8626700026300544 h001 (1/3*exp(2)+3/7)/(1/3*exp(2)+8/9) 8626700061628478 p003 LerchPhi(1/2,1,339/193) 8626700086799618 g007 Psi(2,5/8)+Psi(2,2/5)+Psi(2,1/3)-Psi(2,3/5) 8626700100403406 a001 139583862445/123*123^(9/10) 8626700102288303 a007 Real Root Of 423*x^4-286*x^3-483*x^2-826*x-771 8626700108732649 m001 LambertW(1)^sin(1/12*Pi)*LambertW(1)^ZetaQ(4) 8626700120711714 p003 LerchPhi(1/25,2,118/109) 8626700153584645 r009 Im(z^3+c),c=-47/82+31/64*I,n=38 8626700159957350 m001 (ln(3)+GAMMA(1/12))/Zeta(1/2) 8626700159957350 m001 (ln(3)+Pi*csc(1/12*Pi)/GAMMA(11/12))/Zeta(1/2) 8626700165830813 m005 (1/2*Pi-1/2)/(10/11*3^(1/2)-1/3) 8626700176846822 s002 sum(A217504[n]/((2^n-1)/n),n=1..infinity) 8626700277231128 m001 FeigenbaumDelta^2/Champernowne/ln(Trott)^2 8626700288384499 m001 (Shi(1)-Zeta(1,2))/(-Cahen+Otter) 8626700306207305 r005 Re(z^2+c),c=-13/18+21/100*I,n=59 8626700307118650 a007 Real Root Of -655*x^4-12*x^3-917*x^2-295*x+783 8626700331257111 a007 Real Root Of 633*x^4-225*x^3+436*x^2-91*x-898 8626700337448909 a003 cos(Pi*7/110)*cos(Pi*17/108) 8626700344292555 r002 5th iterates of z^2 + 8626700348171556 a001 47/75025*1597^(16/45) 8626700362252602 a007 Real Root Of -573*x^4-307*x^3-136*x^2+433*x+595 8626700429514893 r009 Im(z^3+c),c=-5/62+37/43*I,n=23 8626700445925697 a007 Real Root Of 332*x^4-788*x^3+332*x^2+540*x-471 8626700458989238 r005 Im(z^2+c),c=-71/110+7/52*I,n=28 8626700459561626 m001 1/GAMMA(1/12)^2*ln(ArtinRank2)^2*Zeta(1,2)^2 8626700477657723 r009 Im(z^3+c),c=-17/126+51/61*I,n=61 8626700482604168 a005 (1/cos(5/79*Pi))^224 8626700504160085 r002 14th iterates of z^2 + 8626700541855060 a003 sin(Pi*1/38)/sin(Pi*37/91) 8626700544859962 m005 (1/3*2^(1/2)-1/9)/(-73/126+5/18*5^(1/2)) 8626700555188021 a007 Real Root Of -63*x^4+959*x^3+646*x^2-666*x-487 8626700576247437 h001 (4/11*exp(2)+5/9)/(5/11*exp(2)+2/5) 8626700576707687 a007 Real Root Of -691*x^4+929*x^3+536*x^2-144*x+456 8626700594332756 a003 cos(Pi*19/111)/sin(Pi*55/117) 8626700596815858 a007 Real Root Of 592*x^4-145*x^3-66*x^2+540*x+94 8626700610094738 l006 ln(4030/9549) 8626700617073260 a007 Real Root Of 789*x^4+406*x^3-342*x^2-35*x+48 8626700648826360 r009 Im(z^3+c),c=-3/31+52/61*I,n=13 8626700659882715 m001 1/Kolakoski/Champernowne*ln(RenyiParking)^2 8626700675619298 a007 Real Root Of -938*x^4+834*x^3+435*x^2-268*x+500 8626700680189952 r009 Im(z^3+c),c=-4/25+36/43*I,n=25 8626700680272108 q001 2029/2352 8626700680272108 r005 Im(z^2+c),c=17/42+9/28*I,n=3 8626700702744736 m001 (-FeigenbaumDelta+ZetaQ(3))/(Psi(2,1/3)+ln(3)) 8626700712164561 a007 Real Root Of -384*x^4+325*x^3-170*x^2+159*x+685 8626700726218994 m005 (1/2*exp(1)-2/5)/(5/8*5^(1/2)-2/7) 8626700758685371 r005 Re(z^2+c),c=1/13+31/64*I,n=57 8626700759097496 m001 MasserGramain^(BesselI(0,2)*ZetaR(2)) 8626700778971638 r002 3th iterates of z^2 + 8626700798330454 m001 (Ei(1)+polylog(4,1/2))/(Otter+Riemann3rdZero) 8626700813487182 m001 Zeta(1,2)/Backhouse*Totient 8626700843838989 s002 sum(A204719[n]/(exp(2*pi*n)-1),n=1..infinity) 8626700855583477 m001 exp(GAMMA(1/3))^2*Riemann2ndZero*GAMMA(5/24)^2 8626700887066455 l006 ln(3781/8959) 8626700894841423 m001 BesselJ(0,1)^2*FeigenbaumDelta*ln(GAMMA(1/24)) 8626700899726277 a007 Real Root Of 865*x^4-971*x^3+553*x^2+670*x-936 8626700913553618 r005 Re(z^2+c),c=5/48+28/61*I,n=5 8626700916521555 a007 Real Root Of 283*x^4-906*x^3-778*x^2+241*x+796 8626700949882290 h001 (5/11*exp(2)+7/12)/(1/2*exp(2)+7/8) 8626700987293539 r009 Re(z^3+c),c=-27/122+15/32*I,n=2 8626700995109173 m005 (1/3*gamma+1/12)/(1/8*2^(1/2)+1/7) 8626701012924719 a001 4106118243/1597*102334155^(4/21) 8626701012924719 a001 599074578/1597*2504730781961^(4/21) 8626701031724601 a001 28143753123/1597*4181^(4/21) 8626701119494288 r002 31th iterates of z^2 + 8626701131993288 a007 Real Root Of -329*x^4+568*x^3-565*x^2-966*x+134 8626701145420651 a003 sin(Pi*3/92)+sin(Pi*11/40) 8626701175452289 a007 Real Root Of -817*x^4+848*x^3-170*x^2-798*x+435 8626701185906583 r005 Im(z^2+c),c=17/70+24/43*I,n=26 8626701192325552 a007 Real Root Of 934*x^4+633*x^3+394*x^2-678*x-989 8626701203090234 l006 ln(3532/8369) 8626701251141960 m001 (ln(2+3^(1/2))+GAMMA(5/6))/(GAMMA(7/12)+Mills) 8626701265365452 m008 (2*Pi^3+1/2)/(2/3*Pi^2+2/3) 8626701317847459 m003 Sqrt[5]/4096+(3*ProductLog[1/2+Sqrt[5]/2]^2)/2 8626701326980273 r005 Im(z^2+c),c=-83/70+6/47*I,n=9 8626701334906157 a007 Real Root Of -108*x^4+491*x^3-857*x^2-380*x+685 8626701338217697 a007 Real Root Of 594*x^4-541*x^3-382*x^2+597*x+123 8626701338637051 m005 (1/3*Pi+3/4)/(6/7*5^(1/2)+1/6) 8626701347405313 m005 (1/2*2^(1/2)+6/11)/(71/72+5/24*5^(1/2)) 8626701356260157 m001 1/exp(GAMMA(2/3))*BesselJ(1,1)/log(2+sqrt(3)) 8626701371357193 m001 (GAMMA(17/24)-ArtinRank2)/(ln(Pi)-arctan(1/2)) 8626701406853730 r008 a(0)=0,K{-n^6,-30-75*n^3-70*n^2+59*n} 8626701413923651 r008 a(0)=0,K{-n^6,-20+82*n^3+24*n^2+30*n} 8626701422443080 a007 Real Root Of -358*x^4+985*x^3+888*x^2-197*x-925 8626701442688261 r008 a(0)=0,K{-n^6,8+72*n^3+68*n^2-32*n} 8626701477828282 r008 a(0)=0,K{-n^6,6+66*n^3+85*n^2-41*n} 8626701498685584 m001 BesselI(0,2)^BesselK(0,1)/GAMMA(13/24) 8626701507474975 r009 Im(z^3+c),c=-6/19+23/34*I,n=26 8626701516313720 m001 (MertensB1+Paris)/(Ei(1)+BesselI(0,2)) 8626701557068942 m001 (ln(5)*FeigenbaumKappa-FeigenbaumMu)/ln(5) 8626701557531806 r008 a(0)=0,K{-n^6,-58+63*n^3+62*n^2+49*n} 8626701566254802 a001 1/133957148*6557470319842^(16/17) 8626701566371883 a001 2/121393*1836311903^(16/17) 8626701567051814 l006 ln(3283/7779) 8626701567635567 r008 a(0)=0,K{-n^6,-62+53*n+63*n^2+62*n^3} 8626701581927744 r009 Im(z^3+c),c=-1/31+55/63*I,n=17 8626701590720937 a001 10749957122/4181*102334155^(4/21) 8626701590720937 a001 1568397607/4181*2504730781961^(4/21) 8626701596502615 h001 (1/10*exp(1)+5/6)/(1/3*exp(1)+3/8) 8626701609520820 a001 73681302247/4181*4181^(4/21) 8626701620255871 a007 Real Root Of -768*x^4+543*x^3-774*x^2-794*x+665 8626701642595931 a007 Real Root Of 736*x^4+308*x^3+715*x^2+153*x-610 8626701643602487 r005 Im(z^2+c),c=9/122+41/43*I,n=3 8626701650033527 a003 cos(Pi*11/96)*cos(Pi*9/71) 8626701658312491 a001 4052739537881/322*322^(1/3) 8626701675020275 a001 28143753123/10946*102334155^(4/21) 8626701675020275 a001 4106118243/10946*2504730781961^(4/21) 8626701676392774 m001 (Ei(1,1)+ThueMorse)^arctan(1/3) 8626701687319383 a001 73681302247/28657*102334155^(4/21) 8626701687319383 a001 10749957122/28657*2504730781961^(4/21) 8626701689113799 a001 192900153618/75025*102334155^(4/21) 8626701689113799 a001 28143753123/75025*2504730781961^(4/21) 8626701689375601 a001 505019158607/196418*102334155^(4/21) 8626701689375601 a001 73681302247/196418*2504730781961^(4/21) 8626701689413797 a001 1322157322203/514229*102334155^(4/21) 8626701689413797 a001 192900153618/514229*2504730781961^(4/21) 8626701689419370 a001 3461452808002/1346269*102334155^(4/21) 8626701689419370 a001 505019158607/1346269*2504730781961^(4/21) 8626701689420183 a001 9062201101803/3524578*102334155^(4/21) 8626701689420183 a001 1322157322203/3524578*2504730781961^(4/21) 8626701689420301 a001 23725150497407/9227465*102334155^(4/21) 8626701689420301 a001 3461452808002/9227465*2504730781961^(4/21) 8626701689420319 a001 9062201101803/24157817*2504730781961^(4/21) 8626701689420321 a001 23725150497407/63245986*2504730781961^(4/21) 8626701689420323 a001 14662949395604/39088169*2504730781961^(4/21) 8626701689420329 a001 5600748293801/14930352*2504730781961^(4/21) 8626701689420375 a001 14662949395604/5702887*102334155^(4/21) 8626701689420375 a001 2139295485799/5702887*2504730781961^(4/21) 8626701689420685 a001 5600748293801/2178309*102334155^(4/21) 8626701689420685 a001 817138163596/2178309*2504730781961^(4/21) 8626701689422814 a001 2139295485799/832040*102334155^(4/21) 8626701689422814 a001 28374454999/75640*2504730781961^(4/21) 8626701689437404 a001 817138163596/317811*102334155^(4/21) 8626701689437404 a001 119218851371/317811*2504730781961^(4/21) 8626701689537403 a001 312119004989/121393*102334155^(4/21) 8626701689537403 a001 45537549124/121393*2504730781961^(4/21) 8626701690222809 a001 119218851371/46368*102334155^(4/21) 8626701690222809 a001 17393796001/46368*2504730781961^(4/21) 8626701693820158 a001 96450076809/5473*4181^(4/21) 8626701694920650 a001 45537549124/17711*102334155^(4/21) 8626701694920650 a001 6643838879/17711*2504730781961^(4/21) 8626701706119266 a001 505019158607/28657*4181^(4/21) 8626701707913682 a001 1322157322203/75025*4181^(4/21) 8626701708175484 a001 1730726404001/98209*4181^(4/21) 8626701708213680 a001 9062201101803/514229*4181^(4/21) 8626701708219253 a001 23725150497407/1346269*4181^(4/21) 8626701708222697 a001 3665737348901/208010*4181^(4/21) 8626701708237287 a001 5600748293801/317811*4181^(4/21) 8626701708337286 a001 2139295485799/121393*4181^(4/21) 8626701709022692 a001 204284540899/11592*4181^(4/21) 8626701712770480 m001 1/exp(Trott)/FeigenbaumB/GAMMA(19/24)^2 8626701713720533 a001 1568437211/89*4181^(4/21) 8626701723518330 a007 Real Root Of -371*x^4+763*x^3+225*x^2+188*x-614 8626701727120133 a001 17393796001/6765*102334155^(4/21) 8626701727120133 a001 230701876/615*2504730781961^(4/21) 8626701730442916 a007 Real Root Of 716*x^4+612*x^3+289*x^2-646*x-776 8626701745920016 a001 119218851371/6765*4181^(4/21) 8626701755844443 m005 (1/2*5^(1/2)-5/6)/(4*Catalan-4/11) 8626701781037800 a007 Real Root Of 767*x^4-744*x^3+762*x^2-478*x+36 8626701833335453 a007 Real Root Of -430*x^4+359*x^3-429*x^2+72*x+850 8626701851781268 a007 Real Root Of 659*x^4-808*x^3-716*x^2-283*x-595 8626701857575712 m001 Mills^LandauRamanujan/(Mills^ln(2+3^(1/2))) 8626701890862258 a007 Real Root Of -206*x^4+881*x^3+184*x^2+173*x+692 8626701898168636 a007 Real Root Of 90*x^4-690*x^3+297*x^2+671*x-135 8626701918363330 a007 Real Root Of 292*x^4-977*x^3+419*x^2+424*x-735 8626701934169124 m001 (CareFree+Gompertz)/(Kac-Weierstrass) 8626701947818677 a001 6643838879/2584*102334155^(4/21) 8626701947818677 a001 969323029/2584*2504730781961^(4/21) 8626701955655613 a005 (1/sin(67/147*Pi))^1412 8626701957158968 a003 sin(Pi*24/73)/sin(Pi*31/66) 8626701966618560 a001 11384387281/646*4181^(4/21) 8626701969083032 a007 Real Root Of 168*x^4-925*x^3+356*x^2+460*x-555 8626701988248119 m001 (HardyLittlewoodC4-MertensB2)^arctan(1/2) 8626701990753939 l006 ln(3034/7189) 8626701995906307 r008 a(0)=1,K{-n^6,16+44*n-23*n^2-30*n^3} 8626702024325550 m001 (GAMMA(3/4)-3^(1/3))/(GAMMA(19/24)+Totient) 8626702034563789 m001 (gamma+CareFree)/(Rabbit+StronglyCareFree) 8626702038777029 a007 Real Root Of -450*x^4+461*x^3-553*x^2+49*x+999 8626702046733383 a007 Real Root Of 81*x^4+643*x^3-477*x^2-x-310 8626702053124270 m001 (BesselK(0,1)-ln(5))/(-Zeta(1,2)+BesselJ(1,1)) 8626702087359717 s002 sum(A133985[n]/(n*10^n+1),n=1..infinity) 8626702100510320 h001 (-3*exp(3)-8)/(-2*exp(1/3)+2) 8626702106338144 m001 (-FeigenbaumDelta+Otter)/(sin(1)+ln(Pi)) 8626702121917453 r005 Im(z^2+c),c=21/82+10/19*I,n=64 8626702140884212 r009 Re(z^3+c),c=-5/56+51/52*I,n=11 8626702150369633 a007 Real Root Of -144*x^4-586*x^3-895*x^2+150*x+499 8626702152715967 a007 Real Root Of -861*x^4-586*x^3-521*x^2+192*x+654 8626702169345552 r002 47th iterates of z^2 + 8626702209704851 m008 (1/2*Pi^3+5/6)/(3/5*Pi^3+1/3) 8626702253329525 m001 (2^(1/2)+3^(1/3))/(Kac+Khinchin) 8626702255772721 m001 GAMMA(19/24)/(Gompertz+LandauRamanujan) 8626702255922225 m005 (1/2*gamma-5/7)/(2/11*5^(1/2)-9/10) 8626702259499060 r002 33th iterates of z^2 + 8626702278411531 a001 1/3*11^(23/58) 8626702305057858 m001 (5^(1/2)-Backhouse)/(-FeigenbaumAlpha+Magata) 8626702317337576 r009 Im(z^3+c),c=-41/66+18/41*I,n=2 8626702336423468 a007 Real Root Of 492*x^4-158*x^3+297*x^2-371*x-915 8626702337358179 s002 sum(A143062[n]/(n*10^n+1),n=1..infinity) 8626702383221867 m001 (1/3)^(arctan(1/2)/exp(-1/2*Pi)) 8626702401620802 h001 (2/7*exp(1)+4/9)/(3/10*exp(1)+3/5) 8626702404373775 a007 Real Root Of 541*x^4-582*x^3-779*x^2-84*x-166 8626702413654132 m001 (Zeta(1/2)-Lehmer)/(Otter-Stephens) 8626702427135578 m002 -5/4+Pi-Cosh[Pi]+ProductLog[Pi] 8626702433304236 a007 Real Root Of 956*x^4-802*x^3-893*x^2+89*x-303 8626702443403189 a007 Real Root Of -449*x^4-263*x^3-816*x^2+190*x+851 8626702450037721 a007 Real Root Of 366*x^4-564*x^3+979*x^2+660*x-724 8626702461666231 m001 (exp(1)+ln(2))/(-gamma(1)+FellerTornier) 8626702490220372 l006 ln(2785/6599) 8626702525291816 a001 21/47*2^(56/59) 8626702560984026 a007 Real Root Of -765*x^4+638*x^3+640*x^2+131*x+470 8626702562818265 r002 3th iterates of z^2 + 8626702584949182 a007 Real Root Of 422*x^4-730*x^3+718*x^2+956*x-412 8626702590924801 a007 Real Root Of -89*x^4-804*x^3-371*x^2-591*x-744 8626702603947400 a007 Real Root Of 889*x^4+172*x^3+123*x^2+783*x+202 8626702611517857 m001 1/exp(GAMMA(13/24))^2/CopelandErdos*cos(1) 8626702623660470 m001 (2^(1/3)+cos(1))/(-FeigenbaumD+Gompertz) 8626702704660520 m001 exp(GAMMA(1/3))^2*Salem*sin(Pi/5)^2 8626702730475879 a001 610/3*18^(1/2) 8626702730475879 b008 -61*Sqrt[2] 8626702730475879 b008 61*E^ArcCoth[3] 8626702730475879 b008 61*Sqrt[2] 8626702733644715 m001 Landau^sin(1/12*Pi)+ZetaQ(3) 8626702754655785 r005 Re(z^2+c),c=9/106+2/31*I,n=7 8626702757838016 m001 (-Sierpinski+StolarskyHarborth)/(Catalan-Kac) 8626702766865148 r009 Im(z^3+c),c=-12/31+37/58*I,n=14 8626702767766664 a007 Real Root Of -709*x^4-253*x^3+47*x^2+133*x+310 8626702795164105 m001 (Conway-HeathBrownMoroz)/(MertensB1-ThueMorse) 8626702812895982 a007 Real Root Of 117*x^4-390*x^3+616*x^2+32*x-746 8626702828969421 r005 Re(z^2+c),c=-65/74+2/47*I,n=7 8626702844960453 r002 15th iterates of z^2 + 8626702858499536 m005 (1/4*exp(1)-2/3)/(5*Pi-3/4) 8626702862091784 a007 Real Root Of -135*x^4+936*x^3-811*x^2-661*x+709 8626702870268138 m001 Catalan^(2*sin(1)) 8626702882155431 m001 1/cosh(1)^2*FeigenbaumKappa*exp(exp(1)) 8626702939692313 p001 sum(1/(535*n+116)/(256^n),n=0..infinity) 8626702951825053 a007 Real Root Of -597*x^4+830*x^3-420*x^2-218*x+988 8626702955967989 m005 (1/3*exp(1)+2/7)/(5/7*Catalan+8/11) 8626702969264841 a007 Real Root Of -349*x^4+x^3-271*x^2-782*x-279 8626702997275204 q001 1583/1835 8626703067006647 a007 Real Root Of -159*x^4+437*x^3+722*x^2+876*x+587 8626703073643244 m001 (Catalan+Cahen)/(PolyaRandomWalk3D+Porter) 8626703083697925 a007 Real Root Of 309*x^4-5*x^3+398*x^2+433*x-97 8626703087570804 m001 (3^(1/3)-ln(2)/ln(10))/(gamma(2)+MertensB3) 8626703087768114 l006 ln(2536/6009) 8626703092494651 m001 GAMMA(19/24)-GAMMA(23/24)+TravellingSalesman 8626703138140476 a008 Real Root of (-6+6*x-4*x^2+6*x^4+x^5) 8626703152206514 a007 Real Root Of -558*x^4+152*x^3+569*x^2+744*x+625 8626703164117107 m001 (Pi*MertensB2-cos(1))/Pi 8626703178339192 m005 (1/2*2^(1/2)-1/8)/(7/10*Zeta(3)-1/6) 8626703189316910 r005 Im(z^2+c),c=-79/74+6/61*I,n=32 8626703233981489 a007 Real Root Of -206*x^4+945*x^3-824*x^2+345*x-177 8626703244599883 r002 57th iterates of z^2 + 8626703270927781 s002 sum(A040458[n]/(exp(n)),n=1..infinity) 8626703277932945 a007 Real Root Of -700*x^4+485*x^3+871*x^2-103*x-38 8626703280697534 a003 cos(Pi*5/117)*cos(Pi*19/116) 8626703299989420 r005 Re(z^2+c),c=-10/11+12/53*I,n=42 8626703302822970 m001 1/exp(arctan(1/2))^2/Kolakoski/gamma 8626703312114727 a007 Real Root Of -72*x^4-508*x^3+934*x^2-291*x+606 8626703312983174 a001 75025/18*521^(5/43) 8626703314840754 a007 Real Root Of -36*x^4+635*x^3+187*x^2+458*x-922 8626703362043410 a007 Real Root Of 715*x^4-814*x^3-418*x^2+91*x-529 8626703424502493 a007 Real Root Of 780*x^4-139*x^3-680*x^2+57*x+34 8626703425887498 r005 Re(z^2+c),c=-23/27+1/8*I,n=57 8626703460509305 a001 370248451/987*2504730781961^(4/21) 8626703460509305 a001 2537720636/987*102334155^(4/21) 8626703479309192 a001 17393796001/987*4181^(4/21) 8626703546698504 m002 -1+Pi^4-Pi^6+Sinh[Pi]/5 8626703549260319 r002 56th iterates of z^2 + 8626703550122389 m001 1/GAMMA(1/12)/FeigenbaumB*exp(GAMMA(11/12))^2 8626703572137190 a007 Real Root Of -854*x^4+840*x^3+232*x^2+380*x-35 8626703602710283 a007 Real Root Of 851*x^4+864*x^3+792*x^2+626*x+34 8626703605275943 a003 sin(Pi*18/73)/sin(Pi*31/103) 8626703609999836 r005 Re(z^2+c),c=-131/122+4/19*I,n=40 8626703630811681 s002 sum(A281011[n]/(n*10^n+1),n=1..infinity) 8626703698432826 r005 Im(z^2+c),c=-65/56+1/9*I,n=42 8626703730595590 r005 Im(z^2+c),c=-33/82+8/57*I,n=11 8626703783681380 m003 8*Cot[1/2+Sqrt[5]/2]-Sinh[1/2+Sqrt[5]/2]/5 8626703798768757 a003 sin(Pi*1/107)+sin(Pi*37/118) 8626703802931637 m001 (ln(3)-Pi^(1/2))/(GAMMA(7/12)-RenyiParking) 8626703803037291 r009 Re(z^3+c),c=-15/62+11/16*I,n=37 8626703809348382 a007 Real Root Of 694*x^4-233*x^3+173*x^2+694*x-64 8626703815433330 l006 ln(2287/5419) 8626703815433330 p004 log(5419/2287) 8626703824635133 a007 Real Root Of 610*x^4-298*x^3+116*x^2+113*x-518 8626703840254658 a007 Real Root Of -162*x^4+528*x^3+538*x^2+92*x-729 8626703862624370 m001 (gamma(1)-Weierstrass)/(ln(3)-arctan(1/2)) 8626703918882241 r002 12th iterates of z^2 + 8626703951226572 a007 Real Root Of 185*x^4-789*x^3+362*x^2-937*x+943 8626703969531930 a007 Real Root Of -551*x^4+327*x^3+645*x^2-145*x-90 8626703983622031 r005 Im(z^2+c),c=5/86+29/45*I,n=52 8626703984850776 m001 (GAMMA(3/4)+CopelandErdos)/(GaussAGM+Thue) 8626704015471461 r005 Im(z^2+c),c=-25/52+35/37*I,n=3 8626704086080550 m005 (1/2*5^(1/2)-4/5)/(4/7*5^(1/2)-10/11) 8626704098653310 r009 Im(z^3+c),c=-17/46+41/62*I,n=9 8626704105562192 r009 Im(z^3+c),c=-61/118+35/61*I,n=8 8626704118474763 s001 sum(exp(-Pi/4)^(n-1)*A131826[n],n=1..infinity) 8626704186074664 s002 sum(A032724[n]/(n^3*2^n+1),n=1..infinity) 8626704206620632 a007 Real Root Of 8*x^4+692*x^3+151*x^2-849*x-512 8626704208550318 m001 (sin(1/12*Pi)+MertensB2)/(Riemann1stZero+Thue) 8626704217599978 m001 (-FeigenbaumD+PlouffeB)/(2^(1/2)+ln(Pi)) 8626704219207947 a001 7/13*10946^(17/57) 8626704248803609 r005 Im(z^2+c),c=-79/74+6/61*I,n=23 8626704262019163 a007 Real Root Of -33*x^4+292*x^3+359*x^2+556*x-916 8626704307102917 p004 log(35573/15013) 8626704315385030 m001 (Mills-ZetaQ(3))/(Conway-FransenRobinson) 8626704324139663 h001 (5/11*exp(2)+9/10)/(4/7*exp(2)+5/7) 8626704325331345 a007 Real Root Of -51*x^4-412*x^3+223*x^2-220*x-542 8626704379268940 r005 Re(z^2+c),c=19/118+43/48*I,n=3 8626704379469356 a001 1/6621*(1/2*5^(1/2)+1/2)^22*3^(1/3) 8626704384103563 r009 Im(z^3+c),c=-83/106+17/54*I,n=2 8626704407924474 a007 Real Root Of 521*x^4+191*x^3+12*x^2-698*x-777 8626704421075137 m001 (-Sierpinski+ZetaQ(2))/(3^(1/2)+Zeta(3)) 8626704422307984 a007 Real Root Of -782*x^4+103*x^3-615*x^2-190*x+793 8626704432998893 r005 Im(z^2+c),c=-19/56+2/15*I,n=15 8626704436593517 m001 exp(TwinPrimes)^2/Khintchine^2/BesselK(1,1) 8626704451232422 r005 Re(z^2+c),c=-33/34+15/88*I,n=10 8626704455360336 a007 Real Root Of 334*x^4-680*x^3+156*x^2+942*x+75 8626704485544992 m001 ln(GAMMA(1/4))^2*Artin^2/GAMMA(13/24)^2 8626704552021454 m008 (4/5*Pi^3+5/6)/(1/3*Pi-3/4) 8626704553974111 m002 6/Pi^3+(2*Coth[Pi])/3 8626704574698692 m001 exp(-1/2*Pi)^(OneNinth/ln(Pi)) 8626704582238140 m001 (exp(1/Pi)-GolombDickman)/(Trott+Thue) 8626704598685697 r009 Im(z^3+c),c=-3/64+47/54*I,n=27 8626704599362910 m001 GolombDickman+OneNinth^Cahen 8626704623161428 a007 Real Root Of -113*x^4-949*x^3+243*x^2+96*x-681 8626704625767430 a007 Real Root Of 769*x^4-381*x^3-950*x^2-528*x-419 8626704646219220 a007 Real Root Of 496*x^4-850*x^3-187*x^2-9*x-689 8626704656809013 a007 Real Root Of 344*x^4-859*x^3+66*x^2-212*x-974 8626704693368318 a003 cos(Pi*9/101)*cos(Pi*17/117) 8626704696297593 r005 Re(z^2+c),c=-2/21+23/26*I,n=13 8626704720908717 l006 ln(2038/4829) 8626704725658103 q001 272/3153 8626704740789461 r009 Im(z^3+c),c=-41/118+2/45*I,n=8 8626704748143034 a003 sin(Pi*13/53)/sin(Pi*35/117) 8626704809326088 a003 sin(Pi*29/91)-sin(Pi*25/66) 8626704824866642 b008 ExpIntegralE[2,2*E]/7 8626704825999737 m001 1/GAMMA(2/3)^2/ln(TreeGrowth2nd)^2/Zeta(1,2) 8626704836787113 a007 Real Root Of 726*x^4-134*x^3+229*x^2-317*x-932 8626704857952016 m005 (1/2*Pi+2/7)/(3/10*Pi-8/11) 8626704861570242 r009 Re(z^3+c),c=-1/106+27/37*I,n=45 8626704863973612 r002 16th iterates of z^2 + 8626704876318807 a007 Real Root Of -109*x^4-867*x^3+605*x^2-240*x-29 8626704883435064 a007 Real Root Of 704*x^4-853*x^3-542*x^2+108*x-441 8626704898076266 m001 (PolyaRandomWalk3D+Rabbit)/(ln(Pi)-gamma(1)) 8626704906588629 m001 exp(FransenRobinson)*Cahen*cos(Pi/5) 8626704928685238 a007 Real Root Of -243*x^4+748*x^3-745*x^2-377*x+844 8626704948262456 s002 sum(A157578[n]/(2^n-1),n=1..infinity) 8626704962513934 m001 1/Lehmer*ln(Khintchine)/GAMMA(11/24) 8626704963379361 a007 Real Root Of 836*x^4-399*x^3-282*x^2+726*x+117 8626704971197900 m005 (1/2*gamma+5/6)/(1/11*5^(1/2)-1/3) 8626704990863735 a007 Real Root Of -950*x^4+201*x^3+896*x^2+112*x+85 8626705019295231 a007 Real Root Of -867*x^4+932*x^3+544*x^2+85*x+747 8626705021294048 a007 Real Root Of 56*x^4-229*x^3+606*x^2+546*x-158 8626705092969214 m001 exp(TwinPrimes)^2/Paris/BesselJ(1,1) 8626705101374717 r005 Re(z^2+c),c=-75/118+23/55*I,n=6 8626705110089007 a007 Real Root Of -110*x^4-979*x^3-187*x^2+604*x-173 8626705127161364 a007 Real Root Of -217*x^4+836*x^3+104*x^2+91*x+658 8626705139910532 r005 Re(z^2+c),c=-97/122+17/64*I,n=10 8626705151330870 m001 (exp(-1/2*Pi)+5)/(Zeta(5)+5) 8626705183634752 r009 Im(z^3+c),c=-3/64+47/54*I,n=29 8626705221074347 m001 exp(-1/2*Pi)^(MadelungNaCl*ZetaQ(2)) 8626705229309479 a007 Real Root Of 120*x^4+986*x^3-384*x^2+257*x-795 8626705231240136 a007 Real Root Of 669*x^4-654*x^3-987*x^2+314*x+513 8626705236950272 m001 (Psi(1,1/3)+ln(3))/(-Mills+ZetaQ(3)) 8626705241812388 r009 Re(z^3+c),c=-1/110+3/22*I,n=4 8626705242977248 l006 ln(1232/1343) 8626705246214571 r009 Re(z^3+c),c=-5/32+19/29*I,n=41 8626705256767388 a007 Real Root Of -408*x^4+938*x^3+529*x^2-372*x-449 8626705262017173 l006 ln(3827/9068) 8626705262584109 a007 Real Root Of -736*x^4+356*x^3-38*x^2-754*x+14 8626705266169511 a007 Real Root Of 745*x^4+452*x^3-536*x^2-550*x-198 8626705302817038 r009 Im(z^3+c),c=-23/38+17/55*I,n=39 8626705315316645 m005 (1/12+1/4*5^(1/2))/(5*2^(1/2)+3/8) 8626705317000752 r002 2th iterates of z^2 + 8626705334574184 r005 Re(z^2+c),c=11/98+14/25*I,n=64 8626705404626943 m001 Pi-2/3*exp(Pi)*Pi*3^(5/6)/GAMMA(2/3) 8626705418516594 r002 52th iterates of z^2 + 8626705419586970 r005 Im(z^2+c),c=-9/7+3/74*I,n=14 8626705419855222 a007 Real Root Of 106*x^4+880*x^3-267*x^2+307*x+414 8626705523765558 r005 Im(z^2+c),c=-3/31+35/37*I,n=17 8626705558267237 a007 Real Root Of -310*x^4-125*x^3+854*x^2+536*x-846 8626705606175879 b008 ArcTanh[ArcCot[Cosh[Pi]]] 8626705616119569 h001 (3/5*exp(1)+7/11)/(9/10*exp(1)+2/11) 8626705637276718 m005 (1/2*2^(1/2)+5/6)/(7/12*exp(1)+1/5) 8626705645668972 b008 ArcSin[ArcCsch[Cosh[Pi]]] 8626705664029550 m001 1/FeigenbaumC/FeigenbaumB*ln(Zeta(5))^2 8626705704110556 a001 144/521*3461452808002^(11/12) 8626705724683998 b008 ArcSinh[ArcCos[Tanh[Pi]]] 8626705742958969 m001 Stephens-sin(1)*LandauRamanujan2nd 8626705764205097 b008 ArcTan[ArcCosh[Coth[Pi]]] 8626705789989321 a003 sin(Pi*1/41)/cos(Pi*9/59) 8626705796006134 a007 Real Root Of -751*x^4-841*x^3-510*x^2-513*x-187 8626705798534507 m001 1/Sierpinski*exp(Khintchine)^2*Zeta(5) 8626705813000331 a007 Real Root Of -103*x^4+817*x^3-575*x^2-215*x+824 8626705819784400 r005 Im(z^2+c),c=25/102+30/53*I,n=34 8626705823959399 m005 (1/2*gamma-6/7)/(6/11*3^(1/2)-2/7) 8626705864165895 s002 sum(A230216[n]/(pi^n),n=1..infinity) 8626705870035300 r009 Im(z^3+c),c=-3/64+47/54*I,n=31 8626705878439179 l006 ln(1789/4239) 8626705892160055 a001 1/17334*(1/2*5^(1/2)+1/2)^24*3^(1/3) 8626705901487039 a007 Real Root Of 494*x^4+43*x^3-67*x^2-649*x-756 8626705928841705 a007 Real Root Of -155*x^4+435*x^3-199*x^2+453*x+904 8626705931486261 a007 Real Root Of 94*x^4-906*x^3+424*x^2+20*x-932 8626705944646897 a007 Real Root Of -961*x^4+772*x^3-52*x+983 8626705946925067 r002 26th iterates of z^2 + 8626705948374078 m001 1/exp(GAMMA(5/24))/GAMMA(11/24)/exp(1)^2 8626705961207154 r009 Im(z^3+c),c=-3/64+47/54*I,n=25 8626706007085210 r005 Im(z^2+c),c=-121/102+4/35*I,n=63 8626706023559584 a007 Real Root Of -305*x^4+273*x^3-108*x^2-127*x+315 8626706099407574 m001 (FeigenbaumD-Stephens)/(arctan(1/2)-Ei(1,1)) 8626706112858698 a001 1/45381*(1/2*5^(1/2)+1/2)^26*3^(1/3) 8626706118490620 m001 (Kac+Sierpinski)/(3^(1/3)+BesselI(0,2)) 8626706145058197 a001 1/118809*(1/2*5^(1/2)+1/2)^28*3^(1/3) 8626706150558528 a001 1/3*(1/2*5^(1/2)+1/2)^6*3^(1/3) 8626706152659467 a001 1/192237*(1/2*5^(1/2)+1/2)^29*3^(1/3) 8626706164958582 a001 1/73428*(1/2*5^(1/2)+1/2)^27*3^(1/3) 8626706225740241 m001 GAMMA(1/3)^GAMMA(11/24)*GAMMA(17/24) 8626706241109463 r002 3th iterates of z^2 + 8626706241779221 m001 1/ln(GAMMA(5/6))/FeigenbaumB^2/sinh(1)^2 8626706247058502 r009 Im(z^3+c),c=-11/82+5/6*I,n=41 8626706249257966 a001 1/28047*(1/2*5^(1/2)+1/2)^25*3^(1/3) 8626706259341133 r009 Im(z^3+c),c=-3/64+47/54*I,n=33 8626706270628262 r005 Re(z^2+c),c=5/46+19/35*I,n=5 8626706308399279 r005 Re(z^2+c),c=3/44+59/61*I,n=2 8626706315142346 a007 Real Root Of 204*x^4-792*x^3-612*x^2-466*x-568 8626706319642438 m002 (Pi^5*Log[Pi])/4-Log[Pi]^2 8626706352651615 a007 Real Root Of -109*x^4-860*x^3+674*x^2-95*x+581 8626706360837823 m001 Lehmer^2/HardHexagonsEntropy*ln(Rabbit) 8626706392590275 r002 37th iterates of z^2 + 8626706402370515 a007 Real Root Of 467*x^4-551*x^3+491*x^2-13*x-989 8626706412564251 r009 Im(z^3+c),c=-3/64+47/54*I,n=35 8626706424227876 p001 sum(1/(209*n+116)/(512^n),n=0..infinity) 8626706430560560 r009 Im(z^3+c),c=-3/64+47/54*I,n=49 8626706430648788 r009 Im(z^3+c),c=-3/64+47/54*I,n=51 8626706430653066 r009 Im(z^3+c),c=-3/64+47/54*I,n=47 8626706430730783 r009 Im(z^3+c),c=-3/64+47/54*I,n=53 8626706430773791 r009 Im(z^3+c),c=-3/64+47/54*I,n=55 8626706430789544 r009 Im(z^3+c),c=-3/64+47/54*I,n=57 8626706430791180 r009 Im(z^3+c),c=-3/64+47/54*I,n=63 8626706430792244 r009 Im(z^3+c),c=-3/64+47/54*I,n=61 8626706430792840 r009 Im(z^3+c),c=-3/64+47/54*I,n=59 8626706431470223 r009 Im(z^3+c),c=-3/64+47/54*I,n=45 8626706434113297 r009 Im(z^3+c),c=-3/64+47/54*I,n=43 8626706439944202 r009 Im(z^3+c),c=-3/64+47/54*I,n=41 8626706448397925 r009 Im(z^3+c),c=-3/64+47/54*I,n=39 8626706450164336 r009 Im(z^3+c),c=-3/64+47/54*I,n=37 8626706474799623 r005 Im(z^2+c),c=-23/70+7/53*I,n=18 8626706490260287 a007 Real Root Of 257*x^4+211*x^3+294*x^2-551*x-701 8626706508087751 a007 Real Root Of 93*x^4-336*x^3-116*x^2-834*x+970 8626706511839324 m001 arctan(1/3)/(FellerTornier+Magata) 8626706512562171 r005 Im(z^2+c),c=-9/16+5/32*I,n=53 8626706532987969 r005 Re(z^2+c),c=7/24+23/63*I,n=41 8626706539926404 a007 Real Root Of 427*x^4-438*x^3+772*x^2+916*x-302 8626706587074464 l006 ln(3329/7888) 8626706590546987 a003 sin(Pi*3/115)/sin(Pi*37/93) 8626706612114693 s002 sum(A251677[n]/(exp(n)-1),n=1..infinity) 8626706641777467 m001 (cos(1)+Zeta(1,2))/(-Porter+Tetranacci) 8626706705986027 a003 cos(Pi*3/113)-sin(Pi*5/117) 8626706709145828 a001 63245986/7*123^(18/19) 8626706762288476 a007 Real Root Of -453*x^4+778*x^3-33*x^2-787*x+96 8626706764987381 m001 (-gamma(3)+BesselI(1,2))/(1+sin(1)) 8626706769701018 a007 Real Root Of 820*x^4+375*x^3+417*x^2+519*x-76 8626706783991780 r005 Im(z^2+c),c=-11/90+25/29*I,n=37 8626706807892563 h001 (10/11*exp(2)+1/12)/(1/7*exp(1)+2/5) 8626706807920509 a001 4181/18*3571^(19/43) 8626706808736126 m001 GAMMA(7/12)^ZetaR(2)/Champernowne 8626706827054586 a001 1/10713*(1/2*5^(1/2)+1/2)^23*3^(1/3) 8626706844452664 a007 Real Root Of 421*x^4-969*x^3+396*x^2-630*x+52 8626706849013020 r002 33th iterates of z^2 + 8626706855324655 r005 Re(z^2+c),c=1/18+29/64*I,n=33 8626706890613426 m001 (ln(2)/ln(10)-ln(5))^ln(gamma) 8626706910337575 r005 Re(z^2+c),c=-29/34+10/83*I,n=11 8626706923539673 m001 Mills^gamma*Lehmer^gamma 8626706923858046 s002 sum(A277868[n]/((exp(n)+1)/n),n=1..infinity) 8626706944121743 a003 sin(Pi*29/82)*sin(Pi*26/63) 8626706946747567 s002 sum(A255146[n]/((2^n-1)/n),n=1..infinity) 8626706955093378 r005 Re(z^2+c),c=-41/48+7/62*I,n=13 8626706979558245 m001 1/exp(GAMMA(5/24))*Riemann2ndZero*gamma^2 8626706982712472 a001 2255/6*15127^(14/43) 8626706990114235 m001 Pi/Psi(2,1/3)*(sin(1/12*Pi)-Pi^(1/2)) 8626706996147555 a001 123/3524578*102334155^(4/23) 8626706996147691 a001 123/24157817*6557470319842^(4/23) 8626707003347563 m001 1/exp(BesselJ(1,1))^2*BesselJ(0,1)*exp(1) 8626707006645748 a001 1568397607/610*4807526976^(6/23) 8626707006725710 a001 28143753123/610*75025^(6/23) 8626707008148775 a001 121393/18*39603^(1/43) 8626707012313827 a007 Real Root Of -692*x^4+265*x^3-730*x^2-221*x+906 8626707043391059 a001 2576*5778^(6/43) 8626707067816676 a001 4181/18*9349^(17/43) 8626707101029699 a007 Real Root Of 943*x^4+2*x^3-631*x^2-782*x-726 8626707113792656 a001 123/514229*1597^(4/23) 8626707128911834 r008 a(0)=1,K{-n^6,50-11*n-32*n^3} 8626707132018209 q001 1137/1318 8626707150671897 r009 Im(z^3+c),c=-13/110+47/55*I,n=5 8626707152122609 r005 Im(z^2+c),c=-23/34+2/11*I,n=46 8626707185162152 r005 Re(z^2+c),c=1/56+17/44*I,n=10 8626707188594665 a007 Real Root Of 948*x^4+828*x^3+964*x^2+183*x-553 8626707195261012 a007 Real Root Of -478*x^4+446*x^3-494*x^2-75*x+854 8626707216727635 a007 Real Root Of -839*x^4-316*x^3-434*x^2-606*x+62 8626707238566813 a007 Real Root Of 603*x^4-931*x^3-956*x^2-169*x-366 8626707244624155 r002 31th iterates of z^2 + 8626707264880508 m001 (MasserGramain-sin(1))/(OrthogonalArrays+Thue) 8626707280363107 m001 1/exp(Salem)/Robbin/cos(1) 8626707332769424 a007 Real Root Of -886*x^4+20*x^3-95*x^2-508*x+136 8626707355985827 a007 Real Root Of -599*x^4+782*x^3-838*x^2+930*x+87 8626707377251302 r005 Re(z^2+c),c=-7/8+11/188*I,n=21 8626707381303069 h001 (2/9*exp(2)+8/11)/(9/10*exp(1)+3/10) 8626707390729332 a001 192900153618*144^(13/17) 8626707410287727 l006 ln(1540/3649) 8626707415350713 a007 Real Root Of 902*x^4-901*x^3+179*x^2+297*x-955 8626707459131611 r005 Im(z^2+c),c=-9/14+71/112*I,n=3 8626707482717800 r005 Im(z^2+c),c=19/58+14/33*I,n=7 8626707530762391 m001 (Kac-Weierstrass)/(GAMMA(5/6)-Conway) 8626707532218098 m005 (13/12+1/4*5^(1/2))/(1/6*gamma-2) 8626707538978418 m001 PrimesInBinary+MasserGramain^Tribonacci 8626707562063100 a007 Real Root Of -675*x^4+336*x^3-968*x^2-583*x+807 8626707585763348 a001 3/1346269*1346269^(19/45) 8626707588856754 m001 (TwinPrimes+ZetaP(2))/(ln(2)+Gompertz) 8626707593317867 a007 Real Root Of 339*x^4-803*x^3+831*x^2+774*x-654 8626707616968851 m003 2/5+(5*Sqrt[5])/16+5*Cos[1/2+Sqrt[5]/2] 8626707646467311 a001 322/6765*233^(6/55) 8626707652392953 m001 (ZetaP(2)-ZetaQ(4))/(ln(2+3^(1/2))-Tribonacci) 8626707656956193 r002 14th iterates of z^2 + 8626707670517222 p004 log(24953/10531) 8626707684497808 m001 GAMMA(1/6)^2*FeigenbaumKappa^2*exp(exp(1)) 8626707703961288 a007 Real Root Of 986*x^4+151*x^3-220*x^2-571*x-778 8626707715201543 r009 Im(z^3+c),c=-5/54+13/15*I,n=3 8626707743788154 m009 (6*Psi(1,1/3)+5/6)/(5/6*Psi(1,3/4)+5) 8626707766988228 a007 Real Root Of 88*x^4+769*x^3+197*x^2+870*x-832 8626707767379446 a007 Real Root Of 212*x^4-784*x^3-16*x^2+278*x+158 8626707771495505 h001 (5/11*exp(1)+1/12)/(1/11*exp(2)+6/7) 8626707779257535 r009 Im(z^3+c),c=-17/31+16/53*I,n=21 8626707792445548 m001 (Lehmer+ZetaP(4))/StronglyCareFree 8626707851764638 a007 Real Root Of 900*x^4-418*x^3-967*x^2-642*x-601 8626707892349883 a007 Real Root Of -697*x^4-30*x^3-946*x^2-890*x+303 8626707909322459 m001 (Kac+MertensB3)/(BesselJ(1,1)-exp(Pi)) 8626707925269976 r002 58th iterates of z^2 + 8626707935473862 m001 Si(Pi)/(Otter-cos(1/5*Pi)) 8626707938096279 m001 (Totient-ThueMorse)/(Pi^(1/2)-ArtinRank2) 8626707978476692 h001 (5/6*exp(1)+1/10)/(11/12*exp(1)+1/4) 8626708067990649 r005 Re(z^2+c),c=19/82+11/34*I,n=46 8626708080786880 a007 Real Root Of -944*x^4+295*x^3-923*x^2-924*x+602 8626708086455123 a001 305/9*1364^(33/43) 8626708102703838 r002 54th iterates of z^2 + 8626708103106961 r002 7th iterates of z^2 + 8626708202531545 r005 Im(z^2+c),c=1/31-13/20*I,n=8 8626708204213315 m001 (FeigenbaumMu-Kolakoski)/(MertensB1+Otter) 8626708225966627 a007 Real Root Of -417*x^4-67*x^3-221*x^2+418*x+713 8626708228005407 m001 (2^(1/2)+BesselJ(0,1))/(KhinchinLevy+Totient) 8626708259945961 m001 Zeta(1,2)^(1/3)/Zeta(1/2)^(1/3) 8626708278312534 a007 Real Root Of 747*x^4-485*x^3-720*x^2+719*x+431 8626708362743983 m001 (MadelungNaCl+Stephens)/(Si(Pi)+sin(1)) 8626708378311998 l006 ln(2831/6708) 8626708399152074 a007 Real Root Of -124*x^4+307*x^3-142*x^2-856*x-367 8626708438517683 a007 Real Root Of -898*x^4-46*x^3-378*x^2+30*x+775 8626708482848124 m001 GAMMA(17/24)/Niven*ln(Pi) 8626708482848124 m001 ln(Pi)*GAMMA(17/24)/Niven 8626708490761480 r009 Re(z^3+c),c=-1/86+19/50*I,n=16 8626708494399481 s002 sum(A158967[n]/(n^2*10^n+1),n=1..infinity) 8626708497607110 m001 ln(1+sqrt(2))^(Pi/Khinchin) 8626708497607110 m001 ln(2^(1/2)+1)^(Pi/Khinchin) 8626708511355874 a001 1/416020*6557470319842^(14/17) 8626708520026853 r009 Re(z^3+c),c=-11/114+27/53*I,n=3 8626708550246800 h001 (-9*exp(1)+8)/(-exp(3)+1) 8626708550546241 a007 Real Root Of -566*x^4+448*x^3-220*x^2-431*x+393 8626708555557633 m001 Ei(1,1)/(Chi(1)+Niven) 8626708591903925 a001 2504730781961/322*322^(5/12) 8626708638972692 a007 Real Root Of 484*x^4+86*x^3+543*x^2-320*x-893 8626708639623857 m001 Zeta(1/2)*FibonacciFactorial+Niven 8626708644860470 m001 (Kac-Lehmer)/(Otter+QuadraticClass) 8626708662503422 r009 Re(z^3+c),c=-1/82+32/61*I,n=7 8626708666487658 a007 Real Root Of -419*x^4+255*x^3+301*x^2-293*x-81 8626708700684524 h001 (2/11*exp(2)+3/7)/(6/11*exp(1)+4/7) 8626708711846446 m003 -1/2+(3*Sqrt[5])/8+Cosh[1/2+Sqrt[5]/2]/5 8626708716006813 m001 cos(1)^(arctan(1/2)/GAMMA(11/24)) 8626708728967461 s002 sum(A111930[n]/(16^n-1),n=1..infinity) 8626708739970726 l006 ln(4122/9767) 8626708761161123 a007 Real Root Of -614*x^4+417*x^3-24*x^2-760*x-30 8626708764304973 r005 Re(z^2+c),c=-7/8+13/219*I,n=15 8626708773075456 m001 Catalan/Riemann1stZero^2*ln(cosh(1))^2 8626708787892705 b008 (-1/2+Sqrt[3/5])*Pi 8626708865196049 r008 a(0)=0,K{-n^6,83+97*n^3+30*n^2-94*n} 8626708866004342 r005 Re(z^2+c),c=7/32+13/42*I,n=42 8626708899082847 m001 Riemann1stZero/Zeta(1,2)/ZetaP(3) 8626708899377634 a007 Real Root Of 660*x^4+863*x^3+287*x^2-685*x-616 8626708904370798 a007 Real Root Of -766*x^4-401*x^3-941*x^2+139*x+987 8626708905247174 r005 Im(z^2+c),c=-13/36+8/59*I,n=10 8626708911622339 m001 BesselI(1,1)^Sarnak/(ln(2)^Sarnak) 8626708959029892 m005 (23/30+1/6*5^(1/2))/(7/10*gamma+11/12) 8626708964644444 a007 Real Root Of -39*x^4-82*x^3-974*x^2-482*x+278 8626708991327709 a007 Real Root Of 407*x^4-353*x^3-328*x^2-502*x-641 8626709028314432 a007 Real Root Of -945*x^4-792*x^3-692*x^2-860*x-212 8626709041673165 a007 Real Root Of 69*x^4-204*x^3-673*x^2-434*x+968 8626709052178151 m001 (Salem+TwinPrimes)/(1+GAMMA(5/6)) 8626709071640530 a007 Real Root Of 12*x^4-998*x^3-839*x^2+470*x+853 8626709074554260 a007 Real Root Of -41*x^4-454*x^3-814*x^2+429*x-117 8626709104790986 m001 PrimesInBinary^(Paris/sin(1/5*Pi)) 8626709110810504 r002 33th iterates of z^2 + 8626709113466867 r005 Re(z^2+c),c=-163/122+3/29*I,n=10 8626709115122528 r002 30th iterates of z^2 + 8626709122642675 r008 a(0)=0,K{-n^6,71-73*n^3-25*n^2-89*n} 8626709128490799 r008 a(0)=0,K{-n^6,-53+69*n^3+46*n^2+54*n} 8626709144922540 m001 CareFree+Champernowne^ln(2^(1/2)+1) 8626709152925589 r009 Im(z^3+c),c=-9/118+25/29*I,n=9 8626709224436353 a007 Real Root Of 541*x^4+12*x^3+969*x^2+888*x-247 8626709242918942 m001 ln(gamma(1))/ln(ErdosBorwein) 8626709250641810 m001 1/exp(GAMMA(11/24))/Niven^2*sqrt(3) 8626709258157449 m001 (ln(gamma)-Cahen)/(FeigenbaumKappa+Trott2nd) 8626709260331624 a007 Real Root Of -834*x^4+344*x^3+394*x^2+738*x+61 8626709263438211 m001 (-3^(1/3)+Riemann3rdZero)/(1+3^(1/2)) 8626709267218153 r005 Re(z^2+c),c=-21/16+8/107*I,n=16 8626709332552780 m001 TreeGrowth2nd^(BesselI(1,1)/Pi) 8626709337222019 a008 Real Root of x^4-51*x^2-177*x-216 8626709339540296 q001 2965/3437 8626709417868965 m001 GAMMA(7/24)*MinimumGamma^2*ln(Pi)^2 8626709431499218 a007 Real Root Of 146*x^4-485*x^3+662*x^2-123*x-991 8626709436966036 a003 cos(Pi*15/86)/sin(Pi*54/119) 8626709447526380 m001 GolombDickman^2*ln(Si(Pi))*Ei(1)^2 8626709480083038 r005 Im(z^2+c),c=-4/7+19/121*I,n=50 8626709490101387 a007 Real Root Of -455*x^4-685*x^3-267*x^2+515*x+46 8626709533042609 l006 ln(1291/3059) 8626709542527226 a007 Real Root Of 789*x^4-407*x^3+80*x^2-35*x-788 8626709556653585 r008 a(0)=1,K{-n^6,48-4*n-7*n^2-30*n^3} 8626709564055661 m001 (Pi+Zeta(1,2))/(FeigenbaumC+Sarnak) 8626709593106469 p001 sum(1/(334*n+123)/(5^n),n=0..infinity) 8626709614854241 r009 Im(z^3+c),c=-5/62+37/43*I,n=35 8626709629033992 m001 (sin(1/12*Pi)+gamma(2))/(Artin-LaplaceLimit) 8626709651378135 r002 32th iterates of z^2 + 8626709673800579 r009 Re(z^3+c),c=-9/58+40/61*I,n=32 8626709694878319 h003 exp(Pi*(17^(3/10)+19^(1/12))) 8626709694878319 h008 exp(Pi*(17^(3/10)+19^(1/12))) 8626709696252485 a001 6557470319842/521*199^(4/11) 8626709701178258 r005 Im(z^2+c),c=-61/102+11/59*I,n=21 8626709753736349 m001 1/TwinPrimes*exp(Conway)^2/cosh(1)^2 8626709764662607 a007 Real Root Of -389*x^4+690*x^3-278*x^2-573*x+371 8626709776602956 a007 Real Root Of -802*x^4+733*x^3-216*x^2-790*x+394 8626709803838116 m001 (GAMMA(7/12)+ZetaQ(3))/Grothendieck 8626709811006260 r005 Re(z^2+c),c=-67/78+5/46*I,n=35 8626709882088284 m005 (-31/12+5/12*5^(1/2))/(3*Catalan-5/6) 8626709889613667 a007 Real Root Of 704*x^4+161*x^3+456*x^2+110*x-531 8626709907257631 m005 (1/2*exp(1)-4/11)/(4*exp(1)+2/3) 8626709911401430 a007 Real Root Of -468*x^4-123*x^3-669*x^2-509*x+239 8626709920644705 m001 GAMMA(1/4)^2/Lehmer^2/ln(GAMMA(11/24))^2 8626709929923099 a007 Real Root Of 256*x^4-555*x^3-142*x^2-54*x-439 8626709940745349 a007 Real Root Of -905*x^4+880*x^3+338*x^2+194*x+982 8626709946673733 m005 (1/2*Catalan-1)/(5*Zeta(3)+3/11) 8626709954854569 a007 Real Root Of 290*x^4-800*x^3-837*x^2+496*x+548 8626709957771324 a007 Real Root Of -320*x^4-100*x^3-99*x^2+493*x+612 8626709970068565 m002 -3+Cosh[Pi]+(Coth[Pi]*ProductLog[Pi])/Pi^3 8626709994663085 m001 (Shi(1)-Salem)^(Pi*csc(5/24*Pi)/GAMMA(19/24)) 8626710019770078 m001 BesselJ(0,1)^2*exp(FeigenbaumAlpha)^2*Pi^2 8626710024202382 m001 (MertensB2-GAMMA(5/6))^Zeta(5) 8626710049287328 m008 (5*Pi^2+1/2)/(3/5*Pi^6+1) 8626710051851821 h002 exp(10^(5/6)+7^(5/12)) 8626710051851821 h007 exp(10^(5/6)+7^(5/12)) 8626710079685716 a007 Real Root Of -817*x^4-334*x^3+526*x^2-32*x-181 8626710081836668 r005 Re(z^2+c),c=7/15+19/50*I,n=4 8626710114253074 a003 cos(Pi*33/107)-cos(Pi*31/91) 8626710164496990 a007 Real Root Of 601*x^4-816*x^3+813*x^2+810*x-763 8626710187488910 h001 (1/4*exp(2)+7/8)/(2/5*exp(2)+1/5) 8626710191563922 a007 Real Root Of 792*x^4+549*x^3+372*x^2+495*x+64 8626710200237406 r005 Im(z^2+c),c=-89/126+4/27*I,n=14 8626710216895467 r005 Im(z^2+c),c=-121/90+1/64*I,n=8 8626710232935096 a001 1149851/377*8^(1/2) 8626710233807104 r005 Re(z^2+c),c=17/98+35/62*I,n=22 8626710238112634 m001 (gamma+GAMMA(19/24))/(Kac+OrthogonalArrays) 8626710238655725 m005 (25/36+1/4*5^(1/2))/(-23/44+5/22*5^(1/2)) 8626710239352023 a003 cos(Pi*17/101)*sin(Pi*55/113) 8626710260678239 r009 Re(z^3+c),c=-71/114+1/33*I,n=2 8626710282443766 a001 2/987*1836311903^(14/17) 8626710294612691 a007 Real Root Of -18*x^4+762*x^3+853*x^2+760*x+520 8626710298715884 p004 log(20233/8539) 8626710304810835 a007 Real Root Of 465*x^4-496*x^3+400*x^2+272*x-639 8626710317806328 a007 Real Root Of 267*x^4-657*x^3-160*x^2+418*x-90 8626710331132954 a007 Real Root Of -38*x^4+171*x^3-597*x^2-21*x+557 8626710344387685 a007 Real Root Of 499*x^4+708*x^3+803*x^2-389*x-755 8626710374753398 a007 Real Root Of 844*x^4-947*x^3-259*x^2+301*x-623 8626710421851323 a007 Real Root Of 975*x^4-900*x^3-956*x^2+784*x+270 8626710425649420 r005 Re(z^2+c),c=-20/23+5/63*I,n=33 8626710430418299 m001 FeigenbaumD/ln(Kolakoski)^2/sin(Pi/5) 8626710433776719 m001 1/ln(Niven)/FeigenbaumDelta*arctan(1/2)^2 8626710435096147 l006 ln(3624/8587) 8626710441028062 m001 cos(Pi/12)^2*ln(BesselJ(0,1))*sin(Pi/5)^2 8626710482057419 m001 (-Ei(1)+ZetaQ(3))/(gamma+ln(5)) 8626710494298874 a005 (1/cos(5/219*Pi))^837 8626710503806908 m001 1/2*gamma/Zeta(3)/Pi*GAMMA(5/6) 8626710503806908 m001 gamma/Zeta(3)/GAMMA(1/6) 8626710522154004 a001 4181/4*123^(25/57) 8626710549729081 r009 Im(z^3+c),c=-5/62+46/53*I,n=3 8626710563605068 m005 (1/3*gamma-3/7)/(8/9*5^(1/2)+3/4) 8626710581686350 a007 Real Root Of 489*x^4-295*x^3-334*x^2-933*x+972 8626710582494462 m001 (Landau-ReciprocalLucas)/(GAMMA(19/24)+Bloch) 8626710604220016 r008 a(0)=9,K{-n^6,-3+3*n^3-n^2+7*n} 8626710609463929 r005 Im(z^2+c),c=-6/5+5/41*I,n=31 8626710653483862 r002 36th iterates of z^2 + 8626710655820407 a007 Real Root Of -114*x^4-983*x^3+78*x^2+699*x+511 8626710661801912 a007 Real Root Of -948*x^4+130*x^3+462*x^2-148*x+137 8626710669997602 a007 Real Root Of -62*x^4-418*x^3+916*x^2-796*x-14 8626710676404441 a007 Real Root Of -775*x^4-297*x^3+242*x^2-521*x-391 8626710678771980 a007 Real Root Of -641*x^4-889*x^3-796*x^2-170*x+230 8626710682601254 r009 Im(z^3+c),c=-5/98+20/23*I,n=11 8626710712600283 q001 1828/2119 8626710723982753 m006 (1/3/Pi-1/5)/(3/5*exp(Pi)-3) 8626710748239298 m001 (KomornikLoreti-TwinPrimes)/(Bloch+GaussAGM) 8626710748640035 a007 Real Root Of -805*x^4+281*x^3+279*x^2-265*x+190 8626710763259694 a007 Real Root Of -365*x^4+942*x^3+81*x^2+174*x-613 8626710767630129 m001 ln(GAMMA(17/24))*Tribonacci^2*Zeta(7)^2 8626710787333621 a001 1/4092*(1/2*5^(1/2)+1/2)^21*3^(1/3) 8626710834564555 a007 Real Root Of 616*x^4-860*x^3+433*x^2+353*x-911 8626710844057193 r009 Im(z^3+c),c=-5/24+25/27*I,n=50 8626710880447490 m001 1/CareFree*GolombDickman*exp(GAMMA(1/12))^2 8626710887497257 a007 Real Root Of 919*x^4-323*x^3+733*x^2-467*x-46 8626710923195099 a003 sin(Pi*30/83)-sin(Pi*43/93) 8626710923570023 a007 Real Root Of -593*x^4+933*x^3+964*x^2+284*x+455 8626710934260758 l006 ln(2333/5528) 8626710936187504 l006 ln(9349/9430) 8626710951478153 m002 -5/6+3*Pi*Coth[Pi] 8626710963000549 r002 18th iterates of z^2 + 8626710966922426 a001 4106118243/1597*4807526976^(6/23) 8626710967002388 a001 73681302247/1597*75025^(6/23) 8626711060906391 a003 sin(Pi*32/107)/sin(Pi*42/109) 8626711064883666 a007 Real Root Of -881*x^4+422*x^3+427*x^2-247*x+228 8626711067051328 b008 1/17-3*(-2+Sqrt[3]) 8626711081346378 m001 (GAMMA(3/4)+ln(3))/(FeigenbaumD+Trott) 8626711091565292 a007 Real Root Of 32*x^4-635*x^3-557*x^2+33*x+776 8626711093546953 m001 (Magata+Thue)/(sin(1/12*Pi)+CopelandErdos) 8626711095500066 m001 GAMMA(2/3)*exp(MadelungNaCl)^2*GAMMA(5/24)^2 8626711117813762 a007 Real Root Of 868*x^4-662*x^3-276*x^2-17*x-715 8626711137435615 m001 (Conway-MasserGramainDelta)/BesselK(1,1) 8626711143319398 s002 sum(A197853[n]/((pi^n+1)/n),n=1..infinity) 8626711155459252 a008 Real Root of (-9+x+3*x^2+9*x^4+3*x^8) 8626711205972699 m005 (1/3*5^(1/2)-3/7)/(2*5^(1/2)-4/5) 8626711214828069 a001 1/17*196418^(13/59) 8626711215399953 m001 Zeta(3)/LaplaceLimit*PlouffeB 8626711254814948 m001 GaussAGM*HardyLittlewoodC3^gamma(1) 8626711303362657 a007 Real Root Of 938*x^4-146*x^3+289*x^2+391*x-491 8626711338680272 a007 Real Root Of 468*x^4-130*x^3+664*x^2+249*x-622 8626711339918718 m001 exp(OneNinth)/ArtinRank2*cos(1) 8626711388643468 r005 Re(z^2+c),c=1/12+1/18*I,n=7 8626711393642795 r009 Im(z^3+c),c=-69/118+19/40*I,n=47 8626711413930637 m005 (1/2*gamma-1/7)/(3/4*Pi-2/3) 8626711426089704 m001 1/Artin*exp(GaussAGM(1,1/sqrt(2)))^2*Lehmer 8626711443674338 r009 Im(z^3+c),c=-5/62+37/43*I,n=31 8626711448014837 a001 233/3*2^(5/33) 8626711470252597 l006 ln(3375/7997) 8626711488545040 a007 Real Root Of -907*x^4+448*x^3-913*x^2-667*x+894 8626711544719310 a001 10749957122/4181*4807526976^(6/23) 8626711544799273 a001 192900153618/4181*75025^(6/23) 8626711567855173 m001 (sin(1/5*Pi)+PrimesInBinary)/(Rabbit+ZetaP(2)) 8626711586629059 m001 gamma(3)^GlaisherKinkelin/PrimesInBinary 8626711624203363 m001 (-Tribonacci+ZetaQ(3))/(Gompertz-exp(1)) 8626711629018746 a001 28143753123/10946*4807526976^(6/23) 8626711629098708 a001 505019158607/10946*75025^(6/23) 8626711641317868 a001 73681302247/28657*4807526976^(6/23) 8626711641397830 a001 1322157322203/28657*75025^(6/23) 8626711643112286 a001 192900153618/75025*4807526976^(6/23) 8626711643192248 a001 3461452808002/75025*75025^(6/23) 8626711643374088 a001 505019158607/196418*4807526976^(6/23) 8626711643412284 a001 1322157322203/514229*4807526976^(6/23) 8626711643417857 a001 3461452808002/1346269*4807526976^(6/23) 8626711643418670 a001 9062201101803/3524578*4807526976^(6/23) 8626711643418788 a001 23725150497407/9227465*4807526976^(6/23) 8626711643418862 a001 14662949395604/5702887*4807526976^(6/23) 8626711643419172 a001 5600748293801/2178309*4807526976^(6/23) 8626711643421301 a001 2139295485799/832040*4807526976^(6/23) 8626711643435891 a001 817138163596/317811*4807526976^(6/23) 8626711643454050 a001 9062201101803/196418*75025^(6/23) 8626711643492247 a001 23725150497407/514229*75025^(6/23) 8626711643515853 a001 505618944676/10959*75025^(6/23) 8626711643535890 a001 312119004989/121393*4807526976^(6/23) 8626711643615853 a001 5600748293801/121393*75025^(6/23) 8626711644221297 a001 119218851371/46368*4807526976^(6/23) 8626711644301259 a001 2139295485799/46368*75025^(6/23) 8626711648919143 a001 45537549124/17711*4807526976^(6/23) 8626711648999106 a001 817138163596/17711*75025^(6/23) 8626711677905403 r005 Im(z^2+c),c=1/36+37/53*I,n=5 8626711678779865 r009 Re(z^3+c),c=-1/6+25/36*I,n=40 8626711681118663 a001 17393796001/6765*4807526976^(6/23) 8626711681198626 a001 28374454999/615*75025^(6/23) 8626711724767713 m001 ln(GAMMA(23/24))/GAMMA(1/12)^2/sqrt(5) 8626711735771975 r009 Re(z^3+c),c=-1/11+9/64*I,n=2 8626711775935308 m001 (AlladiGrinstead-ZetaP(4))^Weierstrass 8626711786591444 a007 Real Root Of 823*x^4+884*x^3+461*x^2-556*x-711 8626711818572174 s001 sum(1/10^(n-1)*A204150[n]/n^n,n=1..infinity) 8626711826755369 a007 Real Root Of 709*x^4+194*x^3+312*x^2-512*x-942 8626711826761152 m001 (cos(1)+Zeta(5))/(GAMMA(17/24)+Landau) 8626711832062487 m005 (1/2*Pi-2/5)/(5/11*2^(1/2)-2) 8626711833434094 r002 9th iterates of z^2 + 8626711872488106 m001 arctan(1/3)*(exp(1/Pi)+Mills) 8626711876763290 a007 Real Root Of -568*x^4+110*x^3+465*x^2+904*x+819 8626711900410241 r009 Re(z^3+c),c=-21/122+8/11*I,n=50 8626711901817462 a001 6643838879/2584*4807526976^(6/23) 8626711901897424 a001 119218851371/2584*75025^(6/23) 8626711913078050 a007 Real Root Of 109*x^4-918*x^3-321*x^2-203*x+943 8626711933704861 a007 Real Root Of 680*x^4-398*x^3+510*x^2+250*x-796 8626711989925193 r005 Im(z^2+c),c=-1/18+19/28*I,n=51 8626712018922904 m001 exp((3^(1/3)))/Kolakoski^2/log(1+sqrt(2))^2 8626712050132293 r005 Re(z^2+c),c=-29/34+16/125*I,n=21 8626712064390941 a007 Real Root Of 141*x^4-413*x^3+54*x^2+361*x-72 8626712087068803 r005 Re(z^2+c),c=-31/34+9/118*I,n=2 8626712090408287 a001 76/121393*34^(1/11) 8626712101212033 r005 Re(z^2+c),c=-2/3+117/254*I,n=39 8626712156300473 m001 (BesselI(0,1)-exp(1))/(ErdosBorwein+ZetaP(4)) 8626712163702213 m005 (1/2*exp(1)-5/11)/(34/9+3*5^(1/2)) 8626712170761299 m005 (1/2*Pi+5/12)/(3/10*3^(1/2)-3/4) 8626712194517690 r009 Re(z^3+c),c=-1/86+19/50*I,n=18 8626712205263988 a007 Real Root Of 451*x^4-576*x^3-766*x^2-62*x-103 8626712210254296 a007 Real Root Of 860*x^4-942*x^3+760*x^2+920*x-853 8626712212911348 m001 BesselK(1,1)^(1/3)/Zeta(1,2)^(1/3) 8626712236547819 m001 1/exp(cos(Pi/5))/LaplaceLimit^2/sinh(1) 8626712292157777 r002 46th iterates of z^2 + 8626712324435439 m001 (MasserGramain-OneNinth)/GolombDickman 8626712328767123 q001 2519/2920 8626712338090526 m001 Pi*csc(1/12*Pi)/GAMMA(11/12)*arctan(1/2)^Artin 8626712338090526 m001 arctan(1/2)^Artin*GAMMA(1/12) 8626712347025403 r009 Re(z^3+c),c=-5/31+44/61*I,n=2 8626712374432716 a007 Real Root Of 110*x^4+837*x^3-961*x^2+30*x-88 8626712378728512 a007 Real Root Of 656*x^4-627*x^3-609*x^2+993*x+544 8626712383704210 a003 cos(Pi*17/95)/sin(Pi*7/16) 8626712395871659 a007 Real Root Of 665*x^4+343*x^3+231*x^2-335*x-609 8626712435118063 m001 (5^(1/2)-Kac)/(Tribonacci+Trott2nd) 8626712445120011 a007 Real Root Of -724*x^4-491*x^3+184*x^2+239*x+155 8626712466753565 r005 Re(z^2+c),c=7/26+21/59*I,n=36 8626712466813682 r005 Im(z^2+c),c=11/40+23/41*I,n=10 8626712471972095 a007 Real Root Of 690*x^4+576*x^3+231*x^2-133*x-299 8626712513700426 b008 Sqrt[5]-Sqrt[118] 8626712544586681 s002 sum(A258527[n]/((exp(n)-1)/n),n=1..infinity) 8626712562932499 r002 64th iterates of z^2 + 8626712575344625 r009 Re(z^3+c),c=-6/11+3/49*I,n=3 8626712606652577 r002 12th iterates of z^2 + 8626712616589202 a001 2255/6*843^(20/43) 8626712635168177 a007 Real Root Of -939*x^4+215*x^3+709*x^2+695*x+730 8626712637747515 m001 (LaplaceLimit+Magata)/(Zeta(5)-BesselI(1,1)) 8626712644184884 a001 29/1346269*10946^(33/37) 8626712670318672 l006 ln(1042/2469) 8626712683282692 r009 Re(z^3+c),c=-1/86+19/50*I,n=20 8626712705002783 a007 Real Root Of 389*x^4-577*x^3-634*x^2+96*x+544 8626712721117805 a007 Real Root Of -843*x^4+426*x^3+544*x^2+550*x+810 8626712730336890 a007 Real Root Of 760*x^4-977*x^3-416*x^2+76*x-673 8626712733416799 m001 ln(GAMMA(23/24))^2/LandauRamanujan/Pi^2 8626712742020567 b008 7*InverseJacobiNC[E,1/6] 8626712746360832 a007 Real Root Of 361*x^4-208*x^3-230*x^2-410*x-516 8626712746748748 r009 Re(z^3+c),c=-1/86+19/50*I,n=22 8626712754874671 r009 Re(z^3+c),c=-1/86+19/50*I,n=24 8626712754902206 r009 Re(z^3+c),c=-21/122+29/41*I,n=19 8626712755902047 r009 Re(z^3+c),c=-1/86+19/50*I,n=26 8626712756030444 r009 Re(z^3+c),c=-1/86+19/50*I,n=28 8626712756046316 r009 Re(z^3+c),c=-1/86+19/50*I,n=30 8626712756048258 r009 Re(z^3+c),c=-1/86+19/50*I,n=32 8626712756048493 r009 Re(z^3+c),c=-1/86+19/50*I,n=34 8626712756048521 r009 Re(z^3+c),c=-1/86+19/50*I,n=36 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=38 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=40 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=42 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=44 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=46 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=48 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=50 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=52 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=54 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=56 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=58 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=60 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=63 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=64 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=62 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=61 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=59 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=57 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=55 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=53 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=51 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=49 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=47 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=45 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=43 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=41 8626712756048525 r009 Re(z^3+c),c=-1/86+19/50*I,n=39 8626712756048526 r009 Re(z^3+c),c=-1/86+19/50*I,n=37 8626712756048536 r009 Re(z^3+c),c=-1/86+19/50*I,n=35 8626712756048617 r009 Re(z^3+c),c=-1/86+19/50*I,n=33 8626712756048951 m001 3^(1/3)-FeigenbaumKappa+StronglyCareFree 8626712756049294 r009 Re(z^3+c),c=-1/86+19/50*I,n=31 8626712756054853 r009 Re(z^3+c),c=-1/86+19/50*I,n=29 8626712756100057 r009 Re(z^3+c),c=-1/86+19/50*I,n=27 8626712756463762 r009 Re(z^3+c),c=-1/86+19/50*I,n=25 8626712759357464 r009 Re(z^3+c),c=-1/86+19/50*I,n=23 8626712763511056 r002 52th iterates of z^2 + 8626712782104559 r009 Re(z^3+c),c=-1/86+19/50*I,n=21 8626712799223514 a007 Real Root Of -526*x^4+662*x^3+299*x^2+35*x+524 8626712800142519 r005 Re(z^2+c),c=-2/21+43/49*I,n=44 8626712811372090 a007 Real Root Of 906*x^4-536*x^3-451*x^2+20*x-493 8626712816078638 r009 Im(z^3+c),c=-21/64+2/39*I,n=9 8626712821491950 a007 Real Root Of -836*x^4-284*x^3-250*x^2+49*x+509 8626712870095741 r002 23th iterates of z^2 + 8626712878100695 a007 Real Root Of 320*x^4-92*x^3-843*x^2-300*x+768 8626712888349391 a007 Real Root Of -537*x^4+664*x^3+465*x^2-556*x-102 8626712909039618 a007 Real Root Of -97*x^4-862*x^3-235*x^2-218*x-576 8626712914209377 a007 Real Root Of -528*x^4+680*x^3+938*x^2+582*x+533 8626712914292046 m005 (1/3*2^(1/2)+1/11)/(8/9*Zeta(3)-5/12) 8626712917415273 r005 Im(z^2+c),c=27/106+34/61*I,n=42 8626712958559435 r009 Re(z^3+c),c=-1/86+19/50*I,n=19 8626712971572404 r005 Re(z^2+c),c=-109/126+5/52*I,n=11 8626713059307202 m001 (Pi-Psi(2,1/3)+cos(1/5*Pi))*Zeta(1/2) 8626713084888413 a007 Real Root Of 373*x^4-378*x^3+639*x^2+817*x-220 8626713088642118 s001 sum(exp(-Pi/3)^n*A002510[n],n=1..infinity) 8626713131747882 m001 1/OneNinth/Rabbit^2*exp(cosh(1)) 8626713144812628 m001 Pi*(Gompertz-arctan(1/3)) 8626713205168166 a007 Real Root Of 45*x^4-313*x^3+313*x^2-139*x+63 8626713206961802 a001 20100241772221/233 8626713249126578 q001 321/3721 8626713249126578 r002 2th iterates of z^2 + 8626713257530790 m001 (Pi-CareFree)/(LandauRamanujan2nd-Magata) 8626713267840107 r009 Re(z^3+c),c=-23/114+21/34*I,n=9 8626713277112097 a007 Real Root Of 6*x^4-582*x^3-61*x^2+491*x+92 8626713280667028 r005 Im(z^2+c),c=-157/122+2/35*I,n=47 8626713288142018 m001 (MadelungNaCl+Porter)/(Artin-HeathBrownMoroz) 8626713295270606 a007 Real Root Of 533*x^4-881*x^3+326*x^2+849*x-371 8626713304971933 m001 (exp(1/Pi)-gamma(1))/(Cahen+MertensB2) 8626713312463100 r009 Im(z^3+c),c=-11/70+40/47*I,n=13 8626713315166382 r005 Im(z^2+c),c=-35/48+2/31*I,n=30 8626713323440878 a001 7/89*2^(2/15) 8626713343810159 m001 (MertensB2+ZetaP(3))/(ArtinRank2+CareFree) 8626713374015839 a007 Real Root Of 556*x^4+619*x^3+79*x^2-432*x-342 8626713402999405 h001 (1/11*exp(2)+2/11)/(1/3*exp(1)+1/12) 8626713414509836 a001 2537720636/987*4807526976^(6/23) 8626713414589798 a001 45537549124/987*75025^(6/23) 8626713450985237 a007 Real Root Of 970*x^4-981*x^3+197*x^2+993*x-457 8626713462409027 r005 Re(z^2+c),c=6/23+13/37*I,n=21 8626713477986708 m001 1/CopelandErdos^2*Conway^2*exp(Zeta(5)) 8626713500118444 r005 Im(z^2+c),c=-17/28+11/61*I,n=15 8626713506477972 m001 1/ln(GAMMA(1/24))*MinimumGamma^2*GAMMA(5/6)^2 8626713562704153 a007 Real Root Of -984*x^4+54*x^3-291*x^2-399*x+452 8626713570134091 m001 (BesselJ(1,1)+Conway)/(GaussAGM+KhinchinLevy) 8626713584552118 s001 sum(exp(-Pi/3)^(n-1)*A048302[n],n=1..infinity) 8626713596657205 m005 (1/2*3^(1/2)-7/8)/(2/7*3^(1/2)+6/11) 8626713701445436 a007 Real Root Of -971*x^4+15*x^3+393*x^2+167*x+399 8626713703802355 l006 ln(3919/9286) 8626713718445279 l004 Ci(997/115) 8626713747059693 r002 30th iterates of z^2 + 8626713764322761 m005 (1/2*5^(1/2)+5/12)/(5/7*5^(1/2)+2/11) 8626713802934879 r002 50th iterates of z^2 + 8626713805694010 m001 arctan(1/2)^Zeta(1/2)*FransenRobinson 8626713812333647 r002 33th iterates of z^2 + 8626713828659393 a001 141422324/377*2504730781961^(4/21) 8626713828659393 a001 969323029/377*102334155^(4/21) 8626713847459303 a001 6643838879/377*4181^(4/21) 8626713854751809 r005 Im(z^2+c),c=-51/86+7/44*I,n=60 8626713857533964 r009 Re(z^3+c),c=-5/56+51/52*I,n=21 8626713863922873 r005 Re(z^2+c),c=-71/90+7/51*I,n=43 8626713872791679 r005 Re(z^2+c),c=-3/46+47/55*I,n=3 8626713898207569 r009 Im(z^3+c),c=-7/40+41/48*I,n=3 8626713911488706 a007 Real Root Of -903*x^4+62*x^3-134*x^2-607*x+116 8626713920422273 a007 Real Root Of -68*x^4+710*x^3+171*x^2+373*x+688 8626713955378321 r009 Re(z^3+c),c=-1/78+29/62*I,n=21 8626713979307472 a007 Real Root Of 481*x^4-728*x^3+303*x^2+384*x-628 8626713979572863 a001 1/76*(1/2*5^(1/2)+1/2)^22*4^(4/11) 8626713989618921 l006 ln(8513/9280) 8626714009518143 r002 2th iterates of z^2 + 8626714017566665 p001 sum(1/(347*n+142)/n/(24^n),n=1..infinity) 8626714028796038 r009 Re(z^3+c),c=-5/56+51/52*I,n=19 8626714078112373 l006 ln(2877/6817) 8626714083360224 a007 Real Root Of -209*x^4+467*x^3+55*x^2+376*x+699 8626714120863558 m001 exp(TwinPrimes)^2/Niven^2*sin(Pi/12)^2 8626714123376879 r009 Re(z^3+c),c=-5/56+51/52*I,n=25 8626714125696938 m001 (Zeta(1,2)+Totient)/(ThueMorse+ZetaQ(2)) 8626714144887891 r009 Re(z^3+c),c=-5/56+51/52*I,n=31 8626714145296001 r009 Re(z^3+c),c=-5/56+51/52*I,n=35 8626714145299116 r009 Re(z^3+c),c=-5/56+51/52*I,n=37 8626714145301967 r009 Re(z^3+c),c=-5/56+51/52*I,n=41 8626714145302317 r009 Re(z^3+c),c=-5/56+51/52*I,n=47 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=51 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=53 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=57 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=63 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=61 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=59 8626714145302323 r009 Re(z^3+c),c=-5/56+51/52*I,n=55 8626714145302324 r009 Re(z^3+c),c=-5/56+51/52*I,n=49 8626714145302333 r009 Re(z^3+c),c=-5/56+51/52*I,n=45 8626714145302355 r009 Re(z^3+c),c=-5/56+51/52*I,n=43 8626714145303864 r009 Re(z^3+c),c=-5/56+51/52*I,n=39 8626714145391120 r009 Re(z^3+c),c=-5/56+51/52*I,n=33 8626714146275103 r009 Re(z^3+c),c=-5/56+51/52*I,n=29 8626714146359151 r009 Re(z^3+c),c=-5/56+51/52*I,n=27 8626714164178819 r002 35th iterates of z^2 + 8626714180585042 r005 Re(z^2+c),c=-79/90+2/45*I,n=23 8626714189027234 a007 Real Root Of -14*x^4-104*x^3-496*x^2-640*x-242 8626714193066459 a007 Real Root Of 95*x^4-381*x^3+832*x^2+252*x-699 8626714202968390 a007 Real Root Of 939*x^4-431*x^3-624*x^2-10*x-341 8626714215598643 a007 Real Root Of -814*x^4+571*x^3-573*x^2-926*x+445 8626714218350826 a001 4870847/233*89^(6/19) 8626714224419463 a007 Real Root Of 328*x^4-817*x^3-685*x^2-561*x+54 8626714242410288 r005 Im(z^2+c),c=-51/62+3/62*I,n=30 8626714247457437 r009 Im(z^3+c),c=-3/64+47/54*I,n=23 8626714255804025 r009 Re(z^3+c),c=-5/56+51/52*I,n=23 8626714260851386 m001 (ln(5)-GAMMA(7/12))/(Thue+ZetaP(4)) 8626714272870913 a003 sin(Pi*16/89)/cos(Pi*33/115) 8626714277258165 a005 (1/cos(53/180*Pi))^104 8626714306333690 a007 Real Root Of 304*x^4-397*x^3+178*x^2+490*x-133 8626714306958878 r009 Re(z^3+c),c=-1/86+19/50*I,n=17 8626714316616709 p004 log(29147/12301) 8626714334188927 a007 Real Root Of -x^4-862*x^3+579*x^2-196*x-574 8626714358179336 r005 Im(z^2+c),c=-29/22+27/91*I,n=5 8626714369093238 m001 1/GAMMA(7/12)*MertensB1*exp(cos(Pi/5))^2 8626714385615983 h001 (7/10*exp(1)+2/3)/(7/8*exp(1)+3/5) 8626714412665893 m001 LambertW(1)*((1+3^(1/2))^(1/2))^GaussAGM 8626714424484477 a007 Real Root Of -499*x^4+187*x^3+466*x^2+973*x+889 8626714438115366 r005 Im(z^2+c),c=-29/74+6/43*I,n=13 8626714476455720 r005 Im(z^2+c),c=39/122+31/64*I,n=13 8626714484387438 r005 Re(z^2+c),c=-59/110+15/26*I,n=9 8626714508632468 r002 6th iterates of z^2 + 8626714521219584 m001 (Psi(1,1/3)-exp(Pi))/(-ln(2)/ln(10)+ZetaP(2)) 8626714564273314 a007 Real Root Of 784*x^4-934*x^3-294*x^2+757*x-162 8626714571195647 a003 sin(Pi*21/64)/sin(Pi*41/88) 8626714603454508 a003 sin(Pi*26/109)/sin(Pi*31/107) 8626714615356979 r005 Im(z^2+c),c=-32/27+10/61*I,n=55 8626714624966678 a007 Real Root Of -535*x^4+850*x^3-355*x^2-268*x+875 8626714626401962 r005 Im(z^2+c),c=-93/106+11/38*I,n=8 8626714656282233 a007 Real Root Of 557*x^4+428*x^3+832*x^2+212*x-470 8626714689535882 r008 a(0)=1,K{-n^6,2+n^3+n^2+7*n} 8626714693629158 a007 Real Root Of -458*x^4+14*x^3+159*x^2+46*x+184 8626714712189021 a003 cos(Pi*21/115)+cos(Pi*34/69) 8626714718985631 a007 Real Root Of 918*x^4+464*x^3-303*x^2-277*x-224 8626714824021976 m001 (Zeta(1/2)-GAMMA(5/6))/(GAMMA(13/24)-Totient) 8626714840111748 a007 Real Root Of 98*x^4+753*x^3-734*x^2+589*x+373 8626714849062565 m005 (1/2*5^(1/2)-1/3)/(1/11*gamma+6/7) 8626714856425951 m001 (-Rabbit+Sierpinski)/(Si(Pi)+arctan(1/3)) 8626714866024135 m005 (1/2*exp(1)+9/10)/(-39/55+1/5*5^(1/2)) 8626714877524294 l006 ln(1835/4348) 8626714884771143 a007 Real Root Of -562*x^4+853*x^3-240*x^2+508*x-496 8626714890830240 m005 (1/2*2^(1/2)+1/6)/(1/6*gamma+11/12) 8626714894550036 r002 5th iterates of z^2 + 8626714937513020 a007 Real Root Of 341*x^4-81*x^3+252*x^2+434*x-54 8626714959408487 m001 CareFree/(QuadraticClass^ErdosBorwein) 8626714961970453 m001 (ErdosBorwein+Tetranacci)/(3^(1/3)-Si(Pi)) 8626714982503016 m001 (Zeta(3)-BesselI(0,2))/(Trott+ZetaQ(4)) 8626715012408393 m001 (PrimesInBinary-Sarnak)/(Kac+Otter) 8626715018885378 a007 Real Root Of 764*x^4-923*x^3+915*x^2+840*x-972 8626715035412269 a007 Real Root Of -724*x^4+274*x^3-38*x^2+125*x+713 8626715049358809 a007 Real Root Of -976*x^4+337*x^3+769*x^2-265*x-44 8626715050566187 m001 (ErdosBorwein+Lehmer)/(Si(Pi)+ArtinRank2) 8626715051247963 m001 (GAMMA(3/4)+Porter*Trott2nd)/Porter 8626715062394913 a007 Real Root Of 384*x^4-831*x^3+738*x^2+718*x-676 8626715088492595 r005 Re(z^2+c),c=-9/11+9/61*I,n=35 8626715135645065 a003 cos(Pi*7/114)*sin(Pi*27/79) 8626715183125918 a007 Real Root Of -603*x^4+597*x^3+710*x^2+698*x+791 8626715238062089 r002 6th iterates of z^2 + 8626715248526606 m005 (1/2*gamma+1/3)/(3/11*5^(1/2)+1/9) 8626715282412607 a001 21/3010349*3571^(47/54) 8626715293539960 m002 Pi^4+(4*Coth[Pi])/Pi^2-Sinh[Pi] 8626715303625319 m005 (1/2*Pi-1)/(5/8*2^(1/2)-2/9) 8626715319655672 m001 exp(Pi)^Psi(2,1/3)*exp(Pi)^Chi(1) 8626715323089090 p003 LerchPhi(1/2,6,146/209) 8626715325233823 a007 Real Root Of 865*x^4-540*x^3+936*x^2+937*x-714 8626715342586235 r002 15th iterates of z^2 + 8626715348119685 m001 (3^(1/2))^MertensB2/((3^(1/2))^Conway) 8626715369412903 a007 Real Root Of -853*x^4-146*x^3-555*x^2-570*x+300 8626715382182478 r005 Re(z^2+c),c=7/38+7/17*I,n=43 8626715382251675 r005 Im(z^2+c),c=17/62+30/49*I,n=7 8626715394884374 a003 sin(Pi*3/101)*sin(Pi*29/77) 8626715405913388 a007 Real Root Of 959*x^4+685*x^3+501*x^2+166*x-321 8626715434690571 r005 Re(z^2+c),c=-29/34+16/103*I,n=7 8626715460486481 a001 13201*10946^(23/33) 8626715469616447 l006 ln(7281/7937) 8626715472948479 r009 Re(z^3+c),c=-1/29+43/53*I,n=58 8626715476398178 a001 161/5473*317811^(4/15) 8626715490496279 a001 322/75025*433494437^(4/15) 8626715490796277 a001 322/514229*591286729879^(4/15) 8626715513741196 a007 Real Root Of 692*x^4-769*x^3-856*x^2-480*x-654 8626715519891768 r002 35th iterates of z^2 + 8626715525500932 a001 774004377960/161*322^(1/2) 8626715527507960 r005 Re(z^2+c),c=3/25+25/43*I,n=7 8626715548968635 a001 10946/521*47^(55/57) 8626715561584934 a007 Real Root Of 677*x^4-491*x^3+569*x^2+345*x-816 8626715570504783 r005 Re(z^2+c),c=-19/22+12/79*I,n=5 8626715587445455 p004 log(23029/9719) 8626715587626277 r005 Im(z^2+c),c=-31/46+7/36*I,n=4 8626715607914673 g004 Re(GAMMA(-14/5+I*211/60)) 8626715621321704 r009 Re(z^3+c),c=-43/82+3/28*I,n=9 8626715628442373 a007 Real Root Of -937*x^4+528*x^3-158*x^2+729*x-62 8626715632421391 a007 Real Root Of 997*x^4-563*x^3+144*x^2+220*x-831 8626715651122199 m001 GAMMA(7/12)*(5^(1/2)+Magata) 8626715651554206 a001 267913919*521^(12/13) 8626715665352657 a001 3/199*312119004989^(16/21) 8626715665352657 a001 3/199*1568397607^(20/21) 8626715674979263 m001 1/BesselK(0,1)*exp(Conway)^2/GAMMA(11/24)^2 8626715682859741 r005 Re(z^2+c),c=4/17+30/41*I,n=3 8626715694076018 r005 Re(z^2+c),c=-109/126+4/43*I,n=41 8626715709964778 a007 Real Root Of -230*x^4-473*x^3-424*x^2+832*x+857 8626715713390021 a007 Real Root Of -569*x^4+975*x^3+315*x^2-869*x-43 8626715714856321 a001 1/1292*6557470319842^(12/17) 8626715733850457 r002 43th iterates of z^2 + 8626715739463758 a007 Real Root Of -601*x^4+553*x^3-750*x^2-859*x+505 8626715740632379 r009 Re(z^3+c),c=-9/52+39/59*I,n=22 8626715752679508 l006 ln(2628/6227) 8626715757060869 a007 Real Root Of -104*x^4+352*x^3+293*x^2+76*x-452 8626715778146139 b008 23*CosIntegral[11/5] 8626715794456629 m004 (-105*Pi)/4-Log[Sqrt[5]*Pi]^2 8626715811987071 m001 1/arctan(1/2)/Khintchine^2/ln(cos(Pi/12)) 8626715822250877 a007 Real Root Of 478*x^4-810*x^3+354*x^2+967*x-214 8626715825826688 a001 21/167761*9349^(25/54) 8626715829256257 a007 Real Root Of -182*x^4+430*x^3-507*x^2+176*x+906 8626715847838321 r005 Re(z^2+c),c=-7/8+13/222*I,n=25 8626715848399646 a007 Real Root Of -543*x^4+534*x^3+44*x^2+188*x+773 8626715863836641 a007 Real Root Of 575*x^4+114*x^3+248*x^2+176*x-278 8626715870202473 a001 7/90481*64079^(23/54) 8626715897511264 r005 Im(z^2+c),c=-65/114+1/64*I,n=61 8626715912923175 r009 Im(z^3+c),c=-61/102+5/19*I,n=11 8626715928150659 a007 Real Root Of 692*x^4-772*x^3-770*x^2+773*x+361 8626715962787419 m001 1/sqrt(3)/GAMMA(11/24)/exp(sqrt(Pi))^2 8626715982096438 m001 exp(Magata)^2*LaplaceLimit^2/arctan(1/2) 8626716002685553 m006 (exp(Pi)-1/3)/(3/4*Pi-5) 8626716011451209 r009 Re(z^3+c),c=-11/102+19/61*I,n=7 8626716015176080 s001 sum(exp(-Pi)^n*A176031[n],n=1..infinity) 8626716015176080 s002 sum(A176031[n]/(exp(pi*n)),n=1..infinity) 8626716019746400 r004 Re(z^2+c),c=-19/46+7/22*I,z(0)=-1,n=3 8626716020062086 m005 (1/2*Pi+6/7)/(2/11*Zeta(3)-1/2) 8626716022416806 a007 Real Root Of 381*x^4-133*x^3-47*x^2+412*x+94 8626716037414822 a007 Real Root Of -57*x^4+810*x^3+19*x^2-805*x-157 8626716049777171 m001 (GAMMA(23/24)-HardHexagonsEntropy)^ZetaR(2) 8626716065073748 r002 8th iterates of z^2 + 8626716066320654 a007 Real Root Of 458*x^4-914*x^3-880*x^2-805*x-880 8626716119554420 m001 (1-exp(Pi))/(FibonacciFactorial+Totient) 8626716121045193 r005 Im(z^2+c),c=-93/94+13/47*I,n=31 8626716160086605 m001 1/ln(Salem)^2*MertensB1/GAMMA(1/12) 8626716172947127 m001 (Zeta(5)+StronglyCareFree)/(2^(1/3)+sin(1)) 8626716179943365 a003 sin(Pi*22/117)/cos(Pi*13/47) 8626716217676421 m001 (Salem+TwinPrimes)/(Porter+Robbin) 8626716222106491 l006 ln(3421/8106) 8626716264027230 a007 Real Root Of -863*x^4+83*x^3-355*x^2-157*x+660 8626716289124332 a005 (1/cos(89/205*Pi))^13 8626716340569116 m001 (Catalan+OneNinth)/KhinchinLevy 8626716353312308 a007 Real Root Of -935*x^4+922*x^3+931*x^2+806*x-77 8626716375471038 m005 (-9/44+1/4*5^(1/2))/(2/11*exp(1)-1/12) 8626716376554688 r005 Re(z^2+c),c=-6/7+22/111*I,n=29 8626716381949251 m001 (Conway+PrimesInBinary)/(ln(gamma)-3^(1/3)) 8626716415264932 r005 Re(z^2+c),c=-37/30+15/46*I,n=6 8626716423602562 m006 (2*Pi^2-5/6)/(5/Pi+3/5) 8626716429076793 a007 Real Root Of 60*x^4-958*x^3+198*x^2-172*x-944 8626716446833232 m006 (1/5*exp(2*Pi)-2)/(3/5*Pi-2/3) 8626716493682111 r002 9th iterates of z^2 + 8626716493933901 r008 a(0)=0,K{-n^6,84+97*n^3+30*n^2-95*n} 8626716513971127 m001 (Artin+Landau)/(LandauRamanujan2nd-PlouffeB) 8626716514857812 l006 ln(4214/9985) 8626716602423758 a007 Real Root Of -691*x^4+782*x^3+558*x^2+19*x-551 8626716604244694 q001 691/801 8626716618674553 r009 Im(z^3+c),c=-11/36+3/52*I,n=10 8626716623227269 a007 Real Root Of 989*x^4+547*x^3+939*x^2+223*x-703 8626716657389678 m001 Zeta(3)/(BesselI(1,2)^TravellingSalesman) 8626716710280121 r008 a(0)=0,K{-n^6,-68+80*n^3+5*n^2+99*n} 8626716735439756 h001 (7/9*exp(1)+5/7)/(5/12*exp(2)+1/5) 8626716762217265 a007 Real Root Of 638*x^4-420*x^3+82*x^2+881*x+76 8626716765322622 m001 (ZetaP(3)-ZetaQ(2))/(AlladiGrinstead+Lehmer) 8626716773382574 a007 Real Root Of -241*x^4+956*x^3+400*x^2+521*x+899 8626716789472373 m001 sin(1/12*Pi)^polylog(4,1/2)/Stephens 8626716793156349 m005 (1/3*gamma-1/12)/(5/8*3^(1/2)+2/11) 8626716828313635 m001 Artin/(Ei(1)-MinimumGamma) 8626716837275447 a007 Real Root Of -715*x^4-934*x^3-291*x^2+65*x+69 8626716853711848 a007 Real Root Of -850*x^4+543*x^3-419*x^2-887*x+366 8626716858793764 m005 (1/2*exp(1)+7/11)/(1/10*Zeta(3)+1/9) 8626716863401653 m004 5+25*Pi+4/Log[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 8626716892127663 a003 cos(Pi*1/61)*cos(Pi*20/119) 8626716898101324 a001 615*39603^(46/51) 8626716935705241 a007 Real Root Of -35*x^4+945*x^3+653*x^2-72*x+78 8626716945624014 a001 2178309/11*15127^(20/51) 8626716974643464 m001 (MertensB1+ZetaP(4))/(exp(1)+Zeta(3)) 8626717001723228 a007 Real Root Of -93*x^4+993*x^3-158*x^2+150*x+936 8626717004788579 m001 ln(1+sqrt(2))^gamma*ln(1+sqrt(2))^Lehmer 8626717004788579 m001 ln(2^(1/2)+1)^gamma*ln(2^(1/2)+1)^Lehmer 8626717041186473 m005 (1/2*Zeta(3)-10/11)/(5/9*2^(1/2)-3/7) 8626717059668523 m005 (1/2*3^(1/2)+9/11)/(10/11*2^(1/2)+2/3) 8626717070686275 p004 log(34313/31477) 8626717078932687 r005 Im(z^2+c),c=-83/126+7/33*I,n=12 8626717086251024 m001 (Salem+Sarnak)/(TreeGrowth2nd-TwinPrimes) 8626717141857212 m001 Ei(1)^2*ln(ArtinRank2)^2/cos(1) 8626717143413898 m001 (-Kac+TravellingSalesman)/(gamma-ln(5)) 8626717174118275 a007 Real Root Of -858*x^4-927*x^3-471*x^2-440*x-149 8626717178201808 m001 (Conway-exp(1))/(-MadelungNaCl+OneNinth) 8626717195617814 a007 Real Root Of -595*x^4+254*x^3-715*x^2-257*x+803 8626717253770193 r005 Im(z^2+c),c=-4/31+43/50*I,n=7 8626717275550096 m006 (5/6*ln(Pi)-3/4)/(exp(Pi)+1/2) 8626717375448096 s002 sum(A099714[n]/(n*pi^n+1),n=1..infinity) 8626717388432461 r005 Re(z^2+c),c=5/42+8/15*I,n=45 8626717389869500 r001 20i'th iterates of 2*x^2-1 of 8626717425492248 a007 Real Root Of 901*x^4+222*x^3+642*x^2+719*x-214 8626717434781846 a007 Real Root Of 72*x^4-709*x^3-385*x^2+149*x-80 8626717440627141 r009 Re(z^3+c),c=-9/98+28/37*I,n=62 8626717454247965 h001 (8/11*exp(1)+11/12)/(3/8*exp(2)+7/12) 8626717454519996 a007 Real Root Of -682*x^4+177*x^3-908*x^2-946*x+351 8626717479887555 s002 sum(A003413[n]/(pi^n-1),n=1..infinity) 8626717518180919 r005 Re(z^2+c),c=-131/114+19/41*I,n=4 8626717519407767 a007 Real Root Of -842*x^4+865*x^3+398*x^2-266*x+496 8626717524657028 p003 LerchPhi(1/3,1,117/80) 8626717536385045 m001 (CareFree+OrthogonalArrays)/(ln(2)+Zeta(1,2)) 8626717539086200 m005 (1/2*gamma-6/11)/(1/11*Pi-7/12) 8626717552476212 l006 ln(6049/6594) 8626717553415266 m001 Khintchine/FransenRobinson*ln(Sierpinski)^2 8626717589592068 r005 Im(z^2+c),c=-15/19+7/47*I,n=40 8626717616379567 a003 sin(Pi*23/77)/sin(Pi*5/13) 8626717625734174 a007 Real Root Of 112*x^4+923*x^3-461*x^2-873*x-953 8626717679218234 m002 -Pi^3+Pi^6-(E^Pi*Pi)/ProductLog[Pi] 8626717692370036 m002 Cosh[Pi]/5+Pi^4/Log[Pi]-Log[Pi] 8626717718002666 a007 Real Root Of 599*x^4-980*x^3-450*x^2+262*x-400 8626717721679116 m001 (Conway+Lehmer)/(QuadraticClass-Robbin) 8626717723554559 r009 Im(z^3+c),c=-4/7+24/49*I,n=17 8626717746442615 m001 (BesselJ(1,1)+Paris*Stephens)/Stephens 8626717750642147 b008 61*JacobiCS[1,3] 8626717767933054 r009 Re(z^3+c),c=-7/52+1/2*I,n=9 8626717769964126 r002 50th iterates of z^2 + 8626717774812529 a007 Real Root Of 385*x^4-696*x^3+713*x^2-932*x+507 8626717777786173 l006 ln(793/1879) 8626717795528488 m001 (Pi*sin(1/12*Pi)-exp(Pi))/sin(1/12*Pi) 8626717795528488 m001 (Pi*sin(Pi/12)-exp(Pi))/sin(Pi/12) 8626717795528488 m001 Pi-exp(Pi)/sin(1/12*Pi) 8626717799021933 a001 2178309/11*2207^(25/51) 8626717807624621 a007 Real Root Of 649*x^4-997*x^3-953*x^2-774*x-958 8626717826092604 b008 -9+Gamma[1/3]^(-1) 8626717848482640 a008 Real Root of (-4+5*x+2*x^2+9*x^4+6*x^8) 8626717880205909 a003 cos(Pi*5/41)*sin(Pi*27/71) 8626717885915395 m001 (CareFree+Tetranacci)/(Zeta(1/2)-BesselI(1,2)) 8626717888336238 r002 33th iterates of z^2 + 8626717896669661 m005 (-1/44+1/4*5^(1/2))/(4/5*Catalan-1/9) 8626717910547007 r005 Re(z^2+c),c=-39/38+13/59*I,n=4 8626717930897389 a007 Real Root Of 345*x^4-539*x^3+21*x^2+315*x-281 8626717936564039 a003 cos(Pi*10/87)*cos(Pi*11/87) 8626717942498201 r002 26th iterates of z^2 + 8626717949756298 a007 Real Root Of -826*x^4-426*x^3-608*x^2+280*x+878 8626717964410143 a007 Real Root Of -909*x^4+115*x^3+142*x^2-753*x-178 8626717973225882 m001 (Sarnak+ThueMorse)/ln(2+3^(1/2)) 8626717992856747 a007 Real Root Of -48*x^4+142*x^3+473*x^2-3*x-414 8626718007470802 a007 Real Root Of -99*x^4-757*x^3+767*x^2-571*x+297 8626718018942940 p003 LerchPhi(1/25,3,221/210) 8626718027899646 a007 Real Root Of 84*x^4+657*x^3-554*x^2+292*x+320 8626718057985899 a007 Real Root Of -986*x^4+556*x^3+234*x^2-110*x+634 8626718061824832 r005 Re(z^2+c),c=-53/56+13/47*I,n=11 8626718096247302 a001 365435296162/843*521^(11/13) 8626718102904984 m001 (Ei(1)-Champernowne)/(DuboisRaymond+Trott) 8626718113782980 a007 Real Root Of -843*x^4-319*x^3-244*x^2-199*x+272 8626718123156186 a007 Real Root Of -608*x^4+879*x^3-246*x^2-669*x+507 8626718135064189 r002 9th iterates of z^2 + 8626718156104121 m005 (1/2*gamma+4/7)/(107/132+1/12*5^(1/2)) 8626718169038061 m005 (1/2*Pi+1/11)/(8/11*5^(1/2)+3/10) 8626718207145539 m001 (Zeta(3)-BesselK(1,1))/(CareFree-ZetaQ(3)) 8626718213538976 r009 Im(z^3+c),c=-63/110+29/47*I,n=35 8626718222871639 r009 Im(z^3+c),c=-35/66+30/49*I,n=14 8626718234812693 m005 (1/3*gamma+1/10)/(1/9*2^(1/2)+2/11) 8626718256152487 m001 1/Salem/RenyiParking^2*ln(LambertW(1)) 8626718308896218 a007 Real Root Of -235*x^4+523*x^3-246*x^2+703*x-629 8626718334349683 a007 Real Root Of -597*x^4-204*x^3+477*x^2+289*x+94 8626718338885987 a007 Real Root Of 500*x^4+223*x^3+182*x^2-817*x-974 8626718361396829 a007 Real Root Of -381*x^4+602*x^3+128*x^2-741*x-137 8626718384748487 r009 Re(z^3+c),c=-13/86+16/25*I,n=21 8626718391528852 r002 6th iterates of z^2 + 8626718421033737 m001 Trott^2*GlaisherKinkelin*ln(sqrt(Pi)) 8626718435818666 a007 Real Root Of -170*x^4+697*x^3-525*x^2-784*x+256 8626718438477768 m001 (3^(1/2)+Shi(1))/(-Catalan+Lehmer) 8626718447438481 m001 (gamma(3)+Thue)/(gamma+BesselK(0,1)) 8626718454568123 b008 Pi*(-28+Cos[1]) 8626718456406800 a007 Real Root Of -133*x^4+243*x^3-777*x^2+145*x+933 8626718472256330 a007 Real Root Of 978*x^4+762*x^3+902*x^2+905*x+57 8626718474148784 g006 Psi(1,1/10)-Psi(1,6/11)-Psi(1,3/8)-Psi(1,5/7) 8626718479516870 a001 228826127/55*317811^(8/19) 8626718479524426 a001 4870847/55*2971215073^(8/19) 8626718483471312 r005 Re(z^2+c),c=7/118+21/46*I,n=24 8626718511182122 m001 GAMMA(11/12)^GaussAGM/((2^(1/3))^GaussAGM) 8626718537549610 a007 Real Root Of -751*x^4+773*x^3-787*x^2-729*x+869 8626718585881436 a007 Real Root Of 683*x^4-556*x^3+207*x^2-2*x-891 8626718597624355 p004 log(30763/12983) 8626718606299462 r009 Im(z^3+c),c=-59/90+10/39*I,n=4 8626718733226411 a007 Real Root Of -41*x^4+990*x^3+497*x^2-548*x-510 8626718754487759 m001 (sin(1/5*Pi)-Ei(1))/(MinimumGamma+ZetaQ(2)) 8626718755635418 a003 sin(Pi*21/61)*sin(Pi*35/81) 8626718783204990 m001 (cos(1/12*Pi)-exp(1/Pi))/(Magata+MertensB3) 8626718786257413 m005 (1/4*exp(1)-2/3)/(3/5*Catalan-2/5) 8626718792172712 s002 sum(A005984[n]/(n*exp(n)-1),n=1..infinity) 8626718807961875 m001 (cos(1/12*Pi)+Pi^(1/2))/(3^(1/2)+3^(1/3)) 8626718818966024 m005 (1/2*2^(1/2)-3/4)/(2*5^(1/2)+1/2) 8626718835522391 m001 (FeigenbaumAlpha-Sarnak)/(BesselI(1,2)+Bloch) 8626718878238521 m001 (Chi(1)+Pi^(1/2))/(KhinchinLevy+Tribonacci) 8626718879022837 s002 sum(A263013[n]/(n*10^n+1),n=1..infinity) 8626718879022837 s002 sum(A014195[n]/(n*10^n+1),n=1..infinity) 8626718879022837 s002 sum(A014183[n]/(n*10^n+1),n=1..infinity) 8626718879022837 s002 sum(A014147[n]/(n*10^n+1),n=1..infinity) 8626718879022837 s002 sum(A014123[n]/(n*10^n+1),n=1..infinity) 8626718879022837 s002 sum(A014111[n]/(n*10^n+1),n=1..infinity) 8626718879022902 s002 sum(A014087[n]/(n*10^n+1),n=1..infinity) 8626718879030472 s002 sum(A014075[n]/(n*10^n+1),n=1..infinity) 8626718879111552 s002 sum(A127187[n]/(n*10^n+1),n=1..infinity) 8626718910492184 r005 Im(z^2+c),c=-15/26+16/101*I,n=32 8626718930081047 p003 LerchPhi(1/3,5,496/189) 8626718987322753 a007 Real Root Of 364*x^4-219*x^3+68*x^2-501*x-825 8626718991634500 m001 Lehmer^(GolombDickman*ZetaP(2)) 8626718993911726 s002 sum(A014051[n]/(n*10^n+1),n=1..infinity) 8626718993919361 s002 sum(A016415[n]/(n*10^n+1),n=1..infinity) 8626719000530377 m009 (3/5*Psi(1,1/3)+2/3)/(1/5*Psi(1,2/3)+1/6) 8626719003764098 r005 Re(z^2+c),c=-25/34+15/61*I,n=33 8626719017716285 m001 FellerTornier/(BesselI(0,2)-Zeta(1/2)) 8626719022256590 r002 56th iterates of z^2 + 8626719056824432 m001 (gamma(3)*Salem+ZetaP(3))/gamma(3) 8626719073170467 m001 (-Zeta(1/2)+arctan(1/2))/(Chi(1)-exp(Pi)) 8626719078435929 a007 Real Root Of 645*x^4-778*x^3-116*x^2-696*x+829 8626719083692059 m001 1/exp(Trott)^2/Paris/GAMMA(1/12) 8626719084299765 r005 Im(z^2+c),c=-103/90+7/64*I,n=61 8626719099991879 a007 Real Root Of 112*x^4-338*x^3+299*x^2-797*x+620 8626719104117618 s002 sum(A099714[n]/(n*pi^n-1),n=1..infinity) 8626719118086431 a003 cos(Pi*17/63)/sin(Pi*32/115) 8626719137288530 a007 Real Root Of -799*x^4+285*x^3-25*x^2+190*x+808 8626719149436157 a007 Real Root Of 575*x^4+351*x^3+270*x^2-663*x-866 8626719209965773 l006 ln(3716/8805) 8626719217571273 a007 Real Root Of 109*x^4-887*x^3-562*x^2-463*x-611 8626719230891226 a003 cos(Pi*10/119)*sin(Pi*19/54) 8626719234809093 a007 Real Root Of -485*x^4+370*x^3+10*x^2-206*x+321 8626719255921860 a007 Real Root Of 9*x^4-676*x^3-713*x^2-658*x-476 8626719263230269 a007 Real Root Of -536*x^4+706*x^3-367*x^2-559*x+541 8626719273534395 r005 Re(z^2+c),c=-5/7+15/49*I,n=25 8626719305958713 h001 (1/4*exp(2)+2/9)/(5/8*exp(1)+7/10) 8626719343911954 a007 Real Root Of 958*x^4+3*x^3+552*x^2+4*x-936 8626719358655091 a007 Real Root Of -588*x^4-4*x^3+208*x^2+541*x+635 8626719370264264 r009 Im(z^3+c),c=-31/54+27/56*I,n=47 8626719428582381 r005 Re(z^2+c),c=-7/8+21/113*I,n=54 8626719451043296 a007 Real Root Of -204*x^4+978*x^3+726*x^2+26*x+223 8626719489566397 r009 Re(z^3+c),c=-5/56+51/52*I,n=17 8626719522093526 a001 2207/13*1346269^(26/43) 8626719541596020 m002 2+(Pi^4*Coth[Pi])/Log[Pi]-Log[Pi] 8626719543251774 a001 34/39603*11^(51/53) 8626719558638077 a003 cos(Pi*3/71)-sin(Pi*42/85) 8626719598511213 l006 ln(2923/6926) 8626719622476276 m001 Psi(2,1/3)/(Bloch^Gompertz) 8626719675674109 a003 cos(Pi*21/109)/sin(Pi*35/87) 8626719675808621 r005 Re(z^2+c),c=-29/82+43/54*I,n=2 8626719713599109 a007 Real Root Of 901*x^4-108*x^3-449*x^2-16*x-248 8626719730459640 r009 Re(z^3+c),c=-3/44+48/55*I,n=31 8626719748266573 a001 55/18*199^(10/51) 8626719753398304 a008 Real Root of (-1+4*x^2-8*x^4+8*x^8) 8626719760271607 m001 (FeigenbaumAlpha-Thue)/(BesselK(1,1)+Conway) 8626719764903028 s001 sum(exp(-Pi/3)^n*A271449[n],n=1..infinity) 8626719765207140 m001 ln(5)/(gamma(2)^Si(Pi)) 8626719817093790 a007 Real Root Of 816*x^4-108*x^3+388*x^2+546*x-339 8626719839629211 r005 Im(z^2+c),c=-3/5+1/56*I,n=28 8626719926875619 a001 47/4052739537881*14930352^(6/23) 8626719932167118 a007 Real Root Of -380*x^4+752*x^3+733*x^2+253*x+366 8626719961604720 r002 13th iterates of z^2 + 8626719964927578 s002 sum(A123254[n]/(n*10^n+1),n=1..infinity) 8626719970713087 m006 (1/3*exp(Pi)+1/4)/(4*exp(Pi)-1/4) 8626719991469960 m001 (exp(-1/2*Pi)+HeathBrownMoroz)/(Si(Pi)-ln(5)) 8626720001593596 m001 (ZetaP(3)-ZetaQ(3))/(ln(gamma)-exp(1/Pi)) 8626720002851089 m005 (1/2*Pi-2/9)/(41/72+4/9*5^(1/2)) 8626720034564685 a007 Real Root Of -767*x^4+235*x^3+114*x^2-511*x+50 8626720047083991 h001 (-6*exp(4)-8)/(-11*exp(1)-9) 8626720059977449 m001 (BesselK(1,1)+GolombDickman)/(Zeta(3)+Ei(1,1)) 8626720062838834 m004 -3/5+(250*Cot[Sqrt[5]*Pi])/Pi 8626720068705990 s002 sum(A117907[n]/(n*10^n+1),n=1..infinity) 8626720091393785 a007 Real Root Of -867*x^4+406*x^3-860*x^2-773*x+714 8626720111732782 a007 Real Root Of -997*x^4-384*x^3+777*x^2+935*x+534 8626720121448373 m005 (Catalan+3)/(25/6+1/6*5^(1/2)) 8626720123079118 a007 Real Root Of 488*x^4-452*x^3+195*x^2-128*x-816 8626720139343891 m001 ArtinRank2/(TreeGrowth2nd^sin(1/12*Pi)) 8626720170610422 a007 Real Root Of -509*x^4+262*x^3-792*x^2-972*x+201 8626720182504041 s002 sum(A260413[n]/(n*10^n+1),n=1..infinity) 8626720183486238 q001 3009/3488 8626720188087514 a003 sin(Pi*3/116)/cos(Pi*12/109) 8626720193706061 s002 sum(A115360[n]/(n*10^n+1),n=1..infinity) 8626720203074718 s002 sum(A173908[n]/(n*10^n+1),n=1..infinity) 8626720236739924 a001 1/322*(1/2*5^(1/2)+1/2)^17*76^(9/19) 8626720239708330 a007 Real Root Of -395*x^4+240*x^3-749*x^2-537*x+467 8626720264504190 m001 BesselI(0,2)*(ln(2)/ln(10))^AlladiGrinstead 8626720276367915 l006 ln(2130/5047) 8626720278632802 g007 Psi(2,6/7)+Psi(2,4/5)-Psi(2,9/11)-Psi(2,7/9) 8626720287035697 r002 5th iterates of z^2 + 8626720293869099 a007 Real Root Of -671*x^4+471*x^3-582*x^2-567*x+618 8626720307586681 s002 sum(A214960[n]/(n*10^n+1),n=1..infinity) 8626720309018886 s002 sum(A241098[n]/((2^n+1)/n),n=1..infinity) 8626720365044944 r005 Re(z^2+c),c=-71/60+12/47*I,n=24 8626720376433436 a007 Real Root Of 903*x^4+195*x^3+702*x^2-39*x-931 8626720381747682 a007 Real Root Of 766*x^4-278*x^3-845*x^2-679*x+65 8626720391382987 a007 Real Root Of 757*x^4-736*x^3-418*x^2+177*x-428 8626720398070022 a007 Real Root Of -114*x^4+459*x^3+524*x^2+193*x-788 8626720407660064 r005 Im(z^2+c),c=3/25+3/46*I,n=3 8626720419473065 h001 (-8*exp(3)-10)/(-10*exp(3)+3) 8626720441661572 p004 log(28403/11987) 8626720442125016 a007 Real Root Of 69*x^4-353*x^3-73*x^2+82*x+172 8626720481343944 p002 log(11^(1/3)/(1+10^(1/2))^(1/2)) 8626720525569731 a007 Real Root Of -779*x^4+159*x^3-323*x^2+572*x-47 8626720540941090 a001 591286729879/843*521^(10/13) 8626720544634981 a007 Real Root Of -934*x^4-750*x^3+394*x^2+776*x+412 8626720555608797 r001 2i'th iterates of 2*x^2-1 of 8626720561535548 a003 cos(Pi*7/100)*sin(Pi*39/113) 8626720577186342 r001 14i'th iterates of 2*x^2-1 of 8626720603834762 a007 Real Root Of 769*x^4+385*x^3+544*x^2+156*x-449 8626720619048207 m001 arctan(1/3)/GAMMA(7/12)*HardyLittlewoodC5 8626720633850773 r005 Im(z^2+c),c=-25/44+1/64*I,n=46 8626720648085264 h001 (-2*exp(3)+7)/(-3*exp(1)+12) 8626720655532404 a007 Real Root Of -62*x^4-459*x^3+573*x^2-666*x+312 8626720664395285 r005 Im(z^2+c),c=-21/34+27/53*I,n=8 8626720691945298 a005 (1/cos(38/231*Pi))^509 8626720694921934 m005 (1/2*gamma+7/9)/(5/9*Catalan+8/11) 8626720697545168 a007 Real Root Of -968*x^4+180*x^3+265*x^2-652*x-108 8626720700763849 l006 ln(4817/5251) 8626720745806684 r005 Re(z^2+c),c=-2/3+59/167*I,n=7 8626720803218053 p001 sum((-1)^n/(241*n+106)/(3^n),n=0..infinity) 8626720821642322 s002 sum(A020162[n]/(n*pi^n-1),n=1..infinity) 8626720847863450 l006 ln(3467/8215) 8626720872277128 a007 Real Root Of 54*x^4+387*x^3-572*x^2+943*x+86 8626720906227725 m001 (LambertW(1)-Zeta(3))/(-GaussAGM+Paris) 8626720914193386 r005 Re(z^2+c),c=-37/34+6/61*I,n=12 8626720922990124 q001 1/1159189 8626720940567187 a007 Real Root Of -78*x^4+701*x^3+473*x^2+810*x+840 8626720944319683 m001 (GAMMA(2/3)+1/3)/(Backhouse+1/2) 8626721033111463 a007 Real Root Of -588*x^4+45*x^3+3*x^2+279*x+593 8626721087437787 m001 Zeta(1,2)^Backhouse*Zeta(1,2)^GaussAGM 8626721099703404 m001 (OneNinth+PisotVijayaraghavan)/(Kac+MertensB2) 8626721102575164 m001 (1+3^(1/2))^(1/2)/(HeathBrownMoroz^Gompertz) 8626721109291726 r005 Im(z^2+c),c=-10/9+13/123*I,n=16 8626721131006718 r005 Re(z^2+c),c=-81/94+6/37*I,n=5 8626721132315480 r002 11th iterates of z^2 + 8626721159651189 r005 Im(z^2+c),c=-9/16+15/49*I,n=11 8626721174310108 m001 (Mills+ReciprocalFibonacci)/(ArtinRank2-Cahen) 8626721185644249 a007 Real Root Of 920*x^4-416*x^3-114*x^2+526*x-238 8626721187998097 a007 Real Root Of 875*x^4-709*x^3+104*x^2+137*x-899 8626721194563752 a001 7/89*63245986^(2/15) 8626721207257641 a007 Real Root Of 950*x^4+561*x^3-303*x^2-790*x-622 8626721220042436 a001 89/123*9349^(1/52) 8626721250465202 q001 2318/2687 8626721259993243 m001 (Chi(1)+GaussAGM)/(-MasserGramain+Sierpinski) 8626721299269803 m001 1/Robbin^2/ln(Champernowne)^2*sqrt(1+sqrt(3)) 8626721307644052 a007 Real Root Of -601*x^4+421*x^3+408*x^2+477*x+711 8626721328759199 h001 (1/4*exp(2)+5/8)/(8/11*exp(1)+8/9) 8626721361178296 a001 322*55^(32/39) 8626721402331867 a003 cos(Pi*29/115)-sin(Pi*24/83) 8626721422352937 r005 Im(z^2+c),c=-3/62+22/27*I,n=26 8626721434054905 r005 Re(z^2+c),c=-103/122+3/22*I,n=29 8626721436221198 h001 (7/8*exp(1)+1/3)/(8/9*exp(1)+8/11) 8626721438198562 b008 9*Zeta[10/9] 8626721443599109 r005 Im(z^2+c),c=-4/5+19/65*I,n=8 8626721454648947 a007 Real Root Of -85*x^4+664*x^3-699*x^2-593*x+482 8626721474520820 p001 sum(1/(533*n+116)/(256^n),n=0..infinity) 8626721476961895 m001 (Si(Pi)+cos(1/12*Pi))/(Conway+ReciprocalLucas) 8626721495221661 m001 (Otter+Tetranacci)/(Chi(1)-OrthogonalArrays) 8626721515713762 a007 Real Root Of 503*x^4-802*x^3+439*x^2+858*x-380 8626721516765004 r002 8th iterates of z^2 + 8626721527995248 a007 Real Root Of 274*x^4+930*x^3+685*x^2-768*x-727 8626721535526119 r002 3th iterates of z^2 + 8626721551732042 r001 35i'th iterates of 2*x^2-1 of 8626721573074373 r005 Im(z^2+c),c=1/126+37/45*I,n=20 8626721582437612 m001 (Cahen-ZetaP(4))/(GAMMA(5/6)-Bloch) 8626721611157576 m001 Artin^FeigenbaumDelta/GAMMA(19/24) 8626721611289519 b008 InverseJacobiSD[Csch[Pi],2] 8626721612410434 r005 Re(z^2+c),c=-83/98+5/38*I,n=31 8626721633365515 r009 Im(z^3+c),c=-35/74+1/26*I,n=56 8626721650999772 m009 (6*Catalan+3/4*Pi^2-1/5)/(5*Psi(1,2/3)-3/5) 8626721661617845 m008 (2*Pi-2/3)/(2/3*Pi^4+1/6) 8626721731199902 a007 Real Root Of -930*x^4-368*x^3+355*x^2+172*x+163 8626721734701557 a007 Real Root Of -429*x^4+347*x^3-299*x^2+356*x+990 8626721758323732 l006 ln(1337/3168) 8626721773650852 a007 Real Root Of -418*x^4+489*x^3+928*x^2+807*x+551 8626721783375703 r005 Im(z^2+c),c=5/19+5/9*I,n=10 8626721789642474 m001 BesselK(1,1)*(GAMMA(17/24)-exp(1)) 8626721789642474 m001 BesselK(1,1)*(exp(1)-GAMMA(17/24)) 8626721794180845 a001 29/610*3^(32/59) 8626721828275761 a001 322/514229*55^(36/55) 8626721850018090 a007 Real Root Of 309*x^4-657*x^3+145*x^2+824*x+10 8626721880327006 r005 Im(z^2+c),c=29/102+54/55*I,n=3 8626721891377585 m001 (2*Pi/GAMMA(5/6))^MertensB3-GAMMA(3/4) 8626721919710641 r005 Re(z^2+c),c=-1/20+13/53*I,n=10 8626721920344745 a007 Real Root Of -498*x^4+724*x^3-128*x^2-30*x+810 8626721939216892 a003 sin(Pi*3/101)-sin(Pi*32/79) 8626721961291847 a007 Real Root Of -167*x^4+x^3-416*x^2-53*x+357 8626721988197982 r005 Im(z^2+c),c=-45/34+4/77*I,n=18 8626722033212588 r009 Re(z^3+c),c=-9/26+21/31*I,n=7 8626722034942012 m005 (1/2*gamma-1/9)/(3/10*Pi-3) 8626722072886451 a007 Real Root Of 151*x^4-372*x^3+16*x^2+78*x+76 8626722074954240 a007 Real Root Of -86*x^4+862*x^3-136*x^2+492*x-829 8626722120414937 a007 Real Root Of -807*x^4-394*x^3-837*x^2-343*x+521 8626722143144778 a007 Real Root Of -408*x^4+820*x^3-547*x^2-295*x+905 8626722154306251 m001 (HardyLittlewoodC4+Lehmer)^OrthogonalArrays 8626722167346940 r005 Im(z^2+c),c=-85/122+34/57*I,n=3 8626722198104757 a003 sin(Pi*23/65)*sin(Pi*40/97) 8626722219747203 m001 (1+3^(1/2))^(1/2)-RenyiParking^AlladiGrinstead 8626722263480459 a001 161/7465176*8^(2/3) 8626722264282940 a004 Lucas(3)/Fibonacci(12)/(1/2+sqrt(5)/2)^12 8626722314903234 r005 Re(z^2+c),c=3/29+7/13*I,n=47 8626722343467287 a007 Real Root Of 429*x^4+28*x^3-436*x^2-955*x-719 8626722379377205 r009 Im(z^3+c),c=-9/110+43/50*I,n=25 8626722388130515 a007 Real Root Of -555*x^4-11*x^3-561*x^2-96*x+635 8626722410496452 a007 Real Root Of -469*x^4+690*x^3+964*x^2-39*x-867 8626722450388423 a007 Real Root Of 949*x^4+64*x^3+467*x^2+422*x-468 8626722459103511 a001 956722026041/322*322^(7/12) 8626722463209544 m001 (3^(1/3))/LaplaceLimit^2*exp(cos(Pi/12)) 8626722472152790 m008 (1/5*Pi^2+5)/(5/6*Pi^4-1/3) 8626722486204488 m001 ln(TwinPrimes)*LandauRamanujan*exp(1) 8626722526482331 m001 Lehmer^Backhouse/(Lehmer^GAMMA(19/24)) 8626722557217311 m001 (DuboisRaymond+Riemann1stZero)/(Shi(1)-exp(1)) 8626722574195655 r005 Re(z^2+c),c=-13/110+41/47*I,n=26 8626722577548049 a007 Real Root Of -124*x^4+661*x^3+247*x^2+89*x+386 8626722578466512 m001 (-Landau+MertensB1)/(2^(1/2)+Si(Pi)) 8626722580191202 r005 Re(z^2+c),c=19/98+29/64*I,n=14 8626722582104199 a007 Real Root Of -290*x^4+911*x^3-552*x^2-748*x+511 8626722592533603 r005 Re(z^2+c),c=-25/23+4/33*I,n=12 8626722595031549 a007 Real Root Of -174*x^4+868*x^3+623*x^2+648*x+749 8626722601533071 r005 Im(z^2+c),c=-37/34+6/59*I,n=15 8626722612406392 r009 Im(z^3+c),c=-47/86+22/41*I,n=20 8626722612406777 r009 Im(z^3+c),c=-47/86+22/41*I,n=23 8626722612406805 r009 Im(z^3+c),c=-47/86+22/41*I,n=26 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=29 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=32 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=35 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=38 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=41 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=44 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=47 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=50 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=53 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=56 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=62 8626722612406807 r009 Im(z^3+c),c=-47/86+22/41*I,n=59 8626722612411286 r009 Im(z^3+c),c=-47/86+22/41*I,n=17 8626722613084962 r009 Im(z^3+c),c=-47/86+22/41*I,n=14 8626722613240346 m001 Riemann3rdZero/ArtinRank2^2*exp(sin(Pi/12))^2 8626722619292384 r005 Re(z^2+c),c=-49/58+6/43*I,n=55 8626722626428045 a007 Real Root Of -569*x^4+610*x^3+26*x^2-332*x+401 8626722647504867 r005 Re(z^2+c),c=-1/26+17/63*I,n=5 8626722649243163 r009 Im(z^3+c),c=-47/86+22/41*I,n=11 8626722650259312 r002 32th iterates of z^2 + 8626722653766492 a007 Real Root Of 505*x^4-780*x^3-832*x^2-803*x-854 8626722657255927 h001 (3/5*exp(2)+5/9)/(2/3*exp(2)+6/7) 8626722687194086 m001 (2^(1/2))^ZetaP(3)*GaussKuzminWirsing^ZetaP(3) 8626722703513015 a007 Real Root Of -59*x^4+569*x^3-62*x^2+263*x+671 8626722704046801 a007 Real Root Of 725*x^4-275*x^3-172*x^2-37*x-482 8626722708762194 h001 (6/7*exp(2)+1/7)/(9/10*exp(2)+6/7) 8626722726139228 r009 Im(z^3+c),c=-51/98+31/54*I,n=11 8626722739232838 l006 ln(3218/7625) 8626722742513585 r005 Re(z^2+c),c=-29/30+113/124*I,n=2 8626722748220743 a007 Real Root Of 103*x^4-928*x^3+242*x^2+141*x+237 8626722781866880 m005 (1/2*Catalan-1/7)/(1/6*Pi-8/9) 8626722787310682 a003 sin(Pi*1/60)-sin(Pi*32/87) 8626722801318250 a007 Real Root Of -645*x^4+914*x^3+514*x^2+91*x+640 8626722823899903 a007 Real Root Of 611*x^4-38*x^3-30*x^2-200*x-513 8626722824546485 r002 2th iterates of z^2 + 8626722837570935 m001 (ln(2^(1/2)+1)-3^(1/3))/(Gompertz+ZetaQ(2)) 8626722853398444 m005 (1/3*Catalan-2/11)/(6*5^(1/2)+9/10) 8626722857814239 m001 sqrt(Pi)/(GolombDickman-GAMMA(1/3)) 8626722890615459 a007 Real Root Of 485*x^4+241*x^3+656*x^2+429*x-232 8626722938990708 a007 Real Root Of 861*x^4+182*x^3-625*x^2-822*x-604 8626722963962721 a003 sin(Pi*7/60)-sin(Pi*11/75) 8626722967366016 l006 ln(8402/9159) 8626722967698849 a001 2/28143753123*3^(3/17) 8626722981256835 a003 sin(Pi*15/68)/cos(Pi*19/81) 8626722985635572 a001 956722026041/843*521^(9/13) 8626722999362045 m001 1/cosh(1)^2*ln(Si(Pi))/sqrt(3)^2 8626723058862012 a005 (1/sin(83/177*Pi))^934 8626723059558395 a003 cos(Pi*22/117)/sin(Pi*45/109) 8626723065951979 r009 Im(z^3+c),c=-5/62+37/43*I,n=37 8626723079828451 r005 Re(z^2+c),c=37/122+35/52*I,n=3 8626723094521566 m005 (1/2*3^(1/2)+5/11)/(2/5*5^(1/2)+7/11) 8626723098474254 a007 Real Root Of -97*x^4-881*x^3-254*x^2+997*x-878 8626723100857309 a007 Real Root Of 805*x^4-126*x^3-442*x^2-683*x-787 8626723101967094 m005 (1/3*5^(1/2)-3/5)/(8/9*Zeta(3)-9/10) 8626723112083125 a007 Real Root Of -359*x^4+62*x^3-34*x^2-350*x-38 8626723124843053 r005 Im(z^2+c),c=-7/12+9/113*I,n=3 8626723182137017 m001 (ZetaP(4)-ZetaQ(4))/(sin(1/12*Pi)-GAMMA(5/6)) 8626723223753976 q001 1627/1886 8626723228372842 a003 cos(Pi*31/119)+cos(Pi*27/61) 8626723240772569 a005 (1/sin(49/136*Pi))^276 8626723254966884 r002 64th iterates of z^2 + 8626723262996634 r005 Im(z^2+c),c=-25/26+8/99*I,n=9 8626723289213101 a001 322/1597*233^(4/15) 8626723293801641 r002 5th iterates of z^2 + 8626723301074773 r005 Im(z^2+c),c=-29/54+33/43*I,n=3 8626723313846667 m001 (3^(1/3)-gamma(1))/(KhinchinHarmonic+Trott) 8626723314213748 r005 Re(z^2+c),c=-81/122+32/53*I,n=5 8626723328317564 a003 sin(Pi*9/103)*sin(Pi*10/97) 8626723342782993 r008 a(0)=0,K{-n^6,-8+9*n+16*n^2-29*n^3} 8626723355979213 a007 Real Root Of -231*x^4-312*x^3-947*x^2-536*x+170 8626723357015903 a007 Real Root Of 672*x^4+798*x^3+813*x^2+860*x+277 8626723388409999 m001 ln(RenyiParking)^2/Conway^2/gamma 8626723404764919 s002 sum(A277868[n]/((exp(n)-1)/n),n=1..infinity) 8626723432764150 a001 1/726103*8^(15/17) 8626723436455254 l006 ln(1881/4457) 8626723457366798 r002 26th iterates of z^2 + 8626723466329093 m001 Stephens^PlouffeB/(Stephens^exp(-1/2*Pi)) 8626723471258180 m002 4+4*ProductLog[Pi]+Tanh[Pi]/3 8626723472178201 v002 sum(1/(2^n+(1/2*n^2+17/2*n+36)),n=1..infinity) 8626723475171430 a007 Real Root Of -500*x^4-589*x^3-830*x^2-33*x+488 8626723484006204 a001 47/4181*8^(49/50) 8626723488259355 p003 LerchPhi(1/512,4,21/64) 8626723492238562 r002 4th iterates of z^2 + 8626723506332886 r002 21th iterates of z^2 + 8626723512800856 a007 Real Root Of 921*x^4-134*x^3+605*x^2+478*x-634 8626723519992886 a007 Real Root Of 135*x^4+397*x^3+409*x^2-235*x-327 8626723536611758 a003 cos(Pi*21/89)*cos(Pi*31/67) 8626723540009404 g003 Im(GAMMA(-1+I*2/3)) 8626723545222004 m001 1/exp(Zeta(9))/GAMMA(7/24)/sinh(1)^2 8626723549046768 a003 sin(Pi*19/59)/sin(Pi*26/59) 8626723558654974 a008 Real Root of (-1+x^2+x^3-x^5-x^6-x^7+x^8+x^12) 8626723563721699 a001 843/34*89^(5/18) 8626723575123605 a001 20100265930038/233 8626723587886580 p001 sum(1/(516*n+133)/(2^n),n=0..infinity) 8626723591816547 r002 47th iterates of z^2 + 8626723605089962 s002 sum(A256620[n]/(n*exp(n)+1),n=1..infinity) 8626723611201618 a007 Real Root Of 223*x^4-164*x^3-683*x^2-994*x-578 8626723634670230 m001 1/KhintchineHarmonic^2*ln(Si(Pi))^2/Zeta(3)^2 8626723660624341 p001 sum((-1)^n/(308*n+169)/n/(24^n),n=1..infinity) 8626723670432052 a007 Real Root Of -770*x^4+593*x^3+190*x^2-526*x+212 8626723678944463 m005 (1/6+1/4*5^(1/2))/(10/11*2^(1/2)-4/9) 8626723741409684 a007 Real Root Of -432*x^4-695*x^3-507*x^2+61*x+223 8626723770409132 a007 Real Root Of 41*x^4-705*x^3+501*x^2-816*x+761 8626723781430743 b008 85+ProductLog[9/2] 8626723782671888 a001 969323029/377*4807526976^(6/23) 8626723782751850 a001 599786069/13*75025^(6/23) 8626723815843681 h001 (1/8*exp(2)+10/11)/(5/11*exp(1)+8/9) 8626723820271175 a007 Real Root Of 923*x^4-983*x^3-541*x^2-34*x-769 8626723851441046 a007 Real Root Of 538*x^4-978*x^3-902*x^2+137*x+883 8626723855429565 r005 Im(z^2+c),c=41/122+26/61*I,n=20 8626723883648074 a003 cos(Pi*29/115)+cos(Pi*35/78) 8626723886655917 r009 Im(z^3+c),c=-4/29+41/49*I,n=59 8626723897004118 r005 Re(z^2+c),c=23/98+23/47*I,n=43 8626723967876169 a007 Real Root Of 654*x^4-834*x^3+354*x^2+378*x-835 8626723983025287 a007 Real Root Of -247*x^4+96*x^3+614*x^2+144*x-506 8626723989362832 r002 60th iterates of z^2 + 8626723999395627 a001 1/41*15127^(25/41) 8626724037568098 a007 Real Root Of -821*x^4+176*x^3+706*x^2+439*x+421 8626724050471785 m001 (Salem-ZetaQ(2))/(ReciprocalLucas-Robbin) 8626724055768805 v002 sum(1/(5^n*(27*n^2-80*n+81)),n=1..infinity) 8626724113036692 m001 (BesselI(0,2)-Lehmer)/(Porter-Riemann2ndZero) 8626724124542688 a001 3461452808002*144^(11/17) 8626724144984098 a007 Real Root Of -43*x^4-469*x^3-879*x^2-339*x-458 8626724181211872 a001 1364/1597*377^(23/59) 8626724188272563 r009 Im(z^3+c),c=-47/86+22/41*I,n=8 8626724193068833 b008 (29*ArcSec[12])/5 8626724198260562 a007 Real Root Of -472*x^4+440*x^3-288*x^2+984*x-83 8626724205878271 r008 a(0)=0,K{-n^6,5+97*n^3-10*n^2+24*n} 8626724207894684 r009 Im(z^3+c),c=-23/70+20/29*I,n=49 8626724215547181 m001 (Tetranacci+ZetaP(4))/(Shi(1)+BesselI(0,1)) 8626724234086853 r005 Re(z^2+c),c=-11/16+33/41*I,n=2 8626724249909988 m001 polylog(4,1/2)^(CareFree/Pi) 8626724258279170 a007 Real Root Of 62*x^4+475*x^3-442*x^2+620*x-186 8626724317460474 r005 Re(z^2+c),c=1/8+13/38*I,n=7 8626724346124867 m001 ZetaP(4)^gamma(2)*sin(1) 8626724346275130 s001 sum(exp(-Pi/2)^n*A101536[n],n=1..infinity) 8626724361676512 l006 ln(2425/5746) 8626724416648467 r002 62th iterates of z^2 + 8626724421958571 a001 2576*322^(9/43) 8626724428943663 r002 4th iterates of z^2 + 8626724431945625 r009 Re(z^3+c),c=-1/86+19/50*I,n=15 8626724481037116 a007 Real Root Of 85*x^4+768*x^3+200*x^2-775*x+726 8626724486087404 a007 Real Root Of -347*x^4+35*x^3-881*x^2+24*x+891 8626724487452110 h001 (7/12*exp(1)+1/11)/(2/11*exp(2)+3/5) 8626724495332790 a007 Real Root Of -59*x^4+253*x^3-452*x^2-630*x-12 8626724497001948 m001 exp(GAMMA(7/12))*Ei(1)*Pi^2 8626724505272629 a008 Real Root of (11+x-3*x^2-15*x^3) 8626724545943893 a007 Real Root Of 28*x^4+146*x^3-715*x^2+839*x-894 8626724580984876 m001 (GAMMA(17/24)+Lehmer)/(exp(1/Pi)-exp(Pi)) 8626724607619599 r005 Re(z^2+c),c=3/11+19/37*I,n=34 8626724641796642 r002 46th iterates of z^2 + 8626724644756384 m001 Riemann3rdZero^(QuadraticClass/ln(2+3^(1/2))) 8626724658193659 a007 Real Root Of 650*x^4-805*x^3+31*x^2+314*x-629 8626724680204609 a007 Real Root Of 689*x^4-224*x^3+413*x^2+60*x-781 8626724685897741 m001 (MadelungNaCl+Porter)/(Ei(1)+FeigenbaumC) 8626724691946553 r005 Im(z^2+c),c=-17/15+6/61*I,n=5 8626724711322211 r005 Re(z^2+c),c=-9/8+26/93*I,n=28 8626724718519530 p001 sum((-1)^n/(401*n+112)/n/(2^n),n=1..infinity) 8626724731575169 m001 1/ln(Rabbit)^2*DuboisRaymond^2/GAMMA(11/24)^2 8626724783034438 a007 Real Root Of -136*x^4+153*x^3+331*x^2+9*x-277 8626724823967916 r005 Im(z^2+c),c=-33/46+5/47*I,n=8 8626724832597743 a007 Real Root Of 145*x^4-541*x^3-336*x^2-83*x+10 8626724899393583 a001 521/144*233^(32/55) 8626724915700140 m001 (Thue+ZetaP(3))/(GaussAGM-TravellingSalesman) 8626724947847296 l006 ln(2969/7035) 8626724964006616 r004 Re(z^2+c),c=-3/34-13/20*I,z(0)=I,n=40 8626724972118594 a003 cos(Pi*8/65)*sin(Pi*37/97) 8626724972366966 a007 Real Root Of 733*x^4-993*x^3-15*x^2+573*x-538 8626724972797564 b008 7*(7+37*Pi) 8626724972816493 r008 a(0)=8,K{-n^6,2-6*n^3-3*n^2+4*n} 8626724979532847 m001 (OneNinth+Rabbit)/(GaussAGM-Grothendieck) 8626724987686722 a007 Real Root Of 484*x^4+205*x^3+500*x^2-4*x-512 8626725008414675 q001 2563/2971 8626725015827361 a007 Real Root Of 920*x^4-480*x^3-491*x^2+595*x+61 8626725039544460 r005 Re(z^2+c),c=-23/34+39/116*I,n=8 8626725065760057 r005 Re(z^2+c),c=-31/36+3/29*I,n=21 8626725081195905 r009 Im(z^3+c),c=-11/102+50/59*I,n=21 8626725083025537 b008 E^(E+EulerGamma^(-1))+EulerGamma 8626725087818025 a001 20100269454616/233 8626725104973449 a007 Real Root Of 703*x^4+66*x^3+367*x^2-292*x-872 8626725105429222 r005 Re(z^2+c),c=-27/25+9/64*I,n=20 8626725105830057 m005 (1/3*gamma+1/8)/(5/9*gamma-4) 8626725117322936 a007 Real Root Of -630*x^4+696*x^3+654*x^2+612*x+837 8626725132329025 m001 Chi(1)^(Shi(1)/BesselI(0,1)) 8626725139555376 a007 Real Root Of -959*x^4+275*x^3+627*x^2+117*x+342 8626725177722861 a007 Real Root Of -545*x^4+398*x^3+810*x^2+623*x+492 8626725210357445 r005 Im(z^2+c),c=-9/14+22/161*I,n=24 8626725224722736 m001 1/GAMMA(7/24)^2/Sierpinski^2/ln(sin(Pi/12))^2 8626725230186122 r002 3th iterates of z^2 + 8626725238290928 m005 (1/2*Zeta(3)+7/12)/(7/8*Catalan+4/7) 8626725247514029 m001 1/cos(1)/exp(BesselK(1,1))/sinh(1) 8626725257910298 s002 sum(A129767[n]/((exp(n)+1)*n),n=1..infinity) 8626725276319262 m001 KhinchinHarmonic*(BesselK(1,1)-OneNinth) 8626725279200755 r005 Re(z^2+c),c=-101/94+7/43*I,n=44 8626725284917739 a007 Real Root Of -909*x^4+957*x^3+168*x^2-431*x+621 8626725294993570 a007 Real Root Of 989*x^4+103*x^3+764*x^2+319*x-775 8626725304639890 a007 Real Root Of 546*x^4-965*x^3+226*x^2+771*x-425 8626725306804417 r005 Re(z^2+c),c=1/10+29/59*I,n=21 8626725308517167 a001 20100269968845/233 8626725312621815 m005 (1/4*5^(1/2)+3/4)/(4/11*Pi+3/8) 8626725314654146 a007 Real Root Of 888*x^4-802*x^3-109*x^2+673*x-345 8626725316627512 m005 (1/3*3^(1/2)+1/11)/(4*3^(1/2)+9/11) 8626725333091136 g006 Psi(1,9/11)+Psi(1,1/3)+1/2*Pi^2-Psi(1,4/11) 8626725334199250 m001 exp(FeigenbaumB)*DuboisRaymond^2/Zeta(7) 8626725340716738 a001 20100270043870/233 8626725343194159 m001 1/exp(Bloch)^2/ErdosBorwein^2/MadelungNaCl 8626725345414592 a001 20100270054816/233 8626725346214592 a001 20100270056680/233 8626725346216738 a001 20100270056685/233 8626725346217167 a001 20100270056686/233 8626725346218025 a001 20100270056688/233 8626725346223605 a001 20100270056701/233 8626725346261802 a001 20100270056790/233 8626725346523605 a001 20100270057400/233 8626725348318025 a001 20100270061581/233 8626725352476980 l006 ln(3513/8324) 8626725360617167 a001 20100270090238/233 8626725378080757 r009 Im(z^3+c),c=-5/62+37/43*I,n=47 8626725395906957 r005 Re(z^2+c),c=-7/118+38/59*I,n=26 8626725407164566 r005 Re(z^2+c),c=-19/62+27/37*I,n=5 8626725430330746 a001 516002918640/281*521^(8/13) 8626725443010089 a007 Real Root Of 422*x^4-993*x^3+39*x^2-559*x+857 8626725444916738 a001 20100270286656/233 8626725460872315 p004 log(26261/11083) 8626725520661559 m001 (GAMMA(1/6)+4)/(-3^(1/3)+1/3) 8626725520794300 r009 Im(z^3+c),c=-5/62+37/43*I,n=49 8626725550624590 a007 Real Root Of 718*x^4+295*x^3+780*x^2+548*x-316 8626725565848616 m001 (KhinchinHarmonic-Porter)/FellerTornier 8626725570694135 g001 Psi(3/5,61/86) 8626725614703921 r002 5th iterates of z^2 + 8626725614791628 m005 (7/8+1/4*5^(1/2))/(5/11*3^(1/2)+7/8) 8626725648593689 l006 ln(4057/9613) 8626725648593689 p004 log(9613/4057) 8626725658368324 r005 Re(z^2+c),c=-24/23+7/31*I,n=42 8626725659265829 a007 Real Root Of -765*x^4+834*x^3+100*x^2-643*x+330 8626725660688876 h001 (2/3*exp(1)+2/7)/(3/11*exp(2)+5/12) 8626725675938122 a007 Real Root Of -464*x^4+118*x^3+307*x^2+738*x-66 8626725687966287 r009 Im(z^3+c),c=-2/25+43/50*I,n=13 8626725689977714 r009 Im(z^3+c),c=-11/30+1/28*I,n=15 8626725699172535 r002 15th iterates of z^2 + 8626725776074345 r009 Im(z^3+c),c=-5/62+37/43*I,n=51 8626725790904744 m001 RenyiParking*Magata*ln(Zeta(3))^2 8626725832031530 r009 Im(z^3+c),c=-5/62+37/43*I,n=45 8626725832436235 h001 (7/10*exp(1)+3/4)/(11/12*exp(1)+7/12) 8626725838264299 q001 3499/4056 8626725868926075 r009 Im(z^3+c),c=-5/62+37/43*I,n=61 8626725869624332 r009 Im(z^3+c),c=-5/62+37/43*I,n=63 8626725871429164 a007 Real Root Of 909*x^4-711*x^3+218*x^2+749*x-476 8626725881198119 r009 Im(z^3+c),c=-5/62+37/43*I,n=59 8626725882344540 a007 Real Root Of -13*x^4+646*x^3+190*x^2+167*x-693 8626725894509757 h005 exp(cos(Pi*5/34)/cos(Pi*4/11)) 8626725900176461 a001 123/8*13^(39/58) 8626725911094904 r009 Im(z^3+c),c=-5/62+37/43*I,n=57 8626725919003656 r009 Im(z^3+c),c=-5/62+37/43*I,n=53 8626725936700581 a007 Real Root Of 949*x^4-8*x^3-804*x^2+303*x+329 8626725941403109 r009 Im(z^3+c),c=-5/62+37/43*I,n=55 8626725945023651 m005 (1/3*gamma+3/5)/(41/198+7/22*5^(1/2)) 8626725951994092 r009 Im(z^3+c),c=-5/126+34/39*I,n=31 8626725959261561 m001 (Paris-Thue)/QuadraticClass 8626725979383473 r005 Re(z^2+c),c=-135/122+12/41*I,n=11 8626725990286282 r009 Im(z^3+c),c=-5/126+34/39*I,n=33 8626726012895262 l006 ln(3585/3908) 8626726019702228 a001 591286729879/2207*521^(12/13) 8626726022714592 a001 20100271632925/233 8626726038590173 r009 Im(z^3+c),c=-5/126+34/39*I,n=35 8626726059119349 p003 LerchPhi(1/125,4,443/240) 8626726066198961 h001 (11/12*exp(1)+4/11)/(11/12*exp(1)+9/11) 8626726066931485 m001 (gamma(2)+CareFree)/(Kolakoski+Trott) 8626726067167285 r009 Im(z^3+c),c=-5/126+34/39*I,n=37 8626726069602874 r009 Im(z^3+c),c=-5/126+34/39*I,n=29 8626726071745144 r005 Re(z^2+c),c=-19/106+43/52*I,n=11 8626726079627389 r009 Im(z^3+c),c=-5/126+34/39*I,n=39 8626726083757333 r009 Im(z^3+c),c=-5/126+34/39*I,n=41 8626726084058947 r009 Im(z^3+c),c=-5/126+34/39*I,n=57 8626726084058997 r009 Im(z^3+c),c=-5/126+34/39*I,n=55 8626726084059884 r009 Im(z^3+c),c=-5/126+34/39*I,n=59 8626726084060576 r009 Im(z^3+c),c=-5/126+34/39*I,n=61 8626726084060917 r009 Im(z^3+c),c=-5/126+34/39*I,n=63 8626726084064611 r009 Im(z^3+c),c=-5/126+34/39*I,n=53 8626726084087936 r009 Im(z^3+c),c=-5/126+34/39*I,n=51 8626726084153641 r009 Im(z^3+c),c=-5/126+34/39*I,n=49 8626726084295415 r009 Im(z^3+c),c=-5/126+34/39*I,n=47 8626726084512617 r009 Im(z^3+c),c=-5/126+34/39*I,n=45 8626726084608222 r009 Im(z^3+c),c=-5/126+34/39*I,n=43 8626726087082450 m002 -1-(11*Pi^3)/4 8626726105783507 m006 (5/6*exp(Pi)-4/5)/(4*exp(2*Pi)+2/3) 8626726110377775 a007 Real Root Of -858*x^4+588*x^3-806*x^2-921*x+658 8626726124191242 b008 86+1/Sqrt[14] 8626726141713391 m001 (Lehmer+TwinPrimes)/(ln(Pi)+HardyLittlewoodC4) 8626726148478178 m001 1/ln(Robbin)^2/DuboisRaymond^2*GAMMA(1/6) 8626726148832743 a007 Real Root Of 814*x^4+478*x^3+538*x^2-483*x-961 8626726148876167 a007 Real Root Of -54*x^4-388*x^3+643*x^2-141*x+907 8626726163380139 m001 (ln(2)-FeigenbaumMu)/(FellerTornier+Trott) 8626726165255020 a007 Real Root Of 891*x^4-855*x^3-871*x^2+989*x+459 8626726220893406 m001 (-Zeta(1/2)+GaussAGM)/(BesselJ(0,1)+Ei(1)) 8626726275641926 m005 (1/2*2^(1/2)-3/8)/(1/8*Zeta(3)-4) 8626726332616099 p003 LerchPhi(1/256,6,81/116) 8626726338786794 m001 cos(1)^FibonacciFactorial-MertensB3 8626726343830945 m001 (Ei(1)+Zeta(1,2))^Magata 8626726349963326 a007 Real Root Of 100*x^4-846*x^3-808*x^2-635*x-545 8626726353893544 a001 7881196/13*4807526976^(16/19) 8626726353899177 a001 17393796001/13*514229^(16/19) 8626726380081533 m001 GAMMA(7/12)/ln(GAMMA(5/12))^2*LambertW(1)^2 8626726408466138 h003 exp(Pi*(19-9^(2/3)*12^(1/4))) 8626726447372587 a007 Real Root Of -866*x^4+148*x^3-361*x^2+75*x+908 8626726471626125 m001 (MasserGramain-Rabbit)/(RenyiParking-Trott) 8626726500174364 a007 Real Root Of -231*x^4+889*x^3-551*x^2-133*x+994 8626726547677598 m005 (1/3*2^(1/2)+1/10)/(1/12*exp(1)-8/9) 8626726565864487 m008 (3/4*Pi^4-1/6)/(1/6*Pi^2-4/5) 8626726608654494 m001 (Robbin-Tetranacci)/(ln(Pi)+FellerTornier) 8626726614874072 a001 7/2584*55^(19/22) 8626726620123943 r005 Im(z^2+c),c=27/82+31/56*I,n=62 8626726648858375 r005 Re(z^2+c),c=-5/36+13/15*I,n=26 8626726681983095 r005 Re(z^2+c),c=21/94+14/31*I,n=47 8626726721516679 r005 Im(z^2+c),c=-2/3+17/83*I,n=45 8626726721578948 r005 Im(z^2+c),c=-53/78+6/47*I,n=21 8626726724363036 m001 (MasserGramain+OneNinth)/(2^(1/2)-cos(1)) 8626726733278311 a007 Real Root Of 142*x^4+283*x^3+944*x^2-222*x-791 8626726748068034 a007 Real Root Of 701*x^4-541*x^3-657*x^2-73*x+511 8626726760426168 r002 58th iterates of z^2 + 8626726773049859 s002 sum(A007758[n]/((2^n+1)/n),n=1..infinity) 8626726785103919 r009 Im(z^3+c),c=-5/126+34/39*I,n=27 8626726787074427 m001 ln(Pi)^Pi/Pi^(1/2) 8626726787074427 m001 ln(Pi)^Pi/sqrt(Pi) 8626726837454158 p004 log(33829/31033) 8626726838392353 m005 (1/2*Pi+7/8)/(9/11*Catalan-7/9) 8626726865410622 m001 (-Bloch+HeathBrownMoroz)/(Psi(2,1/3)+gamma) 8626726868239094 a007 Real Root Of -71*x^4-710*x^3-828*x^2+3*x-951 8626726953181742 a007 Real Root Of 111*x^4+921*x^3-410*x^2-875*x-512 8626726970887818 a007 Real Root Of 381*x^4-482*x^3-460*x^2+436*x+198 8626727054685337 a007 Real Root Of 194*x^4-35*x^3-500*x^2-938*x-567 8626727059390474 a007 Real Root Of -873*x^4+734*x^3+702*x^2-158*x+296 8626727063747485 a007 Real Root Of 274*x^4-466*x^3-624*x^2-186*x-147 8626727075828988 m001 (Ei(1,1)-GAMMA(11/12))/(Kolakoski+ZetaP(3)) 8626727092647800 m001 (ln(3)-Zeta(1,2))/(GAMMA(19/24)+KhinchinLevy) 8626727109314735 m005 (1/2*5^(1/2)+7/10)/(5/12*2^(1/2)-4/5) 8626727121555105 r005 Im(z^2+c),c=-81/82+17/60*I,n=37 8626727134729130 m001 1/Zeta(1/2)^2*CopelandErdos^2/ln(gamma)^2 8626727139933042 m001 (Paris+Riemann2ndZero)/(Si(Pi)+Gompertz) 8626727186932378 m005 (1/2*gamma+2/5)/(1/9*Catalan-9/10) 8626727202719332 a007 Real Root Of 717*x^4-738*x^3+467*x^2+339*x-926 8626727236920754 r002 35th iterates of z^2 + 8626727239203068 a007 Real Root Of 229*x^4+552*x^3+870*x^2+292*x-168 8626727269737253 m001 OneNinth^2*exp(ErdosBorwein)/sin(Pi/12)^2 8626727283057107 m001 exp(1)/exp(TwinPrimes)^2/sin(1) 8626727288402299 r005 Re(z^2+c),c=-51/82+19/42*I,n=6 8626727293660649 r009 Im(z^3+c),c=-5/62+37/43*I,n=43 8626727308112286 a007 Real Root Of 821*x^4-416*x^3-88*x^2+646*x-99 8626727313967820 r002 7th iterates of z^2 + 8626727322255561 m006 (5*Pi-1)/(3/Pi+3/4) 8626727334126826 h001 (-3*exp(-2)-2)/(-6*exp(3/2)-1) 8626727336451911 r009 Im(z^3+c),c=-3/20+31/41*I,n=10 8626727351193661 m001 (ln(Pi)*HardHexagonsEntropy-Sierpinski)/ln(Pi) 8626727382450448 a007 Real Root Of 98*x^4-33*x^3+906*x^2-78*x-817 8626727392938778 m001 (Niven+Stephens)/(Zeta(3)+3^(1/3)) 8626727403387372 m005 (1/3*3^(1/2)+1/8)/(2/5*Zeta(3)+1/3) 8626727408707810 a007 Real Root Of -277*x^4+663*x^3+609*x^2+261*x+351 8626727458797553 r005 Im(z^2+c),c=-19/14+9/205*I,n=33 8626727483119392 a007 Real Root Of 891*x^4+151*x^3+449*x^2+949*x+88 8626727490840252 a003 cos(Pi*4/105)*cos(Pi*15/91) 8626727508058575 b008 33/4+ArcCsc[E] 8626727511518424 m001 (Bloch-FellerTornier)/(KhinchinLevy+Landau) 8626727532396721 a001 86000486440/321*521^(12/13) 8626727558622552 m001 1/ln(CareFree)^2/ErdosBorwein/sin(Pi/5) 8626727560832447 l006 ln(544/1289) 8626727604104948 a007 Real Root Of 657*x^4-851*x^3+681*x^2+779*x-745 8626727607600180 a007 Real Root Of -676*x^4+996*x^3+419*x^2-932*x-102 8626727612719138 a007 Real Root Of -478*x^4+309*x^3-713*x^2-985*x+144 8626727616622876 r005 Im(z^2+c),c=19/44+7/32*I,n=5 8626727619563099 a001 29/2584*2584^(21/38) 8626727704367611 h001 (2/7*exp(2)+1/10)/(7/11*exp(1)+5/6) 8626727728719662 m001 Backhouse^ln(2+3^(1/2))-FeigenbaumAlpha 8626727728719662 m001 Backhouse^ln(2+sqrt(3))-FeigenbaumAlpha 8626727746495060 r009 Re(z^3+c),c=-1/21+26/35*I,n=13 8626727753095918 a001 4052739537881/15127*521^(12/13) 8626727754112279 m001 (gamma+Zeta(5))/(Pi^(1/2)+Paris) 8626727758226277 r005 Im(z^2+c),c=-11/78+45/53*I,n=6 8626727763476026 a007 Real Root Of -960*x^4-588*x^3-694*x^2-17*x+656 8626727777191846 r005 Re(z^2+c),c=-6/7+11/89*I,n=9 8626727777678443 m005 (1/4*5^(1/2)+3/4)/(1/2*3^(1/2)-5/7) 8626727785295498 a001 3536736619241/13201*521^(12/13) 8626727805195933 a001 3278735159921/12238*521^(12/13) 8626727812790009 a001 11/196418*75025^(17/26) 8626727864276983 a007 Real Root Of -960*x^4+885*x^3-273*x^2-961*x+474 8626727875026613 a001 2504730781961/843*521^(7/13) 8626727877411957 r009 Re(z^3+c),c=-3/44+48/55*I,n=29 8626727881613604 r004 Re(z^2+c),c=-37/34+9/14*I,z(0)=-1,n=3 8626727889495528 a001 2504730781961/9349*521^(12/13) 8626727891074228 a007 Real Root Of 60*x^4+503*x^3-241*x^2-909*x+718 8626727894112281 m007 (-3*gamma-9*ln(2)+3/2*Pi+1/5)/(-2*gamma+4/5) 8626727899841519 r005 Im(z^2+c),c=-5/8+39/242*I,n=56 8626727918289573 r002 25th iterates of z^2 + 8626728012569337 m001 RenyiParking*(gamma(1)+FibonacciFactorial) 8626728049698656 a007 Real Root Of -941*x^4-972*x^3-439*x^2+778*x+895 8626728060214323 r002 49th iterates of z^2 + 8626728060475115 p004 log(36791/15527) 8626728078476010 a007 Real Root Of -240*x^4+796*x^3-442*x^2-627*x+432 8626728105496252 a007 Real Root Of -339*x^4+811*x^3-478*x^2-130*x+952 8626728110599078 q001 936/1085 8626728110599078 r005 Im(z^2+c),c=-15/14+117/155*I,n=2 8626728131303566 a007 Real Root Of -948*x^4+761*x^3+491*x^2+351*x+951 8626728137221878 a001 28657/123*7^(37/55) 8626728154163304 m001 (Pi-LambertW(1))/(Zeta(3)+Grothendieck) 8626728165920997 m001 Trott^2/exp(Porter)/Pi 8626728170058233 a007 Real Root Of -447*x^4+45*x^3+311*x^2+670*x+623 8626728170858470 a007 Real Root Of 165*x^4+51*x^3-848*x^2-524*x+959 8626728217550322 a001 47/225851433717*233^(6/23) 8626728229558095 r002 6th iterates of z^2 + 8626728235790958 a008 Real Root of x^4-2*x^3+7*x^2+120*x-108 8626728237978895 m001 (2^(1/2)-GAMMA(5/6))/(Sarnak+Sierpinski) 8626728254969821 m001 PisotVijayaraghavan^BesselK(1,1)-arctan(1/3) 8626728291849703 r005 Im(z^2+c),c=-133/118+3/28*I,n=23 8626728383876847 m001 1/exp(sin(1))*Salem/sin(Pi/5) 8626728393405488 m001 (Bloch+KomornikLoreti)/(Riemann3rdZero+Salem) 8626728398366572 a007 Real Root Of 361*x^4+272*x^3+482*x^2+29*x-359 8626728402054410 a007 Real Root Of 359*x^4-806*x^3-829*x^2-352*x-403 8626728422922853 p004 log(21323/8999) 8626728437624847 a007 Real Root Of 849*x^4-289*x^3-445*x^2+673*x+256 8626728452183779 a007 Real Root Of -645*x^4+741*x^3-395*x^2-656*x+561 8626728464398262 a001 956722026041/2207*521^(11/13) 8626728467293598 a001 956722026041/3571*521^(12/13) 8626728506118006 m001 PrimesInBinary^Backhouse/arctan(1/3) 8626728518082548 a007 Real Root Of 781*x^4+634*x^3+842*x^2-285*x-898 8626728524560525 a003 sin(Pi*12/43)/sin(Pi*7/20) 8626728538024818 m001 (Chi(1)+cos(1))/(-Niven+OneNinth) 8626728630918289 m001 (Pi+exp(1/Pi))/(BesselI(0,2)+Otter) 8626728639914478 m005 (1/2*Zeta(3)-5/9)/(5/11*Catalan-4/11) 8626728660769025 m001 (GAMMA(2/3)-Ei(1,1))/(Bloch-KomornikLoreti) 8626728679955425 a007 Real Root Of 636*x^4-793*x^3-477*x^2+893*x+264 8626728704634351 m005 (1/2*2^(1/2)+3/5)/(3/7*2^(1/2)+10/11) 8626728709470697 m001 BesselI(0,2)-FibonacciFactorial^Niven 8626728709713030 a007 Real Root Of 106*x^4-543*x^3+960*x^2+446*x-737 8626728719296909 a001 3571/4181*377^(23/59) 8626728752319414 m001 (ln(5)-Ei(1))/(Backhouse-KomornikLoreti) 8626728773129710 g002 Psi(7/12)+Psi(5/9)-Psi(7/8)-Psi(4/7) 8626728806372694 a001 305/2*76^(41/44) 8626728872975319 a007 Real Root Of -892*x^4-324*x^3-138*x^2-672*x-191 8626728899412473 m001 (sin(1)+Landau)/(QuadraticClass+Sarnak) 8626728914566644 r005 Re(z^2+c),c=19/126+2/9*I,n=12 8626728947051840 a007 Real Root Of -448*x^4+811*x^3-484*x^2-255*x+909 8626728963274159 a007 Real Root Of -331*x^4-78*x^3-867*x^2-550*x+304 8626728977418209 r009 Im(z^3+c),c=-1/10+52/61*I,n=29 8626728987138824 m001 Salem^2/ln(FibonacciFactorial)*GAMMA(5/6)^2 8626728990984869 m005 (11/30+1/6*5^(1/2))/(9/11*Pi+6) 8626729012725268 a007 Real Root Of 890*x^4+83*x^3+686*x^2+829*x-235 8626729044275099 r001 60i'th iterates of 2*x^2-1 of 8626729045822017 r009 Im(z^3+c),c=-11/40+61/62*I,n=18 8626729048306801 a007 Real Root Of -243*x^4+880*x^3-861*x^2+456*x-183 8626729100393239 a007 Real Root Of -456*x^4+256*x^3-902*x^2-807*x+392 8626729106309006 m001 (Ei(1,1)-Zeta(1,2))/(HeathBrownMoroz+Totient) 