8299600037178233 r005 Im(z^2+c),c=-9/25+41/63*I,n=22 8299600073359743 a003 sin(Pi*13/57)/sin(Pi*34/117) 8299600089582891 a007 Real Root Of 94*x^4-570*x^3+430*x^2+196*x-504 8299600103109609 a007 Real Root Of -267*x^4+313*x^3-477*x^2+160*x+767 8299600156257051 m001 (Psi(1,1/3)+GaussAGM)/ln(2+3^(1/2)) 8299600171304067 g005 1/GAMMA(8/9)/GAMMA(7/9)/GAMMA(5/8)/GAMMA(1/7) 8299600173952952 m001 ln(GAMMA(5/6))*Porter^2/Pi 8299600176900124 r002 56th iterates of z^2 + 8299600242417338 m005 (1/2*3^(1/2)-1)/(6/7*gamma-1/3) 8299600259917193 a003 cos(Pi*3/119)*sin(Pi*31/99) 8299600259951510 m008 (1/2*Pi^3+1/2)/(1/5*Pi^4-1/5) 8299600327019746 m005 (1/2*Pi-1/7)/(1/8*5^(1/2)-2) 8299600358814288 l006 ln(1255/2878) 8299600362101502 r002 4th iterates of z^2 + 8299600402051985 m005 (1/2+1/6*5^(1/2))/(7/8*Catalan+1/4) 8299600406802993 v002 sum(1/(2^n+(9/2*n^2+9/2*n+23)),n=1..infinity) 8299600418731539 m005 (-7/30+1/6*5^(1/2))/(1/2*2^(1/2)-7/8) 8299600424748116 a007 Real Root Of -545*x^4+731*x^3+767*x^2-787*x-505 8299600445843505 m005 (1/2*Catalan-5/6)/(4*Zeta(3)-2/7) 8299600483381777 a003 sin(Pi*19/70)/sin(Pi*38/105) 8299600488041162 a007 Real Root Of -232*x^4+903*x^3+992*x^2-250*x-882 8299600502513061 a007 Real Root Of -294*x^4+849*x^3+906*x^2-506*x-550 8299600527733388 m001 Zeta(1/2)^(3^(1/3)/StolarskyHarborth) 8299600530350150 a007 Real Root Of -45*x^4+934*x^3+63*x^2-812*x-162 8299600563302368 m001 (gamma-ln(2^(1/2)+1))/(sin(1/12*Pi)+OneNinth) 8299600587514026 p004 log(34841/15193) 8299600626968678 g007 Psi(2,10/11)+Psi(2,3/4)-Psi(2,2/7)-Psi(2,4/5) 8299600671251397 r005 Re(z^2+c),c=15/62+18/53*I,n=64 8299600674011576 p003 LerchPhi(1/6,1,255/191) 8299600684346764 a001 1292/930249*521^(17/26) 8299600689925631 a001 610/1149851*521^(21/26) 8299600714745947 a007 Real Root Of 626*x^4-537*x^3+619*x^2+368*x-725 8299600718889081 p001 sum((-1)^n/(463*n+276)/n/(16^n),n=1..infinity) 8299600755288845 a007 Real Root Of 87*x^4+663*x^3-514*x^2-311*x-943 8299600786453010 a007 Real Root Of 9*x^4+17*x^3-542*x^2-519*x+42 8299600807320046 m001 (Mills+Riemann1stZero)/(GAMMA(23/24)+GaussAGM) 8299600823913084 m001 (FeigenbaumDelta+Kac)/(gamma(1)-BesselI(1,1)) 8299600856750290 a007 Real Root Of 135*x^4-37*x^3+700*x^2+674*x-8 8299600867669924 l004 Shi(139/37) 8299600870420717 a007 Real Root Of -79*x^4-632*x^3+167*x^2-133*x+924 8299600880859888 m001 ((1+3^(1/2))^(1/2)+Riemann2ndZero)/(1+3^(1/2)) 8299600890727372 a007 Real Root Of 177*x^4+57*x^3+209*x^2-355*x-490 8299600896679068 a001 6765/4870847*521^(17/26) 8299600897811522 a003 cos(Pi*13/69)/sin(Pi*58/117) 8299600911123215 k002 Champernowne real with 5*n^2+276*n-273 8299600912433364 m005 (1/2*exp(1)+1)/(4/9*Zeta(3)-1/4) 8299600948003253 a007 Real Root Of -803*x^4-65*x^3-506*x^2+561*x-43 8299600951395803 a007 Real Root Of -589*x^4+593*x^3-771*x^2-567*x+679 8299600958946326 g004 abs(GAMMA(-79/20+I*(-227/60))) 8299600965609016 r002 7th iterates of z^2 + 8299600972089440 a007 Real Root Of -583*x^4-696*x^3-743*x^2+650*x+930 8299601027824085 a001 13/844*521^(7/26) 8299601027907649 a001 4181/3010349*521^(17/26) 8299601032326892 m001 (Bloch-FeigenbaumB)/(Pi+Zeta(3)) 8299601032426556 a007 Real Root Of -818*x^4-676*x^3-968*x^2+332*x+944 8299601056018060 a007 Real Root Of 836*x^4-592*x^3+834*x^2+708*x-722 8299601077175640 a001 281*46368^(9/17) 8299601089889084 m001 (Kac+KhinchinLevy)/(ReciprocalFibonacci-Salem) 8299601091122213 k001 Champernowne real with 131*n+698 8299601111184863 a007 Real Root Of -224*x^4+196*x^3+741*x^2+864*x+425 8299601124304008 m005 (1/3*5^(1/2)-1/11)/(6*2^(1/2)-3/5) 8299601134977566 a005 (1/cos(13/153*Pi))^1719 8299601141186782 m008 (2/5*Pi^4+1/3)/(5*Pi^2-2) 8299601145071989 r005 Re(z^2+c),c=23/86+28/51*I,n=40 8299601168369650 m001 FeigenbaumB/ln(Khintchine)^2*Paris^2 8299601173086035 m001 (Zeta(3)-sin(1))/(-Zeta(1,2)+Magata) 8299601193801218 r009 Re(z^3+c),c=-13/86+33/50*I,n=54 8299601221759075 m001 (BesselJ(1,1)+FeigenbaumD)/(Paris-Weierstrass) 8299601250203464 l006 ln(3898/8939) 8299601270684434 a007 Real Root Of -386*x^4-251*x^3-528*x^2+8*x+410 8299601284501433 r005 Re(z^2+c),c=-33/23+13/40*I,n=4 8299601321741051 m004 -13/6+Cosh[Sqrt[5]*Pi]*Csc[Sqrt[5]*Pi] 8299601346310875 m001 (gamma(2)+Bloch)/(GlaisherKinkelin-Tribonacci) 8299601354750005 a007 Real Root Of -300*x^4+740*x^3+501*x^2+584*x+705 8299601370628239 r005 Re(z^2+c),c=9/110+19/41*I,n=17 8299601417238161 r002 60th iterates of z^2 + 8299601421746600 m005 (1/2*Zeta(3)-5/6)/(4/5*Pi+2/7) 8299601443088721 a007 Real Root Of -454*x^4+129*x^3+63*x^2+822*x+928 8299601449364160 r005 Re(z^2+c),c=5/62+13/27*I,n=59 8299601450053942 r005 Im(z^2+c),c=-4/7+42/61*I,n=3 8299601452264085 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)-Psi(2,1/3)*Porter 8299601534668197 m002 -6/Pi^6+6/Pi-ProductLog[Pi] 8299601573312576 r005 Re(z^2+c),c=7/66+29/56*I,n=54 8299601581051743 a001 987/439204*521^(15/26) 8299601583800838 a001 1597/1149851*521^(17/26) 8299601656188678 r009 Im(z^3+c),c=-35/62+25/54*I,n=44 8299601664598766 a001 76/514229*6765^(9/46) 8299601673469958 l006 ln(2643/6061) 8299601685054049 r005 Im(z^2+c),c=-1/21+29/36*I,n=22 8299601693841271 a001 55/76*11^(2/35) 8299601693851930 a007 Real Root Of -899*x^4-672*x^3-482*x^2+20*x+391 8299601697994194 m001 (ln(3)+arctan(1/2))/(exp(1/Pi)-KhinchinLevy) 8299601724597929 m001 Ei(1)^Catalan-Psi(1,1/3) 8299601733606640 r002 17th iterates of z^2 + 8299601737491451 m005 (1/3*3^(1/2)+1/6)/(4/11*5^(1/2)+1/12) 8299601749063996 m001 1/Tribonacci*exp(MertensB1)*Trott^2 8299601752833188 m005 (1/2*gamma+1/3)/(10/11*Catalan-1/12) 8299601757416590 m001 MadelungNaCl-exp(1/exp(1))*HardyLittlewoodC3 8299601759095221 a007 Real Root Of -36*x^4+154*x^3-819*x^2+231*x+861 8299601783721441 r005 Im(z^2+c),c=1/44+51/59*I,n=19 8299601785297834 r005 Im(z^2+c),c=-65/98+1/16*I,n=24 8299601796767461 r005 Im(z^2+c),c=-19/18+9/97*I,n=25 8299601799587210 r005 Re(z^2+c),c=-5/6+46/211*I,n=5 8299601803405633 a007 Real Root Of -484*x^4+499*x^3+190*x^2+412*x+726 8299601851786877 r005 Im(z^2+c),c=-9/52+52/63*I,n=10 8299601872436622 r005 Im(z^2+c),c=-9/8+24/241*I,n=11 8299601879822624 p004 log(36671/15991) 8299601886952689 r005 Im(z^2+c),c=-7/62+47/59*I,n=18 8299601887109208 m001 (exp(1)+Cahen)^KhinchinHarmonic 8299601914123815 k002 Champernowne real with 11/2*n^2+549/2*n-272 8299601919716829 m005 (1/2*Pi+6)/(2/3*exp(1)-9/10) 8299601925744485 m005 (1/3*Pi-1/7)/(7/11*5^(1/2)-1/3) 8299601927409183 a008 Real Root of (-5+5*x+x^2+2*x^4-2*x^5) 8299601974400638 r005 Re(z^2+c),c=-13/62+9/10*I,n=5 8299601974723980 a003 cos(Pi*14/101)-cos(Pi*19/99) 8299601980764270 m001 (Backhouse-ZetaP(2))/(ZetaP(3)-ZetaQ(2)) 8299601993806183 r002 25th iterates of z^2 + 8299602022477663 a007 Real Root Of -854*x^4+985*x^3+996*x^2+425*x+635 8299602039118855 a007 Real Root Of 686*x^4+584*x^3+213*x^2-696*x-716 8299602047814878 r005 Re(z^2+c),c=-5/52+39/56*I,n=43 8299602050912553 a007 Real Root Of 59*x^4+530*x^3+359*x^2+217*x+125 8299602055422281 m005 (1/2*Zeta(3)-1/5)/(5/12*Catalan-1/3) 8299602082771055 l006 ln(4031/9244) 8299602126220803 m001 1/Lehmer*exp(Kolakoski)^2*Zeta(9)^2 8299602130476187 a007 Real Root Of -224*x^4-144*x^3-723*x^2+194*x+683 8299602139597598 a007 Real Root Of -809*x^4-189*x^3+350*x^2+757*x+663 8299602148041691 r009 Im(z^3+c),c=-1/10+37/45*I,n=33 8299602151501061 m001 (Zeta(5)-GAMMA(2/3))/(Magata+PrimesInBinary) 8299602153553215 a007 Real Root Of -274*x^4+964*x^3+727*x^2-130*x-814 8299602183386441 m001 1/OneNinth^2*exp(Tribonacci)*GAMMA(7/12) 8299602187956887 r005 Im(z^2+c),c=-23/48+9/14*I,n=21 8299602219590399 m001 (PlouffeB-Porter)/(Backhouse-MertensB1) 8299602249596163 r009 Re(z^3+c),c=-45/94+2/49*I,n=5 8299602275047907 m001 (BesselK(0,1)+CareFree)/(MasserGramain+Rabbit) 8299602276095408 m001 BesselI(1,2)*Backhouse^GAMMA(5/24) 8299602289082766 b008 -13+ArcCosh[55] 8299602305713343 m001 (-GlaisherKinkelin+ZetaQ(3))/(sin(1)+ln(2)) 8299602311238757 a007 Real Root Of -821*x^4+562*x^3+839*x^2+545*x-962 8299602337754460 a007 Real Root Of 906*x^4-879*x^3-593*x^2-430*x+838 8299602364346283 a007 Real Root Of 755*x^4-585*x^3-529*x^2+357*x-32 8299602374654340 h001 (3/8*exp(1)+3/8)/(5/11*exp(1)+4/9) 8299602416292160 r005 Re(z^2+c),c=-9/14+117/151*I,n=2 8299602417321994 a007 Real Root Of 964*x^4-181*x^3+341*x^2+213*x-619 8299602420265383 r005 Im(z^2+c),c=-1/114+22/31*I,n=40 8299602433074906 s002 sum(A049326[n]/(2^n+1),n=1..infinity) 8299602436999257 m005 (1/2*gamma+1/8)/(5/12*2^(1/2)-1/11) 8299602458927092 a007 Real Root Of -959*x^4-259*x^3+393*x^2+372*x+345 8299602498094151 a007 Real Root Of -58*x^4-376*x^3+876*x^2+128*x+965 8299602528213924 m001 (exp(1/Pi)+FeigenbaumDelta)^Salem 8299602533717612 m005 (4*gamma-4/5)/(5/6*Pi-4/5) 8299602573408961 r005 Im(z^2+c),c=-3/19+45/52*I,n=17 8299602614391769 m002 5/Pi^3+(Pi^3*Sech[Pi])/4 8299602634465154 r002 36th iterates of z^2 + 8299602658867597 a007 Real Root Of 910*x^4-557*x^3+689*x^2+395*x-897 8299602718866213 m001 (Pi^(1/2)-exp(1))/(Gompertz+Landau) 8299602751505272 a001 620166*6765^(5/17) 8299602761875724 a001 167761/3*24157817^(5/17) 8299602798440969 a001 15127/3*86267571272^(5/17) 8299602849267720 m001 (gamma(2)-GaussAGM)/(HardyLittlewoodC4+Rabbit) 8299602851435944 a007 Real Root Of -144*x^4+802*x^3-169*x^2-322*x+376 8299602862153430 l006 ln(1388/3183) 8299602910064965 r002 19th iterates of z^2 + 8299602917124415 k002 Champernowne real with 6*n^2+273*n-271 8299602920353567 r005 Re(z^2+c),c=-23/48+47/54*I,n=4 8299602951115891 m001 exp(BesselK(1,1))/TreeGrowth2nd*sqrt(2)^2 8299603019828138 r009 Im(z^3+c),c=-61/118+16/29*I,n=26 8299603036348633 a001 2584/1149851*521^(15/26) 8299603041896115 a001 610/710647*521^(19/26) 8299603050166341 r005 Im(z^2+c),c=-7/12+24/101*I,n=8 8299603059526029 a007 Real Root Of -918*x^4-464*x^3-19*x^2+20*x+200 8299603097384318 m001 LaplaceLimit*Weierstrass-ln(Pi) 8299603130766486 m001 Backhouse^GAMMA(17/24)/(Backhouse^exp(gamma)) 8299603175094314 m001 ln(2)/ln(10)+Niven-Salem 8299603180717274 r005 Re(z^2+c),c=5/58+26/53*I,n=40 8299603181592681 r009 Re(z^3+c),c=-5/98+29/35*I,n=11 8299603200846671 b008 41+Csch[1/42] 8299603231953269 m005 (1/2*Zeta(3)+6/11)/(4/5*2^(1/2)+1/4) 8299603233467715 p004 log(19403/8461) 8299603248673587 a001 6765/3010349*521^(15/26) 8299603255331061 r009 Re(z^3+c),c=-13/86+37/56*I,n=41 8299603279967086 a007 Real Root Of 365*x^4-662*x^3+644*x^2+563*x-528 8299603283082279 a007 Real Root Of -125*x^4-941*x^3+686*x^2-855*x+791 8299603298383397 r005 Re(z^2+c),c=-29/34+2/39*I,n=21 8299603298796710 a001 10946/4870847*521^(15/26) 8299603307641356 r008 a(0)=1,K{-n^6,-3+28*n-8*n^2-12*n^3} 8299603310252006 a007 Real Root Of 284*x^4-640*x^3-528*x^2-823*x-820 8299603327656109 m002 (Pi^4*Csch[Pi])/Log[Pi]+ProductLog[Pi]^(-1) 8299603329692987 a001 377/15127*521^(5/26) 8299603333776690 a007 Real Root Of 556*x^4-878*x^3-589*x^2+189*x+487 8299603336564390 r005 Re(z^2+c),c=1/56+51/64*I,n=5 8299603362941644 m001 1/Magata*exp(Kolakoski)^2*gamma 8299603369073993 m001 Trott*(MasserGramainDelta-Shi(1)) 8299603379897626 a001 4181/1860498*521^(15/26) 8299603432263591 m001 1/Magata/exp(FeigenbaumAlpha)*sin(Pi/5)^2 8299603452843010 p003 LerchPhi(1/125,6,489/220) 8299603476426541 r002 60th iterates of z^2 + 8299603477628986 r005 Re(z^2+c),c=-49/58+3/28*I,n=3 8299603481897329 m003 -5-6*Sinh[1/2+Sqrt[5]/2]+3*Tan[1/2+Sqrt[5]/2] 8299603486979501 m001 (-Zeta(1/2)+Paris)/(sin(1)+Zeta(5)) 8299603493643028 m001 TwinPrimes^2/Riemann3rdZero^2/exp(GAMMA(5/12)) 8299603498177334 r005 Im(z^2+c),c=-23/36+19/46*I,n=4 8299603511256837 r001 11i'th iterates of 2*x^2-1 of 8299603512878079 a007 Real Root Of 789*x^4-552*x^3-351*x^2-479*x+4 8299603525269593 a007 Real Root Of -820*x^4+687*x^3+83*x^2+51*x+767 8299603532499891 r009 Im(z^3+c),c=-1/10+32/39*I,n=59 8299603569550901 r002 12th iterates of z^2 + 8299603584180747 r009 Re(z^3+c),c=-20/31+56/59*I,n=2 8299603593289132 l006 ln(4297/9854) 8299603611235034 m001 GAMMA(19/24)^2/BesselK(1,1)*ln(Zeta(5)) 8299603618717441 a007 Real Root Of -979*x^4+328*x^3+511*x^2-676*x-261 8299603653810162 m001 (-ln(Pi)+Riemann2ndZero)/(exp(Pi)+cos(1/5*Pi)) 8299603657189641 a003 cos(Pi*29/73)*cos(Pi*37/89) 8299603685583312 s002 sum(A027138[n]/((2*n)!),n=1..infinity) 8299603697782190 a007 Real Root Of -802*x^4-571*x^3-897*x^2+94*x+750 8299603720993860 a007 Real Root Of 21*x^4-391*x^3-401*x^2-972*x-764 8299603730050841 m001 (ln(2)/ln(10)+Shi(1))/(BesselK(1,1)+MertensB2) 8299603772918206 a007 Real Root Of -899*x^4-678*x^3+609*x^2+826*x+305 8299603776743908 r005 Im(z^2+c),c=-2/19+21/25*I,n=37 8299603792948297 a007 Real Root Of -297*x^4+516*x^3+418*x^2+541*x+597 8299603821575175 m002 6+Log[Pi]+Sinh[Pi]/10 8299603854761593 a003 sin(Pi*7/48)/cos(Pi*35/109) 8299603893585159 a007 Real Root Of 786*x^4+431*x^3+923*x^2+245*x-559 8299603900488165 m001 Salem/(Trott2nd-exp(1/exp(1))) 8299603920125015 k002 Champernowne real with 13/2*n^2+543/2*n-270 8299603932889523 a001 329/90481*521^(1/2) 8299603935771574 a001 1597/710647*521^(15/26) 8299603941275203 a007 Real Root Of -622*x^4+972*x^3+224*x^2+552*x-873 8299603942143137 l006 ln(2909/6671) 8299603944449996 g002 Psi(10/11)+Psi(7/8)-Psi(1/8)-Psi(5/8) 8299603944675319 r002 13th iterates of z^2 + 8299603954609931 b008 Pi^SinIntegral[3] 8299603956114010 m005 (1/3*Zeta(3)+1/6)/(5/8*Catalan+1/9) 8299603959612524 a001 11/32951280099*55^(5/22) 8299603965494537 a001 233/9349*199^(5/22) 8299604005170209 a007 Real Root Of 601*x^4-292*x^3+150*x^2-79*x-621 8299604009719269 r009 Im(z^3+c),c=-71/118+15/22*I,n=12 8299604011494765 r002 64th iterates of z^2 + 8299604023557113 r005 Re(z^2+c),c=-1/82+13/40*I,n=21 8299604042249288 a007 Real Root Of -146*x^4+966*x^3-500*x^2+862*x-854 8299604050790311 m009 (3*Psi(1,3/4)+1/5)/(Psi(1,1/3)-2/3) 8299604079052315 m001 FeigenbaumC^2*Niven^2/ln(Rabbit)^2 8299604111987553 a007 Real Root Of -101*x^4+886*x^3-984*x^2-316*x+970 8299604120725303 s002 sum(A244695[n]/(10^n-1),n=1..infinity) 8299604130064575 m001 1/2*(2^(1/3)*ZetaQ(3)+MertensB2)*2^(2/3) 8299604134113657 m006 (1/6*ln(Pi)+3/5)/(1/3*Pi-2) 8299604152042529 r005 Re(z^2+c),c=35/114+19/44*I,n=13 8299604164128560 r005 Re(z^2+c),c=-7/82+52/61*I,n=14 8299604195628022 a007 Real Root Of -769*x^4-464*x^3-903*x^2+354*x+3 8299604203477431 h001 (5/6*exp(1)+9/11)/(5/12*exp(2)+7/11) 8299604206351044 a001 843/24157817*8^(5/12) 8299604212633988 a007 Real Root Of -590*x^4+949*x^3+967*x^2+661*x+705 8299604222051007 a007 Real Root Of -307*x^4+909*x^3+263*x^2+401*x+817 8299604226235200 a007 Real Root Of -512*x^4+999*x^3-140*x^2-491*x+503 8299604228315877 m005 (1/3*Pi+1/8)/(3/11*Pi+5/9) 8299604247697927 a001 144/167761*322^(19/24) 8299604287960825 p003 LerchPhi(1/25,3,76/33) 8299604333739511 a007 Real Root Of -656*x^4+57*x^3+275*x^2+126*x+259 8299604334697462 m002 -4+2/Log[Pi]+Sinh[Pi]-Tanh[Pi] 8299604345284971 r002 3th iterates of z^2 + 8299604357782487 r005 Im(z^2+c),c=-5/8+35/251*I,n=28 8299604374916587 a007 Real Root Of -343*x^4-343*x^3-992*x^2-6*x+645 8299604382122450 m005 (1/2*5^(1/2)+2/11)/(7/10*2^(1/2)-5/6) 8299604383682886 m001 (Cahen-RenyiParking)/(ln(2^(1/2)+1)+Artin) 8299604388195566 a007 Real Root Of 758*x^4+819*x^3+81*x^2-366*x-251 8299604406107155 m001 sin(1/5*Pi)*(Si(Pi)-TreeGrowth2nd) 8299604413384867 a007 Real Root Of 104*x^4-203*x^3+340*x^2-891*x+572 8299604421852581 a008 Real Root of (-1+2*x^2+3*x^4-8*x^8) 8299604462546621 m001 (MertensB3+Sarnak)/(FeigenbaumC+MasserGramain) 8299604464868751 r009 Re(z^3+c),c=-19/126+15/23*I,n=35 8299604469006980 m006 (1/4*ln(Pi)-3/4)/(3/5*Pi^2-1/3) 8299604513484548 a001 4/53316291173*21^(15/19) 8299604516112596 r009 Im(z^3+c),c=-39/82+38/55*I,n=2 8299604519577980 m001 polylog(4,1/2)^(BesselK(1,1)/GAMMA(5/12)) 8299604529084457 m001 1/GlaisherKinkelin*exp(Artin)^2*Rabbit^2 8299604531138323 r002 34th iterates of z^2 + 8299604551000597 p001 sum(1/(402*n+367)/n/(16^n),n=1..infinity) 8299604552655675 a007 Real Root Of 122*x^4+427*x^3+709*x^2-342*x-586 8299604568323897 a007 Real Root Of -622*x^4+580*x^3+166*x^2-580*x+31 8299604576366084 a007 Real Root Of -434*x^4+490*x^3+657*x^2+791*x+690 8299604576503130 r005 Re(z^2+c),c=-89/106+13/37*I,n=3 8299604582787524 m001 BesselJ(0,1)^ZetaQ(3)/Zeta(3) 8299604601157793 m001 (ErdosBorwein+Kac)/(Si(Pi)+Chi(1)) 8299604604860886 r009 Re(z^3+c),c=-39/82+17/24*I,n=4 8299604699341660 m007 (-3/5*gamma-6/5*ln(2)-1/3)/(-2*gamma-2/3) 8299604707879168 m008 (5*Pi+1/3)/(1/5*Pi^6+1) 8299604729843602 a007 Real Root Of 991*x^4-803*x^3-412*x^2-50*x-687 8299604749595338 m005 (1/2*Zeta(3)+1)/(4/9*Catalan-3/5) 8299604775056979 a003 cos(Pi*13/64)-sin(Pi*26/75) 8299604830257067 r005 Re(z^2+c),c=-77/90+1/52*I,n=7 8299604830923572 a007 Real Root Of -224*x^4+558*x^3+125*x^2+493*x-708 8299604835198900 a007 Real Root Of 958*x^4-416*x^3+435*x^2+88*x-919 8299604868866417 b008 -1/2+ArcSinh[SinIntegral[4]] 8299604869113985 m009 (3/5*Psi(1,3/4)-2/3)/(48*Catalan+6*Pi^2+1/4) 8299604902038335 m001 (sin(1)+cos(1/5*Pi))/(-Gompertz+Sierpinski) 8299604906669365 a007 Real Root Of 701*x^4-826*x^3-67*x^2-157*x-889 8299604923125616 k002 Champernowne real with 7*n^2+270*n-269 8299604927695773 l006 ln(1521/3488) 8299604932296586 m005 (1/2*2^(1/2)-1/12)/(2/5*5^(1/2)-1/7) 8299604933686661 a001 377/4870847*1364^(29/30) 8299604936770520 a007 Real Root Of -83*x^4+796*x^3+569*x^2+597*x+598 8299604937145565 r009 Re(z^3+c),c=-13/102+28/59*I,n=6 8299604971426026 m001 (Trott+Weierstrass)/(1-PrimesInBinary) 8299604981167307 r005 Im(z^2+c),c=-25/21+2/17*I,n=42 8299604999376352 h001 (-8*exp(-3)-3)/(-5*exp(2)-4) 8299605016801658 m001 (GlaisherKinkelin-MertensB1)/(Salem+ZetaQ(2)) 8299605026183326 m005 (1/2*Catalan-2/7)/(2/11*Pi-4/11) 8299605028868432 m001 (sin(1)+BesselI(1,1))/(MertensB2+TwinPrimes) 8299605048374042 m001 2^(1/2)*ErdosBorwein-3^(1/3) 8299605055740325 m001 (Ei(1)-StronglyCareFree)/(Totient+ZetaQ(3)) 8299605055766998 r002 39th iterates of z^2 + 8299605056546661 a007 Real Root Of 46*x^4-305*x^3-470*x^2+110*x+385 8299605097165516 b008 1/3+E^2+EulerGamma 8299605098216334 a001 123/75025*121393^(25/47) 8299605133267522 q001 3363/4052 8299605158045872 a007 Real Root Of 831*x^4-614*x^3+292*x^2+750*x-324 8299605180371187 a007 Real Root Of -543*x^4+854*x^3+441*x^2-758*x-187 8299605189346882 m001 (-Champernowne+Tetranacci)/(1+GAMMA(19/24)) 8299605213025496 a007 Real Root Of 533*x^4+97*x^3-290*x^2-945*x-782 8299605231085266 a001 377/3010349*1364^(9/10) 8299605249474365 b008 2+5*2^(1/3) 8299605261357045 m001 (2^(1/2)-Ei(1,1))/(MertensB1+Riemann1stZero) 8299605275263450 a007 Real Root Of 948*x^4-397*x^3+316*x^2+556*x-433 8299605294509369 r002 53th iterates of z^2 + 8299605367773888 a007 Real Root Of 493*x^4-716*x^3-116*x^2+980*x+250 8299605387491805 r002 51th iterates of z^2 + 8299605388319781 a001 2584/710647*521^(1/2) 8299605393949435 a001 305/219602*521^(17/26) 8299605412684573 m001 BesselJ(1,1)^Zeta(1/2)*FeigenbaumAlpha 8299605412684573 m001 FeigenbaumAlpha*BesselJ(1,1)^Zeta(1/2) 8299605424162997 m001 FeigenbaumB^ln(2)*FeigenbaumB^FellerTornier 8299605435403995 m004 -3-(125*Sqrt[5])/Pi+Sqrt[5]*Pi+Log[Sqrt[5]*Pi] 8299605458206051 m001 Zeta(1,2)^(1/3)/GAMMA(13/24)^(1/3) 8299605458580511 m008 (4/5*Pi^6+5/6)/(3*Pi^3-1/4) 8299605475603194 r009 Im(z^3+c),c=-10/17+11/32*I,n=6 8299605528479302 a001 377/1860498*1364^(5/6) 8299605538585120 a007 Real Root Of -504*x^4+186*x^3-598*x^2+120*x+857 8299605554275144 m001 (Bloch+MadelungNaCl)/(2^(1/3)+2^(1/2)) 8299605575451962 a007 Real Root Of 969*x^4+134*x^3+478*x^2+809*x-41 8299605587500578 m005 (1/2*Catalan-2)/(3/11*exp(1)-5/9) 8299605600664194 a001 55/15126*521^(1/2) 8299605631644826 a001 17711/4870847*521^(1/2) 8299605636164839 a001 15456/4250681*521^(1/2) 8299605636824300 a001 121393/33385282*521^(1/2) 8299605636920514 a001 105937/29134601*521^(1/2) 8299605636934552 a001 832040/228826127*521^(1/2) 8299605636936600 a001 726103/199691526*521^(1/2) 8299605636936899 a001 5702887/1568397607*521^(1/2) 8299605636936942 a001 4976784/1368706081*521^(1/2) 8299605636936949 a001 39088169/10749957122*521^(1/2) 8299605636936950 a001 831985/228811001*521^(1/2) 8299605636936950 a001 267914296/73681302247*521^(1/2) 8299605636936950 a001 233802911/64300051206*521^(1/2) 8299605636936950 a001 1836311903/505019158607*521^(1/2) 8299605636936950 a001 1602508992/440719107401*521^(1/2) 8299605636936950 a001 12586269025/3461452808002*521^(1/2) 8299605636936950 a001 10983760033/3020733700601*521^(1/2) 8299605636936950 a001 86267571272/23725150497407*521^(1/2) 8299605636936950 a001 53316291173/14662949395604*521^(1/2) 8299605636936950 a001 20365011074/5600748293801*521^(1/2) 8299605636936950 a001 7778742049/2139295485799*521^(1/2) 8299605636936950 a001 2971215073/817138163596*521^(1/2) 8299605636936950 a001 1134903170/312119004989*521^(1/2) 8299605636936950 a001 433494437/119218851371*521^(1/2) 8299605636936950 a001 165580141/45537549124*521^(1/2) 8299605636936950 a001 63245986/17393796001*521^(1/2) 8299605636936953 a001 24157817/6643838879*521^(1/2) 8299605636936969 a001 9227465/2537720636*521^(1/2) 8299605636937083 a001 3524578/969323029*521^(1/2) 8299605636937866 a001 1346269/370248451*521^(1/2) 8299605636943228 a001 514229/141422324*521^(1/2) 8299605636979978 a001 196418/54018521*521^(1/2) 8299605637231870 a001 75025/20633239*521^(1/2) 8299605638958361 a001 28657/7881196*521^(1/2) 8299605650791910 a001 10946/3010349*521^(1/2) 8299605666147035 a007 Real Root Of -662*x^4-178*x^3+181*x^2+298*x+335 8299605682018682 r005 Re(z^2+c),c=-65/114+19/40*I,n=23 8299605696139791 a007 Real Root Of -654*x^4-683*x^3-531*x^2+627*x+806 8299605722033620 m001 (Bloch-Psi(2,1/3))/(-LaplaceLimit+MertensB3) 8299605724701610 m001 (StolarskyHarborth-sin(1))/Catalan 8299605730880027 a007 Real Root Of 398*x^4-636*x^3-620*x^2-99*x+684 8299605731900258 a001 4181/1149851*521^(1/2) 8299605736002935 a007 Real Root Of -878*x^4-563*x^3-680*x^2-452*x+188 8299605752518601 a007 Real Root Of -377*x^4+665*x^3+928*x^2-285*x-604 8299605754743441 a001 119218851371/55*2504730781961^(5/24) 8299605754743442 a001 1322157322203/55*24157817^(5/24) 8299605755131680 a007 Real Root Of 803*x^4-905*x^3+165*x^2+276*x-783 8299605768194851 m001 (gamma(1)+exp(-1/2*Pi))/(GAMMA(7/12)+Paris) 8299605781865965 q001 3158/3805 8299605812914321 a001 377/9349*521^(3/26) 8299605816749214 a001 11/514229*987^(26/49) 8299605820552324 a007 Real Root Of -374*x^4+48*x^3-570*x^2+456*x+976 8299605825885337 a001 377/1149851*1364^(23/30) 8299605830679190 l006 ln(3175/7281) 8299605868416510 m005 (1/3*Catalan-1/2)/(-1/72+1/9*5^(1/2)) 8299605897386811 a007 Real Root Of -783*x^4+950*x^3+578*x^2+50*x+558 8299605916112012 a007 Real Root Of -996*x^4+647*x^3-827*x^2-893*x+671 8299605919536652 a007 Real Root Of 236*x^4-8*x^3+705*x^2+193*x-442 8299605926126216 k002 Champernowne real with 15/2*n^2+537/2*n-268 8299605945794314 m005 (1/2*Pi-6/11)/(9/10+3/20*5^(1/2)) 8299606001178601 m001 (-Magata+MertensB3)/(Shi(1)+3^(1/3)) 8299606003375758 r009 Im(z^3+c),c=-5/31+52/63*I,n=55 8299606026400736 a001 11*(1/2*5^(1/2)+1/2)^30*47^(4/11) 8299606031354909 r005 Re(z^2+c),c=5/38+11/56*I,n=18 8299606036124108 m001 (5^(1/2)+gamma(1))/(-FeigenbaumD+ZetaP(4)) 8299606049651185 a003 sin(Pi*3/74)*sin(Pi*17/75) 8299606065448162 p001 sum(1/(308*n+127)/(6^n),n=0..infinity) 8299606123259996 a001 377/710647*1364^(7/10) 8299606130558869 a003 cos(Pi*17/110)*cos(Pi*55/117) 8299606134996560 a007 Real Root Of 79*x^4-701*x^3-415*x^2-361*x-452 8299606181980079 m001 (-FeigenbaumAlpha+1/3)/(exp(Pi)+3) 8299606182912642 r005 Re(z^2+c),c=-7/32+33/46*I,n=56 8299606200034723 m001 (2*Pi/GAMMA(5/6)+Backhouse)/(Niven-Thue) 8299606203134159 a008 Real Root of x^4-x^3-7*x^2+24*x-15 8299606205847010 a003 sin(Pi*33/107)/sin(Pi*31/67) 8299606226600887 a001 121393/29*47^(8/45) 8299606245010885 a007 Real Root Of 910*x^4-965*x^3-74*x^2+738*x-320 8299606256931003 a007 Real Root Of 572*x^4-68*x^3-33*x^2-115*x-383 8299606283311296 m001 (MertensB1+Mills)/(OneNinth+StolarskyHarborth) 8299606283752821 m001 GAMMA(2/3)^2/Artin/ln(arctan(1/2))^2 8299606285291179 a001 987/167761*521^(11/26) 8299606287825149 a001 1597/439204*521^(1/2) 8299606299441042 a007 Real Root Of 114*x^4-672*x^3-913*x^2+959 8299606301507978 m001 (QuadraticClass-ThueMorse)/BesselI(1,1) 8299606328569520 m005 (2^(1/2)-5)/(1/4*exp(1)-5) 8299606352986085 a007 Real Root Of 124*x^4-755*x^3+315*x^2+309*x-451 8299606366372725 a003 sin(Pi*13/111)+sin(Pi*12/77) 8299606380971685 a007 Real Root Of 239*x^4-519*x^3+434*x^2+423*x-358 8299606391781294 p004 log(22453/9791) 8299606407532610 r009 Im(z^3+c),c=-7/90+5/6*I,n=53 8299606420716837 a001 377/439204*1364^(19/30) 8299606435042403 m001 Weierstrass-DuboisRaymond-ln(gamma) 8299606452694553 a001 29/55*55^(6/53) 8299606475013580 a007 Real Root Of -909*x^4+325*x^3-105*x^2-856*x-21 8299606496802293 a007 Real Root Of -875*x^4+358*x^3-413*x^2-739*x+291 8299606508737794 a007 Real Root Of -804*x^4-222*x^3+302*x^2+656*x+591 8299606520517144 q001 2953/3558 8299606538394000 m001 Otter^cos(1)-Psi(1,1/3) 8299606573686356 r009 Im(z^3+c),c=-7/90+5/6*I,n=47 8299606592839537 a001 3/55*987^(43/59) 8299606596049897 a007 Real Root Of -64*x^4-608*x^3-701*x^2-457*x+573 8299606629176630 m005 (1/2*gamma-9/11)/(1/3*2^(1/2)+1/6) 8299606632562191 a007 Real Root Of -564*x^4-180*x^3-278*x^2-681*x-209 8299606634294313 r002 9th iterates of z^2 + 8299606661052623 l006 ln(1654/3793) 8299606705265118 m001 (Shi(1)+3^(1/3))/(Mills+Niven) 8299606713990401 a007 Real Root Of 30*x^4+282*x^3+280*x^2+158*x+897 8299606717958562 a001 377/271443*1364^(17/30) 8299606726615264 m005 (1/2*Catalan-1/11)/(1/10*gamma-1/2) 8299606738183929 a007 Real Root Of -736*x^4+630*x^3+784*x^2+896*x+913 8299606839766419 a007 Real Root Of -507*x^4+52*x^3+706*x^2+241*x-16 8299606841476532 r005 Im(z^2+c),c=-11/118+46/59*I,n=24 8299606844648274 a007 Real Root Of -617*x^4+461*x^3-333*x^2-237*x+589 8299606850422054 a007 Real Root Of 524*x^4-936*x^3-228*x^2+337*x-347 8299606860644223 r009 Im(z^3+c),c=-67/122+12/59*I,n=8 8299606909936219 a001 39603/233*233^(16/55) 8299606926690907 a007 Real Root Of -75*x^4+702*x^3+411*x^2+340*x+436 8299606929126816 k002 Champernowne real with 8*n^2+267*n-267 8299606979110617 a007 Real Root Of -297*x^4-216*x^3-775*x^2+331*x+826 8299606981405408 a007 Real Root Of -885*x^4+692*x^3+984*x^2-672*x-420 8299606982979445 a007 Real Root Of 389*x^4+333*x^3+477*x^2+660*x+225 8299606986516057 a007 Real Root Of -229*x^4+775*x^3-297*x^2+740*x-744 8299607002470256 a007 Real Root Of 455*x^4-255*x^3+984*x^2-779*x+58 8299607012429418 r002 7th iterates of z^2 + 8299607015763507 a001 377/167761*1364^(1/2) 8299607073536063 r002 5th iterates of z^2 + 8299607084541196 r005 Re(z^2+c),c=5/46+2/13*I,n=3 8299607104661682 r002 2th iterates of z^2 + 8299607114682415 m005 (2/3+1/4*5^(1/2))/(5/6*gamma-1/3) 8299607126527712 r005 Re(z^2+c),c=-5/6+15/142*I,n=53 8299607177094054 a007 Real Root Of 70*x^4-466*x^3+273*x^2+984*x+329 8299607181717085 r002 18th iterates of z^2 + 8299607208758128 a007 Real Root Of -759*x^4+963*x^3-232*x^2-691*x+497 8299607245751928 m005 (1/2*exp(1)-10/11)/(4/9*gamma+2/7) 8299607264959790 m004 -6+130*Pi+Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 8299607268529548 a007 Real Root Of 343*x^4+306*x^3+860*x^2+581*x-98 8299607287920478 a007 Real Root Of 6*x^4+497*x^3-91*x^2-819*x+631 8299607295331058 m001 (Bloch+Stephens)/(sin(1)+BesselK(0,1)) 8299607312093961 a001 377/103682*1364^(13/30) 8299607322146646 a007 Real Root Of 972*x^4-772*x^3-791*x^2-157*x-488 8299607328012230 r009 Im(z^3+c),c=-55/114+29/49*I,n=29 8299607335100567 m002 Pi^5-Sinh[Pi]+4*Cosh[Pi]*Sinh[Pi] 8299607359112662 m001 (Mills-ZetaQ(2))/(cos(1/12*Pi)+Landau) 8299607369374811 q001 2748/3311 8299607382939734 a001 29134601*377^(3/17) 8299607385670176 a003 sin(Pi*4/117)-sin(Pi*46/119) 8299607412571786 a003 cos(Pi*13/114)-cos(Pi*48/103) 8299607416128365 a007 Real Root Of 653*x^4+557*x^3+854*x^2+790*x+76 8299607417320903 m001 (GolombDickman+OneNinth)/(5^(1/2)-GAMMA(2/3)) 8299607425782525 a007 Real Root Of -477*x^4+94*x^3-187*x^2+658*x+955 8299607427235546 l006 ln(3441/7891) 8299607447389505 m002 -4*Pi^2+Pi^3+2*Sech[Pi] 8299607458339981 r005 Re(z^2+c),c=9/94+13/24*I,n=32 8299607485921745 a007 Real Root Of -383*x^4+330*x^3+391*x^2+672*x-834 8299607489706583 a001 34/199*29^(23/49) 8299607494282000 h001 (1/5*exp(1)+9/10)/(1/3*exp(1)+5/6) 8299607534622419 a001 2/75025*377^(30/31) 8299607612284723 a001 377/64079*1364^(11/30) 8299607622635122 m005 (1/2*Zeta(3)-2)/(3/7*5^(1/2)+8/11) 8299607624246539 m009 (5/12*Pi^2-1/3)/(5/6*Psi(1,2/3)+2) 8299607626308135 h001 (-4*exp(3/2)+2)/(-8*exp(1/2)-6) 8299607637295650 m001 PrimesInBinary-Sierpinski^BesselI(0,2) 8299607644399433 p001 sum(1/(244*n+139)/(3^n),n=0..infinity) 8299607645529541 r008 a(0)=8,K{-n^6,-16+21*n^3-83*n^2+74*n} 8299607664080609 r005 Re(z^2+c),c=-15/22+37/114*I,n=56 8299607668484476 a007 Real Root Of -479*x^4-245*x^3-239*x^2+152*x+378 8299607673610705 a007 Real Root Of -196*x^4+473*x^3-553*x^2+758*x+67 8299607683183123 a003 sin(Pi*24/77)*sin(Pi*53/107) 8299607686643363 a007 Real Root Of -262*x^4+102*x^3+380*x^2+358*x+218 8299607686682995 r009 Im(z^3+c),c=-13/66+41/45*I,n=40 8299607711275064 s001 sum(1/10^(n-1)*A252292[n]/n^n,n=1..infinity) 8299607714696008 r005 Re(z^2+c),c=3/25+29/54*I,n=59 8299607729963564 m005 (1/2*Catalan-5/9)/(9/10*Catalan-2) 8299607737604746 a007 Real Root Of 843*x^4+168*x^3+210*x^2-427*x-803 8299607740373767 a001 34/5779*521^(11/26) 8299607745788296 a001 610/271443*521^(15/26) 8299607759344169 a001 281*267914296^(7/17) 8299607781068699 a007 Real Root Of 96*x^4-633*x^3+698*x^2+816*x-211 8299607821351108 a001 377/5778*521^(1/26) 8299607836209893 m006 (3/4/Pi+1/5)/(1/4*ln(Pi)+5) 8299607862502241 m005 (1/3*exp(1)+1/11)/(4/11*3^(1/2)+4/7) 8299607884347246 m001 5^(1/2)-FibonacciFactorial-Tribonacci 8299607902112319 s002 sum(A228210[n]/((pi^n-1)/n),n=1..infinity) 8299607902369104 a001 377/39603*1364^(3/10) 8299607908449973 a007 Real Root Of 512*x^4-638*x^3-431*x^2-287*x-549 8299607932127416 k002 Champernowne real with 17/2*n^2+531/2*n-266 8299607952667455 a001 6765/1149851*521^(11/26) 8299607980232349 m008 (1/3*Pi^6-2/5)/(4*Pi^4-4) 8299607983640687 a001 17711/3010349*521^(11/26) 8299607990952475 a001 28657/4870847*521^(11/26) 8299608002783197 a001 5473/930249*521^(11/26) 8299608031821885 a007 Real Root Of 753*x^4-685*x^3-932*x^2-717*x-702 8299608071452589 g001 GAMMA(2/9,27/89) 8299608079094694 m002 -3+Pi^4-Cosh[Pi]+ProductLog[Pi]/6 8299608083872170 a001 4181/710647*521^(11/26) 8299608090771509 a001 2/2178309*4181^(40/49) 8299608100733529 m001 5^(1/2)-ln(3)-HardyLittlewoodC4 8299608113424726 h001 (1/4*exp(1)+4/5)/(6/11*exp(1)+3/10) 8299608117809011 a007 Real Root Of 289*x^4-325*x^3-17*x^2+181*x-161 8299608136394170 l006 ln(1787/4098) 8299608164905587 a007 Real Root Of 353*x^4-926*x^3-604*x^2+259*x+563 8299608205539258 a001 34/521*9349^(43/55) 8299608218912373 a001 13/844*1364^(7/30) 8299608236168937 m001 (sin(1/5*Pi)+HardyLittlewoodC5)/Zeta(3) 8299608247138544 a001 7/1597*2^(35/38) 8299608345632575 m004 -2+30*Pi+25*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 8299608355091383 q001 2543/3064 8299608416788425 m008 (5/6*Pi^3-3/4)/(3/4*Pi+2/3) 8299608434716137 a007 Real Root Of 869*x^4+150*x^3-993*x^2-662*x-192 8299608442312301 a007 Real Root Of -856*x^4+389*x^3-519*x^2-623*x+469 8299608446632698 a003 sin(Pi*14/99)/cos(Pi*33/101) 8299608466185410 a001 377/15127*1364^(1/6) 8299608515525341 r002 4th iterates of z^2 + 8299608527630655 a007 Real Root Of 964*x^4-393*x^3+347*x^2+558*x-458 8299608548736549 m001 (Otter-Stephens)/(sin(1/5*Pi)+BesselI(0,2)) 8299608568976751 m001 (Kolakoski+MertensB2)/(3^(1/2)+Bloch) 8299608572446162 m001 1/exp(cos(Pi/12))/GAMMA(7/12)/sqrt(3)^2 8299608582923987 r005 Re(z^2+c),c=-61/74+19/52*I,n=5 8299608601026985 m001 cos(1/5*Pi)*StolarskyHarborth+LandauRamanujan 8299608605063883 m001 Zeta(9)^2/ln(DuboisRaymond)/exp(1)^2 8299608632566596 r005 Re(z^2+c),c=-7/9+12/115*I,n=55 8299608636021639 a007 Real Root Of 93*x^4+855*x^3+723*x^2+291*x+142 8299608636218999 a001 21/2206*521^(9/26) 8299608639664262 a001 1597/271443*521^(11/26) 8299608656255543 a007 Real Root Of 64*x^4+566*x^3+279*x^2-14*x+575 8299608690816225 a001 377/4870847*3571^(29/34) 8299608694935474 m005 (-13/28+1/4*5^(1/2))/(5/11*5^(1/2)+1/8) 8299608698435711 g007 Psi(2,7/10)+Psi(2,3/10)+Psi(2,5/7)-Psi(2,7/9) 8299608709975201 r002 20th iterates of z^2 + 8299608716211107 a001 18/233*2^(3/29) 8299608729102517 a001 377/3010349*3571^(27/34) 8299608736134297 a007 Real Root Of 915*x^4-508*x^3-845*x^2+438*x+221 8299608745048336 a001 682/305*591286729879^(2/15) 8299608755924273 r005 Im(z^2+c),c=-2/25+27/31*I,n=24 8299608756980066 m001 Zeta(1,-1)/GAMMA(7/12)*ZetaP(4) 8299608767384229 a001 377/1860498*3571^(25/34) 8299608777205336 m001 (Si(Pi)+Artin)/(MasserGramainDelta+Thue) 8299608788184031 a007 Real Root Of -94*x^4-799*x^3-81*x^2+676*x+421 8299608794666265 l006 ln(3707/8501) 8299608797692237 r005 Im(z^2+c),c=-13/18+4/51*I,n=24 8299608805677931 a001 377/1149851*3571^(23/34) 8299608823878925 m001 (MasserGramain+ReciprocalLucas)/(Pi+gamma(3)) 8299608827369634 m001 (Paris+ZetaP(3))/(Si(Pi)+3^(1/3)) 8299608830947903 a007 Real Root Of 535*x^4+38*x^3+985*x^2+208*x-738 8299608843940246 a001 377/710647*3571^(21/34) 8299608848649894 a001 377/5778*1364^(1/30) 8299608849493597 r002 13th iterates of z^2 + 8299608862787470 r005 Re(z^2+c),c=-31/34+9/98*I,n=30 8299608863279712 m001 (sin(1/5*Pi)+Zeta(1,2))/(Backhouse-MertensB2) 8299608878160491 r005 Im(z^2+c),c=19/98+1/24*I,n=17 8299608882284732 a001 377/439204*3571^(19/34) 8299608894810316 a001 377/9349*1364^(1/10) 8299608896421659 p004 log(34729/31963) 8299608920414091 a001 377/271443*3571^(1/2) 8299608926757152 a001 21/3010349*7^(5/56) 8299608935128016 k002 Champernowne real with 9*n^2+264*n-265 8299608959106661 a001 377/167761*3571^(15/34) 8299608963679303 m009 (5*Psi(1,2/3)+1/4)/(2/3*Psi(1,2/3)-1/6) 8299608978206119 a001 377/5778*3571^(1/34) 8299608994849762 a001 377/5778*9349^(1/38) 8299608996324727 a001 377/103682*3571^(13/34) 8299608997018774 a001 377/5778*24476^(1/42) 8299608997304691 a001 377/5778*64079^(1/46) 8299608997468900 a001 377/5778*39603^(1/44) 8299608998255392 a001 377/5778*15127^(1/40) 8299608999912929 h001 (5/9*exp(2)+5/6)/(7/10*exp(2)+7/9) 8299609004254211 a001 377/5778*5778^(1/36) 8299609037403093 a001 377/64079*3571^(11/34) 8299609050596611 a001 377/5778*2207^(1/32) 8299609068375066 a001 377/39603*3571^(9/34) 8299609070471562 a007 Real Root Of 42*x^4+283*x^3-484*x^2+457*x-362 8299609072294140 h001 (7/11*exp(2)+9/10)/(8/9*exp(2)+2/11) 8299609080490846 a001 7/4181*196418^(37/53) 8299609086114330 a007 Real Root Of -42*x^4-174*x^3-676*x^2+624*x+904 8299609093295414 m001 Porter^2*Lehmer*ln(GAMMA(23/24))^2 8299609113966524 a001 377/15127*3571^(5/34) 8299609125805920 a001 13/844*3571^(7/34) 8299609159093828 m001 GAMMA(23/24)^Backhouse-exp(-1/2*Pi) 8299609173481878 a001 377/4870847*9349^(29/38) 8299609178480885 a001 377/3010349*9349^(27/38) 8299609183475312 a001 377/1860498*9349^(25/38) 8299609188481727 a001 377/1149851*9349^(23/38) 8299609193456756 a001 377/710647*9349^(21/38) 8299609193850669 a007 Real Root Of 584*x^4-177*x^3+867*x^2-794*x-72 8299609195492332 a007 Real Root Of 754*x^4+189*x^3+587*x^2+970*x+151 8299609197184742 a001 377/15127*9349^(5/38) 8299609198513957 a001 377/439204*9349^(1/2) 8299609203237657 a007 Real Root Of -74*x^4-491*x^3-791*x^2+792*x-60 8299609203356030 a001 377/271443*9349^(17/38) 8299609204066086 m001 1/ln(Tribonacci)^2/ArtinRank2*arctan(1/2)^2 8299609208029802 a001 377/15127*24476^(5/42) 8299609208761313 a001 377/167761*9349^(15/38) 8299609209459389 a001 377/15127*64079^(5/46) 8299609209649604 a001 377/15127*167761^(1/10) 8299609209679092 a001 377/15127*20633239^(1/14) 8299609209679094 a001 377/15127*2537720636^(1/18) 8299609209679094 a001 377/15127*312119004989^(1/22) 8299609209679094 a001 377/15127*28143753123^(1/20) 8299609209679094 a001 377/15127*228826127^(1/16) 8299609209679293 a001 377/15127*1860498^(1/12) 8299609210280432 a001 377/15127*39603^(5/44) 8299609212692094 a001 377/103682*9349^(13/38) 8299609214212890 a001 377/15127*15127^(1/8) 8299609218167858 a001 377/39603*9349^(9/38) 8299609220483173 a001 377/64079*9349^(11/38) 8299609231017176 a007 Real Root Of 69*x^4+653*x^3+615*x^2-344*x+705 8299609233084995 a001 377/54018521*24476^(13/14) 8299609234404445 a001 13/711491*24476^(5/6) 8299609235064092 a001 377/12752043*24476^(11/14) 8299609236383226 a001 377/4870847*24476^(29/42) 8299609237044208 a001 377/3010349*24476^(9/14) 8299609237688966 a001 377/39603*24476^(3/14) 8299609237700612 a001 377/1860498*24476^(25/42) 8299609238369003 a001 377/1149851*24476^(23/42) 8299609239006008 a001 377/710647*24476^(1/2) 8299609239725185 a001 377/439204*24476^(19/42) 8299609240229234 a001 377/271443*24476^(17/42) 8299609240262224 a001 377/39603*64079^(9/46) 8299609240650521 a001 377/39603*439204^(1/6) 8299609240657673 a001 377/39603*7881196^(3/22) 8299609240657691 a001 377/39603*2537720636^(1/10) 8299609240657691 a001 377/39603*14662949395604^(1/14) 8299609240657691 a001 377/39603*192900153618^(1/12) 8299609240657692 a001 377/39603*33385282^(1/8) 8299609240658051 a001 377/39603*1860498^(3/20) 8299609240802453 a001 377/39603*103682^(3/16) 8299609240889250 a001 377/103682*24476^(13/42) 8299609241296493 a001 377/167761*24476^(5/14) 8299609241740100 a001 377/39603*39603^(9/44) 8299609242311425 a001 13/844*9349^(7/38) 8299609243201159 m001 1/GAMMA(11/12)^2*exp(Rabbit)^2*sqrt(5) 8299609244206988 a001 377/15127*5778^(5/36) 8299609244342305 a001 377/64079*24476^(11/42) 8299609244606177 a001 377/103682*64079^(13/46) 8299609244674833 a001 377/4870847*64079^(29/46) 8299609244763981 a001 377/3010349*64079^(27/46) 8299609244848549 a001 377/1860498*64079^(25/46) 8299609244945106 a001 377/1149851*64079^(1/2) 8299609245010276 a001 377/710647*64079^(21/46) 8299609245089831 a001 377/271443*64079^(17/46) 8299609245157617 a001 377/439204*64079^(19/46) 8299609245177408 a001 377/103682*141422324^(1/6) 8299609245177408 a001 377/103682*73681302247^(1/8) 8299609245205568 a001 377/103682*271443^(1/4) 8299609245585256 a001 377/167761*64079^(15/46) 8299609245684057 a001 377/228826127*167761^(9/10) 8299609245743057 a001 13/711491*167761^(7/10) 8299609245799620 a001 377/1860498*167761^(1/2) 8299609245836826 a001 377/271443*45537549124^(1/6) 8299609245836838 a001 377/271443*12752043^(1/4) 8299609245908833 a001 377/969323029*439204^(17/18) 8299609245913613 a001 377/228826127*439204^(5/6) 8299609245916301 a001 377/710647*439204^(7/18) 8299609245918397 a001 377/54018521*439204^(13/18) 8299609245923123 a001 377/12752043*439204^(11/18) 8299609245928871 a001 377/3010349*439204^(1/2) 8299609245932991 a001 377/710647*7881196^(7/22) 8299609245933028 a001 377/710647*20633239^(3/10) 8299609245933033 a001 377/710647*17393796001^(3/14) 8299609245933033 a001 377/710647*14662949395604^(1/6) 8299609245933033 a001 377/710647*599074578^(1/4) 8299609245933036 a001 377/710647*33385282^(7/24) 8299609245933873 a001 377/710647*1860498^(7/20) 8299609245939196 a001 377/710647*710647^(3/8) 8299609245945979 a001 377/4870847*1149851^(1/2) 8299609245947063 a001 377/1860498*20633239^(5/14) 8299609245947070 a001 377/1860498*2537720636^(5/18) 8299609245947070 a001 377/1860498*312119004989^(5/22) 8299609245947070 a001 377/1860498*3461452808002^(5/24) 8299609245947070 a001 377/1860498*28143753123^(1/4) 8299609245947070 a001 377/1860498*228826127^(5/16) 8299609245948069 a001 377/1860498*1860498^(5/12) 8299609245949118 a001 377/4870847*1322157322203^(1/4) 8299609245949143 a001 377/7881196*3010349^(1/2) 8299609245949340 a001 13/599786069*7881196^(21/22) 8299609245949350 a001 377/12752043*7881196^(1/2) 8299609245949352 a001 377/4106118243*7881196^(19/22) 8299609245949356 a001 377/2537720636*7881196^(5/6) 8299609245949364 a001 377/969323029*7881196^(17/22) 8299609245949376 a001 377/228826127*7881196^(15/22) 8299609245949392 a001 377/54018521*7881196^(13/22) 8299609245949417 a001 377/12752043*312119004989^(3/10) 8299609245949417 a001 377/12752043*1568397607^(3/8) 8299609245949420 a001 377/12752043*33385282^(11/24) 8299609245949450 a001 377/28143753123*20633239^(13/14) 8299609245949450 a001 13/599786069*20633239^(9/10) 8299609245949452 a001 377/2537720636*20633239^(11/14) 8299609245949454 a001 377/599074578*20633239^(7/10) 8299609245949455 a001 377/228826127*20633239^(9/14) 8299609245949459 a001 377/33385282*54018521^(1/2) 8299609245949467 a001 377/87403803*370248451^(1/2) 8299609245949467 a001 377/28143753123*141422324^(5/6) 8299609245949468 a001 377/228826127*2537720636^(1/2) 8299609245949468 a001 377/228826127*312119004989^(9/22) 8299609245949468 a001 377/228826127*14662949395604^(5/14) 8299609245949468 a001 377/228826127*192900153618^(5/12) 8299609245949468 a001 377/228826127*28143753123^(9/20) 8299609245949468 a001 377/228826127*228826127^(9/16) 8299609245949468 a001 377/599074578*17393796001^(1/2) 8299609245949468 a001 377/599074578*14662949395604^(7/18) 8299609245949468 a001 377/599074578*505019158607^(7/16) 8299609245949468 a001 377/599074578*599074578^(7/12) 8299609245949468 a001 377/1568397607*119218851371^(1/2) 8299609245949468 a001 377/3461452808002*2537720636^(17/18) 8299609245949468 a001 377/1322157322203*2537720636^(9/10) 8299609245949468 a001 377/312119004989*2537720636^(5/6) 8299609245949468 a001 377/28143753123*2537720636^(13/18) 8299609245949468 a001 13/599786069*2537720636^(7/10) 8299609245949468 a001 377/4106118243*817138163596^(1/2) 8299609245949468 a001 377/10749957122*5600748293801^(1/2) 8299609245949468 a001 13/505618944676*17393796001^(13/14) 8299609245949468 a001 377/505019158607*17393796001^(11/14) 8299609245949468 a001 377/28143753123*312119004989^(13/22) 8299609245949468 a001 377/28143753123*3461452808002^(13/24) 8299609245949468 a001 377/28143753123*73681302247^(5/8) 8299609245949468 a001 377/28143753123*28143753123^(13/20) 8299609245949468 a001 377/3461452808002*45537549124^(5/6) 8299609245949468 a001 377/3461452808002*312119004989^(17/22) 8299609245949468 a001 377/505019158607*14662949395604^(11/18) 8299609245949468 a001 377/1322157322203*14662949395604^(9/14) 8299609245949468 a001 377/3461452808002*3461452808002^(17/24) 8299609245949468 a001 13/505618944676*14662949395604^(13/18) 8299609245949468 a001 13/505618944676*505019158607^(13/16) 8299609245949468 a001 377/312119004989*312119004989^(15/22) 8299609245949468 a001 377/312119004989*3461452808002^(5/8) 8299609245949468 a001 377/1322157322203*192900153618^(3/4) 8299609245949468 a001 13/505618944676*73681302247^(7/8) 8299609245949468 a001 377/312119004989*28143753123^(3/4) 8299609245949468 a001 377/3461452808002*28143753123^(17/20) 8299609245949468 a001 13/599786069*17393796001^(9/14) 8299609245949468 a001 13/599786069*14662949395604^(1/2) 8299609245949468 a001 13/599786069*505019158607^(9/16) 8299609245949468 a001 13/599786069*192900153618^(7/12) 8299609245949468 a001 377/6643838879*2139295485799^(1/2) 8299609245949468 a001 377/73681302247*4106118243^(3/4) 8299609245949468 a001 377/2537720636*2537720636^(11/18) 8299609245949468 a001 377/2537720636*312119004989^(1/2) 8299609245949468 a001 377/2537720636*3461452808002^(11/24) 8299609245949468 a001 377/2537720636*28143753123^(11/20) 8299609245949468 a001 377/505019158607*1568397607^(7/8) 8299609245949468 a001 377/2537720636*1568397607^(5/8) 8299609245949468 a001 377/969323029*45537549124^(1/2) 8299609245949468 a001 13/599786069*599074578^(3/4) 8299609245949468 a001 377/505019158607*599074578^(11/12) 8299609245949468 a001 377/370248451*6643838879^(1/2) 8299609245949468 a001 377/2537720636*228826127^(11/16) 8299609245949468 a001 377/28143753123*228826127^(13/16) 8299609245949468 a001 377/312119004989*228826127^(15/16) 8299609245949468 a001 377/141422324*969323029^(1/2) 8299609245949469 a001 377/4106118243*87403803^(3/4) 8299609245949470 a001 377/54018521*141422324^(1/2) 8299609245949471 a001 377/54018521*73681302247^(3/8) 8299609245949472 a001 377/228826127*33385282^(5/8) 8299609245949473 a001 377/969323029*33385282^(17/24) 8299609245949474 a001 377/4106118243*33385282^(19/24) 8299609245949474 a001 13/599786069*33385282^(7/8) 8299609245949475 a001 377/54018521*33385282^(13/24) 8299609245949475 a001 377/73681302247*33385282^(23/24) 8299609245949477 a001 13/711491*20633239^(1/2) 8299609245949487 a001 13/711491*2537720636^(7/18) 8299609245949487 a001 13/711491*17393796001^(5/14) 8299609245949487 a001 13/711491*312119004989^(7/22) 8299609245949487 a001 13/711491*14662949395604^(5/18) 8299609245949487 a001 13/711491*505019158607^(5/16) 8299609245949487 a001 13/711491*28143753123^(7/20) 8299609245949487 a001 13/711491*599074578^(5/12) 8299609245949487 a001 13/711491*228826127^(7/16) 8299609245949506 a001 377/969323029*12752043^(3/4) 8299609245949601 a001 377/7881196*9062201101803^(1/4) 8299609245950329 a001 377/3010349*7881196^(9/22) 8299609245950384 a001 377/3010349*2537720636^(3/10) 8299609245950384 a001 377/3010349*14662949395604^(3/14) 8299609245950384 a001 377/3010349*192900153618^(1/4) 8299609245950386 a001 377/3010349*33385282^(3/8) 8299609245950735 a001 377/12752043*1860498^(11/20) 8299609245950886 a001 13/711491*1860498^(7/12) 8299609245951029 a001 377/54018521*1860498^(13/20) 8299609245951266 a001 377/228826127*1860498^(3/4) 8299609245951463 a001 377/3010349*1860498^(9/20) 8299609245951506 a001 377/969323029*1860498^(17/20) 8299609245951666 a001 377/2537720636*1860498^(11/12) 8299609245951746 a001 377/4106118243*1860498^(19/20) 8299609245955745 a001 377/1149851*4106118243^(1/4) 8299609245959759 a001 13/711491*710647^(5/8) 8299609245963848 a001 377/599074578*710647^(7/8) 8299609245992493 a001 377/439204*817138163596^(1/6) 8299609245992493 a001 377/439204*87403803^(1/4) 8299609246033952 a001 377/54018521*271443^(3/4) 8299609246155898 a001 377/167761*167761^(3/10) 8299609246232417 a001 377/167761*439204^(5/18) 8299609246244338 a001 377/167761*7881196^(5/22) 8299609246244364 a001 377/167761*20633239^(3/14) 8299609246244368 a001 377/167761*2537720636^(1/6) 8299609246244368 a001 377/167761*312119004989^(3/22) 8299609246244368 a001 377/167761*28143753123^(3/20) 8299609246244368 a001 377/167761*228826127^(3/16) 8299609246244370 a001 377/167761*33385282^(5/24) 8299609246244968 a001 377/167761*1860498^(1/4) 8299609246270810 a001 377/710647*103682^(7/16) 8299609246384667 a001 377/3010349*103682^(9/16) 8299609246480208 a001 377/12752043*103682^(11/16) 8299609246485637 a001 377/167761*103682^(5/16) 8299609246576769 a001 377/54018521*103682^(13/16) 8299609246673274 a001 377/228826127*103682^(15/16) 8299609246740887 a001 377/103682*39603^(13/44) 8299609247487397 a001 377/64079*64079^(11/46) 8299609247881376 a001 377/271443*39603^(17/44) 8299609247970724 a001 377/64079*7881196^(1/6) 8299609247970746 a001 377/64079*312119004989^(1/10) 8299609247970746 a001 377/64079*1568397607^(1/8) 8299609248048383 a001 377/167761*39603^(15/44) 8299609248277578 a001 377/439204*39603^(19/44) 8299609248458654 a001 377/710647*39603^(21/44) 8299609248721901 a001 377/1149851*39603^(23/44) 8299609248818526 a001 377/39603*15127^(9/40) 8299609248953761 a001 377/1860498*39603^(25/44) 8299609249197610 a001 377/3010349*39603^(27/44) 8299609249293690 a001 377/64079*39603^(1/4) 8299609249436880 a001 377/4870847*39603^(29/44) 8299609249918249 a001 377/12752043*39603^(3/4) 8299609255154105 m001 KhinchinHarmonic/(Ei(1)+exp(-1/2*Pi)) 8299609256965280 a001 377/103682*15127^(13/40) 8299609257494510 a001 13/844*24476^(1/6) 8299609257945099 a001 377/64079*15127^(11/40) 8299609258184556 p004 log(34919/15227) 8299609259495932 a001 13/844*64079^(7/46) 8299609259803516 a001 13/844*20633239^(1/10) 8299609259803518 a001 13/844*17393796001^(1/14) 8299609259803518 a001 13/844*14662949395604^(1/18) 8299609259803518 a001 13/844*505019158607^(1/16) 8299609259803518 a001 13/844*599074578^(1/12) 8299609259805572 a001 13/844*710647^(1/8) 8299609259845759 a001 377/167761*15127^(3/8) 8299609260645391 a001 13/844*39603^(7/44) 8299609261251735 a001 377/271443*15127^(17/40) 8299609263220921 a001 377/439204*15127^(19/40) 8299609264974980 a001 377/710647*15127^(21/40) 8299609266150833 a001 13/844*15127^(7/40) 8299609266811210 a001 377/1149851*15127^(23/40) 8299609268616054 a001 377/1860498*15127^(5/8) 8299609270432886 a001 377/3010349*15127^(27/40) 8299609272245139 a001 377/4870847*15127^(29/40) 8299609277686065 a001 13/711491*15127^(7/8) 8299609283478998 a001 377/9349*3571^(3/34) 8299609302807901 a001 377/39603*5778^(1/4) 8299609308142570 a001 13/844*5778^(7/36) 8299609311932635 r005 Im(z^2+c),c=-25/118+38/47*I,n=22 8299609320976856 a007 Real Root Of 907*x^4+566*x^3+852*x^2-198*x-858 8299609323932114 a001 377/64079*5778^(11/36) 8299609328854556 a007 Real Root Of 85*x^4+761*x^3+373*x^2-688*x+345 8299609333409930 a001 377/9349*9349^(3/38) 8299609333880118 a007 Real Root Of 974*x^4+570*x^3+534*x^2-441*x-40 8299609334949934 a001 377/103682*5778^(13/36) 8299609339916966 a001 377/9349*24476^(1/14) 8299609340774719 a001 377/9349*64079^(3/46) 8299609340904151 a001 377/9349*439204^(1/18) 8299609340906535 a001 377/9349*7881196^(1/22) 8299609340906541 a001 377/9349*33385282^(1/24) 8299609340906661 a001 377/9349*1860498^(1/20) 8299609340954795 a001 377/9349*103682^(1/16) 8299609341267344 a001 377/9349*39603^(3/44) 8299609343626819 a001 377/9349*15127^(3/40) 8299609349828052 a001 377/167761*5778^(5/12) 8299609360795320 r009 Im(z^3+c),c=-37/64+9/28*I,n=12 8299609361623278 a001 377/9349*5778^(1/12) 8299609363231667 a001 377/271443*5778^(17/36) 8299609371858424 a007 Real Root Of -304*x^4+636*x^3+522*x^2-16*x+135 8299609377198493 a001 377/439204*5778^(19/36) 8299609379748045 r009 Re(z^3+c),c=-4/27+25/38*I,n=21 8299609380838776 m001 1/BesselJ(1,1)^2/Cahen^2*exp(Ei(1)) 8299609390950191 a001 377/710647*5778^(7/12) 8299609404784060 a001 377/1149851*5778^(23/36) 8299609407339265 l006 ln(1920/4403) 8299609409088129 a007 Real Root Of 986*x^4-864*x^3-83*x^2+208*x-732 8299609414453617 a001 377/5778*843^(1/28) 8299609418586543 a001 377/1860498*5778^(25/36) 8299609421052167 m001 Trott^(CopelandErdos*ZetaP(3)) 8299609425853456 a007 Real Root Of -544*x^4+776*x^3+28*x^2+291*x+924 8299609432401015 a001 377/3010349*5778^(3/4) 8299609443931913 a001 20633239/3*1346269^(3/17) 8299609443932121 a001 4870847/3*4807526976^(3/17) 8299609446210907 a001 377/4870847*5778^(29/36) 8299609456881257 a007 Real Root Of 986*x^4-412*x^3-169*x^2+747*x+33 8299609466494120 a003 sin(Pi*6/115)-sin(Pi*31/67) 8299609473833522 a001 377/12752043*5778^(11/12) 8299609475918995 a001 377/15127*2207^(5/32) 8299609481756071 a001 1346269/11*76^(37/38) 8299609498786485 r005 Re(z^2+c),c=5/46+8/23*I,n=36 8299609500650484 a001 377/9349*2207^(3/32) 8299609513667021 q001 2338/2817 8299609556471535 m004 25*Pi-Cos[Sqrt[5]*Pi]^2+5*Tanh[Sqrt[5]*Pi] 8299609585620586 m001 Magata*ln(FeigenbaumDelta)^2*GAMMA(23/24) 8299609591936526 r005 Re(z^2+c),c=-9/10+22/167*I,n=20 8299609607820686 r001 43i'th iterates of 2*x^2-1 of 8299609632539385 a001 13/844*2207^(7/32) 8299609636611466 m001 1/GAMMA(3/4)^2*CareFree/exp(sqrt(3)) 8299609641654970 a007 Real Root Of 877*x^4-354*x^3+427*x^2+55*x-867 8299609644709938 a007 Real Root Of 677*x^4-52*x^3-39*x^2-424*x-676 8299609658660297 a001 141/2161*199^(1/22) 8299609667738021 r002 32th iterates of z^2 + 8299609672208287 m006 (1/3/Pi-1)/(1/2*exp(Pi)-4/5) 8299609695263302 m001 (sin(1)+sin(1/12*Pi))/(ln(2+3^(1/2))+ZetaQ(3)) 8299609714724955 m004 25*Pi+Sin[Sqrt[5]*Pi]^2+4*Tanh[Sqrt[5]*Pi] 8299609719889523 a001 377/39603*2207^(9/32) 8299609733700642 r005 Re(z^2+c),c=-21/20+31/33*I,n=2 8299609734684777 a007 Real Root Of -512*x^4+779*x^3-732*x^2-832*x+502 8299609744806626 r009 Im(z^3+c),c=-69/106+13/41*I,n=8 8299609748272000 r005 Re(z^2+c),c=-5/6+19/179*I,n=25 8299609778687276 m004 (20*Sqrt[5])/Pi+5*Pi+25*Pi*Sin[Sqrt[5]*Pi] 8299609812455883 m005 (1/2*Pi+2/9)/(11/12*Catalan-3) 8299609816263506 r002 11th iterates of z^2 + 8299609824209331 a007 Real Root Of -105*x^4-938*x^3-655*x^2-737*x+960 8299609832418566 a003 sin(Pi*4/83)-sin(Pi*7/16) 8299609833698544 a001 377/64079*2207^(11/32) 8299609838012758 m001 (Magata-Porter)/(ln(2^(1/2)+1)+Backhouse) 8299609840484776 a001 2/21*10610209857723^(11/12) 8299609845527711 a007 Real Root Of 717*x^4-160*x^3+786*x^2+264*x-754 8299609864603203 a007 Real Root Of 366*x^4-853*x^3+812*x^2+396*x-892 8299609870952190 m005 (1/2*Zeta(3)-5/8)/(4/5*Pi+3/8) 8299609880002059 a007 Real Root Of 286*x^4-201*x^3-280*x^2-369*x-364 8299609882891144 m001 1/ln(FeigenbaumD)*Backhouse^2/sin(Pi/12) 8299609903354218 r009 Re(z^3+c),c=-1/94+37/56*I,n=15 8299609912920542 s002 sum(A197955[n]/(pi^n-1),n=1..infinity) 8299609918390495 m001 (GAMMA(7/12)+Cahen)/(Si(Pi)+BesselJ(0,1)) 8299609932555073 a001 10946/123*521^(29/40) 8299609936641993 r005 Re(z^2+c),c=-6/7+3/109*I,n=29 8299609937401173 a001 377/103682*2207^(13/32) 8299609938128616 k002 Champernowne real with 19/2*n^2+525/2*n-264 8299609942244948 r008 a(0)=8,K{-n^6,20-30*n-34*n^2+22*n^3} 8299609956375890 r005 Re(z^2+c),c=2/15+8/23*I,n=35 8299609959989633 m001 RenyiParking^cos(1)/(GAMMA(11/12)^cos(1)) 8299609969047144 a007 Real Root Of 114*x^4+963*x^3+158*x^2+232*x+672 8299609972493845 m009 (4*Psi(1,2/3)-3)/(24/5*Catalan+3/5*Pi^2+5/6) 8299609978992595 l006 ln(3973/9111) 8299610000146447 r005 Im(z^2+c),c=-4/5+2/51*I,n=39 8299610031302748 m001 (Sierpinski-ZetaP(4))/(ln(2+3^(1/2))+Niven) 8299610036342247 a007 Real Root Of -211*x^4-819*x^3-962*x^2+262*x+512 8299610044964103 a001 377/167761*2207^(15/32) 8299610050951590 a003 sin(Pi*5/56)/cos(Pi*38/97) 8299610054600280 a001 305/161*18^(23/45) 8299610056290233 r005 Re(z^2+c),c=-97/114+1/17*I,n=27 8299610074206406 a007 Real Root Of -273*x^4+249*x^3-278*x^2+461*x+846 8299610086244745 m005 (1/3*Pi+2/7)/(1/11*Pi-1/8) 8299610092213292 a001 2584/271443*521^(9/26) 8299610098191033 a001 610/167761*521^(1/2) 8299610105501444 m005 (1/6+1/4*5^(1/2))/(5*3^(1/2)+1/12) 8299610110493996 r005 Im(z^2+c),c=-31/48+11/61*I,n=34 8299610133809151 b008 QPochhammer[-3+Pi,4/21] 8299610135301730 a007 Real Root Of 824*x^4-601*x^3-617*x^2+326*x-39 8299610136793180 a003 sin(Pi*25/71)*sin(Pi*25/66) 8299610151052530 a001 377/271443*2207^(17/32) 8299610176759222 m001 (ln(Pi)-MertensB1)/(PolyaRandomWalk3D+Sarnak) 8299610189485215 m004 3+25*Pi+Sin[Sqrt[5]*Pi]^2+Tanh[Sqrt[5]*Pi] 8299610206198317 r009 Im(z^3+c),c=-71/122+6/13*I,n=47 8299610227502018 a007 Real Root Of 229*x^4-831*x^3+103*x^2+584*x-170 8299610257704170 a001 377/439204*2207^(19/32) 8299610261694079 m004 5+25*Pi-Cos[Sqrt[5]*Pi]^2*Coth[Sqrt[5]*Pi] 8299610275529635 m004 4+25*Pi+Sin[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 8299610304639997 a001 6765/710647*521^(9/26) 8299610311668034 a007 Real Root Of -422*x^4+782*x^3+422*x^2-91*x-462 8299610318434515 a007 Real Root Of 602*x^4+141*x^3-194*x^2-20*x-88 8299610319986413 r005 Im(z^2+c),c=-11/94+46/55*I,n=19 8299610331954519 m001 (Robbin-Tribonacci)/(GolombDickman+Kolakoski) 8299610335632635 a001 17711/1860498*521^(9/26) 8299610337618098 m001 GAMMA(7/24)^Cahen/(GAMMA(7/24)^cos(Pi/5)) 8299610340154400 a001 46368/4870847*521^(9/26) 8299610342949005 a001 28657/3010349*521^(9/26) 8299610347738635 m004 -4-25*Pi-Sin[Sqrt[5]*Pi]^2 8299610354787139 a001 10946/1149851*521^(9/26) 8299610364140683 a001 377/710647*2207^(21/32) 8299610369368832 m006 (1/3*exp(2*Pi)-3/4)/(4*exp(2*Pi)-1/3) 8299610384120845 a007 Real Root Of -572*x^4-670*x^3-361*x^2+479*x+4 8299610388061573 a007 Real Root Of 360*x^4-770*x^3-273*x^2-969*x-79 8299610390967723 a007 Real Root Of -605*x^4+258*x^3-300*x^2-775*x-2 8299610392511157 m001 KomornikLoreti-Psi(1,1/3)+ZetaQ(3) 8299610392543510 a007 Real Root Of 3*x^4-189*x^3+198*x^2-652*x-787 8299610419947749 m004 4+25*Pi+Coth[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi]^2 8299610433783054 m004 -5-25*Pi+Cos[Sqrt[5]*Pi]^2*Tanh[Sqrt[5]*Pi] 8299610435926920 a001 4181/439204*521^(9/26) 8299610442462841 r002 51th iterates of z^2 + 8299610444268930 m005 (1/2*gamma+5/6)/(7/8*Zeta(3)+3/10) 8299610470659369 a001 377/1149851*2207^(23/32) 8299610486929604 p004 log(35407/32587) 8299610505278406 m005 (1/2*5^(1/2)-5/11)/(1/10*gamma-6/7) 8299610505992054 m004 -5-25*Pi-Sin[Sqrt[5]*Pi]^2+Tanh[Sqrt[5]*Pi] 8299610513302446 a005 (1/cos(14/211*Pi))^728 8299610513612337 l006 ln(2053/4708) 8299610550443676 a007 Real Root Of -893*x^4+939*x^3+54*x^2+931*x-923 8299610577146670 a001 377/1860498*2207^(25/32) 8299610592149703 a007 Real Root Of -851*x^4+897*x^3+911*x^2-379*x-422 8299610592221609 a001 377/9349*843^(3/28) 8299610597231139 r002 9th iterates of z^2 + 8299610607735924 a003 sin(Pi*18/65)/sin(Pi*19/51) 8299610635165298 m001 (-GAMMA(1/4)+2/3)/(BesselI(1,1)+3) 8299610635908671 r005 Re(z^2+c),c=-5/6+24/229*I,n=41 8299610661924107 a008 Real Root of (-4+x+5*x^2+6*x^3+6*x^4-5*x^5) 8299610683645961 a001 377/3010349*2207^(27/32) 8299610727443757 a003 cos(Pi*28/113)+cos(Pi*43/93) 8299610728556424 a007 Real Root Of -628*x^4+373*x^3+128*x^2-823*x-260 8299610753418360 h001 (-2*exp(1/2)-9)/(-exp(3/2)+3) 8299610769225894 m006 (5/6/Pi-1/3)/(3/4*Pi^2+4/5) 8299610770122637 a003 sin(Pi*5/39)/cos(Pi*34/99) 8299610788526530 a007 Real Root Of 540*x^4-579*x^3-67*x^2-77*x-605 8299610790140674 a001 377/4870847*2207^(29/32) 8299610846822433 a007 Real Root Of -863*x^4-559*x^3-695*x^2-896*x-175 8299610858568725 r005 Im(z^2+c),c=-14/17+8/15*I,n=3 8299610877084200 a007 Real Root Of -203*x^4+502*x^3+664*x^2-229*x-458 8299610884577782 a007 Real Root Of -927*x^4-616*x^3-778*x^2+227*x+812 8299610894941634 q001 2133/2570 8299610895546601 a007 Real Root Of 627*x^4-341*x^3+750*x^2+864*x-292 8299610907752392 r009 Re(z^3+c),c=-13/118+4/11*I,n=7 8299610908594778 a007 Real Root Of 382*x^4-257*x^3+650*x^2+812*x-102 8299610917981826 a001 48/90481*322^(7/8) 8299610936100756 a003 cos(Pi*25/99)/sin(Pi*25/78) 8299610941129216 k002 Champernowne real with 10*n^2+261*n-263 8299610965099732 m001 (arctan(1/3)+Conway)/(Kac+MertensB3) 8299610980753316 m004 25*Pi+4*Coth[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]^2 8299610991007785 a001 987/64079*521^(7/26) 8299610992067253 a001 1597/167761*521^(9/26) 8299610993085262 r005 Im(z^2+c),c=-3/4+106/191*I,n=3 8299610994642804 h001 (-6*exp(8)+9)/(-4*exp(4)+3) 8299611014684318 l006 ln(4239/9721) 8299611033575586 r005 Re(z^2+c),c=5/66+28/59*I,n=51 8299611039271555 a007 Real Root Of 820*x^4-790*x^3+296*x^2+802*x-379 8299611091218533 a007 Real Root Of -634*x^4+540*x^3-632*x^2-130*x+937 8299611093122513 k005 Champernowne real with floor(Pi*(42*n+222)) 8299611093122513 k001 Champernowne real with 132*n+697 8299611111111111 k006 concat of cont frac of 8299611123174328 a007 Real Root Of 178*x^4-628*x^3-9*x^2+457*x-58 8299611139006986 m004 25*Pi-Cos[Sqrt[5]*Pi]^2+5*Coth[Sqrt[5]*Pi] 8299611144973956 a001 2584/39603*199^(1/22) 8299611166562668 a003 cos(Pi*18/119)-cos(Pi*51/106) 8299611170961499 r009 Re(z^3+c),c=-11/78+33/56*I,n=40 8299611188783515 s002 sum(A217543[n]/(exp(pi*n)-1),n=1..infinity) 8299611190744524 a007 Real Root Of -532*x^4+6*x^3-77*x^2+811*x+982 8299611220489498 m002 -3+Pi/E^Pi+Pi^4-Sinh[Pi] 8299611226433625 m001 Khintchine*FransenRobinson^2/ln(GAMMA(23/24)) 8299611235679201 r005 Re(z^2+c),c=-5/6+19/181*I,n=43 8299611242763396 r005 Re(z^2+c),c=-47/34+32/103*I,n=4 8299611252417224 m005 (3*exp(1)-5/6)/(3*exp(1)+2/3) 8299611256047937 a007 Real Root Of 279*x^4-404*x^3-528*x^2-812*x-64 8299611268523928 r005 Re(z^2+c),c=25/78+1/61*I,n=7 8299611280111834 m005 (1/3*2^(1/2)-1/12)/(3/11*gamma-5/8) 8299611289047043 a007 Real Root Of -218*x^4+725*x^3+367*x^2+5*x-568 8299611295204279 a001 377/15127*843^(5/28) 8299611308130909 r009 Re(z^3+c),c=-43/126+29/51*I,n=5 8299611361824197 a001 6765/103682*199^(1/22) 8299611378477519 b008 -10+(5+Sqrt[3])*E 8299611393462221 a001 17711/271443*199^(1/22) 8299611398078146 a001 6624/101521*199^(1/22) 8299611398751601 a001 121393/1860498*199^(1/22) 8299611398849857 a001 317811/4870847*199^(1/22) 8299611398864192 a001 832040/12752043*199^(1/22) 8299611398866283 a001 311187/4769326*199^(1/22) 8299611398866589 a001 5702887/87403803*199^(1/22) 8299611398866633 a001 14930352/228826127*199^(1/22) 8299611398866640 a001 39088169/599074578*199^(1/22) 8299611398866641 a001 14619165/224056801*199^(1/22) 8299611398866641 a001 267914296/4106118243*199^(1/22) 8299611398866641 a001 701408733/10749957122*199^(1/22) 8299611398866641 a001 1836311903/28143753123*199^(1/22) 8299611398866641 a001 686789568/10525900321*199^(1/22) 8299611398866641 a001 12586269025/192900153618*199^(1/22) 8299611398866641 a001 32951280099/505019158607*199^(1/22) 8299611398866641 a001 86267571272/1322157322203*199^(1/22) 8299611398866641 a001 32264490531/494493258286*199^(1/22) 8299611398866641 a001 591286729879/9062201101803*199^(1/22) 8299611398866641 a001 1548008755920/23725150497407*199^(1/22) 8299611398866641 a001 365435296162/5600748293801*199^(1/22) 8299611398866641 a001 139583862445/2139295485799*199^(1/22) 8299611398866641 a001 53316291173/817138163596*199^(1/22) 8299611398866641 a001 20365011074/312119004989*199^(1/22) 8299611398866641 a001 7778742049/119218851371*199^(1/22) 8299611398866641 a001 2971215073/45537549124*199^(1/22) 8299611398866641 a001 1134903170/17393796001*199^(1/22) 8299611398866641 a001 433494437/6643838879*199^(1/22) 8299611398866641 a001 165580141/2537720636*199^(1/22) 8299611398866641 a001 63245986/969323029*199^(1/22) 8299611398866644 a001 24157817/370248451*199^(1/22) 8299611398866661 a001 9227465/141422324*199^(1/22) 8299611398866777 a001 3524578/54018521*199^(1/22) 8299611398867576 a001 1346269/20633239*199^(1/22) 8299611398873052 a001 514229/7881196*199^(1/22) 8299611398910582 a001 196418/3010349*199^(1/22) 8299611399167819 a001 75025/1149851*199^(1/22) 8299611399711314 a008 Real Root of (-4+2*x+5*x^2-4*x^3+4*x^4+5*x^5) 8299611400930945 a001 28657/439204*199^(1/22) 8299611413015595 a001 10946/167761*199^(1/22) 8299611413522500 m001 LambertW(1)*(Zeta(1/2)+ErdosBorwein) 8299611435849577 a007 Real Root Of -611*x^4-84*x^3-807*x^2-954*x+6 8299611451631801 a007 Real Root Of 952*x^4-416*x^3-647*x^2+977*x+567 8299611467173563 r004 Re(z^2+c),c=-5/6-1/10*I,z(0)=-1,n=18 8299611471705216 a007 Real Root Of 234*x^4-242*x^3+893*x^2+391*x-540 8299611485270195 l006 ln(2186/5013) 8299611494165589 b008 (3*Sqrt[DawsonF[4]])/13 8299611495845017 a001 4181/64079*199^(1/22) 8299611535778335 a001 89/843*123^(39/43) 8299611542294645 m001 1/FeigenbaumDelta^2/Backhouse/ln(MinimumGamma) 8299611556262955 a005 (1/sin(29/137*Pi))^33 8299611563574905 r002 48th iterates of z^2 + 8299611581677976 a007 Real Root Of 846*x^4+589*x^3+662*x^2-157*x-651 8299611607856729 a001 3/7*15127^(29/53) 8299611612434433 r005 Re(z^2+c),c=-23/44+37/62*I,n=45 8299611625316876 m001 1/exp(Paris)/Si(Pi)^2*Pi 8299611677934473 m001 cos(1)^MasserGramain/AlladiGrinstead 8299611700215186 m001 exp(-1/2*Pi)/(ZetaQ(3)^(5^(1/2))) 8299611723542093 p003 LerchPhi(1/32,3,329/143) 8299611779274542 a007 Real Root Of 542*x^4-962*x^3+183*x^2+134*x-822 8299611793635631 a001 682/305*55^(18/55) 8299611803688725 a007 Real Root Of -86*x^4-762*x^3-374*x^2+250*x+262 8299611827783015 m001 GAMMA(5/6)/(exp(gamma)-BesselK(0,1)) 8299611840282970 r005 Re(z^2+c),c=-13/31+25/42*I,n=47 8299611864237373 m001 1/Magata/exp(Khintchine)*PrimesInBinary 8299611889327519 a007 Real Root Of -147*x^4+142*x^3+389*x^2-33*x-252 8299611923010911 a005 (1/cos(7/165*Pi))^1013 8299611942785461 a003 cos(Pi*12/103)*sin(Pi*23/66) 8299611944129816 k002 Champernowne real with 21/2*n^2+519/2*n-262 8299612024522133 m005 (1/3*Zeta(3)-1/4)/(43/36+5/18*5^(1/2)) 8299612040230817 a007 Real Root Of -862*x^4-447*x^3-311*x^2-537*x-78 8299612043189928 m001 KomornikLoreti/(arctan(1/3)^GAMMA(2/3)) 8299612046949942 m001 ln(2)^GAMMA(5/24)/BesselJZeros(0,1) 8299612053818508 m001 (Bloch+ZetaP(4))/(BesselJ(1,1)-Artin) 8299612059923584 m001 Zeta(1,2)^ln(Pi)*Zeta(1,2)^KhinchinHarmonic 8299612063566321 a001 1597/24476*199^(1/22) 8299612124706972 a001 14662949395604/55*233^(5/24) 8299612179538942 a001 13/844*843^(1/4) 8299612203438048 m001 cos(1/5*Pi)^GolombDickman/GAMMA(11/12) 8299612203438048 m001 cos(Pi/5)^GolombDickman/GAMMA(11/12) 8299612243237175 a001 5600748293801/89*21^(1/11) 8299612259877337 a007 Real Root Of 975*x^4-905*x^3-445*x^2+644*x-139 8299612266755528 a003 sin(Pi*3/100)*sin(Pi*11/32) 8299612280007089 m001 1/sin(Pi/12)^2*ln(Zeta(9))^2*sinh(1)^2 8299612316297025 a007 Real Root Of 105*x^4-91*x^3-25*x^2-680*x-649 8299612332695591 a001 377/5778*322^(1/24) 8299612343069550 a007 Real Root Of -376*x^4-223*x^3-729*x^2+271*x+778 8299612343344917 m005 (1/2*3^(1/2)-5/12)/(1/10*2^(1/2)+2/5) 8299612345474334 l006 ln(2319/5318) 8299612367868384 a001 7/10946*3^(14/59) 8299612384114124 a007 Real Root Of 470*x^4-128*x^3+947*x^2+44*x-912 8299612407925027 r005 Im(z^2+c),c=-27/94+6/49*I,n=15 8299612422942247 a007 Real Root Of -114*x^4+513*x^3+25*x^2+442*x+697 8299612424553865 a001 4/377*2178309^(53/57) 8299612444616694 a001 2584/167761*521^(7/26) 8299612449119933 a001 305/51841*521^(11/26) 8299612464541211 m001 (Zeta(1/2)+ArtinRank2)/(Trott-ZetaQ(4)) 8299612484035879 r002 63th iterates of z^2 + 8299612491253769 m001 1/Trott/KhintchineHarmonic^2*exp(Zeta(7)) 8299612519467512 r005 Re(z^2+c),c=-14/25+19/36*I,n=4 8299612523134875 a007 Real Root Of -951*x^4+88*x^3+782*x^2+905*x+714 8299612538471598 a007 Real Root Of 53*x^4+379*x^3-566*x^2-547*x-357 8299612555165820 a001 3571/610*433494437^(2/15) 8299612569490056 r005 Re(z^2+c),c=-19/22+13/75*I,n=24 8299612569952647 q001 1928/2323 8299612601618790 a007 Real Root Of 900*x^4-445*x^3-849*x^2+949*x+691 8299612623433233 m001 (BesselJ(0,1)*Landau+Ei(1,1))/BesselJ(0,1) 8299612645233097 m001 (ArtinRank2+PlouffeB)/Riemann1stZero 8299612656695376 a001 6765/439204*521^(7/26) 8299612666435785 m001 (Artin-ThueMorse*ZetaP(4))/ThueMorse 8299612687637238 a001 17711/1149851*521^(7/26) 8299612692151595 a001 46368/3010349*521^(7/26) 8299612693217290 a001 75025/4870847*521^(7/26) 8299612694941621 a001 28657/1860498*521^(7/26) 8299612699725064 a003 sin(Pi*28/87)*sin(Pi*37/85) 8299612706760361 a001 10946/710647*521^(7/26) 8299612724511330 m001 1/ln(GAMMA(1/24))^2/GAMMA(1/12)/GAMMA(23/24)^2 8299612727433534 r005 Re(z^2+c),c=-7/102+9/11*I,n=58 8299612747361364 s002 sum(A141104[n]/(n^3*2^n+1),n=1..infinity) 8299612756963988 r009 Im(z^3+c),c=-37/78+33/47*I,n=2 8299612771865752 r002 25th iterates of z^2 + 8299612783467058 a007 Real Root Of -615*x^4+994*x^3+812*x^2+422*x+651 8299612787767209 a001 4181/271443*521^(7/26) 8299612827920153 s002 sum(A047410[n]/(n^3*2^n+1),n=1..infinity) 8299612874096810 a001 832040/7*322^(25/34) 8299612878180521 r009 Im(z^3+c),c=-5/34+26/27*I,n=16 8299612881731524 r005 Im(z^2+c),c=-7/12+1/66*I,n=63 8299612884393641 a007 Real Root Of -266*x^4+611*x^3+150*x^2-434*x+12 8299612887057874 r005 Re(z^2+c),c=27/94+13/33*I,n=64 8299612900014050 h001 (5/7*exp(1)+3/8)/(8/9*exp(1)+3/8) 8299612909625727 s002 sum(A080257[n]/(n!^2),n=1..infinity) 8299612916958715 a007 Real Root Of -903*x^4-361*x^3+233*x^2-420*x-287 8299612947130416 k002 Champernowne real with 11*n^2+258*n-261 8299612948993403 s002 sum(A050199[n]/(n!^2),n=1..infinity) 8299612989598834 s002 sum(A268388[n]/(n!^2),n=1..infinity) 8299612989598834 s002 sum(A089229[n]/(n!^2),n=1..infinity) 8299612989598835 s002 sum(A123240[n]/(n!^2),n=1..infinity) 8299612989598835 s002 sum(A131181[n]/(n!^2),n=1..infinity) 8299612989598835 s002 sum(A176525[n]/(n!^2),n=1..infinity) 8299612989598835 s002 sum(A065985[n]/(n!^2),n=1..infinity) 8299612990821779 s002 sum(A233421[n]/(n!^2),n=1..infinity) 8299612994603417 a001 377/39603*843^(9/28) 8299612997144393 a007 Real Root Of -716*x^4+614*x^3+611*x^2-577*x-209 8299613013377141 m001 sinh(1)^2*ln(cos(Pi/12))^2*sqrt(5)^2 8299613111052278 a001 9349/610*317811^(2/15) 8299613112360996 l006 ln(2452/5623) 8299613123284392 m005 (1/2*exp(1)-1/10)/(5/8*exp(1)-2/11) 8299613131821855 m001 Ei(1)^(MertensB3/gamma(1)) 8299613162409281 a007 Real Root Of -77*x^4+838*x^3-14*x^2+525*x+961 8299613172989213 h001 (-9*exp(8)+9)/(-8*exp(6)-4) 8299613180768969 r005 Re(z^2+c),c=-23/27+4/63*I,n=11 8299613185514279 m001 (gamma(1)+DuboisRaymond)/(ln(Pi)+arctan(1/3)) 8299613189438255 a001 199/433494437*2584^(21/22) 8299613197045479 h001 (-exp(3/2)-4)/(-5*exp(1/3)+8) 8299613216453788 m005 (1/2*Catalan+6/11)/(13/20+1/4*5^(1/2)) 8299613237661325 r005 Re(z^2+c),c=-43/82+13/24*I,n=14 8299613244854288 r002 36i'th iterates of 2*x/(1-x^2) of 8299613267441115 a007 Real Root Of 789*x^4-703*x^3+312*x^2+434*x-631 8299613273361729 m001 exp(1/exp(1))/(Paris-Tribonacci) 8299613294438894 h001 (3/8*exp(1)+4/5)/(1/5*exp(2)+5/7) 8299613299061745 a007 Real Root Of 977*x^4+413*x^3-45*x^2-485*x-599 8299613317257888 a007 Real Root Of -574*x^4+331*x^3+152*x^2-724*x-244 8299613321703029 a007 Real Root Of 100*x^4+767*x^3-496*x^2+301*x+669 8299613335690840 a001 329/13201*521^(5/26) 8299613342996406 a001 1597/103682*521^(7/26) 8299613368989871 a007 Real Root Of 604*x^4+269*x^3+752*x^2+254*x-440 8299613372346703 a007 Real Root Of 620*x^4-258*x^3+270*x^2+443*x-260 8299613416323009 r008 a(0)=0,K{-n^6,19-38*n-14*n^2+22*n^3} 8299613426739179 a001 199/10610209857723*102334155^(21/22) 8299613428721094 a003 cos(Pi*1/98)*cos(Pi*19/101) 8299613446357815 r002 9i'th iterates of 2*x/(1-x^2) of 8299613455491338 h001 (8/9*exp(1)+1/10)/(4/5*exp(1)+6/7) 8299613457083160 a007 Real Root Of -48*x^4-437*x^3-415*x^2-815*x-256 8299613477143388 m006 (2*Pi^2+1/4)/(5/Pi-4) 8299613552363726 r005 Im(z^2+c),c=23/102+33/62*I,n=18 8299613563159563 m005 (1/3*3^(1/2)+1/9)/(9/11*5^(1/2)-1) 8299613608916901 r005 Im(z^2+c),c=5/38+22/29*I,n=4 8299613630690993 a001 123/10946*121393^(35/46) 8299613646010367 a007 Real Root Of 569*x^4+450*x^3+580*x^2+669*x+143 8299613647708236 a007 Real Root Of 842*x^4+40*x^3+744*x^2+252*x-680 8299613654934032 m001 (GAMMA(19/24)-Kac)/(GAMMA(3/4)-BesselI(1,1)) 8299613681374257 r009 Re(z^3+c),c=-89/98+27/49*I,n=2 8299613699282241 r005 Re(z^2+c),c=-5/6+27/256*I,n=47 8299613702087667 a007 Real Root Of -635*x^4+653*x^3+847*x^2+648*x+629 8299613709735965 s002 sum(A003307[n]/(n*exp(n)-1),n=1..infinity) 8299613736125139 m001 (Psi(1,1/3)+MertensB3*Sarnak)/MertensB3 8299613744889602 m001 GAMMA(5/12)^2*ln(Lehmer)^2*sin(Pi/12)^2 8299613772392458 r005 Re(z^2+c),c=-37/64+31/49*I,n=12 8299613780231099 a007 Real Root Of -405*x^4+262*x^3-205*x^2+895*x-73 8299613791987609 m001 Niven/(Totient+TravellingSalesman) 8299613794749563 a007 Real Root Of 133*x^4-493*x^3-851*x^2-82*x+873 8299613800333933 l006 ln(2585/5928) 8299613820607374 h001 (-3*exp(3)-1)/(-5*exp(5)+4) 8299613836126868 a001 377/64079*843^(11/28) 8299613845896858 a007 Real Root Of 937*x^4-76*x^3+479*x^2-100*x-901 8299613880805018 m001 FeigenbaumAlpha+3*GAMMA(11/24) 8299613890351835 s002 sum(A108510[n]/((3*n+1)!),n=1..infinity) 8299613950131016 k002 Champernowne real with 23/2*n^2+513/2*n-260 8299613977849172 a007 Real Root Of 551*x^4-446*x^3+390*x^2+670*x-229 8299613995665951 a001 1/1364*123^(57/58) 8299614002756347 r005 Im(z^2+c),c=-95/74+3/47*I,n=39 8299614022791287 a007 Real Root Of 579*x^4-868*x^3-252*x^2-461*x-980 8299614036196341 m001 (1+gamma(1))/(FellerTornier+Kolakoski) 8299614063016014 a007 Real Root Of 578*x^4-884*x^3-546*x^2+185*x-250 8299614083037296 a001 39603*13^(15/52) 8299614083707333 r009 Re(z^3+c),c=-12/17+19/47*I,n=3 8299614097038100 m005 (1/2*Catalan-5/9)/(1/8*exp(1)-2/9) 8299614099640064 a007 Real Root Of -813*x^4-889*x^3-661*x^2+446*x+703 8299614113220845 a007 Real Root Of -483*x^4-60*x^3-84*x^2+22*x+271 8299614118000402 a007 Real Root Of 981*x^4+526*x^3+898*x^2+98*x-702 8299614118438695 p004 log(12161/5303) 8299614123094290 a007 Real Root Of -680*x^4+665*x^3+500*x^2+620*x+873 8299614163007141 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+gamma(2)-Tribonacci 8299614166583707 a007 Real Root Of 705*x^4+38*x^3+448*x^2-67*x-677 8299614179927445 a007 Real Root Of -868*x^4+79*x^3-336*x^2-897*x-56 8299614180483307 r002 18th iterates of z^2 + 8299614206027104 a003 sin(Pi*19/61)/sin(Pi*59/120) 8299614227930905 h002 exp(18^(3/5)-3^(1/5)) 8299614227930905 h007 exp(18^(3/5)-3^(1/5)) 8299614230742352 a007 Real Root Of 104*x^4-611*x^3-11*x^2+185*x+154 8299614245296862 r008 a(0)=0,K{-n^6,3+2*n^3+3*n^2+6*n} 8299614266804312 m001 1/Pi*ln(Conway)/Zeta(7)^2 8299614306511307 a007 Real Root Of -109*x^4-875*x^3+152*x^2-869*x-727 8299614327973444 a003 cos(Pi*16/83)/sin(Pi*47/103) 8299614356537253 a007 Real Root Of -499*x^4+685*x^3-176*x^2-61*x+699 8299614372242952 r005 Im(z^2+c),c=-12/31+41/61*I,n=28 8299614376575617 a007 Real Root Of 938*x^4-719*x^3+682*x^2+518*x-896 8299614403973158 r002 5th iterates of z^2 + 8299614407702802 a007 Real Root Of 949*x^4+459*x^3-182*x^2-103*x-148 8299614420977615 l006 ln(2718/6233) 8299614432892604 m005 (1/2*2^(1/2)+1/8)/(10/11*gamma-5/8) 8299614453781804 a007 Real Root Of -627*x^4+709*x^3-539*x^2-999*x+245 8299614458626055 m001 (cos(1/5*Pi)+RenyiParking)/(Pi-BesselI(0,1)) 8299614459214878 r002 40th iterates of z^2 + 8299614487978054 m005 (1/2*exp(1)-5)/(3/8*gamma+2/9) 8299614491944146 a003 sin(Pi*1/109)+sin(Pi*21/71) 8299614496915218 r005 Im(z^2+c),c=-9/14+11/119*I,n=17 8299614533859735 m006 (1/6/Pi+5/6)/(2*exp(2*Pi)-3) 8299614536109823 r005 Re(z^2+c),c=-67/82+3/22*I,n=41 8299614553757504 m001 (MertensB2+TwinPrimes)/(Cahen-Khinchin) 8299614559410704 r005 Im(z^2+c),c=-25/21+9/64*I,n=50 8299614573692165 m005 (1/2*2^(1/2)-8/9)/(7/10*5^(1/2)+5/8) 8299614593755324 r009 Im(z^3+c),c=-103/114+12/49*I,n=2 8299614624136327 m005 (1/3+1/4*5^(1/2))/(3/10*3^(1/2)+5/9) 8299614628161746 r005 Re(z^2+c),c=1/30+9/22*I,n=23 8299614635771478 m001 1/exp(GAMMA(5/12))^2/DuboisRaymond/Zeta(1,2)^2 8299614643545279 q001 1723/2076 8299614663462674 a007 Real Root Of -827*x^4+427*x^3-86*x^2-613*x+187 8299614667544004 a001 377/103682*843^(13/28) 8299614690607326 m001 1/ln(MinimumGamma)/LaplaceLimit^2*Salem^2 8299614694730041 r009 Re(z^3+c),c=-1/14+35/51*I,n=9 8299614706709124 m004 5/54+Cos[Sqrt[5]*Pi] 8299614714253224 a007 Real Root Of -548*x^4-313*x^3-940*x^2-914*x-30 8299614763647483 m001 (-Zeta(5)+Kac)/(exp(1)+5^(1/2)) 8299614790471034 a007 Real Root Of -540*x^4+802*x^3-831*x^2-793*x+629 8299614795546259 a001 1292/51841*521^(5/26) 8299614803909801 a001 610/64079*521^(9/26) 8299614806220366 m001 GAMMA(1/24)/exp(Khintchine)^2/GAMMA(1/4)^2 8299614821581703 a007 Real Root Of -858*x^4+799*x^3+749*x^2-114*x-471 8299614835917086 a007 Real Root Of -578*x^4-457*x^3-173*x^2+689*x+704 8299614836979188 m001 (Psi(2,1/3)+3^(1/3))/(DuboisRaymond+ZetaP(2)) 8299614846489402 a007 Real Root Of 541*x^4-904*x^3+318*x^2-565*x+510 8299614865779845 s002 sum(A117340[n]/(64^n-1),n=1..infinity) 8299614918611179 s002 sum(A060652[n]/(n!^2),n=1..infinity) 8299614918618927 s002 sum(A020739[n]/(n!^2),n=1..infinity) 8299614918618927 s002 sum(A064466[n]/(n!^2),n=1..infinity) 8299614953131617 k002 Champernowne real with 12*n^2+255*n-259 8299614956087060 a007 Real Root Of -78*x^4+655*x^3+439*x^2+518*x+539 8299614957195740 r005 Re(z^2+c),c=-21/110+9/11*I,n=5 8299614971108845 m001 (2^(1/2)+gamma)/(Bloch+Tetranacci) 8299614983714839 l006 ln(2851/6538) 8299615000466380 m005 (1/2*exp(1)+1/12)/(7/12*Zeta(3)-7/8) 8299615008536294 a001 2255/90481*521^(5/26) 8299615016618386 m001 (MertensB2+ZetaP(2))/(GAMMA(5/6)+LaplaceLimit) 8299615021525634 s001 sum(exp(-Pi/3)^(n-1)*A142155[n],n=1..infinity) 8299615039611121 a001 17711/710647*521^(5/26) 8299615041741942 a007 Real Root Of -44*x^4-429*x^3-563*x^2-380*x-857 8299615044144878 a001 2576/103361*521^(5/26) 8299615044806344 a001 121393/4870847*521^(5/26) 8299615045215152 a001 75025/3010349*521^(5/26) 8299615046946893 a001 28657/1149851*521^(5/26) 8299615058816421 a001 5473/219602*521^(5/26) 8299615076228229 m001 MinimumGamma^exp(-1/2*Pi)*ZetaP(4) 8299615094030114 m009 (1/8*Pi^2-4/5)/(2/5*Psi(1,2/3)+4) 8299615103579444 m001 (Otter+ReciprocalLucas)/Lehmer 8299615113025576 a007 Real Root Of 516*x^4-579*x^3+949*x^2+426*x-876 8299615127460256 a007 Real Root Of -943*x^4+15*x^3+928*x^2+381*x+133 8299615134542278 a007 Real Root Of 935*x^4-700*x^3+680*x^2+863*x-596 8299615136887170 m005 (1/2*gamma+8/11)/(2/11*3^(1/2)+10/11) 8299615138019234 r005 Re(z^2+c),c=-133/106+6/35*I,n=11 8299615140171375 a001 4181/167761*521^(5/26) 8299615172255968 a007 Real Root Of -547*x^4+608*x^3-412*x^2-65*x+837 8299615181360605 a007 Real Root Of -357*x^4+844*x^3+393*x^2-434*x+21 8299615183684900 m001 GAMMA(7/12)*OneNinth*exp(cos(Pi/5))^2 8299615206106009 a001 987/7881196*1364^(9/10) 8299615215290062 p003 LerchPhi(1/25,1,19/157) 8299615217809992 a007 Real Root Of 885*x^4-936*x^3-732*x^2+301*x-201 8299615219848971 b008 (3*ExpIntegralEi[2/3])/35 8299615250595716 r005 Im(z^2+c),c=-4/25+46/55*I,n=7 8299615258830124 a007 Real Root Of 623*x^4-786*x^3-198*x^2-289*x+530 8299615268504200 r005 Im(z^2+c),c=-107/118+5/11*I,n=4 8299615288718729 a007 Real Root Of -430*x^4-374*x^3+743*x^2+876*x-821 8299615306267186 m001 (Riemann1stZero+Stephens)/Pi^(1/2) 8299615332831735 m005 (1/2*2^(1/2)+5/9)/(10/11*Zeta(3)+3/7) 8299615373728691 a003 sin(Pi*18/77)/sin(Pi*35/117) 8299615382445589 r009 Re(z^3+c),c=-17/32+12/19*I,n=10 8299615405271072 a007 Real Root Of -547*x^4+988*x^3+915*x^2-758*x-435 8299615417791731 m001 Sierpinski^Ei(1,1)*Zeta(1,-1)^Ei(1,1) 8299615444444439 a001 4/233*1836311903^(2/11) 8299615450708873 r002 4th iterates of z^2 + 8299615453295914 p003 LerchPhi(1/32,5,248/95) 8299615461861354 r005 Im(z^2+c),c=9/29+27/62*I,n=20 8299615496288462 l006 ln(2984/6843) 8299615502821525 a001 377/167761*843^(15/28) 8299615503483826 m006 (1/3/Pi+1/4)/(4/5*exp(2*Pi)+2/3) 8299615503503232 a001 987/4870847*1364^(5/6) 8299615518846401 a001 199/4807526976*20365011074^(17/24) 8299615518875961 a001 199/1346269*196418^(17/24) 8299615547475189 m005 (1/2*Pi-1/5)/(-31/12+5/12*5^(1/2)) 8299615547560783 a007 Real Root Of -938*x^4-55*x^3-239*x^2-663*x+28 8299615554975023 a007 Real Root Of 290*x^4-550*x^3+846*x^2+307*x-780 8299615616662935 r005 Im(z^2+c),c=-49/90+7/44*I,n=12 8299615619536685 m001 (2^(1/3)+gamma)/(-QuadraticClass+TwinPrimes) 8299615623585609 m001 GAMMA(5/12)/ln(BesselK(0,1))^2*cos(1)^2 8299615627906496 r005 Re(z^2+c),c=-31/60+21/22*I,n=3 8299615632229847 a007 Real Root Of -464*x^4+820*x^3+102*x^2-137*x+505 8299615697786527 a001 1597/64079*521^(5/26) 8299615706833460 a001 987/24476*521^(3/26) 8299615719201965 r005 Re(z^2+c),c=31/106+15/46*I,n=8 8299615734673954 r009 Re(z^3+c),c=-11/78+33/56*I,n=38 8299615768365561 a003 cos(Pi*1/90)*sin(Pi*34/109) 8299615800902216 a001 987/3010349*1364^(23/30) 8299615808983203 m001 cos(1/5*Pi)*HardHexagonsEntropy^ZetaP(4) 8299615860230878 b008 1-(2*Sech[3/2])/5 8299615864889045 a007 Real Root Of -923*x^4-408*x^3-437*x^2+363*x+807 8299615871739359 r005 Re(z^2+c),c=-1/11+13/18*I,n=36 8299615877080665 q001 3241/3905 8299615887405783 a007 Real Root Of 955*x^4-644*x^3-535*x^2+901*x+295 8299615900228757 m001 (Grothendieck+MadelungNaCl)/(2^(1/3)-GaussAGM) 8299615912709518 a007 Real Root Of -638*x^4+562*x^3-564*x^2-485*x+610 8299615952337998 r002 22th iterates of z^2 + 8299615954786069 a001 610/9349*199^(1/22) 8299615956132217 k002 Champernowne real with 25/2*n^2+507/2*n-258 8299615962423702 a007 Real Root Of 479*x^4-459*x^3-9*x^2-197*x-647 8299615965119815 l006 ln(3117/7148) 8299616017674511 r005 Re(z^2+c),c=13/122+18/59*I,n=8 8299616069253705 r002 43i'th iterates of 2*x/(1-x^2) of 8299616076764761 r008 a(0)=8,K{-n^6,45-12*n^3+13*n^2-50*n} 8299616085424225 a007 Real Root Of 92*x^4-791*x^3+660*x^2+97*x-870 8299616098296630 a001 329/620166*1364^(7/10) 8299616103093399 a007 Real Root Of -489*x^4+238*x^3+532*x^2+880*x+732 8299616108113701 a007 Real Root Of -710*x^4+276*x^3-342*x^2-910*x-25 8299616111074707 a001 1568397607/3*2584^(1/17) 8299616125698298 a001 199691526*32951280099^(1/17) 8299616125698299 a001 969323029/3*9227465^(1/17) 8299616133826699 a007 Real Root Of 516*x^4+372*x^3+604*x^2-560*x-913 8299616134054328 m001 1/MinimumGamma/MertensB1*exp(gamma)^2 8299616142753397 q001 4/48195 8299616161114004 a007 Real Root Of -895*x^4-928*x^3-239*x^2+275*x+287 8299616204952156 a007 Real Root Of 179*x^4-745*x^3-317*x^2+891*x+447 8299616213328482 p003 LerchPhi(1/256,3,149/140) 8299616246574664 b008 BarnesG[1+E+E^2] 8299616336624626 a001 377/271443*843^(17/28) 8299616365282706 a001 3571/1597*591286729879^(2/15) 8299616379814375 m001 ln(2)/ln(10)+BesselJ(1,1)^StronglyCareFree 8299616395579106 l006 ln(3250/7453) 8299616395703044 a001 987/1149851*1364^(19/30) 8299616416819339 r002 13th iterates of z^2 + 8299616430675366 m001 Niven*Si(Pi)^2/exp(GAMMA(5/12))^2 8299616445253442 a007 Real Root Of -648*x^4+785*x^3+768*x^2+713*x+819 8299616480244947 m001 1/exp(GAMMA(1/24))*CareFree^2*sin(Pi/12) 8299616481475655 r005 Re(z^2+c),c=-53/64+6/55*I,n=15 8299616504565199 m005 (1/2*2^(1/2)-5/11)/(2/9*Zeta(3)-4/7) 8299616511334212 m005 (1/2*5^(1/2)+3/7)/(4/11*exp(1)+7/8) 8299616592073999 m001 (GAMMA(19/24)+Trott2nd)/(Chi(1)-ln(2)) 8299616619176506 l006 ln(9635/9643) 8299616629027932 m001 ((1+3^(1/2))^(1/2))^Weierstrass-KhinchinLevy 8299616661441922 a001 2584/20633239*1364^(9/10) 8299616693078082 a001 141/101521*1364^(17/30) 8299616695991426 p004 log(30727/13399) 8299616731513443 r009 Im(z^3+c),c=-5/64+5/6*I,n=27 8299616735978227 m001 1/Lehmer*exp(DuboisRaymond)^2/sqrt(3)^2 8299616757282857 a003 sin(Pi*1/38)/cos(Pi*3/94) 8299616778684921 m001 1/GAMMA(5/12)^2*Ei(1)^2/exp(GAMMA(5/6))^2 8299616779953593 r005 Im(z^2+c),c=29/86+17/36*I,n=6 8299616792192040 l006 ln(3383/7758) 8299616793116845 r009 Re(z^3+c),c=-1/98+14/47*I,n=7 8299616811822714 a007 Real Root Of -703*x^4+259*x^3-402*x^2-132*x+649 8299616827776496 m001 1/MertensB1/FransenRobinson*ln(Tribonacci) 8299616841442218 a007 Real Root Of 313*x^4-867*x^3-707*x^2-795*x-817 8299616858481159 s002 sum(A288021[n]/(n^2*10^n-1),n=1..infinity) 8299616873772570 a001 6765/54018521*1364^(9/10) 8299616882417105 m001 (Bloch+Tribonacci)/(ln(Pi)+GAMMA(13/24)) 8299616904751194 a001 17711/141422324*1364^(9/10) 8299616909270915 a001 46368/370248451*1364^(9/10) 8299616909930333 a001 121393/969323029*1364^(9/10) 8299616910026541 a001 317811/2537720636*1364^(9/10) 8299616910040577 a001 832040/6643838879*1364^(9/10) 8299616910042625 a001 2178309/17393796001*1364^(9/10) 8299616910042924 a001 1597/12752044*1364^(9/10) 8299616910042967 a001 14930352/119218851371*1364^(9/10) 8299616910042974 a001 39088169/312119004989*1364^(9/10) 8299616910042975 a001 102334155/817138163596*1364^(9/10) 8299616910042975 a001 267914296/2139295485799*1364^(9/10) 8299616910042975 a001 701408733/5600748293801*1364^(9/10) 8299616910042975 a001 1836311903/14662949395604*1364^(9/10) 8299616910042975 a001 2971215073/23725150497407*1364^(9/10) 8299616910042975 a001 1134903170/9062201101803*1364^(9/10) 8299616910042975 a001 433494437/3461452808002*1364^(9/10) 8299616910042975 a001 165580141/1322157322203*1364^(9/10) 8299616910042975 a001 63245986/505019158607*1364^(9/10) 8299616910042978 a001 24157817/192900153618*1364^(9/10) 8299616910042994 a001 9227465/73681302247*1364^(9/10) 8299616910043109 a001 3524578/28143753123*1364^(9/10) 8299616910043891 a001 1346269/10749957122*1364^(9/10) 8299616910049252 a001 514229/4106118243*1364^(9/10) 8299616910086000 a001 196418/1568397607*1364^(9/10) 8299616910337876 a001 75025/599074578*1364^(9/10) 8299616912064255 a001 28657/228826127*1364^(9/10) 8299616921171611 a001 9349/1597*433494437^(2/15) 8299616923897037 a001 10946/87403803*1364^(9/10) 8299616927903786 m009 (2*Pi^2-4/5)/(1/2*Psi(1,2/3)+3/4) 8299616928242585 s002 sum(A026286[n]/(n!^2),n=1..infinity) 8299616940993821 a007 Real Root Of 50*x^4-508*x^3-528*x^2-220*x+813 8299616958839611 a001 2584/12752043*1364^(5/6) 8299616959132817 k002 Champernowne real with 13*n^2+252*n-257 8299616959476274 s002 sum(A266957[n]/(n^3*10^n+1),n=1..infinity) 8299616969136668 a007 Real Root Of -256*x^4+35*x^3+149*x^2+843*x-71 8299616976654693 r005 Im(z^2+c),c=-95/94+16/53*I,n=16 8299616982848504 a007 Real Root Of 157*x^4-425*x^3-79*x^2+429*x+93 8299616985008139 b008 E+23*E^(5/4) 8299616988945053 a005 (1/cos(8/151*Pi))^483 8299616990535302 a001 987/439204*1364^(1/2) 8299616996026886 m001 CareFree*(BesselI(1,2)-ThueMorse) 8299616999084484 m001 FeigenbaumC^BesselI(0,2)-Pi 8299617002272518 a001 24476/1597*317811^(2/15) 8299617005000128 a001 4181/33385282*1364^(9/10) 8299617011099648 a007 Real Root Of -348*x^4-668*x^3-880*x^2+514*x+816 8299617015221050 a007 Real Root Of -640*x^4+345*x^3+219*x^2-229*x+160 8299617053452101 m005 (1/2*Pi+4/7)/(3/10*Pi-11/12) 8299617064369603 m004 (Sqrt[5]*Pi)/3+5*Cot[Sqrt[5]*Pi]^2 8299617081829751 m005 (3/44+1/4*5^(1/2))/(1/4*gamma-9/10) 8299617085698463 r005 Im(z^2+c),c=41/122+23/55*I,n=16 8299617116977644 m009 (16/3*Catalan+2/3*Pi^2+4)/(6*Psi(1,2/3)+1/4) 8299617121465157 r009 Re(z^3+c),c=-31/118+43/61*I,n=30 8299617132686944 m006 (2/5*ln(Pi)-5/6)/(1/6*Pi+4) 8299617148593933 a001 610/39603*521^(7/26) 8299617150336792 a001 2584/64079*521^(3/26) 8299617158799544 l006 ln(3516/8063) 8299617170991021 a001 377/439204*843^(19/28) 8299617171170327 a001 6765/33385282*1364^(5/6) 8299617200521114 a007 Real Root Of 137*x^4-999*x^3+253*x^2+321*x-544 8299617202148961 a001 17711/87403803*1364^(5/6) 8299617206668682 a001 46368/228826127*1364^(5/6) 8299617207328101 a001 121393/599074578*1364^(5/6) 8299617207424309 a001 317811/1568397607*1364^(5/6) 8299617207438345 a001 832040/4106118243*1364^(5/6) 8299617207440393 a001 987/4870846*1364^(5/6) 8299617207440692 a001 5702887/28143753123*1364^(5/6) 8299617207440736 a001 14930352/73681302247*1364^(5/6) 8299617207440742 a001 39088169/192900153618*1364^(5/6) 8299617207440743 a001 102334155/505019158607*1364^(5/6) 8299617207440743 a001 267914296/1322157322203*1364^(5/6) 8299617207440743 a001 701408733/3461452808002*1364^(5/6) 8299617207440743 a001 1836311903/9062201101803*1364^(5/6) 8299617207440743 a001 4807526976/23725150497407*1364^(5/6) 8299617207440743 a001 2971215073/14662949395604*1364^(5/6) 8299617207440743 a001 1134903170/5600748293801*1364^(5/6) 8299617207440743 a001 433494437/2139295485799*1364^(5/6) 8299617207440743 a001 165580141/817138163596*1364^(5/6) 8299617207440743 a001 63245986/312119004989*1364^(5/6) 8299617207440746 a001 24157817/119218851371*1364^(5/6) 8299617207440762 a001 9227465/45537549124*1364^(5/6) 8299617207440877 a001 3524578/17393796001*1364^(5/6) 8299617207441659 a001 1346269/6643838879*1364^(5/6) 8299617207447020 a001 514229/2537720636*1364^(5/6) 8299617207483768 a001 196418/969323029*1364^(5/6) 8299617207735644 a001 75025/370248451*1364^(5/6) 8299617209462024 a001 28657/141422324*1364^(5/6) 8299617212637050 a007 Real Root Of 16*x^4-568*x^3+677*x^2+149*x-675 8299617221294809 a001 10946/54018521*1364^(5/6) 8299617237770540 r005 Re(z^2+c),c=-14/17+6/47*I,n=31 8299617240955645 m004 -2+30*Pi+25*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 8299617243569599 m001 Zeta(5)^2*Bloch^2*ln(cos(Pi/12)) 8299617250661228 m006 (1/3*Pi^2-2)/(5*Pi-1/6) 8299617250661228 m008 (1/3*Pi^2-2)/(5*Pi-1/6) 8299617268937280 a001 12238/305*233^(2/15) 8299617269061761 r005 Im(z^2+c),c=-16/19+10/39*I,n=11 8299617277200656 q001 1518/1829 8299617277200656 r002 2th iterates of z^2 + 8299617277200656 r005 Im(z^2+c),c=-32/31+46/59*I,n=2 8299617287777406 a001 329/90481*1364^(13/30) 8299617302397926 a001 4181/20633239*1364^(5/6) 8299617311398317 a007 Real Root Of 668*x^4-559*x^3-254*x^2+173*x-318 8299617320636214 a007 Real Root Of -749*x^4+677*x^3-95*x^2-183*x+656 8299617323304897 m001 1/exp(OneNinth)*Riemann2ndZero*GAMMA(5/24) 8299617323774837 m004 -3+25*Pi+5*Sec[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 8299617330598964 r005 Im(z^2+c),c=-19/70+47/63*I,n=4 8299617345929545 a007 Real Root Of 510*x^4+132*x^3-266*x^2-690*x+59 8299617354588866 a001 521/89*21^(27/31) 8299617356671806 a007 Real Root Of -911*x^4-343*x^3+38*x^2+888*x+947 8299617360941090 a001 615/15251*521^(3/26) 8299617391667842 a001 17711/439204*521^(3/26) 8299617391752312 a007 Real Root Of 46*x^4-509*x^3+830*x^2+773*x-243 8299617396150815 a001 46368/1149851*521^(3/26) 8299617396804872 a001 121393/3010349*521^(3/26) 8299617396959274 a001 196418/4870847*521^(3/26) 8299617397209102 a001 75025/1860498*521^(3/26) 8299617398921445 a001 28657/710647*521^(3/26) 8299617407933167 r005 Re(z^2+c),c=1/14+15/32*I,n=36 8299617410658020 a001 10946/271443*521^(3/26) 8299617424585807 m001 (Zeta(3)+ln(5))/(Catalan-gamma) 8299617445930841 h001 (-7*exp(4)+11)/(-7*exp(2)+7) 8299617477060503 a001 9349/4181*591286729879^(2/15) 8299617491101704 a001 4181/103682*521^(3/26) 8299617493395400 m001 Porter^2*ln(CareFree)^2*Pi 8299617497339229 m001 TwinPrimes^BesselJ(1,1)*TwinPrimes^ZetaQ(3) 8299617498682564 l006 ln(3649/8368) 8299617499236356 a003 cos(Pi*18/91)/sin(Pi*44/101) 8299617514749060 r005 Im(z^2+c),c=-5/8+34/223*I,n=43 8299617528540458 r005 Re(z^2+c),c=-71/82+32/53*I,n=3 8299617531723811 a007 Real Root Of 231*x^4-797*x^3+43*x^2+530*x-155 8299617534092402 a007 Real Root Of -439*x^4+951*x^3-967*x^2-711*x+828 8299617543806252 a007 Real Root Of -460*x^4+500*x^3-442*x^2-320*x+543 8299617551812474 r005 Im(z^2+c),c=-5/11+7/50*I,n=27 8299617553634862 a001 2584/4870847*1364^(7/10) 8299617557541893 m001 RenyiParking^(arctan(1/2)/Sarnak) 8299617558163606 a001 24476/4181*433494437^(2/15) 8299617560888981 a001 1597/12752043*1364^(9/10) 8299617567998370 m001 Riemann1stZero^Magata-cos(1/12*Pi) 8299617569994198 a001 64079/4181*317811^(2/15) 8299617579453119 a007 Real Root Of -431*x^4+946*x^3-992*x^2-543*x+978 8299617585582730 a001 987/167761*1364^(11/30) 8299617588834295 a001 36/109801*322^(23/24) 8299617591494454 m001 (-Bloch+Kac)/(Si(Pi)+gamma(3)) 8299617601407697 s002 sum(A198534[n]/((pi^n-1)/n),n=1..infinity) 8299617639266709 a001 12238/5473*591286729879^(2/15) 8299617640766346 p003 LerchPhi(1/5,1,242/177) 8299617651099493 a001 64079/10946*433494437^(2/15) 8299617652823681 a001 167761/10946*317811^(2/15) 8299617658521944 a007 Real Root Of -990*x^4-554*x^3-644*x^2+139*x+712 8299617662932276 a001 64079/28657*591286729879^(2/15) 8299617664658656 a001 167761/28657*433494437^(2/15) 8299617664908340 a001 439204/28657*317811^(2/15) 8299617666385036 a001 167761/75025*591286729879^(2/15) 8299617666636911 a001 439204/75025*433494437^(2/15) 8299617666671468 a001 1149851/75025*317811^(2/15) 8299617666888787 a001 219602/98209*591286729879^(2/15) 8299617666925535 a001 1149851/196418*433494437^(2/15) 8299617666928705 a001 3010349/196418*317811^(2/15) 8299617666962283 a001 1149851/514229*591286729879^(2/15) 8299617666966236 a001 7881196/514229*317811^(2/15) 8299617666967645 a001 3010349/514229*433494437^(2/15) 8299617666971711 a001 20633239/1346269*317811^(2/15) 8299617666972510 a001 54018521/3524578*317811^(2/15) 8299617666972627 a001 141422324/9227465*317811^(2/15) 8299617666972644 a001 370248451/24157817*317811^(2/15) 8299617666972646 a001 969323029/63245986*317811^(2/15) 8299617666972646 a001 2537720636/165580141*317811^(2/15) 8299617666972646 a001 6643838879/433494437*317811^(2/15) 8299617666972647 a001 17393796001/1134903170*317811^(2/15) 8299617666972647 a001 45537549124/2971215073*317811^(2/15) 8299617666972647 a001 119218851371/7778742049*317811^(2/15) 8299617666972647 a001 312119004989/20365011074*317811^(2/15) 8299617666972647 a001 817138163596/53316291173*317811^(2/15) 8299617666972647 a001 2139295485799/139583862445*317811^(2/15) 8299617666972647 a001 14662949395604/956722026041*317811^(2/15) 8299617666972647 a001 494493258286/32264490531*317811^(2/15) 8299617666972647 a001 1322157322203/86267571272*317811^(2/15) 8299617666972647 a001 505019158607/32951280099*317811^(2/15) 8299617666972647 a001 192900153618/12586269025*317811^(2/15) 8299617666972647 a001 10525900321/686789568*317811^(2/15) 8299617666972647 a001 28143753123/1836311903*317811^(2/15) 8299617666972647 a001 10749957122/701408733*317811^(2/15) 8299617666972647 a001 4106118243/267914296*317811^(2/15) 8299617666972647 a001 224056801/14619165*317811^(2/15) 8299617666972648 a001 599074578/39088169*317811^(2/15) 8299617666972654 a001 228826127/14930352*317811^(2/15) 8299617666972699 a001 87403803/5702887*317811^(2/15) 8299617666973004 a001 4769326/311187*317811^(2/15) 8299617666973006 a001 3010349/1346269*591286729879^(2/15) 8299617666973788 a001 7881196/1346269*433494437^(2/15) 8299617666974570 a001 3940598/1762289*591286729879^(2/15) 8299617666974685 a001 20633239/3524578*433494437^(2/15) 8299617666974799 a001 20633239/9227465*591286729879^(2/15) 8299617666974815 a001 54018521/9227465*433494437^(2/15) 8299617666974832 a001 54018521/24157817*591286729879^(2/15) 8299617666974834 a001 141422324/24157817*433494437^(2/15) 8299617666974837 a001 70711162/31622993*591286729879^(2/15) 8299617666974837 a001 370248451/63245986*433494437^(2/15) 8299617666974838 a001 370248451/165580141*591286729879^(2/15) 8299617666974838 a001 969323029/165580141*433494437^(2/15) 8299617666974838 a001 969323029/433494437*591286729879^(2/15) 8299617666974838 a001 2537720636/433494437*433494437^(2/15) 8299617666974838 a001 1268860318/567451585*591286729879^(2/15) 8299617666974838 a001 6643838879/2971215073*591286729879^(2/15) 8299617666974838 a001 6643838879/1134903170*433494437^(2/15) 8299617666974838 a001 17393796001/7778742049*591286729879^(2/15) 8299617666974838 a001 22768774562/10182505537*591286729879^(2/15) 8299617666974838 a001 119218851371/53316291173*591286729879^(2/15) 8299617666974838 a001 312119004989/139583862445*591286729879^(2/15) 8299617666974838 a001 1730726404001/774004377960*591286729879^(2/15) 8299617666974838 a001 1322157322203/591286729879*591286729879^(2/15) 8299617666974838 a001 505019158607/225851433717*591286729879^(2/15) 8299617666974838 a001 96450076809/43133785636*591286729879^(2/15) 8299617666974838 a001 73681302247/32951280099*591286729879^(2/15) 8299617666974838 a001 28143753123/12586269025*591286729879^(2/15) 8299617666974838 a001 5374978561/2403763488*591286729879^(2/15) 8299617666974838 a001 17393796001/2971215073*433494437^(2/15) 8299617666974838 a001 4106118243/1836311903*591286729879^(2/15) 8299617666974838 a001 45537549124/7778742049*433494437^(2/15) 8299617666974838 a001 119218851371/20365011074*433494437^(2/15) 8299617666974838 a001 312119004989/53316291173*433494437^(2/15) 8299617666974838 a001 817138163596/139583862445*433494437^(2/15) 8299617666974838 a001 2139295485799/365435296162*433494437^(2/15) 8299617666974838 a001 14662949395604/2504730781961*433494437^(2/15) 8299617666974838 a001 440719107401/75283811239*433494437^(2/15) 8299617666974838 a001 505019158607/86267571272*433494437^(2/15) 8299617666974838 a001 64300051206/10983760033*433494437^(2/15) 8299617666974838 a001 73681302247/12586269025*433494437^(2/15) 8299617666974838 a001 9381251041/1602508992*433494437^(2/15) 8299617666974838 a001 10749957122/1836311903*433494437^(2/15) 8299617666974838 a001 1368706081/233802911*433494437^(2/15) 8299617666974838 a001 1568397607/701408733*591286729879^(2/15) 8299617666974838 a001 1568397607/267914296*433494437^(2/15) 8299617666974838 a001 299537289/133957148*591286729879^(2/15) 8299617666974838 a001 199691526/34111385*433494437^(2/15) 8299617666974838 a001 228826127/102334155*591286729879^(2/15) 8299617666974839 a001 228826127/39088169*433494437^(2/15) 8299617666974840 a001 87403803/39088169*591286729879^(2/15) 8299617666974846 a001 29134601/4976784*433494437^(2/15) 8299617666974853 a001 16692641/7465176*591286729879^(2/15) 8299617666974896 a001 33385282/5702887*433494437^(2/15) 8299617666974940 a001 12752043/5702887*591286729879^(2/15) 8299617666975095 a001 12752043/832040*317811^(2/15) 8299617666975239 a001 4250681/726103*433494437^(2/15) 8299617666975537 a001 4870847/2178309*591286729879^(2/15) 8299617666977585 a001 4870847/832040*433494437^(2/15) 8299617666979633 a001 930249/416020*591286729879^(2/15) 8299617666989431 a001 4870847/317811*317811^(2/15) 8299617666993670 a001 620166/105937*433494437^(2/15) 8299617667007706 a001 710647/317811*591286729879^(2/15) 8299617667087686 a001 1860498/121393*317811^(2/15) 8299617667103914 a001 710647/121393*433494437^(2/15) 8299617667200122 a001 271443/121393*591286729879^(2/15) 8299617667761141 a001 101521/6624*317811^(2/15) 8299617667859540 a001 90481/15456*433494437^(2/15) 8299617668518959 a001 51841/23184*591286729879^(2/15) 8299617672377070 a001 271443/17711*317811^(2/15) 8299617673038680 a001 103682/17711*433494437^(2/15) 8299617675843327 r005 Im(z^2+c),c=-115/102+5/49*I,n=16 8299617677558401 a001 39603/17711*591286729879^(2/15) 8299617683528437 a007 Real Root Of 99*x^4+688*x^3-994*x^2+869*x-733 8299617690425358 b008 6+Sqrt[3*ArcCosh[3]] 8299617695356808 m001 (2^(1/2)-arctan(1/3))/(Lehmer+Sarnak) 8299617695988491 a003 sin(Pi*7/106)/cos(Pi*50/119) 8299617700280545 a001 281/7*1346269^(17/45) 8299617704015118 a001 103682/6765*317811^(2/15) 8299617708537031 a001 13201/2255*433494437^(2/15) 8299617709802332 a003 sin(Pi*9/35)/sin(Pi*36/107) 8299617718366529 a007 Real Root Of -663*x^4-262*x^3-187*x^2-114*x+199 8299617720075474 a007 Real Root Of 975*x^4-341*x^3-395*x^2+644*x+149 8299617739515660 a001 15127/6765*591286729879^(2/15) 8299617758556346 a007 Real Root Of 454*x^4-313*x^3+422*x^2+923*x+81 8299617760150942 a007 Real Root Of 50*x^4-978*x^3+154*x^2+365*x-386 8299617765965848 a001 2255/4250681*1364^(7/10) 8299617767679490 m001 (Paris+Tetranacci)/(ErdosBorwein+GaussAGM) 8299617768640726 a007 Real Root Of 5*x^4+410*x^3-413*x^2+40*x+601 8299617796944522 a001 17711/33385282*1364^(7/10) 8299617801464249 a001 15456/29134601*1364^(7/10) 8299617802123669 a001 121393/228826127*1364^(7/10) 8299617802219877 a001 377/710646*1364^(7/10) 8299617802233913 a001 832040/1568397607*1364^(7/10) 8299617802235961 a001 726103/1368706081*1364^(7/10) 8299617802236260 a001 5702887/10749957122*1364^(7/10) 8299617802236304 a001 4976784/9381251041*1364^(7/10) 8299617802236310 a001 39088169/73681302247*1364^(7/10) 8299617802236311 a001 34111385/64300051206*1364^(7/10) 8299617802236311 a001 267914296/505019158607*1364^(7/10) 8299617802236311 a001 233802911/440719107401*1364^(7/10) 8299617802236311 a001 1836311903/3461452808002*1364^(7/10) 8299617802236311 a001 1602508992/3020733700601*1364^(7/10) 8299617802236311 a001 12586269025/23725150497407*1364^(7/10) 8299617802236311 a001 7778742049/14662949395604*1364^(7/10) 8299617802236311 a001 2971215073/5600748293801*1364^(7/10) 8299617802236311 a001 1134903170/2139295485799*1364^(7/10) 8299617802236311 a001 433494437/817138163596*1364^(7/10) 8299617802236311 a001 165580141/312119004989*1364^(7/10) 8299617802236311 a001 63245986/119218851371*1364^(7/10) 8299617802236314 a001 24157817/45537549124*1364^(7/10) 8299617802236330 a001 9227465/17393796001*1364^(7/10) 8299617802236445 a001 3524578/6643838879*1364^(7/10) 8299617802237227 a001 1346269/2537720636*1364^(7/10) 8299617802242588 a001 514229/969323029*1364^(7/10) 8299617802279336 a001 196418/370248451*1364^(7/10) 8299617802531212 a001 75025/141422324*1364^(7/10) 8299617804257595 a001 28657/54018521*1364^(7/10) 8299617814660529 l006 ln(3782/8673) 8299617816090395 a001 10946/20633239*1364^(7/10) 8299617840716876 m001 (Pi^(1/2)+LaplaceLimit)/(3^(1/2)+Zeta(3)) 8299617851033919 a001 2584/3010349*1364^(19/30) 8299617851995133 a008 Real Root of x^3+21*x-746 8299617858286957 a001 1597/7881196*1364^(5/6) 8299617878934870 a007 Real Root Of -558*x^4+613*x^3+53*x^2-331*x+304 8299617879138172 m001 (Ei(1,1)-BesselI(1,2))/(Conway-Otter) 8299617881913561 a001 21/2206*1364^(3/10) 8299617882751384 a007 Real Root Of -697*x^4-506*x^3-683*x^2+123*x+614 8299617887581446 a007 Real Root Of 262*x^4-870*x^3-505*x^2-299*x-522 8299617897193615 a001 4181/7881196*1364^(7/10) 8299617909006826 g007 -Psi(2,3/11)-Psi(2,7/8)-Psi(2,3/8)-Psi(2,1/7) 8299617920865531 a001 39603/2584*317811^(2/15) 8299617951846352 a001 15127/2584*433494437^(2/15) 8299617962133417 k002 Champernowne real with 27/2*n^2+501/2*n-256 8299617977692979 a003 cos(Pi*4/91)*sin(Pi*37/117) 8299617995934643 a001 1/21*(1/2*5^(1/2)+1/2)^27*7^(17/24) 8299618005142373 a001 377/710647*843^(3/4) 8299618008706433 a001 141/2161*521^(1/26) 8299618008924595 r005 Re(z^2+c),c=7/29+17/47*I,n=14 8299618025501426 a007 Real Root Of 70*x^4+477*x^3-941*x^2-598*x+414 8299618042470912 a001 1597/39603*521^(3/26) 8299618053813538 a007 Real Root Of 609*x^4-269*x^3+639*x^2+418*x-536 8299618058898095 r005 Re(z^2+c),c=1/32+2/5*I,n=13 8299618063548315 a007 Real Root Of -283*x^4+785*x^3-606*x^2+527*x-40 8299618065219707 a007 Real Root Of -393*x^4+651*x^3-458*x^2-105*x+787 8299618073464924 a003 sin(Pi*36/119)/sin(Pi*38/87) 8299618098772052 r009 Im(z^3+c),c=-31/56+17/36*I,n=29 8299618109169739 l006 ln(3915/8978) 8299618118369892 a007 Real Root Of -263*x^4+956*x^3-819*x^2+917*x-71 8299618128271701 m001 (GAMMA(23/24)-cos(1))/(-Robbin+ZetaP(4)) 8299618128813398 m001 polylog(4,1/2)^GaussKuzminWirsing/Paris 8299618147233941 m001 GAMMA(3/4)*ln(CareFree)*GAMMA(5/24)^2 8299618148428407 a001 1292/930249*1364^(17/30) 8299618155684276 a001 1597/4870847*1364^(23/30) 8299618164177043 a001 2889/1292*591286729879^(2/15) 8299618165058287 a001 11/21*46368^(9/35) 8299618169133385 m001 (FeigenbaumMu+StolarskyHarborth)/TreeGrowth2nd 8299618182104705 a001 987/64079*1364^(7/30) 8299618184531090 s002 sum(A017068[n]/(n^2*pi^n-1),n=1..infinity) 8299618194590935 a001 4181/4870847*1364^(19/30) 8299618216577339 r005 Im(z^2+c),c=-83/74+3/29*I,n=13 8299618247948536 m001 (LaplaceLimit+Tetranacci)/(Zeta(1/2)+Pi^(1/2)) 8299618248794580 h001 (1/2*exp(1)+3/4)/(8/9*exp(1)+1/8) 8299618248794580 m005 (1/2*exp(1)+3/4)/(8/9*exp(1)+1/8) 8299618266589927 m005 (1/2*2^(1/2)-3/10)/(-14/33+9/22*5^(1/2)) 8299618294827789 r009 Re(z^3+c),c=-17/114+31/47*I,n=10 8299618300124566 a003 sin(Pi*11/34)*sin(Pi*34/79) 8299618325738190 a007 Real Root Of 785*x^4-774*x^3-239*x^2+539*x-203 8299618360761158 a001 6765/4870847*1364^(17/30) 8299618377741701 m001 (KomornikLoreti+Robbin)/(Ei(1)+GAMMA(11/12)) 8299618384156431 r009 Im(z^3+c),c=-3/64+11/13*I,n=11 8299618384326310 l006 ln(4048/9283) 8299618385381791 a007 Real Root Of 606*x^4-672*x^3+911*x^2-64*x-12 8299618414446116 r005 Re(z^2+c),c=-4/19+20/29*I,n=14 8299618415365655 m001 1/Riemann2ndZero*Champernowne^2*ln(Pi) 8299618445834894 a001 2584/1149851*1364^(1/2) 8299618453083354 a001 1597/3010349*1364^(7/10) 8299618472189456 a001 329/13201*1364^(1/6) 8299618472829789 a007 Real Root Of -182*x^4+533*x^3-x^2+722*x+991 8299618475246825 r002 5th iterates of z^2 + 8299618485906402 a007 Real Root Of -64*x^4-515*x^3+255*x^2+990*x-101 8299618490711487 r005 Im(z^2+c),c=-19/15+1/31*I,n=58 8299618491990015 a001 4181/3010349*1364^(17/30) 8299618517294523 a007 Real Root Of -405*x^4+906*x^3-961*x^2-511*x+948 8299618520285404 a007 Real Root Of -702*x^4-260*x^3-201*x^2-571*x-151 8299618541956951 m008 (3/4*Pi^6+2/3)/(4/5*Pi^2+4/5) 8299618542585143 a001 7/13201*76^(3/29) 8299618568430516 m001 (FeigenbaumKappa-Kac)/(ln(3)-Ei(1,1)) 8299618591187812 a007 Real Root Of -892*x^4+491*x^3-179*x^2-763*x+194 8299618596729323 m001 (BesselI(1,2)+ZetaQ(2))/(2^(1/2)+LambertW(1)) 8299618606965295 a007 Real Root Of -442*x^4+755*x^3-602*x^2-876*x+329 8299618612776947 a001 321/8*1597^(23/56) 8299618641977099 l006 ln(4181/9588) 8299618653440274 r009 Im(z^3+c),c=-9/110+47/49*I,n=16 8299618658160243 a001 6765/3010349*1364^(1/2) 8299618684665092 g005 GAMMA(7/8)*GAMMA(4/5)/GAMMA(5/6)/GAMMA(2/3) 8299618686613324 m001 GaussKuzminWirsing/cos(1/5*Pi)/ZetaP(2) 8299618689138094 a001 89/39604*1364^(1/2) 8299618693657702 a001 46368/20633239*1364^(1/2) 8299618694317104 a001 121393/54018521*1364^(1/2) 8299618694413309 a001 317811/141422324*1364^(1/2) 8299618694427345 a001 832040/370248451*1364^(1/2) 8299618694429393 a001 2178309/969323029*1364^(1/2) 8299618694429692 a001 5702887/2537720636*1364^(1/2) 8299618694429735 a001 14930352/6643838879*1364^(1/2) 8299618694429742 a001 39088169/17393796001*1364^(1/2) 8299618694429743 a001 102334155/45537549124*1364^(1/2) 8299618694429743 a001 267914296/119218851371*1364^(1/2) 8299618694429743 a001 3524667/1568437211*1364^(1/2) 8299618694429743 a001 1836311903/817138163596*1364^(1/2) 8299618694429743 a001 4807526976/2139295485799*1364^(1/2) 8299618694429743 a001 12586269025/5600748293801*1364^(1/2) 8299618694429743 a001 32951280099/14662949395604*1364^(1/2) 8299618694429743 a001 53316291173/23725150497407*1364^(1/2) 8299618694429743 a001 20365011074/9062201101803*1364^(1/2) 8299618694429743 a001 7778742049/3461452808002*1364^(1/2) 8299618694429743 a001 2971215073/1322157322203*1364^(1/2) 8299618694429743 a001 1134903170/505019158607*1364^(1/2) 8299618694429743 a001 433494437/192900153618*1364^(1/2) 8299618694429743 a001 165580141/73681302247*1364^(1/2) 8299618694429743 a001 63245986/28143753123*1364^(1/2) 8299618694429746 a001 24157817/10749957122*1364^(1/2) 8299618694429762 a001 9227465/4106118243*1364^(1/2) 8299618694429877 a001 3524578/1568397607*1364^(1/2) 8299618694430659 a001 1346269/599074578*1364^(1/2) 8299618694436020 a001 514229/228826127*1364^(1/2) 8299618694472767 a001 196418/87403803*1364^(1/2) 8299618694724636 a001 75025/33385282*1364^(1/2) 8299618696450973 a001 28657/12752043*1364^(1/2) 8299618699123623 s002 sum(A187085[n]/(n!