001 20365011074/2139295485799*39603^(7/11) 8024922362755663 a001 7778742049/817138163596*39603^(7/11) 8024922362755663 a001 2971215073/312119004989*39603^(7/11) 8024922362755663 a001 1134903170/119218851371*39603^(7/11) 8024922362755663 a001 433494437/45537549124*39603^(7/11) 8024922362755663 a001 165580141/17393796001*39603^(7/11) 8024922362755664 a001 63245986/6643838879*39603^(7/11) 8024922362755666 a001 24157817/2537720636*39603^(7/11) 8024922362755682 a001 9227465/969323029*39603^(7/11) 8024922362755792 a001 3524578/370248451*39603^(7/11) 8024922362756549 a001 1346269/141422324*39603^(7/11) 8024922362761735 a001 514229/54018521*39603^(7/11) 8024922362797283 a001 196418/20633239*39603^(7/11) 8024922362807891 a001 75025/4870847*39603^(13/22) 8024922362879342 a001 121393/20633239*39603^(15/22) 8024922362895384 a001 832040/271443*15127^(1/10) 8024922362898546 a001 28657/64079*64079^(6/23) 8024922362939446 a001 144/103681*39603^(9/11) 8024922362972350 a001 317811/54018521*39603^(15/22) 8024922362985920 a001 208010/35355581*39603^(15/22) 8024922362987899 a001 2178309/370248451*39603^(15/22) 8024922362988188 a001 5702887/969323029*39603^(15/22) 8024922362988230 a001 196452/33391061*39603^(15/22) 8024922362988237 a001 39088169/6643838879*39603^(15/22) 8024922362988237 a001 102334155/17393796001*39603^(15/22) 8024922362988238 a001 66978574/11384387281*39603^(15/22) 8024922362988238 a001 701408733/119218851371*39603^(15/22) 8024922362988238 a001 1836311903/312119004989*39603^(15/22) 8024922362988238 a001 1201881744/204284540899*39603^(15/22) 8024922362988238 a001 12586269025/2139295485799*39603^(15/22) 8024922362988238 a001 32951280099/5600748293801*39603^(15/22) 8024922362988238 a001 1135099622/192933544679*39603^(15/22) 8024922362988238 a001 139583862445/23725150497407*39603^(15/22) 8024922362988238 a001 53316291173/9062201101803*39603^(15/22) 8024922362988238 a001 10182505537/1730726404001*39603^(15/22) 8024922362988238 a001 7778742049/1322157322203*39603^(15/22) 8024922362988238 a001 2971215073/505019158607*39603^(15/22) 8024922362988238 a001 567451585/96450076809*39603^(15/22) 8024922362988238 a001 433494437/73681302247*39603^(15/22) 8024922362988238 a001 165580141/28143753123*39603^(15/22) 8024922362988238 a001 31622993/5374978561*39603^(15/22) 8024922362988240 a001 24157817/4106118243*39603^(15/22) 8024922362988256 a001 9227465/1568397607*39603^(15/22) 8024922362988367 a001 1762289/299537289*39603^(15/22) 8024922362989123 a001 1346269/228826127*39603^(15/22) 8024922362990388 a001 311187/101521*15127^(1/10) 8024922362994306 a001 514229/87403803*39603^(15/22) 8024922363004249 a001 5702887/1860498*15127^(1/10) 8024922363006271 a001 14930352/4870847*15127^(1/10) 8024922363006566 a001 39088169/12752043*15127^(1/10) 8024922363006609 a001 14619165/4769326*15127^(1/10) 8024922363006616 a001 267914296/87403803*15127^(1/10) 8024922363006616 a001 701408733/228826127*15127^(1/10) 8024922363006617 a001 1836311903/599074578*15127^(1/10) 8024922363006617 a001 686789568/224056801*15127^(1/10) 8024922363006617 a001 12586269025/4106118243*15127^(1/10) 8024922363006617 a001 32951280099/10749957122*15127^(1/10) 8024922363006617 a001 86267571272/28143753123*15127^(1/10) 8024922363006617 a001 32264490531/10525900321*15127^(1/10) 8024922363006617 a001 591286729879/192900153618*15127^(1/10) 8024922363006617 a001 1548008755920/505019158607*15127^(1/10) 8024922363006617 a001 1515744265389/494493258286*15127^(1/10) 8024922363006617 a001 2504730781961/817138163596*15127^(1/10) 8024922363006617 a001 956722026041/312119004989*15127^(1/10) 8024922363006617 a001 365435296162/119218851371*15127^(1/10) 8024922363006617 a001 139583862445/45537549124*15127^(1/10) 8024922363006617 a001 53316291173/17393796001*15127^(1/10) 8024922363006617 a001 20365011074/6643838879*15127^(1/10) 8024922363006617 a001 7778742049/2537720636*15127^(1/10) 8024922363006617 a001 2971215073/969323029*15127^(1/10) 8024922363006617 a001 1134903170/370248451*15127^(1/10) 8024922363006617 a001 433494437/141422324*15127^(1/10) 8024922363006619 a001 165580141/54018521*15127^(1/10) 8024922363006636 a001 63245986/20633239*15127^(1/10) 8024922363006749 a001 24157817/7881196*15127^(1/10) 8024922363007521 a001 9227465/3010349*15127^(1/10) 8024922363012815 a001 3524578/1149851*15127^(1/10) 8024922363029832 a001 98209/16692641*39603^(15/22) 8024922363040933 a001 75025/7881196*39603^(7/11) 8024922363049104 a001 1346269/439204*15127^(1/10) 8024922363111891 a001 121393/33385282*39603^(8/11) 8024922363172031 a001 46368/54018521*39603^(19/22) 8024922363191610 a001 317811/64079*15127^(1/20) 8024922363204921 a001 105937/29134601*39603^(8/11) 8024922363218494 a001 832040/228826127*39603^(8/11) 8024922363220474 a001 726103/199691526*39603^(8/11) 8024922363220763 a001 5702887/1568397607*39603^(8/11) 8024922363220805 a001 4976784/1368706081*39603^(8/11) 8024922363220811 a001 39088169/10749957122*39603^(8/11) 8024922363220812 a001 831985/228811001*39603^(8/11) 8024922363220812 a001 267914296/73681302247*39603^(8/11) 8024922363220812 a001 233802911/64300051206*39603^(8/11) 8024922363220812 a001 1836311903/505019158607*39603^(8/11) 8024922363220812 a001 1602508992/440719107401*39603^(8/11) 8024922363220812 a001 12586269025/3461452808002*39603^(8/11) 8024922363220812 a001 10983760033/3020733700601*39603^(8/11) 8024922363220812 a001 86267571272/23725150497407*39603^(8/11) 8024922363220812 a001 53316291173/14662949395604*39603^(8/11) 8024922363220812 a001 20365011074/5600748293801*39603^(8/11) 8024922363220812 a001 7778742049/2139295485799*39603^(8/11) 8024922363220812 a001 2971215073/817138163596*39603^(8/11) 8024922363220812 a001 1134903170/312119004989*39603^(8/11) 8024922363220812 a001 433494437/119218851371*39603^(8/11) 8024922363220812 a001 165580141/45537549124*39603^(8/11) 8024922363220812 a001 63245986/17393796001*39603^(8/11) 8024922363220815 a001 24157817/6643838879*39603^(8/11) 8024922363220831 a001 9227465/2537720636*39603^(8/11) 8024922363220941 a001 3524578/969323029*39603^(8/11) 8024922363221698 a001 1346269/370248451*39603^(8/11) 8024922363226882 a001 514229/141422324*39603^(8/11) 8024922363262416 a001 196418/54018521*39603^(8/11) 8024922363273329 a001 75025/12752043*39603^(15/22) 8024922363297827 a001 514229/167761*15127^(1/10) 8024922363313338 a001 10946/39603*24476^(1/3) 8024922363324597 a001 5473/930249*24476^(5/7) 8024922363344475 a001 121393/54018521*39603^(17/22) 8024922363399140 a001 28657/64079*439204^(2/9) 8024922363404601 a001 15456/29134601*39603^(10/11) 8024922363408361 a001 28657/64079*7881196^(2/11) 8024922363408384 a001 28657/64079*141422324^(2/13) 8024922363408384 a001 28657/64079*2537720636^(2/15) 8024922363408384 a001 28657/64079*45537549124^(2/17) 8024922363408384 a001 28657/64079*14662949395604^(2/21) 8024922363408384 a001 28657/64079*(1/2+1/2*5^(1/2))^6 8024922363408384 a001 28657/64079*10749957122^(1/8) 8024922363408384 a001 28657/64079*4106118243^(3/23) 8024922363408384 a001 28657/64079*1568397607^(3/22) 8024922363408384 a001 28657/64079*599074578^(1/7) 8024922363408384 a001 28657/64079*228826127^(3/20) 8024922363408385 a001 821223649/102334155 8024922363408385 a001 28657/64079*87403803^(3/19) 8024922363408386 a001 28657/64079*33385282^(1/6) 8024922363408393 a001 28657/64079*12752043^(3/17) 8024922363408448 a001 28657/64079*4870847^(3/16) 8024922363408848 a001 28657/64079*1860498^(1/5) 8024922363411789 a001 28657/64079*710647^(3/14) 8024922363433518 a001 28657/64079*271443^(3/13) 8024922363437497 a001 317811/141422324*39603^(17/22) 8024922363438259 a001 28657/271443*39603^(9/22) 8024922363451068 a001 832040/370248451*39603^(17/22) 8024922363453048 a001 2178309/969323029*39603^(17/22) 8024922363453337 a001 5702887/2537720636*39603^(17/22) 8024922363453379 a001 14930352/6643838879*39603^(17/22) 8024922363453385 a001 39088169/17393796001*39603^(17/22) 8024922363453386 a001 102334155/45537549124*39603^(17/22) 8024922363453386 a001 267914296/119218851371*39603^(17/22) 8024922363453386 a001 3524667/1568437211*39603^(17/22) 8024922363453386 a001 1836311903/817138163596*39603^(17/22) 8024922363453386 a001 4807526976/2139295485799*39603^(17/22) 8024922363453386 a001 12586269025/5600748293801*39603^(17/22) 8024922363453386 a001 32951280099/14662949395604*39603^(17/22) 8024922363453386 a001 53316291173/23725150497407*39603^(17/22) 8024922363453386 a001 20365011074/9062201101803*39603^(17/22) 8024922363453386 a001 7778742049/3461452808002*39603^(17/22) 8024922363453386 a001 2971215073/1322157322203*39603^(17/22) 8024922363453386 a001 1134903170/505019158607*39603^(17/22) 8024922363453386 a001 433494437/192900153618*39603^(17/22) 8024922363453387 a001 165580141/73681302247*39603^(17/22) 8024922363453387 a001 63245986/28143753123*39603^(17/22) 8024922363453389 a001 24157817/10749957122*39603^(17/22) 8024922363453405 a001 9227465/4106118243*39603^(17/22) 8024922363453516 a001 3524578/1568397607*39603^(17/22) 8024922363454272 a001 1346269/599074578*39603^(17/22) 8024922363459456 a001 514229/228826127*39603^(17/22) 8024922363494987 a001 196418/87403803*39603^(17/22) 8024922363505971 a001 75025/20633239*39603^(8/11) 8024922363515626 a001 75025/24476*9349^(2/19) 8024922363577046 a001 121393/87403803*39603^(9/11) 8024922363595011 a001 28657/64079*103682^(1/4) 8024922363599739 a001 28657/167761*39603^(4/11) 8024922363637177 a001 11592/35355581*39603^(21/22) 8024922363670070 a001 317811/228826127*39603^(9/11) 8024922363683643 a001 416020/299537289*39603^(9/11) 8024922363685623 a001 311187/224056801*39603^(9/11) 8024922363685912 a001 5702887/4106118243*39603^(9/11) 8024922363685954 a001 7465176/5374978561*39603^(9/11) 8024922363685960 a001 39088169/28143753123*39603^(9/11) 8024922363685961 a001 14619165/10525900321*39603^(9/11) 8024922363685961 a001 133957148/96450076809*39603^(9/11) 8024922363685961 a001 701408733/505019158607*39603^(9/11) 8024922363685961 a001 1836311903/1322157322203*39603^(9/11) 8024922363685961 a001 14930208/10749853441*39603^(9/11) 8024922363685961 a001 12586269025/9062201101803*39603^(9/11) 8024922363685961 a001 32951280099/23725150497407*39603^(9/11) 8024922363685961 a001 10182505537/7331474697802*39603^(9/11) 8024922363685961 a001 7778742049/5600748293801*39603^(9/11) 8024922363685961 a001 2971215073/2139295485799*39603^(9/11) 8024922363685961 a001 567451585/408569081798*39603^(9/11) 8024922363685961 a001 433494437/312119004989*39603^(9/11) 8024922363685961 a001 165580141/119218851371*39603^(9/11) 8024922363685961 a001 31622993/22768774562*39603^(9/11) 8024922363685964 a001 24157817/17393796001*39603^(9/11) 8024922363685980 a001 9227465/6643838879*39603^(9/11) 8024922363686090 a001 1762289/1268860318*39603^(9/11) 8024922363686846 a001 1346269/969323029*39603^(9/11) 8024922363692031 a001 514229/370248451*39603^(9/11) 8024922363727563 a001 98209/70711162*39603^(9/11) 8024922363738520 a001 75025/33385282*39603^(17/22) 8024922363809622 a001 233/271444*39603^(19/22) 8024922363821349 a001 28657/439204*39603^(5/11) 8024922363869751 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^40 8024922363902645 a001 317811/370248451*39603^(19/22) 8024922363916217 a001 832040/969323029*39603^(19/22) 8024922363918197 a001 2178309/2537720636*39603^(19/22) 8024922363918486 a001 5702887/6643838879*39603^(19/22) 8024922363918528 a001 14930352/17393796001*39603^(19/22) 8024922363918534 a001 39088169/45537549124*39603^(19/22) 8024922363918535 a001 102334155/119218851371*39603^(19/22) 8024922363918535 a001 267914296/312119004989*39603^(19/22) 8024922363918535 a001 701408733/817138163596*39603^(19/22) 8024922363918535 a001 1836311903/2139295485799*39603^(19/22) 8024922363918535 a001 4807526976/5600748293801*39603^(19/22) 8024922363918535 a001 12586269025/14662949395604*39603^(19/22) 8024922363918535 a001 20365011074/23725150497407*39603^(19/22) 8024922363918535 a001 7778742049/9062201101803*39603^(19/22) 8024922363918535 a001 2971215073/3461452808002*39603^(19/22) 8024922363918535 a001 1134903170/1322157322203*39603^(19/22) 8024922363918535 a001 433494437/505019158607*39603^(19/22) 8024922363918535 a001 165580141/192900153618*39603^(19/22) 8024922363918536 a001 63245986/73681302247*39603^(19/22) 8024922363918538 a001 24157817/28143753123*39603^(19/22) 8024922363918554 a001 9227465/10749957122*39603^(19/22) 8024922363918665 a001 3524578/4106118243*39603^(19/22) 8024922363919421 a001 1346269/1568397607*39603^(19/22) 8024922363924605 a001 514229/599074578*39603^(19/22) 8024922363960137 a001 196418/228826127*39603^(19/22) 8024922363970868 a001 10946/1149851*24476^(2/3) 8024922363971104 a001 75025/54018521*39603^(9/11) 8024922363996431 a001 28657/710647*39603^(1/2) 8024922364042196 a001 121393/228826127*39603^(10/11) 8024922364055208 a001 98209/51841*15127^(3/20) 8024922364135219 a001 377/710646*39603^(10/11) 8024922364148791 a001 832040/1568397607*39603^(10/11) 8024922364150772 a001 726103/1368706081*39603^(10/11) 8024922364151060 a001 5702887/10749957122*39603^(10/11) 8024922364151103 a001 4976784/9381251041*39603^(10/11) 8024922364151109 a001 39088169/73681302247*39603^(10/11) 8024922364151110 a001 34111385/64300051206*39603^(10/11) 8024922364151110 a001 267914296/505019158607*39603^(10/11) 8024922364151110 a001 233802911/440719107401*39603^(10/11) 8024922364151110 a001 1836311903/3461452808002*39603^(10/11) 8024922364151110 a001 1602508992/3020733700601*39603^(10/11) 8024922364151110 a001 12586269025/23725150497407*39603^(10/11) 8024922364151110 a001 7778742049/14662949395604*39603^(10/11) 8024922364151110 a001 2971215073/5600748293801*39603^(10/11) 8024922364151110 a001 1134903170/2139295485799*39603^(10/11) 8024922364151110 a001 433494437/817138163596*39603^(10/11) 8024922364151110 a001 165580141/312119004989*39603^(10/11) 8024922364151110 a001 63245986/119218851371*39603^(10/11) 8024922364151113 a001 24157817/45537549124*39603^(10/11) 8024922364151129 a001 9227465/17393796001*39603^(10/11) 8024922364151239 a001 3524578/6643838879*39603^(10/11) 8024922364151995 a001 1346269/2537720636*39603^(10/11) 8024922364157179 a001 514229/969323029*39603^(10/11) 8024922364192711 a001 196418/370248451*39603^(10/11) 8024922364203675 a001 75025/87403803*39603^(19/22) 8024922364250966 a001 28657/1149851*39603^(6/11) 8024922364274770 a001 121393/370248451*39603^(21/22) 8024922364332839 a001 4181/3010349*9349^(18/19) 8024922364367794 a001 317811/969323029*39603^(21/22) 8024922364381366 a001 610/1860499*39603^(21/22) 8024922364383346 a001 2178309/6643838879*39603^(21/22) 8024922364383635 a001 5702887/17393796001*39603^(21/22) 8024922364383677 a001 3732588/11384387281*39603^(21/22) 8024922364383683 a001 39088169/119218851371*39603^(21/22) 8024922364383684 a001 9303105/28374454999*39603^(21/22) 8024922364383684 a001 66978574/204284540899*39603^(21/22) 8024922364383684 a001 701408733/2139295485799*39603^(21/22) 8024922364383684 a001 1836311903/5600748293801*39603^(21/22) 8024922364383684 a001 1201881744/3665737348901*39603^(21/22) 8024922364383684 a001 7778742049/23725150497407*39603^(21/22) 8024922364383684 a001 2971215073/9062201101803*39603^(21/22) 8024922364383684 a001 567451585/1730726404001*39603^(21/22) 8024922364383684 a001 433494437/1322157322203*39603^(21/22) 8024922364383684 a001 165580141/505019158607*39603^(21/22) 8024922364383685 a001 31622993/96450076809*39603^(21/22) 8024922364383687 a001 24157817/73681302247*39603^(21/22) 8024922364383703 a001 9227465/28143753123*39603^(21/22) 8024922364383813 a001 1762289/5374978561*39603^(21/22) 8024922364384570 a001 1346269/4106118243*39603^(21/22) 8024922364389754 a001 514229/1568397607*39603^(21/22) 8024922364425286 a001 98209/299537289*39603^(21/22) 8024922364436251 a001 75025/141422324*39603^(10/11) 8024922364475152 a001 28657/1860498*39603^(13/22) 8024922364507345 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^42 8024922364586790 a001 10946/710647*24476^(13/21) 8024922364589102 a001 17711/24476*24476^(5/21) 8024922364600368 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^44 8024922364613940 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^46 8024922364615920 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^48 8024922364616209 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^50 8024922364616251 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^52 8024922364616258 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^54 8024922364616259 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^56 8024922364616259 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^58 8024922364616259 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^60 8024922364616259 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^62 8024922364616259 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^64 8024922364616259 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^66 8024922364616259 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^68 8024922364616259 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^70 8024922364616259 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^72 8024922364616259 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^74 8024922364616259 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^76 8024922364616259 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^78 8024922364616259 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^80 8024922364616259 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^82 8024922364616259 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^84 8024922364616259 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^86 8024922364616259 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^88 8024922364616259 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^90 8024922364616259 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^92 8024922364616259 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^94 8024922364616259 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^96 8024922364616259 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^98 8024922364616259 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^100 8024922364616259 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^99 8024922364616259 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^97 8024922364616259 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^95 8024922364616259 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^93 8024922364616259 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^91 8024922364616259 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^89 8024922364616259 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^87 8024922364616259 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^85 8024922364616259 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^83 8024922364616259 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^81 8024922364616259 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^79 8024922364616259 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^77 8024922364616259 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^75 8024922364616259 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^73 8024922364616259 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^71 8024922364616259 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^69 8024922364616259 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^67 8024922364616259 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^65 8024922364616259 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^63 8024922364616259 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^61 8024922364616259 a001 2/17711*(1/2+1/2*5^(1/2))^28 8024922364616259 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^59 8024922364616259 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^57 8024922364616259 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^55 8024922364616261 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^53 8024922364616278 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^51 8024922364616388 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^49 8024922364617144 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^47 8024922364622328 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^45 8024922364657270 a001 514229/271443*15127^(3/20) 8024922364657860 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^43 8024922364668825 a001 75025/228826127*39603^(21/22) 8024922364710930 a001 28657/3010349*39603^(7/11) 8024922364745110 a001 1346269/710647*15127^(3/20) 8024922364757925 a001 1762289/930249*15127^(3/20) 8024922364759795 a001 9227465/4870847*15127^(3/20) 8024922364760068 a001 24157817/12752043*15127^(3/20) 8024922364760108 a001 31622993/16692641*15127^(3/20) 8024922364760113 a001 165580141/87403803*15127^(3/20) 8024922364760114 a001 433494437/228826127*15127^(3/20) 8024922364760114 a001 567451585/299537289*15127^(3/20) 8024922364760114 a001 2971215073/1568397607*15127^(3/20) 8024922364760114 a001 7778742049/4106118243*15127^(3/20) 8024922364760114 a001 10182505537/5374978561*15127^(3/20) 8024922364760114 a001 53316291173/28143753123*15127^(3/20) 8024922364760114 a001 139583862445/73681302247*15127^(3/20) 8024922364760114 a001 182717648081/96450076809*15127^(3/20) 8024922364760114 a001 956722026041/505019158607*15127^(3/20) 8024922364760114 a001 10610209857723/5600748293801*15127^(3/20) 8024922364760114 a001 591286729879/312119004989*15127^(3/20) 8024922364760114 a001 225851433717/119218851371*15127^(3/20) 8024922364760114 a001 21566892818/11384387281*15127^(3/20) 8024922364760114 a001 32951280099/17393796001*15127^(3/20) 8024922364760114 a001 12586269025/6643838879*15127^(3/20) 8024922364760114 a001 1201881744/634430159*15127^(3/20) 8024922364760114 a001 1836311903/969323029*15127^(3/20) 8024922364760114 a001 701408733/370248451*15127^(3/20) 8024922364760115 a001 66978574/35355581*15127^(3/20) 8024922364760117 a001 102334155/54018521*15127^(3/20) 8024922364760132 a001 39088169/20633239*15127^(3/20) 8024922364760236 a001 3732588/1970299*15127^(3/20) 8024922364760951 a001 5702887/3010349*15127^(3/20) 8024922364765846 a001 2178309/1149851*15127^(3/20) 8024922364799398 a001 208010/109801*15127^(3/20) 8024922364803831 a001 28657/64079*39603^(3/11) 8024922364901399 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^41 8024922364942281 a001 28657/4870847*39603^(15/22) 8024922365002600 a001 196418/64079*15127^(1/10) 8024922365029365 a001 317811/167761*15127^(3/20) 8024922365104854 a001 28657/39603*15127^(1/4) 8024922365175323 a001 28657/7881196*39603^(8/11) 8024922365282164 a001 5473/219602*24476^(4/7) 8024922365407719 a001 28657/12752043*39603^(17/22) 8024922365640361 a001 28657/20633239*39603^(9/11) 8024922365658191 a001 121393/103682*15127^(1/5) 8024922365769531 a001 10946/271443*24476^(11/21) 8024922365872910 a001 28657/33385282*39603^(19/22) 8024922366105494 a001 28657/54018521*39603^(10/11) 8024922366338065 a001 28657/87403803*39603^(21/22) 8024922366388808 a001 105937/90481*15127^(1/5) 8024922366407703 a001 5473/51841*24476^(3/7) 8024922366446222 a001 28657/15127*5778^(1/6) 8024922366495404 a001 832040/710647*15127^(1/5) 8024922366510956 a001 726103/620166*15127^(1/5) 8024922366513225 a001 5702887/4870847*15127^(1/5) 8024922366513556 a001 4976784/4250681*15127^(1/5) 8024922366513604 a001 39088169/33385282*15127^(1/5) 8024922366513611 a001 34111385/29134601*15127^(1/5) 8024922366513612 a001 267914296/228826127*15127^(1/5) 8024922366513612 a001 233802911/199691526*15127^(1/5) 8024922366513612 a001 1836311903/1568397607*15127^(1/5) 8024922366513612 a001 1602508992/1368706081*15127^(1/5) 8024922366513612 a001 12586269025/10749957122*15127^(1/5) 8024922366513612 a001 10983760033/9381251041*15127^(1/5) 8024922366513612 a001 86267571272/73681302247*15127^(1/5) 8024922366513612 a001 75283811239/64300051206*15127^(1/5) 8024922366513612 a001 2504730781961/2139295485799*15127^(1/5) 8024922366513612 a001 365435296162/312119004989*15127^(1/5) 8024922366513612 a001 139583862445/119218851371*15127^(1/5) 8024922366513612 a001 53316291173/45537549124*15127^(1/5) 8024922366513612 a001 20365011074/17393796001*15127^(1/5) 8024922366513612 a001 7778742049/6643838879*15127^(1/5) 8024922366513612 a001 2971215073/2537720636*15127^(1/5) 8024922366513612 a001 1134903170/969323029*15127^(1/5) 8024922366513612 a001 433494437/370248451*15127^(1/5) 8024922366513613 a001 165580141/141422324*15127^(1/5) 8024922366513615 a001 63245986/54018521*15127^(1/5) 8024922366513634 a001 24157817/20633239*15127^(1/5) 8024922366513760 a001 9227465/7881196*15127^(1/5) 8024922366514627 a001 3524578/3010349*15127^(1/5) 8024922366520567 a001 1346269/1149851*15127^(1/5) 8024922366561283 a001 514229/439204*15127^(1/5) 8024922366570640 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^39 8024922366605582 a001 121393/64079*15127^(3/20) 8024922366801468 a001 10946/167761*24476^(10/21) 8024922366840354 a001 196418/167761*15127^(1/5) 8024922367183703 a001 10946/39603*64079^(7/23) 8024922367353649 a001 17711/24476*64079^(5/23) 8024922367664458 a001 17711/103682*15127^(2/5) 8024922367721487 a001 17711/24476*167761^(1/5) 8024922367778511 a001 10946/39603*20633239^(1/5) 8024922367778512 a001 193864606/24157817 8024922367778512 a001 17711/24476*20633239^(1/7) 8024922367778515 a001 10946/39603*17393796001^(1/7) 8024922367778515 a001 10946/39603*14662949395604^(1/9) 8024922367778515 a001 10946/39603*(1/2+1/2*5^(1/2))^7 8024922367778515 a001 10946/39603*599074578^(1/6) 8024922367778515 a001 17711/24476*2537720636^(1/9) 8024922367778515 a001 17711/24476*312119004989^(1/11) 8024922367778515 a001 17711/24476*(1/2+1/2*5^(1/2))^5 8024922367778515 a001 17711/24476*28143753123^(1/10) 8024922367778515 a001 17711/24476*228826127^(1/8) 8024922367778643 a001 196418/39603*5778^(1/18) 8024922367778901 a001 17711/24476*1860498^(1/6) 8024922367782487 a001 10946/39603*710647^(1/4) 8024922367805743 a001 75025/103682*15127^(1/4) 8024922367934037 a001 17711/24476*103682^(5/24) 8024922367953905 a001 121393/24476*9349^(1/19) 8024922367996246 a001 10946/39603*103682^(7/24) 8024922368199798 a001 196418/271443*15127^(1/4) 8024922368257289 a001 514229/710647*15127^(1/4) 8024922368265677 a001 1346269/1860498*15127^(1/4) 8024922368266901 a001 3524578/4870847*15127^(1/4) 8024922368267080 a001 9227465/12752043*15127^(1/4) 8024922368267106 a001 24157817/33385282*15127^(1/4) 8024922368267109 a001 63245986/87403803*15127^(1/4) 8024922368267110 a001 165580141/228826127*15127^(1/4) 8024922368267110 a001 433494437/599074578*15127^(1/4) 8024922368267110 a001 1134903170/1568397607*15127^(1/4) 8024922368267110 a001 2971215073/4106118243*15127^(1/4) 8024922368267110 a001 7778742049/10749957122*15127^(1/4) 8024922368267110 a001 20365011074/28143753123*15127^(1/4) 8024922368267110 a001 53316291173/73681302247*15127^(1/4) 8024922368267110 a001 139583862445/192900153618*15127^(1/4) 8024922368267110 a001 365435296162/505019158607*15127^(1/4) 8024922368267110 a001 10610209857723/14662949395604*15127^(1/4) 8024922368267110 a001 591286729879/817138163596*15127^(1/4) 8024922368267110 a001 225851433717/312119004989*15127^(1/4) 8024922368267110 a001 86267571272/119218851371*15127^(1/4) 8024922368267110 a001 32951280099/45537549124*15127^(1/4) 8024922368267110 a001 12586269025/17393796001*15127^(1/4) 8024922368267110 a001 4807526976/6643838879*15127^(1/4) 8024922368267110 a001 1836311903/2537720636*15127^(1/4) 8024922368267110 a001 701408733/969323029*15127^(1/4) 8024922368267110 a001 267914296/370248451*15127^(1/4) 8024922368267110 a001 102334155/141422324*15127^(1/4) 8024922368267112 a001 39088169/54018521*15127^(1/4) 8024922368267122 a001 14930352/20633239*15127^(1/4) 8024922368267190 a001 5702887/7881196*15127^(1/4) 8024922368267657 a001 2178309/3010349*15127^(1/4) 8024922368270861 a001 832040/1149851*15127^(1/4) 8024922368292821 a001 317811/439204*15127^(1/4) 8024922368443337 a001 121393/167761*15127^(1/4) 8024922368527593 a001 23184/51841*15127^(3/10) 8024922368611850 a001 17711/64079*15127^(7/20) 8024922368753134 a001 75025/64079*15127^(1/5) 8024922368941387 a001 17711/24476*39603^(5/22) 8024922369161969 a001 4181/1860498*9349^(17/19) 8024922369406536 a001 10946/39603*39603^(7/22) 8024922369474984 a001 46368/64079*15127^(1/4) 8024922369484059 a001 6765/15127*5778^(1/3) 8024922369746475 a001 10946/64079*24476^(8/21) 8024922369802780 a001 121393/271443*15127^(3/10) 8024922369988827 a001 317811/710647*15127^(3/10) 8024922370015971 a001 416020/930249*15127^(3/10) 8024922370019931 a001 2178309/4870847*15127^(3/10) 8024922370020509 a001 5702887/12752043*15127^(3/10) 8024922370020594 a001 7465176/16692641*15127^(3/10) 8024922370020606 a001 39088169/87403803*15127^(3/10) 8024922370020608 a001 102334155/228826127*15127^(3/10) 8024922370020608 a001 133957148/299537289*15127^(3/10) 8024922370020608 a001 701408733/1568397607*15127^(3/10) 8024922370020608 a001 1836311903/4106118243*15127^(3/10) 8024922370020608 a001 2403763488/5374978561*15127^(3/10) 8024922370020608 a001 12586269025/28143753123*15127^(3/10) 8024922370020608 a001 32951280099/73681302247*15127^(3/10) 8024922370020608 a001 43133785636/96450076809*15127^(3/10) 8024922370020608 a001 225851433717/505019158607*15127^(3/10) 8024922370020608 a001 591286729879/1322157322203*15127^(3/10) 8024922370020608 a001 10610209857723/23725150497407*15127^(3/10) 8024922370020608 a001 182717648081/408569081798*15127^(3/10) 8024922370020608 a001 139583862445/312119004989*15127^(3/10) 8024922370020608 a001 53316291173/119218851371*15127^(3/10) 8024922370020608 a001 10182505537/22768774562*15127^(3/10) 8024922370020608 a001 7778742049/17393796001*15127^(3/10) 8024922370020608 a001 2971215073/6643838879*15127^(3/10) 8024922370020608 a001 567451585/1268860318*15127^(3/10) 8024922370020608 a001 433494437/969323029*15127^(3/10) 8024922370020608 a001 165580141/370248451*15127^(3/10) 8024922370020609 a001 31622993/70711162*15127^(3/10) 8024922370020613 a001 24157817/54018521*15127^(3/10) 8024922370020646 a001 9227465/20633239*15127^(3/10) 8024922370020866 a001 1762289/3940598*15127^(3/10) 8024922370022379 a001 1346269/3010349*15127^(3/10) 8024922370032747 a001 514229/1149851*15127^(3/10) 8024922370103811 a001 98209/219602*15127^(3/10) 8024922370234998 a001 11592/6119*24476^(1/7) 8024922370449604 a001 17711/167761*15127^(9/20) 8024922370590889 a001 75025/167761*15127^(3/10) 8024922370940771 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^38 8024922371025747 a001 10946/54018521*64079^(22/23) 8024922371110710 a001 5473/16692641*64079^(21/23) 8024922371195709 a001 10946/20633239*64079^(20/23) 8024922371280614 a001 10946/12752043*64079^(19/23) 8024922371312739 a001 46368/167761*15127^(7/20) 8024922371365765 a001 5473/3940598*64079^(18/23) 8024922371383887 a001 5473/51841*64079^(9/23) 8024922371450271 a001 10946/4870847*64079^(17/23) 8024922371536468 a001 10946/3010349*64079^(16/23) 8024922371618237 a001 5473/930249*64079^(15/23) 8024922371706793 a001 121393/439204*15127^(7/20) 8024922371711598 a001 10946/1149851*64079^(14/23) 8024922371764285 a001 317811/1149851*15127^(7/20) 8024922371772673 a001 832040/3010349*15127^(7/20) 8024922371773897 a001 2178309/7881196*15127^(7/20) 8024922371774075 a001 5702887/20633239*15127^(7/20) 8024922371774101 a001 14930352/54018521*15127^(7/20) 8024922371774105 a001 39088169/141422324*15127^(7/20) 8024922371774106 a001 102334155/370248451*15127^(7/20) 8024922371774106 a001 267914296/969323029*15127^(7/20) 8024922371774106 a001 701408733/2537720636*15127^(7/20) 8024922371774106 a001 1836311903/6643838879*15127^(7/20) 8024922371774106 a001 4807526976/17393796001*15127^(7/20) 8024922371774106 a001 12586269025/45537549124*15127^(7/20) 8024922371774106 a001 32951280099/119218851371*15127^(7/20) 8024922371774106 a001 86267571272/312119004989*15127^(7/20) 8024922371774106 a001 225851433717/817138163596*15127^(7/20) 8024922371774106 a001 1548008755920/5600748293801*15127^(7/20) 8024922371774106 a001 139583862445/505019158607*15127^(7/20) 8024922371774106 a001 53316291173/192900153618*15127^(7/20) 8024922371774106 a001 20365011074/73681302247*15127^(7/20) 8024922371774106 a001 7778742049/28143753123*15127^(7/20) 8024922371774106 a001 2971215073/10749957122*15127^(7/20) 8024922371774106 a001 1134903170/4106118243*15127^(7/20) 8024922371774106 a001 433494437/1568397607*15127^(7/20) 8024922371774106 a001 165580141/599074578*15127^(7/20) 8024922371774106 a001 63245986/228826127*15127^(7/20) 8024922371774107 a001 24157817/87403803*15127^(7/20) 8024922371774117 a001 9227465/33385282*15127^(7/20) 8024922371774186 a001 3524578/12752043*15127^(7/20) 8024922371774612 a001 10946/710647*64079^(13/23) 8024922371774653 a001 1346269/4870847*15127^(7/20) 8024922371777857 a001 514229/1860498*15127^(7/20) 8024922371799817 a001 196418/710647*15127^(7/20) 8024922371809048 a001 17711/271443*15127^(1/2) 8024922371851534 a001 10946/271443*64079^(11/23) 8024922371893726 a001 11592/6119*64079^(3/23) 8024922371904528 a001 75025/24476*24476^(2/21) 8024922371917076 a001 5473/219602*64079^(12/23) 8024922371950332 a001 75025/271443*15127^(7/20) 8024922372113242 a001 514229/103682*5778^(1/18) 8024922372134778 a001 5473/51841*439204^(1/3) 8024922372144023 a001 11592/6119*439204^(1/9) 8024922372148356 a001 121393/24476*24476^(1/21) 8024922372148610 a001 5473/51841*7881196^(3/11) 8024922372148633 a001 11592/6119*7881196^(1/11) 8024922372148645 a001 253772064/31622993 8024922372148645 a001 5473/51841*141422324^(3/13) 8024922372148645 a001 11592/6119*141422324^(1/13) 8024922372148645 a001 5473/51841*2537720636^(1/5) 8024922372148645 a001 5473/51841*45537549124^(3/17) 8024922372148645 a001 5473/51841*817138163596^(3/19) 8024922372148645 a001 5473/51841*14662949395604^(1/7) 8024922372148645 a001 5473/51841*(1/2+1/2*5^(1/2))^9 8024922372148645 a001 5473/51841*192900153618^(1/6) 8024922372148645 a001 5473/51841*10749957122^(3/16) 8024922372148645 a001 5473/51841*599074578^(3/14) 8024922372148645 a001 11592/6119*2537720636^(1/15) 8024922372148645 a001 11592/6119*45537549124^(1/17) 8024922372148645 a001 11592/6119*14662949395604^(1/21) 8024922372148645 a001 11592/6119*(1/2+1/2*5^(1/2))^3 8024922372148645 a001 11592/6119*192900153618^(1/18) 8024922372148645 a001 11592/6119*10749957122^(1/16) 8024922372148645 a001 11592/6119*599074578^(1/14) 8024922372148646 a001 11592/6119*33385282^(1/12) 8024922372148647 a001 5473/51841*33385282^(1/4) 8024922372148877 a001 11592/6119*1860498^(1/10) 8024922372149341 a001 5473/51841*1860498^(3/10) 8024922372241958 a001 11592/6119*103682^(1/8) 8024922372298004 a001 28657/24476*24476^(4/21) 8024922372330562 a001 10946/167761*64079^(10/23) 8024922372428585 a001 5473/51841*103682^(3/8) 8024922372610012 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^40 8024922372667059 a001 10946/20633239*167761^(4/5) 8024922372672182 a001 15456/90481*15127^(2/5) 8024922372701265 a001 121393/24476*64079^(1/23) 8024922372721750 a001 5473/930249*167761^(3/5) 8024922372729261 a001 17711/15127*5778^(2/9) 8024922372745651 a001 1346269/271443*5778^(1/18) 8024922372786195 a001 10946/271443*7881196^(1/3) 8024922372786238 a001 1328767778/165580141 8024922372786238 a001 10946/271443*312119004989^(1/5) 8024922372786238 a001 10946/271443*(1/2+1/2*5^(1/2))^11 8024922372786238 a001 10946/271443*1568397607^(1/4) 8024922372786238 a001 121393/48952+121393/48952*5^(1/2) 8024922372817343 a001 121393/24476*103682^(1/24) 8024922372837918 a001 3524578/710647*5778^(1/18) 8024922372846368 a001 11592/6119*39603^(3/22) 8024922372851380 a001 9227465/1860498*5778^(1/18) 8024922372853344 a001 24157817/4870847*5778^(1/18) 8024922372853551 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^42 8024922372853631 a001 63245986/12752043*5778^(1/18) 8024922372853672 a001 165580141/33385282*5778^(1/18) 8024922372853679 a001 433494437/87403803*5778^(1/18) 8024922372853679 a001 1134903170/228826127*5778^(1/18) 8024922372853680 a001 2971215073/599074578*5778^(1/18) 8024922372853680 a001 7778742049/1568397607*5778^(1/18) 8024922372853680 a001 20365011074/4106118243*5778^(1/18) 8024922372853680 a001 53316291173/10749957122*5778^(1/18) 8024922372853680 a001 139583862445/28143753123*5778^(1/18) 8024922372853680 a001 365435296162/73681302247*5778^(1/18) 8024922372853680 a001 956722026041/192900153618*5778^(1/18) 8024922372853680 a001 2504730781961/505019158607*5778^(1/18) 8024922372853680 a001 10610209857723/2139295485799*5778^(1/18) 8024922372853680 a001 4052739537881/817138163596*5778^(1/18) 8024922372853680 a001 140728068720/28374454999*5778^(1/18) 8024922372853680 a001 591286729879/119218851371*5778^(1/18) 8024922372853680 a001 225851433717/45537549124*5778^(1/18) 8024922372853680 a001 86267571272/17393796001*5778^(1/18) 8024922372853680 a001 32951280099/6643838879*5778^(1/18) 8024922372853680 a001 1144206275/230701876*5778^(1/18) 8024922372853680 a001 4807526976/969323029*5778^(1/18) 8024922372853680 a001 1836311903/370248451*5778^(1/18) 8024922372853680 a001 701408733/141422324*5778^(1/18) 8024922372853682 a001 267914296/54018521*5778^(1/18) 8024922372853698 a001 9303105/1875749*5778^(1/18) 8024922372853808 a001 39088169/7881196*5778^(1/18) 8024922372854558 a001 14930352/3010349*5778^(1/18) 8024922372858174 a001 5473/70711162*439204^(8/9) 8024922372859700 a001 5702887/1149851*5778^(1/18) 8024922372862789 a001 5473/16692641*439204^(7/9) 8024922372867547 a001 5473/3940598*439204^(2/3) 8024922372869722 a001 5473/930249*439204^(5/9) 8024922372879262 a001 10946/710647*141422324^(1/3) 8024922372879262 a001 3478759206/433494437 8024922372879262 a001 10946/710647*(1/2+1/2*5^(1/2))^13 8024922372879262 a001 10946/710647*73681302247^(1/4) 8024922372879262 a004 Fibonacci(28)/Lucas(21)/(1/2+sqrt(5)/2) 8024922372889083 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^44 8024922372892775 a001 5473/930249*7881196^(5/11) 8024922372892826 a001 5473/930249*20633239^(3/7) 8024922372892834 a001 5473/930249*141422324^(5/13) 8024922372892834 a001 14930344/1860497 8024922372892834 a001 5473/930249*2537720636^(1/3) 8024922372892834 a001 5473/930249*45537549124^(5/17) 8024922372892834 a001 5473/930249*312119004989^(3/11) 8024922372892834 a001 5473/930249*14662949395604^(5/21) 8024922372892834 a001 5473/930249*(1/2+1/2*5^(1/2))^15 8024922372892834 a001 5473/930249*192900153618^(5/18) 8024922372892834 a001 5473/930249*28143753123^(3/10) 8024922372892834 a001 5473/930249*10749957122^(5/16) 8024922372892834 a001 5473/930249*599074578^(5/14) 8024922372892834 a004 Fibonacci(30)/Lucas(21)/(1/2+sqrt(5)/2)^3 8024922372892834 a001 5473/930249*228826127^(3/8) 8024922372892837 a001 5473/930249*33385282^(5/12) 8024922372893993 a001 5473/930249*1860498^(1/2) 8024922372894267 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^46 8024922372894814 a001 23843770314/2971215073 8024922372894814 a001 10946/4870847*45537549124^(1/3) 8024922372894814 a001 10946/4870847*(1/2+1/2*5^(1/2))^17 8024922372894814 a004 Fibonacci(32)/Lucas(21)/(1/2+sqrt(5)/2)^5 8024922372894839 a001 10946/4870847*12752043^(1/2) 8024922372894943 a001 2178309/439204*5778^(1/18) 8024922372895023 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^48 8024922372895035 a001 5473/1268860318*7881196^(10/11) 8024922372895047 a001 5473/299537289*7881196^(9/11) 8024922372895059 a001 5473/70711162*7881196^(8/11) 8024922372895063 a001 5473/16692641*7881196^(7/11) 8024922372895069 a001 10946/54018521*7881196^(2/3) 8024922372895103 a001 4801830854/598364773 8024922372895103 a001 10946/12752043*817138163596^(1/3) 8024922372895103 a001 10946/12752043*(1/2+1/2*5^(1/2))^19 8024922372895103 a004 Fibonacci(34)/Lucas(21)/(1/2+sqrt(5)/2)^7 8024922372895104 a001 10946/12752043*87403803^(1/2) 8024922372895134 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^50 8024922372895134 a001 5473/16692641*20633239^(3/5) 8024922372895136 a001 5473/1268860318*20633239^(6/7) 8024922372895137 a001 10946/969323029*20633239^(4/5) 8024922372895139 a001 10946/228826127*20633239^(5/7) 8024922372895145 a001 5473/16692641*141422324^(7/13) 8024922372895145 a001 5473/16692641*2537720636^(7/15) 8024922372895145 a001 5473/16692641*17393796001^(3/7) 8024922372895145 a001 81713816496/10182505537 8024922372895145 a001 5473/16692641*45537549124^(7/17) 8024922372895145 a001 5473/16692641*14662949395604^(1/3) 8024922372895145 a001 5473/16692641*(1/2+1/2*5^(1/2))^21 8024922372895145 a001 5473/16692641*192900153618^(7/18) 8024922372895145 a001 5473/16692641*10749957122^(7/16) 8024922372895145 a001 5473/16692641*599074578^(1/2) 8024922372895145 a004 Fibonacci(36)/Lucas(21)/(1/2+sqrt(5)/2)^9 8024922372895149 a001 5473/16692641*33385282^(7/12) 8024922372895150 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^52 8024922372895151 a001 427859097874/53316291173 8024922372895151 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^23/Lucas(38) 8024922372895151 a001 10946/87403803*4106118243^(1/2) 8024922372895151 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^11 8024922372895152 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^54 8024922372895152 a001 5473/22768774562*141422324^(12/13) 8024922372895152 a001 5473/5374978561*141422324^(11/13) 8024922372895152 a001 5473/1268860318*141422324^(10/13) 8024922372895152 a001 5473/299537289*141422324^(9/13) 8024922372895152 a001 10946/370248451*141422324^(2/3) 8024922372895152 a001 10946/228826127*2537720636^(5/9) 8024922372895152 a001 224029932126/27916772489 8024922372895152 a001 10946/228826127*312119004989^(5/11) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^25/Lucas(40) 8024922372895152 a001 10946/228826127*3461452808002^(5/12) 8024922372895152 a001 10946/228826127*28143753123^(1/2) 8024922372895152 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^13 8024922372895152 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^56 8024922372895152 a001 10946/228826127*228826127^(5/8) 8024922372895152 a001 5473/299537289*2537720636^(3/5) 8024922372895152 a001 5473/299537289*45537549124^(9/17) 8024922372895152 a001 1466294942008/182717648081 8024922372895152 a001 5473/299537289*817138163596^(9/19) 8024922372895152 a001 5473/299537289*14662949395604^(3/7) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^27/Lucas(42) 8024922372895152 a001 5473/299537289*192900153618^(1/2) 8024922372895152 a001 5473/299537289*10749957122^(9/16) 8024922372895152 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^58 8024922372895152 a001 5473/299537289*599074578^(9/14) 8024922372895152 a001 7677619991418/956722026041 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^29/Lucas(44) 8024922372895152 a001 10946/1568397607*1322157322203^(1/2) 8024922372895152 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^60 8024922372895152 a001 5473/408569081798*2537720636^(14/15) 8024922372895152 a001 10946/312119004989*2537720636^(8/9) 8024922372895152 a001 5473/96450076809*2537720636^(13/15) 8024922372895152 a001 5473/22768774562*2537720636^(4/5) 8024922372895152 a001 5473/5374978561*2537720636^(11/15) 8024922372895152 a001 10946/28143753123*2537720636^(7/9) 8024922372895152 a001 20100270090238/2504730781961 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(46) 8024922372895152 a001 10946/4106118243*9062201101803^(1/2) 8024922372895152 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^62 8024922372895152 a001 5473/5374978561*45537549124^(11/17) 8024922372895152 a001 5473/5374978561*312119004989^(3/5) 8024922372895152 a001 4807526976/599074577 8024922372895152 a001 5473/5374978561*14662949395604^(11/21) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(48) 8024922372895152 a001 5473/5374978561*192900153618^(11/18) 8024922372895152 a001 10946/28143753123*17393796001^(5/7) 8024922372895152 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^64 8024922372895152 a001 5473/408569081798*17393796001^(6/7) 8024922372895152 a001 5473/5374978561*10749957122^(11/16) 8024922372895152 a001 10946/28143753123*312119004989^(7/11) 8024922372895152 a001 10946/28143753123*14662949395604^(5/9) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(50) 8024922372895152 a001 10946/28143753123*505019158607^(5/8) 8024922372895152 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^66 8024922372895152 a001 5473/7331474697802*45537549124^(16/17) 8024922372895152 a001 5473/1730726404001*45537549124^(15/17) 8024922372895152 a001 5473/96450076809*45537549124^(13/17) 8024922372895152 a001 5473/408569081798*45537549124^(14/17) 8024922372895152 a001 10946/28143753123*28143753123^(7/10) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(52) 8024922372895152 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^68 8024922372895152 a001 5473/96450076809*14662949395604^(13/21) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(54) 8024922372895152 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^70 8024922372895152 a001 10946/2139295485799*312119004989^(4/5) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(56) 8024922372895152 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^72 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(58) 8024922372895152 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^74 8024922372895152 a001 5473/1730726404001*14662949395604^(5/7) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(60) 8024922372895152 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^76 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(62) 8024922372895152 a001 10946/23725150497407*14662949395604^(7/9) 8024922372895152 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^78 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(64) 8024922372895152 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^80 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(66) 8024922372895152 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^82 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(68) 8024922372895152 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^84 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(70) 8024922372895152 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^86 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(72) 8024922372895152 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^88 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(74) 8024922372895152 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^90 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(76) 8024922372895152 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^92 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(78) 8024922372895152 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^94 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(80) 8024922372895152 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^96 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(82) 8024922372895152 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^98 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(84) 8024922372895152 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^100 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(86) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(88) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(90) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(92) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(94) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(96) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(98) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(99) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(100) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(97) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(95) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(93) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(91) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(89) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(87) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(85) 8024922372895152 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^99 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(83) 8024922372895152 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^97 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(81) 8024922372895152 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^95 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(79) 8024922372895152 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^93 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(77) 8024922372895152 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^91 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(75) 8024922372895152 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^89 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(73) 8024922372895152 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^87 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(71) 8024922372895152 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^85 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(69) 8024922372895152 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^83 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(67) 8024922372895152 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^81 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(65) 8024922372895152 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^79 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(63) 8024922372895152 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^77 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(61) 8024922372895152 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^75 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(59) 8024922372895152 a001 10946/2139295485799*23725150497407^(11/16) 8024922372895152 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^73 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(57) 8024922372895152 a001 10946/312119004989*312119004989^(8/11) 8024922372895152 a001 10946/23725150497407*505019158607^(7/8) 8024922372895152 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^71 8024922372895152 a001 5473/408569081798*505019158607^(3/4) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(55) 8024922372895152 a001 10946/312119004989*23725150497407^(5/8) 8024922372895152 a001 5473/1730726404001*192900153618^(5/6) 8024922372895152 a001 5473/408569081798*192900153618^(7/9) 8024922372895152 a001 5473/7331474697802*192900153618^(8/9) 8024922372895152 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^69 8024922372895152 a001 10946/119218851371*817138163596^(2/3) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(53) 8024922372895152 a001 5473/96450076809*73681302247^(3/4) 8024922372895152 a001 5473/22768774562*45537549124^(12/17) 8024922372895152 a001 10946/312119004989*73681302247^(10/13) 8024922372895152 a001 10946/2139295485799*73681302247^(11/13) 8024922372895152 a001 5473/7331474697802*73681302247^(12/13) 8024922372895152 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^67 8024922372895152 a001 5473/22768774562*14662949395604^(4/7) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(51) 8024922372895152 a001 5473/22768774562*505019158607^(9/14) 8024922372895152 a001 5473/22768774562*192900153618^(2/3) 8024922372895152 a001 5473/22768774562*73681302247^(9/13) 8024922372895152 a001 10946/312119004989*28143753123^(4/5) 8024922372895152 a001 5473/1730726404001*28143753123^(9/10) 8024922372895152 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^65 8024922372895152 a001 10946/17393796001*45537549124^(2/3) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(49) 8024922372895152 a001 85146110468354/10610209857723 8024922372895152 a001 10946/119218851371*10749957122^(19/24) 8024922372895152 a001 5473/22768774562*10749957122^(3/4) 8024922372895152 a001 5473/96450076809*10749957122^(13/16) 8024922372895152 a001 10946/312119004989*10749957122^(5/6) 8024922372895152 a001 5473/408569081798*10749957122^(7/8) 8024922372895152 a001 10946/2139295485799*10749957122^(11/12) 8024922372895152 a001 5473/1730726404001*10749957122^(15/16) 8024922372895152 a001 10946/5600748293801*10749957122^(23/24) 8024922372895152 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^63 8024922372895152 a001 10946/17393796001*10749957122^(17/24) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(47) 8024922372895152 a001 10946/6643838879*23725150497407^(1/2) 8024922372895152 a001 32522920189058/4052739537881 8024922372895152 a001 10946/6643838879*505019158607^(4/7) 8024922372895152 a001 10946/6643838879*73681302247^(8/13) 8024922372895152 a001 10946/6643838879*10749957122^(2/3) 8024922372895152 a001 5473/22768774562*4106118243^(18/23) 8024922372895152 a001 10946/17393796001*4106118243^(17/23) 8024922372895152 a001 10946/119218851371*4106118243^(19/23) 8024922372895152 a001 10946/312119004989*4106118243^(20/23) 8024922372895152 a001 5473/1268860318*2537720636^(2/3) 8024922372895152 a001 5473/408569081798*4106118243^(21/23) 8024922372895152 a001 10946/2139295485799*4106118243^(22/23) 8024922372895152 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^61 8024922372895152 a001 10946/6643838879*4106118243^(16/23) 8024922372895152 a001 5473/1268860318*45537549124^(10/17) 8024922372895152 a001 5473/1268860318*312119004989^(6/11) 8024922372895152 a001 5473/1268860318*14662949395604^(10/21) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(45) 8024922372895152 a001 10182500081/1268859636 8024922372895152 a001 5473/1268860318*192900153618^(5/9) 8024922372895152 a001 5473/1268860318*28143753123^(3/5) 8024922372895152 a001 5473/1268860318*10749957122^(5/8) 8024922372895152 a001 5473/1268860318*4106118243^(15/23) 8024922372895152 a001 5473/5374978561*1568397607^(3/4) 8024922372895152 a001 10946/17393796001*1568397607^(17/22) 8024922372895152 a001 10946/6643838879*1568397607^(8/11) 8024922372895152 a001 5473/22768774562*1568397607^(9/11) 8024922372895152 a001 10946/119218851371*1568397607^(19/22) 8024922372895152 a001 10946/312119004989*1568397607^(10/11) 8024922372895152 a001 5473/408569081798*1568397607^(21/22) 8024922372895152 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^59 8024922372895152 a001 5473/1268860318*1568397607^(15/22) 8024922372895152 a001 10946/969323029*17393796001^(4/7) 8024922372895152 a001 10946/969323029*14662949395604^(4/9) 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^28/Lucas(43) 8024922372895152 a001 4745030107402/591286729879 8024922372895152 a001 10946/969323029*505019158607^(1/2) 8024922372895152 a001 10946/969323029*73681302247^(7/13) 8024922372895152 a001 10946/969323029*10749957122^(7/12) 8024922372895152 a001 10946/969323029*4106118243^(14/23) 8024922372895152 a001 10946/969323029*1568397607^(7/11) 8024922372895152 a001 5473/1268860318*599074578^(5/7) 8024922372895152 a001 10946/6643838879*599074578^(16/21) 8024922372895152 a001 5473/5374978561*599074578^(11/14) 8024922372895152 a001 10946/17393796001*599074578^(17/21) 8024922372895152 a001 10946/28143753123*599074578^(5/6) 8024922372895152 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^17 8024922372895152 a001 5473/22768774562*599074578^(6/7) 8024922372895152 a001 10946/119218851371*599074578^(19/21) 8024922372895152 a001 5473/96450076809*599074578^(13/14) 8024922372895152 a001 10946/312119004989*599074578^(20/21) 8024922372895152 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^19 8024922372895152 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^21 8024922372895152 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^23 8024922372895152 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^25 8024922372895152 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^27 8024922372895152 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^29 8024922372895152 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^31 8024922372895152 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^33 8024922372895152 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^35 8024922372895152 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^37 8024922372895152 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^39 8024922372895152 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^41 8024922372895152 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^43 8024922372895152 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^45 8024922372895152 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^47 8024922372895152 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^49 8024922372895152 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^51 8024922372895152 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^53 8024922372895152 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^55 8024922372895152 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^57 8024922372895152 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^59 8024922372895152 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^61 8024922372895152 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^63 8024922372895152 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^65 8024922372895152 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^67 8024922372895152 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^69 8024922372895152 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^73 8024922372895152 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^71 8024922372895152 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^72 8024922372895152 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^70 8024922372895152 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^68 8024922372895152 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^66 8024922372895152 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^64 8024922372895152 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^62 8024922372895152 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^60 8024922372895152 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^58 8024922372895152 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^56 8024922372895152 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^54 8024922372895152 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^52 8024922372895152 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^50 8024922372895152 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^48 8024922372895152 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^46 8024922372895152 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^44 8024922372895152 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^42 8024922372895152 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^40 8024922372895152 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^38 8024922372895152 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^36 8024922372895152 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^34 8024922372895152 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^32 8024922372895152 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^30 8024922372895152 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^28 8024922372895152 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^26 8024922372895152 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^24 8024922372895152 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^22 8024922372895152 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^20 8024922372895152 a001 10946/969323029*599074578^(2/3) 8024922372895152 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^18 8024922372895152 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^16 8024922372895152 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^26/Lucas(41) 8024922372895152 a001 139418478722/17373187209 8024922372895152 a001 10946/370248451*73681302247^(1/2) 8024922372895152 a001 10946/370248451*10749957122^(13/24) 8024922372895152 a001 10946/370248451*4106118243^(13/23) 8024922372895152 a001 10946/370248451*1568397607^(13/22) 8024922372895152 a001 10946/370248451*599074578^(13/21) 8024922372895152 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^14 8024922372895153 a001 10946/969323029*228826127^(7/10) 8024922372895153 a001 5473/1268860318*228826127^(3/4) 8024922372895153 a001 10946/6643838879*228826127^(4/5) 8024922372895153 a001 10946/17393796001*228826127^(17/20) 8024922372895153 a001 10946/28143753123*228826127^(7/8) 8024922372895153 a001 5473/22768774562*228826127^(9/10) 8024922372895153 a001 10946/119218851371*228826127^(19/20) 8024922372895153 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^55 8024922372895153 a001 5473/70711162*141422324^(8/13) 8024922372895153 a001 10946/370248451*228826127^(13/20) 8024922372895153 a001 5473/70711162*2537720636^(8/15) 8024922372895153 a001 5473/70711162*45537549124^(8/17) 8024922372895153 a001 5473/70711162*14662949395604^(8/21) 8024922372895153 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^24/Lucas(39) 8024922372895153 a001 5473/70711162*192900153618^(4/9) 8024922372895153 a001 173072640689/21566892818 8024922372895153 a001 5473/70711162*73681302247^(6/13) 8024922372895153 a001 5473/70711162*10749957122^(1/2) 8024922372895153 a001 5473/70711162*4106118243^(12/23) 8024922372895153 a001 5473/70711162*1568397607^(6/11) 8024922372895153 a001 5473/70711162*599074578^(4/7) 8024922372895153 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^12 8024922372895153 a001 5473/70711162*228826127^(3/5) 8024922372895153 a001 10946/370248451*87403803^(13/19) 8024922372895153 a001 10946/969323029*87403803^(14/19) 8024922372895153 a001 5473/1268860318*87403803^(15/19) 8024922372895153 a001 10946/6643838879*87403803^(16/19) 8024922372895153 a001 10946/17393796001*87403803^(17/19) 8024922372895153 a001 5473/22768774562*87403803^(18/19) 8024922372895153 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^53 8024922372895153 a001 5473/70711162*87403803^(12/19) 8024922372895155 a001 10946/54018521*312119004989^(2/5) 8024922372895155 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^22/Lucas(37) 8024922372895155 a001 264431464882/32951280099 8024922372895155 a001 10946/54018521*10749957122^(11/24) 8024922372895155 a001 10946/54018521*4106118243^(11/23) 8024922372895155 a001 10946/54018521*1568397607^(1/2) 8024922372895155 a001 10946/54018521*599074578^(11/21) 8024922372895155 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2)^10 8024922372895155 a001 10946/54018521*228826127^(11/20) 8024922372895156 a001 10946/54018521*87403803^(11/19) 8024922372895158 a001 5473/70711162*33385282^(2/3) 8024922372895158 a001 10946/370248451*33385282^(13/18) 8024922372895158 a001 5473/299537289*33385282^(3/4) 8024922372895158 a001 10946/969323029*33385282^(7/9) 8024922372895158 a001 5473/1268860318*33385282^(5/6) 8024922372895159 a001 10946/6643838879*33385282^(8/9) 8024922372895159 a001 5473/5374978561*33385282^(11/12) 8024922372895159 a001 10946/17393796001*33385282^(17/18) 8024922372895160 a001 10946/54018521*33385282^(11/18) 8024922372895160 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^51 8024922372895160 a001 10946/20633239*20633239^(4/7) 8024922372895171 a001 10946/20633239*2537720636^(4/9) 8024922372895171 a001 10946/20633239*(1/2+1/2*5^(1/2))^20 8024922372895171 a001 10946/20633239*23725150497407^(5/16) 8024922372895171 a001 10946/20633239*505019158607^(5/14) 8024922372895171 a001 10946/20633239*73681302247^(5/13) 8024922372895171 a001 10946/20633239*28143753123^(2/5) 8024922372895171 a001 20200766378/2517253805 8024922372895171 a001 10946/20633239*10749957122^(5/12) 8024922372895171 a001 10946/20633239*4106118243^(10/23) 8024922372895171 a001 10946/20633239*1568397607^(5/11) 8024922372895171 a001 10946/20633239*599074578^(10/21) 8024922372895171 a004 Fibonacci(35)/Lucas(21)/(1/2+sqrt(5)/2)^8 8024922372895171 a001 10946/20633239*228826127^(1/2) 8024922372895172 a001 10946/20633239*87403803^(10/19) 8024922372895175 a001 10946/20633239*33385282^(5/9) 8024922372895187 a001 10946/54018521*12752043^(11/17) 8024922372895188 a001 5473/70711162*12752043^(12/17) 8024922372895190 a001 10946/370248451*12752043^(13/17) 8024922372895193 a001 10946/969323029*12752043^(14/17) 8024922372895196 a001 5473/1268860318*12752043^(15/17) 8024922372895199 a001 10946/6643838879*12752043^(16/17) 8024922372895200 a001 10946/20633239*12752043^(10/17) 8024922372895202 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^49 8024922372895211 a001 5473/3940598*7881196^(6/11) 8024922372895281 a001 5473/3940598*141422324^(6/13) 8024922372895282 a001 5473/3940598*2537720636^(2/5) 8024922372895282 a001 5473/3940598*45537549124^(6/17) 8024922372895282 a001 5473/3940598*14662949395604^(2/7) 8024922372895282 a001 5473/3940598*(1/2+1/2*5^(1/2))^18 8024922372895282 a001 5473/3940598*192900153618^(1/3) 8024922372895282 a001 5473/3940598*10749957122^(3/8) 8024922372895282 a001 9645007697/1201881744 8024922372895282 a001 5473/3940598*4106118243^(9/23) 8024922372895282 a001 5473/3940598*1568397607^(9/22) 8024922372895282 a001 5473/3940598*599074578^(3/7) 8024922372895282 a004 Fibonacci(33)/Lucas(21)/(1/2+sqrt(5)/2)^6 8024922372895282 a001 5473/3940598*228826127^(9/20) 8024922372895282 a001 5473/3940598*87403803^(9/19) 8024922372895285 a001 5473/3940598*33385282^(1/2) 8024922372895308 a001 5473/3940598*12752043^(9/17) 8024922372895383 a001 10946/20633239*4870847^(5/8) 8024922372895388 a001 10946/54018521*4870847^(11/16) 8024922372895407 a001 5473/70711162*4870847^(3/4) 8024922372895427 a001 10946/370248451*4870847^(13/16) 8024922372895448 a001 10946/969323029*4870847^(7/8) 8024922372895470 a001 5473/1268860318*4870847^(15/16) 8024922372895472 a001 5473/3940598*4870847^(9/16) 8024922372895491 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^47 8024922372896038 a001 10946/3010349*(1/2+1/2*5^(1/2))^16 8024922372896038 a001 10946/3010349*23725150497407^(1/4) 8024922372896038 a001 10946/3010349*73681302247^(4/13) 8024922372896038 a001 10946/3010349*10749957122^(1/3) 8024922372896038 a001 10946/3010349*4106118243^(8/23) 8024922372896038 a001 14736260474/1836311903 8024922372896038 a001 10946/3010349*1568397607^(4/11) 8024922372896038 a001 10946/3010349*599074578^(8/21) 8024922372896038 a004 Fibonacci(31)/Lucas(21)/(1/2+sqrt(5)/2)^4 8024922372896038 a001 10946/3010349*228826127^(2/5) 8024922372896038 a001 10946/3010349*87403803^(8/19) 8024922372896041 a001 10946/3010349*33385282^(4/9) 8024922372896061 a001 10946/3010349*12752043^(8/17) 8024922372896207 a001 10946/3010349*4870847^(1/2) 8024922372896673 a001 5473/3940598*1860498^(3/5) 8024922372896717 a001 10946/20633239*1860498^(2/3) 8024922372896768 a001 5473/16692641*1860498^(7/10) 8024922372896855 a001 10946/54018521*1860498^(11/15) 8024922372897008 a001 5473/70711162*1860498^(4/5) 8024922372897084 a001 10946/228826127*1860498^(5/6) 8024922372897162 a001 10946/370248451*1860498^(13/15) 8024922372897239 a001 5473/299537289*1860498^(9/10) 8024922372897274 a001 10946/3010349*1860498^(8/15) 8024922372897316 a001 10946/969323029*1860498^(14/15) 8024922372897471 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^45 8024922372901214 a001 10946/1149851*20633239^(2/5) 8024922372901222 a001 10946/1149851*17393796001^(2/7) 8024922372901222 a001 10946/1149851*14662949395604^(2/9) 8024922372901222 a001 10946/1149851*(1/2+1/2*5^(1/2))^14 8024922372901222 a001 10946/1149851*505019158607^(1/4) 8024922372901222 a001 10946/1149851*10749957122^(7/24) 8024922372901222 a001 10946/1149851*4106118243^(7/23) 8024922372901222 a001 10946/1149851*1568397607^(7/22) 8024922372901222 a001 5628750634/701408733 8024922372901222 a001 10946/1149851*599074578^(1/3) 8024922372901222 a004 Fibonacci(29)/Lucas(21)/(1/2+sqrt(5)/2)^2 8024922372901222 a001 10946/1149851*228826127^(7/20) 8024922372901222 a001 10946/1149851*87403803^(7/19) 8024922372901225 a001 10946/1149851*33385282^(7/18) 8024922372901242 a001 10946/1149851*12752043^(7/17) 8024922372901370 a001 10946/1149851*4870847^(7/16) 8024922372902304 a001 10946/1149851*1860498^(7/15) 8024922372905118 a001 10946/3010349*710647^(4/7) 8024922372905497 a001 5473/3940598*710647^(9/14) 8024922372906522 a001 10946/20633239*710647^(5/7) 8024922372907063 a001 5473/16692641*710647^(3/4) 8024922372907640 a001 10946/54018521*710647^(11/14) 8024922372908773 a001 5473/70711162*710647^(6/7) 8024922372909167 a001 10946/1149851*710647^(1/2) 8024922372909908 a001 10946/370248451*710647^(13/14) 8024922372911043 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^43 8024922372918264 a001 5473/219602*439204^(4/9) 8024922372933719 a001 10946/710647*271443^(1/2) 8024922372936707 a001 5473/219602*7881196^(4/11) 8024922372936754 a001 5473/219602*141422324^(4/13) 8024922372936754 a001 5473/219602*2537720636^(4/15) 8024922372936754 a001 5473/219602*45537549124^(4/17) 8024922372936754 a001 5473/219602*817138163596^(4/19) 8024922372936754 a001 5473/219602*14662949395604^(4/21) 8024922372936754 a001 5473/219602*(1/2+1/2*5^(1/2))^12 8024922372936754 a001 5473/219602*192900153618^(2/9) 8024922372936754 a001 5473/219602*73681302247^(3/13) 8024922372936754 a001 5473/219602*10749957122^(1/4) 8024922372936754 a001 5473/219602*4106118243^(6/23) 8024922372936754 a001 5473/219602*1568397607^(3/11) 8024922372936754 a001 5473/219602*599074578^(2/7) 8024922372936754 a001 98209/12238 8024922372936754 a001 5473/219602*228826127^(3/10) 8024922372936754 a001 5473/219602*87403803^(6/19) 8024922372936756 a001 5473/219602*33385282^(1/3) 8024922372936771 a001 5473/219602*12752043^(6/17) 8024922372936881 a001 5473/219602*4870847^(3/8) 8024922372937681 a001 5473/219602*1860498^(2/5) 8024922372943564 a001 5473/219602*710647^(3/7) 8024922372959868 a001 10946/1149851*271443^(7/13) 8024922372963062 a001 10946/3010349*271443^(8/13) 8024922372970684 a001 5473/3940598*271443^(9/13) 8024922372978951 a001 10946/20633239*271443^(10/13) 8024922372981980 a001 28657/103682*15127^(7/20) 8024922372987022 a001 5473/219602*271443^(6/13) 8024922372987313 a001 10946/54018521*271443^(11/13) 8024922372995689 a001 5473/70711162*271443^(12/13) 8024922373004066 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^41 8024922373010347 a001 75025/24476*64079^(2/23) 8024922373018813 a001 121393/24476*39603^(1/22) 8024922373066237 a001 10946/167761*167761^(2/5) 8024922373128388 a001 10946/271443*103682^(11/24) 8024922373136502 a001 75640/15251*5778^(1/18) 8024922373180287 a001 10946/167761*20633239^(2/7) 8024922373180293 a001 10946/167761*2537720636^(2/9) 8024922373180293 a001 10946/167761*312119004989^(2/11) 8024922373180293 a001 10946/167761*(1/2+1/2*5^(1/2))^10 8024922373180293 a001 10946/167761*28143753123^(1/5) 8024922373180293 a001 10946/167761*10749957122^(5/24) 8024922373180293 a001 10946/167761*4106118243^(5/23) 8024922373180293 a001 10946/167761*1568397607^(5/22) 8024922373180293 a001 10946/167761*599074578^(5/21) 8024922373180293 a001 75025/24476*(1/2+1/2*5^(1/2))^2 8024922373180293 a001 75025/24476*10749957122^(1/24) 8024922373180293 a001 75025/24476*4106118243^(1/23) 8024922373180293 a001 75025/24476*1568397607^(1/22) 8024922373180293 a001 75025/24476*599074578^(1/21) 8024922373180293 a001 75025/24476*228826127^(1/20) 8024922373180293 a001 10946/167761*228826127^(1/4) 8024922373180293 a001 75025/24476*87403803^(1/19) 8024922373180293 a001 164244730/20466831 8024922373180293 a001 10946/167761*87403803^(5/19) 8024922373180293 a001 75025/24476*33385282^(1/18) 8024922373180295 a001 10946/167761*33385282^(5/18) 8024922373180296 a001 75025/24476*12752043^(1/17) 8024922373180307 a001 10946/167761*12752043^(5/17) 8024922373180314 a001 75025/24476*4870847^(1/16) 8024922373180399 a001 10946/167761*4870847^(5/16) 8024922373180447 a001 75025/24476*1860498^(1/15) 8024922373181066 a001 10946/167761*1860498^(1/3) 8024922373181428 a001 75025/24476*710647^(1/14) 8024922373185968 a001 10946/167761*710647^(5/14) 8024922373188671 a001 75025/24476*271443^(1/13) 8024922373222183 a001 10946/167761*271443^(5/13) 8024922373242502 a001 75025/24476*103682^(1/12) 8024922373283620 a001 10946/710647*103682^(13/24) 8024922373310008 a001 5473/219602*103682^(1/2) 8024922373336685 a001 10946/1149851*103682^(7/12) 8024922373359401 a001 5473/930249*103682^(5/8) 8024922373393710 a001 10946/3010349*103682^(2/3) 8024922373402799 a001 121393/710647*15127^(2/5) 8024922373423590 a001 10946/4870847*103682^(17/24) 8024922373455162 a001 5473/3940598*103682^(3/4) 8024922373486088 a001 10946/12752043*103682^(19/24) 8024922373491338 a001 10946/167761*103682^(5/12) 8024922373509395 a001 105937/620166*15127^(2/5) 8024922373517261 a001 10946/20633239*103682^(5/6) 8024922373524947 a001 832040/4870847*15127^(2/5) 8024922373527216 a001 726103/4250681*15127^(2/5) 8024922373527547 a001 5702887/33385282*15127^(2/5) 8024922373527595 a001 4976784/29134601*15127^(2/5) 8024922373527602 a001 39088169/228826127*15127^(2/5) 8024922373527603 a001 34111385/199691526*15127^(2/5) 8024922373527604 a001 267914296/1568397607*15127^(2/5) 8024922373527604 a001 233802911/1368706081*15127^(2/5) 8024922373527604 a001 1836311903/10749957122*15127^(2/5) 8024922373527604 a001 1602508992/9381251041*15127^(2/5) 8024922373527604 a001 12586269025/73681302247*15127^(2/5) 8024922373527604 a001 10983760033/64300051206*15127^(2/5) 8024922373527604 a001 86267571272/505019158607*15127^(2/5) 8024922373527604 a001 75283811239/440719107401*15127^(2/5) 8024922373527604 a001 2504730781961/14662949395604*15127^(2/5) 8024922373527604 a001 139583862445/817138163596*15127^(2/5) 8024922373527604 a001 53316291173/312119004989*15127^(2/5) 8024922373527604 a001 20365011074/119218851371*15127^(2/5) 8024922373527604 a001 7778742049/45537549124*15127^(2/5) 8024922373527604 a001 2971215073/17393796001*15127^(2/5) 8024922373527604 a001 1134903170/6643838879*15127^(2/5) 8024922373527604 a001 433494437/2537720636*15127^(2/5) 8024922373527604 a001 165580141/969323029*15127^(2/5) 8024922373527604 a001 63245986/370248451*15127^(2/5) 8024922373527607 a001 24157817/141422324*15127^(2/5) 8024922373527625 a001 9227465/54018521*15127^(2/5) 8024922373527752 a001 3524578/20633239*15127^(2/5) 8024922373528618 a001 1346269/7881196*15127^(2/5) 8024922373534559 a001 514229/3010349*15127^(2/5) 8024922373548339 a001 5473/16692641*103682^(7/8) 8024922373575275 a001 196418/1149851*15127^(2/5) 8024922373579454 a001 10946/54018521*103682^(11/12) 8024922373610554 a001 10946/87403803*103682^(23/24) 8024922373641660 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^39 8024922373645442 a001 75025/24476*39603^(1/11) 8024922373713061 a001 17711/439204*15127^(11/20) 8024922373854345 a001 75025/439204*15127^(2/5) 8024922373929371 a001 28657/64079*15127^(3/10) 8024922374002690 a001 4181/1149851*9349^(16/19) 8024922374169749 a001 10946/64079*64079^(8/23) 8024922374241815 a001 5473/51841*39603^(9/22) 8024922374509642 a001 28657/24476*64079^(4/23) 8024922374539736 a001 121393/24476*15127^(1/20) 8024922374576195 a001 11592/109801*15127^(9/20) 8024922374792171 a001 317811/64079*5778^(1/18) 8024922374849534 a001 10946/64079*(1/2+1/2*5^(1/2))^8 8024922374849534 a001 10946/64079*23725150497407^(1/8) 8024922374849534 a001 10946/64079*505019158607^(1/7) 8024922374849534 a001 10946/64079*73681302247^(2/13) 8024922374849534 a001 10946/64079*10749957122^(1/6) 8024922374849534 a001 10946/64079*4106118243^(4/23) 8024922374849534 a001 10946/64079*1568397607^(2/11) 8024922374849534 a001 10946/64079*599074578^(4/21) 8024922374849534 a001 28657/24476*(1/2+1/2*5^(1/2))^4 8024922374849534 a001 28657/24476*23725150497407^(1/16) 8024922374849534 a001 28657/24476*73681302247^(1/13) 8024922374849534 a001 28657/24476*10749957122^(1/12) 8024922374849534 a001 28657/24476*4106118243^(2/23) 8024922374849534 a001 28657/24476*1568397607^(1/11) 8024922374849534 a001 28657/24476*599074578^(2/21) 8024922374849534 a001 10946/64079*228826127^(1/5) 8024922374849534 a001 28657/24476*228826127^(1/10) 8024922374849534 a001 28657/24476*87403803^(2/19) 8024922374849534 a001 10946/64079*87403803^(4/19) 8024922374849535 a001 28657/24476*33385282^(1/9) 8024922374849535 a001 313679522/39088169 8024922374849536 a001 10946/64079*33385282^(2/9) 8024922374849540 a001 28657/24476*12752043^(2/17) 8024922374849546 a001 10946/64079*12752043^(4/17) 8024922374849576 a001 28657/24476*4870847^(1/8) 8024922374849619 a001 10946/64079*4870847^(1/4) 8024922374849843 a001 28657/24476*1860498^(2/15) 8024922374850152 a001 10946/64079*1860498^(4/15) 8024922374851804 a001 28657/24476*710647^(1/7) 8024922374854074 a001 10946/64079*710647^(2/7) 8024922374866290 a001 28657/24476*271443^(2/13) 8024922374883046 a001 10946/64079*271443^(4/13) 8024922374973952 a001 28657/24476*103682^(1/6) 8024922375098370 a001 10946/64079*103682^(1/3) 8024922375178257 a001 121393/1149851*15127^(9/20) 8024922375266097 a001 317811/3010349*15127^(9/20) 8024922375278912 a001 208010/1970299*15127^(9/20) 8024922375280782 a001 2178309/20633239*15127^(9/20) 8024922375281055 a001 5702887/54018521*15127^(9/20) 8024922375281095 a001 3732588/35355581*15127^(9/20) 8024922375281100 a001 39088169/370248451*15127^(9/20) 8024922375281101 a001 102334155/969323029*15127^(9/20) 8024922375281101 a001 66978574/634430159*15127^(9/20) 8024922375281101 a001 701408733/6643838879*15127^(9/20) 8024922375281101 a001 1836311903/17393796001*15127^(9/20) 8024922375281101 a001 1201881744/11384387281*15127^(9/20) 8024922375281101 a001 12586269025/119218851371*15127^(9/20) 8024922375281101 a001 32951280099/312119004989*15127^(9/20) 8024922375281101 a001 21566892818/204284540899*15127^(9/20) 8024922375281101 a001 225851433717/2139295485799*15127^(9/20) 8024922375281101 a001 182717648081/1730726404001*15127^(9/20) 8024922375281101 a001 139583862445/1322157322203*15127^(9/20) 8024922375281101 a001 53316291173/505019158607*15127^(9/20) 8024922375281101 a001 10182505537/96450076809*15127^(9/20) 8024922375281101 a001 7778742049/73681302247*15127^(9/20) 8024922375281101 a001 2971215073/28143753123*15127^(9/20) 8024922375281101 a001 567451585/5374978561*15127^(9/20) 8024922375281101 a001 433494437/4106118243*15127^(9/20) 8024922375281101 a001 165580141/1568397607*15127^(9/20) 8024922375281102 a001 31622993/299537289*15127^(9/20) 8024922375281104 a001 24157817/228826127*15127^(9/20) 8024922375281119 a001 9227465/87403803*15127^(9/20) 8024922375281223 a001 1762289/16692641*15127^(9/20) 8024922375281938 a001 1346269/12752043*15127^(9/20) 8024922375286833 a001 514229/4870847*15127^(9/20) 8024922375320384 a001 98209/930249*15127^(9/20) 8024922375344557 a001 10946/271443*39603^(1/2) 8024922375409067 a001 17711/710647*15127^(3/5) 8024922375506037 a001 10946/167761*39603^(5/11) 8024922375550352 a001 75025/710647*15127^(9/20) 8024922375727647 a001 5473/219602*39603^(6/11) 8024922375767126 a001 28657/167761*15127^(2/5) 8024922375779832 a001 28657/24476*39603^(2/11) 8024922375902730 a001 10946/710647*39603^(13/22) 8024922376157264 a001 10946/1149851*39603^(7/11) 8024922376272202 a001 6624/101521*15127^(1/2) 8024922376356730 m002 Pi^6*Sech[Pi]^2+Tanh[Pi]/Log[Pi] 8024922376381451 a001 5473/930249*39603^(15/22) 8024922376546004 a001 17711/24476*15127^(1/4) 8024922376617229 a001 10946/3010349*39603^(8/11) 8024922376687289 a001 75025/24476*15127^(1/10) 8024922376688058 a001 9349/89*4181^(13/25) 8024922376710130 a001 10946/64079*39603^(4/11) 8024922376848580 a001 10946/4870847*39603^(17/22) 8024922376923367 a001 121393/1860498*15127^(1/2) 8024922377018371 a001 317811/4870847*15127^(1/2) 8024922377032232 a001 832040/12752043*15127^(1/2) 8024922377034254 a001 311187/4769326*15127^(1/2) 8024922377034549 a001 5702887/87403803*15127^(1/2) 8024922377034592 a001 14930352/228826127*15127^(1/2) 8024922377034598 a001 39088169/599074578*15127^(1/2) 8024922377034599 a001 14619165/224056801*15127^(1/2) 8024922377034599 a001 267914296/4106118243*15127^(1/2) 8024922377034599 a001 701408733/10749957122*15127^(1/2) 8024922377034599 a001 1836311903/28143753123*15127^(1/2) 8024922377034599 a001 686789568/10525900321*15127^(1/2) 8024922377034599 a001 12586269025/192900153618*15127^(1/2) 8024922377034599 a001 32951280099/505019158607*15127^(1/2) 8024922377034599 a001 86267571272/1322157322203*15127^(1/2) 8024922377034599 a001 32264490531/494493258286*15127^(1/2) 8024922377034599 a001 591286729879/9062201101803*15127^(1/2) 8024922377034599 a001 1548008755920/23725150497407*15127^(1/2) 8024922377034599 a001 365435296162/5600748293801*15127^(1/2) 8024922377034599 a001 139583862445/2139295485799*15127^(1/2) 8024922377034599 a001 53316291173/817138163596*15127^(1/2) 8024922377034599 a001 20365011074/312119004989*15127^(1/2) 8024922377034599 a001 7778742049/119218851371*15127^(1/2) 8024922377034599 a001 2971215073/45537549124*15127^(1/2) 8024922377034599 a001 1134903170/17393796001*15127^(1/2) 8024922377034599 a001 433494437/6643838879*15127^(1/2) 8024922377034599 a001 165580141/2537720636*15127^(1/2) 8024922377034600 a001 63245986/969323029*15127^(1/2) 8024922377034602 a001 24157817/370248451*15127^(1/2) 8024922377034619 a001 9227465/141422324*15127^(1/2) 8024922377034731 a001 3524578/54018521*15127^(1/2) 8024922377035504 a001 1346269/20633239*15127^(1/2) 8024922377040798 a001 514229/7881196*15127^(1/2) 8024922377077086 a001 196418/3010349*15127^(1/2) 8024922377081622 a001 5473/3940598*39603^(9/11) 8024922377126569 a001 28657/271443*15127^(9/20) 8024922377184525 a001 17711/1149851*15127^(13/20) 8024922377314017 a001 10946/12752043*39603^(19/22) 8024922377325809 a001 75025/1149851*15127^(1/2) 8024922377409139 a001 11592/6119*15127^(3/20) 8024922377546660 a001 10946/20633239*39603^(10/11) 8024922377779209 a001 5473/16692641*39603^(21/22) 8024922378011790 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^37 8024922378047659 a001 46368/1149851*15127^(11/20) 8024922378680069 a001 121393/3010349*15127^(11/20) 8024922378772336 a001 317811/7881196*15127^(11/20) 8024922378785798 a001 75640/1875749*15127^(11/20) 8024922378787762 a001 2178309/54018521*15127^(11/20) 8024922378788048 a001 5702887/141422324*15127^(11/20) 8024922378788090 a001 14930352/370248451*15127^(11/20) 8024922378788096 a001 39088169/969323029*15127^(11/20) 8024922378788097 a001 9303105/230701876*15127^(11/20) 8024922378788097 a001 267914296/6643838879*15127^(11/20) 8024922378788097 a001 701408733/17393796001*15127^(11/20) 8024922378788097 a001 1836311903/45537549124*15127^(11/20) 8024922378788097 a001 4807526976/119218851371*15127^(11/20) 8024922378788097 a001 1144206275/28374454999*15127^(11/20) 8024922378788097 a001 32951280099/817138163596*15127^(11/20) 8024922378788097 a001 86267571272/2139295485799*15127^(11/20) 8024922378788097 a001 225851433717/5600748293801*15127^(11/20) 8024922378788097 a001 591286729879/14662949395604*15127^(11/20) 8024922378788097 a001 365435296162/9062201101803*15127^(11/20) 8024922378788097 a001 139583862445/3461452808002*15127^(11/20) 8024922378788097 a001 53316291173/1322157322203*15127^(11/20) 8024922378788097 a001 20365011074/505019158607*15127^(11/20) 8024922378788097 a001 7778742049/192900153618*15127^(11/20) 8024922378788097 a001 2971215073/73681302247*15127^(11/20) 8024922378788097 a001 1134903170/28143753123*15127^(11/20) 8024922378788097 a001 433494437/10749957122*15127^(11/20) 8024922378788097 a001 165580141/4106118243*15127^(11/20) 8024922378788098 a001 63245986/1568397607*15127^(11/20) 8024922378788100 a001 24157817/599074578*15127^(11/20) 8024922378788116 a001 9227465/228826127*15127^(11/20) 8024922378788225 a001 3524578/87403803*15127^(11/20) 8024922378788975 a001 1346269/33385282*15127^(11/20) 8024922378794117 a001 514229/12752043*15127^(11/20) 8024922378813064 a001 4181/710647*9349^(15/19) 8024922378829360 a001 196418/4870847*15127^(11/20) 8024922378929635 a001 17711/1860498*15127^(7/10) 8024922379030582 a001 28657/439204*15127^(1/2) 8024922379070919 a001 75025/1860498*15127^(11/20) 8024922379232476 a001 28657/9349*3571^(2/17) 8024922379792769 a001 2576/103361*15127^(3/5) 8024922380053000 a001 10946/39603*15127^(7/20) 8024922380432343 a001 121393/4870847*15127^(3/5) 8024922380525655 a001 105937/4250681*15127^(3/5) 8024922380539269 a001 416020/16692641*15127^(3/5) 8024922380541256 a001 726103/29134601*15127^(3/5) 8024922380541545 a001 5702887/228826127*15127^(3/5) 8024922380541588 a001 829464/33281921*15127^(3/5) 8024922380541594 a001 39088169/1568397607*15127^(3/5) 8024922380541595 a001 34111385/1368706081*15127^(3/5) 8024922380541595 a001 133957148/5374978561*15127^(3/5) 8024922380541595 a001 233802911/9381251041*15127^(3/5) 8024922380541595 a001 1836311903/73681302247*15127^(3/5) 8024922380541595 a001 267084832/10716675201*15127^(3/5) 8024922380541595 a001 12586269025/505019158607*15127^(3/5) 8024922380541595 a001 10983760033/440719107401*15127^(3/5) 8024922380541595 a001 43133785636/1730726404001*15127^(3/5) 8024922380541595 a001 75283811239/3020733700601*15127^(3/5) 8024922380541595 a001 182717648081/7331474697802*15127^(3/5) 8024922380541595 a001 139583862445/5600748293801*15127^(3/5) 8024922380541595 a001 53316291173/2139295485799*15127^(3/5) 8024922380541595 a001 10182505537/408569081798*15127^(3/5) 8024922380541595 a001 7778742049/312119004989*15127^(3/5) 8024922380541595 a001 2971215073/119218851371*15127^(3/5) 8024922380541595 a001 567451585/22768774562*15127^(3/5) 8024922380541595 a001 433494437/17393796001*15127^(3/5) 8024922380541595 a001 165580141/6643838879*15127^(3/5) 8024922380541595 a001 31622993/1268860318*15127^(3/5) 8024922380541598 a001 24157817/969323029*15127^(3/5) 8024922380541614 a001 9227465/370248451*15127^(3/5) 8024922380541725 a001 1762289/70711162*15127^(3/5) 8024922380542483 a001 1346269/54018521*15127^(3/5) 8024922380547683 a001 514229/20633239*15127^(3/5) 8024922380583326 a001 98209/3940598*15127^(3/5) 8024922380686336 a001 17711/3010349*15127^(3/4) 8024922380726588 a001 28657/710647*15127^(11/20) 8024922380827621 a001 75025/3010349*15127^(3/5) 8024922380982187 a001 121393/39603*5778^(1/9) 8024922381549471 a001 46368/3010349*15127^(13/20) 8024922381863525 a001 28657/24476*15127^(1/5) 8024922382186308 a001 121393/7881196*15127^(13/20) 8024922382279221 a001 10959/711491*15127^(13/20) 8024922382292777 a001 832040/54018521*15127^(13/20) 8024922382294755 a001 2178309/141422324*15127^(13/20) 8024922382295043 a001 5702887/370248451*15127^(13/20) 8024922382295086 a001 14930352/969323029*15127^(13/20) 8024922382295092 a001 39088169/2537720636*15127^(13/20) 8024922382295093 a001 102334155/6643838879*15127^(13/20) 8024922382295093 a001 9238424/599786069*15127^(13/20) 8024922382295093 a001 701408733/45537549124*15127^(13/20) 8024922382295093 a001 1836311903/119218851371*15127^(13/20) 8024922382295093 a001 4807526976/312119004989*15127^(13/20) 8024922382295093 a001 12586269025/817138163596*15127^(13/20) 8024922382295093 a001 32951280099/2139295485799*15127^(13/20) 8024922382295093 a001 86267571272/5600748293801*15127^(13/20) 8024922382295093 a001 7787980473/505618944676*15127^(13/20) 8024922382295093 a001 365435296162/23725150497407*15127^(13/20) 8024922382295093 a001 139583862445/9062201101803*15127^(13/20) 8024922382295093 a001 53316291173/3461452808002*15127^(13/20) 8024922382295093 a001 20365011074/1322157322203*15127^(13/20) 8024922382295093 a001 7778742049/505019158607*15127^(13/20) 8024922382295093 a001 2971215073/192900153618*15127^(13/20) 8024922382295093 a001 1134903170/73681302247*15127^(13/20) 8024922382295093 a001 433494437/28143753123*15127^(13/20) 8024922382295093 a001 165580141/10749957122*15127^(13/20) 8024922382295093 a001 63245986/4106118243*15127^(13/20) 8024922382295096 a001 24157817/1568397607*15127^(13/20) 8024922382295112 a001 9227465/599074578*15127^(13/20) 8024922382295222 a001 3524578/228826127*15127^(13/20) 8024922382295977 a001 1346269/87403803*15127^(13/20) 8024922382301155 a001 514229/33385282*15127^(13/20) 8024922382336645 a001 196418/12752043*15127^(13/20) 8024922382417667 a001 4181/15127*9349^(7/19) 8024922382438610 a001 17711/4870847*15127^(4/5) 8024922382463389 a001 5473/12238*24476^(2/7) 8024922382502046 a001 28657/1149851*15127^(3/5) 8024922382579895 a001 75025/4870847*15127^(13/20) 8024922383301745 a001 46368/4870847*15127^(7/10) 8024922383702890 a001 4181/439204*9349^(14/19) 8024922383939627 a001 121393/12752043*15127^(7/10) 8024922384032693 a001 317811/33385282*15127^(7/10) 8024922384046271 a001 832040/87403803*15127^(7/10) 8024922384048252 a001 46347/4868641*15127^(7/10) 8024922384048541 a001 5702887/599074578*15127^(7/10) 8024922384048583 a001 14930352/1568397607*15127^(7/10) 8024922384048590 a001 39088169/4106118243*15127^(7/10) 8024922384048590 a001 102334155/10749957122*15127^(7/10) 8024922384048591 a001 267914296/28143753123*15127^(7/10) 8024922384048591 a001 701408733/73681302247*15127^(7/10) 8024922384048591 a001 1836311903/192900153618*15127^(7/10) 8024922384048591 a001 102287808/10745088481*15127^(7/10) 8024922384048591 a001 12586269025/1322157322203*15127^(7/10) 8024922384048591 a001 32951280099/3461452808002*15127^(7/10) 8024922384048591 a001 86267571272/9062201101803*15127^(7/10) 8024922384048591 a001 225851433717/23725150497407*15127^(7/10) 8024922384048591 a001 139583862445/14662949395604*15127^(7/10) 8024922384048591 a001 53316291173/5600748293801*15127^(7/10) 8024922384048591 a001 20365011074/2139295485799*15127^(7/10) 8024922384048591 a001 7778742049/817138163596*15127^(7/10) 8024922384048591 a001 2971215073/312119004989*15127^(7/10) 8024922384048591 a001 1134903170/119218851371*15127^(7/10) 8024922384048591 a001 433494437/45537549124*15127^(7/10) 8024922384048591 a001 165580141/17393796001*15127^(7/10) 8024922384048591 a001 63245986/6643838879*15127^(7/10) 8024922384048593 a001 24157817/2537720636*15127^(7/10) 8024922384048609 a001 9227465/969323029*15127^(7/10) 8024922384048720 a001 3524578/370248451*15127^(7/10) 8024922384049477 a001 1346269/141422324*15127^(7/10) 8024922384054663 a001 514229/54018521*15127^(7/10) 8024922384090211 a001 196418/20633239*15127^(7/10) 8024922384192576 a001 89/39604*15127^(17/20) 8024922384247156 a001 28657/1860498*15127^(13/20) 8024922384333860 a001 75025/7881196*15127^(7/10) 8024922385055710 a001 11592/1970299*15127^(3/4) 8024922385445341 a001 317811/103682*5778^(1/9) 8024922385693193 a001 121393/20633239*15127^(3/4) 8024922385780845 a001 5473/12238*64079^(6/23) 8024922385786201 a001 317811/54018521*15127^(3/4) 8024922385799770 a001 208010/35355581*15127^(3/4) 8024922385801750 a001 2178309/370248451*15127^(3/4) 8024922385802039 a001 5702887/969323029*15127^(3/4) 8024922385802081 a001 196452/33391061*15127^(3/4) 8024922385802087 a001 39088169/6643838879*15127^(3/4) 8024922385802088 a001 102334155/17393796001*15127^(3/4) 8024922385802088 a001 66978574/11384387281*15127^(3/4) 8024922385802088 a001 701408733/119218851371*15127^(3/4) 8024922385802088 a001 1836311903/312119004989*15127^(3/4) 8024922385802088 a001 1201881744/204284540899*15127^(3/4) 8024922385802088 a001 12586269025/2139295485799*15127^(3/4) 8024922385802088 a001 32951280099/5600748293801*15127^(3/4) 8024922385802088 a001 1135099622/192933544679*15127^(3/4) 8024922385802088 a001 139583862445/23725150497407*15127^(3/4) 8024922385802088 a001 53316291173/9062201101803*15127^(3/4) 8024922385802088 a001 10182505537/1730726404001*15127^(3/4) 8024922385802088 a001 7778742049/1322157322203*15127^(3/4) 8024922385802088 a001 2971215073/505019158607*15127^(3/4) 8024922385802088 a001 567451585/96450076809*15127^(3/4) 8024922385802088 a001 433494437/73681302247*15127^(3/4) 8024922385802089 a001 165580141/28143753123*15127^(3/4) 8024922385802089 a001 31622993/5374978561*15127^(3/4) 8024922385802091 a001 24157817/4106118243*15127^(3/4) 8024922385802107 a001 9227465/1568397607*15127^(3/4) 8024922385802218 a001 1762289/299537289*15127^(3/4) 8024922385802974 a001 1346269/228826127*15127^(3/4) 8024922385808157 a001 514229/87403803*15127^(3/4) 8024922385843683 a001 98209/16692641*15127^(3/4) 8024922385945895 a001 17711/12752043*15127^(9/10) 8024922386003858 a001 28657/3010349*15127^(7/10) 8024922386087180 a001 75025/12752043*15127^(3/4) 8024922386096506 a001 832040/271443*5778^(1/9) 8024922386140297 a001 121393/24476*5778^(1/18) 8024922386191510 a001 311187/101521*5778^(1/9) 8024922386205371 a001 5702887/1860498*5778^(1/9) 8024922386207393 a001 14930352/4870847*5778^(1/9) 8024922386207688 a001 39088169/12752043*5778^(1/9) 8024922386207731 a001 14619165/4769326*5778^(1/9) 8024922386207737 a001 267914296/87403803*5778^(1/9) 8024922386207738 a001 701408733/228826127*5778^(1/9) 8024922386207738 a001 1836311903/599074578*5778^(1/9) 8024922386207738 a001 686789568/224056801*5778^(1/9) 8024922386207738 a001 12586269025/4106118243*5778^(1/9) 8024922386207738 a001 32951280099/10749957122*5778^(1/9) 8024922386207738 a001 86267571272/28143753123*5778^(1/9) 8024922386207738 a001 32264490531/10525900321*5778^(1/9) 8024922386207738 a001 591286729879/192900153618*5778^(1/9) 8024922386207738 a001 1548008755920/505019158607*5778^(1/9) 8024922386207738 a001 1515744265389/494493258286*5778^(1/9) 8024922386207738 a001 2504730781961/817138163596*5778^(1/9) 8024922386207738 a001 956722026041/312119004989*5778^(1/9) 8024922386207738 a001 365435296162/119218851371*5778^(1/9) 8024922386207738 a001 139583862445/45537549124*5778^(1/9) 8024922386207738 a001 53316291173/17393796001*5778^(1/9) 8024922386207738 a001 20365011074/6643838879*5778^(1/9) 8024922386207738 a001 7778742049/2537720636*5778^(1/9) 8024922386207738 a001 2971215073/969323029*5778^(1/9) 8024922386207738 a001 1134903170/370248451*5778^(1/9) 8024922386207739 a001 433494437/141422324*5778^(1/9) 8024922386207741 a001 165580141/54018521*5778^(1/9) 8024922386207758 a001 63245986/20633239*5778^(1/9) 8024922386207870 a001 24157817/7881196*5778^(1/9) 8024922386208643 a001 9227465/3010349*5778^(1/9) 8024922386213937 a001 3524578/1149851*5778^(1/9) 8024922386250225 a001 1346269/439204*5778^(1/9) 8024922386281439 a001 5473/12238*439204^(2/9) 8024922386290660 a001 5473/12238*7881196^(2/11) 8024922386290684 a001 5473/12238*141422324^(2/13) 8024922386290684 a001 5473/12238*2537720636^(2/15) 8024922386290684 a001 5473/12238*45537549124^(2/17) 8024922386290684 a001 5473/12238*14662949395604^(2/21) 8024922386290684 a001 5473/12238*(1/2+1/2*5^(1/2))^6 8024922386290684 a001 5473/12238*10749957122^(1/8) 8024922386290684 a001 5473/12238*4106118243^(3/23) 8024922386290684 a001 5473/12238*1568397607^(3/22) 8024922386290684 a001 5473/12238*599074578^(1/7) 8024922386290684 a001 5473/12238*228826127^(3/20) 8024922386290684 a001 5473/12238*87403803^(3/19) 8024922386290685 a001 5473/12238*33385282^(1/6) 8024922386290691 a001 29953729/3732588 8024922386290693 a001 5473/12238*12752043^(3/17) 8024922386290747 a001 5473/12238*4870847^(3/16) 8024922386291148 a001 5473/12238*1860498^(1/5) 8024922386294089 a001 5473/12238*710647^(3/14) 8024922386315818 a001 5473/12238*271443^(3/13) 8024922386477311 a001 5473/12238*103682^(1/4) 8024922386498948 a001 514229/167761*5778^(1/9) 8024922386809030 a001 15456/4250681*15127^(4/5) 8024922387446665 a001 121393/33385282*15127^(4/5) 8024922387539695 a001 105937/29134601*15127^(4/5) 8024922387553268 a001 832040/228826127*15127^(4/5) 8024922387555248 a001 726103/199691526*15127^(4/5) 8024922387555537 a001 5702887/1568397607*15127^(4/5) 8024922387555579 a001 4976784/1368706081*15127^(4/5) 8024922387555585 a001 39088169/10749957122*15127^(4/5) 8024922387555586 a001 831985/228811001*15127^(4/5) 8024922387555586 a001 267914296/73681302247*15127^(4/5) 8024922387555586 a001 233802911/64300051206*15127^(4/5) 8024922387555586 a001 1836311903/505019158607*15127^(4/5) 8024922387555586 a001 1602508992/440719107401*15127^(4/5) 8024922387555586 a001 12586269025/3461452808002*15127^(4/5) 8024922387555586 a001 10983760033/3020733700601*15127^(4/5) 8024922387555586 a001 86267571272/23725150497407*15127^(4/5) 8024922387555586 a001 53316291173/14662949395604*15127^(4/5) 8024922387555586 a001 20365011074/5600748293801*15127^(4/5) 8024922387555586 a001 7778742049/2139295485799*15127^(4/5) 8024922387555586 