8626729111765563 h001 (3/7*exp(2)+11/12)/(3/5*exp(2)+3/10) 8626729115021703 a007 Real Root Of 109*x^4-709*x^3-327*x^2-533*x-732 8626729115728141 r009 Im(z^3+c),c=-5/126+34/39*I,n=25 8626729121601268 a007 Real Root Of -584*x^4+834*x^3+304*x^2-141*x+511 8626729126123956 a001 34/4106118243*47^(14/23) 8626729130323080 r009 Im(z^3+c),c=-5/62+37/43*I,n=39 8626729133406688 m001 exp(cos(1))/Zeta(1/2)^2/cos(Pi/12)^2 8626729154894879 a001 1/3*55^(14/59) 8626729173684975 a007 Real Root Of 400*x^4-299*x^3-30*x^2-176*x-543 8626729203329915 m001 (ln(3)+ln(5))/(ReciprocalLucas+Salem) 8626729205701998 m001 (-GaussAGM+PolyaRandomWalk3D)/(2^(1/2)-sin(1)) 8626729208698401 m001 (3^(1/2)-GAMMA(7/12))/CopelandErdos 8626729219794278 r009 Im(z^3+c),c=-5/62+37/43*I,n=41 8626729245107545 m001 GAMMA(1/12)^2/ln(MertensB1)^2*GAMMA(19/24) 8626729349180585 m001 1/ln(Zeta(7))^2/FeigenbaumC^2*sqrt(2)^2 8626729354977672 m001 MertensB2/Shi(1)*QuadraticClass 8626729356452344 a002 6^(7/5)-7^(2/3) 8626729364078188 r005 Re(z^2+c),c=-35/74+23/34*I,n=4 8626729381394643 a001 9349/10946*377^(23/59) 8626729392711663 a001 591286729879/322*322^(2/3) 8626729397283482 a007 Real Root Of 138*x^4-35*x^3-197*x^2-887*x+78 8626729399001110 b008 3/4+Tan[Pi/28] 8626729412273103 a003 sin(Pi*11/40)/sin(Pi*34/99) 8626729426422247 s002 sum(A146081[n]/(pi^n-1),n=1..infinity) 8626729440088482 m001 (Paris-ZetaQ(3))/(BesselJ(1,1)+BesselK(1,1)) 8626729451632147 l006 ln(4103/9722) 8626729477993402 a001 24476/28657*377^(23/59) 8626729492086971 a001 64079/75025*377^(23/59) 8626729499225446 a001 10610209857723/521*199^(3/11) 8626729500797275 a001 13201/15456*377^(23/59) 8626729504294498 m001 KhinchinLevy/Zeta(1,2)/Porter 8626729511227155 m001 (ln(2+3^(1/2))+Magata)/(MasserGramain-Paris) 8626729520512210 a003 cos(Pi*6/109)*sin(Pi*18/53) 8626729537694718 a001 15127/17711*377^(23/59) 8626729538498398 m001 exp(Robbin)/Riemann3rdZero^2/Ei(1)^2 8626729554375182 r005 Re(z^2+c),c=-15/14+27/154*I,n=52 8626729555578429 m001 (ln(5)+arctan(1/2))^Otter 8626729556970008 r009 Re(z^3+c),c=-7/58+9/22*I,n=9 8626729597903370 r005 Re(z^2+c),c=-7/10+164/203*I,n=2 8626729603378346 s002 sum(A146364[n]/(n*pi^n+1),n=1..infinity) 8626729630151022 m005 (1/2*5^(1/2)+4/5)/(31/24+5/12*5^(1/2)) 8626729630769698 s001 sum(exp(-Pi/4)^n*A200161[n],n=1..infinity) 8626729636280150 a007 Real Root Of 218*x^4-614*x^3-148*x^2-383*x+714 8626729636562446 a001 321/8*377^(4/31) 8626729652347335 a007 Real Root Of -924*x^4+142*x^3+853*x^2+394*x+308 8626729708232277 m005 (1/3*Catalan+1/12)/(6/7*gamma-5) 8626729713418666 a007 Real Root Of 831*x^4+453*x^3+413*x^2+475*x-67 8626729714028705 a007 Real Root Of 438*x^4-149*x^3-183*x^2-714*x-818 8626729740644488 l006 ln(3559/8433) 8626729760500402 m001 (Sierpinski+Totient)/(exp(1)+FeigenbaumC) 8626729790593553 a001 1926/2255*377^(23/59) 8626729799338119 m001 (2^(1/3)-GAMMA(3/4))/(Lehmer+Magata) 8626729812669204 a007 Real Root Of -37*x^4+402*x^3-486*x^2+366*x+956 8626729813058274 a007 Real Root Of 117*x^4-898*x^3+281*x^2+674*x-269 8626729818011905 a007 Real Root Of 310*x^4-218*x^3-679*x^2-179*x+628 8626729828629205 a007 Real Root Of 527*x^4+93*x^3+585*x^2+302*x-407 8626729833992271 m001 BesselJ(1,1)^Zeta(3)*exp(Pi) 8626729849598466 a005 (1/sin(91/209*Pi))^215 8626729874690128 a001 317811/521*2^(1/2) 8626729881525855 a007 Real Root Of 11*x^4+942*x^3-605*x^2-533*x+757 8626729883085628 a007 Real Root Of 987*x^4-713*x^3-906*x^2-52*x-375 8626729886505935 r002 57i'th iterates of 2*x/(1-x^2) of 8626729886676381 m001 (Salem-Trott)/(Bloch-MasserGramainDelta) 8626729900171804 r005 Re(z^2+c),c=1/46+10/19*I,n=11 8626729906421668 a007 Real Root Of 72*x^4-526*x^3+288*x^2-276*x-830 8626729917711404 m001 (MertensB1+PlouffeB)/(sin(1/5*Pi)-3^(1/3)) 8626729950010668 m001 FransenRobinson^2*Conway*exp(GAMMA(5/12)) 8626729952456962 a007 Real Root Of -583*x^4-110*x^3-545*x^2-853*x-78 8626729962921312 a007 Real Root Of 414*x^4-297*x^3+884*x^2+824*x-367 8626729976794682 r009 Re(z^3+c),c=-5/82+22/27*I,n=5 8626729976837183 r005 Re(z^2+c),c=-7/78+49/57*I,n=33 8626729977093184 a001 2504730781961/5778*521^(11/13) 8626729987870573 a001 11/34*610^(27/31) 8626729995082584 m005 (1/2*5^(1/2)+3/7)/(31/36+5/12*5^(1/2)) 8626730035216908 m001 (Artin+CareFree)/(GolombDickman+Kac) 8626730038534787 r002 43th iterates of z^2 + 8626730043253013 m002 -5-Cosh[Pi]+Pi^2*Cosh[Pi]-Sinh[Pi] 8626730083693693 r002 4th iterates of z^2 + 8626730101917114 r005 Im(z^2+c),c=-9/17+16/43*I,n=9 8626730133950491 l006 ln(3015/7144) 8626730139916820 m001 (Conway+Otter)/(TreeGrowth2nd+ZetaQ(2)) 8626730176139429 a007 Real Root Of -773*x^4-467*x^3+109*x^2+806*x-70 8626730182572671 a007 Real Root Of 410*x^4+278*x^3+881*x^2+457*x-310 8626730197792443 a001 6557470319842/15127*521^(11/13) 8626730238075614 m001 1/OneNinth^2*FeigenbaumB*ln(sqrt(2))^2 8626730249892473 a001 10610209857723/24476*521^(11/13) 8626730284078069 m001 BesselI(1,1)^(Bloch/MasserGramainDelta) 8626730298610652 p004 log(20143/8501) 8626730304723221 m008 (3/5*Pi^2+3/4)/(1/4*Pi^5+5/6) 8626730311234481 r009 Re(z^3+c),c=-37/58+38/53*I,n=2 8626730315486261 r009 Im(z^3+c),c=-63/94+12/25*I,n=29 8626730319723173 a001 4052739537881/843*521^(6/13) 8626730322180507 l006 ln(5938/6473) 8626730334192092 a001 4052739537881/9349*521^(11/13) 8626730338453694 m001 FeigenbaumD^OneNinth-GAMMA(23/24) 8626730360392749 a003 cos(Pi*1/99)-cos(Pi*47/103) 8626730367966035 g002 -Psi(5/12)-2*Psi(4/9)-Psi(4/7) 8626730394284591 r005 Re(z^2+c),c=-53/58+45/58*I,n=3 8626730402750334 m001 (Tribonacci+ZetaP(4))/(Champernowne+Paris) 8626730445063030 m009 (24*Catalan+3*Pi^2+1/3)/(1/5*Psi(1,1/3)+4) 8626730448568235 m001 (BesselK(0,1)+PlouffeB)^GAMMA(2/3) 8626730473964226 r005 Re(z^2+c),c=-21/34+55/108*I,n=4 8626730477049628 a007 Real Root Of -396*x^4-766*x^3-945*x^2+472*x+838 8626730486187966 a007 Real Root Of 929*x^4-471*x^3-797*x^2-93*x-304 8626730497342092 a007 Real Root Of -158*x^4-146*x^3+478*x^2+273*x-410 8626730505781521 r005 Re(z^2+c),c=-21/22+32/115*I,n=9 8626730514078553 r005 Im(z^2+c),c=-163/118+19/44*I,n=3 8626730518799244 r009 Re(z^3+c),c=-3/44+48/55*I,n=33 8626730549582403 m005 (1/2*5^(1/2)+6/7)/(8/9*3^(1/2)+3/4) 8626730551736266 m001 (FeigenbaumDelta+GAMMA(23/24))/TwinPrimes 8626730551736266 m001 (GAMMA(23/24)+FeigenbaumDelta)/TwinPrimes 8626730601427357 r005 Im(z^2+c),c=-77/122+7/41*I,n=40 8626730619087008 m005 (11/12+1/6*5^(1/2))/(1/5*Pi-7/9) 8626730628832874 a007 Real Root Of -755*x^4+575*x^3+875*x^2-188*x-440 8626730630972786 r005 Im(z^2+c),c=-41/58+8/45*I,n=31 8626730638895686 m001 (Otter-Tribonacci)/(Zeta(1,-1)-GAMMA(5/6)) 8626730651896709 a007 Real Root Of 35*x^4+255*x^3-521*x^2-897*x+902 8626730669300683 a007 Real Root Of 842*x^4-333*x^3+54*x^2+340*x-427 8626730692301800 a001 377/167761*11^(23/41) 8626730695538188 r005 Im(z^2+c),c=-7/6+23/178*I,n=13 8626730700432076 l006 ln(2471/5855) 8626730714891212 q001 3053/3539 8626730757763692 a007 Real Root Of 541*x^4-103*x^3+579*x^2+789*x-116 8626730759171650 a001 18/13*1346269^(7/54) 8626730801639552 m001 Artin*(FeigenbaumC+PlouffeB) 8626730810682094 r005 Im(z^2+c),c=-69/82+31/57*I,n=3 8626730823360492 r005 Re(z^2+c),c=-37/42+7/31*I,n=25 8626730842444705 a007 Real Root Of 651*x^4-665*x^3-961*x^2-126*x-181 8626730875981953 r002 30th iterates of z^2 + 8626730883630934 a007 Real Root Of 251*x^4-116*x^3+824*x^2-78*x-894 8626730909094989 a001 1548008755920/2207*521^(10/13) 8626730911990326 a001 1548008755920/3571*521^(11/13) 8626730927691994 r005 Im(z^2+c),c=-9/16+12/77*I,n=31 8626730948442704 r002 17th iterates of z^2 + 8626730950262342 a007 Real Root Of 214*x^4-470*x^3+634*x^2+378*x-566 8626730957559527 m001 (Artin+MertensB3)/(ln(2)+GAMMA(17/24)) 8626730994891246 a007 Real Root Of 317*x^4-516*x^3-130*x^2-241*x-618 8626731041616033 r005 Re(z^2+c),c=15/58+20/57*I,n=62 8626731051426819 m008 (1/2*Pi^3-1/5)/(2*Pi^2-2) 8626731052569715 a007 Real Root Of 848*x^4+688*x^3+451*x^2+469*x+41 8626731052907084 r005 Re(z^2+c),c=-47/54+3/14*I,n=63 8626731077174769 a007 Real Root Of 117*x^4+48*x^3+260*x^2-353*x-532 8626731078510793 a007 Real Root Of 351*x^4-425*x^3-67*x^2-498*x-847 8626731110390485 m001 (FeigenbaumMu+Lehmer)/(1-polylog(4,1/2)) 8626731137713866 m001 (2^(1/2)+cos(1))/(GAMMA(13/24)+Kac) 8626731151523616 m002 Pi+E^(2*Pi)/(6*ProductLog[Pi]) 8626731159417834 a001 47/1134903170*377^(9/10) 8626731176596628 a007 Real Root Of 265*x^4-41*x^3+158*x^2-653*x-854 8626731180095366 a007 Real Root Of -777*x^4+307*x^3-163*x^2-133*x+634 8626731187160561 r005 Re(z^2+c),c=-5/6+7/45*I,n=61 8626731271720555 a007 Real Root Of -614*x^4-11*x^3-11*x^2-188*x+179 8626731355531348 a007 Real Root Of 834*x^4-166*x^3+169*x^2-162*x-834 8626731356856287 a001 1/141*365435296162^(11/14) 8626731438594867 g005 GAMMA(5/11)/GAMMA(5/9)/GAMMA(6/7)/GAMMA(5/7) 8626731456284648 r002 4th iterates of z^2 + 8626731484729716 a007 Real Root Of -835*x^4+134*x^3-958*x^2-776*x+592 8626731517763447 a007 Real Root Of 454*x^4-908*x^3+940*x^2+867*x-786 8626731523988009 a001 2207/2584*377^(23/59) 8626731570587734 r005 Im(z^2+c),c=-7/6+37/211*I,n=64 8626731572234418 a007 Real Root Of -567*x^4+72*x^3+251*x^2+899*x+949 8626731585712411 m001 (OrthogonalArrays-Salem)/(MertensB3+Mills) 8626731586753744 l006 ln(1927/4566) 8626731591587588 r009 Re(z^3+c),c=-17/122+27/50*I,n=28 8626731597823669 m001 CareFree^(FellerTornier/BesselJ(0,1)) 8626731606971915 m001 Chi(1)/(exp(Pi)^Sarnak) 8626731618492617 r002 39th iterates of z^2 + 8626731630678595 r005 Im(z^2+c),c=-33/98+6/43*I,n=6 8626731637902962 r009 Re(z^3+c),c=-15/38+19/25*I,n=4 8626731660371882 r005 Re(z^2+c),c=2/19+32/61*I,n=61 8626731686830686 a007 Real Root Of 780*x^4-462*x^3-179*x^2+303*x-334 8626731691438528 m005 (1/2*3^(1/2)-9/10)/(3/10*Zeta(3)-2/5) 8626731706278359 r002 7th iterates of z^2 + 8626731709831242 r005 Im(z^2+c),c=-15/26+18/121*I,n=22 8626731711403151 a007 Real Root Of -140*x^4+967*x^3-177*x^2+390*x-748 8626731717564213 b008 ArcCsc[Pi^(-1+Pi)] 8626731797065334 m002 Pi^4*Csch[Pi]+ProductLog[Pi]^2/6 8626731812667045 m001 (1-ln(2)/ln(10))^ThueMorse 8626731825535876 a007 Real Root Of -303*x^4+645*x^3+330*x^2-187*x+175 8626731858404799 p001 sum((-1)^n/(476*n+115)/(24^n),n=0..infinity) 8626731866340668 q001 2117/2454 8626731884959385 r005 Im(z^2+c),c=-11/18+15/49*I,n=20 8626731901474110 a007 Real Root Of 782*x^4+595*x^3-28*x^2-519*x-478 8626731915258713 r001 11i'th iterates of 2*x^2-1 of 8626731922681553 r008 a(0)=0,K{-n^6,-26-84*n^3-39*n^2+33*n} 8626731933777446 a001 8/521*76^(40/43) 8626731937380593 a007 Real Root Of 576*x^4-539*x^3+446*x^2+976*x-155 8626731939904882 a007 Real Root Of 57*x^4+426*x^3-480*x^2+672*x-676 8626731945037393 a007 Real Root Of -697*x^4-165*x^3-998*x^2-147*x+896 8626731972164891 r008 a(0)=0,K{-n^6,-30-74*n^3-71*n^2+59*n} 8626731974088788 r002 60th iterates of z^2 + 8626731986713979 r008 a(0)=0,K{-n^6,-20-73*n^3-69*n^2+46*n} 8626731992230195 a007 Real Root Of 766*x^4+619*x^3+977*x^2+168*x-609 8626731996705776 m005 (19/28+1/4*5^(1/2))/(4/9*gamma-2/5) 8626732000809946 m001 BesselK(0,1)*MadelungNaCl^GAMMA(17/24) 8626732000809946 m001 MadelungNaCl^GAMMA(17/24)*BesselK(0,1) 8626732000860988 a007 Real Root Of 436*x^4-506*x^3-856*x^2-490*x-352 8626732004951319 p004 log(12409/5237) 8626732044591084 m001 (MertensB2-Otter)/(BesselJ(1,1)-LaplaceLimit) 8626732067246744 m001 (Zeta(1,2)+Grothendieck)/(Kac-Sarnak) 8626732086051652 q001 8/92735 8626732089375574 a007 Real Root Of 262*x^4-472*x^3+979*x^2+490*x-754 8626732096545236 m001 1/FeigenbaumC*Paris^2*ln(Salem) 8626732119594244 a001 2207/5*4181^(31/49) 8626732140225272 r005 Im(z^2+c),c=-5/4+5/112*I,n=21 8626732156843511 a007 Real Root Of 928*x^4-446*x^3+479*x^2+424*x-791 8626732170561491 a007 Real Root Of 430*x^4-295*x^3-684*x^2-570*x+952 8626732185500628 l006 ln(8291/9038) 8626732188641775 m001 (Niven-Tetranacci)/(Zeta(1,2)-GAMMA(13/24)) 8626732202024322 h001 (-exp(2)-3)/(-3*exp(6)+6) 8626732239611647 r005 Re(z^2+c),c=-8/13+9/19*I,n=11 8626732241166953 m005 (1/3*exp(1)-1/6)/(1/9*2^(1/2)+7/10) 8626732245170268 a007 Real Root Of 47*x^4+374*x^3-151*x^2+984*x-469 8626732245291788 a007 Real Root Of 889*x^4-569*x^3-547*x^2-514*x-894 8626732248415578 l006 ln(3310/7843) 8626732251695879 r009 Im(z^3+c),c=-11/90+53/63*I,n=41 8626732259986954 m001 (2^(1/2)-BesselI(1,1))/(-Backhouse+Bloch) 8626732266347250 r005 Re(z^2+c),c=43/118+7/55*I,n=46 8626732303302387 r005 Im(z^2+c),c=-19/18+19/199*I,n=7 8626732308310046 m001 (Grothendieck-Sarnak)/(Backhouse-FeigenbaumD) 8626732339218743 a007 Real Root Of 453*x^4-788*x^3+117*x^2+x-843 8626732375410985 r002 20th iterates of z^2 + 8626732382291256 r002 58th iterates of z^2 + 8626732421790340 a001 4052739537881/5778*521^(10/13) 8626732427582567 a001 182717648081/682*521^(12/13) 8626732429014009 m005 (1/2*Pi+11/12)/(8/9*Pi+1/11) 8626732437947417 a007 Real Root Of -771*x^4-523*x^3-776*x^2-264*x+441 8626732461431472 a007 Real Root Of 720*x^4+75*x^3-136*x^2-702*x-855 8626732484881276 a007 Real Root Of -364*x^4+531*x^3+497*x^2+278*x-749 8626732519491051 a008 Real Root of x^4-x^3+142*x^2-429*x-20449 8626732570460778 a007 Real Root Of -874*x^4-354*x^3-928*x^2-849*x+215 8626732624360450 a007 Real Root Of -741*x^4-21*x^3+346*x^2+105*x+230 8626732642489661 a001 1515744265389/2161*521^(10/13) 8626732658749144 r005 Re(z^2+c),c=-43/106+55/58*I,n=3 8626732733514765 m001 ln(GolombDickman)^2/Si(Pi)*FeigenbaumD^2 8626732764420426 a001 6557470319842/843*521^(5/13) 8626732768097242 a007 Real Root Of -205*x^4+444*x^3+978*x^2+690*x+266 8626732778889349 a001 6557470319842/9349*521^(10/13) 8626732840129813 m005 (1/2*Zeta(3)+7/12)/(11/30+9/20*5^(1/2)) 8626732848634163 a001 377/843*14662949395604^(6/7) 8626732854850442 a003 cos(Pi*15/113)*sin(Pi*42/107) 8626732926549439 a007 Real Root Of 355*x^4-858*x^3-493*x^2-314*x+992 8626732932252157 q001 3298/3823 8626732953690014 r002 7th iterates of z^2 + 8626733005842960 a007 Real Root Of 751*x^4-889*x^3-112*x^2+85*x-830 8626733040541728 a003 cos(Pi*13/93)-cos(Pi*18/37) 8626733045434176 m001 (TravellingSalesman-ThueMorse)/(ln(5)+Ei(1)) 8626733055559559 a007 Real Root Of -584*x^4+602*x^3+538*x^2+207*x-642 8626733093175223 r002 15th iterates of z^2 + 8626733170340563 l006 ln(1383/3277) 8626733186560469 m001 (Pi^(1/2)+GlaisherKinkelin)/(1-GAMMA(2/3)) 8626733210689924 m001 ln(Ei(1))^2/FeigenbaumAlpha^2*GAMMA(1/12)^2 8626733214743931 m001 1/ln(GAMMA(23/24))*TwinPrimes/sqrt(3)^2 8626733255137063 a007 Real Root Of -814*x^4+513*x^3-558*x^2-390*x+859 8626733255722513 m005 (1/2*3^(1/2)+4/11)/(10/11*3^(1/2)-3) 8626733284463328 r009 Re(z^3+c),c=-1/78+28/39*I,n=6 8626733299064363 m001 gamma(3)^(BesselJ(0,1)*polylog(4,1/2)) 8626733302046739 m001 CareFree^exp(-1/2*Pi)*ArtinRank2^exp(-1/2*Pi) 8626733333132485 m005 (1/2*5^(1/2)-3/10)/(1/8*Pi+5/9) 8626733353792409 a001 2504730781961/2207*521^(9/13) 8626733356687746 a001 2504730781961/3571*521^(10/13) 8626733363129330 r005 Im(z^2+c),c=-2/3+33/205*I,n=51 8626733386020600 a007 Real Root Of -746*x^4+970*x^3-433*x^2-880*x+599 8626733409381828 r005 Im(z^2+c),c=-3/4+13/129*I,n=31 8626733412918633 a007 Real Root Of 595*x^4+x^3+117*x^2-342*x-711 8626733415550321 m001 Zeta(1/2)*BesselK(1,1)^Zeta(5) 8626733425646581 a007 Real Root Of 263*x^4+325*x^3+62*x^2-438*x-361 8626733436162465 r005 Re(z^2+c),c=-41/48+3/25*I,n=57 8626733451065858 r005 Re(z^2+c),c=17/90+14/51*I,n=24 8626733452273900 r002 53th iterates of z^2 + 8626733457763833 a007 Real Root Of 513*x^4-196*x^3-225*x^2-244*x-453 8626733512038586 g001 GAMMA(4/7,14/61) 8626733540292326 m002 -Pi^4+Cosh[Pi]/ProductLog[Pi]+4*Sech[Pi] 8626733565491070 a007 Real Root Of -777*x^4+557*x^3-970*x^2-715*x+893 8626733577075679 r005 Re(z^2+c),c=-79/94+6/41*I,n=51 8626733581880877 p001 sum(1/(149*n+116)/(625^n),n=0..infinity) 8626733608513040 a005 (1/cos(11/208*Pi))^1650 8626733640091706 m001 (Zeta(3)+ln(2))/(Grothendieck+PrimesInBinary) 8626733664348512 a007 Real Root Of -267*x^4+773*x^3-282*x^2-648*x+295 8626733676973945 a003 cos(Pi*2/43)/cos(Pi*19/41) 8626733706977654 m001 Ei(1,1)^Paris+ZetaQ(4) 8626733729614388 r005 Re(z^2+c),c=-8/9+2/3*I,n=3 8626733739873761 m001 Zeta(1/2)*ln(TwinPrimes)^2/cos(1)^2 8626733752172587 a007 Real Root Of 431*x^4-29*x^3+812*x^2+396*x-520 8626733754563686 m001 (3^(1/2)-MertensB2)^HardyLittlewoodC5 8626733759011153 m001 (GAMMA(23/24)+Gompertz)/(Chi(1)-exp(1)) 8626733760607615 a007 Real Root Of 553*x^4-908*x^3-182*x^2+191*x-589 8626733776523972 m006 (3/5*exp(2*Pi)-1/2)/(1/5*exp(Pi)-5) 8626733803244833 r005 Re(z^2+c),c=-51/58+1/33*I,n=7 8626733828664245 a003 cos(Pi*1/69)*cos(Pi*18/107) 8626733829909265 m001 (MertensB3+ZetaP(4))/(sin(1/12*Pi)+exp(1/Pi)) 8626733846322119 r005 Im(z^2+c),c=1/110+18/23*I,n=5 8626733866110478 m006 (4/5*Pi^2-3/4)/(2*Pi+2) 8626733866110478 m008 (4/5*Pi^2-3/4)/(2*Pi+2) 8626733867317056 b008 15/2+Zeta[7/2] 8626733930755911 r002 22th iterates of z^2 + 8626733933061128 m005 (1/36+1/4*5^(1/2))/(1/2*Catalan+2/9) 8626733956106546 a007 Real Root Of 712*x^4-809*x^3+434*x^2+308*x-971 8626733974375508 a008 Real Root of (2+4*x-2*x^2+x^3-4*x^4-5*x^5) 8626733977713282 a007 Real Root Of 387*x^4+56*x^3+685*x^2+159*x-551 8626733999411966 m001 (ln(5)+BesselK(1,1))/(GAMMA(7/12)+MertensB2) 8626734001945374 m002 5*Csch[Pi]+5*Sech[Pi]*Tanh[Pi] 8626734002125914 a007 Real Root Of 81*x^4+162*x^3+903*x^2-152*x-744 8626734008968991 m005 (1/2*exp(1)+5/11)/(2/7*Pi-3) 8626734016823623 l006 ln(3605/8542) 8626734040500806 a007 Real Root Of 646*x^4-672*x^3-912*x^2-608*x-635 8626734053130478 r005 Im(z^2+c),c=3/118+49/60*I,n=6 8626734057055767 h001 (6/7*exp(1)+4/11)/(5/6*exp(1)+6/7) 8626734059564574 a007 Real Root Of 303*x^4+386*x^3+807*x^2+207*x-342 8626734083861164 a007 Real Root Of 185*x^4+104*x^3+900*x^2+732*x-74 8626734084234697 m001 (-Zeta(3)+Stephens)/(BesselI(0,1)-cos(1)) 8626734128135461 s002 sum(A145782[n]/(n*10^n+1),n=1..infinity) 8626734133406450 m001 Niven^2*exp(Bloch)/cos(1) 8626734146074589 r002 3th iterates of z^2 + 8626734157557658 m001 (-TwinPrimes+ZetaP(3))/(Psi(2,1/3)-ln(Pi)) 8626734172586998 a007 Real Root Of 779*x^4+58*x^3-824*x^2-830*x-497 8626734199790854 m001 1/LaplaceLimit^2/FeigenbaumDelta/exp(sqrt(3)) 8626734212074147 r002 51i'th iterates of 2*x/(1-x^2) of 8626734217730781 p004 log(13807/5827) 8626734223831078 a007 Real Root Of 114*x^4+878*x^3-835*x^2+536*x-933 8626734242115317 s002 sum(A014039[n]/(n*10^n+1),n=1..infinity) 8626734242115317 s002 sum(A016427[n]/(n*10^n+1),n=1..infinity) 8626734242115382 s002 sum(A016398[n]/(n*10^n+1),n=1..infinity) 8626734242122952 s002 sum(A016385[n]/(n*10^n+1),n=1..infinity) 8626734254063731 s002 sum(A237619[n]/(n*10^n+1),n=1..infinity) 8626734269735238 r005 Im(z^2+c),c=-11/102+59/64*I,n=27 8626734278431991 a007 Real Root Of -791*x^4+811*x^3-90*x^2+403*x+36 8626734295841249 m001 cos(1/12*Pi)/(ln(3)^Zeta(3)) 8626734295841249 m001 cos(Pi/12)/(ln(3)^Zeta(3)) 8626734306027857 m001 BesselK(1,1)*exp(FeigenbaumC)^2/exp(1) 8626734320487417 m002 -2/3+Pi^4+ProductLog[Pi]-Sinh[Pi] 8626734331590372 h001 (8/11*exp(2)+5/9)/(11/12*exp(2)+1/10) 8626734340295277 r005 Re(z^2+c),c=-43/74+44/61*I,n=5 8626734357004910 s002 sum(A016357[n]/(n*10^n+1),n=1..infinity) 8626734357012546 s002 sum(A016319[n]/(n*10^n+1),n=1..infinity) 8626734357012611 s002 sum(A117208[n]/(n*10^n+1),n=1..infinity) 8626734358762870 p004 log(24337/10271) 8626734370890279 m001 CopelandErdos+CareFree^MertensB3 8626734375915613 m001 (sin(1/12*Pi)-ZetaQ(2))/(Pi-BesselJ(0,1)) 8626734392476757 a007 Real Root Of -114*x^4-871*x^3+979*x^2-31*x-933 8626734421709055 a007 Real Root Of 819*x^4-207*x^3-760*x^2-458*x-416 8626734440042912 m001 GAMMA(11/12)/DuboisRaymond/ln(GAMMA(17/24))^2 8626734481733765 a007 Real Root Of 65*x^4+548*x^3-16*x^2+710*x-862 8626734492616984 a007 Real Root Of -673*x^4-573*x^3-112*x^2-530*x-369 8626734492984493 r002 8th iterates of z^2 + 8626734504054020 r009 Im(z^3+c),c=-7/64+39/46*I,n=41 8626734524935179 m001 exp(Conway)*Artin*FeigenbaumAlpha^2 8626734527582931 m001 Chi(1)^BesselI(0,2)+DuboisRaymond 8626734543685005 l006 ln(2222/5265) 8626734589963654 m005 (1/3*Pi+1/6)/(4/9*Catalan+1) 8626734597217308 a007 Real Root Of 85*x^4-394*x^3+887*x^2-x-961 8626734652930535 m001 ErdosBorwein^Zeta(1,-1)-KomornikLoreti 8626734667838581 a007 Real Root Of 707*x^4-922*x^3-339*x^2+348*x-431 8626734677615578 a007 Real Root Of -244*x^4+872*x^3+861*x^2+686*x+646 8626734687832387 a007 Real Root Of -242*x^4-15*x^3+617*x^2+346*x-614 8626734692209534 m001 (Rabbit+Trott2nd)/(Ei(1,1)+HardyLittlewoodC3) 8626734692653191 m005 (1/3*exp(1)-1/5)/(8/9*Zeta(3)-1/4) 8626734705075445 r005 Im(z^2+c),c=-7/9+14/25*I,n=3 8626734707697395 r005 Im(z^2+c),c=15/46+33/59*I,n=46 8626734719385955 a007 Real Root Of -127*x^4+711*x^3+431*x^2-371*x-114 8626734738601192 m001 FeigenbaumKappa^2/Rabbit*exp(BesselK(1,1))^2 8626734742239971 a007 Real Root Of 995*x^4+587*x^3+368*x^2-605*x-970 8626734768987059 m001 Tribonacci/ln(LaplaceLimit)^2/(2^(1/3)) 8626734770740895 r005 Re(z^2+c),c=-11/9+13/37*I,n=4 8626734789793464 r009 Im(z^3+c),c=-5/126+34/39*I,n=23 8626734792530382 b008 (-4+Pi)*Coth[3] 8626734793540448 r005 Re(z^2+c),c=11/52+27/61*I,n=63 8626734842951059 q001 1181/1369 8626734866488188 a001 3278735159921/2889*521^(9/13) 8626734872280417 a001 591286729879/1364*521^(11/13) 8626734883761241 a007 Real Root Of -295*x^4+70*x^3+86*x^2+665*x+718 8626734923326180 m005 (1/3*Zeta(3)+1/11)/(3/11*gamma-8/11) 8626734939490947 a001 521/1346269*233^(5/34) 8626734944774751 a007 Real Root Of 376*x^4-220*x^3+949*x^2+934*x-250 8626734950493626 a007 Real Root Of -477*x^4-518*x^3-916*x^2-522*x+163 8626734987223840 r002 36th iterates of z^2 + 8626734996485182 r009 Re(z^3+c),c=-5/34+29/49*I,n=31 8626734997333992 r005 Re(z^2+c),c=-41/48+3/25*I,n=63 8626735012934174 m001 Bloch^CareFree/(LandauRamanujan2nd^CareFree) 8626735034833111 r009 Im(z^3+c),c=-37/64+25/53*I,n=29 8626735041201001 a007 Real Root Of -771*x^4-157*x^3-790*x^2-516*x+469 8626735057593190 s001 sum(exp(-Pi/3)^n*A251633[n],n=1..infinity) 8626735059139352 r009 Re(z^3+c),c=-5/106+25/26*I,n=6 8626735065467441 r005 Im(z^2+c),c=-7/122+37/45*I,n=10 8626735086499094 r005 Re(z^2+c),c=-7/13+61/63*I,n=3 8626735104273203 a007 Real Root Of -153*x^4+232*x^3+796*x^2+99*x-742 8626735105590811 a007 Real Root Of 330*x^4-892*x^3+811*x^2+437*x-982 8626735113190493 a007 Real Root Of 836*x^4+526*x^3-97*x^2-700*x-657 8626735139244944 m001 exp(GAMMA(19/24))^2*LandauRamanujan^2/sin(1)^2 8626735144611209 m005 (1/2*gamma-1/7)/(5/9*3^(1/2)+8/11) 8626735164179998 l006 ln(3061/7253) 8626735164179998 p004 log(7253/3061) 8626735189633565 a003 sin(Pi*4/119)-sin(Pi*13/31) 8626735192932641 r005 Re(z^2+c),c=7/86+24/49*I,n=23 8626735197023688 a007 Real Root Of 547*x^4-535*x^3-116*x^2+560*x-77 8626735203074755 a007 Real Root Of 927*x^4-358*x^3+986*x^2+859*x-736 8626735209118371 a001 3536736619241/281*521^(4/13) 8626735223587299 a001 10610209857723/9349*521^(9/13) 8626735276752953 a007 Real Root Of 874*x^4+166*x^3+886*x^2+438*x-659 8626735305652662 a007 Real Root Of -643*x^4+410*x^3+325*x^2+353*x+682 8626735341861650 a007 Real Root Of -935*x^4-841*x^3-928*x^2-433*x+295 8626735364781633 a007 Real Root Of 70*x^4+480*x^3-958*x^2+875*x-683 8626735391439408 r009 Im(z^3+c),c=-9/94+29/34*I,n=13 8626735395467605 m001 cosh(1)*GaussAGM(1,1/sqrt(2))/exp(exp(1)) 8626735401891727 h001 (7/10*exp(1)+9/11)/(5/6*exp(1)+8/9) 8626735402042869 r002 52th iterates of z^2 + 8626735402891048 m001 GolombDickman^(gamma*Landau) 8626735420685957 s002 sum(A206958[n]/(n*10^n+1),n=1..infinity) 8626735421686661 s002 sum(A117906[n]/(n*10^n+1),n=1..infinity) 8626735421686733 s002 sum(A115359[n]/(n*10^n+1),n=1..infinity) 8626735426839075 r005 Re(z^2+c),c=-7/12+42/85*I,n=24 8626735434725057 m001 Trott/Riemann1stZero^2/ln(GAMMA(17/24))^2 8626735450365077 a007 Real Root Of 579*x^4-165*x^3-876*x^2-755*x-426 8626735488565088 r005 Re(z^2+c),c=-19/22+13/56*I,n=3 8626735491360589 m001 (Shi(1)+BesselK(1,1))/(-Robbin+Sierpinski) 8626735492488283 m001 Zeta(1,2)^Ei(1)/GAMMA(23/24) 8626735499777739 m005 (-1/6+1/4*5^(1/2))/(7/12*3^(1/2)-5/9) 8626735509525596 a007 Real Root Of -580*x^4+218*x^3-84*x^2-643*x-31 8626735517703026 l006 ln(3900/9241) 8626735537267589 a007 Real Root Of -389*x^4+953*x^3+921*x^2+283*x+386 8626735539735462 r005 Im(z^2+c),c=-23/48+23/32*I,n=4 8626735546687502 s002 sum(A128189[n]/(n*10^n+1),n=1..infinity) 8626735546769308 s002 sum(A115513[n]/(n*10^n+1),n=1..infinity) 8626735557798756 s002 sum(A159854[n]/(n*10^n+1),n=1..infinity) 8626735576822673 a007 Real Root Of 99*x^4+841*x^3-40*x^2+618*x-68 8626735604692226 a007 Real Root Of 411*x^4-758*x^3-851*x^2+34*x+863 8626735610059685 r002 11th iterates of z^2 + 8626735624513672 r002 20th iterates of z^2 + 8626735656926758 r005 Im(z^2+c),c=-2/3+91/197*I,n=27 8626735660667299 s002 sum(A108149[n]/(n*10^n+1),n=1..infinity) 8626735671779180 s002 sum(A259965[n]/(n*10^n+1),n=1..infinity) 8626735671786888 s002 sum(A029826[n]/(n*10^n+1),n=1..infinity) 8626735675148415 m001 (LaplaceLimit-Totient)/(gamma(2)+Kolakoski) 8626735680118059 a007 Real Root Of 878*x^4+436*x^3-29*x^2+657*x+382 8626735682998953 s002 sum(A078027[n]/(n*10^n+1),n=1..infinity) 8626735720195726 r002 22i'th iterates of 2*x/(1-x^2) of 8626735730378277 a007 Real Root Of -254*x^4+444*x^3-200*x^2+885*x-759 8626735730434397 m001 (2^(1/3)+gamma(1))/(-Artin+Riemann1stZero) 8626735749364791 a003 cos(Pi*15/88)/sin(Pi*19/40) 8626735783389372 a007 Real Root Of -95*x^4+791*x^3+546*x^2+110*x+249 8626735785152999 r005 Im(z^2+c),c=29/106+23/40*I,n=58 8626735792964778 m005 (1/2*Catalan+7/11)/(11/12*Zeta(3)+1/6) 8626735798490521 a001 4052739537881/2207*521^(8/13) 8626735801385860 a001 4052739537881/3571*521^(9/13) 8626735807078581 q001 1/1159187 8626735823279391 m005 (1/3*gamma-1/4)/(1/6*gamma+4/7) 8626735845455621 a003 sin(Pi*15/101)/sin(Pi*11/63) 8626735879476456 m001 (gamma(1)+Paris)/(ln(3)+Ei(1)) 8626735884684064 r005 Im(z^2+c),c=-12/25+4/27*I,n=33 8626735917234903 a007 Real Root Of 292*x^4-609*x^3+722*x^2+262*x-864 8626735923708061 a003 sin(Pi*34/113)/sin(Pi*7/18) 8626735932710981 r005 Im(z^2+c),c=-5/32+41/50*I,n=54 8626735968976162 p003 LerchPhi(1/8,6,128/85) 8626736022362614 a003 sin(Pi*26/99)/sin(Pi*12/37) 8626736031749624 a007 Real Root Of -797*x^4+345*x^3-555*x^2-583*x+573 8626736043214977 a007 Real Root Of 819*x^4-7*x^3-168*x^2-350*x-635 8626736046702221 r009 Im(z^3+c),c=-7/52+50/61*I,n=36 8626736058808442 m001 (-MadelungNaCl+MasserGramain)/(Shi(1)+Ei(1,1)) 8626736070384069 m001 sin(1/5*Pi)^(BesselI(1,2)*ZetaP(3)) 8626736086281878 m001 1/ln(cos(1))/MinimumGamma^2/log(1+sqrt(2)) 8626736115210607 m001 1/RenyiParking*ln(Paris)/Ei(1)^2 8626736123604301 a007 Real Root Of 12*x^4-967*x^3-793*x^2+602*x+685 8626736145656656 s002 sum(A017964[n]/(n^3*pi^n-1),n=1..infinity) 8626736147123886 h001 (1/2*exp(2)+7/11)/(1/9*exp(1)+1/5) 8626736187882135 a001 13/2207*7^(10/51) 8626736188756666 a007 Real Root Of 636*x^4-174*x^3-178*x^2-739*x-969 8626736190137844 a007 Real Root Of -192*x^4+403*x^3-679*x^2-689*x+276 8626736191182579 g001 Re(GAMMA(8/15+I*25/12)) 8626736221656174 a007 Real Root Of -480*x^4+831*x^3+879*x^2+533*x+605 8626736221879991 r005 Im(z^2+c),c=-149/126+1/8*I,n=20 8626736228802584 r002 17th iterates of z^2 + 8626736260686571 r005 Re(z^2+c),c=-7/8+14/239*I,n=19 8626736265233795 a007 Real Root Of -264*x^4+796*x^3+508*x^2-836*x-442 8626736272967270 m001 (exp(1/Pi)-MertensB1)/(Niven-PrimesInBinary) 8626736287984880 m001 (2^(1/2)-arctan(1/3))/(Bloch+Kolakoski) 8626736289932165 a007 Real Root Of -879*x^4+304*x^3-320*x^2-465*x+519 8626736313366857 m001 Shi(1)^TwinPrimes-ZetaP(3) 8626736319355016 r002 21th iterates of z^2 + 8626736326325388 a001 182717648081/161*322^(3/4) 8626736344091503 r002 60th iterates of z^2 + 8626736359458539 r002 21th iterates of z^2 + 8626736360283935 m001 Ei(1)-ln(2)-Zeta(3) 8626736360283935 m001 Zeta(3)+ln(2)-Ei(1) 8626736402277542 a007 Real Root Of 34*x^4-867*x^3-392*x^2-113*x+927 8626736403993492 a007 Real Root Of -199*x^4+923*x^3-545*x^2+559*x-559 8626736431916302 a007 Real Root Of -944*x^4+357*x^3-215*x^2-160*x+774 8626736463112013 a003 cos(Pi*5/79)*sin(Pi*25/73) 8626736480822768 a007 Real Root Of 767*x^4-949*x^3-807*x^2+863*x+311 8626736505424228 r005 Im(z^2+c),c=-3/86+45/64*I,n=28 8626736531816017 r005 Re(z^2+c),c=-23/28+7/18*I,n=6 8626736538482983 m001 FeigenbaumC*ln(Champernowne)^2*OneNinth 8626736689787306 a007 Real Root Of 637*x^4-408*x^3+642*x^2+455*x-700 8626736692696215 m005 (1/2*Catalan-7/12)/(1/6*exp(1)+1) 8626736705008011 a007 Real Root Of 719*x^4-237*x^3-15*x^2-402*x-886 8626736718458441 a007 Real Root Of 859*x^4-673*x^3-954*x^2-79*x-266 8626736719487331 m001 (2^(1/2)-OneNinth)/(Totient+ZetaP(3)) 8626736728457160 a007 Real Root Of 351*x^4-605*x^3+140*x^2+801*x+4 8626736733052949 a007 Real Root Of 186*x^4-848*x^3-518*x^2-502*x-695 8626736739783718 a007 Real Root Of -849*x^4-578*x^3-665*x^2+408*x+946 8626736744698377 r005 Re(z^2+c),c=-79/90+2/45*I,n=45 8626736756254384 r005 Re(z^2+c),c=-79/90+2/45*I,n=47 8626736761194981 r005 Re(z^2+c),c=-79/90+2/45*I,n=43 8626736772017860 r005 Re(z^2+c),c=-79/90+2/45*I,n=49 8626736784303782 r005 Re(z^2+c),c=-79/90+2/45*I,n=51 8626736792050815 r005 Re(z^2+c),c=-79/90+2/45*I,n=53 8626736796300909 r005 Re(z^2+c),c=-79/90+2/45*I,n=55 8626736798360075 r005 Re(z^2+c),c=-79/90+2/45*I,n=57 8626736799223333 r005 Re(z^2+c),c=-79/90+2/45*I,n=59 8626736799510162 r005 Re(z^2+c),c=-79/90+2/45*I,n=61 8626736799557004 r005 Re(z^2+c),c=-79/90+2/45*I,n=63 8626736800523478 a007 Real Root Of 985*x^4-400*x^3+202*x^2+818*x-247 8626736807493131 l006 ln(839/1988) 8626736831140878 r002 19th iterates of z^2 + 8626736844955954 a007 Real Root Of -781*x^4+536*x^3+370*x^2+228*x+698 8626736850258141 s002 sum(A115358[n]/(n*10^n+1),n=1..infinity) 8626736856476489 a003 cos(Pi*18/103)/sin(Pi*19/42) 8626736859636305 a008 Real Root of (-6+5*x+4*x^2-5*x^3+4*x^4-4*x^5) 8626736863501903 r005 Re(z^2+c),c=-79/90+2/45*I,n=41 8626736867545751 r005 Re(z^2+c),c=3/94+21/50*I,n=15 8626736867687011 a007 Real Root Of -601*x^4+693*x^3-214*x^2-677*x+353 8626736887750742 l006 ln(2353/2565) 8626736897461158 a003 cos(Pi*28/111)/sin(Pi*23/76) 8626736901820414 h001 (-exp(4)+6)/(-6*exp(2)-12) 8626736937985366 m001 ThueMorse^(ZetaQ(2)/FellerTornier) 8626736948035995 r002 63th iterates of z^2 + 8626736975349820 s002 sum(A256983[n]/(n*10^n+1),n=1..infinity) 8626736977530365 r005 Re(z^2+c),c=-55/102+14/25*I,n=64 8626736993882699 r005 Re(z^2+c),c=11/86+23/61*I,n=16 8626737041362089 a007 Real Root Of -206*x^4+35*x^3+240*x^2+706*x+567 8626737105450109 r005 Re(z^2+c),c=-7/10+52/139*I,n=40 8626737105700077 a007 Real Root Of -970*x^4+411*x^3-219*x^2-349*x+663 8626737112047905 m001 (ErdosBorwein+Rabbit)/(3^(1/3)-GAMMA(19/24)) 8626737121490835 m005 (1/3*gamma-3/5)/(5/8*Catalan-1/10) 8626737139212537 m005 (1/3*2^(1/2)+1/3)/(2/11*Zeta(3)+5/7) 8626737145290999 a007 Real Root Of -143*x^4+487*x^3-867*x^2-480*x+623 8626737172191983 r005 Re(z^2+c),c=-79/90+2/45*I,n=39 8626737181725663 r005 Re(z^2+c),c=-2/25+23/36*I,n=62 8626737185862946 a007 Real Root Of -762*x^4+368*x^3+119*x^2+282*x+813 8626737192882729 a007 Real Root Of -168*x^4+612*x^3-343*x^2-814*x+39 8626737195427161 a007 Real Root Of 837*x^4-551*x^3-852*x^2+639*x+368 8626737199062232 r002 61th iterates of z^2 + 8626737209839238 m001 (Ei(1)-Zeta(5))^cos(1/12*Pi) 8626737209839238 m001 (Ei(1)-Zeta(5))^cos(Pi/12) 8626737230534791 a001 521/75025*1597^(1/34) 8626737242712099 a007 Real Root Of -274*x^4+411*x^3-69*x^2-175*x+316 8626737259425301 m005 (4/15+1/10*5^(1/2))/(2*Pi-3/5) 8626737260092653 q001 2607/3022 8626737260747991 m005 (1/3*2^(1/2)+4)/(1/5*Catalan+5) 8626737286999961 a005 (1/cos(11/215*Pi))^1231 8626737298277376 m001 (Zeta(1/2)-gamma)/(GAMMA(11/12)+Mills) 8626737305217506 a001 1/416020*317811^(13/46) 8626737311186729 a001 3536736619241/1926*521^(8/13) 8626737316978960 a001 956722026041/1364*521^(10/13) 8626737351623232 m001 LambertW(1)-ln(2)/ln(10)-GAMMA(5/6) 8626737362905025 m001 (MertensB3+ZetaP(4))/(Ei(1)-MertensB1) 8626737397555682 s002 sum(A216068[n]/(exp(2*pi*n)+1),n=1..infinity) 8626737415387130 r009 Re(z^3+c),c=-11/52+23/24*I,n=29 8626737415477084 r009 Re(z^3+c),c=-29/44+9/44*I,n=2 8626737422318331 a005 (1/cos(3/116*Pi))^1349 8626737435621333 m002 (-3*Csch[Pi])/2+Tanh[Pi]^2 8626737446300593 r002 13th iterates of z^2 + 8626737455950530 m001 Thue*ErdosBorwein^ZetaQ(3) 8626737462453098 m001 (2^(1/3)-gamma(3))/(FeigenbaumB+Kac) 8626737465964140 m008 (3/4*Pi^3-1)/(2/3*Pi^2-4) 8626737479833217 m002 36*E^Pi+3*Pi^2 8626737517250212 m001 (OneNinth+Robbin)/(ln(Pi)-GAMMA(11/12)) 8626737529693018 a003 sin(Pi*41/111)/cos(Pi*55/118) 8626737554140579 m001 MadelungNaCl*Champernowne^2*exp(sinh(1)) 8626737558558144 a007 Real Root Of 461*x^4+95*x^3-461*x^2-781*x-525 8626737576653622 a007 Real Root Of -717*x^4+80*x^3-667*x^2-438*x+567 8626737577640307 s002 sum(A123605[n]/(n^3*2^n+1),n=1..infinity) 8626737605812011 m001 (Zeta(5)-MertensB1)/(Paris-ZetaQ(3)) 8626737605954504 a007 Real Root Of -627*x^4-38*x^3-749*x^2-566*x+392 8626737612108820 r009 Im(z^3+c),c=-9/70+46/55*I,n=47 8626737615352913 a007 Real Root Of 287*x^4-962*x^3+112*x^2+372*x-539 8626737619690108 m005 (1/2*Zeta(3)-2/11)/(6*Catalan-7/11) 8626737622212905 a007 Real Root Of -799*x^4-671*x^3-722*x^2+430*x+920 8626737663487015 m001 (gamma(1)+gamma(3))/(DuboisRaymond+Kac) 8626737673894556 a001 1/7*(1/2*5^(1/2)+1/2)*4^(19/20) 8626737694192883 r002 59th iterates of z^2 + 8626737698937508 m001 ((1+3^(1/2))^(1/2)+FeigenbaumMu)^Conway 8626737716420568 s002 sum(A104279[n]/(n*pi^n-1),n=1..infinity) 8626737728102669 m001 1/2*ErdosBorwein/ln(2+3^(1/2))*2^(1/2) 8626737756362936 a007 Real Root Of 107*x^4-732*x^3+406*x^2-703*x+715 8626737819295542 a007 Real Root Of -294*x^4+589*x^3+524*x^2+386*x+484 8626737821810224 a007 Real Root Of 712*x^4-451*x^3+720*x^2+774*x-552 8626737866837624 m001 (Cahen-Khinchin)/(Riemann3rdZero-Totient) 8626737872683341 a007 Real Root Of -469*x^4+739*x^3-596*x^2-315*x+906 8626737873234963 a007 Real Root Of 678*x^4-97*x^3-395*x^2-756*x-796 8626737880036098 a008 Real Root of (-3-5*x-3*x^2+3*x^3+6*x^4+x^5) 8626737888887799 s002 sum(A287741[n]/(pi^n+1),n=1..infinity) 8626737909482628 r005 Re(z^2+c),c=-79/90+2/45*I,n=37 8626737931587811 a001 1/1563*(1/2*5^(1/2)+1/2)^19*3^(1/3) 8626737940223381 s001 sum(1/10^(n-1)*A234177[n]/n!^2,n=1..infinity) 8626737968493809 m001 gamma(1)/(gamma(3)^Trott2nd) 8626738027623208 m001 (-Paris+ZetaP(4))/(5^(1/2)+HardyLittlewoodC4) 8626738039720319 r005 Re(z^2+c),c=-25/26+21/94*I,n=22 8626738040697322 a007 Real Root Of 286*x^4-320*x^3+679*x^2+545*x-399 8626738051159373 a008 Real Root of (-1+x-x^2+x^3-x^7+x^10+x^11+x^12) 8626738100638920 a007 Real Root Of 396*x^4-490*x^3+38*x^2+705*x+46 8626738102011631 a008 Real Root of (16+4*x-16*x^2+x^3) 8626738113829533 m001 (LambertW(1)+BesselJ(1,1))/(-Salem+ZetaQ(3)) 8626738125692224 a007 Real Root Of 483*x^4-135*x^3+101*x^2-119*x-532 8626738125737205 a003 cos(Pi*33/97)*cos(Pi*27/61) 8626738138871308 a007 Real Root Of 666*x^4-704*x^3+117*x^2+241*x-700 8626738143718749 a003 sin(Pi*2/11)/cos(Pi*31/109) 8626738146740624 r009 Re(z^3+c),c=-2/29+43/49*I,n=9 8626738176993597 r005 Im(z^2+c),c=-11/16+73/123*I,n=5 8626738183562852 a007 Real Root Of 831*x^4+169*x^3-35*x^2+126*x-217 8626738185247374 l006 ln(3651/8651) 8626738237799298 a007 Real Root Of -50*x^4+426*x^3-489*x^2-742*x+25 8626738243189327 a001 6557470319842/2207*521^(7/13) 8626738246084666 a001 6557470319842/3571*521^(8/13) 8626738248840916 m005 (4/5*Catalan+1/4)/(5*gamma-3) 8626738251427690 r002 49th iterates of z^2 + 8626738263351184 r005 Im(z^2+c),c=-32/25+2/53*I,n=12 8626738328031891 h001 (-3*exp(-3)+6)/(-9*exp(-2)+8) 8626738334072232 r002 6th iterates of z^2 + 8626738339882154 a007 Real Root Of -941*x^4+609*x^3+818*x^2+214*x+488 8626738351256792 r005 Re(z^2+c),c=-9/29+40/63*I,n=14 8626738365725098 a003 sin(Pi*1/31)-sin(Pi*41/99) 8626738401625660 m005 (1/2*Pi-7/8)/(2/11*5^(1/2)+2/5) 8626738424000296 r009 Im(z^3+c),c=-1/90+7/8*I,n=9 8626738459976014 a001 8/123*76^(3/46) 8626738463955367 m001 gamma^(BesselI(1,1)*PlouffeB) 8626738480211952 a007 Real Root Of -800*x^4+562*x^3-460*x^2-530*x+689 8626738482592383 r005 Re(z^2+c),c=-7/8+15/256*I,n=27 8626738498215538 a007 Real Root Of 677*x^4+510*x^3+812*x^2+278*x-412 8626738547473532 a007 Real Root Of 688*x^4+839*x^3+407*x^2-956*x-85 8626738555562547 r002 57th iterates of z^2 + 8626738591088405 m001 MinimumGamma^2*exp(CareFree)^2*Pi^2 8626738596319816 l006 ln(2812/6663) 8626738596662038 m001 (GAMMA(19/24)+2)/(GAMMA(1/3)+1) 8626738612539085 r005 Re(z^2+c),c=5/64+18/37*I,n=43 8626738621526450 a007 Real Root Of -391*x^4+693*x^3+592*x^2-394*x-119 8626738707625167 m001 sin(1)+(Pi*csc(5/12*Pi)/GAMMA(7/12))^exp(1) 8626738707625167 m001 sin(1)+GAMMA(5/12)^exp(1) 8626738737547242 r005 Im(z^2+c),c=-139/106+1/19*I,n=60 8626738743369586 a007 Real Root Of 139*x^4-267*x^3-31*x^2-994*x+975 8626738743727668 m001 (Kolakoski-PrimesInBinary)/(ln(Pi)-CareFree) 8626738811653810 a007 Real Root Of -658*x^4-583*x^3-568*x^2-489*x-9 8626738822686391 r009 Im(z^3+c),c=-3/64+47/54*I,n=21 8626738823311339 a007 Real Root Of -745*x^4-263*x^3+553*x^2+322*x+110 8626738840646749 m001 GAMMA(3/4)^KhinchinHarmonic/(1+3^(1/2))^(1/2) 8626738853663158 m001 FeigenbaumDelta^2*ErdosBorwein/exp(Si(Pi))^2 8626738858537535 r005 Re(z^2+c),c=-25/29+7/27*I,n=3 8626738864871348 m001 (Totient+ZetaP(4))/(gamma(3)+GAMMA(13/24)) 8626738901184749 r002 3th iterates of z^2 + 8626738907673524 a003 sin(Pi*29/110)/sin(Pi*29/89) 8626738917860372 r005 Im(z^2+c),c=29/110+37/59*I,n=9 8626738928224658 m005 (1/2*Zeta(3)+1/3)/(1/3*Catalan+7/9) 8626738939521489 a007 Real Root Of 63*x^4+466*x^3-675*x^2-85*x-245 8626738952433168 a007 Real Root Of 693*x^4-457*x^3+353*x^2+88*x-864 8626738963920940 m005 (1/2*3^(1/2)-5/6)/(5/84+1/7*5^(1/2)) 8626738985977584 a005 (1/sin(48/121*Pi))^985 8626739017009455 a007 Real Root Of -112*x^4+335*x^3-341*x^2+203*x+706 8626739027708956 a007 Real Root Of 104*x^4+939*x^3+379*x^2+128*x-253 8626739041897529 a007 Real Root Of -801*x^4-413*x^3+515*x^2+788*x+475 8626739081626566 a007 Real Root Of 519*x^4-73*x^3+80*x^2+489*x+28 8626739089920843 a007 Real Root Of 888*x^4-291*x^3-968*x^2-963*x-789 8626739092668909 r002 13th iterates of z^2 + 8626739095984195 m001 Rabbit^2*Porter^2*exp(Zeta(5))^2 8626739123947737 m001 (Zeta(1/2)+ErdosBorwein)/(MertensB2+Robbin) 8626739125408446 r002 14th iterates of z^2 + 8626739160819690 a003 cos(Pi*8/93)*sin(Pi*6/17) 8626739161022073 a007 Real Root Of 160*x^4-736*x^3-790*x^2-737*x-609 8626739177286277 a007 Real Root Of 849*x^4+186*x^3+663*x^2-169*x-990 8626739199084911 r009 Im(z^3+c),c=-35/46+21/64*I,n=2 8626739199791208 m001 Psi(1,1/3)/exp(1/2)/Rabbit 8626739210276076 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)/(Pi^CareFree) 8626739238170885 s002 sum(A063804[n]/((2^n-1)/n),n=1..infinity) 8626739248839787 a007 Real Root Of -47*x^4-384*x^3+112*x^2-519*x+963 8626739261947973 q001 1426/1653 8626739261947973 r005 Im(z^2+c),c=-75/58+31/57*I,n=2 8626739309885477 a001 167761/8*55^(6/17) 8626739321856460 a001 9349/13*55^(31/50) 8626739342101169 r005 Im(z^2+c),c=-37/34+7/69*I,n=20 8626739357001720 l006 ln(1973/4675) 8626739360664396 p001 sum((-1)^n/(258*n+101)/n/(32^n),n=1..infinity) 8626739373124895 r002 16th iterates of z^2 + 8626739374985985 a003 cos(Pi*20/79)*cos(Pi*41/89) 8626739375140105 r009 Re(z^3+c),c=-3/44+48/55*I,n=35 8626739410764113 r009 Re(z^3+c),c=-1/114+4/53*I,n=4 8626739428653583 a003 sin(Pi*25/81)/sin(Pi*47/116) 8626739432729716 r005 Re(z^2+c),c=-79/90+2/45*I,n=35 8626739442948033 a007 Real Root Of -136*x^4+737*x^3-347*x^2-53*x+761 8626739515844530 m001 (GAMMA(23/24)-arctan(1/3))^BesselK(0,1) 8626739541526391 a007 Real Root Of 490*x^4+806*x^3+923*x^2-57*x-490 8626739546361722 m001 (OrthogonalArrays+Weierstrass)/(cos(1)-exp(1)) 8626739579453248 r005 Re(z^2+c),c=-65/74+2/49*I,n=21 8626739594361059 a007 Real Root Of -689*x^4-528*x^3-251*x^2+855*x+967 8626739617096893 r005 Im(z^2+c),c=-81/118+2/27*I,n=3 8626739632731002 r005 Re(z^2+c),c=-7/8+11/149*I,n=5 8626739660283276 a007 Real Root Of 343*x^4+48*x^3-58*x^2-932*x-920 8626739683963181 m001 GAMMA(3/4)^2/exp(Tribonacci)^2/GAMMA(5/24) 8626739684675701 m001 (-Kac+ThueMorse)/(gamma+Ei(1)) 8626739703438405 r005 Re(z^2+c),c=-69/82+5/28*I,n=47 8626739710371662 r002 38th iterates of z^2 + 8626739740611819 a007 Real Root Of 697*x^4-759*x^3-718*x^2-160*x-477 8626739741074725 b008 7-13*Zeta[3] 8626739746559328 r008 a(0)=0,K{-n^6,25-68*n^3-61*n^2-12*n} 8626739748030803 a001 47/2*46368^(45/46) 8626739761678196 a001 1134903780*521^(9/13) 8626739769001606 r002 38th iterates of z^2 + 8626739773140826 m005 (1/2*gamma-1/6)/(23/40+3/8*5^(1/2)) 8626739799906800 a007 Real Root Of -124*x^4+555*x^3-129*x^2+182*x+678 8626739837282141 a007 Real Root Of 6*x^4+523*x^3+476*x^2+907*x-156 8626739838173700 r002 55th iterates of z^2 + 8626739853452964 a007 Real Root Of 96*x^4-866*x^3+371*x^2-595*x+740 8626739859304819 a007 Real Root Of -574*x^4-566*x^3-695*x^2-162*x+332 8626739887831350 m001 (3^(1/3)+GlaisherKinkelin)/(Landau-Thue) 8626739889469870 r002 45th iterates of z^2 + 8626739919658464 m001 (Si(Pi)+sin(1/12*Pi))/(-Landau+Riemann3rdZero) 8626739947145628 a007 Real Root Of 855*x^4-982*x^3-814*x^2+450*x-110 8626739951137507 p004 log(34123/14401) 8626739952740827 a007 Real Root Of -633*x^4-3*x^3-574*x^2+108*x+869 8626739998735731 m001 (2^(1/2)-LambertW(1))/(arctan(1/3)+TwinPrimes) 8626740008707921 a007 Real Root Of -402*x^4+665*x^3-891*x^2-534*x+852 8626740035630147 m001 1/GolombDickman^2/exp(Backhouse)*(3^(1/3)) 8626740041915140 p003 LerchPhi(1/16,3,197/187) 8626740043816653 a007 Real Root Of -218*x^4+689*x^3+225*x^2+376*x+720 8626740045459190 l006 ln(3107/7362) 8626740099808258 m001 FeigenbaumD/FeigenbaumAlpha/exp((2^(1/3)))^2 8626740101862401 a007 Real Root Of -111*x^4-928*x^3+234*x^2-170*x+102 8626740117195401 a007 Real Root Of -329*x^4+962*x^3+531*x^2+26*x-853 8626740123965292 p001 sum(1/(531*n+116)/(256^n),n=0..infinity) 8626740127656112 m001 GlaisherKinkelin/(FeigenbaumKappa^Conway) 8626740187327853 r005 Im(z^2+c),c=-13/106+25/29*I,n=19 8626740219785152 a005 (1/cos(20/159*Pi))^113 8626740233541048 a003 sin(Pi*30/89)*sin(Pi*54/119) 8626740248960973 m001 (FransenRobinson+Lehmer)/(ln(3)-CareFree) 8626740273209836 m001 1/ln(sqrt(1+sqrt(3)))*FeigenbaumAlpha*sqrt(3) 8626740285905901 m001 (Shi(1)-sin(1))/(gamma(3)+Riemann3rdZero) 8626740295429428 m005 (1/2*3^(1/2)+3/10)/(6*5^(1/2)+1/10) 8626740296422876 a007 Real Root Of -689*x^4+648*x^3-831*x^2-888*x+650 8626740307000660 m001 (-Robbin+Sarnak)/(Champernowne-sin(1)) 8626740317140100 a007 Real Root Of 798*x^4+185*x^3+512*x^2-191*x-869 8626740333464995 g007 Psi(2,4/9)+Psi(2,1/8)-Psi(2,10/11)-Psi(2,2/9) 8626740351109016 a001 10524623228353/122 8626740365743679 l006 ln(4241/10049) 8626740374899375 m001 2*Pi/GAMMA(5/6)*(BesselK(0,1)+GAMMA(5/6)) 8626740374899375 m001 GAMMA(1/6)*(BesselK(0,1)+GAMMA(5/6)) 8626740375727546 a007 Real Root Of 770*x^4-589*x^3+538*x^2+488*x-784 8626740402596716 r002 29th iterates of z^2 + 8626740424235346 r005 Im(z^2+c),c=-39/82+5/34*I,n=20 8626740426803857 a007 Real Root Of 621*x^4-7*x^3+259*x^2-329*x-825 8626740436854756 r009 Im(z^3+c),c=-29/102+43/53*I,n=5 8626740452786263 a003 -1+2*cos(5/27*Pi)+cos(11/30*Pi)-cos(1/24*Pi) 8626740460220434 a007 Real Root Of -36*x^4+812*x^3-171*x^2-72*x-312 8626740498419660 m001 1/FeigenbaumD^2*ln(Backhouse)*sqrt(1+sqrt(3)) 8626740514187283 a007 Real Root Of 324*x^4-425*x^3-487*x^2-101*x-177 8626740564094285 r005 Re(z^2+c),c=55/118+2/17*I,n=3 8626740574124099 l006 ln(3578/3609) 8626740575150542 m005 (1/2*Pi+3/8)/(1/4*Catalan-5/11) 8626740583348194 r005 Im(z^2+c),c=-63/52+5/62*I,n=9 8626740597882358 a003 cos(Pi*6/73)*sin(Pi*20/57) 8626740608840775 m001 (BesselJ(0,1)-exp(Pi))/(Sierpinski+ZetaQ(3)) 8626740637320936 r009 Im(z^3+c),c=-47/74+29/60*I,n=14 8626740640389118 a007 Real Root Of 684*x^4-33*x^3+346*x^2-11*x-667 8626740660243093 a001 86267571272/843*1364^(14/15) 8626740670658290 a003 cos(Pi*19/115)*sin(Pi*32/69) 8626740671439258 a007 Real Root Of -402*x^4-214*x^3-911*x^2-661*x+193 8626740681375189 m005 (1/2*2^(1/2)-3/10)/(38/9+2/9*5^(1/2)) 8626740687504417 r005 Re(z^2+c),c=3/14+10/19*I,n=4 8626740687888825 a001 4807525989*521^(6/13) 8626740690784165 a001 10610209857723/3571*521^(7/13) 8626740697188651 r005 Re(z^2+c),c=-137/118+22/51*I,n=4 8626740703187149 a007 Real Root Of 209*x^4+431*x^3-662*x^2-970*x+937 8626740749523528 r002 42th iterates of z^2 + 8626740751380862 m005 (1/2*Catalan+6/11)/(4/7*gamma+5/6) 8626740788376562 m001 (Zeta(3)+QuadraticClass)/(Stephens+Tribonacci) 8626740826729023 a007 Real Root Of 110*x^4-27*x^3+652*x^2-404*x-912 8626740830014145 a007 Real Root Of 315*x^4-713*x^3+579*x^2+691*x-467 8626740859021303 m005 (1/3*Pi+1/10)/(7/11*exp(1)-2/5) 8626740869127918 a001 843*233^(45/53) 8626740877869240 b008 Pi*DedekindEta[(11*I)/7*Pi] 8626740878677427 m001 1/exp(TwinPrimes)/RenyiParking^2*cos(Pi/12)^2 8626740914067181 a007 Real Root Of 466*x^4-433*x^3-75*x^2-417*x-840 8626740923653169 a007 Real Root Of -125*x^4-972*x^3+844*x^2-716*x-715 8626740947075208 q001 3097/3590 8626740969362592 a001 139583862445/843*1364^(13/15) 8626740998104202 a001 76/123*(1/2*5^(1/2)+1/2)^14*123^(7/12) 8626741004421467 p004 log(36919/15581) 8626741007314749 r002 11th iterates of z^2 + 8626741010016645 m001 1/FeigenbaumB^2/LandauRamanujan/exp(cosh(1))^2 8626741022958330 r005 Re(z^2+c),c=-15/14+31/175*I,n=40 8626741052751497 a007 Real Root Of -793*x^4-230*x^3+521*x^2+836*x+625 8626741054517585 p004 log(20399/18713) 8626741059246111 a007 Real Root Of 911*x^4-854*x^3-860*x^2+766*x+248 8626741060222814 a001 987/439204*11^(23/41) 8626741084296970 m001 Mills^ln(2^(1/2)+1)/Porter 8626741107243655 m005 (1/2*Zeta(3)+5/11)/(1+1/10*5^(1/2)) 8626741138150679 a007 Real Root Of 854*x^4-233*x^3+972*x^2+583*x-843 8626741149832866 m002 -5/Pi^3-Pi^4+Pi^6-Log[Pi] 8626741167412519 r002 4th iterates of z^2 + 8626741168701552 a007 Real Root Of 497*x^4-509*x^3-5*x^2-381*x-927 8626741187072822 a003 cos(Pi*13/81)-sin(Pi*7/17) 8626741207225375 a007 Real Root Of -823*x^4+757*x^3-842*x^2-776*x+899 8626741213607674 a007 Real Root Of 918*x^4-767*x^3+887*x^2+845*x-932 8626741243277938 l006 ln(1134/2687) 8626741243549330 a007 Real Root Of -598*x^4-899*x^3-949*x^2+155*x+594 8626741278482101 a001 267913919*1364^(4/5) 8626741279716016 r009 Re(z^3+c),c=-1/114+4/53*I,n=6 8626741280353046 r009 Re(z^3+c),c=-1/114+4/53*I,n=8 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=10 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=12 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=15 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=17 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=19 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=21 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=23 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=24 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=25 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=22 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=20 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=18 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=16 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=14 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=13 8626741280353220 r009 Re(z^3+c),c=-1/114+4/53*I,n=11 8626741280353223 r009 Re(z^3+c),c=-1/114+4/53*I,n=9 8626741280364053 r009 Re(z^3+c),c=-1/114+4/53*I,n=7 8626741289429233 r002 53th iterates of z^2 + 8626741293522659 a007 Real Root Of 4*x^4+347*x^3+171*x^2+384*x-168 8626741295705525 m005 (1/3*exp(1)-2/9)/(5/7*3^(1/2)-4/9) 8626741304657308 a007 Real Root Of 638*x^4+783*x^3+864*x^2+170*x-347 8626741312349450 a007 Real Root Of 173*x^4-899*x^3-97*x^2+169*x-455 8626741315892190 r009 Re(z^3+c),c=-1/114+4/53*I,n=5 8626741341660955 a007 Real Root Of 59*x^4-883*x^3+896*x^2+740*x-628 8626741362500912 a001 12752043/610*89^(6/19) 8626741432755602 a001 29/987*3^(50/51) 8626741491365276 a007 Real Root Of 416*x^4-111*x^3-764*x^2-644*x+965 8626741496729289 a007 Real Root Of 654*x^4-75*x^3+801*x^2+783*x-331 8626741500390596 a007 Real Root Of 592*x^4+81*x^3-264*x^2-418*x-440 8626741523186695 m001 1/Ei(1)^2/Khintchine/ln(cos(Pi/12))^2 8626741526609740 m001 cos(1)^ZetaR(2)/(MinimumGamma^ZetaR(2)) 8626741539302103 m001 ln(sqrt(1+sqrt(3)))/MadelungNaCl*sqrt(3)^2 8626741546066954 r009 Re(z^3+c),c=-3/44+48/55*I,n=45 8626741550006252 m001 PrimesInBinary*MertensB1*exp(Zeta(5))^2 8626741553717762 r009 Re(z^3+c),c=-3/44+48/55*I,n=47 8626741554462640 m001 Kac^2*ZetaR(2)^2 8626741567113687 a008 Real Root of (-4+x+2*x^2-6*x^3+x^5) 8626741571782634 m001 ReciprocalFibonacci^Shi(1)*sin(1/12*Pi)^Shi(1) 8626741585839027 a007 Real Root Of 541*x^4-117*x^3+44*x^2+11*x-398 8626741586361851 m005 (31/44+1/4*5^(1/2))/(4/5*2^(1/2)+1/3) 8626741587601622 a001 365435296162/843*1364^(11/15) 8626741588937561 r005 Re(z^2+c),c=-7/8+11/167*I,n=9 8626741592514346 r009 Re(z^3+c),c=-3/44+48/55*I,n=49 8626741601971955 a007 Real Root Of 411*x^4-794*x^3-45*x^2-174*x-854 8626741615978847 r009 Re(z^3+c),c=-3/44+48/55*I,n=51 8626741617637353 r009 Re(z^3+c),c=-3/44+48/55*I,n=61 8626741617733613 r009 Re(z^3+c),c=-3/44+48/55*I,n=63 8626741617898529 r009 Re(z^3+c),c=-3/44+48/55*I,n=59 8626741619070328 r009 Re(z^3+c),c=-3/44+48/55*I,n=57 8626741619765196 a001 75025/76*18^(3/4) 8626741621273614 r009 Re(z^3+c),c=-3/44+48/55*I,n=55 8626741622416571 r009 Re(z^3+c),c=-3/44+48/55*I,n=53 8626741623554212 r009 Im(z^3+c),c=-53/94+28/55*I,n=2 8626741653808670 l006 ln(8180/8917) 8626741660381159 p003 LerchPhi(1/125,3,410/181) 8626741695134855 r009 Re(z^3+c),c=-3/44+48/55*I,n=43 8626741717210727 a007 Real Root Of 233*x^4-536*x^3+85*x^2+147*x+25 8626741729770300 a007 Real Root Of -703*x^4+112*x^3+427*x^2+972*x+982 8626741734058924 a001 233/47*47^(23/31) 8626741758657910 r009 Re(z^3+c),c=-3/82+50/61*I,n=38 8626741767548797 a007 Real Root Of -385*x^4+55*x^3+156*x^2+178*x+286 8626741772356621 a003 cos(Pi*53/113)*cos(Pi*25/53) 8626741776962578 a007 Real Root Of -737*x^4+131*x^3-292*x^2-469*x+305 8626741788756354 r002 32th iterates of z^2 + 8626741789925580 a001 5473*29^(5/37) 8626741793389437 r002 51th iterates of z^2 + 8626741816587574 r005 Re(z^2+c),c=-9/98+1/20*I,n=4 8626741818548650 r001 31i'th iterates of 2*x^2-1 of 8626741827397150 a007 Real Root Of -860*x^4-122*x^3-370*x^2-500*x+242 8626741831795195 a001 123/233*1346269^(13/36) 8626741839388598 m001 1/BesselK(0,1)^2*ln(Riemann1stZero)/sqrt(3) 8626741855267661 a007 Real Root Of -295*x^4+616*x^3+644*x^2+48*x+121 8626741861799068 a007 Real Root Of -870*x^4+671*x^3+592*x^2+583*x+975 8626741888841138 a007 Real Root Of 258*x^4-318*x^3-776*x^2-93*x+719 8626741896721154 a001 591286729879/843*1364^(2/3) 8626741905238818 m001 (-LandauRamanujan+ZetaP(3))/(Artin-Shi(1)) 8626741918947695 m001 1/Salem/FeigenbaumC/exp(sin(1))^2 8626741922780139 a007 Real Root Of 139*x^4-208*x^3+64*x^2-866*x+756 8626741935291571 m005 (1/3*Zeta(3)-1/3)/(-1/56+5/14*5^(1/2)) 8626741935423672 h001 (-5*exp(4)-5)/(-8*exp(6)+5) 8626741942748389 r002 10th iterates of z^2 + 8626741944827836 m001 (MadelungNaCl+Niven)/(ln(2+3^(1/2))+Khinchin) 8626741965593449 m001 (Paris+Tribonacci)/(Bloch-exp(1)) 8626741977729980 a007 Real Root Of -379*x^4+88*x^3-368*x^2+235*x+743 8626741998158481 r002 63th iterates of z^2 + 8626742004095731 a007 Real Root Of -766*x^4+743*x^3-338*x^2-635*x+605 8626742006757441 a003 cos(Pi*17/111)*sin(Pi*49/115) 8626742013640696 p004 log(11447/4831) 8626742017867993 a007 Real Root Of 137*x^4-822*x^3+303*x^2-90*x+304 8626742022783016 r002 43th iterates of z^2 + 8626742067511706 m005 (1/2*2^(1/2)+1)/(2/3*exp(1)+1/6) 8626742084047311 a001 47/86267571272*46368^(9/10) 8626742084769505 a001 47/6557470319842*5702887^(9/10) 8626742117485688 a007 Real Root Of 98*x^4-932*x^3+431*x^2-665*x+797 8626742148331967 a007 Real Root Of -492*x^4+895*x^3+38*x^2-766*x+158 8626742154366303 a007 Real Root Of -300*x^4+741*x^3-118*x^2+158*x+866 8626742155551367 r009 Re(z^3+c),c=-3/44+48/55*I,n=41 8626742160259863 r005 Im(z^2+c),c=-29/54+9/44*I,n=8 8626742179362692 m001 GAMMA(7/12)-cos(1)^TwinPrimes 8626742179362692 m001 cos(1)^TwinPrimes-GAMMA(7/12) 8626742205229298 a007 Real Root Of 257*x^4-844*x^3-654*x^2+377*x+561 8626742205840697 a001 956722026041/843*1364^(3/5) 8626742206378124 a001 2504730781961/1364*521^(8/13) 8626742211958462 r005 Re(z^2+c),c=-79/90+2/45*I,n=33 8626742244588152 r005 Re(z^2+c),c=-55/64+14/43*I,n=3 8626742249938052 l006 ln(3697/8760) 8626742278650607 m001 1/GAMMA(1/4)/FibonacciFactorial/ln(sinh(1))^2 8626742279907475 r005 Re(z^2+c),c=-2/29+7/11*I,n=41 8626742309013618 m001 (exp(Pi)+GAMMA(17/24))/(-Stephens+Thue) 8626742332683210 r002 61th iterates of z^2 + 8626742381414579 m001 1/OneNinth^2/MertensB1^2*exp(GAMMA(1/6))^2 8626742385131646 q001 1671/1937 8626742394784391 r002 4th iterates of z^2 + 8626742400938219 a007 Real Root Of 890*x^4-364*x^3+215*x^2-121*x-991 8626742426834356 r002 41th iterates of z^2 + 8626742443228789 a007 Real Root Of 168*x^4+53*x^3+228*x^2-726*x-855 8626742476977423 a007 Real Root Of -950*x^4+893*x^3+958*x^2+346*x+685 8626742483615129 m001 (LaplaceLimit-ZetaQ(4))/(Ei(1)-GAMMA(5/6)) 8626742501383041 a007 Real Root Of -922*x^4-636*x^3-900*x^2+212*x+955 8626742514960251 a001 516002918640/281*1364^(8/15) 8626742532432472 m005 (1/2*exp(1)-5/9)/(8/9*Zeta(3)-2) 8626742534317164 m001 gamma(3)+AlladiGrinstead^Rabbit 8626742552301319 a007 Real Root Of -614*x^4+268*x^3-883*x^2-304*x+907 8626742571700151 h001 (2/11*exp(2)+1/2)/(1/2*exp(1)+7/9) 8626742572882104 a001 2584/1149851*11^(23/41) 8626742576227831 m001 1/ln(Paris)^2/MadelungNaCl^2*Riemann1stZero 8626742616601231 r005 Re(z^2+c),c=-51/86+16/37*I,n=53 8626742622486867 a003 sin(Pi*39/119)/sin(Pi*32/69) 8626742623569455 m001 1/(2^(1/3))*ln(FeigenbaumC)/GAMMA(1/6) 8626742634495006 b008 ArcSec[-1/3+Sqrt[7/2]] 8626742643348196 a007 Real Root Of 705*x^4+214*x^3+575*x^2+153*x-549 8626742661281626 m001 FeigenbaumAlpha^(gamma(1)/ZetaP(2)) 8626742679740758 r009 Re(z^3+c),c=-3/44+48/55*I,n=37 8626742686283368 m001 GAMMA(1/6)/ln(GAMMA(1/24))^2*cosh(1) 8626742695335042 l006 ln(2563/6073) 8626742704085426 a007 Real Root Of 795*x^4-643*x^3-919*x^2-482*x-585 8626742754559357 a007 Real Root Of -447*x^4+813*x^3-369*x^2-334*x+756 8626742773199929 r009 Im(z^3+c),c=-5/126+34/39*I,n=17 8626742773824644 m005 (1/2*2^(1/2)+2/9)/(1/8*Catalan-2/9) 8626742793576120 a001 6765/3010349*11^(23/41) 8626742816566060 r009 Re(z^3+c),c=-3/44+48/55*I,n=39 8626742824079816 a001 2504730781961/843*1364^(7/15) 8626742842806328 r009 Im(z^3+c),c=-53/122+35/53*I,n=6 8626742845674911 a001 10946/4870847*11^(23/41) 8626742853155355 a007 Real Root Of -855*x^4-290*x^3-51*x^2-624*x-213 8626742869012150 a007 Real Root Of 163*x^4-346*x^3+142*x^2-423*x-783 8626742879963160 a007 Real Root Of -637*x^4+544*x^3+100*x^2+41*x+663 8626742929972524 a001 4181/1860498*11^(23/41) 8626742933966034 m001 GAMMA(11/24)*Rabbit*ln(GAMMA(17/24))^2 8626742948554507 r005 Re(z^2+c),c=-1/16+11/54*I,n=5 8626742959767224 a007 Real Root Of 412*x^4-742*x^3+776*x^2+837*x-560 8626742964876173 m001 1/ln(GAMMA(1/12))^2*Robbin^2*sinh(1) 8626742981502893 h001 (1/7*exp(2)+2/3)/(2/5*exp(1)+10/11) 8626743009980157 a007 Real Root Of -404*x^4+800*x^3-145*x^2-901*x+68 8626743021036869 m001 (Psi(2,1/3)+GAMMA(13/24))/(Landau+ZetaP(4)) 8626743024935928 a007 Real Root Of 974*x^4-573*x^3+725*x^2+802*x-755 8626743052029375 a007 Real Root Of 12*x^4+144*x^3+534*x^2-769*x-975 8626743059102747 r001 10i'th iterates of 2*x^2-1 of 8626743070882949 r002 16th iterates of z^2 + 8626743106527991 b008 3*(E+Erfc[1]) 8626743107818159 l006 ln(3992/9459) 8626743133199392 a001 4052739537881/843*1364^(2/5) 8626743134265595 a007 Real Root Of -719*x^4+586*x^3-410*x^2-462*x+681 8626743138467197 g005 GAMMA(5/9)/GAMMA(11/12)/GAMMA(5/8)/GAMMA(3/4) 8626743145320429 r005 Re(z^2+c),c=-1/15+35/61*I,n=7 8626743180341297 r005 Re(z^2+c),c=-37/44+8/55*I,n=51 8626743196206279 m001 (Mills+TwinPrimes)/BesselI(0,2) 8626743216802854 a001 377/2207*14662949395604^(8/9) 8626743216819572 a001 329/281*23725150497407^(13/16) 8626743216819572 a001 329/281*505019158607^(13/14) 8626743222051209 r002 27th iterates of z^2 + 8626743233748008 a001 2161/3*17711^(24/25) 8626743243276326 a007 Real Root Of -747*x^4+331*x^3+755*x^2+789*x+745 8626743259944686 a001 32264490531/46*322^(5/6) 8626743308065635 r005 Re(z^2+c),c=29/94+3/8*I,n=27 8626743320940519 a007 Real Root Of 402*x^4-368*x^3-238*x^2-814*x-984 8626743327468419 a005 (1/cos(11/92*Pi))^444 8626743339264262 g006 Psi(1,3/8)+Psi(1,6/7)+1/2*Pi^2-Psi(1,1/10) 8626743380342334 a001 1/492*(1/2*5^(1/2)+1/2)*4^(16/23) 8626743387222039 r005 Im(z^2+c),c=-45/34+1/108*I,n=29 8626743387635228 m001 1/FeigenbaumC^2/Porter*ln(GAMMA(7/12)) 8626743400126644 r009 Im(z^3+c),c=-23/62+1/30*I,n=21 8626743404852740 a001 281/329*377^(23/59) 8626743442318979 a001 6557470319842/843*1364^(1/3) 8626743494409959 a007 Real Root Of -937*x^4+468*x^3-670*x^2-677*x+734 8626743507756959 a001 1597/710647*11^(23/41) 8626743578389745 l006 ln(5827/6352) 8626743615395856 m001 (Chi(1)+GAMMA(23/24))/(-Magata+Riemann3rdZero) 8626743636390739 a007 Real Root Of 817*x^4-48*x^3+233*x^2+257*x-435 8626743649720175 a007 Real Root Of 736*x^4-296*x^3+252*x^2+166*x-642 8626743689464587 p001 sum(1/(207*n+116)/(512^n),n=0..infinity) 8626743700145294 r005 Re(z^2+c),c=-113/106+12/59*I,n=40 8626743707804380 m005 (19/44+1/4*5^(1/2))/(8/11*3^(1/2)-1/9) 8626743710393779 a007 Real Root Of -176*x^4+514*x^3+367*x^2-114*x+56 8626743715778873 a007 Real Root Of 549*x^4-524*x^3+46*x^2+825*x+37 8626743722442921 a007 Real Root Of -800*x^4+338*x^3-912*x^2-737*x+703 8626743722488775 m001 1/ln(Salem)/CopelandErdos^2/GAMMA(17/24) 8626743741838062 a007 Real Root Of 314*x^4-752*x^3-96*x^2+20*x-568 8626743743072542 a007 Real Root Of -508*x^4+464*x^3-144*x^2-849*x-46 8626743746829317 r005 Im(z^2+c),c=-41/50+16/43*I,n=6 8626743751438577 a001 3536736619241/281*1364^(4/15) 8626743792690322 m001 (BesselK(1,1)-Cahen)/(Magata+OrthogonalArrays) 8626743795921678 a007 Real Root Of 66*x^4-976*x^3-760*x^2-106*x-189 8626743808227039 r005 Im(z^2+c),c=-11/60+5/6*I,n=10 8626743816976807 m006 (2*exp(Pi)+5/6)/(1/5*exp(Pi)+5/6) 8626743822594354 a003 sin(Pi*1/9)+sin(Pi*19/109) 8626743825032004 a007 Real Root Of 807*x^4+383*x^3+605*x^2+908*x+132 8626743847632132 l006 ln(1429/3386) 8626743847883157 r009 Im(z^3+c),c=-1/31+55/63*I,n=19 8626743957827021 r005 Re(z^2+c),c=-7/8+12/205*I,n=23 8626743961735031 a007 Real Root Of 225*x^4-390*x^3-245*x^2-292*x+560 8626743969084813 r005 Re(z^2+c),c=3/13+21/52*I,n=9 8626743989628115 a007 Real Root Of 837*x^4-720*x^3-446*x^2+343*x-298 8626744002605639 m001 CareFree*exp(MertensB1)^2/GAMMA(19/24)^2 8626744017465297 m001 (-Cahen+Gompertz)/(Psi(2,1/3)+LambertW(1)) 8626744018564799 a007 Real Root Of 208*x^4-816*x^3-739*x^2-161*x-228 8626744040992037 m001 (Paris+ZetaQ(3))/(BesselI(0,2)-MertensB2) 8626744103537106 r009 Im(z^3+c),c=-69/98+11/30*I,n=2 8626744128676592 a007 Real Root Of -654*x^4-190*x^3-392*x^2+291*x+783 8626744148900864 a007 Real Root Of 666*x^4-534*x^3-519*x^2+856*x+413 8626744186980043 r002 36th iterates of z^2 + 8626744244394558 r005 Re(z^2+c),c=-2/25+34/39*I,n=63 8626744248267954 a007 Real Root Of 334*x^4-522*x^3-115*x^2-266*x-664 8626744251186885 h001 (3/7*exp(2)+6/11)/(6/11*exp(2)+3/11) 8626744311401001 a001 137769106653074/1597 8626744317881728 a007 Real Root Of -695*x^4+845*x^3-929*x^2-788*x+939 8626744338954241 p004 log(14243/6011) 8626744351212091 a001 10983760033/281*3571^(16/17) 8626744357082742 a007 Real Root Of -604*x^4-370*x^3-77*x^2+672*x+734 8626744366252735 p003 LerchPhi(1/100,3,469/207) 8626744391006151 a001 53316291173/843*3571^(15/17) 8626744419062369 a007 Real Root Of 445*x^4+46*x^3+370*x^2+129*x-381 8626744423406355 a007 Real Root Of -72*x^4-694*x^3-673*x^2-305*x+668 8626744430800212 a001 86267571272/843*3571^(14/17) 8626744450916897 r005 Im(z^2+c),c=-7/12+13/82*I,n=42 8626744470594273 a001 139583862445/843*3571^(13/17) 8626744474417228 a003 cos(Pi*14/83)*sin(Pi*38/77) 8626744477449179 p001 sum(1/(147*n+101)/n/(5^n),n=0..infinity) 8626744490814972 r002 26th iterates of z^2 + 8626744503783622 r002 10th iterates of z^2 + 8626744510388334 a001 267913919*3571^(12/17) 8626744512793742 a007 Real Root Of -957*x^4+464*x^3+124*x^2-942*x-77 8626744520844817 m001 (-GAMMA(23/24)+ZetaQ(2))/(gamma-ln(gamma)) 8626744542717116 a007 Real Root Of -61*x^4-486*x^3+439*x^2+807*x+120 8626744550182395 a001 365435296162/843*3571^(11/17) 8626744560450715 a007 Real Root Of 540*x^4-793*x^3+598*x^2+428*x-884 8626744564961745 m001 (-gamma(2)+HeathBrownMoroz)/(3^(1/3)-exp(1)) 8626744582589435 m001 1/exp(Ei(1))^2*MertensB1*Zeta(1/2) 8626744589976457 a001 591286729879/843*3571^(10/17) 8626744601630908 a007 Real Root Of -415*x^4+106*x^3-831*x^2+17*x+931 8626744629770518 a001 956722026041/843*3571^(9/17) 8626744644878290 p003 LerchPhi(1/100,1,162/139) 8626744647296378 a007 Real Root Of -358*x^4+609*x^3-254*x^2-362*x+466 8626744649125284 m001 GaussKuzminWirsing/(MadelungNaCl+sqrt(Pi)) 8626744649125284 m001 GaussKuzminWirsing/(Pi^(1/2)+MadelungNaCl) 8626744651078745 a001 4052739537881/1364*521^(7/13) 8626744658018165 a007 Real Root Of -175*x^4-240*x^3-624*x^2+424*x+773 8626744666222323 m001 (5^(1/2)-gamma)/(GAMMA(3/4)+ArtinRank2) 8626744669564580 a001 516002918640/281*3571^(8/17) 8626744672726561 m001 Catalan^(polylog(4,1/2)/HardyLittlewoodC4) 8626744684248757 m006 (1/6*Pi+3)/(5/Pi-2) 8626744709358642 a001 2504730781961/843*3571^(7/17) 8626744709590274 q001 1916/2221 8626744717322713 p001 sum((-1)^n/(574*n+113)/(6^n),n=0..infinity) 8626744729517437 a001 2584/843*312119004989^(10/11) 8626744729517437 a001 2584/843*3461452808002^(5/6) 8626744731179100 a007 Real Root Of -980*x^4+335*x^3-316*x^2-415*x+635 8626744749152704 a001 4052739537881/843*3571^(6/17) 8626744781699158 m001 GAMMA(1/24)/exp(Robbin)^2*sinh(1)^2 8626744784307404 l006 ln(3153/7471) 8626744788946767 a001 6557470319842/843*3571^(5/17) 8626744792550305 m001 (PrimesInBinary-Tetranacci)/(Zeta(3)-Otter) 8626744816049431 m001 1/FeigenbaumD*FeigenbaumC^2*exp(cos(Pi/12))^2 8626744824884970 r002 14th iterates of z^2 + 8626744828740829 a001 3536736619241/281*3571^(4/17) 8626744840669483 r002 3th iterates of z^2 + 8626744852629471 a003 cos(Pi*30/101)-cos(Pi*33/100) 8626744872464507 r005 Re(z^2+c),c=-23/27+1/8*I,n=61 8626744889200119 a001 360684203817457/4181 8626744894411931 a001 12586269025/843*9349^(18/19) 8626744899606661 a001 20365011074/843*9349^(17/19) 8626744904801392 a001 10983760033/281*9349^(16/19) 8626744909996122 a001 53316291173/843*9349^(15/19) 8626744915190853 a001 86267571272/843*9349^(14/19) 8626744920385583 a001 139583862445/843*9349^(13/19) 8626744925580314 a001 267913919*9349^(12/19) 8626744927974660 r009 Im(z^3+c),c=-9/122+44/51*I,n=15 8626744930775045 a001 365435296162/843*9349^(11/19) 8626744935969775 a001 591286729879/843*9349^(10/19) 8626744940302552 m001 Sarnak^(Cahen*Rabbit) 8626744941164506 a001 956722026041/843*9349^(9/19) 8626744946359236 a001 516002918640/281*9349^(8/19) 8626744950199999 a001 377/15127*14662949395604^(20/21) 8626744950217081 a001 2255/281*45537549124^(16/17) 8626744950217081 a001 2255/281*14662949395604^(16/21) 8626744950217081 a001 2255/281*192900153618^(8/9) 8626744950217081 a001 2255/281*73681302247^(12/13) 8626744951553967 a001 2504730781961/843*9349^(7/19) 8626744956748698 a001 4052739537881/843*9349^(6/19) 8626744958464393 s001 sum(exp(-2*Pi/3)^n*A142798[n],n=1..infinity) 8626744961943428 a001 6557470319842/843*9349^(5/19) 8626744963281610 k002 Champernowne real with 1/2*n^2+359/2*n-94 8626744967138159 a001 3536736619241/281*9349^(4/19) 8626744973499881 a001 72637192676869/842 8626744974202683 a001 1602508992/281*24476^(20/21) 8626744974888403 a001 7778742049/843*24476^(19/21) 8626744975574123 a001 12586269025/843*24476^(6/7) 8626744976259842 a001 20365011074/843*24476^(17/21) 8626744976945562 a001 10983760033/281*24476^(16/21) 8626744977631282 a001 53316291173/843*24476^(5/7) 8626744978317002 a001 86267571272/843*24476^(2/3) 8626744979002722 a001 139583862445/843*24476^(13/21) 8626744979688442 a001 267913919*24476^(4/7) 8626744980374162 a001 365435296162/843*24476^(11/21) 8626744981059882 a001 591286729879/843*24476^(10/21) 8626744981745602 a001 956722026041/843*24476^(3/7) 8626744982416725 a001 17711/843*10749957122^(23/24) 8626744982431322 a001 516002918640/281*24476^(8/21) 8626744982859997 a001 45537549124/233*34^(8/19) 8626744983117042 a001 2504730781961/843*24476^(1/3) 8626744983802762 a001 4052739537881/843*24476^(2/7) 8626744984488482 a001 6557470319842/843*24476^(5/21) 8626744985174202 a001 3536736619241/281*24476^(4/21) 8626744985799050 a001 2472166310580434/28657 8626744985907478 a001 1836311903/843*64079^(22/23) 8626744985998824 a001 2971215073/843*64079^(21/23) 8626744986090169 a001 1602508992/281*64079^(20/23) 8626744986181515 a001 7778742049/843*64079^(19/23) 8626744986272860 a001 12586269025/843*64079^(18/23) 8626744986364206 a001 20365011074/843*64079^(17/23) 8626744986455552 a001 10983760033/281*64079^(16/23) 8626744986546897 a001 53316291173/843*64079^(15/23) 8626744986638243 a001 86267571272/843*64079^(14/23) 8626744986729588 a001 139583862445/843*64079^(13/23) 8626744986820934 a001 267913919*64079^(12/23) 8626744986912280 a001 365435296162/843*64079^(11/23) 8626744987003625 a001 591286729879/843*64079^(10/23) 8626744987094971 a001 956722026041/843*64079^(9/23) 8626744987114590 a001 15456/281*312119004989^(4/5) 8626744987114590 a001 15456/281*23725150497407^(11/16) 8626744987114590 a001 15456/281*73681302247^(11/13) 8626744987114590 a001 15456/281*10749957122^(11/12) 8626744987114590 a001 15456/281*4106118243^(22/23) 8626744987186316 a001 516002918640/281*64079^(8/23) 8626744987277662 a001 2504730781961/843*64079^(7/23) 8626744987369008 a001 4052739537881/843*64079^(6/23) 8626744987460353 a001 6557470319842/843*64079^(5/23) 8626744987551699 a001 3536736619241/281*64079^(4/23) 8626744987671862 a001 1602508992/281*167761^(4/5) 8626744987733167 a001 53316291173/843*167761^(3/5) 8626744987794472 a001 591286729879/843*167761^(2/5) 8626744987799999 a001 121393/843*2537720636^(14/15) 8626744987799999 a001 121393/843*17393796001^(6/7) 8626744987799999 a001 121393/843*45537549124^(14/17) 8626744987799999 a001 121393/843*817138163596^(14/19) 8626744987799999 a001 121393/843*14662949395604^(2/3) 8626744987799999 a001 121393/843*505019158607^(3/4) 8626744987799999 a001 121393/843*192900153618^(7/9) 8626744987799999 a001 121393/843*10749957122^(7/8) 8626744987799999 a001 121393/843*4106118243^(21/23) 8626744987799999 a001 121393/843*1568397607^(21/22) 8626744987855776 a001 6557470319842/843*167761^(1/5) 8626744987877329 a001 233802911/281*439204^(8/9) 8626744987882298 a001 2971215073/843*439204^(7/9) 8626744987887267 a001 12586269025/843*439204^(2/3) 8626744987892236 a001 53316291173/843*439204^(5/9) 8626744987897205 a001 267913919*439204^(4/9) 8626744987899999 a001 377*2537720636^(8/9) 8626744987899999 a001 377*312119004989^(8/11) 8626744987899999 a001 377*23725150497407^(5/8) 8626744987899999 a001 377*73681302247^(10/13) 8626744987899999 a001 377*28143753123^(4/5) 8626744987899999 a001 377*10749957122^(5/6) 8626744987899999 a001 377*4106118243^(20/23) 8626744987899999 a001 377*1568397607^(10/11) 8626744987899999 a001 377*599074578^(20/21) 8626744987902174 a001 956722026041/843*439204^(1/3) 8626744987907143 a001 4052739537881/843*439204^(2/9) 8626744987914589 a001 832040/843*817138163596^(2/3) 8626744987914589 a001 832040/843*10749957122^(19/24) 8626744987914589 a001 832040/843*4106118243^(19/23) 8626744987914589 a001 832040/843*1568397607^(19/22) 8626744987914589 a001 832040/843*599074578^(19/21) 8626744987914589 a001 832040/843*228826127^(19/20) 8626744987916717 a001 726103/281*141422324^(12/13) 8626744987916718 a001 726103/281*2537720636^(4/5) 8626744987916718 a001 726103/281*45537549124^(12/17) 8626744987916718 a001 726103/281*14662949395604^(4/7) 8626744987916718 a001 726103/281*505019158607^(9/14) 8626744987916718 a001 726103/281*192900153618^(2/3) 8626744987916718 a001 726103/281*73681302247^(9/13) 8626744987916718 a001 726103/281*10749957122^(3/4) 8626744987916718 a001 726103/281*4106118243^(18/23) 8626744987916718 a001 726103/281*1568397607^(9/11) 8626744987916718 a001 726103/281*599074578^(6/7) 8626744987916718 a001 726103/281*228826127^(9/10) 8626744987916719 a001 726103/281*87403803^(18/19) 8626744987916954 a001 39088169/843*7881196^(10/11) 8626744987916968 a001 165580141/843*7881196^(9/11) 8626744987916980 a001 233802911/281*7881196^(8/11) 8626744987916989 a001 1836311903/843*7881196^(2/3) 8626744987916993 a001 2971215073/843*7881196^(7/11) 8626744987917006 a001 12586269025/843*7881196^(6/11) 8626744987917018 a001 53316291173/843*7881196^(5/11) 8626744987917028 a001 5702887/843*45537549124^(2/3) 8626744987917028 a001 5702887/843*10749957122^(17/24) 8626744987917028 a001 5702887/843*4106118243^(17/23) 8626744987917028 a001 5702887/843*1568397607^(17/22) 8626744987917028 a001 5702887/843*599074578^(17/21) 8626744987917028 a001 5702887/843*228826127^(17/20) 8626744987917029 a001 5702887/843*87403803^(17/19) 8626744987917031 a001 267913919*7881196^(4/11) 8626744987917035 a001 365435296162/843*7881196^(1/3) 8626744987917036 a001 5702887/843*33385282^(17/18) 8626744987917043 a001 956722026041/843*7881196^(3/11) 8626744987917056 a001 4052739537881/843*7881196^(2/11) 8626744987917063 a001 39088169/843*20633239^(6/7) 8626744987917065 a001 34111385/281*20633239^(4/5) 8626744987917067 a001 433494437/843*20633239^(5/7) 8626744987917069 a001 2971215073/843*20633239^(3/5) 8626744987917070 a001 1602508992/281*20633239^(4/7) 8626744987917073 a001 53316291173/843*20633239^(3/7) 8626744987917073 a001 86267571272/843*20633239^(2/5) 8626744987917074 a001 4976784/281*23725150497407^(1/2) 8626744987917074 a001 4976784/281*505019158607^(4/7) 8626744987917074 a001 4976784/281*73681302247^(8/13) 8626744987917074 a001 4976784/281*10749957122^(2/3) 8626744987917074 a001 4976784/281*4106118243^(16/23) 8626744987917074 a001 4976784/281*1568397607^(8/11) 8626744987917074 a001 4976784/281*599074578^(16/21) 8626744987917074 a001 4976784/281*228826127^(4/5) 8626744987917075 a001 4976784/281*87403803^(16/19) 8626744987917076 a001 591286729879/843*20633239^(2/7) 8626744987917077 a001 2504730781961/843*20633239^(1/5) 8626744987917078 a001 6557470319842/843*20633239^(1/7) 8626744987917080 a001 39088169/843*141422324^(10/13) 8626744987917080 a001 39088169/843*2537720636^(2/3) 8626744987917080 a001 39088169/843*45537549124^(10/17) 8626744987917080 a001 39088169/843*312119004989^(6/11) 8626744987917080 a001 39088169/843*14662949395604^(10/21) 8626744987917080 a001 39088169/843*192900153618^(5/9) 8626744987917080 a001 39088169/843*28143753123^(3/5) 8626744987917080 a001 39088169/843*10749957122^(5/8) 8626744987917080 a001 39088169/843*4106118243^(15/23) 8626744987917080 a001 39088169/843*1568397607^(15/22) 8626744987917080 a001 39088169/843*599074578^(5/7) 8626744987917080 a001 39088169/843*228826127^(3/4) 8626744987917080 a001 4976784/281*33385282^(8/9) 8626744987917081 a001 267914296/843*141422324^(2/3) 8626744987917081 a001 233802911/281*141422324^(8/13) 8626744987917081 a001 39088169/843*87403803^(15/19) 8626744987917081 a001 165580141/843*141422324^(9/13) 8626744987917081 a001 2971215073/843*141422324^(7/13) 8626744987917081 a001 12586269025/843*141422324^(6/13) 8626744987917081 a001 53316291173/843*141422324^(5/13) 8626744987917081 a001 34111385/281*17393796001^(4/7) 8626744987917081 a001 34111385/281*14662949395604^(4/9) 8626744987917081 a001 34111385/281*505019158607^(1/2) 8626744987917081 a001 34111385/281*73681302247^(7/13) 8626744987917081 a001 34111385/281*10749957122^(7/12) 8626744987917081 a001 34111385/281*4106118243^(14/23) 8626744987917081 a001 34111385/281*1568397607^(7/11) 8626744987917081 a001 34111385/281*599074578^(2/3) 8626744987917081 a001 139583862445/843*141422324^(1/3) 8626744987917081 a001 267913919*141422324^(4/13) 8626744987917081 a001 956722026041/843*141422324^(3/13) 8626744987917081 a001 4052739537881/843*141422324^(2/13) 8626744987917081 a001 34111385/281*228826127^(7/10) 8626744987917081 a001 267914296/843*73681302247^(1/2) 8626744987917081 a001 267914296/843*10749957122^(13/24) 8626744987917081 a001 267914296/843*4106118243^(13/23) 8626744987917081 a001 267914296/843*1568397607^(13/22) 8626744987917081 a001 267914296/843*599074578^(13/21) 8626744987917081 a001 233802911/281*2537720636^(8/15) 8626744987917081 a001 233802911/281*45537549124^(8/17) 8626744987917081 a001 233802911/281*14662949395604^(8/21) 8626744987917081 a001 233802911/281*192900153618^(4/9) 8626744987917081 a001 233802911/281*73681302247^(6/13) 8626744987917081 a001 233802911/281*10749957122^(1/2) 8626744987917081 a001 233802911/281*4106118243^(12/23) 8626744987917081 a001 233802911/281*1568397607^(6/11) 8626744987917081 a001 1602508992/281*2537720636^(4/9) 8626744987917081 a001 12586269025/843*2537720636^(2/5) 8626744987917081 a001 1836311903/843*312119004989^(2/5) 8626744987917081 a001 1836311903/843*10749957122^(11/24) 8626744987917081 a001 53316291173/843*2537720636^(1/3) 8626744987917081 a001 2971215073/843*2537720636^(7/15) 8626744987917081 a001 267913919*2537720636^(4/15) 8626744987917081 a001 591286729879/843*2537720636^(2/9) 8626744987917081 a001 956722026041/843*2537720636^(1/5) 8626744987917081 a001 1836311903/843*4106118243^(11/23) 8626744987917081 a001 4052739537881/843*2537720636^(2/15) 8626744987917081 a001 6557470319842/843*2537720636^(1/9) 8626744987917081 a001 1602508992/281*23725150497407^(5/16) 8626744987917081 a001 1602508992/281*505019158607^(5/14) 8626744987917081 a001 1602508992/281*73681302247^(5/13) 8626744987917081 a001 1602508992/281*28143753123^(2/5) 8626744987917081 a001 1602508992/281*10749957122^(5/12) 8626744987917081 a001 12586269025/843*45537549124^(6/17) 8626744987917081 a001 12586269025/843*14662949395604^(2/7) 8626744987917081 a001 12586269025/843*192900153618^(1/3) 8626744987917081 a001 86267571272/843*17393796001^(2/7) 8626744987917081 a001 2504730781961/843*17393796001^(1/7) 8626744987917081 a001 10983760033/281*23725150497407^(1/4) 8626744987917081 a001 10983760033/281*73681302247^(4/13) 8626744987917081 a001 267913919*45537549124^(4/17) 8626744987917081 a001 956722026041/843*45537549124^(3/17) 8626744987917081 a001 53316291173/843*45537549124^(5/17) 8626744987917081 a001 4052739537881/843*45537549124^(2/17) 8626744987917081 a001 86267571272/843*14662949395604^(2/9) 8626744987917081 a001 86267571272/843*505019158607^(1/4) 8626744987917081 a001 267913919*817138163596^(4/19) 8626744987917081 a001 267913919*14662949395604^(4/21) 8626744987917081 a001 591286729879/843*312119004989^(2/11) 8626744987917081 a001 365435296162/843*312119004989^(1/5) 8626744987917081 a001 4052739537881/843*14662949395604^(2/21) 8626744987917081 a001 3536736619241/281*23725150497407^(1/16) 8626744987917081 a001 2504730781961/843*14662949395604^(1/9) 8626744987917081 a001 956722026041/843*14662949395604^(1/7) 8626744987917081 a001 956722026041/843*192900153618^(1/6) 8626744987917081 a001 3536736619241/281*73681302247^(1/13) 8626744987917081 a001 516002918640/281*73681302247^(2/13) 8626744987917081 a001 267913919*73681302247^(3/13) 8626744987917081 a001 139583862445/843*73681302247^(1/4) 8626744987917081 a001 53316291173/843*312119004989^(3/11) 8626744987917081 a001 53316291173/843*14662949395604^(5/21) 8626744987917081 a001 53316291173/843*192900153618^(5/18) 8626744987917081 a001 6557470319842/843*28143753123^(1/10) 8626744987917081 a001 591286729879/843*28143753123^(1/5) 8626744987917081 a001 20365011074/843*45537549124^(1/3) 8626744987917081 a001 53316291173/843*28143753123^(3/10) 8626744987917081 a001 3536736619241/281*10749957122^(1/12) 8626744987917081 a001 4052739537881/843*10749957122^(1/8) 8626744987917081 a001 516002918640/281*10749957122^(1/6) 8626744987917081 a001 956722026041/843*10749957122^(3/16) 8626744987917081 a001 591286729879/843*10749957122^(5/24) 8626744987917081 a001 12586269025/843*10749957122^(3/8) 8626744987917081 a001 267913919*10749957122^(1/4) 8626744987917081 a001 86267571272/843*10749957122^(7/24) 8626744987917081 a001 10983760033/281*10749957122^(1/3) 8626744987917081 a001 53316291173/843*10749957122^(5/16) 8626744987917081 a001 7778742049/843*817138163596^(1/3) 8626744987917081 a001 3536736619241/281*4106118243^(2/23) 8626744987917081 a001 4052739537881/843*4106118243^(3/23) 8626744987917081 a001 516002918640/281*4106118243^(4/23) 8626744987917081 a001 591286729879/843*4106118243^(5/23) 8626744987917081 a001 267913919*4106118243^(6/23) 8626744987917081 a001 1602508992/281*4106118243^(10/23) 8626744987917081 a001 86267571272/843*4106118243^(7/23) 8626744987917081 a001 10983760033/281*4106118243^(8/23) 8626744987917081 a001 2971215073/843*17393796001^(3/7) 8626744987917081 a001 12586269025/843*4106118243^(9/23) 8626744987917081 a001 2971215073/843*45537549124^(7/17) 8626744987917081 a001 2971215073/843*14662949395604^(1/3) 8626744987917081 a001 2971215073/843*192900153618^(7/18) 8626744987917081 a001 2971215073/843*10749957122^(7/16) 8626744987917081 a001 3536736619241/281*1568397607^(1/11) 8626744987917081 a001 4052739537881/843*1568397607^(3/22) 8626744987917081 a001 516002918640/281*1568397607^(2/11) 8626744987917081 a001 591286729879/843*1568397607^(5/22) 8626744987917081 a001 365435296162/843*1568397607^(1/4) 8626744987917081 a001 267913919*1568397607^(3/11) 8626744987917081 a001 86267571272/843*1568397607^(7/22) 8626744987917081 a001 1836311903/843*1568397607^(1/2) 8626744987917081 a001 10983760033/281*1568397607^(4/11) 8626744987917081 a001 12586269025/843*1568397607^(9/22) 8626744987917081 a001 1602508992/281*1568397607^(5/11) 8626744987917081 a001 1134903170/843*4106118243^(1/2) 8626744987917081 a001 3536736619241/281*599074578^(2/21) 8626744987917081 a001 4052739537881/843*599074578^(1/7) 8626744987917081 a001 2504730781961/843*599074578^(1/6) 8626744987917081 a001 516002918640/281*599074578^(4/21) 8626744987917081 a001 956722026041/843*599074578^(3/14) 8626744987917081 a001 591286729879/843*599074578^(5/21) 8626744987917081 a001 267913919*599074578^(2/7) 8626744987917081 a001 86267571272/843*599074578^(1/3) 8626744987917081 a001 433494437/843*2537720636^(5/9) 8626744987917081 a001 53316291173/843*599074578^(5/14) 8626744987917081 a001 10983760033/281*599074578^(8/21) 8626744987917081 a001 433494437/843*312119004989^(5/11) 8626744987917081 a001 433494437/843*3461452808002^(5/12) 8626744987917081 a001 433494437/843*28143753123^(1/2) 8626744987917081 a001 233802911/281*599074578^(4/7) 8626744987917081 a001 12586269025/843*599074578^(3/7) 8626744987917081 a001 1602508992/281*599074578^(10/21) 8626744987917081 a001 1836311903/843*599074578^(11/21) 8626744987917081 a001 2971215073/843*599074578^(1/2) 8626744987917081 a001 3536736619241/281*228826127^(1/10) 8626744987917081 a001 6557470319842/843*228826127^(1/8) 8626744987917081 a001 4052739537881/843*228826127^(3/20) 8626744987917081 a001 516002918640/281*228826127^(1/5) 8626744987917081 a001 591286729879/843*228826127^(1/4) 8626744987917081 a001 267913919*228826127^(3/10) 8626744987917081 a001 86267571272/843*228826127^(7/20) 8626744987917081 a001 53316291173/843*228826127^(3/8) 8626744987917081 a001 165580141/843*2537720636^(3/5) 8626744987917081 a001 165580141/843*45537549124^(9/17) 8626744987917081 a001 165580141/843*817138163596^(9/19) 8626744987917081 a001 165580141/843*14662949395604^(3/7) 8626744987917081 a001 165580141/843*192900153618^(1/2) 8626744987917081 a001 165580141/843*10749957122^(9/16) 8626744987917081 a001 10983760033/281*228826127^(2/5) 8626744987917081 a001 12586269025/843*228826127^(9/20) 8626744987917081 a001 165580141/843*599074578^(9/14) 8626744987917081 a001 1602508992/281*228826127^(1/2) 8626744987917081 a001 267914296/843*228826127^(13/20) 8626744987917081 a001 1836311903/843*228826127^(11/20) 8626744987917081 a001 233802911/281*228826127^(3/5) 8626744987917081 a001 433494437/843*228826127^(5/8) 8626744987917081 a001 3536736619241/281*87403803^(2/19) 8626744987917082 a001 4052739537881/843*87403803^(3/19) 8626744987917082 a001 516002918640/281*87403803^(4/19) 8626744987917082 a001 591286729879/843*87403803^(5/19) 8626744987917082 a001 267913919*87403803^(6/19) 8626744987917082 a001 86267571272/843*87403803^(7/19) 8626744987917082 a001 63245986/843*1322157322203^(1/2) 8626744987917082 a001 10983760033/281*87403803^(8/19) 8626744987917082 a001 12586269025/843*87403803^(9/19) 8626744987917082 a001 7778742049/843*87403803^(1/2) 8626744987917082 a001 1602508992/281*87403803^(10/19) 8626744987917082 a001 1836311903/843*87403803^(11/19) 8626744987917082 a001 34111385/281*87403803^(14/19) 8626744987917082 a001 233802911/281*87403803^(12/19) 8626744987917082 a001 267914296/843*87403803^(13/19) 8626744987917082 a001 3536736619241/281*33385282^(1/9) 8626744987917083 a001 4052739537881/843*33385282^(1/6) 8626744987917083 a001 516002918640/281*33385282^(2/9) 8626744987917083 a001 956722026041/843*33385282^(1/4) 8626744987917084 a001 591286729879/843*33385282^(5/18) 8626744987917084 a001 267913919*33385282^(1/3) 8626744987917084 a001 24157817/843*9062201101803^(1/2) 8626744987917084 a001 86267571272/843*33385282^(7/18) 8626744987917085 a001 53316291173/843*33385282^(5/12) 8626744987917085 a001 10983760033/281*33385282^(4/9) 8626744987917085 a001 12586269025/843*33385282^(1/2) 8626744987917086 a001 1602508992/281*33385282^(5/9) 8626744987917086 a001 2971215073/843*33385282^(7/12) 8626744987917086 a001 1836311903/843*33385282^(11/18) 8626744987917087 a001 233802911/281*33385282^(2/3) 8626744987917087 a001 39088169/843*33385282^(5/6) 8626744987917087 a001 267914296/843*33385282^(13/18) 8626744987917087 a001 34111385/281*33385282^(7/9) 8626744987917087 a001 165580141/843*33385282^(3/4) 8626744987917088 a001 3536736619241/281*12752043^(2/17) 8626744987917091 a001 4052739537881/843*12752043^(3/17) 8626744987917094 a001 516002918640/281*12752043^(4/17) 8626744987917097 a001 591286729879/843*12752043^(5/17) 8626744987917100 a001 267913919*12752043^(6/17) 8626744987917101 a001 9227465/843*141422324^(11/13) 8626744987917102 a001 9227465/843*2537720636^(11/15) 8626744987917102 a001 9227465/843*45537549124^(11/17) 8626744987917102 a001 9227465/843*312119004989^(3/5) 8626744987917102 a001 9227465/843*817138163596^(11/19) 8626744987917102 a001 9227465/843*14662949395604^(11/21) 8626744987917102 a001 9227465/843*192900153618^(11/18) 8626744987917102 a001 9227465/843*10749957122^(11/16) 8626744987917102 a001 9227465/843*1568397607^(3/4) 8626744987917102 a001 9227465/843*599074578^(11/14) 8626744987917103 a001 86267571272/843*12752043^(7/17) 8626744987917106 a001 10983760033/281*12752043^(8/17) 8626744987917108 a001 20365011074/843*12752043^(1/2) 8626744987917109 a001 9227465/843*33385282^(11/12) 8626744987917109 a001 12586269025/843*12752043^(9/17) 8626744987917113 a001 1602508992/281*12752043^(10/17) 8626744987917116 a001 1836311903/843*12752043^(11/17) 8626744987917119 a001 233802911/281*12752043^(12/17) 8626744987917122 a001 267914296/843*12752043^(13/17) 8626744987917124 a001 4976784/281*12752043^(16/17) 8626744987917125 a001 34111385/281*12752043^(14/17) 8626744987917127 a001 3536736619241/281*4870847^(1/8) 8626744987917127 a001 39088169/843*12752043^(15/17) 8626744987917150 a001 4052739537881/843*4870847^(3/16) 8626744987917172 a001 516002918640/281*4870847^(1/4) 8626744987917195 a001 591286729879/843*4870847^(5/16) 8626744987917218 a001 267913919*4870847^(3/8) 8626744987917220 a001 3524578/843*2537720636^(7/9) 8626744987917220 a001 3524578/843*17393796001^(5/7) 8626744987917220 a001 3524578/843*312119004989^(7/11) 8626744987917220 a001 3524578/843*14662949395604^(5/9) 8626744987917220 a001 3524578/843*505019158607^(5/8) 8626744987917220 a001 3524578/843*28143753123^(7/10) 8626744987917220 a001 3524578/843*599074578^(5/6) 8626744987917220 a001 3524578/843*228826127^(7/8) 8626744987917240 a001 86267571272/843*4870847^(7/16) 8626744987917263 a001 10983760033/281*4870847^(1/2) 8626744987917286 a001 12586269025/843*4870847^(9/16) 8626744987917309 a001 1602508992/281*4870847^(5/8) 8626744987917331 a001 1836311903/843*4870847^(11/16) 8626744987917354 a001 233802911/281*4870847^(3/4) 8626744987917377 a001 267914296/843*4870847^(13/16) 8626744987917399 a001 34111385/281*4870847^(7/8) 8626744987917414 a001 3536736619241/281*1860498^(2/15) 8626744987917421 a001 39088169/843*4870847^(15/16) 8626744987917497 a001 6557470319842/843*1860498^(1/6) 8626744987917580 a001 4052739537881/843*1860498^(1/5) 8626744987917746 a001 516002918640/281*1860498^(4/15) 8626744987917829 a001 956722026041/843*1860498^(3/10) 8626744987917912 a001 591286729879/843*1860498^(1/3) 8626744987918078 a001 267913919*1860498^(2/5) 8626744987918244 a001 86267571272/843*1860498^(7/15) 8626744987918327 a001 53316291173/843*1860498^(1/2) 8626744987918411 a001 10983760033/281*1860498^(8/15) 8626744987918577 a001 12586269025/843*1860498^(3/5) 8626744987918743 a001 1602508992/281*1860498^(2/3) 8626744987918826 a001 2971215073/843*1860498^(7/10) 8626744987918909 a001 1836311903/843*1860498^(11/15) 8626744987919075 a001 233802911/281*1860498^(4/5) 8626744987919158 a001 433494437/843*1860498^(5/6) 8626744987919241 a001 267914296/843*1860498^(13/15) 8626744987919324 a001 165580141/843*1860498^(9/10) 8626744987919407 a001 34111385/281*1860498^(14/15) 8626744987919522 a001 3536736619241/281*710647^(1/7) 8626744987920742 a001 4052739537881/843*710647^(3/14) 8626744987921352 a001 2504730781961/843*710647^(1/4) 8626744987921962 a001 516002918640/281*710647^(2/7) 8626744987923182 a001 591286729879/843*710647^(5/14) 8626744987923606 a001 514229/843*2537720636^(13/15) 8626744987923606 a001 514229/843*45537549124^(13/17) 8626744987923606 a001 514229/843*14662949395604^(13/21) 8626744987923606 a001 514229/843*192900153618^(13/18) 8626744987923606 a001 514229/843*73681302247^(3/4) 8626744987923606 a001 514229/843*10749957122^(13/16) 8626744987923606 a001 514229/843*599074578^(13/14) 8626744987924402 a001 267913919*710647^(3/7) 8626744987925622 a001 86267571272/843*710647^(1/2) 8626744987926843 a001 10983760033/281*710647^(4/7) 8626744987928063 a001 12586269025/843*710647^(9/14) 8626744987929283 a001 1602508992/281*710647^(5/7) 8626744987929893 a001 2971215073/843*710647^(3/4) 8626744987930503 a001 1836311903/843*710647^(11/14) 8626744987931723 a001 233802911/281*710647^(6/7) 8626744987932943 a001 267914296/843*710647^(13/14) 8626744987935094 a001 3536736619241/281*271443^(2/13) 8626744987944100 a001 4052739537881/843*271443^(3/13) 8626744987953107 a001 516002918640/281*271443^(4/13) 8626744987962113 a001 591286729879/843*271443^(5/13) 8626744987971119 a001 267913919*271443^(6/13) 8626744987975622 a001 139583862445/843*271443^(1/2) 8626744987980125 a001 86267571272/843*271443^(7/13) 8626744987989132 a001 10983760033/281*271443^(8/13) 8626744987998138 a001 12586269025/843*271443^(9/13) 8626744988007144 a001 1602508992/281*271443^(10/13) 8626744988016151 a001 1836311903/843*271443^(11/13) 8626744988025157 a001 233802911/281*271443^(12/13) 8626744988050830 a001 3536736619241/281*103682^(1/6) 8626744988084267 a001 6557470319842/843*103682^(5/24) 8626744988117704 a001 4052739537881/843*103682^(1/4) 8626744988151141 a001 2504730781961/843*103682^(7/24) 8626744988184578 a001 516002918640/281*103682^(1/3) 8626744988218016 a001 956722026041/843*103682^(3/8) 8626744988251453 a001 591286729879/843*103682^(5/12) 8626744988284890 a001 365435296162/843*103682^(11/24) 8626744988318327 a001 267913919*103682^(1/2) 8626744988351764 a001 139583862445/843*103682^(13/24) 8626744988385201 a001 86267571272/843*103682^(7/12) 8626744988418638 a001 53316291173/843*103682^(5/8) 8626744988452075 a001 10983760033/281*103682^(2/3) 8626744988485513 a001 20365011074/843*103682^(17/24) 8626744988518950 a001 12586269025/843*103682^(3/4) 8626744988552387 a001 7778742049/843*103682^(19/24) 8626744988585824 a001 1602508992/281*103682^(5/6) 8626744988619261 a001 2971215073/843*103682^(7/8) 8626744988652698 a001 1836311903/843*103682^(11/12) 8626744988686135 a001 1134903170/843*103682^(23/24) 8626744988702490 a001 190478529350551/2208 8626744988917146 a001 3536736619241/281*39603^(2/11) 8626744989167162 a001 6557470319842/843*39603^(5/22) 8626744989417178 a001 4052739537881/843*39603^(3/11) 8626744989667195 a001 2504730781961/843*39603^(7/22) 8626744989917211 a001 516002918640/281*39603^(4/11) 8626744990018030 a001 28657/843*45537549124^(15/17) 8626744990018030 a001 28657/843*312119004989^(9/11) 8626744990018030 a001 28657/843*14662949395604^(5/7) 8626744990018030 a001 28657/843*192900153618^(5/6) 8626744990018030 a001 28657/843*28143753123^(9/10) 8626744990018030 a001 28657/843*10749957122^(15/16) 8626744990167227 a001 956722026041/843*39603^(9/22) 8626744990417243 a001 591286729879/843*39603^(5/11) 8626744990667259 a001 365435296162/843*39603^(1/2) 8626744990917275 a001 267913919*39603^(6/11) 8626744991167292 a001 139583862445/843*39603^(13/22) 8626744991417308 a001 86267571272/843*39603^(7/11) 8626744991667324 a001 53316291173/843*39603^(15/22) 8626744991917340 a001 10983760033/281*39603^(8/11) 8626744992167356 a001 20365011074/843*39603^(17/22) 8626744992417373 a001 12586269025/843*39603^(9/11) 8626744992667389 a001 7778742049/843*39603^(19/22) 8626744992917405 a001 1602508992/281*39603^(10/11) 8626744993167421 a001 2971215073/843*39603^(21/22) 8626744993400355 a001 1527882805781137/17711 8626744995457081 a001 3536736619241/281*15127^(1/5) 8626744997342081 a001 6557470319842/843*15127^(1/4) 8626744999227081 a001 4052739537881/843*15127^(3/10) 8626745001112081 a001 2504730781961/843*15127^(7/20) 8626745002997081 a001 516002918640/281*15127^(2/5) 8626745004882081 a001 956722026041/843*15127^(9/20) 8626745006767081 a001 591286729879/843*15127^(1/2) 8626745008652081 a001 365435296162/843*15127^(11/20) 8626745010537081 a001 267913919*15127^(3/5) 8626745012422081 a001 139583862445/843*15127^(13/20) 8626745014307081 a001 86267571272/843*15127^(7/10) 8626745016192081 a001 53316291173/843*15127^(3/4) 8626745018077081 a001 10983760033/281*15127^(4/5) 8626745019962081 a001 20365011074/843*15127^(17/20) 8626745021847081 a001 12586269025/843*15127^(9/10) 8626745023732081 a001 7778742049/843*15127^(19/20) 8626745031566121 a007 Real Root Of -4*x^4+800*x^3+545*x^2+980*x+81 8626745045339224 a001 3536736619241/281*5778^(2/9) 8626745059694759 a001 6557470319842/843*5778^(5/18) 8626745063582210 k002 Champernowne real with n^2+178*n-93 8626745074050295 a001 4052739537881/843*5778^(1/3) 8626745086616963 a001 4181/843*14662949395604^(7/9) 8626745086616963 a001 4181/843*505019158607^(7/8) 8626745088405831 a001 2504730781961/843*5778^(7/18) 8626745102761367 a001 516002918640/281*5778^(4/9) 8626745104906991 a007 Real Root Of 394*x^4-108*x^3-58*x^2-214*x-429 8626745117116902 a001 956722026041/843*5778^(1/2) 8626745131472438 a001 591286729879/843*5778^(5/9) 8626745145827974 a001 365435296162/843*5778^(11/18) 8626745160183510 a001 267913919*5778^(2/3) 8626745161473734 a007 Real Root Of -126*x^4+164*x^3+335*x^2+705*x-893 8626745163882810 k002 Champernowne real with 3/2*n^2+353/2*n-92 8626745174539046 a001 139583862445/843*5778^(13/18) 8626745188894582 a001 86267571272/843*5778^(7/9) 8626745196986533 m005 (1/3*Zeta(3)-1/12)/(2/11*2^(1/2)-5/8) 8626745197128931 m005 (3/8+1/4*5^(1/2))/(6/11*exp(1)-2/5) 8626745203250118 a001 53316291173/843*5778^(5/6) 8626745207429661 r005 Im(z^2+c),c=-11/18+8/53*I,n=28 8626745207566420 r009 Im(z^3+c),c=-5/126+34/39*I,n=21 8626745217605654 a001 10983760033/281*5778^(8/9) 8626745231961189 a001 20365011074/843*5778^(17/18) 8626745246299651 a001 222915097164383/2584 8626745262356180 m001 1/5*(3^(1/2)-Riemann2ndZero)*5^(1/2) 8626745262662736 a003 sin(Pi*7/60)/cos(Pi*4/11) 8626745264183410 k002 Champernowne real with 2*n^2+175*n-91 8626745291423987 a001 3571/3*225851433717^(22/23) 8626745322793316 a001 33385282/1597*89^(6/19) 8626745364484010 k002 Champernowne real with 5/2*n^2+347/2*n-90 8626745375448282 q001 7/81143 8626745397511690 b008 Tanh[6/13]/5 8626745406659451 s002 sum(A074675[n]/(exp(n)-1),n=1..infinity) 8626745406659451 s002 sum(A235155[n]/(exp(n)-1),n=1..infinity) 8626745430691424 a001 3536736619241/281*2207^(1/4) 8626745464784610 k002 Champernowne real with 3*n^2+172*n-89 8626745482006193 r009 Im(z^3+c),c=-15/106+51/61*I,n=49 8626745483632665 r005 Re(z^2+c),c=-123/110+13/43*I,n=23 8626745528507199 a007 Real Root Of -481*x^4+353*x^3+927*x^2+154*x-64 8626745541385014 a001 6557470319842/843*2207^(5/16) 8626745558026071 m001 GAMMA(3/4)/(BesselI(0,2)-Thue) 8626745560704648 l006 ln(1724/4085) 8626745565085210 k002 Champernowne real with 7/2*n^2+341/2*n-88 8626745585388526 a007 Real Root Of -700*x^4+702*x^3+198*x^2+124*x+798 8626745652078605 a001 4052739537881/843*2207^(3/8) 8626745664399103 a001 377/3571*14662949395604^(19/21) 8626745664416132 a001 1597/843*817138163596^(17/19) 8626745664416132 a001 1597/843*14662949395604^(17/21) 8626745664416132 a001 1597/843*192900153618^(17/18) 8626745665385810 k002 Champernowne real with 4*n^2+169*n-87 8626745676890887 m001 (Chi(1)-Gompertz)/(MertensB3+Porter) 8626745683590633 r002 36th iterates of z^2 + 8626745688802977 a007 Real Root Of 416*x^4-565*x^3-982*x^2+414*x+506 8626745704532243 r001 13i'th iterates of 2*x^2-1 of 8626745712827976 r009 Re(z^3+c),c=-17/94+41/59*I,n=40 8626745718465017 a007 Real Root Of -930*x^4+737*x^3+423*x^2-208*x+494 8626745719858008 m001 (ln(2^(1/2)+1)-CareFree)/(Kac-MasserGramain) 8626745727318163 r002 53i'th iterates of 2*x/(1-x^2) of 8626745727665410 r002 8th iterates of z^2 + 8626745727665410 r002 8th iterates of z^2 + 8626745748029992 a007 Real Root Of 709*x^4+582*x^3+238*x^2-154*x-329 8626745757793094 m002 -1-Pi^2+Pi^4-Pi*Csch[Pi] 8626745762772197 a001 2504730781961/843*2207^(7/16) 8626745765686410 k002 Champernowne real with 9/2*n^2+335/2*n-86 8626745774541436 a007 Real Root Of 267*x^4+657*x^3+630*x^2-917*x-986 8626745789596064 r009 Re(z^3+c),c=-17/122+27/50*I,n=26 8626745811253401 m002 -Pi^4+Pi^6-Log[Pi]^2*Tanh[Pi] 8626745828593078 r002 37th iterates of z^2 + 8626745834088822 a007 Real Root Of -931*x^4+395*x^3-849*x^2-888*x+635 8626745839361254 a001 11384387281/2*32951280099^(7/9) 8626745839361254 a001 1568397607/8*2504730781961^(7/9) 8626745839361254 a001 1322157322203/8*433494437^(7/9) 8626745840347882 r002 33th iterates of z^2 + 8626745865987010 k002 Champernowne real with 5*n^2+166*n-85 8626745873465790 a001 516002918640/281*2207^(1/2) 8626745890227096 a007 Real Root Of 994*x^4+351*x^3-84*x^2-784*x-939 8626745900592495 a001 87403803/4181*89^(6/19) 8626745922167566 a001 24476/55*13^(8/31) 8626745939324046 r009 Im(z^3+c),c=-7/36+47/48*I,n=38 8626745962726003 a007 Real Root Of 168*x^4-556*x^3-647*x^2-426*x-336 8626745966287611 k002 Champernowne real with 11/2*n^2+329/2*n-84 8626745967923247 a001 141422324/3*3524578^(22/23) 8626745970538254 a007 Real Root Of -739*x^4+351*x^3-671*x^2-284*x+889 8626745979469055 h001 (8/11*exp(1)+5/12)/(4/5*exp(1)+3/5) 8626745984159385 a001 956722026041/843*2207^(9/16) 8626745984892266 a001 228826127/10946*89^(6/19) 8626745993963371 a007 Real Root Of -383*x^4+971*x^3-682*x^2-502*x+910 8626745997191436 a001 599074578/28657*89^(6/19) 8626745998985861 a001 1568397607/75025*89^(6/19) 8626745999247664 a001 4106118243/196418*89^(6/19) 8626745999285861 a001 10749957122/514229*89^(6/19) 8626745999291434 a001 28143753123/1346269*89^(6/19) 8626745999292247 a001 73681302247/3524578*89^(6/19) 8626745999292365 a001 192900153618/9227465*89^(6/19) 8626745999292383 a001 505019158607/24157817*89^(6/19) 8626745999292385 a001 1322157322203/63245986*89^(6/19) 8626745999292386 a001 3461452808002/165580141*89^(6/19) 8626745999292386 a001 9062201101803/433494437*89^(6/19) 8626745999292386 a001 23725150497407/1134903170*89^(6/19) 8626745999292386 a001 14662949395604/701408733*89^(6/19) 8626745999292386 a001 5600748293801/267914296*89^(6/19) 8626745999292386 a001 2139295485799/102334155*89^(6/19) 8626745999292387 a001 87403804/4181*89^(6/19) 8626745999292393 a001 312119004989/14930352*89^(6/19) 8626745999292439 a001 119218851371/5702887*89^(6/19) 8626745999292749 a001 45537549124/2178309*89^(6/19) 8626745999294878 a001 17393796001/832040*89^(6/19) 8626745999309468 a001 6643838879/317811*89^(6/19) 8626745999409468 a001 2537720636/121393*89^(6/19) 8626746000094877 a001 969323029/46368*89^(6/19) 8626746004792742 a001 370248451/17711*89^(6/19) 8626746026199439 m001 GAMMA(11/24)*Magata*ln(Pi)^2 8626746036992390 a001 141422324/6765*89^(6/19) 8626746054855711 a007 Real Root Of 680*x^4-244*x^3+334*x^2+744*x-140 8626746064851864 a007 Real Root Of -863*x^4+958*x^3-440*x^2-652*x+858 8626746065212077 r005 Im(z^2+c),c=-9/74+33/41*I,n=24 8626746066588211 k002 Champernowne real with 6*n^2+163*n-83 8626746094852982 a001 591286729879/843*2207^(5/8) 8626746166888811 k002 Champernowne real with 13/2*n^2+323/2*n-82 8626746174678151 a007 Real Root Of -385*x^4+792*x^3-155*x^2+924*x-977 8626746205546580 a001 365435296162/843*2207^(11/16) 8626746214720233 l006 ln(3743/8869) 8626746244762827 r005 Im(z^2+c),c=-1+7/80*I,n=11 8626746256834380 b008 Sqrt[2/3]+Sqrt[61] 8626746257692065 a001 54018521/2584*89^(6/19) 8626746264670709 a001 199/34*21^(38/43) 8626746267189411 k002 Champernowne real with 7*n^2+160*n-81 8626746270734906 g006 Psi(1,11/12)+Psi(1,3/5)+Psi(1,2/3)-Psi(1,1/4) 8626746274245736 a007 Real Root Of -19*x^4+949*x^3+28*x^2+179*x-774 8626746274478406 r002 5th iterates of z^2 + 8626746276981837 m001 (Magata+TwinPrimes)/(ln(Pi)+FeigenbaumMu) 8626746295799741 a007 Real Root Of 868*x^4+133*x^3+942*x^2+536*x-634 8626746298075648 a003 cos(Pi*12/95)-cos(Pi*38/79) 8626746308745251 r005 Re(z^2+c),c=5/22+29/64*I,n=43 8626746315759983 a003 sin(Pi*29/93)-sin(Pi*31/84) 8626746316240179 a001 267913919*2207^(3/4) 8626746318984155 m005 (1/2*gamma+7/11)/(1/5*5^(1/2)+5/8) 8626746336414010 r001 26i'th iterates of 2*x^2-1 of 8626746364428424 m001 cos(1)^2/ln(GAMMA(5/24))^2/cosh(1) 8626746367490011 k002 Champernowne real with 15/2*n^2+317/2*n-80 8626746394913966 r002 5th iterates of z^2 + 8626746426933780 a001 139583862445/843*2207^(13/16) 8626746467790611 k002 Champernowne real with 8*n^2+157*n-79 8626746472797774 h001 (7/9*exp(1)+3/4)/(1/3*exp(2)+6/7) 8626746484982056 p004 log(17713/16249) 8626746506986027 q001 2161/2505 8626746509670699 m001 1/FeigenbaumD/Conway*ln(sqrt(3))^2 8626746524921083 a007 Real Root Of 724*x^4-635*x^3-812*x^2-141*x-326 8626746535763749 r002 33th iterates of z^2 + 8626746537627382 a001 86267571272/843*2207^(7/8) 8626746568091211 k002 Champernowne real with 17/2*n^2+311/2*n-78 8626746568949298 m005 (1/3*gamma-2/9)/(1/5*exp(1)-4) 8626746569357789 m001 Robbin*ZetaQ(3)^Catalan 8626746588652732 s002 sum(A087301[n]/(n*exp(pi*n)+1),n=1..infinity) 8626746624894167 r005 Re(z^2+c),c=-79/90+2/45*I,n=31 8626746642551621 r005 Re(z^2+c),c=27/64+16/63*I,n=8 8626746643083363 r005 Im(z^2+c),c=31/106+23/42*I,n=30 8626746645162965 a007 Real Root Of -247*x^4+891*x^3+202*x^2-142*x+436 8626746648320985 a001 53316291173/843*2207^(15/16) 8626746668391811 k002 Champernowne real with 9*n^2+154*n-77 8626746696190949 h001 (7/11*exp(1)+5/6)/(10/11*exp(1)+1/2) 8626746704449086 a007 Real Root Of -663*x^4+8*x^3-255*x^2-691*x-34 8626746716360918 m001 1/Pi/ErdosBorwein/exp(exp(1))^2 8626746741943729 a007 Real Root Of 16*x^4-73*x^3+476*x^2-226*x+16 8626746768692411 k002 Champernowne real with 19/2*n^2+305/2*n-76 8626746773176301 l006 ln(2019/4784) 8626746796912423 p003 LerchPhi(1/1024,1,225/194) 8626746802291026 a007 Real Root Of -137*x^4+93*x^3-21*x^2+504*x+586 8626746809754421 m001 (BesselI(0,1)-Chi(1))/(-FeigenbaumKappa+Thue) 8626746825500557 a007 Real Root Of -412*x^4+901*x^3+545*x^2-808*x-296 8626746842410043 a007 Real Root Of 770*x^4-71*x^3-710*x^2-682*x-532 8626746861343487 a007 Real Root Of -126*x^4+965*x^3-43*x^2+148*x+849 8626746868334388 a007 Real Root Of 671*x^4-220*x^3+803*x^2+834*x-391 8626746868993011 k002 Champernowne real with 10*n^2+151*n-75 8626746881157493 a007 Real Root Of -41*x^4+589*x^3+173*x^2+380*x-812 8626746889187887 r005 Im(z^2+c),c=25/94+14/25*I,n=30 8626746902749006 a007 Real Root Of 750*x^4-962*x^3+591*x^2+562*x-988 8626746923882561 a007 Real Root Of -626*x^4+247*x^3-973*x^2-485*x+811 8626746956141218 a007 Real Root Of -80*x^4+807*x^3+261*x^2+175*x-819 8626746968925179 m001 ZetaQ(4)^Psi(1,1/3)*arctan(1/3)^Psi(1,1/3) 8626746969293612 k002 Champernowne real with 21/2*n^2+299/2*n-74 8626746977198647 r005 Re(z^2+c),c=17/62+34/49*I,n=3 8626746984706726 a001 13/3010349*47^(7/9) 8626747012730448 a007 Real Root Of -631*x^4+933*x^3+225*x^2-495*x+354 8626747065774398 m001 log(1+sqrt(2))/exp(GAMMA(3/4))/sqrt(3)^2 8626747069594212 k002 Champernowne real with 11*n^2+148*n-73 8626747095780059 a001 3278735159921/682*521^(6/13) 8626747116999279 r005 Re(z^2+c),c=-73/86+8/61*I,n=63 8626747135503986 m001 FeigenbaumDelta*(Chi(1)-Khinchin) 8626747137540414 a007 Real Root Of -8*x^4-92*x^3-206*x^2-181*x-988 8626747138794427 m005 (1/2*gamma+4/9)/(64/99+1/11*5^(1/2)) 8626747154626006 s002 sum(A284102[n]/((pi^n-1)/n),n=1..infinity) 8626747169386826 m001 (-Magata+Salem)/(exp(Pi)+exp(1)) 8626747169894812 k002 Champernowne real with 23/2*n^2+293/2*n-72 8626747218190976 m001 (exp(-1/2*Pi)+Kolakoski)/(Landau-Niven) 8626747219783955 a007 Real Root Of 476*x^4-976*x^3-278*x^2-908*x+81 8626747234271158 a007 Real Root Of -846*x^4-484*x^3-132*x^2-320*x-20 8626747239874884 m001 (exp(Pi)-gamma(2)*Khinchin)/Khinchin 8626747240667138 a007 Real Root Of 943*x^4+40*x^3-907*x^2-434*x-196 8626747247510450 m001 GAMMA(2/3)*exp(TwinPrimes)^2/sin(Pi/5) 8626747270195412 k002 Champernowne real with 12*n^2+145*n-71 8626747271412125 r005 Im(z^2+c),c=19/94+25/43*I,n=9 8626747278494200 a007 Real Root Of -421*x^4+799*x^3+736*x^2-485*x-220 8626747283518684 r002 35th iterates of z^2 + 8626747286618858 a001 2/1346269*21^(26/45) 8626747288684381 m001 (LambertW(1)+BesselJ(0,1))/(GaussAGM+Rabbit) 8626747291400929 m002 -4+Pi^2+Pi^6-Pi^4*ProductLog[Pi] 8626747322607044 m005 (1/2*3^(1/2)+4/5)/(7/11*3^(1/2)-10/11) 8626747352635249 a007 Real Root Of -913*x^4-424*x^3-355*x^2+556*x-45 8626747370496012 k002 Champernowne real with 25/2*n^2+287/2*n-70 8626747400242478 a007 Real Root Of 743*x^4-442*x^3+430*x^2+697*x-414 8626747429557417 a007 Real Root Of 326*x^4+695*x^3+971*x^2-313*x-727 8626747443942128 a001 199*(1/2*5^(1/2)+1/2)^20*3^(23/24) 8626747455660188 s002 sum(A049328[n]/((3*n)!),n=1..infinity) 8626747467950394 a001 610/271443*11^(23/41) 8626747470796612 k002 Champernowne real with 13*n^2+142*n-69 8626747481541823 a007 Real Root Of 787*x^4+107*x^3-919*x^2-548*x-156 8626747502839873 r005 Im(z^2+c),c=-93/94+3/35*I,n=26 8626747504443683 a007 Real Root Of 608*x^4-712*x^3-491*x^2+958*x+398 8626747508055539 a007 Real Root Of -604*x^4+158*x^3-218*x^2+16*x+612 8626747513691345 m001 (3^(1/2)+cos(1))/(-Zeta(1/2)+GAMMA(19/24)) 8626747526005529 a001 18/55*987^(38/47) 8626747531258086 a001 1/48*75025^(23/31) 8626747556900349 m001 ThueMorse^Mills/(ThueMorse^Zeta(1/2)) 8626747563956502 a003 cos(Pi*6/91)*cos(Pi*18/115) 8626747568695611 a007 Real Root Of 453*x^4-662*x^3+560*x^2+119*x-990 8626747571097212 k002 Champernowne real with 27/2*n^2+281/2*n-68 8626747593176595 m001 1/3*3^(1/2)*GAMMA(2/3)^PisotVijayaraghavan 8626747614658897 a007 Real Root Of -903*x^4-280*x^3-393*x^2-977*x-230 8626747671397812 k002 Champernowne real with 14*n^2+139*n-67 8626747674892586 m001 (ln(3)+GaussAGM)/(Otter-TravellingSalesman) 8626747676081424 a007 Real Root Of 369*x^4-595*x^3+182*x^2-452*x+38 8626747676504265 l006 ln(2314/5483) 8626747677928913 r005 Im(z^2+c),c=-5/8+29/148*I,n=12 8626747704366569 r002 3th iterates of z^2 + 8626747746967089 r002 16i'th iterates of 2*x/(1-x^2) of 8626747750892776 r005 Re(z^2+c),c=-63/50+7/25*I,n=5 8626747752307454 a001 1/161*29^(4/41) 8626747770390446 a001 20633239/987*89^(6/19) 8626747771698412 k002 Champernowne real with 29/2*n^2+275/2*n-66 8626747774774582 m001 exp(1)-exp(1/2)-GAMMA(11/24) 8626747774774582 m001 exp(1)-exp(1/2)-Pi*csc(11/24*Pi)/GAMMA(13/24) 8626747780878039 a007 Real Root Of 973*x^4-833*x^3-579*x^2-64*x-698 8626747826931853 a007 Real Root Of 292*x^4-791*x^3-141*x^2+680*x+22 8626747833908008 m001 ln(2+3^(1/2))/(GAMMA(2/3)^HardHexagonsEntropy) 8626747850003386 r009 Im(z^3+c),c=-41/90+1/28*I,n=29 8626747850052493 r002 23th iterates of z^2 + 8626747854877767 a007 Real Root Of 304*x^4-41*x^3-334*x^2-965*x+939 8626747871999012 k002 Champernowne real with 15*n^2+136*n-65 8626747903016331 a007 Real Root Of -293*x^4+907*x^3+697*x^2+50*x+269 8626747915150369 a003 cos(Pi*21/64)+cos(Pi*29/75) 8626747933290627 m001 Zeta(1,2)^Otter/(ZetaP(2)^Otter) 8626747934636198 r005 Im(z^2+c),c=-37/26+1/122*I,n=11 8626747938329150 q001 2406/2789 8626747952235726 a003 cos(Pi*5/48)*sin(Pi*31/85) 8626747958284338 m001 (sin(1/5*Pi)+BesselK(1,1))/(Khinchin-Mills) 8626747972299613 k002 Champernowne real with 31/2*n^2+269/2*n-64 8626748026568544 m001 1/FeigenbaumC*ln(GAMMA(11/12))^3 8626748029668950 r009 Im(z^3+c),c=-3/5+13/54*I,n=27 8626748037118762 m001 Riemann1stZero*FeigenbaumC*exp(BesselK(1,1))^2 8626748052081016 p003 LerchPhi(1/10,1,97/79) 8626748072510021 k002 Champernowne real with 16*n^2+133*n-63 8626748078485617 m001 (Pi^(1/2)-gamma(3)*FellerTornier)/gamma(3) 8626748083896969 r002 28th iterates of z^2 + 8626748091600693 r002 44th iterates of z^2 + 8626748110074458 l006 ln(3474/3787) 8626748111863030 m001 Bloch^(Pi*2^(1/2)/GAMMA(3/4)*KhinchinHarmonic) 8626748121724829 m002 -4+Pi-(Log[Pi]*Sech[Pi])/E^Pi 8626748134672613 m005 (1/2*2^(1/2)+5/12)/(69/77+2/11*5^(1/2)) 8626748150464595 r009 Re(z^3+c),c=-17/126+31/61*I,n=13 8626748172810081 k002 Champernowne real with 33/2*n^2+263/2*n-62 8626748189230166 a007 Real Root Of 787*x^4-97*x^3-90*x^2+57*x-382 8626748216042485 p004 log(24029/10141) 8626748217339713 m001 1/exp(sqrt(1+sqrt(3)))*GAMMA(3/4)^2*sqrt(3)^2 8626748223562070 m001 ln(GAMMA(23/24))/FransenRobinson*GAMMA(7/24)^2 8626748231896398 a007 Real Root Of -340*x^4-493*x^3-985*x^2-23*x+585 8626748273110141 k002 Champernowne real with 17*n^2+130*n-61 8626748296486313 m001 (exp(Pi)+Bloch)/(-FellerTornier+Gompertz) 8626748318033734 a007 Real Root Of 214*x^4-520*x^3-517*x^2+14*x+588 8626748327693992 m001 (FeigenbaumB+Khinchin)/(MadelungNaCl-Totient) 8626748372573114 m001 (-Paris+Stephens)/(Psi(2,1/3)-exp(-1/2*Pi)) 8626748373410201 k002 Champernowne real with 35/2*n^2+257/2*n-60 8626748375553331 l006 ln(2609/6182) 8626748419011376 a001 710647/5*55^(9/20) 8626748429934420 a001 1/5473*21^(26/51) 8626748456281886 a001 3536736619241/281*843^(2/7) 8626748473710261 k002 Champernowne real with 18*n^2+127*n-59 8626748481000166 a007 Real Root Of 111*x^4-637*x^3+968*x^2+744*x-549 8626748512846952 a007 Real Root Of -213*x^4+472*x^3+524*x^2+743*x+672 8626748522162464 m005 (1/3*2^(1/2)-1/9)/(3/10*Catalan+1/7) 8626748546237769 h001 (-9*exp(-3)+7)/(-4*exp(1/2)-1) 8626748559714201 h001 (9/11*exp(1)+5/6)/(4/11*exp(2)+6/7) 8626748561641690 a007 Real Root Of -744*x^4+20*x^3+36*x^2+445*x+782 8626748574010321 k002 Champernowne real with 37/2*n^2+251/2*n-58 8626748581251466 m004 3+(6*Sqrt[5])/Pi+Sec[Sqrt[5]*Pi] 8626748622201874 a007 Real Root Of 50*x^4-842*x^3-848*x^2-790*x+75 8626748628693190 a007 Real Root Of -79*x^4-585*x^3+821*x^2-3*x+837 8626748649137635 a007 Real Root Of -429*x^4+173*x^3-953*x^2-343*x+762 8626748650404120 r005 Im(z^2+c),c=1/94+3/35*I,n=8 8626748656979545 a001 199/1597*20365011074^(21/22) 8626748674310381 k002 Champernowne real with 19*n^2+124*n-57 8626748682669403 a001 34/123*9349^(22/25) 8626748686777044 a007 Real Root Of 453*x^4-238*x^3-937*x^2-191*x+764 8626748708841456 m005 (1/2*3^(1/2)+9/10)/(7/9*3^(1/2)+7/10) 8626748716555021 a007 Real Root Of 351*x^4-813*x^3-137*x^2+769*x+49 8626748749541181 m001 (Paris+StolarskyHarborth)/(Zeta(1,-1)+Artin) 8626748773705609 a001 34/123*39603^(19/25) 8626748774610441 k002 Champernowne real with 39/2*n^2+245/2*n-56 8626748798985747 a007 Real Root Of 468*x^4-743*x^3-351*x^2+619*x+59 8626748843941860 r005 Im(z^2+c),c=-89/78+5/46*I,n=25 8626748852353474 m001 (2^(1/3))^ZetaQ(2)/((2^(1/3))^ln(2)) 8626748874910501 k002 Champernowne real with 20*n^2+121*n-55 8626748930333935 r009 Im(z^3+c),c=-61/106+10/21*I,n=41 8626748932577931 l006 ln(2904/6881) 8626748942757027 m001 ln(GAMMA(13/24))^2*Trott^2*sqrt(3)^2 8626748946601907 a007 Real Root Of -87*x^4-707*x^3+365*x^2-77*x+117 8626748951287554 a007 Real Root Of -41*x^4+824*x^3+688*x^2+595*x+553 8626748956425971 m001 (Grothendieck+ZetaP(4))/(Chi(1)+ln(2+3^(1/2))) 8626748964865118 a007 Real Root Of -679*x^4-28*x^3+6*x^2-112*x+257 8626748975210561 k002 Champernowne real with 41/2*n^2+239/2*n-54 8626748988880476 a001 55/76*64079^(16/25) 8626748993570889 a007 Real Root Of -256*x^4-390*x^3-316*x^2+26*x+149 8626749052198097 a007 Real Root Of -386*x^4+691*x^3-893*x^2+559*x-42 8626749071791433 r005 Im(z^2+c),c=-43/78+9/58*I,n=51 8626749075510621 k002 Champernowne real with 21*n^2+118*n-53 8626749093666995 r005 Re(z^2+c),c=1/12+1/18*I,n=8 8626749105109013 q001 2651/3073 8626749111979370 r009 Im(z^3+c),c=-65/114+29/59*I,n=29 8626749135287328 m001 (BesselI(1,2)-Weierstrass*ZetaP(3))/ZetaP(3) 8626749174251475 a007 Real Root Of 115*x^4+937*x^3-417*x^2+469*x-280 8626749175810681 k002 Champernowne real with 43/2*n^2+233/2*n-52 8626749264888201 r009 Im(z^3+c),c=-25/48+37/63*I,n=2 8626749271137026 r009 Re(z^3+c),c=-9/70+3/4*I,n=2 8626749276110741 k002 Champernowne real with 22*n^2+115*n-51 8626749278674901 a007 Real Root Of -373*x^4-2*x^3+141*x^2+760*x+756 8626749281544098 m005 (1/2*Catalan+1/8)/(16/7+2*5^(1/2)) 8626749298288226 r005 Im(z^2+c),c=37/122+26/45*I,n=45 8626749303463597 a007 Real Root Of 373*x^4-839*x^3+128*x^2+295*x-586 8626749317427232 a003 sin(Pi*37/113)-sin(Pi*29/74) 8626749323058242 m001 (GolombDickman-Lehmer)/(Zeta(3)-GaussAGM) 8626749323373305 a001 6557470319842/843*843^(5/14) 8626749324957366 m001 1/3*(Pi+Psi(1,1/3))*3^(1/2)*GAMMA(5/6) 8626749339102552 a001 271443/89*514229^(21/22) 8626749346394641 m001 1/KhintchineHarmonic^2/ln(Si(Pi))^2/Zeta(9) 8626749376410801 k002 Champernowne real with 45/2*n^2+227/2*n-50 8626749386868993 l006 ln(3199/7580) 8626749446789147 a007 Real Root Of 130*x^4-532*x^3+417*x^2-21*x-742 8626749476710861 k002 Champernowne real with 23*n^2+112*n-49 8626749482412683 a007 Real Root Of -831*x^4+577*x^3-820*x^2-634*x+894 8626749482628646 a007 Real Root Of -782*x^4-342*x^3-934*x^2+41*x+944 8626749505289866 s002 sum(A165790[n]/(n*pi^n+1),n=1..infinity) 8626749513989738 m001 (Zeta(3)-gamma(1))/(Cahen+Riemann1stZero) 8626749540482066 a001 10610209857723/1364*521^(5/13) 8626749577010921 k002 Champernowne real with 47/2*n^2+221/2*n-48 8626749591856014 r002 4th iterates of z^2 + 8626749624216858 a007 Real Root Of -863*x^4+760*x^3-409*x^2-799*x+581 8626749624695967 a001 377/1364*3461452808002^(11/12) 8626749650984756 r005 Im(z^2+c),c=-93/94+3/35*I,n=25 8626749677310981 k002 Champernowne real with 24*n^2+109*n-47 8626749686314600 a007 Real Root Of 722*x^4-340*x^3-508*x^2-59*x-291 8626749697917993 a007 Real Root Of 718*x^4-105*x^3-122*x^2-621*x-910 8626749707982422 m001 (-Kolakoski+PlouffeB)/(5^(1/2)-Zeta(1/2)) 8626749737091141 m005 (1/2*3^(1/2)+6/7)/(1/5*Pi-3/7) 8626749741539846 r005 Re(z^2+c),c=-11/14+17/123*I,n=22 8626749747765354 r009 Re(z^3+c),c=-9/74+21/46*I,n=5 8626749764448039 l006 ln(3494/8279) 8626749777611041 k002 Champernowne real with 49/2*n^2+215/2*n-46 8626749802407050 r005 Im(z^2+c),c=-13/10+1/124*I,n=9 8626749826204658 a007 Real Root Of 365*x^4+404*x^3+954*x^2+679*x-67 8626749838041264 m002 -8-Pi+Pi^4 8626749838159225 a007 Real Root Of -44*x^4+814*x^3+342*x^2-548*x-280 8626749866763093 a007 Real Root Of -975*x^4+894*x^3-403*x^2-984*x+565 8626749877911101 k002 Champernowne real with 25*n^2+106*n-45 8626749905537122 r001 43i'th iterates of 2*x^2-1 of 8626749906608595 m008 (2*Pi^3+2/3)/(3/4*Pi^4-2/5) 8626749913968433 a007 Real Root Of -760*x^4+448*x^3-866*x^2-728*x+725 8626749930296637 p004 log(17257/7283) 8626749958679870 m001 (FeigenbaumC-Niven)/(GAMMA(3/4)+CopelandErdos) 8626749966865303 m001 (Psi(1,1/3)+exp(1/exp(1)))/(-gamma(3)+Totient) 8626749978211161 k002 Champernowne real with 51/2*n^2+209/2*n-44 8626750019898973 a007 Real Root Of 350*x^4+296*x^3+652*x^2+342*x-194 8626750020696073 a007 Real Root Of 50*x^4-312*x^3+884*x^2+882*x-125 8626750032317848 a007 Real Root Of 729*x^4+116*x^3+344*x^2+646*x-28 8626750074471254 q001 2896/3357 8626750078511221 k002 Champernowne real with 26*n^2+103*n-43 8626750079153391 m002 2*Sinh[Pi]+E^Pi*Pi*Sinh[Pi] 8626750083232766 l006 ln(3789/8978) 8626750086325608 h001 (6/7*exp(1)+7/8)/(5/12*exp(2)+7/11) 8626750108376591 m001 