^2),n=1..infinity) 8299618708283459 a001 10946/4870847*1364^(1/2) 8299618712626581 a001 46368/47*18^(14/19) 8299618731572936 r009 Im(z^3+c),c=-25/64+1/64*I,n=58 8299618742412053 a001 987/4870847*3571^(25/34) 8299618743210006 a001 2584/710647*1364^(13/30) 8299618745436823 r009 Re(z^3+c),c=-1/122+39/40*I,n=3 8299618746574239 a001 1149851/233*2^(3/4) 8299618750477864 a001 1597/1860498*1364^(19/30) 8299618755977342 a007 Real Root Of 894*x^4-757*x^3-586*x^2+151*x-328 8299618780698391 a001 987/3010349*3571^(23/34) 8299618781387523 m005 (1/3*Catalan-2/3)/(3*2^(1/2)+1/9) 8299618784491922 a007 Real Root Of -546*x^4+760*x^3+416*x^2-341*x+124 8299618784502645 m001 (Salem-Tribonacci)/(3^(1/3)-Cahen) 8299618788733128 a001 987/24476*1364^(1/10) 8299618789384526 a001 4181/1860498*1364^(1/2) 8299618795120231 a007 Real Root Of -371*x^4+659*x^3+528*x^2+471*x+580 8299618798015921 a007 Real Root Of -51*x^4+787*x^3+964*x^2-166*x-952 8299618818980150 a001 329/620166*3571^(21/34) 8299618833347169 m001 1/ln(GolombDickman)/Si(Pi)/sinh(1)^2 8299618839375980 a001 377/1149851*843^(23/28) 8299618839624503 a007 Real Root Of -118*x^4-952*x^3+298*x^2+675*x+714 8299618857273897 a001 987/1149851*3571^(19/34) 8299618880093814 q001 2831/3411 8299618883741208 l006 ln(4314/9893) 8299618895536259 a001 141/101521*3571^(1/2) 8299618908178342 a007 Real Root Of 341*x^4-361*x^3-557*x^2-991*x-807 8299618921617816 m001 (1-BesselI(0,1))/(-Zeta(1/2)+KhinchinHarmonic) 8299618933880791 a001 987/439204*3571^(15/34) 8299618941946156 a007 Real Root Of -9*x^4+782*x^3+420*x^2+653*x+704 8299618944102760 a007 Real Root Of 969*x^4-707*x^3-363*x^2+612*x-106 8299618955554760 a001 55/15126*1364^(13/30) 8299618965134017 k002 Champernowne real with 14*n^2+249*n-255 8299618972010197 a001 329/90481*3571^(13/34) 8299618986535443 a001 17711/4870847*1364^(13/30) 8299618988728358 r002 34th iterates of z^2 + 8299619005682557 a001 10946/3010349*1364^(13/30) 8299619006104667 m001 exp(CareFree)*Backhouse^2*TreeGrowth2nd^2 8299619010702813 a001 987/167761*3571^(11/34) 8299619016424149 h002 exp(12^(7/4)-13^(5/6)) 8299619016424149 h007 exp(12^(7/4)-13^(5/6)) 8299619020054810 a007 Real Root Of -760*x^4+268*x^3-441*x^2-214*x+640 8299619023027818 r005 Re(z^2+c),c=-17/27+15/38*I,n=20 8299619034931298 m005 (1/2*Catalan-8/9)/(4/7*2^(1/2)-6) 8299619036006480 a001 141/2161*1364^(1/30) 8299619040667299 a001 34/5779*1364^(11/30) 8299619046087201 a007 Real Root Of -288*x^4+777*x^3+193*x^2+176*x+594 8299619047884373 a001 1597/1149851*1364^(17/30) 8299619047920925 a001 21/2206*3571^(9/34) 8299619060008481 a007 Real Root Of 11*x^4+913*x^3-2*x^2-458*x-279 8299619080244137 a001 11/610*55^(8/21) 8299619086791036 a001 4181/1149851*1364^(13/30) 8299619088999340 a001 987/64079*3571^(7/34) 8299619110228409 a007 Real Root Of -540*x^4+666*x^3-582*x^2-824*x+354 8299619119971351 a001 329/13201*3571^(5/34) 8299619122653985 a007 Real Root Of 390*x^4+221*x^3+556*x^2-504*x-860 8299619129421721 a007 Real Root Of 972*x^4-110*x^3-853*x^2-797*x-598 8299619157241736 r009 Re(z^3+c),c=-15/26+1/4*I,n=36 8299619158503635 a001 987/4870847*9349^(25/38) 8299619163502648 a001 987/3010349*9349^(23/38) 8299619165562864 a001 141/2161*3571^(1/34) 8299619168497081 a001 329/620166*9349^(21/38) 8299619171042893 a007 Real Root Of -846*x^4+306*x^3-937*x^2-354*x+928 8299619173503502 a001 987/1149851*9349^(1/2) 8299619177402274 a001 987/24476*3571^(3/34) 8299619178478538 a001 141/101521*9349^(17/38) 8299619182206528 a001 141/2161*9349^(1/38) 8299619183535744 a001 987/439204*9349^(15/38) 8299619184375542 a001 141/2161*24476^(1/42) 8299619184661460 a001 141/2161*64079^(1/46) 8299619184825669 a001 141/2161*39603^(1/44) 8299619185612161 a001 141/2161*15127^(1/40) 8299619188377823 a001 329/90481*9349^(13/38) 8299619191610988 a001 141/2161*5778^(1/36) 8299619193783113 a001 987/167761*9349^(11/38) 8299619197713898 a001 21/2206*9349^(9/38) 8299619203189669 a001 329/13201*9349^(5/38) 8299619205504986 a001 987/64079*9349^(7/38) 8299619208111328 a001 987/141422324*24476^(13/14) 8299619209405461 a007 Real Root Of 934*x^4+145*x^3+333*x^2+149*x-466 8299619209430766 a001 987/54018521*24476^(5/6) 8299619210090473 a001 141/4769326*24476^(11/14) 8299619211852485 m001 GAMMA(23/24)/(exp(1/exp(1))^Stephens) 8299619212069766 a001 987/7881196*24476^(9/14) 8299619212729000 a001 987/4870847*24476^(25/42) 8299619213389983 a001 987/3010349*24476^(23/42) 8299619214034742 a001 329/13201*24476^(5/42) 8299619214046387 a001 329/620166*24476^(1/2) 8299619214714780 a001 987/1149851*24476^(19/42) 8299619215351786 a001 141/101521*24476^(17/42) 8299619215464331 a001 329/13201*64079^(5/46) 8299619215654546 a001 329/13201*167761^(1/10) 8299619215684034 a001 329/13201*20633239^(1/14) 8299619215684036 a001 329/13201*2537720636^(1/18) 8299619215684036 a001 329/13201*312119004989^(1/22) 8299619215684036 a001 329/13201*28143753123^(1/20) 8299619215684036 a001 329/13201*228826127^(1/16) 8299619215684236 a001 329/13201*1860498^(1/12) 8299619216070963 a001 987/439204*24476^(5/14) 8299619216285375 a001 329/13201*39603^(5/44) 8299619216575013 a001 329/90481*24476^(13/42) 8299619216870787 r005 Im(z^2+c),c=19/66+23/50*I,n=17 8299619217235029 a001 21/2206*24476^(3/14) 8299619217642273 a001 987/167761*24476^(11/42) 8299619219808290 a001 21/2206*64079^(9/46) 8299619219876946 a001 987/4870847*64079^(25/46) 8299619219966094 a001 987/3010349*64079^(1/2) 8299619220050662 a001 329/620166*64079^(21/46) 8299619220147219 a001 987/1149851*64079^(19/46) 8299619220196587 a001 21/2206*439204^(1/6) 8299619220203740 a001 21/2206*7881196^(3/22) 8299619220203758 a001 21/2206*2537720636^(1/10) 8299619220203758 a001 21/2206*14662949395604^(1/14) 8299619220203758 a001 21/2206*192900153618^(1/12) 8299619220203759 a001 21/2206*33385282^(1/8) 8299619220204117 a001 21/2206*1860498^(3/20) 8299619220212389 a001 141/101521*64079^(17/46) 8299619220217838 a001 329/13201*15127^(1/8) 8299619220291945 a001 329/90481*64079^(13/46) 8299619220348519 a001 21/2206*103682^(3/16) 8299619220359731 a001 987/439204*64079^(15/46) 8299619220688088 a001 987/64079*24476^(1/6) 8299619220710408 a001 329/199691526*167761^(9/10) 8299619220769391 a001 987/54018521*167761^(7/10) 8299619220787370 a001 987/167761*64079^(11/46) 8299619220828018 a001 987/4870847*167761^(1/2) 8299619220863176 a001 329/90481*141422324^(1/6) 8299619220863176 a001 329/90481*73681302247^(1/8) 8299619220891337 a001 329/90481*271443^(1/4) 8299619220930374 a001 987/439204*167761^(3/10) 8299619220935183 a001 987/2537720636*439204^(17/18) 8299619220939964 a001 329/199691526*439204^(5/6) 8299619220944745 a001 987/141422324*439204^(13/18) 8299619220949518 a001 141/4769326*439204^(11/18) 8299619220954439 a001 987/7881196*439204^(1/2) 8299619220956689 a001 329/620166*439204^(7/18) 8299619220959384 a001 141/101521*45537549124^(1/6) 8299619220959397 a001 141/101521*12752043^(1/4) 8299619220972629 a001 329/4250681*1149851^(1/2) 8299619220973378 a001 329/620166*7881196^(7/22) 8299619220973415 a001 329/620166*20633239^(3/10) 8299619220973421 a001 329/620166*17393796001^(3/14) 8299619220973421 a001 329/620166*14662949395604^(1/6) 8299619220973421 a001 329/620166*599074578^(1/4) 8299619220973423 a001 329/620166*33385282^(7/24) 8299619220974260 a001 329/620166*1860498^(7/20) 8299619220975380 a001 987/20633239*3010349^(1/2) 8299619220975462 a001 987/4870847*20633239^(5/14) 8299619220975469 a001 987/4870847*2537720636^(5/18) 8299619220975469 a001 987/4870847*312119004989^(5/22) 8299619220975469 a001 987/4870847*3461452808002^(5/24) 8299619220975469 a001 987/4870847*28143753123^(1/4) 8299619220975469 a001 987/4870847*228826127^(5/16) 8299619220975691 a001 987/45537549124*7881196^(21/22) 8299619220975703 a001 987/10749957122*7881196^(19/22) 8299619220975707 a001 987/6643838879*7881196^(5/6) 8299619220975715 a001 987/2537720636*7881196^(17/22) 8299619220975727 a001 329/199691526*7881196^(15/22) 8299619220975740 a001 987/141422324*7881196^(13/22) 8299619220975744 a001 141/4769326*7881196^(1/2) 8299619220975767 a001 329/4250681*1322157322203^(1/4) 8299619220975800 a001 141/10525900321*20633239^(13/14) 8299619220975801 a001 987/45537549124*20633239^(9/10) 8299619220975803 a001 987/6643838879*20633239^(11/14) 8299619220975805 a001 141/224056801*20633239^(7/10) 8299619220975806 a001 329/199691526*20633239^(9/14) 8299619220975811 a001 141/4769326*312119004989^(3/10) 8299619220975811 a001 141/4769326*1568397607^(3/8) 8299619220975812 a001 987/54018521*20633239^(1/2) 8299619220975814 a001 141/4769326*33385282^(11/24) 8299619220975816 a001 329/29134601*54018521^(1/2) 8299619220975818 a001 141/10525900321*141422324^(5/6) 8299619220975818 a001 21/4868641*370248451^(1/2) 8299619220975818 a001 329/199691526*2537720636^(1/2) 8299619220975818 a001 329/199691526*312119004989^(9/22) 8299619220975818 a001 329/199691526*14662949395604^(5/14) 8299619220975818 a001 329/199691526*192900153618^(5/12) 8299619220975818 a001 329/199691526*28143753123^(9/20) 8299619220975818 a001 141/224056801*17393796001^(1/2) 8299619220975818 a001 141/224056801*14662949395604^(7/18) 8299619220975818 a001 141/224056801*505019158607^(7/16) 8299619220975818 a001 329/3020733700601*2537720636^(17/18) 8299619220975818 a001 141/494493258286*2537720636^(9/10) 8299619220975818 a001 987/817138163596*2537720636^(5/6) 8299619220975818 a001 141/10525900321*2537720636^(13/18) 8299619220975818 a001 987/45537549124*2537720636^(7/10) 8299619220975818 a001 987/6643838879*2537720636^(11/18) 8299619220975818 a001 329/1368706081*119218851371^(1/2) 8299619220975818 a001 987/10749957122*817138163596^(1/2) 8299619220975818 a001 329/440719107401*17393796001^(11/14) 8299619220975818 a001 987/45537549124*17393796001^(9/14) 8299619220975818 a001 329/9381251041*5600748293801^(1/2) 8299619220975818 a001 329/3020733700601*45537549124^(5/6) 8299619220975818 a001 141/10525900321*312119004989^(13/22) 8299619220975818 a001 141/10525900321*3461452808002^(13/24) 8299619220975818 a001 141/10525900321*73681302247^(5/8) 8299619220975818 a001 329/3020733700601*312119004989^(17/22) 8299619220975818 a001 987/817138163596*312119004989^(15/22) 8299619220975818 a001 329/440719107401*14662949395604^(11/18) 8299619220975818 a001 141/494493258286*14662949395604^(9/14) 8299619220975818 a001 329/3020733700601*3461452808002^(17/24) 8299619220975818 a001 987/14662949395604*1322157322203^(3/4) 8299619220975818 a001 987/817138163596*3461452808002^(5/8) 8299619220975818 a001 329/440719107401*505019158607^(11/16) 8299619220975818 a001 141/494493258286*192900153618^(3/4) 8299619220975818 a001 987/45537549124*14662949395604^(1/2) 8299619220975818 a001 987/45537549124*505019158607^(9/16) 8299619220975818 a001 987/45537549124*192900153618^(7/12) 8299619220975818 a001 141/10525900321*28143753123^(13/20) 8299619220975818 a001 987/817138163596*28143753123^(3/4) 8299619220975818 a001 329/3020733700601*28143753123^(17/20) 8299619220975818 a001 987/17393796001*2139295485799^(1/2) 8299619220975818 a001 987/6643838879*312119004989^(1/2) 8299619220975818 a001 987/6643838879*3461452808002^(11/24) 8299619220975818 a001 987/6643838879*28143753123^(11/20) 8299619220975818 a001 329/64300051206*4106118243^(3/4) 8299619220975818 a001 987/2537720636*45537549124^(1/2) 8299619220975818 a001 987/6643838879*1568397607^(5/8) 8299619220975818 a001 329/440719107401*1568397607^(7/8) 8299619220975818 a001 987/969323029*6643838879^(1/2) 8299619220975818 a001 141/224056801*599074578^(7/12) 8299619220975819 a001 987/45537549124*599074578^(3/4) 8299619220975819 a001 329/440719107401*599074578^(11/12) 8299619220975819 a001 987/370248451*969323029^(1/2) 8299619220975819 a001 329/199691526*228826127^(9/16) 8299619220975819 a001 987/6643838879*228826127^(11/16) 8299619220975819 a001 141/10525900321*228826127^(13/16) 8299619220975819 a001 987/817138163596*228826127^(15/16) 8299619220975819 a001 987/141422324*141422324^(1/2) 8299619220975819 a001 987/141422324*73681302247^(3/8) 8299619220975819 a001 987/10749957122*87403803^(3/4) 8299619220975821 a001 987/54018521*2537720636^(7/18) 8299619220975821 a001 987/54018521*17393796001^(5/14) 8299619220975821 a001 987/54018521*312119004989^(7/22) 8299619220975821 a001 987/54018521*14662949395604^(5/18) 8299619220975821 a001 987/54018521*505019158607^(5/16) 8299619220975821 a001 987/54018521*28143753123^(7/20) 8299619220975821 a001 987/54018521*599074578^(5/12) 8299619220975821 a001 987/54018521*228826127^(7/16) 8299619220975823 a001 987/141422324*33385282^(13/24) 8299619220975823 a001 329/199691526*33385282^(5/8) 8299619220975824 a001 987/2537720636*33385282^(17/24) 8299619220975824 a001 987/10749957122*33385282^(19/24) 8299619220975825 a001 987/45537549124*33385282^(7/8) 8299619220975826 a001 329/64300051206*33385282^(23/24) 8299619220975838 a001 987/20633239*9062201101803^(1/4) 8299619220975857 a001 987/2537720636*12752043^(3/4) 8299619220975897 a001 987/7881196*7881196^(9/22) 8299619220975952 a001 987/7881196*2537720636^(3/10) 8299619220975952 a001 987/7881196*14662949395604^(3/14) 8299619220975952 a001 987/7881196*192900153618^(1/4) 8299619220975955 a001 987/7881196*33385282^(3/8) 8299619220976468 a001 987/4870847*1860498^(5/12) 8299619220976734 a001 987/3010349*4106118243^(1/4) 8299619220977031 a001 987/7881196*1860498^(9/20) 8299619220977130 a001 141/4769326*1860498^(11/20) 8299619220977220 a001 987/54018521*1860498^(7/12) 8299619220977377 a001 987/141422324*1860498^(13/20) 8299619220977617 a001 329/199691526*1860498^(3/4) 8299619220977857 a001 987/2537720636*1860498^(17/20) 8299619220978016 a001 987/6643838879*1860498^(11/12) 8299619220978096 a001 987/10749957122*1860498^(19/20) 8299619220979584 a001 329/620166*710647^(3/8) 8299619220982096 a001 987/1149851*817138163596^(1/6) 8299619220982096 a001 987/1149851*87403803^(1/4) 8299619220986093 a001 987/54018521*710647^(5/8) 8299619220990198 a001 141/224056801*710647^(7/8) 8299619221006892 a001 987/439204*439204^(5/18) 8299619221018814 a001 987/439204*7881196^(5/22) 8299619221018840 a001 987/439204*20633239^(3/14) 8299619221018844 a001 987/439204*2537720636^(1/6) 8299619221018844 a001 987/439204*312119004989^(3/22) 8299619221018844 a001 987/439204*28143753123^(3/20) 8299619221018844 a001 987/439204*228826127^(3/16) 8299619221018846 a001 987/439204*33385282^(5/24) 8299619221019443 a001 987/439204*1860498^(1/4) 8299619221060301 a001 987/141422324*271443^(3/4) 8299619221260113 a001 987/439204*103682^(5/16) 8299619221270697 a001 987/167761*7881196^(1/6) 8299619221270719 a001 987/167761*312119004989^(1/10) 8299619221270719 a001 987/167761*1568397607^(1/8) 8299619221286168 a001 21/2206*39603^(9/44) 8299619221311197 a001 329/620166*103682^(7/16) 8299619221410236 a001 987/7881196*103682^(9/16) 8299619221506603 a001 141/4769326*103682^(11/16) 8299619221603118 a001 987/141422324*103682^(13/16) 8299619221699625 a001 329/199691526*103682^(15/16) 8299619222426658 a001 329/90481*39603^(13/44) 8299619222593665 a001 987/167761*39603^(1/4) 8299619222689513 a001 987/64079*64079^(7/46) 8299619222822861 a001 987/439204*39603^(15/44) 8299619222997098 a001 987/64079*20633239^(1/10) 8299619222997100 a001 987/64079*17393796001^(1/14) 8299619222997100 a001 987/64079*14662949395604^(1/18) 8299619222997100 a001 987/64079*505019158607^(1/16) 8299619222997100 a001 987/64079*599074578^(1/12) 8299619222999154 a001 987/64079*710647^(1/8) 8299619223003937 a001 141/101521*39603^(17/44) 8299619223267184 a001 987/1149851*39603^(19/44) 8299619223499044 a001 329/620166*39603^(21/44) 8299619223742893 a001 987/3010349*39603^(23/44) 8299619223838974 a001 987/64079*39603^(7/44) 8299619223982163 a001 987/4870847*39603^(25/44) 8299619224944648 a001 141/4769326*39603^(3/4) 8299619227333265 a001 987/24476*9349^(3/38) 8299619228364602 a001 21/2206*15127^(9/40) 8299619229344423 a001 987/64079*15127^(7/40) 8299619231245084 a001 987/167761*15127^(11/40) 8299619232651062 a001 329/90481*15127^(13/40) 8299619233840309 a001 987/24476*24476^(1/14) 8299619234620251 a001 987/439204*15127^(3/8) 8299619234698063 a001 987/24476*64079^(3/46) 8299619234827495 a001 987/24476*439204^(1/18) 8299619234829879 a001 987/24476*7881196^(1/22) 8299619234829886 a001 987/24476*33385282^(1/24) 8299619234830005 a001 987/24476*1860498^(1/20) 8299619234878139 a001 987/24476*103682^(1/16) 8299619235190689 a001 987/24476*39603^(3/44) 8299619236374312 a001 141/101521*15127^(17/40) 8299619237550167 a001 987/24476*15127^(3/40) 8299619237953445 a001 141/2161*2207^(1/32) 8299619238210544 a001 987/1149851*15127^(19/40) 8299619240015390 a001 329/620166*15127^(21/40) 8299619241832225 a001 987/3010349*15127^(23/40) 8299619243644480 a001 987/4870847*15127^(5/8) 8299619250211972 a001 329/13201*5778^(5/36) 8299619252712437 a001 987/54018521*15127^(7/8) 8299619252961277 a001 6765/1149851*1364^(11/30) 8299619255546647 a001 987/24476*5778^(1/12) 8299619271336210 a001 987/64079*5778^(7/36) 8299619282354043 a001 21/2206*5778^(1/4) 8299619283934551 a001 17711/3010349*1364^(11/30) 8299619291246349 a001 28657/4870847*1364^(11/30) 8299619292367490 m005 (1/2*2^(1/2)+5/6)/(6/11*5^(1/2)+7/11) 8299619297232179 a001 987/167761*5778^(11/36) 8299619303077087 a001 5473/930249*1364^(11/30) 8299619310635810 a001 329/90481*5778^(13/36) 8299619319873506 m001 GAMMA(23/24)^LaplaceLimit/GAMMA(3/4) 8299619324602652 a001 987/439204*5778^(5/12) 8299619326526286 m001 (Shi(1)-ln(gamma))/(-Zeta(1/2)+PlouffeB) 8299619329571534 r005 Re(z^2+c),c=-29/34+3/59*I,n=25 8299619337909476 a001 2584/271443*1364^(3/10) 8299619338354367 a001 141/101521*5778^(17/36) 8299619345259506 a001 1597/710647*1364^(1/2) 8299619346009055 b008 -9+EulerGamma^Sech[1] 8299619346951853 a001 377/9349*322^(1/8) 8299619348741301 a007 Real Root Of -310*x^4-194*x^3-382*x^2+737*x+911 8299619352188253 a001 987/1149851*5778^(19/36) 8299619362220373 p001 sum(1/(502*n+123)/(10^n),n=0..infinity) 8299619365990753 a001 329/620166*5778^(7/12) 8299619375928004 r002 5th iterates of z^2 + 8299619379805241 a001 987/3010349*5778^(23/36) 8299619384166171 a001 4181/710647*1364^(11/30) 8299619389159610 a007 Real Root Of -364*x^4-3*x^3+576*x^2+743*x-839 8299619392729307 r002 11th iterates of z^2 + 8299619392968573 g003 Re(GAMMA(-73/20+I*(-113/30))) 8299619393615150 a001 987/4870847*5778^(25/36) 8299619394574018 a001 987/24476*2207^(3/32) 8299619407180670 a001 2161/141*317811^(2/15) 8299619407426808 a001 987/7881196*5778^(3/4) 8299619413872800 a001 3571/1597*55^(18/55) 8299619448860191 a001 141/4769326*5778^(11/12) 8299619481924259 a001 329/13201*2207^(5/32) 8299619490563226 a007 Real Root Of -106*x^4+968*x^3+40*x^2+442*x+943 8299619495021587 a001 2584/39603*521^(1/26) 8299619506247709 a007 Real Root Of 356*x^4-145*x^3+872*x^2+944*x-69 8299619510362843 r002 36th iterates of z^2 + 8299619510717049 m001 ln(gamma)/(sin(1/5*Pi)^StronglyCareFree) 8299619513814660 a007 Real Root Of 654*x^4+80*x^3+306*x^2-208*x-648 8299619519737642 a001 305/12238*521^(5/26) 8299619526770751 m001 ZetaP(2)/(cos(1/12*Pi)-BesselK(0,1)) 8299619537473125 a007 Real Root Of -376*x^4+50*x^3-425*x^2+569*x+972 8299619542190891 a007 Real Root Of 330*x^4-567*x^3+525*x^2+480*x-444 8299619546295636 m001 Shi(1)^GaussKuzminWirsing/GAMMA(3/4) 8299619550336417 a001 6765/710647*1364^(3/10) 8299619555412712 r005 Im(z^2+c),c=-11/50+54/61*I,n=4 8299619556705672 r005 Im(z^2+c),c=31/94+22/45*I,n=15 8299619561221604 a007 Real Root Of -985*x^4+776*x^3+751*x^2+210*x+568 8299619581329090 a001 17711/1860498*1364^(3/10) 8299619585850860 a001 46368/4870847*1364^(3/10) 8299619586094060 m005 (1/2*5^(1/2)+9/10)/(8/11*exp(1)+5/11) 8299619586510578 a001 121393/12752043*1364^(3/10) 8299619586606829 a001 317811/33385282*1364^(3/10) 8299619586620872 a001 832040/87403803*1364^(3/10) 8299619586622921 a001 46347/4868641*1364^(3/10) 8299619586623220 a001 5702887/599074578*1364^(3/10) 8299619586623263 a001 14930352/1568397607*1364^(3/10) 8299619586623270 a001 39088169/4106118243*1364^(3/10) 8299619586623271 a001 102334155/10749957122*1364^(3/10) 8299619586623271 a001 267914296/28143753123*1364^(3/10) 8299619586623271 a001 701408733/73681302247*1364^(3/10) 8299619586623271 a001 1836311903/192900153618*1364^(3/10) 8299619586623271 a001 102287808/10745088481*1364^(3/10) 8299619586623271 a001 12586269025/1322157322203*1364^(3/10) 8299619586623271 a001 32951280099/3461452808002*1364^(3/10) 8299619586623271 a001 86267571272/9062201101803*1364^(3/10) 8299619586623271 a001 225851433717/23725150497407*1364^(3/10) 8299619586623271 a001 139583862445/14662949395604*1364^(3/10) 8299619586623271 a001 53316291173/5600748293801*1364^(3/10) 8299619586623271 a001 20365011074/2139295485799*1364^(3/10) 8299619586623271 a001 7778742049/817138163596*1364^(3/10) 8299619586623271 a001 2971215073/312119004989*1364^(3/10) 8299619586623271 a001 1134903170/119218851371*1364^(3/10) 8299619586623271 a001 433494437/45537549124*1364^(3/10) 8299619586623271 a001 165580141/17393796001*1364^(3/10) 8299619586623271 a001 63245986/6643838879*1364^(3/10) 8299619586623274 a001 24157817/2537720636*1364^(3/10) 8299619586623290 a001 9227465/969323029*1364^(3/10) 8299619586623404 a001 3524578/370248451*1364^(3/10) 8299619586624187 a001 1346269/141422324*1364^(3/10) 8299619586629551 a001 514229/54018521*1364^(3/10) 8299619586666316 a001 196418/20633239*1364^(3/10) 8299619586918305 a001 75025/7881196*1364^(3/10) 8299619588645468 a001 28657/3010349*1364^(3/10) 8299619595733414 a001 987/64079*2207^(7/32) 8299619600483616 a001 10946/1149851*1364^(3/10) 8299619601810897 a001 141/2161*843^(1/28) 8299619608597005 a005 (1/cos(23/231*Pi))^1385 8299619619513589 a001 1926/329*433494437^(2/15) 8299619635714874 a001 2584/167761*1364^(7/30) 8299619642716821 a001 1597/439204*1364^(13/30) 8299619673578284 a001 377/1860498*843^(25/28) 8299619681623487 a001 4181/439204*1364^(3/10) 8299619690450929 m001 (-MadelungNaCl+Tetranacci)/(exp(1)+ln(gamma)) 8299619699436165 a001 21/2206*2207^(9/32) 8299619709812477 m001 LaplaceLimit^Stephens/(Catalan^Stephens) 8299619711872047 a001 6765/103682*521^(1/26) 8299619721666098 m001 (exp(-1/2*Pi)-ln(Pi))/GAMMA(5/6) 8299619727254162 m005 (1/2*2^(1/2)-5/12)/(7/9*2^(1/2)-3/4) 8299619743510103 a001 17711/271443*521^(1/26) 8299619748126033 a001 6624/101521*521^(1/26) 8299619748799488 a001 121393/1860498*521^(1/26) 8299619748897744 a001 317811/4870847*521^(1/26) 8299619748958469 a001 196418/3010349*521^(1/26) 8299619749215706 a001 75025/1149851*521^(1/26) 8299619750978835 a001 28657/439204*521^(1/26) 8299619751533559 m002 (5*Cosh[Pi])/Pi^6+Pi^6*Sech[Pi] 8299619763063496 a001 10946/167761*521^(1/26) 8299619806999221 a001 987/167761*2207^(11/32) 8299619812513113 p001 sum((-1)^n/(337*n+12)/(8^n),n=0..infinity) 8299619845893002 a001 4181/64079*521^(1/26) 8299619847793740 a001 6765/439204*1364^(7/30) 8299619864723447 a007 Real Root Of 787*x^4-840*x^3+789*x^2-518*x+38 8299619865134353 a007 Real Root Of 939*x^4-281*x^3-74*x^2+575*x-78 8299619878735629 a001 17711/1149851*1364^(7/30) 8299619880170867 a007 Real Root Of -371*x^4-196*x^3-848*x^2+183*x+800 8299619883249990 a001 46368/3010349*1364^(7/30) 8299619884315686 a001 75025/4870847*1364^(7/30) 8299619886040018 a001 28657/1860498*1364^(7/30) 8299619891032821 r002 4i'th iterates of 2*x/(1-x^2) of 8299619897858768 a001 10946/710647*1364^(7/30) 8299619913087774 a001 329/90481*2207^(13/32) 8299619932045778 a001 1292/51841*1364^(1/6) 8299619938497576 m001 BesselJ(1,1)*Robbin^2/exp(Zeta(1/2)) 8299619939959019 a001 1597/271443*1364^(11/30) 8299619968134617 k002 Champernowne real with 29/2*n^2+495/2*n-254 8299619973296366 r002 18th iterates of z^2 + 8299619978865687 a001 4181/271443*1364^(7/30) 8299620019739538 a001 987/439204*2207^(15/32) 8299620057985965 m002 -Pi^4+5*Pi^3*Csch[Pi]*ProductLog[Pi] 8299620063930258 m001 ln(HardHexagonsEntropy)/Bloch*sinh(1) 8299620095012968 a007 Real Root Of -97*x^4-817*x^3-154*x^2-553*x-806 8299620126176177 a001 141/101521*2207^(17/32) 8299620127336863 m001 1/exp(GAMMA(5/12))/GAMMA(1/3)^2*sqrt(5)^2 8299620145035945 a001 2255/90481*1364^(1/6) 8299620155127836 r009 Im(z^3+c),c=-85/118+17/50*I,n=2 8299620155800641 m001 1/GAMMA(1/4)^2*MadelungNaCl/ln(GAMMA(19/24)) 8299620169908018 a003 cos(Pi*21/95)+cos(Pi*49/102) 8299620176110792 a001 17711/710647*1364^(1/6) 8299620179519850 a007 Real Root Of -316*x^4+327*x^3+261*x^2+871*x+880 8299620180644551 a001 2576/103361*1364^(1/6) 8299620181306017 a001 121393/4870847*1364^(1/6) 8299620181402524 a001 105937/4250681*1364^(1/6) 8299620181416604 a001 416020/16692641*1364^(1/6) 8299620181418658 a001 726103/29134601*1364^(1/6) 8299620181418958 a001 5702887/228826127*1364^(1/6) 8299620181419002 a001 829464/33281921*1364^(1/6) 8299620181419008 a001 39088169/1568397607*1364^(1/6) 8299620181419009 a001 34111385/1368706081*1364^(1/6) 8299620181419009 a001 133957148/5374978561*1364^(1/6) 8299620181419009 a001 233802911/9381251041*1364^(1/6) 8299620181419009 a001 1836311903/73681302247*1364^(1/6) 8299620181419009 a001 267084832/10716675201*1364^(1/6) 8299620181419009 a001 12586269025/505019158607*1364^(1/6) 8299620181419009 a001 10983760033/440719107401*1364^(1/6) 8299620181419009 a001 43133785636/1730726404001*1364^(1/6) 8299620181419009 a001 75283811239/3020733700601*1364^(1/6) 8299620181419009 a001 182717648081/7331474697802*1364^(1/6) 8299620181419009 a001 139583862445/5600748293801*1364^(1/6) 8299620181419009 a001 53316291173/2139295485799*1364^(1/6) 8299620181419009 a001 10182505537/408569081798*1364^(1/6) 8299620181419009 a001 7778742049/312119004989*1364^(1/6) 8299620181419009 a001 2971215073/119218851371*1364^(1/6) 8299620181419009 a001 567451585/22768774562*1364^(1/6) 8299620181419009 a001 433494437/17393796001*1364^(1/6) 8299620181419009 a001 165580141/6643838879*1364^(1/6) 8299620181419010 a001 31622993/1268860318*1364^(1/6) 8299620181419012 a001 24157817/969323029*1364^(1/6) 8299620181419029 a001 9227465/370248451*1364^(1/6) 8299620181419143 a001 1762289/70711162*1364^(1/6) 8299620181419928 a001 1346269/54018521*1364^(1/6) 8299620181425306 a001 514229/20633239*1364^(1/6) 8299620181462168 a001 98209/3940598*1364^(1/6) 8299620181714826 a001 75025/3010349*1364^(1/6) 8299620183446568 a001 28657/1149851*1364^(1/6) 8299620189639038 m001 Artin^ReciprocalLucas/ZetaP(3) 8299620195316103 a001 5473/219602*1364^(1/6) 8299620197772122 m001 (1-ln(gamma))/(-BesselI(1,2)+OrthogonalArrays) 8299620218780896 a007 Real Root Of 413*x^4-424*x^3-854*x^2-110*x+726 8299620232236997 a001 2584/64079*1364^(1/10) 8299620232694988 a001 987/1149851*2207^(19/32) 8299620237764439 a001 1597/167761*1364^(3/10) 8299620251965981 m005 (1/3*5^(1/2)-2/11)/(4/11*gamma-8/9) 8299620253019329 m005 (1/2*Zeta(3)+8/9)/(7/8*exp(1)-7/12) 8299620264218030 a007 Real Root Of -570*x^4+74*x^3+667*x^2+731*x-838 8299620274318858 a001 2584/4870847*3571^(21/34) 8299620276671108 a001 4181/167761*1364^(1/6) 8299620293318372 a007 Real Root Of -143*x^4+816*x^3+524*x^2+173*x+317 8299620306783102 a003 cos(Pi*7/37)-sin(Pi*23/63) 8299620312605203 a001 2584/3010349*3571^(19/34) 8299620339182414 a001 329/620166*2207^(21/32) 8299620350886969 a001 1292/930249*3571^(1/2) 8299620367409168 a007 Real Root Of 75*x^4+582*x^3-392*x^2-549*x-692 8299620389180724 a001 2584/1149851*3571^(15/34) 8299620390490232 r001 36i'th iterates of 2*x^2-1 of 8299620395481583 r002 7th iterates of z^2 + 8299620413614877 a001 1597/24476*521^(1/26) 8299620427443092 a001 2584/710647*3571^(13/34) 8299620433200996 a007 Real Root Of 670*x^4-652*x^3+256*x^2+294*x-623 8299620436281753 a007 Real Root Of -491*x^4+474*x^3-507*x^2-581*x+371 8299620437762961 m005 (1/3*3^(1/2)-2/5)/(6/7*Catalan-4/7) 8299620442841372 a001 615/15251*1364^(1/10) 8299620445681830 a001 987/3010349*2207^(23/32) 8299620461476127 a007 Real Root Of -364*x^4+247*x^3-786*x^2-933*x+81 8299620461835250 p004 log(24971/10889) 8299620465787632 a001 34/5779*3571^(11/34) 8299620473568137 a001 17711/439204*1364^(1/10) 8299620476271375 a001 33385282/233*102334155^(2/21) 8299620476271418 a001 12752043/233*2504730781961^(2/21) 8299620478051111 a001 46368/1149851*1364^(1/10) 8299620478705168 a001 121393/3010349*1364^(1/10) 8299620478800594 a001 317811/7881196*1364^(1/10) 8299620478814516 a001 75640/1875749*1364^(1/10) 8299620478816548 a001 2178309/54018521*1364^(1/10) 8299620478816844 a001 5702887/141422324*1364^(1/10) 8299620478816887 a001 14930352/370248451*1364^(1/10) 8299620478816893 a001 39088169/969323029*1364^(1/10) 8299620478816894 a001 9303105/230701876*1364^(1/10) 8299620478816895 a001 267914296/6643838879*1364^(1/10) 8299620478816895 a001 701408733/17393796001*1364^(1/10) 8299620478816895 a001 1836311903/45537549124*1364^(1/10) 8299620478816895 a001 4807526976/119218851371*1364^(1/10) 8299620478816895 a001 1144206275/28374454999*1364^(1/10) 8299620478816895 a001 32951280099/817138163596*1364^(1/10) 8299620478816895 a001 86267571272/2139295485799*1364^(1/10) 8299620478816895 a001 225851433717/5600748293801*1364^(1/10) 8299620478816895 a001 591286729879/14662949395604*1364^(1/10) 8299620478816895 a001 365435296162/9062201101803*1364^(1/10) 8299620478816895 a001 139583862445/3461452808002*1364^(1/10) 8299620478816895 a001 53316291173/1322157322203*1364^(1/10) 8299620478816895 a001 20365011074/505019158607*1364^(1/10) 8299620478816895 a001 7778742049/192900153618*1364^(1/10) 8299620478816895 a001 2971215073/73681302247*1364^(1/10) 8299620478816895 a001 1134903170/28143753123*1364^(1/10) 8299620478816895 a001 433494437/10749957122*1364^(1/10) 8299620478816895 a001 165580141/4106118243*1364^(1/10) 8299620478816895 a001 63245986/1568397607*1364^(1/10) 8299620478816897 a001 24157817/599074578*1364^(1/10) 8299620478816914 a001 9227465/228826127*1364^(1/10) 8299620478817027 a001 3524578/87403803*1364^(1/10) 8299620478817803 a001 1346269/33385282*1364^(1/10) 8299620478823121 a001 514229/12752043*1364^(1/10) 8299620478859570 a001 196418/4870847*1364^(1/10) 8299620479109398 a001 75025/1860498*1364^(1/10) 8299620480821742 a001 28657/710647*1364^(1/10) 8299620485314911 a001 87403803/233*4181^(2/21) 8299620485425558 a007 Real Root Of 156*x^4-981*x^3-241*x^2+148*x+530 8299620486146445 a001 987/24476*843^(3/28) 8299620492558321 a001 10946/271443*1364^(1/10) 8299620500388747 m008 (1/4*Pi^6-1)/(3*Pi^6-1/3) 8299620503917044 a001 2584/271443*3571^(9/34) 8299620505707956 a007 Real Root Of 109*x^4+856*x^3-425*x^2-227*x-427 8299620507792661 a001 377/3010349*843^(27/28) 8299620522321819 a001 2584/39603*1364^(1/30) 8299620525651005 a001 9349/4181*55^(18/55) 8299620534095365 a001 1597/103682*1364^(7/30) 8299620542609668 a001 2584/167761*3571^(7/34) 8299620552176669 a001 987/4870847*2207^(25/32) 8299620563219776 a001 6765/4870847*3571^(1/2) 8299620572979366 m001 (KhinchinLevy+OneNinth)/(Catalan+Cahen) 8299620573002035 a001 4181/103682*1364^(1/10) 8299620579827787 a001 1292/51841*3571^(5/34) 8299620594198715 a001 17711/12752043*3571^(1/2) 8299620596129652 m002 -3-(Pi^5*Csch[Pi])/5 8299620598718482 a001 144/103681*3571^(1/2) 8299620599377907 a001 121393/87403803*3571^(1/2) 8299620599474115 a001 317811/228826127*3571^(1/2) 8299620599488152 a001 416020/299537289*3571^(1/2) 8299620599490200 a001 311187/224056801*3571^(1/2) 8299620599490499 a001 5702887/4106118243*3571^(1/2) 8299620599490542 a001 7465176/5374978561*3571^(1/2) 8299620599490549 a001 39088169/28143753123*3571^(1/2) 8299620599490550 a001 14619165/10525900321*3571^(1/2) 8299620599490550 a001 133957148/96450076809*3571^(1/2) 8299620599490550 a001 701408733/505019158607*3571^(1/2) 8299620599490550 a001 1836311903/1322157322203*3571^(1/2) 8299620599490550 a001 14930208/10749853441*3571^(1/2) 8299620599490550 a001 12586269025/9062201101803*3571^(1/2) 8299620599490550 a001 32951280099/23725150497407*3571^(1/2) 8299620599490550 a001 10182505537/7331474697802*3571^(1/2) 8299620599490550 a001 7778742049/5600748293801*3571^(1/2) 8299620599490550 a001 2971215073/2139295485799*3571^(1/2) 8299620599490550 a001 567451585/408569081798*3571^(1/2) 8299620599490550 a001 433494437/312119004989*3571^(1/2) 8299620599490550 a001 165580141/119218851371*3571^(1/2) 8299620599490550 a001 31622993/22768774562*3571^(1/2) 8299620599490553 a001 24157817/17393796001*3571^(1/2) 8299620599490569 a001 9227465/6643838879*3571^(1/2) 8299620599490684 a001 1762289/1268860318*3571^(1/2) 8299620599491466 a001 1346269/969323029*3571^(1/2) 8299620599496827 a001 514229/370248451*3571^(1/2) 8299620599533576 a001 98209/70711162*3571^(1/2) 8299620599785454 a001 75025/54018521*3571^(1/2) 8299620601506123 a001 6765/3010349*3571^(15/34) 8299620601511851 a001 28657/20633239*3571^(1/2) 8299620604638243 g007 Psi(2,5/8)+Psi(2,2/7)-Psi(2,7/11)-Psi(2,4/5) 8299620606822533 m001 (LambertW(1)-cos(1))/(arctan(1/3)+ZetaQ(4)) 8299620612382599 r004 Im(z^2+c),c=-10/9-1/10*I,z(0)=-1,n=6 8299620613344753 a001 5473/3940598*3571^(1/2) 8299620620906210 a001 2584/64079*3571^(3/34) 8299620623835851 a001 2584/4870847*9349^(21/38) 8299620628834864 a001 2584/3010349*9349^(1/2) 8299620633829298 a001 1292/930249*9349^(17/38) 8299620638835720 a001 2584/1149851*9349^(15/38) 8299620639787890 a001 55/15126*3571^(13/34) 8299620643810756 a001 2584/710647*9349^(13/38) 8299620646093655 r002 4th iterates of z^2 + 8299620648867964 a001 34/5779*9349^(11/38) 8299620651629350 a001 10946/4870847*3571^(15/34) 8299620651878226 a001 2584/39603*3571^(1/34) 8299620653710044 a001 2584/271443*9349^(9/38) 8299620656162321 a001 4181/4870847*3571^(19/34) 8299620659115334 a001 2584/167761*9349^(7/38) 8299620663046120 a001 1292/51841*9349^(5/38) 8299620663448057 a001 2584/370248451*24476^(13/14) 8299620664767492 a001 646/35355581*24476^(5/6) 8299620665427208 a001 2584/87403803*24476^(11/14) 8299620667406382 a001 2584/20633239*24476^(9/14) 8299620668521892 a001 2584/39603*9349^(1/38) 8299620669385165 a001 2584/4870847*24476^(1/2) 8299620670046148 a001 2584/3010349*24476^(19/42) 8299620670690907 a001 2584/39603*24476^(1/42) 8299620670702552 a001 1292/930249*24476^(17/42) 8299620670768578 a001 17711/4870847*3571^(13/34) 8299620670773774 a007 Real Root Of -754*x^4+294*x^3-908*x^2-351*x+860 8299620670837210 a001 2584/64079*9349^(3/38) 8299620671141034 a001 2584/39603*39603^(1/44) 8299620671370945 a001 2584/1149851*24476^(5/14) 8299620671927527 a001 2584/39603*15127^(1/40) 8299620672007951 a001 2584/710647*24476^(13/42) 8299620672727128 a001 34/5779*24476^(11/42) 8299620673231178 a001 2584/271443*24476^(3/14) 8299620673891195 a001 1292/51841*24476^(5/42) 8299620674298439 a001 2584/167761*24476^(1/6) 8299620675302043 a001 646/1970299*64079^(1/2) 8299620675510999 a001 1292/51841*167761^(1/10) 8299620675540487 a001 1292/51841*20633239^(1/14) 8299620675540489 a001 1292/51841*2537720636^(1/18) 8299620675540489 a001 1292/51841*312119004989^(1/22) 8299620675540489 a001 1292/51841*28143753123^(1/20) 8299620675540489 a001 1292/51841*228826127^(1/16) 8299620675540689 a001 1292/51841*1860498^(1/12) 8299620676047139 a001 2584/1568397607*167761^(9/10) 8299620676106119 a001 646/35355581*167761^(7/10) 8299620676141828 a001 1292/51841*39603^(5/44) 8299620676165048 a001 2584/12752043*167761^(1/2) 8299620676192737 a001 2584/271443*439204^(1/6) 8299620676199889 a001 2584/271443*7881196^(3/22) 8299620676199908 a001 2584/271443*2537720636^(1/10) 8299620676199908 a001 2584/271443*14662949395604^(1/14) 8299620676199908 a001 2584/271443*192900153618^(1/12) 8299620676199908 a001 2584/271443*33385282^(1/8) 8299620676200267 a001 2584/271443*1860498^(3/20) 8299620676230357 a001 2584/1149851*167761^(3/10) 8299620676271915 a001 2584/6643838879*439204^(17/18) 8299620676276695 a001 2584/1568397607*439204^(5/6) 8299620676281476 a001 2584/370248451*439204^(13/18) 8299620676286255 a001 2584/87403803*439204^(11/18) 8299620676291056 a001 2584/20633239*439204^(1/2) 8299620676295468 a001 2584/4870847*439204^(7/18) 8299620676296115 a001 2584/710647*141422324^(1/6) 8299620676296115 a001 2584/710647*73681302247^(1/8) 8299620676306875 a001 2584/1149851*439204^(5/18) 8299620676309404 a001 1292/16692641*1149851^(1/2) 8299620676310152 a001 1292/930249*45537549124^(1/6) 8299620676310165 a001 1292/930249*12752043^(1/4) 8299620676312095 a001 2584/54018521*3010349^(1/2) 8299620676312157 a001 2584/4870847*7881196^(7/22) 8299620676312194 a001 2584/4870847*20633239^(3/10) 8299620676312200 a001 2584/4870847*17393796001^(3/14) 8299620676312200 a001 2584/4870847*14662949395604^(1/6) 8299620676312200 a001 2584/4870847*599074578^(1/4) 8299620676312202 a001 2584/4870847*33385282^(7/24) 8299620676312422 a001 2584/119218851371*7881196^(21/22) 8299620676312434 a001 2584/28143753123*7881196^(19/22) 8299620676312438 a001 2584/17393796001*7881196^(5/6) 8299620676312446 a001 2584/6643838879*7881196^(17/22) 8299620676312459 a001 2584/1568397607*7881196^(15/22) 8299620676312471 a001 2584/370248451*7881196^(13/22) 8299620676312482 a001 2584/87403803*7881196^(1/2) 8299620676312492 a001 2584/12752043*20633239^(5/14) 8299620676312499 a001 2584/12752043*2537720636^(5/18) 8299620676312499 a001 2584/12752043*312119004989^(5/22) 8299620676312499 a001 2584/12752043*3461452808002^(5/24) 8299620676312499 a001 2584/12752043*28143753123^(1/4) 8299620676312499 a001 2584/12752043*228826127^(5/16) 8299620676312515 a001 2584/20633239*7881196^(9/22) 8299620676312532 a001 1292/96450076809*20633239^(13/14) 8299620676312532 a001 2584/119218851371*20633239^(9/10) 8299620676312534 a001 2584/17393796001*20633239^(11/14) 8299620676312536 a001 2584/4106118243*20633239^(7/10) 8299620676312537 a001 2584/1568397607*20633239^(9/14) 8299620676312540 a001 646/35355581*20633239^(1/2) 8299620676312542 a001 1292/16692641*1322157322203^(1/4) 8299620676312548 a001 2584/228826127*54018521^(1/2) 8299620676312549 a001 2584/87403803*312119004989^(3/10) 8299620676312549 a001 2584/87403803*1568397607^(3/8) 8299620676312549 a001 1292/96450076809*141422324^(5/6) 8299620676312550 a001 2584/370248451*141422324^(1/2) 8299620676312550 a001 1292/299537289*370248451^(1/2) 8299620676312550 a001 2584/1568397607*2537720636^(1/2) 8299620676312550 a001 2584/1568397607*312119004989^(9/22) 8299620676312550 a001 2584/1568397607*14662949395604^(5/14) 8299620676312550 a001 2584/1568397607*192900153618^(5/12) 8299620676312550 a001 2584/1568397607*28143753123^(9/20) 8299620676312550 a001 2584/23725150497407*2537720636^(17/18) 8299620676312550 a001 2584/9062201101803*2537720636^(9/10) 8299620676312550 a001 2584/2139295485799*2537720636^(5/6) 8299620676312550 a001 1292/96450076809*2537720636^(13/18) 8299620676312550 a001 2584/119218851371*2537720636^(7/10) 8299620676312550 a001 2584/17393796001*2537720636^(11/18) 8299620676312550 a001 2584/4106118243*17393796001^(1/2) 8299620676312550 a001 2584/4106118243*14662949395604^(7/18) 8299620676312550 a001 2584/4106118243*505019158607^(7/16) 8299620676312550 a001 1292/5374978561*119218851371^(1/2) 8299620676312550 a001 1292/1730726404001*17393796001^(11/14) 8299620676312550 a001 2584/119218851371*17393796001^(9/14) 8299620676312550 a001 2584/28143753123*817138163596^(1/2) 8299620676312550 a001 2584/23725150497407*45537549124^(5/6) 8299620676312550 a001 2584/73681302247*5600748293801^(1/2) 8299620676312550 a001 1292/96450076809*312119004989^(13/22) 8299620676312550 a001 1292/96450076809*3461452808002^(13/24) 8299620676312550 a001 2584/23725150497407*312119004989^(17/22) 8299620676312550 a001 2584/2139295485799*312119004989^(15/22) 8299620676312550 a001 1292/1730726404001*14662949395604^(11/18) 8299620676312550 a001 2584/23725150497407*3461452808002^(17/24) 8299620676312550 a001 2584/2139295485799*3461452808002^(5/8) 8299620676312550 a001 1292/1730726404001*505019158607^(11/16) 8299620676312550 a001 2584/9062201101803*192900153618^(3/4) 8299620676312550 a001 2584/119218851371*14662949395604^(1/2) 8299620676312550 a001 2584/119218851371*505019158607^(9/16) 8299620676312550 a001 2584/119218851371*192900153618^(7/12) 8299620676312550 a001 1292/96450076809*73681302247^(5/8) 8299620676312550 a001 646/11384387281*2139295485799^(1/2) 8299620676312550 a001 1292/96450076809*28143753123^(13/20) 8299620676312550 a001 2584/2139295485799*28143753123^(3/4) 8299620676312550 a001 2584/23725150497407*28143753123^(17/20) 8299620676312550 a001 2584/17393796001*312119004989^(1/2) 8299620676312550 a001 2584/17393796001*3461452808002^(11/24) 8299620676312550 a001 2584/17393796001*28143753123^(11/20) 8299620676312550 a001 2584/6643838879*45537549124^(1/2) 8299620676312550 a001 2584/505019158607*4106118243^(3/4) 8299620676312550 a001 34/33391061*6643838879^(1/2) 8299620676312550 a001 2584/17393796001*1568397607^(5/8) 8299620676312550 a001 1292/1730726404001*1568397607^(7/8) 8299620676312550 a001 2584/969323029*969323029^(1/2) 8299620676312550 a001 2584/4106118243*599074578^(7/12) 8299620676312550 a001 2584/119218851371*599074578^(3/4) 8299620676312550 a001 1292/1730726404001*599074578^(11/12) 8299620676312550 a001 2584/370248451*73681302247^(3/8) 8299620676312550 a001 2584/1568397607*228826127^(9/16) 8299620676312550 a001 2584/17393796001*228826127^(11/16) 8299620676312550 a001 1292/96450076809*228826127^(13/16) 8299620676312550 a001 2584/2139295485799*228826127^(15/16) 8299620676312550 a001 646/35355581*2537720636^(7/18) 8299620676312550 a001 646/35355581*17393796001^(5/14) 8299620676312550 a001 646/35355581*312119004989^(7/22) 8299620676312550 a001 646/35355581*14662949395604^(5/18) 8299620676312550 a001 646/35355581*505019158607^(5/16) 8299620676312550 a001 646/35355581*28143753123^(7/20) 8299620676312550 a001 646/35355581*599074578^(5/12) 8299620676312550 a001 646/35355581*228826127^(7/16) 8299620676312550 a001 2584/28143753123*87403803^(3/4) 8299620676312552 a001 2584/87403803*33385282^(11/24) 8299620676312553 a001 2584/54018521*9062201101803^(1/4) 8299620676312554 a001 2584/370248451*33385282^(13/24) 8299620676312554 a001 2584/1568397607*33385282^(5/8) 8299620676312555 a001 2584/6643838879*33385282^(17/24) 8299620676312556 a001 2584/28143753123*33385282^(19/24) 8299620676312556 a001 2584/119218851371*33385282^(7/8) 8299620676312557 a001 2584/505019158607*33385282^(23/24) 8299620676312569 a001 2584/20633239*2537720636^(3/10) 8299620676312569 a001 2584/20633239*14662949395604^(3/14) 8299620676312569 a001 2584/20633239*192900153618^(1/4) 8299620676312572 a001 2584/20633239*33385282^(3/8) 8299620676312588 a001 2584/6643838879*12752043^(3/4) 8299620676312683 a001 646/1970299*4106118243^(1/4) 8299620676313039 a001 2584/4870847*1860498^(7/20) 8299620676313466 a001 2584/3010349*817138163596^(1/6) 8299620676313466 a001 2584/3010349*87403803^(1/4) 8299620676313498 a001 2584/12752043*1860498^(5/12) 8299620676313648 a001 2584/20633239*1860498^(9/20) 8299620676313867 a001 2584/87403803*1860498^(11/20) 8299620676313949 a001 646/35355581*1860498^(7/12) 8299620676314108 a001 2584/370248451*1860498^(13/20) 8299620676314348 a001 2584/1568397607*1860498^(3/4) 8299620676314588 a001 2584/6643838879*1860498^(17/20) 8299620676314748 a001 2584/17393796001*1860498^(11/12) 8299620676314828 a001 2584/28143753123*1860498^(19/20) 8299620676318363 a001 2584/4870847*710647^(3/8) 8299620676318797 a001 2584/1149851*7881196^(5/22) 8299620676318823 a001 2584/1149851*20633239^(3/14) 8299620676318827 a001 2584/1149851*2537720636^(1/6) 8299620676318827 a001 2584/1149851*312119004989^(3/22) 8299620676318827 a001 2584/1149851*28143753123^(3/20) 8299620676318827 a001 2584/1149851*228826127^(3/16) 8299620676318829 a001 2584/1149851*33385282^(5/24) 8299620676319426 a001 2584/1149851*1860498^(1/4) 8299620676322822 a001 646/35355581*710647^(5/8) 8299620676324276 a001 2584/710647*271443^(1/4) 8299620676326930 a001 2584/4106118243*710647^(7/8) 8299620676344669 a001 2584/271443*103682^(3/16) 8299620676355553 a001 34/5779*7881196^(1/6) 8299620676355575 a001 34/5779*312119004989^(1/10) 8299620676355575 a001 34/5779*1568397607^(1/8) 8299620676397031 a001 2584/370248451*271443^(3/4) 8299620676560096 a001 2584/1149851*103682^(5/16) 8299620676607449 a001 2584/167761*20633239^(1/10) 8299620676607451 a001 2584/167761*17393796001^(1/14) 8299620676607451 a001 2584/167761*14662949395604^(1/18) 8299620676607451 a001 2584/167761*505019158607^(1/16) 8299620676607451 a001 2584/167761*599074578^(1/12) 8299620676609505 a001 2584/167761*710647^(1/8) 8299620676649976 a001 2584/4870847*103682^(7/16) 8299620676746853 a001 2584/20633239*103682^(9/16) 8299620676843340 a001 2584/87403803*103682^(11/16) 8299620676939849 a001 2584/370248451*103682^(13/16) 8299620677036357 a001 2584/1568397607*103682^(15/16) 8299620677282318 a001 2584/271443*39603^(9/44) 8299620677344255 a001 2584/64079*24476^(1/14) 8299620677449325 a001 2584/167761*39603^(7/44) 8299620677678521 a001 34/5779*39603^(1/4) 8299620677859597 a001 2584/710647*39603^(13/44) 8299620677926354 a001 2584/39603*5778^(1/36) 8299620678081646 a001 6765/1149851*3571^(11/34) 8299620678122844 a001 2584/1149851*39603^(15/44) 8299620678331441 a001 2584/64079*439204^(1/18) 8299620678333825 a001 2584/64079*7881196^(1/22) 8299620678333831 a001 2584/64079*33385282^(1/24) 8299620678333951 a001 2584/64079*1860498^(1/20) 8299620678354705 a001 1292/930249*39603^(17/44) 8299620678382085 a001 2584/64079*103682^(1/16) 8299620678598554 a001 2584/3010349*39603^(19/44) 8299620678694635 a001 2584/64079*39603^(3/44) 8299620678837824 a001 2584/4870847*39603^(21/44) 8299620680074292 a001 1292/51841*15127^(1/8) 8299620680281386 a001 2584/87403803*39603^(3/4) 8299620681054113 a001 2584/64079*15127^(3/40) 8299620682954775 a001 2584/167761*15127^(7/40) 8299620684360753 a001 2584/271443*15127^(9/40) 8299620686329942 a001 34/5779*15127^(11/40) 8299620687857271 a001 12238/5473*55^(18/55) 8299620688084003 a001 2584/710647*15127^(13/40) 8299620689915697 a001 10946/3010349*3571^(13/34) 8299620689920236 a001 2584/1149851*15127^(3/8) 8299620691725082 a001 1292/930249*15127^(17/40) 8299620693541917 a001 2584/3010349*15127^(19/40) 8299620694448668 a001 4181/3010349*3571^(1/2) 8299620695354172 a001 2584/4870847*15127^(21/40) 8299620698981514 a001 2584/12752043*15127^(5/8) 8299620699050596 a001 2584/64079*5778^(1/12) 8299620708049171 a001 646/35355581*15127^(7/8) 8299620709054925 a001 17711/3010349*3571^(11/34) 8299620710068431 a001 1292/51841*5778^(5/36) 8299620711522847 a001 64079/28657*55^(18/55) 8299620713235160 a008 Real Root of (2+6*x-3*x^2-x^3-5*x^4-5*x^5) 8299620716344015 a001 6765/710647*3571^(9/34) 8299620716366725 a001 28657/4870847*3571^(11/34) 8299620724268819 a001 2584/39603*2207^(1/32) 8299620724946569 a001 2584/167761*5778^(7/36) 8299620726148977 a001 39603/17711*55^(18/55) 8299620728197464 a001 5473/930249*3571^(11/34) 8299620728349157 r002 3th iterates of z^2 + 8299620732730436 a001 4181/1860498*3571^(15/34) 8299620733249051 q001 1313/1582 8299620733249051 r002 2th iterates of z^2 + 8299620738350203 a001 2584/271443*5778^(1/4) 8299620739172305 a001 6765/103682*1364^(1/30) 8299620747336693 a001 17711/1860498*3571^(9/34) 8299620751858464 a001 46368/4870847*3571^(9/34) 8299620752317048 a001 34/5779*5778^(11/36) 8299620754653072 a001 28657/3010349*3571^(9/34) 8299620754688557 a001 6765/439204*3571^(7/34) 8299620760870736 a007 Real Root Of 233*x^4-992*x^3-255*x^2-506*x-922 8299620766068765 a001 2584/710647*5778^(13/36) 8299620766491221 a001 10946/1149851*3571^(9/34) 8299620769867518 a007 Real Root Of -673*x^4-526*x^3-99*x^2+587*x+574 8299620769997414 r005 Re(z^2+c),c=1/10+19/30*I,n=13 8299620770427584 m001 (-MinimumGamma+Salem)/(5^(1/2)+Zeta(3)) 8299620770810365 a001 17711/271443*1364^(1/30) 8299620771024192 a001 4181/1149851*3571^(13/34) 8299620772191109 m001 (StolarskyHarborth-ZetaQ(2))^MertensB3 8299620775426295 a001 6624/101521*1364^(1/30) 8299620776099751 a001 121393/1860498*1364^(1/30) 8299620776198006 a001 317811/4870847*1364^(1/30) 8299620776258732 a001 196418/3010349*1364^(1/30) 8299620776515969 a001 75025/1149851*1364^(1/30) 8299620778279097 a001 28657/439204*1364^(1/30) 8299620779902653 a001 2584/1149851*5778^(5/12) 8299620785630449 a001 17711/1149851*3571^(7/34) 8299620788106259 a001 15127/6765*55^(18/55) 8299620790144811 a001 46368/3010349*3571^(7/34) 8299620790363761 a001 10946/167761*1364^(1/30) 8299620791210507 a001 75025/4870847*3571^(7/34) 8299620792817970 a001 2255/90481*3571^(5/34) 8299620792934839 a001 28657/1860498*3571^(7/34) 8299620793705155 a001 1292/930249*5778^(17/36) 8299620796563999 a007 Real Root Of 105*x^4-692*x^3+793*x^2-856*x+510 8299620804753591 a001 10946/710647*3571^(7/34) 8299620805466091 r005 Re(z^2+c),c=-29/34+1/70*I,n=5 8299620807519646 a001 2584/3010349*5778^(19/36) 8299620809286562 a001 4181/710647*3571^(11/34) 8299620821329557 a001 2584/4870847*5778^(7/12) 8299620823892819 a001 17711/710647*3571^(5/34) 8299620828426579 a001 2576/103361*3571^(5/34) 8299620828835403 m001 1/exp(1)^2*cos(Pi/5)*ln(log(2+sqrt(3)))^2 8299620829088045 a001 121393/4870847*3571^(5/34) 8299620829496854 a001 75025/3010349*3571^(5/34) 8299620831228596 a001 28657/1149851*3571^(5/34) 8299620831510595 a001 615/15251*3571^(3/34) 8299620832846652 b008 EulerGamma+3/(2+Pi^2) 8299620834286605 a001 1597/64079*1364^(1/6) 8299620838077992 a001 2584/64079*2207^(3/32) 8299620838890407 a007 Real Root Of -53*x^4-554*x^3-855*x^2+854*x+740 8299620841164848 a001 6765/7881196*9349^(1/2) 8299620843098132 a001 5473/219602*3571^(5/34) 8299620846162112 a001 6765/4870847*9349^(17/38) 8299620847631104 a001 4181/439204*3571^(9/34) 8299620851161125 a001 6765/3010349*9349^(15/38) 8299620856155560 a001 55/15126*9349^(13/38) 8299620861161982 a001 6765/1149851*9349^(11/38) 8299620862237361 a001 17711/439204*3571^(3/34) 8299620862763457 a001 2584/20633239*5778^(3/4) 8299620866137018 a001 6765/710647*9349^(9/38) 8299620866720336 a001 46368/1149851*3571^(3/34) 8299620867374393 a001 121393/3010349*3571^(3/34) 8299620867528795 a001 196418/4870847*3571^(3/34) 8299620867778623 a001 75025/1860498*3571^(3/34) 8299620868728715 a001 6765/103682*3571^(1/34) 8299620869490967 a001 28657/710647*3571^(3/34) 8299620871194226 a001 6765/439204*9349^(7/38) 8299620872143375 a001 17711/20633239*9349^(1/2) 8299620873193276 a001 4181/64079*1364^(1/30) 8299620875778824 a001 6765/969323029*24476^(13/14) 8299620876036306 a001 2255/90481*9349^(5/38) 8299620876663081 a001 46368/54018521*9349^(1/2) 8299620877098259 a001 6765/370248451*24476^(5/6) 8299620877322498 a001 233/271444*9349^(1/2) 8299620877418705 a001 317811/370248451*9349^(1/2) 8299620877432742 a001 832040/969323029*9349^(1/2) 8299620877434789 a001 2178309/2537720636*9349^(1/2) 8299620877435088 a001 5702887/6643838879*9349^(1/2) 8299620877435132 a001 14930352/17393796001*9349^(1/2) 8299620877435138 a001 39088169/45537549124*9349^(1/2) 8299620877435139 a001 102334155/119218851371*9349^(1/2) 8299620877435139 a001 267914296/312119004989*9349^(1/2) 8299620877435139 a001 701408733/817138163596*9349^(1/2) 8299620877435139 a001 1836311903/2139295485799*9349^(1/2) 8299620877435139 a001 4807526976/5600748293801*9349^(1/2) 8299620877435139 a001 12586269025/14662949395604*9349^(1/2) 8299620877435139 a001 20365011074/23725150497407*9349^(1/2) 8299620877435139 a001 7778742049/9062201101803*9349^(1/2) 8299620877435139 a001 2971215073/3461452808002*9349^(1/2) 8299620877435139 a001 1134903170/1322157322203*9349^(1/2) 8299620877435139 a001 433494437/505019158607*9349^(1/2) 8299620877435139 a001 165580141/192900153618*9349^(1/2) 8299620877435140 a001 63245986/73681302247*9349^(1/2) 8299620877435142 a001 24157817/28143753123*9349^(1/2) 8299620877435159 a001 9227465/10749957122*9349^(1/2) 8299620877435273 a001 3524578/4106118243*9349^(1/2) 8299620877436055 a001 1346269/1568397607*9349^(1/2) 8299620877441417 a001 514229/599074578*9349^(1/2) 8299620877478165 a001 196418/228826127*9349^(1/2) 8299620877730039 a001 75025/87403803*9349^(1/2) 8299620877757977 a001 6765/228826127*24476^(11/14) 8299620879456413 a001 28657/33385282*9349^(1/2) 8299620879737132 a001 6765/54018521*24476^(9/14) 8299620881227547 a001 10946/271443*3571^(3/34) 8299620881441597 a001 615/15251*9349^(3/38) 8299620881716231 a001 2255/4250681*24476^(1/2) 8299620883035368 a001 6765/4870847*24476^(17/42) 8299620883696351 a001 6765/3010349*24476^(5/14) 8299620884352755 a001 55/15126*24476^(13/42) 8299620885021148 a001 6765/1149851*24476^(11/42) 8299620885372383 a001 6765/103682*9349^(1/38) 8299620885658154 a001 6765/710647*24476^(3/14) 8299620885760518 a001 4181/271443*3571^(7/34) 8299620886377331 a001 6765/439204*24476^(1/6) 8299620886881381 a001 2255/90481*24476^(5/42) 8299620887136249 a001 17711/4870847*9349^(13/38) 8299620887541398 a001 6765/103682*24476^(1/42) 8299620887632696 a001 615/1875749*64079^(1/2) 8299620887948642 a001 615/15251*24476^(1/14) 8299620887991524 a001 6765/103682*39603^(1/44) 8299620888377906 a001 2255/1368706081*167761^(9/10) 8299620888436887 a001 6765/370248451*167761^(7/10) 8299620888495859 a001 6765/33385282*167761^(1/2) 8299620888501185 a001 2255/90481*167761^(1/10) 8299620888530674 a001 2255/90481*20633239^(1/14) 8299620888530675 a001 2255/90481*2537720636^(1/18) 8299620888530675 a001 2255/90481*312119004989^(1/22) 8299620888530675 a001 2255/90481*28143753123^(1/20) 8299620888530675 a001 2255/90481*228826127^(1/16) 8299620888530875 a001 2255/90481*1860498^(1/12) 8299620888555763 a001 6765/3010349*167761^(3/10) 8299620888602682 a001 6765/17393796001*439204^(17/18) 8299620888607463 a001 2255/1368706081*439204^(5/6) 8299620888612243 a001 6765/969323029*439204^(13/18) 8299620888617024 a001 6765/228826127*439204^(11/18) 8299620888619712 a001 6765/710647*439204^(1/6) 8299620888621807 a001 6765/54018521*439204^(1/2) 8299620888626534 a001 2255/4250681*439204^(7/18) 8299620888626865 a001 6765/710647*7881196^(3/22) 8299620888626883 a001 6765/710647*2537720636^(1/10) 8299620888626883 a001 6765/710647*14662949395604^(1/14) 8299620888626883 a001 6765/710647*192900153618^(1/12) 8299620888626884 a001 6765/710647*33385282^(1/8) 8299620888627243 a001 6765/710647*1860498^(3/20) 8299620888632282 a001 6765/3010349*439204^(5/18) 8299620888640177 a001 2255/29134601*1149851^(1/2) 8299620888640919 a001 55/15126*141422324^(1/6) 8299620888640919 a001 55/15126*73681302247^(1/8) 8299620888642860 a001 6765/141422324*3010349^(1/2) 8299620888642967 a001 6765/4870847*45537549124^(1/6) 8299620888642980 a001 6765/4870847*12752043^(1/4) 8299620888643190 a001 615/28374454999*7881196^(21/22) 8299620888643202 a001 6765/73681302247*7881196^(19/22) 8299620888643206 a001 6765/45537549124*7881196^(5/6) 8299620888643214 a001 6765/17393796001*7881196^(17/22) 8299620888643224 a001 2255/4250681*7881196^(7/22) 8299620888643226 a001 2255/1368706081*7881196^(15/22) 8299620888643238 a001 6765/969323029*7881196^(13/22) 8299620888643250 a001 6765/228826127*7881196^(1/2) 8299620888643260 a001 2255/4250681*20633239^(3/10) 8299620888643265 a001 6765/54018521*7881196^(9/22) 8299620888643266 a001 2255/4250681*17393796001^(3/14) 8299620888643266 a001 2255/4250681*14662949395604^(1/6) 8299620888643266 a001 2255/4250681*599074578^(1/4) 8299620888643268 a001 2255/4250681*33385282^(7/24) 8299620888643299 a001 6765/505019158607*20633239^(13/14) 8299620888643300 a001 615/28374454999*20633239^(9/10) 8299620888643302 a001 6765/45537549124*20633239^(11/14) 8299620888643303 a001 6765/33385282*20633239^(5/14) 8299620888643304 a001 6765/10749957122*20633239^(7/10) 8299620888643305 a001 2255/1368706081*20633239^(9/14) 8299620888643308 a001 6765/370248451*20633239^(1/2) 8299620888643310 a001 6765/33385282*2537720636^(5/18) 8299620888643310 a001 6765/33385282*312119004989^(5/22) 8299620888643310 a001 6765/33385282*3461452808002^(5/24) 8299620888643310 a001 6765/33385282*28143753123^(1/4) 8299620888643310 a001 6765/33385282*228826127^(5/16) 8299620888643316 a001 2255/199691526*54018521^(1/2) 8299620888643316 a001 2255/29134601*1322157322203^(1/4) 8299620888643317 a001 6765/505019158607*141422324^(5/6) 8299620888643317 a001 6765/969323029*141422324^(1/2) 8299620888643317 a001 6765/228826127*312119004989^(3/10) 8299620888643317 a001 6765/228826127*1568397607^(3/8) 8299620888643317 a001 6765/1568397607*370248451^(1/2) 8299620888643317 a001 615/230701876*969323029^(1/2) 8299620888643317 a001 6765/23725150497407*2537720636^(9/10) 8299620888643317 a001 2255/1368706081*2537720636^(1/2) 8299620888643317 a001 6765/5600748293801*2537720636^(5/6) 8299620888643317 a001 6765/505019158607*2537720636^(13/18) 8299620888643317 a001 615/28374454999*2537720636^(7/10) 8299620888643317 a001 6765/45537549124*2537720636^(11/18) 8299620888643317 a001 2255/1368706081*312119004989^(9/22) 8299620888643317 a001 2255/1368706081*14662949395604^(5/14) 8299620888643317 a001 2255/1368706081*192900153618^(5/12) 8299620888643317 a001 2255/1368706081*28143753123^(9/20) 8299620888643317 a001 6765/10749957122*17393796001^(1/2) 8299620888643317 a001 6765/10749957122*14662949395604^(7/18) 8299620888643317 a001 6765/10749957122*505019158607^(7/16) 8299620888643317 a001 2255/3020733700601*17393796001^(11/14) 8299620888643317 a001 615/28374454999*17393796001^(9/14) 8299620888643317 a001 55/228811001*119218851371^(1/2) 8299620888643317 a001 6765/73681302247*817138163596^(1/2) 8299620888643317 a001 2255/64300051206*5600748293801^(1/2) 8299620888643317 a001 6765/505019158607*312119004989^(13/22) 8299620888643317 a001 6765/5600748293801*312119004989^(15/22) 8299620888643317 a001 6765/505019158607*3461452808002^(13/24) 8299620888643317 a001 2255/3020733700601*14662949395604^(11/18) 8299620888643317 a001 6765/23725150497407*14662949395604^(9/14) 8299620888643317 a001 6765/5600748293801*3461452808002^(5/8) 8299620888643317 a001 2255/3020733700601*505019158607^(11/16) 8299620888643317 a001 615/28374454999*14662949395604^(1/2) 8299620888643317 a001 615/28374454999*505019158607^(9/16) 8299620888643317 a001 6765/23725150497407*192900153618^(3/4) 8299620888643317 a001 615/28374454999*192900153618^(7/12) 8299620888643317 a001 6765/119218851371*2139295485799^(1/2) 8299620888643317 a001 6765/505019158607*73681302247^(5/8) 8299620888643317 a001 6765/45537549124*312119004989^(1/2) 8299620888643317 a001 6765/45537549124*3461452808002^(11/24) 8299620888643317 a001 6765/505019158607*28143753123^(13/20) 8299620888643317 a001 6765/5600748293801*28143753123^(3/4) 8299620888643317 a001 6765/45537549124*28143753123^(11/20) 8299620888643317 a001 6765/17393796001*45537549124^(1/2) 8299620888643317 a001 6765/6643838879*6643838879^(1/2) 8299620888643317 a001 2255/440719107401*4106118243^(3/4) 8299620888643317 a001 6765/45537549124*1568397607^(5/8) 8299620888643317 a001 2255/3020733700601*1568397607^(7/8) 8299620888643317 a001 6765/969323029*73681302247^(3/8) 8299620888643317 a001 6765/10749957122*599074578^(7/12) 8299620888643317 a001 615/28374454999*599074578^(3/4) 8299620888643317 a001 2255/3020733700601*599074578^(11/12) 8299620888643317 a001 6765/370248451*2537720636^(7/18) 8299620888643317 a001 6765/370248451*17393796001^(5/14) 8299620888643317 a001 6765/370248451*312119004989^(7/22) 8299620888643317 a001 6765/370248451*14662949395604^(5/18) 8299620888643317 a001 6765/370248451*505019158607^(5/16) 8299620888643317 a001 6765/370248451*28143753123^(7/20) 8299620888643317 a001 6765/370248451*599074578^(5/12) 8299620888643317 a001 2255/1368706081*228826127^(9/16) 8299620888643317 a001 6765/45537549124*228826127^(11/16) 8299620888643317 a001 6765/505019158607*228826127^(13/16) 8299620888643317 a001 6765/370248451*228826127^(7/16) 8299620888643317 a001 6765/5600748293801*228826127^(15/16) 8299620888643318 a001 6765/141422324*9062201101803^(1/4) 8299620888643318 a001 6765/73681302247*87403803^(3/4) 8299620888643320 a001 6765/54018521*2537720636^(3/10) 8299620888643320 a001 6765/54018521*14662949395604^(3/14) 8299620888643320 a001 6765/54018521*192900153618^(1/4) 8299620888643320 a001 6765/228826127*33385282^(11/24) 8299620888643321 a001 6765/969323029*33385282^(13/24) 8299620888643322 a001 2255/1368706081*33385282^(5/8) 8299620888643322 a001 6765/17393796001*33385282^(17/24) 8299620888643323 a001 6765/54018521*33385282^(3/8) 8299620888643323 a001 6765/73681302247*33385282^(19/24) 8299620888643324 a001 615/28374454999*33385282^(7/8) 8299620888643324 a001 2255/440719107401*33385282^(23/24) 8299620888643337 a001 615/1875749*4106118243^(1/4) 8299620888643355 a001 6765/17393796001*12752043^(3/4) 8299620888643451 a001 6765/7881196*817138163596^(1/6) 8299620888643451 a001 6765/7881196*87403803^(1/4) 8299620888644105 a001 2255/4250681*1860498^(7/20) 8299620888644203 a001 6765/3010349*7881196^(5/22) 8299620888644229 a001 6765/3010349*20633239^(3/14) 8299620888644233 a001 6765/3010349*2537720636^(1/6) 8299620888644233 a001 6765/3010349*312119004989^(3/22) 8299620888644233 a001 6765/3010349*28143753123^(3/20) 8299620888644233 a001 6765/3010349*228826127^(3/16) 8299620888644235 a001 6765/3010349*33385282^(5/24) 8299620888644309 a001 6765/33385282*1860498^(5/12) 8299620888644399 a001 6765/54018521*1860498^(9/20) 8299620888644636 a001 6765/228826127*1860498^(11/20) 8299620888644716 a001 6765/370248451*1860498^(7/12) 8299620888644832 a001 6765/3010349*1860498^(1/4) 8299620888644876 a001 6765/969323029*1860498^(13/20) 8299620888645115 a001 2255/1368706081*1860498^(3/4) 8299620888645355 a001 6765/17393796001*1860498^(17/20) 8299620888645515 a001 6765/45537549124*1860498^(11/12) 8299620888645595 a001 6765/73681302247*1860498^(19/20) 8299620888649429 a001 2255/4250681*710647^(3/8) 8299620888649572 a001 6765/1149851*7881196^(1/6) 8299620888649595 a001 6765/1149851*312119004989^(1/10) 8299620888649595 a001 6765/1149851*1568397607^(1/8) 8299620888653589 a001 6765/370248451*710647^(5/8) 8299620888657697 a001 6765/10749957122*710647^(7/8) 8299620888669080 a001 55/15126*271443^(1/4) 8299620888686341 a001 6765/439204*20633239^(1/10) 8299620888686343 a001 6765/439204*17393796001^(1/14) 8299620888686343 a001 6765/439204*14662949395604^(1/18) 8299620888686343 a001 6765/439204*505019158607^(1/16) 8299620888686343 a001 6765/439204*599074578^(1/12) 8299620888688397 a001 6765/439204*710647^(1/8) 8299620888727799 a001 6765/969323029*271443^(3/4) 8299620888771644 a001 6765/710647*103682^(3/16) 8299620888778017 a001 6765/103682*15127^(1/40) 8299620888885502 a001 6765/3010349*103682^(5/16) 8299620888935828 a001 615/15251*439204^(1/18) 8299620888938212 a001 615/15251*7881196^(1/22) 8299620888938219 a001 615/15251*33385282^(1/24) 8299620888938338 a001 615/15251*1860498^(1/20) 8299620888981043 a001 2255/4250681*103682^(7/16) 8299620888986472 a001 615/15251*103682^(1/16) 8299620889077604 a001 6765/54018521*103682^(9/16) 8299620889132014 a001 2255/90481*39603^(5/44) 8299620889174109 a001 6765/228826127*103682^(11/16) 8299620889270617 a001 6765/969323029*103682^(13/16) 8299620889299022 a001 615/15251*39603^(3/44) 8299620889367124 a001 2255/1368706081*103682^(15/16) 8299620889528217 a001 6765/439204*39603^(7/44) 8299620889709293 a001 6765/710647*39603^(9/44) 8299620889972540 a001 6765/1149851*39603^(1/4) 8299620890204401 a001 55/15126*39603^(13/44) 8299620890448250 a001 6765/3010349*39603^(15/44) 8299620890687520 a001 6765/4870847*39603^(17/44) 8299620891289158 a001 10946/12752043*9349^(1/2) 8299620891658500 a001 615/15251*15127^(3/40) 8299620892135262 a001 17711/3010349*9349^(11/38) 8299620892612155 a001 6765/228826127*39603^(3/4) 8299620893064478 a001 2255/90481*15127^(1/8) 8299620894776845 a001 6765/103682*5778^(1/36) 8299620895033667 a001 6765/439204*15127^(7/40) 8299620896787729 a001 6765/710647*15127^(9/40) 8299620897129696 a001 17711/1860498*9349^(9/38) 8299620898623961 a001 6765/1149851*15127^(11/40) 8299620899447062 a001 28657/4870847*9349^(11/38) 8299620900366775 a001 17711/271443*3571^(1/34) 8299620900428808 a001 55/15126*15127^(13/40) 8299620901284354 a001 10946/4870847*9349^(15/38) 8299620901651467 a001 46368/4870847*9349^(9/38) 8299620902136119 a001 17711/1149851*9349^(7/38) 8299620902245642 a001 6765/3010349*15127^(3/8) 8299620904057898 a001 6765/4870847*15127^(17/40) 8299620904196968 a001 2584/87403803*5778^(11/12) 8299620904446075 a001 28657/3010349*9349^(9/38) 8299620904982706 a001 6624/101521*3571^(1/34) 8299620905656161 a001 121393/1860498*3571^(1/34) 8299620905754417 a001 317811/4870847*3571^(1/34) 8299620905815143 a001 196418/3010349*3571^(1/34) 8299620906072380 a001 75025/1149851*3571^(1/34) 8299620906283368 a001 10946/3010349*9349^(13/38) 8299620906650480 a001 46368/3010349*9349^(7/38) 8299620906757465 a001 17711/2537720636*24476^(13/14) 8299620907111155 a001 17711/710647*9349^(5/38) 8299620907716177 a001 75025/4870847*9349^(7/38) 8299620907835508 a001 28657/439204*3571^(1/34) 8299620908076901 a001 17711/969323029*24476^(5/6) 8299620908736618 a001 17711/599074578*24476^(11/14) 8299620909440509 a001 28657/1860498*9349^(7/38) 8299620909654984 a001 615/15251*5778^(1/12) 8299620910228039 a007 Real Root Of 748*x^4-781*x^3-105*x^2-764*x+798 8299620910715771 a001 17711/141422324*24476^(9/14) 8299620911277188 a001 46368/6643838879*24476^(13/14) 8299620911277802 a001 5473/930249*9349^(11/38) 8299620911312325 a001 6765/33385282*15127^(5/8) 8299620911644915 a001 2576/103361*9349^(5/38) 8299620911936607 a001 121393/17393796001*24476^(13/14) 8299620912032815 a001 317811/45537549124*24476^(13/14) 8299620912046851 a001 832040/119218851371*24476^(13/14) 8299620912048899 a001 2178309/312119004989*24476^(13/14) 8299620912049198 a001 5702887/817138163596*24476^(13/14) 8299620912049242 a001 14930352/2139295485799*24476^(13/14) 8299620912049248 a001 39088169/5600748293801*24476^(13/14) 8299620912049249 a001 102334155/14662949395604*24476^(13/14) 8299620912049249 a001 165580141/23725150497407*24476^(13/14) 8299620912049250 a001 63245986/9062201101803*24476^(13/14) 8299620912049252 a001 24157817/3461452808002*24476^(13/14) 8299620912049269 a001 9227465/1322157322203*24476^(13/14) 8299620912049383 a001 3524578/505019158607*24476^(13/14) 8299620912050165 a001 1346269/192900153618*24476^(13/14) 8299620912055527 a001 514229/73681302247*24476^(13/14) 8299620912092275 a001 196418/28143753123*24476^(13/14) 8299620912168363 a001 17711/439204*9349^(3/38) 8299620912306381 a001 121393/4870847*9349^(5/38) 8299620912344150 a001 75025/10749957122*24476^(13/14) 8299620912596624 a001 11592/634430159*24476^(5/6) 8299620912694916 a001 17711/33385282*24476^(1/2) 8299620912715190 a001 75025/3010349*9349^(5/38) 8299620913256042 a001 121393/6643838879*24476^(5/6) 8299620913256341 a001 6624/224056801*24476^(11/14) 8299620913352250 a001 10959/599786069*24476^(5/6) 8299620913366287 a001 208010/11384387281*24476^(5/6) 8299620913368335 a001 2178309/119218851371*24476^(5/6) 8299620913368633 a001 5702887/312119004989*24476^(5/6) 8299620913368677 a001 3732588/204284540899*24476^(5/6) 8299620913368683 a001 39088169/2139295485799*24476^(5/6) 8299620913368684 a001 102334155/5600748293801*24476^(5/6) 8299620913368684 a001 10946/599074579*24476^(5/6) 8299620913368684 a001 433494437/23725150497407*24476^(5/6) 8299620913368684 a001 165580141/9062201101803*24476^(5/6) 8299620913368685 a001 31622993/1730726404001*24476^(5/6) 8299620913368687 a001 24157817/1322157322203*24476^(5/6) 8299620913368704 a001 9227465/505019158607*24476^(5/6) 8299620913368818 a001 1762289/96450076809*24476^(5/6) 8299620913369600 a001 1346269/73681302247*24476^(5/6) 8299620913374962 a001 514229/28143753123*24476^(5/6) 8299620913411710 a001 98209/5374978561*24476^(5/6) 8299620913663585 a001 75025/4106118243*24476^(5/6) 8299620913915760 a001 121393/4106118243*24476^(11/14) 8299620914011968 a001 317811/10749957122*24476^(11/14) 8299620914026004 a001 832040/28143753123*24476^(11/14) 8299620914028052 a001 311187/10525900321*24476^(11/14) 8299620914028351 a001 5702887/192900153618*24476^(11/14) 8299620914028395 a001 14930352/505019158607*24476^(11/14) 8299620914028401 a001 39088169/1322157322203*24476^(11/14) 8299620914028402 a001 6765/228826126*24476^(11/14) 8299620914028402 a001 267914296/9062201101803*24476^(11/14) 8299620914028402 a001 701408733/23725150497407*24476^(11/14) 8299620914028402 a001 433494437/14662949395604*24476^(11/14) 8299620914028402 a001 165580141/5600748293801*24476^(11/14) 8299620914028402 a001 63245986/2139295485799*24476^(11/14) 8299620914028405 a001 24157817/817138163596*24476^(11/14) 8299620914028421 a001 9227465/312119004989*24476^(11/14) 8299620914028536 a001 3524578/119218851371*24476^(11/14) 8299620914029318 a001 1346269/45537549124*24476^(11/14) 8299620914034679 a001 514229/17393796001*24476^(11/14) 8299620914070531 a001 28657/4106118243*24476^(13/14) 8299620914071427 a001 196418/6643838879*24476^(11/14) 8299620914323303 a001 75025/2537720636*24476^(11/14) 8299620914446932 a001 28657/1149851*9349^(5/38) 8299620914674210 a001 89/39604*24476^(5/14) 8299620915235494 a001 46368/370248451*24476^(9/14) 8299620915333444 a001 17711/4870847*24476^(13/42) 8299620915389966 a001 28657/1568397607*24476^(5/6) 8299620915894913 a001 121393/969323029*24476^(9/14) 8299620915991121 a001 317811/2537720636*24476^(9/14) 8299620915994428 a001 17711/3010349*24476^(11/42) 8299620916005157 a001 832040/6643838879*24476^(9/14) 8299620916007205 a001 2178309/17393796001*24476^(9/14) 8299620916007504 a001 1597/12752044*24476^(9/14) 8299620916007547 a001 14930352/119218851371*24476^(9/14) 8299620916007554 a001 39088169/312119004989*24476^(9/14) 8299620916007555 a001 102334155/817138163596*24476^(9/14) 8299620916007555 a001 267914296/2139295485799*24476^(9/14) 8299620916007555 a001 701408733/5600748293801*24476^(9/14) 8299620916007555 a001 1836311903/14662949395604*24476^(9/14) 8299620916007555 a001 2971215073/23725150497407*24476^(9/14) 8299620916007555 a001 1134903170/9062201101803*24476^(9/14) 8299620916007555 a001 433494437/3461452808002*24476^(9/14) 8299620916007555 a001 165580141/1322157322203*24476^(9/14) 8299620916007555 a001 63245986/505019158607*24476^(9/14) 8299620916007558 a001 24157817/192900153618*24476^(9/14) 8299620916007574 a001 9227465/73681302247*24476^(9/14) 8299620916007688 a001 3524578/28143753123*24476^(9/14) 8299620916008471 a001 1346269/10749957122*24476^(9/14) 8299620916013832 a001 514229/4106118243*24476^(9/14) 8299620916049684 a001 28657/969323029*24476^(11/14) 8299620916050580 a001 196418/1568397607*24476^(9/14) 8299620916284225 a001 10946/1149851*9349^(9/38) 8299620916302456 a001 75025/599074578*24476^(9/14) 8299620916650832 a001 17711/1860498*24476^(3/14) 8299620916651337 a001 46368/1149851*9349^(3/38) 8299620917010443 a001 17711/271443*9349^(1/38) 8299620917214646 a001 15456/29134601*24476^(1/2) 8299620917305395 a001 121393/3010349*9349^(3/38) 8299620917319224 a001 17711/1149851*24476^(1/6) 8299620917459796 a001 196418/4870847*9349^(3/38) 8299620917709624 a001 75025/1860498*9349^(3/38) 8299620917874065 a001 121393/228826127*24476^(1/2) 8299620917956230 a001 17711/710647*24476^(5/42) 8299620917970273 a001 377/710646*24476^(1/2) 8299620917984310 a001 832040/1568397607*24476^(1/2) 8299620917986358 a001 726103/1368706081*24476^(1/2) 8299620917986657 a001 5702887/10749957122*24476^(1/2) 8299620917986700 a001 4976784/9381251041*24476^(1/2) 8299620917986706 a001 39088169/73681302247*24476^(1/2) 8299620917986707 a001 34111385/64300051206*24476^(1/2) 8299620917986708 a001 267914296/505019158607*24476^(1/2) 8299620917986708 a001 233802911/440719107401*24476^(1/2) 8299620917986708 a001 1836311903/3461452808002*24476^(1/2) 8299620917986708 a001 1602508992/3020733700601*24476^(1/2) 8299620917986708 a001 12586269025/23725150497407*24476^(1/2) 8299620917986708 a001 7778742049/14662949395604*24476^(1/2) 8299620917986708 a001 2971215073/5600748293801*24476^(1/2) 8299620917986708 a001 1134903170/2139295485799*24476^(1/2) 8299620917986708 a001 433494437/817138163596*24476^(1/2) 8299620917986708 a001 165580141/312119004989*24476^(1/2) 8299620917986708 a001 63245986/119218851371*24476^(1/2) 8299620917986710 a001 24157817/45537549124*24476^(1/2) 8299620917986727 a001 9227465/17393796001*24476^(1/2) 8299620917986841 a001 3524578/6643838879*24476^(1/2) 8299620917987623 a001 1346269/2537720636*24476^(1/2) 8299620917992985 a001 514229/969323029*24476^(1/2) 8299620918028836 a001 28657/228826127*24476^(9/14) 8299620918029733 a001 196418/370248451*24476^(1/2) 8299620918281609 a001 75025/141422324*24476^(1/2) 8299620918611321 a001 17711/54018521*64079^(1/2) 8299620918675408 a001 17711/439204*24476^(1/14) 8299620919179458 a001 17711/271443*24476^(1/42) 8299620919193819 a001 46368/20633239*24476^(5/14) 8299620919356548 a001 17711/10749957122*167761^(9/10) 8299620919415528 a001 17711/969323029*167761^(7/10) 8299620919421968 a001 28657/710647*9349^(3/38) 8299620919474507 a001 17711/87403803*167761^(1/2) 8299620919533622 a001 89/39604*167761^(3/10) 8299620919576034 a001 17711/710647*167761^(1/10) 8299620919581324 a001 17711/45537549124*439204^(17/18) 8299620919586104 a001 17711/10749957122*439204^(5/6) 8299620919590885 a001 17711/2537720636*439204^(13/18) 8299620919595665 a001 17711/599074578*439204^(11/18) 8299620919600446 a001 17711/141422324*439204^(1/2) 8299620919605219 a001 17711/33385282*439204^(7/18) 8299620919605523 a001 17711/710647*20633239^(1/14) 8299620919605524 a001 17711/710647*2537720636^(1/18) 8299620919605524 a001 17711/710647*312119004989^(1/22) 8299620919605524 a001 17711/710647*28143753123^(1/20) 8299620919605524 a001 17711/710647*228826127^(1/16) 8299620919605724 a001 17711/710647*1860498^(1/12) 8299620919610141 a001 89/39604*439204^(5/18) 8299620919612390 a001 17711/1860498*439204^(1/6) 8299620919618820 a001 17711/228826127*1149851^(1/2) 8299620919619543 a001 17711/1860498*7881196^(3/22) 8299620919619561 a001 17711/1860498*2537720636^(1/10) 8299620919619561 a001 17711/1860498*14662949395604^(1/14) 8299620919619561 a001 17711/1860498*192900153618^(1/12) 8299620919619562 a001 17711/1860498*33385282^(1/8) 8299620919619921 a001 17711/1860498*1860498^(3/20) 8299620919621501 a001 17711/370248451*3010349^(1/2) 8299620919621609 a001 17711/4870847*141422324^(1/6) 8299620919621609 a001 17711/4870847*73681302247^(1/8) 8299620919621831 a001 17711/817138163596*7881196^(21/22) 8299620919621843 a001 17711/192900153618*7881196^(19/22) 8299620919621847 a001 17711/119218851371*7881196^(5/6) 8299620919621855 a001 17711/45537549124*7881196^(17/22) 8299620919621868 a001 17711/10749957122*7881196^(15/22) 8299620919621880 a001 17711/2537720636*7881196^(13/22) 8299620919621892 a001 17711/599074578*7881196^(1/2) 8299620919621904 a001 17711/141422324*7881196^(9/22) 8299620919621908 a001 17711/12752043*45537549124^(1/6) 8299620919621909 a001 17711/33385282*7881196^(7/22) 8299620919621920 a001 17711/12752043*12752043^(1/4) 8299620919621941 a001 17711/1322157322203*20633239^(13/14) 8299620919621941 a001 17711/817138163596*20633239^(9/10) 8299620919621943 a001 17711/119218851371*20633239^(11/14) 8299620919621945 a001 17711/28143753123*20633239^(7/10) 8299620919621945 a001 17711/33385282*20633239^(3/10) 8299620919621946 a001 17711/10749957122*20633239^(9/14) 8299620919621949 a001 17711/969323029*20633239^(1/2) 8299620919621951 a001 17711/87403803*20633239^(5/14) 8299620919621951 a001 17711/33385282*17393796001^(3/14) 8299620919621951 a001 17711/33385282*14662949395604^(1/6) 8299620919621951 a001 17711/33385282*599074578^(1/4) 8299620919621953 a001 17711/33385282*33385282^(7/24) 8299620919621957 a001 17711/1568397607*54018521^(1/2) 8299620919621958 a001 17711/87403803*2537720636^(5/18) 8299620919621958 a001 17711/87403803*312119004989^(5/22) 8299620919621958 a001 17711/87403803*3461452808002^(5/24) 8299620919621958 a001 17711/87403803*28143753123^(1/4) 8299620919621958 a001 17711/87403803*228826127^(5/16) 8299620919621958 a001 17711/1322157322203*141422324^(5/6) 8299620919621958 a001 17711/2537720636*141422324^(1/2) 8299620919621959 a001 17711/228826127*1322157322203^(1/4) 8299620919621959 a001 17711/4106118243*370248451^(1/2) 8299620919621959 a001 17711/599074578*312119004989^(3/10) 8299620919621959 a001 17711/599074578*1568397607^(3/8) 8299620919621959 a001 17711/6643838879*969323029^(1/2) 8299620919621959 a001 17711/14662949395604*2537720636^(5/6) 8299620919621959 a001 17711/1322157322203*2537720636^(13/18) 8299620919621959 a001 17711/817138163596*2537720636^(7/10) 8299620919621959 a001 17711/119218851371*2537720636^(11/18) 8299620919621959 a001 17711/10749957122*2537720636^(1/2) 8299620919621959 a001 17711/10749957122*312119004989^(9/22) 8299620919621959 a001 17711/10749957122*14662949395604^(5/14) 8299620919621959 a001 17711/10749957122*192900153618^(5/12) 8299620919621959 a001 17711/10749957122*28143753123^(9/20) 8299620919621959 a001 17711/17393796001*6643838879^(1/2) 8299620919621959 a001 17711/28143753123*17393796001^(1/2) 8299620919621959 a001 17711/23725150497407*17393796001^(11/14) 8299620919621959 a001 17711/817138163596*17393796001^(9/14) 8299620919621959 a001 17711/28143753123*14662949395604^(7/18) 8299620919621959 a001 17711/28143753123*505019158607^(7/16) 8299620919621959 a001 17711/73681302247*119218851371^(1/2) 8299620919621959 a001 17711/192900153618*817138163596^(1/2) 8299620919621959 a001 17711/14662949395604*312119004989^(15/22) 8299620919621959 a001 17711/1322157322203*312119004989^(13/22) 8299620919621959 a001 17711/1322157322203*3461452808002^(13/24) 8299620919621959 a001 17711/23725150497407*14662949395604^(11/18) 8299620919621959 a001 17711/14662949395604*3461452808002^(5/8) 8299620919621959 a001 17711/23725150497407*505019158607^(11/16) 8299620919621959 a001 17711/817138163596*505019158607^(9/16) 8299620919621959 a001 89/1568437211*2139295485799^(1/2) 8299620919621959 a001 17711/817138163596*192900153618^(7/12) 8299620919621959 a001 17711/119218851371*312119004989^(1/2) 8299620919621959 a001 17711/119218851371*3461452808002^(11/24) 8299620919621959 a001 17711/1322157322203*73681302247^(5/8) 8299620919621959 a001 17711/45537549124*45537549124^(1/2) 8299620919621959 a001 17711/119218851371*28143753123^(11/20) 8299620919621959 a001 17711/1322157322203*28143753123^(13/20) 8299620919621959 a001 17711/14662949395604*28143753123^(3/4) 8299620919621959 a001 17711/3461452808002*4106118243^(3/4) 8299620919621959 a001 17711/2537720636*73681302247^(3/8) 8299620919621959 a001 17711/119218851371*1568397607^(5/8) 8299620919621959 a001 17711/23725150497407*1568397607^(7/8) 8299620919621959 a001 17711/969323029*2537720636^(7/18) 8299620919621959 a001 17711/969323029*17393796001^(5/14) 8299620919621959 a001 17711/969323029*312119004989^(7/22) 8299620919621959 a001 17711/969323029*14662949395604^(5/18) 8299620919621959 a001 17711/969323029*505019158607^(5/16) 8299620919621959 a001 17711/969323029*28143753123^(7/20) 8299620919621959 a001 17711/28143753123*599074578^(7/12) 8299620919621959 a001 17711/817138163596*599074578^(3/4) 8299620919621959 a001 17711/969323029*599074578^(5/12) 8299620919621959 a001 17711/23725150497407*599074578^(11/12) 8299620919621959 a001 17711/370248451*9062201101803^(1/4) 8299620919621959 a001 17711/969323029*228826127^(7/16) 8299620919621959 a001 17711/10749957122*228826127^(9/16) 8299620919621959 a001 17711/119218851371*228826127^(11/16) 8299620919621959 a001 17711/1322157322203*228826127^(13/16) 8299620919621959 a001 17711/14662949395604*228826127^(15/16) 8299620919621959 a001 17711/141422324*2537720636^(3/10) 8299620919621959 a001 17711/141422324*14662949395604^(3/14) 8299620919621959 a001 17711/141422324*192900153618^(1/4) 8299620919621960 a001 17711/192900153618*87403803^(3/4) 8299620919621962 a001 17711/54018521*4106118243^(1/4) 8299620919621962 a001 17711/141422324*33385282^(3/8) 8299620919621962 a001 17711/599074578*33385282^(11/24) 8299620919621963 a001 17711/2537720636*33385282^(13/24) 8299620919621963 a001 17711/10749957122*33385282^(5/8) 8299620919621964 a001 17711/45537549124*33385282^(17/24) 8299620919621965 a001 17711/192900153618*33385282^(19/24) 8299620919621965 a001 17711/817138163596*33385282^(7/8) 8299620919621966 a001 17711/3461452808002*33385282^(23/24) 8299620919621978 a001 17711/20633239*817138163596^(1/6) 8299620919621978 a001 17711/20633239*87403803^(1/4) 8299620919621997 a001 17711/45537549124*12752043^(3/4) 8299620919622062 a001 89/39604*7881196^(5/22) 8299620919622088 a001 89/39604*20633239^(3/14) 8299620919622092 a001 89/39604*2537720636^(1/6) 8299620919622092 a001 89/39604*312119004989^(3/22) 8299620919622092 a001 89/39604*28143753123^(3/20) 8299620919622092 a001 89/39604*228826127^(3/16) 8299620919622094 a001 89/39604*33385282^(5/24) 8299620919622692 a001 89/39604*1860498^(1/4) 8299620919622790 a001 17711/33385282*1860498^(7/20) 8299620919622852 a001 17711/3010349*7881196^(1/6) 8299620919622875 a001 17711/3010349*312119004989^(1/10) 8299620919622875 a001 17711/3010349*1568397607^(1/8) 8299620919622957 a001 17711/87403803*1860498^(5/12) 8299620919623038 a001 17711/141422324*1860498^(9/20) 8299620919623277 a001 17711/599074578*1860498^(11/20) 8299620919623357 a001 17711/969323029*1860498^(7/12) 8299620919623517 a001 17711/2537720636*1860498^(13/20) 8299620919623757 a001 17711/10749957122*1860498^(3/4) 8299620919623997 a001 17711/45537549124*1860498^(17/20) 8299620919624157 a001 17711/119218851371*1860498^(11/12) 8299620919624237 a001 17711/192900153618*1860498^(19/20) 8299620919628114 a001 17711/33385282*710647^(3/8) 8299620919628234 a001 17711/1149851*20633239^(1/10) 8299620919628236 a001 17711/1149851*17393796001^(1/14) 8299620919628236 a001 17711/1149851*14662949395604^(1/18) 8299620919628236 a001 17711/1149851*505019158607^(1/16) 8299620919628236 a001 17711/1149851*599074578^(1/12) 8299620919629584 a001 17711/271443*39603^(1/44) 8299620919630290 a001 17711/1149851*710647^(1/8) 8299620919632230 a001 17711/969323029*710647^(5/8) 8299620919636339 a001 17711/28143753123*710647^(7/8) 8299620919649769 a001 17711/4870847*271443^(1/4) 8299620919662594 a001 17711/439204*439204^(1/18) 8299620919664978 a001 17711/439204*7881196^(1/22) 8299620919664984 a001 17711/439204*33385282^(1/24) 8299620919665104 a001 17711/439204*1860498^(1/20) 8299620919706440 a001 17711/2537720636*271443^(3/4) 8299620919713238 a001 17711/439204*103682^(1/16) 8299620919764322 a001 17711/1860498*103682^(3/16) 8299620919853221 a001 121393/54018521*24476^(5/14) 8299620919863361 a001 89/39604*103682^(5/16) 8299620919920172 a001 10946/167761*3571^(1/34) 8299620919949427 a001 317811/141422324*24476^(5/14) 8299620919959728 a001 17711/33385282*103682^(7/16) 8299620919963463 a001 832040/370248451*24476^(5/14) 8299620919965511 a001 2178309/969323029*24476^(5/14) 8299620919965809 a001 5702887/2537720636*24476^(5/14) 8299620919965853 a001 14930352/6643838879*24476^(5/14) 8299620919965859 a001 39088169/17393796001*24476^(5/14) 8299620919965860 a001 102334155/45537549124*24476^(5/14) 8299620919965860 a001 267914296/119218851371*24476^(5/14) 8299620919965860 a001 3524667/1568437211*24476^(5/14) 8299620919965860 a001 1836311903/817138163596*24476^(5/14) 8299620919965860 a001 4807526976/2139295485799*24476^(5/14) 8299620919965860 a001 12586269025/5600748293801*24476^(5/14) 8299620919965860 a001 32951280099/14662949395604*24476^(5/14) 8299620919965860 a001 53316291173/23725150497407*24476^(5/14) 8299620919965860 a001 20365011074/9062201101803*24476^(5/14) 8299620919965860 a001 7778742049/3461452808002*24476^(5/14) 8299620919965860 a001 2971215073/1322157322203*24476^(5/14) 8299620919965860 a001 1134903170/505019158607*24476^(5/14) 8299620919965860 a001 433494437/192900153618*24476^(5/14) 8299620919965860 a001 165580141/73681302247*24476^(5/14) 8299620919965861 a001 63245986/28143753123*24476^(5/14) 8299620919965863 a001 24157817/10749957122*24476^(5/14) 8299620919965880 a001 9227465/4106118243*24476^(5/14) 8299620919965994 a001 3524578/1568397607*24476^(5/14) 8299620919966776 a001 1346269/599074578*24476^(5/14) 8299620919972138 a001 514229/228826127*24476^(5/14) 8299620920007992 a001 28657/54018521*24476^(1/2) 8299620920008885 a001 196418/87403803*24476^(5/14) 8299620920025788 a001 17711/439204*39603^(3/44) 8299620920056243 a001 17711/141422324*103682^(9/16) 8299620920152750 a001 17711/599074578*103682^(11/16) 8299620920206863 a001 17711/710647*39603^(5/44) 8299620920249258 a001 17711/2537720636*103682^(13/16) 8299620920260754 a001 75025/33385282*24476^(5/14) 8299620920345766 a001 17711/10749957122*103682^(15/16) 8299620920379939 a001 6765/370248451*15127^(7/8) 8299620920416077 a001 17711/271443*15127^(1/40) 8299620920470111 a001 17711/1149851*39603^(7/44) 8299620920701971 a001 17711/1860498*39603^(9/44) 8299620920945820 a001 17711/3010349*39603^(1/4) 8299620921172603 a001 46368/4870847*24476^(3/14) 8299620921185090 a001 17711/4870847*39603^(13/44) 8299620921259261 a001 10946/710647*9349^(7/38) 8299620921626373 a001 6624/101521*9349^(1/38) 8299620921832320 a001 121393/12752043*24476^(3/14) 8299620921833586 a001 46368/3010349*24476^(1/6) 8299620921928571 a001 317811/33385282*24476^(3/14) 8299620921942614 a001 832040/87403803*24476^(3/14) 8299620921944663 a001 46347/4868641*24476^(3/14) 8299620921944962 a001 5702887/599074578*24476^(3/14) 8299620921945006 a001 14930352/1568397607*24476^(3/14) 8299620921945012 a001 39088169/4106118243*24476^(3/14) 8299620921945013 a001 102334155/10749957122*24476^(3/14) 8299620921945013 a001 267914296/28143753123*24476^(3/14) 8299620921945013 a001 701408733/73681302247*24476^(3/14) 8299620921945013 a001 1836311903/192900153618*24476^(3/14) 8299620921945013 a001 102287808/10745088481*24476^(3/14) 8299620921945013 a001 12586269025/1322157322203*24476^(3/14) 8299620921945013 a001 32951280099/3461452808002*24476^(3/14) 8299620921945013 a001 86267571272/9062201101803*24476^(3/14) 8299620921945013 a001 225851433717/23725150497407*24476^(3/14) 8299620921945013 a001 139583862445/14662949395604*24476^(3/14) 8299620921945013 a001 53316291173/5600748293801*24476^(3/14) 8299620921945013 a001 20365011074/2139295485799*24476^(3/14) 8299620921945013 a001 7778742049/817138163596*24476^(3/14) 8299620921945013 a001 2971215073/312119004989*24476^(3/14) 8299620921945013 a001 1134903170/119218851371*24476^(3/14) 8299620921945013 a001 433494437/45537549124*24476^(3/14) 8299620921945013 a001 165580141/17393796001*24476^(3/14) 8299620921945014 a001 63245986/6643838879*24476^(3/14) 8299620921945016 a001 24157817/2537720636*24476^(3/14) 8299620921945033 a001 9227465/969323029*24476^(3/14) 8299620921945147 a001 3524578/370248451*24476^(3/14) 8299620921945929 a001 1346269/141422324*24476^(3/14) 8299620921951293 a001 514229/54018521*24476^(3/14) 8299620921987091 a001 28657/12752043*24476^(5/14) 8299620921988058 a001 196418/20633239*24476^(3/14) 8299620922240048 a001 75025/7881196*24476^(3/14) 8299620922299829 a001 121393/1860498*9349^(1/38) 8299620922385266 a001 17711/439204*15127^(3/40) 8299620922398084 a001 317811/4870847*9349^(1/38) 8299620922458810 a001 196418/3010349*9349^(1/38) 8299620922489990 a001 2576/103361*24476^(5/42) 8299620922492222 a001 121393/7881196*24476^(1/6) 8299620922588316 a001 10959/711491*24476^(1/6) 8299620922602336 a001 832040/54018521*24476^(1/6) 8299620922604381 a001 2178309/141422324*24476^(1/6) 8299620922604680 a001 5702887/370248451*24476^(1/6) 8299620922604723 a001 14930352/969323029*24476^(1/6) 8299620922604730 a001 39088169/2537720636*24476^(1/6) 8299620922604731 a001 102334155/6643838879*24476^(1/6) 8299620922604731 a001 9238424/599786069*24476^(1/6) 8299620922604731 a001 701408733/45537549124*24476^(1/6) 8299620922604731 a001 1836311903/119218851371*24476^(1/6) 8299620922604731 a001 4807526976/312119004989*24476^(1/6) 8299620922604731 a001 12586269025/817138163596*24476^(1/6) 8299620922604731 a001 32951280099/2139295485799*24476^(1/6) 8299620922604731 a001 86267571272/5600748293801*24476^(1/6) 8299620922604731 a001 7787980473/505618944676*24476^(1/6) 8299620922604731 a001 365435296162/23725150497407*24476^(1/6) 8299620922604731 a001 139583862445/9062201101803*24476^(1/6) 8299620922604731 a001 53316291173/3461452808002*24476^(1/6) 8299620922604731 a001 20365011074/1322157322203*24476^(1/6) 8299620922604731 a001 7778742049/505019158607*24476^(1/6) 8299620922604731 a001 2971215073/192900153618*24476^(1/6) 8299620922604731 a001 1134903170/73681302247*24476^(1/6) 8299620922604731 a001 433494437/28143753123*24476^(1/6) 8299620922604731 a001 165580141/10749957122*24476^(1/6) 8299620922604731 a001 63245986/4106118243*24476^(1/6) 8299620922604734 a001 24157817/1568397607*24476^(1/6) 8299620922604750 a001 9227465/599074578*24476^(1/6) 8299620922604864 a001 3524578/228826127*24476^(1/6) 8299620922605646 a001 1346269/87403803*24476^(1/6) 8299620922611001 a001 514229/33385282*24476^(1/6) 8299620922647705 a001 196418/12752043*24476^(1/6) 8299620922716047 a001 75025/1149851*9349^(1/38) 8299620922899282 a001 75025/4870847*24476^(1/6) 8299620923058618 a001 2255/90481*5778^(5/36) 8299620923131041 a001 11592/35355581*64079^(1/2) 8299620923151456 a001 121393/4870847*24476^(5/42) 8299620923158382 a001 46368/1149851*24476^(1/14) 8299620923306227 a001 28657/4870847*24476^(11/42) 8299620923560265 a001 75025/3010349*24476^(5/42) 8299620923590796 a001 17711/599074578*39603^(3/4) 8299620923790460 a001 121393/370248451*64079^(1/2) 8299620923795388 a001 6624/101521*24476^(1/42) 8299620923812440 a001 121393/3010349*24476^(1/14) 8299620923876271 a001 15456/9381251041*167761^(9/10) 8299620923886667 a001 317811/969323029*64079^(1/2) 8299620923900704 a001 610/1860499*64079^(1/2) 8299620923902752 a001 2178309/6643838879*64079^(1/2) 8299620923903051 a001 5702887/17393796001*64079^(1/2) 8299620923903094 a001 3732588/11384387281*64079^(1/2) 8299620923903101 a001 39088169/119218851371*64079^(1/2) 8299620923903101 a001 9303105/28374454999*64079^(1/2) 8299620923903102 a001 66978574/204284540899*64079^(1/2) 8299620923903102 a001 701408733/2139295485799*64079^(1/2) 8299620923903102 a001 1836311903/5600748293801*64079^(1/2) 8299620923903102 a001 1201881744/3665737348901*64079^(1/2) 8299620923903102 a001 7778742049/23725150497407*64079^(1/2) 8299620923903102 a001 2971215073/9062201101803*64079^(1/2) 8299620923903102 a001 567451585/1730726404001*64079^(1/2) 8299620923903102 a001 433494437/1322157322203*64079^(1/2) 8299620923903102 a001 165580141/505019158607*64079^(1/2) 8299620923903102 a001 31622993/96450076809*64079^(1/2) 8299620923903104 a001 24157817/73681302247*64079^(1/2) 8299620923903121 a001 9227465/28143753123*64079^(1/2) 8299620923903235 a001 1762289/5374978561*64079^(1/2) 8299620923904017 a001 1346269/4106118243*64079^(1/2) 8299620923907865 a001 317811/7881196*24476^(1/14) 8299620923909379 a001 514229/1568397607*64079^(1/2) 8299620923921788 a001 75640/1875749*24476^(1/14) 8299620923923819 a001 2178309/54018521*24476^(1/14) 8299620923924115 a001 5702887/141422324*24476^(1/14) 8299620923924159 a001 14930352/370248451*24476^(1/14) 8299620923924165 a001 39088169/969323029*24476^(1/14) 8299620923924166 a001 9303105/230701876*24476^(1/14) 8299620923924166 a001 267914296/6643838879*24476^(1/14) 8299620923924166 a001 701408733/17393796001*24476^(1/14) 8299620923924166 a001 1836311903/45537549124*24476^(1/14) 8299620923924166 a001 4807526976/119218851371*24476^(1/14) 8299620923924166 a001 1144206275/28374454999*24476^(1/14) 8299620923924166 a001 32951280099/817138163596*24476^(1/14) 8299620923924166 a001 86267571272/2139295485799*24476^(1/14) 8299620923924166 a001 225851433717/5600748293801*24476^(1/14) 8299620923924166 a001 591286729879/14662949395604*24476^(1/14) 8299620923924166 a001 365435296162/9062201101803*24476^(1/14) 8299620923924166 a001 139583862445/3461452808002*24476^(1/14) 8299620923924166 a001 53316291173/1322157322203*24476^(1/14) 8299620923924166 a001 20365011074/505019158607*24476^(1/14) 8299620923924166 a001 7778742049/192900153618*24476^(1/14) 8299620923924166 a001 2971215073/73681302247*24476^(1/14) 8299620923924166 a001 1134903170/28143753123*24476^(1/14) 8299620923924166 a001 433494437/10749957122*24476^(1/14) 8299620923924166 a001 165580141/4106118243*24476^(1/14) 8299620923924166 a001 63245986/1568397607*24476^(1/14) 8299620923924169 a001 24157817/599074578*24476^(1/14) 8299620923924185 a001 9227465/228826127*24476^(1/14) 8299620923924299 a001 3524578/87403803*24476^(1/14) 8299620923925074 a001 1346269/33385282*24476^(1/14) 8299620923930392 a001 514229/12752043*24476^(1/14) 8299620923935251 a001 11592/634430159*167761^(7/10) 8299620923946127 a001 98209/299537289*64079^(1/2) 8299620923966842 a001 196418/4870847*24476^(1/14) 8299620923967211 a001 28657/3010349*24476^(3/14) 8299620923994231 a001 46368/228826127*167761^(1/2) 8299620924053231 a001 46368/20633239*167761^(3/10) 8299620924101046 a001 46368/119218851371*439204^(17/18) 8299620924105827 a001 15456/9381251041*439204^(5/6) 8299620924109794 a001 2576/103361*167761^(1/10) 8299620924110608 a001 46368/6643838879*439204^(13/18) 8299620924115388 a001 6624/224056801*439204^(11/18) 8299620924120169 a001 46368/370248451*439204^(1/2) 8299620924124948 a001 15456/29134601*439204^(7/18) 8299620924129750 a001 46368/20633239*439204^(5/18) 8299620924134161 a001 46368/4870847*439204^(1/6) 8299620924138543 a001 2576/33281921*1149851^(1/2) 8299620924139282 a001 2576/103361*20633239^(1/14) 8299620924139284 a001 2576/103361*2537720636^(1/18) 8299620924139284 a001 2576/103361*312119004989^(1/22) 8299620924139284 a001 2576/103361*28143753123^(1/20) 8299620924139284 a001 2576/103361*228826127^(1/16) 8299620924139328 a001 17711/710647*15127^(1/8) 8299620924139484 a001 2576/103361*1860498^(1/12) 8299620924141224 a001 46368/969323029*3010349^(1/2) 8299620924141314 a001 46368/4870847*7881196^(3/22) 8299620924141332 a001 46368/4870847*2537720636^(1/10) 8299620924141332 a001 46368/4870847*14662949395604^(1/14) 8299620924141332 a001 46368/4870847*192900153618^(1/12) 8299620924141333 a001 46368/4870847*33385282^(1/8) 8299620924141554 a001 46368/2139295485799*7881196^(21/22) 8299620924141566 a001 46368/505019158607*7881196^(19/22) 8299620924141570 a001 46368/312119004989*7881196^(5/6) 8299620924141578 a001 46368/119218851371*7881196^(17/22) 8299620924141590 a001 15456/9381251041*7881196^(15/22) 8299620924141603 a001 46368/6643838879*7881196^(13/22) 8299620924141615 a001 6624/224056801*7881196^(1/2) 8299620924141627 a001 46368/370248451*7881196^(9/22) 8299620924141630 a001 15456/4250681*141422324^(1/6) 8299620924141631 a001 15456/4250681*73681302247^(1/8) 8299620924141638 a001 15456/29134601*7881196^(7/22) 8299620924141663 a001 144/10749853441*20633239^(13/14) 8299620924141664 a001 46368/2139295485799*20633239^(9/10) 8299620924141666 a001 46368/312119004989*20633239^(11/14) 8299620924141668 a001 6624/10525900321*20633239^(7/10) 8299620924141669 a001 15456/9381251041*20633239^(9/14) 8299620924141671 a001 46368/20633239*7881196^(5/22) 8299620924141672 a001 11592/634430159*20633239^(1/2) 8299620924141674 a001 144/103681*45537549124^(1/6) 8299620924141674 a001 46368/228826127*20633239^(5/14) 8299620924141675 a001 15456/29134601*20633239^(3/10) 8299620924141680 a001 15456/1368706081*54018521^(1/2) 8299620924141680 a001 15456/29134601*17393796001^(3/14) 8299620924141680 a001 15456/29134601*14662949395604^(1/6) 8299620924141680 a001 15456/29134601*599074578^(1/4) 8299620924141681 a001 144/10749853441*141422324^(5/6) 8299620924141681 a001 46368/6643838879*141422324^(1/2) 8299620924141681 a001 46368/228826127*2537720636^(5/18) 8299620924141681 a001 46368/228826127*312119004989^(5/22) 8299620924141681 a001 46368/228826127*3461452808002^(5/24) 8299620924141681 a001 46368/228826127*28143753123^(1/4) 8299620924141681 a001 46368/228826127*228826127^(5/16) 8299620924141682 a001 23184/5374978561*370248451^(1/2) 8299620924141682 a001 2576/33281921*1322157322203^(1/4) 8299620924141682 a001 46368/17393796001*969323029^(1/2) 8299620924141682 a001 6624/224056801*312119004989^(3/10) 8299620924141682 a001 6624/224056801*1568397607^(3/8) 8299620924141682 a001 144/10749853441*2537720636^(13/18) 8299620924141682 a001 46368/2139295485799*2537720636^(7/10) 8299620924141682 a001 46368/312119004989*2537720636^(11/18) 8299620924141682 a001 15456/9381251041*2537720636^(1/2) 8299620924141682 a001 11592/11384387281*6643838879^(1/2) 8299620924141682 a001 46368/2139295485799*17393796001^(9/14) 8299620924141682 a001 6624/10525900321*17393796001^(1/2) 8299620924141682 a001 15456/9381251041*312119004989^(9/22) 8299620924141682 a001 15456/9381251041*14662949395604^(5/14) 8299620924141682 a001 15456/9381251041*192900153618^(5/12) 8299620924141682 a001 15456/9381251041*28143753123^(9/20) 8299620924141682 a001 6624/10525900321*14662949395604^(7/18) 8299620924141682 a001 6624/10525900321*505019158607^(7/16) 8299620924141682 a001 46368/119218851371*45537549124^(1/2) 8299620924141682 a001 2576/10716675201*119218851371^(1/2) 8299620924141682 a001 144/10749853441*312119004989^(13/22) 8299620924141682 a001 46368/505019158607*817138163596^(1/2) 8299620924141682 a001 144/10749853441*3461452808002^(13/24) 8299620924141682 a001 46368/2139295485799*14662949395604^(1/2) 8299620924141682 a001 11592/204284540899*2139295485799^(1/2) 8299620924141682 a001 46368/312119004989*3461452808002^(11/24) 8299620924141682 a001 46368/2139295485799*192900153618^(7/12) 8299620924141682 a001 144/10749853441*73681302247^(5/8) 8299620924141682 a001 46368/312119004989*28143753123^(11/20) 8299620924141682 a001 144/10749853441*28143753123^(13/20) 8299620924141682 a001 46368/6643838879*73681302247^(3/8) 8299620924141682 a001 15456/3020733700601*4106118243^(3/4) 8299620924141682 a001 11592/634430159*2537720636^(7/18) 8299620924141682 a001 11592/634430159*17393796001^(5/14) 8299620924141682 a001 11592/634430159*312119004989^(7/22) 8299620924141682 a001 11592/634430159*14662949395604^(5/18) 8299620924141682 a001 11592/634430159*505019158607^(5/16) 8299620924141682 a001 11592/634430159*28143753123^(7/20) 8299620924141682 a001 46368/312119004989*1568397607^(5/8) 8299620924141682 a001 46368/969323029*9062201101803^(1/4) 8299620924141682 a001 11592/634430159*599074578^(5/12) 8299620924141682 a001 6624/10525900321*599074578^(7/12) 8299620924141682 a001 46368/2139295485799*599074578^(3/4) 8299620924141682 a001 46368/370248451*2537720636^(3/10) 8299620924141682 a001 46368/370248451*14662949395604^(3/14) 8299620924141682 a001 46368/370248451*192900153618^(1/4) 8299620924141682 a001 11592/634430159*228826127^(7/16) 8299620924141682 a001 15456/9381251041*228826127^(9/16) 8299620924141682 a001 46368/312119004989*228826127^(11/16) 8299620924141682 a001 144/10749853441*228826127^(13/16) 8299620924141682 a001 11592/35355581*4106118243^(1/4) 8299620924141682 a001 46368/505019158607*87403803^(3/4) 8299620924141683 a001 15456/29134601*33385282^(7/24) 8299620924141684 a001 46368/54018521*817138163596^(1/6) 8299620924141684 a001 46368/370248451*33385282^(3/8) 8299620924141685 a001 46368/54018521*87403803^(1/4) 8299620924141685 a001 6624/224056801*33385282^(11/24) 8299620924141686 a001 46368/6643838879*33385282^(13/24) 8299620924141686 a001 15456/9381251041*33385282^(5/8) 8299620924141687 a001 46368/119218851371*33385282^(17/24) 8299620924141687 a001 144/103681*12752043^(1/4) 8299620924141687 a001 46368/505019158607*33385282^(19/24) 8299620924141688 a001 46368/2139295485799*33385282^(7/8) 8299620924141689 a001 15456/3020733700601*33385282^(23/24) 8299620924141691 a001 46368/4870847*1860498^(3/20) 8299620924141697 a001 46368/20633239*20633239^(3/14) 8299620924141701 a001 46368/20633239*2537720636^(1/6) 8299620924141701 a001 46368/20633239*312119004989^(3/22) 8299620924141701 a001 46368/20633239*28143753123^(3/20) 8299620924141701 a001 46368/20633239*228826127^(3/16) 8299620924141703 a001 46368/20633239*33385282^(5/24) 8299620924141720 a001 46368/119218851371*12752043^(3/4) 8299620924141793 a001 11592/1970299*7881196^(1/6) 8299620924141815 a001 11592/1970299*312119004989^(1/10) 8299620924141815 a001 11592/1970299*1568397607^(1/8) 8299620924142300 a001 46368/20633239*1860498^(1/4) 8299620924142520 a001 15456/29134601*1860498^(7/20) 8299620924142595 a001 46368/3010349*20633239^(1/10) 8299620924142597 a001 46368/3010349*17393796001^(1/14) 8299620924142597 a001 46368/3010349*14662949395604^(1/18) 8299620924142597 a001 46368/3010349*505019158607^(1/16) 8299620924142597 a001 46368/3010349*599074578^(1/12) 8299620924142680 a001 46368/228826127*1860498^(5/12) 8299620924142761 a001 46368/370248451*1860498^(9/20) 8299620924143000 a001 6624/224056801*1860498^(11/20) 8299620924143080 a001 11592/634430159*1860498^(7/12) 8299620924143240 a001 46368/6643838879*1860498^(13/20) 8299620924143480 a001 15456/9381251041*1860498^(3/4) 8299620924143720 a001 46368/119218851371*1860498^(17/20) 8299620924143879 a001 46368/312119004989*1860498^(11/12) 8299620924143959 a001 46368/505019158607*1860498^(19/20) 8299620924144652 a001 46368/3010349*710647^(1/8) 8299620924145569 a001 46368/1149851*439204^(1/18) 8299620924147843 a001 15456/29134601*710647^(3/8) 8299620924147953 a001 46368/1149851*7881196^(1/22) 8299620924147959 a001 46368/1149851*33385282^(1/24) 8299620924148079 a001 46368/1149851*1860498^(1/20) 8299620924151953 a001 11592/634430159*710647^(5/8) 8299620924156062 a001 6624/10525900321*710647^(7/8) 8299620924169791 a001 15456/4250681*271443^(1/4) 8299620924196213 a001 46368/1149851*103682^(1/16) 8299620924198002 a001 75025/228826127*64079^(1/2) 8299620924216669 a001 75025/1860498*24476^(1/14) 8299620924226163 a001 46368/6643838879*271443^(3/4) 8299620924245515 a001 6624/101521*39603^(1/44) 8299620924286093 a001 46368/4870847*103682^(3/16) 8299620924382970 a001 46368/20633239*103682^(5/16) 8299620924453143 a001 4181/167761*3571^(5/34) 8299620924468844 a001 121393/1860498*24476^(1/42) 8299620924479176 a001 28657/439204*9349^(1/38) 8299620924479457 a001 15456/29134601*103682^(7/16) 8299620924508762 a001 46368/1149851*39603^(3/44) 8299620924535689 a001 121393/73681302247*167761^(9/10) 8299620924567100 a001 317811/4870847*24476^(1/42) 8299620924575966 a001 46368/370248451*103682^(9/16) 8299620924594670 a001 121393/6643838879*167761^(7/10) 8299620924623615 a001 28657/1860498*24476^(1/6) 8299620924627825 a001 196418/3010349*24476^(1/42) 8299620924631897 a001 105937/64300051206*167761^(9/10) 8299620924645934 a001 832040/505019158607*167761^(9/10) 8299620924647982 a001 726103/440719107401*167761^(9/10) 8299620924648280 a001 5702887/3461452808002*167761^(9/10) 8299620924648324 a001 4976784/3020733700601*167761^(9/10) 8299620924648330 a001 39088169/23725150497407*167761^(9/10) 8299620924648334 a001 24157817/14662949395604*167761^(9/10) 8299620924648351 a001 9227465/5600748293801*167761^(9/10) 8299620924648465 a001 3524578/2139295485799*167761^(9/10) 8299620924649247 a001 1346269/817138163596*167761^(9/10) 8299620924653650 a001 121393/599074578*167761^(1/2) 8299620924654609 a001 514229/312119004989*167761^(9/10) 8299620924672473 a001 6624/224056801*103682^(11/16) 8299620924690877 a001 10959/599786069*167761^(7/10) 8299620924691357 a001 196418/119218851371*167761^(9/10) 8299620924704914 a001 208010/11384387281*167761^(7/10) 8299620924706962 a001 2178309/119218851371*167761^(7/10) 8299620924707261 a001 5702887/312119004989*167761^(7/10) 8299620924707304 a001 3732588/204284540899*167761^(7/10) 8299620924707311 a001 39088169/2139295485799*167761^(7/10) 8299620924707312 a001 102334155/5600748293801*167761^(7/10) 8299620924707312 a001 10946/599074579*167761^(7/10) 8299620924707312 a001 433494437/23725150497407*167761^(7/10) 8299620924707312 a001 165580141/9062201101803*167761^(7/10) 8299620924707312 a001 31622993/1730726404001*167761^(7/10) 8299620924707315 a001 24157817/1322157322203*167761^(7/10) 8299620924707331 a001 9227465/505019158607*167761^(7/10) 8299620924707445 a001 1762289/96450076809*167761^(7/10) 8299620924708228 a001 1346269/73681302247*167761^(7/10) 8299620924712633 a001 121393/54018521*167761^(3/10) 8299620924713589 a001 514229/28143753123*167761^(7/10) 8299620924740623 a001 2576/103361*39603^(5/44) 8299620924749858 a001 317811/1568397607*167761^(1/2) 8299620924750337 a001 98209/5374978561*167761^(7/10) 8299620924760465 a001 121393/312119004989*439204^(17/18) 8299620924763894 a001 832040/4106118243*167761^(1/2) 8299620924765246 a001 121393/73681302247*439204^(5/6) 8299620924765942 a001 