a001 2971215073/817138163596*15127^(4/5) 8024922387555586 a001 1134903170/312119004989*15127^(4/5) 8024922387555586 a001 433494437/119218851371*15127^(4/5) 8024922387555586 a001 165580141/45537549124*15127^(4/5) 8024922387555587 a001 63245986/17393796001*15127^(4/5) 8024922387555589 a001 24157817/6643838879*15127^(4/5) 8024922387555605 a001 9227465/2537720636*15127^(4/5) 8024922387555715 a001 3524578/969323029*15127^(4/5) 8024922387556472 a001 1346269/370248451*15127^(4/5) 8024922387561656 a001 514229/141422324*15127^(4/5) 8024922387597190 a001 196418/54018521*15127^(4/5) 8024922387686131 a001 5473/12238*39603^(3/11) 8024922387699461 a001 17711/20633239*15127^(19/20) 8024922387756132 a001 28657/4870847*15127^(3/4) 8024922387840746 a001 75025/20633239*15127^(4/5) 8024922387930126 a001 5473/51841*15127^(9/20) 8024922388203721 a001 196418/64079*5778^(1/9) 8024922388384708 a001 4181/271443*9349^(13/19) 8024922388562596 a001 46368/20633239*15127^(17/20) 8024922388877517 a001 10946/64079*15127^(2/5) 8024922389200173 a001 121393/54018521*15127^(17/20) 8024922389293194 a001 317811/141422324*15127^(17/20) 8024922389306766 a001 832040/370248451*15127^(17/20) 8024922389308746 a001 2178309/969323029*15127^(17/20) 8024922389309035 a001 5702887/2537720636*15127^(17/20) 8024922389309077 a001 14930352/6643838879*15127^(17/20) 8024922389309083 a001 39088169/17393796001*15127^(17/20) 8024922389309084 a001 102334155/45537549124*15127^(17/20) 8024922389309084 a001 267914296/119218851371*15127^(17/20) 8024922389309084 a001 3524667/1568437211*15127^(17/20) 8024922389309084 a001 1836311903/817138163596*15127^(17/20) 8024922389309084 a001 4807526976/2139295485799*15127^(17/20) 8024922389309084 a001 12586269025/5600748293801*15127^(17/20) 8024922389309084 a001 32951280099/14662949395604*15127^(17/20) 8024922389309084 a001 53316291173/23725150497407*15127^(17/20) 8024922389309084 a001 20365011074/9062201101803*15127^(17/20) 8024922389309084 a001 7778742049/3461452808002*15127^(17/20) 8024922389309084 a001 2971215073/1322157322203*15127^(17/20) 8024922389309084 a001 1134903170/505019158607*15127^(17/20) 8024922389309084 a001 433494437/192900153618*15127^(17/20) 8024922389309084 a001 165580141/73681302247*15127^(17/20) 8024922389309085 a001 63245986/28143753123*15127^(17/20) 8024922389309087 a001 24157817/10749957122*15127^(17/20) 8024922389309103 a001 9227465/4106118243*15127^(17/20) 8024922389309213 a001 3524578/1568397607*15127^(17/20) 8024922389309970 a001 1346269/599074578*15127^(17/20) 8024922389315154 a001 514229/228826127*15127^(17/20) 8024922389350684 a001 196418/87403803*15127^(17/20) 8024922389452940 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^36 8024922389510097 a001 28657/7881196*15127^(4/5) 8024922389594217 a001 75025/33385282*15127^(17/20) 8024922390316067 a001 144/103681*15127^(9/10) 8024922390715271 a001 10946/167761*15127^(1/2) 8024922390953667 a001 121393/87403803*15127^(9/10) 8024922391046691 a001 317811/228826127*15127^(9/10) 8024922391060264 a001 416020/299537289*15127^(9/10) 8024922391062244 a001 311187/224056801*15127^(9/10) 8024922391062533 a001 5702887/4106118243*15127^(9/10) 8024922391062575 a001 7465176/5374978561*15127^(9/10) 8024922391062581 a001 39088169/28143753123*15127^(9/10) 8024922391062582 a001 14619165/10525900321*15127^(9/10) 8024922391062582 a001 133957148/96450076809*15127^(9/10) 8024922391062582 a001 701408733/505019158607*15127^(9/10) 8024922391062582 a001 1836311903/1322157322203*15127^(9/10) 8024922391062582 a001 14930208/10749853441*15127^(9/10) 8024922391062582 a001 12586269025/9062201101803*15127^(9/10) 8024922391062582 a001 32951280099/23725150497407*15127^(9/10) 8024922391062582 a001 10182505537/7331474697802*15127^(9/10) 8024922391062582 a001 7778742049/5600748293801*15127^(9/10) 8024922391062582 a001 2971215073/2139295485799*15127^(9/10) 8024922391062582 a001 567451585/408569081798*15127^(9/10) 8024922391062582 a001 433494437/312119004989*15127^(9/10) 8024922391062582 a001 165580141/119218851371*15127^(9/10) 8024922391062582 a001 31622993/22768774562*15127^(9/10) 8024922391062585 a001 24157817/17393796001*15127^(9/10) 8024922391062601 a001 9227465/6643838879*15127^(9/10) 8024922391062711 a001 1762289/1268860318*15127^(9/10) 8024922391063467 a001 1346269/969323029*15127^(9/10) 8024922391068652 a001 514229/370248451*15127^(9/10) 8024922391104184 a001 98209/70711162*15127^(9/10) 8024922391263416 a001 28657/12752043*15127^(17/20) 8024922391347725 a001 75025/54018521*15127^(9/10) 8024922392069575 a001 46368/54018521*15127^(19/20) 8024922392074715 a001 10946/271443*15127^(11/20) 8024922392082335 a001 6765/9349*9349^(5/19) 8024922392707166 a001 233/271444*15127^(19/20) 8024922392800190 a001 317811/370248451*15127^(19/20) 8024922392813761 a001 832040/969323029*15127^(19/20) 8024922392815742 a001 2178309/2537720636*15127^(19/20) 8024922392816030 a001 5702887/6643838879*15127^(19/20) 8024922392816073 a001 14930352/17393796001*15127^(19/20) 8024922392816079 a001 39088169/45537549124*15127^(19/20) 8024922392816080 a001 102334155/119218851371*15127^(19/20) 8024922392816080 a001 267914296/312119004989*15127^(19/20) 8024922392816080 a001 701408733/817138163596*15127^(19/20) 8024922392816080 a001 1836311903/2139295485799*15127^(19/20) 8024922392816080 a001 4807526976/5600748293801*15127^(19/20) 8024922392816080 a001 12586269025/14662949395604*15127^(19/20) 8024922392816080 a001 20365011074/23725150497407*15127^(19/20) 8024922392816080 a001 7778742049/9062201101803*15127^(19/20) 8024922392816080 a001 2971215073/3461452808002*15127^(19/20) 8024922392816080 a001 1134903170/1322157322203*15127^(19/20) 8024922392816080 a001 433494437/505019158607*15127^(19/20) 8024922392816080 a001 165580141/192900153618*15127^(19/20) 8024922392816080 a001 63245986/73681302247*15127^(19/20) 8024922392816083 a001 24157817/28143753123*15127^(19/20) 8024922392816099 a001 9227465/10749957122*15127^(19/20) 8024922392816209 a001 3524578/4106118243*15127^(19/20) 8024922392816965 a001 1346269/1568397607*15127^(19/20) 8024922392822149 a001 514229/599074578*15127^(19/20) 8024922392857681 a001 196418/228826127*15127^(19/20) 8024922393016983 a001 28657/20633239*15127^(9/10) 8024922393101219 a001 75025/87403803*15127^(19/20) 8024922393611096 a001 4181/167761*9349^(12/19) 8024922393823070 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^38 8024922393978728 a001 5473/219602*15127^(3/5) 8024922394460664 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^40 8024922394553687 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^42 8024922394567259 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^44 8024922394569239 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^46 8024922394569528 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^48 8024922394569570 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^50 8024922394569577 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^52 8024922394569577 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^54 8024922394569578 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^56 8024922394569578 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^58 8024922394569578 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^60 8024922394569578 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^62 8024922394569578 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^64 8024922394569578 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^66 8024922394569578 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^68 8024922394569578 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^70 8024922394569578 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^72 8024922394569578 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^74 8024922394569578 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^76 8024922394569578 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^78 8024922394569578 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^80 8024922394569578 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^82 8024922394569578 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^84 8024922394569578 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^86 8024922394569578 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^88 8024922394569578 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^90 8024922394569578 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^92 8024922394569578 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^94 8024922394569578 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^96 8024922394569578 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^98 8024922394569578 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^100 8024922394569578 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^99 8024922394569578 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^97 8024922394569578 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^95 8024922394569578 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^93 8024922394569578 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^91 8024922394569578 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^89 8024922394569578 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^87 8024922394569578 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^85 8024922394569578 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^83 8024922394569578 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^81 8024922394569578 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^79 8024922394569578 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^77 8024922394569578 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^75 8024922394569578 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^73 8024922394569578 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^71 8024922394569578 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^69 8024922394569578 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^67 8024922394569578 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^65 8024922394569578 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^63 8024922394569578 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^61 8024922394569578 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^59 8024922394569578 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^57 8024922394569578 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^55 8024922394569578 a001 2/6765*(1/2+1/2*5^(1/2))^26 8024922394569578 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^53 8024922394569580 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^51 8024922394569596 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^49 8024922394569707 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^47 8024922394570463 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^45 8024922394575647 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^43 8024922394611179 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^41 8024922394730300 a001 75025/39603*5778^(1/6) 8024922394770454 a001 28657/33385282*15127^(19/20) 8024922394854718 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^39 8024922395674734 a001 10946/710647*15127^(13/20) 8024922396523959 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^37 8024922396559106 a001 1597/439204*3571^(16/17) 8024922396811671 a001 5473/12238*15127^(3/10) 8024922397411782 a001 4181/103682*9349^(11/19) 8024922397450192 a001 10946/1149851*15127^(7/10) 8024922398856891 a001 98209/51841*5778^(1/6) 8024922399195302 a001 5473/930249*15127^(3/4) 8024922399458953 a001 514229/271443*5778^(1/6) 8024922399546792 a001 1346269/710647*5778^(1/6) 8024922399559608 a001 1762289/930249*5778^(1/6) 8024922399561478 a001 9227465/4870847*5778^(1/6) 8024922399561750 a001 24157817/12752043*5778^(1/6) 8024922399561790 a001 31622993/16692641*5778^(1/6) 8024922399561796 a001 165580141/87403803*5778^(1/6) 8024922399561797 a001 433494437/228826127*5778^(1/6) 8024922399561797 a001 567451585/299537289*5778^(1/6) 8024922399561797 a001 2971215073/1568397607*5778^(1/6) 8024922399561797 a001 7778742049/4106118243*5778^(1/6) 8024922399561797 a001 10182505537/5374978561*5778^(1/6) 8024922399561797 a001 53316291173/28143753123*5778^(1/6) 8024922399561797 a001 139583862445/73681302247*5778^(1/6) 8024922399561797 a001 182717648081/96450076809*5778^(1/6) 8024922399561797 a001 956722026041/505019158607*5778^(1/6) 8024922399561797 a001 10610209857723/5600748293801*5778^(1/6) 8024922399561797 a001 591286729879/312119004989*5778^(1/6) 8024922399561797 a001 225851433717/119218851371*5778^(1/6) 8024922399561797 a001 21566892818/11384387281*5778^(1/6) 8024922399561797 a001 32951280099/17393796001*5778^(1/6) 8024922399561797 a001 12586269025/6643838879*5778^(1/6) 8024922399561797 a001 1201881744/634430159*5778^(1/6) 8024922399561797 a001 1836311903/969323029*5778^(1/6) 8024922399561797 a001 701408733/370248451*5778^(1/6) 8024922399561797 a001 66978574/35355581*5778^(1/6) 8024922399561800 a001 102334155/54018521*5778^(1/6) 8024922399561815 a001 39088169/20633239*5778^(1/6) 8024922399561919 a001 3732588/1970299*5778^(1/6) 8024922399562633 a001 5702887/3010349*5778^(1/6) 8024922399567528 a001 2178309/1149851*5778^(1/6) 8024922399601080 a001 208010/109801*5778^(1/6) 8024922399831047 a001 317811/167761*5778^(1/6) 8024922399888410 a001 75025/24476*5778^(1/9) 8024922400952003 a001 10946/3010349*15127^(4/5) 8024922401407265 a001 121393/64079*5778^(1/6) 8024922402704277 a001 10946/4870847*15127^(17/20) 8024922402706319 a001 4181/39603*9349^(9/19) 8024922404458243 a001 5473/3940598*15127^(9/10) 8024922404595489 a001 10946/15127*5778^(5/18) 8024922404945004 a001 4181/64079*9349^(10/19) 8024922406211562 a001 10946/12752043*15127^(19/20) 8024922407052711 a001 15456/13201*5778^(2/9) 8024922407965109 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^35 8024922409855487 m002 -E^Pi/(4*Pi^6)+Sech[Pi] 8024922411778825 a001 4181/15127*24476^(1/3) 8024922412060434 a001 121393/103682*5778^(2/9) 8024922412210821 a001 11592/6119*5778^(1/6) 8024922412791051 a001 105937/90481*5778^(2/9) 8024922412897647 a001 832040/710647*5778^(2/9) 8024922412913199 a001 726103/620166*5778^(2/9) 8024922412915468 a001 5702887/4870847*5778^(2/9) 8024922412915799 a001 4976784/4250681*5778^(2/9) 8024922412915847 a001 39088169/33385282*5778^(2/9) 8024922412915854 a001 34111385/29134601*5778^(2/9) 8024922412915855 a001 267914296/228826127*5778^(2/9) 8024922412915856 a001 233802911/199691526*5778^(2/9) 8024922412915856 a001 1836311903/1568397607*5778^(2/9) 8024922412915856 a001 1602508992/1368706081*5778^(2/9) 8024922412915856 a001 12586269025/10749957122*5778^(2/9) 8024922412915856 a001 10983760033/9381251041*5778^(2/9) 8024922412915856 a001 86267571272/73681302247*5778^(2/9) 8024922412915856 a001 75283811239/64300051206*5778^(2/9) 8024922412915856 a001 2504730781961/2139295485799*5778^(2/9) 8024922412915856 a001 365435296162/312119004989*5778^(2/9) 8024922412915856 a001 139583862445/119218851371*5778^(2/9) 8024922412915856 a001 53316291173/45537549124*5778^(2/9) 8024922412915856 a001 20365011074/17393796001*5778^(2/9) 8024922412915856 a001 7778742049/6643838879*5778^(2/9) 8024922412915856 a001 2971215073/2537720636*5778^(2/9) 8024922412915856 a001 1134903170/969323029*5778^(2/9) 8024922412915856 a001 433494437/370248451*5778^(2/9) 8024922412915856 a001 165580141/141422324*5778^(2/9) 8024922412915859 a001 63245986/54018521*5778^(2/9) 8024922412915877 a001 24157817/20633239*5778^(2/9) 8024922412916004 a001 9227465/7881196*5778^(2/9) 8024922412916870 a001 3524578/3010349*5778^(2/9) 8024922412922811 a001 1346269/1149851*5778^(2/9) 8024922412963527 a001 514229/439204*5778^(2/9) 8024922413054591 a001 6765/9349*24476^(5/21) 8024922413242598 a001 196418/167761*5778^(2/9) 8024922413549520 a001 46368/9349*3571^(1/17) 8024922415155378 a001 75025/64079*5778^(2/9) 8024922415649191 a001 4181/15127*64079^(7/23) 8024922415819138 a001 6765/9349*64079^(5/23) 8024922416186975 a001 6765/9349*167761^(1/5) 8024922416243873 a001 28284465/3524578 8024922416243999 a001 4181/15127*20633239^(1/5) 8024922416244001 a001 6765/9349*20633239^(1/7) 8024922416244003 a001 4181/15127*17393796001^(1/7) 8024922416244003 a001 4181/15127*14662949395604^(1/9) 8024922416244003 a001 4181/15127*(1/2+1/2*5^(1/2))^7 8024922416244003 a001 4181/15127*599074578^(1/6) 8024922416244003 a001 6765/9349*2537720636^(1/9) 8024922416244003 a001 6765/9349*312119004989^(1/11) 8024922416244003 a001 6765/9349*(1/2+1/2*5^(1/2))^5 8024922416244003 a001 6765/9349*28143753123^(1/10) 8024922416244004 a001 6765/9349*228826127^(1/8) 8024922416244390 a001 6765/9349*1860498^(1/6) 8024922416247975 a001 4181/15127*710647^(1/4) 8024922416399526 a001 6765/9349*103682^(5/24) 8024922416461734 a001 4181/15127*103682^(7/24) 8024922417406876 a001 6765/9349*39603^(5/22) 8024922417872024 a001 4181/15127*39603^(7/22) 8024922419664200 a007 Real Root Of -140*x^4+90*x^3+496*x^2+774*x-929 8024922423107658 a001 28657/39603*5778^(5/18) 8024922423717316 a003 cos(Pi*10/81)-cos(Pi*41/89) 8024922425011493 a001 6765/9349*15127^(1/4) 8024922425808547 a001 75025/103682*5778^(5/18) 8024922426050822 a001 4181/24476*9349^(8/19) 8024922426145496 a001 2255/13201*5778^(4/9) 8024922426202602 a001 196418/271443*5778^(5/18) 8024922426260094 a001 514229/710647*5778^(5/18) 8024922426268482 a001 1346269/1860498*5778^(5/18) 8024922426269705 a001 3524578/4870847*5778^(5/18) 8024922426269884 a001 9227465/12752043*5778^(5/18) 8024922426269910 a001 24157817/33385282*5778^(5/18) 8024922426269914 a001 63245986/87403803*5778^(5/18) 8024922426269914 a001 165580141/228826127*5778^(5/18) 8024922426269914 a001 433494437/599074578*5778^(5/18) 8024922426269914 a001 1134903170/1568397607*5778^(5/18) 8024922426269914 a001 2971215073/4106118243*5778^(5/18) 8024922426269914 a001 7778742049/10749957122*5778^(5/18) 8024922426269914 a001 20365011074/28143753123*5778^(5/18) 8024922426269914 a001 53316291173/73681302247*5778^(5/18) 8024922426269914 a001 139583862445/192900153618*5778^(5/18) 8024922426269914 a001 365435296162/505019158607*5778^(5/18) 8024922426269914 a001 10610209857723/14662949395604*5778^(5/18) 8024922426269914 a001 591286729879/817138163596*5778^(5/18) 8024922426269914 a001 225851433717/312119004989*5778^(5/18) 8024922426269914 a001 86267571272/119218851371*5778^(5/18) 8024922426269914 a001 32951280099/45537549124*5778^(5/18) 8024922426269914 a001 12586269025/17393796001*5778^(5/18) 8024922426269914 a001 4807526976/6643838879*5778^(5/18) 8024922426269914 a001 1836311903/2537720636*5778^(5/18) 8024922426269914 a001 701408733/969323029*5778^(5/18) 8024922426269914 a001 267914296/370248451*5778^(5/18) 8024922426269915 a001 102334155/141422324*5778^(5/18) 8024922426269916 a001 39088169/54018521*5778^(5/18) 8024922426269926 a001 14930352/20633239*5778^(5/18) 8024922426269994 a001 5702887/7881196*5778^(5/18) 8024922426270462 a001 2178309/3010349*5778^(5/18) 8024922426273666 a001 832040/1149851*5778^(5/18) 8024922426295625 a001 317811/439204*5778^(5/18) 8024922426446141 a001 121393/167761*5778^(5/18) 8024922427090591 a001 10946/3571*1364^(2/15) 8024922427477789 a001 46368/64079*5778^(5/18) 8024922427686136 a001 75025/15127*2207^(1/16) 8024922428265769 a001 28657/24476*5778^(2/9) 8024922428518487 a001 4181/15127*15127^(7/20) 8024922429390698 a001 17711/39603*5778^(1/3) 8024922431303606 a001 6765/24476*5778^(7/18) 8024922431700322 a001 17711/9349*9349^(3/19) 8024922433426524 a001 1597/271443*3571^(15/17) 8024922434548808 a001 17711/24476*5778^(5/18) 8024922435518583 m005 (1/3*5^(1/2)-3/5)/(1/10*Catalan-3/11) 8024922437918428 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^34 8024922438130958 a001 23184/51841*5778^(1/3) 8024922438556440 a001 4181/7881196*24476^(20/21) 8024922439193855 a001 4181/4870847*24476^(19/21) 8024922439406145 a001 121393/271443*5778^(1/3) 8024922439592192 a001 317811/710647*5778^(1/3) 8024922439619336 a001 416020/930249*5778^(1/3) 8024922439623297 a001 2178309/4870847*5778^(1/3) 8024922439623874 a001 5702887/12752043*5778^(1/3) 8024922439623959 a001 7465176/16692641*5778^(1/3) 8024922439623971 a001 39088169/87403803*5778^(1/3) 8024922439623973 a001 102334155/228826127*5778^(1/3) 8024922439623973 a001 133957148/299537289*5778^(1/3) 8024922439623973 a001 701408733/1568397607*5778^(1/3) 8024922439623973 a001 1836311903/4106118243*5778^(1/3) 8024922439623973 a001 2403763488/5374978561*5778^(1/3) 8024922439623973 a001 12586269025/28143753123*5778^(1/3) 8024922439623973 a001 32951280099/73681302247*5778^(1/3) 8024922439623973 a001 43133785636/96450076809*5778^(1/3) 8024922439623973 a001 225851433717/505019158607*5778^(1/3) 8024922439623973 a001 591286729879/1322157322203*5778^(1/3) 8024922439623973 a001 10610209857723/23725150497407*5778^(1/3) 8024922439623973 a001 182717648081/408569081798*5778^(1/3) 8024922439623973 a001 139583862445/312119004989*5778^(1/3) 8024922439623973 a001 53316291173/119218851371*5778^(1/3) 8024922439623973 a001 10182505537/22768774562*5778^(1/3) 8024922439623973 a001 7778742049/17393796001*5778^(1/3) 8024922439623973 a001 2971215073/6643838879*5778^(1/3) 8024922439623973 a001 567451585/1268860318*5778^(1/3) 8024922439623973 a001 433494437/969323029*5778^(1/3) 8024922439623973 a001 165580141/370248451*5778^(1/3) 8024922439623974 a001 31622993/70711162*5778^(1/3) 8024922439623979 a001 24157817/54018521*5778^(1/3) 8024922439624011 a001 9227465/20633239*5778^(1/3) 8024922439624232 a001 1762289/3940598*5778^(1/3) 8024922439625744 a001 1346269/3010349*5778^(1/3) 8024922439636112 a001 514229/1149851*5778^(1/3) 8024922439707176 a001 98209/219602*5778^(1/3) 8024922439832961 a001 4181/3010349*24476^(6/7) 8024922440194254 a001 75025/167761*5778^(1/3) 8024922440456380 a001 4181/39603*24476^(3/7) 8024922440467639 a001 4181/1860498*24476^(17/21) 8024922441113910 a001 4181/1149851*24476^(16/21) 8024922441436089 a001 5473/2889*2207^(3/16) 8024922441729832 a001 4181/710647*24476^(5/7) 8024922442425207 a001 4181/439204*24476^(2/3) 8024922442912574 a001 4181/271443*24476^(13/21) 8024922443532737 a001 28657/64079*5778^(1/3) 8024922443550745 a001 4181/103682*24476^(11/21) 8024922443603675 a001 28657/9349*9349^(2/19) 8024922443944510 a001 4181/167761*24476^(4/7) 8024922444283675 a001 17711/9349*24476^(1/7) 8024922445380157 a001 10946/9349*9349^(4/19) 8024922445432564 a001 4181/39603*64079^(9/23) 8024922445735119 a001 46368/9349*9349^(1/19) 8024922445942403 a001 17711/9349*64079^(3/23) 8024922446183455 a001 4181/39603*439204^(1/3) 8024922446192700 a001 17711/9349*439204^(1/9) 8024922446197286 a001 4181/39603*7881196^(3/11) 8024922446197303 a001 74049691/9227465 8024922446197311 a001 17711/9349*7881196^(1/11) 8024922446197322 a001 4181/39603*141422324^(3/13) 8024922446197322 a001 4181/39603*2537720636^(1/5) 8024922446197322 a001 4181/39603*45537549124^(3/17) 8024922446197322 a001 4181/39603*817138163596^(3/19) 8024922446197322 a001 4181/39603*14662949395604^(1/7) 8024922446197322 a001 4181/39603*(1/2+1/2*5^(1/2))^9 8024922446197322 a001 4181/39603*192900153618^(1/6) 8024922446197322 a001 4181/39603*10749957122^(3/16) 8024922446197322 a001 4181/39603*599074578^(3/14) 8024922446197323 a001 17711/9349*141422324^(1/13) 8024922446197323 a001 17711/9349*2537720636^(1/15) 8024922446197323 a001 17711/9349*45537549124^(1/17) 8024922446197323 a001 17711/9349*14662949395604^(1/21) 8024922446197323 a001 17711/9349*(1/2+1/2*5^(1/2))^3 8024922446197323 a001 17711/9349*192900153618^(1/18) 8024922446197323 a001 17711/9349*10749957122^(1/16) 8024922446197323 a001 17711/9349*599074578^(1/14) 8024922446197323 a001 17711/9349*33385282^(1/12) 8024922446197324 a001 4181/39603*33385282^(1/4) 8024922446197555 a001 17711/9349*1860498^(1/10) 8024922446198017 a001 4181/39603*1860498^(3/10) 8024922446290636 a001 17711/9349*103682^(1/8) 8024922446477262 a001 4181/39603*103682^(3/8) 8024922446570574 a001 6765/64079*5778^(1/2) 8024922446889517 a001 4181/64079*24476^(10/21) 8024922446895046 a001 17711/9349*39603^(3/22) 8024922448290492 a001 4181/39603*39603^(9/22) 8024922449359578 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^36 8024922449444570 a001 4181/20633239*64079^(22/23) 8024922449529475 a001 4181/12752043*64079^(21/23) 8024922449614626 a001 4181/7881196*64079^(20/23) 8024922449632748 a001 4181/103682*64079^(11/23) 8024922449699132 a001 4181/4870847*64079^(19/23) 8024922449785329 a001 4181/3010349*64079^(18/23) 8024922449815776 a001 17711/64079*5778^(7/18) 8024922449867098 a001 4181/1860498*64079^(17/23) 8024922449929571 a001 46368/9349*24476^(1/21) 8024922449960459 a001 4181/1149851*64079^(16/23) 8024922450023472 a001 4181/710647*64079^(15/23) 8024922450100395 a001 4181/271443*64079^(13/23) 8024922450165937 a001 4181/439204*64079^(14/23) 8024922450482480 a001 46368/9349*64079^(1/23) 8024922450567409 a001 4181/103682*7881196^(1/3) 8024922450567449 a001 193864608/24157817 8024922450567452 a001 4181/103682*312119004989^(1/5) 8024922450567452 a001 4181/103682*(1/2+1/2*5^(1/2))^11 8024922450567452 a001 4181/103682*1568397607^(1/4) 8024922450567453 a001 23184/9349+23184/9349*5^(1/2) 8024922450579423 a001 4181/167761*64079^(12/23) 8024922450598558 a001 46368/9349*103682^(1/24) 8024922450800028 a001 46368/9349*39603^(1/22) 8024922450909601 a001 4181/103682*103682^(11/24) 8024922451028819 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^38 8024922451085976 a001 4181/7881196*167761^(4/5) 8024922451126985 a001 4181/710647*167761^(3/5) 8024922451205045 a001 2178301/271442 8024922451205045 a001 4181/271443*141422324^(1/3) 8024922451205046 a001 4181/271443*(1/2+1/2*5^(1/2))^13 8024922451205046 a001 4181/271443*73681302247^(1/4) 8024922451205047 a004 Fibonacci(26)/Lucas(19)/(1/2+sqrt(5)/2) 8024922451259503 a001 4181/271443*271443^(1/2) 8024922451271818 r001 3i'th iterates of 2*x^2-1 of 8024922451272358 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^40 8024922451274957 a001 4181/710647*439204^(5/9) 8024922451276983 a001 4181/54018521*439204^(8/9) 8024922451281553 a001 4181/12752043*439204^(7/9) 8024922451287111 a001 4181/3010349*439204^(2/3) 8024922451298010 a001 4181/710647*7881196^(5/11) 8024922451298061 a001 4181/710647*20633239^(3/7) 8024922451298069 a001 4181/710647*141422324^(5/13) 8024922451298069 a001 1328767791/165580141 8024922451298069 a001 4181/710647*2537720636^(1/3) 8024922451298069 a001 4181/710647*45537549124^(5/17) 8024922451298069 a001 4181/710647*312119004989^(3/11) 8024922451298069 a001 4181/710647*14662949395604^(5/21) 8024922451298069 a001 4181/710647*(1/2+1/2*5^(1/2))^15 8024922451298069 a001 4181/710647*192900153618^(5/18) 8024922451298069 a001 4181/710647*28143753123^(3/10) 8024922451298069 a001 4181/710647*10749957122^(5/16) 8024922451298069 a001 4181/710647*599074578^(5/14) 8024922451298069 a001 4181/710647*228826127^(3/8) 8024922451298070 a004 Fibonacci(28)/Lucas(19)/(1/2+sqrt(5)/2)^3 8024922451298072 a001 4181/710647*33385282^(5/12) 8024922451299228 a001 4181/710647*1860498^(1/2) 8024922451307890 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^42 8024922451311641 a001 3478759240/433494437 8024922451311641 a001 4181/1860498*45537549124^(1/3) 8024922451311641 a001 4181/1860498*(1/2+1/2*5^(1/2))^17 8024922451311642 a004 Fibonacci(30)/Lucas(19)/(1/2+sqrt(5)/2)^5 8024922451311666 a001 4181/1860498*12752043^(1/2) 8024922451313074 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^44 8024922451313621 a001 9107509929/1134903170 8024922451313621 a001 4181/4870847*817138163596^(1/3) 8024922451313621 a001 4181/4870847*(1/2+1/2*5^(1/2))^19 8024922451313622 a001 4181/4870847*87403803^(1/2) 8024922451313622 a004 Fibonacci(32)/Lucas(19)/(1/2+sqrt(5)/2)^7 8024922451313828 a001 4181/12752043*7881196^(7/11) 8024922451313830 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^46 8024922451313842 a001 4181/969323029*7881196^(10/11) 8024922451313854 a001 4181/228826127*7881196^(9/11) 8024922451313868 a001 4181/54018521*7881196^(8/11) 8024922451313892 a001 4181/20633239*7881196^(2/3) 8024922451313899 a001 4181/12752043*20633239^(3/5) 8024922451313910 a001 4181/12752043*141422324^(7/13) 8024922451313910 a001 4181/12752043*2537720636^(7/15) 8024922451313910 a001 23843770547/2971215073 8024922451313910 a001 4181/12752043*17393796001^(3/7) 8024922451313910 a001 4181/12752043*45537549124^(7/17) 8024922451313910 a001 4181/12752043*14662949395604^(1/3) 8024922451313910 a001 4181/12752043*(1/2+1/2*5^(1/2))^21 8024922451313910 a001 4181/12752043*192900153618^(7/18) 8024922451313910 a001 4181/12752043*10749957122^(7/16) 8024922451313910 a001 4181/12752043*599074578^(1/2) 8024922451313911 a004 Fibonacci(34)/Lucas(19)/(1/2+sqrt(5)/2)^9 8024922451313914 a001 4181/12752043*33385282^(7/12) 8024922451313941 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^48 8024922451313943 a001 4181/969323029*20633239^(6/7) 8024922451313944 a001 4181/370248451*20633239^(4/5) 8024922451313945 a001 4181/87403803*20633239^(5/7) 8024922451313952 a001 62423801712/7778742049 8024922451313952 a001 4181/33385282*(1/2+1/2*5^(1/2))^23 8024922451313952 a001 4181/33385282*4106118243^(1/2) 8024922451313953 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^11 8024922451313957 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^50 8024922451313958 a001 4181/87403803*2537720636^(5/9) 8024922451313958 a001 163427634589/20365011074 8024922451313958 a001 4181/87403803*312119004989^(5/11) 8024922451313958 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^25/Lucas(38) 8024922451313958 a001 4181/87403803*3461452808002^(5/12) 8024922451313958 a001 4181/87403803*28143753123^(1/2) 8024922451313959 a001 4181/87403803*228826127^(5/8) 8024922451313959 a001 4181/228826127*141422324^(9/13) 8024922451313959 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^52 8024922451313959 a001 4181/17393796001*141422324^(12/13) 8024922451313959 a001 4181/4106118243*141422324^(11/13) 8024922451313959 a001 4181/969323029*141422324^(10/13) 8024922451313959 a001 4181/228826127*2537720636^(3/5) 8024922451313959 a001 4181/228826127*45537549124^(9/17) 8024922451313959 a001 427859102055/53316291173 8024922451313959 a001 4181/228826127*817138163596^(9/19) 8024922451313959 a001 4181/228826127*14662949395604^(3/7) 8024922451313959 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^27/Lucas(40) 8024922451313959 a001 4181/228826127*192900153618^(1/2) 8024922451313959 a001 4181/228826127*10749957122^(9/16) 8024922451313959 a001 4181/228826127*599074578^(9/14) 8024922451313959 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^54 8024922451313959 a001 1120149671576/139583862445 8024922451313959 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^29/Lucas(42) 8024922451313959 a001 4181/599074578*1322157322203^(1/2) 8024922451313959 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^56 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^31/Lucas(44) 8024922451313960 a001 4181/1568397607*9062201101803^(1/2) 8024922451313960 a001 4181/4106118243*2537720636^(11/15) 8024922451313960 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^58 8024922451313960 a001 4181/312119004989*2537720636^(14/15) 8024922451313960 a001 4181/119218851371*2537720636^(8/9) 8024922451313960 a001 4181/73681302247*2537720636^(13/15) 8024922451313960 a001 4181/10749957122*2537720636^(7/9) 8024922451313960 a001 4181/17393796001*2537720636^(4/5) 8024922451313960 a001 4181/4106118243*45537549124^(11/17) 8024922451313960 a001 4181/4106118243*312119004989^(3/5) 8024922451313960 a001 4181/4106118243*817138163596^(11/19) 8024922451313960 a001 7677620066443/956722026041 8024922451313960 a001 4181/4106118243*14662949395604^(11/21) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(46) 8024922451313960 a001 4181/4106118243*192900153618^(11/18) 8024922451313960 a001 4181/4106118243*10749957122^(11/16) 8024922451313960 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^60 8024922451313960 a001 4181/10749957122*17393796001^(5/7) 8024922451313960 a001 4181/10749957122*312119004989^(7/11) 8024922451313960 a001 20100270286656/2504730781961 8024922451313960 a001 4181/10749957122*14662949395604^(5/9) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(48) 8024922451313960 a001 4181/10749957122*505019158607^(5/8) 8024922451313960 a001 4181/10749957122*28143753123^(7/10) 8024922451313960 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^62 8024922451313960 a001 4181/312119004989*17393796001^(6/7) 8024922451313960 a001 52623190793525/6557470319842 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(50) 8024922451313960 a001 4181/73681302247*45537549124^(13/17) 8024922451313960 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^64 8024922451313960 a001 4181/5600748293801*45537549124^(16/17) 8024922451313960 a001 4181/1322157322203*45537549124^(15/17) 8024922451313960 a001 4181/312119004989*45537549124^(14/17) 8024922451313960 a001 4181/73681302247*14662949395604^(13/21) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(52) 8024922451313960 a001 4181/73681302247*192900153618^(13/18) 8024922451313960 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^66 8024922451313960 a001 4181/73681302247*73681302247^(3/4) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(54) 8024922451313960 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^68 8024922451313960 a001 4181/14662949395604*312119004989^(10/11) 8024922451313960 a001 4181/1322157322203*312119004989^(9/11) 8024922451313960 a001 4181/817138163596*312119004989^(4/5) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(56) 8024922451313960 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^70 8024922451313960 a001 4181/23725150497407*817138163596^(17/19) 8024922451313960 a001 4181/1322157322203*14662949395604^(5/7) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(58) 8024922451313960 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^72 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(60) 8024922451313960 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^74 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(62) 8024922451313960 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^76 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(64) 8024922451313960 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^78 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(66) 8024922451313960 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^80 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(68) 8024922451313960 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^82 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(70) 8024922451313960 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^84 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(72) 8024922451313960 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^86 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(74) 8024922451313960 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^88 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(76) 8024922451313960 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^90 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(78) 8024922451313960 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^92 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(80) 8024922451313960 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^94 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(82) 8024922451313960 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^96 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(84) 8024922451313960 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^98 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(86) 8024922451313960 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^100 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(88) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(90) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(92) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(94) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(96) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(98) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(99) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(100) 8024922451313960 a004 Fibonacci(19)*Lucas(1)/(1/2+sqrt(5)/2)^13 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(97) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(95) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(93) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(91) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(89) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(87) 8024922451313960 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^99 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(85) 8024922451313960 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^97 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(83) 8024922451313960 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^95 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(81) 8024922451313960 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^93 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(79) 8024922451313960 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^91 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(77) 8024922451313960 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^89 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(75) 8024922451313960 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^87 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(73) 8024922451313960 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^85 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(71) 8024922451313960 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^83 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(69) 8024922451313960 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^81 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(67) 8024922451313960 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^79 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(65) 8024922451313960 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^77 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(63) 8024922451313960 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^75 8024922451313960 a001 4181/5600748293801*14662949395604^(16/21) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(61) 8024922451313960 a001 4181/14662949395604*3461452808002^(5/6) 8024922451313960 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^73 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(59) 8024922451313960 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^71 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(57) 8024922451313960 a001 4181/9062201101803*505019158607^(7/8) 8024922451313960 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^69 8024922451313960 a001 4181/312119004989*817138163596^(14/19) 8024922451313960 a001 4181/312119004989*14662949395604^(2/3) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(55) 8024922451313960 a001 4181/312119004989*505019158607^(3/4) 8024922451313960 a001 4181/1322157322203*192900153618^(5/6) 8024922451313960 a001 4181/5600748293801*192900153618^(8/9) 8024922451313960 a001 4181/23725150497407*192900153618^(17/18) 8024922451313960 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^67 8024922451313960 a001 4181/312119004989*192900153618^(7/9) 8024922451313960 a001 4181/119218851371*312119004989^(8/11) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(53) 8024922451313960 a001 4181/119218851371*23725150497407^(5/8) 8024922451313960 a001 4181/817138163596*73681302247^(11/13) 8024922451313960 a001 4181/5600748293801*73681302247^(12/13) 8024922451313960 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^65 8024922451313960 a001 4181/119218851371*73681302247^(10/13) 8024922451313960 a001 4181/45537549124*817138163596^(2/3) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(51) 8024922451313960 a001 85146111300394/10610209857723 8024922451313960 a001 4181/119218851371*28143753123^(4/5) 8024922451313960 a001 4181/1322157322203*28143753123^(9/10) 8024922451313960 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^63 8024922451313960 a001 4181/17393796001*45537549124^(12/17) 8024922451313960 a001 4181/17393796001*14662949395604^(4/7) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(49) 8024922451313960 a001 32522920506869/4052739537881 8024922451313960 a001 4181/17393796001*192900153618^(2/3) 8024922451313960 a001 4181/17393796001*73681302247^(9/13) 8024922451313960 a001 4181/73681302247*10749957122^(13/16) 8024922451313960 a001 4181/119218851371*10749957122^(5/6) 8024922451313960 a001 4181/45537549124*10749957122^(19/24) 8024922451313960 a001 4181/312119004989*10749957122^(7/8) 8024922451313960 a001 4181/817138163596*10749957122^(11/12) 8024922451313960 a001 4181/1322157322203*10749957122^(15/16) 8024922451313960 a001 4181/2139295485799*10749957122^(23/24) 8024922451313960 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^61 8024922451313960 a001 4181/17393796001*10749957122^(3/4) 8024922451313960 a001 4181/6643838879*45537549124^(2/3) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(47) 8024922451313960 a001 12422650220213/1548008755920 8024922451313960 a001 4181/6643838879*10749957122^(17/24) 8024922451313960 a001 4181/45537549124*4106118243^(19/23) 8024922451313960 a001 4181/17393796001*4106118243^(18/23) 8024922451313960 a001 4181/119218851371*4106118243^(20/23) 8024922451313960 a001 4181/312119004989*4106118243^(21/23) 8024922451313960 a001 4181/817138163596*4106118243^(22/23) 8024922451313960 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^59 8024922451313960 a001 4181/6643838879*4106118243^(17/23) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(45) 8024922451313960 a001 4181/2537720636*23725150497407^(1/2) 8024922451313960 a001 4181/2537720636*505019158607^(4/7) 8024922451313960 a001 4181/2537720636*73681302247^(8/13) 8024922451313960 a001 4181/2537720636*10749957122^(2/3) 8024922451313960 a001 4181/2537720636*4106118243^(16/23) 8024922451313960 a001 4181/4106118243*1568397607^(3/4) 8024922451313960 a001 4181/17393796001*1568397607^(9/11) 8024922451313960 a001 4181/6643838879*1568397607^(17/22) 8024922451313960 a001 4181/45537549124*1568397607^(19/22) 8024922451313960 a001 4181/119218851371*1568397607^(10/11) 8024922451313960 a001 4181/312119004989*1568397607^(21/22) 8024922451313960 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^57 8024922451313960 a001 4181/2537720636*1568397607^(8/11) 8024922451313960 a001 4181/969323029*2537720636^(2/3) 8024922451313960 a001 4181/969323029*45537549124^(10/17) 8024922451313960 a001 4181/969323029*312119004989^(6/11) 8024922451313960 a001 4181/969323029*14662949395604^(10/21) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^30/Lucas(43) 8024922451313960 a001 1812440241097/225851433717 8024922451313960 a001 4181/969323029*192900153618^(5/9) 8024922451313960 a001 4181/969323029*28143753123^(3/5) 8024922451313960 a001 4181/969323029*10749957122^(5/8) 8024922451313960 a001 4181/969323029*4106118243^(15/23) 8024922451313960 a001 4181/969323029*1568397607^(15/22) 8024922451313960 a001 4181/4106118243*599074578^(11/14) 8024922451313960 a001 4181/2537720636*599074578^(16/21) 8024922451313960 a001 4181/6643838879*599074578^(17/21) 8024922451313960 a001 4181/10749957122*599074578^(5/6) 8024922451313960 a001 4181/17393796001*599074578^(6/7) 8024922451313960 a001 4181/45537549124*599074578^(19/21) 8024922451313960 a001 4181/73681302247*599074578^(13/14) 8024922451313960 a001 4181/119218851371*599074578^(20/21) 8024922451313960 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^55 8024922451313960 a001 4181/969323029*599074578^(5/7) 8024922451313960 a001 4181/370248451*17393796001^(4/7) 8024922451313960 a001 4181/370248451*14662949395604^(4/9) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^28/Lucas(41) 8024922451313960 a001 4181/370248451*505019158607^(1/2) 8024922451313960 a001 692290569521/86267571272 8024922451313960 a001 4181/370248451*73681302247^(7/13) 8024922451313960 a001 4181/370248451*10749957122^(7/12) 8024922451313960 a001 4181/370248451*4106118243^(14/23) 8024922451313960 a001 4181/370248451*1568397607^(7/11) 8024922451313960 a001 4181/370248451*599074578^(2/3) 8024922451313960 a001 4181/969323029*228826127^(3/4) 8024922451313960 a001 4181/2537720636*228826127^(4/5) 8024922451313960 a001 4181/6643838879*228826127^(17/20) 8024922451313960 a001 4181/141422324*141422324^(2/3) 8024922451313960 a001 4181/10749957122*228826127^(7/8) 8024922451313960 a001 4181/17393796001*228826127^(9/10) 8024922451313960 a001 4181/45537549124*228826127^(19/20) 8024922451313960 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^53 8024922451313960 a001 4181/370248451*228826127^(7/10) 8024922451313960 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^26/Lucas(39) 8024922451313960 a001 4181/141422324*73681302247^(1/2) 8024922451313960 a001 1134899002/141421803 8024922451313960 a001 4181/141422324*10749957122^(13/24) 8024922451313960 a001 4181/141422324*4106118243^(13/23) 8024922451313960 a001 4181/141422324*1568397607^(13/22) 8024922451313960 a001 4181/141422324*599074578^(13/21) 8024922451313960 a001 4181/141422324*228826127^(13/20) 8024922451313960 a001 4181/370248451*87403803^(14/19) 8024922451313960 a001 4181/969323029*87403803^(15/19) 8024922451313960 a001 4181/2537720636*87403803^(16/19) 8024922451313960 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^15 8024922451313960 a001 4181/6643838879*87403803^(17/19) 8024922451313961 a001 4181/17393796001*87403803^(18/19) 8024922451313961 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^17 8024922451313961 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^19 8024922451313961 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^21 8024922451313961 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^23 8024922451313961 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^25 8024922451313961 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^27 8024922451313961 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^29 8024922451313961 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^31 8024922451313961 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^33 8024922451313961 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^35 8024922451313961 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^37 8024922451313961 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^39 8024922451313961 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^41 8024922451313961 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^43 8024922451313961 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^45 8024922451313961 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^47 8024922451313961 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^49 8024922451313961 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^51 8024922451313961 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^53 8024922451313961 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^55 8024922451313961 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^57 8024922451313961 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^59 8024922451313961 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^61 8024922451313961 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^63 8024922451313961 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^65 8024922451313961 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^67 8024922451313961 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^69 8024922451313961 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^71 8024922451313961 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^73 8024922451313961 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^75 8024922451313961 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^74 8024922451313961 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^72 8024922451313961 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^70 8024922451313961 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^68 8024922451313961 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^66 8024922451313961 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^64 8024922451313961 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^62 8024922451313961 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^60 8024922451313961 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^58 8024922451313961 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^56 8024922451313961 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^54 8024922451313961 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^52 8024922451313961 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^50 8024922451313961 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^48 8024922451313961 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^46 8024922451313961 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^44 8024922451313961 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^42 8024922451313961 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^40 8024922451313961 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^38 8024922451313961 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^36 8024922451313961 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^34 8024922451313961 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^32 8024922451313961 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^30 8024922451313961 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^28 8024922451313961 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^26 8024922451313961 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^24 8024922451313961 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^22 8024922451313961 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^20 8024922451313961 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^18 8024922451313961 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^16 8024922451313961 a001 4181/141422324*87403803^(13/19) 8024922451313961 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^14 8024922451313962 a001 4181/54018521*141422324^(8/13) 8024922451313962 a001 4181/54018521*2537720636^(8/15) 8024922451313962 a001 4181/54018521*45537549124^(8/17) 8024922451313962 a001 4181/54018521*14662949395604^(8/21) 8024922451313962 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^24/Lucas(37) 8024922451313962 a001 4181/54018521*192900153618^(4/9) 8024922451313962 a001 4181/54018521*73681302247^(6/13) 8024922451313962 a001 101003832877/12586269025 8024922451313962 a001 4181/54018521*10749957122^(1/2) 8024922451313962 a001 4181/54018521*4106118243^(12/23) 8024922451313962 a001 4181/54018521*1568397607^(6/11) 8024922451313962 a001 4181/54018521*599074578^(4/7) 8024922451313962 a001 4181/54018521*228826127^(3/5) 8024922451313963 a001 4181/54018521*87403803^(12/19) 8024922451313963 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^12 8024922451313965 a001 4181/228826127*33385282^(3/4) 8024922451313965 a001 4181/141422324*33385282^(13/18) 8024922451313965 a001 4181/370248451*33385282^(7/9) 8024922451313966 a001 4181/969323029*33385282^(5/6) 8024922451313966 a001 4181/2537720636*33385282^(8/9) 8024922451313966 a001 4181/4106118243*33385282^(11/12) 8024922451313966 a001 4181/6643838879*33385282^(17/18) 8024922451313967 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^49 8024922451313967 a001 4181/54018521*33385282^(2/3) 8024922451313978 a001 4181/20633239*312119004989^(2/5) 8024922451313978 a001 4181/20633239*(1/2+1/2*5^(1/2))^22 8024922451313978 a001 4181/20633239*10749957122^(11/24) 8024922451313978 a001 38580031165/4807526976 8024922451313978 a001 4181/20633239*4106118243^(11/23) 8024922451313978 a001 4181/20633239*1568397607^(1/2) 8024922451313978 a001 4181/20633239*599074578^(11/21) 8024922451313978 a001 4181/20633239*228826127^(11/20) 8024922451313979 a001 4181/20633239*87403803^(11/19) 8024922451313979 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2)^10 8024922451313983 a001 4181/20633239*33385282^(11/18) 8024922451313997 a001 4181/54018521*12752043^(12/17) 8024922451313998 a001 4181/141422324*12752043^(13/17) 8024922451314000 a001 4181/370248451*12752043^(14/17) 8024922451314003 a001 4181/969323029*12752043^(15/17) 8024922451314006 a001 4181/2537720636*12752043^(16/17) 8024922451314009 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^47 8024922451314010 a001 4181/20633239*12752043^(11/17) 8024922451314078 a001 4181/7881196*20633239^(4/7) 8024922451314089 a001 4181/7881196*2537720636^(4/9) 8024922451314089 a001 4181/7881196*(1/2+1/2*5^(1/2))^20 8024922451314089 a001 4181/7881196*23725150497407^(5/16) 8024922451314089 a001 4181/7881196*505019158607^(5/14) 8024922451314089 a001 4181/7881196*73681302247^(5/13) 8024922451314089 a001 4181/7881196*28143753123^(2/5) 8024922451314089 a001 4181/7881196*10749957122^(5/12) 8024922451314089 a001 4181/7881196*4106118243^(10/23) 8024922451314089 a001 14736260618/1836311903 8024922451314089 a001 4181/7881196*1568397607^(5/11) 8024922451314089 a001 4181/7881196*599074578^(10/21) 8024922451314089 a001 4181/7881196*228826127^(1/2) 8024922451314089 a001 4181/7881196*87403803^(10/19) 8024922451314090 a004 Fibonacci(33)/Lucas(19)/(1/2+sqrt(5)/2)^8 8024922451314093 a001 4181/7881196*33385282^(5/9) 8024922451314118 a001 4181/7881196*12752043^(10/17) 8024922451314211 a001 4181/20633239*4870847^(11/16) 8024922451314216 a001 4181/54018521*4870847^(3/4) 8024922451314235 a001 4181/141422324*4870847^(13/16) 8024922451314256 a001 4181/370248451*4870847^(7/8) 8024922451314277 a001 4181/969323029*4870847^(15/16) 8024922451314298 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^45 8024922451314300 a001 4181/7881196*4870847^(5/8) 8024922451314775 a001 4181/3010349*7881196^(6/11) 8024922451314845 a001 4181/3010349*141422324^(6/13) 8024922451314845 a001 4181/3010349*2537720636^(2/5) 8024922451314845 a001 4181/3010349*45537549124^(6/17) 8024922451314845 a001 4181/3010349*14662949395604^(2/7) 8024922451314845 a001 4181/3010349*(1/2+1/2*5^(1/2))^18 8024922451314845 a001 4181/3010349*192900153618^(1/3) 8024922451314845 a001 4181/3010349*10749957122^(3/8) 8024922451314845 a001 4181/3010349*4106118243^(9/23) 8024922451314845 a001 4181/3010349*1568397607^(9/22) 8024922451314845 a001 5628750689/701408733 8024922451314845 a001 4181/3010349*599074578^(3/7) 8024922451314845 a001 4181/3010349*228826127^(9/20) 8024922451314846 a001 4181/3010349*87403803^(9/19) 8024922451314846 a004 Fibonacci(31)/Lucas(19)/(1/2+sqrt(5)/2)^6 8024922451314849 a001 4181/3010349*33385282^(1/2) 8024922451314871 a001 4181/3010349*12752043^(9/17) 8024922451315035 a001 4181/3010349*4870847^(9/16) 8024922451315533 a001 4181/12752043*1860498^(7/10) 8024922451315634 a001 4181/7881196*1860498^(2/3) 8024922451315678 a001 4181/20633239*1860498^(11/15) 8024922451315817 a001 4181/54018521*1860498^(4/5) 8024922451315890 a001 4181/87403803*1860498^(5/6) 8024922451315969 a001 4181/141422324*1860498^(13/15) 8024922451316046 a001 4181/228826127*1860498^(9/10) 8024922451316123 a001 4181/370248451*1860498^(14/15) 8024922451316236 a001 4181/3010349*1860498^(3/5) 8024922451316278 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^43 8024922451320029 a001 4181/1149851*(1/2+1/2*5^(1/2))^16 8024922451320029 a001 4181/1149851*23725150497407^(1/4) 8024922451320029 a001 4181/1149851*73681302247^(4/13) 8024922451320029 a001 4181/1149851*10749957122^(1/3) 8024922451320029 a001 4181/1149851*4106118243^(8/23) 8024922451320029 a001 4181/1149851*1568397607^(4/11) 8024922451320029 a001 4181/1149851*599074578^(8/21) 8024922451320029 a001 2149991449/267914296 8024922451320029 a001 4181/1149851*228826127^(2/5) 8024922451320030 a001 4181/1149851*87403803^(8/19) 8024922451320030 a004 Fibonacci(29)/Lucas(19)/(1/2+sqrt(5)/2)^4 8024922451320032 a001 4181/1149851*33385282^(4/9) 8024922451320052 a001 4181/1149851*12752043^(8/17) 8024922451320198 a001 4181/1149851*4870847^(1/2) 8024922451321266 a001 4181/1149851*1860498^(8/15) 8024922451325060 a001 4181/3010349*710647^(9/14) 8024922451325439 a001 4181/7881196*710647^(5/7) 8024922451325828 a001 4181/12752043*710647^(3/4) 8024922451326464 a001 4181/20633239*710647^(11/14) 8024922451327583 a001 4181/54018521*710647^(6/7) 8024922451328715 a001 4181/141422324*710647^(13/14) 8024922451329109 a001 4181/1149851*710647^(4/7) 8024922451329850 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^41 8024922451355553 a001 4181/439204*20633239^(2/5) 8024922451355561 a001 4181/439204*17393796001^(2/7) 8024922451355561 a001 4181/439204*14662949395604^(2/9) 8024922451355561 a001 4181/439204*(1/2+1/2*5^(1/2))^14 8024922451355561 a001 4181/439204*505019158607^(1/4) 8024922451355561 a001 4181/439204*10749957122^(7/24) 8024922451355561 a001 4181/439204*4106118243^(7/23) 8024922451355561 a001 4181/439204*1568397607^(7/22) 8024922451355561 a001 4181/439204*599074578^(1/3) 8024922451355561 a001 4181/439204*228826127^(7/20) 8024922451355561 a001 821223658/102334155 8024922451355561 a001 4181/439204*87403803^(7/19) 8024922451355562 a004 Fibonacci(27)/Lucas(19)/(1/2+sqrt(5)/2)^2 8024922451355564 a001 4181/439204*33385282^(7/18) 8024922451355581 a001 4181/439204*12752043^(7/17) 8024922451355709 a001 4181/439204*4870847^(7/16) 8024922451356643 a001 4181/439204*1860498^(7/15) 8024922451363506 a001 4181/439204*710647^(1/2) 8024922451387053 a001 4181/1149851*271443^(8/13) 8024922451390247 a001 4181/3010349*271443^(9/13) 8024922451397869 a001 4181/7881196*271443^(10/13) 8024922451406136 a001 4181/20633239*271443^(11/13) 8024922451414207 a001 4181/439204*271443^(7/13) 8024922451414498 a001 4181/54018521*271443^(12/13) 8024922451422873 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^39 8024922451457816 a001 17711/9349*15127^(3/20) 8024922451580610 a001 4181/167761*439204^(4/9) 8024922451599053 a001 4181/167761*7881196^(4/11) 8024922451599100 a001 4181/167761*141422324^(4/13) 8024922451599100 a001 4181/167761*2537720636^(4/15) 8024922451599100 a001 4181/167761*45537549124^(4/17) 8024922451599100 a001 4181/167761*817138163596^(4/19) 8024922451599100 a001 4181/167761*14662949395604^(4/21) 8024922451599100 a001 4181/167761*(1/2+1/2*5^(1/2))^12 8024922451599100 a001 4181/167761*192900153618^(2/9) 8024922451599100 a001 4181/167761*73681302247^(3/13) 8024922451599100 a001 4181/167761*10749957122^(1/4) 8024922451599100 a001 4181/167761*4106118243^(6/23) 8024922451599100 a001 4181/167761*1568397607^(3/11) 8024922451599100 a001 4181/167761*599074578^(2/7) 8024922451599100 a001 4181/167761*228826127^(3/10) 8024922451599100 a001 4181/167761*87403803^(6/19) 8024922451599101 a001 75025/9349 8024922451599101 a006 5^(1/2)*Fibonacci(25)/Lucas(19)/sqrt(5) 8024922451599102 a001 4181/167761*33385282^(1/3) 8024922451599117 a001 4181/167761*12752043^(6/17) 8024922451599227 a001 4181/167761*4870847^(3/8) 8024922451600027 a001 4181/167761*1860498^(2/5) 8024922451605910 a001 4181/167761*710647^(3/7) 8024922451609404 a001 4181/271443*103682^(13/24) 8024922451649368 a001 4181/167761*271443^(6/13) 8024922451764636 a001 4181/710647*103682^(5/8) 8024922451791024 a001 4181/439204*103682^(7/12) 8024922451817701 a001 4181/1149851*103682^(2/3) 8024922451840417 a001 4181/1860498*103682^(17/24) 8024922451874726 a001 4181/3010349*103682^(3/4) 8024922451904606 a001 4181/4870847*103682^(19/24) 8024922451936178 a001 4181/7881196*103682^(5/6) 8024922451967104 a001 4181/12752043*103682^(7/8) 8024922451972354 a001 4181/167761*103682^(1/2) 8024922451984950 l006 ln(9311/10089) 8024922451992577 a001 28657/9349*24476^(2/21) 8024922451998277 a001 4181/20633239*103682^(11/12) 8024922452015967 m001 (Psi(1,1/3)+exp(-1/2*Pi))/(OneNinth+Salem) 8024922452029355 a001 4181/33385282*103682^(23/24) 8024922452060467 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^37 8024922452320951 a001 46368/9349*15127^(1/20) 8024922452418610 a001 4181/64079*64079^(10/23) 8024922452516665 a001 46368/167761*5778^(7/18) 8024922452910719 a001 121393/439204*5778^(7/18) 8024922452968211 a001 317811/1149851*5778^(7/18) 8024922452976599 a001 832040/3010349*5778^(7/18) 8024922452977823 a001 2178309/7881196*5778^(7/18) 8024922452978001 a001 5702887/20633239*5778^(7/18) 8024922452978027 a001 14930352/54018521*5778^(7/18) 8024922452978031 a001 39088169/141422324*5778^(7/18) 8024922452978032 a001 102334155/370248451*5778^(7/18) 8024922452978032 a001 267914296/969323029*5778^(7/18) 8024922452978032 a001 701408733/2537720636*5778^(7/18) 8024922452978032 a001 1836311903/6643838879*5778^(7/18) 8024922452978032 a001 4807526976/17393796001*5778^(7/18) 8024922452978032 a001 12586269025/45537549124*5778^(7/18) 8024922452978032 a001 32951280099/119218851371*5778^(7/18) 8024922452978032 a001 86267571272/312119004989*5778^(7/18) 8024922452978032 a001 225851433717/817138163596*5778^(7/18) 8024922452978032 a001 1548008755920/5600748293801*5778^(7/18) 8024922452978032 a001 139583862445/505019158607*5778^(7/18) 8024922452978032 a001 53316291173/192900153618*5778^(7/18) 8024922452978032 a001 20365011074/73681302247*5778^(7/18) 8024922452978032 a001 7778742049/28143753123*5778^(7/18) 8024922452978032 a001 2971215073/10749957122*5778^(7/18) 8024922452978032 a001 1134903170/4106118243*5778^(7/18) 8024922452978032 a001 433494437/1568397607*5778^(7/18) 8024922452978032 a001 165580141/599074578*5778^(7/18) 8024922452978032 a001 63245986/228826127*5778^(7/18) 8024922452978034 a001 24157817/87403803*5778^(7/18) 8024922452978044 a001 9227465/33385282*5778^(7/18) 8024922452978112 a001 3524578/12752043*5778^(7/18) 8024922452978579 a001 1346269/4870847*5778^(7/18) 8024922452981783 a001 514229/1860498*5778^(7/18) 8024922453003743 a001 196418/710647*5778^(7/18) 8024922453098396 a001 28657/9349*64079^(2/23) 8024922453125771 a001 4181/103682*39603^(1/2) 8024922453154258 a001 75025/271443*5778^(7/18) 8024922453154285 a001 4181/64079*167761^(2/5) 8024922453268336 a001 4181/64079*20633239^(2/7) 8024922453268341 a001 4181/64079*2537720636^(2/9) 8024922453268341 a001 4181/64079*312119004989^(2/11) 8024922453268341 a001 4181/64079*(1/2+1/2*5^(1/2))^10 8024922453268341 a001 4181/64079*28143753123^(1/5) 8024922453268341 a001 4181/64079*10749957122^(5/24) 8024922453268341 a001 4181/64079*4106118243^(5/23) 8024922453268341 a001 4181/64079*1568397607^(5/22) 8024922453268341 a001 4181/64079*599074578^(5/21) 8024922453268341 a001 4181/64079*228826127^(1/4) 8024922453268342 a001 4181/64079*87403803^(5/19) 8024922453268342 a001 28657/9349*(1/2+1/2*5^(1/2))^2 8024922453268342 a001 28657/9349*10749957122^(1/24) 8024922453268342 a001 28657/9349*4106118243^(1/23) 8024922453268342 a001 28657/9349*1568397607^(1/22) 8024922453268342 a001 28657/9349*599074578^(1/21) 8024922453268342 a001 28657/9349*228826127^(1/20) 8024922453268342 a001 28657/9349*87403803^(1/19) 8024922453268343 a001 28657/9349*33385282^(1/18) 8024922453268343 a001 4181/64079*33385282^(5/18) 8024922453268345 a001 28657/9349*12752043^(1/17) 8024922453268348 a001 119814917/14930352 8024922453268356 a001 4181/64079*12752043^(5/17) 8024922453268363 a001 28657/9349*4870847^(1/16) 8024922453268447 a001 4181/64079*4870847^(5/16) 8024922453268497 a001 28657/9349*1860498^(1/15) 8024922453269114 a001 4181/64079*1860498^(1/3) 8024922453269477 a001 28657/9349*710647^(1/14) 8024922453274016 a001 4181/64079*710647^(5/14) 8024922453276720 a001 28657/9349*271443^(1/13) 8024922453310231 a001 4181/64079*271443^(5/13) 8024922453330551 a001 28657/9349*103682^(1/12) 8024922453579386 a001 4181/64079*103682^(5/12) 8024922453733491 a001 28657/9349*39603^(1/11) 8024922454185906 a001 28657/103682*5778^(7/18) 8024922454228513 a001 4181/271443*39603^(13/22) 8024922454389993 a001 4181/167761*39603^(6/11) 8024922454611603 a001 4181/439204*39603^(7/11) 8024922454786686 a001 4181/710647*39603^(15/22) 8024922455041220 a001 4181/1149851*39603^(8/11) 8024922455265407 a001 4181/1860498*39603^(17/22) 8024922455501185 a001 4181/3010349*39603^(9/11) 8024922455594086 a001 4181/64079*39603^(5/11) 8024922455732536 a001 4181/4870847*39603^(19/22) 8024922455965578 a001 4181/7881196*39603^(10/11) 8024922456197973 a001 4181/12752043*39603^(21/22) 8024922456430597 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^35 8024922456775338 a001 28657/9349*15127^(1/10) 8024922457223744 a001 6765/103682*5778^(5/9) 8024922457395916 a001 196418/39603*2207^(1/16) 8024922459606431 a001 4181/24476*24476^(8/21) 8024922460468946 a001 17711/103682*5778^(4/9) 8024922461256926 a001 10946/39603*5778^(7/18) 8024922461730514 a001 514229/103682*2207^(1/16) 8024922461978802 a001 4181/39603*15127^(9/20) 8024922462157962 a001 10946/9349*24476^(4/21) 8024922462362924 a001 1346269/271443*2207^(1/16) 8024922462455191 a001 3524578/710647*2207^(1/16) 8024922462468653 a001 9227465/1860498*2207^(1/16) 8024922462470617 a001 24157817/4870847*2207^(1/16) 8024922462470903 a001 63245986/12752043*2207^(1/16) 8024922462470945 a001 165580141/33385282*2207^(1/16) 8024922462470951 a001 433494437/87403803*2207^(1/16) 8024922462470952 a001 1134903170/228826127*2207^(1/16) 8024922462470952 a001 2971215073/599074578*2207^(1/16) 8024922462470952 a001 7778742049/1568397607*2207^(1/16) 8024922462470952 a001 20365011074/4106118243*2207^(1/16) 8024922462470952 a001 53316291173/10749957122*2207^(1/16) 8024922462470952 a001 139583862445/28143753123*2207^(1/16) 8024922462470952 a001 365435296162/73681302247*2207^(1/16) 8024922462470952 a001 956722026041/192900153618*2207^(1/16) 8024922462470952 a001 2504730781961/505019158607*2207^(1/16) 8024922462470952 a001 10610209857723/2139295485799*2207^(1/16) 8024922462470952 a001 4052739537881/817138163596*2207^(1/16) 8024922462470952 a001 140728068720/28374454999*2207^(1/16) 8024922462470952 a001 591286729879/119218851371*2207^(1/16) 8024922462470952 a001 225851433717/45537549124*2207^(1/16) 8024922462470952 a001 86267571272/17393796001*2207^(1/16) 8024922462470952 a001 32951280099/6643838879*2207^(1/16) 8024922462470952 a001 1144206275/230701876*2207^(1/16) 8024922462470952 a001 4807526976/969323029*2207^(1/16) 8024922462470952 a001 1836311903/370248451*2207^(1/16) 8024922462470952 a001 701408733/141422324*2207^(1/16) 8024922462470955 a001 267914296/54018521*2207^(1/16) 8024922462470971 a001 9303105/1875749*2207^(1/16) 8024922462471080 a001 39088169/7881196*2207^(1/16) 8024922462471830 a001 14930352/3010349*2207^(1/16) 8024922462476972 a001 5702887/1149851*2207^(1/16) 8024922462512215 a001 2178309/439204*2207^(1/16) 8024922462753774 a001 75640/15251*2207^(1/16) 8024922463921512 a001 46368/9349*5778^(1/18) 8024922464029706 a001 4181/24476*64079^(8/23) 8024922464369600 a001 10946/9349*64079^(4/23) 8024922464409443 a001 317811/64079*2207^(1/16) 8024922464709491 a001 4181/24476*(1/2+1/2*5^(1/2))^8 8024922464709491 a001 4181/24476*23725150497407^(1/8) 8024922464709491 a001 4181/24476*505019158607^(1/7) 8024922464709491 a001 4181/24476*73681302247^(2/13) 8024922464709491 a001 4181/24476*10749957122^(1/6) 8024922464709491 a001 4181/24476*4106118243^(4/23) 8024922464709491 a001 4181/24476*1568397607^(2/11) 8024922464709491 a001 4181/24476*599074578^(4/21) 8024922464709491 a001 4181/24476*228826127^(1/5) 8024922464709491 a001 4181/24476*87403803^(4/19) 8024922464709492 a001 10946/9349*(1/2+1/2*5^(1/2))^4 8024922464709492 a001 10946/9349*23725150497407^(1/16) 8024922464709492 a001 10946/9349*73681302247^(1/13) 8024922464709492 a001 10946/9349*10749957122^(1/12) 8024922464709492 a001 10946/9349*4106118243^(2/23) 8024922464709492 a001 10946/9349*1568397607^(1/11) 8024922464709492 a001 10946/9349*599074578^(2/21) 8024922464709492 a001 10946/9349*228826127^(1/10) 8024922464709492 a001 10946/9349*87403803^(2/19) 8024922464709493 a001 4181/24476*33385282^(2/9) 8024922464709493 a001 10946/9349*33385282^(1/9) 8024922464709498 a001 10946/9349*12752043^(2/17) 8024922464709503 a001 4181/24476*12752043^(4/17) 8024922464709534 a001 10946/9349*4870847^(1/8) 8024922464709540 a001 45765226/5702887 8024922464709576 a001 4181/24476*4870847^(1/4) 8024922464709801 a001 10946/9349*1860498^(2/15) 8024922464710109 a001 4181/24476*1860498^(4/15) 8024922464711762 a001 10946/9349*710647^(1/7) 8024922464714031 a001 4181/24476*710647^(2/7) 8024922464726248 a001 10946/9349*271443^(2/13) 8024922464743003 a001 4181/24476*271443^(4/13) 8024922464833910 a001 10946/9349*103682^(1/6) 8024922464958327 a001 4181/24476*103682^(1/3) 8024922465476669 a001 15456/90481*5778^(4/9) 8024922465639790 a001 10946/9349*39603^(2/11) 8024922466207286 a001 121393/710647*5778^(4/9) 8024922466313882 a001 105937/620166*5778^(4/9) 8024922466329434 a001 832040/4870847*5778^(4/9) 8024922466331703 a001 726103/4250681*5778^(4/9) 8024922466332034 a001 5702887/33385282*5778^(4/9) 8024922466332082 a001 4976784/29134601*5778^(4/9) 8024922466332090 a001 39088169/228826127*5778^(4/9) 8024922466332091 a001 34111385/199691526*5778^(4/9) 8024922466332091 a001 267914296/1568397607*5778^(4/9) 8024922466332091 a001 233802911/1368706081*5778^(4/9) 8024922466332091 a001 1836311903/10749957122*5778^(4/9) 8024922466332091 a001 1602508992/9381251041*5778^(4/9) 8024922466332091 a001 12586269025/73681302247*5778^(4/9) 8024922466332091 a001 10983760033/64300051206*5778^(4/9) 8024922466332091 a001 86267571272/505019158607*5778^(4/9) 8024922466332091 a001 75283811239/440719107401*5778^(4/9) 8024922466332091 a001 2504730781961/14662949395604*5778^(4/9) 8024922466332091 a001 139583862445/817138163596*5778^(4/9) 8024922466332091 a001 53316291173/312119004989*5778^(4/9) 8024922466332091 a001 20365011074/119218851371*5778^(4/9) 8024922466332091 a001 7778742049/45537549124*5778^(4/9) 8024922466332091 a001 2971215073/17393796001*5778^(4/9) 8024922466332091 a001 1134903170/6643838879*5778^(4/9) 8024922466332091 a001 433494437/2537720636*5778^(4/9) 8024922466332091 a001 165580141/969323029*5778^(4/9) 8024922466332091 a001 63245986/370248451*5778^(4/9) 8024922466332094 a001 24157817/141422324*5778^(4/9) 8024922466332112 a001 9227465/54018521*5778^(4/9) 8024922466332239 a001 3524578/20633239*5778^(4/9) 8024922466333105 a001 1346269/7881196*5778^(4/9) 8024922466339046 a001 514229/3010349*5778^(4/9) 8024922466379762 a001 196418/1149851*5778^(4/9) 8024922466415036 a001 5473/12238*5778^(1/3) 8024922466570087 a001 4181/24476*39603^(4/11) 8024922466658833 a001 75025/439204*5778^(4/9) 8024922468571613 a001 28657/167761*5778^(4/9) 8024922469855928 a001 4181/103682*15127^(11/20) 8024922470803320 a001 4181/64079*15127^(1/2) 8024922470838512 a001 1597/167761*3571^(14/17) 8024922471609450 a001 615/15251*5778^(11/18) 8024922471723484 a001 10946/9349*15127^(1/5) 8024922472641074 a001 4181/167761*15127^(3/5) 8024922474000518 a001 4181/271443*15127^(13/20) 8024922474854652 a001 17711/167761*5778^(1/2) 8024922475757570 a001 121393/24476*2207^(1/16) 8024922475904531 a001 4181/439204*15127^(7/10) 8024922477600537 a001 4181/710647*15127^(3/4) 8024922478737474 a001 4181/24476*15127^(2/5) 8024922478981244 a001 11592/109801*5778^(1/2) 8024922479375995 a001 4181/1149851*15127^(4/5) 8024922479583305 a001 121393/1149851*5778^(1/2) 8024922479671145 a001 317811/3010349*5778^(1/2) 8024922479683960 a001 208010/1970299*5778^(1/2) 8024922479685830 a001 2178309/20633239*5778^(1/2) 8024922479686103 a001 5702887/54018521*5778^(1/2) 8024922479686143 a001 3732588/35355581*5778^(1/2) 8024922479686149 a001 39088169/370248451*5778^(1/2) 8024922479686149 a001 102334155/969323029*5778^(1/2) 8024922479686150 a001 66978574/634430159*5778^(1/2) 8024922479686150 a001 701408733/6643838879*5778^(1/2) 8024922479686150 a001 1836311903/17393796001*5778^(1/2) 8024922479686150 a001 1201881744/11384387281*5778^(1/2) 8024922479686150 a001 12586269025/119218851371*5778^(1/2) 8024922479686150 a001 32951280099/312119004989*5778^(1/2) 8024922479686150 a001 21566892818/204284540899*5778^(1/2) 8024922479686150 a001 225851433717/2139295485799*5778^(1/2) 8024922479686150 a001 182717648081/1730726404001*5778^(1/2) 8024922479686150 a001 139583862445/1322157322203*5778^(1/2) 8024922479686150 a001 53316291173/505019158607*5778^(1/2) 8024922479686150 a001 10182505537/96450076809*5778^(1/2) 8024922479686150 a001 7778742049/73681302247*5778^(1/2) 8024922479686150 a001 2971215073/28143753123*5778^(1/2) 8024922479686150 a001 567451585/5374978561*5778^(1/2) 8024922479686150 a001 433494437/4106118243*5778^(1/2) 8024922479686150 a001 165580141/1568397607*5778^(1/2) 8024922479686150 a001 31622993/299537289*5778^(1/2) 8024922479686152 a001 24157817/228826127*5778^(1/2) 8024922479686167 a001 9227465/87403803*5778^(1/2) 8024922479686272 a001 1762289/16692641*5778^(1/2) 8024922479686986 a001 1346269/12752043*5778^(1/2) 8024922479691881 a001 514229/4870847*5778^(1/2) 8024922479725433 a001 98209/930249*5778^(1/2) 8024922479955400 a001 75025/710647*5778^(1/2) 8024922479976460 a001 28657/9349*5778^(1/9) 8024922481121105 a001 4181/1860498*15127^(17/20) 8024922481531617 a001 28657/271443*5778^(1/2) 8024922481682004 a001 10946/64079*5778^(4/9) 8024922482877806 a001 4181/3010349*15127^(9/10) 8024922483014297 a001 6765/9349*5778^(5/18) 8024922484569455 a001 2255/90481*5778^(2/3) 8024922484630080 a001 4181/4870847*15127^(19/20) 8024922486259499 a001 17711/9349*5778^(1/6) 8024922486383917 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^33 8024922487814657 a001 17711/271443*5778^(5/9) 8024922489305848 a001 1597/5778*3571^(7/17) 8024922492277811 a001 6624/101521*5778^(5/9) 8024922492335174 a001 5473/51841*5778^(1/2) 8024922492928976 a001 121393/1860498*5778^(5/9) 8024922493023980 a001 317811/4870847*5778^(5/9) 8024922493037841 a001 832040/12752043*5778^(5/9) 8024922493039863 a001 311187/4769326*5778^(5/9) 8024922493040158 a001 5702887/87403803*5778^(5/9) 8024922493040201 a001 14930352/228826127*5778^(5/9) 8024922493040207 a001 39088169/599074578*5778^(5/9) 8024922493040208 a001 14619165/224056801*5778^(5/9) 8024922493040208 a001 267914296/4106118243*5778^(5/9) 8024922493040208 a001 701408733/10749957122*5778^(5/9) 8024922493040208 a001 1836311903/28143753123*5778^(5/9) 8024922493040208 a001 686789568/10525900321*5778^(5/9) 8024922493040208 a001 12586269025/192900153618*5778^(5/9) 8024922493040208 a001 32951280099/505019158607*5778^(5/9) 8024922493040208 a001 86267571272/1322157322203*5778^(5/9) 8024922493040208 a001 32264490531/494493258286*5778^(5/9) 8024922493040208 a001 591286729879/9062201101803*5778^(5/9) 8024922493040208 a001 1548008755920/23725150497407*5778^(5/9) 8024922493040208 a001 365435296162/5600748293801*5778^(5/9) 8024922493040208 a001 139583862445/2139295485799*5778^(5/9) 8024922493040208 a001 53316291173/817138163596*5778^(5/9) 8024922493040208 a001 20365011074/312119004989*5778^(5/9) 8024922493040208 a001 7778742049/119218851371*5778^(5/9) 8024922493040208 a001 2971215073/45537549124*5778^(5/9) 8024922493040208 a001 1134903170/17393796001*5778^(5/9) 8024922493040208 a001 433494437/6643838879*5778^(5/9) 8024922493040208 a001 165580141/2537720636*5778^(5/9) 8024922493040209 a001 63245986/969323029*5778^(5/9) 8024922493040211 a001 24157817/370248451*5778^(5/9) 8024922493040228 a001 9227465/141422324*5778^(5/9) 8024922493040340 a001 3524578/54018521*5778^(5/9) 8024922493041113 a001 1346269/20633239*5778^(5/9) 8024922493046407 a001 514229/7881196*5778^(5/9) 8024922493082695 a001 196418/3010349*5778^(5/9) 8024922493331418 a001 75025/1149851*5778^(5/9) 8024922495036192 a001 28657/439204*5778^(5/9) 8024922495941932 a001 2255/1926*2207^(1/4) 8024922496581487 a001 1292/2889*2207^(3/8) 8024922498074029 a001 6765/439204*5778^(13/18) 8024922501319231 a001 17711/439204*5778^(11/18) 8024922505653829 a001 46368/1149851*5778^(11/18) 8024922506286239 a001 121393/3010349*5778^(11/18) 8024922506378506 a001 317811/7881196*5778^(11/18) 8024922506391968 a001 75640/1875749*5778^(11/18) 8024922506393932 a001 2178309/54018521*5778^(11/18) 8024922506394218 a001 5702887/141422324*5778^(11/18) 8024922506394260 a001 14930352/370248451*5778^(11/18) 8024922506394266 a001 39088169/969323029*5778^(11/18) 8024922506394267 a001 9303105/230701876*5778^(11/18) 8024922506394267 a001 267914296/6643838879*5778^(11/18) 8024922506394267 a001 701408733/17393796001*5778^(11/18) 8024922506394267 a001 1836311903/45537549124*5778^(11/18) 8024922506394267 a001 4807526976/119218851371*5778^(11/18) 8024922506394267 a001 1144206275/28374454999*5778^(11/18) 8024922506394267 a001 32951280099/817138163596*5778^(11/18) 8024922506394267 a001 86267571272/2139295485799*5778^(11/18) 8024922506394267 a001 225851433717/5600748293801*5778^(11/18) 8024922506394267 a001 591286729879/14662949395604*5778^(11/18) 8024922506394267 a001 365435296162/9062201101803*5778^(11/18) 8024922506394267 a001 139583862445/3461452808002*5778^(11/18) 8024922506394267 a001 53316291173/1322157322203*5778^(11/18) 8024922506394267 a001 20365011074/505019158607*5778^(11/18) 8024922506394267 a001 7778742049/192900153618*5778^(11/18) 8024922506394267 a001 2971215073/73681302247*5778^(11/18) 8024922506394267 a001 1134903170/28143753123*5778^(11/18) 8024922506394267 a001 433494437/10749957122*5778^(11/18) 8024922506394267 a001 165580141/4106118243*5778^(11/18) 8024922506394268 a001 63245986/1568397607*5778^(11/18) 8024922506394270 a001 24157817/599074578*5778^(11/18) 8024922506394286 a001 9227465/228826127*5778^(11/18) 8024922506394395 a001 3524578/87403803*5778^(11/18) 8024922506395146 a001 1346269/33385282*5778^(11/18) 8024922506400287 a001 514229/12752043*5778^(11/18) 8024922506435530 a001 196418/4870847*5778^(11/18) 8024922506677089 a001 75025/1860498*5778^(11/18) 8024922506720881 a001 10946/167761*5778^(5/9) 8024922506824798 a001 1597/103682*3571^(13/17) 8024922508332759 a001 28657/710647*5778^(11/18) 8024922509722414 a001 4181/15127*5778^(7/18) 8024922511370596 a001 6765/710647*5778^(7/9) 8024922514134298 a001 4181/9349*9349^(6/19) 8024922514615798 a001 17711/710647*5778^(2/3) 8024922518125728 a001 10946/9349*5778^(2/9) 8024922518999500 a001 2576/103361*5778^(2/3) 8024922519639074 a001 121393/4870847*5778^(2/3) 8024922519680885 a001 10946/271443*5778^(11/18) 8024922519732386 a001 105937/4250681*5778^(2/3) 8024922519746001 a001 416020/16692641*5778^(2/3) 8024922519747987 a001 726103/29134601*5778^(2/3) 8024922519748277 a001 5702887/228826127*5778^(2/3) 8024922519748319 a001 829464/33281921*5778^(2/3) 8024922519748325 a001 39088169/1568397607*5778^(2/3) 8024922519748326 a001 34111385/1368706081*5778^(2/3) 8024922519748326 a001 133957148/5374978561*5778^(2/3) 8024922519748326 a001 233802911/9381251041*5778^(2/3) 8024922519748326 a001 1836311903/73681302247*5778^(2/3) 8024922519748326 a001 267084832/10716675201*5778^(2/3) 8024922519748326 a001 12586269025/505019158607*5778^(2/3) 8024922519748326 a001 10983760033/440719107401*5778^(2/3) 8024922519748326 a001 43133785636/1730726404001*5778^(2/3) 8024922519748326 a001 75283811239/3020733700601*5778^(2/3) 8024922519748326 a001 182717648081/7331474697802*5778^(2/3) 8024922519748326 a001 139583862445/5600748293801*5778^(2/3) 8024922519748326 a001 53316291173/2139295485799*5778^(2/3) 8024922519748326 a001 10182505537/408569081798*5778^(2/3) 8024922519748326 a001 7778742049/312119004989*5778^(2/3) 8024922519748326 a001 2971215073/119218851371*5778^(2/3) 8024922519748326 a001 567451585/22768774562*5778^(2/3) 8024922519748326 a001 433494437/17393796001*5778^(2/3) 8024922519748326 a001 165580141/6643838879*5778^(2/3) 8024922519748327 a001 31622993/1268860318*5778^(2/3) 8024922519748329 a001 24157817/969323029*5778^(2/3) 8024922519748345 a001 9227465/370248451*5778^(2/3) 8024922519748456 a001 1762289/70711162*5778^(2/3) 8024922519749214 a001 1346269/54018521*5778^(2/3) 8024922519754415 a001 514229/20633239*5778^(2/3) 8024922519790057 a001 98209/3940598*5778^(2/3) 8024922520034352 a001 75025/3010349*5778^(2/3) 8024922521708777 a001 28657/1149851*5778^(2/3) 8024922521824647 a007 Real Root Of -961*x^4+121*x^3-625*x^2-635*x+354 8024922523475152 a007 Real Root Of 552*x^4-43*x^3+196*x^2-331*x-643 8024922524746615 a001 6765/1149851*5778^(5/6) 8024922527991817 a001 17711/1149851*5778^(13/18) 8024922529625820 a001 6624/2161*2207^(1/8) 8024922532356763 a001 46368/3010349*5778^(13/18) 8024922532993600 a001 121393/7881196*5778^(13/18) 8024922533086514 a001 10959/711491*5778^(13/18) 8024922533100069 a001 832040/54018521*5778^(13/18) 8024922533102047 a001 2178309/141422324*5778^(13/18) 8024922533102336 a001 5702887/370248451*5778^(13/18) 8024922533102378 a001 14930352/969323029*5778^(13/18) 8024922533102384 a001 39088169/2537720636*5778^(13/18) 8024922533102385 a001 102334155/6643838879*5778^(13/18) 8024922533102385 a001 9238424/599786069*5778^(13/18) 8024922533102385 a001 701408733/45537549124*5778^(13/18) 8024922533102385 a001 1836311903/119218851371*5778^(13/18) 8024922533102385 a001 4807526976/312119004989*5778^(13/18) 8024922533102385 a001 12586269025/817138163596*5778^(13/18) 8024922533102385 a001 32951280099/2139295485799*5778^(13/18) 8024922533102385 a001 86267571272/5600748293801*5778^(13/18) 8024922533102385 a001 7787980473/505618944676*5778^(13/18) 8024922533102385 a001 365435296162/23725150497407*5778^(13/18) 8024922533102385 a001 139583862445/9062201101803*5778^(13/18) 8024922533102385 a001 53316291173/3461452808002*5778^(13/18) 8024922533102385 a001 20365011074/1322157322203*5778^(13/18) 8024922533102385 a001 7778742049/505019158607*5778^(13/18) 8024922533102385 a001 2971215073/192900153618*5778^(13/18) 8024922533102385 a001 1134903170/73681302247*5778^(13/18) 8024922533102385 a001 433494437/28143753123*5778^(13/18) 8024922533102385 a001 165580141/10749957122*5778^(13/18) 8024922533102385 a001 63245986/4106118243*5778^(13/18) 8024922533102388 a001 24157817/1568397607*5778^(13/18) 8024922533102404 a001 9227465/599074578*5778^(13/18) 8024922533102514 a001 3524578/228826127*5778^(13/18) 8024922533103270 a001 1346269/87403803*5778^(13/18) 8024922533108447 a001 514229/33385282*5778^(13/18) 8024922533143937 a001 196418/12752043*5778^(13/18) 8024922533185459 a001 5473/219602*5778^(2/3) 8024922533387187 a001 75025/4870847*5778^(13/18) 8024922535054448 a001 28657/1860498*5778^(13/18) 8024922538092286 a001 55/15126*5778^(8/9) 8024922539301005 a001 4181/9349*24476^(2/7) 8024922541337488 a001 17711/1860498*5778^(7/9) 8024922542618461 a001 4181/9349*64079^(6/23) 8024922543119055 a001 4181/9349*439204^(2/9) 8024922543128277 a001 4181/9349*7881196^(2/11) 8024922543128300 a001 4181/9349*141422324^(2/13) 8024922543128300 a001 4181/9349*2537720636^(2/15) 8024922543128300 a001 4181/9349*45537549124^(2/17) 8024922543128300 a001 4181/9349*14662949395604^(2/21) 8024922543128300 a001 4181/9349*(1/2+1/2*5^(1/2))^6 8024922543128300 a001 4181/9349*10749957122^(1/8) 8024922543128300 a001 4181/9349*4106118243^(3/23) 8024922543128300 a001 4181/9349*1568397607^(3/22) 8024922543128300 a001 4181/9349*599074578^(1/7) 8024922543128300 a001 4181/9349*228826127^(3/20) 8024922543128300 a001 4181/9349*87403803^(3/19) 8024922543128301 a001 4181/9349*33385282^(1/6) 8024922543128309 a001 4181/9349*12752043^(3/17) 8024922543128364 a001 4181/9349*4870847^(3/16) 8024922543128637 a001 17480761/2178309 8024922543128764 a001 4181/9349*1860498^(1/5) 8024922543131705 a001 4181/9349*710647^(3/14) 8024922543153434 a001 4181/9349*271443^(3/13) 8024922543314927 a001 4181/9349*103682^(1/4) 8024922544523747 a001 4181/9349*39603^(3/11) 8024922545709598 a001 46368/4870847*5778^(7/9) 8024922546347481 a001 121393/12752043*5778^(7/9) 8024922546440546 a001 317811/33385282*5778^(7/9) 8024922546454125 a001 832040/87403803*5778^(7/9) 8024922546456106 a001 46347/4868641*5778^(7/9) 8024922546456395 a001 5702887/599074578*5778^(7/9) 8024922546456437 a001 14930352/1568397607*5778^(7/9) 8024922546456443 a001 39088169/4106118243*5778^(7/9) 8024922546456444 a001 102334155/10749957122*5778^(7/9) 8024922546456444 a001 267914296/28143753123*5778^(7/9) 8024922546456444 a001 701408733/73681302247*5778^(7/9) 8024922546456444 a001 1836311903/192900153618*5778^(7/9) 8024922546456444 a001 102287808/10745088481*5778^(7/9) 8024922546456444 a001 12586269025/1322157322203*5778^(7/9) 8024922546456444 a001 32951280099/3461452808002*5778^(7/9) 8024922546456444 a001 86267571272/9062201101803*5778^(7/9) 8024922546456444 a001 225851433717/23725150497407*5778^(7/9) 8024922546456444 a001 139583862445/14662949395604*5778^(7/9) 8024922546456444 a001 53316291173/5600748293801*5778^(7/9) 8024922546456444 a001 20365011074/2139295485799*5778^(7/9) 8024922546456444 a001 7778742049/817138163596*5778^(7/9) 8024922546456444 a001 2971215073/312119004989*5778^(7/9) 8024922546456444 a001 1134903170/119218851371*5778^(7/9) 8024922546456444 a001 433494437/45537549124*5778^(7/9) 8024922546456444 a001 165580141/17393796001*5778^(7/9) 8024922546456444 a001 63245986/6643838879*5778^(7/9) 8024922546456447 a001 24157817/2537720636*5778^(7/9) 8024922546456463 a001 9227465/969323029*5778^(7/9) 8024922546456573 a001 3524578/370248451*5778^(7/9) 8024922546457330 a001 1346269/141422324*5778^(7/9) 8024922546462516 a001 514229/54018521*5778^(7/9) 8024922546482026 a001 10946/710647*5778^(13/18) 8024922546498064 a001 196418/20633239*5778^(7/9) 8024922546543621 a001 1597/64079*3571^(12/17) 8024922546741714 a001 75025/7881196*5778^(7/9) 8024922548411711 a001 28657/3010349*5778^(7/9) 8024922551449549 a001 6765/3010349*5778^(17/18) 8024922553538785 a001 46368/9349*2207^(1/16) 8024922553649287 a001 4181/9349*15127^(3/10) 8024922554694751 a001 17711/3010349*5778^(5/6) 8024922559064125 a001 11592/1970299*5778^(5/6) 8024922559701608 a001 121393/20633239*5778^(5/6) 8024922559794615 a001 317811/54018521*5778^(5/6) 8024922559808185 a001 208010/35355581*5778^(5/6) 8024922559810165 a001 2178309/370248451*5778^(5/6) 8024922559810454 a001 5702887/969323029*5778^(5/6) 8024922559810496 a001 196452/33391061*5778^(5/6) 8024922559810502 a001 39088169/6643838879*5778^(5/6) 8024922559810503 a001 102334155/17393796001*5778^(5/6) 8024922559810503 a001 66978574/11384387281*5778^(5/6) 8024922559810503 a001 701408733/119218851371*5778^(5/6) 8024922559810503 a001 1836311903/312119004989*5778^(5/6) 8024922559810503 a001 1201881744/204284540899*5778^(5/6) 8024922559810503 a001 12586269025/2139295485799*5778^(5/6) 8024922559810503 a001 32951280099/5600748293801*5778^(5/6) 8024922559810503 a001 1135099622/192933544679*5778^(5/6) 8024922559810503 a001 139583862445/23725150497407*5778^(5/6) 8024922559810503 a001 53316291173/9062201101803*5778^(5/6) 8024922559810503 a001 10182505537/1730726404001*5778^(5/6) 8024922559810503 a001 7778742049/1322157322203*5778^(5/6) 8024922559810503 a001 2971215073/505019158607*5778^(5/6) 8024922559810503 a001 567451585/96450076809*5778^(5/6) 8024922559810503 a001 433494437/73681302247*5778^(5/6) 8024922559810503 a001 165580141/28143753123*5778^(5/6) 8024922559810503 a001 31622993/5374978561*5778^(5/6) 8024922559810506 a001 24157817/4106118243*5778^(5/6) 8024922559810522 a001 9227465/1568397607*5778^(5/6) 8024922559810632 a001 1762289/299537289*5778^(5/6) 8024922559811388 a001 1346269/228826127*5778^(5/6) 8024922559816571 a001 514229/87403803*5778^(5/6) 8024922559852097 a001 98209/16692641*5778^(5/6) 8024922559858045 a001 10946/1149851*5778^(7/9) 8024922560095594 a001 75025/12752043*5778^(5/6) 8024922560216733 a001 121393/39603*2207^(1/8) 8024922561764546 a001 28657/4870847*5778^(5/6) 8024922563341758 a001 2584/3571*3571^(5/17) 8024922564679887 a001 317811/103682*2207^(1/8) 8024922564802722 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^32 8024922565331052 a001 832040/271443*2207^(1/8) 8024922565426056 a001 311187/101521*2207^(1/8) 8024922565439917 a001 5702887/1860498*2207^(1/8) 8024922565441939 a001 14930352/4870847*2207^(1/8) 8024922565442234 a001 39088169/12752043*2207^(1/8) 8024922565442277 a001 14619165/4769326*2207^(1/8) 8024922565442283 a001 267914296/87403803*2207^(1/8) 8024922565442284 a001 701408733/228826127*2207^(1/8) 8024922565442284 a001 1836311903/599074578*2207^(1/8) 8024922565442284 a001 686789568/224056801*2207^(1/8) 8024922565442284 a001 12586269025/4106118243*2207^(1/8) 8024922565442284 a001 32951280099/10749957122*2207^(1/8) 8024922565442284 a001 86267571272/28143753123*2207^(1/8) 8024922565442284 a001 32264490531/10525900321*2207^(1/8) 8024922565442284 a001 591286729879/192900153618*2207^(1/8) 8024922565442284 a001 1548008755920/505019158607*2207^(1/8) 8024922565442284 a001 1515744265389/494493258286*2207^(1/8) 8024922565442284 a001 2504730781961/817138163596*2207^(1/8) 8024922565442284 a001 956722026041/312119004989*2207^(1/8) 8024922565442284 a001 365435296162/119218851371*2207^(1/8) 8024922565442284 a001 139583862445/45537549124*2207^(1/8) 8024922565442284 a001 53316291173/17393796001*2207^(1/8) 8024922565442284 a001 20365011074/6643838879*2207^(1/8) 8024922565442284 a001 7778742049/2537720636*2207^(1/8) 8024922565442284 a001 2971215073/969323029*2207^(1/8) 8024922565442285 a001 1134903170/370248451*2207^(1/8) 8024922565442285 a001 433494437/141422324*2207^(1/8) 8024922565442287 a001 165580141/54018521*2207^(1/8) 8024922565442304 a001 63245986/20633239*2207^(1/8) 8024922565442416 a001 24157817/7881196*2207^(1/8) 8024922565443189 a001 9227465/3010349*2207^(1/8) 8024922565448483 a001 3524578/1149851*2207^(1/8) 8024922565484771 a001 1346269/439204*2207^(1/8) 8024922565733495 a001 514229/167761*2207^(1/8) 8024922566383852 a001 4181/39603*5778^(1/2) 8024922567438268 a001 196418/64079*2207^(1/8) 8024922567757597 r002 9th iterates of z^2 + 8024922568047586 a001 17711/4870847*5778^(8/9) 8024922569153133 h001 (4/9*exp(2)+3/8)/(5/9*exp(2)+5/11) 8024922571541962 a001 4181/24476*5778^(4/9) 8024922572418005 a001 15456/4250681*5778^(8/9) 8024922572726202 a007 Real Root Of -805*x^4+840*x^3-197*x^2-335*x+626 8024922573055641 a001 121393/33385282*5778^(8/9) 8024922573148671 a001 105937/29134601*5778^(8/9) 8024922573162243 a001 832040/228826127*5778^(8/9) 8024922573164224 a001 726103/199691526*5778^(8/9) 8024922573164513 a001 5702887/1568397607*5778^(8/9) 8024922573164555 a001 4976784/1368706081*5778^(8/9) 8024922573164561 a001 39088169/10749957122*5778^(8/9) 8024922573164562 a001 831985/228811001*5778^(8/9) 8024922573164562 a001 267914296/73681302247*5778^(8/9) 8024922573164562 a001 233802911/64300051206*5778^(8/9) 8024922573164562 a001 1836311903/505019158607*5778^(8/9) 8024922573164562 a001 1602508992/440719107401*5778^(8/9) 8024922573164562 a001 12586269025/3461452808002*5778^(8/9) 8024922573164562 a001 10983760033/3020733700601*5778^(8/9) 8024922573164562 a001 86267571272/23725150497407*5778^(8/9) 8024922573164562 a001 53316291173/14662949395604*5778^(8/9) 8024922573164562 a001 20365011074/5600748293801*5778^(8/9) 8024922573164562 a001 7778742049/2139295485799*5778^(8/9) 8024922573164562 a001 2971215073/817138163596*5778^(8/9) 8024922573164562 a001 1134903170/312119004989*5778^(8/9) 8024922573164562 a001 433494437/119218851371*5778^(8/9) 8024922573164562 a001 165580141/45537549124*5778^(8/9) 8024922573164562 a001 63245986/17393796001*5778^(8/9) 8024922573164565 a001 24157817/6643838879*5778^(8/9) 8024922573164581 a001 9227465/2537720636*5778^(8/9) 8024922573164691 a001 3524578/969323029*5778^(8/9) 8024922573165448 a001 1346269/370248451*5778^(8/9) 8024922573170632 a001 514229/141422324*5778^(8/9) 8024922573203716 a001 5473/930249*5778^(5/6) 8024922573206166 a001 196418/54018521*5778^(8/9) 8024922573449721 a001 75025/20633239*5778^(8/9) 8024922575119073 a001 28657/7881196*5778^(8/9) 8024922576490536 a001 1597/39603*3571^(11/17) 8024922579122957 a001 75025/24476*2207^(1/8) 8024922581402112 a001 89/39604*5778^(17/18) 8024922585772132 a001 46368/20633239*5778^(17/18) 8024922586409710 a001 121393/54018521*5778^(17/18) 8024922586502731 a001 317811/141422324*5778^(17/18) 8024922586516303 a001 832040/370248451*5778^(17/18) 8024922586518283 a001 2178309/969323029*5778^(17/18) 8024922586518572 a001 5702887/2537720636*5778^(17/18) 8024922586518614 a001 14930352/6643838879*5778^(17/18) 8024922586518620 a001 39088169/17393796001*5778^(17/18) 8024922586518621 a001 102334155/45537549124*5778^(17/18) 8024922586518621 a001 267914296/119218851371*5778^(17/18) 8024922586518621 a001 3524667/1568437211*5778^(17/18) 8024922586518621 a001 1836311903/817138163596*5778^(17/18) 8024922586518621 a001 4807526976/2139295485799*5778^(17/18) 8024922586518621 a001 12586269025/5600748293801*5778^(17/18) 8024922586518621 a001 32951280099/14662949395604*5778^(17/18) 8024922586518621 a001 53316291173/23725150497407*5778^(17/18) 8024922586518621 a001 20365011074/9062201101803*5778^(17/18) 8024922586518621 a001 7778742049/3461452808002*5778^(17/18) 8024922586518621 a001 2971215073/1322157322203*5778^(17/18) 8024922586518621 a001 1134903170/505019158607*5778^(17/18) 8024922586518621 a001 433494437/192900153618*5778^(17/18) 8024922586518621 a001 165580141/73681302247*5778^(17/18) 8024922586518621 a001 63245986/28143753123*5778^(17/18) 8024922586518624 a001 24157817/10749957122*5778^(17/18) 8024922586518640 a001 9227465/4106118243*5778^(17/18) 8024922586518750 a001 3524578/1568397607*5778^(17/18) 8024922586519506 a001 1346269/599074578*5778^(17/18) 8024922586524690 a001 514229/228826127*5778^(17/18) 8024922586560221 a001 196418/87403803*5778^(17/18) 8024922586560979 a001 10946/3010349*5778^(8/9) 8024922586803754 a001 75025/33385282*5778^(17/18) 8024922586808930 a001 4181/64079*5778^(5/9) 8024922588472953 a001 28657/12752043*5778^(17/18) 8024922594756042 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^34 8024922595438757 a001 2139295485799/1597*144^(14/17) 8024922597462100 a001 4181/103682*5778^(11/18) 8024922599126173 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^36 8024922599763766 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^38 8024922599856790 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^40 8024922599870362 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^42 8024922599872342 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^44 8024922599872631 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^46 8024922599872673 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^48 8024922599872679 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^50 8024922599872680 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^52 8024922599872680 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^54 8024922599872680 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^56 8024922599872680 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^58 8024922599872680 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^60 8024922599872680 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^62 8024922599872680 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^64 8024922599872680 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^66 8024922599872680 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^68 8024922599872680 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^70 8024922599872680 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^72 8024922599872680 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^74 8024922599872680 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^76 8024922599872680 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^78 8024922599872680 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^80 8024922599872680 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^82 8024922599872680 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^84 8024922599872680 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^86 8024922599872680 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^88 8024922599872680 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^90 8024922599872680 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^92 8024922599872680 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^94 