1/ln(Catalan)/Magata^2*Zeta(1,2)^2 8626750144720339 a007 Real Root Of 686*x^4-735*x^3+305*x^2+351*x-776 8626750147898525 m005 (1/2*gamma+10/11)/(5/12*3^(1/2)+2/3) 8626750178811281 k002 Champernowne real with 53/2*n^2+203/2*n-42 8626750182110094 a007 Real Root Of 857*x^4-698*x^3-911*x^2+686*x+347 8626750190464812 a001 4052739537881/843*843^(3/7) 8626750193569556 a001 139583862445/322*322^(11/12) 8626750217786681 m001 (arctan(1/3)*Lehmer+Sierpinski)/arctan(1/3) 8626750229204820 m001 (3^(1/2)+BesselJ(1,1))/(-Bloch+Sarnak) 8626750231951323 m001 (-cos(1/5*Pi)+GolombDickman)/(3^(1/2)-exp(Pi)) 8626750253913118 r005 Im(z^2+c),c=-41/58+23/62*I,n=27 8626750279111341 k002 Champernowne real with 27*n^2+100*n-41 8626750321687661 a007 Real Root Of -591*x^4+826*x^3+223*x^2-869*x-58 8626750322348986 v002 sum(1/(3^n*(7*n^2+20*n-23)),n=1..infinity) 8626750323145412 r005 Re(z^2+c),c=7/32+13/42*I,n=46 8626750337044545 m001 (Riemann1stZero+Sarnak)/(3^(1/2)+gamma(2)) 8626750339607700 m001 exp(Porter)/CopelandErdos/Zeta(1/2)^2 8626750355963863 l006 ln(4084/9677) 8626750368043776 a007 Real Root Of 665*x^4-599*x^3-447*x^2+916*x+370 8626750379411401 k002 Champernowne real with 55/2*n^2+197/2*n-40 8626750382796164 a007 Real Root Of -139*x^4+380*x^3+850*x^2-178*x-646 8626750392245829 r005 Im(z^2+c),c=-17/56+38/51*I,n=4 8626750398296267 a001 199/6765*4181^(4/31) 8626750403131150 m001 (Lehmer+Niven)/(FeigenbaumB+FeigenbaumC) 8626750404649617 m001 Si(Pi)*ZetaR(2)+sin(1/5*Pi) 8626750463892725 a007 Real Root Of 116*x^4+911*x^3-721*x^2+547*x+786 8626750479711461 k002 Champernowne real with 28*n^2+97*n-39 8626750535834204 m001 (PlouffeB-Thue)/(Pi+Conway) 8626750540462825 b008 E+2*(-2+ExpIntegralEi[2]) 8626750543344078 a001 7/17711*377^(5/38) 8626750544184437 r005 Re(z^2+c),c=5/34+18/43*I,n=4 8626750551037318 a007 Real Root Of -25*x^4+394*x^3+102*x^2+962*x-84 8626750580011521 k002 Champernowne real with 57/2*n^2+191/2*n-38 8626750585999137 m001 (BesselI(0,1)-Landau)/Chi(1) 8626750619635534 a001 55/76*2207^(23/25) 8626750657558165 m001 GAMMA(1/24)^2*exp(KhintchineLevy)^2*Zeta(1/2) 8626750669123748 m001 (MertensB1+Tribonacci)/(Pi^(1/2)+LaplaceLimit) 8626750680311581 k002 Champernowne real with 29*n^2+94*n-37 8626750682339499 r005 Re(z^2+c),c=-79/90+2/45*I,n=25 8626750705471418 a007 Real Root Of 227*x^4-365*x^3+78*x^2+742*x+222 8626750708435120 m001 Magata^2/exp(Cahen)*sqrt(2) 8626750719303442 a001 52623179387751/610 8626750728562157 b008 -7+Pi+Log[20] 8626750757039686 a007 Real Root Of -844*x^4+495*x^3-128*x^2-426*x+513 8626750767213055 h001 (9/10*exp(1)+6/7)/(4/9*exp(2)+6/11) 8626750773830798 a007 Real Root Of -684*x^4+364*x^3+102*x^2+354*x+842 8626750779662593 a007 Real Root Of 791*x^4-546*x^3-461*x^2-288*x-694 8626750780611641 k002 Champernowne real with 59/2*n^2+185/2*n-36 8626750806403555 a007 Real Root Of -30*x^4+57*x^3-13*x^2+873*x+816 8626750814221443 a001 13/2*1364^(2/51) 8626750826107085 m001 (Psi(2,1/3)-gamma)/(-FeigenbaumKappa+Rabbit) 8626750853978250 b008 ArcSinh[Pi^(-1/43)] 8626750864947536 r005 Im(z^2+c),c=-73/118+13/32*I,n=7 8626750880911701 k002 Champernowne real with 30*n^2+91*n-35 8626750882198272 a007 Real Root Of -968*x^4+760*x^3+972*x^2+471*x+707 8626750892611919 q001 3141/3641 8626750908953462 s002 sum(A117452[n]/(n*10^n+1),n=1..infinity) 8626750926254470 r005 Im(z^2+c),c=-7/6+27/230*I,n=8 8626750948939437 m001 (2^(1/2)+1/2)/(-exp(gamma)+4) 8626750955349757 a007 Real Root Of 959*x^4+152*x^3+28*x^2-804*x+69 8626750968706460 a007 Real Root Of -397*x^4+527*x^3+409*x^2+443*x+636 8626750981211761 k002 Champernowne real with 61/2*n^2+179/2*n-34 8626750982295433 a007 Real Root Of -871*x^4+881*x^3+741*x^2-513*x+54 8626750997165479 a001 13/2*15127^(1/34) 8626751014471691 m001 2^(1/3)+cos(1)+Zeta(1,2) 8626751014471691 m001 cos(1)+(2^(1/3))+Zeta(1,2) 8626751028421173 a001 225851433717/2207*1364^(14/15) 8626751032694947 a007 Real Root Of 516*x^4-447*x^3+285*x^2+285*x-539 8626751039581666 r005 Im(z^2+c),c=-31/52+36/53*I,n=3 8626751057556405 a001 2504730781961/843*843^(1/2) 8626751076854686 m001 1/exp(GAMMA(2/3))^2/GAMMA(1/4)^2/sin(Pi/5) 8626751081511821 k002 Champernowne real with 31*n^2+88*n-33 8626751111942933 m001 (ln(2^(1/2)+1)-BesselK(1,1))/(Pi^(1/2)+Porter) 8626751120431167 m001 (FeigenbaumC+Kac)/(OneNinth-Otter) 8626751145006835 r005 Re(z^2+c),c=17/44+8/25*I,n=35 8626751147384230 a007 Real Root Of -763*x^4+497*x^3+922*x^2-91*x-23 8626751173615319 a007 Real Root Of 172*x^4-811*x^3-47*x^2+379*x-254 8626751176186559 r005 Im(z^2+c),c=-32/27+5/62*I,n=10 8626751181811881 k002 Champernowne real with 63/2*n^2+173/2*n-32 8626751200593695 m001 GAMMA(1/24)*Riemann1stZero^2*ln(Zeta(3)) 8626751207912328 r005 Im(z^2+c),c=-1/5+29/40*I,n=45 8626751216806361 r004 Im(z^2+c),c=5/22+15/22*I,z(0)=I,n=4 8626751221281151 a003 cos(Pi*1/104)*cos(Pi*15/89) 8626751225212202 a001 3/6557470319842*21^(5/24) 8626751230237039 m001 exp((2^(1/3)))/GolombDickman/cos(Pi/5)^2 8626751231413538 a007 Real Root Of -849*x^4+334*x^3-876*x^2-775*x+668 8626751236651431 a007 Real Root Of 362*x^4-954*x^3-100*x^2+280*x-497 8626751243087865 a007 Real Root Of -601*x^4+681*x^3+619*x^2+469*x+714 8626751276175816 m001 GAMMA(2/3)^Cahen*Rabbit 8626751279090675 a007 Real Root Of -171*x^4-582*x^3-678*x^2+893*x+996 8626751282111941 k002 Champernowne real with 32*n^2+85*n-31 8626751284293908 r005 Im(z^2+c),c=-3/5+19/119*I,n=58 8626751289446340 m001 1/Pi^2/exp((2^(1/3)))/gamma^2 8626751318827671 m002 -Log[Pi]+(3*Tanh[Pi])/(Pi^2*ProductLog[Pi]) 8626751337541043 a001 365435296162/2207*1364^(13/15) 8626751338557174 a008 Real Root of x^4-x^3+3*x^2+103*x-91 8626751347267741 m009 (3/10*Pi^2-5/6)/(4/3*Catalan+1/6*Pi^2-2/5) 8626751347924265 r002 9th iterates of z^2 + 8626751349050122 a007 Real Root Of 836*x^4-443*x^3-554*x^2-554*x-44 8626751371281070 a007 Real Root Of -338*x^4+662*x^3-214*x^2+856*x-817 8626751375230291 m002 -3+Sinh[Pi]/ProductLog[Pi]+Tanh[Pi]/Log[Pi] 8626751382412001 k002 Champernowne real with 65/2*n^2+167/2*n-30 8626751382614523 l006 ln(8069/8796) 8626751401977837 a007 Real Root Of 768*x^4-917*x^3+50*x^2-591*x+636 8626751418469039 r005 Im(z^2+c),c=-93/94+3/35*I,n=28 8626751427292419 m001 cos(1/12*Pi)^(2*Pi/GAMMA(5/6)/Mills) 8626751432908226 a007 Real Root Of 440*x^4+445*x^3+866*x^2+113*x-505 8626751448804138 m001 Porter-HardyLittlewoodC5-DuboisRaymond 8626751474466012 s001 sum(exp(-Pi/4)^n*A077592[n],n=1..infinity) 8626751481903832 a007 Real Root Of 114*x^4+939*x^3-328*x^2+557*x+678 8626751482712061 k002 Champernowne real with 33*n^2+82*n-29 8626751511447596 a001 64079/89*6557470319842^(17/24) 8626751513003184 r005 Im(z^2+c),c=-93/94+3/35*I,n=23 8626751513548547 a001 228826127/89*63245986^(17/24) 8626751542941487 r002 40th iterates of z^2 + 8626751565136080 a007 Real Root Of -593*x^4-168*x^3-91*x^2+308*x+554 8626751572718640 m001 (Gompertz+ThueMorse)/(ln(5)-BesselJ(1,1)) 8626751583012121 k002 Champernowne real with 67/2*n^2+161/2*n-28 8626751592356687 q001 3386/3925 8626751601932127 r005 Im(z^2+c),c=1/94+3/35*I,n=9 8626751610579780 a007 Real Root Of -649*x^4+879*x^3-257*x^2-626*x+575 8626751617722701 a007 Real Root Of 241*x^4-750*x^3+868*x^2+328*x-978 8626751628167491 r005 Im(z^2+c),c=-71/122+4/27*I,n=22 8626751646660924 a001 591286729879/2207*1364^(4/5) 8626751654414004 r002 10th iterates of z^2 + 8626751683312181 k002 Champernowne real with 34*n^2+79*n-27 8626751683916646 r002 46th iterates of z^2 + 8626751687206821 g006 Psi(1,1/9)+Psi(1,1/3)-Psi(1,4/7)-Psi(1,4/5) 8626751688545730 p004 log(31237/13183) 8626751693134632 r005 Im(z^2+c),c=-93/94+3/35*I,n=27 8626751726535841 m001 1/5*5^(1/2)*GAMMA(13/24)*Salem 8626751759299098 r002 45th iterates of z^2 + 8626751783612241 k002 Champernowne real with 69/2*n^2+155/2*n-26 8626751784396890 a007 Real Root Of 310*x^4-901*x^3+99*x^2+329*x-540 8626751790652889 r005 Im(z^2+c),c=-93/94+3/35*I,n=34 8626751808383462 r002 48th iterates of z^2 + 8626751813989794 r005 Im(z^2+c),c=-93/94+3/35*I,n=33 8626751818391899 r009 Re(z^3+c),c=-1/8+26/59*I,n=16 8626751825250233 r005 Im(z^2+c),c=-93/94+3/35*I,n=36 8626751826630135 r002 47th iterates of z^2 + 8626751833516809 r005 Im(z^2+c),c=-93/94+3/35*I,n=35 8626751837301025 m001 gamma(1)^(FellerTornier*ZetaP(3)) 8626751837751770 r005 Im(z^2+c),c=1/94+3/35*I,n=12 8626751838925425 r002 54th iterates of z^2 + 8626751839574777 r002 53th iterates of z^2 + 8626751839646323 r002 56th iterates of z^2 + 8626751840021560 r005 Im(z^2+c),c=-93/94+3/35*I,n=42 8626751840037180 r002 55th iterates of z^2 + 8626751840094755 r005 Im(z^2+c),c=-93/94+3/35*I,n=44 8626751840108017 r005 Im(z^2+c),c=1/94+3/35*I,n=13 8626751840171015 r005 Im(z^2+c),c=-93/94+3/35*I,n=41 8626751840246400 r005 Im(z^2+c),c=-93/94+3/35*I,n=43 8626751840376788 r002 64th iterates of z^2 + 8626751840382890 r002 63th iterates of z^2 + 8626751840383966 r002 62th iterates of z^2 + 8626751840384615 r005 Im(z^2+c),c=-93/94+3/35*I,n=52 8626751840384956 r002 61th iterates of z^2 + 8626751840386742 r005 Im(z^2+c),c=-93/94+3/35*I,n=51 8626751840386806 r005 Im(z^2+c),c=1/94+3/35*I,n=16 8626751840388451 r005 Im(z^2+c),c=-93/94+3/35*I,n=54 8626751840388617 r005 Im(z^2+c),c=1/94+3/35*I,n=17 8626751840388750 r005 Im(z^2+c),c=-93/94+3/35*I,n=53 8626751840388814 r005 Im(z^2+c),c=-93/94+3/35*I,n=49 8626751840388874 r005 Im(z^2+c),c=-93/94+3/35*I,n=60 8626751840388897 r005 Im(z^2+c),c=-93/94+3/35*I,n=59 8626751840388907 r005 Im(z^2+c),c=-93/94+3/35*I,n=62 8626751840388915 r005 Im(z^2+c),c=-93/94+3/35*I,n=61 8626751840388921 r005 Im(z^2+c),c=1/94+3/35*I,n=20 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=21 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=24 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=25 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=28 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=29 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=32 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=33 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=37 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=36 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=41 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=40 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=42 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=45 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=46 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=49 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=50 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=53 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=54 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=55 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=56 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=57 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=58 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=59 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=60 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=61 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=62 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=63 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=64 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=52 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=51 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=48 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=47 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=44 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=43 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=38 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=39 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=35 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=34 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=31 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=30 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=27 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=26 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=23 8626751840388922 r005 Im(z^2+c),c=1/94+3/35*I,n=22 8626751840388925 r005 Im(z^2+c),c=-93/94+3/35*I,n=63 8626751840388927 r005 Im(z^2+c),c=-93/94+3/35*I,n=64 8626751840388932 r005 Im(z^2+c),c=1/94+3/35*I,n=19 8626751840388964 r005 Im(z^2+c),c=-93/94+3/35*I,n=57 8626751840388981 r005 Im(z^2+c),c=1/94+3/35*I,n=18 8626751840389019 r005 Im(z^2+c),c=-93/94+3/35*I,n=58 8626751840389168 r005 Im(z^2+c),c=-93/94+3/35*I,n=55 8626751840389396 r005 Im(z^2+c),c=-93/94+3/35*I,n=56 8626751840389801 r005 Im(z^2+c),c=-93/94+3/35*I,n=50 8626751840398258 r005 Im(z^2+c),c=1/94+3/35*I,n=15 8626751840402803 r005 Im(z^2+c),c=-93/94+3/35*I,n=45 8626751840407115 r005 Im(z^2+c),c=-93/94+3/35*I,n=47 8626751840407736 r005 Im(z^2+c),c=-93/94+3/35*I,n=46 8626751840425636 r005 Im(z^2+c),c=-93/94+3/35*I,n=48 8626751840436630 r002 59th iterates of z^2 + 8626751840456165 r002 57th iterates of z^2 + 8626751840463932 r005 Im(z^2+c),c=1/94+3/35*I,n=14 8626751840487048 r002 60th iterates of z^2 + 8626751840500408 r002 58th iterates of z^2 + 8626751841427589 r005 Im(z^2+c),c=-93/94+3/35*I,n=39 8626751842591493 r005 Im(z^2+c),c=-93/94+3/35*I,n=40 8626751842755287 r002 51th iterates of z^2 + 8626751842955109 r005 Im(z^2+c),c=-93/94+3/35*I,n=37 8626751845037105 r005 Im(z^2+c),c=-93/94+3/35*I,n=38 8626751845566849 r002 52th iterates of z^2 + 8626751848677609 r005 Im(z^2+c),c=1/94+3/35*I,n=11 8626751848896989 r002 49th iterates of z^2 + 8626751856341865 r002 50th iterates of z^2 + 8626751860108846 m001 ln(3)/exp(1/exp(1))/QuadraticClass 8626751872666741 r002 39th iterates of z^2 + 8626751879139838 r005 Im(z^2+c),c=-93/94+3/35*I,n=31 8626751883912301 k002 Champernowne real with 35*n^2+76*n-25 8626751884813959 m001 (BesselI(1,2)+ZetaQ(3))/(Si(Pi)+gamma(3)) 8626751892765561 r001 25i'th iterates of 2*x^2-1 of 8626751896797996 r005 Im(z^2+c),c=-13/19+17/49*I,n=33 8626751897840531 r002 43th iterates of z^2 + 8626751924648086 a001 516002918640/281*843^(4/7) 8626751931756813 r005 Im(z^2+c),c=-93/94+3/35*I,n=32 8626751932422204 r005 Im(z^2+c),c=1/94+3/35*I,n=10 8626751934251220 a007 Real Root Of -180*x^4-528*x^3-738*x^2+218*x+498 8626751952488072 a007 Real Root Of 826*x^4-556*x^3-829*x^2+62*x-144 8626751955780816 a001 956722026041/2207*1364^(11/15) 8626751980673404 a007 Real Root Of -595*x^4+801*x^3+417*x^2-521*x+84 8626751984212361 k002 Champernowne real with 71/2*n^2+149/2*n-24 8626751996960571 r002 44th iterates of z^2 + 8626752000161864 m001 (BesselI(0,2)+Robbin)/(5^(1/2)-Ei(1)) 8626752006039784 r008 a(0)=1,K{-n^6,-44+9*n^3-11*n^2+54*n} 8626752008153114 p003 LerchPhi(1/512,1,8/69) 8626752027551256 a007 Real Root Of 945*x^4-879*x^3-192*x^2+278*x-705 8626752084512421 k002 Champernowne real with 36*n^2+73*n-23 8626752089187774 r005 Im(z^2+c),c=-93/94+3/35*I,n=29 8626752106005317 a007 Real Root Of -365*x^4+798*x^3-85*x^2-133*x+663 8626752117687726 m006 (3/4*Pi^2-1/6)/(3/4/Pi+3/5) 8626752120062490 m001 (sin(1/5*Pi)+exp(-1/2*Pi))^MasserGramain 8626752136880846 r005 Im(z^2+c),c=-43/94+11/58*I,n=6 8626752154750601 m001 exp(BesselK(0,1))/FeigenbaumC*Zeta(5) 8626752166653689 m005 (1/2*Pi-1/3)/(2/7*Zeta(3)-1/5) 8626752169034946 m001 Zeta(1,-1)^ln(2+3^(1/2))/Trott 8626752184812481 k002 Champernowne real with 73/2*n^2+143/2*n-22 8626752188693919 r009 Re(z^3+c),c=-11/98+9/26*I,n=7 8626752213938535 r009 Im(z^3+c),c=-13/66+37/50*I,n=8 8626752220949298 r005 Re(z^2+c),c=-61/52+11/29*I,n=5 8626752221595802 r005 Im(z^2+c),c=-39/64+3/19*I,n=39 8626752230913573 r005 Re(z^2+c),c=-107/98+3/59*I,n=20 8626752232002622 a001 26311594307608/305 8626752236186717 a007 Real Root Of 385*x^4-398*x^3-248*x^2-715*x-901 8626752238113005 r009 Im(z^3+c),c=-1/31+55/63*I,n=37 8626752238718107 r009 Im(z^3+c),c=-1/31+55/63*I,n=39 8626752239803993 r009 Im(z^3+c),c=-1/31+55/63*I,n=41 8626752240499188 r009 Im(z^3+c),c=-1/31+55/63*I,n=43 8626752240833088 r009 Im(z^3+c),c=-1/31+55/63*I,n=45 8626752240965820 r009 Im(z^3+c),c=-1/31+55/63*I,n=47 8626752241009425 r009 Im(z^3+c),c=-1/31+55/63*I,n=49 8626752241018091 r009 Im(z^3+c),c=-1/31+55/63*I,n=63 8626752241018171 r009 Im(z^3+c),c=-1/31+55/63*I,n=61 8626752241018389 r009 Im(z^3+c),c=-1/31+55/63*I,n=59 8626752241018892 r009 Im(z^3+c),c=-1/31+55/63*I,n=57 8626752241019820 r009 Im(z^3+c),c=-1/31+55/63*I,n=55 8626752241020084 r009 Im(z^3+c),c=-1/31+55/63*I,n=51 8626752241020912 r009 Im(z^3+c),c=-1/31+55/63*I,n=53 8626752242164447 r009 Im(z^3+c),c=-1/31+55/63*I,n=35 8626752264520619 r009 Im(z^3+c),c=-1/31+55/63*I,n=33 8626752264900719 a001 1548008755920/2207*1364^(2/3) 8626752282473928 r005 Im(z^2+c),c=-93/94+3/35*I,n=24 8626752285112541 k002 Champernowne real with 37*n^2+70*n-21 8626752299349961 r005 Re(z^2+c),c=-79/90+2/45*I,n=29 8626752313977317 r005 Re(z^2+c),c=-67/78+9/26*I,n=3 8626752322218327 r005 Im(z^2+c),c=-93/94+3/35*I,n=30 8626752341449588 r009 Im(z^3+c),c=-1/31+55/63*I,n=31 8626752362696035 m001 (Pi^(1/2)-Shi(1))/(StolarskyHarborth+ZetaQ(4)) 8626752365165416 h001 (-12*exp(1)+3)/(-6*exp(2)+10) 8626752371771041 s002 sum(A060332[n]/(n^2*2^n+1),n=1..infinity) 8626752385412601 k002 Champernowne real with 75/2*n^2+137/2*n-20 8626752387844040 a007 Real Root Of -400*x^4-91*x^3-378*x^2+491*x+868 8626752415081112 m001 (Zeta(1/2)-exp(1))/(PlouffeB+ZetaQ(3)) 8626752425183078 a007 Real Root Of 376*x^4-184*x^3+687*x^2+556*x-358 8626752452702459 a001 10524637992297/122 8626752461977876 a001 322/377*233^(14/33) 8626752484902131 a001 52623190157903/610 8626752485712661 k002 Champernowne real with 38*n^2+67*n-19 8626752490285409 a001 52623190190741/610 8626752490385409 a001 52623190191351/610 8626752490402131 a001 52623190191453/610 8626752490402459 a001 10524638038291/122 8626752490402622 a001 26311595095728/305 8626752490403442 a001 52623190191461/610 8626752490409016 a001 10524638038299/122 8626752490447213 a001 26311595095864/305 8626752490709016 a001 10524638038665/122 8626752492503442 a001 52623190204271/610 8626752504802622 a001 26311595139648/305 8626752541120051 a001 591286729879/5778*1364^(14/15) 8626752546301829 a007 Real Root Of 883*x^4+35*x^3-365*x^2+299*x+63 8626752553296096 r009 Im(z^3+c),c=-1/31+55/63*I,n=29 8626752560714174 r002 41th iterates of z^2 + 8626752574020634 a001 2504730781961/2207*1364^(3/5) 8626752577619736 m001 (FeigenbaumAlpha+Porter)/(Pi-Zeta(1/2)) 8626752586012721 k002 Champernowne real with 77/2*n^2+131/2*n-18 8626752589102459 a001 10524638158705/122 8626752606888224 m005 (1/2*Zeta(3)-3/11)/(1/7*5^(1/2)-7/10) 8626752610552337 m001 BesselK(1,1)^(Cahen*ZetaP(2)) 8626752612970621 p003 LerchPhi(1/1024,6,49/103) 8626752665900214 a007 Real Root Of 407*x^4-540*x^3+x^2-312*x-842 8626752667393351 r005 Re(z^2+c),c=-79/118+22/61*I,n=35 8626752672496509 m005 (1/2*3^(1/2)+5/11)/(7/11*3^(1/2)+3/7) 8626752686312781 k002 Champernowne real with 39*n^2+64*n-17 8626752712795917 a007 Real Root Of 960*x^4-857*x^3-471*x^2-10*x-740 8626752733435545 a007 Real Root Of 549*x^4-777*x^3+361*x^2+360*x-761 8626752761819888 a001 1548008755920/15127*1364^(14/15) 8626752786612841 k002 Champernowne real with 79/2*n^2+125/2*n-16 8626752791739854 a001 956722026041/843*843^(9/14) 8626752794019561 a001 4052739537881/39603*1364^(14/15) 8626752798717430 a001 225749145909/2206*1364^(14/15) 8626752801620872 a001 6557470319842/64079*1364^(14/15) 8626752813920053 a001 2504730781961/24476*1364^(14/15) 8626752814101569 r005 Im(z^2+c),c=-5/58+45/58*I,n=42 8626752836422981 r005 Im(z^2+c),c=-61/90+13/59*I,n=41 8626752850239975 a001 956722026041/5778*1364^(13/15) 8626752866347426 r002 8th iterates of z^2 + 8626752869956037 a007 Real Root Of 845*x^4-960*x^3-744*x^2+262*x+476 8626752883140559 a001 4052739537881/2207*1364^(8/15) 8626752886912901 k002 Champernowne real with 40*n^2+61*n-15 8626752898219893 a001 956722026041/9349*1364^(14/15) 8626752932280775 a007 Real Root Of -862*x^4+229*x^3-640*x^2+993*x-81 8626752972819185 m001 (-Artin+KhinchinLevy)/(2^(1/3)-GAMMA(2/3)) 8626752974292534 m001 GAMMA(17/24)*RenyiParking^2*ln(sqrt(2))^2 8626752978448560 m001 1/ln(arctan(1/2))*Trott^2/sqrt(Pi) 8626752983829550 m001 (Shi(1)-ln(2))/(-Conway+QuadraticClass) 8626752987212961 k002 Champernowne real with 81/2*n^2+119/2*n-14 8626753007016594 m009 (3*Psi(1,2/3)-1/3)/(48*Catalan+6*Pi^2-1/2) 8626753020620072 a007 Real Root Of -104*x^4+865*x^3-73*x^2-281*x-201 8626753022479628 s001 sum(exp(-Pi/4)^n*A194005[n],n=1..infinity) 8626753040141368 r009 Im(z^3+c),c=-1/31+55/63*I,n=27 8626753064064053 m001 (3^(1/3))^FibonacciFactorial-CareFree 8626753068638412 r005 Re(z^2+c),c=-83/114+4/19*I,n=42 8626753070939820 a001 2504730781961/15127*1364^(13/15) 8626753087513021 k002 Champernowne real with 41*n^2+58*n-13 8626753103139494 a001 6557470319842/39603*1364^(13/15) 8626753110740806 a001 10610209857723/64079*1364^(13/15) 8626753123039987 a001 4052739537881/24476*1364^(13/15) 8626753140647476 r005 Re(z^2+c),c=-83/98+5/37*I,n=59 8626753159359911 a001 86000486440/321*1364^(4/5) 8626753160351367 r005 Im(z^2+c),c=-43/74+1/55*I,n=8 8626753163758762 a007 Real Root Of -853*x^4+279*x^3+638*x^2+588*x+684 8626753166902131 a001 52623194318103/610 8626753175634465 m006 (1/2*exp(2*Pi)-4/5)/(2/3*Pi+1) 8626753187813081 k002 Champernowne real with 83/2*n^2+113/2*n-12 8626753190834682 a007 Real Root Of -172*x^4+143*x^3-257*x^2-318*x+104 8626753192260496 a001 6557470319842/2207*1364^(7/15) 8626753207339831 a001 1548008755920/9349*1364^(13/15) 8626753213037929 r005 Im(z^2+c),c=-7/10+28/145*I,n=47 8626753220906483 r005 Im(z^2+c),c=-16/27+18/41*I,n=9 8626753236677131 a007 Real Root Of 383*x^4-715*x^3-846*x^2-441*x-422 8626753262933769 r002 42th iterates of z^2 + 8626753288113141 k002 Champernowne real with 42*n^2+55*n-11 8626753340027666 a007 Real Root Of -142*x^4+924*x^3+442*x^2+831*x+69 8626753341843406 r005 Im(z^2+c),c=-9/106+55/64*I,n=25 8626753356923558 m005 (29/36+1/4*5^(1/2))/(7/12*3^(1/2)+4/7) 8626753379443401 a007 Real Root Of 261*x^4+165*x^3+935*x^2+470*x-329 8626753380059763 a001 4052739537881/15127*1364^(4/5) 8626753388413201 k002 Champernowne real with 85/2*n^2+107/2*n-10 8626753412259439 a001 3536736619241/13201*1364^(4/5) 8626753432159932 a001 3278735159921/12238*1364^(4/5) 8626753468479857 a001 2504730781961/5778*1364^(11/15) 8626753476019638 a001 365435296162/3571*1364^(14/15) 8626753486152714 m004 -2+275*Pi+Cos[Sqrt[5]*Pi] 8626753488713261 k002 Champernowne real with 43*n^2+52*n-9 8626753501380444 a001 4807525989*1364^(2/5) 8626753516459779 a001 2504730781961/9349*1364^(4/5) 8626753533061139 a007 Real Root Of 963*x^4-274*x^3+891*x^2+529*x-916 8626753536732971 a007 Real Root Of -13*x^4+874*x^3-312*x^2-273*x+565 8626753553327894 m001 (Psi(2,1/3)-exp(Pi))/(-Catalan+ZetaQ(3)) 8626753579315434 a007 Real Root Of -935*x^4-85*x^3-314*x^2-612*x+169 8626753585000724 a001 987/2207*14662949395604^(6/7) 8626753589013321 k002 Champernowne real with 87/2*n^2+101/2*n-8 8626753589680231 r005 Im(z^2+c),c=-85/94+29/54*I,n=3 8626753593268409 m001 PrimesInBinary^Porter+sin(1/5*Pi) 8626753623577887 r005 Re(z^2+c),c=25/64+17/62*I,n=16 8626753644221589 a007 Real Root Of 557*x^4-195*x^3+753*x^2+65*x-938 8626753649352299 m005 (1/2*5^(1/2)-1)/(5*exp(1)+1/11) 8626753654907368 a007 Real Root Of -965*x^4+659*x^3+966*x^2+762*x+896 8626753658831708 a001 591286729879/843*843^(5/7) 8626753689179717 a001 6557470319842/15127*1364^(11/15) 8626753689313381 k002 Champernowne real with 44*n^2+49*n-7 8626753741279889 a001 10610209857723/24476*1364^(11/15) 8626753743475810 h001 (-exp(-2)-8)/(-8*exp(-1)+2) 8626753754974206 m008 (1/5*Pi^6+5)/(3/4*Pi^5-5/6) 8626753777599815 a001 4052739537881/5778*1364^(2/3) 8626753785139596 a001 591286729879/3571*1364^(13/15) 8626753788252149 h001 (1/12*exp(1)+2/11)/(3/5*exp(2)+3/10) 8626753789613441 k002 Champernowne real with 89/2*n^2+95/2*n-6 8626753792993126 a007 Real Root Of -716*x^4+15*x^3+364*x^2+257*x+357 8626753798973461 m005 (1/2*Zeta(3)+4/5)/(8/9*Zeta(3)+5/9) 8626753818878615 a007 Real Root Of 624*x^4-298*x^3+250*x^2+124*x-616 8626753825579738 a001 4052739537881/9349*1364^(11/15) 8626753826973864 a007 Real Root Of -688*x^4-810*x^3-304*x^2+599*x+604 8626753856782937 l006 ln(4595/5009) 8626753858939904 l006 ln(295/699) 8626753878345812 m001 (Bloch-Conway)/(Zeta(5)+gamma(1)) 8626753889115636 a007 Real Root Of 979*x^4-776*x^3+441*x^2+498*x-939 8626753889913501 k002 Champernowne real with 45*n^2+46*n-5 8626753904261704 m005 (1/2*gamma+4/9)/(1/8*Zeta(3)-1) 8626753906051259 a007 Real Root Of 166*x^4-210*x^3+439*x^2-251*x-770 8626753926503409 m001 (Grothendieck-Salem)/(gamma(3)-CareFree) 8626753938705378 r009 Im(z^3+c),c=-1/31+55/63*I,n=25 8626753941136266 m005 (1/2*Catalan+5)/(7/11*gamma-1) 8626753949572671 r005 Re(z^2+c),c=-69/82+6/37*I,n=37 8626753949683492 a007 Real Root Of 588*x^4-973*x^3+295*x^2+598*x-654 8626753969943002 r002 18th iterates of z^2 + 8626753971152058 m001 (Catalan+GAMMA(3/4))/(Pi^(1/2)+Rabbit) 8626753980607366 r005 Re(z^2+c),c=-22/25+1/35*I,n=19 8626753990213561 k002 Champernowne real with 91/2*n^2+89/2*n-4 8626753992021698 b008 5/18+ExpIntegralEi[6] 8626753998299683 a001 1515744265389/2161*1364^(2/3) 8626754000061739 a003 sin(Pi*31/105)/sin(Pi*31/82) 8626754019305175 a001 29/1548008755920*10946^(7/17) 8626754029718692 m009 (1/5*Pi^2-1/2)/(Psi(1,3/4)-5/6) 8626754032068143 a003 sin(Pi*7/45)/cos(Pi*32/101) 8626754040687300 a007 Real Root Of -622*x^4+459*x^3-293*x^2-93*x+777 8626754047160362 r009 Im(z^3+c),c=-3/82+48/55*I,n=7 8626754050365976 m005 (25/12+1/12*5^(1/2))/(3/5*exp(1)+1) 8626754051174710 a003 cos(Pi*11/90)-cos(Pi*35/73) 8626754058539868 m005 (1/3*Catalan+2/3)/(5/6*Zeta(3)+1/8) 8626754067402435 r002 16th iterates of z^2 + 8626754078082215 r005 Re(z^2+c),c=-11/12+1/18*I,n=24 8626754081330523 a007 Real Root Of -88*x^4-719*x^3+236*x^2-897*x+478 8626754086719784 a001 3278735159921/2889*1364^(3/5) 8626754090513621 k002 Champernowne real with 46*n^2+43*n-3 8626754094259565 a001 956722026041/3571*1364^(4/5) 8626754108011979 a007 Real Root Of 65*x^4-315*x^3+299*x^2-129*x+55 8626754124390933 m001 (3^(1/3)+gamma(2))/(GAMMA(19/24)-Totient) 8626754134699708 a001 6557470319842/9349*1364^(2/3) 8626754137752886 m001 (cos(1/12*Pi)-gamma)/(-ZetaQ(2)+ZetaQ(3)) 8626754141711916 a007 Real Root Of 205*x^4-667*x^3+431*x^2+506*x-426 8626754159523150 a007 Real Root Of 787*x^4-125*x^3-646*x^2-243*x-245 8626754171804398 r002 13th iterates of z^2 + 8626754186602034 r009 Im(z^3+c),c=-1/31+55/63*I,n=21 8626754190623356 a005 (1/cos(14/195*Pi))^443 8626754190813681 k002 Champernowne real with 93/2*n^2+83/2*n-2 8626754227124786 a007 Real Root Of 64*x^4+552*x^3+32*x^2+312*x+238 8626754229073605 r002 4th iterates of z^2 + 8626754274106577 m001 (BesselK(1,1)+PlouffeB)/(Trott+ZetaQ(4)) 8626754291113741 k002 Champernowne real with 47*n^2+40*n-1 8626754307072095 r002 44th iterates of z^2 + 8626754320667196 a001 199/75025*377^(27/46) 8626754344134433 h001 (5/7*exp(2)+5/9)/(6/7*exp(2)+3/7) 8626754354586626 a007 Real Root Of -739*x^4+360*x^3+505*x^2-520*x-184 8626754360977201 r002 43th iterates of z^2 + 8626754362662313 m001 ln(GAMMA(1/12))/Si(Pi)/GAMMA(7/12) 8626754391413801 k002 Champernowne real with 95/2*n^2+77/2*n 8626754395839763 a001 3536736619241/1926*1364^(8/15) 8626754403379545 a001 1548008755920/3571*1364^(11/15) 8626754443819690 a001 10610209857723/9349*1364^(3/5) 8626754469192529 a007 Real Root Of -381*x^4+567*x^3+687*x^2+275*x+301 8626754481038105 a007 Real Root Of 230*x^4-683*x^3-468*x^2-565*x-705 8626754491713861 k002 Champernowne real with 48*n^2+37*n+1 8626754496544218 a007 Real Root Of -341*x^4-627*x^3-498*x^2+786*x+835 8626754512298181 a001 39603/89*233^(31/57) 8626754524996728 m005 (1/3*Zeta(3)-3/5)/(3/7*5^(1/2)-8/11) 8626754525923650 a001 365435296162/843*843^(11/14) 8626754528539936 b008 -88+EulerGamma^(-1) 8626754540646278 r005 Re(z^2+c),c=-25/34+33/118*I,n=29 8626754569837581 m001 (gamma-ln(gamma))/(-ln(2+3^(1/2))+Trott) 8626754581881348 m001 (GAMMA(17/24)-Khinchin)/(LandauRamanujan+Thue) 8626754584676712 m001 1/FeigenbaumB^2/exp(MertensB1)^2*Zeta(7) 8626754592013921 k002 Champernowne real with 97/2*n^2+71/2*n+2 8626754597383965 p001 sum((-1)^n/(453*n+115)/(25^n),n=0..infinity) 8626754610992672 r005 Im(z^2+c),c=25/74+12/29*I,n=7 8626754621530257 a007 Real Root Of 876*x^4-699*x^3-340*x^2+809*x+17 8626754630833133 a008 Real Root of (-6+5*x+7*x^2+7*x^4+4*x^8) 8626754633401571 a007 Real Root Of -779*x^4+363*x^3-59*x^2+185*x+868 8626754636855657 a007 Real Root Of -55*x^4+392*x^3+281*x^2+102*x+161 8626754641818335 r005 Re(z^2+c),c=-133/122+7/29*I,n=22 8626754659090393 a007 Real Root Of -736*x^4+390*x^3-837*x^2-889*x+514 8626754667817763 r001 59i'th iterates of 2*x^2-1 of 8626754674962859 a007 Real Root Of 672*x^4-507*x^3-907*x^2-857*x-762 8626754679600187 a001 137769272233215/1597 8626754692313981 k002 Champernowne real with 49*n^2+34*n+3 8626754696689536 a001 41/48*4052739537881^(5/9) 8626754712499536 a001 2504730781961/3571*1364^(2/3) 8626754715057648 r002 19th iterates of z^2 + 8626754719394606 a001 86267571272/2207*3571^(16/17) 8626754726325603 a007 Real Root Of 105*x^4+801*x^3-813*x^2+773*x-116 8626754745288956 a007 Real Root Of 104*x^4+817*x^3-616*x^2+716*x+542 8626754750114859 r005 Im(z^2+c),c=-61/78+2/13*I,n=18 8626754756781556 m001 GAMMA(1/4)^2/Salem/exp(sin(Pi/12)) 8626754759188714 a001 139583862445/2207*3571^(15/17) 8626754792614041 k002 Champernowne real with 99/2*n^2+65/2*n+4 8626754797946152 a001 817138163596/89*610^(17/24) 8626754798916975 a007 Real Root Of -549*x^4+162*x^3+490*x^2+753*x+693 8626754798982823 a001 225851433717/2207*3571^(14/17) 8626754802405413 m001 exp(GAMMA(7/24))^2*GAMMA(7/12)/sin(1) 8626754808288219 a007 Real Root Of -921*x^4-176*x^3-56*x^2+428*x+808 8626754838776932 a001 365435296162/2207*3571^(13/17) 8626754851072873 m001 (sin(1/12*Pi)+ZetaQ(4))/(ln(2)/ln(10)+exp(1)) 8626754866628964 r005 Im(z^2+c),c=-9/98+33/49*I,n=21 8626754878571041 a001 591286729879/2207*3571^(12/17) 8626754892914101 k002 Champernowne real with 50*n^2+31*n+5 8626754901974217 a007 Real Root Of -42*x^4+773*x^3-354*x^2+80*x+852 8626754918365150 a001 956722026041/2207*3571^(11/17) 8626754948023695 a003 cos(Pi*4/69)*cos(Pi*11/69) 8626754958159259 a001 1548008755920/2207*3571^(10/17) 8626754958905387 a007 Real Root Of 328*x^4+133*x^3+602*x^2+930*x+258 8626754982540779 r009 Im(z^3+c),c=-65/126+26/45*I,n=14 8626754991028640 m001 (GAMMA(2/3)-GAMMA(7/12))^OrthogonalArrays 8626754993214162 k002 Champernowne real with 101/2*n^2+59/2*n+6 8626754994977514 r009 Im(z^3+c),c=-1/31+55/63*I,n=23 8626754997953369 a001 2504730781961/2207*3571^(9/17) 8626755002849032 r008 a(0)=0,K{-n^6,5+96*n^3-9*n^2+24*n} 8626755021619538 a001 4052739537881/3571*1364^(3/5) 8626755037747478 a001 4052739537881/2207*3571^(8/17) 8626755077541588 a001 6557470319842/2207*3571^(7/17) 8626755082655004 a007 Real Root Of -633*x^4+450*x^3+482*x^2-606*x-242 8626755093514222 k002 Champernowne real with 51*n^2+28*n+7 8626755097700051 a001 329/1926*14662949395604^(8/9) 8626755097700407 a001 2584/2207*23725150497407^(13/16) 8626755097700407 a001 2584/2207*505019158607^(13/14) 8626755109696110 a007 Real Root Of -7*x^4+91*x^3-810*x^2+161*x+804 8626755117335698 a001 4807525989*3571^(6/17) 8626755120695229 a003 cos(Pi*17/115)-cos(Pi*49/100) 8626755145016138 r005 Im(z^2+c),c=-7/106+43/57*I,n=63 8626755150420687 r008 a(0)=0,K{-n^6,-27-65*n^3-95*n^2+71*n} 8626755161244983 a007 Real Root Of 711*x^4+454*x^3-618*x^2-549*x-116 8626755170497360 r002 20th iterates of z^2 + 8626755193814282 k002 Champernowne real with 103/2*n^2+53/2*n+8 8626755221711498 r008 a(0)=0,K{-n^6,-45+65*n^3+59*n^2+37*n} 8626755222764851 m002 (-5*Pi^4)/4+Pi^3*Log[Pi] 8626755237353539 r002 23th iterates of z^2 + 8626755262595099 a001 32951280099/2207*9349^(18/19) 8626755263869725 m001 (cos(1/12*Pi)+polylog(4,1/2))/(Landau+Salem) 8626755267789836 a001 53316291173/2207*9349^(17/19) 8626755272984572 a001 86267571272/2207*9349^(16/19) 8626755278179309 a001 139583862445/2207*9349^(15/19) 8626755283374046 a001 225851433717/2207*9349^(14/19) 8626755288568783 a001 365435296162/2207*9349^(13/19) 8626755290892752 m001 1/PisotVijayaraghavan^2*exp(PrimesInBinary) 8626755293763520 a001 591286729879/2207*9349^(12/19) 8626755294099774 a001 9/17*3^(4/9) 8626755294114342 k002 Champernowne real with 52*n^2+25*n+9 8626755298958257 a001 956722026041/2207*9349^(11/19) 8626755304152993 a001 1548008755920/2207*9349^(10/19) 8626755309347730 a001 2504730781961/2207*9349^(9/19) 8626755314356932 b008 Sin[Cosh[1/5]^2] 8626755314542467 a001 4052739537881/2207*9349^(8/19) 8626755315523957 m001 (3^(1/2)-cos(1/12*Pi))/(PlouffeB+ThueMorse) 8626755318400317 a001 6765/2207*312119004989^(10/11) 8626755318400317 a001 6765/2207*3461452808002^(5/6) 8626755319737204 a001 6557470319842/2207*9349^(7/19) 8626755320942011 m001 OneNinth/Riemann2ndZero^2/ln(sin(Pi/5))^2 8626755324931941 a001 4807525989*9349^(6/19) 8626755330739551 a001 6557470319842/3571*1364^(8/15) 8626755331297442 r002 17th iterates of z^2 + 8626755333240928 m005 (1/2*2^(1/2)-4/7)/(1/3*exp(1)+2/3) 8626755341699862 a001 944284639702467/10946 8626755342385947 a001 12586269025/2207*24476^(20/21) 8626755343071668 a001 20365011074/2207*24476^(19/21) 8626755343757388 a001 32951280099/2207*24476^(6/7) 8626755344443109 a001 53316291173/2207*24476^(17/21) 8626755345128830 a001 86267571272/2207*24476^(16/21) 8626755345814551 a001 139583862445/2207*24476^(5/7) 8626755346500271 a001 225851433717/2207*24476^(2/3) 8626755347185992 a001 365435296162/2207*24476^(13/21) 8626755347871713 a001 591286729879/2207*24476^(4/7) 8626755348557434 a001 956722026041/2207*24476^(11/21) 8626755349243154 a001 1548008755920/2207*24476^(10/21) 8626755349928875 a001 2504730781961/2207*24476^(3/7) 8626755350599636 a001 329/13201*14662949395604^(20/21) 8626755350599999 a001 17711/2207*45537549124^(16/17) 8626755350599999 a001 17711/2207*14662949395604^(16/21) 8626755350599999 a001 17711/2207*192900153618^(8/9) 8626755350599999 a001 17711/2207*73681302247^(12/13) 8626755350614596 a001 4052739537881/2207*24476^(8/21) 8626755351300317 a001 6557470319842/2207*24476^(1/3) 8626755351986037 a001 4807525989*24476^(2/7) 8626755353519153 m001 (Artin*TwinPrimes+FellerTornier)/TwinPrimes 8626755353999047 a001 2472169281795507/28657 8626755354090756 a001 4807526976/2207*64079^(22/23) 8626755354182102 a001 7778742049/2207*64079^(21/23) 8626755354273448 a001 12586269025/2207*64079^(20/23) 8626755354364793 a001 20365011074/2207*64079^(19/23) 8626755354456139 a001 32951280099/2207*64079^(18/23) 8626755354547485 a001 53316291173/2207*64079^(17/23) 8626755354638830 a001 86267571272/2207*64079^(16/23) 8626755354730176 a001 139583862445/2207*64079^(15/23) 8626755354821522 a001 225851433717/2207*64079^(14/23) 8626755354912868 a001 365435296162/2207*64079^(13/23) 8626755355004213 a001 591286729879/2207*64079^(12/23) 8626755355095559 a001 956722026041/2207*64079^(11/23) 8626755355186905 a001 1548008755920/2207*64079^(10/23) 8626755355278251 a001 2504730781961/2207*64079^(9/23) 8626755355297870 a001 46368/2207*10749957122^(23/24) 8626755355369596 a001 4052739537881/2207*64079^(8/23) 8626755355460942 a001 6557470319842/2207*64079^(7/23) 8626755355552288 a001 4807525989*64079^(6/23) 8626755355793474 a001 6472223205684054/75025 8626755355855142 a001 12586269025/2207*167761^(4/5) 8626755355916447 a001 139583862445/2207*167761^(3/5) 8626755355977752 a001 1548008755920/2207*167761^(2/5) 8626755355983280 a001 121393/2207*312119004989^(4/5) 8626755355983280 a001 121393/2207*23725150497407^(11/16) 8626755355983280 a001 121393/2207*73681302247^(11/13) 8626755355983280 a001 121393/2207*10749957122^(11/12) 8626755355983280 a001 121393/2207*4106118243^(22/23) 8626755356060610 a001 1836311903/2207*439204^(8/9) 8626755356065579 a001 7778742049/2207*439204^(7/9) 8626755356070548 a001 32951280099/2207*439204^(2/3) 8626755356075517 a001 139583862445/2207*439204^(5/9) 8626755356080486 a001 591286729879/2207*439204^(4/9) 8626755356083280 a001 317811/2207*2537720636^(14/15) 8626755356083280 a001 317811/2207*17393796001^(6/7) 8626755356083280 a001 317811/2207*45537549124^(14/17) 8626755356083280 a001 317811/2207*817138163596^(14/19) 8626755356083280 a001 317811/2207*14662949395604^(2/3) 8626755356083280 a001 317811/2207*505019158607^(3/4) 8626755356083280 a001 317811/2207*192900153618^(7/9) 8626755356083280 a001 317811/2207*10749957122^(7/8) 8626755356083280 a001 317811/2207*4106118243^(21/23) 8626755356083280 a001 317811/2207*1568397607^(21/22) 8626755356085455 a001 2504730781961/2207*439204^(1/3) 8626755356090424 a001 4807525989*439204^(2/9) 8626755356097870 a001 832040/2207*2537720636^(8/9) 8626755356097870 a001 832040/2207*312119004989^(8/11) 8626755356097870 a001 832040/2207*23725150497407^(5/8) 8626755356097870 a001 832040/2207*73681302247^(10/13) 8626755356097870 a001 832040/2207*28143753123^(4/5) 8626755356097870 a001 832040/2207*10749957122^(5/6) 8626755356097870 a001 832040/2207*4106118243^(20/23) 8626755356097870 a001 832040/2207*1568397607^(10/11) 8626755356097870 a001 832040/2207*599074578^(20/21) 8626755356099998 a001 987*817138163596^(2/3) 8626755356099998 a001 987*10749957122^(19/24) 8626755356099998 a001 987*4106118243^(19/23) 8626755356099998 a001 987*1568397607^(19/22) 8626755356099998 a001 987*599074578^(19/21) 8626755356099999 a001 987*228826127^(19/20) 8626755356100236 a001 102334155/2207*7881196^(10/11) 8626755356100248 a001 433494437/2207*7881196^(9/11) 8626755356100261 a001 1836311903/2207*7881196^(8/11) 8626755356100269 a001 4807526976/2207*7881196^(2/3) 8626755356100274 a001 7778742049/2207*7881196^(7/11) 8626755356100286 a001 32951280099/2207*7881196^(6/11) 8626755356100299 a001 139583862445/2207*7881196^(5/11) 8626755356100309 a001 5702887/2207*141422324^(12/13) 8626755356100309 a001 5702887/2207*2537720636^(4/5) 8626755356100309 a001 5702887/2207*45537549124^(12/17) 8626755356100309 a001 5702887/2207*14662949395604^(4/7) 8626755356100309 a001 5702887/2207*505019158607^(9/14) 8626755356100309 a001 5702887/2207*192900153618^(2/3) 8626755356100309 a001 5702887/2207*73681302247^(9/13) 8626755356100309 a001 5702887/2207*10749957122^(3/4) 8626755356100309 a001 5702887/2207*4106118243^(18/23) 8626755356100309 a001 5702887/2207*1568397607^(9/11) 8626755356100309 a001 5702887/2207*599074578^(6/7) 8626755356100309 a001 5702887/2207*228826127^(9/10) 8626755356100310 a001 5702887/2207*87403803^(18/19) 8626755356100311 a001 591286729879/2207*7881196^(4/11) 8626755356100316 a001 956722026041/2207*7881196^(1/3) 8626755356100324 a001 2504730781961/2207*7881196^(3/11) 8626755356100337 a001 4807525989*7881196^(2/11) 8626755356100344 a001 102334155/2207*20633239^(6/7) 8626755356100346 a001 267914296/2207*20633239^(4/5) 8626755356100348 a001 1134903170/2207*20633239^(5/7) 8626755356100350 a001 7778742049/2207*20633239^(3/5) 8626755356100350 a001 12586269025/2207*20633239^(4/7) 8626755356100353 a001 139583862445/2207*20633239^(3/7) 8626755356100354 a001 225851433717/2207*20633239^(2/5) 8626755356100354 a001 14930352/2207*45537549124^(2/3) 8626755356100354 a001 14930352/2207*10749957122^(17/24) 8626755356100354 a001 14930352/2207*4106118243^(17/23) 8626755356100354 a001 14930352/2207*1568397607^(17/22) 8626755356100354 a001 14930352/2207*599074578^(17/21) 8626755356100354 a001 14930352/2207*228826127^(17/20) 8626755356100355 a001 14930352/2207*87403803^(17/19) 8626755356100356 a001 1548008755920/2207*20633239^(2/7) 8626755356100358 a001 6557470319842/2207*20633239^(1/5) 8626755356100361 a001 39088169/2207*23725150497407^(1/2) 8626755356100361 a001 39088169/2207*505019158607^(4/7) 8626755356100361 a001 39088169/2207*73681302247^(8/13) 8626755356100361 a001 39088169/2207*10749957122^(2/3) 8626755356100361 a001 39088169/2207*4106118243^(16/23) 8626755356100361 a001 39088169/2207*1568397607^(8/11) 8626755356100361 a001 39088169/2207*599074578^(16/21) 8626755356100361 a001 39088169/2207*228826127^(4/5) 8626755356100361 a001 102334155/2207*141422324^(10/13) 8626755356100362 a001 14930352/2207*33385282^(17/18) 8626755356100362 a001 701408733/2207*141422324^(2/3) 8626755356100362 a001 433494437/2207*141422324^(9/13) 8626755356100362 a001 1836311903/2207*141422324^(8/13) 8626755356100362 a001 7778742049/2207*141422324^(7/13) 8626755356100362 a001 32951280099/2207*141422324^(6/13) 8626755356100362 a001 39088169/2207*87403803^(16/19) 8626755356100362 a001 139583862445/2207*141422324^(5/13) 8626755356100362 a001 102334155/2207*2537720636^(2/3) 8626755356100362 a001 102334155/2207*45537549124^(10/17) 8626755356100362 a001 102334155/2207*312119004989^(6/11) 8626755356100362 a001 102334155/2207*14662949395604^(10/21) 8626755356100362 a001 102334155/2207*192900153618^(5/9) 8626755356100362 a001 102334155/2207*28143753123^(3/5) 8626755356100362 a001 102334155/2207*10749957122^(5/8) 8626755356100362 a001 102334155/2207*4106118243^(15/23) 8626755356100362 a001 102334155/2207*1568397607^(15/22) 8626755356100362 a001 102334155/2207*599074578^(5/7) 8626755356100362 a001 365435296162/2207*141422324^(1/3) 8626755356100362 a001 591286729879/2207*141422324^(4/13) 8626755356100362 a001 2504730781961/2207*141422324^(3/13) 8626755356100362 a001 4807525989*141422324^(2/13) 8626755356100362 a001 102334155/2207*228826127^(3/4) 8626755356100362 a001 267914296/2207*17393796001^(4/7) 8626755356100362 a001 267914296/2207*14662949395604^(4/9) 8626755356100362 a001 267914296/2207*505019158607^(1/2) 8626755356100362 a001 267914296/2207*73681302247^(7/13) 8626755356100362 a001 267914296/2207*10749957122^(7/12) 8626755356100362 a001 267914296/2207*4106118243^(14/23) 8626755356100362 a001 267914296/2207*1568397607^(7/11) 8626755356100362 a001 267914296/2207*599074578^(2/3) 8626755356100362 a001 701408733/2207*73681302247^(1/2) 8626755356100362 a001 701408733/2207*10749957122^(13/24) 8626755356100362 a001 701408733/2207*4106118243^(13/23) 8626755356100362 a001 701408733/2207*1568397607^(13/22) 8626755356100362 a001 1836311903/2207*2537720636^(8/15) 8626755356100362 a001 12586269025/2207*2537720636^(4/9) 8626755356100362 a001 7778742049/2207*2537720636^(7/15) 8626755356100362 a001 32951280099/2207*2537720636^(2/5) 8626755356100362 a001 1836311903/2207*45537549124^(8/17) 8626755356100362 a001 1836311903/2207*14662949395604^(8/21) 8626755356100362 a001 1836311903/2207*192900153618^(4/9) 8626755356100362 a001 1836311903/2207*73681302247^(6/13) 8626755356100362 a001 1836311903/2207*10749957122^(1/2) 8626755356100362 a001 139583862445/2207*2537720636^(1/3) 8626755356100362 a001 591286729879/2207*2537720636^(4/15) 8626755356100362 a001 1548008755920/2207*2537720636^(2/9) 8626755356100362 a001 2504730781961/2207*2537720636^(1/5) 8626755356100362 a001 1836311903/2207*4106118243^(12/23) 8626755356100362 a001 4807525989*2537720636^(2/15) 8626755356100362 a001 4807526976/2207*312119004989^(2/5) 8626755356100362 a001 4807526976/2207*10749957122^(11/24) 8626755356100362 a001 12586269025/2207*23725150497407^(5/16) 8626755356100362 a001 12586269025/2207*505019158607^(5/14) 8626755356100362 a001 12586269025/2207*73681302247^(5/13) 8626755356100362 a001 225851433717/2207*17393796001^(2/7) 8626755356100362 a001 12586269025/2207*28143753123^(2/5) 8626755356100362 a001 6557470319842/2207*17393796001^(1/7) 8626755356100362 a001 32951280099/2207*45537549124^(6/17) 8626755356100362 a001 32951280099/2207*14662949395604^(2/7) 8626755356100362 a001 32951280099/2207*192900153618^(1/3) 8626755356100362 a001 139583862445/2207*45537549124^(5/17) 8626755356100362 a001 591286729879/2207*45537549124^(4/17) 8626755356100362 a001 53316291173/2207*45537549124^(1/3) 8626755356100362 a001 2504730781961/2207*45537549124^(3/17) 8626755356100362 a001 4807525989*45537549124^(2/17) 8626755356100362 a001 86267571272/2207*23725150497407^(1/4) 8626755356100362 a001 225851433717/2207*14662949395604^(2/9) 8626755356100362 a001 225851433717/2207*505019158607^(1/4) 8626755356100362 a001 1548008755920/2207*312119004989^(2/11) 8626755356100362 a001 4052739537881/2207*23725150497407^(1/8) 8626755356100362 a001 2504730781961/2207*14662949395604^(1/7) 8626755356100362 a001 2504730781961/2207*192900153618^(1/6) 8626755356100362 a001 139583862445/2207*312119004989^(3/11) 8626755356100362 a001 139583862445/2207*14662949395604^(5/21) 8626755356100362 a001 139583862445/2207*192900153618^(5/18) 8626755356100362 a001 4052739537881/2207*73681302247^(2/13) 8626755356100362 a001 86267571272/2207*73681302247^(4/13) 8626755356100362 a001 591286729879/2207*73681302247^(3/13) 8626755356100362 a001 365435296162/2207*73681302247^(1/4) 8626755356100362 a001 1548008755920/2207*28143753123^(1/5) 8626755356100362 a001 139583862445/2207*28143753123^(3/10) 8626755356100362 a001 20365011074/2207*817138163596^(1/3) 8626755356100362 a001 4807525989*10749957122^(1/8) 8626755356100362 a001 4052739537881/2207*10749957122^(1/6) 8626755356100362 a001 2504730781961/2207*10749957122^(3/16) 8626755356100362 a001 1548008755920/2207*10749957122^(5/24) 8626755356100362 a001 7778742049/2207*17393796001^(3/7) 8626755356100362 a001 591286729879/2207*10749957122^(1/4) 8626755356100362 a001 12586269025/2207*10749957122^(5/12) 8626755356100362 a001 225851433717/2207*10749957122^(7/24) 8626755356100362 a001 139583862445/2207*10749957122^(5/16) 8626755356100362 a001 86267571272/2207*10749957122^(1/3) 8626755356100362 a001 32951280099/2207*10749957122^(3/8) 8626755356100362 a001 7778742049/2207*45537549124^(7/17) 8626755356100362 a001 7778742049/2207*14662949395604^(1/3) 8626755356100362 a001 7778742049/2207*192900153618^(7/18) 8626755356100362 a001 7778742049/2207*10749957122^(7/16) 8626755356100362 a001 4807525989*4106118243^(3/23) 8626755356100362 a001 4052739537881/2207*4106118243^(4/23) 8626755356100362 a001 1548008755920/2207*4106118243^(5/23) 8626755356100362 a001 591286729879/2207*4106118243^(6/23) 8626755356100362 a001 225851433717/2207*4106118243^(7/23) 8626755356100362 a001 4807526976/2207*4106118243^(11/23) 8626755356100362 a001 86267571272/2207*4106118243^(8/23) 8626755356100362 a001 32951280099/2207*4106118243^(9/23) 8626755356100362 a001 12586269025/2207*4106118243^(10/23) 8626755356100362 a001 2971215073/2207*4106118243^(1/2) 8626755356100362 a001 4807525989*1568397607^(3/22) 8626755356100362 a001 1134903170/2207*2537720636^(5/9) 8626755356100362 a001 4052739537881/2207*1568397607^(2/11) 8626755356100362 a001 1548008755920/2207*1568397607^(5/22) 8626755356100362 a001 956722026041/2207*1568397607^(1/4) 8626755356100362 a001 591286729879/2207*1568397607^(3/11) 8626755356100362 a001 225851433717/2207*1568397607^(7/22) 8626755356100362 a001 86267571272/2207*1568397607^(4/11) 8626755356100362 a001 1134903170/2207*312119004989^(5/11) 8626755356100362 a001 1134903170/2207*3461452808002^(5/12) 8626755356100362 a001 1134903170/2207*28143753123^(1/2) 8626755356100362 a001 1836311903/2207*1568397607^(6/11) 8626755356100362 a001 32951280099/2207*1568397607^(9/22) 8626755356100362 a001 12586269025/2207*1568397607^(5/11) 8626755356100362 a001 4807526976/2207*1568397607^(1/2) 8626755356100362 a001 4807525989*599074578^(1/7) 8626755356100362 a001 6557470319842/2207*599074578^(1/6) 8626755356100362 a001 4052739537881/2207*599074578^(4/21) 8626755356100362 a001 2504730781961/2207*599074578^(3/14) 8626755356100362 a001 1548008755920/2207*599074578^(5/21) 8626755356100362 a001 591286729879/2207*599074578^(2/7) 8626755356100362 a001 225851433717/2207*599074578^(1/3) 8626755356100362 a001 433494437/2207*2537720636^(3/5) 8626755356100362 a001 139583862445/2207*599074578^(5/14) 8626755356100362 a001 86267571272/2207*599074578^(8/21) 8626755356100362 a001 433494437/2207*45537549124^(9/17) 8626755356100362 a001 433494437/2207*817138163596^(9/19) 8626755356100362 a001 433494437/2207*14662949395604^(3/7) 8626755356100362 a001 433494437/2207*192900153618^(1/2) 8626755356100362 a001 433494437/2207*10749957122^(9/16) 8626755356100362 a001 32951280099/2207*599074578^(3/7) 8626755356100362 a001 701408733/2207*599074578^(13/21) 8626755356100362 a001 12586269025/2207*599074578^(10/21) 8626755356100362 a001 7778742049/2207*599074578^(1/2) 8626755356100362 a001 4807526976/2207*599074578^(11/21) 8626755356100362 a001 1836311903/2207*599074578^(4/7) 8626755356100362 a001 433494437/2207*599074578^(9/14) 8626755356100362 a001 4807525989*228826127^(3/20) 8626755356100362 a001 4052739537881/2207*228826127^(1/5) 8626755356100362 a001 1548008755920/2207*228826127^(1/4) 8626755356100362 a001 591286729879/2207*228826127^(3/10) 8626755356100362 a001 225851433717/2207*228826127^(7/20) 8626755356100362 a001 139583862445/2207*228826127^(3/8) 8626755356100362 a001 165580141/2207*1322157322203^(1/2) 8626755356100362 a001 86267571272/2207*228826127^(2/5) 8626755356100362 a001 32951280099/2207*228826127^(9/20) 8626755356100362 a001 12586269025/2207*228826127^(1/2) 8626755356100362 a001 4807526976/2207*228826127^(11/20) 8626755356100362 a001 267914296/2207*228826127^(7/10) 8626755356100362 a001 1836311903/2207*228826127^(3/5) 8626755356100362 a001 701408733/2207*228826127^(13/20) 8626755356100362 a001 1134903170/2207*228826127^(5/8) 8626755356100362 a001 4807525989*87403803^(3/19) 8626755356100362 a001 4052739537881/2207*87403803^(4/19) 8626755356100362 a001 1548008755920/2207*87403803^(5/19) 8626755356100362 a001 591286729879/2207*87403803^(6/19) 8626755356100362 a001 225851433717/2207*87403803^(7/19) 8626755356100362 a001 63245986/2207*9062201101803^(1/2) 8626755356100362 a001 86267571272/2207*87403803^(8/19) 8626755356100363 a001 32951280099/2207*87403803^(9/19) 8626755356100363 a001 20365011074/2207*87403803^(1/2) 8626755356100363 a001 12586269025/2207*87403803^(10/19) 8626755356100363 a001 4807526976/2207*87403803^(11/19) 8626755356100363 a001 1836311903/2207*87403803^(12/19) 8626755356100363 a001 102334155/2207*87403803^(15/19) 8626755356100363 a001 701408733/2207*87403803^(13/19) 8626755356100363 a001 267914296/2207*87403803^(14/19) 8626755356100363 a001 4807525989*33385282^(1/6) 8626755356100364 a001 4052739537881/2207*33385282^(2/9) 8626755356100364 a001 2504730781961/2207*33385282^(1/4) 8626755356100364 a001 1548008755920/2207*33385282^(5/18) 8626755356100365 a001 591286729879/2207*33385282^(1/3) 8626755356100365 a001 24157817/2207*141422324^(11/13) 8626755356100365 a001 24157817/2207*2537720636^(11/15) 8626755356100365 a001 24157817/2207*45537549124^(11/17) 8626755356100365 a001 24157817/2207*312119004989^(3/5) 8626755356100365 a001 24157817/2207*817138163596^(11/19) 8626755356100365 a001 24157817/2207*14662949395604^(11/21) 8626755356100365 a001 24157817/2207*192900153618^(11/18) 8626755356100365 a001 24157817/2207*10749957122^(11/16) 8626755356100365 a001 24157817/2207*1568397607^(3/4) 8626755356100365 a001 24157817/2207*599074578^(11/14) 8626755356100365 a001 225851433717/2207*33385282^(7/18) 8626755356100365 a001 139583862445/2207*33385282^(5/12) 8626755356100365 a001 86267571272/2207*33385282^(4/9) 8626755356100366 a001 32951280099/2207*33385282^(1/2) 8626755356100366 a001 12586269025/2207*33385282^(5/9) 8626755356100366 a001 7778742049/2207*33385282^(7/12) 8626755356100367 a001 4807526976/2207*33385282^(11/18) 8626755356100367 a001 1836311903/2207*33385282^(2/3) 8626755356100368 a001 701408733/2207*33385282^(13/18) 8626755356100368 a001 39088169/2207*33385282^(8/9) 8626755356100368 a001 433494437/2207*33385282^(3/4) 8626755356100368 a001 267914296/2207*33385282^(7/9) 8626755356100368 a001 102334155/2207*33385282^(5/6) 8626755356100371 a001 4807525989*12752043^(3/17) 8626755356100372 a001 24157817/2207*33385282^(11/12) 8626755356100374 a001 4052739537881/2207*12752043^(4/17) 8626755356100378 a001 1548008755920/2207*12752043^(5/17) 8626755356100381 a001 591286729879/2207*12752043^(6/17) 8626755356100382 a001 9227465/2207*2537720636^(7/9) 8626755356100382 a001 9227465/2207*17393796001^(5/7) 8626755356100382 a001 9227465/2207*312119004989^(7/11) 8626755356100382 a001 9227465/2207*14662949395604^(5/9) 8626755356100382 a001 9227465/2207*505019158607^(5/8) 8626755356100382 a001 9227465/2207*28143753123^(7/10) 8626755356100382 a001 9227465/2207*599074578^(5/6) 8626755356100382 a001 9227465/2207*228826127^(7/8) 8626755356100384 a001 225851433717/2207*12752043^(7/17) 8626755356100387 a001 86267571272/2207*12752043^(8/17) 8626755356100389 a001 53316291173/2207*12752043^(1/2) 8626755356100390 a001 32951280099/2207*12752043^(9/17) 8626755356100393 a001 12586269025/2207*12752043^(10/17) 8626755356100396 a001 4807526976/2207*12752043^(11/17) 8626755356100399 a001 1836311903/2207*12752043^(12/17) 8626755356100403 a001 701408733/2207*12752043^(13/17) 8626755356100406 a001 267914296/2207*12752043^(14/17) 8626755356100409 a001 102334155/2207*12752043^(15/17) 8626755356100411 a001 39088169/2207*12752043^(16/17) 8626755356100430 a001 4807525989*4870847^(3/16) 8626755356100453 a001 4052739537881/2207*4870847^(1/4) 8626755356100476 a001 1548008755920/2207*4870847^(5/16) 8626755356100498 a001 591286729879/2207*4870847^(3/8) 8626755356100521 a001 225851433717/2207*4870847^(7/16) 8626755356100544 a001 86267571272/2207*4870847^(1/2) 8626755356100567 a001 32951280099/2207*4870847^(9/16) 8626755356100589 a001 12586269025/2207*4870847^(5/8) 8626755356100612 a001 4807526976/2207*4870847^(11/16) 8626755356100635 a001 1836311903/2207*4870847^(3/4) 8626755356100657 a001 701408733/2207*4870847^(13/16) 8626755356100680 a001 267914296/2207*4870847^(7/8) 8626755356100703 a001 102334155/2207*4870847^(15/16) 8626755356100860 a001 4807525989*1860498^(1/5) 8626755356101027 a001 4052739537881/2207*1860498^(4/15) 8626755356101110 a001 2504730781961/2207*1860498^(3/10) 8626755356101193 a001 1548008755920/2207*1860498^(1/3) 8626755356101314 a001 1346269/2207*2537720636^(13/15) 8626755356101314 a001 1346269/2207*45537549124^(13/17) 8626755356101314 a001 1346269/2207*14662949395604^(13/21) 8626755356101314 a001 1346269/2207*192900153618^(13/18) 8626755356101314 a001 1346269/2207*73681302247^(3/4) 8626755356101314 a001 1346269/2207*10749957122^(13/16) 8626755356101314 a001 1346269/2207*599074578^(13/14) 8626755356101359 a001 591286729879/2207*1860498^(2/5) 8626755356101525 a001 225851433717/2207*1860498^(7/15) 8626755356101608 a001 139583862445/2207*1860498^(1/2) 8626755356101691 a001 86267571272/2207*1860498^(8/15) 8626755356101857 a001 32951280099/2207*1860498^(3/5) 8626755356102023 a001 12586269025/2207*1860498^(2/3) 8626755356102107 a001 7778742049/2207*1860498^(7/10) 8626755356102190 a001 4807526976/2207*1860498^(11/15) 8626755356102356 a001 1836311903/2207*1860498^(4/5) 8626755356102439 a001 1134903170/2207*1860498^(5/6) 8626755356102522 a001 701408733/2207*1860498^(13/15) 8626755356102605 a001 433494437/2207*1860498^(9/10) 8626755356102688 a001 267914296/2207*1860498^(14/15) 8626755356104022 a001 4807525989*710647^(3/14) 8626755356104632 a001 6557470319842/2207*710647^(1/4) 8626755356105243 a001 4052739537881/2207*710647^(2/7) 8626755356106463 a001 1548008755920/2207*710647^(5/14) 8626755356107683 a001 591286729879/2207*710647^(3/7) 8626755356108903 a001 225851433717/2207*710647^(1/2) 8626755356110123 a001 86267571272/2207*710647^(4/7) 8626755356111343 a001 32951280099/2207*710647^(9/14) 8626755356112563 a001 12586269025/2207*710647^(5/7) 8626755356113174 a001 7778742049/2207*710647^(3/4) 8626755356113784 a001 4807526976/2207*710647^(11/14) 8626755356115004 a001 1836311903/2207*710647^(6/7) 8626755356116224 a001 701408733/2207*710647^(13/14) 8626755356127381 a001 4807525989*271443^(3/13) 8626755356136387 a001 4052739537881/2207*271443^(4/13) 8626755356145394 a001 1548008755920/2207*271443^(5/13) 8626755356154400 a001 591286729879/2207*271443^(6/13) 8626755356158903 a001 365435296162/2207*271443^(1/2) 8626755356163406 a001 225851433717/2207*271443^(7/13) 8626755356172412 a001 86267571272/2207*271443^(8/13) 8626755356181419 a001 32951280099/2207*271443^(9/13) 8626755356190425 a001 12586269025/2207*271443^(10/13) 8626755356199431 a001 4807526976/2207*271443^(11/13) 8626755356208438 a001 1836311903/2207*271443^(12/13) 8626755356217080 a001 10472277129572601/121393 8626755356300985 a001 4807525989*103682^(1/4) 8626755356334422 a001 6557470319842/2207*103682^(7/24) 8626755356367859 a001 4052739537881/2207*103682^(1/3) 8626755356401297 a001 2504730781961/2207*103682^(3/8) 8626755356406887 a001 75025/2207*45537549124^(15/17) 8626755356406887 a001 75025/2207*312119004989^(9/11) 8626755356406887 a001 75025/2207*14662949395604^(5/7) 8626755356406887 a001 75025/2207*192900153618^(5/6) 8626755356406887 a001 75025/2207*28143753123^(9/10) 8626755356406887 a001 75025/2207*10749957122^(15/16) 8626755356434734 a001 1548008755920/2207*103682^(5/12) 8626755356468171 a001 956722026041/2207*103682^(11/24) 8626755356501608 a001 591286729879/2207*103682^(1/2) 8626755356535045 a001 365435296162/2207*103682^(13/24) 8626755356568482 a001 225851433717/2207*103682^(7/12) 8626755356601920 a001 139583862445/2207*103682^(5/8) 8626755356635357 a001 86267571272/2207*103682^(2/3) 8626755356668794 a001 53316291173/2207*103682^(17/24) 8626755356702231 a001 32951280099/2207*103682^(3/4) 8626755356735668 a001 20365011074/2207*103682^(19/24) 8626755356769105 a001 12586269025/2207*103682^(5/6) 8626755356802543 a001 7778742049/2207*103682^(7/8) 8626755356835980 a001 4807526976/2207*103682^(11/12) 8626755356869417 a001 2971215073/2207*103682^(23/24) 8626755356902490 a001 190478758280407/2208 8626755357600461 a001 4807525989*39603^(3/11) 8626755357850477 a001 6557470319842/2207*39603^(7/22) 8626755358100494 a001 4052739537881/2207*39603^(4/11) 8626755358350510 a001 2504730781961/2207*39603^(9/22) 8626755358600527 a001 1548008755920/2207*39603^(5/11) 8626755358850543 a001 956722026041/2207*39603^(1/2) 8626755359100560 a001 591286729879/2207*39603^(6/11) 8626755359350576 a001 365435296162/2207*39603^(13/22) 8626755359600593 a001 225851433717/2207*39603^(7/11) 8626755359850609 a001 139583862445/2207*39603^(15/22) 8626755360100626 a001 86267571272/2207*39603^(8/11) 8626755360350642 a001 53316291173/2207*39603^(17/22) 8626755360600659 a001 32951280099/2207*39603^(9/11) 8626755360850675 a001 20365011074/2207*39603^(19/22) 8626755361100692 a001 12586269025/2207*39603^(10/11) 8626755361350708 a001 7778742049/2207*39603^(21/22) 8626755361600361 a001 1527884642093040/17711 8626755367410376 a001 4807525989*15127^(3/10) 8626755369295378 a001 6557470319842/2207*15127^(7/20) 8626755369997010 r005 Im(z^2+c),c=-20/31+8/43*I,n=32 8626755370500498 a001 10946/2207*14662949395604^(7/9) 8626755370500498 a001 10946/2207*505019158607^(7/8) 8626755371180380 a001 4052739537881/2207*15127^(2/5) 8626755373065382 a001 2504730781961/2207*15127^(9/20) 8626755374950385 a001 1548008755920/2207*15127^(1/2) 8626755376835387 a001 956722026041/2207*15127^(11/20) 8626755378720389 a001 591286729879/2207*15127^(3/5) 8626755380605391 a001 365435296162/2207*15127^(13/20) 8626755382490394 a001 225851433717/2207*15127^(7/10) 8626755384375396 a001 139583862445/2207*15127^(3/4) 8626755386260398 a001 86267571272/2207*15127^(4/5) 8626755388145400 a001 53316291173/2207*15127^(17/20) 8626755390030403 a001 32951280099/2207*15127^(9/10) 8626755391915405 a001 20365011074/2207*15127^(19/20) 8626755393015680 a001 267913919*843^(6/7) 8626755393800044 a001 194533334130191/2255 8626755394414402 k002 Champernowne real with 105/2*n^2+47/2*n+10 8626755401851754 a007 Real Root Of 101*x^4-797*x^3-862*x^2-780*x-599 8626755403591612 m001 GAMMA(11/24)^2/exp(Porter)*Zeta(9) 8626755406193058 a007 Real Root Of -252*x^4+846*x^3+495*x^2-369*x-4 8626755421305915 m002 -1+Cosh[Pi]-E^Pi/Log[Pi]+Tanh[Pi] 8626755435591065 m001 Otter*(3^(1/2)+KhinchinLevy) 8626755442233679 a001 4807525989*5778^(1/3) 8626755445867399 a007 Real Root Of 100*x^4-256*x^3+28*x^2+156*x-106 8626755454800000 a001 987/9349*14662949395604^(19/21) 8626755454800362 a001 4181/2207*817138163596^(17/19) 8626755454800362 a001 4181/2207*14662949395604^(17/21) 8626755454800362 a001 4181/2207*192900153618^(17/18) 8626755456589232 a001 6557470319842/2207*5778^(7/18) 8626755469518213 a007 Real Root Of -305*x^4+909*x^3+274*x^2-986*x-302 8626755470944785 a001 4052739537881/2207*5778^(4/9) 8626755484230245 r002 48th iterates of z^2 + 8626755485300338 a001 2504730781961/2207*5778^(1/2) 8626755487291771 m001 (MinimumGamma+ZetaQ(2))/(ln(2)-polylog(4,1/2)) 8626755494714462 k002 Champernowne real with 53*n^2+22*n+11 8626755499655891 a001 1548008755920/2207*5778^(5/9) 8626755514011444 a001 956722026041/2207*5778^(11/18) 8626755527414570 a007 Real Root Of -315*x^4-772*x^3-289*x^2+850*x+75 8626755528366998 a001 591286729879/2207*5778^(2/3) 8626755542684358 a007 Real Root Of 797*x^4+620*x^3-789*x^2-876*x+81 8626755542722551 a001 365435296162/2207*5778^(13/18) 8626755547037167 m001 (Zeta(3)-GAMMA(13/24))/(Artin-QuadraticClass) 8626755555565279 a007 Real Root Of -980*x^4+671*x^3+798*x^2+225*x-676 8626755557078104 a001 225851433717/2207*5778^(7/9) 8626755571433657 a001 139583862445/2207*5778^(5/6) 8626755585789210 a001 86267571272/2207*5778^(8/9) 8626755595014522 k002 Champernowne real with 107/2*n^2+41/2*n+12 8626755600144763 a001 53316291173/2207*5778^(17/18) 8626755614499961 a001 222915365078679/2584 8626755639859575 a001 10610209857723/3571*1364^(7/15) 8626755645111412 m001 (GAMMA(17/24)+Lehmer)/(LambertW(1)+ln(5)) 8626755649426560 m001 (-exp(1/Pi)+Paris)/(2^(1/3)+Ei(1,1)) 8626755695314582 k002 Champernowne real with 54*n^2+19*n+13 8626755713052280 a007 Real Root Of -189*x^4+168*x^3-875*x^2-672*x+284 8626755736801624 r005 Re(z^2+c),c=-157/110+15/46*I,n=4 8626755795614642 k002 Champernowne real with 109/2*n^2+35/2*n+14 8626755797273320 r005 Re(z^2+c),c=-143/106+1/24*I,n=20 8626755815881219 r005 Im(z^2+c),c=-1/21+11/12*I,n=4 8626755816737442 m003 -6+Sqrt[5]/128+Tan[1/2+Sqrt[5]/2]/8 8626755835601398 h001 (1/3*exp(2)+1/5)/(4/11*exp(2)+2/5) 8626755895914702 k002 Champernowne real with 55*n^2+16*n+15 8626755898860324 a007 Real Root Of 550*x^4-424*x^3+840*x^2+794*x-517 8626755936163470 m001 3^(1/2)/(Sierpinski-gamma) 8626755944679351 m001 (sin(1/5*Pi)-GAMMA(3/4))/(ln(gamma)+PlouffeB) 8626755956248823 p003 LerchPhi(1/1024,5,163/63) 8626755961426809 m001 (-ln(gamma)+1/2)/(GAMMA(1/12)+2/3) 8626755962045169 a005 (1/sin(86/207*Pi))^770 8626755991737777 a007 Real Root Of 450*x^4+50*x^3+942*x^2+574*x-423 8626755996214762 k002 Champernowne real with 111/2*n^2+29/2*n+16 8626756004370661 a007 Real Root Of -37*x^4+811*x^3-249*x^2-834*x+7 8626756005971828 r005 Im(z^2+c),c=5/19+28/47*I,n=12 8626756020262683 a001 4807525989*2207^(3/8) 8626756032599915 a001 987/3571*3461452808002^(11/12) 8626756046544916 a007 Real Root Of -867*x^4+675*x^3-134*x^2-952*x+192 8626756064783950 a007 Real Root Of -628*x^4+872*x^3+224*x^2-481*x+326 8626756075503811 m001 (PlouffeB-Salem)/(ErdosBorwein-Kolakoski) 8626756088644108 a007 Real Root Of -453*x^4-833*x^3-403*x^2+458*x+42 8626756096514822 k002 Champernowne real with 56*n^2+13*n+17 8626756123080357 a007 Real Root Of 118*x^4-700*x^3-379*x^2+123*x+560 8626756130956409 a001 6557470319842/2207*2207^(7/16) 8626756142591260 m001 OrthogonalArrays-Zeta(1,2)^exp(-1/2*Pi) 8626756154960073 m001 1/2*2^(1/2)*BesselI(1,2)*ZetaP(4) 8626756179596926 a007 Real Root Of 324*x^4-597*x^3-460*x^2-265*x-449 8626756192300062 a001 137769296391032/1597 8626756196814882 k002 Champernowne real with 113/2*n^2+23/2*n+18 8626756201247340 m001 Salem/(Porter^cos(1/5*Pi)) 8626756232094132 a001 75283811239/1926*3571^(16/17) 8626756237012859 a007 Real Root Of -572*x^4+199*x^3-615*x^2-923*x+106 8626756241650135 a001 4052739537881/2207*2207^(1/2) 8626756242770910 a007 Real Root Of 859*x^4-398*x^3+154*x^2+547*x-374 8626756260107796 a001 139583862445/843*843^(13/14) 8626756271888247 a001 182717648081/2889*3571^(15/17) 8626756286193947 r009 Im(z^3+c),c=-5/126+34/39*I,n=19 8626756297114942 k002 Champernowne real with 57*n^2+10*n+19 8626756311682363 a001 591286729879/5778*3571^(14/17) 8626756325747553 a007 Real Root Of 474*x^4+307*x^3+945*x^2+592*x-258 8626756326155542 p004 log(27479/11597) 8626756330522445 r002 5th iterates of z^2 + 8626756351476479 a001 956722026041/5778*3571^(13/17) 8626756352343863 a001 2504730781961/2207*2207^(9/16) 8626756391270594 a001 86000486440/321*3571^(12/17) 8626756397415002 k002 Champernowne real with 115/2*n^2+17/2*n+20 8626756411843167 r005 Im(z^2+c),c=-125/102+5/43*I,n=41 8626756417046883 r005 Im(z^2+c),c=-31/54+9/53*I,n=21 8626756419493895 b008 7+(1/10+E)*EulerGamma 8626756431064711 a001 2504730781961/5778*3571^(11/17) 8626756432480945 r005 Im(z^2+c),c=-5/86+53/62*I,n=4 8626756439663324 m001 (MasserGramain+PlouffeB)/(BesselK(1,1)-Bloch) 8626756445199686 a001 137769300429839/1597 8626756445264307 h001 (-7*exp(1/3)+5)/(-4*exp(-1)+7) 8626756449897557 a001 137769300504864/1597 8626756450582968 a001 137769300515810/1597 8626756450682968 a001 137769300517407/1597 8626756450697557 a001 137769300517640/1597 8626756450699686 a001 137769300517674/1597 8626756450700062 a001 137769300517680/1597 8626756450700187 a001 137769300517682/1597 8626756450701001 a001 137769300517695/1597 8626756450706574 a001 137769300517784/1597 8626756450744771 a001 137769300518394/1597 8626756451006574 a001 137769300522575/1597 8626756452794063 a001 591286729879/15127*3571^(16/17) 8626756452801001 a001 137769300551232/1597 8626756463037593 a001 1548008755920/2207*2207^(5/8) 8626756465100187 a001 137769300747650/1597 8626756470858827 a001 4052739537881/5778*3571^(10/17) 8626756484993750 a001 516002918640/13201*3571^(16/17) 8626756488147781 m005 (1/2*2^(1/2)-9/10)/(1/6*Pi-3/10) 8626756489691621 a001 4052739537881/103682*3571^(16/17) 8626756490377031 a001 3536736619241/90481*3571^(16/17) 8626756490800638 a001 6557470319842/167761*3571^(16/17) 8626756492588179 a001 956722026041/15127*3571^(15/17) 8626756492595065 a001 2504730781961/64079*3571^(16/17) 8626756494488610 r005 Re(z^2+c),c=-79/90+2/45*I,n=27 8626756497715062 k002 Champernowne real with 58*n^2+7*n+21 8626756504894251 a001 956722026041/24476*3571^(16/17) 8626756510652943 a001 3278735159921/2889*3571^(9/17) 8626756511912135 a007 Real Root Of 920*x^4-864*x^3-651*x^2-173*x-729 8626756523266796 a007 Real Root Of -95*x^4+149*x^3+837*x^2+371*x-986 8626756523770052 a007 Real Root Of 492*x^4-938*x^3+524*x^2+869*x-515 8626756524787866 a001 2504730781961/39603*3571^(15/17) 8626756529485737 a001 3278735159921/51841*3571^(15/17) 8626756530594754 a001 10610209857723/167761*3571^(15/17) 8626756531242549 r002 2th iterates of z^2 + 8626756532382296 a001 1548008755920/15127*3571^(14/17) 8626756532389181 a001 4052739537881/64079*3571^(15/17) 8626756537502085 r002 23th iterates of z^2 + 8626756544688367 a001 387002188980/6119*3571^(15/17) 8626756549400062 a001 137769302093919/1597 8626756550447060 a001 3536736619241/1926*3571^(8/17) 8626756564581983 a001 4052739537881/39603*3571^(14/17) 8626756566830896 a007 Real Root Of -83*x^4+596*x^3+713*x^2+938*x+76 8626756569279854 a001 225749145909/2206*3571^(14/17) 8626756572176412 a001 2504730781961/15127*3571^(13/17) 8626756572183298 a001 6557470319842/64079*3571^(14/17) 8626756573731324 a001 956722026041/2207*2207^(11/16) 8626756584482484 a001 2504730781961/24476*3571^(14/17) 8626756589194127 a001 365435296162/9349*3571^(16/17) 8626756589789325 a007 Real Root Of -551*x^4+460*x^3-49*x^2+291*x+888 8626756598015122 k002 Champernowne real with 117/2*n^2+11/2*n+22 8626756604376100 a001 6557470319842/39603*3571^(13/17) 8626756608462126 m001 (exp(1/Pi)-GAMMA(11/12))/(Kac-LaplaceLimit) 8626756610399999 a001 1292/2889*14662949395604^(6/7) 8626756611970529 a001 4052739537881/15127*3571^(12/17) 8626756611977415 a001 10610209857723/64079*3571^(13/17) 8626756617453438 m001 Ei(1,1)+cos(1/12*Pi)-FellerTornier 8626756624276601 a001 4052739537881/24476*3571^(13/17) 8626756628988244 a001 591286729879/9349*3571^(15/17) 8626756644170217 a001 3536736619241/13201*3571^(12/17) 8626756651764646 a001 6557470319842/15127*3571^(11/17) 8626756652598031 a008 Real Root of (-4+2*x-x^2+2*x^4+4*x^5) 8626756664070718 a001 3278735159921/12238*3571^(12/17) 8626756667222029 r005 Re(z^2+c),c=-57/110+37/59*I,n=16 8626756668781516 r002 3th iterates of z^2 + 8626756668782361 a001 956722026041/9349*3571^(14/17) 8626756684425056 a001 591286729879/2207*2207^(3/4) 8626756691095454 m001 (ln(gamma)+Ei(1,1))/(Artin+ZetaQ(3)) 8626756691558764 a001 1515744265389/2161*3571^(10/17) 8626756698315182 k002 Champernowne real with 59*n^2+4*n+23 8626756703813988 a007 Real Root Of 239*x^4-13*x^3-118*x^2-952*x+83 8626756703864836 a001 10610209857723/24476*3571^(11/17) 8626756708576479 a001 1548008755920/9349*3571^(13/17) 8626756708692368 a007 Real Root Of -589*x^4+71*x^3-197*x^2-616*x-13 8626756713428481 a007 Real Root Of 711*x^4-696*x^3+222*x^2-907*x+77 8626756729972987 m001 (-Zeta(3)+Sierpinski)/(Chi(1)+BesselJ(0,1)) 8626756748370596 a001 2504730781961/9349*3571^(12/17) 8626756749761091 r005 Im(z^2+c),c=9/32+26/47*I,n=14 8626756755919251 a001 54018521*34^(11/14) 8626756762737835 a001 199/832040*10946^(4/29) 8626756770099976 a001 360684700557880/4181 8626756775294720 a001 43133785636/2889*9349^(18/19) 8626756780489458 a001 139583862445/5778*9349^(17/19) 8626756785684195 a001 75283811239/1926*9349^(16/19) 8626756787189280 r005 Im(z^2+c),c=-27/52+7/46*I,n=32 8626756788164714 a001 4052739537881/9349*3571^(11/17) 8626756790878933 a001 182717648081/2889*9349^(15/19) 8626756794635170 r005 Im(z^2+c),c=-21/118+25/38*I,n=28 8626756795118790 a001 365435296162/2207*2207^(13/16) 8626756796073671 a001 591286729879/5778*9349^(14/19) 8626756798615242 k002 Champernowne real with 119/2*n^2+5/2*n+24 8626756801268409 a001 956722026041/5778*9349^(13/19) 8626756805124102 a007 Real Root Of 664*x^4-148*x^3-499*x^2-3*x-94 8626756806463146 a001 86000486440/321*9349^(12/19) 8626756811657884 a001 2504730781961/5778*9349^(11/19) 8626756814980438 m005 (1/2*2^(1/2)-2/5)/(1/11*Pi-1/4) 8626756816852622 a001 4052739537881/5778*9349^(10/19) 8626756822047360 a001 3278735159921/2889*9349^(9/19) 8626756827242097 a001 3536736619241/1926*9349^(8/19) 8626756827958832 a001 6557470319842/9349*3571^(10/17) 8626756831099940 a001 2584/15127*14662949395604^(8/9) 8626756831099948 a001 2255/1926*23725150497407^(13/16) 8626756831099948 a001 2255/1926*505019158607^(13/14) 8626756836085667 a007 Real Root Of 169*x^4-614*x^3-81*x^2-346*x-726 8626756849685978 a007 Real Root Of -733*x^4+540*x^3+935*x^2+523*x+508 8626756850338004 m001 (2^(1/2)-cos(1/12*Pi))/(-Gompertz+ZetaP(4)) 8626756854399853 a001 472142402641304/5473 8626756855085582 a001 10983760033/1926*24476^(20/21) 8626756855771303 a001 53316291173/5778*24476^(19/21) 8626756856457024 a001 43133785636/2889*24476^(6/7) 8626756857142745 a001 139583862445/5778*24476^(17/21) 8626756857828465 a001 75283811239/1926*24476^(16/21) 8626756858514186 a001 182717648081/2889*24476^(5/7) 8626756859199907 a001 591286729879/5778*24476^(2/3) 8626756859885628 a001 956722026041/5778*24476^(13/21) 8626756860502800 a007 Real Root Of -393*x^4+547*x^3+237*x^2-368*x+75 8626756860571349 a001 86000486440/321*24476^(4/7) 8626756861257070 a001 2504730781961/5778*24476^(11/21) 8626756861942791 a001 4052739537881/5778*24476^(10/21) 8626756862628512 a001 3278735159921/2889*24476^(3/7) 8626756863299636 a001 17711/5778*312119004989^(10/11) 8626756863299636 a001 17711/5778*3461452808002^(5/6) 8626756863314232 a001 3536736619241/1926*24476^(8/21) 8626756863581923 a007 Real Root Of -489*x^4+840*x^3+149*x^2+454*x-771 8626756866699040 a001 2472169715289944/28657 8626756866790393 a001 12586269025/5778*64079^(22/23) 8626756866881739 a001 10182505537/2889*64079^(21/23) 8626756866973085 a001 10983760033/1926*64079^(20/23) 8626756867064431 a001 53316291173/5778*64079^(19/23) 8626756867155776 a001 43133785636/2889*64079^(18/23) 8626756867247122 a001 139583862445/5778*64079^(17/23) 8626756867338468 a001 75283811239/1926*64079^(16/23) 8626756867429813 a001 182717648081/2889*64079^(15/23) 8626756867521159 a001 591286729879/5778*64079^(14/23) 8626756867612505 a001 956722026041/5778*64079^(13/23) 8626756867703851 a001 86000486440/321*64079^(12/23) 8626756867752950 a001 10610209857723/9349*3571^(9/17) 8626756867795196 a001 2504730781961/5778*64079^(11/23) 8626756867886542 a001 4052739537881/5778*64079^(10/23) 8626756867977888 a001 3278735159921/2889*64079^(9/23) 8626756867997500 a001 1292/51841*14662949395604^(20/21) 8626756867997507 a001 2576/321*45537549124^(16/17) 8626756867997507 a001 2576/321*14662949395604^(16/21) 8626756867997507 a001 2576/321*192900153618^(8/9) 8626756867997507 a001 2576/321*73681302247^(12/13) 8626756868069234 a001 3536736619241/1926*64079^(8/23) 8626756868493467 a001 6472224340587224/75025 8626756868554780 a001 10983760033/1926*167761^(4/5) 8626756868616085 a001 182717648081/2889*167761^(3/5) 8626756868677390 a001 4052739537881/5778*167761^(2/5) 8626756868682917 a001 121393/5778*10749957122^(23/24) 8626756868755270 a001 498367744307992/5777 8626756868760247 a001 267084832/321*439204^(8/9) 8626756868765216 a001 10182505537/2889*439204^(7/9) 8626756868770185 a001 43133785636/2889*439204^(2/3) 8626756868775154 a001 182717648081/2889*439204^(5/9) 8626756868780123 a001 86000486440/321*439204^(4/9) 8626756868782917 a001 105937/1926*312119004989^(4/5) 8626756868782917 a001 105937/1926*23725150497407^(11/16) 8626756868782917 a001 105937/1926*73681302247^(11/13) 8626756868782917 a001 105937/1926*10749957122^(11/12) 8626756868782917 a001 105937/1926*4106118243^(22/23) 8626756868785092 a001 3278735159921/2889*439204^(1/3) 8626756868797507 a001 416020/2889*2537720636^(14/15) 8626756868797507 a001 416020/2889*17393796001^(6/7) 8626756868797507 a001 416020/2889*45537549124^(14/17) 8626756868797507 a001 416020/2889*817138163596^(14/19) 8626756868797507 a001 416020/2889*14662949395604^(2/3) 8626756868797507 a001 416020/2889*505019158607^(3/4) 8626756868797507 a001 416020/2889*192900153618^(7/9) 8626756868797507 a001 416020/2889*10749957122^(7/8) 8626756868797507 a001 416020/2889*4106118243^(21/23) 8626756868797507 a001 416020/2889*1568397607^(21/22) 8626756868799636 a001 726103/1926*2537720636^(8/9) 8626756868799636 a001 726103/1926*312119004989^(8/11) 8626756868799636 a001 726103/1926*23725150497407^(5/8) 8626756868799636 a001 726103/1926*73681302247^(10/13) 8626756868799636 a001 726103/1926*28143753123^(4/5) 8626756868799636 a001 726103/1926*10749957122^(5/6) 8626756868799636 a001 726103/1926*4106118243^(20/23) 8626756868799636 a001 726103/1926*1568397607^(10/11) 8626756868799636 a001 726103/1926*599074578^(20/21) 8626756868799873 a001 133957148/2889*7881196^(10/11) 8626756868799886 a001 567451585/2889*7881196^(9/11) 8626756868799898 a001 267084832/321*7881196^(8/11) 8626756868799907 a001 12586269025/5778*7881196^(2/3) 8626756868799911 a001 10182505537/2889*7881196^(7/11) 8626756868799924 a001 43133785636/2889*7881196^(6/11) 8626756868799936 a001 182717648081/2889*7881196^(5/11) 8626756868799946 a001 5702887/5778*817138163596^(2/3) 8626756868799946 a001 5702887/5778*10749957122^(19/24) 8626756868799946 a001 5702887/5778*4106118243^(19/23) 8626756868799946 a001 5702887/5778*1568397607^(19/22) 8626756868799946 a001 5702887/5778*599074578^(19/21) 8626756868799947 a001 5702887/5778*228826127^(19/20) 8626756868799949 a001 86000486440/321*7881196^(4/11) 8626756868799953 a001 2504730781961/5778*7881196^(1/3) 8626756868799962 a001 3278735159921/2889*7881196^(3/11) 8626756868799982 a001 133957148/2889*20633239^(6/7) 8626756868799983 a001 233802911/1926*20633239^(4/5) 8626756868799985 a001 2971215073/5778*20633239^(5/7) 8626756868799987 a001 10182505537/2889*20633239^(3/5) 8626756868799988 a001 10983760033/1926*20633239^(4/7) 8626756868799991 a001 182717648081/2889*20633239^(3/7) 8626756868799991 a001 2584*141422324^(12/13) 8626756868799991 a001 591286729879/5778*20633239^(2/5) 8626756868799992 a001 2584*2537720636^(4/5) 8626756868799992 a001 2584*45537549124^(12/17) 8626756868799992 a001 2584*14662949395604^(4/7) 8626756868799992 a001 2584*505019158607^(9/14) 8626756868799992 a001 2584*192900153618^(2/3) 8626756868799992 a001 2584*73681302247^(9/13) 8626756868799992 a001 2584*10749957122^(3/4) 8626756868799992 a001 2584*4106118243^(18/23) 8626756868799992 a001 2584*1568397607^(9/11) 8626756868799992 a001 2584*599074578^(6/7) 8626756868799992 a001 2584*228826127^(9/10) 8626756868799993 a001 2584*87403803^(18/19) 8626756868799994 a001 4052739537881/5778*20633239^(2/7) 8626756868799998 a001 39088169/5778*45537549124^(2/3) 8626756868799998 a001 39088169/5778*10749957122^(17/24) 8626756868799998 a001 39088169/5778*4106118243^(17/23) 8626756868799998 a001 39088169/5778*1568397607^(17/22) 8626756868799998 a001 39088169/5778*599074578^(17/21) 8626756868799999 a001 39088169/5778*228826127^(17/20) 8626756868799999 a001 133957148/2889*141422324^(10/13) 8626756868799999 a001 567451585/2889*141422324^(9/13) 8626756868799999 a001 1836311903/5778*141422324^(2/3) 8626756868799999 a001 267084832/321*141422324^(8/13) 8626756868799999 a001 10182505537/2889*141422324^(7/13) 8626756868799999 a001 43133785636/2889*141422324^(6/13) 8626756868799999 a001 182717648081/2889*141422324^(5/13) 8626756868799999 a001 34111385/1926*23725150497407^(1/2) 8626756868799999 a001 34111385/1926*505019158607^(4/7) 8626756868799999 a001 34111385/1926*73681302247^(8/13) 8626756868799999 a001 34111385/1926*10749957122^(2/3) 8626756868799999 a001 34111385/1926*4106118243^(16/23) 8626756868799999 a001 34111385/1926*1568397607^(8/11) 8626756868799999 a001 34111385/1926*599074578^(16/21) 8626756868799999 a001 956722026041/5778*141422324^(1/3) 8626756868799999 a001 86000486440/321*141422324^(4/13) 8626756868799999 a001 39088169/5778*87403803^(17/19) 8626756868799999 a001 3278735159921/2889*141422324^(3/13) 8626756868799999 a001 34111385/1926*228826127^(4/5) 8626756868799999 a001 133957148/2889*2537720636^(2/3) 8626756868799999 a001 133957148/2889*45537549124^(10/17) 8626756868799999 a001 133957148/2889*312119004989^(6/11) 8626756868799999 a001 133957148/2889*14662949395604^(10/21) 8626756868799999 a001 133957148/2889*192900153618^(5/9) 8626756868799999 a001 133957148/2889*28143753123^(3/5) 8626756868799999 a001 133957148/2889*10749957122^(5/8) 8626756868799999 a001 133957148/2889*4106118243^(15/23) 8626756868799999 a001 133957148/2889*1568397607^(15/22) 8626756868799999 a001 133957148/2889*599074578^(5/7) 8626756868799999 a001 233802911/1926*17393796001^(4/7) 8626756868799999 a001 233802911/1926*14662949395604^(4/9) 8626756868799999 a001 233802911/1926*505019158607^(1/2) 8626756868799999 a001 233802911/1926*73681302247^(7/13) 8626756868799999 a001 233802911/1926*10749957122^(7/12) 8626756868799999 a001 233802911/1926*4106118243^(14/23) 8626756868799999 a001 233802911/1926*1568397607^(7/11) 8626756868799999 a001 267084832/321*2537720636^(8/15) 8626756868799999 a001 10182505537/2889*2537720636^(7/15) 8626756868799999 a001 10983760033/1926*2537720636^(4/9) 8626756868799999 a001 2971215073/5778*2537720636^(5/9) 8626756868799999 a001 43133785636/2889*2537720636^(2/5) 8626756868799999 a001 1836311903/5778*73681302247^(1/2) 8626756868799999 a001 1836311903/5778*10749957122^(13/24) 8626756868799999 a001 182717648081/2889*2537720636^(1/3) 8626756868799999 a001 86000486440/321*2537720636^(4/15) 8626756868799999 a001 4052739537881/5778*2537720636^(2/9) 8626756868799999 a001 3278735159921/2889*2537720636^(1/5) 8626756868799999 a001 1836311903/5778*4106118243^(13/23) 8626756868799999 a001 267084832/321*45537549124^(8/17) 8626756868799999 a001 267084832/321*14662949395604^(8/21) 8626756868799999 a001 267084832/321*192900153618^(4/9) 8626756868799999 a001 267084832/321*73681302247^(6/13) 8626756868799999 a001 267084832/321*10749957122^(1/2) 8626756868799999 a001 12586269025/5778*312119004989^(2/5) 8626756868799999 a001 591286729879/5778*17393796001^(2/7) 8626756868799999 a001 10182505537/2889*17393796001^(3/7) 8626756868799999 a001 43133785636/2889*45537549124^(6/17) 8626756868799999 a001 10983760033/1926*23725150497407^(5/16) 8626756868799999 a001 10983760033/1926*505019158607^(5/14) 8626756868799999 a001 139583862445/5778*45537549124^(1/3) 8626756868799999 a001 182717648081/2889*45537549124^(5/17) 8626756868799999 a001 86000486440/321*45537549124^(4/17) 8626756868799999 a001 10983760033/1926*73681302247^(5/13) 8626756868799999 a001 3278735159921/2889*45537549124^(3/17) 8626756868799999 a001 43133785636/2889*14662949395604^(2/7) 8626756868799999 a001 43133785636/2889*192900153618^(1/3) 8626756868799999 a001 2504730781961/5778*312119004989^(1/5) 8626756868799999 a001 4052739537881/5778*312119004989^(2/11) 8626756868799999 a001 182717648081/2889*312119004989^(3/11) 8626756868799999 a001 591286729879/5778*14662949395604^(2/9) 8626756868800000 a001 3278735159921/2889*14662949395604^(1/7) 8626756868800000 a001 182717648081/2889*14662949395604^(5/21) 8626756868800000 a001 3278735159921/2889*192900153618^(1/6) 8626756868800000 a001 182717648081/2889*192900153618^(5/18) 8626756868800000 a001 3536736619241/1926*73681302247^(2/13) 8626756868800000 a001 86000486440/321*73681302247^(3/13) 8626756868800000 a001 956722026041/5778*73681302247^(1/4) 8626756868800000 a001 75283811239/1926*73681302247^(4/13) 8626756868800000 a001 53316291173/5778*817138163596^(1/3) 8626756868800000 a001 4052739537881/5778*28143753123^(1/5) 8626756868800000 a001 10182505537/2889*45537549124^(7/17) 8626756868800000 a001 10983760033/1926*28143753123^(2/5) 8626756868800000 a001 182717648081/2889*28143753123^(3/10) 8626756868800000 a001 10182505537/2889*14662949395604^(1/3) 8626756868800000 a001 10182505537/2889*192900153618^(7/18) 8626756868800000 a001 3536736619241/1926*10749957122^(1/6) 8626756868800000 a001 3278735159921/2889*10749957122^(3/16) 8626756868800000 a001 4052739537881/5778*10749957122^(5/24) 8626756868800000 a001 86000486440/321*10749957122^(1/4) 8626756868800000 a001 591286729879/5778*10749957122^(7/24) 8626756868800000 a001 12586269025/5778*10749957122^(11/24) 8626756868800000 a001 182717648081/2889*10749957122^(5/16) 8626756868800000 a001 75283811239/1926*10749957122^(1/3) 8626756868800000 a001 43133785636/2889*10749957122^(3/8) 8626756868800000 a001 10983760033/1926*10749957122^(5/12) 8626756868800000 a001 10182505537/2889*10749957122^(7/16) 8626756868800000 a001 3536736619241/1926*4106118243^(4/23) 8626756868800000 a001 4052739537881/5778*4106118243^(5/23) 8626756868800000 a001 86000486440/321*4106118243^(6/23) 8626756868800000 a001 591286729879/5778*4106118243^(7/23) 8626756868800000 a001 75283811239/1926*4106118243^(8/23) 8626756868800000 a001 267084832/321*4106118243^(12/23) 8626756868800000 a001 2971215073/5778*312119004989^(5/11) 8626756868800000 a001 2971215073/5778*3461452808002^(5/12) 8626756868800000 a001 43133785636/2889*4106118243^(9/23) 8626756868800000 a001 2971215073/5778*28143753123^(1/2) 8626756868800000 a001 10983760033/1926*4106118243^(10/23) 8626756868800000 a001 12586269025/5778*4106118243^(11/23) 8626756868800000 a001 7778742049/5778*4106118243^(1/2) 8626756868800000 a001 567451585/2889*2537720636^(3/5) 8626756868800000 a001 3536736619241/1926*1568397607^(2/11) 8626756868800000 a001 4052739537881/5778*1568397607^(5/22) 8626756868800000 a001 2504730781961/5778*1568397607^(1/4) 8626756868800000 a001 86000486440/321*1568397607^(3/11) 8626756868800000 a001 591286729879/5778*1568397607^(7/22) 8626756868800000 a001 75283811239/1926*1568397607^(4/11) 8626756868800000 a001 567451585/2889*45537549124^(9/17) 8626756868800000 a001 567451585/2889*817138163596^(9/19) 8626756868800000 a001 567451585/2889*14662949395604^(3/7) 8626756868800000 a001 567451585/2889*192900153618^(1/2) 8626756868800000 a001 567451585/2889*10749957122^(9/16) 8626756868800000 a001 43133785636/2889*1568397607^(9/22) 8626756868800000 a001 1836311903/5778*1568397607^(13/22) 8626756868800000 a001 10983760033/1926*1568397607^(5/11) 8626756868800000 a001 12586269025/5778*1568397607^(1/2) 8626756868800000 a001 267084832/321*1568397607^(6/11) 8626756868800000 a001 3536736619241/1926*599074578^(4/21) 8626756868800000 a001 3278735159921/2889*599074578^(3/14) 8626756868800000 a001 4052739537881/5778*599074578^(5/21) 8626756868800000 a001 86000486440/321*599074578^(2/7) 8626756868800000 a001 591286729879/5778*599074578^(1/3) 8626756868800000 a001 182717648081/2889*599074578^(5/14) 8626756868800000 a001 75283811239/1926*599074578^(8/21) 8626756868800000 a001 433494437/5778*1322157322203^(1/2) 8626756868800000 a001 43133785636/2889*599074578^(3/7) 8626756868800000 a001 10983760033/1926*599074578^(10/21) 8626756868800000 a001 10182505537/2889*599074578^(1/2) 8626756868800000 a001 233802911/1926*599074578^(2/3) 8626756868800000 a001 12586269025/5778*599074578^(11/21) 8626756868800000 a001 267084832/321*599074578^(4/7) 8626756868800000 a001 1836311903/5778*599074578^(13/21) 8626756868800000 a001 567451585/2889*599074578^(9/14) 8626756868800000 a001 3536736619241/1926*228826127^(1/5) 8626756868800000 a001 4052739537881/5778*228826127^(1/4) 8626756868800000 a001 86000486440/321*228826127^(3/10) 8626756868800000 a001 591286729879/5778*228826127^(7/20) 8626756868800000 a001 182717648081/2889*228826127^(3/8) 8626756868800000 a001 165580141/5778*9062201101803^(1/2) 8626756868800000 a001 75283811239/1926*228826127^(2/5) 8626756868800000 a001 31622993/2889*141422324^(11/13) 8626756868800000 a001 43133785636/2889*228826127^(9/20) 8626756868800000 a001 10983760033/1926*228826127^(1/2) 8626756868800000 a001 12586269025/5778*228826127^(11/20) 8626756868800000 a001 267084832/321*228826127^(3/5) 8626756868800000 a001 133957148/2889*228826127^(3/4) 8626756868800000 a001 2971215073/5778*228826127^(5/8) 8626756868800000 a001 1836311903/5778*228826127^(13/20) 8626756868800000 a001 233802911/1926*228826127^(7/10) 8626756868800000 a001 3536736619241/1926*87403803^(4/19) 8626756868800000 a001 4052739537881/5778*87403803^(5/19) 8626756868800000 a001 86000486440/321*87403803^(6/19) 8626756868800000 a001 591286729879/5778*87403803^(7/19) 8626756868800000 a001 31622993/2889*2537720636^(11/15) 8626756868800000 a001 31622993/2889*45537549124^(11/17) 8626756868800000 a001 31622993/2889*312119004989^(3/5) 8626756868800000 a001 31622993/2889*817138163596^(11/19) 8626756868800000 a001 31622993/2889*14662949395604^(11/21) 8626756868800000 a001 31622993/2889*192900153618^(11/18) 8626756868800000 a001 31622993/2889*10749957122^(11/16) 8626756868800000 a001 31622993/2889*1568397607^(3/4) 8626756868800000 a001 31622993/2889*599074578^(11/14) 8626756868800000 a001 75283811239/1926*87403803^(8/19) 8626756868800000 a001 43133785636/2889*87403803^(9/19) 8626756868800000 a001 53316291173/5778*87403803^(1/2) 8626756868800000 a001 10983760033/1926*87403803^(10/19) 8626756868800000 a001 12586269025/5778*87403803^(11/19) 8626756868800000 a001 267084832/321*87403803^(12/19) 8626756868800000 a001 1836311903/5778*87403803^(13/19) 8626756868800000 a001 34111385/1926*87403803^(16/19) 8626756868800000 a001 233802911/1926*87403803^(14/19) 8626756868800000 a001 133957148/2889*87403803^(15/19) 8626756868800001 a001 3536736619241/1926*33385282^(2/9) 8626756868800001 a001 3278735159921/2889*33385282^(1/4) 8626756868800002 a001 4052739537881/5778*33385282^(5/18) 8626756868800002 a001 86000486440/321*33385282^(1/3) 8626756868800002 a001 24157817/5778*2537720636^(7/9) 8626756868800002 a001 24157817/5778*17393796001^(5/7) 8626756868800002 a001 24157817/5778*312119004989^(7/11) 8626756868800002 a001 24157817/5778*14662949395604^(5/9) 8626756868800002 a001 24157817/5778*505019158607^(5/8) 8626756868800002 a001 24157817/5778*28143753123^(7/10) 8626756868800002 a001 24157817/5778*599074578^(5/6) 8626756868800003 a001 591286729879/5778*33385282^(7/18) 8626756868800003 a001 24157817/5778*228826127^(7/8) 8626756868800003 a001 182717648081/2889*33385282^(5/12) 8626756868800003 a001 75283811239/1926*33385282^(4/9) 8626756868800003 a001 43133785636/2889*33385282^(1/2) 8626756868800004 a001 10983760033/1926*33385282^(5/9) 8626756868800004 a001 10182505537/2889*33385282^(7/12) 8626756868800004 a001 12586269025/5778*33385282^(11/18) 8626756868800005 a001 267084832/321*33385282^(2/3) 8626756868800005 a001 1836311903/5778*33385282^(13/18) 8626756868800005 a001 567451585/2889*33385282^(3/4) 8626756868800006 a001 233802911/1926*33385282^(7/9) 8626756868800006 a001 39088169/5778*33385282^(17/18) 8626756868800006 a001 133957148/2889*33385282^(5/6) 8626756868800006 a001 34111385/1926*33385282^(8/9) 8626756868800007 a001 31622993/2889*33385282^(11/12) 8626756868800012 a001 3536736619241/1926*12752043^(4/17) 8626756868800015 a001 4052739537881/5778*12752043^(5/17) 8626756868800018 a001 86000486440/321*12752043^(6/17) 8626756868800021 a001 591286729879/5778*12752043^(7/17) 8626756868800024 a001 75283811239/1926*12752043^(8/17) 8626756868800026 a001 139583862445/5778*12752043^(1/2) 8626756868800028 a001 43133785636/2889*12752043^(9/17) 8626756868800031 a001 10983760033/1926*12752043^(10/17) 8626756868800034 a001 12586269025/5778*12752043^(11/17) 8626756868800037 a001 267084832/321*12752043^(12/17) 8626756868800040 a001 1836311903/5778*12752043^(13/17) 8626756868800043 a001 233802911/1926*12752043^(14/17) 8626756868800046 a001 133957148/2889*12752043^(15/17) 8626756868800049 a001 34111385/1926*12752043^(16/17) 8626756868800090 a001 3536736619241/1926*4870847^(1/4) 8626756868800113 a001 4052739537881/5778*4870847^(5/16) 8626756868800136 a001 86000486440/321*4870847^(3/8) 8626756868800138 a001 1762289/2889*2537720636^(13/15) 8626756868800138 a001 1762289/2889*45537549124^(13/17) 8626756868800138 a001 1762289/2889*14662949395604^(13/21) 8626756868800138 a001 1762289/2889*192900153618^(13/18) 8626756868800138 a001 1762289/2889*73681302247^(3/4) 8626756868800138 a001 1762289/2889*10749957122^(13/16) 8626756868800138 a001 1762289/2889*599074578^(13/14) 8626756868800159 a001 591286729879/5778*4870847^(7/16) 8626756868800181 a001 75283811239/1926*4870847^(1/2) 8626756868800204 a001 43133785636/2889*4870847^(9/16) 8626756868800227 a001 10983760033/1926*4870847^(5/8) 8626756868800249 a001 12586269025/5778*4870847^(11/16) 8626756868800272 a001 267084832/321*4870847^(3/4) 8626756868800295 a001 1836311903/5778*4870847^(13/16) 8626756868800318 a001 233802911/1926*4870847^(7/8) 8626756868800340 a001 133957148/2889*4870847^(15/16) 8626756868800664 a001 3536736619241/1926*1860498^(4/15) 8626756868800747 a001 3278735159921/2889*1860498^(3/10) 8626756868800830 a001 4052739537881/5778*1860498^(1/3) 8626756868800996 a001 86000486440/321*1860498^(2/5) 8626756868801163 a001 591286729879/5778*1860498^(7/15) 8626756868801246 a001 182717648081/2889*1860498^(1/2) 8626756868801329 a001 75283811239/1926*1860498^(8/15) 8626756868801495 a001 43133785636/2889*1860498^(3/5) 8626756868801661 a001 10983760033/1926*1860498^(2/3) 8626756868801744 a001 10182505537/2889*1860498^(7/10) 8626756868801827 a001 12586269025/5778*1860498^(11/15) 8626756868801993 a001 267084832/321*1860498^(4/5) 8626756868802076 a001 2971215073/5778*1860498^(5/6) 8626756868802159 a001 1836311903/5778*1860498^(13/15) 8626756868802243 a001 567451585/2889*1860498^(9/10) 8626756868802326 a001 233802911/1926*1860498^(14/15) 8626756868804880 a001 3536736619241/1926*710647^(2/7) 8626756868806100 a001 4052739537881/5778*710647^(5/14) 8626756868807320 a001 86000486440/321*710647^(3/7) 8626756868808541 a001 591286729879/5778*710647^(1/2) 8626756868809761 a001 75283811239/1926*710647^(4/7) 8626756868810981 a001 43133785636/2889*710647^(9/14) 8626756868812201 a001 10983760033/1926*710647^(5/7) 8626756868812811 a001 10182505537/2889*710647^(3/4) 8626756868813421 a001 12586269025/5778*710647^(11/14) 8626756868814641 a001 267084832/321*710647^(6/7) 8626756868815861 a001 1836311903/5778*710647^(13/14) 8626756868817074 a001 9138927424118744/105937 8626756868836025 a001 3536736619241/1926*271443^(4/13) 8626756868844721 a001 98209/2889*45537549124^(15/17) 8626756868844721 a001 98209/2889*312119004989^(9/11) 8626756868844721 a001 98209/2889*14662949395604^(5/7) 8626756868844721 a001 98209/2889*192900153618^(5/6) 8626756868844721 a001 98209/2889*28143753123^(9/10) 8626756868844721 a001 98209/2889*10749957122^(15/16) 8626756868845031 a001 4052739537881/5778*271443^(5/13) 8626756868854037 a001 86000486440/321*271443^(6/13) 8626756868858541 a001 956722026041/5778*271443^(1/2) 8626756868863044 a001 591286729879/5778*271443^(7/13) 8626756868872050 a001 75283811239/1926*271443^(8/13) 8626756868881056 a001 43133785636/2889*271443^(9/13) 8626756868890063 a001 10983760033/1926*271443^(10/13) 8626756868899069 a001 12586269025/5778*271443^(11/13) 8626756868908075 a001 267084832/321*271443^(12/13) 8626756868917074 a001 10472278965884504/121393 8626756869067497 a001 3536736619241/1926*103682^(1/3) 8626756869100934 a001 3278735159921/2889*103682^(3/8) 8626756869134371 a001 4052739537881/5778*103682^(5/12) 8626756869167808 a001 2504730781961/5778*103682^(11/24) 8626756869201246 a001 86000486440/321*103682^(1/2) 8626756869234683 a001 956722026041/5778*103682^(13/24) 8626756869268120 a001 591286729879/5778*103682^(7/12) 8626756869301557 a001 182717648081/2889*103682^(5/8) 8626756869334994 a001 75283811239/1926*103682^(2/3) 8626756869368431 a001 139583862445/5778*103682^(17/24) 8626756869401869 a001 43133785636/2889*103682^(3/4) 8626756869435306 a001 53316291173/5778*103682^(19/24) 8626756869468743 a001 10983760033/1926*103682^(5/6) 8626756869502180 a001 10182505537/2889*103682^(7/8) 8626756869535617 a001 12586269025/5778*103682^(11/12) 8626756869569055 a001 7778742049/5778*103682^(23/24) 8626756869602484 a001 13889078560060/161 8626756870800132 a001 3536736619241/1926*39603^(4/11) 8626756870900951 a001 28657/5778*14662949395604^(7/9) 8626756870900951 a001 28657/5778*505019158607^(7/8) 8626756871050148 a001 3278735159921/2889*39603^(9/22) 8626756871300165 a001 4052739537881/5778*39603^(5/11) 8626756871550181 a001 2504730781961/5778*39603^(1/2) 8626756871800198 a001 86000486440/321*39603^(6/11) 8626756872050214 a001 956722026041/5778*39603^(13/22) 8626756872300231 a001 591286729879/5778*39603^(7/11) 8626756872550247 a001 182717648081/2889*39603^(15/22) 8626756872800264 a001 75283811239/1926*39603^(8/11) 8626756873050280 a001 139583862445/5778*39603^(17/22) 8626756873300297 a001 43133785636/2889*39603^(9/11) 8626756873550313 a001 53316291173/5778*39603^(19/22) 8626756873800330 a001 10983760033/1926*39603^(10/11) 8626756874050346 a001 10182505537/2889*39603^(21/22) 8626756874294116 a007 Real Root Of 297*x^4+262*x^3+163*x^2-900*x-894 8626756874300355 a001 1527884910007336/17711 8626756878565337 a007 Real Root Of -44*x^4+131*x^3+131*x^2+708*x-768 8626756880313998 m001 Lehmer*LaplaceLimit^2/ln(sqrt(3))^2 8626756883200130 a001 646/6119*14662949395604^(19/21) 8626756883200138 a001 5473/2889*817138163596^(17/19) 8626756883200138 a001 5473/2889*14662949395604^(17/21) 8626756883200138 a001 5473/2889*192900153618^(17/18) 8626756883880020 a001 3536736619241/1926*15127^(2/5) 8626756885765023 a001 3278735159921/2889*15127^(9/20) 8626756887650025 a001 4052739537881/5778*15127^(1/2) 8626756889535028 a001 2504730781961/5778*15127^(11/20) 8626756891420031 a001 86000486440/321*15127^(3/5) 8626756893305033 a001 956722026041/5778*15127^(13/20) 8626756895190036 a001 591286729879/5778*15127^(7/10) 8626756897075038 a001 182717648081/2889*15127^(3/4) 8626756898915302 k002 Champernowne real with 60*n^2+n+25 8626756898960041 a001 75283811239/1926*15127^(4/5) 8626756900845044 a001 139583862445/5778*15127^(17/20) 8626756902730046 a001 43133785636/2889*15127^(9/10) 8626756904615049 a001 53316291173/5778*15127^(19/20) 8626756905524306 r005 Re(z^2+c),c=-7/8+41/224*I,n=58 8626756905812525 a001 225851433717/2207*2207^(7/8) 8626756906500044 a001 194533368241576/2255 8626756913931043 m001 (Pi^(1/2)-arctan(1/3)*gamma(3))/gamma(3) 8626756948604974 m001 1/exp(FeigenbaumC)/Porter^2*OneNinth^2 8626756967500010 a001 2584/9349*3461452808002^(11/12) 8626756983644443 a001 3536736619241/1926*5778^(4/9) 8626756985850836 r002 24th iterates of z^2 + 8626756990799928 a001 360684709785345/4181 8626756995994665 a001 32264490531/2161*9349^(18/19) 8626756997999999 a001 3278735159921/2889*5778^(1/2) 8626756999215362 k002 Champernowne real with 121/2*n^2-1/2*n+26 8626757001189403 a001 365435296162/15127*9349^(17/19) 8626757006384140 a001 591286729879/15127*9349^(16/19) 8626757011578878 a001 956722026041/15127*9349^(15/19) 8626757012263246 r005 Im(z^2+c),c=-23/86+1/8*I,n=18 8626757012355554 a001 4052739537881/5778*5778^(5/9) 8626757016506262 a001 139583862445/2207*2207^(15/16) 8626757016773616 a001 1548008755920/15127*9349^(14/19) 8626757017133713 a007 Real Root Of 215*x^4-782*x^3+290*x^2+28*x+143 8626757017621418 m005 (1/3*Catalan+1/2)/(17/126+5/14*5^(1/2)) 8626757019952714 a001 1/123*(1/2*5^(1/2)+1/2)^10*199^(16/19) 8626757021968354 a001 2504730781961/15127*9349^(13/19) 8626757022999617 a001 360684711131614/4181 8626757026711110 a001 2504730781961/5778*5778^(11/18) 8626757027163092 a001 4052739537881/15127*9349^(12/19) 8626757027697488 a001 360684711328032/4181 8626757028194354 a001 591286729879/39603*9349^(18/19) 8626757028382898 a001 360684711356689/4181 8626757028482898 a001 360684711360870/4181 8626757028497488 a001 360684711361480/4181 8626757028499617 a001 360684711361569/4181 8626757028499928 a001 360684711361582/4181 8626757028499976 a001 360684711361584/4181 8626757028500119 a001 360684711361590/4181 8626757028500932 a001 360684711361624/4181 8626757028506505 a001 360684711361857/4181 8626757028544702 a001 360684711363454/4181 8626757028806505 a001 360684711374400/4181 8626757030600932 a001 360684711449425/4181 8626757032357830 a001 6557470319842/15127*9349^(11/19) 8626757032636487 m005 (1/2*3^(1/2)+4/11)/(2/9*Pi+8/11) 8626757032892225 a001 774004377960/51841*9349^(18/19) 8626757033389091 a001 956722026041/39603*9349^(17/19) 8626757033489708 a007 Real Root Of 407*x^4-938*x^3+187*x^2-791*x+920 8626757033577635 a001 4052739537881/271443*9349^(18/19) 8626757033677635 a001 1515744265389/101521*9349^(18/19) 8626757033739438 a001 3278735159921/219602*9349^(18/19) 8626757034001242 a001 2504730781961/167761*9349^(18/19) 8626757035795669 a001 956722026041/64079*9349^(18/19) 8626757037552568 a001 1515744265389/2161*9349^(10/19) 8626757037766251 r005 Re(z^2+c),c=-5/8+79/156*I,n=4 8626757038086963 a001 2504730781961/103682*9349^(17/19) 8626757038583829 a001 516002918640/13201*9349^(16/19) 8626757038772373 a001 6557470319842/271443*9349^(17/19) 8626757038934176 a001 10610209857723/439204*9349^(17/19) 8626757039195980 a001 4052739537881/167761*9349^(17/19) 8626757040887477 a005 (1/cos(42/235*Pi))^82 8626757040990407 a001 1548008755920/64079*9349^(17/19) 8626757041066665 a001 86000486440/321*5778^(2/3) 8626757042900119 a001 360684711963654/4181 8626757043281701 a001 4052739537881/103682*9349^(16/19) 8626757043778567 a001 2504730781961/39603*9349^(15/19) 8626757043967111 a001 3536736619241/90481*9349^(16/19) 8626757044390718 a001 6557470319842/167761*9349^(16/19) 8626757046185145 a001 2504730781961/64079*9349^(16/19) 8626757048094856 a001 182717648081/12238*9349^(18/19) 8626757048476439 a001 3278735159921/51841*9349^(15/19) 8626757048973305 a001 4052739537881/39603*9349^(14/19) 8626757049585456 a001 10610209857723/167761*9349^(15/19) 8626757051379883 a001 4052739537881/64079*9349^(15/19) 8626757051799894 a001 6765/15127*14662949395604^(6/7) 8626757053289594 a001 591286729879/24476*9349^(17/19) 8626757053671176 a001 225749145909/2206*9349^(14/19) 8626757054168043 a001 6557470319842/39603*9349^(13/19) 8626757055422221 a001 956722026041/5778*5778^(13/18) 8626757056574621 a001 6557470319842/64079*9349^(14/19) 8626757058484332 a001 956722026041/24476*9349^(16/19) 8626757059362781 a001 3536736619241/13201*9349^(12/19) 8626757061769358 a001 10610209857723/64079*9349^(13/19) 8626757063679070 a001 387002188980/6119*9349^(15/19) 8626757068873807 a001 2504730781961/24476*9349^(14/19) 8626757069777777 a001 591286729879/5778*5778^(7/9) 8626757074068545 a001 4052739537881/24476*9349^(13/19) 8626757075099808 a001 944284829440425/10946 8626757075785529 a001 86267571272/15127*24476^(20/21) 8626757076471250 a001 139583862445/15127*24476^(19/21) 8626757077156970 a001 32264490531/2161*24476^(6/7) 8626757077842691 a001 365435296162/15127*24476^(17/21) 8626757078528412 a001 591286729879/15127*24476^(16/21) 8626757079214133 a001 956722026041/15127*24476^(5/7) 8626757079263283 a001 3278735159921/12238*9349^(12/19) 8626757079899854 a001 1548008755920/15127*24476^(2/3) 8626757080585575 a001 2504730781961/15127*24476^(13/21) 8626757081271296 a001 4052739537881/15127*24476^(4/7) 8626757081957017 a001 6557470319842/15127*24476^(11/21) 8626757082642738 a001 1515744265389/2161*24476^(10/21) 8626757083999583 a001 2255/13201*14662949395604^(8/9) 8626757083999583 a001 17711/15127*23725150497407^(13/16) 8626757083999583 a001 17711/15127*505019158607^(13/14) 8626757084133332 a001 182717648081/2889*5778^(5/6) 8626757084458021 a001 10610209857723/24476*9349^(11/19) 8626757087398995 a001 2472169778535930/28657 8626757087490340 a001 32951280099/15127*64079^(22/23) 8626757087581686 a001 53316291173/15127*64079^(21/23) 8626757087673032 a001 86267571272/15127*64079^(20/23) 8626757087764378 a001 139583862445/15127*64079^(19/23) 8626757087855723 a001 32264490531/2161*64079^(18/23) 8626757087947069 a001 365435296162/15127*64079^(17/23) 8626757088038415 a001 591286729879/15127*64079^(16/23) 8626757088129761 a001 956722026041/15127*64079^(15/23) 8626757088221106 a001 1548008755920/15127*64079^(14/23) 8626757088312452 a001 2504730781961/15127*64079^(13/23) 8626757088403798 a001 4052739537881/15127*64079^(12/23) 8626757088495144 a001 6557470319842/15127*64079^(11/23) 8626757088586489 a001 1515744265389/2161*64079^(10/23) 8626757088697454 a001 6624/2161*312119004989^(10/11) 8626757088697454 a001 6624/2161*3461452808002^(5/6) 8626757089193422 a001 1294444901233473/15005 8626757089254727 a001 86267571272/15127*167761^(4/5) 8626757089316032 a001 956722026041/15127*167761^(3/5) 8626757089377337 a001 1515744265389/2161*167761^(2/5) 8626757089382864 a001 2255/90481*14662949395604^(20/21) 8626757089382865 a001 121393/15127*45537549124^(16/17) 8626757089382865 a001 121393/15127*14662949395604^(16/21) 8626757089382865 a001 121393/15127*192900153618^(8/9) 8626757089382865 a001 121393/15127*73681302247^(12/13) 8626757089455225 a001 16944503739966165/196418 8626757089460194 a001 12586269025/15127*439204^(8/9) 8626757089465163 a001 53316291173/15127*439204^(7/9) 8626757089470132 a001 32264490531/2161*439204^(2/3) 8626757089475101 a001 956722026041/15127*439204^(5/9) 8626757089480070 a001 4052739537881/15127*439204^(4/9) 8626757089482865 a001 317811/15127*10749957122^(23/24) 8626757089493422 a001 44361286713731130/514229 8626757089497454 a001 832040/15127*312119004989^(4/5) 8626757089497454 a001 832040/15127*23725150497407^(11/16) 8626757089497454 a001 832040/15127*73681302247^(11/13) 8626757089497454 a001 832040/15127*10749957122^(11/12) 8626757089497454 a001 832040/15127*4106118243^(22/23) 8626757089499583 a001 311187/2161*2537720636^(14/15) 8626757089499583 a001 311187/2161*17393796001^(6/7) 8626757089499583 a001 311187/2161*45537549124^(14/17) 8626757089499583 a001 311187/2161*817138163596^(14/19) 8626757089499583 a001 311187/2161*14662949395604^(2/3) 8626757089499583 a001 311187/2161*505019158607^(3/4) 8626757089499583 a001 311187/2161*192900153618^(7/9) 8626757089499583 a001 311187/2161*10749957122^(7/8) 8626757089499583 a001 311187/2161*4106118243^(21/23) 8626757089499583 a001 311187/2161*1568397607^(21/22) 8626757089499820 a001 701408733/15127*7881196^(10/11) 8626757089499833 a001 2971215073/15127*7881196^(9/11) 8626757089499846 a001 12586269025/15127*7881196^(8/11) 8626757089499854 a001 32951280099/15127*7881196^(2/3) 8626757089499858 a001 53316291173/15127*7881196^(7/11) 8626757089499871 a001 32264490531/2161*7881196^(6/11) 8626757089499883 a001 956722026041/15127*7881196^(5/11) 8626757089499894 a001 5702887/15127*2537720636^(8/9) 8626757089499894 a001 5702887/15127*312119004989^(8/11) 8626757089499894 a001 5702887/15127*23725150497407^(5/8) 8626757089499894 a001 5702887/15127*73681302247^(10/13) 8626757089499894 a001 5702887/15127*28143753123^(4/5) 8626757089499894 a001 5702887/15127*10749957122^(5/6) 8626757089499894 a001 5702887/15127*4106118243^(20/23) 8626757089499894 a001 5702887/15127*1568397607^(10/11) 8626757089499894 a001 5702887/15127*599074578^(20/21) 8626757089499896 a001 4052739537881/15127*7881196^(4/11) 8626757089499900 a001 6557470319842/15127*7881196^(1/3) 8626757089499929 a001 701408733/15127*20633239^(6/7) 8626757089499930 a001 1836311903/15127*20633239^(4/5) 8626757089499932 a001 7778742049/15127*20633239^(5/7) 8626757089499934 a001 53316291173/15127*20633239^(3/5) 8626757089499935 a001 86267571272/15127*20633239^(4/7) 8626757089499938 a001 956722026041/15127*20633239^(3/7) 8626757089499939 a001 1548008755920/15127*20633239^(2/5) 8626757089499939 a001 14930352/15127*817138163596^(2/3) 8626757089499939 a001 14930352/15127*10749957122^(19/24) 8626757089499939 a001 14930352/15127*4106118243^(19/23) 8626757089499939 a001 14930352/15127*1568397607^(19/22) 8626757089499939 a001 14930352/15127*599074578^(19/21) 8626757089499939 a001 14930352/15127*228826127^(19/20) 8626757089499941 a001 1515744265389/2161*20633239^(2/7) 8626757089499945 a001 39088169/15127*141422324^(12/13) 8626757089499945 a001 39088169/15127*2537720636^(4/5) 8626757089499945 a001 39088169/15127*45537549124^(12/17) 8626757089499945 a001 39088169/15127*14662949395604^(4/7) 8626757089499945 a001 39088169/15127*505019158607^(9/14) 8626757089499945 a001 39088169/15127*192900153618^(2/3) 8626757089499945 a001 39088169/15127*73681302247^(9/13) 8626757089499945 a001 39088169/15127*10749957122^(3/4) 8626757089499945 a001 39088169/15127*4106118243^(18/23) 8626757089499945 a001 39088169/15127*1568397607^(9/11) 8626757089499946 a001 39088169/15127*599074578^(6/7) 8626757089499946 a001 39088169/15127*228826127^(9/10) 8626757089499946 a001 701408733/15127*141422324^(10/13) 8626757089499946 a001 165580141/15127*141422324^(11/13) 8626757089499946 a001 2971215073/15127*141422324^(9/13) 8626757089499946 a001 686789568/2161*141422324^(2/3) 8626757089499946 a001 12586269025/15127*141422324^(8/13) 8626757089499946 a001 53316291173/15127*141422324^(7/13) 8626757089499946 a001 32264490531/2161*141422324^(6/13) 8626757089499946 a001 956722026041/15127*141422324^(5/13) 8626757089499946 a001 6765*45537549124^(2/3) 8626757089499946 a001 6765*10749957122^(17/24) 8626757089499946 a001 6765*4106118243^(17/23) 8626757089499946 a001 6765*1568397607^(17/22) 8626757089499946 a001 6765*599074578^(17/21) 8626757089499946 a001 2504730781961/15127*141422324^(1/3) 8626757089499946 a001 4052739537881/15127*141422324^(4/13) 8626757089499947 a001 39088169/15127*87403803^(18/19) 8626757089499947 a001 6765*228826127^(17/20) 8626757089499947 a001 267914296/15127*23725150497407^(1/2) 8626757089499947 a001 267914296/15127*505019158607^(4/7) 8626757089499947 a001 267914296/15127*73681302247^(8/13) 8626757089499947 a001 267914296/15127*10749957122^(2/3) 8626757089499947 a001 267914296/15127*4106118243^(16/23) 8626757089499947 a001 267914296/15127*1568397607^(8/11) 8626757089499947 a001 267914296/15127*599074578^(16/21) 8626757089499947 a001 701408733/15127*2537720636^(2/3) 8626757089499947 a001 701408733/15127*45537549124^(10/17) 8626757089499947 a001 701408733/15127*312119004989^(6/11) 8626757089499947 a001 701408733/15127*14662949395604^(10/21) 8626757089499947 a001 701408733/15127*192900153618^(5/9) 8626757089499947 a001 701408733/15127*28143753123^(3/5) 8626757089499947 a001 701408733/15127*10749957122^(5/8) 8626757089499947 a001 701408733/15127*4106118243^(15/23) 8626757089499947 a001 701408733/15127*1568397607^(15/22) 8626757089499947 a001 12586269025/15127*2537720636^(8/15) 8626757089499947 a001 7778742049/15127*2537720636^(5/9) 8626757089499947 a001 53316291173/15127*2537720636^(7/15) 8626757089499947 a001 2971215073/15127*2537720636^(3/5) 8626757089499947 a001 86267571272/15127*2537720636^(4/9) 8626757089499947 a001 32264490531/2161*2537720636^(2/5) 8626757089499947 a001 1836311903/15127*17393796001^(4/7) 8626757089499947 a001 1836311903/15127*14662949395604^(4/9) 8626757089499947 a001 1836311903/15127*505019158607^(1/2) 8626757089499947 a001 1836311903/15127*73681302247^(7/13) 8626757089499947 a001 1836311903/15127*10749957122^(7/12) 8626757089499947 a001 956722026041/15127*2537720636^(1/3) 8626757089499947 a001 4052739537881/15127*2537720636^(4/15) 8626757089499947 a001 1515744265389/2161*2537720636^(2/9) 8626757089499947 a001 1836311903/15127*4106118243^(14/23) 8626757089499947 a001 686789568/2161*73681302247^(1/2) 8626757089499947 a001 686789568/2161*10749957122^(13/24) 8626757089499947 a001 12586269025/15127*45537549124^(8/17) 8626757089499947 a001 53316291173/15127*17393796001^(3/7) 8626757089499947 a001 12586269025/15127*14662949395604^(8/21) 8626757089499947 a001 12586269025/15127*192900153618^(4/9) 8626757089499947 a001 12586269025/15127*73681302247^(6/13) 8626757089499947 a001 1548008755920/15127*17393796001^(2/7) 8626757089499947 a001 32951280099/15127*312119004989^(2/5) 8626757089499947 a001 32264490531/2161*45537549124^(6/17) 8626757089499947 a001 365435296162/15127*45537549124^(1/3) 8626757089499947 a001 956722026041/15127*45537549124^(5/17) 8626757089499947 a001 53316291173/15127*45537549124^(7/17) 8626757089499947 a001 4052739537881/15127*45537549124^(4/17) 8626757089499947 a001 86267571272/15127*23725150497407^(5/16) 8626757089499947 a001 86267571272/15127*505019158607^(5/14) 8626757089499947 a001 956722026041/15127*312119004989^(3/11) 8626757089499947 a001 6557470319842/15127*312119004989^(1/5) 8626757089499947 a001 1515744265389/2161*312119004989^(2/11) 8626757089499947 a001 1548008755920/15127*14662949395604^(2/9) 8626757089499947 a001 4052739537881/15127*14662949395604^(4/21) 8626757089499947 a001 956722026041/15127*14662949395604^(5/21) 8626757089499947 a001 1548008755920/15127*505019158607^(1/4) 8626757089499947 a001 32264490531/2161*192900153618^(1/3) 8626757089499947 a001 4052739537881/15127*192900153618^(2/9) 8626757089499947 a001 139583862445/15127*817138163596^(1/3) 8626757089499947 a001 4052739537881/15127*73681302247^(3/13) 8626757089499947 a001 86267571272/15127*73681302247^(5/13) 8626757089499947 a001 2504730781961/15127*73681302247^(1/4) 8626757089499947 a001 591286729879/15127*73681302247^(4/13) 8626757089499947 a001 53316291173/15127*14662949395604^(1/3) 8626757089499947 a001 53316291173/15127*192900153618^(7/18) 8626757089499947 a001 1515744265389/2161*28143753123^(1/5) 8626757089499947 a001 956722026041/15127*28143753123^(3/10) 8626757089499947 a001 86267571272/15127*28143753123^(2/5) 8626757089499947 a001 1515744265389/2161*10749957122^(5/24) 8626757089499947 a001 4052739537881/15127*10749957122^(1/4) 8626757089499947 a001 1548008755920/15127*10749957122^(7/24) 8626757089499947 a001 956722026041/15127*10749957122^(5/16) 8626757089499947 a001 591286729879/15127*10749957122^(1/3) 8626757089499947 a001 12586269025/15127*10749957122^(1/2) 8626757089499947 a001 32264490531/2161*10749957122^(3/8) 8626757089499947 a001 7778742049/15127*312119004989^(5/11) 8626757089499947 a001 7778742049/15127*3461452808002^(5/12) 8626757089499947 a001 86267571272/15127*10749957122^(5/12) 8626757089499947 a001 32951280099/15127*10749957122^(11/24) 8626757089499947 a001 53316291173/15127*10749957122^(7/16) 8626757089499947 a001 7778742049/15127*28143753123^(1/2) 8626757089499947 a001 1515744265389/2161*4106118243^(5/23) 8626757089499947 a001 4052739537881/15127*4106118243^(6/23) 8626757089499947 a001 1548008755920/15127*4106118243^(7/23) 8626757089499947 a001 591286729879/15127*4106118243^(8/23) 8626757089499947 a001 2971215073/15127*45537549124^(9/17) 8626757089499947 a001 2971215073/15127*817138163596^(9/19) 8626757089499947 a001 2971215073/15127*14662949395604^(3/7) 8626757089499947 a001 2971215073/15127*192900153618^(1/2) 8626757089499947 a001 32264490531/2161*4106118243^(9/23) 8626757089499947 a001 686789568/2161*4106118243^(13/23) 8626757089499947 a001 86267571272/15127*4106118243^(10/23) 8626757089499947 a001 2971215073/15127*10749957122^(9/16) 8626757089499947 a001 32951280099/15127*4106118243^(11/23) 8626757089499947 a001 12586269025/15127*4106118243^(12/23) 8626757089499947 a001 20365011074/15127*4106118243^(1/2) 8626757089499947 a001 1515744265389/2161*1568397607^(5/22) 8626757089499947 a001 6557470319842/15127*1568397607^(1/4) 8626757089499947 a001 4052739537881/15127*1568397607^(3/11) 8626757089499947 a001 1548008755920/15127*1568397607^(7/22) 8626757089499947 a001 591286729879/15127*1568397607^(4/11) 8626757089499947 a001 1134903170/15127*1322157322203^(1/2) 8626757089499947 a001 32264490531/2161*1568397607^(9/22) 8626757089499947 a001 86267571272/15127*1568397607^(5/11) 8626757089499947 a001 