987/4870846*167761^(1/2) 8299620924766241 a001 5702887/28143753123*167761^(1/2) 8299620924766284 a001 14930352/73681302247*167761^(1/2) 8299620924766291 a001 39088169/192900153618*167761^(1/2) 8299620924766292 a001 102334155/505019158607*167761^(1/2) 8299620924766292 a001 267914296/1322157322203*167761^(1/2) 8299620924766292 a001 701408733/3461452808002*167761^(1/2) 8299620924766292 a001 1836311903/9062201101803*167761^(1/2) 8299620924766292 a001 4807526976/23725150497407*167761^(1/2) 8299620924766292 a001 2971215073/14662949395604*167761^(1/2) 8299620924766292 a001 1134903170/5600748293801*167761^(1/2) 8299620924766292 a001 433494437/2139295485799*167761^(1/2) 8299620924766292 a001 165580141/817138163596*167761^(1/2) 8299620924766292 a001 63245986/312119004989*167761^(1/2) 8299620924766295 a001 24157817/119218851371*167761^(1/2) 8299620924766311 a001 9227465/45537549124*167761^(1/2) 8299620924766426 a001 3524578/17393796001*167761^(1/2) 8299620924767208 a001 1346269/6643838879*167761^(1/2) 8299620924768981 a001 46368/6643838879*103682^(13/16) 8299620924770026 a001 121393/17393796001*439204^(13/18) 8299620924771260 a001 121393/4870847*167761^(1/10) 8299620924772569 a001 514229/2537720636*167761^(1/2) 8299620924774807 a001 121393/4106118243*439204^(11/18) 8299620924779588 a001 121393/969323029*439204^(1/2) 8299620924784368 a001 121393/228826127*439204^(7/18) 8299620924789152 a001 121393/54018521*439204^(5/18) 8299620924793878 a001 121393/12752043*439204^(1/6) 8299620924797962 a001 121393/1568397607*1149851^(1/2) 8299620924799626 a001 121393/3010349*439204^(1/18) 8299620924800642 a001 121393/2537720636*3010349^(1/2) 8299620924800749 a001 121393/4870847*20633239^(1/14) 8299620924800750 a001 121393/4870847*2537720636^(1/18) 8299620924800750 a001 121393/4870847*312119004989^(1/22) 8299620924800750 a001 121393/4870847*28143753123^(1/20) 8299620924800750 a001 121393/4870847*228826127^(1/16) 8299620924800950 a001 121393/4870847*1860498^(1/12) 8299620924800973 a001 121393/5600748293801*7881196^(21/22) 8299620924800985 a001 121393/1322157322203*7881196^(19/22) 8299620924800989 a001 121393/817138163596*7881196^(5/6) 8299620924800997 a001 121393/312119004989*7881196^(17/22) 8299620924801009 a001 121393/73681302247*7881196^(15/22) 8299620924801021 a001 121393/17393796001*7881196^(13/22) 8299620924801031 a001 121393/12752043*7881196^(3/22) 8299620924801033 a001 121393/4106118243*7881196^(1/2) 8299620924801046 a001 121393/969323029*7881196^(9/22) 8299620924801049 a001 121393/12752043*2537720636^(1/10) 8299620924801049 a001 121393/12752043*14662949395604^(1/14) 8299620924801049 a001 121393/12752043*192900153618^(1/12) 8299620924801050 a001 121393/12752043*33385282^(1/8) 8299620924801058 a001 121393/228826127*7881196^(7/22) 8299620924801073 a001 121393/54018521*7881196^(5/22) 8299620924801082 a001 121393/9062201101803*20633239^(13/14) 8299620924801083 a001 121393/5600748293801*20633239^(9/10) 8299620924801085 a001 121393/817138163596*20633239^(11/14) 8299620924801087 a001 121393/192900153618*20633239^(7/10) 8299620924801088 a001 121393/73681302247*20633239^(9/14) 8299620924801091 a001 121393/6643838879*20633239^(1/2) 8299620924801093 a001 121393/33385282*141422324^(1/6) 8299620924801093 a001 121393/33385282*73681302247^(1/8) 8299620924801093 a001 121393/599074578*20633239^(5/14) 8299620924801094 a001 121393/228826127*20633239^(3/10) 8299620924801097 a001 121393/20633239*7881196^(1/6) 8299620924801099 a001 121393/10749957122*54018521^(1/2) 8299620924801099 a001 121393/54018521*20633239^(3/14) 8299620924801099 a001 121393/87403803*45537549124^(1/6) 8299620924801100 a001 121393/9062201101803*141422324^(5/6) 8299620924801100 a001 121393/17393796001*141422324^(1/2) 8299620924801100 a001 121393/228826127*17393796001^(3/14) 8299620924801100 a001 121393/228826127*14662949395604^(1/6) 8299620924801100 a001 121393/228826127*599074578^(1/4) 8299620924801100 a001 121393/28143753123*370248451^(1/2) 8299620924801100 a001 121393/599074578*2537720636^(5/18) 8299620924801100 a001 121393/599074578*312119004989^(5/22) 8299620924801100 a001 121393/599074578*3461452808002^(5/24) 8299620924801100 a001 121393/599074578*28143753123^(1/4) 8299620924801100 a001 121393/45537549124*969323029^(1/2) 8299620924801100 a001 121393/1568397607*1322157322203^(1/4) 8299620924801100 a001 121393/9062201101803*2537720636^(13/18) 8299620924801100 a001 121393/5600748293801*2537720636^(7/10) 8299620924801100 a001 121393/817138163596*2537720636^(11/18) 8299620924801100 a001 121393/73681302247*2537720636^(1/2) 8299620924801100 a001 121393/4106118243*312119004989^(3/10) 8299620924801100 a001 121393/6643838879*2537720636^(7/18) 8299620924801100 a001 121393/119218851371*6643838879^(1/2) 8299620924801100 a001 121393/5600748293801*17393796001^(9/14) 8299620924801100 a001 121393/192900153618*17393796001^(1/2) 8299620924801100 a001 121393/312119004989*45537549124^(1/2) 8299620924801100 a001 121393/73681302247*312119004989^(9/22) 8299620924801100 a001 121393/73681302247*14662949395604^(5/14) 8299620924801100 a001 121393/73681302247*192900153618^(5/12) 8299620924801100 a001 121393/505019158607*119218851371^(1/2) 8299620924801100 a001 121393/192900153618*14662949395604^(7/18) 8299620924801100 a001 121393/192900153618*505019158607^(7/16) 8299620924801100 a001 121393/9062201101803*312119004989^(13/22) 8299620924801100 a001 121393/817138163596*312119004989^(1/2) 8299620924801100 a001 121393/1322157322203*817138163596^(1/2) 8299620924801100 a001 121393/5600748293801*14662949395604^(1/2) 8299620924801100 a001 121393/2139295485799*2139295485799^(1/2) 8299620924801100 a001 121393/817138163596*3461452808002^(11/24) 8299620924801100 a001 121393/5600748293801*505019158607^(9/16) 8299620924801100 a001 121393/5600748293801*192900153618^(7/12) 8299620924801100 a001 121393/9062201101803*73681302247^(5/8) 8299620924801100 a001 121393/73681302247*28143753123^(9/20) 8299620924801100 a001 121393/817138163596*28143753123^(11/20) 8299620924801100 a001 121393/9062201101803*28143753123^(13/20) 8299620924801100 a001 121393/17393796001*73681302247^(3/8) 8299620924801100 a001 121393/6643838879*17393796001^(5/14) 8299620924801100 a001 121393/6643838879*312119004989^(7/22) 8299620924801100 a001 121393/6643838879*14662949395604^(5/18) 8299620924801100 a001 121393/6643838879*505019158607^(5/16) 8299620924801100 a001 121393/6643838879*28143753123^(7/20) 8299620924801100 a001 121393/23725150497407*4106118243^(3/4) 8299620924801100 a001 121393/4106118243*1568397607^(3/8) 8299620924801100 a001 121393/2537720636*9062201101803^(1/4) 8299620924801100 a001 121393/817138163596*1568397607^(5/8) 8299620924801100 a001 121393/969323029*2537720636^(3/10) 8299620924801100 a001 121393/969323029*14662949395604^(3/14) 8299620924801100 a001 121393/969323029*192900153618^(1/4) 8299620924801100 a001 121393/6643838879*599074578^(5/12) 8299620924801100 a001 121393/192900153618*599074578^(7/12) 8299620924801100 a001 121393/5600748293801*599074578^(3/4) 8299620924801100 a001 121393/599074578*228826127^(5/16) 8299620924801100 a001 121393/370248451*4106118243^(1/4) 8299620924801100 a001 121393/6643838879*228826127^(7/16) 8299620924801100 a001 121393/73681302247*228826127^(9/16) 8299620924801100 a001 121393/817138163596*228826127^(11/16) 8299620924801100 a001 121393/9062201101803*228826127^(13/16) 8299620924801101 a001 233/271444*817138163596^(1/6) 8299620924801101 a001 233/271444*87403803^(1/4) 8299620924801101 a001 121393/1322157322203*87403803^(3/4) 8299620924801102 a001 121393/228826127*33385282^(7/24) 8299620924801103 a001 121393/969323029*33385282^(3/8) 8299620924801103 a001 121393/54018521*2537720636^(1/6) 8299620924801103 a001 121393/54018521*312119004989^(3/22) 8299620924801103 a001 121393/54018521*28143753123^(3/20) 8299620924801103 a001 121393/54018521*228826127^(3/16) 8299620924801104 a001 121393/4106118243*33385282^(11/24) 8299620924801104 a001 121393/17393796001*33385282^(13/24) 8299620924801105 a001 121393/54018521*33385282^(5/24) 8299620924801105 a001 121393/73681302247*33385282^(5/8) 8299620924801106 a001 121393/312119004989*33385282^(17/24) 8299620924801106 a001 121393/1322157322203*33385282^(19/24) 8299620924801107 a001 121393/5600748293801*33385282^(7/8) 8299620924801107 a001 121393/23725150497407*33385282^(23/24) 8299620924801112 a001 121393/87403803*12752043^(1/4) 8299620924801120 a001 121393/20633239*312119004989^(1/10) 8299620924801120 a001 121393/20633239*1568397607^(1/8) 8299620924801139 a001 121393/312119004989*12752043^(3/4) 8299620924801232 a001 121393/7881196*20633239^(1/10) 8299620924801234 a001 121393/7881196*17393796001^(1/14) 8299620924801234 a001 121393/7881196*14662949395604^(1/18) 8299620924801234 a001 121393/7881196*505019158607^(1/16) 8299620924801234 a001 121393/7881196*599074578^(1/12) 8299620924801409 a001 121393/12752043*1860498^(3/20) 8299620924801703 a001 121393/54018521*1860498^(1/4) 8299620924801939 a001 121393/228826127*1860498^(7/20) 8299620924802010 a001 121393/3010349*7881196^(1/22) 8299620924802016 a001 121393/3010349*33385282^(1/24) 8299620924802099 a001 121393/599074578*1860498^(5/12) 8299620924802136 a001 121393/3010349*1860498^(1/20) 8299620924802179 a001 121393/969323029*1860498^(9/20) 8299620924802419 a001 121393/4106118243*1860498^(11/20) 8299620924802499 a001 121393/6643838879*1860498^(7/12) 8299620924802659 a001 121393/17393796001*1860498^(13/20) 8299620924802899 a001 121393/73681302247*1860498^(3/4) 8299620924803138 a001 121393/312119004989*1860498^(17/20) 8299620924803288 a001 121393/7881196*710647^(1/8) 8299620924803298 a001 121393/817138163596*1860498^(11/12) 8299620924803378 a001 121393/1322157322203*1860498^(19/20) 8299620924807263 a001 121393/228826127*710647^(3/8) 8299620924808838 a001 317811/141422324*167761^(3/10) 8299620924809317 a001 196418/969323029*167761^(1/2) 8299620924811372 a001 121393/6643838879*710647^(5/8) 8299620924815480 a001 121393/192900153618*710647^(7/8) 8299620924822874 a001 832040/370248451*167761^(3/10) 8299620924824922 a001 2178309/969323029*167761^(3/10) 8299620924825221 a001 5702887/2537720636*167761^(3/10) 8299620924825265 a001 14930352/6643838879*167761^(3/10) 8299620924825271 a001 39088169/17393796001*167761^(3/10) 8299620924825272 a001 102334155/45537549124*167761^(3/10) 8299620924825272 a001 267914296/119218851371*167761^(3/10) 8299620924825272 a001 3524667/1568437211*167761^(3/10) 8299620924825272 a001 1836311903/817138163596*167761^(3/10) 8299620924825272 a001 4807526976/2139295485799*167761^(3/10) 8299620924825272 a001 12586269025/5600748293801*167761^(3/10) 8299620924825272 a001 32951280099/14662949395604*167761^(3/10) 8299620924825272 a001 53316291173/23725150497407*167761^(3/10) 8299620924825272 a001 20365011074/9062201101803*167761^(3/10) 8299620924825272 a001 7778742049/3461452808002*167761^(3/10) 8299620924825272 a001 2971215073/1322157322203*167761^(3/10) 8299620924825272 a001 1134903170/505019158607*167761^(3/10) 8299620924825272 a001 433494437/192900153618*167761^(3/10) 8299620924825272 a001 165580141/73681302247*167761^(3/10) 8299620924825273 a001 63245986/28143753123*167761^(3/10) 8299620924825275 a001 24157817/10749957122*167761^(3/10) 8299620924825292 a001 9227465/4106118243*167761^(3/10) 8299620924825406 a001 3524578/1568397607*167761^(3/10) 8299620924826188 a001 1346269/599074578*167761^(3/10) 8299620924829253 a001 121393/33385282*271443^(1/4) 8299620924831549 a001 514229/228826127*167761^(3/10) 8299620924850270 a001 121393/3010349*103682^(1/16) 8299620924856673 a001 317811/817138163596*439204^(17/18) 8299620924861454 a001 105937/64300051206*439204^(5/6) 8299620924865489 a001 15456/9381251041*103682^(15/16) 8299620924866234 a001 317811/45537549124*439204^(13/18) 8299620924867767 a001 105937/4250681*167761^(1/10) 8299620924868296 a001 196418/87403803*167761^(3/10) 8299620924870710 a001 832040/2139295485799*439204^(17/18) 8299620924871015 a001 317811/10749957122*439204^(11/18) 8299620924872757 a001 2178309/5600748293801*439204^(17/18) 8299620924873056 a001 5702887/14662949395604*439204^(17/18) 8299620924873127 a001 9227465/23725150497407*439204^(17/18) 8299620924873241 a001 3524578/9062201101803*439204^(17/18) 8299620924874023 a001 1346269/3461452808002*439204^(17/18) 8299620924875490 a001 832040/505019158607*439204^(5/6) 8299620924875795 a001 317811/2537720636*439204^(1/2) 8299620924877538 a001 726103/440719107401*439204^(5/6) 8299620924877837 a001 5702887/3461452808002*439204^(5/6) 8299620924877880 a001 4976784/3020733700601*439204^(5/6) 8299620924877887 a001 39088169/23725150497407*439204^(5/6) 8299620924877891 a001 24157817/14662949395604*439204^(5/6) 8299620924877907 a001 9227465/5600748293801*439204^(5/6) 8299620924878021 a001 3524578/2139295485799*439204^(5/6) 8299620924878804 a001 1346269/817138163596*439204^(5/6) 8299620924879385 a001 514229/1322157322203*439204^(17/18) 8299620924880271 a001 832040/119218851371*439204^(13/18) 8299620924880576 a001 377/710646*439204^(7/18) 8299620924881847 a001 416020/16692641*167761^(1/10) 8299620924882319 a001 2178309/312119004989*439204^(13/18) 8299620924882617 a001 5702887/817138163596*439204^(13/18) 8299620924882661 a001 14930352/2139295485799*439204^(13/18) 8299620924882667 a001 39088169/5600748293801*439204^(13/18) 8299620924882668 a001 102334155/14662949395604*439204^(13/18) 8299620924882669 a001 165580141/23725150497407*439204^(13/18) 8299620924882669 a001 63245986/9062201101803*439204^(13/18) 8299620924882671 a001 24157817/3461452808002*439204^(13/18) 8299620924882688 a001 9227465/1322157322203*439204^(13/18) 8299620924882802 a001 3524578/505019158607*439204^(13/18) 8299620924883584 a001 1346269/192900153618*439204^(13/18) 8299620924883901 a001 726103/29134601*167761^(1/10) 8299620924884165 a001 514229/312119004989*439204^(5/6) 8299620924884201 a001 5702887/228826127*167761^(1/10) 8299620924884245 a001 829464/33281921*167761^(1/10) 8299620924884251 a001 39088169/1568397607*167761^(1/10) 8299620924884252 a001 34111385/1368706081*167761^(1/10) 8299620924884252 a001 133957148/5374978561*167761^(1/10) 8299620924884252 a001 233802911/9381251041*167761^(1/10) 8299620924884252 a001 1836311903/73681302247*167761^(1/10) 8299620924884252 a001 267084832/10716675201*167761^(1/10) 8299620924884252 a001 12586269025/505019158607*167761^(1/10) 8299620924884252 a001 10983760033/440719107401*167761^(1/10) 8299620924884252 a001 43133785636/1730726404001*167761^(1/10) 8299620924884252 a001 75283811239/3020733700601*167761^(1/10) 8299620924884252 a001 182717648081/7331474697802*167761^(1/10) 8299620924884252 a001 139583862445/5600748293801*167761^(1/10) 8299620924884252 a001 53316291173/2139295485799*167761^(1/10) 8299620924884252 a001 10182505537/408569081798*167761^(1/10) 8299620924884252 a001 7778742049/312119004989*167761^(1/10) 8299620924884252 a001 2971215073/119218851371*167761^(1/10) 8299620924884252 a001 567451585/22768774562*167761^(1/10) 8299620924884252 a001 433494437/17393796001*167761^(1/10) 8299620924884252 a001 165580141/6643838879*167761^(1/10) 8299620924884253 a001 31622993/1268860318*167761^(1/10) 8299620924884255 a001 24157817/969323029*167761^(1/10) 8299620924884272 a001 9227465/370248451*167761^(1/10) 8299620924884386 a001 1762289/70711162*167761^(1/10) 8299620924885051 a001 832040/28143753123*439204^(11/18) 8299620924885062 a001 75025/1149851*24476^(1/42) 8299620924885171 a001 1346269/54018521*167761^(1/10) 8299620924885357 a001 317811/141422324*439204^(5/18) 8299620924885582 a001 121393/17393796001*271443^(3/4) 8299620924887099 a001 311187/10525900321*439204^(11/18) 8299620924887398 a001 5702887/192900153618*439204^(11/18) 8299620924887442 a001 14930352/505019158607*439204^(11/18) 8299620924887448 a001 39088169/1322157322203*439204^(11/18) 8299620924887449 a001 6765/228826126*439204^(11/18) 8299620924887449 a001 267914296/9062201101803*439204^(11/18) 8299620924887449 a001 701408733/23725150497407*439204^(11/18) 8299620924887449 a001 433494437/14662949395604*439204^(11/18) 8299620924887449 a001 165580141/5600748293801*439204^(11/18) 8299620924887449 a001 63245986/2139295485799*439204^(11/18) 8299620924887452 a001 24157817/817138163596*439204^(11/18) 8299620924887469 a001 9227465/312119004989*439204^(11/18) 8299620924887583 a001 3524578/119218851371*439204^(11/18) 8299620924888365 a001 1346269/45537549124*439204^(11/18) 8299620924888946 a001 514229/73681302247*439204^(13/18) 8299620924889832 a001 832040/6643838879*439204^(1/2) 8299620924890130 a001 317811/33385282*439204^(1/6) 8299620924890549 a001 514229/20633239*167761^(1/10) 8299620924891880 a001 2178309/17393796001*439204^(1/2) 8299620924892179 a001 1597/12752044*439204^(1/2) 8299620924892222 a001 14930352/119218851371*439204^(1/2) 8299620924892229 a001 39088169/312119004989*439204^(1/2) 8299620924892230 a001 102334155/817138163596*439204^(1/2) 8299620924892230 a001 267914296/2139295485799*439204^(1/2) 8299620924892230 a001 701408733/5600748293801*439204^(1/2) 8299620924892230 a001 1836311903/14662949395604*439204^(1/2) 8299620924892230 a001 2971215073/23725150497407*439204^(1/2) 8299620924892230 a001 1134903170/9062201101803*439204^(1/2) 8299620924892230 a001 433494437/3461452808002*439204^(1/2) 8299620924892230 a001 165580141/1322157322203*439204^(1/2) 8299620924892230 a001 63245986/505019158607*439204^(1/2) 8299620924892233 a001 24157817/192900153618*439204^(1/2) 8299620924892249 a001 9227465/73681302247*439204^(1/2) 8299620924892363 a001 3524578/28143753123*439204^(1/2) 8299620924893146 a001 1346269/10749957122*439204^(1/2) 8299620924893726 a001 514229/17393796001*439204^(11/18) 8299620924894169 a001 105937/1368706081*1149851^(1/2) 8299620924894613 a001 832040/1568397607*439204^(7/18) 8299620924895051 a001 317811/7881196*439204^(1/18) 8299620924896660 a001 726103/1368706081*439204^(7/18) 8299620924896850 a001 317811/6643838879*3010349^(1/2) 8299620924896959 a001 5702887/10749957122*439204^(7/18) 8299620924897003 a001 4976784/9381251041*439204^(7/18) 8299620924897009 a001 39088169/73681302247*439204^(7/18) 8299620924897010 a001 34111385/64300051206*439204^(7/18) 8299620924897010 a001 267914296/505019158607*439204^(7/18) 8299620924897010 a001 233802911/440719107401*439204^(7/18) 8299620924897010 a001 1836311903/3461452808002*439204^(7/18) 8299620924897010 a001 1602508992/3020733700601*439204^(7/18) 8299620924897010 a001 12586269025/23725150497407*439204^(7/18) 8299620924897010 a001 7778742049/14662949395604*439204^(7/18) 8299620924897010 a001 2971215073/5600748293801*439204^(7/18) 8299620924897010 a001 1134903170/2139295485799*439204^(7/18) 8299620924897010 a001 433494437/817138163596*439204^(7/18) 8299620924897010 a001 165580141/312119004989*439204^(7/18) 8299620924897011 a001 63245986/119218851371*439204^(7/18) 8299620924897013 a001 24157817/45537549124*439204^(7/18) 8299620924897030 a001 9227465/17393796001*439204^(7/18) 8299620924897144 a001 3524578/6643838879*439204^(7/18) 8299620924897181 a001 10959/505618944676*7881196^(21/22) 8299620924897193 a001 317811/3461452808002*7881196^(19/22) 8299620924897197 a001 317811/2139295485799*7881196^(5/6) 8299620924897205 a001 317811/817138163596*7881196^(17/22) 8299620924897217 a001 105937/64300051206*7881196^(15/22) 8299620924897229 a001 317811/45537549124*7881196^(13/22) 8299620924897241 a001 317811/10749957122*7881196^(1/2) 8299620924897253 a001 317811/2537720636*7881196^(9/22) 8299620924897256 a001 105937/4250681*20633239^(1/14) 8299620924897257 a001 105937/4250681*2537720636^(1/18) 8299620924897257 a001 105937/4250681*312119004989^(1/22) 8299620924897257 a001 105937/4250681*28143753123^(1/20) 8299620924897257 a001 105937/4250681*228826127^(1/16) 8299620924897266 a001 377/710646*7881196^(7/22) 8299620924897278 a001 317811/141422324*7881196^(5/22) 8299620924897282 a001 317811/33385282*7881196^(3/22) 8299620924897289 a001 317811/54018521*7881196^(1/6) 8299620924897290 a001 317811/23725150497407*20633239^(13/14) 8299620924897291 a001 10959/505618944676*20633239^(9/10) 8299620924897293 a001 317811/2139295485799*20633239^(11/14) 8299620924897294 a001 317811/505019158607*20633239^(7/10) 8299620924897296 a001 105937/64300051206*20633239^(9/14) 8299620924897298 a001 10959/599786069*20633239^(1/2) 8299620924897301 a001 317811/33385282*2537720636^(1/10) 8299620924897301 a001 317811/33385282*14662949395604^(1/14) 8299620924897301 a001 317811/33385282*192900153618^(1/12) 8299620924897301 a001 317811/1568397607*20633239^(5/14) 8299620924897302 a001 317811/33385282*33385282^(1/8) 8299620924897302 a001 377/710646*20633239^(3/10) 8299620924897304 a001 317811/141422324*20633239^(3/14) 8299620924897307 a001 105937/9381251041*54018521^(1/2) 8299620924897307 a001 105937/29134601*141422324^(1/6) 8299620924897307 a001 105937/29134601*73681302247^(1/8) 8299620924897308 a001 317811/23725150497407*141422324^(5/6) 8299620924897308 a001 317811/45537549124*141422324^(1/2) 8299620924897308 a001 317811/228826127*45537549124^(1/6) 8299620924897308 a001 317811/73681302247*370248451^(1/2) 8299620924897308 a001 377/710646*17393796001^(3/14) 8299620924897308 a001 377/710646*14662949395604^(1/6) 8299620924897308 a001 377/710646*599074578^(1/4) 8299620924897308 a001 317811/119218851371*969323029^(1/2) 8299620924897308 a001 317811/1568397607*2537720636^(5/18) 8299620924897308 a001 317811/1568397607*312119004989^(5/22) 8299620924897308 a001 317811/1568397607*3461452808002^(5/24) 8299620924897308 a001 317811/1568397607*28143753123^(1/4) 8299620924897308 a001 317811/23725150497407*2537720636^(13/18) 8299620924897308 a001 10959/505618944676*2537720636^(7/10) 8299620924897308 a001 317811/2139295485799*2537720636^(11/18) 8299620924897308 a001 105937/64300051206*2537720636^(1/2) 8299620924897308 a001 105937/1368706081*1322157322203^(1/4) 8299620924897308 a001 10959/599786069*2537720636^(7/18) 8299620924897308 a001 317811/312119004989*6643838879^(1/2) 8299620924897308 a001 317811/10749957122*312119004989^(3/10) 8299620924897308 a001 10959/505618944676*17393796001^(9/14) 8299620924897308 a001 317811/505019158607*17393796001^(1/2) 8299620924897308 a001 317811/817138163596*45537549124^(1/2) 8299620924897308 a001 105937/440719107401*119218851371^(1/2) 8299620924897308 a001 105937/64300051206*312119004989^(9/22) 8299620924897308 a001 105937/64300051206*14662949395604^(5/14) 8299620924897308 a001 105937/64300051206*192900153618^(5/12) 8299620924897308 a001 317811/2139295485799*312119004989^(1/2) 8299620924897308 a001 105937/3020733700601*5600748293801^(1/2) 8299620924897308 a001 10959/505618944676*14662949395604^(1/2) 8299620924897308 a001 10959/505618944676*505019158607^(9/16) 8299620924897308 a001 10959/505618944676*192900153618^(7/12) 8299620924897308 a001 317811/23725150497407*73681302247^(5/8) 8299620924897308 a001 105937/64300051206*28143753123^(9/20) 8299620924897308 a001 317811/45537549124*73681302247^(3/8) 8299620924897308 a001 317811/2139295485799*28143753123^(11/20) 8299620924897308 a001 317811/23725150497407*28143753123^(13/20) 8299620924897308 a001 10959/599786069*17393796001^(5/14) 8299620924897308 a001 10959/599786069*312119004989^(7/22) 8299620924897308 a001 10959/599786069*14662949395604^(5/18) 8299620924897308 a001 10959/599786069*505019158607^(5/16) 8299620924897308 a001 10959/599786069*28143753123^(7/20) 8299620924897308 a001 317811/6643838879*9062201101803^(1/4) 8299620924897308 a001 317811/2537720636*2537720636^(3/10) 8299620924897308 a001 317811/10749957122*1568397607^(3/8) 8299620924897308 a001 317811/2537720636*14662949395604^(3/14) 8299620924897308 a001 317811/2537720636*192900153618^(1/4) 8299620924897308 a001 317811/2139295485799*1568397607^(5/8) 8299620924897308 a001 317811/969323029*4106118243^(1/4) 8299620924897308 a001 10959/599786069*599074578^(5/12) 8299620924897308 a001 317811/505019158607*599074578^(7/12) 8299620924897308 a001 10959/505618944676*599074578^(3/4) 8299620924897308 a001 317811/1568397607*228826127^(5/16) 8299620924897308 a001 317811/370248451*817138163596^(1/6) 8299620924897308 a001 10959/599786069*228826127^(7/16) 8299620924897308 a001 105937/64300051206*228826127^(9/16) 8299620924897308 a001 317811/2139295485799*228826127^(11/16) 8299620924897308 a001 317811/23725150497407*228826127^(13/16) 8299620924897308 a001 317811/370248451*87403803^(1/4) 8299620924897309 a001 317811/141422324*2537720636^(1/6) 8299620924897309 a001 317811/141422324*312119004989^(3/22) 8299620924897309 a001 317811/141422324*28143753123^(3/20) 8299620924897309 a001 317811/141422324*228826127^(3/16) 8299620924897309 a001 317811/3461452808002*87403803^(3/4) 8299620924897310 a001 317811/141422324*33385282^(5/24) 8299620924897310 a001 377/710646*33385282^(7/24) 8299620924897311 a001 317811/2537720636*33385282^(3/8) 8299620924897311 a001 317811/54018521*312119004989^(1/10) 8299620924897311 a001 317811/54018521*1568397607^(1/8) 8299620924897312 a001 317811/10749957122*33385282^(11/24) 8299620924897312 a001 317811/45537549124*33385282^(13/24) 8299620924897313 a001 105937/64300051206*33385282^(5/8) 8299620924897313 a001 317811/817138163596*33385282^(17/24) 8299620924897314 a001 317811/3461452808002*33385282^(19/24) 8299620924897315 a001 10959/505618944676*33385282^(7/8) 8299620924897321 a001 317811/228826127*12752043^(1/4) 8299620924897326 a001 10959/711491*20633239^(1/10) 8299620924897328 a001 10959/711491*17393796001^(1/14) 8299620924897328 a001 10959/711491*14662949395604^(1/18) 8299620924897328 a001 10959/711491*505019158607^(1/16) 8299620924897328 a001 10959/711491*599074578^(1/12) 8299620924897346 a001 317811/817138163596*12752043^(3/4) 8299620924897436 a001 317811/7881196*7881196^(1/22) 8299620924897442 a001 317811/7881196*33385282^(1/24) 8299620924897457 a001 105937/4250681*1860498^(1/12) 8299620924897562 a001 317811/7881196*1860498^(1/20) 8299620924897660 a001 317811/33385282*1860498^(3/20) 8299620924897908 a001 317811/141422324*1860498^(1/4) 8299620924897926 a001 1346269/2537720636*439204^(7/18) 8299620924898147 a001 377/710646*1860498^(7/20) 8299620924898307 a001 317811/1568397607*1860498^(5/12) 8299620924898387 a001 317811/2537720636*1860498^(9/20) 8299620924898507 a001 514229/4106118243*439204^(1/2) 8299620924898627 a001 317811/10749957122*1860498^(11/20) 8299620924898707 a001 10959/599786069*1860498^(7/12) 8299620924898867 a001 317811/45537549124*1860498^(13/20) 8299620924899106 a001 105937/64300051206*1860498^(3/4) 8299620924899346 a001 317811/817138163596*1860498^(17/20) 8299620924899382 a001 10959/711491*710647^(1/8) 8299620924899393 a001 832040/370248451*439204^(5/18) 8299620924899506 a001 317811/2139295485799*1860498^(11/12) 8299620924899586 a001 317811/3461452808002*1860498^(19/20) 8299620924901441 a001 2178309/969323029*439204^(5/18) 8299620924901740 a001 5702887/2537720636*439204^(5/18) 8299620924901783 a001 14930352/6643838879*439204^(5/18) 8299620924901790 a001 39088169/17393796001*439204^(5/18) 8299620924901791 a001 102334155/45537549124*439204^(5/18) 8299620924901791 a001 267914296/119218851371*439204^(5/18) 8299620924901791 a001 3524667/1568437211*439204^(5/18) 8299620924901791 a001 1836311903/817138163596*439204^(5/18) 8299620924901791 a001 4807526976/2139295485799*439204^(5/18) 8299620924901791 a001 12586269025/5600748293801*439204^(5/18) 8299620924901791 a001 32951280099/14662949395604*439204^(5/18) 8299620924901791 a001 53316291173/23725150497407*439204^(5/18) 8299620924901791 a001 20365011074/9062201101803*439204^(5/18) 8299620924901791 a001 7778742049/3461452808002*439204^(5/18) 8299620924901791 a001 2971215073/1322157322203*439204^(5/18) 8299620924901791 a001 1134903170/505019158607*439204^(5/18) 8299620924901791 a001 433494437/192900153618*439204^(5/18) 8299620924901791 a001 165580141/73681302247*439204^(5/18) 8299620924901791 a001 63245986/28143753123*439204^(5/18) 8299620924901794 a001 24157817/10749957122*439204^(5/18) 8299620924901810 a001 9227465/4106118243*439204^(5/18) 8299620924901925 a001 3524578/1568397607*439204^(5/18) 8299620924902707 a001 1346269/599074578*439204^(5/18) 8299620924903288 a001 514229/969323029*439204^(7/18) 8299620924903471 a001 377/710646*710647^(3/8) 8299620924904173 a001 832040/87403803*439204^(1/6) 8299620924906222 a001 46347/4868641*439204^(1/6) 8299620924906520 a001 5702887/599074578*439204^(1/6) 8299620924906564 a001 14930352/1568397607*439204^(1/6) 8299620924906570 a001 39088169/4106118243*439204^(1/6) 8299620924906571 a001 102334155/10749957122*439204^(1/6) 8299620924906571 a001 267914296/28143753123*439204^(1/6) 8299620924906571 a001 701408733/73681302247*439204^(1/6) 8299620924906571 a001 1836311903/192900153618*439204^(1/6) 8299620924906571 a001 102287808/10745088481*439204^(1/6) 8299620924906571 a001 12586269025/1322157322203*439204^(1/6) 8299620924906571 a001 32951280099/3461452808002*439204^(1/6) 8299620924906571 a001 86267571272/9062201101803*439204^(1/6) 8299620924906571 a001 225851433717/23725150497407*439204^(1/6) 8299620924906571 a001 139583862445/14662949395604*439204^(1/6) 8299620924906571 a001 53316291173/5600748293801*439204^(1/6) 8299620924906571 a001 20365011074/2139295485799*439204^(1/6) 8299620924906571 a001 7778742049/817138163596*439204^(1/6) 8299620924906571 a001 2971215073/312119004989*439204^(1/6) 8299620924906571 a001 1134903170/119218851371*439204^(1/6) 8299620924906572 a001 433494437/45537549124*439204^(1/6) 8299620924906572 a001 165580141/17393796001*439204^(1/6) 8299620924906572 a001 63245986/6643838879*439204^(1/6) 8299620924906574 a001 24157817/2537720636*439204^(1/6) 8299620924906591 a001 9227465/969323029*439204^(1/6) 8299620924906705 a001 3524578/370248451*439204^(1/6) 8299620924907488 a001 1346269/141422324*439204^(1/6) 8299620924907580 a001 10959/599786069*710647^(5/8) 8299620924908068 a001 514229/228826127*439204^(5/18) 8299620924908206 a001 416020/5374978561*1149851^(1/2) 8299620924908974 a001 75640/1875749*439204^(1/18) 8299620924910254 a001 726103/9381251041*1149851^(1/2) 8299620924910553 a001 5702887/73681302247*1149851^(1/2) 8299620924910596 a001 2584/33385281*1149851^(1/2) 8299620924910603 a001 39088169/505019158607*1149851^(1/2) 8299620924910604 a001 34111385/440719107401*1149851^(1/2) 8299620924910604 a001 133957148/1730726404001*1149851^(1/2) 8299620924910604 a001 233802911/3020733700601*1149851^(1/2) 8299620924910604 a001 1836311903/23725150497407*1149851^(1/2) 8299620924910604 a001 567451585/7331474697802*1149851^(1/2) 8299620924910604 a001 433494437/5600748293801*1149851^(1/2) 8299620924910604 a001 165580141/2139295485799*1149851^(1/2) 8299620924910604 a001 31622993/408569081798*1149851^(1/2) 8299620924910607 a001 24157817/312119004989*1149851^(1/2) 8299620924910623 a001 9227465/119218851371*1149851^(1/2) 8299620924910737 a001 1762289/22768774562*1149851^(1/2) 8299620924910887 a001 832040/17393796001*3010349^(1/2) 8299620924911005 a001 2178309/54018521*439204^(1/18) 8299620924911229 a001 832040/9062201101803*7881196^(19/22) 8299620924911233 a001 832040/5600748293801*7881196^(5/6) 8299620924911241 a001 832040/2139295485799*7881196^(17/22) 8299620924911254 a001 832040/505019158607*7881196^(15/22) 8299620924911266 a001 832040/119218851371*7881196^(13/22) 8299620924911278 a001 832040/28143753123*7881196^(1/2) 8299620924911290 a001 832040/6643838879*7881196^(9/22) 8299620924911301 a001 5702887/141422324*439204^(1/18) 8299620924911302 a001 832040/1568397607*7881196^(7/22) 8299620924911314 a001 832040/370248451*7881196^(5/22) 8299620924911323 a001 208010/35355581*7881196^(1/6) 8299620924911325 a001 832040/87403803*7881196^(3/22) 8299620924911329 a001 832040/5600748293801*20633239^(11/14) 8299620924911331 a001 832040/1322157322203*20633239^(7/10) 8299620924911332 a001 832040/505019158607*20633239^(9/14) 8299620924911335 a001 208010/11384387281*20633239^(1/2) 8299620924911336 a001 416020/16692641*20633239^(1/14) 8299620924911337 a001 416020/16692641*2537720636^(1/18) 8299620924911337 a001 416020/16692641*312119004989^(1/22) 8299620924911337 a001 416020/16692641*28143753123^(1/20) 8299620924911337 a001 416020/16692641*228826127^(1/16) 8299620924911338 a001 832040/4106118243*20633239^(5/14) 8299620924911339 a001 832040/1568397607*20633239^(3/10) 8299620924911341 a001 832040/370248451*20633239^(3/14) 8299620924911343 a001 832040/73681302247*54018521^(1/2) 8299620924911344 a001 832040/87403803*2537720636^(1/10) 8299620924911344 a001 832040/87403803*14662949395604^(1/14) 8299620924911344 a001 832040/87403803*192900153618^(1/12) 8299620924911344 a001 832040/228826127*141422324^(1/6) 8299620924911344 a001 832040/119218851371*141422324^(1/2) 8299620924911345 a001 832040/228826127*73681302247^(1/8) 8299620924911345 a001 832040/87403803*33385282^(1/8) 8299620924911345 a001 416020/96450076809*370248451^(1/2) 8299620924911345 a001 416020/299537289*45537549124^(1/6) 8299620924911345 a001 75640/28374454999*969323029^(1/2) 8299620924911345 a001 832040/1568397607*17393796001^(3/14) 8299620924911345 a001 832040/1568397607*14662949395604^(1/6) 8299620924911345 a001 832040/4106118243*2537720636^(5/18) 8299620924911345 a001 832040/5600748293801*2537720636^(11/18) 8299620924911345 a001 832040/505019158607*2537720636^(1/2) 8299620924911345 a001 208010/11384387281*2537720636^(7/18) 8299620924911345 a001 832040/4106118243*312119004989^(5/22) 8299620924911345 a001 832040/4106118243*3461452808002^(5/24) 8299620924911345 a001 832040/4106118243*28143753123^(1/4) 8299620924911345 a001 832040/6643838879*2537720636^(3/10) 8299620924911345 a001 208010/204284540899*6643838879^(1/2) 8299620924911345 a001 416020/5374978561*1322157322203^(1/4) 8299620924911345 a001 832040/1322157322203*17393796001^(1/2) 8299620924911345 a001 832040/28143753123*312119004989^(3/10) 8299620924911345 a001 208010/11384387281*17393796001^(5/14) 8299620924911345 a001 832040/2139295485799*45537549124^(1/2) 8299620924911345 a001 416020/1730726404001*119218851371^(1/2) 8299620924911345 a001 832040/505019158607*312119004989^(9/22) 8299620924911345 a001 832040/5600748293801*312119004989^(1/2) 8299620924911345 a001 832040/1322157322203*14662949395604^(7/18) 8299620924911345 a001 208010/3665737348901*2139295485799^(1/2) 8299620924911345 a001 832040/23725150497407*5600748293801^(1/2) 8299620924911345 a001 832040/1322157322203*505019158607^(7/16) 8299620924911345 a001 832040/505019158607*192900153618^(5/12) 8299620924911345 a001 832040/119218851371*73681302247^(3/8) 8299620924911345 a001 208010/11384387281*312119004989^(7/22) 8299620924911345 a001 208010/11384387281*14662949395604^(5/18) 8299620924911345 a001 208010/11384387281*505019158607^(5/16) 8299620924911345 a001 832040/505019158607*28143753123^(9/20) 8299620924911345 a001 832040/5600748293801*28143753123^(11/20) 8299620924911345 a001 208010/11384387281*28143753123^(7/20) 8299620924911345 a001 832040/17393796001*9062201101803^(1/4) 8299620924911345 a001 832040/6643838879*14662949395604^(3/14) 8299620924911345 a001 832040/6643838879*192900153618^(1/4) 8299620924911345 a001 832040/28143753123*1568397607^(3/8) 8299620924911345 a001 610/1860499*4106118243^(1/4) 8299620924911345 a001 832040/5600748293801*1568397607^(5/8) 8299620924911345 a001 832040/1568397607*599074578^(1/4) 8299620924911345 a001 832040/969323029*817138163596^(1/6) 8299620924911345 a001 208010/11384387281*599074578^(5/12) 8299620924911345 a001 832040/1322157322203*599074578^(7/12) 8299620924911345 a001 14930352/370248451*439204^(1/18) 8299620924911345 a001 832040/4106118243*228826127^(5/16) 8299620924911345 a001 832040/370248451*2537720636^(1/6) 8299620924911345 a001 832040/370248451*312119004989^(3/22) 8299620924911345 a001 832040/370248451*28143753123^(3/20) 8299620924911345 a001 208010/11384387281*228826127^(7/16) 8299620924911345 a001 832040/505019158607*228826127^(9/16) 8299620924911345 a001 832040/370248451*228826127^(3/16) 8299620924911345 a001 832040/5600748293801*228826127^(11/16) 8299620924911345 a001 832040/969323029*87403803^(1/4) 8299620924911345 a001 208010/35355581*312119004989^(1/10) 8299620924911345 a001 208010/35355581*1568397607^(1/8) 8299620924911345 a001 832040/9062201101803*87403803^(3/4) 8299620924911346 a001 832040/54018521*20633239^(1/10) 8299620924911346 a001 832040/370248451*33385282^(5/24) 8299620924911347 a001 832040/1568397607*33385282^(7/24) 8299620924911347 a001 832040/6643838879*33385282^(3/8) 8299620924911348 a001 832040/54018521*17393796001^(1/14) 8299620924911348 a001 832040/54018521*14662949395604^(1/18) 8299620924911348 a001 832040/54018521*505019158607^(1/16) 8299620924911348 a001 832040/54018521*599074578^(1/12) 8299620924911348 a001 832040/28143753123*33385282^(11/24) 8299620924911349 a001 832040/119218851371*33385282^(13/24) 8299620924911349 a001 832040/505019158607*33385282^(5/8) 8299620924911350 a001 832040/2139295485799*33385282^(17/24) 8299620924911351 a001 832040/9062201101803*33385282^(19/24) 8299620924911351 a001 39088169/969323029*439204^(1/18) 8299620924911352 a001 9303105/230701876*439204^(1/18) 8299620924911352 a001 267914296/6643838879*439204^(1/18) 8299620924911352 a001 701408733/17393796001*439204^(1/18) 8299620924911352 a001 1836311903/45537549124*439204^(1/18) 8299620924911352 a001 4807526976/119218851371*439204^(1/18) 8299620924911352 a001 1144206275/28374454999*439204^(1/18) 8299620924911352 a001 32951280099/817138163596*439204^(1/18) 8299620924911352 a001 86267571272/2139295485799*439204^(1/18) 8299620924911352 a001 225851433717/5600748293801*439204^(1/18) 8299620924911352 a001 591286729879/14662949395604*439204^(1/18) 8299620924911352 a001 365435296162/9062201101803*439204^(1/18) 8299620924911352 a001 139583862445/3461452808002*439204^(1/18) 8299620924911352 a001 53316291173/1322157322203*439204^(1/18) 8299620924911352 a001 20365011074/505019158607*439204^(1/18) 8299620924911352 a001 7778742049/192900153618*439204^(1/18) 8299620924911352 a001 2971215073/73681302247*439204^(1/18) 8299620924911352 a001 1134903170/28143753123*439204^(1/18) 8299620924911352 a001 433494437/10749957122*439204^(1/18) 8299620924911352 a001 165580141/4106118243*439204^(1/18) 8299620924911353 a001 63245986/1568397607*439204^(1/18) 8299620924911355 a001 24157817/599074578*439204^(1/18) 8299620924911357 a001 416020/299537289*12752043^(1/4) 8299620924911358 a001 75640/1875749*7881196^(1/22) 8299620924911364 a001 75640/1875749*33385282^(1/24) 8299620924911371 a001 9227465/228826127*439204^(1/18) 8299620924911383 a001 832040/2139295485799*12752043^(3/4) 8299620924911484 a001 75640/1875749*1860498^(1/20) 8299620924911485 a001 3524578/87403803*439204^(1/18) 8299620924911520 a001 1346269/17393796001*1149851^(1/2) 8299620924911537 a001 416020/16692641*1860498^(1/12) 8299620924911688 a001 317811/505019158607*710647^(7/8) 8299620924911703 a001 832040/87403803*1860498^(3/20) 8299620924911944 a001 832040/370248451*1860498^(1/4) 8299620924912184 a001 832040/1568397607*1860498^(7/20) 8299620924912261 a001 1346269/33385282*439204^(1/18) 8299620924912344 a001 832040/4106118243*1860498^(5/12) 8299620924912424 a001 832040/6643838879*1860498^(9/20) 8299620924912663 a001 832040/28143753123*1860498^(11/20) 8299620924912743 a001 208010/11384387281*1860498^(7/12) 8299620924912852 a001 514229/54018521*439204^(1/6) 8299620924912903 a001 832040/119218851371*1860498^(13/20) 8299620924912935 a001 2178309/45537549124*3010349^(1/2) 8299620924913143 a001 832040/505019158607*1860498^(3/4) 8299620924913233 a001 5702887/119218851371*3010349^(1/2) 8299620924913277 a001 14930352/312119004989*3010349^(1/2) 8299620924913277 a001 2178309/23725150497407*7881196^(19/22) 8299620924913281 a001 2178309/14662949395604*7881196^(5/6) 8299620924913283 a001 4181/87403804*3010349^(1/2) 8299620924913284 a001 102334155/2139295485799*3010349^(1/2) 8299620924913284 a001 267914296/5600748293801*3010349^(1/2) 8299620924913284 a001 701408733/14662949395604*3010349^(1/2) 8299620924913284 a001 1134903170/23725150497407*3010349^(1/2) 8299620924913284 a001 433494437/9062201101803*3010349^(1/2) 8299620924913285 a001 165580141/3461452808002*3010349^(1/2) 8299620924913285 a001 63245986/1322157322203*3010349^(1/2) 8299620924913287 a001 24157817/505019158607*3010349^(1/2) 8299620924913289 a001 2178309/5600748293801*7881196^(17/22) 8299620924913301 a001 726103/440719107401*7881196^(15/22) 8299620924913304 a001 9227465/192900153618*3010349^(1/2) 8299620924913314 a001 2178309/312119004989*7881196^(13/22) 8299620924913326 a001 311187/10525900321*7881196^(1/2) 8299620924913338 a001 2178309/17393796001*7881196^(9/22) 8299620924913350 a001 726103/1368706081*7881196^(7/22) 8299620924913362 a001 2178309/969323029*7881196^(5/22) 8299620924913370 a001 2178309/370248451*7881196^(1/6) 8299620924913374 a001 46347/4868641*7881196^(3/22) 8299620924913377 a001 2178309/14662949395604*20633239^(11/14) 8299620924913379 a001 311187/494493258286*20633239^(7/10) 8299620924913380 a001 726103/440719107401*20633239^(9/14) 8299620924913383 a001 832040/2139295485799*1860498^(17/20) 8299620924913383 a001 2178309/119218851371*20633239^(1/2) 8299620924913386 a001 987/4870846*20633239^(5/14) 8299620924913387 a001 726103/1368706081*20633239^(3/10) 8299620924913388 a001 2178309/969323029*20633239^(3/14) 8299620924913389 a001 2178309/54018521*7881196^(1/22) 8299620924913390 a001 726103/29134601*20633239^(1/14) 8299620924913391 a001 2178309/141422324*20633239^(1/10) 8299620924913391 a001 726103/64300051206*54018521^(1/2) 8299620924913391 a001 726103/29134601*2537720636^(1/18) 8299620924913391 a001 726103/29134601*312119004989^(1/22) 8299620924913391 a001 726103/29134601*28143753123^(1/20) 8299620924913392 a001 726103/29134601*228826127^(1/16) 8299620924913392 a001 2178309/312119004989*141422324^(1/2) 8299620924913392 a001 46347/4868641*2537720636^(1/10) 8299620924913392 a001 46347/4868641*14662949395604^(1/14) 8299620924913392 a001 46347/4868641*192900153618^(1/12) 8299620924913392 a001 726103/199691526*141422324^(1/6) 8299620924913393 a001 46347/10745088481*370248451^(1/2) 8299620924913393 a001 726103/199691526*73681302247^(1/8) 8299620924913393 a001 2178309/817138163596*969323029^(1/2) 8299620924913393 a001 311187/224056801*45537549124^(1/6) 8299620924913393 a001 2178309/14662949395604*2537720636^(11/18) 8299620924913393 a001 726103/440719107401*2537720636^(1/2) 8299620924913393 a001 2178309/119218851371*2537720636^(7/18) 8299620924913393 a001 726103/1368706081*17393796001^(3/14) 8299620924913393 a001 726103/1368706081*14662949395604^(1/6) 8299620924913393 a001 987/4870846*2537720636^(5/18) 8299620924913393 a001 2178309/17393796001*2537720636^(3/10) 8299620924913393 a001 2178309/2139295485799*6643838879^(1/2) 8299620924913393 a001 987/4870846*312119004989^(5/22) 8299620924913393 a001 987/4870846*3461452808002^(5/24) 8299620924913393 a001 987/4870846*28143753123^(1/4) 8299620924913393 a001 311187/494493258286*17393796001^(1/2) 8299620924913393 a001 726103/9381251041*1322157322203^(1/4) 8299620924913393 a001 2178309/119218851371*17393796001^(5/14) 8299620924913393 a001 2178309/5600748293801*45537549124^(1/2) 8299620924913393 a001 311187/10525900321*312119004989^(3/10) 8299620924913393 a001 726103/3020733700601*119218851371^(1/2) 8299620924913393 a001 2178309/14662949395604*312119004989^(1/2) 8299620924913393 a001 726103/440719107401*312119004989^(9/22) 8299620924913393 a001 2178309/23725150497407*817138163596^(1/2) 8299620924913393 a001 2178309/14662949395604*3461452808002^(11/24) 8299620924913393 a001 311187/494493258286*505019158607^(7/16) 8299620924913393 a001 726103/440719107401*192900153618^(5/12) 8299620924913393 a001 2178309/119218851371*312119004989^(7/22) 8299620924913393 a001 2178309/119218851371*14662949395604^(5/18) 8299620924913393 a001 2178309/119218851371*505019158607^(5/16) 8299620924913393 a001 2178309/312119004989*73681302247^(3/8) 8299620924913393 a001 2178309/45537549124*9062201101803^(1/4) 8299620924913393 a001 2178309/119218851371*28143753123^(7/20) 8299620924913393 a001 726103/440719107401*28143753123^(9/20) 8299620924913393 a001 2178309/14662949395604*28143753123^(11/20) 8299620924913393 a001 2178309/17393796001*14662949395604^(3/14) 8299620924913393 a001 2178309/17393796001*192900153618^(1/4) 8299620924913393 a001 2178309/6643838879*4106118243^(1/4) 8299620924913393 a001 311187/10525900321*1568397607^(3/8) 8299620924913393 a001 2178309/2537720636*817138163596^(1/6) 8299620924913393 a001 2178309/14662949395604*1568397607^(5/8) 8299620924913393 a001 726103/1368706081*599074578^(1/4) 8299620924913393 a001 2178309/969323029*2537720636^(1/6) 8299620924913393 a001 2178309/969323029*312119004989^(3/22) 8299620924913393 a001 2178309/969323029*28143753123^(3/20) 8299620924913393 a001 2178309/119218851371*599074578^(5/12) 8299620924913393 a001 311187/494493258286*599074578^(7/12) 8299620924913393 a001 2178309/969323029*228826127^(3/16) 8299620924913393 a001 987/4870846*228826127^(5/16) 8299620924913393 a001 2178309/370248451*312119004989^(1/10) 8299620924913393 a001 2178309/370248451*1568397607^(1/8) 8299620924913393 a001 2178309/119218851371*228826127^(7/16) 8299620924913393 a001 726103/440719107401*228826127^(9/16) 8299620924913393 a001 2178309/14662949395604*228826127^(11/16) 8299620924913393 a001 2178309/2537720636*87403803^(1/4) 8299620924913393 a001 2178309/141422324*17393796001^(1/14) 8299620924913393 a001 2178309/141422324*14662949395604^(1/18) 8299620924913393 a001 2178309/141422324*505019158607^(1/16) 8299620924913393 a001 2178309/141422324*599074578^(1/12) 8299620924913393 a001 46347/4868641*33385282^(1/8) 8299620924913393 a001 2178309/23725150497407*87403803^(3/4) 8299620924913394 a001 2178309/969323029*33385282^(5/24) 8299620924913395 a001 726103/1368706081*33385282^(7/24) 8299620924913395 a001 2178309/17393796001*33385282^(3/8) 8299620924913396 a001 2178309/54018521*33385282^(1/24) 8299620924913396 a001 311187/10525900321*33385282^(11/24) 8299620924913397 a001 2178309/312119004989*33385282^(13/24) 8299620924913397 a001 726103/440719107401*33385282^(5/8) 8299620924913398 a001 2178309/5600748293801*33385282^(17/24) 8299620924913398 a001 2178309/23725150497407*33385282^(19/24) 8299620924913402 a001 832040/54018521*710647^(1/8) 8299620924913405 a001 311187/224056801*12752043^(1/4) 8299620924913418 a001 3524578/73681302247*3010349^(1/2) 8299620924913431 a001 2178309/5600748293801*12752043^(3/4) 8299620924913515 a001 2178309/54018521*1860498^(1/20) 8299620924913543 a001 832040/5600748293801*1860498^(11/12) 8299620924913588 a001 5702887/14662949395604*7881196^(17/22) 8299620924913591 a001 726103/29134601*1860498^(1/12) 8299620924913600 a001 5702887/3461452808002*7881196^(15/22) 8299620924913612 a001 5702887/817138163596*7881196^(13/22) 8299620924913623 a001 832040/9062201101803*1860498^(19/20) 8299620924913625 a001 5702887/192900153618*7881196^(1/2) 8299620924913637 a001 1597/12752044*7881196^(9/22) 8299620924913644 a001 4976784/3020733700601*7881196^(15/22) 8299620924913649 a001 5702887/10749957122*7881196^(7/22) 8299620924913650 a001 39088169/23725150497407*7881196^(15/22) 8299620924913654 a001 24157817/14662949395604*7881196^(15/22) 8299620924913656 a001 14930352/2139295485799*7881196^(13/22) 8299620924913659 a001 9227465/23725150497407*7881196^(17/22) 8299620924913661 a001 5702887/2537720636*7881196^(5/22) 8299620924913662 a001 39088169/5600748293801*7881196^(13/22) 8299620924913663 a001 102334155/14662949395604*7881196^(13/22) 8299620924913664 a001 165580141/23725150497407*7881196^(13/22) 8299620924913664 a001 63245986/9062201101803*7881196^(13/22) 8299620924913666 a001 24157817/3461452808002*7881196^(13/22) 8299620924913668 a001 14930352/505019158607*7881196^(1/2) 8299620924913669 a001 5702887/969323029*7881196^(1/6) 8299620924913671 a001 9227465/5600748293801*7881196^(15/22) 8299620924913673 a001 5702887/599074578*7881196^(3/22) 8299620924913675 a001 39088169/1322157322203*7881196^(1/2) 8299620924913675 a001 6765/228826126*7881196^(1/2) 8299620924913676 a001 267914296/9062201101803*7881196^(1/2) 8299620924913676 a001 701408733/23725150497407*7881196^(1/2) 8299620924913676 a001 433494437/14662949395604*7881196^(1/2) 8299620924913676 a001 165580141/5600748293801*7881196^(1/2) 8299620924913676 a001 63245986/2139295485799*7881196^(1/2) 8299620924913678 a001 5702887/9062201101803*20633239^(7/10) 8299620924913678 a001 24157817/817138163596*7881196^(1/2) 8299620924913679 a001 5702887/3461452808002*20633239^(9/14) 8299620924913680 a001 14930352/119218851371*7881196^(9/22) 8299620924913682 a001 5702887/312119004989*20633239^(1/2) 8299620924913683 a001 9227465/1322157322203*7881196^(13/22) 8299620924913684 a001 5702887/28143753123*20633239^(5/14) 8299620924913686 a001 5702887/10749957122*20633239^(3/10) 8299620924913686 a001 5702887/141422324*7881196^(1/22) 8299620924913687 a001 39088169/312119004989*7881196^(9/22) 8299620924913687 a001 5702887/2537720636*20633239^(3/14) 8299620924913688 a001 102334155/817138163596*7881196^(9/22) 8299620924913688 a001 267914296/2139295485799*7881196^(9/22) 8299620924913688 a001 701408733/5600748293801*7881196^(9/22) 8299620924913688 a001 1836311903/14662949395604*7881196^(9/22) 8299620924913688 a001 2971215073/23725150497407*7881196^(9/22) 8299620924913688 a001 1134903170/9062201101803*7881196^(9/22) 8299620924913688 a001 433494437/3461452808002*7881196^(9/22) 8299620924913688 a001 165580141/1322157322203*7881196^(9/22) 8299620924913688 a001 63245986/505019158607*7881196^(9/22) 8299620924913689 a001 5702887/370248451*20633239^(1/10) 8299620924913690 a001 5702887/228826127*20633239^(1/14) 8299620924913690 a001 5702887/505019158607*54018521^(1/2) 8299620924913691 a001 24157817/192900153618*7881196^(9/22) 8299620924913691 a001 5702887/817138163596*141422324^(1/2) 8299620924913691 a001 5702887/228826127*2537720636^(1/18) 8299620924913691 a001 5702887/228826127*312119004989^(1/22) 8299620924913691 a001 5702887/228826127*28143753123^(1/20) 8299620924913691 a001 5702887/228826127*228826127^(1/16) 8299620924913691 a001 5702887/1568397607*141422324^(1/6) 8299620924913691 a001 5702887/1322157322203*370248451^(1/2) 8299620924913691 a001 5702887/599074578*2537720636^(1/10) 8299620924913691 a001 5702887/599074578*14662949395604^(1/14) 8299620924913691 a001 5702887/599074578*192900153618^(1/12) 8299620924913691 a001 5702887/2139295485799*969323029^(1/2) 8299620924913691 a001 5702887/1568397607*73681302247^(1/8) 8299620924913691 a001 5702887/3461452808002*2537720636^(1/2) 8299620924913691 a001 5702887/312119004989*2537720636^(7/18) 8299620924913691 a001 5702887/4106118243*45537549124^(1/6) 8299620924913691 a001 1597/12752044*2537720636^(3/10) 8299620924913691 a001 5702887/28143753123*2537720636^(5/18) 8299620924913691 a001 5702887/5600748293801*6643838879^(1/2) 8299620924913691 a001 5702887/10749957122*17393796001^(3/14) 8299620924913691 a001 5702887/10749957122*14662949395604^(1/6) 8299620924913691 a001 5702887/9062201101803*17393796001^(1/2) 8299620924913691 a001 5702887/28143753123*312119004989^(5/22) 8299620924913691 a001 5702887/28143753123*3461452808002^(5/24) 8299620924913691 a001 5702887/312119004989*17393796001^(5/14) 8299620924913691 a001 5702887/28143753123*28143753123^(1/4) 8299620924913691 a001 5702887/14662949395604*45537549124^(1/2) 8299620924913691 a001 5702887/73681302247*1322157322203^(1/4) 8299620924913691 a001 5702887/23725150497407*119218851371^(1/2) 8299620924913691 a001 5702887/192900153618*312119004989^(3/10) 8299620924913691 a001 5702887/3461452808002*312119004989^(9/22) 8299620924913691 a001 5702887/3461452808002*14662949395604^(5/14) 8299620924913691 a001 5702887/312119004989*312119004989^(7/22) 8299620924913691 a001 5702887/312119004989*14662949395604^(5/18) 8299620924913691 a001 5702887/3461452808002*192900153618^(5/12) 8299620924913691 a001 5702887/312119004989*505019158607^(5/16) 8299620924913691 a001 5702887/119218851371*9062201101803^(1/4) 8299620924913691 a001 5702887/817138163596*73681302247^(3/8) 8299620924913691 a001 5702887/312119004989*28143753123^(7/20) 8299620924913691 a001 1597/12752044*14662949395604^(3/14) 8299620924913691 a001 1597/12752044*192900153618^(1/4) 8299620924913691 a001 5702887/3461452808002*28143753123^(9/20) 8299620924913691 a001 5702887/17393796001*4106118243^(1/4) 8299620924913691 a001 5702887/6643838879*817138163596^(1/6) 8299620924913691 a001 5702887/2537720636*2537720636^(1/6) 8299620924913691 a001 5702887/192900153618*1568397607^(3/8) 8299620924913691 a001 5702887/2537720636*312119004989^(3/22) 8299620924913691 a001 5702887/2537720636*28143753123^(3/20) 8299620924913691 a001 5702887/10749957122*599074578^(1/4) 8299620924913691 a001 5702887/969323029*312119004989^(1/10) 8299620924913691 a001 5702887/969323029*1568397607^(1/8) 8299620924913691 a001 5702887/312119004989*599074578^(5/12) 8299620924913691 a001 5702887/9062201101803*599074578^(7/12) 8299620924913691 a001 5702887/2537720636*228826127^(3/16) 8299620924913691 a001 5702887/28143753123*228826127^(5/16) 8299620924913691 a001 5702887/370248451*17393796001^(1/14) 8299620924913691 a001 5702887/370248451*14662949395604^(1/18) 8299620924913691 a001 5702887/370248451*505019158607^(1/16) 8299620924913691 a001 5702887/370248451*599074578^(1/12) 8299620924913691 a001 5702887/312119004989*228826127^(7/16) 8299620924913691 a001 5702887/3461452808002*228826127^(9/16) 8299620924913692 a001 5702887/6643838879*87403803^(1/4) 8299620924913692 a001 5702887/141422324*33385282^(1/24) 8299620924913692 a001 5702887/599074578*33385282^(1/8) 8299620924913692 a001 4976784/9381251041*7881196^(7/22) 8299620924913693 a001 5702887/2537720636*33385282^(5/24) 8299620924913694 a001 5702887/10749957122*33385282^(7/24) 8299620924913694 a001 1597/12752044*33385282^(3/8) 8299620924913695 a001 5702887/192900153618*33385282^(11/24) 8299620924913695 a001 9227465/312119004989*7881196^(1/2) 8299620924913695 a001 5702887/817138163596*33385282^(13/24) 8299620924913696 a001 5702887/3461452808002*33385282^(5/8) 8299620924913697 a001 5702887/14662949395604*33385282^(17/24) 8299620924913699 a001 39088169/73681302247*7881196^(7/22) 8299620924913700 a001 34111385/64300051206*7881196^(7/22) 8299620924913700 a001 267914296/505019158607*7881196^(7/22) 8299620924913700 a001 233802911/440719107401*7881196^(7/22) 8299620924913700 a001 1836311903/3461452808002*7881196^(7/22) 8299620924913700 a001 1602508992/3020733700601*7881196^(7/22) 8299620924913700 a001 12586269025/23725150497407*7881196^(7/22) 8299620924913700 a001 7778742049/14662949395604*7881196^(7/22) 8299620924913700 a001 2971215073/5600748293801*7881196^(7/22) 8299620924913700 a001 1134903170/2139295485799*7881196^(7/22) 8299620924913700 a001 433494437/817138163596*7881196^(7/22) 8299620924913700 a001 165580141/312119004989*7881196^(7/22) 8299620924913700 a001 63245986/119218851371*7881196^(7/22) 8299620924913703 a001 24157817/45537549124*7881196^(7/22) 8299620924913704 a001 5702887/4106118243*12752043^(1/4) 8299620924913705 a001 14930352/6643838879*7881196^(5/22) 8299620924913707 a001 9227465/73681302247*7881196^(9/22) 8299620924913711 a001 39088169/17393796001*7881196^(5/22) 8299620924913712 a001 102334155/45537549124*7881196^(5/22) 8299620924913712 a001 267914296/119218851371*7881196^(5/22) 8299620924913712 a001 3524667/1568437211*7881196^(5/22) 8299620924913712 a001 1836311903/817138163596*7881196^(5/22) 8299620924913712 a001 4807526976/2139295485799*7881196^(5/22) 8299620924913712 a001 12586269025/5600748293801*7881196^(5/22) 8299620924913712 a001 32951280099/14662949395604*7881196^(5/22) 8299620924913712 a001 53316291173/23725150497407*7881196^(5/22) 8299620924913712 a001 20365011074/9062201101803*7881196^(5/22) 8299620924913712 a001 7778742049/3461452808002*7881196^(5/22) 8299620924913712 a001 2971215073/1322157322203*7881196^(5/22) 8299620924913712 a001 1134903170/505019158607*7881196^(5/22) 8299620924913712 a001 433494437/192900153618*7881196^(5/22) 8299620924913712 a001 165580141/73681302247*7881196^(5/22) 8299620924913712 a001 63245986/28143753123*7881196^(5/22) 8299620924913713 a001 196452/33391061*7881196^(1/6) 8299620924913715 a001 24157817/10749957122*7881196^(5/22) 8299620924913717 a001 14930352/1568397607*7881196^(3/22) 8299620924913719 a001 39088169/6643838879*7881196^(1/6) 8299620924913719 a001 9227465/17393796001*7881196^(7/22) 8299620924913720 a001 102334155/17393796001*7881196^(1/6) 8299620924913720 a001 66978574/11384387281*7881196^(1/6) 8299620924913720 a001 701408733/119218851371*7881196^(1/6) 8299620924913720 a001 1836311903/312119004989*7881196^(1/6) 8299620924913720 a001 1201881744/204284540899*7881196^(1/6) 8299620924913720 a001 12586269025/2139295485799*7881196^(1/6) 8299620924913720 a001 32951280099/5600748293801*7881196^(1/6) 8299620924913720 a001 1135099622/192933544679*7881196^(1/6) 8299620924913720 a001 139583862445/23725150497407*7881196^(1/6) 8299620924913720 a001 53316291173/9062201101803*7881196^(1/6) 8299620924913720 a001 10182505537/1730726404001*7881196^(1/6) 8299620924913720 a001 7778742049/1322157322203*7881196^(1/6) 8299620924913720 a001 2971215073/505019158607*7881196^(1/6) 8299620924913720 a001 567451585/96450076809*7881196^(1/6) 8299620924913720 a001 433494437/73681302247*7881196^(1/6) 8299620924913720 a001 165580141/28143753123*7881196^(1/6) 8299620924913721 a001 31622993/5374978561*7881196^(1/6) 8299620924913721 a001 14930352/23725150497407*20633239^(7/10) 8299620924913722 a001 4976784/3020733700601*20633239^(9/14) 8299620924913723 a001 24157817/4106118243*7881196^(1/6) 8299620924913723 a001 39088169/4106118243*7881196^(3/22) 8299620924913724 a001 102334155/10749957122*7881196^(3/22) 8299620924913724 a001 267914296/28143753123*7881196^(3/22) 8299620924913724 a001 701408733/73681302247*7881196^(3/22) 8299620924913724 a001 1836311903/192900153618*7881196^(3/22) 8299620924913724 a001 102287808/10745088481*7881196^(3/22) 8299620924913724 a001 12586269025/1322157322203*7881196^(3/22) 8299620924913724 a001 32951280099/3461452808002*7881196^(3/22) 8299620924913724 a001 86267571272/9062201101803*7881196^(3/22) 8299620924913724 a001 225851433717/23725150497407*7881196^(3/22) 8299620924913724 a001 139583862445/14662949395604*7881196^(3/22) 8299620924913724 a001 53316291173/5600748293801*7881196^(3/22) 8299620924913724 a001 20365011074/2139295485799*7881196^(3/22) 8299620924913724 a001 7778742049/817138163596*7881196^(3/22) 8299620924913724 a001 2971215073/312119004989*7881196^(3/22) 8299620924913724 a001 1134903170/119218851371*7881196^(3/22) 8299620924913724 a001 433494437/45537549124*7881196^(3/22) 8299620924913724 a001 165580141/17393796001*7881196^(3/22) 8299620924913725 a001 63245986/6643838879*7881196^(3/22) 8299620924913725 a001 3732588/204284540899*20633239^(1/2) 8299620924913727 a001 24157817/2537720636*7881196^(3/22) 8299620924913728 a001 14930352/73681302247*20633239^(5/14) 8299620924913729 a001 39088169/23725150497407*20633239^(9/14) 8299620924913729 a001 14930352/370248451*7881196^(1/22) 8299620924913729 a001 4976784/9381251041*20633239^(3/10) 8299620924913730 a001 5702887/14662949395604*12752043^(3/4) 8299620924913731 a001 14930352/6643838879*20633239^(3/14) 8299620924913732 a001 9227465/4106118243*7881196^(5/22) 8299620924913732 a001 39088169/2139295485799*20633239^(1/2) 8299620924913733 a001 102334155/5600748293801*20633239^(1/2) 8299620924913733 a001 10946/599074579*20633239^(1/2) 8299620924913733 a001 433494437/23725150497407*20633239^(1/2) 8299620924913733 a001 24157817/14662949395604*20633239^(9/14) 8299620924913733 a001 165580141/9062201101803*20633239^(1/2) 8299620924913733 a001 14930352/969323029*20633239^(1/10) 8299620924913733 a001 31622993/1730726404001*20633239^(1/2) 8299620924913734 a001 4976784/440719107401*54018521^(1/2) 8299620924913734 a001 829464/33281921*20633239^(1/14) 8299620924913734 a001 39088169/192900153618*20633239^(5/14) 8299620924913735 a001 14930352/2139295485799*141422324^(1/2) 8299620924913735 a001 4976784/1368706081*141422324^(1/6) 8299620924913735 a001 7465176/1730726404001*370248451^(1/2) 8299620924913735 a001 829464/33281921*2537720636^(1/18) 8299620924913735 a001 829464/33281921*312119004989^(1/22) 8299620924913735 a001 829464/33281921*28143753123^(1/20) 8299620924913735 a001 829464/33281921*228826127^(1/16) 8299620924913735 a001 14930352/5600748293801*969323029^(1/2) 8299620924913735 a001 14930352/1568397607*2537720636^(1/10) 8299620924913735 a001 14930352/1568397607*14662949395604^(1/14) 8299620924913735 a001 14930352/1568397607*192900153618^(1/12) 8299620924913735 a001 4976784/3020733700601*2537720636^(1/2) 8299620924913735 a001 3732588/204284540899*2537720636^(7/18) 8299620924913735 a001 4976784/1368706081*73681302247^(1/8) 8299620924913735 a001 14930352/119218851371*2537720636^(3/10) 8299620924913735 a001 14930352/73681302247*2537720636^(5/18) 8299620924913735 a001 196452/192933544679*6643838879^(1/2) 8299620924913735 a001 7465176/5374978561*45537549124^(1/6) 8299620924913735 a001 14930352/6643838879*2537720636^(1/6) 8299620924913735 a001 4976784/9381251041*17393796001^(3/14) 8299620924913735 a001 14930352/23725150497407*17393796001^(1/2) 8299620924913735 a001 4976784/9381251041*14662949395604^(1/6) 8299620924913735 a001 3732588/204284540899*17393796001^(5/14) 8299620924913735 a001 14930352/73681302247*312119004989^(5/22) 8299620924913735 a001 14930352/73681302247*3461452808002^(5/24) 8299620924913735 a001 2584/33385281*1322157322203^(1/4) 8299620924913735 a001 14930352/505019158607*312119004989^(3/10) 8299620924913735 a001 4976784/3020733700601*312119004989^(9/22) 8299620924913735 a001 3732588/204284540899*312119004989^(7/22) 8299620924913735 a001 4976784/3020733700601*14662949395604^(5/14) 8299620924913735 a001 14930352/23725150497407*14662949395604^(7/18) 8299620924913735 a001 3732588/204284540899*14662949395604^(5/18) 8299620924913735 a001 14930352/23725150497407*505019158607^(7/16) 8299620924913735 a001 3732588/204284540899*505019158607^(5/16) 8299620924913735 a001 14930352/312119004989*9062201101803^(1/4) 8299620924913735 a001 4976784/3020733700601*192900153618^(5/12) 8299620924913735 a001 14930352/119218851371*14662949395604^(3/14) 8299620924913735 a001 14930352/119218851371*192900153618^(1/4) 8299620924913735 a001 14930352/73681302247*28143753123^(1/4) 8299620924913735 a001 3732588/204284540899*28143753123^(7/20) 8299620924913735 a001 4976784/3020733700601*28143753123^(9/20) 8299620924913735 a001 14930352/17393796001*817138163596^(1/6) 8299620924913735 a001 3732588/11384387281*4106118243^(1/4) 8299620924913735 a001 14930352/6643838879*312119004989^(3/22) 8299620924913735 a001 14930352/6643838879*28143753123^(3/20) 8299620924913735 a001 14930352/505019158607*1568397607^(3/8) 8299620924913735 a001 196452/33391061*312119004989^(1/10) 8299620924913735 a001 196452/33391061*1568397607^(1/8) 8299620924913735 a001 4976784/9381251041*599074578^(1/4) 8299620924913735 a001 14930352/969323029*17393796001^(1/14) 8299620924913735 a001 14930352/969323029*14662949395604^(1/18) 8299620924913735 a001 14930352/969323029*505019158607^(1/16) 8299620924913735 a001 3732588/204284540899*599074578^(5/12) 8299620924913735 a001 14930352/969323029*599074578^(1/12) 8299620924913735 a001 14930352/23725150497407*599074578^(7/12) 8299620924913735 a001 14930352/6643838879*228826127^(3/16) 8299620924913735 a001 14930352/73681302247*228826127^(5/16) 8299620924913735 a001 3732588/204284540899*228826127^(7/16) 8299620924913735 a001 4976784/3020733700601*228826127^(9/16) 8299620924913735 a001 14930352/17393796001*87403803^(1/4) 8299620924913735 a001 39088169/969323029*7881196^(1/22) 8299620924913735 a001 102334155/505019158607*20633239^(5/14) 8299620924913735 a001 14930352/370248451*33385282^(1/24) 8299620924913735 a001 267914296/1322157322203*20633239^(5/14) 8299620924913735 a001 701408733/3461452808002*20633239^(5/14) 8299620924913735 a001 1836311903/9062201101803*20633239^(5/14) 8299620924913735 a001 4807526976/23725150497407*20633239^(5/14) 8299620924913735 a001 2971215073/14662949395604*20633239^(5/14) 8299620924913735 a001 1134903170/5600748293801*20633239^(5/14) 8299620924913735 a001 433494437/2139295485799*20633239^(5/14) 8299620924913735 a001 39088169/73681302247*20633239^(3/10) 8299620924913736 a001 24157817/1322157322203*20633239^(1/2) 8299620924913736 a001 165580141/817138163596*20633239^(5/14) 8299620924913736 a001 63245986/312119004989*20633239^(5/14) 8299620924913736 a001 14930352/1568397607*33385282^(1/8) 8299620924913736 a001 9303105/230701876*7881196^(1/22) 8299620924913736 a001 267914296/6643838879*7881196^(1/22) 8299620924913736 a001 701408733/17393796001*7881196^(1/22) 8299620924913736 a001 1836311903/45537549124*7881196^(1/22) 8299620924913736 a001 4807526976/119218851371*7881196^(1/22) 8299620924913736 a001 1144206275/28374454999*7881196^(1/22) 8299620924913736 a001 32951280099/817138163596*7881196^(1/22) 8299620924913736 a001 86267571272/2139295485799*7881196^(1/22) 8299620924913736 a001 225851433717/5600748293801*7881196^(1/22) 8299620924913736 a001 591286729879/14662949395604*7881196^(1/22) 8299620924913736 a001 365435296162/9062201101803*7881196^(1/22) 8299620924913736 a001 139583862445/3461452808002*7881196^(1/22) 8299620924913736 a001 53316291173/1322157322203*7881196^(1/22) 8299620924913736 a001 20365011074/505019158607*7881196^(1/22) 8299620924913736 a001 7778742049/192900153618*7881196^(1/22) 8299620924913736 a001 2971215073/73681302247*7881196^(1/22) 8299620924913736 a001 1134903170/28143753123*7881196^(1/22) 8299620924913736 a001 433494437/10749957122*7881196^(1/22) 8299620924913736 a001 165580141/4106118243*7881196^(1/22) 8299620924913736 a001 34111385/64300051206*20633239^(3/10) 8299620924913737 a001 14930352/6643838879*33385282^(5/24) 8299620924913737 a001 267914296/505019158607*20633239^(3/10) 8299620924913737 a001 233802911/440719107401*20633239^(3/10) 8299620924913737 a001 1836311903/3461452808002*20633239^(3/10) 8299620924913737 a001 1602508992/3020733700601*20633239^(3/10) 8299620924913737 a001 12586269025/23725150497407*20633239^(3/10) 8299620924913737 a001 7778742049/14662949395604*20633239^(3/10) 8299620924913737 a001 2971215073/5600748293801*20633239^(3/10) 8299620924913737 a001 1134903170/2139295485799*20633239^(3/10) 8299620924913737 a001 433494437/817138163596*20633239^(3/10) 8299620924913737 a001 165580141/312119004989*20633239^(3/10) 8299620924913737 a001 63245986/1568397607*7881196^(1/22) 8299620924913737 a001 63245986/119218851371*20633239^(3/10) 8299620924913737 a001 4976784/9381251041*33385282^(7/24) 8299620924913737 a001 39088169/17393796001*20633239^(3/14) 8299620924913738 a001 14930352/119218851371*33385282^(3/8) 8299620924913738 a001 102334155/45537549124*20633239^(3/14) 8299620924913738 a001 267914296/119218851371*20633239^(3/14) 8299620924913738 a001 3524667/1568437211*20633239^(3/14) 8299620924913738 a001 1836311903/817138163596*20633239^(3/14) 8299620924913738 a001 4807526976/2139295485799*20633239^(3/14) 8299620924913738 a001 12586269025/5600748293801*20633239^(3/14) 8299620924913738 a001 32951280099/14662949395604*20633239^(3/14) 8299620924913738 a001 53316291173/23725150497407*20633239^(3/14) 8299620924913738 a001 20365011074/9062201101803*20633239^(3/14) 8299620924913738 a001 7778742049/3461452808002*20633239^(3/14) 8299620924913738 a001 2971215073/1322157322203*20633239^(3/14) 8299620924913738 a001 1134903170/505019158607*20633239^(3/14) 8299620924913738 a001 433494437/192900153618*20633239^(3/14) 8299620924913738 a001 24157817/119218851371*20633239^(5/14) 8299620924913738 a001 165580141/73681302247*20633239^(3/14) 8299620924913738 a001 14930352/505019158607*33385282^(11/24) 8299620924913739 a001 63245986/28143753123*20633239^(3/14) 8299620924913739 a001 14930352/2139295485799*33385282^(13/24) 8299620924913739 a001 24157817/599074578*7881196^(1/22) 8299620924913739 a001 39088169/2537720636*20633239^(1/10) 8299620924913739 a001 24157817/45537549124*20633239^(3/10) 8299620924913740 a001 4976784/3020733700601*33385282^(5/8) 8299620924913740 a001 9227465/1568397607*7881196^(1/6) 8299620924913740 a001 39088169/3461452808002*54018521^(1/2) 8299620924913740 a001 39088169/1568397607*20633239^(1/14) 8299620924913740 a001 102334155/6643838879*20633239^(1/10) 8299620924913740 a001 9238424/599786069*20633239^(1/10) 8299620924913740 a001 701408733/45537549124*20633239^(1/10) 8299620924913740 a001 1836311903/119218851371*20633239^(1/10) 8299620924913740 a001 4807526976/312119004989*20633239^(1/10) 8299620924913740 a001 12586269025/817138163596*20633239^(1/10) 8299620924913740 a001 32951280099/2139295485799*20633239^(1/10) 8299620924913740 a001 86267571272/5600748293801*20633239^(1/10) 8299620924913740 a001 7787980473/505618944676*20633239^(1/10) 8299620924913740 a001 365435296162/23725150497407*20633239^(1/10) 8299620924913740 a001 139583862445/9062201101803*20633239^(1/10) 8299620924913740 a001 53316291173/3461452808002*20633239^(1/10) 8299620924913740 a001 20365011074/1322157322203*20633239^(1/10) 8299620924913740 a001 7778742049/505019158607*20633239^(1/10) 8299620924913740 a001 2971215073/192900153618*20633239^(1/10) 8299620924913740 a001 1134903170/73681302247*20633239^(1/10) 8299620924913740 a001 433494437/28143753123*20633239^(1/10) 8299620924913741 a001 165580141/10749957122*20633239^(1/10) 8299620924913741 a001 34111385/3020733700601*54018521^(1/2) 8299620924913741 a001 34111385/1368706081*20633239^(1/14) 8299620924913741 a001 63245986/4106118243*20633239^(1/10) 8299620924913741 a001 267914296/23725150497407*54018521^(1/2) 8299620924913741 a001 133957148/5374978561*20633239^(1/14) 8299620924913741 a001 233802911/9381251041*20633239^(1/14) 8299620924913741 a001 1836311903/73681302247*20633239^(1/14) 8299620924913741 a001 267084832/10716675201*20633239^(1/14) 8299620924913741 a001 12586269025/505019158607*20633239^(1/14) 8299620924913741 a001 10983760033/440719107401*20633239^(1/14) 8299620924913741 a001 43133785636/1730726404001*20633239^(1/14) 8299620924913741 a001 75283811239/3020733700601*20633239^(1/14) 8299620924913741 a001 182717648081/7331474697802*20633239^(1/14) 8299620924913741 a001 139583862445/5600748293801*20633239^(1/14) 8299620924913741 a001 53316291173/2139295485799*20633239^(1/14) 8299620924913741 a001 10182505537/408569081798*20633239^(1/14) 8299620924913741 a001 7778742049/312119004989*20633239^(1/14) 8299620924913741 a001 2971215073/119218851371*20633239^(1/14) 8299620924913741 a001 567451585/22768774562*20633239^(1/14) 8299620924913741 a001 433494437/17393796001*20633239^(1/14) 8299620924913741 a001 165580141/14662949395604*54018521^(1/2) 8299620924913741 a001 24157817/10749957122*20633239^(3/14) 8299620924913741 a001 165580141/6643838879*20633239^(1/14) 8299620924913741 a001 39088169/5600748293801*141422324^(1/2) 8299620924913741 a001 39088169/10749957122*141422324^(1/6) 8299620924913741 a001 39088169/9062201101803*370248451^(1/2) 8299620924913741 a001 39088169/14662949395604*969323029^(1/2) 8299620924913741 a001 39088169/1568397607*2537720636^(1/18) 8299620924913741 a001 39088169/1568397607*312119004989^(1/22) 8299620924913741 a001 39088169/1568397607*28143753123^(1/20) 8299620924913741 a001 39088169/23725150497407*2537720636^(1/2) 8299620924913741 a001 39088169/4106118243*2537720636^(1/10) 8299620924913741 a001 39088169/2139295485799*2537720636^(7/18) 8299620924913741 a001 39088169/4106118243*14662949395604^(1/14) 8299620924913741 a001 39088169/4106118243*192900153618^(1/12) 8299620924913741 a001 39088169/312119004989*2537720636^(3/10) 8299620924913741 a001 39088169/192900153618*2537720636^(5/18) 8299620924913741 a001 39088169/17393796001*2537720636^(1/6) 8299620924913741 a001 39088169/10749957122*73681302247^(1/8) 8299620924913741 a001 39088169/28143753123*45537549124^(1/6) 8299620924913741 a001 39088169/2139295485799*17393796001^(5/14) 8299620924913741 a001 39088169/73681302247*17393796001^(3/14) 8299620924913741 a001 39088169/73681302247*14662949395604^(1/6) 8299620924913741 a001 39088169/192900153618*312119004989^(5/22) 8299620924913741 a001 39088169/192900153618*3461452808002^(5/24) 8299620924913741 a001 39088169/1322157322203*312119004989^(3/10) 8299620924913741 a001 39088169/2139295485799*312119004989^(7/22) 8299620924913741 a001 39088169/23725150497407*14662949395604^(5/14) 8299620924913741 a001 39088169/2139295485799*14662949395604^(5/18) 8299620924913741 a001 39088169/2139295485799*505019158607^(5/16) 8299620924913741 a001 39088169/312119004989*14662949395604^(3/14) 8299620924913741 a001 39088169/23725150497407*192900153618^(5/12) 8299620924913741 a001 39088169/312119004989*192900153618^(1/4) 8299620924913741 a001 39088169/5600748293801*73681302247^(3/8) 8299620924913741 a001 39088169/192900153618*28143753123^(1/4) 8299620924913741 a001 39088169/2139295485799*28143753123^(7/20) 8299620924913741 a001 39088169/45537549124*817138163596^(1/6) 8299620924913741 a001 39088169/23725150497407*28143753123^(9/20) 8299620924913741 a001 39088169/17393796001*312119004989^(3/22) 8299620924913741 a001 39088169/17393796001*28143753123^(3/20) 8299620924913741 a001 39088169/119218851371*4106118243^(1/4) 8299620924913741 a001 39088169/6643838879*312119004989^(1/10) 8299620924913741 a001 39088169/6643838879*1568397607^(1/8) 8299620924913741 a001 39088169/1322157322203*1568397607^(3/8) 8299620924913741 a001 39088169/2537720636*17393796001^(1/14) 8299620924913741 a001 39088169/2537720636*14662949395604^(1/18) 8299620924913741 a001 39088169/2537720636*505019158607^(1/16) 8299620924913741 a001 39088169/2537720636*599074578^(1/12) 8299620924913741 a001 39088169/73681302247*599074578^(1/4) 8299620924913741 a001 39088169/1568397607*228826127^(1/16) 8299620924913741 a001 39088169/2139295485799*599074578^(5/12) 8299620924913741 a001 39088169/17393796001*228826127^(3/16) 8299620924913741 a001 39088169/192900153618*228826127^(5/16) 8299620924913741 a001 39088169/2139295485799*228826127^(7/16) 8299620924913741 a001 63245986/5600748293801*54018521^(1/2) 8299620924913741 a001 39088169/23725150497407*228826127^(9/16) 8299620924913741 a001 31622993/1268860318*20633239^(1/14) 8299620924913742 a001 39088169/45537549124*87403803^(1/4) 8299620924913742 a001 39088169/969323029*33385282^(1/24) 8299620924913742 a001 102334155/14662949395604*141422324^(1/2) 8299620924913742 a001 831985/228811001*141422324^(1/6) 8299620924913742 a001 102334155/23725150497407*370248451^(1/2) 8299620924913742 a001 34111385/1368706081*2537720636^(1/18) 8299620924913742 a001 102334155/5600748293801*2537720636^(7/18) 8299620924913742 a001 34111385/1368706081*312119004989^(1/22) 8299620924913742 a001 34111385/1368706081*28143753123^(1/20) 8299620924913742 a001 102334155/817138163596*2537720636^(3/10) 8299620924913742 a001 102334155/505019158607*2537720636^(5/18) 8299620924913742 a001 102334155/45537549124*2537720636^(1/6) 8299620924913742 a001 102334155/10749957122*2537720636^(1/10) 8299620924913742 a001 102334155/10749957122*14662949395604^(1/14) 8299620924913742 a001 102334155/10749957122*192900153618^(1/12) 8299620924913742 a001 831985/228811001*73681302247^(1/8) 8299620924913742 a001 102334155/5600748293801*17393796001^(5/14) 8299620924913742 a001 34111385/64300051206*17393796001^(3/14) 8299620924913742 a001 14619165/10525900321*45537549124^(1/6) 8299620924913742 a001 34111385/64300051206*14662949395604^(1/6) 8299620924913742 a001 102334155/505019158607*312119004989^(5/22) 8299620924913742 a001 102334155/505019158607*3461452808002^(5/24) 8299620924913742 a001 6765/228826126*312119004989^(3/10) 8299620924913742 a001 102334155/5600748293801*14662949395604^(5/18) 8299620924913742 a001 102334155/2139295485799*9062201101803^(1/4) 8299620924913742 a001 102334155/5600748293801*505019158607^(5/16) 8299620924913742 a001 102334155/817138163596*14662949395604^(3/14) 8299620924913742 a001 102334155/817138163596*192900153618^(1/4) 8299620924913742 a001 102334155/14662949395604*73681302247^(3/8) 8299620924913742 a001 102334155/119218851371*817138163596^(1/6) 8299620924913742 a001 102334155/505019158607*28143753123^(1/4) 8299620924913742 a001 102334155/5600748293801*28143753123^(7/20) 8299620924913742 a001 102334155/45537549124*312119004989^(3/22) 8299620924913742 a001 102334155/45537549124*28143753123^(3/20) 8299620924913742 a001 102334155/17393796001*312119004989^(1/10) 8299620924913742 a001 9303105/28374454999*4106118243^(1/4) 8299620924913742 a001 102334155/6643838879*17393796001^(1/14) 8299620924913742 a001 102334155/6643838879*14662949395604^(1/18) 8299620924913742 a001 102334155/6643838879*505019158607^(1/16) 8299620924913742 a001 102334155/17393796001*1568397607^(1/8) 8299620924913742 a001 6765/228826126*1568397607^(3/8) 8299620924913742 a001 102334155/6643838879*599074578^(1/12) 8299620924913742 a001 39088169/4106118243*33385282^(1/8) 8299620924913742 a001 34111385/64300051206*599074578^(1/4) 8299620924913742 a001 34111385/1368706081*228826127^(1/16) 8299620924913742 a001 102334155/5600748293801*599074578^(5/12) 8299620924913742 a001 165580141/23725150497407*141422324^(1/2) 8299620924913742 a001 102334155/45537549124*228826127^(3/16) 8299620924913742 a001 102334155/505019158607*228826127^(5/16) 8299620924913742 a001 267914296/73681302247*141422324^(1/6) 8299620924913742 a001 102334155/5600748293801*228826127^(7/16) 8299620924913742 a001 233802911/64300051206*141422324^(1/6) 8299620924913742 a001 1836311903/505019158607*141422324^(1/6) 8299620924913742 a001 1602508992/440719107401*141422324^(1/6) 8299620924913742 a001 12586269025/3461452808002*141422324^(1/6) 8299620924913742 a001 10983760033/3020733700601*141422324^(1/6) 8299620924913742 a001 86267571272/23725150497407*141422324^(1/6) 8299620924913742 a001 53316291173/14662949395604*141422324^(1/6) 8299620924913742 a001 20365011074/5600748293801*141422324^(1/6) 8299620924913742 a001 7778742049/2139295485799*141422324^(1/6) 8299620924913742 a001 2971215073/817138163596*141422324^(1/6) 8299620924913742 a001 1134903170/312119004989*141422324^(1/6) 8299620924913742 a001 433494437/119218851371*141422324^(1/6) 8299620924913742 a001 10946/599074579*2537720636^(7/18) 8299620924913742 a001 267914296/2139295485799*2537720636^(3/10) 8299620924913742 a001 267914296/1322157322203*2537720636^(5/18) 8299620924913742 a001 267914296/119218851371*2537720636^(1/6) 8299620924913742 a001 133957148/5374978561*2537720636^(1/18) 8299620924913742 a001 267914296/28143753123*2537720636^(1/10) 8299620924913742 a001 133957148/5374978561*312119004989^(1/22) 8299620924913742 a001 133957148/5374978561*28143753123^(1/20) 8299620924913742 a001 267914296/28143753123*14662949395604^(1/14) 8299620924913742 a001 267914296/28143753123*192900153618^(1/12) 8299620924913742 a001 10946/599074579*17393796001^(5/14) 8299620924913742 a001 267914296/505019158607*17393796001^(3/14) 8299620924913742 a001 267914296/73681302247*73681302247^(1/8) 8299620924913742 a001 133957148/96450076809*45537549124^(1/6) 8299620924913742 a001 267914296/505019158607*14662949395604^(1/6) 8299620924913742 a001 10946/599074579*312119004989^(7/22) 8299620924913742 a001 267914296/9062201101803*312119004989^(3/10) 8299620924913742 a001 10946/599074579*14662949395604^(5/18) 8299620924913742 a001 267914296/2139295485799*14662949395604^(3/14) 8299620924913742 a001 10946/599074579*505019158607^(5/16) 8299620924913742 a001 267914296/2139295485799*192900153618^(1/4) 8299620924913742 a001 267914296/312119004989*817138163596^(1/6) 8299620924913742 a001 267914296/119218851371*312119004989^(3/22) 8299620924913742 a001 267914296/119218851371*28143753123^(3/20) 8299620924913742 a001 267914296/1322157322203*28143753123^(1/4) 8299620924913742 a001 10946/599074579*28143753123^(7/20) 8299620924913742 a001 66978574/11384387281*312119004989^(1/10) 8299620924913742 a001 9238424/599786069*17393796001^(1/14) 8299620924913742 a001 9238424/599786069*14662949395604^(1/18) 8299620924913742 a001 9238424/599786069*505019158607^(1/16) 8299620924913742 a001 66978574/204284540899*4106118243^(1/4) 8299620924913742 a001 66978574/11384387281*1568397607^(1/8) 8299620924913742 a001 267914296/9062201101803*1568397607^(3/8) 8299620924913742 a001 9238424/599786069*599074578^(1/12) 8299620924913742 a001 267914296/505019158607*599074578^(1/4) 8299620924913742 a001 10946/599074579*599074578^(5/12) 8299620924913742 a001 133957148/5374978561*228826127^(1/16) 8299620924913742 a001 165580141/45537549124*141422324^(1/6) 8299620924913742 a001 701408733/5600748293801*2537720636^(3/10) 8299620924913742 a001 701408733/3461452808002*2537720636^(5/18) 8299620924913742 a001 3524667/1568437211*2537720636^(1/6) 8299620924913742 a001 701408733/73681302247*2537720636^(1/10) 8299620924913742 a001 233802911/9381251041*2537720636^(1/18) 8299620924913742 a001 233802911/9381251041*312119004989^(1/22) 8299620924913742 a001 233802911/9381251041*28143753123^(1/20) 8299620924913742 a001 233802911/440719107401*17393796001^(3/14) 8299620924913742 a001 701408733/73681302247*14662949395604^(1/14) 8299620924913742 a001 701408733/73681302247*192900153618^(1/12) 8299620924913742 a001 701408733/505019158607*45537549124^(1/6) 8299620924913742 a001 233802911/64300051206*73681302247^(1/8) 8299620924913742 a001 701408733/23725150497407*312119004989^(3/10) 8299620924913742 a001 233802911/440719107401*14662949395604^(1/6) 8299620924913742 a001 701408733/3461452808002*3461452808002^(5/24) 8299620924913742 a001 233802911/3020733700601*1322157322203^(1/4) 8299620924913742 a001 701408733/817138163596*817138163596^(1/6) 8299620924913742 a001 701408733/5600748293801*192900153618^(1/4) 8299620924913742 a001 3524667/1568437211*312119004989^(3/22) 8299620924913742 a001 701408733/119218851371*312119004989^(1/10) 8299620924913742 a001 3524667/1568437211*28143753123^(3/20) 8299620924913742 a001 701408733/45537549124*17393796001^(1/14) 8299620924913742 a001 701408733/3461452808002*28143753123^(1/4) 8299620924913742 a001 701408733/45537549124*14662949395604^(1/18) 8299620924913742 a001 701408733/45537549124*505019158607^(1/16) 8299620924913742 a001 701408733/2139295485799*4106118243^(1/4) 8299620924913742 a001 701408733/119218851371*1568397607^(1/8) 8299620924913742 a001 701408733/23725150497407*1568397607^(3/8) 8299620924913742 a001 701408733/45537549124*599074578^(1/12) 8299620924913742 a001 1836311903/14662949395604*2537720636^(3/10) 8299620924913742 a001 1836311903/9062201101803*2537720636^(5/18) 8299620924913742 a001 1836311903/817138163596*2537720636^(1/6) 8299620924913742 a001 1836311903/192900153618*2537720636^(1/10) 8299620924913742 a001 1836311903/73681302247*2537720636^(1/18) 8299620924913742 a001 1836311903/3461452808002*17393796001^(3/14) 8299620924913742 a001 1836311903/73681302247*312119004989^(1/22) 8299620924913742 a001 1836311903/119218851371*17393796001^(1/14) 8299620924913742 a001 1836311903/73681302247*28143753123^(1/20) 8299620924913742 a001 1836311903/1322157322203*45537549124^(1/6) 8299620924913742 a001 1836311903/192900153618*14662949395604^(1/14) 8299620924913742 a001 1836311903/192900153618*192900153618^(1/12) 8299620924913742 a001 1836311903/9062201101803*312119004989^(5/22) 8299620924913742 a001 1836311903/2139295485799*817138163596^(1/6) 8299620924913742 a001 1836311903/9062201101803*3461452808002^(5/24) 8299620924913742 a001 1836311903/817138163596*312119004989^(3/22) 8299620924913742 a001 1836311903/14662949395604*192900153618^(1/4) 8299620924913742 a001 1836311903/312119004989*312119004989^(1/10) 8299620924913742 a001 1836311903/505019158607*73681302247^(1/8) 8299620924913742 a001 1836311903/119218851371*14662949395604^(1/18) 8299620924913742 a001 1836311903/119218851371*505019158607^(1/16) 8299620924913742 a001 1836311903/817138163596*28143753123^(3/20) 8299620924913742 a001 1836311903/9062201101803*28143753123^(1/4) 8299620924913742 a001 4807526976/23725150497407*2537720636^(5/18) 8299620924913742 a001 1836311903/5600748293801*4106118243^(1/4) 8299620924913742 a001 4807526976/2139295485799*2537720636^(1/6) 8299620924913742 a001 12586269025/5600748293801*2537720636^(1/6) 8299620924913742 a001 32951280099/14662949395604*2537720636^(1/6) 8299620924913742 a001 53316291173/23725150497407*2537720636^(1/6) 8299620924913742 a001 20365011074/9062201101803*2537720636^(1/6) 8299620924913742 a001 102287808/10745088481*2537720636^(1/10) 8299620924913742 a001 2971215073/23725150497407*2537720636^(3/10) 8299620924913742 a001 7778742049/3461452808002*2537720636^(1/6) 8299620924913742 a001 2971215073/14662949395604*2537720636^(5/18) 8299620924913742 a001 267084832/10716675201*2537720636^(1/18) 8299620924913742 a001 12586269025/1322157322203*2537720636^(1/10) 8299620924913742 a001 32951280099/3461452808002*2537720636^(1/10) 8299620924913742 a001 86267571272/9062201101803*2537720636^(1/10) 8299620924913742 a001 225851433717/23725150497407*2537720636^(1/10) 8299620924913742 a001 139583862445/14662949395604*2537720636^(1/10) 8299620924913742 a001 53316291173/5600748293801*2537720636^(1/10) 8299620924913742 a001 20365011074/2139295485799*2537720636^(1/10) 8299620924913742 a001 7778742049/817138163596*2537720636^(1/10) 8299620924913742 a001 12586269025/505019158607*2537720636^(1/18) 8299620924913742 a001 1602508992/3020733700601*17393796001^(3/14) 8299620924913742 a001 4807526976/312119004989*17393796001^(1/14) 8299620924913742 a001 10983760033/440719107401*2537720636^(1/18) 8299620924913742 a001 14930208/10749853441*45537549124^(1/6) 8299620924913742 a001 267084832/10716675201*312119004989^(1/22) 8299620924913742 a001 102287808/10745088481*14662949395604^(1/14) 8299620924913742 a001 102287808/10745088481*192900153618^(1/12) 8299620924913742 a001 4807526976/2139295485799*312119004989^(3/22) 8299620924913742 a001 43133785636/1730726404001*2537720636^(1/18) 8299620924913742 a001 1602508992/3020733700601*14662949395604^(1/6) 8299620924913742 a001 4807526976/23725150497407*3461452808002^(5/24) 8299620924913742 a001 1201881744/204284540899*312119004989^(1/10) 8299620924913742 a001 4807526976/312119004989*14662949395604^(1/18) 8299620924913742 a001 4807526976/312119004989*505019158607^(1/16) 8299620924913742 a001 1602508992/440719107401*73681302247^(1/8) 8299620924913742 a001 182717648081/7331474697802*2537720636^(1/18) 8299620924913742 a001 267084832/10716675201*28143753123^(1/20) 8299620924913742 a001 139583862445/5600748293801*2537720636^(1/18) 8299620924913742 a001 53316291173/2139295485799*2537720636^(1/18) 8299620924913742 a001 1836311903/312119004989*1568397607^(1/8) 8299620924913742 a001 4807526976/2139295485799*28143753123^(3/20) 8299620924913742 a001 4807526976/23725150497407*28143753123^(1/4) 8299620924913742 a001 10182505537/408569081798*2537720636^(1/18) 8299620924913742 a001 7778742049/312119004989*2537720636^(1/18) 8299620924913742 a001 2971215073/1322157322203*2537720636^(1/6) 8299620924913742 a001 12586269025/23725150497407*17393796001^(3/14) 8299620924913742 a001 12586269025/817138163596*17393796001^(1/14) 8299620924913742 a001 12586269025/9062201101803*45537549124^(1/6) 8299620924913742 a001 12586269025/505019158607*312119004989^(1/22) 8299620924913742 a001 12586269025/1322157322203*192900153618^(1/12) 8299620924913742 a001 12586269025/817138163596*505019158607^(1/16) 8299620924913742 a001 12586269025/3461452808002*73681302247^(1/8) 8299620924913742 a001 12586269025/505019158607*28143753123^(1/20) 8299620924913742 a001 12586269025/5600748293801*28143753123^(3/20) 8299620924913742 a001 32951280099/2139295485799*17393796001^(1/14) 8299620924913742 a001 32951280099/23725150497407*45537549124^(1/6) 8299620924913742 a001 86267571272/5600748293801*17393796001^(1/14) 8299620924913742 a001 7787980473/505618944676*17393796001^(1/14) 8299620924913742 a001 365435296162/23725150497407*17393796001^(1/14) 8299620924913742 a001 139583862445/9062201101803*17393796001^(1/14) 8299620924913742 a001 32951280099/14662949395604*312119004989^(3/22) 8299620924913742 a001 10983760033/440719107401*312119004989^(1/22) 8299620924913742 a001 32951280099/5600748293801*312119004989^(1/10) 8299620924913742 a001 32951280099/2139295485799*505019158607^(1/16) 8299620924913742 a001 32951280099/3461452808002*192900153618^(1/12) 8299620924913742 a001 53316291173/3461452808002*17393796001^(1/14) 8299620924913742 a001 10983760033/3020733700601*73681302247^(1/8) 8299620924913742 a001 10983760033/440719107401*28143753123^(1/20) 8299620924913742 a001 1135099622/192933544679*312119004989^(1/10) 8299620924913742 a001 43133785636/1730726404001*312119004989^(1/22) 8299620924913742 a001 86267571272/5600748293801*505019158607^(1/16) 8299620924913742 a001 86267571272/9062201101803*192900153618^(1/12) 8299620924913742 a001 75283811239/3020733700601*312119004989^(1/22) 8299620924913742 a001 7787980473/505618944676*14662949395604^(1/18) 8299620924913742 a001 182717648081/7331474697802*312119004989^(1/22) 8299620924913742 a001 32951280099/14662949395604*28143753123^(3/20) 8299620924913742 a001 139583862445/5600748293801*312119004989^(1/22) 8299620924913742 a001 43133785636/1730726404001*28143753123^(1/20) 8299620924913742 a001 75283811239/3020733700601*28143753123^(1/20) 8299620924913742 a001 182717648081/7331474697802*28143753123^(1/20) 8299620924913742 a001 53316291173/23725150497407*312119004989^(3/22) 8299620924913742 a001 53316291173/9062201101803*312119004989^(1/10) 8299620924913742 a001 53316291173/2139295485799*312119004989^(1/22) 8299620924913742 a001 53316291173/3461452808002*505019158607^(1/16) 8299620924913742 a001 53316291173/5600748293801*192900153618^(1/12) 8299620924913742 a001 139583862445/5600748293801*28143753123^(1/20) 8299620924913742 a001 53316291173/14662949395604*73681302247^(1/8) 8299620924913742 a001 53316291173/2139295485799*28143753123^(1/20) 8299620924913742 a001 20365011074/1322157322203*17393796001^(1/14) 8299620924913742 a001 53316291173/23725150497407*28143753123^(3/20) 8299620924913742 a001 10182505537/7331474697802*45537549124^(1/6) 8299620924913742 a001 10182505537/1730726404001*312119004989^(1/10) 8299620924913742 a001 20365011074/23725150497407*817138163596^(1/6) 8299620924913742 a001 20365011074/2139295485799*192900153618^(1/12) 8299620924913742 a001 20365011074/5600748293801*73681302247^(1/8) 8299620924913742 a001 10182505537/408569081798*28143753123^(1/20) 8299620924913742 a001 20365011074/9062201101803*28143753123^(3/20) 8299620924913742 a001 7778742049/14662949395604*17393796001^(3/14) 8299620924913742 a001 7778742049/505019158607*17393796001^(1/14) 8299620924913742 a001 7778742049/5600748293801*45537549124^(1/6) 8299620924913742 a001 7778742049/505019158607*14662949395604^(1/18) 8299620924913742 a001 7778742049/505019158607*505019158607^(1/16) 8299620924913742 a001 7778742049/1322157322203*312119004989^(1/10) 8299620924913742 a001 7778742049/14662949395604*14662949395604^(1/6) 8299620924913742 a001 7778742049/817138163596*192900153618^(1/12) 8299620924913742 a001 7778742049/312119004989*312119004989^(1/22) 8299620924913742 a001 7778742049/2139295485799*73681302247^(1/8) 8299620924913742 a001 7778742049/312119004989*28143753123^(1/20) 8299620924913742 a001 7778742049/3461452808002*28143753123^(3/20) 8299620924913742 a001 1201881744/3665737348901*4106118243^(1/4) 8299620924913742 a001 2971215073/312119004989*2537720636^(1/10) 8299620924913742 a001 2971215073/119218851371*2537720636^(1/18) 8299620924913742 a001 7778742049/23725150497407*4106118243^(1/4) 8299620924913742 a001 2971215073/5600748293801*17393796001^(3/14) 8299620924913742 a001 2971215073/192900153618*17393796001^(1/14) 8299620924913742 a001 2971215073/2139295485799*45537549124^(1/6) 8299620924913742 a001 2971215073/192900153618*14662949395604^(1/18) 8299620924913742 a001 2971215073/192900153618*505019158607^(1/16) 8299620924913742 a001 2971215073/14662949395604*312119004989^(5/22) 8299620924913742 a001 2971215073/1322157322203*312119004989^(3/22) 8299620924913742 a001 2971215073/14662949395604*3461452808002^(5/24) 8299620924913742 a001 2971215073/5600748293801*14662949395604^(1/6) 8299620924913742 a001 2971215073/23725150497407*192900153618^(1/4) 8299620924913742 a001 2971215073/312119004989*14662949395604^(1/14) 8299620924913742 a001 2971215073/312119004989*192900153618^(1/12) 8299620924913742 a001 2971215073/817138163596*73681302247^(1/8) 8299620924913742 a001 2971215073/119218851371*312119004989^(1/22) 8299620924913742 a001 2971215073/119218851371*28143753123^(1/20) 8299620924913742 a001 2971215073/1322157322203*28143753123^(3/20) 8299620924913742 a001 2971215073/14662949395604*28143753123^(1/4) 8299620924913742 a001 2971215073/9062201101803*4106118243^(1/4) 8299620924913742 a001 1201881744/204284540899*1568397607^(1/8) 8299620924913742 a001 12586269025/2139295485799*1568397607^(1/8) 8299620924913742 a001 32951280099/5600748293801*1568397607^(1/8) 8299620924913742 a001 1135099622/192933544679*1568397607^(1/8) 8299620924913742 a001 139583862445/23725150497407*1568397607^(1/8) 8299620924913742 a001 53316291173/9062201101803*1568397607^(1/8) 8299620924913742 a001 10182505537/1730726404001*1568397607^(1/8) 8299620924913742 a001 7778742049/1322157322203*1568397607^(1/8) 8299620924913742 a001 2971215073/505019158607*1568397607^(1/8) 8299620924913742 a001 1134903170/9062201101803*2537720636^(3/10) 8299620924913742 a001 1134903170/5600748293801*2537720636^(5/18) 8299620924913742 a001 1134903170/505019158607*2537720636^(1/6) 8299620924913742 a001 1134903170/119218851371*2537720636^(1/10) 8299620924913742 a001 567451585/22768774562*2537720636^(1/18) 8299620924913742 a001 1134903170/2139295485799*17393796001^(3/14) 8299620924913742 a001 1134903170/73681302247*17393796001^(1/14) 8299620924913742 a001 1134903170/73681302247*14662949395604^(1/18) 8299620924913742 a001 1134903170/73681302247*505019158607^(1/16) 8299620924913742 a001 567451585/408569081798*45537549124^(1/6) 8299620924913742 a001 567451585/96450076809*312119004989^(1/10) 8299620924913742 a001 1134903170/505019158607*312119004989^(3/22) 8299620924913742 a001 1134903170/5600748293801*312119004989^(5/22) 8299620924913742 a001 1134903170/1322157322203*817138163596^(1/6) 8299620924913742 a001 1134903170/9062201101803*14662949395604^(3/14) 8299620924913742 a001 1134903170/5600748293801*3461452808002^(5/24) 8299620924913742 a001 1134903170/2139295485799*14662949395604^(1/6) 8299620924913742 a001 1134903170/9062201101803*192900153618^(1/4) 8299620924913742 a001 1134903170/312119004989*73681302247^(1/8) 8299620924913742 a001 1134903170/119218851371*14662949395604^(1/14) 8299620924913742 a001 1134903170/119218851371*192900153618^(1/12) 8299620924913742 a001 1134903170/505019158607*28143753123^(3/20) 8299620924913742 a001 1134903170/5600748293801*28143753123^(1/4) 8299620924913742 a001 567451585/22768774562*312119004989^(1/22) 8299620924913742 a001 567451585/22768774562*28143753123^(1/20) 8299620924913742 a001 567451585/1730726404001*4106118243^(1/4) 8299620924913742 a001 1836311903/119218851371*599074578^(1/12) 8299620924913742 a001 567451585/96450076809*1568397607^(1/8) 8299620924913742 a001 4807526976/312119004989*599074578^(1/12) 8299620924913742 a001 12586269025/817138163596*599074578^(1/12) 8299620924913742 a001 32951280099/2139295485799*599074578^(1/12) 8299620924913742 a001 86267571272/5600748293801*599074578^(1/12) 8299620924913742 a001 7787980473/505618944676*599074578^(1/12) 8299620924913742 a001 365435296162/23725150497407*599074578^(1/12) 8299620924913742 a001 139583862445/9062201101803*599074578^(1/12) 8299620924913742 a001 53316291173/3461452808002*599074578^(1/12) 8299620924913742 a001 20365011074/1322157322203*599074578^(1/12) 8299620924913742 a001 7778742049/505019158607*599074578^(1/12) 8299620924913742 a001 2971215073/192900153618*599074578^(1/12) 8299620924913742 a001 233802911/440719107401*599074578^(1/4) 8299620924913742 a001 1134903170/73681302247*599074578^(1/12) 8299620924913742 a001 1836311903/3461452808002*599074578^(1/4) 8299620924913742 a001 1602508992/3020733700601*599074578^(1/4) 8299620924913742 a001 12586269025/23725150497407*599074578^(1/4) 8299620924913742 a001 7778742049/14662949395604*599074578^(1/4) 8299620924913742 a001 2971215073/5600748293801*599074578^(1/4) 8299620924913742 a001 233802911/9381251041*228826127^(1/16) 8299620924913742 a001 267914296/119218851371*228826127^(3/16) 8299620924913742 a001 1134903170/2139295485799*599074578^(1/4) 8299620924913742 a001 433494437/23725150497407*2537720636^(7/18) 8299620924913742 a001 433494437/3461452808002*2537720636^(3/10) 8299620924913742 a001 433494437/2139295485799*2537720636^(5/18) 8299620924913742 a001 433494437/192900153618*2537720636^(1/6) 8299620924913742 a001 433494437/45537549124*2537720636^(1/10) 8299620924913742 a001 433494437/17393796001*2537720636^(1/18) 8299620924913742 a001 433494437/28143753123*17393796001^(1/14) 8299620924913742 a001 433494437/28143753123*14662949395604^(1/18) 8299620924913742 a001 433494437/28143753123*505019158607^(1/16) 8299620924913742 a001 433494437/23725150497407*17393796001^(5/14) 8299620924913742 a001 433494437/817138163596*17393796001^(3/14) 8299620924913742 a001 433494437/73681302247*312119004989^(1/10) 8299620924913742 a001 433494437/312119004989*45537549124^(1/6) 8299620924913742 a001 433494437/192900153618*312119004989^(3/22) 8299620924913742 a001 433494437/23725150497407*312119004989^(7/22) 8299620924913742 a001 433494437/14662949395604*312119004989^(3/10) 8299620924913742 a001 433494437/2139295485799*312119004989^(5/22) 8299620924913742 a001 433494437/23725150497407*14662949395604^(5/18) 8299620924913742 a001 433494437/2139295485799*3461452808002^(5/24) 8299620924913742 a001 433494437/23725150497407*505019158607^(5/16) 8299620924913742 a001 433494437/3461452808002*192900153618^(1/4) 8299620924913742 a001 433494437/119218851371*73681302247^(1/8) 8299620924913742 a001 433494437/192900153618*28143753123^(3/20) 8299620924913742 a001 433494437/2139295485799*28143753123^(1/4) 8299620924913742 a001 433494437/23725150497407*28143753123^(7/20) 8299620924913742 a001 433494437/45537549124*14662949395604^(1/14) 8299620924913742 a001 433494437/45537549124*192900153618^(1/12) 8299620924913742 a001 433494437/17393796001*312119004989^(1/22) 8299620924913742 a001 433494437/17393796001*28143753123^(1/20) 8299620924913742 a001 433494437/1322157322203*4106118243^(1/4) 8299620924913742 a001 433494437/73681302247*1568397607^(1/8) 8299620924913742 a001 1836311903/73681302247*228826127^(1/16) 8299620924913742 a001 267084832/10716675201*228826127^(1/16) 8299620924913742 a001 12586269025/505019158607*228826127^(1/16) 8299620924913742 a001 10983760033/440719107401*228826127^(1/16) 8299620924913742 a001 43133785636/1730726404001*228826127^(1/16) 8299620924913742 a001 75283811239/3020733700601*228826127^(1/16) 8299620924913742 a001 182717648081/7331474697802*228826127^(1/16) 8299620924913742 a001 139583862445/5600748293801*228826127^(1/16) 8299620924913742 a001 53316291173/2139295485799*228826127^(1/16) 8299620924913742 a001 10182505537/408569081798*228826127^(1/16) 8299620924913742 a001 7778742049/312119004989*228826127^(1/16) 8299620924913742 a001 2971215073/119218851371*228826127^(1/16) 8299620924913742 a001 433494437/14662949395604*1568397607^(3/8) 8299620924913742 a001 433494437/28143753123*599074578^(1/12) 8299620924913742 a001 567451585/22768774562*228826127^(1/16) 8299620924913742 a001 433494437/817138163596*599074578^(1/4) 8299620924913742 a001 433494437/23725150497407*599074578^(5/12) 8299620924913742 a001 433494437/17393796001*228826127^(1/16) 8299620924913742 a001 3524667/1568437211*228826127^(3/16) 8299620924913742 a001 267914296/1322157322203*228826127^(5/16) 8299620924913742 a001 1836311903/817138163596*228826127^(3/16) 8299620924913742 a001 4807526976/2139295485799*228826127^(3/16) 8299620924913742 a001 12586269025/5600748293801*228826127^(3/16) 8299620924913742 a001 32951280099/14662949395604*228826127^(3/16) 8299620924913742 a001 53316291173/23725150497407*228826127^(3/16) 8299620924913742 a001 20365011074/9062201101803*228826127^(3/16) 8299620924913742 a001 7778742049/3461452808002*228826127^(3/16) 8299620924913742 a001 2971215073/1322157322203*228826127^(3/16) 8299620924913742 a001 1134903170/505019158607*228826127^(3/16) 8299620924913742 a001 433494437/192900153618*228826127^(3/16) 8299620924913742 a001 701408733/3461452808002*228826127^(5/16) 8299620924913742 a001 10946/599074579*228826127^(7/16) 8299620924913742 a001 1836311903/9062201101803*228826127^(5/16) 8299620924913742 a001 4807526976/23725150497407*228826127^(5/16) 8299620924913742 a001 2971215073/14662949395604*228826127^(5/16) 8299620924913742 a001 1134903170/5600748293801*228826127^(5/16) 8299620924913742 a001 433494437/2139295485799*228826127^(5/16) 8299620924913742 a001 165580141/9062201101803*2537720636^(7/18) 8299620924913742 a001 165580141/1322157322203*2537720636^(3/10) 8299620924913742 a001 165580141/817138163596*2537720636^(5/18) 8299620924913742 a001 165580141/73681302247*2537720636^(1/6) 8299620924913742 a001 165580141/17393796001*2537720636^(1/10) 8299620924913742 a001 165580141/10749957122*17393796001^(1/14) 8299620924913742 a001 165580141/10749957122*14662949395604^(1/18) 8299620924913742 a001 165580141/10749957122*505019158607^(1/16) 8299620924913742 a001 165580141/28143753123*312119004989^(1/10) 8299620924913742 a001 165580141/9062201101803*17393796001^(5/14) 8299620924913742 a001 165580141/312119004989*17393796001^(3/14) 8299620924913742 a001 165580141/73681302247*312119004989^(3/22) 8299620924913742 a001 165580141/192900153618*817138163596^(1/6) 8299620924913742 a001 165580141/119218851371*45537549124^(1/6) 8299620924913742 a001 165580141/9062201101803*312119004989^(7/22) 8299620924913742 a001 165580141/5600748293801*312119004989^(3/10) 8299620924913742 a001 165580141/817138163596*312119004989^(5/22) 8299620924913742 a001 165580141/1322157322203*14662949395604^(3/14) 8299620924913742 a001 165580141/3461452808002*9062201101803^(1/4) 8299620924913742 a001 165580141/2139295485799*1322157322203^(1/4) 8299620924913742 a001 165580141/817138163596*3461452808002^(5/24) 8299620924913742 a001 165580141/73681302247*28143753123^(3/20) 8299620924913742 a001 165580141/1322157322203*192900153618^(1/4) 8299620924913742 a001 165580141/312119004989*14662949395604^(1/6) 8299620924913742 a001 165580141/23725150497407*73681302247^(3/8) 8299620924913742 a001 165580141/817138163596*28143753123^(1/4) 8299620924913742 a001 165580141/9062201101803*28143753123^(7/20) 8299620924913742 a001 165580141/45537549124*73681302247^(1/8) 8299620924913742 a001 165580141/17393796001*14662949395604^(1/14) 8299620924913742 a001 165580141/17393796001*192900153618^(1/12) 8299620924913742 a001 165580141/6643838879*2537720636^(1/18) 8299620924913742 a001 165580141/505019158607*4106118243^(1/4) 8299620924913742 a001 165580141/6643838879*312119004989^(1/22) 8299620924913742 a001 165580141/6643838879*28143753123^(1/20) 8299620924913742 a001 165580141/28143753123*1568397607^(1/8) 8299620924913742 a001 165580141/5600748293801*1568397607^(3/8) 8299620924913742 a001 165580141/10749957122*599074578^(1/12) 8299620924913742 a001 165580141/312119004989*599074578^(1/4) 8299620924913742 a001 165580141/9062201101803*599074578^(5/12) 8299620924913742 a001 165580141/6643838879*228826127^(1/16) 8299620924913742 a001 433494437/23725150497407*228826127^(7/16) 8299620924913742 a001 165580141/73681302247*228826127^(3/16) 8299620924913743 a001 165580141/817138163596*228826127^(5/16) 8299620924913743 a001 102334155/119218851371*87403803^(1/4) 8299620924913743 a001 165580141/9062201101803*228826127^(7/16) 8299620924913743 a001 9303105/230701876*33385282^(1/24) 8299620924913743 a001 63245986/9062201101803*141422324^(1/2) 8299620924913743 a001 267914296/312119004989*87403803^(1/4) 8299620924913743 a001 701408733/817138163596*87403803^(1/4) 8299620924913743 a001 1836311903/2139295485799*87403803^(1/4) 8299620924913743 a001 4807526976/5600748293801*87403803^(1/4) 8299620924913743 a001 12586269025/14662949395604*87403803^(1/4) 8299620924913743 a001 20365011074/23725150497407*87403803^(1/4) 8299620924913743 a001 7778742049/9062201101803*87403803^(1/4) 8299620924913743 a001 2971215073/3461452808002*87403803^(1/4) 8299620924913743 a001 1134903170/1322157322203*87403803^(1/4) 8299620924913743 a001 433494437/505019158607*87403803^(1/4) 8299620924913743 a001 267914296/6643838879*33385282^(1/24) 8299620924913743 a001 701408733/17393796001*33385282^(1/24) 8299620924913743 a001 1836311903/45537549124*33385282^(1/24) 8299620924913743 a001 4807526976/119218851371*33385282^(1/24) 8299620924913743 a001 1144206275/28374454999*33385282^(1/24) 8299620924913743 