8024922599872680 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^96 8024922599872680 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^98 8024922599872680 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^100 8024922599872680 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^99 8024922599872680 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^97 8024922599872680 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^95 8024922599872680 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^93 8024922599872680 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^91 8024922599872680 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^89 8024922599872680 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^87 8024922599872680 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^85 8024922599872680 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^83 8024922599872680 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^81 8024922599872680 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^79 8024922599872680 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^77 8024922599872680 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^75 8024922599872680 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^73 8024922599872680 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^71 8024922599872680 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^69 8024922599872680 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^67 8024922599872680 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^65 8024922599872680 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^63 8024922599872680 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^61 8024922599872680 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^59 8024922599872680 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^57 8024922599872680 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^55 8024922599872680 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^53 8024922599872680 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^51 8024922599872683 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^49 8024922599872687 a001 1/1292*(1/2+1/2*5^(1/2))^24 8024922599872699 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^47 8024922599872809 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^45 8024922599873565 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^43 8024922599878750 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^41 8024922599913815 a001 10946/4870847*5778^(17/18) 8024922599914281 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^39 8024922600157820 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^37 8024922601827062 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^35 8024922611847807 a001 4181/167761*5778^(2/3) 8024922613268212 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^33 8024922614930640 m002 2+Cosh[Pi]/2+Log[Pi]/5 8024922620573084 a001 1597/15127*3571^(9/17) 8024922623252654 a001 4181/9349*5778^(1/3) 8024922624807812 a001 4181/271443*5778^(13/18) 8024922632020640 a001 1597/24476*3571^(10/17) 8024922635298042 a001 28657/15127*2207^(3/16) 8024922638312386 a001 4181/439204*5778^(7/9) 8024922639114873 m001 (exp(1/Pi)-FeigenbaumD*Lehmer)/FeigenbaumD 8024922649006402 a001 610/64079*1364^(14/15) 8024922651608953 a001 4181/710647*5778^(5/6) 8024922659211008 a001 28657/9349*2207^(1/8) 8024922663582121 a001 75025/39603*2207^(3/16) 8024922664984972 a001 4181/1149851*5778^(8/9) 8024922666552869 r008 a(0)=8,K{-n^6,10-63*n-22*n^2+25*n^3} 8024922667708712 a001 98209/51841*2207^(3/16) 8024922668310774 a001 514229/271443*2207^(3/16) 8024922668398613 a001 1346269/710647*2207^(3/16) 8024922668411429 a001 1762289/930249*2207^(3/16) 8024922668413299 a001 9227465/4870847*2207^(3/16) 8024922668413572 a001 24157817/12752043*2207^(3/16) 8024922668413611 a001 31622993/16692641*2207^(3/16) 8024922668413617 a001 165580141/87403803*2207^(3/16) 8024922668413618 a001 433494437/228826127*2207^(3/16) 8024922668413618 a001 567451585/299537289*2207^(3/16) 8024922668413618 a001 2971215073/1568397607*2207^(3/16) 8024922668413618 a001 7778742049/4106118243*2207^(3/16) 8024922668413618 a001 10182505537/5374978561*2207^(3/16) 8024922668413618 a001 53316291173/28143753123*2207^(3/16) 8024922668413618 a001 139583862445/73681302247*2207^(3/16) 8024922668413618 a001 182717648081/96450076809*2207^(3/16) 8024922668413618 a001 956722026041/505019158607*2207^(3/16) 8024922668413618 a001 10610209857723/5600748293801*2207^(3/16) 8024922668413618 a001 591286729879/312119004989*2207^(3/16) 8024922668413618 a001 225851433717/119218851371*2207^(3/16) 8024922668413618 a001 21566892818/11384387281*2207^(3/16) 8024922668413618 a001 32951280099/17393796001*2207^(3/16) 8024922668413618 a001 12586269025/6643838879*2207^(3/16) 8024922668413618 a001 1201881744/634430159*2207^(3/16) 8024922668413618 a001 1836311903/969323029*2207^(3/16) 8024922668413618 a001 701408733/370248451*2207^(3/16) 8024922668413619 a001 66978574/35355581*2207^(3/16) 8024922668413621 a001 102334155/54018521*2207^(3/16) 8024922668413636 a001 39088169/20633239*2207^(3/16) 8024922668413740 a001 3732588/1970299*2207^(3/16) 8024922668414454 a001 5702887/3010349*2207^(3/16) 8024922668419350 a001 2178309/1149851*2207^(3/16) 8024922668452901 a001 208010/109801*2207^(3/16) 8024922668682868 a001 317811/167761*2207^(3/16) 8024922670259086 a001 121393/64079*2207^(3/16) 8024922678330644 a001 4181/1860498*5778^(17/18) 8024922681062643 a001 11592/6119*2207^(3/16) 8024922683439270 a007 Real Root Of -595*x^4+871*x^3+660*x^2+78*x-691 8024922690830970 m001 (BesselI(1,1)-sqrt(3)*GAMMA(5/6))/sqrt(3) 8024922690830970 m001 1/3*(3^(1/2)*GAMMA(5/6)-BesselI(1,1))*3^(1/2) 8024922691687021 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^31 8024922696133141 a001 17711/3571*1364^(1/15) 8024922701909625 s002 sum(A158920[n]/(n*exp(n)+1),n=1..infinity) 8024922714605052 a001 1597/5778*9349^(7/19) 8024922724269762 a001 2584/3571*9349^(5/19) 8024922725797564 a001 4181/5778*2207^(5/16) 8024922731198357 a001 17711/15127*2207^(1/4) 8024922743966211 a001 1597/5778*24476^(1/3) 8024922745242018 a001 2584/3571*24476^(5/21) 8024922747836577 a001 1597/5778*64079^(7/23) 8024922748006565 a001 2584/3571*64079^(5/23) 8024922748374403 a001 2584/3571*167761^(1/5) 8024922748425312 a001 4126648/514229 8024922748431385 a001 1597/5778*20633239^(1/5) 8024922748431389 a001 1597/5778*17393796001^(1/7) 8024922748431389 a001 1597/5778*14662949395604^(1/9) 8024922748431389 a001 1597/5778*(1/2+1/2*5^(1/2))^7 8024922748431389 a001 1597/5778*599074578^(1/6) 8024922748431428 a001 2584/3571*20633239^(1/7) 8024922748431431 a001 2584/3571*2537720636^(1/9) 8024922748431431 a001 2584/3571*312119004989^(1/11) 8024922748431431 a001 2584/3571*(1/2+1/2*5^(1/2))^5 8024922748431431 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^5/Lucas(17) 8024922748431431 a001 2584/3571*28143753123^(1/10) 8024922748431431 a001 2584/3571*228826127^(1/8) 8024922748431817 a001 2584/3571*1860498^(1/6) 8024922748435361 a001 1597/5778*710647^(1/4) 8024922748586953 a001 2584/3571*103682^(5/24) 8024922748649120 a001 1597/5778*103682^(7/24) 8024922749594303 a001 2584/3571*39603^(5/22) 8024922750059410 a001 1597/5778*39603^(7/22) 8024922754346411 a001 843/4181*4181^(28/39) 8024922754482217 a007 Real Root Of 312*x^4-185*x^3+3*x^2-668*x-763 8024922755111323 a001 17711/9349*2207^(3/16) 8024922757198920 a001 2584/3571*15127^(1/4) 8024922759995065 r005 Im(z^2+c),c=-39/58+14/61*I,n=56 8024922760705874 a001 1597/5778*15127^(7/20) 8024922765521808 a001 15456/13201*2207^(1/4) 8024922770529532 a001 121393/103682*2207^(1/4) 8024922771260149 a001 105937/90481*2207^(1/4) 8024922771366745 a001 832040/710647*2207^(1/4) 8024922771382297 a001 726103/620166*2207^(1/4) 8024922771384566 a001 5702887/4870847*2207^(1/4) 8024922771384897 a001 4976784/4250681*2207^(1/4) 8024922771384945 a001 39088169/33385282*2207^(1/4) 8024922771384952 a001 34111385/29134601*2207^(1/4) 8024922771384953 a001 267914296/228826127*2207^(1/4) 8024922771384953 a001 233802911/199691526*2207^(1/4) 8024922771384953 a001 1836311903/1568397607*2207^(1/4) 8024922771384953 a001 1602508992/1368706081*2207^(1/4) 8024922771384953 a001 12586269025/10749957122*2207^(1/4) 8024922771384953 a001 10983760033/9381251041*2207^(1/4) 8024922771384953 a001 86267571272/73681302247*2207^(1/4) 8024922771384953 a001 75283811239/64300051206*2207^(1/4) 8024922771384953 a001 2504730781961/2139295485799*2207^(1/4) 8024922771384953 a001 365435296162/312119004989*2207^(1/4) 8024922771384953 a001 139583862445/119218851371*2207^(1/4) 8024922771384953 a001 53316291173/45537549124*2207^(1/4) 8024922771384953 a001 20365011074/17393796001*2207^(1/4) 8024922771384953 a001 7778742049/6643838879*2207^(1/4) 8024922771384953 a001 2971215073/2537720636*2207^(1/4) 8024922771384953 a001 1134903170/969323029*2207^(1/4) 8024922771384953 a001 433494437/370248451*2207^(1/4) 8024922771384954 a001 165580141/141422324*2207^(1/4) 8024922771384956 a001 63245986/54018521*2207^(1/4) 8024922771384975 a001 24157817/20633239*2207^(1/4) 8024922771385101 a001 9227465/7881196*2207^(1/4) 8024922771385968 a001 3524578/3010349*2207^(1/4) 8024922771391908 a001 1346269/1149851*2207^(1/4) 8024922771432624 a001 514229/439204*2207^(1/4) 8024922771711695 a001 196418/167761*2207^(1/4) 8024922773624476 a001 75025/64079*2207^(1/4) 8024922784475320 a001 1597/9349*3571^(8/17) 8024922786734867 a001 28657/24476*2207^(1/4) 8024922792868113 a001 103682*144^(7/17) 8024922815201728 a001 2584/3571*5778^(5/18) 8024922822347498 m001 (ln(Pi)+TravellingSalesman)/(2^(1/3)+Shi(1)) 8024922841909804 a001 1597/5778*5778^(7/18) 8024922842680742 a001 6765/3571*3571^(3/17) 8024922845049363 l006 ln(4020/8969) 8024922846119732 r008 a(0)=8,K{-n^6,-58-15*n^3+19*n^2+13*n} 8024922846839250 r005 Re(z^2+c),c=-67/114+15/34*I,n=18 8024922852681863 a001 10946/15127*2207^(5/16) 8024922863440885 l003 BesselI(2,25/32) 8024922871194033 a001 28657/39603*2207^(5/16) 8024922873894923 a001 75025/103682*2207^(5/16) 8024922874288977 a001 196418/271443*2207^(5/16) 8024922874346469 a001 514229/710647*2207^(5/16) 8024922874354857 a001 1346269/1860498*2207^(5/16) 8024922874356081 a001 3524578/4870847*2207^(5/16) 8024922874356259 a001 9227465/12752043*2207^(5/16) 8024922874356285 a001 24157817/33385282*2207^(5/16) 8024922874356289 a001 63245986/87403803*2207^(5/16) 8024922874356290 a001 165580141/228826127*2207^(5/16) 8024922874356290 a001 433494437/599074578*2207^(5/16) 8024922874356290 a001 1134903170/1568397607*2207^(5/16) 8024922874356290 a001 2971215073/4106118243*2207^(5/16) 8024922874356290 a001 7778742049/10749957122*2207^(5/16) 8024922874356290 a001 20365011074/28143753123*2207^(5/16) 8024922874356290 a001 53316291173/73681302247*2207^(5/16) 8024922874356290 a001 139583862445/192900153618*2207^(5/16) 8024922874356290 a001 365435296162/505019158607*2207^(5/16) 8024922874356290 a001 10610209857723/14662949395604*2207^(5/16) 8024922874356290 a001 591286729879/817138163596*2207^(5/16) 8024922874356290 a001 225851433717/312119004989*2207^(5/16) 8024922874356290 a001 86267571272/119218851371*2207^(5/16) 8024922874356290 a001 32951280099/45537549124*2207^(5/16) 8024922874356290 a001 12586269025/17393796001*2207^(5/16) 8024922874356290 a001 4807526976/6643838879*2207^(5/16) 8024922874356290 a001 1836311903/2537720636*2207^(5/16) 8024922874356290 a001 701408733/969323029*2207^(5/16) 8024922874356290 a001 267914296/370248451*2207^(5/16) 8024922874356290 a001 102334155/141422324*2207^(5/16) 8024922874356291 a001 39088169/54018521*2207^(5/16) 8024922874356301 a001 14930352/20633239*2207^(5/16) 8024922874356370 a001 5702887/7881196*2207^(5/16) 8024922874356837 a001 2178309/3010349*2207^(5/16) 8024922874360041 a001 832040/1149851*2207^(5/16) 8024922874382001 a001 317811/439204*2207^(5/16) 8024922874532516 a001 121393/167761*2207^(5/16) 8024922875564164 a001 46368/64079*2207^(5/16) 8024922876594830 a001 10946/9349*2207^(1/4) 8024922882635184 a001 17711/24476*2207^(5/16) 8024922896990114 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^30 8024922901828517 a001 1597/1149851*9349^(18/19) 8024922906638891 a001 1597/710647*9349^(17/19) 8024922907187709 a001 6765/15127*2207^(3/8) 8024922907827264 a001 2584/15127*2207^(1/2) 8024922910243494 a001 1597/15127*9349^(9/19) 8024922911528717 a001 1597/439204*9349^(16/19) 8024922916210536 a001 1597/271443*9349^(15/19) 8024922921436924 a001 1597/167761*9349^(14/19) 8024922925237610 a001 1597/103682*9349^(13/19) 8024922927298189 r008 a(0)=8,K{-n^6,-52+22*n-21*n^2+9*n^3} 8024922927681624 a001 28657/5778*843^(1/14) 8024922928164169 a001 10946/3571*3571^(2/17) 8024922929490110 a001 610/39603*1364^(13/15) 8024922930532147 a001 1597/39603*9349^(11/19) 8024922931100676 a001 6765/9349*2207^(5/16) 8024922931740231 a001 2584/9349*2207^(7/16) 8024922932547110 a001 4181/3571*3571^(4/17) 8024922932770833 a001 1597/64079*9349^(12/19) 8024922933705462 m005 (27/10+5/2*5^(1/2))/(2/5*Catalan+2/3) 8024922939237547 a001 6765/3571*9349^(3/19) 8024922946669935 a001 17711/3571*3571^(1/17) 8024922947993558 a001 1597/15127*24476^(3/7) 8024922951820902 a001 6765/3571*24476^(1/7) 8024922952969742 a001 1597/15127*64079^(9/23) 8024922953479630 a001 6765/3571*64079^(3/23) 8024922953720633 a001 1597/15127*439204^(1/3) 8024922953729927 a001 6765/3571*439204^(1/9) 8024922953733614 a001 10803705/1346269 8024922953734465 a001 1597/15127*7881196^(3/11) 8024922953734500 a001 1597/15127*141422324^(3/13) 8024922953734500 a001 1597/15127*2537720636^(1/5) 8024922953734500 a001 1597/15127*45537549124^(3/17) 8024922953734500 a001 1597/15127*817138163596^(3/19) 8024922953734500 a001 1597/15127*14662949395604^(1/7) 8024922953734500 a001 1597/15127*(1/2+1/2*5^(1/2))^9 8024922953734500 a001 1597/15127*192900153618^(1/6) 8024922953734500 a001 1597/15127*10749957122^(3/16) 8024922953734500 a001 1597/15127*599074578^(3/14) 8024922953734502 a001 1597/15127*33385282^(1/4) 8024922953734538 a001 6765/3571*7881196^(1/11) 8024922953734549 a001 6765/3571*141422324^(1/13) 8024922953734549 a001 6765/3571*2537720636^(1/15) 8024922953734549 a001 6765/3571*45537549124^(1/17) 8024922953734549 a001 6765/3571*14662949395604^(1/21) 8024922953734549 a001 6765/3571*(1/2+1/2*5^(1/2))^3 8024922953734549 a001 6765/3571*192900153618^(1/18) 8024922953734549 a001 6765/3571*10749957122^(1/16) 8024922953734549 a001 6765/3571*599074578^(1/14) 8024922953734550 a001 6765/3571*33385282^(1/12) 8024922953734781 a001 6765/3571*1860498^(1/10) 8024922953735196 a001 1597/15127*1860498^(3/10) 8024922953827863 a001 6765/3571*103682^(1/8) 8024922953876652 a001 1597/24476*9349^(10/19) 8024922954014440 a001 1597/15127*103682^(3/8) 8024922954432273 a001 6765/3571*39603^(3/22) 8024922955827670 a001 1597/15127*39603^(9/22) 8024922957319174 p004 log(22157/9931) 8024922958995043 a001 6765/3571*15127^(3/20) 8024922967094351 a001 17711/39603*2207^(3/8) 8024922969515982 a001 1597/15127*15127^(9/20) 8024922975408927 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^32 8024922975834613 a001 23184/51841*2207^(3/8) 8024922976047695 a001 1597/3010349*24476^(20/21) 8024922976671114 a001 1597/39603*24476^(11/21) 8024922976682373 a001 1597/1860498*24476^(19/21) 8024922977109799 a001 121393/271443*2207^(3/8) 8024922977295847 a001 317811/710647*2207^(3/8) 8024922977322991 a001 416020/930249*2207^(3/8) 8024922977326951 a001 2178309/4870847*2207^(3/8) 8024922977327529 a001 5702887/12752043*2207^(3/8) 8024922977327613 a001 7465176/16692641*2207^(3/8) 8024922977327625 a001 39088169/87403803*2207^(3/8) 8024922977327627 a001 102334155/228826127*2207^(3/8) 8024922977327627 a001 133957148/299537289*2207^(3/8) 8024922977327627 a001 701408733/1568397607*2207^(3/8) 8024922977327627 a001 1836311903/4106118243*2207^(3/8) 8024922977327627 a001 2403763488/5374978561*2207^(3/8) 8024922977327627 a001 12586269025/28143753123*2207^(3/8) 8024922977327627 a001 32951280099/73681302247*2207^(3/8) 8024922977327627 a001 43133785636/96450076809*2207^(3/8) 8024922977327627 a001 225851433717/505019158607*2207^(3/8) 8024922977327627 a001 591286729879/1322157322203*2207^(3/8) 8024922977327627 a001 10610209857723/23725150497407*2207^(3/8) 8024922977327627 a001 182717648081/408569081798*2207^(3/8) 8024922977327627 a001 139583862445/312119004989*2207^(3/8) 8024922977327627 a001 53316291173/119218851371*2207^(3/8) 8024922977327627 a001 10182505537/22768774562*2207^(3/8) 8024922977327627 a001 7778742049/17393796001*2207^(3/8) 8024922977327627 a001 2971215073/6643838879*2207^(3/8) 8024922977327627 a001 567451585/1268860318*2207^(3/8) 8024922977327627 a001 433494437/969323029*2207^(3/8) 8024922977327628 a001 165580141/370248451*2207^(3/8) 8024922977327628 a001 31622993/70711162*2207^(3/8) 8024922977327633 a001 24157817/54018521*2207^(3/8) 8024922977327665 a001 9227465/20633239*2207^(3/8) 8024922977327886 a001 1762289/3940598*2207^(3/8) 8024922977328644 a001 1597/1149851*24476^(6/7) 8024922977329398 a001 1346269/3010349*2207^(3/8) 8024922977339767 a001 514229/1149851*2207^(3/8) 8024922977410830 a001 98209/219602*2207^(3/8) 8024922977897908 a001 75025/167761*2207^(3/8) 8024922977944567 a001 1597/710647*24476^(17/21) 8024922978639941 a001 1597/439204*24476^(16/21) 8024922978855537 a001 17711/3571*9349^(1/19) 8024922979127308 a001 1597/271443*24476^(5/7) 8024922979765479 a001 1597/103682*24476^(13/21) 8024922980159245 a001 1597/167761*24476^(2/3) 8024922981236391 a001 28657/64079*2207^(3/8) 8024922982753117 a001 1597/39603*64079^(11/23) 8024922983049988 a001 17711/3571*24476^(1/21) 8024922983104251 a001 1597/64079*24476^(4/7) 8024922983602897 a001 17711/3571*64079^(1/23) 8024922983687692 a001 317803/39602 8024922983687778 a001 1597/39603*7881196^(1/3) 8024922983687821 a001 1597/39603*312119004989^(1/5) 8024922983687821 a001 1597/39603*(1/2+1/2*5^(1/2))^11 8024922983687821 a001 1597/39603*1568397607^(1/4) 8024922983687871 a001 17711/7142+17711/7142*5^(1/2) 8024922983718975 a001 17711/3571*103682^(1/24) 8024922983920445 a001 17711/3571*39603^(1/22) 8024922984029970 a001 1597/39603*103682^(11/24) 8024922985441369 a001 17711/3571*15127^(1/20) 8024922986246140 a001 1597/39603*39603^(1/2) 8024922986850078 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^34 8024922986935180 a001 1597/7881196*64079^(22/23) 8024922986953301 a001 1597/103682*64079^(13/23) 8024922987019686 a001 1597/4870847*64079^(21/23) 8024922987105882 a001 1597/3010349*64079^(20/23) 8024922987187652 a001 1597/1860498*64079^(19/23) 8024922987281013 a001 1597/1149851*64079^(18/23) 8024922987344026 a001 1597/710647*64079^(17/23) 8024922987420949 a001 1597/271443*64079^(15/23) 8024922987486491 a001 1597/439204*64079^(16/23) 8024922987899976 a001 1597/167761*64079^(14/23) 8024922988057933 a001 74049696/9227465 8024922988057952 a001 1597/103682*141422324^(1/3) 8024922988057952 a001 1597/103682*(1/2+1/2*5^(1/2))^13 8024922988057952 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^13/Lucas(24) 8024922988057952 a001 1597/103682*73681302247^(1/4) 8024922988058001 a004 Fibonacci(24)/Lucas(17)/(1/2+sqrt(5)/2) 8024922988112409 a001 1597/103682*271443^(1/2) 8024922988462310 a001 1597/103682*103682^(13/24) 8024922988519319 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^36 8024922988524461 a001 1597/271443*167761^(3/5) 8024922988577233 a001 1597/3010349*167761^(4/5) 8024922988672433 a001 1597/271443*439204^(5/9) 8024922988695487 a001 1597/271443*7881196^(5/11) 8024922988695537 a001 1597/271443*20633239^(3/7) 8024922988695543 a001 193864621/24157817 8024922988695545 a001 1597/271443*141422324^(5/13) 8024922988695545 a001 1597/271443*2537720636^(1/3) 8024922988695545 a001 1597/271443*45537549124^(5/17) 8024922988695545 a001 1597/271443*312119004989^(3/11) 8024922988695545 a001 1597/271443*14662949395604^(5/21) 8024922988695545 a001 1597/271443*(1/2+1/2*5^(1/2))^15 8024922988695545 a001 1597/271443*192900153618^(5/18) 8024922988695545 a001 1597/271443*28143753123^(3/10) 8024922988695545 a001 1597/271443*10749957122^(5/16) 8024922988695545 a001 1597/271443*599074578^(5/14) 8024922988695545 a001 1597/271443*228826127^(3/8) 8024922988695548 a001 1597/271443*33385282^(5/12) 8024922988695595 a004 Fibonacci(26)/Lucas(17)/(1/2+sqrt(5)/2)^3 8024922988696705 a001 1597/271443*1860498^(1/2) 8024922988762858 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^38 8024922988767499 a001 1597/20633239*439204^(8/9) 8024922988771764 a001 1597/4870847*439204^(7/9) 8024922988782795 a001 1597/1149851*439204^(2/3) 8024922988788569 a001 507544167/63245986 8024922988788569 a001 1597/710647*45537549124^(1/3) 8024922988788569 a001 1597/710647*(1/2+1/2*5^(1/2))^17 8024922988788594 a001 1597/710647*12752043^(1/2) 8024922988788618 a004 Fibonacci(28)/Lucas(17)/(1/2+sqrt(5)/2)^5 8024922988798390 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^40 8024922988802141 a001 1328767880/165580141 8024922988802141 a001 1597/1860498*817138163596^(1/3) 8024922988802141 a001 1597/1860498*(1/2+1/2*5^(1/2))^19 8024922988802142 a001 1597/1860498*87403803^(1/2) 8024922988802190 a004 Fibonacci(30)/Lucas(17)/(1/2+sqrt(5)/2)^7 8024922988803574 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^42 8024922988804039 a001 1597/4870847*7881196^(7/11) 8024922988804110 a001 1597/4870847*20633239^(3/5) 8024922988804121 a001 1597/4870847*141422324^(7/13) 8024922988804121 a001 3478759473/433494437 8024922988804121 a001 1597/4870847*2537720636^(7/15) 8024922988804121 a001 1597/4870847*17393796001^(3/7) 8024922988804121 a001 1597/4870847*45537549124^(7/17) 8024922988804121 a001 1597/4870847*14662949395604^(1/3) 8024922988804121 a001 1597/4870847*(1/2+1/2*5^(1/2))^21 8024922988804121 a001 1597/4870847*192900153618^(7/18) 8024922988804121 a001 1597/4870847*10749957122^(7/16) 8024922988804121 a001 1597/4870847*599074578^(1/2) 8024922988804125 a001 1597/4870847*33385282^(7/12) 8024922988804170 a004 Fibonacci(32)/Lucas(17)/(1/2+sqrt(5)/2)^9 8024922988804330 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^44 8024922988804342 a001 1597/370248451*7881196^(10/11) 8024922988804353 a001 1597/87403803*7881196^(9/11) 8024922988804384 a001 1597/20633239*7881196^(8/11) 8024922988804410 a001 9107510539/1134903170 8024922988804410 a001 1597/12752043*(1/2+1/2*5^(1/2))^23 8024922988804410 a001 1597/12752043*4106118243^(1/2) 8024922988804439 a001 1597/33385282*20633239^(5/7) 8024922988804441 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^46 8024922988804443 a001 1597/370248451*20633239^(6/7) 8024922988804445 a001 1597/141422324*20633239^(4/5) 8024922988804452 a001 1597/33385282*2537720636^(5/9) 8024922988804452 a001 23843772144/2971215073 8024922988804452 a001 1597/33385282*312119004989^(5/11) 8024922988804452 a001 1597/33385282*(1/2+1/2*5^(1/2))^25 8024922988804452 a001 1597/33385282*3461452808002^(5/12) 8024922988804452 a001 1597/33385282*28143753123^(1/2) 8024922988804452 a001 1597/33385282*228826127^(5/8) 8024922988804457 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^48 8024922988804458 a001 1597/87403803*141422324^(9/13) 8024922988804458 a001 1597/87403803*2537720636^(3/5) 8024922988804458 a001 62423805893/7778742049 8024922988804458 a001 1597/87403803*45537549124^(9/17) 8024922988804458 a001 1597/87403803*817138163596^(9/19) 8024922988804458 a001 1597/87403803*14662949395604^(3/7) 8024922988804458 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^27/Lucas(38) 8024922988804458 a001 1597/87403803*192900153618^(1/2) 8024922988804458 a001 1597/87403803*10749957122^(9/16) 8024922988804458 a001 1597/87403803*599074578^(9/14) 8024922988804459 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^50 8024922988804459 a001 1597/6643838879*141422324^(12/13) 8024922988804459 a001 1597/1568397607*141422324^(11/13) 8024922988804459 a001 1597/370248451*141422324^(10/13) 8024922988804459 a001 102334155/12752042 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^29/Lucas(40) 8024922988804459 a001 1597/228826127*1322157322203^(1/2) 8024922988804459 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^52 8024922988804459 a001 427859130712/53316291173 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^31/Lucas(42) 8024922988804459 a001 1597/599074578*9062201101803^(1/2) 8024922988804459 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^54 8024922988804459 a001 1597/1568397607*2537720636^(11/15) 8024922988804459 a001 1597/1568397607*45537549124^(11/17) 8024922988804459 a001 12585952209/1568358005 8024922988804459 a001 1597/1568397607*312119004989^(3/5) 8024922988804459 a001 1597/1568397607*817138163596^(11/19) 8024922988804459 a001 1597/1568397607*14662949395604^(11/21) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^33/Lucas(44) 8024922988804459 a001 1597/1568397607*192900153618^(11/18) 8024922988804459 a001 1597/1568397607*10749957122^(11/16) 8024922988804459 a001 1597/4106118243*2537720636^(7/9) 8024922988804459 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^56 8024922988804459 a001 1597/119218851371*2537720636^(14/15) 8024922988804459 a001 1597/45537549124*2537720636^(8/9) 8024922988804459 a001 1597/28143753123*2537720636^(13/15) 8024922988804459 a001 1597/1568397607*1568397607^(3/4) 8024922988804459 a001 1597/6643838879*2537720636^(4/5) 8024922988804459 a001 1597/4106118243*17393796001^(5/7) 8024922988804459 a001 1597/4106118243*312119004989^(7/11) 8024922988804459 a001 1597/4106118243*14662949395604^(5/9) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(46) 8024922988804459 a001 1597/4106118243*505019158607^(5/8) 8024922988804459 a001 1597/4106118243*28143753123^(7/10) 8024922988804459 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^58 8024922988804459 a001 7677620580672/956722026041 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(48) 8024922988804459 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^60 8024922988804459 a001 1597/119218851371*17393796001^(6/7) 8024922988804459 a001 1597/28143753123*45537549124^(13/17) 8024922988804459 a001 20100271632925/2504730781961 8024922988804459 a001 1597/28143753123*14662949395604^(13/21) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(50) 8024922988804459 a001 1597/28143753123*192900153618^(13/18) 8024922988804459 a001 1597/28143753123*73681302247^(3/4) 8024922988804459 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^62 8024922988804459 a001 1597/2139295485799*45537549124^(16/17) 8024922988804459 a001 1597/505019158607*45537549124^(15/17) 8024922988804459 a001 1597/119218851371*45537549124^(14/17) 8024922988804459 a001 52623194318103/6557470319842 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(52) 8024922988804459 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^64 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(54) 8024922988804459 a001 1597/505019158607*312119004989^(9/11) 8024922988804459 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^66 8024922988804459 a001 1597/5600748293801*312119004989^(10/11) 8024922988804459 a001 1597/505019158607*14662949395604^(5/7) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(56) 8024922988804459 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^68 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(58) 8024922988804459 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^70 8024922988804459 a001 1597/3461452808002*14662949395604^(7/9) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(60) 8024922988804459 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^72 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(62) 8024922988804459 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^74 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(64) 8024922988804459 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^76 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(66) 8024922988804459 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^78 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(68) 8024922988804459 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^80 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(70) 8024922988804459 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^82 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(72) 8024922988804459 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^84 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(74) 8024922988804459 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^86 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(76) 8024922988804459 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^88 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(78) 8024922988804459 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^90 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(80) 8024922988804459 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^92 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(82) 8024922988804459 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^94 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(84) 8024922988804459 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^96 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(86) 8024922988804459 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^98 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(88) 8024922988804459 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^100 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(90) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(92) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(94) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(96) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(98) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(99) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(100) 8024922988804459 a004 Fibonacci(34)/Lucas(17)/(1/2+sqrt(5)/2)^11 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(97) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(95) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(93) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(91) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(89) 8024922988804459 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^99 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(87) 8024922988804459 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^97 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(85) 8024922988804459 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^95 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(83) 8024922988804459 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^93 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(81) 8024922988804459 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^91 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(79) 8024922988804459 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^89 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(77) 8024922988804459 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^87 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(75) 8024922988804459 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^85 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(73) 8024922988804459 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^83 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(71) 8024922988804459 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^81 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(69) 8024922988804459 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^79 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(67) 8024922988804459 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^77 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(65) 8024922988804459 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^75 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(63) 8024922988804459 a001 1597/14662949395604*23725150497407^(13/16) 8024922988804459 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^73 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(61) 8024922988804459 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^71 8024922988804459 a001 1597/2139295485799*14662949395604^(16/21) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(59) 8024922988804459 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^69 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(57) 8024922988804459 a001 1597/3461452808002*505019158607^(7/8) 8024922988804459 a001 1597/14662949395604*505019158607^(13/14) 8024922988804459 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^67 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(55) 8024922988804459 a001 1597/312119004989*23725150497407^(11/16) 8024922988804459 a001 1597/505019158607*192900153618^(5/6) 8024922988804459 a001 1597/2139295485799*192900153618^(8/9) 8024922988804459 a001 1597/9062201101803*192900153618^(17/18) 8024922988804459 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^65 8024922988804459 a001 1597/119218851371*817138163596^(14/19) 8024922988804459 a001 1597/119218851371*14662949395604^(2/3) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(53) 8024922988804459 a001 1597/119218851371*505019158607^(3/4) 8024922988804459 a001 1597/119218851371*192900153618^(7/9) 8024922988804459 a001 1597/312119004989*73681302247^(11/13) 8024922988804459 a001 1597/2139295485799*73681302247^(12/13) 8024922988804459 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^63 8024922988804459 a001 1597/45537549124*312119004989^(8/11) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(51) 8024922988804459 a001 1597/45537549124*23725150497407^(5/8) 8024922988804459 a001 32522922685178/4052739537881 8024922988804459 a001 1597/45537549124*73681302247^(10/13) 8024922988804459 a001 1597/505019158607*28143753123^(9/10) 8024922988804459 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^61 8024922988804459 a001 1597/45537549124*28143753123^(4/5) 8024922988804459 a001 1597/17393796001*817138163596^(2/3) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(49) 8024922988804459 a001 12422651052253/1548008755920 8024922988804459 a001 1597/28143753123*10749957122^(13/16) 8024922988804459 a001 1597/119218851371*10749957122^(7/8) 8024922988804459 a001 1597/45537549124*10749957122^(5/6) 8024922988804459 a001 1597/312119004989*10749957122^(11/12) 8024922988804459 a001 1597/505019158607*10749957122^(15/16) 8024922988804459 a001 1597/817138163596*10749957122^(23/24) 8024922988804459 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^59 8024922988804459 a001 1597/17393796001*10749957122^(19/24) 8024922988804459 a001 1597/6643838879*45537549124^(12/17) 8024922988804459 a001 1597/6643838879*14662949395604^(4/7) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(47) 8024922988804459 a001 4745030471581/591286729879 8024922988804459 a001 1597/6643838879*505019158607^(9/14) 8024922988804459 a001 1597/6643838879*192900153618^(2/3) 8024922988804459 a001 1597/6643838879*73681302247^(9/13) 8024922988804459 a001 1597/6643838879*10749957122^(3/4) 8024922988804459 a001 1597/45537549124*4106118243^(20/23) 8024922988804459 a001 1597/17393796001*4106118243^(19/23) 8024922988804459 a001 1597/119218851371*4106118243^(21/23) 8024922988804459 a001 1597/312119004989*4106118243^(22/23) 8024922988804459 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^57 8024922988804459 a001 1597/6643838879*4106118243^(18/23) 8024922988804459 a001 1597/2537720636*45537549124^(2/3) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^34/Lucas(45) 8024922988804459 a001 1812440362490/225851433717 8024922988804459 a001 1597/2537720636*10749957122^(17/24) 8024922988804459 a001 1597/2537720636*4106118243^(17/23) 8024922988804459 a001 1597/17393796001*1568397607^(19/22) 8024922988804459 a001 1597/6643838879*1568397607^(9/11) 8024922988804459 a001 1597/45537549124*1568397607^(10/11) 8024922988804459 a001 1597/119218851371*1568397607^(21/22) 8024922988804459 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^55 8024922988804459 a001 1597/2537720636*1568397607^(17/22) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^32/Lucas(43) 8024922988804459 a001 1597/969323029*23725150497407^(1/2) 8024922988804459 a001 1597/969323029*505019158607^(4/7) 8024922988804459 a001 692290615889/86267571272 8024922988804459 a001 1597/969323029*73681302247^(8/13) 8024922988804459 a001 1597/969323029*10749957122^(2/3) 8024922988804459 a001 1597/969323029*4106118243^(16/23) 8024922988804459 a001 1597/969323029*1568397607^(8/11) 8024922988804459 a001 1597/1568397607*599074578^(11/14) 8024922988804459 a001 1597/4106118243*599074578^(5/6) 8024922988804459 a001 1597/2537720636*599074578^(17/21) 8024922988804459 a001 1597/6643838879*599074578^(6/7) 8024922988804459 a001 1597/17393796001*599074578^(19/21) 8024922988804459 a001 1597/28143753123*599074578^(13/14) 8024922988804459 a001 1597/45537549124*599074578^(20/21) 8024922988804459 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^53 8024922988804459 a001 1597/969323029*599074578^(16/21) 8024922988804459 a001 1597/370248451*2537720636^(2/3) 8024922988804459 a001 1597/370248451*45537549124^(10/17) 8024922988804459 a001 1597/370248451*312119004989^(6/11) 8024922988804459 a001 1597/370248451*14662949395604^(10/21) 8024922988804459 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^30/Lucas(41) 8024922988804459 a001 1597/370248451*192900153618^(5/9) 8024922988804459 a001 264431485177/32951280099 8024922988804459 a001 1597/370248451*28143753123^(3/5) 8024922988804459 a001 1597/370248451*10749957122^(5/8) 8024922988804459 a001 1597/370248451*4106118243^(15/23) 8024922988804459 a001 1597/370248451*1568397607^(15/22) 8024922988804459 a001 1597/370248451*599074578^(5/7) 8024922988804459 a001 1597/969323029*228826127^(4/5) 8024922988804459 a001 1597/2537720636*228826127^(17/20) 8024922988804459 a001 1597/4106118243*228826127^(7/8) 8024922988804460 a001 1597/6643838879*228826127^(9/10) 8024922988804460 a001 1597/17393796001*228826127^(19/20) 8024922988804460 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^51 8024922988804460 a001 1597/370248451*228826127^(3/4) 8024922988804460 a001 1597/141422324*17393796001^(4/7) 8024922988804460 a001 1597/141422324*14662949395604^(4/9) 8024922988804460 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^28/Lucas(39) 8024922988804460 a001 1597/141422324*505019158607^(1/2) 8024922988804460 a001 1597/141422324*73681302247^(7/13) 8024922988804460 a001 101003839642/12586269025 8024922988804460 a001 1597/141422324*10749957122^(7/12) 8024922988804460 a001 1597/141422324*4106118243^(14/23) 8024922988804460 a001 1597/141422324*1568397607^(7/11) 8024922988804460 a001 1597/141422324*599074578^(2/3) 8024922988804460 a001 1597/141422324*228826127^(7/10) 8024922988804460 a001 1597/370248451*87403803^(15/19) 8024922988804460 a001 1597/969323029*87403803^(16/19) 8024922988804460 a001 1597/2537720636*87403803^(17/19) 8024922988804460 a001 1597/6643838879*87403803^(18/19) 8024922988804460 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^49 8024922988804461 a001 1597/141422324*87403803^(14/19) 8024922988804462 a001 1597/54018521*141422324^(2/3) 8024922988804462 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^26/Lucas(37) 8024922988804462 a001 1597/54018521*73681302247^(1/2) 8024922988804462 a001 1597/54018521*10749957122^(13/24) 8024922988804462 a001 38580033749/4807526976 8024922988804462 a001 1597/54018521*4106118243^(13/23) 8024922988804462 a001 1597/54018521*1568397607^(13/22) 8024922988804462 a001 1597/54018521*599074578^(13/21) 8024922988804462 a001 1597/54018521*228826127^(13/20) 8024922988804463 a001 1597/54018521*87403803^(13/19) 8024922988804464 a001 1597/87403803*33385282^(3/4) 8024922988804465 a001 1597/141422324*33385282^(7/9) 8024922988804465 a001 1597/370248451*33385282^(5/6) 8024922988804466 a001 1597/969323029*33385282^(8/9) 8024922988804466 a001 1597/1568397607*33385282^(11/12) 8024922988804466 a001 1597/2537720636*33385282^(17/18) 8024922988804467 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^47 8024922988804467 a001 1597/54018521*33385282^(13/18) 8024922988804478 a001 1597/20633239*141422324^(8/13) 8024922988804478 a001 1597/20633239*2537720636^(8/15) 8024922988804478 a001 1597/20633239*45537549124^(8/17) 8024922988804478 a001 1597/20633239*14662949395604^(8/21) 8024922988804478 a001 1597/20633239*(1/2+1/2*5^(1/2))^24 8024922988804478 a001 1597/20633239*192900153618^(4/9) 8024922988804478 a001 1597/20633239*73681302247^(6/13) 8024922988804478 a001 1597/20633239*10749957122^(1/2) 8024922988804478 a001 1597/20633239*4106118243^(12/23) 8024922988804478 a001 14736261605/1836311903 8024922988804478 a001 1597/20633239*1568397607^(6/11) 8024922988804478 a001 1597/20633239*599074578^(4/7) 8024922988804478 a001 1597/20633239*228826127^(3/5) 8024922988804479 a001 1597/20633239*87403803^(12/19) 8024922988804483 a001 1597/20633239*33385282^(2/3) 8024922988804500 a001 1597/54018521*12752043^(13/17) 8024922988804500 a001 1597/141422324*12752043^(14/17) 8024922988804502 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^13 8024922988804502 a001 1597/7881196*7881196^(2/3) 8024922988804503 a001 1597/370248451*12752043^(15/17) 8024922988804506 a001 1597/969323029*12752043^(16/17) 8024922988804508 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^15 8024922988804509 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^17 8024922988804509 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^19 8024922988804509 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^21 8024922988804509 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^23 8024922988804509 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^25 8024922988804509 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^27 8024922988804509 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^29 8024922988804509 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^31 8024922988804509 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^33 8024922988804509 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^35 8024922988804509 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^37 8024922988804509 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^39 8024922988804509 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^41 8024922988804509 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^43 8024922988804509 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^45 8024922988804509 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^47 8024922988804509 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^49 8024922988804509 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^51 8024922988804509 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^53 8024922988804509 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^55 8024922988804509 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^57 8024922988804509 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^59 8024922988804509 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^61 8024922988804509 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^63 8024922988804509 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^65 8024922988804509 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^67 8024922988804509 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^69 8024922988804509 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^71 8024922988804509 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^73 8024922988804509 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^75 8024922988804509 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^77 8024922988804509 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^76 8024922988804509 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^74 8024922988804509 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^72 8024922988804509 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^70 8024922988804509 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^68 8024922988804509 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^66 8024922988804509 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^64 8024922988804509 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^62 8024922988804509 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^60 8024922988804509 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^58 8024922988804509 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^56 8024922988804509 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^54 8024922988804509 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^52 8024922988804509 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^50 8024922988804509 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^48 8024922988804509 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^46 8024922988804509 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^44 8024922988804509 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^42 8024922988804509 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^40 8024922988804509 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^38 8024922988804509 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^36 8024922988804509 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^34 8024922988804509 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^32 8024922988804509 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^30 8024922988804509 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^28 8024922988804509 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^26 8024922988804509 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^24 8024922988804509 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^22 8024922988804509 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^20 8024922988804509 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^18 8024922988804509 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^16 8024922988804511 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^14 8024922988804513 a001 1597/20633239*12752043^(12/17) 8024922988804528 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^12 8024922988804589 a001 1597/7881196*312119004989^(2/5) 8024922988804589 a001 1597/7881196*(1/2+1/2*5^(1/2))^22 8024922988804589 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^22/Lucas(33) 8024922988804589 a001 1597/7881196*10749957122^(11/24) 8024922988804589 a001 1597/7881196*4106118243^(11/23) 8024922988804589 a001 1597/7881196*1568397607^(1/2) 8024922988804589 a001 63244394/7880997 8024922988804589 a001 1597/7881196*599074578^(11/21) 8024922988804589 a001 1597/7881196*228826127^(11/20) 8024922988804589 a001 1597/7881196*87403803^(11/19) 8024922988804593 a001 1597/7881196*33385282^(11/18) 8024922988804620 a001 1597/7881196*12752043^(11/17) 8024922988804638 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2)^10 8024922988804732 a001 1597/20633239*4870847^(3/4) 8024922988804737 a001 1597/54018521*4870847^(13/16) 8024922988804756 a001 1597/141422324*4870847^(7/8) 8024922988804777 a001 1597/370248451*4870847^(15/16) 8024922988804798 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^43 8024922988804821 a001 1597/7881196*4870847^(11/16) 8024922988805334 a001 1597/3010349*20633239^(4/7) 8024922988805345 a001 1597/3010349*2537720636^(4/9) 8024922988805345 a001 1597/3010349*(1/2+1/2*5^(1/2))^20 8024922988805345 a001 1597/3010349*23725150497407^(5/16) 8024922988805345 a001 1597/3010349*505019158607^(5/14) 8024922988805345 a001 1597/3010349*73681302247^(5/13) 8024922988805345 a001 1597/3010349*28143753123^(2/5) 8024922988805345 a001 1597/3010349*10749957122^(5/12) 8024922988805345 a001 1597/3010349*4106118243^(10/23) 8024922988805345 a001 1597/3010349*1568397607^(5/11) 8024922988805345 a001 1597/3010349*599074578^(10/21) 8024922988805345 a001 2149991593/267914296 8024922988805345 a001 1597/3010349*228826127^(1/2) 8024922988805345 a001 1597/3010349*87403803^(10/19) 8024922988805349 a001 1597/3010349*33385282^(5/9) 8024922988805374 a001 1597/3010349*12752043^(10/17) 8024922988805394 a004 Fibonacci(31)/Lucas(17)/(1/2+sqrt(5)/2)^8 8024922988805556 a001 1597/3010349*4870847^(5/8) 8024922988805744 a001 1597/4870847*1860498^(7/10) 8024922988806289 a001 1597/7881196*1860498^(11/15) 8024922988806333 a001 1597/20633239*1860498^(4/5) 8024922988806384 a001 1597/33385282*1860498^(5/6) 8024922988806471 a001 1597/54018521*1860498^(13/15) 8024922988806545 a001 1597/87403803*1860498^(9/10) 8024922988806624 a001 1597/141422324*1860498^(14/15) 8024922988806778 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^41 8024922988806890 a001 1597/3010349*1860498^(2/3) 8024922988810458 a001 1597/1149851*7881196^(6/11) 8024922988810529 a001 1597/1149851*141422324^(6/13) 8024922988810529 a001 1597/1149851*2537720636^(2/5) 8024922988810529 a001 1597/1149851*45537549124^(6/17) 8024922988810529 a001 1597/1149851*14662949395604^(2/7) 8024922988810529 a001 1597/1149851*(1/2+1/2*5^(1/2))^18 8024922988810529 a001 1597/1149851*192900153618^(1/3) 8024922988810529 a001 1597/1149851*10749957122^(3/8) 8024922988810529 a001 1597/1149851*4106118243^(9/23) 8024922988810529 a001 1597/1149851*1568397607^(9/22) 8024922988810529 a001 1597/1149851*599074578^(3/7) 8024922988810529 a001 1597/1149851*228826127^(9/20) 8024922988810529 a001 821223713/102334155 8024922988810529 a001 1597/1149851*87403803^(9/19) 8024922988810533 a001 1597/1149851*33385282^(1/2) 8024922988810555 a001 1597/1149851*12752043^(9/17) 8024922988810578 a004 Fibonacci(29)/Lucas(17)/(1/2+sqrt(5)/2)^6 8024922988810719 a001 1597/1149851*4870847^(9/16) 8024922988811920 a001 1597/1149851*1860498^(3/5) 8024922988816039 a001 1597/4870847*710647^(3/4) 8024922988816695 a001 1597/3010349*710647^(5/7) 8024922988817074 a001 1597/7881196*710647^(11/14) 8024922988818098 a001 1597/20633239*710647^(6/7) 8024922988819217 a001 1597/54018521*710647^(13/14) 8024922988820350 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^39 8024922988820744 a001 1597/1149851*710647^(9/14) 8024922988846061 a001 1597/439204*(1/2+1/2*5^(1/2))^16 8024922988846061 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^16/Lucas(27) 8024922988846061 a001 1597/439204*23725150497407^(1/4) 8024922988846061 a001 1597/439204*73681302247^(4/13) 8024922988846061 a001 1597/439204*10749957122^(1/3) 8024922988846061 a001 1597/439204*4106118243^(8/23) 8024922988846061 a001 1597/439204*1568397607^(4/11) 8024922988846061 a001 1597/439204*599074578^(8/21) 8024922988846061 a001 1597/439204*228826127^(2/5) 8024922988846061 a001 1597/439204*87403803^(8/19) 8024922988846062 a001 313679546/39088169 8024922988846064 a001 1597/439204*33385282^(4/9) 8024922988846084 a001 1597/439204*12752043^(8/17) 8024922988846110 a004 Fibonacci(27)/Lucas(17)/(1/2+sqrt(5)/2)^4 8024922988846230 a001 1597/439204*4870847^(1/2) 8024922988847297 a001 1597/439204*1860498^(8/15) 8024922988855141 a001 1597/439204*710647^(4/7) 8024922988885931 a001 1597/1149851*271443^(9/13) 8024922988889125 a001 1597/3010349*271443^(10/13) 8024922988896747 a001 1597/7881196*271443^(11/13) 8024922988905014 a001 1597/20633239*271443^(12/13) 8024922988913085 a001 1597/439204*271443^(8/13) 8024922988913373 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^37 8024922989089592 a001 1597/167761*20633239^(2/5) 8024922989089600 a001 1597/167761*17393796001^(2/7) 8024922989089600 a001 1597/167761*14662949395604^(2/9) 8024922989089600 a001 1597/167761*(1/2+1/2*5^(1/2))^14 8024922989089600 a001 1597/167761*505019158607^(1/4) 8024922989089600 a001 1597/167761*10749957122^(7/24) 8024922989089600 a001 1597/167761*4106118243^(7/23) 8024922989089600 a001 1597/167761*1568397607^(7/22) 8024922989089600 a001 1597/167761*599074578^(1/3) 8024922989089600 a001 1597/167761*228826127^(7/20) 8024922989089600 a001 1597/167761*87403803^(7/19) 8024922989089603 a001 1597/167761*33385282^(7/18) 8024922989089607 a001 119814925/14930352 8024922989089620 a001 1597/167761*12752043^(7/17) 8024922989089649 a004 Fibonacci(25)/Lucas(17)/(1/2+sqrt(5)/2)^2 8024922989089748 a001 1597/167761*4870847^(7/16) 8024922989090682 a001 1597/167761*1860498^(7/15) 8024922989097545 a001 1597/167761*710647^(1/2) 8024922989148246 a001 1597/167761*271443^(7/13) 8024922989162113 a001 1597/271443*103682^(5/8) 8024922989317345 a001 1597/710647*103682^(17/24) 8024922989343732 a001 1597/439204*103682^(2/3) 8024922989370410 a001 1597/1149851*103682^(3/4) 8024922989393126 a001 1597/1860498*103682^(19/24) 8024922989427434 a001 1597/3010349*103682^(5/6) 8024922989457315 a001 1597/4870847*103682^(7/8) 8024922989488887 a001 1597/7881196*103682^(11/12) 8024922989519813 a001 1597/12752043*103682^(23/24) 8024922989525063 a001 1597/167761*103682^(7/12) 8024922989550967 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^35 8024922989739164 a001 1597/64079*64079^(12/23) 8024922990740352 a001 1597/64079*439204^(4/9) 8024922990758794 a001 1597/64079*7881196^(4/11) 8024922990758841 a001 1597/64079*141422324^(4/13) 8024922990758841 a001 1597/64079*2537720636^(4/15) 8024922990758841 a001 1597/64079*45537549124^(4/17) 8024922990758841 a001 1597/64079*817138163596^(4/19) 8024922990758841 a001 1597/64079*14662949395604^(4/21) 8024922990758841 a001 1597/64079*(1/2+1/2*5^(1/2))^12 8024922990758841 a001 1597/64079*192900153618^(2/9) 8024922990758841 a001 1597/64079*73681302247^(3/13) 8024922990758841 a001 1597/64079*10749957122^(1/4) 8024922990758841 a001 1597/64079*4106118243^(6/23) 8024922990758841 a001 1597/64079*1568397607^(3/11) 8024922990758841 a001 1597/64079*599074578^(2/7) 8024922990758841 a001 1597/64079*228826127^(3/10) 8024922990758842 a001 1597/64079*87403803^(6/19) 8024922990758844 a001 1597/64079*33385282^(1/3) 8024922990758859 a001 1597/64079*12752043^(6/17) 8024922990758891 a001 28657/3571 8024922990758968 a001 1597/64079*4870847^(3/8) 8024922990759769 a001 1597/64079*1860498^(2/5) 8024922990765651 a001 1597/64079*710647^(3/7) 8024922990809109 a001 1597/64079*271443^(6/13) 8024922991081420 a001 1597/103682*39603^(13/22) 8024922991132095 a001 1597/64079*103682^(1/2) 8024922992184162 a001 1597/271443*39603^(15/22) 8024922992345642 a001 1597/167761*39603^(7/11) 8024922992535373 a001 10946/3571*9349^(2/19) 8024922992567252 a001 1597/439204*39603^(8/11) 8024922992742335 a001 1597/710647*39603^(17/22) 8024922992996869 a001 1597/1149851*39603^(9/11) 8024922993221056 a001 1597/1860498*39603^(19/22) 8024922993456834 a001 1597/3010349*39603^(10/11) 8024922993549735 a001 1597/64079*39603^(6/11) 8024922993688185 a001 1597/4870847*39603^(21/22) 8024922993796728 a001 6765/3571*5778^(1/6) 8024922993921097 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^33 8024922995821167 a001 1597/24476*24476^(10/21) 8024922997041930 a001 17711/3571*5778^(1/18) 8024923000924276 a001 10946/3571*24476^(2/21) 8024923001350261 a001 1597/24476*64079^(10/23) 8024923002030095 a001 10946/3571*64079^(2/23) 8024923002085936 a001 1597/24476*167761^(2/5) 8024923002199987 a001 1597/24476*20633239^(2/7) 8024923002199992 a001 1597/24476*2537720636^(2/9) 8024923002199992 a001 1597/24476*312119004989^(2/11) 8024923002199992 a001 1597/24476*(1/2+1/2*5^(1/2))^10 8024923002199992 a001 1597/24476*28143753123^(1/5) 8024923002199992 a001 1597/24476*10749957122^(5/24) 8024923002199992 a001 1597/24476*4106118243^(5/23) 8024923002199992 a001 1597/24476*1568397607^(5/22) 8024923002199992 a001 1597/24476*599074578^(5/21) 8024923002199992 a001 1597/24476*228826127^(1/4) 8024923002199992 a001 1597/24476*87403803^(5/19) 8024923002199994 a001 1597/24476*33385282^(5/18) 8024923002200006 a001 1597/24476*12752043^(5/17) 8024923002200041 a001 10946/3571*(1/2+1/2*5^(1/2))^2 8024923002200041 a001 10946/3571*10749957122^(1/24) 8024923002200041 a001 10946/3571*4106118243^(1/23) 8024923002200041 a001 10946/3571*1568397607^(1/22) 8024923002200041 a001 10946/3571*599074578^(1/21) 8024923002200041 a001 10946/3571*228826127^(1/20) 8024923002200041 a001 10946/3571*87403803^(1/19) 8024923002200042 a001 10946/3571*33385282^(1/18) 8024923002200044 a001 10946/3571*12752043^(1/17) 8024923002200062 a001 10946/3571*4870847^(1/16) 8024923002200098 a001 1597/24476*4870847^(5/16) 8024923002200196 a001 10946/3571*1860498^(1/15) 8024923002200330 a001 17480762/2178309 8024923002200765 a001 1597/24476*1860498^(1/3) 8024923002201176 a001 10946/3571*710647^(1/14) 8024923002205667 a001 1597/24476*710647^(5/14) 8024923002208419 a001 10946/3571*271443^(1/13) 8024923002241882 a001 1597/24476*271443^(5/13) 8024923002262250 a001 10946/3571*103682^(1/12) 8024923002511037 a001 1597/24476*103682^(5/12) 8024923002665190 a001 10946/3571*39603^(1/11) 8024923002976299 a001 1597/39603*15127^(11/20) 8024923004118692 a001 5473/12238*2207^(3/8) 8024923004525737 a001 1597/24476*39603^(5/11) 8024923005707037 a001 10946/3571*15127^(1/10) 8024923010853426 a001 1597/103682*15127^(13/20) 8024923011800817 a001 1597/64079*15127^(3/5) 8024923012393743 a001 610/2207*1364^(7/15) 8024923013638571 a001 1597/167761*15127^(7/10) 8024923014998015 a001 1597/271443*15127^(3/4) 8024923016902028 a001 1597/439204*15127^(4/5) 8024923017258634 h001 (1/2*exp(1)+2/5)/(1/5*exp(2)+5/7) 8024923018598035 a001 1597/710647*15127^(17/20) 8024923019734972 a001 1597/24476*15127^(1/2) 8024923020373492 a001 1597/1149851*15127^(9/10) 8024923022118602 a001 1597/1860498*15127^(19/20) 8024923023874419 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^31 8024923026033759 r008 a(0)=8,K{-n^6,-50-n+26*n^2-16*n^3} 8024923028908161 a001 10946/3571*5778^(1/9) 8024923041960134 a001 1597/9349*9349^(8/19) 8024923049489472 m001 (GAMMA(2/3)-RenyiParking)^BesselJ(1,1) 8024923052331880 b008 2/7+Csch[Sqrt[2]] 8024923058624539 a001 6765/24476*2207^(7/16) 8024923059264094 a001 646/6119*2207^(9/16) 8024923061289518 a001 4181/3571*9349^(4/19) 8024923063169222 r002 8th iterates of z^2 + 8024923072728753 a007 Real Root Of -475*x^4+242*x^3+421*x^2+806*x-846 8024923073921038 a001 1597/15127*5778^(1/2) 8024923075515746 a001 1597/9349*24476^(8/21) 8024923077136710 a001 17711/64079*2207^(7/16) 8024923078067324 a001 4181/3571*24476^(4/21) 8024923079837599 a001 46368/167761*2207^(7/16) 8024923079939021 a001 1597/9349*64079^(8/23) 8024923080231654 a001 121393/439204*2207^(7/16) 8024923080278962 a001 4181/3571*64079^(4/23) 8024923080289146 a001 317811/1149851*2207^(7/16) 8024923080297534 a001 832040/3010349*2207^(7/16) 8024923080298757 a001 2178309/7881196*2207^(7/16) 8024923080298936 a001 5702887/20633239*2207^(7/16) 8024923080298962 a001 14930352/54018521*2207^(7/16) 8024923080298966 a001 39088169/141422324*2207^(7/16) 8024923080298966 a001 102334155/370248451*2207^(7/16) 8024923080298966 a001 267914296/969323029*2207^(7/16) 8024923080298966 a001 701408733/2537720636*2207^(7/16) 8024923080298966 a001 1836311903/6643838879*2207^(7/16) 8024923080298966 a001 4807526976/17393796001*2207^(7/16) 8024923080298966 a001 12586269025/45537549124*2207^(7/16) 8024923080298966 a001 32951280099/119218851371*2207^(7/16) 8024923080298966 a001 86267571272/312119004989*2207^(7/16) 8024923080298966 a001 225851433717/817138163596*2207^(7/16) 8024923080298966 a001 1548008755920/5600748293801*2207^(7/16) 8024923080298966 a001 139583862445/505019158607*2207^(7/16) 8024923080298966 a001 53316291173/192900153618*2207^(7/16) 8024923080298966 a001 20365011074/73681302247*2207^(7/16) 8024923080298966 a001 7778742049/28143753123*2207^(7/16) 8024923080298966 a001 2971215073/10749957122*2207^(7/16) 8024923080298966 a001 1134903170/4106118243*2207^(7/16) 8024923080298966 a001 433494437/1568397607*2207^(7/16) 8024923080298966 a001 165580141/599074578*2207^(7/16) 8024923080298967 a001 63245986/228826127*2207^(7/16) 8024923080298968 a001 24157817/87403803*2207^(7/16) 8024923080298978 a001 9227465/33385282*2207^(7/16) 8024923080299046 a001 3524578/12752043*2207^(7/16) 8024923080299514 a001 1346269/4870847*2207^(7/16) 8024923080302718 a001 514229/1860498*2207^(7/16) 8024923080324678 a001 196418/710647*2207^(7/16) 8024923080475193 a001 75025/271443*2207^(7/16) 8024923080618806 a001 1597/9349*(1/2+1/2*5^(1/2))^8 8024923080618806 a001 1597/9349*23725150497407^(1/8) 8024923080618806 a001 1597/9349*505019158607^(1/7) 8024923080618806 a001 1597/9349*73681302247^(2/13) 8024923080618806 a001 1597/9349*10749957122^(1/6) 8024923080618806 a001 1597/9349*4106118243^(4/23) 8024923080618806 a001 1597/9349*1568397607^(2/11) 8024923080618806 a001 1597/9349*599074578^(4/21) 8024923080618806 a001 1597/9349*228826127^(1/5) 8024923080618806 a001 1597/9349*87403803^(4/19) 8024923080618808 a001 1597/9349*33385282^(2/9) 8024923080618818 a001 1597/9349*12752043^(4/17) 8024923080618854 a001 4181/3571*(1/2+1/2*5^(1/2))^4 8024923080618854 a001 4181/3571*23725150497407^(1/16) 8024923080618854 a001 4181/3571*73681302247^(1/13) 8024923080618854 a001 4181/3571*10749957122^(1/12) 8024923080618854 a001 4181/3571*4106118243^(2/23) 8024923080618854 a001 4181/3571*1568397607^(1/11) 8024923080618854 a001 4181/3571*599074578^(2/21) 8024923080618854 a001 4181/3571*228826127^(1/10) 8024923080618855 a001 4181/3571*87403803^(2/19) 8024923080618855 a001 4181/3571*33385282^(1/9) 8024923080618860 a001 4181/3571*12752043^(2/17) 8024923080618891 a001 1597/9349*4870847^(1/4) 8024923080618897 a001 4181/3571*4870847^(1/8) 8024923080619164 a001 4181/3571*1860498^(2/15) 8024923080619424 a001 1597/9349*1860498^(4/15) 8024923080621123 a001 6677057/832040 8024923080621125 a001 4181/3571*710647^(1/7) 8024923080623346 a001 1597/9349*710647^(2/7) 8024923080635610 a001 4181/3571*271443^(2/13) 8024923080652318 a001 1597/9349*271443^(4/13) 8024923080743272 a001 4181/3571*103682^(1/6) 8024923080867642 a001 1597/9349*103682^(1/3) 8024923081506841 a001 28657/103682*2207^(7/16) 8024923081549152 a001 4181/3571*39603^(2/11) 8024923082479402 a001 1597/9349*39603^(4/11) 8024923086659210 a001 17711/3571*2207^(1/16) 8024923087632846 a001 4181/3571*15127^(1/5) 8024923088577861 a001 10946/39603*2207^(7/16) 8024923094646790 a001 1597/9349*15127^(2/5) 8024923105340955 b008 8+EulerGamma^(4+E) 8024923106727827 a007 Real Root Of 118*x^4+947*x^3-65*x^2-461*x+517 8024923116451905 a003 cos(Pi*15/103)*cos(Pi*9/61) 8024923116560682 m001 GaussAGM(1,1/sqrt(2))^GAMMA(7/24)/RenyiParking 8024923116975211 a007 Real Root Of 895*x^4-431*x^3+220*x^2-160*x-864 8024923130582479 a001 1597/39603*5778^(11/18) 8024923131315498 a001 75025/15127*843^(1/14) 8024923132929267 a001 5600748293801/4181*144^(14/17) 8024923134035094 a001 4181/3571*5778^(2/9) 8024923135740590 a001 1597/24476*5778^(5/9) 8024923137043353 a001 4181/15127*2207^(7/16) 8024923143083708 a001 2255/13201*2207^(1/2) 8024923143723263 a001 2584/39603*2207^(5/8) 8024923144764735 s001 sum(1/10^(n-1)*A221636[n],n=1..infinity) 8024923144764735 s001 sum(1/10^n*A221636[n],n=1..infinity) 8024923151007559 a001 1597/64079*5778^(2/3) 8024923160956321 a001 4181/9349*2207^(3/8) 8024923161025281 a001 196418/39603*843^(1/14) 8024923161660730 a001 1597/103682*5778^(13/18) 8024923164979470 m005 (1/2*Zeta(3)+2/7)/(3/11*exp(1)+4/11) 8024923165359880 a001 514229/103682*843^(1/14) 8024923165407751 a007 Real Root Of 613*x^4-151*x^3+458*x^2+728*x-43 8024923165992289 a001 1346269/271443*843^(1/14) 8024923166084557 a001 3524578/710647*843^(1/14) 8024923166098018 a001 9227465/1860498*843^(1/14) 8024923166099982 a001 24157817/4870847*843^(1/14) 8024923166100269 a001 63245986/12752043*843^(1/14) 8024923166100311 a001 165580141/33385282*843^(1/14) 8024923166100317 a001 433494437/87403803*843^(1/14) 8024923166100318 a001 1134903170/228826127*843^(1/14) 8024923166100318 a001 2971215073/599074578*843^(1/14) 8024923166100318 a001 7778742049/1568397607*843^(1/14) 8024923166100318 a001 20365011074/4106118243*843^(1/14) 8024923166100318 a001 53316291173/10749957122*843^(1/14) 8024923166100318 a001 139583862445/28143753123*843^(1/14) 8024923166100318 a001 365435296162/73681302247*843^(1/14) 8024923166100318 a001 956722026041/192900153618*843^(1/14) 8024923166100318 a001 2504730781961/505019158607*843^(1/14) 8024923166100318 a001 10610209857723/2139295485799*843^(1/14) 8024923166100318 a001 4052739537881/817138163596*843^(1/14) 8024923166100318 a001 140728068720/28374454999*843^(1/14) 8024923166100318 a001 591286729879/119218851371*843^(1/14) 8024923166100318 a001 225851433717/45537549124*843^(1/14) 8024923166100318 a001 86267571272/17393796001*843^(1/14) 8024923166100318 a001 32951280099/6643838879*843^(1/14) 8024923166100318 a001 1144206275/230701876*843^(1/14) 8024923166100318 a001 4807526976/969323029*843^(1/14) 8024923166100318 a001 1836311903/370248451*843^(1/14) 8024923166100318 a001 701408733/141422324*843^(1/14) 8024923166100321 a001 267914296/54018521*843^(1/14) 8024923166100337 a001 9303105/1875749*843^(1/14) 8024923166100446 a001 39088169/7881196*843^(1/14) 8024923166101196 a001 14930352/3010349*843^(1/14) 8024923166106338 a001 5702887/1149851*843^(1/14) 8024923166141581 a001 2178309/439204*843^(1/14) 8024923166383140 a001 75640/15251*843^(1/14) 8024923168038809 a001 317811/64079*843^(1/14) 8024923176046438 a001 1597/167761*5778^(7/9) 8024923177407161 a001 17711/103682*2207^(1/2) 8024923179386937 a001 121393/24476*843^(1/14) 8024923182414885 a001 15456/90481*2207^(1/2) 8024923183145502 a001 121393/710647*2207^(1/2) 8024923183252098 a001 105937/620166*2207^(1/2) 8024923183267650 a001 832040/4870847*2207^(1/2) 8024923183269919 a001 726103/4250681*2207^(1/2) 8024923183270250 a001 5702887/33385282*2207^(1/2) 8024923183270299 a001 4976784/29134601*2207^(1/2) 8024923183270306 a001 39088169/228826127*2207^(1/2) 8024923183270307 a001 34111385/199691526*2207^(1/2) 8024923183270307 a001 267914296/1568397607*2207^(1/2) 8024923183270307 a001 233802911/1368706081*2207^(1/2) 8024923183270307 a001 1836311903/10749957122*2207^(1/2) 8024923183270307 a001 1602508992/9381251041*2207^(1/2) 8024923183270307 a001 12586269025/73681302247*2207^(1/2) 8024923183270307 a001 10983760033/64300051206*2207^(1/2) 8024923183270307 a001 86267571272/505019158607*2207^(1/2) 8024923183270307 a001 75283811239/440719107401*2207^(1/2) 8024923183270307 a001 2504730781961/14662949395604*2207^(1/2) 8024923183270307 a001 139583862445/817138163596*2207^(1/2) 8024923183270307 a001 53316291173/312119004989*2207^(1/2) 8024923183270307 a001 20365011074/119218851371*2207^(1/2) 8024923183270307 a001 7778742049/45537549124*2207^(1/2) 8024923183270307 a001 2971215073/17393796001*2207^(1/2) 8024923183270307 a001 1134903170/6643838879*2207^(1/2) 8024923183270307 a001 433494437/2537720636*2207^(1/2) 8024923183270307 a001 165580141/969323029*2207^(1/2) 8024923183270307 a001 63245986/370248451*2207^(1/2) 8024923183270310 a001 24157817/141422324*2207^(1/2) 8024923183270328 a001 9227465/54018521*2207^(1/2) 8024923183270455 a001 3524578/20633239*2207^(1/2) 8024923183271322 a001 1346269/7881196*2207^(1/2) 8024923183277262 a001 514229/3010349*2207^(1/2) 8024923183317978 a001 196418/1149851*2207^(1/2) 8024923183597049 a001 75025/439204*2207^(1/2) 8024923185509829 a001 28657/167761*2207^(1/2) 8024923186850697 a007 Real Root Of 598*x^4-172*x^3-157*x^2-4*x-239 8024923187451286 a001 1597/9349*5778^(4/9) 8024923189006443 a001 1597/271443*5778^(5/6) 8024923198620222 a001 10946/64079*2207^(1/2) 8024923202511019 a001 1597/439204*5778^(8/9) 8024923208142721 a001 10946/3571*2207^(1/8) 8024923211348081 a001 7331474697802/5473*144^(14/17) 8024923215807587 a001 1597/710647*5778^(17/18) 8024923220131922 r005 Re(z^2+c),c=-107/82+1/58*I,n=56 8024923223574688 a001 4181/2207*843^(3/14) 8024923229177537 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^29 8024923229860252 a001 23725150497407/17711*144^(14/17) 8024923233935576 a003 sin(Pi*5/111)*sin(Pi*21/109) 8024923235557020 a001 305/12238*1364^(4/5) 8024923245025989 r005 Re(z^2+c),c=-13/12+8/119*I,n=34 8024923250708565 a007 Real Root Of -860*x^4+516*x^3+349*x^2+489*x+791 8024923253126070 a001 6765/64079*2207^(9/16) 8024923253765625 a001 2584/64079*2207^(11/16) 8024923257168159 a001 46368/9349*843^(1/14) 8024923257716360 a007 Real Root Of -541*x^4+579*x^3+581*x^2+949*x+911 8024923259813575 a001 3020733700601/2255*144^(14/17) 8024923262648569 a001 6765/3571*2207^(3/16) 8024923263288125 a001 2584/3571*2207^(5/16) 8024923272325939 a007 Real Root Of -445*x^4+378*x^3-20*x^2+247*x+591 8024923275135244 r008 a(0)=8,K{-n^6,-48+2*n+4*n^2} 8024923281410151 a001 17711/167761*2207^(9/16) 8024923282537850 r008 a(0)=8,K{-n^6,-37-3*n^3+46*n^2-44*n} 8024923285536742 a001 11592/109801*2207^(9/16) 8024923286138804 a001 121393/1149851*2207^(9/16) 8024923286226644 a001 317811/3010349*2207^(9/16) 8024923286239459 a001 208010/1970299*2207^(9/16) 8024923286241329 a001 2178309/20633239*2207^(9/16) 8024923286241602 a001 5702887/54018521*2207^(9/16) 8024923286241642 a001 3732588/35355581*2207^(9/16) 8024923286241647 a001 39088169/370248451*2207^(9/16) 8024923286241648 a001 102334155/969323029*2207^(9/16) 8024923286241648 a001 66978574/634430159*2207^(9/16) 8024923286241648 a001 701408733/6643838879*2207^(9/16) 8024923286241648 a001 1836311903/17393796001*2207^(9/16) 8024923286241648 a001 1201881744/11384387281*2207^(9/16) 8024923286241648 a001 12586269025/119218851371*2207^(9/16) 8024923286241648 a001 32951280099/312119004989*2207^(9/16) 8024923286241648 a001 21566892818/204284540899*2207^(9/16) 8024923286241648 a001 225851433717/2139295485799*2207^(9/16) 8024923286241648 a001 182717648081/1730726404001*2207^(9/16) 8024923286241648 a001 139583862445/1322157322203*2207^(9/16) 8024923286241648 a001 53316291173/505019158607*2207^(9/16) 8024923286241648 a001 10182505537/96450076809*2207^(9/16) 8024923286241648 a001 7778742049/73681302247*2207^(9/16) 8024923286241648 a001 2971215073/28143753123*2207^(9/16) 8024923286241648 a001 567451585/5374978561*2207^(9/16) 8024923286241648 a001 433494437/4106118243*2207^(9/16) 8024923286241649 a001 165580141/1568397607*2207^(9/16) 8024923286241649 a001 31622993/299537289*2207^(9/16) 8024923286241651 a001 24157817/228826127*2207^(9/16) 8024923286241666 a001 9227465/87403803*2207^(9/16) 8024923286241770 a001 1762289/16692641*2207^(9/16) 8024923286242485 a001 1346269/12752043*2207^(9/16) 8024923286247380 a001 514229/4870847*2207^(9/16) 8024923286280932 a001 98209/930249*2207^(9/16) 8024923286510899 a001 75025/710647*2207^(9/16) 8024923288087116 a001 28657/271443*2207^(9/16) 8024923288480188 a001 4181/24476*2207^(1/2) 8024923298890674 a001 5473/51841*2207^(9/16) 8024923300318934 a001 843/433494437*89^(6/19) 8024923323500185 a007 Real Root Of 25*x^4+202*x^3+97*x^2+648*x-335 8024923334234892 m001 (GAMMA(7/12)+Bloch)/(KhinchinLevy+Mills) 8024923349321851 r009 Re(z^3+c),c=-17/114+13/19*I,n=56 8024923353396523 a001 6765/103682*2207^(5/8) 8024923354036078 a001 1292/51841*2207^(3/4) 8024923365963456 a008 Real Root of (-5+x+6*x^2-6*x^3-2*x^4+x^5) 8024923372939359 a001 4181/39603*2207^(9/16) 8024923383987439 a001 17711/271443*2207^(5/8) 8024923388450594 a001 6624/101521*2207^(5/8) 8024923389101759 a001 121393/1860498*2207^(5/8) 8024923389196763 a001 317811/4870847*2207^(5/8) 8024923389210624 a001 832040/12752043*2207^(5/8) 8024923389212646 a001 311187/4769326*2207^(5/8) 8024923389212941 a001 5702887/87403803*2207^(5/8) 8024923389212984 a001 14930352/228826127*2207^(5/8) 8024923389212990 a001 39088169/599074578*2207^(5/8) 8024923389212991 a001 14619165/224056801*2207^(5/8) 8024923389212991 a001 267914296/4106118243*2207^(5/8) 8024923389212991 a001 701408733/10749957122*2207^(5/8) 8024923389212991 a001 1836311903/28143753123*2207^(5/8) 8024923389212991 a001 686789568/10525900321*2207^(5/8) 8024923389212991 a001 12586269025/192900153618*2207^(5/8) 8024923389212991 a001 32951280099/505019158607*2207^(5/8) 8024923389212991 a001 86267571272/1322157322203*2207^(5/8) 8024923389212991 a001 32264490531/494493258286*2207^(5/8) 8024923389212991 a001 591286729879/9062201101803*2207^(5/8) 8024923389212991 a001 1548008755920/23725150497407*2207^(5/8) 8024923389212991 a001 365435296162/5600748293801*2207^(5/8) 8024923389212991 a001 139583862445/2139295485799*2207^(5/8) 8024923389212991 a001 53316291173/817138163596*2207^(5/8) 8024923389212991 a001 20365011074/312119004989*2207^(5/8) 8024923389212991 a001 7778742049/119218851371*2207^(5/8) 8024923389212991 a001 2971215073/45537549124*2207^(5/8) 8024923389212991 a001 1134903170/17393796001*2207^(5/8) 8024923389212991 a001 433494437/6643838879*2207^(5/8) 8024923389212992 a001 165580141/2537720636*2207^(5/8) 8024923389212992 a001 63245986/969323029*2207^(5/8) 8024923389212994 a001 24157817/370248451*2207^(5/8) 8024923389213011 a001 9227465/141422324*2207^(5/8) 8024923389213123 a001 3524578/54018521*2207^(5/8) 8024923389213896 a001 1346269/20633239*2207^(5/8) 8024923389219190 a001 514229/7881196*2207^(5/8) 8024923389255478 a001 196418/3010349*2207^(5/8) 8024923389504202 a001 75025/1149851*2207^(5/8) 8024923391208975 a001 28657/439204*2207^(5/8) 8024923396001766 a001 1597/3571*3571^(6/17) 8024923402893665 a001 10946/167761*2207^(5/8) 8024923409162480 r008 a(0)=8,K{-n^6,-81+86*n^3+2*n^2-47*n} 8024923410101828 a007 Real Root Of -67*x^4+841*x^3+766*x^2+836*x+640 8024923421073089 s002 sum(A196697[n]/((2^n+1)/n),n=1..infinity) 8024923434658811 l006 ln(1891/4219) 8024923443742740 r005 Re(z^2+c),c=-53/102+22/41*I,n=64 8024923457399515 a001 615/15251*2207^(11/16) 8024923458039070 a001 2584/167761*2207^(13/16) 8024923462920572 m001 1/GAMMA(11/24)/ln(Paris)^2/Zeta(3) 8024923465116706 a001 1730726404001/1292*144^(14/17) 8024923469230769 a001 1597/5778*2207^(7/16) 8024923474646274 a001 610/15127*1364^(11/15) 8024923478164617 a007 Real Root Of -825*x^4+875*x^3-991*x^2-782*x+805 8024923481858463 r005 Re(z^2+c),c=-2/19+43/51*I,n=62 8024923482981724 a001 4181/64079*2207^(5/8) 8024923487109299 a001 17711/439204*2207^(11/16) 8024923491443898 a001 46368/1149851*2207^(11/16) 8024923492076307 a001 121393/3010349*2207^(11/16) 8024923492168575 a001 317811/7881196*2207^(11/16) 8024923492182036 a001 75640/1875749*2207^(11/16) 8024923492184000 a001 2178309/54018521*2207^(11/16) 8024923492184287 a001 5702887/141422324*2207^(11/16) 8024923492184329 a001 14930352/370248451*2207^(11/16) 8024923492184335 a001 39088169/969323029*2207^(11/16) 8024923492184336 a001 9303105/230701876*2207^(11/16) 8024923492184336 a001 267914296/6643838879*2207^(11/16) 8024923492184336 a001 701408733/17393796001*2207^(11/16) 8024923492184336 a001 1836311903/45537549124*2207^(11/16) 8024923492184336 a001 4807526976/119218851371*2207^(11/16) 8024923492184336 a001 1144206275/28374454999*2207^(11/16) 8024923492184336 a001 32951280099/817138163596*2207^(11/16) 8024923492184336 a001 86267571272/2139295485799*2207^(11/16) 8024923492184336 a001 225851433717/5600748293801*2207^(11/16) 8024923492184336 a001 591286729879/14662949395604*2207^(11/16) 8024923492184336 a001 365435296162/9062201101803*2207^(11/16) 8024923492184336 a001 139583862445/3461452808002*2207^(11/16) 8024923492184336 a001 53316291173/1322157322203*2207^(11/16) 8024923492184336 a001 20365011074/505019158607*2207^(11/16) 8024923492184336 a001 7778742049/192900153618*2207^(11/16) 8024923492184336 a001 2971215073/73681302247*2207^(11/16) 8024923492184336 a001 1134903170/28143753123*2207^(11/16) 8024923492184336 a001 433494437/10749957122*2207^(11/16) 8024923492184336 a001 165580141/4106118243*2207^(11/16) 8024923492184336 a001 63245986/1568397607*2207^(11/16) 8024923492184339 a001 24157817/599074578*2207^(11/16) 8024923492184354 a001 9227465/228826127*2207^(11/16) 8024923492184464 a001 3524578/87403803*2207^(11/16) 8024923492185214 a001 1346269/33385282*2207^(11/16) 8024923492190356 a001 514229/12752043*2207^(11/16) 8024923492225599 a001 196418/4870847*2207^(11/16) 8024923492467158 a001 75025/1860498*2207^(11/16) 8024923492504224 a001 4181/3571*2207^(1/4) 8024923494122827 a001 28657/710647*2207^(11/16) 8024923505085774 r008 a(0)=8,K{-n^6,-52+n^3+40*n^2-28*n} 8024923505470955 a001 10946/271443*2207^(11/16) 8024923513483576 r008 a(0)=8,K{-n^6,-63+33*n-32*n^2+23*n^3} 8024923521535233 a007 Real Root Of 968*x^4-416*x^3-810*x^2+887*x+617 8024923536273318 a007 Real Root Of 188*x^4-137*x^3+12*x^2+200*x+4 8024923543532433 a003 cos(Pi*27/119)/sin(Pi*38/97) 8024923556967986 r008 a(0)=8,K{-n^6,-76+95*n^3-22*n^2-37*n} 8024923559976805 a001 2255/90481*2207^(3/4) 8024923560616361 a001 2584/271443*2207^(7/8) 8024923583252180 a001 4181/103682*2207^(11/16) 8024923587505216 a001 987/1364*1364^(1/3) 8024923589115390 a001 1597/3571*9349^(6/19) 8024923590023153 a001 17711/710647*2207^(3/4) 8024923590251160 m001 (GAMMA(2/3)-ArtinRank2)/(Cahen-MinimumGamma) 8024923594406856 a001 2576/103361*2207^(3/4) 8024923595046429 a001 121393/4870847*2207^(3/4) 8024923595139742 a001 105937/4250681*2207^(3/4) 8024923595153356 a001 416020/16692641*2207^(3/4) 8024923595155342 a001 726103/29134601*2207^(3/4) 8024923595155632 a001 5702887/228826127*2207^(3/4) 8024923595155674 a001 829464/33281921*2207^(3/4) 8024923595155680 a001 39088169/1568397607*2207^(3/4) 8024923595155681 a001 34111385/1368706081*2207^(3/4) 8024923595155681 a001 133957148/5374978561*2207^(3/4) 8024923595155681 a001 233802911/9381251041*2207^(3/4) 8024923595155681 a001 1836311903/73681302247*2207^(3/4) 8024923595155681 a001 267084832/10716675201*2207^(3/4) 8024923595155681 a001 12586269025/505019158607*2207^(3/4) 8024923595155681 a001 10983760033/440719107401*2207^(3/4) 8024923595155681 a001 43133785636/1730726404001*2207^(3/4) 8024923595155681 a001 75283811239/3020733700601*2207^(3/4) 8024923595155681 a001 182717648081/7331474697802*2207^(3/4) 8024923595155681 a001 139583862445/5600748293801*2207^(3/4) 8024923595155681 a001 53316291173/2139295485799*2207^(3/4) 8024923595155681 a001 10182505537/408569081798*2207^(3/4) 8024923595155681 a001 7778742049/312119004989*2207^(3/4) 8024923595155681 a001 2971215073/119218851371*2207^(3/4) 8024923595155681 a001 567451585/22768774562*2207^(3/4) 8024923595155681 a001 433494437/17393796001*2207^(3/4) 8024923595155681 a001 165580141/6643838879*2207^(3/4) 8024923595155682 a001 31622993/1268860318*2207^(3/4) 8024923595155684 a001 24157817/969323029*2207^(3/4) 8024923595155700 a001 9227465/370248451*2207^(3/4) 8024923595155811 a001 1762289/70711162*2207^(3/4) 8024923595156570 a001 1346269/54018521*2207^(3/4) 8024923595161770 a001 514229/20633239*2207^(3/4) 8024923595197412 a001 98209/3940598*2207^(3/4) 8024923595441707 a001 75025/3010349*2207^(3/4) 8024923597116133 a001 28657/1149851*2207^(3/4) 8024923603327627 r002 8th iterates of z^2 + 8024923608592816 a001 5473/219602*2207^(3/4) 8024923609175271 a003 sin(Pi*5/83)/cos(Pi*33/67) 8024923614282101 a001 1597/3571*24476^(2/7) 8024923617599558 a001 1597/3571*64079^(6/23) 8024923618100152 a001 1597/3571*439204^(2/9) 8024923618109373 a001 1597/3571*7881196^(2/11) 8024923618109396 a001 1597/3571*141422324^(2/13) 8024923618109396 a001 1597/3571*2537720636^(2/15) 8024923618109396 a001 1597/3571*45537549124^(2/17) 8024923618109396 a001 1597/3571*14662949395604^(2/21) 8024923618109396 a001 1597/3571*(1/2+1/2*5^(1/2))^6 8024923618109396 a001 1597/3571*10749957122^(1/8) 8024923618109396 a001 1597/3571*4106118243^(3/23) 8024923618109396 a001 1597/3571*1568397607^(3/22) 8024923618109396 a001 1597/3571*599074578^(1/7) 8024923618109396 a001 1597/3571*228826127^(3/20) 8024923618109397 a001 1597/3571*87403803^(3/19) 8024923618109398 a001 1597/3571*33385282^(1/6) 8024923618109405 a001 1597/3571*12752043^(3/17) 8024923618109460 a001 1597/3571*4870847^(3/16) 8024923618109860 a001 1597/3571*1860498^(1/5) 8024923618112802 a001 1597/3571*710647^(3/14) 8024923618125237 a001 2550409/317811 8024923618134530 a001 1597/3571*271443^(3/13) 8024923618296023 a001 1597/3571*103682^(1/4) 8024923619504843 a001 1597/3571*39603^(3/11) 8024923622802534 r005 Im(z^2+c),c=-1/14+51/62*I,n=43 8024923628630385 a001 1597/3571*15127^(3/10) 8024923634490928 r002 22th iterates of z^2 + 8024923653988919 m001 (cos(1)-cos(1/5*Pi))/(-Gompertz+MertensB1) 8024923663098667 a001 6765/439204*2207^(13/16) 8024923663738222 a001 34/5779*2207^(15/16) 8024923674245409 a001 63245986/3*123^(5/18) 8024923685002704 r005 Im(z^2+c),c=-27/58+3/22*I,n=31 8024923687255175 a001 4181/167761*2207^(3/4) 8024923690198738 m005 (1/3*Pi-1/10)/(1/6*exp(1)+8/11) 8024923690405603 m005 (1/2*exp(1)-7/10)/(2/3*3^(1/2)-1/3) 8024923692634839 r005 Im(z^2+c),c=-115/106+3/32*I,n=24 8024923693016459 a001 17711/1149851*2207^(13/16) 8024923696232748 m001 OneNinth^2*exp(Riemann3rdZero)^2/BesselJ(0,1) 8024923697381406 a001 46368/3010349*2207^(13/16) 8024923697988008 a001 2584/2207*843^(2/7) 8024923698018244 a001 121393/7881196*2207^(13/16) 8024923698111157 a001 10959/711491*2207^(13/16) 8024923698124713 a001 832040/54018521*2207^(13/16) 8024923698126691 a001 2178309/141422324*2207^(13/16) 8024923698126979 a001 5702887/370248451*2207^(13/16) 8024923698127021 a001 14930352/969323029*2207^(13/16) 8024923698127027 a001 39088169/2537720636*2207^(13/16) 8024923698127028 a001 102334155/6643838879*2207^(13/16) 8024923698127028 a001 9238424/599786069*2207^(13/16) 8024923698127028 a001 701408733/45537549124*2207^(13/16) 8024923698127028 a001 1836311903/119218851371*2207^(13/16) 8024923698127028 a001 4807526976/312119004989*2207^(13/16) 8024923698127028 a001 12586269025/817138163596*2207^(13/16) 8024923698127028 a001 32951280099/2139295485799*2207^(13/16) 8024923698127028 a001 86267571272/5600748293801*2207^(13/16) 8024923698127028 a001 7787980473/505618944676*2207^(13/16) 8024923698127028 a001 365435296162/23725150497407*2207^(13/16) 8024923698127028 a001 139583862445/9062201101803*2207^(13/16) 8024923698127028 a001 53316291173/3461452808002*2207^(13/16) 8024923698127028 a001 20365011074/1322157322203*2207^(13/16) 8024923698127028 a001 7778742049/505019158607*2207^(13/16) 8024923698127028 a001 2971215073/192900153618*2207^(13/16) 8024923698127028 a001 1134903170/73681302247*2207^(13/16) 8024923698127028 a001 433494437/28143753123*2207^(13/16) 8024923698127028 a001 165580141/10749957122*2207^(13/16) 8024923698127029 a001 63245986/4106118243*2207^(13/16) 8024923698127031 a001 24157817/1568397607*2207^(13/16) 8024923698127047 a001 9227465/599074578*2207^(13/16) 8024923698127157 a001 3524578/228826127*2207^(13/16) 8024923698127913 a001 1346269/87403803*2207^(13/16) 8024923698133091 a001 514229/33385282*2207^(13/16) 8024923698168580 a001 196418/12752043*2207^(13/16) 8024923698233761 a001 1597/3571*5778^(1/3) 8024923698411831 a001 75025/4870847*2207^(13/16) 8024923700079092 a001 28657/1860498*2207^(13/16) 8024923711506672 a001 10946/710647*2207^(13/16) 8024923726551691 a001 2584/843*322^(1/6) 8024923727211357 a001 17711/5778*843^(1/7) 8024923732307314 r005 Im(z^2+c),c=-79/118+13/49*I,n=52 8024923744430806 a007 Real Root Of 648*x^4-822*x^3+76*x^2+681*x-196 8024923766012523 a001 6765/710647*2207^(7/8) 8024923766667969 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^28 8024923779092119 m005 1/6*5^(1/2)/(1/11*Pi-3/4) 8024923789832468 a001 4181/271443*2207^(13/16) 8024923790288630 a001 17711/3571*843^(1/14) 8024923791712286 a007 Real Root Of -752*x^4+55*x^3+721*x^2+329*x+140 8024923795979420 a001 17711/1860498*2207^(7/8) 8024923800351531 a001 46368/4870847*2207^(7/8) 8024923800989413 a001 121393/12752043*2207^(7/8) 8024923801082479 a001 317811/33385282*2207^(7/8) 8024923801096057 a001 832040/87403803*2207^(7/8) 8024923801098038 a001 46347/4868641*2207^(7/8) 8024923801098327 a001 5702887/599074578*2207^(7/8) 8024923801098369 a001 14930352/1568397607*2207^(7/8) 8024923801098376 a001 39088169/4106118243*2207^(7/8) 8024923801098377 a001 102334155/10749957122*2207^(7/8) 8024923801098377 a001 267914296/28143753123*2207^(7/8) 8024923801098377 a001 701408733/73681302247*2207^(7/8) 8024923801098377 a001 1836311903/192900153618*2207^(7/8) 8024923801098377 a001 102287808/10745088481*2207^(7/8) 8024923801098377 a001 12586269025/1322157322203*2207^(7/8) 8024923801098377 a001 32951280099/3461452808002*2207^(7/8) 8024923801098377 a001 86267571272/9062201101803*2207^(7/8) 8024923801098377 a001 225851433717/23725150497407*2207^(7/8) 8024923801098377 a001 139583862445/14662949395604*2207^(7/8) 8024923801098377 a001 53316291173/5600748293801*2207^(7/8) 8024923801098377 a001 20365011074/2139295485799*2207^(7/8) 8024923801098377 a001 7778742049/817138163596*2207^(7/8) 8024923801098377 a001 2971215073/312119004989*2207^(7/8) 8024923801098377 a001 1134903170/119218851371*2207^(7/8) 8024923801098377 a001 433494437/45537549124*2207^(7/8) 8024923801098377 a001 165580141/17393796001*2207^(7/8) 8024923801098377 a001 63245986/6643838879*2207^(7/8) 8024923801098379 a001 24157817/2537720636*2207^(7/8) 8024923801098396 a001 9227465/969323029*2207^(7/8) 8024923801098506 a001 3524578/370248451*2207^(7/8) 8024923801099263 a001 1346269/141422324*2207^(7/8) 8024923801104449 a001 514229/54018521*2207^(7/8) 8024923801139997 a001 196418/20633239*2207^(7/8) 8024923801383646 a001 75025/7881196*2207^(7/8) 8024923803053644 a001 28657/3010349*2207^(7/8) 8024923803102799 r005 Im(z^2+c),c=-21/110+21/26*I,n=43 8024923808715370 a007 Real Root Of -203*x^4+769*x^3-633*x^2-986*x+98 8024923814499980 a001 10946/1149851*2207^(7/8) 8024923817653810 r005 Im(z^2+c),c=4/27+23/37*I,n=9 8024923822768571 m001 (BesselK(1,1)+MinimumGamma)/(ln(3)-sin(1)) 8024923834809101 a007 Real Root Of 896*x^4+36*x^3+128*x^2-392*x-750 8024923840952693 r009 Im(z^3+c),c=-31/60+25/58*I,n=51 8024923844452660 a001 305/2889*1364^(3/5) 8024923869005832 a001 6765/1149851*2207^(15/16) 8024923875016857 m001 (5^(1/2)-Ei(1))/(-Mills+QuadraticClass) 8024923880476596 a001 1597/15127*2207^(9/16) 8024923889085351 a001 610/9349*1364^(2/3) 8024923892954333 a001 4181/439204*2207^(7/8) 8024923898953973 a001 17711/3010349*2207^(15/16) 8024923899442686 r002 42th iterates of z^2 + 8024923903323348 a001 11592/1970299*2207^(15/16) 8024923903782591 r005 Im(z^2+c),c=-107/126+3/49*I,n=5 8024923903960831 a001 121393/20633239*2207^(15/16) 8024923904020795 a001 987/2207*843^(3/7) 8024923904053839 a001 317811/54018521*2207^(15/16) 8024923904067408 a001 208010/35355581*2207^(15/16) 8024923904069388 a001 2178309/370248451*2207^(15/16) 8024923904069677 a001 5702887/969323029*2207^(15/16) 8024923904069719 a001 196452/33391061*2207^(15/16) 8024923904069725 a001 39088169/6643838879*2207^(15/16) 8024923904069726 a001 102334155/17393796001*2207^(15/16) 8024923904069726 a001 66978574/11384387281*2207^(15/16) 8024923904069726 a001 701408733/119218851371*2207^(15/16) 8024923904069726 a001 1836311903/312119004989*2207^(15/16) 8024923904069726 a001 1201881744/204284540899*2207^(15/16) 8024923904069726 a001 12586269025/2139295485799*2207^(15/16) 8024923904069726 a001 32951280099/5600748293801*2207^(15/16) 8024923904069726 a001 1135099622/192933544679*2207^(15/16) 8024923904069726 a001 139583862445/23725150497407*2207^(15/16) 8024923904069726 a001 53316291173/9062201101803*2207^(15/16) 8024923904069726 a001 10182505537/1730726404001*2207^(15/16) 8024923904069726 a001 7778742049/1322157322203*2207^(15/16) 8024923904069726 a001 2971215073/505019158607*2207^(15/16) 8024923904069726 a001 567451585/96450076809*2207^(15/16) 8024923904069726 a001 433494437/73681302247*2207^(15/16) 8024923904069726 a001 165580141/28143753123*2207^(15/16) 8024923904069727 a001 31622993/5374978561*2207^(15/16) 8024923904069729 a001 24157817/4106118243*2207^(15/16) 8024923904069745 a001 9227465/1568397607*2207^(15/16) 8024923904069855 a001 1762289/299537289*2207^(15/16) 8024923904070612 a001 1346269/228826127*2207^(15/16) 8024923904075795 a001 514229/87403803*2207^(15/16) 8024923904111321 a001 98209/16692641*2207^(15/16) 8024923904354817 a001 75025/12752043*2207^(15/16) 8024923904389566 a001 1597/9349*2207^(1/2) 8024923906023770 a001 28657/4870847*2207^(15/16) 8024923917462942 a001 5473/930249*2207^(15/16) 8024923928453800 h001 (-8*exp(-2)+7)/(-6*exp(1/3)+1) 8024923936884625 a001 6624/2161*843^(1/7) 8024923947081100 r005 Im(z^2+c),c=-13/98+50/61*I,n=22 8024923966867981 m001 (3^(1/3)-HardHexagonsEntropy)/(Mills-Sarnak) 8024923967475543 a001 121393/39603*843^(1/7) 8024923971410072 m004 -1-25*Pi-Cos[Sqrt[5]*Pi]+5*Pi*Csch[Sqrt[5]*Pi] 8024923971938698 a001 317811/103682*843^(1/7) 8024923971971113 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^30 8024923972589864 a001 832040/271443*843^(1/7) 8024923972684867 a001 311187/101521*843^(1/7) 8024923972698728 a001 5702887/1860498*843^(1/7) 8024923972700750 a001 14930352/4870847*843^(1/7) 8024923972701045 a001 39088169/12752043*843^(1/7) 8024923972701089 a001 14619165/4769326*843^(1/7) 8024923972701095 a001 267914296/87403803*843^(1/7) 8024923972701096 a001 701408733/228826127*843^(1/7) 8024923972701096 a001 1836311903/599074578*843^(1/7) 8024923972701096 a001 686789568/224056801*843^(1/7) 8024923972701096 a001 12586269025/4106118243*843^(1/7) 8024923972701096 a001 32951280099/10749957122*843^(1/7) 8024923972701096 a001 86267571272/28143753123*843^(1/7) 8024923972701096 a001 32264490531/10525900321*843^(1/7) 8024923972701096 a001 591286729879/192900153618*843^(1/7) 8024923972701096 a001 1548008755920/505019158607*843^(1/7) 8024923972701096 a001 1515744265389/494493258286*843^(1/7) 8024923972701096 a001 2504730781961/817138163596*843^(1/7) 8024923972701096 a001 956722026041/312119004989*843^(1/7) 8024923972701096 a001 365435296162/119218851371*843^(1/7) 8024923972701096 a001 139583862445/45537549124*843^(1/7) 8024923972701096 a001 53316291173/17393796001*843^(1/7) 8024923972701096 a001 20365011074/6643838879*843^(1/7) 8024923972701096 a001 7778742049/2537720636*843^(1/7) 8024923972701096 a001 2971215073/969323029*843^(1/7) 8024923972701096 a001 1134903170/370248451*843^(1/7) 8024923972701096 a001 433494437/141422324*843^(1/7) 8024923972701099 a001 165580141/54018521*843^(1/7) 8024923972701115 a001 63245986/20633239*843^(1/7) 8024923972701228 a001 24157817/7881196*843^(1/7) 8024923972702000 a001 9227465/3010349*843^(1/7) 8024923972707295 a001 3524578/1149851*843^(1/7) 8024923972743583 a001 1346269/439204*843^(1/7) 8024923972992306 a001 514229/167761*843^(1/7) 8024923974697079 a001 196418/64079*843^(1/7) 8024923975832544 m004 -1-25*Pi-Cos[Sqrt[5]*Pi]+5*Pi*Sech[Sqrt[5]*Pi] 8024923981308781 r002 2th iterates of z^2 + 8024923986381771 a001 75025/24476*843^(1/7) 8024923988966886 r005 Im(z^2+c),c=-3/106+14/19*I,n=43 8024923995416633 r005 Im(z^2+c),c=-13/56+25/37*I,n=10 8024923995868192 a001 4181/710647*2207^(15/16) 8024924001924438 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^32 8024924002559677 a007 Real Root Of -212*x^4+341*x^3-669*x^2-876*x-8 8024924006294570 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^34 8024924006932163 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^36 8024924007025187 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^38 8024924007038759 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^40 8024924007040739 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^42 8024924007041028 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^44 8024924007041070 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^46 8024924007041076 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^48 8024924007041077 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^50 8024924007041077 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^52 8024924007041077 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^54 8024924007041077 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^56 8024924007041077 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^58 8024924007041077 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^60 8024924007041077 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^62 8024924007041077 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^64 8024924007041077 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^66 8024924007041077 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^68 8024924007041077 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^70 8024924007041077 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^72 8024924007041077 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^74 8024924007041077 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^76 8024924007041077 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^78 8024924007041077 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^80 8024924007041077 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^82 8024924007041077 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^84 8024924007041077 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^86 8024924007041077 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^88 8024924007041077 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^90 8024924007041077 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^92 8024924007041077 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^94 8024924007041077 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^96 8024924007041077 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^98 8024924007041077 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^100 8024924007041077 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^99 8024924007041077 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^97 8024924007041077 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^95 8024924007041077 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^93 8024924007041077 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^91 8024924007041077 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^89 8024924007041077 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^87 8024924007041077 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^85 8024924007041077 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^83 8024924007041077 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^81 8024924007041077 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^79 8024924007041077 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^77 8024924007041077 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^75 8024924007041077 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^73 8024924007041077 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^71 8024924007041077 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^69 8024924007041077 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^67 8024924007041077 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^65 8024924007041077 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^63 8024924007041077 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^61 8024924007041077 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^59 8024924007041077 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^57 8024924007041077 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^55 8024924007041077 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^53 8024924007041077 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^51 8024924007041078 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^49 8024924007041080 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^47 8024924007041096 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^45 8024924007041206 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^43 8024924007041415 a001 2/987*(1/2+1/2*5^(1/2))^22 8024924007041963 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^41 8024924007047147 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^39 8024924007082679 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^37 8024924007326218 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^35 8024924008995459 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^33 8024924015704193 a007 Real Root Of -417*x^4+815*x^3+33*x^2+288*x+804 8024924016999236 m001 (BesselI(1,2)-ln(2)/ln(10))/(-Mills+Porter) 8024924017580438 l006 ln(6331/6860) 8024924019419092 h001 (1/8*exp(1)+11/12)/(2/11*exp(2)+2/9) 8024924020436611 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^31 8024924031913445 a001 1597/24476*2207^(5/8) 8024924037251496 m001 Artin/GolombDickman*Totient 8024924045456773 a007 Real Root Of -136*x^4+568*x^3-685*x^2+208*x+958 8024924062542776 r005 Re(z^2+c),c=-107/82+1/58*I,n=60 8024924066469836 a001 28657/9349*843^(1/7) 8024924074035581 r002 3th iterates of z^2 + 8024924098855435 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^29 8024924103459554 l006 ln(3544/7907) 8024924116372624 a001 1597/39603*2207^(11/16) 8024924140972378 r005 Re(z^2+c),c=-107/82+1/58*I,n=52 8024924146056951 m001 (GaussKuzminWirsing+Paris)/(ln(Pi)-Cahen) 8024924187919713 m001 1/exp(TwinPrimes)^2*CareFree^2/GAMMA(17/24)^2 8024924192014167 m001 (Zeta(1,-1)+ZetaQ(3))/(2^(1/2)-ln(5)) 8024924226414999 a001 1597/64079*2207^(3/4) 8024924235937500 a001 1597/3571*2207^(3/8) 8024924245165351 a007 Real Root Of -429*x^4+631*x^3+768*x^2+333*x-910 8024924258706131 p003 LerchPhi(1/25,4,203/192) 8024924261283912 a007 Real Root Of -72*x^4+695*x^3-33*x^2-196*x+253 8024924278951215 r008 a(0)=8,K{-n^6,-93+84*n^3+5*n^2-36*n} 8024924293706063 m005 (1/2*3^(1/2)+1/12)/(1/4*3^(1/2)+3/4) 8024924298950875 m004 25*Pi+Csc[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/4 8024924299278657 a007 Real Root Of -99*x^4-765*x^3+173*x^2-390*x+958 8024924301191867 a007 Real Root Of -781*x^4+346*x^3+716*x^2+638*x-828 8024924319667663 r005 Re(z^2+c),c=-107/82+1/58*I,n=64 8024924326685464 a001 1597/103682*2207^(13/16) 8024924347496211 a007 Real Root Of 962*x^4-627*x^3+483*x^2+101*x-953 8024924349023890 m005 (-9/44+1/4*5^(1/2))/(9/11*3^(1/2)+3) 8024924363597809 a001 615/124*521^(1/13) 8024924379568600 m005 (15/28+1/4*5^(1/2))/(7/9*5^(1/2)-3/8) 8024924404530139 r008 a(0)=8,K{-n^6,-59-30*n^3+64*n^2-16*n} 8024924428132955 m001 Catalan*(GAMMA(7/12)-BesselJZeros(0,1)) 8024924430688469 a001 1597/167761*2207^(7/8) 8024924450119797 a007 Real Root Of -885*x^4-244*x^3+104*x^2+658*x+702 8024924453853714 m001 OrthogonalArrays^AlladiGrinstead/GAMMA(13/24) 8024924454379631 a007 Real Root Of 404*x^4-210*x^3-792*x^2-152*x+573 8024924471299093 q001 2125/2648 8024924477284502 a007 Real Root Of -717*x^4+214*x^3+288*x^2+367*x+517 8024924494893181 a007 Real Root Of -799*x^4+797*x^3+88*x^2-797*x+47 8024924530541236 a008 Real Root of x^4-x^3-43*x^2+197*x-314 8024924533265772 a001 1597/271443*2207^(15/16) 8024924536399735 a007 Real Root Of -89*x^4+74*x^3-135*x^2+765*x+776 8024924539158817 a007 Real Root Of -443*x^4+53*x^3-557*x^2+313*x+821 8024924542410060 r008 a(0)=0,K{-n^6,-56+33*n^3-45*n^2+56*n} 8024924552324366 a001 5473/2889*843^(3/14) 8024924562308843 b008 7+Csc[Sqrt[2]]^2 8024924578894254 a007 Real Root Of 765*x^4-808*x^3-515*x^2-6*x-408 8024924588088099 m001 1/BesselK(0,1)/Paris*exp(BesselK(1,1))^2 8024924603588661 m005 (1/2*5^(1/2)+4/11)/(6/11*exp(1)+4/11) 8024924615401645 a001 10946/3571*843^(1/7) 8024924636346045 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^27 8024924646482043 v002 sum(1/(3^n+(20*n^2-11*n+6)),n=1..infinity) 8024924660544331 r008 a(0)=8,K{-n^6,-30+3*n^3-16*n^2+2*n} 8024924671251774 a007 Real Root Of 364*x^4+263*x^3-596*x^2-959*x-73 8024924676808930 a007 Real Root Of -86*x^4+650*x^3-994*x^2-47*x+974 8024924695104823 a007 Real Root Of 727*x^4-757*x^3-274*x^2+510*x-107 8024924711041435 r008 a(0)=8,K{-n^6,-9-30*n-19*n^2+21*n^3} 8024924711898630 a001 233/843*521^(7/13) 8024924714078430 a007 Real Root Of -942*x^4-43*x^3+251*x^2+180*x-16 8024924725358189 a001 233/9349*521^(12/13) 8024924725614492 r009 Im(z^3+c),c=-29/60+24/43*I,n=17 8024924729604212 a001 1/646*233^(16/53) 8024924733478135 m001 Paris/(Landau-Pi^(1/2)) 8024924733634819 m001 (MertensB2+Porter)/(Chi(1)+BesselI(0,2)) 8024924746186370 a001 28657/15127*843^(3/14) 8024924754561349 r005 Im(z^2+c),c=-91/118+11/43*I,n=9 8024924766151534 a001 610/2207*3571^(7/17) 8024924768607187 b008 Sin[Tanh[2]/12] 8024924774470456 a001 75025/39603*843^(3/14) 8024924775549073 r005 Im(z^2+c),c=-101/118+16/31*I,n=3 8024924778597049 a001 98209/51841*843^(3/14) 8024924779199111 a001 514229/271443*843^(3/14) 8024924779286950 a001 1346269/710647*843^(3/14) 8024924779299766 a001 1762289/930249*843^(3/14) 8024924779301636 a001 9227465/4870847*843^(3/14) 8024924779301908 a001 24157817/12752043*843^(3/14) 8024924779301948 a001 31622993/16692641*843^(3/14) 8024924779301954 a001 165580141/87403803*843^(3/14) 8024924779301955 a001 433494437/228826127*843^(3/14) 8024924779301955 a001 567451585/299537289*843^(3/14) 8024924779301955 a001 2971215073/1568397607*843^(3/14) 8024924779301955 a001 7778742049/4106118243*843^(3/14) 8024924779301955 a001 10182505537/5374978561*843^(3/14) 8024924779301955 a001 53316291173/28143753123*843^(3/14) 8024924779301955 a001 139583862445/73681302247*843^(3/14) 8024924779301955 a001 182717648081/96450076809*843^(3/14) 8024924779301955 a001 956722026041/505019158607*843^(3/14) 8024924779301955 a001 10610209857723/5600748293801*843^(3/14) 8024924779301955 a001 591286729879/312119004989*843^(3/14) 8024924779301955 a001 225851433717/119218851371*843^(3/14) 8024924779301955 a001 21566892818/11384387281*843^(3/14) 8024924779301955 a001 32951280099/17393796001*843^(3/14) 8024924779301955 a001 12586269025/6643838879*843^(3/14) 8024924779301955 a001 1201881744/634430159*843^(3/14) 8024924779301955 a001 1836311903/969323029*843^(3/14) 8024924779301955 a001 701408733/370248451*843^(3/14) 8024924779301955 a001 66978574/35355581*843^(3/14) 8024924779301958 a001 102334155/54018521*843^(3/14) 8024924779301973 a001 39088169/20633239*843^(3/14) 8024924779302077 a001 3732588/1970299*843^(3/14) 8024924779302791 a001 5702887/3010349*843^(3/14) 8024924779307686 a001 2178309/1149851*843^(3/14) 8024924779341238 a001 208010/109801*843^(3/14) 8024924779571205 a001 317811/167761*843^(3/14) 8024924781147423 a001 121393/64079*843^(3/14) 8024924791950983 a001 11592/6119*843^(3/14) 8024924821393665 r009 Im(z^3+c),c=-1/10+4/5*I,n=61 8024924840189403 a001 987/1364*3571^(5/17) 8024924865999683 a001 17711/9349*843^(3/14) 8024924868554602 l006 ln(1653/3688) 8024924872285586 a001 440719107401/329*144^(14/17) 8024924873591172 a007 Real Root Of -120*x^4-982*x^3-67*x^2+566*x-967 8024924875934998 m001 (exp(-1/2*Pi)+Bloch)/(Kolakoski-Rabbit) 8024924902624858 s001 sum(1/10^(n-1)*A049459[n]/n!,n=1..infinity) 8024924909338732 a007 Real Root Of 108*x^4-905*x^3+417*x^2-93*x+229 8024924947759049 a003 -1-cos(13/27*Pi)-2*cos(7/18*Pi)+cos(1/9*Pi) 8024924949260702 a003 sin(Pi*4/75)+sin(Pi*25/114) 8024924966004454 b008 3/16+Cos[3] 8024924976903297 s002 sum(A035134[n]/(10^n+1),n=1..infinity) 8024924987146600 r005 Re(z^2+c),c=7/27+21/58*I,n=43 8024924991450801 a001 610/2207*9349^(7/19) 8024925001117452 a001 987/1364*9349^(5/19) 8024925001685589 a001 610/3571*1364^(8/15) 8024925011691493 m001 gamma(1)*(2/3*Pi*3^(1/2)/GAMMA(2/3))^Paris 8024925020811969 a001 610/2207*24476^(1/3) 8024925022089715 a001 987/1364*24476^(5/21) 8024925022196072 a007 Real Root Of 903*x^4+236*x^3+662*x^2-217*x-853 8024925024682336 a001 610/2207*64079^(7/23) 8024925024854262 a001 987/1364*64079^(5/23) 8024925024991669 a001 120414/15005 8024925025222100 a001 987/1364*167761^(1/5) 8024925025277144 a001 610/2207*20633239^(1/5) 8024925025277148 a001 610/2207*17393796001^(1/7) 8024925025277148 a001 610/2207*14662949395604^(1/9) 8024925025277148 a001 610/2207*(1/2+1/2*5^(1/2))^7 8024925025277148 a001 610/2207*599074578^(1/6) 8024925025279125 a001 987/1364*20633239^(1/7) 8024925025279128 a001 987/1364*2537720636^(1/9) 8024925025279128 a001 987/1364*312119004989^(1/11) 8024925025279128 a001 987/1364*(1/2+1/2*5^(1/2))^5 8024925025279128 a001 987/1364*28143753123^(1/10) 8024925025279128 a001 987/1364*228826127^(1/8) 8024925025279514 a001 987/1364*1860498^(1/6) 8024925025281120 a001 610/2207*710647^(1/4) 8024925025434650 a001 987/1364*103682^(5/24) 8024925025494879 a001 610/2207*103682^(7/24) 8024925026442000 a001 987/1364*39603^(5/22) 8024925026905169 a001 610/2207*39603^(7/22) 8024925034046620 a001 987/1364*15127^(1/4) 8024925035138976 r008 a(0)=8,K{-n^6,-54-21*n+33*n^2+3*n^3} 8024925037551637 a001 610/2207*15127^(7/20) 8024925041768202 a007 Real Root Of 634*x^4+186*x^3-13*x^2-144*x-274 8024925042927314 r009 Im(z^3+c),c=-1/17+19/23*I,n=9 8024925050112742 r002 37th iterates of z^2 + 8024925057890076 a007 Real Root Of -511*x^4-223*x^3+641*x^2+931*x+431 8024925091393684 m001 1/Salem/exp(RenyiParking)^2*BesselK(0,1) 8024925092049443 a001 987/1364*5778^(5/18) 8024925107661282 r005 Im(z^2+c),c=-5/44+41/46*I,n=22 8024925117647643 a007 Real Root Of -159*x^4-39*x^3+273*x^2+115*x-182 8024925118755590 a001 610/2207*5778^(7/18) 8024925130503767 m005 (1/2*3^(1/2)+11/12)/(2/7*3^(1/2)-3/11) 8024925149088855 a007 Real Root Of 179*x^4+215*x^3+562*x^2-542*x-760 8024925156509039 a003 cos(Pi*13/116)-cos(Pi*21/46) 8024925164371687 b008 8+Sech[1]/26 8024925174934976 a007 Real Root Of 121*x^4+988*x^3+30*x^2-858*x-40 8024925269599756 m002 -(Pi^4*Csch[Pi])+(Log[Pi]*ProductLog[Pi])/3 8024925295474136 b008 3^ArcTan[3]-Pi 8024925298533612 r005 Re(z^2+c),c=11/58+2/7*I,n=27 8024925309964022 a007 Real Root Of -572*x^4+355*x^3-875*x^2-475*x+603 8024925310459777 a001 2255/1926*843^(2/7) 8024925331418880 a007 Real Root Of -938*x^4+307*x^3-166*x^2+170*x+791 8024925335686908 r002 5th iterates of z^2 + 8024925341682003 m004 -6+5*Pi-Sqrt[5]*Pi+(125*Log[Sqrt[5]*Pi])/Pi 8024925364846579 m001 PisotVijayaraghavan^2*ln(ErdosBorwein)/Zeta(5) 8024925366140000 s001 sum(1/10^(n-1)*A156487[n],n=1..infinity) 8024925366140000 s001 sum(1/10^n*A156487[n],n=1..infinity) 8024925373537062 a001 6765/3571*843^(3/14) 8024925374266996 a001 1597/2207*843^(5/14) 8024925417974151 a001 322/2971215073*832040^(6/19) 8024925417974883 a001 322/53316291173*7778742049^(6/19) 8024925432286157 m005 (1/2*Catalan-5/8)/(43/40+9/20*5^(1/2)) 8024925446947451 a007 Real Root Of 807*x^4-665*x^3+522*x^2+210*x-846 8024925473860893 m005 (1/2*gamma-2)/(7/12*Pi+3/10) 8024925474376806 a007 Real Root Of 203*x^4+291*x^3+708*x^2-956*x+72 8024925486228602 a007 Real Root Of -773*x^4+523*x^3+209*x^2+290*x+689 8024925489566041 a007 Real Root Of 960*x^4-16*x^3+63*x^2-329*x-711 8024925494445949 q001 2962/3691 8024925501384813 h001 (2/5*exp(1)+2/3)/(7/12*exp(1)+3/5) 8024925540135968 a001 987/1364*2207^(5/16) 8024925545716285 a001 17711/15127*843^(2/7) 8024925561214272 a007 Real Root Of 284*x^4+367*x^3+249*x^2+109*x-1 8024925562561340 r005 Im(z^2+c),c=-79/118+7/43*I,n=55 8024925569783752 a001 646/341*1364^(1/5) 8024925580039748 a001 15456/13201*843^(2/7) 8024925585047473 a001 121393/103682*843^(2/7) 8024925585778091 a001 105937/90481*843^(2/7) 8024925585884686 a001 832040/710647*843^(2/7) 8024925585900239 a001 726103/620166*843^(2/7) 8024925585902508 a001 5702887/4870847*843^(2/7) 8024925585902839 a001 4976784/4250681*843^(2/7) 8024925585902887 a001 39088169/33385282*843^(2/7) 8024925585902894 a001 34111385/29134601*843^(2/7) 8024925585902895 a001 267914296/228826127*843^(2/7) 8024925585902895 a001 233802911/199691526*843^(2/7) 8024925585902895 a001 1836311903/1568397607*843^(2/7) 8024925585902895 a001 1602508992/1368706081*843^(2/7) 8024925585902895 a001 12586269025/10749957122*843^(2/7) 8024925585902895 a001 10983760033/9381251041*843^(2/7) 8024925585902895 a001 86267571272/73681302247*843^(2/7) 8024925585902895 a001 75283811239/64300051206*843^(2/7) 8024925585902895 a001 2504730781961/2139295485799*843^(2/7) 8024925585902895 a001 365435296162/312119004989*843^(2/7) 8024925585902895 a001 139583862445/119218851371*843^(2/7) 8024925585902895 a001 53316291173/45537549124*843^(2/7) 8024925585902895 a001 20365011074/17393796001*843^(2/7) 8024925585902895 a001 7778742049/6643838879*843^(2/7) 8024925585902895 a001 2971215073/2537720636*843^(2/7) 8024925585902895 a001 1134903170/969323029*843^(2/7) 8024925585902895 a001 433494437/370248451*843^(2/7) 8024925585902896 a001 165580141/141422324*843^(2/7) 8024925585902898 a001 63245986/54018521*843^(2/7) 8024925585902917 a001 24157817/20633239*843^(2/7) 8024925585903043 a001 9227465/7881196*843^(2/7) 8024925585903910 a001 3524578/3010349*843^(2/7) 8024925585909850 a001 1346269/1149851*843^(2/7) 8024925585950566 a001 514229/439204*843^(2/7) 8024925586229637 a001 196418/167761*843^(2/7) 8024925588142418 a001 75025/64079*843^(2/7) 8024925596876011 r002 12th iterates of z^2 + 8024925601252814 a001 28657/24476*843^(2/7) 8024925601470938 r008 a(0)=8,K{-n^6,-18-24*n+5*n^2-4*n^3} 8024925615763755 a007 Real Root Of -563*x^4-754*x^3-908*x^2-149*x+309 8024925628640601 m006 (1/3*Pi^2-1/3)/(3*ln(Pi)+1/4) 8024925638689604 a007 Real Root Of -443*x^4+882*x^3-608*x^2+985*x-671 8024925644609516 r008 a(0)=8,K{-n^6,-31-n-22*n^2+12*n^3} 8024925646400839 r002 45th iterates of z^2 + 8024925658892365 r008 a(0)=8,K{-n^6,-14+27*n-8*n^2+n^3} 8024925671239693 r009 Re(z^3+c),c=-7/38+38/55*I,n=9 8024925685542550 r008 a(0)=8,K{-n^6,-31-6*n-27*n^2+18*n^3} 8024925688019806 r008 a(0)=8,K{-n^6,-95+97*n^3-30*n^2-12*n} 8024925691112809 a001 10946/9349*843^(2/7) 8024925696530782 m005 (1/3*Zeta(3)+2/5)/(4/7*exp(1)-5/9) 8024925701855846 a007 Real Root Of -110*x^4+966*x^3+710*x^2+373*x-35 8024925711513722 p003 LerchPhi(1/25,2,119/106) 8024925713518644 r005 Im(z^2+c),c=-9/8+3/163*I,n=4 8024925743242484 m001 (sin(1)+cos(1/5*Pi))/(-Zeta(1/2)+Gompertz) 8024925745293405 a007 Real Root Of 625*x^4-422*x^3-562*x^2-237*x+511 8024925746076733 a001 610/2207*2207^(7/16) 8024925752354024 l006 ln(3068/6845) 8024925760795030 a007 Real Root Of -34*x^4+154*x^3+345*x^2+616*x-782 8024925762479261 r008 a(0)=8,K{-n^6,-47+7*n-2*n^2+2*n^3} 8024925787192412 m001 HardyLittlewoodC4/(Bloch+ReciprocalFibonacci) 8024925800769774 a007 Real Root Of 892*x^4-918*x^3-438*x^2-204*x-726 8024925804003709 a007 Real Root Of 724*x^4-873*x^3-47*x^2+627*x-218 8024925806040506 a007 Real Root Of 921*x^4-306*x^3+162*x^2-483*x-40 8024925815377712 r002 8th iterates of z^2 + 8024925838206014 r002 4th iterates of z^2 + 8024925852406362 r008 a(0)=8,K{-n^6,-98-21*n^3+60*n^2+21*n} 8024925862221589 a007 Real Root Of 642*x^4+108*x^3+364*x^2-379*x-749 8024925868885142 a003 sin(Pi*11/48)/sin(Pi*31/101) 8024925869990811 r005 Im(z^2+c),c=-4/7+15/101*I,n=27 8024925873959984 m005 (1/2*5^(1/2)-5/9)/(4/9*Zeta(3)+1/6) 8024925874274417 a007 Real Root Of -294*x^4+927*x^3+81*x^2+465*x+922 8024925901048255 m004 1+Sqrt[5]*Pi+5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi]^2 8024925901400116 m004 1+Sqrt[5]*Pi+5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi]^2 8024925908295593 r005 Re(z^2+c),c=3/20+17/42*I,n=24 8024925935183767 m001 (-GAMMA(17/24)+MadelungNaCl)/(2^(1/2)-Chi(1)) 8024925966244418 m001 (Sarnak-TwinPrimes)/(ln(3)-HardyLittlewoodC4) 8024925995746742 r005 Im(z^2+c),c=-59/82+1/13*I,n=20 8024926035801502 a007 Real Root Of -336*x^4+353*x^3+415*x^2+265*x-523 8024926043513975 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^26 8024926043529083 a007 Real Root Of -971*x^4+105*x^3-619*x^2-240*x+663 8024926053882927 a007 Real Root Of -67*x^4-640*x^3-899*x^2-678*x-430 8024926078234095 l006 ln(4483/10002) 8024926080817065 a001 610/167761*3571^(16/17) 8024926099284410 a001 305/2889*3571^(9/17) 8024926104701808 r009 Im(z^3+c),c=-3/58+14/17*I,n=23 8024926116803367 a001 305/51841*3571^(15/17) 8024926121659989 r005 Im(z^2+c),c=-25/34+35/113*I,n=9 8024926139004160 r005 Im(z^2+c),c=-89/114+2/29*I,n=8 8024926149541620 m001 (sin(1)+cos(1))/(-Zeta(1/2)+MertensB1) 8024926149673974 m005 (1/3*Zeta(3)+1/4)/(2/5*Catalan+4/9) 8024926149963169 r008 a(0)=8,K{-n^6,33+30*n^3-47*n^2-58*n} 8024926151907170 a001 1597/1364*1364^(4/15) 8024926155423410 m001 sin(Pi/12)^2*sin(1)^2*exp(sqrt(2))^2 8024926156522208 a001 610/64079*3571^(14/17) 8024926161041755 r002 8th iterates of z^2 + 8024926175922764 a005 (1/cos(26/133*Pi))^307 8024926186469136 a001 610/39603*3571^(13/17) 8024926186803683 r005 Re(z^2+c),c=-7/122+48/59*I,n=18 8024926189526137 a001 4181/1364*1364^(2/15) 8024926195645967 a007 Real Root Of -535*x^4-829*x^3-170*x^2+830*x+569 8024926203100056 r002 5th iterates of z^2 + 8024926230440167 a007 Real Root Of 188*x^4-397*x^3+32*x^2+781*x+323 8024926230551705 a001 610/15127*3571^(11/17) 8024926241999265 a001 305/12238*3571^(12/17) 8024926243945126 a001 4181/5778*843^(5/14) 8024926252755003 m001 (MertensB1+Sarnak)/(GolombDickman-Si(Pi)) 8024926265285916 m001 (-GAMMA(7/12)+ZetaP(2))/(2^(1/2)+gamma(1)) 8024926291795568 r008 a(0)=8,K{-n^6,-32-24*n+29*n^2-14*n^3} 8024926293303614 a007 Real Root Of 505*x^4-689*x^3-450*x^2-515*x-689 8024926294966440 a007 Real Root Of 391*x^4-689*x^3+318*x^2+10*x-715 8024926295172257 m001 GaussKuzminWirsing^Sierpinski*ZetaP(3) 8024926307022419 a001 4181/3571*843^(2/7) 8024926307426923 m005 (1/2*Zeta(3)+7/10)/(3/5*Zeta(3)+9/10) 8024926321394426 a001 646/341*3571^(3/17) 8024926350196633 a001 615/124*1364^(1/15) 8024926365269261 g004 Re(GAMMA(-11/5+I*47/15)) 8024926370829480 a001 10946/15127*843^(5/14) 8024926371091386 r008 a(0)=8,K{-n^6,-33-6*n-26*n^2+26*n^3} 8024926380451898 a007 Real Root Of -494*x^4+250*x^3-634*x^2+832*x+71 8024926388954946 a001 305/2889*9349^(9/19) 8024926389341659 a001 28657/39603*843^(5/14) 8024926392042549 a001 75025/103682*843^(5/14) 8024926392436604 a001 196418/271443*843^(5/14) 8024926392494096 a001 514229/710647*843^(5/14) 8024926392502484 a001 1346269/1860498*843^(5/14) 8024926392503707 a001 3524578/4870847*843^(5/14) 8024926392503886 a001 9227465/12752043*843^(5/14) 8024926392503912 a001 24157817/33385282*843^(5/14) 8024926392503916 a001 63245986/87403803*843^(5/14) 8024926392503916 a001 165580141/228826127*843^(5/14) 8024926392503916 a001 433494437/599074578*843^(5/14) 8024926392503916 a001 1134903170/1568397607*843^(5/14) 8024926392503916 a001 2971215073/4106118243*843^(5/14) 8024926392503916 a001 7778742049/10749957122*843^(5/14) 8024926392503916 a001 20365011074/28143753123*843^(5/14) 8024926392503916 a001 53316291173/73681302247*843^(5/14) 8024926392503916 a001 139583862445/192900153618*843^(5/14) 8024926392503916 a001 365435296162/505019158607*843^(5/14) 8024926392503916 a001 10610209857723/14662949395604*843^(5/14) 8024926392503916 a001 591286729879/817138163596*843^(5/14) 8024926392503916 a001 225851433717/312119004989*843^(5/14) 8024926392503916 a001 86267571272/119218851371*843^(5/14) 8024926392503916 a001 32951280099/45537549124*843^(5/14) 8024926392503916 a001 12586269025/17393796001*843^(5/14) 8024926392503916 a001 4807526976/6643838879*843^(5/14) 8024926392503916 a001 1836311903/2537720636*843^(5/14) 8024926392503916 a001 701408733/969323029*843^(5/14) 8024926392503916 a001 267914296/370248451*843^(5/14) 8024926392503917 a001 102334155/141422324*843^(5/14) 8024926392503918 a001 39088169/54018521*843^(5/14) 8024926392503928 a001 14930352/20633239*843^(5/14) 8024926392503996 a001 5702887/7881196*843^(5/14) 8024926392504464 a001 2178309/3010349*843^(5/14) 8024926392507668 a001 832040/1149851*843^(5/14) 8024926392529627 a001 317811/439204*843^(5/14) 8024926392680143 a001 121393/167761*843^(5/14) 8024926393711791 a001 46368/64079*843^(5/14) 8024926394454014 a001 610/9349*3571^(10/17) 8024926400782814 a001 17711/24476*843^(5/14) 8024926409327461 m005 (1/2*Pi-5/7)/(4*exp(1)-1/5) 8024926415120710 a007 Real Root Of 12*x^4-532*x^3+43*x^2-614*x+735 8024926417951273 a001 646/341*9349^(3/19) 8024926422702080 a007 Real Root Of 309*x^4+92*x^3+435*x^2-424*x-701 8024926426705025 a001 305/2889*24476^(3/7) 8024926430534633 a001 646/341*24476^(1/7) 8024926431681212 a001 305/2889*64079^(9/23) 8024926432193362 a001 646/341*64079^(3/23) 8024926432404362 a001 46360/5777 8024926432432103 a001 305/2889*439204^(1/3) 8024926432443659 a001 646/341*439204^(1/9) 8024926432445935 a001 305/2889*7881196^(3/11) 8024926432445970 a001 305/2889*141422324^(3/13) 8024926432445970 a001 305/2889*2537720636^(1/5) 8024926432445970 a001 305/2889*45537549124^(3/17) 8024926432445970 a001 305/2889*817138163596^(3/19) 8024926432445970 a001 305/2889*14662949395604^(1/7) 8024926432445970 a001 305/2889*(1/2+1/2*5^(1/2))^9 8024926432445970 a001 305/2889*192900153618^(1/6) 8024926432445970 a001 305/2889*10749957122^(3/16) 8024926432445970 a001 305/2889*599074578^(3/14) 8024926432445972 a001 305/2889*33385282^(1/4) 8024926432446666 a001 305/2889*1860498^(3/10) 8024926432448270 a001 646/341*7881196^(1/11) 8024926432448281 a001 646/341*141422324^(1/13) 8024926432448281 a001 646/341*2537720636^(1/15) 8024926432448281 a001 646/341*45537549124^(1/17) 8024926432448281 a001 646/341*14662949395604^(1/21) 8024926432448281 a001 646/341*(1/2+1/2*5^(1/2))^3 8024926432448281 a001 646/341*192900153618^(1/18) 8024926432448281 a001 646/341*10749957122^(1/16) 8024926432448281 a001 646/341*599074578^(1/14) 8024926432448282 a001 646/341*33385282^(1/12) 8024926432448513 a001 646/341*1860498^(1/10) 8024926432541595 a001 646/341*103682^(1/8) 8024926432725911 a001 305/2889*103682^(3/8) 8024926432977633 g002 Psi(9/10)+Psi(1/9)-Psi(11/12)-Psi(7/11) 8024926433146005 a001 646/341*39603^(3/22) 8024926434303347 a007 Real Root Of -845*x^4+934*x^3-213*x^2-525*x+549 8024926434539141 a001 305/2889*39603^(9/22) 8024926437708778 a001 646/341*15127^(3/20) 8024926448227459 a001 305/2889*15127^(9/20) 8024926449248327 a001 6765/9349*843^(5/14) 8024926451100336 r002 37th iterates of z^2 + 8024926458394926 a007 Real Root Of -952*x^4+211*x^3-501*x^2-605*x+341 8024926469021118 a007 Real Root Of -183*x^4-71*x^3-45*x^2+649*x+589 8024926472510478 a001 646/341*5778^(1/6) 8024926501036564 r005 Im(z^2+c),c=-23/27+1/19*I,n=24 8024926507938252 r008 a(0)=8,K{-n^6,-47+92*n^3+12*n^2-97*n} 8024926518181128 m004 -6/25+25*Pi+Log[Sqrt[5]*Pi] 8024926530833565 r002 64th iterates of z^2 + 8024926552068397 a007 Real Root Of -153*x^4+336*x^3-226*x^2-498*x-17 8024926552632560 a001 305/2889*5778^(1/2) 8024926554857329 a007 Real Root Of 722*x^4-940*x^3+774*x^2+513*x-872 8024926575163623 m004 5/3+750/Pi+Cosh[Sqrt[5]*Pi] 8024926581004763 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^28 8024926584593478 a001 610/15127*9349^(11/19) 8024926584690061 m008 (5*Pi-1)/(3/5*Pi^5-1/3) 8024926585878701 a001 305/219602*9349^(18/19) 8024926590560522 a001 610/271443*9349^(17/19) 8024926595786913 a001 610/167761*9349^(16/19) 8024926599587600 a001 305/51841*9349^(15/19) 8024926600733541 a001 615/124*3571^(1/17) 8024926604882140 a001 610/39603*9349^(13/19) 8024926607120827 a001 610/64079*9349^(14/19) 8024926607343236 a007 Real Root Of -827*x^4+851*x^3+141*x^2+10*x+700 8024926613985828 m005 (Pi-1/6)/(1/2*2^(1/2)+3) 8024926614191079 p003 LerchPhi(1/10,6,248/239) 8024926628226655 a001 305/12238*9349^(12/19) 8024926630732465 a001 610/15127*24476^(11/21) 8024926632919158 a001 615/124*9349^(1/19) 8024926636814471 a001 610/15127*64079^(11/23) 8024926637113611 a001 615/124*24476^(1/21) 8024926637666521 a001 615/124*64079^(1/23) 8024926637743106 a001 4126650/514229 8024926637749133 a001 610/15127*7881196^(1/3) 8024926637749176 a001 610/15127*312119004989^(1/5) 8024926637749176 a001 610/15127*(1/2+1/2*5^(1/2))^11 8024926637749176 a001 610/15127*1568397607^(1/4) 8024926637751494 a001 615/248+615/248*5^(1/2) 8024926637782599 a001 615/124*103682^(1/24) 8024926637984069 a001 615/124*39603^(1/22) 8024926638091325 a001 610/15127*103682^(11/24) 8024926639154394 r008 a(0)=8,K{-n^6,-25-20*n+11*n^2-7*n^3} 8024926639504993 a001 615/124*15127^(1/20) 8024926640307496 a001 610/15127*39603^(1/2) 8024926642756306 r008 a(0)=8,K{-n^6,-48+92*n^3+12*n^2-96*n} 8024926651105560 a001 615/124*5778^(1/18) 8024926657037662 a001 610/15127*15127^(11/20) 8024926657390135 r002 53th iterates of z^2 + 8024926659410034 a001 610/39603*24476^(13/21) 8024926659423613 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^30 8024926660067565 a001 610/1149851*24476^(20/21) 8024926660488341 r002 11th iterates of z^2 + 8024926660683488 a001 610/710647*24476^(19/21) 8024926661378862 a001 305/219602*24476^(6/7) 8024926661866230 a001 610/271443*24476^(17/21) 8024926662504402 a001 305/51841*24476^(5/7) 8024926662898167 a001 610/167761*24476^(16/21) 8024926665843175 a001 610/64079*24476^(2/3) 8024926666597860 a001 610/39603*64079^(13/23) 8024926667324397 a001 233/5778*521^(11/13) 8024926667701625 a001 10803710/1346269 8024926667702511 a001 610/39603*141422324^(1/3) 8024926667702511 a001 610/39603*(1/2+1/2*5^(1/2))^13 8024926667702511 a001 610/39603*73681302247^(1/4) 8024926667704829 a004 Fibonacci(22)/Lucas(15)/(1/2+sqrt(5)/2) 8024926667756968 a001 610/39603*271443^(1/2) 8024926668106869 a001 610/39603*103682^(13/24) 8024926670725980 a001 610/39603*39603^(13/22) 8024926670798046 a001 305/51841*64079^(15/23) 8024926670864769 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^32 8024926670950627 a001 610/3010349*64079^(22/23) 8024926671032396 a001 305/930249*64079^(21/23) 8024926671125758 a001 610/1149851*64079^(20/23) 8024926671188771 a001 610/710647*64079^(19/23) 8024926671265693 a001 610/271443*64079^(17/23) 8024926671331236 a001 305/219602*64079^(18/23) 8024926671744721 a001 610/167761*64079^(16/23) 8024926671901559 a001 305/51841*167761^(3/5) 8024926672049532 a001 305/51841*439204^(5/9) 8024926672072514 a001 14142240/1762289 8024926672072585 a001 305/51841*7881196^(5/11) 8024926672072635 a001 305/51841*20633239^(3/7) 8024926672072643 a001 305/51841*141422324^(5/13) 8024926672072643 a001 305/51841*2537720636^(1/3) 8024926672072643 a001 305/51841*45537549124^(5/17) 8024926672072643 a001 305/51841*312119004989^(3/11) 8024926672072643 a001 305/51841*14662949395604^(5/21) 8024926672072643 a001 305/51841*(1/2+1/2*5^(1/2))^15 8024926672072643 a001 305/51841*192900153618^(5/18) 8024926672072643 a001 305/51841*28143753123^(3/10) 8024926672072643 a001 305/51841*10749957122^(5/16) 8024926672072643 a001 305/51841*599074578^(5/14) 8024926672072644 a001 305/51841*228826127^(3/8) 8024926672072646 a001 305/51841*33385282^(5/12) 8024926672073803 a001 305/51841*1860498^(1/2) 8024926672074962 a004 Fibonacci(24)/Lucas(15)/(1/2+sqrt(5)/2)^3 8024926672534011 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^34 8024926672539211 a001 305/51841*103682^(5/8) 8024926672597108 a001 610/1149851*167761^(4/5) 8024926672710218 a001 14809946/1845493 8024926672710237 a001 610/271443*45537549124^(1/3) 8024926672710237 a001 610/271443*(1/2+1/2*5^(1/2))^17 8024926672710262 a001 610/271443*12752043^(1/2) 8024926672712556 a004 Fibonacci(26)/Lucas(15)/(1/2+sqrt(5)/2)^5 8024926672777550 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^36 8024926672782301 a001 305/3940598*439204^(8/9) 8024926672784476 a001 305/930249*439204^(7/9) 8024926672803258 a001 193864710/24157817 8024926672803261 a001 610/710647*817138163596^(1/3) 8024926672803261 a001 610/710647*(1/2+1/2*5^(1/2))^19 8024926672803261 a001 610/710647*87403803^(1/2) 8024926672805579 a004 Fibonacci(28)/Lucas(15)/(1/2+sqrt(5)/2)^7 8024926672813082 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^38 8024926672816751 a001 305/930249*7881196^(7/11) 8024926672816822 a001 305/930249*20633239^(3/5) 8024926672816832 a001 253772200/31622993 8024926672816833 a001 305/930249*141422324^(7/13) 8024926672816833 a001 305/930249*2537720636^(7/15) 8024926672816833 a001 305/930249*17393796001^(3/7) 8024926672816833 a001 305/930249*45537549124^(7/17) 8024926672816833 a001 305/930249*14662949395604^(1/3) 8024926672816833 a001 305/930249*(1/2+1/2*5^(1/2))^21 8024926672816833 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^21/Lucas(30) 8024926672816833 a001 305/930249*192900153618^(7/18) 8024926672816833 a001 305/930249*10749957122^(7/16) 8024926672816833 a001 305/930249*599074578^(1/2) 8024926672816837 a001 305/930249*33385282^(7/12) 8024926672818266 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^40 8024926672818456 a001 305/930249*1860498^(7/10) 8024926672818813 a001 1328768490/165580141 8024926672818813 a001 610/4870847*(1/2+1/2*5^(1/2))^23 8024926672818813 a001 610/4870847*4106118243^(1/2) 8024926672819022 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^42 8024926672819034 a001 305/70711162*7881196^(10/11) 8024926672819038 a001 305/16692641*7881196^(9/11) 8024926672819088 a001 610/12752043*20633239^(5/7) 8024926672819102 a001 3478761070/433494437 8024926672819102 a001 610/12752043*2537720636^(5/9) 8024926672819102 a001 610/12752043*312119004989^(5/11) 8024926672819102 a001 610/12752043*(1/2+1/2*5^(1/2))^25 8024926672819102 a001 610/12752043*3461452808002^(5/12) 8024926672819102 a001 610/12752043*28143753123^(1/2) 8024926672819102 a001 610/12752043*228826127^(5/8) 8024926672819132 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^44 8024926672819136 a001 305/70711162*20633239^(6/7) 8024926672819139 a001 610/54018521*20633239^(4/5) 8024926672819144 a001 305/16692641*141422324^(9/13) 8024926672819144 a001 878256/109441 8024926672819144 a001 305/16692641*2537720636^(3/5) 8024926672819144 a001 305/16692641*45537549124^(9/17) 8024926672819144 a001 305/16692641*817138163596^(9/19) 8024926672819144 a001 305/16692641*14662949395604^(3/7) 8024926672819144 a001 305/16692641*(1/2+1/2*5^(1/2))^27 8024926672819144 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^27/Lucas(36) 8024926672819144 a001 305/16692641*192900153618^(1/2) 8024926672819144 a001 305/16692641*10749957122^(9/16) 8024926672819144 a001 305/16692641*599074578^(9/14) 8024926672819149 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^46 8024926672819149 a001 305/16692641*33385282^(3/4) 8024926672819150 a001 23843783090/2971215073 8024926672819150 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^29/Lucas(38) 8024926672819150 a001 610/87403803*1322157322203^(1/2) 8024926672819151 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^48 8024926672819151 a001 305/1268860318*141422324^(12/13) 8024926672819151 a001 305/299537289*141422324^(11/13) 8024926672819151 a001 62423834550/7778742049 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^31/Lucas(40) 8024926672819151 a001 610/228826127*9062201101803^(1/2) 8024926672819151 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^50 8024926672819151 a001 305/299537289*2537720636^(11/15) 8024926672819151 a001 81713860280/10182505537 8024926672819151 a001 305/299537289*45537549124^(11/17) 8024926672819151 a001 305/299537289*312119004989^(3/5) 8024926672819151 a001 305/299537289*817138163596^(11/19) 8024926672819151 a001 305/299537289*14662949395604^(11/21) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^33/Lucas(42) 8024926672819151 a001 305/299537289*192900153618^(11/18) 8024926672819151 a001 305/299537289*10749957122^(11/16) 8024926672819151 a001 305/299537289*1568397607^(3/4) 8024926672819151 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^52 8024926672819151 a001 305/299537289*599074578^(11/14) 8024926672819151 a001 610/1568397607*2537720636^(7/9) 8024926672819151 a001 610/1568397607*17393796001^(5/7) 8024926672819151 a001 427859327130/53316291173 8024926672819151 a001 610/1568397607*312119004989^(7/11) 8024926672819151 a001 610/1568397607*14662949395604^(5/9) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^35/Lucas(44) 8024926672819151 a001 610/1568397607*505019158607^(5/8) 8024926672819151 a001 610/1568397607*28143753123^(7/10) 8024926672819151 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^54 8024926672819151 a001 305/22768774562*2537720636^(14/15) 8024926672819151 a001 305/5374978561*2537720636^(13/15) 8024926672819151 a001 610/17393796001*2537720636^(8/9) 8024926672819151 a001 224030052166/27916772489 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^37/Lucas(46) 8024926672819151 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^56 8024926672819151 a001 305/5374978561*45537549124^(13/17) 8024926672819151 a001 1466295727680/182717648081 8024926672819151 a001 305/5374978561*14662949395604^(13/21) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(48) 8024926672819151 a001 305/5374978561*192900153618^(13/18) 8024926672819151 a001 305/5374978561*73681302247^(3/4) 8024926672819151 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^58 8024926672819151 a001 305/22768774562*17393796001^(6/7) 8024926672819151 a001 305/5374978561*10749957122^(13/16) 8024926672819151 a001 7677624105250/956722026041 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(50) 8024926672819151 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^60 8024926672819151 a001 305/96450076809*45537549124^(15/17) 8024926672819151 a001 305/408569081798*45537549124^(16/17) 8024926672819151 a001 20100280860390/2504730781961 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(52) 8024926672819151 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^62 8024926672819151 a001 305/96450076809*312119004989^(9/11) 8024926672819151 a001 1547741719880/192866774113 8024926672819151 a001 305/96450076809*14662949395604^(5/7) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(54) 8024926672819151 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^64 8024926672819151 a001 610/2139295485799*312119004989^(10/11) 8024926672819151 a001 305/96450076809*192900153618^(5/6) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(56) 8024926672819151 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^66 8024926672819151 a001 305/1730726404001*817138163596^(17/19) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(58) 8024926672819151 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^68 8024926672819151 a001 305/1730726404001*14662949395604^(17/21) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(60) 8024926672819151 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^70 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(62) 8024926672819151 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^72 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(64) 8024926672819151 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^74 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(66) 8024926672819151 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^76 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(68) 8024926672819151 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^78 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(70) 8024926672819151 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^80 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(72) 8024926672819151 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^82 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(74) 8024926672819151 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^84 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(76) 8024926672819151 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^86 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(78) 8024926672819151 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^88 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(80) 8024926672819151 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^90 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(82) 8024926672819151 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^92 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(84) 8024926672819151 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^94 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(86) 8024926672819151 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^96 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(88) 8024926672819151 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^98 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(90) 8024926672819151 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^100 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(92) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(94) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(96) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(98) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(100) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(99) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(97) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(95) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(93) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(91) 8024926672819151 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^99 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(89) 8024926672819151 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^97 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(87) 8024926672819151 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^95 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(85) 8024926672819151 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^93 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(83) 8024926672819151 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^91 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(81) 8024926672819151 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^89 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(79) 8024926672819151 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^87 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(77) 8024926672819151 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^85 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(75) 8024926672819151 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^83 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(73) 8024926672819151 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^81 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(71) 8024926672819151 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^79 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(69) 8024926672819151 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^77 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(67) 8024926672819151 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^75 8024926672819151 a001 305/7331474697802*14662949395604^(6/7) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(65) 8024926672819151 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^73 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(63) 8024926672819151 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^71 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(61) 8024926672819151 a001 610/5600748293801*23725150497407^(13/16) 8024926672819151 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^69 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(59) 8024926672819151 a001 610/2139295485799*3461452808002^(5/6) 8024926672819151 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^67 8024926672819151 a001 305/408569081798*14662949395604^(16/21) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(57) 8024926672819151 a001 610/1322157322203*505019158607^(7/8) 8024926672819151 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^65 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(55) 8024926672819151 a001 85146156091450/10610209857723 8024926672819151 a001 305/1730726404001*192900153618^(17/18) 8024926672819151 a001 305/408569081798*192900153618^(8/9) 8024926672819151 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^63 8024926672819151 a001 610/119218851371*312119004989^(4/5) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(53) 8024926672819151 a001 610/119218851371*23725150497407^(11/16) 8024926672819151 a001 32522937615530/4052739537881 8024926672819151 a001 305/22768774562*45537549124^(14/17) 8024926672819151 a001 305/408569081798*73681302247^(12/13) 8024926672819151 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^61 8024926672819151 a001 610/119218851371*73681302247^(11/13) 8024926672819151 a001 305/22768774562*817138163596^(14/19) 8024926672819151 a001 305/22768774562*14662949395604^(2/3) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(51) 8024926672819151 a001 10182505537/1268859636 8024926672819151 a001 305/22768774562*505019158607^(3/4) 8024926672819151 a001 305/22768774562*192900153618^(7/9) 8024926672819151 a001 305/96450076809*28143753123^(9/10) 8024926672819151 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^59 8024926672819151 a001 610/17393796001*312119004989^(8/11) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(49) 8024926672819151 a001 610/17393796001*23725150497407^(5/8) 8024926672819151 a001 4745032649890/591286729879 8024926672819151 a001 610/17393796001*73681302247^(10/13) 8024926672819151 a001 610/17393796001*28143753123^(4/5) 8024926672819151 a001 610/119218851371*10749957122^(11/12) 8024926672819151 a001 305/22768774562*10749957122^(7/8) 8024926672819151 a001 305/96450076809*10749957122^(15/16) 8024926672819151 a001 610/312119004989*10749957122^(23/24) 8024926672819151 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^57 8024926672819151 a001 610/17393796001*10749957122^(5/6) 8024926672819151 a001 610/6643838879*817138163596^(2/3) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(47) 8024926672819151 a001 1812441194530/225851433717 8024926672819151 a001 610/6643838879*10749957122^(19/24) 8024926672819151 a001 305/1268860318*2537720636^(4/5) 8024926672819151 a001 305/22768774562*4106118243^(21/23) 8024926672819151 a001 610/17393796001*4106118243^(20/23) 8024926672819151 a001 610/119218851371*4106118243^(22/23) 8024926672819151 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^55 8024926672819151 a001 610/6643838879*4106118243^(19/23) 8024926672819151 a001 305/1268860318*45537549124^(12/17) 8024926672819151 a001 305/1268860318*14662949395604^(4/7) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^36/Lucas(45) 8024926672819151 a001 305/1268860318*505019158607^(9/14) 8024926672819151 a001 305/1268860318*192900153618^(2/3) 8024926672819151 a001 10180749025/1268640754 8024926672819151 a001 305/1268860318*73681302247^(9/13) 8024926672819151 a001 305/1268860318*10749957122^(3/4) 8024926672819151 a001 305/1268860318*4106118243^(18/23) 8024926672819151 a001 610/17393796001*1568397607^(10/11) 8024926672819151 a001 610/6643838879*1568397607^(19/22) 8024926672819151 a001 305/22768774562*1568397607^(21/22) 8024926672819151 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^53 8024926672819151 a001 305/1268860318*1568397607^(9/11) 8024926672819151 a001 610/969323029*45537549124^(2/3) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^34/Lucas(43) 8024926672819151 a001 264431606570/32951280099 8024926672819151 a001 610/969323029*10749957122^(17/24) 8024926672819151 a001 610/969323029*4106118243^(17/23) 8024926672819151 a001 610/969323029*1568397607^(17/22) 8024926672819151 a001 610/1568397607*599074578^(5/6) 8024926672819151 a001 305/1268860318*599074578^(6/7) 8024926672819151 a001 610/6643838879*599074578^(19/21) 8024926672819151 a001 305/5374978561*599074578^(13/14) 8024926672819151 a001 610/17393796001*599074578^(20/21) 8024926672819151 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^51 8024926672819151 a001 610/969323029*599074578^(17/21) 8024926672819151 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^32/Lucas(41) 8024926672819151 a001 610/370248451*23725150497407^(1/2) 8024926672819151 a001 610/370248451*505019158607^(4/7) 8024926672819151 a001 610/370248451*73681302247^(8/13) 8024926672819151 a001 20200777202/2517253805 8024926672819151 a001 610/370248451*10749957122^(2/3) 8024926672819151 a001 610/370248451*4106118243^(16/23) 8024926672819151 a001 610/370248451*1568397607^(8/11) 8024926672819151 a001 610/370248451*599074578^(16/21) 8024926672819151 a001 305/70711162*141422324^(10/13) 8024926672819151 a001 610/1568397607*228826127^(7/8) 8024926672819151 a001 610/969323029*228826127^(17/20) 8024926672819151 a001 305/1268860318*228826127^(9/10) 8024926672819151 a001 610/6643838879*228826127^(19/20) 8024926672819151 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^49 8024926672819151 a001 610/370248451*228826127^(4/5) 8024926672819152 a001 305/70711162*2537720636^(2/3) 8024926672819152 a001 305/70711162*45537549124^(10/17) 8024926672819152 a001 305/70711162*312119004989^(6/11) 8024926672819152 a001 305/70711162*14662949395604^(10/21) 8024926672819152 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^30/Lucas(39) 8024926672819152 a001 305/70711162*192900153618^(5/9) 8024926672819152 a001 305/70711162*28143753123^(3/5) 8024926672819152 a001 305/70711162*10749957122^(5/8) 8024926672819152 a001 9645012865/1201881744 8024926672819152 a001 305/70711162*4106118243^(15/23) 8024926672819152 a001 305/70711162*1568397607^(15/22) 8024926672819152 a001 305/70711162*599074578^(5/7) 8024926672819152 a001 305/70711162*228826127^(3/4) 8024926672819152 a001 610/370248451*87403803^(16/19) 8024926672819152 a001 610/969323029*87403803^(17/19) 8024926672819152 a001 305/1268860318*87403803^(18/19) 8024926672819152 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^47 8024926672819152 a001 305/70711162*87403803^(15/19) 8024926672819154 a001 610/54018521*17393796001^(4/7) 8024926672819154 a001 610/54018521*14662949395604^(4/9) 8024926672819154 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^28/Lucas(37) 8024926672819154 a001 610/54018521*505019158607^(1/2) 8024926672819154 a001 610/54018521*73681302247^(7/13) 8024926672819154 a001 610/54018521*10749957122^(7/12) 8024926672819154 a001 610/54018521*4106118243^(14/23) 8024926672819154 a001 14736268370/1836311903 8024926672819154 a001 610/54018521*1568397607^(7/11) 8024926672819154 a001 610/54018521*599074578^(2/3) 8024926672819154 a001 610/54018521*228826127^(7/10) 8024926672819155 a001 610/54018521*87403803^(14/19) 8024926672819158 a001 305/70711162*33385282^(5/6) 8024926672819158 a001 610/370248451*33385282^(8/9) 8024926672819158 a001 305/299537289*33385282^(11/12) 8024926672819158 a001 610/969323029*33385282^(17/18) 8024926672819158 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^45 8024926672819160 a001 610/54018521*33385282^(7/9) 8024926672819170 a001 610/20633239*141422324^(2/3) 8024926672819170 a001 610/20633239*(1/2+1/2*5^(1/2))^26 8024926672819170 a001 610/20633239*73681302247^(1/2) 8024926672819170 a001 610/20633239*10749957122^(13/24) 8024926672819170 a001 610/20633239*4106118243^(13/23) 8024926672819170 a001 610/20633239*1568397607^(13/22) 8024926672819170 a001 5628753650/701408733 8024926672819170 a001 610/20633239*599074578^(13/21) 8024926672819170 a001 610/20633239*228826127^(13/20) 8024926672819171 a001 610/20633239*87403803^(13/19) 8024926672819175 a001 610/20633239*33385282^(13/18) 8024926672819186 a001 305/3940598*7881196^(8/11) 8024926672819195 a001 610/54018521*12752043^(14/17) 8024926672819195 a001 305/70711162*12752043^(15/17) 8024926672819198 a001 610/370248451*12752043^(16/17) 8024926672819201 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^43 8024926672819208 a001 610/20633239*12752043^(13/17) 8024926672819280 a001 305/3940598*141422324^(8/13) 8024926672819280 a001 305/3940598*2537720636^(8/15) 8024926672819280 a001 305/3940598*45537549124^(8/17) 8024926672819280 a001 305/3940598*14662949395604^(8/21) 8024926672819280 a001 305/3940598*(1/2+1/2*5^(1/2))^24 8024926672819280 a001 305/3940598*192900153618^(4/9) 8024926672819280 a001 305/3940598*73681302247^(6/13) 8024926672819280 a001 305/3940598*10749957122^(1/2) 8024926672819280 a001 305/3940598*4106118243^(12/23) 8024926672819280 a001 305/3940598*1568397607^(6/11) 8024926672819280 a001 305/3940598*599074578^(4/7) 8024926672819280 a001 537498145/66978574 8024926672819281 a001 305/3940598*228826127^(3/5) 8024926672819281 a001 305/3940598*87403803^(12/19) 8024926672819285 a001 305/3940598*33385282^(2/3) 8024926672819315 a001 305/3940598*12752043^(12/17) 8024926672819445 a001 610/20633239*4870847^(13/16) 8024926672819450 a001 610/54018521*4870847^(7/8) 8024926672819469 a001 305/70711162*4870847^(15/16) 8024926672819490 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^41 8024926672819534 a001 305/3940598*4870847^(3/4) 8024926672819951 a001 610/3010349*7881196^(2/3) 8024926672820037 a001 610/3010349*312119004989^(2/5) 8024926672820037 a001 610/3010349*(1/2+1/2*5^(1/2))^22 8024926672820037 a001 610/3010349*10749957122^(11/24) 8024926672820037 a001 610/3010349*4106118243^(11/23) 8024926672820037 a001 610/3010349*1568397607^(1/2) 8024926672820037 a001 610/3010349*599074578^(11/21) 8024926672820037 a001 610/3010349*228826127^(11/20) 8024926672820037 a001 164244818/20466831 8024926672820037 a001 610/3010349*87403803^(11/19) 8024926672820041 a001 610/3010349*33385282^(11/18) 8024926672820069 a001 610/3010349*12752043^(11/17) 8024926672820269 a001 610/3010349*4870847^(11/16) 8024926672821034 a001 610/12752043*1860498^(5/6) 8024926672821131 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2)^11 8024926672821135 a001 305/3940598*1860498^(4/5) 8024926672821179 a001 610/20633239*1860498^(13/15) 8024926672821231 a001 305/16692641*1860498^(9/10) 8024926672821318 a001 610/54018521*1860498^(14/15) 8024926672821420 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^13 8024926672821462 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^15 8024926672821469 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^17 8024926672821469 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^19 8024926672821470 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^21 8024926672821470 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^23 8024926672821470 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^25 8024926672821470 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^27 8024926672821470 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^29 8024926672821470 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^31 8024926672821470 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^33 8024926672821470 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^35 8024926672821470 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^37 8024926672821470 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^39 8024926672821470 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^41 8024926672821470 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^43 8024926672821470 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^45 8024926672821470 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^47 8024926672821470 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^49 8024926672821470 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^51 8024926672821470 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^53 8024926672821470 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^55 8024926672821470 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^57 8024926672821470 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^59 8024926672821470 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^61 8024926672821470 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^63 8024926672821470 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^65 8024926672821470 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^67 8024926672821470 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^69 8024926672821470 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^71 8024926672821470 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^73 8024926672821470 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^75 8024926672821470 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^77 8024926672821470 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^79 8024926672821470 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^78 8024926672821470 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^76 8024926672821470 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^74 8024926672821470 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^72 8024926672821470 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^70 8024926672821470 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^68 8024926672821470 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^66 8024926672821470 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^64 8024926672821470 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^62 8024926672821470 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^60 8024926672821470 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^58 8024926672821470 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^56 8024926672821470 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^54 8024926672821470 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^52 8024926672821470 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^50 8024926672821470 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^48 8024926672821470 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^46 8024926672821470 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^44 8024926672821470 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^42 8024926672821470 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^40 8024926672821470 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^38 8024926672821470 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^36 8024926672821470 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^34 8024926672821470 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^32 8024926672821470 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^30 8024926672821470 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^28 8024926672821470 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^26 8024926672821470 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^24 8024926672821470 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^22 8024926672821470 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^20 8024926672821470 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^18 8024926672821472 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^16 8024926672821488 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^14 8024926672821599 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^12 8024926672821737 a001 610/3010349*1860498^(11/15) 8024926672822355 a004 Fibonacci(31)/Lucas(15)/(1/2+sqrt(5)/2)^10 8024926672825210 a001 610/1149851*20633239^(4/7) 8024926672825221 a001 610/1149851*2537720636^(4/9) 8024926672825221 a001 610/1149851*(1/2+1/2*5^(1/2))^20 8024926672825221 a001 610/1149851*23725150497407^(5/16) 8024926672825221 a001 610/1149851*505019158607^(5/14) 8024926672825221 a001 610/1149851*73681302247^(5/13) 8024926672825221 a001 610/1149851*28143753123^(2/5) 8024926672825221 a001 610/1149851*10749957122^(5/12) 8024926672825221 a001 610/1149851*4106118243^(10/23) 8024926672825221 a001 610/1149851*1568397607^(5/11) 8024926672825221 a001 610/1149851*599074578^(10/21) 8024926672825221 a001 610/1149851*228826127^(1/2) 8024926672825221 a001 610/1149851*87403803^(10/19) 8024926672825222 a001 313679690/39088169 8024926672825225 a001 610/1149851*33385282^(5/9) 8024926672825250 a001 610/1149851*12752043^(10/17) 8024926672825432 a001 610/1149851*4870847^(5/8) 8024926672826766 a001 610/1149851*1860498^(2/3) 8024926672827539 a004 Fibonacci(29)/Lucas(15)/(1/2+sqrt(5)/2)^8 8024926672828751 a001 305/930249*710647^(3/4) 8024926672832522 a001 610/3010349*710647^(11/14) 8024926672832901 a001 305/3940598*710647^(6/7) 8024926672833018 a001 305/219602*439204^(2/3) 8024926672833925 a001 610/20633239*710647^(13/14) 8024926672835042 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^37 8024926672836571 a001 610/1149851*710647^(5/7) 8024926672860682 a001 305/219602*7881196^(6/11) 8024926672860753 a001 305/219602*141422324^(6/13) 8024926672860753 a001 305/219602*2537720636^(2/5) 8024926672860753 a001 305/219602*45537549124^(6/17) 8024926672860753 a001 305/219602*14662949395604^(2/7) 8024926672860753 a001 305/219602*(1/2+1/2*5^(1/2))^18 8024926672860753 a001 305/219602*192900153618^(1/3) 8024926672860753 a001 305/219602*10749957122^(3/8) 8024926672860753 a001 305/219602*4106118243^(9/23) 8024926672860753 a001 305/219602*1568397607^(9/22) 8024926672860753 a001 305/219602*599074578^(3/7) 8024926672860753 a001 305/219602*228826127^(9/20) 8024926672860753 a001 305/219602*87403803^(9/19) 8024926672860756 a001 305/219602*33385282^(1/2) 8024926672860760 a001 1761985/219564 8024926672860779 a001 305/219602*12752043^(9/17) 8024926672860943 a001 305/219602*4870847^(9/16) 8024926672862144 a001 305/219602*1860498^(3/5) 8024926672863071 a004 Fibonacci(27)/Lucas(15)/(1/2+sqrt(5)/2)^6 8024926672870968 a001 305/219602*710647^(9/14) 8024926672909001 a001 610/1149851*271443^(10/13) 8024926672912195 a001 610/3010349*271443^(11/13) 8024926672919816 a001 305/3940598*271443^(12/13) 8024926672928065 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^35 8024926672936155 a001 305/219602*271443^(9/13) 8024926673104292 a001 610/167761*(1/2+1/2*5^(1/2))^16 8024926673104292 a001 610/167761*23725150497407^(1/4) 8024926673104292 a001 610/167761*73681302247^(4/13) 8024926673104292 a001 610/167761*10749957122^(1/3) 8024926673104292 a001 610/167761*4106118243^(8/23) 8024926673104292 a001 610/167761*1568397607^(4/11) 8024926673104292 a001 610/167761*599074578^(8/21) 8024926673104292 a001 610/167761*228826127^(2/5) 8024926673104292 a001 610/167761*87403803^(8/19) 8024926673104295 a001 610/167761*33385282^(4/9) 8024926673104315 a001 610/167761*12752043^(8/17) 8024926673104341 a001 45765250/5702887 8024926673104461 a001 610/167761*4870847^(1/2) 8024926673105528 a001 610/167761*1860498^(8/15) 8024926673106610 a004 Fibonacci(25)/Lucas(15)/(1/2+sqrt(5)/2)^4 8024926673113372 a001 610/167761*710647^(4/7) 8024926673171316 a001 610/167761*271443^(8/13) 8024926673239014 a001 610/271443*103682^(17/24) 8024926673394246 a001 610/710647*103682^(19/24) 8024926673420634 a001 305/219602*103682^(3/4) 8024926673447311 a001 610/1149851*103682^(5/6) 8024926673470027 a001 305/930249*103682^(7/8) 8024926673504336 a001 610/3010349*103682^(11/12) 8024926673534216 a001 610/4870847*103682^(23/24) 8024926673565659 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^33 8024926673583910 a001 610/64079*64079^(14/23) 8024926673601964 a001 610/167761*103682^(2/3) 8024926674773526 a001 610/64079*20633239^(2/5) 8024926674773534 a001 610/64079*17393796001^(2/7) 8024926674773534 a001 610/64079*14662949395604^(2/9) 8024926674773534 a001 610/64079*(1/2+1/2*5^(1/2))^14 8024926674773534 a001 610/64079*505019158607^(1/4) 8024926674773534 a001 610/64079*10749957122^(7/24) 8024926674773534 a001 610/64079*4106118243^(7/23) 8024926674773534 a001 610/64079*1568397607^(7/22) 8024926674773534 a001 610/64079*599074578^(1/3) 8024926674773534 a001 610/64079*228826127^(7/20) 8024926674773534 a001 610/64079*87403803^(7/19) 8024926674773537 a001 610/64079*33385282^(7/18) 8024926674773554 a001 610/64079*12752043^(7/17) 8024926674773682 a001 610/64079*4870847^(7/16) 8024926674773872 a001 17480770/2178309 8024926674774616 a001 610/64079*1860498^(7/15) 8024926674775852 a004 Fibonacci(23)/Lucas(15)/(1/2+sqrt(5)/2)^2 8024926674781479 a001 610/64079*710647^(1/2) 8024926674832180 a001 610/64079*271443^(7/13) 8024926675208997 a001 610/64079*103682^(7/12) 8024926675561262 a001 305/51841*39603^(15/22) 8024926676664005 a001 610/271443*39603^(17/22) 8024926676825485 a001 610/167761*39603^(8/11) 8024926677047095 a001 305/219602*39603^(9/11) 8024926677222178 a001 610/710647*39603^(19/22) 8024926677476712 a001 610/1149851*39603^(10/11) 8024926677700899 a001 305/930249*39603^(21/22) 8024926677935792 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^31 8024926678029578 a001 610/64079*39603^(7/11) 8024926678560096 a001 305/12238*24476^(4/7) 8024926679077555 r005 Im(z^2+c),c=-5/114+26/37*I,n=9 8024926685195012 a001 305/12238*64079^(12/23) 8024926686196200 a001 305/12238*439204^(4/9) 8024926686214643 a001 305/12238*7881196^(4/11) 8024926686214690 a001 305/12238*141422324^(4/13) 8024926686214690 a001 305/12238*2537720636^(4/15) 8024926686214690 a001 305/12238*45537549124^(4/17) 8024926686214690 a001 305/12238*817138163596^(4/19) 8024926686214690 a001 305/12238*14662949395604^(4/21) 8024926686214690 a001 305/12238*(1/2+1/2*5^(1/2))^12 8024926686214690 a001 305/12238*192900153618^(2/9) 8024926686214690 a001 305/12238*73681302247^(3/13) 8024926686214690 a001 305/12238*10749957122^(1/4) 8024926686214690 a001 305/12238*4106118243^(6/23) 8024926686214690 a001 305/12238*1568397607^(3/11) 8024926686214690 a001 305/12238*599074578^(2/7) 8024926686214690 a001 305/12238*228826127^(3/10) 8024926686214690 a001 305/12238*87403803^(6/19) 8024926686214692 a001 305/12238*33385282^(1/3) 8024926686214707 a001 305/12238*12752043^(6/17) 8024926686214817 a001 305/12238*4870847^(3/8) 8024926686215617 a001 305/12238*1860498^(2/5) 8024926686217008 a001 5473/682 8024926686221500 a001 305/12238*710647^(3/7) 8024926686264958 a001 305/12238*271443^(6/13) 8024926686587944 a001 305/12238*103682^(1/2) 8024926689005585 a001 305/12238*39603^(6/11) 8024926690497995 a001 610/39603*15127^(13/20) 8024926690599951 a001 4181/1364*3571^(2/17) 8024926698375125 a001 305/51841*15127^(3/4) 8024926699322517 a001 610/64079*15127^(7/10) 8024926701160272 a001 610/167761*15127^(4/5) 8024926702519716 a001 610/271443*15127^(17/20) 8024926704423731 a001 305/219602*15127^(9/10) 8024926706119738 a001 610/710647*15127^(19/20) 8024926707105842 r005 Im(z^2+c),c=-3/17+48/59*I,n=40 8024926707256675 a001 305/12238*15127^(3/5) 8024926707889127 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^29 8024926715168445 m001 1/OneNinth*Tribonacci^2/exp(Zeta(1,2)) 8024926716310177 a001 610/9349*9349^(10/19) 8024926718358625 a001 1292/2889*843^(3/7) 8024926723060454 a007 Real Root Of -273*x^4+876*x^3+105*x^2-207*x-241 8024926740722880 a001 615/124*2207^(1/16) 8024926741362436 a001 646/341*2207^(3/16) 8024926754971185 a001 4181/1364*9349^(2/19) 8024926758254712 a001 610/9349*24476^(10/21) 8024926763360092 a001 4181/1364*24476^(2/21) 8024926763783809 a001 610/9349*64079^(10/23) 8024926764465911 a001 4181/1364*64079^(2/23) 8024926764519484 a001 610/9349*167761^(2/5) 8024926764633535 a001 610/9349*20633239^(2/7) 8024926764633540 a001 610/9349*2537720636^(2/9) 8024926764633540 a001 610/9349*312119004989^(2/11) 8024926764633540 a001 610/9349*(1/2+1/2*5^(1/2))^10 8024926764633540 a001 610/9349*28143753123^(1/5) 8024926764633540 a001 610/9349*10749957122^(5/24) 8024926764633540 a001 610/9349*4106118243^(5/23) 8024926764633540 a001 610/9349*1568397607^(5/22) 8024926764633540 a001 610/9349*599074578^(5/21) 8024926764633540 a001 610/9349*228826127^(1/4) 8024926764633540 a001 610/9349*87403803^(5/19) 8024926764633542 a001 610/9349*33385282^(5/18) 8024926764633555 a001 610/9349*12752043^(5/17) 8024926764633646 a001 610/9349*4870847^(5/16) 8024926764634313 a001 610/9349*1860498^(1/3) 8024926764635858 a001 4181/1364*(1/2+1/2*5^(1/2))^2 8024926764635858 a001 4181/1364*10749957122^(1/24) 8024926764635858 a001 4181/1364*4106118243^(1/23) 8024926764635858 a001 4181/1364*1568397607^(1/22) 8024926764635858 a001 4181/1364*599074578^(1/21) 8024926764635858 a001 4181/1364*228826127^(1/20) 8024926764635858 a001 4181/1364*87403803^(1/19) 8024926764635858 a001 4181/1364*33385282^(1/18) 8024926764635860 a001 4181/1364*12752043^(1/17) 8024926764635879 a001 4181/1364*4870847^(1/16) 8024926764636012 a001 4181/1364*1860498^(1/15) 8024926764636993 a001 4181/1364*710647^(1/14) 8024926764639215 a001 610/9349*710647^(5/14) 8024926764644236 a001 4181/1364*271443^(1/13) 8024926764649430 a001 2550410/317811 8024926764675430 a001 610/9349*271443^(5/13) 8024926764698067 a001 4181/1364*103682^(1/12) 8024926764944585 a001 610/9349*103682^(5/12) 8024926765101007 a001 4181/1364*39603^(1/11) 8024926766959286 a001 610/9349*39603^(5/11) 8024926768142855 a001 4181/1364*15127^(1/10) 8024926773456269 a003 sin(Pi*7/25)/sin(Pi*25/61) 8024926781435922 a001 2584/3571*843^(5/14) 8024926782168528 a001 610/9349*15127^(1/2) 8024926784643901 a001 610/15127*5778^(11/18) 8024926784806536 l006 ln(1415/3157) 8024926791343990 a001 4181/1364*5778^(1/9) 8024926812302591 r005 Re(z^2+c),c=-87/106+7/31*I,n=3 8024926841305368 a001 610/39603*5778^(13/18) 8024926845635868 m001 Conway^Magata/HardyLittlewoodC4 8024926846463482 a001 305/12238*5778^(2/3) 8024926861730458 a001 610/64079*5778^(7/9) 8024926868947869 m002 -6-Cosh[Pi]/ProductLog[Pi]+Pi^4*Tanh[Pi] 8024926872383633 a001 305/51841*5778^(5/6) 8024926873773644 r005 Im(z^2+c),c=-7/6+22/211*I,n=49 8024926876234398 m001 Pi/(Psi(1,1/3)+5^(1/2))-Shi(1) 8024926885665567 a007 Real Root Of 327*x^4+484*x^3+558*x^2-494*x-4 8024926885721388 r009 Im(z^3+c),c=-1/56+5/6*I,n=29 8024926886769348 a001 610/167761*5778^(8/9) 8024926898174201 a001 610/9349*5778^(5/9) 8024926899729359 a001 610/271443*5778^(17/18) 8024926910951855 r008 a(0)=8,K{-n^6,-48+92*n^3+13*n^2-97*n} 8024926913192339 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^27 8024926924391490 a001 329/1926*843^(4/7) 8024926925317317 a008 Real Root of x^4-11*x^2-108*x-80 8024926950806026 a007 Real Root Of -67*x^4+57*x^3+327*x^2+619*x-709 8024926970578634 a001 4181/1364*2207^(1/8) 8024926984397436 a007 Real Root Of -9*x^4-710*x^3+985*x^2+201*x+199 8024926987468788 a001 987/3571*843^(1/2) 8024926990962517 m002 -Pi^4+Pi^5/3-ProductLog[Pi]-Sinh[Pi] 8024926992679282 r005 Im(z^2+c),c=-7/44+41/50*I,n=43 8024927005980735 a001 610/3571*3571^(8/17) 8024927007830301 m005 (1/2*gamma-7/9)/(13/36+1/9*5^(1/2)) 8024927016044660 a007 Real Root Of -338*x^4+615*x^3-30*x^2+108*x+564 8024927024555876 r005 Re(z^2+c),c=-5/86+35/44*I,n=46 8024927043898269 m005 (1/2*3^(1/2)-2/9)/(53/80+1/16*5^(1/2)) 8024927043914205 r008 a(0)=8,K{-n^6,-93+96*n^3-21*n^2-22*n} 8024927051023329 m001 1/exp(GAMMA(1/3))/Paris^2/Zeta(1,2)^2 8024927060787506 r005 Re(z^2+c),c=-81/98+2/21*I,n=11 8024927061470147 a007 Real Root Of -645*x^4+980*x^3+164*x^2+341*x+942 8024927097824779 m001 (MasserGramain+MertensB2)/(Robbin-ZetaP(2)) 8024927120956893 a001 29/2178309*55^(13/29) 8024927127576271 a003 cos(Pi*8/63)*sin(Pi*36/107) 8024927128965063 a001 6765/15127*843^(3/7) 8024927147563537 m001 FeigenbaumKappa/(GAMMA(3/4)+arctan(1/2)) 8024927154054824 a001 1597/1364*3571^(4/17) 8024927160925110 r005 Re(z^2+c),c=-14/17+1/39*I,n=3 8024927164149579 a007 Real Root Of 748*x^4-849*x^3-871*x^2-134*x+797 8024927166846828 a007 Real Root Of 56*x^4+342*x^3-827*x^2+159*x-968 8024927175272413 a001 10946/2207*322^(1/12) 8024927176775097 r008 a(0)=8,K{-n^6,-94+96*n^3-21*n^2-21*n} 8024927183579634 r005 Im(z^2+c),c=-7/10+10/177*I,n=27 8024927188871737 a001 17711/39603*843^(3/7) 8024927197612003 a001 23184/51841*843^(3/7) 8024927198887191 a001 121393/271443*843^(3/7) 8024927199073238 a001 317811/710647*843^(3/7) 8024927199100382 a001 416020/930249*843^(3/7) 8024927199104342 a001 2178309/4870847*843^(3/7) 8024927199104920 a001 5702887/12752043*843^(3/7) 8024927199105004 a001 7465176/16692641*843^(3/7) 8024927199105017 a001 39088169/87403803*843^(3/7) 8024927199105018 a001 102334155/228826127*843^(3/7) 8024927199105019 a001 133957148/299537289*843^(3/7) 8024927199105019 a001 701408733/1568397607*843^(3/7) 8024927199105019 a001 1836311903/4106118243*843^(3/7) 8024927199105019 a001 2403763488/5374978561*843^(3/7) 8024927199105019 a001 12586269025/28143753123*843^(3/7) 8024927199105019 a001 32951280099/73681302247*843^(3/7) 8024927199105019 a001 43133785636/96450076809*843^(3/7) 8024927199105019 a001 225851433717/505019158607*843^(3/7) 8024927199105019 a001 591286729879/1322157322203*843^(3/7) 8024927199105019 a001 10610209857723/23725150497407*843^(3/7) 8024927199105019 a001 182717648081/408569081798*843^(3/7) 8024927199105019 a001 139583862445/312119004989*843^(3/7) 8024927199105019 a001 53316291173/119218851371*843^(3/7) 8024927199105019 a001 10182505537/22768774562*843^(3/7) 8024927199105019 a001 7778742049/17393796001*843^(3/7) 8024927199105019 a001 2971215073/6643838879*843^(3/7) 8024927199105019 a001 567451585/1268860318*843^(3/7) 8024927199105019 a001 433494437/969323029*843^(3/7) 8024927199105019 a001 165580141/370248451*843^(3/7) 8024927199105019 a001 31622993/70711162*843^(3/7) 8024927199105024 a001 24157817/54018521*843^(3/7) 8024927199105056 a001 9227465/20633239*843^(3/7) 8024927199105277 a001 1762289/3940598*843^(3/7) 8024927199106790 a001 1346269/3010349*843^(3/7) 8024927199117158 a001 514229/1149851*843^(3/7) 8024927199188222 a001 98209/219602*843^(3/7) 8024927199675300 a001 75025/167761*843^(3/7) 8024927201796394 m001 (OneNinth+ZetaP(4))/(BesselK(0,1)-exp(1)) 8024927203013784 a001 28657/64079*843^(3/7) 8024927225896098 a001 5473/12238*843^(3/7) 8024927230637009 m001 1/Niven^2/Si(Pi)/exp(Pi) 8024927260000542 m005 (1/2*Catalan-5/8)/(3*Catalan-2/3) 8024927263465684 a001 610/3571*9349^(8/19) 8024927282797300 a001 1597/1364*9349^(4/19) 8024927297021315 a001 610/3571*24476^(8/21) 8024927299575115 a001 1597/1364*24476^(4/21) 8024927301444592 a001 610/3571*64079^(8/23) 8024927301786754 a001 1597/1364*64079^(4/23) 8024927302124377 a001 610/3571*(1/2+1/2*5^(1/2))^8 8024927302124377 a001 610/3571*23725150497407^(1/8) 8024927302124377 a001 610/3571*505019158607^(1/7) 8024927302124377 a001 610/3571*73681302247^(2/13) 8024927302124377 a001 610/3571*10749957122^(1/6) 8024927302124377 a001 610/3571*4106118243^(4/23) 8024927302124377 a001 610/3571*1568397607^(2/11) 8024927302124377 a001 610/3571*599074578^(4/21) 8024927302124377 a001 610/3571*228826127^(1/5) 8024927302124377 a001 610/3571*87403803^(4/19) 8024927302124379 a001 610/3571*33385282^(2/9) 8024927302124389 a001 610/3571*12752043^(4/17) 8024927302124462 a001 610/3571*4870847^(1/4) 8024927302124995 a001 610/3571*1860498^(4/15) 8024927302126646 a001 1597/1364*(1/2+1/2*5^(1/2))^4 8024927302126646 a001 1597/1364*23725150497407^(1/16) 8024927302126646 a001 1597/1364*73681302247^(1/13) 8024927302126646 a001 1597/1364*10749957122^(1/12) 8024927302126646 a001 1597/1364*4106118243^(2/23) 8024927302126646 a001 1597/1364*1568397607^(1/11) 8024927302126646 a001 1597/1364*599074578^(2/21) 8024927302126646 a001 1597/1364*228826127^(1/10) 8024927302126646 a001 1597/1364*87403803^(2/19) 8024927302126647 a001 1597/1364*33385282^(1/9) 8024927302126652 a001 1597/1364*12752043^(2/17) 8024927302126689 a001 1597/1364*4870847^(1/8) 8024927302126955 a001 1597/1364*1860498^(2/15) 8024927302128916 a001 1597/1364*710647^(1/7) 8024927302128917 a001 610/3571*710647^(2/7) 8024927302143402 a001 1597/1364*271443^(2/13) 8024927302157889 a001 610/3571*271443^(4/13) 8024927302233242 a001 974170/121393 8024927302251064 a001 1597/1364*103682^(1/6) 8024927302373213 a001 610/3571*103682^(1/3) 8024927303056945 a001 1597/1364*39603^(2/11) 8024927303984974 a001 610/3571*39603^(4/11) 8024927304006547 m001 ln(CareFree)/ln(MasserGramain) 8024927309140642 a001 1597/1364*15127^(1/5) 8024927309272497 a007 Real Root Of 304*x^4-821*x^3-855*x^2-811*x+71 8024927316152369 a001 610/3571*15127^(2/5) 8024927319065785 m001 Kolakoski+ZetaQ(2)^((1+3^(1/2))^(1/2)) 8024927320498652 a001 36/341*18^(40/57) 8024927327449981 m001 Grothendieck^(2*Pi/GAMMA(5/6))*arctan(1/3) 8024927351951097 a007 Real Root Of 553*x^4-909*x^3-554*x^2-584*x-811 8024927355542914 a001 1597/1364*5778^(2/9) 8024927359188468 a001 305/2889*2207^(9/16) 8024927359312211 m008 (1/3*Pi^4-2/3)/(2/5*Pi^4+2/3) 8024927382733809 a001 4181/9349*843^(3/7) 8024927408956913 a001 610/3571*5778^(4/9) 8024927410842123 m005 (1/2*Catalan-3/4)/(2/7*5^(1/2)+3) 8024927417326537 a007 Real Root Of 855*x^4-101*x^3-178*x^2-578*x-756 8024927438154113 r005 Im(z^2+c),c=-11/10+9/46*I,n=6 8024927441088133 r008 a(0)=8,K{-n^6,-94+96*n^3-20*n^2-22*n} 8024927441611864 r008 a(0)=8,K{-n^6,-48+93*n^3+12*n^2-97*n} 8024927444352621 a001 615/124*843^(1/14) 8024927461872144 a003 sin(Pi*27/103)/sin(Pi*29/79) 8024927467013949 p001 sum((-1)^n/(393*n+100)/n/(25^n),n=1..infinity) 8024927486672547 r008 a(0)=8,K{-n^6,-81-30*n^3+73*n^2-4*n} 8024927492501648 a007 Real Root Of -947*x^4+244*x^3-320*x^2-532*x+298 8024927540989186 r005 Re(z^2+c),c=-26/21+6/61*I,n=32 8024927542867137 m005 (1/3*exp(1)+1/9)/(3/7*Catalan+7/8) 8024927571829162 a007 Real Root Of -546*x^4+224*x^3-301*x^2-982*x-252 8024927575314152 l006 ln(4007/8940) 8024927582924263 a007 Real Root Of -762*x^4+454*x^3+825*x^2-945*x-739 8024927591984259 m001 1/exp(GAMMA(1/24))/BesselJ(0,1)/GAMMA(23/24)^2 8024927594906016 m005 (1/2*Zeta(3)-5/12)/(-17/72+5/24*5^(1/2)) 8024927596339124 r009 Re(z^3+c),c=-1/23+26/29*I,n=14 8024927609399116 a007 Real Root Of -786*x^4+255*x^3-689*x^2-190*x+749 8024927642570212 a007 Real Root Of -750*x^4+27*x^3+56*x^2+587*x+760 8024927655366987 h001 (6/11*exp(1)+3/11)/(2/9*exp(2)+6/11) 8024927674878915 r005 Re(z^2+c),c=-57/118+35/59*I,n=54 8024927702742344 a007 Real Root Of -51*x^4-351*x^3+394*x^2-533*x+464 8024927714012232 a001 1597/1364*2207^(1/4) 8024927734452465 r005 Re(z^2+c),c=-7/10+57/158*I,n=50 8024927744819869 p004 log(14723/6599) 8024927749369101 a008 Real Root of x^4-2*x^3-14*x^2+13*x+18 8024927764977497 m005 (-27/10+3/10*5^(1/2))/(1/3*2^(1/2)-3) 8024927770434495 a001 610/15127*2207^(11/16) 8024927790551274 a007 Real Root Of 274*x^4-335*x^3-889*x^2+162*x+502 8024927794347476 a001 610/9349*2207^(5/8) 8024927809452776 m001 Psi(1,1/3)*FeigenbaumKappa/Niven 8024927820634198 r009 Re(z^3+c),c=-1/27+51/61*I,n=32 8024927837853713 a001 521/233*6557470319842^(14/17) 8024927857147375 a001 2584/9349*843^(1/2) 8024927868480412 r009 Re(z^3+c),c=-4/21+31/56*I,n=4 8024927899634100 a007 Real Root Of -219*x^4+870*x^3+690*x^2+527*x+519 8024927906238865 r005 Im(z^2+c),c=-9/62+43/53*I,n=7 8024927919145284 a007 Real Root Of -452*x^4+844*x^3+663*x^2-108*x+110 8024927921871417 a001 305/12238*2207^(3/4) 8024927927929699 m001 LandauRamanujan^(ln(2)/ln(10)*exp(1)) 8024927930934819 a001 123/17711*3^(5/38) 8024927943017421 r002 13th iterates of z^2 + 8024927964108470 r008 a(0)=8,K{-n^6,-94+97*n^3-21*n^2-22*n} 8024927976002250 m005 (1/2*Pi-4/7)/(5/9*Pi-1/2) 8024927979551414 a007 Real Root Of 743*x^4-675*x^3+861*x^2-624*x-56 8024927984031762 a001 6765/24476*843^(1/2) 8024928002543944 a001 17711/64079*843^(1/2) 8024928005244835 a001 46368/167761*843^(1/2) 8024928005638889 a001 121393/439204*843^(1/2) 8024928005696381 a001 317811/1149851*843^(1/2) 8024928005704769 a001 832040/3010349*843^(1/2) 8024928005705993 a001 2178309/7881196*843^(1/2) 8024928005706172 a001 5702887/20633239*843^(1/2) 8024928005706198 a001 14930352/54018521*843^(1/2) 8024928005706201 a001 39088169/141422324*843^(1/2) 8024928005706202 a001 102334155/370248451*843^(1/2) 8024928005706202 a001 267914296/969323029*843^(1/2) 8024928005706202 a001 701408733/2537720636*843^(1/2) 8024928005706202 a001 1836311903/6643838879*843^(1/2) 8024928005706202 a001 4807526976/17393796001*843^(1/2) 8024928005706202 a001 12586269025/45537549124*843^(1/2) 8024928005706202 a001 32951280099/119218851371*843^(1/2) 8024928005706202 a001 86267571272/312119004989*843^(1/2) 8024928005706202 a001 225851433717/817138163596*843^(1/2) 8024928005706202 a001 1548008755920/5600748293801*843^(1/2) 8024928005706202 a001 139583862445/505019158607*843^(1/2) 8024928005706202 a001 53316291173/192900153618*843^(1/2) 8024928005706202 a001 20365011074/73681302247*843^(1/2) 8024928005706202 a001 7778742049/28143753123*843^(1/2) 8024928005706202 a001 2971215073/10749957122*843^(1/2) 8024928005706202 a001 1134903170/4106118243*843^(1/2) 8024928005706202 a001 433494437/1568397607*843^(1/2) 8024928005706202 a001 165580141/599074578*843^(1/2) 8024928005706202 a001 63245986/228826127*843^(1/2) 8024928005706204 a001 24157817/87403803*843^(1/2) 8024928005706214 a001 9227465/33385282*843^(1/2) 8024928005706282 a001 3524578/12752043*843^(1/2) 8024928005706749 a001 1346269/4870847*843^(1/2) 8024928005709953 a001 514229/1860498*843^(1/2) 8024928005731913 a001 196418/710647*843^(1/2) 8024928005882429 a001 75025/271443*843^(1/2) 8024928006330637 a001 610/39603*2207^(13/16) 8024928006860529 l006 ln(2592/5783) 8024928006914077 a001 28657/103682*843^(1/2) 8024928013985102 a001 10946/39603*843^(1/2) 8024928016570191 m001 (ln(5)+ln(2^(1/2)+1))/(Salem+Tetranacci) 8024928045292324 m001 FransenRobinson^2*Artin^2*exp(Riemann3rdZero) 8024928051232445 m001 (Zeta(5)+ln(3))/(LambertW(1)-ln(2)/ln(10)) 8024928057455269 r002 8th iterates of z^2 + 8024928062450624 a001 4181/15127*843^(1/2) 8024928063180269 a001 987/9349*843^(9/14) 8024928092042186 q001 837/1043 8024928093160378 r008 a(0)=8,K{-n^6,-91+92*n^3-4*n^2-37*n} 8024928116373065 a001 610/64079*2207^(7/8) 8024928119235935 r009 Re(z^3+c),c=-1/114+20/27*I,n=56 8024928125895570 a001 610/3571*2207^(1/2) 8024928216643579 a001 305/51841*2207^(15/16) 8024928222230484 r008 a(0)=8,K{-n^6,-92+92*n^3-4*n^2-36*n} 8024928227722608 a007 Real Root Of 126*x^4-739*x^3-930*x^2+311*x+679 8024928235674517 a007 Real Root Of 132*x^4-615*x^3-390*x^2-543*x+950 8024928235915058 a007 Real Root Of -486*x^4+288*x^3+532*x^2+966*x+783 8024928240111095 a007 Real Root Of 703*x^4-916*x^3-89*x^2+493*x-312 8024928283804193 p001 sum(1/(373*n+132)/(5^n),n=0..infinity) 8024928299948287 b008 EllipticF[Pi/40,20] 8024928315445613 a007 Real Root Of -117*x^4+445*x^3+637*x^2+49*x-631 8024928320361493 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^25 8024928320881302 m001 ln(2+3^(1/2))*(KhinchinLevy-gamma) 8024928323563587 m001 (exp(Pi)+arctan(1/2))/(Zeta(1,2)+Cahen) 8024928336110329 r002 4th iterates of z^2 + 8024928339851363 a005 (1/sin(74/239*Pi))^23 8024928361551595 a007 Real Root Of 361*x^4-509*x^3-746*x^2-903*x-657 8024928367702538 l006 ln(3351/3631) 8024928368705322 m001 (2^(1/2)-Artin)/(-OneNinth+OrthogonalArrays) 8024928377838218 a001 4181/1364*843^(1/7) 8024928380964206 a007 Real Root Of -399*x^4+536*x^3-581*x^2-579*x+352 8024928394638243 a001 1597/5778*843^(1/2) 8024928394950355 m001 (AlladiGrinstead+Riemann3rdZero)/arctan(1/3) 8024928395717752 a007 Real Root Of -832*x^4+529*x^3-793*x^2-293*x+894 8024928419622723 m001 (GAMMA(11/12)+Artin)/(Mills+Weierstrass) 8024928457715553 a001 1597/3571*843^(3/7) 8024928465657625 l006 ln(3769/8409) 8024928479022186 r008 a(0)=8,K{-n^6,-92+92*n^3-3*n^2-37*n} 8024928485166233 a007 Real Root Of -826*x^4+871*x^3-320*x^2-553*x+555 8024928498918278 a007 Real Root Of -60*x^4-470*x^3+163*x^2+446*x-977 8024928502076804 m006 (1/3*ln(Pi)-5)/(3/5*Pi^2-1/6) 8024928508790421 a007 Real Root Of -777*x^4+95*x^3-885*x^2-191*x+788 8024928517979129 m001 GAMMA(11/24)^2*exp(BesselJ(0,1)) 8024928520861275 a002 6^(7/5)-12^(7/12) 8024928536864231 a001 2584/15127*843^(4/7) 8024928539240513 m001 GAMMA(5/12)^2/GAMMA(1/6)^2*ln(sqrt(3)) 8024928557421586 a007 Real Root Of 770*x^4-976*x^3+655*x^2+544*x-809 8024928571000454 a001 28657/5778*322^(1/12) 8024928575236391 m001 ln(Pi)^(3^(1/2))/(ln(Pi)^ReciprocalFibonacci) 8024928585364792 a007 Real Root Of 917*x^4-854*x^3-660*x^2+569*x+60 8024928602852758 m001 (3^(1/2)-ln(2^(1/2)+1))/(-OneNinth+ZetaQ(4)) 8024928610460410 r008 a(0)=8,K{-n^6,-45+36*n^3-62*n^2+32*n} 8024928662695564 m001 Psi(2,1/3)^BesselI(1,1)*FeigenbaumB 8024928676634487 r005 Re(z^2+c),c=-5/6+11/169*I,n=7 8024928742897142 a001 141/2161*843^(5/7) 8024928743159124 r005 Re(z^2+c),c=-75/86+5/27*I,n=48 8024928772120840 a001 2255/13201*843^(4/7) 8024928773364730 s002 sum(A281178[n]/(n*exp(n)-1),n=1..infinity) 8024928773994595 h001 (1/6*exp(1)+9/10)/(1/6*exp(2)+5/11) 8024928774634472 a001 75025/15127*322^(1/12) 8024928804344276 a001 196418/39603*322^(1/12) 8024928806444317 a001 17711/103682*843^(4/7) 8024928806972666 a007 Real Root Of 256*x^4-763*x^3+715*x^2+861*x-270 8024928808678877 a001 514229/103682*322^(1/12) 8024928809311287 a001 1346269/271443*322^(1/12) 8024928809403555 a001 3524578/710647*322^(1/12) 8024928809417016 a001 9227465/1860498*322^(1/12) 8024928809418980 a001 24157817/4870847*322^(1/12) 8024928809419267 a001 63245986/12752043*322^(1/12) 8024928809419309 a001 165580141/33385282*322^(1/12) 8024928809419315 a001 433494437/87403803*322^(1/12) 8024928809419316 a001 1134903170/228826127*322^(1/12) 8024928809419316 a001 2971215073/599074578*322^(1/12) 8024928809419316 a001 7778742049/1568397607*322^(1/12) 8024928809419316 a001 20365011074/4106118243*322^(1/12) 8024928809419316 a001 53316291173/10749957122*322^(1/12) 8024928809419316 a001 139583862445/28143753123*322^(1/12) 8024928809419316 a001 365435296162/73681302247*322^(1/12) 8024928809419316 a001 956722026041/192900153618*322^(1/12) 8024928809419316 a001 2504730781961/505019158607*322^(1/12) 8024928809419316 a001 10610209857723/2139295485799*322^(1/12) 8024928809419316 a001 4052739537881/817138163596*322^(1/12) 8024928809419316 a001 140728068720/28374454999*322^(1/12) 8024928809419316 a001 591286729879/119218851371*322^(1/12) 8024928809419316 a001 225851433717/45537549124*322^(1/12) 8024928809419316 a001 86267571272/17393796001*322^(1/12) 8024928809419316 a001 32951280099/6643838879*322^(1/12) 8024928809419316 a001 1144206275/230701876*322^(1/12) 8024928809419316 a001 4807526976/969323029*322^(1/12) 8024928809419316 a001 1836311903/370248451*322^(1/12) 8024928809419316 a001 701408733/141422324*322^(1/12) 8024928809419319 a001 267914296/54018521*322^(1/12) 8024928809419335 a001 9303105/1875749*322^(1/12) 8024928809419444 a001 39088169/7881196*322^(1/12) 8024928809420194 a001 14930352/3010349*322^(1/12) 8024928809425336 a001 5702887/1149851*322^(1/12) 8024928809460579 a001 2178309/439204*322^(1/12) 8024928809702138 a001 75640/15251*322^(1/12) 8024928811357809 a001 317811/64079*322^(1/12) 8024928811452044 a001 15456/90481*843^(4/7) 8024928812182662 a001 121393/710647*843^(4/7) 8024928812289258 a001 105937/620166*843^(4/7) 8024928812304810 a001 832040/4870847*843^(4/7) 8024928812307079 a001 726103/4250681*843^(4/7) 8024928812307410 a001 5702887/33385282*843^(4/7) 8024928812307458 a001 4976784/29134601*843^(4/7) 8024928812307465 a001 39088169/228826127*843^(4/7) 8024928812307466 a001 34111385/199691526*843^(4/7) 8024928812307466 a001 267914296/1568397607*843^(4/7) 8024928812307466 a001 233802911/1368706081*843^(4/7) 8024928812307466 a001 1836311903/10749957122*843^(4/7) 8024928812307466 a001 1602508992/9381251041*843^(4/7) 8024928812307466 a001 12586269025/73681302247*843^(4/7) 8024928812307466 a001 10983760033/64300051206*843^(4/7) 8024928812307466 a001 86267571272/505019158607*843^(4/7) 8024928812307466 a001 75283811239/440719107401*843^(4/7) 8024928812307466 a001 2504730781961/14662949395604*843^(4/7) 8024928812307466 a001 139583862445/817138163596*843^(4/7) 8024928812307466 a001 53316291173/312119004989*843^(4/7) 8024928812307466 a001 20365011074/119218851371*843^(4/7) 8024928812307466 a001 7778742049/45537549124*843^(4/7) 8024928812307466 a001 2971215073/17393796001*843^(4/7) 8024928812307466 a001 1134903170/6643838879*843^(4/7) 8024928812307466 a001 433494437/2537720636*843^(4/7) 8024928812307467 a001 165580141/969323029*843^(4/7) 8024928812307467 a001 63245986/370248451*843^(4/7) 8024928812307470 a001 24157817/141422324*843^(4/7) 8024928812307488 a001 9227465/54018521*843^(4/7) 8024928812307614 a001 3524578/20633239*843^(4/7) 8024928812308481 a001 1346269/7881196*843^(4/7) 8024928812314422 a001 514229/3010349*843^(4/7) 8024928812355137 a001 196418/1149851*843^(4/7) 8024928812634209 a001 75025/439204*843^(4/7) 8024928814546990 a001 28657/167761*843^(4/7) 8024928822705944 a001 121393/24476*322^(1/12) 8024928827657392 a001 10946/64079*843^(4/7) 8024928829930168 m001 (Artin+ErdosBorwein)/(BesselI(0,1)+Zeta(3)) 8024928832727067 m002 4*E^Pi*Pi^2*Csch[Pi]+Log[Pi] 8024928848125538 a005 (1/cos(13/161*Pi))^418 8024928852251844 a001 646/341*843^(3/14) 8024928859999892 a002 13^(9/10)-12^(2/7) 8024928863279071 a007 Real Root Of -670*x^4-258*x^3-414*x^2+479*x+41 8024928876111658 a007 Real Root Of -224*x^4+653*x^3-560*x^2+668*x-420 8024928896425234 a007 Real Root Of -98*x^4-748*x^3+187*x^2-991*x-128 8024928900487221 a001 46368/9349*322^(1/12) 8024928901606122 m001 (Otter+TwinPrimes)/(ZetaQ(2)-ZetaQ(3)) 8024928902432357 a007 Real Root Of -245*x^4-757*x^3-571*x^2+517*x+493 8024928917517421 a001 4181/24476*843^(4/7) 8024928944625433 r005 Re(z^2+c),c=-45/46+11/39*I,n=4 8024928945035639 a007 Real Root Of 108*x^4-806*x^3-400*x^2+140*x+517 8024928982569193 a007 Real Root Of -613*x^4-614*x^3-247*x^2+329*x+360 8024928987238073 r008 a(0)=8,K{-n^6,-92+93*n^3-4*n^2-37*n} 8024928989719810 a007 Real Root Of 949*x^4+717*x^3-268*x^2-144*x+34 8024929012655181 r005 Im(z^2+c),c=-7/10+41/194*I,n=23 8024929019667255 a007 Real Root Of 845*x^4+734*x^3+249*x^2+509*x+277 8024929022033756 a007 Real Root Of 73*x^4+584*x^3+59*x^2+644*x+428 8024929030970741 a003 sin(Pi*13/102)+sin(Pi*13/96) 8024929031938492 a001 47/521*(1/2*5^(1/2)+1/2)^25*521^(4/15) 8024929039338482 r005 Im(z^2+c),c=-25/44+9/62*I,n=30 8024929058284763 a001 987/1364*843^(5/14) 8024929080569818 m001 (ln(2)+3^(1/3))/(Si(Pi)+cos(1/5*Pi)) 8024929088837791 s002 sum(A115888[n]/(n^3*pi^n+1),n=1..infinity) 8024929119491587 r002 40th iterates of z^2 + 8024929133210822 m001 exp(BesselJ(0,1))^2*MinimumGamma/sin(1) 8024929135952530 r001 19i'th iterates of 2*x^2-1 of 8024929137317134 m005 (5/36+1/4*5^(1/2))/(41/60+1/12*5^(1/2)) 8024929187256995 r005 Im(z^2+c),c=29/102+22/37*I,n=7 8024929236866169 r008 a(0)=8,K{-n^6,-96+78*n^3+40*n^2-62*n} 8024929240958439 m001 Zeta(5)*(LandauRamanujan-gamma(2)) 8024929260299866 a001 377/521*521^(5/13) 8024929260813373 a001 305/682*1364^(2/5) 8024929264317047 r005 Re(z^2+c),c=-21/26+12/83*I,n=43 8024929270101047 a007 Real Root Of 528*x^4-850*x^3+681*x^2+168*x-962 8024929272737307 s002 sum(A197203[n]/(n^3*exp(n)+1),n=1..infinity) 8024929282571675 a007 Real Root Of 895*x^4-383*x^3+360*x^2+223*x-622 8024929297770238 a007 Real Root Of -885*x^4-228*x^3-672*x^2-790*x+48 8024929327423291 a007 Real Root Of 778*x^4-36*x^3+765*x^2+289*x-602 8024929384177694 m001 (gamma+sin(1))/(-Zeta(1/2)+HardyLittlewoodC4) 8024929391931079 a001 646/6119*843^(9/14) 8024929416122732 m001 ln(Lehmer)^2*Khintchine/Catalan 8024929433608067 a001 17711/3571*322^(1/12) 8024929434642531 a007 Real Root Of 865*x^4-327*x^3+452*x^2+249*x-619 8024929440880995 m001 (KomornikLoreti-Trott)/(Bloch-Khinchin) 8024929458925122 r008 a(0)=8,K{-n^6,-18-9*n^3+37*n^2-52*n} 8024929476024647 l006 ln(1177/2626) 8024929491808325 r002 42th iterates of z^2 + 8024929496642669 m001 (2^(1/2)-Backhouse)/(-ZetaQ(2)+ZetaQ(4)) 8024929520999975 m005 (1/2*Pi-1/7)/(-25/48+5/16*5^(1/2)) 8024929533427232 a001 1597/9349*843^(4/7) 8024929553437581 r008 a(0)=8,K{-n^6,-9-26*n-38*n^2+34*n^3} 8024929568180067 r008 a(0)=8,K{-n^6,-52+20*n-2*n^2-7*n^3} 8024929585793207 a001 6765/64079*843^(9/14) 8024929592862431 m001 Magata/MertensB1/ln(Salem) 8024929595199646 m005 (3/5*Catalan-1/3)/(1/3*Catalan-3) 8024929597964012 a001 987/24476*843^(11/14) 8024929614077310 a001 17711/167761*843^(9/14) 8024929618203905 a001 11592/109801*843^(9/14) 8024929618805967 a001 121393/1149851*843^(9/14) 8024929618893807 a001 317811/3010349*843^(9/14) 8024929618906623 a001 208010/1970299*843^(9/14) 8024929618908493 a001 2178309/20633239*843^(9/14) 8024929618908765 a001 5702887/54018521*843^(9/14) 8024929618908805 a001 3732588/35355581*843^(9/14) 8024929618908811 a001 39088169/370248451*843^(9/14) 8024929618908812 a001 102334155/969323029*843^(9/14) 8024929618908812 a001 66978574/634430159*843^(9/14) 8024929618908812 a001 701408733/6643838879*843^(9/14) 8024929618908812 a001 1836311903/17393796001*843^(9/14) 8024929618908812 a001 1201881744/11384387281*843^(9/14) 8024929618908812 a001 12586269025/119218851371*843^(9/14) 8024929618908812 a001 32951280099/312119004989*843^(9/14) 8024929618908812 a001 21566892818/204284540899*843^(9/14) 8024929618908812 a001 225851433717/2139295485799*843^(9/14) 8024929618908812 a001 182717648081/1730726404001*843^(9/14) 8024929618908812 a001 139583862445/1322157322203*843^(9/14) 8024929618908812 a001 53316291173/505019158607*843^(9/14) 8024929618908812 a001 10182505537/96450076809*843^(9/14) 8024929618908812 a001 7778742049/73681302247*843^(9/14) 8024929618908812 a001 2971215073/28143753123*843^(9/14) 8024929618908812 a001 567451585/5374978561*843^(9/14) 8024929618908812 a001 433494437/4106118243*843^(9/14) 8024929618908812 a001 165580141/1568397607*843^(9/14) 8024929618908812 a001 31622993/299537289*843^(9/14) 8024929618908815 a001 24157817/228826127*843^(9/14) 8024929618908830 a001 9227465/87403803*843^(9/14) 8024929618908934 a001 1762289/16692641*843^(9/14) 8024929618909648 a001 1346269/12752043*843^(9/14) 8024929618914543 a001 514229/4870847*843^(9/14) 8024929618948095 a001 98209/930249*843^(9/14) 8024929619178062 a001 75025/710647*843^(9/14) 8024929620754281 a001 28657/271443*843^(9/14) 8024929630348823 m001 1/exp(BesselJ(1,1))^2*RenyiParking*sin(Pi/12) 8024929631557847 a001 5473/51841*843^(9/14) 8024929632126823 m001 (Mills+ZetaP(2))/(GAMMA(7/12)+LaplaceLimit) 8024929642813699 m001 Pi+(exp(Pi)-ln(2^(1/2)+1))*Ei(1,1) 8024929654768117 m001 BesselK(1,1)-GAMMA(17/24)^GAMMA(2/3) 8024929663228995 m001 (Backhouse+Tribonacci*Trott)/Tribonacci 8024929683751407 r002 22i'th iterates of 2*x/(1-x^2) of 8024929705606591 a001 4181/39603*843^(9/14) 8024929725200097 a007 Real Root Of 418*x^4-737*x^3-613*x^2-453*x-523 8024929725615767 a007 Real Root Of 636*x^4-652*x^3-381*x^2-417*x-690 8024929771600719 a007 Real Root Of 641*x^4-927*x^3+303*x^2+420*x-603 8024929777240781 a005 (1/sin(31/89*Pi))^427 8024929788432323 m001 (2^(1/2)+ArtinRank2)/(Conway+Riemann3rdZero) 8024929808464056 a001 233/2207*521^(9/13) 8024929811157414 a001 233/3571*521^(10/13) 8024929820162783 r008 a(0)=8,K{-n^6,-31-40*n+51*n^2-21*n^3} 8024929872243229 a005 (1/cos(12/109*Pi))^185 8024929935802622 a008 Real Root of (9+16*x+18*x^2+15*x^3) 8024929937936752 v002 sum(1/(3^n*(15*n^2+6*n+29)),n=1..infinity) 8024929943092798 a007 Real Root Of -958*x^4+779*x^3+380*x^2+168*x+690 8024929960283719 a001 1346269/2*3^(4/25) 8024929983425634 a007 Real Root Of 841*x^4-176*x^3-94*x^2+485*x+10 8024929986672685 r002 5th iterates of z^2 + 8024930007988188 r009 Im(z^3+c),c=-55/94+7/29*I,n=55 8024930028052688 a007 Real Root Of -74*x^4-469*x^3+935*x^2-620*x-669 8024930035167575 m005 (1/2*gamma-7/11)/(3*Zeta(3)+8/11) 8024930073578572 a007 Real Root Of -614*x^4+913*x^3-576*x^2-732*x+510 8024930084466971 m001 (ln(gamma)+Zeta(1,2))/(FeigenbaumB-Khinchin) 8024930115799897 r005 Im(z^2+c),c=-27/50+34/55*I,n=7 8024930131649255 a007 Real Root Of 738*x^4-437*x^3+185*x^2+101*x-570 8024930137669652 a007 Real Root Of 225*x^4-874*x^3-662*x^2-211*x-288 8024930149342397 a007 Real Root Of 369*x^4-349*x^3-207*x^2-284*x-428 8024930180020295 a001 2584/39603*843^(5/7) 8024930188972031 m001 (-Kac+Otter)/(BesselJ(0,1)-GAMMA(11/12)) 8024930213144229 a001 1597/15127*843^(9/14) 8024930226121233 r008 a(0)=8,K{-n^6,-76+87*n^3+27*n^2-78*n} 8024930245669441 s002 sum(A197203[n]/(n^3*exp(n)-1),n=1..infinity) 8024930261394017 r005 Im(z^2+c),c=-79/126+26/63*I,n=14 8024930273661672 m006 (1/5*exp(2*Pi)+1/5)/(1/4*exp(2*Pi)-1/6) 8024930280860401 a007 Real Root Of -523*x^4+856*x^3+160*x^2-500*x+155 8024930284997833 m001 arctan(1/2)^(Psi(1,1/3)/Weierstrass) 8024930287775487 m001 (GolombDickman+Sarnak)/(Zeta(1/2)-Ei(1,1)) 8024930288407197 m001 (-Lehmer+ZetaQ(4))/(Conway-LambertW(1)) 8024930295226365 r008 a(0)=8,K{-n^6,-35-7*n^3+73*n^2-70*n} 8024930298365859 a001 521/2178309*6765^(7/51) 8024930327942534 l006 ln(4470/9973) 8024930331039517 r008 a(0)=8,K{-n^6,-19-19*n-20*n^2+15*n^3} 8024930331562354 a007 Real Root Of 575*x^4-404*x^3+991*x^2+504*x-681 8024930347653109 r008 a(0)=8,K{-n^6,-77+87*n^3+27*n^2-77*n} 8024930386053249 a001 329/13201*843^(6/7) 8024930389693739 a001 6765/103682*843^(5/7) 8024930394879396 p001 sum((-1)^n/(281*n+118)/(5^n),n=0..infinity) 8024930398112402 r008 a(0)=8,K{-n^6,-39+17*n^3-16*n^2} 8024930416236877 m005 (1/3*Pi+1/5)/(53/60+3/10*5^(1/2)) 8024930418719424 r005 Im(z^2+c),c=-4/23+2/19*I,n=8 8024930420284682 a001 17711/271443*843^(5/7) 8024930424747840 a001 6624/101521*843^(5/7) 8024930425399006 a001 121393/1860498*843^(5/7) 8024930425494010 a001 317811/4870847*843^(5/7) 8024930425507871 a001 832040/12752043*843^(5/7) 8024930425509893 a001 311187/4769326*843^(5/7) 8024930425510188 a001 5702887/87403803*843^(5/7) 8024930425510231 a001 14930352/228826127*843^(5/7) 8024930425510237 a001 39088169/599074578*843^(5/7) 8024930425510238 a001 14619165/224056801*843^(5/7) 8024930425510239 a001 267914296/4106118243*843^(5/7) 8024930425510239 a001 701408733/10749957122*843^(5/7) 8024930425510239 a001 1836311903/28143753123*843^(5/7) 8024930425510239 a001 686789568/10525900321*843^(5/7) 8024930425510239 a001 12586269025/192900153618*843^(5/7) 8024930425510239 a001 32951280099/505019158607*843^(5/7) 8024930425510239 a001 86267571272/1322157322203*843^(5/7) 8024930425510239 a001 32264490531/494493258286*843^(5/7) 8024930425510239 a001 591286729879/9062201101803*843^(5/7) 8024930425510239 a001 1548008755920/23725150497407*843^(5/7) 8024930425510239 a001 365435296162/5600748293801*843^(5/7) 8024930425510239 a001 139583862445/2139295485799*843^(5/7) 8024930425510239 a001 53316291173/817138163596*843^(5/7) 8024930425510239 a001 20365011074/312119004989*843^(5/7) 8024930425510239 a001 7778742049/119218851371*843^(5/7) 8024930425510239 a001 2971215073/45537549124*843^(5/7) 8024930425510239 a001 1134903170/17393796001*843^(5/7) 8024930425510239 a001 433494437/6643838879*843^(5/7) 8024930425510239 a001 165580141/2537720636*843^(5/7) 8024930425510239 a001 63245986/969323029*843^(5/7) 8024930425510241 a001 24157817/370248451*843^(5/7) 8024930425510258 a001 9227465/141422324*843^(5/7) 8024930425510371 a001 3524578/54018521*843^(5/7) 8024930425511143 a001 1346269/20633239*843^(5/7) 8024930425516437 a001 514229/7881196*843^(5/7) 8024930425552726 a001 196418/3010349*843^(5/7) 8024930425801449 a001 75025/1149851*843^(5/7) 8024930427506224 a001 28657/439204*843^(5/7) 8024930439190924 a001 10946/167761*843^(5/7) 8024930457469455 r002 4th iterates of z^2 + 8024930460196918 a001 4870847/55*55^(11/20) 8024930464788363 a007 Real Root Of -653*x^4+590*x^3+20*x^2-502*x+160 8024930474768699 r002 62th iterates of z^2 + 8024930506422913 a007 Real Root Of 109*x^4-693*x^3+591*x^2-20*x-800 8024930508375783 r005 Re(z^2+c),c=-25/22+91/93*I,n=2 8024930519279053 a001 4181/64079*843^(5/7) 8024930528531908 a001 1597/1364*843^(2/7) 8024930534502082 r002 49th iterates of z^2 + 8024930548098997 a007 Real Root Of 45*x^4-774*x^3-209*x^2-587*x+987 8024930551747574 r009 Re(z^3+c),c=-3/86+47/57*I,n=46 8024930564106593 m005 (1/3*2^(1/2)+1/3)/(7/10*exp(1)-9/10) 8024930567657820 r002 4th iterates of z^2 + 8024930577742877 s002 sum(A284925[n]/(exp(n)),n=1..infinity) 8024930584790554 r005 Re(z^2+c),c=21/82+23/62*I,n=23 8024930589484541 r008 a(0)=8,K{-n^6,-77+87*n^3+28*n^2-78*n} 8024930602107121 a007 Real Root Of 568*x^4-899*x^3-193*x^2-369*x-872 8024930621275171 r005 Re(z^2+c),c=-93/122+2/25*I,n=33 8024930626120176 m002 2/Pi^3+Log[Pi]/(E^Pi*Pi) 8024930630721397 r009 Re(z^3+c),c=-47/82+13/54*I,n=4 8024930632439131 l006 ln(3293/7347) 8024930634945105 m005 (1/2*Zeta(3)+6/11)/(1/9*2^(1/2)-3/10) 8024930643960446 a007 Real Root Of -492*x^4+975*x^3-480*x^2-901*x+294 8024930649966882 m001 (Ei(1)+ThueMorse)/(BesselI(0,1)+ln(5)) 8024930661236176 r009 Im(z^3+c),c=-5/78+9/11*I,n=53 8024930670549362 r002 56th iterates of z^2 + 8024930671485604 a001 610/2207*843^(1/2) 8024930686123682 r005 Im(z^2+c),c=-81/98+3/53*I,n=10 8024930691738072 b008 8+Sin[Pi/126] 8024930747922437 q001 2897/3610 8024930764035484 a001 305/682*3571^(6/17) 8024930775837416 m001 (2^(1/3)-gamma(2))/(-BesselI(0,2)+ArtinRank2) 8024930784971979 q001 6/74767 8024930799359605 m005 (2^(1/2)-1/2)/(5*gamma-3) 8024930822528521 a007 Real Root Of -782*x^4+571*x^3+587*x^2+326*x+503 8024930857933534 a007 Real Root Of -105*x^4-821*x^3+50*x^2-967*x+192 8024930863017104 m001 (Zeta(1/2)-GAMMA(23/24))/(Bloch-FeigenbaumMu) 8024930889212760 m005 (1/2*2^(1/2)-7/10)/(1/10*Pi+4/7) 8024930941139090 a001 36/109801*7^(23/50) 8024930957149285 a001 305/682*9349^(6/19) 8024930966939517 a007 Real Root Of 301*x^4-620*x^3-513*x^2-420*x+863 8024930974473566 p001 sum(1/(365*n+129)/(8^n),n=0..infinity) 8024930980867285 a007 Real Root Of -277*x^4+956*x^3-462*x^2+940*x-836 8024930982316019 a001 305/682*24476^(2/7) 8024930984361485 m001 GolombDickman^2/Artin/exp(MertensB1) 8024930985633479 a001 305/682*64079^(6/23) 8024930986134074 a001 305/682*439204^(2/9) 8024930986143295 a001 305/682*7881196^(2/11) 8024930986143318 a001 305/682*141422324^(2/13) 8024930986143318 a001 305/682*2537720636^(2/15) 8024930986143318 a001 305/682*45537549124^(2/17) 8024930986143318 a001 305/682*14662949395604^(2/21) 8024930986143318 a001 305/682*(1/2+1/2*5^(1/2))^6 8024930986143318 a001 