1836311903/15127*1568397607^(7/11) 8626757089499947 a001 32951280099/15127*1568397607^(1/2) 8626757089499947 a001 12586269025/15127*1568397607^(6/11) 8626757089499947 a001 686789568/2161*1568397607^(13/22) 8626757089499947 a001 1515744265389/2161*599074578^(5/21) 8626757089499947 a001 4052739537881/15127*599074578^(2/7) 8626757089499947 a001 1548008755920/15127*599074578^(1/3) 8626757089499947 a001 956722026041/15127*599074578^(5/14) 8626757089499947 a001 591286729879/15127*599074578^(8/21) 8626757089499947 a001 433494437/15127*9062201101803^(1/2) 8626757089499947 a001 32264490531/2161*599074578^(3/7) 8626757089499947 a001 86267571272/15127*599074578^(10/21) 8626757089499947 a001 53316291173/15127*599074578^(1/2) 8626757089499947 a001 32951280099/15127*599074578^(11/21) 8626757089499947 a001 701408733/15127*599074578^(5/7) 8626757089499947 a001 12586269025/15127*599074578^(4/7) 8626757089499947 a001 686789568/2161*599074578^(13/21) 8626757089499947 a001 1836311903/15127*599074578^(2/3) 8626757089499947 a001 2971215073/15127*599074578^(9/14) 8626757089499947 a001 1515744265389/2161*228826127^(1/4) 8626757089499947 a001 4052739537881/15127*228826127^(3/10) 8626757089499947 a001 1548008755920/15127*228826127^(7/20) 8626757089499947 a001 956722026041/15127*228826127^(3/8) 8626757089499947 a001 165580141/15127*2537720636^(11/15) 8626757089499947 a001 165580141/15127*45537549124^(11/17) 8626757089499947 a001 165580141/15127*312119004989^(3/5) 8626757089499947 a001 165580141/15127*817138163596^(11/19) 8626757089499947 a001 165580141/15127*14662949395604^(11/21) 8626757089499947 a001 165580141/15127*192900153618^(11/18) 8626757089499947 a001 165580141/15127*10749957122^(11/16) 8626757089499947 a001 165580141/15127*1568397607^(3/4) 8626757089499947 a001 591286729879/15127*228826127^(2/5) 8626757089499947 a001 32264490531/2161*228826127^(9/20) 8626757089499947 a001 165580141/15127*599074578^(11/14) 8626757089499947 a001 86267571272/15127*228826127^(1/2) 8626757089499947 a001 32951280099/15127*228826127^(11/20) 8626757089499947 a001 12586269025/15127*228826127^(3/5) 8626757089499947 a001 7778742049/15127*228826127^(5/8) 8626757089499947 a001 686789568/2161*228826127^(13/20) 8626757089499947 a001 267914296/15127*228826127^(4/5) 8626757089499947 a001 1836311903/15127*228826127^(7/10) 8626757089499947 a001 701408733/15127*228826127^(3/4) 8626757089499947 a001 1515744265389/2161*87403803^(5/19) 8626757089499947 a001 4052739537881/15127*87403803^(6/19) 8626757089499947 a001 1548008755920/15127*87403803^(7/19) 8626757089499947 a001 63245986/15127*2537720636^(7/9) 8626757089499947 a001 63245986/15127*17393796001^(5/7) 8626757089499947 a001 63245986/15127*312119004989^(7/11) 8626757089499947 a001 63245986/15127*14662949395604^(5/9) 8626757089499947 a001 63245986/15127*505019158607^(5/8) 8626757089499947 a001 63245986/15127*28143753123^(7/10) 8626757089499947 a001 63245986/15127*599074578^(5/6) 8626757089499947 a001 591286729879/15127*87403803^(8/19) 8626757089499947 a001 32264490531/2161*87403803^(9/19) 8626757089499947 a001 139583862445/15127*87403803^(1/2) 8626757089499947 a001 63245986/15127*228826127^(7/8) 8626757089499947 a001 86267571272/15127*87403803^(10/19) 8626757089499947 a001 32951280099/15127*87403803^(11/19) 8626757089499947 a001 12586269025/15127*87403803^(12/19) 8626757089499947 a001 686789568/2161*87403803^(13/19) 8626757089499947 a001 1836311903/15127*87403803^(14/19) 8626757089499947 a001 6765*87403803^(17/19) 8626757089499948 a001 701408733/15127*87403803^(15/19) 8626757089499948 a001 267914296/15127*87403803^(16/19) 8626757089499949 a001 1515744265389/2161*33385282^(5/18) 8626757089499949 a001 4052739537881/15127*33385282^(1/3) 8626757089499950 a001 1548008755920/15127*33385282^(7/18) 8626757089499950 a001 956722026041/15127*33385282^(5/12) 8626757089499950 a001 591286729879/15127*33385282^(4/9) 8626757089499950 a001 32264490531/2161*33385282^(1/2) 8626757089499951 a001 86267571272/15127*33385282^(5/9) 8626757089499951 a001 53316291173/15127*33385282^(7/12) 8626757089499951 a001 32951280099/15127*33385282^(11/18) 8626757089499952 a001 12586269025/15127*33385282^(2/3) 8626757089499952 a001 686789568/2161*33385282^(13/18) 8626757089499952 a001 2971215073/15127*33385282^(3/4) 8626757089499953 a001 1836311903/15127*33385282^(7/9) 8626757089499953 a001 701408733/15127*33385282^(5/6) 8626757089499953 a001 267914296/15127*33385282^(8/9) 8626757089499954 a001 6765*33385282^(17/18) 8626757089499954 a001 165580141/15127*33385282^(11/12) 8626757089499962 a001 1515744265389/2161*12752043^(5/17) 8626757089499965 a001 4052739537881/15127*12752043^(6/17) 8626757089499967 a001 9227465/15127*2537720636^(13/15) 8626757089499967 a001 9227465/15127*45537549124^(13/17) 8626757089499967 a001 9227465/15127*14662949395604^(13/21) 8626757089499967 a001 9227465/15127*192900153618^(13/18) 8626757089499967 a001 9227465/15127*73681302247^(3/4) 8626757089499967 a001 9227465/15127*10749957122^(13/16) 8626757089499967 a001 9227465/15127*599074578^(13/14) 8626757089499968 a001 1548008755920/15127*12752043^(7/17) 8626757089499972 a001 591286729879/15127*12752043^(8/17) 8626757089499973 a001 365435296162/15127*12752043^(1/2) 8626757089499975 a001 32264490531/2161*12752043^(9/17) 8626757089499978 a001 86267571272/15127*12752043^(10/17) 8626757089499981 a001 32951280099/15127*12752043^(11/17) 8626757089499984 a001 12586269025/15127*12752043^(12/17) 8626757089499987 a001 686789568/2161*12752043^(13/17) 8626757089499990 a001 1836311903/15127*12752043^(14/17) 8626757089499993 a001 701408733/15127*12752043^(15/17) 8626757089499997 a001 267914296/15127*12752043^(16/17) 8626757089500060 a001 1515744265389/2161*4870847^(5/16) 8626757089500083 a001 4052739537881/15127*4870847^(3/8) 8626757089500106 a001 1548008755920/15127*4870847^(7/16) 8626757089500128 a001 591286729879/15127*4870847^(1/2) 8626757089500151 a001 32264490531/2161*4870847^(9/16) 8626757089500174 a001 86267571272/15127*4870847^(5/8) 8626757089500197 a001 32951280099/15127*4870847^(11/16) 8626757089500219 a001 12586269025/15127*4870847^(3/4) 8626757089500242 a001 686789568/2161*4870847^(13/16) 8626757089500265 a001 1836311903/15127*4870847^(7/8) 8626757089500287 a001 701408733/15127*4870847^(15/16) 8626757089500777 a001 1515744265389/2161*1860498^(1/3) 8626757089500944 a001 4052739537881/15127*1860498^(2/5) 8626757089501110 a001 1548008755920/15127*1860498^(7/15) 8626757089501193 a001 956722026041/15127*1860498^(1/2) 8626757089501276 a001 591286729879/15127*1860498^(8/15) 8626757089501442 a001 32264490531/2161*1860498^(3/5) 8626757089501608 a001 86267571272/15127*1860498^(2/3) 8626757089501691 a001 53316291173/15127*1860498^(7/10) 8626757089501774 a001 32951280099/15127*1860498^(11/15) 8626757089501940 a001 12586269025/15127*1860498^(4/5) 8626757089502023 a001 7778742049/15127*1860498^(5/6) 8626757089502107 a001 686789568/2161*1860498^(13/15) 8626757089502190 a001 2971215073/15127*1860498^(9/10) 8626757089502273 a001 1836311903/15127*1860498^(14/15) 8626757089502439 a001 1305055812499929/15128 8626757089506047 a001 1515744265389/2161*710647^(5/14) 8626757089506471 a001 514229/15127*45537549124^(15/17) 8626757089506471 a001 514229/15127*312119004989^(9/11) 8626757089506471 a001 514229/15127*14662949395604^(5/7) 8626757089506471 a001 514229/15127*192900153618^(5/6) 8626757089506471 a001 514229/15127*28143753123^(9/10) 8626757089506471 a001 514229/15127*10749957122^(15/16) 8626757089507267 a001 4052739537881/15127*710647^(3/7) 8626757089508488 a001 1548008755920/15127*710647^(1/2) 8626757089509708 a001 591286729879/15127*710647^(4/7) 8626757089510928 a001 32264490531/2161*710647^(9/14) 8626757089512148 a001 86267571272/15127*710647^(5/7) 8626757089512758 a001 53316291173/15127*710647^(3/4) 8626757089513368 a001 32951280099/15127*710647^(11/14) 8626757089514588 a001 12586269025/15127*710647^(6/7) 8626757089515809 a001 686789568/2161*710647^(13/14) 8626757089517028 a001 9138927657921655/105937 8626757089544978 a001 1515744265389/2161*271443^(5/13) 8626757089553984 a001 4052739537881/15127*271443^(6/13) 8626757089558488 a001 2504730781961/15127*271443^(1/2) 8626757089562991 a001 1548008755920/15127*271443^(7/13) 8626757089571997 a001 591286729879/15127*271443^(8/13) 8626757089581003 a001 32264490531/2161*271443^(9/13) 8626757089590010 a001 86267571272/15127*271443^(10/13) 8626757089599016 a001 32951280099/15127*271443^(11/13) 8626757089608022 a001 12586269025/15127*271443^(12/13) 8626757089617028 a001 10472279233798800/121393 8626757089619876 m001 gamma(3)^Otter/(ln(3)^Otter) 8626757089806471 a001 75025/15127*14662949395604^(7/9) 8626757089806471 a001 75025/15127*505019158607^(7/8) 8626757089834318 a001 1515744265389/2161*103682^(5/12) 8626757089867756 a001 6557470319842/15127*103682^(11/24) 8626757089901193 a001 4052739537881/15127*103682^(1/2) 8626757089934630 a001 2504730781961/15127*103682^(13/24) 8626757089968067 a001 1548008755920/15127*103682^(7/12) 8626757090001504 a001 956722026041/15127*103682^(5/8) 8626757090034941 a001 591286729879/15127*103682^(2/3) 8626757090068379 a001 365435296162/15127*103682^(17/24) 8626757090101816 a001 32264490531/2161*103682^(3/4) 8626757090135253 a001 139583862445/15127*103682^(19/24) 8626757090168690 a001 86267571272/15127*103682^(5/6) 8626757090202127 a001 53316291173/15127*103682^(7/8) 8626757090235564 a001 32951280099/15127*103682^(11/12) 8626757090269002 a001 20365011074/15127*103682^(23/24) 8626757090302439 a001 1333351575877145/15456 8626757091600898 a001 6765/64079*14662949395604^(19/21) 8626757091600899 a001 28657/15127*817138163596^(17/19) 8626757091600899 a001 28657/15127*14662949395604^(17/21) 8626757091600899 a001 28657/15127*192900153618^(17/18) 8626757092000112 a001 1515744265389/2161*39603^(5/11) 8626757092250128 a001 6557470319842/15127*39603^(1/2) 8626757092500145 a001 4052739537881/15127*39603^(6/11) 8626757092750161 a001 2504730781961/15127*39603^(13/22) 8626757093000178 a001 1548008755920/15127*39603^(7/11) 8626757093250195 a001 956722026041/15127*39603^(15/22) 8626757093500211 a001 591286729879/15127*39603^(8/11) 8626757093750228 a001 365435296162/15127*39603^(17/22) 8626757094000244 a001 32264490531/2161*39603^(9/11) 8626757094250261 a001 139583862445/15127*39603^(19/22) 8626757094500277 a001 86267571272/15127*39603^(10/11) 8626757094750294 a001 53316291173/15127*39603^(21/22) 8626757095000310 a001 1527884949095505/17711 8626757098488888 a001 75283811239/1926*5778^(8/9) 8626757099515422 k002 Champernowne real with 61*n^2-2*n+27 8626757103900085 a001 6765/24476*3461452808002^(11/12) 8626757107299497 a001 944284832965003/10946 8626757107985218 a001 75283811239/13201*24476^(20/21) 8626757108349973 a001 1515744265389/2161*15127^(1/2) 8626757108670939 a001 365435296162/39603*24476^(19/21) 8626757109356660 a001 591286729879/39603*24476^(6/7) 8626757110042381 a001 956722026041/39603*24476^(17/21) 8626757110234976 a001 6557470319842/15127*15127^(11/20) 8626757110728102 a001 516002918640/13201*24476^(16/21) 8626757111413822 a001 2504730781961/39603*24476^(5/7) 8626757111997368 a001 472142416739616/5473 8626757112099543 a001 4052739537881/39603*24476^(2/3) 8626757112119978 a001 4052739537881/15127*15127^(3/5) 8626757112682779 a001 72637294888789/842 8626757112683089 a001 591286729879/103682*24476^(20/21) 8626757112782779 a001 72637294889631/842 8626757112785264 a001 6557470319842/39603*24476^(13/21) 8626757112797368 a001 472142416783400/5473 8626757112799497 a001 944284833567033/10946 8626757112799808 a001 944284833567067/10946 8626757112799853 a001 472142416783536/5473 8626757112799862 a001 944284833567073/10946 8626757112799881 a001 72637294889775/842 8626757112800813 a001 944284833567177/10946 8626757112806385 a001 944284833567787/10946 8626757112844444 a001 139583862445/5778*5778^(17/18) 8626757112844582 a001 472142416785984/5473 8626757113106385 a001 944284833600625/10946 8626757113368499 a001 516002918640/90481*24476^(20/21) 8626757113368810 a001 956722026041/103682*24476^(19/21) 8626757113468499 a001 4052739537881/710647*24476^(20/21) 8626757113470985 a001 3536736619241/13201*24476^(4/7) 8626757113483089 a001 3536736619241/620166*24476^(20/21) 8626757113492106 a001 6557470319842/1149851*24476^(20/21) 8626757113530303 a001 2504730781961/439204*24476^(20/21) 8626757113792106 a001 956722026041/167761*24476^(20/21) 8626757114004981 a001 2504730781961/15127*15127^(13/20) 8626757114054220 a001 2504730781961/271443*24476^(19/21) 8626757114054531 a001 774004377960/51841*24476^(6/7) 8626757114154220 a001 6557470319842/710647*24476^(19/21) 8626757114177827 a001 10610209857723/1149851*24476^(19/21) 8626757114216024 a001 4052739537881/439204*24476^(19/21) 8626757114477827 a001 140728068720/15251*24476^(19/21) 8626757114739941 a001 4052739537881/271443*24476^(6/7) 8626757114740252 a001 2504730781961/103682*24476^(17/21) 8626757114839941 a001 1515744265389/101521*24476^(6/7) 8626757114900813 a001 944284833797043/10946 8626757114901745 a001 3278735159921/219602*24476^(6/7) 8626757115163548 a001 2504730781961/167761*24476^(6/7) 8626757115197665 m001 (arctan(1/2)+Pi^(1/2))/(Pi+ln(gamma)) 8626757115425662 a001 6557470319842/271443*24476^(17/21) 8626757115425973 a001 4052739537881/103682*24476^(16/21) 8626757115586533 a001 365435296162/64079*24476^(20/21) 8626757115587466 a001 10610209857723/439204*24476^(17/21) 8626757115849269 a001 4052739537881/167761*24476^(17/21) 8626757115889984 a001 1548008755920/15127*15127^(7/10) 8626757116111383 a001 3536736619241/90481*24476^(16/21) 8626757116111694 a001 3278735159921/51841*24476^(5/7) 8626757116199272 a001 17711/39603*14662949395604^(6/7) 8626757116272254 a001 591286729879/64079*24476^(19/21) 8626757116534990 a001 6557470319842/167761*24476^(16/21) 8626757116797415 a001 225749145909/2206*24476^(2/3) 8626757116957975 a001 956722026041/64079*24476^(6/7) 8626757117220711 a001 10610209857723/167761*24476^(5/7) 8626757117643696 a001 1548008755920/64079*24476^(17/21) 8626757117774986 a001 956722026041/15127*15127^(3/4) 8626757118329417 a001 2504730781961/64079*24476^(16/21) 8626757119015138 a001 4052739537881/64079*24476^(5/7) 8626757119598684 a001 2472169787763395/28657 8626757119659989 a001 591286729879/15127*15127^(4/5) 8626757119690030 a001 86267571272/39603*64079^(22/23) 8626757119700859 a001 6557470319842/64079*24476^(2/3) 8626757119781375 a001 139583862445/39603*64079^(21/23) 8626757119872721 a001 75283811239/13201*64079^(20/23) 8626757119964067 a001 365435296162/39603*64079^(19/23) 8626757120055413 a001 591286729879/39603*64079^(18/23) 8626757120146758 a001 956722026041/39603*64079^(17/23) 8626757120238104 a001 516002918640/13201*64079^(16/23) 8626757120329450 a001 2504730781961/39603*64079^(15/23) 8626757120386580 a001 10610209857723/64079*24476^(13/21) 8626757120420796 a001 4052739537881/39603*64079^(14/23) 8626757120512141 a001 6557470319842/39603*64079^(13/23) 8626757120603487 a001 3536736619241/13201*64079^(12/23) 8626757120897144 a001 17711/103682*14662949395604^(8/9) 8626757120897144 a001 15456/13201*23725150497407^(13/16) 8626757120897144 a001 15456/13201*505019158607^(13/14) 8626757121393111 a001 6472224530325182/75025 8626757121454416 a001 75283811239/13201*167761^(4/5) 8626757121515721 a001 2504730781961/39603*167761^(3/5) 8626757121544992 a001 365435296162/15127*15127^(17/20) 8626757121582554 a001 121393/39603*312119004989^(10/11) 8626757121582554 a001 121393/39603*3461452808002^(5/6) 8626757121654915 a001 16944503803212151/196418 8626757121659884 a001 10983760033/13201*439204^(8/9) 8626757121664853 a001 139583862445/39603*439204^(7/9) 8626757121669822 a001 591286729879/39603*439204^(2/3) 8626757121674791 a001 2504730781961/39603*439204^(5/9) 8626757121679760 a001 3536736619241/13201*439204^(4/9) 8626757121682554 a001 17711/710647*14662949395604^(20/21) 8626757121682554 a001 105937/13201*45537549124^(16/17) 8626757121682554 a001 105937/13201*14662949395604^(16/21) 8626757121682554 a001 105937/13201*192900153618^(8/9) 8626757121682554 a001 105937/13201*73681302247^(12/13) 8626757121693111 a001 44361286879311271/514229 8626757121697144 a001 832040/39603*10749957122^(23/24) 8626757121698684 a001 116139356834721662/1346269 8626757121699272 a001 726103/13201*312119004989^(4/5) 8626757121699272 a001 726103/13201*23725150497407^(11/16) 8626757121699272 a001 726103/13201*73681302247^(11/13) 8626757121699272 a001 726103/13201*10749957122^(11/12) 8626757121699272 a001 726103/13201*4106118243^(22/23) 8626757121699510 a001 1836311903/39603*7881196^(10/11) 8626757121699522 a001 7778742049/39603*7881196^(9/11) 8626757121699535 a001 10983760033/13201*7881196^(8/11) 8626757121699543 a001 86267571272/39603*7881196^(2/3) 8626757121699548 a001 139583862445/39603*7881196^(7/11) 8626757121699560 a001 591286729879/39603*7881196^(6/11) 8626757121699573 a001 2504730781961/39603*7881196^(5/11) 8626757121699583 a001 5702887/39603*2537720636^(14/15) 8626757121699583 a001 5702887/39603*17393796001^(6/7) 8626757121699583 a001 5702887/39603*45537549124^(14/17) 8626757121699583 a001 5702887/39603*817138163596^(14/19) 8626757121699583 a001 5702887/39603*14662949395604^(2/3) 8626757121699583 a001 5702887/39603*505019158607^(3/4) 8626757121699583 a001 5702887/39603*192900153618^(7/9) 8626757121699583 a001 5702887/39603*10749957122^(7/8) 8626757121699583 a001 5702887/39603*4106118243^(21/23) 8626757121699583 a001 5702887/39603*1568397607^(21/22) 8626757121699585 a001 3536736619241/13201*7881196^(4/11) 8626757121699619 a001 1836311903/39603*20633239^(6/7) 8626757121699620 a001 1602508992/13201*20633239^(4/5) 8626757121699621 a001 20365011074/39603*20633239^(5/7) 8626757121699624 a001 139583862445/39603*20633239^(3/5) 8626757121699624 a001 75283811239/13201*20633239^(4/7) 8626757121699627 a001 2504730781961/39603*20633239^(3/7) 8626757121699628 a001 4052739537881/39603*20633239^(2/5) 8626757121699628 a001 4976784/13201*2537720636^(8/9) 8626757121699628 a001 4976784/13201*312119004989^(8/11) 8626757121699628 a001 4976784/13201*23725150497407^(5/8) 8626757121699628 a001 4976784/13201*73681302247^(10/13) 8626757121699628 a001 4976784/13201*28143753123^(4/5) 8626757121699628 a001 4976784/13201*10749957122^(5/6) 8626757121699628 a001 4976784/13201*4106118243^(20/23) 8626757121699628 a001 4976784/13201*1568397607^(10/11) 8626757121699628 a001 4976784/13201*599074578^(20/21) 8626757121699635 a001 39088169/39603*817138163596^(2/3) 8626757121699635 a001 39088169/39603*10749957122^(19/24) 8626757121699635 a001 39088169/39603*4106118243^(19/23) 8626757121699635 a001 39088169/39603*1568397607^(19/22) 8626757121699635 a001 39088169/39603*599074578^(19/21) 8626757121699635 a001 39088169/39603*228826127^(19/20) 8626757121699635 a001 34111385/13201*141422324^(12/13) 8626757121699636 a001 433494437/39603*141422324^(11/13) 8626757121699636 a001 1836311903/39603*141422324^(10/13) 8626757121699636 a001 7778742049/39603*141422324^(9/13) 8626757121699636 a001 12586269025/39603*141422324^(2/3) 8626757121699636 a001 10983760033/13201*141422324^(8/13) 8626757121699636 a001 139583862445/39603*141422324^(7/13) 8626757121699636 a001 591286729879/39603*141422324^(6/13) 8626757121699636 a001 2504730781961/39603*141422324^(5/13) 8626757121699636 a001 34111385/13201*2537720636^(4/5) 8626757121699636 a001 34111385/13201*45537549124^(12/17) 8626757121699636 a001 34111385/13201*14662949395604^(4/7) 8626757121699636 a001 34111385/13201*505019158607^(9/14) 8626757121699636 a001 34111385/13201*192900153618^(2/3) 8626757121699636 a001 34111385/13201*73681302247^(9/13) 8626757121699636 a001 34111385/13201*10749957122^(3/4) 8626757121699636 a001 34111385/13201*4106118243^(18/23) 8626757121699636 a001 34111385/13201*1568397607^(9/11) 8626757121699636 a001 34111385/13201*599074578^(6/7) 8626757121699636 a001 6557470319842/39603*141422324^(1/3) 8626757121699636 a001 3536736619241/13201*141422324^(4/13) 8626757121699636 a001 267914296/39603*45537549124^(2/3) 8626757121699636 a001 267914296/39603*10749957122^(17/24) 8626757121699636 a001 267914296/39603*4106118243^(17/23) 8626757121699636 a001 267914296/39603*1568397607^(17/22) 8626757121699636 a001 34111385/13201*228826127^(9/10) 8626757121699636 a001 267914296/39603*599074578^(17/21) 8626757121699636 a001 17711*23725150497407^(1/2) 8626757121699636 a001 17711*505019158607^(4/7) 8626757121699636 a001 17711*73681302247^(8/13) 8626757121699636 a001 17711*10749957122^(2/3) 8626757121699636 a001 17711*4106118243^(16/23) 8626757121699636 a001 1836311903/39603*2537720636^(2/3) 8626757121699636 a001 17711*1568397607^(8/11) 8626757121699636 a001 7778742049/39603*2537720636^(3/5) 8626757121699636 a001 20365011074/39603*2537720636^(5/9) 8626757121699636 a001 10983760033/13201*2537720636^(8/15) 8626757121699636 a001 139583862445/39603*2537720636^(7/15) 8626757121699636 a001 75283811239/13201*2537720636^(4/9) 8626757121699636 a001 591286729879/39603*2537720636^(2/5) 8626757121699636 a001 1836311903/39603*45537549124^(10/17) 8626757121699636 a001 1836311903/39603*312119004989^(6/11) 8626757121699636 a001 1836311903/39603*14662949395604^(10/21) 8626757121699636 a001 1836311903/39603*192900153618^(5/9) 8626757121699636 a001 1836311903/39603*28143753123^(3/5) 8626757121699636 a001 1836311903/39603*10749957122^(5/8) 8626757121699636 a001 2504730781961/39603*2537720636^(1/3) 8626757121699636 a001 3536736619241/13201*2537720636^(4/15) 8626757121699636 a001 1836311903/39603*4106118243^(15/23) 8626757121699636 a001 1602508992/13201*17393796001^(4/7) 8626757121699636 a001 1602508992/13201*14662949395604^(4/9) 8626757121699636 a001 1602508992/13201*505019158607^(1/2) 8626757121699636 a001 1602508992/13201*73681302247^(7/13) 8626757121699636 a001 1602508992/13201*10749957122^(7/12) 8626757121699636 a001 139583862445/39603*17393796001^(3/7) 8626757121699636 a001 12586269025/39603*73681302247^(1/2) 8626757121699636 a001 4052739537881/39603*17393796001^(2/7) 8626757121699636 a001 10983760033/13201*45537549124^(8/17) 8626757121699636 a001 139583862445/39603*45537549124^(7/17) 8626757121699636 a001 10983760033/13201*14662949395604^(8/21) 8626757121699636 a001 10983760033/13201*192900153618^(4/9) 8626757121699636 a001 956722026041/39603*45537549124^(1/3) 8626757121699636 a001 2504730781961/39603*45537549124^(5/17) 8626757121699636 a001 3536736619241/13201*45537549124^(4/17) 8626757121699636 a001 10983760033/13201*73681302247^(6/13) 8626757121699636 a001 86267571272/39603*312119004989^(2/5) 8626757121699636 a001 2504730781961/39603*312119004989^(3/11) 8626757121699636 a001 3536736619241/13201*817138163596^(4/19) 8626757121699636 a001 516002918640/13201*23725150497407^(1/4) 8626757121699636 a001 4052739537881/39603*14662949395604^(2/9) 8626757121699636 a001 2504730781961/39603*14662949395604^(5/21) 8626757121699636 a001 3536736619241/13201*192900153618^(2/9) 8626757121699636 a001 591286729879/39603*192900153618^(1/3) 8626757121699636 a001 139583862445/39603*14662949395604^(1/3) 8626757121699636 a001 139583862445/39603*192900153618^(7/18) 8626757121699636 a001 3536736619241/13201*73681302247^(3/13) 8626757121699636 a001 6557470319842/39603*73681302247^(1/4) 8626757121699636 a001 516002918640/13201*73681302247^(4/13) 8626757121699636 a001 75283811239/13201*73681302247^(5/13) 8626757121699636 a001 2504730781961/39603*28143753123^(3/10) 8626757121699636 a001 20365011074/39603*312119004989^(5/11) 8626757121699636 a001 20365011074/39603*3461452808002^(5/12) 8626757121699636 a001 75283811239/13201*28143753123^(2/5) 8626757121699636 a001 20365011074/39603*28143753123^(1/2) 8626757121699636 a001 3536736619241/13201*10749957122^(1/4) 8626757121699636 a001 4052739537881/39603*10749957122^(7/24) 8626757121699636 a001 2504730781961/39603*10749957122^(5/16) 8626757121699636 a001 516002918640/13201*10749957122^(1/3) 8626757121699636 a001 7778742049/39603*45537549124^(9/17) 8626757121699636 a001 591286729879/39603*10749957122^(3/8) 8626757121699636 a001 7778742049/39603*817138163596^(9/19) 8626757121699636 a001 7778742049/39603*14662949395604^(3/7) 8626757121699636 a001 7778742049/39603*192900153618^(1/2) 8626757121699636 a001 12586269025/39603*10749957122^(13/24) 8626757121699636 a001 75283811239/13201*10749957122^(5/12) 8626757121699636 a001 139583862445/39603*10749957122^(7/16) 8626757121699636 a001 86267571272/39603*10749957122^(11/24) 8626757121699636 a001 10983760033/13201*10749957122^(1/2) 8626757121699636 a001 7778742049/39603*10749957122^(9/16) 8626757121699636 a001 3536736619241/13201*4106118243^(6/23) 8626757121699636 a001 4052739537881/39603*4106118243^(7/23) 8626757121699636 a001 516002918640/13201*4106118243^(8/23) 8626757121699636 a001 2971215073/39603*1322157322203^(1/2) 8626757121699636 a001 591286729879/39603*4106118243^(9/23) 8626757121699636 a001 75283811239/13201*4106118243^(10/23) 8626757121699636 a001 1602508992/13201*4106118243^(14/23) 8626757121699636 a001 86267571272/39603*4106118243^(11/23) 8626757121699636 a001 53316291173/39603*4106118243^(1/2) 8626757121699636 a001 10983760033/13201*4106118243^(12/23) 8626757121699636 a001 12586269025/39603*4106118243^(13/23) 8626757121699636 a001 3536736619241/13201*1568397607^(3/11) 8626757121699636 a001 4052739537881/39603*1568397607^(7/22) 8626757121699636 a001 516002918640/13201*1568397607^(4/11) 8626757121699636 a001 1134903170/39603*9062201101803^(1/2) 8626757121699636 a001 591286729879/39603*1568397607^(9/22) 8626757121699636 a001 75283811239/13201*1568397607^(5/11) 8626757121699636 a001 86267571272/39603*1568397607^(1/2) 8626757121699636 a001 1836311903/39603*1568397607^(15/22) 8626757121699636 a001 10983760033/13201*1568397607^(6/11) 8626757121699636 a001 12586269025/39603*1568397607^(13/22) 8626757121699636 a001 1602508992/13201*1568397607^(7/11) 8626757121699636 a001 3536736619241/13201*599074578^(2/7) 8626757121699636 a001 4052739537881/39603*599074578^(1/3) 8626757121699636 a001 433494437/39603*2537720636^(11/15) 8626757121699636 a001 2504730781961/39603*599074578^(5/14) 8626757121699636 a001 516002918640/13201*599074578^(8/21) 8626757121699636 a001 433494437/39603*45537549124^(11/17) 8626757121699636 a001 433494437/39603*312119004989^(3/5) 8626757121699636 a001 433494437/39603*817138163596^(11/19) 8626757121699636 a001 433494437/39603*14662949395604^(11/21) 8626757121699636 a001 433494437/39603*192900153618^(11/18) 8626757121699636 a001 433494437/39603*10749957122^(11/16) 8626757121699636 a001 591286729879/39603*599074578^(3/7) 8626757121699636 a001 75283811239/13201*599074578^(10/21) 8626757121699636 a001 433494437/39603*1568397607^(3/4) 8626757121699636 a001 139583862445/39603*599074578^(1/2) 8626757121699636 a001 86267571272/39603*599074578^(11/21) 8626757121699636 a001 10983760033/13201*599074578^(4/7) 8626757121699636 a001 17711*599074578^(16/21) 8626757121699636 a001 12586269025/39603*599074578^(13/21) 8626757121699636 a001 7778742049/39603*599074578^(9/14) 8626757121699636 a001 1602508992/13201*599074578^(2/3) 8626757121699636 a001 1836311903/39603*599074578^(5/7) 8626757121699636 a001 433494437/39603*599074578^(11/14) 8626757121699636 a001 3536736619241/13201*228826127^(3/10) 8626757121699636 a001 4052739537881/39603*228826127^(7/20) 8626757121699636 a001 2504730781961/39603*228826127^(3/8) 8626757121699636 a001 165580141/39603*2537720636^(7/9) 8626757121699636 a001 165580141/39603*17393796001^(5/7) 8626757121699636 a001 165580141/39603*312119004989^(7/11) 8626757121699636 a001 165580141/39603*14662949395604^(5/9) 8626757121699636 a001 165580141/39603*505019158607^(5/8) 8626757121699636 a001 165580141/39603*28143753123^(7/10) 8626757121699636 a001 516002918640/13201*228826127^(2/5) 8626757121699636 a001 591286729879/39603*228826127^(9/20) 8626757121699636 a001 75283811239/13201*228826127^(1/2) 8626757121699636 a001 165580141/39603*599074578^(5/6) 8626757121699636 a001 86267571272/39603*228826127^(11/20) 8626757121699636 a001 10983760033/13201*228826127^(3/5) 8626757121699636 a001 20365011074/39603*228826127^(5/8) 8626757121699636 a001 12586269025/39603*228826127^(13/20) 8626757121699636 a001 1602508992/13201*228826127^(7/10) 8626757121699636 a001 267914296/39603*228826127^(17/20) 8626757121699636 a001 1836311903/39603*228826127^(3/4) 8626757121699636 a001 17711*228826127^(4/5) 8626757121699636 a001 165580141/39603*228826127^(7/8) 8626757121699636 a001 3536736619241/13201*87403803^(6/19) 8626757121699636 a001 4052739537881/39603*87403803^(7/19) 8626757121699636 a001 516002918640/13201*87403803^(8/19) 8626757121699636 a001 591286729879/39603*87403803^(9/19) 8626757121699636 a001 365435296162/39603*87403803^(1/2) 8626757121699636 a001 75283811239/13201*87403803^(10/19) 8626757121699637 a001 86267571272/39603*87403803^(11/19) 8626757121699637 a001 10983760033/13201*87403803^(12/19) 8626757121699637 a001 12586269025/39603*87403803^(13/19) 8626757121699637 a001 1602508992/13201*87403803^(14/19) 8626757121699637 a001 1836311903/39603*87403803^(15/19) 8626757121699637 a001 34111385/13201*87403803^(18/19) 8626757121699637 a001 17711*87403803^(16/19) 8626757121699637 a001 267914296/39603*87403803^(17/19) 8626757121699638 a001 3536736619241/13201*33385282^(1/3) 8626757121699639 a001 24157817/39603*2537720636^(13/15) 8626757121699639 a001 24157817/39603*45537549124^(13/17) 8626757121699639 a001 24157817/39603*14662949395604^(13/21) 8626757121699639 a001 24157817/39603*192900153618^(13/18) 8626757121699639 a001 24157817/39603*73681302247^(3/4) 8626757121699639 a001 24157817/39603*10749957122^(13/16) 8626757121699639 a001 24157817/39603*599074578^(13/14) 8626757121699639 a001 4052739537881/39603*33385282^(7/18) 8626757121699639 a001 2504730781961/39603*33385282^(5/12) 8626757121699639 a001 516002918640/13201*33385282^(4/9) 8626757121699640 a001 591286729879/39603*33385282^(1/2) 8626757121699640 a001 75283811239/13201*33385282^(5/9) 8626757121699640 a001 139583862445/39603*33385282^(7/12) 8626757121699641 a001 86267571272/39603*33385282^(11/18) 8626757121699641 a001 10983760033/13201*33385282^(2/3) 8626757121699641 a001 12586269025/39603*33385282^(13/18) 8626757121699642 a001 7778742049/39603*33385282^(3/4) 8626757121699642 a001 1602508992/13201*33385282^(7/9) 8626757121699642 a001 1836311903/39603*33385282^(5/6) 8626757121699643 a001 17711*33385282^(8/9) 8626757121699643 a001 433494437/39603*33385282^(11/12) 8626757121699643 a001 267914296/39603*33385282^(17/18) 8626757121699655 a001 3536736619241/13201*12752043^(6/17) 8626757121699658 a001 4052739537881/39603*12752043^(7/17) 8626757121699661 a001 516002918640/13201*12752043^(8/17) 8626757121699662 a001 956722026041/39603*12752043^(1/2) 8626757121699664 a001 591286729879/39603*12752043^(9/17) 8626757121699667 a001 75283811239/13201*12752043^(10/17) 8626757121699670 a001 86267571272/39603*12752043^(11/17) 8626757121699673 a001 10983760033/13201*12752043^(12/17) 8626757121699676 a001 12586269025/39603*12752043^(13/17) 8626757121699680 a001 1602508992/13201*12752043^(14/17) 8626757121699683 a001 1836311903/39603*12752043^(15/17) 8626757121699686 a001 17711*12752043^(16/17) 8626757121699772 a001 3536736619241/13201*4870847^(3/8) 8626757121699795 a001 4052739537881/39603*4870847^(7/16) 8626757121699818 a001 516002918640/13201*4870847^(1/2) 8626757121699840 a001 591286729879/39603*4870847^(9/16) 8626757121699863 a001 75283811239/13201*4870847^(5/8) 8626757121699886 a001 86267571272/39603*4870847^(11/16) 8626757121699909 a001 10983760033/13201*4870847^(3/4) 8626757121699931 a001 12586269025/39603*4870847^(13/16) 8626757121699954 a001 1602508992/13201*4870847^(7/8) 8626757121699977 a001 1836311903/39603*4870847^(15/16) 8626757121700588 a001 1346269/39603*45537549124^(15/17) 8626757121700588 a001 1346269/39603*312119004989^(9/11) 8626757121700588 a001 1346269/39603*14662949395604^(5/7) 8626757121700588 a001 1346269/39603*192900153618^(5/6) 8626757121700588 a001 1346269/39603*28143753123^(9/10) 8626757121700588 a001 1346269/39603*10749957122^(15/16) 8626757121700633 a001 3536736619241/13201*1860498^(2/5) 8626757121700799 a001 4052739537881/39603*1860498^(7/15) 8626757121700882 a001 2504730781961/39603*1860498^(1/2) 8626757121700965 a001 516002918640/13201*1860498^(8/15) 8626757121701131 a001 591286729879/39603*1860498^(3/5) 8626757121701297 a001 75283811239/13201*1860498^(2/3) 8626757121701380 a001 139583862445/39603*1860498^(7/10) 8626757121701464 a001 86267571272/39603*1860498^(11/15) 8626757121701630 a001 10983760033/13201*1860498^(4/5) 8626757121701713 a001 20365011074/39603*1860498^(5/6) 8626757121701796 a001 12586269025/39603*1860498^(13/15) 8626757121701879 a001 7778742049/39603*1860498^(9/10) 8626757121701962 a001 1602508992/13201*1860498^(14/15) 8626757121702128 a001 71778069955410391/832040 8626757121706957 a001 3536736619241/13201*710647^(3/7) 8626757121708177 a001 4052739537881/39603*710647^(1/2) 8626757121709397 a001 516002918640/13201*710647^(4/7) 8626757121710617 a001 591286729879/39603*710647^(9/14) 8626757121711837 a001 75283811239/13201*710647^(5/7) 8626757121712447 a001 139583862445/39603*710647^(3/4) 8626757121713057 a001 86267571272/39603*710647^(11/14) 8626757121714278 a001 10983760033/13201*710647^(6/7) 8626757121715498 a001 12586269025/39603*710647^(13/14) 8626757121716718 a001 9138927692033040/105937 8626757121744357 a001 196418/39603*14662949395604^(7/9) 8626757121744357 a001 196418/39603*505019158607^(7/8) 8626757121753674 a001 3536736619241/13201*271443^(6/13) 8626757121758177 a001 6557470319842/39603*271443^(1/2) 8626757121762680 a001 4052739537881/39603*271443^(7/13) 8626757121771686 a001 516002918640/13201*271443^(8/13) 8626757121780693 a001 591286729879/39603*271443^(9/13) 8626757121789699 a001 75283811239/13201*271443^(10/13) 8626757121798705 a001 86267571272/39603*271443^(11/13) 8626757121807712 a001 10983760033/13201*271443^(12/13) 8626757121816718 a001 10472279272886969/121393 8626757122006161 a001 17711/167761*14662949395604^(19/21) 8626757122006161 a001 75025/39603*817138163596^(17/19) 8626757122006161 a001 75025/39603*14662949395604^(17/21) 8626757122006161 a001 75025/39603*192900153618^(17/18) 8626757122100882 a001 3536736619241/13201*103682^(1/2) 8626757122134319 a001 6557470319842/39603*103682^(13/24) 8626757122167756 a001 4052739537881/39603*103682^(7/12) 8626757122201194 a001 2504730781961/39603*103682^(5/8) 8626757122234631 a001 516002918640/13201*103682^(2/3) 8626757122268068 a001 956722026041/39603*103682^(17/24) 8626757122301505 a001 591286729879/39603*103682^(3/4) 8626757122334942 a001 365435296162/39603*103682^(19/24) 8626757122368379 a001 75283811239/13201*103682^(5/6) 8626757122401817 a001 139583862445/39603*103682^(7/8) 8626757122435254 a001 86267571272/39603*103682^(11/12) 8626757122468691 a001 53316291173/39603*103682^(23/24) 8626757122502128 a001 190478797264847/2208 8626757123429994 a001 32264490531/2161*15127^(9/10) 8626757123800588 a001 17711/64079*3461452808002^(11/12) 8626757124296555 a001 2472169789109664/28657 8626757124387901 a001 225851433717/103682*64079^(22/23) 8626757124479247 a001 182717648081/51841*64079^(21/23) 8626757124570593 a001 591286729879/103682*64079^(20/23) 8626757124661938 a001 956722026041/103682*64079^(19/23) 8626757124699834 a001 3536736619241/13201*39603^(6/11) 8626757124753284 a001 774004377960/51841*64079^(18/23) 8626757124844630 a001 2504730781961/103682*64079^(17/23) 8626757124935975 a001 4052739537881/103682*64079^(16/23) 8626757124949851 a001 6557470319842/39603*39603^(13/22) 8626757124981966 a001 2472169789306082/28657 8626757125027321 a001 3278735159921/51841*64079^(15/23) 8626757125073311 a001 591286729879/271443*64079^(22/23) 8626757125081966 a001 2472169789334739/28657 8626757125096555 a001 2472169789338920/28657 8626757125098684 a001 2472169789339530/28657 8626757125098995 a001 2472169789339619/28657 8626757125099040 a001 2472169789339632/28657 8626757125099047 a001 2472169789339634/28657 8626757125099050 a001 2472169789339635/28657 8626757125099068 a001 2472169789339640/28657 8626757125099186 a001 2472169789339674/28657 8626757125105572 a001 2472169789341504/28657 8626757125118667 a001 225749145909/2206*64079^(14/23) 8626757125143769 a001 2472169789352450/28657 8626757125164657 a001 956722026041/271443*64079^(21/23) 8626757125173311 a001 1548008755920/710647*64079^(22/23) 8626757125187901 a001 4052739537881/1860498*64079^(22/23) 8626757125190030 a001 2178309*64079^(22/23) 8626757125191345 a001 6557470319842/3010349*64079^(22/23) 8626757125196918 a001 2504730781961/1149851*64079^(22/23) 8626757125199867 a001 4052739537881/39603*39603^(7/11) 8626757125235115 a001 956722026041/439204*64079^(22/23) 8626757125256003 a001 516002918640/90481*64079^(20/23) 8626757125264657 a001 2504730781961/710647*64079^(21/23) 8626757125279247 a001 3278735159921/930249*64079^(21/23) 8626757125282691 a001 10610209857723/3010349*64079^(21/23) 8626757125288264 a001 4052739537881/1149851*64079^(21/23) 8626757125314997 a001 139583862445/15127*15127^(19/20) 8626757125326460 a001 387002188980/109801*64079^(21/23) 8626757125347348 a001 2504730781961/271443*64079^(19/23) 8626757125356003 a001 4052739537881/710647*64079^(20/23) 8626757125370593 a001 3536736619241/620166*64079^(20/23) 8626757125379610 a001 6557470319842/1149851*64079^(20/23) 8626757125405572 a001 2472169789427475/28657 8626757125417806 a001 2504730781961/439204*64079^(20/23) 8626757125438694 a001 4052739537881/271443*64079^(18/23) 8626757125447348 a001 6557470319842/710647*64079^(19/23) 8626757125449884 a001 2504730781961/39603*39603^(15/22) 8626757125470955 a001 10610209857723/1149851*64079^(19/23) 8626757125496918 a001 365435296162/167761*64079^(22/23) 8626757125509152 a001 4052739537881/439204*64079^(19/23) 8626757125530040 a001 6557470319842/271443*64079^(17/23) 8626757125538694 a001 1515744265389/101521*64079^(18/23) 8626757125588264 a001 591286729879/167761*64079^(21/23) 8626757125595015 a001 23184/51841*14662949395604^(6/7) 8626757125600498 a001 3278735159921/219602*64079^(18/23) 8626757125621386 a001 3536736619241/90481*64079^(16/23) 8626757125679610 a001 956722026041/167761*64079^(20/23) 8626757125691843 a001 10610209857723/439204*64079^(17/23) 8626757125699900 a001 516002918640/13201*39603^(8/11) 8626757125770955 a001 140728068720/15251*64079^(19/23) 8626757125862301 a001 2504730781961/167761*64079^(18/23) 8626757125949917 a001 956722026041/39603*39603^(17/22) 8626757125953647 a001 4052739537881/167761*64079^(17/23) 8626757126044992 a001 6557470319842/167761*64079^(16/23) 8626757126090983 a001 1294444906769952/15005 8626757126136338 a001 10610209857723/167761*64079^(15/23) 8626757126152287 a001 591286729879/103682*167761^(4/5) 8626757126199933 a001 591286729879/39603*39603^(9/11) 8626757126213592 a001 3278735159921/51841*167761^(3/5) 8626757126280425 a001 15456/90481*14662949395604^(8/9) 8626757126280425 a001 121393/103682*23725150497407^(13/16) 8626757126280425 a001 121393/103682*505019158607^(13/14) 8626757126352786 a001 8472251906219808/98209 8626757126357755 a001 43133785636/51841*439204^(8/9) 8626757126362724 a001 182717648081/51841*439204^(7/9) 8626757126367693 a001 774004377960/51841*439204^(2/3) 8626757126372662 a001 3278735159921/51841*439204^(5/9) 8626757126380425 a001 317811/103682*312119004989^(10/11) 8626757126380425 a001 317811/103682*3461452808002^(5/6) 8626757126390983 a001 44361286903469088/514229 8626757126395015 a001 2576/103361*14662949395604^(20/21) 8626757126395015 a001 416020/51841*45537549124^(16/17) 8626757126395015 a001 416020/51841*14662949395604^(16/21) 8626757126395015 a001 416020/51841*192900153618^(8/9) 8626757126395015 a001 416020/51841*73681302247^(12/13) 8626757126396555 a001 116139356897967648/1346269 8626757126397144 a001 46347/2206*10749957122^(23/24) 8626757126397368 a001 152028391895216928/1762289 8626757126397381 a001 46368*7881196^(10/11) 8626757126397394 a001 10182505537/51841*7881196^(9/11) 8626757126397406 a001 43133785636/51841*7881196^(8/11) 8626757126397415 a001 225851433717/103682*7881196^(2/3) 8626757126397419 a001 182717648081/51841*7881196^(7/11) 8626757126397432 a001 774004377960/51841*7881196^(6/11) 8626757126397444 a001 3278735159921/51841*7881196^(5/11) 8626757126397454 a001 5702887/103682*312119004989^(4/5) 8626757126397454 a001 5702887/103682*23725150497407^(11/16) 8626757126397454 a001 5702887/103682*73681302247^(11/13) 8626757126397454 a001 5702887/103682*10749957122^(11/12) 8626757126397454 a001 5702887/103682*4106118243^(22/23) 8626757126397490 a001 46368*20633239^(6/7) 8626757126397491 a001 12586269025/103682*20633239^(4/5) 8626757126397493 a001 53316291173/103682*20633239^(5/7) 8626757126397495 a001 182717648081/51841*20633239^(3/5) 8626757126397496 a001 591286729879/103682*20633239^(4/7) 8626757126397499 a001 3278735159921/51841*20633239^(3/7) 8626757126397499 a001 225749145909/2206*20633239^(2/5) 8626757126397500 a001 7465176/51841*2537720636^(14/15) 8626757126397500 a001 7465176/51841*17393796001^(6/7) 8626757126397500 a001 7465176/51841*45537549124^(14/17) 8626757126397500 a001 7465176/51841*817138163596^(14/19) 8626757126397500 a001 7465176/51841*14662949395604^(2/3) 8626757126397500 a001 7465176/51841*505019158607^(3/4) 8626757126397500 a001 7465176/51841*192900153618^(7/9) 8626757126397500 a001 7465176/51841*10749957122^(7/8) 8626757126397500 a001 7465176/51841*4106118243^(21/23) 8626757126397500 a001 7465176/51841*1568397607^(21/22) 8626757126397506 a001 39088169/103682*2537720636^(8/9) 8626757126397506 a001 39088169/103682*312119004989^(8/11) 8626757126397506 a001 39088169/103682*23725150497407^(5/8) 8626757126397506 a001 39088169/103682*73681302247^(10/13) 8626757126397506 a001 39088169/103682*28143753123^(4/5) 8626757126397506 a001 39088169/103682*10749957122^(5/6) 8626757126397506 a001 39088169/103682*4106118243^(20/23) 8626757126397506 a001 39088169/103682*1568397607^(10/11) 8626757126397506 a001 39088169/103682*599074578^(20/21) 8626757126397507 a001 133957148/51841*141422324^(12/13) 8626757126397507 a001 567451585/51841*141422324^(11/13) 8626757126397507 a001 46368*141422324^(10/13) 8626757126397507 a001 10182505537/51841*141422324^(9/13) 8626757126397507 a001 32951280099/103682*141422324^(2/3) 8626757126397507 a001 43133785636/51841*141422324^(8/13) 8626757126397507 a001 182717648081/51841*141422324^(7/13) 8626757126397507 a001 774004377960/51841*141422324^(6/13) 8626757126397507 a001 3278735159921/51841*141422324^(5/13) 8626757126397507 a001 102334155/103682*817138163596^(2/3) 8626757126397507 a001 102334155/103682*10749957122^(19/24) 8626757126397507 a001 102334155/103682*4106118243^(19/23) 8626757126397507 a001 102334155/103682*1568397607^(19/22) 8626757126397507 a001 102334155/103682*599074578^(19/21) 8626757126397507 a001 133957148/51841*2537720636^(4/5) 8626757126397507 a001 133957148/51841*45537549124^(12/17) 8626757126397507 a001 133957148/51841*14662949395604^(4/7) 8626757126397507 a001 133957148/51841*505019158607^(9/14) 8626757126397507 a001 133957148/51841*192900153618^(2/3) 8626757126397507 a001 133957148/51841*73681302247^(9/13) 8626757126397507 a001 133957148/51841*10749957122^(3/4) 8626757126397507 a001 133957148/51841*4106118243^(18/23) 8626757126397507 a001 133957148/51841*1568397607^(9/11) 8626757126397507 a001 102334155/103682*228826127^(19/20) 8626757126397507 a001 701408733/103682*45537549124^(2/3) 8626757126397507 a001 701408733/103682*10749957122^(17/24) 8626757126397507 a001 133957148/51841*599074578^(6/7) 8626757126397507 a001 701408733/103682*4106118243^(17/23) 8626757126397507 a001 46368*2537720636^(2/3) 8626757126397507 a001 10182505537/51841*2537720636^(3/5) 8626757126397507 a001 701408733/103682*1568397607^(17/22) 8626757126397507 a001 53316291173/103682*2537720636^(5/9) 8626757126397507 a001 43133785636/51841*2537720636^(8/15) 8626757126397507 a001 182717648081/51841*2537720636^(7/15) 8626757126397507 a001 591286729879/103682*2537720636^(4/9) 8626757126397507 a001 774004377960/51841*2537720636^(2/5) 8626757126397507 a001 1836311903/103682*23725150497407^(1/2) 8626757126397507 a001 1836311903/103682*505019158607^(4/7) 8626757126397507 a001 1836311903/103682*73681302247^(8/13) 8626757126397507 a001 1836311903/103682*10749957122^(2/3) 8626757126397507 a001 3278735159921/51841*2537720636^(1/3) 8626757126397507 a001 1836311903/103682*4106118243^(16/23) 8626757126397507 a001 46368*45537549124^(10/17) 8626757126397507 a001 46368*312119004989^(6/11) 8626757126397507 a001 46368*14662949395604^(10/21) 8626757126397507 a001 46368*192900153618^(5/9) 8626757126397507 a001 46368*28143753123^(3/5) 8626757126397507 a001 46368*10749957122^(5/8) 8626757126397507 a001 12586269025/103682*17393796001^(4/7) 8626757126397507 a001 182717648081/51841*17393796001^(3/7) 8626757126397507 a001 12586269025/103682*14662949395604^(4/9) 8626757126397507 a001 12586269025/103682*505019158607^(1/2) 8626757126397507 a001 12586269025/103682*73681302247^(7/13) 8626757126397507 a001 225749145909/2206*17393796001^(2/7) 8626757126397507 a001 43133785636/51841*45537549124^(8/17) 8626757126397507 a001 182717648081/51841*45537549124^(7/17) 8626757126397507 a001 774004377960/51841*45537549124^(6/17) 8626757126397507 a001 2504730781961/103682*45537549124^(1/3) 8626757126397507 a001 3278735159921/51841*45537549124^(5/17) 8626757126397507 a001 32951280099/103682*73681302247^(1/2) 8626757126397507 a001 43133785636/51841*14662949395604^(8/21) 8626757126397507 a001 43133785636/51841*192900153618^(4/9) 8626757126397507 a001 225851433717/103682*312119004989^(2/5) 8626757126397507 a001 591286729879/103682*23725150497407^(5/16) 8626757126397507 a001 774004377960/51841*14662949395604^(2/7) 8626757126397507 a001 4052739537881/103682*23725150497407^(1/4) 8626757126397507 a001 225749145909/2206*14662949395604^(2/9) 8626757126397507 a001 3278735159921/51841*14662949395604^(5/21) 8626757126397507 a001 225749145909/2206*505019158607^(1/4) 8626757126397507 a001 182717648081/51841*14662949395604^(1/3) 8626757126397507 a001 3278735159921/51841*192900153618^(5/18) 8626757126397507 a001 774004377960/51841*192900153618^(1/3) 8626757126397507 a001 182717648081/51841*192900153618^(7/18) 8626757126397507 a001 4052739537881/103682*73681302247^(4/13) 8626757126397507 a001 43133785636/51841*73681302247^(6/13) 8626757126397507 a001 53316291173/103682*312119004989^(5/11) 8626757126397507 a001 591286729879/103682*73681302247^(5/13) 8626757126397507 a001 53316291173/103682*3461452808002^(5/12) 8626757126397507 a001 10182505537/51841*45537549124^(9/17) 8626757126397507 a001 3278735159921/51841*28143753123^(3/10) 8626757126397507 a001 10182505537/51841*817138163596^(9/19) 8626757126397507 a001 10182505537/51841*14662949395604^(3/7) 8626757126397507 a001 10182505537/51841*192900153618^(1/2) 8626757126397507 a001 591286729879/103682*28143753123^(2/5) 8626757126397507 a001 53316291173/103682*28143753123^(1/2) 8626757126397507 a001 225749145909/2206*10749957122^(7/24) 8626757126397507 a001 3278735159921/51841*10749957122^(5/16) 8626757126397507 a001 4052739537881/103682*10749957122^(1/3) 8626757126397507 a001 774004377960/51841*10749957122^(3/8) 8626757126397507 a001 7778742049/103682*1322157322203^(1/2) 8626757126397507 a001 591286729879/103682*10749957122^(5/12) 8626757126397507 a001 12586269025/103682*10749957122^(7/12) 8626757126397507 a001 182717648081/51841*10749957122^(7/16) 8626757126397507 a001 225851433717/103682*10749957122^(11/24) 8626757126397507 a001 43133785636/51841*10749957122^(1/2) 8626757126397507 a001 32951280099/103682*10749957122^(13/24) 8626757126397507 a001 10182505537/51841*10749957122^(9/16) 8626757126397507 a001 225749145909/2206*4106118243^(7/23) 8626757126397507 a001 4052739537881/103682*4106118243^(8/23) 8626757126397507 a001 2971215073/103682*9062201101803^(1/2) 8626757126397507 a001 774004377960/51841*4106118243^(9/23) 8626757126397507 a001 591286729879/103682*4106118243^(10/23) 8626757126397507 a001 225851433717/103682*4106118243^(11/23) 8626757126397507 a001 139583862445/103682*4106118243^(1/2) 8626757126397507 a001 46368*4106118243^(15/23) 8626757126397507 a001 43133785636/51841*4106118243^(12/23) 8626757126397507 a001 32951280099/103682*4106118243^(13/23) 8626757126397507 a001 12586269025/103682*4106118243^(14/23) 8626757126397507 a001 567451585/51841*2537720636^(11/15) 8626757126397507 a001 225749145909/2206*1568397607^(7/22) 8626757126397507 a001 4052739537881/103682*1568397607^(4/11) 8626757126397507 a001 567451585/51841*45537549124^(11/17) 8626757126397507 a001 567451585/51841*312119004989^(3/5) 8626757126397507 a001 567451585/51841*817138163596^(11/19) 8626757126397507 a001 567451585/51841*14662949395604^(11/21) 8626757126397507 a001 567451585/51841*192900153618^(11/18) 8626757126397507 a001 567451585/51841*10749957122^(11/16) 8626757126397507 a001 774004377960/51841*1568397607^(9/22) 8626757126397507 a001 591286729879/103682*1568397607^(5/11) 8626757126397507 a001 225851433717/103682*1568397607^(1/2) 8626757126397507 a001 43133785636/51841*1568397607^(6/11) 8626757126397507 a001 1836311903/103682*1568397607^(8/11) 8626757126397507 a001 32951280099/103682*1568397607^(13/22) 8626757126397507 a001 12586269025/103682*1568397607^(7/11) 8626757126397507 a001 46368*1568397607^(15/22) 8626757126397507 a001 567451585/51841*1568397607^(3/4) 8626757126397507 a001 225749145909/2206*599074578^(1/3) 8626757126397507 a001 433494437/103682*2537720636^(7/9) 8626757126397507 a001 3278735159921/51841*599074578^(5/14) 8626757126397507 a001 4052739537881/103682*599074578^(8/21) 8626757126397507 a001 433494437/103682*17393796001^(5/7) 8626757126397507 a001 433494437/103682*312119004989^(7/11) 8626757126397507 a001 433494437/103682*14662949395604^(5/9) 8626757126397507 a001 433494437/103682*505019158607^(5/8) 8626757126397507 a001 433494437/103682*28143753123^(7/10) 8626757126397507 a001 774004377960/51841*599074578^(3/7) 8626757126397507 a001 591286729879/103682*599074578^(10/21) 8626757126397507 a001 182717648081/51841*599074578^(1/2) 8626757126397507 a001 225851433717/103682*599074578^(11/21) 8626757126397507 a001 43133785636/51841*599074578^(4/7) 8626757126397507 a001 32951280099/103682*599074578^(13/21) 8626757126397507 a001 10182505537/51841*599074578^(9/14) 8626757126397507 a001 701408733/103682*599074578^(17/21) 8626757126397507 a001 12586269025/103682*599074578^(2/3) 8626757126397507 a001 46368*599074578^(5/7) 8626757126397507 a001 1836311903/103682*599074578^(16/21) 8626757126397507 a001 567451585/51841*599074578^(11/14) 8626757126397507 a001 433494437/103682*599074578^(5/6) 8626757126397507 a001 225749145909/2206*228826127^(7/20) 8626757126397507 a001 3278735159921/51841*228826127^(3/8) 8626757126397507 a001 4052739537881/103682*228826127^(2/5) 8626757126397507 a001 774004377960/51841*228826127^(9/20) 8626757126397507 a001 591286729879/103682*228826127^(1/2) 8626757126397507 a001 225851433717/103682*228826127^(11/20) 8626757126397507 a001 43133785636/51841*228826127^(3/5) 8626757126397507 a001 53316291173/103682*228826127^(5/8) 8626757126397507 a001 32951280099/103682*228826127^(13/20) 8626757126397507 a001 12586269025/103682*228826127^(7/10) 8626757126397507 a001 46368*228826127^(3/4) 8626757126397507 a001 133957148/51841*228826127^(9/10) 8626757126397507 a001 1836311903/103682*228826127^(4/5) 8626757126397507 a001 701408733/103682*228826127^(17/20) 8626757126397507 a001 433494437/103682*228826127^(7/8) 8626757126397508 a001 225749145909/2206*87403803^(7/19) 8626757126397508 a001 31622993/51841*2537720636^(13/15) 8626757126397508 a001 31622993/51841*45537549124^(13/17) 8626757126397508 a001 31622993/51841*14662949395604^(13/21) 8626757126397508 a001 31622993/51841*192900153618^(13/18) 8626757126397508 a001 31622993/51841*73681302247^(3/4) 8626757126397508 a001 31622993/51841*10749957122^(13/16) 8626757126397508 a001 31622993/51841*599074578^(13/14) 8626757126397508 a001 4052739537881/103682*87403803^(8/19) 8626757126397508 a001 774004377960/51841*87403803^(9/19) 8626757126397508 a001 956722026041/103682*87403803^(1/2) 8626757126397508 a001 591286729879/103682*87403803^(10/19) 8626757126397508 a001 225851433717/103682*87403803^(11/19) 8626757126397508 a001 43133785636/51841*87403803^(12/19) 8626757126397508 a001 32951280099/103682*87403803^(13/19) 8626757126397508 a001 12586269025/103682*87403803^(14/19) 8626757126397508 a001 46368*87403803^(15/19) 8626757126397508 a001 1836311903/103682*87403803^(16/19) 8626757126397508 a001 701408733/103682*87403803^(17/19) 8626757126397508 a001 133957148/51841*87403803^(18/19) 8626757126397510 a001 225749145909/2206*33385282^(7/18) 8626757126397510 a001 3278735159921/51841*33385282^(5/12) 8626757126397511 a001 4052739537881/103682*33385282^(4/9) 8626757126397511 a001 774004377960/51841*33385282^(1/2) 8626757126397512 a001 591286729879/103682*33385282^(5/9) 8626757126397512 a001 182717648081/51841*33385282^(7/12) 8626757126397512 a001 225851433717/103682*33385282^(11/18) 8626757126397512 a001 43133785636/51841*33385282^(2/3) 8626757126397513 a001 32951280099/103682*33385282^(13/18) 8626757126397513 a001 10182505537/51841*33385282^(3/4) 8626757126397513 a001 12586269025/103682*33385282^(7/9) 8626757126397514 a001 46368*33385282^(5/6) 8626757126397514 a001 1836311903/103682*33385282^(8/9) 8626757126397514 a001 567451585/51841*33385282^(11/12) 8626757126397515 a001 701408733/103682*33385282^(17/18) 8626757126397529 a001 225749145909/2206*12752043^(7/17) 8626757126397532 a001 4052739537881/103682*12752043^(8/17) 8626757126397534 a001 2504730781961/103682*12752043^(1/2) 8626757126397535 a001 774004377960/51841*12752043^(9/17) 8626757126397538 a001 591286729879/103682*12752043^(10/17) 8626757126397542 a001 225851433717/103682*12752043^(11/17) 8626757126397545 a001 43133785636/51841*12752043^(12/17) 8626757126397548 a001 32951280099/103682*12752043^(13/17) 8626757126397551 a001 12586269025/103682*12752043^(14/17) 8626757126397554 a001 46368*12752043^(15/17) 8626757126397557 a001 1836311903/103682*12752043^(16/17) 8626757126397560 a001 491974210682900064/5702887 8626757126397646 a001 1762289/51841*45537549124^(15/17) 8626757126397646 a001 1762289/51841*312119004989^(9/11) 8626757126397646 a001 1762289/51841*14662949395604^(5/7) 8626757126397646 a001 1762289/51841*192900153618^(5/6) 8626757126397646 a001 1762289/51841*28143753123^(9/10) 8626757126397646 a001 1762289/51841*10749957122^(15/16) 8626757126397666 a001 225749145909/2206*4870847^(7/16) 8626757126397689 a001 4052739537881/103682*4870847^(1/2) 8626757126397712 a001 774004377960/51841*4870847^(9/16) 8626757126397735 a001 591286729879/103682*4870847^(5/8) 8626757126397757 a001 225851433717/103682*4870847^(11/16) 8626757126397780 a001 43133785636/51841*4870847^(3/4) 8626757126397803 a001 32951280099/103682*4870847^(13/16) 8626757126397825 a001 12586269025/103682*4870847^(7/8) 8626757126397848 a001 46368*4870847^(15/16) 8626757126397871 a001 8948448899641248/103729 8626757126398670 a001 225749145909/2206*1860498^(7/15) 8626757126398753 a001 3278735159921/51841*1860498^(1/2) 8626757126398836 a001 4052739537881/103682*1860498^(8/15) 8626757126399003 a001 774004377960/51841*1860498^(3/5) 8626757126399169 a001 591286729879/103682*1860498^(2/3) 8626757126399252 a001 182717648081/51841*1860498^(7/10) 8626757126399335 a001 225851433717/103682*1860498^(11/15) 8626757126399501 a001 43133785636/51841*1860498^(4/5) 8626757126399584 a001 53316291173/103682*1860498^(5/6) 8626757126399667 a001 32951280099/103682*1860498^(13/15) 8626757126399750 a001 10182505537/51841*1860498^(9/10) 8626757126399833 a001 12586269025/103682*1860498^(14/15) 8626757126404032 a001 514229/103682*14662949395604^(7/9) 8626757126404032 a001 514229/103682*505019158607^(7/8) 8626757126406048 a001 225749145909/2206*710647^(1/2) 8626757126407268 a001 4052739537881/103682*710647^(4/7) 8626757126408489 a001 774004377960/51841*710647^(9/14) 8626757126409709 a001 591286729879/103682*710647^(5/7) 8626757126410319 a001 182717648081/51841*710647^(3/4) 8626757126410929 a001 225851433717/103682*710647^(11/14) 8626757126412149 a001 43133785636/51841*710647^(6/7) 8626757126413369 a001 32951280099/103682*710647^(13/14) 8626757126414589 a001 9138927697009824/105937 8626757126442229 a001 11592/109801*14662949395604^(19/21) 8626757126442229 a001 98209/51841*817138163596^(17/19) 8626757126442229 a001 98209/51841*14662949395604^(17/21) 8626757126442229 a001 98209/51841*192900153618^(17/18) 8626757126449950 a001 365435296162/39603*39603^(19/22) 8626757126460551 a001 225749145909/2206*271443^(7/13) 8626757126469558 a001 4052739537881/103682*271443^(8/13) 8626757126478564 a001 774004377960/51841*271443^(9/13) 8626757126487570 a001 591286729879/103682*271443^(10/13) 8626757126496577 a001 225851433717/103682*271443^(11/13) 8626757126505583 a001 43133785636/51841*271443^(12/13) 8626757126514589 a001 10472279278589856/121393 8626757126699966 a001 75283811239/13201*39603^(10/11) 8626757126704032 a001 46368/167761*3461452808002^(11/12) 8626757126776393 a001 6472224534363989/75025 8626757126837698 a001 516002918640/90481*167761^(4/5) 8626757126865628 a001 225749145909/2206*103682^(7/12) 8626757126876393 a001 6472224534439014/75025 8626757126890983 a001 1294444906889992/15005 8626757126893111 a001 6472224534451557/75025 8626757126893422 a001 1294444906890358/15005 8626757126893467 a001 6472224534451824/75025 8626757126893474 a001 6472224534451829/75025 8626757126893475 a001 1294444906890366/15005 8626757126893478 a001 6472224534451832/75025 8626757126893495 a001 1294444906890369/15005 8626757126893614 a001 6472224534451934/75025 8626757126894427 a001 6472224534452544/75025 8626757126899065 a001 3278735159921/51841*103682^(5/8) 8626757126932502 a001 4052739537881/103682*103682^(2/3) 8626757126937698 a001 4052739537881/710647*167761^(4/5) 8626757126938196 a001 6472224534485382/75025 8626757126949983 a001 139583862445/39603*39603^(21/22) 8626757126952287 a001 3536736619241/620166*167761^(4/5) 8626757126961304 a001 6557470319842/1149851*167761^(4/5) 8626757126965835 a001 121393/271443*14662949395604^(6/7) 8626757126965939 a001 2504730781961/103682*103682^(17/24) 8626757126999376 a001 774004377960/51841*103682^(3/4) 8626757126999501 a001 2504730781961/439204*167761^(4/5) 8626757127032814 a001 956722026041/103682*103682^(19/24) 8626757127038196 a001 16944503813785885/196418 8626757127043165 a001 75283811239/90481*439204^(8/9) 8626757127048134 a001 956722026041/271443*439204^(7/9) 8626757127053103 a001 4052739537881/271443*439204^(2/3) 8626757127065835 a001 121393/710647*14662949395604^(8/9) 8626757127065835 a001 105937/90481*23725150497407^(13/16) 8626757127065835 a001 105937/90481*505019158607^(13/14) 8626757127066251 a001 591286729879/103682*103682^(5/6) 8626757127076393 a001 44361286906993666/514229 8626757127080425 a001 832040/271443*312119004989^(10/11) 8626757127080425 a001 832040/271443*3461452808002^(5/6) 8626757127081966 a001 116139356907195113/1346269 8626757127082554 a001 726103/90481*45537549124^(16/17) 8626757127082554 a001 121393/4870847*14662949395604^(20/21) 8626757127082554 a001 726103/90481*14662949395604^(16/21) 8626757127082554 a001 726103/90481*192900153618^(8/9) 8626757127082554 a001 726103/90481*73681302247^(12/13) 8626757127082779 a001 304056783814591673/3524578 8626757127082791 a001 12586269025/271443*7881196^(10/11) 8626757127082804 a001 53316291173/271443*7881196^(9/11) 8626757127082816 a001 75283811239/90481*7881196^(8/11) 8626757127082825 a001 591286729879/271443*7881196^(2/3) 8626757127082829 a001 956722026041/271443*7881196^(7/11) 8626757127082842 a001 4052739537881/271443*7881196^(6/11) 8626757127082864 a001 5702887/271443*10749957122^(23/24) 8626757127082897 a001 61233153425890762/709805 8626757127082900 a001 12586269025/271443*20633239^(6/7) 8626757127082901 a001 121393*20633239^(4/5) 8626757127082903 a001 139583862445/271443*20633239^(5/7) 8626757127082905 a001 956722026041/271443*20633239^(3/5) 8626757127082906 a001 516002918640/90481*20633239^(4/7) 8626757127082910 a001 4976784/90481*312119004989^(4/5) 8626757127082910 a001 4976784/90481*23725150497407^(11/16) 8626757127082910 a001 4976784/90481*73681302247^(11/13) 8626757127082910 a001 4976784/90481*10749957122^(11/12) 8626757127082910 a001 4976784/90481*4106118243^(22/23) 8626757127082916 a001 39088169/271443*2537720636^(14/15) 8626757127082916 a001 39088169/271443*17393796001^(6/7) 8626757127082916 a001 39088169/271443*45537549124^(14/17) 8626757127082916 a001 39088169/271443*817138163596^(14/19) 8626757127082916 a001 39088169/271443*14662949395604^(2/3) 8626757127082916 a001 39088169/271443*505019158607^(3/4) 8626757127082916 a001 39088169/271443*192900153618^(7/9) 8626757127082916 a001 39088169/271443*10749957122^(7/8) 8626757127082916 a001 39088169/271443*4106118243^(21/23) 8626757127082916 a001 39088169/271443*1568397607^(21/22) 8626757127082917 a001 233802911/90481*141422324^(12/13) 8626757127082917 a001 2971215073/271443*141422324^(11/13) 8626757127082917 a001 12586269025/271443*141422324^(10/13) 8626757127082917 a001 53316291173/271443*141422324^(9/13) 8626757127082917 a001 86267571272/271443*141422324^(2/3) 8626757127082917 a001 75283811239/90481*141422324^(8/13) 8626757127082917 a001 956722026041/271443*141422324^(7/13) 8626757127082917 a001 4052739537881/271443*141422324^(6/13) 8626757127082917 a001 34111385/90481*2537720636^(8/9) 8626757127082917 a001 34111385/90481*312119004989^(8/11) 8626757127082917 a001 34111385/90481*23725150497407^(5/8) 8626757127082917 a001 34111385/90481*73681302247^(10/13) 8626757127082917 a001 34111385/90481*28143753123^(4/5) 8626757127082917 a001 34111385/90481*10749957122^(5/6) 8626757127082917 a001 34111385/90481*4106118243^(20/23) 8626757127082917 a001 34111385/90481*1568397607^(10/11) 8626757127082917 a001 34111385/90481*599074578^(20/21) 8626757127082917 a001 267914296/271443*817138163596^(2/3) 8626757127082917 a001 267914296/271443*10749957122^(19/24) 8626757127082917 a001 267914296/271443*4106118243^(19/23) 8626757127082917 a001 267914296/271443*1568397607^(19/22) 8626757127082917 a001 233802911/90481*2537720636^(4/5) 8626757127082917 a001 233802911/90481*45537549124^(12/17) 8626757127082917 a001 233802911/90481*14662949395604^(4/7) 8626757127082917 a001 233802911/90481*505019158607^(9/14) 8626757127082917 a001 233802911/90481*192900153618^(2/3) 8626757127082917 a001 233802911/90481*73681302247^(9/13) 8626757127082917 a001 233802911/90481*10749957122^(3/4) 8626757127082917 a001 233802911/90481*4106118243^(18/23) 8626757127082917 a001 267914296/271443*599074578^(19/21) 8626757127082917 a001 12586269025/271443*2537720636^(2/3) 8626757127082917 a001 53316291173/271443*2537720636^(3/5) 8626757127082917 a001 2971215073/271443*2537720636^(11/15) 8626757127082917 a001 139583862445/271443*2537720636^(5/9) 8626757127082917 a001 75283811239/90481*2537720636^(8/15) 8626757127082917 a001 233802911/90481*1568397607^(9/11) 8626757127082917 a001 956722026041/271443*2537720636^(7/15) 8626757127082917 a001 516002918640/90481*2537720636^(4/9) 8626757127082917 a001 4052739537881/271443*2537720636^(2/5) 8626757127082917 a001 1836311903/271443*45537549124^(2/3) 8626757127082917 a001 1836311903/271443*10749957122^(17/24) 8626757127082917 a001 1836311903/271443*4106118243^(17/23) 8626757127082917 a001 1602508992/90481*23725150497407^(1/2) 8626757127082917 a001 1602508992/90481*505019158607^(4/7) 8626757127082917 a001 1602508992/90481*73681302247^(8/13) 8626757127082917 a001 1602508992/90481*10749957122^(2/3) 8626757127082917 a001 121393*17393796001^(4/7) 8626757127082917 a001 12586269025/271443*45537549124^(10/17) 8626757127082917 a001 956722026041/271443*17393796001^(3/7) 8626757127082917 a001 12586269025/271443*312119004989^(6/11) 8626757127082917 a001 12586269025/271443*14662949395604^(10/21) 8626757127082917 a001 12586269025/271443*192900153618^(5/9) 8626757127082917 a001 12586269025/271443*28143753123^(3/5) 8626757127082917 a001 75283811239/90481*45537549124^(8/17) 8626757127082917 a001 956722026041/271443*45537549124^(7/17) 8626757127082917 a001 53316291173/271443*45537549124^(9/17) 8626757127082917 a001 121393*14662949395604^(4/9) 8626757127082917 a001 121393*505019158607^(1/2) 8626757127082917 a001 4052739537881/271443*45537549124^(6/17) 8626757127082917 a001 6557470319842/271443*45537549124^(1/3) 8626757127082917 a001 121393*73681302247^(7/13) 8626757127082917 a001 75283811239/90481*14662949395604^(8/21) 8626757127082917 a001 2504730781961/271443*817138163596^(1/3) 8626757127082917 a001 4052739537881/271443*14662949395604^(2/7) 8626757127082917 a001 3536736619241/90481*23725150497407^(1/4) 8626757127082917 a001 516002918640/90481*505019158607^(5/14) 8626757127082917 a001 139583862445/271443*312119004989^(5/11) 8626757127082917 a001 75283811239/90481*192900153618^(4/9) 8626757127082917 a001 4052739537881/271443*192900153618^(1/3) 8626757127082917 a001 139583862445/271443*3461452808002^(5/12) 8626757127082917 a001 3536736619241/90481*73681302247^(4/13) 8626757127082917 a001 86267571272/271443*73681302247^(1/2) 8626757127082917 a001 53316291173/271443*817138163596^(9/19) 8626757127082917 a001 53316291173/271443*14662949395604^(3/7) 8626757127082917 a001 516002918640/90481*73681302247^(5/13) 8626757127082917 a001 53316291173/271443*192900153618^(1/2) 8626757127082917 a001 20365011074/271443*1322157322203^(1/2) 8626757127082917 a001 516002918640/90481*28143753123^(2/5) 8626757127082917 a001 139583862445/271443*28143753123^(1/2) 8626757127082917 a001 3536736619241/90481*10749957122^(1/3) 8626757127082917 a001 4052739537881/271443*10749957122^(3/8) 8626757127082917 a001 7778742049/271443*9062201101803^(1/2) 8626757127082917 a001 516002918640/90481*10749957122^(5/12) 8626757127082917 a001 956722026041/271443*10749957122^(7/16) 8626757127082917 a001 591286729879/271443*10749957122^(11/24) 8626757127082917 a001 12586269025/271443*10749957122^(5/8) 8626757127082917 a001 75283811239/90481*10749957122^(1/2) 8626757127082917 a001 86267571272/271443*10749957122^(13/24) 8626757127082917 a001 121393*10749957122^(7/12) 8626757127082917 a001 53316291173/271443*10749957122^(9/16) 8626757127082917 a001 3536736619241/90481*4106118243^(8/23) 8626757127082917 a001 2971215073/271443*45537549124^(11/17) 8626757127082917 a001 2971215073/271443*312119004989^(3/5) 8626757127082917 a001 2971215073/271443*817138163596^(11/19) 8626757127082917 a001 2971215073/271443*14662949395604^(11/21) 8626757127082917 a001 2971215073/271443*192900153618^(11/18) 8626757127082917 a001 4052739537881/271443*4106118243^(9/23) 8626757127082917 a001 516002918640/90481*4106118243^(10/23) 8626757127082917 a001 591286729879/271443*4106118243^(11/23) 8626757127082917 a001 2971215073/271443*10749957122^(11/16) 8626757127082917 a001 365435296162/271443*4106118243^(1/2) 8626757127082917 a001 75283811239/90481*4106118243^(12/23) 8626757127082917 a001 1602508992/90481*4106118243^(16/23) 8626757127082917 a001 86267571272/271443*4106118243^(13/23) 8626757127082917 a001 1134903170/271443*2537720636^(7/9) 8626757127082917 a001 121393*4106118243^(14/23) 8626757127082917 a001 12586269025/271443*4106118243^(15/23) 8626757127082917 a001 3536736619241/90481*1568397607^(4/11) 8626757127082917 a001 1134903170/271443*17393796001^(5/7) 8626757127082917 a001 1134903170/271443*312119004989^(7/11) 8626757127082917 a001 1134903170/271443*14662949395604^(5/9) 8626757127082917 a001 1134903170/271443*505019158607^(5/8) 8626757127082917 a001 1134903170/271443*28143753123^(7/10) 8626757127082917 a001 4052739537881/271443*1568397607^(9/22) 8626757127082917 a001 516002918640/90481*1568397607^(5/11) 8626757127082917 a001 591286729879/271443*1568397607^(1/2) 8626757127082917 a001 75283811239/90481*1568397607^(6/11) 8626757127082917 a001 86267571272/271443*1568397607^(13/22) 8626757127082917 a001 1836311903/271443*1568397607^(17/22) 8626757127082917 a001 121393*1568397607^(7/11) 8626757127082917 a001 12586269025/271443*1568397607^(15/22) 8626757127082917 a001 1602508992/90481*1568397607^(8/11) 8626757127082917 a001 2971215073/271443*1568397607^(3/4) 8626757127082917 a001 3536736619241/90481*599074578^(8/21) 8626757127082917 a001 4052739537881/271443*599074578^(3/7) 8626757127082917 a001 516002918640/90481*599074578^(10/21) 8626757127082917 a001 956722026041/271443*599074578^(1/2) 8626757127082917 a001 591286729879/271443*599074578^(11/21) 8626757127082917 a001 75283811239/90481*599074578^(4/7) 8626757127082917 a001 86267571272/271443*599074578^(13/21) 8626757127082917 a001 53316291173/271443*599074578^(9/14) 8626757127082917 a001 121393*599074578^(2/3) 8626757127082917 a001 233802911/90481*599074578^(6/7) 8626757127082917 a001 12586269025/271443*599074578^(5/7) 8626757127082917 a001 1602508992/90481*599074578^(16/21) 8626757127082917 a001 1836311903/271443*599074578^(17/21) 8626757127082917 a001 2971215073/271443*599074578^(11/14) 8626757127082917 a001 1134903170/271443*599074578^(5/6) 8626757127082918 a001 165580141/271443*2537720636^(13/15) 8626757127082918 a001 165580141/271443*45537549124^(13/17) 8626757127082918 a001 165580141/271443*14662949395604^(13/21) 8626757127082918 a001 165580141/271443*192900153618^(13/18) 8626757127082918 a001 165580141/271443*73681302247^(3/4) 8626757127082918 a001 165580141/271443*10749957122^(13/16) 8626757127082918 a001 3536736619241/90481*228826127^(2/5) 8626757127082918 a001 4052739537881/271443*228826127^(9/20) 8626757127082918 a001 516002918640/90481*228826127^(1/2) 8626757127082918 a001 165580141/271443*599074578^(13/14) 8626757127082918 a001 591286729879/271443*228826127^(11/20) 8626757127082918 a001 75283811239/90481*228826127^(3/5) 8626757127082918 a001 139583862445/271443*228826127^(5/8) 8626757127082918 a001 86267571272/271443*228826127^(13/20) 8626757127082918 a001 121393*228826127^(7/10) 8626757127082918 a001 12586269025/271443*228826127^(3/4) 8626757127082918 a001 1602508992/90481*228826127^(4/5) 8626757127082918 a001 267914296/271443*228826127^(19/20) 8626757127082918 a001 1836311903/271443*228826127^(17/20) 8626757127082918 a001 233802911/90481*228826127^(9/10) 8626757127082918 a001 1134903170/271443*228826127^(7/8) 8626757127082918 a001 3536736619241/90481*87403803^(8/19) 8626757127082918 a001 4052739537881/271443*87403803^(9/19) 8626757127082918 a001 2504730781961/271443*87403803^(1/2) 8626757127082918 a001 516002918640/90481*87403803^(10/19) 8626757127082918 a001 591286729879/271443*87403803^(11/19) 8626757127082918 a001 75283811239/90481*87403803^(12/19) 8626757127082918 a001 86267571272/271443*87403803^(13/19) 8626757127082918 a001 121393*87403803^(14/19) 8626757127082918 a001 12586269025/271443*87403803^(15/19) 8626757127082918 a001 1602508992/90481*87403803^(16/19) 8626757127082918 a001 1836311903/271443*87403803^(17/19) 8626757127082919 a001 233802911/90481*87403803^(18/19) 8626757127082921 a001 3536736619241/90481*33385282^(4/9) 8626757127082921 a001 4052739537881/271443*33385282^(1/2) 8626757127082922 a001 516002918640/90481*33385282^(5/9) 8626757127082922 a001 956722026041/271443*33385282^(7/12) 8626757127082922 a001 591286729879/271443*33385282^(11/18) 8626757127082923 a001 75283811239/90481*33385282^(2/3) 8626757127082923 a001 86267571272/271443*33385282^(13/18) 8626757127082923 a001 53316291173/271443*33385282^(3/4) 8626757127082923 a001 121393*33385282^(7/9) 8626757127082924 a001 12586269025/271443*33385282^(5/6) 8626757127082924 a001 1602508992/90481*33385282^(8/9) 8626757127082925 a001 2971215073/271443*33385282^(11/12) 8626757127082925 a001 1836311903/271443*33385282^(17/18) 8626757127082925 a001 429335068419522713/4976784 8626757127082938 a001 9227465/271443*45537549124^(15/17) 8626757127082938 a001 9227465/271443*312119004989^(9/11) 8626757127082938 a001 9227465/271443*14662949395604^(5/7) 8626757127082938 a001 9227465/271443*192900153618^(5/6) 8626757127082938 a001 9227465/271443*28143753123^(9/10) 8626757127082938 a001 9227465/271443*10749957122^(15/16) 8626757127082942 a001 3536736619241/90481*12752043^(8/17) 8626757127082944 a001 6557470319842/271443*12752043^(1/2) 8626757127082946 a001 4052739537881/271443*12752043^(9/17) 8626757127082949 a001 516002918640/90481*12752043^(10/17) 8626757127082952 a001 591286729879/271443*12752043^(11/17) 8626757127082955 a001 75283811239/90481*12752043^(12/17) 8626757127082958 a001 86267571272/271443*12752043^(13/17) 8626757127082961 a001 121393*12752043^(14/17) 8626757127082964 a001 12586269025/271443*12752043^(15/17) 8626757127082967 a001 1602508992/90481*12752043^(16/17) 8626757127082971 a001 491974210721988233/5702887 8626757127083099 a001 3536736619241/90481*4870847^(1/2) 8626757127083122 a001 4052739537881/271443*4870847^(9/16) 8626757127083145 a001 516002918640/90481*4870847^(5/8) 8626757127083167 a001 591286729879/271443*4870847^(11/16) 8626757127083190 a001 75283811239/90481*4870847^(3/4) 8626757127083213 a001 86267571272/271443*4870847^(13/16) 8626757127083236 a001 121393*4870847^(7/8) 8626757127083258 a001 12586269025/271443*4870847^(15/16) 8626757127083281 a001 62639142302465520/726103 8626757127083869 a001 1346269/271443*14662949395604^(7/9) 8626757127083869 a001 1346269/271443*505019158607^(7/8) 8626757127084247 a001 3536736619241/90481*1860498^(8/15) 8626757127084413 a001 4052739537881/271443*1860498^(3/5) 8626757127084579 a001 516002918640/90481*1860498^(2/3) 8626757127084662 a001 956722026041/271443*1860498^(7/10) 8626757127084745 a001 591286729879/271443*1860498^(11/15) 8626757127084911 a001 75283811239/90481*1860498^(4/5) 8626757127084994 a001 139583862445/271443*1860498^(5/6) 8626757127085077 a001 86267571272/271443*1860498^(13/15) 8626757127085160 a001 53316291173/271443*1860498^(9/10) 8626757127085244 a001 121393*1860498^(14/15) 8626757127085410 a001 71778070000201447/832040 8626757127089442 a001 121393/1149851*14662949395604^(19/21) 8626757127089442 a001 514229/271443*817138163596^(17/19) 8626757127089442 a001 514229/271443*14662949395604^(17/21) 8626757127089442 a001 514229/271443*192900153618^(17/18) 8626757127092679 a001 3536736619241/90481*710647^(4/7) 8626757127093899 a001 4052739537881/271443*710647^(9/14) 8626757127095119 a001 516002918640/90481*710647^(5/7) 8626757127095729 a001 956722026041/271443*710647^(3/4) 8626757127096339 a001 591286729879/271443*710647^(11/14) 8626757127097559 a001 75283811239/90481*710647^(6/7) 8626757127098779 a001 86267571272/271443*710647^(13/14) 8626757127099688 a001 182717648081/51841*103682^(7/8) 8626757127127639 a001 121393/439204*3461452808002^(11/12) 8626757127133125 a001 225851433717/103682*103682^(11/12) 8626757127138196 a001 16944503813982303/196418 8626757127143165 a001 591286729879/710647*439204^(8/9) 8626757127148134 a001 2504730781961/710647*439204^(7/9) 8626757127152786 a001 8472251907005480/98209 8626757127153103 a001 1515744265389/101521*439204^(2/3) 8626757127154915 a001 16944503814015141/196418 8626757127154968 a001 3536736619241/90481*271443^(8/13) 8626757127155225 a001 16944503814015751/196418 8626757127155270 a001 498367759235760/5777 8626757127155277 a001 16944503814015853/196418 8626757127155278 a001 16944503814015855/196418 8626757127155279 a001 8472251907007928/98209 8626757127155281 a001 16944503814015861/196418 8626757127155298 a001 16944503814015895/196418 8626757127155417 a001 8472251907008064/98209 8626757127156230 a001 16944503814017725/196418 8626757127157755 a001 832040*439204^(8/9) 8626757127159884 a001 4052739537881/4870847*439204^(8/9) 8626757127160194 a001 3536736619241/4250681*439204^(8/9) 8626757127160386 a001 3278735159921/3940598*439204^(8/9) 8626757127161199 a001 2504730781961/3010349*439204^(8/9) 8626757127161803 a001 16944503814028671/196418 8626757127162724 a001 3278735159921/930249*439204^(7/9) 8626757127163974 a001 4052739537881/271443*271443^(9/13) 8626757127165835 a001 317811/710647*14662949395604^(6/7) 8626757127166168 a001 10610209857723/3010349*439204^(7/9) 8626757127166562 a001 139583862445/103682*103682^(23/24) 8626757127166772 a001 956722026041/1149851*439204^(8/9) 8626757127171741 a001 4052739537881/1149851*439204^(7/9) 8626757127172981 a001 516002918640/90481*271443^(10/13) 8626757127176393 a001 44361286907507895/514229 8626757127180425 a001 105937/620166*14662949395604^(8/9) 8626757127180425 a001 832040/710647*23725150497407^(13/16) 8626757127180425 a001 832040/710647*505019158607^(13/14) 8626757127181966 a001 116139356908541382/1346269 8626757127181987 a001 591286729879/271443*271443^(11/13) 8626757127182554 a001 311187/101521*312119004989^(10/11) 8626757127182554 a001 311187/101521*3461452808002^(5/6) 8626757127182779 a001 304056783818116251/3524578 8626757127182791 a001 32951280099/710647*7881196^(10/11) 8626757127182804 a001 139583862445/710647*7881196^(9/11) 8626757127182816 a001 591286729879/710647*7881196^(8/11) 8626757127182825 a001 1548008755920/710647*7881196^(2/3) 8626757127182829 a001 2504730781961/710647*7881196^(7/11) 8626757127182842 a001 1515744265389/101521*7881196^(6/11) 8626757127182864 a001 5702887/710647*45537549124^(16/17) 8626757127182864 a001 105937/4250681*14662949395604^(20/21) 8626757127182864 a001 5702887/710647*14662949395604^(16/21) 8626757127182864 a001 5702887/710647*192900153618^(8/9) 8626757127182864 a001 5702887/710647*73681302247^(12/13) 8626757127182897 a001 61233153426600567/709805 8626757127182900 a001 32951280099/710647*20633239^(6/7) 8626757127182901 a001 86267571272/710647*20633239^(4/5) 8626757127182903 a001 365435296162/710647*20633239^(5/7) 8626757127182905 a001 2504730781961/710647*20633239^(3/5) 8626757127182906 a001 4052739537881/710647*20633239^(4/7) 8626757127182910 a001 14930352/710647*10749957122^(23/24) 8626757127182915 a001 2084036199819305862/24157817 8626757127182916 a001 39088169/710647*312119004989^(4/5) 8626757127182916 a001 39088169/710647*23725150497407^(11/16) 8626757127182916 a001 39088169/710647*73681302247^(11/13) 8626757127182916 a001 39088169/710647*10749957122^(11/12) 8626757127182916 a001 39088169/710647*4106118243^(22/23) 8626757127182917 a001 1836311903/710647*141422324^(12/13) 8626757127182917 a001 7778742049/710647*141422324^(11/13) 8626757127182917 a001 32951280099/710647*141422324^(10/13) 8626757127182917 a001 139583862445/710647*141422324^(9/13) 8626757127182917 a001 317811*141422324^(2/3) 8626757127182917 a001 591286729879/710647*141422324^(8/13) 8626757127182917 a001 2504730781961/710647*141422324^(7/13) 8626757127182917 a001 1515744265389/101521*141422324^(6/13) 8626757127182917 a001 14619165/101521*2537720636^(14/15) 8626757127182917 a001 14619165/101521*17393796001^(6/7) 8626757127182917 a001 14619165/101521*45537549124^(14/17) 8626757127182917 a001 14619165/101521*817138163596^(14/19) 8626757127182917 a001 14619165/101521*14662949395604^(2/3) 8626757127182917 a001 14619165/101521*505019158607^(3/4) 8626757127182917 a001 14619165/101521*192900153618^(7/9) 8626757127182917 a001 14619165/101521*10749957122^(7/8) 8626757127182917 a001 14619165/101521*4106118243^(21/23) 8626757127182917 a001 14619165/101521*1568397607^(21/22) 8626757127182917 a001 267914296/710647*2537720636^(8/9) 8626757127182917 a001 267914296/710647*312119004989^(8/11) 8626757127182917 a001 267914296/710647*23725150497407^(5/8) 8626757127182917 a001 267914296/710647*73681302247^(10/13) 8626757127182917 a001 267914296/710647*28143753123^(4/5) 8626757127182917 a001 267914296/710647*10749957122^(5/6) 8626757127182917 a001 267914296/710647*4106118243^(20/23) 8626757127182917 a001 267914296/710647*1568397607^(10/11) 8626757127182917 a001 701408733/710647*817138163596^(2/3) 8626757127182917 a001 701408733/710647*10749957122^(19/24) 8626757127182917 a001 701408733/710647*4106118243^(19/23) 8626757127182917 a001 1836311903/710647*2537720636^(4/5) 8626757127182917 a001 267914296/710647*599074578^(20/21) 8626757127182917 a001 7778742049/710647*2537720636^(11/15) 8626757127182917 a001 32951280099/710647*2537720636^(2/3) 8626757127182917 a001 2971215073/710647*2537720636^(7/9) 8626757127182917 a001 139583862445/710647*2537720636^(3/5) 8626757127182917 a001 365435296162/710647*2537720636^(5/9) 8626757127182917 a001 591286729879/710647*2537720636^(8/15) 8626757127182917 a001 2504730781961/710647*2537720636^(7/15) 8626757127182917 a001 4052739537881/710647*2537720636^(4/9) 8626757127182917 a001 1515744265389/101521*2537720636^(2/5) 8626757127182917 a001 1836311903/710647*45537549124^(12/17) 8626757127182917 a001 1836311903/710647*14662949395604^(4/7) 8626757127182917 a001 1836311903/710647*505019158607^(9/14) 8626757127182917 a001 1836311903/710647*192900153618^(2/3) 8626757127182917 a001 1836311903/710647*73681302247^(9/13) 8626757127182917 a001 701408733/710647*1568397607^(19/22) 8626757127182917 a001 1836311903/710647*10749957122^(3/4) 8626757127182917 a001 1836311903/710647*4106118243^(18/23) 8626757127182917 a001 686789568/101521*45537549124^(2/3) 8626757127182917 a001 686789568/101521*10749957122^(17/24) 8626757127182917 a001 86267571272/710647*17393796001^(4/7) 8626757127182917 a001 2504730781961/710647*17393796001^(3/7) 8626757127182917 a001 12586269025/710647*23725150497407^(1/2) 8626757127182917 a001 12586269025/710647*505019158607^(4/7) 8626757127182917 a001 12586269025/710647*73681302247^(8/13) 8626757127182917 a001 32951280099/710647*45537549124^(10/17) 8626757127182917 a001 139583862445/710647*45537549124^(9/17) 8626757127182917 a001 591286729879/710647*45537549124^(8/17) 8626757127182917 a001 2504730781961/710647*45537549124^(7/17) 8626757127182917 a001 32951280099/710647*312119004989^(6/11) 8626757127182917 a001 32951280099/710647*14662949395604^(10/21) 8626757127182917 a001 1515744265389/101521*45537549124^(6/17) 8626757127182917 a001 32951280099/710647*192900153618^(5/9) 8626757127182917 a001 86267571272/710647*14662949395604^(4/9) 8626757127182917 a001 86267571272/710647*505019158607^(1/2) 8626757127182917 a001 1548008755920/710647*312119004989^(2/5) 8626757127182917 a001 591286729879/710647*14662949395604^(8/21) 8626757127182917 a001 6557470319842/710647*817138163596^(1/3) 8626757127182917 a001 1515744265389/101521*14662949395604^(2/7) 8626757127182917 a001 2504730781961/710647*14662949395604^(1/3) 8626757127182917 a001 4052739537881/710647*505019158607^(5/14) 8626757127182917 a001 365435296162/710647*3461452808002^(5/12) 8626757127182917 a001 139583862445/710647*817138163596^(9/19) 8626757127182917 a001 139583862445/710647*14662949395604^(3/7) 8626757127182917 a001 2504730781961/710647*192900153618^(7/18) 8626757127182917 a001 591286729879/710647*192900153618^(4/9) 8626757127182917 a001 139583862445/710647*192900153618^(1/2) 8626757127182917 a001 53316291173/710647*1322157322203^(1/2) 8626757127182917 a001 4052739537881/710647*73681302247^(5/13) 8626757127182917 a001 86267571272/710647*73681302247^(7/13) 8626757127182917 a001 591286729879/710647*73681302247^(6/13) 8626757127182917 a001 317811*73681302247^(1/2) 8626757127182917 a001 20365011074/710647*9062201101803^(1/2) 8626757127182917 a001 4052739537881/710647*28143753123^(2/5) 8626757127182917 a001 32951280099/710647*28143753123^(3/5) 8626757127182917 a001 365435296162/710647*28143753123^(1/2) 8626757127182917 a001 7778742049/710647*45537549124^(11/17) 8626757127182917 a001 1515744265389/101521*10749957122^(3/8) 8626757127182917 a001 7778742049/710647*312119004989^(3/5) 8626757127182917 a001 7778742049/710647*817138163596^(11/19) 8626757127182917 a001 7778742049/710647*14662949395604^(11/21) 8626757127182917 a001 7778742049/710647*192900153618^(11/18) 8626757127182917 a001 4052739537881/710647*10749957122^(5/12) 8626757127182917 a001 2504730781961/710647*10749957122^(7/16) 8626757127182917 a001 1548008755920/710647*10749957122^(11/24) 8626757127182917 a001 591286729879/710647*10749957122^(1/2) 8626757127182917 a001 12586269025/710647*10749957122^(2/3) 8626757127182917 a001 317811*10749957122^(13/24) 8626757127182917 a001 139583862445/710647*10749957122^(9/16) 8626757127182917 a001 86267571272/710647*10749957122^(7/12) 8626757127182917 a001 32951280099/710647*10749957122^(5/8) 8626757127182917 a001 7778742049/710647*10749957122^(11/16) 8626757127182917 a001 2971215073/710647*17393796001^(5/7) 8626757127182917 a001 2971215073/710647*312119004989^(7/11) 8626757127182917 a001 2971215073/710647*14662949395604^(5/9) 8626757127182917 a001 2971215073/710647*505019158607^(5/8) 8626757127182917 a001 1515744265389/101521*4106118243^(9/23) 8626757127182917 a001 2971215073/710647*28143753123^(7/10) 8626757127182917 a001 4052739537881/710647*4106118243^(10/23) 8626757127182917 a001 1548008755920/710647*4106118243^(11/23) 8626757127182917 a001 956722026041/710647*4106118243^(1/2) 8626757127182917 a001 591286729879/710647*4106118243^(12/23) 8626757127182917 a001 317811*4106118243^(13/23) 8626757127182917 a001 686789568/101521*4106118243^(17/23) 8626757127182917 a001 86267571272/710647*4106118243^(14/23) 8626757127182917 a001 32951280099/710647*4106118243^(15/23) 8626757127182917 a001 12586269025/710647*4106118243^(16/23) 8626757127182917 a001 1515744265389/101521*1568397607^(9/22) 8626757127182917 a001 4052739537881/710647*1568397607^(5/11) 8626757127182917 a001 1548008755920/710647*1568397607^(1/2) 8626757127182917 a001 591286729879/710647*1568397607^(6/11) 8626757127182917 a001 317811*1568397607^(13/22) 8626757127182917 a001 86267571272/710647*1568397607^(7/11) 8626757127182917 a001 1836311903/710647*1568397607^(9/11) 8626757127182917 a001 32951280099/710647*1568397607^(15/22) 8626757127182917 a001 12586269025/710647*1568397607^(8/11) 8626757127182917 a001 686789568/101521*1568397607^(17/22) 8626757127182917 a001 7778742049/710647*1568397607^(3/4) 8626757127182917 a001 433494437/710647*2537720636^(13/15) 8626757127182917 a001 433494437/710647*45537549124^(13/17) 8626757127182917 a001 433494437/710647*14662949395604^(13/21) 8626757127182917 a001 433494437/710647*192900153618^(13/18) 8626757127182917 a001 433494437/710647*73681302247^(3/4) 8626757127182917 a001 433494437/710647*10749957122^(13/16) 8626757127182917 a001 1515744265389/101521*599074578^(3/7) 8626757127182917 a001 4052739537881/710647*599074578^(10/21) 8626757127182917 a001 2504730781961/710647*599074578^(1/2) 8626757127182917 a001 1548008755920/710647*599074578^(11/21) 8626757127182917 a001 591286729879/710647*599074578^(4/7) 8626757127182917 a001 317811*599074578^(13/21) 8626757127182917 a001 139583862445/710647*599074578^(9/14) 8626757127182917 a001 86267571272/710647*599074578^(2/3) 8626757127182917 a001 32951280099/710647*599074578^(5/7) 8626757127182917 a001 701408733/710647*599074578^(19/21) 8626757127182917 a001 12586269025/710647*599074578^(16/21) 8626757127182917 a001 7778742049/710647*599074578^(11/14) 8626757127182917 a001 686789568/101521*599074578^(17/21) 8626757127182917 a001 1836311903/710647*599074578^(6/7) 8626757127182917 a001 2971215073/710647*599074578^(5/6) 8626757127182917 a001 433494437/710647*599074578^(13/14) 8626757127182918 a001 1515744265389/101521*228826127^(9/20) 8626757127182918 a001 4052739537881/710647*228826127^(1/2) 8626757127182918 a001 1548008755920/710647*228826127^(11/20) 8626757127182918 a001 591286729879/710647*228826127^(3/5) 8626757127182918 a001 365435296162/710647*228826127^(5/8) 8626757127182918 a001 317811*228826127^(13/20) 8626757127182918 a001 86267571272/710647*228826127^(7/10) 8626757127182918 a001 32951280099/710647*228826127^(3/4) 8626757127182918 a001 12586269025/710647*228826127^(4/5) 8626757127182918 a001 686789568/101521*228826127^(17/20) 8626757127182918 a001 2971215073/710647*228826127^(7/8) 8626757127182918 a001 1836311903/710647*228826127^(9/10) 8626757127182918 a001 701408733/710647*228826127^(19/20) 8626757127182918 a001 1515744265389/101521*87403803^(9/19) 8626757127182918 a001 6557470319842/710647*87403803^(1/2) 8626757127182918 a001 4052739537881/710647*87403803^(10/19) 8626757127182918 a001 1548008755920/710647*87403803^(11/19) 8626757127182918 a001 591286729879/710647*87403803^(12/19) 8626757127182918 a001 317811*87403803^(13/19) 8626757127182918 a001 86267571272/710647*87403803^(14/19) 8626757127182918 a001 32951280099/710647*87403803^(15/19) 8626757127182918 a001 12586269025/710647*87403803^(16/19) 8626757127182918 a001 686789568/101521*87403803^(17/19) 8626757127182919 a001 1836311903/710647*87403803^(18/19) 8626757127182919 a001 3372041405092804353/39088169 8626757127182920 a001 24157817/710647*45537549124^(15/17) 8626757127182920 a001 24157817/710647*312119004989^(9/11) 8626757127182920 a001 24157817/710647*14662949395604^(5/7) 8626757127182920 a001 24157817/710647*192900153618^(5/6) 8626757127182920 a001 24157817/710647*28143753123^(9/10) 8626757127182920 a001 24157817/710647*10749957122^(15/16) 8626757127182921 a001 1515744265389/101521*33385282^(1/2) 8626757127182922 a001 4052739537881/710647*33385282^(5/9) 8626757127182922 a001 2504730781961/710647*33385282^(7/12) 8626757127182922 a001 1548008755920/710647*33385282^(11/18) 8626757127182923 a001 591286729879/710647*33385282^(2/3) 8626757127182923 a001 317811*33385282^(13/18) 8626757127182923 a001 139583862445/710647*33385282^(3/4) 8626757127182923 a001 86267571272/710647*33385282^(7/9) 8626757127182924 a001 32951280099/710647*33385282^(5/6) 8626757127182924 a001 12586269025/710647*33385282^(8/9) 8626757127182925 a001 7778742049/710647*33385282^(11/12) 8626757127182925 a001 686789568/101521*33385282^(17/18) 8626757127182925 a001 429335068424499497/4976784 8626757127182946 a001 1515744265389/101521*12752043^(9/17) 8626757127182949 a001 4052739537881/710647*12752043^(10/17) 8626757127182952 a001 1548008755920/710647*12752043^(11/17) 8626757127182955 a001 591286729879/710647*12752043^(12/17) 8626757127182958 a001 317811*12752043^(13/17) 8626757127182961 a001 86267571272/710647*12752043^(14/17) 8626757127182964 a001 32951280099/710647*12752043^(15/17) 8626757127182967 a001 12586269025/710647*12752043^(16/17) 8626757127182971 a001 491974210727691120/5702887 8626757127183056 a001 3524578/710647*14662949395604^(7/9) 8626757127183056 a001 3524578/710647*505019158607^(7/8) 8626757127183122 a001 1515744265389/101521*4870847^(9/16) 8626757127183145 a001 4052739537881/710647*4870847^(5/8) 8626757127183167 a001 1548008755920/710647*4870847^(11/16) 8626757127183190 a001 591286729879/710647*4870847^(3/4) 8626757127183213 a001 317811*4870847^(13/16) 8626757127183236 a001 86267571272/710647*4870847^(7/8) 8626757127183258 a001 32951280099/710647*4870847^(15/16) 8626757127183281 a001 62639142303191623/726103 8626757127183869 a001 1346269/710647*817138163596^(17/19) 8626757127183869 a001 1346269/710647*14662949395604^(17/21) 8626757127183869 a001 1346269/710647*192900153618^(17/18) 8626757127184413 a001 1515744265389/101521*1860498^(3/5) 8626757127184579 a001 4052739537881/710647*1860498^(2/3) 8626757127184662 a001 2504730781961/710647*1860498^(7/10) 8626757127184745 a001 1548008755920/710647*1860498^(11/15) 8626757127184911 a001 591286729879/710647*1860498^(4/5) 8626757127184994 a001 365435296162/710647*1860498^(5/6) 8626757127185077 a001 317811*1860498^(13/15) 8626757127185160 a001 139583862445/710647*1860498^(9/10) 8626757127185244 a001 86267571272/710647*1860498^(14/15) 8626757127185410 a001 71778070001033487/832040 8626757127189442 a001 317811/1149851*3461452808002^(11/12) 8626757127190983 a001 44361286907582920/514229 8626757127190993 a001 75283811239/90481*271443^(12/13) 8626757127193111 a001 44361286907593866/514229 8626757127193422 a001 44361286907595463/514229 8626757127193467 a001 44361286907595696/514229 8626757127193474 a001 44361286907595730/514229 8626757127193475 a001 44361286907595735/514229 8626757127193475 a001 44361286907595736/514229 8626757127193475 a001 44361286907595738/514229 8626757127193478 a001 44361286907595751/514229 8626757127193495 a001 44361286907595840/514229 8626757127193614 a001 44361286907596450/514229 8626757127193899 a001 1515744265389/101521*710647^(9/14) 8626757127194427 a001 44361286907600631/514229 8626757127195015 a001 416020/930249*14662949395604^(6/7) 8626757127195119 a001 4052739537881/710647*710647^(5/7) 8626757127195729 a001 2504730781961/710647*710647^(3/4) 8626757127196339 a001 1548008755920/710647*710647^(11/14) 8626757127196555 a001 116139356908737800/1346269 8626757127197144 a001 726103/620166*23725150497407^(13/16) 8626757127197144 a001 726103/620166*505019158607^(13/14) 8626757127197368 a001 152028391909315240/1762289 8626757127197381 a001 43133785636/930249*7881196^(10/11) 8626757127197394 a001 182717648081/930249*7881196^(9/11) 8626757127197406 a001 832040*7881196^(8/11) 8626757127197415 a001 4052739537881/1860498*7881196^(2/3) 8626757127197419 a001 3278735159921/930249*7881196^(7/11) 8626757127197454 a001 5702887/1860498*312119004989^(10/11) 8626757127197454 a001 5702887/1860498*3461452808002^(5/6) 8626757127197487 a001 159206198909430728/1845493 8626757127197490 a001 43133785636/930249*20633239^(6/7) 8626757127197491 a001 75283811239/620166*20633239^(4/5) 8626757127197493 a001 956722026041/1860498*20633239^(5/7) 8626757127197495 a001 3278735159921/930249*20633239^(3/5) 8626757127197496 a001 3536736619241/620166*20633239^(4/7) 8626757127197500 a001 829464/103361*45537549124^(16/17) 8626757127197500 a001 416020/16692641*14662949395604^(20/21) 8626757127197500 a001 829464/103361*14662949395604^(16/21) 8626757127197500 a001 829464/103361*192900153618^(8/9) 8626757127197500 a001 829464/103361*73681302247^(12/13) 8626757127197504 a001 2084036199822830440/24157817 8626757127197506 a001 39088169/1860498*10749957122^(23/24) 8626757127197507 a001 2728038802460668840/31622993 8626757127197507 a001 267084832/103361*141422324^(12/13) 8626757127197507 a001 10182505537/930249*141422324^(11/13) 8626757127197507 a001 43133785636/930249*141422324^(10/13) 8626757127197507 a001 182717648081/930249*141422324^(9/13) 8626757127197507 a001 591286729879/1860498*141422324^(2/3) 8626757127197507 a001 832040*141422324^(8/13) 8626757127197507 a001 3278735159921/930249*141422324^(7/13) 8626757127197507 a001 831985/15126*312119004989^(4/5) 8626757127197507 a001 831985/15126*23725150497407^(11/16) 8626757127197507 a001 831985/15126*73681302247^(11/13) 8626757127197507 a001 831985/15126*10749957122^(11/12) 8626757127197507 a001 831985/15126*4106118243^(22/23) 8626757127197507 a001 133957148/930249*2537720636^(14/15) 8626757127197507 a001 133957148/930249*17393796001^(6/7) 8626757127197507 a001 133957148/930249*45537549124^(14/17) 8626757127197507 a001 133957148/930249*817138163596^(14/19) 8626757127197507 a001 133957148/930249*14662949395604^(2/3) 8626757127197507 a001 133957148/930249*505019158607^(3/4) 8626757127197507 a001 133957148/930249*192900153618^(7/9) 8626757127197507 a001 133957148/930249*10749957122^(7/8) 8626757127197507 a001 133957148/930249*4106118243^(21/23) 8626757127197507 a001 133957148/930249*1568397607^(21/22) 8626757127197507 a001 233802911/620166*2537720636^(8/9) 8626757127197507 a001 233802911/620166*312119004989^(8/11) 8626757127197507 a001 233802911/620166*23725150497407^(5/8) 8626757127197507 a001 233802911/620166*73681302247^(10/13) 8626757127197507 a001 233802911/620166*28143753123^(4/5) 8626757127197507 a001 233802911/620166*10749957122^(5/6) 8626757127197507 a001 233802911/620166*4106118243^(20/23) 8626757127197507 a001 267084832/103361*2537720636^(4/5) 8626757127197507 a001 7778742049/1860498*2537720636^(7/9) 8626757127197507 a001 10182505537/930249*2537720636^(11/15) 8626757127197507 a001 43133785636/930249*2537720636^(2/3) 8626757127197507 a001 182717648081/930249*2537720636^(3/5) 8626757127197507 a001 956722026041/1860498*2537720636^(5/9) 8626757127197507 a001 832040*2537720636^(8/15) 8626757127197507 a001 3278735159921/930249*2537720636^(7/15) 8626757127197507 a001 3536736619241/620166*2537720636^(4/9) 8626757127197507 a001 1836311903/1860498*817138163596^(2/3) 8626757127197507 a001 1836311903/1860498*10749957122^(19/24) 8626757127197507 a001 233802911/620166*1568397607^(10/11) 8626757127197507 a001 1836311903/1860498*4106118243^(19/23) 8626757127197507 a001 267084832/103361*45537549124^(12/17) 8626757127197507 a001 267084832/103361*14662949395604^(4/7) 8626757127197507 a001 267084832/103361*505019158607^(9/14) 8626757127197507 a001 267084832/103361*192900153618^(2/3) 8626757127197507 a001 267084832/103361*73681302247^(9/13) 8626757127197507 a001 267084832/103361*10749957122^(3/4) 8626757127197507 a001 75283811239/620166*17393796001^(4/7) 8626757127197507 a001 12586269025/1860498*45537549124^(2/3) 8626757127197507 a001 3278735159921/930249*17393796001^(3/7) 8626757127197507 a001 43133785636/930249*45537549124^(10/17) 8626757127197507 a001 182717648081/930249*45537549124^(9/17) 8626757127197507 a001 832040*45537549124^(8/17) 8626757127197507 a001 3278735159921/930249*45537549124^(7/17) 8626757127197507 a001 10983760033/620166*23725150497407^(1/2) 8626757127197507 a001 10983760033/620166*505019158607^(4/7) 8626757127197507 a001 10983760033/620166*73681302247^(8/13) 8626757127197507 a001 43133785636/930249*312119004989^(6/11) 8626757127197507 a001 43133785636/930249*14662949395604^(10/21) 8626757127197507 a001 43133785636/930249*192900153618^(5/9) 8626757127197507 a001 4052739537881/1860498*312119004989^(2/5) 8626757127197507 a001 75283811239/620166*505019158607^(1/2) 8626757127197507 a001 3536736619241/620166*23725150497407^(5/16) 8626757127197507 a001 182717648081/930249*817138163596^(9/19) 8626757127197507 a001 3536736619241/620166*505019158607^(5/14) 8626757127197507 a001 182717648081/930249*14662949395604^(3/7) 8626757127197507 a001 139583862445/1860498*1322157322203^(1/2) 8626757127197507 a001 832040*192900153618^(4/9) 8626757127197507 a001 3536736619241/620166*73681302247^(5/13) 8626757127197507 a001 832040*73681302247^(6/13) 8626757127197507 a001 591286729879/1860498*73681302247^(1/2) 8626757127197507 a001 75283811239/620166*73681302247^(7/13) 8626757127197507 a001 10182505537/930249*45537549124^(11/17) 8626757127197507 a001 10182505537/930249*312119004989^(3/5) 8626757127197507 a001 10182505537/930249*817138163596^(11/19) 8626757127197507 a001 10182505537/930249*14662949395604^(11/21) 8626757127197507 a001 10182505537/930249*192900153618^(11/18) 8626757127197507 a001 3536736619241/620166*28143753123^(2/5) 8626757127197507 a001 956722026041/1860498*28143753123^(1/2) 8626757127197507 a001 43133785636/930249*28143753123^(3/5) 8626757127197507 a001 7778742049/1860498*17393796001^(5/7) 8626757127197507 a001 7778742049/1860498*312119004989^(7/11) 8626757127197507 a001 7778742049/1860498*14662949395604^(5/9) 8626757127197507 a001 7778742049/1860498*505019158607^(5/8) 8626757127197507 a001 3536736619241/620166*10749957122^(5/12) 8626757127197507 a001 3278735159921/930249*10749957122^(7/16) 8626757127197507 a001 4052739537881/1860498*10749957122^(11/24) 8626757127197507 a001 7778742049/1860498*28143753123^(7/10) 8626757127197507 a001 832040*10749957122^(1/2) 8626757127197507 a001 591286729879/1860498*10749957122^(13/24) 8626757127197507 a001 12586269025/1860498*10749957122^(17/24) 8626757127197507 a001 182717648081/930249*10749957122^(9/16) 8626757127197507 a001 75283811239/620166*10749957122^(7/12) 8626757127197507 a001 43133785636/930249*10749957122^(5/8) 8626757127197507 a001 10983760033/620166*10749957122^(2/3) 8626757127197507 a001 10182505537/930249*10749957122^(11/16) 8626757127197507 a001 567451585/930249*2537720636^(13/15) 8626757127197507 a001 3536736619241/620166*4106118243^(10/23) 8626757127197507 a001 4052739537881/1860498*4106118243^(11/23) 8626757127197507 a001 2504730781961/1860498*4106118243^(1/2) 8626757127197507 a001 832040*4106118243^(12/23) 8626757127197507 a001 591286729879/1860498*4106118243^(13/23) 8626757127197507 a001 75283811239/620166*4106118243^(14/23) 8626757127197507 a001 267084832/103361*4106118243^(18/23) 8626757127197507 a001 43133785636/930249*4106118243^(15/23) 8626757127197507 a001 10983760033/620166*4106118243^(16/23) 8626757127197507 a001 12586269025/1860498*4106118243^(17/23) 8626757127197507 a001 567451585/930249*45537549124^(13/17) 8626757127197507 a001 567451585/930249*14662949395604^(13/21) 8626757127197507 a001 567451585/930249*192900153618^(13/18) 8626757127197507 a001 567451585/930249*73681302247^(3/4) 8626757127197507 a001 567451585/930249*10749957122^(13/16) 8626757127197507 a001 3536736619241/620166*1568397607^(5/11) 8626757127197507 a001 4052739537881/1860498*1568397607^(1/2) 8626757127197507 a001 832040*1568397607^(6/11) 8626757127197507 a001 591286729879/1860498*1568397607^(13/22) 8626757127197507 a001 75283811239/620166*1568397607^(7/11) 8626757127197507 a001 43133785636/930249*1568397607^(15/22) 8626757127197507 a001 1836311903/1860498*1568397607^(19/22) 8626757127197507 a001 10983760033/620166*1568397607^(8/11) 8626757127197507 a001 10182505537/930249*1568397607^(3/4) 8626757127197507 a001 12586269025/1860498*1568397607^(17/22) 8626757127197507 a001 267084832/103361*1568397607^(9/11) 8626757127197507 a001 3536736619241/620166*599074578^(10/21) 8626757127197507 a001 3278735159921/930249*599074578^(1/2) 8626757127197507 a001 4052739537881/1860498*599074578^(11/21) 8626757127197507 a001 832040*599074578^(4/7) 8626757127197507 a001 591286729879/1860498*599074578^(13/21) 8626757127197507 a001 182717648081/930249*599074578^(9/14) 8626757127197507 a001 75283811239/620166*599074578^(2/3) 8626757127197507 a001 43133785636/930249*599074578^(5/7) 8626757127197507 a001 10983760033/620166*599074578^(16/21) 8626757127197507 a001 10182505537/930249*599074578^(11/14) 8626757127197507 a001 233802911/620166*599074578^(20/21) 8626757127197507 a001 12586269025/1860498*599074578^(17/21) 8626757127197507 a001 7778742049/1860498*599074578^(5/6) 8626757127197507 a001 267084832/103361*599074578^(6/7) 8626757127197507 a001 1836311903/1860498*599074578^(19/21) 8626757127197507 a001 567451585/930249*599074578^(13/14) 8626757127197507 a001 3536736619241/620166*228826127^(1/2) 8626757127197507 a001 4052739537881/1860498*228826127^(11/20) 8626757127197507 a001 832040*228826127^(3/5) 8626757127197507 a001 956722026041/1860498*228826127^(5/8) 8626757127197507 a001 591286729879/1860498*228826127^(13/20) 8626757127197507 a001 75283811239/620166*228826127^(7/10) 8626757127197507 a001 43133785636/930249*228826127^(3/4) 8626757127197507 a001 10983760033/620166*228826127^(4/5) 8626757127197507 a001 12586269025/1860498*228826127^(17/20) 8626757127197507 a001 7778742049/1860498*228826127^(7/8) 8626757127197507 a001 267084832/103361*228826127^(9/10) 8626757127197507 a001 1836311903/1860498*228826127^(19/20) 8626757127197507 a001 7643393082268264/88601 8626757127197508 a001 31622993/930249*45537549124^(15/17) 8626757127197508 a001 31622993/930249*312119004989^(9/11) 8626757127197508 a001 31622993/930249*14662949395604^(5/7) 8626757127197508 a001 31622993/930249*192900153618^(5/6) 8626757127197508 a001 31622993/930249*28143753123^(9/10) 8626757127197508 a001 31622993/930249*10749957122^(15/16) 8626757127197508 a001 3536736619241/620166*87403803^(10/19) 8626757127197508 a001 4052739537881/1860498*87403803^(11/19) 8626757127197508 a001 832040*87403803^(12/19) 8626757127197508 a001 591286729879/1860498*87403803^(13/19) 8626757127197508 a001 75283811239/620166*87403803^(14/19) 8626757127197508 a001 43133785636/930249*87403803^(15/19) 8626757127197508 a001 10983760033/620166*87403803^(16/19) 8626757127197508 a001 12586269025/1860498*87403803^(17/19) 8626757127197508 a001 267084832/103361*87403803^(18/19) 8626757127197508 a001 3372041405098507240/39088169 8626757127197512 a001 3536736619241/620166*33385282^(5/9) 8626757127197512 a001 3278735159921/930249*33385282^(7/12) 8626757127197512 a001 4052739537881/1860498*33385282^(11/18) 8626757127197512 a001 832040*33385282^(2/3) 8626757127197513 a001 591286729879/1860498*33385282^(13/18) 8626757127197513 a001 182717648081/930249*33385282^(3/4) 8626757127197513 a001 75283811239/620166*33385282^(7/9) 8626757127197514 a001 43133785636/930249*33385282^(5/6) 8626757127197514 a001 10983760033/620166*33385282^(8/9) 8626757127197514 a001 10182505537/930249*33385282^(11/12) 8626757127197515 a001 12586269025/1860498*33385282^(17/18) 8626757127197515 a001 8944480592192200/103683 8626757127197528 a001 9227465/1860498*14662949395604^(7/9) 8626757127197528 a001 9227465/1860498*505019158607^(7/8) 8626757127197538 a001 3536736619241/620166*12752043^(10/17) 8626757127197542 a001 4052739537881/1860498*12752043^(11/17) 8626757127197545 a001 832040*12752043^(12/17) 8626757127197548 a001 591286729879/1860498*12752043^(13/17) 8626757127197551 a001 75283811239/620166*12752043^(14/17) 8626757127197554 a001 43133785636/930249*12752043^(15/17) 8626757127197557 a001 10983760033/620166*12752043^(16/17) 8626757127197559 a001 591286729879/710647*710647^(6/7) 8626757127197560 a001 491974210728523160/5702887 8626757127197646 a001 1762289/930249*817138163596^(17/19) 8626757127197646 a001 208010/1970299*14662949395604^(19/21) 8626757127197646 a001 1762289/930249*14662949395604^(17/21) 8626757127197646 a001 1762289/930249*192900153618^(17/18) 8626757127197735 a001 3536736619241/620166*4870847^(5/8) 8626757127197757 a001 4052739537881/1860498*4870847^(11/16) 8626757127197780 a001 832040*4870847^(3/4) 8626757127197803 a001 591286729879/1860498*4870847^(13/16) 8626757127197825 a001 75283811239/620166*4870847^(7/8) 8626757127197848 a001 43133785636/930249*4870847^(15/16) 8626757127197871 a001 8948448900471080/103729 8626757127198459 a001 832040/3010349*3461452808002^(11/12) 8626757127198684 a001 116139356908766457/1346269 8626757127198779 a001 317811*710647^(13/14) 8626757127198995 a001 116139356908770638/1346269 8626757127199040 a001 116139356908771248/1346269 8626757127199046 a001 116139356908771337/1346269 8626757127199047 a001 116139356908771350/1346269 8626757127199048 a001 116139356908771352/1346269 8626757127199048 a001 116139356908771353/1346269 8626757127199048 a001 116139356908771358/1346269 8626757127199051 a001 116139356908771392/1346269 8626757127199068 a001 116139356908771625/1346269 8626757127199169 a001 3536736619241/620166*1860498^(2/3) 8626757127199186 a001 116139356908773222/1346269 8626757127199252 a001 3278735159921/930249*1860498^(7/10) 8626757127199272 a001 2178309/4870847*14662949395604^(6/7) 8626757127199335 a001 4052739537881/1860498*1860498^(11/15) 8626757127199497 a001 3416368357513545/39602 8626757127199501 a001 832040*1860498^(4/5) 8626757127199510 a001 225851433717/4870847*7881196^(10/11) 8626757127199522 a001 956722026041/4870847*7881196^(9/11) 8626757127199535 a001 4052739537881/4870847*7881196^(8/11) 8626757127199543 a001 2178309*7881196^(2/3) 8626757127199583 a001 726103/4250681*14662949395604^(8/9) 8626757127199583 a001 5702887/4870847*23725150497407^(13/16) 8626757127199583 a001 5702887/4870847*505019158607^(13/14) 8626757127199584 a001 956722026041/1860498*1860498^(5/6) 8626757127199616 a001 796030994547350058/9227465 8626757127199619 a001 225851433717/4870847*20633239^(6/7) 8626757127199620 a001 591286729879/4870847*20633239^(4/5) 8626757127199621 a001 2504730781961/4870847*20633239^(5/7) 8626757127199628 a001 14930352/4870847*312119004989^(10/11) 8626757127199628 a001 14930352/4870847*3461452808002^(5/6) 8626757127199633 a001 2084036199823344669/24157817 8626757127199635 a001 39088169/4870847*45537549124^(16/17) 8626757127199635 a001 726103/29134601*14662949395604^(20/21) 8626757127199635 a001 39088169/4870847*14662949395604^(16/21) 8626757127199635 a001 39088169/4870847*192900153618^(8/9) 8626757127199635 a001 39088169/4870847*73681302247^(12/13) 8626757127199635 a001 5456077604922683949/63245986 8626757127199635 a001 12586269025/4870847*141422324^(12/13) 8626757127199636 a001 53316291173/4870847*141422324^(11/13) 8626757127199636 a001 225851433717/4870847*141422324^(10/13) 8626757127199636 a001 956722026041/4870847*141422324^(9/13) 8626757127199636 a001 1548008755920/4870847*141422324^(2/3) 8626757127199636 a001 4052739537881/4870847*141422324^(8/13) 8626757127199636 a001 102334155/4870847*10749957122^(23/24) 8626757127199636 a001 14284196614944707178/165580141 8626757127199636 a001 267914296/4870847*312119004989^(4/5) 8626757127199636 a001 267914296/4870847*23725150497407^(11/16) 8626757127199636 a001 267914296/4870847*73681302247^(11/13) 8626757127199636 a001 267914296/4870847*10749957122^(11/12) 8626757127199636 a001 267914296/4870847*4106118243^(22/23) 8626757127199636 a001 701408733/4870847*2537720636^(14/15) 8626757127199636 a001 701408733/4870847*17393796001^(6/7) 8626757127199636 a001 701408733/4870847*45537549124^(14/17) 8626757127199636 a001 701408733/4870847*817138163596^(14/19) 8626757127199636 a001 701408733/4870847*14662949395604^(2/3) 8626757127199636 a001 701408733/4870847*505019158607^(3/4) 8626757127199636 a001 701408733/4870847*192900153618^(7/9) 8626757127199636 a001 701408733/4870847*10749957122^(7/8) 8626757127199636 a001 701408733/4870847*4106118243^(21/23) 8626757127199636 a001 1836311903/4870847*2537720636^(8/9) 8626757127199636 a001 12586269025/4870847*2537720636^(4/5) 8626757127199636 a001 20365011074/4870847*2537720636^(7/9) 8626757127199636 a001 53316291173/4870847*2537720636^(11/15) 8626757127199636 a001 2971215073/4870847*2537720636^(13/15) 8626757127199636 a001 225851433717/4870847*2537720636^(2/3) 8626757127199636 a001 956722026041/4870847*2537720636^(3/5) 8626757127199636 a001 2504730781961/4870847*2537720636^(5/9) 8626757127199636 a001 4052739537881/4870847*2537720636^(8/15) 8626757127199636 a001 1836311903/4870847*312119004989^(8/11) 8626757127199636 a001 1836311903/4870847*23725150497407^(5/8) 8626757127199636 a001 1836311903/4870847*73681302247^(10/13) 8626757127199636 a001 1836311903/4870847*28143753123^(4/5) 8626757127199636 a001 1836311903/4870847*10749957122^(5/6) 8626757127199636 a001 701408733/4870847*1568397607^(21/22) 8626757127199636 a001 4807526976/4870847*817138163596^(2/3) 8626757127199636 a001 1836311903/4870847*4106118243^(20/23) 8626757127199636 a001 591286729879/4870847*17393796001^(4/7) 8626757127199636 a001 20365011074/4870847*17393796001^(5/7) 8626757127199636 a001 4807526976/4870847*10749957122^(19/24) 8626757127199636 a001 12586269025/4870847*45537549124^(12/17) 8626757127199636 a001 12586269025/4870847*14662949395604^(4/7) 8626757127199636 a001 12586269025/4870847*505019158607^(9/14) 8626757127199636 a001 12586269025/4870847*192900153618^(2/3) 8626757127199636 a001 12586269025/4870847*73681302247^(9/13) 8626757127199636 a001 32951280099/4870847*45537549124^(2/3) 8626757127199636 a001 225851433717/4870847*45537549124^(10/17) 8626757127199636 a001 956722026041/4870847*45537549124^(9/17) 8626757127199636 a001 53316291173/4870847*45537549124^(11/17) 8626757127199636 a001 4052739537881/4870847*45537549124^(8/17) 8626757127199636 a001 86267571272/4870847*23725150497407^(1/2) 8626757127199636 a001 86267571272/4870847*505019158607^(4/7) 8626757127199636 a001 225851433717/4870847*312119004989^(6/11) 8626757127199636 a001 2504730781961/4870847*312119004989^(5/11) 8626757127199636 a001 2178309*312119004989^(2/5) 8626757127199636 a001 225851433717/4870847*14662949395604^(10/21) 8626757127199636 a001 4052739537881/4870847*14662949395604^(8/21) 8626757127199636 a001 2504730781961/4870847*3461452808002^(5/12) 8626757127199636 a001 956722026041/4870847*14662949395604^(3/7) 8626757127199636 a001 591286729879/4870847*505019158607^(1/2) 8626757127199636 a001 365435296162/4870847*1322157322203^(1/2) 8626757127199636 a001 139583862445/4870847*9062201101803^(1/2) 8626757127199636 a001 225851433717/4870847*192900153618^(5/9) 8626757127199636 a001 4052739537881/4870847*192900153618^(4/9) 8626757127199636 a001 956722026041/4870847*192900153618^(1/2) 8626757127199636 a001 53316291173/4870847*312119004989^(3/5) 8626757127199636 a001 53316291173/4870847*817138163596^(11/19) 8626757127199636 a001 53316291173/4870847*14662949395604^(11/21) 8626757127199636 a001 4052739537881/4870847*73681302247^(6/13) 8626757127199636 a001 86267571272/4870847*73681302247^(8/13) 8626757127199636 a001 53316291173/4870847*192900153618^(11/18) 8626757127199636 a001 1548008755920/4870847*73681302247^(1/2) 8626757127199636 a001 591286729879/4870847*73681302247^(7/13) 8626757127199636 a001 20365011074/4870847*312119004989^(7/11) 8626757127199636 a001 20365011074/4870847*14662949395604^(5/9) 8626757127199636 a001 20365011074/4870847*505019158607^(5/8) 8626757127199636 a001 2504730781961/4870847*28143753123^(1/2) 8626757127199636 a001 225851433717/4870847*28143753123^(3/5) 8626757127199636 a001 20365011074/4870847*28143753123^(7/10) 8626757127199636 a001 2178309*10749957122^(11/24) 8626757127199636 a001 4052739537881/4870847*10749957122^(1/2) 8626757127199636 a001 1548008755920/4870847*10749957122^(13/24) 8626757127199636 a001 956722026041/4870847*10749957122^(9/16) 8626757127199636 a001 591286729879/4870847*10749957122^(7/12) 