a001 32951280099/817138163596*33385282^(1/24) 8299620924913743 a001 86267571272/2139295485799*33385282^(1/24) 8299620924913743 a001 225851433717/5600748293801*33385282^(1/24) 8299620924913743 a001 591286729879/14662949395604*33385282^(1/24) 8299620924913743 a001 365435296162/9062201101803*33385282^(1/24) 8299620924913743 a001 139583862445/3461452808002*33385282^(1/24) 8299620924913743 a001 53316291173/1322157322203*33385282^(1/24) 8299620924913743 a001 20365011074/505019158607*33385282^(1/24) 8299620924913743 a001 7778742049/192900153618*33385282^(1/24) 8299620924913743 a001 2971215073/73681302247*33385282^(1/24) 8299620924913743 a001 1134903170/28143753123*33385282^(1/24) 8299620924913743 a001 433494437/10749957122*33385282^(1/24) 8299620924913743 a001 165580141/192900153618*87403803^(1/4) 8299620924913743 a001 63245986/17393796001*141422324^(1/6) 8299620924913743 a001 165580141/4106118243*33385282^(1/24) 8299620924913743 a001 31622993/7331474697802*370248451^(1/2) 8299620924913743 a001 63245986/23725150497407*969323029^(1/2) 8299620924913743 a001 31622993/1730726404001*2537720636^(7/18) 8299620924913743 a001 63245986/4106118243*17393796001^(1/14) 8299620924913743 a001 63245986/4106118243*14662949395604^(1/18) 8299620924913743 a001 63245986/4106118243*505019158607^(1/16) 8299620924913743 a001 63245986/505019158607*2537720636^(3/10) 8299620924913743 a001 63245986/312119004989*2537720636^(5/18) 8299620924913743 a001 63245986/28143753123*2537720636^(1/6) 8299620924913743 a001 31622993/5374978561*312119004989^(1/10) 8299620924913743 a001 63245986/28143753123*312119004989^(3/22) 8299620924913743 a001 31622993/1730726404001*17393796001^(5/14) 8299620924913743 a001 63245986/28143753123*28143753123^(3/20) 8299620924913743 a001 63245986/119218851371*17393796001^(3/14) 8299620924913743 a001 63245986/73681302247*817138163596^(1/6) 8299620924913743 a001 63245986/505019158607*14662949395604^(3/14) 8299620924913743 a001 31622993/1730726404001*312119004989^(7/22) 8299620924913743 a001 63245986/2139295485799*312119004989^(3/10) 8299620924913743 a001 31622993/1730726404001*14662949395604^(5/18) 8299620924913743 a001 31622993/1730726404001*505019158607^(5/16) 8299620924913743 a001 31622993/408569081798*1322157322203^(1/4) 8299620924913743 a001 63245986/505019158607*192900153618^(1/4) 8299620924913743 a001 63245986/312119004989*312119004989^(5/22) 8299620924913743 a001 63245986/312119004989*3461452808002^(5/24) 8299620924913743 a001 63245986/9062201101803*73681302247^(3/8) 8299620924913743 a001 63245986/119218851371*14662949395604^(1/6) 8299620924913743 a001 63245986/312119004989*28143753123^(1/4) 8299620924913743 a001 31622993/22768774562*45537549124^(1/6) 8299620924913743 a001 31622993/1730726404001*28143753123^(7/20) 8299620924913743 a001 63245986/17393796001*73681302247^(1/8) 8299620924913743 a001 63245986/6643838879*2537720636^(1/10) 8299620924913743 a001 31622993/96450076809*4106118243^(1/4) 8299620924913743 a001 63245986/6643838879*14662949395604^(1/14) 8299620924913743 a001 63245986/6643838879*192900153618^(1/12) 8299620924913743 a001 31622993/5374978561*1568397607^(1/8) 8299620924913743 a001 31622993/1268860318*2537720636^(1/18) 8299620924913743 a001 63245986/2139295485799*1568397607^(3/8) 8299620924913743 a001 31622993/1268860318*312119004989^(1/22) 8299620924913743 a001 31622993/1268860318*28143753123^(1/20) 8299620924913743 a001 63245986/4106118243*599074578^(1/12) 8299620924913743 a001 63245986/119218851371*599074578^(1/4) 8299620924913743 a001 31622993/1730726404001*599074578^(5/12) 8299620924913743 a001 31622993/1268860318*228826127^(1/16) 8299620924913743 a001 63245986/28143753123*228826127^(3/16) 8299620924913743 a001 63245986/312119004989*228826127^(5/16) 8299620924913743 a001 39088169/17393796001*33385282^(5/24) 8299620924913743 a001 31622993/1730726404001*228826127^(7/16) 8299620924913743 a001 63245986/73681302247*87403803^(1/4) 8299620924913743 a001 63245986/1568397607*33385282^(1/24) 8299620924913743 a001 102334155/10749957122*33385282^(1/8) 8299620924913743 a001 24157817/1568397607*20633239^(1/10) 8299620924913743 a001 267914296/28143753123*33385282^(1/8) 8299620924913743 a001 701408733/73681302247*33385282^(1/8) 8299620924913743 a001 1836311903/192900153618*33385282^(1/8) 8299620924913743 a001 102287808/10745088481*33385282^(1/8) 8299620924913743 a001 12586269025/1322157322203*33385282^(1/8) 8299620924913743 a001 32951280099/3461452808002*33385282^(1/8) 8299620924913743 a001 86267571272/9062201101803*33385282^(1/8) 8299620924913743 a001 225851433717/23725150497407*33385282^(1/8) 8299620924913743 a001 139583862445/14662949395604*33385282^(1/8) 8299620924913743 a001 53316291173/5600748293801*33385282^(1/8) 8299620924913743 a001 20365011074/2139295485799*33385282^(1/8) 8299620924913743 a001 7778742049/817138163596*33385282^(1/8) 8299620924913743 a001 2971215073/312119004989*33385282^(1/8) 8299620924913743 a001 1134903170/119218851371*33385282^(1/8) 8299620924913743 a001 433494437/45537549124*33385282^(1/8) 8299620924913743 a001 165580141/17393796001*33385282^(1/8) 8299620924913743 a001 39088169/73681302247*33385282^(7/24) 8299620924913744 a001 9227465/969323029*7881196^(3/22) 8299620924913744 a001 63245986/6643838879*33385282^(1/8) 8299620924913744 a001 102334155/45537549124*33385282^(5/24) 8299620924913744 a001 24157817/2139295485799*54018521^(1/2) 8299620924913744 a001 24157817/969323029*20633239^(1/14) 8299620924913744 a001 267914296/119218851371*33385282^(5/24) 8299620924913744 a001 3524667/1568437211*33385282^(5/24) 8299620924913744 a001 1836311903/817138163596*33385282^(5/24) 8299620924913744 a001 4807526976/2139295485799*33385282^(5/24) 8299620924913744 a001 12586269025/5600748293801*33385282^(5/24) 8299620924913744 a001 32951280099/14662949395604*33385282^(5/24) 8299620924913744 a001 53316291173/23725150497407*33385282^(5/24) 8299620924913744 a001 20365011074/9062201101803*33385282^(5/24) 8299620924913744 a001 7778742049/3461452808002*33385282^(5/24) 8299620924913744 a001 2971215073/1322157322203*33385282^(5/24) 8299620924913744 a001 1134903170/505019158607*33385282^(5/24) 8299620924913744 a001 433494437/192900153618*33385282^(5/24) 8299620924913744 a001 165580141/73681302247*33385282^(5/24) 8299620924913744 a001 39088169/312119004989*33385282^(3/8) 8299620924913744 a001 63245986/28143753123*33385282^(5/24) 8299620924913744 a001 34111385/64300051206*33385282^(7/24) 8299620924913745 a001 267914296/505019158607*33385282^(7/24) 8299620924913745 a001 233802911/440719107401*33385282^(7/24) 8299620924913745 a001 1836311903/3461452808002*33385282^(7/24) 8299620924913745 a001 1602508992/3020733700601*33385282^(7/24) 8299620924913745 a001 12586269025/23725150497407*33385282^(7/24) 8299620924913745 a001 7778742049/14662949395604*33385282^(7/24) 8299620924913745 a001 2971215073/5600748293801*33385282^(7/24) 8299620924913745 a001 1134903170/2139295485799*33385282^(7/24) 8299620924913745 a001 433494437/817138163596*33385282^(7/24) 8299620924913745 a001 165580141/312119004989*33385282^(7/24) 8299620924913745 a001 39088169/1322157322203*33385282^(11/24) 8299620924913745 a001 63245986/119218851371*33385282^(7/24) 8299620924913745 a001 102334155/817138163596*33385282^(3/8) 8299620924913745 a001 24157817/3461452808002*141422324^(1/2) 8299620924913745 a001 267914296/2139295485799*33385282^(3/8) 8299620924913745 a001 24157817/6643838879*141422324^(1/6) 8299620924913745 a001 701408733/5600748293801*33385282^(3/8) 8299620924913745 a001 1836311903/14662949395604*33385282^(3/8) 8299620924913745 a001 2971215073/23725150497407*33385282^(3/8) 8299620924913745 a001 1134903170/9062201101803*33385282^(3/8) 8299620924913745 a001 433494437/3461452808002*33385282^(3/8) 8299620924913745 a001 24157817/5600748293801*370248451^(1/2) 8299620924913745 a001 24157817/9062201101803*969323029^(1/2) 8299620924913745 a001 24157817/1568397607*17393796001^(1/14) 8299620924913745 a001 24157817/1568397607*14662949395604^(1/18) 8299620924913745 a001 24157817/1568397607*505019158607^(1/16) 8299620924913745 a001 24157817/1568397607*599074578^(1/12) 8299620924913745 a001 24157817/14662949395604*2537720636^(1/2) 8299620924913745 a001 24157817/1322157322203*2537720636^(7/18) 8299620924913745 a001 24157817/4106118243*312119004989^(1/10) 8299620924913745 a001 24157817/192900153618*2537720636^(3/10) 8299620924913745 a001 24157817/119218851371*2537720636^(5/18) 8299620924913745 a001 24157817/10749957122*2537720636^(1/6) 8299620924913745 a001 24157817/23725150497407*6643838879^(1/2) 8299620924913745 a001 24157817/10749957122*312119004989^(3/22) 8299620924913745 a001 24157817/4106118243*1568397607^(1/8) 8299620924913745 a001 24157817/10749957122*28143753123^(3/20) 8299620924913745 a001 24157817/28143753123*817138163596^(1/6) 8299620924913745 a001 24157817/1322157322203*17393796001^(5/14) 8299620924913745 a001 24157817/45537549124*17393796001^(3/14) 8299620924913745 a001 24157817/192900153618*14662949395604^(3/14) 8299620924913745 a001 24157817/192900153618*192900153618^(1/4) 8299620924913745 a001 24157817/14662949395604*312119004989^(9/22) 8299620924913745 a001 24157817/1322157322203*312119004989^(7/22) 8299620924913745 a001 24157817/1322157322203*14662949395604^(5/18) 8299620924913745 a001 24157817/14662949395604*14662949395604^(5/14) 8299620924913745 a001 24157817/1322157322203*505019158607^(5/16) 8299620924913745 a001 24157817/312119004989*1322157322203^(1/4) 8299620924913745 a001 24157817/14662949395604*192900153618^(5/12) 8299620924913745 a001 24157817/119218851371*312119004989^(5/22) 8299620924913745 a001 24157817/3461452808002*73681302247^(3/8) 8299620924913745 a001 24157817/119218851371*3461452808002^(5/24) 8299620924913745 a001 24157817/119218851371*28143753123^(1/4) 8299620924913745 a001 24157817/1322157322203*28143753123^(7/20) 8299620924913745 a001 24157817/45537549124*14662949395604^(1/6) 8299620924913745 a001 24157817/14662949395604*28143753123^(9/20) 8299620924913745 a001 24157817/17393796001*45537549124^(1/6) 8299620924913745 a001 24157817/73681302247*4106118243^(1/4) 8299620924913745 a001 24157817/6643838879*73681302247^(1/8) 8299620924913745 a001 24157817/2537720636*2537720636^(1/10) 8299620924913745 a001 24157817/817138163596*1568397607^(3/8) 8299620924913745 a001 24157817/2537720636*14662949395604^(1/14) 8299620924913745 a001 24157817/2537720636*192900153618^(1/12) 8299620924913745 a001 24157817/45537549124*599074578^(1/4) 8299620924913745 a001 165580141/1322157322203*33385282^(3/8) 8299620924913745 a001 24157817/969323029*2537720636^(1/18) 8299620924913745 a001 24157817/969323029*312119004989^(1/22) 8299620924913745 a001 24157817/969323029*28143753123^(1/20) 8299620924913745 a001 24157817/1322157322203*599074578^(5/12) 8299620924913745 a001 24157817/969323029*228826127^(1/16) 8299620924913745 a001 24157817/10749957122*228826127^(3/16) 8299620924913745 a001 24157817/119218851371*228826127^(5/16) 8299620924913745 a001 24157817/1322157322203*228826127^(7/16) 8299620924913745 a001 24157817/14662949395604*228826127^(9/16) 8299620924913745 a001 39088169/5600748293801*33385282^(13/24) 8299620924913746 a001 24157817/28143753123*87403803^(1/4) 8299620924913746 a001 24157817/599074578*33385282^(1/24) 8299620924913746 a001 63245986/505019158607*33385282^(3/8) 8299620924913746 a001 6765/228826126*33385282^(11/24) 8299620924913746 a001 267914296/9062201101803*33385282^(11/24) 8299620924913746 a001 701408733/23725150497407*33385282^(11/24) 8299620924913746 a001 433494437/14662949395604*33385282^(11/24) 8299620924913746 a001 165580141/5600748293801*33385282^(11/24) 8299620924913746 a001 39088169/23725150497407*33385282^(5/8) 8299620924913746 a001 24157817/2537720636*33385282^(1/8) 8299620924913746 a001 63245986/2139295485799*33385282^(11/24) 8299620924913746 a001 102334155/14662949395604*33385282^(13/24) 8299620924913747 a001 165580141/23725150497407*33385282^(13/24) 8299620924913747 a001 24157817/10749957122*33385282^(5/24) 8299620924913747 a001 63245986/9062201101803*33385282^(13/24) 8299620924913747 a001 24157817/45537549124*33385282^(7/24) 8299620924913748 a001 7465176/5374978561*12752043^(1/4) 8299620924913748 a001 24157817/192900153618*33385282^(3/8) 8299620924913748 a001 9227465/14662949395604*20633239^(7/10) 8299620924913749 a001 24157817/817138163596*33385282^(11/24) 8299620924913749 a001 24157817/3461452808002*33385282^(13/24) 8299620924913749 a001 9227465/5600748293801*20633239^(9/14) 8299620924913750 a001 24157817/14662949395604*33385282^(5/8) 8299620924913752 a001 46347/4868641*1860498^(3/20) 8299620924913752 a001 9227465/505019158607*20633239^(1/2) 8299620924913754 a001 39088169/28143753123*12752043^(1/4) 8299620924913755 a001 9227465/45537549124*20633239^(5/14) 8299620924913755 a001 14619165/10525900321*12752043^(1/4) 8299620924913755 a001 133957148/96450076809*12752043^(1/4) 8299620924913755 a001 701408733/505019158607*12752043^(1/4) 8299620924913755 a001 1836311903/1322157322203*12752043^(1/4) 8299620924913755 a001 14930208/10749853441*12752043^(1/4) 8299620924913755 a001 12586269025/9062201101803*12752043^(1/4) 8299620924913755 a001 32951280099/23725150497407*12752043^(1/4) 8299620924913755 a001 10182505537/7331474697802*12752043^(1/4) 8299620924913755 a001 7778742049/5600748293801*12752043^(1/4) 8299620924913755 a001 2971215073/2139295485799*12752043^(1/4) 8299620924913755 a001 567451585/408569081798*12752043^(1/4) 8299620924913755 a001 433494437/312119004989*12752043^(1/4) 8299620924913755 a001 165580141/119218851371*12752043^(1/4) 8299620924913756 a001 31622993/22768774562*12752043^(1/4) 8299620924913756 a001 9227465/228826127*7881196^(1/22) 8299620924913756 a001 9227465/17393796001*20633239^(3/10) 8299620924913758 a001 9227465/4106118243*20633239^(3/14) 8299620924913758 a001 24157817/17393796001*12752043^(1/4) 8299620924913760 a001 9227465/599074578*20633239^(1/10) 8299620924913760 a001 9227465/817138163596*54018521^(1/2) 8299620924913761 a001 9227465/370248451*20633239^(1/14) 8299620924913762 a001 9227465/1322157322203*141422324^(1/2) 8299620924913762 a001 9227465/2537720636*141422324^(1/6) 8299620924913762 a001 9227465/2139295485799*370248451^(1/2) 8299620924913762 a001 9227465/599074578*17393796001^(1/14) 8299620924913762 a001 9227465/599074578*14662949395604^(1/18) 8299620924913762 a001 9227465/599074578*505019158607^(1/16) 8299620924913762 a001 9227465/599074578*599074578^(1/12) 8299620924913762 a001 9227465/3461452808002*969323029^(1/2) 8299620924913762 a001 9227465/1568397607*312119004989^(1/10) 8299620924913762 a001 9227465/1568397607*1568397607^(1/8) 8299620924913762 a001 9227465/4106118243*2537720636^(1/6) 8299620924913762 a001 9227465/5600748293801*2537720636^(1/2) 8299620924913762 a001 9227465/505019158607*2537720636^(7/18) 8299620924913762 a001 9227465/4106118243*312119004989^(3/22) 8299620924913762 a001 9227465/4106118243*28143753123^(3/20) 8299620924913762 a001 9227465/73681302247*2537720636^(3/10) 8299620924913762 a001 9227465/45537549124*2537720636^(5/18) 8299620924913762 a001 9227465/9062201101803*6643838879^(1/2) 8299620924913762 a001 9227465/10749957122*817138163596^(1/6) 8299620924913762 a001 9227465/14662949395604*17393796001^(1/2) 8299620924913762 a001 9227465/505019158607*17393796001^(5/14) 8299620924913762 a001 9227465/23725150497407*45537549124^(1/2) 8299620924913762 a001 9227465/73681302247*14662949395604^(3/14) 8299620924913762 a001 9227465/73681302247*192900153618^(1/4) 8299620924913762 a001 9227465/192900153618*9062201101803^(1/4) 8299620924913762 a001 9227465/505019158607*312119004989^(7/22) 8299620924913762 a001 9227465/5600748293801*312119004989^(9/22) 8299620924913762 a001 9227465/505019158607*14662949395604^(5/18) 8299620924913762 a001 9227465/505019158607*505019158607^(5/16) 8299620924913762 a001 9227465/14662949395604*14662949395604^(7/18) 8299620924913762 a001 9227465/5600748293801*14662949395604^(5/14) 8299620924913762 a001 9227465/14662949395604*505019158607^(7/16) 8299620924913762 a001 9227465/312119004989*312119004989^(3/10) 8299620924913762 a001 9227465/5600748293801*192900153618^(5/12) 8299620924913762 a001 9227465/1322157322203*73681302247^(3/8) 8299620924913762 a001 9227465/119218851371*1322157322203^(1/4) 8299620924913762 a001 9227465/505019158607*28143753123^(7/20) 8299620924913762 a001 9227465/45537549124*312119004989^(5/22) 8299620924913762 a001 9227465/45537549124*3461452808002^(5/24) 8299620924913762 a001 9227465/5600748293801*28143753123^(9/20) 8299620924913762 a001 9227465/45537549124*28143753123^(1/4) 8299620924913762 a001 9227465/17393796001*17393796001^(3/14) 8299620924913762 a001 9227465/17393796001*14662949395604^(1/6) 8299620924913762 a001 9227465/28143753123*4106118243^(1/4) 8299620924913762 a001 9227465/6643838879*45537549124^(1/6) 8299620924913762 a001 9227465/312119004989*1568397607^(3/8) 8299620924913762 a001 9227465/2537720636*73681302247^(1/8) 8299620924913762 a001 9227465/17393796001*599074578^(1/4) 8299620924913762 a001 9227465/969323029*2537720636^(1/10) 8299620924913762 a001 9227465/969323029*14662949395604^(1/14) 8299620924913762 a001 9227465/969323029*192900153618^(1/12) 8299620924913762 a001 9227465/505019158607*599074578^(5/12) 8299620924913762 a001 9227465/14662949395604*599074578^(7/12) 8299620924913762 a001 9227465/4106118243*228826127^(3/16) 8299620924913762 a001 9227465/45537549124*228826127^(5/16) 8299620924913762 a001 9227465/370248451*2537720636^(1/18) 8299620924913762 a001 9227465/370248451*312119004989^(1/22) 8299620924913762 a001 9227465/370248451*28143753123^(1/20) 8299620924913762 a001 9227465/505019158607*228826127^(7/16) 8299620924913762 a001 9227465/370248451*228826127^(1/16) 8299620924913762 a001 9227465/5600748293801*228826127^(9/16) 8299620924913762 a001 9227465/228826127*33385282^(1/24) 8299620924913762 a001 9227465/10749957122*87403803^(1/4) 8299620924913763 a001 9227465/969323029*33385282^(1/8) 8299620924913763 a001 9227465/4106118243*33385282^(5/24) 8299620924913764 a001 9227465/17393796001*33385282^(7/24) 8299620924913765 a001 3524578/23725150497407*7881196^(5/6) 8299620924913765 a001 9227465/73681302247*33385282^(3/8) 8299620924913765 a001 9227465/312119004989*33385282^(11/24) 8299620924913766 a001 9227465/1322157322203*33385282^(13/24) 8299620924913767 a001 9227465/5600748293801*33385282^(5/8) 8299620924913767 a001 9227465/23725150497407*33385282^(17/24) 8299620924913773 a001 3524578/9062201101803*7881196^(17/22) 8299620924913775 a001 9227465/6643838879*12752043^(1/4) 8299620924913785 a001 3524578/2139295485799*7881196^(15/22) 8299620924913797 a001 3524578/505019158607*7881196^(13/22) 8299620924913800 a001 9227465/23725150497407*12752043^(3/4) 8299620924913809 a001 3524578/119218851371*7881196^(1/2) 8299620924913812 a001 5702887/141422324*1860498^(1/20) 8299620924913821 a001 3524578/28143753123*7881196^(9/22) 8299620924913834 a001 3524578/6643838879*7881196^(7/22) 8299620924913846 a001 3524578/1568397607*7881196^(5/22) 8299620924913854 a001 1762289/299537289*7881196^(1/6) 8299620924913855 a001 14930352/370248451*1860498^(1/20) 8299620924913858 a001 3524578/370248451*7881196^(3/22) 8299620924913861 a001 3524578/23725150497407*20633239^(11/14) 8299620924913861 a001 39088169/969323029*1860498^(1/20) 8299620924913862 a001 9303105/230701876*1860498^(1/20) 8299620924913862 a001 267914296/6643838879*1860498^(1/20) 8299620924913862 a001 701408733/17393796001*1860498^(1/20) 8299620924913862 a001 1836311903/45537549124*1860498^(1/20) 8299620924913862 a001 4807526976/119218851371*1860498^(1/20) 8299620924913862 a001 1144206275/28374454999*1860498^(1/20) 8299620924913862 a001 32951280099/817138163596*1860498^(1/20) 8299620924913862 a001 86267571272/2139295485799*1860498^(1/20) 8299620924913862 a001 225851433717/5600748293801*1860498^(1/20) 8299620924913862 a001 591286729879/14662949395604*1860498^(1/20) 8299620924913862 a001 365435296162/9062201101803*1860498^(1/20) 8299620924913862 a001 139583862445/3461452808002*1860498^(1/20) 8299620924913862 a001 53316291173/1322157322203*1860498^(1/20) 8299620924913862 a001 20365011074/505019158607*1860498^(1/20) 8299620924913862 a001 7778742049/192900153618*1860498^(1/20) 8299620924913862 a001 2971215073/73681302247*1860498^(1/20) 8299620924913862 a001 1134903170/28143753123*1860498^(1/20) 8299620924913862 a001 433494437/10749957122*1860498^(1/20) 8299620924913862 a001 165580141/4106118243*1860498^(1/20) 8299620924913862 a001 3524578/5600748293801*20633239^(7/10) 8299620924913863 a001 63245986/1568397607*1860498^(1/20) 8299620924913863 a001 3524578/2139295485799*20633239^(9/14) 8299620924913865 a001 24157817/599074578*1860498^(1/20) 8299620924913866 a001 1762289/96450076809*20633239^(1/2) 8299620924913869 a001 3524578/87403803*7881196^(1/22) 8299620924913869 a001 3524578/17393796001*20633239^(5/14) 8299620924913870 a001 3524578/6643838879*20633239^(3/10) 8299620924913872 a001 3524578/1568397607*20633239^(3/14) 8299620924913874 a001 3524578/228826127*20633239^(1/10) 8299620924913875 a001 3524578/312119004989*54018521^(1/2) 8299620924913875 a001 1762289/70711162*20633239^(1/14) 8299620924913875 a001 3524578/87403803*33385282^(1/24) 8299620924913876 a001 3524578/505019158607*141422324^(1/2) 8299620924913876 a001 3524578/228826127*17393796001^(1/14) 8299620924913876 a001 3524578/228826127*14662949395604^(1/18) 8299620924913876 a001 3524578/228826127*505019158607^(1/16) 8299620924913876 a001 3524578/228826127*599074578^(1/12) 8299620924913876 a001 3524578/969323029*141422324^(1/6) 8299620924913876 a001 1762289/408569081798*370248451^(1/2) 8299620924913876 a001 1762289/299537289*312119004989^(1/10) 8299620924913876 a001 1762289/299537289*1568397607^(1/8) 8299620924913876 a001 3524578/1322157322203*969323029^(1/2) 8299620924913876 a001 3524578/1568397607*2537720636^(1/6) 8299620924913876 a001 3524578/1568397607*312119004989^(3/22) 8299620924913876 a001 3524578/1568397607*28143753123^(3/20) 8299620924913876 a001 3524578/23725150497407*2537720636^(11/18) 8299620924913876 a001 3524578/2139295485799*2537720636^(1/2) 8299620924913876 a001 1762289/96450076809*2537720636^(7/18) 8299620924913876 a001 3524578/4106118243*817138163596^(1/6) 8299620924913876 a001 3524578/28143753123*2537720636^(3/10) 8299620924913876 a001 3524578/17393796001*2537720636^(5/18) 8299620924913876 a001 1762289/1730726404001*6643838879^(1/2) 8299620924913876 a001 3524578/5600748293801*17393796001^(1/2) 8299620924913876 a001 3524578/28143753123*14662949395604^(3/14) 8299620924913876 a001 3524578/28143753123*192900153618^(1/4) 8299620924913876 a001 1762289/96450076809*17393796001^(5/14) 8299620924913876 a001 3524578/9062201101803*45537549124^(1/2) 8299620924913876 a001 3524578/73681302247*9062201101803^(1/4) 8299620924913876 a001 1762289/7331474697802*119218851371^(1/2) 8299620924913876 a001 1762289/96450076809*312119004989^(7/22) 8299620924913876 a001 1762289/96450076809*14662949395604^(5/18) 8299620924913876 a001 1762289/96450076809*505019158607^(5/16) 8299620924913876 a001 3524578/23725150497407*312119004989^(1/2) 8299620924913876 a001 3524578/2139295485799*312119004989^(9/22) 8299620924913876 a001 3524578/5600748293801*14662949395604^(7/18) 8299620924913876 a001 3524578/23725150497407*3461452808002^(11/24) 8299620924913876 a001 3524578/2139295485799*14662949395604^(5/14) 8299620924913876 a001 3524578/5600748293801*505019158607^(7/16) 8299620924913876 a001 3524578/2139295485799*192900153618^(5/12) 8299620924913876 a001 3524578/505019158607*73681302247^(3/8) 8299620924913876 a001 3524578/119218851371*312119004989^(3/10) 8299620924913876 a001 1762289/96450076809*28143753123^(7/20) 8299620924913876 a001 1762289/22768774562*1322157322203^(1/4) 8299620924913876 a001 3524578/2139295485799*28143753123^(9/20) 8299620924913876 a001 3524578/23725150497407*28143753123^(11/20) 8299620924913876 a001 3524578/17393796001*312119004989^(5/22) 8299620924913876 a001 3524578/17393796001*3461452808002^(5/24) 8299620924913876 a001 3524578/17393796001*28143753123^(1/4) 8299620924913876 a001 1762289/5374978561*4106118243^(1/4) 8299620924913876 a001 3524578/6643838879*17393796001^(3/14) 8299620924913876 a001 3524578/6643838879*14662949395604^(1/6) 8299620924913876 a001 3524578/119218851371*1568397607^(3/8) 8299620924913876 a001 1762289/1268860318*45537549124^(1/6) 8299620924913876 a001 3524578/23725150497407*1568397607^(5/8) 8299620924913876 a001 3524578/6643838879*599074578^(1/4) 8299620924913876 a001 3524578/969323029*73681302247^(1/8) 8299620924913876 a001 1762289/96450076809*599074578^(5/12) 8299620924913876 a001 3524578/5600748293801*599074578^(7/12) 8299620924913876 a001 3524578/1568397607*228826127^(3/16) 8299620924913876 a001 3524578/17393796001*228826127^(5/16) 8299620924913876 a001 3524578/370248451*2537720636^(1/10) 8299620924913876 a001 3524578/370248451*14662949395604^(1/14) 8299620924913876 a001 3524578/370248451*192900153618^(1/12) 8299620924913876 a001 1762289/96450076809*228826127^(7/16) 8299620924913876 a001 3524578/2139295485799*228826127^(9/16) 8299620924913876 a001 3524578/23725150497407*228826127^(11/16) 8299620924913876 a001 3524578/4106118243*87403803^(1/4) 8299620924913876 a001 1762289/70711162*2537720636^(1/18) 8299620924913876 a001 1762289/70711162*312119004989^(1/22) 8299620924913876 a001 1762289/70711162*28143753123^(1/20) 8299620924913876 a001 1762289/70711162*228826127^(1/16) 8299620924913877 a001 3524578/370248451*33385282^(1/8) 8299620924913878 a001 3524578/1568397607*33385282^(5/24) 8299620924913878 a001 3524578/6643838879*33385282^(7/24) 8299620924913879 a001 3524578/28143753123*33385282^(3/8) 8299620924913879 a001 3524578/119218851371*33385282^(11/24) 8299620924913880 a001 3524578/505019158607*33385282^(13/24) 8299620924913881 a001 3524578/2139295485799*33385282^(5/8) 8299620924913881 a001 3524578/9062201101803*33385282^(17/24) 8299620924913882 a001 9227465/228826127*1860498^(1/20) 8299620924913889 a001 1762289/1268860318*12752043^(1/4) 8299620924913891 a001 5702887/228826127*1860498^(1/12) 8299620924913914 a001 3524578/9062201101803*12752043^(3/4) 8299620924913935 a001 829464/33281921*1860498^(1/12) 8299620924913941 a001 39088169/1568397607*1860498^(1/12) 8299620924913942 a001 34111385/1368706081*1860498^(1/12) 8299620924913942 a001 133957148/5374978561*1860498^(1/12) 8299620924913942 a001 233802911/9381251041*1860498^(1/12) 8299620924913942 a001 1836311903/73681302247*1860498^(1/12) 8299620924913942 a001 267084832/10716675201*1860498^(1/12) 8299620924913942 a001 12586269025/505019158607*1860498^(1/12) 8299620924913942 a001 10983760033/440719107401*1860498^(1/12) 8299620924913942 a001 43133785636/1730726404001*1860498^(1/12) 8299620924913942 a001 75283811239/3020733700601*1860498^(1/12) 8299620924913942 a001 182717648081/7331474697802*1860498^(1/12) 8299620924913942 a001 139583862445/5600748293801*1860498^(1/12) 8299620924913942 a001 53316291173/2139295485799*1860498^(1/12) 8299620924913942 a001 10182505537/408569081798*1860498^(1/12) 8299620924913942 a001 7778742049/312119004989*1860498^(1/12) 8299620924913942 a001 2971215073/119218851371*1860498^(1/12) 8299620924913942 a001 567451585/22768774562*1860498^(1/12) 8299620924913942 a001 433494437/17393796001*1860498^(1/12) 8299620924913942 a001 165580141/6643838879*1860498^(1/12) 8299620924913943 a001 31622993/1268860318*1860498^(1/12) 8299620924913945 a001 24157817/969323029*1860498^(1/12) 8299620924913962 a001 9227465/370248451*1860498^(1/12) 8299620924913992 a001 2178309/969323029*1860498^(1/4) 8299620924913995 a001 3524578/87403803*1860498^(1/20) 8299620924914051 a001 5702887/599074578*1860498^(3/20) 8299620924914076 a001 1762289/70711162*1860498^(1/12) 8299620924914095 a001 14930352/1568397607*1860498^(3/20) 8299620924914101 a001 39088169/4106118243*1860498^(3/20) 8299620924914102 a001 102334155/10749957122*1860498^(3/20) 8299620924914102 a001 267914296/28143753123*1860498^(3/20) 8299620924914102 a001 701408733/73681302247*1860498^(3/20) 8299620924914102 a001 1836311903/192900153618*1860498^(3/20) 8299620924914102 a001 102287808/10745088481*1860498^(3/20) 8299620924914102 a001 12586269025/1322157322203*1860498^(3/20) 8299620924914102 a001 32951280099/3461452808002*1860498^(3/20) 8299620924914102 a001 86267571272/9062201101803*1860498^(3/20) 8299620924914102 a001 225851433717/23725150497407*1860498^(3/20) 8299620924914102 a001 139583862445/14662949395604*1860498^(3/20) 8299620924914102 a001 53316291173/5600748293801*1860498^(3/20) 8299620924914102 a001 20365011074/2139295485799*1860498^(3/20) 8299620924914102 a001 7778742049/817138163596*1860498^(3/20) 8299620924914102 a001 2971215073/312119004989*1860498^(3/20) 8299620924914102 a001 1134903170/119218851371*1860498^(3/20) 8299620924914102 a001 433494437/45537549124*1860498^(3/20) 8299620924914102 a001 165580141/17393796001*1860498^(3/20) 8299620924914102 a001 63245986/6643838879*1860498^(3/20) 8299620924914105 a001 24157817/2537720636*1860498^(3/20) 8299620924914122 a001 9227465/969323029*1860498^(3/20) 8299620924914200 a001 1346269/28143753123*3010349^(1/2) 8299620924914232 a001 726103/1368706081*1860498^(7/20) 8299620924914236 a001 3524578/370248451*1860498^(3/20) 8299620924914291 a001 5702887/2537720636*1860498^(1/4) 8299620924914334 a001 14930352/6643838879*1860498^(1/4) 8299620924914341 a001 39088169/17393796001*1860498^(1/4) 8299620924914342 a001 102334155/45537549124*1860498^(1/4) 8299620924914342 a001 267914296/119218851371*1860498^(1/4) 8299620924914342 a001 3524667/1568437211*1860498^(1/4) 8299620924914342 a001 1836311903/817138163596*1860498^(1/4) 8299620924914342 a001 4807526976/2139295485799*1860498^(1/4) 8299620924914342 a001 12586269025/5600748293801*1860498^(1/4) 8299620924914342 a001 32951280099/14662949395604*1860498^(1/4) 8299620924914342 a001 53316291173/23725150497407*1860498^(1/4) 8299620924914342 a001 20365011074/9062201101803*1860498^(1/4) 8299620924914342 a001 7778742049/3461452808002*1860498^(1/4) 8299620924914342 a001 2971215073/1322157322203*1860498^(1/4) 8299620924914342 a001 1134903170/505019158607*1860498^(1/4) 8299620924914342 a001 433494437/192900153618*1860498^(1/4) 8299620924914342 a001 165580141/73681302247*1860498^(1/4) 8299620924914342 a001 63245986/28143753123*1860498^(1/4) 8299620924914345 a001 24157817/10749957122*1860498^(1/4) 8299620924914361 a001 9227465/4106118243*1860498^(1/4) 8299620924914392 a001 987/4870846*1860498^(5/12) 8299620924914472 a001 2178309/17393796001*1860498^(9/20) 8299620924914475 a001 3524578/1568397607*1860498^(1/4) 8299620924914531 a001 5702887/10749957122*1860498^(7/20) 8299620924914543 a001 1346269/14662949395604*7881196^(19/22) 8299620924914547 a001 1346269/9062201101803*7881196^(5/6) 8299620924914555 a001 1346269/3461452808002*7881196^(17/22) 8299620924914567 a001 1346269/817138163596*7881196^(15/22) 8299620924914574 a001 4976784/9381251041*1860498^(7/20) 8299620924914579 a001 1346269/192900153618*7881196^(13/22) 8299620924914581 a001 39088169/73681302247*1860498^(7/20) 8299620924914581 a001 34111385/64300051206*1860498^(7/20) 8299620924914582 a001 267914296/505019158607*1860498^(7/20) 8299620924914582 a001 233802911/440719107401*1860498^(7/20) 8299620924914582 a001 1836311903/3461452808002*1860498^(7/20) 8299620924914582 a001 1602508992/3020733700601*1860498^(7/20) 8299620924914582 a001 12586269025/23725150497407*1860498^(7/20) 8299620924914582 a001 7778742049/14662949395604*1860498^(7/20) 8299620924914582 a001 2971215073/5600748293801*1860498^(7/20) 8299620924914582 a001 1134903170/2139295485799*1860498^(7/20) 8299620924914582 a001 433494437/817138163596*1860498^(7/20) 8299620924914582 a001 165580141/312119004989*1860498^(7/20) 8299620924914582 a001 63245986/119218851371*1860498^(7/20) 8299620924914584 a001 24157817/45537549124*1860498^(7/20) 8299620924914591 a001 1346269/45537549124*7881196^(1/2) 8299620924914601 a001 9227465/17393796001*1860498^(7/20) 8299620924914604 a001 1346269/10749957122*7881196^(9/22) 8299620924914616 a001 1346269/2537720636*7881196^(7/22) 8299620924914628 a001 1346269/599074578*7881196^(5/22) 8299620924914636 a001 1346269/228826127*7881196^(1/6) 8299620924914640 a001 1346269/141422324*7881196^(3/22) 8299620924914643 a001 1346269/9062201101803*20633239^(11/14) 8299620924914645 a001 1346269/2139295485799*20633239^(7/10) 8299620924914645 a001 1346269/33385282*7881196^(1/22) 8299620924914646 a001 1346269/817138163596*20633239^(9/14) 8299620924914649 a001 1346269/73681302247*20633239^(1/2) 8299620924914651 a001 1346269/33385282*33385282^(1/24) 8299620924914651 a001 1346269/6643838879*20633239^(5/14) 8299620924914652 a001 1346269/2537720636*20633239^(3/10) 8299620924914654 a001 1346269/599074578*20633239^(3/14) 8299620924914655 a001 1346269/87403803*20633239^(1/10) 8299620924914657 a001 1346269/119218851371*54018521^(1/2) 8299620924914657 a001 1346269/87403803*17393796001^(1/14) 8299620924914657 a001 1346269/87403803*14662949395604^(1/18) 8299620924914657 a001 1346269/87403803*505019158607^(1/16) 8299620924914657 a001 1346269/87403803*599074578^(1/12) 8299620924914658 a001 1346269/192900153618*141422324^(1/2) 8299620924914658 a001 1346269/228826127*312119004989^(1/10) 8299620924914658 a001 1346269/228826127*1568397607^(1/8) 8299620924914658 a001 1346269/312119004989*370248451^(1/2) 8299620924914658 a001 1346269/599074578*2537720636^(1/6) 8299620924914658 a001 1346269/599074578*312119004989^(3/22) 8299620924914658 a001 1346269/599074578*28143753123^(3/20) 8299620924914658 a001 1346269/370248451*141422324^(1/6) 8299620924914658 a001 1346269/505019158607*969323029^(1/2) 8299620924914658 a001 1346269/1568397607*817138163596^(1/6) 8299620924914658 a001 1346269/9062201101803*2537720636^(11/18) 8299620924914658 a001 1346269/817138163596*2537720636^(1/2) 8299620924914658 a001 1346269/73681302247*2537720636^(7/18) 8299620924914658 a001 1346269/10749957122*2537720636^(3/10) 8299620924914658 a001 1346269/4106118243*4106118243^(1/4) 8299620924914658 a001 1346269/6643838879*2537720636^(5/18) 8299620924914658 a001 1346269/1322157322203*6643838879^(1/2) 8299620924914658 a001 1346269/10749957122*14662949395604^(3/14) 8299620924914658 a001 1346269/10749957122*192900153618^(1/4) 8299620924914658 a001 1346269/2139295485799*17393796001^(1/2) 8299620924914658 a001 1346269/73681302247*17393796001^(5/14) 8299620924914658 a001 1346269/28143753123*9062201101803^(1/4) 8299620924914658 a001 1346269/3461452808002*45537549124^(1/2) 8299620924914658 a001 1346269/73681302247*312119004989^(7/22) 8299620924914658 a001 1346269/73681302247*14662949395604^(5/18) 8299620924914658 a001 1346269/73681302247*505019158607^(5/16) 8299620924914658 a001 1346269/5600748293801*119218851371^(1/2) 8299620924914658 a001 1346269/9062201101803*312119004989^(1/2) 8299620924914658 a001 1346269/14662949395604*817138163596^(1/2) 8299620924914658 a001 1346269/9062201101803*3461452808002^(11/24) 8299620924914658 a001 1346269/2139295485799*14662949395604^(7/18) 8299620924914658 a001 1346269/817138163596*14662949395604^(5/14) 8299620924914658 a001 1346269/2139295485799*505019158607^(7/16) 8299620924914658 a001 1346269/817138163596*192900153618^(5/12) 8299620924914658 a001 1346269/192900153618*73681302247^(3/8) 8299620924914658 a001 1346269/73681302247*28143753123^(7/20) 8299620924914658 a001 1346269/45537549124*312119004989^(3/10) 8299620924914658 a001 1346269/817138163596*28143753123^(9/20) 8299620924914658 a001 1346269/9062201101803*28143753123^(11/20) 8299620924914658 a001 1346269/17393796001*1322157322203^(1/4) 8299620924914658 a001 1346269/6643838879*312119004989^(5/22) 8299620924914658 a001 1346269/6643838879*3461452808002^(5/24) 8299620924914658 a001 1346269/6643838879*28143753123^(1/4) 8299620924914658 a001 1346269/45537549124*1568397607^(3/8) 8299620924914658 a001 1346269/2537720636*17393796001^(3/14) 8299620924914658 a001 1346269/2537720636*14662949395604^(1/6) 8299620924914658 a001 1346269/9062201101803*1568397607^(5/8) 8299620924914658 a001 1346269/599074578*228826127^(3/16) 8299620924914658 a001 1346269/2537720636*599074578^(1/4) 8299620924914658 a001 1346269/969323029*45537549124^(1/6) 8299620924914658 a001 1346269/73681302247*599074578^(5/12) 8299620924914658 a001 1346269/2139295485799*599074578^(7/12) 8299620924914658 a001 1346269/6643838879*228826127^(5/16) 8299620924914658 a001 1346269/370248451*73681302247^(1/8) 8299620924914658 a001 1346269/73681302247*228826127^(7/16) 8299620924914658 a001 1346269/817138163596*228826127^(9/16) 8299620924914658 a001 1346269/9062201101803*228826127^(11/16) 8299620924914659 a001 1346269/1568397607*87403803^(1/4) 8299620924914659 a001 1346269/141422324*2537720636^(1/10) 8299620924914659 a001 1346269/141422324*14662949395604^(1/14) 8299620924914659 a001 1346269/141422324*192900153618^(1/12) 8299620924914659 a001 1346269/14662949395604*87403803^(3/4) 8299620924914660 a001 1346269/141422324*33385282^(1/8) 8299620924914660 a001 1346269/54018521*20633239^(1/14) 8299620924914660 a001 1346269/599074578*33385282^(5/24) 8299620924914660 a001 1346269/2537720636*33385282^(7/24) 8299620924914661 a001 1346269/10749957122*33385282^(3/8) 8299620924914661 a001 1346269/54018521*2537720636^(1/18) 8299620924914661 a001 1346269/54018521*312119004989^(1/22) 8299620924914661 a001 1346269/54018521*28143753123^(1/20) 8299620924914661 a001 1346269/54018521*228826127^(1/16) 8299620924914662 a001 1346269/45537549124*33385282^(11/24) 8299620924914662 a001 1346269/192900153618*33385282^(13/24) 8299620924914663 a001 1346269/817138163596*33385282^(5/8) 8299620924914664 a001 1346269/3461452808002*33385282^(17/24) 8299620924914664 a001 1346269/14662949395604*33385282^(19/24) 8299620924914671 a001 1346269/969323029*12752043^(1/4) 8299620924914690 a001 5702887/28143753123*1860498^(5/12) 8299620924914697 a001 1346269/3461452808002*12752043^(3/4) 8299620924914711 a001 311187/10525900321*1860498^(11/20) 8299620924914715 a001 3524578/6643838879*1860498^(7/20) 8299620924914734 a001 14930352/73681302247*1860498^(5/12) 8299620924914740 a001 39088169/192900153618*1860498^(5/12) 8299620924914741 a001 102334155/505019158607*1860498^(5/12) 8299620924914741 a001 267914296/1322157322203*1860498^(5/12) 8299620924914741 a001 701408733/3461452808002*1860498^(5/12) 8299620924914741 a001 1836311903/9062201101803*1860498^(5/12) 8299620924914741 a001 4807526976/23725150497407*1860498^(5/12) 8299620924914741 a001 2971215073/14662949395604*1860498^(5/12) 8299620924914741 a001 1134903170/5600748293801*1860498^(5/12) 8299620924914741 a001 433494437/2139295485799*1860498^(5/12) 8299620924914742 a001 165580141/817138163596*1860498^(5/12) 8299620924914742 a001 63245986/312119004989*1860498^(5/12) 8299620924914744 a001 24157817/119218851371*1860498^(5/12) 8299620924914761 a001 9227465/45537549124*1860498^(5/12) 8299620924914770 a001 1597/12752044*1860498^(9/20) 8299620924914771 a001 1346269/33385282*1860498^(1/20) 8299620924914791 a001 2178309/119218851371*1860498^(7/12) 8299620924914814 a001 14930352/119218851371*1860498^(9/20) 8299620924914820 a001 39088169/312119004989*1860498^(9/20) 8299620924914821 a001 102334155/817138163596*1860498^(9/20) 8299620924914821 a001 267914296/2139295485799*1860498^(9/20) 8299620924914821 a001 701408733/5600748293801*1860498^(9/20) 8299620924914821 a001 1836311903/14662949395604*1860498^(9/20) 8299620924914821 a001 2971215073/23725150497407*1860498^(9/20) 8299620924914821 a001 1134903170/9062201101803*1860498^(9/20) 8299620924914821 a001 433494437/3461452808002*1860498^(9/20) 8299620924914821 a001 165580141/1322157322203*1860498^(9/20) 8299620924914822 a001 63245986/505019158607*1860498^(9/20) 8299620924914824 a001 24157817/192900153618*1860498^(9/20) 8299620924914841 a001 9227465/73681302247*1860498^(9/20) 8299620924914861 a001 1346269/54018521*1860498^(1/12) 8299620924914875 a001 3524578/17393796001*1860498^(5/12) 8299620924914951 a001 2178309/312119004989*1860498^(13/20) 8299620924914955 a001 3524578/28143753123*1860498^(9/20) 8299620924915010 a001 5702887/192900153618*1860498^(11/20) 8299620924915018 a001 1346269/141422324*1860498^(3/20) 8299620924915054 a001 14930352/505019158607*1860498^(11/20) 8299620924915060 a001 39088169/1322157322203*1860498^(11/20) 8299620924915061 a001 6765/228826126*1860498^(11/20) 8299620924915061 a001 267914296/9062201101803*1860498^(11/20) 8299620924915061 a001 701408733/23725150497407*1860498^(11/20) 8299620924915061 a001 433494437/14662949395604*1860498^(11/20) 8299620924915061 a001 165580141/5600748293801*1860498^(11/20) 8299620924915062 a001 63245986/2139295485799*1860498^(11/20) 8299620924915064 a001 24157817/817138163596*1860498^(11/20) 8299620924915081 a001 9227465/312119004989*1860498^(11/20) 8299620924915090 a001 5702887/312119004989*1860498^(7/12) 8299620924915134 a001 3732588/204284540899*1860498^(7/12) 8299620924915140 a001 39088169/2139295485799*1860498^(7/12) 8299620924915141 a001 102334155/5600748293801*1860498^(7/12) 8299620924915141 a001 10946/599074579*1860498^(7/12) 8299620924915141 a001 433494437/23725150497407*1860498^(7/12) 8299620924915141 a001 165580141/9062201101803*1860498^(7/12) 8299620924915141 a001 31622993/1730726404001*1860498^(7/12) 8299620924915144 a001 24157817/1322157322203*1860498^(7/12) 8299620924915161 a001 9227465/505019158607*1860498^(7/12) 8299620924915191 a001 726103/440719107401*1860498^(3/4) 8299620924915195 a001 3524578/119218851371*1860498^(11/20) 8299620924915250 a001 5702887/817138163596*1860498^(13/20) 8299620924915258 a001 1346269/599074578*1860498^(1/4) 8299620924915275 a001 1762289/96450076809*1860498^(7/12) 8299620924915293 a001 14930352/2139295485799*1860498^(13/20) 8299620924915300 a001 39088169/5600748293801*1860498^(13/20) 8299620924915301 a001 102334155/14662949395604*1860498^(13/20) 8299620924915301 a001 165580141/23725150497407*1860498^(13/20) 8299620924915301 a001 63245986/9062201101803*1860498^(13/20) 8299620924915304 a001 24157817/3461452808002*1860498^(13/20) 8299620924915320 a001 9227465/1322157322203*1860498^(13/20) 8299620924915431 a001 2178309/5600748293801*1860498^(17/20) 8299620924915435 a001 3524578/505019158607*1860498^(13/20) 8299620924915447 a001 2178309/141422324*710647^(1/8) 8299620924915490 a001 5702887/3461452808002*1860498^(3/4) 8299620924915497 a001 1346269/2537720636*1860498^(7/20) 8299620924915533 a001 4976784/3020733700601*1860498^(3/4) 8299620924915540 a001 39088169/23725150497407*1860498^(3/4) 8299620924915544 a001 24157817/14662949395604*1860498^(3/4) 8299620924915560 a001 9227465/5600748293801*1860498^(3/4) 8299620924915591 a001 2178309/14662949395604*1860498^(11/12) 8299620924915657 a001 1346269/6643838879*1860498^(5/12) 8299620924915670 a001 2178309/23725150497407*1860498^(19/20) 8299620924915674 a001 3524578/2139295485799*1860498^(3/4) 8299620924915729 a001 5702887/14662949395604*1860498^(17/20) 8299620924915737 a001 1346269/10749957122*1860498^(9/20) 8299620924915746 a001 5702887/370248451*710647^(1/8) 8299620924915789 a001 14930352/969323029*710647^(1/8) 8299620924915796 a001 39088169/2537720636*710647^(1/8) 8299620924915797 a001 102334155/6643838879*710647^(1/8) 8299620924915797 a001 9238424/599786069*710647^(1/8) 8299620924915797 a001 701408733/45537549124*710647^(1/8) 8299620924915797 a001 1836311903/119218851371*710647^(1/8) 8299620924915797 a001 4807526976/312119004989*710647^(1/8) 8299620924915797 a001 12586269025/817138163596*710647^(1/8) 8299620924915797 a001 32951280099/2139295485799*710647^(1/8) 8299620924915797 a001 86267571272/5600748293801*710647^(1/8) 8299620924915797 a001 7787980473/505618944676*710647^(1/8) 8299620924915797 a001 365435296162/23725150497407*710647^(1/8) 8299620924915797 a001 139583862445/9062201101803*710647^(1/8) 8299620924915797 a001 53316291173/3461452808002*710647^(1/8) 8299620924915797 a001 20365011074/1322157322203*710647^(1/8) 8299620924915797 a001 7778742049/505019158607*710647^(1/8) 8299620924915797 a001 2971215073/192900153618*710647^(1/8) 8299620924915797 a001 1134903170/73681302247*710647^(1/8) 8299620924915797 a001 433494437/28143753123*710647^(1/8) 8299620924915797 a001 165580141/10749957122*710647^(1/8) 8299620924915797 a001 63245986/4106118243*710647^(1/8) 8299620924915800 a001 24157817/1568397607*710647^(1/8) 8299620924915800 a001 9227465/23725150497407*1860498^(17/20) 8299620924915816 a001 9227465/599074578*710647^(1/8) 8299620924915914 a001 3524578/9062201101803*1860498^(17/20) 8299620924915930 a001 3524578/228826127*710647^(1/8) 8299620924915977 a001 1346269/45537549124*1860498^(11/20) 8299620924916057 a001 1346269/73681302247*1860498^(7/12) 8299620924916074 a001 3524578/23725150497407*1860498^(11/12) 8299620924916133 a001 196418/505019158607*439204^(17/18) 8299620924916217 a001 1346269/192900153618*1860498^(13/20) 8299620924916457 a001 1346269/817138163596*1860498^(3/4) 8299620924916696 a001 1346269/3461452808002*1860498^(17/20) 8299620924916711 a001 1346269/87403803*710647^(1/8) 8299620924916856 a001 1346269/9062201101803*1860498^(11/12) 8299620924916881 a001 514229/6643838879*1149851^(1/2) 8299620924916936 a001 1346269/14662949395604*1860498^(19/20) 8299620924917508 a001 832040/1568397607*710647^(3/8) 8299620924917578 a001 514229/12752043*439204^(1/18) 8299620924918970 a001 121393/1860498*39603^(1/44) 8299620924919555 a001 726103/1368706081*710647^(3/8) 8299620924919562 a001 514229/10749957122*3010349^(1/2) 8299620924919854 a001 5702887/10749957122*710647^(3/8) 8299620924919892 a001 514229/23725150497407*7881196^(21/22) 8299620924919898 a001 4976784/9381251041*710647^(3/8) 8299620924919904 a001 39088169/73681302247*710647^(3/8) 8299620924919904 a001 514229/5600748293801*7881196^(19/22) 8299620924919905 a001 34111385/64300051206*710647^(3/8) 8299620924919905 a001 267914296/505019158607*710647^(3/8) 8299620924919905 a001 233802911/440719107401*710647^(3/8) 8299620924919905 a001 1836311903/3461452808002*710647^(3/8) 8299620924919905 a001 1602508992/3020733700601*710647^(3/8) 8299620924919905 a001 12586269025/23725150497407*710647^(3/8) 8299620924919905 a001 7778742049/14662949395604*710647^(3/8) 8299620924919905 a001 2971215073/5600748293801*710647^(3/8) 8299620924919905 a001 1134903170/2139295485799*710647^(3/8) 8299620924919905 a001 433494437/817138163596*710647^(3/8) 8299620924919905 a001 165580141/312119004989*710647^(3/8) 8299620924919906 a001 63245986/119218851371*710647^(3/8) 8299620924919908 a001 24157817/45537549124*710647^(3/8) 8299620924919908 a001 514229/3461452808002*7881196^(5/6) 8299620924919916 a001 514229/1322157322203*7881196^(17/22) 8299620924919925 a001 9227465/17393796001*710647^(3/8) 8299620924919929 a001 514229/312119004989*7881196^(15/22) 8299620924919941 a001 514229/73681302247*7881196^(13/22) 8299620924919953 a001 514229/17393796001*7881196^(1/2) 8299620924919963 a001 514229/12752043*7881196^(1/22) 8299620924919965 a001 514229/4106118243*7881196^(9/22) 8299620924919969 a001 514229/12752043*33385282^(1/24) 8299620924919977 a001 514229/969323029*7881196^(7/22) 8299620924919989 a001 514229/228826127*7881196^(5/22) 8299620924919996 a001 514229/87403803*7881196^(1/6) 8299620924920002 a001 514229/23725150497407*20633239^(9/10) 8299620924920004 a001 514229/54018521*7881196^(3/22) 8299620924920004 a001 514229/3461452808002*20633239^(11/14) 8299620924920006 a001 514229/817138163596*20633239^(7/10) 8299620924920007 a001 514229/312119004989*20633239^(9/14) 8299620924920010 a001 514229/28143753123*20633239^(1/2) 8299620924920010 a001 514229/33385282*20633239^(1/10) 8299620924920012 a001 514229/33385282*17393796001^(1/14) 8299620924920012 a001 514229/33385282*14662949395604^(1/18) 8299620924920012 a001 514229/33385282*505019158607^(1/16) 8299620924920012 a001 514229/33385282*599074578^(1/12) 8299620924920013 a001 514229/2537720636*20633239^(5/14) 8299620924920014 a001 514229/969323029*20633239^(3/10) 8299620924920015 a001 514229/228826127*20633239^(3/14) 8299620924920018 a001 514229/45537549124*54018521^(1/2) 8299620924920019 a001 514229/87403803*312119004989^(1/10) 8299620924920019 a001 514229/87403803*1568397607^(1/8) 8299620924920020 a001 514229/73681302247*141422324^(1/2) 8299620924920020 a001 514229/228826127*2537720636^(1/6) 8299620924920020 a001 514229/228826127*312119004989^(3/22) 8299620924920020 a001 514229/228826127*28143753123^(3/20) 8299620924920020 a001 514229/228826127*228826127^(3/16) 8299620924920020 a001 514229/119218851371*370248451^(1/2) 8299620924920020 a001 514229/599074578*817138163596^(1/6) 8299620924920020 a001 514229/192900153618*969323029^(1/2) 8299620924920020 a001 514229/1568397607*4106118243^(1/4) 8299620924920020 a001 514229/23725150497407*2537720636^(7/10) 8299620924920020 a001 514229/4106118243*2537720636^(3/10) 8299620924920020 a001 514229/3461452808002*2537720636^(11/18) 8299620924920020 a001 514229/312119004989*2537720636^(1/2) 8299620924920020 a001 514229/28143753123*2537720636^(7/18) 8299620924920020 a001 514229/4106118243*14662949395604^(3/14) 8299620924920020 a001 514229/4106118243*192900153618^(1/4) 8299620924920020 a001 514229/505019158607*6643838879^(1/2) 8299620924920020 a001 514229/10749957122*9062201101803^(1/4) 8299620924920020 a001 514229/28143753123*17393796001^(5/14) 8299620924920020 a001 514229/23725150497407*17393796001^(9/14) 8299620924920020 a001 514229/817138163596*17393796001^(1/2) 8299620924920020 a001 514229/28143753123*312119004989^(7/22) 8299620924920020 a001 514229/28143753123*14662949395604^(5/18) 8299620924920020 a001 514229/28143753123*505019158607^(5/16) 8299620924920020 a001 514229/28143753123*28143753123^(7/20) 8299620924920020 a001 514229/1322157322203*45537549124^(1/2) 8299620924920020 a001 514229/73681302247*73681302247^(3/8) 8299620924920020 a001 514229/2139295485799*119218851371^(1/2) 8299620924920020 a001 514229/3461452808002*312119004989^(1/2) 8299620924920020 a001 514229/9062201101803*2139295485799^(1/2) 8299620924920020 a001 514229/14662949395604*5600748293801^(1/2) 8299620924920020 a001 514229/23725150497407*505019158607^(9/16) 8299620924920020 a001 514229/312119004989*312119004989^(9/22) 8299620924920020 a001 514229/312119004989*14662949395604^(5/14) 8299620924920020 a001 514229/23725150497407*192900153618^(7/12) 8299620924920020 a001 514229/312119004989*192900153618^(5/12) 8299620924920020 a001 514229/312119004989*28143753123^(9/20) 8299620924920020 a001 514229/3461452808002*28143753123^(11/20) 8299620924920020 a001 514229/17393796001*312119004989^(3/10) 8299620924920020 a001 514229/6643838879*1322157322203^(1/4) 8299620924920020 a001 514229/2537720636*2537720636^(5/18) 8299620924920020 a001 514229/2537720636*312119004989^(5/22) 8299620924920020 a001 514229/2537720636*3461452808002^(5/24) 8299620924920020 a001 514229/2537720636*28143753123^(1/4) 8299620924920020 a001 514229/17393796001*1568397607^(3/8) 8299620924920020 a001 514229/3461452808002*1568397607^(5/8) 8299620924920020 a001 514229/969323029*17393796001^(3/14) 8299620924920020 a001 514229/969323029*14662949395604^(1/6) 8299620924920020 a001 514229/28143753123*599074578^(5/12) 8299620924920020 a001 514229/817138163596*599074578^(7/12) 8299620924920020 a001 514229/969323029*599074578^(1/4) 8299620924920020 a001 514229/23725150497407*599074578^(3/4) 8299620924920020 a001 514229/2537720636*228826127^(5/16) 8299620924920020 a001 514229/370248451*45537549124^(1/6) 8299620924920020 a001 514229/28143753123*228826127^(7/16) 8299620924920020 a001 514229/312119004989*228826127^(9/16) 8299620924920020 a001 514229/3461452808002*228826127^(11/16) 8299620924920020 a001 514229/599074578*87403803^(1/4) 8299620924920020 a001 514229/141422324*141422324^(1/6) 8299620924920020 a001 514229/141422324*73681302247^(1/8) 8299620924920021 a001 514229/5600748293801*87403803^(3/4) 8299620924920021 a001 514229/228826127*33385282^(5/24) 8299620924920022 a001 514229/969323029*33385282^(7/24) 8299620924920023 a001 514229/4106118243*33385282^(3/8) 8299620924920023 a001 514229/54018521*2537720636^(1/10) 8299620924920023 a001 514229/54018521*14662949395604^(1/14) 8299620924920023 a001 514229/54018521*192900153618^(1/12) 8299620924920023 a001 514229/17393796001*33385282^(11/24) 8299620924920024 a001 514229/54018521*33385282^(1/8) 8299620924920024 a001 514229/73681302247*33385282^(13/24) 8299620924920024 a001 514229/312119004989*33385282^(5/8) 8299620924920025 a001 514229/1322157322203*33385282^(17/24) 8299620924920026 a001 514229/5600748293801*33385282^(19/24) 8299620924920026 a001 514229/23725150497407*33385282^(7/8) 8299620924920033 a001 514229/370248451*12752043^(1/4) 8299620924920038 a001 514229/20633239*20633239^(1/14) 8299620924920039 a001 3524578/6643838879*710647^(3/8) 8299620924920039 a001 514229/20633239*2537720636^(1/18) 8299620924920039 a001 514229/20633239*312119004989^(1/22) 8299620924920039 a001 514229/20633239*28143753123^(1/20) 8299620924920039 a001 514229/20633239*228826127^(1/16) 8299620924920058 a001 514229/1322157322203*12752043^(3/4) 8299620924920089 a001 514229/12752043*1860498^(1/20) 8299620924920239 a001 514229/20633239*1860498^(1/12) 8299620924920382 a001 514229/54018521*1860498^(3/20) 8299620924920619 a001 514229/228826127*1860498^(1/4) 8299620924920821 a001 1346269/2537720636*710647^(3/8) 8299620924920859 a001 514229/969323029*1860498^(7/20) 8299620924920913 a001 196418/119218851371*439204^(5/6) 8299620924921019 a001 514229/2537720636*1860498^(5/12) 8299620924921099 a001 514229/4106118243*1860498^(9/20) 8299620924921338 a001 514229/17393796001*1860498^(11/20) 8299620924921418 a001 514229/28143753123*1860498^(7/12) 8299620924921578 a001 514229/73681302247*1860498^(13/20) 8299620924921616 a001 208010/11384387281*710647^(5/8) 8299620924921818 a001 514229/312119004989*1860498^(3/4) 8299620924922058 a001 514229/1322157322203*1860498^(17/20) 8299620924922067 a001 514229/33385282*710647^(1/8) 8299620924922218 a001 514229/3461452808002*1860498^(11/12) 8299620924922298 a001 514229/5600748293801*1860498^(19/20) 8299620924923664 a001 2178309/119218851371*710647^(5/8) 8299620924923963 a001 5702887/312119004989*710647^(5/8) 8299620924924006 a001 3732588/204284540899*710647^(5/8) 8299620924924013 a001 39088169/2139295485799*710647^(5/8) 8299620924924014 a001 102334155/5600748293801*710647^(5/8) 8299620924924014 a001 10946/599074579*710647^(5/8) 8299620924924014 a001 433494437/23725150497407*710647^(5/8) 8299620924924014 a001 165580141/9062201101803*710647^(5/8) 8299620924924014 a001 31622993/1730726404001*710647^(5/8) 8299620924924017 a001 24157817/1322157322203*710647^(5/8) 8299620924924033 a001 9227465/505019158607*710647^(5/8) 8299620924924147 a001 1762289/96450076809*710647^(5/8) 8299620924924930 a001 1346269/73681302247*710647^(5/8) 8299620924925468 a001 105937/29134601*271443^(1/4) 8299620924925694 a001 196418/28143753123*439204^(13/18) 8299620924925725 a001 832040/1322157322203*710647^(7/8) 8299620924926183 a001 514229/969323029*710647^(3/8) 8299620924927411 a001 98209/3940598*167761^(1/10) 8299620924927773 a001 311187/494493258286*710647^(7/8) 8299620924928071 a001 5702887/9062201101803*710647^(7/8) 8299620924928115 a001 14930352/23725150497407*710647^(7/8) 8299620924928142 a001 9227465/14662949395604*710647^(7/8) 8299620924928256 a001 3524578/5600748293801*710647^(7/8) 8299620924929038 a001 1346269/2139295485799*710647^(7/8) 8299620924930291 a001 514229/28143753123*710647^(5/8) 8299620924930475 a001 196418/6643838879*439204^(11/18) 8299620924934400 a001 514229/817138163596*710647^(7/8) 8299620924935255 a001 196418/1568397607*439204^(1/2) 8299620924939505 a001 832040/228826127*271443^(1/4) 8299620924940036 a001 196418/370248451*439204^(7/18) 8299620924941553 a001 726103/199691526*271443^(1/4) 8299620924941852 a001 5702887/1568397607*271443^(1/4) 8299620924941896 a001 4976784/1368706081*271443^(1/4) 8299620924941902 a001 39088169/10749957122*271443^(1/4) 8299620924941903 a001 831985/228811001*271443^(1/4) 8299620924941903 a001 267914296/73681302247*271443^(1/4) 8299620924941903 a001 233802911/64300051206*271443^(1/4) 8299620924941903 a001 1836311903/505019158607*271443^(1/4) 8299620924941903 a001 1602508992/440719107401*271443^(1/4) 8299620924941903 a001 12586269025/3461452808002*271443^(1/4) 8299620924941903 a001 10983760033/3020733700601*271443^(1/4) 8299620924941903 a001 86267571272/23725150497407*271443^(1/4) 8299620924941903 a001 53316291173/14662949395604*271443^(1/4) 8299620924941903 a001 20365011074/5600748293801*271443^(1/4) 8299620924941903 a001 7778742049/2139295485799*271443^(1/4) 8299620924941903 a001 2971215073/817138163596*271443^(1/4) 8299620924941903 a001 1134903170/312119004989*271443^(1/4) 8299620924941903 a001 433494437/119218851371*271443^(1/4) 8299620924941903 a001 165580141/45537549124*271443^(1/4) 8299620924941903 a001 63245986/17393796001*271443^(1/4) 8299620924941906 a001 24157817/6643838879*271443^(1/4) 8299620924941922 a001 9227465/2537720636*271443^(1/4) 8299620924942037 a001 3524578/969323029*271443^(1/4) 8299620924942819 a001 1346269/370248451*271443^(1/4) 8299620924943233 a001 75025/45537549124*167761^(9/10) 8299620924944815 a001 196418/87403803*439204^(5/18) 8299620924945696 a001 317811/7881196*103682^(1/16) 8299620924945811 a001 121393/12752043*103682^(3/16) 8299620924948181 a001 514229/141422324*271443^(1/4) 8299620924949616 a001 196418/20633239*439204^(1/6) 8299620924953629 a001 98209/1268860318*1149851^(1/2) 8299620924954028 a001 196418/4870847*439204^(1/18) 8299620924956310 a001 196418/4106118243*3010349^(1/2) 8299620924956412 a001 196418/4870847*7881196^(1/22) 8299620924956418 a001 196418/4870847*33385282^(1/24) 8299620924956538 a001 196418/4870847*1860498^(1/20) 8299620924956640 a001 196418/9062201101803*7881196^(21/22) 8299620924956652 a001 196418/2139295485799*7881196^(19/22) 8299620924956657 a001 196418/1322157322203*7881196^(5/6) 8299620924956665 a001 196418/505019158607*7881196^(17/22) 8299620924956677 a001 196418/119218851371*7881196^(15/22) 8299620924956689 a001 196418/28143753123*7881196^(13/22) 8299620924956701 a001 196418/6643838879*7881196^(1/2) 8299620924956713 a001 196418/1568397607*7881196^(9/22) 8299620924956715 a001 196418/12752043*20633239^(1/10) 8299620924956717 a001 196418/12752043*17393796001^(1/14) 8299620924956717 a001 196418/12752043*14662949395604^(1/18) 8299620924956717 a001 196418/12752043*505019158607^(1/16) 8299620924956717 a001 196418/12752043*599074578^(1/12) 8299620924956725 a001 196418/370248451*7881196^(7/22) 8299620924956736 a001 196418/87403803*7881196^(5/22) 8299620924956738 a001 98209/16692641*7881196^(1/6) 8299620924956750 a001 98209/7331474697802*20633239^(13/14) 8299620924956750 a001 196418/9062201101803*20633239^(9/10) 8299620924956753 a001 196418/1322157322203*20633239^(11/14) 8299620924956754 a001 196418/312119004989*20633239^(7/10) 8299620924956755 a001 196418/119218851371*20633239^(9/14) 8299620924956758 a001 98209/5374978561*20633239^(1/2) 8299620924956760 a001 98209/16692641*312119004989^(1/10) 8299620924956760 a001 98209/16692641*1568397607^(1/8) 8299620924956761 a001 196418/969323029*20633239^(5/14) 8299620924956762 a001 196418/370248451*20633239^(3/10) 8299620924956763 a001 196418/87403803*20633239^(3/14) 8299620924956766 a001 196418/17393796001*54018521^(1/2) 8299620924956767 a001 196418/87403803*2537720636^(1/6) 8299620924956767 a001 196418/87403803*312119004989^(3/22) 8299620924956767 a001 196418/87403803*28143753123^(3/20) 8299620924956767 a001 196418/87403803*228826127^(3/16) 8299620924956768 a001 98209/7331474697802*141422324^(5/6) 8299620924956768 a001 196418/28143753123*141422324^(1/2) 8299620924956768 a001 196418/228826127*817138163596^(1/6) 8299620924956768 a001 98209/22768774562*370248451^(1/2) 8299620924956768 a001 98209/299537289*4106118243^(1/4) 8299620924956768 a001 196418/73681302247*969323029^(1/2) 8299620924956768 a001 196418/1568397607*2537720636^(3/10) 8299620924956768 a001 196418/1568397607*14662949395604^(3/14) 8299620924956768 a001 196418/1568397607*192900153618^(1/4) 8299620924956768 a001 98209/7331474697802*2537720636^(13/18) 8299620924956768 a001 196418/9062201101803*2537720636^(7/10) 8299620924956768 a001 196418/1322157322203*2537720636^(11/18) 8299620924956768 a001 196418/119218851371*2537720636^(1/2) 8299620924956768 a001 98209/5374978561*2537720636^(7/18) 8299620924956768 a001 196418/4106118243*9062201101803^(1/4) 8299620924956768 a001 98209/96450076809*6643838879^(1/2) 8299620924956768 a001 98209/5374978561*17393796001^(5/14) 8299620924956768 a001 98209/5374978561*312119004989^(7/22) 8299620924956768 a001 98209/5374978561*14662949395604^(5/18) 8299620924956768 a001 98209/5374978561*505019158607^(5/16) 8299620924956768 a001 98209/5374978561*28143753123^(7/20) 8299620924956768 a001 196418/9062201101803*17393796001^(9/14) 8299620924956768 a001 196418/312119004989*17393796001^(1/2) 8299620924956768 a001 196418/28143753123*73681302247^(3/8) 8299620924956768 a001 196418/505019158607*45537549124^(1/2) 8299620924956768 a001 98209/408569081798*119218851371^(1/2) 8299620924956768 a001 98209/7331474697802*312119004989^(13/22) 8299620924956768 a001 196418/1322157322203*312119004989^(1/2) 8299620924956768 a001 196418/1322157322203*3461452808002^(11/24) 8299620924956768 a001 196418/2139295485799*817138163596^(1/2) 8299620924956768 a001 196418/9062201101803*14662949395604^(1/2) 8299620924956768 a001 196418/5600748293801*5600748293801^(1/2) 8299620924956768 a001 196418/312119004989*14662949395604^(7/18) 8299620924956768 a001 196418/312119004989*505019158607^(7/16) 8299620924956768 a001 196418/119218851371*312119004989^(9/22) 8299620924956768 a001 196418/119218851371*14662949395604^(5/14) 8299620924956768 a001 196418/119218851371*192900153618^(5/12) 8299620924956768 a001 98209/7331474697802*73681302247^(5/8) 8299620924956768 a001 196418/119218851371*28143753123^(9/20) 8299620924956768 a001 196418/1322157322203*28143753123^(11/20) 8299620924956768 a001 98209/7331474697802*28143753123^(13/20) 8299620924956768 a001 196418/6643838879*312119004989^(3/10) 8299620924956768 a001 98209/1268860318*1322157322203^(1/4) 8299620924956768 a001 196418/6643838879*1568397607^(3/8) 8299620924956768 a001 196418/1322157322203*1568397607^(5/8) 8299620924956768 a001 196418/969323029*2537720636^(5/18) 8299620924956768 a001 196418/969323029*312119004989^(5/22) 8299620924956768 a001 196418/969323029*3461452808002^(5/24) 8299620924956768 a001 196418/969323029*28143753123^(1/4) 8299620924956768 a001 98209/5374978561*599074578^(5/12) 8299620924956768 a001 196418/312119004989*599074578^(7/12) 8299620924956768 a001 196418/9062201101803*599074578^(3/4) 8299620924956768 a001 196418/969323029*228826127^(5/16) 8299620924956768 a001 196418/370248451*17393796001^(3/14) 8299620924956768 a001 196418/370248451*14662949395604^(1/6) 8299620924956768 a001 196418/370248451*599074578^(1/4) 8299620924956768 a001 98209/5374978561*228826127^(7/16) 8299620924956768 a001 196418/119218851371*228826127^(9/16) 8299620924956768 a001 196418/1322157322203*228826127^(11/16) 8299620924956768 a001 196418/228826127*87403803^(1/4) 8299620924956768 a001 98209/7331474697802*228826127^(13/16) 8299620924956768 a001 98209/70711162*45537549124^(1/6) 8299620924956768 a001 196418/87403803*33385282^(5/24) 8299620924956769 a001 196418/2139295485799*87403803^(3/4) 8299620924956769 a001 196418/20633239*7881196^(3/22) 8299620924956770 a001 196418/370248451*33385282^(7/24) 8299620924956771 a001 196418/54018521*141422324^(1/6) 8299620924956771 a001 196418/1568397607*33385282^(3/8) 8299620924956771 a001 196418/54018521*73681302247^(1/8) 8299620924956771 a001 196418/6643838879*33385282^(11/24) 8299620924956772 a001 196418/28143753123*33385282^(13/24) 8299620924956773 a001 196418/119218851371*33385282^(5/8) 8299620924956773 a001 196418/505019158607*33385282^(17/24) 8299620924956774 a001 196418/2139295485799*33385282^(19/24) 8299620924956774 a001 196418/9062201101803*33385282^(7/8) 8299620924956781 a001 98209/70711162*12752043^(1/4) 8299620924956787 a001 196418/20633239*2537720636^(1/10) 8299620924956787 a001 196418/20633239*14662949395604^(1/14) 8299620924956787 a001 196418/20633239*192900153618^(1/12) 8299620924956788 a001 196418/20633239*33385282^(1/8) 8299620924956806 a001 196418/505019158607*12752043^(3/4) 8299620924956900 a001 98209/3940598*20633239^(1/14) 8299620924956902 a001 98209/3940598*2537720636^(1/18) 8299620924956902 a001 98209/3940598*312119004989^(1/22) 8299620924956902 a001 98209/3940598*28143753123^(1/20) 8299620924956902 a001 98209/3940598*228826127^(1/16) 8299620924957101 a001 98209/3940598*1860498^(1/12) 8299620924957147 a001 196418/20633239*1860498^(3/20) 8299620924957366 a001 196418/87403803*1860498^(1/4) 8299620924957607 a001 196418/370248451*1860498^(7/20) 8299620924957767 a001 196418/969323029*1860498^(5/12) 8299620924957847 a001 196418/1568397607*1860498^(9/20) 8299620924958087 a001 196418/6643838879*1860498^(11/20) 8299620924958167 a001 98209/5374978561*1860498^(7/12) 8299620924958326 a001 196418/28143753123*1860498^(13/20) 8299620924958566 a001 196418/119218851371*1860498^(3/4) 8299620924958771 a001 196418/12752043*710647^(1/8) 8299620924958806 a001 196418/505019158607*1860498^(17/20) 8299620924958966 a001 196418/1322157322203*1860498^(11/12) 8299620924959046 a001 196418/2139295485799*1860498^(19/20) 8299620924959618 a001 75640/1875749*103682^(1/16) 8299620924961649 a001 2178309/54018521*103682^(1/16) 8299620924961946 a001 5702887/141422324*103682^(1/16) 8299620924961989 a001 14930352/370248451*103682^(1/16) 8299620924961995 a001 39088169/969323029*103682^(1/16) 8299620924961996 a001 9303105/230701876*103682^(1/16) 8299620924961996 a001 267914296/6643838879*103682^(1/16) 8299620924961996 a001 701408733/17393796001*103682^(1/16) 8299620924961996 a001 1836311903/45537549124*103682^(1/16) 8299620924961996 a001 4807526976/119218851371*103682^(1/16) 8299620924961996 a001 1144206275/28374454999*103682^(1/16) 8299620924961996 a001 32951280099/817138163596*103682^(1/16) 8299620924961996 a001 86267571272/2139295485799*103682^(1/16) 8299620924961996 a001 225851433717/5600748293801*103682^(1/16) 8299620924961996 a001 591286729879/14662949395604*103682^(1/16) 8299620924961996 a001 365435296162/9062201101803*103682^(1/16) 8299620924961996 a001 139583862445/3461452808002*103682^(1/16) 8299620924961996 a001 53316291173/1322157322203*103682^(1/16) 8299620924961996 a001 20365011074/505019158607*103682^(1/16) 8299620924961996 a001 7778742049/192900153618*103682^(1/16) 8299620924961996 a001 2971215073/73681302247*103682^(1/16) 8299620924961996 a001 1134903170/28143753123*103682^(1/16) 8299620924961996 a001 433494437/10749957122*103682^(1/16) 8299620924961996 a001 165580141/4106118243*103682^(1/16) 8299620924961997 a001 63245986/1568397607*103682^(1/16) 8299620924961999 a001 24157817/599074578*103682^(1/16) 8299620924962016 a001 9227465/228826127*103682^(1/16) 8299620924962129 a001 3524578/87403803*103682^(1/16) 8299620924962905 a001 1346269/33385282*103682^(1/16) 8299620924962931 a001 196418/370248451*710647^(3/8) 8299620924967039 a001 98209/5374978561*710647^(5/8) 8299620924968223 a001 514229/12752043*103682^(1/16) 8299620924971148 a001 196418/312119004989*710647^(7/8) 8299620924981790 a001 317811/45537549124*271443^(3/4) 8299620924984472 a001 46368/3010349*39603^(7/44) 8299620924984931 a001 196418/54018521*271443^(1/4) 8299620924995826 a001 832040/119218851371*271443^(3/4) 8299620924997874 a001 2178309/312119004989*271443^(3/4) 8299620924998173 a001 5702887/817138163596*271443^(3/4) 8299620924998217 a001 14930352/2139295485799*271443^(3/4) 8299620924998223 a001 39088169/5600748293801*271443^(3/4) 8299620924998224 a001 102334155/14662949395604*271443^(3/4) 8299620924998224 a001 165580141/23725150497407*271443^(3/4) 8299620924998224 a001 63245986/9062201101803*271443^(3/4) 8299620924998227 a001 24157817/3461452808002*271443^(3/4) 8299620924998244 a001 9227465/1322157322203*271443^(3/4) 8299620924998358 a001 3524578/505019158607*271443^(3/4) 8299620924999140 a001 1346269/192900153618*271443^(3/4) 8299620925002213 a001 75025/4106118243*167761^(7/10) 8299620925004501 a001 514229/73681302247*271443^(3/4) 8299620925004672 a001 196418/4870847*103682^(1/16) 8299620925017226 a001 317811/4870847*39603^(1/44) 8299620925032008 a001 6624/101521*15127^(1/40) 8299620925041250 a001 196418/28143753123*271443^(3/4) 8299620925042062 a001 317811/33385282*103682^(3/16) 8299620925042372 a001 121393/54018521*103682^(5/16) 8299620925056105 a001 832040/87403803*103682^(3/16) 8299620925058154 a001 46347/4868641*103682^(3/16) 8299620925058453 a001 5702887/599074578*103682^(3/16) 8299620925058496 a001 14930352/1568397607*103682^(3/16) 8299620925058503 a001 39088169/4106118243*103682^(3/16) 8299620925058504 a001 102334155/10749957122*103682^(3/16) 8299620925058504 a001 267914296/28143753123*103682^(3/16) 8299620925058504 a001 701408733/73681302247*103682^(3/16) 8299620925058504 a001 1836311903/192900153618*103682^(3/16) 8299620925058504 a001 102287808/10745088481*103682^(3/16) 8299620925058504 a001 12586269025/1322157322203*103682^(3/16) 8299620925058504 a001 32951280099/3461452808002*103682^(3/16) 8299620925058504 a001 86267571272/9062201101803*103682^(3/16) 8299620925058504 a001 225851433717/23725150497407*103682^(3/16) 8299620925058504 a001 139583862445/14662949395604*103682^(3/16) 8299620925058504 a001 53316291173/5600748293801*103682^(3/16) 8299620925058504 a001 20365011074/2139295485799*103682^(3/16) 8299620925058504 a001 7778742049/817138163596*103682^(3/16) 8299620925058504 a001 2971215073/312119004989*103682^(3/16) 8299620925058504 a001 1134903170/119218851371*103682^(3/16) 8299620925058504 a001 433494437/45537549124*103682^(3/16) 8299620925058504 a001 165580141/17393796001*103682^(3/16) 8299620925058504 a001 63245986/6643838879*103682^(3/16) 8299620925058507 a001 24157817/2537720636*103682^(3/16) 8299620925058523 a001 9227465/969323029*103682^(3/16) 8299620925058637 a001 3524578/370248451*103682^(3/16) 8299620925059420 a001 1346269/141422324*103682^(3/16) 8299620925061193 a001 75025/370248451*167761^(1/2) 8299620925064784 a001 514229/54018521*103682^(3/16) 8299620925077952 a001 196418/3010349*39603^(1/44) 8299620925101549 a001 196418/20633239*103682^(3/16) 8299620925120166 a001 75025/33385282*167761^(3/10) 8299620925138578 a001 317811/141422324*103682^(5/16) 8299620925138877 a001 121393/228826127*103682^(7/16) 8299620925152614 a001 832040/370248451*103682^(5/16) 8299620925154662 a001 2178309/969323029*103682^(5/16) 8299620925154960 a001 5702887/2537720636*103682^(5/16) 8299620925155004 a001 14930352/6643838879*103682^(5/16) 8299620925155010 a001 39088169/17393796001*103682^(5/16) 8299620925155011 a001 102334155/45537549124*103682^(5/16) 8299620925155011 a001 267914296/119218851371*103682^(5/16) 8299620925155011 a001 3524667/1568437211*103682^(5/16) 8299620925155011 a001 1836311903/817138163596*103682^(5/16) 8299620925155011 a001 4807526976/2139295485799*103682^(5/16) 8299620925155011 a001 12586269025/5600748293801*103682^(5/16) 8299620925155011 a001 32951280099/14662949395604*103682^(5/16) 8299620925155011 a001 53316291173/23725150497407*103682^(5/16) 8299620925155011 a001 20365011074/9062201101803*103682^(5/16) 8299620925155011 a001 7778742049/3461452808002*103682^(5/16) 8299620925155011 a001 2971215073/1322157322203*103682^(5/16) 8299620925155011 a001 1134903170/505019158607*103682^(5/16) 8299620925155011 a001 433494437/192900153618*103682^(5/16) 8299620925155011 a001 165580141/73681302247*103682^(5/16) 8299620925155012 a001 63245986/28143753123*103682^(5/16) 8299620925155014 a001 24157817/10749957122*103682^(5/16) 8299620925155031 a001 9227465/4106118243*103682^(5/16) 8299620925155145 a001 3524578/1568397607*103682^(5/16) 8299620925155927 a001 1346269/599074578*103682^(5/16) 8299620925161289 a001 514229/228826127*103682^(5/16) 8299620925162820 a001 121393/3010349*39603^(3/44) 8299620925168008 a001 75025/192900153618*439204^(17/18) 8299620925172789 a001 75025/45537549124*439204^(5/6) 8299620925177569 a001 75025/10749957122*439204^(13/18) 8299620925180069 a001 75025/3010349*167761^(1/10) 8299620925182350 a001 75025/2537720636*439204^(11/18) 8299620925187131 a001 75025/599074578*439204^(1/2) 8299620925191912 a001 75025/141422324*439204^(7/18) 8299620925196684 a001 75025/33385282*439204^(5/18) 8299620925198036 a001 196418/87403803*103682^(5/16) 8299620925201606 a001 75025/7881196*439204^(1/6) 8299620925203855 a001 75025/1860498*439204^(1/18) 8299620925205505 a001 75025/969323029*1149851^(1/2) 8299620925206240 a001 75025/1860498*7881196^(1/22) 8299620925206246 a001 75025/1860498*33385282^(1/24) 8299620925206366 a001 75025/1860498*1860498^(1/20) 8299620925208185 a001 75025/1568397607*3010349^(1/2) 8299620925208292 a001 75025/4870847*20633239^(1/10) 8299620925208294 a001 75025/4870847*17393796001^(1/14) 8299620925208294 a001 75025/4870847*14662949395604^(1/18) 8299620925208294 a001 75025/4870847*505019158607^(1/16) 8299620925208294 a001 75025/4870847*599074578^(1/12) 8299620925208516 a001 75025/3461452808002*7881196^(21/22) 8299620925208528 a001 75025/817138163596*7881196^(19/22) 8299620925208532 a001 75025/505019158607*7881196^(5/6) 8299620925208540 a001 75025/192900153618*7881196^(17/22) 8299620925208552 a001 75025/45537549124*7881196^(15/22) 8299620925208564 a001 75025/10749957122*7881196^(13/22) 8299620925208570 a001 75025/12752043*7881196^(1/6) 8299620925208577 a001 75025/2537720636*7881196^(1/2) 8299620925208589 a001 75025/599074578*7881196^(9/22) 8299620925208592 a001 75025/12752043*312119004989^(1/10) 8299620925208592 a001 75025/12752043*1568397607^(1/8) 8299620925208601 a001 75025/141422324*7881196^(7/22) 8299620925208606 a001 75025/33385282*7881196^(5/22) 8299620925208625 a001 75025/5600748293801*20633239^(13/14) 8299620925208626 a001 75025/3461452808002*20633239^(9/10) 8299620925208628 a001 75025/505019158607*20633239^(11/14) 8299620925208630 a001 75025/119218851371*20633239^(7/10) 8299620925208631 a001 75025/45537549124*20633239^(9/14) 8299620925208632 a001 75025/33385282*20633239^(3/14) 8299620925208634 a001 75025/4106118243*20633239^(1/2) 8299620925208636 a001 75025/33385282*2537720636^(1/6) 8299620925208636 a001 75025/33385282*312119004989^(3/22) 8299620925208636 a001 75025/33385282*28143753123^(3/20) 8299620925208636 a001 75025/33385282*228826127^(3/16) 8299620925208637 a001 75025/370248451*20633239^(5/14) 8299620925208638 a001 75025/33385282*33385282^(5/24) 8299620925208638 a001 75025/141422324*20633239^(3/10) 8299620925208642 a001 75025/6643838879*54018521^(1/2) 8299620925208642 a001 75025/87403803*817138163596^(1/6) 8299620925208643 a001 75025/87403803*87403803^(1/4) 8299620925208643 a001 75025/5600748293801*141422324^(5/6) 8299620925208643 a001 75025/10749957122*141422324^(1/2) 8299620925208643 a001 75025/228826127*4106118243^(1/4) 8299620925208643 a001 75025/17393796001*370248451^(1/2) 8299620925208643 a001 75025/599074578*2537720636^(3/10) 8299620925208643 a001 75025/599074578*14662949395604^(3/14) 8299620925208643 a001 75025/599074578*192900153618^(1/4) 8299620925208643 a001 75025/28143753123*969323029^(1/2) 8299620925208643 a001 75025/1568397607*9062201101803^(1/4) 8299620925208643 a001 75025/4106118243*2537720636^(7/18) 8299620925208643 a001 75025/5600748293801*2537720636^(13/18) 8299620925208643 a001 75025/3461452808002*2537720636^(7/10) 8299620925208643 a001 75025/505019158607*2537720636^(11/18) 8299620925208643 a001 75025/45537549124*2537720636^(1/2) 8299620925208643 a001 75025/4106118243*17393796001^(5/14) 8299620925208643 a001 75025/4106118243*312119004989^(7/22) 8299620925208643 a001 75025/4106118243*14662949395604^(5/18) 8299620925208643 a001 75025/4106118243*505019158607^(5/16) 8299620925208643 a001 75025/4106118243*28143753123^(7/20) 8299620925208643 a001 75025/73681302247*6643838879^(1/2) 8299620925208643 a001 75025/10749957122*73681302247^(3/8) 8299620925208643 a001 75025/3461452808002*17393796001^(9/14) 8299620925208643 a001 75025/119218851371*17393796001^(1/2) 8299620925208643 a001 75025/192900153618*45537549124^(1/2) 8299620925208643 a001 75025/312119004989*119218851371^(1/2) 8299620925208643 a001 75025/505019158607*312119004989^(1/2) 8299620925208643 a001 75025/5600748293801*312119004989^(13/22) 8299620925208643 a001 75025/505019158607*3461452808002^(11/24) 8299620925208643 a001 75025/1322157322203*2139295485799^(1/2) 8299620925208643 a001 75025/3461452808002*14662949395604^(1/2) 8299620925208643 a001 75025/817138163596*817138163596^(1/2) 8299620925208643 a001 75025/3461452808002*505019158607^(9/16) 8299620925208643 a001 75025/3461452808002*192900153618^(7/12) 8299620925208643 a001 75025/119218851371*14662949395604^(7/18) 8299620925208643 a001 75025/119218851371*505019158607^(7/16) 8299620925208643 a001 75025/5600748293801*73681302247^(5/8) 8299620925208643 a001 75025/45537549124*312119004989^(9/22) 8299620925208643 a001 75025/45537549124*14662949395604^(5/14) 8299620925208643 a001 75025/45537549124*192900153618^(5/12) 8299620925208643 a001 75025/505019158607*28143753123^(11/20) 8299620925208643 a001 75025/5600748293801*28143753123^(13/20) 8299620925208643 a001 75025/45537549124*28143753123^(9/20) 8299620925208643 a001 75025/14662949395604*4106118243^(3/4) 8299620925208643 a001 75025/2537720636*312119004989^(3/10) 8299620925208643 a001 75025/505019158607*1568397607^(5/8) 8299620925208643 a001 75025/2537720636*1568397607^(3/8) 8299620925208643 a001 75025/969323029*1322157322203^(1/4) 8299620925208643 a001 75025/4106118243*599074578^(5/12) 8299620925208643 a001 75025/119218851371*599074578^(7/12) 8299620925208643 a001 75025/3461452808002*599074578^(3/4) 8299620925208643 a001 75025/370248451*2537720636^(5/18) 8299620925208643 a001 75025/370248451*312119004989^(5/22) 8299620925208643 a001 75025/370248451*3461452808002^(5/24) 8299620925208643 a001 75025/370248451*28143753123^(1/4) 8299620925208643 a001 75025/4106118243*228826127^(7/16) 8299620925208643 a001 75025/45537549124*228826127^(9/16) 8299620925208644 a001 75025/505019158607*228826127^(11/16) 8299620925208644 a001 75025/370248451*228826127^(5/16) 8299620925208644 a001 75025/5600748293801*228826127^(13/16) 8299620925208644 a001 75025/141422324*17393796001^(3/14) 8299620925208644 a001 75025/141422324*14662949395604^(1/6) 8299620925208644 a001 75025/141422324*599074578^(1/4) 8299620925208644 a001 75025/817138163596*87403803^(3/4) 8299620925208646 a001 75025/141422324*33385282^(7/24) 8299620925208646 a001 75025/599074578*33385282^(3/8) 8299620925208646 a001 75025/54018521*45537549124^(1/6) 8299620925208647 a001 75025/2537720636*33385282^(11/24) 8299620925208647 a001 75025/10749957122*33385282^(13/24) 8299620925208648 a001 75025/45537549124*33385282^(5/8) 8299620925208649 a001 75025/192900153618*33385282^(17/24) 8299620925208649 a001 75025/817138163596*33385282^(19/24) 8299620925208650 a001 75025/3461452808002*33385282^(7/8) 8299620925208651 a001 75025/14662949395604*33385282^(23/24) 8299620925208659 a001 75025/54018521*12752043^(1/4) 8299620925208663 a001 75025/20633239*141422324^(1/6) 8299620925208663 a001 75025/20633239*73681302247^(1/8) 8299620925208682 a001 75025/192900153618*12752043^(3/4) 8299620925208759 a001 75025/7881196*7881196^(3/22) 8299620925208777 a001 75025/7881196*2537720636^(1/10) 8299620925208777 a001 75025/7881196*14662949395604^(1/14) 8299620925208777 a001 75025/7881196*192900153618^(1/12) 8299620925208778 a001 75025/7881196*33385282^(1/8) 8299620925209137 a001 75025/7881196*1860498^(3/20) 8299620925209235 a001 75025/33385282*1860498^(1/4) 8299620925209483 a001 75025/141422324*1860498^(7/20) 8299620925209558 a001 75025/3010349*20633239^(1/14) 8299620925209559 a001 75025/3010349*2537720636^(1/18) 8299620925209559 a001 75025/3010349*312119004989^(1/22) 8299620925209559 a001 75025/3010349*28143753123^(1/20) 8299620925209559 a001 75025/3010349*228826127^(1/16) 8299620925209643 a001 75025/370248451*1860498^(5/12) 8299620925209722 a001 75025/599074578*1860498^(9/20) 8299620925209759 a001 75025/3010349*1860498^(1/12) 8299620925209962 a001 75025/2537720636*1860498^(11/20) 8299620925210042 a001 75025/4106118243*1860498^(7/12) 8299620925210202 a001 75025/10749957122*1860498^(13/20) 8299620925210348 a001 75025/4870847*710647^(1/8) 8299620925210442 a001 75025/45537549124*1860498^(3/4) 8299620925210681 a001 75025/192900153618*1860498^(17/20) 8299620925210841 a001 75025/505019158607*1860498^(11/12) 8299620925210921 a001 75025/817138163596*1860498^(19/20) 8299620925214807 a001 75025/141422324*710647^(3/8) 8299620925218915 a001 75025/4106118243*710647^(5/8) 8299620925223023 a001 75025/119218851371*710647^(7/8) 8299620925223742 a001 46368/4870847*39603^(9/44) 8299620925235085 a001 377/710646*103682^(7/16) 8299620925235384 a001 121393/969323029*103682^(9/16) 8299620925236823 a001 75025/20633239*271443^(1/4) 8299620925249121 a001 832040/1568397607*103682^(7/16) 8299620925251169 a001 726103/1368706081*103682^(7/16) 8299620925251468 a001 5702887/10749957122*103682^(7/16) 8299620925251512 a001 4976784/9381251041*103682^(7/16) 8299620925251518 a001 39088169/73681302247*103682^(7/16) 8299620925251519 a001 34111385/64300051206*103682^(7/16) 8299620925251519 a001 267914296/505019158607*103682^(7/16) 8299620925251519 a001 233802911/440719107401*103682^(7/16) 8299620925251519 a001 1836311903/3461452808002*103682^(7/16) 8299620925251519 a001 1602508992/3020733700601*103682^(7/16) 8299620925251519 a001 12586269025/23725150497407*103682^(7/16) 8299620925251519 a001 7778742049/14662949395604*103682^(7/16) 8299620925251519 a001 2971215073/5600748293801*103682^(7/16) 8299620925251519 a001 1134903170/2139295485799*103682^(7/16) 8299620925251519 a001 433494437/817138163596*103682^(7/16) 8299620925251519 a001 165580141/312119004989*103682^(7/16) 8299620925251519 a001 63245986/119218851371*103682^(7/16) 8299620925251522 a001 24157817/45537549124*103682^(7/16) 8299620925251539 a001 9227465/17393796001*103682^(7/16) 8299620925251653 a001 3524578/6643838879*103682^(7/16) 8299620925252435 a001 1346269/2537720636*103682^(7/16) 8299620925254499 a001 75025/1860498*103682^(1/16) 8299620925257796 a001 514229/969323029*103682^(7/16) 8299620925292007 a001 28657/1149851*24476^(5/42) 8299620925293125 a001 75025/10749957122*271443^(3/4) 8299620925294545 a001 196418/370248451*103682^(7/16) 8299620925317221 a001 196418/4870847*39603^(3/44) 8299620925331592 a001 317811/2537720636*103682^(9/16) 8299620925331892 a001 121393/4106118243*103682^(11/16) 8299620925335189 a001 75025/1149851*39603^(1/44) 8299620925345629 a001 832040/6643838879*103682^(9/16) 8299620925347677 a001 2178309/17393796001*103682^(9/16) 8299620925347976 a001 1597/12752044*103682^(9/16) 8299620925348019 a001 14930352/119218851371*103682^(9/16) 8299620925348026 a001 39088169/312119004989*103682^(9/16) 8299620925348026 a001 102334155/817138163596*103682^(9/16) 8299620925348027 a001 267914296/2139295485799*103682^(9/16) 8299620925348027 a001 701408733/5600748293801*103682^(9/16) 8299620925348027 a001 1836311903/14662949395604*103682^(9/16) 8299620925348027 a001 2971215073/23725150497407*103682^(9/16) 8299620925348027 a001 1134903170/9062201101803*103682^(9/16) 8299620925348027 a001 433494437/3461452808002*103682^(9/16) 8299620925348027 a001 165580141/1322157322203*103682^(9/16) 8299620925348027 a001 63245986/505019158607*103682^(9/16) 8299620925348029 a001 24157817/192900153618*103682^(9/16) 8299620925348046 a001 9227465/73681302247*103682^(9/16) 8299620925348160 a001 3524578/28143753123*103682^(9/16) 8299620925348942 a001 1346269/10749957122*103682^(9/16) 8299620925353538 a001 75025/7881196*103682^(3/16) 8299620925354304 a001 514229/4106118243*103682^(9/16) 8299620925391052 a001 196418/1568397607*103682^(9/16) 8299620925402089 a001 121393/4870847*39603^(5/44) 8299620925428100 a001 317811/10749957122*103682^(11/16) 8299620925428400 a001 121393/17393796001*103682^(13/16) 8299620925442137 a001 832040/28143753123*103682^(11/16) 8299620925444184 a001 311187/10525900321*103682^(11/16) 8299620925444483 a001 5702887/192900153618*103682^(11/16) 8299620925444527 a001 14930352/505019158607*103682^(11/16) 8299620925444533 a001 39088169/1322157322203*103682^(11/16) 8299620925444534 a001 6765/228826126*103682^(11/16) 8299620925444534 a001 267914296/9062201101803*103682^(11/16) 8299620925444534 a001 701408733/23725150497407*103682^(11/16) 8299620925444534 a001 433494437/14662949395604*103682^(11/16) 8299620925444534 a001 165580141/5600748293801*103682^(11/16) 8299620925444535 a001 63245986/2139295485799*103682^(11/16) 8299620925444537 a001 24157817/817138163596*103682^(11/16) 8299620925444554 a001 9227465/312119004989*103682^(11/16) 8299620925444668 a001 3524578/119218851371*103682^(11/16) 8299620925445450 a001 1346269/45537549124*103682^(11/16) 8299620925449905 a001 75025/33385282*103682^(5/16) 8299620925450812 a001 514229/17393796001*103682^(11/16) 8299620925464761 a001 11592/1970299*39603^(1/4) 8299620925487560 a001 196418/6643838879*103682^(11/16) 8299620925524608 a001 317811/45537549124*103682^(13/16) 8299620925524907 a001 121393/73681302247*103682^(15/16) 8299620925538644 a001 832040/119218851371*103682^(13/16) 8299620925540692 a001 2178309/312119004989*103682^(13/16) 8299620925540991 a001 5702887/817138163596*103682^(13/16) 8299620925541034 a001 14930352/2139295485799*103682^(13/16) 8299620925541041 a001 39088169/5600748293801*103682^(13/16) 8299620925541042 a001 102334155/14662949395604*103682^(13/16) 8299620925541042 a001 165580141/23725150497407*103682^(13/16) 8299620925541042 a001 63245986/9062201101803*103682^(13/16) 8299620925541045 a001 24157817/3461452808002*103682^(13/16) 8299620925541061 a001 9227465/1322157322203*103682^(13/16) 8299620925541175 a001 3524578/505019158607*103682^(13/16) 8299620925541958 a001 1346269/192900153618*103682^(13/16) 8299620925546420 a001 75025/141422324*103682^(7/16) 8299620925547319 a001 514229/73681302247*103682^(13/16) 8299620925567049 a001 75025/1860498*39603^(3/44) 8299620925584067 a001 196418/28143753123*103682^(13/16) 8299620925621115 a001 105937/64300051206*103682^(15/16) 8299620925635152 a001 832040/505019158607*103682^(15/16) 8299620925637200 a001 726103/440719107401*103682^(15/16) 8299620925637498 a001 5702887/3461452808002*103682^(15/16) 8299620925637542 a001 4976784/3020733700601*103682^(15/16) 8299620925637548 a001 39088169/23725150497407*103682^(15/16) 8299620925637552 a001 24157817/14662949395604*103682^(15/16) 8299620925637569 a001 9227465/5600748293801*103682^(15/16) 8299620925637683 a001 3524578/2139295485799*103682^(15/16) 8299620925638465 a001 1346269/817138163596*103682^(15/16) 8299620925642928 a001 75025/599074578*103682^(9/16) 8299620925643827 a001 514229/312119004989*103682^(15/16) 8299620925680575 a001 196418/119218851371*103682^(15/16) 8299620925705463 a001 121393/1860498*15127^(1/40) 8299620925739435 a001 75025/2537720636*103682^(11/16) 8299620925803719 a001 317811/4870847*15127^(1/40) 8299620925810898 a001 75025/3010349*39603^(5/44) 8299620925835943 a001 75025/10749957122*103682^(13/16) 8299620925864444 a001 196418/3010349*15127^(1/40) 8299620925903319 a001 10946/1568397607*24476^(13/14) 8299620925924382 a001 28657/87403803*64079^(1/2) 8299620925929013 a001 28657/710647*24476^(1/14) 8299620925932450 a001 75025/45537549124*103682^(15/16) 8299620925975560 a001 17711/1149851*15127^(7/40) 8299620926050168 a001 75025/4870847*39603^(7/44) 8299620926121681 a001 75025/1149851*15127^(1/40) 8299620926124066 a001 121393/20633239*39603^(1/4) 8299620926220257 a001 317811/54018521*39603^(1/4) 8299620926234291 a001 208010/35355581*39603^(1/4) 8299620926236339 a001 2178309/370248451*39603^(1/4) 8299620926236637 a001 5702887/969323029*39603^(1/4) 8299620926236681 a001 196452/33391061*39603^(1/4) 8299620926236687 a001 39088169/6643838879*39603^(1/4) 8299620926236688 a001 102334155/17393796001*39603^(1/4) 8299620926236688 a001 66978574/11384387281*39603^(1/4) 8299620926236688 a001 701408733/119218851371*39603^(1/4) 8299620926236688 a001 1836311903/312119004989*39603^(1/4) 8299620926236688 a001 1201881744/204284540899*39603^(1/4) 8299620926236688 a001 12586269025/2139295485799*39603^(1/4) 8299620926236688 a001 32951280099/5600748293801*39603^(1/4) 8299620926236688 a001 1135099622/192933544679*39603^(1/4) 8299620926236688 a001 139583862445/23725150497407*39603^(1/4) 8299620926236688 a001 53316291173/9062201101803*39603^(1/4) 8299620926236688 a001 10182505537/1730726404001*39603^(1/4) 8299620926236688 a001 7778742049/1322157322203*39603^(1/4) 8299620926236688 a001 2971215073/505019158607*39603^(1/4) 8299620926236688 a001 567451585/96450076809*39603^(1/4) 8299620926236688 a001 433494437/73681302247*39603^(1/4) 8299620926236688 a001 165580141/28143753123*39603^(1/4) 8299620926236689 a001 31622993/5374978561*39603^(1/4) 8299620926236691 a001 24157817/4106118243*39603^(1/4) 8299620926236708 a001 9227465/1568397607*39603^(1/4) 8299620926236822 a001 1762289/299537289*39603^(1/4) 8299620926237604 a001 1346269/228826127*39603^(1/4) 8299620926242965 a001 514229/87403803*39603^(1/4) 8299620926279706 a001 98209/16692641*39603^(1/4) 8299620926316468 a001 5473/219602*9349^(5/38) 8299620926414905 a001 17711/271443*5778^(1/36) 8299620926531538 a001 75025/12752043*39603^(1/4) 8299620926648191 a001 28657/439204*24476^(1/42) 8299620926669613 a001 28657/17393796001*167761^(9/10) 8299620926728593 a001 28657/1568397607*167761^(7/10) 8299620926787574 a001 28657/141422324*167761^(1/2) 8299620926846503 a001 28657/12752043*167761^(3/10) 8299620926868241 a001 46368/1149851*15127^(3/40) 8299620926894389 a001 28657/73681302247*439204^(17/18) 8299620926899169 a001 28657/17393796001*439204^(5/6) 8299620926903950 a001 28657/4106118243*439204^(13/18) 8299620926908731 a001 28657/969323029*439204^(11/18) 8299620926911811 a001 28657/1149851*167761^(1/10) 8299620926913511 a001 28657/228826127*439204^(1/2) 8299620926916199 a001 28657/710647*439204^(1/18) 8299620926918295 a001 28657/54018521*439204^(7/18) 8299620926918584 a001 28657/710647*7881196^(1/22) 8299620926918590 a001 28657/710647*33385282^(1/24) 8299620926918710 a001 28657/710647*1860498^(1/20) 8299620926923021 a001 28657/12752043*439204^(5/18) 8299620926928769 a001 28657/3010349*439204^(1/6) 8299620926931885 a001 28657/370248451*1149851^(1/2) 8299620926932624 a001 28657/1860498*20633239^(1/10) 8299620926932626 a001 28657/1860498*17393796001^(1/14) 8299620926932626 a001 28657/1860498*14662949395604^(1/18) 8299620926932626 a001 28657/1860498*505019158607^(1/16) 8299620926932626 a001 28657/1860498*599074578^(1/12) 8299620926934566 a001 28657/599074578*3010349^(1/2) 8299620926934652 a001 28657/4870847*7881196^(1/6) 8299620926934674 a001 28657/4870847*312119004989^(1/10) 8299620926934674 a001 28657/4870847*1568397607^(1/8) 8299620926934680 a001 28657/1860498*710647^(1/8) 8299620926934896 a001 28657/1322157322203*7881196^(21/22) 8299620926934909 a001 28657/312119004989*7881196^(19/22) 8299620926934913 a001 28657/192900153618*7881196^(5/6) 8299620926934921 a001 28657/73681302247*7881196^(17/22) 8299620926934933 a001 28657/17393796001*7881196^(15/22) 8299620926934943 a001 28657/12752043*7881196^(5/22) 8299620926934945 a001 28657/4106118243*7881196^(13/22) 8299620926934957 a001 28657/969323029*7881196^(1/2) 8299620926934969 a001 28657/12752043*20633239^(3/14) 8299620926934969 a001 28657/228826127*7881196^(9/22) 8299620926934973 a001 28657/12752043*2537720636^(1/6) 8299620926934973 a001 28657/12752043*312119004989^(3/22) 8299620926934973 a001 28657/12752043*28143753123^(3/20) 8299620926934973 a001 28657/12752043*228826127^(3/16) 8299620926934974 a001 28657/12752043*33385282^(5/24) 8299620926934984 a001 28657/54018521*7881196^(7/22) 8299620926935006 a001 28657/2139295485799*20633239^(13/14) 8299620926935006 a001 28657/1322157322203*20633239^(9/10) 8299620926935009 a001 28657/192900153618*20633239^(11/14) 8299620926935010 a001 28657/45537549124*20633239^(7/10) 8299620926935011 a001 28657/17393796001*20633239^(9/14) 8299620926935014 a001 28657/1568397607*20633239^(1/2) 8299620926935016 a001 28657/33385282*817138163596^(1/6) 8299620926935017 a001 28657/33385282*87403803^(1/4) 8299620926935017 a001 28657/141422324*20633239^(5/14) 8299620926935021 a001 28657/54018521*20633239^(3/10) 8299620926935023 a001 28657/2537720636*54018521^(1/2) 8299620926935023 a001 28657/87403803*4106118243^(1/4) 8299620926935024 a001 28657/2139295485799*141422324^(5/6) 8299620926935024 a001 28657/4106118243*141422324^(1/2) 8299620926935024 a001 28657/228826127*2537720636^(3/10) 8299620926935024 a001 28657/228826127*14662949395604^(3/14) 8299620926935024 a001 28657/228826127*192900153618^(1/4) 8299620926935024 a001 28657/6643838879*370248451^(1/2) 8299620926935024 a001 28657/599074578*9062201101803^(1/4) 8299620926935024 a001 28657/10749957122*969323029^(1/2) 8299620926935024 a001 28657/1568397607*2537720636^(7/18) 8299620926935024 a001 28657/1568397607*17393796001^(5/14) 8299620926935024 a001 28657/1568397607*312119004989^(7/22) 8299620926935024 a001 28657/1568397607*14662949395604^(5/18) 8299620926935024 a001 28657/1568397607*505019158607^(5/16) 8299620926935024 a001 28657/1568397607*28143753123^(7/20) 8299620926935024 a001 28657/23725150497407*2537720636^(5/6) 8299620926935024 a001 28657/2139295485799*2537720636^(13/18) 8299620926935024 a001 28657/1322157322203*2537720636^(7/10) 8299620926935024 a001 28657/192900153618*2537720636^(11/18) 8299620926935024 a001 28657/17393796001*2537720636^(1/2) 8299620926935024 a001 28657/4106118243*73681302247^(3/8) 8299620926935024 a001 28657/28143753123*6643838879^(1/2) 8299620926935024 a001 28657/1322157322203*17393796001^(9/14) 8299620926935024 a001 28657/45537549124*17393796001^(1/2) 8299620926935024 a001 28657/73681302247*45537549124^(1/2) 8299620926935024 a001 28657/192900153618*312119004989^(1/2) 8299620926935024 a001 28657/192900153618*3461452808002^(11/24) 8299620926935024 a001 28657/23725150497407*312119004989^(15/22) 8299620926935024 a001 28657/2139295485799*312119004989^(13/22) 8299620926935024 a001 28657/505019158607*2139295485799^(1/2) 8299620926935024 a001 28657/1322157322203*14662949395604^(1/2) 8299620926935024 a001 28657/23725150497407*3461452808002^(5/8) 8299620926935024 a001 28657/1322157322203*505019158607^(9/16) 8299620926935024 a001 28657/312119004989*817138163596^(1/2) 8299620926935024 a001 28657/1322157322203*192900153618^(7/12) 8299620926935024 a001 28657/119218851371*119218851371^(1/2) 8299620926935024 a001 28657/2139295485799*73681302247^(5/8) 8299620926935024 a001 28657/45537549124*14662949395604^(7/18) 8299620926935024 a001 28657/45537549124*505019158607^(7/16) 8299620926935024 a001 28657/192900153618*28143753123^(11/20) 8299620926935024 a001 28657/2139295485799*28143753123^(13/20) 8299620926935024 a001 28657/23725150497407*28143753123^(3/4) 8299620926935024 a001 28657/17393796001*312119004989^(9/22) 8299620926935024 a001 28657/17393796001*14662949395604^(5/14) 8299620926935024 a001 28657/17393796001*192900153618^(5/12) 8299620926935024 a001 28657/17393796001*28143753123^(9/20) 8299620926935024 a001 28657/5600748293801*4106118243^(3/4) 8299620926935024 a001 28657/192900153618*1568397607^(5/8) 8299620926935024 a001 28657/1568397607*599074578^(5/12) 8299620926935024 a001 28657/969323029*312119004989^(3/10) 8299620926935024 a001 28657/969323029*1568397607^(3/8) 8299620926935024 a001 28657/45537549124*599074578^(7/12) 8299620926935024 a001 28657/1322157322203*599074578^(3/4) 8299620926935024 a001 28657/370248451*1322157322203^(1/4) 8299620926935024 a001 28657/1568397607*228826127^(7/16) 8299620926935024 a001 28657/17393796001*228826127^(9/16) 8299620926935024 a001 28657/192900153618*228826127^(11/16) 8299620926935024 a001 28657/2139295485799*228826127^(13/16) 8299620926935024 a001 28657/23725150497407*228826127^(15/16) 8299620926935024 a001 28657/141422324*2537720636^(5/18) 8299620926935024 a001 28657/141422324*312119004989^(5/22) 8299620926935024 a001 28657/141422324*3461452808002^(5/24) 8299620926935024 a001 28657/141422324*28143753123^(1/4) 8299620926935024 a001 28657/141422324*228826127^(5/16) 8299620926935025 a001 28657/312119004989*87403803^(3/4) 8299620926935027 a001 28657/228826127*33385282^(3/8) 8299620926935027 a001 28657/54018521*17393796001^(3/14) 8299620926935027 a001 28657/54018521*14662949395604^(1/6) 8299620926935027 a001 28657/54018521*599074578^(1/4) 8299620926935027 a001 28657/969323029*33385282^(11/24) 8299620926935028 a001 28657/4106118243*33385282^(13/24) 8299620926935029 a001 28657/17393796001*33385282^(5/8) 8299620926935029 a001 28657/54018521*33385282^(7/24) 8299620926935029 a001 28657/73681302247*33385282^(17/24) 8299620926935030 a001 28657/312119004989*33385282^(19/24) 8299620926935030 a001 28657/1322157322203*33385282^(7/8) 8299620926935031 a001 28657/5600748293801*33385282^(23/24) 8299620926935043 a001 28657/20633239*45537549124^(1/6) 8299620926935056 a001 28657/20633239*12752043^(1/4) 8299620926935062 a001 28657/73681302247*12752043^(3/4) 8299620926935157 a001 28657/7881196*141422324^(1/6) 8299620926935158 a001 28657/7881196*73681302247^(1/8) 8299620926935572 a001 28657/12752043*1860498^(1/4) 8299620926935866 a001 28657/54018521*1860498^(7/20) 8299620926935922 a001 28657/3010349*7881196^(3/22) 8299620926935940 a001 28657/3010349*2537720636^(1/10) 8299620926935940 a001 28657/3010349*14662949395604^(1/14) 8299620926935940 a001 28657/3010349*192900153618^(1/12) 8299620926935941 a001 28657/3010349*33385282^(1/8) 8299620926936023 a001 28657/141422324*1860498^(5/12) 8299620926936103 a001 28657/228826127*1860498^(9/20) 8299620926936299 a001 28657/3010349*1860498^(3/20) 8299620926936343 a001 28657/969323029*1860498^(11/20) 8299620926936423 a001 28657/1568397607*1860498^(7/12) 8299620926936582 a001 28657/4106118243*1860498^(13/20) 8299620926936822 a001 28657/17393796001*1860498^(3/4) 8299620926937062 a001 28657/73681302247*1860498^(17/20) 8299620926937222 a001 28657/192900153618*1860498^(11/12) 8299620926937302 a001 28657/312119004989*1860498^(19/20) 8299620926941190 a001 28657/54018521*710647^(3/8) 8299620926941300 a001 28657/1149851*20633239^(1/14) 8299620926941301 a001 28657/1149851*2537720636^(1/18) 8299620926941301 a001 28657/1149851*312119004989^(1/22) 8299620926941301 a001 28657/1149851*28143753123^(1/20) 8299620926941301 a001 28657/1149851*228826127^(1/16) 8299620926941501 a001 28657/1149851*1860498^(1/12) 8299620926945295 a001 28657/1568397607*710647^(5/8) 8299620926949404 a001 28657/45537549124*710647^(7/8) 8299620926963318 a001 28657/7881196*271443^(1/4) 8299620926966843 a001 28657/710647*103682^(1/16) 8299620927019506 a001 28657/4106118243*271443^(3/4) 8299620927080701 a001 28657/3010349*103682^(3/16) 8299620927098317 a001 28657/439204*39603^(1/44) 8299620927176242 a001 28657/12752043*103682^(5/16) 8299620927222754 a001 5473/299537289*24476^(5/6) 8299620927272803 a001 28657/54018521*103682^(7/16) 8299620927279393 a001 28657/710647*39603^(3/44) 8299620927369308 a001 28657/228826127*103682^(9/16) 8299620927465816 a001 28657/969323029*103682^(11/16) 8299620927522298 a001 121393/3010349*15127^(3/40) 8299620927542640 a001 28657/1149851*39603^(5/44) 8299620927562323 a001 28657/4106118243*103682^(13/16) 8299620927658831 a001 28657/17393796001*103682^(15/16) 8299620927676700 a001 196418/4870847*15127^(3/40) 8299620927774501 a001 28657/1860498*39603^(7/44) 8299620927780407 a001 17711/1860498*15127^(9/40) 8299620927882472 a001 10946/370248451*24476^(11/14) 8299620927884810 a001 28657/439204*15127^(1/40) 8299620927926528 a001 75025/1860498*15127^(3/40) 8299620928018350 a001 28657/3010349*39603^(9/44) 8299620928110519 a001 6624/224056801*39603^(3/4) 8299620928257620 a001 28657/4870847*39603^(1/4) 8299620928673087 a001 2576/103361*15127^(1/8) 8299620928769938 a001 121393/4106118243*39603^(3/4) 8299620928866146 a001 317811/10749957122*39603^(3/4) 8299620928880182 a001 832040/28143753123*39603^(3/4) 8299620928882230 a001 311187/10525900321*39603^(3/4) 8299620928882529 a001 5702887/192900153618*39603^(3/4) 8299620928882573 a001 14930352/505019158607*39603^(3/4) 8299620928882579 a001 39088169/1322157322203*39603^(3/4) 8299620928882580 a001 6765/228826126*39603^(3/4) 8299620928882580 a001 267914296/9062201101803*39603^(3/4) 8299620928882580 a001 701408733/23725150497407*39603^(3/4) 8299620928882580 a001 433494437/14662949395604*39603^(3/4) 8299620928882580 a001 165580141/5600748293801*39603^(3/4) 8299620928882581 a001 63245986/2139295485799*39603^(3/4) 8299620928882583 a001 24157817/817138163596*39603^(3/4) 8299620928882600 a001 9227465/312119004989*39603^(3/4) 8299620928882714 a001 3524578/119218851371*39603^(3/4) 8299620928883496 a001 1346269/45537549124*39603^(3/4) 8299620928888858 a001 514229/17393796001*39603^(3/4) 8299620928925606 a001 196418/6643838879*39603^(3/4) 8299620929177481 a001 75025/2537720636*39603^(3/4) 8299620929334554 a001 121393/4870847*15127^(1/8) 8299620929431060 a001 105937/4250681*15127^(1/8) 8299620929445140 a001 416020/16692641*15127^(1/8) 8299620929447195 a001 726103/29134601*15127^(1/8) 8299620929447494 a001 5702887/228826127*15127^(1/8) 8299620929447538 a001 829464/33281921*15127^(1/8) 8299620929447544 a001 39088169/1568397607*15127^(1/8) 8299620929447545 a001 34111385/1368706081*15127^(1/8) 8299620929447546 a001 133957148/5374978561*15127^(1/8) 8299620929447546 a001 233802911/9381251041*15127^(1/8) 8299620929447546 a001 1836311903/73681302247*15127^(1/8) 8299620929447546 a001 267084832/10716675201*15127^(1/8) 8299620929447546 a001 12586269025/505019158607*15127^(1/8) 8299620929447546 a001 10983760033/440719107401*15127^(1/8) 8299620929447546 a001 43133785636/1730726404001*15127^(1/8) 8299620929447546 a001 75283811239/3020733700601*15127^(1/8) 8299620929447546 a001 182717648081/7331474697802*15127^(1/8) 8299620929447546 a001 139583862445/5600748293801*15127^(1/8) 8299620929447546 a001 53316291173/2139295485799*15127^(1/8) 8299620929447546 a001 10182505537/408569081798*15127^(1/8) 8299620929447546 a001 7778742049/312119004989*15127^(1/8) 8299620929447546 a001 2971215073/119218851371*15127^(1/8) 8299620929447546 a001 567451585/22768774562*15127^(1/8) 8299620929447546 a001 433494437/17393796001*15127^(1/8) 8299620929447546 a001 165580141/6643838879*15127^(1/8) 8299620929447546 a001 31622993/1268860318*15127^(1/8) 8299620929447548 a001 24157817/969323029*15127^(1/8) 8299620929447565 a001 9227465/370248451*15127^(1/8) 8299620929447680 a001 1762289/70711162*15127^(1/8) 8299620929448464 a001 1346269/54018521*15127^(1/8) 8299620929453842 a001 514229/20633239*15127^(1/8) 8299620929490705 a001 98209/3940598*15127^(1/8) 8299620929597241 a001 17711/3010349*15127^(11/40) 8299620929638872 a001 28657/710647*15127^(3/40) 8299620929743362 a001 75025/3010349*15127^(1/8) 8299620929861623 a001 10946/87403803*24476^(9/14) 8299620930489922 a001 46368/3010349*15127^(7/40) 8299620930903862 a001 28657/969323029*39603^(3/4) 8299620931030836 a001 6624/101521*5778^(1/36) 8299620931158548 a001 10946/271443*9349^(3/38) 8299620931409497 a001 17711/4870847*15127^(13/40) 8299620931475104 a001 28657/1149851*15127^(1/8) 8299620931555618 a001 75025/4870847*15127^(7/40) 8299620931704291 a001 121393/1860498*5778^(1/36) 8299620931802547 a001 317811/4870847*5778^(1/36) 8299620931840797 a001 10946/20633239*24476^(1/2) 8299620931863272 a001 196418/3010349*5778^(1/36) 8299620932120509 a001 75025/1149851*5778^(1/36) 8299620932302177 a001 46368/4870847*15127^(9/40) 8299620933223502 a001 89/39604*15127^(3/8) 8299620933279951 a001 28657/1860498*15127^(7/40) 8299620933819580 a001 10946/4870847*24476^(5/14) 8299620933883638 a001 28657/439204*5778^(1/36) 8299620934480563 a001 10946/3010349*24476^(13/42) 8299620935096785 a001 28657/3010349*15127^(9/40) 8299620935136968 a001 5473/930249*24476^(11/42) 8299620935805360 a001 10946/1149851*24476^(3/14) 8299620936442366 a001 10946/710647*24476^(1/6) 8299620936563839 a001 10946/167761*9349^(1/38) 8299620936857382 k002 Champernowne real with 23*n^2-48*n+33 8299620936909041 a001 28657/4870847*15127^(11/40) 8299620937025463 a001 6765/439204*5778^(7/36) 8299620937161544 a001 5473/219602*24476^(5/42) 8299620937665593 a001 10946/271443*24476^(1/14) 8299620937743110 a001 46368/20633239*15127^(3/8) 8299620937757164 a001 5473/16692641*64079^(1/2) 8299620938402513 a001 121393/54018521*15127^(3/8) 8299620938498718 a001 317811/141422324*15127^(3/8) 8299620938502401 a001 10946/6643838879*167761^(9/10) 8299620938512754 a001 832040/370248451*15127^(3/8) 8299620938514802 a001 2178309/969323029*15127^(3/8) 8299620938515101 a001 