305/682*10749957122^(1/8) 8024930986143318 a001 305/682*4106118243^(3/23) 8024930986143318 a001 305/682*1568397607^(3/22) 8024930986143318 a001 305/682*599074578^(1/7) 8024930986143318 a001 305/682*228826127^(3/20) 8024930986143318 a001 305/682*87403803^(3/19) 8024930986143320 a001 305/682*33385282^(1/6) 8024930986143327 a001 305/682*12752043^(3/17) 8024930986143382 a001 305/682*4870847^(3/16) 8024930986143782 a001 305/682*1860498^(1/5) 8024930986146723 a001 305/682*710647^(3/14) 8024930986168452 a001 305/682*271443^(3/13) 8024930986329945 a001 305/682*103682^(1/4) 8024930986887508 a001 93025/11592 8024930987538766 a001 305/682*39603^(3/11) 8024930992229523 a003 sin(Pi*2/91)-sin(Pi*32/95) 8024930993692805 a001 2584/64079*843^(11/14) 8024930996664317 a001 305/682*15127^(3/10) 8024931005480086 g007 -Psi(2,5/11)-Psi(2,2/11)-Psi(2,5/9)-Psi(2,1/6) 8024931005814937 a001 47/1346269*610^(39/46) 8024931014328042 s002 sum(A249944[n]/(n^2*2^n-1),n=1..infinity) 8024931036115792 r002 14th iterates of z^2 + 8024931046151255 a001 1597/843*322^(1/4) 8024931060794720 a007 Real Root Of -686*x^4-717*x^3-777*x^2+665*x+948 8024931066267757 a001 305/682*5778^(1/3) 8024931068211255 a001 1597/24476*843^(5/7) 8024931068240695 r008 a(0)=8,K{-n^6,-77+88*n^3+27*n^2-78*n} 8024931084534177 r005 Im(z^2+c),c=-61/90+2/19*I,n=18 8024931094623380 m001 LambertW(1)^2*exp(Robbin)/log(1+sqrt(2))^2 8024931117426570 r005 Im(z^2+c),c=-1/98+39/50*I,n=21 8024931150302251 m001 GAMMA(11/12)/(ln(5)^Stephens) 8024931159211596 r008 a(0)=8,K{-n^6,-29-39*n+46*n^2-19*n^3} 8024931197326892 a001 615/15251*843^(11/14) 8024931199725780 a001 987/64079*843^(13/14) 8024931201246947 a007 Real Root Of -912*x^4-654*x^3+431*x^2+849*x+444 8024931215165105 m005 (1/2*Catalan-10/11)/(1/9*Zeta(3)+3/7) 8024931220445877 a007 Real Root Of 991*x^4-629*x^3+358*x^2+969*x-189 8024931227036704 a001 17711/439204*843^(11/14) 8024931231371308 a001 46368/1149851*843^(11/14) 8024931232003718 a001 121393/3010349*843^(11/14) 8024931232095985 a001 317811/7881196*843^(11/14) 8024931232109447 a001 75640/1875749*843^(11/14) 8024931232111411 a001 2178309/54018521*843^(11/14) 8024931232111697 a001 5702887/141422324*843^(11/14) 8024931232111739 a001 14930352/370248451*843^(11/14) 8024931232111745 a001 39088169/969323029*843^(11/14) 8024931232111746 a001 9303105/230701876*843^(11/14) 8024931232111746 a001 267914296/6643838879*843^(11/14) 8024931232111746 a001 701408733/17393796001*843^(11/14) 8024931232111746 a001 1836311903/45537549124*843^(11/14) 8024931232111746 a001 4807526976/119218851371*843^(11/14) 8024931232111746 a001 1144206275/28374454999*843^(11/14) 8024931232111746 a001 32951280099/817138163596*843^(11/14) 8024931232111746 a001 86267571272/2139295485799*843^(11/14) 8024931232111746 a001 225851433717/5600748293801*843^(11/14) 8024931232111746 a001 591286729879/14662949395604*843^(11/14) 8024931232111746 a001 365435296162/9062201101803*843^(11/14) 8024931232111746 a001 139583862445/3461452808002*843^(11/14) 8024931232111746 a001 53316291173/1322157322203*843^(11/14) 8024931232111746 a001 20365011074/505019158607*843^(11/14) 8024931232111746 a001 7778742049/192900153618*843^(11/14) 8024931232111746 a001 2971215073/73681302247*843^(11/14) 8024931232111746 a001 1134903170/28143753123*843^(11/14) 8024931232111746 a001 433494437/10749957122*843^(11/14) 8024931232111746 a001 165580141/4106118243*843^(11/14) 8024931232111747 a001 63245986/1568397607*843^(11/14) 8024931232111749 a001 24157817/599074578*843^(11/14) 8024931232111765 a001 9227465/228826127*843^(11/14) 8024931232111874 a001 3524578/87403803*843^(11/14) 8024931232112625 a001 1346269/33385282*843^(11/14) 8024931232117766 a001 514229/12752043*843^(11/14) 8024931232153009 a001 196418/4870847*843^(11/14) 8024931232394569 a001 75025/1860498*843^(11/14) 8024931234050240 a001 28657/710647*843^(11/14) 8024931245398378 a001 10946/271443*843^(11/14) 8024931275680967 l006 ln(2116/4721) 8024931286573582 a007 Real Root Of 107*x^4+836*x^3-173*x^2+183*x+895 8024931297263049 h001 (-8*exp(-1)+2)/(-6*exp(3)+3) 8024931323179678 a001 4181/103682*843^(11/14) 8024931352284123 m005 (-11/36+1/4*5^(1/2))/(11/12*exp(1)+2/3) 8024931364366302 a007 Real Root Of 932*x^4-303*x^3-625*x^2-312*x-391 8024931416787835 r005 Im(z^2+c),c=-11/74+47/57*I,n=52 8024931417744364 r008 a(0)=8,K{-n^6,-33-40*n+32*n^2-3*n^3} 8024931466071881 a001 18/75025*8^(18/31) 8024931505582933 m001 (Catalan+Ei(1,1))/(OrthogonalArrays+Trott) 8024931508799970 a007 Real Root Of -315*x^4+980*x^3-911*x^2-315*x+971 8024931515741857 p004 log(18959/17497) 8024931520188146 m009 (4*Psi(1,2/3)-1/6)/(3/4*Psi(1,3/4)-2/5) 8024931524668885 a007 Real Root Of -101*x^4+612*x^3+901*x^2+830*x+444 8024931540346623 m001 (Pi-sin(Pi/12)*exp(sqrt(2)))/sin(Pi/12) 8024931540346623 m001 GAMMA(11/12)*GAMMA(1/12)-exp(sqrt(2)) 8024931586371640 m001 (Porter+RenyiParking)/(Sierpinski+ZetaP(3)) 8024931588340273 r002 2th iterates of z^2 + 8024931602740094 m005 (1/2*3^(1/2)+1/8)/(7/9*Zeta(3)+3/10) 8024931603971989 a001 305/682*2207^(3/8) 8024931665378941 g006 Psi(1,1/8)+Psi(1,1/5)-Psi(1,5/9)-Psi(1,2/5) 8024931668017773 m001 (ln(3)+arctan(1/2))/(GAMMA(17/24)+Robbin) 8024931676567804 a007 Real Root Of 12*x^4-908*x^3-442*x^2-30*x+773 8024931715872907 m001 1/Salem*ln(DuboisRaymond)/log(2+sqrt(3))^2 8024931753000429 m009 (4*Catalan+1/2*Pi^2-6)/(2/5*Psi(1,1/3)-4/5) 8024931756303033 a007 Real Root Of 517*x^4+100*x^3-399*x^2-890*x-620 8024931761464598 m001 (Shi(1)+FeigenbaumD)/(Niven+Otter) 8024931766261747 m002 1+Pi^5/4+Pi/Log[Pi] 8024931772297899 m004 -20/Pi+5*Pi-Log[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 8024931785064369 m001 (KhinchinLevy+MertensB2)/(Si(Pi)+Catalan) 8024931787973093 a007 Real Root Of -786*x^4+337*x^3-329*x^2-86*x+643 8024931794628048 r002 9th iterates of z^2 + 8024931797593478 a001 1292/51841*843^(6/7) 8024931804733455 a003 sin(Pi*25/74)-sin(Pi*35/87) 8024931811763969 a007 Real Root Of -974*x^4+901*x^3-97*x^2-663*x+400 8024931827035449 q001 206/2567 8024931854272862 r002 7th iterates of z^2 + 8024931854615355 r005 Re(z^2+c),c=-77/74+7/31*I,n=14 8024931856300637 a001 1597/39603*843^(11/14) 8024931865365406 s001 sum(exp(-3*Pi)^(n-1)*A222095[n],n=1..infinity) 8024931865977242 a001 1/7*(1/2*5^(1/2)+1/2)^22*3^(7/22) 8024931886912322 m005 (1/2*exp(1)+11/12)/(1/9*Catalan+2/11) 8024931920645881 m008 (2/5*Pi^5+1/3)/(5*Pi^5-3/5) 8024931933918980 a007 Real Root Of -291*x^4+628*x^3+654*x^2+375*x+325 8024931957359686 m001 Pi-Psi(2,1/3)*(ln(2^(1/2)+1)+polylog(4,1/2)) 8024931963138450 a007 Real Root Of -809*x^4+458*x^3+476*x^2+373*x+565 8024931969034559 l006 ln(3055/6816) 8024931974726179 a007 Real Root Of 713*x^4+880*x^3-234*x^2-872*x+71 8024932003534422 a001 2255/90481*843^(6/7) 8024932004372981 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^24 8024932008049048 r002 44th iterates of z^2 + 8024932023191226 r002 64th iterates of z^2 + 8024932033580801 a001 17711/710647*843^(6/7) 8024932037964508 a001 2576/103361*843^(6/7) 8024932038604083 a001 121393/4870847*843^(6/7) 8024932038697395 a001 105937/4250681*843^(6/7) 8024932038711009 a001 416020/16692641*843^(6/7) 8024932038712996 a001 726103/29134601*843^(6/7) 8024932038713285 a001 5702887/228826127*843^(6/7) 8024932038713328 a001 829464/33281921*843^(6/7) 8024932038713334 a001 39088169/1568397607*843^(6/7) 8024932038713335 a001 34111385/1368706081*843^(6/7) 8024932038713335 a001 133957148/5374978561*843^(6/7) 8024932038713335 a001 233802911/9381251041*843^(6/7) 8024932038713335 a001 1836311903/73681302247*843^(6/7) 8024932038713335 a001 267084832/10716675201*843^(6/7) 8024932038713335 a001 12586269025/505019158607*843^(6/7) 8024932038713335 a001 10983760033/440719107401*843^(6/7) 8024932038713335 a001 43133785636/1730726404001*843^(6/7) 8024932038713335 a001 75283811239/3020733700601*843^(6/7) 8024932038713335 a001 182717648081/7331474697802*843^(6/7) 8024932038713335 a001 139583862445/5600748293801*843^(6/7) 8024932038713335 a001 53316291173/2139295485799*843^(6/7) 8024932038713335 a001 10182505537/408569081798*843^(6/7) 8024932038713335 a001 7778742049/312119004989*843^(6/7) 8024932038713335 a001 2971215073/119218851371*843^(6/7) 8024932038713335 a001 567451585/22768774562*843^(6/7) 8024932038713335 a001 433494437/17393796001*843^(6/7) 8024932038713335 a001 165580141/6643838879*843^(6/7) 8024932038713335 a001 31622993/1268860318*843^(6/7) 8024932038713338 a001 24157817/969323029*843^(6/7) 8024932038713354 a001 9227465/370248451*843^(6/7) 8024932038713465 a001 1762289/70711162*843^(6/7) 8024932038714223 a001 1346269/54018521*843^(6/7) 8024932038719423 a001 514229/20633239*843^(6/7) 8024932038755066 a001 98209/3940598*843^(6/7) 8024932038999361 a001 75025/3010349*843^(6/7) 8024932040673789 a001 28657/1149851*843^(6/7) 8024932044156035 r005 Re(z^2+c),c=-17/18-67/249*I,n=4 8024932047949061 m005 (1/2*Pi+3/10)/(3*Catalan-5/12) 8024932052150484 a001 5473/219602*843^(6/7) 8024932064556318 b008 5*ModularLambda[1+(2*I)/5] 8024932102844530 a007 Real Root Of -254*x^4+658*x^3-630*x^2-126*x+750 8024932130812925 a001 4181/167761*843^(6/7) 8024932143073907 m004 -2+(80*Pi)/3-ProductLog[Sqrt[5]*Pi] 8024932152892667 p001 sum(1/(435*n+322)/n/(2^n),n=1..infinity) 8024932174317641 r008 a(0)=8,K{-n^6,-13-46*n+13*n^2+4*n^3} 8024932174755246 a007 Real Root Of 969*x^4+29*x^3+509*x^2+32*x-689 8024932177770164 r008 a(0)=8,K{-n^6,-60-9*n+40*n^2-14*n^3} 8024932178286316 r005 Re(z^2+c),c=-79/94+1/50*I,n=27 8024932182040148 r008 a(0)=8,K{-n^6,-2+5*n^3+53*n^2-95*n} 8024932193155610 r002 5th iterates of z^2 + 8024932201618875 m001 (LambertW(1)+ln(5))/(DuboisRaymond+ZetaP(4)) 8024932243193092 a007 Real Root Of -94*x^4+274*x^3-894*x^2+32*x+782 8024932246456198 r005 Re(z^2+c),c=-47/56+1/64*I,n=11 8024932261470654 l006 ln(7073/7664) 8024932285297913 m001 Rabbit/exp(FeigenbaumDelta)^2*GAMMA(17/24) 8024932316317107 a007 Real Root Of 973*x^4-462*x^3-800*x^2-522*x-546 8024932328568814 a007 Real Root Of 229*x^4+46*x^3+587*x^2+652*x+74 8024932336369592 l006 ln(3994/8911) 8024932348954379 a007 Real Root Of -138*x^4-990*x^3+948*x^2+8*x-293 8024932385932695 m001 (sin(1)+Zeta(3))/(MasserGramainDelta+Sarnak) 8024932386007629 r009 Im(z^3+c),c=-9/82+21/26*I,n=37 8024932394291984 m001 (exp(1/exp(1))-Artin)/(MertensB3+ZetaQ(4)) 8024932413920978 b008 8+SinIntegral[Pi/126] 8024932420752012 a007 Real Root Of -473*x^4+735*x^3+30*x^2+282*x+783 8024932505998823 m001 (Riemann1stZero-Tribonacci)/(Pi-ln(5)) 8024932506388915 m001 exp(FeigenbaumD)*Niven*LambertW(1)^2 8024932511201870 a003 cos(Pi*21/62)+cos(Pi*29/73) 8024932524255281 m001 1/Trott^2*CopelandErdos/exp(Catalan) 8024932528346066 a007 Real Root Of -848*x^4-690*x^3+133*x^2+944*x+667 8024932532153728 r002 48th iterates of z^2 + 8024932549734100 a007 Real Root Of -874*x^4-147*x^3+319*x^2+694*x+638 8024932564066607 a007 Real Root Of 685*x^4-607*x^3-457*x^2-448*x-663 8024932571986904 r005 Im(z^2+c),c=-7/12+16/99*I,n=21 8024932605226773 a001 2584/167761*843^(13/14) 8024932634788434 a007 Real Root Of -659*x^4+640*x^3+670*x^2+889*x+886 8024932635149704 a007 Real Root Of -429*x^4+524*x^3-324*x^2+581*x+49 8024932646089966 r008 a(0)=8,K{-n^6,-17+24*n^3-32*n^2-12*n} 8024932669973317 a001 1597/64079*843^(6/7) 8024932689379571 a007 Real Root Of -49*x^4-381*x^3+81*x^2-194*x-457 8024932696946692 m005 (1/2*gamma-6/7)/(2/11*Catalan-7/8) 8024932722768547 r005 Im(z^2+c),c=7/34+1/27*I,n=7 8024932765373177 a007 Real Root Of 887*x^4-294*x^3-943*x^2-33*x+61 8024932772978075 m008 (4*Pi^5-1)/(1/2*Pi^5-3/5) 8024932779271571 q001 3283/4091 8024932780199470 a007 Real Root Of -559*x^4+319*x^3+318*x^2-603*x-292 8024932782132871 m001 (-Gompertz+Niven)/(sin(1)+cos(1)) 8024932810286604 a001 6765/439204*843^(13/14) 8024932821073179 a001 1346269/123*3571^(21/40) 8024932840204430 a001 17711/1149851*843^(13/14) 8024932844569382 a001 46368/3010349*843^(13/14) 8024932845206220 a001 121393/7881196*843^(13/14) 8024932845299133 a001 10959/711491*843^(13/14) 8024932845312689 a001 832040/54018521*843^(13/14) 8024932845314667 a001 2178309/141422324*843^(13/14) 8024932845314955 a001 5702887/370248451*843^(13/14) 8024932845314998 a001 14930352/969323029*843^(13/14) 8024932845315004 a001 39088169/2537720636*843^(13/14) 8024932845315005 a001 102334155/6643838879*843^(13/14) 8024932845315005 a001 9238424/599786069*843^(13/14) 8024932845315005 a001 701408733/45537549124*843^(13/14) 8024932845315005 a001 1836311903/119218851371*843^(13/14) 8024932845315005 a001 4807526976/312119004989*843^(13/14) 8024932845315005 a001 12586269025/817138163596*843^(13/14) 8024932845315005 a001 32951280099/2139295485799*843^(13/14) 8024932845315005 a001 86267571272/5600748293801*843^(13/14) 8024932845315005 a001 7787980473/505618944676*843^(13/14) 8024932845315005 a001 365435296162/23725150497407*843^(13/14) 8024932845315005 a001 139583862445/9062201101803*843^(13/14) 8024932845315005 a001 53316291173/3461452808002*843^(13/14) 8024932845315005 a001 20365011074/1322157322203*843^(13/14) 8024932845315005 a001 7778742049/505019158607*843^(13/14) 8024932845315005 a001 2971215073/192900153618*843^(13/14) 8024932845315005 a001 1134903170/73681302247*843^(13/14) 8024932845315005 a001 433494437/28143753123*843^(13/14) 8024932845315005 a001 165580141/10749957122*843^(13/14) 8024932845315005 a001 63245986/4106118243*843^(13/14) 8024932845315008 a001 24157817/1568397607*843^(13/14) 8024932845315024 a001 9227465/599074578*843^(13/14) 8024932845315134 a001 3524578/228826127*843^(13/14) 8024932845315889 a001 1346269/87403803*843^(13/14) 8024932845321067 a001 514229/33385282*843^(13/14) 8024932845356557 a001 196418/12752043*843^(13/14) 8024932845599807 a001 75025/4870847*843^(13/14) 8024932847267071 a001 28657/1860498*843^(13/14) 8024932858694663 a001 10946/710647*843^(13/14) 8024932863879961 r008 a(0)=0,K{-n^6,-18+9*n+17*n^2-12*n^3} 8024932867165751 r009 Re(z^3+c),c=-7/64+7/19*I,n=4 8024932881754483 m001 (2^(1/2)+Zeta(5))/(Otter+Paris) 8024932899200971 a007 Real Root Of -900*x^4+261*x^3+637*x^2+354*x+382 8024932901717948 a007 Real Root Of -521*x^4+537*x^3+837*x^2+372*x-899 8024932905629732 r009 Im(z^3+c),c=-63/122+29/55*I,n=2 8024932914413736 m001 ln(GAMMA(19/24))^2/FeigenbaumDelta*Zeta(1/2) 8024932937020549 a001 4181/271443*843^(13/14) 8024932945476253 m001 Landau^(Bloch*LandauRamanujan) 8024932953153746 m001 (cos(1/5*Pi)-Ei(1))/(gamma(3)-FeigenbaumKappa) 8024932978184282 r008 a(0)=8,K{-n^6,-42-10*n^3+49*n^2-43*n} 8024933004593952 r008 a(0)=8,K{-n^6,-33-4*n^3+46*n^2-46*n} 8024933017446833 m001 (Zeta(1/2)-Artin)/(ZetaP(3)+ZetaQ(2)) 8024933035246625 m001 Zeta(1/2)*exp(Si(Pi))^2/exp(1)^2 8024933036440892 m001 (3^(1/2)-LambertW(1))/(Zeta(5)+PrimesInBinary) 8024933061895980 a007 Real Root Of -661*x^4+129*x^3-482*x^2-4*x+648 8024933064050053 r008 a(0)=8,K{-n^6,-6+2*n^3+18*n^2-55*n} 8024933087674628 a001 615/124*322^(1/12) 8024933094350025 a007 Real Root Of 742*x^4-35*x^3-702*x^2-829*x-539 8024933098670538 a001 514229/123*9349^(23/40) 8024933114635948 a007 Real Root Of 857*x^4-196*x^3-57*x^2-638*x-932 8024933117874017 v002 sum(1/(5^n+(2+12*n)),n=1..infinity) 8024933145765562 a001 1346269/123*24476^(17/40) 8024933154772576 m005 (1/3*Pi-3/4)/(2*2^(1/2)+7/8) 8024933159188488 r002 47th iterates of z^2 + 8024933168087094 m001 GolombDickman^(Thue/Tribonacci) 8024933187303411 r002 37i'th iterates of 2*x/(1-x^2) of 8024933207811572 m001 (Si(Pi)-cos(1/12*Pi))/(-CopelandErdos+Totient) 8024933241216093 r005 Re(z^2+c),c=-17/14+51/167*I,n=5 8024933254608647 r008 a(0)=8,K{-n^6,-78+89*n^3+33*n^2-84*n} 8024933261596481 a001 2584/521*199^(1/11) 8024933271421591 r004 Im(z^2+c),c=7/46+2/3*I,z(0)=I,n=5 8024933280107093 r008 a(0)=8,K{-n^6,47+32*n^3-65*n^2-55*n} 8024933284305017 m001 Ei(1)/(HardHexagonsEntropy-Riemann3rdZero) 8024933300549389 r005 Im(z^2+c),c=-113/122+20/39*I,n=3 8024933321257065 a007 Real Root Of 98*x^4+808*x^3+107*x^2-590*x-485 8024933340118054 r005 Im(z^2+c),c=-10/17+13/20*I,n=3 8024933365825608 r008 a(0)=8,K{-n^6,-79+89*n^3+33*n^2-83*n} 8024933378061961 m005 (1/2*Pi-2/9)/(6/11*2^(1/2)+10/11) 8024933387629808 m005 (19/42+1/6*5^(1/2))/(6*3^(1/2)-1/9) 8024933390238038 r005 Re(z^2+c),c=-99/118+2/63*I,n=17 8024933392450401 r009 Im(z^3+c),c=-1/29+49/59*I,n=15 8024933411543358 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^26 8024933436219098 m008 (3/4*Pi^3+2/3)/(3*Pi^2+1/5) 8024933444929387 r009 Im(z^3+c),c=-1/48+23/28*I,n=3 8024933455018021 r008 a(0)=8,K{-n^6,56+37*n^3-50*n^2-86*n} 8024933473874157 a001 1597/103682*843^(13/14) 8024933477938717 m001 1/FeigenbaumC^2/Niven/exp(GAMMA(7/24)) 8024933499503724 r002 54th iterates of z^2 + 8024933519686595 r009 Re(z^3+c),c=-4/27+43/61*I,n=53 8024933520537662 m001 (1+sin(1))/(Bloch+MasserGramainDelta) 8024933531479751 l006 ln(939/2095) 8024933576730423 a001 6765/2207*322^(1/6) 8024933582900615 r002 2th iterates of z^2 + 8024933584875289 m001 5^(1/2)*CareFree/ReciprocalLucas 8024933586741044 a007 Real Root Of -752*x^4+290*x^3+411*x^2+775*x+819 8024933587179643 r008 a(0)=8,K{-n^6,-79+89*n^3+34*n^2-84*n} 8024933616846750 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^28 8024933646800111 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^30 8024933651170247 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^32 8024933651807842 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^34 8024933651900865 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^36 8024933651914437 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^38 8024933651916417 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^40 8024933651916706 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^42 8024933651916748 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^44 8024933651916755 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^46 8024933651916755 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^48 8024933651916756 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^50 8024933651916756 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^52 8024933651916756 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^54 8024933651916756 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^56 8024933651916756 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^58 8024933651916756 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^60 8024933651916756 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^62 8024933651916756 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^64 8024933651916756 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^66 8024933651916756 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^68 8024933651916756 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^70 8024933651916756 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^72 8024933651916756 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^74 8024933651916756 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^76 8024933651916756 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^78 8024933651916756 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^80 8024933651916756 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^82 8024933651916756 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^84 8024933651916756 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^86 8024933651916756 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^88 8024933651916756 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^90 8024933651916756 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^92 8024933651916756 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^94 8024933651916756 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^96 8024933651916756 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^98 8024933651916756 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^100 8024933651916756 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^99 8024933651916756 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^97 8024933651916756 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^95 8024933651916756 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^93 8024933651916756 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^91 8024933651916756 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^89 8024933651916756 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^87 8024933651916756 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^85 8024933651916756 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^83 8024933651916756 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^81 8024933651916756 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^79 8024933651916756 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^77 8024933651916756 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^75 8024933651916756 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^73 8024933651916756 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^71 8024933651916756 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^69 8024933651916756 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^67 8024933651916756 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^65 8024933651916756 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^63 8024933651916756 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^61 8024933651916756 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^59 8024933651916756 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^57 8024933651916756 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^55 8024933651916756 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^53 8024933651916756 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^51 8024933651916756 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^49 8024933651916756 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^47 8024933651916758 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^45 8024933651916774 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^43 8024933651916885 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^41 8024933651917641 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^39 8024933651922825 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^37 8024933651932646 a001 2/377*(1/2+1/2*5^(1/2))^20 8024933651958357 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^35 8024933652201896 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^33 8024933653871140 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^31 8024933665312306 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^29 8024933691858846 a001 305/2889*843^(9/14) 8024933701313104 r008 a(0)=8,K{-n^6,5+11*n^3+24*n^2-78*n} 8024933707050513 r005 Im(z^2+c),c=-49/90+1/2*I,n=26 8024933707584888 r005 Im(z^2+c),c=-15/118+41/49*I,n=34 8024933717110250 m001 AlladiGrinstead-gamma(3)*ReciprocalFibonacci 8024933742828882 a007 Real Root Of 61*x^4-800*x^3+973*x^2-828*x+426 8024933743731223 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^27 8024933746889828 r005 Re(z^2+c),c=-29/66+43/46*I,n=3 8024933754936197 a001 610/3571*843^(4/7) 8024933768022893 a003 sin(Pi*3/76)+sin(Pi*19/80) 8024933778285375 m001 1/cos(1)^2/Riemann1stZero/ln(gamma)^2 8024933785647443 r005 Im(z^2+c),c=-9/8+44/169*I,n=11 8024933800413477 m005 (1/3*5^(1/2)+3/5)/(7/8*Catalan+7/8) 8024933804943553 m001 (exp(-1/2*Pi)-Grothendieck)/(Khinchin-Sarnak) 8024933829557369 a007 Real Root Of -38*x^4+269*x^3-385*x^2+434*x+751 8024933858924308 a007 Real Root Of -776*x^4+467*x^3-818*x^2-628*x+586 8024933869275842 a007 Real Root Of 992*x^4-438*x^3+215*x^2-148*x-895 8024933876930865 a007 Real Root Of -754*x^4-887*x^3-394*x^2-15*x+96 8024933895340769 r005 Im(z^2+c),c=-71/66+9/31*I,n=6 8024933914681920 r008 a(0)=8,K{-n^6,-19-23*n+5*n^2-4*n^3} 8024933930421745 r008 a(0)=8,K{-n^6,30+53*n^3-96*n^2-24*n} 8024933939176752 b008 4/11+Csc[Pi/24] 8024933955136834 a007 Real Root Of -406*x^4-14*x^3+61*x^2+617*x+617 8024934019054354 m001 (3^(1/2)+Shi(1))/(-ArtinRank2+LaplaceLimit) 8024934024867326 r005 Re(z^2+c),c=-9/118+41/63*I,n=36 8024934025586829 r008 a(0)=8,K{-n^6,-79+90*n^3+33*n^2-84*n} 8024934051478151 a007 Real Root Of -928*x^4-418*x^3-583*x^2+523*x+964 8024934087005613 a007 Real Root Of 904*x^4-955*x^3+857*x^2+869*x-723 8024934088172374 a008 Real Root of (5+17*x+7*x^2-8*x^3) 8024934110374900 m005 (1/2*Pi-7/10)/(6/7*Catalan+3/10) 8024934119942803 m001 (Bloch-ZetaQ(4))/(sin(1/5*Pi)-GAMMA(19/24)) 8024934120843447 r005 Im(z^2+c),c=-25/56+5/36*I,n=10 8024934126457392 m005 (1/2*gamma+11/12)/(3/11*Catalan-2/5) 8024934137388178 a007 Real Root Of 488*x^4-753*x^3+363*x^2+606*x-339 8024934163778469 a007 Real Root Of -48*x^4-435*x^3-478*x^2-666*x-300 8024934164270738 m001 (StronglyCareFree-ZetaP(3))/(exp(1/Pi)-Kac) 8024934181517892 r008 a(0)=8,K{-n^6,-21-45*n+41*n^2-16*n^3} 8024934185584089 a007 Real Root Of 171*x^4-377*x^3-492*x^2-759*x-558 8024934201648319 a007 Real Root Of 520*x^4+816*x^3+791*x^2-341*x-577 8024934218220397 h001 (5/7*exp(1)+5/12)/(3/4*exp(1)+9/10) 8024934246208139 a007 Real Root Of -856*x^4+699*x^3-598*x^2-226*x+920 8024934269017771 m001 (3^(1/3)+BesselI(1,2))/(3^(1/2)-GAMMA(2/3)) 8024934281222480 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^25 8024934328550428 a001 199/55*2584^(11/16) 8024934353502028 a007 Real Root Of -522*x^4+58*x^3-948*x^2-871*x+158 8024934365063576 m005 (1/3*3^(1/2)-1/3)/(9/10*Zeta(3)-7/9) 8024934383202099 q001 1223/1524 8024934392147261 m001 (-BesselI(0,2)+Artin)/(BesselJ(0,1)+ln(5)) 8024934416680528 r002 43th iterates of z^2 + 8024934419948653 m006 (1/6*exp(Pi)-3)/(1/5*exp(2*Pi)-1/3) 8024934428390288 r005 Im(z^2+c),c=-5/31+22/27*I,n=31 8024934429402204 r005 Im(z^2+c),c=-19/18+70/193*I,n=7 8024934453553754 r009 Im(z^3+c),c=-55/94+8/33*I,n=47 8024934461405679 m006 (4/5*Pi^2-2/3)/(1/6*exp(2*Pi)+5/6) 8024934477909090 a001 7331474697802/305*144^(12/17) 8024934479060543 r005 Re(z^2+c),c=11/64+46/55*I,n=4 8024934505425301 a007 Real Root Of -940*x^4-432*x^3-203*x^2+680*x-53 8024934517177857 a001 505019158607/377*144^(14/17) 8024934535652949 r005 Im(z^2+c),c=-3/94+38/53*I,n=10 8024934588109113 a003 sin(Pi*19/72)/sin(Pi*33/89) 8024934597707473 r005 Im(z^2+c),c=-7/78+50/61*I,n=13 8024934599267192 m001 (ArtinRank2-Stephens)/(Totient+ZetaP(3)) 8024934602439912 l006 ln(4457/9944) 8024934604677907 m001 (Pi-BesselI(0,2))/(Robbin+ThueMorse) 8024934664232539 m001 ArtinRank2^(GAMMA(7/12)/FeigenbaumAlpha) 8024934698418576 r005 Re(z^2+c),c=1/10+24/47*I,n=30 8024934716069869 r008 a(0)=8,K{-n^6,-64+7*n+38*n^2-22*n^3} 8024934745575729 m002 -2/Pi+(3*Sinh[Pi])/4 8024934756786408 r008 a(0)=8,K{-n^6,-26-19*n+11*n^2-7*n^3} 8024934773113503 r002 11th iterates of z^2 + 8024934801288213 b008 -4+E^4*Cosh[1] 8024934802277833 a007 Real Root Of -309*x^4-334*x^3+547*x^2+681*x-598 8024934805487927 a007 Real Root Of -572*x^4+571*x^3+73*x^2+518*x+901 8024934823727140 r009 Re(z^3+c),c=-7/48+21/53*I,n=2 8024934827992283 m005 (-2/3+1/4*5^(1/2))/(7/10*Zeta(3)+1/2) 8024934828434481 r009 Im(z^3+c),c=-43/114+1/26*I,n=4 8024934830648586 a001 610/9349*843^(5/7) 8024934873993765 a007 Real Root Of -563*x^4+525*x^3+606*x^2+99*x+194 8024934888293102 l006 ln(3518/7849) 8024934892828239 m001 ln(2^(1/2)+1)^(Tribonacci/GAMMA(11/12)) 8024934911298501 r005 Re(z^2+c),c=-8/13+14/33*I,n=13 8024934919923576 a007 Real Root Of -842*x^4+556*x^3-20*x^2-732*x+62 8024934930922908 a007 Real Root Of 827*x^4-254*x^3-929*x^2-418*x+722 8024934934037161 r002 43th iterates of z^2 + 8024934938463946 a007 Real Root Of -943*x^4-171*x^3-761*x^2+161*x+922 8024934984821595 r008 a(0)=8,K{-n^6,-36-26*n^3+64*n^2-43*n} 8024934991784217 a001 2255*3571^(9/58) 8024935000181954 r005 Re(z^2+c),c=-107/82+1/58*I,n=48 8024935013831094 a007 Real Root Of -926*x^4+279*x^3+88*x^2+578*x+46 8024935013854111 a001 17711/5778*322^(1/6) 8024935014079143 a005 (1/sin(87/206*Pi))^835 8024935044858115 m001 (3^(1/3))*HardHexagonsEntropy/ln(GAMMA(17/24)) 8024935078541151 a007 Real Root Of -9*x^4+597*x^3+525*x^2+202*x-805 8024935085872873 r009 Im(z^3+c),c=-33/62+28/59*I,n=11 8024935102435437 a007 Real Root Of -439*x^4+44*x^3-593*x^2-680*x+41 8024935125888455 m005 (1/3*3^(1/2)+1/10)/(7/12*Zeta(3)+1/7) 8024935129985650 a001 10946/3*9349^(5/58) 8024935151183454 m001 Gompertz^(StronglyCareFree/MasserGramainDelta) 8024935162905564 a007 Real Root Of -870*x^4+137*x^3-560*x^2-343*x+517 8024935168001235 m001 ln(gamma)+MadelungNaCl^cos(1) 8024935168001235 m001 log(gamma)+MadelungNaCl^cos(1) 8024935173127017 m001 (Salem-ZetaP(2))/(sin(1/12*Pi)+Cahen) 8024935173467813 a007 Real Root Of 732*x^4-507*x^3+545*x^2+473*x-537 8024935174850345 a007 Real Root Of -546*x^4+473*x^3-478*x^2-690*x+225 8024935175225687 r005 Im(z^2+c),c=-51/70+3/44*I,n=16 8024935219227522 a001 329/281*322^(1/3) 8024935223527673 a001 6624/2161*322^(1/6) 8024935228655322 m001 Zeta(1,-1)^(ZetaQ(2)/BesselJ(1,1)) 8024935232673797 r005 Im(z^2+c),c=-5/7+5/112*I,n=27 8024935254118635 a001 121393/39603*322^(1/6) 8024935258581796 a001 317811/103682*322^(1/6) 8024935259232962 a001 832040/271443*322^(1/6) 8024935259327966 a001 311187/101521*322^(1/6) 8024935259341827 a001 5702887/1860498*322^(1/6) 8024935259343849 a001 14930352/4870847*322^(1/6) 8024935259344144 a001 39088169/12752043*322^(1/6) 8024935259344188 a001 14619165/4769326*322^(1/6) 8024935259344194 a001 267914296/87403803*322^(1/6) 8024935259344195 a001 701408733/228826127*322^(1/6) 8024935259344195 a001 1836311903/599074578*322^(1/6) 8024935259344195 a001 686789568/224056801*322^(1/6) 8024935259344195 a001 12586269025/4106118243*322^(1/6) 8024935259344195 a001 32951280099/10749957122*322^(1/6) 8024935259344195 a001 86267571272/28143753123*322^(1/6) 8024935259344195 a001 32264490531/10525900321*322^(1/6) 8024935259344195 a001 591286729879/192900153618*322^(1/6) 8024935259344195 a001 1548008755920/505019158607*322^(1/6) 8024935259344195 a001 1515744265389/494493258286*322^(1/6) 8024935259344195 a001 2504730781961/817138163596*322^(1/6) 8024935259344195 a001 956722026041/312119004989*322^(1/6) 8024935259344195 a001 365435296162/119218851371*322^(1/6) 8024935259344195 a001 139583862445/45537549124*322^(1/6) 8024935259344195 a001 53316291173/17393796001*322^(1/6) 8024935259344195 a001 20365011074/6643838879*322^(1/6) 8024935259344195 a001 7778742049/2537720636*322^(1/6) 8024935259344195 a001 2971215073/969323029*322^(1/6) 8024935259344195 a001 1134903170/370248451*322^(1/6) 8024935259344195 a001 433494437/141422324*322^(1/6) 8024935259344198 a001 165580141/54018521*322^(1/6) 8024935259344214 a001 63245986/20633239*322^(1/6) 8024935259344327 a001 24157817/7881196*322^(1/6) 8024935259345099 a001 9227465/3010349*322^(1/6) 8024935259350394 a001 3524578/1149851*322^(1/6) 8024935259386682 a001 1346269/439204*322^(1/6) 8024935259635405 a001 514229/167761*322^(1/6) 8024935259691753 r005 Im(z^2+c),c=-30/23+1/43*I,n=23 8024935261340181 a001 196418/64079*322^(1/6) 8024935273024889 a001 75025/24476*322^(1/6) 8024935274297491 r008 a(0)=8,K{-n^6,-58+21*n^3-23*n^2+21*n} 8024935286347895 a007 Real Root Of 987*x^4-634*x^3+581*x^2+222*x-933 8024935302230820 s002 sum(A132218[n]/(pi^n),n=1..infinity) 8024935326804070 m001 Zeta(1,2)/ln(GAMMA(5/6))*Zeta(5) 8024935353113067 a001 28657/9349*322^(1/6) 8024935382301484 l006 ln(2579/5754) 8024935402978139 a007 Real Root Of -42*x^4+795*x^3-344*x^2+690*x+58 8024935409035012 r009 Im(z^3+c),c=-5/74+40/49*I,n=57 8024935420136447 m001 1/Zeta(1,2)*GAMMA(1/4)^2*ln(sqrt(Pi)) 8024935443598168 m001 1/ln(PrimesInBinary)*Backhouse^2*gamma^2 8024935463349553 a007 Real Root Of -564*x^4+312*x^3+139*x^2+788*x+938 8024935510366031 a001 610/15127*843^(11/14) 8024935514274807 a007 Real Root Of 94*x^4+845*x^3+640*x^2-824*x-977 8024935518542342 m001 1/ln(Pi)*FeigenbaumKappa^2*sqrt(5)^2 8024935562255259 m001 Magata+Psi(1,1/3)^Robbin 8024935567640231 p004 log(20921/9377) 8024935602691179 m005 (1/3*3^(1/2)-1/10)/(2/7*exp(1)-2/11) 8024935608322316 a007 Real Root Of -407*x^4+230*x^3-332*x^2-909*x-228 8024935620026300 m001 (OneNinth-Thue)/(cos(1/5*Pi)-KhinchinHarmonic) 8024935678245068 r005 Im(z^2+c),c=-3/4+45/139*I,n=7 8024935685228135 a007 Real Root Of 594*x^4-343*x^3+141*x^2+889*x+199 8024935687900414 m001 (Stephens+Totient)/(BesselI(0,2)+OneNinth) 8024935698335784 m001 (Pi^(1/2)+Stephens)/(ln(5)+ln(2+3^(1/2))) 8024935711229426 s002 sum(A161850[n]/(n^2*2^n-1),n=1..infinity) 8024935722260468 r008 a(0)=8,K{-n^6,-97+90*n^3+32*n^2-65*n} 8024935762398396 a007 Real Root Of -895*x^4+256*x^3-563*x^2-744*x+269 8024935767117207 l006 ln(3722/4033) 8024935794228815 l006 ln(4219/9413) 8024935794228815 p004 log(9413/4219) 8024935807349276 m001 1/GAMMA(5/24)*Paris^2*ln(Zeta(5)) 8024935815877160 a007 Real Root Of -822*x^4+945*x^3-717*x^2-815*x+637 8024935825410951 r008 a(0)=8,K{-n^6,-98+90*n^3+32*n^2-64*n} 8024935825753918 a001 305/682*843^(3/7) 8024935858800779 b008 8+InverseGudermannian[Pi/126] 8024935902045648 a001 10946/3571*322^(1/6) 8024935988724390 m005 (1/2*Zeta(3)+1/6)/(2/5*Pi-3/10) 8024936001016738 r008 a(0)=8,K{-n^6,-5+7*n^3-9*n^2-2*n} 8024936018500188 a007 Real Root Of -456*x^4-268*x^3+156*x^2+902*x+674 8024936025918207 a007 Real Root Of 947*x^4+427*x^3+961*x^2+704*x-226 8024936030169552 p003 LerchPhi(1/32,2,47/133) 8024936030746998 r008 a(0)=8,K{-n^6,-98+90*n^3+33*n^2-65*n} 8024936033745418 a007 Real Root Of 677*x^4-801*x^3-718*x^2+378*x+71 8024936061991549 m005 (1/2*gamma+3/10)/(1/5*Catalan-11/12) 8024936064377843 r009 Im(z^3+c),c=-14/25+5/42*I,n=11 8024936068107776 r009 Re(z^3+c),c=-5/78+43/49*I,n=11 8024936077038254 p003 LerchPhi(1/256,1,266/213) 8024936091597743 m001 MertensB1*(Ei(1)+GAMMA(19/24)) 8024936096226963 m001 ln(KhintchineLevy)*CareFree/GAMMA(3/4)^2 8024936096428368 m001 (Salem+Weierstrass)/(2^(1/2)+Cahen) 8024936102533958 r005 Re(z^2+c),c=-19/34+59/121*I,n=16 8024936109403467 m001 1/ln(Paris)*MertensB1^2*exp(1) 8024936112828020 r005 Re(z^2+c),c=-5/6+7/128*I,n=51 8024936122731946 m001 (BesselI(0,1)-Psi(1,1/3))/(ln(3)+ZetaQ(4)) 8024936129605266 h001 (3/5*exp(1)+2/3)/(9/10*exp(1)+5/12) 8024936138542199 a003 cos(Pi*1/95)-cos(Pi*45/103) 8024936167517136 a001 4/5*34^(17/26) 8024936196216797 m006 (2/3/Pi-1/3)/(2/3*exp(Pi)-1/3) 8024936200791183 a007 Real Root Of -752*x^4+414*x^3+157*x^2-933*x-324 8024936213452792 m001 (2^(1/2)-arctan(1/2))/(-gamma(3)+KhinchinLevy) 8024936220799685 r008 a(0)=8,K{-n^6,-14-8*n^3+20*n^2-39*n} 8024936242561632 q001 2832/3529 8024936254505552 m005 (1/2*gamma+1/4)/(7/9*gamma+2/9) 8024936255437131 r005 Re(z^2+c),c=-21/26+12/101*I,n=35 8024936274468831 a008 Real Root of x^4-2*x^3-240*x^2+241*x+12209 8024936281717383 m001 ln(GAMMA(2/3))^2/FeigenbaumB^2/sqrt(1+sqrt(3)) 8024936284270303 r002 40th iterates of z^2 + 8024936312669859 a001 1364/75025*34^(8/19) 8024936347784477 m001 GAMMA(5/12)^2/GolombDickman*exp(Zeta(3))^2 8024936352160399 a007 Real Root Of 336*x^4-301*x^3-179*x^2+93*x-105 8024936352568597 a005 (1/sin(78/235*Pi))^313 8024936365433623 a001 305/12238*843^(6/7) 8024936366981091 a007 Real Root Of -669*x^4+695*x^3+348*x^2+352*x+695 8024936374952741 a007 Real Root Of 959*x^4-283*x^3-397*x^2+287*x-58 8024936376069734 m001 exp(GAMMA(13/24))*PisotVijayaraghavan*sinh(1) 8024936396485153 a007 Real Root Of -119*x^4+689*x^3+208*x^2+610*x+761 8024936407015566 m008 (2/5*Pi+3/4)/(4/5*Pi^3+1/5) 8024936414248030 r009 Re(z^3+c),c=-1/28+23/38*I,n=6 8024936437574775 r008 a(0)=8,K{-n^6,-98+91*n^3+32*n^2-65*n} 8024936442009627 l006 ln(1640/3659) 8024936461679421 r009 Im(z^3+c),c=-19/106+37/50*I,n=8 8024936470402783 m001 1/Paris/exp(CopelandErdos)*Zeta(9) 8024936488737789 a003 sin(Pi*13/76)/sin(Pi*24/109) 8024936525313290 m009 (8/3*Catalan+1/3*Pi^2+4)/(2*Psi(1,2/3)+6) 8024936555506420 a001 514229/76*521^(17/43) 8024936580077194 m001 (Ei(1)+Pi^(1/2))/(exp(1)+Si(Pi)) 8024936600987841 a007 Real Root Of -528*x^4+953*x^3+842*x^2-981*x-618 8024936607390290 r005 Im(z^2+c),c=-99/118+3/59*I,n=13 8024936614249027 m002 -3+3/Pi^6+Pi^6*Csch[Pi] 8024936615469605 r005 Re(z^2+c),c=-17/23+19/40*I,n=4 8024936619846990 r009 Re(z^3+c),c=-1/98+21/64*I,n=9 8024936639125184 a007 Real Root Of -670*x^4+789*x^3+441*x^2-812*x-250 8024936675378203 r008 a(0)=8,K{-n^6,-47+33*n^3-80*n^2+59*n} 8024936711453417 m001 (GAMMA(7/12)+KomornikLoreti)/(Otter+Salem) 8024936713314881 m004 255*Pi+(Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 8024936716383878 m001 (-CareFree+LandauRamanujan)/(Catalan-sin(1)) 8024936722554380 m005 (1/2*Catalan-2/5)/(6/11*3^(1/2)-2/9) 8024936763579259 a007 Real Root Of 398*x^4-401*x^3-797*x^2-547*x-298 8024936768874698 r009 Im(z^3+c),c=-7/106+22/27*I,n=17 8024936770891838 a007 Real Root Of -681*x^4+785*x^3+899*x^2-870*x-589 8024936774567359 m001 exp(1/exp(1))/(2^(1/3)+cos(1)) 8024936774567359 m001 exp(1/exp(1))/(cos(1)+(2^(1/3))) 8024936775863833 a001 521/75025*1597^(1/51) 8024936802122607 a007 Real Root Of -986*x^4-153*x^3+712*x^2+189*x+23 8024936817420018 m001 (Weierstrass+ZetaP(2))/(2^(1/2)-sin(1/12*Pi)) 8024936826031344 a007 Real Root Of 459*x^4-851*x^3-582*x^2-143*x+739 8024936838002037 a007 Real Root Of 758*x^4-351*x^3+58*x^2+688*x+19 8024936864441455 r009 Im(z^3+c),c=-25/118+48/59*I,n=3 8024936874138218 a001 1/32264490531*514229^(17/22) 8024936949665706 r002 11th iterates of z^2 + 8024936959403886 r009 Im(z^3+c),c=-35/62+29/63*I,n=37 8024936984228686 a005 (1/cos(55/174*Pi))^91 8024937007118566 m001 BesselI(0,1)/exp(-1/2*Pi)*HeathBrownMoroz 8024937027451560 a007 Real Root Of -858*x^4-738*x^3-638*x^2+518*x+801 8024937040285793 r005 Re(z^2+c),c=-61/74+5/63*I,n=47 8024937054828947 r005 Im(z^2+c),c=-2/3+36/227*I,n=35 8024937122441930 a007 Real Root Of 784*x^4-193*x^3-328*x^2-216*x-387 8024937128517303 l006 ln(3981/8882) 8024937144496181 a007 Real Root Of 513*x^4-784*x^3-563*x^2-898*x-976 8024937149490462 m001 (Psi(1,1/3)+Zeta(3))/(-MinimumGamma+ZetaQ(2)) 8024937153523524 a001 610/39603*843^(13/14) 8024937153988681 a007 Real Root Of -122*x^4+901*x^3-959*x^2-573*x+674 8024937171513179 h001 (5/8*exp(1)+2/3)/(3/4*exp(1)+10/11) 8024937173630828 a007 Real Root Of 112*x^4+815*x^3-655*x^2+68*x-577 8024937178176216 r008 a(0)=8,K{-n^6,-41+34*n-59*n^2+29*n^3} 8024937203687826 h001 (7/8*exp(1)+2/9)/(1/3*exp(2)+7/9) 8024937204826631 a007 Real Root Of -443*x^4-409*x^3-11*x^2+787*x+611 8024937225761647 a007 Real Root Of 282*x^4-943*x^3-165*x^2-385*x-807 8024937238638047 m001 (BesselI(1,2)+Kac)/(gamma-ln(2)/ln(10)) 8024937252585370 g005 Pi*csc(5/12*Pi)/GAMMA(3/11)/GAMMA(3/4) 8024937282619009 r005 Im(z^2+c),c=-15/86+49/60*I,n=31 8024937294072172 a007 Real Root Of 578*x^4-797*x^3+19*x^2-384*x-972 8024937298267247 m001 1/Catalan^2/exp(PrimesInBinary)^2*cosh(1) 8024937312203723 a007 Real Root Of -306*x^4+223*x^3-931*x^2+34*x+869 8024937317013538 a007 Real Root Of -516*x^4-97*x^3+245*x^2+765*x+620 8024937323971172 r008 a(0)=8,K{-n^6,-27-48*n+50*n^2-12*n^3} 8024937331168200 a001 5473/9*521^(32/41) 8024937355417572 r002 59th iterates of z^2 + 8024937388474445 h001 (-3*exp(3)+8)/(-12*exp(4)+4) 8024937390371695 r002 64th iterates of z^2 + 8024937412000827 a007 Real Root Of -900*x^4+696*x^3-304*x^2+29*x+952 8024937443432460 a007 Real Root Of -16*x^4+777*x^3-249*x^2-139*x+457 8024937444089742 m001 (Si(Pi)-ln(5))/(DuboisRaymond+OneNinth) 8024937452968402 r005 Im(z^2+c),c=-7/9+29/74*I,n=5 8024937456345834 r005 Re(z^2+c),c=-15/14+34/237*I,n=38 8024937469077667 m001 (5^(1/2)-cos(1))/(-Bloch+Sierpinski) 8024937471465614 r005 Re(z^2+c),c=-13/16+7/68*I,n=53 8024937480814480 r005 Im(z^2+c),c=-11/50+23/28*I,n=30 8024937507019944 a007 Real Root Of -576*x^4+903*x^3+481*x^2-239*x+204 8024937510722113 a007 Real Root Of 997*x^4-533*x^3-944*x^2-76*x-142 8024937536752289 r008 a(0)=8,K{-n^6,35-48*n-55*n^2+27*n^3} 8024937567907290 m005 (1/3*2^(1/2)+3/7)/(7/12*3^(1/2)+1/9) 8024937569526470 m006 (1/6*exp(Pi)-4)/(5/6*Pi-5/6) 8024937573114653 s002 sum(A174162[n]/(n^2*exp(n)+1),n=1..infinity) 8024937577194565 a007 Real Root Of -732*x^4+977*x^3+70*x^2-8*x+757 8024937596615563 a003 sin(Pi*2/109)/cos(Pi*25/102) 8024937600273331 a001 29/2*1134903170^(11/21) 8024937609453879 l006 ln(2341/5223) 8024937628274413 r008 a(0)=8,K{-n^6,-47+10*n+4*n^2-8*n^3} 8024937646858189 r005 Re(z^2+c),c=-33/50+24/53*I,n=20 8024937654737129 h001 (2/9*exp(2)+8/11)/(4/5*exp(1)+7/9) 8024937655860349 q001 1609/2005 8024937682315959 a007 Real Root Of 380*x^4-352*x^3-605*x^2-764*x-563 8024937722860861 r001 57i'th iterates of 2*x^2-1 of 8024937724338565 a007 Real Root Of -537*x^4-16*x^3-517*x^2+802*x-61 8024937725013626 r008 a(0)=8,K{-n^6,-95+98*n^3+19*n^2-62*n} 8024937753198345 r002 53th iterates of z^2 + 8024937755694074 m005 (1/2*Zeta(3)+5)/(4/11*Pi-4/9) 8024937759786900 r008 a(0)=8,K{-n^6,-32-39*n+51*n^2-21*n^3} 8024937782324558 r002 9th iterates of z^2 + 8024937809682495 r008 a(0)=8,K{-n^6,-45+2*n^3+41*n^2-37*n} 8024937833102237 a001 11/4181*377^(27/28) 8024937871154399 r002 7th iterates of z^2 + 8024937888982789 m001 (Otter-Riemann2ndZero)/(cos(1/5*Pi)+3^(1/3)) 8024937908932715 a007 Real Root Of 103*x^4-24*x^3-351*x^2-991*x+991 8024937916494819 m001 (Psi(1,1/3)+Shi(1))/(-ln(2+3^(1/2))+gamma(1)) 8024937925667682 a007 Real Root Of -883*x^4-91*x^3-870*x^2+58*x+926 8024937935878975 m008 (1/5*Pi^6+4/5)/(1/4*Pi^6+1/4) 8024937939256905 p001 sum((-1)^n/(357*n+116)/(3^n),n=0..infinity) 8024937963554198 a007 Real Root Of 85*x^4-522*x^3+189*x^2-586*x-897 8024937964624438 a007 Real Root Of 263*x^4-513*x^3+228*x^2-471*x-899 8024937965242356 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^23 8024937967450070 r005 Re(z^2+c),c=-47/56+1/35*I,n=15 8024937996362974 m006 (1/4*Pi+5/6)/(3/5*ln(Pi)-2/3) 8024938012172777 r004 Re(z^2+c),c=1/7-3/14*I,z(0)=exp(3/8*I*Pi),n=9 8024938043490696 a001 233/1364*521^(8/13) 8024938045065273 m006 (4/5*exp(2*Pi)+2/3)/(exp(2*Pi)-5/6) 8024938053296890 m001 gamma/(LandauRamanujan^GAMMA(3/4)) 8024938060127314 m001 (ln(2)-Zeta(1,2))/(Backhouse+Stephens) 8024938082102794 r005 Im(z^2+c),c=-13/18+21/104*I,n=62 8024938101244961 r005 Re(z^2+c),c=-19/21+5/27*I,n=14 8024938102755077 r008 a(0)=8,K{-n^6,-46+15*n-35*n^2+27*n^3} 8024938151829565 a007 Real Root Of 880*x^4-727*x^3+207*x^2+957*x-106 8024938155425854 a003 sin(Pi*17/58)/sin(Pi*40/87) 8024938166260500 m008 (1/2*Pi^3+3/5)/(2/5*Pi+3/4) 8024938179876874 p001 sum(1/(536*n+135)/(3^n),n=0..infinity) 8024938208964012 a001 38/5473*89^(1/31) 8024938238845201 l006 ln(3042/6787) 8024938240579099 m001 (3^(1/2)-RenyiParking)/FibonacciFactorial 8024938257486314 m002 -5*Pi^3+Pi^6-Cosh[Pi]/3 8024938270503132 a007 Real Root Of 288*x^4-250*x^3+169*x^2-610*x-847 8024938289032999 m002 -1-Pi+Pi^6*Csch[Pi]+Log[Pi] 8024938318298407 r005 Re(z^2+c),c=-5/6+7/128*I,n=53 8024938321872376 a007 Real Root Of -616*x^4+678*x^3+914*x^2+700*x+579 8024938325105734 r009 Re(z^3+c),c=-13/98+19/31*I,n=14 8024938332515213 a007 Real Root Of -734*x^4+134*x^3-941*x^2+322*x+32 8024938334850626 r005 Im(z^2+c),c=-3/32+38/47*I,n=43 8024938358614604 a001 1860498*144^(5/17) 8024938361351733 r005 Im(z^2+c),c=-11/122+21/26*I,n=58 8024938382884207 a007 Real Root Of -148*x^4+728*x^3+9*x^2-260*x-112 8024938397665492 a007 Real Root Of 795*x^4-476*x^3-742*x^2+507*x+309 8024938433107379 a008 Real Root of x^5-x^4-15*x^3-9*x^2+12*x+4 8024938435843951 m001 gamma*(GAMMA(5/6)+MertensB1) 8024938443055046 b008 8+Tan[Pi/126] 8024938447132555 a008 Real Root of (-2+8*x-9*x^2+8*x^8) 8024938467947670 a007 Real Root Of 229*x^4-513*x^3+379*x^2+308*x-357 8024938474184149 a001 377/843*322^(1/2) 8024938502114887 m001 exp(1/exp(1))/(ArtinRank2-polylog(4,1/2)) 8024938509721790 a007 Real Root Of -576*x^4+385*x^3+311*x^2-149*x+118 8024938548723964 r005 Re(z^2+c),c=-13/16+13/122*I,n=37 8024938576291538 a007 Real Root Of 59*x^4+449*x^3-289*x^2-626*x+941 8024938579429972 a003 cos(Pi*21/80)-sin(Pi*31/113) 8024938618101330 a001 233/843*1364^(7/15) 8024938632488004 l006 ln(3743/8351) 8024938660881435 r008 a(0)=8,K{-n^6,-48+16*n^3-37*n^2+26*n} 8024938716789132 a007 Real Root Of -741*x^4+913*x^3+887*x^2-381*x-430 8024938722370853 a007 Real Root Of -449*x^4+234*x^3-313*x^2-47*x+471 8024938726125711 a007 Real Root Of -948*x^4+491*x^3+540*x^2-384*x-9 8024938732737987 v002 sum(1/(3^n+(4*n^2+47*n-36)),n=1..infinity) 8024938733056035 r005 Im(z^2+c),c=11/78+37/57*I,n=45 8024938769712744 r008 a(0)=8,K{-n^6,-58-15*n^3+20*n^2+12*n} 8024938770382866 a007 Real Root Of 119*x^4+897*x^3-557*x^2-790*x-427 8024938798168413 m001 (-FeigenbaumAlpha+MertensB3)/(2^(1/3)-exp(1)) 8024938798461071 a007 Real Root Of 932*x^4+621*x^3-530*x^2-290*x+43 8024938820824297 m001 KhinchinLevy/(sin(1/12*Pi)^(2^(1/2))) 8024938839333933 r008 a(0)=8,K{-n^6,-9+25*n^3-69*n^2+12*n} 8024938841796423 m001 polylog(4,1/2)^CareFree*ZetaQ(2)^CareFree 8024938860874206 r005 Re(z^2+c),c=15/86+19/47*I,n=22 8024938861142319 a007 Real Root Of -516*x^4+884*x^3-395*x^2-976*x+142 8024938886062933 m006 (3/4*ln(Pi)-4/5)/(4/5*Pi^2-3/5) 8024938893823672 m001 ln(KhintchineLevy)^2*Cahen/GAMMA(1/24) 8024938901943757 l006 ln(4444/9915) 8024938939917879 l006 ln(7815/8468) 8024938970418354 r008 a(0)=8,K{-n^6,-50-2*n+27*n^2-16*n^3} 8024938974146581 r008 a(0)=8,K{-n^6,-58-37*n+51*n^2-8*n^3} 8024939022986021 m004 -1-25*Pi-Sqrt[5]*Pi+25*Pi*Tanh[Sqrt[5]*Pi] 8024939023182717 m004 -1+25*Pi-Sqrt[5]*Pi-25*Pi*Coth[Sqrt[5]*Pi] 8024939029071259 a007 Real Root Of 14*x^4-903*x^3-994*x^2+481*x+715 8024939050224817 m001 Zeta(1/2)/(GAMMA(11/12)+LandauRamanujan) 8024939050224817 m001 Zeta(1/2)/(LandauRamanujan+GAMMA(11/12)) 8024939100741055 b008 (-5+E^(-1))/EulerGamma 8024939136327974 m004 -27/5-Log[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 8024939157396352 a007 Real Root Of -131*x^4-57*x^3-641*x^2+211*x+607 8024939193304965 a001 377/521*1364^(1/3) 8024939194738330 a007 Real Root Of 553*x^4-804*x^3+767*x^2+963*x-366 8024939203999360 r005 Re(z^2+c),c=-25/94+17/20*I,n=12 8024939206320245 r008 a(0)=8,K{-n^6,21+30*n^3-71*n^2-21*n} 8024939208292430 a007 Real Root Of 756*x^4-897*x^3-429*x^2+816*x+154 8024939227704335 a008 Real Root of (-5+2*x-2*x^2+6*x^3-x^4+6*x^5) 8024939231081129 r005 Im(z^2+c),c=-7/25+2/17*I,n=8 8024939247565585 a007 Real Root Of 871*x^4-781*x^3-29*x^2+232*x-560 8024939310092611 a007 Real Root Of 295*x^4-802*x^3-424*x^2-414*x-596 8024939327796574 a001 377/76*29^(1/7) 8024939332488953 r005 Im(z^2+c),c=-15/22+13/92*I,n=57 8024939363574209 r008 a(0)=8,K{-n^6,-16-63*n+59*n^2-21*n^3} 8024939374240653 h001 (-exp(1/2)+3)/(-9*exp(1/2)-2) 8024939375681452 a007 Real Root Of -160*x^4+792*x^3-969*x^2-761*x+489 8024939387077817 r008 a(0)=8,K{-n^6,20+44*n^3-68*n^2-34*n} 8024939453836699 a007 Real Root Of 891*x^4+390*x^3+65*x^2-789*x-843 8024939462504848 a001 7/28657*2584^(4/9) 8024939481523129 a007 Real Root Of 454*x^4-465*x^3-577*x^2-236*x+613 8024939527948896 a007 Real Root Of 194*x^4-624*x^3+520*x^2-232*x-924 8024939560698293 p001 sum(1/(531*n+445)/n/(128^n),n=1..infinity) 8024939562481275 a007 Real Root Of 108*x^4+838*x^3-280*x^2-482*x-665 8024939571268822 a001 7/196418*196418^(4/9) 8024939571291045 a001 7/1346269*14930352^(4/9) 8024939571291915 a001 7/9227465*1134903170^(4/9) 8024939571291934 a001 7/63245986*86267571272^(4/9) 8024939571291934 a001 7/433494437*6557470319842^(4/9) 8024939582959197 m005 (1/3*Catalan+2/11)/(2/3*gamma+2/9) 8024939604862549 l002 Ei(9,37/95) 8024939605441531 r008 a(0)=8,K{-n^6,-93+86*n^3+66*n^2-99*n} 8024939662107803 q001 1995/2486 8024939662107803 r002 2th iterates of z^2 + 8024939664487513 a001 4181/1364*322^(1/6) 8024939684160330 m001 exp(-1/2*Pi)/(GAMMA(5/6)+MinimumGamma) 8024939690734098 m001 (HardHexagonsEntropy-ZetaP(3))/(Ei(1)-Artin) 8024939719808050 a007 Real Root Of 930*x^4+587*x^3-763*x^2-815*x-245 8024939726812222 a007 Real Root Of -184*x^4+896*x^3+328*x^2+507*x+735 8024939730282831 m001 (Psi(1,1/3)-Zeta(5))/(-Conway+ZetaP(3)) 8024939735511736 a007 Real Root Of 225*x^4-846*x^3+703*x^2+24*x-964 8024939762540281 a007 Real Root Of -61*x^4+808*x^3+36*x^2-518*x+4 8024939764345970 r002 39th iterates of z^2 + 8024939786657148 m004 -3+10/Pi+25*Pi+ProductLog[Sqrt[5]*Pi] 8024939793327315 p001 sum(1/(507*n+125)/(64^n),n=0..infinity) 8024939816818266 m001 (PolyaRandomWalk3D-Sarnak)/(GAMMA(2/3)-Mills) 8024939840593325 m001 ArtinRank2^BesselK(0,1)/(Salem^BesselK(0,1)) 8024939882567592 m005 (1/2*gamma-11/12)/(5/7*3^(1/2)-5/11) 8024939882872603 a007 Real Root Of 245*x^4-547*x^3-343*x^2-91*x+475 8024939888336209 r005 Re(z^2+c),c=3/64+14/33*I,n=29 8024939917695908 m001 Landau/(ArtinRank2-BesselJ(0,1)) 8024939990993733 m001 (ln(Pi)-Ei(1))/(StolarskyHarborth-ZetaP(3)) 8024939996936476 a001 3571/196418*34^(8/19) 8024940011207880 a005 (1/sin(32/149*Pi))^24 8024940033814059 a007 Real Root Of 104*x^4+894*x^3+577*x^2+692*x-904 8024940044774294 a007 Real Root Of -490*x^4+786*x^3-81*x^2-878*x-43 8024940049734062 m001 (Landau-Riemann3rdZero)/(3^(1/3)+ErdosBorwein) 8024940063840894 m001 ReciprocalFibonacci^Ei(1)*gamma(3)^Ei(1) 8024940090617419 m005 (1/2*2^(1/2)+5/11)/(7/9*exp(1)-2/3) 8024940139794054 r008 a(0)=8,K{-n^6,-59-30*n^3+65*n^2-17*n} 8024940153543708 a001 4181/2207*322^(1/4) 8024940170719221 a007 Real Root Of 708*x^4+636*x^3+672*x^2+204*x-234 8024940192016035 m006 (2/3*Pi^2-3)/(5/6*exp(2*Pi)-1/6) 8024940193978106 m005 (1/2*5^(1/2)-1/4)/(5*5^(1/2)-4/11) 8024940205153948 a005 (1/cos(15/223*Pi))^502 8024940262823686 a007 Real Root Of -728*x^4+234*x^3-603*x^2-556*x+365 8024940284873564 a007 Real Root Of 912*x^4+13*x^3+568*x^2+925*x+5 8024940290286550 m001 (MertensB3-PlouffeB)/(Conway-CopelandErdos) 8024940300028837 a007 Real Root Of 865*x^4+238*x^3+162*x^2-613*x-832 8024940301485444 p003 LerchPhi(1/25,3,69/64) 8024940338500240 m001 1/Catalan^2/exp(Rabbit)^2/Ei(1)^2 8024940340706662 l006 ln(701/1564) 8024940343197217 r005 Im(z^2+c),c=-9/17+47/64*I,n=3 8024940347808352 r009 Im(z^3+c),c=-29/54+25/52*I,n=53 8024940370816549 m004 -250/Pi+2*Csch[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 8024940371098093 m004 -4/E^(Sqrt[5]*Pi)+250/Pi+Sin[Sqrt[5]*Pi] 8024940371379636 m004 -250/Pi+2*Sech[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 8024940371862531 a001 233/843*3571^(7/17) 8024940395580786 a007 Real Root Of -358*x^4+383*x^3+143*x^2+113*x+345 8024940401307710 a007 Real Root Of -484*x^4+685*x^3+492*x^2+283*x+465 8024940406390699 m001 Weierstrass^(PlouffeB/ln(5)) 8024940407631365 a007 Real Root Of -817*x^4-108*x^3-139*x^2+266*x+586 8024940412763148 a007 Real Root Of 983*x^4-879*x^3-224*x^2+199*x-558 8024940414417359 m001 (Si(Pi)+GAMMA(3/4))/(-PlouffeB+Thue) 8024940415698999 a001 123/2584*377^(10/21) 8024940423003196 m005 (1/2*5^(1/2)+8/9)/(5/12*Zeta(3)+2) 8024940438780301 a001 23725150497407/987*144^(12/17) 8024940439953366 m005 (1/3*gamma-1/5)/(3/7*Pi-2/5) 8024940445991588 a001 377/521*3571^(5/17) 8024940528755207 a001 199/317811*514229^(1/53) 8024940534463731 a001 9349/514229*34^(8/19) 8024940562996828 m001 (Pi-GAMMA(2/3))/(ln(3)+GAMMA(5/6)) 8024940577781387 a007 Real Root Of 877*x^4-165*x^3-870*x^2-34*x+84 8024940591280896 a001 2/29*3^(4/29) 8024940597162237 a001 233/843*9349^(7/19) 8024940605746599 r002 3th iterates of z^2 + 8024940606527221 m005 (1/2*2^(1/2)+11/12)/(5/9*2^(1/2)-7/12) 8024940606919950 a001 377/521*9349^(5/19) 8024940612887901 a001 24476/1346269*34^(8/19) 8024940617577197 a001 6757/842 8024940624329833 a001 64079/3524578*34^(8/19) 8024940625999189 a001 167761/9227465*34^(8/19) 8024940626242744 a001 439204/24157817*34^(8/19) 8024940626278279 a001 1149851/63245986*34^(8/19) 8024940626283463 a001 3010349/165580141*34^(8/19) 8024940626284219 a001 7881196/433494437*34^(8/19) 8024940626284330 a001 20633239/1134903170*34^(8/19) 8024940626284346 a001 54018521/2971215073*34^(8/19) 8024940626284348 a001 141422324/7778742049*34^(8/19) 8024940626284348 a001 370248451/20365011074*34^(8/19) 8024940626284349 a001 969323029/53316291173*34^(8/19) 8024940626284349 a001 2537720636/139583862445*34^(8/19) 8024940626284349 a001 6643838879/365435296162*34^(8/19) 8024940626284349 a001 17393796001/956722026041*34^(8/19) 8024940626284349 a001 45537549124/2504730781961*34^(8/19) 8024940626284349 a001 119218851371/6557470319842*34^(8/19) 8024940626284349 a001 64300051206/3536736619241*34^(8/19) 8024940626284349 a001 73681302247/4052739537881*34^(8/19) 8024940626284349 a001 228811001/12585437040*34^(8/19) 8024940626284349 a001 10749957122/591286729879*34^(8/19) 8024940626284349 a001 1368706081/75283811239*34^(8/19) 8024940626284349 a001 1568397607/86267571272*34^(8/19) 8024940626284349 a001 199691526/10983760033*34^(8/19) 8024940626284349 a001 228826127/12586269025*34^(8/19) 8024940626284350 a001 29134601/1602508992*34^(8/19) 8024940626284356 a001 33385282/1836311903*34^(8/19) 8024940626284398 a001 4250681/233802911*34^(8/19) 8024940626284687 a001 4870847/267914296*34^(8/19) 8024940626286667 a001 15126/831985*34^(8/19) 8024940626300240 a001 710647/39088169*34^(8/19) 8024940626393270 a001 90481/4976784*34^(8/19) 8024940626523462 a001 233/843*24476^(1/3) 8024940627030907 a001 103682/5702887*34^(8/19) 8024940627892253 a001 377/521*24476^(5/21) 8024940630393836 a001 233/843*64079^(7/23) 8024940630656806 a001 377/521*64079^(5/23) 8024940630988645 a001 233/843*20633239^(1/5) 8024940630988649 a001 233/843*17393796001^(1/7) 8024940630988649 a001 233/843*14662949395604^(1/9) 8024940630988649 a001 233/843*(1/2+1/2*5^(1/2))^7 8024940630988649 a001 233/843*599074578^(1/6) 8024940630992622 a001 233/843*710647^(1/4) 8024940631024645 a001 377/521*167761^(1/5) 8024940631081670 a001 377/521*20633239^(1/7) 8024940631081673 a001 377/521*2537720636^(1/9) 8024940631081673 a001 377/521*312119004989^(1/11) 8024940631081673 a001 377/521*(1/2+1/2*5^(1/2))^5 8024940631081673 a001 377/521*28143753123^(1/10) 8024940631081673 a001 377/521*228826127^(1/8) 8024940631082059 a001 377/521*1860498^(1/6) 8024940631206381 a001 233/843*103682^(7/24) 8024940631237196 a001 377/521*103682^(5/24) 8024940631401336 a001 13201/726103*34^(8/19) 8024940631908798 m001 ln(5)/Zeta(1/2)*gamma(1) 8024940632244548 a001 377/521*39603^(5/22) 8024940632616674 a001 233/843*39603^(7/22) 8024940639849182 a001 377/521*15127^(1/4) 8024940643263162 a001 233/843*15127^(7/20) 8024940658744419 r008 a(0)=8,K{-n^6,-41+13*n-38*n^2+20*n^3} 8024940661356703 a001 15127/832040*34^(8/19) 8024940664372883 a001 1/267084832*5^(9/19) 8024940697852118 a001 377/521*5778^(5/18) 8024940703431972 a007 Real Root Of -721*x^4-817*x^3-780*x^2+517*x+794 8024940724467273 a001 233/843*5778^(7/18) 8024940766858739 m001 (Catalan+cos(1))/(GAMMA(13/24)+ZetaP(3)) 8024940806330629 a007 Real Root Of -467*x^4+928*x^3-78*x^2+38*x+754 8024940817330412 m001 (Pi+LambertW(1))/(MertensB1-Sarnak) 8024940828302064 a007 Real Root Of -66*x^4+749*x^3+620*x^2-157*x-633 8024940856206751 m001 (Thue+ZetaP(2))/(ErdosBorwein+Trott2nd) 8024940856565463 r008 a(0)=8,K{-n^6,-87+94*n^3+52*n^2-99*n} 8024940866673845 a001 1926/105937*34^(8/19) 8024940912278218 a007 Real Root Of 25*x^4+13*x^3+654*x^2-632*x-932 8024940922274546 a007 Real Root Of 837*x^4-651*x^3-125*x^2+830*x+63 8024940924552441 r005 Im(z^2+c),c=-3/4+31/254*I,n=23 8024940960387021 a008 Real Root of (-1+x-x^2+x^5+x^6+x^7+x^9-x^10) 8024941010944386 a007 Real Root Of 946*x^4+973*x^3+601*x^2-590*x-750 8024941015750024 m002 5/Pi^2+(3*Pi^5)/Log[Pi] 8024941017863161 q001 2381/2967 8024941048286797 r002 4th iterates of z^2 + 8024941068195519 a008 Real Root of x^4-x^3-30*x^2+89*x-52 8024941077831200 r005 Im(z^2+c),c=-65/106+13/25*I,n=9 8024941087971777 a001 199/7*(1/2*5^(1/2)+1/2)^29*7^(6/13) 8024941098714955 p003 LerchPhi(1/8,3,393/167) 8024941107449784 m004 5+(625*Cos[Sqrt[5]*Pi])/(Pi*Log[Sqrt[5]*Pi]) 8024941114344521 s002 sum(A152275[n]/(10^n-1),n=1..infinity) 8024941116788376 m001 Stephens^MasserGramainDelta*Ei(1,1) 8024941124941739 m001 (-Champernowne+ZetaP(4))/(sin(1)-sin(1/12*Pi)) 8024941129559750 a003 sin(Pi*31/92)*sin(Pi*35/94) 8024941145939514 a001 377/521*2207^(5/16) 8024941148226725 r005 Im(z^2+c),c=-65/114+5/36*I,n=15 8024941195735281 b008 Pi*InverseGudermannian[Pi/123] 8024941197902556 m001 1/ln(GAMMA(5/24))/sin(1) 8024941214949715 m001 (OneNinth+ZetaP(2))/(FeigenbaumMu+Magata) 8024941218520772 m001 1/GAMMA(5/6)/FeigenbaumD^2/exp(Zeta(1,2))^2 8024941225405092 r002 3th iterates of z^2 + 8024941254046918 a007 Real Root Of -617*x^4+593*x^3+429*x^2+770*x+904 8024941261875873 m001 ln(abs(-GAMMA(5/6)+ReciprocalFibonacci)) 8024941264866165 r002 2th iterates of z^2 + 8024941276325965 r002 43th iterates of z^2 + 8024941294117122 r005 Re(z^2+c),c=3/34+18/37*I,n=37 8024941325893989 r002 2th iterates of z^2 + 8024941333471727 m001 (-Conway+ZetaP(2))/(sin(1)+Ei(1,1)) 8024941347807620 m001 1/Si(Pi)*exp(FibonacciFactorial)*TwinPrimes^2 8024941351789636 a001 233/843*2207^(7/16) 8024941359570637 r002 3th iterates of z^2 + 8024941377950160 p001 sum(1/(303*n+127)/(16^n),n=0..infinity) 8024941385746941 m005 (1/3*3^(1/2)+3/7)/(11/12*Catalan-5/7) 8024941399627697 r002 22th iterates of z^2 + 8024941405119559 a001 2207/3*13^(2/59) 8024941421747018 b008 Csch[LogIntegral[2]] 8024941441666417 r008 a(0)=8,K{-n^6,-36-45*n+50*n^2-13*n^3} 8024941481720557 p004 log(37507/16811) 8024941482296190 a001 5473/2889*322^(1/4) 8024941491817363 r002 4th iterates of z^2 + 8024941518329019 a007 Real Root Of -544*x^4+891*x^3+386*x^2+600*x+919 8024941521256088 a007 Real Root Of -336*x^4+874*x^3+614*x^2+100*x-788 8024941530333397 m001 (ln(3)-exp(-1/2*Pi))/(ArtinRank2+ThueMorse) 8024941545871701 m001 Sarnak^ZetaP(2)/OneNinth 8024941562295481 a007 Real Root Of 641*x^4-218*x^3+331*x^2+108*x-505 8024941571160524 a007 Real Root Of 851*x^4-596*x^3-186*x^2-173*x-680 8024941573408563 r005 Re(z^2+c),c=-5/6+7/118*I,n=17 8024941586808842 a007 Real Root Of 694*x^4-758*x^3-451*x^2-193*x-544 8024941592848371 a007 Real Root Of -222*x^4+566*x^3+149*x^2+150*x+409 8024941611944525 r005 Im(z^2+c),c=39/106+5/9*I,n=9 8024941613403891 r008 a(0)=8,K{-n^6,46+32*n^3-65*n^2-54*n} 8024941619281469 r002 3th iterates of z^2 + 8024941632266431 a007 Real Root Of 912*x^4-981*x^3-919*x^2-326*x-555 8024941661908429 m005 (gamma+5)/(2*Pi+2/3) 8024941664173069 r005 Im(z^2+c),c=-5/94+47/60*I,n=22 8024941668794543 a007 Real Root Of -727*x^4+91*x^3-39*x^2+459*x+742 8024941672305344 a007 Real Root Of 884*x^4-662*x^3+175*x^2+580*x-356 8024941676158603 a001 28657/15127*322^(1/4) 8024941695695892 a007 Real Root Of -8*x^4+537*x^3+450*x^2+319*x-820 8024941697630908 r005 Im(z^2+c),c=37/106+21/59*I,n=22 8024941704442749 a001 75025/39603*322^(1/4) 8024941704477075 s002 sum(A129824[n]/(n*10^n-1),n=1..infinity) 8024941708569350 a001 98209/51841*322^(1/4) 8024941709171413 a001 514229/271443*322^(1/4) 8024941709259253 a001 1346269/710647*322^(1/4) 8024941709272069 a001 1762289/930249*322^(1/4) 8024941709273939 a001 9227465/4870847*322^(1/4) 8024941709274211 a001 24157817/12752043*322^(1/4) 8024941709274251 a001 31622993/16692641*322^(1/4) 8024941709274257 a001 165580141/87403803*322^(1/4) 8024941709274258 a001 433494437/228826127*322^(1/4) 8024941709274258 a001 567451585/299537289*322^(1/4) 8024941709274258 a001 2971215073/1568397607*322^(1/4) 8024941709274258 a001 7778742049/4106118243*322^(1/4) 8024941709274258 a001 10182505537/5374978561*322^(1/4) 8024941709274258 a001 53316291173/28143753123*322^(1/4) 8024941709274258 a001 139583862445/73681302247*322^(1/4) 8024941709274258 a001 182717648081/96450076809*322^(1/4) 8024941709274258 a001 956722026041/505019158607*322^(1/4) 8024941709274258 a001 10610209857723/5600748293801*322^(1/4) 8024941709274258 a001 591286729879/312119004989*322^(1/4) 8024941709274258 a001 225851433717/119218851371*322^(1/4) 8024941709274258 a001 21566892818/11384387281*322^(1/4) 8024941709274258 a001 32951280099/17393796001*322^(1/4) 8024941709274258 a001 12586269025/6643838879*322^(1/4) 8024941709274258 a001 1201881744/634430159*322^(1/4) 8024941709274258 a001 1836311903/969323029*322^(1/4) 8024941709274258 a001 701408733/370248451*322^(1/4) 8024941709274258 a001 66978574/35355581*322^(1/4) 8024941709274261 a001 102334155/54018521*322^(1/4) 8024941709274276 a001 39088169/20633239*322^(1/4) 8024941709274380 a001 3732588/1970299*322^(1/4) 8024941709275094 a001 5702887/3010349*322^(1/4) 8024941709279989 a001 2178309/1149851*322^(1/4) 8024941709313541 a001 208010/109801*322^(1/4) 8024941709543509 a001 317811/167761*322^(1/4) 8024941711119730 a001 121393/64079*322^(1/4) 8024941714238008 a007 Real Root Of 352*x^4+214*x^3-538*x^2-752*x-6 8024941721923313 a001 11592/6119*322^(1/4) 8024941727624838 m001 (GolombDickman+Thue)/(FeigenbaumD-GaussAGM) 8024941734839605 a007 Real Root Of -103*x^4+456*x^3-4*x^2-704*x-284 8024941784057936 a003 sin(Pi*5/93)+sin(Pi*7/32) 8024941795972169 a001 17711/9349*322^(1/4) 8024941817962117 m005 (-1/3+1/6*5^(1/2))/(7/10*exp(1)+3) 8024941818255413 r008 a(0)=8,K{-n^6,3+12*n^3-6*n^2-51*n} 8024941825127686 l006 ln(4093/4435) 8024941829424043 m001 (DuboisRaymond+LaplaceLimit)/(Lehmer+PlouffeB) 8024941835268969 a003 sin(Pi*20/69)/sin(Pi*51/115) 8024941859533107 a007 Real Root Of 581*x^4-396*x^3+569*x^2-61*x-861 8024941870368486 m001 (MadelungNaCl+MertensB1)/(Stephens+Tetranacci) 8024941871614584 a007 Real Root Of 630*x^4-651*x^3-686*x^2-425*x+858 8024941911336213 m001 exp(GAMMA(3/4))^2/RenyiParking/GAMMA(5/24)^2 8024941911933669 a007 Real Root Of 878*x^4-508*x^3-566*x^2-654*x-787 8024941952062856 l006 ln(3968/8853) 8024941953403081 a007 Real Root Of -546*x^4+45*x^3+449*x^2+904*x+686 8024941956044574 r001 6i'th iterates of 2*x^2-1 of 8024941957169480 m001 (ln(2+3^(1/2))+Paris)/(3^(1/3)+arctan(1/3)) 8024941959076293 k002 Champernowne real with 1/2*n^2+335/2*n-88 8024941964721198 r005 Re(z^2+c),c=-5/6+7/128*I,n=49 8024941995359628 q001 2767/3448 8024942059376894 k002 Champernowne real with n^2+166*n-87 8024942066966713 m001 (Pi-exp(Pi))/(arctan(1/2)-Otter) 8024942159677495 k002 Champernowne real with 3/2*n^2+329/2*n-86 8024942239816960 a007 Real Root Of 841*x^4-209*x^3-930*x^2-345*x+635 8024942244252560 m001 (BesselJ(1,1)+Stephens)/BesselI(0,1) 8024942259978096 k002 Champernowne real with 2*n^2+163*n-85 8024942266019636 a008 Real Root of (-5+6*x+5*x^2-4*x^4-8*x^8) 8024942273828599 m001 BesselI(1,2)*LandauRamanujan*TwinPrimes 8024942273828599 m001 TwinPrimes*BesselI(1,2)*LandauRamanujan 8024942273938469 a001 2207/121393*34^(8/19) 8024942280686032 a003 cos(Pi*7/69)-cos(Pi*53/117) 8024942297811427 l006 ln(3267/7289) 8024942303510619 a001 6765/3571*322^(1/4) 8024942326514487 m001 (-Lehmer+ZetaQ(4))/(Chi(1)-LandauRamanujan) 8024942343226071 m001 (5^(1/2)+BesselJ(1,1))/(FellerTornier+Trott) 8024942349516391 m001 (Psi(1,1/3)+gamma(2))/(-FeigenbaumKappa+Paris) 8024942355053286 a003 sin(Pi*2/107)-sin(Pi*36/109) 8024942360278697 k002 Champernowne real with 5/2*n^2+323/2*n-84 8024942366538636 a007 Real Root Of -718*x^4+788*x^3-684*x^2-767*x+530 8024942386311500 r005 Re(z^2+c),c=-89/106+1/38*I,n=35 8024942391719536 a007 Real Root Of -886*x^4+850*x^3+665*x^2-352*x+96 8024942392000333 r008 a(0)=8,K{-n^6,-30+2*n^3-15*n^2+2*n} 8024942402563788 m001 polylog(4,1/2)^Si(Pi)*exp(1) 8024942407600547 a003 cos(Pi*20/103)*sin(Pi*10/23) 8024942409925489 a007 Real Root Of -789*x^4-744*x^3-564*x^2+587*x+777 8024942451911739 r009 Im(z^3+c),c=-27/86+31/38*I,n=3 8024942458888085 m005 (1/2*exp(1)-7/8)/(6/7*Catalan-2/11) 8024942460453962 m001 ln(log(2+sqrt(3)))^2*GAMMA(2/3)^2/sqrt(3) 8024942460579298 k002 Champernowne real with 3*n^2+160*n-83 8024942474583240 r005 Re(z^2+c),c=-67/82+5/57*I,n=23 8024942484785398 p003 LerchPhi(1/3,5,64/97) 8024942494397684 a007 Real Root Of 780*x^4-723*x^3+483*x^2+718*x-432 8024942511451198 g005 1/Pi^2/csc(3/8*Pi)^2*GAMMA(5/8)^2/GAMMA(3/5)^2 8024942560879899 k002 Champernowne real with 7/2*n^2+317/2*n-82 8024942576026063 a003 cos(Pi*16/87)*sin(Pi*11/27) 8024942576987578 r005 Im(z^2+c),c=-5/82+51/64*I,n=46 8024942580054754 b008 ArcSec[2^Sqrt[Csch[2]]] 8024942593460906 a003 sin(Pi*1/8)/cos(Pi*27/79) 8024942613255586 r002 15th iterates of z^2 + 8024942616207913 m005 (1/2*5^(1/2)+1/6)/(2/9*Catalan-4/11) 8024942637285966 r008 a(0)=8,K{-n^6,-32-25*n+30*n^2-14*n^3} 8024942659683532 a007 Real Root Of -44*x^4+359*x^3-685*x^2-208*x+478 8024942661180410 k002 Champernowne real with 4*n^2+157*n-81 8024942666126192 m005 (1/2*2^(1/2)-1/10)/(7/10*5^(1/2)+6) 8024942682281138 m001 (exp(Pi)-sin(1))/(exp(1/Pi)+OrthogonalArrays) 8024942709717143 a007 Real Root Of -636*x^4-281*x^3-90*x^2+438*x+528 8024942733519979 q001 3153/3929 8024942761481010 k002 Champernowne real with 9/2*n^2+311/2*n-80 8024942768038439 h001 (5/8*exp(2)+5/9)/(7/9*exp(2)+7/10) 8024942770270563 a001 233/3*521^(43/58) 8024942773914658 r009 Im(z^3+c),c=-69/122+7/30*I,n=17 8024942801551191 r009 Im(z^3+c),c=-11/18+19/62*I,n=7 8024942803163262 a005 (1/cos(9/143*Pi))^808 8024942832468586 l006 ln(2566/5725) 8024942840111157 m004 (55*Pi)/6+(25*Pi)/ProductLog[Sqrt[5]*Pi] 8024942858293213 m005 (1/2*Pi+1/11)/(8/11*5^(1/2)+4/9) 8024942861781610 k002 Champernowne real with 5*n^2+154*n-79 8024942893605472 r005 Im(z^2+c),c=33/94+15/41*I,n=8 8024942896544934 a007 Real Root Of -419*x^4+618*x^3+549*x^2+254*x-703 8024942905637754 a007 Real Root Of -897*x^4+370*x^3+566*x^2+429*x+543 8024942949555388 r009 Im(z^3+c),c=-13/102+27/28*I,n=20 8024942962082210 k002 Champernowne real with 11/2*n^2+305/2*n-78 8024942962355474 h001 (4/9*exp(1)+8/9)/(9/10*exp(1)+1/6) 8024943003636755 a007 Real Root Of 802*x^4-873*x^3+231*x^2+701*x-370 8024943040289661 m001 (sin(1/12*Pi)+BesselK(1,1))^Porter 8024943062382810 k002 Champernowne real with 6*n^2+151*n-77 8024943077343090 a007 Real Root Of 805*x^4-694*x^3+851*x^2+787*x-609 8024943081054172 r009 Im(z^3+c),c=-3/82+34/41*I,n=35 8024943082031558 r008 a(0)=8,K{-n^6,-31-24*n+2*n^2+8*n^3} 8024943084469053 r005 Im(z^2+c),c=35/114+16/37*I,n=42 8024943092044625 b008 ArcCot[ExpIntegralEi[10]/2] 8024943110797943 s002 sum(A073926[n]/(n*pi^n+1),n=1..infinity) 8024943114169132 r005 Im(z^2+c),c=-13/110+41/50*I,n=22 8024943121068422 a001 6/726103*225851433717^(2/23) 8024943121070413 a001 9/416020*3524578^(2/23) 8024943156446324 a007 Real Root Of 642*x^4-797*x^3-61*x^2-374*x-939 8024943162683410 k002 Champernowne real with 13/2*n^2+299/2*n-76 8024943183413746 r005 Re(z^2+c),c=-19/21+6/49*I,n=26 8024943226674151 l006 ln(4431/9886) 8024943262984010 k002 Champernowne real with 7*n^2+148*n-75 8024943267215420 m002 6*Pi^6*Sech[Pi]+Pi^5*Tanh[Pi] 8024943293878214 r002 47th iterates of z^2 + 8024943296755318 r005 Im(z^2+c),c=-167/118+10/61*I,n=7 8024943302268532 r005 Im(z^2+c),c=-7/60+22/27*I,n=64 8024943306631643 r002 23th iterates of z^2 + 8024943310376067 m006 (1/4/Pi+5)/(2/3*Pi^2-1/4) 8024943310657596 r005 Re(z^2+c),c=11/28+41/60*I,n=2 8024943342553004 m001 (1+Cahen)/(-Landau+Riemann2ndZero) 8024943354655828 a007 Real Root Of -87*x^4-590*x^3+759*x^2-896*x-167 8024943356154980 m001 ZetaQ(4)/(Sierpinski-exp(Pi)) 8024943363284610 k002 Champernowne real with 15/2*n^2+293/2*n-74 8024943377492765 m001 1/exp(FeigenbaumC)^2*Niven^2*Zeta(5)^2 8024943399409185 r005 Im(z^2+c),c=-103/122+3/59*I,n=27 8024943408702945 m001 LandauRamanujan/(Thue^arctan(1/3)) 8024943426833295 g005 GAMMA(1/11)*GAMMA(8/9)/GAMMA(6/7)/GAMMA(5/7) 8024943439845120 a007 Real Root Of -201*x^4+310*x^3+829*x^2+763*x+322 8024943453513666 a001 987/521*521^(3/13) 8024943463585210 k002 Champernowne real with 8*n^2+145*n-73 8024943470372186 m001 (arctan(1/3)+Artin)/(PrimesInBinary+ZetaP(2)) 8024943478510195 m001 Catalan^2*DuboisRaymond^2*exp(arctan(1/2))^2 8024943482345037 m001 1/cos(Pi/12)^2/BesselK(0,1)/exp(gamma)^2 8024943502704368 a007 Real Root Of -798*x^4-579*x^3-911*x^2+638*x-45 8024943509885081 a007 Real Root Of -499*x^4+83*x^3+837*x^2+253*x-578 8024943523375551 m009 (1/6*Psi(1,1/3)-2/3)/(1/4*Psi(1,2/3)+1/2) 8024943529606931 a001 817138163596/13*13^(2/21) 8024943529643624 r005 Re(z^2+c),c=-35/62+22/43*I,n=4 8024943549595159 r002 51th iterates of z^2 + 8024943556395981 a007 Real Root Of 7*x^4-793*x^3-327*x^2-745*x-800 8024943560350113 a003 sin(Pi*26/95)/sin(Pi*46/117) 8024943563885810 k002 Champernowne real with 17/2*n^2+287/2*n-72 8024943578437585 a001 54018521/34*2504730781961^(18/23) 8024943578437586 a001 312119004989/34*39088169^(18/23) 8024943608506069 a007 Real Root Of -995*x^4+866*x^3+762*x^2-88*x-455 8024943615496239 r008 a(0)=8,K{-n^6,-48+14*n-11*n^2+3*n^3} 8024943649868010 a001 11/2*196418^(40/41) 8024943664186411 k002 Champernowne real with 9*n^2+142*n-71 8024943667319868 m005 (1/2*3^(1/2)+5/9)/(115/99+3/11*5^(1/2)) 8024943673186958 m001 (Paris+Salem)/(BesselI(0,1)+FellerTornier) 8024943693598038 m001 (Pi+Psi(1,1/3)*BesselJ(0,1))/GAMMA(2/3) 8024943720811983 r008 a(0)=8,K{-n^6,44+46*n^3-62*n^2-66*n} 8024943726073143 m001 Niven*ln(Backhouse)^2/sqrt(3)^2 8024943750563623 b008 8+EulerGamma/E^Pi 8024943764487011 k002 Champernowne real with 19/2*n^2+281/2*n-70 8024943769050253 l006 ln(1865/4161) 8024943771137578 a007 Real Root Of -29*x^4+454*x^3+65*x^2+296*x-502 8024943792983220 r009 Im(z^3+c),c=-3/52+37/45*I,n=15 8024943793750756 m005 (1/2*3^(1/2)+1/11)/(1/9*3^(1/2)+1) 8024943803184640 r002 9th iterates of z^2 + 8024943828193835 a007 Real Root Of 445*x^4-472*x^3+331*x^2+341*x-368 8024943852680462 p003 LerchPhi(1/125,5,449/171) 8024943864787611 k002 Champernowne real with 10*n^2+139*n-69 8024943900891996 a007 Real Root Of -750*x^4+94*x^3-664*x^2-338*x+516 8024943953384799 b008 ArcCsch[ExpIntegralEi[10]/2] 8024943965088211 k002 Champernowne real with 21/2*n^2+275/2*n-68 8024943969237454 h001 (5/11*exp(1)+2/11)/(4/11*exp(1)+7/9) 8024943984715118 s002 sum(A101230[n]/(pi^n),n=1..infinity) 8024944009771769 m001 (1+Catalan)/(GAMMA(13/24)+RenyiParking) 8024944023733047 a007 Real Root Of 639*x^4-428*x^3-168*x^2-395*x-695 8024944023906655 a007 Real Root Of -210*x^4+70*x^3-703*x^2+481*x+962 8024944024768285 m001 (5^(1/2)-Zeta(5))/(HardyLittlewoodC3+Thue) 8024944065388811 k002 Champernowne real with 11*n^2+136*n-67 8024944087183782 a001 3/5702887*34^(17/22) 8024944116333466 a001 4/75025*55^(5/49) 8024944139983279 r005 Re(z^2+c),c=-5/6+7/128*I,n=55 8024944160088507 m005 (1/2*5^(1/2)-1/11)/(1/6*3^(1/2)-5/12) 8024944165689411 k002 Champernowne real with 23/2*n^2+269/2*n-66 8024944226327638 a007 Real Root Of 821*x^4-366*x^3+150*x^2-62*x-676 8024944240942939 m001 (ln(5)+LaplaceLimit)/(Stephens-Thue) 8024944265990011 k002 Champernowne real with 12*n^2+133*n-65 8024944275206784 h001 (1/7*exp(2)+1/12)/(1/7*exp(2)+4/11) 8024944284191226 r005 Re(z^2+c),c=-85/64+2/37*I,n=36 8024944285950369 r005 Re(z^2+c),c=4/13+36/53*I,n=4 8024944304799163 a001 29/610*610^(4/49) 8024944335509648 m001 Psi(2,1/3)^LandauRamanujan2nd/GAMMA(17/24) 8024944337616629 v002 sum(1/(2^n*(n^2+30*n-24)),n=1..infinity) 8024944340779666 h001 (-3*exp(8)-6)/(-6*exp(3)+9) 8024944346652691 a007 Real Root Of 833*x^4+562*x^3+44*x^2-736*x-674 8024944366290611 k002 Champernowne real with 25/2*n^2+263/2*n-64 8024944388651329 m005 (1/2*5^(1/2)+2/11)/(5/8*5^(1/2)+2/9) 8024944399515034 m006 (2/Pi+1)/(5/6*ln(Pi)-3/4) 8024944410233252 r008 a(0)=8,K{-n^6,-6+50*n^3-84*n^2+n} 8024944415693966 m008 (4/5*Pi^6+3)/(Pi^6+3/4) 8024944420840101 a007 Real Root Of -954*x^4+638*x^3-965*x^2-735*x+757 8024944422301535 a007 Real Root Of 695*x^4-227*x^3+579*x^2+332*x-512 8024944426103976 r005 Im(z^2+c),c=-2/25+46/57*I,n=22 8024944426746550 m001 (HardHexagonsEntropy+Robbin)/(2^(1/3)+Conway) 8024944450154555 a007 Real Root Of 64*x^4+558*x^3+289*x^2-458*x+661 8024944451950409 m001 1/GAMMA(5/12)*exp(Sierpinski)/log(1+sqrt(2))^2 8024944460153281 l006 ln(8557/9272) 8024944466591211 k002 Champernowne real with 13*n^2+130*n-63 8024944468025694 a007 Real Root Of 259*x^4-796*x^3+489*x^2+604*x-349 8024944486579487 m001 (ln(Pi)-OneNinth)/(Porter-ZetaP(3)) 8024944520620729 m001 (Ei(1)+BesselI(1,2))/(Pi+Zeta(3)) 8024944531836964 r004 Im(z^2+c),c=-6/11+3/16*I,z(0)=-1,n=3 8024944536837731 m001 1/ln(FeigenbaumB)/Cahen/GAMMA(11/12) 8024944562469979 l006 ln(3029/6758) 8024944566891811 k002 Champernowne real with 27/2*n^2+257/2*n-62 8024944575890314 r008 a(0)=8,K{-n^6,-54-20*n+44*n^2-7*n^3} 8024944613533022 m001 (2^(1/2)-LambertW(1))/GAMMA(11/12) 8024944613533022 m001 (LambertW(1)-sqrt(2))/GAMMA(11/12) 8024944613553208 m001 (GAMMA(2/3)-FeigenbaumB)/(Gompertz+ZetaQ(2)) 8024944647048933 m001 (Gompertz+TwinPrimes)/(BesselK(0,1)+ln(Pi)) 8024944655551857 a007 Real Root Of 731*x^4+454*x^3-110*x^2-120*x-94 8024944664095151 a001 377/521*843^(5/14) 8024944667192412 k002 Champernowne real with 14*n^2+127*n-61 8024944668564043 m005 (1/2*Zeta(3)-7/10)/(4/5*5^(1/2)-5/9) 8024944686746041 a007 Real Root Of 56*x^4-738*x^3-71*x^2-521*x+822 8024944704325078 a007 Real Root Of 926*x^4-883*x^3-37*x^2+863*x-124 8024944708396240 r008 a(0)=8,K{-n^6,4-17*n-58*n^2+29*n^3} 8024944724303432 m005 (1/2*exp(1)-4/11)/(43/132+9/22*5^(1/2)) 8024944729213505 r005 Re(z^2+c),c=-53/50+11/58*I,n=60 8024944729687800 a001 9349/89*2971215073^(7/23) 8024944763596199 a007 Real Root Of -553*x^4+139*x^3+350*x^2+247*x+274 8024944767493012 k002 Champernowne real with 29/2*n^2+251/2*n-60 8024944770905759 a007 Real Root Of 119*x^4-718*x^3+377*x^2-511*x+489 8024944782387993 r009 Im(z^3+c),c=-27/52+9/17*I,n=11 8024944797498327 b008 ArcCot[5*ExpIntegralEi[10]] 8024944804542525 a007 Real Root Of -277*x^4+383*x^3+841*x^2-103*x-542 8024944806111733 b008 ArcCsch[5*ExpIntegralEi[10]] 8024944821384111 a001 271443/89*46368^(7/23) 8024944823338545 b008 ArcCsc[5*ExpIntegralEi[10]] 8024944831951951 b008 ArcCoth[5*ExpIntegralEi[10]] 8024944840161422 a007 Real Root Of 97*x^4+745*x^3-218*x^2+412*x+74 8024944843252779 a001 161/567451585*8^(1/2) 8024944847190698 a007 Real Root Of 886*x^4-562*x^3-563*x^2-751*x-898 8024944867793612 k002 Champernowne real with 15*n^2+124*n-59 8024944879953617 m005 (1/3*3^(1/2)+1/10)/(3*exp(1)+2/7) 8024944885764886 b008 Sqrt[Cosh[Pi]/2]/3 8024944911421669 b008 1/4+E^E^(-2+E) 8024944915374273 l006 ln(4193/9355) 8024944957302568 a007 Real Root Of 132*x^4+989*x^3-536*x^2+334*x+871 8024944958405651 a007 Real Root Of 379*x^4-982*x^3+662*x^2-805*x+570 8024944968094212 k002 Champernowne real with 31/2*n^2+245/2*n-58 8024944969762546 a007 Real Root Of 96*x^4+741*x^3-136*x^2+840*x+308 8024944970476126 a007 Real Root Of 212*x^4-723*x^3+795*x^2+301*x-732 8024944974183459 r002 13th iterates of z^2 + 8024945046125955 m001 PlouffeB*(Ei(1)-exp(-1/2*Pi)) 8024945047159523 m007 (-1/2*gamma-ln(2)-2)/(-4/5*gamma+5/6) 8024945052974062 a007 Real Root Of -73*x^4+680*x^3-999*x^2-744*x+428 8024945068394812 k002 Champernowne real with 16*n^2+121*n-57 8024945089259676 a001 89/1364*199^(10/11) 8024945110238173 r005 Re(z^2+c),c=-51/106+29/47*I,n=34 8024945147680791 a007 Real Root Of -963*x^4-941*x^3-189*x^2+485*x+424 8024945161017819 a003 sin(Pi*3/71)+sin(Pi*18/77) 8024945168695412 k002 Champernowne real with 33/2*n^2+239/2*n-56 8024945182581143 m005 (5/18+1/6*5^(1/2))/(1/11*Catalan+8/11) 8024945197111329 r008 a(0)=0,K{-n^6,-21*n^3+54*n^2-46*n-1} 8024945213432326 r005 Re(z^2+c),c=-65/114+6/13*I,n=24 8024945234451614 a007 Real Root Of -648*x^4+759*x^3+887*x^2+571*x+548 8024945243221864 p004 log(14549/6521) 8024945268996012 k002 Champernowne real with 17*n^2+118*n-55 8024945277244826 h001 (-3*exp(4)+2)/(-5*exp(6)+1) 8024945287210134 a007 Real Root Of -975*x^4-187*x^3-136*x^2+118*x+490 8024945306323586 r009 Re(z^3+c),c=-16/27+2/9*I,n=9 8024945311897797 a008 Real Root of (-7+9*x^2+7*x^8) 8024945331128401 a007 Real Root Of -962*x^4+354*x^3-326*x^2-26*x+771 8024945369296612 k002 Champernowne real with 35/2*n^2+233/2*n-54 8024945417433636 r008 a(0)=8,K{-n^6,-7-11*n-34*n^2+11*n^3} 8024945424317415 r002 20th iterates of z^2 + 8024945449963227 m001 (Shi(1)-sin(1/5*Pi))/(-Robbin+ZetaP(4)) 8024945466800600 m001 (MertensB1+Stephens)/(GAMMA(13/24)-Gompertz) 8024945469597212 k002 Champernowne real with 18*n^2+115*n-53 8024945471090374 r008 a(0)=8,K{-n^6,-61+18*n-26*n^2+16*n^3} 8024945500311386 m005 (1/5*exp(1)-1)/(2*exp(1)+1/4) 8024945552684416 a001 123/39088169*225851433717^(10/21) 8024945552700314 a001 41/105937*9227465^(10/21) 8024945555405275 a007 Real Root Of 618*x^4-210*x^3+26*x^2+873*x+319 8024945569897812 k002 Champernowne real with 37/2*n^2+227/2*n-52 8024945571087168 a007 Real Root Of -293*x^4+528*x^3+741*x^2+887*x+629 8024945584694780 m008 (1/6*Pi^6+4/5)/(2/5*Pi+3/4) 8024945650656490 a007 Real Root Of -985*x^4+859*x^3-582*x^2-743*x+631 8024945653096936 a007 Real Root Of -41*x^4+139*x^3+312*x^2+738*x-848 8024945659481710 r002 3th iterates of z^2 + 8024945667547693 m008 (2/3*Pi^4-3/5)/(5/6*Pi^4-1) 8024945670198413 k002 Champernowne real with 19*n^2+112*n-51 8024945671673223 m005 (1/2*3^(1/2)+3/5)/(3/10*gamma-2) 8024945676065978 b008 ArcCsc[ExpIntegralEi[10]/2] 8024945694197389 a003 cos(Pi*9/71)*sin(Pi*38/113) 8024945709332311 r008 a(0)=8,K{-n^6,-26+22*n^3-35*n^2-8*n} 8024945716288031 a001 4/377*10946^(20/43) 8024945731619024 m001 (Catalan-Shi(1))/(Zeta(5)+Sarnak) 8024945751907758 a007 Real Root Of 664*x^4-127*x^3+253*x^2-582*x-971 8024945770499013 k002 Champernowne real with 39/2*n^2+221/2*n-50 8024945782232739 a001 646/341*322^(1/4) 8024945800784593 a007 Real Root Of 293*x^4-529*x^3+468*x^2+520*x-279 8024945821315475 m006 (3/5*exp(2*Pi)+2/5)/(3/4*exp(2*Pi)-3/4) 8024945831451588 m001 (-Khinchin+ThueMorse)/(5^(1/2)+Gompertz) 8024945833713653 l006 ln(1164/2597) 8024945864576655 r005 Im(z^2+c),c=-7/31+25/33*I,n=28 8024945870799613 k002 Champernowne real with 20*n^2+109*n-49 8024945874414942 a007 Real Root Of -359*x^4-511*x^3-821*x^2+271*x+631 8024945891778159 m001 1/Zeta(3)/FransenRobinson^2/ln(Zeta(5))^2 8024945899465176 m006 (3/4*exp(Pi)+3/5)/(1/2*Pi+2/3) 8024945899916900 a007 Real Root Of 407*x^4-153*x^3+652*x^2-582*x-51 8024945901305509 a007 Real Root Of -222*x^4+245*x^3-986*x^2-108*x+767 8024945924115425 s002 sum(A126859[n]/(16^n-1),n=1..infinity) 8024945948646143 r009 Im(z^3+c),c=-5/66+30/37*I,n=41 8024945952078662 m001 GAMMA(2/3)*Lehmer 8024945960485202 a003 cos(Pi*26/99)*cos(Pi*49/106) 8024945971010021 k002 Champernowne real with 41/2*n^2+215/2*n-48 8024945993133646 a007 Real Root Of 981*x^4-774*x^3-930*x^2-825*x-870 8024946005602275 a008 Real Root of (-3-5*x-5*x^2+2*x^3+3*x^4-6*x^5) 8024946032621571 m001 (Psi(2,1/3)-Shi(1))/(MasserGramain+ZetaQ(2)) 8024946059219013 m001 (Shi(1)+BesselK(0,1))/(FeigenbaumC+Trott) 8024946067639418 m001 (polylog(4,1/2)-Khinchin)/(Pi-BesselJ(1,1)) 8024946071310081 k002 Champernowne real with 21*n^2+106*n-47 8024946078268609 m001 (-Grothendieck+Totient)/(Psi(2,1/3)+gamma(2)) 8024946088868395 v002 sum(1/(3^n*(19*n^2+5*n+25)),n=1..infinity) 8024946105793066 a007 Real Root Of 114*x^4+999*x^3+798*x^2+911*x-588 8024946111099968 r005 Re(z^2+c),c=-47/56+1/34*I,n=21 8024946118218920 q001 7/87228 8024946122207386 m001 Psi(2,1/3)/(ZetaR(2)^OrthogonalArrays) 8024946127970892 a007 Real Root Of 264*x^4-467*x^3-849*x^2-608*x-292 8024946131684872 m001 1/cos(1)^2/ln(GAMMA(11/24))*cosh(1) 8024946137873505 a007 Real Root Of 389*x^4-964*x^3+735*x^2+188*x-982 8024946146658464 r005 Im(z^2+c),c=-31/26+10/67*I,n=39 8024946149912533 r008 a(0)=8,K{-n^6,-50-39*n^3+97*n^2-49*n} 8024946158983080 a007 Real Root Of 785*x^4+400*x^3+564*x^2+344*x-206 8024946164439699 m005 (-1/66+1/6*5^(1/2))/(3/77+2/11*5^(1/2)) 8024946170319688 r005 Im(z^2+c),c=-13/60+36/47*I,n=4 8024946171610141 k002 Champernowne real with 43/2*n^2+209/2*n-46 8024946183159127 r008 a(0)=0,K{-n^6,77-54*n^3+73*n^2+24*n} 8024946239767135 a007 Real Root Of 870*x^4+588*x^3-874*x^2-607*x+54 8024946251779137 a007 Real Root Of -905*x^4+106*x^3+299*x^2+337*x+508 8024946271035757 a007 Real Root Of -707*x^4-26*x^3+216*x^2+611*x+631 8024946271289308 a001 2584/2207*322^(1/3) 8024946271910201 k002 Champernowne real with 22*n^2+103*n-45 8024946277208086 a001 233/843*843^(1/2) 8024946283152465 a007 Real Root Of 985*x^4-833*x^3-938*x^2+263*x+415 8024946283660492 a007 Real Root Of -843*x^4-340*x^3-350*x^2-844*x-278 8024946305543774 a007 Real Root Of -595*x^4+482*x^3-365*x^2-451*x+369 8024946314044683 r005 Im(z^2+c),c=-13/82+45/52*I,n=11 8024946362188196 r004 Re(z^2+c),c=-4/5-3/23*I,z(0)=-1,n=44 8024946363380922 m001 Magata*ln(GolombDickman)*sqrt(5)^2 8024946372210261 k002 Champernowne real with 45/2*n^2+203/2*n-44 8024946379244744 m001 1/exp(Magata)^2/Si(Pi)/exp(1)^2 8024946408463117 m001 (LaplaceLimit+ZetaQ(2))^TwinPrimes 8024946427380116 a007 Real Root Of 341*x^4-941*x^3-3*x^2-916*x+74 8024946455248024 m004 (Sqrt[5]*Pi)/3+(2*Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 8024946471311700 a007 Real Root Of 547*x^4-234*x^3+804*x^2+868*x-169 8024946472510321 k002 Champernowne real with 23*n^2+100*n-43 8024946474230846 r005 Re(z^2+c),c=-51/52+17/61*I,n=46 8024946492277760 p001 sum((-1)^n/(89*n+61)/n/(8^n),n=0..infinity) 8024946499904640 a007 Real Root Of -8*x^4+482*x^3-29*x^2+198*x-386 8024946525581154 a007 Real Root Of 817*x^4-412*x^3-628*x^2-471*x-34 8024946530194748 a007 Real Root Of 114*x^4-584*x^3-194*x^2-453*x+743 8024946537406984 b008 ArcCoth[ExpIntegralEi[10]/2] 8024946566991786 r008 a(0)=8,K{-n^6,-68+2*n^3+30*n^2-3*n} 8024946572810381 k002 Champernowne real with 47/2*n^2+197/2*n-42 8024946589120310 a001 199/233*514229^(19/55) 8024946594102777 r005 Im(z^2+c),c=-9/8+23/232*I,n=40 8024946610697551 a001 1/47*(1/2*5^(1/2)+1/2)^21*7^(2/9) 8024946617851186 r005 Re(z^2+c),c=-5/6+11/202*I,n=31 8024946625972954 r005 Im(z^2+c),c=-21/118+41/49*I,n=22 8024946627878119 a001 987/76*15127^(39/43) 8024946657222450 a007 Real Root Of 355*x^4+273*x^3+230*x^2-376*x-456 8024946668027316 a007 Real Root Of -172*x^4+450*x^3-342*x^2-298*x+285 8024946673110441 k002 Champernowne real with 24*n^2+97*n-41 8024946723563157 m001 (cos(1/12*Pi)+Rabbit)/(BesselI(0,1)-Shi(1)) 8024946750112818 a007 Real Root Of -42*x^4-430*x^3-762*x^2-99*x+240 8024946773410501 k002 Champernowne real with 49/2*n^2+191/2*n-40 8024946774115676 a007 Real Root Of -791*x^4+72*x^3+332*x^2+745*x-6 8024946800512232 a007 Real Root Of -401*x^4+652*x^3+772*x^2-6*x-663 8024946807315841 l006 ln(3955/8824) 8024946846470543 m001 1/exp(GAMMA(19/24))^2*FeigenbaumB*Zeta(7) 8024946847989025 m001 (2/3)^(GAMMA(7/12)*GAMMA(1/12)) 8024946852516821 r005 Re(z^2+c),c=23/82+27/44*I,n=10 8024946873710561 k002 Champernowne real with 25*n^2+94*n-39 8024946876183633 l006 ln(4464/4837) 8024946914074819 m001 1/ln(GAMMA(5/24))*GAMMA(11/12)^2/Zeta(1,2) 8024946914868192 b008 1/4+Log[Pi/9] 8024946945932993 a001 144/3010349*199^(30/31) 8024946974010621 k002 Champernowne real with 51/2*n^2+185/2*n-38 8024946980493542 b008 ArcCsch[12*Coth[2]] 8024947005913385 a007 Real Root Of -545*x^4+639*x^3+706*x^2+212*x-729 8024947007343546 h001 (-8*exp(3)+10)/(-9*exp(3)-7) 8024947033136836 r002 8th iterates of z^2 + 8024947037198743 m001 BesselI(1,1)*(GAMMA(3/4)+DuboisRaymond) 8024947074310681 k002 Champernowne real with 26*n^2+91*n-37 8024947104146777 a007 Real Root Of -996*x^4+976*x^3+626*x^2+453*x-858 8024947123582998 r005 Im(z^2+c),c=41/106+11/41*I,n=4 8024947134557753 m001 1/Zeta(9)*ln(DuboisRaymond)^2*sqrt(3)^2 8024947140231405 a001 610/521*521^(4/13) 8024947163936716 r005 Re(z^2+c),c=-17/66+51/62*I,n=11 8024947174610741 k002 Champernowne real with 53/2*n^2+179/2*n-36 8024947180336227 h001 (6/11*exp(1)+1/4)/(1/2*exp(1)+4/5) 8024947213361298 l006 ln(2791/6227) 8024947213721926 m001 (exp(1/Pi)+exp(-1/2*Pi))/(Zeta(1,2)-MertensB2) 8024947246488958 m001 (sin(1)+MertensB2)/(-PlouffeB+ZetaP(2)) 8024947255770255 a007 Real Root Of -719*x^4+56*x^3+948*x^2+538*x-773 8024947264221308 m001 1/TreeGrowth2nd/Salem*ln(TwinPrimes) 8024947270201866 a007 Real Root Of -585*x^4-979*x^3-809*x^2+697*x+817 8024947274910801 k002 Champernowne real with 27*n^2+88*n-35 8024947285797737 a007 Real Root Of -317*x^4+694*x^3-852*x^2-649*x+518 8024947291471298 m001 BesselJ(0,1)*Magata^2/exp(Zeta(3))^2 8024947321782939 a007 Real Root Of -390*x^4+238*x^3+200*x^2-299*x-84 8024947334235167 r005 Im(z^2+c),c=-53/64+5/24*I,n=42 8024947340827131 a001 1346269/76*1364^(9/43) 8024947358517821 m001 Zeta(7)/Khintchine/exp(cosh(1)) 8024947373361371 m005 (1/3*2^(1/2)+1/7)/(5*2^(1/2)+7/12) 8024947375210861 k002 Champernowne real with 55/2*n^2+173/2*n-34 8024947377117921 m005 (1/2*2^(1/2)-7/11)/(4/9*gamma+5/8) 8024947383466971 h001 (5/9*exp(1)+6/7)/(7/8*exp(1)+4/7) 8024947475510921 k002 Champernowne real with 28*n^2+85*n-33 8024947476114070 m001 1/Zeta(7)^2/exp(GAMMA(1/3))^2*sqrt(3) 8024947482169487 a007 Real Root Of 675*x^4+168*x^3-542*x^2-451*x-206 8024947486592814 b008 1+E^((1+Sqrt[2])/3)*Pi 8024947502141852 s002 sum(A138735[n]/(n^2*10^n-1),n=1..infinity) 8024947522699432 r005 Re(z^2+c),c=-18/17+7/36*I,n=54 8024947541469733 a007 Real Root Of 601*x^4-513*x^3-682*x^2-51*x+496 8024947553946199 h001 (4/9*exp(2)+5/6)/(7/11*exp(2)+3/7) 8024947575810981 k002 Champernowne real with 57/2*n^2+167/2*n-32 8024947576853764 l006 ln(4418/9857) 8024947583225418 a007 Real Root Of -457*x^4+392*x^3-384*x^2-808*x-9 8024947592265328 a007 Real Root Of -877*x^4+776*x^3+235*x^2+297*x-427 8024947601686005 a007 Real Root Of -266*x^4-227*x^3-747*x^2+613*x+966 8024947607849413 a001 1/329*(1/2*5^(1/2)+1/2)^30*47^(1/11) 8024947610096074 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^22 8024947613892426 a007 Real Root Of -883*x^4-617*x^3-970*x^2+233*x+859 8024947618268111 a007 Real Root Of -442*x^4+616*x^3+353*x^2+508*x+682 8024947630034106 a001 610/843*322^(5/12) 8024947655107206 h001 (3/11*exp(1)+3/4)/(7/12*exp(1)+3/11) 8024947671819667 r008 a(0)=8,K{-n^6,-3-24*n-28*n^2+14*n^3} 8024947676111041 k002 Champernowne real with 29*n^2+82*n-31 8024947687883308 a001 233/2207*1364^(3/5) 8024947710945822 a001 1322157322203/233*2^(1/2) 8024947747829686 r005 Re(z^2+c),c=9/106+3/34*I,n=5 8024947759406194 m001 (-Zeta(1,-1)+Backhouse)/(1-Zeta(3)) 8024947776411101 k002 Champernowne real with 59/2*n^2+161/2*n-30 8024947790914896 m005 (1/3*2^(1/2)+2/7)/(3/5*Zeta(3)+2/9) 8024947864088719 m001 1/GAMMA(1/12)/exp((3^(1/3)))^2*GAMMA(17/24)^2 8024947868896753 m001 BesselK(0,1)^2/FeigenbaumC^2/ln(GAMMA(11/24)) 8024947876711161 k002 Champernowne real with 30*n^2+79*n-29 8024947877463718 a001 34/47*47^(5/8) 8024947883765612 a001 2255/1926*322^(1/3) 8024947905062080 a001 89/843*199^(9/11) 8024947907456108 m001 (KhinchinHarmonic+Landau)/(1+Si(Pi)) 8024947911047271 a001 233/24476*1364^(14/15) 8024947913045160 r002 7th iterates of z^2 + 8024947913046686 a007 Real Root Of 413*x^4+110*x^3+434*x^2+694*x+163 8024947918988868 m001 (GaussAGM+Porter)/(Zeta(5)+FeigenbaumC) 8024947923335475 r005 Im(z^2+c),c=-93/82+10/37*I,n=17 8024947927220249 a007 Real Root Of -641*x^4+647*x^3+851*x^2-70*x-4 8024947965168245 m001 (Zeta(3)+sin(1/12*Pi))/(FeigenbaumC-Trott) 8024947977011221 k002 Champernowne real with 61/2*n^2+155/2*n-28 8024947979434419 a007 Real Root Of -949*x^4+529*x^3+281*x^2-324*x+226 8024947981797071 r005 Im(z^2+c),c=-17/29+5/31*I,n=17 8024948004526153 a001 1597/521*521^(2/13) 8024948024948024 q001 193/2405 8024948024948024 q001 386/481 8024948024948024 r002 1i'th iterates of 2*x/(1-x^2) of 8024948047577593 r005 Im(z^2+c),c=4/15+35/57*I,n=7 8024948053296582 m001 (cos(1/5*Pi)-ln(3))/(PrimesInBinary-ZetaQ(2)) 8024948053367657 a001 514229/76*3571^(13/43) 8024948053956063 m001 LambertW(1)*ln(GAMMA(17/24))/sqrt(Pi) 8024948060941828 r005 Re(z^2+c),c=-7/10+117/152*I,n=2 8024948077311281 k002 Champernowne real with 31*n^2+76*n-27 8024948119022782 a001 17711/15127*322^(1/3) 8024948119890853 r005 Re(z^2+c),c=-13/12+8/119*I,n=28 8024948120536668 r002 18th iterates of z^2 + 8024948123648643 h001 (5/6*exp(1)+2/7)/(5/12*exp(2)+1/10) 8024948132556827 b008 2+11*Sqrt[3/10] 8024948132556827 b008 20+11*Sqrt[30] 8024948139062800 a007 Real Root Of -77*x^4-536*x^3+737*x^2+740*x+813 8024948140219918 a001 6765/76*9349^(32/43) 8024948150137260 a001 233/15127*1364^(13/15) 8024948153346341 a001 15456/13201*322^(1/3) 8024948158354081 a001 121393/103682*322^(1/3) 8024948159084700 a001 105937/90481*322^(1/3) 8024948159191296 a001 832040/710647*322^(1/3) 8024948159206848 a001 726103/620166*322^(1/3) 8024948159209117 a001 5702887/4870847*322^(1/3) 8024948159209448 a001 4976784/4250681*322^(1/3) 8024948159209497 a001 39088169/33385282*322^(1/3) 8024948159209504 a001 34111385/29134601*322^(1/3) 8024948159209505 a001 267914296/228826127*322^(1/3) 8024948159209505 a001 233802911/199691526*322^(1/3) 8024948159209505 a001 1836311903/1568397607*322^(1/3) 8024948159209505 a001 1602508992/1368706081*322^(1/3) 8024948159209505 a001 12586269025/10749957122*322^(1/3) 8024948159209505 a001 10983760033/9381251041*322^(1/3) 8024948159209505 a001 86267571272/73681302247*322^(1/3) 8024948159209505 a001 75283811239/64300051206*322^(1/3) 8024948159209505 a001 2504730781961/2139295485799*322^(1/3) 8024948159209505 a001 365435296162/312119004989*322^(1/3) 8024948159209505 a001 139583862445/119218851371*322^(1/3) 8024948159209505 a001 53316291173/45537549124*322^(1/3) 8024948159209505 a001 20365011074/17393796001*322^(1/3) 8024948159209505 a001 7778742049/6643838879*322^(1/3) 8024948159209505 a001 2971215073/2537720636*322^(1/3) 8024948159209505 a001 1134903170/969323029*322^(1/3) 8024948159209505 a001 433494437/370248451*322^(1/3) 8024948159209505 a001 165580141/141422324*322^(1/3) 8024948159209508 a001 63245986/54018521*322^(1/3) 8024948159209527 a001 24157817/20633239*322^(1/3) 8024948159209653 a001 9227465/7881196*322^(1/3) 8024948159210520 a001 3524578/3010349*322^(1/3) 8024948159216460 a001 1346269/1149851*322^(1/3) 8024948159257176 a001 514229/439204*322^(1/3) 8024948159536248 a001 196418/167761*322^(1/3) 8024948161449034 a001 75025/64079*322^(1/3) 8024948163388973 m001 (Bloch-GolombDickman)/(Salem+Sarnak) 8024948163536981 a007 Real Root Of 944*x^4-780*x^3-952*x^2-509*x-590 8024948174249778 r002 30th iterates of z^2 + 8024948174559468 a001 28657/24476*322^(1/3) 8024948177611341 k002 Champernowne real with 63/2*n^2+149/2*n-26 8024948179982798 r005 Im(z^2+c),c=-85/86+14/27*I,n=3 8024948183275718 m001 ArtinRank2/(FeigenbaumB^LandauRamanujan) 8024948188146531 a001 322/1346269*102334155^(4/21) 8024948188147397 a001 322/9227465*2504730781961^(4/21) 8024948190291074 m001 (BesselI(0,2)+Cahen)/(Kac-MertensB1) 8024948200398586 l006 ln(1627/3630) 8024948202027619 a001 1836311903^(9/17) 8024948205594316 a001 161/98209*4181^(4/21) 8024948218038296 r005 Re(z^2+c),c=-21/38+19/40*I,n=45 8024948245029171 a001 317811/76*39603^(12/43) 8024948264419714 a001 10946/9349*322^(1/3) 8024948277911401 k002 Champernowne real with 32*n^2+73*n-25 8024948285438355 a007 Real Root Of -45*x^4+213*x^3+609*x^2+236*x-673 8024948292703681 a007 Real Root Of -374*x^4+757*x^3-458*x^2+47*x+879 8024948308776441 r008 a(0)=8,K{-n^6,-60-30*n^3+65*n^2-16*n} 8024948325774518 a001 4181/76*24476^(31/43) 8024948326837621 m005 (3/5*2^(1/2)+3)/(1/4*exp(1)-1/5) 8024948328387385 m005 (1/2*5^(1/2)-7/8)/(1/8*gamma-3/8) 8024948330649130 a007 Real Root Of 402*x^4-810*x^3+13*x^2+123*x-495 8024948332253396 r009 Im(z^3+c),c=-7/110+32/39*I,n=3 8024948337329158 m005 (1/2*3^(1/2)+3/10)/(-23/44+5/22*5^(1/2)) 8024948338480435 a007 Real Root Of 336*x^4-475*x^3-597*x^2+240*x+298 8024948378211461 k002 Champernowne real with 65/2*n^2+143/2*n-24 8024948392562399 m001 (GAMMA(1/3)*(2^(1/3))-GAMMA(3/4))/GAMMA(1/3) 8024948400613089 a001 17711/76*5778^(29/43) 8024948411104761 r005 Re(z^2+c),c=-107/82+1/58*I,n=44 8024948443382087 r005 Im(z^2+c),c=-4/27+47/57*I,n=52 8024948451006000 m001 (gamma+ln(gamma))/(Zeta(1,2)+GlaisherKinkelin) 8024948454075470 m004 (5*Pi)/2+(75*Sqrt[5]*Sec[Sqrt[5]*Pi])/Pi 8024948478511521 k002 Champernowne real with 33*n^2+70*n-23 8024948512655784 m001 GAMMA(1/4)*MadelungNaCl*ln(GAMMA(7/24))^2 8024948517617911 m001 Psi(2,1/3)^DuboisRaymond/exp(1) 8024948519944784 a001 233/5778*1364^(11/15) 8024948549791773 m001 BesselJ(1,1)*exp(Bloch)/Zeta(1,2)^2 8024948551003940 m001 Weierstrass^(Catalan*FellerTornier) 8024948554197352 m005 (31/10+1/10*5^(1/2))/(Pi+1) 8024948560869385 a007 Real Root Of 173*x^4-721*x^3+750*x^2+226*x-746 8024948564577611 a001 233/9349*1364^(4/5) 8024948567847304 a007 Real Root Of -292*x^4+111*x^3+30*x^2+502*x+562 8024948578811581 k002 Champernowne real with 67/2*n^2+137/2*n-22 8024948665733191 m001 ln(FeigenbaumC)*Khintchine^2*Tribonacci 8024948679111641 k002 Champernowne real with 34*n^2+67*n-21 8024948693147655 m001 Khintchine/ln(ArtinRank2)*OneNinth 8024948708225487 a007 Real Root Of -803*x^4+282*x^3+948*x^2-24*x-151 8024948779411701 k002 Champernowne real with 69/2*n^2+131/2*n-20 8024948780896443 m001 Tribonacci*exp(GolombDickman)*GAMMA(7/12)^2 8024948782089739 m001 (cos(1/5*Pi)+GAMMA(7/12))/(ErdosBorwein+Mills) 8024948802941108 r002 30th iterates of z^2 + 8024948819096840 a007 Real Root Of 76*x^4-337*x^3+492*x^2-509*x-931 8024948820270400 a007 Real Root Of -119*x^4-848*x^3+983*x^2+959*x-327 8024948836500953 h001 (7/8*exp(2)+5/12)/(1/9*exp(1)+5/9) 8024948848946534 b008 3*E^Sin[2]+EulerGamma 8024948879711761 k002 Champernowne real with 35*n^2+64*n-19 8024948880331057 a001 4181/3571*322^(1/3) 8024948880938349 r005 Im(z^2+c),c=-10/17+1/59*I,n=24 8024948894123934 s002 sum(A045745[n]/(n*2^n+1),n=1..infinity) 8024948940224990 r005 Im(z^2+c),c=-31/58+1/7*I,n=29 8024948941539516 l006 ln(3717/8293) 8024948945785781 m001 (Ei(1)-Psi(2,1/3))/(-GAMMA(5/6)+Tribonacci) 8024948955466872 a007 Real Root Of 983*x^4+305*x^3+965*x^2-114*x-963 8024948979591836 r005 Re(z^2+c),c=-9/8+43/175*I,n=2 8024948980011821 k002 Champernowne real with 71/2*n^2+125/2*n-18 8024949016851851 a001 377/18*9349^(37/41) 8024949023729772 m001 1/GAMMA(1/12)/(3^(1/3))/exp(Zeta(7))^2 8024949041264826 a007 Real Root Of 672*x^4+57*x^3+409*x^2-145*x-629 8024949075693415 m001 (-Kac+ZetaQ(3))/(Chi(1)-ErdosBorwein) 8024949080311881 k002 Champernowne real with 36*n^2+61*n-17 8024949085769611 m001 (GAMMA(7/12)-Kac)/(Landau+LandauRamanujan2nd) 8024949099430352 l006 ln(9299/10076) 8024949144469564 r008 a(0)=8,K{-n^6,-89-4*n^3+19*n^2+37*n} 8024949145832236 a007 Real Root Of -688*x^4+12*x^3-924*x^2-478*x+503 8024949164385763 a001 3571/2*233^(37/53) 8024949174584555 r005 Re(z^2+c),c=-43/70+26/61*I,n=13 8024949180611941 k002 Champernowne real with 73/2*n^2+119/2*n-16 8024949185325778 r005 Im(z^2+c),c=-3/20+14/17*I,n=10 8024949252459215 a007 Real Root Of 532*x^4-327*x^3+593*x^2-922*x-78 8024949276915002 m001 MadelungNaCl/exp(ArtinRank2)/Trott 8024949279921756 b008 Gamma[10/7,1/4] 8024949280912001 k002 Champernowne real with 37*n^2+58*n-15 8024949303789650 r002 8th iterates of z^2 + 8024949329165888 a007 Real Root Of -836*x^4-529*x^3+136*x^2+622*x-5 8024949347268308 m005 (37/36+1/4*5^(1/2))/(3/4*2^(1/2)+11/12) 8024949362038268 r005 Re(z^2+c),c=-47/56+1/35*I,n=35 8024949374701787 r002 45th iterates of z^2 + 8024949376065220 a007 Real Root Of 598*x^4-753*x^3+432*x^2+550*x-474 8024949381212061 k002 Champernowne real with 75/2*n^2+113/2*n-14 8024949382335400 a007 Real Root Of 24*x^4-781*x^3+51*x^2-470*x+738 8024949389265680 a007 Real Root Of 140*x^4-848*x^3-77*x^2+852*x+237 8024949409005682 a001 2584/521*521^(1/13) 8024949410137965 a001 141/46*123^(1/5) 8024949413325791 a001 987/521*1364^(1/5) 8024949443704881 m001 1/ln(log(2+sqrt(3)))^2*Lehmer^2*sqrt(3) 8024949456912037 m001 (OneNinth+Tribonacci)/(Zeta(3)-exp(1/exp(1))) 8024949463533786 m001 GAMMA(23/24)^(TravellingSalesman/ZetaQ(3)) 8024949481512121 k002 Champernowne real with 38*n^2+55*n-13 8024949502759627 a007 Real Root Of -779*x^4-114*x^3-96*x^2-395*x+9 8024949518494641 l006 ln(2090/4663) 8024949557202256 a007 Real Root Of 893*x^4-352*x^3+341*x^2-686*x+53 8024949557929124 r005 Im(z^2+c),c=-3/44+50/61*I,n=22 8024949557959214 a007 Real Root Of -701*x^4-531*x^3-897*x^2-790*x-40 8024949569058555 r009 Re(z^3+c),c=-47/78+17/59*I,n=4 8024949570791817 r005 Im(z^2+c),c=-71/118+13/61*I,n=17 8024949571234806 a007 Real Root Of -963*x^4+93*x^3+755*x^2+548*x+401 8024949581812181 k002 Champernowne real with 77/2*n^2+107/2*n-12 8024949602475664 m001 ArtinRank2/(OrthogonalArrays-Psi(1,1/3)) 8024949605236183 m005 (1/2*Catalan+5/11)/(2/5*2^(1/2)+4/7) 8024949616035011 a007 Real Root Of -214*x^4+489*x^3+469*x^2+481*x-852 8024949616919949 r008 a(0)=8,K{-n^6,-46+2*n^3+41*n^2-36*n} 8024949622126759 r002 3th iterates of z^2 + 8024949629424060 h001 (3/10*exp(1)+7/10)/(4/11*exp(1)+9/10) 8024949664518629 a001 6765/76*2207^(38/43) 8024949664750277 m001 Kolakoski+ZetaQ(2)*ZetaR(2) 8024949677181271 a001 233/3571*1364^(2/3) 8024949682112241 k002 Champernowne real with 39*n^2+52*n-11 8024949684733958 g007 Psi(2,9/11)+Psi(2,9/10)-Psi(2,3/11)-Psi(13/10) 8024949713280582 