8626757127199636 a001 12586269025/4870847*10749957122^(3/4) 8626757127199636 a001 225851433717/4870847*10749957122^(5/8) 8626757127199636 a001 86267571272/4870847*10749957122^(2/3) 8626757127199636 a001 32951280099/4870847*10749957122^(17/24) 8626757127199636 a001 53316291173/4870847*10749957122^(11/16) 8626757127199636 a001 2971215073/4870847*45537549124^(13/17) 8626757127199636 a001 2971215073/4870847*14662949395604^(13/21) 8626757127199636 a001 2971215073/4870847*192900153618^(13/18) 8626757127199636 a001 2971215073/4870847*73681302247^(3/4) 8626757127199636 a001 2178309*4106118243^(11/23) 8626757127199636 a001 6557470319842/4870847*4106118243^(1/2) 8626757127199636 a001 2971215073/4870847*10749957122^(13/16) 8626757127199636 a001 4052739537881/4870847*4106118243^(12/23) 8626757127199636 a001 1548008755920/4870847*4106118243^(13/23) 8626757127199636 a001 591286729879/4870847*4106118243^(14/23) 8626757127199636 a001 225851433717/4870847*4106118243^(15/23) 8626757127199636 a001 4807526976/4870847*4106118243^(19/23) 8626757127199636 a001 86267571272/4870847*4106118243^(16/23) 8626757127199636 a001 32951280099/4870847*4106118243^(17/23) 8626757127199636 a001 12586269025/4870847*4106118243^(18/23) 8626757127199636 a001 2178309*1568397607^(1/2) 8626757127199636 a001 4052739537881/4870847*1568397607^(6/11) 8626757127199636 a001 1548008755920/4870847*1568397607^(13/22) 8626757127199636 a001 591286729879/4870847*1568397607^(7/11) 8626757127199636 a001 225851433717/4870847*1568397607^(15/22) 8626757127199636 a001 86267571272/4870847*1568397607^(8/11) 8626757127199636 a001 53316291173/4870847*1568397607^(3/4) 8626757127199636 a001 1836311903/4870847*1568397607^(10/11) 8626757127199636 a001 32951280099/4870847*1568397607^(17/22) 8626757127199636 a001 12586269025/4870847*1568397607^(9/11) 8626757127199636 a001 4807526976/4870847*1568397607^(19/22) 8626757127199636 a001 2178309*599074578^(11/21) 8626757127199636 a001 4052739537881/4870847*599074578^(4/7) 8626757127199636 a001 1548008755920/4870847*599074578^(13/21) 8626757127199636 a001 956722026041/4870847*599074578^(9/14) 8626757127199636 a001 591286729879/4870847*599074578^(2/3) 8626757127199636 a001 225851433717/4870847*599074578^(5/7) 8626757127199636 a001 86267571272/4870847*599074578^(16/21) 8626757127199636 a001 53316291173/4870847*599074578^(11/14) 8626757127199636 a001 32951280099/4870847*599074578^(17/21) 8626757127199636 a001 20365011074/4870847*599074578^(5/6) 8626757127199636 a001 12586269025/4870847*599074578^(6/7) 8626757127199636 a001 4807526976/4870847*599074578^(19/21) 8626757127199636 a001 1836311903/4870847*599074578^(20/21) 8626757127199636 a001 2971215073/4870847*599074578^(13/14) 8626757127199636 a001 23112315624966730407/267914296 8626757127199636 a001 165580141/4870847*45537549124^(15/17) 8626757127199636 a001 165580141/4870847*312119004989^(9/11) 8626757127199636 a001 165580141/4870847*14662949395604^(5/7) 8626757127199636 a001 165580141/4870847*192900153618^(5/6) 8626757127199636 a001 165580141/4870847*28143753123^(9/10) 8626757127199636 a001 165580141/4870847*10749957122^(15/16) 8626757127199636 a001 2178309*228826127^(11/20) 8626757127199636 a001 4052739537881/4870847*228826127^(3/5) 8626757127199636 a001 2504730781961/4870847*228826127^(5/8) 8626757127199636 a001 1548008755920/4870847*228826127^(13/20) 8626757127199636 a001 591286729879/4870847*228826127^(7/10) 8626757127199636 a001 225851433717/4870847*228826127^(3/4) 8626757127199636 a001 86267571272/4870847*228826127^(4/5) 8626757127199636 a001 32951280099/4870847*228826127^(17/20) 8626757127199636 a001 20365011074/4870847*228826127^(7/8) 8626757127199636 a001 12586269025/4870847*228826127^(9/10) 8626757127199636 a001 4807526976/4870847*228826127^(19/20) 8626757127199636 a001 420386619524858249/4873055 8626757127199637 a001 2178309*87403803^(11/19) 8626757127199637 a001 4052739537881/4870847*87403803^(12/19) 8626757127199637 a001 1548008755920/4870847*87403803^(13/19) 8626757127199637 a001 591286729879/4870847*87403803^(14/19) 8626757127199637 a001 225851433717/4870847*87403803^(15/19) 8626757127199637 a001 86267571272/4870847*87403803^(16/19) 8626757127199637 a001 32951280099/4870847*87403803^(17/19) 8626757127199637 a001 12586269025/4870847*87403803^(18/19) 8626757127199637 a001 3372041405099339280/39088169 8626757127199639 a001 24157817/4870847*14662949395604^(7/9) 8626757127199639 a001 24157817/4870847*505019158607^(7/8) 8626757127199641 a001 2178309*33385282^(11/18) 8626757127199641 a001 4052739537881/4870847*33385282^(2/3) 8626757127199641 a001 1548008755920/4870847*33385282^(13/18) 8626757127199642 a001 956722026041/4870847*33385282^(3/4) 8626757127199642 a001 591286729879/4870847*33385282^(7/9) 8626757127199642 a001 225851433717/4870847*33385282^(5/6) 8626757127199643 a001 86267571272/4870847*33385282^(8/9) 8626757127199643 a001 53316291173/4870847*33385282^(11/12) 8626757127199643 a001 32951280099/4870847*33385282^(17/18) 8626757127199644 a001 429335068425331537/4976784 8626757127199656 a001 9227465/4870847*817138163596^(17/19) 8626757127199656 a001 2178309/20633239*14662949395604^(19/21) 8626757127199656 a001 9227465/4870847*14662949395604^(17/21) 8626757127199656 a001 9227465/4870847*192900153618^(17/18) 8626757127199667 a001 591286729879/1860498*1860498^(13/15) 8626757127199670 a001 2178309*12752043^(11/17) 8626757127199673 a001 4052739537881/4870847*12752043^(12/17) 8626757127199676 a001 1548008755920/4870847*12752043^(13/17) 8626757127199680 a001 591286729879/4870847*12752043^(14/17) 8626757127199683 a001 225851433717/4870847*12752043^(15/17) 8626757127199686 a001 86267571272/4870847*12752043^(16/17) 8626757127199689 a001 491974210728644553/5702887 8626757127199750 a001 182717648081/930249*1860498^(9/10) 8626757127199775 a001 2178309/7881196*3461452808002^(11/12) 8626757127199808 a001 304056783818716451/3524578 8626757127199820 a001 591286729879/12752043*7881196^(10/11) 8626757127199833 a001 2504730781961/12752043*7881196^(9/11) 8626757127199833 a001 75283811239/620166*1860498^(14/15) 8626757127199845 a001 3536736619241/4250681*7881196^(8/11) 8626757127199853 a001 152028391909359024/1762289 8626757127199859 a001 304056783818718281/3524578 8626757127199860 a001 304056783818718315/3524578 8626757127199861 a001 152028391909359160/1762289 8626757127199861 a001 3416368357513689/39602 8626757127199861 a001 304056783818718323/3524578 8626757127199861 a001 152028391909359168/1762289 8626757127199864 a001 304056783818718425/3524578 8626757127199865 a001 774004377960/16692641*7881196^(10/11) 8626757127199872 a001 4052739537881/87403803*7881196^(10/11) 8626757127199873 a001 225749145909/4868641*7881196^(10/11) 8626757127199874 a001 3278735159921/70711162*7881196^(10/11) 8626757127199876 a001 2504730781961/54018521*7881196^(10/11) 8626757127199878 a001 3278735159921/16692641*7881196^(9/11) 8626757127199881 a001 304056783818719035/3524578 8626757127199886 a001 2178309*4870847^(11/16) 8626757127199889 a001 10610209857723/54018521*7881196^(9/11) 8626757127199893 a001 5702887/12752043*14662949395604^(6/7) 8626757127199894 a001 956722026041/20633239*7881196^(10/11) 8626757127199906 a001 4052739537881/20633239*7881196^(9/11) 8626757127199909 a001 4052739537881/4870847*4870847^(3/4) 8626757127199926 a001 159206198909475743/1845493 8626757127199929 a001 591286729879/12752043*20633239^(6/7) 8626757127199930 a001 516002918640/4250681*20633239^(4/5) 8626757127199931 a001 1548008755920/4870847*4870847^(13/16) 8626757127199932 a001 6557470319842/12752043*20633239^(5/7) 8626757127199939 a001 5702887/33385282*14662949395604^(8/9) 8626757127199939 a001 4976784/4250681*23725150497407^(13/16) 8626757127199939 a001 4976784/4250681*505019158607^(13/14) 8626757127199943 a001 2084036199823419694/24157817 8626757127199945 a001 39088169/12752043*312119004989^(10/11) 8626757127199945 a001 39088169/12752043*3461452808002^(5/6) 8626757127199946 a001 5456077604922880367/63245986 8626757127199946 a001 10983760033/4250681*141422324^(12/13) 8626757127199946 a001 139583862445/12752043*141422324^(11/13) 8626757127199946 a001 591286729879/12752043*141422324^(10/13) 8626757127199946 a001 2504730781961/12752043*141422324^(9/13) 8626757127199946 a001 4052739537881/12752043*141422324^(2/3) 8626757127199946 a001 3536736619241/4250681*141422324^(8/13) 8626757127199946 a001 34111385/4250681*45537549124^(16/17) 8626757127199946 a001 34111385/4250681*14662949395604^(16/21) 8626757127199946 a001 34111385/4250681*192900153618^(8/9) 8626757127199946 a001 34111385/4250681*73681302247^(12/13) 8626757127199946 a001 14284196614945221407/165580141 8626757127199946 a001 267914296/12752043*10749957122^(23/24) 8626757127199946 a001 37396512239912783854/433494437 8626757127199946 a001 233802911/4250681*312119004989^(4/5) 8626757127199946 a001 233802911/4250681*23725150497407^(11/16) 8626757127199946 a001 233802911/4250681*73681302247^(11/13) 8626757127199946 a001 233802911/4250681*10749957122^(11/12) 8626757127199946 a001 233802911/4250681*4106118243^(22/23) 8626757127199946 a001 1836311903/12752043*2537720636^(14/15) 8626757127199946 a001 1602508992/4250681*2537720636^(8/9) 8626757127199946 a001 7778742049/12752043*2537720636^(13/15) 8626757127199946 a001 10983760033/4250681*2537720636^(4/5) 8626757127199946 a001 53316291173/12752043*2537720636^(7/9) 8626757127199946 a001 139583862445/12752043*2537720636^(11/15) 8626757127199946 a001 591286729879/12752043*2537720636^(2/3) 8626757127199946 a001 2504730781961/12752043*2537720636^(3/5) 8626757127199946 a001 6557470319842/12752043*2537720636^(5/9) 8626757127199946 a001 3536736619241/4250681*2537720636^(8/15) 8626757127199946 a001 1836311903/12752043*17393796001^(6/7) 8626757127199946 a001 1836311903/12752043*45537549124^(14/17) 8626757127199946 a001 1836311903/12752043*817138163596^(14/19) 8626757127199946 a001 1836311903/12752043*14662949395604^(2/3) 8626757127199946 a001 1836311903/12752043*505019158607^(3/4) 8626757127199946 a001 1836311903/12752043*192900153618^(7/9) 8626757127199946 a001 1836311903/12752043*10749957122^(7/8) 8626757127199946 a001 1602508992/4250681*312119004989^(8/11) 8626757127199946 a001 1602508992/4250681*23725150497407^(5/8) 8626757127199946 a001 1602508992/4250681*73681302247^(10/13) 8626757127199946 a001 1602508992/4250681*28143753123^(4/5) 8626757127199946 a001 1836311903/12752043*4106118243^(21/23) 8626757127199946 a001 53316291173/12752043*17393796001^(5/7) 8626757127199946 a001 516002918640/4250681*17393796001^(4/7) 8626757127199946 a001 1602508992/4250681*10749957122^(5/6) 8626757127199946 a001 12586269025/12752043*817138163596^(2/3) 8626757127199946 a001 10983760033/4250681*45537549124^(12/17) 8626757127199946 a001 86267571272/12752043*45537549124^(2/3) 8626757127199946 a001 139583862445/12752043*45537549124^(11/17) 8626757127199946 a001 591286729879/12752043*45537549124^(10/17) 8626757127199946 a001 2504730781961/12752043*45537549124^(9/17) 8626757127199946 a001 3536736619241/4250681*45537549124^(8/17) 8626757127199946 a001 10983760033/4250681*14662949395604^(4/7) 8626757127199946 a001 10983760033/4250681*505019158607^(9/14) 8626757127199946 a001 10983760033/4250681*192900153618^(2/3) 8626757127199946 a001 10983760033/4250681*73681302247^(9/13) 8626757127199946 a001 591286729879/12752043*312119004989^(6/11) 8626757127199946 a001 6557470319842/12752043*312119004989^(5/11) 8626757127199946 a001 2504730781961/12752043*817138163596^(9/19) 8626757127199946 a001 516002918640/4250681*14662949395604^(4/9) 8626757127199946 a001 3536736619241/4250681*14662949395604^(8/21) 8626757127199946 a001 2504730781961/12752043*14662949395604^(3/7) 8626757127199946 a001 956722026041/12752043*1322157322203^(1/2) 8626757127199946 a001 516002918640/4250681*505019158607^(1/2) 8626757127199946 a001 139583862445/12752043*312119004989^(3/5) 8626757127199946 a001 139583862445/12752043*817138163596^(11/19) 8626757127199946 a001 139583862445/12752043*14662949395604^(11/21) 8626757127199946 a001 3536736619241/4250681*192900153618^(4/9) 8626757127199946 a001 2504730781961/12752043*192900153618^(1/2) 8626757127199946 a001 139583862445/12752043*192900153618^(11/18) 8626757127199946 a001 53316291173/12752043*312119004989^(7/11) 8626757127199946 a001 53316291173/12752043*14662949395604^(5/9) 8626757127199946 a001 53316291173/12752043*505019158607^(5/8) 8626757127199946 a001 3536736619241/4250681*73681302247^(6/13) 8626757127199946 a001 4052739537881/12752043*73681302247^(1/2) 8626757127199946 a001 516002918640/4250681*73681302247^(7/13) 8626757127199946 a001 75283811239/4250681*73681302247^(8/13) 8626757127199946 a001 6557470319842/12752043*28143753123^(1/2) 8626757127199946 a001 591286729879/12752043*28143753123^(3/5) 8626757127199946 a001 53316291173/12752043*28143753123^(7/10) 8626757127199946 a001 7778742049/12752043*45537549124^(13/17) 8626757127199946 a001 7778742049/12752043*14662949395604^(13/21) 8626757127199946 a001 7778742049/12752043*192900153618^(13/18) 8626757127199946 a001 7778742049/12752043*73681302247^(3/4) 8626757127199946 a001 3536736619241/4250681*10749957122^(1/2) 8626757127199946 a001 4052739537881/12752043*10749957122^(13/24) 8626757127199946 a001 2504730781961/12752043*10749957122^(9/16) 8626757127199946 a001 516002918640/4250681*10749957122^(7/12) 8626757127199946 a001 591286729879/12752043*10749957122^(5/8) 8626757127199946 a001 12586269025/12752043*10749957122^(19/24) 8626757127199946 a001 75283811239/4250681*10749957122^(2/3) 8626757127199946 a001 139583862445/12752043*10749957122^(11/16) 8626757127199946 a001 86267571272/12752043*10749957122^(17/24) 8626757127199946 a001 10983760033/4250681*10749957122^(3/4) 8626757127199946 a001 7778742049/12752043*10749957122^(13/16) 8626757127199946 a001 3536736619241/4250681*4106118243^(12/23) 8626757127199946 a001 4052739537881/12752043*4106118243^(13/23) 8626757127199946 a001 516002918640/4250681*4106118243^(14/23) 8626757127199946 a001 591286729879/12752043*4106118243^(15/23) 8626757127199946 a001 75283811239/4250681*4106118243^(16/23) 8626757127199946 a001 1602508992/4250681*4106118243^(20/23) 8626757127199946 a001 86267571272/12752043*4106118243^(17/23) 8626757127199946 a001 10983760033/4250681*4106118243^(18/23) 8626757127199946 a001 12586269025/12752043*4106118243^(19/23) 8626757127199946 a001 3536736619241/4250681*1568397607^(6/11) 8626757127199946 a001 4052739537881/12752043*1568397607^(13/22) 8626757127199946 a001 516002918640/4250681*1568397607^(7/11) 8626757127199946 a001 591286729879/12752043*1568397607^(15/22) 8626757127199946 a001 75283811239/4250681*1568397607^(8/11) 8626757127199946 a001 139583862445/12752043*1568397607^(3/4) 8626757127199946 a001 86267571272/12752043*1568397607^(17/22) 8626757127199946 a001 1836311903/12752043*1568397607^(21/22) 8626757127199946 a001 10983760033/4250681*1568397607^(9/11) 8626757127199946 a001 12586269025/12752043*1568397607^(19/22) 8626757127199946 a001 1602508992/4250681*1568397607^(10/11) 8626757127199946 a001 20169609288293448767/233802911 8626757127199946 a001 433494437/12752043*45537549124^(15/17) 8626757127199946 a001 433494437/12752043*312119004989^(9/11) 8626757127199946 a001 433494437/12752043*14662949395604^(5/7) 8626757127199946 a001 433494437/12752043*192900153618^(5/6) 8626757127199946 a001 433494437/12752043*28143753123^(9/10) 8626757127199946 a001 433494437/12752043*10749957122^(15/16) 8626757127199946 a001 3536736619241/4250681*599074578^(4/7) 8626757127199946 a001 4052739537881/12752043*599074578^(13/21) 8626757127199946 a001 2504730781961/12752043*599074578^(9/14) 8626757127199946 a001 516002918640/4250681*599074578^(2/3) 8626757127199946 a001 591286729879/12752043*599074578^(5/7) 8626757127199946 a001 75283811239/4250681*599074578^(16/21) 8626757127199946 a001 139583862445/12752043*599074578^(11/14) 8626757127199946 a001 86267571272/12752043*599074578^(17/21) 8626757127199946 a001 53316291173/12752043*599074578^(5/6) 8626757127199946 a001 10983760033/4250681*599074578^(6/7) 8626757127199946 a001 12586269025/12752043*599074578^(19/21) 8626757127199946 a001 7778742049/12752043*599074578^(13/14) 8626757127199946 a001 1602508992/4250681*599074578^(20/21) 8626757127199946 a001 23112315624967562447/267914296 8626757127199947 a001 3536736619241/4250681*228826127^(3/5) 8626757127199947 a001 6557470319842/12752043*228826127^(5/8) 8626757127199947 a001 4052739537881/12752043*228826127^(13/20) 8626757127199947 a001 516002918640/4250681*228826127^(7/10) 8626757127199947 a001 591286729879/12752043*228826127^(3/4) 8626757127199947 a001 75283811239/4250681*228826127^(4/5) 8626757127199947 a001 86267571272/12752043*228826127^(17/20) 8626757127199947 a001 53316291173/12752043*228826127^(7/8) 8626757127199947 a001 10983760033/4250681*228826127^(9/10) 8626757127199947 a001 12586269025/12752043*228826127^(19/20) 8626757127199947 a001 1304969550631536/15127 8626757127199947 a001 63245986/12752043*14662949395604^(7/9) 8626757127199947 a001 63245986/12752043*505019158607^(7/8) 8626757127199947 a001 3536736619241/4250681*87403803^(12/19) 8626757127199947 a001 4052739537881/12752043*87403803^(13/19) 8626757127199947 a001 516002918640/4250681*87403803^(14/19) 8626757127199947 a001 591286729879/12752043*87403803^(15/19) 8626757127199947 a001 75283811239/4250681*87403803^(16/19) 8626757127199947 a001 86267571272/12752043*87403803^(17/19) 8626757127199948 a001 10983760033/4250681*87403803^(18/19) 8626757127199948 a001 3372041405099460673/39088169 8626757127199949 a001 24157817/12752043*817138163596^(17/19) 8626757127199949 a001 5702887/54018521*14662949395604^(19/21) 8626757127199949 a001 24157817/12752043*14662949395604^(17/21) 8626757127199949 a001 24157817/12752043*192900153618^(17/18) 8626757127199952 a001 3536736619241/4250681*33385282^(2/3) 8626757127199952 a001 4052739537881/12752043*33385282^(13/18) 8626757127199952 a001 2504730781961/12752043*33385282^(3/4) 8626757127199952 a001 516002918640/4250681*33385282^(7/9) 8626757127199953 a001 591286729879/12752043*33385282^(5/6) 8626757127199953 a001 75283811239/4250681*33385282^(8/9) 8626757127199954 a001 139583862445/12752043*33385282^(11/12) 8626757127199954 a001 86267571272/12752043*33385282^(17/18) 8626757127199954 a001 591286729879/4870847*4870847^(7/8) 8626757127199954 a001 429335068425346993/4976784 8626757127199967 a001 5702887/20633239*3461452808002^(11/12) 8626757127199971 a001 796030994547382896/9227465 8626757127199974 a001 774004377960/16692641*20633239^(6/7) 8626757127199976 a001 4052739537881/33385282*20633239^(4/5) 8626757127199977 a001 225851433717/4870847*4870847^(15/16) 8626757127199978 a001 796030994547383506/9227465 8626757127199979 a001 12246630685344363/141961 8626757127199979 a001 61233153426721816/709805 8626757127199979 a001 159206198909476722/1845493 8626757127199979 a001 796030994547383611/9227465 8626757127199979 a001 796030994547383616/9227465 8626757127199980 a001 159206198909476730/1845493 8626757127199981 a001 4052739537881/87403803*20633239^(6/7) 8626757127199982 a001 225749145909/4868641*20633239^(6/7) 8626757127199982 a001 3536736619241/29134601*20633239^(4/5) 8626757127199982 a001 796030994547383883/9227465 8626757127199983 a001 3278735159921/70711162*20633239^(6/7) 8626757127199984 a001 3536736619241/4250681*12752043^(12/17) 8626757127199984 a001 7465176/16692641*14662949395604^(6/7) 8626757127199985 a001 2504730781961/54018521*20633239^(6/7) 8626757127199986 a001 6557470319842/54018521*20633239^(4/5) 8626757127199987 a001 4052739537881/12752043*12752043^(13/17) 8626757127199989 a001 2084036199823430640/24157817 8626757127199990 a001 516002918640/4250681*12752043^(14/17) 8626757127199991 a001 39088169/33385282*23725150497407^(13/16) 8626757127199991 a001 39088169/33385282*505019158607^(13/14) 8626757127199991 a001 2728038802461454512/31622993 8626757127199991 a001 43133785636/16692641*141422324^(12/13) 8626757127199991 a001 182717648081/16692641*141422324^(11/13) 8626757127199991 a001 774004377960/16692641*141422324^(10/13) 8626757127199991 a001 3278735159921/16692641*141422324^(9/13) 8626757127199991 a001 1515744265389/4769326*141422324^(2/3) 8626757127199992 a001 14619165/4769326*312119004989^(10/11) 8626757127199992 a001 14619165/4769326*3461452808002^(5/6) 8626757127199992 a001 14284196614945296432/165580141 8626757127199992 a001 133957148/16692641*45537549124^(16/17) 8626757127199992 a001 829464/33281921*14662949395604^(20/21) 8626757127199992 a001 133957148/16692641*14662949395604^(16/21) 8626757127199992 a001 133957148/16692641*192900153618^(8/9) 8626757127199992 a001 133957148/16692641*73681302247^(12/13) 8626757127199992 a001 37396512239912980272/433494437 8626757127199992 a001 701408733/33385282*10749957122^(23/24) 8626757127199992 a001 2879568826611577776/33379505 8626757127199992 a001 14930208/103681*2537720636^(14/15) 8626757127199992 a001 12586269025/33385282*2537720636^(8/9) 8626757127199992 a001 10182505537/16692641*2537720636^(13/15) 8626757127199992 a001 43133785636/16692641*2537720636^(4/5) 8626757127199992 a001 139583862445/33385282*2537720636^(7/9) 8626757127199992 a001 182717648081/16692641*2537720636^(11/15) 8626757127199992 a001 774004377960/16692641*2537720636^(2/3) 8626757127199992 a001 3278735159921/16692641*2537720636^(3/5) 8626757127199992 a001 1836311903/33385282*312119004989^(4/5) 8626757127199992 a001 1836311903/33385282*23725150497407^(11/16) 8626757127199992 a001 1836311903/33385282*73681302247^(11/13) 8626757127199992 a001 1836311903/33385282*10749957122^(11/12) 8626757127199992 a001 14930208/103681*17393796001^(6/7) 8626757127199992 a001 14930208/103681*45537549124^(14/17) 8626757127199992 a001 14930208/103681*817138163596^(14/19) 8626757127199992 a001 14930208/103681*14662949395604^(2/3) 8626757127199992 a001 14930208/103681*505019158607^(3/4) 8626757127199992 a001 14930208/103681*192900153618^(7/9) 8626757127199992 a001 1836311903/33385282*4106118243^(22/23) 8626757127199992 a001 139583862445/33385282*17393796001^(5/7) 8626757127199992 a001 4052739537881/33385282*17393796001^(4/7) 8626757127199992 a001 12586269025/33385282*312119004989^(8/11) 8626757127199992 a001 12586269025/33385282*23725150497407^(5/8) 8626757127199992 a001 12586269025/33385282*73681302247^(10/13) 8626757127199992 a001 14930208/103681*10749957122^(7/8) 8626757127199992 a001 43133785636/16692641*45537549124^(12/17) 8626757127199992 a001 32264490531/4769326*45537549124^(2/3) 8626757127199992 a001 182717648081/16692641*45537549124^(11/17) 8626757127199992 a001 774004377960/16692641*45537549124^(10/17) 8626757127199992 a001 3278735159921/16692641*45537549124^(9/17) 8626757127199992 a001 12586269025/33385282*28143753123^(4/5) 8626757127199992 a001 32951280099/33385282*817138163596^(2/3) 8626757127199992 a001 43133785636/16692641*14662949395604^(4/7) 8626757127199992 a001 43133785636/16692641*505019158607^(9/14) 8626757127199992 a001 43133785636/16692641*192900153618^(2/3) 8626757127199992 a001 774004377960/16692641*312119004989^(6/11) 8626757127199992 a001 182717648081/16692641*312119004989^(3/5) 8626757127199992 a001 3278735159921/16692641*817138163596^(9/19) 8626757127199992 a001 2504730781961/33385282*1322157322203^(1/2) 8626757127199992 a001 182717648081/16692641*817138163596^(11/19) 8626757127199992 a001 182717648081/16692641*14662949395604^(11/21) 8626757127199992 a001 591286729879/33385282*505019158607^(4/7) 8626757127199992 a001 139583862445/33385282*312119004989^(7/11) 8626757127199992 a001 139583862445/33385282*14662949395604^(5/9) 8626757127199992 a001 139583862445/33385282*505019158607^(5/8) 8626757127199992 a001 3278735159921/16692641*192900153618^(1/2) 8626757127199992 a001 774004377960/16692641*192900153618^(5/9) 8626757127199992 a001 182717648081/16692641*192900153618^(11/18) 8626757127199992 a001 1515744265389/4769326*73681302247^(1/2) 8626757127199992 a001 4052739537881/33385282*73681302247^(7/13) 8626757127199992 a001 43133785636/16692641*73681302247^(9/13) 8626757127199992 a001 10182505537/16692641*45537549124^(13/17) 8626757127199992 a001 10182505537/16692641*14662949395604^(13/21) 8626757127199992 a001 10182505537/16692641*192900153618^(13/18) 8626757127199992 a001 10182505537/16692641*73681302247^(3/4) 8626757127199992 a001 774004377960/16692641*28143753123^(3/5) 8626757127199992 a001 139583862445/33385282*28143753123^(7/10) 8626757127199992 a001 1515744265389/4769326*10749957122^(13/24) 8626757127199992 a001 3278735159921/16692641*10749957122^(9/16) 8626757127199992 a001 4052739537881/33385282*10749957122^(7/12) 8626757127199992 a001 774004377960/16692641*10749957122^(5/8) 8626757127199992 a001 591286729879/33385282*10749957122^(2/3) 8626757127199992 a001 12586269025/33385282*10749957122^(5/6) 8626757127199992 a001 32264490531/4769326*10749957122^(17/24) 8626757127199992 a001 43133785636/16692641*10749957122^(3/4) 8626757127199992 a001 32951280099/33385282*10749957122^(19/24) 8626757127199992 a001 10182505537/16692641*10749957122^(13/16) 8626757127199992 a001 1515744265389/4769326*4106118243^(13/23) 8626757127199992 a001 4052739537881/33385282*4106118243^(14/23) 8626757127199992 a001 774004377960/16692641*4106118243^(15/23) 8626757127199992 a001 591286729879/33385282*4106118243^(16/23) 8626757127199992 a001 32264490531/4769326*4106118243^(17/23) 8626757127199992 a001 14930208/103681*4106118243^(21/23) 8626757127199992 a001 43133785636/16692641*4106118243^(18/23) 8626757127199992 a001 32951280099/33385282*4106118243^(19/23) 8626757127199992 a001 12586269025/33385282*4106118243^(20/23) 8626757127199992 a001 158414167969674308496/1836311903 8626757127199992 a001 567451585/16692641*45537549124^(15/17) 8626757127199992 a001 567451585/16692641*312119004989^(9/11) 8626757127199992 a001 567451585/16692641*14662949395604^(5/7) 8626757127199992 a001 567451585/16692641*192900153618^(5/6) 8626757127199992 a001 567451585/16692641*28143753123^(9/10) 8626757127199992 a001 567451585/16692641*10749957122^(15/16) 8626757127199992 a001 1515744265389/4769326*1568397607^(13/22) 8626757127199992 a001 4052739537881/33385282*1568397607^(7/11) 8626757127199992 a001 774004377960/16692641*1568397607^(15/22) 8626757127199992 a001 591286729879/33385282*1568397607^(8/11) 8626757127199992 a001 182717648081/16692641*1568397607^(3/4) 8626757127199992 a001 32264490531/4769326*1568397607^(17/22) 8626757127199992 a001 43133785636/16692641*1568397607^(9/11) 8626757127199992 a001 32951280099/33385282*1568397607^(19/22) 8626757127199992 a001 12586269025/33385282*1568397607^(10/11) 8626757127199992 a001 14930208/103681*1568397607^(21/22) 8626757127199992 a001 20169609288293554704/233802911 8626757127199992 a001 1515744265389/4769326*599074578^(13/21) 8626757127199992 a001 3278735159921/16692641*599074578^(9/14) 8626757127199992 a001 4052739537881/33385282*599074578^(2/3) 8626757127199992 a001 774004377960/16692641*599074578^(5/7) 8626757127199992 a001 591286729879/33385282*599074578^(16/21) 8626757127199992 a001 182717648081/16692641*599074578^(11/14) 8626757127199992 a001 32264490531/4769326*599074578^(17/21) 8626757127199992 a001 139583862445/33385282*599074578^(5/6) 8626757127199992 a001 43133785636/16692641*599074578^(6/7) 8626757127199992 a001 32951280099/33385282*599074578^(19/21) 8626757127199992 a001 10182505537/16692641*599074578^(13/14) 8626757127199992 a001 12586269025/33385282*599074578^(20/21) 8626757127199992 a001 2889039453120960480/33489287 8626757127199992 a001 165580141/33385282*14662949395604^(7/9) 8626757127199992 a001 165580141/33385282*505019158607^(7/8) 8626757127199992 a001 1515744265389/4769326*228826127^(13/20) 8626757127199992 a001 4052739537881/33385282*228826127^(7/10) 8626757127199992 a001 774004377960/16692641*228826127^(3/4) 8626757127199992 a001 591286729879/33385282*228826127^(4/5) 8626757127199992 a001 32264490531/4769326*228826127^(17/20) 8626757127199992 a001 139583862445/33385282*228826127^(7/8) 8626757127199992 a001 43133785636/16692641*228826127^(9/10) 8626757127199992 a001 32951280099/33385282*228826127^(19/20) 8626757127199992 a001 2942706336674129136/34111385 8626757127199992 a001 31622993/16692641*817138163596^(17/19) 8626757127199992 a001 3732588/35355581*14662949395604^(19/21) 8626757127199992 a001 31622993/16692641*14662949395604^(17/21) 8626757127199992 a001 31622993/16692641*192900153618^(17/18) 8626757127199993 a001 1515744265389/4769326*87403803^(13/19) 8626757127199993 a001 4052739537881/33385282*87403803^(14/19) 8626757127199993 a001 774004377960/16692641*87403803^(15/19) 8626757127199993 a001 591286729879/33385282*87403803^(16/19) 8626757127199993 a001 32264490531/4769326*87403803^(17/19) 8626757127199993 a001 43133785636/16692641*87403803^(18/19) 8626757127199993 a001 3372041405099478384/39088169 8626757127199993 a001 591286729879/12752043*12752043^(15/17) 8626757127199995 a001 14930352/54018521*3461452808002^(11/12) 8626757127199995 a001 2084036199823432237/24157817 8626757127199996 a001 2084036199823432470/24157817 8626757127199996 a001 75283811239/4250681*12752043^(16/17) 8626757127199997 a001 2084036199823432504/24157817 8626757127199997 a001 2084036199823432509/24157817 8626757127199997 a001 2084036199823432510/24157817 8626757127199997 a001 2084036199823432512/24157817 8626757127199997 a001 2084036199823432525/24157817 8626757127199997 a001 2084036199823432614/24157817 8626757127199997 a001 39088169/87403803*14662949395604^(6/7) 8626757127199997 a001 1515744265389/4769326*33385282^(13/18) 8626757127199998 a001 3278735159921/16692641*33385282^(3/4) 8626757127199998 a001 4052739537881/33385282*33385282^(7/9) 8626757127199998 a001 5456077604922913205/63245986 8626757127199998 a001 75283811239/29134601*141422324^(12/13) 8626757127199998 a001 956722026041/87403803*141422324^(11/13) 8626757127199998 a001 4052739537881/87403803*141422324^(10/13) 8626757127199998 a001 39088169/228826127*14662949395604^(8/9) 8626757127199998 a001 34111385/29134601*23725150497407^(13/16) 8626757127199998 a001 34111385/29134601*505019158607^(13/14) 8626757127199998 a001 774004377960/16692641*33385282^(5/6) 8626757127199998 a001 14284196614945307378/165580141 8626757127199998 a001 267914296/87403803*312119004989^(10/11) 8626757127199998 a001 267914296/87403803*3461452808002^(5/6) 8626757127199998 a001 37396512239913008929/433494437 8626757127199998 a001 233802911/29134601*45537549124^(16/17) 8626757127199998 a001 39088169/1568397607*14662949395604^(20/21) 8626757127199998 a001 233802911/29134601*14662949395604^(16/21) 8626757127199998 a001 233802911/29134601*192900153618^(8/9) 8626757127199998 a001 233802911/29134601*73681302247^(12/13) 8626757127199998 a001 97905340104793719409/1134903170 8626757127199998 a001 12586269025/87403803*2537720636^(14/15) 8626757127199998 a001 10983760033/29134601*2537720636^(8/9) 8626757127199998 a001 53316291173/87403803*2537720636^(13/15) 8626757127199998 a001 75283811239/29134601*2537720636^(4/5) 8626757127199998 a001 365435296162/87403803*2537720636^(7/9) 8626757127199998 a001 956722026041/87403803*2537720636^(11/15) 8626757127199998 a001 4052739537881/87403803*2537720636^(2/3) 8626757127199998 a001 1836311903/87403803*10749957122^(23/24) 8626757127199998 a001 256319508074468149298/2971215073 8626757127199998 a001 1602508992/29134601*312119004989^(4/5) 8626757127199998 a001 1602508992/29134601*23725150497407^(11/16) 8626757127199998 a001 1602508992/29134601*73681302247^(11/13) 8626757127199998 a001 12586269025/87403803*17393796001^(6/7) 8626757127199998 a001 365435296162/87403803*17393796001^(5/7) 8626757127199998 a001 3536736619241/29134601*17393796001^(4/7) 8626757127199998 a001 12586269025/87403803*45537549124^(14/17) 8626757127199998 a001 12586269025/87403803*817138163596^(14/19) 8626757127199998 a001 12586269025/87403803*14662949395604^(2/3) 8626757127199998 a001 12586269025/87403803*505019158607^(3/4) 8626757127199998 a001 12586269025/87403803*192900153618^(7/9) 8626757127199998 a001 1602508992/29134601*10749957122^(11/12) 8626757127199998 a001 75283811239/29134601*45537549124^(12/17) 8626757127199998 a001 591286729879/87403803*45537549124^(2/3) 8626757127199998 a001 956722026041/87403803*45537549124^(11/17) 8626757127199998 a001 53316291173/87403803*45537549124^(13/17) 8626757127199998 a001 4052739537881/87403803*45537549124^(10/17) 8626757127199998 a001 10983760033/29134601*312119004989^(8/11) 8626757127199998 a001 10983760033/29134601*23725150497407^(5/8) 8626757127199998 a001 10983760033/29134601*73681302247^(10/13) 8626757127199998 a001 86267571272/87403803*817138163596^(2/3) 8626757127199998 a001 4052739537881/87403803*312119004989^(6/11) 8626757127199998 a001 365435296162/87403803*312119004989^(7/11) 8626757127199998 a001 75283811239/29134601*14662949395604^(4/7) 8626757127199998 a001 516002918640/29134601*23725150497407^(1/2) 8626757127199998 a001 4052739537881/87403803*14662949395604^(10/21) 8626757127199998 a001 2504730781961/87403803*9062201101803^(1/2) 8626757127199998 a001 365435296162/87403803*14662949395604^(5/9) 8626757127199998 a001 3536736619241/29134601*505019158607^(1/2) 8626757127199998 a001 365435296162/87403803*505019158607^(5/8) 8626757127199998 a001 75283811239/29134601*192900153618^(2/3) 8626757127199998 a001 4052739537881/87403803*192900153618^(5/9) 8626757127199998 a001 956722026041/87403803*192900153618^(11/18) 8626757127199998 a001 53316291173/87403803*14662949395604^(13/21) 8626757127199998 a001 53316291173/87403803*192900153618^(13/18) 8626757127199998 a001 3536736619241/29134601*73681302247^(7/13) 8626757127199998 a001 516002918640/29134601*73681302247^(8/13) 8626757127199998 a001 75283811239/29134601*73681302247^(9/13) 8626757127199998 a001 53316291173/87403803*73681302247^(3/4) 8626757127199998 a001 4052739537881/87403803*28143753123^(3/5) 8626757127199998 a001 10983760033/29134601*28143753123^(4/5) 8626757127199998 a001 365435296162/87403803*28143753123^(7/10) 8626757127199998 a001 3536736619241/29134601*10749957122^(7/12) 8626757127199998 a001 4052739537881/87403803*10749957122^(5/8) 8626757127199998 a001 516002918640/29134601*10749957122^(2/3) 8626757127199998 a001 956722026041/87403803*10749957122^(11/16) 8626757127199998 a001 591286729879/87403803*10749957122^(17/24) 8626757127199998 a001 12586269025/87403803*10749957122^(7/8) 8626757127199998 a001 75283811239/29134601*10749957122^(3/4) 8626757127199998 a001 86267571272/87403803*10749957122^(19/24) 8626757127199998 a001 10983760033/29134601*10749957122^(5/6) 8626757127199998 a001 53316291173/87403803*10749957122^(13/16) 8626757127199998 a001 420196226995078601/4870848 8626757127199998 a001 2971215073/87403803*45537549124^(15/17) 8626757127199998 a001 2971215073/87403803*312119004989^(9/11) 8626757127199998 a001 2971215073/87403803*14662949395604^(5/7) 8626757127199998 a001 2971215073/87403803*192900153618^(5/6) 8626757127199998 a001 2971215073/87403803*28143753123^(9/10) 8626757127199998 a001 2971215073/87403803*10749957122^(15/16) 8626757127199998 a001 3536736619241/29134601*4106118243^(14/23) 8626757127199998 a001 4052739537881/87403803*4106118243^(15/23) 8626757127199998 a001 516002918640/29134601*4106118243^(16/23) 8626757127199998 a001 591286729879/87403803*4106118243^(17/23) 8626757127199998 a001 75283811239/29134601*4106118243^(18/23) 8626757127199998 a001 1602508992/29134601*4106118243^(22/23) 8626757127199998 a001 86267571272/87403803*4106118243^(19/23) 8626757127199998 a001 10983760033/29134601*4106118243^(20/23) 8626757127199998 a001 12586269025/87403803*4106118243^(21/23) 8626757127199998 a001 158414167969674429889/1836311903 8626757127199998 a001 3536736619241/29134601*1568397607^(7/11) 8626757127199998 a001 4052739537881/87403803*1568397607^(15/22) 8626757127199998 a001 516002918640/29134601*1568397607^(8/11) 8626757127199998 a001 956722026041/87403803*1568397607^(3/4) 8626757127199998 a001 591286729879/87403803*1568397607^(17/22) 8626757127199998 a001 75283811239/29134601*1568397607^(9/11) 8626757127199998 a001 86267571272/87403803*1568397607^(19/22) 8626757127199998 a001 10983760033/29134601*1568397607^(10/11) 8626757127199998 a001 12586269025/87403803*1568397607^(21/22) 8626757127199998 a001 20169609288293570160/233802911 8626757127199998 a001 433494437/87403803*14662949395604^(7/9) 8626757127199998 a001 433494437/87403803*505019158607^(7/8) 8626757127199998 a001 3536736619241/29134601*599074578^(2/3) 8626757127199998 a001 4052739537881/87403803*599074578^(5/7) 8626757127199998 a001 516002918640/29134601*599074578^(16/21) 8626757127199998 a001 956722026041/87403803*599074578^(11/14) 8626757127199998 a001 591286729879/87403803*599074578^(17/21) 8626757127199998 a001 365435296162/87403803*599074578^(5/6) 8626757127199998 a001 75283811239/29134601*599074578^(6/7) 8626757127199998 a001 86267571272/87403803*599074578^(19/21) 8626757127199998 a001 53316291173/87403803*599074578^(13/14) 8626757127199998 a001 10983760033/29134601*599074578^(20/21) 8626757127199998 a001 23112315624967701551/267914296 8626757127199998 a001 165580141/87403803*817138163596^(17/19) 8626757127199998 a001 39088169/370248451*14662949395604^(19/21) 8626757127199998 a001 165580141/87403803*14662949395604^(17/21) 8626757127199998 a001 165580141/87403803*192900153618^(17/18) 8626757127199998 a001 3536736619241/29134601*228826127^(7/10) 8626757127199998 a001 4052739537881/87403803*228826127^(3/4) 8626757127199999 a001 516002918640/29134601*228826127^(4/5) 8626757127199999 a001 591286729879/87403803*228826127^(17/20) 8626757127199999 a001 365435296162/87403803*228826127^(7/8) 8626757127199999 a001 75283811239/29134601*228826127^(9/10) 8626757127199999 a001 86267571272/87403803*228826127^(19/20) 8626757127199999 a001 420386619524875913/4873055 8626757127199999 a001 591286729879/33385282*33385282^(8/9) 8626757127199999 a001 39088169/141422324*3461452808002^(11/12) 8626757127199999 a001 182717648081/16692641*33385282^(11/12) 8626757127199999 a001 5456077604922913815/63245986 8626757127199999 a001 591286729879/228826127*141422324^(12/13) 8626757127199999 a001 2504730781961/228826127*141422324^(11/13) 8626757127199999 a001 225749145909/4868641*141422324^(10/13) 8626757127199999 a001 2728038802461456952/31622993 8626757127199999 a001 5456077604922913917/63245986 8626757127199999 a001 5456077604922913919/63245986 8626757127199999 a001 2728038802461456960/31622993 8626757127199999 a001 32264490531/4769326*33385282^(17/18) 8626757127199999 a001 86000486440/33281921*141422324^(12/13) 8626757127199999 a001 5456077604922913925/63245986 8626757127199999 a001 4052739537881/1568397607*141422324^(12/13) 8626757127199999 a001 3536736619241/1368706081*141422324^(12/13) 8626757127199999 a001 3278735159921/1268860318*141422324^(12/13) 8626757127199999 a001 3278735159921/299537289*141422324^(11/13) 8626757127199999 a001 2504730781961/969323029*141422324^(12/13) 8626757127199999 a001 23416642081214223/271442 8626757127199999 a001 10610209857723/969323029*141422324^(11/13) 8626757127199999 a001 956722026041/370248451*141422324^(12/13) 8626757127199999 a001 102334155/228826127*14662949395604^(6/7) 8626757127199999 a001 4052739537881/370248451*141422324^(11/13) 8626757127199999 a001 3536736619241/29134601*87403803^(14/19) 8626757127199999 a001 4052739537881/87403803*87403803^(15/19) 8626757127199999 a001 14284196614945308975/165580141 8626757127199999 a001 34111385/199691526*14662949395604^(8/9) 8626757127199999 a001 267914296/228826127*23725150497407^(13/16) 8626757127199999 a001 267914296/228826127*505019158607^(13/14) 8626757127199999 a001 516002918640/29134601*87403803^(16/19) 8626757127199999 a001 37396512239913013110/433494437 8626757127199999 a001 701408733/228826127*312119004989^(10/11) 8626757127199999 a001 701408733/228826127*3461452808002^(5/6) 8626757127199999 a001 19581068020958746071/226980634 8626757127199999 a001 32951280099/228826127*2537720636^(14/15) 8626757127199999 a001 86267571272/228826127*2537720636^(8/9) 8626757127199999 a001 139583862445/228826127*2537720636^(13/15) 8626757127199999 a001 591286729879/228826127*2537720636^(4/5) 8626757127199999 a001 956722026041/228826127*2537720636^(7/9) 8626757127199999 a001 2504730781961/228826127*2537720636^(11/15) 8626757127199999 a001 225749145909/4868641*2537720636^(2/3) 8626757127199999 a001 1836311903/228826127*45537549124^(16/17) 8626757127199999 a001 34111385/1368706081*14662949395604^(20/21) 8626757127199999 a001 1836311903/228826127*14662949395604^(16/21) 8626757127199999 a001 1836311903/228826127*192900153618^(8/9) 8626757127199999 a001 1836311903/228826127*73681302247^(12/13) 8626757127199999 a001 256319508074468177955/2971215073 8626757127199999 a001 51619475701431600270/598364773 8626757127199999 a001 32951280099/228826127*17393796001^(6/7) 8626757127199999 a001 956722026041/228826127*17393796001^(5/7) 8626757127199999 a001 12586269025/228826127*312119004989^(4/5) 8626757127199999 a001 12586269025/228826127*23725150497407^(11/16) 8626757127199999 a001 12586269025/228826127*73681302247^(11/13) 8626757127199999 a001 32951280099/228826127*45537549124^(14/17) 8626757127199999 a001 102287808/4868641*10749957122^(23/24) 8626757127199999 a001 591286729879/228826127*45537549124^(12/17) 8626757127199999 a001 1548008755920/228826127*45537549124^(2/3) 8626757127199999 a001 2504730781961/228826127*45537549124^(11/17) 8626757127199999 a001 225749145909/4868641*45537549124^(10/17) 8626757127199999 a001 32951280099/228826127*817138163596^(14/19) 8626757127199999 a001 32951280099/228826127*14662949395604^(2/3) 8626757127199999 a001 32951280099/228826127*505019158607^(3/4) 8626757127199999 a001 32951280099/228826127*192900153618^(7/9) 8626757127199999 a001 86267571272/228826127*312119004989^(8/11) 8626757127199999 a001 86267571272/228826127*23725150497407^(5/8) 8626757127199999 a001 2504730781961/228826127*312119004989^(3/5) 8626757127199999 a001 225749145909/4868641*312119004989^(6/11) 8626757127199999 a001 225851433717/228826127*817138163596^(2/3) 8626757127199999 a001 2504730781961/228826127*817138163596^(11/19) 8626757127199999 a001 591286729879/228826127*14662949395604^(4/7) 8626757127199999 a001 225749145909/4868641*14662949395604^(10/21) 8626757127199999 a001 2504730781961/228826127*14662949395604^(11/21) 8626757127199999 a001 591286729879/228826127*505019158607^(9/14) 8626757127199999 a001 139583862445/228826127*14662949395604^(13/21) 8626757127199999 a001 225749145909/4868641*192900153618^(5/9) 8626757127199999 a001 2504730781961/228826127*192900153618^(11/18) 8626757127199999 a001 591286729879/228826127*192900153618^(2/3) 8626757127199999 a001 139583862445/228826127*192900153618^(13/18) 8626757127199999 a001 4052739537881/228826127*73681302247^(8/13) 8626757127199999 a001 86267571272/228826127*73681302247^(10/13) 8626757127199999 a001 591286729879/228826127*73681302247^(9/13) 8626757127199999 a001 139583862445/228826127*73681302247^(3/4) 8626757127199999 a001 225749145909/4868641*28143753123^(3/5) 8626757127199999 a001 956722026041/228826127*28143753123^(7/10) 8626757127199999 a001 86267571272/228826127*28143753123^(4/5) 8626757127199999 a001 19741579275686425983/228841255 8626757127199999 a001 7778742049/228826127*45537549124^(15/17) 8626757127199999 a001 7778742049/228826127*312119004989^(9/11) 8626757127199999 a001 7778742049/228826127*14662949395604^(5/7) 8626757127199999 a001 7778742049/228826127*192900153618^(5/6) 8626757127199999 a001 7778742049/228826127*28143753123^(9/10) 8626757127199999 a001 225749145909/4868641*10749957122^(5/8) 8626757127199999 a001 4052739537881/228826127*10749957122^(2/3) 8626757127199999 a001 2504730781961/228826127*10749957122^(11/16) 8626757127199999 a001 1548008755920/228826127*10749957122^(17/24) 8626757127199999 a001 591286729879/228826127*10749957122^(3/4) 8626757127199999 a001 12586269025/228826127*10749957122^(11/12) 8626757127199999 a001 225851433717/228826127*10749957122^(19/24) 8626757127199999 a001 139583862445/228826127*10749957122^(13/16) 8626757127199999 a001 86267571272/228826127*10749957122^(5/6) 8626757127199999 a001 32951280099/228826127*10749957122^(7/8) 8626757127199999 a001 19749222668768696455/228929856 8626757127199999 a001 7778742049/228826127*10749957122^(15/16) 8626757127199999 a001 225749145909/4868641*4106118243^(15/23) 8626757127199999 a001 4052739537881/228826127*4106118243^(16/23) 8626757127199999 a001 1548008755920/228826127*4106118243^(17/23) 8626757127199999 a001 591286729879/228826127*4106118243^(18/23) 8626757127199999 a001 225851433717/228826127*4106118243^(19/23) 8626757127199999 a001 86267571272/228826127*4106118243^(20/23) 8626757127199999 a001 32951280099/228826127*4106118243^(21/23) 8626757127199999 a001 12586269025/228826127*4106118243^(22/23) 8626757127199999 a001 158414167969674447600/1836311903 8626757127199999 a001 1134903170/228826127*14662949395604^(7/9) 8626757127199999 a001 1134903170/228826127*505019158607^(7/8) 8626757127199999 a001 225749145909/4868641*1568397607^(15/22) 8626757127199999 a001 4052739537881/228826127*1568397607^(8/11) 8626757127199999 a001 2504730781961/228826127*1568397607^(3/4) 8626757127199999 a001 1548008755920/228826127*1568397607^(17/22) 8626757127199999 a001 591286729879/228826127*1568397607^(9/11) 8626757127199999 a001 225851433717/228826127*1568397607^(19/22) 8626757127199999 a001 86267571272/228826127*1568397607^(10/11) 8626757127199999 a001 32951280099/228826127*1568397607^(21/22) 8626757127199999 a001 20169609288293572415/233802911 8626757127199999 a001 433494437/228826127*817138163596^(17/19) 8626757127199999 a001 102334155/969323029*14662949395604^(19/21) 8626757127199999 a001 433494437/228826127*14662949395604^(17/21) 8626757127199999 a001 433494437/228826127*192900153618^(17/18) 8626757127199999 a001 225749145909/4868641*599074578^(5/7) 8626757127199999 a001 4052739537881/228826127*599074578^(16/21) 8626757127199999 a001 2504730781961/228826127*599074578^(11/14) 8626757127199999 a001 1548008755920/228826127*599074578^(17/21) 8626757127199999 a001 956722026041/228826127*599074578^(5/6) 8626757127199999 a001 591286729879/228826127*599074578^(6/7) 8626757127199999 a001 225851433717/228826127*599074578^(19/21) 8626757127199999 a001 139583862445/228826127*599074578^(13/14) 8626757127199999 a001 86267571272/228826127*599074578^(20/21) 8626757127199999 a001 61305876989304255/710648 8626757127199999 a001 591286729879/87403803*87403803^(17/19) 8626757127199999 a001 102334155/370248451*3461452808002^(11/12) 8626757127199999 a001 14284196614945309208/165580141 8626757127199999 a001 14284196614945309242/165580141 8626757127199999 a001 14284196614945309247/165580141 8626757127199999 a001 14284196614945309248/165580141 8626757127199999 a001 14284196614945309250/165580141 8626757127199999 a001 75283811239/29134601*87403803^(18/19) 8626757127199999 a001 14284196614945309263/165580141 8626757127199999 a001 133957148/299537289*14662949395604^(6/7) 8626757127199999 a001 225749145909/4868641*228826127^(3/4) 8626757127199999 a001 37396512239913013720/433494437 8626757127199999 a001 4052739537881/228826127*228826127^(4/5) 8626757127199999 a001 233802911/199691526*23725150497407^(13/16) 8626757127199999 a001 233802911/199691526*505019158607^(13/14) 8626757127199999 a001 48952670052396865976/567451585 8626757127199999 a001 43133785636/299537289*2537720636^(14/15) 8626757127199999 a001 267913919/710646*2537720636^(8/9) 8626757127199999 a001 182717648081/299537289*2537720636^(13/15) 8626757127199999 a001 86000486440/33281921*2537720636^(4/5) 8626757127199999 a001 2504730781961/599074578*2537720636^(7/9) 8626757127199999 a001 3278735159921/299537289*2537720636^(11/15) 8626757127199999 a001 1548008755920/228826127*228826127^(17/20) 8626757127199999 a001 1836311903/599074578*312119004989^(10/11) 8626757127199999 a001 1836311903/599074578*3461452808002^(5/6) 8626757127199999 a001 256319508074468182136/2971215073 8626757127199999 a001 267084832/33281921*45537549124^(16/17) 8626757127199999 a001 133957148/5374978561*14662949395604^(20/21) 8626757127199999 a001 267084832/33281921*14662949395604^(16/21) 8626757127199999 a001 267084832/33281921*192900153618^(8/9) 8626757127199999 a001 267084832/33281921*73681302247^(12/13) 8626757127199999 a001 51619475701431601112/598364773 8626757127199999 a001 43133785636/299537289*17393796001^(6/7) 8626757127199999 a001 2504730781961/599074578*17393796001^(5/7) 8626757127199999 a001 878420022140682130616/10182505537 8626757127199999 a001 43133785636/299537289*45537549124^(14/17) 8626757127199999 a001 182717648081/299537289*45537549124^(13/17) 8626757127199999 a001 86000486440/33281921*45537549124^(12/17) 8626757127199999 a001 4052739537881/599074578*45537549124^(2/3) 8626757127199999 a001 3278735159921/299537289*45537549124^(11/17) 8626757127199999 a001 10983760033/199691526*312119004989^(4/5) 8626757127199999 a001 10983760033/199691526*23725150497407^(11/16) 8626757127199999 a001 10983760033/199691526*73681302247^(11/13) 8626757127199999 a001 43133785636/299537289*817138163596^(14/19) 8626757127199999 a001 43133785636/299537289*14662949395604^(2/3) 8626757127199999 a001 43133785636/299537289*505019158607^(3/4) 8626757127199999 a001 267913919/710646*312119004989^(8/11) 8626757127199999 a001 2504730781961/599074578*312119004989^(7/11) 8626757127199999 a001 3278735159921/299537289*312119004989^(3/5) 8626757127199999 a001 43133785636/299537289*192900153618^(7/9) 8626757127199999 a001 267913919/710646*23725150497407^(5/8) 8626757127199999 a001 3536736619241/199691526*23725150497407^(1/2) 8626757127199999 a001 2504730781961/599074578*14662949395604^(5/9) 8626757127199999 a001 182717648081/299537289*14662949395604^(13/21) 8626757127199999 a001 3536736619241/199691526*505019158607^(4/7) 8626757127199999 a001 2504730781961/599074578*505019158607^(5/8) 8626757127199999 a001 3278735159921/299537289*192900153618^(11/18) 8626757127199999 a001 86000486440/33281921*192900153618^(2/3) 8626757127199999 a001 182717648081/299537289*192900153618^(13/18) 8626757127199999 a001 10182505537/299537289*45537549124^(15/17) 8626757127199999 a001 3536736619241/199691526*73681302247^(8/13) 8626757127199999 a001 86000486440/33281921*73681302247^(9/13) 8626757127199999 a001 267913919/710646*73681302247^(10/13) 8626757127199999 a001 182717648081/299537289*73681302247^(3/4) 8626757127199999 a001 947542301481372569336/10983760033 8626757127199999 a001 10182505537/299537289*312119004989^(9/11) 8626757127199999 a001 10182505537/299537289*14662949395604^(5/7) 8626757127199999 a001 10182505537/299537289*192900153618^(5/6) 8626757127199999 a001 2504730781961/599074578*28143753123^(7/10) 8626757127199999 a001 267913919/710646*28143753123^(4/5) 8626757127199999 a001 1085786860162753446776/12586269025 8626757127199999 a001 10182505537/299537289*28143753123^(9/10) 8626757127199999 a001 3536736619241/199691526*10749957122^(2/3) 8626757127199999 a001 3278735159921/299537289*10749957122^(11/16) 8626757127199999 a001 4052739537881/599074578*10749957122^(17/24) 8626757127199999 a001 86000486440/33281921*10749957122^(3/4) 8626757127199999 a001 591286729879/599074578*10749957122^(19/24) 8626757127199999 a001 12586269025/599074578*10749957122^(23/24) 8626757127199999 a001 182717648081/299537289*10749957122^(13/16) 8626757127199999 a001 267913919/710646*10749957122^(5/6) 8626757127199999 a001 43133785636/299537289*10749957122^(7/8) 8626757127199999 a001 10983760033/199691526*10749957122^(11/12) 8626757127199999 a001 10182505537/299537289*10749957122^(15/16) 8626757127199999 a001 720023743132192070/8346401 8626757127199999 a001 2971215073/599074578*14662949395604^(7/9) 8626757127199999 a001 2971215073/599074578*505019158607^(7/8) 8626757127199999 a001 3536736619241/199691526*4106118243^(16/23) 8626757127199999 a001 4052739537881/599074578*4106118243^(17/23) 8626757127199999 a001 86000486440/33281921*4106118243^(18/23) 8626757127199999 a001 591286729879/599074578*4106118243^(19/23) 8626757127199999 a001 267913919/710646*4106118243^(20/23) 8626757127199999 a001 43133785636/299537289*4106118243^(21/23) 8626757127199999 a001 10983760033/199691526*4106118243^(22/23) 8626757127199999 a001 158414167969674450184/1836311903 8626757127199999 a001 567451585/299537289*817138163596^(17/19) 8626757127199999 a001 66978574/634430159*14662949395604^(19/21) 8626757127199999 a001 567451585/299537289*14662949395604^(17/21) 8626757127199999 a001 567451585/299537289*192900153618^(17/18) 8626757127199999 a001 3536736619241/199691526*1568397607^(8/11) 8626757127199999 a001 3278735159921/299537289*1568397607^(3/4) 8626757127199999 a001 4052739537881/599074578*1568397607^(17/22) 8626757127199999 a001 86000486440/33281921*1568397607^(9/11) 8626757127199999 a001 591286729879/599074578*1568397607^(19/22) 8626757127199999 a001 267913919/710646*1568397607^(10/11) 8626757127199999 a001 43133785636/299537289*1568397607^(21/22) 8626757127199999 a001 956722026041/228826127*228826127^(7/8) 8626757127199999 a001 20169609288293572744/233802911 8626757127199999 a001 591286729879/228826127*228826127^(9/10) 8626757127199999 a001 267914296/969323029*3461452808002^(11/12) 8626757127199999 a001 37396512239913013809/433494437 8626757127199999 a001 37396512239913013822/433494437 8626757127199999 a001 37396512239913013824/433494437 8626757127199999 a001 37396512239913013825/433494437 8626757127199999 a001 225851433717/228826127*228826127^(19/20) 8626757127199999 a001 37396512239913013830/433494437 8626757127199999 a001 701408733/1568397607*14662949395604^(6/7) 8626757127199999 a001 3536736619241/199691526*599074578^(16/21) 8626757127199999 a001 3278735159921/299537289*599074578^(11/14) 8626757127199999 a001 19581068020958746437/226980634 8626757127199999 a001 32264490531/224056801*2537720636^(14/15) 8626757127199999 a001 591286729879/1568397607*2537720636^(8/9) 8626757127199999 a001 956722026041/1568397607*2537720636^(13/15) 8626757127199999 a001 4052739537881/1568397607*2537720636^(4/5) 8626757127199999 a001 4052739537881/599074578*599074578^(17/21) 8626757127199999 a001 6557470319842/1568397607*2537720636^(7/9) 8626757127199999 a001 233802911/1368706081*14662949395604^(8/9) 8626757127199999 a001 1836311903/1568397607*23725150497407^(13/16) 8626757127199999 a001 1836311903/1568397607*505019158607^(13/14) 8626757127199999 a001 2504730781961/599074578*599074578^(5/6) 8626757127199999 a001 256319508074468182746/2971215073 8626757127199999 a001 686789568/224056801*312119004989^(10/11) 8626757127199999 a001 686789568/224056801*3461452808002^(5/6) 8626757127199999 a001 671053184118610816053/7778742049 8626757127199999 a001 32264490531/224056801*17393796001^(6/7) 8626757127199999 a001 6557470319842/1568397607*17393796001^(5/7) 8626757127199999 a001 12586269025/1568397607*45537549124^(16/17) 8626757127199999 a001 233802911/9381251041*14662949395604^(20/21) 8626757127199999 a001 12586269025/1568397607*14662949395604^(16/21) 8626757127199999 a001 12586269025/1568397607*192900153618^(8/9) 8626757127199999 a001 12586269025/1568397607*73681302247^(12/13) 8626757127199999 a001 1756840044281364265413/20365011074 8626757127199999 a001 32264490531/224056801*45537549124^(14/17) 8626757127199999 a001 956722026041/1568397607*45537549124^(13/17) 8626757127199999 a001 53316291173/1568397607*45537549124^(15/17) 8626757127199999 a001 4052739537881/1568397607*45537549124^(12/17) 8626757127199999 a001 1515744265389/224056801*45537549124^(2/3) 8626757127199999 a001 4599466948725481980186/53316291173 8626757127199999 a001 86267571272/1568397607*312119004989^(4/5) 8626757127199999 a001 86267571272/1568397607*23725150497407^(11/16) 8626757127199999 a001 591286729879/1568397607*312119004989^(8/11) 8626757127199999 a001 32264490531/224056801*14662949395604^(2/3) 8626757127199999 a001 1548008755920/1568397607*817138163596^(2/3) 8626757127199999 a001 32264490531/224056801*505019158607^(3/4) 8626757127199999 a001 6557470319842/1568397607*14662949395604^(5/9) 8626757127199999 a001 4052739537881/1568397607*505019158607^(9/14) 8626757127199999 a001 32264490531/224056801*192900153618^(7/9) 8626757127199999 a001 4052739537881/1568397607*192900153618^(2/3) 8626757127199999 a001 956722026041/1568397607*192900153618^(13/18) 8626757127199999 a001 7442093853169599694959/86267571272 8626757127199999 a001 53316291173/1568397607*312119004989^(9/11) 8626757127199999 a001 53316291173/1568397607*14662949395604^(5/7) 8626757127199999 a001 53316291173/1568397607*192900153618^(5/6) 8626757127199999 a001 4052739537881/1568397607*73681302247^(9/13) 8626757127199999 a001 86267571272/1568397607*73681302247^(11/13) 8626757127199999 a001 956722026041/1568397607*73681302247^(3/4) 8626757127199999 a001 591286729879/1568397607*73681302247^(10/13) 8626757127199999 a001 947542301481372571591/10983760033 8626757127199999 a001 6557470319842/1568397607*28143753123^(7/10) 8626757127199999 a001 591286729879/1568397607*28143753123^(4/5) 8626757127199999 a001 53316291173/1568397607*28143753123^(9/10) 8626757127199999 a001 19741579275686426352/228841255 8626757127199999 a001 7778742049/1568397607*14662949395604^(7/9) 8626757127199999 a001 7778742049/1568397607*505019158607^(7/8) 8626757127199999 a001 1515744265389/224056801*10749957122^(17/24) 8626757127199999 a001 4052739537881/1568397607*10749957122^(3/4) 8626757127199999 a001 1548008755920/1568397607*10749957122^(19/24) 8626757127199999 a001 956722026041/1568397607*10749957122^(13/16) 8626757127199999 a001 591286729879/1568397607*10749957122^(5/6) 8626757127199999 a001 32264490531/224056801*10749957122^(7/8) 8626757127199999 a001 86267571272/1568397607*10749957122^(11/12) 8626757127199999 a001 32951280099/1568397607*10749957122^(23/24) 8626757127199999 a001 53316291173/1568397607*10749957122^(15/16) 8626757127199999 a001 86000486440/33281921*599074578^(6/7) 8626757127199999 a001 138244558681380877769/1602508992 8626757127199999 a001 2971215073/1568397607*817138163596^(17/19) 8626757127199999 a001 701408733/6643838879*14662949395604^(19/21) 8626757127199999 a001 2971215073/1568397607*14662949395604^(17/21) 8626757127199999 a001 2971215073/1568397607*192900153618^(17/18) 8626757127199999 a001 1515744265389/224056801*4106118243^(17/23) 8626757127199999 a001 4052739537881/1568397607*4106118243^(18/23) 8626757127199999 a001 1548008755920/1568397607*4106118243^(19/23) 8626757127199999 a001 591286729879/1568397607*4106118243^(20/23) 8626757127199999 a001 32264490531/224056801*4106118243^(21/23) 8626757127199999 a001 86267571272/1568397607*4106118243^(22/23) 8626757127199999 a001 158414167969674450561/1836311903 8626757127199999 a001 591286729879/599074578*599074578^(19/21) 8626757127199999 a001 701408733/2537720636*3461452808002^(11/12) 8626757127199999 a001 97905340104793732219/1134903170 8626757127199999 a001 591286729879/4106118243*2537720636^(14/15) 8626757127199999 a001 182717648081/299537289*599074578^(13/14) 8626757127199999 a001 516002918640/1368706081*2537720636^(8/9) 8626757127199999 a001 2504730781961/4106118243*2537720636^(13/15) 8626757127199999 a001 3536736619241/1368706081*2537720636^(4/5) 8626757127199999 a001 48952670052396866112/567451585 8626757127199999 a001 774004377960/5374978561*2537720636^(14/15) 8626757127199999 a001 19581068020958746445/226980634 8626757127199999 a001 4052739537881/10749957122*2537720636^(8/9) 8626757127199999 a001 4052739537881/28143753123*2537720636^(14/15) 8626757127199999 a001 1515744265389/10525900321*2537720636^(14/15) 8626757127199999 a001 3278735159921/22768774562*2537720636^(14/15) 8626757127199999 a001 3278735159921/5374978561*2537720636^(13/15) 8626757127199999 a001 2504730781961/17393796001*2537720636^(14/15) 8626757127199999 a001 3536736619241/9381251041*2537720636^(8/9) 8626757127199999 a001 6557470319842/17393796001*2537720636^(8/9) 8626757127199999 a001 97905340104793732227/1134903170 8626757127199999 a001 267913919/710646*599074578^(20/21) 8626757127199999 a001 10610209857723/17393796001*2537720636^(13/15) 8626757127199999 a001 956722026041/6643838879*2537720636^(14/15) 8626757127199999 a001 1836311903/4106118243*14662949395604^(6/7) 8626757127199999 a001 2504730781961/6643838879*2537720636^(8/9) 8626757127199999 a001 4052739537881/6643838879*2537720636^(13/15) 8626757127199999 a001 1515744265389/224056801*1568397607^(17/22) 8626757127199999 a001 256319508074468182835/2971215073 8626757127199999 a001 4052739537881/1568397607*1568397607^(9/11) 8626757127199999 a001 1836311903/10749957122*14662949395604^(8/9) 8626757127199999 a001 1602508992/1368706081*23725150497407^(13/16) 8626757127199999 a001 1602508992/1368706081*505019158607^(13/14) 8626757127199999 a001 671053184118610816286/7778742049 8626757127199999 a001 591286729879/4106118243*17393796001^(6/7) 8626757127199999 a001 12586269025/4106118243*312119004989^(10/11) 8626757127199999 a001 12586269025/4106118243*3461452808002^(5/6) 8626757127199999 a001 10983760033/1368706081*45537549124^(16/17) 8626757127199999 a001 1756840044281364266023/20365011074 8626757127199999 a001 139583862445/4106118243*45537549124^(15/17) 8626757127199999 a001 591286729879/4106118243*45537549124^(14/17) 8626757127199999 a001 2504730781961/4106118243*45537549124^(13/17) 8626757127199999 a001 3536736619241/1368706081*45537549124^(12/17) 8626757127199999 a001 1836311903/73681302247*14662949395604^(20/21) 8626757127199999 a001 10983760033/1368706081*14662949395604^(16/21) 8626757127199999 a001 10983760033/1368706081*192900153618^(8/9) 8626757127199999 a001 4599466948725481981783/53316291173 8626757127199999 a001 10983760033/1368706081*73681302247^(12/13) 8626757127199999 a001 12041560801895081679326/139583862445 8626757127199999 a001 516002918640/1368706081*312119004989^(8/11) 8626757127199999 a001 591286729879/4106118243*817138163596^(14/19) 8626757127199999 a001 3536736619241/1368706081*14662949395604^(4/7) 8626757127199999 a001 139583862445/4106118243*312119004989^(9/11) 8626757127199999 a001 591286729879/4106118243*505019158607^(3/4) 8626757127199999 a001 3536736619241/1368706081*505019158607^(9/14) 8626757127199999 a001 927793078812603875089/10754830177 8626757127199999 a001 139583862445/4106118243*14662949395604^(5/7) 8626757127199999 a001 3536736619241/1368706081*192900153618^(2/3) 8626757127199999 a001 2504730781961/4106118243*192900153618^(13/18) 8626757127199999 a001 7442093853169599697543/86267571272 8626757127199999 a001 139583862445/4106118243*192900153618^(5/6) 8626757127199999 a001 3536736619241/1368706081*73681302247^(9/13) 8626757127199999 a001 2504730781961/4106118243*73681302247^(3/4) 8626757127199999 a001 516002918640/1368706081*73681302247^(10/13) 8626757127199999 a001 75283811239/1368706081*73681302247^(11/13) 8626757127199999 a001 947542301481372571920/10983760033 8626757127199999 a001 20365011074/4106118243*14662949395604^(7/9) 8626757127199999 a001 20365011074/4106118243*505019158607^(7/8) 8626757127199999 a001 516002918640/1368706081*28143753123^(4/5) 8626757127199999 a001 139583862445/4106118243*28143753123^(9/10) 8626757127199999 a001 1085786860162753449737/12586269025 8626757127199999 a001 7778742049/4106118243*817138163596^(17/19) 8626757127199999 a001 1836311903/17393796001*14662949395604^(19/21) 8626757127199999 a001 7778742049/4106118243*192900153618^(17/18) 8626757127199999 a001 1548008755920/1568397607*1568397607^(19/22) 8626757127199999 a001 3536736619241/1368706081*10749957122^(3/4) 8626757127199999 a001 4052739537881/4106118243*10749957122^(19/24) 8626757127199999 a001 2504730781961/4106118243*10749957122^(13/16) 8626757127199999 a001 516002918640/1368706081*10749957122^(5/6) 8626757127199999 a001 591286729879/4106118243*10749957122^(7/8) 8626757127199999 a001 75283811239/1368706081*10749957122^(11/12) 8626757127199999 a001 139583862445/4106118243*10749957122^(15/16) 8626757127199999 a001 86267571272/4106118243*10749957122^(23/24) 8626757127199999 a001 19749222668768696831/228929856 8626757127199999 a001 591286729879/1568397607*1568397607^(10/11) 8626757127199999 a001 1836311903/6643838879*3461452808002^(11/12) 8626757127199999 a001 256319508074468182848/2971215073 8626757127199999 a001 256319508074468182850/2971215073 8626757127199999 a001 256319508074468182851/2971215073 8626757127199999 a001 32264490531/224056801*1568397607^(21/22) 8626757127199999 a001 2403763488/5374978561*14662949395604^(6/7) 8626757127199999 a001 3536736619241/1368706081*4106118243^(18/23) 8626757127199999 a001 671053184118610816320/7778742049 8626757127199999 a001 774004377960/5374978561*17393796001^(6/7) 8626757127199999 a001 4052739537881/4106118243*4106118243^(19/23) 8626757127199999 a001 1602508992/9381251041*14662949395604^(8/9) 8626757127199999 a001 12586269025/10749957122*23725150497407^(13/16) 8626757127199999 a001 12586269025/10749957122*505019158607^(13/14) 8626757127199999 a001 43133785636/5374978561*45537549124^(16/17) 8626757127199999 a001 182717648081/5374978561*45537549124^(15/17) 8626757127199999 a001 774004377960/5374978561*45537549124^(14/17) 8626757127199999 a001 3278735159921/5374978561*45537549124^(13/17) 8626757127199999 a001 32951280099/10749957122*312119004989^(10/11) 8626757127199999 a001 32951280099/10749957122*3461452808002^(5/6) 8626757127199999 a001 4599466948725481982016/53316291173 8626757127199999 a001 267084832/10716675201*14662949395604^(20/21) 8626757127199999 a001 12041560801895081679936/139583862445 8626757127199999 a001 591286729879/10749957122*312119004989^(4/5) 8626757127199999 a001 4052739537881/10749957122*312119004989^(8/11) 8626757127199999 a001 182717648081/5374978561*312119004989^(9/11) 8626757127199999 a001 15762607728479881528896/182717648081 8626757127199999 a001 774004377960/5374978561*817138163596^(14/19) 8626757127199999 a001 4052739537881/10749957122*23725150497407^(5/8) 8626757127199999 a001 182717648081/5374978561*14662949395604^(5/7) 8626757127199999 a001 774004377960/5374978561*505019158607^(3/4) 8626757127199999 a001 927793078812603875136/10754830177 8626757127199999 a001 3278735159921/5374978561*192900153618^(13/18) 8626757127199999 a001 182717648081/5374978561*192900153618^(5/6) 8626757127199999 a001 930261731646199962240/10783446409 8626757127199999 a001 53316291173/10749957122*14662949395604^(7/9) 8626757127199999 a001 53316291173/10749957122*505019158607^(7/8) 8626757127199999 a001 3278735159921/5374978561*73681302247^(3/4) 8626757127199999 a001 4052739537881/10749957122*73681302247^(10/13) 8626757127199999 a001 43133785636/5374978561*73681302247^(12/13) 8626757127199999 a001 591286729879/10749957122*73681302247^(11/13) 8626757127199999 a001 947542301481372571968/10983760033 8626757127199999 a001 10182505537/5374978561*817138163596^(17/19) 8626757127199999 a001 10182505537/5374978561*14662949395604^(17/21) 8626757127199999 a001 10182505537/5374978561*192900153618^(17/18) 8626757127199999 a001 516002918640/1368706081*4106118243^(20/23) 8626757127199999 a001 4052739537881/10749957122*28143753123^(4/5) 8626757127199999 a001 182717648081/5374978561*28143753123^(9/10) 8626757127199999 a001 1085786860162753449792/12586269025 8626757127199999 a001 4807526976/17393796001*3461452808002^(11/12) 8626757127199999 a001 591286729879/4106118243*4106118243^(21/23) 8626757127199999 a001 671053184118610816325/7778742049 8626757127199999 a001 4052739537881/28143753123*17393796001^(6/7) 8626757127199999 a001 1515744265389/10525900321*17393796001^(6/7) 8626757127199999 a001 671053184118610816326/7778742049 8626757127199999 a001 75283811239/1368706081*4106118243^(22/23) 8626757127199999 a001 12586269025/28143753123*14662949395604^(6/7) 8626757127199999 a001 3278735159921/22768774562*17393796001^(6/7) 8626757127199999 a001 4807525989/4870846*10749957122^(19/24) 8626757127199999 a001 1756840044281364266125/20365011074 8626757127199999 a001 75283811239/9381251041*45537549124^(16/17) 8626757127199999 a001 956722026041/28143753123*45537549124^(15/17) 8626757127199999 a001 4052739537881/28143753123*45537549124^(14/17) 8626757127199999 a001 3278735159921/5374978561*10749957122^(13/16) 8626757127199999 a001 12586269025/73681302247*14662949395604^(8/9) 8626757127199999 a001 10983760033/9381251041*23725150497407^(13/16) 8626757127199999 a001 10983760033/9381251041*505019158607^(13/14) 8626757127199999 a001 4599466948725481982050/53316291173 8626757127199999 a001 86267571272/28143753123*312119004989^(10/11) 8626757127199999 a001 86267571272/28143753123*3461452808002^(5/6) 8626757127199999 a001 12585437040/228811001*312119004989^(4/5) 8626757127199999 a001 956722026041/28143753123*312119004989^(9/11) 8626757127199999 a001 3536736619241/9381251041*312119004989^(8/11) 8626757127199999 a001 31525215456959763058025/365435296162 8626757127199999 a001 4052739537881/28143753123*817138163596^(14/19) 8626757127199999 a001 12585437040/228811001*23725150497407^(11/16) 8626757127199999 a001 4052739537881/28143753123*14662949395604^(2/3) 8626757127199999 a001 3536736619241/9381251041*23725150497407^(5/8) 8626757127199999 a001 956722026041/28143753123*14662949395604^(5/7) 8626757127199999 a001 4052739537881/28143753123*505019158607^(3/4) 8626757127199999 a001 139583862445/28143753123*14662949395604^(7/9) 8626757127199999 a001 139583862445/28143753123*505019158607^(7/8) 8626757127199999 a001 75283811239/9381251041*192900153618^(8/9) 8626757127199999 a001 4052739537881/28143753123*192900153618^(7/9) 8626757127199999 a001 956722026041/28143753123*192900153618^(5/6) 8626757127199999 a001 7442093853169599697975/86267571272 8626757127199999 a001 53316291173/28143753123*817138163596^(17/19) 8626757127199999 a001 53316291173/28143753123*14662949395604^(17/21) 8626757127199999 a001 53316291173/28143753123*192900153618^(17/18) 8626757127199999 a001 3536736619241/9381251041*73681302247^(10/13) 8626757127199999 a001 12585437040/228811001*73681302247^(11/13) 8626757127199999 a001 75283811239/9381251041*73681302247^(12/13) 8626757127199999 a001 947542301481372571975/10983760033 8626757127199999 a001 774004377960/5374978561*10749957122^(7/8) 8626757127199999 a001 12586269025/45537549124*3461452808002^(11/12) 8626757127199999 a001 591286729879/10749957122*10749957122^(11/12) 8626757127199999 a001 591286729879/73681302247*45537549124^(16/17) 8626757127199999 a001 2504730781961/73681302247*45537549124^(15/17) 8626757127199999 a001 1756840044281364266127/20365011074 8626757127199999 a001 1515744265389/10525900321*45537549124^(14/17) 8626757127199999 a001 182717648081/5374978561*10749957122^(15/16) 8626757127199999 a001 86000486440/10716675201*45537549124^(16/17) 8626757127199999 a001 4052739537881/505019158607*45537549124^(16/17) 8626757127199999 a001 3536736619241/440719107401*45537549124^(16/17) 8626757127199999 a001 3278735159921/96450076809*45537549124^(15/17) 8626757127199999 a001 3278735159921/408569081798*45537549124^(16/17) 8626757127199999 a001 2504730781961/312119004989*45537549124^(16/17) 8626757127199999 a001 956722026041/119218851371*45537549124^(16/17) 8626757127199999 a001 32951280099/73681302247*14662949395604^(6/7) 8626757127199999 a001 225851433717/10749957122*10749957122^(23/24) 8626757127199999 a001 4052739537881/119218851371*45537549124^(15/17) 8626757127199999 a001 3536736619241/9381251041*28143753123^(4/5) 8626757127199999 a001 4599466948725481982055/53316291173 8626757127199999 a001 10983760033/64300051206*14662949395604^(8/9) 8626757127199999 a001 86267571272/73681302247*23725150497407^(13/16) 8626757127199999 a001 32264490531/10525900321*312119004989^(10/11) 8626757127199999 a001 12041560801895081680038/139583862445 8626757127199999 a001 4052739537881/73681302247*312119004989^(4/5) 8626757127199999 a001 32264490531/10525900321*3461452808002^(5/6) 8626757127199999 a001 31525215456959763058059/365435296162 8626757127199999 a001 1515744265389/10525900321*14662949395604^(2/3) 8626757127199999 a001 1515744265389/10525900321*505019158607^(3/4) 8626757127199999 a001 6494551551688227126007/75283811239 8626757127199999 a001 365435296162/73681302247*505019158607^(7/8) 8626757127199999 a001 139583862445/73681302247*817138163596^(17/19) 8626757127199999 a001 1515744265389/10525900321*192900153618^(7/9) 8626757127199999 a001 2504730781961/73681302247*192900153618^(5/6) 8626757127199999 a001 591286729879/73681302247*192900153618^(8/9) 8626757127199999 a001 139583862445/73681302247*192900153618^(17/18) 8626757127199999 a001 956722026041/28143753123*28143753123^(9/10) 8626757127199999 a001 32951280099/119218851371*3461452808002^(11/12) 8626757127199999 a001 43133785636/96450076809*14662949395604^(6/7) 8626757127199999 a001 3278735159921/96450076809*312119004989^(9/11) 8626757127199999 a001 86267571272/505019158607*14662949395604^(8/9) 8626757127200000 a001 3278735159921/96450076809*14662949395604^(5/7) 8626757127200000 a001 182717648081/96450076809*817138163596^(17/19) 8626757127200000 a001 956722026041/192900153618*505019158607^(7/8) 8626757127200000 a001 86267571272/312119004989*3461452808002^(11/12) 8626757127200000 a001 591286729879/73681302247*73681302247^(12/13) 8626757127200000 a001 225851433717/505019158607*14662949395604^(6/7) 8626757127200000 a001 75283811239/440719107401*14662949395604^(8/9) 8626757127200000 a001 1548008755920/505019158607*3461452808002^(5/6) 8626757127200000 a001 216077041249992859424397/2504730781961 8626757127200000 a001 182717648081/408569081798*14662949395604^(6/7) 8626757127200000 a001 4052739537881/817138163596*505019158607^(7/8) 8626757127200000 a001 140728068720/28374454999*14662949395604^(7/9) 8626757127200000 a001 139583862445/817138163596*14662949395604^(8/9) 8626757127200000 a001 140728068720/28374454999*505019158607^(7/8) 8626757127200000 a001 365435296162/312119004989*505019158607^(13/14) 8626757127200000 a001 4052739537881/505019158607*192900153618^(8/9) 8626757127200000 a001 139583862445/312119004989*14662949395604^(6/7) 8626757127200000 a001 3536736619241/440719107401*192900153618^(8/9) 8626757127200000 a001 19483654655064681378025/225851433717 8626757127200000 a001 182717648081/22768774562*45537549124^(16/17) 8626757127200000 a001 10610209857723/312119004989*192900153618^(5/6) 8626757127200000 a001 2504730781961/312119004989*192900153618^(8/9) 8626757127200000 a001 591286729879/312119004989*192900153618^(17/18) 8626757127200000 a001 53316291173/192900153618*3461452808002^(11/12) 8626757127200000 a001 12041560801895081680041/139583862445 8626757127200000 a001 387002188980/11384387281*45537549124^(15/17) 8626757127200000 a001 4052739537881/119218851371*312119004989^(9/11) 8626757127200000 a001 365435296162/119218851371*312119004989^(10/11) 8626757127200000 a001 225851433717/119218851371*817138163596^(17/19) 8626757127200000 a001 31525215456959763058067/365435296162 8626757127200000 a001 133542955681008651930253/1548008755920 8626757127200000 a001 51008870112024444436093/591286729879 8626757127200000 a001 365435296162/119218851371*3461452808002^(5/6) 8626757127200000 a001 19483654655064681378026/225851433717 8626757127200000 a001 53316291173/312119004989*14662949395604^(8/9) 8626757127200000 a001 139583862445/119218851371*505019158607^(13/14) 8626757127200000 a001 3278735159921/22768774562*45537549124^(14/17) 8626757127200000 a001 225851433717/119218851371*192900153618^(17/18) 8626757127200000 a001 4052739537881/119218851371*192900153618^(5/6) 8626757127200000 a001 7442093853169599697985/86267571272 8626757127200000 a001 3536736619241/64300051206*73681302247^(11/13) 8626757127200000 a001 53316291173/119218851371*14662949395604^(6/7) 8626757127200000 a001 86000486440/10716675201*73681302247^(12/13) 8626757127200000 a001 4052739537881/505019158607*73681302247^(12/13) 8626757127200000 a001 3536736619241/440719107401*73681302247^(12/13) 8626757127200000 a001 3278735159921/408569081798*73681302247^(12/13) 8626757127200000 a001 2504730781961/312119004989*73681302247^(12/13) 8626757127200000 a001 6557470319842/119218851371*73681302247^(11/13) 8626757127200000 a001 956722026041/119218851371*73681302247^(12/13) 8626757127200000 a001 20365011074/73681302247*3461452808002^(11/12) 8626757127200000 a001 2842626904444117715929/32951280099 8626757127200000 a001 4599466948725481982058/53316291173 8626757127200000 a001 21566892818/11384387281*817138163596^(17/19) 8626757127200000 a001 10182505537/96450076809*14662949395604^(19/21) 8626757127200000 a001 21566892818/11384387281*14662949395604^(17/21) 8626757127200000 a001 12041560801895081680046/139583862445 8626757127200000 a001 2504730781961/17393796001*17393796001^(6/7) 8626757127200000 a001 2504730781961/45537549124*312119004989^(4/5) 8626757127200000 a001 225851433717/45537549124*14662949395604^(7/9) 8626757127200000 a001 15762607728479881529040/182717648081 8626757127200000 a001 21566892818/11384387281*192900153618^(17/18) 8626757127200000 a001 225851433717/45537549124*505019158607^(7/8) 8626757127200000 a001 51008870112024444436114/591286729879 8626757127200000 a001 139583862445/45537549124*312119004989^(10/11) 8626757127200000 a001 19483654655064681378034/225851433717 8626757127200000 a001 139583862445/45537549124*3461452808002^(5/6) 8626757127200000 a001 182717648081/22768774562*192900153618^(8/9) 8626757127200000 a001 1860523463292399924497/21566892818 8626757127200000 a001 20365011074/119218851371*14662949395604^(8/9) 8626757127200000 a001 53316291173/45537549124*23725150497407^(13/16) 8626757127200000 a001 53316291173/45537549124*505019158607^(13/14) 8626757127200000 a001 2504730781961/45537549124*73681302247^(11/13) 8626757127200000 a001 182717648081/22768774562*73681302247^(12/13) 8626757127200000 a001 2842626904444117715930/32951280099 8626757127200000 a001 1085786860162753449801/12586269025 8626757127200000 a001 2504730781961/73681302247*28143753123^(9/10) 8626757127200000 a001 10182505537/22768774562*14662949395604^(6/7) 8626757127200000 a001 3278735159921/96450076809*28143753123^(9/10) 8626757127200000 a001 10610209857723/312119004989*28143753123^(9/10) 8626757127200000 a001 4052739537881/119218851371*28143753123^(9/10) 8626757127200000 a001 387002188980/11384387281*28143753123^(9/10) 8626757127200000 a001 1085786860162753449802/12586269025 8626757127200000 a001 7778742049/28143753123*3461452808002^(11/12) 8626757127200000 a001 1756840044281364266133/20365011074 8626757127200000 a001 139583862445/17393796001*45537549124^(16/17) 8626757127200000 a001 591286729879/17393796001*45537549124^(15/17) 8626757127200000 a001 2504730781961/17393796001*45537549124^(14/17) 8626757127200000 a001 10610209857723/17393796001*45537549124^(13/17) 8626757127200000 a001 32951280099/17393796001*817138163596^(17/19) 8626757127200000 a001 32951280099/17393796001*14662949395604^(17/21) 8626757127200000 a001 32951280099/17393796001*192900153618^(17/18) 8626757127200000 a001 4599466948725481982071/53316291173 8626757127200000 a001 86267571272/17393796001*14662949395604^(7/9) 8626757127200000 a001 86267571272/17393796001*505019158607^(7/8) 8626757127200000 a001 2408312160379016336016/27916772489 8626757127200000 a001 591286729879/17393796001*312119004989^(9/11) 8626757127200000 a001 2504730781961/17393796001*817138163596^(14/19) 8626757127200000 a001 591286729879/17393796001*14662949395604^(5/7) 8626757127200000 a001 51008870112024444436258/591286729879 8626757127200000 a001 2504730781961/17393796001*505019158607^(3/4) 8626757127200000 a001 1498742665774206259853/17373187209 8626757127200000 a001 7778742049/312119004989*14662949395604^(20/21) 8626757127200000 a001 2504730781961/17393796001*192900153618^(7/9) 8626757127200000 a001 591286729879/17393796001*192900153618^(5/6) 8626757127200000 a001 7442093853169599698009/86267571272 8626757127200000 a001 139583862445/17393796001*192900153618^(8/9) 8626757127200000 a001 53316291173/17393796001*312119004989^(10/11) 8626757127200000 a001 53316291173/17393796001*3461452808002^(5/6) 8626757127200000 a001 10610209857723/17393796001*73681302247^(3/4) 8626757127200000 a001 956722026041/17393796001*73681302247^(11/13) 8626757127200000 a001 139583862445/17393796001*73681302247^(12/13) 8626757127200000 a001 2842626904444117715938/32951280099 8626757127200000 a001 7778742049/45537549124*14662949395604^(8/9) 8626757127200000 a001 20365011074/17393796001*23725150497407^(13/16) 8626757127200000 a001 20365011074/17393796001*505019158607^(13/14) 8626757127200000 a001 6557470319842/17393796001*28143753123^(4/5) 8626757127200000 a001 591286729879/17393796001*28143753123^(9/10) 8626757127200000 a001 217157372032550689961/2517253805 8626757127200000 a001 3536736619241/9381251041*10749957122^(5/6) 8626757127200000 a001 4052739537881/28143753123*10749957122^(7/8) 8626757127200000 a001 7778742049/17393796001*14662949395604^(6/7) 8626757127200000 a001 12585437040/228811001*10749957122^(11/12) 8626757127200000 a001 956722026041/28143753123*10749957122^(15/16) 8626757127200000 a001 591286729879/28143753123*10749957122^(23/24) 8626757127200000 a001 138244558681380877825/1602508992 8626757127200000 a001 1515744265389/10525900321*10749957122^(7/8) 8626757127200000 a001 4052739537881/73681302247*10749957122^(11/12) 8626757127200000 a001 3536736619241/64300051206*10749957122^(11/12) 8626757127200000 a001 2504730781961/73681302247*10749957122^(15/16) 8626757127200000 a001 6557470319842/119218851371*10749957122^(11/12) 8626757127200000 a001 3278735159921/22768774562*10749957122^(7/8) 8626757127200000 a001 3278735159921/96450076809*10749957122^(15/16) 8626757127200000 a001 1548008755920/73681302247*10749957122^(23/24) 8626757127200000 a001 4052739537881/119218851371*10749957122^(15/16) 8626757127200000 a001 4052739537881/192900153618*10749957122^(23/24) 8626757127200000 a001 225749145909/10745088481*10749957122^(23/24) 8626757127200000 a001 6557470319842/312119004989*10749957122^(23/24) 8626757127200000 a001 2504730781961/119218851371*10749957122^(23/24) 8626757127200000 a001 2504730781961/45537549124*10749957122^(11/12) 8626757127200000 a001 387002188980/11384387281*10749957122^(15/16) 8626757127200000 a001 956722026041/45537549124*10749957122^(23/24) 8626757127200000 a001 103683419011035658369/1201881744 8626757127200000 a001 10610209857723/17393796001*10749957122^(13/16) 8626757127200000 a001 182717648081/1268860318*2537720636^(14/15) 8626757127200000 a001 6557470319842/17393796001*10749957122^(5/6) 8626757127200000 a001 2504730781961/17393796001*10749957122^(7/8) 8626757127200000 a001 956722026041/17393796001*10749957122^(11/12) 8626757127200000 a001 591286729879/17393796001*10749957122^(15/16) 8626757127200000 a001 365435296162/17393796001*10749957122^(23/24) 8626757127200000 a001 414733676044142633477/4807526976 8626757127200000 a001 2971215073/10749957122*3461452808002^(11/12) 8626757127200000 a001 956722026041/2537720636*2537720636^(8/9) 8626757127200000 a001 51619475701431601257/598364773 8626757127200000 a001 956722026041/6643838879*17393796001^(6/7) 8626757127200000 a001 1134903780/1860499*2537720636^(13/15) 8626757127200000 a001 12586269025/6643838879*817138163596^(17/19) 8626757127200000 a001 2971215073/28143753123*14662949395604^(19/21) 8626757127200000 a001 12586269025/6643838879*14662949395604^(17/21) 8626757127200000 a001 12586269025/6643838879*192900153618^(17/18) 8626757127200000 a001 1756840044281364266167/20365011074 8626757127200000 a001 225851433717/6643838879*45537549124^(15/17) 8626757127200000 a001 956722026041/6643838879*45537549124^(14/17) 8626757127200000 a001 53316291173/6643838879*45537549124^(16/17) 8626757127200000 a001 4052739537881/6643838879*45537549124^(13/17) 8626757127200000 a001 32951280099/6643838879*14662949395604^(7/9) 8626757127200000 a001 32951280099/6643838879*505019158607^(7/8) 8626757127200000 a001 4599466948725481982160/53316291173 8626757127200000 a001 225851433717/6643838879*312119004989^(9/11) 8626757127200000 a001 12041560801895081680313/139583862445 8626757127200000 a001 2504730781961/6643838879*312119004989^(8/11) 8626757127200000 a001 365435296162/6643838879*312119004989^(4/5) 8626757127200000 a001 225851433717/6643838879*14662949395604^(5/7) 8626757127200000 a001 31525215456959763058779/365435296162 8626757127200000 a001 2504730781961/6643838879*23725150497407^(5/8) 8626757127200000 a001 956722026041/6643838879*14662949395604^(2/3) 8626757127200000 a001 956722026041/6643838879*505019158607^(3/4) 8626757127200000 a001 1498742665774206259882/17373187209 8626757127200000 a001 225851433717/6643838879*192900153618^(5/6) 8626757127200000 a001 4052739537881/6643838879*192900153618^(13/18) 8626757127200000 a001 956722026041/6643838879*192900153618^(7/9) 8626757127200000 a001 7442093853169599698153/86267571272 8626757127200000 a001 2971215073/119218851371*14662949395604^(20/21) 8626757127200000 a001 53316291173/6643838879*192900153618^(8/9) 8626757127200000 a001 4052739537881/6643838879*73681302247^(3/4) 8626757127200000 a001 2504730781961/6643838879*73681302247^(10/13) 8626757127200000 a001 365435296162/6643838879*73681302247^(11/13) 8626757127200000 a001 2842626904444117715993/32951280099 8626757127200000 a001 53316291173/6643838879*73681302247^(12/13) 8626757127200000 a001 20365011074/6643838879*312119004989^(10/11) 8626757127200000 a001 20365011074/6643838879*3461452808002^(5/6) 8626757127200000 a001 2504730781961/6643838879*28143753123^(4/5) 8626757127200000 a001 225851433717/6643838879*28143753123^(9/10) 8626757127200000 a001 1085786860162753449826/12586269025 8626757127200000 a001 2971215073/17393796001*14662949395604^(8/9) 8626757127200000 a001 7778742049/6643838879*505019158607^(13/14) 8626757127200000 a001 6557470319842/6643838879*10749957122^(19/24) 8626757127200000 a001 4052739537881/6643838879*10749957122^(13/16) 8626757127200000 a001 2504730781961/6643838879*10749957122^(5/6) 8626757127200000 a001 956722026041/6643838879*10749957122^(7/8) 8626757127200000 a001 365435296162/6643838879*10749957122^(11/12) 8626757127200000 a001 225851433717/6643838879*10749957122^(15/16) 8626757127200000 a001 139583862445/6643838879*10749957122^(23/24) 8626757127200000 a001 3278735159921/1268860318*2537720636^(4/5) 8626757127200000 a001 414733676044142633485/4807526976 8626757127200000 a001 10610209857723/2537720636*2537720636^(7/9) 8626757127200000 a001 4807525989/4870846*4106118243^(19/23) 8626757127200000 a001 4052739537881/10749957122*4106118243^(20/23) 8626757127200000 a001 2971215073/6643838879*14662949395604^(6/7) 8626757127200000 a001 774004377960/5374978561*4106118243^(21/23) 8626757127200000 a001 591286729879/10749957122*4106118243^(22/23) 8626757127200000 a001 3536736619241/9381251041*4106118243^(20/23) 8626757127200000 a001 158414167969674450624/1836311903 8626757127200000 a001 4052739537881/28143753123*4106118243^(21/23) 8626757127200000 a001 1515744265389/10525900321*4106118243^(21/23) 8626757127200000 a001 3278735159921/22768774562*4106118243^(21/23) 8626757127200000 a001 6557470319842/17393796001*4106118243^(20/23) 8626757127200000 a001 12585437040/228811001*4106118243^(22/23) 8626757127200000 a001 4052739537881/73681302247*4106118243^(22/23) 8626757127200000 a001 3536736619241/64300051206*4106118243^(22/23) 8626757127200000 a001 158414167969674450625/1836311903 8626757127200000 a001 6557470319842/119218851371*4106118243^(22/23) 8626757127200000 a001 2504730781961/45537549124*4106118243^(22/23) 8626757127200000 a001 2504730781961/17393796001*4106118243^(21/23) 8626757127200000 a001 956722026041/17393796001*4106118243^(22/23) 8626757127200000 a001 158414167969674450626/1836311903 8626757127200000 a001 6557470319842/6643838879*4106118243^(19/23) 8626757127200000 a001 2504730781961/6643838879*4106118243^(20/23) 8626757127200000 a001 956722026041/6643838879*4106118243^(21/23) 8626757127200000 a001 365435296162/6643838879*4106118243^(22/23) 8626757127200000 a001 158414167969674450629/1836311903 8626757127200000 a001 1134903170/4106118243*3461452808002^(11/12) 8626757127200000 a001 256319508074468182890/2971215073 8626757127200000 a001 1201881744/634430159*817138163596^(17/19) 8626757127200000 a001 1201881744/634430159*14662949395604^(17/21) 8626757127200000 a001 1201881744/634430159*192900153618^(17/18) 8626757127200000 a001 671053184118610816430/7778742049 8626757127200000 a001 182717648081/1268860318*17393796001^(6/7) 8626757127200000 a001 10610209857723/2537720636*17393796001^(5/7) 8626757127200000 a001 1144206275/230701876*14662949395604^(7/9) 8626757127200000 a001 1144206275/230701876*505019158607^(7/8) 8626757127200000 a001 878420022140682133200/10182505537 8626757127200000 a001 1135099622/33391061*45537549124^(15/17) 8626757127200000 a001 182717648081/1268860318*45537549124^(14/17) 8626757127200000 a001 1134903780/1860499*45537549124^(13/17) 8626757127200000 a001 3278735159921/1268860318*45537549124^(12/17) 8626757127200000 a001 4599466948725481982770/53316291173 8626757127200000 a001 1135099622/33391061*312119004989^(9/11) 8626757127200000 a001 1135099622/33391061*14662949395604^(5/7) 8626757127200000 a001 2408312160379016336382/27916772489 8626757127200000 a001 10610209857723/2537720636*312119004989^(7/11) 8626757127200000 a001 1134903780/1860499*14662949395604^(13/21) 8626757127200000 a001 10610209857723/2537720636*14662949395604^(5/9) 8626757127200000 a001 956722026041/2537720636*23725150497407^(5/8) 8626757127200000 a001 182717648081/1268860318*817138163596^(14/19) 8626757127200000 a001 182717648081/1268860318*14662949395604^(2/3) 8626757127200000 a001 139583862445/2537720636*312119004989^(4/5) 8626757127200000 a001 10610209857723/2537720636*505019158607^(5/8) 8626757127200000 a001 182717648081/1268860318*505019158607^(3/4) 8626757127200000 a001 139583862445/2537720636*23725150497407^(11/16) 8626757127200000 a001 3278735159921/1268860318*192900153618^(2/3) 8626757127200000 a001 1134903780/1860499*192900153618^(13/18) 8626757127200000 a001 182717648081/1268860318*192900153618^(7/9) 8626757127200000 a001 109442556664258819105/1268640754 8626757127200000 a001 10182505537/1268860318*45537549124^(16/17) 8626757127200000 a001 3278735159921/1268860318*73681302247^(9/13) 8626757127200000 a001 1134903780/1860499*73681302247^(3/4) 8626757127200000 a001 956722026041/2537720636*73681302247^(10/13) 8626757127200000 a001 139583862445/2537720636*73681302247^(11/13) 8626757127200000 a001 2842626904444117716370/32951280099 8626757127200000 a001 567451585/22768774562*14662949395604^(20/21) 8626757127200000 a001 10182505537/1268860318*14662949395604^(16/21) 8626757127200000 a001 10182505537/1268860318*192900153618^(8/9) 8626757127200000 a001 10182505537/1268860318*73681302247^(12/13) 8626757127200000 a001 10610209857723/2537720636*28143753123^(7/10) 8626757127200000 a001 956722026041/2537720636*28143753123^(4/5) 8626757127200000 a001 1135099622/33391061*28143753123^(9/10) 8626757127200000 a001 217157372032550689994/2517253805 8626757127200000 a001 7778742049/2537720636*312119004989^(10/11) 8626757127200000 a001 7778742049/2537720636*3461452808002^(5/6) 8626757127200000 a001 3278735159921/1268860318*10749957122^(3/4) 8626757127200000 a001 2504730781961/2537720636*10749957122^(19/24) 8626757127200000 a001 1134903780/1860499*10749957122^(13/16) 8626757127200000 a001 956722026041/2537720636*10749957122^(5/6) 8626757127200000 a001 182717648081/1268860318*10749957122^(7/8) 8626757127200000 a001 139583862445/2537720636*10749957122^(11/12) 8626757127200000 a001 1135099622/33391061*10749957122^(15/16) 8626757127200000 a001 53316291173/2537720636*10749957122^(23/24) 8626757127200000 a001 103683419011035658385/1201881744 8626757127200000 a001 1134903170/6643838879*14662949395604^(8/9) 8626757127200000 a001 2971215073/2537720636*23725150497407^(13/16) 8626757127200000 a001 2971215073/2537720636*505019158607^(13/14) 8626757127200000 a001 3278735159921/1268860318*4106118243^(18/23) 8626757127200000 a001 2504730781961/2537720636*4106118243^(19/23) 8626757127200000 a001 956722026041/2537720636*4106118243^(20/23) 8626757127200000 a001 182717648081/1268860318*4106118243^(21/23) 8626757127200000 a001 139583862445/2537720636*4106118243^(22/23) 8626757127200000 a001 158414167969674450650/1836311903 8626757127200000 a001 3536736619241/1368706081*1568397607^(9/11) 8626757127200000 a001 4052739537881/4106118243*1568397607^(19/22) 8626757127200000 a001 516002918640/1368706081*1568397607^(10/11) 8626757127200000 a001 567451585/1268860318*14662949395604^(6/7) 8626757127200000 a001 591286729879/4106118243*1568397607^(21/22) 8626757127200000 a001 4807525989/4870846*1568397607^(19/22) 8626757127200000 a001 20169609288293572799/233802911 8626757127200000 a001 4052739537881/10749957122*1568397607^(10/11) 8626757127200000 a001 3536736619241/9381251041*1568397607^(10/11) 8626757127200000 a001 6557470319842/17393796001*1568397607^(10/11) 8626757127200000 a001 6557470319842/6643838879*1568397607^(19/22) 8626757127200000 a001 774004377960/5374978561*1568397607^(21/22) 8626757127200000 a001 4052739537881/28143753123*1568397607^(21/22) 8626757127200000 a001 1515744265389/10525900321*1568397607^(21/22) 8626757127200000 a001 3278735159921/22768774562*1568397607^(21/22) 8626757127200000 a001 2504730781961/17393796001*1568397607^(21/22) 8626757127200000 a001 2504730781961/6643838879*1568397607^(10/11) 8626757127200000 a001 20169609288293572800/233802911 8626757127200000 a001 956722026041/6643838879*1568397607^(21/22) 8626757127200000 a001 60508827864880718401/701408733 8626757127200000 a001 60508827864880718402/701408733 8626757127200000 a001 3278735159921/1268860318*1568397607^(9/11) 8626757127200000 a001 2504730781961/2537720636*1568397607^(19/22) 8626757127200000 a001 956722026041/2537720636*1568397607^(10/11) 8626757127200000 a001 182717648081/1268860318*1568397607^(21/22) 8626757127200000 a001 60508827864880718410/701408733 8626757127200000 a001 433494437/1568397607*3461452808002^(11/12) 8626757127200000 a001 97905340104793732329/1134903170 8626757127200000 a001 139583862445/969323029*2537720636^(14/15) 8626757127200000 a001 365435296162/969323029*2537720636^(8/9) 8626757127200000 a001 591286729879/969323029*2537720636^(13/15) 8626757127200000 a001 2504730781961/969323029*2537720636^(4/5) 8626757127200000 a001 4052739537881/969323029*2537720636^(7/9) 8626757127200000 a001 10610209857723/969323029*2537720636^(11/15) 8626757127200000 a001 1836311903/969323029*817138163596^(17/19) 8626757127200000 a001 433494437/4106118243*14662949395604^(19/21) 8626757127200000 a001 1836311903/969323029*14662949395604^(17/21) 8626757127200000 a001 1836311903/969323029*192900153618^(17/18) 8626757127200000 a001 256319508074468183123/2971215073 8626757127200000 a001 4807526976/969323029*14662949395604^(7/9) 8626757127200000 a001 4807526976/969323029*505019158607^(7/8) 8626757127200000 a001 671053184118610817040/7778742049 8626757127200000 a001 139583862445/969323029*17393796001^(6/7) 8626757127200000 a001 4052739537881/969323029*17393796001^(5/7) 8626757127200000 a001 32951280099/969323029*45537549124^(15/17) 8626757127200000 a001 1756840044281364267997/20365011074 8626757127200000 a001 139583862445/969323029*45537549124^(14/17) 8626757127200000 a001 591286729879/969323029*45537549124^(13/17) 8626757127200000 a001 2504730781961/969323029*45537549124^(12/17) 8626757127200000 a001 6557470319842/969323029*45537549124^(2/3) 8626757127200000 a001 10610209857723/969323029*45537549124^(11/17) 8626757127200000 a001 32951280099/969323029*312119004989^(9/11) 8626757127200000 a001 32951280099/969323029*14662949395604^(5/7) 8626757127200000 a001 32951280099/969323029*192900153618^(5/6) 8626757127200000 a001 4599466948725481986951/53316291173 8626757127200000 a001 4052739537881/969323029*312119004989^(7/11) 8626757127200000 a001 10610209857723/969323029*312119004989^(3/5) 8626757127200000 a001 365435296162/969323029*312119004989^(8/11) 8626757127200000 a001 10610209857723/969323029*817138163596^(11/19) 8626757127200000 a001 956722026041/969323029*817138163596^(2/3) 8626757127200000 a001 2504730781961/969323029*14662949395604^(4/7) 8626757127200000 a001 365435296162/969323029*23725150497407^(5/8) 8626757127200000 a001 4052739537881/969323029*505019158607^(5/8) 8626757127200000 a001 2504730781961/969323029*505019158607^(9/14) 8626757127200000 a001 139583862445/969323029*817138163596^(14/19) 8626757127200000 a001 139583862445/969323029*14662949395604^(2/3) 8626757127200000 a001 139583862445/969323029*505019158607^(3/4) 8626757127200000 a001 10610209857723/969323029*192900153618^(11/18) 8626757127200000 a001 2504730781961/969323029*192900153618^(2/3) 8626757127200000 a001 139583862445/969323029*192900153618^(7/9) 8626757127200000 a001 53316291173/969323029*312119004989^(4/5) 8626757127200000 a001 53316291173/969323029*23725150497407^(11/16) 8626757127200000 a001 2504730781961/969323029*73681302247^(9/13) 8626757127200000 a001 591286729879/969323029*73681302247^(3/4) 8626757127200000 a001 365435296162/969323029*73681302247^(10/13) 8626757127200000 a001 2842626904444117718954/32951280099 8626757127200000 a001 53316291173/969323029*73681302247^(11/13) 8626757127200000 a001 4052739537881/969323029*28143753123^(7/10) 8626757127200000 a001 32951280099/969323029*28143753123^(9/10) 8626757127200000 a001 365435296162/969323029*28143753123^(4/5) 8626757127200000 a001 1085786860162753450957/12586269025 8626757127200000 a001 7778742049/969323029*45537549124^(16/17) 8626757127200000 a001 433494437/17393796001*14662949395604^(20/21) 8626757127200000 a001 7778742049/969323029*14662949395604^(16/21) 8626757127200000 a001 7778742049/969323029*192900153618^(8/9) 8626757127200000 a001 7778742049/969323029*73681302247^(12/13) 8626757127200000 a001 10610209857723/969323029*10749957122^(11/16) 8626757127200000 a001 6557470319842/969323029*10749957122^(17/24) 8626757127200000 a001 2504730781961/969323029*10749957122^(3/4) 8626757127200000 a001 956722026041/969323029*10749957122^(19/24) 8626757127200000 a001 591286729879/969323029*10749957122^(13/16) 8626757127200000 a001 365435296162/969323029*10749957122^(5/6) 8626757127200000 a001 139583862445/969323029*10749957122^(7/8) 8626757127200000 a001 32951280099/969323029*10749957122^(15/16) 8626757127200000 a001 53316291173/969323029*10749957122^(11/12) 8626757127200000 a001 414733676044142633917/4807526976 8626757127200000 a001 20365011074/969323029*10749957122^(23/24) 8626757127200000 a001 2971215073/969323029*312119004989^(10/11) 8626757127200000 a001 2971215073/969323029*3461452808002^(5/6) 8626757127200000 a001 6557470319842/969323029*4106118243^(17/23) 8626757127200000 a001 2504730781961/969323029*4106118243^(18/23) 8626757127200000 a001 956722026041/969323029*4106118243^(19/23) 8626757127200000 a001 365435296162/969323029*4106118243^(20/23) 8626757127200000 a001 139583862445/969323029*4106118243^(21/23) 8626757127200000 a001 53316291173/969323029*4106118243^(22/23) 8626757127200000 a001 158414167969674450794/1836311903 8626757127200000 a001 1134903170/969323029*23725150497407^(13/16) 8626757127200000 a001 1134903170/969323029*505019158607^(13/14) 8626757127200000 a001 10610209857723/969323029*1568397607^(3/4) 8626757127200000 a001 6557470319842/969323029*1568397607^(17/22) 8626757127200000 a001 2504730781961/969323029*1568397607^(9/11) 8626757127200000 a001 956722026041/969323029*1568397607^(19/22) 8626757127200000 a001 365435296162/969323029*1568397607^(10/11) 8626757127200000 a001 139583862445/969323029*1568397607^(21/22) 8626757127200000 a001 679874470391918185/7880997 8626757127200000 a001 1515744265389/224056801*599074578^(17/21) 8626757127200000 a001 6557470319842/1568397607*599074578^(5/6) 8626757127200000 a001 4052739537881/1568397607*599074578^(6/7) 8626757127200000 a001 1548008755920/1568397607*599074578^(19/21) 8626757127200000 a001 433494437/969323029*14662949395604^(6/7) 8626757127200000 a001 956722026041/1568397607*599074578^(13/14) 8626757127200000 a001 591286729879/1568397607*599074578^(20/21) 8626757127200000 a001 3536736619241/1368706081*599074578^(6/7) 8626757127200000 a001 23112315624967704567/267914296 8626757127200000 a001 4052739537881/4106118243*599074578^(19/21) 8626757127200000 a001 10610209857723/2537720636*599074578^(5/6) 8626757127200000 a001 4807525989/4870846*599074578^(19/21) 8626757127200000 a001 2504730781961/4106118243*599074578^(13/14) 8626757127200000 a001 3278735159921/1268860318*599074578^(6/7) 8626757127200000 a001 6557470319842/6643838879*599074578^(19/21) 8626757127200000 a001 3278735159921/5374978561*599074578^(13/14) 8626757127200000 a001 10610209857723/17393796001*599074578^(13/14) 8626757127200000 a001 516002918640/1368706081*599074578^(20/21) 8626757127200000 a001 4052739537881/6643838879*599074578^(13/14) 8626757127200000 a001 4052739537881/10749957122*599074578^(20/21) 8626757127200000 a001 3536736619241/9381251041*599074578^(20/21) 8626757127200000 a001 6557470319842/17393796001*599074578^(20/21) 8626757127200000 a001 2504730781961/2537720636*599074578^(19/21) 8626757127200000 a001 2504730781961/6643838879*599074578^(20/21) 8626757127200000 a001 23112315624967704575/267914296 8626757127200000 a001 1134903780/1860499*599074578^(13/14) 8626757127200000 a001 2889039453120963072/33489287 8626757127200000 a001 956722026041/2537720636*599074578^(20/21) 8626757127200000 a001 1777870432689823429/20608792 8626757127200000 a001 5778078906241926145/66978574 8626757127200000 a001 10610209857723/969323029*599074578^(11/14) 8626757127200000 a001 6557470319842/969323029*599074578^(17/21) 8626757127200000 a001 4052739537881/969323029*599074578^(5/6) 8626757127200000 a001 2504730781961/969323029*599074578^(6/7) 8626757127200000 a001 956722026041/969323029*599074578^(19/21) 8626757127200000 a001 591286729879/969323029*599074578^(13/14) 8626757127200000 a001 365435296162/969323029*599074578^(20/21) 8626757127200000 a001 182717648081/70711162*141422324^(12/13) 8626757127200000 a001 23112315624967704601/267914296 8626757127200000 a001 165580141/599074578*3461452808002^(11/12) 8626757127200000 a001 37396512239913014097/433494437 8626757127200000 a001 701408733/370248451*817138163596^(17/19) 8626757127200000 a001 165580141/1568397607*14662949395604^(19/21) 8626757127200000 a001 701408733/370248451*14662949395604^(17/21) 8626757127200000 a001 701408733/370248451*192900153618^(17/18) 8626757127200000 a001 97905340104793732939/1134903170 8626757127200000 a001 53316291173/370248451*2537720636^(14/15) 8626757127200000 a001 139583862445/370248451*2537720636^(8/9) 8626757127200000 a001 225851433717/370248451*2537720636^(13/15) 8626757127200000 a001 956722026041/370248451*2537720636^(4/5) 8626757127200000 a001 1548008755920/370248451*2537720636^(7/9) 8626757127200000 a001 4052739537881/370248451*2537720636^(11/15) 8626757127200000 a001 1836311903/370248451*14662949395604^(7/9) 8626757127200000 a001 1836311903/370248451*505019158607^(7/8) 8626757127200000 a001 256319508074468184720/2971215073 8626757127200000 a001 671053184118610821221/7778742049 8626757127200000 a001 53316291173/370248451*17393796001^(6/7) 8626757127200000 a001 1548008755920/370248451*17393796001^(5/7) 8626757127200000 a001 12586269025/370248451*45537549124^(15/17) 8626757127200000 a001 12586269025/370248451*312119004989^(9/11) 8626757127200000 a001 12586269025/370248451*14662949395604^(5/7) 8626757127200000 a001 12586269025/370248451*192900153618^(5/6) 8626757127200000 a001 1756840044281364278943/20365011074 8626757127200000 a001 225851433717/370248451*45537549124^(13/17) 8626757127200000 a001 956722026041/370248451*45537549124^(12/17) 8626757127200000 a001 53316291173/370248451*45537549124^(14/17) 8626757127200000 a001 2504730781961/370248451*45537549124^(2/3) 8626757127200000 a001 4052739537881/370248451*45537549124^(11/17) 8626757127200000 a001 12586269025/370248451*28143753123^(9/10) 8626757127200000 a001 1548008755920/370248451*312119004989^(7/11) 8626757127200000 a001 4052739537881/370248451*312119004989^(3/5) 8626757127200000 a001 225851433717/370248451*14662949395604^(13/21) 8626757127200000 a001 4052739537881/370248451*817138163596^(11/19) 8626757127200000 a001 1548008755920/370248451*14662949395604^(5/9) 8626757127200000 a001 10610209857723/370248451*9062201101803^(1/2) 8626757127200000 a001 6557470319842/370248451*505019158607^(4/7) 8626757127200000 a001 1548008755920/370248451*505019158607^(5/8) 8626757127200000 a001 139583862445/370248451*312119004989^(8/11) 8626757127200000 a001 139583862445/370248451*23725150497407^(5/8) 8626757127200000 a001 225851433717/370248451*192900153618^(13/18) 8626757127200000 a001 4052739537881/370248451*192900153618^(11/18) 8626757127200000 a001 956722026041/370248451*192900153618^(2/3) 8626757127200000 a001 53316291173/370248451*817138163596^(14/19) 8626757127200000 a001 53316291173/370248451*14662949395604^(2/3) 8626757127200000 a001 53316291173/370248451*505019158607^(3/4) 8626757127200000 a001 53316291173/370248451*192900153618^(7/9) 8626757127200000 a001 6557470319842/370248451*73681302247^(8/13) 8626757127200000 a001 956722026041/370248451*73681302247^(9/13) 8626757127200000 a001 225851433717/370248451*73681302247^(3/4) 8626757127200000 a001 139583862445/370248451*73681302247^(10/13) 8626757127200000 a001 20365011074/370248451*312119004989^(4/5) 8626757127200000 a001 20365011074/370248451*23725150497407^(11/16) 8626757127200000 a001 20365011074/370248451*73681302247^(11/13) 8626757127200000 a001 1548008755920/370248451*28143753123^(7/10) 8626757127200000 a001 139583862445/370248451*28143753123^(4/5) 8626757127200000 a001 1085786860162753457722/12586269025 8626757127200000 a001 6557470319842/370248451*10749957122^(2/3) 8626757127200000 a001 4052739537881/370248451*10749957122^(11/16) 8626757127200000 a001 2504730781961/370248451*10749957122^(17/24) 8626757127200000 a001 956722026041/370248451*10749957122^(3/4) 8626757127200000 a001 12586269025/370248451*10749957122^(15/16) 8626757127200000 a001 365435296162/370248451*10749957122^(19/24) 8626757127200000 a001 225851433717/370248451*10749957122^(13/16) 8626757127200000 a001 139583862445/370248451*10749957122^(5/6) 8626757127200000 a001 53316291173/370248451*10749957122^(7/8) 8626757127200000 a001 20365011074/370248451*10749957122^(11/12) 8626757127200000 a001 414733676044142636501/4807526976 8626757127200000 a001 7778742049/370248451*10749957122^(23/24) 8626757127200000 a001 2971215073/370248451*45537549124^(16/17) 8626757127200000 a001 165580141/6643838879*14662949395604^(20/21) 8626757127200000 a001 2971215073/370248451*14662949395604^(16/21) 8626757127200000 a001 2971215073/370248451*192900153618^(8/9) 8626757127200000 a001 2971215073/370248451*73681302247^(12/13) 8626757127200000 a001 6557470319842/370248451*4106118243^(16/23) 8626757127200000 a001 2504730781961/370248451*4106118243^(17/23) 8626757127200000 a001 956722026041/370248451*4106118243^(18/23) 8626757127200000 a001 365435296162/370248451*4106118243^(19/23) 8626757127200000 a001 139583862445/370248451*4106118243^(20/23) 8626757127200000 a001 53316291173/370248451*4106118243^(21/23) 8626757127200000 a001 20365011074/370248451*4106118243^(22/23) 8626757127200000 a001 158414167969674451781/1836311903 8626757127200000 a001 1134903170/370248451*312119004989^(10/11) 8626757127200000 a001 1134903170/370248451*3461452808002^(5/6) 8626757127200000 a001 6557470319842/370248451*1568397607^(8/11) 8626757127200000 a001 4052739537881/370248451*1568397607^(3/4) 8626757127200000 a001 2504730781961/370248451*1568397607^(17/22) 8626757127200000 a001 956722026041/370248451*1568397607^(9/11) 8626757127200000 a001 365435296162/370248451*1568397607^(19/22) 8626757127200000 a001 139583862445/370248451*1568397607^(10/11) 8626757127200000 a001 53316291173/370248451*1568397607^(21/22) 8626757127200000 a001 387002188980/35355581*141422324^(11/13) 8626757127200000 a001 60508827864880718842/701408733 8626757127200000 a001 165580141/969323029*14662949395604^(8/9) 8626757127200000 a001 433494437/370248451*23725150497407^(13/16) 8626757127200000 a001 433494437/370248451*505019158607^(13/14) 8626757127200000 a001 6557470319842/370248451*599074578^(16/21) 8626757127200000 a001 4052739537881/370248451*599074578^(11/14) 8626757127200000 a001 2504730781961/370248451*599074578^(17/21) 8626757127200000 a001 1548008755920/370248451*599074578^(5/6) 8626757127200000 a001 956722026041/370248451*599074578^(6/7) 8626757127200000 a001 365435296162/370248451*599074578^(19/21) 8626757127200000 a001 225851433717/370248451*599074578^(13/14) 8626757127200000 a001 139583862445/370248451*599074578^(20/21) 8626757127200000 a001 23112315624967704745/267914296 8626757127200000 a001 3278735159921/70711162*141422324^(10/13) 8626757127200000 a001 3536736619241/199691526*228826127^(4/5) 8626757127200000 a001 4052739537881/599074578*228826127^(17/20) 8626757127200000 a001 2504730781961/599074578*228826127^(7/8) 8626757127200000 a001 86000486440/33281921*228826127^(9/10) 8626757127200000 a001 165580141/370248451*14662949395604^(6/7) 8626757127200000 a001 591286729879/599074578*228826127^(19/20) 8626757127200000 a001 1515744265389/224056801*228826127^(17/20) 8626757127200000 a001 6557470319842/1568397607*228826127^(7/8) 8626757127200000 a001 2942706336674131768/34111385 8626757127200000 a001 4052739537881/1568397607*228826127^(9/10) 8626757127200000 a001 10610209857723/2537720636*228826127^(7/8) 8626757127200000 a001 3536736619241/1368706081*228826127^(9/10) 8626757127200000 a001 6557470319842/969323029*228826127^(17/20) 8626757127200000 a001 3278735159921/1268860318*228826127^(9/10) 8626757127200000 a001 1548008755920/1568397607*228826127^(19/20) 8626757127200000 a001 4052739537881/969323029*228826127^(7/8) 8626757127200000 a001 4052739537881/4106118243*228826127^(19/20) 8626757127200000 a001 4807525989/4870846*228826127^(19/20) 8626757127200000 a001 6557470319842/6643838879*228826127^(19/20) 8626757127200000 a001 2504730781961/969323029*228826127^(9/10) 8626757127200000 a001 2504730781961/2537720636*228826127^(19/20) 8626757127200000 a001 53503751575893305/620207 8626757127200000 a001 420386619524875968/4873055 8626757127200000 a001 8828119010022395329/102334155 8626757127200000 a001 956722026041/969323029*228826127^(19/20) 8626757127200000 a001 1765623802004479066/20466831 8626757127200000 a001 8828119010022395338/102334155 8626757127200000 a001 6557470319842/370248451*228826127^(4/5) 8626757127200000 a001 2504730781961/370248451*228826127^(17/20) 8626757127200000 a001 1548008755920/370248451*228826127^(7/8) 8626757127200000 a001 956722026041/370248451*228826127^(9/10) 8626757127200000 a001 365435296162/370248451*228826127^(19/20) 8626757127200000 a001 8828119010022395393/102334155 8626757127200000 a001 63245986/228826127*3461452808002^(11/12) 8626757127200000 a001 14284196614945309962/165580141 8626757127200000 a001 66978574/35355581*817138163596^(17/19) 8626757127200000 a001 31622993/299537289*14662949395604^(19/21) 8626757127200000 a001 66978574/35355581*14662949395604^(17/21) 8626757127200000 a001 66978574/35355581*192900153618^(17/18) 8626757127200000 a001 37396512239913015694/433494437 8626757127200000 a001 701408733/141422324*14662949395604^(7/9) 8626757127200000 a001 701408733/141422324*505019158607^(7/8) 8626757127200000 a001 160500557548842192/1860497 8626757127200000 a001 10182505537/70711162*2537720636^(14/15) 8626757127200000 a001 53316291173/141422324*2537720636^(8/9) 8626757127200000 a001 21566892818/35355581*2537720636^(13/15) 8626757127200000 a001 182717648081/70711162*2537720636^(4/5) 8626757127200000 a001 591286729879/141422324*2537720636^(7/9) 8626757127200000 a001 387002188980/35355581*2537720636^(11/15) 8626757127200000 a001 3278735159921/70711162*2537720636^(2/3) 8626757127200000 a001 256319508074468195666/2971215073 8626757127200000 a001 1201881744/35355581*45537549124^(15/17) 8626757127200000 a001 1201881744/35355581*312119004989^(9/11) 8626757127200000 a001 1201881744/35355581*14662949395604^(5/7) 8626757127200000 a001 1201881744/35355581*192900153618^(5/6) 8626757127200000 a001 1201881744/35355581*28143753123^(9/10) 8626757127200000 a001 671053184118610849878/7778742049 8626757127200000 a001 591286729879/141422324*17393796001^(5/7) 8626757127200000 a001 10182505537/70711162*17393796001^(6/7) 8626757127200000 a001 1201881744/35355581*10749957122^(15/16) 8626757127200000 a001 21566892818/35355581*45537549124^(13/17) 8626757127200000 a001 182717648081/70711162*45537549124^(12/17) 8626757127200000 a001 956722026041/141422324*45537549124^(2/3) 8626757127200000 a001 387002188980/35355581*45537549124^(11/17) 8626757127200000 a001 3278735159921/70711162*45537549124^(10/17) 8626757127200000 a001 21566892818/35355581*14662949395604^(13/21) 8626757127200000 a001 21566892818/35355581*192900153618^(13/18) 8626757127200000 a001 387002188980/35355581*312119004989^(3/5) 8626757127200000 a001 3278735159921/70711162*312119004989^(6/11) 8626757127200000 a001 591286729879/141422324*14662949395604^(5/9) 8626757127200000 a001 387002188980/35355581*14662949395604^(11/21) 8626757127200000 a001 3278735159921/70711162*14662949395604^(10/21) 