5702887/2537720636*15127^(3/8) 8299620938515144 a001 14930352/6643838879*15127^(3/8) 8299620938515151 a001 39088169/17393796001*15127^(3/8) 8299620938515152 a001 102334155/45537549124*15127^(3/8) 8299620938515152 a001 267914296/119218851371*15127^(3/8) 8299620938515152 a001 3524667/1568437211*15127^(3/8) 8299620938515152 a001 1836311903/817138163596*15127^(3/8) 8299620938515152 a001 4807526976/2139295485799*15127^(3/8) 8299620938515152 a001 12586269025/5600748293801*15127^(3/8) 8299620938515152 a001 32951280099/14662949395604*15127^(3/8) 8299620938515152 a001 53316291173/23725150497407*15127^(3/8) 8299620938515152 a001 20365011074/9062201101803*15127^(3/8) 8299620938515152 a001 7778742049/3461452808002*15127^(3/8) 8299620938515152 a001 2971215073/1322157322203*15127^(3/8) 8299620938515152 a001 1134903170/505019158607*15127^(3/8) 8299620938515152 a001 433494437/192900153618*15127^(3/8) 8299620938515152 a001 165580141/73681302247*15127^(3/8) 8299620938515152 a001 63245986/28143753123*15127^(3/8) 8299620938515155 a001 24157817/10749957122*15127^(3/8) 8299620938515171 a001 9227465/4106118243*15127^(3/8) 8299620938515285 a001 3524578/1568397607*15127^(3/8) 8299620938516068 a001 1346269/599074578*15127^(3/8) 8299620938521429 a001 514229/228826127*15127^(3/8) 8299620938558176 a001 196418/87403803*15127^(3/8) 8299620938561381 a001 5473/299537289*167761^(7/10) 8299620938620364 a001 10946/54018521*167761^(1/2) 8299620938652780 a001 10946/271443*439204^(1/18) 8299620938655164 a001 10946/271443*7881196^(1/22) 8299620938655170 a001 10946/271443*33385282^(1/24) 8299620938655290 a001 10946/271443*1860498^(1/20) 8299620938678992 a001 10946/4870847*167761^(3/10) 8299620938703424 a001 10946/271443*103682^(1/16) 8299620938727177 a001 10946/28143753123*439204^(17/18) 8299620938731957 a001 10946/6643838879*439204^(5/6) 8299620938732854 a001 10946/167761*24476^(1/42) 8299620938736738 a001 10946/1568397607*439204^(13/18) 8299620938741519 a001 10946/370248451*439204^(11/18) 8299620938746298 a001 10946/87403803*439204^(1/2) 8299620938751099 a001 10946/20633239*439204^(7/18) 8299620938751376 a001 10946/710647*20633239^(1/10) 8299620938751378 a001 10946/710647*17393796001^(1/14) 8299620938751378 a001 10946/710647*14662949395604^(1/18) 8299620938751378 a001 10946/710647*505019158607^(1/16) 8299620938751378 a001 10946/710647*599074578^(1/12) 8299620938753432 a001 10946/710647*710647^(1/8) 8299620938755511 a001 10946/4870847*439204^(5/18) 8299620938764674 a001 5473/70711162*1149851^(1/2) 8299620938765392 a001 5473/930249*7881196^(1/6) 8299620938765414 a001 5473/930249*312119004989^(1/10) 8299620938765414 a001 5473/930249*1568397607^(1/8) 8299620938766918 a001 10946/1149851*439204^(1/6) 8299620938767354 a001 10946/228826127*3010349^(1/2) 8299620938767432 a001 10946/4870847*7881196^(5/22) 8299620938767458 a001 10946/4870847*20633239^(3/14) 8299620938767462 a001 10946/4870847*2537720636^(1/6) 8299620938767462 a001 10946/4870847*312119004989^(3/22) 8299620938767462 a001 10946/4870847*28143753123^(3/20) 8299620938767462 a001 10946/4870847*228826127^(3/16) 8299620938767464 a001 10946/4870847*33385282^(5/24) 8299620938767685 a001 10946/505019158607*7881196^(21/22) 8299620938767697 a001 10946/119218851371*7881196^(19/22) 8299620938767701 a001 10946/73681302247*7881196^(5/6) 8299620938767709 a001 10946/28143753123*7881196^(17/22) 8299620938767721 a001 10946/6643838879*7881196^(15/22) 8299620938767733 a001 10946/1568397607*7881196^(13/22) 8299620938767745 a001 10946/370248451*7881196^(1/2) 8299620938767756 a001 10946/87403803*7881196^(9/22) 8299620938767761 a001 10946/12752043*817138163596^(1/6) 8299620938767761 a001 10946/12752043*87403803^(1/4) 8299620938767789 a001 10946/20633239*7881196^(7/22) 8299620938767794 a001 5473/408569081798*20633239^(13/14) 8299620938767795 a001 10946/505019158607*20633239^(9/10) 8299620938767797 a001 10946/73681302247*20633239^(11/14) 8299620938767798 a001 10946/17393796001*20633239^(7/10) 8299620938767800 a001 10946/6643838879*20633239^(9/14) 8299620938767802 a001 5473/299537289*20633239^(1/2) 8299620938767805 a001 5473/16692641*4106118243^(1/4) 8299620938767808 a001 10946/54018521*20633239^(5/14) 8299620938767811 a001 10946/969323029*54018521^(1/2) 8299620938767811 a001 10946/87403803*2537720636^(3/10) 8299620938767811 a001 10946/87403803*14662949395604^(3/14) 8299620938767811 a001 10946/87403803*192900153618^(1/4) 8299620938767812 a001 5473/408569081798*141422324^(5/6) 8299620938767812 a001 10946/1568397607*141422324^(1/2) 8299620938767812 a001 10946/228826127*9062201101803^(1/4) 8299620938767812 a001 5473/1268860318*370248451^(1/2) 8299620938767812 a001 5473/299537289*2537720636^(7/18) 8299620938767812 a001 5473/299537289*17393796001^(5/14) 8299620938767812 a001 5473/299537289*312119004989^(7/22) 8299620938767812 a001 5473/299537289*14662949395604^(5/18) 8299620938767812 a001 5473/299537289*505019158607^(5/16) 8299620938767812 a001 5473/299537289*28143753123^(7/20) 8299620938767812 a001 5473/299537289*599074578^(5/12) 8299620938767812 a001 10946/4106118243*969323029^(1/2) 8299620938767812 a001 10946/1568397607*73681302247^(3/8) 8299620938767812 a001 10946/9062201101803*2537720636^(5/6) 8299620938767812 a001 5473/408569081798*2537720636^(13/18) 8299620938767812 a001 10946/505019158607*2537720636^(7/10) 8299620938767812 a001 10946/73681302247*2537720636^(11/18) 8299620938767812 a001 10946/6643838879*2537720636^(1/2) 8299620938767812 a001 5473/5374978561*6643838879^(1/2) 8299620938767812 a001 5473/7331474697802*17393796001^(11/14) 8299620938767812 a001 10946/505019158607*17393796001^(9/14) 8299620938767812 a001 10946/28143753123*45537549124^(1/2) 8299620938767812 a001 10946/73681302247*312119004989^(1/2) 8299620938767812 a001 10946/73681302247*3461452808002^(11/24) 8299620938767812 a001 5473/96450076809*2139295485799^(1/2) 8299620938767812 a001 10946/9062201101803*312119004989^(15/22) 8299620938767812 a001 5473/408569081798*312119004989^(13/22) 8299620938767812 a001 10946/505019158607*14662949395604^(1/2) 8299620938767812 a001 10946/505019158607*505019158607^(9/16) 8299620938767812 a001 5473/7331474697802*14662949395604^(11/18) 8299620938767812 a001 5473/408569081798*3461452808002^(13/24) 8299620938767812 a001 10946/312119004989*5600748293801^(1/2) 8299620938767812 a001 10946/505019158607*192900153618^(7/12) 8299620938767812 a001 10946/119218851371*817138163596^(1/2) 8299620938767812 a001 5473/408569081798*73681302247^(5/8) 8299620938767812 a001 5473/22768774562*119218851371^(1/2) 8299620938767812 a001 10946/73681302247*28143753123^(11/20) 8299620938767812 a001 5473/408569081798*28143753123^(13/20) 8299620938767812 a001 10946/9062201101803*28143753123^(3/4) 8299620938767812 a001 10946/17393796001*17393796001^(1/2) 8299620938767812 a001 10946/17393796001*14662949395604^(7/18) 8299620938767812 a001 10946/17393796001*505019158607^(7/16) 8299620938767812 a001 10946/6643838879*312119004989^(9/22) 8299620938767812 a001 10946/6643838879*14662949395604^(5/14) 8299620938767812 a001 10946/6643838879*192900153618^(5/12) 8299620938767812 a001 10946/6643838879*28143753123^(9/20) 8299620938767812 a001 10946/2139295485799*4106118243^(3/4) 8299620938767812 a001 10946/73681302247*1568397607^(5/8) 8299620938767812 a001 5473/7331474697802*1568397607^(7/8) 8299620938767812 a001 10946/17393796001*599074578^(7/12) 8299620938767812 a001 10946/505019158607*599074578^(3/4) 8299620938767812 a001 5473/7331474697802*599074578^(11/12) 8299620938767812 a001 5473/299537289*228826127^(7/16) 8299620938767812 a001 10946/370248451*312119004989^(3/10) 8299620938767812 a001 10946/370248451*1568397607^(3/8) 8299620938767812 a001 10946/6643838879*228826127^(9/16) 8299620938767812 a001 10946/73681302247*228826127^(11/16) 8299620938767812 a001 5473/408569081798*228826127^(13/16) 8299620938767812 a001 10946/9062201101803*228826127^(15/16) 8299620938767812 a001 5473/70711162*1322157322203^(1/4) 8299620938767813 a001 10946/119218851371*87403803^(3/4) 8299620938767814 a001 10946/87403803*33385282^(3/8) 8299620938767815 a001 10946/54018521*2537720636^(5/18) 8299620938767815 a001 10946/54018521*312119004989^(5/22) 8299620938767815 a001 10946/54018521*3461452808002^(5/24) 8299620938767815 a001 10946/54018521*28143753123^(1/4) 8299620938767815 a001 10946/54018521*228826127^(5/16) 8299620938767816 a001 10946/370248451*33385282^(11/24) 8299620938767816 a001 10946/1568397607*33385282^(13/24) 8299620938767817 a001 10946/6643838879*33385282^(5/8) 8299620938767817 a001 10946/28143753123*33385282^(17/24) 8299620938767818 a001 10946/119218851371*33385282^(19/24) 8299620938767819 a001 10946/505019158607*33385282^(7/8) 8299620938767819 a001 10946/2139295485799*33385282^(23/24) 8299620938767826 a001 10946/20633239*20633239^(3/10) 8299620938767832 a001 10946/20633239*17393796001^(3/14) 8299620938767832 a001 10946/20633239*14662949395604^(1/6) 8299620938767832 a001 10946/20633239*599074578^(1/4) 8299620938767834 a001 10946/20633239*33385282^(7/24) 8299620938767850 a001 10946/28143753123*12752043^(3/4) 8299620938767946 a001 5473/3940598*45537549124^(1/6) 8299620938767958 a001 5473/3940598*12752043^(1/4) 8299620938768062 a001 10946/4870847*1860498^(1/4) 8299620938768671 a001 10946/20633239*1860498^(7/20) 8299620938768728 a001 10946/3010349*141422324^(1/6) 8299620938768728 a001 10946/3010349*73681302247^(1/8) 8299620938768814 a001 10946/54018521*1860498^(5/12) 8299620938768890 a001 10946/87403803*1860498^(9/20) 8299620938769131 a001 10946/370248451*1860498^(11/20) 8299620938769211 a001 5473/299537289*1860498^(7/12) 8299620938769371 a001 10946/1568397607*1860498^(13/20) 8299620938769610 a001 10946/6643838879*1860498^(3/4) 8299620938769850 a001 10946/28143753123*1860498^(17/20) 8299620938770010 a001 10946/73681302247*1860498^(11/12) 8299620938770090 a001 10946/119218851371*1860498^(19/20) 8299620938773994 a001 10946/20633239*710647^(3/8) 8299620938774071 a001 10946/1149851*7881196^(3/22) 8299620938774089 a001 10946/1149851*2537720636^(1/10) 8299620938774089 a001 10946/1149851*14662949395604^(1/14) 8299620938774089 a001 10946/1149851*192900153618^(1/12) 8299620938774090 a001 10946/1149851*33385282^(1/8) 8299620938774449 a001 10946/1149851*1860498^(3/20) 8299620938778083 a001 5473/299537289*710647^(5/8) 8299620938781347 a001 5473/219602*167761^(1/10) 8299620938782192 a001 10946/17393796001*710647^(7/8) 8299620938796888 a001 10946/3010349*271443^(1/4) 8299620938810045 a001 75025/33385282*15127^(3/8) 8299620938810836 a001 5473/219602*20633239^(1/14) 8299620938810838 a001 5473/219602*2537720636^(1/18) 8299620938810838 a001 5473/219602*312119004989^(1/22) 8299620938810838 a001 5473/219602*28143753123^(1/20) 8299620938810838 a001 5473/219602*228826127^(1/16) 8299620938811037 a001 5473/219602*1860498^(1/12) 8299620938852294 a001 10946/1568397607*271443^(3/4) 8299620938918851 a001 10946/1149851*103682^(3/16) 8299620939008731 a001 10946/4870847*103682^(5/16) 8299620939015973 a001 10946/271443*39603^(3/44) 8299620939105608 a001 10946/20633239*103682^(7/16) 8299620939182981 a001 10946/167761*39603^(1/44) 8299620939202095 a001 10946/87403803*103682^(9/16) 8299620939298604 a001 10946/370248451*103682^(11/16) 8299620939395111 a001 10946/1568397607*103682^(13/16) 8299620939412177 a001 5473/219602*39603^(5/44) 8299620939491619 a001 10946/6643838879*103682^(15/16) 8299620939593252 a001 10946/710647*39603^(7/44) 8299620939856500 a001 10946/1149851*39603^(9/44) 8299620939969474 a001 10946/167761*15127^(1/40) 8299620940088360 a001 5473/930249*39603^(1/4) 8299620940332209 a001 10946/3010349*39603^(13/44) 8299620940381750 a001 17711/439204*5778^(1/12) 8299620940536382 a001 28657/12752043*15127^(3/8) 8299620940571479 a001 10946/4870847*39603^(15/44) 8299620941119311 a001 6765/103682*2207^(1/32) 8299620941375452 a001 10946/271443*15127^(3/40) 8299620941780758 a001 1292/51841*2207^(5/32) 8299620942290973 a001 17711/87403803*15127^(5/8) 8299620942736650 a001 10946/370248451*39603^(3/4) 8299620943344641 a001 5473/219602*15127^(1/8) 8299620944864725 a001 46368/1149851*5778^(1/12) 8299620945098702 a001 10946/710647*15127^(7/40) 8299620945518782 a001 121393/3010349*5778^(1/12) 8299620945614208 a001 317811/7881196*5778^(1/12) 8299620945628130 a001 75640/1875749*5778^(1/12) 8299620945630161 a001 2178309/54018521*5778^(1/12) 8299620945630458 a001 5702887/141422324*5778^(1/12) 8299620945630501 a001 14930352/370248451*5778^(1/12) 8299620945630507 a001 39088169/969323029*5778^(1/12) 8299620945630508 a001 9303105/230701876*5778^(1/12) 8299620945630508 a001 267914296/6643838879*5778^(1/12) 8299620945630508 a001 701408733/17393796001*5778^(1/12) 8299620945630508 a001 1836311903/45537549124*5778^(1/12) 8299620945630508 a001 4807526976/119218851371*5778^(1/12) 8299620945630508 a001 1144206275/28374454999*5778^(1/12) 8299620945630508 a001 32951280099/817138163596*5778^(1/12) 8299620945630508 a001 86267571272/2139295485799*5778^(1/12) 8299620945630508 a001 225851433717/5600748293801*5778^(1/12) 8299620945630508 a001 591286729879/14662949395604*5778^(1/12) 8299620945630508 a001 365435296162/9062201101803*5778^(1/12) 8299620945630508 a001 139583862445/3461452808002*5778^(1/12) 8299620945630508 a001 53316291173/1322157322203*5778^(1/12) 8299620945630508 a001 20365011074/505019158607*5778^(1/12) 8299620945630508 a001 7778742049/192900153618*5778^(1/12) 8299620945630508 a001 2971215073/73681302247*5778^(1/12) 8299620945630508 a001 1134903170/28143753123*5778^(1/12) 8299620945630508 a001 433494437/10749957122*5778^(1/12) 8299620945630508 a001 165580141/4106118243*5778^(1/12) 8299620945630509 a001 63245986/1568397607*5778^(1/12) 8299620945630511 a001 24157817/599074578*5778^(1/12) 8299620945630528 a001 9227465/228826127*5778^(1/12) 8299620945630641 a001 3524578/87403803*5778^(1/12) 8299620945631417 a001 1346269/33385282*5778^(1/12) 8299620945636734 a001 514229/12752043*5778^(1/12) 8299620945673184 a001 196418/4870847*5778^(1/12) 8299620945883544 a007 Real Root Of 389*x^4-741*x^3-895*x^2+631*x+532 8299620945923011 a001 75025/1860498*5778^(1/12) 8299620945968302 a001 10946/167761*5778^(1/36) 8299620946810697 a001 46368/228826127*15127^(5/8) 8299620946934935 a001 10946/1149851*15127^(9/40) 8299620947470116 a001 121393/599074578*15127^(5/8) 8299620947566324 a001 317811/1568397607*15127^(5/8) 8299620947580360 a001 832040/4106118243*15127^(5/8) 8299620947582408 a001 987/4870846*15127^(5/8) 8299620947582707 a001 5702887/28143753123*15127^(5/8) 8299620947582751 a001 14930352/73681302247*15127^(5/8) 8299620947582757 a001 39088169/192900153618*15127^(5/8) 8299620947582758 a001 102334155/505019158607*15127^(5/8) 8299620947582758 a001 267914296/1322157322203*15127^(5/8) 8299620947582758 a001 701408733/3461452808002*15127^(5/8) 8299620947582758 a001 1836311903/9062201101803*15127^(5/8) 8299620947582758 a001 4807526976/23725150497407*15127^(5/8) 8299620947582758 a001 2971215073/14662949395604*15127^(5/8) 8299620947582758 a001 1134903170/5600748293801*15127^(5/8) 8299620947582758 a001 433494437/2139295485799*15127^(5/8) 8299620947582758 a001 165580141/817138163596*15127^(5/8) 8299620947582759 a001 63245986/312119004989*15127^(5/8) 8299620947582761 a001 24157817/119218851371*15127^(5/8) 8299620947582778 a001 9227465/45537549124*15127^(5/8) 8299620947582892 a001 3524578/17393796001*15127^(5/8) 8299620947583674 a001 1346269/6643838879*15127^(5/8) 8299620947589035 a001 514229/2537720636*15127^(5/8) 8299620947625784 a001 196418/969323029*15127^(5/8) 8299620947635355 a001 28657/710647*5778^(1/12) 8299620947877659 a001 75025/370248451*15127^(5/8) 8299620948739781 a001 5473/930249*15127^(11/40) 8299620949604040 a001 28657/141422324*15127^(5/8) 8299620950556616 a001 10946/3010349*15127^(13/40) 8299620950777180 a001 6765/710647*5778^(1/4) 8299620951358581 a001 17711/969323029*15127^(7/8) 8299620952096535 h001 (6/11*exp(1)+9/11)/(3/10*exp(2)+5/9) 8299620952368872 a001 10946/4870847*15127^(3/8) 8299620952441904 h001 (6/7*exp(1)+4/11)/(5/12*exp(2)+1/6) 8299620954133467 a001 17711/710647*5778^(5/36) 8299620955878304 a001 11592/634430159*15127^(7/8) 8299620956537722 a001 121393/6643838879*15127^(7/8) 8299620956633930 a001 10959/599786069*15127^(7/8) 8299620956647967 a001 208010/11384387281*15127^(7/8) 8299620956650015 a001 2178309/119218851371*15127^(7/8) 8299620956650313 a001 5702887/312119004989*15127^(7/8) 8299620956650357 a001 3732588/204284540899*15127^(7/8) 8299620956650363 a001 39088169/2139295485799*15127^(7/8) 8299620956650364 a001 102334155/5600748293801*15127^(7/8) 8299620956650364 a001 10946/599074579*15127^(7/8) 8299620956650364 a001 433494437/23725150497407*15127^(7/8) 8299620956650365 a001 165580141/9062201101803*15127^(7/8) 8299620956650365 a001 31622993/1730726404001*15127^(7/8) 8299620956650367 a001 24157817/1322157322203*15127^(7/8) 8299620956650384 a001 9227465/505019158607*15127^(7/8) 8299620956650498 a001 1762289/96450076809*15127^(7/8) 8299620956651280 a001 1346269/73681302247*15127^(7/8) 8299620956656642 a001 514229/28143753123*15127^(7/8) 8299620956693390 a001 98209/5374978561*15127^(7/8) 8299620956945265 a001 75025/4106118243*15127^(7/8) 8299620958667227 a001 2576/103361*5778^(5/36) 8299620958671646 a001 28657/1568397607*15127^(7/8) 8299620959328693 a001 121393/4870847*5778^(5/36) 8299620959371936 a001 10946/271443*5778^(1/12) 8299620959737502 a001 75025/3010349*5778^(5/36) 8299620961436831 a001 10946/54018521*15127^(5/8) 8299620961469244 a001 28657/1149851*5778^(5/36) 8299620961671264 a001 4181/103682*3571^(3/34) 8299620964611069 a001 6765/1149851*5778^(11/36) 8299620967455273 a007 Real Root Of 670*x^4+521*x^3+820*x^2+30*x-560 8299620967967356 a001 17711/1149851*5778^(7/36) 8299620970504434 a001 5473/299537289*15127^(7/8) 8299620971135217 k002 Champernowne real with 15*n^2+246*n-253 8299620972391995 a001 4181/4870847*9349^(1/2) 8299620972481718 a001 46368/3010349*5778^(7/36) 8299620972757371 a001 17711/271443*2207^(1/32) 8299620973338781 a001 5473/219602*5778^(5/36) 8299620973547414 a001 75025/4870847*5778^(7/36) 8299620975271746 a001 28657/1860498*5778^(7/36) 8299620977373302 a001 6624/101521*2207^(1/32) 8299620977391008 a001 4181/3010349*9349^(17/38) 8299620978046757 a001 121393/1860498*2207^(1/32) 8299620978145013 a001 317811/4870847*2207^(1/32) 8299620978205739 a001 196418/3010349*2207^(1/32) 8299620978413571 a001 55/15126*5778^(13/36) 8299620978462976 a001 75025/1149851*2207^(1/32) 8299620980226104 a001 28657/439204*2207^(1/32) 8299620981769858 a001 17711/1860498*5778^(1/4) 8299620982385442 a001 4181/1860498*9349^(15/38) 8299620986291629 a001 46368/4870847*5778^(1/4) 8299620986951347 a001 121393/12752043*5778^(1/4) 8299620987047598 a001 317811/33385282*5778^(1/4) 8299620987061641 a001 832040/87403803*5778^(1/4) 8299620987063690 a001 46347/4868641*5778^(1/4) 8299620987063989 a001 5702887/599074578*5778^(1/4) 8299620987064032 a001 14930352/1568397607*5778^(1/4) 8299620987064039 a001 39088169/4106118243*5778^(1/4) 8299620987064040 a001 102334155/10749957122*5778^(1/4) 8299620987064040 a001 267914296/28143753123*5778^(1/4) 8299620987064040 a001 701408733/73681302247*5778^(1/4) 8299620987064040 a001 1836311903/192900153618*5778^(1/4) 8299620987064040 a001 102287808/10745088481*5778^(1/4) 8299620987064040 a001 12586269025/1322157322203*5778^(1/4) 8299620987064040 a001 32951280099/3461452808002*5778^(1/4) 8299620987064040 a001 86267571272/9062201101803*5778^(1/4) 8299620987064040 a001 225851433717/23725150497407*5778^(1/4) 8299620987064040 a001 139583862445/14662949395604*5778^(1/4) 8299620987064040 a001 53316291173/5600748293801*5778^(1/4) 8299620987064040 a001 20365011074/2139295485799*5778^(1/4) 8299620987064040 a001 7778742049/817138163596*5778^(1/4) 8299620987064040 a001 2971215073/312119004989*5778^(1/4) 8299620987064040 a001 1134903170/119218851371*5778^(1/4) 8299620987064040 a001 433494437/45537549124*5778^(1/4) 8299620987064040 a001 165580141/17393796001*5778^(1/4) 8299620987064040 a001 63245986/6643838879*5778^(1/4) 8299620987064043 a001 24157817/2537720636*5778^(1/4) 8299620987064059 a001 9227465/969323029*5778^(1/4) 8299620987064174 a001 3524578/370248451*5778^(1/4) 8299620987064956 a001 1346269/141422324*5778^(1/4) 8299620987070320 a001 514229/54018521*5778^(1/4) 8299620987090498 a001 10946/710647*5778^(7/36) 8299620987107085 a001 196418/20633239*5778^(1/4) 8299620987359075 a001 75025/7881196*5778^(1/4) 8299620987391865 a001 4181/1149851*9349^(13/38) 8299620989086237 a001 28657/3010349*5778^(1/4) 8299620992228062 a001 6765/3010349*5778^(5/12) 8299620992310768 a001 10946/167761*2207^(1/32) 8299620992366901 a001 4181/710647*9349^(11/38) 8299620995584349 a001 17711/3010349*5778^(11/36) 8299620997424109 a001 4181/439204*9349^(9/38) 8299621000924387 a001 10946/1149851*5778^(1/4) 8299621002266189 a001 4181/271443*9349^(7/38) 8299621002749689 a001 4181/64079*3571^(1/34) 8299621002896149 a001 28657/4870847*5778^(11/36) 8299621006037974 a001 6765/4870847*5778^(17/36) 8299621006447761 m001 (FeigenbaumKappa+Trott)/(Zeta(5)-FeigenbaumD) 8299621007006455 a001 4181/599074578*24476^(13/14) 8299621007671480 a001 4181/167761*9349^(5/38) 8299621008325890 a001 4181/228826127*24476^(5/6) 8299621008985608 a001 4181/141422324*24476^(11/14) 8299621009394261 a001 17711/4870847*5778^(13/36) 8299621010964753 a001 4181/33385282*24476^(9/14) 8299621011602266 a001 4181/103682*9349^(3/38) 8299621012944047 a001 4181/7881196*24476^(1/2) 8299621013603281 a001 4181/4870847*24476^(19/42) 8299621014264265 a001 4181/3010349*24476^(17/42) 8299621014726889 a001 5473/930249*5778^(11/36) 8299621014920669 a001 4181/1860498*24476^(5/14) 8299621015589061 a001 4181/1149851*24476^(13/42) 8299621016226067 a001 4181/710647*24476^(11/42) 8299621016945245 a001 4181/439204*24476^(3/14) 8299621017449295 a001 4181/271443*24476^(1/6) 8299621018109311 a001 4181/103682*24476^(1/14) 8299621018516555 a001 4181/167761*24476^(5/42) 8299621018860257 a001 4181/12752043*64079^(1/2) 8299621019096497 a001 4181/103682*439204^(1/18) 8299621019098881 a001 4181/103682*7881196^(1/22) 8299621019098888 a001 4181/103682*33385282^(1/24) 8299621019099007 a001 4181/103682*1860498^(1/20) 8299621019147141 a001 4181/103682*103682^(1/16) 8299621019393356 a001 4181/64079*9349^(1/38) 8299621019429807 m001 2^(1/3)*PrimesInBinary+HardyLittlewoodC4 8299621019459691 a001 4181/103682*39603^(3/44) 8299621019605537 a001 4181/2537720636*167761^(9/10) 8299621019664518 a001 4181/228826127*167761^(7/10) 8299621019723517 a001 4181/20633239*167761^(1/2) 8299621019758304 a001 4181/271443*20633239^(1/10) 8299621019758306 a001 4181/271443*17393796001^(1/14) 8299621019758306 a001 4181/271443*14662949395604^(1/18) 8299621019758306 a001 4181/271443*505019158607^(1/16) 8299621019758306 a001 4181/271443*599074578^(1/12) 8299621019760361 a001 4181/271443*710647^(1/8) 8299621019780080 a001 4181/1860498*167761^(3/10) 8299621019830313 a001 4181/10749957122*439204^(17/18) 8299621019835094 a001 4181/2537720636*439204^(5/6) 8299621019839874 a001 4181/599074578*439204^(13/18) 8299621019844655 a001 4181/141422324*439204^(11/18) 8299621019849428 a001 4181/33385282*439204^(1/2) 8299621019854350 a001 4181/7881196*439204^(7/18) 8299621019854492 a001 4181/710647*7881196^(1/6) 8299621019854514 a001 4181/710647*312119004989^(1/10) 8299621019854514 a001 4181/710647*1568397607^(1/8) 8299621019856599 a001 4181/1860498*439204^(5/18) 8299621019867813 a001 4181/54018521*1149851^(1/2) 8299621019868520 a001 4181/1860498*7881196^(5/22) 8299621019868546 a001 4181/1860498*20633239^(3/14) 8299621019868551 a001 4181/1860498*2537720636^(1/6) 8299621019868551 a001 4181/1860498*312119004989^(3/22) 8299621019868551 a001 4181/1860498*28143753123^(3/20) 8299621019868551 a001 4181/1860498*228826127^(3/16) 8299621019868552 a001 4181/1860498*33385282^(5/24) 8299621019869150 a001 4181/1860498*1860498^(1/4) 8299621019870489 a001 4181/87403803*3010349^(1/2) 8299621019870599 a001 4181/4870847*817138163596^(1/6) 8299621019870599 a001 4181/4870847*87403803^(1/4) 8299621019870821 a001 4181/192900153618*7881196^(21/22) 8299621019870833 a001 4181/45537549124*7881196^(19/22) 8299621019870837 a001 4181/28143753123*7881196^(5/6) 8299621019870845 a001 4181/10749957122*7881196^(17/22) 8299621019870857 a001 4181/2537720636*7881196^(15/22) 8299621019870869 a001 4181/599074578*7881196^(13/22) 8299621019870882 a001 4181/141422324*7881196^(1/2) 8299621019870886 a001 4181/33385282*7881196^(9/22) 8299621019870897 a001 4181/12752043*4106118243^(1/4) 8299621019870930 a001 4181/312119004989*20633239^(13/14) 8299621019870931 a001 4181/192900153618*20633239^(9/10) 8299621019870933 a001 4181/28143753123*20633239^(11/14) 8299621019870935 a001 4181/6643838879*20633239^(7/10) 8299621019870936 a001 4181/2537720636*20633239^(9/14) 8299621019870938 a001 4181/228826127*20633239^(1/2) 8299621019870941 a001 4181/33385282*2537720636^(3/10) 8299621019870941 a001 4181/33385282*14662949395604^(3/14) 8299621019870941 a001 4181/33385282*192900153618^(1/4) 8299621019870944 a001 4181/33385282*33385282^(3/8) 8299621019870947 a001 4181/370248451*54018521^(1/2) 8299621019870947 a001 4181/87403803*9062201101803^(1/4) 8299621019870948 a001 4181/312119004989*141422324^(5/6) 8299621019870948 a001 4181/599074578*141422324^(1/2) 8299621019870948 a001 4181/228826127*2537720636^(7/18) 8299621019870948 a001 4181/228826127*17393796001^(5/14) 8299621019870948 a001 4181/228826127*312119004989^(7/22) 8299621019870948 a001 4181/228826127*14662949395604^(5/18) 8299621019870948 a001 4181/228826127*505019158607^(5/16) 8299621019870948 a001 4181/228826127*28143753123^(7/20) 8299621019870948 a001 4181/228826127*599074578^(5/12) 8299621019870948 a001 4181/228826127*228826127^(7/16) 8299621019870948 a001 4181/599074578*73681302247^(3/8) 8299621019870948 a001 4181/969323029*370248451^(1/2) 8299621019870948 a001 4181/1568397607*969323029^(1/2) 8299621019870948 a001 4181/14662949395604*2537720636^(9/10) 8299621019870948 a001 4181/3461452808002*2537720636^(5/6) 8299621019870948 a001 4181/312119004989*2537720636^(13/18) 8299621019870948 a001 4181/192900153618*2537720636^(7/10) 8299621019870948 a001 4181/28143753123*2537720636^(11/18) 8299621019870948 a001 4181/4106118243*6643838879^(1/2) 8299621019870948 a001 4181/10749957122*45537549124^(1/2) 8299621019870948 a001 4181/5600748293801*17393796001^(11/14) 8299621019870948 a001 4181/192900153618*17393796001^(9/14) 8299621019870948 a001 4181/28143753123*312119004989^(1/2) 8299621019870948 a001 4181/28143753123*3461452808002^(11/24) 8299621019870948 a001 4181/28143753123*28143753123^(11/20) 8299621019870948 a001 4181/73681302247*2139295485799^(1/2) 8299621019870948 a001 4181/192900153618*14662949395604^(1/2) 8299621019870948 a001 4181/192900153618*505019158607^(9/16) 8299621019870948 a001 4181/192900153618*192900153618^(7/12) 8299621019870948 a001 4181/3461452808002*312119004989^(15/22) 8299621019870948 a001 4181/3461452808002*3461452808002^(5/8) 8299621019870948 a001 4181/14662949395604*14662949395604^(9/14) 8299621019870948 a001 4181/5600748293801*14662949395604^(11/18) 8299621019870948 a001 4181/312119004989*312119004989^(13/22) 8299621019870948 a001 4181/312119004989*3461452808002^(13/24) 8299621019870948 a001 4181/14662949395604*192900153618^(3/4) 8299621019870948 a001 4181/119218851371*5600748293801^(1/2) 8299621019870948 a001 4181/312119004989*73681302247^(5/8) 8299621019870948 a001 4181/45537549124*817138163596^(1/2) 8299621019870948 a001 4181/312119004989*28143753123^(13/20) 8299621019870948 a001 4181/3461452808002*28143753123^(3/4) 8299621019870948 a001 4181/17393796001*119218851371^(1/2) 8299621019870948 a001 4181/6643838879*17393796001^(1/2) 8299621019870948 a001 4181/6643838879*14662949395604^(7/18) 8299621019870948 a001 4181/6643838879*505019158607^(7/16) 8299621019870948 a001 4181/817138163596*4106118243^(3/4) 8299621019870948 a001 4181/2537720636*2537720636^(1/2) 8299621019870948 a001 4181/2537720636*312119004989^(9/22) 8299621019870948 a001 4181/2537720636*14662949395604^(5/14) 8299621019870948 a001 4181/2537720636*192900153618^(5/12) 8299621019870948 a001 4181/2537720636*28143753123^(9/20) 8299621019870948 a001 4181/28143753123*1568397607^(5/8) 8299621019870948 a001 4181/5600748293801*1568397607^(7/8) 8299621019870948 a001 4181/6643838879*599074578^(7/12) 8299621019870948 a001 4181/192900153618*599074578^(3/4) 8299621019870948 a001 4181/5600748293801*599074578^(11/12) 8299621019870948 a001 4181/2537720636*228826127^(9/16) 8299621019870948 a001 4181/28143753123*228826127^(11/16) 8299621019870949 a001 4181/312119004989*228826127^(13/16) 8299621019870949 a001 4181/3461452808002*228826127^(15/16) 8299621019870949 a001 4181/141422324*312119004989^(3/10) 8299621019870949 a001 4181/141422324*1568397607^(3/8) 8299621019870949 a001 4181/45537549124*87403803^(3/4) 8299621019870951 a001 4181/54018521*1322157322203^(1/4) 8299621019870952 a001 4181/141422324*33385282^(11/24) 8299621019870952 a001 4181/599074578*33385282^(13/24) 8299621019870953 a001 4181/2537720636*33385282^(5/8) 8299621019870954 a001 4181/10749957122*33385282^(17/24) 8299621019870954 a001 4181/45537549124*33385282^(19/24) 8299621019870955 a001 4181/192900153618*33385282^(7/8) 8299621019870956 a001 4181/817138163596*33385282^(23/24) 8299621019870961 a001 4181/20633239*20633239^(5/14) 8299621019870968 a001 4181/20633239*2537720636^(5/18) 8299621019870968 a001 4181/20633239*312119004989^(5/22) 8299621019870968 a001 4181/20633239*3461452808002^(5/24) 8299621019870968 a001 4181/20633239*28143753123^(1/4) 8299621019870968 a001 4181/20633239*228826127^(5/16) 8299621019870987 a001 4181/10749957122*12752043^(3/4) 8299621019871039 a001 4181/7881196*7881196^(7/22) 8299621019871076 a001 4181/7881196*20633239^(3/10) 8299621019871082 a001 4181/7881196*17393796001^(3/14) 8299621019871082 a001 4181/7881196*14662949395604^(1/6) 8299621019871082 a001 4181/7881196*599074578^(1/4) 8299621019871084 a001 4181/7881196*33385282^(7/24) 8299621019871864 a001 4181/3010349*45537549124^(1/6) 8299621019871877 a001 4181/3010349*12752043^(1/4) 8299621019871921 a001 4181/7881196*1860498^(7/20) 8299621019871967 a001 4181/20633239*1860498^(5/12) 8299621019872020 a001 4181/33385282*1860498^(9/20) 8299621019872268 a001 4181/141422324*1860498^(11/20) 8299621019872347 a001 4181/228826127*1860498^(7/12) 8299621019872507 a001 4181/599074578*1860498^(13/20) 8299621019872747 a001 4181/2537720636*1860498^(3/4) 8299621019872986 a001 4181/10749957122*1860498^(17/20) 8299621019873146 a001 4181/28143753123*1860498^(11/12) 8299621019873226 a001 4181/45537549124*1860498^(19/20) 8299621019877226 a001 4181/1149851*141422324^(1/6) 8299621019877226 a001 4181/1149851*73681302247^(1/8) 8299621019877245 a001 4181/7881196*710647^(3/8) 8299621019881220 a001 4181/228826127*710647^(5/8) 8299621019885328 a001 4181/6643838879*710647^(7/8) 8299621019905386 a001 4181/1149851*271443^(1/4) 8299621019906803 a001 4181/439204*439204^(1/6) 8299621019913956 a001 4181/439204*7881196^(3/22) 8299621019913974 a001 4181/439204*2537720636^(1/10) 8299621019913974 a001 4181/439204*14662949395604^(1/14) 8299621019913974 a001 4181/439204*192900153618^(1/12) 8299621019913975 a001 4181/439204*33385282^(1/8) 8299621019914334 a001 4181/439204*1860498^(3/20) 8299621019955430 a001 4181/599074578*271443^(3/4) 8299621020058735 a001 4181/439204*103682^(3/16) 8299621020109820 a001 4181/1860498*103682^(5/16) 8299621020136359 a001 4181/167761*167761^(1/10) 8299621020165848 a001 4181/167761*20633239^(1/14) 8299621020165849 a001 4181/167761*2537720636^(1/18) 8299621020165849 a001 4181/167761*312119004989^(1/22) 8299621020165849 a001 4181/167761*28143753123^(1/20) 8299621020165849 a001 4181/167761*228826127^(1/16) 8299621020166049 a001 4181/167761*1860498^(1/12) 8299621020208859 a001 4181/7881196*103682^(7/16) 8299621020305225 a001 4181/33385282*103682^(9/16) 8299621020401741 a001 4181/141422324*103682^(11/16) 8299621020498248 a001 4181/599074578*103682^(13/16) 8299621020594755 a001 4181/2537720636*103682^(15/16) 8299621020600181 a001 4181/271443*39603^(7/44) 8299621020767188 a001 4181/167761*39603^(5/44) 8299621020996384 a001 4181/439204*39603^(9/44) 8299621021177460 a001 4181/710647*39603^(1/4) 8299621021440707 a001 4181/1149851*39603^(13/44) 8299621021562371 a001 4181/64079*24476^(1/42) 8299621021672568 a001 4181/1860498*39603^(15/44) 8299621021819169 a001 4181/103682*15127^(3/40) 8299621021916417 a001 4181/3010349*39603^(17/44) 8299621022012498 a001 4181/64079*39603^(1/44) 8299621022155687 a001 4181/4870847*39603^(19/44) 8299621022798991 a001 4181/64079*15127^(1/40) 8299621023205922 a001 89/39604*5778^(5/12) 8299621023839787 a001 4181/141422324*39603^(3/4) 8299621024699653 a001 4181/167761*15127^(1/8) 8299621024919896 r002 2th iterates of z^2 + 8299621026105631 a001 4181/271443*15127^(7/40) 8299621027725530 a001 46368/20633239*5778^(5/12) 8299621028074820 a001 4181/439204*15127^(9/40) 8299621028384932 a001 121393/54018521*5778^(5/12) 8299621028481138 a001 317811/141422324*5778^(5/12) 8299621028495174 a001 832040/370248451*5778^(5/12) 8299621028497222 a001 2178309/969323029*5778^(5/12) 8299621028497521 a001 5702887/2537720636*5778^(5/12) 8299621028497564 a001 14930352/6643838879*5778^(5/12) 8299621028497571 a001 39088169/17393796001*5778^(5/12) 8299621028497572 a001 102334155/45537549124*5778^(5/12) 8299621028497572 a001 267914296/119218851371*5778^(5/12) 8299621028497572 a001 3524667/1568437211*5778^(5/12) 8299621028497572 a001 1836311903/817138163596*5778^(5/12) 8299621028497572 a001 4807526976/2139295485799*5778^(5/12) 8299621028497572 a001 12586269025/5600748293801*5778^(5/12) 8299621028497572 a001 32951280099/14662949395604*5778^(5/12) 8299621028497572 a001 53316291173/23725150497407*5778^(5/12) 8299621028497572 a001 20365011074/9062201101803*5778^(5/12) 8299621028497572 a001 7778742049/3461452808002*5778^(5/12) 8299621028497572 a001 2971215073/1322157322203*5778^(5/12) 8299621028497572 a001 1134903170/505019158607*5778^(5/12) 8299621028497572 a001 433494437/192900153618*5778^(5/12) 8299621028497572 a001 165580141/73681302247*5778^(5/12) 8299621028497572 a001 63245986/28143753123*5778^(5/12) 8299621028497575 a001 24157817/10749957122*5778^(5/12) 8299621028497591 a001 9227465/4106118243*5778^(5/12) 8299621028497705 a001 3524578/1568397607*5778^(5/12) 8299621028498488 a001 1346269/599074578*5778^(5/12) 8299621028503849 a001 514229/228826127*5778^(5/12) 8299621028540596 a001 196418/87403803*5778^(5/12) 8299621028541380 a001 10946/3010349*5778^(13/36) 8299621028792465 a001 75025/33385282*5778^(5/12) 8299621028797819 a001 4181/64079*5778^(1/36) 8299621029828881 a001 4181/710647*15127^(11/40) 8299621030287409 m001 BesselJ(0,1)/(ln(1+sqrt(2))^Cahen) 8299621030287409 m001 BesselJ(0,1)/(ln(2^(1/2)+1)^Cahen) 8299621030518802 a001 28657/12752043*5778^(5/12) 8299621031665114 a001 4181/1149851*15127^(13/40) 8299621033329335 a007 Real Root Of 360*x^4-840*x^3-487*x^2-274*x-543 8299621033469960 a001 4181/1860498*15127^(3/8) 8299621033660627 a001 2255/4250681*5778^(7/12) 8299621035286795 a001 4181/3010349*15127^(17/40) 8299621037099051 a001 4181/4870847*15127^(19/40) 8299621037258384 k003 Champernowne real with 1/6*n^3+22*n^2-277/6*n+32 8299621039815654 a001 4181/103682*5778^(1/12) 8299621042351292 a001 10946/4870847*5778^(5/12) 8299621042539984 a001 4181/20633239*15127^(5/8) 8299621048682383 a001 615/15251*2207^(3/32) 8299621049343830 a001 2584/167761*2207^(7/32) 8299621051607571 a001 4181/228826127*15127^(7/8) 8299621051941206 m001 (cos(1/12*Pi)+DuboisRaymond)/(5^(1/2)-Chi(1)) 8299621054693793 a001 4181/167761*5778^(5/36) 8299621058045096 m001 1/GAMMA(7/12)^2*ErdosBorwein^2*exp(Zeta(7))^2 8299621058143438 a007 Real Root Of 899*x^4-472*x^3-498*x^2+580*x+128 8299621064559807 r005 Re(z^2+c),c=11/102+22/43*I,n=27 8299621064639313 a001 17711/33385282*5778^(7/12) 8299621068097427 a001 4181/271443*5778^(7/36) 8299621069159042 a001 15456/29134601*5778^(7/12) 8299621069818462 a001 121393/228826127*5778^(7/12) 8299621069914670 a001 377/710646*5778^(7/12) 8299621069928706 a001 832040/1568397607*5778^(7/12) 8299621069930754 a001 726103/1368706081*5778^(7/12) 8299621069931053 a001 5702887/10749957122*5778^(7/12) 8299621069931096 a001 4976784/9381251041*5778^(7/12) 8299621069931103 a001 39088169/73681302247*5778^(7/12) 8299621069931104 a001 34111385/64300051206*5778^(7/12) 8299621069931104 a001 267914296/505019158607*5778^(7/12) 8299621069931104 a001 233802911/440719107401*5778^(7/12) 8299621069931104 a001 1836311903/3461452808002*5778^(7/12) 8299621069931104 a001 1602508992/3020733700601*5778^(7/12) 8299621069931104 a001 12586269025/23725150497407*5778^(7/12) 8299621069931104 a001 7778742049/14662949395604*5778^(7/12) 8299621069931104 a001 2971215073/5600748293801*5778^(7/12) 8299621069931104 a001 1134903170/2139295485799*5778^(7/12) 8299621069931104 a001 433494437/817138163596*5778^(7/12) 8299621069931104 a001 165580141/312119004989*5778^(7/12) 8299621069931104 a001 63245986/119218851371*5778^(7/12) 8299621069931107 a001 24157817/45537549124*5778^(7/12) 8299621069931123 a001 9227465/17393796001*5778^(7/12) 8299621069931238 a001 3524578/6643838879*5778^(7/12) 8299621069932020 a001 1346269/2537720636*5778^(7/12) 8299621069937381 a001 514229/969323029*5778^(7/12) 8299621069974129 a001 196418/370248451*5778^(7/12) 8299621070226005 a001 75025/141422324*5778^(7/12) 8299621071952388 a001 28657/54018521*5778^(7/12) 8299621074850047 a001 2207/987*591286729879^(2/15) 8299621075094213 a001 6765/54018521*5778^(3/4) 8299621075140285 a001 4181/64079*2207^(1/32) 8299621079409150 a001 17711/439204*2207^(3/32) 8299621082064272 a001 4181/439204*5778^(1/4) 8299621083785193 a001 10946/20633239*5778^(7/12) 8299621083892124 a001 46368/1149851*2207^(3/32) 8299621084546182 a001 121393/3010349*2207^(3/32) 8299621084700584 a001 196418/4870847*2207^(3/32) 8299621084950411 a001 75025/1860498*2207^(3/32) 8299621086662755 a001 28657/710647*2207^(3/32) 8299621088126337 a001 2584/39603*843^(1/28) 8299621090889119 a001 64079/1597*233^(2/15) 8299621095122813 k001 Champernowne real with 133*n+696 8299621095815990 a001 4181/710647*5778^(11/36) 8299621098399336 a001 10946/271443*2207^(3/32) 8299621106072853 a001 17711/141422324*5778^(3/4) 8299621109649879 a001 4181/1149851*5778^(13/36) 8299621110592575 a001 46368/370248451*5778^(3/4) 8299621111251994 a001 121393/969323029*5778^(3/4) 8299621111348202 a001 317811/2537720636*5778^(3/4) 8299621111362239 a001 832040/6643838879*5778^(3/4) 8299621111364286 a001 2178309/17393796001*5778^(3/4) 8299621111364585 a001 1597/12752044*5778^(3/4) 8299621111364629 a001 14930352/119218851371*5778^(3/4) 8299621111364635 a001 39088169/312119004989*5778^(3/4) 8299621111364636 a001 102334155/817138163596*5778^(3/4) 8299621111364636 a001 267914296/2139295485799*5778^(3/4) 8299621111364636 a001 701408733/5600748293801*5778^(3/4) 8299621111364636 a001 1836311903/14662949395604*5778^(3/4) 8299621111364636 a001 2971215073/23725150497407*5778^(3/4) 8299621111364636 a001 1134903170/9062201101803*5778^(3/4) 8299621111364636 a001 433494437/3461452808002*5778^(3/4) 8299621111364636 a001 165580141/1322157322203*5778^(3/4) 8299621111364637 a001 63245986/505019158607*5778^(3/4) 8299621111364639 a001 24157817/192900153618*5778^(3/4) 8299621111364656 a001 9227465/73681302247*5778^(3/4) 8299621111364770 a001 3524578/28143753123*5778^(3/4) 8299621111365552 a001 1346269/10749957122*5778^(3/4) 8299621111370914 a001 514229/4106118243*5778^(3/4) 8299621111407662 a001 196418/1568397607*5778^(3/4) 8299621111659537 a001 75025/599074578*5778^(3/4) 8299621113385918 a001 28657/228826127*5778^(3/4) 8299621116399674 r005 Re(z^2+c),c=-37/78+37/64*I,n=30 8299621116527742 a001 6765/228826127*5778^(11/12) 8299621123452381 a001 4181/1860498*5778^(5/12) 8299621124371448 a001 1597/39603*1364^(1/10) 8299621125218705 a001 10946/87403803*5778^(3/4) 8299621135481296 a001 1597/4870847*3571^(23/34) 8299621137266872 a001 4181/3010349*5778^(17/36) 8299621137659386 k003 Champernowne real with 1/3*n^3+21*n^2-133/3*n+31 8299621147506385 a001 17711/599074578*5778^(11/12) 8299621151076784 a001 4181/4870847*5778^(19/36) 8299621152026108 a001 6624/224056801*5778^(11/12) 8299621152685527 a001 121393/4106118243*5778^(11/12) 8299621152781735 a001 317811/10749957122*5778^(11/12) 8299621152795771 a001 832040/28143753123*5778^(11/12) 8299621152797819 a001 311187/10525900321*5778^(11/12) 8299621152798118 a001 5702887/192900153618*5778^(11/12) 8299621152798161 a001 14930352/505019158607*5778^(11/12) 8299621152798168 a001 39088169/1322157322203*5778^(11/12) 8299621152798169 a001 6765/228826126*5778^(11/12) 8299621152798169 a001 267914296/9062201101803*5778^(11/12) 8299621152798169 a001 701408733/23725150497407*5778^(11/12) 8299621152798169 a001 433494437/14662949395604*5778^(11/12) 8299621152798169 a001 165580141/5600748293801*5778^(11/12) 8299621152798169 a001 63245986/2139295485799*5778^(11/12) 8299621152798172 a001 24157817/817138163596*5778^(11/12) 8299621152798188 a001 9227465/312119004989*5778^(11/12) 8299621152798302 a001 3524578/119218851371*5778^(11/12) 8299621152799085 a001 1346269/45537549124*5778^(11/12) 8299621152804446 a001 514229/17393796001*5778^(11/12) 8299621152841194 a001 196418/6643838879*5778^(11/12) 8299621153093070 a001 75025/2537720636*5778^(11/12) 8299621154770951 a001 2255/90481*2207^(5/32) 8299621154819450 a001 28657/969323029*5778^(11/12) 8299621155432399 a001 2584/271443*2207^(9/32) 8299621164888445 a001 4181/7881196*5778^(7/12) 8299621166652239 a001 10946/370248451*5778^(11/12) 8299621173767645 a001 1597/3010349*3571^(21/34) 8299621178843055 a001 4181/103682*2207^(3/32) 8299621181276258 a001 9349/8*10946^(41/43) 8299621185845802 a001 17711/710647*2207^(5/32) 8299621190379561 a001 2576/103361*2207^(5/32) 8299621191041028 a001 121393/4870847*2207^(5/32) 8299621191449837 a001 75025/3010349*2207^(5/32) 8299621193181579 a001 28657/1149851*2207^(5/32) 8299621202899708 r005 Re(z^2+c),c=-1/22+15/61*I,n=10 8299621205051116 a001 5473/219602*2207^(5/32) 8299621206321837 a001 4181/33385282*5778^(3/4) 8299621212049415 a001 1597/1860498*3571^(19/34) 8299621212767798 a001 2889/1292*55^(18/55) 8299621223137631 a007 Real Root Of 712*x^4-385*x^3-466*x^2-35*x-266 8299621238060388 k003 Champernowne real with 1/2*n^3+20*n^2-85/2*n+30 8299621240137073 a007 Real Root Of -814*x^4+795*x^3+760*x^2+381*x-908 8299621247755378 a001 4181/141422324*5778^(11/12) 8299621250343174 a001 1597/1149851*3571^(1/2) 8299621261422732 a001 6765/439204*2207^(7/32) 8299621262084180 a001 34/5779*2207^(11/32) 8299621286406130 a001 4181/167761*2207^(5/32) 8299621288605546 a001 1597/710647*3571^(15/34) 8299621292364627 a001 17711/1149851*2207^(7/32) 8299621296878988 a001 46368/3010349*2207^(7/32) 8299621297944685 a001 75025/4870847*2207^(7/32) 8299621299669017 a001 28657/1860498*2207^(7/32) 8299621301211736 a001 329/13201*843^(5/28) 8299621304976838 a001 6765/103682*843^(1/28) 8299621311487769 a001 10946/710647*2207^(7/32) 8299621324633288 r005 Im(z^2+c),c=-61/56+4/41*I,n=13 8299621326950090 a001 1597/439204*3571^(13/34) 8299621336614900 a001 17711/271443*843^(1/28) 8299621338461390 k003 Champernowne real with 2/3*n^3+19*n^2-122/3*n+29 8299621341230831 a001 6624/101521*843^(1/28) 8299621341904286 a001 121393/1860498*843^(1/28) 8299621342002542 a001 317811/4870847*843^(1/28) 8299621342063268 a001 196418/3010349*843^(1/28) 8299621342320505 a001 75025/1149851*843^(1/28) 8299621344083633 a001 28657/439204*843^(1/28) 8299621346617733 a007 Real Root Of -726*x^4+547*x^3-69*x^2-819*x+25 8299621356168298 a001 10946/167761*843^(1/28) 8299621359334863 a008 Real Root of x^4-x^3-95*x^2+276*x+80 8299621365079506 a001 1597/271443*3571^(11/34) 8299621367859387 a001 6765/710647*2207^(9/32) 8299621368520834 a001 2584/710647*2207^(13/32) 8299621371007867 a001 610/4870847*1364^(9/10) 8299621383543982 g003 Re(GAMMA(-16/5+I*(-143/30))) 8299621392494701 a001 4181/271443*2207^(7/32) 8299621398852066 a001 17711/1860498*2207^(9/32) 8299621403373837 a001 46368/4870847*2207^(9/32) 8299621403772134 a001 1597/167761*3571^(9/34) 8299621406168446 a001 28657/3010349*2207^(9/32) 8299621418006596 a001 10946/1149851*2207^(9/32) 8299621425595293 r005 Im(z^2+c),c=-107/122+3/49*I,n=9 8299621438862392 k003 Champernowne real with 5/6*n^3+18*n^2-233/6*n+28 8299621438997819 a001 4181/64079*843^(1/28) 8299621440915222 a001 1597/24476*1364^(1/30) 8299621440990257 a001 1597/103682*3571^(7/34) 8299621474378214 a001 6765/1149851*2207^(11/32) 8299621475039661 a001 2584/1149851*2207^(15/32) 8299621477945927 r002 24th iterates of z^2 + 8299621482068684 a001 1597/64079*3571^(5/34) 8299621499146485 a001 4181/439204*2207^(9/32) 8299621500673935 s001 sum(exp(-3*Pi/4)^n*A184504[n],n=1..infinity) 8299621505351496 a001 17711/3010349*2207^(11/32) 8299621512663296 a001 28657/4870847*2207^(11/32) 8299621513040703 a001 1597/39603*3571^(3/34) 8299621518116505 r005 Im(z^2+c),c=-41/38+5/52*I,n=17 8299621518285662 a001 1597/4870847*9349^(23/38) 8299621520087378 a003 cos(Pi*4/55)*sin(Pi*25/77) 8299621523284676 a001 1597/3010349*9349^(21/38) 8299621524494037 a001 5473/930249*2207^(11/32) 8299621528279110 a001 1597/1860498*9349^(1/2) 8299621533273120 b008 8+(3*Log[3])/11 8299621533285533 a001 1597/1149851*9349^(17/38) 8299621538260570 a001 1597/710647*9349^(15/38) 8299621539263394 k003 Champernowne real with n^3+17*n^2-37*n+27 8299621543317777 a001 1597/439204*9349^(13/38) 8299621548159858 a001 1597/271443*9349^(11/38) 8299621553565149 a001 1597/167761*9349^(9/38) 8299621557495935 a001 1597/103682*9349^(7/38) 8299621562895620 a001 1597/228826127*24476^(13/14) 8299621562971708 a001 1597/39603*9349^(3/38) 8299621563468494 r009 Im(z^3+c),c=-2/25+44/53*I,n=17 8299621564215055 a001 1597/87403803*24476^(5/6) 8299621564874776 a001 1597/54018521*24476^(11/14) 8299621565287026 a001 1597/64079*9349^(5/38) 8299621566047343 m001 (-Zeta(5)+Ei(1))/(5^(1/2)-Zeta(3)) 8299621566853875 a001 1597/12752043*24476^(9/14) 8299621568173012 a001 1597/4870847*24476^(23/42) 8299621568833995 a001 1597/3010349*24476^(1/2) 8299621569478754 a001 1597/39603*24476^(1/14) 8299621569490399 a001 1597/1860498*24476^(19/42) 8299621570158792 a001 1597/1149851*24476^(17/42) 8299621570336508 a001 1597/39603*64079^(3/46) 8299621570465940 a001 1597/39603*439204^(1/18) 8299621570468324 a001 1597/39603*7881196^(1/22) 8299621570468331 a001 1597/39603*33385282^(1/24) 8299621570468450 a001 1597/39603*1860498^(1/20) 8299621570471643 a001 1597/24476*3571^(1/34) 8299621570516584 a001 1597/39603*103682^(1/16) 8299621570795798 a001 1597/710647*24476^(5/14) 8299621570829134 a001 1597/39603*39603^(3/44) 8299621571514975 a001 1597/439204*24476^(13/42) 8299621572019025 a001 1597/271443*24476^(11/42) 8299621572679042 a001 1597/103682*24476^(1/6) 8299621573086286 a001 1597/167761*24476^(3/14) 8299621573188613 a001 1597/39603*15127^(3/40) 8299621574680467 a001 1597/103682*64079^(7/46) 8299621574749124 a001 1597/4870847*64079^(1/2) 8299621574988052 a001 1597/103682*20633239^(1/10) 8299621574988054 a001 1597/103682*17393796001^(1/14) 8299621574988054 a001 1597/103682*14662949395604^(1/18) 8299621574988054 a001 1597/103682*505019158607^(1/16) 8299621574988054 a001 1597/103682*599074578^(1/12) 8299621574990108 a001 1597/103682*710647^(1/8) 8299621575019397 a001 1597/1149851*64079^(17/46) 8299621575084567 a001 1597/710647*64079^(15/46) 8299621575164122 a001 1597/271443*64079^(11/46) 8299621575231908 a001 1597/439204*64079^(13/46) 8299621575494704 a001 1597/969323029*167761^(9/10) 8299621575553683 a001 1597/87403803*167761^(7/10) 8299621575612798 a001 1597/7881196*167761^(1/2) 8299621575647450 a001 1597/271443*7881196^(1/6) 8299621575647472 a001 1597/271443*312119004989^(1/10) 8299621575647472 a001 1597/271443*1568397607^(1/8) 8299621575655210 a001 1597/710647*167761^(3/10) 8299621575659547 a001 1597/167761*64079^(9/46) 8299621575719479 a001 1597/4106118243*439204^(17/18) 8299621575724260 a001 1597/969323029*439204^(5/6) 8299621575729041 a001 1597/228826127*439204^(13/18) 8299621575731729 a001 1597/710647*439204^(5/18) 8299621575733824 a001 1597/54018521*439204^(11/18) 8299621575738551 a001 1597/12752043*439204^(1/2) 8299621575743650 a001 1597/710647*7881196^(5/22) 8299621575743676 a001 1597/710647*20633239^(3/14) 8299621575743680 a001 1597/710647*2537720636^(1/6) 8299621575743680 a001 1597/710647*312119004989^(3/22) 8299621575743680 a001 1597/710647*28143753123^(3/20) 8299621575743680 a001 1597/710647*228826127^(3/16) 8299621575743682 a001 1597/710647*33385282^(5/24) 8299621575744280 a001 1597/710647*1860498^(1/4) 8299621575744298 a001 1597/3010349*439204^(7/18) 8299621575756995 a001 1597/20633239*1149851^(1/2) 8299621575757717 a001 1597/1860498*817138163596^(1/6) 8299621575757717 a001 1597/1860498*87403803^(1/4) 8299621575759649 a001 1597/33385282*3010349^(1/2) 8299621575759765 a001 1597/4870847*4106118243^(1/4) 8299621575759987 a001 1597/73681302247*7881196^(21/22) 8299621575759999 a001 1597/17393796001*7881196^(19/22) 8299621575760003 a001 1597/10749957122*7881196^(5/6) 8299621575760009 a001 1597/12752043*7881196^(9/22) 8299621575760011 a001 1597/4106118243*7881196^(17/22) 8299621575760024 a001 1597/969323029*7881196^(15/22) 8299621575760036 a001 1597/228826127*7881196^(13/22) 8299621575760051 a001 1597/54018521*7881196^(1/2) 8299621575760064 a001 1597/12752043*2537720636^(3/10) 8299621575760064 a001 1597/12752043*14662949395604^(3/14) 8299621575760064 a001 1597/12752043*192900153618^(1/4) 8299621575760066 a001 1597/12752043*33385282^(3/8) 8299621575760097 a001 1597/119218851371*20633239^(13/14) 8299621575760097 a001 1597/73681302247*20633239^(9/10) 8299621575760099 a001 1597/10749957122*20633239^(11/14) 8299621575760101 a001 1597/2537720636*20633239^(7/10) 8299621575760102 a001 1597/969323029*20633239^(9/14) 8299621575760104 a001 1597/87403803*20633239^(1/2) 8299621575760107 a001 1597/33385282*9062201101803^(1/4) 8299621575760114 a001 1597/87403803*2537720636^(7/18) 8299621575760114 a001 1597/87403803*17393796001^(5/14) 8299621575760114 a001 1597/87403803*312119004989^(7/22) 8299621575760114 a001 1597/87403803*14662949395604^(5/18) 8299621575760114 a001 1597/87403803*505019158607^(5/16) 8299621575760114 a001 1597/87403803*28143753123^(7/20) 8299621575760114 a001 1597/87403803*599074578^(5/12) 8299621575760114 a001 1597/87403803*228826127^(7/16) 8299621575760114 a001 1597/141422324*54018521^(1/2) 8299621575760114 a001 1597/228826127*141422324^(1/2) 8299621575760114 a001 1597/119218851371*141422324^(5/6) 8299621575760114 a001 1597/228826127*73681302247^(3/8) 8299621575760115 a001 1597/599074578*969323029^(1/2) 8299621575760115 a001 1597/1568397607*6643838879^(1/2) 8299621575760115 a001 1597/14662949395604*2537720636^(17/18) 8299621575760115 a001 1597/5600748293801*2537720636^(9/10) 8299621575760115 a001 1597/1322157322203*2537720636^(5/6) 8299621575760115 a001 1597/119218851371*2537720636^(13/18) 8299621575760115 a001 1597/73681302247*2537720636^(7/10) 8299621575760115 a001 1597/10749957122*2537720636^(11/18) 8299621575760115 a001 1597/4106118243*45537549124^(1/2) 8299621575760115 a001 1597/10749957122*312119004989^(1/2) 8299621575760115 a001 1597/10749957122*3461452808002^(11/24) 8299621575760115 a001 1597/10749957122*28143753123^(11/20) 8299621575760115 a001 1597/2139295485799*17393796001^(11/14) 8299621575760115 a001 1597/73681302247*17393796001^(9/14) 8299621575760115 a001 1597/28143753123*2139295485799^(1/2) 8299621575760115 a001 1597/14662949395604*45537549124^(5/6) 8299621575760115 a001 1597/73681302247*14662949395604^(1/2) 8299621575760115 a001 1597/73681302247*505019158607^(9/16) 8299621575760115 a001 1597/73681302247*192900153618^(7/12) 8299621575760115 a001 1597/14662949395604*312119004989^(17/22) 8299621575760115 a001 1597/1322157322203*312119004989^(15/22) 8299621575760115 a001 1597/1322157322203*3461452808002^(5/8) 8299621575760115 a001 1597/5600748293801*14662949395604^(9/14) 8299621575760115 a001 1597/2139295485799*14662949395604^(11/18) 8299621575760115 a001 1597/2139295485799*505019158607^(11/16) 8299621575760115 a001 1597/5600748293801*192900153618^(3/4) 8299621575760115 a001 1597/119218851371*312119004989^(13/22) 8299621575760115 a001 1597/119218851371*3461452808002^(13/24) 8299621575760115 a001 1597/119218851371*73681302247^(5/8) 8299621575760115 a001 1597/45537549124*5600748293801^(1/2) 8299621575760115 a001 1597/119218851371*28143753123^(13/20) 8299621575760115 a001 1597/1322157322203*28143753123^(3/4) 8299621575760115 a001 1597/14662949395604*28143753123^(17/20) 8299621575760115 a001 1597/17393796001*817138163596^(1/2) 8299621575760115 a001 1597/6643838879*119218851371^(1/2) 8299621575760115 a001 1597/312119004989*4106118243^(3/4) 8299621575760115 a001 1597/2537720636*17393796001^(1/2) 8299621575760115 a001 1597/2537720636*14662949395604^(7/18) 8299621575760115 a001 1597/2537720636*505019158607^(7/16) 8299621575760115 a001 1597/10749957122*1568397607^(5/8) 8299621575760115 a001 1597/2139295485799*1568397607^(7/8) 8299621575760115 a001 1597/969323029*2537720636^(1/2) 8299621575760115 a001 1597/969323029*312119004989^(9/22) 8299621575760115 a001 1597/969323029*14662949395604^(5/14) 8299621575760115 a001 1597/969323029*192900153618^(5/12) 8299621575760115 a001 1597/969323029*28143753123^(9/20) 8299621575760115 a001 1597/2537720636*599074578^(7/12) 8299621575760115 a001 1597/73681302247*599074578^(3/4) 8299621575760115 a001 1597/2139295485799*599074578^(11/12) 8299621575760115 a001 1597/370248451*370248451^(1/2) 8299621575760115 a001 1597/969323029*228826127^(9/16) 8299621575760115 a001 1597/10749957122*228826127^(11/16) 8299621575760115 a001 1597/119218851371*228826127^(13/16) 8299621575760115 a001 1597/1322157322203*228826127^(15/16) 8299621575760115 a001 1597/17393796001*87403803^(3/4) 8299621575760117 a001 1597/54018521*312119004989^(3/10) 8299621575760117 a001 1597/54018521*1568397607^(3/8) 8299621575760119 a001 1597/228826127*33385282^(13/24) 8299621575760119 a001 1597/969323029*33385282^(5/8) 8299621575760120 a001 1597/4106118243*33385282^(17/24) 8299621575760121 a001 1597/17393796001*33385282^(19/24) 8299621575760121 a001 1597/54018521*33385282^(11/24) 8299621575760121 a001 1597/73681302247*33385282^(7/8) 8299621575760122 a001 1597/312119004989*33385282^(23/24) 8299621575760134 a001 1597/20633239*1322157322203^(1/4) 8299621575760153 a001 1597/4106118243*12752043^(3/4) 8299621575760241 a001 1597/7881196*20633239^(5/14) 8299621575760248 a001 1597/7881196*2537720636^(5/18) 8299621575760248 a001 1597/7881196*312119004989^(5/22) 8299621575760248 a001 1597/7881196*3461452808002^(5/24) 8299621575760248 a001 1597/7881196*28143753123^(1/4) 8299621575760248 a001 1597/7881196*228826127^(5/16) 8299621575760988 a001 1597/3010349*7881196^(7/22) 8299621575761025 a001 1597/3010349*20633239^(3/10) 8299621575761030 a001 1597/3010349*17393796001^(3/14) 8299621575761030 a001 1597/3010349*14662949395604^(1/6) 8299621575761030 a001 1597/3010349*599074578^(1/4) 8299621575761033 a001 1597/3010349*33385282^(7/24) 8299621575761143 a001 1597/12752043*1860498^(9/20) 8299621575761247 a001 1597/7881196*1860498^(5/12) 8299621575761436 a001 1597/54018521*1860498^(11/20) 8299621575761512 a001 1597/87403803*1860498^(7/12) 8299621575761673 a001 1597/228826127*1860498^(13/20) 8299621575761870 a001 1597/3010349*1860498^(7/20) 8299621575761913 a001 1597/969323029*1860498^(3/4) 8299621575762153 a001 1597/4106118243*1860498^(17/20) 8299621575762313 a001 1597/10749957122*1860498^(11/12) 8299621575762392 a001 1597/17393796001*1860498^(19/20) 8299621575766392 a001 1597/1149851*45537549124^(1/6) 8299621575766405 a001 1597/1149851*12752043^(1/4) 8299621575767193 a001 1597/3010349*710647^(3/8) 8299621575770385 a001 1597/87403803*710647^(5/8) 8299621575774495 a001 1597/2537720636*710647^(7/8) 8299621575803140 a001 1597/439204*141422324^(1/6) 8299621575803140 a001 1597/439204*73681302247^(1/8) 8299621575829928 a001 1597/103682*39603^(7/44) 8299621575831301 a001 1597/439204*271443^(1/4) 8299621575844596 a001 1597/228826127*271443^(3/4) 8299621575984949 a001 1597/710647*103682^(5/16) 8299621576047845 a001 1597/167761*439204^(1/6) 8299621576054997 a001 1597/167761*7881196^(3/22) 8299621576055016 a001 1597/167761*2537720636^(1/10) 8299621576055016 a001 1597/167761*14662949395604^(1/14) 8299621576055016 a001 1597/167761*192900153618^(1/12) 8299621576055017 a001 1597/167761*33385282^(1/8) 8299621576055375 a001 1597/167761*1860498^(3/20) 8299621576098807 a001 1597/3010349*103682^(7/16) 8299621576132102 a001 1597/64079*24476^(5/42) 8299621576194348 a001 1597/12752043*103682^(9/16) 8299621576199777 a001 1597/167761*103682^(3/16) 8299621576290909 a001 1597/54018521*103682^(11/16) 8299621576387414 a001 1597/228826127*103682^(13/16) 8299621576483922 a001 1597/969323029*103682^(15/16) 8299621576970418 a001 1597/271443*39603^(1/4) 8299621577137426 a001 1597/167761*39603^(9/44) 8299621577366622 a001 1597/439204*39603^(13/44) 8299621577547698 a001 1597/710647*39603^(15/44) 8299621577561692 a001 1597/64079*64079^(5/46) 8299621577751906 a001 1597/64079*167761^(1/10) 8299621577781395 a001 1597/64079*20633239^(1/14) 8299621577781396 a001 1597/64079*2537720636^(1/18) 8299621577781396 a001 1597/64079*312119004989^(1/22) 8299621577781396 a001 1597/64079*28143753123^(1/20) 8299621577781396 a001 1597/64079*228826127^(1/16) 8299621577781596 a001 1597/64079*1860498^(1/12) 8299621577810945 a001 1597/1149851*39603^(17/44) 8299621578042806 a001 1597/1860498*39603^(19/44) 8299621578286655 a001 1597/3010349*39603^(21/44) 8299621578382735 a001 1597/64079*39603^(5/44) 8299621578525925 a001 1597/4870847*39603^(23/44) 8299621579728956 a001 1597/54018521*39603^(3/4) 8299621580865656 a001 55/15126*2207^(13/32) 8299621581335379 a001 1597/103682*15127^(7/40) 8299621581527103 a001 1292/930249*2207^(17/32) 8299621582315200 a001 1597/64079*15127^(1/8) 8299621584215862 a001 1597/167761*15127^(9/40) 8299621585621840 a001 1597/271443*15127^(11/40) 8299621587115311 a001 1597/24476*9349^(1/38) 8299621587591029 a001 1597/439204*15127^(13/40) 8299621589284327 a001 1597/24476*24476^(1/42) 8299621589345091 a001 1597/710647*15127^(3/8) 8299621589570244 a001 1597/24476*64079^(1/46) 8299621589734453 a001 1597/24476*39603^(1/44) 8299621590520946 a001 1597/24476*15127^(1/40) 8299621591181324 a001 1597/1149851*15127^(17/40) 8299621591185098 a001 1597/39603*5778^(1/12) 8299621592986170 a001 1597/1860498*15127^(19/40) 8299621594803005 a001 1597/3010349*15127^(21/40) 8299621596519775 a001 1597/24476*5778^(1/36) 8299621596615261 a001 1597/4870847*15127^(23/40) 8299621598429266 a001 1597/7881196*15127^(5/8) 8299621605583143 a001 4181/710647*2207^(11/32) 8299621607496738 a001 1597/87403803*15127^(7/8) 8299621611846348 a001 17711/4870847*2207^(13/32) 8299621612309342 a001 1597/64079*5778^(5/36) 8299621623327178 a001 1597/103682*5778^(7/36) 8299621630993468 a001 10946/3010349*2207^(13/32) 8299621638205318 a001 1597/167761*5778^(1/4) 8299621639129631 a007 Real Root Of -915*x^4+301*x^3-680*x^2-843*x+375 8299621639664396 k003 Champernowne real with 7/6*n^3+16*n^2-211/6*n+26 8299621639917265 r005 Im(z^2+c),c=-129/94+1/33*I,n=4 8299621642862244 a001 1597/24476*2207^(1/32) 8299621643868282 a007 Real Root Of 678*x^4-500*x^3+666*x^2+298*x-819 8299621646581297 m001 HardyLittlewoodC5^PrimesInBinary/FeigenbaumB 8299621648504671 a001 167761/4181*233^(2/15) 8299621651608953 a001 1597/271443*5778^(11/36) 8299621665575799 a001 1597/439204*5778^(13/36) 8299621666865219 a007 Real Root Of 788*x^4+371*x^3+808*x^2-261*x-935 8299621668407060 a001 610/3010349*1364^(5/6) 8299621678543877 r004 Re(z^2+c),c=-1/10-11/21*I,z(0)=I,n=5 8299621679327518 a001 1597/710647*5778^(5/12) 8299621687365088 a001 6765/3010349*2207^(15/32) 8299621688026535 a001 2584/3010349*2207^(19/32) 8299621689185183 a007 Real Root Of -941*x^4+856*x^3+987*x^2+841*x+954 8299621690470350 m001 ln(sqrt(2))^2*sin(Pi/5)^2/sqrt(5)^2 8299621693161408 a001 1597/1149851*5778^(17/36) 8299621697755599 a007 Real Root Of -635*x^4+146*x^3+917*x^2+824*x+437 8299621706963911 a001 1597/1860498*5778^(19/36) 8299621707970884 a007 Real Root Of -51*x^4-380*x^3+340*x^2-272*x-934 8299621712101973 a001 4181/1149851*2207^(13/32) 8299621716715571 a007 Real Root Of -600*x^4+827*x^3+89*x^2-140*x+580 8299621720778403 a001 1597/3010349*5778^(7/12) 8299621729859689 a001 219602/5473*233^(2/15) 8299621730212508 a001 1597/39603*2207^(3/32) 8299621734588316 a001 1597/4870847*5778^(23/36) 8299621735720174 m005 (1/2*Pi-8/9)/(1/5*3^(1/2)-3/7) 8299621737488322 a001 10946/4870847*2207^(15/32) 8299621740065398 k003 Champernowne real with 4/3*n^3+15*n^2-100/3*n+25 8299621741729227 a001 1149851/28657*233^(2/15) 8299621742362997 r002 56th iterates of z^2 + 8299621743460969 a001 3010349/75025*233^(2/15) 8299621743713627 a001 3940598/98209*233^(2/15) 8299621743750489 a001 20633239/514229*233^(2/15) 8299621743755867 a001 54018521/1346269*233^(2/15) 8299621743756652 a001 70711162/1762289*233^(2/15) 8299621743756766 a001 370248451/9227465*233^(2/15) 8299621743756783 a001 969323029/24157817*233^(2/15) 8299621743756785 a001 1268860318/31622993*233^(2/15) 8299621743756786 a001 6643838879/165580141*233^(2/15) 8299621743756786 a001 17393796001/433494437*233^(2/15) 8299621743756786 a001 22768774562/567451585*233^(2/15) 8299621743756786 a001 119218851371/2971215073*233^(2/15) 8299621743756786 a001 312119004989/7778742049*233^(2/15) 8299621743756786 a001 408569081798/10182505537*233^(2/15) 8299621743756786 a001 2139295485799/53316291173*233^(2/15) 8299621743756786 a001 5600748293801/139583862445*233^(2/15) 8299621743756786 a001 7331474697802/182717648081*233^(2/15) 8299621743756786 a001 23725150497407/591286729879*233^(2/15) 8299621743756786 a001 3020733700601/75283811239*233^(2/15) 8299621743756786 a001 1730726404001/43133785636*233^(2/15) 8299621743756786 a001 440719107401/10983760033*233^(2/15) 8299621743756786 a001 505019158607/12586269025*233^(2/15) 8299621743756786 a001 10716675201/267084832*233^(2/15) 8299621743756786 a001 73681302247/1836311903*233^(2/15) 8299621743756786 a001 9381251041/233802911*233^(2/15) 8299621743756786 a001 5374978561/133957148*233^(2/15) 8299621743756786 a001 1368706081/34111385*233^(2/15) 8299621743756787 a001 1568397607/39088169*233^(2/15) 8299621743756793 a001 33281921/829464*233^(2/15) 8299621743756837 a001 228826127/5702887*233^(2/15) 8299621743757137 a001 29134601/726103*233^(2/15) 8299621743759191 a001 16692641/416020*233^(2/15) 8299621743773271 a001 4250681/105937*233^(2/15) 8299621743869778 a001 4870847/121393*233^(2/15) 8299621744531244 a001 103361/2576*233^(2/15) 8299621744971516 a007 Real Root Of -322*x^4+308*x^3-505*x^2-78*x+612 8299621746621739 a007 Real Root Of -770*x^4+676*x^3+306*x^2+711*x-822 8299621747756443 r002 4th iterates of z^2 + 8299621749065004 a001 710647/17711*233^(2/15) 8299621762210972 a001 1597/12752043*5778^(3/4) 8299621766426628 a007 Real Root Of 21*x^4-819*x^3+403*x^2-98*x+262 8299621767224519 a007 Real Root Of 71*x^4-862*x^3-9*x^2-337*x-800 8299621780139857 a001 90481/2255*233^(2/15) 8299621793859942 a001 6765/4870847*2207^(17/32) 8299621794521389 a001 2584/4870847*2207^(21/32) 8299621798840024 m002 (-11*Pi^5)/4+Cosh[Pi] 8299621803644562 a001 1597/54018521*5778^(11/12) 8299621816366323 m005 (1/2*Zeta(3)-3/10)/(5/11*Zeta(3)-10/11) 8299621818589418 a001 4181/1860498*2207^(15/32) 8299621821611673 a001 610/15127*521^(3/26) 8299621829290820 m001 CareFree^(Salem*ZetaP(2)) 8299621840466310 k003 Champernowne real with 3/2*n^3+14*n^2-63/2*n+24 8299621844021695 a001 1597/64079*2207^(5/32) 8299621847004280 a007 Real Root Of 689*x^4-455*x^3+128*x^2+81*x-608 8299621847327435 a001 682/17*75025^(19/40) 8299621856644486 m005 (1/3*5^(1/2)-2/5)/(1/11*gamma+4/11) 8299621857184521 a007 Real Root Of 901*x^4+44*x^3+873*x^2+231*x-812 8299621886548401 r008 a(0)=9,K{-n^6,45-28*n+3*n^2-19*n^3} 8299621913142897 a007 Real Root Of -59*x^4-595*x^3-795*x^2+698*x+342 8299621918657779 m008 (1/3*Pi^2-2/3)/(Pi^3+3/5) 8299621925088853 a001 4181/3010349*2207^(17/32) 8299621929650609 a001 2584/64079*843^(3/28) 8299621940867310 k003 Champernowne real with 5/3*n^3+13*n^2-89/3*n+23 8299621947724474 a001 1597/103682*2207^(7/32) 8299621952373961 m005 (4/5*Pi+1/6)/(1/4*Catalan+3) 8299621961030655 a007 Real Root Of 87*x^4+645*x^3-561*x^2+578*x-619 8299621965801685 a001 305/930249*1364^(23/30) 8299621968873110 s001 sum(1/10^(n-1)*A098675[n],n=1..infinity) 8299621968880860 s001 sum(1/10^(n-1)*A056213[n],n=1..infinity) 8299621974135817 k002 Champernowne real with 31/2*n^2+489/2*n-252 8299621979719256 b008 -2+Coth[4/Pi] 8299621993130071 a001 51841/1292*233^(2/15) 8299622006719803 a001 1597/24476*843^(1/28) 8299622031583710 a001 4181/4870847*2207^(19/32) 8299622041268310 k003 Champernowne real with 11/6*n^3+12*n^2-167/6*n+22 8299622047342051 m001 Si(Pi)^2*Cahen*exp(PisotVijayaraghavan) 8299622055287559 a001 1597/167761*2207^(9/32) 8299622058691918 a007 Real Root Of -221*x^4-271*x^3+422*x^2+858*x-743 8299622058902318 a007 Real Root Of 807*x^4-474*x^3-977*x^2+129*x+454 8299622064759015 b008 83+ExpIntegralEi[-4] 8299622071079960 m001 1/Salem*ln(Conway)^2/FeigenbaumD^2 8299622100806759 a001 233/1149851*521^(25/26) 8299622105732664 r005 Im(z^2+c),c=-29/54+25/63*I,n=4 8299622110231117 a007 Real Root Of -529*x^4-504*x^3-584*x^2+489*x+771 8299622110813347 a007 Real Root Of -688*x^4-6*x^3+531*x^2+25*x-22 8299622117421971 m001 (Zeta(3)+GAMMA(3/4))/(ln(5)-ln(2+3^(1/2))) 8299622140255028 a001 615/15251*843^(3/28) 8299622141669310 k003 Champernowne real with 2*n^3+11*n^2-26*n+21 8299622142736029 a001 987/64079*843^(1/4) 8299622161376140 a001 1597/271443*2207^(11/32) 8299622161381577 a007 Real Root Of -682*x^4+748*x^3+857*x^2-224*x-25 8299622162503070 h001 (3/11*exp(2)+1/6)/(5/6*exp(1)+4/11) 8299622164140744 a007 Real Root Of -239*x^4+900*x^3+703*x^2+798*x+806 8299622170981798 a001 17711/439204*843^(3/28) 8299622175464774 a001 46368/1149851*843^(3/28) 8299622176118831 a001 121393/3010349*843^(3/28) 8299622176273233 a001 196418/4870847*843^(3/28) 8299622176523061 a001 75025/1860498*843^(3/28) 8299622176561599 r005 Re(z^2+c),c=-6/25+30/37*I,n=41 8299622178137254 r005 Re(z^2+c),c=-15/14+19/120*I,n=48 8299622178235405 a001 28657/710647*843^(3/28) 8299622186218372 m005 (1/2*3^(1/2)+1/6)/(9/11*Catalan-5/8) 8299622189971987 a001 10946/271443*843^(3/28) 8299622242070310 k003 Champernowne real with 13/6*n^3+10*n^2-145/6*n+20 8299622245328122 r005 Im(z^2+c),c=-3/74+59/60*I,n=13 8299622263208309 a001 610/1149851*1364^(7/10) 8299622267741485 m001 (ReciprocalLucas-Zeta(1/2))/ThueMorse 8299622268027934 a001 1597/439204*2207^(13/32) 8299622270415717 a001 4181/103682*843^(3/28) 8299622290024802 a007 Real Root Of 706*x^4-855*x^3-605*x^2-512*x-832 8299622309330098 a007 Real Root Of 384*x^4+194*x^3+818*x^2-375*x-946 8299622320908650 p003 LerchPhi(1/10,3,392/169) 8299622342471311 k003 Champernowne real with 7/3*n^3+9*n^2-67/3*n+19 8299622374464601 a001 1597/710647*2207^(15/32) 8299622384373923 a007 Real Root Of 988*x^4-540*x^3-445*x^2+447*x-100 8299622384655091 a007 Real Root Of -692*x^4+222*x^3-859*x^2-994*x+222 8299622385175493 a005 (1/sin(74/213*Pi))^191 8299622392959654 a007 Real Root Of 99*x^4-572*x^3-534*x^2-95*x-85 8299622405383188 m003 47/8+Sqrt[5]/1024+Sinh[1/2+Sqrt[5]/2] 8299622442872311 k003 Champernowne real with 5/2*n^3+8*n^2-41/2*n+18 8299622446034292 m001 (ln(5)-Lehmer)/(Mills-StolarskyHarborth) 8299622480983441 a001 1597/1149851*2207^(17/32) 8299622493406927 a007 Real Root Of -133*x^4+292*x^3+87*x^2-311*x-88 8299622511862048 h001 (1/3*exp(1)+3/10)/(1/10*exp(2)+5/7) 8299622520056454 a001 141/2161*322^(1/24) 8299622531776379 m001 exp(Magata)^2*GaussKuzminWirsing/gamma^2 8299622543273311 k003 Champernowne real with 8/3*n^3+7*n^2-56/3*n+17 8299622559270615 r005 Im(z^2+c),c=-7/78+45/52*I,n=40 8299622560583558 a001 610/710647*1364^(19/30) 8299622567559230 r009 Re(z^3+c),c=-3/86+36/47*I,n=48 8299622587470896 a001 1597/1860498*2207^(19/32) 8299622615650888 a007 Real Root Of 525*x^4-249*x^3-232*x^2+102*x-147 8299622639885080 a001 10946/47*7^(32/49) 8299622640354814 a007 Real Root Of 162*x^4-885*x^3+511*x^2+348*x-646 8299622643674311 k003 Champernowne real with 17/6*n^3+6*n^2-101/6*n+16 8299622648578873 a007 Real Root Of 284*x^4-605*x^3-508*x^2-310*x-388 8299622655472709 a001 20633239/3*1548008755920^(10/11) 8299622655472728 a001 312119004989/3*39088169^(10/11) 8299622655472729 a001 2537720636/3*7778742049^(10/11) 8299622655582004 a003 cos(Pi*1/111)*sin(Pi*29/93) 8299622665889208 m005 (3/4*Catalan+4)/(26/5+1/5*5^(1/2)) 8299622674024136 a001 233/5778*199^(3/22) 8299622674393613 a003 sin(Pi*31/85)*sin(Pi*31/85) 8299622676631367 r002 19th iterates of z^2 + 8299622683263423 r005 Re(z^2+c),c=-37/31+7/30*I,n=11 8299622693970341 a001 1597/3010349*2207^(21/32) 8299622697106263 m001 (2^(1/2))^Trott2nd/((2^(1/2))^BesselI(1,1)) 8299622743977684 a007 Real Root Of -369*x^4+680*x^3+667*x^2-80*x+38 8299622744075311 k003 Champernowne real with 3*n^3+5*n^2-15*n+15 8299622759594454 a001 9349/55*21^(25/48) 8299622761068556 a001 1292/51841*843^(5/28) 8299622764688428 a007 Real Root Of 131*x^4+982*x^3-956*x^2-678*x+53 8299622776476130 a007 Real Root Of 369*x^4-561*x^3+648*x^2+934*x-167 8299622776952834 m004 4+25*Pi*Coth[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]^2 8299622782888527 p004 log(10163/10079) 8299622800465208 a001 1597/4870847*2207^(23/32) 8299622818667882 a005 (1/sin(77/181*Pi))^575 8299622821276980 g002 Psi(1/10)+Psi(4/5)-Psi(11/12)-Psi(3/7) 8299622821785243 a001 1597/39603*843^(3/28) 8299622844476312 k003 Champernowne real with 19/6*n^3+4*n^2-79/6*n+14 8299622858040988 a001 305/219602*1364^(17/30) 8299622860493748 m001 1/GAMMA(17/24)*ln(Kolakoski)*arctan(1/2) 8299622892569734 a007 Real Root Of -808*x^4+526*x^3-643*x^2-929*x+356 8299622896679295 r009 Im(z^3+c),c=-1/62+28/33*I,n=5 8299622900239972 q001 2421/2917 8299622906904749 m003 15/2+Sqrt[5]/4+Log[1/2+Sqrt[5]/2]/2 8299622943767571 m005 (1/2*exp(1)-5/11)/(1/3*5^(1/2)-7/11) 8299622944877312 k003 Champernowne real with 10/3*n^3+3*n^2-34/3*n+13 8299622950262221 m005 (-19/36+1/4*5^(1/2))/(-3/5+1/10*5^(1/2)) 8299622974058795 a001 2255/90481*843^(5/28) 8299622974153997 a001 21/2206*843^(9/28) 8299622977136417 k002 Champernowne real with 16*n^2+243*n-251 8299623005133653 a001 17711/710647*843^(5/28) 8299623009667413 a001 2576/103361*843^(5/28) 8299623010328880 a001 121393/4870847*843^(5/28) 8299623010737689 a001 75025/3010349*843^(5/28) 8299623012469431 a001 28657/1149851*843^(5/28) 8299623024338970 a001 5473/219602*843^(5/28) 8299623038843297 m004 (9*Sqrt[5])/Pi+25*Pi-Log[Sqrt[5]*Pi] 8299623045278312 k003 Champernowne real with 7/2*n^3+2*n^2-19/2*n+12 8299623057497606 a007 Real Root Of -699*x^4+370*x^3-634*x^2-565*x+511 8299623059191053 r002 45th iterates of z^2 + 8299623072069270 m001 1/ln(TreeGrowth2nd)/Backhouse^2*Zeta(3)^2 8299623078944606 m005 (1/2*exp(1)-7/11)/(2/3*Zeta(3)-5/7) 8299623103247533 a001 233/33385282*2^(1/4) 8299623105694003 a001 4181/167761*843^(5/28) 8299623145679312 k003 Champernowne real with 11/3*n^3+n^2-23/3*n+11 8299623151249252 a007 Real Root Of 951*x^4-404*x^3-264*x^2-108*x-590 8299623155283301 a001 610/271443*1364^(1/2) 8299623184298495 a008 Real Root of (-6+x-2*x^2+4*x^3+4*x^4+6*x^5) 8299623193940005 h001 (9/11*exp(2)+1/5)/(9/10*exp(2)+7/8) 8299623202909269 m001 CopelandErdos^((1+3^(1/2))^(1/2))-ZetaQ(3) 8299623216548286 a007 Real Root Of 65*x^4+612*x^3+713*x^2+805*x-970 8299623246080312 k003 Champernowne real with 23/6*n^3-35/6*n+10 8299623249188610 m001 ln(Zeta(9))^2/Si(Pi)^2/sqrt(2) 8299623269579146 m005 (1/2*3^(1/2)+2/3)/(8/11*2^(1/2)+9/11) 8299623280726626 r002 22th iterates of z^2 + 8299623346481313 k003 Champernowne real with 4*n^3-n^2-4*n+9 8299623378127546 a007 Real Root Of 93*x^4+663*x^3-813*x^2+753*x+13 8299623380258838 m001 (ErdosBorwein+Sarnak)/FransenRobinson 8299623392085290 r002 3th iterates of z^2 + 8299623412486830 a007 Real Root Of -969*x^4-571*x^3-620*x^2+26*x+582 8299623443200814 m005 (1/2*3^(1/2)+5)/(2/5*2^(1/2)-7/11) 8299623446882313 k003 Champernowne real with 25/6*n^3-2*n^2-13/6*n+8 8299623452987013 a001 13201/329*233^(2/15) 8299623453088837 a001 610/167761*1364^(13/30) 8299623476549337 p003 LerchPhi(1/2,1,182/99) 8299623543537658 a007 Real Root Of 437*x^4-71*x^3+333*x^2+545*x-25 8299623547283313 k003 Champernowne real with 13/3*n^3-3*n^2-1/3*n+7 8299623550452433 a007 Real Root Of -937*x^4+10*x^3+328*x^2+855*x+934 8299623596346891 a001 2584/167761*843^(1/4) 8299623600597772 m001 (-ln(5)+OneNinth)/(2^(1/3)-ln(gamma)) 8299623607988726 a007 Real Root Of -752*x^4+511*x^3-370*x^2-395*x+576 8299623632946160 a007 Real Root Of 855*x^4+291*x^3+243*x^2+925*x+361 8299623647684313 k003 Champernowne real with 9/2*n^3-4*n^2+3/2*n+6 8299623663309690 a001 1597/64079*843^(5/28) 8299623670300144 a007 Real Root Of 396*x^4+46*x^3-497*x^2-381*x+35 8299623691100887 r005 Im(z^2+c),c=-5/82+41/55*I,n=36 8299623724587450 r002 7th iterates of z^2 + 8299623743727545 r009 Re(z^3+c),c=-3/70+20/23*I,n=14 8299623748085313 k003 Champernowne real with 14/3*n^3-5*n^2+10/3*n+5 8299623749419877 a001 305/51841*1364^(11/30) 8299623780408816 m001 OneNinth/Paris/ln(Zeta(5))^2 8299623790509156 a007 Real Root Of -458*x^4+77*x^3+455*x^2+877*x-868 8299623808425858 a001 6765/439204*843^(1/4) 8299623809432354 a001 987/167761*843^(11/28) 8299623823237658 m001 FeigenbaumMu*GolombDickman/Khinchin 8299623823250410 a001 144/3571*123^(3/20) 8299623824501585 a007 Real Root Of 878*x^4+98*x^3-327*x^2-296*x-381 8299623825642215 a007 Real Root Of -937*x^4+974*x^3+435*x^2-948*x-85 8299623836857535 r005 Re(z^2+c),c=-19/18+29/142*I,n=38 8299623839367762 a001 17711/1149851*843^(1/4) 8299623843882125 a001 46368/3010349*843^(1/4) 8299623844540762 a001 121393/7881196*843^(1/4) 8299623844636856 a001 10959/711491*843^(1/4) 8299623844650875 a001 832040/54018521*843^(1/4) 8299623844652921 a001 2178309/141422324*843^(1/4) 8299623844653219 a001 5702887/370248451*843^(1/4) 8299623844653263 a001 14930352/969323029*843^(1/4) 8299623844653269 a001 39088169/2537720636*843^(1/4) 8299623844653270 a001 102334155/6643838879*843^(1/4) 8299623844653270 a001 9238424/599786069*843^(1/4) 8299623844653270 a001 701408733/45537549124*843^(1/4) 8299623844653270 a001 1836311903/119218851371*843^(1/4) 8299623844653270 a001 4807526976/312119004989*843^(1/4) 8299623844653270 a001 12586269025/817138163596*843^(1/4) 8299623844653270 a001 32951280099/2139295485799*843^(1/4) 8299623844653270 a001 86267571272/5600748293801*843^(1/4) 8299623844653270 a001 7787980473/505618944676*843^(1/4) 8299623844653270 a001 365435296162/23725150497407*843^(1/4) 8299623844653270 a001 139583862445/9062201101803*843^(1/4) 8299623844653270 a001 53316291173/3461452808002*843^(1/4) 8299623844653270 a001 20365011074/1322157322203*843^(1/4) 8299623844653270 a001 7778742049/505019158607*843^(1/4) 8299623844653270 a001 2971215073/192900153618*843^(1/4) 8299623844653270 a001 1134903170/73681302247*843^(1/4) 8299623844653270 a001 433494437/28143753123*843^(1/4) 8299623844653270 a001 165580141/10749957122*843^(1/4) 8299623844653271 a001 63245986/4106118243*843^(1/4) 8299623844653273 a001 24157817/1568397607*843^(1/4) 8299623844653290 a001 9227465/599074578*843^(1/4) 8299623844653404 a001 3524578/228826127*843^(1/4) 8299623844654185 a001 1346269/87403803*843^(1/4) 8299623844659540 a001 514229/33385282*843^(1/4) 8299623844696245 a001 196418/12752043*843^(1/4) 8299623844947822 a001 75025/4870847*843^(1/4) 8299623846672155 a001 28657/1860498*843^(1/4) 8299623847004299 r002 11th iterates of z^2 + 8299623848486314 k003 Champernowne real with 29/6*n^3-6*n^2+31/6*n+4 8299623849944620 a007 Real Root Of -79*x^4-723*x^3-568*x^2-130*x-446 8299623858490911 a001 10946/710647*843^(1/4) 8299623860802374 m001 1/exp(Lehmer)*ErdosBorwein^2/PrimesInBinary^2 8299623908765882 a007 Real Root Of -28*x^4+753*x^3-640*x^2+402*x-310 8299623930528165 r005 Im(z^2+c),c=-13/14+34/111*I,n=18 8299623934974330 a001 47/13*987^(41/52) 8299623938737828 m005 (1/2*3^(1/2)-3/7)/(23/12+3/2*5^(1/2)) 8299623939497868 a001 4181/271443*843^(1/4) 8299623948887314 k003 Champernowne real with 5*n^3-7*n^2+7*n+3 8299623966872610 h001 (2/11*exp(2)+3/5)/(5/7*exp(1)+2/5) 8299623978819495 a007 Real Root Of -502*x^4+544*x^3+142*x^2+67*x+507 8299623980137017 k002 Champernowne real with 33/2*n^2+483/2*n-250 8299624006372416 a001 2584/39603*322^(1/24) 8299624021490691 a007 Real Root Of 213*x^4-807*x^3-232*x^2-186*x-557 8299624028235383 m001 CareFree^Rabbit/(Catalan^Rabbit) 8299624049288314 k003 Champernowne real with 31/6*n^3-8*n^2+53/6*n+2 8299624049611233 a001 610/64079*1364^(3/10) 8299624070638498 m001 (FeigenbaumKappa-Landau)/(3^(1/3)-arctan(1/2)) 8299624083258858 a007 Real Root Of -59*x^4-117*x^3-783*x^2+138*x+615 8299624093499449 r002 60th iterates of z^2 + 8299624098207142 a007 Real Root Of 503*x^4+160*x^3+919*x^2+522*x-347 8299624123441871 a001 2207/987*55^(18/55) 8299624126176198 a007 Real Root Of 91*x^4-755*x^3-470*x^2+134*x+601 8299624147223288 a007 Real Root Of 730*x^4+526*x^3+108*x^2+576*x+358 8299624149689314 k003 Champernowne real with 16/3*n^3-9*n^2+32/3*n+1 8299624170353103 m001 Trott^(ZetaQ(2)/Mills) 8299624186231846 m001 (GolombDickman-Gompertz)/(cos(1/5*Pi)-Bloch) 8299624204569359 m001 GAMMA(11/24)*ln(FeigenbaumKappa)/sin(1)^2 8299624214306708 r009 Re(z^3+c),c=-23/90+34/49*I,n=25 8299624216641583 r005 Im(z^2+c),c=5/54+30/49*I,n=19 8299624223222994 a001 6765/103682*322^(1/24) 8299624250090314 k003 Champernowne real with 11/2*n^3-10*n^2+25/2*n 8299624254861067 a001 17711/271443*322^(1/24) 8299624259476999 a001 6624/101521*322^(1/24) 8299624260150455 a001 121393/1860498*322^(1/24) 8299624260248711 a001 317811/4870847*322^(1/24) 8299624260263046 a001 832040/12752043*322^(1/24) 8299624260265137 a001 311187/4769326*322^(1/24) 8299624260265443 a001 5702887/87403803*322^(1/24) 8299624260265487 a001 14930352/228826127*322^(1/24) 8299624260265494 a001 39088169/599074578*322^(1/24) 8299624260265495 a001 14619165/224056801*322^(1/24) 8299624260265495 a001 267914296/4106118243*322^(1/24) 8299624260265495 a001 701408733/10749957122*322^(1/24) 8299624260265495 a001 1836311903/28143753123*322^(1/24) 8299624260265495 a001 686789568/10525900321*322^(1/24) 8299624260265495 a001 12586269025/192900153618*322^(1/24) 8299624260265495 a001 32951280099/505019158607*322^(1/24) 8299624260265495 a001 86267571272/1322157322203*322^(1/24) 8299624260265495 a001 32264490531/494493258286*322^(1/24) 8299624260265495 a001 591286729879/9062201101803*322^(1/24) 8299624260265495 a001 1548008755920/23725150497407*322^(1/24) 8299624260265495 a001 365435296162/5600748293801*322^(1/24) 8299624260265495 a001 139583862445/2139295485799*322^(1/24) 8299624260265495 a001 53316291173/817138163596*322^(1/24) 8299624260265495 a001 20365011074/312119004989*322^(1/24) 8299624260265495 a001 7778742049/119218851371*322^(1/24) 8299624260265495 a001 2971215073/45537549124*322^(1/24) 8299624260265495 a001 1134903170/17393796001*322^(1/24) 8299624260265495 a001 433494437/6643838879*322^(1/24) 8299624260265495 a001 165580141/2537720636*322^(1/24) 8299624260265495 a001 63245986/969323029*322^(1/24) 8299624260265498 a001 24157817/370248451*322^(1/24) 8299624260265515 a001 9227465/141422324*322^(1/24) 8299624260265631 a001 3524578/54018521*322^(1/24) 8299624260266430 a001 1346269/20633239*322^(1/24) 8299624260271906 a001 514229/7881196*322^(1/24) 8299624260309436 a001 196418/3010349*322^(1/24) 8299624260566673 a001 75025/1149851*322^(1/24) 8299624262329803 a001 28657/439204*322^(1/24) 8299624269281727 m001 1/exp(Catalan)*KhintchineHarmonic/sin(1) 8299624272864327 a007 Real Root Of -606*x^4+413*x^3-495*x^2-108*x+775 8299624274414471 a001 10946/167761*322^(1/24) 8299624296733648 a007 Real Root Of -971*x^4-463*x^3-125*x^2+536*x+727 8299624300141110 r009 Re(z^3+c),c=-49/122+55/61*I,n=3 8299624304838540 a001 610/9349*521^(1/26) 8299624339696189 a001 610/39603*1364^(7/30) 8299624350491315 k003 Champernowne real with 17/3*n^3-11*n^2+43/3*n-1 8299624357244021 a001 4181/64079*322^(1/24) 8299624374124033 a007 Real Root Of 411*x^4-694*x^3+293*x^2+955*x-1 8299624375224704 r009 Im(z^3+c),c=-29/98+36/49*I,n=4 8299624408069300 a007 Real Root Of -647*x^4+305*x^3+126*x^2+468*x+783 8299624430150805 a001 2584/271443*843^(9/28) 8299624437674662 r005 Re(z^2+c),c=-107/122+5/29*I,n=36 8299624450892315 k003 Champernowne real with 35/6*n^3-12*n^2+97/6*n-2 8299624452783310 a001 233/710647*521^(23/26) 8299624468490102 r002 13th iterates of z^2 + 8299624494727810 a001 1597/103682*843^(1/4) 8299624503623732 a001 123/5*55^(36/41) 8299624542036894 m005 (1/2*Pi-2/7)/(37/60+5/12*5^(1/2)) 8299624551293315 k003 Champernowne real with 6*n^3-13*n^2+18*n-3 8299624551527822 m001 (gamma(3)+KomornikLoreti)/(Shi(1)+ln(3)) 8299624565807038 m002 -1/4+Pi^6*Csch[Pi] 8299624574850676 m001 (exp(1)-ln(2^(1/2)+1))/(Artin+Tribonacci) 8299624596306495 m001 (Riemann2ndZero+Sarnak)/(Chi(1)+Grothendieck) 8299624598160410 a007 Real Root Of -896*x^4-55*x^3+493*x^2+230*x+245 8299624619845809 m001 (gamma(1)-ReciprocalLucas)/(GAMMA(2/3)+ln(3)) 8299624624589909 m005 (1/2*5^(1/2)+8/11)/(31/24+5/12*5^(1/2)) 8299624642577877 a001 6765/710647*843^(9/28) 8299624643236290 a001 329/90481*843^(13/28) 8299624651694315 k003 Champernowne real with 37/6*n^3-14*n^2+119/6*n-4 8299624656240085 a001 305/12238*1364^(1/6) 8299624673570569 a001 17711/1860498*843^(9/28) 8299624678092342 a001 46368/4870847*843^(9/28) 8299624680886951 a001 28657/3010349*843^(9/28) 8299624684882974 a001 (5^(1/4)+1)^(375/38) 8299624692725106 a001 10946/1149851*843^(9/28) 8299624706255660 m005 (1/2*Catalan+5/7)/(7/10*3^(1/2)+1/5) 8299624748436596 a007 Real Root Of 789*x^4+340*x^3+195*x^2+251*x-106 8299624752095315 k003 Champernowne real with 19/3*n^3-15*n^2+65/3*n-5 8299624757066415 r002 8th iterates of z^2 + 8299624768645783 a007 Real Root Of -952*x^4+43*x^3-541*x^2-900*x+102 8299624769031872 m009 (3/5*Psi(1,2/3)-1/3)/(6*Psi(1,2/3)-1/4) 8299624773865027 a001 4181/439204*843^(9/28) 8299624805964425 h001 (1/4*exp(2)+4/7)/(7/9*exp(1)+4/5) 8299624852496316 k003 Champernowne real with 13/2*n^3-16*n^2+47/2*n-6 8299624855835528 m009 (16/5*Catalan+2/5*Pi^2-5)/(Psi(1,2/3)-4/5) 8299624866572454 a007 Real Root Of 932*x^4-781*x^3+467*x^2+962*x-412 8299624869031920 a001 610/4870847*3571^(27/34) 8299624884607931 a007 Real Root Of -957*x^4-685*x^3+86*x^2+613*x+512 8299624897468167 m001 exp(Paris)/GlaisherKinkelin/Zeta(5) 8299624903513612 a001 610/15127*1364^(1/10) 8299624907318287 a001 610/3010349*3571^(25/34) 8299624923810709 r005 Re(z^2+c),c=-15/22+35/118*I,n=19 8299624924966205 a001 1597/24476*322^(1/24) 8299624944685594 a007 Real Root Of -695*x^4+245*x^3+365*x^2+767*x+855 8299624945600074 a001 305/930249*3571^(23/34) 8299624952897316 k003 Champernowne real with 20/3*n^3-17*n^2+76/3*n-7 8299624968603438 r009 Re(z^3+c),c=-15/94+17/28*I,n=11 8299624983137618 k002 Champernowne real with 17*n^2+240*n-249 8299624983893850 a001 610/1149851*3571^(21/34) 8299624998275467 m001 (sqrt(5)*gamma+BesselI(1,1))/sqrt(5) 8299624998275467 m001 1/5*(5^(1/2)*gamma+BesselI(1,1))*5^(1/2) 8299625022156239 a001 610/710647*3571^(19/34) 8299625032864727 r009 Im(z^3+c),c=-21/38+13/27*I,n=53 8299625042663770 m005 (1/2*5^(1/2)-7/9)/(6*gamma+7/11) 8299625053298316 k003 Champernowne real with 41/6*n^3-18*n^2+163/6*n-8 8299625057155921 r005 Im(z^2+c),c=-17/30+7/90*I,n=3 8299625060500800 a001 305/219602*3571^(1/2) 8299625082456582 m001 Ei(1,1)+exp(1/Pi)-LandauRamanujan 8299625084279232 r005 Re(z^2+c),c=-13/74+35/39*I,n=11 8299625098630234 a001 610/271443*3571^(15/34) 8299625110461243 a007 Real Root Of -619*x^4+979*x^3-681*x^2-638*x+793 8299625117453724 a001 109801/2*75025^(15/23) 8299625135780216 r005 Im(z^2+c),c=-35/82+7/51*I,n=34 8299625137322879 a001 610/167761*3571^(13/34) 8299625149755680 m001 (5^(1/2)+exp(-1/2*Pi))/(FeigenbaumD+MertensB1) 8299625153699316 k003 Champernowne real with 7*n^3-19*n^2+29*n-9 8299625164402583 a007 Real Root Of -66*x^4-167*x^3-613*x^2+771*x+998 8299625168713263 r005 Im(z^2+c),c=-1/9+36/43*I,n=19 8299625174541018 a001 305/51841*3571^(11/34) 8299625189521253 m001 (Porter+Riemann1stZero)/(BesselJ(0,1)-gamma) 8299625215619464 a001 610/64079*3571^(9/34) 8299625232774268 a007 Real Root Of -207*x^4+835*x^3+62*x^2+652*x-963 8299625246591497 a001 610/39603*3571^(7/34) 8299625254010031 k003 Champernowne real with 43/6*n^3-20*n^2+185/6*n-10 8299625255023255 a007 Real Root Of 726*x^4+345*x^3+253*x^2-303*x-573 8299625258224265 r005 Re(z^2+c),c=13/114+26/53*I,n=21 8299625260305769 r002 8th iterates of z^2 + 8299625264518014 a001 34/5779*843^(11/28) 8299625292183044 a001 610/15127*3571^(3/34) 8299625295463531 a007 Real Root Of -866*x^4+896*x^3-422*x^2-636*x+686 8299625304022462 a001 305/12238*3571^(5/34) 8299625314686556 a007 Real Root Of -204*x^4+833*x^3-486*x^2-354*x+614 8299625318411162 a001 610/4870847*9349^(27/38) 8299625323410178 a001 610/3010349*9349^(25/38) 8299625325222069 m005 (1/3*2^(1/2)-1/2)/(9/11*Pi+7/8) 8299625328404615 a001 305/930249*9349^(23/38) 8299625330006320 a001 1597/167761*843^(9/28) 8299625332139366 a001 610/9349*1364^(1/30) 8299625333411040 a001 610/1149851*9349^(21/38) 8299625338386079 a001 610/710647*9349^(1/2) 8299625342114072 a001 610/15127*9349^(3/38) 8299625343443289 a001 305/219602*9349^(17/38) 8299625345112264 a001 4/89*28657^(30/59) 8299625348285372 a001 610/271443*9349^(15/38) 8299625348621120 a001 610/15127*24476^(1/14) 8299625349478875 a001 610/15127*64079^(3/46) 8299625349608307 a001 610/15127*439204^(1/18) 8299625349610691 a001 610/15127*7881196^(1/22) 8299625349610698 a001 610/15127*33385282^(1/24) 8299625349610817 a001 610/15127*1860498^(1/20) 8299625349658951 a001 610/15127*103682^(1/16) 8299625349971501 a001 610/15127*39603^(3/44) 8299625350312996 h001 (5/7*exp(1)+6/11)/(6/7*exp(1)+2/3) 8299625352330981 a001 610/15127*15127^(3/40) 8299625353690666 a001 610/167761*9349^(13/38) 8299625354284026 m001 1/ln(Ei(1))*Rabbit^2/GAMMA(7/24)^2 8299625354410131 k003 Champernowne real with 22/3*n^3-21*n^2+98/3*n-11 8299625357621454 a001 305/51841*9349^(11/38) 8299625363097229 a001 610/39603*9349^(7/38) 8299625363304534 m009 (5/6*Psi(1,3/4)+4)/(3/4*Psi(1,1/3)-1/5) 8299625365412548 a001 610/64079*9349^(9/38) 8299625370327474 a001 610/15127*5778^(1/12) 8299625373016641 a001 610/87403803*24476^(13/14) 8299625373479395 m001 (3^(1/2)-GAMMA(3/4))/(-ln(2)+Conway) 8299625374336070 a001 305/16692641*24476^(5/6) 8299625374995815 a001 610/20633239*24476^(11/14) 8299625376974600 a001 610/4870847*24476^(9/14) 8299625377635583 a001 610/3010349*24476^(25/42) 8299625378280343 a001 610/39603*24476^(1/6) 8299625378291988 a001 305/930249*24476^(23/42) 8299625378960381 a001 610/1149851*24476^(1/2) 8299625379597387 a001 610/710647*24476^(19/42) 8299625380281769 a001 610/39603*64079^(7/46) 8299625380316565 a001 305/219602*24476^(17/42) 8299625380589353 a001 610/39603*20633239^(1/10) 8299625380589355 a001 610/39603*17393796001^(1/14) 8299625380589355 a001 610/39603*14662949395604^(1/18) 8299625380589355 a001 610/39603*505019158607^(1/16) 8299625380589355 a001 610/39603*599074578^(1/12) 8299625380591410 a001 610/39603*710647^(1/8) 8299625380820615 a001 610/271443*24476^(5/14) 8299625381431231 a001 610/39603*39603^(7/44) 8299625381480632 a001 305/51841*24476^(11/42) 8299625381887876 a001 610/167761*24476^(13/42) 8299625384625731 a001 305/51841*64079^(11/46) 8299625384694387 a001 610/4870847*64079^(27/46) 8299625384783535 a001 610/3010349*64079^(25/46) 8299625384868103 a001 305/930249*64079^(1/2) 8299625384933694 a001 610/64079*24476^(3/14) 8299625384964660 a001 610/1149851*64079^(21/46) 8299625385029830 a001 610/710647*64079^(19/46) 8299625385109058 a001 305/51841*7881196^(1/6) 8299625385109081 a001 305/51841*312119004989^(1/10) 8299625385109081 a001 305/51841*1568397607^(1/8) 8299625385109386 a001 610/271443*64079^(15/46) 8299625385177172 a001 305/219602*64079^(17/46) 8299625385604811 a001 610/167761*64079^(13/46) 8299625385615731 a001 610/370248451*167761^(9/10) 8299625385674704 a001 305/16692641*167761^(7/10) 8299625385680029 a001 610/271443*167761^(3/10) 8299625385734607 a001 610/3010349*167761^(1/2) 8299625385756548 a001 610/271443*439204^(5/18) 8299625385768469 a001 610/271443*7881196^(5/22) 8299625385768496 a001 610/271443*20633239^(3/14) 8299625385768500 a001 610/271443*2537720636^(1/6) 8299625385768500 a001 610/271443*312119004989^(3/22) 8299625385768500 a001 610/271443*28143753123^(3/20) 8299625385768500 a001 610/271443*228826127^(3/16) 8299625385768501 a001 610/271443*33385282^(5/24) 8299625385769099 a001 610/271443*1860498^(1/4) 8299625385840507 a001 610/1568397607*439204^(17/18) 8299625385845287 a001 610/370248451*439204^(5/6) 8299625385850067 a001 610/87403803*439204^(13/18) 8299625385854868 a001 610/20633239*439204^(11/18) 8299625385859279 a001 610/4870847*439204^(1/2) 8299625385864708 a001 610/710647*817138163596^(1/6) 8299625385864708 a001 610/710647*87403803^(1/4) 8299625385870687 a001 610/1149851*439204^(7/18) 8299625385878137 a001 305/3940598*1149851^(1/2) 8299625385878744 a001 305/930249*4106118243^(1/4) 8299625385880633 a001 610/12752043*3010349^(1/2) 8299625385880737 a001 610/4870847*7881196^(9/22) 8299625385880792 a001 610/4870847*2537720636^(3/10) 8299625385880792 a001 610/4870847*14662949395604^(3/14) 8299625385880792 a001 610/4870847*192900153618^(1/4) 8299625385880795 a001 610/4870847*33385282^(3/8) 8299625385881014 a001 610/28143753123*7881196^(21/22) 8299625385881027 a001 610/6643838879*7881196^(19/22) 8299625385881031 a001 610/4106118243*7881196^(5/6) 8299625385881039 a001 610/1568397607*7881196^(17/22) 8299625385881051 a001 610/370248451*7881196^(15/22) 8299625385881062 a001 610/87403803*7881196^(13/22) 8299625385881091 a001 610/12752043*9062201101803^(1/4) 8299625385881095 a001 610/20633239*7881196^(1/2) 8299625385881124 a001 305/22768774562*20633239^(13/14) 8299625385881124 a001 610/28143753123*20633239^(9/10) 8299625385881125 a001 305/16692641*20633239^(1/2) 8299625385881127 a001 610/4106118243*20633239^(11/14) 8299625385881128 a001 610/969323029*20633239^(7/10) 8299625385881129 a001 610/370248451*20633239^(9/14) 8299625385881135 a001 305/16692641*2537720636^(7/18) 8299625385881135 a001 305/16692641*17393796001^(5/14) 8299625385881135 a001 305/16692641*312119004989^(7/22) 8299625385881135 a001 305/16692641*14662949395604^(5/18) 8299625385881135 a001 305/16692641*505019158607^(5/16) 8299625385881135 a001 305/16692641*28143753123^(7/20) 8299625385881135 a001 305/16692641*599074578^(5/12) 8299625385881135 a001 305/16692641*228826127^(7/16) 8299625385881141 a001 610/87403803*141422324^(1/2) 8299625385881141 a001 610/87403803*73681302247^(3/8) 8299625385881142 a001 305/22768774562*141422324^(5/6) 8299625385881142 a001 610/228826127*969323029^(1/2) 8299625385881142 a001 305/299537289*6643838879^(1/2) 8299625385881142 a001 610/1568397607*45537549124^(1/2) 8299625385881142 a001 610/4106118243*2537720636^(11/18) 8299625385881142 a001 610/5600748293801*2537720636^(17/18) 8299625385881142 a001 610/2139295485799*2537720636^(9/10) 8299625385881142 a001 610/505019158607*2537720636^(5/6) 8299625385881142 a001 305/22768774562*2537720636^(13/18) 8299625385881142 a001 610/28143753123*2537720636^(7/10) 8299625385881142 a001 610/4106118243*312119004989^(1/2) 8299625385881142 a001 610/4106118243*3461452808002^(11/24) 8299625385881142 a001 610/4106118243*28143753123^(11/20) 8299625385881142 a001 305/5374978561*2139295485799^(1/2) 8299625385881142 a001 610/28143753123*17393796001^(9/14) 8299625385881142 a001 610/23725150497407*17393796001^(13/14) 8299625385881142 a001 305/408569081798*17393796001^(11/14) 8299625385881142 a001 610/28143753123*14662949395604^(1/2) 8299625385881142 a001 610/28143753123*505019158607^(9/16) 8299625385881142 a001 610/28143753123*192900153618^(7/12) 8299625385881142 a001 610/5600748293801*45537549124^(5/6) 8299625385881142 a001 610/505019158607*312119004989^(15/22) 8299625385881142 a001 610/5600748293801*312119004989^(17/22) 8299625385881142 a001 610/23725150497407*14662949395604^(13/18) 8299625385881142 a001 610/2139295485799*14662949395604^(9/14) 8299625385881142 a001 305/408569081798*14662949395604^(11/18) 8299625385881142 a001 610/23725150497407*505019158607^(13/16) 8299625385881142 a001 305/408569081798*505019158607^(11/16) 8299625385881142 a001 610/2139295485799*192900153618^(3/4) 8299625385881142 a001 610/23725150497407*73681302247^(7/8) 8299625385881142 a001 305/22768774562*312119004989^(13/22) 8299625385881142 a001 305/22768774562*3461452808002^(13/24) 8299625385881142 a001 305/22768774562*73681302247^(5/8) 8299625385881142 a001 610/505019158607*28143753123^(3/4) 8299625385881142 a001 610/5600748293801*28143753123^(17/20) 8299625385881142 a001 305/22768774562*28143753123^(13/20) 8299625385881142 a001 610/17393796001*5600748293801^(1/2) 8299625385881142 a001 610/6643838879*817138163596^(1/2) 8299625385881142 a001 610/119218851371*4106118243^(3/4) 8299625385881142 a001 305/1268860318*119218851371^(1/2) 8299625385881142 a001 610/4106118243*1568397607^(5/8) 8299625385881142 a001 305/408569081798*1568397607^(7/8) 8299625385881142 a001 610/969323029*17393796001^(1/2) 8299625385881142 a001 610/969323029*14662949395604^(7/18) 8299625385881142 a001 610/969323029*505019158607^(7/16) 8299625385881142 a001 610/28143753123*599074578^(3/4) 8299625385881142 a001 305/408569081798*599074578^(11/12) 8299625385881142 a001 610/969323029*599074578^(7/12) 8299625385881142 a001 610/370248451*2537720636^(1/2) 8299625385881142 a001 610/370248451*312119004989^(9/22) 8299625385881142 a001 610/370248451*14662949395604^(5/14) 8299625385881142 a001 610/370248451*192900153618^(5/12) 8299625385881142 a001 610/370248451*28143753123^(9/20) 8299625385881142 a001 610/4106118243*228826127^(11/16) 8299625385881142 a001 305/22768774562*228826127^(13/16) 8299625385881142 a001 610/505019158607*228826127^(15/16) 8299625385881142 a001 610/370248451*228826127^(9/16) 8299625385881142 a001 305/70711162*370248451^(1/2) 8299625385881143 a001 610/6643838879*87403803^(3/4) 8299625385881143 a001 610/54018521*54018521^(1/2) 8299625385881145 a001 610/87403803*33385282^(13/24) 8299625385881147 a001 610/370248451*33385282^(5/8) 8299625385881147 a001 610/1568397607*33385282^(17/24) 8299625385881148 a001 610/6643838879*33385282^(19/24) 8299625385881148 a001 610/28143753123*33385282^(7/8) 8299625385881149 a001 610/119218851371*33385282^(23/24) 8299625385881161 a001 610/20633239*312119004989^(3/10) 8299625385881161 a001 610/20633239*1568397607^(3/8) 8299625385881165 a001 610/20633239*33385282^(11/24) 8299625385881180 a001 610/1568397607*12752043^(3/4) 8299625385881276 a001 305/3940598*1322157322203^(1/4) 8299625385881871 a001 610/4870847*1860498^(9/20) 8299625385882051 a001 610/3010349*20633239^(5/14) 8299625385882058 a001 610/3010349*2537720636^(5/18) 8299625385882058 a001 610/3010349*312119004989^(5/22) 8299625385882058 a001 610/3010349*3461452808002^(5/24) 8299625385882058 a001 610/3010349*28143753123^(1/4) 8299625385882058 a001 610/3010349*228826127^(5/16) 8299625385882480 a001 610/20633239*1860498^(11/20) 8299625385882533 a001 305/16692641*1860498^(7/12) 8299625385882699 a001 610/87403803*1860498^(13/20) 8299625385882940 a001 610/370248451*1860498^(3/4) 8299625385883057 a001 610/3010349*1860498^(5/12) 8299625385883180 a001 610/1568397607*1860498^(17/20) 8299625385883340 a001 610/4106118243*1860498^(11/12) 8299625385883420 a001 610/6643838879*1860498^(19/20) 8299625385887377 a001 610/1149851*7881196^(7/22) 8299625385887413 a001 610/1149851*20633239^(3/10) 8299625385887419 a001 610/1149851*17393796001^(3/14) 8299625385887419 a001 610/1149851*14662949395604^(1/6) 8299625385887419 a001 610/1149851*599074578^(1/4) 8299625385887421 a001 610/1149851*33385282^(7/24) 8299625385888258 a001 610/1149851*1860498^(7/20) 8299625385891406 a001 305/16692641*710647^(5/8) 8299625385893582 a001 610/1149851*710647^(3/8) 8299625385895522 a001 610/969323029*710647^(7/8) 8299625385924167 a001 305/219602*45537549124^(1/6) 8299625385924180 a001 305/219602*12752043^(1/4) 8299625385965623 a001 610/87403803*271443^(3/4) 8299625386009769 a001 610/271443*103682^(5/16) 8299625386176043 a001 610/167761*141422324^(1/6) 8299625386176043 a001 610/167761*73681302247^(1/8) 8299625386204204 a001 610/167761*271443^(1/4) 8299625386225196 a001 610/1149851*103682^(7/16) 8299625386315077 a001 610/4870847*103682^(9/16) 8299625386411954 a001 610/20633239*103682^(11/16) 8299625386432027 a001 305/51841*39603^(1/4) 8299625386508441 a001 610/87403803*103682^(13/16) 8299625386604949 a001 610/370248451*103682^(15/16) 8299625386936683 a001 610/39603*15127^(7/40) 8299625387240843 a001 305/12238*9349^(5/38) 8299625387506956 a001 610/64079*64079^(9/46) 8299625387572518 a001 610/271443*39603^(15/44) 8299625387739526 a001 610/167761*39603^(13/44) 8299625387895254 a001 610/64079*439204^(1/6) 8299625387902406 a001 610/64079*7881196^(3/22) 8299625387902425 a001 610/64079*2537720636^(1/10) 8299625387902425 a001 610/64079*14662949395604^(1/14) 8299625387902425 a001 610/64079*192900153618^(1/12) 8299625387902425 a001 610/64079*33385282^(1/8) 8299625387902784 a001 610/64079*1860498^(3/20) 8299625387968721 a001 305/219602*39603^(17/44) 8299625388047186 a001 610/64079*103682^(3/16) 8299625388149797 a001 610/710647*39603^(19/44) 8299625388413045 a001 610/1149851*39603^(21/44) 8299625388644905 a001 305/930249*39603^(23/44) 8299625388888755 a001 610/3010349*39603^(25/44) 8299625388984835 a001 610/64079*39603^(9/44) 8299625389128025 a001 610/4870847*39603^(27/44) 8299625389850001 a001 610/20633239*39603^(3/4) 8299625395083453 a001 305/51841*15127^(11/40) 8299625396063275 a001 610/64079*15127^(9/40) 8299625397963938 a001 610/167761*15127^(13/40) 8299625398051252 r008 a(0)=0,K{-n^6,69-22*n^3+37*n^2+37*n} 8299625398085924 a001 305/12238*24476^(5/42) 8299625399369916 a001 610/271443*15127^(3/8) 8299625399515514 a001 305/12238*64079^(5/46) 8299625399705729 a001 305/12238*167761^(1/10) 8299625399735218 a001 305/12238*20633239^(1/14) 8299625399735219 a001 305/12238*2537720636^(1/18) 8299625399735219 a001 305/12238*312119004989^(1/22) 8299625399735219 a001 305/12238*28143753123^(1/20) 8299625399735219 a001 305/12238*228826127^(1/16) 8299625399735419 a001 305/12238*1860498^(1/12) 8299625400336558 a001 305/12238*39603^(5/44) 8299625401339106 a001 305/219602*15127^(17/40) 8299625403093169 a001 610/710647*15127^(19/40) 8299625404269025 a001 305/12238*15127^(1/8) 8299625404929403 a001 610/1149851*15127^(21/40) 8299625406734250 a001 305/930249*15127^(23/40) 8299625408551086 a001 610/3010349*15127^(5/8) 8299625409387221 r005 Re(z^2+c),c=-29/34+1/19*I,n=17 8299625410363342 a001 610/4870847*15127^(27/40) 8299625417617774 a001 305/16692641*15127^(7/8) 8299625428928502 a001 610/39603*5778^(7/36) 8299625434263181 a001 305/12238*5778^(5/36) 8299625439081194 s002 sum(A108632[n]/(n^3*2^n+1),n=1..infinity) 8299625447510530 m005 (1/2*exp(1)-4)/(5/6*exp(1)+11/12) 8299625450052755 a001 610/64079*5778^(1/4) 8299625454810231 k003 Champernowne real with 15/2*n^3-22*n^2+69/2*n-12 8299625461070596 a001 305/51841*5778^(11/36) 8299625461695848 a001 610/9349*3571^(1/34) 8299625468164794 q001 1108/1335 8299625475948743 a001 610/167761*5778^(13/36) 8299625476812151 a001 6765/1149851*843^(11/28) 8299625477603520 a001 987/439204*843^(15/28) 8299625478339525 a001 610/9349*9349^(1/38) 8299625480508541 a001 610/9349*24476^(1/42) 8299625480794459 a001 610/9349*64079^(1/46) 8299625480958668 a001 610/9349*39603^(1/44) 8299625481745161 a001 610/9349*15127^(1/40) 8299625487743992 a001 610/9349*5778^(1/36) 8299625489352385 a001 610/271443*5778^(5/12) 8299625503319237 a001 305/219602*5778^(17/36) 8299625505728954 r005 Im(z^2+c),c=25/78+24/47*I,n=26 8299625507785448 a001 17711/3010349*843^(11/28) 8299625508185276 a007 Real Root Of -672*x^4+286*x^3-69*x^2+564*x+998 8299625509354948 a001 610/15127*2207^(3/32) 8299625515097252 a001 28657/4870847*843^(11/28) 8299625517070962 a001 610/710647*5778^(19/36) 8299625518062432 m001 GAMMA(1/4)^2*BesselK(1,1)*exp(sinh(1))^2 8299625526927999 a001 5473/930249*843^(11/28) 8299625530904859 a001 610/1149851*5778^(7/12) 8299625534086484 a001 610/9349*2207^(1/32) 8299625539173328 r005 Im(z^2+c),c=9/22+12/35*I,n=58 8299625544707369 a001 305/930249*5778^(23/36) 8299625555210331 k003 Champernowne real with 23/3*n^3-23*n^2+109/3*n-13 8299625558521867 a001 610/3010349*5778^(25/36) 8299625572331786 a001 610/4870847*5778^(3/4) 8299625588535604 m001 CopelandErdos*Grothendieck+HardyLittlewoodC5 8299625603976312 r002 2th iterates of z^2 + 8299625608017143 a001 4181/710647*843^(11/28) 8299625613765710 a001 610/20633239*5778^(11/12) 8299625655610431 k003 Champernowne real with 47/6*n^3-24*n^2+229/6*n-14 8299625665975640 a001 305/12238*2207^(5/32) 8299625674148693 a007 Real Root Of -266*x^4+959*x^3+479*x^2+603*x+845 8299625686796407 b008 ArcCot[EulerGamma+CosIntegral[1]] 8299625704438603 m001 1/Lehmer^2*FeigenbaumDelta/ln(GAMMA(19/24)) 8299625734616690 a007 Real Root Of 64*x^4+638*x^3+966*x^2+659*x 8299625753325946 a001 610/39603*2207^(7/32) 8299625756010531 k003 Champernowne real with 8*n^3-25*n^2+40*n-15 8299625781478288 a007 Real Root Of -536*x^4+130*x^3+738*x^2+284*x+56 8299625798492612 m001 Ei(1)^polylog(4,1/2)/(Ei(1)^cos(1/5*Pi)) 8299625798492612 m001 Ei(1)^polylog(4,1/2)/(Ei(1)^cos(Pi/5)) 8299625811588917 m001 (GAMMA(3/4)-3^(1/3))/(Kolakoski-Magata) 8299625812680267 b008 -84+Coth[Pi] 8299625851802123 m001 1/exp(BesselK(0,1))/Rabbit/GAMMA(11/12)^2 8299625853985262 a007 Real Root Of 337*x^4-667*x^3-772*x^2+334*x+476 8299625856410631 k003 Champernowne real with 49/6*n^3-26*n^2+251/6*n-16 8299625859977940 b008 1/Sqrt[3]+Sinh[1/4] 8299625867135188 a001 610/64079*2207^(9/32) 8299625870396774 r002 35th iterates of z^2 + 8299625874770427 a007 Real Root Of -611*x^4-995*x^3-272*x^2+743*x+63 8299625875178477 a007 Real Root Of 583*x^4+56*x^3+889*x^2+447*x-486 8299625881474174 a007 Real Root Of 708*x^4+319*x^3+223*x^2+540*x+141 8299625886427719 a001 377/15127*322^(5/24) 8299625897944213 a001 610/9349*843^(1/28) 8299625912251632 p001 sum(1/(260*n+123)/(16^n),n=0..infinity) 8299625913933853 m001 1/ln(GAMMA(1/3))*Catalan^2/GAMMA(23/24) 8299625917806959 a007 Real Root Of -652*x^4+739*x^3-15*x^2-40*x+709 8299625930360471 r005 Re(z^2+c),c=-31/34+9/98*I,n=26 8299625956810731 k003 Champernowne real with 25/3*n^3-27*n^2+131/3*n-17 8299625963062263 a001 9349/2*377^(3/31) 8299625970838017 a001 305/51841*2207^(11/32) 8299625971797714 s001 sum(exp(-4*Pi/5)^n*A062366[n],n=1..infinity) 8299625972831873 r005 Im(z^2+c),c=-9/13+5/41*I,n=23 8299625975212178 a007 Real Root Of 144*x^4-859*x^3+222*x^2+45*x-675 8299625986138218 k002 Champernowne real with 35/2*n^2+477/2*n-248 8299626000953870 m001 GaussAGM-HeathBrownMoroz^AlladiGrinstead 8299626002414102 m002 -Pi^3-Pi^4+Pi^6-3*Coth[Pi] 8299626009027015 a007 Real Root Of -684*x^4-51*x^3+294*x^2+558*x+556 8299626009527884 m002 -E^(2*Pi)-Pi^5+Sinh[Pi] 8299626010103941 r009 Re(z^3+c),c=-1/10+12/43*I,n=6 8299626013829989 a007 Real Root Of 466*x^4-567*x^3+887*x^2-817*x+62 8299626026300291 m005 (1/2*exp(1)+1/5)/(3/5*Zeta(3)-10/11) 8299626042365127 a001 55/3010349*199^(31/43) 8299626043592279 a005 (1/cos(4/157*Pi))^1378 8299626057210831 k003 Champernowne real with 17/2*n^3-28*n^2+91/2*n-18 8299626078401155 a001 610/167761*2207^(13/32) 8299626091814138 a007 Real Root Of 985*x^4+302*x^3-714*x^2-364*x-105 8299626098670180 a001 2584/710647*843^(13/28) 8299626108396197 m006 (1/3*exp(2*Pi)-2/3)/(4*exp(2*Pi)+2/3) 8299626157610931 k003 Champernowne real with 26/3*n^3-29*n^2+142/3*n-19 8299626163810409 a001 1597/271443*843^(11/28) 8299626175498801 s001 sum(exp(-Pi/4)^(n-1)*A128736[n],n=1..infinity) 8299626180121591 m001 (ThueMorse+ZetaQ(2))/(Psi(2,1/3)-Shi(1)) 8299626182966004 m001 GaussAGM*Gompertz^Trott 8299626184489787 a001 610/271443*2207^(15/32) 8299626199169134 r009 Re(z^3+c),c=-11/60+11/13*I,n=17 8299626211269208 m005 (1/2*gamma-1/8)/(5/7*Pi-3/11) 8299626215484884 a001 317811/7*322^(46/51) 8299626252570003 a007 Real Root Of 673*x^4-133*x^3+271*x^2+282*x-348 8299626258011031 k003 Champernowne real with 53/6*n^3-30*n^2+295/6*n-20 8299626291141633 a001 305/219602*2207^(17/32) 8299626309105486 a007 Real Root Of 881*x^4-858*x^3+934*x^2+959*x-756 8299626311015122 a001 55/15126*843^(13/28) 8299626311755707 a001 141/101521*843^(17/28) 8299626336915326 r005 Im(z^2+c),c=-115/126+11/21*I,n=3 8299626338712333 m001 (AlladiGrinstead-ZetaP(3))^HardyLittlewoodC5 8299626341995832 a001 17711/4870847*843^(13/28) 8299626357830557 a007 Real Root Of -252*x^4+319*x^3-403*x^2+15*x+592 8299626358411131 k003 Champernowne real with 9*n^3-31*n^2+51*n-21 8299626359922130 a007 Real Root Of 554*x^4+998*x^3+615*x^2-823*x-799 8299626361142964 a001 10946/3010349*843^(13/28) 8299626367923638 a007 Real Root Of -454*x^4+616*x^3-475*x^2+87*x+967 8299626382852572 m001 -GaussAGM(1,1/sqrt(2))/(-GAMMA(2/3)+1/3) 8299626382852572 m001 GaussAGM(1,1/sqrt(2))/(GAMMA(2/3)-1/3) 8299626397578352 a001 610/710647*2207^(19/32) 8299626431323460 a007 Real Root Of 443*x^4-278*x^3-670*x^2-974*x-716 8299626442251514 a001 4181/1149851*843^(13/28) 8299626449556571 a007 Real Root Of -666*x^4+558*x^3-537*x^2-118*x+907 8299626454441872 r009 Re(z^3+c),c=-47/74+7/39*I,n=2 8299626458811231 k003 Champernowne real with 55/6*n^3-32*n^2+317/6*n-22 8299626481260828 v002 sum(1/(3^n+(5*n^2+19*n-7)),n=1..infinity) 8299626483856578 l006 ln(133/305) 8299626500551526 m001 ln(Niven)^2*LaplaceLimit*GAMMA(5/24) 8299626504097243 a001 610/1149851*2207^(21/32) 8299626510151171 b008 -83+Csch[2*Pi] 8299626512756136 b008 -83+Sech[2*Pi] 8299626520720568 m006 (1/4*Pi-2)/(3/5*exp(Pi)+3/4) 8299626530359590 p003 LerchPhi(1/16,5,131/200) 8299626550985432 r009 Im(z^3+c),c=-31/56+22/47*I,n=53 8299626559211331 k003 Champernowne real with 28/3*n^3-33*n^2+164/3*n-23 8299626600928179 a001 610/15127*843^(3/28) 8299626603652250 m009 (3/4*Psi(1,3/4)+4/5)/(3*Pi^2+3) 8299626610584750 a001 305/930249*2207^(23/32) 8299626640782244 m001 Si(Pi)+ln(2^(1/2)+1)+2*Pi/GAMMA(5/6) 8299626640782244 m001 ln(1+sqrt(2))+Si(Pi)+GAMMA(1/6) 8299626659611431 k003 Champernowne real with 19/2*n^3-34*n^2+113/2*n-24 8299626675466021 m001 arctan(1/3)*GAMMA(7/12)/Lehmer 8299626717084246 a001 610/3010349*2207^(25/32) 8299626720437528 m001 (5^(1/2)-GAMMA(5/6))/(GolombDickman+Rabbit) 8299626729140231 r001 5i'th iterates of 2*x^2-1 of 8299626760011531 k003 Champernowne real with 29/3*n^3-35*n^2+175/3*n-25 8299626762552987 m005 (1/2*Pi-2/5)/(5/7*Pi-5/6) 8299626801116123 a007 Real Root Of -907*x^4+758*x^3-687*x^2-606*x+834 8299626804842698 a001 233/439204*521^(21/26) 8299626823579165 a001 610/4870847*2207^(27/32) 8299626857155562 a003 cos(Pi*16/53)+cos(Pi*45/107) 8299626860411632 k003 Champernowne real with 59/6*n^3-36*n^2+361/6*n-26 8299626860660514 m005 (1/3*gamma+1/9)/(3/10*Catalan+1/11) 8299626893251312 a007 Real Root Of 417*x^4-53*x^3+481*x^2-197*x-723 8299626896182218 a007 Real Root Of -117*x^4+781*x^3+64*x^2+665*x-987 8299626932904600 a001 2584/1149851*843^(15/28) 8299626936318262 a007 Real Root Of 580*x^4-370*x^3-68*x^2+524*x-5 8299626960811732 k003 Champernowne real with 10*n^3-37*n^2+62*n-27 8299626964261424 a007 Real Root Of -531*x^4+775*x^3+721*x^2-233*x+5 8299626989138818 k002 Champernowne real with 18*n^2+237*n-247 8299626996902325 r005 Re(z^2+c),c=-97/114+1/17*I,n=25 8299626997510452 a007 Real Root Of 834*x^4+532*x^3+761*x^2+607*x-112 8299626998177792 a001 1597/439204*843^(13/28) 8299627002614130 r005 Im(z^2+c),c=-43/34+17/53*I,n=11 8299627045707264 m001 Psi(2,1/3)^(LambertW(1)*Otter) 8299627048379919 m001 Thue^(Catalan*Totient) 8299627061211832 k003 Champernowne real with 61/6*n^3-38*n^2+383/6*n-28 8299627068660837 b008 ArcSin[Erfc[InverseGudermannian[1]]] 8299627107078537 a003 sin(Pi*2/77)/cos(Pi*7/116) 8299627122839457 a001 228826127/8*2178309^(3/13) 8299627122839535 a001 54018521/8*1134903170^(3/13) 8299627122839588 a001 12752043/8*591286729879^(3/13) 8299627123395903 a007 Real Root Of 506*x^4-978*x^3-201*x^2-344*x+743 8299627126107649 r002 15th iterates of z^2 + 8299627142703085 a003 cos(Pi*13/69)/sin(Pi*57/115) 8299627144752755 a001 969323029/8*4181^(3/13) 8299627145230166 a001 6765/3010349*843^(15/28) 8299627145990149 a001 987/1149851*843^(19/28) 8299627161611932 k003 Champernowne real with 31/3*n^3-39*n^2+197/3*n-29 8299627183389566 r005 Im(z^2+c),c=-73/60+13/54*I,n=9 8299627195353433 a001 10946/4870847*843^(15/28) 8299627207622074 b008 82+Tanh[Pi] 8299627207622074 m002 82+Tanh[Pi] 8299627220385750 m001 (Zeta(1/2)+Lehmer)/(MertensB2+Trott) 8299627255809543 m001 OneNinth^2*ln(Tribonacci)*sinh(1) 8299627262012032 k003 Champernowne real with 21/2*n^3-40*n^2+135/2*n-30 8299627265443295 b008 5*(9+5^Pi) 8299627270954005 r005 Re(z^2+c),c=-115/118+10/27*I,n=6 8299627276454583 a001 4181/1860498*843^(15/28) 8299627315342023 a007 Real Root Of 892*x^4-575*x^3-929*x^2+676*x+449 8299627356974873 m005 (1/3*5^(1/2)-1/3)/(1/11*2^(1/2)-5/8) 8299627362412132 k003 Champernowne real with 32/3*n^3-41*n^2+208/3*n-31 8299627372163064 r009 Im(z^3+c),c=-16/29+16/33*I,n=29 8299627390193389 r005 Re(z^2+c),c=1/82+19/51*I,n=25 8299627423904691 a007 Real Root Of 993*x^4-962*x^3+6*x^2+951*x-236 8299627430698007 a007 Real Root Of -157*x^4+904*x^3-119*x^2-704*x+89 8299627450323374 m001 (OneNinth+ZetaP(4))/(KhinchinLevy+MertensB2) 8299627460858852 r005 Im(z^2+c),c=-4/7+8/53*I,n=43 8299627461415646 q001 3119/3758 8299627462812232 k003 Champernowne real with 65/6*n^3-42*n^2+427/6*n-32 8299627471900442 r005 Re(z^2+c),c=-15/14+16/101*I,n=58 8299627485264473 a001 305/12238*843^(5/28) 8299627486982923 m001 (Conway-exp(Pi))/(Mills+PisotVijayaraghavan) 8299627503195827 r002 60th iterates of z^2 + 8299627506044171 a007 Real Root Of 425*x^4+595*x^3+431*x^2-361*x-458 8299627563212332 k003 Champernowne real with 11*n^3-43*n^2+73*n-33 8299627575127238 m001 1/GAMMA(5/12)/ln(GAMMA(1/4))/GAMMA(5/24) 8299627575848067 m001 PisotVijayaraghavan*(GAMMA(3/4)-Si(Pi)) 8299627587089626 a007 Real Root Of 484*x^4+243*x^3+211*x^2-171*x-378 8299627594458561 a007 Real Root Of -155*x^4+961*x^3+521*x^2-917*x-497 8299627613310191 a007 Real Root Of -463*x^4+944*x^3+61*x^2+208*x+890 8299627627502125 a007 Real Root Of 527*x^4-504*x^3-22*x^2-212*x-699 8299627648264614 p001 sum(1/(271*n+238)/n/(24^n),n=1..infinity) 8299627663612432 k003 Champernowne real with 67/6*n^3-44*n^2+449/6*n-34 8299627673207948 a001 3571/21*1597^(47/56) 8299627700736156 a001 18/75025*89^(15/19) 8299627750188657 m005 (1/2*Catalan+10/11)/(7/9*3^(1/2)+3/10) 8299627758381213 m001 LandauRamanujan2nd^gamma/QuadraticClass 8299627764012532 k003 Champernowne real with 34/3*n^3-45*n^2+230/3*n-35 8299627767107718 a001 1292/930249*843^(17/28) 8299627768180805 a007 Real Root Of -899*x^4+309*x^3+68*x^2-774*x-86 8299627782497344 b008 (3+E^(-4))^4 8299627805313328 m005 (1/2*Zeta(3)+4)/(1/5*exp(1)+5) 8299627818097285 m001 (Artin-HardyLittlewoodC3)/(exp(1/Pi)+Pi^(1/2)) 8299627832330131 a001 1597/710647*843^(15/28) 8299627839018939 a007 Real Root Of 163*x^4-620*x^3-285*x^2-391*x-560 8299627853245810 m001 (TreeGrowth2nd+Thue)/(1+BesselI(1,1)) 8299627864412632 k003 Champernowne real with 23/2*n^3-46*n^2+157/2*n-36 8299627868993427 a007 Real Root Of -852*x^4-618*x^3-977*x^2+282*x+958 8299627872543483 r005 Im(z^2+c),c=-59/48+5/43*I,n=39 8299627875009062 a007 Real Root Of -648*x^4+556*x^3+481*x^2-688*x-277 8299627895331117 a007 Real Root Of -308*x^4+707*x^3+395*x^2-716*x-316 8299627902547787 r005 Im(z^2+c),c=31/86+39/56*I,n=4 8299627921000162 a007 Real Root Of -809*x^4-137*x^3-477*x^2+283*x+869 8299627963207063 m001 1/MadelungNaCl^2*LaplaceLimit/exp(GAMMA(1/6)) 8299627964812732 k003 Champernowne real with 35/3*n^3-47*n^2+241/3*n-37 8299627979440715 a001 6765/4870847*843^(17/28) 8299627980193288 a001 329/620166*843^(3/4) 8299627992139418 k002 Champernowne real with 37/2*n^2+471/2*n-246 8299627995282907 a003 sin(Pi*3/116)*sin(Pi*3/92) 8299628019268441 r002 9th iterates of z^2 + 8299628027769170 m001 TwinPrimes^2*exp(FransenRobinson)^2/(3^(1/3)) 8299628027799804 a007 Real Root Of 985*x^4+722*x^3-129*x^2-963*x-765 8299628033645512 r005 Im(z^2+c),c=-85/122+14/37*I,n=43 8299628039595964 a007 Real Root Of -956*x^4+367*x^3-472*x^2-820*x+308 8299628043098307 a007 Real Root Of 292*x^4-369*x^3-120*x^2-105*x-354 8299628059421244 r005 Re(z^2+c),c=-23/19+11/45*I,n=15 8299628062102028 a007 Real Root Of -24*x^4-187*x^3+108*x^2+19*x-312 8299628065212832 k003 Champernowne real with 71/6*n^3-48*n^2+493/6*n-38 8299628101992526 m006 (Pi^2+5/6)/(4/5*Pi^2+5) 8299628101992526 m008 (Pi^2+5/6)/(4/5*Pi^2+5) 8299628105346051 m001 (gamma(1)-KhinchinHarmonic)/(Porter+Sarnak) 8299628110669724 a001 4181/3010349*843^(17/28) 8299628165612932 k003 Champernowne real with 12*n^3-49*n^2+84*n-39 8299628168649633 r005 Re(z^2+c),c=11/46+21/62*I,n=25 8299628168906071 a001 11/2178309*121393^(11/46) 8299628201876019 p003 LerchPhi(1/2,4,114/193) 8299628227282995 a007 Real Root Of 769*x^4-933*x^3-363*x^2-172*x-791 8299628290222512 m001 1/exp(Khintchine)^2/Cahen^2*exp(1)^2 8299628295707183 a007 Real Root Of -954*x^4+763*x^3+202*x^2+22*x+768 8299628300330451 a001 610/39603*843^(1/4) 8299628306205010 a007 Real Root Of -10*x^4-833*x^3-258*x^2-499*x-593 8299628306687159 a003 sin(Pi*6/89)+sin(Pi*10/47) 8299628326241588 r005 Re(z^2+c),c=5/21+19/56*I,n=24 8299628368065122 a007 Real Root Of -264*x^4+690*x^3-102*x^2-294*x+346 8299628369767516 m001 1/exp(Salem)^2/KhintchineLevy/cos(Pi/12) 8299628394012704 m005 (4/15+1/6*5^(1/2))/(6/7*3^(1/2)-5/7) 8299628405792686 m009 (20/3*Catalan+5/6*Pi^2+1/2)/(1/10*Pi^2+4/5) 8299628411574792 a008 Real Root of (-7+4*x+4*x^2+x^4+2*x^8) 8299628418683124 a007 Real Root Of 64*x^4-775*x^3+812*x^2+807*x-363 8299628446811927 a007 Real Root Of -785*x^4+651*x^3-905*x^2+920*x+83 8299628453038303 r005 Im(z^2+c),c=-13/14+86/207*I,n=5 8299628487522841 m001 (-gamma(3)+Zeta(1,2))/(Psi(1,1/3)+GAMMA(3/4)) 8299628503888485 r005 Im(z^2+c),c=-13/98+41/49*I,n=64 8299628509016796 a007 Real Root Of 617*x^4+475*x^3+36*x^2-841*x-744 8299628533248784 a003 cos(Pi*1/69)-cos(Pi*33/74) 8299628549255089 a001 5778/13*21^(8/39) 8299628559636813 q001 2011/2423 8299628583091330 a007 Real Root Of 988*x^4+978*x^3+281*x^2+128*x+3 8299628601322908 a001 2584/3010349*843^(19/28) 8299628603675295 m001 (PlouffeB+Trott2nd)/(ArtinRank2-Conway) 8299628616588041 m001 Niven*FibonacciFactorial^2/exp(GAMMA(5/6)) 8299628630348837 a007 Real Root Of -537*x^4+437*x^3+233*x^2+636*x+872 8299628661508664 m001 (MadelungNaCl+Trott)/(2^(1/2)+CareFree) 8299628664159782 m005 (1/2*Catalan-2/11)/(9/10*Pi+1/2) 8299628666564726 a001 1597/1149851*843^(17/28) 8299628694612168 m001 Kolakoski*Cahen*ln(Salem) 8299628702489093 m005 (2/5*Pi-2)/(1/4*Catalan+2/3) 8299628762437953 r009 Im(z^3+c),c=-3/26+40/49*I,n=59 8299628791675157 a001 2/233*832040^(16/19) 8299628803239688 a007 Real Root Of -885*x^4+988*x^3+50*x^2-839*x+254 8299628808929461 r005 Im(z^2+c),c=-9/10+59/217*I,n=26 8299628814408499 a001 987/3010349*843^(23/28) 8299628816191983 a001 610/9349*322^(1/24) 8299628827652601 r002 5th iterates of z^2 + 8299628830225483 r005 Re(z^2+c),c=-4/27+29/44*I,n=45 8299628833916598 m001 (Otter+ZetaQ(4))/(3^(1/2)+FeigenbaumC) 8299628850872652 a007 Real Root Of 648*x^4-734*x^3+791*x^2+500*x-857 8299628856161339 m001 (BesselI(0,1)-Zeta(5))/(-Magata+MasserGramain) 8299628892057258 m001 (-Cahen+FeigenbaumC)/(Shi(1)+Artin) 8299628923164291 m001 PrimesInBinary*LaplaceLimit*ln(gamma)^2 8299628944880369 a001 4181/4870847*843^(19/28) 8299628956786135 m001 GAMMA(23/24)^(ln(2^(1/2)+1)/ZetaQ(4)) 8299628995140018 k002 Champernowne real with 19*n^2+234*n-245 8299629066447903 m004 -6+2*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi]/4 8299629070425222 a007 Real Root Of -33*x^4+755*x^3-138*x^2+255*x+754 8299629082094142 m005 (1/2*Pi-2/7)/(8/11*exp(1)-3/7) 8299629094872881 a007 Real Root Of -33*x^4-215*x^3+494*x^2+63*x+161 8299629098997796 a007 Real Root Of 252*x^4-841*x^3-911*x^2-5*x+23 8299629113276451 a007 Real Root Of -803*x^4+930*x^3-557*x^2-921*x+532 8299629132613693 r002 3th iterates of z^2 + 8299629136570136 a007 Real Root Of -380*x^4+633*x^3-550*x^2-723*x+321 8299629141855454 a001 610/64079*843^(9/28) 8299629156687626 a001 233/271443*521^(19/26) 8299629157341236 m005 (4*gamma+1/5)/(3/4*Pi+2/3) 8299629176487856 b008 23/91+EulerGamma 8299629211683324 a007 Real Root Of 872*x^4-552*x^3-75*x^2-104*x-764 8299629232827516 a007 Real Root Of 766*x^4+772*x^3+500*x^2+685*x+302 8299629240887126 a001 987/24476*322^(1/8) 8299629240955854 a007 Real Root Of -886*x^4+785*x^3+258*x^2-56*x+645 8299629275600342 m001 (Kac+MertensB3)/(5^(1/2)+Champernowne) 8299629277499529 a007 Real Root Of 319*x^4+3*x^3+329*x^2-478*x-773 8299629304011892 m001 (cos(1/5*Pi)*Totient-ThueMorse)/cos(1/5*Pi) 8299629333324542 r002 24th iterates of z^2 + 8299629430512405 r008 a(0)=9,K{-n^6,53-20*n^3+10*n^2-42*n} 8299629435533603 a001 2584/4870847*843^(3/4) 8299629448449744 r005 Im(z^2+c),c=-5/19+39/46*I,n=14 8299629500768018 a001 1597/1860498*843^(19/28) 8299629504810263 r005 Re(z^2+c),c=5/42+12/23*I,n=46 8299629511097324 a007 Real Root Of 873*x^4+653*x^3+586*x^2+820*x+236 8299629511174896 a007 Real Root Of 58*x^4+531*x^3+325*x^2-617*x+861 8299629530504333 a007 Real Root Of 588*x^4-989*x^3+183*x^2+697*x-392 8299629541433912 r005 Im(z^2+c),c=27/110+27/47*I,n=18 8299629565671883 m001 Pi+2^(1/3)/(arctan(1/2)-Ei(1,1)) 8299629566258128 a007 Real Root Of 895*x^4-621*x^3-291*x^2+369*x-273 8299629581734760 a007 Real Root Of 858*x^4-752*x^3-944*x^2-875*x-913 8299629594550216 a001 5778/377*317811^(2/15) 8299629613897878 a007 Real Root Of 922*x^4-26*x^3-393*x^2+849*x+523 8299629642710380 m002 -(E^Pi/Pi^3)-Pi^6*Csch[Pi]+Tanh[Pi] 8299629647864893 a001 2255/4250681*843^(3/4) 8299629648619216 a001 987/4870847*843^(25/28) 8299629650966729 b008 38+Csch[1/45] 8299629678395502 m005 (1/2*Pi+7/10)/(6*gamma-8/11) 8299629678843611 a001 17711/33385282*843^(3/4) 8299629678921127 a007 Real Root Of 226*x^4+72*x^3+158*x^2-270*x-399 8299629683363345 a001 15456/29134601*843^(3/4) 8299629684022765 a001 121393/228826127*843^(3/4) 8299629684118973 a001 377/710646*843^(3/4) 8299629684133010 a001 832040/1568397607*843^(3/4) 8299629684135058 a001 726103/1368706081*843^(3/4) 8299629684135357 a001 5702887/10749957122*843^(3/4) 8299629684135400 a001 4976784/9381251041*843^(3/4) 8299629684135407 a001 39088169/73681302247*843^(3/4) 8299629684135408 a001 34111385/64300051206*843^(3/4) 8299629684135408 a001 267914296/505019158607*843^(3/4) 8299629684135408 a001 233802911/440719107401*843^(3/4) 8299629684135408 a001 1836311903/3461452808002*843^(3/4) 8299629684135408 a001 1602508992/3020733700601*843^(3/4) 8299629684135408 a001 12586269025/23725150497407*843^(3/4) 8299629684135408 a001 7778742049/14662949395604*843^(3/4) 8299629684135408 a001 2971215073/5600748293801*843^(3/4) 8299629684135408 a001 1134903170/2139295485799*843^(3/4) 8299629684135408 a001 433494437/817138163596*843^(3/4) 8299629684135408 a001 165580141/312119004989*843^(3/4) 8299629684135408 a001 63245986/119218851371*843^(3/4) 8299629684135411 a001 24157817/45537549124*843^(3/4) 8299629684135427 a001 9227465/17393796001*843^(3/4) 8299629684135541 a001 3524578/6643838879*843^(3/4) 8299629684136324 a001 1346269/2537720636*843^(3/4) 8299629684141685 a001 514229/969323029*843^(3/4) 8299629684178433 a001 196418/370248451*843^(3/4) 8299629684430309 a001 75025/141422324*843^(3/4) 8299629686156694 a001 28657/54018521*843^(3/4) 8299629693814631 a007 Real Root Of 858*x^4-992*x^3-509*x^2+602*x-124 8299629697989511 a001 10946/20633239*843^(3/4) 8299629735118199 q001 2914/3511 8299629742353933 a007 Real Root Of -885*x^4+573*x^3-181*x^2-781*x+224 8299629769456064 m005 (1/3*exp(1)-2/3)/(8/11*Pi+3/5) 8299629779092848 a001 4181/7881196*843^(3/4) 8299629791397320 r005 Re(z^2+c),c=-25/44+15/32*I,n=35 8299629797698187 a007 Real Root Of 922*x^4+705*x^3+748*x^2-351*x-841 8299629803348698 m005 (1/3*5^(1/2)+3/4)/(5/6*Zeta(3)+4/5) 8299629804584691 r005 Re(z^2+c),c=-15/17+28/41*I,n=3 8299629858790398 m005 (1/2*5^(1/2)+2/11)/(8/11*Catalan+9/10) 8299629868566560 r005 Re(z^2+c),c=-87/106+7/60*I,n=15 8299629919501889 q001 1/1204873 8299629939215790 r002 22th iterates of z^2 + 8299629955533044 m001 (5^(1/2)-Psi(2,1/3))/(-ln(2)+gamma(3)) 8299629969597293 a007 Real Root Of -841*x^4+578*x^3+966*x^2+93*x-674 8299629973274123 a001 305/51841*843^(11/28) 8299629992905036 a007 Real Root Of 158*x^4-466*x^3-199*x^2-784*x-855 8299629998140618 k002 Champernowne real with 39/2*n^2+465/2*n-244 8299630003454631 a007 Real Root Of -453*x^4+681*x^3-393*x^2-100*x+792 8299630005544986 a007 Real Root Of -336*x^4+884*x^3-585*x^2+541*x-392 8299630006498285 a007 Real Root Of -680*x^4+964*x^3+420*x^2-213*x-341 8299630050960701 s002 sum(A207748[n]/((2*n)!),n=1..infinity) 8299630057253041 a001 3/4*322^(1/57) 8299630092254722 r009 Im(z^3+c),c=-9/106+34/41*I,n=31 8299630100114121 k002 Champernowne real with 20*n^2+231*n-243 8299630116768978 a007 Real Root Of -385*x^4+405*x^3-115*x^2+32*x+520 8299630123853307 r005 Im(z^2+c),c=-113/106+5/53*I,n=22 8299630139913985 m005 (1/2*2^(1/2)+4/9)/(3/8*2^(1/2)+6/7) 8299630151003364 m005 (1/2*5^(1/2)-6)/(1/12*2^(1/2)-6) 8299630152072011 h001 (2/3*exp(2)+7/9)/(9/10*exp(2)+2/9) 8299630175896927 m001 (3^(1/2)+BesselI(1,2))/(Gompertz+Magata) 8299630213021741 h001 (-3*exp(1)-8)/(-9*exp(1)+5) 8299630251532895 a007 Real Root Of 978*x^4-631*x^3-614*x^2-58*x-450 8299630287319135 a007 Real Root Of -895*x^4-251*x^3-987*x^2+18*x+976 8299630334983383 a001 1597/3010349*843^(3/4) 8299630337542406 m005 (1/2*exp(1)-1/4)/(7/11*Zeta(3)+4/7) 8299630372487448 m008 (3/5*Pi^4-3/4)/(1/4*Pi^3-4/5) 8299630375071285 a003 cos(Pi*28/111)+cos(Pi*45/98) 8299630376657591 m001 GAMMA(5/6)*Lehmer^sin(1/5*Pi) 8299630376657591 m001 Lehmer^sin(Pi/5)*GAMMA(5/6) 8299630420084254 a007 Real Root Of -767*x^4-788*x^3-971*x^2-951*x-207 8299630445974889 a001 89/167761*199^(21/22) 8299630454749271 a007 Real Root Of -847*x^4-93*x^3-877*x^2+578*x+54 8299630457920989 a003 sin(Pi*6/119)-sin(Pi*6/113) 8299630472656193 m005 (1/2*Catalan-5/11)/(4*Zeta(3)-2/3) 8299630473609844 a003 cos(Pi*19/109)*sin(Pi*31/73) 8299630490459440 m001 ArtinRank2/ln(FeigenbaumDelta)*GAMMA(2/3)^2 8299630509422656 r005 Im(z^2+c),c=-2/3+35/131*I,n=61 8299630512957167 m001 Lehmer*Backhouse^2/exp(PrimesInBinary) 8299630522370968 m001 (Zeta(3)+ThueMorse)/DuboisRaymond 8299630543060704 a007 Real Root Of -101*x^4-741*x^3+745*x^2-456*x+503 8299630559559140 r002 27th iterates of z^2 + 8299630585894199 m001 Paris+Stephens^LambertW(1) 8299630683167707 m001 ZetaQ(4)^(FeigenbaumD*Trott) 8299630684392812 a001 2584/64079*322^(1/8) 8299630697475910 a007 Real Root Of 856*x^4+719*x^3+531*x^2-658*x-907 8299630703290565 a007 Real Root Of 617*x^4-845*x^3+188*x^2+733*x-297 8299630705986010 a007 Real Root Of 299*x^4-675*x^3+470*x^2-109*x-942 8299630728060722 r002 27th iterates of z^2 + 8299630732857943 a007 Real Root Of -159*x^4+29*x^3-635*x^2-68*x+473 8299630738670386 a007 Real Root Of 283*x^4+343*x^3+336*x^2-980*x-983 8299630779634963 a003 sin(Pi*11/37)/sin(Pi*50/119) 8299630785048173 r002 60th iterates of z^2 + 8299630785764197 a007 Real Root Of 860*x^4+130*x^3+534*x^2-174*x-846 8299630802290431 m009 (3/2*Pi^2+2/5)/(5*Psi(1,2/3)+3) 8299630808553184 a001 610/167761*843^(13/28) 8299630808812408 a007 Real Root Of -948*x^4-218*x^3-988*x^2-960*x+209 8299630839490544 m001 Porter^2*exp(KhintchineHarmonic)^2*sinh(1) 8299630849049704 m001 ZetaP(2)^ReciprocalLucas*ZetaP(2)^GAMMA(19/24) 8299630867079147 r009 Im(z^3+c),c=-2/27+43/51*I,n=5 8299630894997453 a001 615/15251*322^(1/8) 8299630897014111 m001 (sin(1/12*Pi)-ln(2+3^(1/2)))/(Paris+Salem) 8299630925724256 a001 17711/439204*322^(1/8) 8299630930207236 a001 46368/1149851*322^(1/8) 8299630930861294 a001 121393/3010349*322^(1/8) 8299630930956720 a001 317811/7881196*322^(1/8) 8299630930970642 a001 75640/1875749*322^(1/8) 8299630930972673 a001 2178309/54018521*322^(1/8) 8299630930972970 a001 5702887/141422324*322^(1/8) 8299630930973013 a001 14930352/370248451*322^(1/8) 8299630930973019 a001 39088169/969323029*322^(1/8) 8299630930973020 a001 9303105/230701876*322^(1/8) 8299630930973020 a001 267914296/6643838879*322^(1/8) 8299630930973020 a001 701408733/17393796001*322^(1/8) 8299630930973020 a001 1836311903/45537549124*322^(1/8) 8299630930973020 a001 4807526976/119218851371*322^(1/8) 8299630930973020 a001 1144206275/28374454999*322^(1/8) 8299630930973020 a001 32951280099/817138163596*322^(1/8) 8299630930973020 a001 86267571272/2139295485799*322^(1/8) 8299630930973020 a001 225851433717/5600748293801*322^(1/8) 8299630930973020 a001 591286729879/14662949395604*322^(1/8) 8299630930973020 a001 365435296162/9062201101803*322^(1/8) 8299630930973020 a001 139583862445/3461452808002*322^(1/8) 8299630930973020 a001 53316291173/1322157322203*322^(1/8) 8299630930973020 a001 20365011074/505019158607*322^(1/8) 8299630930973020 a001 7778742049/192900153618*322^(1/8) 8299630930973020 a001 2971215073/73681302247*322^(1/8) 8299630930973020 a001 1134903170/28143753123*322^(1/8) 8299630930973020 a001 433494437/10749957122*322^(1/8) 8299630930973021 a001 165580141/4106118243*322^(1/8) 8299630930973021 a001 63245986/1568397607*322^(1/8) 8299630930973023 a001 24157817/599074578*322^(1/8) 8299630930973040 a001 9227465/228826127*322^(1/8) 8299630930973153 a001 3524578/87403803*322^(1/8) 8299630930973929 a001 1346269/33385282*322^(1/8) 8299630930979247 a001 514229/12752043*322^(1/8) 8299630931015696 a001 196418/4870847*322^(1/8) 8299630931265524 a001 75025/1860498*322^(1/8) 8299630932977870 a001 28657/710647*322^(1/8) 8299630944714465 a001 10946/271443*322^(1/8) 8299630946260387 m001 (Pi+ln(Pi))/(MasserGramainDelta-Mills) 8299630973407463 p003 LerchPhi(1/125,5,193/74) 8299630978843435 m004 6+(2*Log[Sqrt[5]*Pi])/3+Tanh[Sqrt[5]*Pi] 8299630988086161 r002 17th iterates of z^2 + 8299631013911817 a007 Real Root Of -272*x^4-609*x^3-904*x^2+327*x+675 8299631019162267 a005 (1/cos(48/229*Pi))^117 8299631025158279 a001 4181/103682*322^(1/8) 8299631035331314 a007 Real Root Of 316*x^4-248*x^3+42*x^2+349*x-31 8299631036306347 a007 Real Root Of -7*x^4-44*x^3-328*x^2+696*x+60 8299631041435133 m004 3/4+6*Cot[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 8299631043025392 m004 -2+Sqrt[5]*Pi+3*Cot[Sqrt[5]*Pi] 8299631049890615 a001 2207/377*433494437^(2/15) 8299631049954013 m001 Grothendieck^Niven*ZetaQ(3)^Niven 8299631069320361 a007 Real Root Of 839*x^4-78*x^3-522*x^2-383*x-401 8299631073015895 r002 4th iterates of z^2 + 8299631097123113 k001 Champernowne real with 134*n+695 8299631100414181 k002 Champernowne real with 41/2*n^2+459/2*n-242 8299631105854266 a007 Real Root Of -933*x^4+196*x^3-226*x^2+279*x+942 8299631106820983 a007 Real Root Of -39*x^4+258*x^3-897*x^2-130*x+676 8299631111747534 r005 Re(z^2+c),c=-7/50+43/51*I,n=14 8299631112272241 r005 Re(z^2+c),c=17/82+10/33*I,n=20 8299631112657908 a007 Real Root Of 196*x^4-208*x^3-297*x^2-791*x+887 8299631128383705 a007 Real Root Of -821*x^4+123*x^3+919*x^2+534*x-757 8299631129845209 r005 Im(z^2+c),c=17/110+37/58*I,n=12 8299631169194252 a001 1597/4870847*843^(23/28) 8299631218039805 r005 Re(z^2+c),c=21/110+33/62*I,n=64 8299631226088610 a003 cos(Pi*23/117)+cos(Pi*53/107) 8299631229470441 m001 1/Rabbit^2*GaussAGM(1,1/sqrt(2))^2/exp(cos(1)) 8299631232330491 r005 Im(z^2+c),c=-143/122+5/49*I,n=11 8299631242119925 a007 Real Root Of -659*x^4-653*x^3-458*x^2+699*x+835 8299631276889125 m008 (5/6*Pi^2+1/5)/(1/3*Pi^5-1/2) 8299631289518987 a001 6/105937*3^(8/23) 8299631290326908 m005 (1/3*Zeta(3)-2/9)/(1/8*Zeta(3)+2) 8299631304442986 r005 Re(z^2+c),c=11/64+33/53*I,n=11 8299631334329932 h001 (3/10*exp(2)+11/12)/(5/11*exp(2)+5/12) 8299631362679838 a007 Real Root Of -776*x^4+207*x^3-144*x^2-866*x-133 8299631390181438 a007 Real Root Of 817*x^4-650*x^3+521*x^2+199*x-953 8299631413476493 m001 1/ln(Si(Pi))^2/Backhouse^2*Sierpinski^2 8299631431532317 a003 sin(Pi*20/79)/sin(Pi*31/94) 8299631433499604 m005 (49/60+5/12*5^(1/2))/(-7/12+1/6*5^(1/2)) 8299631439825307 a007 Real Root Of 741*x^4-468*x^3-637*x^2+433*x+179 8299631446144889 m001 (Ei(1)+HardyLittlewoodC3)^BesselI(0,2) 8299631454920160 m009 (1/4*Psi(1,2/3)-5)/(1/2*Pi^2+1/6) 8299631487442936 r005 Re(z^2+c),c=-49/106+26/45*I,n=52 8299631492291810 m001 Magata^cos(1)*exp(-1/2*Pi)^cos(1) 8299631494961604 a007 Real Root Of -821*x^4+819*x^3+352*x^2+96*x+695 8299631508501356 m001 (Shi(1)-ln(Pi))/(Ei(1,1)+GaussAGM) 8299631509096431 a001 233/167761*521^(17/26) 8299631526336258 a007 Real Root Of -942*x^4+965*x^3+949*x^2-515*x-331 8299631546766759 a007 Real Root Of -587*x^4+678*x^3-904*x^2-783*x+639 8299631576528387 a001 1597/39603*322^(1/8) 8299631614339840 r005 Im(z^2+c),c=-39/110+42/61*I,n=9 8299631617432675 a007 Real Root Of -525*x^4-420*x^3-791*x^2+405*x+890 8299631642357823 a001 610/271443*843^(15/28) 8299631645198444 r002 16i'th iterates of 2*x/(1-x^2) of 8299631666588204 a007 Real Root Of -948*x^4+187*x^3-927*x^2-310*x+938 8299631682395822 a003 sin(Pi*7/26)/sin(Pi*39/109) 8299631720877011 r005 Re(z^2+c),c=-63/74+3/43*I,n=9 8299631748212388 a001 3/196418*28657^(27/44) 8299631755331338 a007 Real Root Of 781*x^4-718*x^3-288*x^2+637*x-54 8299631766670442 m001 (ln(5)-FeigenbaumC)/(Rabbit+ReciprocalLucas) 8299631767100416 m001 (BesselI(0,1)-Ei(1))/(-GaussAGM+ZetaP(4)) 8299631771059296 a007 Real Root Of -39*x^4-255*x^3+509*x^2-462*x+372 8299631784945094 m001 2/3*gamma/arctan(1/2) 8299631814351510 m006 (4/5*Pi^2+1)/(2*exp(2*Pi)+5/6) 8299631816504668 p003 LerchPhi(1/16,1,221/177) 8299631816692000 r009 Re(z^3+c),c=-11/78+33/56*I,n=42 8299631832430890 r009 Im(z^3+c),c=-11/126+53/64*I,n=33 8299631835505394 p004 log(28099/12253) 8299631886299848 m002 -Cosh[Pi]+3/ProductLog[Pi]+Tanh[Pi]/2 8299631886930894 m001 1/GAMMA(3/4)/FeigenbaumB^2*exp(GAMMA(5/12))^2 8299631904015435 r005 Re(z^2+c),c=-69/82+4/47*I,n=23 8299631943125847 a007 Real Root Of -217*x^4-388*x^3-519*x^2+539*x+686 8299631946994138 a007 Real Root Of -145*x^4+685*x^3+625*x^2+811*x-72 8299631948674379 m001 1/GAMMA(7/24)^2*ln(FeigenbaumD)^2*cos(Pi/5) 8299631961559877 a007 Real Root Of 404*x^4+263*x^3+643*x^2-572*x-959 8299631969850008 b008 3+E+E!! 8299631991675069 a003 cos(Pi*5/101)-sin(Pi*44/101) 8299632001825178 s001 sum(exp(-3*Pi/4)^n*A025958[n],n=1..infinity) 8299632006798348 m001 (Chi(1)-ln(5))/(-Zeta(1,-1)+LandauRamanujan) 8299632016137078 m002 -2/Pi^5-Pi^2+Pi^6/Log[Pi] 8299632024686854 m001 (BesselK(1,1)+FellerTornier)/(Robbin+ZetaP(2)) 8299632035458628 m005 (3*Pi-1/6)/(3*exp(1)+3) 8299632061031331 m001 1/exp(sin(1))^2*cosh(1)/sin(Pi/5)^2 8299632070014415 a001 832040/123*3571^(1/40) 8299632079172471 a001 514229/123*9349^(3/40) 8299632100714241 k002 Champernowne real with 21*n^2+228*n-241 8299632103486759 m001 (Bloch-FransenRobinson)/(GAMMA(2/3)-Zeta(1/2)) 8299632127266796 a007 Real Root Of 639*x^4-690*x^3+412*x^2+350*x-691 8299632133262979 r005 Re(z^2+c),c=37/114+16/49*I,n=29 8299632145188317 r002 22th iterates of z^2 + 8299632146808007 m002 (30*Coth[Pi]*Csch[Pi])/Pi 8299632155693986 m001 1/ln(GAMMA(7/24))^2/Paris*Zeta(5) 8299632161245838 m001 (Pi+2^(1/3))/(exp(1)+Sierpinski) 8299632232533610 a007 Real Root Of 916*x^4+289*x^3+240*x^2+325*x-165 8299632246142414 m001 (3^(1/2)+ln(Pi))/(BesselI(0,2)+KhinchinLevy) 8299632258143084 a007 Real Root Of 389*x^4-231*x^3+282*x^2-217*x-691 8299632261635654 m001 (CopelandErdos-GaussAGM)/(Khinchin-Magata) 8299632277042833 a007 Real Root Of 859*x^4-200*x^3-257*x^2+671*x+212 8299632286377376 a007 Real Root Of -808*x^4+916*x^3-841*x^2-921*x+722 8299632308317950 m001 (sin(1/5*Pi)-Khinchin)/(MertensB1-ZetaQ(3)) 8299632338873196 a007 Real Root Of -462*x^4-517*x^3-791*x^2-391*x+144 8299632352941176 q001 903/1088 8299632352941176 r002 2th iterates of z^2 + 8299632352941176 r002 2th iterates of z^2 + 8299632352941176 r005 Im(z^2+c),c=-19/17+43/64*I,n=2 8299632358045816 a007 Real Root Of 903*x^4-527*x^3-146*x^2-107*x-718 8299632427640936 a001 1/29*(1/2*5^(1/2)+1/2)^17*123^(7/8) 8299632434129968 a007 Real Root Of -489*x^4+861*x^3+305*x^2-887*x-222 8299632438298862 r009 Im(z^3+c),c=-67/102+14/29*I,n=7 8299632455143985 r009 Re(z^3+c),c=-41/74+19/41*I,n=36 8299632469627542 m001 (Zeta(3)-exp(1/exp(1)))/(Backhouse+Porter) 8299632476725757 a001 305/219602*843^(17/28) 8299632504780726 m004 -5+25*Pi+(5*Sqrt[5]*Pi)/4+Sin[Sqrt[5]*Pi] 8299632533802132 a007 Real Root Of 91*x^4-977*x^3+807*x^2+702*x-575 8299632536931810 m001 GAMMA(17/24)^Si(Pi)/(HardyLittlewoodC5^Si(Pi)) 8299632559191874 m001 (sin(1)+Zeta(5))/(-arctan(1/3)+Sierpinski) 8299632561377633 m004 7+(2*Log[Sqrt[5]*Pi])/3 8299632587201950 a007 Real Root Of 359*x^4-976*x^3-748*x^2-371*x-521 8299632598821067 m001 (MinimumGamma-Trott2nd)/(GAMMA(2/3)+Artin) 8299632604517832 m005 (3/4*Catalan+3/4)/(4/5*2^(1/2)+3/5) 8299632607261117 a001 13/844*322^(7/24) 8299632614792263 a007 Real Root Of 771*x^4-70*x^3-180*x^2-752*x-906 8299632619916378 r005 Re(z^2+c),c=-17/27+16/33*I,n=8 8299632623969332 m004 -7/4-6*Cot[Sqrt[5]*Pi] 8299632636971931 p004 log(24439/10657) 8299632637832877 m001 (Zeta(3)-LandauRamanujan2nd)/(Lehmer-Totient) 8299632644463880 a007 Real Root Of -300*x^4+203*x^3-554*x^2-982*x-175 8299632648216631 a007 Real Root Of 915*x^4-25*x^3-3*x^2-964*x+80 8299632660590890 r002 3th iterates of z^2 + 8299632663011269 l006 ln(9959/10042) 8299632677449808 r002 37th iterates of z^2 + 8299632681031428 a007 Real Root Of 902*x^4-780*x^3+545*x^2+539*x-802 8299632691992193 a003 sin(Pi*18/95)/cos(Pi*19/72) 8299632693735207 m001 Zeta(1,2)*TreeGrowth2nd^ZetaR(2) 8299632697858805 a007 Real Root Of -162*x^4+449*x^3+183*x^2-83*x-237 8299632735285779 a003 cos(Pi*16/71)+cos(Pi*32/67) 8299632766079257 a007 Real Root Of 601*x^4-726*x^3+431*x^2+111*x-905 8299632767019436 a007 Real Root Of 472*x^4-924*x^3-719*x^2-529*x-696 8299632768969782 a007 Real Root Of -313*x^4+497*x^3+680*x^2+766*x+600 8299632789135966 r009 Im(z^3+c),c=-5/21+27/37*I,n=27 8299632926458790 m001 1/ln(GAMMA(1/4))*Catalan^2*GAMMA(5/6)^2 8299632931054039 r005 Re(z^2+c),c=-7/78+31/44*I,n=4 8299632990405732 m001 (cos(1/5*Pi)-ArtinRank2)/(Champernowne-Porter) 8299633019602881 m004 -2-6*Cot[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/4 8299633026691634 a007 Real Root Of 524*x^4+817*x^2+568*x-340 8299633026780127 a007 Real Root Of 894*x^4-46*x^3+61*x^2+538*x-46 8299633053485716 m001 (RenyiParking-Robbin)/(Zeta(5)-gamma(3)) 8299633072969949 h001 (7/10*exp(2)+5/9)/(8/9*exp(2)+1/3) 8299633101014301 k002 Champernowne real with 43/2*n^2+453/2*n-240 8299633131370092 h001 (11/12*exp(2)+2/9)/(1/7*exp(1)+5/11) 8299633159560076 m001 1/ln(Rabbit)*Artin/GAMMA(1/4)^2 8299633161479605 a007 Real Root Of -730*x^4+566*x^3+634*x^2+519*x+664 8299633168007387 r009 Im(z^3+c),c=-1/54+17/20*I,n=7 8299633224927504 m001 arctan(1/2)*KomornikLoreti+HeathBrownMoroz 8299633233711779 r005 Re(z^2+c),c=-23/21+12/61*I,n=6 8299633234773653 a007 Real Root Of 550*x^4-600*x^3-395*x^2-270*x-556 8299633246048539 m008 (5/6*Pi^6-3/4)/(Pi^6+3) 8299633273310928 a007 Real Root Of 384*x^4-776*x^3-617*x^2-52*x-244 8299633278455598 a007 Real Root Of -229*x^4+92*x^3-312*x^2-393*x+50 8299633289158515 r002 6th iterates of z^2 + 8299633308989604 a007 Real Root Of 721*x^4-967*x^3+641*x^2+691*x-763 8299633310878647 a001 610/710647*843^(19/28) 8299633312770470 a003 cos(Pi*18/85)/sin(Pi*25/63) 8299633318903554 m005 (3/5*exp(1)-1/6)/(1/6*2^(1/2)-2) 8299633337317605 r002 19th iterates of z^2 + 8299633340023716 a007 Real Root Of 788*x^4+845*x^3+123*x^2-456*x-354 8299633341048700 a007 Real Root Of -443*x^4+962*x^3+35*x^2-817*x+58 8299633365366708 a001 3/5*2^(22/47) 8299633387322500 m001 GlaisherKinkelin^Zeta(1/2)/Chi(1) 8299633389045468 m001 (gamma+sin(1/12*Pi))/(Lehmer+PrimesInBinary) 8299633409170450 m001 (Champernowne+MinimumGamma)/(1-cos(1/5*Pi)) 8299633432024327 h001 (-2*exp(4)+8)/(-3*exp(6)-9) 8299633437315682 r005 Re(z^2+c),c=-69/62+7/33*I,n=20 8299633459009127 a001 15127/377*233^(2/15) 8299633475132905 r005 Im(z^2+c),c=-15/26+15/89*I,n=17 8299633480067078 m001 ln(cos(1))/GAMMA(17/24)/gamma 8299633525962451 m001 Lehmer^(5^(1/2)*Pi*csc(5/12*Pi)/GAMMA(7/12)) 8299633525962451 m001 Lehmer^(sqrt(5)*GAMMA(5/12)) 8299633634013471 p003 LerchPhi(1/256,3,461/201) 8299633639351559 r002 32th iterates of z^2 + 8299633645582162 m001 (gamma(2)+LandauRamanujan)^Robbin 8299633652078458 a007 Real Root Of -978*x^4-2*x^3-563*x^2-178*x+703 8299633652524465 m001 (Zeta(3)*cos(1/5*Pi)-ln(2)/ln(10))/cos(1/5*Pi) 8299633739950613 a007 Real Root Of 404*x^4-581*x^3-470*x^2+611*x+307 8299633774304463 m001 GAMMA(17/24)*Trott^2*ln(gamma) 8299633813071170 m005 (1/2*5^(1/2)-3/11)/(4/5*Catalan+2/7) 8299633831940989 a007 Real Root Of -824*x^4+274*x^3-266*x^2-336*x+452 8299633847370464 s001 sum(exp(-Pi/2)^(n-1)*A049522[n],n=1..infinity) 8299633860031396 a001 233/103682*521^(15/26) 8299633870714546 m005 (1/2*3^(1/2)-1/4)/(8/11*Zeta(3)-4/5) 8299633904010406 a007 Real Root Of 475*x^4-125*x^3+477*x^2+615*x-115 8299633924807329 r005 Im(z^2+c),c=-9/14+57/211*I,n=4 8299633935622404 r005 Re(z^2+c),c=39/110+17/61*I,n=10 8299633977634533 a007 Real Root Of 699*x^4+318*x^3+283*x^2-340*x-627 8299634026697402 r002 4th iterates of z^2 + 8299634028299129 a007 Real Root Of 360*x^4-478*x^3+800*x^2+840*x-298 8299634034568319 a007 Real Root Of -915*x^4-96*x^3+354*x^2+920*x+899 8299634034685144 m001 GAMMA(3/4)^2/exp(Backhouse)^2*Zeta(7)^2 8299634054134305 l006 ln(4331/9932) 8299634061270659 a007 Real Root Of -872*x^4-683*x^3-580*x^2+587*x+910 8299634077624030 a007 Real Root Of -615*x^4+758*x^3-458*x^2-743*x+424 8299634090962825 m003 39/2+Sqrt[5]/64-3*Tan[1/2+Sqrt[5]/2] 8299634093775131 b008 8+(3+CosIntegral[1])^(-1) 8299634099779116 r005 Re(z^2+c),c=-57/70+8/43*I,n=25 8299634101314361 k002 Champernowne real with 22*n^2+225*n-239 8299634101420152 a007 Real Root Of -999*x^4+250*x^3+262*x^2+191*x+595 8299634115377309 a007 Real Root Of -254*x^4+941*x^3-73*x^2+234*x+903 8299634115794708 a007 Real Root Of 829*x^4+262*x^3-534*x^2-316*x-138 8299634145113793 a001 610/1149851*843^(3/4) 8299634251002430 m002 -Pi^4+Cosh[Pi]+2/Log[Pi]+ProductLog[Pi] 8299634269648328 m001 (OneNinth-PlouffeB)/(Ei(1,1)-LaplaceLimit) 8299634274475230 a003 cos(Pi*11/81)*sin(Pi*42/115) 8299634293973882 l006 ln(4198/9627) 8299634324855794 r009 Im(z^3+c),c=-1/10+23/28*I,n=39 8299634346739820 m001 Zeta(1/2)^2*Trott^2/ln(gamma)^2 8299634349217694 r005 Re(z^2+c),c=-5/4+41/142*I,n=7 8299634361082508 a007 Real Root Of -911*x^4-81*x^3-219*x^2-648*x-1 8299634387253131 a007 Real Root Of -273*x^4+633*x^3+194*x^2+541*x-815 8299634431221852 a007 Real Root Of -594*x^4+689*x^3+560*x^2+53*x+334 8299634467183015 m005 (1/2*Zeta(3)-4/7)/(6/11*3^(1/2)-10/11) 8299634494203913 r002 7i'th iterates of 2*x/(1-x^2) of 8299634509361161 m001 (5^(1/2)-Zeta(1,-1))/(cos(1/12*Pi)+Tetranacci) 8299634545937383 m001 (FeigenbaumC-MertensB1)/(sin(1/5*Pi)+Conway) 8299634547125903 a007 Real Root Of -141*x^4+85*x^3+851*x^2+364*x-870 8299634549507752 l006 ln(4065/9322) 8299634593156787 a007 Real Root Of -197*x^4+868*x^3-559*x^2-460*x+593 8299634618754766 a008 Real Root of x^4-x^3-51*x^2+199*x-152 8299634636121517 a007 Real Root Of -981*x^4-258*x^3-431*x^2-483*x+214 8299634636523531 m001 (Salem+ZetaP(3))/(3^(1/2)-ReciprocalFibonacci) 8299634658469047 m001 Ei(1)^2*exp(Niven)/cosh(1)^2 8299634659264354 a007 Real Root Of -948*x^4-823*x^3+125*x^2+60*x-57 8299634660669307 a007 Real Root Of -260*x^4-296*x^3-834*x^2-949*x-259 8299634683306103 r002 15th iterates of z^2 + 8299634685511235 m006 (4/5/Pi-4/5)/(1/2*Pi+5) 8299634688258424 a007 Real Root Of -130*x^4+823*x^3-100*x^2-617*x+89 8299634698385805 a007 Real Root Of -340*x^4-219*x^3-542*x^2+438*x+773 8299634706339416 a007 Real Root Of -618*x^4+226*x^3+37*x^2-259*x+182 8299634717210555 a007 Real Root Of -687*x^4-998*x^3-379*x^2+638*x+546 8299634721169378 m005 (1/3*exp(1)-1/3)/(4/11*gamma-9/10) 8299634723874411 m001 (GAMMA(5/6)+Salem)/(Zeta(1/2)-ln(2+3^(1/2))) 8299634727090937 a007 Real Root Of -152*x^4+823*x^3-641*x^2-587*x+497 8299634817817409 a001 3/439204*47^(24/37) 8299634822328495 l006 ln(3932/9017) 8299634827820175 v003 sum((29+12*n^2-22*n)*n!/n^n,n=1..infinity) 8299634844661270 a007 Real Root Of 558*x^4-897*x^3-577*x^2+144*x+526 8299634865072982 m001 (BesselK(1,1)+3)/(-TwinPrimes+5) 8299634868647769 r005 Re(z^2+c),c=-6/7+1/96*I,n=9 8299634961721541 m002 -6/Pi^6-Pi^2+Pi^6/Log[Pi] 8299634979317635 a001 305/930249*843^(23/28) 8299634983926692 a007 Real Root Of 956*x^4+142*x^3+343*x^2+531*x-168 8299634992690513 a001 11/377*55^(6/23) 8299635014134577 a005 (1/sin(71/157*Pi))^1002 8299635039371281 p004 log(35153/15329) 8299635051567149 a003 cos(Pi*5/14)+cos(Pi*10/27) 8299635054445085 a007 Real Root Of -821*x^4+63*x^3-454*x^2+143*x+857 8299635069120677 a007 Real Root Of 546*x^4+967*x^3+288*x^2-480*x-303 8299635082588300 a007 Real Root Of 140*x^4-955*x^3-909*x^2+284*x+870 8299635091983475 a007 Real Root Of -764*x^4+229*x^3-701*x^2-104*x+890 8299635101614421 k002 Champernowne real with 45/2*n^2+447/2*n-238 8299635114251708 l006 ln(3799/8712) 8299635117469959 a007 Real Root Of -908*x^4-52*x^3-7*x^2-859*x-307 8299635142713250 b008 -1/21+Cos[1/2] 8299635147573590 r005 Re(z^2+c),c=-10/17+50/51*I,n=3 8299635150030821 m005 (1/2*Zeta(3)-4/9)/(4/7*exp(1)+1/3) 8299635154931941 m001 BesselJ(1,1)-Ei(1,1)-GaussKuzminWirsing 8299635164207722 a003 sin(Pi*16/59)/sin(Pi*30/83) 8299635169008859 a007 Real Root Of -968*x^4-396*x^3+549*x^2+963*x+654 8299635229659075 h001 (5/8*exp(1)+9/10)/(4/11*exp(2)+4/9) 8299635249685636 a008 Real Root of x^5-x^4+3*x^3-5*x^2+7*x-4 8299635256680634 p003 LerchPhi(1/10,6,162/157) 8299635273557272 a007 Real Root Of 480*x^4-905*x^3-607*x^2-128*x+814 8299635334601885 m001 (Robbin+Trott)/(cos(1/5*Pi)+HeathBrownMoroz) 8299635340840467 a003 sin(Pi*34/113)/sin(Pi*47/109) 8299635341012682 a007 Real Root Of -141*x^4+978*x^3+55*x^2+430*x-887 8299635355675310 a001 610/15127*322^(1/8) 8299635391183170 a007 Real Root Of 209*x^4-485*x^3+763*x^2+682*x-336 8299635399403380 q001 2504/3017 8299635404633410 a007 Real Root Of -678*x^4+876*x^3+205*x^2-598*x+185 8299635418145418 m001 MertensB1^LambertW(1)-PlouffeB 8299635427356465 l006 ln(3666/8407) 8299635468947902 r009 Re(z^3+c),c=-7/13+4/59*I,n=3 8299635487367118 m001 Zeta(1/2)*exp(KhintchineHarmonic)^2*sqrt(3) 8299635489186207 m005 (1/2*Pi-4/9)/(5/11*2^(1/2)+5/7) 8299635516162096 m001 (BesselK(1,1)-Gompertz*Tribonacci)/Gompertz 8299635530280123 a007 Real Root Of -979*x^4+819*x^3-727*x^2-726*x+831 8299635536804147 a007 Real Root Of 316*x^4-838*x^3-407*x^2-3*x+612 8299635566047362 r005 Im(z^2+c),c=-19/16+1/91*I,n=59 8299635573463984 m001 Pi*exp(Pi)/Psi(1,1/3)+ln(3) 8299635574569901 m005 (1/2*exp(1)-4/11)/(10/11*5^(1/2)-5/6) 8299635601346627 a007 Real Root Of -107*x^4-936*x^3-479*x^2-738*x-537 8299635605191202 a007 Real Root Of -337*x^4+441*x^3-435*x^2-96*x+632 8299635638430790 a007 Real Root Of 817*x^4+330*x^3+653*x^2+995*x+177 8299635638799173 m003 7/8+Sqrt[5]/1024+Cos[1/2+Sqrt[5]/2] 8299635657841384 m001 gamma(1)^KhinchinLevy/ZetaQ(2) 8299635657973568 r009 Re(z^3+c),c=-13/114+24/61*I,n=7 8299635663460774 m001 (sin(1)+Conway)/(-FeigenbaumD+Paris) 8299635671631166 a007 Real Root Of -631*x^4+805*x^3+782*x^2+682*x+787 8299635676705013 r009 Im(z^3+c),c=-7/90+5/6*I,n=51 8299635677819754 m005 (1/2*gamma-1/2)/(2/3*3^(1/2)-9/10) 8299635744292197 a001 7/365435296162*2584^(17/22) 8299635764034906 l006 ln(3533/8102) 8299635771305738 a007 Real Root Of 497*x^4+521*x^3-858*x^2-990*x+879 8299635793142575 r009 Re(z^3+c),c=-13/106+27/59*I,n=11 8299635797111763 r005 Re(z^2+c),c=-37/44+3/14*I,n=3 8299635813533550 a001 610/3010349*843^(25/28) 8299635815058200 m001 sin(1/12*Pi)*Kolakoski+GolombDickman 8299635828092314 r005 Re(z^2+c),c=-53/110+29/49*I,n=9 8299635892452767 a001 329/13201*322^(5/24) 8299635921213549 a007 Real Root Of -837*x^4+53*x^3+451*x^2-260*x-99 8299635924816630 a007 Real Root Of -979*x^4+483*x^3-288*x^2-329*x+666 8299635927282552 m001 (TreeGrowth2nd+ZetaP(2))/(Pi^(1/2)-ArtinRank2) 8299635929245960 r005 Re(z^2+c),c=11/40+19/51*I,n=61 8299635963562836 m001 exp(Ei(1))/Riemann1stZero/LambertW(1) 8299635970883851 m002 Pi^5/(30*Log[Pi]*ProductLog[Pi]) 8299635991807700 a007 Real Root Of -888*x^4+539*x^3+678*x^2+849*x+7 8299636005041243 m001 (Niven+ThueMorse)/(FeigenbaumB-gamma) 8299636013740312 r002 29th iterates of z^2 + 8299636040356020 a007 Real Root Of 909*x^4-670*x^3-36*x^2+573*x-314 8299636068088475 m001 1/Robbin^2/exp(Champernowne)^2/arctan(1/2)^2 8299636093753116 m001 MertensB2/(BesselI(1,2)^Weierstrass) 8299636096654260 a007 Real Root Of -876*x^4-67*x^3+301*x^2-94*x+92 8299636098906858 m005 (1/2*3^(1/2)+2/9)/(6/7*gamma-4/11) 8299636100399280 m001 (ln(2)+Zeta(1/2))/(GAMMA(3/4)-ln(2)/ln(10)) 8299636101914481 k002 Champernowne real with 23*n^2+222*n-237 8299636109429919 r005 Im(z^2+c),c=-9/14+125/203*I,n=3 8299636127053471 l006 ln(3400/7797) 8299636149265962 a003 cos(Pi*23/78)*cos(Pi*31/68) 8299636159779805 a007 Real Root Of -125*x^4+165*x^3+457*x^2+540*x-798 8299636176556615 r005 Im(z^2+c),c=-95/82+12/55*I,n=40 8299636185104791 m001 FeigenbaumC/(KhinchinLevy-cos(1/12*Pi)) 8299636214827339 a001 233/64079*521^(1/2) 8299636229010883 a007 Real Root Of 604*x^4-802*x^3+775*x^2+506*x-859 8299636271686819 a007 Real Root Of -874*x^4-647*x^3-911*x^2-45*x+635 8299636289611312 m001 (BesselI(0,1)-Lehmer*Mills)/Lehmer 8299636359866857 m001 FeigenbaumB/ln(GaussKuzminWirsing)/sin(1) 8299636414887780 a007 Real Root Of -719*x^4+896*x^3+233*x^2+768*x-969 8299636429332249 r002 24th iterates of z^2 + 8299636429583809 a001 377/5778*123^(1/20) 8299636443296127 m001 (5^(1/2)-cos(1/12*Pi))/(GAMMA(7/12)+ZetaQ(4)) 8299636503167503 m001 1/ln(GAMMA(3/4))^2*Si(Pi)^2 8299636519629089 l006 ln(3267/7492) 8299636551469341 m004 Sqrt[5]*Pi+Cot[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/5 8299636553789257 a007 Real Root Of 406*x^4-173*x^3-52*x^2+178*x-108 8299636555375833 r002 2th iterates of z^2 + 8299636558912935 m001 Psi(1,1/3)^(FeigenbaumD/OrthogonalArrays) 8299636602738167 m001 GAMMA(7/24)/exp(Bloch)^2/Zeta(3)^2 8299636643533841 m001 ln(Porter)/Khintchine/PrimesInBinary^2 8299636647744970 a001 610/4870847*843^(27/28) 8299636669417189 m001 BesselJ(0,1)*KhinchinLevy^Weierstrass 8299636671378334 m001 CopelandErdos^2*exp(Artin)^2/sqrt(2) 8299636675630974 h001 (1/5*exp(2)+3/5)/(7/8*exp(1)+1/8) 8299636683580041 m001 exp(-1/2*Pi)*AlladiGrinstead+Robbin 8299636688003376 a001 18/4181*144^(7/53) 8299636693319549 g002 Psi(3/10)+Psi(4/7)-Psi(7/10)-Psi(2/9) 8299636714979727 a001 11/317811*121393^(22/47) 8299636716557378 a007 Real Root Of 57*x^4-942*x^3+722*x^2+512*x-638 8299636725157084 m002 1+Pi^4-Cosh[Pi]/3-Sinh[Pi] 8299636733259535 a007 Real Root Of 234*x^4-754*x^3-687*x^2-852*x-776 8299636753829008 a007 Real Root Of 237*x^4-954*x^3-225*x^2-429*x+944 8299636754134540 m001 DuboisRaymond^OneNinth/(ln(3)^OneNinth) 8299636767172060 m001 Riemann1stZero/exp(Paris)/cosh(1) 8299636791106382 a007 Real Root Of -31*x^4+562*x^3+899*x^2-289*x-686 8299636804843560 a007 Real Root Of -335*x^4+781*x^3+718*x^2+211*x+286 8299636808246691 a007 Real Root Of -882*x^4-207*x^3+987*x^2+825*x+305 8299636822060832 m005 (5/6*exp(1)-4)/(-7/20+1/4*5^(1/2)) 8299636849442641 a007 Real Root Of -443*x^4+805*x^3-950*x^2-842*x+626 8299636852900465 r005 Re(z^2+c),c=-69/82+3/19*I,n=5 8299636854315928 a007 Real Root Of -413*x^4+465*x^3+406*x^2+983*x+998 8299636861128596 a007 Real Root Of -185*x^4+578*x^3-186*x^2+903*x-864 8299636874243499 a007 Real Root Of 618*x^4-242*x^3-68*x^2-669*x-940 8299636924778937 g002 -gamma-2*ln(2)+Psi(4/11)+Psi(7/10)+Psi(4/9) 8299636945524764 l006 ln(3134/7187) 8299636965344119 m001 (Khinchin+TwinPrimes)/(Shi(1)+Zeta(1/2)) 8299636970696107 a007 Real Root Of -86*x^4-604*x^3+973*x^2+604*x+745 8299636973813920 a007 Real Root Of 693*x^4+248*x^3-136*x^2-602*x-593 8299636995937598 r002 9th iterates of z^2 + 8299637004538893 a007 Real Root Of -840*x^4+16*x^3+318*x^2-96*x+109 8299637019402178 r005 Im(z^2+c),c=-17/24+35/61*I,n=3 8299637078850071 h001 (1/3*exp(2)+2/5)/(5/11*exp(2)+1/11) 8299637102214541 k002 Champernowne real with 47/2*n^2+441/2*n-236 8299637117273169 m001 1/GAMMA(1/3)/Artin*ln(Zeta(7)) 8299637117677553 q001 1601/1929 8299637136610493 m001 (ln(2+3^(1/2))-exp(1/exp(1)))/(Bloch-Kac) 8299637163571151 v002 sum(1/(3^n+(5/6*n^3+37/6*n+16)),n=1..infinity) 8299637208715003 r008 a(0)=1,K{-n^6,3+6*n^3+7*n^2-9*n} 8299637274108744 r005 Re(z^2+c),c=-13/10+15/214*I,n=29 8299637283215226 a007 Real Root Of 935*x^4-250*x^3-110*x^2-93*x-588 8299637293045120 r005 Im(z^2+c),c=-41/58+5/51*I,n=38 8299637295059859 a001 682/305*10946^(38/43) 8299637300938872 m001 1/ln(cos(Pi/12))^2*Sierpinski^2/sin(Pi/12)^2 8299637352312153 a001 1292/51841*322^(5/24) 8299637356580312 a007 Real Root Of 21*x^4+95*x^3-549*x^2+808*x-809 8299637376162771 m001 (-Zeta(1,-1)+Artin)/(Si(Pi)-Zeta(3)) 8299637378908562 m001 Gompertz^Catalan*MertensB3 8299637409170585 l006 ln(3001/6882) 8299637414919858 m001 (1-cos(1/5*Pi))/(-FeigenbaumD+Khinchin) 8299637426452083 a003 cos(Pi*41/92)-sin(Pi*49/99) 8299637431684032 a003 cos(Pi*20/113)-cos(Pi*40/81) 8299637441029075 m001 exp((2^(1/3)))^2/Trott/sinh(1)^2 8299637458638953 r005 Im(z^2+c),c=25/98+27/50*I,n=38 8299637463360762 a007 Real Root Of 114*x^4+870*x^3-609*x^2+312*x+999 8299637489099851 p001 sum((-1)^n/(445*n+12)/(6^n),n=0..infinity) 8299637502958619 a007 Real Root Of 297*x^4+211*x^3+591*x^2-267*x-649 8299637507015944 m001 (Artin+HardyLittlewoodC5)^BesselJ(0,1) 8299637513849454 r005 Re(z^2+c),c=-5/6+38/237*I,n=7 8299637520265767 r002 48th iterates of z^2 + 8299637528106087 m001 (5^(1/2))^exp(1)/(BesselJ(1,1)^exp(1)) 8299637528106087 m001 sqrt(5)^exp(1)/(BesselJ(1,1)^exp(1)) 8299637537347090 a007 Real Root Of -101*x^4+990*x^3+982*x^2-244*x-992 8299637565302767 a001 2255/90481*322^(5/24) 8299637571773592 m005 (1/3*3^(1/2)+1/2)/(1/2*Pi-3/11) 8299637596377679 a001 17711/710647*322^(5/24) 8299637600911448 a001 2576/103361*322^(5/24) 8299637601572915 a001 121393/4870847*322^(5/24) 8299637601669422 a001 105937/4250681*322^(5/24) 8299637601683503 a001 416020/16692641*322^(5/24) 8299637601685557 a001 726103/29134601*322^(5/24) 8299637601685857 a001 5702887/228826127*322^(5/24) 8299637601685900 a001 829464/33281921*322^(5/24) 8299637601685907 a001 39088169/1568397607*322^(5/24) 8299637601685908 a001 34111385/1368706081*322^(5/24) 8299637601685908 a001 133957148/5374978561*322^(5/24) 8299637601685908 a001 233802911/9381251041*322^(5/24) 8299637601685908 a001 1836311903/73681302247*322^(5/24) 8299637601685908 a001 267084832/10716675201*322^(5/24) 8299637601685908 a001 12586269025/505019158607*322^(5/24) 8299637601685908 a001 10983760033/440719107401*322^(5/24) 8299637601685908 a001 43133785636/1730726404001*322^(5/24) 8299637601685908 a001 75283811239/3020733700601*322^(5/24) 8299637601685908 a001 182717648081/7331474697802*322^(5/24) 8299637601685908 a001 139583862445/5600748293801*322^(5/24) 8299637601685908 a001 53316291173/2139295485799*322^(5/24) 8299637601685908 a001 10182505537/408569081798*322^(5/24) 8299637601685908 a001 7778742049/312119004989*322^(5/24) 8299637601685908 a001 2971215073/119218851371*322^(5/24) 8299637601685908 a001 567451585/22768774562*322^(5/24) 8299637601685908 a001 433494437/17393796001*322^(5/24) 8299637601685908 a001 165580141/6643838879*322^(5/24) 8299637601685908 a001 31622993/1268860318*322^(5/24) 8299637601685911 a001 24157817/969323029*322^(5/24) 8299637601685927 a001 9227465/370248451*322^(5/24) 8299637601686042 a001 1762289/70711162*322^(5/24) 8299637601686826 a001 1346269/54018521*322^(5/24) 8299637601692205 a001 514229/20633239*322^(5/24) 8299637601729067 a001 98209/3940598*322^(5/24) 8299637601981725 a001 75025/3010349*322^(5/24) 8299637603713471 a001 28657/1149851*322^(5/24) 8299637615583031 a001 5473/219602*322^(5/24) 8299637623497633 r002 22th iterates of z^2 + 8299637624781987 r005 Re(z^2+c),c=5/94+20/47*I,n=9 8299637674894203 r009 Im(z^3+c),c=-2/17+25/33*I,n=44 8299637685869869 a005 (1/sin(62/185*Pi))^490 8299637690962915 r005 Re(z^2+c),c=-22/25+13/50*I,n=43 8299637692037803 a007 Real Root Of -82*x^4-792*x^3-955*x^2-302*x-428 8299637696938206 a001 4181/167761*322^(5/24) 8299637711943165 a007 Real Root Of -805*x^4+924*x^3-767*x^2-967*x+636 8299637725227740 a008 Real Root of x^4-x^3-226*x^2+180*x+11745 8299637735503896 a005 (1/cos(11/224*Pi))^948 8299637751738783 a007 Real Root Of 108*x^4+35*x^3+122*x^2-966*x-81 8299637752679808 m001 (Magata+ZetaQ(2))/(Pi^(1/2)-FeigenbaumKappa) 8299637753199652 a007 Real Root Of -521*x^4+831*x^3+390*x^2-2*x+452 8299637774682854 a007 Real Root Of -988*x^4+873*x^3+643*x^2+194*x+686 8299637795287359 r005 Im(z^2+c),c=-71/122+9/52*I,n=17 8299637800895340 r002 4th iterates of z^2 + 8299637804187487 r009 Re(z^3+c),c=-109/126+20/39*I,n=2 8299637831138735 m001 Lehmer^(DuboisRaymond*FeigenbaumC) 8299637839650325 r005 Im(z^2+c),c=5/24+28/51*I,n=14 8299637865274996 a007 Real Root Of 315*x^4+723*x^3+768*x^2-242*x-466 8299637880171553 m002 -4+3*Pi^3-6*Coth[Pi] 8299637909486970 r005 Im(z^2+c),c=-9/14+22/123*I,n=36 8299637915818400 l006 ln(2868/6577) 8299637929428528 a001 8/103361*29^(31/44) 8299637976980310 r009 Im(z^3+c),c=-13/122+33/40*I,n=17 8299637980393967 m002 -5-Cosh[Pi]+2*Cosh[Pi]*ProductLog[Pi] 8299638016292258 a007 Real Root Of 867*x^4-178*x^3+751*x^2+403*x-696 8299638034311134 m001 1/ln(Zeta(9))^2*Sierpinski^2*sqrt(5)^2 8299638102514601 k002 Champernowne real with 24*n^2+219*n-235 8299638132366277 m005 (1/2*Zeta(3)+1/10)/(5/6*gamma+4/11) 8299638150760059 a007 Real Root Of -115*x^4-997*x^3-343*x^2+138*x+451 8299638166323838 a007 Real Root Of -425*x^4-278*x^3-728*x^2+60*x+594 8299638180684439 a005 (1/sin(67/207*Pi))^340 8299638188099972 m001 HardHexagonsEntropy^2*Si(Pi)^2/ln(sqrt(5)) 8299638237355677 m001 (-Paris+Tetranacci)/(BesselI(0,1)-Zeta(1,2)) 8299638245523321 a003 sin(Pi*15/74)/cos(Pi*29/118) 8299638254554873 a001 1597/64079*322^(5/24) 8299638255986045 m001 (gamma(2)+Gompertz)/(Kac-MertensB3) 8299638272960609 m005 (1/3*5^(1/2)+2/7)/(3/7*3^(1/2)+1/2) 8299638292345445 r009 Im(z^3+c),c=-43/110+24/37*I,n=9 8299638292816267 r008 a(0)=9,K{-n^6,4+5*n^3-n^2-4*n} 8299638341903198 a007 Real Root Of -349*x^4-599*x^3-982*x^2-667*x-54 8299638380520649 r005 Re(z^2+c),c=-17/18-64/251*I,n=28 8299638402070886 h001 (3/4*exp(1)+2/5)/(9/11*exp(1)+5/7) 8299638415331863 m001 1/log(2+sqrt(3))^2*ln(KhintchineLevy)*sin(1) 8299638429640642 a001 1364/21*121393^(21/26) 8299638438485254 r005 Re(z^2+c),c=-7/118+11/54*I,n=6 8299638444545593 a007 Real Root Of -507*x^4+18*x^3-548*x^2-639*x+98 8299638471741621 l006 ln(2735/6272) 8299638486158164 b008 4/35+Sqrt[67] 8299638500937018 m002 Pi^8/Log[Pi]+Sinh[Pi]/ProductLog[Pi] 8299638533336869 a007 Real Root Of -481*x^4+211*x^3+655*x^2+992*x+721 8299638559517520 a001 233/39603*521^(11/26) 8299638560554227 a007 Real Root Of 496*x^4-150*x^3+907*x^2+83*x-877 8299638581585817 a007 Real Root Of 894*x^4-783*x^3-106*x^2-199*x-964 8299638590903522 h001 (1/9*exp(2)+7/10)/(5/12*exp(1)+7/10) 8299638623195392 m005 (1/3*Zeta(3)-1/4)/(-37/56+3/14*5^(1/2)) 8299638628233112 a007 Real Root Of -698*x^4+182*x^3+390*x^2+427*x+521 8299638629605913 r005 Im(z^2+c),c=-47/102+9/64*I,n=34 8299638654950234 a003 sin(Pi*41/115)*sin(Pi*31/83) 8299638690638215 r005 Im(z^2+c),c=-25/42+3/16*I,n=19 8299638723184168 b008 ArcSec[(4+Pi)^(1/5)] 8299638729879997 h001 (5/9*exp(1)+7/12)/(8/11*exp(1)+6/11) 8299638736083696 m001 1/exp(GAMMA(1/6))/CareFree*GAMMA(7/12) 8299638762834096 a007 Real Root Of -227*x^4-303*x^3+406*x^2+934*x+430 8299638797004583 a007 Real Root Of -440*x^4+693*x^3-643*x^2-524*x+613 8299638811755262 m001 (-CopelandErdos+OneNinth)/(2^(1/2)-2^(1/3)) 8299638813024874 b008 1+Zeta[1/9,3/5] 8299638854243795 a007 Real Root Of 835*x^4-487*x^3-431*x^2+225*x-191 8299638869047097 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*GAMMA(11/12)/Magata 8299638895679544 m005 (1/2*Zeta(3)+1/6)/(3/5*5^(1/2)-5/12) 8299638921443589 m001 (Tribonacci-Trott)/(ErdosBorwein+Gompertz) 8299638925721601 r002 60th iterates of z^2 + 8299638930363054 a003 cos(Pi*31/90)+cos(Pi*44/115) 8299638946942546 m005 (2/5*Catalan-2/3)/(5/6*Pi+1) 8299638989169675 q001 2299/2770 8299639020785773 m001 gamma(3)^(MasserGramain/ErdosBorwein) 8299639084496313 l006 ln(2602/5967) 8299639095858771 r005 Re(z^2+c),c=-29/52+32/53*I,n=46 8299639101626231 m001 1/GAMMA(11/12)*exp(BesselJ(1,1))/sqrt(Pi) 8299639102814661 k002 Champernowne real with 49/2*n^2+435/2*n-234 8299639109975553 m001 1/BesselJ(1,1)*ln(Conway)*GAMMA(19/24)^2 8299639129413223 m001 (exp(1)+5^(1/2))/(-GolombDickman+Trott2nd) 8299639158669797 m005 (1/2*gamma+7/12)/(2^(1/2)-4/11) 8299639160487378 a007 Real Root Of 453*x^4+318*x^3-99*x^2-529*x-404 8299639188599611 m001 (GAMMA(7/12)-Grothendieck)/(Otter+Paris) 8299639196747987 h001 (-exp(5)+5)/(-3*exp(4)-9) 8299639221147741 a007 Real Root Of -853*x^4-456*x^3-590*x^2+385*x+870 8299639221919687 a007 Real Root Of -412*x^4+843*x^3+133*x^2-495*x+175 8299639258829456 a001 377/39603*322^(3/8) 8299639261923586 m001 (gamma(1)-Pi^(1/2))/(GAMMA(7/12)-Mills) 8299639335760073 r005 Re(z^2+c),c=-7/10+82/175*I,n=23 8299639346242027 a007 Real Root Of 280*x^4-744*x^3-895*x^2+394*x+582 8299639386045537 h001 (-3*exp(2)+10)/(-7*exp(3)-6) 8299639402434906 m001 (Lehmer-ZetaQ(4))/(exp(1/Pi)-LaplaceLimit) 8299639405796237 a003 cos(Pi*25/104)+cos(Pi*36/77) 8299639407979844 m005 (1/2*gamma+7/8)/(5*exp(1)+3/7) 8299639436070152 h001 (7/9*exp(2)+1/5)/(7/8*exp(2)+7/10) 8299639436344595 m001 AlladiGrinstead*GAMMA(3/4)^Champernowne 8299639501728727 a007 Real Root Of 108*x^4-955*x^3-244*x^2+152*x-303 8299639527242975 r005 Re(z^2+c),c=47/126+17/54*I,n=35 8299639528273773 a007 Real Root Of 652*x^4-430*x^3+790*x^2+427*x-745 8299639551219996 m001 (ln(gamma)-ln(5))/(Pi-cos(1)) 8299639551706240 m003 1/8+Sqrt[5]/8-9*Cot[1/2+Sqrt[5]/2] 8299639554142661 a007 Real Root Of -493*x^4-103*x^3-106*x^2+265*x+468 8299639559778651 m001 exp(GAMMA(19/24))^2*TwinPrimes*Zeta(3) 8299639569228787 a007 Real Root Of 983*x^4-924*x^3-305*x^2+267*x-563 8299639598429448 a001 2207/13*8^(29/38) 8299639602233670 m001 (KhinchinLevy+LaplaceLimit)/(Catalan-ln(2)) 8299639624899661 m005 (1/2*Pi-4/9)/(4/11*3^(1/2)+8/11) 8299639637607817 m001 exp(FeigenbaumKappa)^2/Conway^2*Zeta(1,2) 8299639657660791 m005 (1/2*2^(1/2)-3/7)/(10/11*Pi+1/2) 8299639671472537 a007 Real Root Of -892*x^4+532*x^3-952*x^2-787*x+730 8299639680107377 a007 Real Root Of 910*x^4-775*x^3-345*x^2-870*x+971 8299639736968130 a007 Real Root Of -263*x^4+784*x^3-261*x^2-454*x+376 8299639763266654 l006 ln(2469/5662) 8299639804093141 r005 Re(z^2+c),c=7/18+11/54*I,n=48 8299639816359356 b008 5+(2*Sinh[Pi])/7 8299639835026562 a007 Real Root Of -732*x^4-963*x^3-801*x^2+456*x+727 8299639845708213 m005 (1/2*3^(1/2)-3)/(10/11*exp(1)+1/10) 8299639908457430 m001 BesselI(0,1)/ln(Pi)/MertensB3 8299639913250561 a001 36/6119*18^(5/42) 8299639932423084 m006 (5*Pi+3)/(exp(Pi)-3/5) 8299639944323718 m001 (-Sarnak+Trott2nd)/(2^(1/3)-BesselK(0,1)) 8299639944541451 p004 log(22343/9743) 8299639950537958 a007 Real Root Of 861*x^4-678*x^3-751*x^2-414*x+840 8299639960172261 a007 Real Root Of 584*x^4-932*x^3-913*x^2-653*x-723 8299639984488809 a007 Real Root Of 631*x^4-587*x^3+233*x^2+691*x-222 8299639988537206 m001 (ln(5)+Khinchin)/polylog(4,1/2) 8299639988922736 q001 2997/3611 8299639991675790 m002 -3-4*E^Pi+4*Pi 8299640029610237 m001 (Zeta(3)+sin(1/5*Pi))/(Landau+Riemann2ndZero) 8299640032168648 b008 1/5-3*Log[17] 8299640032871913 a007 Real Root Of 973*x^4-402*x^3+341*x^2+768*x-289 8299640036685720 m001 (ReciprocalLucas+ZetaQ(4))/(Ei(1)+Bloch) 8299640051272161 a007 Real Root Of 123*x^4-768*x^3+254*x^2-120*x-772 8299640060189460 r002 2th iterates of z^2 + 8299640061743660 a007 Real Root Of -639*x^4+158*x^3+798*x^2+893*x+585 8299640064394138 a007 Real Root Of -367*x^4+834*x^3+455*x^2-338*x+57 8299640067476121 a007 Real Root Of 828*x^4-281*x^3+446*x^2+813*x-186 8299640103114721 k002 Champernowne real with 25*n^2+216*n-233 8299640114139033 a007 Real Root Of -62*x^4+700*x^3+182*x^2+242*x-697 8299640171483050 a007 Real Root Of -71*x^4+977*x^3-507*x^2+880*x-906 8299640204041626 a003 sin(Pi*24/77)*sin(Pi*54/109) 8299640209990997 m001 1/ln(GAMMA(1/4))^2/Backhouse^2*cos(1)^2 8299640223271131 m008 (1/6*Pi^3+5)/(4*Pi^5+1) 8299640227786649 m001 (-BesselK(1,1)+ThueMorse)/(Shi(1)+GAMMA(3/4)) 8299640236351189 r002 9th iterates of z^2 + 8299640251435142 a007 Real Root Of 767*x^4+322*x^3+557*x^2+979*x+249 8299640256595599 r002 6th iterates of z^2 + 8299640267821609 m001 (Conway-FeigenbaumD)/(ln(Pi)+polylog(4,1/2)) 8299640294858102 m002 -Pi+Pi^4-Cosh[Pi]/Log[Pi]-Log[Pi] 8299640297232291 a007 Real Root Of -225*x^4-261*x^3+193*x^2+821*x+506 8299640309200365 a007 Real Root Of 588*x^4-408*x^3+517*x^2+674*x-309 8299640318082813 m001 (exp(Pi)-sin(1))/(HeathBrownMoroz+Khinchin) 8299640320325053 a007 Real Root Of 948*x^4-224*x^3-892*x^2-973*x-771 8299640321906084 a007 Real Root Of 77*x^4+680*x^3+408*x^2+550*x-141 8299640344671753 r005 Im(z^2+c),c=17/82+2/41*I,n=3 8299640367730502 a007 Real Root Of -275*x^4+935*x^3-181*x^2-578*x+310 8299640386443238 r002 12th iterates of z^2 + 8299640393862657 m001 (Si(Pi)+Zeta(1,-1))/(Backhouse+Stephens) 8299640399536588 r005 Re(z^2+c),c=-81/98+12/43*I,n=5 8299640427013040 b008 EulerGamma+5*ArcSinh[Sqrt[5]] 8299640434455724 m001 (-Artin+TreeGrowth2nd)/(Pi^(1/2)-Si(Pi)) 8299640448196537 a007 Real Root Of -115*x^4+948*x^3+566*x^2-10*x-869 8299640482906949 a005 (1/cos(20/167*Pi))^569 8299640486234671 r009 Im(z^3+c),c=-31/74+39/59*I,n=6 8299640492494721 a007 Real Root Of -847*x^4+796*x^3+512*x^2-851*x-202 8299640494607723 r005 Re(z^2+c),c=-5/6+13/124*I,n=39 8299640498802443 a007 Real Root Of -460*x^4+934*x^3+90*x^2+125*x+794 8299640519328426 l006 ln(2336/5357) 8299640520162022 m001 1/Niven^2/exp(Bloch)/Sierpinski 8299640540047100 r005 Im(z^2+c),c=-27/26+17/62*I,n=18 8299640598397373 m005 (1/2*gamma+2/9)/(3/10*exp(1)-1/5) 8299640602978885 m006 (5/6*ln(Pi)+4/5)/(4/5*Pi-2/5) 8299640603340162 m001 gamma*BesselJ(1,1)+Stephens 8299640652425332 a007 Real Root Of -12*x^4-990*x^3+484*x^2-863*x+10 8299640653476922 m009 (Pi^2+4/5)/(4*Psi(1,2/3)+3/5) 8299640655805087 m001 Conway/(KhinchinHarmonic-ZetaP(3)) 8299640663724183 a007 Real Root Of -719*x^4-857*x^3-997*x^2+341*x+821 8299640740792718 r005 Re(z^2+c),c=-23/26+18/103*I,n=20 8299640744122075 q001 7/84341 8299640745900846 a007 Real Root Of 513*x^4+536*x^3+953*x^2+115*x-498 8299640762954402 m001 (cos(1)+GaussKuzminWirsing)^ln(3) 8299640788354539 a007 Real Root Of -410*x^4+574*x^3+704*x^2+315*x-880 8299640793302394 m001 Chi(1)^Champernowne-ZetaR(2) 8299640806889869 m002 Pi-Cosh[Pi]+(2*Sech[Pi])/Log[Pi] 8299640813167312 a007 Real Root Of -888*x^4-185*x^3+318*x^2+803*x+763 8299640816140688 a007 Real Root Of -563*x^4-355*x^3-380*x^2+429*x+682 8299640824960607 a007 Real Root Of 848*x^4-188*x^3-439*x^2-779*x-854 8299640829386646 s001 sum(exp(-3*Pi/4)^n*A045082[n],n=1..infinity) 8299640831141025 a008 Real Root of x^4-2*x^3-57*x^2-14*x+441 8299640903381995 r005 Im(z^2+c),c=-35/82+7/51*I,n=36 8299640916420799 r005 Im(z^2+c),c=-7/6+49/187*I,n=28 8299640917690384 m001 LandauRamanujan2nd/(TravellingSalesman^Shi(1)) 8299640930667346 a001 233/24476*521^(9/26) 8299640940662155 r009 Im(z^3+c),c=-16/27+17/56*I,n=55 8299640997330599 m001 (exp(Pi)-gamma(1))/(-FransenRobinson+Trott) 8299641007769509 r002 29i'th iterates of 2*x/(1-x^2) of 8299641014872273 m002 -2+E^Pi+Pi-Pi^2-Pi^4 8299641017515233 r002 9th iterates of z^2 + 8299641024927087 a001 843/377*591286729879^(2/15) 8299641026036552 m001 (Artin-cos(1))/(Tetranacci+ZetaP(4)) 8299641026409694 r001 37i'th iterates of 2*x^2-1 of 8299641082680069 r001 32i'th iterates of 2*x^2-1 of 8299641093062726 p003 LerchPhi(1/64,4,110/59) 8299641099123413 k001 Champernowne real with 135*n+694 8299641099123413 k005 Champernowne real with floor(Pi*(43*n+221)) 8299641103414781 k002 Champernowne real with 51/2*n^2+429/2*n-232 8299641108643974 m001 FeigenbaumKappa^HardyLittlewoodC3/MinimumGamma 8299641123097912 m005 (1/3*5^(1/2)-1/5)/(9/11*2^(1/2)-1/2) 8299641132306771 m001 (Ei(1)-exp(Pi))/(-polylog(4,1/2)+MertensB1) 8299641136302161 b008 79*Gamma[1/11] 8299641144145101 r002 27th iterates of z^2 + 8299641147163784 m005 (2*Pi-5/6)/(2/5*Pi-3/5) 8299641147163784 m006 (2*Pi-5/6)/(2/5*Pi-3/5) 8299641147163784 m008 (2*Pi-5/6)/(2/5*Pi-3/5) 8299641165384792 a007 Real Root Of -137*x^4-272*x^3+150*x^2+934*x-658 8299641240380839 p004 log(18959/17449) 8299641265888877 a007 Real Root Of 932*x^4-799*x^3-560*x^2-84*x-583 8299641278204601 a007 Real Root Of -742*x^4-549*x^3-708*x^2+517*x+955 8299641281935881 r002 16i'th iterates of 2*x/(1-x^2) of 8299641329951797 m001 cos(1/5*Pi)^(RenyiParking*Salem) 8299641359250488 a007 Real Root Of 880*x^4-798*x^3-317*x^2+962*x+143 8299641366680386 l006 ln(2203/5052) 8299641368760267 m001 ZetaQ(4)^(GAMMA(17/24)*LandauRamanujan2nd) 8299641380206591 m001 (HardyLittlewoodC5-exp(1))/(-Kac+Magata) 8299641387860021 a007 Real Root Of 974*x^4-648*x^3+237*x^2+577*x-517 8299641419461423 a007 Real Root Of 852*x^4-933*x^3-361*x^2+788*x-35 8299641422015024 a007 Real Root Of 345*x^4+289*x^3+42*x^2-814*x-703 8299641437760672 r005 Im(z^2+c),c=-13/56+35/47*I,n=19 8299641456186799 a007 Real Root Of 730*x^4-720*x^3-137*x^2+55*x-618 8299641464927273 a007 Real Root Of -230*x^4+449*x^3+383*x^2+794*x+761 8299641517588288 m004 1-Cos[Sqrt[5]*Pi]/2+Sqrt[5]*Pi*Cot[Sqrt[5]*Pi] 8299641559371183 a001 2/305*365435296162^(2/11) 8299641563058575 r002 13th iterates of z^2 + 8299641570249429 m005 (1/2*Catalan-5/9)/(4/9*5^(1/2)+2/11) 8299641587775409 a007 Real Root Of -159*x^4-295*x^3-465*x^2+871*x+950 8299641646365662 m001 1/Trott*Conway*exp(cos(Pi/12))^2 8299641682535477 a007 Real Root Of 262*x^4-559*x^3-681*x^2+39*x+632 8299641702989366 a007 Real Root Of -11*x^4+569*x^3+71*x^2-200*x-203 8299641731325993 r002 4th iterates of z^2 + 8299641742778378 r005 Im(z^2+c),c=41/106+19/60*I,n=28 8299641744829207 a007 Real Root Of -202*x^4+792*x^3+20*x^2-583*x+51 8299641759547758 a001 3/101521*3^(47/50) 8299641805012320 a007 Real Root Of 466*x^4-69*x^3-848*x^2-485*x+805 8299641810647358 a007 Real Root Of 841*x^4-684*x^3+866*x^2+749*x-765 8299641826719375 m002 -3/Pi^2-Cosh[Pi]+Pi*Log[Pi] 8299641829357113 a007 Real Root Of -109*x^4+406*x^3+492*x^2-157*x-389 8299641829917935 l006 ln(4273/9799) 8299641839233889 a003 sin(Pi*20/67)/sin(Pi*25/59) 8299641896451992 r005 Im(z^2+c),c=-3/34+16/19*I,n=19 8299641898999601 m005 (1/2*2^(1/2)+6)/(-25/88+1/11*5^(1/2)) 8299641913419617 m001 (exp(1/Pi)-Bloch)/(KhinchinLevy-Paris) 8299641943502532 m001 (FeigenbaumC-ZetaQ(2))/(Pi-1) 8299641961622519 m005 (1/2*Zeta(3)+4/11)/(5/7*gamma+3/4) 8299641973709080 m005 (1/2*exp(1)+1/3)/(2^(1/2)+5/8) 8299642009926743 a007 Real Root Of -479*x^4-241*x^3+226*x^2+987*x+753 8299642026689977 a001 24476*55^(51/58) 8299642076516376 a001 305/12238*322^(5/24) 8299642103714841 k002 Champernowne real with 26*n^2+213*n-231 8299642114944060 a007 Real Root Of -836*x^4-35*x^3-571*x^2-247*x+565 8299642117269609 a007 Real Root Of -685*x^4+768*x^3-369*x^2-804*x+351 8299642127229871 r005 Im(z^2+c),c=-35/82+7/51*I,n=39 8299642127611216 a007 Real Root Of 982*x^4-502*x^3-786*x^2-603*x-712 8299642127968119 m001 (Otter-Weierstrass)/(Zeta(1/2)-GAMMA(7/12)) 8299642131559778 m005 (1/3*Pi+1/7)/(4*gamma-7/8) 8299642158423201 a005 (1/cos(18/139*Pi))^728 8299642160860143 a007 Real Root Of 178*x^4-617*x^3-32*x^2-148*x-538 8299642173048639 a007 Real Root Of 59*x^4+439*x^3-314*x^2+875*x-82 8299642200093117 a007 Real Root Of -31*x^4+260*x^3+68*x^2+944*x+900 8299642200412463 a007 Real Root Of -822*x^4+370*x^3-496*x^2-869*x+222 8299642207163453 m001 (-Riemann3rdZero+Thue)/(2^(1/2)-Niven) 8299642226205417 r005 Im(z^2+c),c=-61/102+9/58*I,n=38 8299642228866877 r002 36th iterates of z^2 + 8299642256918257 m005 (1/2*2^(1/2)-9/10)/(7/10*Pi+1/8) 8299642264093077 a007 Real Root Of 866*x^4-827*x^3+363*x^2+166*x-996 8299642266758294 r002 11th iterates of z^2 + 8299642322919032 l006 ln(2070/4747) 8299642351086002 a007 Real Root Of -553*x^4+654*x^3-10*x+628 8299642371253405 r005 Re(z^2+c),c=5/66+28/59*I,n=54 8299642378116330 a007 Real Root Of 112*x^4+970*x^3+292*x^2-387*x-206 8299642396166464 b008 3+(5*ArcSinh[12])/3 8299642406990861 a007 Real Root Of -950*x^4+375*x^3+860*x^2+722*x+672 8299642416277476 a007 Real Root Of -840*x^4-227*x^3-953*x^2-910*x+170 8299642442366917 m007 (-1/4*gamma-1/2*ln(2)+5)/(-3/4*gamma-5) 8299642494122747 r005 Re(z^2+c),c=3/23+7/36*I,n=12 8299642495404756 a007 Real Root Of -630*x^4+694*x^3+104*x^2-129*x+517 8299642505175080 r005 Im(z^2+c),c=-35/82+7/51*I,n=41 8299642536848608 h001 (3/7*exp(1)+4/11)/(5/8*exp(1)+1/7) 8299642544362963 r005 Re(z^2+c),c=-23/28+7/51*I,n=45 8299642555585163 r009 Re(z^3+c),c=-17/28+1/43*I,n=2 8299642570482726 a001 987/64079*322^(7/24) 8299642625605045 a001 233/3571*199^(1/22) 8299642638220422 r009 Im(z^3+c),c=-41/78+33/61*I,n=8 8299642657947439 a007 Real Root Of 838*x^4-590*x^3+441*x^2+231*x-847 8299642658228742 a007 Real Root Of -140*x^4+715*x^3-830*x^2-759*x+417 8299642663546200 a003 cos(Pi*19/84)+cos(Pi*52/109) 8299642671355043 a001 1/161*2^(23/55) 8299642674665133 a008 Real Root of x^4-53*x^2-114*x-148 8299642709792112 a001 2/4181*75025^(20/23) 8299642715873540 a007 Real Root Of -39*x^4+883*x^3-142*x^2+50*x-430 8299642734095036 a003 cos(Pi*10/83)-cos(Pi*37/79) 8299642753475271 m001 (GAMMA(23/24)-Gompertz)/polylog(4,1/2) 8299642784137005 l006 ln(9839/9921) 8299642797391179 m001 (Magata+Niven)/(Zeta(5)-(1+3^(1/2))^(1/2)) 8299642799043666 m006 (2/5*exp(2*Pi)-4)/(1/4*Pi^2-5) 8299642802304720 m001 GAMMA(17/24)/((5^(1/2))^Landau) 8299642804493131 a001 1/31622993*4807526976^(20/23) 8299642842143662 m001 (cos(1/12*Pi)+Gompertz)/(Mills+Stephens) 8299642848647403 l006 ln(4007/9189) 8299642887061148 m001 Zeta(3)*CareFree^Shi(1) 8299642901699668 a007 Real Root Of 37*x^4-960*x^3+462*x^2+402*x-551 8299642907086512 r005 Im(z^2+c),c=29/106+19/31*I,n=31 8299642939811625 r009 Re(z^3+c),c=-5/28+10/23*I,n=2 8299642947087273 a007 Real Root Of 306*x^4-661*x^3+549*x^2+463*x-517 8299642962062441 a007 Real Root Of 965*x^4+469*x^3-735*x^2-632*x-208 8299642973761385 m001 GolombDickman^ln(1+sqrt(2))-gamma 8299642973761385 m001 GolombDickman^ln(2^(1/2)+1)-gamma 8299642989555823 m001 (Kolakoski-LambertW(1))/Trott2nd 8299642990495811 a007 Real Root Of 126*x^4-632*x^3+803*x^2-194*x-22 8299642998130702 a007 Real Root Of 647*x^4+60*x^3-833*x^2-711*x-289 8299643028045723 m001 (BesselK(1,1)-KhinchinLevy)/CareFree 8299643043648097 m005 (1/2*2^(1/2)-1/8)/(9/10*2^(1/2)-4/7) 8299643083336353 m001 (-Totient+ZetaP(3))/(5^(1/2)-FeigenbaumB) 8299643086551484 r005 Im(z^2+c),c=-19/98+23/27*I,n=7 8299643094393323 m001 1/Zeta(1,2)^2/GAMMA(11/24)^2*exp(Zeta(9)) 8299643104014901 k002 Champernowne real with 53/2*n^2+423/2*n-230 8299643162573938 a007 Real Root Of -28*x^4+455*x^3-455*x^2+867*x-653 8299643165044023 m002 -4/Pi^2-Pi^3+Pi^2*Cosh[Pi] 8299643175202812 a007 Real Root Of 840*x^4-610*x^3-446*x^2-377*x-753 8299643188689338 r005 Im(z^2+c),c=-35/82+7/51*I,n=43 8299643232547315 a001 233/15127*521^(7/26) 8299643233245564 a001 23725150497407/13*832040^(1/9) 8299643233245830 a001 9062201101803/13*4807526976^(1/9) 8299643233245830 a001 5600748293801/13*365435296162^(1/9) 8299643233245830 a001 14662949395604/13*63245986^(1/9) 8299643252649746 m001 GaussAGM*KomornikLoreti-Robbin 8299643256402041 a007 Real Root Of -472*x^4-272*x^3-721*x^2-758*x-64 8299643266431313 r002 2th iterates of z^2 + 8299643272309817 a007 Real Root Of -457*x^4+785*x^3-384*x^2+920*x-731 8299643275769325 m001 1/Trott/FeigenbaumC^2*ln(sqrt(3))^2 8299643281807372 q001 698/841 8299643295964111 m001 (exp(1/Pi)+4)/(-BesselK(1,1)+2/3) 8299643306790943 m006 (1/4*exp(2*Pi)+5)/(4/Pi+2/5) 8299643314583833 m001 exp(Sierpinski)/MertensB1^2/GAMMA(7/12)^2 8299643337746278 r002 4th iterates of z^2 + 8299643349452698 a007 Real Root Of -569*x^4+857*x^3-204*x^2-750*x+278 8299643366272707 a007 Real Root Of 941*x^4-550*x^3+690*x^2+322*x-969 8299643366506830 m001 (arctan(1/3)-Magata)^Zeta(1,-1) 8299643382951328 a007 Real Root Of 377*x^4-827*x^3-878*x^2+230*x+144 8299643396537910 r005 Re(z^2+c),c=-75/94+7/54*I,n=63 8299643410473768 l006 ln(1937/4442) 8299643415029450 a007 Real Root Of 289*x^4-603*x^3+336*x^2+151*x-588 8299643446365025 a007 Real Root Of -338*x^4+983*x^3-61*x^2+374*x-670 8299643449843138 a007 Real Root Of 636*x^4-853*x^3-810*x^2-97*x-312 8299643486981160 r005 Re(z^2+c),c=-16/19+7/17*I,n=3 8299643517762612 a008 Real Root of (14+5*x-6*x^2+10*x^3) 8299643598218298 r005 Im(z^2+c),c=-31/54+8/55*I,n=24 8299643606421036 p004 log(26347/11489) 8299643623193294 r005 Re(z^2+c),c=-107/126+2/31*I,n=23 8299643627011068 r004 Im(z^2+c),c=-5/7+4/19*I,z(0)=-1,n=10 8299643633362985 m001 (Zeta(1,2)-GAMMA(17/24))/(Pi-arctan(1/2)) 8299643657043939 r005 Im(z^2+c),c=-35/82+7/51*I,n=45 8299643660234488 a007 Real Root Of -16*x^4-66*x^3+600*x^2+398*x+160 8299643671440998 r002 52th iterates of z^2 + 8299643689949269 a001 55/18*7^(19/37) 8299643692846278 a007 Real Root Of 96*x^4+709*x^3-620*x^2+997*x+806 8299643694991958 m001 ln(BesselJ(1,1))/Rabbit*GAMMA(1/3)^2 8299643696296118 q001 1/1204871 8299643705346251 m001 1/LandauRamanujan^2/exp(Cahen)/Trott 8299643724730531 r005 Im(z^2+c),c=-11/62+53/63*I,n=31 8299643799878934 a007 Real Root Of 319*x^4-66*x^3-487*x^2-341*x-25 8299643807021534 a007 Real Root Of 705*x^4+197*x^3+4*x^2-886*x-960 8299643837417984 a007 Real Root Of 148*x^4-638*x^3-44*x^2-446*x+695 8299643857117020 a007 Real Root Of -715*x^4+803*x^3+794*x^2+420*x+600 8299643890102279 r005 Im(z^2+c),c=-35/82+7/51*I,n=47 8299643898052662 a007 Real Root Of -752*x^4-446*x^3+252*x^2+372*x+237 8299643917233146 s002 sum(A046856[n]/(n!^3),n=1..infinity) 8299643917233146 s002 sum(A000724[n]/(n!^2),n=1..infinity) 8299643927901629 r002 10th iterates of z^2 + 8299643939537063 m001 (Lehmer+Otter)/(Pi^(1/2)+FeigenbaumAlpha) 8299643969501449 r005 Im(z^2+c),c=-35/82+7/51*I,n=37 8299643978294757 r005 Im(z^2+c),c=-35/82+7/51*I,n=52 8299643979535261 r005 Im(z^2+c),c=-35/82+7/51*I,n=49 8299643980418572 a003 cos(Pi*18/85)+cos(Pi*53/109) 8299643981877464 r005 Im(z^2+c),c=-35/82+7/51*I,n=54 8299643986435790 r005 Im(z^2+c),c=-35/82+7/51*I,n=56 8299643986476729 r005 Im(z^2+c),c=-35/82+7/51*I,n=50 8299643989339385 r005 Im(z^2+c),c=-35/82+7/51*I,n=58 8299643990717844 r005 Im(z^2+c),c=-35/82+7/51*I,n=60 8299643991192230 r005 Im(z^2+c),c=-35/82+7/51*I,n=63 8299643991219190 r005 Im(z^2+c),c=-35/82+7/51*I,n=62 8299643991334801 r005 Im(z^2+c),c=-35/82+7/51*I,n=64 8299643991455094 r005 Im(z^2+c),c=-35/82+7/51*I,n=61 8299643992318166 r005 Im(z^2+c),c=-35/82+7/51*I,n=59 8299643992555668 a007 Real Root Of -721*x^4-615*x^3-880*x^2+57*x+644 8299643993215590 m001 BesselJ(0,1)/(Zeta(1,2)^(2^(1/3))) 8299643994382739 r005 Im(z^2+c),c=-35/82+7/51*I,n=57 8299643998189532 r005 Im(z^2+c),c=-35/82+7/51*I,n=55 8299644002815700 r005 Im(z^2+c),c=-35/82+7/51*I,n=51 8299644002922441 r005 Im(z^2+c),c=-35/82+7/51*I,n=53 8299644012248190 l006 ln(3741/8579) 8299644024097166 a001 2584/167761*322^(7/24) 8299644035400030 r005 Im(z^2+c),c=-35/82+7/51*I,n=48 8299644036134396 a007 Real Root Of 768*x^4-954*x^3+781*x^2-878*x+68 8299644073526239 a001 843/377*55^(18/55) 8299644083298329 m005 (2/3*Catalan-5)/(1/2*gamma+5) 8299644091322526 m001 OrthogonalArrays^(Kolakoski/gamma(2)) 8299644099099641 m001 exp(1/Pi)^Trott/(exp(1/Pi)^Gompertz) 8299644104314962 k002 Champernowne real with 27*n^2+210*n-229 8299644104742061 r009 Re(z^3+c),c=-25/48+8/57*I,n=26 8299644123159877 a007 Real Root Of -456*x^4+345*x^3+420*x^2+584*x+609 8299644155838128 m005 (1/2*Pi+1/6)/(169/132+4/11*5^(1/2)) 8299644164367566 m008 (1/6*Pi^3+1/5)/(1/4*Pi^2+4) 8299644184892299 r005 Im(z^2+c),c=-35/82+7/51*I,n=46 8299644185512270 a007 Real Root Of 317*x^4-690*x^3+348*x^2+955*x+8 8299644190803822 m001 ln(Conway)^2/Artin^2*GAMMA(17/24)^2 8299644196750925 r005 Re(z^2+c),c=-65/58+56/57*I,n=2 8299644213234569 m001 (ln(3)+Sarnak)/(sin(1)+GAMMA(2/3)) 8299644219212272 a007 Real Root Of 301*x^4-376*x^3+981*x^2+779*x-387 8299644229866526 a001 76/3*225851433717^(3/4) 8299644236176655 a001 6765/439204*322^(7/24) 8299644267118635 a001 17711/1149851*322^(7/24) 8299644271633009 a001 46368/3010349*322^(7/24) 8299644272291648 a001 121393/7881196*322^(7/24) 8299644272387742 a001 10959/711491*322^(7/24) 8299644272401762 a001 832040/54018521*322^(7/24) 8299644272403807 a001 2178309/141422324*322^(7/24) 8299644272404105 a001 5702887/370248451*322^(7/24) 8299644272404149 a001 14930352/969323029*322^(7/24) 8299644272404155 a001 39088169/2537720636*322^(7/24) 8299644272404156 a001 102334155/6643838879*322^(7/24) 8299644272404156 a001 9238424/599786069*322^(7/24) 8299644272404156 a001 701408733/45537549124*322^(7/24) 8299644272404156 a001 1836311903/119218851371*322^(7/24) 8299644272404156 a001 4807526976/312119004989*322^(7/24) 8299644272404156 a001 12586269025/817138163596*322^(7/24) 8299644272404156 a001 32951280099/2139295485799*322^(7/24) 8299644272404156 a001 86267571272/5600748293801*322^(7/24) 8299644272404156 a001 7787980473/505618944676*322^(7/24) 8299644272404156 a001 365435296162/23725150497407*322^(7/24) 8299644272404156 a001 139583862445/9062201101803*322^(7/24) 8299644272404156 a001 53316291173/3461452808002*322^(7/24) 8299644272404156 a001 20365011074/1322157322203*322^(7/24) 8299644272404156 a001 7778742049/505019158607*322^(7/24) 8299644272404156 a001 2971215073/192900153618*322^(7/24) 8299644272404156 a001 1134903170/73681302247*322^(7/24) 8299644272404156 a001 433494437/28143753123*322^(7/24) 8299644272404156 a001 165580141/10749957122*322^(7/24) 8299644272404157 a001 63245986/4106118243*322^(7/24) 8299644272404159 a001 24157817/1568397607*322^(7/24) 8299644272404176 a001 9227465/599074578*322^(7/24) 8299644272404290 a001 3524578/228826127*322^(7/24) 8299644272405071 a001 1346269/87403803*322^(7/24) 8299644272410426 a001 514229/33385282*322^(7/24) 8299644272447131 a001 196418/12752043*322^(7/24) 8299644272698708 a001 75025/4870847*322^(7/24) 8299644274423046 a001 28657/1860498*322^(7/24) 8299644274821611 m005 (1/2*Catalan-6/7)/(2/9*2^(1/2)+1/6) 8299644286241831 a001 10946/710647*322^(7/24) 8299644339148280 a007 Real Root Of 851*x^4-893*x^3+695*x^2+964*x-593 8299644356317576 a007 Real Root Of -326*x^4+859*x^3+73*x^2+397*x+925 8299644367248987 a001 4181/271443*322^(7/24) 8299644387472648 m005 (1/2*Zeta(3)-6)/(7/8*gamma+6) 8299644406949418 r005 Im(z^2+c),c=-139/122+12/41*I,n=19 8299644437779630 p004 log(25127/10957) 8299644450691279 a007 Real Root Of -207*x^4+319*x^3+185*x^2-199*x-12 8299644466044336 a007 Real Root Of -87*x^4+956*x^3-421*x^2+52*x+921 8299644466420030 m001 (2/3)^(BesselK(0,1)/Catalan) 8299644469021626 a007 Real Root Of 450*x^4-911*x^3-584*x^2+176*x-186 8299644481587508 m002 (-6*Sech[Pi])/5+Pi^4*Sech[Pi] 8299644501660954 a007 Real Root Of -677*x^4+460*x^3-447*x^2-58*x+844 8299644503075392 m005 (4/5*2^(1/2)+3/5)/(5*gamma-4/5) 8299644526103184 r005 Im(z^2+c),c=-35/82+7/51*I,n=44 8299644563654718 m001 (Magata-Totient)/(ln(5)+ln(2^(1/2)+1)) 8299644580094957 m001 ZetaQ(3)^ZetaP(2)*ZetaQ(3)^FeigenbaumAlpha 8299644583401706 m001 (OneNinth-sin(1/12*Pi))^Paris 8299644594547962 m001 (Robbin+Tribonacci)/(ln(5)+OrthogonalArrays) 8299644622894183 a007 Real Root Of 144*x^4-545*x^3+542*x^2+169*x-613 8299644658388425 l006 ln(1804/4137) 8299644682679284 r005 Re(z^2+c),c=-51/62+6/55*I,n=19 8299644688465782 a003 sin(Pi*31/97)*sin(Pi*27/61) 8299644695198654 a008 Real Root of (-1+x^3-x^4+x^5+x^8+x^10+x^11) 8299644698899112 a007 Real Root Of 233*x^4-803*x^3-620*x^2-662*x-692 8299644722199571 r005 Im(z^2+c),c=-7/10+23/174*I,n=6 8299644725643454 m001 ArtinRank2*ReciprocalLucas/ZetaQ(4) 8299644749276094 r005 Im(z^2+c),c=-1/16+37/41*I,n=4 8299644799547647 r005 Re(z^2+c),c=15/64+17/52*I,n=12 8299644841393489 r005 Re(z^2+c),c=-51/74+4/13*I,n=17 8299644855842818 m001 (-3^(1/3)+ErdosBorwein)/(2^(1/2)+LambertW(1)) 8299644861516735 a001 3010349/610*2^(3/4) 8299644867013020 m001 (arctan(1/2)+arctan(1/3))/(Zeta(1,2)-ZetaQ(3)) 8299644884486125 p004 log(24517/10691) 8299644888354815 r005 Re(z^2+c),c=-9/10+89/118*I,n=3 8299644915320442 a001 3571/1597*10946^(38/43) 8299644922480296 a001 1597/103682*322^(7/24) 8299644938854087 r009 Re(z^3+c),c=-31/60+33/64*I,n=30 8299644959212515 m001 (ln(Pi)-Zeta(1/2))/(FellerTornier-ZetaQ(3)) 8299644978248451 m001 (MertensB3+PlouffeB)/(GAMMA(2/3)-exp(Pi)) 8299644993237328 m001 (ArtinRank2-Cahen)/(GolombDickman+Trott2nd) 8299644995391615 r001 17i'th iterates of 2*x^2-1 of 8299644997276853 a007 Real Root Of 12*x^4+991*x^3-420*x^2-701*x+739 8299645014439876 a007 Real Root Of 233*x^4+233*x^3-520*x^2-820*x+795 8299645023592397 m001 Si(Pi)^3*exp(GAMMA(17/24))^2 8299645049245769 r009 Im(z^3+c),c=-7/90+5/6*I,n=49 8299645068554722 m006 (Pi+1/5)/(3/4*exp(2*Pi)+1) 8299645074812877 a007 Real Root Of 838*x^4+143*x^3+472*x^2-300*x-890 8299645083246207 m001 (-BesselK(1,1)+Khinchin)/(exp(-1/2*Pi)-exp(1)) 8299645090055502 a007 Real Root Of 413*x^4-866*x^3-91*x^2+33*x-601 8299645104615022 k002 Champernowne real with 55/2*n^2+417/2*n-228 8299645112588021 a007 Real Root Of 157*x^4-878*x^3+384*x^2+947*x-55 8299645122138403 r005 Im(z^2+c),c=-35/82+7/51*I,n=42 8299645146112806 m001 Thue-arctan(1/2)-GAMMA(3/4) 8299645155683527 a007 Real Root Of -832*x^4+559*x^3-212*x^2-621*x+345 8299645161252433 a007 Real Root Of 479*x^4-594*x^3-564*x^2-508*x-600 8299645166576585 m001 TwinPrimes/Robbin/Zeta(3) 8299645212769896 r005 Re(z^2+c),c=-5/56+1/35*I,n=5 8299645228384001 r002 4th iterates of z^2 + 8299645231618029 m001 sin(1/5*Pi)/Si(Pi)*MertensB1 8299645248781287 a007 Real Root Of 966*x^4-278*x^3-494*x^2+341*x+6 8299645262373589 m001 ln(GAMMA(1/6))^2/Artin/GAMMA(7/24)^2 8299645263085986 a007 Real Root Of -437*x^4+928*x^3+978*x^2+313*x+324 8299645270197347 m001 (Pi+gamma(3))/(FeigenbaumDelta-QuadraticClass) 8299645284806172 a007 Real Root Of 46*x^4+483*x^3+938*x^2+726*x-721 8299645323459692 r005 Re(z^2+c),c=-59/94+22/53*I,n=6 8299645328872173 a001 47/610*121393^(23/29) 8299645353988556 l006 ln(3475/7969) 8299645362076677 r008 a(0)=9,K{-n^6,9-12*n^3-36*n^2+40*n} 8299645363336274 m002 -5/Pi^6-Pi^2+Pi^6/Log[Pi] 8299645410785028 m001 Pi+Psi(1,1/3)*Chi(1)/GAMMA(13/24) 8299645413445120 a007 Real Root Of -897*x^4-27*x^3-959*x^2-260*x+855 8299645423739573 a007 Real Root Of 154*x^4+74*x^3+826*x^2+866*x+119 8299645424462568 r005 Im(z^2+c),c=-35/82+7/51*I,n=38 8299645441867563 a007 Real Root Of 617*x^4+8*x^3-277*x^2-708*x-685 8299645453831887 a007 Real Root Of 290*x^4-563*x^3+301*x^2-46*x-705 8299645454229719 m001 GAMMA(2/3)^Otter/((3^(1/3))^Otter) 8299645464179828 r002 4th iterates of z^2 + 8299645464179828 r002 4th iterates of z^2 + 8299645467483872 a007 Real Root Of -248*x^4+730*x^3-447*x^2-859*x+130 8299645483205645 r005 Re(z^2+c),c=-31/46+10/27*I,n=6 8299645494645534 a007 Real Root Of 673*x^4+82*x^3+795*x^2+617*x-308 8299645508880750 r005 Re(z^2+c),c=25/74+1/22*I,n=23 8299645514738022 r009 Im(z^3+c),c=-25/46+8/61*I,n=29 8299645528482882 m005 (1/3*Catalan+1/9)/(2/7*gamma-2/3) 8299645550337034 a007 Real Root Of -233*x^4+935*x^3-644*x^2+838*x+7 8299645567794803 m004 5+25*Pi-(5*Sqrt[5]*Tan[Sqrt[5]*Pi])/(6*Pi) 8299645571664631 r009 Re(z^3+c),c=-26/31+20/41*I,n=2 8299645629416201 r005 Im(z^2+c),c=-11/70+49/59*I,n=16 8299645636451988 m005 (5/6*2^(1/2)+3/4)/(21/10+1/10*5^(1/2)) 8299645642926634 h001 (-9*exp(4)+4)/(-7*exp(2)-7) 8299645671248645 m001 ln(GAMMA(7/24))*Catalan^2*Zeta(1,2)^2 8299645675085040 a007 Real Root Of -937*x^4-325*x^3+77*x^2+869*x+927 8299645692598738 m001 (Trott+ZetaQ(3))/(GAMMA(7/12)+FeigenbaumB) 8299645697001902 a007 Real Root Of 322*x^4-370*x^3+370*x^2+140*x-503 8299645701411935 m001 BesselI(0,1)^GaussAGM/Porter 8299645708153698 b008 8+ArcCoth[2*(-1+E)] 8299645711818582 a007 Real Root Of 747*x^4-833*x^3-913*x^2-528*x-640 8299645713718221 r002 13th iterates of z^2 + 8299645715780588 a001 233/9349*521^(5/26) 8299645736246982 a003 cos(Pi*13/119)*cos(Pi*13/83) 8299645760995932 m005 (1/3*2^(1/2)-1/7)/(5/12*gamma-7/11) 8299645764606280 m001 1/sin(Pi/12)^2*MadelungNaCl^2/ln(sqrt(3)) 8299645767131006 r009 Im(z^3+c),c=-5/38+19/23*I,n=17 8299645776411506 r005 Im(z^2+c),c=-35/82+7/51*I,n=40 8299645777648575 a007 Real Root Of -983*x^4+810*x^3+100*x^2-8*x+854 8299645787308713 a007 Real Root Of 62*x^4-597*x^3-758*x^2-159*x+966 8299645826019400 r009 Re(z^3+c),c=-4/7+27/43*I,n=20 8299645848077565 p004 log(23297/10159) 8299645881327141 r005 Re(z^2+c),c=-15/17+10/59*I,n=64 8299645885829717 m005 (1/2*Pi+6)/(6/7*2^(1/2)-3/10) 8299645907215079 r002 9th iterates of z^2 + 8299645910410725 r002 19th iterates of z^2 + 8299645936862124 a001 377/64079*322^(11/24) 8299645945570343 m001 Riemann1stZero^Magata+Zeta(1,2) 8299645945631988 r009 Im(z^3+c),c=-41/86+43/63*I,n=2 8299645971887506 a001 123/377*987^(23/49) 8299646005792228 a007 Real Root Of -961*x^4+689*x^3-821*x^2-956*x+622 8299646019155435 a007 Real Root Of 658*x^4+578*x^3+507*x^2+441*x+35 8299646027102062 a001 9349/4181*10946^(38/43) 8299646058906492 a007 Real Root Of 895*x^4-880*x^3-733*x^2+930*x+349 8299646074180851 r005 Im(z^2+c),c=-31/58+9/61*I,n=35 8299646092909042 m005 (1/2*Catalan-4/9)/(3/7*3^(1/2)+8/9) 8299646093612200 a007 Real Root Of 866*x^4-954*x^3+67*x^2+103*x-917 8299646104915082 k002 Champernowne real with 28*n^2+207*n-227 8299646104953574 l006 ln(1671/3832) 8299646113345037 m005 (4/5*2^(1/2)+1/5)/(5*Pi+1/3) 8299646119315097 a007 Real Root Of -419*x^4+297*x^3+293*x^2+934*x-948 8299646124090377 m001 1/exp(GAMMA(11/12))/Conway/LambertW(1)^2 8299646140098942 a007 Real Root Of -591*x^4+624*x^3-870*x^2-503*x+819 8299646145150645 h001 (2/9*exp(2)+6/7)/(2/7*exp(2)+9/10) 8299646154428748 a007 Real Root Of -644*x^4-819*x^3-999*x^2-50*x+484 8299646179225184 a007 Real Root Of -215*x^4+776*x^3+179*x^2+129*x-572 8299646189308827 a001 12238/5473*10946^(38/43) 8299646192057658 a007 Real Root Of 324*x^4-534*x^3+36*x^2-346*x-771 8299646221298308 a007 Real Root Of -580*x^4+244*x^3-737*x^2-974*x+114 8299646227600651 a001 39603/17711*10946^(38/43) 8299646262552200 r005 Re(z^2+c),c=39/82+8/49*I,n=3 8299646279138421 m004 3/4+Sqrt[5]*Pi+(Sqrt[5]*Cos[Sqrt[5]*Pi])/Pi 8299646286003031 q001 3285/3958 8299646289558123 a001 15127/6765*10946^(38/43) 8299646392111723 a007 Real Root Of 841*x^4-186*x^3-296*x^2+50*x-260 8299646406180106 a007 Real Root Of -958*x^4+202*x^3-73*x^2-145*x+500 8299646430569667 a007 Real Root Of 361*x^4+293*x^3+337*x^2-76*x-299 8299646431299787 a001 7/28657*46368^(28/37) 8299646432450677 m001 (MertensB2+Riemann3rdZero)/(ln(5)+GAMMA(7/12)) 8299646464055061 m001 1/ln(GAMMA(1/24))*DuboisRaymond^2/Zeta(3)^2 8299646486676595 a007 Real Root Of -545*x^4+646*x^3-24*x^2+427*x+36 8299646504660727 r005 Re(z^2+c),c=-59/64+14/51*I,n=9 8299646510587810 a007 Real Root Of -535*x^4-613*x^3-980*x^2-209*x+405 8299646556619006 a007 Real Root Of 576*x^4-383*x^3-325*x^2-750*x+792 8299646563910372 a007 Real Root Of -163*x^4+261*x^3+213*x^2+793*x+738 8299646586067965 r009 Im(z^3+c),c=-25/58+35/57*I,n=47 8299646591213945 a001 87403803/610*102334155^(2/21) 8299646591213952 a001 16692641/305*2504730781961^(2/21) 8299646591629924 s001 sum(exp(-3*Pi/5)^n*A268013[n],n=1..infinity) 8299646600257516 a001 228826127/610*4181^(2/21) 8299646614329090 a007 Real Root Of -852*x^4+328*x^3-202*x^2-165*x+594 8299646616974249 a001 141/2161*123^(1/20) 8299646658706661 r005 Re(z^2+c),c=-21/25+13/53*I,n=3 8299646702685574 a007 Real Root Of 862*x^4+693*x^3+623*x^2-41*x-476 8299646713229955 r005 Re(z^2+c),c=-5/6+25/252*I,n=17 8299646714220966 a001 2889/1292*10946^(38/43) 8299646746459920 r009 Re(z^3+c),c=-23/126+39/53*I,n=42 8299646760632210 a003 sin(Pi*2/83)/cos(Pi*5/37) 8299646765007872 m001 1/exp(Niven)^2*MinimumGamma^2*Salem 8299646772259944 a007 Real Root Of 30*x^4-708*x^3-48*x^2-80*x+490 8299646777659705 m001 GAMMA(7/24)^2*exp(PrimesInBinary)/sqrt(3) 8299646785981458 p003 LerchPhi(1/64,1,254/209) 8299646807233802 a007 Real Root Of -624*x^4+685*x^3-840*x^2-839*x+570 8299646838879375 a001 119218851371/21*6765^(13/23) 8299646848254976 a007 Real Root Of -317*x^4+791*x^3+821*x^2+971*x+843 8299646853044735 a007 Real Root Of -698*x^4+366*x^3-550*x^2-204*x+750 8299646859380114 a001 228826127/21*433494437^(13/23) 8299646879847189 m001 (GAMMA(13/24)-ln(2))^Magata 8299646881921447 a007 Real Root Of -460*x^4-141*x^3+97*x^2+52*x+114 8299646893352836 a007 Real Root Of 219*x^4-880*x^3+560*x^2-32*x+40 8299646918167421 l006 ln(3209/7359) 8299646983360826 r002 5th iterates of z^2 + 8299646983918382 a007 Real Root Of -725*x^4-446*x^3+657*x^2+879*x+366 8299647028914461 a003 cos(Pi*2/101)-sin(Pi*5/93) 8299647044691907 m009 (2*Psi(1,1/3)-2/3)/(1/5*Psi(1,1/3)+1/3) 8299647048272401 a003 sin(Pi*27/116)/sin(Pi*25/84) 8299647078577867 r005 Im(z^2+c),c=-3/118+28/39*I,n=37 8299647094520303 m001 Landau^polylog(4,1/2)-MasserGramain 8299647095778549 m001 (-GAMMA(7/12)+Champernowne)/(1+ln(2)) 8299647096567212 q001 2587/3117 8299647105215142 k002 Champernowne real with 57/2*n^2+411/2*n-226 8299647115262036 r005 Im(z^2+c),c=13/50+34/63*I,n=22 8299647121186743 a007 Real Root Of -794*x^4+978*x^3+382*x^2-172*x+530 8299647132113775 p004 log(29131/12703) 8299647142377385 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)/Bloch/Landau 8299647188555672 a001 233/3010349*1364^(29/30) 8299647202151007 m001 1/GAMMA(5/12)*ln(Porter)^2*Zeta(3) 8299647205334358 r002 54th iterates of z^2 + 8299647230216084 r005 Re(z^2+c),c=-21/118+22/31*I,n=36 8299647232337769 a007 Real Root Of 586*x^4-929*x^3+507*x^2+468*x-770 8299647234551753 a007 Real Root Of 639*x^4+20*x^3+472*x^2-170*x-758 8299647284743101 m001 MadelungNaCl*ln(Kolakoski)^2/GAMMA(11/12)^2 8299647299003638 a007 Real Root Of -626*x^4+312*x^3-585*x^2-974*x+70 8299647323504830 m001 (cos(1/12*Pi)+Lehmer)/(2^(1/2)+arctan(1/2)) 8299647332317344 r002 18th iterates of z^2 + 8299647360856970 m005 (3*Pi+1/4)/(2/5*2^(1/2)+3/5) 8299647378217882 r005 Re(z^2+c),c=-33/62+29/53*I,n=60 8299647395923578 a007 Real Root Of 540*x^4-734*x^3+73*x^2+993*x+98 8299647409740524 m005 (5*Pi+1/6)/(2/5*exp(1)-3) 8299647412030075 a007 Real Root Of 380*x^4+346*x^3-510*x^2-995*x+799 8299647421541110 a007 Real Root Of 734*x^4-427*x^3+193*x^2+192*x-566 8299647485951211 a001 233/1860498*1364^(9/10) 8299647521365126 r005 Re(z^2+c),c=25/106+1/3*I,n=62 8299647564432772 m001 BesselK(1,1)^2*FibonacciFactorial/exp(Pi)^2 8299647585907556 m001 (-Cahen+ZetaQ(3))/(ln(2)/ln(10)+arctan(1/2)) 8299647586074680 a005 (1/cos(29/190*Pi))^518 8299647618554162 a001 987/2*2^(3/4) 8299647627260795 a007 Real Root Of 930*x^4-558*x^3+376*x^2+898*x-274 8299647646335026 a003 sin(Pi*32/117)/sin(Pi*15/41) 8299647692380811 m001 Zeta(5)^2/GAMMA(5/24)/exp(cos(1))^2 8299647696078419 m005 (1/2*exp(1)+8/11)/(5/7*5^(1/2)+11/12) 8299647724227030 a001 233/5778*521^(3/26) 8299647731767061 m001 (gamma(1)-2*Pi/GAMMA(5/6))/(ZetaP(4)-ZetaQ(3)) 8299647767003870 b008 QPochhammer[1/8,5/17] 8299647780726412 a007 Real Root Of -801*x^4+989*x^3-247*x^2-402*x+782 8299647781503302 m004 -6+Sqrt[5]*Pi+E^(Sqrt[5]*Pi)*Cos[Sqrt[5]*Pi] 8299647783358750 a001 233/1149851*1364^(5/6) 8299647793538638 m001 (arctan(1/3)+HardyLittlewoodC5)/QuadraticClass 8299647801704627 l006 ln(1538/3527) 8299647802292229 a007 Real Root Of 910*x^4-943*x^3-564*x^2-446*x+866 8299647826929870 m001 BesselK(1,1)^(MertensB1*OrthogonalArrays) 8299647842026319 a007 Real Root Of -780*x^4-108*x^3-438*x^2+271*x+835 8299647844910365 r005 Re(z^2+c),c=23/86+11/30*I,n=47 8299647863191530 a007 Real Root Of -161*x^4-192*x^3+481*x^2+829*x-72 8299647873095603 m005 (5*2^(1/2)+4/5)/(1/60+5/12*5^(1/2)) 8299647895516160 m001 RenyiParking*exp(FransenRobinson)*sin(Pi/12)^2 8299647966754263 r009 Im(z^3+c),c=-7/82+43/52*I,n=17 8299648002266916 r005 Im(z^2+c),c=-3/25+41/49*I,n=25 8299648004915898 a007 Real Root Of -895*x^4+540*x^3+625*x^2+558*x+766 8299648014782543 m001 (Pi+LandauRamanujan)/(LaplaceLimit-Rabbit) 8299648017438891 r002 4th iterates of z^2 + 8299648028931156 a007 Real Root Of -921*x^4+285*x^3+784*x^2-177*x-87 8299648053451384 r005 Re(z^2+c),c=-22/31+23/61*I,n=11 8299648064896834 p003 LerchPhi(1/100,6,98/95) 8299648067502107 m001 (ln(gamma)+Conway)^TwinPrimes 8299648080734912 a001 233/710647*1364^(23/30) 8299648097599905 m001 ReciprocalLucas^Sarnak/ReciprocalLucas 8299648103294527 a001 2584/39603*123^(1/20) 8299648105515202 k002 Champernowne real with 29*n^2+204*n-225 8299648200062457 a007 Real Root Of -605*x^4-3*x^3+203*x^2+403*x+480 8299648231259676 a007 Real Root Of -348*x^4+596*x^3+763*x^2+925*x+748 8299648256131072 a007 Real Root Of -500*x^4-368*x^3-695*x^2-414*x+162 8299648263669756 m001 1/ln(BesselJ(1,1))*Si(Pi)/exp(1) 8299648265359155 m001 (cos(1)-Pi*2^(1/2)/GAMMA(3/4))^Zeta(1,-1) 8299648301918117 a007 Real Root Of -767*x^4+865*x^3+277*x^2-643*x+134 8299648309872209 m001 exp(Pi)^BesselK(0,1)/ZetaP(2) 8299648313490808 r002 3th iterates of z^2 + 8299648318764902 m009 (5/6*Psi(1,1/3)-1/5)/(Psi(1,1/3)-1/5) 8299648320145734 a001 6765/103682*123^(1/20) 8299648351783899 a001 17711/271443*123^(1/20) 8299648356399845 a001 6624/101521*123^(1/20) 8299648357073302 a001 121393/1860498*123^(1/20) 8299648357171559 a001 317811/4870847*123^(1/20) 8299648357185894 a001 832040/12752043*123^(1/20) 8299648357187985 a001 311187/4769326*123^(1/20) 8299648357188291 a001 5702887/87403803*123^(1/20) 8299648357188335 a001 14930352/228826127*123^(1/20) 8299648357188342 a001 39088169/599074578*123^(1/20) 8299648357188343 a001 14619165/224056801*123^(1/20) 8299648357188343 a001 267914296/4106118243*123^(1/20) 8299648357188343 a001 701408733/10749957122*123^(1/20) 8299648357188343 a001 1836311903/28143753123*123^(1/20) 8299648357188343 a001 686789568/10525900321*123^(1/20) 8299648357188343 a001 12586269025/192900153618*123^(1/20) 8299648357188343 a001 32951280099/505019158607*123^(1/20) 8299648357188343 a001 86267571272/1322157322203*123^(1/20) 8299648357188343 a001 32264490531/494493258286*123^(1/20) 8299648357188343 a001 591286729879/9062201101803*123^(1/20) 8299648357188343 a001 1548008755920/23725150497407*123^(1/20) 8299648357188343 a001 365435296162/5600748293801*123^(1/20) 8299648357188343 a001 139583862445/2139295485799*123^(1/20) 8299648357188343 a001 53316291173/817138163596*123^(1/20) 8299648357188343 a001 20365011074/312119004989*123^(1/20) 8299648357188343 a001 7778742049/119218851371*123^(1/20) 8299648357188343 a001 2971215073/45537549124*123^(1/20) 8299648357188343 a001 1134903170/17393796001*123^(1/20) 8299648357188343 a001 433494437/6643838879*123^(1/20) 8299648357188343 a001 165580141/2537720636*123^(1/20) 8299648357188343 a001 63245986/969323029*123^(1/20) 8299648357188346 a001 24157817/370248451*123^(1/20) 8299648357188363 a001 9227465/141422324*123^(1/20) 8299648357188479 a001 3524578/54018521*123^(1/20) 8299648357189278 a001 1346269/20633239*123^(1/20) 8299648357194754 a001 514229/7881196*123^(1/20) 8299648357232284 a001 196418/3010349*123^(1/20) 8299648357489522 a001 75025/1149851*123^(1/20) 8299648359252657 a001 28657/439204*123^(1/20) 8299648371337360 a001 10946/167761*123^(1/20) 8299648378193257 a001 233/439204*1364^(7/10) 8299648385882884 a007 Real Root Of 968*x^4+285*x^3+688*x^2-90*x-845 8299648434875400 m001 (Catalan-Chi(1))/(-LandauRamanujan+Niven) 8299648454167151 a001 4181/64079*123^(1/20) 8299648469952564 m001 (Backhouse+Thue)/(Si(Pi)-Zeta(1,2)) 8299648491083676 r005 Re(z^2+c),c=-9/8+133/135*I,n=2 8299648505648439 r005 Re(z^2+c),c=-12/13+1/42*I,n=32 8299648506151142 q001 1889/2276 8299648512524515 r005 Re(z^2+c),c=-12/13+1/42*I,n=30 8299648514502069 r005 Re(z^2+c),c=-12/13+1/42*I,n=34 8299648517281841 a001 2207/3*21^(39/49) 8299648520663814 r005 Re(z^2+c),c=-12/13+1/42*I,n=36 8299648523537139 r005 Re(z^2+c),c=-12/13+1/42*I,n=38 8299648524666089 r005 Re(z^2+c),c=-12/13+1/42*I,n=40 8299648525062736 r005 Re(z^2+c),c=-12/13+1/42*I,n=42 8299648525189703 r005 Re(z^2+c),c=-12/13+1/42*I,n=44 8299648525212657 r005 Re(z^2+c),c=1/13+1/42*I,n=14 8299648525226686 r005 Re(z^2+c),c=-12/13+1/42*I,n=46 8299648525228059 r005 Re(z^2+c),c=1/13+1/42*I,n=15 8299648525230212 r002 60th iterates of z^2 + 8299648525232656 r002 62th iterates of z^2 + 8299648525235744 r002 64th iterates of z^2 + 8299648525235802 r005 Re(z^2+c),c=1/13+1/42*I,n=16 8299648525236273 r005 Re(z^2+c),c=-12/13+1/42*I,n=48 8299648525237899 r005 Re(z^2+c),c=1/13+1/42*I,n=17 8299648525238336 r005 Re(z^2+c),c=-12/13+1/42*I,n=50 8299648525238356 r005 Re(z^2+c),c=1/13+1/42*I,n=18 8299648525238443 r005 Re(z^2+c),c=1/13+1/42*I,n=19 8299648525238458 r005 Re(z^2+c),c=1/13+1/42*I,n=20 8299648525238460 r005 Re(z^2+c),c=1/13+1/42*I,n=21 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=22 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=33 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=34 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=35 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=36 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=37 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=38 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=39 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=40 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=41 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=52 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=53 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=54 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=55 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=56 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=57 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=58 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=59 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=60 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=61 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=62 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=63 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=64 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=51 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=50 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=49 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=48 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=47 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=46 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=45 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=44 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=43 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=42 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=32 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=31 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=30 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=29 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=28 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=27 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=26 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=25 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=24 8299648525238461 r005 Re(z^2+c),c=1/13+1/42*I,n=23 8299648525238461 r005 Re(z^2+c),c=-12/13+1/42*I,n=64 8299648525238463 r005 Re(z^2+c),c=-12/13+1/42*I,n=62 8299648525238467 r005 Re(z^2+c),c=-12/13+1/42*I,n=60 8299648525238480 r005 Re(z^2+c),c=-12/13+1/42*I,n=58 8299648525238510 r005 Re(z^2+c),c=-12/13+1/42*I,n=56 8299648525238566 r005 Re(z^2+c),c=-12/13+1/42*I,n=54 8299648525238611 r005 Re(z^2+c),c=-12/13+1/42*I,n=52 8299648525245481 r002 58th iterates of z^2 + 8299648525298013 r005 Re(z^2+c),c=1/13+1/42*I,n=13 8299648525359608 r002 56th iterates of z^2 + 8299648525889406 r002 54th iterates of z^2 + 8299648526717501 r005 Re(z^2+c),c=1/13+1/42*I,n=12 8299648527931934 r002 52th iterates of z^2 + 8299648534940890 r002 50th iterates of z^2 + 8299648538771415 p003 LerchPhi(1/25,5,112/171) 8299648539240931 r005 Re(z^2+c),c=1/13+1/42*I,n=11 8299648556828002 r002 48th iterates of z^2 + 8299648595012516 m001 (1-exp(Pi))/(GAMMA(3/4)+3^(1/3)) 8299648600777305 a007 Real Root Of 891*x^4-843*x^3-708*x^2+929*x+354 8299648619096502 r002 46th iterates of z^2 + 8299648628101224 r005 Re(z^2+c),c=1/13+1/42*I,n=10 8299648638651857 r005 Re(z^2+c),c=-12/13+1/42*I,n=28 8299648671649234 a001 7881196/1597*2^(3/4) 8299648675436485 a001 233/271443*1364^(19/30) 8299648680758013 h001 (8/11*exp(2)+5/8)/(11/12*exp(2)+5/11) 8299648707434701 a007 Real Root Of -29*x^4-269*x^3-322*x^2-682*x+335 8299648727784574 a007 Real Root Of 151*x^4-987*x^3-641*x^2+293*x+691 8299648728092304 a001 610/39603*322^(7/24) 8299648748791314 h001 (-3*exp(-2)-7)/(-6*exp(1/2)+9) 8299648753865659 m005 (1/2*3^(1/2)+1/9)/(1/2*exp(1)-2/11) 8299648762549133 m001 (Zeta(1/2)-sin(1))/(GAMMA(23/24)+MadelungNaCl) 8299648765099337 l006 ln(2943/6749) 8299648777484747 r002 44th iterates of z^2 + 8299648777981336 m005 (1/2*exp(1)+5/9)/(1/4*gamma-3/8) 8299648865321321 r005 Re(z^2+c),c=-71/106+23/64*I,n=15 8299648889050528 a007 Real Root Of 696*x^4-488*x^3-741*x^2-540*x-547 8299648920917842 a007 Real Root Of 935*x^4-248*x^3-511*x^2+362*x+67 8299648925726466 a007 Real Root Of 553*x^4-119*x^3+92*x^2+354*x-100 8299648962860950 r002 3th iterates of z^2 + 8299648963365532 h001 (1/3*exp(1)+6/7)/(5/11*exp(1)+8/9) 8299648973242935 a001 233/167761*1364^(17/30) 8299649006695198 a003 cos(Pi*6/71)-cos(Pi*53/116) 8299649018436243 r005 Re(z^2+c),c=21/86+21/58*I,n=19 8299649021890983 a001 1597/24476*123^(1/20) 8299649033406717 r005 Re(z^2+c),c=-4/31+53/63*I,n=44 8299649069143320 m001 exp(BesselK(1,1))/Sierpinski*sinh(1) 8299649097659607 a007 Real Root Of -248*x^4+312*x^3-8*x^2+68*x+358 8299649100278070 a008 Real Root of x^4-x^3-39*x^2-193*x+115 8299649105815262 k002 Champernowne real with 59/2*n^2+405/2*n-224 8299649105876928 l006 ln(4348/9971) 8299649116790191 r002 42th iterates of z^2 + 8299649128059999 m001 (Pi+Chi(1)*BesselK(0,1))/BesselK(0,1) 8299649157500935 a001 64079/377*233^(16/55) 8299649161738636 r002 5th iterates of z^2 + 8299649164728092 m001 TreeGrowth2nd^2*Sierpinski*ln(GAMMA(1/4))^2 8299649174877385 a007 Real Root Of -29*x^4+640*x^3-328*x^2+227*x+794 8299649179003483 g007 Psi(2,8/9)+Psi(2,4/5)-Psi(2,5/7)-Psi(2,3/5) 8299649179055469 r005 Re(z^2+c),c=1/13+1/42*I,n=9 8299649214704866 r002 38th iterates of z^2 + 8299649227095160 m001 (GolombDickman-GaussAGM(1,1/sqrt(2)))/Khinchin 8299649227540367 a001 20633239/4181*2^(3/4) 8299649227930604 a007 Real Root Of 475*x^4+68*x^3-769*x^2-679*x+829 8299649233626685 m001 exp(Lehmer)/GaussKuzminWirsing/GAMMA(1/3)^2 8299649238411616 a001 21/2206*322^(3/8) 8299649269574887 a001 233/103682*1364^(1/2) 8299649298869347 m001 (Salem-Trott)/(GAMMA(13/24)-CopelandErdos) 8299649300333303 m001 1/ln(Champernowne)^2/ErdosBorwein^2*Zeta(1,2) 8299649308643796 a001 54018521/10946*2^(3/4) 8299649311570943 m005 (1/2*3^(1/2)-1/5)/(1/11*gamma+3/4) 8299649320476627 a001 141422324/28657*2^(3/4) 8299649320524228 r005 Re(z^2+c),c=-12/13+1/42*I,n=26 8299649322203014 a001 370248451/75025*2^(3/4) 8299649322454890 a001 969323029/196418*2^(3/4) 8299649322491639 a001 2537720636/514229*2^(3/4) 8299649322497000 a001 6643838879/1346269*2^(3/4) 8299649322497782 a001 17393796001/3524578*2^(3/4) 8299649322497897 a001 45537549124/9227465*2^(3/4) 8299649322497913 a001 119218851371/24157817*2^(3/4) 8299649322497916 a001 312119004989/63245986*2^(3/4) 8299649322497916 a001 817138163596/165580141*2^(3/4) 8299649322497916 a001 2139295485799/433494437*2^(3/4) 8299649322497916 a001 5600748293801/1134903170*2^(3/4) 8299649322497916 a001 14662949395604/2971215073*2^(3/4) 8299649322497916 a001 23725150497407/4807526976*2^(3/4) 8299649322497916 a001 9062201101803/1836311903*2^(3/4) 8299649322497916 a001 3461452808002/701408733*2^(3/4) 8299649322497916 a001 1322157322203/267914296*2^(3/4) 8299649322497916 a001 505019158607/102334155*2^(3/4) 8299649322497917 a001 192900153618/39088169*2^(3/4) 8299649322497924 a001 73681302247/14930352*2^(3/4) 8299649322497967 a001 28143753123/5702887*2^(3/4) 8299649322498266 a001 4870846/987*2^(3/4) 8299649322500314 a001 4106118243/832040*2^(3/4) 8299649322514350 a001 1568397607/317811*2^(3/4) 8299649322610559 a001 599074578/121393*2^(3/4) 8299649323269980 a001 228826127/46368*2^(3/4) 8299649327789719 a001 87403803/17711*2^(3/4) 8299649358768473 a001 33385282/6765*2^(3/4) 8299649369725784 r005 Re(z^2+c),c=13/86+19/51*I,n=3 8299649385861894 r002 5th iterates of z^2 + 8299649413524088 r005 Re(z^2+c),c=5/56+6/17*I,n=3 8299649414743422 r005 Re(z^2+c),c=11/122+32/55*I,n=11 8299649417215451 a007 Real Root Of -827*x^4+797*x^3-782*x^2-719*x+790 8299649459267927 m005 (1/3*gamma+2/7)/(7/10*3^(1/2)-7/11) 8299649483097146 r005 Im(z^2+c),c=-51/82+23/51*I,n=11 8299649490567082 a007 Real Root Of 928*x^4-992*x^3-853*x^2-217*x-600 8299649491568175 m001 (Trott+Trott2nd)/(Zeta(5)+FeigenbaumMu) 8299649495794007 m005 (5*2^(1/2)+3/5)/(3*2^(1/2)+5) 8299649497056785 a001 89/103682*199^(19/22) 8299649514114164 a007 Real Root Of -104*x^4-773*x^3+739*x^2+12*x+742 8299649532759522 m001 (3^(1/2)+ln(gamma))/(Landau+QuadraticClass) 8299649558503373 a007 Real Root Of 795*x^4-779*x^3-196*x^2-74*x-749 8299649568916541 a001 521/6765*89^(1/60) 8299649569767166 a001 233/64079*1364^(13/30) 8299649571100018 a001 12752043/2584*2^(3/4) 8299649576426876 m005 (1/2*Zeta(3)+6/11)/(5*exp(1)+2/9) 8299649602743399 r002 40th iterates of z^2 + 8299649624903983 a001 2207/987*10946^(38/43) 8299649664651106 m005 (1/2*3^(1/2)-1/12)/(2*Catalan-8/9) 8299649687028707 m005 (1/2*Zeta(3)+4/11)/(5/11*3^(1/2)+3/8) 8299649690110482 q001 308/3711 8299649729233299 p001 sum(1/(293*n+122)/(24^n),n=0..infinity) 8299649741266136 m005 (1/2*exp(1)-1/8)/(4/11*3^(1/2)+6/7) 8299649766398436 m002 -Pi^6+(2*Pi^5*ProductLog[Pi])/5 8299649816816851 m005 (1/2*exp(1)-2)/(1/8*gamma+7/10) 8299649819690735 l006 ln(1405/3222) 8299649851870267 a007 Real Root Of -764*x^4+300*x^3-811*x^2-984*x+276 8299649859853014 a001 233/39603*1364^(11/30) 8299649865304844 a007 Real Root Of 289*x^4-197*x^3+122*x^2+60*x-284 8299649978309904 r009 Re(z^3+c),c=-9/94+9/37*I,n=3 8299649983111009 a007 Real Root Of -305*x^4+687*x^3-651*x^2-71*x+927 8299650013290878 a007 Real Root Of -713*x^4-85*x^3-173*x^2-724*x-192 8299650064874659 g004 abs(GAMMA(87/20+I*(-61/60))) 8299650077123942 r009 Re(z^3+c),c=-11/78+33/56*I,n=44 8299650092720626 m005 (1/2*exp(1)+7/11)/(3/4*5^(1/2)+8/11) 8299650096090549 m001 exp(Kolakoski)/GolombDickman^2*MinimumGamma 8299650106115322 k002 Champernowne real with 30*n^2+201*n-223 8299650107087352 m005 (1/2*exp(1)-2/11)/(7/10*2^(1/2)+3/7) 8299650147204178 a007 Real Root Of 533*x^4-578*x^3-728*x^2-411*x-423 8299650152273082 a007 Real Root Of -798*x^4-273*x^3-566*x^2+285*x+849 8299650176397884 a001 233/24476*1364^(3/10) 8299650200104529 p004 log(23027/21193) 8299650210866422 m001 1/exp(GAMMA(17/24))/Paris^2*cos(1)^2 8299650227896252 a007 Real Root Of 34*x^4-109*x^3+277*x^2+22*x-251 8299650375529955 a007 Real Root Of -867*x^4+552*x^3-271*x^2-943*x+131 8299650401346455 a001 228826127/1597*102334155^(2/21) 8299650401346456 a001 87403803/1597*2504730781961^(2/21) 8299650408091506 r005 Re(z^2+c),c=11/106+12/35*I,n=8 8299650410390031 a001 599074578/1597*4181^(2/21) 8299650418979268 a007 Real Root Of 883*x^4+136*x^3+132*x^2-295*x-677 8299650423672171 a001 233/15127*1364^(7/30) 8299650455230848 r009 Re(z^3+c),c=-7/44+37/52*I,n=63 8299650456763854 a007 Real Root Of 237*x^4+415*x^3+83*x^2-779*x-65 8299650495313202 m001 Trott/exp(GlaisherKinkelin)/BesselK(1,1)^2 8299650505978444 m001 Artin/(ln(3)+Magata) 8299650506594237 m001 1/MadelungNaCl*ln(Champernowne)/(3^(1/3)) 8299650509858486 a007 Real Root Of 829*x^4-378*x^3-897*x^2+108*x+351 8299650575493350 a007 Real Root Of -793*x^4+610*x^3-897*x^2-618*x+830 8299650580019545 l006 ln(4082/9361) 8299650607712219 a003 sin(Pi*16/55)/sin(Pi*25/62) 8299650622657809 a007 Real Root Of -476*x^4+402*x^3+621*x^2+917*x+789 8299650640708946 m001 Lehmer*OrthogonalArrays-gamma(3) 8299650645349175 a007 Real Root Of -838*x^4+290*x^3+386*x^2+803*x+964 8299650676519058 a007 Real Root Of 39*x^4+240*x^3+422*x^2-441*x-538 8299650694413032 a001 2584/271443*322^(3/8) 8299650718471600 r005 Re(z^2+c),c=-5/6+23/218*I,n=57 8299650719989409 r002 45th iterates of z^2 + 8299650729773009 m005 (-11/4+1/4*5^(1/2))/(2/3*Pi+6/11) 8299650756212256 a003 sin(Pi*13/100)/cos(Pi*29/85) 8299650758637752 a007 Real Root Of 82*x^4+90*x^3+969*x^2-82*x-723 8299650761584968 a001 38/98209*317811^(25/59) 8299650774270548 h001 (-9*exp(6)-4)/(-4*exp(7)+7) 8299650787874991 a007 Real Root Of 921*x^4-500*x^3-954*x^2-147*x+628 8299650806138588 a001 233/5778*1364^(1/10) 8299650812667456 a007 Real Root Of -213*x^4+416*x^3-153*x^2-704*x-140 8299650852299243 a001 233/9349*1364^(1/6) 8299650871298177 m002 -Pi^4+(Pi^3*Sinh[Pi])/(E^Pi*ProductLog[Pi]) 8299650887270991 a007 Real Root Of 423*x^4-663*x^3+138*x^2-625*x+602 8299650890497306 a007 Real Root Of 900*x^4-620*x^3-999*x^2+486*x+310 8299650903441570 m001 (Psi(2,1/3)-gamma)/(ln(Pi)+2*Pi/GAMMA(5/6)) 8299650906840776 a001 6765/710647*322^(3/8) 8299650907417878 