a007 Real Root Of -85*x^4+770*x^3-617*x^2+665*x-499 8024949751125163 r008 a(0)=8,K{-n^6,-47+16*n-35*n^2+27*n^3} 8024949772751717 a007 Real Root Of -524*x^4+642*x^3+90*x^2+421*x+829 8024949782412301 k002 Champernowne real with 79/2*n^2+101/2*n-10 8024949848406407 r008 a(0)=8,K{-n^6,-39+2*n-28*n^2+26*n^3} 8024949882712361 k002 Champernowne real with 40*n^2+49*n-9 8024949892634313 a007 Real Root Of 98*x^4+836*x^3+338*x^2-445*x+272 8024949893978391 m001 1/Zeta(1/2)^2/FeigenbaumKappa*exp(sin(1)) 8024949897688313 m001 (-Ei(1)+Trott)/(1-BesselJ(0,1)) 8024949942721757 a001 233/2207*3571^(9/17) 8024949963865309 m001 GaussKuzminWirsing*(Ei(1)+RenyiParking) 8024949983012421 k002 Champernowne real with 81/2*n^2+95/2*n-8 8024950019100391 a007 Real Root Of 788*x^4-691*x^3-638*x^2-861*x-964 8024950023233836 r002 25th iterates of z^2 + 8024950083312481 k002 Champernowne real with 41*n^2+46*n-7 8024950083691281 a001 9062201101803/377*144^(12/17) 8024950095759677 m001 (Cahen+CareFree)/(KomornikLoreti-OneNinth) 8024950103205104 a005 (1/cos(11/199*Pi))^1201 8024950113883537 a007 Real Root Of 243*x^4-775*x^3-467*x^2+544*x+236 8024950123973965 m002 -3+Pi^6*Csch[Pi]+Tanh[Pi]/Pi^5 8024950133268441 a007 Real Root Of 311*x^4-256*x^3+679*x^2-337*x-969 8024950135612595 m005 (5/36+1/4*5^(1/2))/(4/11*Pi-3/11) 8024950161656178 m001 (Zeta(3)+Ei(1))/(FeigenbaumD+Salem) 8024950162390839 a007 Real Root Of -763*x^4+458*x^3-501*x^2-634*x+367 8024950164938698 a001 987/521*3571^(3/17) 8024950165253435 a003 cos(Pi*4/45)-cos(Pi*8/51) 8024950172521891 r005 Im(z^2+c),c=49/118+12/35*I,n=34 8024950178421424 p004 log(21751/9749) 8024950183612541 k002 Champernowne real with 83/2*n^2+89/2*n-6 8024950215513908 m001 (2^(1/3)+Zeta(5))/(sin(1/12*Pi)+Trott2nd) 8024950220786360 m001 (Porter+ZetaQ(2))/(Zeta(3)+ln(2)) 8024950232393153 a001 233/2207*9349^(9/19) 8024950241821039 r002 5th iterates of z^2 + 8024950243987520 m001 LandauRamanujan2nd^gamma*GAMMA(19/24)^gamma 8024950248286697 m005 (1/2*3^(1/2)-7/8)/(7/10*gamma+5/7) 8024950252292172 r005 Re(z^2+c),c=35/106+34/59*I,n=36 8024950261495832 a001 987/521*9349^(3/19) 8024950270143345 a001 233/2207*24476^(3/7) 8024950271509002 a007 Real Root Of 875*x^4+27*x^3+508*x^2+116*x-583 8024950273929580 a001 229971/28657 8024950274079229 a001 987/521*24476^(1/7) 8024950275119546 a001 233/2207*64079^(9/23) 8024950275737963 a001 987/521*64079^(3/23) 8024950275836120 a007 Real Root Of -809*x^4-840*x^3-865*x^2-185*x+310 8024950275870440 a001 233/2207*439204^(1/3) 8024950275884272 a001 233/2207*7881196^(3/11) 8024950275884307 a001 233/2207*141422324^(3/13) 8024950275884307 a001 233/2207*2537720636^(1/5) 8024950275884307 a001 233/2207*45537549124^(3/17) 8024950275884307 a001 233/2207*817138163596^(3/19) 8024950275884307 a001 233/2207*14662949395604^(1/7) 8024950275884307 a001 233/2207*(1/2+1/2*5^(1/2))^9 8024950275884307 a001 233/2207*192900153618^(1/6) 8024950275884307 a001 233/2207*10749957122^(3/16) 8024950275884307 a001 233/2207*599074578^(3/14) 8024950275884309 a001 233/2207*33385282^(1/4) 8024950275885003 a001 233/2207*1860498^(3/10) 8024950275988261 a001 987/521*439204^(1/9) 8024950275992871 a001 987/521*7881196^(1/11) 8024950275992883 a001 987/521*141422324^(1/13) 8024950275992883 a001 987/521*2537720636^(1/15) 8024950275992883 a001 987/521*45537549124^(1/17) 8024950275992883 a001 987/521*14662949395604^(1/21) 8024950275992883 a001 987/521*(1/2+1/2*5^(1/2))^3 8024950275992883 a001 987/521*192900153618^(1/18) 8024950275992883 a001 987/521*10749957122^(1/16) 8024950275992883 a001 987/521*599074578^(1/14) 8024950275992884 a001 987/521*33385282^(1/12) 8024950275993115 a001 987/521*1860498^(1/10) 8024950276086197 a001 987/521*103682^(1/8) 8024950276164248 a001 233/2207*103682^(3/8) 8024950276690609 a001 987/521*39603^(3/22) 8024950277977484 a001 233/2207*39603^(9/22) 8024950280492637 r005 Re(z^2+c),c=19/126+23/35*I,n=54 8024950280598992 a007 Real Root Of -828*x^4-53*x^3-757*x^2+114*x+895 8024950281215953 r009 Im(z^3+c),c=-7/82+21/26*I,n=43 8024950281253395 a001 987/521*15127^(3/20) 8024950283912601 k002 Champernowne real with 42*n^2+43*n-5 8024950285207315 m001 ln(2)/(Niven-sin(1)) 8024950291627755 m001 5^(1/2)-Psi(1,1/3)+Zeta(1,-1) 8024950291665843 a001 233/2207*15127^(9/20) 8024950300833951 b008 1+Sqrt[2]*Tan[Sqrt[5]] 8024950309650567 a007 Real Root Of -377*x^4-482*x^3+290*x^2+886*x+69 8024950311960396 a001 3571/233*1836311903^(16/17) 8024950316055199 a001 987/521*5778^(1/6) 8024950326304240 m005 (1/2*gamma+2/5)/(8/9*Catalan-9/10) 8024950334826381 m002 3+6/Pi^6+5*Coth[Pi] 8024950335269922 m001 (Cahen-KhinchinLevy)/(Zeta(3)+2*Pi/GAMMA(5/6)) 8024950358503278 l006 ln(2553/5696) 8024950359615339 h001 (6/7*exp(1)+2/11)/(6/7*exp(1)+4/5) 8024950366264318 m005 (2/3*exp(1)-3/4)/(11/10+1/10*5^(1/2)) 8024950375873110 m005 (1/2*exp(1)+7/9)/(9/11*5^(1/2)+5/6) 8024950375970457 a007 Real Root Of 977*x^4-725*x^3+28*x^2+846*x-119 8024950384212661 k002 Champernowne real with 85/2*n^2+83/2*n-4 8024950396071254 a001 233/2207*5778^(1/2) 8024950399179069 b008 -3/2+FresnelS[3/2] 8024950412915379 r005 Im(z^2+c),c=-107/78+4/59*I,n=9 8024950436927034 m001 arctan(1/3)*(FeigenbaumAlpha-ZetaQ(3)) 8024950484512721 k002 Champernowne real with 43*n^2+40*n-3 8024950503232491 a007 Real Root Of -890*x^4-331*x^3-373*x^2+376*x+740 8024950584812781 k002 Champernowne real with 87/2*n^2+77/2*n-2 8024950584907955 a001 987/521*2207^(3/16) 8024950609079533 m001 sin(1)*Catalan^cos(1) 8024950620140861 h001 (11/12*exp(1)+5/12)/(5/12*exp(2)+6/11) 8024950627285123 a003 cos(Pi*17/67)/sin(Pi*37/110) 8024950627663942 a007 Real Root Of -681*x^4+510*x^3-157*x^2-45*x+611 8024950634850946 a007 Real Root Of -865*x^4-129*x^3+895*x^2+682*x+263 8024950638198642 r008 a(0)=8,K{-n^6,1+13*n^3-10*n^2-46*n} 8024950658404198 a007 Real Root Of 361*x^4-478*x^3-276*x^2+324*x+41 8024950685112841 k002 Champernowne real with 44*n^2+37*n-1 8024950693258073 r008 a(0)=8,K{-n^6,-57+32*n^3-55*n^2+41*n} 8024950708397963 r008 a(0)=0,K{-n^6,46+4*n-57*n^2+24*n^3} 8024950724581713 a007 Real Root Of -912*x^4+163*x^3-292*x^2-691*x+96 8024950773229690 h001 (7/11*exp(2)+9/11)/(6/7*exp(2)+6/11) 8024950773860551 m001 (cos(1)-exp(1))/(-Sarnak+ZetaP(2)) 8024950785412901 k002 Champernowne real with 89/2*n^2+71/2*n 8024950789671239 a007 Real Root Of -543*x^4+186*x^3-950*x^2-50*x+893 8024950816681380 r005 Re(z^2+c),c=-5/6+7/128*I,n=57 8024950841832081 a007 Real Root Of -992*x^4-685*x^3-57*x^2+436*x+444 8024950857595187 a007 Real Root Of 761*x^4-532*x^3-47*x^2+996*x+239 8024950885712961 k002 Champernowne real with 45*n^2+34*n+1 8024950916981550 a007 Real Root Of 849*x^4+189*x^3+440*x^2+77*x-476 8024950940604713 l006 ln(3016/6729) 8024950940873420 a001 521/75025*6557470319842^(16/17) 8024950941273059 a001 7881196/233*514229^(16/17) 8024950966602925 m001 (exp(1)+GAMMA(23/24))/(-Landau+ZetaP(4)) 8024950968240019 r005 Im(z^2+c),c=-11/56+35/43*I,n=22 8024950986013021 k002 Champernowne real with 91/2*n^2+65/2*n+2 8024950994403330 a007 Real Root Of -711*x^4-252*x^3-149*x^2+322*x+519 8024951008177072 m006 (3/5*exp(2*Pi)+1/3)/(3/4*exp(2*Pi)-5/6) 8024951041844120 a007 Real Root Of 34*x^4-777*x^3-109*x^2-59*x+505 8024951052855229 a007 Real Root Of -756*x^4-662*x^3-937*x^2-497*x+176 8024951086313081 k002 Champernowne real with 46*n^2+31*n+3 8024951117207742 r002 3th iterates of z^2 + 8024951152082501 l006 ln(4835/5239) 8024951168305722 r005 Im(z^2+c),c=39/98+3/10*I,n=3 8024951172851022 a007 Real Root Of 998*x^4-723*x^3+4*x^2-188*x-941 8024951172920476 a007 Real Root Of -265*x^4+492*x^3+67*x^2-10*x+313 8024951174467169 m001 ln(MinimumGamma)*CareFree/gamma^2 8024951175949341 a007 Real Root Of -606*x^4+730*x^3+460*x^2+17*x+346 8024951186613141 k002 Champernowne real with 93/2*n^2+59/2*n+4 8024951202629559 a001 233/2207*2207^(9/16) 8024951213958158 a007 Real Root Of 978*x^4+18*x^3+392*x^2+62*x-599 8024951246939207 a007 Real Root Of 688*x^4+167*x^3+256*x^2+198*x-205 8024951270444039 m001 (ln(gamma)+Lehmer)/(Magata+ReciprocalLucas) 8024951275281262 m001 (Ei(1)-gamma(2))/(CopelandErdos+ZetaQ(4)) 8024951275858815 a001 233/5778*3571^(11/17) 8024951281173989 a007 Real Root Of 435*x^4-853*x^3-576*x^2-280*x-475 8024951285735694 a007 Real Root Of -354*x^4+532*x^3+997*x^2+244*x-966 8024951286913201 k002 Champernowne real with 47*n^2+28*n+5 8024951294124338 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^24 8024951333096793 a001 233/64079*3571^(16/17) 8024951342171344 m002 -3+Pi^(-5)+Pi^6*Csch[Pi] 8024951363043815 a001 233/39603*3571^(15/17) 8024951367769095 l006 ln(3479/7762) 8024951370417341 a007 Real Root Of 896*x^4-97*x^3-55*x^2+125*x-286 8024951375515465 m002 -(Cosh[Pi]/Pi)+Sinh[Pi]+Tanh[Pi]/6 8024951383754196 a007 Real Root Of 119*x^4-996*x^3-706*x^2+420*x+583 8024951387213261 k002 Champernowne real with 95/2*n^2+53/2*n+6 8024951389521987 p004 log(33619/11) 8024951395610706 a001 2584/521*1364^(1/15) 8024951398656581 a007 Real Root Of 225*x^4-264*x^3-69*x^2-194*x-341 8024951407126522 a001 233/15127*3571^(13/17) 8024951418574118 a001 233/24476*3571^(14/17) 8024951440852426 m001 1/exp(Ei(1))^2/BesselJ(0,1)*exp(1) 8024951450965491 m001 exp(Khintchine)*CareFree*log(1+sqrt(2))^2 8024951464667041 m001 (Pi*2^(1/3)+gamma)/BesselI(1,1) 8024951487513321 k002 Champernowne real with 48*n^2+25*n+7 8024951503249844 a003 sin(Pi*5/111)-sin(Pi*42/107) 8024951538783396 m004 25*Pi+ProductLog[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/5 8024951544894284 a007 Real Root Of 41*x^4-910*x^3-300*x^2-41*x-327 8024951544944027 m001 (gamma(1)*Conway+gamma(2))/Conway 8024951549069890 m005 (1/3*exp(1)+1/5)/(1/5*Pi+3/4) 8024951566055761 a007 Real Root Of 781*x^4-371*x^3-495*x^2+426*x+145 8024951571029346 a001 233/9349*3571^(12/17) 8024951582678147 m001 GAMMA(13/24)^2*FeigenbaumB/exp(GAMMA(23/24)) 8024951587813381 k002 Champernowne real with 97/2*n^2+47/2*n+8 8024951593182439 r002 58th iterates of z^2 + 8024951599483355 m001 ln(2^(1/2)+1)^ZetaP(2)*ArtinRank2^ZetaP(2) 8024951609758885 m005 (1/2*Catalan-5/9)/(5/11*3^(1/2)+3/7) 8024951629901693 a001 233/5778*9349^(11/19) 8024951629926736 a007 Real Root Of -714*x^4+503*x^3+320*x^2-238*x+159 8024951643317156 a007 Real Root Of -713*x^4+477*x^3-353*x^2-382*x+463 8024951646148396 a001 2584/521*3571^(1/17) 8024951653394037 m004 -25*Pi+5*Sqrt[5]*Pi+15*Pi*Cot[Sqrt[5]*Pi] 8024951663109468 m001 FeigenbaumB*(Zeta(5)+gamma(1)) 8024951676040825 a001 233/5778*24476^(11/21) 8024951678334113 a001 2584/521*9349^(1/19) 8024951682122850 a001 233/5778*64079^(11/23) 8024951682528580 a001 2584/521*24476^(1/21) 8024951682772409 a001 602072/75025 8024951683057514 a001 233/5778*7881196^(1/3) 8024951683057557 a001 233/5778*312119004989^(1/5) 8024951683057557 a001 233/5778*(1/2+1/2*5^(1/2))^11 8024951683057557 a001 233/5778*1568397607^(1/4) 8024951683081491 a001 2584/521*64079^(1/23) 8024951683166465 a001 1292/521+1292/521*5^(1/2) 8024951683197569 a001 2584/521*103682^(1/24) 8024951683399040 a001 2584/521*39603^(1/22) 8024951683399708 a001 233/5778*103682^(11/24) 8024951684919969 a001 2584/521*15127^(1/20) 8024951685542717 r002 52th iterates of z^2 + 8024951685615886 a001 233/5778*39603^(1/2) 8024951688113441 k002 Champernowne real with 49*n^2+22*n+9 8024951692521908 a007 Real Root Of 104*x^4-486*x^3-54*x^2+210*x-91 8024951694589930 l006 ln(3942/8795) 8024951696520572 a001 2584/521*5778^(1/18) 8024951702346104 a001 233/5778*15127^(11/20) 8024951719110380 m004 -12-25*Pi+(5*Pi)/ProductLog[Sqrt[5]*Pi] 8024951724964665 r008 a(0)=8,K{-n^6,17-55*n-24*n^2+20*n^3} 8024951733146488 a008 Real Root of x^4-x^3+25*x^2+81*x-81 8024951745746680 m006 (3/5*exp(2*Pi)+5/6)/(5/6/Pi-2/3) 8024951745977048 r005 Re(z^2+c),c=-97/110+11/45*I,n=8 8024951763260130 m001 (GaussAGM+LandauRamanujan)/(Lehmer-Sierpinski) 8024951770166270 a007 Real Root Of -505*x^4+6*x^3-872*x^2-364*x+482 8024951775944883 a007 Real Root Of -337*x^4+829*x^3+953*x^2-79*x-839 8024951776244449 a007 Real Root Of 673*x^4-539*x^3-117*x^2+211*x-313 8024951779187754 s002 sum(A264712[n]/(n^3*exp(n)+1),n=1..infinity) 8024951786138172 a001 2584/521*2207^(1/16) 8024951788413501 k002 Champernowne real with 99/2*n^2+41/2*n+10 8024951791840988 m001 1/GAMMA(23/24)^2/exp(GAMMA(1/6))^2/sqrt(3) 8024951813147548 a007 Real Root Of 997*x^4+546*x^3+410*x^2-179*x-539 8024951825540841 a001 233/15127*9349^(13/19) 8024951828071177 r009 Re(z^3+c),c=-23/64+2/3*I,n=12 8024951829952740 a001 233/5778*5778^(11/18) 8024951831616818 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^26 8024951836734311 a001 233/167761*9349^(18/19) 8024951840535011 a001 233/103682*9349^(17/19) 8024951845829567 a001 233/39603*9349^(15/19) 8024951848068261 a001 233/64079*9349^(16/19) 8024951869174156 a001 233/24476*9349^(14/19) 8024951873020194 m008 (3*Pi+2/5)/(4*Pi^5+1/5) 8024951879934362 m001 1/ln(cosh(1))*GAMMA(5/6)^2*sqrt(1+sqrt(3))^2 8024951880068907 a001 233/15127*24476^(13/21) 8024951887256754 a001 233/15127*64079^(13/23) 8024951888319807 a001 1576245/196418 8024951888361409 a001 233/15127*141422324^(1/3) 8024951888361409 a001 233/15127*(1/2+1/2*5^(1/2))^13 8024951888361409 a001 233/15127*73681302247^(1/4) 8024951888415866 a001 233/15127*271443^(1/2) 8024951888470323 a004 Fibonacci(20)/Lucas(13)/(1/2+sqrt(5)/2) 8024951888713561 k002 Champernowne real with 50*n^2+19*n+11 8024951888765769 a001 233/15127*103682^(13/24) 8024951891384888 a001 233/15127*39603^(13/22) 8024951893233339 a007 Real Root Of -802*x^4+393*x^3-88*x^2-879*x-113 8024951899530233 a007 Real Root Of 101*x^4+768*x^3-368*x^2-140*x+601 8024951908746566 a001 233/39603*24476^(5/7) 8024951910035914 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^28 8024951910715400 a001 233/439204*24476^(20/21) 8024951911156965 a001 233/15127*15127^(13/20) 8024951911202769 a001 233/271443*24476^(19/21) 8024951911517657 a003 cos(Pi*41/115)+cos(Pi*35/92) 8024951911840943 a001 233/103682*24476^(17/21) 8024951912234710 a001 233/167761*24476^(6/7) 8024951915179727 a001 233/64079*24476^(16/21) 8024951917040237 a001 233/39603*64079^(15/23) 8024951917118807 r005 Re(z^2+c),c=33/82+9/49*I,n=9 8024951918143753 a001 233/39603*167761^(3/5) 8024951918291726 a001 233/39603*439204^(5/9) 8024951918308769 a001 4126663/514229 8024951918314779 a001 233/39603*7881196^(5/11) 8024951918314830 a001 233/39603*20633239^(3/7) 8024951918314838 a001 233/39603*141422324^(5/13) 8024951918314838 a001 233/39603*2537720636^(1/3) 8024951918314838 a001 233/39603*45537549124^(5/17) 8024951918314838 a001 233/39603*312119004989^(3/11) 8024951918314838 a001 233/39603*14662949395604^(5/21) 8024951918314838 a001 233/39603*(1/2+1/2*5^(1/2))^15 8024951918314838 a001 233/39603*192900153618^(5/18) 8024951918314838 a001 233/39603*28143753123^(3/10) 8024951918314838 a001 233/39603*10749957122^(5/16) 8024951918314838 a001 233/39603*599074578^(5/14) 8024951918314838 a001 233/39603*228826127^(3/8) 8024951918314841 a001 233/39603*33385282^(5/12) 8024951918315997 a001 233/39603*1860498^(1/2) 8024951918423753 a004 Fibonacci(22)/Lucas(13)/(1/2+sqrt(5)/2)^3 8024951918781407 a001 233/39603*103682^(5/8) 8024951919473698 a001 281/15456*34^(8/19) 8024951921240436 a001 233/103682*64079^(17/23) 8024951921477106 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^30 8024951921568149 a001 233/1149851*64079^(22/23) 8024951921631162 a001 233/710647*64079^(21/23) 8024951921708085 a001 233/271443*64079^(19/23) 8024951921773628 a001 233/439204*64079^(20/23) 8024951921803468 a001 233/39603*39603^(15/22) 8024951922187114 a001 233/167761*64079^(18/23) 8024951922684099 a001 10803744/1346269 8024951922684985 a001 233/103682*45537549124^(1/3) 8024951922684985 a001 233/103682*(1/2+1/2*5^(1/2))^17 8024951922685009 a001 233/103682*12752043^(1/2) 8024951922793899 a004 Fibonacci(24)/Lucas(13)/(1/2+sqrt(5)/2)^5 8024951923146353 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^32 8024951923213763 a001 233/103682*103682^(17/24) 8024951923244983 a001 233/439204*167761^(4/5) 8024951923322451 a001 28284569/3524578 8024951923322580 a001 233/271443*817138163596^(1/3) 8024951923322580 a001 233/271443*(1/2+1/2*5^(1/2))^19 8024951923322581 a001 233/271443*87403803^(1/2) 8024951923383248 a001 233/710647*439204^(7/9) 8024951923389893 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^34 8024951923395401 a001 233/3010349*439204^(8/9) 8024951923415522 a001 233/710647*7881196^(7/11) 8024951923415585 a001 5696151/709805 8024951923415593 a001 233/710647*20633239^(3/5) 8024951923415604 a001 233/710647*141422324^(7/13) 8024951923415604 a001 233/710647*2537720636^(7/15) 8024951923415604 a001 233/710647*17393796001^(3/7) 8024951923415604 a001 233/710647*45537549124^(7/17) 8024951923415604 a001 233/710647*14662949395604^(1/3) 8024951923415604 a001 233/710647*(1/2+1/2*5^(1/2))^21 8024951923415604 a001 233/710647*192900153618^(7/18) 8024951923415604 a001 233/710647*10749957122^(7/16) 8024951923415604 a001 233/710647*599074578^(1/2) 8024951923415609 a001 233/710647*33385282^(7/12) 8024951923417227 a001 233/710647*1860498^(7/10) 8024951923425425 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^36 8024951923427522 a001 233/710647*710647^(3/4) 8024951923429174 a001 193865320/24157817 8024951923429176 a001 233/1860498*(1/2+1/2*5^(1/2))^23 8024951923429176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^23/Lucas(30) 8024951923429176 a001 233/1860498*4106118243^(1/2) 8024951923430609 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^38 8024951923431143 a001 233/4870847*20633239^(5/7) 8024951923431156 a001 2178309/271442 8024951923431156 a001 233/4870847*2537720636^(5/9) 8024951923431156 a001 233/4870847*312119004989^(5/11) 8024951923431156 a001 233/4870847*(1/2+1/2*5^(1/2))^25 8024951923431156 a001 233/4870847*3461452808002^(5/12) 8024951923431156 a001 233/4870847*28143753123^(1/2) 8024951923431157 a001 233/4870847*228826127^(5/8) 8024951923431340 a001 233/12752043*7881196^(9/11) 8024951923431366 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^40 8024951923431380 a001 233/54018521*7881196^(10/11) 8024951923431445 a001 233/12752043*141422324^(9/13) 8024951923431445 a001 1328772671/165580141 8024951923431445 a001 233/12752043*2537720636^(3/5) 8024951923431445 a001 233/12752043*45537549124^(9/17) 8024951923431445 a001 233/12752043*817138163596^(9/19) 8024951923431445 a001 233/12752043*14662949395604^(3/7) 8024951923431445 a001 233/12752043*(1/2+1/2*5^(1/2))^27 8024951923431445 a001 233/12752043*192900153618^(1/2) 8024951923431445 a001 233/12752043*10749957122^(9/16) 8024951923431445 a001 233/12752043*599074578^(9/14) 8024951923431451 a001 233/12752043*33385282^(3/4) 8024951923431476 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^42 8024951923431481 a001 233/54018521*20633239^(6/7) 8024951923431488 a001 3478772016/433494437 8024951923431488 a001 233/33385282*(1/2+1/2*5^(1/2))^29 8024951923431488 a001 233/33385282*1322157322203^(1/2) 8024951923431492 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^44 8024951923431494 a001 9107543377/1134903170 8024951923431494 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^31/Lucas(38) 8024951923431494 a001 233/87403803*9062201101803^(1/2) 8024951923431494 a001 233/228826127*141422324^(11/13) 8024951923431494 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^46 8024951923431494 a001 233/969323029*141422324^(12/13) 8024951923431495 a001 233/228826127*2537720636^(11/15) 8024951923431495 a001 23843858115/2971215073 8024951923431495 a001 233/228826127*45537549124^(11/17) 8024951923431495 a001 233/228826127*312119004989^(3/5) 8024951923431495 a001 233/228826127*817138163596^(11/19) 8024951923431495 a001 233/228826127*14662949395604^(11/21) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^33/Lucas(40) 8024951923431495 a001 233/228826127*192900153618^(11/18) 8024951923431495 a001 233/228826127*10749957122^(11/16) 8024951923431495 a001 233/228826127*1568397607^(3/4) 8024951923431495 a001 233/228826127*599074578^(11/14) 8024951923431495 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^48 8024951923431495 a001 233/599074578*2537720636^(7/9) 8024951923431495 a001 4801848536/598364773 8024951923431495 a001 233/599074578*17393796001^(5/7) 8024951923431495 a001 233/599074578*312119004989^(7/11) 8024951923431495 a001 233/599074578*14662949395604^(5/9) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^35/Lucas(42) 8024951923431495 a001 233/599074578*505019158607^(5/8) 8024951923431495 a001 233/599074578*28143753123^(7/10) 8024951923431495 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^50 8024951923431495 a001 233/599074578*599074578^(5/6) 8024951923431495 a001 163428234789/20365011074 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^37/Lucas(44) 8024951923431495 a001 233/4106118243*2537720636^(13/15) 8024951923431495 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^52 8024951923431495 a001 233/17393796001*2537720636^(14/15) 8024951923431495 a001 233/6643838879*2537720636^(8/9) 8024951923431495 a001 233/4106118243*45537549124^(13/17) 8024951923431495 a001 427860673399/53316291173 8024951923431495 a001 233/4106118243*14662949395604^(13/21) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^39/Lucas(46) 8024951923431495 a001 233/4106118243*192900153618^(13/18) 8024951923431495 a001 233/4106118243*73681302247^(3/4) 8024951923431495 a001 233/4106118243*10749957122^(13/16) 8024951923431495 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^54 8024951923431495 a001 1120153785408/139583862445 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^41/Lucas(48) 8024951923431495 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^56 8024951923431495 a001 2932600682825/365435296162 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(50) 8024951923431495 a001 233/73681302247*45537549124^(15/17) 8024951923431495 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^58 8024951923431495 a001 233/312119004989*45537549124^(16/17) 8024951923431495 a001 233/73681302247*312119004989^(9/11) 8024951923431495 a001 7677648263067/956722026041 8024951923431495 a001 233/73681302247*14662949395604^(5/7) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(52) 8024951923431495 a001 233/73681302247*192900153618^(5/6) 8024951923431495 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^60 8024951923431495 a001 20100344106376/2504730781961 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(54) 8024951923431495 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^62 8024951923431495 a001 233/817138163596*312119004989^(10/11) 8024951923431495 a001 233/505019158607*14662949395604^(7/9) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(56) 8024951923431495 a001 233/1322157322203*817138163596^(17/19) 8024951923431495 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^64 8024951923431495 a001 233/1322157322203*14662949395604^(17/21) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(58) 8024951923431495 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^66 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(60) 8024951923431495 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^68 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(62) 8024951923431495 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^70 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(64) 8024951923431495 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^72 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(66) 8024951923431495 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^74 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(68) 8024951923431495 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^76 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(70) 8024951923431495 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^78 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(72) 8024951923431495 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^80 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(74) 8024951923431495 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^82 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(76) 8024951923431495 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^84 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(78) 8024951923431495 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^86 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(80) 8024951923431495 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^88 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(82) 8024951923431495 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^90 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(84) 8024951923431495 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^92 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(86) 8024951923431495 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^94 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(88) 8024951923431495 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^96 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(90) 8024951923431495 a004 Fibonacci(13)*Lucas(91)/(1/2+sqrt(5)/2)^98 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^85/Lucas(92) 8024951923431495 a004 Fibonacci(13)*Lucas(93)/(1/2+sqrt(5)/2)^100 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^87/Lucas(94) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^89/Lucas(96) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^91/Lucas(98) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^93/Lucas(100) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^92/Lucas(99) 8024951923431495 a004 Fibonacci(13)*Lucas(1)/(1/2+sqrt(5)/2)^7 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^90/Lucas(97) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(95) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(93) 8024951923431495 a004 Fibonacci(13)*Lucas(92)/(1/2+sqrt(5)/2)^99 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(91) 8024951923431495 a004 Fibonacci(13)*Lucas(90)/(1/2+sqrt(5)/2)^97 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(89) 8024951923431495 a004 Fibonacci(13)*Lucas(88)/(1/2+sqrt(5)/2)^95 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(87) 8024951923431495 a004 Fibonacci(13)*Lucas(86)/(1/2+sqrt(5)/2)^93 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(85) 8024951923431495 a004 Fibonacci(13)*Lucas(84)/(1/2+sqrt(5)/2)^91 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(83) 8024951923431495 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^89 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(81) 8024951923431495 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^87 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(79) 8024951923431495 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^85 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(77) 8024951923431495 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^83 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(75) 8024951923431495 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^81 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(73) 8024951923431495 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^79 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(71) 8024951923431495 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^77 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(69) 8024951923431495 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^75 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(67) 8024951923431495 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^73 8024951923431495 a001 233/14662949395604*14662949395604^(8/9) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(65) 8024951923431495 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^71 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(63) 8024951923431495 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^69 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(61) 8024951923431495 a001 233/9062201101803*3461452808002^(11/12) 8024951923431495 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^67 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(59) 8024951923431495 a001 233/2139295485799*23725150497407^(13/16) 8024951923431495 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^65 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(57) 8024951923431495 a001 233/817138163596*3461452808002^(5/6) 8024951923431495 a001 233/2139295485799*505019158607^(13/14) 8024951923431495 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^63 8024951923431495 a001 233/312119004989*14662949395604^(16/21) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(55) 8024951923431495 a001 32523039949685/4052739537881 8024951923431495 a001 233/1322157322203*192900153618^(17/18) 8024951923431495 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^61 8024951923431495 a001 233/312119004989*192900153618^(8/9) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(53) 8024951923431495 a001 12422695843309/1548008755920 8024951923431495 a001 233/312119004989*73681302247^(12/13) 8024951923431495 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^59 8024951923431495 a001 233/17393796001*17393796001^(6/7) 8024951923431495 a001 233/45537549124*312119004989^(4/5) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(51) 8024951923431495 a001 233/45537549124*23725150497407^(11/16) 8024951923431495 a001 233/45537549124*73681302247^(11/13) 8024951923431495 a001 233/73681302247*28143753123^(9/10) 8024951923431495 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^57 8024951923431495 a001 233/17393796001*45537549124^(14/17) 8024951923431495 a001 233/17393796001*817138163596^(14/19) 8024951923431495 a001 233/17393796001*14662949395604^(2/3) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(49) 8024951923431495 a001 233/17393796001*505019158607^(3/4) 8024951923431495 a001 139418992109/17373187209 8024951923431495 a001 233/17393796001*192900153618^(7/9) 8024951923431495 a001 233/73681302247*10749957122^(15/16) 8024951923431495 a001 233/119218851371*10749957122^(23/24) 8024951923431495 a001 233/45537549124*10749957122^(11/12) 8024951923431495 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^55 8024951923431495 a001 233/17393796001*10749957122^(7/8) 8024951923431495 a001 233/6643838879*312119004989^(8/11) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(47) 8024951923431495 a001 233/6643838879*23725150497407^(5/8) 8024951923431495 a001 692293112009/86267571272 8024951923431495 a001 233/6643838879*73681302247^(10/13) 8024951923431495 a001 233/6643838879*28143753123^(4/5) 8024951923431495 a001 233/6643838879*10749957122^(5/6) 8024951923431495 a001 233/45537549124*4106118243^(22/23) 8024951923431495 a001 233/17393796001*4106118243^(21/23) 8024951923431495 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^53 8024951923431495 a001 233/6643838879*4106118243^(20/23) 8024951923431495 a001 233/2537720636*817138163596^(2/3) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^38/Lucas(45) 8024951923431495 a001 1134903170/141421803 8024951923431495 a001 233/2537720636*10749957122^(19/24) 8024951923431495 a001 233/2537720636*4106118243^(19/23) 8024951923431495 a001 233/17393796001*1568397607^(21/22) 8024951923431495 a001 233/6643838879*1568397607^(10/11) 8024951923431495 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^51 8024951923431495 a001 233/2537720636*1568397607^(19/22) 8024951923431495 a001 233/969323029*2537720636^(4/5) 8024951923431495 a001 233/969323029*45537549124^(12/17) 8024951923431495 a001 233/969323029*14662949395604^(4/7) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^36/Lucas(43) 8024951923431495 a001 233/969323029*505019158607^(9/14) 8024951923431495 a001 233/969323029*192900153618^(2/3) 8024951923431495 a001 233/969323029*73681302247^(9/13) 8024951923431495 a001 101004203821/12586269025 8024951923431495 a001 233/969323029*10749957122^(3/4) 8024951923431495 a001 233/969323029*4106118243^(18/23) 8024951923431495 a001 233/969323029*1568397607^(9/11) 8024951923431495 a001 233/4106118243*599074578^(13/14) 8024951923431495 a001 233/2537720636*599074578^(19/21) 8024951923431495 a001 233/6643838879*599074578^(20/21) 8024951923431495 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^49 8024951923431495 a001 233/969323029*599074578^(6/7) 8024951923431495 a001 233/370248451*45537549124^(2/3) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^34/Lucas(41) 8024951923431495 a001 233/370248451*10749957122^(17/24) 8024951923431495 a001 38580172853/4807526976 8024951923431495 a001 233/370248451*4106118243^(17/23) 8024951923431495 a001 233/370248451*1568397607^(17/22) 8024951923431495 a001 233/370248451*599074578^(17/21) 8024951923431495 a001 233/599074578*228826127^(7/8) 8024951923431495 a001 233/969323029*228826127^(9/10) 8024951923431495 a001 233/2537720636*228826127^(19/20) 8024951923431495 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^47 8024951923431495 a001 233/370248451*228826127^(17/20) 8024951923431495 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^32/Lucas(39) 8024951923431495 a001 233/141422324*23725150497407^(1/2) 8024951923431495 a001 233/141422324*505019158607^(4/7) 8024951923431495 a001 233/141422324*73681302247^(8/13) 8024951923431495 a001 233/141422324*10749957122^(2/3) 8024951923431495 a001 233/141422324*4106118243^(16/23) 8024951923431495 a001 14736314738/1836311903 8024951923431495 a001 233/141422324*1568397607^(8/11) 8024951923431495 a001 233/141422324*599074578^(16/21) 8024951923431495 a001 233/141422324*228826127^(4/5) 8024951923431496 a001 233/370248451*87403803^(17/19) 8024951923431496 a001 233/969323029*87403803^(18/19) 8024951923431496 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^45 8024951923431496 a001 233/141422324*87403803^(16/19) 8024951923431497 a001 233/54018521*141422324^(10/13) 8024951923431497 a001 233/54018521*2537720636^(2/3) 8024951923431497 a001 233/54018521*45537549124^(10/17) 8024951923431497 a001 233/54018521*312119004989^(6/11) 8024951923431497 a001 233/54018521*14662949395604^(10/21) 8024951923431497 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^30/Lucas(37) 8024951923431497 a001 233/54018521*192900153618^(5/9) 8024951923431497 a001 233/54018521*28143753123^(3/5) 8024951923431497 a001 233/54018521*10749957122^(5/8) 8024951923431497 a001 233/54018521*4106118243^(15/23) 8024951923431497 a001 233/54018521*1568397607^(15/22) 8024951923431497 a001 5628771361/701408733 8024951923431497 a001 233/54018521*599074578^(5/7) 8024951923431498 a001 233/54018521*228826127^(3/4) 8024951923431498 a001 233/54018521*87403803^(15/19) 8024951923431498 a001 233/20633239*20633239^(4/5) 8024951923431501 a001 233/228826127*33385282^(11/12) 8024951923431502 a001 233/141422324*33385282^(8/9) 8024951923431502 a001 233/370248451*33385282^(17/18) 8024951923431502 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^43 8024951923431503 a001 233/54018521*33385282^(5/6) 8024951923431514 a001 233/20633239*17393796001^(4/7) 8024951923431514 a001 233/20633239*14662949395604^(4/9) 8024951923431514 a001 233/20633239*(1/2+1/2*5^(1/2))^28 8024951923431514 a001 233/20633239*505019158607^(1/2) 8024951923431514 a001 233/20633239*73681302247^(7/13) 8024951923431514 a001 233/20633239*10749957122^(7/12) 8024951923431514 a001 233/20633239*4106118243^(14/23) 8024951923431514 a001 233/20633239*1568397607^(7/11) 8024951923431514 a001 233/20633239*599074578^(2/3) 8024951923431514 a001 165384565/20608792 8024951923431514 a001 233/20633239*228826127^(7/10) 8024951923431514 a001 233/20633239*87403803^(14/19) 8024951923431519 a001 233/20633239*33385282^(7/9) 8024951923431541 a001 233/54018521*12752043^(15/17) 8024951923431542 a001 233/141422324*12752043^(16/17) 8024951923431544 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^41 8024951923431554 a001 233/20633239*12752043^(14/17) 8024951923431624 a001 233/7881196*141422324^(2/3) 8024951923431624 a001 233/7881196*(1/2+1/2*5^(1/2))^26 8024951923431624 a001 233/7881196*73681302247^(1/2) 8024951923431624 a001 233/7881196*10749957122^(13/24) 8024951923431624 a001 233/7881196*4106118243^(13/23) 8024951923431624 a001 233/7881196*1568397607^(13/22) 8024951923431624 a001 233/7881196*599074578^(13/21) 8024951923431624 a001 233/7881196*228826127^(13/20) 8024951923431624 a001 821226674/102334155 8024951923431625 a001 233/7881196*87403803^(13/19) 8024951923431629 a001 233/7881196*33385282^(13/18) 8024951923431662 a001 233/7881196*12752043^(13/17) 8024951923431810 a001 233/20633239*4870847^(7/8) 8024951923431815 a001 233/54018521*4870847^(15/16) 8024951923431833 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^39 8024951923431899 a001 233/7881196*4870847^(13/16) 8024951923432286 a001 233/3010349*7881196^(8/11) 8024951923432380 a001 233/3010349*141422324^(8/13) 8024951923432380 a001 233/3010349*2537720636^(8/15) 8024951923432380 a001 233/3010349*45537549124^(8/17) 8024951923432380 a001 233/3010349*14662949395604^(8/21) 8024951923432380 a001 233/3010349*(1/2+1/2*5^(1/2))^24 8024951923432380 a001 233/3010349*192900153618^(4/9) 8024951923432380 a001 233/3010349*73681302247^(6/13) 8024951923432380 a001 233/3010349*10749957122^(1/2) 8024951923432380 a001 233/3010349*4106118243^(12/23) 8024951923432380 a001 233/3010349*1568397607^(6/11) 8024951923432380 a001 233/3010349*599074578^(4/7) 8024951923432380 a001 233/3010349*228826127^(3/5) 8024951923432381 a001 233/3010349*87403803^(12/19) 8024951923432381 a001 313680677/39088169 8024951923432385 a001 233/3010349*33385282^(2/3) 8024951923432415 a001 233/3010349*12752043^(12/17) 8024951923432634 a001 233/3010349*4870847^(3/4) 8024951923433088 a001 233/4870847*1860498^(5/6) 8024951923433532 a001 233/12752043*1860498^(9/10) 8024951923433633 a001 233/7881196*1860498^(13/15) 8024951923433677 a001 233/20633239*1860498^(14/15) 8024951923433813 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^37 8024951923434235 a001 233/3010349*1860498^(4/5) 8024951923437478 a001 233/1149851*7881196^(2/3) 8024951923437564 a001 233/1149851*312119004989^(2/5) 8024951923437564 a001 233/1149851*(1/2+1/2*5^(1/2))^22 8024951923437564 a001 233/1149851*10749957122^(11/24) 8024951923437564 a001 233/1149851*4106118243^(11/23) 8024951923437564 a001 233/1149851*1568397607^(1/2) 8024951923437564 a001 233/1149851*599074578^(11/21) 8024951923437564 a001 233/1149851*228826127^(11/20) 8024951923437565 a001 233/1149851*87403803^(11/19) 8024951923437569 a001 233/1149851*33385282^(11/18) 8024951923437572 a001 119815357/14930352 8024951923437596 a001 233/1149851*12752043^(11/17) 8024951923437797 a001 233/1149851*4870847^(11/16) 8024951923439264 a001 233/1149851*1860498^(11/15) 8024951923446001 a001 233/3010349*710647^(6/7) 8024951923446379 a001 233/7881196*710647^(13/14) 8024951923447385 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^35 8024951923450050 a001 233/1149851*710647^(11/14) 8024951923473086 a001 233/439204*20633239^(4/7) 8024951923473096 a001 233/439204*2537720636^(4/9) 8024951923473096 a001 233/439204*(1/2+1/2*5^(1/2))^20 8024951923473096 a001 233/439204*23725150497407^(5/16) 8024951923473096 a001 233/439204*505019158607^(5/14) 8024951923473096 a001 233/439204*73681302247^(5/13) 8024951923473096 a001 233/439204*28143753123^(2/5) 8024951923473096 a001 233/439204*10749957122^(5/12) 8024951923473096 a001 233/439204*4106118243^(10/23) 8024951923473096 a001 233/439204*1568397607^(5/11) 8024951923473096 a001 233/439204*599074578^(10/21) 8024951923473096 a001 233/439204*228826127^(1/2) 8024951923473097 a001 233/439204*87403803^(10/19) 8024951923473100 a001 233/439204*33385282^(5/9) 8024951923473125 a001 233/439204*12752043^(10/17) 8024951923473146 a001 45765394/5702887 8024951923473308 a001 233/439204*4870847^(5/8) 8024951923474642 a001 233/439204*1860498^(2/3) 8024951923484447 a001 233/439204*710647^(5/7) 8024951923524519 a004 Fibonacci(28)/Lucas(13)/(1/2+sqrt(5)/2)^9 8024951923529723 a001 233/1149851*271443^(11/13) 8024951923532917 a001 233/3010349*271443^(12/13) 8024951923538091 a004 Fibonacci(30)/Lucas(13)/(1/2+sqrt(5)/2)^11 8024951923540071 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2)^13 8024951923540360 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^15 8024951923540402 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^17 8024951923540408 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^19 8024951923540409 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^21 8024951923540409 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^23 8024951923540409 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^25 8024951923540409 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^27 8024951923540409 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^29 8024951923540409 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^31 8024951923540409 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^33 8024951923540409 a004 Fibonacci(52)/Lucas(13)/(1/2+sqrt(5)/2)^33 8024951923540409 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^35 8024951923540409 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^37 8024951923540409 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^39 8024951923540409 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^41 8024951923540409 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^43 8024951923540409 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^45 8024951923540409 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^47 8024951923540409 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^49 8024951923540409 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^51 8024951923540409 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^53 8024951923540409 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^55 8024951923540409 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^57 8024951923540409 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^59 8024951923540409 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^61 8024951923540409 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^63 8024951923540409 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^65 8024951923540409 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^67 8024951923540409 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^69 8024951923540409 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^71 8024951923540409 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^73 8024951923540409 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^75 8024951923540409 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^77 8024951923540409 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^81 8024951923540409 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^79 8024951923540409 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^80 8024951923540409 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^78 8024951923540409 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^76 8024951923540409 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^74 8024951923540409 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^72 8024951923540409 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^70 8024951923540409 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^68 8024951923540409 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^66 8024951923540409 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^64 8024951923540409 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^62 8024951923540409 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^60 8024951923540409 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^58 8024951923540409 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^56 8024951923540409 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^54 8024951923540409 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^52 8024951923540409 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^50 8024951923540409 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^48 8024951923540409 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^46 8024951923540409 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^44 8024951923540409 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^42 8024951923540409 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^40 8024951923540409 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^38 8024951923540409 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^36 8024951923540409 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^34 8024951923540409 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^32 8024951923540409 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^30 8024951923540409 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^28 8024951923540409 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^26 8024951923540409 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^24 8024951923540409 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^22 8024951923540409 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^20 8024951923540412 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^18 8024951923540428 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^16 8024951923540538 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^14 8024951923541295 a004 Fibonacci(31)/Lucas(13)/(1/2+sqrt(5)/2)^12 8024951923546479 a004 Fibonacci(29)/Lucas(13)/(1/2+sqrt(5)/2)^10 8024951923556877 a001 233/439204*271443^(10/13) 8024951923582011 a004 Fibonacci(27)/Lucas(13)/(1/2+sqrt(5)/2)^8 8024951923688902 a001 233/167761*439204^(2/3) 8024951923716566 a001 233/167761*7881196^(6/11) 8024951923716636 a001 233/167761*141422324^(6/13) 8024951923716636 a001 233/167761*2537720636^(2/5) 8024951923716636 a001 233/167761*45537549124^(6/17) 8024951923716636 a001 233/167761*14662949395604^(2/7) 8024951923716636 a001 233/167761*(1/2+1/2*5^(1/2))^18 8024951923716636 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^18/Lucas(25) 8024951923716636 a001 233/167761*192900153618^(1/3) 8024951923716636 a001 233/167761*10749957122^(3/8) 8024951923716636 a001 233/167761*4106118243^(9/23) 8024951923716636 a001 233/167761*1568397607^(9/22) 8024951923716636 a001 233/167761*599074578^(3/7) 8024951923716636 a001 233/167761*228826127^(9/20) 8024951923716637 a001 233/167761*87403803^(9/19) 8024951923716640 a001 233/167761*33385282^(1/2) 8024951923716662 a001 233/167761*12752043^(9/17) 8024951923716826 a001 233/167761*4870847^(9/16) 8024951923716974 a001 17480825/2178309 8024951923718027 a001 233/167761*1860498^(3/5) 8024951923726851 a001 233/167761*710647^(9/14) 8024951923792038 a001 233/167761*271443^(9/13) 8024951923825551 a004 Fibonacci(25)/Lucas(13)/(1/2+sqrt(5)/2)^6 8024951923913568 a001 233/271443*103682^(19/24) 8024951924026309 a001 233/64079*64079^(16/23) 8024951924068801 a001 233/710647*103682^(7/8) 8024951924095188 a001 233/439204*103682^(5/6) 8024951924121865 a001 233/1149851*103682^(11/12) 8024951924144582 a001 233/1860498*103682^(23/24) 8024951924178005 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^31 8024951924276519 a001 233/167761*103682^(3/4) 8024951925385884 a001 233/64079*(1/2+1/2*5^(1/2))^16 8024951925385884 a001 233/64079*23725150497407^(1/4) 8024951925385884 a001 233/64079*73681302247^(4/13) 8024951925385884 a001 233/64079*10749957122^(1/3) 8024951925385884 a001 233/64079*4106118243^(8/23) 8024951925385884 a001 233/64079*1568397607^(4/11) 8024951925385884 a001 233/64079*599074578^(8/21) 8024951925385884 a001 233/64079*228826127^(2/5) 8024951925385884 a001 233/64079*87403803^(8/19) 8024951925385887 a001 233/64079*33385282^(4/9) 8024951925385907 a001 233/64079*12752043^(8/17) 8024951925386053 a001 233/64079*4870847^(1/2) 8024951925387120 a001 233/64079*1860498^(8/15) 8024951925388202 a001 6677081/832040 8024951925394964 a001 233/64079*710647^(4/7) 8024951925452908 a001 233/64079*271443^(8/13) 8024951925494798 a004 Fibonacci(23)/Lucas(13)/(1/2+sqrt(5)/2)^4 8024951925883557 a001 233/64079*103682^(2/3) 8024951926638765 a001 233/103682*39603^(17/22) 8024951927741511 a001 233/271443*39603^(19/22) 8024951927896688 a001 233/24476*24476^(2/3) 8024951927902992 a001 233/167761*39603^(9/11) 8024951928124602 a001 233/439204*39603^(10/11) 8024951928299686 a001 233/710647*39603^(21/22) 8024951928548151 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^29 8024951929107088 a001 233/64079*39603^(8/11) 8024951930523306 a007 Real Root Of 56*x^4-635*x^3+202*x^2+114*x-390 8024951935637448 a001 233/24476*64079^(14/23) 8024951936827068 a001 233/24476*20633239^(2/5) 8024951936827076 a001 233/24476*17393796001^(2/7) 8024951936827076 a001 233/24476*14662949395604^(2/9) 8024951936827076 a001 233/24476*(1/2+1/2*5^(1/2))^14 8024951936827076 a001 233/24476*505019158607^(1/4) 8024951936827076 a001 233/24476*10749957122^(7/24) 8024951936827076 a001 233/24476*4106118243^(7/23) 8024951936827076 a001 233/24476*1568397607^(7/22) 8024951936827076 a001 233/24476*599074578^(1/3) 8024951936827076 a001 233/24476*228826127^(7/20) 8024951936827076 a001 233/24476*87403803^(7/19) 8024951936827078 a001 233/24476*33385282^(7/18) 8024951936827096 a001 233/24476*12752043^(7/17) 8024951936827224 a001 233/24476*4870847^(7/16) 8024951936828157 a001 233/24476*1860498^(7/15) 8024951936835021 a001 233/24476*710647^(1/2) 8024951936842966 a001 196186/24447 8024951936885722 a001 233/24476*271443^(7/13) 8024951936935990 a004 Fibonacci(21)/Lucas(13)/(1/2+sqrt(5)/2)^2 8024951937262540 a001 233/24476*103682^(7/12) 8024951940083130 a001 233/24476*39603^(7/11) 8024951944617403 a001 233/39603*15127^(3/4) 8024951949872312 m005 (1/3*Pi+1/4)/(4/5*Zeta(3)-4/5) 8024951952494558 a001 233/103682*15127^(17/20) 8024951952707898 l006 ln(4405/9828) 8024951953441952 a001 233/64079*15127^(4/5) 8024951955279713 a001 233/167761*15127^(9/10) 8024951956639162 a001 233/271443*15127^(19/20) 8024951957257955 a001 233/9349*9349^(12/19) 8024951958501581 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^27 8024951961376136 a001 233/24476*15127^(7/10) 8024951977735997 a001 1597/521*1364^(2/15) 8024951989013621 k002 Champernowne real with 101/2*n^2+35/2*n+12 8024952007591555 a001 233/9349*24476^(4/7) 8024952014226491 a001 233/9349*64079^(12/23) 8024952015227683 a001 233/9349*439204^(4/9) 8024952015246126 a001 233/9349*7881196^(4/11) 8024952015246172 a001 233/9349*141422324^(4/13) 8024952015246173 a001 233/9349*2537720636^(4/15) 8024952015246173 a001 233/9349*45537549124^(4/17) 8024952015246173 a001 233/9349*817138163596^(4/19) 8024952015246173 a001 233/9349*14662949395604^(4/21) 8024952015246173 a001 233/9349*(1/2+1/2*5^(1/2))^12 8024952015246173 a001 233/9349*192900153618^(2/9) 8024952015246173 a001 233/9349*73681302247^(3/13) 8024952015246173 a001 233/9349*10749957122^(1/4) 8024952015246173 a001 233/9349*4106118243^(6/23) 8024952015246173 a001 233/9349*1568397607^(3/11) 8024952015246173 a001 233/9349*599074578^(2/7) 8024952015246173 a001 233/9349*228826127^(3/10) 8024952015246173 a001 233/9349*87403803^(6/19) 8024952015246175 a001 233/9349*33385282^(1/3) 8024952015246190 a001 233/9349*12752043^(6/17) 8024952015246299 a001 233/9349*4870847^(3/8) 8024952015247100 a001 233/9349*1860498^(2/5) 8024952015252983 a001 233/9349*710647^(3/7) 8024952015296441 a001 233/9349*271443^(6/13) 8024952015355086 a001 4181/521 8024952015619428 a001 233/9349*103682^(1/2) 8024952018037076 a001 233/9349*39603^(6/11) 8024952020830140 m005 (1/2*5^(1/2)-3/4)/(5/7*Zeta(3)-2/5) 8024952027143204 r009 Re(z^3+c),c=-71/122+31/55*I,n=30 8024952036288224 a001 233/9349*15127^(3/5) 8024952047187224 a007 Real Root Of -142*x^4+180*x^3+418*x^2+351*x-585 8024952059935843 m001 (FellerTornier+ZetaP(4))/(Zeta(3)-CareFree) 8024952061964812 a001 233/15127*5778^(13/18) 8024952067371590 r005 Re(z^2+c),c=-93/86+5/61*I,n=14 8024952077199808 p003 LerchPhi(1/32,6,445/199) 8024952089313681 k002 Champernowne real with 51*n^2+16*n+13 8024952092738723 m001 1/3*3^(1/2)*TwinPrimes/Weierstrass 8024952109742543 a007 Real Root Of -229*x^4-53*x^3-991*x^2-315*x+453 8024952110054955 r002 41th iterates of z^2 + 8024952118626458 a001 233/39603*5778^(5/6) 8024952120393295 m001 ((1+3^(1/2))^(1/2)+OneNinth)/(Chi(1)-Shi(1)) 8024952120393295 m001 ((1+3^(1/2))^(1/2)+OneNinth)/Ei(1,1) 8024952123784588 a001 233/24476*5778^(7/9) 8024952125858528 a007 Real Root Of -108*x^4+223*x^3+9*x^2+624*x+655 8024952137531395 r001 27i'th iterates of 2*x^2-1 of 8024952139051612 a001 233/64079*5778^(8/9) 8024952149704821 a001 233/103682*5778^(17/18) 8024952163805439 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^25 8024952175495470 a001 233/9349*5778^(2/3) 8024952180378712 m005 (1/4*Catalan+3)/(1/6*2^(1/2)+1/6) 8024952182557985 a001 233/3571*3571^(10/17) 8024952189613741 k002 Champernowne real with 103/2*n^2+29/2*n+14 8024952205274879 a007 Real Root Of -618*x^4+707*x^3-205*x^2-604*x+269 8024952220036595 m005 (1/2*3^(1/2)-1/10)/(1/8*2^(1/2)+7/9) 8024952223016717 m001 (MertensB2+Porter)/(5^(1/2)+ln(2^(1/2)+1)) 8024952224585136 m001 GolombDickman^Porter/GolombDickman 8024952241539671 a007 Real Root Of 938*x^4-881*x^3+549*x^2+674*x-657 8024952241737875 a007 Real Root Of -820*x^4+894*x^3+582*x^2+361*x+717 8024952244426422 a007 Real Root Of 130*x^4+939*x^3-905*x^2-484*x+524 8024952289686403 a003 cos(Pi*7/16)-sin(Pi*54/113) 8024952289913801 k002 Champernowne real with 52*n^2+13*n+15 8024952298483063 h001 (2/5*exp(1)+11/12)/(5/7*exp(1)+5/9) 8024952313814512 a007 Real Root Of 232*x^4-696*x^3+241*x^2+769*x+6 8024952315992284 m001 (Pi+BesselI(1,2))^Totient 8024952329442801 r008 a(0)=8,K{-n^6,-19-24*n+6*n^2-4*n^3} 8024952333838236 m005 (1/2*Catalan+7/12)/(2/7*Pi+2/5) 8024952337637344 m001 (2^(1/3)+5^(1/2))/(-ln(2)+GAMMA(5/6)) 8024952344027372 m001 Zeta(1/2)^GAMMA(7/12)/(Artin^GAMMA(7/12)) 8024952345147407 r008 a(0)=8,K{-n^6,-26-20*n+12*n^2-7*n^3} 8024952368083090 a007 Real Root Of 416*x^4-406*x^3+176*x^2-282*x-722 8024952368584419 r005 Im(z^2+c),c=-1/25+10/13*I,n=7 8024952390213861 k002 Champernowne real with 105/2*n^2+23/2*n+16 8024952395025190 a007 Real Root Of -6*x^4-475*x^3+518*x^2-272*x+21 8024952401237847 a003 -cos(2/9*Pi)+cos(5/21*Pi)+cos(5/27*Pi) 8024952417135792 a007 Real Root Of -426*x^4+355*x^3-180*x^2-506*x+70 8024952435313176 r009 Re(z^3+c),c=-11/17+10/41*I,n=2 8024952461978973 a007 Real Root Of 548*x^4-632*x^3-525*x^2+239*x-24 8024952478811421 a001 1597/521*3571^(2/17) 8024952482965879 r009 Re(z^3+c),c=-5/44+27/64*I,n=8 8024952489770109 a001 2584/521*843^(1/14) 8024952490513921 k002 Champernowne real with 53*n^2+10*n+17 8024952504415183 a001 233/3571*9349^(10/19) 8024952527770159 a003 cos(Pi*24/85)/sin(Pi*15/52) 8024952534004811 m001 MertensB1+RenyiParking*Sarnak 8024952543182862 a001 1597/521*9349^(2/19) 8024952546359852 a001 233/3571*24476^(10/21) 8024952551389786 m001 GAMMA(7/12)^(2*Pi/GAMMA(5/6)*QuadraticClass) 8024952551571796 a001 1597/521*24476^(2/21) 8024952551888966 a001 233/3571*64079^(10/23) 8024952552624644 a001 233/3571*167761^(2/5) 8024952552677619 a001 1597/521*64079^(2/23) 8024952552738695 a001 233/3571*20633239^(2/7) 8024952552738701 a001 233/3571*2537720636^(2/9) 8024952552738701 a001 233/3571*312119004989^(2/11) 8024952552738701 a001 233/3571*(1/2+1/2*5^(1/2))^10 8024952552738701 a001 233/3571*28143753123^(1/5) 8024952552738701 a001 233/3571*10749957122^(5/24) 8024952552738701 a001 233/3571*4106118243^(5/23) 8024952552738701 a001 233/3571*1568397607^(5/22) 8024952552738701 a001 233/3571*599074578^(5/21) 8024952552738701 a001 233/3571*228826127^(1/4) 8024952552738701 a001 233/3571*87403803^(5/19) 8024952552738703 a001 233/3571*33385282^(5/18) 8024952552738715 a001 233/3571*12752043^(5/17) 8024952552738807 a001 233/3571*4870847^(5/16) 8024952552739474 a001 233/3571*1860498^(1/3) 8024952552744376 a001 233/3571*710647^(5/14) 8024952552780591 a001 233/3571*271443^(5/13) 8024952552847566 a001 1597/521*(1/2+1/2*5^(1/2))^2 8024952552847566 a001 1597/521*10749957122^(1/24) 8024952552847566 a001 1597/521*4106118243^(1/23) 8024952552847566 a001 1597/521*1568397607^(1/22) 8024952552847566 a001 1597/521*599074578^(1/21) 8024952552847566 a001 1597/521*228826127^(1/20) 8024952552847566 a001 1597/521*87403803^(1/19) 8024952552847566 a001 1597/521*33385282^(1/18) 8024952552847569 a001 1597/521*12752043^(1/17) 8024952552847587 a001 1597/521*4870847^(1/16) 8024952552847720 a001 1597/521*1860498^(1/15) 8024952552848701 a001 1597/521*710647^(1/14) 8024952552855944 a001 1597/521*271443^(1/13) 8024952552909775 a001 1597/521*103682^(1/12) 8024952553049747 a001 233/3571*103682^(5/12) 8024952553312716 a001 1597/521*39603^(1/11) 8024952553485162 a001 372101/46368 8024952555064454 a001 233/3571*39603^(5/11) 8024952556354575 a001 1597/521*15127^(1/10) 8024952570273745 a001 233/3571*15127^(1/2) 8024952579555784 a001 1597/521*5778^(1/9) 8024952580215008 r005 Im(z^2+c),c=-7/44+43/53*I,n=16 8024952590813981 k002 Champernowne real with 107/2*n^2+17/2*n+18 8024952600731861 a001 514229/7*76^(1/49) 8024952649442567 m001 (Bloch+LandauRamanujan)/(1+cos(1)) 8024952658227009 m001 (2^(1/2))^FeigenbaumDelta*(2^(1/2))^Totient 8024952663568761 h001 (1/5*exp(2)+2/7)/(7/9*exp(1)+1/12) 8024952683300137 m001 Pi^2/ln(Trott)/exp(1) 8024952685342162 a007 Real Root Of 588*x^4-521*x^3+729*x^2+78*x-920 8024952685679333 r002 4th iterates of z^2 + 8024952686279791 a001 233/3571*5778^(5/9) 8024952691114042 k002 Champernowne real with 54*n^2+7*n+19 8024952695803635 a001 987/521*843^(3/14) 8024952695920309 m001 1/ln(Pi)*LandauRamanujan*Zeta(3) 8024952695920309 m001 Zeta(3)/ln(Pi)*LandauRamanujan 8024952706324140 a007 Real Root Of -102*x^4+361*x^3-589*x^2+6*x+613 8024952727197860 r002 13th iterates of z^2 + 8024952749764178 a007 Real Root Of -649*x^4+551*x^3-164*x^2+185*x+808 8024952757750748 p004 log(31019/13903) 8024952758791004 a001 1597/521*2207^(1/8) 8024952774244878 a007 Real Root Of -718*x^4-241*x^3-132*x^2+386*x+568 8024952782877053 h001 (7/11*exp(1)+7/10)/(2/7*exp(2)+11/12) 8024952786605797 m004 (Sqrt[5]*E^(Sqrt[5]*Pi))/Pi+(Sqrt[5]*Pi)/3 8024952791414102 k002 Champernowne real with 109/2*n^2+11/2*n+20 8024952805041231 r009 Re(z^3+c),c=-5/62+2/33*I,n=4 8024952807233029 r005 Re(z^2+c),c=1/38+16/41*I,n=22 8024952815746411 a001 233/5778*2207^(11/16) 8024952848228234 m005 (1/2*gamma+3/11)/(29/99+2/11*5^(1/2)) 8024952891714162 k002 Champernowne real with 55*n^2+4*n+21 8024952897170958 m001 sin(1)^exp(1/2)/(sin(1)^Artin) 8024952906174270 a005 (1/sin(10/223*Pi))^21 8024952906913506 a007 Real Root Of 774*x^4-207*x^3+874*x^2+416*x-657 8024952915538579 m001 FeigenbaumDelta/(Artin+exp(-1/2*Pi)) 8024952915538579 m001 FeigenbaumDelta/(exp(-1/2*Pi)+Artin) 8024952943469599 r005 Re(z^2+c),c=19/94+13/30*I,n=60 8024952958770830 m001 (Paris+ZetaP(4))/(ln(2^(1/2)+1)+Conway) 8024952964940622 a007 Real Root Of 508*x^4-228*x^3+262*x^2-376*x-32 8024952980493294 a007 Real Root Of -764*x^4+351*x^3+756*x^2+83*x+78 8024952987711711 m001 (Psi(1,1/3)+BesselI(1,2))/(-Porter+Trott) 8024952992014222 k002 Champernowne real with 111/2*n^2+5/2*n+22 8024953008199450 m001 ln(5)/(Magata-Pi*csc(1/24*Pi)/GAMMA(23/24)) 8024953059712220 a003 cos(Pi*9/104)*sin(Pi*21/67) 8024953059885858 a001 1/72*144^(6/17) 8024953092314282 k002 Champernowne real with 56*n^2+n+23 8024953098180712 a005 (1/cos(11/204*Pi))^943 8024953099166658 a007 Real Root Of -632*x^4+193*x^3-146*x^2-112*x+366 8024953101852421 a001 1597/1364*322^(1/3) 8024953141414122 a007 Real Root Of 709*x^4-862*x^3-539*x^2+408*x-65 8024953145368010 r005 Re(z^2+c),c=5/34+29/32*I,n=3 8024953154491345 a007 Real Root Of 801*x^4-683*x^3+278*x^2+566*x-410 8024953155011662 m001 exp(Ei(1))^2/RenyiParking^2/Pi^2 8024953161730219 a007 Real Root Of 559*x^4-780*x^3-484*x^2+581*x+143 8024953192614342 k002 Champernowne real with 113/2*n^2-1/2*n+24 8024953209331905 a007 Real Root Of 324*x^4+698*x^3+890*x^2-480*x-732 8024953226993742 a001 233/15127*2207^(13/16) 8024953236365720 a007 Real Root Of 270*x^4-845*x^3-240*x^2-528*x+903 8024953246624933 a007 Real Root Of -910*x^4+492*x^3-965*x^2-936*x+502 8024953250906799 a001 233/9349*2207^(3/4) 8024953252414599 a007 Real Root Of 509*x^4-897*x^3+615*x^2+214*x-899 8024953270153058 r005 Im(z^2+c),c=-4/31+31/38*I,n=25 8024953273153151 l003 hypergeom([2,2,3/2],[4/3,5/3],31/38) 8024953292693160 m001 (FeigenbaumC-Si(Pi))/(Grothendieck+Kolakoski) 8024953292914402 k002 Champernowne real with 57*n^2-2*n+25 8024953293193334 a007 Real Root Of 482*x^4+562*x^3+520*x^2-827*x-908 8024953300125919 r005 Re(z^2+c),c=-41/86+25/41*I,n=55 8024953314985304 r005 Im(z^2+c),c=-127/118+11/32*I,n=7 8024953326907997 m005 (1/3*Zeta(3)-3/5)/(1/11*3^(1/2)+1/11) 8024953347244671 a007 Real Root Of 844*x^4-13*x^3-309*x^2-257*x-364 8024953350240757 r008 a(0)=8,K{-n^6,26+17*n^3-42*n^2-42*n} 8024953361299640 m001 (1-cos(1/5*Pi))/(KomornikLoreti+Lehmer) 8024953378431145 a001 233/24476*2207^(7/8) 8024953379403329 a003 cos(Pi*13/75)*sin(Pi*31/80) 8024953390577213 a001 199/13*196418^(26/37) 8024953393214462 k002 Champernowne real with 115/2*n^2-7/2*n+26 8024953413819655 a007 Real Root Of 499*x^4-549*x^3+83*x^2-188*x-695 8024953429929316 a007 Real Root Of -442*x^4+599*x^3+693*x^2+165*x+179 8024953435934154 m001 (-Catalan+Pi^(1/2))/(Psi(1,1/3)+gamma) 8024953446004064 a007 Real Root Of 73*x^4-854*x^3-451*x^2-968*x-958 8024953462890633 a001 233/39603*2207^(15/16) 8024953474305693 m001 1/GAMMA(17/24)^2/PrimesInBinary*ln(gamma) 8024953479839690 a007 Real Root Of -788*x^4+820*x^3-15*x^2-181*x+615 8024953481134705 m001 (3^(1/3)+GlaisherKinkelin)/(Khinchin+Rabbit) 8024953493514522 k002 Champernowne real with 58*n^2-5*n+27 8024953497434386 a007 Real Root Of 905*x^4+270*x^3+927*x^2+234*x-645 8024953543934165 q001 3023/3767 8024953561663563 m001 (GAMMA(5/6)-GaussAGM)/(Otter+Rabbit) 8024953570979021 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^23 8024953571398279 r002 23th iterates of z^2 + 8024953577035961 r005 Im(z^2+c),c=-7/18+4/31*I,n=17 8024953582455946 a001 233/3571*2207^(5/8) 8024953590909435 a001 1597/2207*322^(5/12) 8024953591598419 a003 sin(Pi*4/15)/sin(Pi*26/69) 8024953593814582 k002 Champernowne real with 117/2*n^2-13/2*n+28 8024953669072584 m006 (4/5*exp(2*Pi)-3/4)/(4*ln(Pi)+3/4) 8024953693770050 m004 1+Sqrt[5]*Pi+(25*Sqrt[5]*Pi)/E^(2*Sqrt[5]*Pi) 8024953694114642 k002 Champernowne real with 59*n^2-8*n+29 8024953709295968 m001 BesselI(1,2)^(ln(2+3^(1/2))*Magata) 8024953715893667 a007 Real Root Of -908*x^4+977*x^3+998*x^2+566*x+693 8024953717171610 r008 a(0)=8,K{-n^6,14+30*n^3-56*n^2-30*n} 8024953719831915 g003 Re(GAMMA(-18/5+I*(-241/60))) 8024953720606895 r005 Re(z^2+c),c=7/46+19/47*I,n=23 8024953734296296 a007 Real Root Of -56*x^4-493*x^3-453*x^2-804*x+187 8024953740451930 m005 (1/2*Catalan+5/8)/(3/8*3^(1/2)+7/10) 8024953778658187 p003 LerchPhi(1/2,2,229/187) 8024953789433561 a007 Real Root Of -970*x^4+158*x^3+363*x^2+811*x+901 8024953792618679 m001 GlaisherKinkelin/PlouffeB/ReciprocalFibonacci 8024953794414702 k002 Champernowne real with 119/2*n^2-19/2*n+30 8024953815586607 r002 10th iterates of z^2 + 8024953829633661 a007 Real Root Of -942*x^4-430*x^3+468*x^2+937*x+619 8024953862667064 b008 ArithmeticGeometricMean[1,E^Pi] 8024953876087589 r002 3th iterates of z^2 + 8024953887079061 a007 Real Root Of 962*x^4-839*x^3+315*x^2+94*x-960 8024953894714762 k002 Champernowne real with 60*n^2-11*n+31 8024953915028655 a007 Real Root Of 216*x^4-890*x^3-546*x^2+400*x+401 8024953925133169 a001 33385282*144^(3/17) 8024953926839221 m005 (1/2*3^(1/2)-8/9)/(9/11*exp(1)+5/8) 8024953927883061 a007 Real Root Of -537*x^4+136*x^3-723*x^2-164*x+627 8024953928502560 r005 Re(z^2+c),c=1/54+23/60*I,n=11 8024953931555044 a007 Real Root Of 9*x^4-897*x^3+515*x^2+628*x-295 8024953934427779 a007 Real Root Of -335*x^4-93*x^3-194*x^2-244*x+20 8024953936322151 a001 233/1364*1364^(8/15) 8024953954824707 a003 sin(Pi*2/57)-sin(Pi*15/41) 8024953961534369 a007 Real Root Of -568*x^4-544*x^3-771*x^2+501*x+853 8024953983596943 r008 a(0)=8,K{-n^6,-56+2*n+31*n^2-18*n^3} 8024953995014822 k002 Champernowne real with 121/2*n^2-25/2*n+32 8024954002798352 r005 Im(z^2+c),c=-39/62+21/64*I,n=38 8024954008300704 a007 Real Root Of 264*x^4-210*x^3-383*x^2-574*x-432 8024954010468660 a007 Real Root Of 793*x^4-949*x^3+466*x^2+656*x-593 8024954012568092 r005 Im(z^2+c),c=-89/122+4/61*I,n=45 8024954018902399 a007 Real Root Of -603*x^4+463*x^3+29*x^2+44*x+506 8024954029954863 s002 sum(A004299[n]/(64^n-1),n=1..infinity) 8024954033367749 a001 3571*514229^(7/17) 8024954043353477 a007 Real Root Of -745*x^4+590*x^3-804*x^2-989*x+338 8024954044670937 r008 a(0)=8,K{-n^6,-5-28*n-34*n^2+23*n^3} 8024954045016268 r005 Im(z^2+c),c=-6/29+31/40*I,n=4 8024954080227105 h001 (-4*exp(1/2)+4)/(-9*exp(3/2)+8) 8024954095314882 k002 Champernowne real with 61*n^2-14*n+33 8024954098962177 r005 Im(z^2+c),c=-17/14+45/172*I,n=10 8024954099044488 m001 FeigenbaumD^2/exp(FeigenbaumDelta)/sin(1) 8024954109137974 r005 Im(z^2+c),c=-83/70+7/38*I,n=25 8024954116839600 r005 Im(z^2+c),c=-25/34+1/32*I,n=63 8024954118507665 a007 Real Root Of 646*x^4-683*x^3+488*x^2+308*x-688 8024954146794589 r002 61i'th iterates of 2*x/(1-x^2) of 8024954150334044 l006 ln(463/1033) 8024954150334044 p004 log(1033/463) 8024954160745322 m005 (1/3*Catalan-2/7)/(6/11*Zeta(3)-9/10) 8024954166055110 a001 1597/521*843^(1/7) 8024954174817462 r005 Re(z^2+c),c=5/64+22/49*I,n=13 8024954185711247 m001 1/FeigenbaumD^2*LandauRamanujan^2/exp(Trott) 8024954195614942 k002 Champernowne real with 123/2*n^2-31/2*n+34 8024954249477892 a007 Real Root Of -503*x^4-264*x^3-427*x^2-65*x+295 8024954279638826 m001 (FeigenbaumMu-Robbin)/(ln(2)-GAMMA(11/12)) 8024954282953825 m001 (1-cos(1))/(-RenyiParking+ZetaP(3)) 8024954291466996 a007 Real Root Of -673*x^4+43*x^3-149*x^2+523*x+817 8024954295915002 k002 Champernowne real with 62*n^2-17*n+35 8024954328600032 a007 Real Root Of 381*x^4+257*x^3+827*x^2+153*x-435 8024954351795496 q001 2637/3286 8024954356330613 r005 Im(z^2+c),c=17/52+26/55*I,n=6 8024954396215062 k002 Champernowne real with 125/2*n^2-37/2*n+36 8024954400121669 a007 Real Root Of -990*x^4+398*x^3+224*x^2+633*x+980 8024954402398997 r009 Im(z^3+c),c=-35/122+37/50*I,n=4 8024954416435226 r005 Re(z^2+c),c=-17/29+15/23*I,n=14 8024954441342083 a007 Real Root Of -607*x^4-650*x^3-193*x^2+917*x+776 8024954447482019 b008 5*(15+ProductLog[3]) 8024954460590623 a001 4181/5778*322^(5/12) 8024954464678241 r008 a(0)=8,K{-n^6,-33+19*n^3-33*n^2+2*n} 8024954466743675 a007 Real Root Of -526*x^4+691*x^3+131*x^2-211*x-54 8024954470233778 r009 Re(z^3+c),c=-1/16+47/62*I,n=36 8024954474800349 a007 Real Root Of -300*x^4+586*x^3-81*x^2-494*x+83 8024954475310177 r008 a(0)=8,K{-n^6,-51-39*n^3+97*n^2-48*n} 8024954483416159 r005 Re(z^2+c),c=-13/12+7/104*I,n=12 8024954496515122 k002 Champernowne real with 63*n^2-20*n+37 8024954519173433 r005 Im(z^2+c),c=-2/3+16/193*I,n=21 8024954520499501 l005 799/53/(exp(799/106)+1) 8024954521149649 a007 Real Root Of 985*x^4+256*x^3+356*x^2-957*x-79 8024954555778172 r005 Re(z^2+c),c=-1/106+10/31*I,n=18 8024954570154925 m005 (2*2^(1/2)+1/4)/(5^(1/2)+8/5) 8024954577278154 r008 a(0)=8,K{-n^6,-32-40*n+52*n^2-21*n^3} 8024954583007602 m005 (1/2*Zeta(3)-2/3)/(5/11*gamma+5/9) 8024954587475424 a001 10946/15127*322^(5/12) 8024954596815182 k002 Champernowne real with 127/2*n^2-43/2*n+38 8024954605987667 a001 28657/39603*322^(5/12) 8024954608688567 a001 75025/103682*322^(5/12) 8024954609082623 a001 196418/271443*322^(5/12) 8024954609140115 a001 514229/710647*322^(5/12) 8024954609148503 a001 1346269/1860498*322^(5/12) 8024954609149727 a001 3524578/4870847*322^(5/12) 8024954609149906 a001 9227465/12752043*322^(5/12) 8024954609149932 a001 24157817/33385282*322^(5/12) 8024954609149935 a001 63245986/87403803*322^(5/12) 8024954609149936 a001 165580141/228826127*322^(5/12) 8024954609149936 a001 433494437/599074578*322^(5/12) 8024954609149936 a001 1134903170/1568397607*322^(5/12) 8024954609149936 a001 2971215073/4106118243*322^(5/12) 8024954609149936 a001 7778742049/10749957122*322^(5/12) 8024954609149936 a001 20365011074/28143753123*322^(5/12) 8024954609149936 a001 53316291173/73681302247*322^(5/12) 8024954609149936 a001 139583862445/192900153618*322^(5/12) 8024954609149936 a001 365435296162/505019158607*322^(5/12) 8024954609149936 a001 10610209857723/14662949395604*322^(5/12) 8024954609149936 a001 591286729879/817138163596*322^(5/12) 8024954609149936 a001 225851433717/312119004989*322^(5/12) 8024954609149936 a001 86267571272/119218851371*322^(5/12) 8024954609149936 a001 32951280099/45537549124*322^(5/12) 8024954609149936 a001 12586269025/17393796001*322^(5/12) 8024954609149936 a001 4807526976/6643838879*322^(5/12) 8024954609149936 a001 1836311903/2537720636*322^(5/12) 8024954609149936 a001 701408733/969323029*322^(5/12) 8024954609149936 a001 267914296/370248451*322^(5/12) 8024954609149936 a001 102334155/141422324*322^(5/12) 8024954609149938 a001 39088169/54018521*322^(5/12) 8024954609149948 a001 14930352/20633239*322^(5/12) 8024954609150016 a001 5702887/7881196*322^(5/12) 8024954609150483 a001 2178309/3010349*322^(5/12) 8024954609153687 a001 832040/1149851*322^(5/12) 8024954609175647 a001 317811/439204*322^(5/12) 8024954609326163 a001 121393/167761*322^(5/12) 8024954610357815 a001 46368/64079*322^(5/12) 8024954617428863 a001 17711/24476*322^(5/12) 8024954623117347 a001 521/233*317811^(13/46) 8024954655478736 a007 Real Root Of 336*x^4+656*x^3+647*x^2-724*x-798 8024954657655236 r008 a(0)=8,K{-n^6,-21-3*n^3+2*n^2-19*n} 8024954665894547 a001 6765/9349*322^(5/12) 8024954668182059 m001 (Khinchin+Trott)/ReciprocalFibonacci 8024954678684039 a001 38/17*267914296^(7/9) 8024954688411566 a007 Real Root Of 841*x^4-511*x^3+237*x^2+524*x-345 8024954697115242 k002 Champernowne real with 64*n^2-23*n+39 8024954714540239 a007 Real Root Of -973*x^4+580*x^3+259*x^2-276*x+315 8024954725010587 m001 LandauRamanujan^(ln(2+3^(1/2))/ln(5)) 8024954725010587 m001 LandauRamanujan^(ln(2+sqrt(3))/ln(5)) 8024954783401560 a003 sin(Pi*27/109)/sin(Pi*20/59) 8024954790180072 a001 47/4181*987^(13/21) 8024954797415302 k002 Champernowne real with 129/2*n^2-49/2*n+40 8024954808886285 a001 121393/76*843^(25/43) 8024954810977942 b008 ArcCsc[E^ArcCoth[Pi]] 8024954818546541 l006 ln(5206/5641) 8024954846636742 m001 ln(Rabbit)/LandauRamanujan/RenyiParking^2 8024954848582618 r008 a(0)=8,K{-n^6,3+42*n^3-55*n^2-29*n} 8024954881139910 r005 Re(z^2+c),c=-25/118+19/25*I,n=12 8024954885257043 m005 (1/2*5^(1/2)+3)/(2/9*exp(1)-1/11) 8024954897715362 k002 Champernowne real with 65*n^2-26*n+41 8024954913539561 m005 (1/2*2^(1/2)+5/11)/(6/11*3^(1/2)-4/5) 8024954939600134 r005 Im(z^2+c),c=-1/10+43/63*I,n=60 8024954944711596 m001 (MadelungNaCl+MertensB1)/(Otter-ZetaP(2)) 8024954949171798 r008 a(0)=8,K{-n^6,-21-5*n-22*n^2+7*n^3} 8024954963273963 a007 Real Root Of 48*x^4+300*x^3-586*x^2+819*x+280 8024954985810788 r005 Im(z^2+c),c=-53/102+46/61*I,n=3 8024954998015422 k002 Champernowne real with 131/2*n^2-55/2*n+42 8024954998083309 a001 2584/3571*322^(5/12) 8024955022655135 m001 (Magata+MinimumGamma)/(1-ErdosBorwein) 8024955060673584 r005 Re(z^2+c),c=1/9+51/53*I,n=2 8024955074121065 a007 Real Root Of 108*x^4+979*x^3+884*x^2-134*x+35 8024955076903530 m001 (-Zeta(1,2)+PrimesInBinary)/(cos(1)+ln(Pi)) 8024955085613239 r009 Im(z^3+c),c=-53/94+25/54*I,n=32 8024955086652206 a001 610/521*1364^(4/15) 8024955093893203 m002 (-5*Csch[Pi])/Log[Pi]+Pi^4*Sech[Pi] 8024955098315482 k002 Champernowne real with 66*n^2-29*n+43 8024955150939456 m001 (3^(1/3)-Artin)/(Gompertz-Tetranacci) 8024955161711832 m001 (ln(2)+Bloch)/(Lehmer+Thue) 8024955168758061 r005 Im(z^2+c),c=-9/8+23/232*I,n=33 8024955180106610 a007 Real Root Of -268*x^4+561*x^3+72*x^2+812*x+65 8024955195961456 m001 1/Niven^2*exp(MertensB1)/GAMMA(1/6) 8024955195971787 a008 Real Root of (-6+x+5*x^2-5*x^3-3*x^5) 8024955198615542 k002 Champernowne real with 133/2*n^2-61/2*n+44 8024955216677679 a005 (1/cos(25/224*Pi))^400 8024955222871970 m008 (3/5*Pi^6+2)/(3/4*Pi^6+1/4) 8024955224275684 m001 1/BesselK(0,1)^2*ln(TwinPrimes)/cos(1)^2 8024955232001811 a007 Real Root Of 49*x^4-565*x^3+168*x^2+124*x-321 8024955237961501 r005 Im(z^2+c),c=-8/9+5/82*I,n=16 8024955257546651 m001 Kolakoski/(FransenRobinson^gamma(2)) 8024955266839935 m001 (Lehmer+MertensB1)^HardHexagonsEntropy 8024955277798954 m009 (3*Psi(1,3/4)+2/5)/(4*Psi(1,3/4)-1/6) 8024955280805504 m001 (exp(1)+Catalan)/(-Ei(1)+3^(1/3)) 8024955283277109 m002 4*E^Pi-(Log[Pi]*Sinh[Pi])/ProductLog[Pi] 8024955298915602 k002 Champernowne real with 67*n^2-32*n+45 8024955320729132 m001 (Psi(2,1/3)-Tribonacci)/Rabbit 8024955323127396 a007 Real Root Of 22*x^4-747*x^3-469*x^2-664*x-626 8024955351432796 m001 (Pi+cos(1/5*Pi))/(2*Pi/GAMMA(5/6)-Cahen) 8024955361999145 a007 Real Root Of -906*x^4+809*x^3+377*x^2-344*x+275 8024955376506982 a007 Real Root Of -747*x^4+844*x^3+985*x^2+540*x+545 8024955399215662 k002 Champernowne real with 135/2*n^2-67/2*n+46 8024955415137923 r009 Re(z^3+c),c=-17/27+16/47*I,n=4 8024955418198730 m005 (3/5*gamma-2)/(3/4*2^(1/2)+1) 8024955435222435 r002 22th iterates of z^2 + 8024955436720142 q001 2251/2805 8024955451097483 a007 Real Root Of -447*x^4+62*x^3+244*x^2+604*x+545 8024955452710577 m001 Pi*(cos(1/5*Pi)+KhinchinHarmonic) 8024955477569535 a007 Real Root Of 375*x^4+497*x^3+426*x^2-314*x-425 8024955487673777 r009 Im(z^3+c),c=-27/70+1/51*I,n=38 8024955488959143 a001 144/199*199^(5/11) 8024955492183881 r009 Re(z^3+c),c=-5/62+2/33*I,n=5 8024955493805351 a007 Real Root Of -845*x^4-227*x^3-184*x^2+388*x+663 8024955493860007 a007 Real Root Of 107*x^4-360*x^3-387*x^2-401*x-303 8024955499515722 k002 Champernowne real with 68*n^2-35*n+47 8024955505382774 m001 cos(Pi/5)^(GAMMA(3/4)*GaussAGM(1,1/sqrt(2))) 8024955543222303 a007 Real Root Of -853*x^4-414*x^3-173*x^2-490*x-142 8024955548750635 r009 Re(z^3+c),c=-5/62+2/33*I,n=8 8024955548750869 r009 Re(z^3+c),c=-5/62+2/33*I,n=9 8024955548750948 r009 Re(z^3+c),c=-5/62+2/33*I,n=10 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=13 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=14 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=15 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=18 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=19 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=23 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=24 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=27 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=28 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=29 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=26 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=25 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=22 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=21 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=20 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=17 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=16 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=12 8024955548750949 r009 Re(z^3+c),c=-5/62+2/33*I,n=11 8024955548831015 r009 Re(z^3+c),c=-5/62+2/33*I,n=7 8024955550435677 r009 Re(z^3+c),c=-5/62+2/33*I,n=6 8024955551202406 v002 sum(1/(2^n+(2*n^2+19*n+11)),n=1..infinity) 8024955553653549 a007 Real Root Of -962*x^4+39*x^3-336*x^2-767*x+20 8024955555719639 a007 Real Root Of 820*x^4+236*x^3+220*x^2-242*x-554 8024955567870650 a007 Real Root Of -629*x^4-955*x^3-361*x^2+961*x+771 8024955586445599 r009 Im(z^3+c),c=-13/86+61/64*I,n=4 8024955599815782 k002 Champernowne real with 137/2*n^2-73/2*n+48 8024955607846315 a007 Real Root Of -122*x^4-851*x^3+963*x^2-567*x-393 8024955610011584 k002 Champernowne real with 69*n^2-38*n+49 8024955617597423 m006 (5/6/Pi+2/5)/(1/3*Pi^2+5) 8024955627610264 m001 Rabbit*(GlaisherKinkelin-HardHexagonsEntropy) 8024955637793226 m001 (FeigenbaumAlpha-exp(1))/(-Khinchin+ZetaQ(4)) 8024955646644741 r005 Re(z^2+c),c=-87/106+9/35*I,n=3 8024955692696887 r005 Im(z^2+c),c=-33/56+9/61*I,n=56 8024955706462346 r008 a(0)=0,K{-n^6,-43+28*n^3-55*n^2-55*n} 8024955710041590 k002 Champernowne real with 139/2*n^2-79/2*n+50 8024955720605857 m001 ((1+3^(1/2))^(1/2)-Cahen)/(exp(1)+Zeta(1/2)) 8024955733667295 m006 (2/3*Pi^2-4/5)/(3/4*Pi^2-1/5) 8024955733667295 m008 (2/3*Pi^2-4/5)/(3/4*Pi^2-1/5) 8024955776326041 m002 -4+Pi^2+2*Coth[Pi]*ProductLog[Pi] 8024955804808415 a007 Real Root Of 11*x^4+877*x^3-468*x^2-566*x-630 8024955810071596 k002 Champernowne real with 70*n^2-41*n+51 8024955818981220 a007 Real Root Of 28*x^4+203*x^3-285*x^2-798*x+736 8024955834975404 b008 2+7/E^(3/20) 8024955839314180 r005 Im(z^2+c),c=35/106+17/33*I,n=7 8024955842697344 m009 (5/6*Psi(1,3/4)+3/5)/(1/5*Psi(1,2/3)-4) 8024955901905700 a001 47/1134903170*591286729879^(13/21) 8024955901906040 a001 1/46347*24157817^(13/21) 8024955906838125 a007 Real Root Of -472*x^4+943*x^3-426*x^2-99*x+878 8024955910101602 k002 Champernowne real with 141/2*n^2-85/2*n+52 8024955917104836 h001 (2/7*exp(1)+5/9)/(1/6*exp(2)+3/7) 8024955934796286 s002 sum(A135432[n]/((pi^n-1)/n),n=1..infinity) 8024955940624524 a001 233/1364*3571^(8/17) 8024955946768628 m001 (Zeta(1,-1)-MertensB3)/(Tribonacci+Trott2nd) 8024956004281289 a007 Real Root Of 645*x^4-496*x^3-219*x^2-399*x-703 8024956010131608 k002 Champernowne real with 71*n^2-44*n+53 8024956065189745 m005 (1/2*Pi-2)/(53/120+1/24*5^(1/2)) 8024956065481868 m001 1/Sierpinski^2*Riemann2ndZero*ln(GAMMA(23/24)) 8024956088803474 a001 610/521*3571^(4/17) 8024956110161614 k002 Champernowne real with 143/2*n^2-91/2*n+54 8024956141699597 a007 Real Root Of 48*x^4-685*x^3+369*x^2+463*x-240 8024956146918087 m001 1/Ei(1)^2/ln(BesselK(0,1))^2/arctan(1/2) 8024956155805747 r009 Im(z^3+c),c=-27/86+37/54*I,n=4 8024956162350533 m005 (1/3*3^(1/2)+1/7)/(1/2*3^(1/2)-7/8) 8024956163593892 a007 Real Root Of -116*x^4+603*x^3-364*x^2+998*x-830 8024956170018723 a007 Real Root Of -293*x^4-258*x^3+921*x^2+533*x-766 8024956198110402 a001 233/1364*9349^(8/19) 8024956210191620 k002 Champernowne real with 72*n^2-47*n+55 8024956217546414 a001 610/521*9349^(4/19) 8024956219282159 r009 Im(z^3+c),c=-9/86+29/37*I,n=13 8024956229764496 a007 Real Root Of -90*x^4+305*x^3-297*x^2+553*x+830 8024956231666153 a001 233/1364*24476^(8/21) 8024956234324289 a001 610/521*24476^(4/21) 8024956236089446 a001 233/1364*64079^(8/23) 8024956236535936 a001 610/521*64079^(4/23) 8024956236769234 a001 233/1364*(1/2+1/2*5^(1/2))^8 8024956236769234 a001 233/1364*23725150497407^(1/8) 8024956236769234 a001 233/1364*505019158607^(1/7) 8024956236769234 a001 233/1364*73681302247^(2/13) 8024956236769234 a001 233/1364*10749957122^(1/6) 8024956236769234 a001 233/1364*4106118243^(4/23) 8024956236769234 a001 233/1364*1568397607^(2/11) 8024956236769234 a001 233/1364*599074578^(4/21) 8024956236769234 a001 233/1364*228826127^(1/5) 8024956236769234 a001 233/1364*87403803^(4/19) 8024956236769235 a001 233/1364*33385282^(2/9) 8024956236769245 a001 233/1364*12752043^(4/17) 8024956236769318 a001 233/1364*4870847^(1/4) 8024956236769852 a001 233/1364*1860498^(4/15) 8024956236773774 a001 233/1364*710647^(2/7) 8024956236802746 a001 233/1364*271443^(4/13) 8024956236875830 a001 610/521*(1/2+1/2*5^(1/2))^4 8024956236875830 a001 610/521*23725150497407^(1/16) 8024956236875830 a001 610/521*73681302247^(1/13) 8024956236875830 a001 610/521*10749957122^(1/12) 8024956236875830 a001 610/521*4106118243^(2/23) 8024956236875830 a001 610/521*1568397607^(1/11) 8024956236875830 a001 610/521*599074578^(2/21) 8024956236875830 a001 610/521*228826127^(1/10) 8024956236875830 a001 610/521*87403803^(2/19) 8024956236875831 a001 610/521*33385282^(1/9) 8024956236875836 a001 610/521*12752043^(2/17) 8024956236875872 a001 610/521*4870847^(1/8) 8024956236876139 a001 610/521*1860498^(2/15) 8024956236878100 a001 610/521*710647^(1/7) 8024956236892586 a001 610/521*271443^(2/13) 8024956237000248 a001 610/521*103682^(1/6) 8024956237018071 a001 233/1364*103682^(1/3) 8024956237806131 a001 610/521*39603^(2/11) 8024956238629837 a001 233/1364*39603^(4/11) 8024956241883575 a001 142130/17711 8024956243889851 a001 610/521*15127^(1/5) 8024956250797276 a001 233/1364*15127^(2/5) 8024956267064001 a007 Real Root Of 465*x^4-785*x^3-105*x^2-296*x+518 8024956290292290 a001 610/521*5778^(2/9) 8024956310221626 k002 Champernowne real with 145/2*n^2-97/2*n+56 8024956312416408 m008 (3/5*Pi^5-1/3)/(5/6*Pi^3-3) 8024956337401218 r005 Im(z^2+c),c=41/106+6/23*I,n=58 8024956339820479 r005 Im(z^2+c),c=-19/30+18/113*I,n=17 8024956343602154 a001 233/1364*5778^(4/9) 8024956346072963 r002 3th iterates of z^2 + 8024956354464519 l006 ln(4392/9799) 8024956390998537 a007 Real Root Of 665*x^4-532*x^3+806*x^2+963*x-297 8024956410251632 k002 Champernowne real with 73*n^2-50*n+57 8024956424192859 m001 (5^(1/2))^(Zeta(1,-1)*(1+3^(1/2))^(1/2)) 8024956457353101 a007 Real Root Of 647*x^4-873*x^3-829*x^2+493*x+210 8024956459437235 m001 Riemann2ndZero/Artin^2*ln((2^(1/3)))^2 8024956494534368 r005 Re(z^2+c),c=-41/60+19/63*I,n=20 8024956510281638 k002 Champernowne real with 147/2*n^2-103/2*n+58 8024956519885007 m005 (1/3*2^(1/2)-1/5)/(1/12*Pi-3/5) 8024956532533677 b008 1/15+Cot[1/8] 8024956559135232 r005 Re(z^2+c),c=-15/14+23/160*I,n=32 8024956561490765 m001 gamma+Landau*PrimesInBinary 8024956581279191 m001 (Psi(1,1/3)+ln(2)/ln(10))/(-Mills+Trott) 8024956595555535 a007 Real Root Of 285*x^4-728*x^3-301*x^2+112*x+362 8024956604003665 b008 80+KelvinBei[0,1] 8024956610311644 k002 Champernowne real with 74*n^2-53*n+59 8024956613769049 m001 1/GAMMA(19/24)/exp(Lehmer)^2*GAMMA(7/24) 8024956614202947 l006 ln(3929/8766) 8024956626725269 m001 (BesselJ(1,1)-sin(1))/(-FeigenbaumB+MertensB3) 8024956631281820 r005 Re(z^2+c),c=5/66+29/62*I,n=58 8024956634205608 r008 a(0)=8,K{-n^6,15-41*n-46*n^2+29*n^3} 8024956648762901 a001 610/521*2207^(1/4) 8024956660680788 a007 Real Root Of 324*x^4-582*x^3-968*x^2+320*x+533 8024956703911391 m001 KomornikLoreti^FeigenbaumMu+ZetaP(4) 8024956710341650 k002 Champernowne real with 149/2*n^2-109/2*n+60 8024956715511175 r009 Re(z^3+c),c=-7/78+43/54*I,n=2 8024956757097887 m005 (11/12+1/6*5^(1/2))/(3/8*Pi+3/7) 8024956767088395 r009 Im(z^3+c),c=-11/118+41/51*I,n=45 8024956777875259 p004 log(29411/27143) 8024956790983487 s002 sum(A201354[n]/(2^n+1),n=1..infinity) 8024956809982460 a001 1364*6557470319842^(5/17) 8024956810371656 k002 Champernowne real with 75*n^2-56*n+61 8024956818021666 a007 Real Root Of -783*x^4+567*x^3+278*x^2+832*x-815 8024956830974759 m005 (1/6*exp(1)+1)/(3/4*2^(1/2)+3/4) 8024956853061641 r005 Re(z^2+c),c=-5/6+7/128*I,n=59 8024956910401662 k002 Champernowne real with 151/2*n^2-115/2*n+62 8024956911280278 a003 cos(Pi*2/13)*sin(Pi*13/36) 8024956943334840 l006 ln(3466/7733) 8024956961489533 m001 ln(TwinPrimes)/FeigenbaumC^2/cosh(1) 8024956970740103 q001 1865/2324 8024956987488150 r005 Re(z^2+c),c=-121/122+6/23*I,n=50 8024957010431668 k002 Champernowne real with 76*n^2-59*n+63 8024957015983516 r005 Re(z^2+c),c=-13/29+38/51*I,n=2 8024957029941951 r002 32th iterates of z^2 + 8024957056490208 r005 Im(z^2+c),c=-61/114+1/7*I,n=38 8024957060543397 a001 233/1364*2207^(1/2) 8024957060726189 m005 (1/2*2^(1/2)-1)/(3/7*exp(1)-4/5) 8024957062146730 a007 Real Root Of -232*x^4+587*x^3+647*x^2+354*x+267 8024957070617455 r009 Im(z^3+c),c=-5/78+9/11*I,n=55 8024957098381797 a007 Real Root Of 361*x^4-247*x^3+499*x^2+852*x+85 8024957109027323 m002 -Coth[Pi]+5/(E^Pi*ProductLog[Pi]) 8024957110461674 k002 Champernowne real with 153/2*n^2-121/2*n+64 8024957126483184 m001 (GAMMA(5/6)+ErdosBorwein)/(Magata+ZetaQ(4)) 8024957169002593 m001 (1-GaussAGM)/(-PrimesInBinary+Riemann2ndZero) 8024957188744312 a007 Real Root Of -152*x^4+923*x^3-359*x^2+490*x-576 8024957199780209 m001 CopelandErdos^Trott/FibonacciFactorial 8024957204090766 r009 Re(z^3+c),c=-25/62+37/40*I,n=3 8024957210491680 k002 Champernowne real with 77*n^2-62*n+65 8024957227365593 m001 (-Conway+ZetaP(3))/(sin(1)+BesselI(1,1)) 8024957242323618 m005 (1/2*3^(1/2)-5/7)/(3/7*2^(1/2)-5/8) 8024957274940156 a001 987/1364*322^(5/12) 8024957281969598 a007 Real Root Of -273*x^4+750*x^3-392*x^2+948*x+79 8024957296621044 m001 1/ln(Pi)^2*ErdosBorwein*cos(Pi/5)^2 8024957300258122 a002 19^(6/7)-6^(5/6) 8024957310521686 k002 Champernowne real with 155/2*n^2-127/2*n+66 8024957313610657 a007 Real Root Of 502*x^4-992*x^3+673*x^2+353*x-871 8024957334893010 r005 Re(z^2+c),c=-31/34+104/127*I,n=3 8024957357043801 r008 a(0)=8,K{-n^6,-41+31*n-59*n^2+31*n^3} 8024957367833135 a007 Real Root Of -865*x^4+595*x^3+409*x^2+60*x+451 8024957373957271 l006 ln(3003/6700) 8024957381272274 a007 Real Root Of 556*x^4+460*x^3+190*x^2-953*x-880 8024957401873082 a001 439204/233*1836311903^(14/17) 8024957401919682 a001 370248451/233*514229^(14/17) 8024957410551692 k002 Champernowne real with 78*n^2-65*n+67 8024957421125373 s001 sum(exp(-Pi/3)^n*A175496[n],n=1..infinity) 8024957447596376 a001 322/75025*75025^(6/23) 8024957447806248 a001 322/1346269*4807526976^(6/23) 8024957457370038 s001 sum(exp(-2*Pi/5)^n*A266516[n],n=1..infinity) 8024957457370038 s002 sum(A266516[n]/(exp(2/5*pi*n)),n=1..infinity) 8024957480449167 r009 Re(z^3+c),c=-61/110+35/57*I,n=6 8024957482737424 m001 (GAMMA(2/3)+Zeta(1/2))/(MertensB3-ZetaQ(3)) 8024957495067809 r005 Im(z^2+c),c=-13/10+7/152*I,n=26 8024957502054209 r009 Re(z^3+c),c=-5/122+45/58*I,n=14 8024957502382978 a003 cos(Pi*5/79)*sin(Pi*29/95) 8024957510581698 k002 Champernowne real with 157/2*n^2-133/2*n+68 8024957535318752 a001 233/2207*843^(9/14) 8024957546869756 m008 (1/2*Pi^3-1)/(1/5*Pi^2-1/6) 8024957552711513 r009 Re(z^3+c),c=-19/48+22/37*I,n=29 8024957569088320 a007 Real Root Of 2*x^4-798*x^3+153*x^2-171*x-649 8024957573732355 r005 Im(z^2+c),c=29/74+4/19*I,n=28 8024957574080712 a007 Real Root Of 560*x^4+489*x^3+748*x^2-543*x-897 8024957610611704 k002 Champernowne real with 79*n^2-68*n+69 8024957618192578 q001 8/99689 8024957628162697 r005 Re(z^2+c),c=-79/94+1/50*I,n=29 8024957628170844 r005 Im(z^2+c),c=-65/114+16/35*I,n=21 8024957629149458 h001 (1/9*exp(1)+1/4)/(6/7*exp(2)+6/11) 8024957647863326 s002 sum(A229742[n]/(n*pi^n-1),n=1..infinity) 8024957656255629 r005 Re(z^2+c),c=-13/60+17/22*I,n=35 8024957666586269 m001 BesselK(1,1)^(LambertW(1)*LandauRamanujan) 8024957669246535 r002 54th iterates of z^2 + 8024957684244411 m005 (1/2*gamma+1/12)/(1/11*3^(1/2)-1/9) 8024957687593170 m001 1/exp(Paris)^2*Khintchine^2*FeigenbaumKappa 8024957708514185 a007 Real Root Of -999*x^4+496*x^3+190*x^2+442*x+903 8024957710641710 k002 Champernowne real with 159/2*n^2-139/2*n+70 8024957712177239 m001 Niven/Khintchine^2/exp(cos(1))^2 8024957713471801 m001 FeigenbaumKappa-GAMMA(23/24)-HardyLittlewoodC5 8024957726710891 r001 59i'th iterates of 2*x^2-1 of 8024957726830297 m001 OneNinth^MadelungNaCl/(ZetaQ(3)^MadelungNaCl) 8024957727057998 m001 BesselK(1,1)^PrimesInBinary/Psi(1,1/3) 8024957729485156 m002 -1+2*Log[Pi]*Sech[Pi] 8024957753691730 r005 Im(z^2+c),c=-3/94+31/43*I,n=10 8024957754136557 r008 a(0)=8,K{-n^6,23+3*n^3+5*n^2-72*n} 8024957756977337 a001 17711/18*1364^(25/41) 8024957763997425 a001 987/2207*322^(1/2) 8024957765192865 r009 Re(z^3+c),c=-1/56+21/29*I,n=58 8024957776169143 a007 Real Root Of -237*x^4+745*x^3-832*x^2-369*x+723 8024957778930214 r005 Im(z^2+c),c=-1/18+43/55*I,n=13 8024957810671716 k002 Champernowne real with 80*n^2-71*n+71 8024957816472312 a007 Real Root Of 71*x^4+545*x^3-313*x^2-795*x+975 8024957874883565 r008 a(0)=8,K{-n^6,-47-26*n+47*n^2-16*n^3} 8024957896353935 h001 (4/11*exp(1)+1/12)/(5/11*exp(1)+1/10) 8024957910701722 k002 Champernowne real with 161/2*n^2-145/2*n+72 8024957914608920 a001 3571/8*6765^(19/58) 8024957914976744 r002 59th iterates of z^2 + 8024957922124969 r009 Re(z^3+c),c=-3/50+25/29*I,n=37 8024957926946019 r005 Re(z^2+c),c=-45/34+5/58*I,n=8 8024957960115522 m005 (1/2*3^(1/2)+3/4)/(2*Catalan+2/11) 8024957961570369 l006 ln(2540/5667) 8024957969542310 m008 (3/5*Pi^5+1)/(3/4*Pi^3-1/4) 8024957973727629 m001 (2^(1/2)-arctan(1/3))/(KhinchinLevy+ZetaP(3)) 8024957997200481 l006 ln(5577/6043) 8024958010731728 k002 Champernowne real with 81*n^2-74*n+73 8024958029986318 a007 Real Root Of -73*x^4+655*x^3-581*x^2+101*x+824 8024958034348678 m005 (1/3*2^(1/2)+1/5)/(4/5*Zeta(3)-1/8) 8024958037459152 r008 a(0)=8,K{-n^6,-36-17*n+4*n^2+11*n^3} 8024958042848126 m001 ln(TreeGrowth2nd)/Robbin^2/GAMMA(7/12)^2 8024958078558850 a007 Real Root Of 742*x^4-980*x^3-628*x^2-652*x-933 8024958104042350 a007 Real Root Of -522*x^4-838*x^3-819*x^2+784*x+940 8024958110761734 k002 Champernowne real with 163/2*n^2-151/2*n+74 8024958115239604 s002 sum(A175516[n]/(n^3*2^n+1),n=1..infinity) 8024958130214146 r005 Im(z^2+c),c=-7/32+41/50*I,n=10 8024958133109728 a001 2584/521*322^(1/12) 8024958141730061 r009 Im(z^3+c),c=-11/106+25/31*I,n=39 8024958166104203 a007 Real Root Of 139*x^4-937*x^3-606*x^2+574*x+309 8024958174241547 m001 Trott/exp(Riemann2ndZero)/Zeta(9) 8024958174462531 a007 Real Root Of 391*x^4-554*x^3+928*x^2+202*x-884 8024958175866793 a007 Real Root Of 60*x^4+529*x^3+455*x^2+535*x-459 8024958176902941 r005 Re(z^2+c),c=-89/110+5/43*I,n=35 8024958185116712 m001 (-FeigenbaumKappa+Paris)/(cos(1)+GAMMA(23/24)) 8024958210791740 k002 Champernowne real with 82*n^2-77*n+75 8024958219315786 a001 11/4181*2971215073^(11/19) 8024958238856162 r008 a(0)=8,K{-n^6,-42-18*n+22*n^2-4*n^3} 8024958247384828 a003 cos(Pi*28/109)+cos(Pi*46/99) 8024958300650915 m001 1/LaplaceLimit^2*MertensB1/exp(Zeta(9))^2 8024958310235504 m001 (LandauRamanujan2nd-sin(1))/(Mills+Tetranacci) 8024958310821746 k002 Champernowne real with 165/2*n^2-157/2*n+76 8024958329469991 m001 GAMMA(23/24)^exp(Pi)/(Zeta(1,2)^exp(Pi)) 8024958355433923 m001 (3^(1/3)+GaussAGM)/(Sarnak-TreeGrowth2nd) 8024958363912393 r009 Im(z^3+c),c=-2/23+25/31*I,n=41 8024958373249202 h001 (7/10*exp(2)+9/10)/(9/10*exp(2)+11/12) 8024958400259214 a007 Real Root Of -199*x^4-519*x^3-628*x^2+905*x+945 8024958409832356 m001 (Catalan-Chi(1))/(-cos(1/5*Pi)+Grothendieck) 8024958410851752 k002 Champernowne real with 83*n^2-80*n+77 8024958420557694 a007 Real Root Of 737*x^4-170*x^3-376*x^2-812*x-803 8024958430814994 r005 Re(z^2+c),c=-79/94+1/50*I,n=25 8024958455586601 m005 (41/36+1/4*5^(1/2))/(7/10*Pi-1/12) 8024958461091445 a007 Real Root Of -897*x^4+15*x^3-817*x^2-608*x+418 8024958462815107 r002 9th iterates of z^2 + 8024958504856953 r005 Re(z^2+c),c=-37/122+31/48*I,n=36 8024958509201098 a007 Real Root Of -701*x^4-90*x^3-53*x^2+341*x+552 8024958510881758 k002 Champernowne real with 167/2*n^2-163/2*n+78 8024958511177612 r002 54th iterates of z^2 + 8024958517003366 a007 Real Root Of 885*x^4+51*x^3-652*x^2-242*x-115 8024958519724801 b008 8+ArcCsch[10]/4 8024958535346705 a007 Real Root Of 172*x^4+129*x^3+562*x^2-403*x-690 8024958567125035 m001 1/ln(TwinPrimes)^2*GlaisherKinkelin^2*sin(1) 8024958569784763 a007 Real Root Of -397*x^4+63*x^3+94*x^2+692*x+692 8024958579953423 r005 Im(z^2+c),c=-23/102+21/29*I,n=10 8024958602874624 a007 Real Root Of -923*x^4-635*x^3+424*x^2+723*x+55 8024958605835664 m001 1/GAMMA(3/4)^2*ln(Tribonacci)^2/GAMMA(7/24) 8024958610911764 k002 Champernowne real with 84*n^2-83*n+79 8024958618391250 a007 Real Root Of -98*x^4+222*x^3-621*x^2+361*x+845 8024958649839989 r005 Re(z^2+c),c=-21/25+1/42*I,n=25 8024958650557166 m005 (1/2*exp(1)-1/5)/(4/7*5^(1/2)+1/6) 8024958654409530 r005 Re(z^2+c),c=-49/60+2/21*I,n=55 8024958654787057 r002 14th iterates of z^2 + 8024958673869185 a003 sin(Pi*1/114)-sin(Pi*24/77) 8024958681358471 a007 Real Root Of 825*x^4-670*x^3+612*x^2+539*x-650 8024958681911009 m001 1/ln(Rabbit)^2/Paris/Zeta(5)^2 8024958706274702 a007 Real Root Of 228*x^4+935*x^3+793*x^2-989*x-84 8024958709736542 r005 Im(z^2+c),c=-1/21+42/53*I,n=58 8024958710941770 k002 Champernowne real with 169/2*n^2-169/2*n+80 8024958733485986 a007 Real Root Of -665*x^4-575*x^3-224*x^2+845*x+801 8024958743343320 a001 329/6*64079^(27/41) 8024958753206640 m005 (1/2*Pi+5/12)/(11/12*3^(1/2)+8/9) 8024958765419632 m001 FibonacciFactorial^Landau/(Tribonacci^Landau) 8024958767332657 m001 (3^(1/3)-HardyLittlewoodC4)/(Mills+OneNinth) 8024958782902822 a007 Real Root Of -693*x^4-657*x^3-832*x^2+530*x+909 8024958797937678 a007 Real Root Of 162*x^4-85*x^3+934*x^2-859*x-75 8024958798502200 a007 Real Root Of -399*x^4+535*x^3-838*x^2-498*x+582 8024958805073113 a003 sin(Pi*7/99)+sin(Pi*18/91) 8024958809558298 m001 (MertensB1-Trott2nd)/(ln(Pi)+Pi^(1/2)) 8024958810971776 k002 Champernowne real with 85*n^2-86*n+81 8024958811162092 l006 ln(2077/4634) 8024958819838854 m001 exp(1)/MasserGramainDelta*ZetaQ(2) 8024958853903913 r002 38th iterates of z^2 + 8024958861555485 r009 Re(z^3+c),c=-65/82+29/64*I,n=2 8024958893459636 m001 (Mills+Totient)/(FeigenbaumAlpha+Kolakoski) 8024958911001782 k002 Champernowne real with 171/2*n^2-175/2*n+82 8024958948422001 m001 arctan(1/3)^Rabbit*BesselI(0,2)^Rabbit 8024958966289394 a007 Real Root Of 286*x^4-953*x^3-560*x^2-23*x+753 8024958986263799 r009 Re(z^3+c),c=-19/126+41/58*I,n=56 8024959003872258 a001 76/233*28657^(5/57) 8024959011031788 k002 Champernowne real with 86*n^2-89*n+83 8024959042025084 m005 (7/24+1/6*5^(1/2))/(1/8*gamma-9/10) 8024959067034359 m005 (5/12+1/6*5^(1/2))/(5/7*Zeta(3)+1/8) 8024959073460926 a007 Real Root Of 463*x^4-877*x^3-160*x^2+9*x-535 8024959090550083 m001 (5^(1/2)-GAMMA(3/4))/(-gamma(1)+KhinchinLevy) 8024959108828572 p001 sum(1/(337*n+126)/(25^n),n=0..infinity) 8024959109377607 m001 (Chi(1)+Catalan)/(-Kolakoski+Stephens) 8024959111061794 k002 Champernowne real with 173/2*n^2-181/2*n+84 8024959115063543 a007 Real Root Of -211*x^4-42*x^3-889*x^2+944*x-70 8024959117963570 m004 (Sqrt[5]*Pi)/3+(2*Sqrt[5]*Cosh[Sqrt[5]*Pi])/Pi 8024959143389045 a007 Real Root Of 904*x^4-592*x^3+36*x^2+663*x-172 8024959153316878 p004 log(31019/28627) 8024959184838581 r008 a(0)=8,K{-n^6,-34-29*n-47*n^2+35*n^3} 8024959211091800 k002 Champernowne real with 87*n^2-92*n+85 8024959225731908 m001 (ln(2)/ln(10)+Niven)/(-Riemann3rdZero+Trott) 8024959225911266 r009 Re(z^3+c),c=-3/62+43/52*I,n=35 8024959226553121 m001 GAMMA(7/12)/(BesselI(1,1)+Totient) 8024959276406035 r009 Re(z^3+c),c=-7/9+15/16*I,n=2 8024959278740170 r005 Im(z^2+c),c=27/70+8/45*I,n=54 8024959289081905 a007 Real Root Of -119*x^4-935*x^3+239*x^2+636*x+33 8024959289648692 r009 Re(z^3+c),c=-3/52+17/23*I,n=5 8024959305480195 q001 1479/1843 8024959311121806 k002 Champernowne real with 175/2*n^2-187/2*n+86 8024959327143808 h001 (-6*exp(-3)+9)/(-5*exp(3)-8) 8024959337658491 m001 (cos(1/5*Pi)-gamma(2))/(Artin+MasserGramain) 8024959345207165 a007 Real Root Of 973*x^4-242*x^3+791*x^2-754*x+6 8024959351510477 a007 Real Root Of -719*x^4-540*x^3-732*x^2-772*x-129 8024959395817421 l006 ln(3691/8235) 8024959411151812 k002 Champernowne real with 88*n^2-95*n+87 8024959462455077 a003 sin(Pi*19/75)/sin(Pi*36/103) 8024959463292724 a001 610/521*843^(2/7) 8024959471867327 b008 7+(3/E)^(1/4) 8024959481083081 r005 Re(z^2+c),c=15/44+9/29*I,n=35 8024959483711708 a007 Real Root Of 687*x^4+4*x^3-648*x^2-913*x+863 8024959507822531 r008 a(0)=8,K{-n^6,46+32*n^3-64*n^2-55*n} 8024959511181818 k002 Champernowne real with 177/2*n^2-193/2*n+88 8024959524917754 a001 17/38*199^(50/51) 8024959547814357 a007 Real Root Of -253*x^4+937*x^3+551*x^2+27*x+256 8024959561361404 m001 (Mills-exp(Pi))/(QuadraticClass+Tribonacci) 8024959609002967 m001 ln(Pi)^GAMMA(19/24)/Zeta(1/2) 8024959611211824 k002 Champernowne real with 89*n^2-98*n+89 8024959618734419 a001 76/75025*987^(26/41) 8024959650902480 a007 Real Root Of 496*x^4-551*x^3+89*x^2-166*x-681 8024959673694894 a007 Real Root Of 118*x^4-505*x^3-60*x^2-366*x-565 8024959690907843 m001 (Zeta(5)-cos(1))/(-MasserGramain+Trott2nd) 8024959703397125 a001 10946/11*123^(52/57) 8024959704789613 r005 Im(z^2+c),c=-5/52+49/60*I,n=19 8024959705542273 r005 Re(z^2+c),c=-109/118+1/24*I,n=16 8024959711241830 k002 Champernowne real with 179/2*n^2-199/2*n+90 8024959753977712 m001 (polylog(4,1/2)+Pi^(1/2))/(MinimumGamma-Salem) 8024959756922736 m001 (Psi(2,1/3)-Zeta(3))/(-GAMMA(19/24)+Bloch) 8024959779139663 m002 6+Cosh[Pi]/6+Csch[Pi]*ProductLog[Pi] 8024959790227304 a003 -3/2+cos(2/7*Pi)-cos(4/15*Pi)+cos(7/30*Pi) 8024959799888656 g006 Psi(1,10/11)+Psi(1,1/3)-Psi(1,8/9)-Psi(1,7/8) 8024959811271836 k002 Champernowne real with 90*n^2-101*n+91 8024959817532567 m001 exp(1)^BesselI(1,2)/(exp(1)^exp(sqrt(2))) 8024959826908231 m001 1/exp(GAMMA(1/12))/Tribonacci^2/GAMMA(11/24)^2 