8626757127200000 a001 10610209857723/141422324*1322157322203^(1/2) 8626757127200000 a001 182717648081/70711162*14662949395604^(4/7) 8626757127200000 a001 2504730781961/141422324*505019158607^(4/7) 8626757127200000 a001 139583862445/141422324*817138163596^(2/3) 8626757127200000 a001 3278735159921/70711162*192900153618^(5/9) 8626757127200000 a001 387002188980/35355581*192900153618^(11/18) 8626757127200000 a001 182717648081/70711162*192900153618^(2/3) 8626757127200000 a001 53316291173/141422324*312119004989^(8/11) 8626757127200000 a001 53316291173/141422324*23725150497407^(5/8) 8626757127200000 a001 10182505537/70711162*45537549124^(14/17) 8626757127200000 a001 21566892818/35355581*73681302247^(3/4) 8626757127200000 a001 182717648081/70711162*73681302247^(9/13) 8626757127200000 a001 53316291173/141422324*73681302247^(10/13) 8626757127200000 a001 10182505537/70711162*817138163596^(14/19) 8626757127200000 a001 10182505537/70711162*14662949395604^(2/3) 8626757127200000 a001 10182505537/70711162*505019158607^(3/4) 8626757127200000 a001 10182505537/70711162*192900153618^(7/9) 8626757127200000 a001 3278735159921/70711162*28143753123^(3/5) 8626757127200000 a001 591286729879/141422324*28143753123^(7/10) 8626757127200000 a001 53316291173/141422324*28143753123^(4/5) 8626757127200000 a001 7778742049/141422324*312119004989^(4/5) 8626757127200000 a001 7778742049/141422324*23725150497407^(11/16) 8626757127200000 a001 7778742049/141422324*73681302247^(11/13) 8626757127200000 a001 3278735159921/70711162*10749957122^(5/8) 8626757127200000 a001 2504730781961/141422324*10749957122^(2/3) 8626757127200000 a001 387002188980/35355581*10749957122^(11/16) 8626757127200000 a001 956722026041/141422324*10749957122^(17/24) 8626757127200000 a001 182717648081/70711162*10749957122^(3/4) 8626757127200000 a001 139583862445/141422324*10749957122^(19/24) 8626757127200000 a001 21566892818/35355581*10749957122^(13/16) 8626757127200000 a001 53316291173/141422324*10749957122^(5/6) 8626757127200000 a001 10182505537/70711162*10749957122^(7/8) 8626757127200000 a001 103683419011035663553/1201881744 8626757127200000 a001 7778742049/141422324*10749957122^(11/12) 8626757127200000 a001 2971215073/141422324*10749957122^(23/24) 8626757127200000 a001 3278735159921/70711162*4106118243^(15/23) 8626757127200000 a001 2504730781961/141422324*4106118243^(16/23) 8626757127200000 a001 956722026041/141422324*4106118243^(17/23) 8626757127200000 a001 182717648081/70711162*4106118243^(18/23) 8626757127200000 a001 139583862445/141422324*4106118243^(19/23) 8626757127200000 a001 53316291173/141422324*4106118243^(20/23) 8626757127200000 a001 10182505537/70711162*4106118243^(21/23) 8626757127200000 a001 158414167969674458546/1836311903 8626757127200000 a001 7778742049/141422324*4106118243^(22/23) 8626757127200000 a001 567451585/70711162*45537549124^(16/17) 8626757127200000 a001 31622993/1268860318*14662949395604^(20/21) 8626757127200000 a001 567451585/70711162*14662949395604^(16/21) 8626757127200000 a001 567451585/70711162*192900153618^(8/9) 8626757127200000 a001 567451585/70711162*73681302247^(12/13) 8626757127200000 a001 3278735159921/70711162*1568397607^(15/22) 8626757127200000 a001 2504730781961/141422324*1568397607^(8/11) 8626757127200000 a001 387002188980/35355581*1568397607^(3/4) 8626757127200000 a001 956722026041/141422324*1568397607^(17/22) 8626757127200000 a001 182717648081/70711162*1568397607^(9/11) 8626757127200000 a001 139583862445/141422324*1568397607^(19/22) 8626757127200000 a001 53316291173/141422324*1568397607^(10/11) 8626757127200000 a001 10182505537/70711162*1568397607^(21/22) 8626757127200000 a001 60508827864880721426/701408733 8626757127200000 a001 433494437/141422324*312119004989^(10/11) 8626757127200000 a001 433494437/141422324*3461452808002^(5/6) 8626757127200000 a001 3278735159921/70711162*599074578^(5/7) 8626757127200000 a001 2504730781961/141422324*599074578^(16/21) 8626757127200000 a001 387002188980/35355581*599074578^(11/14) 8626757127200000 a001 956722026041/141422324*599074578^(17/21) 8626757127200000 a001 591286729879/141422324*599074578^(5/6) 8626757127200000 a001 182717648081/70711162*599074578^(6/7) 8626757127200000 a001 139583862445/141422324*599074578^(19/21) 8626757127200000 a001 21566892818/35355581*599074578^(13/14) 8626757127200000 a001 53316291173/141422324*599074578^(20/21) 8626757127200000 a001 5778078906241926433/66978574 8626757127200000 a001 165580141/141422324*23725150497407^(13/16) 8626757127200000 a001 165580141/141422324*505019158607^(13/14) 8626757127200000 a001 3278735159921/70711162*228826127^(3/4) 8626757127200000 a001 2504730781961/141422324*228826127^(4/5) 8626757127200000 a001 956722026041/141422324*228826127^(17/20) 8626757127200000 a001 591286729879/141422324*228826127^(7/8) 8626757127200000 a001 182717648081/70711162*228826127^(9/10) 8626757127200000 a001 139583862445/141422324*228826127^(19/20) 8626757127200000 a001 1765623802004479154/20466831 8626757127200000 a001 225749145909/4868641*87403803^(15/19) 8626757127200000 a001 4052739537881/228826127*87403803^(16/19) 8626757127200000 a001 1548008755920/228826127*87403803^(17/19) 8626757127200000 a001 31622993/70711162*14662949395604^(6/7) 8626757127200000 a001 591286729879/228826127*87403803^(18/19) 8626757127200000 a001 3536736619241/199691526*87403803^(16/19) 8626757127200000 a001 3372041405099481345/39088169 8626757127200000 a001 4052739537881/599074578*87403803^(17/19) 8626757127200001 a001 1515744265389/224056801*87403803^(17/19) 8626757127200001 a001 6557470319842/370248451*87403803^(16/19) 8626757127200001 a001 6557470319842/969323029*87403803^(17/19) 8626757127200001 a001 86000486440/33281921*87403803^(18/19) 8626757127200001 a001 4052739537881/1568397607*87403803^(18/19) 8626757127200001 a001 3536736619241/1368706081*87403803^(18/19) 8626757127200001 a001 3278735159921/1268860318*87403803^(18/19) 8626757127200001 a001 2504730781961/370248451*87403803^(17/19) 8626757127200001 a001 2504730781961/969323029*87403803^(18/19) 8626757127200001 a001 3372041405099481400/39088169 8626757127200001 a001 3372041405099481408/39088169 8626757127200001 a001 3372041405099481409/39088169 8626757127200001 a001 3372041405099481410/39088169 8626757127200001 a001 956722026041/370248451*87403803^(18/19) 8626757127200001 a001 3372041405099481413/39088169 8626757127200001 a001 3372041405099481434/39088169 8626757127200001 a001 3278735159921/70711162*87403803^(15/19) 8626757127200001 a001 2504730781961/141422324*87403803^(16/19) 8626757127200001 a001 956722026041/141422324*87403803^(17/19) 8626757127200001 a001 182717648081/70711162*87403803^(18/19) 8626757127200001 a001 3372041405099481578/39088169 8626757127200001 a001 24157817/87403803*3461452808002^(11/12) 8626757127200002 a001 5456077604922915789/63245986 8626757127200002 a001 139583862445/54018521*141422324^(12/13) 8626757127200002 a001 591286729879/54018521*141422324^(11/13) 8626757127200002 a001 2504730781961/54018521*141422324^(10/13) 8626757127200002 a001 10610209857723/54018521*141422324^(9/13) 8626757127200002 a001 102334155/54018521*817138163596^(17/19) 8626757127200002 a001 102334155/54018521*14662949395604^(17/21) 8626757127200002 a001 102334155/54018521*192900153618^(17/18) 8626757127200002 a001 14284196614945314143/165580141 8626757127200002 a001 956722026041/20633239*20633239^(6/7) 8626757127200002 a001 267914296/54018521*14662949395604^(7/9) 8626757127200002 a001 267914296/54018521*505019158607^(7/8) 8626757127200002 a001 37396512239913026640/433494437 8626757127200002 a001 97905340104793765777/1134903170 8626757127200002 a001 7778742049/54018521*2537720636^(14/15) 8626757127200002 a001 20365011074/54018521*2537720636^(8/9) 8626757127200002 a001 32951280099/54018521*2537720636^(13/15) 8626757127200002 a001 139583862445/54018521*2537720636^(4/5) 8626757127200002 a001 225851433717/54018521*2537720636^(7/9) 8626757127200002 a001 591286729879/54018521*2537720636^(11/15) 8626757127200002 a001 2504730781961/54018521*2537720636^(2/3) 8626757127200002 a001 10610209857723/54018521*2537720636^(3/5) 8626757127200002 a001 1836311903/54018521*45537549124^(15/17) 8626757127200002 a001 1836311903/54018521*312119004989^(9/11) 8626757127200002 a001 1836311903/54018521*14662949395604^(5/7) 8626757127200002 a001 1836311903/54018521*192900153618^(5/6) 8626757127200002 a001 1836311903/54018521*28143753123^(9/10) 8626757127200002 a001 1836311903/54018521*10749957122^(15/16) 8626757127200002 a001 256319508074468270691/2971215073 8626757127200002 a001 225851433717/54018521*17393796001^(5/7) 8626757127200002 a001 6557470319842/54018521*17393796001^(4/7) 8626757127200002 a001 32951280099/54018521*45537549124^(13/17) 8626757127200002 a001 139583862445/54018521*45537549124^(12/17) 8626757127200002 a001 365435296162/54018521*45537549124^(2/3) 8626757127200002 a001 591286729879/54018521*45537549124^(11/17) 8626757127200002 a001 2504730781961/54018521*45537549124^(10/17) 8626757127200002 a001 10610209857723/54018521*45537549124^(9/17) 8626757127200002 a001 32951280099/54018521*14662949395604^(13/21) 8626757127200002 a001 32951280099/54018521*192900153618^(13/18) 8626757127200002 a001 32951280099/54018521*73681302247^(3/4) 8626757127200002 a001 225851433717/54018521*312119004989^(7/11) 8626757127200002 a001 2504730781961/54018521*312119004989^(6/11) 8626757127200002 a001 225851433717/54018521*14662949395604^(5/9) 8626757127200002 a001 10610209857723/54018521*817138163596^(9/19) 8626757127200002 a001 591286729879/54018521*14662949395604^(11/21) 8626757127200002 a001 1548008755920/54018521*9062201101803^(1/2) 8626757127200002 a001 10610209857723/54018521*14662949395604^(3/7) 8626757127200002 a001 4052739537881/54018521*1322157322203^(1/2) 8626757127200002 a001 956722026041/54018521*505019158607^(4/7) 8626757127200002 a001 139583862445/54018521*14662949395604^(4/7) 8626757127200002 a001 139583862445/54018521*505019158607^(9/14) 8626757127200002 a001 10610209857723/54018521*192900153618^(1/2) 8626757127200002 a001 139583862445/54018521*192900153618^(2/3) 8626757127200002 a001 53316291173/54018521*817138163596^(2/3) 8626757127200002 a001 6557470319842/54018521*73681302247^(7/13) 8626757127200002 a001 956722026041/54018521*73681302247^(8/13) 8626757127200002 a001 139583862445/54018521*73681302247^(9/13) 8626757127200002 a001 7778742049/54018521*17393796001^(6/7) 8626757127200002 a001 20365011074/54018521*312119004989^(8/11) 8626757127200002 a001 20365011074/54018521*23725150497407^(5/8) 8626757127200002 a001 20365011074/54018521*73681302247^(10/13) 8626757127200002 a001 2504730781961/54018521*28143753123^(3/5) 8626757127200002 a001 225851433717/54018521*28143753123^(7/10) 8626757127200002 a001 20365011074/54018521*28143753123^(4/5) 8626757127200002 a001 7778742049/54018521*45537549124^(14/17) 8626757127200002 a001 7778742049/54018521*817138163596^(14/19) 8626757127200002 a001 7778742049/54018521*14662949395604^(2/3) 8626757127200002 a001 7778742049/54018521*505019158607^(3/4) 8626757127200002 a001 7778742049/54018521*192900153618^(7/9) 8626757127200002 a001 10610209857723/54018521*10749957122^(9/16) 8626757127200002 a001 6557470319842/54018521*10749957122^(7/12) 8626757127200002 a001 2504730781961/54018521*10749957122^(5/8) 8626757127200002 a001 956722026041/54018521*10749957122^(2/3) 8626757127200002 a001 591286729879/54018521*10749957122^(11/16) 8626757127200002 a001 365435296162/54018521*10749957122^(17/24) 8626757127200002 a001 139583862445/54018521*10749957122^(3/4) 8626757127200002 a001 32951280099/54018521*10749957122^(13/16) 8626757127200002 a001 53316291173/54018521*10749957122^(19/24) 8626757127200002 a001 20365011074/54018521*10749957122^(5/6) 8626757127200002 a001 7778742049/54018521*10749957122^(7/8) 8626757127200002 a001 2971215073/54018521*312119004989^(4/5) 8626757127200002 a001 2971215073/54018521*23725150497407^(11/16) 8626757127200002 a001 2971215073/54018521*73681302247^(11/13) 8626757127200002 a001 2971215073/54018521*10749957122^(11/12) 8626757127200002 a001 6557470319842/54018521*4106118243^(14/23) 8626757127200002 a001 2504730781961/54018521*4106118243^(15/23) 8626757127200002 a001 956722026041/54018521*4106118243^(16/23) 8626757127200002 a001 365435296162/54018521*4106118243^(17/23) 8626757127200002 a001 139583862445/54018521*4106118243^(18/23) 8626757127200002 a001 53316291173/54018521*4106118243^(19/23) 8626757127200002 a001 20365011074/54018521*4106118243^(20/23) 8626757127200002 a001 7778742049/54018521*4106118243^(21/23) 8626757127200002 a001 158414167969674504914/1836311903 8626757127200002 a001 2971215073/54018521*4106118243^(22/23) 8626757127200002 a001 1134903170/54018521*10749957122^(23/24) 8626757127200002 a001 6557470319842/54018521*1568397607^(7/11) 8626757127200002 a001 2504730781961/54018521*1568397607^(15/22) 8626757127200002 a001 956722026041/54018521*1568397607^(8/11) 8626757127200002 a001 591286729879/54018521*1568397607^(3/4) 8626757127200002 a001 365435296162/54018521*1568397607^(17/22) 8626757127200002 a001 139583862445/54018521*1568397607^(9/11) 8626757127200002 a001 53316291173/54018521*1568397607^(19/22) 8626757127200002 a001 20365011074/54018521*1568397607^(10/11) 8626757127200002 a001 7778742049/54018521*1568397607^(21/22) 8626757127200002 a001 60508827864880739137/701408733 8626757127200002 a001 433494437/54018521*45537549124^(16/17) 8626757127200002 a001 24157817/969323029*14662949395604^(20/21) 8626757127200002 a001 433494437/54018521*14662949395604^(16/21) 8626757127200002 a001 433494437/54018521*192900153618^(8/9) 8626757127200002 a001 433494437/54018521*73681302247^(12/13) 8626757127200002 a001 10610209857723/54018521*599074578^(9/14) 8626757127200002 a001 6557470319842/54018521*599074578^(2/3) 8626757127200002 a001 2504730781961/54018521*599074578^(5/7) 8626757127200002 a001 956722026041/54018521*599074578^(16/21) 8626757127200002 a001 591286729879/54018521*599074578^(11/14) 8626757127200002 a001 365435296162/54018521*599074578^(17/21) 8626757127200002 a001 225851433717/54018521*599074578^(5/6) 8626757127200002 a001 139583862445/54018521*599074578^(6/7) 8626757127200002 a001 53316291173/54018521*599074578^(19/21) 8626757127200002 a001 32951280099/54018521*599074578^(13/14) 8626757127200002 a001 20365011074/54018521*599074578^(20/21) 8626757127200002 a001 23112315624967712497/267914296 8626757127200003 a001 165580141/54018521*312119004989^(10/11) 8626757127200003 a001 165580141/54018521*3461452808002^(5/6) 8626757127200003 a001 6557470319842/54018521*228826127^(7/10) 8626757127200003 a001 2504730781961/54018521*228826127^(3/4) 8626757127200003 a001 956722026041/54018521*228826127^(4/5) 8626757127200003 a001 365435296162/54018521*228826127^(17/20) 8626757127200003 a001 225851433717/54018521*228826127^(7/8) 8626757127200003 a001 139583862445/54018521*228826127^(9/10) 8626757127200003 a001 53316291173/54018521*228826127^(19/20) 8626757127200003 a001 8828119010022398354/102334155 8626757127200003 a001 24157817/141422324*14662949395604^(8/9) 8626757127200003 a001 63245986/54018521*23725150497407^(13/16) 8626757127200003 a001 63245986/54018521*505019158607^(13/14) 8626757127200003 a001 6557470319842/54018521*87403803^(14/19) 8626757127200003 a001 2504730781961/54018521*87403803^(15/19) 8626757127200003 a001 956722026041/54018521*87403803^(16/19) 8626757127200003 a001 365435296162/54018521*87403803^(17/19) 8626757127200004 a001 139583862445/54018521*87403803^(18/19) 8626757127200004 a001 2504730781961/20633239*20633239^(4/5) 8626757127200004 a001 3372041405099482565/39088169 8626757127200004 a001 3536736619241/29134601*33385282^(7/9) 8626757127200005 a001 4052739537881/87403803*33385282^(5/6) 8626757127200005 a001 516002918640/29134601*33385282^(8/9) 8626757127200005 a001 10610209857723/20633239*20633239^(5/7) 8626757127200005 a001 24157817/54018521*14662949395604^(6/7) 8626757127200005 a001 956722026041/87403803*33385282^(11/12) 8626757127200006 a001 591286729879/87403803*33385282^(17/18) 8626757127200006 a001 225749145909/4868641*33385282^(5/6) 8626757127200006 a001 429335068425349577/4976784 8626757127200006 a001 4052739537881/228826127*33385282^(8/9) 8626757127200006 a001 3536736619241/199691526*33385282^(8/9) 8626757127200006 a001 3278735159921/70711162*33385282^(5/6) 8626757127200006 a001 2504730781961/228826127*33385282^(11/12) 8626757127200006 a001 6557470319842/370248451*33385282^(8/9) 8626757127200007 a001 3278735159921/299537289*33385282^(11/12) 8626757127200007 a001 10610209857723/969323029*33385282^(11/12) 8626757127200007 a001 1548008755920/228826127*33385282^(17/18) 8626757127200007 a001 4052739537881/370248451*33385282^(11/12) 8626757127200007 a001 4052739537881/599074578*33385282^(17/18) 8626757127200007 a001 1515744265389/224056801*33385282^(17/18) 8626757127200007 a001 2504730781961/141422324*33385282^(8/9) 8626757127200007 a001 6557470319842/969323029*33385282^(17/18) 8626757127200007 a001 2504730781961/370248451*33385282^(17/18) 8626757127200007 a001 387002188980/35355581*33385282^(11/12) 8626757127200007 a001 429335068425349625/4976784 8626757127200007 a001 8944480592194784/103683 8626757127200007 a001 429335068425349633/4976784 8626757127200007 a001 956722026041/141422324*33385282^(17/18) 8626757127200007 a001 18941253018765425/219564 8626757127200007 a001 1288005205276048901/14930352 8626757127200007 a001 1288005205276048909/14930352 8626757127200008 a001 322001301319012241/3732588 8626757127200008 a001 10610209857723/54018521*33385282^(3/4) 8626757127200008 a001 6557470319842/54018521*33385282^(7/9) 8626757127200009 a001 2504730781961/54018521*33385282^(5/6) 8626757127200009 a001 956722026041/54018521*33385282^(8/9) 8626757127200010 a001 591286729879/54018521*33385282^(11/12) 8626757127200010 a001 365435296162/54018521*33385282^(17/18) 8626757127200010 a001 1288005205276049341/14930352 8626757127200012 a001 9227465/33385282*3461452808002^(11/12) 8626757127200012 a001 182717648081/3940598*7881196^(10/11) 8626757127200017 a001 2084036199823437405/24157817 8626757127200019 a001 39088169/20633239*817138163596^(17/19) 8626757127200019 a001 9227465/87403803*14662949395604^(19/21) 8626757127200019 a001 39088169/20633239*14662949395604^(17/21) 8626757127200019 a001 39088169/20633239*192900153618^(17/18) 8626757127200019 a001 5456077604922926735/63245986 8626757127200019 a001 53316291173/20633239*141422324^(12/13) 8626757127200019 a001 7787980473/711491*141422324^(11/13) 8626757127200019 a001 956722026041/20633239*141422324^(10/13) 8626757127200019 a001 4052739537881/20633239*141422324^(9/13) 8626757127200019 a001 6557470319842/20633239*141422324^(2/3) 8626757127200020 a001 9303105/1875749*14662949395604^(7/9) 8626757127200020 a001 9303105/1875749*505019158607^(7/8) 8626757127200020 a001 14284196614945342800/165580141 8626757127200020 a001 37396512239913101665/433494437 8626757127200020 a001 701408733/20633239*45537549124^(15/17) 8626757127200020 a001 701408733/20633239*312119004989^(9/11) 8626757127200020 a001 701408733/20633239*14662949395604^(5/7) 8626757127200020 a001 701408733/20633239*192900153618^(5/6) 8626757127200020 a001 701408733/20633239*28143753123^(9/10) 8626757127200020 a001 701408733/20633239*10749957122^(15/16) 8626757127200020 a001 19581068020958792439/226980634 8626757127200020 a001 1144206275/1875749*2537720636^(13/15) 8626757127200020 a001 7778742049/20633239*2537720636^(8/9) 8626757127200020 a001 53316291173/20633239*2537720636^(4/5) 8626757127200020 a001 2971215073/20633239*2537720636^(14/15) 8626757127200020 a001 86267571272/20633239*2537720636^(7/9) 8626757127200020 a001 7787980473/711491*2537720636^(11/15) 8626757127200020 a001 956722026041/20633239*2537720636^(2/3) 8626757127200020 a001 4052739537881/20633239*2537720636^(3/5) 8626757127200020 a001 10610209857723/20633239*2537720636^(5/9) 8626757127200020 a001 86267571272/20633239*17393796001^(5/7) 8626757127200020 a001 2504730781961/20633239*17393796001^(4/7) 8626757127200020 a001 1144206275/1875749*45537549124^(13/17) 8626757127200020 a001 1144206275/1875749*14662949395604^(13/21) 8626757127200020 a001 1144206275/1875749*192900153618^(13/18) 8626757127200020 a001 1144206275/1875749*73681302247^(3/4) 8626757127200020 a001 139583862445/20633239*45537549124^(2/3) 8626757127200020 a001 956722026041/20633239*45537549124^(10/17) 8626757127200020 a001 53316291173/20633239*45537549124^(12/17) 8626757127200020 a001 4052739537881/20633239*45537549124^(9/17) 8626757127200020 a001 86267571272/20633239*312119004989^(7/11) 8626757127200020 a001 86267571272/20633239*14662949395604^(5/9) 8626757127200020 a001 86267571272/20633239*505019158607^(5/8) 8626757127200020 a001 7787980473/711491*312119004989^(3/5) 8626757127200020 a001 10610209857723/20633239*312119004989^(5/11) 8626757127200020 a001 2504730781961/20633239*14662949395604^(4/9) 8626757127200020 a001 10610209857723/20633239*3461452808002^(5/12) 8626757127200020 a001 140728068720/1875749*1322157322203^(1/2) 8626757127200020 a001 2504730781961/20633239*505019158607^(1/2) 8626757127200020 a001 365435296162/20633239*505019158607^(4/7) 8626757127200020 a001 7787980473/711491*192900153618^(11/18) 8626757127200020 a001 4052739537881/20633239*192900153618^(1/2) 8626757127200020 a001 956722026041/20633239*192900153618^(5/9) 8626757127200020 a001 53316291173/20633239*14662949395604^(4/7) 8626757127200020 a001 53316291173/20633239*505019158607^(9/14) 8626757127200020 a001 53316291173/20633239*192900153618^(2/3) 8626757127200020 a001 6557470319842/20633239*73681302247^(1/2) 8626757127200020 a001 2504730781961/20633239*73681302247^(7/13) 8626757127200020 a001 365435296162/20633239*73681302247^(8/13) 8626757127200020 a001 53316291173/20633239*73681302247^(9/13) 8626757127200020 a001 20365011074/20633239*817138163596^(2/3) 8626757127200020 a001 10610209857723/20633239*28143753123^(1/2) 8626757127200020 a001 956722026041/20633239*28143753123^(3/5) 8626757127200020 a001 86267571272/20633239*28143753123^(7/10) 8626757127200020 a001 7778742049/20633239*312119004989^(8/11) 8626757127200020 a001 7778742049/20633239*23725150497407^(5/8) 8626757127200020 a001 7778742049/20633239*73681302247^(10/13) 8626757127200020 a001 7778742049/20633239*28143753123^(4/5) 8626757127200020 a001 6557470319842/20633239*10749957122^(13/24) 8626757127200020 a001 4052739537881/20633239*10749957122^(9/16) 8626757127200020 a001 2504730781961/20633239*10749957122^(7/12) 8626757127200020 a001 956722026041/20633239*10749957122^(5/8) 8626757127200020 a001 1144206275/1875749*10749957122^(13/16) 8626757127200020 a001 365435296162/20633239*10749957122^(2/3) 8626757127200020 a001 7787980473/711491*10749957122^(11/16) 8626757127200020 a001 139583862445/20633239*10749957122^(17/24) 8626757127200020 a001 53316291173/20633239*10749957122^(3/4) 8626757127200020 a001 20365011074/20633239*10749957122^(19/24) 8626757127200020 a001 7778742049/20633239*10749957122^(5/6) 8626757127200020 a001 2971215073/20633239*17393796001^(6/7) 8626757127200020 a001 2971215073/20633239*45537549124^(14/17) 8626757127200020 a001 2971215073/20633239*817138163596^(14/19) 8626757127200020 a001 2971215073/20633239*14662949395604^(2/3) 8626757127200020 a001 2971215073/20633239*505019158607^(3/4) 8626757127200020 a001 2971215073/20633239*192900153618^(7/9) 8626757127200020 a001 2971215073/20633239*10749957122^(7/8) 8626757127200020 a001 6557470319842/20633239*4106118243^(13/23) 8626757127200020 a001 2504730781961/20633239*4106118243^(14/23) 8626757127200020 a001 956722026041/20633239*4106118243^(15/23) 8626757127200020 a001 365435296162/20633239*4106118243^(16/23) 8626757127200020 a001 139583862445/20633239*4106118243^(17/23) 8626757127200020 a001 53316291173/20633239*4106118243^(18/23) 8626757127200020 a001 20365011074/20633239*4106118243^(19/23) 8626757127200020 a001 7778742049/20633239*4106118243^(20/23) 8626757127200020 a001 2971215073/20633239*4106118243^(21/23) 8626757127200020 a001 1134903170/20633239*312119004989^(4/5) 8626757127200020 a001 1134903170/20633239*23725150497407^(11/16) 8626757127200020 a001 1134903170/20633239*73681302247^(11/13) 8626757127200020 a001 1134903170/20633239*10749957122^(11/12) 8626757127200020 a001 1134903170/20633239*4106118243^(22/23) 8626757127200020 a001 6557470319842/20633239*1568397607^(13/22) 8626757127200020 a001 2504730781961/20633239*1568397607^(7/11) 8626757127200020 a001 956722026041/20633239*1568397607^(15/22) 8626757127200020 a001 365435296162/20633239*1568397607^(8/11) 8626757127200020 a001 7787980473/711491*1568397607^(3/4) 8626757127200020 a001 139583862445/20633239*1568397607^(17/22) 8626757127200020 a001 53316291173/20633239*1568397607^(9/11) 8626757127200020 a001 20365011074/20633239*1568397607^(19/22) 8626757127200020 a001 7778742049/20633239*1568397607^(10/11) 8626757127200020 a001 60508827864880860530/701408733 8626757127200020 a001 2971215073/20633239*1568397607^(21/22) 8626757127200020 a001 433494437/20633239*10749957122^(23/24) 8626757127200020 a001 6557470319842/20633239*599074578^(13/21) 8626757127200020 a001 4052739537881/20633239*599074578^(9/14) 8626757127200020 a001 2504730781961/20633239*599074578^(2/3) 8626757127200020 a001 956722026041/20633239*599074578^(5/7) 8626757127200020 a001 365435296162/20633239*599074578^(16/21) 8626757127200020 a001 7787980473/711491*599074578^(11/14) 8626757127200020 a001 139583862445/20633239*599074578^(17/21) 8626757127200020 a001 86267571272/20633239*599074578^(5/6) 8626757127200020 a001 53316291173/20633239*599074578^(6/7) 8626757127200020 a001 20365011074/20633239*599074578^(19/21) 8626757127200020 a001 1144206275/1875749*599074578^(13/14) 8626757127200020 a001 7778742049/20633239*599074578^(20/21) 8626757127200020 a001 1777870432689827605/20608792 8626757127200020 a001 165580141/20633239*45537549124^(16/17) 8626757127200020 a001 9227465/370248451*14662949395604^(20/21) 8626757127200020 a001 165580141/20633239*14662949395604^(16/21) 8626757127200020 a001 165580141/20633239*192900153618^(8/9) 8626757127200020 a001 165580141/20633239*73681302247^(12/13) 8626757127200020 a001 10610209857723/20633239*228826127^(5/8) 8626757127200020 a001 6557470319842/20633239*228826127^(13/20) 8626757127200020 a001 2504730781961/20633239*228826127^(7/10) 8626757127200020 a001 956722026041/20633239*228826127^(3/4) 8626757127200020 a001 365435296162/20633239*228826127^(4/5) 8626757127200020 a001 139583862445/20633239*228826127^(17/20) 8626757127200020 a001 86267571272/20633239*228826127^(7/8) 8626757127200020 a001 53316291173/20633239*228826127^(9/10) 8626757127200020 a001 20365011074/20633239*228826127^(19/20) 8626757127200020 a001 1765623802004483213/20466831 8626757127200020 a001 63245986/20633239*312119004989^(10/11) 8626757127200020 a001 63245986/20633239*3461452808002^(5/6) 8626757127200021 a001 6557470319842/20633239*87403803^(13/19) 8626757127200021 a001 2504730781961/20633239*87403803^(14/19) 8626757127200021 a001 956722026041/20633239*87403803^(15/19) 8626757127200021 a001 365435296162/20633239*87403803^(16/19) 8626757127200021 a001 139583862445/20633239*87403803^(17/19) 8626757127200021 a001 53316291173/20633239*87403803^(18/19) 8626757127200021 a001 806515523821930/9349 8626757127200023 a001 9227465/54018521*14662949395604^(8/9) 8626757127200023 a001 24157817/20633239*23725150497407^(13/16) 8626757127200023 a001 24157817/20633239*505019158607^(13/14) 8626757127200025 a001 387002188980/1970299*7881196^(9/11) 8626757127200025 a001 6557470319842/20633239*33385282^(13/18) 8626757127200026 a001 4052739537881/20633239*33385282^(3/4) 8626757127200026 a001 2504730781961/20633239*33385282^(7/9) 8626757127200026 a001 956722026041/20633239*33385282^(5/6) 8626757127200027 a001 365435296162/20633239*33385282^(8/9) 8626757127200027 a001 7787980473/711491*33385282^(11/12) 8626757127200027 a001 139583862445/20633239*33385282^(17/18) 8626757127200028 a001 1288005205276051925/14930352 8626757127200032 a001 1515744265389/4769326*12752043^(13/17) 8626757127200035 a001 4052739537881/33385282*12752043^(14/17) 8626757127200037 a001 3278735159921/3940598*7881196^(8/11) 8626757127200039 a001 774004377960/16692641*12752043^(15/17) 8626757127200040 a001 9227465/20633239*14662949395604^(6/7) 8626757127200042 a001 591286729879/33385282*12752043^(16/17) 8626757127200042 a001 3536736619241/29134601*12752043^(14/17) 8626757127200045 a001 491974210728664848/5702887 8626757127200045 a001 4052739537881/87403803*12752043^(15/17) 8626757127200046 a001 225749145909/4868641*12752043^(15/17) 8626757127200046 a001 6557470319842/54018521*12752043^(14/17) 8626757127200047 a001 3278735159921/70711162*12752043^(15/17) 8626757127200048 a001 516002918640/29134601*12752043^(16/17) 8626757127200049 a001 4052739537881/228826127*12752043^(16/17) 8626757127200049 a001 2504730781961/54018521*12752043^(15/17) 8626757127200049 a001 3536736619241/199691526*12752043^(16/17) 8626757127200049 a001 6557470319842/370248451*12752043^(16/17) 8626757127200050 a001 2504730781961/141422324*12752043^(16/17) 8626757127200051 a001 491974210728665225/5702887 8626757127200052 a001 491974210728665280/5702887 8626757127200052 a001 956722026041/54018521*12752043^(16/17) 8626757127200053 a001 491974210728665288/5702887 8626757127200053 a001 491974210728665289/5702887 8626757127200053 a001 491974210728665290/5702887 8626757127200053 a001 491974210728665293/5702887 8626757127200053 a001 491974210728665314/5702887 8626757127200056 a001 308061497012314/3571 8626757127200060 a001 6557470319842/20633239*12752043^(13/17) 8626757127200063 a001 2504730781961/20633239*12752043^(14/17) 8626757127200067 a001 956722026041/20633239*12752043^(15/17) 8626757127200070 a001 365435296162/20633239*12752043^(16/17) 8626757127200073 a001 491974210728666445/5702887 8626757127200085 a001 3524578/12752043*3461452808002^(11/12) 8626757127200118 a001 61233153426722802/709805 8626757127200121 a001 182717648081/3940598*20633239^(6/7) 8626757127200122 a001 956722026041/7881196*20633239^(4/5) 8626757127200124 a001 4052739537881/7881196*20633239^(5/7) 8626757127200131 a001 3732588/1970299*817138163596^(17/19) 8626757127200131 a001 1762289/16692641*14662949395604^(19/21) 8626757127200131 a001 3732588/1970299*14662949395604^(17/21) 8626757127200131 a001 3732588/1970299*192900153618^(17/18) 8626757127200135 a001 2084036199823466062/24157817 8626757127200137 a001 39088169/7881196*14662949395604^(7/9) 8626757127200137 a001 39088169/7881196*505019158607^(7/8) 8626757127200138 a001 2728038802461500880/31622993 8626757127200138 a001 10182505537/3940598*141422324^(12/13) 8626757127200138 a001 21566892818/1970299*141422324^(11/13) 8626757127200138 a001 182717648081/3940598*141422324^(10/13) 8626757127200138 a001 387002188980/1970299*141422324^(9/13) 8626757127200138 a001 2504730781961/7881196*141422324^(2/3) 8626757127200138 a001 3278735159921/3940598*141422324^(8/13) 8626757127200138 a001 14284196614945539218/165580141 8626757127200138 a001 66978574/1970299*45537549124^(15/17) 8626757127200138 a001 66978574/1970299*312119004989^(9/11) 8626757127200138 a001 66978574/1970299*14662949395604^(5/7) 8626757127200138 a001 66978574/1970299*192900153618^(5/6) 8626757127200138 a001 66978574/1970299*28143753123^(9/10) 8626757127200138 a001 66978574/1970299*10749957122^(15/16) 8626757127200138 a001 37396512239913615894/433494437 8626757127200138 a001 1201881744/1970299*2537720636^(13/15) 8626757127200138 a001 10182505537/3940598*2537720636^(4/5) 8626757127200138 a001 32951280099/7881196*2537720636^(7/9) 8626757127200138 a001 2971215073/7881196*2537720636^(8/9) 8626757127200138 a001 21566892818/1970299*2537720636^(11/15) 8626757127200138 a001 182717648081/3940598*2537720636^(2/3) 8626757127200138 a001 387002188980/1970299*2537720636^(3/5) 8626757127200138 a001 4052739537881/7881196*2537720636^(5/9) 8626757127200138 a001 3278735159921/3940598*2537720636^(8/15) 8626757127200138 a001 1201881744/1970299*45537549124^(13/17) 8626757127200138 a001 1201881744/1970299*14662949395604^(13/21) 8626757127200138 a001 1201881744/1970299*192900153618^(13/18) 8626757127200138 a001 1201881744/1970299*73681302247^(3/4) 8626757127200138 a001 32951280099/7881196*17393796001^(5/7) 8626757127200138 a001 956722026041/7881196*17393796001^(4/7) 8626757127200138 a001 1201881744/1970299*10749957122^(13/16) 8626757127200138 a001 21566892818/1970299*45537549124^(11/17) 8626757127200138 a001 182717648081/3940598*45537549124^(10/17) 8626757127200138 a001 387002188980/1970299*45537549124^(9/17) 8626757127200138 a001 53316291173/7881196*45537549124^(2/3) 8626757127200138 a001 3278735159921/3940598*45537549124^(8/17) 8626757127200138 a001 32951280099/7881196*312119004989^(7/11) 8626757127200138 a001 32951280099/7881196*14662949395604^(5/9) 8626757127200138 a001 32951280099/7881196*505019158607^(5/8) 8626757127200138 a001 21566892818/1970299*312119004989^(3/5) 8626757127200138 a001 21566892818/1970299*817138163596^(11/19) 8626757127200138 a001 21566892818/1970299*14662949395604^(11/21) 8626757127200138 a001 21566892818/1970299*192900153618^(11/18) 8626757127200138 a001 4052739537881/7881196*312119004989^(5/11) 8626757127200138 a001 182717648081/3940598*312119004989^(6/11) 8626757127200138 a001 387002188980/1970299*817138163596^(9/19) 8626757127200138 a001 591286729879/7881196*1322157322203^(1/2) 8626757127200138 a001 387002188980/1970299*14662949395604^(3/7) 8626757127200138 a001 3278735159921/3940598*14662949395604^(8/21) 8626757127200138 a001 956722026041/7881196*14662949395604^(4/9) 8626757127200138 a001 182717648081/3940598*14662949395604^(10/21) 8626757127200138 a001 139583862445/7881196*23725150497407^(1/2) 8626757127200138 a001 3278735159921/3940598*192900153618^(4/9) 8626757127200138 a001 139583862445/7881196*505019158607^(4/7) 8626757127200138 a001 182717648081/3940598*192900153618^(5/9) 8626757127200138 a001 3278735159921/3940598*73681302247^(6/13) 8626757127200138 a001 2504730781961/7881196*73681302247^(1/2) 8626757127200138 a001 956722026041/7881196*73681302247^(7/13) 8626757127200138 a001 139583862445/7881196*73681302247^(8/13) 8626757127200138 a001 10182505537/3940598*45537549124^(12/17) 8626757127200138 a001 10182505537/3940598*14662949395604^(4/7) 8626757127200138 a001 10182505537/3940598*505019158607^(9/14) 8626757127200138 a001 10182505537/3940598*192900153618^(2/3) 8626757127200138 a001 10182505537/3940598*73681302247^(9/13) 8626757127200138 a001 4052739537881/7881196*28143753123^(1/2) 8626757127200138 a001 32951280099/7881196*28143753123^(7/10) 8626757127200138 a001 182717648081/3940598*28143753123^(3/5) 8626757127200138 a001 7778742049/7881196*817138163596^(2/3) 8626757127200138 a001 3278735159921/3940598*10749957122^(1/2) 8626757127200138 a001 2504730781961/7881196*10749957122^(13/24) 8626757127200138 a001 387002188980/1970299*10749957122^(9/16) 8626757127200138 a001 956722026041/7881196*10749957122^(7/12) 8626757127200138 a001 182717648081/3940598*10749957122^(5/8) 8626757127200138 a001 139583862445/7881196*10749957122^(2/3) 8626757127200138 a001 21566892818/1970299*10749957122^(11/16) 8626757127200138 a001 53316291173/7881196*10749957122^(17/24) 8626757127200138 a001 10182505537/3940598*10749957122^(3/4) 8626757127200138 a001 7778742049/7881196*10749957122^(19/24) 8626757127200138 a001 567451585/3940598*2537720636^(14/15) 8626757127200138 a001 2971215073/7881196*312119004989^(8/11) 8626757127200138 a001 2971215073/7881196*23725150497407^(5/8) 8626757127200138 a001 2971215073/7881196*73681302247^(10/13) 8626757127200138 a001 2971215073/7881196*28143753123^(4/5) 8626757127200138 a001 10610209857723/7881196*4106118243^(1/2) 8626757127200138 a001 2971215073/7881196*10749957122^(5/6) 8626757127200138 a001 3278735159921/3940598*4106118243^(12/23) 8626757127200138 a001 2504730781961/7881196*4106118243^(13/23) 8626757127200138 a001 956722026041/7881196*4106118243^(14/23) 8626757127200138 a001 182717648081/3940598*4106118243^(15/23) 8626757127200138 a001 139583862445/7881196*4106118243^(16/23) 8626757127200138 a001 53316291173/7881196*4106118243^(17/23) 8626757127200138 a001 10182505537/3940598*4106118243^(18/23) 8626757127200138 a001 7778742049/7881196*4106118243^(19/23) 8626757127200138 a001 2971215073/7881196*4106118243^(20/23) 8626757127200138 a001 567451585/3940598*17393796001^(6/7) 8626757127200138 a001 567451585/3940598*45537549124^(14/17) 8626757127200138 a001 567451585/3940598*817138163596^(14/19) 8626757127200138 a001 567451585/3940598*14662949395604^(2/3) 8626757127200138 a001 567451585/3940598*505019158607^(3/4) 8626757127200138 a001 567451585/3940598*192900153618^(7/9) 8626757127200138 a001 567451585/3940598*10749957122^(7/8) 8626757127200138 a001 567451585/3940598*4106118243^(21/23) 8626757127200138 a001 3278735159921/3940598*1568397607^(6/11) 8626757127200138 a001 2504730781961/7881196*1568397607^(13/22) 8626757127200138 a001 956722026041/7881196*1568397607^(7/11) 8626757127200138 a001 182717648081/3940598*1568397607^(15/22) 8626757127200138 a001 139583862445/7881196*1568397607^(8/11) 8626757127200138 a001 21566892818/1970299*1568397607^(3/4) 8626757127200138 a001 53316291173/7881196*1568397607^(17/22) 8626757127200138 a001 10182505537/3940598*1568397607^(9/11) 8626757127200138 a001 7778742049/7881196*1568397607^(19/22) 8626757127200138 a001 2971215073/7881196*1568397607^(10/11) 8626757127200138 a001 567451585/3940598*1568397607^(21/22) 8626757127200138 a001 433494437/7881196*312119004989^(4/5) 8626757127200138 a001 433494437/7881196*23725150497407^(11/16) 8626757127200138 a001 433494437/7881196*73681302247^(11/13) 8626757127200138 a001 433494437/7881196*10749957122^(11/12) 8626757127200138 a001 433494437/7881196*4106118243^(22/23) 8626757127200138 a001 3278735159921/3940598*599074578^(4/7) 8626757127200138 a001 2504730781961/7881196*599074578^(13/21) 8626757127200138 a001 387002188980/1970299*599074578^(9/14) 8626757127200138 a001 956722026041/7881196*599074578^(2/3) 8626757127200138 a001 182717648081/3940598*599074578^(5/7) 8626757127200138 a001 139583862445/7881196*599074578^(16/21) 8626757127200138 a001 21566892818/1970299*599074578^(11/14) 8626757127200138 a001 53316291173/7881196*599074578^(17/21) 8626757127200138 a001 32951280099/7881196*599074578^(5/6) 8626757127200138 a001 10182505537/3940598*599074578^(6/7) 8626757127200138 a001 7778742049/7881196*599074578^(19/21) 8626757127200138 a001 1201881744/1970299*599074578^(13/14) 8626757127200138 a001 2971215073/7881196*599074578^(20/21) 8626757127200138 a001 1055742537226753/12238 8626757127200138 a001 165580141/7881196*10749957122^(23/24) 8626757127200138 a001 3278735159921/3940598*228826127^(3/5) 8626757127200138 a001 4052739537881/7881196*228826127^(5/8) 8626757127200138 a001 2504730781961/7881196*228826127^(13/20) 8626757127200139 a001 956722026041/7881196*228826127^(7/10) 8626757127200139 a001 182717648081/3940598*228826127^(3/4) 8626757127200139 a001 139583862445/7881196*228826127^(4/5) 8626757127200139 a001 53316291173/7881196*228826127^(17/20) 8626757127200139 a001 32951280099/7881196*228826127^(7/8) 8626757127200139 a001 10182505537/3940598*228826127^(9/10) 8626757127200139 a001 7778742049/7881196*228826127^(19/20) 8626757127200139 a001 8828119010022537458/102334155 8626757127200139 a001 31622993/3940598*45537549124^(16/17) 8626757127200139 a001 1762289/70711162*14662949395604^(20/21) 8626757127200139 a001 31622993/3940598*14662949395604^(16/21) 8626757127200139 a001 31622993/3940598*192900153618^(8/9) 8626757127200139 a001 31622993/3940598*73681302247^(12/13) 8626757127200139 a001 3278735159921/3940598*87403803^(12/19) 8626757127200139 a001 2504730781961/7881196*87403803^(13/19) 8626757127200139 a001 956722026041/7881196*87403803^(14/19) 8626757127200139 a001 182717648081/3940598*87403803^(15/19) 8626757127200139 a001 139583862445/7881196*87403803^(16/19) 8626757127200139 a001 53316291173/7881196*87403803^(17/19) 8626757127200139 a001 10182505537/3940598*87403803^(18/19) 8626757127200140 a001 3372041405099535698/39088169 8626757127200141 a001 24157817/7881196*312119004989^(10/11) 8626757127200141 a001 24157817/7881196*3461452808002^(5/6) 8626757127200144 a001 3278735159921/3940598*33385282^(2/3) 8626757127200144 a001 2504730781961/7881196*33385282^(13/18) 8626757127200144 a001 387002188980/1970299*33385282^(3/4) 8626757127200144 a001 956722026041/7881196*33385282^(7/9) 8626757127200145 a001 182717648081/3940598*33385282^(5/6) 8626757127200145 a001 139583862445/7881196*33385282^(8/9) 8626757127200145 a001 21566892818/1970299*33385282^(11/12) 8626757127200146 a001 53316291173/7881196*33385282^(17/18) 8626757127200146 a001 322001301319017409/3732588 8626757127200159 a001 3524578/20633239*14662949395604^(8/9) 8626757127200159 a001 9227465/7881196*23725150497407^(13/16) 8626757127200176 a001 3278735159921/3940598*12752043^(12/17) 8626757127200179 a001 2504730781961/7881196*12752043^(13/17) 8626757127200182 a001 956722026041/7881196*12752043^(14/17) 8626757127200185 a001 182717648081/3940598*12752043^(15/17) 8626757127200188 a001 139583862445/7881196*12752043^(16/17) 8626757127200191 a001 491974210728673210/5702887 8626757127200219 a001 3536736619241/4250681*4870847^(3/4) 8626757127200242 a001 4052739537881/12752043*4870847^(13/16) 8626757127200265 a001 516002918640/4250681*4870847^(7/8) 8626757127200277 a001 1762289/3940598*14662949395604^(6/7) 8626757127200287 a001 1515744265389/4769326*4870847^(13/16) 8626757127200287 a001 591286729879/12752043*4870847^(15/16) 8626757127200310 a001 4052739537881/33385282*4870847^(7/8) 8626757127200310 a001 62639142303315271/726103 8626757127200315 a001 6557470319842/20633239*4870847^(13/16) 8626757127200317 a001 3536736619241/29134601*4870847^(7/8) 8626757127200321 a001 6557470319842/54018521*4870847^(7/8) 8626757127200333 a001 774004377960/16692641*4870847^(15/16) 8626757127200338 a001 2504730781961/20633239*4870847^(7/8) 8626757127200339 a001 4052739537881/87403803*4870847^(15/16) 8626757127200340 a001 225749145909/4868641*4870847^(15/16) 8626757127200341 a001 3278735159921/70711162*4870847^(15/16) 8626757127200343 a001 2504730781961/54018521*4870847^(15/16) 8626757127200355 a001 62639142303315600/726103 8626757127200361 a001 956722026041/20633239*4870847^(15/16) 8626757127200362 a001 190392529797312/2207 8626757127200363 a001 8948448900473665/103729 8626757127200363 a001 62639142303315656/726103 8626757127200363 a001 187917426909946969/2178309 8626757127200363 a001 187917426909946970/2178309 8626757127200364 a001 187917426909946978/2178309 8626757127200366 a001 187917426909947033/2178309 8626757127200383 a001 187917426909947410/2178309 8626757127200411 a001 3278735159921/3940598*4870847^(3/4) 8626757127200434 a001 2504730781961/7881196*4870847^(13/16) 8626757127200457 a001 956722026041/7881196*4870847^(7/8) 8626757127200479 a001 182717648081/3940598*4870847^(15/16) 8626757127200502 a001 187917426909949994/2178309 8626757127200588 a001 1346269/4870847*3461452808002^(11/12) 8626757127200813 a001 304056783818751873/3524578 8626757127200825 a001 139583862445/3010349*7881196^(10/11) 8626757127200838 a001 591286729879/3010349*7881196^(9/11) 8626757127200850 a001 2504730781961/3010349*7881196^(8/11) 8626757127200859 a001 6557470319842/3010349*7881196^(2/3) 8626757127200863 a001 10610209857723/3010349*7881196^(7/11) 8626757127200898 a001 5702887/3010349*817138163596^(17/19) 8626757127200898 a001 1346269/12752043*14662949395604^(19/21) 8626757127200898 a001 5702887/3010349*14662949395604^(17/21) 8626757127200898 a001 5702887/3010349*192900153618^(17/18) 8626757127200931 a001 796030994547471451/9227465 8626757127200934 a001 139583862445/3010349*20633239^(6/7) 8626757127200935 a001 365435296162/3010349*20633239^(4/5) 8626757127200937 a001 1548008755920/3010349*20633239^(5/7) 8626757127200939 a001 10610209857723/3010349*20633239^(3/5) 8626757127200944 a001 14930352/3010349*14662949395604^(7/9) 8626757127200944 a001 14930352/3010349*505019158607^(7/8) 8626757127200948 a001 2084036199823662480/24157817 8626757127200951 a001 5456077604923515989/63245986 8626757127200951 a001 7778742049/3010349*141422324^(12/13) 8626757127200951 a001 32951280099/3010349*141422324^(11/13) 8626757127200951 a001 139583862445/3010349*141422324^(10/13) 8626757127200951 a001 591286729879/3010349*141422324^(9/13) 8626757127200951 a001 956722026041/3010349*141422324^(2/3) 8626757127200951 a001 2504730781961/3010349*141422324^(8/13) 8626757127200951 a001 10610209857723/3010349*141422324^(7/13) 8626757127200951 a001 102334155/3010349*45537549124^(15/17) 8626757127200951 a001 102334155/3010349*312119004989^(9/11) 8626757127200951 a001 102334155/3010349*14662949395604^(5/7) 8626757127200951 a001 102334155/3010349*192900153618^(5/6) 8626757127200951 a001 102334155/3010349*28143753123^(9/10) 8626757127200951 a001 102334155/3010349*10749957122^(15/16) 8626757127200951 a001 14284196614946885487/165580141 8626757127200951 a001 1836311903/3010349*2537720636^(13/15) 8626757127200951 a001 12586269025/3010349*2537720636^(7/9) 8626757127200951 a001 7778742049/3010349*2537720636^(4/5) 8626757127200951 a001 32951280099/3010349*2537720636^(11/15) 8626757127200951 a001 139583862445/3010349*2537720636^(2/3) 8626757127200951 a001 591286729879/3010349*2537720636^(3/5) 8626757127200951 a001 1548008755920/3010349*2537720636^(5/9) 8626757127200951 a001 2504730781961/3010349*2537720636^(8/15) 8626757127200951 a001 10610209857723/3010349*2537720636^(7/15) 8626757127200951 a001 1836311903/3010349*45537549124^(13/17) 8626757127200951 a001 1836311903/3010349*14662949395604^(13/21) 8626757127200951 a001 1836311903/3010349*192900153618^(13/18) 8626757127200951 a001 1836311903/3010349*73681302247^(3/4) 8626757127200951 a001 1836311903/3010349*10749957122^(13/16) 8626757127200951 a001 12586269025/3010349*17393796001^(5/7) 8626757127200951 a001 365435296162/3010349*17393796001^(4/7) 8626757127200951 a001 10610209857723/3010349*17393796001^(3/7) 8626757127200951 a001 12586269025/3010349*312119004989^(7/11) 8626757127200951 a001 12586269025/3010349*14662949395604^(5/9) 8626757127200951 a001 12586269025/3010349*505019158607^(5/8) 8626757127200951 a001 32951280099/3010349*45537549124^(11/17) 8626757127200951 a001 12586269025/3010349*28143753123^(7/10) 8626757127200951 a001 139583862445/3010349*45537549124^(10/17) 8626757127200951 a001 591286729879/3010349*45537549124^(9/17) 8626757127200951 a001 2504730781961/3010349*45537549124^(8/17) 8626757127200951 a001 10610209857723/3010349*45537549124^(7/17) 8626757127200951 a001 32951280099/3010349*312119004989^(3/5) 8626757127200951 a001 32951280099/3010349*817138163596^(11/19) 8626757127200951 a001 32951280099/3010349*14662949395604^(11/21) 8626757127200951 a001 32951280099/3010349*192900153618^(11/18) 8626757127200951 a001 86267571272/3010349*9062201101803^(1/2) 8626757127200951 a001 1548008755920/3010349*312119004989^(5/11) 8626757127200951 a001 6557470319842/3010349*312119004989^(2/5) 8626757127200951 a001 1548008755920/3010349*3461452808002^(5/12) 8626757127200951 a001 10610209857723/3010349*14662949395604^(1/3) 8626757127200951 a001 2504730781961/3010349*14662949395604^(8/21) 8626757127200951 a001 365435296162/3010349*14662949395604^(4/9) 8626757127200951 a001 365435296162/3010349*505019158607^(1/2) 8626757127200951 a001 139583862445/3010349*312119004989^(6/11) 8626757127200951 a001 139583862445/3010349*14662949395604^(10/21) 8626757127200951 a001 10610209857723/3010349*192900153618^(7/18) 8626757127200951 a001 2504730781961/3010349*192900153618^(4/9) 8626757127200951 a001 139583862445/3010349*192900153618^(5/9) 8626757127200951 a001 53316291173/3010349*23725150497407^(1/2) 8626757127200951 a001 53316291173/3010349*505019158607^(4/7) 8626757127200951 a001 2504730781961/3010349*73681302247^(6/13) 8626757127200951 a001 956722026041/3010349*73681302247^(1/2) 8626757127200951 a001 365435296162/3010349*73681302247^(7/13) 8626757127200951 a001 20365011074/3010349*45537549124^(2/3) 8626757127200951 a001 53316291173/3010349*73681302247^(8/13) 8626757127200951 a001 1548008755920/3010349*28143753123^(1/2) 8626757127200951 a001 139583862445/3010349*28143753123^(3/5) 8626757127200951 a001 7778742049/3010349*45537549124^(12/17) 8626757127200951 a001 7778742049/3010349*14662949395604^(4/7) 8626757127200951 a001 7778742049/3010349*505019158607^(9/14) 8626757127200951 a001 7778742049/3010349*192900153618^(2/3) 8626757127200951 a001 7778742049/3010349*73681302247^(9/13) 8626757127200951 a001 10610209857723/3010349*10749957122^(7/16) 8626757127200951 a001 6557470319842/3010349*10749957122^(11/24) 8626757127200951 a001 2504730781961/3010349*10749957122^(1/2) 8626757127200951 a001 956722026041/3010349*10749957122^(13/24) 8626757127200951 a001 591286729879/3010349*10749957122^(9/16) 8626757127200951 a001 365435296162/3010349*10749957122^(7/12) 8626757127200951 a001 139583862445/3010349*10749957122^(5/8) 8626757127200951 a001 32951280099/3010349*10749957122^(11/16) 8626757127200951 a001 53316291173/3010349*10749957122^(2/3) 8626757127200951 a001 20365011074/3010349*10749957122^(17/24) 8626757127200951 a001 7778742049/3010349*10749957122^(3/4) 8626757127200951 a001 1134903170/3010349*2537720636^(8/9) 8626757127200951 a001 2971215073/3010349*817138163596^(2/3) 8626757127200951 a001 6557470319842/3010349*4106118243^(11/23) 8626757127200951 a001 2971215073/3010349*10749957122^(19/24) 8626757127200951 a001 1346269*4106118243^(1/2) 8626757127200951 a001 2504730781961/3010349*4106118243^(12/23) 8626757127200951 a001 956722026041/3010349*4106118243^(13/23) 8626757127200951 a001 365435296162/3010349*4106118243^(14/23) 8626757127200951 a001 139583862445/3010349*4106118243^(15/23) 8626757127200951 a001 53316291173/3010349*4106118243^(16/23) 8626757127200951 a001 20365011074/3010349*4106118243^(17/23) 8626757127200951 a001 7778742049/3010349*4106118243^(18/23) 8626757127200951 a001 2971215073/3010349*4106118243^(19/23) 8626757127200951 a001 1134903170/3010349*312119004989^(8/11) 8626757127200951 a001 1134903170/3010349*23725150497407^(5/8) 8626757127200951 a001 1134903170/3010349*73681302247^(10/13) 8626757127200951 a001 1134903170/3010349*28143753123^(4/5) 8626757127200951 a001 1134903170/3010349*10749957122^(5/6) 8626757127200951 a001 6557470319842/3010349*1568397607^(1/2) 8626757127200951 a001 1134903170/3010349*4106118243^(20/23) 8626757127200951 a001 2504730781961/3010349*1568397607^(6/11) 8626757127200951 a001 956722026041/3010349*1568397607^(13/22) 8626757127200951 a001 365435296162/3010349*1568397607^(7/11) 8626757127200951 a001 139583862445/3010349*1568397607^(15/22) 8626757127200951 a001 53316291173/3010349*1568397607^(8/11) 8626757127200951 a001 32951280099/3010349*1568397607^(3/4) 8626757127200951 a001 20365011074/3010349*1568397607^(17/22) 8626757127200951 a001 7778742049/3010349*1568397607^(9/11) 8626757127200951 a001 2971215073/3010349*1568397607^(19/22) 8626757127200951 a001 1134903170/3010349*1568397607^(10/11) 8626757127200951 a001 433494437/3010349*2537720636^(14/15) 8626757127200951 a001 433494437/3010349*17393796001^(6/7) 8626757127200951 a001 433494437/3010349*45537549124^(14/17) 8626757127200951 a001 433494437/3010349*817138163596^(14/19) 8626757127200951 a001 433494437/3010349*14662949395604^(2/3) 8626757127200951 a001 433494437/3010349*505019158607^(3/4) 8626757127200951 a001 433494437/3010349*192900153618^(7/9) 8626757127200951 a001 433494437/3010349*10749957122^(7/8) 8626757127200951 a001 433494437/3010349*4106118243^(21/23) 8626757127200951 a001 10610209857723/3010349*599074578^(1/2) 8626757127200951 a001 433494437/3010349*1568397607^(21/22) 8626757127200951 a001 6557470319842/3010349*599074578^(11/21) 8626757127200951 a001 2504730781961/3010349*599074578^(4/7) 8626757127200951 a001 956722026041/3010349*599074578^(13/21) 8626757127200951 a001 591286729879/3010349*599074578^(9/14) 8626757127200951 a001 365435296162/3010349*599074578^(2/3) 8626757127200951 a001 139583862445/3010349*599074578^(5/7) 8626757127200951 a001 53316291173/3010349*599074578^(16/21) 8626757127200951 a001 32951280099/3010349*599074578^(11/14) 8626757127200951 a001 20365011074/3010349*599074578^(17/21) 8626757127200951 a001 12586269025/3010349*599074578^(5/6) 8626757127200951 a001 7778742049/3010349*599074578^(6/7) 8626757127200951 a001 1836311903/3010349*599074578^(13/14) 8626757127200951 a001 2971215073/3010349*599074578^(19/21) 8626757127200951 a001 1134903170/3010349*599074578^(20/21) 8626757127200952 a001 165580141/3010349*312119004989^(4/5) 8626757127200952 a001 165580141/3010349*23725150497407^(11/16) 8626757127200952 a001 165580141/3010349*73681302247^(11/13) 8626757127200952 a001 165580141/3010349*10749957122^(11/12) 8626757127200952 a001 165580141/3010349*4106118243^(22/23) 8626757127200952 a001 6557470319842/3010349*228826127^(11/20) 8626757127200952 a001 2504730781961/3010349*228826127^(3/5) 8626757127200952 a001 1548008755920/3010349*228826127^(5/8) 8626757127200952 a001 956722026041/3010349*228826127^(13/20) 8626757127200952 a001 365435296162/3010349*228826127^(7/10) 8626757127200952 a001 139583862445/3010349*228826127^(3/4) 8626757127200952 a001 53316291173/3010349*228826127^(4/5) 8626757127200952 a001 20365011074/3010349*228826127^(17/20) 8626757127200952 a001 12586269025/3010349*228826127^(7/8) 8626757127200952 a001 7778742049/3010349*228826127^(9/10) 8626757127200952 a001 2971215073/3010349*228826127^(19/20) 8626757127200952 a001 8828119010023369498/102334155 8626757127200952 a001 63245986/3010349*10749957122^(23/24) 8626757127200952 a001 6557470319842/3010349*87403803^(11/19) 8626757127200952 a001 2504730781961/3010349*87403803^(12/19) 8626757127200952 a001 956722026041/3010349*87403803^(13/19) 8626757127200952 a001 365435296162/3010349*87403803^(14/19) 8626757127200952 a001 139583862445/3010349*87403803^(15/19) 8626757127200952 a001 53316291173/3010349*87403803^(16/19) 8626757127200952 a001 20365011074/3010349*87403803^(17/19) 8626757127200953 a001 7778742049/3010349*87403803^(18/19) 8626757127200953 a001 3372041405099853509/39088169 8626757127200954 a001 24157817/3010349*45537549124^(16/17) 8626757127200954 a001 1346269/54018521*14662949395604^(20/21) 8626757127200954 a001 24157817/3010349*14662949395604^(16/21) 8626757127200954 a001 24157817/3010349*192900153618^(8/9) 8626757127200954 a001 24157817/3010349*73681302247^(12/13) 8626757127200956 a001 10610209857723/3010349*33385282^(7/12) 8626757127200956 a001 6557470319842/3010349*33385282^(11/18) 8626757127200957 a001 2504730781961/3010349*33385282^(2/3) 8626757127200957 a001 956722026041/3010349*33385282^(13/18) 8626757127200957 a001 591286729879/3010349*33385282^(3/4) 8626757127200957 a001 365435296162/3010349*33385282^(7/9) 8626757127200958 a001 139583862445/3010349*33385282^(5/6) 8626757127200958 a001 53316291173/3010349*33385282^(8/9) 8626757127200959 a001 32951280099/3010349*33385282^(11/12) 8626757127200959 a001 20365011074/3010349*33385282^(17/18) 8626757127200959 a001 1288005205276191029/14930352 8626757127200972 a001 9227465/3010349*312119004989^(10/11) 8626757127200972 a001 9227465/3010349*3461452808002^(5/6) 8626757127200986 a001 6557470319842/3010349*12752043^(11/17) 8626757127200989 a001 2504730781961/3010349*12752043^(12/17) 8626757127200992 a001 956722026041/3010349*12752043^(13/17) 8626757127200995 a001 365435296162/3010349*12752043^(14/17) 8626757127200998 a001 139583862445/3010349*12752043^(15/17) 8626757127201001 a001 53316291173/3010349*12752043^(16/17) 8626757127201004 a001 491974210728719578/5702887 8626757127201090 a001 1346269/7881196*14662949395604^(8/9) 8626757127201090 a001 3524578/3010349*23725150497407^(13/16) 8626757127201090 a001 3524578/3010349*505019158607^(13/14) 8626757127201201 a001 6557470319842/3010349*4870847^(11/16) 8626757127201224 a001 2504730781961/3010349*4870847^(3/4) 8626757127201247 a001 956722026041/3010349*4870847^(13/16) 8626757127201270 a001 365435296162/3010349*4870847^(7/8) 8626757127201292 a001 139583862445/3010349*4870847^(15/16) 8626757127201315 a001 187917426909967705/2178309 8626757127201464 a001 2178309*1860498^(11/15) 8626757127201630 a001 4052739537881/4870847*1860498^(4/5) 8626757127201713 a001 2504730781961/4870847*1860498^(5/6) 8626757127201796 a001 1548008755920/4870847*1860498^(13/15) 8626757127201879 a001 956722026041/4870847*1860498^(9/10) 8626757127201903 a001 1346269/3010349*14662949395604^(6/7) 8626757127201940 a001 3536736619241/4250681*1860498^(4/5) 8626757127201962 a001 591286729879/4870847*1860498^(14/15) 8626757127202023 a001 6557470319842/12752043*1860498^(5/6) 8626757127202097 a001 10610209857723/20633239*1860498^(5/6) 8626757127202106 a001 4052739537881/12752043*1860498^(13/15) 8626757127202128 a001 71778070001172591/832040 8626757127202132 a001 3278735159921/3940598*1860498^(4/5) 8626757127202152 a001 1515744265389/4769326*1860498^(13/15) 8626757127202180 a001 6557470319842/20633239*1860498^(13/15) 8626757127202189 a001 2504730781961/12752043*1860498^(9/10) 8626757127202215 a001 4052739537881/7881196*1860498^(5/6) 8626757127202235 a001 3278735159921/16692641*1860498^(9/10) 8626757127202245 a001 10610209857723/54018521*1860498^(9/10) 8626757127202263 a001 4052739537881/20633239*1860498^(9/10) 8626757127202273 a001 516002918640/4250681*1860498^(14/15) 8626757127202298 a001 2504730781961/7881196*1860498^(13/15) 8626757127202318 a001 4052739537881/33385282*1860498^(14/15) 8626757127202324 a001 3536736619241/29134601*1860498^(14/15) 8626757127202329 a001 6557470319842/54018521*1860498^(14/15) 8626757127202346 a001 2504730781961/20633239*1860498^(14/15) 8626757127202381 a001 387002188980/1970299*1860498^(9/10) 8626757127202439 a001 1305055818203185/15128 8626757127202464 a001 956722026041/7881196*1860498^(14/15) 8626757127202484 a001 8972258750146944/104005 8626757127202491 a001 71778070001175607/832040 8626757127202492 a001 1305055818203193/15128 8626757127202492 a001 8972258750146952/104005 8626757127202492 a001 71778070001175617/832040 8626757127202492 a001 58834483607521/682 8626757127202495 a001 71778070001175641/832040 8626757127202512 a001 14355614000235157/166408 8626757127202631 a001 17944517500294193/208010 8626757127202696 a001 10610209857723/3010349*1860498^(7/10) 8626757127202779 a001 6557470319842/3010349*1860498^(11/15) 8626757127202945 a001 2504730781961/3010349*1860498^(4/5) 8626757127203028 a001 1548008755920/3010349*1860498^(5/6) 8626757127203111 a001 956722026041/3010349*1860498^(13/15) 8626757127203194 a001 591286729879/3010349*1860498^(9/10) 8626757127203278 a001 365435296162/3010349*1860498^(14/15) 8626757127203444 a001 71778070001183537/832040 8626757127204032 a001 514229/1860498*3461452808002^(11/12) 8626757127204969 a001 182717648081/219602*439204^(8/9) 8626757127205572 a001 116139356908859193/1346269 8626757127206161 a001 2178309/1149851*817138163596^(17/19) 8626757127206161 a001 514229/4870847*14662949395604^(19/21) 8626757127206161 a001 2178309/1149851*14662949395604^(17/21) 8626757127206161 a001 2178309/1149851*192900153618^(17/18) 8626757127206385 a001 304056783818948291/3524578 8626757127206398 a001 53316291173/1149851*7881196^(10/11) 8626757127206411 a001 225851433717/1149851*7881196^(9/11) 8626757127206423 a001 956722026041/1149851*7881196^(8/11) 8626757127206432 a001 2504730781961/1149851*7881196^(2/3) 8626757127206436 a001 4052739537881/1149851*7881196^(7/11) 8626757127206471 a001 5702887/1149851*14662949395604^(7/9) 8626757127206471 a001 5702887/1149851*505019158607^(7/8) 8626757127206504 a001 159206198909597136/1845493 8626757127206507 a001 53316291173/1149851*20633239^(6/7) 8626757127206508 a001 139583862445/1149851*20633239^(4/5) 8626757127206510 a001 514229*20633239^(5/7) 8626757127206512 a001 4052739537881/1149851*20633239^(3/5) 8626757127206513 a001 6557470319842/1149851*20633239^(4/7) 8626757127206521 a001 2084036199825008749/24157817 8626757127206523 a001 39088169/1149851*45537549124^(15/17) 8626757127206523 a001 39088169/1149851*312119004989^(9/11) 8626757127206523 a001 39088169/1149851*14662949395604^(5/7) 8626757127206523 a001 39088169/1149851*192900153618^(5/6) 8626757127206523 a001 39088169/1149851*28143753123^(9/10) 8626757127206523 a001 39088169/1149851*10749957122^(15/16) 8626757127206524 a001 5456077604927040567/63245986 8626757127206524 a001 2971215073/1149851*141422324^(12/13) 8626757127206524 a001 12586269025/1149851*141422324^(11/13) 8626757127206524 a001 53316291173/1149851*141422324^(10/13) 8626757127206524 a001 225851433717/1149851*141422324^(9/13) 8626757127206524 a001 365435296162/1149851*141422324^(2/3) 8626757127206524 a001 956722026041/1149851*141422324^(8/13) 8626757127206524 a001 4052739537881/1149851*141422324^(7/13) 8626757127206524 a001 701408733/1149851*2537720636^(13/15) 8626757127206524 a001 701408733/1149851*45537549124^(13/17) 8626757127206524 a001 701408733/1149851*14662949395604^(13/21) 8626757127206524 a001 701408733/1149851*192900153618^(13/18) 8626757127206524 a001 701408733/1149851*73681302247^(3/4) 8626757127206524 a001 701408733/1149851*10749957122^(13/16) 8626757127206524 a001 4807526976/1149851*2537720636^(7/9) 8626757127206524 a001 12586269025/1149851*2537720636^(11/15) 8626757127206524 a001 53316291173/1149851*2537720636^(2/3) 8626757127206524 a001 2971215073/1149851*2537720636^(4/5) 8626757127206524 a001 225851433717/1149851*2537720636^(3/5) 8626757127206524 a001 514229*2537720636^(5/9) 8626757127206524 a001 956722026041/1149851*2537720636^(8/15) 8626757127206524 a001 4052739537881/1149851*2537720636^(7/15) 8626757127206524 a001 6557470319842/1149851*2537720636^(4/9) 8626757127206524 a001 4807526976/1149851*17393796001^(5/7) 8626757127206524 a001 4807526976/1149851*312119004989^(7/11) 8626757127206524 a001 4807526976/1149851*14662949395604^(5/9) 8626757127206524 a001 4807526976/1149851*505019158607^(5/8) 8626757127206524 a001 4807526976/1149851*28143753123^(7/10) 8626757127206524 a001 139583862445/1149851*17393796001^(4/7) 8626757127206524 a001 12586269025/1149851*45537549124^(11/17) 8626757127206524 a001 4052739537881/1149851*17393796001^(3/7) 8626757127206524 a001 12586269025/1149851*312119004989^(3/5) 8626757127206524 a001 12586269025/1149851*817138163596^(11/19) 8626757127206524 a001 12586269025/1149851*14662949395604^(11/21) 8626757127206524 a001 12586269025/1149851*192900153618^(11/18) 8626757127206524 a001 225851433717/1149851*45537549124^(9/17) 8626757127206524 a001 956722026041/1149851*45537549124^(8/17) 8626757127206524 a001 53316291173/1149851*45537549124^(10/17) 8626757127206524 a001 4052739537881/1149851*45537549124^(7/17) 8626757127206524 a001 32951280099/1149851*9062201101803^(1/2) 8626757127206524 a001 86267571272/1149851*1322157322203^(1/2) 8626757127206524 a001 514229*312119004989^(5/11) 8626757127206524 a001 225851433717/1149851*817138163596^(9/19) 8626757127206524 a001 225851433717/1149851*14662949395604^(3/7) 8626757127206524 a001 514229*3461452808002^(5/12) 8626757127206524 a001 10610209857723/1149851*817138163596^(1/3) 8626757127206524 a001 6557470319842/1149851*505019158607^(5/14) 8626757127206524 a001 139583862445/1149851*14662949395604^(4/9) 8626757127206524 a001 4052739537881/1149851*192900153618^(7/18) 8626757127206524 a001 956722026041/1149851*192900153618^(4/9) 8626757127206524 a001 139583862445/1149851*505019158607^(1/2) 8626757127206524 a001 53316291173/1149851*312119004989^(6/11) 8626757127206524 a001 53316291173/1149851*14662949395604^(10/21) 8626757127206524 a001 6557470319842/1149851*73681302247^(5/13) 8626757127206524 a001 53316291173/1149851*192900153618^(5/9) 8626757127206524 a001 365435296162/1149851*73681302247^(1/2) 8626757127206524 a001 139583862445/1149851*73681302247^(7/13) 8626757127206524 a001 20365011074/1149851*23725150497407^(1/2) 8626757127206524 a001 20365011074/1149851*505019158607^(4/7) 8626757127206524 a001 6557470319842/1149851*28143753123^(2/5) 8626757127206524 a001 20365011074/1149851*73681302247^(8/13) 8626757127206524 a001 514229*28143753123^(1/2) 8626757127206524 a001 53316291173/1149851*28143753123^(3/5) 8626757127206524 a001 7778742049/1149851*45537549124^(2/3) 8626757127206524 a001 6557470319842/1149851*10749957122^(5/12) 8626757127206524 a001 4052739537881/1149851*10749957122^(7/16) 8626757127206524 a001 2504730781961/1149851*10749957122^(11/24) 8626757127206524 a001 956722026041/1149851*10749957122^(1/2) 8626757127206524 a001 12586269025/1149851*10749957122^(11/16) 8626757127206524 a001 365435296162/1149851*10749957122^(13/24) 8626757127206524 a001 225851433717/1149851*10749957122^(9/16) 8626757127206524 a001 139583862445/1149851*10749957122^(7/12) 8626757127206524 a001 53316291173/1149851*10749957122^(5/8) 8626757127206524 a001 20365011074/1149851*10749957122^(2/3) 8626757127206524 a001 7778742049/1149851*10749957122^(17/24) 8626757127206524 a001 2971215073/1149851*45537549124^(12/17) 8626757127206524 a001 2971215073/1149851*14662949395604^(4/7) 8626757127206524 a001 2971215073/1149851*505019158607^(9/14) 8626757127206524 a001 2971215073/1149851*192900153618^(2/3) 8626757127206524 a001 2971215073/1149851*73681302247^(9/13) 8626757127206524 a001 6557470319842/1149851*4106118243^(10/23) 8626757127206524 a001 2504730781961/1149851*4106118243^(11/23) 8626757127206524 a001 2971215073/1149851*10749957122^(3/4) 8626757127206524 a001 1548008755920/1149851*4106118243^(1/2) 8626757127206524 a001 956722026041/1149851*4106118243^(12/23) 8626757127206524 a001 365435296162/1149851*4106118243^(13/23) 8626757127206524 a001 139583862445/1149851*4106118243^(14/23) 8626757127206524 a001 53316291173/1149851*4106118243^(15/23) 8626757127206524 a001 20365011074/1149851*4106118243^(16/23) 8626757127206524 a001 7778742049/1149851*4106118243^(17/23) 8626757127206524 a001 2971215073/1149851*4106118243^(18/23) 8626757127206524 a001 1134903170/1149851*817138163596^(2/3) 8626757127206524 a001 1134903170/1149851*10749957122^(19/24) 8626757127206524 a001 6557470319842/1149851*1568397607^(5/11) 8626757127206524 a001 2504730781961/1149851*1568397607^(1/2) 8626757127206524 a001 1134903170/1149851*4106118243^(19/23) 8626757127206524 a001 956722026041/1149851*1568397607^(6/11) 8626757127206524 a001 365435296162/1149851*1568397607^(13/22) 8626757127206524 a001 139583862445/1149851*1568397607^(7/11) 8626757127206524 a001 53316291173/1149851*1568397607^(15/22) 8626757127206524 a001 20365011074/1149851*1568397607^(8/11) 8626757127206524 a001 12586269025/1149851*1568397607^(3/4) 8626757127206524 a001 7778742049/1149851*1568397607^(17/22) 8626757127206524 a001 2971215073/1149851*1568397607^(9/11) 8626757127206524 a001 1134903170/1149851*1568397607^(19/22) 8626757127206524 a001 433494437/1149851*2537720636^(8/9) 8626757127206524 a001 433494437/1149851*312119004989^(8/11) 8626757127206524 a001 433494437/1149851*23725150497407^(5/8) 8626757127206524 a001 433494437/1149851*73681302247^(10/13) 8626757127206524 a001 433494437/1149851*28143753123^(4/5) 8626757127206524 a001 433494437/1149851*10749957122^(5/6) 8626757127206524 a001 433494437/1149851*4106118243^(20/23) 8626757127206524 a001 6557470319842/1149851*599074578^(10/21) 8626757127206524 a001 4052739537881/1149851*599074578^(1/2) 8626757127206524 a001 433494437/1149851*1568397607^(10/11) 8626757127206524 a001 2504730781961/1149851*599074578^(11/21) 8626757127206524 a001 956722026041/1149851*599074578^(4/7) 8626757127206524 a001 365435296162/1149851*599074578^(13/21) 8626757127206524 a001 225851433717/1149851*599074578^(9/14) 8626757127206524 a001 139583862445/1149851*599074578^(2/3) 8626757127206524 a001 53316291173/1149851*599074578^(5/7) 8626757127206524 a001 20365011074/1149851*599074578^(16/21) 8626757127206524 a001 701408733/1149851*599074578^(13/14) 8626757127206524 a001 12586269025/1149851*599074578^(11/14) 8626757127206524 a001 7778742049/1149851*599074578^(17/21) 8626757127206524 a001 4807526976/1149851*599074578^(5/6) 8626757127206524 a001 2971215073/1149851*599074578^(6/7) 8626757127206524 a001 1134903170/1149851*599074578^(19/21) 8626757127206524 a001 433494437/1149851*599074578^(20/21) 8626757127206524 a001 165580141/1149851*2537720636^(14/15) 8626757127206524 a001 165580141/1149851*17393796001^(6/7) 8626757127206524 a001 165580141/1149851*45537549124^(14/17) 8626757127206524 a001 165580141/1149851*817138163596^(14/19) 8626757127206524 a001 165580141/1149851*14662949395604^(2/3) 8626757127206524 a001 165580141/1149851*505019158607^(3/4) 8626757127206524 a001 165580141/1149851*192900153618^(7/9) 8626757127206524 a001 165580141/1149851*10749957122^(7/8) 8626757127206524 a001 165580141/1149851*4106118243^(21/23) 8626757127206524 a001 165580141/1149851*1568397607^(21/22) 8626757127206524 a001 6557470319842/1149851*228826127^(1/2) 8626757127206524 a001 2504730781961/1149851*228826127^(11/20) 8626757127206524 a001 956722026041/1149851*228826127^(3/5) 8626757127206524 a001 514229*228826127^(5/8) 8626757127206524 a001 365435296162/1149851*228826127^(13/20) 8626757127206524 a001 139583862445/1149851*228826127^(7/10) 8626757127206524 a001 53316291173/1149851*228826127^(3/4) 8626757127206524 a001 20365011074/1149851*228826127^(4/5) 8626757127206524 a001 7778742049/1149851*228826127^(17/20) 8626757127206524 a001 4807526976/1149851*228826127^(7/8) 8626757127206524 a001 2971215073/1149851*228826127^(9/10) 8626757127206524 a001 1134903170/1149851*228826127^(19/20) 8626757127206525 a001 63245986/1149851*312119004989^(4/5) 8626757127206525 a001 63245986/1149851*23725150497407^(11/16) 8626757127206525 a001 63245986/1149851*73681302247^(11/13) 8626757127206525 a001 63245986/1149851*10749957122^(11/12) 8626757127206525 a001 63245986/1149851*4106118243^(22/23) 8626757127206525 a001 10610209857723/1149851*87403803^(1/2) 8626757127206525 a001 6557470319842/1149851*87403803^(10/19) 8626757127206525 a001 2504730781961/1149851*87403803^(11/19) 8626757127206525 a001 956722026041/1149851*87403803^(12/19) 8626757127206525 a001 365435296162/1149851*87403803^(13/19) 8626757127206525 a001 139583862445/1149851*87403803^(14/19) 8626757127206525 a001 53316291173/1149851*87403803^(15/19) 8626757127206525 a001 20365011074/1149851*87403803^(16/19) 8626757127206525 a001 7778742049/1149851*87403803^(17/19) 8626757127206525 a001 2971215073/1149851*87403803^(18/19) 8626757127206525 a001 3372041405102031818/39088169 8626757127206527 a001 24157817/1149851*10749957122^(23/24) 8626757127206529 a001 6557470319842/1149851*33385282^(5/9) 8626757127206529 a001 4052739537881/1149851*33385282^(7/12) 8626757127206529 a001 2504730781961/1149851*33385282^(11/18) 8626757127206529 a001 956722026041/1149851*33385282^(2/3) 8626757127206530 a001 365435296162/1149851*33385282^(13/18) 8626757127206530 a001 225851433717/1149851*33385282^(3/4) 8626757127206530 a001 139583862445/1149851*33385282^(7/9) 8626757127206531 a001 53316291173/1149851*33385282^(5/6) 8626757127206531 a001 20365011074/1149851*33385282^(8/9) 8626757127206531 a001 12586269025/1149851*33385282^(11/12) 8626757127206532 a001 7778742049/1149851*33385282^(17/18) 8626757127206532 a001 1288005205277023069/14930352 8626757127206545 a001 9227465/1149851*45537549124^(16/17) 8626757127206545 a001 514229/20633239*14662949395604^(20/21) 8626757127206545 a001 9227465/1149851*14662949395604^(16/21) 8626757127206545 a001 9227465/1149851*192900153618^(8/9) 8626757127206545 a001 9227465/1149851*73681302247^(12/13) 8626757127206555 a001 6557470319842/1149851*12752043^(10/17) 8626757127206559 a001 2504730781961/1149851*12752043^(11/17) 8626757127206562 a001 956722026041/1149851*12752043^(12/17) 8626757127206565 a001 365435296162/1149851*12752043^(13/17) 8626757127206568 a001 139583862445/1149851*12752043^(14/17) 8626757127206571 a001 53316291173/1149851*12752043^(15/17) 8626757127206574 a001 20365011074/1149851*12752043^(16/17) 8626757127206577 a001 491974210729037389/5702887 8626757127206663 a001 3524578/1149851*312119004989^(10/11) 8626757127206663 a001 3524578/1149851*3461452808002^(5/6) 8626757127206752 a001 6557470319842/1149851*4870847^(5/8) 8626757127206774 a001 2504730781961/1149851*4870847^(11/16) 8626757127206797 a001 956722026041/1149851*4870847^(3/4) 8626757127206820 a001 365435296162/1149851*4870847^(13/16) 8626757127206842 a001 139583862445/1149851*4870847^(7/8) 8626757127206865 a001 53316291173/1149851*4870847^(15/16) 8626757127206888 a001 187917426910089098/2178309 8626757127207476 a001 514229/3010349*14662949395604^(8/9) 8626757127207476 a001 1346269/1149851*23725150497407^(13/16) 8626757127207476 a001 1346269/1149851*505019158607^(13/14) 8626757127208186 a001 6557470319842/1149851*1860498^(2/3) 8626757127208269 a001 4052739537881/1149851*1860498^(7/10) 8626757127208352 a001 2504730781961/1149851*1860498^(11/15) 8626757127208518 a001 956722026041/1149851*1860498^(4/5) 8626757127208601 a001 514229*1860498^(5/6) 8626757127208684 a001 365435296162/1149851*1860498^(13/15) 8626757127208767 a001 225851433717/1149851*1860498^(9/10) 8626757127208850 a001 139583862445/1149851*1860498^(14/15) 8626757127209016 a001 14355614000245981/166408 8626757127209709 a001 3536736619241/620166*710647^(5/7) 8626757127209938 a001 387002188980/109801*439204^(7/9) 8626757127210319 a001 3278735159921/930249*710647^(3/4) 8626757127210929 a001 4052739537881/1860498*710647^(11/14) 8626757127212149 a001 832040*710647^(6/7) 8626757127213049 a001 514229/1149851*14662949395604^(6/7) 8626757127213057 a001 2178309*710647^(11/14) 8626757127213369 a001 591286729879/1860498*710647^(13/14) 8626757127213763 a001 10610209857723/3010349*710647^(3/4) 8626757127214278 a001 4052739537881/4870847*710647^(6/7) 8626757127214373 a001 6557470319842/3010349*710647^(11/14) 8626757127214588 a001 3536736619241/4250681*710647^(6/7) 8626757127214589 a001 9138927697857320/105937 8626757127214780 a001 3278735159921/3940598*710647^(6/7) 8626757127214907 a001 3278735159921/219602*439204^(2/3) 8626757127215498 a001 1548008755920/4870847*710647^(13/14) 8626757127215593 a001 2504730781961/3010349*710647^(6/7) 8626757127215808 a001 4052739537881/12752043*710647^(13/14) 8626757127215854 a001 1515744265389/4769326*710647^(13/14) 8626757127215882 a001 6557470319842/20633239*710647^(13/14) 8626757127216000 a001 2504730781961/7881196*710647^(13/14) 8626757127216718 a001 9138927697859575/105937 8626757127216813 a001 956722026041/3010349*710647^(13/14) 8626757127217028 a001 9138927697859904/105937 8626757127217074 a001 9138927697859952/105937 8626757127217080 a001 9138927697859959/105937 8626757127217081 a001 24241187527480/281 8626757127217082 a001 27416783093579881/317811 8626757127217082 a001 27416783093579882/317811 8626757127217084 a001 27416783093579890/317811 8626757127217102 a001 2108983314890765/24447 8626757127217220 a001 2108983314890794/24447 8626757127218033 a001 27416783093582906/317811 8626757127218726 a001 6557470319842/1149851*710647^(5/7) 8626757127219336 a001 4052739537881/1149851*710647^(3/4) 8626757127219946 a001 2504730781961/1149851*710647^(11/14) 8626757127221166 a001 956722026041/1149851*710647^(6/7) 8626757127222386 a001 365435296162/1149851*710647^(13/14) 8626757127223606 a001 27416783093600617/317811 8626757127227639 a001 196418/710647*3461452808002^(11/12) 8626757127238196 a001 44361286907825706/514229 8626757127242229 a001 98209/930249*14662949395604^(19/21) 8626757127242229 a001 208010/109801*817138163596^(17/19) 8626757127242229 a001 208010/109801*14662949395604^(17/21) 8626757127242229 a001 208010/109801*192900153618^(17/18) 8626757127243769 a001 116139356909373422/1346269 8626757127244357 a001 2178309/439204*14662949395604^(7/9) 8626757127244357 a001 2178309/439204*505019158607^(7/8) 8626757127244582 a001 152028391910147280/1762289 8626757127244595 a001 10182505537/219602*7881196^(10/11) 8626757127244607 a001 196418*7881196^(9/11) 8626757127244620 a001 182717648081/219602*7881196^(8/11) 8626757127244628 a001 956722026041/439204*7881196^(2/3) 8626757127244632 a001 387002188980/109801*7881196^(7/11) 8626757127244645 a001 3278735159921/219602*7881196^(6/11) 8626757127244701 a001 796030994551510258/9227465 8626757127244703 a001 10182505537/219602*20633239^(6/7) 8626757127244705 a001 53316291173/439204*20633239^(4/5) 8626757127244706 a001 225851433717/439204*20633239^(5/7) 8626757127244709 a001 387002188980/109801*20633239^(3/5) 8626757127244709 a001 2504730781961/439204*20633239^(4/7) 8626757127244713 a001 196452/5779*45537549124^(15/17) 8626757127244713 a001 196452/5779*312119004989^(9/11) 8626757127244713 a001 196452/5779*14662949395604^(5/7) 8626757127244713 a001 196452/5779*192900153618^(5/6) 8626757127244713 a001 196452/5779*28143753123^(9/10) 8626757127244713 a001 196452/5779*10749957122^(15/16) 8626757127244718 a001 2084036199834236214/24157817 8626757127244720 a001 567451585/219602*141422324^(12/13) 8626757127244720 a001 1201881744/109801*141422324^(11/13) 8626757127244721 a001 10182505537/219602*141422324^(10/13) 8626757127244721 a001 196418*141422324^(9/13) 8626757127244721 a001 139583862445/439204*141422324^(2/3) 8626757127244721 a001 182717648081/219602*141422324^(8/13) 8626757127244721 a001 387002188980/109801*141422324^(7/13) 8626757127244721 a001 3278735159921/219602*141422324^(6/13) 8626757127244721 a001 66978574/109801*2537720636^(13/15) 8626757127244721 a001 66978574/109801*45537549124^(13/17) 8626757127244721 a001 66978574/109801*14662949395604^(13/21) 8626757127244721 a001 66978574/109801*192900153618^(13/18) 8626757127244721 a001 66978574/109801*73681302247^(3/4) 8626757127244721 a001 66978574/109801*10749957122^(13/16) 8626757127244721 a001 66978574/109801*599074578^(13/14) 8626757127244721 a001 1836311903/439204*2537720636^(7/9) 8626757127244721 a001 1201881744/109801*2537720636^(11/15) 8626757127244721 a001 10182505537/219602*2537720636^(2/3) 8626757127244721 a001 196418*2537720636^(3/5) 8626757127244721 a001 225851433717/439204*2537720636^(5/9) 8626757127244721 a001 182717648081/219602*2537720636^(8/15) 8626757127244721 a001 387002188980/109801*2537720636^(7/15) 8626757127244721 a001 2504730781961/439204*2537720636^(4/9) 8626757127244721 a001 3278735159921/219602*2537720636^(2/5) 8626757127244721 a001 1836311903/439204*17393796001^(5/7) 8626757127244721 a001 1836311903/439204*312119004989^(7/11) 8626757127244721 a001 1836311903/439204*14662949395604^(5/9) 8626757127244721 a001 1836311903/439204*505019158607^(5/8) 8626757127244721 a001 1836311903/439204*28143753123^(7/10) 8626757127244721 a001 1201881744/109801*45537549124^(11/17) 8626757127244721 a001 1201881744/109801*312119004989^(3/5) 8626757127244721 a001 1201881744/109801*817138163596^(11/19) 8626757127244721 a001 1201881744/109801*14662949395604^(11/21) 8626757127244721 a001 1201881744/109801*192900153618^(11/18) 8626757127244721 a001 1201881744/109801*10749957122^(11/16) 8626757127244721 a001 53316291173/439204*17393796001^(4/7) 8626757127244721 a001 387002188980/109801*17393796001^(3/7) 8626757127244721 a001 12586269025/439204*9062201101803^(1/2) 8626757127244721 a001 196418*45537549124^(9/17) 8626757127244721 a001 182717648081/219602*45537549124^(8/17) 8626757127244721 a001 387002188980/109801*45537549124^(7/17) 8626757127244721 a001 32951280099/439204*1322157322203^(1/2) 8626757127244721 a001 3278735159921/219602*45537549124^(6/17) 8626757127244721 a001 10610209857723/439204*45537549124^(1/3) 8626757127244721 a001 196418*817138163596^(9/19) 8626757127244721 a001 196418*14662949395604^(3/7) 8626757127244721 a001 196418*192900153618^(1/2) 8626757127244721 a001 225851433717/439204*312119004989^(5/11) 8626757127244721 a001 956722026041/439204*312119004989^(2/5) 8626757127244721 a001 225851433717/439204*3461452808002^(5/12) 8626757127244721 a001 4052739537881/439204*817138163596^(1/3) 8626757127244721 a001 3278735159921/219602*14662949395604^(2/7) 8626757127244721 a001 2504730781961/439204*23725150497407^(5/16) 8626757127244721 a001 2504730781961/439204*505019158607^(5/14) 8626757127244721 a001 182717648081/219602*14662949395604^(8/21) 8626757127244721 a001 3278735159921/219602*192900153618^(1/3) 8626757127244721 a001 182717648081/219602*192900153618^(4/9) 8626757127244721 a001 53316291173/439204*14662949395604^(4/9) 8626757127244721 a001 2504730781961/439204*73681302247^(5/13) 8626757127244721 a001 182717648081/219602*73681302247^(6/13) 8626757127244721 a001 139583862445/439204*73681302247^(1/2) 8626757127244721 a001 53316291173/439204*73681302247^(7/13) 8626757127244721 a001 10182505537/219602*45537549124^(10/17) 8626757127244721 a001 10182505537/219602*312119004989^(6/11) 8626757127244721 a001 10182505537/219602*14662949395604^(10/21) 8626757127244721 a001 10182505537/219602*192900153618^(5/9) 8626757127244721 a001 2504730781961/439204*28143753123^(2/5) 8626757127244721 a001 225851433717/439204*28143753123^(1/2) 8626757127244721 a001 10182505537/219602*28143753123^(3/5) 8626757127244721 a001 3278735159921/219602*10749957122^(3/8) 8626757127244721 a001 7778742049/439204*23725150497407^(1/2) 8626757127244721 a001 7778742049/439204*505019158607^(4/7) 8626757127244721 a001 7778742049/439204*73681302247^(8/13) 8626757127244721 a001 2504730781961/439204*10749957122^(5/12) 8626757127244721 a001 387002188980/109801*10749957122^(7/16) 8626757127244721 a001 956722026041/439204*10749957122^(11/24) 8626757127244721 a001 182717648081/219602*10749957122^(1/2) 8626757127244721 a001 139583862445/439204*10749957122^(13/24) 8626757127244721 a001 196418*10749957122^(9/16) 8626757127244721 a001 53316291173/439204*10749957122^(7/12) 8626757127244721 a001 10182505537/219602*10749957122^(5/8) 8626757127244721 a001 7778742049/439204*10749957122^(2/3) 8626757127244721 a001 2971215073/439204*45537549124^(2/3) 8626757127244721 a001 3278735159921/219602*4106118243^(9/23) 8626757127244721 a001 2504730781961/439204*4106118243^(10/23) 8626757127244721 a001 956722026041/439204*4106118243^(11/23) 8626757127244721 a001 2971215073/439204*10749957122^(17/24) 8626757127244721 a001 591286729879/439204*4106118243^(1/2) 8626757127244721 a001 182717648081/219602*4106118243^(12/23) 8626757127244721 a001 567451585/219602*2537720636^(4/5) 8626757127244721 a001 139583862445/439204*4106118243^(13/23) 8626757127244721 a001 53316291173/439204*4106118243^(14/23) 8626757127244721 a001 10182505537/219602*4106118243^(15/23) 8626757127244721 a001 7778742049/439204*4106118243^(16/23) 8626757127244721 a001 2971215073/439204*4106118243^(17/23) 8626757127244721 a001 567451585/219602*45537549124^(12/17) 8626757127244721 a001 567451585/219602*14662949395604^(4/7) 8626757127244721 a001 567451585/219602*505019158607^(9/14) 8626757127244721 a001 567451585/219602*192900153618^(2/3) 8626757127244721 a001 567451585/219602*73681302247^(9/13) 8626757127244721 a001 567451585/219602*10749957122^(3/4) 8626757127244721 a001 3278735159921/219602*1568397607^(9/22) 8626757127244721 a001 2504730781961/439204*1568397607^(5/11) 8626757127244721 a001 567451585/219602*4106118243^(18/23) 8626757127244721 a001 956722026041/439204*1568397607^(1/2) 8626757127244721 a001 182717648081/219602*1568397607^(6/11) 8626757127244721 a001 139583862445/439204*1568397607^(13/22) 8626757127244721 a001 53316291173/439204*1568397607^(7/11) 8626757127244721 a001 10182505537/219602*1568397607^(15/22) 8626757127244721 a001 1201881744/109801*1568397607^(3/4) 8626757127244721 a001 7778742049/439204*1568397607^(8/11) 8626757127244721 a001 2971215073/439204*1568397607^(17/22) 8626757127244721 a001 567451585/219602*1568397607^(9/11) 8626757127244721 a001 433494437/439204*817138163596^(2/3) 8626757127244721 a001 433494437/439204*10749957122^(19/24) 8626757127244721 a001 433494437/439204*4106118243^(19/23) 8626757127244721 a001 3278735159921/219602*599074578^(3/7) 8626757127244721 a001 2504730781961/439204*599074578^(10/21) 8626757127244721 a001 387002188980/109801*599074578^(1/2) 8626757127244721 a001 433494437/439204*1568397607^(19/22) 8626757127244721 a001 956722026041/439204*599074578^(11/21) 8626757127244721 a001 182717648081/219602*599074578^(4/7) 8626757127244721 a001 139583862445/439204*599074578^(13/21) 8626757127244721 a001 196418*599074578^(9/14) 8626757127244721 a001 53316291173/439204*599074578^(2/3) 8626757127244721 a001 10182505537/219602*599074578^(5/7) 8626757127244721 a001 7778742049/439204*599074578^(16/21) 8626757127244721 a001 1201881744/109801*599074578^(11/14) 8626757127244721 a001 1836311903/439204*599074578^(5/6) 8626757127244721 a001 2971215073/439204*599074578^(17/21) 8626757127244721 a001 567451585/219602*599074578^(6/7) 8626757127244721 a001 433494437/439204*599074578^(19/21) 8626757127244721 a001 165580141/439204*2537720636^(8/9) 8626757127244721 a001 165580141/439204*312119004989^(8/11) 8626757127244721 a001 165580141/439204*23725150497407^(5/8) 8626757127244721 a001 165580141/439204*73681302247^(10/13) 8626757127244721 a001 165580141/439204*28143753123^(4/5) 8626757127244721 a001 165580141/439204*10749957122^(5/6) 8626757127244721 a001 165580141/439204*4106118243^(20/23) 8626757127244721 a001 165580141/439204*1568397607^(10/11) 8626757127244721 a001 3278735159921/219602*228826127^(9/20) 8626757127244721 a001 2504730781961/439204*228826127^(1/2) 8626757127244721 a001 165580141/439204*599074578^(20/21) 8626757127244721 a001 956722026041/439204*228826127^(11/20) 8626757127244721 a001 182717648081/219602*228826127^(3/5) 8626757127244721 a001 225851433717/439204*228826127^(5/8) 8626757127244721 a001 139583862445/439204*228826127^(13/20) 8626757127244721 a001 53316291173/439204*228826127^(7/10) 8626757127244721 a001 10182505537/219602*228826127^(3/4) 8626757127244721 a001 7778742049/439204*228826127^(4/5) 8626757127244721 a001 2971215073/439204*228826127^(17/20) 8626757127244721 a001 1836311903/439204*228826127^(7/8) 8626757127244721 a001 567451585/219602*228826127^(9/10) 8626757127244721 a001 433494437/439204*228826127^(19/20) 8626757127244721 a001 31622993/219602*2537720636^(14/15) 8626757127244721 a001 31622993/219602*17393796001^(6/7) 8626757127244721 a001 31622993/219602*45537549124^(14/17) 8626757127244721 a001 31622993/219602*817138163596^(14/19) 8626757127244721 a001 31622993/219602*14662949395604^(2/3) 8626757127244721 a001 31622993/219602*505019158607^(3/4) 8626757127244721 a001 31622993/219602*192900153618^(7/9) 8626757127244721 a001 31622993/219602*10749957122^(7/8) 8626757127244721 a001 31622993/219602*4106118243^(21/23) 8626757127244721 a001 31622993/219602*1568397607^(21/22) 8626757127244721 a001 3278735159921/219602*87403803^(9/19) 8626757127244721 a001 4052739537881/439204*87403803^(1/2) 8626757127244721 a001 2504730781961/439204*87403803^(10/19) 8626757127244722 a001 956722026041/439204*87403803^(11/19) 8626757127244722 a001 182717648081/219602*87403803^(12/19) 8626757127244722 a001 139583862445/439204*87403803^(13/19) 8626757127244722 a001 53316291173/439204*87403803^(14/19) 8626757127244722 a001 10182505537/219602*87403803^(15/19) 8626757127244722 a001 7778742049/439204*87403803^(16/19) 8626757127244722 a001 2971215073/439204*87403803^(17/19) 8626757127244722 a001 567451585/219602*87403803^(18/19) 8626757127244724 a001 24157817/439204*312119004989^(4/5) 8626757127244724 a001 24157817/439204*23725150497407^(11/16) 8626757127244724 a001 24157817/439204*73681302247^(11/13) 8626757127244724 a001 24157817/439204*10749957122^(11/12) 8626757127244724 a001 24157817/439204*4106118243^(22/23) 8626757127244725 a001 3278735159921/219602*33385282^(1/2) 8626757127244725 a001 2504730781961/439204*33385282^(5/9) 8626757127244725 a001 387002188980/109801*33385282^(7/12) 8626757127244726 a001 956722026041/439204*33385282^(11/18) 8626757127244726 a001 182717648081/219602*33385282^(2/3) 8626757127244726 a001 139583862445/439204*33385282^(13/18) 8626757127244727 a001 196418*33385282^(3/4) 8626757127244727 a001 53316291173/439204*33385282^(7/9) 8626757127244727 a001 10182505537/219602*33385282^(5/6) 8626757127244728 a001 7778742049/439204*33385282^(8/9) 8626757127244728 a001 1201881744/109801*33385282^(11/12) 8626757127244728 a001 2971215073/439204*33385282^(17/18) 8626757127244729 a001 18941253018863617/219564 8626757127244741 a001 9227465/439204*10749957122^(23/24) 8626757127244747 a001 10610209857723/439204*12752043^(1/2) 8626757127244749 a001 3278735159921/219602*12752043^(9/17) 8626757127244752 a001 2504730781961/439204*12752043^(10/17) 8626757127244755 a001 956722026041/439204*12752043^(11/17) 8626757127244758 a001 182717648081/219602*12752043^(12/17) 8626757127244761 a001 139583862445/439204*12752043^(13/17) 8626757127244765 a001 53316291173/439204*12752043^(14/17) 8626757127244768 a001 10182505537/219602*12752043^(15/17) 8626757127244771 a001 7778742049/439204*12752043^(16/17) 8626757127244774 a001 491974210731215698/5702887 8626757127244860 a001 1762289/219602*45537549124^(16/17) 8626757127244860 a001 98209/3940598*14662949395604^(20/21) 8626757127244860 a001 1762289/219602*14662949395604^(16/21) 8626757127244860 a001 1762289/219602*192900153618^(8/9) 8626757127244860 a001 1762289/219602*73681302247^(12/13) 8626757127244925 a001 3278735159921/219602*4870847^(9/16) 8626757127244948 a001 2504730781961/439204*4870847^(5/8) 8626757127244971 a001 956722026041/439204*4870847^(11/16) 8626757127244994 a001 182717648081/219602*4870847^(3/4) 8626757127245016 a001 139583862445/439204*4870847^(13/16) 8626757127245039 a001 53316291173/439204*4870847^(7/8) 8626757127245062 a001 10182505537/219602*4870847^(15/16) 8626757127245084 a001 187917426910921138/2178309 8626757127245673 a001 1346269/439204*312119004989^(10/11) 8626757127245673 a001 1346269/439204*3461452808002^(5/6) 8626757127246216 a001 3278735159921/219602*1860498^(3/5) 8626757127246382 a001 2504730781961/439204*1860498^(2/3) 8626757127246465 a001 387002188980/109801*1860498^(7/10) 8626757127246548 a001 956722026041/439204*1860498^(11/15) 8626757127246715 a001 182717648081/219602*1860498^(4/5) 8626757127246798 a001 225851433717/439204*1860498^(5/6) 8626757127246881 a001 139583862445/439204*1860498^(13/15) 8626757127246964 a001 196418*1860498^(9/10) 8626757127247047 a001 53316291173/439204*1860498^(14/15) 8626757127247213 a001 17944517500386929/208010 8626757127251246 a001 196418/1149851*14662949395604^(8/9) 8626757127251246 a001 514229/439204*23725150497407^(13/16) 8626757127251246 a001 514229/439204*505019158607^(13/14) 8626757127255702 a001 3278735159921/219602*710647^(9/14) 8626757127256922 a001 2504730781961/439204*710647^(5/7) 8626757127257532 a001 387002188980/109801*710647^(3/4) 8626757127258142 a001 956722026041/439204*710647^(11/14) 8626757127259363 a001 182717648081/219602*710647^(6/7) 8626757127260583 a001 139583862445/439204*710647^(13/14) 8626757127261304 a001 956722026041/167761*167761^(4/5) 8626757127261803 a001 27416783093722010/317811 8626757127263974 a001 1515744265389/101521*271443^(9/13) 8626757127272981 a001 4052739537881/710647*271443^(10/13) 8626757127281987 a001 1548008755920/710647*271443^(11/13) 8626757127287570 a001 3536736619241/620166*271443^(10/13) 8626757127289442 a001 98209/219602*14662949395604^(6/7) 8626757127290993 a001 591286729879/710647*271443^(12/13) 8626757127291345 a001 139583862445/64079*64079^(22/23) 8626757127296577 a001 4052739537881/1860498*271443^(11/13) 8626757127296587 a001 6557470319842/1149851*271443^(10/13) 8626757127298705 a001 2178309*271443^(11/13) 8626757127300021 a001 6557470319842/3010349*271443^(11/13) 8626757127305583 a001 832040*271443^(12/13) 8626757127305594 a001 2504730781961/1149851*271443^(11/13) 8626757127307712 a001 4052739537881/4870847*271443^(12/13) 8626757127308022 a001 3536736619241/4250681*271443^(12/13) 8626757127308214 a001 3278735159921/3940598*271443^(12/13) 8626757127309027 a001 2504730781961/3010349*271443^(12/13) 8626757127314589 a001 10472279279561000/121393 8626757127314600 a001 956722026041/1149851*271443^(12/13) 8626757127316718 a001 10472279279563584/121393 8626757127317028 a001 10472279279563961/121393 8626757127317074 a001 10472279279564016/121393 8626757127317080 a001 10472279279564024/121393 8626757127317081 a001 10472279279564025/121393 8626757127317082 a001 44945404633322/521 8626757127317085 a001 10472279279564029/121393 8626757127317102 a001 10472279279564050/121393 8626757127317220 a001 10472279279564194/121393 8626757127318033 a001 10472279279565181/121393 8626757127322609 a001 10610209857723/167761*167761^(3/5) 8626757127323606 a001 10472279279571946/121393 8626757127325778 a001 3278735159921/219602*271443^(9/13) 8626757127334784 a001 2504730781961/439204*271443^(10/13) 8626757127343790 a001 956722026041/439204*271443^(11/13) 8626757127352797 a001 182717648081/219602*271443^(12/13) 8626757127361803 a001 10472279279618314/121393 8626757127382691 a001 225851433717/64079*64079^(21/23) 8626757127389442 a001 75025/271443*3461452808002^(11/12) 8626757127461803 a001 16944503814617925/196418 8626757127466772 a001 139583862445/167761*439204^(8/9) 8626757127471741 a001 591286729879/167761*439204^(7/9) 8626757127474037 a001 365435296162/64079*64079^(20/23) 8626757127476710 a001 2504730781961/167761*439204^(2/3) 8626757127481679 a001 10610209857723/167761*439204^(5/9) 8626757127489442 a001 75025/710647*14662949395604^(19/21) 8626757127489442 a001 317811/167761*817138163596^(17/19) 8626757127489442 a001 317811/167761*14662949395604^(17/21) 8626757127489442 a001 317811/167761*192900153618^(17/18) 8626757127504032 a001 75640/15251*14662949395604^(7/9) 8626757127504032 a001 75640/15251*505019158607^(7/8) 8626757127505572 a001 116139356912898000/1346269 8626757127506385 a001 304056783829522025/3524578 8626757127506398 a001 7778742049/167761*7881196^(10/11) 8626757127506411 a001 32951280099/167761*7881196^(9/11) 8626757127506423 a001 139583862445/167761*7881196^(8/11) 8626757127506432 a001 365435296162/167761*7881196^(2/3) 8626757127506436 a001 591286729879/167761*7881196^(7/11) 8626757127506449 a001 2504730781961/167761*7881196^(6/11) 8626757127506461 a001 10610209857723/167761*7881196^(5/11) 8626757127506471 a001 5702887/167761*45537549124^(15/17) 8626757127506471 a001 5702887/167761*312119004989^(9/11) 8626757127506471 a001 5702887/167761*14662949395604^(5/7) 8626757127506471 a001 5702887/167761*192900153618^(5/6) 8626757127506471 a001 5702887/167761*28143753123^(9/10) 8626757127506471 a001 5702887/167761*10749957122^(15/16) 8626757127506504 a001 159206198915133615/1845493 8626757127506507 a001 7778742049/167761*20633239^(6/7) 8626757127506508 a001 20365011074/167761*20633239^(4/5) 8626757127506510 a001 86267571272/167761*20633239^(5/7) 8626757127506512 a001 591286729879/167761*20633239^(3/5) 8626757127506513 a001 956722026041/167761*20633239^(4/7) 8626757127506516 a001 10610209857723/167761*20633239^(3/7) 8626757127506524 a001 433494437/167761*141422324^(12/13) 8626757127506524 a001 1836311903/167761*141422324^(11/13) 8626757127506524 a001 7778742049/167761*141422324^(10/13) 8626757127506524 a001 32951280099/167761*141422324^(9/13) 8626757127506524 a001 53316291173/167761*141422324^(2/3) 8626757127506524 a001 139583862445/167761*141422324^(8/13) 8626757127506524 a001 591286729879/167761*141422324^(7/13) 8626757127506524 a001 2504730781961/167761*141422324^(6/13) 8626757127506524 a001 9303105/15251*2537720636^(13/15) 8626757127506524 a001 10610209857723/167761*141422324^(5/13) 8626757127506524 a001 9303105/15251*45537549124^(13/17) 8626757127506524 a001 9303105/15251*14662949395604^(13/21) 8626757127506524 a001 9303105/15251*192900153618^(13/18) 8626757127506524 a001 9303105/15251*73681302247^(3/4) 8626757127506524 a001 9303105/15251*10749957122^(13/16) 8626757127506524 a001 9303105/15251*599074578^(13/14) 8626757127506524 a001 701408733/167761*2537720636^(7/9) 8626757127506524 a001 701408733/167761*17393796001^(5/7) 8626757127506524 a001 701408733/167761*312119004989^(7/11) 8626757127506524 a001 701408733/167761*14662949395604^(5/9) 8626757127506524 a001 701408733/167761*505019158607^(5/8) 8626757127506524 a001 701408733/167761*28143753123^(7/10) 8626757127506524 a001 1836311903/167761*2537720636^(11/15) 8626757127506524 a001 7778742049/167761*2537720636^(2/3) 8626757127506524 a001 32951280099/167761*2537720636^(3/5) 8626757127506524 a001 86267571272/167761*2537720636^(5/9) 8626757127506524 a001 139583862445/167761*2537720636^(8/15) 8626757127506524 a001 591286729879/167761*2537720636^(7/15) 8626757127506524 a001 956722026041/167761*2537720636^(4/9) 8626757127506524 a001 2504730781961/167761*2537720636^(2/5) 8626757127506524 a001 1836311903/167761*45537549124^(11/17) 8626757127506524 a001 1836311903/167761*312119004989^(3/5) 8626757127506524 a001 1836311903/167761*817138163596^(11/19) 8626757127506524 a001 1836311903/167761*14662949395604^(11/21) 8626757127506524 a001 1836311903/167761*192900153618^(11/18) 8626757127506524 a001 1836311903/167761*10749957122^(11/16) 8626757127506524 a001 10610209857723/167761*2537720636^(1/3) 8626757127506524 a001 4807526976/167761*9062201101803^(1/2) 8626757127506524 a001 591286729879/167761*17393796001^(3/7) 8626757127506524 a001 20365011074/167761*17393796001^(4/7) 8626757127506524 a001 75025*1322157322203^(1/2) 8626757127506524 a001 32951280099/167761*45537549124^(9/17) 8626757127506524 a001 139583862445/167761*45537549124^(8/17) 8626757127506524 a001 591286729879/167761*45537549124^(7/17) 8626757127506524 a001 32951280099/167761*817138163596^(9/19) 8626757127506524 a001 32951280099/167761*14662949395604^(3/7) 8626757127506524 a001 2504730781961/167761*45537549124^(6/17) 8626757127506524 a001 4052739537881/167761*45537549124^(1/3) 8626757127506524 a001 10610209857723/167761*45537549124^(5/17) 8626757127506524 a001 86267571272/167761*312119004989^(5/11) 8626757127506524 a001 86267571272/167761*3461452808002^(5/12) 8626757127506524 a001 10610209857723/167761*312119004989^(3/11) 8626757127506524 a001 365435296162/167761*312119004989^(2/5) 8626757127506524 a001 140728068720/15251*817138163596^(1/3) 8626757127506524 a001 10610209857723/167761*14662949395604^(5/21) 8626757127506524 a001 6557470319842/167761*23725150497407^(1/4) 8626757127506524 a001 2504730781961/167761*14662949395604^(2/7) 8626757127506524 a001 956722026041/167761*505019158607^(5/14) 8626757127506524 a001 10610209857723/167761*192900153618^(5/18) 8626757127506524 a001 2504730781961/167761*192900153618^(1/3) 8626757127506524 a001 591286729879/167761*192900153618^(7/18) 8626757127506524 a001 139583862445/167761*14662949395604^(8/21) 8626757127506524 a001 139583862445/167761*192900153618^(4/9) 8626757127506524 a001 6557470319842/167761*73681302247^(4/13) 8626757127506524 a001 956722026041/167761*73681302247^(5/13) 8626757127506524 a001 139583862445/167761*73681302247^(6/13) 8626757127506524 a001 53316291173/167761*73681302247^(1/2) 8626757127506524 a001 10610209857723/167761*28143753123^(3/10) 8626757127506524 a001 20365011074/167761*14662949395604^(4/9) 8626757127506524 a001 20365011074/167761*505019158607^(1/2) 8626757127506524 a001 956722026041/167761*28143753123^(2/5) 8626757127506524 a001 20365011074/167761*73681302247^(7/13) 8626757127506524 a001 86267571272/167761*28143753123^(1/2) 8626757127506524 a001 10610209857723/167761*10749957122^(5/16) 8626757127506524 a001 6557470319842/167761*10749957122^(1/3) 8626757127506524 a001 7778742049/167761*45537549124^(10/17) 8626757127506524 a001 2504730781961/167761*10749957122^(3/8) 8626757127506524 a001 7778742049/167761*312119004989^(6/11) 8626757127506524 a001 7778742049/167761*14662949395604^(10/21) 8626757127506524 a001 7778742049/167761*192900153618^(5/9) 8626757127506524 a001 956722026041/167761*10749957122^(5/12) 8626757127506524 a001 591286729879/167761*10749957122^(7/16) 8626757127506524 a001 365435296162/167761*10749957122^(11/24) 8626757127506524 a001 7778742049/167761*28143753123^(3/5) 8626757127506524 a001 139583862445/167761*10749957122^(1/2) 8626757127506524 a001 32951280099/167761*10749957122^(9/16) 8626757127506524 a001 53316291173/167761*10749957122^(13/24) 8626757127506524 a001 20365011074/167761*10749957122^(7/12) 8626757127506524 a001 7778742049/167761*10749957122^(5/8) 8626757127506524 a001 6557470319842/167761*4106118243^(8/23) 8626757127506524 a001 2971215073/167761*23725150497407^(1/2) 8626757127506524 a001 2971215073/167761*505019158607^(4/7) 8626757127506524 a001 2971215073/167761*73681302247^(8/13) 8626757127506524 a001 2504730781961/167761*4106118243^(9/23) 8626757127506524 a001 956722026041/167761*4106118243^(10/23) 8626757127506524 a001 365435296162/167761*4106118243^(11/23) 8626757127506524 a001 2971215073/167761*10749957122^(2/3) 8626757127506524 a001 225851433717/167761*4106118243^(1/2) 8626757127506524 a001 139583862445/167761*4106118243^(12/23) 8626757127506524 a001 53316291173/167761*4106118243^(13/23) 8626757127506524 a001 20365011074/167761*4106118243^(14/23) 8626757127506524 a001 7778742049/167761*4106118243^(15/23) 8626757127506524 a001 2971215073/167761*4106118243^(16/23) 8626757127506524 a001 6557470319842/167761*1568397607^(4/11) 8626757127506524 a001 1134903170/167761*45537549124^(2/3) 8626757127506524 a001 1134903170/167761*10749957122^(17/24) 8626757127506524 a001 2504730781961/167761*1568397607^(9/22) 8626757127506524 a001 956722026041/167761*1568397607^(5/11) 8626757127506524 a001 1134903170/167761*4106118243^(17/23) 8626757127506524 a001 365435296162/167761*1568397607^(1/2) 8626757127506524 a001 139583862445/167761*1568397607^(6/11) 8626757127506524 a001 53316291173/167761*1568397607^(13/22) 8626757127506524 a001 1836311903/167761*1568397607^(3/4) 8626757127506524 a001 20365011074/167761*1568397607^(7/11) 8626757127506524 a001 7778742049/167761*1568397607^(15/22) 8626757127506524 a001 2971215073/167761*1568397607^(8/11) 8626757127506524 a001 1134903170/167761*1568397607^(17/22) 8626757127506524 a001 433494437/167761*2537720636^(4/5) 8626757127506524 a001 10610209857723/167761*599074578^(5/14) 8626757127506524 a001 6557470319842/167761*599074578^(8/21) 8626757127506524 a001 433494437/167761*45537549124^(12/17) 8626757127506524 a001 433494437/167761*14662949395604^(4/7) 8626757127506524 a001 433494437/167761*505019158607^(9/14) 8626757127506524 a001 433494437/167761*192900153618^(2/3) 8626757127506524 a001 433494437/167761*73681302247^(9/13) 8626757127506524 a001 433494437/167761*10749957122^(3/4) 8626757127506524 a001 433494437/167761*4106118243^(18/23) 8626757127506524 a001 2504730781961/167761*599074578^(3/7) 8626757127506524 a001 956722026041/167761*599074578^(10/21) 8626757127506524 a001 591286729879/167761*599074578^(1/2) 8626757127506524 a001 433494437/167761*1568397607^(9/11) 8626757127506524 a001 365435296162/167761*599074578^(11/21) 8626757127506524 a001 139583862445/167761*599074578^(4/7) 8626757127506524 a001 53316291173/167761*599074578^(13/21) 8626757127506524 a001 32951280099/167761*599074578^(9/14) 8626757127506524 a001 20365011074/167761*599074578^(2/3) 8626757127506524 a001 701408733/167761*599074578^(5/6) 8626757127506524 a001 7778742049/167761*599074578^(5/7) 8626757127506524 a001 1836311903/167761*599074578^(11/14) 8626757127506524 a001 2971215073/167761*599074578^(16/21) 8626757127506524 a001 1134903170/167761*599074578^(17/21) 8626757127506524 a001 433494437/167761*599074578^(6/7) 8626757127506524 a001 10610209857723/167761*228826127^(3/8) 8626757127506524 a001 165580141/167761*817138163596^(2/3) 8626757127506524 a001 165580141/167761*10749957122^(19/24) 8626757127506524 a001 165580141/167761*4106118243^(19/23) 8626757127506524 a001 6557470319842/167761*228826127^(2/5) 8626757127506524 a001 165580141/167761*1568397607^(19/22) 8626757127506524 a001 2504730781961/167761*228826127^(9/20) 8626757127506524 a001 956722026041/167761*228826127^(1/2) 8626757127506524 a001 165580141/167761*599074578^(19/21) 8626757127506524 a001 365435296162/167761*228826127^(11/20) 8626757127506524 a001 139583862445/167761*228826127^(3/5) 8626757127506524 a001 86267571272/167761*228826127^(5/8) 8626757127506524 a001 53316291173/167761*228826127^(13/20) 8626757127506524 a001 20365011074/167761*228826127^(7/10) 8626757127506524 a001 7778742049/167761*228826127^(3/4) 8626757127506524 a001 2971215073/167761*228826127^(4/5) 8626757127506524 a001 701408733/167761*228826127^(7/8) 8626757127506524 a001 1134903170/167761*228826127^(17/20) 8626757127506524 a001 433494437/167761*228826127^(9/10) 8626757127506524 a001 165580141/167761*228826127^(19/20) 8626757127506525 a001 63245986/167761*2537720636^(8/9) 8626757127506525 a001 63245986/167761*312119004989^(8/11) 8626757127506525 a001 63245986/167761*23725150497407^(5/8) 8626757127506525 a001 63245986/167761*73681302247^(10/13) 8626757127506525 a001 63245986/167761*28143753123^(4/5) 8626757127506525 a001 63245986/167761*10749957122^(5/6) 8626757127506525 a001 63245986/167761*4106118243^(20/23) 8626757127506525 a001 63245986/167761*1568397607^(10/11) 8626757127506525 a001 63245986/167761*599074578^(20/21) 8626757127506525 a001 6557470319842/167761*87403803^(8/19) 8626757127506525 a001 2504730781961/167761*87403803^(9/19) 8626757127506525 a001 140728068720/15251*87403803^(1/2) 8626757127506525 a001 956722026041/167761*87403803^(10/19) 8626757127506525 a001 365435296162/167761*87403803^(11/19) 8626757127506525 a001 139583862445/167761*87403803^(12/19) 8626757127506525 a001 53316291173/167761*87403803^(13/19) 8626757127506525 a001 20365011074/167761*87403803^(14/19) 8626757127506525 a001 7778742049/167761*87403803^(15/19) 8626757127506525 a001 2971215073/167761*87403803^(16/19) 8626757127506525 a001 1134903170/167761*87403803^(17/19) 8626757127506525 a001 433494437/167761*87403803^(18/19) 8626757127506527 a001 24157817/167761*2537720636^(14/15) 8626757127506527 a001 24157817/167761*17393796001^(6/7) 8626757127506527 a001 24157817/167761*45537549124^(14/17) 8626757127506527 a001 24157817/167761*817138163596^(14/19) 8626757127506527 a001 24157817/167761*14662949395604^(2/3) 8626757127506527 a001 24157817/167761*505019158607^(3/4) 8626757127506527 a001 24157817/167761*192900153618^(7/9) 8626757127506527 a001 24157817/167761*10749957122^(7/8) 8626757127506527 a001 24157817/167761*4106118243^(21/23) 8626757127506527 a001 24157817/167761*1568397607^(21/22) 8626757127506527 a001 10610209857723/167761*33385282^(5/12) 8626757127506528 a001 6557470319842/167761*33385282^(4/9) 8626757127506528 a001 2504730781961/167761*33385282^(1/2) 8626757127506529 a001 956722026041/167761*33385282^(5/9) 8626757127506529 a001 591286729879/167761*33385282^(7/12) 8626757127506529 a001 365435296162/167761*33385282^(11/18) 8626757127506529 a001 139583862445/167761*33385282^(2/3) 8626757127506530 a001 53316291173/167761*33385282^(13/18) 8626757127506530 a001 32951280099/167761*33385282^(3/4) 8626757127506530 a001 20365011074/167761*33385282^(7/9) 8626757127506531 a001 7778742049/167761*33385282^(5/6) 8626757127506531 a001 2971215073/167761*33385282^(8/9) 8626757127506531 a001 1836311903/167761*33385282^(11/12) 8626757127506532 a001 1134903170/167761*33385282^(17/18) 8626757127506545 a001 9227465/167761*312119004989^(4/5) 8626757127506545 a001 9227465/167761*23725150497407^(11/16) 8626757127506545 a001 9227465/167761*73681302247^(11/13) 8626757127506545 a001 9227465/167761*10749957122^(11/12) 8626757127506545 a001 9227465/167761*4106118243^(22/23) 8626757127506549 a001 6557470319842/167761*12752043^(8/17) 8626757127506551 a001 4052739537881/167761*12752043^(1/2) 8626757127506552 a001 2504730781961/167761*12752043^(9/17) 8626757127506555 a001 956722026041/167761*12752043^(10/17) 8626757127506559 a001 365435296162/167761*12752043^(11/17) 8626757127506562 a001 139583862445/167761*12752043^(12/17) 8626757127506565 a001 53316291173/167761*12752043^(13/17) 8626757127506568 a001 20365011074/167761*12752043^(14/17) 8626757127506571 a001 7778742049/167761*12752043^(15/17) 8626757127506574 a001 2971215073/167761*12752043^(16/17) 8626757127506577 a001 491974210746146050/5702887 8626757127506663 a001 3524578/167761*10749957122^(23/24) 8626757127506706 a001 6557470319842/167761*4870847^(1/2) 8626757127506729 a001 2504730781961/167761*4870847^(9/16) 8626757127506752 a001 956722026041/167761*4870847^(5/8) 8626757127506774 a001 365435296162/167761*4870847^(11/16) 8626757127506797 a001 139583862445/167761*4870847^(3/4) 8626757127506820 a001 53316291173/167761*4870847^(13/16) 8626757127506842 a001 20365011074/167761*4870847^(7/8) 8626757127506865 a001 7778742049/167761*4870847^(15/16) 8626757127506888 a001 187917426916624025/2178309 8626757127507476 a001 75025/3010349*14662949395604^(20/21) 8626757127507476 a001 1346269/167761*45537549124^(16/17) 8626757127507476 a001 1346269/167761*14662949395604^(16/21) 8626757127507476 a001 1346269/167761*192900153618^(8/9) 8626757127507476 a001 1346269/167761*73681302247^(12/13) 8626757127507770 a001 10610209857723/167761*1860498^(1/2) 8626757127507853 a001 6557470319842/167761*1860498^(8/15) 8626757127508020 a001 2504730781961/167761*1860498^(3/5) 8626757127508186 a001 956722026041/167761*1860498^(2/3) 8626757127508269 a001 591286729879/167761*1860498^(7/10) 8626757127508352 a001 365435296162/167761*1860498^(11/15) 8626757127508518 a001 139583862445/167761*1860498^(4/5) 8626757127508601 a001 86267571272/167761*1860498^(5/6) 8626757127508684 a001 53316291173/167761*1860498^(13/15) 8626757127508767 a001 32951280099/167761*1860498^(9/10) 8626757127508850 a001 20365011074/167761*1860498^(14/15) 8626757127509016 a001 14355614000745205/166408 8626757127513049 a001 514229/167761*312119004989^(10/11) 8626757127513049 a001 514229/167761*3461452808002^(5/6) 8626757127516285 a001 6557470319842/167761*710647^(4/7) 8626757127517506 a001 2504730781961/167761*710647^(9/14) 8626757127518726 a001 956722026041/167761*710647^(5/7) 8626757127519336 a001 591286729879/167761*710647^(3/4) 8626757127519946 a001 365435296162/167761*710647^(11/14) 8626757127521166 a001 139583862445/167761*710647^(6/7) 8626757127522386 a001 53316291173/167761*710647^(13/14) 8626757127523606 a001 27416783094554050/317811 8626757127551246 a001 75025/439204*14662949395604^(8/9) 8626757127551246 a001 196418/167761*23725150497407^(13/16) 8626757127551246 a001 196418/167761*505019158607^(13/14) 8626757127565382 a001 591286729879/64079*64079^(19/23) 8626757127578575 a001 6557470319842/167761*271443^(8/13) 8626757127587581 a001 2504730781961/167761*271443^(9/13) 8626757127596587 a001 956722026041/167761*271443^(10/13) 8626757127605594 a001 365435296162/167761*271443^(11/13) 8626757127614600 a001 139583862445/167761*271443^(12/13) 8626757127617912 a001 3536736619241/90481*103682^(2/3) 8626757127623606 a001 10472279279936125/121393 8626757127651349 a001 6557470319842/271443*103682^(17/24) 8626757127656728 a001 956722026041/64079*64079^(18/23) 8626757127684787 a001 4052739537881/271443*103682^(3/4) 8626757127718224 a001 2504730781961/271443*103682^(19/24) 8626757127748074 a001 1548008755920/64079*64079^(17/23) 8626757127751661 a001 516002918640/90481*103682^(5/6) 8626757127784787 a001 1515744265389/101521*103682^(3/4) 8626757127785098 a001 956722026041/271443*103682^(7/8) 8626757127813049 a001 75025/167761*14662949395604^(6/7) 8626757127813153 a001 10610209857723/439204*103682^(17/24) 8626757127818224 a001 6557470319842/710647*103682^(19/24) 8626757127818535 a001 591286729879/271443*103682^(11/12) 8626757127839420 a001 2504730781961/64079*64079^(16/23) 8626757127841831 a001 10610209857723/1149851*103682^(19/24) 8626757127846590 a001 3278735159921/219602*103682^(3/4) 8626757127851661 a001 4052739537881/710647*103682^(5/6) 8626757127851973 a001 365435296162/271443*103682^(23/24) 8626757127866251 a001 3536736619241/620166*103682^(5/6) 8626757127875268 a001 6557470319842/1149851*103682^(5/6) 8626757127880027 a001 4052739537881/439204*103682^(19/24) 8626757127885098 a001 2504730781961/710647*103682^(7/8) 8626757127885410 a001 1333351581685969/15456 8626757127885720 a001 139583862445/24476*24476^(20/21) 8626757127899688 a001 3278735159921/930249*103682^(7/8) 8626757127903132 a001 10610209857723/3010349*103682^(7/8) 8626757127908705 a001 4052739537881/1149851*103682^(7/8) 8626757127913464 a001 2504730781961/439204*103682^(5/6) 8626757127918535 a001 1548008755920/710647*103682^(11/12) 8626757127930765 a001 4052739537881/64079*64079^(15/23) 8626757127933125 a001 4052739537881/1860498*103682^(11/12) 8626757127935254 a001 2178309*103682^(11/12) 8626757127936569 a001 6557470319842/3010349*103682^(11/12) 8626757127942142 a001 2504730781961/1149851*103682^(11/12) 8626757127946902 a001 387002188980/109801*103682^(7/8) 8626757127951973 a001 956722026041/710647*103682^(23/24) 8626757127966562 a001 2504730781961/1860498*103682^(23/24) 8626757127968691 a001 6557470319842/4870847*103682^(23/24) 8626757127969193 a001 10610209857723/7881196*103682^(23/24) 8626757127970007 a001 1346269*103682^(23/24) 8626757127975579 a001 1548008755920/1149851*103682^(23/24) 8626757127980339 a001 956722026041/439204*103682^(11/12) 8626757127985410 a001 1333351581701425/15456 8626757128002128 a001 