a001 233/4870847*3571^(31/34) 8299650907533806 a007 Real Root Of -767*x^4-133*x^3-184*x^2-202*x+247 8299650937833566 a001 17711/1860498*322^(3/8) 8299650942355353 a001 46368/4870847*322^(3/8) 8299650943015073 a001 121393/12752043*322^(3/8) 8299650943111325 a001 317811/33385282*322^(3/8) 8299650943125368 a001 832040/87403803*322^(3/8) 8299650943127417 a001 46347/4868641*322^(3/8) 8299650943127716 a001 5702887/599074578*322^(3/8) 8299650943127759 a001 14930352/1568397607*322^(3/8) 8299650943127766 a001 39088169/4106118243*322^(3/8) 8299650943127766 a001 102334155/10749957122*322^(3/8) 8299650943127767 a001 267914296/28143753123*322^(3/8) 8299650943127767 a001 701408733/73681302247*322^(3/8) 8299650943127767 a001 1836311903/192900153618*322^(3/8) 8299650943127767 a001 102287808/10745088481*322^(3/8) 8299650943127767 a001 12586269025/1322157322203*322^(3/8) 8299650943127767 a001 32951280099/3461452808002*322^(3/8) 8299650943127767 a001 86267571272/9062201101803*322^(3/8) 8299650943127767 a001 225851433717/23725150497407*322^(3/8) 8299650943127767 a001 139583862445/14662949395604*322^(3/8) 8299650943127767 a001 53316291173/5600748293801*322^(3/8) 8299650943127767 a001 20365011074/2139295485799*322^(3/8) 8299650943127767 a001 7778742049/817138163596*322^(3/8) 8299650943127767 a001 2971215073/312119004989*322^(3/8) 8299650943127767 a001 1134903170/119218851371*322^(3/8) 8299650943127767 a001 433494437/45537549124*322^(3/8) 8299650943127767 a001 165580141/17393796001*322^(3/8) 8299650943127767 a001 63245986/6643838879*322^(3/8) 8299650943127769 a001 24157817/2537720636*322^(3/8) 8299650943127786 a001 9227465/969323029*322^(3/8) 8299650943127900 a001 3524578/370248451*322^(3/8) 8299650943128683 a001 1346269/141422324*322^(3/8) 8299650943134047 a001 514229/54018521*322^(3/8) 8299650943170812 a001 196418/20633239*322^(3/8) 8299650943422802 a001 75025/7881196*322^(3/8) 8299650945149971 a001 28657/3010349*322^(3/8) 8299650945704364 a001 233/3010349*3571^(29/34) 8299650956988164 a001 10946/1149851*322^(3/8) 8299650957237589 a001 599074578/4181*102334155^(2/21) 8299650957237590 a001 228826127/4181*2504730781961^(2/21) 8299650964615993 r005 Im(z^2+c),c=3/10+20/39*I,n=26 8299650966281166 a001 1568397607/4181*4181^(2/21) 8299650975684349 a001 233/3571*521^(1/26) 8299650979071438 l006 ln(2677/6139) 8299650983114744 a007 Real Root Of -8*x^4-656*x^3+671*x^2+765*x-882 8299650983986271 a001 233/1860498*3571^(27/34) 8299650988849737 r002 14th iterates of z^2 + 8299651001136377 m001 ln(Lehmer)*ArtinRank2/GAMMA(5/24) 8299651008048625 r005 Im(z^2+c),c=-13/118+53/58*I,n=28 8299651015200989 m005 (1/2*5^(1/2)+4/7)/(5/11*exp(1)+4/5) 8299651022280167 a001 233/1149851*3571^(25/34) 8299651026442370 a001 4870847/987*2^(3/4) 8299651038128342 a001 4181/439204*322^(3/8) 8299651038341019 a001 1568397607/10946*102334155^(2/21) 8299651038341019 a001 299537289/5473*2504730781961^(2/21) 8299651047384595 a001 4106118243/10946*4181^(2/21) 8299651050173850 a001 4106118243/28657*102334155^(2/21) 8299651050173850 a001 1568397607/28657*2504730781961^(2/21) 8299651051900237 a001 10749957122/75025*102334155^(2/21) 8299651051900237 a001 4106118243/75025*2504730781961^(2/21) 8299651052152113 a001 28143753123/196418*102334155^(2/21) 8299651052152113 a001 5374978561/98209*2504730781961^(2/21) 8299651052188862 a001 73681302247/514229*102334155^(2/21) 8299651052188862 a001 28143753123/514229*2504730781961^(2/21) 8299651052194223 a001 192900153618/1346269*102334155^(2/21) 8299651052194223 a001 73681302247/1346269*2504730781961^(2/21) 8299651052195005 a001 505019158607/3524578*102334155^(2/21) 8299651052195005 a001 96450076809/1762289*2504730781961^(2/21) 8299651052195120 a001 1322157322203/9227465*102334155^(2/21) 8299651052195120 a001 505019158607/9227465*2504730781961^(2/21) 8299651052195136 a001 3461452808002/24157817*102334155^(2/21) 8299651052195136 a001 1322157322203/24157817*2504730781961^(2/21) 8299651052195139 a001 9062201101803/63245986*102334155^(2/21) 8299651052195139 a001 1730726404001/31622993*2504730781961^(2/21) 8299651052195139 a001 23725150497407/165580141*102334155^(2/21) 8299651052195139 a001 9062201101803/165580141*2504730781961^(2/21) 8299651052195139 a001 23725150497407/433494437*2504730781961^(2/21) 8299651052195139 a001 599074579/10946*2504730781961^(2/21) 8299651052195139 a001 14662949395604/102334155*102334155^(2/21) 8299651052195139 a001 5600748293801/102334155*2504730781961^(2/21) 8299651052195140 a001 5600748293801/39088169*102334155^(2/21) 8299651052195140 a001 2139295485799/39088169*2504730781961^(2/21) 8299651052195146 a001 2139295485799/14930352*102334155^(2/21) 8299651052195146 a001 204284540899/3732588*2504730781961^(2/21) 8299651052195190 a001 817138163596/5702887*102334155^(2/21) 8299651052195190 a001 312119004989/5702887*2504730781961^(2/21) 8299651052195489 a001 312119004989/2178309*102334155^(2/21) 8299651052195489 a001 119218851371/2178309*2504730781961^(2/21) 8299651052197537 a001 119218851371/832040*102334155^(2/21) 8299651052197537 a001 11384387281/208010*2504730781961^(2/21) 8299651052211573 a001 45537549124/317811*102334155^(2/21) 8299651052211573 a001 599786069/10959*2504730781961^(2/21) 8299651052307782 a001 17393796001/121393*102334155^(2/21) 8299651052307782 a001 6643838879/121393*2504730781961^(2/21) 8299651052967203 a001 6643838879/46368*102334155^(2/21) 8299651052967203 a001 634430159/11592*2504730781961^(2/21) 8299651057486942 a001 2537720636/17711*102334155^(2/21) 8299651057486942 a001 969323029/17711*2504730781961^(2/21) 8299651059217426 a001 10749957122/28657*4181^(2/21) 8299651060542677 a001 233/710647*3571^(23/34) 8299651060943813 a001 28143753123/75025*4181^(2/21) 8299651061195690 a001 73681302247/196418*4181^(2/21) 8299651061232438 a001 192900153618/514229*4181^(2/21) 8299651061237799 a001 505019158607/1346269*4181^(2/21) 8299651061238582 a001 1322157322203/3524578*4181^(2/21) 8299651061238696 a001 3461452808002/9227465*4181^(2/21) 8299651061238712 a001 9062201101803/24157817*4181^(2/21) 8299651061238715 a001 23725150497407/63245986*4181^(2/21) 8299651061238716 a001 14662949395604/39088169*4181^(2/21) 8299651061238723 a001 5600748293801/14930352*4181^(2/21) 8299651061238766 a001 2139295485799/5702887*4181^(2/21) 8299651061239065 a001 817138163596/2178309*4181^(2/21) 8299651061241113 a001 28374454999/75640*4181^(2/21) 8299651061255150 a001 119218851371/317811*4181^(2/21) 8299651061351358 a001 45537549124/121393*4181^(2/21) 8299651062010779 a001 17393796001/46368*4181^(2/21) 8299651064022831 r005 Re(z^2+c),c=-79/98+4/29*I,n=41 8299651066530518 a001 6643838879/17711*4181^(2/21) 8299651066780396 a007 Real Root Of -930*x^4+589*x^3+470*x^2-216*x+275 8299651088465696 a001 370248451/6765*2504730781961^(2/21) 8299651088465696 a001 969323029/6765*102334155^(2/21) 8299651097509272 a001 230701876/615*4181^(2/21) 8299651098887358 a001 233/439204*3571^(21/34) 8299651101123713 k001 Champernowne real with 136*n+693 8299651105842352 m001 (Conway-HardyLittlewoodC3)/(Kolakoski+Trott) 8299651106415382 k002 Champernowne real with 61/2*n^2+399/2*n-222 8299651108972722 a007 Real Root Of -858*x^4+792*x^3+920*x^2-934*x-549 8299651123799925 m001 (GAMMA(5/6)-gamma)/(-DuboisRaymond+Thue) 8299651125770993 m001 (Chi(1)+Ei(1))/(FeigenbaumC+MinimumGamma) 8299651127549403 r009 Im(z^3+c),c=-5/54+14/17*I,n=29 8299651135970107 r002 16th iterates of z^2 + 8299651137016911 a001 233/271443*3571^(19/34) 8299651141718908 a007 Real Root Of -181*x^4+721*x^3+743*x^2-258*x-624 8299651175709678 a001 233/167761*3571^(1/2) 8299651181662648 r005 Im(z^2+c),c=-10/13+1/29*I,n=27 8299651194809233 a001 233/5778*3571^(3/34) 8299651212927934 a001 233/103682*3571^(15/34) 8299651220734968 r002 10th iterates of z^2 + 8299651243643816 a007 Real Root Of -659*x^4+778*x^3-86*x^2+69*x+874 8299651244740417 a001 233/5778*9349^(3/38) 8299651251247486 a001 233/5778*24476^(1/14) 8299651252105243 a001 233/5778*64079^(3/46) 8299651252234676 a001 233/5778*439204^(1/18) 8299651252237060 a001 233/5778*7881196^(1/22) 8299651252237066 a001 233/5778*33385282^(1/24) 8299651252237186 a001 233/5778*1860498^(1/20) 8299651252285320 a001 233/5778*103682^(1/16) 8299651252597871 a001 233/5778*39603^(3/44) 8299651254006508 a001 233/64079*3571^(13/34) 8299651254957358 a001 233/5778*15127^(3/40) 8299651272953907 a001 233/5778*5778^(1/12) 8299651284978639 a001 233/39603*3571^(11/34) 8299651299620218 m004 3/2+Sqrt[5]*Pi-Sin[Sqrt[5]*Pi]/3 8299651300797241 a001 35355581/646*2504730781961^(2/21) 8299651300797242 a001 370248451/2584*102334155^(2/21) 8299651309840818 a001 969323029/2584*4181^(2/21) 8299651330570329 a001 233/15127*3571^(7/34) 8299651342409785 a001 233/24476*3571^(9/34) 8299651349049704 a001 2178309/29*7^(2/39) 8299651350560286 m001 (ln(gamma)+Sarnak)/(2^(1/3)+Chi(1)) 8299651373948254 m005 (1/2*exp(1)-4)/(2*Zeta(3)+7/9) 8299651388904170 m001 (-Catalan+Sarnak)/(2^(1/3)+Shi(1)) 8299651391563147 l006 ln(3949/9056) 8299651411981815 a001 233/5778*2207^(3/32) 8299651423373443 a001 233/4870847*9349^(31/38) 8299651426106469 r005 Re(z^2+c),c=-37/114+11/17*I,n=10 8299651428372474 a001 233/3010349*9349^(29/38) 8299651433366927 a001 233/1860498*9349^(27/38) 8299651438373368 a001 233/1149851*9349^(25/38) 8299651443348422 a001 233/710647*9349^(23/38) 8299651447076427 a001 233/15127*9349^(7/38) 8299651448405649 a001 233/439204*9349^(21/38) 8299651453247746 a001 233/271443*9349^(1/2) 8299651458653057 a001 233/167761*9349^(17/38) 8299651462259588 a001 233/15127*24476^(1/6) 8299651462583857 a001 233/103682*9349^(15/38) 8299651464261021 a001 233/15127*64079^(7/46) 8299651464568606 a001 233/15127*20633239^(1/10) 8299651464568608 a001 233/15127*17393796001^(1/14) 8299651464568608 a001 233/15127*14662949395604^(1/18) 8299651464568608 a001 233/15127*505019158607^(1/16) 8299651464568608 a001 233/15127*599074578^(1/12) 8299651464570663 a001 233/15127*710647^(1/8) 8299651465410486 a001 233/15127*39603^(7/44) 8299651468059650 a001 233/39603*9349^(11/38) 8299651470374976 a001 233/64079*9349^(13/38) 8299651470915956 a001 233/15127*15127^(7/40) 8299651487974619 a001 233/33385282*24476^(13/14) 8299651489294015 a001 233/12752043*24476^(5/6) 8299651489953920 a001 233/7881196*24476^(11/14) 8299651490613157 a001 233/4870847*24476^(31/42) 8299651490957511 a007 Real Root Of -244*x^4+831*x^3-495*x^2-836*x+238 8299651491274142 a001 233/3010349*24476^(29/42) 8299651491918904 a001 233/39603*24476^(11/42) 8299651491930549 a001 233/1860498*24476^(9/14) 8299651492203340 a001 233/24476*9349^(9/38) 8299651492598944 a001 233/1149851*24476^(25/42) 8299651493235952 a001 233/710647*24476^(23/42) 8299651493955132 a001 233/439204*24476^(1/2) 8299651494459184 a001 233/271443*24476^(19/42) 8299651495064012 a001 233/39603*64079^(11/46) 8299651495119203 a001 233/103682*24476^(5/14) 8299651495526449 a001 233/167761*24476^(17/42) 8299651495547342 a001 233/39603*7881196^(1/6) 8299651495547364 a001 233/39603*312119004989^(1/10) 8299651495547364 a001 233/39603*1568397607^(1/8) 8299651496870315 a001 233/39603*39603^(1/4) 8299651498572276 a001 233/64079*24476^(13/42) 8299651499407987 a001 233/103682*64079^(15/46) 8299651499476644 a001 233/4870847*64079^(31/46) 8299651499565792 a001 233/3010349*64079^(29/46) 8299651499650361 a001 233/1860498*64079^(27/46) 8299651499746918 a001 233/1149851*64079^(25/46) 8299651499812088 a001 233/710647*64079^(1/2) 8299651499891644 a001 233/271443*64079^(19/46) 8299651499959430 a001 233/439204*64079^(21/46) 8299651499978633 a001 233/103682*167761^(3/10) 8299651500055152 a001 233/103682*439204^(5/18) 8299651500067073 a001 233/103682*7881196^(5/22) 8299651500067099 a001 233/103682*20633239^(3/14) 8299651500067103 a001 233/103682*2537720636^(1/6) 8299651500067103 a001 233/103682*312119004989^(3/22) 8299651500067103 a001 233/103682*28143753123^(3/20) 8299651500067103 a001 233/103682*228826127^(3/16) 8299651500067105 a001 233/103682*33385282^(5/24) 8299651500067703 a001 233/103682*1860498^(1/4) 8299651500083665 a001 233/9349*3571^(5/34) 8299651500308373 a001 233/103682*103682^(5/16) 8299651500387071 a001 233/167761*64079^(17/46) 8299651500573756 a001 233/141422324*167761^(9/10) 8299651500632684 a001 233/12752043*167761^(7/10) 8299651500697993 a001 233/1149851*167761^(1/2) 8299651500726524 a001 233/271443*817138163596^(1/6) 8299651500726525 a001 233/271443*87403803^(1/4) 8299651500798532 a001 233/599074578*439204^(17/18) 8299651500803313 a001 233/141422324*439204^(5/6) 8299651500808085 a001 233/33385282*439204^(13/18) 8299651500813007 a001 233/7881196*439204^(11/18) 8299651500815256 a001 233/1860498*439204^(1/2) 8299651500822733 a001 233/710647*4106118243^(1/4) 8299651500836715 a001 233/1860498*7881196^(9/22) 8299651500836769 a001 233/1860498*2537720636^(3/10) 8299651500836769 a001 233/1860498*14662949395604^(3/14) 8299651500836769 a001 233/1860498*192900153618^(1/4) 8299651500836772 a001 233/1860498*33385282^(3/8) 8299651500836944 a001 233/3010349*1149851^(1/2) 8299651500837848 a001 233/1860498*1860498^(9/20) 8299651500838359 a001 233/4870847*3010349^(1/2) 8299651500838817 a001 233/4870847*9062201101803^(1/4) 8299651500839039 a001 233/10749957122*7881196^(21/22) 8299651500839052 a001 233/2537720636*7881196^(19/22) 8299651500839056 a001 233/1568397607*7881196^(5/6) 8299651500839064 a001 233/599074578*7881196^(17/22) 8299651500839076 a001 233/141422324*7881196^(15/22) 8299651500839081 a001 233/33385282*7881196^(13/22) 8299651500839106 a001 233/12752043*20633239^(1/2) 8299651500839116 a001 233/12752043*2537720636^(7/18) 8299651500839116 a001 233/12752043*17393796001^(5/14) 8299651500839116 a001 233/12752043*312119004989^(7/22) 8299651500839116 a001 233/12752043*14662949395604^(5/18) 8299651500839116 a001 233/12752043*505019158607^(5/16) 8299651500839116 a001 233/12752043*28143753123^(7/20) 8299651500839116 a001 233/12752043*599074578^(5/12) 8299651500839116 a001 233/12752043*228826127^(7/16) 8299651500839149 a001 233/17393796001*20633239^(13/14) 8299651500839149 a001 233/10749957122*20633239^(9/10) 8299651500839152 a001 233/1568397607*20633239^(11/14) 8299651500839153 a001 233/370248451*20633239^(7/10) 8299651500839155 a001 233/141422324*20633239^(9/14) 8299651500839159 a001 233/33385282*141422324^(1/2) 8299651500839160 a001 233/33385282*73681302247^(3/8) 8299651500839164 a001 233/33385282*33385282^(13/24) 8299651500839166 a001 233/87403803*969323029^(1/2) 8299651500839167 a001 233/17393796001*141422324^(5/6) 8299651500839167 a001 233/228826127*6643838879^(1/2) 8299651500839167 a001 233/599074578*45537549124^(1/2) 8299651500839167 a001 233/1568397607*2537720636^(11/18) 8299651500839167 a001 233/1568397607*312119004989^(1/2) 8299651500839167 a001 233/1568397607*3461452808002^(11/24) 8299651500839167 a001 233/1568397607*28143753123^(11/20) 8299651500839167 a001 233/1568397607*1568397607^(5/8) 8299651500839167 a001 233/2139295485799*2537720636^(17/18) 8299651500839167 a001 233/817138163596*2537720636^(9/10) 8299651500839167 a001 233/192900153618*2537720636^(5/6) 8299651500839167 a001 233/10749957122*2537720636^(7/10) 8299651500839167 a001 233/17393796001*2537720636^(13/18) 8299651500839167 a001 233/4106118243*2139295485799^(1/2) 8299651500839167 a001 233/10749957122*17393796001^(9/14) 8299651500839167 a001 233/10749957122*14662949395604^(1/2) 8299651500839167 a001 233/10749957122*505019158607^(9/16) 8299651500839167 a001 233/10749957122*192900153618^(7/12) 8299651500839167 a001 233/9062201101803*17393796001^(13/14) 8299651500839167 a001 233/312119004989*17393796001^(11/14) 8299651500839167 a001 233/2139295485799*45537549124^(5/6) 8299651500839167 a001 233/192900153618*312119004989^(15/22) 8299651500839167 a001 233/192900153618*3461452808002^(5/8) 8299651500839167 a001 233/23725150497407*312119004989^(19/22) 8299651500839167 a001 233/2139295485799*312119004989^(17/22) 8299651500839167 a001 233/23725150497407*817138163596^(5/6) 8299651500839167 a001 233/9062201101803*14662949395604^(13/18) 8299651500839167 a001 233/14662949395604*9062201101803^(3/4) 8299651500839167 a001 233/2139295485799*3461452808002^(17/24) 8299651500839167 a001 233/817138163596*14662949395604^(9/14) 8299651500839167 a001 233/312119004989*14662949395604^(11/18) 8299651500839167 a001 233/312119004989*505019158607^(11/16) 8299651500839167 a001 233/817138163596*192900153618^(3/4) 8299651500839167 a001 233/9062201101803*73681302247^(7/8) 8299651500839167 a001 233/192900153618*28143753123^(3/4) 8299651500839167 a001 233/2139295485799*28143753123^(17/20) 8299651500839167 a001 233/23725150497407*28143753123^(19/20) 8299651500839167 a001 233/17393796001*312119004989^(13/22) 8299651500839167 a001 233/17393796001*3461452808002^(13/24) 8299651500839167 a001 233/17393796001*73681302247^(5/8) 8299651500839167 a001 233/17393796001*28143753123^(13/20) 8299651500839167 a001 233/6643838879*5600748293801^(1/2) 8299651500839167 a001 233/45537549124*4106118243^(3/4) 8299651500839167 a001 233/2537720636*817138163596^(1/2) 8299651500839167 a001 233/312119004989*1568397607^(7/8) 8299651500839167 a001 233/969323029*119218851371^(1/2) 8299651500839167 a001 233/10749957122*599074578^(3/4) 8299651500839167 a001 233/312119004989*599074578^(11/12) 8299651500839167 a001 233/370248451*17393796001^(1/2) 8299651500839167 a001 233/370248451*14662949395604^(7/18) 8299651500839167 a001 233/370248451*505019158607^(7/16) 8299651500839167 a001 233/370248451*599074578^(7/12) 8299651500839167 a001 233/1568397607*228826127^(11/16) 8299651500839167 a001 233/17393796001*228826127^(13/16) 8299651500839167 a001 233/192900153618*228826127^(15/16) 8299651500839167 a001 233/141422324*2537720636^(1/2) 8299651500839167 a001 233/141422324*312119004989^(9/22) 8299651500839167 a001 233/141422324*14662949395604^(5/14) 8299651500839167 a001 233/141422324*192900153618^(5/12) 8299651500839167 a001 233/141422324*28143753123^(9/20) 8299651500839168 a001 233/141422324*228826127^(9/16) 8299651500839168 a001 233/2537720636*87403803^(3/4) 8299651500839170 a001 233/54018521*370248451^(1/2) 8299651500839172 a001 233/141422324*33385282^(5/8) 8299651500839172 a001 233/599074578*33385282^(17/24) 8299651500839173 a001 233/2537720636*33385282^(19/24) 8299651500839174 a001 233/10749957122*33385282^(7/8) 8299651500839174 a001 233/45537549124*33385282^(23/24) 8299651500839185 a001 233/20633239*54018521^(1/2) 8299651500839205 a001 233/599074578*12752043^(3/4) 8299651500839234 a001 233/7881196*7881196^(1/2) 8299651500839301 a001 233/7881196*312119004989^(3/10) 8299651500839301 a001 233/7881196*1568397607^(3/8) 8299651500839304 a001 233/7881196*33385282^(11/24) 8299651500840083 a001 233/3010349*1322157322203^(1/4) 8299651500840515 a001 233/12752043*1860498^(7/12) 8299651500840619 a001 233/7881196*1860498^(11/20) 8299651500840718 a001 233/33385282*1860498^(13/20) 8299651500840966 a001 233/141422324*1860498^(3/4) 8299651500841205 a001 233/599074578*1860498^(17/20) 8299651500841365 a001 233/1568397607*1860498^(11/12) 8299651500841445 a001 233/2537720636*1860498^(19/20) 8299651500845437 a001 233/1149851*20633239^(5/14) 8299651500845444 a001 233/1149851*2537720636^(5/18) 8299651500845444 a001 233/1149851*312119004989^(5/22) 8299651500845444 a001 233/1149851*3461452808002^(5/24) 8299651500845444 a001 233/1149851*28143753123^(1/4) 8299651500845444 a001 233/1149851*228826127^(5/16) 8299651500846443 a001 233/1149851*1860498^(5/12) 8299651500849387 a001 233/12752043*710647^(5/8) 8299651500853547 a001 233/370248451*710647^(7/8) 8299651500865460 a001 233/439204*439204^(7/18) 8299651500882150 a001 233/439204*7881196^(7/22) 8299651500882187 a001 233/439204*20633239^(3/10) 8299651500882193 a001 233/439204*17393796001^(3/14) 8299651500882193 a001 233/439204*14662949395604^(1/6) 8299651500882193 a001 233/439204*599074578^(1/4) 8299651500882195 a001 233/439204*33385282^(7/24) 8299651500883032 a001 233/439204*1860498^(7/20) 8299651500888356 a001 233/439204*710647^(3/8) 8299651500923641 a001 233/33385282*271443^(3/4) 8299651501134069 a001 233/167761*45537549124^(1/6) 8299651501134082 a001 233/167761*12752043^(1/4) 8299651501219970 a001 233/439204*103682^(7/16) 8299651501271055 a001 233/1860498*103682^(9/16) 8299651501370094 a001 233/7881196*103682^(11/16) 8299651501466461 a001 233/33385282*103682^(13/16) 8299651501562977 a001 233/141422324*103682^(15/16) 8299651501871127 a001 233/103682*39603^(15/44) 8299651502289222 a001 233/64079*64079^(13/46) 8299651502860456 a001 233/64079*141422324^(1/6) 8299651502860456 a001 233/64079*73681302247^(1/8) 8299651502888617 a001 233/64079*271443^(1/4) 8299651503011621 a001 233/271443*39603^(19/44) 8299651503178629 a001 233/167761*39603^(17/44) 8299651503407826 a001 233/439204*39603^(21/44) 8299651503588903 a001 233/710647*39603^(23/44) 8299651503852151 a001 233/1149851*39603^(25/44) 8299651504084012 a001 233/1860498*39603^(27/44) 8299651504327862 a001 233/3010349*39603^(29/44) 8299651504423943 a001 233/64079*39603^(13/44) 8299651504567133 a001 233/4870847*39603^(31/44) 8299651504808153 a001 233/7881196*39603^(3/4) 8299651505521767 a001 233/39603*15127^(11/40) 8299651511724548 a001 233/24476*24476^(3/14) 8299651512907906 a001 233/15127*5778^(7/36) 8299651513668563 a001 233/103682*15127^(3/8) 8299651514297818 a001 233/24476*64079^(9/46) 8299651514648388 a001 233/64079*15127^(13/40) 8299651514686117 a001 233/24476*439204^(1/6) 8299651514693269 a001 233/24476*7881196^(3/22) 8299651514693288 a001 233/24476*2537720636^(1/10) 8299651514693288 a001 233/24476*14662949395604^(1/14) 8299651514693288 a001 233/24476*192900153618^(1/12) 8299651514693289 a001 233/24476*33385282^(1/8) 8299651514693647 a001 233/24476*1860498^(3/20) 8299651514838050 a001 233/24476*103682^(3/16) 8299651515775702 a001 233/24476*39603^(9/44) 8299651516549057 a001 233/167761*15127^(17/40) 8299651517955040 a001 233/271443*15127^(19/40) 8299651519924236 a001 233/439204*15127^(21/40) 8299651521678304 a001 233/710647*15127^(23/40) 8299651522854163 a001 233/24476*15127^(9/40) 8299651523514544 a001 233/1149851*15127^(5/8) 8299651525319396 a001 233/1860498*15127^(27/40) 8299651527136238 a001 233/3010349*15127^(29/40) 8299651528948500 a001 233/4870847*15127^(31/40) 8299651532575855 a001 233/12752043*15127^(7/8) 8299651567944250 q001 1191/1435 8299651571509118 a001 233/39603*5778^(11/36) 8299651576843814 a001 233/24476*5778^(1/4) 8299651583302308 a001 233/9349*9349^(5/38) 8299651592633439 a001 233/64079*5778^(13/36) 8299651594147424 a001 233/9349*24476^(5/42) 8299651594271395 a001 1597/167761*322^(3/8) 8299651595577019 a001 233/9349*64079^(5/46) 8299651595767234 a001 233/9349*167761^(1/10) 8299651595796722 a001 233/9349*20633239^(1/14) 8299651595796724 a001 233/9349*2537720636^(1/18) 8299651595796724 a001 233/9349*312119004989^(1/22) 8299651595796724 a001 233/9349*28143753123^(1/20) 8299651595796724 a001 233/9349*228826127^(1/16) 8299651595796924 a001 233/9349*1860498^(1/12) 8299651596398065 a001 233/9349*39603^(5/44) 8299651600330544 a001 233/9349*15127^(1/8) 8299651603651314 a001 233/103682*5778^(5/12) 8299651617179566 p003 LerchPhi(1/3,6,501/224) 8299651618529508 a001 233/167761*5778^(17/36) 8299651628452448 m001 (Pi-ln(3))/(GAMMA(11/12)-AlladiGrinstead) 8299651630324794 a001 233/9349*5778^(5/36) 8299651631933192 a001 233/271443*5778^(19/36) 8299651643578467 m001 1/exp(LambertW(1))*LaplaceLimit^2*gamma^2 8299651645900088 a001 233/439204*5778^(7/12) 8299651656487473 a007 Real Root Of 834*x^4+272*x^3+331*x^2-466*x-855 8299651656866557 a007 Real Root Of -832*x^4+548*x^3-263*x^2-222*x+705 8299651659651857 a001 233/710647*5778^(23/36) 8299651673485797 a001 233/1149851*5778^(25/36) 8299651677111099 m001 1/FeigenbaumC*Cahen^2/exp(Zeta(9)) 8299651687288350 a001 233/1860498*5778^(3/4) 8299651688962089 m001 ln(LandauRamanujan)/ArtinRank2^2*GAMMA(3/4)^2 8299651701102892 a001 233/3010349*5778^(29/36) 8299651704137729 r002 35th iterates of z^2 + 8299651714912855 a001 233/4870847*5778^(31/36) 8299651728181576 a008 Real Root of x^4-2*x^3+8*x^2+52*x-48 8299651728724567 a001 233/7881196*5778^(11/12) 8299651760184240 r005 Im(z^2+c),c=-11/21+8/53*I,n=17 8299651792747163 a007 Real Root Of -572*x^4+604*x^3-638*x^2-481*x+657 8299651809180008 r005 Re(z^2+c),c=-107/122+5/28*I,n=40 8299651837306371 a001 233/15127*2207^(7/32) 8299651839332689 r005 Im(z^2+c),c=-101/118+1/18*I,n=19 8299651862037985 a001 233/9349*2207^(5/32) 8299651878716325 r005 Im(z^2+c),c=-19/94+32/39*I,n=10 8299651908396408 m001 (exp(Pi)+exp(1/exp(1)))/(MertensB2+Tetranacci) 8299651917679462 r009 Re(z^3+c),c=-9/98+41/56*I,n=24 8299651949063947 a007 Real Root Of 397*x^4-358*x^3-171*x^2-572*x-750 8299651964118834 m001 OrthogonalArrays-exp(1/Pi)-Thue 8299651988078916 m001 GAMMA(23/24)^2/exp(Kolakoski)^2/sin(Pi/12) 8299651993927560 a001 233/24476*2207^(9/32) 8299652002988477 a001 233/3571*1364^(1/30) 8299652011628853 m001 1/Zeta(5)*ln(Tribonacci)/sin(1)^2 8299652045958603 a007 Real Root Of -779*x^4+821*x^3-353*x^2-640*x+551 8299652053171898 a007 Real Root Of 761*x^4-563*x^3-299*x^2-547*x-931 8299652074329171 a007 Real Root Of -824*x^4-402*x^3-635*x^2-967*x-204 8299652081278143 a001 233/39603*2207^(11/32) 8299652106715442 k002 Champernowne real with 31*n^2+198*n-221 8299652112649929 r002 6th iterates of z^2 + 8299652132545375 a001 233/3571*3571^(1/34) 8299652149189105 a001 233/3571*9349^(1/38) 8299652149448694 r005 Re(z^2+c),c=-12/13+1/42*I,n=24 8299652151358128 a001 233/3571*24476^(1/42) 8299652151644047 a001 233/3571*64079^(1/46) 8299652151808256 a001 233/3571*39603^(1/44) 8299652152594752 a001 233/3571*15127^(1/40) 8299652155315860 a007 Real Root Of -844*x^4-178*x^3-890*x^2-707*x+325 8299652158593603 a001 233/3571*5778^(1/36) 8299652181860939 r005 Re(z^2+c),c=-105/106+10/39*I,n=26 8299652195087746 a001 233/64079*2207^(13/32) 8299652197853002 a003 sin(Pi*1/107)-sin(Pi*26/79) 8299652204936243 a001 233/3571*2207^(1/32) 8299652210678064 a007 Real Root Of 207*x^4-837*x^3-162*x^2-442*x-832 8299652222090152 m001 Backhouse/GAMMA(5/6)*Cahen 8299652231228959 r005 Re(z^2+c),c=1/13+1/42*I,n=8 8299652253914501 r009 Re(z^3+c),c=-19/126+23/35*I,n=58 8299652259676539 l006 ln(1272/2917) 8299652262305951 m001 (5^(1/2)-Zeta(1,2))/(-GaussAGM+ZetaP(2)) 8299652298790904 a001 233/103682*2207^(15/32) 8299652299794433 m001 (ErdosBorwein-Landau)/(GAMMA(2/3)+gamma(1)) 8299652342176803 m001 1/GAMMA(7/12)^2/exp(Backhouse)/Zeta(3) 8299652344471362 m001 (BesselI(1,2)-Bloch)/(GolombDickman+Sarnak) 8299652348726567 m008 (2/3*Pi^5+1/5)/(4/5*Pi^3-1/5) 8299652349671784 r009 Re(z^3+c),c=-7/48+33/53*I,n=42 8299652360344815 m006 (1/2*Pi^2+5/6)/(2*Pi+2/3) 8299652360344815 m008 (1/2*Pi^2+5/6)/(2*Pi+2/3) 8299652367993427 r009 Re(z^3+c),c=-13/118+45/61*I,n=54 8299652374868491 a003 sin(Pi*13/54)/sin(Pi*22/71) 8299652383402902 m001 (Backhouse-Bloch)/(sin(1/12*Pi)-exp(1/exp(1))) 8299652393014379 m001 GAMMA(19/24)*Niven*PrimesInBinary 8299652398072959 a007 Real Root Of -692*x^4+589*x^3-565*x^2-210*x+880 8299652398183661 a001 76/5*8^(40/49) 8299652406354382 a001 233/167761*2207^(17/32) 8299652415203896 m001 GAMMA(19/24)/(MasserGramainDelta^gamma) 8299652432149817 r005 Im(z^2+c),c=-19/18+9/97*I,n=26 8299652439513071 m005 (1/2*gamma-3/11)/(7/10*Pi-2/7) 8299652489032229 a007 Real Root Of 94*x^4+724*x^3-448*x^2+52*x-820 8299652503558453 a001 233/5778*843^(3/28) 8299652509499750 p001 sum((-1)^n/(76*n+41)/n/(10^n),n=0..infinity) 8299652512443352 a001 233/271443*2207^(19/32) 8299652516654873 m005 (1/2*Zeta(3)+4/11)/(59/70+1/7*5^(1/2)) 8299652524423404 m001 (Pi-Psi(1,1/3))/(Shi(1)-Ei(1)) 8299652524423404 m001 (Pi-Psi(1,1/3))/(Shi(1)-Ei(1,1)) 8299652524423404 m001 (Pi-Psi(1,1/3))/Chi(1) 8299652532481078 m001 PlouffeB+Thue*ThueMorse 8299652536913911 a003 sin(Pi*28/93)/sin(Pi*19/44) 8299652568795141 a001 233/3571*843^(1/28) 8299652586299554 a007 Real Root Of 823*x^4-993*x^3-687*x^2-147*x-607 8299652604793719 a001 377/103682*322^(13/24) 8299652609301616 r005 Re(z^2+c),c=-115/126+3/34*I,n=32 8299652612551943 r005 Im(z^2+c),c=19/122+34/59*I,n=27 8299652614272431 r005 Re(z^2+c),c=-1/82+49/62*I,n=4 8299652619095535 a001 233/439204*2207^(21/32) 8299652638608108 a007 Real Root Of 31*x^4-618*x^3+174*x^2-916*x+979 8299652691831126 s001 sum(exp(-2*Pi/5)^n*A096645[n],n=1..infinity) 8299652691831126 s002 sum(A096645[n]/(exp(2/5*pi*n)),n=1..infinity) 8299652696942141 a001 123/4181*34^(5/17) 8299652697164740 m001 (gamma(1)-ArtinRank2)/(KomornikLoreti-Thue) 8299652713754736 a007 Real Root Of 720*x^4+264*x^3-20*x^2-376*x-489 8299652725532592 a001 233/710647*2207^(23/32) 8299652756139595 a001 54018521/987*2504730781961^(2/21) 8299652756139598 a001 141422324/987*102334155^(2/21) 8299652765183176 a001 370248451/987*4181^(2/21) 8299652784636488 r005 Im(z^2+c),c=3/25+17/18*I,n=3 8299652795359116 b008 35+Csch[1/48] 8299652795417024 a007 Real Root Of 557*x^4-371*x^3+501*x^2+144*x-702 8299652802923947 a007 Real Root Of -218*x^4+633*x^3+111*x^2-977*x-422 8299652817297348 h001 (1/2*exp(2)+7/11)/(5/8*exp(2)+3/5) 8299652820249212 m005 (1/3*Zeta(3)-2/7)/(3/8*5^(1/2)-7/10) 8299652832051822 a001 233/1149851*2207^(25/32) 8299652835567451 m001 (Kac+PlouffeB)/(arctan(1/2)-Gompertz) 8299652846468648 g007 Psi(2,6/7)+Psi(2,2/3)+Psi(2,1/3)-14*Zeta(3) 8299652901550215 m001 (Psi(2,1/3)+ln(3))/(Landau+OneNinth) 8299652903727543 r005 Re(z^2+c),c=-39/74+27/49*I,n=54 8299652913128059 a001 610/9349*123^(1/20) 8299652913614740 r005 Im(z^2+c),c=-35/82+7/51*I,n=35 8299652914941488 m005 (1/2*gamma-1)/(1/9*2^(1/2)+7/10) 8299652938539666 a001 233/1860498*2207^(27/32) 8299652947056751 m001 GaussAGM-ZetaQ(4)^Chi(1) 8299652949146771 h001 (3/10*exp(1)+1/5)/(5/12*exp(1)+1/11) 8299652965682403 a007 Real Root Of 636*x^4+415*x^3+272*x^2-511*x-676 8299652978670055 b008 82+Cos[1/12] 8299652992081099 a007 Real Root Of 803*x^4+67*x^3-32*x^2-251*x-529 8299653043132832 a003 sin(Pi*4/107)-sin(Pi*40/101) 8299653045039500 a001 233/3010349*2207^(29/32) 8299653062817819 a007 Real Root Of -555*x^4-274*x^3-323*x^2+454*x+706 8299653067374497 m005 (1/3*exp(1)+2/7)/(5/12*3^(1/2)+5/7) 8299653075044194 r005 Im(z^2+c),c=-79/118+11/35*I,n=20 8299653105207394 r005 Im(z^2+c),c=-1/21+18/25*I,n=54 8299653107015502 k002 Champernowne real with 63/2*n^2+393/2*n-220 8299653117848110 r005 Re(z^2+c),c=-5/6+17/173*I,n=19 8299653124310829 r005 Im(z^2+c),c=-77/94+1/22*I,n=28 8299653140683030 r002 8th iterates of z^2 + 8299653151534757 a001 233/4870847*2207^(31/32) 8299653155192687 l006 ln(9719/9800) 8299653155949581 m005 (4/5*Pi+1)/(2/5*Pi-5/6) 8299653155949581 m006 (4/5*Pi+1)/(2/5*Pi-5/6) 8299653155949581 m008 (4/5*Pi+1)/(2/5*Pi-5/6) 8299653162049704 a007 Real Root Of 199*x^4-683*x^3+3*x^2-541*x+743 8299653187430554 m001 Backhouse*ZetaQ(4)-FeigenbaumB 8299653190488235 l006 ln(3683/8446) 8299653200871306 a007 Real Root Of -81*x^4+682*x^3-509*x^2+699*x-581 8299653213573434 a007 Real Root Of 610*x^4-897*x^3-966*x^2-699*x-717 8299653220762749 m001 (Pi-ln(3))/(Champernowne-Sierpinski) 8299653240210073 m001 (Ei(1)+AlladiGrinstead)/(exp(1)+cos(1)) 8299653245065694 m005 (1/18+1/6*5^(1/2))/(Catalan-2/5) 8299653245532949 m005 (1/2*3^(1/2)-1)/(7/9*exp(1)-1/2) 8299653246767266 m005 (1/2*Pi+9/10)/(5*gamma+1/11) 8299653316455729 m001 (Champernowne+Lehmer)/(Ei(1,1)+Cahen) 8299653338923814 m001 1/exp(Zeta(1,2))*GAMMA(2/3)^2*sqrt(Pi) 8299653364978521 m001 GAMMA(2/3)^FibonacciFactorial/ZetaP(3) 8299653380304672 r002 14th iterates of z^2 + 8299653392837478 a007 Real Root Of -36*x^4-374*x^3-605*x^2+114*x-379 8299653398776579 a007 Real Root Of 6*x^4-894*x^3+48*x^2-60*x+525 8299653488875802 m001 exp(GAMMA(1/6))/CareFree*sqrt(5) 8299653528852910 m001 (BesselJ(0,1)+BesselI(0,2))/(Magata+MertensB1) 8299653541829126 a007 Real Root Of 790*x^4+860*x^3+301*x^2-354*x-31 8299653547853730 m006 (3*exp(2*Pi)-5/6)/(4/5*exp(Pi)+5/6) 8299653569735715 r005 Im(z^2+c),c=-17/18+107/204*I,n=3 8299653579676674 q001 2875/3464 8299653611382098 r005 Re(z^2+c),c=-5/6+29/168*I,n=19 8299653639993934 a003 sin(Pi*28/95)/sin(Pi*19/46) 8299653662650113 r001 19i'th iterates of 2*x^2-1 of 8299653671557887 r002 8th iterates of z^2 + 8299653681332560 a001 233/9349*843^(5/28) 8299653681567619 l006 ln(2411/5529) 8299653695952982 m005 (1/3*Catalan-2/11)/(6/7*5^(1/2)-3/7) 8299653701088918 r005 Re(z^2+c),c=-1/11+13/18*I,n=39 8299653713174729 m001 1/GAMMA(7/24)/exp(Artin)^2*cos(1) 8299653731549197 a007 Real Root Of -798*x^4+500*x^3+73*x^2+838*x-653 8299653757741356 m001 1/ln(RenyiParking)^2*Magata^2/sqrt(1+sqrt(3)) 8299653779642344 b008 82+Sech[1/12] 8299653783522588 a003 sin(Pi*7/25)/sin(Pi*25/66) 8299653789478269 a007 Real Root Of -602*x^4+459*x^3-245*x^2+632*x-51 8299653790010272 m008 (4*Pi^2+1)/(5*Pi^4+2/3) 8299653790804019 m001 HeathBrownMoroz^(GAMMA(23/24)*Trott2nd) 8299653816691375 a007 Real Root Of 411*x^4-836*x^3-707*x^2-682*x-752 8299653830325179 m001 1/GAMMA(13/24)/ln(BesselJ(0,1))^2/GAMMA(23/24) 8299653832699762 m001 Psi(2,1/3)*Ei(1)*Kolakoski 8299653832862811 r002 63th iterates of z^2 + 8299653916669096 r005 Im(z^2+c),c=-7/10+89/203*I,n=8 8299653960572524 r009 Im(z^3+c),c=-9/86+22/27*I,n=25 8299653998414143 m001 (GAMMA(2/3)-KhinchinLevy)/(Kolakoski-Lehmer) 8299654038290224 a007 Real Root Of 348*x^4-587*x^3-494*x^2-179*x-309 8299654063823312 r001 26i'th iterates of 2*x^2-1 of 8299654073382340 m001 FeigenbaumB-HeathBrownMoroz*MasserGramainDelta 8299654095640067 a007 Real Root Of 617*x^4+443*x^3+55*x^2+133*x+33 8299654107315562 k002 Champernowne real with 32*n^2+195*n-219 8299654135672474 a007 Real Root Of -477*x^4+862*x^3+124*x^2+22*x+652 8299654148037765 m001 (3^(1/3)-GAMMA(23/24)*Stephens)/GAMMA(23/24) 8299654191045162 l006 ln(3550/8141) 8299654207848210 m001 ln(TreeGrowth2nd)^2*Porter*Catalan^2 8299654301088768 a007 Real Root Of 314*x^4-929*x^3-696*x^2-104*x-287 8299654309099640 m001 (Ei(1,1)-FeigenbaumMu)/(ThueMorse-ZetaQ(3)) 8299654311156271 a007 Real Root Of -287*x^4+838*x^3+202*x^2+612*x-990 8299654320393707 a007 Real Root Of -977*x^4+189*x^3-394*x^2-35*x+814 8299654348347796 m001 1/exp(Niven)^2*FeigenbaumAlpha*Zeta(9)^2 8299654359796394 s002 sum(A058892[n]/(2^n+1),n=1..infinity) 8299654377340981 a007 Real Root Of -986*x^4+644*x^3+972*x^2-36*x-540 8299654381557369 r002 3th iterates of z^2 + 8299654384318880 a001 233/15127*843^(1/4) 8299654386816271 r009 Re(z^3+c),c=-5/36+31/54*I,n=18 8299654388091595 r005 Re(z^2+c),c=-23/98+39/47*I,n=32 8299654407578851 r002 31th iterates of z^2 + 8299654444503390 m006 (3/5*ln(Pi)+2/3)/(5*Pi+3/5) 8299654449482707 m005 (1/3*Zeta(3)+2/9)/(-16/77+3/7*5^(1/2)) 8299654464896056 r005 Im(z^2+c),c=-9/14+61/219*I,n=35 8299654504284006 r002 38th iterates of z^2 + 8299654572576395 r001 6i'th iterates of 2*x^2-1 of 8299654606793354 a007 Real Root Of 394*x^4+201*x^3+85*x^2-621*x-646 8299654618013395 b008 Sinh[16/193] 8299654656778299 m002 6/Pi^5+3*Pi-Log[Pi] 8299654661150169 a003 sin(Pi*1/116)+sin(Pi*27/91) 8299654672428773 m001 (GAMMA(11/12)-cos(1))/(-ArtinRank2+ZetaP(4)) 8299654714690531 m001 1/cosh(1)*ln(PrimesInBinary)^2*sqrt(1+sqrt(3)) 8299654729520426 a007 Real Root Of -249*x^4-349*x^3+525*x^2+829*x+65 8299654760624681 a007 Real Root Of 403*x^4-380*x^3+583*x^2-71*x-869 8299654793575068 a003 cos(Pi*13/69)/sin(Pi*56/113) 8299654842200459 m001 Ei(1,1)-FibonacciFactorial^CopelandErdos 8299654859787549 m001 ln(Pi)^GAMMA(1/6)*GAMMA(11/24)^GAMMA(1/6) 8299654882068747 r005 Re(z^2+c),c=-19/21+17/64*I,n=10 8299654905443582 a007 Real Root Of 566*x^4-836*x^3-974*x^2-27*x-98 8299654917363751 a007 Real Root Of -201*x^4+954*x^3-187*x^2-414*x+426 8299654990644753 h001 (5/9*exp(2)+3/8)/(1/8*exp(1)+1/5) 8299655002464268 q001 1684/2029 8299655010581142 a007 Real Root Of -177*x^4+941*x^3+773*x^2-503*x-569 8299655025969104 m002 Pi+(Pi^3*Sinh[Pi])/(3*E^Pi) 8299655041310644 m005 (1/2*2^(1/2)-2/3)/(5/12*5^(1/2)-4/9) 8299655043904668 r002 23th iterates of z^2 + 8299655044284190 a007 Real Root Of 858*x^4-2*x^3+500*x^2+884*x-19 8299655047593222 m001 1/Niven^2*GlaisherKinkelin/ln(sin(Pi/5)) 8299655050190100 m001 1/exp(GAMMA(3/4))/BesselK(1,1)/sin(Pi/5) 8299655053272370 m008 (2/5*Pi^5+5)/(1/2*Pi^5+1/2) 8299655094912666 a007 Real Root Of 110*x^4+964*x^3+489*x^2+528*x-123 8299655095850141 a003 sin(Pi*34/103)*sin(Pi*46/111) 8299655104460775 a007 Real Root Of 625*x^4-84*x^3-474*x^2-518*x-448 8299655107615622 k002 Champernowne real with 65/2*n^2+387/2*n-218 8299655121452239 a007 Real Root Of 544*x^4-548*x^3+910*x^2+363*x-897 8299655167787035 r002 2th iterates of z^2 + 8299655167787035 r002 2th iterates of z^2 + 8299655208819817 r005 Im(z^2+c),c=9/58+37/54*I,n=8 8299655210085310 a007 Real Root Of -774*x^4-470*x^3-681*x^2+345*x+854 8299655213039467 a007 Real Root Of -403*x^4+945*x^3+478*x^2-204*x-509 8299655228669013 a007 Real Root Of 484*x^4-499*x^3-551*x^2+46*x+397 8299655262189581 a007 Real Root Of 936*x^4-367*x^3+758*x^2+911*x-420 8299655268658134 a001 233/24476*843^(9/28) 8299655269491395 l006 ln(1139/2612) 8299655269716974 r005 Im(z^2+c),c=-9/8+5/21*I,n=36 8299655272936172 a008 Real Root of (2+3*x^2+2*x^3-6*x^4-6*x^5) 8299655314929239 r002 13th iterates of z^2 + 8299655348732364 r005 Re(z^2+c),c=1/9+15/28*I,n=51 8299655373417802 m005 (1/2*Pi-11/12)/(7/12*3^(1/2)-2/9) 8299655381794456 a007 Real Root Of 333*x^4-574*x^3-436*x^2+889*x+552 8299655382013989 m002 -3+3*Pi^5-Pi^4/Log[Pi] 8299655389196928 a007 Real Root Of -990*x^4-546*x^3+312*x^2+104*x+29 8299655406132591 a001 610/64079*322^(3/8) 8299655432340697 m001 ln(2)^Zeta(3)/(AlladiGrinstead^Zeta(3)) 8299655434659256 r009 Im(z^3+c),c=-9/86+22/27*I,n=31 8299655443263039 a007 Real Root Of -338*x^4+307*x^3+238*x^2+135*x+284 8299655452353367 m005 (1/2*Zeta(3)-7/10)/(3/10*Pi+1/4) 8299655462292059 a007 Real Root Of -318*x^4+796*x^3+504*x^2-286*x-414 8299655487052289 a001 233/3571*322^(1/24) 8299655498114340 b008 7+Coth[1/4]/Pi 8299655518853346 a007 Real Root Of -415*x^4+776*x^3+627*x^2-396*x-120 8299655533435209 r009 Re(z^3+c),c=-1/5+32/43*I,n=26 8299655549983297 m001 (ln(2)-BesselI(1,1))/(CopelandErdos+Mills) 8299655555280015 r005 Im(z^2+c),c=-51/86+7/46*I,n=41 8299655590104359 s002 sum(A143832[n]/(exp(n)),n=1..infinity) 8299655592521728 r005 Im(z^2+c),c=3/19+23/36*I,n=18 8299655601255427 a007 Real Root Of -330*x^4+115*x^3+736*x^2+449*x+88 8299655624579671 r005 Re(z^2+c),c=-73/114+18/47*I,n=27 8299655652943695 a007 Real Root Of -194*x^4+246*x^3-178*x^2+290*x+596 8299655674609214 m005 (1/2*3^(1/2)+1/12)/(59/120+7/24*5^(1/2)) 8299655744717629 s002 sum(A036281[n]/(exp(n)+1),n=1..infinity) 8299655761907901 r009 Re(z^3+c),c=-21/52+39/53*I,n=5 8299655764951007 m002 -4/Pi^6-Pi^2+Pi^6/Log[Pi] 8299655766515652 a007 Real Root Of 384*x^4-555*x^3+20*x^2+904*x+237 8299655786635504 a007 Real Root Of 787*x^4+202*x^3+682*x^2-269*x-951 8299655793470598 m009 (24/5*Catalan+3/5*Pi^2-3/5)/(5*Psi(1,3/4)-1) 8299655823012044 a007 Real Root Of -173*x^4+939*x^3+662*x^2-119*x-812 8299655895232628 m001 exp(GAMMA(5/6))*GAMMA(1/3)*Zeta(9) 8299655906129786 a003 cos(Pi*13/81)*sin(Pi*25/63) 8299655910206184 a001 987/167761*322^(11/24) 8299655998199745 r002 54th iterates of z^2 + 8299656010332853 a007 Real Root Of 909*x^4+812*x^3+972*x^2-192*x-796 8299656022291181 m009 (2/5*Psi(1,2/3)-2)/(20/3*Catalan+5/6*Pi^2-5) 8299656029879972 h001 (-10*exp(2)-7)/(-8*exp(1)+12) 8299656061507124 r005 Im(z^2+c),c=49/122+19/55*I,n=53 8299656071261726 m001 (Paris-ThueMorse)/(Artin+Magata) 8299656083726840 a001 233/39603*843^(11/28) 8299656102812362 a007 Real Root Of -166*x^4+832*x^3-194*x^2+318*x+952 8299656107915682 k002 Champernowne real with 33*n^2+192*n-217 8299656111747339 m005 (1/2*Catalan-6/11)/(2/3*2^(1/2)+1/9) 8299656124290262 a007 Real Root Of 475*x^4-951*x^3+268*x^2+831*x-264 8299656129344636 a007 Real Root Of 700*x^4-613*x^3-799*x^2-860*x-846 8299656129806641 a007 Real Root Of 943*x^4+720*x^3+176*x^2+329*x+116 8299656139922513 m005 (1/3*3^(1/2)-1/6)/(7/8*Zeta(3)-6) 8299656161216268 m001 exp(1)^2*CareFree*ln(log(1+sqrt(2)))^2 8299656224733379 a007 Real Root Of -346*x^4+872*x^3+472*x^2+321*x+604 8299656269911454 a007 Real Root Of -836*x^4+471*x^3-290*x^2-625*x+347 8299656317545032 a003 sin(Pi*30/101)/cos(Pi*38/81) 8299656328817484 a007 Real Root Of 317*x^4-331*x^3+27*x^2-719*x-955 8299656330513964 m001 exp(log(1+sqrt(2)))/Rabbit^2*sqrt(3) 8299656344275076 a007 Real Root Of 425*x^4-440*x^3+575*x^2+751*x-226 8299656345384678 a007 Real Root Of -572*x^4+530*x^3+463*x^2+344*x+541 8299656365169931 a007 Real Root Of -520*x^4+258*x^3+455*x^2+46*x+119 8299656366527323 m001 (Rabbit+ZetaP(3))/(BesselJ(1,1)+Kac) 8299656377505077 b008 EllipticPi[1/3,Pi/4,-1/9] 8299656381846372 a007 Real Root Of 381*x^4+64*x^3-409*x^2-602*x+564 8299656405850543 m001 1/Catalan^2*exp(BesselK(0,1))^2*sqrt(3)^2 8299656421339364 m005 (1/2*Zeta(3)-2/3)/(1/5*3^(1/2)+4/9) 8299656425360599 a007 Real Root Of 165*x^4-215*x^3+555*x^2-848*x+7 8299656435290328 l006 ln(3284/7531) 8299656470726951 a007 Real Root Of -942*x^4+922*x^3+802*x^2+392*x+747 8299656494888425 a007 Real Root Of 265*x^4+34*x^3+91*x^2-294*x-413 8299656503214501 r004 Im(z^2+c),c=3/8+5/24*I,z(0)=exp(7/12*I*Pi),n=6 8299656506410761 a007 Real Root Of 865*x^4-111*x^3-867*x^2-4*x+120 8299656540454192 r002 4th iterates of z^2 + 8299656592942506 m001 FransenRobinson/FeigenbaumAlpha/ln(sin(Pi/12)) 8299656600678452 a007 Real Root Of -158*x^4+311*x^3-922*x^2-330*x+614 8299656619241116 a007 Real Root Of -904*x^4+109*x^3-439*x^2-543*x+343 8299656625256659 a007 Real Root Of -576*x^4+890*x^3+817*x^2+502*x+636 8299656639978098 r009 Re(z^3+c),c=-11/78+33/56*I,n=49 8299656653301456 a007 Real Root Of 644*x^4+118*x^3-310*x^2+373*x+285 8299656666786575 r009 Im(z^3+c),c=-37/70+22/41*I,n=5 8299656681176522 m006 (4*Pi-1/3)/(2*Pi^2-5) 8299656681176522 m008 (4*Pi-1/3)/(2*Pi^2-5) 8299656715160046 m001 (Pi-Si(Pi))/(OrthogonalArrays+Riemann1stZero) 8299656719177133 m001 (sin(1/5*Pi)+Cahen)/(GolombDickman+Thue) 8299656720094492 a007 Real Root Of 805*x^4+890*x^3-337*x^2-865*x-69 8299656720146111 r002 5th iterates of z^2 + 8299656741645374 p004 log(29819/13003) 8299656751680449 m005 (-13/28+1/4*5^(1/2))/(5/7*Zeta(3)-2) 8299656760854155 a007 Real Root Of 371*x^4+309*x^3+451*x^2-559*x-774 8299656783241225 r002 26th iterates of z^2 + 8299656818822003 m005 (1/2*Zeta(3)+4/5)/(6/11*2^(1/2)+11/12) 8299656819474359 r002 42th iterates of z^2 + 8299656830629850 a007 Real Root Of -564*x^4-254*x^3-812*x^2-719*x+85 8299656867487227 m001 1/Sierpinski/ln(ArtinRank2)^2/Ei(1)^2 8299656881433473 q001 2177/2623 8299656893882103 m005 (-1/2+1/6*5^(1/2))/(7/11*5^(1/2)+1/9) 8299656925254660 a001 233/64079*843^(13/28) 8299656965516302 m005 (3/4*Catalan-3)/(-7/15+1/3*5^(1/2)) 8299656972039336 a001 11/377*75025^(17/57) 8299656983762300 a007 Real Root Of 448*x^4-15*x^3+204*x^2+937*x+416 8299657009524672 s001 sum(exp(-4*Pi/5)^n*A153187[n],n=1..infinity) 8299657039473682 m001 Catalan*ZetaR(2)-cos(1/12*Pi) 8299657054332224 l006 ln(2145/4919) 8299657108215742 k002 Champernowne real with 67/2*n^2+381/2*n-216 8299657120181729 a005 (1/cos(7/118*Pi))^1703 8299657128198203 m001 (Catalan-GAMMA(13/24))/(ArtinRank2+ZetaP(3)) 8299657161805963 a003 sin(Pi*31/91)*sin(Pi*47/119) 8299657199568961 a007 Real Root Of -559*x^4-89*x^3-660*x^2+347*x+957 8299657211125407 a003 2^(1/2)-2*cos(10/27*Pi)+cos(13/30*Pi) 8299657241632826 a007 Real Root Of -500*x^4-374*x^3-701*x^2-304*x+254 8299657247019653 r002 27th iterates of z^2 + 8299657248960188 r009 Re(z^3+c),c=-11/78+33/56*I,n=47 8299657265899072 r005 Im(z^2+c),c=-7/60+26/31*I,n=55 8299657285457761 a007 Real Root Of 835*x^4-747*x^3+338*x^2+511*x-632 8299657319232870 a007 Real Root Of -125*x^4-961*x^3+617*x^2-64*x+679 8299657323845502 a007 Real Root Of 486*x^4+23*x^3-630*x^2-838*x-479 8299657335763297 p004 log(27773/25561) 8299657344355712 a007 Real Root Of 800*x^4-900*x^3-891*x^2-561*x-746 8299657365297472 a001 34/5779*322^(11/24) 8299657378988550 r005 Re(z^2+c),c=-49/44+12/59*I,n=12 8299657387785616 m001 (5^(1/2)-Gompertz)/(-Khinchin+Rabbit) 8299657460034043 m001 (gamma(1)-PlouffeB)/(Rabbit-StronglyCareFree) 8299657509974069 m005 (2*exp(1)+3/5)/(3/4*2^(1/2)-1/3) 8299657510913145 m001 GAMMA(2/3)^(2^(1/3))-HardyLittlewoodC3 8299657538558746 a007 Real Root Of -80*x^4-748*x^3-592*x^2+842*x-272 8299657542418147 m006 (1/2*exp(2*Pi)-3/4)/(3/5*exp(2*Pi)+2/5) 8299657577592430 a001 6765/1149851*322^(11/24) 8299657607503967 r005 Im(z^2+c),c=-117/98+7/47*I,n=59 8299657608565847 a001 17711/3010349*322^(11/24) 8299657613084808 a001 11592/1970299*322^(11/24) 8299657613744115 a001 121393/20633239*322^(11/24) 8299657613840307 a001 317811/54018521*322^(11/24) 8299657613854341 a001 208010/35355581*322^(11/24) 8299657613856389 a001 2178309/370248451*322^(11/24) 8299657613856687 a001 5702887/969323029*322^(11/24) 8299657613856731 a001 196452/33391061*322^(11/24) 8299657613856737 a001 39088169/6643838879*322^(11/24) 8299657613856738 a001 102334155/17393796001*322^(11/24) 8299657613856738 a001 66978574/11384387281*322^(11/24) 8299657613856738 a001 701408733/119218851371*322^(11/24) 8299657613856738 a001 1836311903/312119004989*322^(11/24) 8299657613856738 a001 1201881744/204284540899*322^(11/24) 8299657613856738 a001 12586269025/2139295485799*322^(11/24) 8299657613856738 a001 32951280099/5600748293801*322^(11/24) 8299657613856738 a001 1135099622/192933544679*322^(11/24) 8299657613856738 a001 139583862445/23725150497407*322^(11/24) 8299657613856738 a001 53316291173/9062201101803*322^(11/24) 8299657613856738 a001 10182505537/1730726404001*322^(11/24) 8299657613856738 a001 7778742049/1322157322203*322^(11/24) 8299657613856738 a001 2971215073/505019158607*322^(11/24) 8299657613856738 a001 567451585/96450076809*322^(11/24) 8299657613856738 a001 433494437/73681302247*322^(11/24) 8299657613856738 a001 165580141/28143753123*322^(11/24) 8299657613856739 a001 31622993/5374978561*322^(11/24) 8299657613856741 a001 24157817/4106118243*322^(11/24) 8299657613856758 a001 9227465/1568397607*322^(11/24) 8299657613856872 a001 1762289/299537289*322^(11/24) 8299657613857654 a001 1346269/228826127*322^(11/24) 8299657613863015 a001 514229/87403803*322^(11/24) 8299657613899757 a001 98209/16692641*322^(11/24) 8299657614151590 a001 75025/12752043*322^(11/24) 8299657615877679 a001 28657/4870847*322^(11/24) 8299657622249584 a007 Real Root Of 417*x^4-625*x^3+113*x^2-306*x-887 8299657627708472 a001 5473/930249*322^(11/24) 8299657633657170 r005 Re(z^2+c),c=3/74+8/19*I,n=30 8299657649701615 r009 Re(z^3+c),c=-11/78+33/56*I,n=51 8299657651645154 a003 sin(Pi*7/93)+sin(Pi*13/64) 8299657665262475 m001 GaussAGM^(GAMMA(13/24)/BesselI(1,2)) 8299657676185663 a007 Real Root Of 46*x^4-363*x^3+466*x^2-976*x+78 8299657699011743 m001 (3^(1/3))/(GAMMA(3/4)^exp(1)) 8299657699011743 m001 3^(1/3)/(GAMMA(3/4)^exp(1)) 8299657699503109 l006 ln(3151/7226) 8299657708797930 a001 4181/710647*322^(11/24) 8299657720034752 m001 (GAMMA(3/4)-Artin)/(MertensB2-ZetaQ(3)) 8299657735053995 r002 50th iterates of z^2 + 8299657735254858 m001 (Ei(1)+Zeta(1/2))/(FeigenbaumC+Magata) 8299657747775688 a003 cos(Pi*11/103)*sin(Pi*27/79) 8299657756676113 a001 233/103682*843^(15/28) 8299657762370417 a007 Real Root Of 469*x^4-373*x^3+340*x^2+594*x-177 8299657819608810 r005 Im(z^2+c),c=-7/8+7/115*I,n=9 8299657822732008 r005 Im(z^2+c),c=7/23+32/63*I,n=14 8299657841184698 a007 Real Root Of -66*x^4-471*x^3+731*x^2+766*x-102 8299657867583591 r005 Im(z^2+c),c=-27/38+1/10*I,n=16 8299657877947483 a007 Real Root Of 794*x^4-764*x^3+863*x^2+588*x-920 8299657881014894 a007 Real Root Of 101*x^4+793*x^3-320*x^2+554*x+762 8299657898659785 m001 1/FeigenbaumB/Champernowne^2/ln(Sierpinski) 8299657961366287 m001 exp(Zeta(1,2))/LambertW(1)*Zeta(3) 8299657981072180 m001 (Bloch-Psi(2,1/3))/(-Sarnak+ZetaQ(2)) 8299657985002036 h001 (8/11*exp(1)+1/10)/(3/10*exp(2)+2/7) 8299657997125915 a007 Real Root Of 628*x^4-866*x^3-228*x^2-101*x+438 8299658007258783 a007 Real Root Of -732*x^4+770*x^3-917*x^2-922*x+654 8299658013935993 m001 (Psi(1,1/3)+Sarnak)/Conway 8299658032225126 a007 Real Root Of 721*x^4-490*x^3-63*x^2-58*x-627 8299658032409407 l006 ln(4157/9533) 8299658032409407 p004 log(9533/4157) 8299658033743788 r005 Re(z^2+c),c=25/126+7/24*I,n=31 8299658066521603 q001 267/3217 8299658081313507 a001 29/76*(1/2*5^(1/2)+1/2)*76^(3/5) 8299658082374825 m001 (sin(1/12*Pi)+GAMMA(5/6))/(ln(5)-3^(1/3)) 8299658085601218 m005 (1/2*Zeta(3)+5/11)/(1/10*exp(1)+1) 8299658108148826 p001 sum(1/(473*n+252)/n/(2^n),n=1..infinity) 8299658108515802 k002 Champernowne real with 34*n^2+189*n-215 8299658113828761 a007 Real Root Of -795*x^4-780*x^3-832*x^2-868*x-216 8299658119763928 m001 ArtinRank2^2*ln(Artin)*log(2+sqrt(3))^2 8299658143000425 a007 Real Root Of -416*x^4+376*x^3+831*x^2-590 8299658147584860 a007 Real Root Of -349*x^4-633*x^3-849*x^2+109*x+479 8299658150990033 m001 1/GAMMA(13/24)^2*ln(BesselK(1,1))*GAMMA(5/24) 8299658152326117 p001 sum((-1)^n/(194*n+35)/n/(5^n),n=1..infinity) 8299658163858685 m005 (1/2*Pi-3/7)/(8/11*5^(1/2)-1/4) 8299658205648909 a007 Real Root Of -813*x^4+522*x^3-128*x^2+14*x+784 8299658217264439 a007 Real Root Of 446*x^4-578*x^3-974*x^2+352*x+421 8299658240251926 m001 GAMMA(2/3)*BesselJ(1,1)^Gompertz 8299658264593345 a001 1597/271443*322^(11/24) 8299658265263755 s002 sum(A173702[n]/(n^2*exp(n)-1),n=1..infinity) 8299658275791054 a007 Real Root Of -552*x^4-273*x^3-938*x^2+94*x+830 8299658321423074 s002 sum(A036281[n]/(exp(n)),n=1..infinity) 8299658348004600 a007 Real Root Of 8*x^4+660*x^3-332*x^2-181*x+698 8299658363663568 a001 199/317811*89^(19/33) 8299658366641275 a007 Real Root Of 729*x^4-555*x^3+295*x^2+715*x-273 8299658371078092 r009 Im(z^3+c),c=-1/26+50/59*I,n=39 8299658457578892 a007 Real Root Of -388*x^4+677*x^3+117*x^2-38*x-252 8299658467601159 a008 Real Root of (-5+5*x+5*x^2-5*x^3+6*x^4) 8299658485306597 a003 sin(Pi*13/88)/cos(Pi*29/91) 8299658522506171 r009 Im(z^3+c),c=-1/26+50/59*I,n=41 8299658566082452 p001 sum(1/(327*n+121)/(64^n),n=0..infinity) 8299658580579225 r002 13th iterates of z^2 + 8299658591957970 a001 233/167761*843^(17/28) 8299658628271768 m001 ln(Rabbit)*CopelandErdos^2*TwinPrimes^2 8299658650372347 r009 Re(z^3+c),c=-11/78+33/56*I,n=53 8299658658809890 m001 Landau^HardyLittlewoodC4/(Landau^gamma(3)) 8299658672993380 a007 Real Root Of 688*x^4-431*x^3-187*x^2-165*x-581 8299658688807235 a007 Real Root Of -31*x^4+829*x^3-858*x^2+460*x-250 8299658700622616 r005 Im(z^2+c),c=61/126+11/48*I,n=3 8299658730808149 a007 Real Root Of 297*x^4-998*x^3-421*x^2+644*x+113 8299658734266316 a007 Real Root Of -35*x^4+862*x^3-487*x^2+117*x+942 8299658743263514 a007 Real Root Of 87*x^4+27*x^3+288*x^2-366*x-528 8299658746310010 m004 (-25*Pi)/6+Cos[Sqrt[5]*Pi]+6*Sin[Sqrt[5]*Pi] 8299658781281412 r005 Re(z^2+c),c=-37/78+35/57*I,n=3 8299658805111831 r009 Im(z^3+c),c=-1/26+50/59*I,n=43 8299658808048832 p004 log(37217/16229) 8299658819338559 m001 1/exp(GaussKuzminWirsing)*Conway^2*Robbin 8299658819547184 a003 sin(Pi*27/100)/sin(Pi*37/103) 8299658821920269 r009 Im(z^3+c),c=-1/26+50/59*I,n=37 8299658835634278 a007 Real Root Of -36*x^4-215*x^3+712*x^2+213*x+625 8299658848043094 a007 Real Root Of 787*x^4-112*x^3+341*x^2+486*x-269 8299658850224050 m001 (FeigenbaumB+Sarnak)/(Chi(1)+Zeta(5)) 8299658878866538 l006 ln(2/8045) 8299658879157269 a007 Real Root Of 794*x^4+352*x^3+655*x^2+137*x-513 8299658882183154 q001 3163/3811 8299658884601447 m001 Niven^2/KhintchineLevy*ln(Zeta(3))^2 8299658889404058 m001 GaussAGM-Trott^KhinchinLevy 8299658940841300 m001 (ln(3)+MasserGramain)/(Tetranacci+ZetaP(3)) 8299658988772223 a007 Real Root Of -260*x^4+470*x^3-512*x^2-119*x+646 8299659003683685 a007 Real Root Of 183*x^4-759*x^3-593*x^2-74*x+817 8299659011598055 a007 Real Root Of 127*x^4+936*x^3-923*x^2+533*x+509 8299659041526738 r009 Im(z^3+c),c=-1/26+50/59*I,n=45 8299659054044342 b008 Csch[1]^(2*EulerGamma) 8299659069782918 m001 Lehmer-Riemann3rdZero^exp(1/Pi) 8299659075140691 l006 ln(1006/2307) 8299659076017722 a007 Real Root Of 521*x^4-745*x^3-176*x^2-529*x+739 8299659088542025 r009 Re(z^3+c),c=-11/78+33/56*I,n=58 8299659108815862 k002 Champernowne real with 69/2*n^2+375/2*n-214 8299659115146399 m001 (BesselI(0,2)+Salem)/(ln(gamma)+cos(1/12*Pi)) 8299659118565818 m001 (BesselK(0,1)+KomornikLoreti)/(1-BesselI(0,1)) 8299659128735538 m001 (ArtinRank2+Backhouse)/(cos(1/5*Pi)+ln(gamma)) 8299659136242929 r009 Re(z^3+c),c=-11/78+33/56*I,n=60 8299659142526288 r009 Re(z^3+c),c=-11/78+33/56*I,n=56 8299659168984934 m001 1/ln(cos(Pi/5))^2*Porter^2*sqrt(3) 8299659190549250 r009 Re(z^3+c),c=-11/78+33/56*I,n=62 8299659192097807 r009 Re(z^3+c),c=-11/78+33/56*I,n=55 8299659192465445 r005 Im(z^2+c),c=-11/10+47/244*I,n=6 8299659193596832 r009 Im(z^3+c),c=-1/26+50/59*I,n=47 8299659221928094 r009 Re(z^3+c),c=-11/78+33/56*I,n=64 8299659224277684 a001 1/18*3^(19/52) 8299659229917965 m001 1/Khintchine*ln(OneNinth) 8299659231624462 m004 6+4*Cos[Sqrt[5]*Pi]-Log[Sqrt[5]*Pi]/3 8299659232302232 a007 Real Root Of 571*x^4-676*x^3+380*x^2+193*x-759 8299659242915707 r009 Re(z^3+c),c=-11/78+33/56*I,n=63 8299659264132396 a007 Real Root Of -120*x^4-895*x^3+865*x^2+120*x-869 8299659264220422 a007 Real Root Of -791*x^4+934*x^3+893*x^2-887*x-442 8299659268677965 m001 (HeathBrownMoroz+OrthogonalArrays)/(1+ln(2)) 8299659275400017 r009 Im(z^3+c),c=-1/26+50/59*I,n=49 8299659276590993 a001 377/167761*322^(5/8) 8299659286729588 r009 Re(z^3+c),c=-11/78+33/56*I,n=61 8299659307683233 m001 HardyLittlewoodC3/BesselI(1,1)/GAMMA(2/3) 8299659310124436 a008 Real Root of (-1+x^2+x^5+x^6-x^7+x^12) 8299659312107502 r009 Im(z^3+c),c=-1/26+50/59*I,n=51 8299659318731410 r009 Im(z^3+c),c=-1/26+50/59*I,n=63 8299659319872011 r009 Im(z^3+c),c=-1/26+50/59*I,n=61 8299659320008822 m001 (Khinchin+Sarnak)/(Pi+cos(1/12*Pi)) 8299659321754244 r009 Im(z^3+c),c=-1/26+50/59*I,n=59 8299659324243441 r009 Im(z^3+c),c=-1/26+50/59*I,n=57 8299659324603269 r009 Im(z^3+c),c=-1/26+50/59*I,n=53 8299659326259946 r009 Im(z^3+c),c=-1/26+50/59*I,n=55 8299659343399140 r009 Re(z^3+c),c=-11/78+33/56*I,n=46 8299659344724256 r009 Re(z^3+c),c=-11/78+33/56*I,n=59 8299659358723465 r009 Re(z^3+c),c=-11/78+33/56*I,n=57 8299659362134429 m001 Grothendieck^(GAMMA(23/24)*FeigenbaumMu) 8299659367625304 a001 2/514229*7778742049^(16/19) 8299659373350064 a007 Real Root Of -602*x^4-285*x^3-893*x^2+5*x+742 8299659373660763 a007 Real Root Of -717*x^4+729*x^3+69*x^2+338*x+990 8299659374358614 a007 Real Root Of -202*x^4+447*x^3+705*x^2+349*x-935 8299659392512082 m009 (5/6*Psi(1,2/3)+1)/(2/5*Pi^2+1/3) 8299659425765400 a001 233/271443*843^(19/28) 8299659425967969 m001 1/GAMMA(3/4)/ln(Robbin)/cosh(1)^2 8299659431240779 a005 (1/cos(5/197*Pi))^665 8299659451366390 h001 (1/4*exp(1)+5/11)/(1/9*exp(2)+6/11) 8299659452350923 a007 Real Root Of 441*x^4-418*x^3+97*x^2-65*x-569 8299659459055929 r005 Re(z^2+c),c=-29/34+1/69*I,n=5 8299659472793832 r009 Re(z^3+c),c=-11/78+33/56*I,n=54 8299659478912997 r005 Im(z^2+c),c=-9/8+23/225*I,n=21 8299659482097999 r009 Im(z^3+c),c=-3/14+43/59*I,n=24 8299659482764520 r002 5th iterates of z^2 + 8299659494462486 a007 Real Root Of -29*x^4+855*x^3+33*x^2-689*x-92 8299659518333931 a007 Real Root Of -794*x^4+26*x^3-795*x^2-222*x+755 8299659541213490 m001 GAMMA(19/24)^Conway/(GAMMA(2/3)^Conway) 8299659542341526 m005 (1/2*exp(1)-9/10)/(18/77+1/7*5^(1/2)) 8299659608502641 r005 Re(z^2+c),c=9/82+18/35*I,n=38 8299659635388505 m001 1/GAMMA(1/3)^2*ln(Artin)/GAMMA(17/24)^2 8299659637706373 r005 Im(z^2+c),c=-5/24+35/43*I,n=58 8299659703110189 r002 24th iterates of z^2 + 8299659723759719 m001 Stephens/(GAMMA(2/3)-TwinPrimes) 8299659728838432 a007 Real Root Of -362*x^4-256*x^3-403*x^2+747*x+923 8299659743582946 r009 Im(z^3+c),c=-49/82+18/59*I,n=19 8299659809450968 p004 log(13537/5903) 8299659828034993 m001 (-Cahen+ReciprocalFibonacci)/(5^(1/2)+Zeta(5)) 8299659828522118 b008 2/3+Sqrt[2/3]/5 8299659832617770 r009 Im(z^3+c),c=-5/74+31/37*I,n=21 8299659837332751 r002 34th iterates of z^2 + 8299659851754585 m001 (CareFree-QuadraticClass)^OneNinth 8299659865179750 h001 (1/9*exp(2)+7/8)/(2/11*exp(2)+7/10) 8299659883455792 g006 Psi(1,2/11)+Psi(1,1/7)+Psi(1,3/5)-Psi(1,3/4) 8299659904043602 p001 sum((-1)^n/(241*n+132)/n/(32^n),n=1..infinity) 8299659909023487 r005 Im(z^2+c),c=-29/50+5/34*I,n=26 8299659929452722 m001 MertensB2^TravellingSalesman/Champernowne 8299659932346380 r005 Re(z^2+c),c=-6/7+3/109*I,n=31 8299659936974195 r005 Re(z^2+c),c=-31/46+17/53*I,n=17 8299659944418387 a007 Real Root Of -106*x^4+971*x^3-756*x^2-287*x+888 8299659954935726 a007 Real Root Of -69*x^4-469*x^3+824*x^2-290*x+106 8299659964342918 m002 -Pi^2+Pi^6/Log[Pi]-Log[Pi]/Pi^5 8299659973822064 a007 Real Root Of 455*x^4+843*x^3+728*x^2-26*x-257 8299659974647433 a007 Real Root Of -425*x^4+349*x^3-171*x^2-994*x-306 8299660001933381 r009 Im(z^3+c),c=-7/19+27/41*I,n=44 8299660010505908 r005 Re(z^2+c),c=5/46+8/23*I,n=37 8299660038382498 a007 Real Root Of -583*x^4+163*x^3-976*x^2-652*x+501 8299660047808744 a007 Real Root Of 621*x^4-391*x^3-343*x^2+712*x+309 8299660057874405 a007 Real Root Of -876*x^4-386*x^3-471*x^2+970*x-77 8299660074550905 a001 76*(1/2*5^(1/2)+1/2)^7*18^(11/24) 8299660088803466 m001 Catalan/Si(Pi)*exp(sin(Pi/12))^2 8299660092172147 m002 -1-Pi^2+Pi^6/Log[Pi]+Tanh[Pi] 8299660106053226 m005 (1/2*Catalan-5/11)/(7/8*gamma-1/11) 8299660109115922 k002 Champernowne real with 35*n^2+186*n-213 8299660127337556 r002 19th iterates of z^2 + 8299660128886204 a003 sin(Pi*3/46)+sin(Pi*25/116) 8299660132401391 a007 Real Root Of 770*x^4+680*x^3+893*x^2-269*x-815 8299660148510806 r009 Im(z^3+c),c=-21/31+11/20*I,n=4 8299660165513097 m009 (2/5*Psi(1,1/3)+5/6)/(Pi^2-4) 8299660189155978 l006 ln(3891/8923) 8299660217897492 m001 (Ei(1,1)+BesselI(1,2))/(Niven+PlouffeB) 8299660225120714 m005 (23/20+1/4*5^(1/2))/(1/2*exp(1)+7/10) 8299660253518521 r009 Re(z^3+c),c=-11/78+33/56*I,n=52 8299660260136127 a001 233/439204*843^(3/4) 8299660312109792 r005 Re(z^2+c),c=-83/98+27/52*I,n=4 8299660316747288 m001 (2^(1/2)-FeigenbaumB)/(-Rabbit+ZetaQ(3)) 8299660355893575 a007 Real Root Of -220*x^4+414*x^3+532*x^2+128*x-605 8299660364572399 m001 GolombDickman/MasserGramain*Thue 8299660405905271 r002 31th iterates of z^2 + 8299660409353543 r005 Re(z^2+c),c=13/40+1/29*I,n=21 8299660503535378 m001 Sarnak/(Riemann2ndZero^Porter) 8299660513018991 m001 1/ln(OneNinth)^2/Artin^2/log(2+sqrt(3))^2 8299660514210688 m001 exp(GAMMA(13/24))^2*(3^(1/3))^2*GAMMA(3/4)^2 8299660552998053 a007 Real Root Of 428*x^4-139*x^3-126*x^2-375*x-507 8299660577613273 l006 ln(2885/6616) 8299660598063699 r005 Re(z^2+c),c=-13/12+7/74*I,n=22 8299660622461130 m001 (ErdosBorwein+Thue)/(3^(1/3)+GAMMA(7/12)) 8299660625524633 m001 Niven^2/exp(CareFree)/sqrt(3) 8299660637028405 b008 E^(13/4)/5+Pi 8299660664937306 m001 (-FeigenbaumB+Niven)/(Psi(1,1/3)+BesselK(0,1)) 8299660710170340 a007 Real Root Of 785*x^4-512*x^3-284*x^2-405*x+452 8299660733178436 a007 Real Root Of 832*x^4-681*x^3+629*x^2+868*x-497 8299660738917397 m001 (TwinPrimes+exp(-1/2*Pi))^ln(2+sqrt(3)) 8299660738917397 m001 (exp(-1/2*Pi)+TwinPrimes)^ln(2+3^(1/2)) 8299660741614104 m001 (gamma+Backhouse)/(CareFree+KhinchinHarmonic) 8299660762477732 r009 Im(z^3+c),c=-8/25+19/28*I,n=24 8299660765752075 a007 Real Root Of -749*x^4+489*x^3-498*x^2-341*x+695 8299660768014215 a003 sin(Pi*6/65)+sin(Pi*13/71) 8299660796834413 a007 Real Root Of 323*x^4-959*x^3+751*x^2+783*x-569 8299660810006930 a007 Real Root Of 498*x^4-800*x^3-366*x^2+279*x-210 8299660810427089 m001 (Robbin+ThueMorse)/(KhinchinLevy+OneNinth) 8299660854365045 a001 54018521/2*2178309^(1/13) 8299660854365056 a001 20633239/2*591286729879^(1/13) 8299660854365083 a001 16692641*1134903170^(1/13) 8299660861669512 a001 87403803/2*4181^(1/13) 8299660866874213 r009 Im(z^3+c),c=-1/26+50/59*I,n=35 8299660874917651 m001 1/exp(MertensB1)/ErdosBorwein*sqrt(3) 8299660882928389 m001 (Robbin-ThueMorse)/(ErdosBorwein-Mills) 8299660896502512 m001 (ln(2^(1/2)+1)+3^(1/3))/(MertensB3+Porter) 8299660898130266 s002 sum(A036281[n]/(exp(n)-1),n=1..infinity) 8299660915925443 r005 Im(z^2+c),c=-23/38+7/46*I,n=37 8299660923775685 r005 Im(z^2+c),c=19/48+11/35*I,n=58 8299660929560182 b008 8+FresnelS[6/7] 8299660932686937 m005 (1/2*2^(1/2)-3/4)/(1/5*Catalan-7/10) 8299660954242894 a003 cos(Pi*12/67)-cos(Pi*49/99) 8299660973511567 r005 Re(z^2+c),c=-23/28+6/43*I,n=21 8299660990487520 a007 Real Root Of -998*x^4+686*x^3+451*x^2+471*x+946 8299660992789761 a007 Real Root Of 519*x^4-785*x^3-470*x^2+304*x-119 8299661001520983 a001 1860498/377*2^(3/4) 8299661011050858 m001 (2^(1/2)-ln(2))/(-gamma(2)+Thue) 8299661079046822 a007 Real Root Of 366*x^4-322*x^3-187*x^2-813*x+814 8299661092432882 a007 Real Root Of -277*x^4+828*x^3-901*x^2-356*x+930 8299661094291810 a001 233/710647*843^(23/28) 8299661096971338 a003 sin(Pi*15/98)-sin(Pi*9/49) 8299661103124013 k001 Champernowne real with 137*n+692 8299661109415982 k002 Champernowne real with 71/2*n^2+369/2*n-212 8299661133474702 a007 Real Root Of -731*x^4+558*x^3-971*x^2-619*x+821 8299661157435591 a001 75025/18*29^(9/44) 8299661172338073 r002 48th iterates of z^2 + 8299661204611692 m005 (1/2*3^(1/2)-2/5)/(8/7+2*5^(1/2)) 8299661209992475 m001 1/GAMMA(17/24)*exp(Porter)^2*LambertW(1) 8299661218293693 a007 Real Root Of 217*x^4+298*x^3+785*x^2-249*x-680 8299661233054820 r002 42th iterates of z^2 + 8299661239745701 a007 Real Root Of 712*x^4-673*x^3+470*x^2+880*x-316 8299661256886334 r005 Re(z^2+c),c=-29/34+3/59*I,n=47 8299661258332907 a001 233/5778*322^(1/8) 8299661263836211 r002 8th iterates of z^2 + 8299661290398088 r005 Re(z^2+c),c=-29/34+3/59*I,n=49 8299661338919146 m005 (1/3*Pi+1/11)/(2/3*Zeta(3)-4/5) 8299661347015150 a007 Real Root Of 545*x^4-789*x^3+201*x^2+946*x-63 8299661348744653 r008 a(0)=1,K{-n^6,-69+79*n^3-8*n^2+4*n} 8299661361620731 m001 gamma(3)*(Backhouse+Sierpinski) 8299661372533430 r009 Re(z^3+c),c=-11/78+33/56*I,n=50 8299661382023726 l006 ln(1879/4309) 8299661384009825 m001 (GAMMA(7/12)+Kac)/(Sierpinski+Trott) 8299661394135649 m001 GAMMA(7/12)-sin(1/12*Pi)-TreeGrowth2nd 8299661400045858 m001 Ei(1)/((2/3*Pi*3^(1/2)/GAMMA(2/3))^Chi(1)) 8299661403047423 a007 Real Root Of -804*x^4+747*x^3+755*x^2-644*x-246 8299661409639943 s001 sum(exp(-2*Pi/5)^n*A247613[n],n=1..infinity) 8299661409639943 s002 sum(A247613[n]/(exp(2/5*pi*n)),n=1..infinity) 8299661434287473 r002 2th iterates of z^2 + 8299661439458559 a007 Real Root Of 60*x^4-295*x^3+823*x^2+729*x-159 8299661448668027 r005 Im(z^2+c),c=-25/102+47/58*I,n=17 8299661475361662 m005 (1/2*gamma-7/12)/(7/9*gamma-4) 8299661503839330 r005 Im(z^2+c),c=-3/44+30/31*I,n=6 8299661534815383 m005 (1/2*exp(1)+2/9)/(6/7*Zeta(3)+7/8) 8299661539429456 a007 Real Root Of -27*x^4+937*x^3-241*x^2+56*x+761 8299661566082725 a007 Real Root Of 951*x^4-957*x^3-598*x^2-285*x-823 8299661590649291 m001 1/ln(log(2+sqrt(3)))*Khintchine/sinh(1) 8299661594267431 a007 Real Root Of 978*x^4-593*x^3-782*x^2+915*x+495 8299661623651780 a007 Real Root Of -997*x^4+295*x^3-399*x^2-73*x+856 8299661642742834 m001 (Sarnak+Trott2nd)/(Cahen+MertensB1) 8299661651143360 a007 Real Root Of 996*x^4+474*x^3+314*x^2-617*x-930 8299661655797092 m001 (1+Paris)/(Pi+Psi(1,1/3)) 8299661702535023 r005 Re(z^2+c),c=7/40+22/51*I,n=18 8299661721534921 r005 Im(z^2+c),c=27/110+21/38*I,n=22 8299661738834721 m001 ln(FeigenbaumKappa)^2/MertensB1*GAMMA(1/24) 8299661780021064 r005 Re(z^2+c),c=-29/34+3/59*I,n=51 8299661781619142 m001 exp(ArtinRank2)/ErdosBorwein^2/Zeta(1,2) 8299661807182322 a007 Real Root Of 835*x^4-364*x^3-967*x^2-160*x-71 8299661866213423 a007 Real Root Of -662*x^4+897*x^3-576*x^2-378*x+910 8299661874368765 a007 Real Root Of 958*x^4-618*x^3+102*x^2+299*x-630 8299661874505018 r009 Re(z^3+c),c=-11/78+33/56*I,n=48 8299661889773530 m001 (-Kac+Sierpinski)/(Catalan+exp(1/exp(1))) 8299661900509246 a008 Real Root of (1+14*x-15*x^2-4*x^3) 8299661928529748 a001 233/1149851*843^(25/28) 8299661930767278 m001 (Robbin+Thue)/(GAMMA(7/12)+GaussKuzminWirsing) 8299661950152344 a007 Real Root Of 345*x^4-918*x^3+177*x^2+703*x-227 8299661966298567 a007 Real Root Of 854*x^4-921*x^3+34*x^2+881*x-224 8299662032090637 a007 Real Root Of -220*x^4+330*x^3+741*x^2+433*x+142 8299662074071793 a001 305/51841*322^(11/24) 8299662074552088 m001 MertensB1^Paris/GAMMA(11/12) 8299662080832449 a007 Real Root Of -670*x^4+970*x^3+582*x^2+221*x+655 8299662091970691 m001 (-CopelandErdos+OneNinth)/(5^(1/2)-ln(2)) 8299662101672495 a005 (1/cos(10/143*Pi))^1412 8299662109716042 k002 Champernowne real with 36*n^2+183*n-211 8299662165917869 r002 56th iterates of z^2 + 8299662165917869 r002 56th iterates of z^2 + 8299662176676339 r001 29i'th iterates of 2*x^2-1 of 8299662190590879 g004 abs(GAMMA(-277/60+I*(-73/30))) 8299662198581297 m005 (1/3*exp(1)+2/11)/(-13/48+1/16*5^(1/2)) 8299662213244333 a007 Real Root Of 905*x^4+8*x^3+696*x^2+310*x-647 8299662223059765 m001 1/log(1+sqrt(2))^2*GAMMA(19/24)*ln(sqrt(3)) 8299662225310052 l006 ln(2752/6311) 8299662247971532 a003 cos(Pi*34/97)+cos(Pi*26/69) 8299662255415929 r009 Re(z^3+c),c=-25/42+28/61*I,n=14 8299662271708320 a007 Real Root Of 443*x^4-680*x^3+159*x^2-297*x-955 8299662286797799 m002 -Pi^2+Pi^6/Log[Pi]-ProductLog[Pi]/Pi^5 8299662294583079 m001 1/Zeta(1/2)^2*exp(Trott)^2*sqrt(3) 8299662297675871 a007 Real Root Of 478*x^4-974*x^3+548*x^2-362*x+253 8299662299283442 a007 Real Root Of 392*x^4-432*x^3+473*x^2+848*x-55 8299662314893829 r009 Re(z^3+c),c=-7/106+32/47*I,n=12 8299662318526316 m001 (Artin-FeigenbaumB)/(PlouffeB+ZetaP(4)) 8299662343067961 r005 Re(z^2+c),c=-29/34+3/59*I,n=53 8299662348681474 m001 1/exp(cosh(1))^2/GAMMA(2/3)^2*gamma^2 8299662352554633 h001 (3/8*exp(1)+6/7)/(3/4*exp(1)+2/9) 8299662357214914 r005 Re(z^2+c),c=-12/13+1/42*I,n=22 8299662392827976 a007 Real Root Of 55*x^4-648*x^3+506*x^2-293*x+239 8299662394994882 a003 cos(Pi*13/72)-cos(Pi*58/117) 8299662419017406 r005 Re(z^2+c),c=-29/34+3/59*I,n=45 8299662446463850 a007 Real Root Of -546*x^4+706*x^3-246*x^2-940*x+52 8299662490859339 m001 (Shi(1)-arctan(1/3))/(FeigenbaumB+ZetaQ(2)) 8299662518960707 a007 Real Root Of 422*x^4-605*x^3-720*x^2-959*x-75 8299662529423964 a007 Real Root Of -923*x^4-339*x^3+451*x^2+838*x+629 8299662546088385 b008 8+Sech[15/8] 8299662558734522 m003 -1+(3*Sqrt[5])/8+5*E^(-1/2-Sqrt[5]/2) 8299662580531603 a001 329/90481*322^(13/24) 8299662624340714 a005 (1/cos(7/82*Pi))^1260 8299662662423129 l006 ln(3625/8313) 8299662665481682 r009 Re(z^3+c),c=-11/78+33/56*I,n=45 8299662682898419 m005 (1/2*Zeta(3)+1/6)/(1/2*gamma+7/11) 8299662694024919 m001 Salem^2/exp(FeigenbaumC)^2*GAMMA(7/12)^2 8299662731218223 a001 711491/13*2504730781961^(2/21) 8299662731218239 a001 54018521/377*102334155^(2/21) 8299662740261831 a001 141422324/377*4181^(2/21) 8299662747982347 a007 Real Root Of 779*x^4-133*x^3-116*x^2-81*x-433 8299662753518004 r009 Im(z^3+c),c=-3/56+43/51*I,n=23 8299662762736383 a001 233/1860498*843^(27/28) 8299662782604485 r005 Im(z^2+c),c=13/94+37/56*I,n=17 8299662783129623 a007 Real Root Of 722*x^4-663*x^3-648*x^2-31*x-301 8299662815802859 r005 Re(z^2+c),c=-29/34+3/59*I,n=55 8299662831312749 r005 Re(z^2+c),c=-11/62+18/25*I,n=21 8299662839681534 a007 Real Root Of -546*x^4+271*x^3-419*x^2-849*x-2 8299662839826442 m001 (Cahen-FibonacciFactorial)/(ln(2)-gamma(2)) 8299662854207712 r005 Im(z^2+c),c=-139/126+7/26*I,n=5 8299662882613647 a007 Real Root Of -839*x^4+524*x^3+722*x^2-145*x+80 8299662885472914 r005 Re(z^2+c),c=-27/122+42/59*I,n=35 8299662909931553 m001 (FibonacciFactorial-PlouffeB)/(ln(5)-CareFree) 8299662940443031 m001 GaussAGM*Grothendieck^gamma(2) 8299662954172230 m005 (1/3*exp(1)+1/9)/(7/12*gamma+8/9) 8299663019672592 r005 Im(z^2+c),c=-28/31+11/38*I,n=10 8299663022490067 r009 Im(z^3+c),c=-7/60+25/26*I,n=16 8299663056640733 a007 Real Root Of -128*x^4-93*x^3-993*x^2+274*x+919 8299663058633542 m001 ReciprocalFibonacci*Riemann1stZero*ZetaP(3) 8299663092860815 r009 Re(z^3+c),c=-7/48+19/27*I,n=36 8299663096634411 r005 Im(z^2+c),c=-20/27+3/43*I,n=3 8299663110016102 k002 Champernowne real with 73/2*n^2+363/2*n-210 8299663110574355 m001 GAMMA(2/3)/Porter^2/ln(log(2+sqrt(3)))^2 8299663153844134 r005 Re(z^2+c),c=-29/34+3/59*I,n=57 8299663163389372 m001 sin(1)/(((1+3^(1/2))^(1/2))^Trott2nd) 8299663218513518 a007 Real Root Of -291*x^4+622*x^3-781*x^2-690*x+459 8299663235444189 h001 (4/5*exp(2)+1/8)/(10/11*exp(2)+5/9) 8299663260801695 m001 (BesselI(1,1)-exp(Pi))/(-CopelandErdos+Otter) 8299663261744501 m004 -2+80*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 8299663269669746 m005 (1/2*exp(1)+7/10)/(10/11*Pi-3/8) 8299663288598185 r005 Re(z^2+c),c=-15/14+36/227*I,n=34 8299663299663299 q001 493/594 8299663299663299 r002 2th iterates of z^2 + 8299663299663299 r002 2th iterates of z^2 + 8299663299663299 r005 Im(z^2+c),c=-51/44+17/27*I,n=2 8299663325680639 m001 (OneNinth-TreeGrowth2nd)/(Gompertz+Magata) 8299663337460344 r002 7th iterates of z^2 + 8299663364550538 a007 Real Root Of 292*x^4-903*x^3+184*x^2+179*x-633 8299663367696575 m005 (1/2*5^(1/2)-3/7)/(3/7*gamma+7/12) 8299663368407869 r005 Re(z^2+c),c=-29/34+3/59*I,n=59 8299663385177529 m004 -15-25*Pi+25*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 8299663385907415 a007 Real Root Of 894*x^4+41*x^3-140*x^2+892*x+436 8299663386546116 r008 a(0)=9,K{-n^6,8-6*n^3-9*n^2+6*n} 8299663387128202 a003 sin(Pi*21/80)/sin(Pi*28/81) 8299663392127136 r009 Im(z^3+c),c=-10/29+33/49*I,n=24 8299663396928834 r005 Im(z^2+c),c=-79/78+5/58*I,n=15 8299663405071081 m005 (1/3*gamma-3/4)/(1/10*exp(1)+2/5) 8299663420514420 a003 cos(Pi*1/39)*cos(Pi*17/91) 8299663448329598 a007 Real Root Of -250*x^4+793*x^3+733*x^2+765*x+702 8299663451564476 a007 Real Root Of -974*x^4+800*x^3+603*x^2+595*x+998 8299663489882574 r005 Re(z^2+c),c=-29/34+3/59*I,n=61 8299663492612251 a007 Real Root Of 996*x^4-438*x^3-122*x^2+253*x-429 8299663495265058 m001 1/Ei(1)^2*exp(Riemann2ndZero)^2*GAMMA(13/24) 8299663504596549 a007 Real Root Of 148*x^4-918*x^3+716*x^2-514*x+388 8299663505294775 a007 Real Root Of -979*x^4+748*x^3+961*x^2+507*x+651 8299663522244917 a007 Real Root Of -622*x^4+927*x^3-287*x^2-795*x+363 8299663539207163 a001 18*17711^(5/32) 8299663549674516 r005 Re(z^2+c),c=-29/34+3/59*I,n=63 8299663551618867 r005 Re(z^2+c),c=-3/110+16/59*I,n=3 8299663579211773 r002 10th iterates of z^2 + 8299663590696186 r005 Im(z^2+c),c=-29/34+5/91*I,n=28 8299663621637217 m001 TravellingSalesman^(Bloch*Salem) 8299663624237428 r002 5th iterates of z^2 + 8299663655835961 m005 (1/3*Pi+2/3)/(3*gamma+1/3) 8299663657804201 r005 Im(z^2+c),c=-19/31+7/45*I,n=46 8299663672520487 m001 (-Mills+Trott)/(ln(2)/ln(10)+2^(1/3)) 8299663682321513 r005 Re(z^2+c),c=4/21+11/39*I,n=29 8299663698259607 r002 4th iterates of z^2 + 8299663726879633 r002 29th iterates of z^2 + 8299663748898022 r005 Re(z^2+c),c=-101/118+2/55*I,n=21 8299663754823999 a001 4/377*233^(20/53) 8299663785551660 l006 ln(9599/9679) 8299663819868981 m001 ArtinRank2+Ei(1,1)^MertensB3 8299663855757441 r005 Im(z^2+c),c=-17/31+7/47*I,n=43 8299663868626000 a007 Real Root Of 420*x^4-870*x^3-715*x^2+199*x-39 8299663891672842 r005 Im(z^2+c),c=-9/40+39/56*I,n=10 8299663894154464 r002 10th iterates of z^2 + 8299663936744481 m005 (1/2*2^(1/2)+7/11)/(7/11*exp(1)-1/9) 8299663980596102 m002 Log[Pi]/(6*Pi)+Pi^6*Sech[Pi] 8299663994736689 r005 Re(z^2+c),c=-13/16+17/112*I,n=11 8299664003229536 a007 Real Root Of -801*x^4-354*x^3-837*x^2+125*x+858 8299664035972146 a001 2584/710647*322^(13/24) 8299664040355636 l006 ln(873/2002) 8299664078496039 a003 sin(Pi*2/51)-sin(Pi*43/107) 8299664110316162 k002 Champernowne real with 37*n^2+180*n-209 8299664125613333 m001 (exp(1/exp(1))-MertensB3)/(OneNinth+Trott2nd) 8299664152838058 r005 Im(z^2+c),c=-3/25+51/61*I,n=19 8299664169106418 m005 (1/2*3^(1/2)+1/4)/(5/11*Pi-1/12) 8299664248318059 a001 55/15126*322^(13/24) 8299664249324735 a003 cos(Pi*5/38)-sin(Pi*46/95) 8299664262563934 r005 Re(z^2+c),c=5/56+20/39*I,n=29 8299664270058055 m005 (1/2*Zeta(3)+3/10)/(7/10*Catalan+4/9) 8299664276800513 a001 18/2504730781961*2178309^(22/23) 8299664279298910 a001 17711/4870847*322^(13/24) 8299664283818956 a001 15456/4250681*322^(13/24) 8299664284478421 a001 121393/33385282*322^(13/24) 8299664284574636 a001 105937/29134601*322^(13/24) 8299664284588674 a001 832040/228826127*322^(13/24) 8299664284590722 a001 726103/199691526*322^(13/24) 8299664284591021 a001 5702887/1568397607*322^(13/24) 8299664284591064 a001 4976784/1368706081*322^(13/24) 8299664284591071 a001 39088169/10749957122*322^(13/24) 8299664284591071 a001 831985/228811001*322^(13/24) 8299664284591072 a001 267914296/73681302247*322^(13/24) 8299664284591072 a001 233802911/64300051206*322^(13/24) 8299664284591072 a001 1836311903/505019158607*322^(13/24) 8299664284591072 a001 1602508992/440719107401*322^(13/24) 8299664284591072 a001 12586269025/3461452808002*322^(13/24) 8299664284591072 a001 10983760033/3020733700601*322^(13/24) 8299664284591072 a001 86267571272/23725150497407*322^(13/24) 8299664284591072 a001 53316291173/14662949395604*322^(13/24) 8299664284591072 a001 20365011074/5600748293801*322^(13/24) 8299664284591072 a001 7778742049/2139295485799*322^(13/24) 8299664284591072 a001 2971215073/817138163596*322^(13/24) 8299664284591072 a001 1134903170/312119004989*322^(13/24) 8299664284591072 a001 433494437/119218851371*322^(13/24) 8299664284591072 a001 165580141/45537549124*322^(13/24) 8299664284591072 a001 63245986/17393796001*322^(13/24) 8299664284591074 a001 24157817/6643838879*322^(13/24) 8299664284591091 a001 9227465/2537720636*322^(13/24) 8299664284591205 a001 3524578/969323029*322^(13/24) 8299664284591988 a001 1346269/370248451*322^(13/24) 8299664284597349 a001 514229/141422324*322^(13/24) 8299664284634100 a001 196418/54018521*322^(13/24) 8299664284885994 a001 75025/20633239*322^(13/24) 8299664286612497 a001 28657/7881196*322^(13/24) 8299664287030186 r005 Re(z^2+c),c=-21/23+2/23*I,n=22 8299664298446129 a001 10946/3010349*322^(13/24) 8299664309677879 h001 (-5*exp(6)+4)/(-6*exp(6)-5) 8299664350174502 a007 Real Root Of -47*x^4+135*x^3-615*x^2-211*x+348 8299664360938713 p004 log(35731/15581) 8299664379555051 a001 4181/1149851*322^(13/24) 8299664384174817 a007 Real Root Of -625*x^4+623*x^3-176*x^2-500*x+359 8299664385172291 m001 Robbin^2*Rabbit/exp(TwinPrimes)^2 8299664392366899 m001 (arctan(1/2)+Pi^(1/2))/(Khinchin+ZetaQ(3)) 8299664426007465 a007 Real Root Of -225*x^4+874*x^3+481*x^2+330*x+549 8299664427402843 m001 TreeGrowth2nd/(Rabbit^Si(Pi)) 8299664427409542 m001 (FeigenbaumAlpha+Porter)/(GAMMA(11/12)-gamma) 8299664453108405 a007 Real Root Of 564*x^4-642*x^3+688*x^2+320*x-843 8299664480204047 r009 Re(z^3+c),c=-3/52+40/51*I,n=5 8299664488691366 a003 cos(Pi*5/77)*cos(Pi*13/73) 8299664496585042 r005 Re(z^2+c),c=5/38+11/56*I,n=16 8299664499356982 m004 -50/Pi+(125*Pi)/4+Cos[Sqrt[5]*Pi] 8299664523291426 p004 log(23719/10343) 8299664529028858 r009 Im(z^3+c),c=-55/94+7/23*I,n=39 8299664557743987 a007 Real Root Of 580*x^4-886*x^3-575*x^2+890*x+353 8299664566365630 m001 BesselI(1,1)*FeigenbaumC^HardyLittlewoodC3 8299664568036342 a007 Real Root Of -105*x^4-884*x^3-3*x^2+734*x-868 8299664581887023 r005 Im(z^2+c),c=9/34+1/43*I,n=6 8299664582832374 a007 Real Root Of -202*x^4+536*x^3+774*x^2+175*x-889 8299664604421092 m005 (1/2*gamma+2/7)/(7/8*2^(1/2)-6/11) 8299664625648499 m001 GAMMA(7/12)/(GAMMA(5/24)^ThueMorse) 8299664631901601 p003 LerchPhi(1/100,5,232/141) 8299664656293241 a007 Real Root Of 3*x^4-173*x^3+712*x^2-234*x-785 8299664677576360 a007 Real Root Of -994*x^4+388*x^3-763*x^2-770*x+580 8299664693773509 m002 -Pi^(-5)-Pi^2+Pi^6/Log[Pi] 8299664737795418 m001 (FeigenbaumMu-Mills)/(3^(1/3)+GAMMA(17/24)) 8299664786747266 s002 sum(A062133[n]/(2^n-1),n=1..infinity) 8299664807756817 m001 (1+gamma(3))/(-GAMMA(11/12)+Salem) 8299664815593246 m002 -Pi^2+Pi^6/Log[Pi]-Tanh[Pi]/Pi^5 8299664843510539 m001 1/exp(GAMMA(1/12))*Sierpinski^2*GAMMA(3/4) 8299664871434593 r009 Im(z^3+c),c=-9/94+14/17*I,n=63 8299664889901520 r005 Im(z^2+c),c=-17/27+13/35*I,n=55 8299664935483870 a001 1597/439204*322^(13/24) 8299664965602277 a007 Real Root Of 659*x^4-304*x^3+725*x^2+471*x-595 8299664981400077 a007 Real Root Of 324*x^4-410*x^3+122*x^2-401*x-805 8299664996442235 r005 Re(z^2+c),c=13/42+31/47*I,n=3 8299665055348033 m001 (Kolakoski-Riemann2ndZero)/(Pi-CareFree) 8299665068618341 m009 (1/12*Pi^2+1/5)/(5*Psi(1,2/3)-3) 8299665089479129 a007 Real Root Of 111*x^4+857*x^3-651*x^2-983*x-55 8299665106275447 b008 6/E^(1/4)+Sinh[2] 8299665110616222 k002 Champernowne real with 75/2*n^2+357/2*n-208 8299665155114890 a007 Real Root Of 711*x^4-733*x^3-860*x^2+682*x+402 8299665198146803 a003 sin(Pi*13/107)/cos(Pi*19/54) 8299665220649753 l006 ln(4232/9705) 8299665258655515 m009 (6*Psi(1,1/3)+1/6)/(24/5*Catalan+3/5*Pi^2-3) 8299665266432122 r002 20th iterates of z^2 + 8299665267449288 m001 GAMMA(5/6)^ln(Pi)/(GAMMA(5/6)^FeigenbaumD) 8299665271542104 r002 39th iterates of z^2 + 8299665274278657 m001 ln(3)^Paris-Tribonacci 8299665307565504 p003 LerchPhi(1/32,2,226/205) 8299665348816267 a007 Real Root Of -514*x^4+78*x^3-482*x^2+103*x+706 8299665351985546 r005 Re(z^2+c),c=-17/16+25/116*I,n=56 8299665352728465 m003 80+3*Sin[1/2+Sqrt[5]/2] 8299665392889712 m001 (Catalan+GAMMA(19/24))/(-Artin+Kac) 8299665393637590 m001 1/exp(GAMMA(1/4))^2*TwinPrimes*sqrt(Pi) 8299665416849591 r009 Re(z^3+c),c=-11/19+6/37*I,n=19 8299665451575335 r005 Re(z^2+c),c=-83/126+13/38*I,n=51 8299665487677563 a007 Real Root Of -703*x^4+914*x^3+635*x^2+63*x+471 8299665496119540 a005 (1/sin(68/169*Pi))^1345 8299665508938229 m001 (-ZetaQ(2)+ZetaQ(3))/(Psi(2,1/3)+FeigenbaumB) 8299665512766490 m001 (-CareFree+ReciprocalLucas)/(Zeta(3)-exp(1)) 8299665527406730 l006 ln(3359/7703) 8299665527406730 p004 log(7703/3359) 8299665540856190 a001 5473/161*3^(13/16) 8299665554279258 a007 Real Root Of -945*x^4+168*x^3-129*x^2-945*x-151 8299665561147624 a007 Real Root Of -651*x^4+579*x^3+78*x^2-40*x+553 8299665592416503 m006 (3/Pi-3/5)/(4/5*exp(2*Pi)-3/4) 8299665614845822 a007 Real Root Of -293*x^4+824*x^3+80*x^2+253*x+765 8299665620692409 a007 Real Root Of -347*x^4+376*x^3-846*x^2-233*x+769 8299665638280335 m006 (4*Pi^2+3/5)/(4*ln(Pi)+1/4) 8299665642715378 a007 Real Root Of -317*x^4+621*x^3+880*x^2+40*x-844 8299665664646097 a007 Real Root Of -778*x^4+2*x^3-623*x^2-903*x+50 8299665673907919 a007 Real Root Of 681*x^4+42*x^3+960*x^2+668*x-406 8299665683591781 r002 8th iterates of z^2 + 8299665701260606 a007 Real Root Of 484*x^4-471*x^3-280*x^2-118*x-404 8299665719518544 a007 Real Root Of 617*x^4-876*x^3-212*x^2-315*x-909 8299665740521094 a007 Real Root Of -606*x^4+786*x^3-707*x^2-465*x+838 8299665750005187 m001 (Catalan+gamma(1))/(Stephens+TreeGrowth2nd) 8299665758505339 m005 (1/2*Pi-5/11)/(5/12*gamma-3/8) 8299665764056179 m001 (2^(1/3)-ln(gamma))/(Niven+Weierstrass) 8299665812144010 r005 Im(z^2+c),c=-15/31+1/7*I,n=35 8299665821720198 a007 Real Root Of -302*x^4-263*x^3+265*x^2+761*x+442 8299665824308542 a007 Real Root Of 632*x^4+323*x^3+168*x^2-876*x-958 8299665824769142 m001 (ln(Pi)-LandauRamanujan2nd)/(Robbin-Totient) 8299665847348854 a007 Real Root Of -22*x^4+944*x^3-204*x^2-743*x+74 8299665866964198 m003 161/8+(Sqrt[5]*Tan[1/2+Sqrt[5]/2])/4 8299665878670671 a001 34/11*521^(3/19) 8299665911042990 r005 Im(z^2+c),c=-19/90+17/21*I,n=22 8299665927188959 a003 cos(Pi*6/77)*sin(Pi*33/101) 8299665938149345 h001 (4/7*exp(2)+1/5)/(1/11*exp(1)+2/7) 8299665946919117 a001 377/271443*322^(17/24) 8299665947875359 a007 Real Root Of -748*x^4-123*x^3+428*x^2+728*x+594 8299665962535896 r009 Im(z^3+c),c=-7/74+47/57*I,n=25 8299665969549557 a008 Real Root of (-6+6*x^2+3*x^3-3*x^4+4*x^5) 8299665978232891 r009 Im(z^3+c),c=-1/17+27/32*I,n=9 8299666020354536 r002 6i'th iterates of 2*x/(1-x^2) of 8299666031550059 m001 (MasserGramainDelta-Tribonacci)/(ln(5)+Artin) 8299666034851367 r005 Re(z^2+c),c=-29/34+3/59*I,n=43 8299666049609254 l006 ln(2486/5701) 8299666053246775 a003 cos(Pi*4/103)*sin(Pi*29/92) 8299666109355656 m002 -1+E^Pi*Pi+Pi^2*Log[Pi] 8299666110916282 k002 Champernowne real with 38*n^2+177*n-207 8299666117444736 a007 Real Root Of 757*x^4-50*x^3-322*x^2-588*x-654 8299666121814296 r009 Im(z^3+c),c=-17/118+22/29*I,n=36 8299666126746897 a007 Real Root Of 723*x^4-535*x^3-589*x^2-603*x+869 8299666132834392 m006 (1/6*Pi^2+2/3)/(1/4*exp(Pi)-3) 8299666149970209 s001 sum(exp(-3*Pi/4)^n*A274101[n],n=1..infinity) 8299666150640601 m001 (5^(1/2)+Ei(1,1))/(Grothendieck+Salem) 8299666151536594 a007 Real Root Of 115*x^4-797*x^3-497*x^2-952*x-958 8299666156917681 a007 Real Root Of 314*x^4-123*x^3-484*x^2-470*x-276 8299666164765409 m001 (Zeta(3)+ln(5))/(GAMMA(13/24)+MadelungNaCl) 8299666166565740 m002 -3/Pi^6-Pi^2+Pi^6/Log[Pi] 8299666191741924 a007 Real Root Of 916*x^4-571*x^3+312*x^2+935*x-200 8299666195254041 m002 -Pi+Pi^4*Coth[Pi]-Cosh[Pi]*Coth[Pi] 8299666202779997 m001 1/exp(log(2+sqrt(3)))*MadelungNaCl*sqrt(Pi) 8299666208588813 a007 Real Root Of 556*x^4+677*x^3+633*x^2-340*x-595 8299666210172419 m001 1/exp(Magata)*Cahen^2/sqrt(1+sqrt(3)) 8299666211170063 a007 Real Root Of -692*x^4+835*x^3-470*x^2-891*x+390 8299666227252729 a007 Real Root Of 739*x^4-614*x^3-289*x^2-580*x-984 8299666261002298 r009 Im(z^3+c),c=-1/26+50/59*I,n=33 8299666267631381 m001 Ei(1,1)-sin(1)-exp(-1/2*Pi) 8299666276305257 r005 Re(z^2+c),c=21/118+7/27*I,n=5 8299666290379629 a007 Real Root Of -847*x^4-550*x^3-698*x^2+478*x+965 8299666318690726 a007 Real Root Of 797*x^4+182*x^3+496*x^2-187*x-771 8299666328561125 a007 Real Root Of 739*x^4-695*x^3+445*x^2+285*x-818 8299666342124203 m001 (gamma(2)-Zeta(1,2))/(GAMMA(5/6)-Trott) 8299666355118441 m001 exp(Salem)*Robbin/Sierpinski 8299666377976728 a007 Real Root Of -879*x^4-x^3+742*x^2+514*x+332 8299666408858147 m008 (1/5*Pi^5+5/6)/(5/6*Pi^2-3/4) 8299666409437702 m001 1/Trott/FeigenbaumD*exp(log(1+sqrt(2))) 8299666452775648 a007 Real Root Of -829*x^4+268*x^3-844*x^2-553*x+669 8299666467780692 p001 sum((-1)^n/(265*n+117)/(10^n),n=0..infinity) 8299666477537577 l006 ln(4099/9400) 8299666500839612 m002 -Log[Pi]+Tanh[Pi]^3/Pi 8299666502817519 a007 Real Root Of 424*x^4-597*x^3+121*x^2-205*x-796 8299666511706167 r009 Re(z^3+c),c=-3/70+53/61*I,n=20 8299666517377675 a007 Real Root Of -80*x^4+974*x^3-498*x^2-42*x+903 8299666524682526 m001 (Porter+ZetaP(4))/(gamma(1)-KomornikLoreti) 8299666535718811 a007 Real Root Of 124*x^4+928*x^3-936*x^2-813*x-106 8299666594037680 a007 Real Root Of 167*x^4-837*x^3-45*x^2-81*x-594 8299666599353056 a005 (1/sin(64/133*Pi))^1213 8299666616274433 a007 Real Root Of 840*x^4-645*x^3-232*x^2+238*x-410 8299666625920666 r005 Im(z^2+c),c=-8/31+37/49*I,n=4 8299666655500488 a003 cos(Pi*21/67)+cos(Pi*23/56) 8299666675594898 a007 Real Root Of 657*x^4-886*x^3+740*x^2-875*x+68 8299666676898620 r005 Im(z^2+c),c=-3/29+21/25*I,n=31 8299666707759393 m001 Bloch+Lehmer^ReciprocalLucas 8299666726278067 r005 Im(z^2+c),c=-19/23+1/21*I,n=34 8299666741717539 a007 Real Root Of -952*x^4+377*x^3-562*x^2-327*x+783 8299666742091555 a007 Real Root Of -34*x^4-272*x^3+158*x^2+603*x-54 8299666762640210 a007 Real Root Of -427*x^4+858*x^3-371*x^2+849*x-737 8299666791478157 m001 (MertensB1+TreeGrowth2nd)/(Ei(1,1)+Kac) 8299666792989228 m001 1/MadelungNaCl*exp(LaplaceLimit)*RenyiParking 8299666841600831 a007 Real Root Of 631*x^4-212*x^3+420*x^2+812*x-36 8299666845359985 m001 (Paris+TwinPrimes)/(cos(1)+Artin) 8299666858556475 a001 89/3*18^(21/59) 8299666866950051 a001 75025/7*123^(47/52) 8299666883844589 a001 1/4*(1/2*5^(1/2)+1/2)^28*11^(9/14) 8299666927369196 a007 Real Root Of 201*x^4-636*x^3+564*x^2-898*x+71 8299666935978028 m005 (19/28+1/4*5^(1/2))/(5/9*Catalan-2) 8299666971427434 r002 28th iterates of z^2 + 8299666980196304 r002 34th iterates of z^2 + 8299666989260879 m001 CareFree*(FeigenbaumAlpha-PisotVijayaraghavan) 8299666996021734 a007 Real Root Of -370*x^4+993*x^3+584*x^2-347*x+53 8299667011139591 m001 arctan(1/3)*(GAMMA(2/3)+GAMMA(3/4)) 8299667025734192 a007 Real Root Of -482*x^4+475*x^3+704*x^2-545*x-437 8299667066832566 a007 Real Root Of 69*x^4+518*x^3-344*x^2+923*x+97 8299667110740678 m001 1/Salem/exp(Riemann3rdZero)^2/GAMMA(5/24)^2 8299667111216342 k002 Champernowne real with 77/2*n^2+351/2*n-206 8299667126846967 m001 1/Kolakoski/exp(DuboisRaymond)^2*Paris^2 8299667137072451 l006 ln(1613/3699) 8299667142342497 a007 Real Root Of -494*x^4+96*x^3-725*x^2-484*x+387 8299667142513114 m001 (Paris-ZetaQ(2))/(FeigenbaumC+FeigenbaumMu) 8299667148881105 a008 Real Root of (-6+2*x+x^2+x^3+4*x^4+3*x^5) 8299667178867569 r005 Re(z^2+c),c=-29/27+7/47*I,n=26 8299667181364607 m002 -Pi^2+ProductLog[Pi]+Tanh[Pi]^2/2 8299667181550877 p001 sum(1/(70*n+33)/n/(12^n),n=0..infinity) 8299667188773970 r009 Re(z^3+c),c=-1/5+32/43*I,n=35 8299667198728654 m003 -9/10+(Sqrt[5]*Csc[1/2+Sqrt[5]/2]^2)/32 8299667200291994 a007 Real Root Of 254*x^4-968*x^3+29*x^2+765*x-59 8299667224593384 a007 Real Root Of -152*x^4+481*x^3-649*x^2+54*x+839 8299667227597259 a007 Real Root Of 426*x^4+401*x^3-216*x^2-918*x-586 8299667235088614 r005 Re(z^2+c),c=1/13+1/42*I,n=7 8299667285323248 a007 Real Root Of -789*x^4+328*x^3-44*x^2-34*x+564 8299667291663697 r009 Im(z^3+c),c=-15/46+42/59*I,n=23 8299667308247172 m001 1/MadelungNaCl/Backhouse*exp(RenyiParking) 8299667312536418 m001 ln(DuboisRaymond)/Conway^2/Magata^2 8299667315862430 a007 Real Root Of -203*x^4+558*x^3-413*x^2+199*x+865 8299667323939170 r002 21th iterates of z^2 + 8299667388601758 r009 Re(z^3+c),c=-1/5+32/43*I,n=62 8299667388861489 r009 Re(z^3+c),c=-1/5+32/43*I,n=53 8299667390009824 r009 Re(z^3+c),c=-1/5+32/43*I,n=44 8299667399328064 r005 Re(z^2+c),c=2/7+2/5*I,n=59 8299667475788581 p001 sum((-1)^n/(436*n+41)/n/(25^n),n=1..infinity) 8299667493781970 m005 (1/2*exp(1)-1/12)/(5/7*3^(1/2)+3/10) 8299667497523981 a007 Real Root Of -610*x^4+989*x^3+206*x^2-700*x+132 8299667505493635 a007 Real Root Of 47*x^4-137*x^3+387*x^2-607*x-871 8299667528230482 m001 Catalan-Riemann1stZero^Magata 8299667530236826 r002 39th iterates of z^2 + 8299667580422562 m001 GAMMA(3/4)+gamma(1)-FellerTornier 8299667590370563 a007 Real Root Of 959*x^4-607*x^3-125*x^2+6*x-711 8299667604193300 q001 3246/3911 8299667621464038 p001 sum((-1)^n/(529*n+12)/(5^n),n=0..infinity) 8299667625959573 r005 Re(z^2+c),c=-13/14+23/99*I,n=14 8299667643147208 r009 Re(z^3+c),c=-1/114+8/57*I,n=4 8299667652775266 s001 sum(exp(-3*Pi/5)^n*A056416[n],n=1..infinity) 8299667652844824 r005 Im(z^2+c),c=-23/34+10/51*I,n=15 8299667672955198 m001 (KhinchinHarmonic-Otter)/(Porter-ZetaQ(3)) 8299667703884837 r009 Re(z^3+c),c=-17/118+11/18*I,n=27 8299667754835976 a007 Real Root Of -463*x^4-98*x^3-425*x^2+226*x+644 8299667761833349 m001 (GAMMA(17/24)-Zeta(1,-1))/ZetaP(3) 8299667764500322 a007 Real Root Of -988*x^4+104*x^3+542*x^2-965*x-646 8299667780770743 m001 1/Zeta(5)/exp(Khintchine)^2/cos(1) 8299667785849404 m001 (Zeta(5)-gamma)/(-2*Pi/GAMMA(5/6)+Trott2nd) 8299667818724813 l006 ln(3966/9095) 8299667827566386 a007 Real Root Of 462*x^4+55*x^3+552*x^2-6*x-573 8299667865274366 m001 (Khinchin+Mills)/(Rabbit-Robbin) 8299667900847797 m001 (ln(2^(1/2)+1)+Artin)/(Gompertz-RenyiParking) 8299667919742683 r002 27th iterates of z^2 + 8299667976658316 m001 (BesselJ(1,1)+Riemann2ndZero)/(exp(Pi)+exp(1)) 8299667995786139 a007 Real Root Of -522*x^4+33*x^3-827*x^2-475*x+442 8299667997151642 g006 Psi(1,3/10)+Psi(1,2/7)-Psi(1,2/11)-Psi(1,7/9) 8299667999757081 a007 Real Root Of 462*x^4-198*x^3+638*x^2-170*x-913 8299668007401013 m006 (1/2*exp(2*Pi)-2/3)/(3/5*exp(2*Pi)+1/2) 8299668056218931 a007 Real Root Of 301*x^4-856*x^3-30*x^2+232*x-419 8299668075471777 r009 Re(z^3+c),c=-3/56+37/51*I,n=11 8299668091444147 m008 (1/2*Pi^6+3)/(3/5*Pi^4-1/6) 8299668111516402 k002 Champernowne real with 39*n^2+174*n-205 8299668112927434 r005 Re(z^2+c),c=-89/106+3/34*I,n=19 8299668130241800 a007 Real Root Of -566*x^4+63*x^3-937*x^2-88*x+877 8299668149896280 p003 LerchPhi(1/125,5,93/142) 8299668164692808 a007 Real Root Of 887*x^4-287*x^3+399*x^2+895*x-117 8299668172571044 m001 (-Trott+ZetaQ(4))/(cos(1)+LambertW(1)) 8299668193636120 a007 Real Root Of 889*x^4-900*x^3-667*x^2-423*x-828 8299668242458076 m001 (Ei(1)-gamma(2))/(GAMMA(11/12)-GAMMA(17/24)) 8299668250291403 a007 Real Root Of -224*x^4+700*x^3+683*x^2+647*x+573 8299668272630517 a001 233/9349*322^(5/24) 8299668275886106 m001 Zeta(3)^2*ln(GAMMA(7/12))/exp(1)^2 8299668286002840 l006 ln(2353/5396) 8299668299532658 a007 Real Root Of 660*x^4-425*x^3+580*x^2+143*x-837 8299668325608974 a007 Real Root Of 961*x^4+544*x^3+592*x^2+213*x-376 8299668354113314 r002 2th iterates of z^2 + 8299668375037684 q001 2753/3317 8299668384423542 a001 39603/89*121393^(21/25) 8299668437192873 m001 (Chi(1)-exp(1))/(GAMMA(13/24)+Kac) 8299668450590371 m001 (Bloch-Trott)/(gamma(2)+BesselI(1,1)) 8299668465826586 m001 (ArtinRank2+LaplaceLimit)/(cos(1)+ln(3)) 8299668485582575 a007 Real Root Of 707*x^4+344*x^3-493*x^2-754*x-425 8299668495656149 r005 Im(z^2+c),c=-31/24+2/45*I,n=3 8299668552042736 a001 89/64079*199^(17/22) 8299668554243421 a007 Real Root Of 885*x^4+484*x^3+385*x^2-79*x-474 8299668566011856 a007 Real Root Of 830*x^4-603*x^3-510*x^2+710*x+202 8299668567554206 a007 Real Root Of -574*x^4+380*x^3-706*x^2-759*x+346 8299668588812058 m001 (FibonacciFactorial+ZetaP(4))/(ln(3)+Bloch) 8299668592003940 m001 Salem*(GolombDickman+StolarskyHarborth) 8299668603650338 m001 FeigenbaumB^(3^(1/2)/Niven) 8299668620268788 m001 (Mills-OneNinth)/(3^(1/3)+gamma(3)) 8299668672438519 r005 Re(z^2+c),c=-32/31+6/19*I,n=13 8299668683124885 m001 CopelandErdos*(5^(1/2)+GAMMA(17/24)) 8299668719856545 r004 Re(z^2+c),c=9/38+7/15*I,z(0)=exp(5/8*I*Pi),n=3 8299668745876679 a001 610/167761*322^(13/24) 8299668748508106 r005 Im(z^2+c),c=-3/32+24/29*I,n=22 8299668807613770 a005 (1/cos(17/180*Pi))^1645 8299668816352774 a007 Real Root Of -227*x^4+97*x^3+74*x^2-140*x-4 8299668840275282 r005 Re(z^2+c),c=-49/90+33/49*I,n=6 8299668885170171 l006 ln(3093/7093) 8299668908333280 r005 Im(z^2+c),c=-7/6+4/37*I,n=52 8299668910800189 a003 cos(Pi*11/91)*sin(Pi*19/54) 8299668917272243 a003 sin(Pi*3/112)*sin(Pi*49/109) 8299668947257026 s002 sum(A038713[n]/(n^2*pi^n-1),n=1..infinity) 8299668983958696 m005 (1/3*gamma-1/6)/(2*2^(1/2)+3/11) 8299668998949193 a007 Real Root Of 197*x^4-672*x^3+59*x^2-143*x-637 8299669007860206 m005 (1/3*2^(1/2)-1/5)/(3/8*Zeta(3)-7/9) 8299669051718868 a001 2/21*121393^(31/40) 8299669058049211 a007 Real Root Of -611*x^4+858*x^3-360*x^2-215*x+850 8299669062425408 a007 Real Root Of -447*x^4-106*x^3-767*x^2-95*x+601 8299669111816462 k002 Champernowne real with 79/2*n^2+345/2*n-204 8299669117749413 a007 Real Root Of -313*x^4+35*x^3+244*x^2+85*x+71 8299669120848487 a007 Real Root Of -639*x^4+179*x^3+185*x^2-858*x-434 8299669130717725 a007 Real Root Of 690*x^4+66*x^3-743*x^2-752*x-402 8299669136760553 m001 (ln(Pi)-gamma(3))/(FeigenbaumD-Mills) 8299669139670175 m005 (1/2*2^(1/2)+2)/(2/7*Catalan+3) 8299669176787760 r008 a(0)=0,K{-n^6,49-21*n+26*n^2-53*n^3} 8299669212212052 a007 Real Root Of 88*x^4-476*x^3-42*x^2-390*x+583 8299669217176204 m001 (GAMMA(3/4)-BesselI(0,2))/(Kolakoski+PlouffeB) 8299669220897221 r005 Re(z^2+c),c=-9/44+37/59*I,n=15 8299669251425597 a001 987/439204*322^(5/8) 8299669252986675 l006 ln(3833/8790) 8299669288234110 m001 GAMMA(13/24)^(FeigenbaumB/Zeta(1,-1)) 8299669303652954 m001 gamma^2*exp(TwinPrimes)/log(1+sqrt(2))^2 8299669311422983 a007 Real Root Of -716*x^4-433*x^3-765*x^2+295*x+864 8299669320402022 r005 Re(z^2+c),c=-17/70+63/64*I,n=3 8299669343186588 r005 Re(z^2+c),c=-47/32+1/38*I,n=10 8299669349046444 r002 27th iterates of z^2 + 8299669371859337 a007 Real Root Of -434*x^4+448*x^3-118*x^2+302*x+794 8299669410290763 a007 Real Root Of 484*x^4-508*x^3-275*x^2+187*x+95 8299669412883765 m001 ReciprocalFibonacci*Riemann3rdZero-Zeta(5) 8299669426192127 a007 Real Root Of 920*x^4+456*x^3+212*x^2-558*x-785 8299669451429716 r009 Im(z^3+c),c=-1/26+50/59*I,n=21 8299669457105843 m005 (1/2*5^(1/2)+3/8)/(53/45+5/18*5^(1/2)) 8299669476422989 m005 (1/2*exp(1)+5/11)/(11/12*2^(1/2)+8/9) 8299669479209567 a007 Real Root Of -865*x^4-764*x^3+534*x^2+687*x+176 8299669482188762 q001 226/2723 8299669485923543 m005 (1/2*Catalan+2/9)/(1/5*Catalan+7/11) 8299669493895055 a008 Real Root of (11+2*x-17*x^2+2*x^3) 8299669511739022 a007 Real Root Of 679*x^4+105*x^3+598*x^2+617*x-162 8299669516765434 m006 (Pi^2-1/4)/(5*exp(Pi)+1/5) 8299669532653438 a008 Real Root of x^3-246*x-1470 8299669575049649 a001 843/377*10946^(38/43) 8299669579505380 a007 Real Root Of 320*x^4-497*x^3+46*x^2+196*x-305 8299669606733036 m005 (1/15+1/6*5^(1/2))/(1/6*gamma-1/11) 8299669612398982 r009 Im(z^3+c),c=-1/38+17/20*I,n=13 8299669693709609 a007 Real Root Of -902*x^4-218*x^3+441*x^2+621*x+515 8299669698367011 r009 Im(z^3+c),c=-1/15+23/24*I,n=8 8299669706759355 r001 40i'th iterates of 2*x^2-1 of 8299669732352599 m001 (-exp(1/Pi)+GAMMA(17/24))/(Catalan-Zeta(1,-1)) 8299669746983199 a007 Real Root Of 525*x^4-476*x^3-13*x^2+10*x-504 8299669764345318 a001 3/86267571272*55^(19/24) 8299669769927799 a007 Real Root Of 624*x^4+455*x^3+962*x^2+308*x-443 8299669783070772 a007 Real Root Of -682*x^4+347*x^3-32*x^2+112*x+637 8299669786842686 a003 sin(Pi*8/103)/sin(Pi*11/117) 8299669788895370 a003 cos(Pi*4/89)*sin(Pi*25/79) 8299669794313178 a007 Real Root Of 527*x^4+188*x^3+881*x^2+756*x-122 8299669796856510 r005 Im(z^2+c),c=-49/94+6/41*I,n=31 8299669800696066 m002 -(E^Pi/Pi)+Pi^2+Cosh[Pi]/2 8299669822121883 a007 Real Root Of 804*x^4+308*x^3-475*x^2-707*x-465 8299669844265689 r009 Re(z^3+c),c=-7/94+29/37*I,n=49 8299669872346350 m001 (Chi(1)-gamma)/(-Ei(1,1)+ReciprocalFibonacci) 8299669885686406 a007 Real Root Of 61*x^4+385*x^3-901*x^2+841*x-293 8299669916818268 a001 29/2584*1346269^(22/47) 8299669976065390 a001 199/34*233^(18/37) 8299669988820575 a007 Real Root Of -373*x^4-335*x^3-462*x^2+63*x+356 8299670009070188 a001 5/4870847*29^(18/29) 8299670022057542 m001 Porter^DuboisRaymond*MertensB1^DuboisRaymond 8299670023895275 a007 Real Root Of 144*x^4-168*x^3+233*x^2+36*x-295 8299670029500610 b008 81*Sqrt[ProductLog[3]] 8299670055942901 a007 Real Root Of 757*x^4-619*x^3-207*x^2+444*x-202 8299670093049760 r008 a(0)=8,K{-n^6,-37-4*n+17*n^2+21*n^3} 8299670097695614 m001 exp(Pi)^Rabbit/(GAMMA(19/24)^Rabbit) 8299670112116522 k002 Champernowne real with 40*n^2+171*n-203 8299670115542445 r009 Im(z^3+c),c=-6/11+19/58*I,n=21 8299670126144408 r005 Im(z^2+c),c=-43/38+7/53*I,n=10 8299670196888726 r005 Im(z^2+c),c=-85/122+29/50*I,n=3 8299670199262614 a007 Real Root Of -440*x^4+595*x^3+264*x^2+30*x+392 8299670230461547 m005 (3/20+1/4*5^(1/2))/(1/5*2^(1/2)+4/7) 8299670235019570 m001 Zeta(5)/Zeta(1,2)/MertensB3 8299670267287540 m002 3+Pi^(-1)+5*Tanh[Pi] 8299670270953377 m002 3/(5*Pi^2)+Pi^6*Sech[Pi] 8299670275756732 m001 (GAMMA(11/12)+Artin)/(3^(1/2)+gamma(2)) 8299670298330326 a007 Real Root Of 282*x^4+296*x^3+747*x^2+5*x-475 8299670306535144 a007 Real Root Of 97*x^4-703*x^3-33*x^2-113*x-519 8299670314538101 m001 Niven/Lehmer/ln(cos(Pi/12)) 8299670320384412 a007 Real Root Of 165*x^4-497*x^3+550*x^2-90*x-816 8299670335994969 a007 Real Root Of 443*x^4-749*x^3+39*x^2-284*x-901 8299670405130199 a007 Real Root Of 689*x^4-66*x^3-370*x^2+407*x+228 8299670492174246 a007 Real Root Of 69*x^4-462*x^3+179*x^2+46*x-382 8299670556452109 m001 ln(3)*(LandauRamanujan-ZetaQ(3)) 8299670565959983 a007 Real Root Of -876*x^4+153*x^3+910*x^2+384*x+195 8299670569875106 m001 (GAMMA(2/3)+3^(1/3))/(BesselI(1,2)-Tetranacci) 8299670579470304 a007 Real Root Of 467*x^4+435*x^3+977*x^2-753*x-69 8299670586484537 m001 (Catalan-GAMMA(2/3))/(-GAMMA(3/4)+ArtinRank2) 8299670600606461 r005 Re(z^2+c),c=-23/98+46/57*I,n=14 8299670605204950 a007 Real Root Of 860*x^4+242*x^3+684*x^2+577*x-262 8299670616875835 a007 Real Root Of -974*x^4+717*x^3+537*x^2+401*x+835 8299670618745250 m009 (2/5*Psi(1,1/3)-3)/(5*Psi(1,3/4)-1/5) 8299670655731949 a007 Real Root Of -717*x^4-158*x^3-328*x^2-248*x+270 8299670684694255 r002 27i'th iterates of 2*x/(1-x^2) of 8299670706484815 a001 34/11*141422324^(1/19) 8299670706734352 a001 2584/1149851*322^(5/8) 8299670731666751 a007 Real Root Of 784*x^4-233*x^3+842*x^2+228*x-896 8299670737774514 a007 Real Root Of 878*x^4+399*x^3-181*x^2-640*x-595 8299670773239242 m001 (-BesselK(1,1)+Riemann2ndZero)/(1-Zeta(1/2)) 8299670774920933 r009 Im(z^3+c),c=-43/78+18/37*I,n=38 8299670785776306 a007 Real Root Of 874*x^4+402*x^3+735*x^2-7*x-697 8299670790360108 l006 ln(740/1697) 8299670810574909 a007 Real Root Of 748*x^4-140*x^3+624*x^2+848*x-161 8299670834082240 r002 21th iterates of z^2 + 8299670865393576 r004 Re(z^2+c),c=-31/26-5/14*I,z(0)=-1,n=11 8299670867401900 a007 Real Root Of -220*x^4+882*x^3-755*x^2-725*x+527 8299670867865018 a007 Real Root Of -515*x^4+761*x^3+559*x^2+461*x+677 8299670919061038 a001 6765/3010349*322^(5/8) 8299670919093828 r001 40i'th iterates of 2*x^2-1 of 8299670933082198 a003 cos(Pi*11/108)*cos(Pi*5/31) 8299670950039084 a001 89/39604*322^(5/8) 8299670951720398 m001 (1-GolombDickman)/(-Salem+Sarnak) 8299670954558720 a001 46368/20633239*322^(5/8) 8299670955218126 a001 121393/54018521*322^(5/8) 8299670955314332 a001 317811/141422324*322^(5/8) 8299670955328369 a001 832040/370248451*322^(5/8) 8299670955330417 a001 2178309/969323029*322^(5/8) 8299670955330715 a001 5702887/2537720636*322^(5/8) 8299670955330759 a001 14930352/6643838879*322^(5/8) 8299670955330765 a001 39088169/17393796001*322^(5/8) 8299670955330766 a001 102334155/45537549124*322^(5/8) 8299670955330766 a001 267914296/119218851371*322^(5/8) 8299670955330766 a001 3524667/1568437211*322^(5/8) 8299670955330766 a001 1836311903/817138163596*322^(5/8) 8299670955330766 a001 4807526976/2139295485799*322^(5/8) 8299670955330766 a001 12586269025/5600748293801*322^(5/8) 8299670955330766 a001 32951280099/14662949395604*322^(5/8) 8299670955330766 a001 53316291173/23725150497407*322^(5/8) 8299670955330766 a001 20365011074/9062201101803*322^(5/8) 8299670955330766 a001 7778742049/3461452808002*322^(5/8) 8299670955330766 a001 2971215073/1322157322203*322^(5/8) 8299670955330766 a001 1134903170/505019158607*322^(5/8) 8299670955330766 a001 433494437/192900153618*322^(5/8) 8299670955330766 a001 165580141/73681302247*322^(5/8) 8299670955330767 a001 63245986/28143753123*322^(5/8) 8299670955330769 a001 24157817/10749957122*322^(5/8) 8299670955330786 a001 9227465/4106118243*322^(5/8) 8299670955330900 a001 3524578/1568397607*322^(5/8) 8299670955331682 a001 1346269/599074578*322^(5/8) 8299670955337044 a001 514229/228826127*322^(5/8) 8299670955373791 a001 196418/87403803*322^(5/8) 8299670955625662 a001 75025/33385282*322^(5/8) 8299670957352009 a001 28657/12752043*322^(5/8) 8299670959109693 m001 (GAMMA(23/24)+Gompertz)/(2^(1/2)+cos(1)) 8299670969184570 a001 10946/4870847*322^(5/8) 8299670975449294 m001 (ln(5)+QuadraticClass)/(5^(1/2)+BesselJ(0,1)) 8299670982940680 a003 sin(Pi*24/77)*sin(Pi*55/111) 8299671010248443 r005 Im(z^2+c),c=-8/17+29/52*I,n=35 8299671022968039 a007 Real Root Of 958*x^4+600*x^3+337*x^2-551*x-801 8299671050286147 a001 4181/1860498*322^(5/8) 8299671095514448 m001 (Salem+TwinPrimes)/(Chi(1)+exp(1/Pi)) 8299671105124313 k001 Champernowne real with 138*n+691 8299671105124413 k005 Champernowne real with floor(Pi*(44*n+220)) 8299671112416582 k002 Champernowne real with 81/2*n^2+339/2*n-202 8299671156764242 r005 Im(z^2+c),c=-1/22+41/57*I,n=51 8299671175708560 a007 Real Root Of -340*x^4+443*x^3-726*x^2+949*x-74 8299671197894078 a007 Real Root Of 392*x^4-111*x^3-15*x^2+752*x+385 8299671207139502 q001 1767/2129 8299671237220788 p004 log(30241/13187) 8299671251875331 m002 Pi^6*Csch[Pi]-Sinh[Pi]/(2*E^Pi) 8299671276768837 r005 Im(z^2+c),c=-55/94+9/59*I,n=44 8299671311084796 r002 28th iterates of z^2 + 8299671322866486 m001 FeigenbaumB^(polylog(4,1/2)*ReciprocalLucas) 8299671335632341 m001 CareFree*Gompertz+HardyLittlewoodC5 8299671338202560 m002 -3+Sinh[Pi]-Tanh[Pi]/4 8299671338587127 r009 Im(z^3+c),c=-9/110+47/49*I,n=14 8299671382516264 m001 1/exp(GAMMA(1/12))^2/Conway/GAMMA(7/24)^2 8299671402694594 r005 Im(z^2+c),c=-1/8+41/51*I,n=33 8299671423681120 a007 Real Root Of -937*x^4-79*x^3-793*x^2-831*x+256 8299671459608520 a007 Real Root Of -201*x^4+937*x^3-544*x^2-948*x+219 8299671468029185 a007 Real Root Of 758*x^4-329*x^3+547*x^2+573*x-449 8299671476094040 a007 Real Root Of -838*x^4+123*x^3-382*x^2-664*x+180 8299671486771643 a007 Real Root Of 557*x^4+960*x^3+472*x^2-174*x-185 8299671490661520 a007 Real Root Of 660*x^4-711*x^3+590*x^2+717*x-531 8299671502592374 a007 Real Root Of 993*x^4-369*x^3-658*x^2-17*x-243 8299671520406653 a007 Real Root Of 909*x^4-83*x^3+486*x^2+626*x-294 8299671524759444 r009 Im(z^3+c),c=-9/98+33/40*I,n=27 8299671525864614 m001 GaussAGM(1,1/sqrt(2))/BesselK(0,1)*ThueMorse 8299671526213654 a007 Real Root Of 398*x^4-868*x^3+115*x^2+498*x-351 8299671564874441 h001 (3/8*exp(1)+4/7)/(3/5*exp(1)+2/7) 8299671575912681 r002 3th iterates of z^2 + 8299671586279266 m001 (ln(gamma)-BesselI(0,2))/(Magata+ZetaQ(4)) 8299671606164628 a001 1597/710647*322^(5/8) 8299671647949482 m005 (1/3*gamma-1/8)/(3/5*Zeta(3)+1/11) 8299671666788184 b008 ArcCsc[5+(-3+Pi)^(-1)] 8299671699070846 b008 -1/3+Pi*ArcCoth[Pi]^2 8299671714310930 a007 Real Root Of -617*x^4+947*x^3+519*x^2-343*x+192 8299671722790942 m005 (1/2*3^(1/2)-8/9)/(5/12*exp(1)-6/7) 8299671758586942 a007 Real Root Of -160*x^4-179*x^3-847*x^2-435*x+196 8299671801409670 m001 FeigenbaumC+FeigenbaumMu^Porter 8299671814845264 m007 (-5/6*gamma-5/3*ln(2)-5/6)/(-4*gamma-2/3) 8299671847240938 m005 (1/3*exp(1)+1/5)/(10/11*Catalan+1/2) 8299671913086131 g006 -Psi(1,4/9)-Psi(1,5/8)-Psi(1,3/8)-Psi(1,1/8) 8299671914178005 a007 Real Root Of 362*x^4+233*x^3-599*x^2-486*x+511 8299671918191232 a003 sin(Pi*19/67)/sin(Pi*17/44) 8299671937276890 r005 Im(z^2+c),c=31/70+18/49*I,n=4 8299671959432250 a007 Real Root Of -681*x^4+528*x^3+329*x^2+849*x-910 8299671971090435 a001 5/29*47^(20/49) 8299671989643064 r002 35th iterates of z^2 + 8299672066360209 a003 sin(Pi*7/62)-sin(Pi*16/113) 8299672075684201 a007 Real Root Of 256*x^4-91*x^3-554*x^2-695*x+889 8299672104289487 a007 Real Root Of 490*x^4-707*x^3-185*x^2+363*x-208 8299672112716642 k002 Champernowne real with 41*n^2+168*n-201 8299672119984143 m001 (Pi*csc(11/24*Pi)/GAMMA(13/24))^Cahen*Landau 8299672138888534 a007 Real Root Of 462*x^4-195*x^3+46*x^2-761*x-994 8299672151411564 r008 a(0)=9,K{-n^6,5-7*n^3-n^2+3*n} 8299672158540167 l006 ln(4307/9877) 8299672204167497 a007 Real Root Of -40*x^4-197*x^3-234*x^2+656*x+612 8299672249256891 a007 Real Root Of -228*x^4-86*x^3-709*x^2-868*x-173 8299672254787845 r005 Re(z^2+c),c=-5/118+32/41*I,n=16 8299672274926118 r001 52i'th iterates of 2*x^2-1 of 8299672350875136 m005 (-9/44+1/4*5^(1/2))/(1/12*3^(1/2)-4/7) 8299672364436220 m001 GAMMA(23/24)*Gompertz^HardyLittlewoodC5 8299672394485003 m001 (Sierpinski-TreeGrowth2nd)/(FeigenbaumD-Paris) 8299672442379012 l006 ln(3567/8180) 8299672452599893 a007 Real Root Of -312*x^4+804*x^3+288*x^2+100*x-593 8299672489082969 q001 3041/3664 8299672505862429 a007 Real Root Of -772*x^4+771*x^3+114*x^2-73*x+668 8299672551574922 a007 Real Root Of 289*x^4-222*x^3+662*x^2-318*x-984 8299672575964822 a001 322/9227465*8^(5/12) 8299672585971209 p001 sum(1/(459*n+28)/n/(25^n),n=1..infinity) 8299672617815816 a001 377/439204*322^(19/24) 8299672649642328 m001 1/ln(RenyiParking)*FeigenbaumC^2*FeigenbaumD^2 8299672650111102 a007 Real Root Of -318*x^4+966*x^3-309*x^2-982*x+101 8299672659826152 r009 Im(z^3+c),c=-3/10+4/61*I,n=2 8299672681808277 h001 (3/7*exp(2)+3/4)/(3/5*exp(2)+2/7) 8299672721609707 p001 sum(1/(162*n+133)/(5^n),n=0..infinity) 8299672722632519 m009 (2*Psi(1,1/3)+1/3)/(1/3*Psi(1,3/4)-3/5) 8299672765300871 r005 Re(z^2+c),c=-2/3+71/207*I,n=53 8299672831693947 p001 sum(1/(153*n+124)/(16^n),n=0..infinity) 8299672874814053 l006 ln(2827/6483) 8299672888478495 r009 Re(z^3+c),c=-67/102+31/47*I,n=2 8299672893979410 r005 Re(z^2+c),c=-6/7+1/95*I,n=9 8299672899480133 m001 (2^(1/3))^2/PrimesInBinary/exp(GAMMA(7/12)) 8299672914114318 m003 13/2+Sqrt[5]/2+4*Csch[1/2+Sqrt[5]/2]^2 8299672942220173 m001 Psi(1,1/3)^(PisotVijayaraghavan/ln(2)) 8299672944397186 a003 sin(Pi*23/74)/sin(Pi*51/106) 8299672953026180 m001 (Landau+Salem)/(ln(Pi)+Zeta(1,2)) 8299672959334907 r002 12th iterates of z^2 + 8299672967974983 a007 Real Root Of -294*x^4+431*x^3+269*x^2+827*x+887 8299672968587678 m001 (2^(1/3)-cos(1/12*Pi))/(FeigenbaumD+Thue) 8299672982099485 m001 (Catalan+PlouffeB*Sierpinski)/Sierpinski 8299672991719666 a003 sin(Pi*31/106)/sin(Pi*46/113) 8299673002469138 a007 Real Root Of -794*x^4+508*x^3-773*x^2-890*x+461 8299673030309641 a007 Real Root Of -283*x^4+373*x^3-440*x^2+286*x+888 8299673090334147 a001 2207/8*2178309^(4/53) 8299673090976297 h001 (-2*exp(1/3)+1)/(-8*exp(2/3)-6) 8299673097213067 a007 Real Root Of -93*x^4+677*x^3+279*x^2-447*x-132 8299673106333880 a003 cos(Pi*19/99)/sin(Pi*47/102) 8299673113016702 k002 Champernowne real with 83/2*n^2+333/2*n-200 8299673127954569 a007 Real Root Of 544*x^4-61*x^3+625*x^2+732*x-116 8299673162514411 a001 199/89*317811^(49/59) 8299673209130556 a001 7/90481*199^(13/29) 8299673228104145 r005 Im(z^2+c),c=-17/114+5/6*I,n=28 8299673261479887 r005 Im(z^2+c),c=-23/18+9/223*I,n=64 8299673268602022 b008 ArcCsch[Coth[1+Sech[1]]] 8299673283136814 r009 Im(z^3+c),c=-23/122+31/32*I,n=28 8299673298718600 r005 Re(z^2+c),c=2/5+8/47*I,n=5 8299673308289148 m005 (1/3*Pi+2/3)/(3/7*exp(1)+9/10) 8299673319263452 a007 Real Root Of -887*x^4-2*x^3+234*x^2-132*x+149 8299673320589589 m001 (ln(2)/ln(10))^(ArtinRank2/ZetaP(3)) 8299673325684934 m001 GaussAGM(1,1/sqrt(2))/(Zeta(5)^LambertW(1)) 8299673344933749 r005 Im(z^2+c),c=-27/52+25/46*I,n=5 8299673375468849 a001 144/29*29^(46/55) 8299673375499546 r002 4th iterates of z^2 + 8299673377274088 a007 Real Root Of -100*x^4-756*x^3+608*x^2-166*x-971 8299673383466625 m008 (4/5*Pi^5-2)/(3*Pi^4+1/3) 8299673407488371 a007 Real Root Of -707*x^4-777*x^3-526*x^2-173*x+110 8299673409969394 r005 Im(z^2+c),c=-40/31+1/21*I,n=48 8299673420706177 a007 Real Root Of 538*x^4-963*x^3+270*x^2-978*x+921 8299673424620098 m001 GaussAGM/(FibonacciFactorial^Trott2nd) 8299673467395898 r002 36th iterates of z^2 + 8299673483707627 m001 Artin*(Bloch+MadelungNaCl) 8299673512227845 r005 Im(z^2+c),c=-7/6+15/139*I,n=60 8299673512644895 m001 (Tetranacci+Trott2nd)/(1+FeigenbaumKappa) 8299673527389867 r002 39th iterates of z^2 + 8299673546173850 q001 3/36146 8299673579166971 m004 7*ProductLog[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi]/6 8299673598725221 m001 Paris/exp(Conway)*GAMMA(1/6)^2 8299673608381943 r002 33th iterates of z^2 + 8299673613911178 l006 ln(2087/4786) 8299673650521665 a007 Real Root Of -593*x^4+59*x^3+274*x^2-880*x-604 8299673658489295 s002 sum(A122122[n]/(n^3*exp(n)-1),n=1..infinity) 8299673673954073 r002 13th iterates of z^2 + 8299673681374785 a007 Real Root Of 710*x^4-940*x^3-791*x^2-626*x-849 8299673698471924 r005 Im(z^2+c),c=35/94+10/61*I,n=27 8299673707546650 h001 (5/11*exp(2)+1/6)/(5/11*exp(2)+8/9) 8299673721016376 r009 Im(z^3+c),c=-25/48+29/53*I,n=20 8299673726050062 m001 1/Robbin/GolombDickman^2*exp(FeigenbaumD)^2 8299673731974141 m001 arctan(1/2)/arctan(1/3)*Stephens 8299673752725821 m007 (-1/4*gamma+3/5)/(-3*gamma-6*ln(2)+2/5) 8299673769245017 m001 (gamma+ln(3))/(ErdosBorwein+ThueMorse) 8299673777853324 m001 (-Backhouse+Cahen)/(Catalan-Ei(1)) 8299673807019233 m005 (1/2*Catalan-1/8)/(7/12*Zeta(3)-3/10) 8299673845553376 r002 34th iterates of z^2 + 8299673859489468 r005 Im(z^2+c),c=-4/7+17/103*I,n=17 8299673876092630 a007 Real Root Of 331*x^4-369*x^3-175*x^2-885*x-982 8299673892202023 a007 Real Root Of 675*x^4-180*x^3-281*x^2-833*x-921 8299673892390617 m001 sin(1/12*Pi)+HardyLittlewoodC4^Weierstrass 8299673892955604 h001 (-2*exp(4)-1)/(-9*exp(5)+8) 8299673934286565 r005 Im(z^2+c),c=-45/38+7/62*I,n=52 8299673947730079 m005 (1/2*gamma-1/11)/(1/12*Pi-1/2) 8299673958695584 a007 Real Root Of 912*x^4-100*x^3+478*x^2+240*x-620 8299673965175568 m001 (Paris-Totient)/(Zeta(1/2)+Otter) 8299673976100355 m001 (exp(1/Pi)+2/3)/(-cos(1)+3) 8299673982339319 a007 Real Root Of 756*x^4-519*x^3+850*x^2+306*x-987 8299673996713243 a003 sin(Pi*33/104)*sin(Pi*51/113) 8299674000171935 r008 a(0)=8,K{-n^6,9-3*n^3-4*n^2-7*n} 8299674004812756 a007 Real Root Of -952*x^4+586*x^3+543*x^2+510*x+836 8299674004928413 r009 Re(z^3+c),c=-11/78+33/56*I,n=37 8299674016065798 r005 Re(z^2+c),c=-29/34+3/59*I,n=41 8299674022606845 p004 log(36161/36131) 8299674036281179 r004 Re(z^2+c),c=5/24+1/14*I,z(0)=I,n=2 8299674039282687 a007 Real Root Of 35*x^4+255*x^3-399*x^2-839*x+232 8299674048561086 r005 Re(z^2+c),c=-11/8+31/253*I,n=6 8299674083214944 r002 9th iterates of z^2 + 8299674088483560 a007 Real Root Of -217*x^4+656*x^3-60*x^2-392*x+194 8299674111557639 a001 29*14930352^(9/10) 8299674113316762 k002 Champernowne real with 42*n^2+165*n-199 8299674114764425 m005 (1/2*2^(1/2)+5/11)/(1/2*gamma-3/7) 8299674130072459 m002 -1/2-Pi^2+ProductLog[Pi]+Tanh[Pi] 8299674138357564 r005 Im(z^2+c),c=-6/29+46/61*I,n=15 8299674180220012 a007 Real Root Of -645*x^4+587*x^3-369*x^2+52*x+939 8299674194922953 r009 Im(z^3+c),c=-25/122+4/55*I,n=3 8299674209102080 a007 Real Root Of -391*x^4+955*x^3-188*x^2-112*x-138 8299674222364129 l006 ln(3434/7875) 8299674238650881 m001 (GAMMA(3/4)-GAMMA(7/12))/(Niven-Totient) 8299674245532692 m005 (1/2*5^(1/2)+3/4)/(3/5*5^(1/2)+10/11) 8299674260710704 r002 63th iterates of z^2 + 8299674267100977 q001 1274/1535 8299674267187722 m001 1/RenyiParking^2/exp(Kolakoski)^2/BesselJ(1,1) 8299674281954609 a007 Real Root Of 420*x^4-275*x^3-626*x^2-584*x-410 8299674306554361 p004 log(34589/15083) 8299674332347853 a003 sin(Pi*5/109)-sin(Pi*32/75) 8299674348351206 a001 3*(1/2*5^(1/2)+1/2)^29*47^(19/23) 8299674359730193 m001 MinimumGamma^Zeta(1,2)*GaussAGM^Zeta(1,2) 8299674449137601 s002 sum(A195182[n]/(n*pi^n-1),n=1..infinity) 8299674451580797 a007 Real Root Of -175*x^4-125*x^3-858*x^2+427*x+957 8299674458060289 r002 6th iterates of z^2 + 8299674521316861 a007 Real Root Of -680*x^4-305*x^3-390*x^2-265*x+197 8299674536263687 a007 Real Root Of 2*x^4-648*x^3-5*x^2+947*x+418 8299674536606856 r005 Re(z^2+c),c=-11/14+23/195*I,n=49 8299674560349020 a007 Real Root Of 715*x^4-441*x^3+501*x^2+491*x-529 8299674572526587 m001 (gamma+GAMMA(3/4))/(-BesselI(0,2)+OneNinth) 8299674598992829 a007 Real Root Of -606*x^4+794*x^3+917*x^2+493*x+519 8299674611600507 a003 sin(Pi*28/81)*sin(Pi*43/111) 8299674614116875 a001 1597/843*18^(23/45) 8299674664684155 a007 Real Root Of 715*x^4+533*x^3+283*x^2+597*x+266 8299674668408843 a007 Real Root Of -898*x^4+204*x^3-416*x^2-10*x+821 8299674682392560 s002 sum(A189688[n]/(n*pi^n-1),n=1..infinity) 8299674685061920 l006 ln(9479/9558) 8299674685121486 a007 Real Root Of -888*x^4-613*x^3-452*x^2-369*x+76 8299674704067738 h001 (9/10*exp(1)+5/8)/(4/9*exp(2)+5/12) 8299674780032654 m001 BesselJ(0,1)-exp(gamma)^cos(Pi/5) 8299674781235312 m001 Zeta(1,-1)/(OneNinth^Sarnak) 8299674795486522 a007 Real Root Of -990*x^4-69*x^3+316*x^2-8*x+206 8299674810315348 m001 1/GAMMA(19/24)*ln(FeigenbaumD)^2 8299674812144933 a001 233/15127*322^(7/24) 8299674829092557 r005 Im(z^2+c),c=-2/13+5/47*I,n=12 8299674854670150 m001 (ln(gamma)+Zeta(1/2))/(FeigenbaumD-MertensB1) 8299674874866066 m005 (1/3*5^(1/2)-2/3)/(1/12*gamma+9/10) 8299674885438055 r005 Im(z^2+c),c=-23/34+9/65*I,n=51 8299674911069697 r002 59th iterates of z^2 + 8299674936194013 r002 18th iterates of z^2 + 8299674955093563 r002 9th iterates of z^2 + 8299674966408660 m001 (CopelandErdos-exp(Pi))/(Sierpinski+ZetaP(3)) 8299674987252397 a007 Real Root Of 344*x^4+543*x^3+601*x^2-728*x-871 8299674996206443 a007 Real Root Of 923*x^4-818*x^3-692*x^2+706*x+157 8299675016520335 r005 Im(z^2+c),c=-29/26+8/79*I,n=32 8299675023837175 a003 sin(Pi*23/108)/cos(Pi*10/21) 8299675041081198 m005 (1/3*Zeta(3)-1/5)/(5/6*Pi-1/5) 8299675050153475 a007 Real Root Of -854*x^4+327*x^3-127*x^2+198*x+844 8299675057730194 m003 7/12+(3*Sqrt[5])/64-3*Cot[1/2+Sqrt[5]/2] 8299675067078689 r009 Re(z^3+c),c=-1/86+13/18*I,n=34 8299675083439301 m001 1/Catalan*exp(Backhouse)*sqrt(Pi) 8299675093486385 m001 ZetaQ(4)^(ZetaP(2)/Trott) 8299675110455467 r005 Re(z^2+c),c=-7/90+13/17*I,n=22 8299675112699040 r005 Re(z^2+c),c=-59/58+13/41*I,n=2 8299675113616822 k002 Champernowne real with 85/2*n^2+327/2*n-198 8299675144207897 a007 Real Root Of -498*x^4+643*x^3+862*x^2+177*x-872 8299675145869993 a007 Real Root Of 729*x^4+229*x^3+461*x^2+579*x-52 8299675155600791 m005 (1/2*Zeta(3)+1/5)/(8/11*Zeta(3)+1/11) 8299675165082177 l006 ln(1347/3089) 8299675172886960 a007 Real Root Of -245*x^4+867*x^3+611*x^2+43*x-836 8299675178086879 a007 Real Root Of 75*x^4-948*x^3+182*x^2+659*x-156 8299675233964216 r005 Im(z^2+c),c=-17/26+24/125*I,n=38 8299675242164216 r005 Im(z^2+c),c=-7/5+14/89*I,n=7 8299675244093371 m005 (1/3*2^(1/2)+1/10)/(4/11*exp(1)-3/10) 8299675253976669 a007 Real Root Of -205*x^4+328*x^3+68*x^2+829*x+926 8299675254233262 r005 Re(z^2+c),c=4/29+7/18*I,n=32 8299675267206965 m001 exp(Lehmer)^2/FransenRobinson^2*sqrt(2)^2 8299675272229108 r005 Re(z^2+c),c=-7/54+39/47*I,n=57 8299675280266240 a007 Real Root Of -499*x^4+968*x^3+38*x^2-41*x+730 8299675280576678 a007 Real Root Of -945*x^4-276*x^3+428*x^2+928*x+766 8299675280889187 a005 (1/cos(41/171*Pi))^233 8299675281987846 a001 11/377*1346269^(2/27) 8299675323600822 m001 ln(Trott)*FeigenbaumKappa/exp(1)^2 8299675337363321 m001 GAMMA(3/4)/ln(ArtinRank2)^2*Zeta(1,2)^2 8299675341649053 a005 (1/sin(101/228*Pi))^1416 8299675350713767 s002 sum(A033398[n]/(n!