8024959843222326 a007 Real Root Of 698*x^4-411*x^3+852*x^2+954*x-285 8024959848254657 a007 Real Root Of -133*x^4+653*x^3+615*x^2+651*x+519 8024959870051315 r009 Im(z^3+c),c=-3/14+43/48*I,n=7 8024959871796150 s001 sum(exp(-Pi)^n*A044857[n],n=1..infinity) 8024959871796150 s002 sum(A044857[n]/(exp(pi*n)),n=1..infinity) 8024959871796150 s001 sum(exp(-Pi)^(n-1)*A161440[n],n=1..infinity) 8024959871796150 s001 sum(exp(-Pi)^n*A044902[n],n=1..infinity) 8024959871796150 s002 sum(A044902[n]/(exp(pi*n)),n=1..infinity) 8024959871796150 s001 sum(exp(-Pi)^(n-1)*A008599[n],n=1..infinity) 8024959871796150 s001 sum(exp(-Pi)^n*A033029[n],n=1..infinity) 8024959871796150 s002 sum(A033029[n]/(exp(pi*n)),n=1..infinity) 8024959871796150 s001 sum(exp(-Pi)^n*A044842[n],n=1..infinity) 8024959871796150 s002 sum(A044842[n]/(exp(pi*n)),n=1..infinity) 8024959871796150 s001 sum(exp(-Pi)^n*A033014[n],n=1..infinity) 8024959871796150 s002 sum(A033014[n]/(exp(pi*n)),n=1..infinity) 8024959884035538 r004 Im(z^2+c),c=5/12+7/16*I,z(0)=exp(5/8*I*Pi),n=8 8024959889532013 r008 a(0)=8,K{-n^6,-4-31*n-17*n^2+11*n^3} 8024959911301842 k002 Champernowne real with 181/2*n^2-205/2*n+92 8024959924061873 s001 sum(exp(-Pi)^n*A070814[n],n=1..infinity) 8024959924061873 s002 sum(A070814[n]/(exp(pi*n)),n=1..infinity) 8024959963585852 a003 cos(Pi*21/109)*sin(Pi*46/107) 8024959974305152 r009 Re(z^3+c),c=-3/50+25/29*I,n=39 8024959974592134 r005 Im(z^2+c),c=-41/66+3/20*I,n=60 8024959994355000 a007 Real Root Of -307*x^4+375*x^3+937*x^2-203*x-507 8024960007628640 m002 -Pi^4+Cosh[Pi]+(6*Tanh[Pi])/ProductLog[Pi] 8024960010280251 r009 Re(z^3+c),c=-3/62+43/52*I,n=27 8024960011331848 k002 Champernowne real with 91*n^2-104*n+93 8024960068898476 r005 Re(z^2+c),c=-47/58+5/51*I,n=19 8024960087755103 h001 (7/8*exp(1)+1/2)/(4/11*exp(2)+9/10) 8024960094569817 m005 (-9/44+1/4*5^(1/2))/(7/11*Catalan-5) 8024960110871900 m009 (2/5*Psi(1,3/4)+5/6)/(2/3*Psi(1,3/4)-4) 8024960111361854 k002 Champernowne real with 183/2*n^2-211/2*n+94 8024960148189811 l006 ln(1614/3601) 8024960153805392 m001 (Sierpinski+TwinPrimes)/(MinimumGamma-Shi(1)) 8024960154038967 m001 (-BesselK(1,1)+ZetaP(3))/(Psi(2,1/3)+Ei(1)) 8024960166505430 p003 LerchPhi(1/4,2,31/87) 8024960176776883 a007 Real Root Of 317*x^4-702*x^3-139*x^2-782*x+64 8024960204933434 r002 9th iterates of z^2 + 8024960205163613 a007 Real Root Of -854*x^4+476*x^3+606*x^2+192*x+364 8024960211391860 k002 Champernowne real with 92*n^2-107*n+95 8024960214869988 m001 (ErdosBorwein+RenyiParking)/(Pi-exp(-1/2*Pi)) 8024960232550666 r005 Im(z^2+c),c=-83/102+7/19*I,n=6 8024960238731507 a001 98209/9*3571^(10/41) 8024960268787333 a007 Real Root Of 674*x^4-226*x^3-407*x^2+9*x-127 8024960298328944 r002 15th iterates of z^2 + 8024960302144466 r005 Re(z^2+c),c=-16/25+19/40*I,n=8 8024960311421866 k002 Champernowne real with 185/2*n^2-217/2*n+96 8024960315621843 m001 (exp(1/Pi)-gamma(1))/(Landau-Sarnak) 8024960320150132 v002 sum(1/(2^n+(15/2*n^2+21/2*n+6)),n=1..infinity) 8024960347145912 a007 Real Root Of 79*x^4-968*x^3+393*x^2-235*x+403 8024960388544102 a001 75025/18*24476^(12/41) 8024960390430177 a007 Real Root Of -529*x^4+226*x^3-971*x^2+33*x+988 8024960392684878 a001 514229/18*39603^(4/41) 8024960405843301 a007 Real Root Of 672*x^4-708*x^3+717*x^2+621*x-608 8024960411451872 k002 Champernowne real with 93*n^2-110*n+97 8024960436493756 a007 Real Root Of -392*x^4-813*x^3-431*x^2+891*x+735 8024960439131734 m005 (1/2*3^(1/2)-7/12)/(10/11*Pi+2/3) 8024960468898395 m001 1/ln(Zeta(9))^2/Lehmer^2/log(1+sqrt(2)) 8024960474543757 a001 75025/18*5778^(14/41) 8024960475566611 m005 (1/2*Pi+11/12)/(6*gamma-4/11) 8024960487163022 m005 (1/2*Zeta(3)+9/11)/(8/9*Zeta(3)+7/10) 8024960491935616 m001 exp(Zeta(1,2))^2/TwinPrimes*sin(Pi/5)^2 8024960511481878 k002 Champernowne real with 187/2*n^2-223/2*n+98 8024960515925566 m001 Zeta(1/2)^StolarskyHarborth/GAMMA(17/24) 8024960529905729 a001 377/1364*322^(7/12) 8024960532360506 r009 Re(z^3+c),c=-13/102+12/23*I,n=13 8024960555702104 a001 233/5778*843^(11/14) 8024960578347129 a001 1292/2889*322^(1/2) 8024960583588287 b008 27*Pi*SinIntegral[1] 8024960596776759 a007 Real Root Of 175*x^4+194*x^3+272*x^2-286*x-377 8024960597269745 m001 1/GAMMA(19/24)/Riemann1stZero^2/ln(sin(Pi/5)) 8024960607502707 m002 -Coth[Pi]+Pi^3/(3*Log[Pi]) 8024960611511884 k002 Champernowne real with 94*n^2-113*n+99 8024960618779666 a001 233/3571*843^(5/7) 8024960624569825 r005 Re(z^2+c),c=-75/86+9/41*I,n=60 8024960711541890 k002 Champernowne real with 189/2*n^2-229/2*n+100 8024960719287911 m005 (1/2*gamma-2/5)/(1/3*2^(1/2)+11/12) 8024960749606209 a008 Real Root of (13+x-11*x^2-13*x^3) 8024960763442489 m002 5/6-E^Pi/3-Log[Pi] 8024960779324207 l006 ln(5948/6445) 8024960782354300 l006 ln(4379/9770) 8024960810444727 a003 sin(Pi*13/44)/sin(Pi*43/90) 8024960811571896 k002 Champernowne real with 95*n^2-116*n+101 8024960837490596 m002 -Pi^2+Pi^4-Pi^4*Csch[Pi]+Log[Pi] 8024960837610817 r002 21i'th iterates of 2*x/(1-x^2) of 8024960852862982 m001 (ln(gamma)*GAMMA(7/12)-FeigenbaumMu)/ln(gamma) 8024960856474222 h001 (5/11*exp(1)+1/3)/(2/3*exp(1)+1/7) 8024960862637221 m001 BesselK(0,1)^2/Backhouse*exp(GAMMA(5/24))^2 8024960889972378 m001 (1+exp(1/Pi))/((1+3^(1/2))^(1/2)+Mills) 8024960896878447 m001 (2^(1/3)-ln(Pi))/(Ei(1,1)+Riemann1stZero) 8024960911601902 k002 Champernowne real with 191/2*n^2-235/2*n+102 8024960930733910 r008 a(0)=8,K{-n^6,-38+37*n-58*n^2+26*n^3} 8024960956759014 m001 (Riemann3rdZero+TreeGrowth2nd)^Cahen 8024960958313269 r005 Re(z^2+c),c=-15/14+23/151*I,n=20 8024960970332865 a001 433494437/29*7^(19/22) 8024960979958354 a001 199/196418*75025^(22/37) 8024960985312908 a007 Real Root Of -51*x^4-338*x^3+499*x^2-634*x-389 8024960988955300 a001 6765/15127*322^(1/2) 8024960994585009 m005 (-5/12+1/4*5^(1/2))/(3/5*Pi-1/9) 8024960998439937 q001 2572/3205 8024961003361197 m001 LaplaceLimit*ln(ArtinRank2)^2*cos(Pi/12)^2 8024961011631908 k002 Champernowne real with 96*n^2-119*n+103 8024961018963197 a001 377/2207*322^(2/3) 8024961022838164 a007 Real Root Of -917*x^4+853*x^3+438*x^2-592*x+64 8024961029042980 m005 (1/3*2^(1/2)+2/5)/(1/8*2^(1/2)+10/11) 8024961046293141 a001 1597/18*15127^(29/41) 8024961048862226 a001 17711/39603*322^(1/2) 8024961057602529 a001 23184/51841*322^(1/2) 8024961058877722 a001 121393/271443*322^(1/2) 8024961059063770 a001 317811/710647*322^(1/2) 8024961059090915 a001 416020/930249*322^(1/2) 8024961059094875 a001 2178309/4870847*322^(1/2) 8024961059095453 a001 5702887/12752043*322^(1/2) 8024961059095537 a001 7465176/16692641*322^(1/2) 8024961059095549 a001 39088169/87403803*322^(1/2) 8024961059095551 a001 102334155/228826127*322^(1/2) 8024961059095551 a001 133957148/299537289*322^(1/2) 8024961059095551 a001 701408733/1568397607*322^(1/2) 8024961059095551 a001 1836311903/4106118243*322^(1/2) 8024961059095551 a001 2403763488/5374978561*322^(1/2) 8024961059095551 a001 12586269025/28143753123*322^(1/2) 8024961059095551 a001 32951280099/73681302247*322^(1/2) 8024961059095551 a001 43133785636/96450076809*322^(1/2) 8024961059095551 a001 225851433717/505019158607*322^(1/2) 8024961059095551 a001 591286729879/1322157322203*322^(1/2) 8024961059095551 a001 10610209857723/23725150497407*322^(1/2) 8024961059095551 a001 182717648081/408569081798*322^(1/2) 8024961059095551 a001 139583862445/312119004989*322^(1/2) 8024961059095551 a001 53316291173/119218851371*322^(1/2) 8024961059095551 a001 10182505537/22768774562*322^(1/2) 8024961059095551 a001 7778742049/17393796001*322^(1/2) 8024961059095551 a001 2971215073/6643838879*322^(1/2) 8024961059095551 a001 567451585/1268860318*322^(1/2) 8024961059095551 a001 433494437/969323029*322^(1/2) 8024961059095551 a001 165580141/370248451*322^(1/2) 8024961059095552 a001 31622993/70711162*322^(1/2) 8024961059095557 a001 24157817/54018521*322^(1/2) 8024961059095589 a001 9227465/20633239*322^(1/2) 8024961059095810 a001 1762289/3940598*322^(1/2) 8024961059097322 a001 1346269/3010349*322^(1/2) 8024961059107690 a001 514229/1149851*322^(1/2) 8024961059178755 a001 98209/219602*322^(1/2) 8024961059665835 a001 75025/167761*322^(1/2) 8024961063004334 a001 28657/64079*322^(1/2) 8024961077539989 a007 Real Root Of -83*x^4+948*x^3-806*x^2-489*x+651 8024961084147606 r005 Re(z^2+c),c=7/60+32/61*I,n=54 8024961085886743 a001 5473/12238*322^(1/2) 8024961098740491 m001 (exp(1/Pi)-exp(Pi))/(DuboisRaymond+ZetaP(4)) 8024961109768373 g007 Psi(2,5/11)+Psi(2,8/9)+Psi(2,2/7)-Psi(2,2/5) 8024961111661914 k002 Champernowne real with 193/2*n^2-241/2*n+104 8024961116092514 a007 Real Root Of -106*x^4+897*x^3+71*x^2+475*x+843 8024961123039469 a001 167761*514229^(5/17) 8024961124436180 a007 Real Root Of -459*x^4+674*x^3+308*x^2+665*x+874 8024961133746170 m005 (1/2*exp(1)+1/4)/(2/11*gamma-1/8) 8024961152532034 l006 ln(2765/6169) 8024961155098991 m004 -4-25*Pi+(5*Tan[Sqrt[5]*Pi])/2 8024961158392952 a001 15127*1836311903^(5/17) 8024961189216464 r002 3th iterates of z^2 + 8024961211691920 k002 Champernowne real with 97*n^2-122*n+105 8024961227580082 m005 (1/2*5^(1/2)-2/11)/(6/7*5^(1/2)-3/4) 8024961236556192 m008 (5*Pi^2-1/5)/(2*Pi^5+2/5) 8024961238539963 a007 Real Root Of 36*x^4-692*x^3+575*x^2-721*x+551 8024961242725116 a001 4181/9349*322^(1/2) 8024961256541269 m001 1/ln(GAMMA(2/3))/BesselK(1,1)^2*log(1+sqrt(2)) 8024961293272457 r008 a(0)=8,K{-n^6,-6+21*n^3+4*n^2-58*n} 8024961304263248 m001 (gamma(3)+GAMMA(7/12))/(MertensB1-ZetaP(2)) 8024961311721926 k002 Champernowne real with 195/2*n^2-247/2*n+106 8024961328705953 a001 2/505019158607*3^(9/14) 8024961339665820 r002 28th iterates of z^2 + 8024961345465917 m001 (Landau-Magata)/(FeigenbaumMu-HeathBrownMoroz) 8024961364172968 m001 (GlaisherKinkelin-Trott)/(ln(3)-FeigenbaumD) 8024961385891755 m005 (1/2*gamma+4/9)/(3*gamma-9/11) 8024961388373829 m006 (2*exp(2*Pi)+2/3)/(1/4*exp(2*Pi)-1/3) 8024961408238023 a007 Real Root Of 143*x^4-584*x^3+65*x^2-221*x+378 8024961411751932 k002 Champernowne real with 98*n^2-125*n+107 8024961423257816 m001 1/GAMMA(1/12)/Riemann2ndZero/exp(GAMMA(13/24)) 8024961438285750 m001 Pi*ErdosBorwein*exp(arctan(1/2)) 8024961449160355 r009 Im(z^3+c),c=-13/102+49/61*I,n=21 8024961450362518 a001 5473/9*2207^(26/41) 8024961456698163 m001 (-Riemann2ndZero+ZetaP(4))/(5^(1/2)+Artin) 8024961456938726 m001 (Pi^(1/2)+StronglyCareFree)/(Shi(1)-exp(1/Pi)) 8024961480493714 r008 a(0)=8,K{-n^6,-44+13*n-36*n^2+28*n^3} 8024961511781938 k002 Champernowne real with 197/2*n^2-253/2*n+108 8024961542267704 r005 Re(z^2+c),c=7/110+16/35*I,n=18 8024961566476936 l006 ln(3916/8737) 8024961569304505 a007 Real Root Of 89*x^4-478*x^3+831*x^2-952*x-82 8024961579892864 a007 Real Root Of -821*x^4+660*x^3+564*x^2+731*x+905 8024961608760132 a007 Real Root Of -935*x^4+479*x^3+135*x^2-236*x+359 8024961611811944 k002 Champernowne real with 99*n^2-128*n+109 8024961614695308 r005 Re(z^2+c),c=-5/6+7/128*I,n=61 8024961633084805 h001 (5/7*exp(2)+2/9)/(8/9*exp(2)+2/7) 8024961635934306 m001 (Trott2nd-Thue)/(BesselJ(1,1)+Gompertz) 8024961641156354 a007 Real Root Of -895*x^4+985*x^3+888*x^2-69*x+253 8024961642119301 p003 LerchPhi(1/16,3,390/167) 8024961650049013 r008 a(0)=8,K{-n^6,-61+19*n^2-6*n} 8024961655295863 m001 (ln(3)-gamma(2))/(GlaisherKinkelin+Paris) 8024961684499216 a007 Real Root Of 546*x^4-81*x^3+932*x^2-114*x-960 8024961691544557 r008 a(0)=8,K{-n^6,-9+25*n^3-68*n^2+11*n} 8024961694495656 a001 233/9349*843^(6/7) 8024961711841950 k002 Champernowne real with 199/2*n^2-259/2*n+110 8024961770018723 a007 Real Root Of -657*x^4-232*x^3-328*x^2+475*x+745 8024961782892160 r008 a(0)=8,K{-n^6,18*n^3-49*n^2-14*n} 8024961783382651 a007 Real Root Of 946*x^4-529*x^3+893*x^2+330*x-976 8024961789563269 p001 sum(1/(278*n+125)/(100^n),n=0..infinity) 8024961797217641 r002 24th iterates of z^2 + 8024961811871956 k002 Champernowne real with 100*n^2-131*n+111 8024961879755553 a007 Real Root Of 579*x^4-991*x^3-142*x^2+497*x-262 8024961892439731 r005 Im(z^2+c),c=15/34+13/57*I,n=15 8024961908178911 h001 (1/5*exp(2)+9/10)/(1/3*exp(2)+1/2) 8024961911901962 k002 Champernowne real with 201/2*n^2-265/2*n+112 8024961919165868 r002 3th iterates of z^2 + 8024961919302488 a008 Real Root of (-7+x+7*x^2+2*x^4+5*x^8) 8024961922794601 a003 cos(Pi*47/107)-sin(Pi*52/113) 8024961923010802 a007 Real Root Of -414*x^4+474*x^3-801*x^2-205*x+768 8024961940057423 a007 Real Root Of 531*x^4-659*x^3+7*x^2-437*x-916 8024961967772168 h001 (-8*exp(1)+5)/(-7*exp(8)-1) 8024961979240600 a007 Real Root Of -899*x^4+564*x^3+975*x^2-732*x-551 8024961991796140 r005 Re(z^2+c),c=-21/122+47/58*I,n=11 8024962011931968 k002 Champernowne real with 101*n^2-134*n+113 8024962026858103 a001 682/98209*1597^(1/51) 8024962033232637 m002 1/2-E^Pi/Pi^2+Pi^2 8024962063358774 a007 Real Root Of 890*x^4-25*x^3+520*x^2+527*x-294 8024962081648088 m005 (1/2*Catalan-1/5)/(5/7*gamma-4/9) 8024962111961974 k002 Champernowne real with 203/2*n^2-271/2*n+114 8024962116102694 r009 Re(z^3+c),c=-3/50+25/29*I,n=35 8024962167695855 r005 Im(z^2+c),c=35/114+21/43*I,n=7 8024962211991980 k002 Champernowne real with 102*n^2-137*n+115 8024962213464036 a007 Real Root Of -869*x^4+20*x^3-455*x^2-786*x+33 8024962217240912 a007 Real Root Of -923*x^4+940*x^3-808*x^2-542*x+954 8024962217634266 r005 Re(z^2+c),c=-165/122+1/37*I,n=4 8024962236535154 m001 (Zeta(1,2)-ThueMorse)/(ln(5)-gamma(1)) 8024962250014953 m001 sin(1/5*Pi)/(3^(1/3)-Rabbit) 8024962252158236 m001 (Mills-ZetaP(2))^HardHexagonsEntropy 8024962270433805 m001 (-Gompertz+Sierpinski)/(exp(Pi)+GAMMA(13/24)) 8024962287212240 r005 Re(z^2+c),c=-7/12+61/106*I,n=7 8024962290405936 r002 3th iterates of z^2 + 8024962294294315 r005 Re(z^2+c),c=-5/6+7/128*I,n=47 8024962308490400 a007 Real Root Of 729*x^4-124*x^3-159*x^2-228*x-447 8024962309922245 m001 (-Pi+2/3)/(-Catalan+4) 8024962309922245 m005 (1/4*Pi-1/6)/(1/4*Catalan-1) 8024962312021986 k002 Champernowne real with 205/2*n^2-277/2*n+116 8024962312491744 r002 47th iterates of z^2 + 8024962313518779 a005 (1/sin(92/203*Pi))^192 8024962317711396 a001 1597/3571*322^(1/2) 8024962326401486 r008 a(0)=8,K{-n^6,-66-15*n^3+70*n^2-28*n} 8024962371174634 m001 (gamma(2)+gamma(3))^polylog(4,1/2) 8024962374215377 a001 233/15127*843^(13/14) 8024962401102646 r008 a(0)=8,K{-n^6,-37+34*n^3-66*n^2+31*n} 8024962412051992 k002 Champernowne real with 103*n^2-140*n+117 8024962421387118 m001 GAMMA(5/24)/Riemann2ndZero/ln(sinh(1))^2 8024962429546778 a007 Real Root Of 77*x^4-569*x^3-379*x^2-592*x-557 8024962433128447 m001 exp(GAMMA(11/12))^2*Lehmer*GAMMA(13/24) 8024962440080150 a007 Real Root Of -251*x^4+643*x^3-536*x^2+84*x+849 8024962440182341 a007 Real Root Of 690*x^4+x^3+764*x^2+27*x-756 8024962470588121 m001 (MadelungNaCl+Thue)/(arctan(1/3)-FeigenbaumMu) 8024962481997691 a003 cos(Pi*18/77)*cos(Pi*27/58) 8024962494403505 m001 cosh(1)^2*ln(GAMMA(11/24))^2*log(1+sqrt(2))^2 8024962500181014 r008 a(0)=8,K{-n^6,-32-n-36*n^2+30*n^3} 8024962512081998 k002 Champernowne real with 207/2*n^2-283/2*n+118 8024962515298838 a007 Real Root Of 938*x^4-296*x^3+499*x^2+302*x-621 8024962523417871 a001 34/73681302247*11^(3/13) 8024962535195247 a007 Real Root Of -312*x^4+453*x^3+550*x^2+354*x-743 8024962554257808 a008 Real Root of x^3-3798*x-29962 8024962560879691 l006 ln(1151/2568) 8024962563106376 a005 (1/cos(16/181*Pi))^348 8024962563776256 m001 GAMMA(11/12)+Grothendieck^ReciprocalFibonacci 8024962612112004 k002 Champernowne real with 104*n^2-143*n+119 8024962651539091 m009 (1/5*Psi(1,3/4)-5/6)/(2*Catalan+1/4*Pi^2-1/4) 8024962667463092 r009 Re(z^3+c),c=-3/50+25/29*I,n=41 8024962676723254 a007 Real Root Of -775*x^4+278*x^3-768*x^2+634*x+56 8024962689604320 a001 233/1364*843^(4/7) 8024962704643630 a003 cos(Pi*23/111)/sin(Pi*49/107) 8024962712142010 k002 Champernowne real with 209/2*n^2-289/2*n+120 8024962751699692 r002 57th iterates of z^2 + 8024962767090589 m001 LandauRamanujan2nd^BesselI(0,1)-Mills 8024962804213880 m005 (1/3*exp(1)+1/12)/(7/22+9/22*5^(1/2)) 8024962812172016 k002 Champernowne real with 105*n^2-146*n+121 8024962818645843 a007 Real Root Of -90*x^4-710*x^3+203*x^2+963*x+984 8024962852438016 m001 1/Catalan^2/(2^(1/3))^2/exp(sqrt(5)) 8024962903049359 m001 (5^(1/2)+gamma(3))^Sierpinski 8024962907930218 b008 4-13*Sqrt[42] 8024962912202022 k002 Champernowne real with 211/2*n^2-295/2*n+122 8024962936745266 m001 Totient^BesselK(1,1)/(Totient^GAMMA(2/3)) 8024962958031778 a007 Real Root Of -37*x^4+576*x^3+227*x^2+946*x+926 8024962967775833 h001 (-10*exp(3)-7)/(-11*exp(1)+4) 8024962970820370 r009 Re(z^3+c),c=-15/44+36/53*I,n=15 8024962971937188 r005 Re(z^2+c),c=-17/30+50/101*I,n=33 8024962974311552 a007 Real Root Of -968*x^4+759*x^3-729*x^2-480*x+878 8024962986103797 r005 Re(z^2+c),c=-14/13+7/61*I,n=30 8024962986425237 m004 1+1/(6*E^(Sqrt[5]*Pi))+Sqrt[5]*Pi 8024963012232028 k002 Champernowne real with 106*n^2-149*n+123 8024963024136847 r002 7th iterates of z^2 + 8024963064902782 a001 4/55*1134903170^(7/9) 8024963072507644 m001 Gompertz/(gamma(2)^Shi(1)) 8024963089958603 a007 Real Root Of 110*x^4-497*x^3-602*x^2-192*x+753 8024963107553300 m001 1/GAMMA(11/12)^2/ln(Catalan)/GAMMA(5/6)^2 8024963110919919 a007 Real Root Of -11*x^4+169*x^3-682*x^2-445*x+174 8024963112262034 k002 Champernowne real with 213/2*n^2-301/2*n+124 8024963117798877 m005 (1/5*gamma+2)/(5*gamma-1/4) 8024963117798877 m007 (-1/5*gamma-2)/(-5*gamma+1/4) 8024963140344665 m001 GAMMA(23/24)*AlladiGrinstead/MertensB2 8024963194750417 a007 Real Root Of -611*x^4-230*x^3-321*x^2+586*x+49 8024963212292040 k002 Champernowne real with 107*n^2-152*n+125 8024963212363725 m005 (1/3*Zeta(3)+1/2)/(5/9*Zeta(3)+5/11) 8024963215890231 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^21 8024963225223083 m001 (cos(1/5*Pi)-arctan(1/3))/(Gompertz+Trott) 8024963234760765 l006 ln(6319/6847) 8024963279833722 a007 Real Root Of -200*x^4+678*x^3-847*x^2+729*x-307 8024963289280469 q001 1093/1362 8024963291043541 m006 (1/4*ln(Pi)+4/5)/(3/5*ln(Pi)+2/3) 8024963305798200 r005 Re(z^2+c),c=11/56+10/19*I,n=13 8024963312322046 k002 Champernowne real with 215/2*n^2-307/2*n+126 8024963318756294 r009 Im(z^3+c),c=-37/64+11/42*I,n=8 8024963358736236 h001 (-6*exp(1/3)-2)/(-4*exp(3/2)+5) 8024963360958506 r008 a(0)=8,K{-n^6,-12-44*n+7*n^2+12*n^3} 8024963391465568 m008 (1/3*Pi+4/5)/(3/4*Pi^5+2/3) 8024963400862235 m001 (GAMMA(2/3)+Tribonacci)/(ThueMorse-ZetaP(2)) 8024963404623922 m001 BesselJ(1,1)+HardyLittlewoodC3^(5^(1/2)) 8024963412352052 k002 Champernowne real with 108*n^2-155*n+127 8024963489178419 m001 2^(1/3)+Pi*csc(5/12*Pi)/GAMMA(7/12)-Sierpinski 8024963491093571 a001 8/11*76^(1/44) 8024963501251778 l006 ln(4141/9239) 8024963504555495 r005 Im(z^2+c),c=-5/4+21/208*I,n=12 8024963508418283 s002 sum(A148167[n]/((exp(n)+1)*n),n=1..infinity) 8024963512382058 k002 Champernowne real with 217/2*n^2-313/2*n+128 8024963521664860 a007 Real Root Of 128*x^4-998*x^3-948*x^2+561*x+623 8024963549455222 m005 (1/2*gamma-7/8)/(1/2*Catalan+3/11) 8024963578176466 m001 (gamma(1)+polylog(4,1/2))/(Landau+Trott) 8024963612412064 k002 Champernowne real with 109*n^2-158*n+129 8024963618832430 r005 Im(z^2+c),c=-65/58+4/41*I,n=7 8024963648136918 a007 Real Root Of 963*x^4+359*x^3+307*x^2-94*x-487 8024963693727653 r008 a(0)=8,K{-n^6,-6-38*n-26*n^2+31*n^3} 8024963712442070 k002 Champernowne real with 219/2*n^2-319/2*n+130 8024963714570582 a001 18/5*233^(5/34) 8024963718377996 r002 10th iterates of z^2 + 8024963736887157 r004 Im(z^2+c),c=3/34-19/22*I,z(0)=I,n=6 8024963739579002 m007 (-gamma-3*ln(2)+1/2*Pi+2/3)/(-1/4*gamma+2/3) 8024963759129771 a007 Real Root Of -230*x^4+995*x^3+166*x^2-376*x-224 8024963762035610 a001 2207/21*46368^(23/57) 8024963768470429 a007 Real Root Of -355*x^4+146*x^3-42*x^2+267*x+464 8024963798619467 r005 Re(z^2+c),c=-73/78+7/27*I,n=21 8024963806874064 m001 (Otter-Trott2nd)/(cos(1/12*Pi)+FeigenbaumD) 8024963812472076 k002 Champernowne real with 110*n^2-161*n+131 8024963862281951 a001 167761/233*6557470319842^(12/17) 8024963862567090 a001 54018521/233*1836311903^(12/17) 8024963862571377 a001 17393796001/233*514229^(12/17) 8024963863247833 l006 ln(2990/6671) 8024963863454917 a007 Real Root Of 531*x^4-14*x^3-918*x^2-720*x+956 8024963875896751 r005 Re(z^2+c),c=35/78+10/31*I,n=7 8024963882747071 a007 Real Root Of 937*x^4-766*x^3-498*x^2-252*x-666 8024963889539945 m001 ln(2)/ln(10)/(OneNinth^TreeGrowth2nd) 8024963912502082 k002 Champernowne real with 221/2*n^2-325/2*n+132 8024963925666496 p001 sum(1/(439*n+356)/n/(16^n),n=1..infinity) 8024963932725121 r002 8th iterates of z^2 + 8024963956172539 m005 (1/2*5^(1/2)+3)/(3*2^(1/2)+8/9) 8024963959029302 a007 Real Root Of -809*x^4+777*x^3-145*x^2-185*x+682 8024963969122618 m009 (3*Psi(1,3/4)+6)/(3/4*Psi(1,2/3)-3/5) 8024963999983840 m002 E^Pi/3+Pi*Csch[Pi]*Log[Pi] 8024964012532088 k002 Champernowne real with 111*n^2-164*n+133 8024964028878366 a007 Real Root Of -959*x^4+503*x^3-937*x^2-607*x+774 8024964035658110 r005 Im(z^2+c),c=-27/58+3/22*I,n=29 8024964039493678 r005 Re(z^2+c),c=-5/6+14/215*I,n=7 8024964041007382 r005 Re(z^2+c),c=-28/29+14/53*I,n=19 8024964041492789 s001 sum(exp(-3*Pi/4)^n*A168452[n],n=1..infinity) 8024964078540859 a003 sin(Pi*19/118)/sin(Pi*13/63) 8024964105097128 a001 1/141*46368^(7/31) 8024964112562094 k002 Champernowne real with 223/2*n^2-331/2*n+134 8024964119804487 r005 Im(z^2+c),c=-5/28+16/19*I,n=55 8024964128941038 h001 (-4*exp(7)-5)/(-7*exp(2)-3) 8024964138745148 b008 8+Sqrt[Pi]/71 8024964144621646 m001 1/log(2+sqrt(3))*exp(FeigenbaumB)^2*sqrt(2)^2 8024964157626820 r008 a(0)=8,K{-n^6,-22-3*n^3+2*n^2-18*n} 8024964187328659 a007 Real Root Of 183*x^4-945*x^3-85*x^2+171*x+330 8024964197441433 a007 Real Root Of 33*x^4-976*x^3+887*x^2+849*x-408 8024964207583690 a001 4181/843*123^(1/10) 8024964212592100 k002 Champernowne real with 112*n^2-167*n+135 8024964228797425 b008 ArcCsch[Zeta[2*Sqrt[Pi]]] 8024964232923425 m001 1/GAMMA(5/24)^2/GAMMA(19/24)^2/exp(cosh(1)) 8024964260009579 r009 Re(z^3+c),c=-3/50+25/29*I,n=43 8024964292752168 m005 (1/2*gamma-7/9)/(-47/154+9/22*5^(1/2)) 8024964312622106 k002 Champernowne real with 225/2*n^2-337/2*n+136 8024964323381157 a007 Real Root Of 270*x^4-443*x^3+569*x^2-336*x-977 8024964325007686 m001 TreeGrowth2nd^2*Salem*exp((2^(1/3))) 8024964367120617 m005 (3*2^(1/2)-4/5)/(1/4*Catalan+1/5) 8024964378412920 a007 Real Root Of -95*x^4-689*x^3+502*x^2-810*x-910 8024964381144073 a007 Real Root Of -980*x^4+973*x^3+74*x^2+64*x+913 8024964385215139 m001 (LaplaceLimit+Otter)/(2*Pi/GAMMA(5/6)-Shi(1)) 8024964387392122 b008 -3/4+Sqrt[77] 8024964388166458 a007 Real Root Of -525*x^4+838*x^3-641*x^2-331*x+798 8024964390489810 a007 Real Root Of -486*x^4-969*x^3-345*x^2+739*x+516 8024964401361450 r005 Im(z^2+c),c=-29/60+7/59*I,n=9 8024964412652112 k002 Champernowne real with 113*n^2-170*n+137 8024964420699919 m001 (Ei(1,1)+exp(-1/2*Pi))/(Landau-Trott) 8024964431103513 a007 Real Root Of 902*x^4+659*x^3+119*x^2+141*x+3 8024964457363407 m001 (ln(Pi)+Magata)/(Stephens-ZetaQ(3)) 8024964497077002 a007 Real Root Of 263*x^4-440*x^3-505*x^2-300*x-252 8024964512682118 k002 Champernowne real with 227/2*n^2-343/2*n+138 8024964522237098 a007 Real Root Of 698*x^4-531*x^3+332*x^2+128*x-675 8024964548197506 m001 (-Stephens+StronglyCareFree)/(Mills-Shi(1)) 8024964555525162 m005 (1/2*Catalan+7/11)/(4/7*2^(1/2)+5/9) 8024964567641167 r005 Re(z^2+c),c=-127/126+15/47*I,n=7 8024964571421965 r009 Re(z^3+c),c=-3/50+25/29*I,n=55 8024964574010721 r009 Re(z^3+c),c=-3/50+25/29*I,n=57 8024964575271233 m001 MertensB3^GAMMA(5/6)/(MertensB3^Ei(1)) 8024964579364972 r009 Re(z^3+c),c=-3/50+25/29*I,n=59 8024964582914311 r009 Re(z^3+c),c=-3/50+25/29*I,n=61 8024964584327440 r009 Re(z^3+c),c=-3/50+25/29*I,n=53 8024964584332220 r009 Re(z^3+c),c=-3/50+25/29*I,n=63 8024964594762548 a007 Real Root Of 126*x^4+915*x^3-729*x^2+447*x+846 8024964610764018 m007 (-3/4*gamma-9/4*ln(2)+3/8*Pi-2/3)/(-2*gamma+3) 8024964612712124 k002 Champernowne real with 114*n^2-173*n+139 8024964617964199 m001 (Zeta(1,-1)+FeigenbaumDelta)/(1-Psi(2,1/3)) 8024964633930922 r009 Re(z^3+c),c=-3/50+25/29*I,n=51 8024964670596352 a001 1/5*75025^(17/23) 8024964672244893 r002 48th iterates of z^2 + 8024964678378649 l006 ln(1839/4103) 8024964691995508 r008 a(0)=8,K{-n^6,85+59*n^3-90*n^2-90*n} 8024964696233506 r005 Re(z^2+c),c=-89/82+3/11*I,n=13 8024964703863918 a001 11/225851433717*3^(5/11) 8024964712742130 k002 Champernowne real with 229/2*n^2-349/2*n+140 8024964715272323 m001 (Kac-Kolakoski)/(Riemann2ndZero+ZetaQ(3)) 8024964735649127 r009 Re(z^3+c),c=-3/50+25/29*I,n=49 8024964742241346 m006 (1/2*Pi-5/6)/(4*exp(Pi)-2/3) 8024964758295036 a007 Real Root Of -765*x^4-684*x^3-612*x^2+759*x+967 8024964812772136 k002 Champernowne real with 115*n^2-176*n+141 8024964821486273 r009 Re(z^3+c),c=-3/50+25/29*I,n=45 8024964822433505 m001 (2^(1/3)+BesselI(1,2))/(Gompertz+Otter) 8024964826987918 a007 Real Root Of -937*x^4-23*x^3-399*x^2+815*x+68 8024964834791002 a001 119218851371/3*4807526976^(5/21) 8024964834800907 a001 440719107401*196418^(5/21) 8024964854194002 r009 Re(z^3+c),c=-3/50+25/29*I,n=47 8024964858737622 b008 3*Cos[13/10] 8024964862602692 a003 sin(Pi*13/49)/sin(Pi*40/107) 8024964882214482 r009 Im(z^3+c),c=-55/122+1/30*I,n=3 8024964885996311 m005 (1/2*5^(1/2)+1/10)/(5/9*3^(1/2)+5/9) 8024964891217474 m005 (1/2*Catalan-5/8)/(4/7*2^(1/2)-3/5) 8024964912802142 k002 Champernowne real with 231/2*n^2-355/2*n+142 8024964945921954 a007 Real Root Of -35*x^4-381*x^3-840*x^2-200*x+745 8024964952055605 m001 Psi(2,1/3)^gamma(1)/(Khinchin^gamma(1)) 8024964952440356 s002 sum(A156487[n]/(10^n-1),n=1..infinity) 8024964953374160 m001 (-ln(2)+sin(1/12*Pi))/(1+Psi(2,1/3)) 8024964954530116 m001 1/GAMMA(5/6)*ln(HardHexagonsEntropy)*exp(1) 8024964991858554 r005 Re(z^2+c),c=-5/6+7/128*I,n=63 8024965012832148 k002 Champernowne real with 116*n^2-179*n+143 8024965019508762 a007 Real Root Of 282*x^4+286*x^3+158*x^2-921*x-810 8024965021431940 a007 Real Root Of -220*x^4-340*x^3-311*x^2+912*x-71 8024965022542163 a007 Real Root Of -343*x^4+714*x^3+680*x^2+827*x+737 8024965028943921 r005 Im(z^2+c),c=13/42+17/35*I,n=51 8024965031149817 a007 Real Root Of 59*x^4-875*x^3+515*x^2+135*x-700 8024965039640786 m005 (1/2+1/2*5^(1/2))/(8/9*exp(1)-2/5) 8024965044237169 a005 (1/cos(39/148*Pi))^23 8024965048849072 a003 sin(Pi*23/78)/sin(Pi*17/36) 8024965053434877 m005 (-7/12+1/4*5^(1/2))/(3/10*2^(1/2)-8/11) 8024965060499307 m001 (cos(1)+HardyLittlewoodC4)^MertensB3 8024965061378687 m001 (exp(-1/2*Pi)-exp(1))/(Landau+Sierpinski) 8024965063113695 m001 FeigenbaumKappa*ln(Artin)*BesselK(1,1) 8024965068198480 m001 ln(FeigenbaumB)*CareFree^2*log(1+sqrt(2)) 8024965083387628 r005 Im(z^2+c),c=-3/50+25/31*I,n=55 8024965112862154 k002 Champernowne real with 233/2*n^2-361/2*n+144 8024965117151265 a007 Real Root Of 999*x^4+143*x^3+566*x^2-111*x-794 8024965120970801 r005 Re(z^2+c),c=-33/31+4/23*I,n=40 8024965128722125 a007 Real Root Of 495*x^4-384*x^3-499*x^2-83*x-149 8024965135561350 a003 cos(Pi*25/101)/cos(Pi*25/53) 8024965150370790 a007 Real Root Of -966*x^4+255*x^3-480*x^2+869*x+73 8024965209647172 r002 17th iterates of z^2 + 8024965210197990 a003 cos(Pi*21/104)*sin(Pi*26/55) 8024965212892160 k002 Champernowne real with 117*n^2-182*n+145 8024965222223557 m005 (41/36+1/4*5^(1/2))/(91/80+7/16*5^(1/2)) 8024965225272275 m001 ln(Pi)^(Zeta(1,2)/Stephens) 8024965229175463 h001 (1/9*exp(1)+1/4)/(9/11*exp(2)+5/6) 8024965236610664 l006 ln(4366/9741) 8024965237214407 p001 sum(1/(283*n+110)/n/(32^n),n=1..infinity) 8024965272158442 r002 6th iterates of z^2 + 8024965272660499 a007 Real Root Of 270*x^4-764*x^3-228*x^2+476*x+22 8024965275358893 r009 Re(z^3+c),c=-3/29+21/62*I,n=11 8024965300430736 a003 cos(Pi*1/113)-sin(Pi*6/95) 8024965301361402 m005 (1/3*Catalan+2/9)/(2/3*5^(1/2)-5/6) 8024965312922166 k002 Champernowne real with 235/2*n^2-367/2*n+146 8024965324733802 m001 (MertensB1+Mills)/(cos(1/5*Pi)+ln(Pi)) 8024965325936199 q001 2893/3605 8024965332722752 m008 (2/3*Pi^3-5/6)/(1/3*Pi-4/5) 8024965334486305 m001 ln(5)*(DuboisRaymond-ln(2)) 8024965339329088 a001 3/103682*4^(39/53) 8024965350132850 a001 75025/18*843^(18/41) 8024965362944904 r005 Im(z^2+c),c=13/34+5/64*I,n=8 8024965374343102 m001 (-Khinchin+Paris)/(cos(1)+FeigenbaumD) 8024965398299968 h001 (1/9*exp(1)+3/8)/(1/5*exp(1)+3/10) 8024965398306407 a007 Real Root Of 206*x^4-929*x^3+568*x^2-426*x+31 8024965412952172 k002 Champernowne real with 118*n^2-185*n+147 8024965417860362 l006 ln(6690/7249) 8024965441703201 a001 1/969323029*76^(9/19) 8024965452740675 a001 1597/521*322^(1/6) 8024965462616269 r005 Re(z^2+c),c=-37/64+29/51*I,n=13 8024965465047733 r002 45th iterates of z^2 + 8024965490147875 m001 (ln(2)/ln(10)+GAMMA(2/3))/(BesselI(1,2)+Bloch) 8024965505037843 m001 2^(1/2)*Thue-ThueMorse 8024965512940372 m001 (Catalan+GlaisherKinkelin)/Trott2nd 8024965512982178 k002 Champernowne real with 237/2*n^2-373/2*n+148 8024965518117382 r005 Im(z^2+c),c=-23/40+29/43*I,n=7 8024965531566628 r005 Im(z^2+c),c=-15/122+49/60*I,n=40 8024965589429619 a007 Real Root Of -808*x^4-691*x^3-814*x^2-885*x-208 8024965589991148 m005 (1/2*3^(1/2)+7/9)/(67/60+5/12*5^(1/2)) 8024965613012184 k002 Champernowne real with 119*n^2-188*n+149 8024965642858636 l006 ln(2527/5638) 8024965662984077 s001 sum(exp(-3*Pi)^(n-1)*A193812[n],n=1..infinity) 8024965664727461 a003 cos(Pi*27/116)+cos(Pi*13/27) 8024965666734547 m005 (1/3*gamma-1/10)/(3/5*2^(1/2)-2) 8024965678378171 a007 Real Root Of 454*x^4+39*x^3-170*x^2+22*x-41 8024965710928517 a001 3571/514229*1597^(1/51) 8024965713042190 k002 Champernowne real with 239/2*n^2-379/2*n+150 8024965721888086 m005 (1/2*2^(1/2)+7/8)/(8/11*2^(1/2)-3) 8024965773365663 a007 Real Root Of -625*x^4+756*x^3+473*x^2+118*x+440 8024965813072196 k002 Champernowne real with 120*n^2-191*n+151 8024965815599852 a001 55/199*123^(7/10) 8024965825477576 m001 (BesselI(0,2)-gamma)/(GAMMA(7/12)+Lehmer) 8024965879014126 a007 Real Root Of 198*x^4-951*x^3+551*x^2+99*x-849 8024965906800188 m001 (Otter-Tetranacci)/(AlladiGrinstead+Bloch) 8024965910465941 r008 a(0)=8,K{-n^6,2+42*n^3-55*n^2-28*n} 8024965917708349 a007 Real Root Of 82*x^4+550*x^3-986*x^2-872*x+661 8024965956193757 r009 Re(z^3+c),c=-11/94+21/47*I,n=13 8024965976794694 r008 a(0)=8,K{-n^6,-29-39*n+45*n^2-18*n^3} 8024965999391446 m004 Log[Sqrt[5]*Pi]/3+Tan[Sqrt[5]*Pi]/6 8024966021299372 a007 Real Root Of 513*x^4-877*x^3-493*x^2-357*x-635 8024966029329265 r005 Re(z^2+c),c=3/44+5/11*I,n=21 8024966040760166 a007 Real Root Of 9*x^4-252*x^3-341*x^2-457*x+39 8024966047055530 a007 Real Root Of 200*x^4-591*x^3+907*x^2+757*x-365 8024966075920926 a007 Real Root Of -926*x^4+748*x^3+164*x^2-562*x+214 8024966086380791 m001 1/exp(BesselK(0,1))/Robbin*cos(Pi/5) 8024966090585091 r005 Im(z^2+c),c=3/64+37/58*I,n=58 8024966097045539 r002 2th iterates of z^2 + 8024966130001737 m005 (1/2*gamma+1/2)/(3/5*gamma+7/11) 8024966172149216 s001 sum(exp(-Pi)^n*A188290[n],n=1..infinity) 8024966172149216 s002 sum(A188290[n]/(exp(pi*n)),n=1..infinity) 8024966194547146 l006 ln(3215/7173) 8024966227387931 r009 Re(z^3+c),c=-11/102+3/8*I,n=14 8024966234174110 a003 sin(Pi*8/115)*sin(Pi*7/58) 8024966244227169 r002 21th iterates of z^2 + 8024966245068263 m002 -36/Pi+3*Log[Pi] 8024966248427147 a001 9349/1346269*1597^(1/51) 8024966280234875 r008 a(0)=8,K{-n^6,-64+21*n^3-46*n^2+52*n} 8024966286725887 r002 3th iterates of z^2 + 8024966309205907 m005 (1/2*Catalan-5/12)/(6/11*gamma+1/5) 8024966316059725 a001 55/54018521*18^(5/7) 8024966329015379 a007 Real Root Of 706*x^4+275*x^3+379*x^2-257*x-601 8024966357468769 a007 Real Root Of -988*x^4-107*x^3+54*x^2+206*x+485 8024966375313361 a001 2161/311187*1597^(1/51) 8024966389508160 r009 Im(z^3+c),c=-9/44+49/61*I,n=5 8024966404991851 m001 1/GAMMA(5/12)*exp(Conway)*arctan(1/2) 8024966406848733 r005 Re(z^2+c),c=-3/106+13/47*I,n=5 8024966428424517 m001 FeigenbaumMu^Rabbit/HardyLittlewoodC4 8024966444864707 g002 Psi(2/11)+Psi(1/8)-Psi(7/11)-Psi(2/9) 8024966454373895 m005 (1/3*gamma+1/2)/(6*2^(1/2)+1/7) 8024966462931881 a007 Real Root Of 691*x^4-371*x^3+449*x^2-210*x-936 8024966478794725 a003 cos(Pi*17/88)-cos(Pi*41/83) 8024966486560232 m005 (1/2*Pi+9/11)/(8/11*exp(1)+1) 8024966490556039 a007 Real Root Of -760*x^4+722*x^3+811*x^2+380*x+471 8024966490803924 a001 987/3571*322^(7/12) 8024966496352824 a001 1364/21*63245986^(10/11) 8024966509109931 m005 (1/2*Catalan+5/11)/(4/11*Zeta(3)+7/10) 8024966551738230 l006 ln(3903/8708) 8024966562639322 q001 18/2243 8024966562639322 q001 9/11215 8024966572113711 a001 29*28657^(11/34) 8024966580552215 h001 (2/3*exp(1)+2/7)/(7/9*exp(1)+1/2) 8024966580619569 a001 2889/416020*1597^(1/51) 8024966589817236 m001 Trott2nd^(2*Pi/GAMMA(5/6)/cos(1)) 8024966625955802 p001 sum(1/(529*n+447)/n/(128^n),n=1..infinity) 8024966641507858 a003 sin(Pi*24/109)/sin(Pi*31/106) 8024966642140176 r005 Im(z^2+c),c=-16/21+3/50*I,n=12 8024966666453176 a007 Real Root Of -798*x^4+808*x^3+206*x^2-31*x+591 8024966680965623 a007 Real Root Of 273*x^4-636*x^3-169*x^2-199*x+484 8024966691591223 a003 sin(Pi*1/113)-sin(Pi*29/93) 8024966697227766 r008 a(0)=8,K{-n^6,-65+12*n^3-29*n^2+38*n} 8024966728813540 m003 -1+Sqrt[5]/4+16*E^(1/2+Sqrt[5]/2) 8024966734547243 a007 Real Root Of -765*x^4+764*x^3-252*x^2-322*x+616 8024966736282257 a007 Real Root Of 879*x^4+203*x^3+525*x^2+57*x-552 8024966754253455 m001 (-FellerTornier+Niven)/(sin(1)+ln(2^(1/2)+1)) 8024966794408825 m005 (17/20+1/4*5^(1/2))/(8/11*2^(1/2)+8/11) 8024966801873125 p004 log(10243/4591) 8024966805181199 a003 cos(Pi*39/97)*cos(Pi*17/41) 8024966818962558 m001 cos(Pi/12)*exp(OneNinth)^2*sin(Pi/12)^2 8024966819845802 r005 Re(z^2+c),c=-11/98+27/32*I,n=50 8024966821051555 r002 22th iterates of z^2 + 8024966840118355 r002 3th iterates of z^2 + 8024966850514740 m005 (1/2*Catalan+6/7)/(5/7*Zeta(3)-7/8) 8024966885460210 m001 (Shi(1)-Zeta(3))/(Bloch+MertensB3) 8024966911773267 a007 Real Root Of 501*x^4-208*x^3-593*x^2-879*x+987 8024966921132409 r005 Im(z^2+c),c=-9/74+19/23*I,n=22 8024966948506960 a007 Real Root Of 994*x^4+545*x^3+775*x^2+356*x-344 8024966972656599 h001 (5/9*exp(1)+4/11)/(1/5*exp(2)+6/7) 8024967012709048 r005 Im(z^2+c),c=-5/8+81/209*I,n=11 8024967029297387 a003 sin(Pi*34/115)/sin(Pi*12/25) 8024967062367858 a007 Real Root Of -493*x^4+836*x^3-715*x^2-552*x+654 8024967064225006 r009 Im(z^3+c),c=-3/44+9/11*I,n=13 8024967126430258 a007 Real Root Of -538*x^4+433*x^3+929*x^2+430*x-944 8024967130067059 m001 Pi*exp(Pi)/Catalan+ln(2^(1/2)+1) 8024967142721853 a007 Real Root Of -511*x^4-863*x^3-768*x^2+33*x+287 8024967143722416 a007 Real Root Of -737*x^4+212*x^3-293*x^2-127*x+502 8024967188310741 a003 cos(Pi*18/83)+cos(Pi*30/61) 8024967214155095 r005 Re(z^2+c),c=10/27+8/29*I,n=20 8024967215468830 a007 Real Root Of -946*x^4-209*x^3-875*x^2-973*x+67 8024967224645667 r005 Re(z^2+c),c=-53/110+37/63*I,n=34 8024967244981119 m005 (1/2*2^(1/2)+2/11)/(6/11*exp(1)-3/8) 8024967247310853 a007 Real Root Of -102*x^4+912*x^3-807*x^2-297*x+795 8024967259073125 m001 (AlladiGrinstead-Catalan)/(-Kolakoski+Robbin) 8024967268012691 a007 Real Root Of 296*x^4+17*x^3+558*x^2+292*x-239 8024967304662092 r005 Im(z^2+c),c=-95/86+2/21*I,n=11 8024967347328392 a005 (1/cos(2/79*Pi))^1385 8024967357543536 r002 15th iterates of z^2 + 8024967360486793 a001 2584/9349*322^(7/12) 8024967371550502 l006 ln(7061/7651) 8024967385985321 m001 (Kac+Landau)/(FeigenbaumB+GolombDickman) 8024967386593863 r008 a(0)=8,K{-n^6,18+50*n^3-71*n^2-36*n} 8024967389874374 m001 1/exp(TreeGrowth2nd)/MertensB1^2/GAMMA(19/24) 8024967418450066 a007 Real Root Of -798*x^4+556*x^3-839*x^2-650*x+637 8024967462680729 m001 (5^(1/2)-OrthogonalArrays)/Zeta(5) 8024967465793533 s002 sum(A110461[n]/((2*n)!),n=1..infinity) 8024967487371803 a001 6765/24476*322^(7/12) 8024967505884077 a001 17711/64079*322^(7/12) 8024967508584981 a001 46368/167761*322^(7/12) 8024967508979038 a001 121393/439204*322^(7/12) 8024967509036530 a001 317811/1149851*322^(7/12) 8024967509044918 a001 832040/3010349*322^(7/12) 8024967509046141 a001 2178309/7881196*322^(7/12) 8024967509046320 a001 5702887/20633239*322^(7/12) 8024967509046346 a001 14930352/54018521*322^(7/12) 8024967509046350 a001 39088169/141422324*322^(7/12) 8024967509046350 a001 102334155/370248451*322^(7/12) 8024967509046350 a001 267914296/969323029*322^(7/12) 8024967509046350 a001 701408733/2537720636*322^(7/12) 8024967509046350 a001 1836311903/6643838879*322^(7/12) 8024967509046350 a001 4807526976/17393796001*322^(7/12) 8024967509046350 a001 12586269025/45537549124*322^(7/12) 8024967509046350 a001 32951280099/119218851371*322^(7/12) 8024967509046350 a001 86267571272/312119004989*322^(7/12) 8024967509046350 a001 225851433717/817138163596*322^(7/12) 8024967509046350 a001 1548008755920/5600748293801*322^(7/12) 8024967509046350 a001 139583862445/505019158607*322^(7/12) 8024967509046350 a001 53316291173/192900153618*322^(7/12) 8024967509046350 a001 20365011074/73681302247*322^(7/12) 8024967509046350 a001 7778742049/28143753123*322^(7/12) 8024967509046350 a001 2971215073/10749957122*322^(7/12) 8024967509046350 a001 1134903170/4106118243*322^(7/12) 8024967509046350 a001 433494437/1568397607*322^(7/12) 8024967509046351 a001 165580141/599074578*322^(7/12) 8024967509046351 a001 63245986/228826127*322^(7/12) 8024967509046352 a001 24157817/87403803*322^(7/12) 8024967509046362 a001 9227465/33385282*322^(7/12) 8024967509046430 a001 3524578/12752043*322^(7/12) 8024967509046898 a001 1346269/4870847*322^(7/12) 8024967509050102 a001 514229/1860498*322^(7/12) 8024967509072062 a001 196418/710647*322^(7/12) 8024967509222578 a001 75025/271443*322^(7/12) 8024967510254232 a001 28657/103682*322^(7/12) 8024967517325291 a001 10946/39603*322^(7/12) 8024967553300097 r002 4th iterates of z^2 + 8024967562225524 m001 1/GAMMA(3/4)^2/exp(Robbin)^2*GAMMA(5/12)^2 8024967565791051 a001 4181/15127*322^(7/12) 8024967567968995 a003 cos(Pi*17/96)*sin(Pi*13/33) 8024967583936629 a001 439204*6557470319842^(3/17) 8024967583979173 a001 7881196*514229^(3/17) 8024967583980549 a001 1860498*1836311903^(3/17) 8024967605621344 a007 Real Root Of -618*x^4+35*x^3-576*x^2+184*x+793 8024967612485188 m006 (4*Pi^2-2/5)/(Pi^2-5) 8024967612485188 m008 (4*Pi^2-2/5)/(Pi^2-5) 8024967614620210 m001 (Shi(1)-cos(1))/(-arctan(1/3)+cos(1/12*Pi)) 8024967645336239 r005 Re(z^2+c),c=9/28+9/26*I,n=38 8024967675710415 a007 Real Root Of 536*x^4-435*x^3+625*x^2+245*x-653 8024967708865646 h001 (1/5*exp(2)+7/8)/(3/11*exp(2)+11/12) 8024967725756041 a007 Real Root Of 706*x^4-342*x^3-902*x^2-535*x-318 8024967731762952 m005 (1/3*Zeta(3)-1/8)/(11/12*Pi+5/9) 8024967761391207 a007 Real Root Of -43*x^4+280*x^3+139*x^2+471*x+451 8024967765250942 m001 cos(1/12*Pi)/exp(1/Pi)/ZetaQ(3) 8024967765936969 r005 Im(z^2+c),c=-35/82+9/13*I,n=7 8024967775455374 a007 Real Root Of -59*x^4+209*x^3-693*x^2+90*x+651 8024967842153830 m001 1/GAMMA(23/24)^2*GAMMA(1/3)/exp(gamma)^2 8024967842575493 a001 233/521*521^(6/13) 8024967853449220 r005 Im(z^2+c),c=-7/15+14/29*I,n=7 8024967871996610 a007 Real Root Of 372*x^4-725*x^3+642*x^2+808*x-294 8024967881033408 a007 Real Root Of 797*x^4+377*x^3+749*x^2+587*x-147 8024967893716321 a007 Real Root Of 947*x^4-51*x^3+575*x^2+246*x-592 8024967897980306 a001 1597/5778*322^(7/12) 8024967899862732 m001 (-CareFree+FeigenbaumB)/(Ei(1)-ln(2)/ln(10)) 8024967921712199 r005 Re(z^2+c),c=-21/25+1/42*I,n=21 8024967963346800 a007 Real Root Of -727*x^4+164*x^3+752*x^2+428*x-611 8024967987809250 a001 2207/317811*1597^(1/51) 8024967989756722 q001 2507/3124 8024968015211428 m005 (-1/30+1/6*5^(1/2))/(6/11*2^(1/2)-5) 8024968019426720 h001 (11/12*exp(1)+1/5)/(3/8*exp(2)+7/12) 8024968029427383 m001 1/Zeta(5)^2/OneNinth^2 8024968034777776 r005 Re(z^2+c),c=11/86+37/64*I,n=23 8024968053193205 m001 (BesselK(1,1)-ZetaP(3))/(GAMMA(3/4)-ln(2)) 8024968074226688 r002 3th iterates of z^2 + 8024968100922695 r005 Im(z^2+c),c=-2/9+31/38*I,n=10 8024968111373176 m001 1/ln((3^(1/3)))/Backhouse/GAMMA(7/12)^2 8024968119541178 r008 a(0)=0,K{-n^6,-58+35*n^3-52*n^2+63*n} 8024968119956562 r005 Re(z^2+c),c=2/11+8/29*I,n=23 8024968124071219 g006 Psi(1,1/10)+2*Psi(1,3/4)-Psi(1,1/5) 8024968139086606 m005 (1/2*gamma+3/11)/(1/4*Zeta(3)-1) 8024968169422237 a007 Real Root Of 694*x^4+186*x^3-71*x^2+71*x-89 8024968190739572 r002 13th iterates of z^2 + 8024968197650420 r002 41th iterates of z^2 + 8024968219885850 a007 Real Root Of -664*x^4+977*x^3+508*x^2+525*x-978 8024968220879538 l006 ln(688/1535) 8024968233195090 a007 Real Root Of 55*x^4+486*x^3+450*x^2+703*x-275 8024968233875729 r005 Re(z^2+c),c=-87/106+12/53*I,n=3 8024968292686178 m001 1/Salem^2*ln(Magata)^2*exp(1)^2 8024968298961721 r009 Im(z^3+c),c=-27/44+5/7*I,n=3 8024968311408076 m001 OneNinth/(FeigenbaumKappa^cos(1/12*Pi)) 8024968320256422 a007 Real Root Of 651*x^4+881*x^3-32*x^2-770*x-412 8024968339496182 r002 17th iterates of z^2 + 8024968345044719 r009 Im(z^3+c),c=-17/29+17/24*I,n=6 8024968357769808 m002 -Log[Pi]^(-1)+Log[Pi]-ProductLog[Pi] 8024968372800923 a007 Real Root Of -384*x^4+924*x^3-78*x^2+71*x+744 8024968379998422 a007 Real Root Of -730*x^4-490*x^3-184*x^2+233*x+355 8024968393183582 m005 (1/3*gamma+1/9)/(1/12*Catalan-5/11) 8024968393774216 a007 Real Root Of 90*x^4-563*x^3+593*x^2+794*x-73 8024968401371404 a007 Real Root Of 729*x^4-660*x^3+768*x^2+653*x-614 8024968418830327 r005 Re(z^2+c),c=11/48+35/58*I,n=7 8024968449086816 r005 Im(z^2+c),c=-19/31+9/61*I,n=39 8024968452646581 r005 Im(z^2+c),c=-73/90+1/24*I,n=27 8024968458402758 m001 TreeGrowth2nd^(sin(1/12*Pi)/cos(1/12*Pi)) 8024968461106093 b008 8+ArcCoth[2]/22 8024968475369382 g006 2*Psi(1,7/8)-Psi(1,6/7)-Psi(1,5/7) 8024968480315058 m001 MertensB2/GAMMA(5/6)*ZetaQ(3) 8024968504335134 a007 Real Root Of -633*x^4+561*x^3-605*x^2-192*x+788 8024968538686173 r005 Re(z^2+c),c=2/17+17/47*I,n=12 8024968540909322 r008 a(0)=8,K{-n^6,-55-10*n^3+45*n^2-17*n} 8024968648175847 r005 Im(z^2+c),c=-2/17+22/27*I,n=49 8024968669689076 m001 (arctan(1/2)+GAMMA(7/12))/(Cahen+Tribonacci) 8024968671053202 m001 (Artin+PrimesInBinary)/(gamma(1)+GAMMA(11/12)) 8024968693137514 r005 Re(z^2+c),c=-1/18+37/59*I,n=16 8024968707344512 a007 Real Root Of 938*x^4-767*x^3-282*x^2+644*x-87 8024968713872941 r005 Im(z^2+c),c=5/21+1/46*I,n=38 8024968715940369 a007 Real Root Of -980*x^4-538*x^3-674*x^2+458*x+930 8024968725698392 m001 (Niven-sin(1/12*Pi)*ErdosBorwein)/ErdosBorwein 8024968754162235 p001 sum(1/(197*n+125)/(125^n),n=0..infinity) 8024968767317149 m006 (2/3*exp(2*Pi)+3/4)/(2/5*ln(Pi)+4) 8024968789013732 q001 3214/4005 8024968803619509 a008 Real Root of (18+16*x-4*x^2+5*x^3) 8024968813978138 m001 (-Ei(1)+Ei(1,1))/(BesselI(0,1)-Shi(1)) 8024968814674889 a001 2/2178309*4181^(13/50) 8024968832421335 r005 Re(z^2+c),c=-59/58+10/33*I,n=16 8024968835359715 r001 14i'th iterates of 2*x^2-1 of 8024968882143863 r005 Im(z^2+c),c=19/110+2/43*I,n=7 8024968901190519 m005 (1/2*exp(1)-2/5)/(4/7*Pi-3/5) 8024968952575092 s002 sum(A203012[n]/(n^3*pi^n+1),n=1..infinity) 8024968970119969 a007 Real Root Of -607*x^4+993*x^3+579*x^2-49*x-595 8024969011744611 m001 FeigenbaumC-MertensB2^FeigenbaumB 8024969016000725 a001 987/199*76^(1/9) 8024969024466415 g002 Psi(7/10)+Psi(5/7)-Psi(7/9)-Psi(1/9) 8024969056842288 p004 log(17387/7793) 8024969058313218 a001 322*144^(11/17) 8024969059983727 m001 Zeta(5)/(3^(1/2)-TreeGrowth2nd) 8024969066392160 r002 40th iterates of z^2 + 8024969102751579 a007 Real Root Of 354*x^4-925*x^3+998*x^2+392*x-953 8024969115697714 r002 27th iterates of z^2 + 8024969120822802 a007 Real Root Of -899*x^4+296*x^3-330*x^2+22*x+756 8024969121705281 r005 Im(z^2+c),c=-17/27+25/61*I,n=46 8024969127729657 r005 Im(z^2+c),c=-9/16+9/62*I,n=43 8024969130187045 l006 ln(7432/8053) 8024969131876026 r008 a(0)=8,K{-n^6,13-40*n-22*n^2+8*n^3} 8024969148751383 a001 47/10946*2504730781961^(10/11) 8024969149506752 h001 (7/11*exp(2)+7/8)/(2/9*exp(1)+1/11) 8024969157945120 m001 Rabbit/(Khinchin-FeigenbaumMu) 8024969177602923 m001 exp(1)/(ReciprocalFibonacci+Trott2nd) 8024969179191068 m006 (4*exp(2*Pi)+2/3)/(1/2*exp(2*Pi)-3/4) 8024969240425374 r005 Re(z^2+c),c=-7/46+43/52*I,n=17 8024969242282093 a007 Real Root Of -948*x^4+707*x^3+475*x^2-903*x-272 8024969251782161 m001 1/GAMMA(1/24)^2/ln(RenyiParking)*GAMMA(17/24) 8024969269849761 a007 Real Root Of 761*x^4-887*x^3-507*x^2+367*x-153 8024969272645463 m005 (1/2*Pi-1/8)/(3/5*Pi-1/12) 8024969288710825 r009 Re(z^3+c),c=-5/62+2/33*I,n=3 8024969291915069 m001 1/GAMMA(23/24)*Rabbit*exp(GAMMA(3/4))^2 8024969314016424 a007 Real Root Of 960*x^4+112*x^3-123*x^2-299*x-501 8024969314261887 r005 Im(z^2+c),c=-33/58+7/48*I,n=55 8024969323671406 a007 Real Root Of 6*x^4+491*x^3+768*x^2+443*x+258 8024969371585805 a007 Real Root Of 595*x^4-997*x^3-198*x^2-114*x-726 8024969392980174 m001 (2^(1/3)+gamma)/(-gamma(2)+BesselI(0,2)) 8024969398734696 m005 (1/2*Catalan-5/11)/(1/3*2^(1/2)-3/7) 8024969399969437 h001 (5/12*exp(1)+5/12)/(1/7*exp(2)+7/8) 8024969421210345 r009 Re(z^3+c),c=-17/122+33/62*I,n=6 8024969429144622 r009 Re(z^3+c),c=-11/102+3/8*I,n=16 8024969453369588 m001 (GAMMA(3/4)-GAMMA(23/24))/(Sarnak-Weierstrass) 8024969463929196 r005 Re(z^2+c),c=-1/74+33/49*I,n=12 8024969484549454 m001 1/sin(1)*ln(gamma)^2*sqrt(5) 8024969484813735 a007 Real Root Of 961*x^4+686*x^3+884*x^2+292*x-379 8024969491684232 a001 599074578*144^(1/17) 8024969506614539 a007 Real Root Of 9*x^4-213*x^3-547*x^2-474*x+839 8024969508627229 a007 Real Root Of -826*x^4+763*x^3-726*x^2-418*x+869 8024969516378827 m001 ZetaP(3)^Backhouse-ln(2^(1/2)+1) 8024969523298321 a007 Real Root Of -406*x^4+620*x^3+587*x^2-187*x-380 8024969547157913 a007 Real Root Of 966*x^4-16*x^3-98*x^2-323*x-605 8024969565022105 m001 (Tetranacci-ZetaQ(3))/(Zeta(5)+GAMMA(2/3)) 8024969578647855 a007 Real Root Of -125*x^4+992*x^3+719*x^2-188*x-773 8024969584536474 r008 a(0)=8,K{-n^6,-36-25*n^3+63*n^2-43*n} 8024969625834833 a001 987/521*322^(1/4) 8024969626346708 r009 Re(z^3+c),c=-3/19+44/61*I,n=43 8024969632300443 r005 Im(z^2+c),c=-8/17+17/26*I,n=6 8024969641711277 m001 (Bloch+GlaisherKinkelin)/(Shi(1)+GAMMA(5/6)) 8024969656769528 r001 39i'th iterates of 2*x^2-1 of 8024969685780850 a001 305/682*322^(1/2) 8024969691154157 s002 sum(A203012[n]/(n^3*pi^n-1),n=1..infinity) 8024969717469819 l006 ln(4353/9712) 8024969724451383 r008 a(0)=8,K{-n^6,-27-57*n+55*n^2-14*n^3} 8024969731821555 m005 (1/2*Pi+5/9)/(8/9*Pi-1/7) 8024969739272063 a007 Real Root Of 156*x^4-316*x^3+29*x^2-606*x-733 8024969742419066 a007 Real Root Of 363*x^4+118*x^3+865*x^2+812*x+5 8024969745773235 a001 377/3571*322^(3/4) 8024969755157675 r005 Im(z^2+c),c=-19/30+7/47*I,n=37 8024969758636514 m001 Pi^(1/2)/(5^(1/2)-Trott2nd) 8024969779022981 a007 Real Root Of -610*x^4-667*x^3-618*x^2-429*x-38 8024969780100580 a001 192900153618/5*3^(2/3) 8024969784525830 r002 57th iterates of z^2 + 8024969853995097 r002 43th iterates of z^2 + 8024969854056812 a007 Real Root Of -391*x^4+875*x^3+29*x^2-999*x-206 8024969863380182 m004 (5*Pi)/2+Tanh[Sqrt[5]*Pi]/(3*Log[Sqrt[5]*Pi]) 8024969863460505 p001 sum((-1)^n/(521*n+490)/n/(12^n),n=1..infinity) 8024969893112360 h001 (-exp(5)+6)/(-8*exp(1)+4) 8024969911568830 r005 Im(z^2+c),c=-18/13+1/43*I,n=8 8024969931233324 a007 Real Root Of -9*x^4-726*x^3-303*x^2-141*x+576 8024969949311912 m005 (1/2*gamma+3/5)/(1/11+5/11*5^(1/2)) 8024969968336604 r009 Re(z^3+c),c=-11/102+3/8*I,n=13 8024969976079665 a007 Real Root Of -332*x^4+795*x^3+219*x^2+558*x-862 8024969989201753 a001 161/98209*75025^(16/29) 8024969998412253 l006 ln(3665/8177) 8024970056696041 a007 Real Root Of 603*x^4+29*x^3+584*x^2+399*x-291 8024970063748293 a007 Real Root Of 241*x^4-671*x^3-852*x^2+367*x+501 8024970084861577 a007 Real Root Of -99*x^4+444*x^3+515*x^2+536*x+369 8024970086361157 r008 a(0)=8,K{-n^6,-21-45*n+40*n^2-15*n^3} 8024970097303573 r009 Im(z^3+c),c=-53/114+1/32*I,n=3 8024970099201781 r005 Re(z^2+c),c=1/74+42/43*I,n=4 8024970108772425 h001 (-9*exp(4)+3)/(-11*exp(4)-8) 8024970108932399 a007 Real Root Of -719*x^4-568*x^3-700*x^2+944*x+80 8024970127723980 a007 Real Root Of 925*x^4-191*x^3+812*x^2+910*x-275 8024970133975331 m004 (5*Pi)/2+1/(3*Log[Sqrt[5]*Pi]) 8024970154040569 a007 Real Root Of -327*x^4+486*x^3+754*x^2-131*x-496 8024970154844262 a008 Real Root of x^4-x^3+8*x^2-20*x+11 8024970155627888 r005 Re(z^2+c),c=-13/21+22/53*I,n=6 8024970170961673 m005 (1/2*Zeta(3)+8/9)/(3/4*2^(1/2)-7/8) 8024970174085033 a007 Real Root Of 534*x^4-224*x^3+232*x^2-383*x-794 8024970174838875 a001 610/2207*322^(7/12) 8024970179807082 m001 (-Grothendieck+TwinPrimes)/(5^(1/2)-Chi(1)) 8024970180805767 m001 (gamma+Khinchin)/(-QuadraticClass+Weierstrass) 8024970190353602 b008 1/2+E*(1/20+E) 8024970200886965 a007 Real Root Of -926*x^4-454*x^3-448*x^2+349*x+718 8024970268869215 r005 Im(z^2+c),c=-17/30+15/103*I,n=53 8024970270125389 m001 1/GAMMA(2/3)/MinimumGamma^2*exp(Zeta(1/2)) 8024970280409654 r002 23th iterates of z^2 + 8024970323224700 a001 54018521/233*6557470319842^(10/17) 8024970323224703 a001 6643838879/233*1836311903^(10/17) 8024970323228274 a001 817138163596/233*514229^(10/17) 8024970343292344 a007 Real Root Of 757*x^4-627*x^3+141*x^2-80*x-793 8024970343540547 r008 a(0)=8,K{-n^6,-63+33*n-33*n^2+24*n^3} 8024970372613691 s001 sum(exp(-Pi/3)^(n-1)*A160531[n],n=1..infinity) 8024970386657967 r001 57i'th iterates of 2*x^2-1 of 8024970409209154 l006 ln(2977/6642) 8024970423836630 r009 Im(z^3+c),c=-79/86+1/44*I,n=2 8024970465675534 r002 9th iterates of z^2 + 8024970492481053 a007 Real Root Of -839*x^4-299*x^3-222*x^2-3*x+334 8024970538170558 m001 2*Pi/GAMMA(5/6)*(2^(1/2))^GAMMA(11/12) 8024970538170558 m001 GAMMA(1/6)*sqrt(2)^GAMMA(11/12) 8024970596598758 m001 GlaisherKinkelin^2*exp(Backhouse)/Zeta(1,2)^2 8024970644331451 r005 Re(z^2+c),c=-29/56+33/61*I,n=24 8024970656391277 r005 Im(z^2+c),c=-21/94+28/37*I,n=40 8024970666691816 r005 Re(z^2+c),c=7/52+24/55*I,n=4 8024970667552391 m005 (1/2*2^(1/2)+1/3)/(4/11*3^(1/2)+2/3) 8024970698470095 r005 Im(z^2+c),c=-21/34+9/61*I,n=41 8024970709207280 r002 24th iterates of z^2 + 8024970720787745 a007 Real Root Of -736*x^4+978*x^3-602*x^2-631*x+692 8024970721591943 l006 ln(7803/8455) 8024970737482363 a007 Real Root Of -466*x^4+287*x^3+552*x^2+465*x-41 8024970757081665 a007 Real Root Of 164*x^4-125*x^3+677*x^2+83*x-502 8024970759655505 r008 a(0)=8,K{-n^6,-54-20*n^3+39*n^2-6*n} 8024970767242576 a007 Real Root Of -332*x^4+69*x^3+150*x^2+900*x+799 8024970776028591 r009 Re(z^3+c),c=-11/102+3/8*I,n=18 8024970797140242 m001 (ln(gamma)+Gompertz)/(OneNinth+PlouffeB) 8024970802077091 a007 Real Root Of 465*x^4-722*x^3+775*x^2+597*x-586 8024970802178883 r005 Re(z^2+c),c=-19/56+39/61*I,n=25 8024970809398807 a001 167761/21*317811^(10/11) 8024970812722703 r008 a(0)=8,K{-n^6,-78+27*n^3-82*n^2+89*n} 8024970820610308 m001 (ln(5)+Pi^(1/2))/(Backhouse-MertensB2) 8024970832085853 m001 2*3^(1/2)*Pi/GAMMA(5/6)*FeigenbaumB 8024970842818804 h001 (-4*exp(1/3)+3)/(-9*exp(-2)-2) 8024970862565190 m009 (5/6*Psi(1,2/3)-1/6)/(1/5*Pi^2+1) 8024970878022095 r002 22th iterates of z^2 + 8024970897771791 m001 Ei(1)-GAMMA(2/3)+MertensB1 8024970910250890 h001 (5/9*exp(1)+1/12)/(7/12*exp(1)+2/5) 8024970917123312 a003 sin(Pi*5/82)+sin(Pi*13/62) 8024970925350824 g006 Psi(1,1/8)+Psi(1,3/5)-Psi(1,7/12)-Psi(1,1/12) 8024970925922435 m001 (ln(5)+Thue)/(Pi*2^(1/2)/GAMMA(3/4)+ln(gamma)) 8024970931540245 r009 Re(z^3+c),c=-11/102+3/8*I,n=21 8024970934108665 r005 Im(z^2+c),c=-13/102+49/60*I,n=37 8024970935367006 r009 Re(z^3+c),c=-11/102+3/8*I,n=23 8024970936670146 r009 Re(z^3+c),c=-11/102+3/8*I,n=25 8024970936804059 r009 Re(z^3+c),c=-11/102+3/8*I,n=28 8024970936808400 r009 Re(z^3+c),c=-11/102+3/8*I,n=30 8024970936809651 r009 Re(z^3+c),c=-11/102+3/8*I,n=32 8024970936809764 r009 Re(z^3+c),c=-11/102+3/8*I,n=35 8024970936809769 r009 Re(z^3+c),c=-11/102+3/8*I,n=37 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=39 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=42 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=44 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=46 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=49 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=51 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=53 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=56 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=54 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=58 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=60 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=61 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=63 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=64 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=62 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=59 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=57 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=55 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=52 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=50 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=47 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=48 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=45 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=43 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=41 8024970936809770 r009 Re(z^3+c),c=-11/102+3/8*I,n=40 8024970936809771 r009 Re(z^3+c),c=-11/102+3/8*I,n=38 8024970936809773 r009 Re(z^3+c),c=-11/102+3/8*I,n=36 8024970936809776 r009 Re(z^3+c),c=-11/102+3/8*I,n=34 8024970936809786 r009 Re(z^3+c),c=-11/102+3/8*I,n=33 8024970936810233 r009 Re(z^3+c),c=-11/102+3/8*I,n=31 8024970936813018 r009 Re(z^3+c),c=-11/102+3/8*I,n=29 8024970936813666 r009 Re(z^3+c),c=-11/102+3/8*I,n=27 8024970936832701 r009 Re(z^3+c),c=-11/102+3/8*I,n=26 8024970937318460 r009 Re(z^3+c),c=-11/102+3/8*I,n=24 8024970938426831 r009 Re(z^3+c),c=-11/102+3/8*I,n=20 8024970940076920 r009 Re(z^3+c),c=-11/102+3/8*I,n=22 8024970950211198 a007 Real Root Of -765*x^4+542*x^3+899*x^2-732*x-569 8024970953914291 r002 7th iterates of z^2 + 8024970967548515 r009 Re(z^3+c),c=-11/102+3/8*I,n=19 8024970967707584 a007 Real Root Of 252*x^4-900*x^3-591*x^2-866*x-884 8024970989427036 m001 ln(5)*gamma(2)^GAMMA(13/24) 8024971005222205 m001 1/GAMMA(1/6)*(2^(1/3))/exp(Zeta(5)) 8024971025044474 r005 Re(z^2+c),c=7/110+29/51*I,n=25 8024971028409020 r005 Re(z^2+c),c=5/24+15/49*I,n=18 8024971035661364 r009 Re(z^3+c),c=-17/118+29/45*I,n=30 8024971058969931 h001 (5/8*exp(2)+4/7)/(4/5*exp(2)+5/9) 8024971065205861 r005 Im(z^2+c),c=29/122+37/64*I,n=4 8024971066950772 l006 ln(2289/5107) 8024971127413348 a007 Real Root Of 941*x^4+287*x^3+389*x^2-296*x-730 8024971139808823 s002 sum(A225116[n]/(n^3*pi^n-1),n=1..infinity) 8024971173094316 r004 Re(z^2+c),c=5/42+7/23*I,z(0)=I,n=2 8024971186662302 p001 sum((-1)^n/(293*n+93)/n/(32^n),n=1..infinity) 8024971197189044 r005 Re(z^2+c),c=-5/23+46/61*I,n=53 8024971219381791 l006 ln(3/9169) 8024971264710248 a008 Real Root of (-4+2*x+2*x^2-3*x^3+4*x^4+3*x^5) 8024971274429328 r005 Im(z^2+c),c=-99/82+2/27*I,n=14 8024971295294784 v002 sum(1/(5^n+(21/2*n^2-5/2*n+4)),n=1..infinity) 8024971295619522 m006 (2*exp(Pi)-1/6)/(2/3*Pi^2-5/6) 8024971310162853 r005 Re(z^2+c),c=1/58+3/8*I,n=15 8024971334191059 a005 (1/sin(70/219*Pi))^80 8024971337175879 a005 (1/cos(2/57*Pi))^1855 8024971351607310 m005 (1/2*Pi+1/11)/(69/56+3/8*5^(1/2)) 8024971359504768 a007 Real Root Of -694*x^4+419*x^3+567*x^2+872*x+839 8024971381797136 a001 20633239/21*1597^(10/11) 8024971416907712 m001 (GaussAGM+PlouffeB)/(Ei(1,1)-CopelandErdos) 8024971421029017 a007 Real Root Of 617*x^4+128*x^3+896*x^2+67*x-713 8024971424641916 m001 Chi(1)/(MertensB2^BesselI(0,1)) 8024971443564010 m001 1/Porter^2*MertensB1^2/exp(Tribonacci)^2 8024971446028088 m001 (Lehmer-ZetaP(4))/(sin(1/12*Pi)-DuboisRaymond) 8024971472833347 a001 11/2178309*4181^(31/51) 8024971490856546 r009 Re(z^3+c),c=-11/102+3/8*I,n=17 8024971498750226 m001 GAMMA(19/24)^Artin/(GAMMA(19/24)^MadelungNaCl) 8024971505206719 r009 Re(z^3+c),c=-25/46+43/62*I,n=2 8024971523655770 a001 1/4*28657^(5/44) 8024971533372066 h001 (2/3*exp(1)+9/10)/(1/3*exp(2)+11/12) 8024971563243295 m001 (-Artin+HardyLittlewoodC4)/(Chi(1)+gamma(2)) 8024971569360490 p001 sum((-1)^n/(365*n+113)/(2^n),n=0..infinity) 8024971570317528 l006 ln(3890/8679) 8024971572327066 r005 Re(z^2+c),c=-14/17+1/38*I,n=3 8024971575219801 r002 18th iterates of z^2 + 8024971586130600 a007 Real Root Of -57*x^4+264*x^3-240*x^2+786*x-589 8024971587337037 m002 -3+Pi^5+6*Pi^6*Csch[Pi] 8024971607321988 r008 a(0)=8,K{-n^6,-52+2*n^3+39*n^2-28*n} 8024971623155505 q001 707/881 8024971660574087 a007 Real Root Of 345*x^4+166*x^3+147*x^2-15*x-164 8024971675455584 a007 Real Root Of -590*x^4+456*x^3+604*x^2-474*x-289 8024971676602874 r005 Im(z^2+c),c=-51/44+3/29*I,n=59 8024971749135775 m001 (Artin-HardHexagonsEntropy)/(Porter-Totient) 8024971770591715 r005 Im(z^2+c),c=-23/36+5/26*I,n=15 8024971786985688 r009 Im(z^3+c),c=-59/110+25/54*I,n=23 8024971820522205 m001 ln(Robbin)^2/FibonacciFactorial/sqrt(3) 8024971858601758 m001 1/Porter*ArtinRank2^2/ln(GAMMA(3/4))^2 8024971887929563 a007 Real Root Of -423*x^4+842*x^3-498*x^2-601*x+449 8024971908966254 a007 Real Root Of 556*x^4-488*x^3-92*x^2+220*x-247 8024971933107025 m001 (ReciprocalLucas-Salem)/(GAMMA(2/3)-Artin) 8024971948310419 r005 Im(z^2+c),c=19/52+24/61*I,n=7 8024971949023304 m001 (MertensB2+Mills)/(ln(Pi)+Pi^(1/2)) 8024971997723197 r008 a(0)=8,K{-n^6,-51-39*n^3+98*n^2-49*n} 8024972008911168 a007 Real Root Of 929*x^4-621*x^3-512*x^2+281*x-151 8024972014330706 r008 a(0)=8,K{-n^6,-47+15*n-34*n^2+27*n^3} 8024972017283940 r005 Im(z^2+c),c=-22/31+7/43*I,n=37 8024972031143874 a007 Real Root Of -597*x^4-820*x^3-561*x^2+841*x+860 8024972042820184 a007 Real Root Of -298*x^4+685*x^3-72*x^2+699*x-745 8024972043375235 a007 Real Root Of 580*x^4-938*x^3+268*x^2+684*x-349 8024972052653342 h001 (8/11*exp(1)+1/9)/(8/11*exp(1)+5/8) 8024972054491024 a007 Real Root Of 834*x^4-349*x^3-773*x^2-863*x-721 8024972071075736 a001 329/1926*322^(2/3) 8024972072189826 a007 Real Root Of 366*x^4-993*x^3-262*x^2+824*x+165 8024972089056296 a007 Real Root Of 724*x^4-709*x^3+417*x^2+976*x-152 8024972112094689 r002 55th iterates of z^2 + 8024972112650195 m006 (1/3*exp(2*Pi)-5)/(2/5*exp(2*Pi)+2) 8024972112727372 m003 80+Sin[1/2+Sqrt[5]/2]/4 8024972125156232 m001 (5^(1/2)-ln(gamma))/(GAMMA(13/24)+FeigenbaumC) 8024972152343176 r002 13th iterates of z^2 + 8024972158957097 a007 Real Root Of -630*x^4-11*x^3+377*x^2+556*x+459 8024972168536038 l006 ln(8174/8857) 8024972187365840 r008 a(0)=8,K{-n^6,-7+21*n^3+4*n^2-57*n} 8024972187713049 m003 -6*Cosh[1/2+Sqrt[5]/2]+16*Log[1/2+Sqrt[5]/2] 8024972217768174 a007 Real Root Of 106*x^4+883*x^3+301*x^2+366*x+273 8024972250292070 a007 Real Root Of 666*x^4-995*x^3+110*x^2+353*x-578 8024972275261086 r002 5th iterates of z^2 + 8024972289996749 l006 ln(1601/3572) 8024972294806171 a007 Real Root Of -9*x^4-718*x^3+329*x^2-951*x+69 8024972295105782 r008 a(0)=8,K{-n^6,-46+2*n^3+42*n^2-37*n} 8024972303945088 a007 Real Root Of -867*x^4+613*x^3+380*x^2-265*x+219 8024972312130769 m001 (-exp(1)+1/2)/(LandauRamanujan+2) 8024972336376941 a007 Real Root Of -511*x^4+33*x^3-113*x^2+257*x+508 8024972360272787 s001 sum(exp(-2*Pi/3)^n*A268170[n],n=1..infinity) 8024972366885567 r008 a(0)=8,K{-n^6,-45+14*n-36*n^2+28*n^3} 8024972368497537 a007 Real Root Of 912*x^4+492*x^3-108*x^2-473*x-434 8024972395302672 a007 Real Root Of 641*x^4-35*x^3+538*x^2-397*x-949 8024972410608157 a007 Real Root Of 716*x^4-422*x^3-730*x^2-911*x-776 8024972424761473 a007 Real Root Of 249*x^4+939*x^3+940*x^2-822*x-883 8024972427798584 a007 Real Root Of 320*x^4-962*x^3-308*x^2+134*x-324 8024972444464513 r008 a(0)=8,K{-n^6,-10+25*n^3-68*n^2+12*n} 8024972458897614 b008 (-6+3^Pi)*Pi 8024972488755014 a007 Real Root Of 839*x^4-799*x^3-188*x^2+330*x-375 8024972508518265 m005 (1/2*2^(1/2)-2/11)/(6*Zeta(3)-2/3) 8024972564190096 a007 Real Root Of 768*x^4-21*x^3+977*x^2+225*x-778 8024972567037987 a007 Real Root Of -836*x^4-402*x^3-648*x^2-191*x+403 8024972593347289 r005 Re(z^2+c),c=13/64+16/53*I,n=41 8024972621115002 r008 a(0)=8,K{-n^6,-33-6*n-27*n^2+27*n^3} 8024972630000119 r009 Re(z^3+c),c=-1/31+50/63*I,n=39 8024972642461341 r002 58th iterates of z^2 + 8024972676940199 m005 (1/2*gamma+5/12)/(6/7*2^(1/2)-1/3) 8024972716304301 r005 Re(z^2+c),c=1/6+11/43*I,n=22 8024972736241761 r009 Im(z^3+c),c=-1/23+29/35*I,n=13 8024972748239569 a007 Real Root Of -640*x^4-187*x^3-155*x^2+717*x+844 8024972757682066 a007 Real Root Of 546*x^4-541*x^3+319*x^2-129*x-815 8024972765830633 s002 sum(A186754[n]/((exp(n)-1)/n),n=1..infinity) 8024972774811737 m005 (1/2*gamma+7/10)/(7/10*5^(1/2)-1/3) 8024972819819174 m001 Otter^ZetaP(4)/GAMMA(2/3) 8024972870190663 a007 Real Root Of 823*x^4-262*x^3+644*x^2+509*x-483 8024972880805416 a001 377/521*322^(5/12) 8024972894817766 m001 Trott/Khintchine^2*ln((2^(1/3)))^2 8024972902865838 a007 Real Root Of 85*x^4+619*x^3-517*x^2-139*x-443 8024972924975790 m001 exp(Trott)^2*Sierpinski^2*sinh(1) 8024972949156856 m001 (BesselJ(1,1)+ZetaP(3))/(3^(1/2)-cos(1/12*Pi)) 8024972961624362 a001 1730726404001/305*2^(1/2) 8024972970325298 l006 ln(4115/9181) 8024972979352753 a007 Real Root Of 226*x^4-522*x^3+483*x^2+544*x-238 8024972992436469 a007 Real Root Of -128*x^4-949*x^3+743*x^2+825*x-816 8024973042922555 m001 1/exp(Zeta(9))*Tribonacci/sin(1) 8024973065805605 s002 sum(A186095[n]/(pi^n+1),n=1..infinity) 8024973066856824 r005 Im(z^2+c),c=-9/44+41/52*I,n=31 8024973082009633 m006 (1/2*ln(Pi)+2)/(3/5*exp(2*Pi)-3/4) 8024973094922642 r005 Im(z^2+c),c=-11/86+14/17*I,n=22 8024973098132584 a007 Real Root Of 658*x^4-79*x^3-398*x^2-235*x-246 8024973108729787 a007 Real Root Of 896*x^4+389*x^3+415*x^2+11*x-429 8024973138926173 m005 (1/2*Zeta(3)-8/11)/(5/6*Zeta(3)+4/7) 8024973157719956 m001 LandauRamanujan2nd^(MertensB1/Cahen) 8024973163829679 r002 39th iterates of z^2 + 8024973198072804 s002 sum(A128931[n]/(n^3*exp(n)+1),n=1..infinity) 8024973202377562 r005 Im(z^2+c),c=-7/86+31/35*I,n=4 8024973208725466 m001 (1+3^(1/2))^(1/2)/OrthogonalArrays/Porter 8024973243590762 r005 Re(z^2+c),c=-37/110+32/57*I,n=3 8024973272994548 a007 Real Root Of -842*x^4+840*x^3-728*x^2-546*x+814 8024973290853409 a005 (1/cos(3/34*Pi))^1355 8024973323212424 m001 1/exp(LambertW(1))^2/Porter/sqrt(1+sqrt(3))^2 8024973339279551 r002 41th iterates of z^2 + 8024973343484980 a007 Real Root Of 104*x^4+844*x^3+26*x^2-362*x+280 8024973391959102 a007 Real Root Of -799*x^4+338*x^3+30*x^2+105*x+571 8024973403581441 l006 ln(2514/5609) 8024973457811435 r009 Re(z^3+c),c=-2/7+29/41*I,n=19 8024973469608185 m005 (4/5*2^(1/2)+3/4)/(2/3*Pi+1/4) 8024973489835582 l006 ln(8545/9259) 8024973490846076 a007 Real Root Of 938*x^4-724*x^3-940*x^2+654*x+367 8024973495235777 s002 sum(A264312[n]/((2^n+1)/n),n=1..infinity) 8024973556442089 m001 (Zeta(5)-Zeta(1,-1))/(exp(1/Pi)+Champernowne) 8024973558785097 s002 sum(A153946[n]/(n*exp(n)-1),n=1..infinity) 8024973561357214 r005 Re(z^2+c),c=-81/98+2/27*I,n=49 8024973576516359 r005 Im(z^2+c),c=-71/62+6/59*I,n=45 8024973588043878 r009 Im(z^3+c),c=-5/21+44/59*I,n=43 8024973606873297 m001 GAMMA(19/24)^2*Champernowne/ln(cos(Pi/5)) 8024973633136145 a007 Real Root Of -422*x^4+412*x^3-266*x^2-981*x-228 8024973636713353 a003 sin(Pi*19/70)/cos(Pi*55/117) 8024973683557548 a001 2584/15127*322^(2/3) 8024973692338401 a007 Real Root Of 44*x^4+38*x^3-20*x^2-829*x-651 8024973705816010 a007 Real Root Of 523*x^4+150*x^3+799*x^2+218*x-479 8024973707415145 a001 121393/7*521^(12/49) 8024973727880000 a003 sin(Pi*28/113)/sin(Pi*39/115) 8024973729767849 a007 Real Root Of -69*x^4+967*x^3+273*x^2-144*x+237 8024973742993833 a007 Real Root Of -440*x^4-149*x^3+356*x^2+971*x-749 8024973748430248 a007 Real Root Of 998*x^4-153*x^3+300*x^2+313*x-435 8024973754676585 r009 Re(z^3+c),c=-4/27+15/22*I,n=45 8024973774088374 a001 10946/2207*123^(1/10) 8024973802258055 a007 Real Root Of 834*x^4-806*x^3-687*x^2+405*x+5 8024973809269954 m005 (1/3*gamma+1/4)/(5/8*Zeta(3)-1/5) 8024973810495441 m005 (1/5*2^(1/2)+2/3)/(1/5*Catalan+1) 8024973826164462 m001 1/LandauRamanujan^2*CareFree*exp(Ei(1)) 8024973826879006 a007 Real Root Of -957*x^4+82*x^3-439*x^2-881*x+15 8024973830561702 a007 Real Root Of -933*x^4+835*x^3+501*x^2-978*x-289 8024973864253092 r005 Im(z^2+c),c=9/118+16/17*I,n=3 8024973906464945 m001 (gamma+Zeta(1,-1)*Gompertz)/Gompertz 8024973911408961 m001 Shi(1)*(GAMMA(19/24)-PrimesInBinary) 8024973918815481 a001 2255/13201*322^(2/3) 8024973923817492 l006 ln(3427/7646) 8024973951242951 m009 (6*Catalan+3/4*Pi^2-3/4)/(3/2*Pi^2+1/3) 8024973953139151 a001 17711/103682*322^(2/3) 8024973958146907 a001 15456/90481*322^(2/3) 8024973958877529 a001 121393/710647*322^(2/3) 8024973958984125 a001 105937/620166*322^(2/3) 8024973958999677 a001 832040/4870847*322^(2/3) 8024973959001946 a001 726103/4250681*322^(2/3) 8024973959002277 a001 5702887/33385282*322^(2/3) 8024973959002326 a001 4976784/29134601*322^(2/3) 8024973959002333 a001 39088169/228826127*322^(2/3) 8024973959002334 a001 34111385/199691526*322^(2/3) 8024973959002334 a001 267914296/1568397607*322^(2/3) 8024973959002334 a001 233802911/1368706081*322^(2/3) 8024973959002334 a001 1836311903/10749957122*322^(2/3) 8024973959002334 a001 1602508992/9381251041*322^(2/3) 8024973959002334 a001 12586269025/73681302247*322^(2/3) 8024973959002334 a001 10983760033/64300051206*322^(2/3) 8024973959002334 a001 86267571272/505019158607*322^(2/3) 8024973959002334 a001 75283811239/440719107401*322^(2/3) 8024973959002334 a001 2504730781961/14662949395604*322^(2/3) 8024973959002334 a001 139583862445/817138163596*322^(2/3) 8024973959002334 a001 53316291173/312119004989*322^(2/3) 8024973959002334 a001 20365011074/119218851371*322^(2/3) 8024973959002334 a001 7778742049/45537549124*322^(2/3) 8024973959002334 a001 2971215073/17393796001*322^(2/3) 8024973959002334 a001 1134903170/6643838879*322^(2/3) 8024973959002334 a001 433494437/2537720636*322^(2/3) 8024973959002334 a001 165580141/969323029*322^(2/3) 8024973959002334 a001 63245986/370248451*322^(2/3) 8024973959002337 a001 24157817/141422324*322^(2/3) 8024973959002355 a001 9227465/54018521*322^(2/3) 8024973959002482 a001 3524578/20633239*322^(2/3) 8024973959003349 a001 1346269/7881196*322^(2/3) 8024973959009289 a001 514229/3010349*322^(2/3) 8024973959050005 a001 196418/1149851*322^(2/3) 8024973959329078 a001 75025/439204*322^(2/3) 8024973961241870 a001 28657/167761*322^(2/3) 8024973974352346 a001 10946/64079*322^(2/3) 8024973992580081 m005 (1/2*Catalan+1)/(1/5*Catalan-2) 8024974004653676 r002 3th iterates of z^2 + 8024974010441390 s002 sum(A280875[n]/(n^3*10^n+1),n=1..infinity) 8024974013269198 p004 log(32621/14621) 8024974026194389 a007 Real Root Of -428*x^4+441*x^3-552*x^2-765*x+147 8024974044638837 a001 141422324*6557470319842^(1/17) 8024974044638837 a001 228826127*1836311903^(1/17) 8024974044639194 a001 370248451*514229^(1/17) 8024974055477133 m001 (Artin+Mills)/(GAMMA(2/3)-ln(Pi)) 8024974064212880 a001 4181/24476*322^(2/3) 8024974152122181 r005 Im(z^2+c),c=-149/106+3/28*I,n=6 8024974164156865 m001 (arctan(1/3)+KhinchinLevy)/(Porter+ThueMorse) 8024974186413798 r009 Re(z^3+c),c=-11/102+3/8*I,n=15 8024974190321985 m001 TreeGrowth2nd^AlladiGrinstead-ln(2+3^(1/2)) 8024974192768456 a007 Real Root Of 169*x^4-203*x^3-298*x^2-667*x+762 8024974213622634 m001 (Niven+Tetranacci)/(GAMMA(17/24)-FeigenbaumB) 8024974220653922 m001 (Ei(1,1)-Mills)/(Sarnak-Thue) 8024974221170350 r005 Im(z^2+c),c=-1/10+30/37*I,n=52 8024974225170805 l006 ln(4340/9683) 8024974248311450 m003 1+Sqrt[5]/512-Sinh[1/2+Sqrt[5]/2]/12 8024974260179063 a007 Real Root Of -464*x^4+933*x^3+833*x^2-480*x-441 8024974270811988 r002 28th iterates of z^2 + 8024974278464057 b008 1/2+7/E^Pi 8024974291627418 r002 4th iterates of z^2 + 8024974292175043 a007 Real Root Of 278*x^4-229*x^3+911*x^2+854*x-135 8024974303089408 r009 Im(z^3+c),c=-1/32+24/29*I,n=5 8024974312454089 m001 (Zeta(1,2)-FeigenbaumB)/(Otter-Riemann3rdZero) 8024974327759515 m001 (sin(1)+GAMMA(7/12))/(-RenyiParking+ZetaP(2)) 8024974415509819 a007 Real Root Of -16*x^4+117*x^3-860*x^2-218*x+446 8024974421393662 a007 Real Root Of 215*x^4+668*x^3+817*x^2-765*x-884 8024974426572751 r005 Im(z^2+c),c=-23/98+41/54*I,n=48 8024974458432503 a007 Real Root Of -235*x^4+169*x^3-979*x^2+47*x+853 8024974471023838 a007 Real Root Of -637*x^4+497*x^3-519*x^2+128*x+958 8024974475916563 s002 sum(A075291[n]/(2^n-1),n=1..infinity) 8024974508459993 r002 5th iterates of z^2 + 8024974509937622 m008 (1/2*Pi^5+4)/(2*Pi^4+5/6) 8024974515800203 q001 3149/3924 8024974556345290 a007 Real Root Of 162*x^4-940*x^3+147*x^2+984*x+142 8024974556920778 m002 -2+Pi^3/(3*Log[Pi])+Tanh[Pi] 8024974562629993 r008 a(0)=0,K{-n^6,-4-4*n^3-6*n} 8024974562629993 r008 a(0)=0,K{-n^6,4+4*n^3+6*n} 8024974573354533 r008 a(0)=8,K{-n^6,-58-14*n^3+19*n^2+12*n} 8024974588214795 m009 (5*Psi(1,3/4)-1)/(32/5*Catalan+4/5*Pi^2+5/6) 8024974591524303 a007 Real Root Of -590*x^4-51*x^3+381*x^2+491*x+367 8024974611086666 r005 Re(z^2+c),c=6/17+18/55*I,n=24 8024974666705683 r002 2th iterates of z^2 + 8024974680126156 a001 1597/9349*322^(2/3) 8024974701175011 l006 ln(8916/9661) 8024974719202240 a007 Real Root Of -289*x^4+680*x^3+510*x^2-5*x-556 8024974739997400 r005 Re(z^2+c),c=-9/10+37/231*I,n=16 8024974788726671 a008 Real Root of (-3-4*x+6*x^2+5*x^3-6*x^4-3*x^5) 8024974830948701 a007 Real Root Of -948*x^4+907*x^3-479*x^2-479*x+786 8024974840879767 r008 a(0)=8,K{-n^6,-50-2*n+26*n^2-15*n^3} 8024974848544431 a007 Real Root Of 63*x^4-156*x^3+223*x^2+626*x+252 8024974850694114 a007 Real Root Of 604*x^4+618*x^3+978*x^2-101*x-642 8024974867584189 m001 (ln(2)+Zeta(1,-1))/(FeigenbaumB-ZetaP(3)) 8024974881535817 a007 Real Root Of 103*x^4-139*x^3+261*x^2-813*x-67 8024974901494607 a007 Real Root Of -108*x^4-793*x^3+543*x^2-488*x-798 8024974912084531 m001 (Niven+Stephens)/(BesselI(1,2)-Mills) 8024974915735817 m006 (2/3*Pi^2-1/5)/(1/5*Pi+1/6) 8024974915735817 m008 (2/3*Pi^2-1/5)/(1/5*Pi+1/6) 8024974916493026 a007 Real Root Of 581*x^4-174*x^3+23*x^2-120*x-442 8024974917199693 r005 Re(z^2+c),c=-15/14+44/155*I,n=31 8024974950262711 m001 (Tetranacci+Trott)/(Otter-cos(1)) 8024974954944285 r005 Im(z^2+c),c=-11/9+3/67*I,n=14 8024974957112636 r005 Re(z^2+c),c=-29/56+19/35*I,n=39 8024974965127702 a007 Real Root Of -450*x^4+831*x^3-786*x^2-996*x+323 8024974985344627 r008 a(0)=8,K{-n^6,-47+10*n+3*n^2-7*n^3} 8024975019916901 a007 Real Root Of -916*x^4-858*x^3-334*x^2-230*x-33 8024975040247605 m001 ln(TreeGrowth2nd)/MadelungNaCl/BesselJ(0,1)^2 8024975056181738 m001 (Catalan-gamma(1))/(-OneNinth+Totient) 8024975067404458 r009 Re(z^3+c),c=-31/52+23/39*I,n=63 8024975069371128 a007 Real Root Of 66*x^4+615*x^3+623*x^2-571*x-593 8024975116077396 a003 cos(Pi*11/84)-sin(Pi*28/59) 8024975148338441 r005 Re(z^2+c),c=-69/52+3/47*I,n=37 8024975162849326 a007 Real Root Of -544*x^4-135*x^3-107*x^2+738*x+817 8024975169824520 a001 28657/5778*123^(1/10) 8024975175484668 r005 Re(z^2+c),c=-61/66+11/34*I,n=9 8024975180382062 a007 Real Root Of 52*x^4-909*x^3+630*x^2+668*x-361 8024975188275813 m001 1/3*(3^(1/2)*ZetaQ(3)+exp(1/Pi))*3^(1/2) 8024975192073340 b008 1/3+E^Sin[4] 8024975217839361 h001 (5/8*exp(1)+8/11)/(7/9*exp(1)+10/11) 8024975255742650 m005 (3*exp(1)-3)/(1/12+1/4*5^(1/2)) 8024975256771800 m001 LaplaceLimit^(TwinPrimes/OneNinth) 8024975278033889 a007 Real Root Of -707*x^4+850*x^3-280*x^2-92*x+839 8024975305390145 a007 Real Root Of -610*x^4-85*x^3+932*x^2+204*x-467 8024975311708459 a007 Real Root Of 442*x^4+587*x^3+896*x^2+790*x+177 8024975326047311 a001 377/5778*322^(5/6) 8024975336509101 b008 71+4*ArcSinh[5] 8024975343745278 r002 5th iterates of z^2 + 8024975353269799 q001 2442/3043 8024975356318373 l006 ln(913/2037) 8024975357524387 p002 log(1/9*(6+11^(2/3)*9^(3/4))^(1/2)*9^(1/4)) 8024975368631138 r005 Im(z^2+c),c=-31/70+20/31*I,n=8 8024975372678505 m001 Catalan*Conway-Zeta(3) 8024975373459720 a001 75025/15127*123^(1/10) 8024975403169696 a001 196418/39603*123^(1/10) 8024975407504323 a001 514229/103682*123^(1/10) 8024975408136737 a001 1346269/271443*123^(1/10) 8024975408229005 a001 3524578/710647*123^(1/10) 8024975408242467 a001 9227465/1860498*123^(1/10) 8024975408244431 a001 24157817/4870847*123^(1/10) 8024975408244717 a001 63245986/12752043*123^(1/10) 8024975408244759 a001 165580141/33385282*123^(1/10) 8024975408244765 a001 433494437/87403803*123^(1/10) 8024975408244766 a001 1134903170/228826127*123^(1/10) 8024975408244766 a001 2971215073/599074578*123^(1/10) 8024975408244766 a001 7778742049/1568397607*123^(1/10) 8024975408244766 a001 20365011074/4106118243*123^(1/10) 8024975408244766 a001 53316291173/10749957122*123^(1/10) 8024975408244766 a001 139583862445/28143753123*123^(1/10) 8024975408244766 a001 365435296162/73681302247*123^(1/10) 8024975408244766 a001 956722026041/192900153618*123^(1/10) 8024975408244766 a001 2504730781961/505019158607*123^(1/10) 8024975408244766 a001 10610209857723/2139295485799*123^(1/10) 8024975408244766 a001 4052739537881/817138163596*123^(1/10) 8024975408244766 a001 140728068720/28374454999*123^(1/10) 8024975408244766 a001 591286729879/119218851371*123^(1/10) 8024975408244766 a001 225851433717/45537549124*123^(1/10) 8024975408244766 a001 86267571272/17393796001*123^(1/10) 8024975408244766 a001 32951280099/6643838879*123^(1/10) 8024975408244766 a001 1144206275/230701876*123^(1/10) 8024975408244766 a001 4807526976/969323029*123^(1/10) 8024975408244766 a001 1836311903/370248451*123^(1/10) 8024975408244767 a001 701408733/141422324*123^(1/10) 8024975408244769 a001 267914296/54018521*123^(1/10) 8024975408244785 a001 9303105/1875749*123^(1/10) 8024975408244894 a001 39088169/7881196*123^(1/10) 8024975408245644 a001 14930352/3010349*123^(1/10) 8024975408250786 a001 5702887/1149851*123^(1/10) 8024975408286030 a001 2178309/439204*123^(1/10) 8024975408527590 a001 75640/15251*123^(1/10) 8024975410183270 a001 317811/64079*123^(1/10) 8024975411928440 m002 -3+Pi^6*Csch[Pi]+ProductLog[Pi]/Pi^5 8024975419439422 r005 Im(z^2+c),c=5/21+1/41*I,n=9 8024975421531471 a001 121393/24476*123^(1/10) 8024975421942266 a003 cos(Pi*23/73)+cos(Pi*41/98) 8024975440858232 m001 (-BesselI(0,1)+5)/(sqrt(1+sqrt(3))+3) 8024975452188416 s002 sum(A230245[n]/((10^n+1)/n),n=1..infinity) 8024975483816778 a003 sin(Pi*20/63)*sin(Pi*36/89) 8024975495781433 m001 Zeta(1,-1)^AlladiGrinstead*Zeta(1,-1)^Lehmer 8024975499313200 a001 46368/9349*123^(1/10) 8024975567025958 m005 (1/2*5^(1/2)-1/8)/(5/9*exp(1)-3/11) 8024975570356640 r005 Re(z^2+c),c=-3/94+13/48*I,n=9 8024975571034015 r005 Re(z^2+c),c=-29/32+11/40*I,n=29 8024975608334840 r005 Re(z^2+c),c=-61/118+25/47*I,n=54 8024975632589448 a005 (1/cos(15/226*Pi))^726 8024975640188800 m002 -(Pi^3/E^Pi)-(5*Pi^6)/6 8024975646873465 m001 (Cahen+TwinPrimes)/(Shi(1)+LambertW(1)) 8024975657704030 r008 a(0)=8,K{-n^6,-50-4*n^3+51*n^2-59*n} 8024975670677279 r005 Im(z^2+c),c=-73/118+3/20*I,n=64 8024975671474707 a007 Real Root Of -535*x^4+404*x^3-390*x^2+65*x+734 8024975682004567 m006 (3/5*exp(2*Pi)+1/3)/(4*Pi^2+3/5) 8024975694486845 a008 Real Root of x^4-x^3+9*x^2-29*x-30 8024975732057617 a007 Real Root Of -837*x^4+727*x^3+316*x^2+179*x+663 8024975739312549 r005 Re(z^2+c),c=-9/13+6/23*I,n=11 8024975761588503 m001 (-Tetranacci+ZetaP(4))/(1+Mills) 8024975769609394 a007 Real Root Of 44*x^4+433*x^3+572*x^2-551*x+35 8024975796882111 m006 (2*ln(Pi)-1)/(3*exp(2*Pi)+1/3) 8024975815732488 l006 ln(9287/10063) 8024975827475531 a007 Real Root Of -x^4-802*x^3+399*x^2-247*x+749 8024975846494077 a007 Real Root Of 856*x^4+975*x^3+185*x^2-844*x+66 8024975862747637 r002 38th iterates of z^2 + 8024975878232691 m002 1-E^Pi+Pi^4+5*Tanh[Pi] 8024975886445165 s001 sum(exp(-4*Pi/5)^n*A110034[n],n=1..infinity) 8024975915035654 b008 80+FresnelC[1/4] 8024975932097052 a007 Real Root Of -591*x^4+533*x^3+450*x^2-148*x+112 8024975959913747 a007 Real Root Of -378*x^4+429*x^3+4*x^2-203*x+213 8024975964429401 m001 Kolakoski-ErdosBorwein-gamma(2) 8024975995169107 m001 exp(-1/2*Pi)^(Champernowne/ln(2^(1/2)+1)) 8024975998237620 a007 Real Root Of -827*x^4+337*x^3-916*x^2-825*x+445 8024976002117330 a007 Real Root Of -255*x^4+124*x^3+172*x^2+851*x+742 8024976004903484 a007 Real Root Of 355*x^4-916*x^3-10*x^2-398*x+652 8024976032437142 a001 17711/3571*123^(1/10) 8024976084577622 r005 Re(z^2+c),c=11/90+23/44*I,n=50 8024976086460512 a008 Real Root of x^4-x^3-22*x^2-52*x+56 8024976087493512 a003 sin(Pi*37/110)*sin(Pi*25/67) 8024976087622443 r005 Re(z^2+c),c=-3/5+63/128*I,n=4 8024976100141226 a001 9349/610*1836311903^(16/17) 8024976186725049 r009 Im(z^3+c),c=-51/110+1/62*I,n=7 8024976191912260 a001 682/98209*6557470319842^(16/17) 8024976191961874 a001 20633239/610*514229^(16/17) 8024976231624775 r002 8th iterates of z^2 + 8024976238338448 a007 Real Root Of -199*x^4+993*x^3-2*x^2-486*x+207 8024976238899534 a007 Real Root Of 353*x^4-241*x^3-423*x^2-504*x-403 8024976251361296 a007 Real Root Of 887*x^4+871*x^3+561*x^2+167*x-145 8024976258963252 r008 a(0)=8,K{-n^6,4+11*n^3+24*n^2-77*n} 8024976264462354 r005 Re(z^2+c),c=-103/118+5/27*I,n=52 8024976306428479 m001 1/Kolakoski^2/DuboisRaymond*ln(GAMMA(1/3)) 8024976315649175 a007 Real Root Of 947*x^4-476*x^3+142*x^2+804*x-85 8024976331583446 a007 Real Root Of -845*x^4+207*x^3+180*x^2+595*x+819 8024976333478703 r005 Re(z^2+c),c=-5/19+59/61*I,n=3 8024976334822843 r005 Re(z^2+c),c=-21/22+30/97*I,n=9 8024976343327272 r005 Re(z^2+c),c=-15/118+23/26*I,n=26 8024976352512420 a007 Real Root Of 893*x^4-959*x^3-819*x^2+939*x+415 8024976357071269 m001 (Zeta(1,2)-AlladiGrinstead)/(Porter+Rabbit) 8024976377462379 r005 Re(z^2+c),c=-4/3+5/79*I,n=12 8024976399288131 m001 GAMMA(13/24)+MadelungNaCl-Sierpinski 8024976402874911 a001 123/233*317811^(23/58) 8024976418173819 m005 (1/3*3^(1/2)+1/4)/(3/5*exp(1)-3/5) 8024976424211270 a007 Real Root Of 502*x^4-969*x^3+930*x^2+765*x-694 8024976428238051 a007 Real Root Of -11*x^4-875*x^3+615*x^2-544*x-330 8024976440314311 m001 (exp(-1/2*Pi)-RenyiParking)/(Robbin+Trott) 8024976451645279 a007 Real Root Of 444*x^4-608*x^3-144*x^2-469*x-782 8024976465597594 m001 PlouffeB^Ei(1,1)*PlouffeB^ZetaP(4) 8024976503679894 r005 Re(z^2+c),c=-61/78+3/32*I,n=27 8024976533251080 r002 6th iterates of z^2 + 8024976552148072 p004 log(36637/16421) 8024976608724959 r009 Re(z^3+c),c=-73/122+3/40*I,n=2 8024976619527251 m001 1/ln(GAMMA(23/24))*BesselJ(1,1)/arctan(1/2)^2 8024976622549958 l006 ln(3877/8650) 8024976645661996 a001 9062201101803/1597*2^(1/2) 8024976651449432 m001 (Zeta(5)+Mills*ZetaQ(3))/Mills 8024976678663263 r002 31th iterates of z^2 + 8024976701817058 h001 (4/9*exp(1)+7/12)/(2/11*exp(2)+8/9) 8024976721521620 r002 14th iterates of z^2 + 8024976758322565 a007 Real Root Of 871*x^4-872*x^3+637*x^2+531*x-796 8024976765286468 r005 Re(z^2+c),c=7/82+15/31*I,n=23 8024976783887515 a001 817138163596/233*1836311903^(8/17) 8024976783887515 a001 17393796001/233*6557470319842^(8/17) 8024976791541239 p004 log(15263/6841) 8024976815908357 a007 Real Root Of -690*x^4+555*x^3-957*x^2-925*x+447 8024976824381073 m001 (PolyaRandomWalk3D+ZetaQ(2))/(Pi+Pi^(1/2)) 8024976829285123 a007 Real Root Of -30*x^4+388*x^3-367*x^2-606*x-37 8024976865345628 m008 (4/5*Pi^6+2)/(Pi^6-1/2) 8024976868741189 a001 1/46347*6765^(7/47) 8024976873265494 q001 1735/2162 8024976890346241 m001 (2^(1/3)+3^(1/2))/(GAMMA(3/4)+FeigenbaumAlpha) 8024976903636640 a007 Real Root Of 106*x^4+881*x^3+193*x^2-369*x+296 8024976957646588 m001 1/Trott*MertensB1*exp(Zeta(3)) 8024977012586848 l006 ln(2964/6613) 8024977032344595 r009 Im(z^3+c),c=-8/13+16/55*I,n=12 8024977032577015 r005 Im(z^2+c),c=-3/106+37/52*I,n=25 8024977038332487 m003 17/3+Sqrt[5]/64+Sqrt[5]/(2*Log[1/2+Sqrt[5]/2]) 8024977040199043 a007 Real Root Of -516*x^4+209*x^3-873*x^2-814*x+231 8024977050786379 a007 Real Root Of -965*x^4+102*x^3-698*x^2-261*x+693 8024977080365531 r005 Im(z^2+c),c=-5/8+49/209*I,n=19 8024977091727420 m005 (1/2*gamma+7/8)/(2/5*5^(1/2)+5/9) 8024977096116164 m001 (Mills+Trott)/(CareFree-cos(1)) 8024977096259318 m001 (HeathBrownMoroz+Niven)/(sin(1)+GAMMA(17/24)) 8024977112237741 a003 cos(Pi*1/101)*sin(Pi*27/91) 8024977119448367 a007 Real Root Of 835*x^4-937*x^3-879*x^2+833*x+404 8024977123198604 r001 63i'th iterates of 2*x^2-1 of 8024977157693630 r002 4th iterates of z^2 + 8024977159441409 a007 Real Root Of -88*x^4-674*x^3+253*x^2-120*x-616 8024977183156125 a001 23725150497407/4181*2^(1/2) 8024977224025441 r004 Im(z^2+c),c=-5/38+1/10*I,z(0)=-1,n=12 8024977232684064 m005 (1/2*2^(1/2)-2)/(4/7*5^(1/2)+1/3) 8024977274971091 a001 567451585*2^(1/2) 8024977306586691 r009 Re(z^3+c),c=-1/70+20/31*I,n=37 8024977337584778 h001 (1/3*exp(2)+8/9)/(5/11*exp(2)+9/11) 8024977341122759 m001 (Pi+exp(1/Pi))/(Bloch-MertensB2) 8024977342974574 m005 (1/2*2^(1/2)+1/11)/(5/12*3^(1/2)+3/11) 8024977350988454 p003 LerchPhi(1/8,4,206/109) 8024977364753221 r008 a(0)=8,K{-n^6,-24+32*n^3-76*n^2+40*n} 8024977376384526 a007 Real Root Of -899*x^4-765*x^3-352*x^2-232*x+18 8024977419821094 m005 (1/4*Pi+3/4)/(4/5*Pi-3/5) 8024977419821094 m006 (1/4*Pi+3/4)/(4/5*Pi-3/5) 8024977419821094 m008 (1/4*Pi+3/4)/(4/5*Pi-3/5) 8024977440469076 r009 Im(z^3+c),c=-57/122+17/26*I,n=2 8024977451056115 m001 (Porter+Rabbit)/(ln(2^(1/2)+1)+FeigenbaumC) 8024977475260007 m001 (GAMMA(23/24)-Backhouse)/(CareFree-Rabbit) 8024977503241119 m005 (5/6*Pi-3/4)/(4/5*Catalan-1/2) 8024977511822028 s002 sum(A149933[n]/(n^2*pi^n-1),n=1..infinity) 8024977515345802 a001 192933544679/34*2^(1/2) 8024977524399234 a007 Real Root Of 651*x^4-281*x^3+513*x^2-3*x-748 8024977542719740 m001 BesselK(0,1)*(1-AlladiGrinstead) 8024977550620889 a007 Real Root Of -682*x^4+924*x^3-686*x^2+786*x+68 8024977562722012 m001 (BesselI(0,1)-CopelandErdos)/(OneNinth+Salem) 8024977603717356 a005 (1/cos(2/89*Pi))^835 8024977629629086 r002 24th iterates of z^2 + 8024977632830812 a001 843/121393*1597^(1/51) 8024977643278890 m001 Lehmer/exp(LandauRamanujan)*Niven^2 8024977676105640 a007 Real Root Of 845*x^4+551*x^3+379*x^2-733*x-898 8024977686035225 a001 13/29*54018521^(11/20) 8024977690768149 a001 13/29*39603^(37/40) 8024977703943213 m001 (3^(1/3)+Grothendieck)/(Khinchin+MertensB3) 8024977748068048 a007 Real Root Of 443*x^4-90*x^3+919*x^2+673*x-282 8024977749872532 l006 ln(2051/4576) 8024977777730105 a007 Real Root Of 101*x^4+788*x^3-298*x^2-972*x-249 8024977805405661 m005 (1/2*5^(1/2)-5/12)/(1/6*gamma+7/9) 8024977805543230 m001 gamma/(GaussAGM^MasserGramainDelta) 8024977827076287 b008 -4/5+2^Pi 8024977829728516 r008 a(0)=8,K{-n^6,12-41*n-28*n^2+16*n^3} 8024977845627621 m005 (1/2*Pi+1/8)/(9/10*Pi-5/7) 8024977846815217 a007 Real Root Of 978*x^4-572*x^3+308*x^2+554*x-455 8024977868042398 m005 (1/2*Catalan+7/9)/(7/8*5^(1/2)-5/12) 8024977948186348 r005 Im(z^2+c),c=-1/13+49/61*I,n=64 8024977960423058 r008 a(0)=8,K{-n^6,-48+6*n^3-16*n^2+14*n} 8024977964578937 h001 (3/5*exp(2)+11/12)/(6/7*exp(2)+1/3) 8024977968645222 r002 64th iterates of z^2 + 8024977991671988 r009 Re(z^3+c),c=-7/25+41/60*I,n=12 8024978030545594 r005 Im(z^2+c),c=-59/90+19/64*I,n=8 8024978041126614 r005 Im(z^2+c),c=-47/70+2/11*I,n=55 8024978055750513 m001 (-MadelungNaCl+Porter)/(2^(1/3)-ln(5)) 8024978058928229 r008 a(0)=8,K{-n^6,-40-9*n+9*n^2+5*n^3} 8024978059720544 a007 Real Root Of 788*x^4+91*x^3+164*x^2-640*x-899 8024978069293938 m001 (1+polylog(4,1/2))/(-Khinchin+Kolakoski) 8024978086192277 m001 (exp(Pi)+gamma(1))/(-Otter+StolarskyHarborth) 8024978089374636 a003 cos(Pi*3/59)*sin(Pi*29/96) 8024978092736035 r008 a(0)=8,K{-n^6,-62+13*n^3-24*n^2+37*n} 8024978100920605 r008 a(0)=8,K{-n^6,21-55*n-20*n^2+12*n^3} 8024978108844259 m001 (GlaisherKinkelin+PlouffeB)/(Porter+Sarnak) 8024978148568736 r005 Re(z^2+c),c=13/64+8/27*I,n=13 8024978216671507 q001 2763/3443 8024978222234187 a007 Real Root Of 107*x^4+833*x^3-163*x^2+307*x-307 8024978229493857 p004 log(30497/13669) 8024978235101602 m005 (1/2*Zeta(3)+5/8)/(2/7*5^(1/2)+8/9) 8024978237145644 a007 Real Root Of -242*x^4+676*x^3+36*x^2+568*x-728 8024978250282031 m005 (5/6*gamma-4/5)/(Pi+5/6) 8024978257035307 m006 (5*Pi+1/3)/(2*Pi^2+1/4) 8024978257035307 m008 (5*Pi+1/3)/(2*Pi^2+1/4) 8024978271835938 a001 6765/7*1364^(30/49) 8024978283516035 r008 a(0)=8,K{-n^6,35-48*n-56*n^2+28*n^3} 8024978289774533 r008 a(0)=8,K{-n^6,-35-6*n^3+72*n^2-70*n} 8024978295200510 a007 Real Root Of -986*x^4+591*x^3-181*x^2+187*x+981 8024978295981419 r009 Re(z^3+c),c=-31/94+30/47*I,n=10 8024978297447830 a001 843/55*377^(12/43) 8024978301653227 a007 Real Root Of 389*x^4-832*x^3-112*x^2+237*x-329 8024978310320324 m001 (polylog(4,1/2)+Mills)/(Niven+Riemann2ndZero) 8024978315382126 m005 (1/2*exp(1)-11/12)/(2/3*Zeta(3)-1/4) 8024978339271779 a001 682/305*6557470319842^(14/17) 8024978347889243 a003 cos(Pi*15/103)-sin(Pi*51/118) 8024978349641127 m001 Otter^sin(1/12*Pi)/ZetaQ(4) 8024978350586592 m008 (4/5*Pi^6+3/5)/(3*Pi+1/6) 8024978350762758 m001 1/BesselJ(0,1)*ln(Lehmer)*GAMMA(19/24) 8024978374180243 r009 Re(z^3+c),c=-1/11+27/38*I,n=15 8024978375966968 m005 (-9/20+1/4*5^(1/2))/(22/45+7/18*5^(1/2)) 8024978376535698 a007 Real Root Of -633*x^4-526*x^3-827*x^2+209*x+691 8024978405154017 a003 sin(Pi*27/112)/sin(Pi*35/107) 8024978435138951 l006 ln(3189/7115) 8024978451725772 m009 (1/6*Psi(1,1/3)+4/5)/(3/4*Psi(1,3/4)-5) 8024978484601221 a007 Real Root Of -739*x^4+947*x^3+529*x^2-14*x+444 8024978529754322 s002 sum(A236365[n]/(pi^n-1),n=1..infinity) 8024978535670419 r005 Im(z^2+c),c=-7/94+49/61*I,n=43 8024978543175384 s002 sum(A278170[n]/((pi^n+1)/n),n=1..infinity) 8024978551709875 m001 1/Tribonacci*exp(Lehmer)/GAMMA(3/4) 8024978611349225 a007 Real Root Of -848*x^4+545*x^3+724*x^2+279*x+391 8024978615143862 m001 (Pi^(1/2)+Bloch)/(Otter+Riemann3rdZero) 8024978645010081 a007 Real Root Of -803*x^4+806*x^3+434*x^2+365*x+763 8024978661417510 a007 Real Root Of -454*x^4+866*x^3+98*x^2+569*x-779 8024978675732714 a007 Real Root Of -697*x^4-777*x^3+37*x^2+289*x-23 8024978676123278 r005 Re(z^2+c),c=-51/62+3/29*I,n=3 8024978692528700 a005 (1/cos(19/223*Pi))^1518 8024978710087588 a003 cos(Pi*20/93)/sin(Pi*17/40) 8024978728609847 m001 KhinchinLevy^gamma(1)*StolarskyHarborth 8024978749183324 r008 a(0)=8,K{-n^6,-60-6*n^3+24*n^2+3*n} 8024978759955534 l006 ln(4327/9654) 8024978803181648 m001 (-Si(Pi)+1/3)/(-OneNinth+2) 8024978812144295 a001 141*3571^(38/49) 8024978812593219 a007 Real Root Of -495*x^4+595*x^3-899*x^2-143*x+977 8024978819350430 m005 (1/2*exp(1)+5)/(-53/84+2/7*5^(1/2)) 8024978832990673 a007 Real Root Of 56*x^4-741*x^3-373*x^2+218*x+425 8024978835116507 r005 Re(z^2+c),c=-115/86+43/59*I,n=2 8024978850530206 a003 sin(Pi*29/113)/sin(Pi*21/59) 8024978853225112 a001 987/9349*322^(3/4) 8024978858611572 m005 (1/2*Zeta(3)+2/11)/(9/10*3^(1/2)-7/12) 8024978860729669 a003 sin(Pi*1/96)-sin(Pi*4/111) 8024978863870154 m001 LambertW(1)^2*exp(Khintchine)/sin(Pi/5) 8024978900834430 a001 29/6765*28657^(26/51) 8024978901658871 a001 610/3571*322^(2/3) 8024978918102105 g004 Im(Psi(37/8+I*1/3)) 8024978922524160 a001 5600748293801/987*2^(1/2) 8024978929038008 r005 Im(z^2+c),c=-5/4+4/239*I,n=64 8024978935464860 m001 1/GAMMA(1/24)*FeigenbaumC^2/exp(gamma) 8024978948980751 m001 Lehmer^Psi(2,1/3)*exp(1/Pi)^Psi(2,1/3) 8024978950307222 r004 Im(z^2+c),c=-7/20+1/8*I,z(0)=-1,n=21 8024978953143687 m009 (5*Psi(1,3/4)+4/5)/(2/5*Psi(1,3/4)+2/3) 8024978977596511 a007 Real Root Of 270*x^4-807*x^3-182*x^2-65*x-464 8024979004445030 a007 Real Root Of 471*x^4-356*x^3+285*x^2+988*x+230 8024979007365372 a007 Real Root Of -469*x^4+982*x^3-803*x^2+536*x-226 8024979013200574 s002 sum(A260845[n]/((pi^n+1)/n),n=1..infinity) 8024979013266431 s002 sum(A260845[n]/((pi^n-1)/n),n=1..infinity) 8024979025995502 m009 (2/5*Psi(1,1/3)-2)/(1/3*Pi^2-3/4) 8024979037370201 m001 (Bloch+HeathBrownMoroz)/(cos(1/5*Pi)-Ei(1,1)) 8024979037894826 m001 1/FeigenbaumD^2*exp(Riemann3rdZero)/(2^(1/3)) 8024979097030072 a003 cos(Pi*17/110)*sin(Pi*38/105) 8024979103819972 r008 a(0)=8,K{-n^6,-7-14*n-36*n^2+16*n^3} 8024979151793332 s002 sum(A278413[n]/(n^2*2^n-1),n=1..infinity) 8024979175343606 r002 2th iterates of z^2 + 8024979197860971 b008 8+ArcCot[20]/2 8024979208315562 r005 Im(z^2+c),c=-7/9+15/121*I,n=28 8024979209618909 r009 Im(z^3+c),c=-3/64+24/29*I,n=13 8024979236471725 a001 141*9349^(34/49) 8024979236526629 r001 24i'th iterates of 2*x^2-1 of 8024979243809980 a007 Real Root Of 766*x^4+741*x^3+552*x^2-391*x-604 8024979270875384 m001 (Lehmer+MasserGramain)/(Porter+ZetaP(4)) 8024979278689552 m001 MadelungNaCl^2*ln(FeigenbaumDelta)*Niven 8024979314505156 m003 13/2+Sqrt[5]/256+2*ProductLog[1/2+Sqrt[5]/2] 8024979320529233 a007 Real Root Of 886*x^4+369*x^3+733*x^2-156*x-774 8024979333757365 r005 Re(z^2+c),c=-67/82+14/37*I,n=6 8024979355291706 m001 Paris/ln(Conway)/arctan(1/2) 8024979355475938 p001 sum(1/(506*n+125)/(64^n),n=0..infinity) 8024979372370703 r009 Im(z^3+c),c=-27/106+26/27*I,n=27 8024979380907922 a005 (1/sin(95/237*Pi))^369 8024979381879861 m001 (-MertensB3+Robbin)/(Catalan-FeigenbaumB) 8024979390648077 r005 Im(z^2+c),c=-7/10+59/195*I,n=21 8024979425807579 m001 GAMMA(11/24)^2/Ei(1)^2/exp(sin(Pi/12)) 8024979427535475 m005 (1/3*3^(1/2)-1/5)/(-41/84+3/7*5^(1/2)) 8024979450662683 a007 Real Root Of 470*x^4-55*x^3+881*x^2+528*x-367 8024979594797634 r009 Im(z^3+c),c=-1/66+53/64*I,n=5 8024979646347649 r005 Im(z^2+c),c=-63/94+4/25*I,n=55 8024979670184022 l006 ln(1138/2539) 8024979686524921 a001 615/124*123^(1/10) 8024979690386525 b008 80+LogGamma[Sqrt[6]] 8024979717221732 a007 Real Root Of 98*x^4-731*x^3+846*x^2+24*x-944 8024979724370532 r008 a(0)=8,K{-n^6,21+31*n^3-72*n^2-21*n} 8024979732825670 a007 Real Root Of -696*x^4+727*x^3-268*x^2+877*x-69 8024979735254900 r009 Im(z^3+c),c=-1/30+44/53*I,n=27 8024979750399485 a007 Real Root Of -85*x^4+516*x^3+252*x^2+196*x-551 8024979759322526 a007 Real Root Of -270*x^4-244*x^3-232*x^2+766*x+750 8024979760818502 a007 Real Root Of 384*x^4-659*x^3+316*x^2-475*x+359 8024979762240395 a001 233/521*1364^(2/5) 8024979777883986 a007 Real Root Of 618*x^4-985*x^3-105*x^2-181*x-843 8024979798853458 a007 Real Root Of -564*x^4+899*x^3-108*x^2-592*x+293 8024979851612780 r008 a(0)=8,K{-n^6,-32-25*n+29*n^2-13*n^3} 8024979862599669 a001 24476/1597*1836311903^(16/17) 8024979875989177 a001 3571/514229*6557470319842^(16/17) 8024979876001006 a001 54018521/1597*514229^(16/17) 8024979901807924 a007 Real Root Of 559*x^4-519*x^3+459*x^2+265*x-583 8024979911193701 a007 Real Root Of 889*x^4-738*x^3+698*x^2+250*x-999 8024979919075448 a001 7/620166*199^(29/36) 8024979933426358 a007 Real Root Of 703*x^4-684*x^3+160*x^2+521*x-330 8024979963392341 a007 Real Root Of 664*x^4-563*x^3-859*x^2-490*x+962 8024979972420507 a007 Real Root Of -219*x^4-207*x^3-948*x^2+255*x+799 8024979972937969 m001 (Lehmer+Thue)/(1+cos(1/5*Pi)) 8024980006748388 r005 Re(z^2+c),c=-17/62+51/53*I,n=3 8024980031118145 m005 (1/2*Pi+2/7)/(3/4*5^(1/2)+7/11) 8024980033922488 a005 (1/cos(28/211*Pi))^589 8024980043200601 r005 Im(z^2+c),c=19/40+5/22*I,n=3 8024980044157478 m001 (GAMMA(13/24)-MadelungNaCl)/(Totient+ZetaQ(4)) 8024980069003696 r005 Im(z^2+c),c=-13/31+1/42*I,n=4 8024980076211311 a007 Real Root Of 924*x^4+732*x^3+926*x^2-376*x-903 8024980076580265 m001 (ln(2)-sin(1))/(KhinchinLevy+Robbin) 8024980081981117 a003 sin(Pi*5/19)/sin(Pi*24/65) 8024980083065388 r009 Re(z^3+c),c=-7/54+33/61*I,n=21 8024980094328424 a007 Real Root Of 213*x^4-751*x^3-362*x^2-346*x-521 8024980123241024 r008 a(0)=8,K{-n^6,-80+13*n^3-51*n^2+96*n} 8024980139753923 a007 Real Root Of 640*x^4-840*x^3-503*x^2-712*x-947 8024980181984331 a001 646/6119*322^(3/4) 8024980215549984 a007 Real Root Of 259*x^4+278*x^3-399*x^2-966*x-482 8024980249790528 m005 (1/2*5^(1/2)-7/11)/(1/6*3^(1/2)-8/9) 8024980286121585 a007 Real Root Of 16*x^4-588*x^3+505*x^2+57*x-590 8024980309051958 a007 Real Root Of -459*x^4+985*x^3+935*x^2-353*x-186 8024980332049586 a005 (1/cos(32/147*Pi))^198 8024980352149709 a007 Real Root Of -334*x^4+939*x^3+745*x^2-58*x-780 8024980375847687 a001 6765/64079*322^(3/4) 8024980387590372 p003 LerchPhi(1/64,2,83/235) 8024980404131969 a001 17711/167761*322^(3/4) 8024980408258590 a001 11592/109801*322^(3/4) 8024980408860656 a001 121393/1149851*322^(3/4) 8024980408948496 a001 317811/3010349*322^(3/4) 8024980408961312 a001 208010/1970299*322^(3/4) 8024980408963182 a001 2178309/20633239*322^(3/4) 8024980408963455 a001 5702887/54018521*322^(3/4) 8024980408963494 a001 3732588/35355581*322^(3/4) 8024980408963500 a001 39088169/370248451*322^(3/4) 8024980408963501 a001 102334155/969323029*322^(3/4) 8024980408963501 a001 66978574/634430159*322^(3/4) 8024980408963501 a001 701408733/6643838879*322^(3/4) 8024980408963501 a001 1836311903/17393796001*322^(3/4) 8024980408963501 a001 1201881744/11384387281*322^(3/4) 8024980408963501 a001 12586269025/119218851371*322^(3/4) 8024980408963501 a001 32951280099/312119004989*322^(3/4) 8024980408963501 a001 21566892818/204284540899*322^(3/4) 8024980408963501 a001 225851433717/2139295485799*322^(3/4) 8024980408963501 a001 182717648081/1730726404001*322^(3/4) 8024980408963501 a001 139583862445/1322157322203*322^(3/4) 8024980408963501 a001 53316291173/505019158607*322^(3/4) 8024980408963501 a001 10182505537/96450076809*322^(3/4) 8024980408963501 a001 7778742049/73681302247*322^(3/4) 8024980408963501 a001 2971215073/28143753123*322^(3/4) 8024980408963501 a001 567451585/5374978561*322^(3/4) 8024980408963501 a001 433494437/4106118243*322^(3/4) 8024980408963501 a001 165580141/1568397607*322^(3/4) 8024980408963501 a001 31622993/299537289*322^(3/4) 8024980408963504 a001 24157817/228826127*322^(3/4) 8024980408963519 a001 9227465/87403803*322^(3/4) 8024980408963623 a001 1762289/16692641*322^(3/4) 8024980408964337 a001 1346269/12752043*322^(3/4) 8024980408969232 a001 514229/4870847*322^(3/4) 8024980409002784 a001 98209/930249*322^(3/4) 8024980409232753 a001 75025/710647*322^(3/4) 8024980410808982 a001 28657/271443*322^(3/4) 8024980411535246 a001 64079/4181*1836311903^(16/17) 8024980413488756 a001 9349/1346269*6557470319842^(16/17) 8024980413495354 a001 141422324/4181*514229^(16/17) 8024980421612617 a001 5473/51841*322^(3/4) 8024980421645174 r002 2th iterates of z^2 + 8024980437400625 g001 abs(GAMMA(87/20+I*287/60)) 8024980452237338 a007 Real Root Of 97*x^4+846*x^3+498*x^2-286*x+558 8024980483996877 q001 1028/1281 8024980491623874 a001 167761/10946*1836311903^(16/17) 8024980491756867 a007 Real Root Of 985*x^4-975*x^3-456*x^2+15*x+377 8024980491908887 a001 12238/1762289*6557470319842^(16/17) 8024980491914729 a001 370248451/10946*514229^(16/17) 8024980495661829 a001 4181/39603*322^(3/4) 8024980501149616 a007 Real Root Of 344*x^4-730*x^3+678*x^2+311*x-707 8024980503308647 a001 439204/28657*1836311903^(16/17) 8024980503350230 a001 64079/9227465*6557470319842^(16/17) 8024980503355962 a001 969323029/28657*514229^(16/17) 8024980505013433 a001 1149851/75025*1836311903^(16/17) 8024980505019500 a001 167761/24157817*6557470319842^(16/17) 8024980505025215 a001 2537720636/75025*514229^(16/17) 8024980505262158 a001 3010349/196418*1836311903^(16/17) 8024980505263043 a001 219602/31622993*6557470319842^(16/17) 8024980505268756 a001 6643838879/196418*514229^(16/17) 8024980505298446 a001 7881196/514229*1836311903^(16/17) 8024980505298575 a001 1149851/165580141*6557470319842^(16/17) 8024980505303741 a001 20633239/1346269*1836311903^(16/17) 8024980505303759 a001 3010349/433494437*6557470319842^(16/17) 8024980505304288 a001 17393796001/514229*514229^(16/17) 8024980505304513 a001 54018521/3524578*1836311903^(16/17) 8024980505304516 a001 3940598/567451585*6557470319842^(16/17) 8024980505304626 a001 141422324/9227465*1836311903^(16/17) 8024980505304626 a001 20633239/2971215073*6557470319842^(16/17) 8024980505304642 a001 370248451/24157817*1836311903^(16/17) 8024980505304642 a001 54018521/7778742049*6557470319842^(16/17) 8024980505304645 a001 969323029/63245986*1836311903^(16/17) 8024980505304645 a001 70711162/10182505537*6557470319842^(16/17) 8024980505304645 a001 2537720636/165580141*1836311903^(16/17) 8024980505304645 a001 370248451/53316291173*6557470319842^(16/17) 8024980505304645 a001 6643838879/433494437*1836311903^(16/17) 8024980505304645 a001 969323029/139583862445*6557470319842^(16/17) 8024980505304645 a001 17393796001/1134903170*1836311903^(16/17) 8024980505304645 a001 1268860318/182717648081*6557470319842^(16/17) 8024980505304645 a001 45537549124/2971215073*1836311903^(16/17) 8024980505304645 a001 119218851371/7778742049*1836311903^(16/17) 8024980505304645 a001 312119004989/20365011074*1836311903^(16/17) 8024980505304645 a001 817138163596/53316291173*1836311903^(16/17) 