190478797386287/2208 8626757128002439 a001 1333351581704057/15456 8626757128002484 a001 13889078976084/161 8626757128002490 a001 190478797386295/2208 8626757128002493 a001 1000013686278049/11592 8626757128002495 a001 4000054745112197/46368 8626757128002512 a001 4000054745112205/46368 8626757128002631 a001 1000013686278065/11592 8626757128003444 a001 4000054745112637/46368 8626757128008082 a001 10610209857723/167761*103682^(5/8) 8626757128009016 a001 4000054745115221/46368 8626757128013776 a001 591286729879/439204*103682^(23/24) 8626757128022111 a001 6557470319842/64079*64079^(14/23) 8626757128041519 a001 6557470319842/167761*103682^(2/3) 8626757128047213 a001 1000013686283233/11592 8626757128074956 a001 4052739537881/167761*103682^(17/24) 8626757128108393 a001 2504730781961/167761*103682^(3/4) 8626757128113457 a001 10610209857723/64079*64079^(13/23) 8626757128141831 a001 140728068720/15251*103682^(19/24) 8626757128175268 a001 956722026041/167761*103682^(5/6) 8626757128208705 a001 591286729879/167761*103682^(7/8) 8626757128242142 a001 365435296162/167761*103682^(11/12) 8626757128275579 a001 225851433717/167761*103682^(23/24) 8626757128309016 a001 4000054745254325/46368 8626757128498459 a001 28657/103682*3461452808002^(11/12) 8626757128571441 a001 7787980473/844*24476^(19/21) 8626757128994427 a001 6472224536028069/75025 8626757129055732 a001 365435296162/64079*167761^(4/5) 8626757129117037 a001 4052739537881/64079*167761^(3/5) 8626757129183869 a001 28657/271443*14662949395604^(19/21) 8626757129183869 a001 121393/64079*817138163596^(17/19) 8626757129183869 a001 121393/64079*14662949395604^(17/21) 8626757129183869 a001 121393/64079*192900153618^(17/18) 8626757129256230 a001 16944503818142503/196418 8626757129257162 a001 182717648081/12238*24476^(6/7) 8626757129261199 a001 53316291173/64079*439204^(8/9) 8626757129266168 a001 225851433717/64079*439204^(7/9) 8626757129271137 a001 956722026041/64079*439204^(2/3) 8626757129276106 a001 4052739537881/64079*439204^(5/9) 8626757129283869 a001 317811/64079*14662949395604^(7/9) 8626757129283869 a001 317811/64079*505019158607^(7/8) 8626757129294427 a001 44361286918399440/514229 8626757129300588 a001 2178309/64079*45537549124^(15/17) 8626757129300588 a001 2178309/64079*312119004989^(9/11) 8626757129300588 a001 2178309/64079*14662949395604^(5/7) 8626757129300588 a001 2178309/64079*192900153618^(5/6) 8626757129300588 a001 2178309/64079*28143753123^(9/10) 8626757129300588 a001 2178309/64079*10749957122^(15/16) 8626757129300813 a001 304056783892768011/3524578 8626757129300825 a001 2971215073/64079*7881196^(10/11) 8626757129300838 a001 12586269025/64079*7881196^(9/11) 8626757129300850 a001 53316291173/64079*7881196^(8/11) 8626757129300859 a001 139583862445/64079*7881196^(2/3) 8626757129300863 a001 225851433717/64079*7881196^(7/11) 8626757129300876 a001 956722026041/64079*7881196^(6/11) 8626757129300888 a001 4052739537881/64079*7881196^(5/11) 8626757129300934 a001 2971215073/64079*20633239^(6/7) 8626757129300935 a001 7778742049/64079*20633239^(4/5) 8626757129300937 a001 32951280099/64079*20633239^(5/7) 8626757129300939 a001 225851433717/64079*20633239^(3/5) 8626757129300940 a001 365435296162/64079*20633239^(4/7) 8626757129300943 a001 4052739537881/64079*20633239^(3/7) 8626757129300943 a001 6557470319842/64079*20633239^(2/5) 8626757129300950 a001 39088169/64079*2537720636^(13/15) 8626757129300950 a001 39088169/64079*45537549124^(13/17) 8626757129300950 a001 39088169/64079*14662949395604^(13/21) 8626757129300950 a001 39088169/64079*192900153618^(13/18) 8626757129300950 a001 39088169/64079*73681302247^(3/4) 8626757129300950 a001 39088169/64079*10749957122^(13/16) 8626757129300950 a001 39088169/64079*599074578^(13/14) 8626757129300951 a001 701408733/64079*141422324^(11/13) 8626757129300951 a001 165580141/64079*141422324^(12/13) 8626757129300951 a001 2971215073/64079*141422324^(10/13) 8626757129300951 a001 12586269025/64079*141422324^(9/13) 8626757129300951 a001 20365011074/64079*141422324^(2/3) 8626757129300951 a001 53316291173/64079*141422324^(8/13) 8626757129300951 a001 225851433717/64079*141422324^(7/13) 8626757129300951 a001 956722026041/64079*141422324^(6/13) 8626757129300951 a001 4052739537881/64079*141422324^(5/13) 8626757129300951 a001 10610209857723/64079*141422324^(1/3) 8626757129300951 a001 267914296/64079*2537720636^(7/9) 8626757129300951 a001 267914296/64079*17393796001^(5/7) 8626757129300951 a001 267914296/64079*312119004989^(7/11) 8626757129300951 a001 267914296/64079*14662949395604^(5/9) 8626757129300951 a001 267914296/64079*505019158607^(5/8) 8626757129300951 a001 267914296/64079*28143753123^(7/10) 8626757129300951 a001 701408733/64079*2537720636^(11/15) 8626757129300951 a001 267914296/64079*599074578^(5/6) 8626757129300951 a001 701408733/64079*45537549124^(11/17) 8626757129300951 a001 701408733/64079*312119004989^(3/5) 8626757129300951 a001 701408733/64079*817138163596^(11/19) 8626757129300951 a001 701408733/64079*14662949395604^(11/21) 8626757129300951 a001 701408733/64079*192900153618^(11/18) 8626757129300951 a001 701408733/64079*10749957122^(11/16) 8626757129300951 a001 701408733/64079*1568397607^(3/4) 8626757129300951 a001 12586269025/64079*2537720636^(3/5) 8626757129300951 a001 32951280099/64079*2537720636^(5/9) 8626757129300951 a001 53316291173/64079*2537720636^(8/15) 8626757129300951 a001 2971215073/64079*2537720636^(2/3) 8626757129300951 a001 225851433717/64079*2537720636^(7/15) 8626757129300951 a001 365435296162/64079*2537720636^(4/9) 8626757129300951 a001 956722026041/64079*2537720636^(2/5) 8626757129300951 a001 28657*9062201101803^(1/2) 8626757129300951 a001 4052739537881/64079*2537720636^(1/3) 8626757129300951 a001 4807526976/64079*1322157322203^(1/2) 8626757129300951 a001 12586269025/64079*45537549124^(9/17) 8626757129300951 a001 225851433717/64079*17393796001^(3/7) 8626757129300951 a001 12586269025/64079*817138163596^(9/19) 8626757129300951 a001 12586269025/64079*14662949395604^(3/7) 8626757129300951 a001 12586269025/64079*192900153618^(1/2) 8626757129300951 a001 6557470319842/64079*17393796001^(2/7) 8626757129300951 a001 225851433717/64079*45537549124^(7/17) 8626757129300951 a001 32951280099/64079*312119004989^(5/11) 8626757129300951 a001 32951280099/64079*3461452808002^(5/12) 8626757129300951 a001 956722026041/64079*45537549124^(6/17) 8626757129300951 a001 1548008755920/64079*45537549124^(1/3) 8626757129300951 a001 53316291173/64079*45537549124^(8/17) 8626757129300951 a001 4052739537881/64079*45537549124^(5/17) 8626757129300951 a001 225851433717/64079*14662949395604^(1/3) 8626757129300951 a001 4052739537881/64079*312119004989^(3/11) 8626757129300951 a001 591286729879/64079*817138163596^(1/3) 8626757129300951 a001 2504730781961/64079*23725150497407^(1/4) 8626757129300951 a001 956722026041/64079*14662949395604^(2/7) 8626757129300951 a001 6557470319842/64079*505019158607^(1/4) 8626757129300951 a001 365435296162/64079*23725150497407^(5/16) 8626757129300951 a001 139583862445/64079*312119004989^(2/5) 8626757129300951 a001 225851433717/64079*192900153618^(7/18) 8626757129300951 a001 4052739537881/64079*192900153618^(5/18) 8626757129300951 a001 956722026041/64079*192900153618^(1/3) 8626757129300951 a001 10610209857723/64079*73681302247^(1/4) 8626757129300951 a001 2504730781961/64079*73681302247^(4/13) 8626757129300951 a001 53316291173/64079*14662949395604^(8/21) 8626757129300951 a001 365435296162/64079*73681302247^(5/13) 8626757129300951 a001 53316291173/64079*192900153618^(4/9) 8626757129300951 a001 53316291173/64079*73681302247^(6/13) 8626757129300951 a001 4052739537881/64079*28143753123^(3/10) 8626757129300951 a001 32951280099/64079*28143753123^(1/2) 8626757129300951 a001 365435296162/64079*28143753123^(2/5) 8626757129300951 a001 20365011074/64079*73681302247^(1/2) 8626757129300951 a001 7778742049/64079*17393796001^(4/7) 8626757129300951 a001 6557470319842/64079*10749957122^(7/24) 8626757129300951 a001 4052739537881/64079*10749957122^(5/16) 8626757129300951 a001 2504730781961/64079*10749957122^(1/3) 8626757129300951 a001 956722026041/64079*10749957122^(3/8) 8626757129300951 a001 7778742049/64079*14662949395604^(4/9) 8626757129300951 a001 7778742049/64079*505019158607^(1/2) 8626757129300951 a001 7778742049/64079*73681302247^(7/13) 8626757129300951 a001 12586269025/64079*10749957122^(9/16) 8626757129300951 a001 365435296162/64079*10749957122^(5/12) 8626757129300951 a001 225851433717/64079*10749957122^(7/16) 8626757129300951 a001 139583862445/64079*10749957122^(11/24) 8626757129300951 a001 53316291173/64079*10749957122^(1/2) 8626757129300951 a001 20365011074/64079*10749957122^(13/24) 8626757129300951 a001 7778742049/64079*10749957122^(7/12) 8626757129300951 a001 6557470319842/64079*4106118243^(7/23) 8626757129300951 a001 2504730781961/64079*4106118243^(8/23) 8626757129300951 a001 2971215073/64079*45537549124^(10/17) 8626757129300951 a001 2971215073/64079*312119004989^(6/11) 8626757129300951 a001 2971215073/64079*14662949395604^(10/21) 8626757129300951 a001 2971215073/64079*192900153618^(5/9) 8626757129300951 a001 956722026041/64079*4106118243^(9/23) 8626757129300951 a001 2971215073/64079*28143753123^(3/5) 8626757129300951 a001 365435296162/64079*4106118243^(10/23) 8626757129300951 a001 2971215073/64079*10749957122^(5/8) 8626757129300951 a001 139583862445/64079*4106118243^(11/23) 8626757129300951 a001 86267571272/64079*4106118243^(1/2) 8626757129300951 a001 53316291173/64079*4106118243^(12/23) 8626757129300951 a001 20365011074/64079*4106118243^(13/23) 8626757129300951 a001 7778742049/64079*4106118243^(14/23) 8626757129300951 a001 2971215073/64079*4106118243^(15/23) 8626757129300951 a001 6557470319842/64079*1568397607^(7/22) 8626757129300951 a001 2504730781961/64079*1568397607^(4/11) 8626757129300951 a001 1134903170/64079*23725150497407^(1/2) 8626757129300951 a001 1134903170/64079*505019158607^(4/7) 8626757129300951 a001 1134903170/64079*73681302247^(8/13) 8626757129300951 a001 1134903170/64079*10749957122^(2/3) 8626757129300951 a001 956722026041/64079*1568397607^(9/22) 8626757129300951 a001 365435296162/64079*1568397607^(5/11) 8626757129300951 a001 1134903170/64079*4106118243^(16/23) 8626757129300951 a001 139583862445/64079*1568397607^(1/2) 8626757129300951 a001 53316291173/64079*1568397607^(6/11) 8626757129300951 a001 20365011074/64079*1568397607^(13/22) 8626757129300951 a001 7778742049/64079*1568397607^(7/11) 8626757129300951 a001 2971215073/64079*1568397607^(15/22) 8626757129300951 a001 1134903170/64079*1568397607^(8/11) 8626757129300951 a001 6557470319842/64079*599074578^(1/3) 8626757129300951 a001 4052739537881/64079*599074578^(5/14) 8626757129300951 a001 2504730781961/64079*599074578^(8/21) 8626757129300951 a001 433494437/64079*45537549124^(2/3) 8626757129300951 a001 433494437/64079*10749957122^(17/24) 8626757129300951 a001 433494437/64079*4106118243^(17/23) 8626757129300951 a001 956722026041/64079*599074578^(3/7) 8626757129300951 a001 365435296162/64079*599074578^(10/21) 8626757129300951 a001 433494437/64079*1568397607^(17/22) 8626757129300951 a001 225851433717/64079*599074578^(1/2) 8626757129300951 a001 139583862445/64079*599074578^(11/21) 8626757129300951 a001 53316291173/64079*599074578^(4/7) 8626757129300951 a001 20365011074/64079*599074578^(13/21) 8626757129300951 a001 701408733/64079*599074578^(11/14) 8626757129300951 a001 12586269025/64079*599074578^(9/14) 8626757129300951 a001 7778742049/64079*599074578^(2/3) 8626757129300951 a001 2971215073/64079*599074578^(5/7) 8626757129300951 a001 1134903170/64079*599074578^(16/21) 8626757129300951 a001 433494437/64079*599074578^(17/21) 8626757129300952 a001 6557470319842/64079*228826127^(7/20) 8626757129300952 a001 4052739537881/64079*228826127^(3/8) 8626757129300952 a001 165580141/64079*2537720636^(4/5) 8626757129300952 a001 165580141/64079*45537549124^(12/17) 8626757129300952 a001 165580141/64079*14662949395604^(4/7) 8626757129300952 a001 165580141/64079*505019158607^(9/14) 8626757129300952 a001 165580141/64079*192900153618^(2/3) 8626757129300952 a001 165580141/64079*73681302247^(9/13) 8626757129300952 a001 165580141/64079*10749957122^(3/4) 8626757129300952 a001 165580141/64079*4106118243^(18/23) 8626757129300952 a001 165580141/64079*1568397607^(9/11) 8626757129300952 a001 2504730781961/64079*228826127^(2/5) 8626757129300952 a001 956722026041/64079*228826127^(9/20) 8626757129300952 a001 365435296162/64079*228826127^(1/2) 8626757129300952 a001 165580141/64079*599074578^(6/7) 8626757129300952 a001 139583862445/64079*228826127^(11/20) 8626757129300952 a001 53316291173/64079*228826127^(3/5) 8626757129300952 a001 32951280099/64079*228826127^(5/8) 8626757129300952 a001 20365011074/64079*228826127^(13/20) 8626757129300952 a001 7778742049/64079*228826127^(7/10) 8626757129300952 a001 267914296/64079*228826127^(7/8) 8626757129300952 a001 2971215073/64079*228826127^(3/4) 8626757129300952 a001 1134903170/64079*228826127^(4/5) 8626757129300952 a001 433494437/64079*228826127^(17/20) 8626757129300952 a001 165580141/64079*228826127^(9/10) 8626757129300952 a001 6557470319842/64079*87403803^(7/19) 8626757129300952 a001 63245986/64079*817138163596^(2/3) 8626757129300952 a001 63245986/64079*10749957122^(19/24) 8626757129300952 a001 63245986/64079*4106118243^(19/23) 8626757129300952 a001 63245986/64079*1568397607^(19/22) 8626757129300952 a001 63245986/64079*599074578^(19/21) 8626757129300952 a001 2504730781961/64079*87403803^(8/19) 8626757129300952 a001 956722026041/64079*87403803^(9/19) 8626757129300952 a001 591286729879/64079*87403803^(1/2) 8626757129300952 a001 63245986/64079*228826127^(19/20) 8626757129300952 a001 365435296162/64079*87403803^(10/19) 8626757129300952 a001 139583862445/64079*87403803^(11/19) 8626757129300952 a001 53316291173/64079*87403803^(12/19) 8626757129300952 a001 20365011074/64079*87403803^(13/19) 8626757129300952 a001 7778742049/64079*87403803^(14/19) 8626757129300952 a001 2971215073/64079*87403803^(15/19) 8626757129300952 a001 1134903170/64079*87403803^(16/19) 8626757129300952 a001 433494437/64079*87403803^(17/19) 8626757129300953 a001 165580141/64079*87403803^(18/19) 8626757129300954 a001 24157817/64079*2537720636^(8/9) 8626757129300954 a001 24157817/64079*312119004989^(8/11) 8626757129300954 a001 24157817/64079*23725150497407^(5/8) 8626757129300954 a001 24157817/64079*73681302247^(10/13) 8626757129300954 a001 24157817/64079*28143753123^(4/5) 8626757129300954 a001 24157817/64079*10749957122^(5/6) 8626757129300954 a001 24157817/64079*4106118243^(20/23) 8626757129300954 a001 24157817/64079*1568397607^(10/11) 8626757129300954 a001 24157817/64079*599074578^(20/21) 8626757129300954 a001 6557470319842/64079*33385282^(7/18) 8626757129300955 a001 4052739537881/64079*33385282^(5/12) 8626757129300955 a001 2504730781961/64079*33385282^(4/9) 8626757129300955 a001 956722026041/64079*33385282^(1/2) 8626757129300956 a001 365435296162/64079*33385282^(5/9) 8626757129300956 a001 225851433717/64079*33385282^(7/12) 8626757129300956 a001 139583862445/64079*33385282^(11/18) 8626757129300957 a001 53316291173/64079*33385282^(2/3) 8626757129300957 a001 20365011074/64079*33385282^(13/18) 8626757129300957 a001 12586269025/64079*33385282^(3/4) 8626757129300957 a001 7778742049/64079*33385282^(7/9) 8626757129300958 a001 2971215073/64079*33385282^(5/6) 8626757129300958 a001 1134903170/64079*33385282^(8/9) 8626757129300959 a001 701408733/64079*33385282^(11/12) 8626757129300959 a001 433494437/64079*33385282^(17/18) 8626757129300972 a001 9227465/64079*2537720636^(14/15) 8626757129300972 a001 9227465/64079*17393796001^(6/7) 8626757129300972 a001 9227465/64079*45537549124^(14/17) 8626757129300972 a001 9227465/64079*817138163596^(14/19) 8626757129300972 a001 9227465/64079*14662949395604^(2/3) 8626757129300972 a001 9227465/64079*505019158607^(3/4) 8626757129300972 a001 9227465/64079*192900153618^(7/9) 8626757129300972 a001 9227465/64079*10749957122^(7/8) 8626757129300972 a001 9227465/64079*4106118243^(21/23) 8626757129300972 a001 9227465/64079*1568397607^(21/22) 8626757129300973 a001 6557470319842/64079*12752043^(7/17) 8626757129300976 a001 2504730781961/64079*12752043^(8/17) 8626757129300978 a001 1548008755920/64079*12752043^(1/2) 8626757129300980 a001 956722026041/64079*12752043^(9/17) 8626757129300983 a001 365435296162/64079*12752043^(10/17) 8626757129300986 a001 139583862445/64079*12752043^(11/17) 8626757129300989 a001 53316291173/64079*12752043^(12/17) 8626757129300992 a001 20365011074/64079*12752043^(13/17) 8626757129300995 a001 7778742049/64079*12752043^(14/17) 8626757129300998 a001 2971215073/64079*12752043^(15/17) 8626757129301001 a001 1134903170/64079*12752043^(16/17) 8626757129301090 a001 3524578/64079*312119004989^(4/5) 8626757129301090 a001 3524578/64079*23725150497407^(11/16) 8626757129301090 a001 3524578/64079*73681302247^(11/13) 8626757129301090 a001 3524578/64079*10749957122^(11/12) 8626757129301090 a001 3524578/64079*4106118243^(22/23) 8626757129301111 a001 6557470319842/64079*4870847^(7/16) 8626757129301133 a001 2504730781961/64079*4870847^(1/2) 8626757129301156 a001 956722026041/64079*4870847^(9/16) 8626757129301179 a001 365435296162/64079*4870847^(5/8) 8626757129301201 a001 139583862445/64079*4870847^(11/16) 8626757129301224 a001 53316291173/64079*4870847^(3/4) 8626757129301247 a001 20365011074/64079*4870847^(13/16) 8626757129301270 a001 7778742049/64079*4870847^(7/8) 8626757129301292 a001 2971215073/64079*4870847^(15/16) 8626757129301315 a001 187917426955712194/2178309 8626757129301903 a001 1346269/64079*10749957122^(23/24) 8626757129302114 a001 6557470319842/64079*1860498^(7/15) 8626757129302198 a001 4052739537881/64079*1860498^(1/2) 8626757129302281 a001 2504730781961/64079*1860498^(8/15) 8626757129302447 a001 956722026041/64079*1860498^(3/5) 8626757129302613 a001 365435296162/64079*1860498^(2/3) 8626757129302696 a001 225851433717/64079*1860498^(7/10) 8626757129302779 a001 139583862445/64079*1860498^(11/15) 8626757129302945 a001 53316291173/64079*1860498^(4/5) 8626757129303028 a001 32951280099/64079*1860498^(5/6) 8626757129303111 a001 20365011074/64079*1860498^(13/15) 8626757129303194 a001 12586269025/64079*1860498^(9/10) 8626757129303278 a001 7778742049/64079*1860498^(14/15) 8626757129303444 a001 71778070018656377/832040 8626757129307476 a001 28657/1149851*14662949395604^(20/21) 8626757129307476 a001 514229/64079*45537549124^(16/17) 8626757129307476 a001 514229/64079*14662949395604^(16/21) 8626757129307476 a001 514229/64079*192900153618^(8/9) 8626757129307476 a001 514229/64079*73681302247^(12/13) 8626757129309492 a001 6557470319842/64079*710647^(1/2) 8626757129310713 a001 2504730781961/64079*710647^(4/7) 8626757129311933 a001 956722026041/64079*710647^(9/14) 8626757129313153 a001 365435296162/64079*710647^(5/7) 8626757129313763 a001 225851433717/64079*710647^(3/4) 8626757129314373 a001 139583862445/64079*710647^(11/14) 8626757129315593 a001 53316291173/64079*710647^(6/7) 8626757129316813 a001 20365011074/64079*710647^(13/14) 8626757129318033 a001 27416783100256937/317811 8626757129345673 a001 196418/64079*312119004989^(10/11) 8626757129345673 a001 196418/64079*3461452808002^(5/6) 8626757129359492 a001 10610209857723/64079*271443^(1/2) 8626757129363996 a001 6557470319842/64079*271443^(7/13) 8626757129373002 a001 2504730781961/64079*271443^(8/13) 8626757129382008 a001 956722026041/64079*271443^(9/13) 8626757129391015 a001 365435296162/64079*271443^(10/13) 8626757129400021 a001 139583862445/64079*271443^(11/13) 8626757129409027 a001 53316291173/64079*271443^(12/13) 8626757129418033 a001 10472279282114434/121393 8626757129607476 a001 28657/167761*14662949395604^(8/9) 8626757129607476 a001 75025/64079*23725150497407^(13/16) 8626757129607476 a001 75025/64079*505019158607^(13/14) 8626757129735635 a001 10610209857723/64079*103682^(13/24) 8626757129769072 a001 6557470319842/64079*103682^(7/12) 8626757129802509 a001 4052739537881/64079*103682^(5/8) 8626757129835946 a001 2504730781961/64079*103682^(2/3) 8626757129869383 a001 1548008755920/64079*103682^(17/24) 8626757129897739 a001 225749145909/2206*39603^(7/11) 8626757129902821 a001 956722026041/64079*103682^(3/4) 8626757129936258 a001 591286729879/64079*103682^(19/24) 8626757129942883 a001 591286729879/24476*24476^(17/21) 8626757129969695 a001 365435296162/64079*103682^(5/6) 8626757130003132 a001 225851433717/64079*103682^(7/8) 8626757130036569 a001 139583862445/64079*103682^(11/12) 8626757130070007 a001 86267571272/64079*103682^(23/24) 8626757130103444 a001 4000054746086365/46368 8626757130147755 a001 3278735159921/51841*39603^(15/22) 8626757130397772 a001 4052739537881/103682*39603^(8/11) 8626757130628604 a001 956722026041/24476*24476^(16/21) 8626757130647788 a001 2504730781961/103682*39603^(17/22) 8626757130897805 a001 774004377960/51841*39603^(9/11) 8626757131083182 a001 3536736619241/90481*39603^(8/11) 8626757131147821 a001 956722026041/103682*39603^(19/22) 8626757131256772 a001 10610209857723/167761*39603^(15/22) 8626757131314325 a001 387002188980/6119*24476^(5/7) 8626757131333198 a001 6557470319842/271443*39603^(17/22) 8626757131397838 a001 591286729879/103682*39603^(10/11) 8626757131401903 a001 28657/64079*14662949395604^(6/7) 8626757131495002 a001 10610209857723/439204*39603^(17/22) 8626757131506789 a001 6557470319842/167761*39603^(8/11) 8626757131583215 a001 4052739537881/271443*39603^(9/11) 8626757131647854 a001 182717648081/51841*39603^(21/22) 8626757131683215 a001 1515744265389/101521*39603^(9/11) 8626757131745018 a001 3278735159921/219602*39603^(9/11) 8626757131756805 a001 4052739537881/167761*39603^(17/22) 8626757131833231 a001 2504730781961/271443*39603^(19/22) 8626757131897871 a001 1527884955630432/17711 8626757131933231 a001 6557470319842/710647*39603^(19/22) 8626757131956838 a001 10610209857723/1149851*39603^(19/22) 8626757131995035 a001 4052739537881/439204*39603^(19/22) 8626757132000046 a001 2504730781961/24476*24476^(2/3) 8626757132006822 a001 2504730781961/167761*39603^(9/11) 8626757132083248 a001 516002918640/90481*39603^(10/11) 8626757132183248 a001 4052739537881/710647*39603^(10/11) 8626757132197838 a001 3536736619241/620166*39603^(10/11) 8626757132206855 a001 6557470319842/1149851*39603^(10/11) 8626757132245051 a001 2504730781961/439204*39603^(10/11) 8626757132256838 a001 140728068720/15251*39603^(19/22) 8626757132333265 a001 956722026041/271443*39603^(21/22) 8626757132394737 a001 139583862445/9349*9349^(18/19) 8626757132433265 a001 2504730781961/710647*39603^(21/22) 8626757132447854 a001 3278735159921/930249*39603^(21/22) 8626757132451299 a001 10610209857723/3010349*39603^(21/22) 8626757132456871 a001 4052739537881/1149851*39603^(21/22) 8626757132495068 a001 387002188980/109801*39603^(21/22) 8626757132506855 a001 956722026041/167761*39603^(10/11) 8626757132551166 a001 10610209857723/64079*39603^(13/22) 8626757132583281 a001 1527884955751825/17711 8626757132683281 a001 1527884955769536/17711 8626757132685767 a001 4052739537881/24476*24476^(13/21) 8626757132697871 a001 1527884955772120/17711 8626757132700310 a001 1527884955772552/17711 8626757132700355 a001 1527884955772560/17711 8626757132700361 a001 1527884955772561/17711 8626757132700367 a001 1527884955772562/17711 8626757132700383 a001 1527884955772565/17711 8626757132700502 a001 17167246694074/199 8626757132701315 a001 1527884955772730/17711 8626757132706888 a001 1527884955773717/17711 8626757132745084 a001 1527884955780482/17711 8626757132756871 a001 591286729879/167761*39603^(21/22) 8626757132801183 a001 6557470319842/64079*39603^(7/11) 8626757133006888 a001 1527884955826850/17711 8626757133051199 a001 4052739537881/64079*39603^(15/22) 8626757133301216 a001 2504730781961/64079*39603^(8/11) 8626757133371488 a001 3278735159921/12238*24476^(4/7) 8626757133551232 a001 1548008755920/64079*39603^(17/22) 8626757133801249 a001 956722026041/64079*39603^(9/11) 8626757134051265 a001 591286729879/64079*39603^(19/22) 8626757134057209 a001 10610209857723/24476*24476^(11/21) 8626757134301282 a001 365435296162/64079*39603^(10/11) 8626757134551299 a001 225851433717/64079*39603^(21/22) 8626757134801315 a001 1527884956144661/17711 8626757136099775 a001 10946/39603*3461452808002^(11/12) 8626757137589475 a001 225851433717/9349*9349^(17/19) 8626757139499186 a001 2472169793466282/28657 8626757139590532 a001 53316291173/24476*64079^(22/23) 8626757139681878 a001 21566892818/6119*64079^(21/23) 8626757139773224 a001 139583862445/24476*64079^(20/23) 8626757139864569 a001 7787980473/844*64079^(19/23) 8626757139955915 a001 182717648081/12238*64079^(18/23) 8626757140047261 a001 591286729879/24476*64079^(17/23) 8626757140138607 a001 956722026041/24476*64079^(16/23) 8626757140229952 a001 387002188980/6119*64079^(15/23) 8626757140321298 a001 2504730781961/24476*64079^(14/23) 8626757140412644 a001 4052739537881/24476*64079^(13/23) 8626757140503990 a001 3278735159921/12238*64079^(12/23) 8626757140595335 a001 10610209857723/24476*64079^(11/23) 8626757140797646 a001 5473/51841*14662949395604^(19/21) 8626757140797646 a001 11592/6119*817138163596^(17/19) 8626757140797646 a001 11592/6119*14662949395604^(17/21) 8626757140797646 a001 11592/6119*192900153618^(17/18) 8626757141293614 a001 6472224545255534/75025 8626757141354919 a001 139583862445/24476*167761^(4/5) 8626757141416224 a001 387002188980/6119*167761^(3/5) 8626757141483056 a001 121393/24476*14662949395604^(7/9) 8626757141483056 a001 121393/24476*505019158607^(7/8) 8626757141555417 a001 8472251921150160/98209 8626757141560386 a001 10182505537/12238*439204^(8/9) 8626757141565355 a001 21566892818/6119*439204^(7/9) 8626757141570324 a001 182717648081/12238*439204^(2/3) 8626757141575293 a001 387002188980/6119*439204^(5/9) 8626757141580262 a001 3278735159921/12238*439204^(4/9) 8626757141593614 a001 44361286981645426/514229 8626757141597646 a001 208010/6119*45537549124^(15/17) 8626757141597646 a001 208010/6119*312119004989^(9/11) 8626757141597646 a001 208010/6119*14662949395604^(5/7) 8626757141597646 a001 208010/6119*192900153618^(5/6) 8626757141597646 a001 208010/6119*28143753123^(9/10) 8626757141597646 a001 208010/6119*10749957122^(15/16) 8626757141599186 a001 116139357102635958/1346269 8626757141600012 a001 567451585/12238*7881196^(10/11) 8626757141600025 a001 1201881744/6119*7881196^(9/11) 8626757141600037 a001 10182505537/12238*7881196^(8/11) 8626757141600046 a001 53316291173/24476*7881196^(2/3) 8626757141600050 a001 21566892818/6119*7881196^(7/11) 8626757141600063 a001 182717648081/12238*7881196^(6/11) 8626757141600075 a001 387002188980/6119*7881196^(5/11) 8626757141600088 a001 3278735159921/12238*7881196^(4/11) 8626757141600092 a001 10610209857723/24476*7881196^(1/3) 8626757141600121 a001 567451585/12238*20633239^(6/7) 8626757141600122 a001 2971215073/24476*20633239^(4/5) 8626757141600124 a001 12586269025/24476*20633239^(5/7) 8626757141600126 a001 21566892818/6119*20633239^(3/5) 8626757141600127 a001 139583862445/24476*20633239^(4/7) 8626757141600130 a001 387002188980/6119*20633239^(3/7) 8626757141600130 a001 2504730781961/24476*20633239^(2/5) 8626757141600131 a001 3732588/6119*2537720636^(13/15) 8626757141600131 a001 3732588/6119*45537549124^(13/17) 8626757141600131 a001 3732588/6119*14662949395604^(13/21) 8626757141600131 a001 3732588/6119*192900153618^(13/18) 8626757141600131 a001 3732588/6119*73681302247^(3/4) 8626757141600131 a001 3732588/6119*10749957122^(13/16) 8626757141600131 a001 3732588/6119*599074578^(13/14) 8626757141600138 a001 10946*141422324^(11/13) 8626757141600138 a001 567451585/12238*141422324^(10/13) 8626757141600138 a001 1201881744/6119*141422324^(9/13) 8626757141600138 a001 7778742049/24476*141422324^(2/3) 8626757141600138 a001 10182505537/12238*141422324^(8/13) 8626757141600138 a001 21566892818/6119*141422324^(7/13) 8626757141600138 a001 182717648081/12238*141422324^(6/13) 8626757141600138 a001 387002188980/6119*141422324^(5/13) 8626757141600138 a001 102334155/24476*2537720636^(7/9) 8626757141600138 a001 102334155/24476*17393796001^(5/7) 8626757141600138 a001 102334155/24476*312119004989^(7/11) 8626757141600138 a001 102334155/24476*14662949395604^(5/9) 8626757141600138 a001 102334155/24476*505019158607^(5/8) 8626757141600138 a001 102334155/24476*28143753123^(7/10) 8626757141600138 a001 102334155/24476*599074578^(5/6) 8626757141600138 a001 4052739537881/24476*141422324^(1/3) 8626757141600138 a001 3278735159921/12238*141422324^(4/13) 8626757141600138 a001 10946*2537720636^(11/15) 8626757141600138 a001 10946*45537549124^(11/17) 8626757141600138 a001 10946*312119004989^(3/5) 8626757141600138 a001 10946*817138163596^(11/19) 8626757141600138 a001 10946*14662949395604^(11/21) 8626757141600138 a001 10946*192900153618^(11/18) 8626757141600138 a001 10946*10749957122^(11/16) 8626757141600138 a001 10946*1568397607^(3/4) 8626757141600138 a001 102334155/24476*228826127^(7/8) 8626757141600138 a001 10946*599074578^(11/14) 8626757141600138 a001 701408733/24476*9062201101803^(1/2) 8626757141600138 a001 1201881744/6119*2537720636^(3/5) 8626757141600138 a001 12586269025/24476*2537720636^(5/9) 8626757141600138 a001 10182505537/12238*2537720636^(8/15) 8626757141600138 a001 21566892818/6119*2537720636^(7/15) 8626757141600138 a001 139583862445/24476*2537720636^(4/9) 8626757141600138 a001 182717648081/12238*2537720636^(2/5) 8626757141600138 a001 1836311903/24476*1322157322203^(1/2) 8626757141600138 a001 387002188980/6119*2537720636^(1/3) 8626757141600138 a001 3278735159921/12238*2537720636^(4/15) 8626757141600138 a001 1201881744/6119*45537549124^(9/17) 8626757141600138 a001 1201881744/6119*817138163596^(9/19) 8626757141600138 a001 1201881744/6119*14662949395604^(3/7) 8626757141600138 a001 1201881744/6119*192900153618^(1/2) 8626757141600138 a001 1201881744/6119*10749957122^(9/16) 8626757141600138 a001 21566892818/6119*17393796001^(3/7) 8626757141600138 a001 12586269025/24476*312119004989^(5/11) 8626757141600138 a001 12586269025/24476*3461452808002^(5/12) 8626757141600138 a001 2504730781961/24476*17393796001^(2/7) 8626757141600138 a001 12586269025/24476*28143753123^(1/2) 8626757141600138 a001 21566892818/6119*45537549124^(7/17) 8626757141600138 a001 182717648081/12238*45537549124^(6/17) 8626757141600138 a001 591286729879/24476*45537549124^(1/3) 8626757141600138 a001 387002188980/6119*45537549124^(5/17) 8626757141600138 a001 3278735159921/12238*45537549124^(4/17) 8626757141600138 a001 21566892818/6119*14662949395604^(1/3) 8626757141600138 a001 21566892818/6119*192900153618^(7/18) 8626757141600138 a001 7787980473/844*817138163596^(1/3) 8626757141600138 a001 387002188980/6119*312119004989^(3/11) 8626757141600138 a001 10610209857723/24476*312119004989^(1/5) 8626757141600138 a001 387002188980/6119*14662949395604^(5/21) 8626757141600138 a001 3278735159921/12238*14662949395604^(4/21) 8626757141600138 a001 2504730781961/24476*14662949395604^(2/9) 8626757141600138 a001 2504730781961/24476*505019158607^(1/4) 8626757141600138 a001 182717648081/12238*14662949395604^(2/7) 8626757141600138 a001 3278735159921/12238*192900153618^(2/9) 8626757141600138 a001 139583862445/24476*23725150497407^(5/16) 8626757141600138 a001 182717648081/12238*192900153618^(1/3) 8626757141600138 a001 139583862445/24476*505019158607^(5/14) 8626757141600138 a001 3278735159921/12238*73681302247^(3/13) 8626757141600138 a001 4052739537881/24476*73681302247^(1/4) 8626757141600138 a001 956722026041/24476*73681302247^(4/13) 8626757141600138 a001 53316291173/24476*312119004989^(2/5) 8626757141600138 a001 139583862445/24476*73681302247^(5/13) 8626757141600138 a001 10182505537/12238*45537549124^(8/17) 8626757141600138 a001 387002188980/6119*28143753123^(3/10) 8626757141600138 a001 10182505537/12238*14662949395604^(8/21) 8626757141600138 a001 10182505537/12238*192900153618^(4/9) 8626757141600138 a001 139583862445/24476*28143753123^(2/5) 8626757141600138 a001 10182505537/12238*73681302247^(6/13) 8626757141600138 a001 3278735159921/12238*10749957122^(1/4) 8626757141600138 a001 2504730781961/24476*10749957122^(7/24) 8626757141600138 a001 387002188980/6119*10749957122^(5/16) 8626757141600138 a001 956722026041/24476*10749957122^(1/3) 8626757141600138 a001 182717648081/12238*10749957122^(3/8) 8626757141600138 a001 7778742049/24476*73681302247^(1/2) 8626757141600138 a001 139583862445/24476*10749957122^(5/12) 8626757141600138 a001 21566892818/6119*10749957122^(7/16) 8626757141600138 a001 53316291173/24476*10749957122^(11/24) 8626757141600138 a001 10182505537/12238*10749957122^(1/2) 8626757141600138 a001 7778742049/24476*10749957122^(13/24) 8626757141600138 a001 3278735159921/12238*4106118243^(6/23) 8626757141600138 a001 2504730781961/24476*4106118243^(7/23) 8626757141600138 a001 956722026041/24476*4106118243^(8/23) 8626757141600138 a001 2971215073/24476*17393796001^(4/7) 8626757141600138 a001 2971215073/24476*14662949395604^(4/9) 8626757141600138 a001 2971215073/24476*505019158607^(1/2) 8626757141600138 a001 2971215073/24476*73681302247^(7/13) 8626757141600138 a001 182717648081/12238*4106118243^(9/23) 8626757141600138 a001 139583862445/24476*4106118243^(10/23) 8626757141600138 a001 2971215073/24476*10749957122^(7/12) 8626757141600138 a001 53316291173/24476*4106118243^(11/23) 8626757141600138 a001 32951280099/24476*4106118243^(1/2) 8626757141600138 a001 10182505537/12238*4106118243^(12/23) 8626757141600138 a001 7778742049/24476*4106118243^(13/23) 8626757141600138 a001 567451585/12238*2537720636^(2/3) 8626757141600138 a001 2971215073/24476*4106118243^(14/23) 8626757141600138 a001 10610209857723/24476*1568397607^(1/4) 8626757141600138 a001 3278735159921/12238*1568397607^(3/11) 8626757141600138 a001 2504730781961/24476*1568397607^(7/22) 8626757141600138 a001 956722026041/24476*1568397607^(4/11) 8626757141600138 a001 567451585/12238*45537549124^(10/17) 8626757141600138 a001 567451585/12238*312119004989^(6/11) 8626757141600138 a001 567451585/12238*14662949395604^(10/21) 8626757141600138 a001 567451585/12238*192900153618^(5/9) 8626757141600138 a001 567451585/12238*28143753123^(3/5) 8626757141600138 a001 567451585/12238*10749957122^(5/8) 8626757141600138 a001 182717648081/12238*1568397607^(9/22) 8626757141600138 a001 139583862445/24476*1568397607^(5/11) 8626757141600138 a001 567451585/12238*4106118243^(15/23) 8626757141600138 a001 53316291173/24476*1568397607^(1/2) 8626757141600138 a001 10182505537/12238*1568397607^(6/11) 8626757141600138 a001 7778742049/24476*1568397607^(13/22) 8626757141600138 a001 2971215073/24476*1568397607^(7/11) 8626757141600138 a001 567451585/12238*1568397607^(15/22) 8626757141600138 a001 3278735159921/12238*599074578^(2/7) 8626757141600138 a001 2504730781961/24476*599074578^(1/3) 8626757141600138 a001 387002188980/6119*599074578^(5/14) 8626757141600138 a001 956722026041/24476*599074578^(8/21) 8626757141600138 a001 433494437/24476*23725150497407^(1/2) 8626757141600138 a001 433494437/24476*505019158607^(4/7) 8626757141600138 a001 433494437/24476*73681302247^(8/13) 8626757141600138 a001 433494437/24476*10749957122^(2/3) 8626757141600138 a001 433494437/24476*4106118243^(16/23) 8626757141600138 a001 182717648081/12238*599074578^(3/7) 8626757141600138 a001 139583862445/24476*599074578^(10/21) 8626757141600138 a001 433494437/24476*1568397607^(8/11) 8626757141600138 a001 21566892818/6119*599074578^(1/2) 8626757141600138 a001 53316291173/24476*599074578^(11/21) 8626757141600138 a001 10182505537/12238*599074578^(4/7) 8626757141600138 a001 7778742049/24476*599074578^(13/21) 8626757141600138 a001 1201881744/6119*599074578^(9/14) 8626757141600138 a001 2971215073/24476*599074578^(2/3) 8626757141600138 a001 567451585/12238*599074578^(5/7) 8626757141600138 a001 433494437/24476*599074578^(16/21) 8626757141600138 a001 31622993/12238*141422324^(12/13) 8626757141600138 a001 3278735159921/12238*228826127^(3/10) 8626757141600138 a001 2504730781961/24476*228826127^(7/20) 8626757141600138 a001 387002188980/6119*228826127^(3/8) 8626757141600138 a001 165580141/24476*45537549124^(2/3) 8626757141600138 a001 165580141/24476*10749957122^(17/24) 8626757141600138 a001 165580141/24476*4106118243^(17/23) 8626757141600138 a001 165580141/24476*1568397607^(17/22) 8626757141600138 a001 956722026041/24476*228826127^(2/5) 8626757141600138 a001 182717648081/12238*228826127^(9/20) 8626757141600138 a001 139583862445/24476*228826127^(1/2) 8626757141600138 a001 165580141/24476*599074578^(17/21) 8626757141600139 a001 53316291173/24476*228826127^(11/20) 8626757141600139 a001 10182505537/12238*228826127^(3/5) 8626757141600139 a001 12586269025/24476*228826127^(5/8) 8626757141600139 a001 7778742049/24476*228826127^(13/20) 8626757141600139 a001 2971215073/24476*228826127^(7/10) 8626757141600139 a001 567451585/12238*228826127^(3/4) 8626757141600139 a001 433494437/24476*228826127^(4/5) 8626757141600139 a001 165580141/24476*228826127^(17/20) 8626757141600139 a001 3278735159921/12238*87403803^(6/19) 8626757141600139 a001 2504730781961/24476*87403803^(7/19) 8626757141600139 a001 31622993/12238*2537720636^(4/5) 8626757141600139 a001 31622993/12238*45537549124^(12/17) 8626757141600139 a001 31622993/12238*14662949395604^(4/7) 8626757141600139 a001 31622993/12238*505019158607^(9/14) 8626757141600139 a001 31622993/12238*192900153618^(2/3) 8626757141600139 a001 31622993/12238*73681302247^(9/13) 8626757141600139 a001 31622993/12238*10749957122^(3/4) 8626757141600139 a001 31622993/12238*4106118243^(18/23) 8626757141600139 a001 31622993/12238*1568397607^(9/11) 8626757141600139 a001 31622993/12238*599074578^(6/7) 8626757141600139 a001 956722026041/24476*87403803^(8/19) 8626757141600139 a001 182717648081/12238*87403803^(9/19) 8626757141600139 a001 7787980473/844*87403803^(1/2) 8626757141600139 a001 31622993/12238*228826127^(9/10) 8626757141600139 a001 139583862445/24476*87403803^(10/19) 8626757141600139 a001 53316291173/24476*87403803^(11/19) 8626757141600139 a001 10182505537/12238*87403803^(12/19) 8626757141600139 a001 7778742049/24476*87403803^(13/19) 8626757141600139 a001 2971215073/24476*87403803^(14/19) 8626757141600139 a001 567451585/12238*87403803^(15/19) 8626757141600139 a001 433494437/24476*87403803^(16/19) 8626757141600139 a001 165580141/24476*87403803^(17/19) 8626757141600140 a001 31622993/12238*87403803^(18/19) 8626757141600141 a001 3278735159921/12238*33385282^(1/3) 8626757141600141 a001 24157817/24476*817138163596^(2/3) 8626757141600141 a001 24157817/24476*10749957122^(19/24) 8626757141600141 a001 24157817/24476*4106118243^(19/23) 8626757141600141 a001 24157817/24476*1568397607^(19/22) 8626757141600141 a001 24157817/24476*599074578^(19/21) 8626757141600141 a001 2504730781961/24476*33385282^(7/18) 8626757141600142 a001 24157817/24476*228826127^(19/20) 8626757141600142 a001 387002188980/6119*33385282^(5/12) 8626757141600142 a001 956722026041/24476*33385282^(4/9) 8626757141600142 a001 182717648081/12238*33385282^(1/2) 8626757141600143 a001 139583862445/24476*33385282^(5/9) 8626757141600143 a001 21566892818/6119*33385282^(7/12) 8626757141600143 a001 53316291173/24476*33385282^(11/18) 8626757141600144 a001 10182505537/12238*33385282^(2/3) 8626757141600144 a001 7778742049/24476*33385282^(13/18) 8626757141600144 a001 1201881744/6119*33385282^(3/4) 8626757141600144 a001 2971215073/24476*33385282^(7/9) 8626757141600145 a001 567451585/12238*33385282^(5/6) 8626757141600145 a001 433494437/24476*33385282^(8/9) 8626757141600145 a001 10946*33385282^(11/12) 8626757141600146 a001 165580141/24476*33385282^(17/18) 8626757141600157 a001 3278735159921/12238*12752043^(6/17) 8626757141600159 a001 9227465/24476*2537720636^(8/9) 8626757141600159 a001 9227465/24476*312119004989^(8/11) 8626757141600159 a001 9227465/24476*23725150497407^(5/8) 8626757141600159 a001 9227465/24476*73681302247^(10/13) 8626757141600159 a001 9227465/24476*28143753123^(4/5) 8626757141600159 a001 9227465/24476*10749957122^(5/6) 8626757141600159 a001 9227465/24476*4106118243^(20/23) 8626757141600159 a001 9227465/24476*1568397607^(10/11) 8626757141600159 a001 9227465/24476*599074578^(20/21) 8626757141600160 a001 2504730781961/24476*12752043^(7/17) 8626757141600163 a001 956722026041/24476*12752043^(8/17) 8626757141600165 a001 591286729879/24476*12752043^(1/2) 8626757141600166 a001 182717648081/12238*12752043^(9/17) 8626757141600170 a001 139583862445/24476*12752043^(10/17) 8626757141600173 a001 53316291173/24476*12752043^(11/17) 8626757141600176 a001 10182505537/12238*12752043^(12/17) 8626757141600179 a001 7778742049/24476*12752043^(13/17) 8626757141600182 a001 2971215073/24476*12752043^(14/17) 8626757141600185 a001 567451585/12238*12752043^(15/17) 8626757141600188 a001 433494437/24476*12752043^(16/17) 8626757141600275 a001 3278735159921/12238*4870847^(3/8) 8626757141600277 a001 1762289/12238*2537720636^(14/15) 8626757141600277 a001 1762289/12238*17393796001^(6/7) 8626757141600277 a001 1762289/12238*45537549124^(14/17) 8626757141600277 a001 1762289/12238*817138163596^(14/19) 8626757141600277 a001 1762289/12238*14662949395604^(2/3) 8626757141600277 a001 1762289/12238*505019158607^(3/4) 8626757141600277 a001 1762289/12238*192900153618^(7/9) 8626757141600277 a001 1762289/12238*10749957122^(7/8) 8626757141600277 a001 1762289/12238*4106118243^(21/23) 8626757141600277 a001 1762289/12238*1568397607^(21/22) 8626757141600297 a001 2504730781961/24476*4870847^(7/16) 8626757141600320 a001 956722026041/24476*4870847^(1/2) 8626757141600343 a001 182717648081/12238*4870847^(9/16) 8626757141600366 a001 139583862445/24476*4870847^(5/8) 8626757141600388 a001 53316291173/24476*4870847^(11/16) 8626757141600411 a001 10182505537/12238*4870847^(3/4) 8626757141600434 a001 7778742049/24476*4870847^(13/16) 8626757141600457 a001 2971215073/24476*4870847^(7/8) 8626757141600479 a001 567451585/12238*4870847^(15/16) 8626757141601090 a001 1346269/24476*312119004989^(4/5) 8626757141601090 a001 1346269/24476*23725150497407^(11/16) 8626757141601090 a001 1346269/24476*73681302247^(11/13) 8626757141601090 a001 1346269/24476*10749957122^(11/12) 8626757141601090 a001 1346269/24476*4106118243^(22/23) 8626757141601135 a001 3278735159921/12238*1860498^(2/5) 8626757141601301 a001 2504730781961/24476*1860498^(7/15) 8626757141601385 a001 387002188980/6119*1860498^(1/2) 8626757141601468 a001 956722026041/24476*1860498^(8/15) 8626757141601634 a001 182717648081/12238*1860498^(3/5) 8626757141601800 a001 139583862445/24476*1860498^(2/3) 8626757141601883 a001 21566892818/6119*1860498^(7/10) 8626757141601966 a001 53316291173/24476*1860498^(11/15) 8626757141602132 a001 10182505537/12238*1860498^(4/5) 8626757141602215 a001 12586269025/24476*1860498^(5/6) 8626757141602298 a001 7778742049/24476*1860498^(13/15) 8626757141602381 a001 1201881744/6119*1860498^(9/10) 8626757141602464 a001 2971215073/24476*1860498^(14/15) 8626757141602631 a001 17944517530247633/208010 8626757141606663 a001 514229/24476*10749957122^(23/24) 8626757141607459 a001 3278735159921/12238*710647^(3/7) 8626757141608679 a001 2504730781961/24476*710647^(1/2) 8626757141609900 a001 956722026041/24476*710647^(4/7) 8626757141611120 a001 182717648081/12238*710647^(9/14) 8626757141612340 a001 139583862445/24476*710647^(5/7) 8626757141612950 a001 21566892818/6119*710647^(3/4) 8626757141613560 a001 53316291173/24476*710647^(11/14) 8626757141614780 a001 10182505537/12238*710647^(6/7) 8626757141616000 a001 7778742049/24476*710647^(13/14) 8626757141617220 a001 2108983318411162/24447 8626757141644860 a001 5473/219602*14662949395604^(20/21) 8626757141644860 a001 98209/12238*45537549124^(16/17) 8626757141644860 a001 98209/12238*14662949395604^(16/21) 8626757141644860 a001 98209/12238*192900153618^(8/9) 8626757141644860 a001 98209/12238*73681302247^(12/13) 8626757141654176 a001 3278735159921/12238*271443^(6/13) 8626757141658679 a001 4052739537881/24476*271443^(1/2) 8626757141663183 a001 2504730781961/24476*271443^(7/13) 8626757141672189 a001 956722026041/24476*271443^(8/13) 8626757141681195 a001 182717648081/12238*271443^(9/13) 8626757141690202 a001 139583862445/24476*271443^(10/13) 8626757141699208 a001 53316291173/24476*271443^(11/13) 8626757141708214 a001 10182505537/12238*271443^(12/13) 8626757141717220 a001 10472279297044786/121393 8626757141906663 a001 75025/24476*312119004989^(10/11) 8626757141906663 a001 75025/24476*3461452808002^(5/6) 8626757141967947 a001 10610209857723/24476*103682^(11/24) 8626757142001385 a001 3278735159921/12238*103682^(1/2) 8626757142034822 a001 4052739537881/24476*103682^(13/24) 8626757142068259 a001 2504730781961/24476*103682^(7/12) 8626757142101696 a001 387002188980/6119*103682^(5/8) 8626757142135133 a001 956722026041/24476*103682^(2/3) 8626757142168570 a001 591286729879/24476*103682^(17/24) 8626757142202008 a001 182717648081/12238*103682^(3/4) 8626757142235445 a001 7787980473/844*103682^(19/24) 8626757142268882 a001 139583862445/24476*103682^(5/6) 8626757142302319 a001 21566892818/6119*103682^(7/8) 8626757142335756 a001 53316291173/24476*103682^(11/12) 8626757142369193 a001 32951280099/24476*103682^(23/24) 8626757142402631 a001 1000013687947313/11592 8626757142784213 a001 365435296162/9349*9349^(16/19) 8626757143701090 a001 10946/64079*14662949395604^(8/9) 8626757143701090 a001 28657/24476*23725150497407^(13/16) 8626757143701090 a001 28657/24476*505019158607^(13/14) 8626757144319668 a001 3536736619241/13201*15127^(3/5) 8626757144350320 a001 10610209857723/24476*39603^(1/2) 8626757144600337 a001 3278735159921/12238*39603^(6/11) 8626757144850353 a001 4052739537881/24476*39603^(13/22) 8626757145100370 a001 2504730781961/24476*39603^(7/11) 8626757145350386 a001 387002188980/6119*39603^(15/22) 8626757145600403 a001 956722026041/24476*39603^(8/11) 8626757145850419 a001 591286729879/24476*39603^(17/22) 8626757146100436 a001 182717648081/12238*39603^(9/11) 8626757146204670 a001 6557470319842/39603*15127^(13/20) 8626757146350452 a001 7787980473/844*39603^(19/22) 8626757146600469 a001 139583862445/24476*39603^(10/11) 8626757146850486 a001 21566892818/6119*39603^(21/22) 8626757147100502 a001 17167246722730/199 8626757147978951 a001 591286729879/9349*9349^(15/19) 8626757148089673 a001 4052739537881/39603*15127^(7/10) 8626757149974676 a001 2504730781961/39603*15127^(3/4) 8626757151859678 a001 516002918640/13201*15127^(4/5) 8626757152787544 a001 225749145909/2206*15127^(7/10) 8626757153173689 a001 956722026041/9349*9349^(14/19) 8626757153744681 a001 956722026041/39603*15127^(17/20) 8626757153805986 a001 10610209857723/64079*15127^(13/20) 8626757154672547 a001 3278735159921/51841*15127^(3/4) 8626757155629684 a001 591286729879/39603*15127^(9/10) 8626757155690989 a001 6557470319842/64079*15127^(7/10) 8626757155781564 a001 10610209857723/167761*15127^(3/4) 8626757156000277 a001 5473/12238*14662949395604^(6/7) 8626757156557550 a001 4052739537881/103682*15127^(4/5) 8626757157242960 a001 3536736619241/90481*15127^(4/5) 8626757157514686 a001 365435296162/39603*15127^(19/20) 8626757157575991 a001 4052739537881/64079*15127^(3/4) 8626757157666567 a001 6557470319842/167761*15127^(4/5) 8626757158368427 a001 1548008755920/9349*9349^(13/19) 8626757158442552 a001 2504730781961/103682*15127^(17/20) 8626757159127963 a001 6557470319842/271443*15127^(17/20) 8626757159289766 a001 10610209857723/439204*15127^(17/20) 8626757159399689 a001 194533373944463/2255 8626757159460994 a001 2504730781961/64079*15127^(4/5) 8626757159551569 a001 4052739537881/167761*15127^(17/20) 8626757160327555 a001 774004377960/51841*15127^(9/10) 8626757161012965 a001 4052739537881/271443*15127^(9/10) 8626757161112965 a001 1515744265389/101521*15127^(9/10) 8626757161174769 a001 3278735159921/219602*15127^(9/10) 8626757161345997 a001 1548008755920/64079*15127^(17/20) 8626757161436572 a001 2504730781961/167761*15127^(9/10) 8626757162212558 a001 956722026041/103682*15127^(19/20) 8626757162335168 a001 10610209857723/24476*15127^(11/20) 8626757162897968 a001 2504730781961/271443*15127^(19/20) 8626757162997968 a001 6557470319842/710647*15127^(19/20) 8626757163021575 a001 10610209857723/1149851*15127^(19/20) 8626757163059771 a001 4052739537881/439204*15127^(19/20) 8626757163230999 a001 956722026041/64079*15127^(9/10) 8626757163321575 a001 140728068720/15251*15127^(19/20) 8626757163563165 a001 2504730781961/9349*9349^(12/19) 8626757164220170 a001 3278735159921/12238*15127^(3/5) 8626757164782971 a001 194533374065856/2255 8626757164882971 a001 194533374068111/2255 8626757164899689 a001 194533374068488/2255 8626757164900044 a001 194533374068496/2255 8626757164900059 a001 583600122205489/6765 8626757164900073 a001 116720024441098/1353 8626757164900192 a001 583600122205498/6765 8626757164901005 a001 583600122205553/6765 8626757164906577 a001 116720024441186/1353 8626757164944774 a001 583600122208514/6765 8626757165116002 a001 591286729879/64079*15127^(19/20) 8626757165206577 a001 116720024445245/1353 8626757166105173 a001 4052739537881/24476*15127^(13/20) 8626757166994119 a001 139583862445/3571*3571^(16/17) 8626757167001005 a001 583600122347618/6765 8626757167990176 a001 2504730781961/24476*15127^(7/10) 8626757168757903 a001 4052739537881/9349*9349^(11/19) 8626757169875178 a001 387002188980/6119*15127^(3/4) 8626757171760181 a001 956722026041/24476*15127^(4/5) 8626757173645184 a001 591286729879/24476*15127^(17/20) 8626757173952641 a001 6557470319842/9349*9349^(10/19) 8626757175530186 a001 182717648081/12238*15127^(9/10) 8626757177415189 a001 7787980473/844*15127^(19/20) 8626757179147379 a001 10610209857723/9349*9349^(9/19) 8626757179300192 a001 583600123179658/6765 8626757188199966 a001 4181/15127*3461452808002^(11/12) 8626757199815482 k002 Champernowne real with 123/2*n^2-7/2*n+28 8626757202913066 a008 Real Root of (-1-x+x^2+x^3-x^4+x^5+x^7+x^11) 8626757206788239 a001 225851433717/3571*3571^(15/17) 8626757209205969 a007 Real Root Of -553*x^4+982*x^3+539*x^2-107*x-633 8626757210011554 k002 Champernowne real with 62*n^2-5*n+29 8626757211499881 a001 72637295720829/842 8626757212185603 a001 53316291173/9349*24476^(20/21) 8626757212871324 a001 86267571272/9349*24476^(19/21) 8626757213557045 a001 139583862445/9349*24476^(6/7) 8626757214242765 a001 225851433717/9349*24476^(17/21) 8626757214928486 a001 365435296162/9349*24476^(16/21) 8626757215614207 a001 591286729879/9349*24476^(5/7) 8626757216299928 a001 956722026041/9349*24476^(2/3) 8626757216985649 a001 1548008755920/9349*24476^(13/21) 8626757217671370 a001 2504730781961/9349*24476^(4/7) 8626757218357091 a001 4052739537881/9349*24476^(11/21) 8626757219042812 a001 6557470319842/9349*24476^(10/21) 8626757219728533 a001 10610209857723/9349*24476^(3/7) 8626757220399656 a001 4181/39603*14662949395604^(19/21) 8626757220399657 a001 17711/9349*817138163596^(17/19) 8626757220399657 a001 17711/9349*14662949395604^(17/21) 8626757220399657 a001 17711/9349*192900153618^(17/18) 8626757223799068 a001 2472169817624099/28657 8626757223890415 a001 20365011074/9349*64079^(22/23) 8626757223981760 a001 32951280099/9349*64079^(21/23) 8626757224073106 a001 53316291173/9349*64079^(20/23) 8626757224164452 a001 86267571272/9349*64079^(19/23) 8626757224255798 a001 139583862445/9349*64079^(18/23) 8626757224347143 a001 225851433717/9349*64079^(17/23) 8626757224438489 a001 365435296162/9349*64079^(16/23) 8626757224529835 a001 591286729879/9349*64079^(15/23) 8626757224621181 a001 956722026041/9349*64079^(14/23) 8626757224712526 a001 1548008755920/9349*64079^(13/23) 8626757224803872 a001 2504730781961/9349*64079^(12/23) 8626757224895218 a001 4052739537881/9349*64079^(11/23) 8626757224986564 a001 6557470319842/9349*64079^(10/23) 8626757225077909 a001 10610209857723/9349*64079^(9/23) 8626757225097529 a001 46368/9349*14662949395604^(7/9) 8626757225097529 a001 46368/9349*505019158607^(7/8) 8626757225593495 a001 1294444921700304/15005 8626757225654801 a001 53316291173/9349*167761^(4/5) 8626757225716106 a001 591286729879/9349*167761^(3/5) 8626757225777411 a001 6557470319842/9349*167761^(2/5) 8626757225855298 a001 16944504007880461/196418 8626757225860269 a001 7778742049/9349*439204^(8/9) 8626757225865238 a001 32951280099/9349*439204^(7/9) 8626757225870207 a001 139583862445/9349*439204^(2/3) 8626757225875176 a001 591286729879/9349*439204^(5/9) 8626757225880145 a001 2504730781961/9349*439204^(4/9) 8626757225882939 a001 317811/9349*45537549124^(15/17) 8626757225882939 a001 317811/9349*312119004989^(9/11) 8626757225882939 a001 317811/9349*14662949395604^(5/7) 8626757225882939 a001 317811/9349*192900153618^(5/6) 8626757225882939 a001 317811/9349*28143753123^(9/10) 8626757225882939 a001 317811/9349*10749957122^(15/16) 8626757225885114 a001 10610209857723/9349*439204^(1/3) 8626757225893495 a001 44361287415139863/514229 8626757225899895 a001 433494437/9349*7881196^(10/11) 8626757225899907 a001 1836311903/9349*7881196^(9/11) 8626757225899920 a001 7778742049/9349*7881196^(8/11) 8626757225899928 a001 20365011074/9349*7881196^(2/3) 8626757225899933 a001 32951280099/9349*7881196^(7/11) 8626757225899945 a001 139583862445/9349*7881196^(6/11) 8626757225899958 a001 591286729879/9349*7881196^(5/11) 8626757225899968 a001 5702887/9349*2537720636^(13/15) 8626757225899968 a001 5702887/9349*45537549124^(13/17) 8626757225899968 a001 5702887/9349*14662949395604^(13/21) 8626757225899968 a001 5702887/9349*192900153618^(13/18) 8626757225899968 a001 5702887/9349*73681302247^(3/4) 8626757225899968 a001 5702887/9349*10749957122^(13/16) 8626757225899968 a001 5702887/9349*599074578^(13/14) 8626757225899970 a001 2504730781961/9349*7881196^(4/11) 8626757225899975 a001 4052739537881/9349*7881196^(1/3) 8626757225899983 a001 10610209857723/9349*7881196^(3/11) 8626757225900004 a001 433494437/9349*20633239^(6/7) 8626757225900005 a001 1134903170/9349*20633239^(4/5) 8626757225900006 a001 4807526976/9349*20633239^(5/7) 8626757225900009 a001 32951280099/9349*20633239^(3/5) 8626757225900009 a001 53316291173/9349*20633239^(4/7) 8626757225900012 a001 591286729879/9349*20633239^(3/7) 8626757225900013 a001 956722026041/9349*20633239^(2/5) 8626757225900015 a001 6557470319842/9349*20633239^(2/7) 8626757225900020 a001 4181*2537720636^(7/9) 8626757225900020 a001 4181*17393796001^(5/7) 8626757225900020 a001 4181*312119004989^(7/11) 8626757225900020 a001 4181*14662949395604^(5/9) 8626757225900020 a001 4181*505019158607^(5/8) 8626757225900020 a001 4181*28143753123^(7/10) 8626757225900020 a001 4181*599074578^(5/6) 8626757225900020 a001 4181*228826127^(7/8) 8626757225900020 a001 102334155/9349*141422324^(11/13) 8626757225900021 a001 433494437/9349*141422324^(10/13) 8626757225900021 a001 1836311903/9349*141422324^(9/13) 8626757225900021 a001 2971215073/9349*141422324^(2/3) 8626757225900021 a001 7778742049/9349*141422324^(8/13) 8626757225900021 a001 32951280099/9349*141422324^(7/13) 8626757225900021 a001 139583862445/9349*141422324^(6/13) 8626757225900021 a001 591286729879/9349*141422324^(5/13) 8626757225900021 a001 102334155/9349*2537720636^(11/15) 8626757225900021 a001 102334155/9349*45537549124^(11/17) 8626757225900021 a001 102334155/9349*312119004989^(3/5) 8626757225900021 a001 102334155/9349*817138163596^(11/19) 8626757225900021 a001 102334155/9349*14662949395604^(11/21) 8626757225900021 a001 102334155/9349*192900153618^(11/18) 8626757225900021 a001 102334155/9349*10749957122^(11/16) 8626757225900021 a001 102334155/9349*1568397607^(3/4) 8626757225900021 a001 102334155/9349*599074578^(11/14) 8626757225900021 a001 1548008755920/9349*141422324^(1/3) 8626757225900021 a001 2504730781961/9349*141422324^(4/13) 8626757225900021 a001 10610209857723/9349*141422324^(3/13) 8626757225900021 a001 267914296/9349*9062201101803^(1/2) 8626757225900021 a001 701408733/9349*1322157322203^(1/2) 8626757225900021 a001 1836311903/9349*2537720636^(3/5) 8626757225900021 a001 4807526976/9349*2537720636^(5/9) 8626757225900021 a001 7778742049/9349*2537720636^(8/15) 8626757225900021 a001 32951280099/9349*2537720636^(7/15) 8626757225900021 a001 53316291173/9349*2537720636^(4/9) 8626757225900021 a001 139583862445/9349*2537720636^(2/5) 8626757225900021 a001 1836311903/9349*45537549124^(9/17) 8626757225900021 a001 1836311903/9349*817138163596^(9/19) 8626757225900021 a001 1836311903/9349*14662949395604^(3/7) 8626757225900021 a001 1836311903/9349*192900153618^(1/2) 8626757225900021 a001 1836311903/9349*10749957122^(9/16) 8626757225900021 a001 591286729879/9349*2537720636^(1/3) 8626757225900021 a001 2504730781961/9349*2537720636^(4/15) 8626757225900021 a001 6557470319842/9349*2537720636^(2/9) 8626757225900021 a001 10610209857723/9349*2537720636^(1/5) 8626757225900021 a001 4807526976/9349*312119004989^(5/11) 8626757225900021 a001 4807526976/9349*3461452808002^(5/12) 8626757225900021 a001 4807526976/9349*28143753123^(1/2) 8626757225900021 a001 32951280099/9349*17393796001^(3/7) 8626757225900021 a001 956722026041/9349*17393796001^(2/7) 8626757225900021 a001 32951280099/9349*45537549124^(7/17) 8626757225900021 a001 32951280099/9349*14662949395604^(1/3) 8626757225900021 a001 32951280099/9349*192900153618^(7/18) 8626757225900021 a001 225851433717/9349*45537549124^(1/3) 8626757225900021 a001 139583862445/9349*45537549124^(6/17) 8626757225900021 a001 591286729879/9349*45537549124^(5/17) 8626757225900021 a001 2504730781961/9349*45537549124^(4/17) 8626757225900021 a001 10610209857723/9349*45537549124^(3/17) 8626757225900021 a001 86267571272/9349*817138163596^(1/3) 8626757225900021 a001 591286729879/9349*312119004989^(3/11) 8626757225900021 a001 591286729879/9349*14662949395604^(5/21) 8626757225900021 a001 2504730781961/9349*817138163596^(4/19) 8626757225900021 a001 10610209857723/9349*817138163596^(3/19) 8626757225900021 a001 10610209857723/9349*14662949395604^(1/7) 8626757225900021 a001 2504730781961/9349*14662949395604^(4/21) 8626757225900021 a001 956722026041/9349*505019158607^(1/4) 8626757225900021 a001 10610209857723/9349*192900153618^(1/6) 8626757225900021 a001 139583862445/9349*14662949395604^(2/7) 8626757225900021 a001 139583862445/9349*192900153618^(1/3) 8626757225900021 a001 2504730781961/9349*73681302247^(3/13) 8626757225900021 a001 1548008755920/9349*73681302247^(1/4) 8626757225900021 a001 365435296162/9349*73681302247^(4/13) 8626757225900021 a001 53316291173/9349*23725150497407^(5/16) 8626757225900021 a001 53316291173/9349*505019158607^(5/14) 8626757225900021 a001 53316291173/9349*73681302247^(5/13) 8626757225900021 a001 6557470319842/9349*28143753123^(1/5) 8626757225900021 a001 591286729879/9349*28143753123^(3/10) 8626757225900021 a001 20365011074/9349*312119004989^(2/5) 8626757225900021 a001 53316291173/9349*28143753123^(2/5) 8626757225900021 a001 10610209857723/9349*10749957122^(3/16) 8626757225900021 a001 6557470319842/9349*10749957122^(5/24) 8626757225900021 a001 2504730781961/9349*10749957122^(1/4) 8626757225900021 a001 956722026041/9349*10749957122^(7/24) 8626757225900021 a001 591286729879/9349*10749957122^(5/16) 8626757225900021 a001 365435296162/9349*10749957122^(1/3) 8626757225900021 a001 7778742049/9349*45537549124^(8/17) 8626757225900021 a001 139583862445/9349*10749957122^(3/8) 8626757225900021 a001 7778742049/9349*14662949395604^(8/21) 8626757225900021 a001 7778742049/9349*192900153618^(4/9) 8626757225900021 a001 7778742049/9349*73681302247^(6/13) 8626757225900021 a001 32951280099/9349*10749957122^(7/16) 8626757225900021 a001 53316291173/9349*10749957122^(5/12) 8626757225900021 a001 20365011074/9349*10749957122^(11/24) 8626757225900021 a001 7778742049/9349*10749957122^(1/2) 8626757225900021 a001 6557470319842/9349*4106118243^(5/23) 8626757225900021 a001 2504730781961/9349*4106118243^(6/23) 8626757225900021 a001 956722026041/9349*4106118243^(7/23) 8626757225900021 a001 365435296162/9349*4106118243^(8/23) 8626757225900021 a001 2971215073/9349*73681302247^(1/2) 8626757225900021 a001 139583862445/9349*4106118243^(9/23) 8626757225900021 a001 53316291173/9349*4106118243^(10/23) 8626757225900021 a001 2971215073/9349*10749957122^(13/24) 8626757225900021 a001 12586269025/9349*4106118243^(1/2) 8626757225900021 a001 20365011074/9349*4106118243^(11/23) 8626757225900021 a001 7778742049/9349*4106118243^(12/23) 8626757225900021 a001 2971215073/9349*4106118243^(13/23) 8626757225900021 a001 6557470319842/9349*1568397607^(5/22) 8626757225900021 a001 4052739537881/9349*1568397607^(1/4) 8626757225900021 a001 2504730781961/9349*1568397607^(3/11) 8626757225900021 a001 956722026041/9349*1568397607^(7/22) 8626757225900021 a001 365435296162/9349*1568397607^(4/11) 8626757225900021 a001 1134903170/9349*17393796001^(4/7) 8626757225900021 a001 1134903170/9349*14662949395604^(4/9) 8626757225900021 a001 1134903170/9349*505019158607^(1/2) 8626757225900021 a001 1134903170/9349*73681302247^(7/13) 8626757225900021 a001 1134903170/9349*10749957122^(7/12) 8626757225900021 a001 139583862445/9349*1568397607^(9/22) 8626757225900021 a001 53316291173/9349*1568397607^(5/11) 8626757225900021 a001 1134903170/9349*4106118243^(14/23) 8626757225900021 a001 20365011074/9349*1568397607^(1/2) 8626757225900021 a001 7778742049/9349*1568397607^(6/11) 8626757225900021 a001 2971215073/9349*1568397607^(13/22) 8626757225900021 a001 1134903170/9349*1568397607^(7/11) 8626757225900021 a001 10610209857723/9349*599074578^(3/14) 8626757225900021 a001 6557470319842/9349*599074578^(5/21) 8626757225900021 a001 2504730781961/9349*599074578^(2/7) 8626757225900021 a001 956722026041/9349*599074578^(1/3) 8626757225900021 a001 433494437/9349*2537720636^(2/3) 8626757225900021 a001 591286729879/9349*599074578^(5/14) 8626757225900021 a001 365435296162/9349*599074578^(8/21) 8626757225900021 a001 433494437/9349*45537549124^(10/17) 8626757225900021 a001 433494437/9349*312119004989^(6/11) 8626757225900021 a001 433494437/9349*14662949395604^(10/21) 8626757225900021 a001 433494437/9349*192900153618^(5/9) 8626757225900021 a001 433494437/9349*28143753123^(3/5) 8626757225900021 a001 433494437/9349*10749957122^(5/8) 8626757225900021 a001 433494437/9349*4106118243^(15/23) 8626757225900021 a001 139583862445/9349*599074578^(3/7) 8626757225900021 a001 53316291173/9349*599074578^(10/21) 8626757225900021 a001 433494437/9349*1568397607^(15/22) 8626757225900021 a001 32951280099/9349*599074578^(1/2) 8626757225900021 a001 20365011074/9349*599074578^(11/21) 8626757225900021 a001 7778742049/9349*599074578^(4/7) 8626757225900021 a001 1836311903/9349*599074578^(9/14) 8626757225900021 a001 2971215073/9349*599074578^(13/21) 8626757225900021 a001 1134903170/9349*599074578^(2/3) 8626757225900021 a001 433494437/9349*599074578^(5/7) 8626757225900021 a001 6557470319842/9349*228826127^(1/4) 8626757225900021 a001 2504730781961/9349*228826127^(3/10) 8626757225900021 a001 956722026041/9349*228826127^(7/20) 8626757225900021 a001 591286729879/9349*228826127^(3/8) 8626757225900021 a001 165580141/9349*23725150497407^(1/2) 8626757225900021 a001 165580141/9349*505019158607^(4/7) 8626757225900021 a001 165580141/9349*73681302247^(8/13) 8626757225900021 a001 165580141/9349*10749957122^(2/3) 8626757225900021 a001 165580141/9349*4106118243^(16/23) 8626757225900021 a001 165580141/9349*1568397607^(8/11) 8626757225900021 a001 365435296162/9349*228826127^(2/5) 8626757225900021 a001 139583862445/9349*228826127^(9/20) 8626757225900021 a001 165580141/9349*599074578^(16/21) 8626757225900021 a001 53316291173/9349*228826127^(1/2) 8626757225900021 a001 20365011074/9349*228826127^(11/20) 8626757225900021 a001 7778742049/9349*228826127^(3/5) 8626757225900021 a001 4807526976/9349*228826127^(5/8) 8626757225900021 a001 2971215073/9349*228826127^(13/20) 8626757225900021 a001 1134903170/9349*228826127^(7/10) 8626757225900021 a001 433494437/9349*228826127^(3/4) 8626757225900021 a001 165580141/9349*228826127^(4/5) 8626757225900021 a001 6557470319842/9349*87403803^(5/19) 8626757225900021 a001 2504730781961/9349*87403803^(6/19) 8626757225900021 a001 956722026041/9349*87403803^(7/19) 8626757225900021 a001 63245986/9349*45537549124^(2/3) 8626757225900021 a001 63245986/9349*10749957122^(17/24) 8626757225900021 a001 63245986/9349*4106118243^(17/23) 8626757225900021 a001 63245986/9349*1568397607^(17/22) 8626757225900021 a001 63245986/9349*599074578^(17/21) 8626757225900021 a001 365435296162/9349*87403803^(8/19) 8626757225900021 a001 139583862445/9349*87403803^(9/19) 8626757225900021 a001 86267571272/9349*87403803^(1/2) 8626757225900021 a001 63245986/9349*228826127^(17/20) 8626757225900021 a001 53316291173/9349*87403803^(10/19) 8626757225900022 a001 20365011074/9349*87403803^(11/19) 8626757225900022 a001 7778742049/9349*87403803^(12/19) 8626757225900022 a001 2971215073/9349*87403803^(13/19) 8626757225900022 a001 1134903170/9349*87403803^(14/19) 8626757225900022 a001 433494437/9349*87403803^(15/19) 8626757225900022 a001 165580141/9349*87403803^(16/19) 8626757225900022 a001 63245986/9349*87403803^(17/19) 8626757225900023 a001 10610209857723/9349*33385282^(1/4) 8626757225900023 a001 6557470319842/9349*33385282^(5/18) 8626757225900023 a001 24157817/9349*141422324^(12/13) 8626757225900023 a001 2504730781961/9349*33385282^(1/3) 8626757225900024 a001 24157817/9349*2537720636^(4/5) 8626757225900024 a001 24157817/9349*45537549124^(12/17) 8626757225900024 a001 24157817/9349*14662949395604^(4/7) 8626757225900024 a001 24157817/9349*505019158607^(9/14) 8626757225900024 a001 24157817/9349*192900153618^(2/3) 8626757225900024 a001 24157817/9349*73681302247^(9/13) 8626757225900024 a001 24157817/9349*10749957122^(3/4) 8626757225900024 a001 24157817/9349*4106118243^(18/23) 8626757225900024 a001 24157817/9349*1568397607^(9/11) 8626757225900024 a001 24157817/9349*599074578^(6/7) 8626757225900024 a001 956722026041/9349*33385282^(7/18) 8626757225900024 a001 24157817/9349*228826127^(9/10) 8626757225900024 a001 591286729879/9349*33385282^(5/12) 8626757225900024 a001 365435296162/9349*33385282^(4/9) 8626757225900025 a001 139583862445/9349*33385282^(1/2) 8626757225900025 a001 24157817/9349*87403803^(18/19) 8626757225900025 a001 53316291173/9349*33385282^(5/9) 8626757225900025 a001 32951280099/9349*33385282^(7/12) 8626757225900026 a001 20365011074/9349*33385282^(11/18) 8626757225900026 a001 7778742049/9349*33385282^(2/3) 8626757225900026 a001 2971215073/9349*33385282^(13/18) 8626757225900027 a001 1836311903/9349*33385282^(3/4) 8626757225900027 a001 1134903170/9349*33385282^(7/9) 8626757225900027 a001 433494437/9349*33385282^(5/6) 8626757225900028 a001 102334155/9349*33385282^(11/12) 8626757225900028 a001 165580141/9349*33385282^(8/9) 8626757225900029 a001 63245986/9349*33385282^(17/18) 8626757225900036 a001 6557470319842/9349*12752043^(5/17) 8626757225900040 a001 2504730781961/9349*12752043^(6/17) 8626757225900041 a001 9227465/9349*817138163596^(2/3) 8626757225900041 a001 9227465/9349*10749957122^(19/24) 8626757225900041 a001 9227465/9349*4106118243^(19/23) 8626757225900041 a001 9227465/9349*1568397607^(19/22) 8626757225900041 a001 9227465/9349*599074578^(19/21) 8626757225900041 a001 9227465/9349*228826127^(19/20) 8626757225900043 a001 956722026041/9349*12752043^(7/17) 8626757225900046 a001 365435296162/9349*12752043^(8/17) 8626757225900047 a001 225851433717/9349*12752043^(1/2) 8626757225900049 a001 139583862445/9349*12752043^(9/17) 8626757225900052 a001 53316291173/9349*12752043^(10/17) 8626757225900055 a001 20365011074/9349*12752043^(11/17) 8626757225900058 a001 7778742049/9349*12752043^(12/17) 8626757225900061 a001 2971215073/9349*12752043^(13/17) 8626757225900065 a001 1134903170/9349*12752043^(14/17) 8626757225900068 a001 433494437/9349*12752043^(15/17) 8626757225900071 a001 165580141/9349*12752043^(16/17) 8626757225900135 a001 6557470319842/9349*4870847^(5/16) 8626757225900157 a001 2504730781961/9349*4870847^(3/8) 8626757225900160 a001 3524578/9349*2537720636^(8/9) 8626757225900160 a001 3524578/9349*312119004989^(8/11) 8626757225900160 a001 3524578/9349*23725150497407^(5/8) 8626757225900160 a001 3524578/9349*73681302247^(10/13) 8626757225900160 a001 3524578/9349*28143753123^(4/5) 8626757225900160 a001 3524578/9349*10749957122^(5/6) 8626757225900160 a001 3524578/9349*4106118243^(20/23) 8626757225900160 a001 3524578/9349*1568397607^(10/11) 8626757225900160 a001 3524578/9349*599074578^(20/21) 8626757225900180 a001 956722026041/9349*4870847^(7/16) 8626757225900203 a001 365435296162/9349*4870847^(1/2) 8626757225900225 a001 139583862445/9349*4870847^(9/16) 8626757225900248 a001 53316291173/9349*4870847^(5/8) 8626757225900271 a001 20365011074/9349*4870847^(11/16) 8626757225900294 a001 7778742049/9349*4870847^(3/4) 8626757225900316 a001 2971215073/9349*4870847^(13/16) 8626757225900339 a001 1134903170/9349*4870847^(7/8) 8626757225900362 a001 433494437/9349*4870847^(15/16) 8626757225900769 a001 10610209857723/9349*1860498^(3/10) 8626757225900852 a001 6557470319842/9349*1860498^(1/3) 8626757225900973 a001 1346269/9349*2537720636^(14/15) 8626757225900973 a001 1346269/9349*17393796001^(6/7) 8626757225900973 a001 1346269/9349*45537549124^(14/17) 8626757225900973 a001 1346269/9349*817138163596^(14/19) 8626757225900973 a001 1346269/9349*14662949395604^(2/3) 8626757225900973 a001 1346269/9349*505019158607^(3/4) 8626757225900973 a001 1346269/9349*192900153618^(7/9) 8626757225900973 a001 1346269/9349*10749957122^(7/8) 8626757225900973 a001 1346269/9349*4106118243^(21/23) 8626757225900973 a001 1346269/9349*1568397607^(21/22) 8626757225901018 a001 2504730781961/9349*1860498^(2/5) 8626757225901184 a001 956722026041/9349*1860498^(7/15) 8626757225901267 a001 591286729879/9349*1860498^(1/2) 8626757225901350 a001 365435296162/9349*1860498^(8/15) 8626757225901516 a001 139583862445/9349*1860498^(3/5) 8626757225901682 a001 53316291173/9349*1860498^(2/3) 8626757225901765 a001 32951280099/9349*1860498^(7/10) 8626757225901849 a001 20365011074/9349*1860498^(11/15) 8626757225902015 a001 7778742049/9349*1860498^(4/5) 8626757225902098 a001 4807526976/9349*1860498^(5/6) 8626757225902181 a001 2971215073/9349*1860498^(13/15) 8626757225902264 a001 1836311903/9349*1860498^(9/10) 8626757225902347 a001 1134903170/9349*1860498^(14/15) 8626757225906122 a001 6557470319842/9349*710647^(5/14) 8626757225906546 a001 514229/9349*312119004989^(4/5) 8626757225906546 a001 514229/9349*23725150497407^(11/16) 8626757225906546 a001 514229/9349*73681302247^(11/13) 8626757225906546 a001 514229/9349*10749957122^(11/12) 8626757225906546 a001 514229/9349*4106118243^(22/23) 8626757225907342 a001 2504730781961/9349*710647^(3/7) 8626757225908562 a001 956722026041/9349*710647^(1/2) 8626757225909782 a001 365435296162/9349*710647^(4/7) 8626757225911002 a001 139583862445/9349*710647^(9/14) 8626757225912222 a001 53316291173/9349*710647^(5/7) 8626757225912832 a001 32951280099/9349*710647^(3/4) 8626757225913442 a001 20365011074/9349*710647^(11/14) 8626757225914663 a001 7778742049/9349*710647^(6/7) 8626757225915883 a001 2971215073/9349*710647^(13/14) 8626757225917102 a001 2108983339019954/24447 8626757225944742 a001 196418/9349*10749957122^(23/24) 8626757225945052 a001 6557470319842/9349*271443^(5/13) 8626757225954059 a001 2504730781961/9349*271443^(6/13) 8626757225958562 a001 1548008755920/9349*271443^(1/2) 8626757225963065 a001 956722026041/9349*271443^(7/13) 8626757225972071 a001 365435296162/9349*271443^(8/13) 8626757225981078 a001 139583862445/9349*271443^(9/13) 8626757225990084 a001 53316291173/9349*271443^(10/13) 8626757225999090 a001 20365011074/9349*271443^(11/13) 8626757226008097 a001 7778742049/9349*271443^(12/13) 8626757226017102 a001 10472279399378941/121393 8626757226200955 a001 10610209857723/9349*103682^(3/8) 8626757226206545 a001 4181/167761*14662949395604^(20/21) 8626757226206546 a001 75025/9349*45537549124^(16/17) 8626757226206546 a001 75025/9349*14662949395604^(16/21) 8626757226206546 a001 75025/9349*192900153618^(8/9) 8626757226206546 a001 75025/9349*73681302247^(12/13) 8626757226234393 a001 6557470319842/9349*103682^(5/12) 8626757226267830 a001 4052739537881/9349*103682^(11/24) 8626757226301267 a001 2504730781961/9349*103682^(1/2) 8626757226334704 a001 1548008755920/9349*103682^(13/24) 8626757226368141 a001 956722026041/9349*103682^(7/12) 8626757226401579 a001 591286729879/9349*103682^(5/8) 8626757226435016 a001 365435296162/9349*103682^(2/3) 8626757226468453 a001 225851433717/9349*103682^(17/24) 8626757226501890 a001 139583862445/9349*103682^(3/4) 8626757226535327 a001 86267571272/9349*103682^(19/24) 8626757226568764 a001 53316291173/9349*103682^(5/6) 8626757226602202 a001 32951280099/9349*103682^(7/8) 8626757226635639 a001 20365011074/9349*103682^(11/12) 8626757226669076 a001 12586269025/9349*103682^(23/24) 8626757226702512 a001 4000054790877421/46368 8626757228000973 a001 28657/9349*312119004989^(10/11) 8626757228000973 a001 28657/9349*3461452808002^(5/6) 8626757228150170 a001 10610209857723/9349*39603^(9/22) 8626757228400186 a001 6557470319842/9349*39603^(5/11) 8626757228650203 a001 4052739537881/9349*39603^(1/2) 8626757228900219 a001 2504730781961/9349*39603^(6/11) 8626757229150236 a001 1548008755920/9349*39603^(13/22) 8626757229400252 a001 956722026041/9349*39603^(7/11) 8626757229650269 a001 591286729879/9349*39603^(15/22) 8626757229705696 r005 Im(z^2+c),c=-59/74+2/49*I,n=30 8626757229900285 a001 365435296162/9349*39603^(8/11) 8626757230150302 a001 225851433717/9349*39603^(17/22) 8626757230400318 a001 139583862445/9349*39603^(9/11) 8626757230650335 a001 86267571272/9349*39603^(19/22) 8626757230900352 a001 53316291173/9349*39603^(10/11) 8626757231150368 a001 32951280099/9349*39603^(21/22) 8626757231400383 a001 1527884973253322/17711 8626757233055505 a001 1515744265389/2161*5778^(5/9) 8626757240300159 a001 4181/24476*14662949395604^(8/9) 8626757240300160 a001 10946/9349*23725150497407^(13/16) 8626757240300160 a001 10946/9349*505019158607^(13/14) 8626757242865045 a001 10610209857723/9349*15127^(9/20) 8626757244750048 a001 6557470319842/9349*15127^(1/2) 8626757246582358 a001 365435296162/3571*3571^(14/17) 8626757246635050 a001 4052739537881/9349*15127^(11/20) 8626757247411061 a001 6557470319842/15127*5778^(11/18) 8626757248520053 a001 2504730781961/9349*15127^(3/5) 8626757250405056 a001 1548008755920/9349*15127^(13/20) 8626757252290058 a001 956722026041/9349*15127^(7/10) 8626757254175061 a001 591286729879/9349*15127^(3/4) 8626757256060064 a001 365435296162/9349*15127^(4/5) 8626757257945066 a001 225851433717/9349*15127^(17/20) 8626757259830069 a001 139583862445/9349*15127^(9/10) 8626757261715072 a001 86267571272/9349*15127^(19/20) 8626757261766617 a001 4052739537881/15127*5778^(2/3) 8626757263600073 a001 116720025776509/1353 8626757276122173 a001 2504730781961/15127*5778^(13/18) 8626757284741914 l006 ln(4176/9895) 8626757286376478 a001 591286729879/3571*3571^(13/17) 8626757290477729 a001 1548008755920/15127*5778^(7/9) 8626757293966307 a001 3536736619241/13201*5778^(2/3) 8626757297238967 a007 Real Root Of -386*x^4+33*x^3-335*x^2+104*x+574 8626757299511254 a001 10610209857723/24476*5778^(11/18) 8626757304833285 a001 956722026041/15127*5778^(5/6) 8626757308321863 a001 6557470319842/39603*5778^(13/18) 8626757310041560 k002 Champernowne real with 125/2*n^2-13/2*n+30 8626757313866810 a001 3278735159921/12238*5778^(2/3) 8626757314573735 r005 Re(z^2+c),c=-61/52+19/50*I,n=5 8626757315923179 a001 10610209857723/64079*5778^(13/18) 8626757319188841 a001 591286729879/15127*5778^(8/9) 8626757322677419 a001 4052739537881/39603*5778^(7/9) 8626757324600042 a001 4181/9349*14662949395604^(6/7) 8626757326170599 a001 956722026041/3571*3571^(12/17) 8626757327375290 a001 225749145909/2206*5778^(7/9) 8626757328222366 a001 4052739537881/24476*5778^(13/18) 8626757330278735 a001 6557470319842/64079*5778^(7/9) 8626757333544397 a001 365435296162/15127*5778^(17/18) 8626757337032975 a001 2504730781961/39603*5778^(5/6) 8626757341261108 a007 Real Root Of -493*x^4+489*x^3-165*x^2-555*x+231 8626757341730846 a001 3278735159921/51841*5778^(5/6) 8626757342577922 a001 2504730781961/24476*5778^(7/9) 8626757342839864 a001 10610209857723/167761*5778^(5/6) 8626757344634291 a001 4052739537881/64079*5778^(5/6) 8626757347899961 a001 222915409869735/2584 8626757349446397 l006 ln(5716/6231) 8626757351388531 a001 516002918640/13201*5778^(8/9) 8626757355100025 a001 10610209857723/9349*5778^(1/2) 8626757356086403 a001 4052739537881/103682*5778^(8/9) 8626757356771813 a001 3536736619241/90481*5778^(8/9) 8626757356933478 a001 387002188980/6119*5778^(5/6) 8626757357195420 a001 6557470319842/167761*5778^(8/9) 8626757358989847 a001 2504730781961/64079*5778^(8/9) 8626757365744087 a001 956722026041/39603*5778^(17/18) 8626757365964719 a001 1548008755920/3571*3571^(11/17) 8626757369455581 a001 6557470319842/9349*5778^(5/9) 8626757370286932 a007 Real Root Of 96*x^4-6*x^3+433*x^2-133*x-494 8626757370441959 a001 2504730781961/103682*5778^(17/18) 8626757371127369 a001 6557470319842/271443*5778^(17/18) 8626757371289034 a001 956722026041/24476*5778^(8/9) 8626757371289172 a001 10610209857723/439204*5778^(17/18) 8626757371550976 a001 4052739537881/167761*5778^(17/18) 8626757373345403 a001 1548008755920/64079*5778^(17/18) 8626757377051736 m001 (-BesselK(1,1)+GolombDickman)/(1-2^(1/3)) 8626757379022853 a007 Real Root Of -108*x^4-929*x^3+40*x^2+118*x-232 8626757380099651 a001 222915410701775/2584 8626757383811138 a001 4052739537881/9349*5778^(11/18) 8626757384797523 a001 27864426352896/323 8626757385482933 a001 222915410840879/2584 8626757385582933 a001 222915410843463/2584 8626757385597523 a001 27864426355480/323 8626757385599651 a001 222915410843895/2584 8626757385599961 a001 222915410843903/2584 8626757385600038 a001 222915410843905/2584 8626757385600154 a001 55728852710977/646 8626757385600967 a001 222915410843929/2584 8626757385606540 a001 222915410844073/2584 8626757385644590 a001 591286729879/24476*5778^(17/18) 8626757385906540 a001 222915410851825/2584 8626757387700967 a001 222915410898193/2584 8626757398166694 a001 2504730781961/9349*5778^(2/3) 8626757400000154 a001 55728852804001/646 8626757405758840 a001 2504730781961/3571*3571^(10/17) 8626757409135128 m001 1/GAMMA(13/24)*Salem/ln(Zeta(7)) 8626757410071566 k002 Champernowne real with 63*n^2-8*n+31 8626757412522250 a001 1548008755920/9349*5778^(13/18) 8626757426877806 a001 956722026041/9349*5778^(7/9) 8626757431505105 a007 Real Root Of 347*x^4-951*x^3+18*x^2+50*x-773 8626757436320088 a001 139583862445/1364*1364^(14/15) 8626757441233363 a001 591286729879/9349*5778^(5/6) 8626757444785855 a007 Real Root Of -359*x^4+184*x^3+498*x^2+170*x+93 8626757445552960 a001 4052739537881/3571*3571^(9/17) 8626757455588919 a001 365435296162/9349*5778^(8/9) 8626757469944475 a001 225851433717/9349*5778^(17/18) 8626757476122516 r005 Im(z^2+c),c=-13/82+44/53*I,n=63 8626757484300038 a001 222915413394313/2584 8626757485347081 a001 6557470319842/3571*3571^(8/17) 8626757494295686 m001 GAMMA(1/24)/exp(PrimesInBinary)*GAMMA(1/6) 8626757503389147 m001 2/3+GaussKuzminWirsing-OneNinth 8626757510101572 k002 Champernowne real with 127/2*n^2-19/2*n+32 8626757511680450 r005 Re(z^2+c),c=-7/82+27/28*I,n=18 8626757512193826 b008 14/13+Sqrt[57] 8626757525141202 a001 10610209857723/3571*3571^(7/17) 8626757536790534 m002 -Cosh[Pi]+Pi^4*Coth[Pi]+Sech[Pi]*Tanh[Pi] 8626757538918766 r009 Re(z^3+c),c=-3/64+48/59*I,n=61 8626757545141658 l006 ln(3881/9196) 8626757545299982 a001 1597/5778*3461452808002^(11/12) 8626757562905045 m005 (1/2*Zeta(3)+2/9)/(5/6*5^(1/2)-10/11) 8626757566327213 m001 (Porter-ZetaQ(4))/(GAMMA(3/4)-GAMMA(11/12)) 8626757567085880 m009 (1/3*Psi(1,2/3)-1/2)/(1/2*Psi(1,3/4)-2/3) 8626757572585527 m005 (1/2*gamma-2/9)/(11/12*3^(1/2)-9/11) 8626757585314803 a007 Real Root Of -358*x^4+796*x^3-668*x^2-572*x+713 8626757593880324 a007 Real Root Of -49*x^4+970*x^3-600*x^2-514*x+653 8626757601275018 m001 (1+Chi(1))/(-sin(1/12*Pi)+Bloch) 8626757610131578 k002 Champernowne real with 64*n^2-11*n+33 8626757632236011 a001 281/48*28657^(18/37) 8626757652087770 m001 (GAMMA(17/24)-Porter)/(Sierpinski-Weierstrass) 8626757671741064 a007 Real Root Of 497*x^4-766*x^3-285*x^2+816*x+149 8626757672672847 a007 Real Root Of -419*x^4-224*x^3-69*x^2-83*x+68 8626757674869057 m001 (Otter-ZetaP(4))/(Ei(1)+3^(1/3)) 8626757676967246 r005 Re(z^2+c),c=-13/15+11/57*I,n=60 8626757677480954 a007 Real Root Of 99*x^4+812*x^3-303*x^2+441*x-642 8626757679047692 a003 cos(Pi*1/90)-sin(Pi*37/101) 8626757694429425 a007 Real Root Of 21*x^4-445*x^3-410*x^2-198*x+750 8626757704999976 a001 360684739646049/4181 8626757709245717 r005 Im(z^2+c),c=-17/66+22/31*I,n=7 8626757710161584 k002 Champernowne real with 129/2*n^2-25/2*n+34 8626757710194766 a001 53316291173/3571*9349^(18/19) 8626757715389504 a001 86267571272/3571*9349^(17/19) 8626757720584242 a001 139583862445/3571*9349^(16/19) 8626757725778981 a001 225851433717/3571*9349^(15/19) 8626757730973719 a001 365435296162/3571*9349^(14/19) 8626757736168457 a001 591286729879/3571*9349^(13/19) 8626757741363196 a001 956722026041/3571*9349^(12/19) 8626757743353506 m001 (Artin+Landau)/(MertensB1-PisotVijayaraghavan) 8626757745440188 a001 225851433717/1364*1364^(13/15) 8626757746557934 a001 1548008755920/3571*9349^(11/19) 8626757750605466 r009 Re(z^3+c),c=-9/64+19/26*I,n=48 8626757751752672 a001 2504730781961/3571*9349^(10/19) 8626757754349928 a001 3536736619241/1926*2207^(1/2) 8626757756634538 r005 Im(z^2+c),c=-3/26+60/61*I,n=9 8626757756947411 a001 4052739537881/3571*9349^(9/19) 8626757762142149 a001 6557470319842/3571*9349^(8/19) 8626757765999947 a001 1597/15127*14662949395604^(19/21) 8626757766000000 a001 6765/3571*817138163596^(17/19) 8626757766000000 a001 6765/3571*14662949395604^(17/21) 8626757766000000 a001 6765/3571*192900153618^(17/18) 8626757767336887 a001 10610209857723/3571*9349^(7/19) 8626757767990754 p004 log(34687/14639) 8626757771800847 m005 (4/5*Catalan-5/6)/(2/5*2^(1/2)+3/5) 8626757783665800 m001 (BesselJ(0,1)+Totient)/(exp(Pi)+2^(1/3)) 8626757787351224 r002 23th iterates of z^2 + 8626757789299862 a001 944284907616763/10946 8626757789937149 r005 Re(z^2+c),c=-1/24+23/29*I,n=25 8626757789985636 a001 20365011074/3571*24476^(20/21) 8626757790671357 a001 32951280099/3571*24476^(19/21) 8626757791357078 a001 53316291173/3571*24476^(6/7) 8626757791368847 m005 (1/2*Catalan-5)/(3/11*5^(1/2)-1/12) 8626757792042799 a001 86267571272/3571*24476^(17/21) 8626757792728520 a001 139583862445/3571*24476^(16/21) 8626757793414241 a001 225851433717/3571*24476^(5/7) 8626757794099962 a001 365435296162/3571*24476^(2/3) 8626757794785683 a001 591286729879/3571*24476^(13/21) 8626757795471404 a001 956722026041/3571*24476^(4/7) 8626757796157125 a001 1548008755920/3571*24476^(11/21) 8626757796842846 a001 2504730781961/3571*24476^(10/21) 8626757797528567 a001 4052739537881/3571*24476^(3/7) 8626757798199691 a001 17711/3571*14662949395604^(7/9) 8626757798199691 a001 17711/3571*505019158607^(7/8) 8626757798214288 a001 6557470319842/3571*24476^(8/21) 8626757798900009 a001 10610209857723/3571*24476^(1/3) 8626757801599050 a001 2472169983204240/28657 8626757801690449 a001 7778742049/3571*64079^(22/23) 8626757801781795 a001 12586269025/3571*64079^(21/23) 8626757801873141 a001 20365011074/3571*64079^(20/23) 8626757801964486 a001 32951280099/3571*64079^(19/23) 8626757802055832 a001 53316291173/3571*64079^(18/23) 8626757802147178 a001 86267571272/3571*64079^(17/23) 8626757802238524 a001 139583862445/3571*64079^(16/23) 8626757802329869 a001 225851433717/3571*64079^(15/23) 8626757802421215 a001 365435296162/3571*64079^(14/23) 8626757802512561 a001 591286729879/3571*64079^(13/23) 8626757802603907 a001 956722026041/3571*64079^(12/23) 8626757802695252 a001 1548008755920/3571*64079^(11/23) 8626757802786598 a001 2504730781961/3571*64079^(10/23) 8626757802877944 a001 4052739537881/3571*64079^(9/23) 8626757802969290 a001 6557470319842/3571*64079^(8/23) 8626757803060635 a001 10610209857723/3571*64079^(7/23) 8626757803393478 a001 6472225041995957/75025 8626757803454836 a001 20365011074/3571*167761^(4/5) 8626757803516141 a001 225851433717/3571*167761^(3/5) 8626757803577446 a001 2504730781961/3571*167761^(2/5) 8626757803582973 a001 121393/3571*45537549124^(15/17) 8626757803582973 a001 121393/3571*312119004989^(9/11) 8626757803582973 a001 121393/3571*14662949395604^(5/7) 8626757803582973 a001 121393/3571*192900153618^(5/6) 8626757803582973 a001 121393/3571*28143753123^(9/10) 8626757803582973 a001 121393/3571*10749957122^(15/16) 8626757803655281 a001 16944505142783631/196418 8626757803660303 a001 2971215073/3571*439204^(8/9) 8626757803665272 a001 12586269025/3571*439204^(7/9) 8626757803670241 a001 53316291173/3571*439204^(2/3) 8626757803675210 a001 225851433717/3571*439204^(5/9) 8626757803680179 a001 956722026041/3571*439204^(4/9) 8626757803685148 a001 4052739537881/3571*439204^(1/3) 8626757803699692 a001 2178309/3571*2537720636^(13/15) 8626757803699692 a001 2178309/3571*45537549124^(13/17) 8626757803699692 a001 2178309/3571*14662949395604^(13/21) 8626757803699692 a001 2178309/3571*192900153618^(13/18) 8626757803699692 a001 2178309/3571*73681302247^(3/4) 8626757803699692 a001 2178309/3571*10749957122^(13/16) 8626757803699692 a001 2178309/3571*599074578^(13/14) 8626757803699929 a001 165580141/3571*7881196^(10/11) 8626757803699942 a001 701408733/3571*7881196^(9/11) 8626757803699954 a001 2971215073/3571*7881196^(8/11) 8626757803699963 a001 7778742049/3571*7881196^(2/3) 8626757803699967 a001 12586269025/3571*7881196^(7/11) 8626757803699980 a001 53316291173/3571*7881196^(6/11) 8626757803699992 a001 225851433717/3571*7881196^(5/11) 8626757803700005 a001 956722026041/3571*7881196^(4/11) 8626757803700009 a001 1548008755920/3571*7881196^(1/3) 8626757803700018 a001 4052739537881/3571*7881196^(3/11) 8626757803700038 a001 165580141/3571*20633239^(6/7) 8626757803700039 a001 433494437/3571*20633239^(4/5) 8626757803700041 a001 1836311903/3571*20633239^(5/7) 8626757803700043 a001 12586269025/3571*20633239^(3/5) 8626757803700044 a001 20365011074/3571*20633239^(4/7) 8626757803700047 a001 225851433717/3571*20633239^(3/7) 8626757803700047 a001 365435296162/3571*20633239^(2/5) 8626757803700048 a001 14930352/3571*2537720636^(7/9) 8626757803700048 a001 14930352/3571*17393796001^(5/7) 8626757803700048 a001 14930352/3571*312119004989^(7/11) 8626757803700048 a001 14930352/3571*14662949395604^(5/9) 8626757803700048 a001 14930352/3571*505019158607^(5/8) 8626757803700048 a001 14930352/3571*28143753123^(7/10) 8626757803700048 a001 14930352/3571*599074578^(5/6) 8626757803700048 a001 14930352/3571*228826127^(7/8) 8626757803700050 a001 2504730781961/3571*20633239^(2/7) 8626757803700051 a001 10610209857723/3571*20633239^(1/5) 8626757803700054 a001 39088169/3571*141422324^(11/13) 8626757803700054 a001 39088169/3571*2537720636^(11/15) 8626757803700054 a001 39088169/3571*45537549124^(11/17) 8626757803700054 a001 39088169/3571*312119004989^(3/5) 8626757803700054 a001 39088169/3571*817138163596^(11/19) 8626757803700054 a001 39088169/3571*14662949395604^(11/21) 8626757803700054 a001 39088169/3571*192900153618^(11/18) 8626757803700054 a001 39088169/3571*10749957122^(11/16) 8626757803700054 a001 39088169/3571*1568397607^(3/4) 8626757803700054 a001 39088169/3571*599074578^(11/14) 8626757803700055 a001 701408733/3571*141422324^(9/13) 8626757803700055 a001 1134903170/3571*141422324^(2/3) 8626757803700055 a001 165580141/3571*141422324^(10/13) 8626757803700055 a001 2971215073/3571*141422324^(8/13) 8626757803700055 a001 12586269025/3571*141422324^(7/13) 8626757803700055 a001 53316291173/3571*141422324^(6/13) 8626757803700055 a001 225851433717/3571*141422324^(5/13) 8626757803700055 a001 102334155/3571*9062201101803^(1/2) 8626757803700055 a001 591286729879/3571*141422324^(1/3) 8626757803700055 a001 956722026041/3571*141422324^(4/13) 8626757803700055 a001 4052739537881/3571*141422324^(3/13) 8626757803700055 a001 267914296/3571*1322157322203^(1/2) 8626757803700056 a001 701408733/3571*2537720636^(3/5) 8626757803700056 a001 701408733/3571*45537549124^(9/17) 8626757803700056 a001 701408733/3571*817138163596^(9/19) 8626757803700056 a001 701408733/3571*14662949395604^(3/7) 8626757803700056 a001 701408733/3571*192900153618^(1/2) 8626757803700056 a001 701408733/3571*10749957122^(9/16) 8626757803700056 a001 1836311903/3571*2537720636^(5/9) 8626757803700056 a001 12586269025/3571*2537720636^(7/15) 8626757803700056 a001 20365011074/3571*2537720636^(4/9) 8626757803700056 a001 53316291173/3571*2537720636^(2/5) 8626757803700056 a001 2971215073/3571*2537720636^(8/15) 8626757803700056 a001 1836311903/3571*312119004989^(5/11) 8626757803700056 a001 1836311903/3571*3461452808002^(5/12) 8626757803700056 a001 1836311903/3571*28143753123^(1/2) 8626757803700056 a001 225851433717/3571*2537720636^(1/3) 8626757803700056 a001 956722026041/3571*2537720636^(4/15) 8626757803700056 a001 2504730781961/3571*2537720636^(2/9) 8626757803700056 a001 4052739537881/3571*2537720636^(1/5) 8626757803700056 a001 12586269025/3571*17393796001^(3/7) 8626757803700056 a001 12586269025/3571*45537549124^(7/17) 8626757803700056 a001 12586269025/3571*14662949395604^(1/3) 8626757803700056 a001 12586269025/3571*192900153618^(7/18) 8626757803700056 a001 365435296162/3571*17393796001^(2/7) 8626757803700056 a001 10610209857723/3571*17393796001^(1/7) 8626757803700056 a001 86267571272/3571*45537549124^(1/3) 8626757803700056 a001 32951280099/3571*817138163596^(1/3) 8626757803700056 a001 225851433717/3571*45537549124^(5/17) 8626757803700056 a001 956722026041/3571*45537549124^(4/17) 8626757803700056 a001 53316291173/3571*45537549124^(6/17) 8626757803700056 a001 4052739537881/3571*45537549124^(3/17) 8626757803700056 a001 225851433717/3571*312119004989^(3/11) 8626757803700056 a001 225851433717/3571*14662949395604^(5/21) 8626757803700056 a001 1548008755920/3571*312119004989^(1/5) 8626757803700056 a001 10610209857723/3571*14662949395604^(1/9) 8626757803700056 a001 365435296162/3571*14662949395604^(2/9) 8626757803700056 a001 365435296162/3571*505019158607^(1/4) 8626757803700056 a001 225851433717/3571*192900153618^(5/18) 8626757803700056 a001 4052739537881/3571*192900153618^(1/6) 8626757803700056 a001 956722026041/3571*192900153618^(2/9) 8626757803700056 a001 139583862445/3571*23725150497407^(1/4) 8626757803700056 a001 6557470319842/3571*73681302247^(2/13) 8626757803700056 a001 956722026041/3571*73681302247^(3/13) 8626757803700056 a001 591286729879/3571*73681302247^(1/4) 8626757803700056 a001 139583862445/3571*73681302247^(4/13) 8626757803700056 a001 53316291173/3571*14662949395604^(2/7) 8626757803700056 a001 53316291173/3571*192900153618^(1/3) 8626757803700056 a001 2504730781961/3571*28143753123^(1/5) 8626757803700056 a001 225851433717/3571*28143753123^(3/10) 8626757803700056 a001 20365011074/3571*23725150497407^(5/16) 8626757803700056 a001 20365011074/3571*505019158607^(5/14) 8626757803700056 a001 20365011074/3571*73681302247^(5/13) 8626757803700056 a001 20365011074/3571*28143753123^(2/5) 8626757803700056 a001 6557470319842/3571*10749957122^(1/6) 8626757803700056 a001 4052739537881/3571*10749957122^(3/16) 8626757803700056 a001 2504730781961/3571*10749957122^(5/24) 8626757803700056 a001 956722026041/3571*10749957122^(1/4) 8626757803700056 a001 12586269025/3571*10749957122^(7/16) 8626757803700056 a001 225851433717/3571*10749957122^(5/16) 8626757803700056 a001 139583862445/3571*10749957122^(1/3) 8626757803700056 a001 7778742049/3571*312119004989^(2/5) 8626757803700056 a001 53316291173/3571*10749957122^(3/8) 8626757803700056 a001 20365011074/3571*10749957122^(5/12) 8626757803700056 a001 7778742049/3571*10749957122^(11/24) 8626757803700056 a001 6557470319842/3571*4106118243^(4/23) 8626757803700056 a001 2504730781961/3571*4106118243^(5/23) 8626757803700056 a001 956722026041/3571*4106118243^(6/23) 8626757803700056 a001 365435296162/3571*4106118243^(7/23) 8626757803700056 a001 139583862445/3571*4106118243^(8/23) 8626757803700056 a001 4807526976/3571*4106118243^(1/2) 8626757803700056 a001 2971215073/3571*45537549124^(8/17) 8626757803700056 a001 2971215073/3571*14662949395604^(8/21) 8626757803700056 a001 2971215073/3571*192900153618^(4/9) 8626757803700056 a001 2971215073/3571*73681302247^(6/13) 8626757803700056 a001 53316291173/3571*4106118243^(9/23) 8626757803700056 a001 20365011074/3571*4106118243^(10/23) 8626757803700056 a001 2971215073/3571*10749957122^(1/2) 8626757803700056 a001 7778742049/3571*4106118243^(11/23) 8626757803700056 a001 2971215073/3571*4106118243^(12/23) 8626757803700056 a001 6557470319842/3571*1568397607^(2/11) 8626757803700056 a001 2504730781961/3571*1568397607^(5/22) 8626757803700056 a001 1548008755920/3571*1568397607^(1/4) 8626757803700056 a001 956722026041/3571*1568397607^(3/11) 8626757803700056 a001 365435296162/3571*1568397607^(7/22) 8626757803700056 a001 139583862445/3571*1568397607^(4/11) 8626757803700056 a001 1134903170/3571*73681302247^(1/2) 8626757803700056 a001 1134903170/3571*10749957122^(13/24) 8626757803700056 a001 53316291173/3571*1568397607^(9/22) 8626757803700056 a001 20365011074/3571*1568397607^(5/11) 8626757803700056 a001 1134903170/3571*4106118243^(13/23) 8626757803700056 a001 7778742049/3571*1568397607^(1/2) 8626757803700056 a001 2971215073/3571*1568397607^(6/11) 8626757803700056 a001 1134903170/3571*1568397607^(13/22) 8626757803700056 a001 10610209857723/3571*599074578^(1/6) 8626757803700056 a001 6557470319842/3571*599074578^(4/21) 8626757803700056 a001 4052739537881/3571*599074578^(3/14) 8626757803700056 a001 2504730781961/3571*599074578^(5/21) 8626757803700056 a001 956722026041/3571*599074578^(2/7) 8626757803700056 a001 365435296162/3571*599074578^(1/3) 8626757803700056 a001 225851433717/3571*599074578^(5/14) 8626757803700056 a001 139583862445/3571*599074578^(8/21) 8626757803700056 a001 433494437/3571*17393796001^(4/7) 8626757803700056 a001 433494437/3571*14662949395604^(4/9) 8626757803700056 a001 433494437/3571*505019158607^(1/2) 8626757803700056 a001 433494437/3571*73681302247^(7/13) 8626757803700056 a001 433494437/3571*10749957122^(7/12) 8626757803700056 a001 433494437/3571*4106118243^(14/23) 8626757803700056 a001 53316291173/3571*599074578^(3/7) 8626757803700056 a001 433494437/3571*1568397607^(7/11) 8626757803700056 a001 20365011074/3571*599074578^(10/21) 8626757803700056 a001 701408733/3571*599074578^(9/14) 8626757803700056 a001 12586269025/3571*599074578^(1/2) 8626757803700056 a001 7778742049/3571*599074578^(11/21) 8626757803700056 a001 2971215073/3571*599074578^(4/7) 8626757803700056 a001 1134903170/3571*599074578^(13/21) 8626757803700056 a001 433494437/3571*599074578^(2/3) 8626757803700056 a001 6557470319842/3571*228826127^(1/5) 8626757803700056 a001 2504730781961/3571*228826127^(1/4) 8626757803700056 a001 956722026041/3571*228826127^(3/10) 8626757803700056 a001 365435296162/3571*228826127^(7/20) 8626757803700056 a001 225851433717/3571*228826127^(3/8) 8626757803700056 a001 165580141/3571*2537720636^(2/3) 8626757803700056 a001 165580141/3571*45537549124^(10/17) 8626757803700056 a001 165580141/3571*312119004989^(6/11) 8626757803700056 a001 165580141/3571*14662949395604^(10/21) 8626757803700056 a001 165580141/3571*192900153618^(5/9) 8626757803700056 a001 165580141/3571*28143753123^(3/5) 8626757803700056 a001 165580141/3571*10749957122^(5/8) 8626757803700056 a001 165580141/3571*4106118243^(15/23) 8626757803700056 a001 165580141/3571*1568397607^(15/22) 8626757803700056 a001 139583862445/3571*228826127^(2/5) 8626757803700056 a001 53316291173/3571*228826127^(9/20) 8626757803700056 a001 165580141/3571*599074578^(5/7) 8626757803700056 a001 20365011074/3571*228826127^(1/2) 8626757803700056 a001 7778742049/3571*228826127^(11/20) 8626757803700056 a001 2971215073/3571*228826127^(3/5) 8626757803700056 a001 1836311903/3571*228826127^(5/8) 8626757803700056 a001 1134903170/3571*228826127^(13/20) 8626757803700056 a001 433494437/3571*228826127^(7/10) 8626757803700056 a001 165580141/3571*228826127^(3/4) 8626757803700056 a001 6557470319842/3571*87403803^(4/19) 8626757803700056 a001 2504730781961/3571*87403803^(5/19) 8626757803700056 a001 956722026041/3571*87403803^(6/19) 8626757803700056 a001 365435296162/3571*87403803^(7/19) 8626757803700056 a001 63245986/3571*23725150497407^(1/2) 8626757803700056 a001 63245986/3571*505019158607^(4/7) 8626757803700056 a001 63245986/3571*73681302247^(8/13) 8626757803700056 a001 63245986/3571*10749957122^(2/3) 8626757803700056 a001 63245986/3571*4106118243^(16/23) 8626757803700056 a001 63245986/3571*1568397607^(8/11) 8626757803700056 a001 63245986/3571*599074578^(16/21) 8626757803700056 a001 139583862445/3571*87403803^(8/19) 8626757803700056 a001 53316291173/3571*87403803^(9/19) 8626757803700056 a001 63245986/3571*228826127^(4/5) 8626757803700056 a001 32951280099/3571*87403803^(1/2) 8626757803700056 a001 20365011074/3571*87403803^(10/19) 8626757803700056 a001 7778742049/3571*87403803^(11/19) 8626757803700056 a001 2971215073/3571*87403803^(12/19) 8626757803700056 a001 1134903170/3571*87403803^(13/19) 8626757803700056 a001 433494437/3571*87403803^(14/19) 8626757803700056 a001 165580141/3571*87403803^(15/19) 8626757803700057 a001 63245986/3571*87403803^(16/19) 8626757803700057 a001 6557470319842/3571*33385282^(2/9) 8626757803700057 a001 4052739537881/3571*33385282^(1/4) 8626757803700058 a001 2504730781961/3571*33385282^(5/18) 8626757803700058 a001 956722026041/3571*33385282^(1/3) 8626757803700058 a001 24157817/3571*45537549124^(2/3) 8626757803700058 a001 24157817/3571*10749957122^(17/24) 8626757803700058 a001 24157817/3571*4106118243^(17/23) 8626757803700058 a001 24157817/3571*1568397607^(17/22) 8626757803700058 a001 24157817/3571*599074578^(17/21) 8626757803700059 a001 365435296162/3571*33385282^(7/18) 8626757803700059 a001 24157817/3571*228826127^(17/20) 8626757803700059 a001 225851433717/3571*33385282^(5/12) 8626757803700059 a001 139583862445/3571*33385282^(4/9) 8626757803700059 a001 53316291173/3571*33385282^(1/2) 8626757803700059 a001 24157817/3571*87403803^(17/19) 8626757803700060 a001 20365011074/3571*33385282^(5/9) 8626757803700060 a001 12586269025/3571*33385282^(7/12) 8626757803700060 a001 7778742049/3571*33385282^(11/18) 8626757803700061 a001 2971215073/3571*33385282^(2/3) 8626757803700061 a001 1134903170/3571*33385282^(13/18) 8626757803700061 a001 701408733/3571*33385282^(3/4) 8626757803700061 a001 39088169/3571*33385282^(11/12) 8626757803700062 a001 433494437/3571*33385282^(7/9) 8626757803700062 a001 165580141/3571*33385282^(5/6) 8626757803700063 a001 63245986/3571*33385282^(8/9) 8626757803700066 a001 24157817/3571*33385282^(17/18) 8626757803700068 a001 6557470319842/3571*12752043^(4/17) 8626757803700071 a001 2504730781961/3571*12752043^(5/17) 8626757803700074 a001 956722026041/3571*12752043^(6/17) 8626757803700075 a001 9227465/3571*141422324^(12/13) 8626757803700076 a001 9227465/3571*2537720636^(4/5) 8626757803700076 a001 9227465/3571*45537549124^(12/17) 8626757803700076 a001 9227465/3571*14662949395604^(4/7) 8626757803700076 a001 9227465/3571*505019158607^(9/14) 8626757803700076 a001 9227465/3571*192900153618^(2/3) 8626757803700076 a001 9227465/3571*73681302247^(9/13) 8626757803700076 a001 9227465/3571*10749957122^(3/4) 8626757803700076 a001 9227465/3571*4106118243^(18/23) 8626757803700076 a001 9227465/3571*1568397607^(9/11) 8626757803700076 a001 9227465/3571*599074578^(6/7) 8626757803700076 a001 9227465/3571*228826127^(9/10) 8626757803700077 a001 9227465/3571*87403803^(18/19) 8626757803700077 a001 365435296162/3571*12752043^(7/17) 8626757803700080 a001 139583862445/3571*12752043^(8/17) 8626757803700082 a001 86267571272/3571*12752043^(1/2) 8626757803700084 a001 53316291173/3571*12752043^(9/17) 8626757803700087 a001 20365011074/3571*12752043^(10/17) 8626757803700090 a001 7778742049/3571*12752043^(11/17) 8626757803700093 a001 2971215073/3571*12752043^(12/17) 8626757803700096 a001 1134903170/3571*12752043^(13/17) 8626757803700099 a001 433494437/3571*12752043^(14/17) 8626757803700102 a001 165580141/3571*12752043^(15/17) 8626757803700106 a001 63245986/3571*12752043^(16/17) 8626757803700146 a001 6557470319842/3571*4870847^(1/4) 8626757803700169 a001 2504730781961/3571*4870847^(5/16) 8626757803700192 a001 956722026041/3571*4870847^(3/8) 8626757803700194 a001 3524578/3571*817138163596^(2/3) 8626757803700194 a001 3524578/3571*10749957122^(19/24) 8626757803700194 a001 3524578/3571*4106118243^(19/23) 8626757803700194 a001 3524578/3571*1568397607^(19/22) 8626757803700194 a001 3524578/3571*599074578^(19/21) 8626757803700195 a001 3524578/3571*228826127^(19/20) 8626757803700215 a001 365435296162/3571*4870847^(7/16) 8626757803700237 a001 139583862445/3571*4870847^(1/2) 8626757803700260 a001 53316291173/3571*4870847^(9/16) 8626757803700283 a001 20365011074/3571*4870847^(5/8) 8626757803700305 a001 7778742049/3571*4870847^(11/16) 8626757803700328 a001 2971215073/3571*4870847^(3/4) 8626757803700351 a001 1134903170/3571*4870847^(13/16) 8626757803700374 a001 433494437/3571*4870847^(7/8) 8626757803700396 a001 165580141/3571*4870847^(15/16) 8626757803700720 a001 6557470319842/3571*1860498^(4/15) 8626757803700803 a001 4052739537881/3571*1860498^(3/10) 8626757803700886 a001 2504730781961/3571*1860498^(1/3) 8626757803701007 a001 1346269/3571*2537720636^(8/9) 8626757803701007 a001 1346269/3571*312119004989^(8/11) 8626757803701007 a001 1346269/3571*23725150497407^(5/8) 8626757803701007 a001 1346269/3571*73681302247^(10/13) 8626757803701007 a001 1346269/3571*28143753123^(4/5) 8626757803701007 a001 1346269/3571*10749957122^(5/6) 8626757803701007 a001 1346269/3571*4106118243^(20/23) 8626757803701007 a001 1346269/3571*1568397607^(10/11) 8626757803701007 a001 1346269/3571*599074578^(20/21) 8626757803701052 a001 956722026041/3571*1860498^(2/5) 8626757803701219 a001 365435296162/3571*1860498^(7/15) 8626757803701302 a001 225851433717/3571*1860498^(1/2) 8626757803701385 a001 139583862445/3571*1860498^(8/15) 8626757803701551 a001 53316291173/3571*1860498^(3/5) 8626757803701717 a001 20365011074/3571*1860498^(2/3) 8626757803701800 a001 12586269025/3571*1860498^(7/10) 8626757803701883 a001 7778742049/3571*1860498^(11/15) 8626757803702049 a001 2971215073/3571*1860498^(4/5) 8626757803702132 a001 1836311903/3571*1860498^(5/6) 8626757803702215 a001 1134903170/3571*1860498^(13/15) 8626757803702299 a001 701408733/3571*1860498^(9/10) 8626757803702382 a001 433494437/3571*1860498^(14/15) 8626757803704326 a001 10610209857723/3571*710647^(1/4) 8626757803704936 a001 6557470319842/3571*710647^(2/7) 8626757803706156 a001 2504730781961/3571*710647^(5/14) 8626757803706580 a001 514229/3571*2537720636^(14/15) 8626757803706580 a001 514229/3571*17393796001^(6/7) 8626757803706580 a001 514229/3571*45537549124^(14/17) 8626757803706580 a001 514229/3571*817138163596^(14/19) 8626757803706580 a001 514229/3571*14662949395604^(2/3) 8626757803706580 a001 514229/3571*505019158607^(3/4) 8626757803706580 a001 514229/3571*192900153618^(7/9) 8626757803706580 a001 514229/3571*10749957122^(7/8) 8626757803706580 a001 514229/3571*4106118243^(21/23) 8626757803706580 a001 514229/3571*1568397607^(21/22) 8626757803707376 a001 956722026041/3571*710647^(3/7) 8626757803708597 a001 365435296162/3571*710647^(1/2) 8626757803709817 a001 139583862445/3571*710647^(4/7) 8626757803711037 a001 53316291173/3571*710647^(9/14) 8626757803712257 a001 20365011074/3571*710647^(5/7) 8626757803712867 a001 12586269025/3571*710647^(3/4) 8626757803713477 a001 7778742049/3571*710647^(11/14) 8626757803714697 a001 2971215073/3571*710647^(6/7) 8626757803715917 a001 1134903170/3571*710647^(13/14) 8626757803736081 a001 6557470319842/3571*271443^(4/13) 8626757803744777 a001 196418/3571*312119004989^(4/5) 8626757803744777 a001 196418/3571*23725150497407^(11/16) 8626757803744777 a001 196418/3571*73681302247^(11/13) 8626757803744777 a001 196418/3571*10749957122^(11/12) 8626757803744777 a001 196418/3571*4106118243^(22/23) 8626757803745087 a001 2504730781961/3571*271443^(5/13) 8626757803754093 a001 956722026041/3571*271443^(6/13) 8626757803758597 a001 591286729879/3571*271443^(1/2) 8626757803763100 a001 365435296162/3571*271443^(7/13) 8626757803772106 a001 139583862445/3571*271443^(8/13) 8626757803781112 a001 53316291173/3571*271443^(9/13) 8626757803790119 a001 20365011074/3571*271443^(10/13) 8626757803799125 a001 7778742049/3571*271443^(11/13) 8626757803808131 a001 2971215073/3571*271443^(12/13) 8626757803817085 a001 10472280100787674/121393 8626757803934116 a001 10610209857723/3571*103682^(7/24) 8626757803967553 a001 6557470319842/3571*103682^(1/3) 8626757804000990 a001 4052739537881/3571*103682^(3/8) 8626757804006580 a001 75025/3571*10749957122^(23/24) 8626757804034427 a001 2504730781961/3571*103682^(5/12) 8626757804067864 a001 1548008755920/3571*103682^(11/24) 8626757804101302 a001 956722026041/3571*103682^(1/2) 8626757804134739 a001 591286729879/3571*103682^(13/24) 8626757804168176 a001 365435296162/3571*103682^(7/12) 8626757804201613 a001 225851433717/3571*103682^(5/8) 8626757804235050 a001 139583862445/3571*103682^(2/3) 8626757804268488 a001 86267571272/3571*103682^(17/24) 8626757804301925 a001 53316291173/3571*103682^(3/4) 8626757804335362 a001 32951280099/3571*103682^(19/24) 8626757804368799 a001 20365011074/3571*103682^(5/6) 8626757804402236 a001 12586269025/3571*103682^(7/8) 8626757804435673 a001 7778742049/3571*103682^(11/12) 8626757804469111 a001 4807526976/3571*103682^(23/24) 8626757804502495 a001 4000055058791717/46368 8626757805450171 a001 10610209857723/3571*39603^(7/22) 8626757805700188 a001 6557470319842/3571*39603^(4/11) 8626757805800955 a001 1597/64079*14662949395604^(20/21) 8626757805801008 a001 28657/3571*45537549124^(16/17) 8626757805801008 a001 28657/3571*14662949395604^(16/21) 8626757805801008 a001 28657/3571*192900153618^(8/9) 8626757805801008 a001 28657/3571*73681302247^(12/13) 8626757805950204 a001 4052739537881/3571*39603^(9/22) 8626757806200221 a001 2504730781961/3571*39603^(5/11) 8626757806450238 a001 1548008755920/3571*39603^(1/2) 8626757806700254 a001 956722026041/3571*39603^(6/11) 8626757806950271 a001 591286729879/3571*39603^(13/22) 8626757807200287 a001 365435296162/3571*39603^(7/11) 8626757807450304 a001 225851433717/3571*39603^(15/22) 8626757807700320 a001 139583862445/3571*39603^(8/11) 8626757807950337 a001 86267571272/3571*39603^(17/22) 8626757808200353 a001 53316291173/3571*39603^(9/11) 8626757808450370 a001 32951280099/3571*39603^(19/22) 8626757808700386 a001 20365011074/3571*39603^(10/11) 8626757808950403 a001 12586269025/3571*39603^(21/22) 8626757809200367 a001 1527885075587477/17711 8626757810005362 r005 Im(z^2+c),c=-17/30+13/83*I,n=61 8626757810191590 k002 Champernowne real with 65*n^2-14*n+35 8626757815041219 r002 21th iterates of z^2 + 8626757816895075 a001 10610209857723/3571*15127^(7/20) 8626757818100196 a001 10946/3571*312119004989^(10/11) 8626757818100196 a001 10946/3571*3461452808002^(5/6) 8626757818780078 a001 6557470319842/3571*15127^(2/5) 8626757820665081 a001 4052739537881/3571*15127^(9/20) 8626757822550083 a001 2504730781961/3571*15127^(1/2) 8626757824435086 a001 1548008755920/3571*15127^(11/20) 8626757826320089 a001 956722026041/3571*15127^(3/5) 8626757828205092 a001 591286729879/3571*15127^(13/20) 8626757830090095 a001 365435296162/3571*15127^(7/10) 8626757831821926 a007 Real Root Of 829*x^4-938*x^3-471*x^2-6*x-716 8626757831975097 a001 225851433717/3571*15127^(3/4) 8626757833860100 a001 139583862445/3571*15127^(4/5) 8626757835745103 a001 86267571272/3571*15127^(17/20) 8626757837630106 a001 53316291173/3571*15127^(9/10) 8626757839515109 a001 32951280099/3571*15127^(19/20) 8626757841400059 a001 583600167970714/6765 8626757841706859 m001 polylog(4,1/2)^(Paris/TreeGrowth2nd) 8626757847475256 a007 Real Root Of -749*x^4-236*x^3+155*x^2+58*x+198 8626757848384631 l006 ln(3586/8497) 8626757857118445 a007 Real Root Of -604*x^4+894*x^3+422*x^2-361*x+283 8626757865043676 a001 3278735159921/2889*2207^(9/16) 8626757876500139 m001 1/GAMMA(3/4)^2/Riemann3rdZero*exp(sin(Pi/5))^2 8626757902400032 a001 1597/9349*14662949395604^(8/9) 8626757902400084 a001 4181/3571*23725150497407^(13/16) 8626757902400084 a001 4181/3571*505019158607^(13/14) 8626757904188954 a001 10610209857723/3571*5778^(7/18) 8626757910221596 k002 Champernowne real with 131/2*n^2-31/2*n+36 8626757917014708 a007 Real Root Of 735*x^4-797*x^3+185*x^2+157*x-921 8626757918544511 a001 6557470319842/3571*5778^(4/9) 8626757928082974 m001 (sin(1)+Zeta(1,-1))/(-Kolakoski+Trott) 8626757932900069 a001 4052739537881/3571*5778^(1/2) 8626757947255626 a001 2504730781961/3571*5778^(5/9) 8626757961611183 a001 1548008755920/3571*5778^(11/18) 8626757963712001 m005 (1/3*exp(1)+1/9)/(9/10*5^(1/2)-5/6) 8626757971982011 r005 Re(z^2+c),c=31/102+22/59*I,n=55 8626757975737424 a001 4052739537881/5778*2207^(5/8) 8626757975966740 a001 956722026041/3571*5778^(2/3) 8626757976634321 a007 Real Root Of -780*x^4-923*x^3-665*x^2+148*x+462 8626757986330193 r005 Im(z^2+c),c=-69/106+32/51*I,n=3 8626757989317823 m001 1/GAMMA(1/3)/exp(TwinPrimes)/sqrt(5) 8626757990322297 a001 591286729879/3571*5778^(13/18) 8626757991527699 m001 (Grothendieck+TwinPrimes)^Zeta(1,-1) 8626758004677854 a001 365435296162/3571*5778^(7/9) 8626758007192053 a007 Real Root Of 523*x^4-431*x^3+740*x^2+196*x-948 8626758010251602 k002 Champernowne real with 66*n^2-17*n+37 8626758019033412 a001 225851433717/3571*5778^(5/6) 8626758032074992 a007 Real Root Of 108*x^4+955*x^3+186*x^2-115*x+131 8626758033388969 a001 139583862445/3571*5778^(8/9) 8626758043392961 a007 Real Root Of -460*x^4+941*x^3+156*x^2-533*x+283 8626758047744526 a001 86267571272/3571*5778^(17/18) 8626758049644928 r005 Im(z^2+c),c=6/19+29/55*I,n=34 8626758054560299 a001 182717648081/682*1364^(4/5) 8626758062100038 a001 222915428324665/2584 8626758085827542 m005 (1/3*exp(1)-1/7)/(1/11*3^(1/2)+8/11) 8626758086431175 a001 2504730781961/5778*2207^(11/16) 8626758099053870 a007 Real Root Of 90*x^4+681*x^3-781*x^2+382*x+165 8626758110281608 k002 Champernowne real with 133/2*n^2-37/2*n+38 8626758134538045 a007 Real Root Of -63*x^4+791*x^3-983*x^2-464*x+874 8626758138593670 a001 7881196/377*89^(6/19) 8626758166395070 m005 (1/2*Zeta(3)+1/5)/(4/9*2^(1/2)+3/10) 8626758196437400 a001 1515744265389/2161*2207^(5/8) 8626758197124926 a001 86000486440/321*2207^(3/4) 8626758197529629 a007 Real Root Of -776*x^4-166*x^3+279*x^2+412*x+471 8626758205992026 l006 ln(3291/7798) 8626758210311614 k002 Champernowne real with 67*n^2-20*n+39 8626758222143738 a001 10610209857723/9349*2207^(9/16) 8626758232237427 m005 (1/2*3^(1/2)-7/9)/(7/11*5^(1/2)-2/5) 8626758238664345 a007 Real Root Of -202*x^4+754*x^3-886*x^2-988*x+403 8626758249256272 m001 Mills^Tribonacci/Ei(1) 8626758292735254 m001 (Robbin-TravellingSalesman)/(Ei(1,1)-GaussAGM) 8626758293504958 r009 Re(z^3+c),c=-13/94+11/21*I,n=11 8626758304687291 m001 sin(1)*BesselJ(0,1)*Totient 8626758307131153 a001 6557470319842/15127*2207^(11/16) 8626758307818680 a001 956722026041/5778*2207^(13/16) 8626758310341620 k002 Champernowne real with 135/2*n^2-43/2*n+40 8626758312957099 r005 Im(z^2+c),c=15/56+13/23*I,n=14 8626758332837492 a001 6557470319842/9349*2207^(5/8) 8626758333440643 a007 Real Root Of 287*x^4-386*x^3+754*x^2+241*x-760 8626758337224300 m001 1/Ei(1)^2*FeigenbaumC*exp(sqrt(2))^2 8626758349350800 a007 Real Root Of 459*x^4-656*x^3-618*x^2-331*x-501 8626758359231352 a001 10610209857723/24476*2207^(11/16) 8626758362383559 r005 Re(z^2+c),c=-5/122+7/26*I,n=15 8626758363680421 a001 591286729879/1364*1364^(11/15) 8626758385655582 r005 Re(z^2+c),c=-1/60+25/33*I,n=16 8626758393803111 a007 Real Root Of 404*x^4-715*x^3-296*x^2+892*x+307 8626758409965318 p004 log(14897/6287) 8626758410371626 k002 Champernowne real with 68*n^2-23*n+41 8626758417824908 a001 4052739537881/15127*2207^(3/4) 8626758418512434 a001 591286729879/5778*2207^(7/8) 8626758443531247 a001 4052739537881/9349*2207^(11/16) 8626758450024602 a001 3536736619241/13201*2207^(3/4) 8626758467235172 r005 Im(z^2+c),c=1/94+3/35*I,n=7 8626758469925107 a001 3278735159921/12238*2207^(3/4) 8626758470026975 a007 Real Root Of -858*x^4+433*x^3-403*x^2-407*x+702 8626758480200112 a001 1597/3571*14662949395604^(6/7) 8626758509137949 m005 (1/2*Pi-3/7)/(9/11*exp(1)-9/10) 8626758510401632 k002 Champernowne real with 137/2*n^2-49/2*n+42 8626758528518664 a001 2504730781961/15127*2207^(13/16) 8626758529206190 a001 182717648081/2889*2207^(15/16) 8626758554225003 a001 2504730781961/9349*2207^(3/4) 8626758560718358 a001 6557470319842/39603*2207^(13/16) 8626758568319675 a001 10610209857723/64079*2207^(13/16) 8626758578556322 a001 10610209857723/3571*2207^(7/16) 8626758580618864 a001 4052739537881/24476*2207^(13/16) 8626758595256765 a007 Real Root Of -762*x^4-387*x^3-51*x^2+834*x+931 8626758610431638 k002 Champernowne real with 69*n^2-26*n+43 8626758617954207 m005 (1/2*exp(1)-1/9)/(4/7*exp(1)-3) 8626758634022757 l006 ln(2996/7099) 8626758639212421 a001 1548008755920/15127*2207^(7/8) 8626758639900303 a001 28382035925272/329 8626758664918761 a001 1548008755920/9349*2207^(13/16) 8626758665950323 a007 Real Root Of 643*x^4-567*x^3-563*x^2+312*x-32 8626758671412116 a001 4052739537881/39603*2207^(7/8) 8626758672800553 a001 956722026041/1364*1364^(2/3) 8626758676109988 a001 225749145909/2206*2207^(7/8) 8626758679013433 a001 6557470319842/64079*2207^(7/8) 