^3),n=1..infinity) 8299675362469894 b008 -1/42+Sech[EulerGamma] 8299675399726778 a007 Real Root Of 527*x^4-31*x^3+943*x^2+880*x-187 8299675416212414 a001 610/271443*322^(5/8) 8299675423480718 m005 (1/2*5^(1/2)+8/11)/(2/7*exp(1)-3) 8299675428531458 a007 Real Root Of -458*x^4+369*x^3+417*x^2+953*x+932 8299675499532981 r005 Im(z^2+c),c=-5/8+1/145*I,n=10 8299675516368332 a001 39603/5*3^(2/47) 8299675528624092 r009 Im(z^3+c),c=-9/94+14/17*I,n=57 8299675549230946 a007 Real Root Of 594*x^4-98*x^3+981*x^2+155*x-885 8299675553337290 r005 Re(z^2+c),c=7/44+15/61*I,n=7 8299675560480894 a007 Real Root Of 19*x^4-446*x^3-550*x^2-536*x-330 8299675571792495 a007 Real Root Of -704*x^4+932*x^3-823*x^2-995*x+608 8299675581518273 r005 Im(z^2+c),c=-24/19+1/31*I,n=58 8299675582984579 r002 4th iterates of z^2 + 8299675584675026 a008 Real Root of (6+6*x-x^2-18*x^3) 8299675593713238 a007 Real Root Of 549*x^4-854*x^3-799*x^2+733*x+410 8299675615962479 m004 -E^(Sqrt[5]*Pi)+3000*Pi-Tan[Sqrt[5]*Pi] 8299675627021379 r005 Re(z^2+c),c=-61/56+1/35*I,n=22 8299675633164663 h001 (7/9*exp(1)+1/4)/(5/6*exp(1)+7/12) 8299675653082058 a001 1364/17711*89^(1/60) 8299675654802602 r005 Re(z^2+c),c=-1/26+43/55*I,n=43 8299675660266995 m001 (Psi(2,1/3)+gamma)/(-ln(gamma)+OneNinth) 8299675668394534 r002 44th iterates of z^2 + 8299675699498555 m001 (HardyLittlewoodC3+Niven)/(Pi-arctan(1/3)) 8299675715227646 a007 Real Root Of 289*x^4-28*x^3+148*x^2-324*x-524 8299675763064438 a007 Real Root Of -735*x^4-236*x^3-743*x^2-896*x-18 8299675809008778 a001 21/521*29^(53/59) 8299675836587266 a007 Real Root Of 715*x^4-196*x^3+29*x^2+998*x+357 8299675891298927 q001 3329/4011 8299675901999952 a007 Real Root Of 101*x^4-442*x^3-260*x^2-458*x+764 8299675916859654 a003 cos(Pi*11/98)-sin(Pi*33/101) 8299675922109823 a001 141/101521*322^(17/24) 8299675935251570 m005 (-1/28+1/4*5^(1/2))/(8/9*3^(1/2)-10/11) 8299675945089500 a005 (1/cos(4/149*Pi))^1241 8299675979598088 p004 log(18229/7949) 8299675981009206 m008 (4*Pi^2+2/3)/(1/2*Pi^6+3) 8299675990362852 a002 10^(2/5)+5^(12/11) 8299676001732099 a007 Real Root Of 814*x^4-268*x^3+891*x^2+822*x-471 8299676017953845 a007 Real Root Of 145*x^4-506*x^3+68*x^2+155*x+45 8299676052071225 m001 Robbin*(3^(1/2))^ThueMorse 8299676064252620 m001 (1/3)^(GaussAGM(1,1/sqrt(2))/Artin) 8299676084549648 m001 ln(2^(1/2)+1)/(MadelungNaCl^OneNinth) 8299676084744307 m001 (BesselJ(1,1)-LaplaceLimit)/FeigenbaumD 8299676113916882 k002 Champernowne real with 43*n^2+162*n-197 8299676115364439 r002 14th iterates of z^2 + 8299676121639603 a007 Real Root Of 884*x^4-757*x^3+992*x^2+814*x-860 8299676145783014 l006 ln(3301/7570) 8299676153092497 m001 (GAMMA(19/24)+GaussAGM)/(exp(Pi)+Shi(1)) 8299676155114585 m002 -2-3/Pi^3+Pi^4/Log[Pi] 8299676177053553 m001 (5^(1/2)+LandauRamanujan)/(Trott2nd+ZetaQ(3)) 8299676188606978 m005 (1/3*3^(1/2)+2/11)/(1/2*exp(1)-4/9) 8299676226100011 r002 52th iterates of z^2 + 8299676255801765 m005 (1/2*3^(1/2)-3/11)/(6/11*gamma+2/5) 8299676293207575 a001 1/11*5778^(12/47) 8299676363698910 m005 (1/3*Catalan+1/3)/(9/10*gamma+1/4) 8299676382501836 r005 Im(z^2+c),c=-59/74+1/26*I,n=56 8299676420321729 r005 Im(z^2+c),c=-13/18+4/57*I,n=3 8299676420593007 r002 36th iterates of z^2 + 8299676421191353 g006 Psi(1,2/11)+Psi(1,1/6)+Psi(1,1/4)-Psi(1,2/3) 8299676425175929 m008 (5/6*Pi^5-1/5)/(Pi^5+1) 8299676429062058 r005 Re(z^2+c),c=-119/114+11/36*I,n=7 8299676442949898 r005 Re(z^2+c),c=7/60+27/50*I,n=55 8299676447568608 m001 (2^(1/2)+gamma(1))/(Salem+TreeGrowth2nd) 8299676460564961 r009 Re(z^3+c),c=-11/78+33/56*I,n=43 8299676483519594 a001 39603/89*55^(7/45) 8299676500649594 a008 Real Root of (2+5*x-6*x^2+2*x^3-5*x^4-2*x^5) 8299676537003091 a007 Real Root Of -249*x^4+619*x^3+992*x^2+63*x-159 8299676553000459 a007 Real Root Of 375*x^4-648*x^3+454*x^2+252*x-652 8299676564874702 p003 LerchPhi(1/512,3,493/215) 8299676568180473 m002 -2/Pi^6-Pi^2+Pi^6/Log[Pi] 8299676595774892 m001 (MasserGramain+Paris)/(ln(2)-BesselI(1,2)) 8299676600522396 a007 Real Root Of 122*x^4-844*x^3+201*x^2-311*x-937 8299676606071757 m001 gamma(2)+Sarnak^cos(1) 8299676617237553 m001 exp(Catalan)*GolombDickman^2/GAMMA(19/24) 8299676618131827 p001 sum((-1)^n/(359*n+116)/(6^n),n=0..infinity) 8299676630889064 m001 Weierstrass^(Kolakoski/Champernowne) 8299676697004185 a007 Real Root Of -201*x^4+410*x^3-750*x^2-421*x+497 8299676703055991 a007 Real Root Of 401*x^4-741*x^3-168*x^2-207*x-670 8299676742137722 a007 Real Root Of -926*x^4+332*x^3+877*x^2+571*x+499 8299676751237935 a007 Real Root Of 844*x^4+107*x^3+228*x^2+39*x-464 8299676771013095 a001 11/233*2^(35/43) 8299676773737627 m004 -25*Pi*Cot[Sqrt[5]*Pi]+6*Sin[Sqrt[5]*Pi]^2 8299676781367349 r009 Im(z^3+c),c=-25/48+29/53*I,n=23 8299676812337419 a007 Real Root Of 963*x^4-538*x^3+737*x^2+381*x-956 8299676821834149 l006 ln(1954/4481) 8299676852245649 g006 Psi(1,3/11)+Psi(1,4/9)-Psi(1,9/11)-Psi(1,1/10) 8299676898222940 q001 2055/2476 8299676933620795 a007 Real Root Of 913*x^4-642*x^3+36*x^2+623*x-308 8299676943969060 m001 GAMMA(5/6)^2/exp(Salem)^2/Zeta(1/2) 8299677022411623 m009 (1/2*Pi^2-2/3)/(24*Catalan+3*Pi^2-1/6) 8299677028588377 a007 Real Root Of 273*x^4-279*x^3-117*x^2-185*x-362 8299677043494688 a007 Real Root Of -616*x^4+420*x^3+981*x^2-249*x-350 8299677060739794 m001 (1/3)^(exp(-1/2*Pi)/GAMMA(3/4)) 8299677114216942 k002 Champernowne real with 87/2*n^2+321/2*n-196 8299677122949409 m001 1/GAMMA(5/24)^2*ln(TwinPrimes)/sin(Pi/12) 8299677138832429 r009 Re(z^3+c),c=-5/122+16/31*I,n=2 8299677148186049 m001 Pi*2^(1/2)/GAMMA(3/4)/cos(1/12*Pi)/ZetaP(2) 8299677171095561 p002 log(11^(7/4)+12^(10/3)) 8299677222246553 r002 64th iterates of z^2 + 8299677260474219 r005 Im(z^2+c),c=-45/122+37/62*I,n=50 8299677295666231 a007 Real Root Of 781*x^4+105*x^3+357*x^2-291*x-798 8299677322329287 h001 (2/3*exp(1)+1/11)/(2/7*exp(2)+2/11) 8299677377470534 a001 1292/930249*322^(17/24) 8299677379583954 r002 47th iterates of z^2 + 8299677381244954 m001 HeathBrownMoroz/ln(5)/Paris 8299677410019114 p001 sum(1/(481*n+243)/n/(2^n),n=1..infinity) 8299677413338658 r009 Im(z^3+c),c=-19/90+34/41*I,n=3 8299677440388421 a007 Real Root Of 49*x^4+408*x^3+41*x^2+317*x+559 8299677507736544 a007 Real Root Of 725*x^4-746*x^3-4*x^2-228*x-957 8299677523597745 m001 1/(3^(1/3))^2*LandauRamanujan/exp(Ei(1))^2 8299677557791632 m001 (cos(Pi/5)+2/3)/(exp(1/exp(1))+1/3) 8299677570020969 r009 Im(z^3+c),c=-1/26+50/59*I,n=31 8299677589804800 a001 6765/4870847*322^(17/24) 8299677593375350 s002 sum(A260925[n]/((3*n)!),n=1..infinity) 8299677603177830 h001 (10/11*exp(1)+9/10)/(4/9*exp(2)+7/9) 8299677616779831 r005 Im(z^2+c),c=33/98+2/35*I,n=23 8299677620783952 a001 17711/12752043*322^(17/24) 8299677625303749 a001 144/103681*322^(17/24) 8299677625963179 a001 121393/87403803*322^(17/24) 8299677626059388 a001 317811/228826127*322^(17/24) 8299677626073425 a001 416020/299537289*322^(17/24) 8299677626075473 a001 311187/224056801*322^(17/24) 8299677626075772 a001 5702887/4106118243*322^(17/24) 8299677626075815 a001 7465176/5374978561*322^(17/24) 8299677626075822 a001 39088169/28143753123*322^(17/24) 8299677626075822 a001 14619165/10525900321*322^(17/24) 8299677626075823 a001 133957148/96450076809*322^(17/24) 8299677626075823 a001 701408733/505019158607*322^(17/24) 8299677626075823 a001 1836311903/1322157322203*322^(17/24) 8299677626075823 a001 14930208/10749853441*322^(17/24) 8299677626075823 a001 12586269025/9062201101803*322^(17/24) 8299677626075823 a001 32951280099/23725150497407*322^(17/24) 8299677626075823 a001 10182505537/7331474697802*322^(17/24) 8299677626075823 a001 7778742049/5600748293801*322^(17/24) 8299677626075823 a001 2971215073/2139295485799*322^(17/24) 8299677626075823 a001 567451585/408569081798*322^(17/24) 8299677626075823 a001 433494437/312119004989*322^(17/24) 8299677626075823 a001 165580141/119218851371*322^(17/24) 8299677626075823 a001 31622993/22768774562*322^(17/24) 8299677626075825 a001 24157817/17393796001*322^(17/24) 8299677626075842 a001 9227465/6643838879*322^(17/24) 8299677626075956 a001 1762289/1268860318*322^(17/24) 8299677626076738 a001 1346269/969323029*322^(17/24) 8299677626082100 a001 514229/370248451*322^(17/24) 8299677626118849 a001 98209/70711162*322^(17/24) 8299677626370728 a001 75025/54018521*322^(17/24) 8299677627456629 m001 Robbin^Ei(1,1)*MasserGramain^Ei(1,1) 8299677628097137 a001 28657/20633239*322^(17/24) 8299677639930121 a001 5473/3940598*322^(17/24) 8299677640883394 m001 (Psi(2,1/3)+Zeta(3))/(-GAMMA(11/12)+Niven) 8299677645238973 a007 Real Root Of -721*x^4+22*x^3+444*x^2+352*x+341 8299677657477605 m001 (GAMMA(7/12)-MadelungNaCl)^FeigenbaumDelta 8299677662292569 r009 Re(z^3+c),c=-13/90+19/31*I,n=35 8299677665475385 m003 -2+Sech[1/2+Sqrt[5]/2]-4*Tan[1/2+Sqrt[5]/2] 8299677693229942 l006 ln(2561/5873) 8299677721034593 a001 4181/3010349*322^(17/24) 8299677723533825 a007 Real Root Of 502*x^4-x^3+411*x^2+577*x-43 8299677746857057 a007 Real Root Of -948*x^4+577*x^3-853*x^2-504*x+949 8299677757441509 a001 8/2207*29^(53/57) 8299677759615300 r002 43th iterates of z^2 + 8299677776352703 m005 (1/2*2^(1/2)-9/11)/(-3/11+2/11*5^(1/2)) 8299677780856766 m002 24*Pi^3+Pi^4-Cosh[Pi] 8299677787555690 a001 38/17*610^(9/44) 8299677788455643 a001 8/321*123^(1/4) 8299677796131262 a007 Real Root Of -613*x^4-593*x^3-541*x^2+3*x+327 8299677797933427 a007 Real Root Of -875*x^4+192*x^3-659*x^2-124*x+876 8299677798409376 m008 (5/6*Pi^6+2/3)/(Pi^4-4/5) 8299677799757101 r009 Re(z^3+c),c=-77/122+1/6*I,n=2 8299677803865652 a007 Real Root Of -286*x^4+423*x^3-36*x^2+296*x-327 8299677825810620 a007 Real Root Of 744*x^4-654*x^3+685*x^2+307*x-944 8299677888480639 a007 Real Root Of -668*x^4-341*x^3-178*x^2+633*x+770 8299677895418330 a007 Real Root Of 266*x^4-657*x^3-280*x^2-88*x-382 8299677900869150 r002 59th iterates of z^2 + 8299677946797348 m004 -4*Sec[Sqrt[5]*Pi]+(125*Pi*Sin[Sqrt[5]*Pi])/3 8299677958527693 m001 Khintchine^2*GaussKuzminWirsing*ln(cos(1))^2 8299677959446238 m005 (1/2*Zeta(3)+1/10)/(9/10*exp(1)+6) 8299677992074780 a007 Real Root Of 791*x^4-475*x^3+913*x^2+895*x-533 8299678004439794 a007 Real Root Of 166*x^4-532*x^3+960*x^2+728*x-440 8299678012870041 a007 Real Root Of -330*x^4+403*x^3-738*x^2+8*x+902 8299678013131081 m001 (2^(1/3))/ln(Backhouse)^2/Zeta(5)^2 8299678016946084 r005 Im(z^2+c),c=-57/74+2/61*I,n=31 8299678020738036 m001 (Ei(1)-BesselI(1,2))/(FeigenbaumMu+Paris) 8299678030359951 m001 Niven/FeigenbaumAlpha/ln(BesselJ(1,1)) 8299678043513690 r002 27th iterates of z^2 + 8299678046816246 h001 (3/8*exp(1)+5/9)/(4/11*exp(1)+10/11) 8299678047328833 a007 Real Root Of 726*x^4-477*x^3+299*x^2+940*x-43 8299678051187837 a005 (1/cos(34/215*Pi))^213 8299678080187298 q001 2836/3417 8299678114517002 k002 Champernowne real with 44*n^2+159*n-195 8299678138156410 a001 13/29*24476^(31/60) 8299678145314074 a001 13/29*3010349^(7/20) 8299678157113242 r005 Re(z^2+c),c=-1/70+40/61*I,n=18 8299678166557749 r005 Im(z^2+c),c=1/46+51/59*I,n=13 8299678202863617 r005 Im(z^2+c),c=-21/16+43/107*I,n=5 8299678206073548 m001 (3^(1/2)-KhinchinLevy)^HardyLittlewoodC4 8299678230700668 l006 ln(3168/7265) 8299678232687221 a001 12238*233^(41/53) 8299678276932919 a001 1597/1149851*322^(17/24) 8299678301677586 r005 Im(z^2+c),c=-31/26+16/105*I,n=44 8299678399407705 a001 7/832040*1346269^(22/27) 8299678471063122 m005 (1/2*gamma+2)/(3/10*Zeta(3)-7/11) 8299678479788091 m001 (Ei(1,1)+LandauRamanujan2nd)^sin(1) 8299678483345236 r002 3th iterates of z^2 + 8299678485760791 h001 (1/10*exp(1)+1/10)/(5/9*exp(2)+3/8) 8299678545403168 a007 Real Root Of 365*x^4-970*x^3+458*x^2-658*x+612 8299678569705108 r005 Im(z^2+c),c=-35/82+7/51*I,n=33 8299678593077691 a007 Real Root Of -956*x^4-277*x^3-73*x^2+15*x+358 8299678595326486 l006 ln(3775/8657) 8299678597788630 m001 (LandauRamanujan+Porter)/(Catalan+Pi^(1/2)) 8299678652491902 m001 sin(1/12*Pi)^OneNinth/(MinimumGamma^OneNinth) 8299678659965546 r002 3th iterates of z^2 + 8299678670185235 m001 exp(1/Pi)^OneNinth/(exp(1/Pi)^ln(2)) 8299678672928128 m005 (13/36+1/4*5^(1/2))/(9/11*gamma+7/11) 8299678676238882 a001 34111385/6*76^(13/21) 8299678682871128 r009 Im(z^3+c),c=-9/82+35/43*I,n=53 8299678709480806 b008 -13+Sqrt[17]+EulerGamma 8299678720845933 a007 Real Root Of 996*x^4+767*x^3+722*x^2+956*x+262 8299678733947797 r002 30th iterates of z^2 + 8299678736082464 m005 (1/2*5^(1/2)-1/6)/(5/7*3^(1/2)-1/11) 8299678740172888 r005 Re(z^2+c),c=-9/56+49/59*I,n=53 8299678742297464 a007 Real Root Of 797*x^4-53*x^3+98*x^2+547*x-22 8299678743703156 m001 1/(2^(1/3))^2*Khintchine^2*ln(sin(Pi/12))^2 8299678750169477 m002 Pi^8/Log[Pi]+Cosh[Pi]/ProductLog[Pi] 8299678751462665 a007 Real Root Of -817*x^4+936*x^3+225*x^2+826*x-988 8299678773429821 a007 Real Root Of 432*x^4-17*x^3+826*x^2+784*x-133 8299678784665298 a007 Real Root Of -775*x^4+275*x^3-732*x^2-187*x+874 8299678807941937 m005 (1/2*Zeta(3)+6/11)/(9/11*gamma+10/11) 8299678811590133 r009 Im(z^3+c),c=-5/23+8/11*I,n=47 8299678822870110 a005 (1/sin(86/237*Pi))^743 8299678827927444 a007 Real Root Of -813*x^4+795*x^3-434*x^2-816*x+462 8299678846288367 a007 Real Root Of 685*x^4-435*x^3+277*x^2+679*x-201 8299678858935468 l006 ln(4382/10049) 8299678859967878 a007 Real Root Of -157*x^4-592*x^3-620*x^2+136*x+276 8299678874742273 a007 Real Root Of 645*x^4+52*x^3+850*x^2+342*x-578 8299678883451491 a007 Real Root Of 778*x^4-960*x^3+643*x^2+659*x-814 8299678890293066 m001 (Porter+ZetaP(3))/(ln(2)+GAMMA(17/24)) 8299678892620700 h001 (-7*exp(3/2)+6)/(-8*exp(-1)+6) 8299678918597124 m001 (cos(1)+LambertW(1))/(ln(3)+CopelandErdos) 8299678925691011 a001 55/123*29^(9/49) 8299678938868860 a007 Real Root Of 747*x^4-646*x^3-765*x^2-393*x-523 8299678980619986 m001 (MertensB3+ThueMorse)/(Catalan+KhinchinLevy) 8299679002530108 a007 Real Root Of 626*x^4-96*x^3+764*x^2+87*x-806 8299679003601763 m001 1/ln(BesselJ(0,1))^2*LaplaceLimit^2/exp(1)^2 8299679004278288 a007 Real Root Of -297*x^4-6*x^3-671*x^2+163*x+735 8299679046516419 h005 exp(cos(Pi*13/43)/cos(Pi*21/43)) 8299679083490188 r008 a(0)=8,K{-n^6,-3-9*n^3+9*n^2-2*n} 8299679107672453 r009 Im(z^3+c),c=-77/122+22/43*I,n=21 8299679110304918 a001 3571/55*2584^(1/32) 8299679114817062 k002 Champernowne real with 89/2*n^2+315/2*n-194 8299679122203839 a007 Real Root Of -25*x^4+314*x^3+431*x^2+938*x+673 8299679195518051 a007 Real Root Of 445*x^4-924*x^3-965*x^2-5*x+986 8299679250934428 a007 Real Root Of 980*x^4-78*x^3-482*x^2+320*x+88 8299679270439244 r002 2th iterates of z^2 + 8299679273321907 a007 Real Root Of 759*x^4+590*x^3+697*x^2-435*x-864 8299679279030968 r005 Im(z^2+c),c=35/94+17/49*I,n=23 8299679288502749 a001 377/710647*322^(7/8) 8299679299791258 a007 Real Root Of 56*x^4-875*x^3+555*x^2+58*x-861 8299679347684722 m001 (PisotVijayaraghavan-Robbin)/(3^(1/3)-Cahen) 8299679382568333 a007 Real Root Of 426*x^4-468*x^3-170*x^2-80*x-419 8299679395274256 a007 Real Root Of 455*x^4-809*x^3-538*x^2+795*x+352 8299679408101946 m001 BesselI(0,1)/(ErdosBorwein-StolarskyHarborth) 8299679428560789 m005 (1/2*exp(1)-1/8)/(3/4*Catalan+4/5) 8299679455383888 a007 Real Root Of 64*x^4-838*x^3+674*x^2+519*x-543 8299679456784164 r005 Im(z^2+c),c=-7/82+39/47*I,n=28 8299679458710502 a001 3571/46368*89^(1/60) 8299679485167669 m006 (4/5*exp(2*Pi)-1/5)/(1/2/Pi+5) 8299679499280219 a001 2207/8*6765^(22/57) 8299679504114474 a007 Real Root Of -794*x^4+43*x^3-661*x^2-543*x+406 8299679523260663 h001 (1/6*exp(1)+3/4)/(1/11*exp(2)+7/9) 8299679540207137 m001 (-CareFree+Gompertz)/(Si(Pi)+ln(gamma)) 8299679567914569 r002 16th iterates of z^2 + 8299679575885482 a007 Real Root Of 919*x^4-614*x^3+60*x^2+562*x-362 8299679584065800 a001 233/3571*123^(1/20) 8299679634397759 m005 (5/6*2^(1/2)-1/4)/(1/4*Pi+1/3) 8299679645320781 m001 ln(GAMMA(1/3))^2/Conway*GAMMA(11/12)^2 8299679701607843 m001 (OneNinth+Paris)/(Ei(1,1)-DuboisRaymond) 8299679705760385 a007 Real Root Of 865*x^4+546*x^3+984*x^2+411*x-435 8299679748162398 r002 9th iterates of z^2 + 8299679752060355 a007 Real Root Of 868*x^4-618*x^3-139*x^2+362*x-369 8299679773729214 m001 (ZetaP(2)+ZetaQ(2))/(Pi+Otter) 8299679783388717 a007 Real Root Of -608*x^4+818*x^3-416*x^2-625*x+524 8299679796781355 a007 Real Root Of 193*x^4-812*x^3-739*x^2-622*x-563 8299679841914455 b008 Pi^(-1)+9*Sech[1/2] 8299679877397082 a001 76/28657*34^(11/34) 8299679896793686 m001 (Chi(1)+cos(1))/(ErdosBorwein+ZetaQ(2)) 8299679909816818 a007 Real Root Of 580*x^4-368*x^3+624*x^2+15*x-903 8299679921857689 r005 Im(z^2+c),c=-5/11+7/50*I,n=29 8299679932113665 m001 (Zeta(5)-gamma)/(-ln(5)+GAMMA(11/12)) 8299679955605850 r009 Re(z^3+c),c=-1/31+17/22*I,n=24 8299679962427500 m001 Psi(2,1/3)^Zeta(1,2)/FransenRobinson 8299680000043837 r005 Re(z^2+c),c=-5/6+51/245*I,n=33 8299680013944209 a001 9349/121393*89^(1/60) 8299680015472194 a007 Real Root Of -344*x^4+732*x^3+935*x^2+2*x-901 8299680022844852 r002 6th iterates of z^2 + 8299680041963178 a008 Real Root of (-5+4*x-5*x^2+4*x^3+x^4+6*x^5) 8299680042098343 r005 Re(z^2+c),c=-1/11+53/62*I,n=14 8299680052147900 p001 sum(1/(507*n+122)/(16^n),n=0..infinity) 8299680060859099 m005 (1/2*Pi-4/9)/(5/9*2^(1/2)+4/7) 8299680075566808 m008 (1/2*Pi^4-3/4)/(3/5*Pi^4-2/3) 8299680090288949 a007 Real Root Of 914*x^4-554*x^3+752*x^2+362*x-968 8299680094951715 a001 844/10959*89^(1/60) 8299680106770551 a001 64079/832040*89^(1/60) 8299680114074993 a001 39603/514229*89^(1/60) 8299680115117122 k002 Champernowne real with 45*n^2+156*n-193 8299680118892131 a007 Real Root Of -576*x^4+851*x^3+674*x^2+297*x-924 8299680120284988 m001 KhinchinLevy^Stephens/(GAMMA(13/24)^Stephens) 8299680141131300 a007 Real Root Of 632*x^4-764*x^3-989*x^2-173*x-199 8299680145017107 a001 15127/196418*89^(1/60) 8299680146587613 a007 Real Root Of -464*x^4+408*x^3+419*x^2+510*x-725 8299680150114605 m005 (1/2*Zeta(3)-7/10)/(1/2*exp(1)-1/6) 8299680161801569 a007 Real Root Of -762*x^4+351*x^3+312*x^2-298*x+100 8299680181599039 a007 Real Root Of -94*x^4+921*x^3-456*x^2-216*x+706 8299680214686655 a003 sin(Pi*12/79)/sin(Pi*14/75) 8299680235853397 m005 (1/3*Pi+1/12)/(1/6*exp(1)+10/11) 8299680242359153 r009 Re(z^3+c),c=-33/64+41/64*I,n=13 8299680247328436 r009 Im(z^3+c),c=-9/82+37/46*I,n=31 8299680295586828 m001 (-Kolakoski+Tribonacci)/(1+sin(1/12*Pi)) 8299680303226420 m001 (3^(1/3)-cos(1/12*Pi))/(gamma(3)-Stephens) 8299680357097512 a001 5778/75025*89^(1/60) 8299680409721706 m001 1/ln(Lehmer)/GaussAGM(1,1/sqrt(2))/exp(1) 8299680420291082 m001 1/sinh(1)^2/Trott/ln(sqrt(5)) 8299680450730308 m001 (2^(1/3)-Zeta(5))/(HeathBrownMoroz+Khinchin) 8299680455074873 a007 Real Root Of 846*x^4+558*x^3-145*x^2-703*x-566 8299680485119893 a007 Real Root Of 246*x^4-175*x^3+397*x^2+222*x-306 8299680498348666 l006 ln(607/1392) 8299680539587012 r005 Re(z^2+c),c=-63/74+23/45*I,n=3 8299680540225975 a007 Real Root Of -224*x^4+867*x^3-478*x^2-275*x+703 8299680547426740 m001 (Pi-Conway)/(FeigenbaumKappa+Thue) 8299680549939036 m001 cos(1/5*Pi)-gamma(2)^Gompertz 8299680572835896 a007 Real Root Of -404*x^4-71*x^3+834*x^2+754*x-968 8299680613810571 a007 Real Root Of 175*x^4-867*x^3+269*x^2+588*x-276 8299680619101064 m001 (Mills+TwinPrimes)/(Si(Pi)+polylog(4,1/2)) 8299680623738101 m001 Chi(1)^(OrthogonalArrays/MertensB3) 8299680658480930 r005 Re(z^2+c),c=31/118+22/61*I,n=52 8299680659442136 a007 Real Root Of -559*x^4+996*x^3+848*x^2+409*x+590 8299680672068623 r002 34th iterates of z^2 + 8299680691209616 r002 3th iterates of z^2 + 8299680696218179 a007 Real Root Of 845*x^4-575*x^3-112*x^2-674*x+57 8299680704314598 m001 BesselJ(0,1)*(Shi(1)+Trott2nd) 8299680712982013 m001 1/exp(GAMMA(5/24))*LaplaceLimit*Zeta(7)^2 8299680733568918 m001 1/Paris*Artin*exp(cosh(1))^2 8299680751138838 m009 (1/5*Psi(1,1/3)-1/5)/(3/5*Psi(1,3/4)+2/3) 8299680771843811 r005 Re(z^2+c),c=-67/82+5/37*I,n=61 8299680774959321 a007 Real Root Of 665*x^4-183*x^3+122*x^2+828*x+183 8299680792619578 r009 Re(z^3+c),c=-17/122+26/45*I,n=25 8299680797459637 m001 1/GolombDickman/ErdosBorwein/ln(sqrt(2))^2 8299680800236921 m001 (Grothendieck-PisotVijayaraghavan)/Psi(2,1/3) 8299680821096006 a007 Real Root Of -677*x^4+833*x^3+182*x^2-411*x+331 8299680843089544 b008 ArcCsc[193/16] 8299680843564653 m001 (BesselJ(0,1)-BesselK(0,1))/PrimesInBinary 8299680852049021 r005 Re(z^2+c),c=11/32+13/34*I,n=28 8299680857427996 m001 (Porter+Totient)/(ln(5)+Pi^(1/2)) 8299680881765823 m001 (HardHexagonsEntropy+Paris)/(2^(1/3)+cos(1)) 8299680955287648 a007 Real Root Of 114*x^4+391*x^3+689*x^2+99*x-223 8299680985493020 m001 1/Paris^2*Champernowne^2*exp(Riemann3rdZero)^2 8299681002222278 a003 sin(Pi*2/111)/cos(Pi*29/111) 8299681006230479 h001 (2/5*exp(1)+7/10)/(5/8*exp(1)+5/11) 8299681015387160 r009 Im(z^3+c),c=-25/48+29/53*I,n=26 8299681016401633 a007 Real Root Of -981*x^4-94*x^3-598*x^2+104*x+910 8299681061107641 r004 Re(z^2+c),c=5/38+7/11*I,z(0)=exp(7/8*I*Pi),n=2 8299681079486714 m006 (2/3*exp(2*Pi)-3/4)/(4/5*exp(2*Pi)+5/6) 8299681079728154 m001 (CareFree-Si(Pi))/(-FellerTornier+Niven) 8299681098146958 a007 Real Root Of 63*x^4+431*x^3-649*x^2+916*x-221 8299681107124613 k001 Champernowne real with 139*n+690 8299681107431194 a003 sin(Pi*26/95)/sin(Pi*26/71) 8299681111283947 m001 (2/3-BesselI(0,1)*GAMMA(7/12))/GAMMA(7/12) 8299681115417182 k002 Champernowne real with 91/2*n^2+309/2*n-192 8299681138010669 m001 1/GAMMA(11/12)^2/RenyiParking*ln(Zeta(7))^2 8299681146702646 h001 (3/10*exp(1)+3/8)/(2/11*exp(2)+1/11) 8299681182369708 a007 Real Root Of -526*x^4+262*x^3-406*x^2+165*x+816 8299681189203015 m006 (3*exp(Pi)+1/2)/(5/6*Pi^2+1/5) 8299681190223166 q001 781/941 8299681213650321 m005 (1/2*5^(1/2)-8/9)/(3/7*exp(1)-8/9) 8299681229335943 a007 Real Root Of -312*x^4+861*x^3+246*x^2+399*x+802 8299681237810442 r005 Re(z^2+c),c=-89/82+5/64*I,n=18 8299681272226675 a007 Real Root Of 676*x^4-442*x^3-39*x^2+167*x-408 8299681335182354 r005 Re(z^2+c),c=21/106+17/33*I,n=33 8299681344575554 r002 28th iterates of z^2 + 8299681349439828 s002 sum(A093062[n]/(exp(n)-1),n=1..infinity) 8299681351607170 r002 41th iterates of z^2 + 8299681367891203 s002 sum(A093062[n]/(exp(n)),n=1..infinity) 8299681374891689 s002 sum(A093062[n]/(exp(n)+1),n=1..infinity) 8299681376035168 r005 Im(z^2+c),c=-2/13+5/47*I,n=14 8299681376849127 m001 (Stephens-Trott2nd)/(BesselJ(1,1)-Artin) 8299681383705052 r009 Re(z^3+c),c=-8/13+1/10*I,n=2 8299681410635780 a007 Real Root Of -162*x^4+863*x^3+650*x^2-144*x+3 8299681426090662 m001 GAMMA(2/3)^2/GAMMA(11/12)^2*exp(cos(Pi/5))^2 8299681433497703 m001 (-gamma(1)+GaussAGM)/(Psi(1,1/3)+Chi(1)) 8299681433977320 a007 Real Root Of 80*x^4+732*x^3+593*x^2+237*x+10 8299681437442938 r001 32i'th iterates of 2*x^2-1 of 8299681444579840 a007 Real Root Of -927*x^4+845*x^3-561*x^2-668*x+755 8299681449293086 m001 (exp(1/Pi)+BesselJ(1,1))/(gamma+ln(5)) 8299681476816005 a007 Real Root Of -204*x^4+968*x^3+789*x^2-131*x-2 8299681486369901 a007 Real Root Of -992*x^4-279*x^3-614*x^2+195*x+896 8299681499065101 s002 sum(A030426[n]/(exp(n)+1),n=1..infinity) 8299681507173987 a007 Real Root Of -568*x^4+845*x^3-637*x^2-568*x+720 8299681516017525 s002 sum(A030426[n]/(exp(n)),n=1..infinity) 8299681517868631 r002 43th iterates of z^2 + 8299681533017950 a001 233/24476*322^(3/8) 8299681533274029 r002 3th iterates of z^2 + 8299681539497005 m002 5-E^Pi+2*Log[Pi]*Sinh[Pi] 8299681545642021 s002 sum(A030426[n]/(exp(n)-1),n=1..infinity) 8299681552152437 m005 (1/2*5^(1/2)-3/4)/(2/5*2^(1/2)-5) 8299681558319475 r009 Re(z^3+c),c=-15/106+29/48*I,n=9 8299681566144971 r005 Re(z^2+c),c=31/122+19/54*I,n=64 8299681590560096 a007 Real Root Of 174*x^4-474*x^3+553*x^2+844*x-34 8299681624547469 r009 Im(z^3+c),c=-25/48+29/53*I,n=38 8299681626372671 r009 Re(z^3+c),c=-53/94+5/33*I,n=16 8299681627040528 r009 Im(z^3+c),c=-25/48+29/53*I,n=41 8299681628428562 r009 Im(z^3+c),c=-25/48+29/53*I,n=44 8299681628506034 r009 Im(z^3+c),c=-25/48+29/53*I,n=56 8299681628507225 r009 Im(z^3+c),c=-25/48+29/53*I,n=59 8299681628507639 r009 Im(z^3+c),c=-25/48+29/53*I,n=62 8299681628507960 r009 Im(z^3+c),c=-25/48+29/53*I,n=53 8299681628532217 r009 Im(z^3+c),c=-25/48+29/53*I,n=50 8299681628588582 r009 Im(z^3+c),c=-25/48+29/53*I,n=47 8299681636261599 r009 Im(z^3+c),c=-25/48+29/53*I,n=35 8299681661471685 a007 Real Root Of 942*x^4+908*x^3+805*x^2+380*x-167 8299681674202070 a007 Real Root Of 462*x^4+596*x^3+464*x^2-724*x-799 8299681678034238 m001 sin(1)^Paris/((2*Pi/GAMMA(5/6))^Paris) 8299681685642810 a007 Real Root Of -835*x^4+914*x^3-278*x^2-663*x+560 8299681698412876 r002 3th iterates of z^2 + 8299681705059242 h001 (3/4*exp(1)+1/7)/(7/8*exp(1)+1/4) 8299681713846020 r009 Im(z^3+c),c=-25/48+29/53*I,n=32 8299681719014744 a007 Real Root Of -899*x^4+847*x^3+690*x^2-685*x-133 8299681731953124 a007 Real Root Of -151*x^4+492*x^3-553*x^2-930*x-38 8299681740065964 a007 Real Root Of 350*x^4-737*x^3-738*x^2-565*x-548 8299681741118509 r002 54th iterates of z^2 + 8299681747556421 a007 Real Root Of -741*x^4-189*x^3-648*x^2-318*x+426 8299681766466347 a003 cos(Pi*1/112)*sin(Pi*29/93) 8299681771981462 r005 Im(z^2+c),c=-47/82+10/59*I,n=12 8299681806715794 r002 2th iterates of z^2 + 8299681810718228 a001 2207/28657*89^(1/60) 8299681812447947 r009 Im(z^3+c),c=-25/48+29/53*I,n=29 8299681824244302 p003 LerchPhi(1/256,1,227/188) 8299681825197074 m001 (GAMMA(5/6)-LaplaceLimit)/(Paris-TwinPrimes) 8299681862780820 r002 13th iterates of z^2 + 8299681872187530 r005 Im(z^2+c),c=-53/46+3/28*I,n=17 8299681923613328 a007 Real Root Of 788*x^4+469*x^3+355*x^2-243*x-552 8299681934817700 m001 (GaussKuzminWirsing-cos(1/12*Pi))^ZetaP(2) 8299681966434646 m001 (2^(1/2)-KhinchinHarmonic)/(MertensB2+Otter) 8299681973651382 m001 GaussAGM(1,1/sqrt(2))/(ln(5)^exp(-Pi)) 8299681977929222 l003 tanh(1+22/117) 8299681977929222 l004 tanh(139/117) 8299681985665330 r009 Im(z^3+c),c=-25/46+24/47*I,n=2 8299681996813050 m001 1/KhintchineLevy^2/CareFree^2/ln(TwinPrimes)^2 8299682019396200 p004 log(10831/4723) 8299682020258044 a001 199/196418*987^(36/37) 8299682066665568 a007 Real Root Of 282*x^4-845*x^3-967*x^2-981*x-765 8299682087116724 a001 305/219602*322^(17/24) 8299682088119328 a007 Real Root Of -x^4-830*x^3-27*x^2-510*x-108 8299682091280483 m002 -E^Pi/4+Pi+Pi^2+ProductLog[Pi] 8299682092314891 h001 (1/5*exp(2)+1/12)/(3/5*exp(1)+1/4) 8299682110484848 a007 Real Root Of 10*x^4-251*x^3-125*x^2-983*x-878 8299682115717242 k002 Champernowne real with 46*n^2+153*n-191 8299682117112342 a007 Real Root Of 822*x^4-818*x^3+656*x^2+961*x-512 8299682145821639 r005 Im(z^2+c),c=-19/30+14/103*I,n=28 8299682208901308 a007 Real Root Of 931*x^4-374*x^3+185*x^2+635*x-256 8299682231550700 m005 (1/2*3^(1/2)-1)/(2^(1/2)+1/5) 8299682234661564 b008 1/3+2*ProductLog[Pi^(-1)] 8299682243710041 l006 ln(4116/9439) 8299682244947173 r005 Im(z^2+c),c=-27/50+4/27*I,n=41 8299682257437447 a007 Real Root Of -39*x^4+949*x^3-705*x^2-731*x+440 8299682258178208 m001 ZetaP(4)/(FeigenbaumKappa-BesselI(0,2)) 8299682270692920 a007 Real Root Of 864*x^4-696*x^3-908*x^2-373*x-492 8299682278127266 m001 gamma(2)*(Catalan-Pi^(1/2)) 8299682322819681 a003 sin(Pi*4/109)-sin(Pi*13/33) 8299682345945322 a003 sin(Pi*2/107)/cos(Pi*1/4) 8299682351489081 m001 exp(BesselJ(1,1))^2*CopelandErdos*Zeta(1/2) 8299682398782985 r005 Re(z^2+c),c=-107/126+2/31*I,n=25 8299682410237515 a007 Real Root Of 88*x^4+714*x^3-36*x^2+939*x+913 8299682412674278 m001 (gamma(2)*GAMMA(23/24)-sin(1))/GAMMA(23/24) 8299682434065463 a007 Real Root Of 915*x^4-149*x^3-269*x^2-118*x-432 8299682441339657 a007 Real Root Of 37*x^4+208*x^3-918*x^2-912*x-984 8299682443410105 m001 cosh(1)/ln(Zeta(7))/sqrt(5) 8299682480092987 a007 Real Root Of -888*x^4+984*x^3+447*x^2-488*x+271 8299682508265269 a007 Real Root Of 111*x^4-964*x^3+603*x^2+787*x-366 8299682518802642 r005 Re(z^2+c),c=-47/56+4/43*I,n=33 8299682542199256 r005 Re(z^2+c),c=-85/82+12/53*I,n=48 8299682545629177 l006 ln(3509/8047) 8299682565559803 m005 (1/3*2^(1/2)-1/2)/(Catalan-4/7) 8299682574404047 r005 Im(z^2+c),c=-49/94+30/59*I,n=54 8299682591216314 m004 -(Cos[Sqrt[5]*Pi]^2*ProductLog[Sqrt[5]*Pi]) 8299682592881583 a001 987/1149851*322^(19/24) 8299682651839499 m001 (-Cahen+FeigenbaumB)/(Artin-exp(Pi)) 8299682657540931 r005 Im(z^2+c),c=-19/18+23/247*I,n=12 8299682676851803 m001 5^(1/2)-Zeta(3)^Si(Pi) 8299682676851803 m001 Zeta(3)^Si(Pi)-sqrt(5) 8299682693803721 r005 Im(z^2+c),c=-2/13+5/47*I,n=16 8299682706954314 m001 exp(MadelungNaCl)^2/Bloch/sin(1) 8299682736645880 r005 Im(z^2+c),c=-2/13+5/47*I,n=17 8299682740314279 r005 Im(z^2+c),c=-2/13+5/47*I,n=19 8299682744808369 r005 Im(z^2+c),c=-2/13+5/47*I,n=21 8299682745205435 r005 Im(z^2+c),c=-2/13+5/47*I,n=24 8299682745216823 r005 Im(z^2+c),c=-2/13+5/47*I,n=26 8299682745218773 r005 Im(z^2+c),c=-2/13+5/47*I,n=28 8299682745218807 r005 Im(z^2+c),c=-2/13+5/47*I,n=29 8299682745218820 r005 Im(z^2+c),c=-2/13+5/47*I,n=31 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=33 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=36 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=38 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=40 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=41 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=43 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=45 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=48 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=50 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=53 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=52 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=55 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=57 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=60 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=58 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=62 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=64 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=63 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=61 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=59 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=56 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=54 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=51 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=49 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=46 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=47 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=44 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=42 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=39 8299682745218827 r005 Im(z^2+c),c=-2/13+5/47*I,n=37 8299682745218828 r005 Im(z^2+c),c=-2/13+5/47*I,n=35 8299682745218828 r005 Im(z^2+c),c=-2/13+5/47*I,n=34 8299682745218830 r005 Im(z^2+c),c=-2/13+5/47*I,n=32 8299682745218845 r005 Im(z^2+c),c=-2/13+5/47*I,n=30 8299682745219305 r005 Im(z^2+c),c=-2/13+5/47*I,n=27 8299682745224926 r005 Im(z^2+c),c=-2/13+5/47*I,n=25 8299682745232369 r005 Im(z^2+c),c=-2/13+5/47*I,n=23 8299682745272695 r005 Im(z^2+c),c=-2/13+5/47*I,n=22 8299682746877965 r005 Im(z^2+c),c=-2/13+5/47*I,n=20 8299682755548856 r005 Im(z^2+c),c=-2/13+5/47*I,n=18 8299682771667954 a007 Real Root Of 107*x^4+896*x^3+127*x^2+455*x-436 8299682780798567 g001 GAMMA(7/9,20/91) 8299682787753243 m001 1/exp(Riemann2ndZero)*MertensB1/GAMMA(7/12)^2 8299682807826200 a007 Real Root Of -605*x^4+113*x^3-408*x^2+416*x+978 8299682826127947 a007 Real Root Of -559*x^4+70*x^3+878*x^2+221*x-563 8299682860859293 r005 Im(z^2+c),c=-127/106+11/58*I,n=3 8299682882072436 r004 Re(z^2+c),c=5/46+8/23*I,z(0)=I,n=48 8299682888061506 r005 Im(z^2+c),c=-1/24+19/28*I,n=17 8299682888126893 a008 Real Root of (-9+9*x+2*x^2-3*x^4+7*x^8) 8299682944387429 r009 Re(z^3+c),c=-5/118+49/57*I,n=10 8299682946361933 a007 Real Root Of 310*x^4-832*x^3+605*x^2-987*x+731 8299682962465556 a007 Real Root Of -855*x^4-190*x^3-702*x^2-302*x+530 8299682962662880 a007 Real Root Of 194*x^4-614*x^3+630*x^2+129*x-770 8299682971315163 r009 Re(z^3+c),c=-17/27+10/57*I,n=3 8299682973850788 l006 ln(2902/6655) 8299683011727260 r009 Im(z^3+c),c=-13/24+19/37*I,n=5 8299683025249723 a007 Real Root Of 176*x^4-292*x^3+270*x^2+462*x-53 8299683042591633 m002 -E^Pi+Pi^6/Log[Pi]+Cosh[Pi]*Log[Pi] 8299683056118695 r005 Re(z^2+c),c=-77/106+27/56*I,n=4 8299683081930310 p004 log(31883/13903) 8299683087998486 r001 26i'th iterates of 2*x^2-1 of 8299683091269109 r005 Re(z^2+c),c=7/30+16/49*I,n=14 8299683096297693 r005 Im(z^2+c),c=-2/13+5/47*I,n=15 8299683101329537 a003 sin(Pi*27/98)/sin(Pi*44/119) 8299683101454395 m001 TreeGrowth2nd/exp(RenyiParking)^2*sin(1) 8299683115970904 r005 Im(z^2+c),c=-83/126+5/38*I,n=34 8299683116017302 k002 Champernowne real with 93/2*n^2+303/2*n-190 8299683126189749 a005 (1/cos(23/221*Pi))^1308 8299683131886926 r005 Im(z^2+c),c=-7/102+39/47*I,n=32 8299683151714319 a007 Real Root Of 977*x^4+804*x^3+460*x^2-719*x+56 8299683160150631 m001 (Tetranacci+ZetaP(3))/(Zeta(5)-FeigenbaumMu) 8299683180008399 a007 Real Root Of 475*x^4-13*x^3-119*x^2-699*x-731 8299683191729649 a007 Real Root Of 511*x^4-198*x^3+185*x^2-83*x-552 8299683207241483 a007 Real Root Of 49*x^4-456*x^3-393*x^2-348*x+797 8299683259020738 m001 (-Champernowne+Sarnak)/(GAMMA(5/6)-Si(Pi)) 8299683271671711 m001 Chi(1)/Landau*ZetaQ(2) 8299683287769929 m009 (1/3*Psi(1,3/4)+3)/(1/4*Psi(1,3/4)+4) 8299683304830885 r002 5th iterates of z^2 + 8299683309673909 m001 (GAMMA(17/24)+ArtinRank2)/(2^(1/3)+GAMMA(5/6)) 8299683316139239 a007 Real Root Of -59*x^4-419*x^3+621*x^2+335*x+413 8299683331934645 r005 Im(z^2+c),c=-61/106+9/55*I,n=21 8299683353201769 r005 Im(z^2+c),c=-51/50+23/63*I,n=19 8299683408287214 a001 39603*4181^(25/39) 8299683420426216 m001 (ln(2)/ln(10)+exp(-Pi))^ZetaP(3) 8299683450453442 p001 sum((-1)^n/(328*n+199)/n/(2^n),n=1..infinity) 8299683466699540 a007 Real Root Of 19*x^4+6*x^3+692*x^2+69*x-425 8299683479877385 a007 Real Root Of 710*x^4-272*x^3+800*x^2+350*x-753 8299683484128822 r009 Im(z^3+c),c=-5/54+52/63*I,n=61 8299683502427238 m001 (Pi-Shi(1))/(arctan(1/2)-TravellingSalesman) 8299683505238093 a007 Real Root Of -793*x^4+811*x^3+749*x^2-741*x-291 8299683525941470 m001 (Pi+ln(gamma))/(FeigenbaumD+TreeGrowth2nd) 8299683526609960 m001 exp(1/Pi)^(arctan(1/3)/ln(gamma)) 8299683527215229 m001 (Zeta(3)-ln(5))/(FeigenbaumKappa-Mills) 8299683534113780 r008 a(0)=8,K{-n^6,30+2*n^3-11*n^2-26*n} 8299683534215187 m001 1/exp(MinimumGamma)^2/Artin/sqrt(3) 8299683554525032 a003 cos(Pi*21/115)*sin(Pi*23/51) 8299683605091115 r005 Re(z^2+c),c=13/106+11/20*I,n=25 8299683619568795 m001 (Zeta(3)+gamma(3))/(MinimumGamma-Trott) 8299683628591334 l006 ln(2295/5263) 8299683634484575 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)-sin(1/5*Pi)-Rabbit 8299683704765211 a007 Real Root Of -986*x^4+603*x^3+826*x^2+880*x+974 8299683738719120 p004 log(20113/5) 8299683744128395 s001 sum(exp(-Pi/3)^(n-1)*A163971[n],n=1..infinity) 8299683761259600 m005 (1/2*exp(1)-3)/(4/7*Pi+2/11) 8299683782724881 m001 (-Sarnak+Sierpinski)/(PlouffeB-exp(1)) 8299683793424593 s002 sum(A054692[n]/(n^2*exp(n)-1),n=1..infinity) 8299683795067022 m003 3/2+Sqrt[5]/32+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/64 8299683811439768 a007 Real Root Of 694*x^4-390*x^3+665*x^2+139*x-895 8299683814235197 m001 (HardyLittlewoodC5+Otter*ZetaP(4))/ZetaP(4) 8299683839437867 r002 21th iterates of z^2 + 8299683871127761 a005 (1/cos(15/209*Pi))^1789 8299683884474032 p004 log(34057/14851) 8299683915751652 r002 24th iterates of z^2 + 8299683952680976 a003 cos(Pi*13/69)/sin(Pi*55/111) 8299683962247472 r005 Im(z^2+c),c=-41/66+9/56*I,n=38 8299683972670900 a005 (1/sin(50/121*Pi))^1586 8299683983005911 a007 Real Root Of -270*x^4+90*x^3+184*x^2+882*x+72 8299684017741774 h001 (7/11*exp(1)+7/10)/(3/4*exp(1)+8/9) 8299684030372481 m001 Pi*(BesselJ(0,1)-Magata) 8299684033312318 a001 4181/2207*18^(23/45) 8299684044772825 m005 (1/3*2^(1/2)+2/5)/(5/8*Catalan-4/7) 8299684048224065 a001 2584/3010349*322^(19/24) 8299684053493883 m001 (Mills-Riemann2ndZero)^Rabbit 8299684082212144 m005 (3*Pi+1/5)/(Catalan-4/5) 8299684100807943 m001 (exp(1)-sin(1/5*Pi))/(Pi^(1/2)+Kolakoski) 8299684105633000 l006 ln(3983/9134) 8299684116317362 k002 Champernowne real with 47*n^2+150*n-189 8299684170293692 m001 ln(GAMMA(1/3))/GAMMA(1/24)^2*arctan(1/2) 8299684200930923 a003 cos(Pi*14/81)*sin(Pi*8/19) 8299684213489145 r005 Im(z^2+c),c=-5/4+17/242*I,n=5 8299684251492456 p003 LerchPhi(1/25,1,260/211) 8299684260555672 a001 6765/7881196*322^(19/24) 8299684281783557 a007 Real Root Of -934*x^4+454*x^3-465*x^2-29*x+999 8299684290158866 m001 FransenRobinson^LambertW(1)-Psi(1,1/3) 8299684291534436 a001 17711/20633239*322^(19/24) 8299684296054176 a001 46368/54018521*322^(19/24) 8299684296713598 a001 233/271444*322^(19/24) 8299684296809806 a001 317811/370248451*322^(19/24) 8299684296823843 a001 832040/969323029*322^(19/24) 8299684296825891 a001 2178309/2537720636*322^(19/24) 8299684296826189 a001 5702887/6643838879*322^(19/24) 8299684296826233 a001 14930352/17393796001*322^(19/24) 8299684296826239 a001 39088169/45537549124*322^(19/24) 8299684296826240 a001 102334155/119218851371*322^(19/24) 8299684296826240 a001 267914296/312119004989*322^(19/24) 8299684296826240 a001 701408733/817138163596*322^(19/24) 8299684296826240 a001 1836311903/2139295485799*322^(19/24) 8299684296826240 a001 4807526976/5600748293801*322^(19/24) 8299684296826240 a001 12586269025/14662949395604*322^(19/24) 8299684296826240 a001 20365011074/23725150497407*322^(19/24) 8299684296826240 a001 7778742049/9062201101803*322^(19/24) 8299684296826240 a001 2971215073/3461452808002*322^(19/24) 8299684296826240 a001 1134903170/1322157322203*322^(19/24) 8299684296826240 a001 433494437/505019158607*322^(19/24) 8299684296826240 a001 165580141/192900153618*322^(19/24) 8299684296826241 a001 63245986/73681302247*322^(19/24) 8299684296826243 a001 24157817/28143753123*322^(19/24) 8299684296826260 a001 9227465/10749957122*322^(19/24) 8299684296826374 a001 3524578/4106118243*322^(19/24) 8299684296827156 a001 1346269/1568397607*322^(19/24) 8299684296832518 a001 514229/599074578*322^(19/24) 8299684296869266 a001 196418/228826127*322^(19/24) 8299684297121143 a001 75025/87403803*322^(19/24) 8299684298847530 a001 28657/33385282*322^(19/24) 8299684307885470 m004 5+(15*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi])/2 8299684310680365 a001 10946/12752043*322^(19/24) 8299684332227442 p003 LerchPhi(1/8,4,21/20) 8299684336319488 a007 Real Root Of 564*x^4-650*x^3-905*x^2-199*x-181 8299684340878165 r002 25th iterates of z^2 + 8299684391783822 a001 4181/4870847*322^(19/24) 8299684404384063 m001 MadelungNaCl/exp(FeigenbaumB)/Catalan 8299684410228503 a003 cos(Pi*2/21)*cos(Pi*17/103) 8299684410917371 m001 (Robbin+Thue)/(1+FeigenbaumB) 8299684415940964 a007 Real Root Of -849*x^4+846*x^3+547*x^2-114*x-363 8299684469409586 m005 (1/3*Catalan+2/9)/(3/4*Pi+4) 8299684470998902 m002 2/E^Pi+(E^Pi*Tanh[Pi])/Pi^3 8299684471994606 r002 8th iterates of z^2 + 8299684477232080 a007 Real Root Of 77*x^4-491*x^3-243*x^2-405*x-486 8299684483894918 a007 Real Root Of -805*x^4-259*x^3-437*x^2+376*x+847 8299684504198672 r009 Re(z^3+c),c=-11/70+33/47*I,n=63 8299684506767204 a007 Real Root Of -447*x^4+820*x^3+657*x^2-145*x+108 8299684511759519 a005 (1/sin(103/219*Pi))^1015 8299684542586750 q001 2631/3170 8299684563961805 a008 Real Root of (-5+6*x+6*x^2+9*x^4+7*x^8) 8299684629776272 m005 (1/2*Catalan+4/11)/(4/7*2^(1/2)+2/11) 8299684636971711 r009 Im(z^3+c),c=-3/46+38/45*I,n=5 8299684639624310 a007 Real Root Of 346*x^4-908*x^3+330*x^2+508*x-489 8299684676658614 a007 Real Root Of -199*x^4-471*x^3-452*x^2+556*x+49 8299684708809586 r005 Im(z^2+c),c=-15/14+23/57*I,n=4 8299684722218969 a005 (1/cos(25/158*Pi))^302 8299684737800828 m001 1/exp(Robbin)^2/Si(Pi)/sqrt(3) 8299684753795618 g006 -Psi(1,3/10)-Psi(1,1/8)-Psi(1,4/5)-Psi(1,2/3) 8299684754217456 l006 ln(1688/3871) 8299684762752064 r009 Re(z^3+c),c=-29/74+35/57*I,n=58 8299684785108365 m001 1/2*LandauRamanujan/Pi*GAMMA(5/6)/Zeta(1,-1) 8299684792882850 r002 6th iterates of z^2 + 8299684797617545 a007 Real Root Of 100*x^4-268*x^3+88*x^2-37*x-292 8299684802816066 r002 15th iterates of z^2 + 8299684832458560 r002 37th iterates of z^2 + 8299684846371142 s002 sum(A196237[n]/(16^n-1),n=1..infinity) 8299684860003201 a007 Real Root Of 341*x^4-546*x^3-615*x^2-543*x-501 8299684947675184 a001 1597/1860498*322^(19/24) 8299684952316987 a007 Real Root Of -209*x^4+903*x^3+260*x^2-240*x-397 8299684971430443 a007 Real Root Of 516*x^4+187*x^3-923*x^2-212*x+460 8299684972670493 m001 ArtinRank2^exp(1/exp(1))+CopelandErdos 8299684981576880 m001 GlaisherKinkelin*DuboisRaymond*exp(Zeta(3)) 8299685034831349 m001 BesselJ(1,1)*(2^(1/2)+Bloch) 8299685041223480 a007 Real Root Of -656*x^4+161*x^3+226*x^2+539*x+695 8299685043282142 m002 -Pi^4+Pi^4*Csch[Pi]+6*Tanh[Pi] 8299685081418236 m001 (FeigenbaumD+Mills)/(Totient-Thue) 8299685101836818 m001 Grothendieck^Cahen/(Grothendieck^cos(1/12*Pi)) 8299685103930761 m005 (1/2*Pi-2)/(9/11*3^(1/2)-9/10) 8299685114753113 p003 LerchPhi(1/10,7,17/23) 8299685116617422 k002 Champernowne real with 95/2*n^2+297/2*n-188 8299685144699160 a007 Real Root Of 911*x^4-468*x^3-115*x^2+61*x-570 8299685181118617 r005 Re(z^2+c),c=27/64+17/50*I,n=41 8299685185740313 m001 GaussAGM/(Ei(1)^ZetaQ(3)) 8299685202453334 a007 Real Root Of -684*x^4-535*x^3+149*x^2+512*x+341 8299685204968286 m001 TwinPrimes+exp(-1/2*Pi)^GAMMA(5/6) 8299685204968286 m001 exp(-1/2*Pi)^GAMMA(5/6)+TwinPrimes 8299685224398207 a007 Real Root Of -261*x^4+882*x^3-99*x^2+807*x-982 8299685228953716 a007 Real Root Of 784*x^4+20*x^3+448*x^2+440*x-304 8299685233466235 a007 Real Root Of 729*x^4+295*x^3+792*x^2+695*x-146 8299685238667968 a007 Real Root Of 661*x^4-783*x^3-481*x^2-141*x-547 8299685293041413 a003 sin(Pi*24/85)/sin(Pi*33/86) 8299685321571624 m001 1/ln(FeigenbaumC)^2/Paris^2/Tribonacci^2 8299685357109538 a007 Real Root Of 63*x^4-818*x^3+230*x^2-247*x-861 8299685371617362 a007 Real Root Of 878*x^4-943*x^3-938*x^2+461*x+73 8299685407556305 a001 5473/2889*18^(23/45) 8299685409266120 a007 Real Root Of 931*x^4+298*x^3+388*x^2+643*x-5 8299685423855274 m001 (LambertW(1)+GAMMA(23/24))/(Porter+ZetaP(2)) 8299685425480982 m001 arctan(1/2)*Niven^2*ln(cos(1)) 8299685464370693 m002 -Pi^2+Pi^6/Log[Pi]-Log[Pi]/Pi^6 8299685475199340 s001 sum(exp(-Pi)^(n-1)*A014987[n],n=1..infinity) 8299685481832292 a007 Real Root Of -992*x^4+332*x^3+198*x^2-158*x+393 8299685518422034 m008 (5*Pi^4+4/5)/(3/5*Pi^4+1/3) 8299685534380903 h001 (2/3*exp(1)+10/11)/(5/12*exp(2)+1/5) 8299685545016289 r005 Im(z^2+c),c=-85/126+35/59*I,n=3 8299685558097408 a001 28657/47*3^(16/57) 8299685565897622 a007 Real Root Of 849*x^4+239*x^3+224*x^2-650*x-960 8299685608055841 a001 28657/15127*18^(23/45) 8299685637308330 a001 75025/39603*18^(23/45) 8299685641576211 a001 98209/51841*18^(23/45) 8299685642198886 a001 514229/271443*18^(23/45) 8299685642289733 a001 1346269/710647*18^(23/45) 8299685642311180 a001 2178309/1149851*18^(23/45) 8299685642345880 a001 208010/109801*18^(23/45) 8299685642583721 a001 317811/167761*18^(23/45) 8299685644213906 a001 121393/64079*18^(23/45) 8299685647846345 a001 3/610*17711^(13/45) 8299685655387363 a001 11592/6119*18^(23/45) 8299685687157754 l006 ln(2769/6350) 8299685704517307 r002 8th iterates of z^2 + 8299685707744424 r009 Re(z^3+c),c=-51/56+26/47*I,n=2 8299685731971374 a001 17711/9349*18^(23/45) 8299685766928506 m005 (1/2*Zeta(3)+2/3)/(4/11*5^(1/2)+5/7) 8299685771884519 m001 (PolyaRandomWalk3D-Salem)/(gamma(3)+Paris) 8299685791538565 a007 Real Root Of 238*x^4-949*x^3-251*x^2-227*x-671 8299685833028007 a007 Real Root Of 151*x^4-879*x^3-49*x^2-192*x+624 8299685842757347 r005 Re(z^2+c),c=-11/10+54/247*I,n=44 8299685854682700 r005 Re(z^2+c),c=31/118+9/25*I,n=23 8299685857322257 m001 1/ln((2^(1/3)))^2*GlaisherKinkelin*sin(Pi/5)^2 8299685864076539 l006 ln(9359/9437) 8299685874157008 a007 Real Root Of -593*x^4+549*x^3-353*x^2+126*x+943 8299685889287765 a007 Real Root Of -959*x^4+842*x^3-448*x^2-629*x+723 8299685890754332 a007 Real Root Of 117*x^4+190*x^3+563*x^2-63*x-387 8299685890856011 a007 Real Root Of -903*x^4+967*x^3+642*x^2+277*x+769 8299685895238744 m005 (1/3*Pi+1/2)/(7/9*5^(1/2)+1/8) 8299685908062297 m001 1/exp(GAMMA(2/3))/(3^(1/3))*arctan(1/2) 8299685917586007 m001 (sin(1)+GAMMA(3/4))/(-OneNinth+Riemann3rdZero) 8299685927785563 a005 (1/sin(76/163*Pi))^785 8299685930039489 a007 Real Root Of -327*x^4-227*x^3+282*x^2+930*x+603 8299685957828622 q001 185/2229 8299685959277214 a001 377/1149851*322^(23/24) 8299685972633795 a007 Real Root Of 82*x^4+664*x^3-204*x^2-536*x+128 8299685998142285 r002 37th iterates of z^2 + 8299686029395232 m005 (1/2*Zeta(3)-3/5)/(5/8*Catalan+2/3) 8299686082236482 r005 Re(z^2+c),c=1/15+28/59*I,n=7 8299686085763881 s002 sum(A151343[n]/(n^2*exp(n)+1),n=1..infinity) 8299686088929784 s002 sum(A151343[n]/(n^2*exp(n)-1),n=1..infinity) 8299686091017845 m002 2+ProductLog[Pi]^(-1)+5*ProductLog[Pi] 8299686096197525 l006 ln(3850/8829) 8299686116917482 k002 Champernowne real with 48*n^2+147*n-187 8299686133349977 a007 Real Root Of -614*x^4-65*x^3-719*x^2-9*x+742 8299686133554018 r005 Im(z^2+c),c=-7/58+5/6*I,n=7 8299686134531622 m005 (1/2*5^(1/2)+4)/(2/11*Catalan+6) 8299686153545573 r005 Re(z^2+c),c=-1/86+45/58*I,n=14 8299686169945776 m001 1/PrimesInBinary/ln(Bloch)*Sierpinski 8299686178974065 h001 (7/9*exp(2)+2/7)/(1/12*exp(2)+1/9) 8299686200015263 r009 Re(z^3+c),c=-7/78+17/32*I,n=3 8299686201005724 r009 Im(z^3+c),c=-9/106+53/63*I,n=3 8299686203631042 m002 -Pi^2+Pi^6/Log[Pi]-ProductLog[Pi]/Pi^6 8299686206840585 m001 (-ln(5)+Porter)/(ln(2)/ln(10)+2^(1/2)) 8299686208637257 r009 Im(z^3+c),c=-7/62+49/60*I,n=61 8299686219979260 b008 -5/2+Cosh[2+Pi] 8299686256886039 a001 6765/3571*18^(23/45) 8299686262207113 r009 Im(z^3+c),c=-31/66+1/25*I,n=42 8299686269687356 m001 (Rabbit-Totient)/(GAMMA(19/24)-PrimesInBinary) 8299686300058260 a001 76/377*13^(16/29) 8299686311034407 r005 Re(z^2+c),c=-5/66+44/53*I,n=59 8299686323929632 r005 Im(z^2+c),c=-31/118+34/49*I,n=7 8299686334382958 m005 (1/3*3^(1/2)+1/8)/(1/4*exp(1)+1/6) 8299686338960673 m001 GAMMA(1/6)/ln(MertensB1)*sqrt(2)^2 8299686355627750 a007 Real Root Of 315*x^4-360*x^3-951*x^2+215*x+533 8299686391621158 m001 (Totient+TwinPrimes)/(GAMMA(2/3)+GAMMA(11/12)) 8299686423018484 a007 Real Root Of 29*x^4-878*x^3+512*x^2+221*x-685 8299686467447238 m005 (1/3*3^(1/2)-1/7)/(7/11*Zeta(3)-6) 8299686494562063 r005 Im(z^2+c),c=-5/62+23/30*I,n=15 8299686577518303 a007 Real Root Of -10*x^4-834*x^3-342*x^2-607*x+673 8299686595646249 m001 (Kac-Magata)/(ReciprocalFibonacci-ZetaQ(3)) 8299686598090453 r002 35th iterates of z^2 + 8299686599807725 m001 (QuadraticClass+ZetaP(2))/(Mills-Porter) 8299686601306963 s001 sum(exp(-Pi/3)^n*A140743[n],n=1..infinity) 8299686602480852 a007 Real Root Of 290*x^4-800*x^3+362*x^2+986*x-26 8299686624330430 r005 Im(z^2+c),c=-65/114+5/33*I,n=34 8299686636305055 a007 Real Root Of 88*x^4-12*x^3+430*x^2-393*x-671 8299686670359725 r002 12th iterates of z^2 + 8299686677137183 r005 Im(z^2+c),c=-2/13+5/47*I,n=13 8299686689470352 b008 7+(5+Pi)^(1/8) 8299686694315475 r005 Im(z^2+c),c=-73/94+1/31*I,n=40 8299686694565050 a007 Real Root Of 935*x^4-838*x^3+279*x^2+953*x-324 8299686738426829 m001 (KomornikLoreti+ZetaQ(2))/(ln(5)-FeigenbaumC) 8299686760890447 m002 24+6*Pi^2*Tanh[Pi] 8299686782314828 a003 cos(Pi*41/92)-sin(Pi*50/101) 8299686783953038 a007 Real Root Of -792*x^4+605*x^3+31*x^2-292*x+458 8299686806762335 r009 Im(z^3+c),c=-69/106+31/60*I,n=3 8299686822974296 s002 sum(A281193[n]/((exp(n)+1)*n),n=1..infinity) 8299686838782285 m001 GAMMA(5/6)^gamma(2)/(GAMMA(5/6)^GAMMA(7/12)) 8299686852169831 r005 Re(z^2+c),c=11/126+26/53*I,n=41 8299686862691406 a007 Real Root Of 312*x^4-140*x^3+448*x^2-404*x-872 8299686878875698 m001 GAMMA(11/12)*ZetaQ(4)+StolarskyHarborth 8299686892031543 a007 Real Root Of 571*x^4-92*x^3-18*x^2-489*x-717 8299686969795206 m002 -Pi^(-6)-Pi^2+Pi^6/Log[Pi] 8299687008571633 m002 -Pi^2+Pi^6/Log[Pi]-Tanh[Pi]/Pi^6 8299687009509786 a007 Real Root Of 389*x^4-294*x^3-214*x^2-572*x-680 8299687014795527 a007 Real Root Of 975*x^4-661*x^3-333*x^2-348*x-900 8299687016244586 m005 (1/3*Pi-1/3)/(8/21+3/14*5^(1/2)) 8299687026098075 a007 Real Root Of -47*x^4+890*x^3-213*x^2+305*x+931 8299687048133039 m005 (1/3*exp(1)-1/10)/(3/5*Zeta(3)+1/4) 8299687050214028 r009 Im(z^3+c),c=-6/31+50/57*I,n=40 8299687067140312 a007 Real Root Of 16*x^4-760*x^3-250*x^2+358*x+302 8299687101160513 m001 1/Robbin^2*MertensB1^2/ln(cosh(1))^2 8299687103588956 a008 Real Root of x^4+12*x^2-22*x-27 8299687117217542 k002 Champernowne real with 97/2*n^2+291/2*n-186 8299687143959822 l006 ln(1081/2479) 8299687181672438 r005 Re(z^2+c),c=-26/31+3/32*I,n=55 8299687196572677 a001 13/29*843^(31/40) 8299687210679778 a007 Real Root Of -952*x^4-152*x^3-130*x^2+114*x+549 8299687233437588 q001 2919/3517 8299687295012971 m001 Grothendieck/(exp(1)^LandauRamanujan) 8299687296871394 a007 Real Root Of -35*x^4-186*x^3+795*x^2-615*x-129 8299687304479389 r005 Im(z^2+c),c=-51/106+37/41*I,n=3 8299687320573058 r009 Re(z^3+c),c=-1/20+19/23*I,n=27 8299687372615761 h001 (1/6*exp(1)+9/10)/(3/11*exp(1)+8/9) 8299687373203798 m001 1/exp(Zeta(3))^2/Si(Pi)/sin(Pi/5) 8299687374938766 m004 10/Pi+25*Pi+Log[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 8299687380236400 r009 Im(z^3+c),c=-7/90+5/6*I,n=37 8299687407835451 m001 Zeta(1,2)^BesselI(0,2)-ZetaQ(2) 8299687443229566 h001 (2/7*exp(2)+9/10)/(3/8*exp(2)+6/7) 8299687459614877 a007 Real Root Of 116*x^4+892*x^3-502*x^2+821*x+937 8299687460884795 m005 (1/2*3^(1/2)-5)/(3/11*Catalan-1/5) 8299687466326806 a005 (1/cos(2/71*Pi))^1127 8299687483154120 m002 6+2*Log[Pi]+Tanh[Pi]/Pi^4 8299687503030647 m005 (1/2*2^(1/2)-2/9)/(-25/16+7/16*5^(1/2)) 8299687513413645 a007 Real Root Of 178*x^4-721*x^3+924*x^2+940*x-353 8299687547801265 r005 Re(z^2+c),c=-113/122+12/41*I,n=26 8299687588539407 m001 (Kac-Shi(1))/(ReciprocalFibonacci+Tribonacci) 8299687596965947 a001 89/39603*199^(15/22) 8299687693000697 r005 Im(z^2+c),c=-2/13+5/47*I,n=11 8299687714866934 m001 (-gamma(1)+TwinPrimes)/(gamma+Zeta(1/2)) 8299687726265622 r005 Re(z^2+c),c=-19/36+28/51*I,n=59 8299687727905700 m005 (1/2*exp(1)+6)/(8/9*Zeta(3)-2/11) 8299687748787935 a007 Real Root Of -731*x^4-119*x^3-583*x^2-268*x+458 8299687784399267 a007 Real Root Of 97*x^4-961*x^3+512*x^2-557*x+613 8299687791177309 a007 Real Root Of 136*x^4-535*x^3-316*x^2+194*x+298 8299687867163525 a007 Real Root Of 38*x^4-659*x^3-51*x^2-158*x+525 8299687875951332 a007 Real Root Of -913*x^4-675*x^3+434*x^2+849*x+453 8299687895292285 m001 (3^(1/2)-FeigenbaumC)/(KhinchinLevy+ZetaQ(3)) 8299687910110270 a007 Real Root Of -206*x^4+996*x^3+69*x^2+145*x+740 8299687910562868 m001 1/ln(Zeta(7))^2/GAMMA(13/24)^2*cosh(1) 8299687937411182 a007 Real Root Of 486*x^4-847*x^3+812*x^2+434*x-914 8299687940943925 a007 Real Root Of 900*x^4-786*x^3-641*x^2-158*x+595 8299687954855640 m005 (1/2*gamma+4/11)/(1/5*Zeta(3)+6/11) 8299687992817022 a007 Real Root Of 503*x^4-141*x^3-146*x^2-16*x-232 8299688001806051 a007 Real Root Of -47*x^4-465*x^3-562*x^2+541*x+373 8299688023764530 r005 Re(z^2+c),c=-5/8+51/122*I,n=13 8299688058945331 b008 E^(-7)+E^(-5/2) 8299688069336518 a007 Real Root Of -436*x^4+378*x^3-377*x^2-190*x+525 8299688070239957 b008 3+Sqrt[6]*LogIntegral[3] 8299688096028606 m005 (1/2*exp(1)+2/11)/(3*gamma+1/8) 8299688107686313 r005 Re(z^2+c),c=5/38+11/56*I,n=17 8299688111728365 m001 (RenyiParking+Salem)/(cos(1/5*Pi)-gamma) 8299688112082238 r009 Re(z^3+c),c=-41/64+9/46*I,n=2 8299688117517602 k002 Champernowne real with 49*n^2+144*n-185 8299688153800157 m001 AlladiGrinstead^(GAMMA(23/24)*Thue) 8299688172154220 a007 Real Root Of 727*x^4-143*x^3-692*x^2-112*x-43 8299688184625499 a001 233/39603*322^(11/24) 8299688194030004 m001 (ln(Pi)-Zeta(1,2))/(MertensB3+Salem) 8299688194392222 r002 6th iterates of z^2 + 8299688203514777 a003 cos(Pi*2/73)-cos(Pi*21/47) 8299688209764347 a007 Real Root Of 468*x^4+40*x^3+198*x^2+814*x+340 8299688216030563 m001 exp(GAMMA(5/24))*OneNinth*GAMMA(7/24)^2 8299688224846294 a007 Real Root Of 387*x^4+131*x^3+344*x^2-457*x-725 8299688229212556 l006 ln(3717/8524) 8299688235848121 r002 51th iterates of z^2 + 8299688265278897 a007 Real Root Of 69*x^4-48*x^3+537*x^2-177*x-577 8299688302329759 s002 sum(A075396[n]/(n!^2),n=1..infinity) 8299688319693761 r005 Re(z^2+c),c=-4/17+40/61*I,n=27 8299688333948198 r002 8th iterates of z^2 + 8299688336342873 a007 Real Root Of 71*x^4+600*x^3+x^2-648*x+683 8299688341132324 s002 sum(A058892[n]/(2^n-1),n=1..infinity) 8299688371534894 r002 5th iterates of z^2 + 8299688374932085 a007 Real Root Of -340*x^4+402*x^3-336*x^2-14*x+611 8299688404705422 m004 -Cosh[Sqrt[5]*Pi]/6+7*ProductLog[Sqrt[5]*Pi] 8299688409845963 r005 Re(z^2+c),c=15/94+13/56*I,n=3 8299688417100570 a007 Real Root Of -48*x^4+502*x^3-278*x^2+910*x-828 8299688437908281 r005 Im(z^2+c),c=-73/66+1/10*I,n=33 8299688443161937 m004 -1/3-6*Csc[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 8299688443703968 a007 Real Root Of -678*x^4+467*x^3+775*x^2+89*x-553 8299688467543304 h001 (3/8*exp(1)+4/9)/(4/9*exp(1)+5/9) 8299688473302805 a007 Real Root Of -69*x^4-503*x^3+542*x^2-321*x-163 8299688473585631 m001 1/GAMMA(23/24)/ln(Backhouse)^2*Zeta(3) 8299688487034166 a007 Real Root Of -890*x^4-818*x^3-994*x^2-586*x+153 8299688521023843 s001 sum(exp(-Pi/2)^n*A082302[n],n=1..infinity) 8299688551502093 a007 Real Root Of 216*x^4-253*x^3-35*x^2-672*x+624 8299688642764593 m001 MadelungNaCl*ln(FeigenbaumDelta)^2*sqrt(2)^2 8299688674264952 l006 ln(2636/6045) 8299688679774540 r005 Re(z^2+c),c=10/29+22/53*I,n=16 8299688689247144 r002 12th iterates of z^2 + 8299688706806374 a001 41/726103*987^(23/59) 8299688714076178 r005 Re(z^2+c),c=5/26+45/59*I,n=4 8299688716023289 m001 (1/2-Zeta(1,2))/sqrt(3) 8299688716023289 m001 -1/3*(-Zeta(1,2)+1/2)*3^(1/2) 8299688733995441 r002 14th iterates of z^2 + 8299688742026553 a003 cos(Pi*21/95)/sin(Pi*29/77) 8299688756161703 r002 18th iterates of z^2 + 8299688757811267 a001 610/710647*322^(19/24) 8299688770541039 a003 cos(Pi*1/85)*cos(Pi*22/117) 8299688779341432 m001 exp(Champernowne)^2*Artin^2*arctan(1/2) 8299688794447421 m001 FransenRobinson*OrthogonalArrays/Weierstrass 8299688810443477 a007 Real Root Of 584*x^4-62*x^3+162*x^2+152*x-298 8299688813599375 a007 Real Root Of -574*x^4+604*x^3+559*x^2-508*x-189 8299688819175961 a007 Real Root Of -229*x^4+507*x^3-117*x^2+383*x+797 8299688842289776 a003 cos(Pi*24/83)+cos(Pi*25/58) 8299688849078404 p004 log(21701/9463) 8299688850155037 m001 ln(Paris)^2*CopelandErdos^2/Ei(1)^2 8299688870611878 m001 GaussAGM^ZetaP(3)*ThueMorse^ZetaP(3) 8299688881536781 m001 1/GAMMA(1/12)/Riemann2ndZero*ln(Zeta(9)) 8299688893287838 r005 Re(z^2+c),c=-115/126+3/34*I,n=26 8299688903160461 r005 Re(z^2+c),c=-17/40+24/41*I,n=12 8299688920847271 r005 Re(z^2+c),c=-29/34+3/59*I,n=39 8299688939926827 r005 Im(z^2+c),c=-7/31+53/59*I,n=4 8299688952731069 r009 Re(z^3+c),c=-51/70+50/53*I,n=2 8299688972988084 s002 sum(A267323[n]/(n*2^n-1),n=1..infinity) 8299688973282837 m005 (1/2*gamma-2/3)/(7/11*2^(1/2)-4/9) 8299688976324252 r005 Im(z^2+c),c=8/27+29/56*I,n=34 8299688985072108 p001 sum((-1)^n/(281*n+195)/n/(25^n),n=1..infinity) 8299689056548842 r005 Im(z^2+c),c=25/66+34/61*I,n=7 8299689068982128 l006 ln(4191/9611) 8299689117817662 k002 Champernowne real with 99/2*n^2+285/2*n-184 8299689126860092 m001 (MasserGramain+MertensB1)/(Psi(1,1/3)+sin(1)) 8299689166180378 a007 Real Root Of 377*x^4-517*x^3-767*x^2-483*x-347 8299689175486964 a003 cos(Pi*16/85)*sin(Pi*34/69) 8299689194615802 m002 (Cosh[Pi]*ProductLog[Pi]*Sinh[Pi]^2)/2 8299689239802418 a007 Real Root Of -913*x^4+952*x^3-129*x^2-286*x+829 8299689245941001 r005 Re(z^2+c),c=-5/6+27/253*I,n=33 8299689255394839 m001 Landau*(MasserGramain+QuadraticClass) 8299689263627318 a001 329/620166*322^(7/8) 8299689304122454 r005 Im(z^2+c),c=-65/114+5/33*I,n=36 8299689331991778 a007 Real Root Of -908*x^4-2*x^3+68*x^2+705*x+968 8299689337987484 a007 Real Root Of 212*x^4+134*x^3+348*x^2-804*x-931 8299689392105169 m001 Cahen-Magata^KomornikLoreti 8299689392262154 a007 Real Root Of 789*x^4-754*x^3-647*x^2-134*x-471 8299689401571152 a007 Real Root Of -752*x^4+663*x^3-577*x^2-292*x+891 8299689440993788 q001 1069/1288 8299689468437861 r009 Re(z^3+c),c=-7/12+31/53*I,n=36 8299689489780159 v003 sum((7/6*n^3+65/6*n+6)*n!/n^n,n=1..infinity) 8299689505466619 a007 Real Root Of -503*x^4+285*x^3+65*x^2+499*x+771 8299689562353286 r009 Re(z^3+c),c=-5/78+26/37*I,n=5 8299689566788171 a007 Real Root Of 882*x^4+579*x^3+190*x^2+533*x+224 8299689599060396 h001 (-exp(3/2)-9)/(-5*exp(1/2)-8) 8299689601435201 r009 Im(z^3+c),c=-65/118+4/31*I,n=24 8299689617486981 m001 (-LandauRamanujan+Totient)/(Catalan-ln(5)) 8299689643598314 a007 Real Root Of -27*x^4+851*x^3+13*x^2-343*x-198 8299689652823220 m004 5/Pi+25*Pi+Log[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 8299689657969441 m001 (Chi(1)-ReciprocalLucas)/FeigenbaumKappa 8299689671645259 r002 11th iterates of z^2 + 8299689697705357 a007 Real Root Of 923*x^4+340*x^3+829*x^2+502*x-398 8299689706280460 r002 38th iterates of z^2 + 8299689729202837 a007 Real Root Of -331*x^4+278*x^3+419*x^2+161*x+161 8299689733045883 m001 FibonacciFactorial/(MinimumGamma-ln(5)) 8299689738097512 l006 ln(1555/3566) 8299689752204084 r005 Im(z^2+c),c=37/126+25/48*I,n=18 8299689792679513 m001 (sin(1/5*Pi)-BesselI(1,1))/(FeigenbaumD-Otter) 8299689810903166 a007 Real Root Of 889*x^4+658*x^3+632*x^2-481 8299689839085870 r005 Re(z^2+c),c=-43/58+5/46*I,n=26 8299689846307974 r005 Re(z^2+c),c=-1/11+13/18*I,n=42 8299689854706569 a001 646/341*18^(23/45) 8299689935109505 p001 sum((-1)^n/(271*n+12)/(10^n),n=0..infinity) 8299689981967659 r005 Re(z^2+c),c=-123/94+4/63*I,n=60 8299689993188885 m001 (ReciprocalLucas-Sierpinski)^Psi(1,1/3) 8299690007288179 r005 Im(z^2+c),c=27/82+16/31*I,n=22 8299690029958933 a007 Real Root Of -982*x^4+521*x^3+208*x^2-379*x+306 8299690061482086 r005 Re(z^2+c),c=-1/15+6/11*I,n=4 8299690064824389 r005 Im(z^2+c),c=-13/19+17/63*I,n=52 8299690086411686 r005 Im(z^2+c),c=13/114+17/18*I,n=3 8299690099091041 a007 Real Root Of 729*x^4-273*x^3-763*x^2+374*x+334 8299690099987051 m001 (gamma(1)+Riemann1stZero)/(ln(gamma)-ln(Pi)) 8299690110777761 a005 (1/sin(94/205*Pi))^790 8299690118117722 k002 Champernowne real with 50*n^2+141*n-183 8299690123851525 a007 Real Root Of 187*x^4-316*x^3+307*x^2-779*x+527 8299690138006614 r009 Re(z^3+c),c=-7/48+33/53*I,n=40 8299690153547963 a007 Real Root Of -719*x^4-193*x^3-568*x^2-70*x+564 8299690199784335 a007 Real Root Of 417*x^4-426*x^3+535*x^2+12*x-800 8299690266390716 a007 Real Root Of -432*x^4+647*x^3+323*x^2-774*x-290 8299690281119312 r009 Im(z^3+c),c=-13/24+20/39*I,n=11 8299690283984905 a001 2/121393*377^(37/56) 8299690285347992 s002 sum(A241427[n]/(pi^n),n=1..infinity) 8299690298189652 a007 Real Root Of -486*x^4+361*x^3-441*x^2+234*x+935 8299690308128851 a007 Real Root Of -504*x^4+919*x^3+241*x^2-479*x+201 8299690317940468 a007 Real Root Of -906*x^4+987*x^3+861*x^2-317*x+138 8299690334147553 m001 (gamma(1)+Artin)/(GolombDickman-MertensB1) 8299690338583546 a007 Real Root Of -536*x^4+125*x^3-850*x^2-151*x+786 8299690338671322 r005 Im(z^2+c),c=7/26+29/54*I,n=14 8299690346603326 m001 ln(Riemann3rdZero)/Lehmer/cos(Pi/5)^2 8299690437805073 a008 Real Root of x^4-48*x^2-159*x-119 8299690453791973 a007 Real Root Of -506*x^4+206*x^3+995*x^2+518*x-993 8299690454290811 m001 HardyLittlewoodC3/(Gompertz^polylog(4,1/2)) 8299690493056855 r005 Re(z^2+c),c=-6/7+3/109*I,n=33 8299690520536789 l006 ln(3584/8219) 8299690521386285 a007 Real Root Of 767*x^4+75*x^3+694*x^2-89*x-873 8299690534135494 a007 Real Root Of 451*x^4+462*x^3+606*x^2-43*x-403 8299690536737267 r005 Re(z^2+c),c=-67/78+22/39*I,n=3 8299690543132830 a007 Real Root Of 23*x^4-683*x^3+275*x^2-636*x+718 8299690548361807 m001 (gamma*FeigenbaumB+ln(gamma))/FeigenbaumB 8299690553852063 m001 gamma(2)^KhinchinHarmonic/(gamma(2)^Niven) 8299690576430495 a007 Real Root Of -872*x^4+604*x^3+629*x^2-7*x+320 8299690602138939 a007 Real Root Of -22*x^4+197*x^3+173*x^2+355*x-516 8299690648273658 s002 sum(A030922[n]/(pi^n+1),n=1..infinity) 8299690652269029 s002 sum(A030922[n]/(pi^n),n=1..infinity) 8299690657816641 s002 sum(A030922[n]/(pi^n-1),n=1..infinity) 8299690663145179 a007 Real Root Of -570*x^4+391*x^3+83*x^2+519*x-441 8299690710691157 a007 Real Root Of -88*x^4+807*x^3-177*x^2-90*x-223 8299690718978379 a001 2584/4870847*322^(7/8) 8299690746894549 m001 ln(GAMMA(5/12))^2/CopelandErdos^2*cos(Pi/5) 8299690763313719 a007 Real Root Of 803*x^4-642*x^3+453*x^2+705*x-475 8299690801536670 a007 Real Root Of -413*x^4+470*x^3+348*x^2+782*x+874 8299690802384096 m001 Cahen^(ln(2)/ln(10)*OrthogonalArrays) 8299690826290157 a007 Real Root Of -20*x^4+391*x^3-326*x^2-367*x+153 8299690862461039 r002 2th iterates of z^2 + 8299690881817951 r002 4th iterates of z^2 + 8299690885318355 r009 Re(z^3+c),c=-5/102+38/47*I,n=9 8299690885333817 a001 377/3*76^(17/39) 8299690903430341 m001 KhintchineLevy*ln(Khintchine)*sin(1)^2 8299690921455968 a007 Real Root Of -447*x^4+213*x^3-845*x^2-606*x+413 8299690929970275 m001 (FeigenbaumD-ReciprocalLucas)/(Thue+ZetaQ(3)) 8299690931311237 a001 2255/4250681*322^(7/8) 8299690950126901 a007 Real Root Of 22*x^4-194*x^3+964*x^2-120*x-885 8299690954207590 a005 (1/cos(13/162*Pi))^496 8299690954608436 m001 Pi*(2^(1/3)+Zeta(3))+BesselI(1,1) 8299690962290184 a001 17711/33385282*322^(7/8) 8299690966809951 a001 15456/29134601*322^(7/8) 8299690967016184 m005 (1/2*5^(1/2)-4)/(3/11*3^(1/2)+3) 8299690967469376 a001 121393/228826127*322^(7/8) 8299690967565585 a001 377/710646*322^(7/8) 8299690967579622 a001 832040/1568397607*322^(7/8) 8299690967581670 a001 726103/1368706081*322^(7/8) 8299690967581969 a001 5702887/10749957122*322^(7/8) 8299690967582012 a001 4976784/9381251041*322^(7/8) 8299690967582019 a001 39088169/73681302247*322^(7/8) 8299690967582019 a001 34111385/64300051206*322^(7/8) 8299690967582020 a001 267914296/505019158607*322^(7/8) 8299690967582020 a001 233802911/440719107401*322^(7/8) 8299690967582020 a001 1836311903/3461452808002*322^(7/8) 8299690967582020 a001 1602508992/3020733700601*322^(7/8) 8299690967582020 a001 12586269025/23725150497407*322^(7/8) 8299690967582020 a001 7778742049/14662949395604*322^(7/8) 8299690967582020 a001 2971215073/5600748293801*322^(7/8) 8299690967582020 a001 1134903170/2139295485799*322^(7/8) 8299690967582020 a001 433494437/817138163596*322^(7/8) 8299690967582020 a001 165580141/312119004989*322^(7/8) 8299690967582020 a001 63245986/119218851371*322^(7/8) 8299690967582023 a001 24157817/45537549124*322^(7/8) 8299690967582039 a001 9227465/17393796001*322^(7/8) 8299690967582153 a001 3524578/6643838879*322^(7/8) 8299690967582936 a001 1346269/2537720636*322^(7/8) 8299690967588297 a001 514229/969323029*322^(7/8) 8299690967625046 a001 196418/370248451*322^(7/8) 8299690967876924 a001 75025/141422324*322^(7/8) 8299690969603321 a001 28657/54018521*322^(7/8) 8299690976405924 m001 (-Magata+ZetaP(2))/(Shi(1)+FeigenbaumAlpha) 8299690980193388 r005 Im(z^2+c),c=-69/110+5/53*I,n=15 8299690981436226 a001 10946/20633239*322^(7/8) 8299690991680546 m006 (4/5*ln(Pi)+1)/(Pi-5/6) 8299690991923468 a007 Real Root Of 94*x^4+842*x^3+487*x^2-114*x+856 8299690992239313 m001 (Zeta(5)-FeigenbaumC)^AlladiGrinstead 8299691007607141 m003 19/2+Sqrt[5]/8+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/32 8299691013103336 a007 Real Root Of 222*x^4-883*x^3+860*x^2+867*x-483 8299691017592495 a001 (5+5^(1/2))^(259/116) 8299691036857183 r005 Re(z^2+c),c=5/36+17/62*I,n=2 8299691059795127 m001 (CareFree+HeathBrownMoroz)/(Thue-ZetaQ(3)) 8299691062540161 a001 4181/7881196*322^(7/8) 8299691069622910 a007 Real Root Of 155*x^4-649*x^3-38*x^2-373*x-728 8299691092808562 m001 (MertensB1+Riemann2ndZero)/(Pi-gamma) 8299691101342170 m009 (2*Catalan+1/4*Pi^2+3/4)/(2*Psi(1,3/4)+1) 8299691109124913 k001 Champernowne real with 140*n+689 8299691118417782 k002 Champernowne real with 101/2*n^2+279/2*n-182 8299691120188337 l006 ln(2029/4653) 8299691129408514 m001 (-Porter+Stephens)/(2^(1/2)-PolyaRandomWalk3D) 8299691139673300 a007 Real Root Of 127*x^4-538*x^3-147*x^2+667*x+287 8299691142955282 m001 (Gompertz+ZetaQ(4))/(BesselJ(0,1)-ln(2)) 8299691156756152 m006 (3/4*exp(2*Pi)-5/6)/(4*ln(Pi)+1/4) 8299691162341680 m005 (1/2*3^(1/2)-10/11)/(7/11*3^(1/2)-7/12) 8299691169830903 a007 Real Root Of 733*x^4+227*x^3-477*x^2-185*x-43 8299691177160172 r005 Re(z^2+c),c=3/64+22/51*I,n=29 8299691229537319 m005 (1/2*3^(1/2)-4/5)/(6/7*2^(1/2)-5/12) 8299691240544156 h001 (8/9*exp(1)+5/9)/(2/5*exp(2)+5/8) 8299691241321682 m001 (ErdosBorwein-gamma)/(KhinchinLevy+ZetaQ(2)) 8299691253020088 r005 Im(z^2+c),c=-29/114+29/36*I,n=8 8299691256119711 a007 Real Root Of 447*x^4-586*x^3-242*x^2-179*x-529 8299691314951392 a007 Real Root Of 79*x^4+649*x^3-13*x^2+324*x-232 8299691317424103 m003 -2/5+Sin[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/4 8299691346316198 r005 Im(z^2+c),c=-25/34+10/121*I,n=63 8299691380571405 r005 Re(z^2+c),c=-15/26+62/81*I,n=2 8299691450372822 m001 (Zeta(3)-Conway)/(FransenRobinson-Khinchin) 8299691475651694 r005 Im(z^2+c),c=-9/14+2/149*I,n=39 8299691507667115 p004 log(25439/11093) 8299691526842224 m001 1/ln(GAMMA(5/24))*BesselK(0,1)*cos(1)^2 8299691550298187 a007 Real Root Of 823*x^4-312*x^3+712*x^2+586*x-573 8299691580669322 r005 Re(z^2+c),c=17/70+7/10*I,n=5 8299691582960883 r005 Re(z^2+c),c=-5/6+29/133*I,n=5 8299691618434800 a001 1597/3010349*322^(7/8) 8299691630682083 a007 Real Root Of -642*x^4-767*x^3-222*x^2+253*x-19 8299691637887489 a001 377/9349*123^(3/20) 8299691654821271 m001 (QuadraticClass+RenyiParking)/ReciprocalLucas 8299691672190706 b008 8-(5*E^4)/3 8299691722695476 r005 Im(z^2+c),c=-31/54+4/33*I,n=13 8299691763478934 a007 Real Root Of -881*x^4+269*x^3-261*x^2+286*x+989 8299691773982818 a001 843/10946*89^(1/60) 8299691794544484 a007 Real Root Of 306*x^4-750*x^3+127*x^2-577*x+675 8299691830259261 a007 Real Root Of -108*x^4-86*x^3+359*x^2+728*x+359 8299691846579486 m001 GAMMA(5/6)^2*GAMMA(3/4)^2*ln(cosh(1)) 8299691877911850 s002 sum(A213315[n]/(exp(n)-1),n=1..infinity) 8299691920377404 a007 Real Root Of -89*x^4+997*x^3-625*x^2+519*x-528 8299691950086513 m001 TravellingSalesman*(arctan(1/2)+ArtinRank2) 8299691957096790 l003 polylog(1,9/113) 8299691957096790 l006 ln(104/113) 8299691963633807 r005 Im(z^2+c),c=-41/58+2/21*I,n=26 8299691978818378 l006 ln(2503/5740) 8299691985984404 a007 Real Root Of 52*x^4+545*x^3+906*x^2-400*x-887 8299692029357877 a007 Real Root Of 361*x^4+521*x^3+563*x^2+222*x-77 8299692058284637 a007 Real Root Of 131*x^4-667*x^3-741*x^2-118*x-31 8299692078295998 a007 Real Root Of 99*x^4+715*x^3-809*x^2+716*x+685 8299692079782966 m001 GaussAGM/(GAMMA(23/24)^Ei(1,1)) 8299692093818464 m001 1/HardHexagonsEntropy^2/ln(Si(Pi))/Zeta(9)^2 8299692097160451 q001 2426/2923 8299692106418301 a007 Real Root Of -85*x^4-729*x^3-250*x^2-453*x+11 8299692118717842 k002 Champernowne real with 51*n^2+138*n-181 8299692139524999 h001 (1/3*exp(1)+4/5)/(5/9*exp(1)+6/11) 8299692149719223 m001 (Si(Pi)-Zeta(1,-1))/(Cahen+KomornikLoreti) 8299692201900168 r009 Im(z^3+c),c=-35/106+17/25*I,n=39 8299692278210552 a007 Real Root Of -383*x^4+122*x^3+264*x^2+733*x+678 8299692278260460 m001 cos(1)-FeigenbaumDelta^(2^(1/2)) 8299692278260460 m001 cos(1)-FeigenbaumDelta^sqrt(2) 8299692283423501 m001 1/exp(GAMMA(5/24))^2/Si(Pi)/Pi^2 8299692319805059 a007 Real Root Of -692*x^4+872*x^3+626*x^2+204*x+565 8299692338796592 r002 23th iterates of z^2 + 8299692356267737 a003 cos(Pi*13/76)-cos(Pi*53/108) 8299692373677175 r005 Im(z^2+c),c=1/38+28/43*I,n=20 8299692403742554 a007 Real Root Of 871*x^4-817*x^3-642*x^2+399*x-107 8299692411542430 m005 (1/3*5^(1/2)+1/8)/(5/7*gamma+7/11) 8299692425990003 r004 Re(z^2+c),c=1/6+3/17*I,z(0)=I,n=2 8299692428906143 m001 (Gompertz+Lehmer)/(3^(1/3)+gamma(2)) 8299692477628790 r005 Im(z^2+c),c=-79/122+1/4*I,n=4 8299692495711399 b008 2+75*E^(1/13) 8299692497993766 r002 4th iterates of z^2 + 8299692520065043 m001 (GAMMA(3/4)+ln(3))/(Zeta(1/2)-Totient) 8299692539616772 m005 (1/2*Pi+4/5)/(10/11*2^(1/2)-1) 8299692544592218 m001 RenyiParking*ln(Khintchine)^2/Zeta(1,2)^2 8299692564025039 l006 ln(2977/6827) 8299692638033307 m008 (5*Pi^3+4)/(1/5*Pi^6-2/3) 8299692650513161 m001 (GAMMA(17/24)-KhinchinLevy)/KhinchinLevy 8299692653966810 m001 1/Zeta(9)*Riemann2ndZero^2/ln(sin(Pi/5)) 8299692668144913 r005 Re(z^2+c),c=-39/46+25/52*I,n=3 8299692699582049 a007 Real Root Of 761*x^4-760*x^3-925*x^2-27*x+733 8299692703329661 a007 Real Root Of 482*x^4-416*x^3+548*x^2+929*x-73 8299692712715946 m001 (Tetranacci+Tribonacci)/(5^(1/2)-Grothendieck) 8299692718778476 r005 Im(z^2+c),c=31/90+35/64*I,n=15 8299692731057899 r005 Im(z^2+c),c=3/44+31/48*I,n=24 8299692731712558 m005 (-1/3+1/4*5^(1/2))/(9/10*exp(1)+3/11) 8299692783932750 r005 Im(z^2+c),c=-9/8+107/188*I,n=3 8299692785223185 a007 Real Root Of -771*x^4+471*x^3+454*x^2-527*x-115 8299692810871977 a007 Real Root Of 516*x^4-865*x^3+895*x^2+671*x-799 8299692820086933 a007 Real Root Of 944*x^4-622*x^3-566*x^2-662*x+847 8299692847740236 r002 2th iterates of z^2 + 8299692855417877 m001 exp(Zeta(7))*GAMMA(2/3)*sqrt(5) 8299692866196773 m005 (1/3*gamma+3/4)/(69/110+5/22*5^(1/2)) 8299692888846669 a005 (1/sin(56/135*Pi))^1456 8299692900873684 m005 (1/3*3^(1/2)+2/9)/(49/88+2/11*5^(1/2)) 8299692906090734 a001 8/47*2139295485799^(11/14) 8299692915009809 r001 23i'th iterates of 2*x^2-1 of 8299692927034290 m001 ZetaP(4)^ZetaP(3)*ZetaP(4)^Kolakoski 8299692940258028 r005 Im(z^2+c),c=-61/50+7/47*I,n=38 8299692940680531 r009 Im(z^3+c),c=-13/24+20/39*I,n=23 8299692943122106 m001 (CopelandErdos+Gompertz)/(BesselJ(1,1)-cos(1)) 8299692947613634 r005 Im(z^2+c),c=7/66+43/57*I,n=4 8299692954850405 a007 Real Root Of 118*x^4-920*x^3+532*x^2-503*x+521 8299692978435683 m005 (1/2*Pi-7/10)/(4/9*5^(1/2)-8/9) 8299692988473661 l006 ln(3451/7914) 8299692999867017 s002 sum(A254942[n]/((10^n-1)/n),n=1..infinity) 8299693030421379 r008 a(0)=9,K{-n^6,27+11*n-24*n^2-13*n^3} 8299693100954493 a001 24476*75025^(21/29) 8299693117356401 r005 Im(z^2+c),c=-14/13+5/52*I,n=16 8299693119017902 k002 Champernowne real with 103/2*n^2+273/2*n-180 8299693136058081 a003 cos(Pi*34/99)+cos(Pi*28/73) 8299693147072931 a007 Real Root Of 895*x^4-606*x^3+364*x^2+824*x-338 8299693190803544 a007 Real Root Of -777*x^4+395*x^3+296*x^2-61*x+340 8299693193758204 m005 (1/2*3^(1/2)+8/11)/(5/7*2^(1/2)-9/11) 8299693195236671 m001 (Bloch-TreeGrowth2nd)/(Ei(1,1)-Zeta(1,-1)) 8299693212055125 m005 (1/2*exp(1)-10/11)/(-9/70+3/10*5^(1/2)) 8299693225289705 m001 GaussKuzminWirsing^exp(gamma)/(3^(1/3)) 8299693235354725 a007 Real Root Of -782*x^4+137*x^3+221*x^2+642*x+830 8299693242445779 r009 Im(z^3+c),c=-13/24+20/39*I,n=26 8299693263674539 r005 Re(z^2+c),c=-5/6+23/225*I,n=23 8299693266220502 a007 Real Root Of 801*x^4-672*x^3-94*x^2+932*x+74 8299693310405764 l006 ln(3925/9001) 8299693318017682 r002 24th iterates of z^2 + 8299693332783591 a007 Real Root Of -616*x^4+626*x^3-550*x^2-129*x+922 8299693334928572 r009 Im(z^3+c),c=-13/24+20/39*I,n=29 8299693339434345 r009 Im(z^3+c),c=-13/24+20/39*I,n=41 8299693339449207 r009 Im(z^3+c),c=-13/24+20/39*I,n=44 8299693339455473 r009 Im(z^3+c),c=-13/24+20/39*I,n=47 8299693339456053 r009 Im(z^3+c),c=-13/24+20/39*I,n=59 8299693339456054 r009 Im(z^3+c),c=-13/24+20/39*I,n=62 8299693339456060 r009 Im(z^3+c),c=-13/24+20/39*I,n=56 8299693339456111 r009 Im(z^3+c),c=-13/24+20/39*I,n=53 8299693339456208 r009 Im(z^3+c),c=-13/24+20/39*I,n=50 8299693339510374 r009 Im(z^3+c),c=-13/24+20/39*I,n=38 8299693340127148 m001 (5^(1/2)-Zeta(5))/(GAMMA(3/4)+Ei(1,1)) 8299693340275888 r009 Im(z^3+c),c=-13/24+20/39*I,n=35 8299693342430979 r009 Im(z^3+c),c=-13/24+20/39*I,n=32 8299693359437602 m008 (4/5*Pi^6-4)/(3*Pi^3-5/6) 8299693369232797 m005 (1/2*Pi-4/11)/(5/6+5/18*5^(1/2)) 8299693388844118 m001 (ErdosBorwein-LaplaceLimit)/(PlouffeB+Robbin) 8299693506954183 h001 (2/5*exp(1)+2/9)/(1/5*exp(2)+1/10) 8299693510013331 a007 Real Root Of -361*x^4+890*x^3+725*x^2-312*x-578 8299693522888551 m001 1/ln(MinimumGamma)*FeigenbaumDelta^2*Zeta(3)^2 8299693523393570 m001 1/ln(Zeta(9))^2/Cahen*arctan(1/2)^2 8299693549104891 a007 Real Root Of 114*x^4+912*x^3-200*x^2+674*x-162 8299693553794745 p003 LerchPhi(1/100,2,133/121) 8299693562960357 l006 ln(4399/10088) 8299693571614581 a007 Real Root Of 795*x^4+688*x^3+43*x^2-563*x+46 8299693611492548 a007 Real Root Of -741*x^4+886*x^3+503*x^2-643*x-22 8299693625907162 m001 1/exp(Ei(1))^2/KhintchineLevy^2/GAMMA(5/24)^2 8299693629298209 r009 Im(z^3+c),c=-13/24+20/39*I,n=20 8299693664494220 a007 Real Root Of -805*x^4+937*x^3-450*x^2-643*x+694 8299693746786285 m006 (2/3*exp(Pi)+1/3)/(2*Pi^2-3/4) 8299693763883519 r005 Im(z^2+c),c=-123/110+6/59*I,n=29 8299693778420075 m001 BesselK(1,1)^Shi(1)/CareFree 8299693819523350 r005 Im(z^2+c),c=-31/122+22/29*I,n=17 8299693876154177 h001 (7/8*exp(1)+1/3)/(7/8*exp(1)+8/9) 8299693920792613 a007 Real Root Of 866*x^4-828*x^3+3*x^2+580*x-405 8299693937418360 r002 4th iterates of z^2 + 8299693947716642 m001 (Niven-Rabbit)/(Conway-FeigenbaumAlpha) 8299693967477146 a007 Real Root Of 107*x^4+81*x^3+125*x^2-962*x-889 8299693970537572 m005 (1/2*Catalan+7/12)/(1/3*5^(1/2)-2) 8299693975249948 a007 Real Root Of -135*x^4+693*x^3-88*x^2+411*x+862 8299693998328356 s002 sum(A277397[n]/((10^n+1)/n),n=1..infinity) 8299694028839421 r009 Im(z^3+c),c=-31/122+38/53*I,n=34 8299694033010226 a007 Real Root Of -737*x^4+746*x^3-256*x^2-79*x+887 8299694061068906 m005 (1/3*5^(1/2)-1/5)/(1/2*Pi+5) 8299694090865773 m009 (2*Psi(1,3/4)-3)/(1/6*Psi(1,2/3)+2) 8299694091794451 r005 Im(z^2+c),c=-5/8+9/58*I,n=56 8299694093561652 r002 54th iterates of z^2 + 8299694105741281 m005 (1/2*Pi+4/9)/(2/3*2^(1/2)-7/10) 8299694119317962 k002 Champernowne real with 52*n^2+135*n-179 8299694124633357 m001 (-Zeta(1/2)+CopelandErdos)/(sin(1)+Zeta(3)) 8299694136674570 a007 Real Root Of -53*x^4-386*x^3+521*x^2+652*x+329 8299694155680939 r005 Im(z^2+c),c=-3/4+24/73*I,n=7 8299694157893587 m001 (MadelungNaCl+ZetaP(3))/(BesselK(0,1)+Ei(1)) 8299694162124199 r002 64th iterates of z^2 + 8299694165768505 a007 Real Root Of 609*x^4+69*x^3-376*x^2-403*x-325 8299694189602446 q001 1357/1635 8299694233745094 r002 12th iterates of z^2 + 8299694259029228 a007 Real Root Of -902*x^4+941*x^3+138*x^2-265*x+651 8299694264207497 a007 Real Root Of -667*x^4+197*x^3-136*x^2+440*x+888 8299694271814227 m005 (1/3*2^(1/2)+1/4)/(8/9*gamma-3/5) 8299694302672713 s002 sum(A036124[n]/(pi^n),n=1..infinity) 8299694307750692 m001 1/exp((3^(1/3)))^2*KhintchineHarmonic/sinh(1) 8299694318024950 a007 Real Root Of 875*x^4+858*x^3+822*x^2-464*x-876 8299694320075352 a007 Real Root Of -883*x^4+660*x^3+642*x^2-270*x+130 8299694320194024 m001 1/sin(1)/TreeGrowth2nd^2*ln(sin(Pi/12)) 8299694321012273 a007 Real Root Of 984*x^4+282*x^3+215*x^2+407*x-116 8299694352661011 m001 (MadelungNaCl+4)/(-GAMMA(23/24)+1/3) 8299694376633338 m005 (2/5*Catalan-2)/(exp(1)-3/4) 8299694398433147 m001 (Si(Pi)-Zeta(1,-1))/(-CareFree+Riemann3rdZero) 8299694423029784 m001 (Robbin+ZetaP(2))/(BesselJ(1,1)-Grothendieck) 8299694432777610 m001 Zeta(5)*Artin^2*ln(sqrt(Pi)) 8299694439654017 a007 Real Root Of -15*x^4+722*x^3+799*x^2-82*x-888 8299694446548859 a008 Real Root of (1+3*x-x^3-2*x^4-5*x^5) 8299694451729258 a007 Real Root Of -870*x^4+512*x^3+860*x^2+289*x+353 8299694464379632 a007 Real Root Of 343*x^4-885*x^3-865*x^2-71*x+998 8299694471609415 r005 Re(z^2+c),c=23/60+5/31*I,n=19 8299694502728109 m001 (Chi(1)-gamma)/(-GAMMA(7/12)+FeigenbaumDelta) 8299694504109824 m001 Ei(1,1)/(ZetaR(2)^ArtinRank2) 8299694538159380 a007 Real Root Of 888*x^4-747*x^3+780*x^2+719*x-789 8299694550360359 m001 (2^(1/2)-Catalan)/(-Salem+Stephens) 8299694559239021 a007 Real Root Of -780*x^4-133*x^3-370*x^2-806*x-120 8299694577654810 m001 1/ln(Zeta(3))/TwinPrimes*Zeta(7) 8299694580581538 r005 Re(z^2+c),c=-41/38+5/41*I,n=42 8299694591319536 a001 2/17711*591286729879^(12/13) 8299694607487284 a007 Real Root Of -181*x^4+511*x^3+921*x^2-190*x-683 8299694621060125 a007 Real Root Of 20*x^4-639*x^3-940*x^2+339*x+722 8299694628960118 r005 Re(z^2+c),c=-59/64+2/45*I,n=6 8299694635756677 m005 (1/3*Pi+2/11)/(5*Pi-9/10) 8299694648184174 a007 Real Root Of 100*x^4-853*x^3+106*x^2+5*x-604 8299694652933026 m001 (Conway+FeigenbaumB)/(3^(1/2)+sin(1)) 8299694672011826 r002 34th iterates of z^2 + 8299694701975876 a007 Real Root Of 816*x^4-357*x^3+137*x^2-351*x-977 8299694709830104 a007 Real Root Of 698*x^4-328*x^3+793*x^2+547*x-611 8299694729130258 r005 Re(z^2+c),c=-1/11+13/18*I,n=54 8299694738174979 a008 Real Root of (5+8*x+14*x^2+14*x^3) 8299694777926069 r005 Re(z^2+c),c=-1/11+13/18*I,n=57 8299694804638045 g005 1/GAMMA(6/11)/GAMMA(5/11)^3 8299694816137978 r005 Im(z^2+c),c=-7/6+2/187*I,n=42 8299694816676477 a007 Real Root Of 56*x^4-216*x^3+631*x^2+31*x-559 8299694862697533 a001 233/64079*322^(13/24) 8299694864533194 a007 Real Root Of -651*x^4-128*x^3-448*x^2+396*x+873 8299694864909563 m005 (1/2*5^(1/2)-10/11)/(2/7*gamma-5/12) 8299694942761220 r005 Re(z^2+c),c=-1/11+13/18*I,n=60 8299694944616017 r005 Re(z^2+c),c=5/27+24/53*I,n=6 8299694955232287 m005 (1/2*5^(1/2)-1/5)/(5/8*2^(1/2)+2/9) 8299694964312163 m005 (1/2*Pi+3/7)/(2/9*Catalan-4/9) 8299694966536683 a007 Real Root Of -119*x^4-902*x^3+783*x^2+607*x+77 8299694974697749 m004 -16+Sqrt[5]*Pi+Sin[Sqrt[5]*Pi] 8299694996198167 a001 5/4*11^(15/19) 8299695009185350 r005 Re(z^2+c),c=-1/11+13/18*I,n=63 8299695012862239 m001 (Tetranacci+Thue)/(ThueMorse-ZetaP(4)) 8299695020676721 r009 Re(z^3+c),c=-71/126+7/61*I,n=3 8299695045451439 a007 Real Root Of -730*x^4+947*x^3+158*x^2-353*x+486 8299695067988129 a007 Real Root Of 95*x^4-763*x^3+531*x^2+223*x-662 8299695068263926 a001 38/98209*233^(7/50) 8299695119618022 k002 Champernowne real with 105/2*n^2+267/2*n-178 8299695131906562 r008 a(0)=8,K{-n^6,-33+39*n^3-35*n^2+26*n} 8299695150050693 a007 Real Root Of -116*x^4-863*x^3+764*x^2-513*x+152 8299695151279208 a001 3571/55*17711^(29/30) 8299695162757651 a007 Real Root Of 725*x^4-631*x^3-981*x^2-947*x-815 8299695195903097 r005 Im(z^2+c),c=-79/78+5/58*I,n=22 8299695200563064 a007 Real Root Of 805*x^4-826*x^3+708*x^2+565*x-873 8299695202254525 r005 Re(z^2+c),c=-1/62+19/60*I,n=15 8299695279784274 r005 Re(z^2+c),c=-59/70+5/56*I,n=13 8299695316533507 m001 Otter^GaussKuzminWirsing/(Otter^PlouffeB) 8299695388303803 r009 Re(z^3+c),c=-1/102+33/50*I,n=13 8299695389543470 r008 a(0)=8,K{-n^6,-9-8*n^3+3*n^2+9*n} 8299695422424268 r002 20th iterates of z^2 + 8299695424781790 b008 Pi+6*Erfc[1/8] 8299695428593344 a001 610/1149851*322^(7/8) 8299695432206349 b008 -9+E*ProductLog[1/3] 8299695497667519 m001 1/cos(1)/ln(CopelandErdos)/cosh(1) 8299695516256204 s002 sum(A117273[n]/(n^3*pi^n-1),n=1..infinity) 8299695525590553 m001 (LaplaceLimit+Rabbit)/(1-GaussAGM) 8299695554188870 r005 Im(z^2+c),c=-9/14+27/170*I,n=53 8299695559853728 r005 Re(z^2+c),c=-1/11+13/18*I,n=51 8299695564753702 a005 (1/cos(22/227*Pi))^1512 8299695574643113 a007 Real Root Of 851*x^4-254*x^3-5*x^2+173*x-402 8299695597826799 m001 ln(3)/(HardHexagonsEntropy^sin(1)) 8299695600788500 a007 Real Root Of 285*x^4-813*x^3-563*x^2+80*x+651 8299695630329052 m001 (-MertensB2+ZetaQ(3))/(1-5^(1/2)) 8299695630329052 m001 cos(1/5*Pi)*(MertensB2-ZetaQ(3)) 8299695638563277 r005 Re(z^2+c),c=-12/13+1/42*I,n=20 8299695654261329 l006 ln(474/1087) 8299695668158721 r009 Im(z^3+c),c=-77/122+25/51*I,n=5 8299695669718046 m001 (ZetaP(2)-ZetaP(3))/(FeigenbaumD+TwinPrimes) 8299695672530479 s001 sum(exp(-Pi/4)^n*A050888[n],n=1..infinity) 8299695673616865 m001 BesselJ(1,1)^2/Cahen/ln(Zeta(5)) 8299695676120174 m001 Porter/exp(Lehmer)^2/cos(1) 8299695695561744 m001 1/MinimumGamma/exp(Artin)/LambertW(1) 8299695706578290 r005 Im(z^2+c),c=1/5+33/52*I,n=5 8299695728631588 r005 Re(z^2+c),c=1/98+11/12*I,n=2 8299695732340468 m001 (gamma(3)-MertensB2)/(ln(2+3^(1/2))+gamma(1)) 8299695735038343 m001 (1+2^(1/3))/(-Artin+MasserGramain) 8299695750034636 m009 (24/5*Catalan+3/5*Pi^2-3)/(5/6*Psi(1,3/4)-3) 8299695752185645 m001 (ln(gamma)+ln(2))/(GAMMA(23/24)+CareFree) 8299695779512900 a007 Real Root Of 147*x^4-459*x^3-85*x^2-660*x+799 8299695787228323 r005 Re(z^2+c),c=-13/102+49/55*I,n=43 8299695842144532 m001 1/GAMMA(2/3)^2/Riemann3rdZero/exp(cos(Pi/12)) 8299695880521123 a001 76/5*144^(33/41) 8299695880564003 q001 3002/3617 8299695888477577 a007 Real Root Of -141*x^4+607*x^3+361*x^2+487*x-933 8299695902361587 a007 Real Root Of 984*x^4-943*x^3+541*x^2+825*x-694 8299695908598190 r009 Im(z^3+c),c=-3/32+43/52*I,n=23 8299695914328633 m005 (1/2*exp(1)+1/9)/(115/99+3/11*5^(1/2)) 8299695917961266 m001 (exp(Pi)+Zeta(5))/(ErdosBorwein+Mills) 8299695934390403 a001 987/3010349*322^(23/24) 8299695963633638 m005 (-9/28+1/4*5^(1/2))/(8/9*5^(1/2)+7/8) 8299696028810927 m005 (1/3*exp(1)-2/11)/(69/22+5/2*5^(1/2)) 8299696030970161 r005 Im(z^2+c),c=49/118+20/59*I,n=18 8299696058383518 a007 Real Root Of 757*x^4-159*x^3+697*x^2+28*x-907 8299696072767129 a001 96450076809*832040^(3/19) 8299696072767507 a001 22768774562*7778742049^(3/19) 8299696075245812 a007 Real Root Of 715*x^4-253*x^3-78*x^2-107*x-519 8299696102077264 r005 Re(z^2+c),c=-41/38+6/43*I,n=12 8299696112969498 m001 (OneNinth+ZetaQ(4))/ln(2+3^(1/2)) 8299696119918082 k002 Champernowne real with 53*n^2+132*n-177 8299696129308582 m004 (-125*Sqrt[5])/Pi+(5*Pi)/3+Cos[Sqrt[5]*Pi] 8299696143966182 m001 (MertensB2+Niven)/(Pi^(1/2)+GAMMA(7/12)) 8299696148985072 m001 (Bloch+HardyLittlewoodC4)^RenyiParking 8299696156708771 m005 (1/2*gamma+7/12)/(9/10*2^(1/2)-2/9) 8299696166157010 a007 Real Root Of 434*x^4-34*x^3+405*x^2+933*x+270 8299696180158361 r005 Re(z^2+c),c=29/94+16/31*I,n=52 8299696184600197 g006 Psi(1,4/7)+Psi(1,3/5)-Psi(1,1/9)-Psi(1,3/8) 8299696207870790 m001 Riemann2ndZero*ln(CareFree)^2*LambertW(1)^2 8299696209169658 r002 19th iterates of z^2 + 8299696228380404 r005 Im(z^2+c),c=-51/46+4/15*I,n=6 8299696262498227 a001 41/1602508992*6765^(11/12) 8299696286519346 m005 (1/2*exp(1)+3/10)/(3/4*3^(1/2)+7/10) 8299696294915699 r005 Im(z^2+c),c=-65/114+8/53*I,n=56 8299696295746098 a001 123/956722026041*2178309^(11/12) 8299696315088719 a007 Real Root Of -684*x^4+323*x^3-702*x^2-107*x+904 8299696315444038 h001 (2/9*exp(1)+5/8)/(4/9*exp(1)+3/11) 8299696321378956 a007 Real Root Of 156*x^4-64*x^3+317*x^2+6*x-324 8299696326060539 m001 1/Niven*Kolakoski^2/exp(RenyiParking)^2 8299696330330896 a007 Real Root Of 225*x^4-238*x^3-133*x^2-190*x-15 8299696357151146 m001 (Ei(1,1)+Artin)/(Sarnak-ZetaQ(3)) 8299696377099238 a007 Real Root Of -199*x^4+821*x^3+40*x^2+325*x+806 8299696484529749 a007 Real Root Of 973*x^4+615*x^3+582*x^2+594*x-18 8299696487540581 m001 ThueMorse*(2/3-GAMMA(1/3)) 8299696499066137 r005 Im(z^2+c),c=-13/18+3/37*I,n=48 8299696510449281 a007 Real Root Of 371*x^4-295*x^3-86*x^2-732*x-893 8299696510741377 m001 ln(Kolakoski)*ArtinRank2/GAMMA(5/24)^2 8299696544855580 a007 Real Root Of -135*x^4+808*x^3-317*x^2+261*x+961 8299696546076828 m001 ln(sin(1))*Zeta(5)^2/sqrt(5) 8299696558978211 r002 3th iterates of z^2 + 8299696565617187 a007 Real Root Of 820*x^4-701*x^3-844*x^2-691*x-782 8299696578369280 r005 Im(z^2+c),c=-11/14+8/237*I,n=46 8299696594010736 m001 Lehmer*(Pi*2^(1/2)/GAMMA(3/4))^MertensB1 8299696597999652 m001 (DuboisRaymond+Stephens)^TravellingSalesman 8299696614668902 m001 1/Porter/exp(Champernowne)*GAMMA(19/24)^2 8299696615868043 r005 Re(z^2+c),c=-19/16+36/109*I,n=5 8299696618570065 m001 GolombDickman/Conway^2/exp(Ei(1))^2 8299696631620985 r009 Re(z^3+c),c=-41/66+4/17*I,n=32 8299696659595576 l004 Ssi(129/73) 8299696661356917 a003 sin(Pi*37/119)/sin(Pi*55/114) 8299696673331265 m001 exp(Porter)^2*Niven*sin(Pi/12) 8299696691145113 a007 Real Root Of -316*x^4+856*x^3-871*x^2-645*x+704 8299696707774360 r005 Im(z^2+c),c=-79/110+6/29*I,n=27 8299696720502019 m001 1/PisotVijayaraghavan/Khintchine/ln(Zeta(3))^2 8299696726616529 a003 sin(Pi*1/110)+sin(Pi*29/98) 8299696768824554 a007 Real Root Of -607*x^4+401*x^3-338*x^2-905*x-1 8299696774895340 m001 (MinimumGamma+Totient)/(AlladiGrinstead-Bloch) 8299696813144174 a007 Real Root Of 818*x^4-971*x^3-429*x^2-163*x+17 8299696820142729 m001 arctan(1/2)^BesselJ(1,1)/Thue 8299696829398646 m001 (ln(Pi)+arctan(1/2))/(Zeta(1,-1)-Pi^(1/2)) 8299696845145326 a007 Real Root Of -984*x^4+939*x^3+659*x^2+293*x+793 8299696846052147 r002 8th iterates of z^2 + 8299696856553193 h001 (-9*exp(6)-9)/(-4*exp(7)+1) 8299696861037404 a007 Real Root Of 805*x^4-120*x^3-445*x^2-412*x-486 8299696934192724 a007 Real Root Of 903*x^4+173*x^3+946*x^2+675*x-421 8299696934944826 a007 Real Root Of 563*x^4-954*x^3-5*x^2-263*x+500 8299696947543734 a007 Real Root Of -12*x^4-992*x^3+339*x^2+832*x-41 8299696980524231 a003 sin(Pi*10/89)/sin(Pi*16/117) 8299696987532626 m001 GAMMA(1/4)^2*ln(Backhouse)^2/sqrt(5) 8299697000527107 a007 Real Root Of 448*x^4-738*x^3-328*x^2+920*x+355 8299697001609960 m001 (5^(1/2)-BesselJ(0,1))/(GAMMA(5/6)+Cahen) 8299697027705837 a007 Real Root Of -786*x^4-772*x^3-634*x^2-745*x-250 8299697041112969 a007 Real Root Of -177*x^4+834*x^3-161*x^2+63*x+724 8299697046623008 r009 Re(z^3+c),c=-37/126+43/58*I,n=7 8299697050548899 m001 GAMMA(1/4)/exp(LandauRamanujan)^2*GAMMA(11/12) 8299697064891620 m001 GAMMA(1/12)^2*(3^(1/3))^2*ln(sqrt(3))^2 8299697072869159 m006 (5/6/Pi+3)/(3*ln(Pi)+1/2) 8299697098303952 m002 Pi^3+24*Pi^3*ProductLog[Pi] 8299697113417381 m001 (Pi+exp(-1/2*Pi))/(BesselI(0,2)-FeigenbaumD) 8299697120218142 k002 Champernowne real with 107/2*n^2+261/2*n-176 8299697154689261 m001 (BesselI(0,1)-GAMMA(2/3))^ZetaP(4) 8299697159323798 a001 21/4*199^(22/23) 8299697163522479 r009 Im(z^3+c),c=-5/56+43/52*I,n=27 8299697178277207 r009 Im(z^3+c),c=-47/110+19/32*I,n=48 8299697187106718 m001 MertensB1+Robbin*Thue 8299697253059773 a007 Real Root Of 248*x^4-964*x^3-788*x^2+116*x+880 8299697266029487 m001 (BesselJ(0,1)+sin(1/5*Pi))/(-ln(5)+Pi^(1/2)) 8299697275479313 q001 1645/1982 8299697277368943 a007 Real Root Of -130*x^4+987*x^3+773*x^2-397*x-236 8299697300094152 r002 47th iterates of z^2 + 8299697303634059 r005 Im(z^2+c),c=19/74+27/50*I,n=54 8299697312483927 a007 Real Root Of -422*x^4+777*x^3-263*x^2-255*x+614 8299697315473809 a001 11/89*196418^(5/32) 8299697329867072 a007 Real Root Of 334*x^4+888*x^3+938*x^2-576*x-775 8299697333486473 l006 ln(9239/9316) 8299697334048486 a007 Real Root Of 744*x^4-591*x^3+385*x^2+505*x-537 8299697340252434 a003 cos(Pi*19/81)/sin(Pi*20/57) 8299697356329348 a007 Real Root Of 685*x^4-951*x^3-787*x^2-87*x+833 8299697357309707 s002 sum(A220738[n]/((exp(n)+1)/n),n=1..infinity) 8299697371409939 m002 -Pi^2+Pi^6/Log[Pi] 8299697389739804 a001 646/1970299*322^(23/24) 8299697440164565 r005 Re(z^2+c),c=-21/26+15/116*I,n=41 8299697443627006 h001 (7/9*exp(1)+3/5)/(4/11*exp(2)+7/12) 8299697447520306 m001 (cos(1/12*Pi)-GAMMA(7/12))/(Robbin-Totient) 8299697451497938 a007 Real Root Of -423*x^4+332*x^3+31*x^2-740*x-245 8299697503038328 a003 cos(Pi*4/113)*sin(Pi*28/89) 8299697503654725 r009 Im(z^3+c),c=-1/26+50/59*I,n=29 8299697510219169 a007 Real Root Of 726*x^4-678*x^3-494*x^2-126*x+488 8299697517035425 r009 Re(z^3+c),c=-3/86+36/47*I,n=19 8299697536033293 m005 (1/2*2^(1/2)+2)/(2/7*Pi-4/7) 8299697537839671 r009 Re(z^3+c),c=-13/42+6/7*I,n=4 8299697578499399 a007 Real Root Of -852*x^4-31*x^3+93*x^2+644*x+857 8299697594006010 r005 Im(z^2+c),c=-45/62+9/49*I,n=53 8299697602072420 a001 615/1875749*322^(23/24) 8299697625837288 r005 Re(z^2+c),c=-25/34+29/102*I,n=8 8299697633051331 a001 17711/54018521*322^(23/24) 8299697637571093 a001 11592/35355581*322^(23/24) 8299697638230517 a001 121393/370248451*322^(23/24) 8299697638326726 a001 317811/969323029*322^(23/24) 8299697638340763 a001 610/1860499*322^(23/24) 8299697638342811 a001 2178309/6643838879*322^(23/24) 8299697638343109 a001 5702887/17393796001*322^(23/24) 8299697638343153 a001 3732588/11384387281*322^(23/24) 8299697638343159 a001 39088169/119218851371*322^(23/24) 8299697638343160 a001 9303105/28374454999*322^(23/24) 8299697638343160 a001 66978574/204284540899*322^(23/24) 8299697638343160 a001 701408733/2139295485799*322^(23/24) 8299697638343160 a001 1836311903/5600748293801*322^(23/24) 8299697638343160 a001 1201881744/3665737348901*322^(23/24) 8299697638343160 a001 7778742049/23725150497407*322^(23/24) 8299697638343160 a001 2971215073/9062201101803*322^(23/24) 8299697638343160 a001 567451585/1730726404001*322^(23/24) 8299697638343160 a001 433494437/1322157322203*322^(23/24) 8299697638343161 a001 165580141/505019158607*322^(23/24) 8299697638343161 a001 31622993/96450076809*322^(23/24) 8299697638343163 a001 24157817/73681302247*322^(23/24) 8299697638343180 a001 9227465/28143753123*322^(23/24) 8299697638343294 a001 1762289/5374978561*322^(23/24) 8299697638344076 a001 1346269/4106118243*322^(23/24) 8299697638349438 a001 514229/1568397607*322^(23/24) 8299697638386186 a001 98209/299537289*322^(23/24) 8299697638638064 a001 75025/228826127*322^(23/24) 8299697640364460 a001 28657/87403803*322^(23/24) 8299697652197351 a001 5473/16692641*322^(23/24) 8299697652579572 m001 MinimumGamma^2/exp(ErdosBorwein)^2*cos(Pi/12) 8299697675144919 m009 (1/2*Psi(1,2/3)+2)/(2/5*Psi(1,2/3)-4/5) 8299697695662621 p001 sum(1/(399*n+109)/n/(24^n),n=1..infinity) 8299697704655120 m001 (-Niven+ZetaP(3))/(Khinchin-sin(1)) 8299697721810931 a007 Real Root Of 514*x^4-466*x^3+370*x^2+387*x-444 8299697729409968 m001 PisotVijayaraghavan^2/ln(MertensB1)^2/sinh(1) 8299697733301193 a001 4181/12752043*322^(23/24) 8299697735889793 r009 Re(z^3+c),c=-11/78+33/56*I,n=41 8299697741131311 a007 Real Root Of 237*x^4+52*x^3+482*x^2-522*x-848 8299697757208971 r002 2th iterates of z^2 + 8299697800620267 m001 (BesselI(1,2)-GAMMA(17/24))/(Pi+cos(1)) 8299697819251721 a007 Real Root Of 113*x^4+901*x^3-216*x^2+804*x+475 8299697832304478 a007 Real Root Of 839*x^4-76*x^3+897*x^2+109*x-969 8299697844150956 m001 ln(2)/ln(10)*BesselJ(1,1)+ArtinRank2 8299697856939384 m001 (cos(1/12*Pi)+TwinPrimes)/(BesselI(0,1)+ln(2)) 8299697857025781 a007 Real Root Of -99*x^4-723*x^3+907*x^2+766*x+291 8299697877502135 a007 Real Root Of -509*x^4+132*x^3-790*x^2-440*x+496 8299697880104272 m008 (1/2*Pi^2-1/4)/(3/5*Pi^4-2) 8299697880158012 l006 ln(4133/9478) 8299697926645397 r005 Im(z^2+c),c=-29/26+9/89*I,n=21 8299697931859430 r009 Im(z^3+c),c=-3/13+55/63*I,n=13 8299697955574196 m001 (ln(2)+GAMMA(17/24))/(Riemann3rdZero-Salem) 8299697959774916 a007 Real Root Of 673*x^4+212*x^3+622*x^2+761*x+5 8299697967166150 a001 5/710647*123^(20/39) 8299697984700156 m001 (CopelandErdos-TravellingSalesman)/gamma 8299697990560091 h001 (3/4*exp(2)+1/3)/(9/10*exp(2)+3/7) 8299697993546485 a001 89/1860498*29^(9/55) 8299698011926487 a007 Real Root Of -716*x^4-405*x^3-394*x^2-314*x+119 8299698012908811 r005 Re(z^2+c),c=-9/8+26/147*I,n=12 8299698024419202 a007 Real Root Of 11*x^4-878*x^3-418*x^2+537*x+339 8299698038770579 r005 Re(z^2+c),c=-1/11+13/18*I,n=48 8299698055074333 m002 -1-E^Pi-Pi^2-Pi^4+Pi^6 8299698073287952 a007 Real Root Of -674*x^4+516*x^3-776*x^2-333*x+873 8299698075017714 a007 Real Root Of 247*x^4-990*x^3-698*x^2+14*x+918 8299698096214719 m007 (-4*gamma-12*ln(2)-2*Pi-2/3)/(-4/5*gamma+1/4) 8299698120518202 k002 Champernowne real with 54*n^2+129*n-175 8299698129584988 a007 Real Root Of 33*x^4-835*x^3-336*x^2-154*x+821 8299698146554951 m001 (arctan(1/2)-ArtinRank2)/(Landau-MertensB1) 8299698160980535 m001 (Zeta(1,-1)-ZetaP(3))/HardyLittlewoodC5 8299698162802368 r002 6th iterates of z^2 + 8299698168508626 l006 ln(3659/8391) 8299698178708486 a007 Real Root Of -803*x^4+403*x^3+705*x^2-307*x-129 8299698179651275 r005 Re(z^2+c),c=-27/32+3/37*I,n=29 8299698182953779 a007 Real Root Of 7*x^4-781*x^3-166*x^2-601*x+5 8299698201377958 r002 41th iterates of z^2 + 8299698233136891 b008 -7/40+Coth[3] 8299698236329609 r005 Im(z^2+c),c=-53/86+13/41*I,n=9 8299698242898021 a001 4/377*4807526976^(14/23) 8299698276005804 m001 (-Landau+ZetaQ(4))/(FeigenbaumMu-Psi(1,1/3)) 8299698289195199 a001 1597/4870847*322^(23/24) 8299698315848022 a007 Real Root Of -158*x^4+123*x^3-974*x^2-822*x+134 8299698326358124 a007 Real Root Of 710*x^4-882*x^3-221*x^2+318*x-425 8299698398198144 b008 Log[(2*(1+Pi))/9] 8299698494065835 s001 sum(exp(-Pi/2)^n*A258696[n],n=1..infinity) 8299698507193651 a007 Real Root Of 66*x^4+563*x^3+160*x^2+307*x+228 8299698514224164 r005 Re(z^2+c),c=-19/86+13/18*I,n=11 8299698515707047 m001 PisotVijayaraghavan^GAMMA(2/3)*LambertW(1) 8299698542685406 l006 ln(3185/7304) 8299698567195260 a007 Real Root Of -412*x^4+146*x^3-772*x^2+128*x+917 8299698620790334 a007 Real Root Of 922*x^4+924*x^3+925*x^2+174*x-402 8299698621231556 a003 cos(Pi*38/113)+cos(Pi*16/41) 8299698637461146 m001 FeigenbaumDelta*(gamma(2)+KomornikLoreti) 8299698651504397 r002 4th iterates of z^2 + 8299698664334964 a003 sin(Pi*11/96)+sin(Pi*13/82) 8299698671057973 a007 Real Root Of 730*x^4+270*x^3-233*x^2-256*x-244 8299698690442316 m001 ArtinRank2/ZetaP(2)*ZetaQ(2) 8299698706787984 a007 Real Root Of 673*x^4-134*x^3+316*x^2+802*x+52 8299698711603902 r005 Im(z^2+c),c=-155/126+3/47*I,n=40 8299698718597155 a007 Real Root Of -366*x^4+628*x^3-223*x^2+296*x+932 8299698764654688 r005 Im(z^2+c),c=41/94+21/58*I,n=19 8299698771450092 r005 Im(z^2+c),c=-17/78+47/59*I,n=4 8299698824107689 m001 (3^(1/3)-Totient)/Champernowne 8299698865631287 m001 (ArtinRank2-CareFree)/(GaussAGM+ZetaQ(4)) 8299698881934505 r005 Re(z^2+c),c=-7/54+49/55*I,n=24 8299699007822175 m001 (Kolakoski-Otter)/(cos(1/12*Pi)-FeigenbaumMu) 8299699008547342 a007 Real Root Of 641*x^4-580*x^3+628*x^2+933*x-294 8299699013966480 m001 1/Salem/Conway^2*ln(GAMMA(1/4))^2 8299699031875436 a007 Real Root Of 975*x^4-976*x^3-848*x^2-3*x-439 8299699042512463 r005 Re(z^2+c),c=-103/102+11/49*I,n=22 8299699047706720 l006 ln(2711/6217) 8299699047706720 p004 log(6217/2711) 8299699071066206 r002 20th iterates of z^2 + 8299699113692337 a007 Real Root Of 747*x^4-447*x^3-799*x^2-733*x-668 8299699120818262 k002 Champernowne real with 109/2*n^2+255/2*n-174 8299699127558139 r009 Im(z^3+c),c=-13/23+38/55*I,n=5 8299699176099630 a003 cos(Pi*1/99)*cos(Pi*19/101) 8299699178442821 m001 (ln(3)-arctan(1/3))/(MertensB2-Paris) 8299699193941121 r005 Im(z^2+c),c=-89/70+3/40*I,n=18 8299699194395367 m005 (1/2*2^(1/2)+7/11)/(4/9*gamma-3/11) 8299699268303717 a007 Real Root Of 27*x^4+120*x^3-803*x^2+488*x-147 8299699278465800 r002 10th iterates of z^2 + 8299699314946168 a007 Real Root Of -11*x^4-921*x^3-676*x^2-762*x+674 8299699332746215 a001 86267571272/123*29^(1/20) 8299699359264745 m001 (LandauRamanujan+ZetaP(2))/(Ei(1,1)+gamma(1)) 8299699362805851 r004 Re(z^2+c),c=-29/34+1/18*I,z(0)=-1,n=10 8299699364806928 a007 Real Root Of 119*x^4+70*x^3-114*x^2-917*x-699 8299699366483613 a007 Real Root Of -607*x^4+205*x^3+903*x^2+407*x+121 8299699387212394 r005 Re(z^2+c),c=-9/10+80/93*I,n=2 8299699397011817 r005 Re(z^2+c),c=-29/23+2/41*I,n=32 8299699398857274 a007 Real Root Of 433*x^4-511*x^3-184*x^2-258*x-585 8299699420478981 a001 2207/144*317811^(2/15) 8299699432543132 m001 Kolakoski^Weierstrass/(Salem^Weierstrass) 8299699441820523 q001 1933/2329 8299699441855023 a007 Real Root Of -890*x^4+825*x^3+584*x^2-584*x+7 8299699443258997 a007 Real Root Of -950*x^4+873*x^3-992*x^2-869*x+912 8299699479130411 m001 (gamma(3)-BesselJ(1,1))/(ln(2)+Zeta(1,-1)) 8299699489873620 a007 Real Root Of -50*x^4+715*x^3-873*x^2+272*x+29 8299699507832586 a007 Real Root Of x^4+830*x^3+24*x^2-780*x+106 8299699508392431 m001 (1+Chi(1))/(Ei(1,1)+gamma(3)) 8299699532771073 a007 Real Root Of 104*x^4+748*x^3-868*x^2+823*x+778 8299699583397748 a007 Real Root Of -121*x^4-886*x^3+958*x^2-225*x-245 8299699617229724 r005 Im(z^2+c),c=-3/4+5/202*I,n=55 8299699617838628 m001 (5^(1/2)+Zeta(5))/(-Ei(1,1)+sin(1/12*Pi)) 8299699644548971 m008 (3*Pi^2-1)/(1/3*Pi^4+2) 8299699693061876 r009 Re(z^3+c),c=-3/17+29/44*I,n=9 8299699735570396 r002 18th iterates of z^2 + 8299699745307291 r002 5th iterates of z^2 + 8299699751914824 r005 Re(z^2+c),c=-1/11+13/18*I,n=45 8299699753168851 a008 Real Root of (1+5*x-5*x^2-3*x^3+5*x^4-6*x^5) 8299699766746856 l006 ln(2237/5130) 8299699832941890 r005 Re(z^2+c),c=-29/34+1/68*I,n=5 8299699866017676 r009 Re(z^3+c),c=-21/62+37/53*I,n=44 8299699879452396 a007 Real Root Of -508*x^4+585*x^3+29*x^2-138*x+441 8299699911330601 m001 (5^(1/2)+Zeta(5))/(PolyaRandomWalk3D+ZetaQ(2)) 8299699925654097 a007 Real Root Of 113*x^4-639*x^3+403*x^2+32*x-670 8299699940721571 a007 Real Root Of 890*x^4-98*x^3-40*x^2-434*x-811 8299699969745524 a007 Real Root Of 561*x^4-340*x^3-443*x^2+715*x+438 8299699991422965 a003 cos(Pi*15/92)-cos(Pi*55/113)