8024980505304645 a001 2139295485799/139583862445*1836311903^(16/17) 8024980505304645 a001 14662949395604/956722026041*1836311903^(16/17) 8024980505304645 a001 494493258286/32264490531*1836311903^(16/17) 8024980505304645 a001 1322157322203/86267571272*1836311903^(16/17) 8024980505304645 a001 505019158607/32951280099*1836311903^(16/17) 8024980505304645 a001 192900153618/12586269025*1836311903^(16/17) 8024980505304645 a001 10525900321/686789568*1836311903^(16/17) 8024980505304645 a001 6643838879/956722026041*6557470319842^(16/17) 8024980505304645 a001 28143753123/1836311903*1836311903^(16/17) 8024980505304645 a001 5374978561/774004377960*6557470319842^(16/17) 8024980505304645 a001 4106118243/591286729879*6557470319842^(16/17) 8024980505304645 a001 10749957122/701408733*1836311903^(16/17) 8024980505304645 a001 224056801/32264490531*6557470319842^(16/17) 8024980505304645 a001 299537289/43133785636*6557470319842^(16/17) 8024980505304645 a001 4106118243/267914296*1836311903^(16/17) 8024980505304645 a001 228826127/32951280099*6557470319842^(16/17) 8024980505304645 a001 224056801/14619165*1836311903^(16/17) 8024980505304646 a001 87403803/12586269025*6557470319842^(16/17) 8024980505304646 a001 599074578/39088169*1836311903^(16/17) 8024980505304652 a001 103681/14930208*6557470319842^(16/17) 8024980505304652 a001 228826127/14930352*1836311903^(16/17) 8024980505304694 a001 12752043/1836311903*6557470319842^(16/17) 8024980505304695 a001 87403803/5702887*1836311903^(16/17) 8024980505304983 a001 4870847/701408733*6557470319842^(16/17) 8024980505304990 a001 4769326/311187*1836311903^(16/17) 8024980505306963 a001 930249/133957148*6557470319842^(16/17) 8024980505307013 a001 12752043/832040*1836311903^(16/17) 8024980505309472 a001 45537549124/1346269*514229^(16/17) 8024980505310228 a001 119218851371/3524578*514229^(16/17) 8024980505310339 a001 312119004989/9227465*514229^(16/17) 8024980505310355 a001 817138163596/24157817*514229^(16/17) 8024980505310357 a001 2139295485799/63245986*514229^(16/17) 8024980505310358 a001 5600748293801/165580141*514229^(16/17) 8024980505310358 a001 14662949395604/433494437*514229^(16/17) 8024980505310358 a001 23725150497407/701408733*514229^(16/17) 8024980505310358 a001 9062201101803/267914296*514229^(16/17) 8024980505310358 a001 228826126/6765*514229^(16/17) 8024980505310359 a001 1322157322203/39088169*514229^(16/17) 8024980505310365 a001 505019158607/14930352*514229^(16/17) 8024980505310407 a001 192900153618/5702887*514229^(16/17) 8024980505310696 a001 10525900321/311187*514229^(16/17) 8024980505312676 a001 28143753123/832040*514229^(16/17) 8024980505320536 a001 101521/14619165*6557470319842^(16/17) 8024980505320874 a001 4870847/317811*1836311903^(16/17) 8024980505326248 a001 10749957122/317811*514229^(16/17) 8024980505413561 a001 271443/39088169*6557470319842^(16/17) 8024980505415878 a001 1860498/121393*1836311903^(16/17) 8024980505419272 a001 4106118243/121393*514229^(16/17) 8024980506051165 a001 51841/7465176*6557470319842^(16/17) 8024980506056870 a001 224056801/6624*514229^(16/17) 8024980506067048 a001 101521/6624*1836311903^(16/17) 8024980510421369 a001 39603/5702887*6557470319842^(16/17) 8024980510427032 a001 599074578/17711*514229^(16/17) 8024980510530235 a001 271443/17711*1836311903^(16/17) 8024980522149865 m001 (2^(1/3)-KomornikLoreti)/(MasserGramain+Trott) 8024980540375194 a001 2161/311187*6557470319842^(16/17) 8024980540380569 a001 228826127/6765*514229^(16/17) 8024980541121369 a001 103682/6765*1836311903^(16/17) 8024980563944059 a008 Real Root of x^4-2*x^3+11*x^2+53*x+34 8024980572759168 r005 Re(z^2+c),c=-57/110+13/24*I,n=49 8024980603712564 p001 sum(1/(67*n+14)/(2^n),n=0..infinity) 8024980616056741 a007 Real Root Of -323*x^4+969*x^3+868*x^2+738*x+668 8024980659279162 a008 Real Root of (-7+2*x+5*x^2+4*x^4+3*x^8) 8024980668191190 a007 Real Root Of -625*x^4-326*x^3-399*x^2-356*x+62 8024980677706522 m001 ln(gamma)^2*LaplaceLimit^2/sqrt(1+sqrt(3)) 8024980694461698 r002 6th iterates of z^2 + 8024980710071578 m001 (gamma+Bloch)/(-Grothendieck+Weierstrass) 8024980738901437 a007 Real Root Of -135*x^4-980*x^3+802*x^2-239*x-143 8024980745681764 a001 2889/416020*6557470319842^(16/17) 8024980745685166 a001 87403803/2584*514229^(16/17) 8024980750796128 a001 39603/2584*1836311903^(16/17) 8024980752502866 l006 ln(3639/8119) 8024980757210352 m001 1/GAMMA(1/6)^2*exp((3^(1/3)))*sin(Pi/5) 8024980781897535 r005 Im(z^2+c),c=-5/8+35/233*I,n=60 8024980783819174 m001 TravellingSalesman/BesselJ(0,1)*Thue 8024980801039697 r005 Re(z^2+c),c=-59/46+17/32*I,n=2 8024980813813899 r002 2th iterates of z^2 + 8024980832732573 a007 Real Root Of -947*x^4+737*x^3+59*x^2+59*x+783 8024980842127961 a007 Real Root Of 922*x^4-288*x^3+727*x^2+89*x-928 8024980858495978 r002 33th iterates of z^2 + 8024980869198879 a007 Real Root Of 103*x^4-978*x^3-234*x^2+8*x+607 8024980875054314 m005 (1/2*5^(1/2)+2/7)/(8/11*Zeta(3)+7/8) 8024980884064190 a007 Real Root Of 69*x^4-938*x^3+424*x^2+818*x-130 8024980934596086 b008 Pi/5+PolyLog[2,1/6] 8024980944287646 a001 17711/7*39603^(16/49) 8024980978912091 a007 Real Root Of 552*x^4-907*x^3-387*x^2-304*x+733 8024980994524633 a007 Real Root Of -947*x^4+434*x^3-578*x^2-596*x+511 8024981003202679 a001 1597/15127*322^(3/4) 8024981028594260 m001 (BesselJ(0,1)+BesselK(1,1))/(-Niven+ZetaQ(4)) 8024981035303568 a001 6765/7*5778^(25/49) 8024981044259569 m001 1/GAMMA(7/12)^2/ln(Catalan)^2*Zeta(3)^2 8024981083103640 a007 Real Root Of -987*x^4+432*x^3-242*x^2-104*x+705 8024981092158428 a007 Real Root Of -536*x^4+552*x^3+572*x^2+396*x+457 8024981130058361 a007 Real Root Of 119*x^4-599*x^3+994*x^2+906*x-272 8024981155419329 r009 Re(z^3+c),c=-3/29+21/62*I,n=14 8024981168506522 r005 Re(z^2+c),c=-35/122+31/49*I,n=39 8024981174189499 a007 Real Root Of 758*x^4+12*x^3+609*x^2+388*x-389 8024981178888258 a007 Real Root Of 489*x^4-638*x^3-109*x^2+135*x-354 8024981183371279 a008 Real Root of x^4-x^3-48*x^2-15*x-419 8024981187594003 h001 (5/7*exp(1)+7/10)/(11/12*exp(1)+4/5) 8024981217129977 r009 Re(z^3+c),c=-1/11+9/44*I,n=2 8024981222372598 a007 Real Root Of -935*x^4+554*x^3+299*x^2+585*x+951 8024981237597971 m001 gamma(3)+RenyiParking^BesselJ(0,1) 8024981244977375 l006 ln(2501/5580) 8024981251938338 a007 Real Root Of -745*x^4-202*x^3-910*x^2-812*x+139 8024981265471965 a001 233/521*3571^(6/17) 8024981446237038 a003 cos(Pi*1/63)*sin(Pi*30/101) 8024981458586982 a001 233/521*9349^(6/19) 8024981483753874 a001 233/521*24476^(2/7) 8024981486636929 m001 (2^(1/3)-Zeta(5))/(exp(1/Pi)+OrthogonalArrays) 8024981487071355 a001 233/521*64079^(6/23) 8024981487571952 a001 233/521*439204^(2/9) 8024981487581174 a001 233/521*7881196^(2/11) 8024981487581197 a001 233/521*141422324^(2/13) 8024981487581197 a001 233/521*2537720636^(2/15) 8024981487581197 a001 233/521*45537549124^(2/17) 8024981487581197 a001 233/521*14662949395604^(2/21) 8024981487581197 a001 233/521*(1/2+1/2*5^(1/2))^6 8024981487581197 a001 233/521*10749957122^(1/8) 8024981487581197 a001 233/521*4106118243^(3/23) 8024981487581197 a001 233/521*1568397607^(3/22) 8024981487581197 a001 233/521*599074578^(1/7) 8024981487581197 a001 233/521*228826127^(3/20) 8024981487581197 a001 233/521*87403803^(3/19) 8024981487581198 a001 233/521*33385282^(1/6) 8024981487581206 a001 233/521*12752043^(3/17) 8024981487581261 a001 233/521*4870847^(3/16) 8024981487581661 a001 233/521*1860498^(1/5) 8024981487584602 a001 233/521*710647^(3/14) 8024981487606331 a001 233/521*271443^(3/13) 8024981487767825 a001 233/521*103682^(1/4) 8024981487781236 a007 Real Root Of -787*x^4+965*x^3-574*x^2-553*x+751 8024981488976654 a001 233/521*39603^(3/11) 8024981498102262 a001 233/521*15127^(3/10) 8024981522542498 a001 54289/6765 8024981567706140 a001 233/521*5778^(1/3) 8024981594109445 m001 (-OneNinth+Totient)/(Chi(1)+ArtinRank2) 8024981639174692 a007 Real Root Of 584*x^4-717*x^3+605*x^2+474*x-622 8024981662630566 r005 Re(z^2+c),c=-13/16+7/67*I,n=39 8024981680289673 r002 3th iterates of z^2 + 8024981682334744 a001 17711/7*2207^(22/49) 8024981692352525 m001 (Artin+GolombDickman)/(KomornikLoreti-Landau) 8024981695780720 a007 Real Root Of -169*x^4-847*x^3-999*x^2+596*x+754 8024981696338799 a007 Real Root Of -259*x^4+849*x^3-731*x^2+639*x-47 8024981708775163 l006 ln(3864/8621) 8024981737292823 m001 1/exp(Robbin)^2*CareFree/GAMMA(7/12)^2 8024981740516616 r005 Im(z^2+c),c=-19/90+33/37*I,n=4 8024981768192582 r005 Im(z^2+c),c=-11/106+27/32*I,n=52 8024981780550808 r005 Re(z^2+c),c=-1/18+38/47*I,n=45 8024981793416672 r002 21th iterates of z^2 + 8024981806613107 m001 StolarskyHarborth*(Ei(1,1)-Psi(1,1/3)) 8024981813974909 a007 Real Root Of 740*x^4-545*x^3-620*x^2-285*x-418 8024981822107269 r002 48th iterates of z^2 + 8024981827043028 a007 Real Root Of -220*x^4+751*x^3+195*x^2+85*x+422 8024981857989448 m005 (1/2*Pi-1/10)/(7/9*2^(1/2)-11/12) 8024981903165284 a007 Real Root Of 235*x^4-248*x^3-746*x^2-958*x-514 8024981904774817 a001 3/8*514229^(14/15) 8024981906835587 a007 Real Root Of -851*x^4+350*x^3-179*x^2-202*x+487 8024981928801110 s002 sum(A012673[n]/(n*10^n+1),n=1..infinity) 8024981930584322 s002 sum(A012673[n]/(n*10^n-1),n=1..infinity) 8024981932286971 m001 cos(1/5*Pi)^Zeta(3)+Trott2nd 8024981948993548 m001 (Weierstrass+ZetaP(3))/(GAMMA(3/4)-Mills) 8024981958705305 m001 (Lehmer+ZetaP(3))/(2^(1/3)-GaussKuzminWirsing) 8024981978805525 r009 Re(z^3+c),c=-3/29+21/62*I,n=16 8024981980289062 m001 (-ln(5)+PlouffeB)/(Catalan-Shi(1)) 8024981984057569 m001 (exp(Pi)-ln(3))/(GAMMA(17/24)+MinimumGamma) 8024981986891519 m001 (LambertW(1)*GAMMA(23/24)-Zeta(5))/LambertW(1) 8024981988716725 m009 (4*Psi(1,3/4)-3/5)/(4*Psi(1,2/3)-1/3) 8024982036694628 a001 610/521*322^(1/3) 8024982039653719 m005 (1/2*Pi+3/7)/(5/12*Zeta(3)-3/4) 8024982068297749 r009 Re(z^3+c),c=-3/29+21/62*I,n=12 8024982075790800 r009 Re(z^3+c),c=-3/29+21/62*I,n=18 8024982076053247 r009 Re(z^3+c),c=-3/29+21/62*I,n=19 8024982076929030 r009 Re(z^3+c),c=-3/29+21/62*I,n=21 8024982077234144 r009 Re(z^3+c),c=-3/29+21/62*I,n=23 8024982077256726 r009 Re(z^3+c),c=-3/29+21/62*I,n=26 8024982077257314 r009 Re(z^3+c),c=-3/29+21/62*I,n=28 8024982077257411 r009 Re(z^3+c),c=-3/29+21/62*I,n=30 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=31 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=33 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=35 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=38 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=37 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=40 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=42 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=45 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=47 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=49 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=50 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=52 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=54 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=57 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=59 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=61 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=64 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=62 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=63 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=60 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=56 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=58 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=55 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=53 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=51 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=48 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=46 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=44 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=43 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=41 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=39 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=36 8024982077257415 r009 Re(z^3+c),c=-3/29+21/62*I,n=34 8024982077257416 r009 Re(z^3+c),c=-3/29+21/62*I,n=32 8024982077257441 r009 Re(z^3+c),c=-3/29+21/62*I,n=29 8024982077257723 r009 Re(z^3+c),c=-3/29+21/62*I,n=27 8024982077258154 r009 Re(z^3+c),c=-3/29+21/62*I,n=25 8024982077260254 r009 Re(z^3+c),c=-3/29+21/62*I,n=24 8024982077358469 r009 Re(z^3+c),c=-3/29+21/62*I,n=22 8024982078067968 r009 Re(z^3+c),c=-3/29+21/62*I,n=20 8024982082440050 r005 Im(z^2+c),c=-7/90+41/50*I,n=19 8024982094859741 r008 a(0)=8,K{-n^6,-61+3*n^3+32*n^2-13*n} 8024982097578833 r009 Re(z^3+c),c=-3/29+21/62*I,n=17 8024982105413756 a001 233/521*2207^(3/8) 8024982105705700 r002 26th iterates of z^2 + 8024982108199438 a001 377/9349*322^(11/12) 8024982135726693 s002 sum(A045389[n]/((pi^n+1)/n),n=1..infinity) 8024982152864097 a001 4769326/141*514229^(16/17) 8024982152873929 a001 2207/317811*6557470319842^(16/17) 8024982171538875 m001 (BesselI(0,1)-sin(1))/(gamma(1)+BesselK(1,1)) 8024982177586802 a007 Real Root Of -925*x^4+538*x^3-861*x^2-627*x+713 8024982186400811 m005 (1/2*2^(1/2)-10/11)/(7/9*5^(1/2)+7/9) 8024982187928595 a001 2161/141*1836311903^(16/17) 8024982205676699 m001 ln(2^(1/2)+1)^Paris*StolarskyHarborth 8024982215999456 a007 Real Root Of 511*x^4-494*x^3+755*x^2+104*x-870 8024982221387058 m001 (Zeta(1,-1)-Conway)/(Tribonacci-ZetaQ(3)) 8024982225365239 r005 Im(z^2+c),c=-1/15+55/64*I,n=8 8024982238625426 a007 Real Root Of 82*x^4+761*x^3+873*x^2+480*x+837 8024982260176138 r002 4th iterates of z^2 + 8024982274779384 a007 Real Root Of 47*x^4-607*x^3+121*x^2+369*x-115 8024982318021841 r005 Im(z^2+c),c=1/11+11/18*I,n=22 8024982340235200 a003 cos(Pi*16/119)*sin(Pi*38/111) 8024982384056497 a007 Real Root Of 976*x^4-831*x^3-278*x^2+490*x-262 8024982404067313 r005 Re(z^2+c),c=-27/110+7/10*I,n=8 8024982406390858 r005 Im(z^2+c),c=17/52+17/33*I,n=15 8024982410492302 r002 10th iterates of z^2 + 8024982414961178 m001 1/Riemann3rdZero^2/LaplaceLimit*exp(Zeta(3)) 8024982415601649 a007 Real Root Of -793*x^4+597*x^3-81*x^2+388*x+32 8024982418876301 m001 1/ln(Tribonacci)*GaussAGM(1,1/sqrt(2))*gamma 8024982420900999 r009 Re(z^3+c),c=-3/29+21/62*I,n=15 8024982534949677 r009 Im(z^3+c),c=-31/58+11/63*I,n=25 8024982559808320 l006 ln(1363/3041) 8024982572248926 m001 GAMMA(5/6)/exp(GAMMA(5/24))*gamma 8024982573902915 r009 Im(z^3+c),c=-5/58+47/59*I,n=59 8024982583221029 a007 Real Root Of 122*x^4-464*x^3-104*x^2-649*x+777 8024982585873573 r005 Re(z^2+c),c=-43/34+1/40*I,n=40 8024982598537518 m005 (1/2*gamma-7/12)/(5/9*5^(1/2)-7/8) 8024982607741818 l003 BesselY(2,13/103) 8024982619671005 m005 (-5/44+1/4*5^(1/2))/(1/7*exp(1)+1/6) 8024982651405633 m001 (polylog(4,1/2)+FeigenbaumD)/(Mills-Niven) 8024982651415514 r002 8th iterates of z^2 + 8024982652617647 a001 1149851/610*1836311903^(14/17) 8024982652628715 a001 969323029/610*514229^(14/17) 8024982665022079 a007 Real Root Of 907*x^4-137*x^3-779*x^2-923*x-686 8024982682372203 r009 Re(z^3+c),c=-1/106+8/11*I,n=45 8024982684448114 m001 (Landau-exp(1))/(Mills+OrthogonalArrays) 8024982706904697 m001 (Magata-ZetaQ(2))/(Pi+Zeta(5)) 8024982711045262 m001 ln(gamma)^OneNinth*CopelandErdos^OneNinth 8024982734257523 a007 Real Root Of -241*x^4+825*x^3-873*x^2-215*x+916 8024982742159345 a007 Real Root Of 264*x^4-670*x^3-201*x^2-356*x-612 8024982800417291 a007 Real Root Of 507*x^4-576*x^3+246*x^2+393*x-351 8024982828031303 r002 50th iterates of z^2 + 8024982835538179 a003 sin(Pi*17/50)*sin(Pi*7/19) 8024982839880874 r005 Im(z^2+c),c=-11/122+33/38*I,n=4 8024982850588707 a007 Real Root Of 715*x^4-361*x^3-101*x^2+506*x-12 8024982857512393 r009 Im(z^3+c),c=-7/12+15/44*I,n=6 8024982861452403 a005 (1/sin(71/149*Pi))^1609 8024982893280667 r005 Im(z^2+c),c=-7/82+48/59*I,n=7 8024982900833836 m001 (-CareFree+Tribonacci)/(3^(1/2)-BesselI(1,2)) 8024982917973910 m001 BesselK(0,1)/ln(Bloch)^2*Zeta(5)^2 8024982931432467 a007 Real Root Of 57*x^4+478*x^3+51*x^2-820*x+769 8024982932371514 r005 Im(z^2+c),c=-23/52+37/53*I,n=4 8024982941106413 m005 (3/44+1/4*5^(1/2))/(2/11*5^(1/2)+3/8) 8024982948089930 r009 Re(z^3+c),c=-3/50+25/29*I,n=33 8024982952420065 m002 -4-(Pi^6*Sech[Pi])/ProductLog[Pi]+Tanh[Pi] 8024982978278349 a007 Real Root Of 642*x^4-978*x^3-779*x^2+183*x+594 8024983000334732 h001 (2/9*exp(2)+4/5)/(5/6*exp(1)+7/9) 8024983041630132 a007 Real Root Of 808*x^4+219*x^3+183*x^2-728*x-924 8024983041835393 r002 31th iterates of z^2 + 8024983051284453 m001 GAMMA(17/24)*(FeigenbaumB-exp(-1/2*Pi)) 8024983068743227 m001 1/exp(GAMMA(5/24))*TwinPrimes*Pi^2 8024983080118555 r004 Re(z^2+c),c=-29/46+5/9*I,z(0)=-1,n=2 8024983086680421 b008 77*CosIntegral[1/5] 8024983103768034 r002 6th iterates of z^2 + 8024983107875825 a007 Real Root Of 837*x^4-860*x^3+709*x^2+318*x-993 8024983119513841 q001 2377/2962 8024983124715318 r001 4i'th iterates of 2*x^2-1 of 8024983153223829 a007 Real Root Of 80*x^4+698*x^3+338*x^2-874*x+161 8024983153494831 r005 Im(z^2+c),c=-17/30+15/103*I,n=51 8024983161680584 r005 Im(z^2+c),c=-85/118+9/56*I,n=46 8024983173077093 a007 Real Root Of -826*x^4+691*x^3-231*x^2-23*x+830 8024983187390752 a007 Real Root Of 567*x^4-697*x^3-22*x^2-77*x-643 8024983190677629 a007 Real Root Of -40*x^4-378*x^3-371*x^2+804*x+886 8024983221682791 r005 Re(z^2+c),c=11/98+16/31*I,n=43 8024983237543875 m007 (-5*gamma-10*ln(2)-5/6)/(-gamma-3/4) 8024983244555528 a001 5600748293801/233*6557470319842^(6/17) 8024983249384467 a007 Real Root Of 324*x^4-300*x^3+701*x^2+907*x-13 8024983260716852 m001 (GAMMA(11/12)-KhinchinHarmonic)^Lehmer 8024983316834282 r008 a(0)=8,K{-n^6,6+8*n^3-9*n^2-47*n} 8024983322068832 l006 ln(4314/9625) 8024983328703496 r005 Im(z^2+c),c=-11/52+50/61*I,n=19 8024983330185179 a007 Real Root Of -125*x^4-154*x^3-854*x^2+67*x+576 8024983335988362 r008 a(0)=8,K{-n^6,-13+11*n^3-20*n^2-19*n} 8024983386671135 a007 Real Root Of 744*x^4-403*x^3+90*x^2+x-574 8024983510219115 a007 Real Root Of -300*x^4+707*x^3-227*x^2-319*x+380 8024983532682012 a007 Real Root Of 374*x^4-616*x^3-983*x^2-635*x-350 8024983546302575 r009 Im(z^3+c),c=-29/50+14/47*I,n=7 8024983577343139 m001 (Pi^(1/2)+AlladiGrinstead)/(MertensB1+Otter) 8024983577913571 m008 (2*Pi^3+3/5)/(3/4*Pi^2+2/5) 8024983581064795 a007 Real Root Of -880*x^4-540*x^3-321*x^2-888*x-420 8024983593049311 a007 Real Root Of 218*x^4-814*x^3+345*x^2+272*x-515 8024983598226356 a007 Real Root Of -103*x^4+945*x^3-480*x^2-171*x+703 8024983603727872 a007 Real Root Of -936*x^4-321*x^3+27*x^2+35*x+233 8024983604813460 r005 Im(z^2+c),c=-9/110+33/41*I,n=52 8024983607502928 a007 Real Root Of 63*x^4+464*x^3-231*x^2+898*x+597 8024983607545444 m005 (1/2*2^(1/2)+9/11)/(161/180+9/20*5^(1/2)) 8024983632866038 r005 Im(z^2+c),c=-59/94+30/49*I,n=3 8024983636115266 a007 Real Root Of -553*x^4+27*x^3-336*x^2+444*x+816 8024983649181312 r008 a(0)=8,K{-n^6,-49+41*n-45*n^2+13*n^3} 8024983660706052 a001 204284540899/2*1836311903^(7/11) 8024983660706052 a001 28143753123/8*365435296162^(7/11) 8024983660706064 a001 23725150497407/8*9227465^(7/11) 8024983674139663 l006 ln(2951/6584) 8024983710288262 r002 6th iterates of z^2 + 8024983733312755 b008 4^Zeta[EulerGamma] 8024983747665075 r009 Re(z^3+c),c=-3/29+21/62*I,n=13 8024983749534250 r005 Im(z^2+c),c=-79/62+2/45*I,n=27 8024983757634119 a007 Real Root Of 948*x^4-280*x^3+167*x^2-68*x-700 8024983764892639 a007 Real Root Of -126*x^4-957*x^3+531*x^2+772*x-17 8024983765666441 a007 Real Root Of -758*x^4+435*x^3+959*x^2-235*x-267 8024983777659799 a007 Real Root Of -493*x^4-120*x^3+405*x^2+469*x+258 8024983796420897 r005 Re(z^2+c),c=7/66+11/19*I,n=28 8024983797735438 m001 (-LambertW(1)+TreeGrowth2nd)/(1-sin(1)) 8024983799238614 r004 Im(z^2+c),c=-6/7+1/17*I,z(0)=-1,n=4 8024983803935620 a007 Real Root Of -587*x^4+506*x^3+307*x^2+300*x+548 8024983806643405 r004 Re(z^2+c),c=1/24+4/23*I,z(0)=I,n=4 8024983828671830 m001 Sarnak^(Shi(1)*Cahen) 8024983841404306 a007 Real Root Of 150*x^4+72*x^3+477*x^2-244*x-528 8024983865667782 r008 a(0)=8,K{-n^6,-54+10*n^2+n^3+n} 8024983868832238 m001 (Rabbit+Thue)/(Pi-KhinchinLevy) 8024983886355651 m005 (1/3*exp(1)+1/7)/(1/2*2^(1/2)+3/5) 8024983909887012 m005 (23/20+1/4*5^(1/2))/(3/4*exp(1)+1/11) 8024983922681011 r008 a(0)=8,K{-n^6,-44+32*n^3-47*n^2+20*n} 8024983936501235 m005 (1/2*2^(1/2)-7/12)/(2/5*Pi+2/7) 8024983937378670 a007 Real Root Of -927*x^4+506*x^3-554*x^2-300*x+762 8024983961923644 a001 4/3*10946^(11/57) 8024983967807611 r008 a(0)=8,K{-n^6,-41-15*n^3+47*n^2-33*n} 8024983973161589 m001 (Ei(1)+arctan(1/2))/(ErdosBorwein+MertensB3) 8024983990186073 r005 Re(z^2+c),c=-47/58+2/17*I,n=27 8024983990412624 a007 Real Root Of -775*x^4-225*x^3-986*x^2-612*x+349 8024984034716114 m005 (1/3*2^(1/2)+1/6)/(4/5*gamma+1/3) 8024984048459772 a003 sin(Pi*13/71)/sin(Pi*23/97) 8024984058546180 a003 cos(Pi*23/64)-cos(Pi*12/31) 8024984067833255 a001 11/8*1346269^(1/8) 8024984079570866 r005 Re(z^2+c),c=-14/17+3/37*I,n=49 8024984109541455 r005 Im(z^2+c),c=-27/56+4/29*I,n=37 8024984116912364 r009 Re(z^3+c),c=-27/86+31/41*I,n=5 8024984134379377 r002 50th iterates of z^2 + 8024984154791980 m001 1/GAMMA(5/12)^2/exp(Lehmer)^2/sin(1) 8024984159499118 a007 Real Root Of 424*x^4-350*x^3-772*x^2-575*x-321 8024984162474977 a001 1/843*7^(56/57) 8024984162506464 a007 Real Root Of -31*x^4+237*x^3+103*x^2+957*x+837 8024984187223276 r002 2th iterates of z^2 + 8024984198936090 a003 sin(Pi*4/43)/sin(Pi*9/77) 8024984211092131 a007 Real Root Of -965*x^4-365*x^3+672*x^2+313*x+30 8024984239577203 a007 Real Root Of -981*x^4+894*x^3+294*x^2+603*x+47 8024984266315924 s001 sum(exp(-Pi/3)^n*A001017[n],n=1..infinity) 8024984276613254 a007 Real Root Of -250*x^4+458*x^3+502*x^2-282*x-230 8024984277877368 m001 (Robbin-TreeGrowth2nd)/(Cahen-Magata) 8024984278993853 r008 a(0)=8,K{-n^6,4+25*n^3-33*n^2-41*n} 8024984330428297 m005 (1/3*3^(1/2)+1/3)/(2/3*gamma+3/4) 8024984372010385 m002 E^Pi*Pi+Pi^2-Cosh[Pi]/5 8024984382522390 m005 (1/2*exp(1)-4/11)/(5/12*gamma+1) 8024984394500785 b008 -12+Sqrt[401] 8024984401251455 r002 2th iterates of z^2 + 8024984415982699 a007 Real Root Of -445*x^4+142*x^3+659*x^2+710*x-883 8024984426391850 m001 Sierpinski*Conway^2*ln(sin(Pi/12))^2 8024984433519746 m001 (Cahen+FeigenbaumKappa)/(ln(5)+ln(2^(1/2)+1)) 8024984462038103 r005 Im(z^2+c),c=1/4+34/59*I,n=18 8024984481939313 a001 305/2889*322^(3/4) 8024984483319326 h001 (2/9*exp(2)+5/7)/(11/12*exp(1)+4/9) 8024984525008953 a007 Real Root Of -338*x^4-247*x^3-390*x^2+844*x+941 8024984537419127 r005 Im(z^2+c),c=-3/23+40/49*I,n=25 8024984561442905 m001 ln(2)^Salem/(ln(2)^Stephens) 8024984566135733 r005 Im(z^2+c),c=-7/66+11/13*I,n=22 8024984630583909 l006 ln(1588/3543) 8024984708244574 m001 (Cahen-ZetaQ(4))/(gamma(2)+AlladiGrinstead) 8024984756228506 a007 Real Root Of 625*x^4+241*x^3+251*x^2-508*x+39 8024984763008384 m003 1/2+Sqrt[5]/8+ProductLog[1/2+Sqrt[5]/2]^2/25 8024984853310353 a007 Real Root Of 955*x^4-301*x^3-644*x^2-872*x+874 8024984867024023 m005 (4*exp(1)-1/6)/(5*exp(1)-1/4) 8024984871757953 a007 Real Root Of -303*x^4+244*x^3+221*x^2+863*x+802 8024984884252142 a001 123/3524578*377^(11/12) 8024984887208510 a007 Real Root Of -104*x^4-818*x^3+169*x^2+256*x-251 8024984901679840 m001 Chi(1)^ln(gamma)*gamma(1) 8024984917281743 a007 Real Root Of 833*x^4-91*x^3+961*x^2+479*x-627 8024984921547917 r005 Re(z^2+c),c=-47/106+41/55*I,n=2 8024984935022963 a007 Real Root Of 777*x^4-491*x^3-74*x^2+221*x-351 8024984937888164 r009 Im(z^3+c),c=-57/82+21/61*I,n=2 8024984989189844 m008 (1/3*Pi^2-2)/(1/6*Pi^6+1/2) 8024985002135647 m001 1/(exp(1/2)^BesselJ(1,1)) 8024985002135647 m001 exp(-1/2*Pi)^(BesselJ(1,1)/Pi) 8024985002135647 m001 exp(1/2)^BesselJ(1,1)/(exp(1)^BesselJ(1,1)) 8024985058265499 a001 5374978561/72*144^(16/17) 8024985127900059 q001 1349/1681 8024985127900059 r002 2th iterates of z^2 + 8024985157857474 r005 Im(z^2+c),c=-155/118+3/47*I,n=64 8024985176304923 a001 141/2161*322^(5/6) 8024985189716051 a007 Real Root Of 92*x^4-658*x^3-867*x^2-57*x+906 8024985236776006 r005 Im(z^2+c),c=-33/52+7/46*I,n=63 8024985240104809 r002 17th iterates of z^2 + 8024985300770656 r005 Im(z^2+c),c=-17/110+48/53*I,n=8 8024985318408547 m001 1/CopelandErdos^2/exp(Artin)/cosh(1) 8024985322294473 r009 Im(z^3+c),c=-11/56+41/49*I,n=13 8024985337228486 r009 Im(z^3+c),c=-7/48+35/43*I,n=15 8024985337484602 r008 a(0)=8,K{-n^6,45+46*n^3-61*n^2-68*n} 8024985371835685 a007 Real Root Of -530*x^4-857*x^3-945*x^2+605*x+871 8024985382373773 m001 (MertensB1-MertensB2)/(cos(1/5*Pi)-Pi^(1/2)) 8024985386819229 m001 (Riemann1stZero-Trott)/(GAMMA(11/12)+CareFree) 8024985408426993 m001 LandauRamanujan^2/CopelandErdos*exp(sinh(1)) 8024985436999359 r008 a(0)=8,K{-n^6,-59+29*n^2-12*n^3} 8024985450546441 m001 BesselJ(0,1)+ln(2)*ZetaQ(2) 8024985460477093 l006 ln(3401/7588) 8024985463183892 r005 Re(z^2+c),c=13/86+37/61*I,n=58 8024985524065086 s002 sum(A056798[n]/(n^2*exp(n)-1),n=1..infinity) 8024985542472107 r005 Im(z^2+c),c=-11/94+22/27*I,n=61 8024985590902035 g005 GAMMA(1/11)*GAMMA(9/10)/GAMMA(7/10)/GAMMA(8/9) 8024985594929973 a003 sin(Pi*7/100)/cos(Pi*40/97) 8024985604687476 r005 Re(z^2+c),c=7/110+23/51*I,n=26 8024985626794861 m004 6+(125*Tan[Sqrt[5]*Pi])/(18*Pi) 8024985627156618 a007 Real Root Of 905*x^4-737*x^3-54*x^2-58*x-768 8024985641464703 r008 a(0)=8,K{-n^6,-22-19*n-13*n^2+17*n^3} 8024985647736397 r005 Re(z^2+c),c=-2/3+41/112*I,n=6 8024985679561798 m005 (1/5*gamma-2)/(17/12+5/12*5^(1/2)) 8024985690947696 a007 Real Root Of -500*x^4+371*x^3-222*x^2-511*x+132 8024985707355943 a001 3571/1597*6557470319842^(14/17) 8024985756795187 a007 Real Root Of -163*x^4+544*x^3-877*x^2+104*x+997 8024985780638177 a001 233/843*322^(7/12) 8024985798671856 r008 a(0)=8,K{-n^6,-64+45*n^3-96*n^2+76*n} 8024985806710734 r008 a(0)=8,K{-n^6,-22-3*n^3+3*n^2-19*n} 8024985834778746 a003 sin(Pi*4/69)/sin(Pi*5/69) 8024985838294763 r002 23th iterates of z^2 + 8024985840481237 r009 Re(z^3+c),c=-11/106+14/41*I,n=10 8024985841097827 m001 (-Mills+Riemann2ndZero)/(MertensB1-exp(1)) 8024985862908247 r008 a(0)=8,K{-n^6,15+34*n^3-51*n^2-45*n} 8024985955813191 a001 514229/11*47^(8/57) 8024985957888494 m008 (2/3*Pi^4-2/3)/(5/6*Pi^6-1/4) 8024985972934630 m001 GaussAGM^(BesselJ(0,1)*BesselI(1,2)) 8024985984736241 r002 52th iterates of z^2 + 8024985993806430 r005 Im(z^2+c),c=-17/25+3/50*I,n=7 8024986046482292 r002 3th iterates of z^2 + 8024986051410134 m001 (BesselJ(0,1)-gamma(2)*GAMMA(17/24))/gamma(2) 8024986058899220 m005 (1/3*2^(1/2)-1/12)/(1/10*2^(1/2)-5/8) 8024986154273364 a007 Real Root Of 950*x^4-529*x^3-699*x^2-661*x+860 8024986178104769 a007 Real Root Of 950*x^4-269*x^3+675*x^2+452*x-605 8024986185174904 a007 Real Root Of 923*x^4-937*x^3-805*x^2-212*x+790 8024986187377410 l006 ln(1813/4045) 8024986207055868 a007 Real Root Of -406*x^4+534*x^3+309*x^2+84*x-374 8024986218148759 b008 -6+E^(E^3/3) 8024986268831544 a007 Real Root Of 414*x^4+855*x^3+798*x^2-743*x-840 8024986275534933 a001 20365011074/29*76^(9/16) 8024986305145872 a007 Real Root Of 5*x^4+390*x^3-892*x^2+857*x-495 8024986327222253 a001 233/521*843^(3/7) 8024986332652864 a007 Real Root Of -881*x^4+72*x^3+262*x^2+693*x+790 8024986336664913 a001 3010349/1597*1836311903^(14/17) 8024986336670797 a001 2537720636/1597*514229^(14/17) 8024986338583627 a007 Real Root Of -731*x^4-305*x^3-630*x^2+452*x+914 8024986361750734 r009 Re(z^3+c),c=-85/118+18/49*I,n=2 8024986375559697 m001 (FellerTornier+Thue)/(ln(3)+Artin) 8024986391128001 m001 HardyLittlewoodC4^(Champernowne/Robbin) 8024986404222834 a007 Real Root Of -25*x^4+621*x^3+989*x^2+764*x-68 8024986446926375 r002 7th iterates of z^2 + 8024986466611307 r005 Re(z^2+c),c=-9/14+137/181*I,n=2 8024986495801658 r005 Im(z^2+c),c=-125/122+4/47*I,n=11 8024986574981994 h001 (-8*exp(1/2)+1)/(-8*exp(1/2)-2) 8024986577423653 r005 Re(z^2+c),c=-83/102+3/29*I,n=29 8024986597843665 r005 Re(z^2+c),c=-69/86+7/52*I,n=45 8024986598993210 m001 (1-GAMMA(3/4))/(ln(2^(1/2)+1)+Tetranacci) 8024986605215028 r009 Im(z^3+c),c=-9/70+46/61*I,n=40 8024986610860599 m001 (GlaisherKinkelin+MertensB3)/(exp(1)+cos(1)) 8024986613438183 a001 2584/39603*322^(5/6) 8024986627007191 a007 Real Root Of 575*x^4+77*x^3+228*x^2+286*x-116 8024986635354429 m001 (BesselJ(1,1)+Riemann3rdZero)^Cahen 8024986670813815 r009 Re(z^3+c),c=-19/126+43/62*I,n=64 8024986673404629 a007 Real Root Of -809*x^4+996*x^3+182*x^2+549*x-737 8024986692250646 a007 Real Root Of -183*x^4+932*x^3-2*x^2-102*x+477 8024986709197235 q001 3019/3762 8024986727524274 a001 2/55*21^(13/50) 8024986730409413 r009 Im(z^3+c),c=-1/56+5/6*I,n=31 8024986748714758 r002 5th iterates of z^2 + 8024986773690715 m001 (arctan(1/2)+Salem)/(sin(1)+Zeta(3)) 8024986778577210 m001 (CareFree+Robbin)/(BesselI(0,2)-gamma) 8024986782345501 a001 9349/4181*6557470319842^(14/17) 8024986791988859 r005 Im(z^2+c),c=-1/58+42/59*I,n=3 8024986803963232 r002 36i'th iterates of 2*x/(1-x^2) of 8024986808328332 m004 9+25*Pi-(25*Tan[Sqrt[5]*Pi])/Pi 8024986823113101 a001 6765/103682*322^(5/6) 8024986829337370 l006 ln(3851/8592) 8024986853704259 a001 17711/271443*322^(5/6) 8024986858167449 a001 6624/101521*322^(5/6) 8024986858818619 a001 121393/1860498*322^(5/6) 8024986858913624 a001 317811/4870847*322^(5/6) 8024986858927485 a001 832040/12752043*322^(5/6) 8024986858929507 a001 311187/4769326*322^(5/6) 8024986858929802 a001 5702887/87403803*322^(5/6) 8024986858929845 a001 14930352/228826127*322^(5/6) 8024986858929851 a001 39088169/599074578*322^(5/6) 8024986858929852 a001 14619165/224056801*322^(5/6) 8024986858929852 a001 267914296/4106118243*322^(5/6) 8024986858929853 a001 701408733/10749957122*322^(5/6) 8024986858929853 a001 1836311903/28143753123*322^(5/6) 8024986858929853 a001 686789568/10525900321*322^(5/6) 8024986858929853 a001 12586269025/192900153618*322^(5/6) 8024986858929853 a001 32951280099/505019158607*322^(5/6) 8024986858929853 a001 86267571272/1322157322203*322^(5/6) 8024986858929853 a001 32264490531/494493258286*322^(5/6) 8024986858929853 a001 591286729879/9062201101803*322^(5/6) 8024986858929853 a001 1548008755920/23725150497407*322^(5/6) 8024986858929853 a001 365435296162/5600748293801*322^(5/6) 8024986858929853 a001 139583862445/2139295485799*322^(5/6) 8024986858929853 a001 53316291173/817138163596*322^(5/6) 8024986858929853 a001 20365011074/312119004989*322^(5/6) 8024986858929853 a001 7778742049/119218851371*322^(5/6) 8024986858929853 a001 2971215073/45537549124*322^(5/6) 8024986858929853 a001 1134903170/17393796001*322^(5/6) 8024986858929853 a001 433494437/6643838879*322^(5/6) 8024986858929853 a001 165580141/2537720636*322^(5/6) 8024986858929853 a001 63245986/969323029*322^(5/6) 8024986858929855 a001 24157817/370248451*322^(5/6) 8024986858929872 a001 9227465/141422324*322^(5/6) 8024986858929984 a001 3524578/54018521*322^(5/6) 8024986858930757 a001 1346269/20633239*322^(5/6) 8024986858936051 a001 514229/7881196*322^(5/6) 8024986858972340 a001 196418/3010349*322^(5/6) 8024986859221065 a001 75025/1149851*322^(5/6) 8024986860925852 a001 28657/439204*322^(5/6) 8024986862605923 m001 1/2*Ei(1)/Pi*3^(1/2)*GAMMA(2/3)/QuadraticClass 8024986872610634 a001 10946/167761*322^(5/6) 8024986874160448 a001 7881196/4181*1836311903^(14/17) 8024986874165576 a001 6643838879/4181*514229^(14/17) 8024986906996476 a007 Real Root Of -65*x^4-441*x^3+594*x^2-349*x+613 8024986914909426 m001 (1/3*Khinchin+(2^(1/3)))/Khinchin 8024986914972964 p004 log(30323/13591) 8024986916891984 m001 exp((3^(1/3)))^2/FeigenbaumB/GAMMA(1/3) 8024986934272748 a007 Real Root Of 582*x^4-840*x^3+95*x^2+113*x-646 8024986939184375 a001 12238/5473*6557470319842^(14/17) 8024986951834433 r005 Re(z^2+c),c=-12/13+19/63*I,n=10 8024986952579996 a001 20633239/10946*1836311903^(14/17) 8024986952585013 a001 17393796001/10946*514229^(14/17) 8024986952699326 a001 4181/64079*322^(5/6) 8024986962066859 a001 64079/28657*6557470319842^(14/17) 8024986964021254 a001 54018521/28657*1836311903^(14/17) 8024986964026255 a001 45537549124/28657*514229^(14/17) 8024986965405369 a001 167761/75025*6557470319842^(14/17) 8024986965690511 a001 141422324/75025*1836311903^(14/17) 8024986965695510 a001 119218851371/75025*514229^(14/17) 8024986965892451 a001 219602/98209*6557470319842^(14/17) 8024986965934052 a001 370248451/196418*1836311903^(14/17) 8024986965939051 a001 312119004989/196418*514229^(14/17) 8024986965963515 a001 1149851/514229*6557470319842^(14/17) 8024986965969584 a001 969323029/514229*1836311903^(14/17) 8024986965973883 a001 3010349/1346269*6557470319842^(14/17) 8024986965974583 a001 817138163596/514229*514229^(14/17) 8024986965974769 a001 2537720636/1346269*1836311903^(14/17) 8024986965975396 a001 3940598/1762289*6557470319842^(14/17) 8024986965975525 a001 6643838879/3524578*1836311903^(14/17) 8024986965975616 a001 20633239/9227465*6557470319842^(14/17) 8024986965975635 a001 17393796001/9227465*1836311903^(14/17) 8024986965975649 a001 54018521/24157817*6557470319842^(14/17) 8024986965975651 a001 45537549124/24157817*1836311903^(14/17) 8024986965975653 a001 70711162/31622993*6557470319842^(14/17) 8024986965975654 a001 119218851371/63245986*1836311903^(14/17) 8024986965975654 a001 370248451/165580141*6557470319842^(14/17) 8024986965975654 a001 312119004989/165580141*1836311903^(14/17) 8024986965975654 a001 969323029/433494437*6557470319842^(14/17) 8024986965975654 a001 817138163596/433494437*1836311903^(14/17) 8024986965975654 a001 1268860318/567451585*6557470319842^(14/17) 8024986965975654 a001 2139295485799/1134903170*1836311903^(14/17) 8024986965975654 a001 5600748293801/2971215073*1836311903^(14/17) 8024986965975654 a001 14662949395604/7778742049*1836311903^(14/17) 8024986965975654 a001 23725150497407/12586269025*1836311903^(14/17) 8024986965975654 a001 6643838879/2971215073*6557470319842^(14/17) 8024986965975654 a001 3020733700601/1602508992*1836311903^(14/17) 8024986965975654 a001 17393796001/7778742049*6557470319842^(14/17) 8024986965975654 a001 22768774562/10182505537*6557470319842^(14/17) 8024986965975654 a001 119218851371/53316291173*6557470319842^(14/17) 8024986965975654 a001 96450076809/43133785636*6557470319842^(14/17) 8024986965975654 a001 73681302247/32951280099*6557470319842^(14/17) 8024986965975654 a001 28143753123/12586269025*6557470319842^(14/17) 8024986965975654 a001 3461452808002/1836311903*1836311903^(14/17) 8024986965975654 a001 5374978561/2403763488*6557470319842^(14/17) 8024986965975654 a001 4106118243/1836311903*6557470319842^(14/17) 8024986965975654 a001 440719107401/233802911*1836311903^(14/17) 8024986965975654 a001 1568397607/701408733*6557470319842^(14/17) 8024986965975654 a001 505019158607/267914296*1836311903^(14/17) 8024986965975654 a001 299537289/133957148*6557470319842^(14/17) 8024986965975654 a001 64300051206/34111385*1836311903^(14/17) 8024986965975654 a001 228826127/102334155*6557470319842^(14/17) 8024986965975655 a001 73681302247/39088169*1836311903^(14/17) 8024986965975656 a001 87403803/39088169*6557470319842^(14/17) 8024986965975661 a001 9381251041/4976784*1836311903^(14/17) 8024986965975668 a001 16692641/7465176*6557470319842^(14/17) 8024986965975703 a001 10749957122/5702887*1836311903^(14/17) 8024986965975753 a001 12752043/5702887*6557470319842^(14/17) 8024986965975992 a001 1368706081/726103*1836311903^(14/17) 8024986965976331 a001 4870847/2178309*6557470319842^(14/17) 8024986965977972 a001 1568397607/832040*1836311903^(14/17) 8024986965979767 a001 2139295485799/1346269*514229^(14/17) 8024986965980291 a001 930249/416020*6557470319842^(14/17) 8024986965980523 a001 5600748293801/3524578*514229^(14/17) 8024986965980634 a001 14662949395604/9227465*514229^(14/17) 8024986965980660 a001 23725150497407/14930352*514229^(14/17) 8024986965980702 a001 9062201101803/5702887*514229^(14/17) 8024986965980991 a001 494493258286/311187*514229^(14/17) 8024986965982971 a001 1322157322203/832040*514229^(14/17) 8024986965991545 a001 710646/377*1836311903^(14/17) 8024986965996543 a001 505019158607/317811*514229^(14/17) 8024986966007435 a001 710647/317811*6557470319842^(14/17) 8024986966084569 a001 228826127/121393*1836311903^(14/17) 8024986966089567 a001 192900153618/121393*514229^(14/17) 8024986966193484 a001 271443/121393*6557470319842^(14/17) 8024986966722169 a001 29134601/15456*1836311903^(14/17) 8024986966727166 a001 10525900321/6624*514229^(14/17) 8024986967468681 a001 51841/23184*6557470319842^(14/17) 8024986971092340 a001 33385282/17711*1836311903^(14/17) 8024986971097331 a001 28143753123/17711*514229^(14/17) 8024986976209012 a001 39603/17711*6557470319842^(14/17) 8024986982741802 m001 (Rabbit-Weierstrass)/(Cahen-FeigenbaumMu) 8024986993446007 a007 Real Root Of -519*x^4+708*x^3+439*x^2+434*x-38 8024987001045943 a001 4250681/2255*1836311903^(14/17) 8024987001050892 a001 10749957122/6765*514229^(14/17) 8024987036116132 a001 15127/6765*6557470319842^(14/17) 8024987044164290 r008 a(0)=8,K{-n^6,2+42*n^3-54*n^2-29*n} 8024987077425511 m001 (cos(1)+GAMMA(3/4))/(ln(Pi)+GAMMA(11/12)) 8024987117043739 m005 (1/2*2^(1/2)+4/9)/(103/198+9/22*5^(1/2)) 8024987138967366 a003 sin(Pi*35/108)*sin(Pi*29/74) 8024987146572198 b008 8+EllipticNomeQ[ArcCoth[Pi]] 8024987147704045 r005 Im(z^2+c),c=-1/13+29/33*I,n=29 8024987155662368 m001 cos(1)^KomornikLoreti/PrimesInBinary 8024987159174251 a007 Real Root Of 539*x^4+78*x^3+247*x^2-599*x-823 8024987160774282 a007 Real Root Of -432*x^4+812*x^3+687*x^2-636*x-354 8024987206350994 a001 4870847/2584*1836311903^(14/17) 8024987206355654 a001 4106118243/2584*514229^(14/17) 8024987220666596 r005 Im(z^2+c),c=-7/8+5/84*I,n=10 8024987228875532 m005 (1/5*Catalan+2/3)/(1/2+1/4*5^(1/2)) 8024987266866722 r005 Re(z^2+c),c=-13/16+13/82*I,n=59 8024987309587586 a007 Real Root Of 934*x^4-370*x^3+387*x^2+968*x-51 8024987334289750 m003 -15/2+Sqrt[5]/32-3*E^(-1/2-Sqrt[5]/2) 8024987337196975 m006 (3*exp(Pi)-5/6)/(1/3*exp(Pi)+5/6) 8024987367734886 a007 Real Root Of -117*x^4+773*x^3+669*x^2+156*x-907 8024987374995428 r002 52th iterates of z^2 + 8024987383506621 m001 Riemann2ndZero^2/MertensB1*exp(GAMMA(7/24))^2 8024987400423404 l006 ln(2038/4547) 8024987406299456 r005 Im(z^2+c),c=-4/7+77/114*I,n=7 8024987417585012 m001 1/GAMMA(23/24)/exp(FeigenbaumB)^3 8024987442618159 a007 Real Root Of 208*x^4-807*x^3+486*x^2-32*x-842 8024987446725657 a001 2889/1292*6557470319842^(14/17) 8024987464172425 m001 (BesselJ(1,1)-Artin)/(FeigenbaumB-ZetaQ(3)) 8024987501635389 a001 1597/24476*322^(5/6) 8024987510150729 a007 Real Root Of 690*x^4+21*x^3-46*x^2+518*x+170 8024987539097109 a007 Real Root Of -294*x^4+779*x^3+544*x^2+163*x+305 8024987564052451 s002 sum(A043020[n]/(n*pi^n+1),n=1..infinity) 8024987577661879 r008 a(0)=0,K{-n^6,-57-56*n-22*n^2+10*n^3} 8024987595723207 m001 (MertensB3+OneNinth)/(Zeta(3)+Lehmer) 8024987611120554 g007 Psi(2,1/12)+Psi(2,5/9)-Psi(2,1/11)-Psi(2,5/6) 8024987621058800 r005 Re(z^2+c),c=-9/14+73/163*I,n=27 8024987667793041 m001 (-Cahen+Riemann1stZero)/(Catalan+BesselJ(0,1)) 8024987699683240 a007 Real Root Of -294*x^4+610*x^3-597*x^2+216*x+995 8024987706411875 r005 Im(z^2+c),c=17/62+31/61*I,n=60 8024987706634650 m001 (arctan(1/3)-FeigenbaumB)/(Magata+Otter) 8024987715839126 a007 Real Root Of -469*x^4+577*x^3-452*x^2+744*x+6 8024987794409729 a007 Real Root Of -313*x^4-349*x^3-543*x^2+664*x+832 8024987842857909 r005 Im(z^2+c),c=17/52+21/44*I,n=3 8024987843317748 a001 317811/76*322^(22/43) 8024987884126866 a007 Real Root Of 697*x^4+317*x^3+160*x^2-766*x-843 8024987891181347 m001 (Ei(1)-Conway)/(MertensB1+PlouffeB) 8024987908037507 a007 Real Root Of 909*x^4-572*x^3-924*x^2+463*x+294 8024987911758488 l006 ln(4301/9596) 8024987918484575 a007 Real Root Of -883*x^4+3*x^3-141*x^2-549*x+18 8024987964558649 r004 Re(z^2+c),c=3/20-5/12*I,z(0)=exp(5/8*I*Pi),n=2 8024987969053729 a007 Real Root Of -100*x^4-712*x^3+608*x^2-899*x+401 8024987972544223 m001 BesselI(1,1)/sin(1/5*Pi)*GaussAGM 8024987986544930 q001 167/2081 8024987988540029 r008 a(0)=8,K{-n^6,-23-5*n^3+9*n^2-22*n} 8024987989705487 m001 Pi*(1+sin(1/12*Pi)/gamma(1)) 8024987991001726 a007 Real Root Of -525*x^4+285*x^3-44*x^2-307*x+147 8024987991022463 a007 Real Root Of -294*x^4+815*x^3-140*x^2-439*x+281 8024987996562749 p003 LerchPhi(1/8,1,125/93) 8024988015275599 a007 Real Root Of 214*x^4-468*x^3-113*x^2-460*x-627 8024988034563708 a003 sin(Pi*24/97)/sin(Pi*22/65) 8024988036666348 m001 sin(Pi/5)^2*ln((3^(1/3)))^2*sqrt(3) 8024988041177308 m001 (-BesselI(1,1)+3)/(-cos(Pi/12)+4) 8024988052980576 a007 Real Root Of x^4-175*x^3+732*x^2-533*x-990 8024988053740052 a003 sin(Pi*29/108)/sin(Pi*8/21) 8024988053777986 r002 10th iterates of z^2 + 8024988059670169 m003 -1/6+3*Sinh[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2] 8024988092677105 a007 Real Root Of 103*x^4+812*x^3-45*x^2+676*x+791 8024988096474386 s002 sum(A269465[n]/(16^n-1),n=1..infinity) 8024988099330660 a007 Real Root Of -112*x^4-898*x^3-72*x^2-624*x+42 8024988154960211 m001 Porter*GaussKuzminWirsing*ln(GAMMA(7/12))^2 8024988171130852 r005 Im(z^2+c),c=-3/38+37/46*I,n=58 8024988176683390 a007 Real Root Of -696*x^4-199*x^3-972*x^2-715*x+238 8024988240240002 m001 (cos(1/12*Pi)-ArtinRank2)/(FeigenbaumD+Robbin) 8024988295740278 m005 (1/2*3^(1/2)+1/3)/(7/11*Zeta(3)-3/4) 8024988323723081 a001 322/1597*4181^(28/39) 8024988334771480 a007 Real Root Of -122*x^4+754*x^3+566*x^2-154*x-580 8024988336822959 a007 Real Root Of -742*x^4+34*x^3+988*x^2+947*x+449 8024988341936957 r002 2th iterates of z^2 + 8024988346416935 r008 a(0)=8,K{-n^6,10+40*n^3-59*n^2-48*n} 8024988356835619 r005 Im(z^2+c),c=-6/7+3/52*I,n=10 8024988362881750 r008 a(0)=8,K{-n^6,-36-25*n^3+64*n^2-44*n} 8024988372253783 l006 ln(2263/5049) 8024988391957384 a007 Real Root Of 75*x^4-617*x^3+130*x^2+280*x-209 8024988428843795 m005 (1/2*exp(1)+1/10)/(9/10*2^(1/2)+6/11) 8024988429314338 a001 9/3278735159921*987^(14/17) 8024988434310991 m001 (Zeta(3)+FellerTornier)/(Salem+Sarnak) 8024988438548486 a007 Real Root Of 642*x^4-465*x^3+645*x^2+66*x-869 8024988455982074 s002 sum(A201354[n]/(2^n-1),n=1..infinity) 8024988466352059 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^20 8024988471343500 m005 (1/3*exp(1)+1/5)/(4/5*Zeta(3)+5/12) 8024988492289044 r002 15th iterates of z^2 + 8024988500247940 m001 (BesselI(1,1)+GAMMA(23/24))/(cos(1)+3^(1/3)) 8024988513374711 r002 40th iterates of z^2 + 8024988536749293 r009 Im(z^3+c),c=-47/58+1/37*I,n=2 8024988553348864 r002 22th iterates of z^2 + 8024988559411932 a007 Real Root Of -343*x^4+760*x^3+913*x^2-119*x-743 8024988567481391 a001 2139295485799/377*2^(1/2) 8024988582434841 m001 BesselJ(0,1)^FransenRobinson/sin(1/5*Pi) 8024988606589834 m005 (1/2*5^(1/2)-8/9)/(11/12*exp(1)+4/11) 8024988613533031 a001 620166/329*1836311903^(14/17) 8024988613535711 a001 224056801/141*514229^(14/17) 8024988650691174 r002 6i'th iterates of 2*x/(1-x^2) of 8024988660131911 m001 (Lehmer+Paris)/(BesselK(0,1)-GlaisherKinkelin) 8024988667835823 a001 76/987*55^(31/53) 8024988695615011 m001 1/GAMMA(5/6)/MertensB1^2/ln(sinh(1)) 8024988713564821 h001 (3/7*exp(2)+2/5)/(4/7*exp(2)+2/9) 8024988730763469 a001 1/3*(1/2*5^(1/2)+1/2)^13*29^(5/11) 8024988734513178 r008 a(0)=8,K{-n^6,-43-7*n+21*n^2-12*n^3} 8024988746749574 a007 Real Root Of -18*x^4+910*x^3-970*x^2-580*x+637 8024988749399146 m006 (1/Pi+3/4)/(1/4*exp(2*Pi)-3/4) 8024988802888272 r009 Im(z^3+c),c=-7/50+48/59*I,n=29 8024988829759638 h001 (1/10*exp(1)+1/7)/(7/12*exp(2)+6/7) 8024988846527981 s004 Continued Fraction of A207360 8024988846527981 s004 Continued fraction of A207360 8024988898394345 h001 (3/11*exp(1)+2/5)/(2/9*exp(1)+9/11) 8024988898957217 p003 LerchPhi(1/100,1,203/162) 8024988935395524 m001 GAMMA(11/12)^2/RenyiParking^2*ln(Zeta(9))^2 8024989025979025 m001 (2^(1/3)+Si(Pi))/(exp(1/Pi)+FeigenbaumAlpha) 8024989040063676 a007 Real Root Of 205*x^4-201*x^3+630*x^2+650*x-73 8024989097450060 r008 a(0)=8,K{-n^6,-55+22*n-8*n^2-n^3} 8024989113245200 r002 20th iterates of z^2 + 8024989113254853 a001 219602/305*6557470319842^(12/17) 8024989113296454 a001 70711162/305*1836311903^(12/17) 8024989113300739 a001 22768774562/305*514229^(12/17) 8024989141094448 a007 Real Root Of -796*x^4-594*x^3-552*x^2+545*x+816 8024989146685892 h001 (-8*exp(2)-1)/(-5*exp(5)-7) 8024989168310912 l006 ln(2488/5551) 8024989174943500 m001 (exp(1)+ln(3))/PlouffeB 8024989223790751 p001 sum((-1)^n/(170*n+29)/n/(6^n),n=0..infinity) 8024989235285209 r005 Re(z^2+c),c=-17/78+11/14*I,n=18 8024989283208950 a007 Real Root Of -843*x^4+726*x^3-597*x^2-682*x+562 8024989292972835 a007 Real Root Of -739*x^4-214*x^3-403*x^2+68*x+510 8024989299272510 m001 (Magata+Riemann3rdZero)/(1-GAMMA(2/3)) 8024989313116011 a007 Real Root Of 540*x^4-263*x^3-420*x^2-887*x+74 8024989331138430 a007 Real Root Of -703*x^4-947*x^3-256*x^2+189*x-13 8024989356244104 a007 Real Root Of -457*x^4+889*x^3-270*x^2-26*x+802 8024989362630293 m008 (3/4*Pi^3+1/4)/(3*Pi^4+2/3) 8024989394223410 m001 Psi(1,1/3)*Rabbit+Thue 8024989394745973 m001 Lehmer^2*exp(FransenRobinson)^2/Zeta(3) 8024989403287686 a007 Real Root Of 883*x^4-847*x^3-570*x^2-50*x-477 8024989407195013 a001 322/165580141*89^(6/19) 8024989466310187 m005 (1/2*5^(1/2)+1/9)/(3*gamma-1/5) 8024989476510534 r005 Re(z^2+c),c=-5/6+11/162*I,n=11 8024989479434057 m005 (1/3*3^(1/2)+1/12)/(7/10*2^(1/2)-1/6) 8024989489623125 a007 Real Root Of -769*x^4+559*x^3-350*x^2-895*x+115 8024989510745400 a007 Real Root Of 192*x^4-697*x^3+537*x^2+432*x-439 8024989521456620 a008 Real Root of (-5+6*x-5*x^2+5*x^4+4*x^5) 8024989532482803 a007 Real Root Of -854*x^4+523*x^3-707*x^2-958*x+311 8024989541131295 r005 Re(z^2+c),c=37/126+17/31*I,n=22 8024989550555695 a007 Real Root Of -330*x^4+965*x^3+765*x^2+830*x+809 8024989554811863 m001 BesselK(0,1)/(gamma+FeigenbaumDelta) 8024989558112647 m001 1/FeigenbaumD^2*Cahen/exp(OneNinth) 8024989572162331 m001 (MertensB3-Thue)/(Ei(1,1)-AlladiGrinstead) 8024989573391725 a003 sin(Pi*10/53)/cos(Pi*13/51) 8024989573872934 m005 (1/3*gamma+2/5)/(1/12*Pi-1) 8024989578682636 a007 Real Root Of -887*x^4-489*x^3+123*x^2-537*x-395 8024989594621471 a007 Real Root Of -316*x^4-173*x^3-201*x^2-278*x-52 8024989595034674 b008 8+ArcCsch[20]/2 8024989611560582 r005 Im(z^2+c),c=-3/4+136/251*I,n=3 8024989617864047 a007 Real Root Of -923*x^4+485*x^3+423*x^2-339*x+89 8024989626224903 r002 2th iterates of z^2 + 8024989628110872 r009 Re(z^3+c),c=-29/48+26/43*I,n=8 8024989640444735 a007 Real Root Of -537*x^4-494*x^3-664*x^2-172*x+257 8024989676567140 a003 sin(Pi*1/39)*sin(Pi*51/107) 8024989679315411 m001 (Niven+Paris)/(LaplaceLimit-exp(Pi)) 8024989713819791 m001 (Gompertz+Rabbit)/(GAMMA(11/12)-FeigenbaumD) 8024989720645221 m005 (1/3*Zeta(3)-2/9)/(72/55+9/22*5^(1/2)) 8024989744090865 a001 377/3571*18^(40/57) 8024989762192675 r002 25th iterates of z^2 + 8024989775813927 b008 ArcSec[E^Tan[Pi/9]] 8024989792646158 r002 14th iterates of z^2 + 8024989807436655 a003 cos(Pi*38/87)-sin(Pi*39/79) 8024989832327554 l006 ln(2713/6053) 8024989832327554 p004 log(6053/2713) 8024989835378410 r005 Re(z^2+c),c=-25/31+6/49*I,n=51 8024989859990790 m005 (1/2*5^(1/2)-3/7)/(3/10*Pi-1/12) 8024989868857909 m008 (1/5*Pi^6+2/5)/(1/4*Pi^6-1/4) 8024989900527975 m001 exp(LaplaceLimit)^2/ErdosBorwein/cos(1)^2 8024989904632956 m001 GAMMA(5/6)-sin(1/5*Pi)+MertensB1 8024989923417976 q001 1991/2481 8024989937133792 a007 Real Root Of 980*x^4-534*x^3+865*x^2+676*x-697 8024989938853859 r005 Im(z^2+c),c=-21/106+41/51*I,n=31 8024989939754271 a007 Real Root Of -103*x^4-794*x^3+177*x^2-671*x+51 8024989947169149 m001 Magata^MasserGramainDelta-ln(2+3^(1/2)) 8024989971137788 a007 Real Root Of 624*x^4-287*x^3+127*x^2-435*x-838 8024989995526476 m001 (-ZetaQ(2)+ZetaQ(3))/(GAMMA(23/24)-Psi(2,1/3)) 8024990029419027 a007 Real Root Of 289*x^4-495*x^3-467*x^2+285*x+208 8024990051949580 a007 Real Root Of 915*x^4+863*x^3+766*x^2+715*x+147 8024990120701140 r005 Im(z^2+c),c=-4/29+43/52*I,n=37 8024990127026298 m002 -4/E^Pi+Pi/(3*ProductLog[Pi]) 8024990149087177 a007 Real Root Of 596*x^4+64*x^3+2*x^2-721*x-794 8024990156974309 r005 Re(z^2+c),c=-31/118+41/53*I,n=10 8024990161739910 r004 Im(z^2+c),c=3/26-3/22*I,z(0)=exp(1/8*I*Pi),n=2 8024990169449018 m001 1/ln(MertensB1)*GlaisherKinkelin^2*cos(Pi/5)^2 8024990182156415 a007 Real Root Of -904*x^4+332*x^3+574*x^2+60*x+225 8024990211575876 r005 Re(z^2+c),c=1/118+7/23*I,n=3 8024990215271428 v002 sum(1/(2^n+(9*n^2-11*n+33)),n=1..infinity) 8024990236692793 r005 Im(z^2+c),c=-38/29+1/21*I,n=28 8024990238463325 a007 Real Root Of -927*x^4+634*x^3+245*x^2-778*x-70 8024990253164957 a007 Real Root Of -696*x^4-867*x^3+497*x^2+880*x+67 8024990254957051 m001 (GAMMA(17/24)-FellerTornier)/(PlouffeB+Sarnak) 8024990261085771 a001 2207/987*6557470319842^(14/17) 8024990296525726 m005 (-13/44+1/4*5^(1/2))/(1/5*2^(1/2)-1/4) 8024990319849917 m001 (GAMMA(3/4)+arctan(1/3))/(Backhouse+Bloch) 8024990333757588 m005 (1/2*gamma+6/7)/(2/3*Pi-2/3) 8024990372260858 r005 Re(z^2+c),c=-47/56+1/34*I,n=17 8024990389045947 a007 Real Root Of 677*x^4-220*x^3+731*x^2+819*x-208 8024990394639776 l006 ln(2938/6555) 8024990415192446 m001 GAMMA(23/24)^2*Catalan/ln(sqrt(2))^2 8024990468040652 a007 Real Root Of 626*x^4-987*x^3-245*x^2+537*x-181 8024990468519168 m001 Trott2nd^GAMMA(2/3)*MertensB2^GAMMA(2/3) 8024990506929282 a007 Real Root Of -480*x^4+540*x^3+364*x^2+105*x+328 8024990542787088 m006 (1/5*exp(2*Pi)+1/6)/(4*Pi+4/5) 8024990547740326 r002 27th iterates of z^2 + 8024990580615279 a007 Real Root Of -977*x^4+738*x^3-260*x^2-101*x+873 8024990613717129 r005 Re(z^2+c),c=-27/118+49/60*I,n=29 8024990623178774 a007 Real Root Of 969*x^4-847*x^3-906*x^2-97*x-334 8024990710357823 m005 (17/66+1/6*5^(1/2))/(1/7*2^(1/2)+7/12) 8024990723846868 b008 E^Tan[Pi^(-1)]*EulerGamma 8024990748786039 r002 55th iterates of z^2 + 8024990749914487 r008 a(0)=8,K{-n^6,-51+20*n^3-14*n^2+6*n} 8024990783614680 a007 Real Root Of 501*x^4-581*x^3+650*x^2+103*x-844 8024990794502681 a007 Real Root Of -137*x^4-992*x^3+860*x^2-24*x-59 8024990835722996 r008 a(0)=0,K{-n^6,-79-14*n^3+44*n^2-76*n} 8024990846023537 r005 Im(z^2+c),c=-17/18+10/139*I,n=15 8024990852289135 r005 Im(z^2+c),c=-99/82+4/39*I,n=37 8024990874578824 a007 Real Root Of -570*x^4-38*x^3-343*x^2+297*x+676 8024990876951814 l006 ln(3163/7057) 8024990876951814 p004 log(7057/3163) 8024990900927343 a007 Real Root Of -575*x^4+456*x^3+989*x^2+391*x+151 8024990915895515 r005 Re(z^2+c),c=-103/102+20/61*I,n=15 8024990916328171 r005 Im(z^2+c),c=-7/78+21/26*I,n=49 8024990950562190 a007 Real Root Of -500*x^4+886*x^3-169*x^2-602*x+291 8024990974380379 a007 Real Root Of -86*x^4-571*x^3+848*x^2-772*x+771 8024990982476226 a007 Real Root Of -540*x^4+802*x^3+757*x^2+987*x+943 8024990991479727 r008 a(0)=8,K{-n^6,11-40*n-28*n^2+16*n^3} 8024991001378993 r002 17th iterates of z^2 + 8024991029077660 m001 Pi^(1/2)-ln(2)*Riemann1stZero 8024991044733132 m001 ln(FeigenbaumD)^2/Kolakoski*cos(Pi/5)^2 8024991073357349 h001 (-exp(3)+8)/(-7*exp(3)-10) 8024991075734086 s004 Continued Fraction of A226904 8024991075734086 s004 Continued fraction of A226904 8024991101333380 a003 sin(Pi*7/23)*sin(Pi*11/25) 8024991164269377 a007 Real Root Of 803*x^4+154*x^3-542*x^2-721*x-483 8024991179081600 r009 Im(z^3+c),c=-71/114+14/59*I,n=8 8024991181961225 h001 (4/5*exp(1)+1/7)/(10/11*exp(1)+5/12) 8024991194718456 m001 MasserGramainDelta^Bloch/Zeta(1,-1) 8024991197463049 a007 Real Root Of -547*x^4+464*x^3-815*x^2-772*x+372 8024991218398784 a007 Real Root Of 353*x^4-574*x^3+37*x^2-607*x-954 8024991220387147 a007 Real Root Of 117*x^4-607*x^3+579*x^2+764*x-122 8024991249942013 r002 17th iterates of z^2 + 8024991258228128 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)*Paris+Lehmer 8024991264099178 a001 610/9349*322^(5/6) 8024991295202316 l006 ln(3388/7559) 8024991301832621 m001 exp(1)*ln(Artin)/gamma^2 8024991322457480 q001 2312/2881 8024991323615701 s004 Continued Fraction of A069083 8024991323615701 s004 Continued fraction of A069083 8024991323615701 s004 Continued Fraction of A305075 8024991378593895 s001 sum(exp(-2*Pi/5)^n*A084230[n],n=1..infinity) 8024991378593895 s002 sum(A084230[n]/(exp(2/5*pi*n)),n=1..infinity) 8024991379302216 m001 (LaplaceLimit+RenyiParking)/(Catalan+sin(1)) 8024991390470140 m001 1/Catalan^2/(3^(1/3))*ln(GAMMA(1/3))^2 8024991393528929 m005 (1/3*2^(1/2)-2/5)/(2/9*exp(1)+2/7) 8024991401383321 r002 30th iterates of z^2 + 8024991414718812 m001 ln(GAMMA(13/24))/LaplaceLimit*Zeta(5)^2 8024991468522907 m005 (1/2*Catalan+1/11)/(3/10*gamma-6/7) 8024991471060666 m005 (1/2*3^(1/2)+1/2)/(7/11*3^(1/2)+3/5) 8024991474889862 m001 (BesselK(1,1)+Conway)/(MertensB2+Totient) 8024991481172846 r005 Im(z^2+c),c=-53/46+4/39*I,n=29 8024991481842168 a003 sin(Pi*19/67)/sin(Pi*45/107) 8024991484530971 a007 Real Root Of -830*x^4+54*x^3-233*x^2-399*x+202 8024991499700284 a007 Real Root Of 892*x^4-588*x^3+821*x^2+706*x-636 8024991544013884 m006 (3*ln(Pi)-1/4)/(4*Pi^2+1/5) 8024991570122766 m001 (ArtinRank2-exp(Pi))/(Otter+Riemann3rdZero) 8024991589338462 a007 Real Root Of 878*x^4-477*x^3-921*x^2-266*x-231 8024991590434910 m001 (GAMMA(19/24)-Rabbit)/(sin(1/5*Pi)+gamma(2)) 8024991595922112 m001 (-MertensB2+Sierpinski)/(Artin-LambertW(1)) 8024991597950329 p003 LerchPhi(1/3,2,197/167) 8024991601514585 m001 (Tetranacci+Trott)/(Lehmer+MasserGramainDelta) 8024991613260985 a001 2139295485799/55*5^(9/20) 8024991627158249 r008 a(0)=8,K{-n^6,59+16*n^3-51*n^2-64*n} 8024991653280518 m001 ln(Pi)/(Conway^Totient) 8024991661359606 l006 ln(3613/8061) 8024991663754413 a007 Real Root Of 419*x^4+173*x^3+473*x^2-167*x-523 8024991667862207 a007 Real Root Of 832*x^4-973*x^3+5*x^2-102*x-933 8024991674741013 a001 987/24476*322^(11/12) 8024991703402284 m001 exp(BesselJ(1,1))^2*Rabbit/Zeta(1/2)^2 8024991705384227 a007 Real Root Of -660*x^4+191*x^3-348*x^2+18*x+611 8024991705828699 r008 a(0)=8,K{-n^6,6-56*n-4*n^2+12*n^3} 8024991732457772 m001 1/Ei(1)^2/exp(PrimesInBinary)^3 8024991765819688 m005 (4*exp(1)+2)/(5*Pi+1/3) 8024991768476428 r005 Re(z^2+c),c=-6/5+5/32*I,n=6 8024991797825253 a001 12752043/377*514229^(16/17) 8024991797912516 a001 843/121393*6557470319842^(16/17) 8024991803600262 m001 (-Robbin+TwinPrimes)/(FeigenbaumAlpha-gamma) 8024991827566541 r009 Im(z^3+c),c=-7/102+31/38*I,n=53 8024991834256479 m001 (GAMMA(13/24)+LaplaceLimit)/(2^(1/3)+ln(5)) 8024991889925348 m009 (Psi(1,3/4)-1/5)/(5/6*Psi(1,3/4)+4/5) 8024991895286755 a007 Real Root Of -398*x^4-61*x^3-854*x^2-529*x+259 8024991895876861 a007 Real Root Of -932*x^4+520*x^3-365*x^2-378*x+587 8024991905107044 a007 Real Root Of -785*x^4+795*x^3-254*x^2-967*x+124 8024991926391620 m001 (-Lehmer+Tetranacci)/(Artin-cos(1)) 8024991939990014 a007 Real Root Of 508*x^4+96*x^3-704*x^2-682*x-255 8024991984585468 l006 ln(3838/8563) 8024991987824953 a007 Real Root Of 448*x^4-733*x^3-187*x^2+80*x-380 8024991994354849 m001 (exp(Pi)+BesselI(0,1))/(Zeta(3)+Tribonacci) 8024992030833407 r009 Re(z^3+c),c=-1/86+27/61*I,n=10 8024992031415096 m001 Bloch-FeigenbaumD*Weierstrass 8024992038194630 a001 5778/377*1836311903^(16/17) 8024992038609066 a007 Real Root Of 666*x^4-378*x^3-796*x^2-14*x+443 8024992048788330 r005 Re(z^2+c),c=-9/10+51/203*I,n=24 8024992056224161 h001 (-6*exp(-3)+1)/(-5*exp(2/3)+1) 8024992142109461 a007 Real Root Of -936*x^4-801*x^3+213*x^2+937*x+589 8024992156450393 a003 cos(Pi*11/96)*cos(Pi*16/93) 8024992185103902 m001 Riemann1stZero*((1+3^(1/2))^(1/2)-Psi(2,1/3)) 8024992188313759 b008 8+BesselJ[1,1/20] 8024992210145565 a003 sin(Pi*4/93)+sin(Pi*27/116) 8024992233860805 a007 Real Root Of 856*x^4+804*x^3-190*x^2-664*x-350 8024992260514829 m008 (1/6*Pi^2+2/3)/(4/5*Pi^3+4) 8024992272012246 l006 ln(4063/9065) 8024992284825912 r005 Im(z^2+c),c=-11/118+51/62*I,n=25 8024992285061822 a007 Real Root Of -203*x^4+674*x^3+102*x^2+789*x-963 8024992305992592 r005 Im(z^2+c),c=-61/94+9/44*I,n=12 8024992340070597 a007 Real Root Of 459*x^4+24*x^3+696*x^2-455*x+32 8024992348304134 a007 Real Root Of 921*x^4-804*x^3+617*x^2+659*x-666 8024992358170181 a008 Real Root of x^4-51*x^2-120*x+100 8024992371270987 a007 Real Root Of -396*x^4-378*x^3-281*x^2+541*x+584 8024992378756534 a003 cos(Pi*20/87)/sin(Pi*5/13) 8024992380371837 q001 2633/3281 8024992404193318 m001 Conway/(3^(1/2)-OneNinth) 8024992411760600 r005 Im(z^2+c),c=-85/98+2/35*I,n=12 8024992413314387 r008 a(0)=8,K{-n^6,47+32*n^3-24*n^2-92*n} 8024992415112952 a007 Real Root Of 750*x^4-782*x^3+297*x^2+590*x-433 8024992442479829 r008 a(0)=8,K{-n^6,-32-40*n+51*n^2-20*n^3} 8024992474913708 r002 4th iterates of z^2 + 8024992506543432 m001 (Pi-ln(2)/ln(10))/(5^(1/2)+Conway) 8024992529275293 l006 ln(4288/9567) 8024992529565603 r009 Re(z^3+c),c=-19/126+17/26*I,n=24 8024992580849681 m006 (2*exp(2*Pi)-2/3)/(1/4*exp(2*Pi)-1/2) 8024992582078880 a007 Real Root Of 370*x^4+293*x^3+310*x^2+108*x-115 8024992584892173 a001 3/121393*121393^(11/37) 8024992601104857 m001 (-exp(-1/2*Pi)+ZetaP(2))/(5^(1/2)+cos(1/5*Pi)) 8024992601899116 a003 cos(Pi*17/83)/sin(Pi*19/40) 8024992626208886 m001 exp(Trott)^3*log(1+sqrt(2))^2 8024992637502139 m004 1+1/(5*E^(Sqrt[5]*Pi))+Sqrt[5]*Pi 8024992682386566 m001 Pi+(Psi(1,1/3)-5^(1/2))/ln(5) 8024992694016954 r005 Im(z^2+c),c=-43/38+1/10*I,n=40 8024992697317620 a007 Real Root Of -944*x^4+463*x^3-60*x^2-737*x+78 8024992699677804 a007 Real Root Of 640*x^4-144*x^3-215*x^2-402*x-524 8024992738073336 m001 (Si(Pi)*LaplaceLimit+sin(1/12*Pi))/Si(Pi) 8024992760886137 l006 ln(4513/10069) 8024992760886137 p004 log(10069/4513) 8024992772897846 m001 (Ei(1)-Zeta(1,-1))/(sin(1/12*Pi)-gamma(3)) 8024992797335433 a001 1149851/1597*6557470319842^(12/17) 8024992797341502 a001 370248451/1597*1836311903^(12/17) 8024992797345787 a001 119218851371/1597*514229^(12/17) 8024992837880911 m001 (2^(1/2)+arctan(1/2))/(Tetranacci+ThueMorse) 8024992856800951 a007 Real Root Of -527*x^4+634*x^3+473*x^2-326*x-20 8024992858415121 m007 (-4*gamma-12*ln(2)+2*Pi-4/5)/(-1/3*gamma+5/6) 8024992860417274 r008 a(0)=8,K{-n^6,-42-4*n^3-3*n^2+8*n} 8024992883875402 m005 (1/2*Zeta(3)+1/7)/(2/11*3^(1/2)-2/9) 8024992957648144 m001 (3^(1/2)-LambertW(1))/(Zeta(1/2)+ZetaQ(3)) 8024993012680265 m001 (Catalan+exp(1/exp(1)))/(-GAMMA(5/6)+GaussAGM) 8024993028626622 m009 (5*Psi(1,2/3)+4)/(5/2*Pi^2-3/5) 8024993038844566 r008 a(0)=8,K{-n^6,-7+21*n^3+5*n^2-58*n} 8024993049196052 r005 Im(z^2+c),c=-41/62+15/31*I,n=8 8024993070480603 a001 2584/64079*322^(11/12) 8024993100698537 a007 Real Root Of 935*x^4+779*x^3+244*x^2-770*x-63 8024993108849808 a007 Real Root Of -870*x^4-299*x^3+233*x^2+862*x+748 8024993116580727 m006 (2/5*Pi^2+1/3)/(1/2*Pi^2+2/5) 8024993116580727 m008 (2/5*Pi^2+1/3)/(1/2*Pi^2+2/5) 8024993116580727 m009 (2/5*Pi^2+1/3)/(1/2*Pi^2+2/5) 8024993126434389 r005 Im(z^2+c),c=-13/98+53/58*I,n=8 8024993131424312 r002 18th iterates of z^2 + 8024993142911783 a007 Real Root Of -412*x^4+193*x^3+97*x^2+740*x+802 8024993160793847 r008 a(0)=8,K{-n^6,49+32*n^3-23*n^2-95*n} 8024993192087378 a007 Real Root Of -354*x^4+598*x^3-665*x^2-855*x+198 8024993202523891 r008 a(0)=8,K{-n^6,-45+13*n-35*n^2+28*n^3} 8024993207404070 a007 Real Root Of 93*x^4+643*x^3-736*x^2+787*x+315 8024993208367291 q001 2954/3681 8024993219714271 r009 Re(z^3+c),c=-65/102+5/27*I,n=3 8024993222332700 a007 Real Root Of 497*x^4-189*x^3+623*x^2-152*x-827 8024993226948407 a007 Real Root Of -389*x^4+864*x^3+696*x^2-974*x-622 8024993248117892 r002 19th iterates of z^2 + 8024993264882191 a007 Real Root Of -270*x^4+618*x^3+915*x^2+130*x-901 8024993268339482 r005 Re(z^2+c),c=-14/17+3/37*I,n=59 8024993274116264 a001 615/15251*322^(11/12) 8024993303826307 a001 17711/439204*322^(11/12) 8024993308160944 a001 46368/1149851*322^(11/12) 8024993308793359 a001 121393/3010349*322^(11/12) 8024993308885627 a001 317811/7881196*322^(11/12) 8024993308899088 a001 75640/1875749*322^(11/12) 8024993308901052 a001 2178309/54018521*322^(11/12) 8024993308901339 a001 5702887/141422324*322^(11/12) 8024993308901381 a001 14930352/370248451*322^(11/12) 8024993308901387 a001 39088169/969323029*322^(11/12) 8024993308901388 a001 9303105/230701876*322^(11/12) 8024993308901388 a001 267914296/6643838879*322^(11/12) 8024993308901388 a001 701408733/17393796001*322^(11/12) 8024993308901388 a001 1836311903/45537549124*322^(11/12) 8024993308901388 a001 4807526976/119218851371*322^(11/12) 8024993308901388 a001 1144206275/28374454999*322^(11/12) 8024993308901388 a001 32951280099/817138163596*322^(11/12) 8024993308901388 a001 86267571272/2139295485799*322^(11/12) 8024993308901388 a001 225851433717/5600748293801*322^(11/12) 8024993308901388 a001 591286729879/14662949395604*322^(11/12) 8024993308901388 a001 365435296162/9062201101803*322^(11/12) 8024993308901388 a001 139583862445/3461452808002*322^(11/12) 8024993308901388 a001 53316291173/1322157322203*322^(11/12) 8024993308901388 a001 20365011074/505019158607*322^(11/12) 8024993308901388 a001 7778742049/192900153618*322^(11/12) 8024993308901388 a001 2971215073/73681302247*322^(11/12) 8024993308901388 a001 1134903170/28143753123*322^(11/12) 8024993308901388 a001 433494437/10749957122*322^(11/12) 8024993308901388 a001 165580141/4106118243*322^(11/12) 8024993308901388 a001 63245986/1568397607*322^(11/12) 8024993308901391 a001 24157817/599074578*322^(11/12) 8024993308901407 a001 9227465/228826127*322^(11/12) 8024993308901516 a001 3524578/87403803*322^(11/12) 8024993308902266 a001 1346269/33385282*322^(11/12) 8024993308907408 a001 514229/12752043*322^(11/12) 8024993308942652 a001 196418/4870847*322^(11/12) 8024993309184213 a001 75025/1860498*322^(11/12) 8024993310839896 a001 28657/710647*322^(11/12) 8024993312521099 a007 Real Root Of 138*x^4-946*x^3-451*x^2-193*x+877 8024993315898644 m002 -5-Pi^2+20*Log[Pi] 8024993318234829 a007 Real Root Of 701*x^4+176*x^3+94*x^2+925*x+482 8024993319596702 s002 sum(A201212[n]/(n^3*2^n+1),n=1..infinity) 8024993320359270 m001 Trott*ln(FibonacciFactorial)^2*sqrt(Pi) 8024993322188123 a001 10946/271443*322^(11/12) 8024993327017478 a007 Real Root Of -76*x^4+563*x^3+282*x^2+218*x-616 8024993334835828 a001 3010349/4181*6557470319842^(12/17) 8024993334836714 a001 969323029/4181*1836311903^(12/17) 8024993334840998 a001 312119004989/4181*514229^(12/17) 8024993339595120 b008 -1+Pi*KelvinKer[1,1/3] 8024993342641824 r005 Im(z^2+c),c=-47/66+1/19*I,n=35 8024993346242976 m001 Lehmer^Kolakoski/(Lehmer^Artin) 8024993350953984 a007 Real Root Of 60*x^4-964*x^3+526*x^2+416*x-528 8024993361404068 a007 Real Root Of 910*x^4-293*x^3+646*x^2+588*x-473 8024993377489187 a007 Real Root Of -862*x^4-414*x^3-510*x^2-76*x+411 8024993389320712 m001 TreeGrowth2nd/ln(Sierpinski)/gamma 8024993399970024 a001 4181/103682*322^(11/12) 8024993412410994 r008 a(0)=8,K{-n^6,-51+2*n+13*n^2-6*n^3} 8024993413256085 a001 3940598/5473*6557470319842^(12/17) 8024993413256214 a001 1268860318/5473*1836311903^(12/17) 8024993413260499 a001 408569081798/5473*514229^(12/17) 8024993424697447 a001 20633239/28657*6557470319842^(12/17) 8024993424697465 a001 6643838879/28657*1836311903^(12/17) 8024993424701750 a001 2139295485799/28657*514229^(12/17) 8024993426366719 a001 54018521/75025*6557470319842^(12/17) 8024993426366721 a001 17393796001/75025*1836311903^(12/17) 8024993426371006 a001 5600748293801/75025*514229^(12/17) 8024993426610262 a001 70711162/98209*6557470319842^(12/17) 8024993426610263 a001 22768774562/98209*1836311903^(12/17) 8024993426614547 a001 7331474697802/98209*514229^(12/17) 8024993426645795 a001 370248451/514229*6557470319842^(12/17) 8024993426645795 a001 119218851371/514229*1836311903^(12/17) 8024993426650979 a001 969323029/1346269*6557470319842^(12/17) 8024993426650979 a001 312119004989/1346269*1836311903^(12/17) 8024993426651735 a001 1268860318/1762289*6557470319842^(12/17) 8024993426651735 a001 408569081798/1762289*1836311903^(12/17) 8024993426651846 a001 2139295485799/9227465*1836311903^(12/17) 8024993426651846 a001 6643838879/9227465*6557470319842^(12/17) 8024993426651862 a001 5600748293801/24157817*1836311903^(12/17) 8024993426651862 a001 17393796001/24157817*6557470319842^(12/17) 8024993426651864 a001 7331474697802/31622993*1836311903^(12/17) 8024993426651864 a001 22768774562/31622993*6557470319842^(12/17) 8024993426651864 a001 119218851371/165580141*6557470319842^(12/17) 8024993426651864 a001 312119004989/433494437*6557470319842^(12/17) 8024993426651864 a001 408569081798/567451585*6557470319842^(12/17) 8024993426651864 a001 2139295485799/2971215073*6557470319842^(12/17) 8024993426651864 a001 5600748293801/7778742049*6557470319842^(12/17) 8024993426651864 a001 10749853441/14930208*6557470319842^(12/17) 8024993426651864 a001 1322157322203/1836311903*6557470319842^(12/17) 8024993426651864 a001 505019158607/701408733*6557470319842^(12/17) 8024993426651864 a001 96450076809/133957148*6557470319842^(12/17) 8024993426651865 a001 23725150497407/102334155*1836311903^(12/17) 8024993426651865 a001 10525900321/14619165*6557470319842^(12/17) 8024993426651865 a001 9062201101803/39088169*1836311903^(12/17) 8024993426651865 a001 28143753123/39088169*6557470319842^(12/17) 8024993426651872 a001 1730726404001/7465176*1836311903^(12/17) 8024993426651872 a001 5374978561/7465176*6557470319842^(12/17) 8024993426651914 a001 1322157322203/5702887*1836311903^(12/17) 8024993426651914 a001 4106118243/5702887*6557470319842^(12/17) 8024993426652203 a001 10745088481/46347*1836311903^(12/17) 8024993426652203 a001 224056801/311187*6557470319842^(12/17) 8024993426654183 a001 96450076809/416020*1836311903^(12/17) 8024993426654183 a001 299537289/416020*6557470319842^(12/17) 8024993426667755 a001 73681302247/317811*1836311903^(12/17) 8024993426667755 a001 228826127/317811*6557470319842^(12/17) 8024993426672039 a001 23725150497407/317811*514229^(12/17) 8024993426760779 a001 28143753123/121393*1836311903^(12/17) 8024993426760780 a001 87403803/121393*6557470319842^(12/17) 8024993426765064 a001 9062201101803/121393*514229^(12/17) 8024993427398378 a001 5374978561/23184*1836311903^(12/17) 8024993427398386 a001 103681/144*6557470319842^(12/17) 8024993427402663 a001 10749853441/144*514229^(12/17) 8024993430550526 r005 Im(z^2+c),c=-11/14+123/232*I,n=3 8024993431768547 a001 4106118243/17711*1836311903^(12/17) 8024993431768597 a001 12752043/17711*6557470319842^(12/17) 8024993431772832 a001 1322157322203/17711*514229^(12/17) 8024993461722132 a001 1568397607/6765*1836311903^(12/17) 8024993461722470 a001 4870847/6765*6557470319842^(12/17) 8024993461726416 a001 505019158607/6765*514229^(12/17) 8024993473709165 r009 Im(z^3+c),c=-7/66+38/47*I,n=23 8024993513688680 a001 7/90481*3^(1/30) 8024993537620118 m001 (1+HardyLittlewoodC3)/(MinimumGamma+Stephens) 8024993558834971 r002 3th iterates of z^2 + 8024993586017700 r008 a(0)=8,K{-n^6,-29+27*n^3-24*n^2-13*n} 8024993604479428 r009 Re(z^3+c),c=-15/56+9/11*I,n=5 8024993618986318 l004 sinh(427/71*Pi) 8024993618986319 l004 cosh(427/71*Pi) 8024993637858606 m005 (1/3*Catalan-2/9)/(4/11*5^(1/2)-11/12) 8024993639225976 a007 Real Root Of -530*x^4+911*x^3-479*x^2-764*x+386 8024993646048610 a007 Real Root Of 314*x^4-748*x^3+275*x^2+203*x-531 8024993647087712 a007 Real Root Of 355*x^4+384*x^3+67*x^2-830*x-658 8024993656357115 r005 Re(z^2+c),c=-87/106+4/47*I,n=29 8024993667027059 a001 299537289/1292*1836311903^(12/17) 8024993667029378 a001 930249/1292*6557470319842^(12/17) 8024993667031344 a001 96450076809/1292*514229^(12/17) 8024993670707489 m001 (Kac+Mills)/(Pi^(1/2)+HardyLittlewoodC3) 8024993688415609 r008 a(0)=8,K{-n^6,-32+56*n^2-63*n} 8024993700711492 r002 4th iterates of z^2 + 8024993712593147 m001 FeigenbaumKappa*LaplaceLimit^2/exp(Zeta(9))^2 8024993725943334 a007 Real Root Of 162*x^4-984*x^3+853*x^2+668*x-589 8024993763441256 p001 sum(1/(527*n+449)/n/(128^n),n=1..infinity) 8024993773184878 m001 1/Salem*FeigenbaumC*exp(GAMMA(13/24)) 8024993815119452 s002 sum(A201212[n]/(n^3*2^n-1),n=1..infinity) 8024993855941715 a007 Real Root Of 557*x^4-550*x^3-428*x^2-212*x+499 8024993874050477 q001 3275/4081 8024993890660014 r008 a(0)=8,K{-n^6,-36-55*n+51*n^2+n^3} 8024993926382815 a007 Real Root Of -577*x^4-825*x^3-515*x^2+641*x+659 8024993933095107 a001 1597/39603*322^(11/12) 8024993949184207 r005 Im(z^2+c),c=-79/106+21/64*I,n=7 8024994011259119 m001 exp(Niven)^2*Khintchine*Pi^2 8024994036720526 r005 Im(z^2+c),c=-25/34+23/42*I,n=3 8024994041374660 r005 Re(z^2+c),c=19/86+19/59*I,n=38 8024994046719417 h002 exp(15^(2/5)+6^(1/5)) 8024994046719417 h007 exp(15^(2/5)+6^(1/5)) 8024994076320691 a007 Real Root Of -405*x^4-726*x^3-491*x^2+972*x+889 8024994082840236 r002 2th iterates of z^2 + 8024994082840236 r002 2th iterates of z^2 + 8024994087199975 m005 (2/3*2^(1/2)+3)/(5*Catalan+1/3) 8024994093498277 a007 Real Root Of -506*x^4+610*x^3-x^2+576*x+988 8024994131537148 a007 Real Root Of 880*x^4+118*x^3-398*x^2-930*x-794 8024994154407333 m009 (16/5*Catalan+2/5*Pi^2+2)/(3/4*Psi(1,3/4)-4/5) 8024994164897291 m005 (1/2*2^(1/2)-5/12)/(8/9*gamma-7/8) 8024994177694034 r005 Im(z^2+c),c=-67/60+5/51*I,n=39 8024994195512453 r008 a(0)=8,K{-n^6,11+2*n^3+19*n^2-70*n} 8024994211486463 a007 Real Root Of 567*x^4-422*x^3-400*x^2-59*x-243 8024994215601480 m001 Backhouse^sin(1/12*Pi)/(Magata^sin(1/12*Pi)) 8024994233267398 s002 sum(A168647[n]/((pi^n+1)/n),n=1..infinity) 8024994241855963 r005 Re(z^2+c),c=29/118+5/14*I,n=24 8024994274882766 a007 Real Root Of 818*x^4+404*x^3+688*x^2-23*x-592 8024994283003844 m001 (Sierpinski+Totient)/(ArtinRank2-KhinchinLevy) 8024994300922242 a007 Real Root Of 564*x^4-941*x^3-262*x^2+43*x-517 8024994324944200 r008 a(0)=8,K{-n^6,-26-20*n+11*n^2-6*n^3} 8024994327039848 m001 TreeGrowth2nd/Porter*ln(BesselJ(0,1)) 8024994358242558 r005 Im(z^2+c),c=-13/12+1/108*I,n=13 8024994381380473 r005 Re(z^2+c),c=-11/14+28/255*I,n=27 8024994386041543 r001 51i'th iterates of 2*x^2-1 of 8024994402864957 r005 Im(z^2+c),c=-2/9+43/57*I,n=55 8024994406979163 a007 Real Root Of 722*x^4-526*x^3-336*x^2-359*x-643 8024994407483521 r005 Im(z^2+c),c=-117/98+5/42*I,n=37 8024994408622646 r002 62th iterates of z^2 + 8024994421151393 a007 Real Root Of 368*x^4-568*x^3-706*x^2-757*x-599 8024994518939713 s004 Continued Fraction of A143943 8024994518939713 s004 Continued fraction of A143943 8024994526773846 m005 (1/2*Pi+5/12)/(4/7*Catalan-3) 8024994546039621 r005 Im(z^2+c),c=21/64+16/29*I,n=11 8024994554510308 a001 39603/233*21^(26/51) 8024994563062860 m001 FeigenbaumKappa^Zeta(1,-1)-ZetaR(2) 8024994617121839 m005 (1/5*gamma+2)/(5^(1/2)+2/5) 8024994622681203 s002 sum(A070884[n]/(n^2*2^n-1),n=1..infinity) 8024994669481498 r002 54th iterates of z^2 + 8024994670197318 a007 Real Root Of -434*x^4-392*x^3-125*x^2+997*x+858 8024994671056097 a007 Real Root Of 648*x^4-709*x^3+935*x^2+768*x-621 8024994715900763 p004 log(34183/31547) 8024994719467261 a007 Real Root Of -37*x^4-236*x^3+493*x^2+67*x+275 8024994757010046 r005 Im(z^2+c),c=13/106+8/13*I,n=40 8024994784876701 r005 Im(z^2+c),c=-23/36+25/54*I,n=17 8024994786013224 m001 (GAMMA(2/3)+ln(5))/(DuboisRaymond+ZetaP(3)) 8024994792968420 b008 8+Tanh[1/40] 8024994793090421 s004 Continued Fraction of A135796 8024994793090421 s004 Continued fraction of A135796 8024994793618920 b008 8+ArcCot[40] 8024994797112043 r005 Im(z^2+c),c=-7/78+32/37*I,n=28 8024994809707489 m001 1/log(2+sqrt(3))/ln((2^(1/3)))^2/sqrt(Pi) 8024994829063478 m002 -2+Pi^2-ProductLog[Pi]+Log[Pi]*ProductLog[Pi] 8024994865829605 a007 Real Root Of 202*x^4-287*x^3+84*x^2-320*x-543 8024994907017811 b008 Sqrt[Pi]*ArcCsc[47]^2 8024994933194612 r002 7th iterates of z^2 + 8024994933688141 r008 a(0)=8,K{-n^6,-52+2*n+23*n^2-14*n^3} 8024994944450018 a008 Real Root of (10+11*x-18*x^2-14*x^3) 8024994973606297 a007 Real Root Of -864*x^4+348*x^3-349*x^2-699*x+202 8024994990849144 a007 Real Root Of -933*x^4+202*x^3-160*x^2+83*x+661 8024995024448435 p003 LerchPhi(1/2,3,239/216) 8024995024714754 a007 Real Root Of -575*x^4-499*x^3-839*x^2+197*x+679 8024995036227051 m001 (GAMMA(7/12)-ZetaQ(2))/(ln(2)+ln(Pi)) 8024995074208249 a001 4868641/21*1836311903^(12/17) 8024995074212534 a001 10525900321/141*514229^(12/17) 8024995074224140 a001 101521/141*6557470319842^(12/17) 8024995087387825 r005 Re(z^2+c),c=11/94+12/23*I,n=64 8024995095859214 r009 Im(z^3+c),c=-29/78+14/17*I,n=3 8024995118357633 s004 Continued Fraction of A227733 8024995118357633 s004 Continued fraction of A227733 8024995178839734 m004 4/5+(Pi*Sech[Sqrt[5]*Pi])/Sqrt[5] 8024995188870463 m001 1/cosh(1)^2*ln(Zeta(3))^2/sqrt(Pi) 8024995198617613 m004 8+(4*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 8024995218395522 m004 4/5+(Pi*Csch[Sqrt[5]*Pi])/Sqrt[5] 8024995235629416 a001 41/233802911*121393^(11/12) 8024995235729254 a001 123/139583862445*39088169^(11/12) 8024995242486034 m001 1/ln(GAMMA(23/24))^2*Khintchine^2/sinh(1)^2 8024995268490747 a007 Real Root Of -542*x^4+120*x^3-51*x^2+459*x+688 8024995304045117 m001 (KhinchinLevy-PlouffeB)/(ln(Pi)-sin(1/12*Pi)) 8024995306609094 a007 Real Root Of 988*x^4-641*x^3+198*x^2+863*x-176 8024995313056503 r002 33th iterates of z^2 + 8024995315607326 b008 -1+Pi/E^(5/9) 8024995320493547 r008 a(0)=8,K{-n^6,13+31*n^3-59*n^2-27*n} 8024995325703205 m001 1/ln(arctan(1/2))*GAMMA(1/4)/sin(Pi/5) 8024995333444319 m008 (3*Pi^5+3/4)/(1/6*Pi^2-1/2) 8024995375350375 a007 Real Root Of 83*x^4-936*x^3+710*x^2-932*x+740 8024995488611805 a007 Real Root Of -94*x^4+717*x^3+265*x^2+288*x+470 8024995509881690 a007 Real Root Of -670*x^4+966*x^3+930*x^2+482*x+565 8024995522533165 m001 Zeta(1,-1)/Psi(2,1/3)/Artin 8024995528995902 m001 1/exp(GAMMA(5/24))/GAMMA(1/24)*GAMMA(7/12) 8024995543159303 r005 Re(z^2+c),c=-43/94+38/47*I,n=4 8024995545890863 a007 Real Root Of 766*x^4-708*x^3-202*x^2-680*x+724 8024995560190890 r008 a(0)=8,K{-n^6,-56-15*n^3+40*n^2-11*n} 8024995573974393 a001 70711162/305*6557470319842^(10/17) 8024995573974394 a001 17393796001/610*1836311903^(10/17) 8024995573977964 a001 2139295485799/610*514229^(10/17) 8024995575649276 a007 Real Root Of -833*x^4-28*x^3-606*x^2+209*x+889 8024995587974792 m001 LandauRamanujan-Psi(1,1/3)+Mills 8024995598841488 a007 Real Root Of -940*x^4+718*x^3+997*x^2+217*x+293 8024995603140599 r005 Im(z^2+c),c=3/10+26/53*I,n=31 8024995613150928 a001 47/28657*55^(21/53) 8024995613364215 r005 Im(z^2+c),c=-33/70+1/54*I,n=8 8024995639291739 r002 42th iterates of z^2 + 8024995646380602 a007 Real Root Of -394*x^4+399*x^3+20*x^2+105*x+441 8024995656859076 a007 Real Root Of 646*x^4-880*x^3-125*x^2+328*x-379 8024995748222646 p004 log(31153/13963) 8024995769938847 r005 Im(z^2+c),c=-19/30+19/125*I,n=63 8024995780606869 a001 18/55*233^(27/46) 8024995807984810 r005 Im(z^2+c),c=-7/106+51/61*I,n=6 8024995827244974 a007 Real Root Of -709*x^4+405*x^3-498*x^2-111*x+735 8024995855834517 r002 3th iterates of z^2 + 8024995889191971 a007 Real Root Of 406*x^4-349*x^3-60*x^2-631*x+557 8024995892941446 m001 (HardyLittlewoodC4-Rabbit)/(ln(Pi)-Cahen) 8024995898634366 m001 Backhouse^Thue/(Backhouse^exp(1/exp(1))) 8024995900190724 r008 a(0)=8,K{-n^6,-65+45*n^3-96*n^2+77*n} 8024995940399807 a007 Real Root Of -288*x^4+766*x^3+343*x^2+189*x-649 8024995953464632 a007 Real Root Of 502*x^4-745*x^3+830*x^2+381*x-822 8024995985281027 m001 1/exp(FeigenbaumD)^2/Conway^2*cos(1)^2 8024995997730205 m005 (1/2*exp(1)-1/5)/(8/11*5^(1/2)-2/11) 8024995998162113 m001 Backhouse/(ReciprocalLucas-ZetaR(2)) 8024995998736259 a007 Real Root Of 471*x^4-965*x^3+553*x^2+242*x-856 8024996019991370 a007 Real Root Of 46*x^4-929*x^3-465*x^2+362*x+470 8024996025373241 m005 (1/2*Zeta(3)+1/5)/(1/11*Zeta(3)+8/9) 8024996045004285 a007 Real Root Of -732*x^4+34*x^3-517*x^2-926*x-89 8024996058633562 a007 Real Root Of 343*x^4+158*x^3+473*x^2+166*x-232 8024996061550634 a007 Real Root Of 72*x^4+544*x^3-310*x^2-280*x+249 8024996066632942 m001 Kolakoski-cos(1)*Otter 8024996071062258 a001 3571/5*832040^(13/19) 8024996082106417 r005 Re(z^2+c),c=-18/25+11/46*I,n=10 8024996104204863 a007 Real Root Of 689*x^4-523*x^3-297*x^2+553*x+79 8024996123520787 a001 11/2584*121393^(37/44) 8024996152419311 h001 (1/9*exp(2)+4/7)/(4/7*exp(1)+2/11) 8024996159787107 a007 Real Root Of -228*x^4+979*x^3-649*x^2+144*x-109 8024996198325741 m001 1/HardHexagonsEntropy/Bloch*exp(FeigenbaumB)^2 8024996261846720 m004 -4+5*Pi*Csch[Sqrt[5]*Pi]-6*Sin[Sqrt[5]*Pi] 8024996306071436 m004 -4+5*Pi*Sech[Sqrt[5]*Pi]-6*Sin[Sqrt[5]*Pi] 8024996306078827 a007 Real Root Of -695*x^4+543*x^3-638*x^2-381*x+674 8024996314120746 h001 (3/11*exp(1)+5/12)/(4/11*exp(1)+5/11) 8024996332201592 r009 Re(z^3+c),c=-15/94+37/53*I,n=39 8024996339410367 r008 a(0)=0,K{-n^6,-62-34*n^3+24*n^2+59*n} 8024996358237214 m001 (-OneNinth+Tribonacci)/(Shi(1)-sin(1)) 8024996399282073 a007 Real Root Of -107*x^4-793*x^3+582*x^2+342*x-795 8024996421456575 a007 Real Root Of -138*x^4+544*x^3-48*x^2+400*x-514 8024996434560631 a005 (1/sin(68/211*Pi))^446 8024996460374028 a007 Real Root Of -635*x^4+310*x^3-75*x^2-350*x+191 8024996501540338 m001 (Robbin+Thue)/(2^(1/3)+HardyLittlewoodC3) 8024996513175473 r002 15th iterates of z^2 + 8024996522381866 m001 (ln(5)-Ei(1,1))/(ArtinRank2+MertensB2) 8024996557014857 r005 Im(z^2+c),c=-13/22+13/88*I,n=50 8024996567636044 r002 27th iterates of z^2 + 8024996570089737 a001 7*3571^(31/36) 8024996628244590 a007 Real Root Of 837*x^4+9*x^3-245*x^2+123*x-86 8024996640248880 s004 Continued Fraction of A241304 8024996640248880 s004 Continued fraction of A241304 8024996644162047 r005 Re(z^2+c),c=17/126+19/53*I,n=8 8024996658938029 m001 ln(OneNinth)^2/Riemann1stZero^2/GAMMA(1/6)^2 8024996671744542 p001 sum(1/(76*n+49)/n/(100^n),n=0..infinity) 8024996675794839 a007 Real Root Of -675*x^4+799*x^3-849*x^2-579*x+775 8024996682296239 a007 Real Root Of 503*x^4-862*x^3+860*x^2+542*x-773 8024996696539786 m003 1/6+Sqrt[5]/32-1/(2*Log[1/2+Sqrt[5]/2]) 8024996735106175 a003 sin(Pi*3/26)+sin(Pi*17/115) 8024996738972684 a007 Real Root Of -895*x^4+931*x^3+64*x^2+730*x-737 8024996743994878 r005 Im(z^2+c),c=-1/38+40/51*I,n=34 8024996756832199 a007 Real Root Of 667*x^4-551*x^3-170*x^2-273*x-671 8024996837387958 g001 Psi(7/9,3/32) 8024996842823861 a007 Real Root Of -654*x^4-32*x^3-575*x^2-243*x+430 8024996842958864 a007 Real Root Of 16*x^4-957*x^3-692*x^2-970*x-834 8024996843483960 a007 Real Root Of -116*x^4+371*x^3+203*x^2+674*x+650 8024996848175796 a007 Real Root Of 116*x^4-420*x^3-614*x^2-819*x-527 8024996877747240 m001 AlladiGrinstead*OneNinth^Zeta(5) 8024996877749387 r008 a(0)=8,K{-n^6,-36+28*n-44*n^2+11*n^3} 8024996909650565 a007 Real Root Of -236*x^4-300*x^3-762*x^2+13*x+444 8024996928872121 a007 Real Root Of 162*x^4-830*x^3+254*x^2-244*x+394 8024996947349302 a007 Real Root Of -440*x^4+117*x^3+523*x^2+642*x-730 8024996949503345 m001 MinimumGamma/(ln(5)^(2^(1/3))) 8024996959747080 r008 a(0)=8,K{-n^6,13+39*n^3-39*n^2-52*n} 8024996973095193 m001 (Ei(1,1)+Zeta(1,-1))/(gamma(2)-LaplaceLimit) 8024996977056182 r009 Re(z^3+c),c=-13/94+46/63*I,n=2 8024996987079602 b008 7+Cosh[E^(-3/2)] 8024997012304482 a007 Real Root Of 750*x^4-322*x^3-692*x^2+568*x+424 8024997042267547 a007 Real Root Of -806*x^4-934*x^3-275*x^2+368*x+324 8024997048773203 a001 377/1149851*7^(23/50) 8024997080793828 m001 (-Pi^(1/2)+KomornikLoreti)/(1+sin(1)) 8024997096689501 m005 (1/2*Zeta(3)+4/7)/(5/11*2^(1/2)+9/11) 8024997104579684 a007 Real Root Of -469*x^4+154*x^3-834*x^2-242*x+617 8024997106827966 s004 Continued Fraction of A228679 8024997106827966 s004 Continued fraction of A228679 8024997111881127 r005 Im(z^2+c),c=-5/94+15/19*I,n=55 8024997153359106 r009 Im(z^3+c),c=-19/40+31/57*I,n=20 8024997165920291 r002 6th iterates of z^2 + 8024997174873090 l006 ln(225/502) 8024997175790913 m001 (Pi^(1/2)-Khinchin)/(LaplaceLimit+Weierstrass) 8024997183595878 a007 Real Root Of 719*x^4-489*x^3-502*x^2-475*x+659 8024997203986799 a007 Real Root Of -801*x^4-959*x^3-218*x^2+729*x+562 8024997219919635 a007 Real Root Of 994*x^4+61*x^3-104*x^2-819*x-971 8024997235967783 r008 a(0)=8,K{-n^6,-47-30*n+42*n^2-3*n^3} 8024997293899644 m001 (GAMMA(5/6)+ZetaP(4))/(cos(1/5*Pi)+ln(2)) 8024997348454098 m001 (BesselK(0,1)-Chi(1))/(KomornikLoreti+Magata) 8024997358184963 m002 -1+Pi^6*Csch[Pi]-E^Pi*Sech[Pi] 8024997366612208 r005 Im(z^2+c),c=5/26+19/34*I,n=17 8024997371366840 r005 Im(z^2+c),c=-9/14+10/63*I,n=36 8024997372302444 a007 Real Root Of 394*x^4-898*x^3+274*x^2-620*x-52 8024997388647032 a005 (1/sin(98/213*Pi))^1141 8024997395914712 b008 8+Sin[1/40] 8024997396240160 b008 8+Gudermannian[1/40] 8024997396565482 b008 8+ArcCsch[40] 8024997439310838 m001 1/exp(cos(Pi/5))/FeigenbaumDelta*sin(1) 8024997510998979 m001 1/Magata*ln(Kolakoski)^2/TreeGrowth2nd^2 8024997554799062 r009 Im(z^3+c),c=-11/126+39/49*I,n=59 8024997587188767 a001 610/15127*322^(11/12) 8024997595622586 a007 Real Root Of -714*x^4-662*x^3-830*x^2+308*x-19 8024997610359063 m001 (ln(gamma)+Salem)/(Catalan-Chi(1)) 8024997641066126 r002 46th iterates of z^2 + 8024997670255058 m001 (Niven+RenyiParking)/(LambertW(1)-MertensB1) 8024997673859607 r005 Im(z^2+c),c=-4/21+7/9*I,n=51 8024997696672446 a007 Real Root Of 464*x^4+268*x^3+807*x^2+179*x-430 8024997740922167 m001 (Stephens+ZetaP(2))/(AlladiGrinstead+Bloch) 8024997744080336 a007 Real Root Of 422*x^4-779*x^3+619*x^2+24*x-957 8024997768959266 a007 Real Root Of -300*x^4+905*x^3-103*x^2+996*x+8 8024997796641714 a007 Real Root Of -742*x^4+717*x^3-426*x^2-817*x+297 8024997810788622 m005 (1/2*3^(1/2)+5)/(3/5*exp(1)-9/10) 8024997825653709 a007 Real Root Of 176*x^4-882*x^3-642*x^2+515*x+383 8024997833375401 r005 Re(z^2+c),c=-29/30+10/49*I,n=44 8024997834170394 m001 (-FeigenbaumD+Thue)/(Si(Pi)+BesselK(0,1)) 8024997860515917 r002 29i'th iterates of 2*x/(1-x^2) of 8024997863173663 m001 KhintchineHarmonic*ErdosBorwein^2*exp(gamma) 8024997883077718 a001 1/831985*8^(21/23) 8024997913213798 m001 HeathBrownMoroz+TravellingSalesman^TwinPrimes 8024997917656713 a001 7/75025*514229^(9/55) 8024997952289095 r005 Re(z^2+c),c=-55/122+43/56*I,n=4 8024997963710895 a007 Real Root Of 743*x^4+608*x^3+942*x^2+954*x+165 8024997976589458 m001 (cos(1)-TwinPrimes)^ReciprocalFibonacci 8024997984562516 a003 cos(3/10*Pi)-3^(1/2)+1/2*2^(1/2)-cos(8/21*Pi) 8024998024521112 a007 Real Root Of 300*x^4-898*x^3-190*x^2-385*x+771 8024998044768707 r005 Im(z^2+c),c=-2/3+42/253*I,n=59 8024998047149619 r005 Re(z^2+c),c=-15/22+88/115*I,n=2 8024998075031784 m001 arctan(1/2)*GaussKuzminWirsing+Robbin 8024998111320761 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^22 8024998119498723 r008 a(0)=8,K{-n^6,-37-25*n^3+64*n^2-43*n} 8024998121350495 a007 Real Root Of -73*x^4+868*x^3-741*x^2-992*x+160 8024998122992018 m001 MadelungNaCl/(Chi(1)+Totient) 8024998124751380 r008 a(0)=8,K{-n^6,-4+2*n^3+19*n^2-58*n} 8024998157218968 r005 Im(z^2+c),c=-5/56+21/26*I,n=55 8024998173680478 m001 1/Robbin^2/FransenRobinson*exp(GAMMA(1/12)) 8024998174117109 r005 Re(z^2+c),c=-47/58+3/28*I,n=63 8024998183607117 a007 Real Root Of -2*x^4+598*x^3-787*x^2-847*x+137 8024998189518860 a001 281/7*28657^(55/57) 8024998209016201 r008 a(0)=8,K{-n^6,-42+32*n-59*n^2+31*n^3} 8024998240815476 m001 (2^(1/2)+5^(1/2))/(-exp(-1/2*Pi)+LaplaceLimit) 8024998258504590 a001 599074578/377*514229^(14/17) 8024998258515482 a001 710647/377*1836311903^(14/17) 8024998263020584 r002 6th iterates of z^2 + 8024998282910695 r002 28th iterates of z^2 + 8024998284329389 r002 3th iterates of z^2 + 8024998304416799 a007 Real Root Of -707*x^4-321*x^3-635*x^2+452*x+899 8024998367364410 m005 (1/2*2^(1/2)-2/9)/(1/11*5^(1/2)-1/7) 8024998372263340 a001 4106118243/89*21^(2/11) 8024998375541979 m001 1/Conway*Champernowne^2/exp(GAMMA(1/3)) 8024998406620760 m001 1/OneNinth/MinimumGamma*ln(log(1+sqrt(2))) 8024998415452409 m001 (Tetranacci-ZetaP(2))/(GAMMA(13/24)-Backhouse) 8024998416740695 r005 Re(z^2+c),c=-21/118+19/23*I,n=5 8024998440699961 p004 log(35111/15737) 8024998457698015 m001 Robbin/(HardyLittlewoodC5+PrimesInBinary) 8024998483644344 r005 Re(z^2+c),c=17/118+19/37*I,n=32 8024998523136393 a007 Real Root Of -463*x^4-83*x^3+105*x^2+676*x+624 8024998545390839 m008 (1/5*Pi^6+1/3)/(1/4*Pi^6-1/3) 8024998559478452 p004 log(32099/14387) 8024998572075411 a007 Real Root Of -612*x^4+572*x^3-874*x^2-201*x+951 8024998588354009 r005 Re(z^2+c),c=-47/50+11/51*I,n=8 8024998617004546 m001 (Kac-TwinPrimes)/(ErdosBorwein+FeigenbaumD) 8024998628471536 m001 Niven^ZetaQ(3)/(Niven^BesselK(0,1)) 8024998636477248 m002 -3+Pi^6*Csch[Pi]+Log[Pi]/Pi^5 8024998640626740 m001 (CareFree-RenyiParking)/(Pi+5^(1/2)) 8024998643861509 a007 Real Root Of -747*x^4-432*x^3+911*x^2+936*x+251 8024998651874444 p004 log(30091/13487) 8024998656056286 r008 a(0)=8,K{-n^6,55*n^3-93*n^2-2*n+1} 8024998675957227 a007 Real Root Of -67*x^4+175*x^3-999*x^2-397*x+443 8024998684168954 a007 Real Root Of 742*x^4-205*x^3+593*x^2+73*x-737 8024998697562574 r008 a(0)=8,K{-n^6,-44-6*n+21*n^2-12*n^3} 8024998697882166 a007 Real Root Of -11*x^4-873*x^3+785*x^2+206*x-46 8024998714070984 b008 7+E^(2/81) 8024998732778526 r005 Re(z^2+c),c=-13/10+39/232*I,n=9 8024998753126770 m002 -4+Coth[Pi]+Pi^6*Csch[Pi] 8024998774093219 m001 (-MertensB1+Salem)/(Psi(1,1/3)+Conway) 8024998844846874 p003 LerchPhi(1/8,2,21/188) 8024998851565437 a001 987/9349*18^(40/57) 8024998855902401 r005 Im(z^2+c),c=19/126+30/47*I,n=15 8024998860474061 a007 Real Root Of 49*x^4-316*x^3+248*x^2-209*x+151 8024998860934135 a003 sin(Pi*35/107)*sin(Pi*41/106) 8024998889986619 a007 Real Root Of 424*x^4-600*x^3-201*x^2-362*x-647 8024998894510221 a007 Real Root Of -433*x^4+19*x^3+87*x^2+250*x+334 8024998919423971 m001 (Gompertz-Kac)/(MasserGramainDelta+Tribonacci) 8024998935749325 r005 Im(z^2+c),c=-1/36+39/53*I,n=31 8024998940613547 r002 45th iterates of z^2 + 8024998975432858 a007 Real Root Of -928*x^4+73*x^3-938*x^2-275*x+806 8024998979425781 a007 Real Root Of -621*x^4+167*x^3+235*x^2+671*x+731 8024999004394127 m005 (2/3*exp(1)-3/4)/(1/6*Pi+4/5) 8024999026200282 a007 Real Root Of -455*x^4+206*x^3+204*x^2+642*x+679 8024999051434318 m001 (Sarnak+ZetaQ(3))/(Ei(1)-FransenRobinson) 8024999053271069 a007 Real Root Of -930*x^4+334*x^3-579*x^2-323*x+672 8024999063251587 a007 Real Root Of -939*x^4+509*x^3+764*x^2+767*x+776 8024999090693246 m001 Catalan*Chi(1)^RenyiParking 8024999097531164 a007 Real Root Of 563*x^4-529*x^3+348*x^2+324*x-471 8024999101961879 p004 log(23063/10337) 8024999106610946 a007 Real Root Of -747*x^4-5*x^3+96*x^2+78*x+308 8024999114041487 m001 Zeta(7)^2*Porter^2/exp(sqrt(1+sqrt(3)))^2 8024999131960720 b008 8+SinIntegral[1/40] 8024999155154320 m001 Zeta(1,2)+OneNinth+Trott2nd 8024999181950296 m001 DuboisRaymond^ln(2+3^(1/2))*ln(2) 8024999223813801 m001 exp(1)^Zeta(1/2)-MertensB2 8024999258022407 a001 370248451/1597*6557470319842^(10/17) 8024999258022407 a001 45537549124/1597*1836311903^(10/17) 8024999258025978 a001 5600748293801/1597*514229^(10/17) 8024999337897582 r005 Im(z^2+c),c=11/29+4/21*I,n=62 8024999340873312 m001 Stephens^(FellerTornier/cos(1/5*Pi)) 8024999346698108 r005 Re(z^2+c),c=-63/58+1/39*I,n=18 8024999361363191 a007 Real Root Of -787*x^4+126*x^3-953*x^2-24*x+986 8024999379464022 m001 1/GAMMA(5/24)/exp(GAMMA(13/24))^2*Zeta(1,2) 8024999379556051 m001 arctan(1/2)^(Artin/Mills) 8024999384501320 a001 199/956722026041*610^(13/14) 8024999393619287 r008 a(0)=8,K{-n^6,-37-16*n+4*n^2+11*n^3} 8024999421031359 r002 5th iterates of z^2 + 8024999429111842 a007 Real Root Of -178*x^4-639*x^3-543*x^2+690*x+647 8024999470554557 a007 Real Root Of 916*x^4-578*x^3+812*x^2+463*x-830 8024999483901568 r005 Im(z^2+c),c=-29/114+31/32*I,n=4 8024999502605990 a007 Real Root Of -797*x^4+636*x^3+274*x^2+485*x+872 8024999518502730 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^24 8024999553152242 m005 (1/2*exp(1)+9/10)/(3/8*Catalan-5/8) 8024999581438240 a007 Real Root Of 730*x^4-961*x^3+523*x^2+495*x-739 8024999584365037 a003 cos(Pi*22/107)/sin(Pi*37/79) 8024999615801061 g006 -Psi(1,3/8)-Psi(1,1/8)-Psi(1,3/5)-Psi(1,2/3) 8024999618199667 r005 Im(z^2+c),c=-7/52+49/58*I,n=54 8024999638124762 p004 log(18043/8087) 8024999668375297 r008 a(0)=8,K{-n^6,-22+6*n^3+26*n^2-65*n} 8024999679024982 a007 Real Root Of -696*x^4-374*x^3-559*x^2-469*x+79 8024999702301708 a007 Real Root Of 817*x^4+391*x^3+615*x^2-146*x-650 8024999715977133 a007 Real Root Of -522*x^4+984*x^3+209*x^2-418*x+255 8024999723807813 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^26 8024999740952372 a007 Real Root Of 230*x^4-986*x^3+695*x^2+382*x-746 8024999753761420 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^28 8024999758131593 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^30 8024999758769193 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^32 8024999758862217 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^34 8024999758875789 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^36 8024999758877769 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^38 8024999758878058 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^40 8024999758878100 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^42 8024999758878106 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^44 8024999758878107 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^46 8024999758878108 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^48 8024999758878108 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^50 8024999758878108 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^52 8024999758878108 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^54 8024999758878108 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^56 8024999758878108 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^58 8024999758878108 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^60 8024999758878108 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^62 8024999758878108 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^64 8024999758878108 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^66 8024999758878108 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^68 8024999758878108 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^70 8024999758878108 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^72 8024999758878108 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^74 8024999758878108 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^76 8024999758878108 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^78 8024999758878108 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^80 8024999758878108 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^82 8024999758878108 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^84 8024999758878108 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^86 8024999758878108 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^88 8024999758878108 a004 Fibonacci(84)*Lucas(12)/(1/2+sqrt(5)/2)^90 8024999758878108 a004 Fibonacci(86)*Lucas(12)/(1/2+sqrt(5)/2)^92 8024999758878108 a004 Fibonacci(88)*Lucas(12)/(1/2+sqrt(5)/2)^94 8024999758878108 a004 Fibonacci(90)*Lucas(12)/(1/2+sqrt(5)/2)^96 8024999758878108 a004 Fibonacci(92)*Lucas(12)/(1/2+sqrt(5)/2)^98 8024999758878108 a004 Fibonacci(94)*Lucas(12)/(1/2+sqrt(5)/2)^100 8024999758878108 a004 Fibonacci(93)*Lucas(12)/(1/2+sqrt(5)/2)^99 8024999758878108 a004 Fibonacci(91)*Lucas(12)/(1/2+sqrt(5)/2)^97 8024999758878108 a004 Fibonacci(89)*Lucas(12)/(1/2+sqrt(5)/2)^95 8024999758878108 a004 Fibonacci(87)*Lucas(12)/(1/2+sqrt(5)/2)^93 8024999758878108 a004 Fibonacci(85)*Lucas(12)/(1/2+sqrt(5)/2)^91 8024999758878108 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^89 8024999758878108 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^87 8024999758878108 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^85 8024999758878108 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^83 8024999758878108 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^81 8024999758878108 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^79 8024999758878108 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^77 8024999758878108 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^75 8024999758878108 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^73 8024999758878108 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^71 8024999758878108 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^69 8024999758878108 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^67 8024999758878108 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^65 8024999758878108 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^63 8024999758878108 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^61 8024999758878108 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^59 8024999758878108 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^57 8024999758878108 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^55 8024999758878108 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^53 8024999758878108 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^51 8024999758878108 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^49 8024999758878108 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^47 8024999758878108 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^45 8024999758878110 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^43 8024999758878126 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^41 8024999758878237 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^39 8024999758878993 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^37 8024999758884177 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^35 8024999758919709 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^33 8024999759163251 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^31 8024999759624622 a001 1/72*(1/2+1/2*5^(1/2))^18 8024999760832508 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^29 8024999772273768 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^27 8024999784086708 r008 a(0)=8,K{-n^6,17-47*n-33*n^2+28*n^3} 8024999795518052 a001 969323029/4181*6557470319842^(10/17) 8024999795518052 a001 119218851371/4181*1836311903^(10/17) 8024999795521622 a001 14662949395604/4181*514229^(10/17) 8024999826298500 m001 sin(Pi/12)^2/CopelandErdos*ln(sin(Pi/5))^2 8024999850693332 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^25 8024999868889490 a007 Real Root Of -315*x^4+983*x^3-282*x^2+890*x-910 8024999873937615 a001 1268860318/5473*6557470319842^(10/17) 8024999873937615 a001 312119004989/10946*1836311903^(10/17) 8024999885378875 a001 817138163596/28657*1836311903^(10/17) 8024999885378875 a001 6643838879/28657*6557470319842^(10/17) 8024999887048133 a001 2139295485799/75025*1836311903^(10/17) 8024999887048133 a001 17393796001/75025*6557470319842^(10/17) 8024999887291674 a001 5600748293801/196418*1836311903^(10/17) 8024999887291674 a001 22768774562/98209*6557470319842^(10/17) 8024999887327206 a001 14662949395604/514229*1836311903^(10/17) 8024999887327206 a001 119218851371/514229*6557470319842^(10/17) 8024999887332391 a001 312119004989/1346269*6557470319842^(10/17) 8024999887333147 a001 408569081798/1762289*6557470319842^(10/17) 8024999887333257 a001 2139295485799/9227465*6557470319842^(10/17) 8024999887333273 a001 5600748293801/24157817*6557470319842^(10/17) 8024999887333276 a001 7331474697802/31622993*6557470319842^(10/17) 8024999887333276 a001 23725150497407/102334155*6557470319842^(10/17) 8024999887333277 a001 9062201101803/39088169*6557470319842^(10/17) 8024999887333283 a001 1730726404001/7465176*6557470319842^(10/17) 8024999887333325 a001 1322157322203/5702887*6557470319842^(10/17) 8024999887333614 a001 10745088481/46347*6557470319842^(10/17) 8024999887335594 a001 23725150497407/832040*1836311903^(10/17) 8024999887335594 a001 96450076809/416020*6557470319842^(10/17) 8024999887349167 a001 3020733700601/105937*1836311903^(10/17) 8024999887349167 a001 73681302247/317811*6557470319842^(10/17) 8024999887442191 a001 3461452808002/121393*1836311903^(10/17) 8024999887442191 a001 28143753123/121393*6557470319842^(10/17) 8024999888079791 a001 440719107401/15456*1836311903^(10/17) 8024999888079791 a001 5374978561/23184*6557470319842^(10/17) 8024999892449963 a001 505019158607/17711*1836311903^(10/17) 8024999892449963 a001 4106118243/17711*6557470319842^(10/17) 8024999901228533 m001 (Ei(1)+arctan(1/3))/(Backhouse+Mills) 8024999922403572 a001 64300051206/2255*1836311903^(10/17) 8024999922403572 a001 1568397607/6765*6557470319842^(10/17) 8024999922407142 a001 23725150497407/6765*514229^(10/17) 8024999938667401 a007 Real Root Of 171*x^4-279*x^3-98*x^2-800*x-794 8024999947465087 a007 Real Root Of -638*x^4+498*x^3-549*x^2-696*x+317 8024999960436645 m004 80+Tanh[Sqrt[5]*Pi]/4 8024999981948032 r002 48th iterates of z^2 + 8024999997590428 b008 8+FresnelC[1/40] 8024999999999999 r002 2th iterates of z^2 +