8626758689250080 a001 6557470319842/3571*2207^(1/2) 8626758691312622 a001 2504730781961/24476*2207^(7/8) 8626758707464261 r005 Im(z^2+c),c=-1/10+43/50*I,n=13 8626758710461644 k002 Champernowne real with 139/2*n^2-55/2*n+44 8626758713964819 a007 Real Root Of 916*x^4-309*x^3-792*x^2-541*x-583 8626758724456999 h001 (3/5*exp(2)+3/8)/(8/11*exp(2)+1/5) 8626758749906180 a001 956722026041/15127*2207^(15/16) 8626758754031716 a007 Real Root Of -673*x^4+54*x^3+177*x^2+806*x+971 8626758754533417 p004 log(27697/11689) 8626758775612520 a001 956722026041/9349*2207^(7/8) 8626758782105875 a001 2504730781961/39603*2207^(15/16) 8626758786803748 a001 3278735159921/51841*2207^(15/16) 8626758787912765 a001 10610209857723/167761*2207^(15/16) 8626758789707192 a001 4052739537881/64079*2207^(15/16) 8626758799582429 m001 TravellingSalesman^TreeGrowth2nd 8626758799943840 a001 4052739537881/3571*2207^(9/16) 8626758802006382 a001 387002188980/6119*2207^(15/16) 8626758810491650 k002 Champernowne real with 70*n^2-29*n+45 8626758817155598 a007 Real Root Of -334*x^4+776*x^3+11*x^2+284*x+920 8626758828814965 r002 6th iterates of z^2 + 8626758860600303 a001 28382036651375/329 8626758863382530 m005 (2*Pi-1/6)/(3/2+5/2*5^(1/2)) 8626758872359060 r005 Im(z^2+c),c=-3/44+31/36*I,n=16 8626758886306280 a001 591286729879/9349*2207^(15/16) 8626758887665609 r005 Re(z^2+c),c=19/98+11/26*I,n=61 8626758889092197 p001 sum(1/(529*n+116)/(256^n),n=0..infinity) 8626758893373597 m001 polylog(4,1/2)/(BesselK(1,1)-gamma(3)) 8626758898183282 a001 28382036775023/329 8626758898283282 a001 28382036775352/329 8626758898300303 a001 28382036775408/329 8626758898300405 a001 85146110326225/987 8626758898300506 a001 85146110326226/987 8626758898301317 a001 85146110326234/987 8626758898306889 a001 85146110326289/987 8626758898345086 a001 85146110326666/987 8626758898606889 a001 85146110329250/987 8626758900401317 a001 85146110346961/987 8626758910521656 k002 Champernowne real with 141/2*n^2-61/2*n+46 8626758910637600 a001 2504730781961/3571*2207^(5/8) 8626758912700506 a001 85146110468354/987 8626758953325664 m001 (2^(1/3))/Trott^2*ln(sqrt(5)) 8626758979629741 r005 Im(z^2+c),c=5/94+25/37*I,n=10 8626758981920697 a001 1134903780*1364^(3/5) 8626758997000405 a001 85146111300394/987 8626758997683517 r005 Re(z^2+c),c=45/98+2/21*I,n=3 8626759010551662 k002 Champernowne real with 71*n^2-32*n+47 8626759021331363 a001 1548008755920/3571*2207^(11/16) 8626759024918554 r005 Im(z^2+c),c=-7/23+35/47*I,n=4 8626759034952899 r002 7th iterates of z^2 + 8626759035881361 m005 (16/15+2/5*5^(1/2))/(3/4*2^(1/2)-5/6) 8626759050479061 m001 GaussAGM(1,1/sqrt(2))-ln(Pi)-BesselI(1,1) 8626759103185087 a007 Real Root Of -962*x^4+875*x^3-223*x^2-972*x+422 8626759110581668 k002 Champernowne real with 143/2*n^2-67/2*n+48 8626759121880921 a007 Real Root Of -729*x^4+859*x^3+141*x^2-56*x+802 8626759132025126 a001 956722026041/3571*2207^(3/4) 8626759155183866 r009 Re(z^3+c),c=-10/19+5/42*I,n=5 8626759155551476 l006 ln(2701/6400) 8626759166646042 m001 1/Salem/exp(Porter)*BesselJ(1,1) 8626759181427834 a007 Real Root Of -637*x^4+130*x^3-870*x^2-570*x+592 8626759210611674 k002 Champernowne real with 72*n^2-35*n+49 8626759218172133 m003 E^(1/2+Sqrt[5]/2)/2+16*Sech[1/2+Sqrt[5]/2] 8626759221568743 r005 Im(z^2+c),c=-89/122+11/48*I,n=20 8626759223739994 r002 41th iterates of z^2 + 8626759242718892 a001 591286729879/3571*2207^(13/16) 8626759248643051 r002 42i'th iterates of 2*x/(1-x^2) of 8626759255678648 a007 Real Root Of 980*x^4-970*x^3-381*x^2+874*x-128 8626759291040853 a001 2504730781961/1364*1364^(8/15) 8626759302921470 a007 Real Root Of -360*x^4+939*x^3+730*x^2+575*x+755 8626759310641680 k002 Champernowne real with 145/2*n^2-73/2*n+50 8626759318755381 a007 Real Root Of 860*x^4-611*x^3-884*x^2-442*x-592 8626759353412658 a001 365435296162/3571*2207^(7/8) 8626759367806830 m001 (cos(1)-ln(gamma))/(-Stephens+Tribonacci) 8626759374084421 r005 Re(z^2+c),c=-43/50+7/34*I,n=17 8626759376481897 m008 (2/3*Pi^5-5/6)/(1/4*Pi^4-4/5) 8626759377288530 r002 3th iterates of z^2 + 8626759391472798 a007 Real Root Of 959*x^4-767*x^3+267*x^2+668*x-646 8626759392766058 r009 Im(z^3+c),c=-16/29+19/50*I,n=55 8626759396106785 a007 Real Root Of 724*x^4-448*x^3+381*x^2+647*x-414 8626759410671686 k002 Champernowne real with 73*n^2-38*n+51 8626759461504085 p004 log(12101/5107) 8626759464106426 a001 225851433717/3571*2207^(15/16) 8626759510701692 k002 Champernowne real with 147/2*n^2-79/2*n+52 8626759554638733 a007 Real Root Of 699*x^4-399*x^3+630*x^2+880*x-353 8626759571904849 a001 139583862445/521*521^(12/13) 8626759574800506 a001 85146117003281/987 8626759600161019 a001 4052739537881/1364*1364^(7/15) 8626759610731698 k002 Champernowne real with 74*n^2-41*n+53 8626759653638997 m001 (CopelandErdos+ZetaQ(4))/(BesselI(0,2)+Bloch) 8626759670057177 a007 Real Root Of 72*x^4-742*x^3+31*x^2-97*x-623 8626759696789987 l006 ln(6837/7453) 8626759710761704 k002 Champernowne real with 149/2*n^2-85/2*n+54 8626759733139253 r009 Im(z^3+c),c=-7/58+53/63*I,n=47 8626759796505461 a007 Real Root Of -341*x^4+432*x^3+256*x^2+675*x+858 8626759801019424 m001 (-GaussKuzminWirsing+2/3)/(exp(-1/2*Pi)+4) 8626759804969576 l006 ln(2406/5701) 8626759810791710 k002 Champernowne real with 75*n^2-44*n+55 8626759825547573 r005 Im(z^2+c),c=-3/4+142/249*I,n=3 8626759830525156 r002 60th iterates of z^2 + 8626759834461371 m001 1/BesselK(0,1)^2*Si(Pi)*exp(GAMMA(11/12))^2 8626759835058780 m001 (exp(1)+Catalan)/(FellerTornier+Paris) 8626759839264026 a003 cos(Pi*23/103)/sin(Pi*9/26) 8626759844269399 r005 Im(z^2+c),c=-31/78+6/43*I,n=18 8626759881720560 m004 -620*Pi+5*Sinh[Sqrt[5]*Pi] 8626759908238046 m001 arctan(1/2)/(GAMMA(17/24)-RenyiParking) 8626759909281196 a001 3278735159921/682*1364^(2/5) 8626759910821716 k002 Champernowne real with 151/2*n^2-91/2*n+56 8626759915447375 r005 Im(z^2+c),c=-3/22+55/63*I,n=49 8626759929889890 m001 (Psi(1,1/3)-exp(1))/(sin(1/12*Pi)+Gompertz) 8626759942451995 a007 Real Root Of 794*x^4-368*x^3+215*x^2+262*x-610 8626759961788071 r004 Re(z^2+c),c=-1/8+2/9*I,z(0)=-1,n=5 8626759992899410 a001 610/2207*3461452808002^(11/12) 8626760009883530 a007 Real Root Of -559*x^4+306*x^3-157*x^2-627*x+82 8626760010030468 m001 (Sarnak+ZetaP(4))/(sin(1/12*Pi)-KhinchinLevy) 8626760010851722 k002 Champernowne real with 76*n^2-47*n+57 8626760012343728 m001 Rabbit^HardyLittlewoodC4*Rabbit^Champernowne 8626760021784722 m001 Chi(1)^exp(-1/2*Pi)/(Niven^exp(-1/2*Pi)) 8626760043302119 m001 (sin(1/5*Pi)-KomornikLoreti)/(Porter-ZetaP(4)) 8626760110881728 k002 Champernowne real with 153/2*n^2-97/2*n+58 8626760119713778 m002 Pi^4/6-Cosh[Pi]-Cosh[Pi]*Log[Pi] 8626760136151577 m001 exp(-1/2*Pi)^GAMMA(19/24)+CareFree 8626760210911734 k002 Champernowne real with 77*n^2-50*n+59 8626760218401384 a001 10610209857723/1364*1364^(1/3) 8626760220228458 a007 Real Root Of 455*x^4+447*x^3+846*x^2+345*x-297 8626760228407006 m009 (2/5*Psi(1,1/3)-1/2)/(1/2*Pi^2-5/6) 8626760251932676 a007 Real Root Of 284*x^4-386*x^3+84*x^2+61*x-415 8626760304343646 a007 Real Root Of -502*x^4-59*x^3-994*x^2-627*x+439 8626760310941740 k002 Champernowne real with 155/2*n^2-103/2*n+60 8626760317150227 a001 9349/144*7778742049^(6/19) 8626760323359735 r009 Re(z^3+c),c=-1/102+11/18*I,n=7 8626760326310820 m005 (gamma+2/5)/(4/5*Catalan+2/5) 8626760339481354 p003 LerchPhi(1/5,5,195/119) 8626760369158824 m001 QuadraticClass^Artin*LandauRamanujan^Artin 8626760389269287 r009 Im(z^3+c),c=-49/82+3/11*I,n=27 8626760404232366 a007 Real Root Of 684*x^4-960*x^3-145*x^2+872*x-135 8626760410971746 k002 Champernowne real with 78*n^2-53*n+61 8626760415542973 a001 167761/144*832040^(6/19) 8626760430459811 r005 Re(z^2+c),c=-105/122+10/49*I,n=29 8626760444564121 a007 Real Root Of -196*x^4+820*x^3-46*x^2-352*x-80 8626760462314381 a007 Real Root Of -624*x^4+842*x^3-394*x^2-536*x+717 8626760506918522 r005 Im(z^2+c),c=-111/106+2/21*I,n=17 8626760511001752 k002 Champernowne real with 157/2*n^2-109/2*n+62 8626760519070563 a007 Real Root Of 169*x^4-562*x^3+234*x^2+178*x-475 8626760523734743 m001 Zeta(1,2)/(Zeta(3)^ZetaP(2)) 8626760532905311 a007 Real Root Of -257*x^4+434*x^3-249*x^2+648*x-510 8626760544704284 m001 PrimesInBinary*exp(Paris)^2/BesselJ(0,1)^2 8626760548460880 r002 60th iterates of z^2 + 8626760558654345 a001 4807525989*843^(3/7) 8626760563380281 q001 245/284 8626760563380281 r002 2th iterates of z^2 + 8626760563380281 r005 Im(z^2+c),c=-5/8+49/142*I,n=2 8626760567953454 r002 29th iterates of z^2 + 8626760611031758 k002 Champernowne real with 79*n^2-56*n+63 8626760635892437 l006 ln(2111/5002) 8626760650604052 m001 (2^(1/3))^2*ln(Paris)*GAMMA(1/24) 8626760658190065 a007 Real Root Of 687*x^4+532*x^3+959*x^2+658*x-185 8626760683363744 a007 Real Root Of 767*x^4+559*x^3+668*x^2+422*x-199 8626760693095372 m001 (gamma+BesselJ(0,1))/(GAMMA(7/12)+Trott2nd) 8626760706239355 m002 -E^Pi+3/Pi^2-Pi^6/Log[Pi] 8626760711061764 k002 Champernowne real with 159/2*n^2-115/2*n+64 8626760711523205 a007 Real Root Of 886*x^4+443*x^3+71*x^2-285*x-505 8626760746571345 a007 Real Root Of 570*x^4-628*x^3+292*x^2+705*x-328 8626760750933276 r005 Im(z^2+c),c=-143/114+3/47*I,n=8 8626760778008470 a007 Real Root Of 177*x^4-219*x^3-535*x^2+53*x+395 8626760782410016 m001 (Magata+Riemann1stZero)/(3^(1/2)-GAMMA(7/12)) 8626760796978510 m001 log(gamma)*sin(Pi/12)/exp(1/2) 8626760811091770 k002 Champernowne real with 80*n^2-59*n+65 8626760830150845 a007 Real Root Of -831*x^4+213*x^3+616*x^2+208*x+318 8626760835670334 a007 Real Root Of 762*x^4-484*x^3+74*x^2+642*x-234 8626760867699285 m001 (Pi+arctan(1/2))/(Zeta(1,2)+FeigenbaumKappa) 8626760900420830 m001 (1+BesselJ(0,1))/(polylog(4,1/2)+GAMMA(7/12)) 8626760911121776 k002 Champernowne real with 161/2*n^2-121/2*n+66 8626760924277752 m005 (1/3*Catalan-1/4)/(37/110+3/22*5^(1/2)) 8626760936640040 m001 (-Si(Pi)+1/2)/(LambertW(1)+1) 8626760958511488 a001 29/139583862445*317811^(5/17) 8626760958516512 a001 29/1548008755920*1134903170^(5/17) 8626761011151782 k002 Champernowne real with 81*n^2-62*n+67 8626761029972197 a007 Real Root Of -212*x^4+340*x^3-591*x^2-870*x+25 8626761062907412 m001 GAMMA(1/6)^2*ln(Paris)*Zeta(3) 8626761082574196 a007 Real Root Of 829*x^4+777*x^3-46*x^2-918*x-718 8626761084185600 a005 (1/cos(19/175*Pi))^502 8626761085508170 a007 Real Root Of 331*x^4-793*x^3-770*x^2-651*x-681 8626761087499686 a001 137769374567370/1597 8626761111181788 k002 Champernowne real with 163/2*n^2-127/2*n+68 8626761127296263 a001 53316291173/1364*3571^(16/17) 8626761134894585 m005 (1/3*2^(1/2)-2/7)/(4/5*5^(1/2)+4/11) 8626761142783942 a007 Real Root Of 323*x^4+690*x^3+959*x^2+83*x-378 8626761144983415 l006 ln(3927/9305) 8626761146729084 a007 Real Root Of -891*x^4+423*x^3-525*x^2-912*x+369 8626761155876496 r009 Im(z^3+c),c=-1/18+33/38*I,n=11 8626761167090401 a001 21566892818/341*3571^(15/17) 8626761206884539 a001 139583862445/1364*3571^(14/17) 8626761211211794 k002 Champernowne real with 82*n^2-65*n+69 8626761236059673 a007 Real Root Of -564*x^4+907*x^3+295*x^2-50*x+632 8626761246678678 a001 225851433717/1364*3571^(13/17) 8626761286472816 a001 182717648081/682*3571^(12/17) 8626761286924543 m005 (1/2*exp(1)-3)/(Zeta(3)+7/10) 8626761311241800 k002 Champernowne real with 165/2*n^2-133/2*n+70 8626761326266955 a001 591286729879/1364*3571^(11/17) 8626761328337461 a007 Real Root Of 159*x^4-32*x^3+753*x^2+903*x+110 8626761336883974 m001 GaussKuzminWirsing*Champernowne^2/ln(Paris)^2 8626761366061094 a001 956722026041/1364*3571^(10/17) 8626761367511740 a007 Real Root Of -473*x^4+567*x^3+578*x^2+778*x+867 8626761382818599 l006 ln(7958/8675) 8626761389903749 m002 -1-3/Pi^2-Pi^4+Pi^6 8626761397679870 a001 10946/843*18^(19/29) 8626761405855233 a001 1134903780*3571^(9/17) 8626761411271806 k002 Champernowne real with 83*n^2-68*n+71 8626761425746981 a001 6557470319842/2207*843^(1/2) 8626761429330818 p004 log(17911/7559) 8626761432384145 r009 Im(z^3+c),c=-19/122+51/53*I,n=56 8626761445649372 a001 2504730781961/1364*3571^(8/17) 8626761448362656 r005 Im(z^2+c),c=-55/82+7/44*I,n=18 8626761465830368 a007 Real Root Of -931*x^4-632*x^3-508*x^2+269*x+720 8626761474062610 a001 1/271443*11^(11/31) 8626761485443511 a001 4052739537881/1364*3571^(7/17) 8626761487276048 m001 (5^(1/2)+3^(1/3))/(Backhouse+FransenRobinson) 8626761496549336 m001 (Catalan+GAMMA(2/3))/(Conway+Riemann3rdZero) 8626761505599861 a001 305/2889*14662949395604^(19/21) 8626761505602346 a001 646/341*817138163596^(17/19) 8626761505602346 a001 646/341*14662949395604^(17/21) 8626761505602346 a001 646/341*192900153618^(17/18) 8626761511301812 k002 Champernowne real with 167/2*n^2-139/2*n+72 8626761518175278 r002 4th iterates of z^2 + 8626761525237651 a001 3278735159921/682*3571^(6/17) 8626761542271050 a007 Real Root Of -65*x^4-532*x^3+369*x^2+988*x-487 8626761550764165 m005 (1/2*2^(1/2)+6/7)/(59/72+4/9*5^(1/2)) 8626761550835026 m001 (BesselJ(1,1)+FeigenbaumAlpha)/(exp(1)+ln(2)) 8626761558715065 m001 (1-gamma)/(-polylog(4,1/2)+Trott2nd) 8626761565031791 a001 10610209857723/1364*3571^(5/17) 8626761568344824 m001 1/GAMMA(2/3)^2/exp(Riemann2ndZero)*Zeta(1/2)^2 8626761580102385 a007 Real Root Of 607*x^4+999*x^3+57*x^2-861*x-480 8626761602004157 m001 ln(TwinPrimes)*Bloch^2*cos(Pi/12)^2 8626761611331818 k002 Champernowne real with 84*n^2-71*n+73 8626761655526535 a007 Real Root Of -679*x^4+479*x^3+826*x^2+669*x+646 8626761665299928 a001 360684905226190/4181 8626761670497160 a001 10182505537/682*9349^(18/19) 8626761671978456 r002 42th iterates of z^2 + 8626761673609793 m001 FeigenbaumD^BesselI(1,2)*FeigenbaumD^Lehmer 8626761675691900 a001 32951280099/1364*9349^(17/19) 8626761680886641 a001 53316291173/1364*9349^(16/19) 8626761686081382 a001 21566892818/341*9349^(15/19) 8626761689693106 a007 Real Root Of 591*x^4-287*x^3-x^2-494*x-937 8626761691276122 a001 139583862445/1364*9349^(14/19) 8626761696470863 a001 225851433717/1364*9349^(13/19) 8626761701665604 a001 182717648081/682*9349^(12/19) 8626761702803973 r005 Re(z^2+c),c=-17/20+8/63*I,n=33 8626761706860344 a001 591286729879/1364*9349^(11/19) 8626761711361824 k002 Champernowne real with 169/2*n^2-145/2*n+74 8626761712055085 a001 956722026041/1364*9349^(10/19) 8626761717232862 r005 Re(z^2+c),c=-29/34+13/106*I,n=55 8626761717249826 a001 1134903780*9349^(9/19) 8626761717459946 a007 Real Root Of 166*x^4-955*x^3-793*x^2+449*x+724 8626761722444566 a001 2504730781961/1364*9349^(8/19) 8626761726302419 a001 615/124*14662949395604^(7/9) 8626761726302419 a001 615/124*505019158607^(7/8) 8626761727639307 a001 4052739537881/1364*9349^(7/19) 8626761732834048 a001 3278735159921/682*9349^(6/19) 8626761735689716 p003 LerchPhi(1/6,3,217/94) 8626761736773610 l006 ln(1816/4303) 8626761738028789 a001 10610209857723/1364*9349^(5/19) 8626761749599853 a001 472142670555600/5473 8626761750288067 a001 7778742049/1364*24476^(20/21) 8626761750973788 a001 1144206275/124*24476^(19/21) 8626761751659509 a001 10182505537/682*24476^(6/7) 8626761752345231 a001 32951280099/1364*24476^(17/21) 8626761753030952 a001 53316291173/1364*24476^(16/21) 8626761753716673 a001 21566892818/341*24476^(5/7) 8626761754402394 a001 139583862445/1364*24476^(2/3) 8626761755088116 a001 225851433717/1364*24476^(13/21) 8626761755773837 a001 182717648081/682*24476^(4/7) 8626761756459558 a001 591286729879/1364*24476^(11/21) 8626761757145279 a001 956722026041/1364*24476^(10/21) 8626761757831001 a001 1134903780*24476^(3/7) 8626761758516722 a001 2504730781961/1364*24476^(8/21) 8626761759202443 a001 4052739537881/1364*24476^(1/3) 8626761759888165 a001 3278735159921/682*24476^(2/7) 8626761760573886 a001 10610209857723/1364*24476^(5/21) 8626761761899047 a001 2472171118107410/28657 8626761761992885 a001 2971215073/1364*64079^(22/23) 8626761762084231 a001 1201881744/341*64079^(21/23) 8626761762175576 a001 7778742049/1364*64079^(20/23) 8626761762266922 a001 1144206275/124*64079^(19/23) 8626761762358268 a001 10182505537/682*64079^(18/23) 8626761762449614 a001 32951280099/1364*64079^(17/23) 8626761762540960 a001 53316291173/1364*64079^(16/23) 8626761762632305 a001 21566892818/341*64079^(15/23) 8626761762723651 a001 139583862445/1364*64079^(14/23) 8626761762814997 a001 225851433717/1364*64079^(13/23) 8626761762906343 a001 182717648081/682*64079^(12/23) 8626761762997689 a001 591286729879/1364*64079^(11/23) 8626761763089034 a001 956722026041/1364*64079^(10/23) 8626761763180380 a001 1134903780*64079^(9/23) 8626761763200000 a001 11592/341*45537549124^(15/17) 8626761763200000 a001 11592/341*312119004989^(9/11) 8626761763200000 a001 11592/341*14662949395604^(5/7) 8626761763200000 a001 11592/341*192900153618^(5/6) 8626761763200000 a001 11592/341*28143753123^(9/10) 8626761763200000 a001 11592/341*10749957122^(15/16) 8626761763271726 a001 2504730781961/1364*64079^(8/23) 8626761763363072 a001 4052739537881/1364*64079^(7/23) 8626761763454417 a001 3278735159921/682*64079^(6/23) 8626761763545763 a001 10610209857723/1364*64079^(5/23) 8626761763693475 a001 1294445602642206/15005 8626761763757272 a001 7778742049/1364*167761^(4/5) 8626761763818577 a001 21566892818/341*167761^(3/5) 8626761763879882 a001 956722026041/1364*167761^(2/5) 8626761763941187 a001 10610209857723/1364*167761^(1/5) 8626761763962740 a001 567451585/682*439204^(8/9) 8626761763967709 a001 1201881744/341*439204^(7/9) 8626761763972678 a001 10182505537/682*439204^(2/3) 8626761763977647 a001 21566892818/341*439204^(5/9) 8626761763982616 a001 182717648081/682*439204^(4/9) 8626761763987585 a001 1134903780*439204^(1/3) 8626761763992554 a001 3278735159921/682*439204^(2/9) 8626761764000000 a001 610*2537720636^(13/15) 8626761764000000 a001 610*45537549124^(13/17) 8626761764000000 a001 610*14662949395604^(13/21) 8626761764000000 a001 610*192900153618^(13/18) 8626761764000000 a001 610*73681302247^(3/4) 8626761764000000 a001 610*10749957122^(13/16) 8626761764000000 a001 610*599074578^(13/14) 8626761764002366 a001 31622993/682*7881196^(10/11) 8626761764002379 a001 66978574/341*7881196^(9/11) 8626761764002391 a001 567451585/682*7881196^(8/11) 8626761764002400 a001 2971215073/1364*7881196^(2/3) 8626761764002404 a001 1201881744/341*7881196^(7/11) 8626761764002416 a001 10182505537/682*7881196^(6/11) 8626761764002429 a001 21566892818/341*7881196^(5/11) 8626761764002439 a001 5702887/1364*2537720636^(7/9) 8626761764002439 a001 5702887/1364*17393796001^(5/7) 8626761764002439 a001 5702887/1364*312119004989^(7/11) 8626761764002439 a001 5702887/1364*14662949395604^(5/9) 8626761764002439 a001 5702887/1364*505019158607^(5/8) 8626761764002439 a001 5702887/1364*28143753123^(7/10) 8626761764002439 a001 5702887/1364*599074578^(5/6) 8626761764002439 a001 5702887/1364*228826127^(7/8) 8626761764002442 a001 182717648081/682*7881196^(4/11) 8626761764002446 a001 591286729879/1364*7881196^(1/3) 8626761764002454 a001 1134903780*7881196^(3/11) 8626761764002467 a001 3278735159921/682*7881196^(2/11) 8626761764002475 a001 31622993/682*20633239^(6/7) 8626761764002476 a001 165580141/1364*20633239^(4/5) 8626761764002478 a001 701408733/1364*20633239^(5/7) 8626761764002480 a001 1201881744/341*20633239^(3/5) 8626761764002481 a001 7778742049/1364*20633239^(4/7) 8626761764002483 a001 21566892818/341*20633239^(3/7) 8626761764002484 a001 139583862445/1364*20633239^(2/5) 8626761764002484 a001 3732588/341*141422324^(11/13) 8626761764002484 a001 3732588/341*2537720636^(11/15) 8626761764002484 a001 3732588/341*45537549124^(11/17) 8626761764002484 a001 3732588/341*312119004989^(3/5) 8626761764002484 a001 3732588/341*817138163596^(11/19) 8626761764002484 a001 3732588/341*14662949395604^(11/21) 8626761764002484 a001 3732588/341*192900153618^(11/18) 8626761764002484 a001 3732588/341*10749957122^(11/16) 8626761764002484 a001 3732588/341*1568397607^(3/4) 8626761764002484 a001 3732588/341*599074578^(11/14) 8626761764002486 a001 956722026041/1364*20633239^(2/7) 8626761764002488 a001 4052739537881/1364*20633239^(1/5) 8626761764002489 a001 10610209857723/1364*20633239^(1/7) 8626761764002491 a001 39088169/1364*9062201101803^(1/2) 8626761764002492 a001 3732588/341*33385282^(11/12) 8626761764002492 a001 66978574/341*141422324^(9/13) 8626761764002492 a001 433494437/1364*141422324^(2/3) 8626761764002492 a001 567451585/682*141422324^(8/13) 8626761764002492 a001 1201881744/341*141422324^(7/13) 8626761764002492 a001 10182505537/682*141422324^(6/13) 8626761764002492 a001 21566892818/341*141422324^(5/13) 8626761764002492 a001 9303105/124*1322157322203^(1/2) 8626761764002492 a001 225851433717/1364*141422324^(1/3) 8626761764002492 a001 182717648081/682*141422324^(4/13) 8626761764002492 a001 1134903780*141422324^(3/13) 8626761764002492 a001 3278735159921/682*141422324^(2/13) 8626761764002492 a001 66978574/341*2537720636^(3/5) 8626761764002492 a001 66978574/341*45537549124^(9/17) 8626761764002492 a001 66978574/341*817138163596^(9/19) 8626761764002492 a001 66978574/341*14662949395604^(3/7) 8626761764002492 a001 66978574/341*192900153618^(1/2) 8626761764002492 a001 66978574/341*10749957122^(9/16) 8626761764002492 a001 66978574/341*599074578^(9/14) 8626761764002492 a001 701408733/1364*2537720636^(5/9) 8626761764002492 a001 701408733/1364*312119004989^(5/11) 8626761764002492 a001 701408733/1364*3461452808002^(5/12) 8626761764002492 a001 701408733/1364*28143753123^(1/2) 8626761764002492 a001 1201881744/341*2537720636^(7/15) 8626761764002492 a001 7778742049/1364*2537720636^(4/9) 8626761764002492 a001 10182505537/682*2537720636^(2/5) 8626761764002492 a001 21566892818/341*2537720636^(1/3) 8626761764002492 a001 182717648081/682*2537720636^(4/15) 8626761764002492 a001 956722026041/1364*2537720636^(2/9) 8626761764002492 a001 1134903780*2537720636^(1/5) 8626761764002492 a001 1836311903/1364*4106118243^(1/2) 8626761764002492 a001 3278735159921/682*2537720636^(2/15) 8626761764002492 a001 10610209857723/1364*2537720636^(1/9) 8626761764002492 a001 1201881744/341*17393796001^(3/7) 8626761764002492 a001 1201881744/341*45537549124^(7/17) 8626761764002492 a001 1201881744/341*14662949395604^(1/3) 8626761764002492 a001 1201881744/341*192900153618^(7/18) 8626761764002492 a001 1201881744/341*10749957122^(7/16) 8626761764002492 a001 1144206275/124*817138163596^(1/3) 8626761764002492 a001 139583862445/1364*17393796001^(2/7) 8626761764002492 a001 4052739537881/1364*17393796001^(1/7) 8626761764002492 a001 32951280099/1364*45537549124^(1/3) 8626761764002492 a001 21566892818/341*45537549124^(5/17) 8626761764002492 a001 182717648081/682*45537549124^(4/17) 8626761764002492 a001 1134903780*45537549124^(3/17) 8626761764002492 a001 3278735159921/682*45537549124^(2/17) 8626761764002492 a001 21566892818/341*312119004989^(3/11) 8626761764002492 a001 21566892818/341*14662949395604^(5/21) 8626761764002492 a001 21566892818/341*192900153618^(5/18) 8626761764002492 a001 10610209857723/1364*312119004989^(1/11) 8626761764002492 a001 1134903780*817138163596^(3/19) 8626761764002492 a001 1134903780*14662949395604^(1/7) 8626761764002492 a001 182717648081/682*817138163596^(4/19) 8626761764002492 a001 182717648081/682*14662949395604^(4/21) 8626761764002492 a001 1134903780*192900153618^(1/6) 8626761764002492 a001 182717648081/682*192900153618^(2/9) 8626761764002492 a001 139583862445/1364*14662949395604^(2/9) 8626761764002492 a001 139583862445/1364*505019158607^(1/4) 8626761764002492 a001 2504730781961/1364*73681302247^(2/13) 8626761764002492 a001 182717648081/682*73681302247^(3/13) 8626761764002492 a001 53316291173/1364*23725150497407^(1/4) 8626761764002492 a001 10610209857723/1364*28143753123^(1/10) 8626761764002492 a001 53316291173/1364*73681302247^(4/13) 8626761764002492 a001 956722026041/1364*28143753123^(1/5) 8626761764002492 a001 10182505537/682*45537549124^(6/17) 8626761764002492 a001 21566892818/341*28143753123^(3/10) 8626761764002492 a001 10182505537/682*14662949395604^(2/7) 8626761764002492 a001 10182505537/682*192900153618^(1/3) 8626761764002492 a001 3278735159921/682*10749957122^(1/8) 8626761764002492 a001 2504730781961/1364*10749957122^(1/6) 8626761764002492 a001 1134903780*10749957122^(3/16) 8626761764002492 a001 956722026041/1364*10749957122^(5/24) 8626761764002492 a001 182717648081/682*10749957122^(1/4) 8626761764002492 a001 139583862445/1364*10749957122^(7/24) 8626761764002492 a001 21566892818/341*10749957122^(5/16) 8626761764002492 a001 53316291173/1364*10749957122^(1/3) 8626761764002492 a001 7778742049/1364*23725150497407^(5/16) 8626761764002492 a001 7778742049/1364*505019158607^(5/14) 8626761764002492 a001 7778742049/1364*73681302247^(5/13) 8626761764002492 a001 10182505537/682*10749957122^(3/8) 8626761764002492 a001 7778742049/1364*28143753123^(2/5) 8626761764002492 a001 7778742049/1364*10749957122^(5/12) 8626761764002492 a001 3278735159921/682*4106118243^(3/23) 8626761764002492 a001 2504730781961/1364*4106118243^(4/23) 8626761764002492 a001 956722026041/1364*4106118243^(5/23) 8626761764002492 a001 182717648081/682*4106118243^(6/23) 8626761764002492 a001 139583862445/1364*4106118243^(7/23) 8626761764002492 a001 53316291173/1364*4106118243^(8/23) 8626761764002492 a001 2971215073/1364*312119004989^(2/5) 8626761764002492 a001 10182505537/682*4106118243^(9/23) 8626761764002492 a001 2971215073/1364*10749957122^(11/24) 8626761764002492 a001 7778742049/1364*4106118243^(10/23) 8626761764002492 a001 2971215073/1364*4106118243^(11/23) 8626761764002492 a001 3278735159921/682*1568397607^(3/22) 8626761764002492 a001 567451585/682*2537720636^(8/15) 8626761764002492 a001 2504730781961/1364*1568397607^(2/11) 8626761764002492 a001 956722026041/1364*1568397607^(5/22) 8626761764002492 a001 591286729879/1364*1568397607^(1/4) 8626761764002492 a001 182717648081/682*1568397607^(3/11) 8626761764002492 a001 139583862445/1364*1568397607^(7/22) 8626761764002492 a001 53316291173/1364*1568397607^(4/11) 8626761764002492 a001 567451585/682*45537549124^(8/17) 8626761764002492 a001 567451585/682*14662949395604^(8/21) 8626761764002492 a001 567451585/682*192900153618^(4/9) 8626761764002492 a001 567451585/682*73681302247^(6/13) 8626761764002492 a001 567451585/682*10749957122^(1/2) 8626761764002492 a001 10182505537/682*1568397607^(9/22) 8626761764002492 a001 567451585/682*4106118243^(12/23) 8626761764002492 a001 7778742049/1364*1568397607^(5/11) 8626761764002492 a001 2971215073/1364*1568397607^(1/2) 8626761764002492 a001 567451585/682*1568397607^(6/11) 8626761764002492 a001 3278735159921/682*599074578^(1/7) 8626761764002492 a001 4052739537881/1364*599074578^(1/6) 8626761764002492 a001 2504730781961/1364*599074578^(4/21) 8626761764002492 a001 1134903780*599074578^(3/14) 8626761764002492 a001 956722026041/1364*599074578^(5/21) 8626761764002492 a001 182717648081/682*599074578^(2/7) 8626761764002492 a001 139583862445/1364*599074578^(1/3) 8626761764002492 a001 21566892818/341*599074578^(5/14) 8626761764002492 a001 53316291173/1364*599074578^(8/21) 8626761764002492 a001 433494437/1364*73681302247^(1/2) 8626761764002492 a001 433494437/1364*10749957122^(13/24) 8626761764002492 a001 433494437/1364*4106118243^(13/23) 8626761764002492 a001 10182505537/682*599074578^(3/7) 8626761764002492 a001 433494437/1364*1568397607^(13/22) 8626761764002492 a001 7778742049/1364*599074578^(10/21) 8626761764002492 a001 1201881744/341*599074578^(1/2) 8626761764002492 a001 2971215073/1364*599074578^(11/21) 8626761764002492 a001 567451585/682*599074578^(4/7) 8626761764002492 a001 10610209857723/1364*228826127^(1/8) 8626761764002492 a001 433494437/1364*599074578^(13/21) 8626761764002492 a001 3278735159921/682*228826127^(3/20) 8626761764002492 a001 2504730781961/1364*228826127^(1/5) 8626761764002492 a001 956722026041/1364*228826127^(1/4) 8626761764002492 a001 182717648081/682*228826127^(3/10) 8626761764002492 a001 139583862445/1364*228826127^(7/20) 8626761764002492 a001 21566892818/341*228826127^(3/8) 8626761764002492 a001 165580141/1364*17393796001^(4/7) 8626761764002492 a001 165580141/1364*14662949395604^(4/9) 8626761764002492 a001 165580141/1364*505019158607^(1/2) 8626761764002492 a001 165580141/1364*73681302247^(7/13) 8626761764002492 a001 165580141/1364*10749957122^(7/12) 8626761764002492 a001 165580141/1364*4106118243^(14/23) 8626761764002492 a001 165580141/1364*1568397607^(7/11) 8626761764002492 a001 53316291173/1364*228826127^(2/5) 8626761764002492 a001 10182505537/682*228826127^(9/20) 8626761764002492 a001 165580141/1364*599074578^(2/3) 8626761764002492 a001 7778742049/1364*228826127^(1/2) 8626761764002492 a001 2971215073/1364*228826127^(11/20) 8626761764002492 a001 701408733/1364*228826127^(5/8) 8626761764002492 a001 31622993/682*141422324^(10/13) 8626761764002492 a001 567451585/682*228826127^(3/5) 8626761764002492 a001 433494437/1364*228826127^(13/20) 8626761764002492 a001 165580141/1364*228826127^(7/10) 8626761764002492 a001 3278735159921/682*87403803^(3/19) 8626761764002492 a001 2504730781961/1364*87403803^(4/19) 8626761764002492 a001 956722026041/1364*87403803^(5/19) 8626761764002493 a001 182717648081/682*87403803^(6/19) 8626761764002493 a001 139583862445/1364*87403803^(7/19) 8626761764002493 a001 31622993/682*2537720636^(2/3) 8626761764002493 a001 31622993/682*45537549124^(10/17) 8626761764002493 a001 31622993/682*312119004989^(6/11) 8626761764002493 a001 31622993/682*14662949395604^(10/21) 8626761764002493 a001 31622993/682*192900153618^(5/9) 8626761764002493 a001 31622993/682*28143753123^(3/5) 8626761764002493 a001 31622993/682*10749957122^(5/8) 8626761764002493 a001 31622993/682*4106118243^(15/23) 8626761764002493 a001 31622993/682*1568397607^(15/22) 8626761764002493 a001 31622993/682*599074578^(5/7) 8626761764002493 a001 53316291173/1364*87403803^(8/19) 8626761764002493 a001 10182505537/682*87403803^(9/19) 8626761764002493 a001 31622993/682*228826127^(3/4) 8626761764002493 a001 1144206275/124*87403803^(1/2) 8626761764002493 a001 7778742049/1364*87403803^(10/19) 8626761764002493 a001 2971215073/1364*87403803^(11/19) 8626761764002493 a001 567451585/682*87403803^(12/19) 8626761764002493 a001 433494437/1364*87403803^(13/19) 8626761764002493 a001 165580141/1364*87403803^(14/19) 8626761764002493 a001 3278735159921/682*33385282^(1/6) 8626761764002493 a001 31622993/682*87403803^(15/19) 8626761764002494 a001 2504730781961/1364*33385282^(2/9) 8626761764002494 a001 1134903780*33385282^(1/4) 8626761764002494 a001 956722026041/1364*33385282^(5/18) 8626761764002495 a001 182717648081/682*33385282^(1/3) 8626761764002495 a001 24157817/1364*23725150497407^(1/2) 8626761764002495 a001 24157817/1364*505019158607^(4/7) 8626761764002495 a001 24157817/1364*73681302247^(8/13) 8626761764002495 a001 24157817/1364*10749957122^(2/3) 8626761764002495 a001 24157817/1364*4106118243^(16/23) 8626761764002495 a001 24157817/1364*1568397607^(8/11) 8626761764002495 a001 24157817/1364*599074578^(16/21) 8626761764002495 a001 139583862445/1364*33385282^(7/18) 8626761764002495 a001 24157817/1364*228826127^(4/5) 8626761764002495 a001 21566892818/341*33385282^(5/12) 8626761764002496 a001 53316291173/1364*33385282^(4/9) 8626761764002496 a001 10182505537/682*33385282^(1/2) 8626761764002496 a001 24157817/1364*87403803^(16/19) 8626761764002496 a001 7778742049/1364*33385282^(5/9) 8626761764002497 a001 1201881744/341*33385282^(7/12) 8626761764002497 a001 2971215073/1364*33385282^(11/18) 8626761764002497 a001 567451585/682*33385282^(2/3) 8626761764002498 a001 433494437/1364*33385282^(13/18) 8626761764002498 a001 66978574/341*33385282^(3/4) 8626761764002498 a001 165580141/1364*33385282^(7/9) 8626761764002499 a001 31622993/682*33385282^(5/6) 8626761764002502 a001 3278735159921/682*12752043^(3/17) 8626761764002502 a001 24157817/1364*33385282^(8/9) 8626761764002505 a001 2504730781961/1364*12752043^(4/17) 8626761764002508 a001 956722026041/1364*12752043^(5/17) 8626761764002511 a001 182717648081/682*12752043^(6/17) 8626761764002512 a001 9227465/1364*45537549124^(2/3) 8626761764002512 a001 9227465/1364*10749957122^(17/24) 8626761764002512 a001 9227465/1364*4106118243^(17/23) 8626761764002512 a001 9227465/1364*1568397607^(17/22) 8626761764002512 a001 9227465/1364*599074578^(17/21) 8626761764002513 a001 9227465/1364*228826127^(17/20) 8626761764002513 a001 9227465/1364*87403803^(17/19) 8626761764002514 a001 139583862445/1364*12752043^(7/17) 8626761764002517 a001 53316291173/1364*12752043^(8/17) 8626761764002519 a001 32951280099/1364*12752043^(1/2) 8626761764002520 a001 9227465/1364*33385282^(17/18) 8626761764002520 a001 10182505537/682*12752043^(9/17) 8626761764002523 a001 7778742049/1364*12752043^(10/17) 8626761764002526 a001 2971215073/1364*12752043^(11/17) 8626761764002530 a001 567451585/682*12752043^(12/17) 8626761764002533 a001 433494437/1364*12752043^(13/17) 8626761764002536 a001 165580141/1364*12752043^(14/17) 8626761764002539 a001 31622993/682*12752043^(15/17) 8626761764002545 a001 24157817/1364*12752043^(16/17) 8626761764002560 a001 3278735159921/682*4870847^(3/16) 8626761764002583 a001 2504730781961/1364*4870847^(1/4) 8626761764002606 a001 956722026041/1364*4870847^(5/16) 8626761764002629 a001 182717648081/682*4870847^(3/8) 8626761764002631 a001 1762289/682*141422324^(12/13) 8626761764002631 a001 1762289/682*2537720636^(4/5) 8626761764002631 a001 1762289/682*45537549124^(12/17) 8626761764002631 a001 1762289/682*14662949395604^(4/7) 8626761764002631 a001 1762289/682*505019158607^(9/14) 8626761764002631 a001 1762289/682*192900153618^(2/3) 8626761764002631 a001 1762289/682*73681302247^(9/13) 8626761764002631 a001 1762289/682*10749957122^(3/4) 8626761764002631 a001 1762289/682*4106118243^(18/23) 8626761764002631 a001 1762289/682*1568397607^(9/11) 8626761764002631 a001 1762289/682*599074578^(6/7) 8626761764002631 a001 1762289/682*228826127^(9/10) 8626761764002632 a001 1762289/682*87403803^(18/19) 8626761764002651 a001 139583862445/1364*4870847^(7/16) 8626761764002674 a001 53316291173/1364*4870847^(1/2) 8626761764002697 a001 10182505537/682*4870847^(9/16) 8626761764002719 a001 7778742049/1364*4870847^(5/8) 8626761764002742 a001 2971215073/1364*4870847^(11/16) 8626761764002765 a001 567451585/682*4870847^(3/4) 8626761764002788 a001 433494437/1364*4870847^(13/16) 8626761764002810 a001 165580141/1364*4870847^(7/8) 8626761764002833 a001 31622993/682*4870847^(15/16) 8626761764002908 a001 10610209857723/1364*1860498^(1/6) 8626761764002991 a001 3278735159921/682*1860498^(1/5) 8626761764003157 a001 2504730781961/1364*1860498^(4/15) 8626761764003240 a001 1134903780*1860498^(3/10) 8626761764003323 a001 956722026041/1364*1860498^(1/3) 8626761764003444 a001 1346269/1364*817138163596^(2/3) 8626761764003444 a001 1346269/1364*10749957122^(19/24) 8626761764003444 a001 1346269/1364*4106118243^(19/23) 8626761764003444 a001 1346269/1364*1568397607^(19/22) 8626761764003444 a001 1346269/1364*599074578^(19/21) 8626761764003444 a001 1346269/1364*228826127^(19/20) 8626761764003489 a001 182717648081/682*1860498^(2/5) 8626761764003655 a001 139583862445/1364*1860498^(7/15) 8626761764003738 a001 21566892818/341*1860498^(1/2) 8626761764003821 a001 53316291173/1364*1860498^(8/15) 8626761764003988 a001 10182505537/682*1860498^(3/5) 8626761764004154 a001 7778742049/1364*1860498^(2/3) 8626761764004237 a001 1201881744/341*1860498^(7/10) 8626761764004320 a001 2971215073/1364*1860498^(11/15) 8626761764004486 a001 567451585/682*1860498^(4/5) 8626761764004569 a001 701408733/1364*1860498^(5/6) 8626761764004652 a001 433494437/1364*1860498^(13/15) 8626761764004735 a001 66978574/341*1860498^(9/10) 8626761764004818 a001 165580141/1364*1860498^(14/15) 8626761764006153 a001 3278735159921/682*710647^(3/14) 8626761764006763 a001 4052739537881/1364*710647^(1/4) 8626761764007373 a001 2504730781961/1364*710647^(2/7) 8626761764008593 a001 956722026041/1364*710647^(5/14) 8626761764009017 a001 514229/1364*2537720636^(8/9) 8626761764009017 a001 514229/1364*312119004989^(8/11) 8626761764009017 a001 514229/1364*23725150497407^(5/8) 8626761764009017 a001 514229/1364*73681302247^(10/13) 8626761764009017 a001 514229/1364*28143753123^(4/5) 8626761764009017 a001 514229/1364*10749957122^(5/6) 8626761764009017 a001 514229/1364*4106118243^(20/23) 8626761764009017 a001 514229/1364*1568397607^(10/11) 8626761764009017 a001 514229/1364*599074578^(20/21) 8626761764009813 a001 182717648081/682*710647^(3/7) 8626761764011033 a001 139583862445/1364*710647^(1/2) 8626761764012253 a001 53316291173/1364*710647^(4/7) 8626761764013473 a001 10182505537/682*710647^(9/14) 8626761764014694 a001 7778742049/1364*710647^(5/7) 8626761764015304 a001 1201881744/341*710647^(3/4) 8626761764015914 a001 2971215073/1364*710647^(11/14) 8626761764017134 a001 567451585/682*710647^(6/7) 8626761764018354 a001 433494437/1364*710647^(13/14) 8626761764029511 a001 3278735159921/682*271443^(3/13) 8626761764038517 a001 2504730781961/1364*271443^(4/13) 8626761764047214 a001 98209/682*2537720636^(14/15) 8626761764047214 a001 98209/682*17393796001^(6/7) 8626761764047214 a001 98209/682*45537549124^(14/17) 8626761764047214 a001 98209/682*817138163596^(14/19) 8626761764047214 a001 98209/682*14662949395604^(2/3) 8626761764047214 a001 98209/682*505019158607^(3/4) 8626761764047214 a001 98209/682*192900153618^(7/9) 8626761764047214 a001 98209/682*10749957122^(7/8) 8626761764047214 a001 98209/682*4106118243^(21/23) 8626761764047214 a001 98209/682*1568397607^(21/22) 8626761764047524 a001 956722026041/1364*271443^(5/13) 8626761764056530 a001 182717648081/682*271443^(6/13) 8626761764061033 a001 225851433717/1364*271443^(1/2) 8626761764065536 a001 139583862445/1364*271443^(7/13) 8626761764074543 a001 53316291173/1364*271443^(8/13) 8626761764083549 a001 10182505537/682*271443^(9/13) 8626761764092555 a001 7778742049/1364*271443^(10/13) 8626761764101562 a001 2971215073/1364*271443^(11/13) 8626761764110568 a001 567451585/682*271443^(12/13) 8626761764169678 a001 10610209857723/1364*103682^(5/24) 8626761764203115 a001 3278735159921/682*103682^(1/4) 8626761764236553 a001 4052739537881/1364*103682^(7/24) 8626761764269990 a001 2504730781961/1364*103682^(1/3) 8626761764303427 a001 1134903780*103682^(3/8) 8626761764309017 a001 75025/1364*312119004989^(4/5) 8626761764309017 a001 75025/1364*23725150497407^(11/16) 8626761764309017 a001 75025/1364*73681302247^(11/13) 8626761764309017 a001 75025/1364*10749957122^(11/12) 8626761764309017 a001 75025/1364*4106118243^(22/23) 8626761764336864 a001 956722026041/1364*103682^(5/12) 8626761764370301 a001 591286729879/1364*103682^(11/24) 8626761764403739 a001 182717648081/682*103682^(1/2) 8626761764437176 a001 225851433717/1364*103682^(13/24) 8626761764470613 a001 139583862445/1364*103682^(7/12) 8626761764504050 a001 21566892818/341*103682^(5/8) 8626761764537487 a001 53316291173/1364*103682^(2/3) 8626761764570924 a001 32951280099/1364*103682^(17/24) 8626761764604362 a001 10182505537/682*103682^(3/4) 8626761764637799 a001 1144206275/124*103682^(19/24) 8626761764671236 a001 7778742049/1364*103682^(5/6) 8626761764704673 a001 1201881744/341*103682^(7/8) 8626761764738110 a001 2971215073/1364*103682^(11/12) 8626761764771548 a001 1836311903/1364*103682^(23/24) 8626761764802493 a001 1000014223775905/11592 8626761765252575 a001 10610209857723/1364*39603^(5/22) 8626761765502592 a001 3278735159921/682*39603^(3/11) 8626761765752609 a001 4052739537881/1364*39603^(7/22) 8626761766002625 a001 2504730781961/1364*39603^(4/11) 8626761766103445 a001 28657/1364*10749957122^(23/24) 8626761766228722 a003 sin(Pi*4/63)/cos(Pi*26/61) 8626761766252642 a001 1134903780*39603^(9/22) 8626761766502659 a001 956722026041/1364*39603^(5/11) 8626761766752675 a001 591286729879/1364*39603^(1/2) 8626761767002692 a001 182717648081/682*39603^(6/11) 8626761767252709 a001 225851433717/1364*39603^(13/22) 8626761767502725 a001 139583862445/1364*39603^(7/11) 8626761767752742 a001 21566892818/341*39603^(15/22) 8626761768002759 a001 53316291173/1364*39603^(8/11) 8626761768252775 a001 32951280099/1364*39603^(17/22) 8626761768502792 a001 10182505537/682*39603^(9/11) 8626761768752809 a001 1144206275/124*39603^(19/22) 8626761769002825 a001 7778742049/1364*39603^(10/11) 8626761769252842 a001 1201881744/341*39603^(21/22) 8626761769500367 a001 1527885776996210/17711 8626761773427510 a001 10610209857723/1364*15127^(1/4) 8626761775312514 a001 3278735159921/682*15127^(3/10) 8626761777197518 a001 4052739537881/1364*15127^(7/20) 8626761777237657 r002 28th iterates of z^2 + 8626761778400147 a001 305/12238*14662949395604^(20/21) 8626761778402639 a001 5473/682*45537549124^(16/17) 8626761778402639 a001 5473/682*14662949395604^(16/21) 8626761778402639 a001 5473/682*192900153618^(8/9) 8626761778402639 a001 5473/682*73681302247^(12/13) 8626761779082521 a001 2504730781961/1364*15127^(2/5) 8626761780967525 a001 1134903780*15127^(9/20) 8626761782852529 a001 956722026041/1364*15127^(1/2) 8626761784737532 a001 591286729879/1364*15127^(11/20) 8626761786622536 a001 182717648081/682*15127^(3/5) 8626761788507540 a001 225851433717/1364*15127^(13/20) 8626761790392543 a001 139583862445/1364*15127^(7/10) 8626761792277547 a001 21566892818/341*15127^(3/4) 8626761794162551 a001 53316291173/1364*15127^(4/5) 8626761796047554 a001 32951280099/1364*15127^(17/20) 8626761797932558 a001 10182505537/682*15127^(9/10) 8626761799817562 a001 1144206275/124*15127^(19/20) 8626761801700073 a001 116720087177002/1353 8626761811391830 k002 Champernowne real with 85*n^2-74*n+75 8626761832228344 m001 GAMMA(7/12)^2/ln(Riemann3rdZero)/sin(1) 8626761835780310 a001 10610209857723/1364*5778^(5/18) 8626761850135874 a001 3278735159921/682*5778^(1/3) 8626761862702565 a001 4181/1364*312119004989^(10/11) 8626761862702565 a001 4181/1364*3461452808002^(5/6) 8626761864491437 a001 4052739537881/1364*5778^(7/18) 8626761869652204 r005 Re(z^2+c),c=-85/98+5/46*I,n=7 8626761878847001 a001 2504730781961/1364*5778^(4/9) 8626761893202565 a001 1134903780*5778^(1/2) 8626761895464267 m001 (Zeta(3)+GaussKuzminWirsing)/KhinchinHarmonic 8626761907558128 a001 956722026041/1364*5778^(5/9) 8626761911421836 k002 Champernowne real with 171/2*n^2-151/2*n+76 8626761921913692 a001 591286729879/1364*5778^(11/18) 8626761924828125 a007 Real Root Of 424*x^4+25*x^3-357*x^2-292*x-205 8626761936269256 a001 182717648081/682*5778^(2/3) 8626761950624820 a001 225851433717/1364*5778^(13/18) 8626761951168146 a008 Real Root of (-9+5*x+3*x^2+8*x^8) 8626761963419137 m001 AlladiGrinstead^(sin(1/5*Pi)/sin(1)) 8626761964980383 a001 139583862445/1364*5778^(7/9) 8626761979335947 a001 21566892818/341*5778^(5/6) 8626761982981176 a001 6119/2*10946^(41/48) 8626761986203192 a007 Real Root Of -86*x^4+414*x^3-814*x^2-64*x+864 8626761993691511 a001 53316291173/1364*5778^(8/9) 8626762008047075 a001 32951280099/1364*5778^(17/18) 8626762011451842 k002 Champernowne real with 86*n^2-77*n+77 8626762013445889 a007 Real Root Of 722*x^4+193*x^3-252*x^2-542*x-556 8626762016610391 a001 225851433717/521*521^(11/13) 8626762022400154 a001 55728882664705/646 8626762026872272 a007 Real Root Of 870*x^4+78*x^3+98*x^2-544*x-974 8626762037035813 r005 Re(z^2+c),c=-29/74+28/45*I,n=16 8626762041652986 a007 Real Root Of 179*x^4+241*x^3+676*x^2+426*x-80 8626762056012843 h001 (1/8*exp(2)+7/9)/(1/7*exp(2)+11/12) 8626762069220713 p003 LerchPhi(1/512,6,49/103) 8626762077538273 m005 (1/2*Catalan-7/8)/(2/5*gamma-5/7) 8626762088322957 a007 Real Root Of 977*x^4-912*x^3-565*x^2-21*x+483 8626762090026654 m002 Log[Pi]-Sinh[Pi]/Log[Pi]+Tanh[Pi]/Pi 8626762101155281 a007 Real Root Of 352*x^4-824*x^3+75*x^2+788*x-100 8626762103198338 r009 Re(z^3+c),c=-19/110+41/59*I,n=29 8626762108695925 m001 GAMMA(19/24)/gamma/CopelandErdos 8626762111481848 k002 Champernowne real with 173/2*n^2-157/2*n+78 8626762204736190 r002 14th iterates of z^2 + 8626762208117320 a007 Real Root Of 990*x^4+615*x^3-206*x^2-409*x-353 8626762208954458 a007 Real Root Of 761*x^4-126*x^3+560*x^2+385*x-587 8626762211511854 k002 Champernowne real with 87*n^2-80*n+79 8626762221857289 m001 HeathBrownMoroz^arctan(1/3)*Artin^arctan(1/3) 8626762246607115 s001 sum(exp(-Pi/3)^(n-1)*A029584[n],n=1..infinity) 8626762257218698 m001 (gamma(3)-Bloch)/(MinimumGamma-Porter) 8626762274852386 b008 7*(12+ArcCsc[Pi]) 8626762292839703 a001 4052739537881/2207*843^(4/7) 8626762305772199 r009 Re(z^3+c),c=-4/25+24/35*I,n=54 8626762311541860 k002 Champernowne real with 175/2*n^2-163/2*n+80 8626762317471501 a001 10610209857723/1364*2207^(5/16) 8626762390970983 m001 (-Lehmer+Stephens)/(gamma+FeigenbaumKappa) 8626762411488252 a007 Real Root Of 383*x^4-455*x^3+247*x^2-299*x-946 8626762411571866 k002 Champernowne real with 88*n^2-83*n+81 8626762428165307 a001 3278735159921/682*2207^(3/8) 8626762430294754 a007 Real Root Of -341*x^4+50*x^3-437*x^2+380*x+874 8626762433195530 l006 ln(3337/7907) 8626762440500420 a001 610/3571*14662949395604^(8/9) 8626762440502859 a001 1597/1364*23725150497407^(13/16) 8626762440502859 a001 1597/1364*505019158607^(13/14) 8626762443114574 m001 1/KhintchineHarmonic*exp(Champernowne)^2*Salem 8626762448815664 a007 Real Root Of 565*x^4-311*x^3-586*x^2-647*x+881 8626762461206930 a001 55/18*39603^(5/51) 8626762466807731 m008 (1/2*Pi^4+1)/(3/5*Pi^6-2/3) 8626762489495663 a007 Real Root Of -346*x^4+694*x^3-92*x^2+666*x-760 8626762490196099 m001 FeigenbaumC^2/FeigenbaumDelta*ln(sqrt(2))^2 8626762511601872 k002 Champernowne real with 177/2*n^2-169/2*n+82 8626762512313482 m001 1/FeigenbaumKappa*exp(FeigenbaumC)^2/gamma^2 8626762519470402 m001 (FibonacciFactorial-Niven)/(ZetaQ(2)+ZetaQ(4)) 8626762531260900 r005 Re(z^2+c),c=-22/25+1/63*I,n=7 8626762538859114 a001 4052739537881/1364*2207^(7/16) 8626762553277166 a008 Real Root of (-3-6*x+5*x^2+2*x^3+4*x^4+2*x^5) 8626762559051098 s001 sum(exp(-Pi/3)^(n-1)*A029583[n],n=1..infinity) 8626762586061049 r005 Im(z^2+c),c=-41/86+9/53*I,n=8 8626762594600171 p003 LerchPhi(1/6,5,323/124) 8626762600281424 a007 Real Root Of 717*x^4-137*x^3-13*x^2-549*x-949 8626762604074722 r005 Re(z^2+c),c=-53/54+4/17*I,n=16 8626762607352415 a007 Real Root Of -38*x^4+65*x^3+572*x^2+953*x+78 8626762611631878 k002 Champernowne real with 89*n^2-86*n+83 8626762613446104 m009 (1/3*Psi(1,3/4)-6)/(1/3*Psi(1,3/4)-1/4) 8626762614160200 m009 (2*Psi(1,2/3)-2/3)/(2/3*Psi(1,1/3)-2/5) 8626762629296766 a001 199/2*6765^(12/49) 8626762648672863 m001 (sin(1/5*Pi)+ln(2))/(Kac+Thue) 8626762649552923 a001 2504730781961/1364*2207^(1/2) 8626762652493392 l006 ln(9079/9897) 8626762682402077 m001 (LandauRamanujan2nd-exp(Pi))/MertensB1 8626762695590137 m001 1/sin(1)*ln(GAMMA(17/24))/sin(Pi/5)^2 8626762711661884 k002 Champernowne real with 179/2*n^2-175/2*n+84 8626762733565374 a007 Real Root Of 48*x^4+416*x^3+70*x^2+507*x+394 8626762760246734 a001 1134903780*2207^(9/16) 8626762782768628 m001 GolombDickman^(1/3*ZetaP(2)*3^(2/3)) 8626762811449122 m005 (1/2*Catalan+1/7)/(1/3*gamma-8/9) 8626762811691890 k002 Champernowne real with 90*n^2-89*n+85 8626762839921461 a005 (1/cos(21/227*Pi))^749 8626762852935821 r005 Re(z^2+c),c=-9/19+31/46*I,n=4 8626762865020055 r008 a(0)=0,K{-n^6,-20-72*n^3-70*n^2+46*n} 8626762870940545 a001 956722026041/1364*2207^(5/8) 8626762901702384 a007 Real Root Of -384*x^4-323*x^3-468*x^2+718*x+973 8626762907746288 a007 Real Root Of 496*x^4-708*x^3-935*x^2-85*x+949 8626762911721896 k002 Champernowne real with 181/2*n^2-181/2*n+86 8626762914862938 r008 a(0)=0,K{-n^6,20-70*n^3-56*n^2-10*n} 8626762948442448 a007 Real Root Of -735*x^4+640*x^3+522*x^2+273*x+665 8626762981634358 a001 591286729879/1364*2207^(11/16) 8626763008222849 m001 (Rabbit+Sarnak)/(3^(1/3)+Ei(1,1)) 8626763009512688 r005 Re(z^2+c),c=-3/14+41/59*I,n=14 8626763011751902 k002 Champernowne real with 91*n^2-92*n+87 8626763041243197 m001 Niven/(GAMMA(13/24)-3^(1/3)) 8626763066102416 m005 (1/2*Zeta(3)+3/7)/(8/9*Zeta(3)+1/8) 8626763070204130 r009 Re(z^3+c),c=-5/36+29/54*I,n=16 8626763074304428 r005 Im(z^2+c),c=-2/3+87/230*I,n=6 8626763079884717 a003 cos(Pi*7/115)*cos(Pi*16/101) 8626763092328173 a001 182717648081/682*2207^(3/4) 8626763094707480 q001 6/69551 8626763098772856 a007 Real Root Of 289*x^4+379*x^3+874*x^2-329*x-851 8626763111781908 k002 Champernowne real with 183/2*n^2-187/2*n+88 8626763118234676 r002 4th iterates of z^2 + 8626763123610504 a007 Real Root Of 863*x^4+246*x^3+415*x^2+831*x+88 8626763133475467 a007 Real Root Of -170*x^4+474*x^3+907*x^2-261*x-660 8626763137152385 a007 Real Root Of -593*x^4+646*x^3-295*x^2-155*x+829 8626763137783415 a007 Real Root Of -966*x^4+135*x^3+680*x^2-578*x-383 8626763142044489 a007 Real Root Of 493*x^4+589*x^3+733*x^2-236*x-644 8626763157992473 b008 E^(1/12)/2^(1/3) 8626763159932513 a001 2504730781961/2207*843^(9/14) 8626763177637686 m001 GAMMA(1/24)/exp(BesselK(1,1))^2*GAMMA(3/4) 8626763180779527 m001 ln(Robbin)/Riemann3rdZero^2/BesselJ(0,1) 8626763187416421 m009 (32*Catalan+4*Pi^2+3)/(3/4*Psi(1,1/3)+3/4) 8626763203021989 a001 225851433717/1364*2207^(13/16) 8626763211811914 k002 Champernowne real with 92*n^2-95*n+89 8626763214291005 m001 Magata^Grothendieck-MertensB1 8626763239448554 m001 (MadelungNaCl+Otter)/(Psi(2,1/3)+BesselK(1,1)) 8626763264689356 l006 ln(1521/3604) 8626763270875018 a007 Real Root Of 273*x^4-362*x^3-56*x^2-873*x+876 8626763282778705 r004 Re(z^2+c),c=-9/7-1/9*I,z(0)=exp(1/24*I*Pi),n=9 8626763311841920 k002 Champernowne real with 185/2*n^2-193/2*n+90 8626763313715806 a001 139583862445/1364*2207^(7/8) 8626763326119557 m002 (3*Pi)/E^Pi+Pi^4-Sinh[Pi] 8626763338442641 a007 Real Root Of -12*x^4+63*x^3-651*x^2-207*x+353 8626763340627670 a007 Real Root Of 10*x^4+864*x^3+108*x^2-531*x+255 8626763359435648 a007 Real Root Of 259*x^4-672*x^3+591*x^2+541*x-548 8626763362510614 a007 Real Root Of 745*x^4+451*x^3+675*x^2-3*x-628 8626763393522019 m001 gamma^(Kolakoski/Otter) 8626763409480702 m001 (FeigenbaumD-Riemann3rdZero)/sin(1/12*Pi) 8626763410152576 a001 4/987*2584^(5/52) 8626763411871926 k002 Champernowne real with 93*n^2-98*n+91 8626763423289580 m005 (1/2*Zeta(3)+4/5)/(9/11*exp(1)-3/5) 8626763424409625 a001 21566892818/341*2207^(15/16) 8626763439554779 a007 Real Root Of -116*x^4+534*x^3-129*x^2+88*x+579 8626763487051633 p003 LerchPhi(1/5,6,201/196) 8626763511901932 k002 Champernowne real with 187/2*n^2-199/2*n+92 8626763512845757 a007 Real Root Of 460*x^4-283*x^3+279*x^2-241*x-852 8626763535101317 a001 85146156091450/987 8626763549659373 r005 Re(z^2+c),c=53/122+16/51*I,n=9 8626763590897627 b008 ArcCsch[(Pi/3)^EulerGamma] 8626763611931938 k002 Champernowne real with 94*n^2-101*n+93 8626763615064810 m001 CareFree-Riemann1stZero*TwinPrimes 8626763631452992 r005 Im(z^2+c),c=-49/102+6/41*I,n=16 8626763649148083 a007 Real Root Of 466*x^4+310*x^3+664*x^2+712*x+61 8626763651755244 a007 Real Root Of -602*x^4-x^3-379*x^2-176*x+463 8626763663173817 r009 Im(z^3+c),c=-31/98+42/59*I,n=4 8626763678776171 a001 34/7*2207^(37/55) 8626763693480154 m001 exp(1)^(GAMMA(17/24)/Gompertz) 8626763693480154 m001 exp(1/exp(1))^(GAMMA(17/24)/Ei(1,1)) 8626763693480154 m001 exp(GAMMA(17/24)/Gompertz) 8626763711961944 k002 Champernowne real with 189/2*n^2-205/2*n+94 8626763715475476 r005 Re(z^2+c),c=-7/8+6/85*I,n=7 8626763721535529 a007 Real Root Of -928*x^4+812*x^3-193*x^2-605*x+657 8626763728866661 a005 (1/cos(5/171*Pi))^1600 8626763738409997 m001 (Landau+RenyiParking)/(3^(1/2)-CopelandErdos) 8626763779943997 a007 Real Root Of 293*x^4-195*x^3-356*x^2-885*x-786 8626763805022818 m001 (Pi-ln(2+3^(1/2)))/(HardyLittlewoodC5+Niven) 8626763805540557 a001 3536736619241/1926*843^(4/7) 8626763811991950 k002 Champernowne real with 95*n^2-104*n+95 8626763841783019 m001 1/BesselK(0,1)/ln(log(2+sqrt(3))) 8626763873348396 a001 10610209857723/3571*843^(1/2) 8626763882123680 a008 Real Root of x^4+16*x^2-149*x-141 8626763884766607 a007 Real Root Of -186*x^4+595*x^3+25*x^2+236*x+670 8626763888569928 m001 exp(FeigenbaumC)/GlaisherKinkelin*sqrt(Pi) 8626763899160900 a007 Real Root Of -41*x^4+980*x^3-683*x^2-574*x+665 8626763899910336 a001 2/5*433494437^(11/15) 8626763912021956 k002 Champernowne real with 191/2*n^2-211/2*n+96 8626763935385597 b008 (Sqrt[Pi]*ArcTan[9])/3 8626763943456421 a003 cos(Pi*14/65)/sin(Pi*37/103) 8626763958567449 m001 (gamma+Bloch)/(-FeigenbaumD+Porter) 8626763968784979 m001 GAMMA(1/24)^((2^(1/3))*BesselI(0,2)) 8626763982215962 m001 (Si(Pi)+Artin)/(OrthogonalArrays+Salem) 8626764012051962 k002 Champernowne real with 96*n^2-107*n+97 8626764016692215 a007 Real Root Of -934*x^4-472*x^3-623*x^2+94*x+759 8626764027025410 a001 1548008755920/2207*843^(5/7) 8626764037038376 a007 Real Root Of -114*x^4-67*x^3+634*x^2+704*x-973 8626764038350141 m001 Cahen^3*exp(sinh(1)) 8626764072348928 a001 7881196*514229^(15/17) 8626764074606682 a007 Real Root Of -828*x^4+681*x^3+997*x^2+807*x+850 8626764102891163 m001 Trott/ln(FeigenbaumB)^2*GAMMA(1/3) 8626764108248406 m005 (-29/44+1/4*5^(1/2))/(4*exp(1)+8/11) 8626764112081968 k002 Champernowne real with 193/2*n^2-217/2*n+98 8626764116978110 a003 sin(Pi*2/71)-sin(Pi*2/5) 8626764130928867 r005 Re(z^2+c),c=-7/94+5/29*I,n=3 8626764144003095 r005 Re(z^2+c),c=1/46+35/43*I,n=16 8626764181922565 r005 Re(z^2+c),c=-5/6+73/216*I,n=5 8626764183245113 m001 cos(1)^2/exp(Bloch)^2/log(2+sqrt(3)) 8626764212111974 k002 Champernowne real with 97*n^2-110*n+99 8626764242915900 m001 Pi+ln(2)/ln(10)*LambertW(1)/gamma(3) 8626764263998492 r005 Re(z^2+c),c=-3/34+7/11*I,n=7 8626764274771134 l006 ln(2747/6509) 8626764276856336 r009 Re(z^3+c),c=-13/48+25/32*I,n=6 8626764303450657 r005 Re(z^2+c),c=17/126+6/11*I,n=54 8626764312141980 k002 Champernowne real with 195/2*n^2-223/2*n+100 8626764330743526 a001 5778*1836311903^(15/17) 8626764375133989 a001 682/98209*1597^(1/34) 8626764379157750 a007 Real Root Of 984*x^4-150*x^3+33*x^2+489*x-244 8626764409421332 a007 Real Root Of -102*x^4-847*x^3+280*x^2+31*x+571 8626764412171986 k002 Champernowne real with 98*n^2-113*n+101 8626764420802603 r005 Im(z^2+c),c=-73/126+3/19*I,n=53 8626764433026702 a007 Real Root Of 409*x^4-49*x^3-130*x^2-577*x-659 8626764437615280 a007 Real Root Of 658*x^4-137*x^3-521*x^2+170*x+82 8626764461316627 a001 365435296162/521*521^(10/13) 8626764470554455 a001 18/1346269*377^(11/35) 8626764483784137 a007 Real Root Of -609*x^4+840*x^3+115*x^2+463*x-687 8626764512201992 k002 Champernowne real with 197/2*n^2-229/2*n+102 8626764514849937 m001 1/GAMMA(1/24)/Backhouse*ln(GAMMA(1/6))^2 8626764519213480 b008 E^(-2)+14/Sqrt[E] 8626764560434190 m001 ln(3)^ZetaP(3)/(ln(3)^KhinchinHarmonic) 8626764564279301 r005 Re(z^2+c),c=-23/34+39/116*I,n=17 8626764569461514 a007 Real Root Of 412*x^4-90*x^3+161*x^2-297*x-662 8626764588136830 r009 Im(z^3+c),c=-7/29+32/43*I,n=14 8626764612231998 k002 Champernowne real with 99*n^2-116*n+103 8626764612975842 m006 (1/3*ln(Pi)-1/4)/(3/4*ln(Pi)+2/3) 8626764628965549 p003 LerchPhi(1/10,6,73/33) 8626764651623317 r009 Im(z^3+c),c=-49/110+17/30*I,n=34 8626764661464886 l006 ln(3973/9414) 8626764663585374 a007 Real Root Of -180*x^4-333*x^3-921*x^2-471*x+165 8626764672633519 a001 3278735159921/2889*843^(9/14) 8626764712262004 k002 Champernowne real with 199/2*n^2-235/2*n+104 8626764721434393 m001 (sin(1)+ln(3))/(Porter+Riemann2ndZero) 8626764740441365 a001 6557470319842/3571*843^(4/7) 8626764755992591 a007 Real Root Of 629*x^4-759*x^3+629*x^2+526*x-850 8626764758787503 a007 Real Root Of -650*x^4-29*x^3+700*x^2+644*x+376 8626764789562460 r005 Im(z^2+c),c=-17/16+4/41*I,n=20 8626764791044412 m005 (17/30+1/6*5^(1/2))/(191/198+1/18*5^(1/2)) 8626764804932566 a007 Real Root Of 230*x^4+478*x^3+326*x^2-831*x-780 8626764812292010 k002 Champernowne real with 100*n^2-119*n+105 8626764817386729 m001 (ln(5)-cos(1/12*Pi))/(RenyiParking-ZetaQ(4)) 8626764842248877 m001 (-Bloch+LaplaceLimit)/(Chi(1)+exp(1/Pi)) 8626764845793841 a007 Real Root Of -720*x^4+722*x^3+550*x^2+415*x+811 8626764847589680 m003 -4-5*Sech[1/2+Sqrt[5]/2]+6*Sinh[1/2+Sqrt[5]/2] 8626764891586774 a007 Real Root Of -928*x^4-42*x^3+220*x^2+388*x+658 8626764894118394 a001 956722026041/2207*843^(11/14) 8626764908888374 a007 Real Root Of -954*x^4+915*x^3-657*x^2-912*x+818 8626764912322016 k002 Champernowne real with 201/2*n^2-241/2*n+106 8626764937511780 m005 (1/2*Zeta(3)+1/5)/(5/11*2^(1/2)+2/7) 8626764951990968 r005 Re(z^2+c),c=1/14+19/40*I,n=23 8626764956867917 a007 Real Root Of -134*x^4+620*x^3-523*x^2-630*x+318 8626764972698659 m001 ln(Ei(1))*Rabbit^2/GAMMA(11/24)^2 8626764980380122 r002 32th iterates of z^2 + 8626764980934249 m005 (1/2*2^(1/2)+1/5)/(23/24+1/24*5^(1/2)) 8626764987811788 m001 1/GAMMA(2/3)*Riemann3rdZero^2/exp(Pi)^2 8626765012352022 k002 Champernowne real with 101*n^2-122*n+107 8626765029733864 a001 10610209857723/9349*843^(9/14) 8626765036849588 a007 Real Root Of 389*x^4-990*x^3-35*x^2+386*x-492 8626765043282214 r005 Re(z^2+c),c=-43/48+7/10*I,n=3 8626765046324607 r002 7i'th iterates of 2*x/(1-x^2) of 8626765048402101 a007 Real Root Of -769*x^4+557*x^3+12*x^2-389*x+439 8626765076058255 r009 Im(z^3+c),c=-23/118+55/64*I,n=33 8626765084224925 a007 Real Root Of -195*x^4+242*x^3+24*x^2+528*x+701 8626765112382028 k002 Champernowne real with 203/2*n^2-247/2*n+108 8626765133193496 m006 (2/3*exp(Pi)-4/5)/(3/4*exp(Pi)-2/5) 8626765212224583 r005 Re(z^2+c),c=-12/23+25/42*I,n=64 8626765212412034 k002 Champernowne real with 102*n^2-125*n+109 8626765229561844 a007 Real Root Of -101*x^4+22*x^3+203*x^2+650*x-670 8626765235989174 a001 7/28657*514229^(34/35) 8626765241264731 m001 (gamma(3)+Pi^(1/2))/(Riemann2ndZero-ZetaP(2)) 8626765263908273 b008 86+PolyLog[2,1/4] 8626765270801588 a007 Real Root Of -464*x^4+923*x^3-702*x^2-852*x+637 8626765289926595 h001 (-3*exp(3)+10)/(-3*exp(3)+2) 8626765291265992 a007 Real Root Of 763*x^4-110*x^3+269*x^2+150*x-564 8626765303270765 r009 Re(z^3+c),c=-31/66+2/47*I,n=18 8626765303478432 a007 Real Root Of -767*x^4+14*x^3+224*x^2+707*x+877 8626765312442040 k002 Champernowne real with 205/2*n^2-253/2*n+110 8626765315359724 r005 Im(z^2+c),c=-11/90+25/29*I,n=31 8626765328633869 r002 5th iterates of z^2 + 8626765346417425 a007 Real Root Of 59*x^4-948*x^3-123*x^2-273*x+903 8626765390084395 r005 Re(z^2+c),c=-5/34+29/36*I,n=21 8626765402880580 a007 Real Root Of 937*x^4+725*x^3+758*x^2+549*x-144 8626765412472046 k002 Champernowne real with 103*n^2-128*n+111 8626765413280058 r005 Im(z^2+c),c=-15/28+2/13*I,n=34 8626765430967118 r009 Im(z^3+c),c=-11/17+7/48*I,n=3 8626765512502052 k002 Champernowne real with 207/2*n^2-259/2*n+112 8626765516060177 r002 38th iterates of z^2 + 8626765517406501 m001 Niven^2/exp(MertensB1)^2/Riemann1stZero^2 8626765527898548 l006 ln(1226/2905) 8626765539726568 a001 4052739537881/5778*843^(5/7) 8626765539859282 p003 LerchPhi(1/32,4,136/131) 8626765556818932 a007 Real Root Of 817*x^4-446*x^3+836*x^2+954*x-538 8626765579407005 a007 Real Root Of -527*x^4+619*x^3-96*x^2-803*x+68 8626765594237422 m001 (GAMMA(23/24)-Cahen)/(Khinchin+MadelungNaCl) 8626765607534421 a001 4052739537881/3571*843^(9/14) 8626765612532058 k002 Champernowne real with 104*n^2-131*n+113 8626765619834405 r009 Re(z^3+c),c=-9/98+9/58*I,n=5 8626765628370446 a007 Real Root Of -338*x^4+956*x^3-345*x^2-672*x+478 8626765649073909 m001 (-GAMMA(2/3)+1/3)/(GAMMA(1/12)+1/3) 8626765671102790 m005 (1/2*gamma-7/12)/(3/5*5^(1/2)-1) 8626765681744630 a007 Real Root Of 953*x^4+680*x^3+537*x^2+445*x-107 8626765683606393 r005 Re(z^2+c),c=9/40+16/33*I,n=12 8626765687605956 a007 Real Root Of 224*x^4-75*x^3+147*x^2-638*x-832 8626765695414161 m002 -5/3+Pi^6-Pi^4*Tanh[Pi] 8626765712562064 k002 Champernowne real with 209/2*n^2-265/2*n+114 8626765738134373 m001 (Cahen-exp(1/exp(1)))^(2/3) 8626765760426737 a001 1515744265389/2161*843^(5/7) 8626765761211466 a001 591286729879/2207*843^(6/7) 8626765765206675 m001 (-ln(2)+Tetranacci)/(BesselK(0,1)-Si(Pi)) 8626765770038600 a007 Real Root Of -993*x^4-485*x^3-561*x^2-276*x+418 8626765802044460 a007 Real Root Of -860*x^4+478*x^3+648*x^2+523*x-764 8626765812592070 k002 Champernowne real with 105*n^2-134*n+115 8626765848792528 r005 Re(z^2+c),c=17/74+9/28*I,n=40 8626765849326993 g001 Psi(1/3,62/109) 8626765867962489 a007 Real Root Of -799*x^4-171*x^3-164*x^2-169*x+309 8626765883174869 b008 2+ExpIntegralEi[-2/9] 8626765885738348 p001 sum(1/(363*n+106)/n/(25^n),n=1..infinity) 8626765889815786 m005 (-25/44+1/4*5^(1/2))/(5/11*gamma+4/5) 8626765896826949 a001 6557470319842/9349*843^(5/7) 8626765905829315 a007 Real Root Of -473*x^4-33*x^3+19*x^2-323*x-52 8626765912622076 k002 Champernowne real with 211/2*n^2-271/2*n+116 8626765938320060 r009 Re(z^3+c),c=-3/58+28/37*I,n=58 8626765944827691 m005 (-17/40+3/8*5^(1/2))/(1/4*Pi-5/6) 8626765950488881 m001 exp(1)^2/CareFree^2/ln(sin(1)) 8626765964012360 r005 Im(z^2+c),c=-9/52+6/53*I,n=11 8626765970201874 a007 Real Root Of -361*x^4+916*x^3+300*x^2-344*x+268 8626765986172075 a007 Real Root Of 528*x^4-921*x^3+114*x^2+309*x-702 8626765996319899 r002 61th iterates of z^2 + 8626766012652082 k002 Champernowne real with 106*n^2-137*n+117 8626766015045968 a007 Real Root Of 269*x^4-961*x^3-47*x^2+255*x-511 8626766067771465 h001 (-5*exp(1)+2)/(-2*exp(1)-8) 8626766067771465 m005 (1/2*exp(1)-1/5)/(1/5*exp(1)+4/5) 8626766099467147 a001 10610209857723/1364*843^(5/14) 8626766112682088 k002 Champernowne real with 213/2*n^2-277/2*n+118 8626766119540740 r005 Im(z^2+c),c=-35/122+37/49*I,n=4 8626766124092803 a007 Real Root Of -835*x^4-347*x^3-731*x^2-24*x+763 8626766130069383 a007 Real Root Of -262*x^4+653*x^3+69*x^2+182*x+670 8626766152795945 m001 (Landau+QuadraticClass)/(GAMMA(23/24)+Kac) 8626766164317720 m001 sin(1/12*Pi)^cos(1/12*Pi)/Pi 8626766164317720 m001 sin(Pi/12)^cos(Pi/12)/Pi 8626766175939235 r005 Im(z^2+c),c=-7/6+2/181*I,n=29 8626766212712094 k002 Champernowne real with 107*n^2-140*n+119 8626766217494605 a007 Real Root Of 848*x^4-950*x^3-309*x^2+163*x-709 8626766218560502 a007 Real Root Of 117*x^4-585*x^3-57*x^2+896*x+375 8626766250520456 a007 Real Root Of -765*x^4-417*x^3-941*x^2+53*x+902 8626766258228197 r005 Re(z^2+c),c=-9/10+19/157*I,n=22 8626766297116856 r002 9th iterates of z^2 + 8626766304552967 m001 (Landau+Niven)/(BesselJ(0,1)-GAMMA(23/24)) 8626766312742100 k002 Champernowne real with 215/2*n^2-283/2*n+120 8626766331192872 a007 Real Root Of 8*x^4+681*x^3-795*x^2-556*x-329 8626766354196101 m001 FeigenbaumKappa^2*CareFree/exp(GAMMA(2/3))^2 8626766366761003 r005 Im(z^2+c),c=-9/14+4/229*I,n=48 8626766380684746 a001 1364*6557470319842^(13/17) 8626766385463581 r005 Re(z^2+c),c=39/110+19/34*I,n=17 8626766388596737 r002 56th iterates of z^2 + 8626766391448718 r005 Re(z^2+c),c=-31/86+14/23*I,n=64 8626766391990581 m001 exp(GAMMA(1/6))/FeigenbaumKappa/sqrt(5) 8626766400804985 a001 305/682*14662949395604^(6/7) 8626766404737566 r005 Re(z^2+c),c=-17/32+18/31*I,n=24 8626766406163935 p001 sum(1/(418*n+117)/(24^n),n=0..infinity) 8626766406819704 a001 2504730781961/5778*843^(11/14) 8626766412772106 k002 Champernowne real with 108*n^2-143*n+121 8626766413398551 a007 Real Root Of 39*x^4-731*x^3+402*x^2+480*x-376 8626766417278751 r005 Re(z^2+c),c=-5/6+27/187*I,n=31 8626766422269058 h001 (5/8*exp(2)+7/12)/(7/10*exp(2)+6/7) 8626766432087240 r002 3th iterates of z^2 + 8626766439436905 m009 (8*Catalan+Pi^2+5)/(3/4*Psi(1,3/4)+2/3) 8626766474627564 a001 2504730781961/3571*843^(5/7) 8626766480889188 m001 (-ln(gamma)+QuadraticClass)/(5^(1/2)-gamma) 8626766496211457 r005 Re(z^2+c),c=-71/82+1/11*I,n=31 8626766502913765 m001 cos(1)^QuadraticClass*ZetaR(2) 8626766512802112 k002 Champernowne real with 217/2*n^2-289/2*n+122 8626766541649236 a007 Real Root Of 735*x^4-601*x^3+531*x^2+458*x-793 8626766545439375 l006 ln(3383/8016) 8626766553317571 m001 ln(2^(1/2)+1)/Pi*HardyLittlewoodC4 8626766562943239 r005 Re(z^2+c),c=-1+13/137*I,n=26 8626766576692359 a007 Real Root Of -594*x^4+63*x^3-165*x^2+475*x+902 8626766612832118 k002 Champernowne real with 109*n^2-146*n+123 8626766623580749 m001 1/Lehmer^2/ln(CopelandErdos)*Robbin^2 8626766627519896 a001 6557470319842/15127*843^(11/14) 8626766628304624 a001 365435296162/2207*843^(13/14) 8626766679620145 a001 10610209857723/24476*843^(11/14) 8626766685247173 p004 log(21143/8923) 8626766702670814 r005 Im(z^2+c),c=-7/6+30/161*I,n=9 8626766712862124 k002 Champernowne real with 219/2*n^2-295/2*n+124 8626766721985653 a007 Real Root Of 148*x^4-708*x^3+550*x^2+744*x-304 8626766730001141 r005 Im(z^2+c),c=43/118+23/32*I,n=4 8626766745759900 a007 Real Root Of -579*x^4+497*x^3+123*x^2-195*x+380 8626766745773690 a008 Real Root of (1+3*x-2*x^2-3*x^3+4*x^4-5*x^5) 8626766763920121 a001 4052739537881/9349*843^(11/14) 8626766779084057 m001 (Shi(1)-ln(2^(1/2)+1))/(-Gompertz+Stephens) 8626766790166325 r005 Im(z^2+c),c=27/74+17/43*I,n=3 8626766806009658 m001 BesselI(1,1)-GAMMA(1/4)-GAMMA(1/6) 8626766812892130 k002 Champernowne real with 110*n^2-149*n+125 8626766815659752 m001 GAMMA(2/3)*GlaisherKinkelin-MasserGramainDelta 8626766839657322 a003 sin(Pi*1/97)+sin(Pi*29/93) 8626766864215460 r005 Re(z^2+c),c=-87/118+7/53*I,n=45 8626766879391673 r002 25i'th iterates of 2*x/(1-x^2) of 8626766900786107 m001 (gamma(1)+Porter)/(Salem+TreeGrowth2nd) 8626766906023555 a001 591286729879/521*521^(9/13) 8626766912922136 k002 Champernowne real with 221/2*n^2-301/2*n+126 8626766914762987 a003 sin(Pi*2/41)*sin(Pi*13/68) 8626766918808390 m001 GAMMA(7/24)/CopelandErdos/exp(exp(1)) 8626766924119994 a005 (1/cos(9/152*Pi))^1844 8626766945552041 a001 4106118243*34^(4/19) 8626766947068094 r005 Re(z^2+c),c=17/64+17/39*I,n=41 8626766960318868 h001 (5/7*exp(2)+1/6)/(4/5*exp(2)+2/5) 8626766966560340 a001 3278735159921/682*843^(3/7) 8626766994636650 m001 Zeta(1,2)*BesselK(1,1)*GAMMA(7/12) 8626767011476359 m001 GAMMA(2/3)^2*FeigenbaumB*exp(sqrt(3)) 8626767012952142 k002 Champernowne real with 111*n^2-152*n+127 8626767029924538 a007 Real Root Of -9*x^4+530*x^3+280*x^2+500*x-975 8626767094660984 r005 Im(z^2+c),c=-47/82+1/64*I,n=45 8626767095320281 a007 Real Root Of 678*x^4+466*x^3+407*x^2+996*x+480 8626767109125377 r005 Im(z^2+c),c=-32/27+5/36*I,n=44 8626767110589157 m001 KomornikLoreti^BesselI(1,1)/ln(5) 8626767112982148 k002 Champernowne real with 223/2*n^2-307/2*n+128 8626767113228883 a007 Real Root Of 663*x^4-580*x^3-770*x^2-266*x-396 8626767122629130 r009 Im(z^3+c),c=-63/110+17/35*I,n=20 8626767123566602 r005 Im(z^2+c),c=-55/118+7/48*I,n=18 8626767123791231 l006 ln(2157/5111) 8626767126016781 r005 Im(z^2+c),c=-23/86+1/8*I,n=20 8626767156038543 a007 Real Root Of -859*x^4-468*x^3+792*x^2+822*x+295 8626767163844381 a007 Real Root Of 499*x^4-840*x^3+601*x^2+685*x-672 8626767193071935 m001 FellerTornier^ArtinRank2-ln(2+3^(1/2)) 8626767213012154 k002 Champernowne real with 112*n^2-155*n+129 8626767273912928 a001 86000486440/321*843^(6/7) 8626767274287679 m001 ln(2)/(AlladiGrinstead^MertensB2) 8626767313042160 k002 Champernowne real with 225/2*n^2-313/2*n+130 8626767316757249 m001 (Pi^(1/2)+Porter)/(exp(1)+Zeta(5)) 8626767317571394 r005 Re(z^2+c),c=-20/23+5/63*I,n=35 8626767333596755 a007 Real Root Of -238*x^4+767*x^3+324*x^2-184*x-443 8626767341720794 a001 1548008755920/3571*843^(11/14) 8626767342867076 m005 (1/2*Pi+5/8)/(5/9*Pi+4/5) 8626767343799672 a007 Real Root Of 779*x^4+123*x^3+470*x^2+486*x-283 8626767350212417 a007 Real Root Of 374*x^4-797*x^3+390*x^2-410*x+368 8626767352924561 h001 (1/5*exp(1)+3/7)/(1/5*exp(1)+7/12) 8626767413072166 k002 Champernowne real with 113*n^2-158*n+131 8626767445712181 a007 Real Root Of -216*x^4-319*x^3-923*x^2-417*x+242 8626767494613141 a001 4052739537881/15127*843^(6/7) 8626767495414588 a001 32522913457713/377 8626767495481625 r005 Im(z^2+c),c=-93/94+3/35*I,n=19 8626767497153567 m001 (1+arctan(1/3))/(-KhinchinLevy+Totient) 8626767501183445 a007 Real Root Of -998*x^4+612*x^3+567*x^2-847*x-207 8626767502121018 a001 29/21*89^(20/49) 8626767513102172 k002 Champernowne real with 227/2*n^2-319/2*n+132 8626767518599976 a007 Real Root Of 145*x^4-885*x^3-262*x^2+40*x-419 8626767526812869 a001 3536736619241/13201*843^(6/7) 8626767546713396 a001 3278735159921/12238*843^(6/7) 8626767549234582 r005 Re(z^2+c),c=1/52+13/33*I,n=23 8626767556574750 a007 Real Root Of 45*x^4+334*x^3-505*x^2-344*x-185 8626767591115431 a001 29/1134903170*987^(3/17) 8626767613132178 k002 Champernowne real with 114*n^2-161*n+133 8626767617130198 a001 521/2178309*6765^(8/55) 8626767631013380 a001 2504730781961/9349*843^(6/7) 8626767642136701 r002 24th iterates of z^2 + 8626767657180132 m001 1/exp(GAMMA(5/24))*FeigenbaumB*sin(1) 8626767663884392 b008 7*(-2/11+Sqrt[2]) 8626767681275979 r002 46th iterates of z^2 + 8626767713162184 k002 Champernowne real with 229/2*n^2-325/2*n+134 8626767748388981 a008 Real Root of (-1+x^3-x^4+x^5+x^7+x^8-x^10) 8626767752108064 m001 ln(Kolakoski)^2/CareFree^2*cos(Pi/5) 8626767757393631 l006 ln(3088/7317) 8626767781656614 r005 Re(z^2+c),c=3/70+13/30*I,n=36 8626767813192190 k002 Champernowne real with 115*n^2-164*n+135 8626767816899379 a007 Real Root Of 704*x^4-778*x^3+54*x^2+338*x-638 8626767826798922 a007 Real Root Of -475*x^4+920*x^3+505*x^2+43*x+515 8626767832193045 h001 (7/9*exp(2)+7/10)/(11/12*exp(2)+7/10) 8626767833653619 a001 4052739537881/1364*843^(1/2) 8626767843451497 a007 Real Root Of -208*x^4-123*x^3-648*x^2+455*x+911 8626767854098170 a001 15127/2*13^(2/39) 8626767903662907 a001 29/20365011074*12586269025^(3/17) 8626767903662932 a001 29/4807526976*3524578^(3/17) 8626767913222196 k002 Champernowne real with 231/2*n^2-331/2*n+136 8626767921649090 r005 Re(z^2+c),c=-89/106+7/46*I,n=55 8626767922317740 m006 (3*exp(2*Pi)+5)/(5/6*Pi-3/4) 8626767957792401 a007 Real Root Of -337*x^4+249*x^3-982*x^2-704*x+470 8626767985390705 a001 11/956722026041*13^(11/14) 8626768013252202 k002 Champernowne real with 116*n^2-167*n+137 8626768046522794 r002 7th iterates of z^2 + 8626768050176617 a007 Real Root Of -144*x^4+410*x^3-750*x^2+847*x-356 8626768067336783 m005 (1/2*Catalan+6)/(3*5^(1/2)+7/9) 8626768097448449 l006 ln(4019/9523) 8626768099549048 r005 Im(z^2+c),c=-55/82+9/52*I,n=63 8626768108337657 m001 Si(Pi)/(3^(1/2)+PrimesInBinary) 8626768113282208 k002 Champernowne real with 233/2*n^2-337/2*n+138 8626768131967585 r005 Re(z^2+c),c=-117/118+13/53*I,n=32 8626768136857839 a007 Real Root Of -859*x^4+362*x^3-519*x^2-281*x+852 8626768141006238 a001 956722026041/5778*843^(13/14) 8626768142433420 m001 1/GAMMA(7/12)/HardHexagonsEntropy*ln(Zeta(3)) 8626768184444084 a007 Real Root Of 120*x^4-786*x^3-641*x^2-379*x-421 8626768204365551 r005 Re(z^2+c),c=-109/126+4/43*I,n=39 8626768208814111 a001 956722026041/3571*843^(6/7) 8626768213312214 k002 Champernowne real with 117*n^2-170*n+139 8626768230008069 a007 Real Root Of 693*x^4-390*x^3+422*x^2+486*x-529 8626768238303073 a007 Real Root Of -327*x^4-20*x^3-482*x^2+262*x+753 8626768261415651 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=23 8626768267634335 m001 GAMMA(13/24)/exp(GolombDickman)^2*GAMMA(2/3)^2 8626768313110792 p003 LerchPhi(1/32,2,173/160) 8626768313342220 k002 Champernowne real with 235/2*n^2-343/2*n+140 8626768335477639 a001 3571/514229*1597^(1/34) 8626768351327714 m001 1/GAMMA(7/24)*FeigenbaumB^2/ln(sinh(1))^2 8626768352873279 r005 Re(z^2+c),c=-9/98+48/55*I,n=26 8626768361706474 a001 2504730781961/15127*843^(13/14) 8626768362314495 m001 Trott2nd/(exp(1/Pi)-Shi(1)) 8626768368343140 m001 OneNinth/ln(Trott)*GAMMA(1/4) 8626768370895033 a003 3^(1/2)+cos(3/8*Pi)-cos(1/27*Pi)-cos(5/12*Pi) 8626768377438228 a007 Real Root Of -117*x^4+97*x^3-735*x^2-968*x-161 8626768389464705 m001 Porter^Trott*Thue 8626768393906205 a001 6557470319842/39603*843^(13/14) 8626768399997717 a007 Real Root Of 618*x^4+54*x^3+229*x^2+58*x-428 8626768401507531 a001 10610209857723/64079*843^(13/14) 8626768412254063 a007 Real Root Of 86*x^4-139*x^3-153*x^2-386*x-356 8626768413372226 k002 Champernowne real with 118*n^2-173*n+141 8626768413806734 a001 4052739537881/24476*843^(13/14) 8626768427655903 m001 1/FeigenbaumD^2/ln(Salem)*Zeta(7) 8626768443104155 m005 (1/4*Catalan+1)/(4/5*exp(1)-3/4) 8626768461119099 m005 (7/12+5/12*5^(1/2))/(3/4*Pi-3/5) 8626768480269311 a007 Real Root Of 901*x^4+765*x^3-44*x^2-518*x-422 8626768492550414 r008 a(0)=0,K{-n^6,28-5*n^3+23*n^2-50*n} 8626768498106726 a001 1548008755920/9349*843^(13/14) 8626768513402232 k002 Champernowne real with 237/2*n^2-349/2*n+142 8626768514123101 r005 Im(z^2+c),c=-9/14+50/213*I,n=21 8626768524818777 a007 Real Root Of 461*x^4-465*x^3-817*x^2-829*x-661 8626768572339764 b008 4/5+CosIntegral[2/3] 8626768577059895 a007 Real Root Of -680*x^4+317*x^3-133*x^2-873*x-74 8626768580169421 r005 Re(z^2+c),c=-1/20+12/49*I,n=8 8626768593553975 a007 Real Root Of 941*x^4-27*x^3-633*x^2-724*x-692 8626768613432238 k002 Champernowne real with 119*n^2-176*n+143 8626768683303378 g002 -gamma-2*ln(2)+Psi(7/9)+Psi(6/7)-Psi(1/12) 8626768696928874 r005 Re(z^2+c),c=1/12+1/18*I,n=9 8626768700746986 a001 2504730781961/1364*843^(4/7) 8626768708405433 m001 (Salem-ZetaQ(3))/(Bloch+QuadraticClass) 8626768713462244 k002 Champernowne real with 239/2*n^2-355/2*n+144 8626768730618694 s002 sum(A084237[n]/(n*10^n+1),n=1..infinity) 8626768739963710 m001 Porter^2/exp(Khintchine)*sin(Pi/5) 8626768763445046 m001 (GAMMA(13/24)+ZetaP(2))/(3^(1/2)+ln(2)) 8626768803365326 m001 GAMMA(19/24)-exp(1/2)*LandauRamanujan 8626768813492250 k002 Champernowne real with 120*n^2-179*n+145 8626768847594910 r009 Im(z^3+c),c=-7/122+46/53*I,n=11 8626768850827737 m005 (1/2*gamma+1/12)/(19/70+1/14*5^(1/2)) 8626768851101677 r009 Im(z^3+c),c=-69/122+20/57*I,n=19 8626768877531419 r005 Re(z^2+c),c=9/118+29/60*I,n=48 8626768892725633 m001 exp(HardHexagonsEntropy)/Bloch*Zeta(7) 8626768892808376 m001 (2^(1/2)+OneNinth)/(ZetaP(3)+ZetaQ(4)) 8626768913283991 a001 9349/1346269*1597^(1/34) 8626769008116710 a001 32522919160600/377 8626769039542442 a007 Real Root Of 222*x^4-983*x^3-381*x^2-579*x-970 8626769048055059 a007 Real Root Of -57*x^4-396*x^3+875*x^2+380*x-383 8626769049298679 a007 Real Root Of -788*x^4-630*x^3-101*x^2-669*x-470 8626769049685567 a001 2161/311187*1597^(1/34) 8626769049801035 m005 (1/2*2^(1/2)-6/11)/(6*Pi-1/9) 8626769066385304 a007 Real Root Of 574*x^4-570*x^3+70*x^2-888*x+762 8626769067923270 m001 (sin(1)+3^(1/3))/(MinimumGamma+Riemann3rdZero) 8626769075907516 a001 591286729879/3571*843^(13/14) 8626769082150239 m001 ln(cos(1))*TreeGrowth2nd^2/sinh(1)^2 8626769090498967 m001 (Trott2nd+Thue)/(3^(1/2)-CareFree) 8626769094432271 r005 Im(z^2+c),c=27/82+23/47*I,n=6 8626769102686696 m005 (1/2*Pi-1/10)/(6/11*exp(1)+2/9) 8626769104742824 a007 Real Root Of -129*x^4+449*x^3+590*x^2+558*x+402 8626769127839943 a007 Real Root Of 207*x^4-648*x^3-250*x^2-456*x-738 8626769142293061 m001 sin(1/12*Pi)^(arctan(1/2)*CopelandErdos) 8626769188315696 r002 3th iterates of z^2 + 8626769211011789 a003 cos(Pi*2/63)-sin(Pi*3/71) 8626769225363807 l006 ln(931/2206) 8626769228816976 a001 32522919992640/377 8626769234224671 h001 (5/6*exp(2)+4/11)/(9/10*exp(2)+10/11) 8626769251002023 a007 Real Root Of -854*x^4-123*x^3-343*x^2-129*x+538 8626769255333156 a003 cos(Pi*5/43)-cos(Pi*21/44) 8626769261016710 a001 32522920114033/377 8626769265714588 a001 32522920131744/377 8626769266514588 a001 32522920134760/377 8626769266516710 a001 32522920134768/377 8626769266516976 a001 32522920134769/377 8626769266518037 a001 32522920134773/377 8626769266523607 a001 32522920134794/377 8626769266561803 a001 32522920134938/377 8626769266823607 a001 32522920135925/377 8626769267703844 m006 (3/4*exp(Pi)-3/4)/(5/Pi+1/3) 8626769268618037 a001 32522920142690/377 8626769270387955 a001 2889/416020*1597^(1/34) 8626769295770797 m001 (ln(2)+HardyLittlewoodC5)/(Mills-Sierpinski) 8626769307176558 q001 3474/4027 8626769318577786 a007 Real Root Of 330*x^4-476*x^3+79*x^2+210*x-366 8626769325712722 a007 Real Root Of -395*x^4+874*x^3+191*x^2-548*x+165 8626769330513439 g006 Psi(1,6/11)-Psi(1,4/11)-Psi(1,2/11)-Psi(1,1/7) 8626769350731175 a001 956722026041/521*521^(8/13) 8626769363990590 r002 47th iterates of z^2 + 8626769373201476 a007 Real Root Of 399*x^4+700*x^3+579*x^2-353*x-507 8626769374270857 a007 Real Root Of -574*x^4-90*x^3+283*x^2+755*x+63 8626769427486897 r005 Im(z^2+c),c=-1/50+26/33*I,n=13 8626769450357512 r002 15th iterates of z^2 + 8626769462193070 a007 Real Root Of -908*x^4-772*x^3-440*x^2+129*x+446 8626769483203788 m001 GAMMA(2/3)*exp(GAMMA(1/12))^2*cos(Pi/5)^2 8626769498833674 a007 Real Root Of 68*x^4-362*x^3+278*x^2+561*x+7 8626769510596858 a007 Real Root Of -98*x^4+704*x^3-461*x^2+740*x-693 8626769527614523 a007 Real Root Of -606*x^4+515*x^3+851*x^2+371*x+353 8626769567840440 a001 1134903780*843^(9/14) 8626769583732761 r005 Im(z^2+c),c=-83/122+37/61*I,n=3 8626769617617755 m001 Mills*Trott2nd^HardHexagonsEntropy 8626769647071679 r005 Re(z^2+c),c=-71/82+4/45*I,n=17 8626769647148282 m002 -Pi^2+2*Csch[Pi]+ProductLog[Pi]*Tanh[Pi] 8626769699063995 a007 Real Root Of -640*x^4-128*x^3-195*x^2+520*x+866 8626769737342880 a007 Real Root Of 245*x^4-630*x^3+186*x^2+12*x+120 8626769751405068 a007 Real Root Of 810*x^4-627*x^3-830*x^2-456*x+965 8626769765261414 r002 3th iterates of z^2 + 8626769768187315 a007 Real Root Of 557*x^4-755*x^3-442*x^2-570*x-956 8626769786246095 m005 (1/3*2^(1/2)+3/5)/(2/3*gamma+6/7) 8626769794216474 a007 Real Root Of 917*x^4+84*x^3+780*x^2+492*x-610 8626769794515344 r002 3th iterates of z^2 + 8626769829444794 m001 (exp(1/exp(1))-MertensB1)/(Rabbit+Robbin) 8626769845935206 a007 Real Root Of -992*x^4+417*x^3+637*x^2+270*x+576 8626769920451871 m001 (MinimumGamma-Rabbit)/(Zeta(5)+Zeta(1,-1)) 8626769927641266 m001 (-Magata+Otter)/(Psi(2,1/3)+FransenRobinson) 8626769943018037 a001 32522922685178/377 8626769949506867 r005 Im(z^2+c),c=-93/94+3/35*I,n=21 8626769955860810 m001 DuboisRaymond-exp(1/Pi)^ZetaP(3) 8626769956887886 m001 (gamma-ln(2)/ln(10))/(Ei(1)+Mills) 8626769968864501 r002 27th iterates of z^2 + 8626769970611808 q001 3229/3743 8626769992394428 h001 (-3*exp(6)+6)/(-7*exp(3)+1) 8626770015719080 m001 Pi^(1/2)/(GAMMA(13/24)+PrimesInBinary) 8626770048531660 r005 Im(z^2+c),c=-55/106+21/26*I,n=3 8626770093771403 s002 sum(A244777[n]/(n^3*10^n+1),n=1..infinity) 8626770125567096 m001 (Conway+GaussAGM)/(AlladiGrinstead-Shi(1)) 8626770142254452 m002 -3+Pi*Tanh[Pi]-Tanh[Pi]^2 8626770165975497 a007 Real Root Of -742*x^4+846*x^3+396*x^2-110*x-332 8626770185368178 r005 Im(z^2+c),c=25/78+12/23*I,n=54 8626770195977899 p004 log(33199/14011) 8626770291891017 r005 Im(z^2+c),c=-47/40+13/57*I,n=10 8626770306564125 m001 gamma(3)^Zeta(1,-1)/FellerTornier 8626770311754462 m001 (Pi+BesselJ(0,1))/(Ei(1)-3^(1/3)) 8626770335968781 a007 Real Root Of 235*x^4-607*x^3+181*x^2+127*x-545 8626770340452258 a001 2/6765*514229^(43/55) 8626770342970015 a007 Real Root Of 631*x^4+765*x^3+409*x^2-231*x-362 8626770368239535 p002 log(2^(1/4)-1/23*3^(3/4)) 8626770406657007 h001 (3/10*exp(2)+7/9)/(1/11*exp(1)+1/10) 8626770434933981 a001 956722026041/1364*843^(5/7) 8626770454985245 r005 Im(z^2+c),c=-43/94+9/62*I,n=18 8626770468747613 a007 Real Root Of 514*x^4-357*x^3+999*x^2+966*x-424 8626770473772226 a001 521/13*34^(47/54) 8626770482122118 r005 Re(z^2+c),c=-93/110+7/51*I,n=51 8626770495050903 a003 sin(Pi*7/96)-sin(Pi*7/69) 8626770514299493 r002 40th iterates of z^2 + 8626770517037370 r008 a(0)=0,K{-n^6,5+96*n^3-10*n^2+25*n} 8626770519105486 m001 BesselJ(0,1)-gamma(1)^MasserGramain 8626770547350178 l006 ln(3429/8125) 8626770552266210 a007 Real Root Of 72*x^4+629*x^3+x^2-480*x+839 8626770570330677 m005 (3/8+1/4*5^(1/2))/(10/11*Catalan+1/4) 8626770584907409 a007 Real Root Of 399*x^4-159*x^3-286*x^2+479*x+303 8626770588141063 r009 Im(z^3+c),c=-11/86+24/29*I,n=47 8626770595918698 m005 (1/3*gamma-1/3)/(2/5*Catalan-2) 8626770621186907 a007 Real Root Of 97*x^4-207*x^3+353*x^2-199*x-621 8626770641920412 a007 Real Root Of 529*x^4-556*x^3-199*x^2+489*x-80 8626770650299254 r009 Im(z^3+c),c=-1/7+49/57*I,n=3 8626770656961160 a007 Real Root Of 993*x^4-605*x^3-437*x^2-227*x-809 8626770663462967 b008 3*ArcCoth[11*Sqrt[10]] 8626770679430350 m009 (2/5*Pi^2+4)/(5/6*Psi(1,1/3)+4/5) 8626770705548089 r008 a(0)=0,K{-n^6,25-67*n^3-62*n^2-12*n} 8626770742989303 q001 2984/3459 8626770748734950 r002 51th iterates of z^2 + 8626770776161452 r005 Im(z^2+c),c=-17/26+18/107*I,n=61 8626770783104622 a001 2207/317811*1597^(1/34) 8626770799869457 a007 Real Root Of 422*x^4-99*x^3-536*x^2-214*x-83 8626770814758003 r005 Im(z^2+c),c=-33/118+19/30*I,n=34 8626770828094101 m001 (HeathBrownMoroz+Trott)/(Zeta(1,2)-Bloch) 8626770833350316 a007 Real Root Of 981*x^4-643*x^3+344*x^2+647*x-654 8626770907171153 s002 sum(A275525[n]/(n*exp(n)+1),n=1..infinity) 8626770920304796 r009 Re(z^3+c),c=-1/66+22/35*I,n=46 8626770924459073 m001 (Kolakoski-TwinPrimes)/(Zeta(1,-1)-gamma(2)) 8626770934445536 a007 Real Root Of -672*x^4+408*x^3-43*x^2-669*x+89 8626770956363568 a003 2^(1/2)-cos(1/7*Pi)-cos(3/8*Pi)-cos(1/27*Pi) 8626770978209889 a007 Real Root Of -66*x^4+277*x^3+532*x^2+302*x+79 8626771017497201 a001 370248451*514229^(13/17) 8626771017509294 a001 710647*1836311903^(13/17) 8626771029432985 m001 (Niven-Robbin)/(gamma(1)+GlaisherKinkelin) 8626771030837649 m001 Si(Pi)/Artin/exp(MadelungNaCl) 8626771040052020 l006 ln(2498/5919) 8626771045161569 r002 3th iterates of z^2 + 8626771079351024 a007 Real Root Of -987*x^4-725*x^3-904*x^2-328*x+471 8626771079936438 m001 (exp(Pi)+exp(1/Pi))/(Magata+Riemann3rdZero) 8626771082309718 m001 (gamma(2)-MasserGramain)/(Paris+Robbin) 8626771105307548 a007 Real Root Of 402*x^4+684*x^3+612*x^2-393*x-578 8626771127466549 a001 1/199*2^(46/59) 8626771149334340 r005 Re(z^2+c),c=-93/106+3/64*I,n=43 8626771149737881 r005 Re(z^2+c),c=-7/8+14/239*I,n=25 8626771166828416 m001 (OneNinth+Robbin)/(Shi(1)+Zeta(1,-1)) 8626771178414871 r005 Re(z^2+c),c=-93/106+3/64*I,n=45 8626771187992029 s002 sum(A208423[n]/(10^n+1),n=1..infinity) 8626771190369237 r005 Re(z^2+c),c=-93/106+3/64*I,n=41 8626771218264615 r005 Re(z^2+c),c=-93/106+3/64*I,n=47 8626771249341745 r005 Re(z^2+c),c=-93/106+3/64*I,n=49 8626771268841507 r005 Re(z^2+c),c=-93/106+3/64*I,n=51 8626771279401925 r005 Re(z^2+c),c=-93/106+3/64*I,n=53 8626771284384836 r005 Re(z^2+c),c=-93/106+3/64*I,n=55 8626771286361047 r005 Re(z^2+c),c=-93/106+3/64*I,n=57 8626771286787477 r005 Re(z^2+c),c=-93/106+3/64*I,n=63 8626771286925628 r005 Re(z^2+c),c=-93/106+3/64*I,n=59 8626771286934495 r005 Re(z^2+c),c=-93/106+3/64*I,n=61 8626771297476148 p004 log(15551/6563) 8626771302027609 a001 591286729879/1364*843^(11/14) 8626771320617194 a007 Real Root Of 63*x^4+623*x^3+793*x^2+980*x+487 8626771334283284 m005 (1/5*2^(1/2)-4)/(4*gamma+2) 8626771335929196 r002 63th iterates of z^2 + 8626771401341279 m001 Rabbit^cos(1/5*Pi)*GAMMA(19/24)^cos(1/5*Pi) 8626771435204486 m005 (1+3/2*5^(1/2))/(1/3*Pi+4) 8626771441777349 r005 Re(z^2+c),c=-93/106+3/64*I,n=39 8626771448078228 a007 Real Root Of -743*x^4-424*x^3-330*x^2+72*x+447 8626771455666913 l006 ln(4065/9632) 8626771478184527 m005 (-11/36+1/4*5^(1/2))/(4/9*5^(1/2)-7/10) 8626771526516574 a007 Real Root Of -138*x^4-150*x^3-51*x^2+372*x+339 8626771565390333 a001 199/89*610^(4/19) 8626771594155710 r002 61th iterates of z^2 + 8626771595422313 m005 (1/2*Pi-4/5)/(2/11*2^(1/2)+7/11) 8626771610202488 m001 (sin(1/12*Pi)+LaplaceLimit)/(Lehmer+PlouffeB) 8626771644951474 m001 ln(Sierpinski)/MadelungNaCl*(2^(1/3))^2 8626771653543307 q001 2739/3175 8626771660690639 r005 Im(z^2+c),c=-23/86+1/8*I,n=22 8626771665938072 l006 ln(1121/1222) 8626771673063209 a007 Real Root Of 986*x^4-200*x^3-11*x^2+573*x-172 8626771690123844 m001 FeigenbaumC/ArtinRank2^2*exp(PrimesInBinary)^2 8626771712847314 a007 Real Root Of 951*x^4-209*x^3+43*x^2+394*x-353 8626771737131798 m001 (TwinPrimes+ZetaP(2))/(gamma(3)+Trott) 8626771738457617 s002 sum(A227095[n]/(n*pi^n-1),n=1..infinity) 8626771753583665 a001 28657/2207*18^(19/29) 8626771785909124 b008 ArcCot[ExpIntegralEi[9+E]] 8626771795439489 a001 1548008755920/521*521^(7/13) 8626771796609368 b008 ArcCsch[ExpIntegralEi[9+E]] 8626771796921738 r005 Im(z^2+c),c=-79/74+3/31*I,n=7 8626771798610098 m001 OneNinth^MertensB1*OneNinth^Chi(1) 8626771818009856 b008 ArcCsc[ExpIntegralEi[9+E]] 8626771828710100 b008 ArcCoth[ExpIntegralEi[9+E]] 8626771868296455 r002 5th iterates of z^2 + 8626771891264771 m001 1/exp(Ei(1))^2*Riemann2ndZero/GAMMA(1/24)^2 8626771906987908 a003 cos(Pi*14/81)/sin(Pi*53/115) 8626771922033891 r005 Re(z^2+c),c=-33/40+6/41*I,n=33 8626771948893727 m001 (Zeta(1,-1)+KomornikLoreti)/(Niven+ZetaP(3)) 8626772030146292 m005 (1/2*Catalan+11/12)/(6*exp(1)-3/8) 8626772030967383 m001 (Cahen+Stephens)/Riemann1stZero 8626772041430280 m001 (HeathBrownMoroz+ZetaQ(4))/(2^(1/3)-Catalan) 8626772045054559 a007 Real Root Of -196*x^4+247*x^3-211*x^2+642*x+978 8626772060664127 a007 Real Root Of 842*x^4+22*x^3+246*x-240 8626772062783771 m008 (3/4*Pi^4-2/3)/(5/6*Pi^2+1/6) 8626772075430264 a007 Real Root Of -895*x^4+57*x^3-391*x^2-515*x+379 8626772078284843 m001 (GAMMA(3/4)-Kolakoski)/(Totient-Tribonacci) 8626772078648506 a007 Real Root Of 536*x^4-713*x^3-203*x^2+47*x-563 8626772079123553 s002 sum(A282618[n]/(n^3*10^n+1),n=1..infinity) 8626772118210592 l006 ln(1567/3713) 8626772127107195 a001 119218851371/610*34^(8/19) 8626772137470660 a007 Real Root Of -645*x^4+118*x^3-459*x^2-622*x+238 8626772143273174 r005 Im(z^2+c),c=-9/8+52/187*I,n=18 8626772159515222 a007 Real Root Of -357*x^4+734*x^3+960*x^2+732*x+586 8626772169121325 a001 182717648081/682*843^(6/7) 8626772183658738 a007 Real Root Of 763*x^4+43*x^3-685*x^2-300*x-144 8626772186210087 r005 Im(z^2+c),c=29/78+2/15*I,n=19 8626772187323033 r005 Re(z^2+c),c=-93/106+3/64*I,n=37 8626772187706948 a007 Real Root Of 357*x^4-973*x^3-569*x^2-3*x+853 8626772195433688 m005 (8/5+2*5^(1/2))/(3/4*exp(1)+5) 8626772201620044 r002 59th iterates of z^2 + 8626772212648472 m001 BesselK(0,1)*Salem^2*ln(GAMMA(5/24)) 8626772230593211 r002 20th iterates of z^2 + 8626772240627966 m001 (exp(Pi)+ln(2+3^(1/2)))/(GAMMA(7/12)+Mills) 8626772267870469 a001 521/3*8^(37/48) 8626772288658259 a001 29/610*2^(49/57) 8626772301896478 m005 (1/2*Pi-3)/(3/8*5^(1/2)+9/11) 8626772317856818 m001 1/GAMMA(1/24)^2/FibonacciFactorial/exp(cos(1)) 8626772338900463 a007 Real Root Of -799*x^4+587*x^3+767*x^2+818*x+7 8626772349400812 r005 Re(z^2+c),c=9/98+23/47*I,n=24 8626772399686706 a003 cos(Pi*4/83)*cos(Pi*19/117) 8626772440107404 r005 Im(z^2+c),c=-43/36+5/44*I,n=63 8626772444990581 r005 Re(z^2+c),c=-97/114+7/59*I,n=17 8626772478782239 m001 (BesselK(0,1)+exp(1/exp(1)))/(Conway+Thue) 8626772490285341 h001 (1/2*exp(1)+8/9)/(1/3*exp(2)+1/7) 8626772503417937 a007 Real Root Of -276*x^4+592*x^3+960*x^2+608*x+343 8626772507102603 m005 (1/2*Zeta(3)-2/7)/(5/12*gamma+1/8) 8626772517715000 r005 Im(z^2+c),c=-15/26+51/124*I,n=30 8626772543710919 r005 Re(z^2+c),c=-71/52+9/59*I,n=4 8626772581422349 m001 (Pi^(1/2)+5)/(-GAMMA(17/24)+1/2) 8626772595019139 r005 Im(z^2+c),c=-27/110+50/63*I,n=4 8626772605778218 a001 1/2*5778^(37/43) 8626772635227330 p003 LerchPhi(1/12,5,236/229) 8626772655446701 m001 Trott^ln(2^(1/2)+1)/(ZetaP(3)^ln(2^(1/2)+1)) 8626772656203111 h001 (-2*exp(-2)-2)/(-exp(-1)+3) 8626772677603372 r005 Im(z^2+c),c=-23/86+1/8*I,n=24 8626772685565829 h001 (5/9*exp(1)+2/5)/(7/9*exp(1)+1/10) 8626772722455556 a001 3536736619241/281*322^(1/3) 8626772725721422 r005 Im(z^2+c),c=-23/86+1/8*I,n=27 8626772730062688 a001 7/75025*20365011074^(17/22) 8626772733448783 r005 Im(z^2+c),c=-23/86+1/8*I,n=25 8626772733881116 r005 Im(z^2+c),c=-39/34+9/82*I,n=54 8626772742995503 q001 2494/2891 8626772742995503 r005 Im(z^2+c),c=-135/98+29/59*I,n=2 8626772743450461 r005 Im(z^2+c),c=-23/86+1/8*I,n=29 8626772749956185 r005 Im(z^2+c),c=-23/86+1/8*I,n=31 8626772751221899 r005 Im(z^2+c),c=-23/86+1/8*I,n=34 8626772751238454 r005 Im(z^2+c),c=-23/86+1/8*I,n=36 8626772751242810 r005 Im(z^2+c),c=-23/86+1/8*I,n=33 8626772751267482 r005 Im(z^2+c),c=-23/86+1/8*I,n=38 8626772751276571 r005 Im(z^2+c),c=-23/86+1/8*I,n=40 8626772751277978 r005 Im(z^2+c),c=-23/86+1/8*I,n=43 8626772751278037 r005 Im(z^2+c),c=-23/86+1/8*I,n=45 8626772751278083 r005 Im(z^2+c),c=-23/86+1/8*I,n=47 8626772751278095 r005 Im(z^2+c),c=-23/86+1/8*I,n=49 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=52 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=54 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=56 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=58 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=61 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=63 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=59 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=64 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=62 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=60 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=57 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=55 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=53 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=51 8626772751278097 r005 Im(z^2+c),c=-23/86+1/8*I,n=50 8626772751278102 r005 Im(z^2+c),c=-23/86+1/8*I,n=48 8626772751278128 r005 Im(z^2+c),c=-23/86+1/8*I,n=46 8626772751278141 r005 Im(z^2+c),c=-23/86+1/8*I,n=42 8626772751278193 r005 Im(z^2+c),c=-23/86+1/8*I,n=44 8626772751278441 r005 Im(z^2+c),c=-23/86+1/8*I,n=41 8626772751282530 r005 Im(z^2+c),c=-23/86+1/8*I,n=39 8626772751300131 r005 Im(z^2+c),c=-23/86+1/8*I,n=37 8626772751336723 r005 Im(z^2+c),c=-23/86+1/8*I,n=35 8626772751657971 r005 Im(z^2+c),c=-23/86+1/8*I,n=32 8626772754766946 r005 Im(z^2+c),c=-23/86+1/8*I,n=30 8626772766579703 r005 Im(z^2+c),c=-23/86+1/8*I,n=28 8626772771465675 r005 Re(z^2+c),c=5/114+11/26*I,n=13 8626772784332617 r005 Im(z^2+c),c=-23/86+1/8*I,n=26 8626772784665270 m005 (1/2*3^(1/2)+1/8)/(1/3*3^(1/2)+4/7) 8626772787411902 a007 Real Root Of -781*x^4+777*x^3+149*x^2+846*x-907 8626772801518330 b008 -3*Pi+ProductLog[Sqrt[Pi]] 8626772818513754 a007 Real Root Of -963*x^4-216*x^3-980*x^2-983*x+276 8626772832597826 l006 ln(3770/8933) 8626772854636860 m001 1/GAMMA(3/4)^2/exp(FeigenbaumDelta)*sinh(1)^2 8626772861901602 m009 (3*Pi^2-4/5)/(16*Catalan+2*Pi^2-1) 8626772882691177 r002 54th iterates of z^2 + 8626772895343528 a001 11/86267571272*7778742049^(19/24) 8626772895586173 a001 11/9227465*75025^(19/24) 8626772896168965 a005 (1/cos(15/133*Pi))^644 8626772905938687 m001 (Rabbit+ReciprocalFibonacci)/(GaussAGM-Mills) 8626772928044155 r002 18th iterates of z^2 + 8626772930172052 a001 322/5*144^(1/17) 8626772944378719 m001 (Grothendieck-Otter)/(Stephens-TreeGrowth2nd) 8626772952771512 g007 Psi(2,5/11)+Psi(2,2/7)+14*Zeta(3)-Psi(2,5/7) 8626772960243252 a007 Real Root Of -736*x^4-385*x^3-305*x^2-106*x+296 8626772970629011 a007 Real Root Of 789*x^4-4*x^3+36*x^2+63*x-412 8626772971341510 a007 Real Root Of -614*x^4-432*x^3+96*x^2+803*x+684 8626772978977266 m001 exp(Zeta(7))^2*LaplaceLimit/gamma 8626772997487608 m004 3/E^(Sqrt[5]*Pi)-(5*Cos[Sqrt[5]*Pi]^2)/Pi 8626772999003295 a007 Real Root Of -397*x^4+408*x^3+588*x^2+708*x+655 8626773015882748 l006 ln(8541/8615) 8626773023181245 r002 44th iterates of z^2 + 8626773036215127 a001 225851433717/1364*843^(13/14) 8626773046665477 m001 (ln(2)+Pi^(1/2))/(FeigenbaumMu+Riemann3rdZero) 8626773074595655 r005 Im(z^2+c),c=-17/26+35/83*I,n=11 8626773075600691 a001 3/199*1149851^(1/8) 8626773075601507 a001 3/199*1322157322203^(1/16) 8626773076954524 m001 (BesselI(1,1)+GAMMA(17/24))/(1+ln(Pi)) 8626773097450883 m005 (1/2*Pi-6/7)/(11/16+1/16*5^(1/2)) 8626773114304493 r005 Im(z^2+c),c=-23/86+1/8*I,n=23 8626773142428470 a007 Real Root Of 273*x^4-159*x^3-464*x^2-677*x-492 8626773169100728 a007 Real Root Of 98*x^4+779*x^3-574*x^2+85*x+806 8626773187821888 a007 Real Root Of -308*x^4+455*x^3+943*x^2+713*x+376 8626773207916159 r005 Im(z^2+c),c=-31/26+9/79*I,n=63 8626773264491747 a001 75025/5778*18^(19/29) 8626773276820619 r009 Im(z^3+c),c=-19/122+51/53*I,n=46 8626773327641366 r005 Re(z^2+c),c=15/86+23/42*I,n=37 8626773338835974 r005 Im(z^2+c),c=-41/78+9/59*I,n=33 8626773340743412 l006 ln(2203/5220) 8626773358854145 m001 ReciprocalLucas/(3^(1/2)+Landau) 8626773371758171 m008 (1/4*Pi^4+4/5)/(3*Pi^4-2/3) 8626773400607221 a007 Real Root Of 320*x^4-82*x^3+934*x^2+124*x-818 8626773410844856 m001 (BesselK(0,1)-ln(Pi))/(Zeta(1,2)+Paris) 8626773426285786 r002 57th iterates of z^2 + 8626773446928693 m008 (1/4*Pi^3-1/4)/(4/5*Pi^2+4/5) 8626773460260517 a007 Real Root Of -46*x^4+878*x^3-615*x^2-955*x+223 8626773484930310 a001 196418/15127*18^(19/29) 8626773508416823 g005 GAMMA(1/11)*GAMMA(4/9)^2*GAMMA(3/7) 8626773517091864 a001 514229/39603*18^(19/29) 8626773519008979 r005 Im(z^2+c),c=-115/94+21/64*I,n=5 8626773521784171 a001 1346269/103682*18^(19/29) 8626773522891875 a001 2178309/167761*18^(19/29) 8626773524684177 a001 832040/64079*18^(19/29) 8626773535316190 r002 26th iterates of z^2 + 8626773536968797 a001 10959/844*18^(19/29) 8626773545241168 a007 Real Root Of -56*x^4+45*x^3+329*x^2+799*x-932 8626773559691770 v002 sum(1/(3^n*(31*n^2-54*n+70)),n=1..infinity) 8626773575155128 r002 2th iterates of z^2 + 8626773610447570 m001 (CareFree+Magata)/(Weierstrass+ZetaQ(4)) 8626773621168840 a001 121393/9349*18^(19/29) 8626773624516217 s002 sum(A236340[n]/(exp(n)+1),n=1..infinity) 8626773632050737 a007 Real Root Of -879*x^4-170*x^3-147*x^2-662*x-84 8626773656149875 r005 Re(z^2+c),c=7/40+17/39*I,n=54 8626773657142243 m005 (2/5*Catalan-3/4)/(1/3*Catalan-3/4) 8626773659133441 r005 Re(z^2+c),c=1/12+1/18*I,n=10 8626773674085690 a007 Real Root Of -107*x^4+780*x^3+790*x^2-492*x-605 8626773696519972 m001 -FeigenbaumDelta/(ThueMorse+5) 8626773721048174 a007 Real Root Of 815*x^4-633*x^3-564*x^2-146*x-564 8626773740800744 a001 41/329*514229^(39/58) 8626773771299476 a007 Real Root Of 772*x^4-133*x^3-732*x^2+836*x+753 8626773781819270 a003 cos(1/24*Pi)-3^(1/2)+cos(7/24*Pi)+cos(1/30*Pi) 8626773815408778 m001 (sin(1/12*Pi)+Riemann3rdZero)/(5^(1/2)+ln(2)) 8626773828166668 a007 Real Root Of -972*x^4+696*x^3-415*x^2+379*x-30 8626773860053194 m001 HeathBrownMoroz*RenyiParking^Backhouse 8626773887958978 m008 (3/4*Pi^2-3/4)/(4/5*Pi^6+2) 8626773903323607 a001 32522937615530/377 8626773908150827 a007 Real Root Of 505*x^4-893*x^3+295*x^2+746*x-429 8626773922008138 m001 Zeta(3)/(((1+3^(1/2))^(1/2))^TwinPrimes) 8626773922008138 m001 Zeta(3)/(sqrt(1+sqrt(3))^TwinPrimes) 8626773927903966 r005 Re(z^2+c),c=-93/106+3/64*I,n=35 8626774012756037 r005 Im(z^2+c),c=-71/62+5/48*I,n=16 8626774015526346 l006 ln(2839/6727) 8626774021658936 r009 Im(z^3+c),c=-61/106+11/23*I,n=41 8626774041474764 m001 (5^(1/2)-sin(1))/(ln(Pi)+Bloch) 8626774069812044 q001 2249/2607 8626774073357449 r009 Re(z^3+c),c=-7/74+23/44*I,n=3 8626774104810489 a007 Real Root Of 695*x^4-771*x^3+867*x^2-800*x-76 8626774112037295 m001 (cos(1/5*Pi)+ln(3))/(Bloch-FeigenbaumD) 8626774122489315 a003 sin(Pi*27/82)/sin(Pi*35/74) 8626774182017893 m001 Riemann3rdZero/MadelungNaCl/ln(GAMMA(1/4))^2 8626774184527571 m001 (-Lehmer+Weierstrass)/(GAMMA(2/3)-exp(1)) 8626774198284561 a001 46368/3571*18^(19/29) 8626774200353010 p003 LerchPhi(1/12,6,140/93) 8626774240148495 a001 2504730781961/521*521^(6/13) 8626774272420277 r005 Im(z^2+c),c=-93/94+3/35*I,n=20 8626774330495733 r005 Re(z^2+c),c=-11/12+1/18*I,n=38 8626774359530461 a007 Real Root Of -903*x^4+540*x^3+488*x^2-90*x+406 8626774364410483 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=37 8626774370120867 r005 Re(z^2+c),c=-11/12+1/18*I,n=40 8626774373210506 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=35 8626774373959778 r005 Re(z^2+c),c=-11/12+1/18*I,n=36 8626774381136976 a007 Real Root Of 822*x^4-583*x^3-920*x^2-260*x+828 8626774381297362 r002 56th iterates of z^2 + 8626774392850953 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=39 8626774398096183 r002 58th iterates of z^2 + 8626774399989682 a007 Real Root Of 31*x^4-850*x^3-460*x^2-805*x-915 8626774403513333 r005 Re(z^2+c),c=-11/12+1/18*I,n=42 8626774410674186 r002 54th iterates of z^2 + 8626774413223616 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=41 8626774414010196 r002 60th iterates of z^2 + 8626774419415387 r005 Re(z^2+c),c=-11/12+1/18*I,n=44 8626774421923430 r002 62th iterates of z^2 + 8626774422240871 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=43 8626774424644819 r002 64th iterates of z^2 + 8626774424657473 r005 Re(z^2+c),c=-11/12+1/18*I,n=46 8626774424834338 r005 Re(z^2+c),c=1/12+1/18*I,n=16 8626774424838851 r005 Re(z^2+c),c=1/12+1/18*I,n=17 8626774424855645 r005 Re(z^2+c),c=1/12+1/18*I,n=18 8626774424857577 r005 Re(z^2+c),c=-11/12+1/18*I,n=58 8626774424857663 r005 Re(z^2+c),c=-11/12+1/18*I,n=60 8626774424858751 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=57 8626774424859489 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=59 8626774424860037 r005 Re(z^2+c),c=-11/12+1/18*I,n=62 8626774424861065 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=61 8626774424861224 r005 Re(z^2+c),c=1/12+1/18*I,n=19 8626774424861606 r005 Re(z^2+c),c=-11/12+1/18*I,n=64 8626774424861998 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=63 8626774424862347 r005 Re(z^2+c),c=1/12+1/18*I,n=20 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=26 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=27 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=28 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=29 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=35 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=36 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=37 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=38 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=39 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=45 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=46 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=47 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=48 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=54 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=55 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=56 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=57 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=58 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=62 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=63 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=64 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=61 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=60 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=59 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=53 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=52 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=49 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=51 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=50 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=44 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=43 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=42 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=41 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=40 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=34 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=33 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=30 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=32 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=31 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=25 8626774424862442 r005 Re(z^2+c),c=1/12+1/18*I,n=24 8626774424862445 r005 Re(z^2+c),c=1/12+1/18*I,n=23 8626774424862455 r005 Re(z^2+c),c=1/12+1/18*I,n=22 8626774424862467 r005 Re(z^2+c),c=1/12+1/18*I,n=21 8626774424865511 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=55 8626774424872007 r005 Re(z^2+c),c=-11/12+1/18*I,n=56 8626774424898189 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=53 8626774424932488 r005 Re(z^2+c),c=-11/12+1/18*I,n=54 8626774424982688 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=45 8626774424991810 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=51 8626774425093807 r005 Re(z^2+c),c=-11/12+1/18*I,n=52 8626774425153089 r005 Re(z^2+c),c=1/12+1/18*I,n=15 8626774425177083 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=49 8626774425363352 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=47 8626774425387053 r005 Re(z^2+c),c=-11/12+1/18*I,n=50 8626774425600014 r005 Re(z^2+c),c=-11/12+1/18*I,n=48 8626774427548636 r005 Re(z^2+c),c=1/12+1/18*I,n=14 8626774434422983 r005 Re(z^2+c),c=1/12+1/18*I,n=11 8626774438173927 r005 Re(z^2+c),c=1/12+1/18*I,n=13 8626774443309574 l006 ln(3475/8234) 8626774448053855 a007 Real Root Of -947*x^4-715*x^3-424*x^2+335*x+670 8626774464762850 r005 Re(z^2+c),c=1/12+1/18*I,n=12 8626774470889356 r002 18th iterates of z^2 + 8626774492591181 a007 Real Root Of 630*x^4-166*x^3+990*x^2+333*x-905 8626774504137401 m001 ln(RenyiParking)/LandauRamanujan^2*sqrt(3) 8626774523461652 a001 1/532*(1/2*5^(1/2)+1/2)^7*7^(4/17) 8626774528848548 a007 Real Root Of 244*x^4+587*x^3+129*x^2-956*x-679 8626774534271241 a007 Real Root Of -751*x^4-194*x^3-713*x^2-932*x+18 8626774540407433 m001 Magata^2/exp(ArtinRank2)/sin(Pi/12)^2 8626774544265530 a007 Real Root Of 863*x^4-538*x^3-568*x^2+301*x-141 8626774553212851 r005 Im(z^2+c),c=21/82+25/39*I,n=4 8626774586970451 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=33 8626774587111230 a007 Real Root Of -429*x^4+728*x^3-95*x^2+88*x-235 8626774611519999 a001 233/103682*11^(23/41) 8626774637370567 r002 52th iterates of z^2 + 8626774654350857 r005 Im(z^2+c),c=-25/36+17/27*I,n=5 8626774668903447 a007 Real Root Of 596*x^4+850*x^3+382*x^2-369*x-387 8626774670462625 a003 sin(Pi*4/101)-sin(Pi*5/118) 8626774725227053 h002 exp(14^(1/10)+6^(12/7)) 8626774725227053 h007 exp(14^(1/10)+6^(12/7)) 8626774738730772 l006 ln(4111/9741) 8626774758431648 r002 43th iterates of z^2 + 8626774759811621 a007 Real Root Of 39*x^4-666*x^3+164*x^2+610*x-45 8626774760239086 a007 Real Root Of -60*x^4-478*x^3+290*x^2-456*x-88 8626774773744544 a007 Real Root Of -652*x^4-144*x^3-876*x^2+48*x+962 8626774793728438 b008 ArcSech[2/3+E^(-3)] 8626774801397783 r005 Re(z^2+c),c=-11/12+1/18*I,n=34 8626774841230280 s002 sum(A151742[n]/(n^2*exp(n)+1),n=1..infinity) 8626774848767687 a001 29/63245986*46368^(1/17) 8626774848814893 a001 29/165580141*591286729879^(1/17) 8626774848814894 a001 29/102334155*165580141^(1/17) 8626774870666159 a007 Real Root Of -18*x^4+994*x^3-800*x^2+6*x-38 8626774879341941 p002 log(1/10*(17+7^(2/3)*10^(3/4))^(1/2)*10^(1/4)) 8626774889266072 a007 Real Root Of -839*x^4+482*x^3+875*x^2-197*x-47 8626774899360841 m001 Ei(1,1)^(exp(Pi)*TwinPrimes) 8626774909854025 a003 -1/2+2*cos(1/10*Pi)+cos(11/27*Pi)-cos(4/21*Pi) 8626774950541165 m008 (5/6*Pi^3-1/5)/(1/3*Pi-3/4) 8626774976897661 m001 (5^(1/2)-cos(1/5*Pi))/Zeta(1,-1) 8626774983693359 m002 -Pi^4+Pi^6-Log[Pi]/5-ProductLog[Pi] 8626774993241226 m001 (BesselI(0,1)+Salem)^Zeta(1,-1) 8626775026384179 m001 1/RenyiParking^2/ln(ErdosBorwein)^2*Trott 8626775041158284 a007 Real Root Of -497*x^4+11*x^3+226*x^2-618*x-419 8626775060790444 a007 Real Root Of -556*x^4+988*x^3-287*x^2-307*x+891 8626775090691559 m005 (1/2*3^(1/2)-5/11)/(4/9*3^(1/2)+4) 8626775095119552 r005 Im(z^2+c),c=17/74+27/50*I,n=45 8626775132861270 m001 1/exp(TreeGrowth2nd)*KhintchineLevy*GAMMA(5/6) 8626775135920996 m005 (1/2*exp(1)+2/5)/(7/9*5^(1/2)+3/10) 8626775176310492 r002 47th iterates of z^2 + 8626775187628008 r002 32th iterates of z^2 + 8626775204126678 a007 Real Root Of 721*x^4-848*x^3+18*x^2+647*x-399 8626775344806054 a007 Real Root Of 898*x^4-186*x^3-682*x^2-373*x-431 8626775359023879 r009 Im(z^3+c),c=-23/40+29/64*I,n=14 8626775388336035 a007 Real Root Of -386*x^4+788*x^3+160*x^2-964*x-231 8626775395992186 r002 50th iterates of z^2 + 8626775400700675 m001 cos(1/5*Pi)-sin(1)-ZetaQ(2) 8626775411747326 m005 (1/3*gamma+2/3)/(13/4+3*5^(1/2)) 8626775415094804 r005 Im(z^2+c),c=-23/86+1/8*I,n=21 8626775420065383 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=31 8626775436409170 a007 Real Root Of -748*x^4+479*x^3+95*x^2-742*x+11 8626775509259782 a007 Real Root Of -779*x^4+891*x^3+269*x^2-879*x+45 8626775527074356 a007 Real Root Of -886*x^4+751*x^3+919*x^2+786*x+967 8626775580275820 r002 55th iterates of z^2 + 8626775597759245 m005 (7/12+1/4*5^(1/2))/(4/9*Zeta(3)-2/3) 8626775599824150 m001 Trott2nd*(arctan(1/2)+Khinchin) 8626775602890856 m001 GAMMA(1/4)^2/Robbin^2*exp(GAMMA(11/12)) 8626775630060313 a007 Real Root Of 365*x^4-107*x^3-491*x^2-178*x-59 8626775643155169 a007 Real Root Of 605*x^4-168*x^3+180*x^2-225*x-771 8626775662206727 r005 Re(z^2+c),c=-5/7+22/87*I,n=10 8626775714102840 a007 Real Root Of 435*x^4-374*x^3-62*x^2+343*x-139 8626775720878130 r005 Re(z^2+c),c=-97/94+12/49*I,n=44 8626775721050365 q001 2004/2323 8626775732686868 r008 a(0)=0,K{-n^6,16+24*n^3-69*n^2+27*n} 8626775744907767 s001 sum(1/10^(n-1)*A231629[n]/n!,n=1..infinity) 8626775768963420 m001 (Otter-Paris)/(cos(1/5*Pi)+FeigenbaumAlpha) 8626775791371784 m001 arctan(1/2)/ln(TreeGrowth2nd)/cos(Pi/5)^2 8626775830378827 a007 Real Root Of -294*x^4+880*x^3-697*x^2+775*x-552 8626775850715268 a007 Real Root Of -723*x^4+490*x^3-810*x^2-409*x+965 8626775855816692 m001 exp(sqrt(2))/(BesselI(1,1)-polylog(4,1/2)) 8626775869389082 m001 exp(FransenRobinson)^2/Artin^2*LaplaceLimit^2 8626775914529004 a007 Real Root Of -405*x^4+260*x^3+509*x^2-310*x-255 8626775921526413 m001 (gamma+ln(3))/(GlaisherKinkelin+TwinPrimes) 8626775925368832 a007 Real Root Of 13*x^4-811*x^3+757*x^2+457*x-697 8626775927174516 r002 25th iterates of z^2 + 8626775942555651 a007 Real Root Of 549*x^4-467*x^3+751*x^2+788*x-483 8626775954984233 m001 Porter-arctan(1/2)*Conway 8626775974457457 m001 (GAMMA(19/24)-Psi(2,1/3))/(FeigenbaumMu+Otter) 8626775988897271 a007 Real Root Of 146*x^4-188*x^3+325*x^2+594*x+69 8626775990381037 g005 GAMMA(3/5)/GAMMA(7/11)/GAMMA(1/11)/GAMMA(4/5) 8626776001584995 a001 1/46347*233^(15/59) 8626776021812396 a007 Real Root Of -840*x^4+683*x^3-629*x^2-591*x+862 8626776029789314 r005 Re(z^2+c),c=4/21+14/51*I,n=13 8626776047710546 r005 Re(z^2+c),c=2/15+33/62*I,n=31 8626776067357019 m005 (1/2*Pi+9/10)/(2*3^(1/2)-3/5) 8626776068840467 r002 54th iterates of z^2 + 8626776087413768 a001 312119004989/1597*34^(8/19) 8626776103989282 a003 sin(Pi*17/86)/cos(Pi*23/87) 8626776106880465 m005 (1/2*Zeta(3)+3/10)/(4*exp(1)-3/7) 8626776108697997 a007 Real Root Of -486*x^4+900*x^3-53*x^2-26*x+864 8626776184729467 r005 Re(z^2+c),c=3/29+13/25*I,n=59 8626776274630059 a003 cos(Pi*26/97)/sin(Pi*16/57) 8626776290946337 a007 Real Root Of 836*x^4-980*x^3-947*x^2+361*x-76 8626776306094817 r005 Re(z^2+c),c=-11/12+1/18*I,n=32 8626776316836457 a001 28143753123/55*377^(10/21) 8626776342652625 r002 52th iterates of z^2 + 8626776346989234 v003 sum((5/2*n^2+27/2*n-15)/n^n,n=1..infinity) 8626776352863733 l006 ln(636/1507) 8626776373869400 b008 ExpIntegralEi[-28/3] 8626776379661881 a007 Real Root Of 792*x^4-481*x^3+708*x^2+427*x-906 8626776414044317 a007 Real Root Of 853*x^4-856*x^3+597*x^2+544*x-997 8626776418486758 a007 Real Root Of -946*x^4+578*x^3+141*x^2-327*x+508 8626776530103450 a007 Real Root Of 916*x^4-620*x^3-250*x^2+988*x+133 8626776550640164 a007 Real Root Of -584*x^4+321*x^3+688*x^2+553*x-53 8626776558534153 r005 Re(z^2+c),c=1/54+11/28*I,n=25 8626776573435914 a007 Real Root Of -313*x^4+304*x^3+355*x^2+869*x+854 8626776603498542 r009 Re(z^3+c),c=-9/14+23/24*I,n=2 8626776635460214 a007 Real Root Of 353*x^4-819*x^3+904*x^2+713*x-779 8626776652054221 m001 (ln(Pi)+ln(2^(1/2)+1))/(Cahen+Niven) 8626776658647806 a001 199/55*86267571272^(5/23) 8626776665215014 a001 817138163596/4181*34^(8/19) 8626776684858194 a001 4052739537881/521*521^(5/13) 8626776698133640 m001 (FellerTornier+Landau)^GAMMA(23/24) 8626776702779108 r009 Re(z^3+c),c=-11/70+29/44*I,n=62 8626776709175326 h001 (7/8*exp(2)+5/7)/(3/11*exp(1)+1/11) 8626776731393519 a003 cos(Pi*8/57)*sin(Pi*27/67) 8626776749515086 a001 2139295485799/10946*34^(8/19) 8626776761814301 a001 5600748293801/28657*34^(8/19) 8626776763608732 a001 14662949395604/75025*34^(8/19) 8626776764032340 a001 23725150497407/121393*34^(8/19) 8626776764717751 a001 3020733700601/15456*34^(8/19) 8626776768972360 a001 233/843*3461452808002^(11/12) 8626776769415633 a001 3461452808002/17711*34^(8/19) 8626776774776432 r002 33th iterates of z^2 + 8626776777308562 m005 (1/2*Pi+5/7)/(9/10*5^(1/2)+7/11) 8626776801615396 a001 440719107401/2255*34^(8/19) 8626776804500428 a007 Real Root Of 75*x^4+721*x^3+575*x^2-494*x+450 8626776804779624 r005 Im(z^2+c),c=-23/86+1/8*I,n=16 8626776804860268 a001 18*5^(37/38) 8626776804860268 b008 9/5^(1/38) 8626776810868890 r009 Re(z^3+c),c=-1/86+11/15*I,n=20 8626776821314901 m001 GAMMA(19/24)-Niven^MertensB3 8626776829548091 m001 ln(2)/ln(10)*OrthogonalArrays+BesselJ(1,1) 8626776830097699 a007 Real Root Of 460*x^4-192*x^3+940*x^2+418*x-717 8626776839964831 a007 Real Root Of 892*x^4-617*x^3-809*x^2+378*x+38 8626776842727032 r005 Re(z^2+c),c=-27/34+12/91*I,n=17 8626776854294872 m001 GAMMA(11/12)*exp(LandauRamanujan)^2*sqrt(Pi) 8626776859504132 r005 Re(z^2+c),c=4/11+16/25*I,n=2 8626776874256528 a007 Real Root Of -941*x^4+354*x^3-799*x^2-633*x+797 8626776886688581 r005 Im(z^2+c),c=-27/40+1/43*I,n=50 8626776907373417 a001 17/219602*2^(5/32) 8626776917369658 p004 log(16987/15583) 8626776918934723 a005 (1/cos(27/134*Pi))^149 8626776923125100 a007 Real Root Of -285*x^4+648*x^3+997*x^2+174*x-18 8626776930281841 a001 139583862445/199*199^(10/11) 8626776960668391 m002 -Pi^6+Pi^4*Coth[Pi]+ProductLog[Pi]/Log[Pi] 8626777016747481 a007 Real Root Of -937*x^4-792*x^3-714*x^2+414*x+899 8626777022315861 a001 505019158607/2584*34^(8/19) 8626777035634323 a007 Real Root Of -184*x^4+383*x^3-364*x^2-461*x+221 8626777048730875 a007 Real Root Of -680*x^4-65*x^3-546*x^2-93*x+661 8626777061996562 h001 (4/11*exp(2)+3/4)/(4/9*exp(2)+7/10) 8626777078632055 r002 50i'th iterates of 2*x/(1-x^2) of 8626777123650097 p004 log(20399/8609) 8626777134696788 r002 48th iterates of z^2 + 8626777216547338 l003 AiryBi(1,77/82) 8626777222117994 m005 (1/3*3^(1/2)-1/7)/(2*exp(1)-2/5) 8626777289728125 r005 Im(z^2+c),c=-1+6/19*I,n=16 8626777290393185 m001 GAMMA(1/12)^Si(Pi)*GAMMA(1/12)^Catalan 8626777297491511 r002 12th iterates of z^2 + 8626777314988624 r005 Re(z^2+c),c=13/40+34/59*I,n=32 8626777351804510 r005 Re(z^2+c),c=-95/106+7/54*I,n=26 8626777368234104 r005 Re(z^2+c),c=-1/25+6/23*I,n=3 8626777380155004 r005 Re(z^2+c),c=-4/7+12/25*I,n=41 8626777382630886 m005 (1/3*Pi-1/2)/(3/10*Catalan-10/11) 8626777382700556 r002 21th iterates of z^2 + 8626777394988722 r009 Im(z^3+c),c=-7/64+50/59*I,n=25 8626777409661063 r005 Im(z^2+c),c=-9/52+6/53*I,n=12 8626777416511404 r005 Re(z^2+c),c=-93/106+3/64*I,n=33 8626777419354973 g002 -Psi(10/11)-Psi(6/11)-Psi(3/11)-Psi(4/9) 8626777444340093 r005 Im(z^2+c),c=-53/90+10/63*I,n=61 8626777454100622 g006 Psi(1,3/10)+Psi(1,1/9)-Psi(1,6/11)-Psi(1,5/9) 8626777477341823 a007 Real Root Of -373*x^4+442*x^3+687*x^2+372*x+300 8626777489101449 m001 Trott*(MertensB1-Shi(1)) 8626777498365905 r002 26th iterates of z^2 + 8626777498444959 a007 Real Root Of 608*x^4-612*x^3+524*x^2+345*x-822 8626777498804385 b008 4+E^(2/17+Sqrt[2]) 8626777501131651 m001 (Sierpinski+Trott2nd)/(Si(Pi)+Salem) 8626777519006774 m001 Catalan/(Zeta(5)^((1+3^(1/2))^(1/2))) 8626777519006774 m001 Catalan/(Zeta(5)^sqrt(1+sqrt(3))) 8626777522491082 a003 cos(Pi*14/95)-cos(Pi*24/49) 8626777545865460 g007 Psi(2,3/4)-Psi(2,3/11)-Psi(13/10)-Psi(2,5/6) 8626777548724441 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=29 8626777553326690 r005 Re(z^2+c),c=-23/62+37/58*I,n=55 8626777578484246 m001 (Pi+Si(Pi))/(Zeta(1/2)+QuadraticClass) 8626777585029779 a007 Real Root Of -414*x^4+40*x^3-732*x^2-82*x+729 8626777596630299 a007 Real Root Of 228*x^4-633*x^3+439*x^2+121*x-755 8626777603096949 a007 Real Root Of -455*x^4+888*x^3-87*x^2-336*x+597 8626777614692821 a007 Real Root Of -829*x^4+169*x^3+148*x^2-710*x-155 8626777621448610 m001 Lehmer^2/ln(MertensB1)^2*Riemann2ndZero^2 8626777628468489 r009 Re(z^3+c),c=-1/7+35/62*I,n=21 8626777636948049 r005 Re(z^2+c),c=-61/70+4/55*I,n=23 8626777666623326 r005 Im(z^2+c),c=-17/21+2/45*I,n=44 8626777671273877 g007 Psi(2,2/9)+Psi(2,1/7)+Psi(2,4/5)-Psi(2,6/11) 8626777677815236 m004 Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]/3+Sec[Sqrt[5]*Pi] 8626777717709936 m001 (Khinchin+PlouffeB)/(Catalan+ln(gamma)) 8626777756596330 m005 (1/2*gamma+9/11)/(3/8*5^(1/2)+4/9) 8626777770981276 p001 sum(1/(527*n+116)/(256^n),n=0..infinity) 8626777798495642 m001 1/FeigenbaumC^2*ln(MertensB1)/arctan(1/2) 8626777798891930 r002 40th iterates of z^2 + 8626777802545215 h001 (-8*exp(2)-9)/(-2*exp(2/3)-4) 8626777821110924 m005 (1/2*Zeta(3)-5/11)/(4/9*3^(1/2)-3/5) 8626777832270720 q001 1759/2039 8626777836658965 m005 (1/2*Pi-5/7)/(1/12*2^(1/2)+7/8) 8626777851131711 m001 FeigenbaumMu^(Catalan/MertensB1) 8626777863469768 m005 (1/2*Zeta(3)+1/7)/(6/11*2^(1/2)+1/11) 8626777868480932 m002 (Pi^2*ProductLog[Pi])/4+6*Tanh[Pi] 8626777893590738 m005 (1/2*5^(1/2)+2/7)/(47/44+1/4*5^(1/2)) 8626777908198516 m001 (-Khinchin+Sierpinski)/(cos(1)+GolombDickman) 8626777914654116 m006 (1/2*ln(Pi)-3)/(exp(Pi)+5) 8626777929666692 r005 Im(z^2+c),c=1/94+39/49*I,n=7 8626777932933882 a001 7/75025*121393^(42/43) 8626777949134971 l006 ln(4157/9850) 8626777962601984 a001 439204*6557470319842^(11/17) 8626777962646706 a001 87403803*1836311903^(11/17) 8626777962650927 a001 17393796001*514229^(11/17) 8626777966252731 m001 exp(KhintchineLevy)^2/MertensB1*Riemann2ndZero 8626777970484325 a007 Real Root Of 546*x^4+326*x^3+73*x^2+543*x+321 8626778009520229 m005 (31/44+1/4*5^(1/2))/(5/7*2^(1/2)+5/11) 8626778025930653 m001 Zeta(1,2)/exp(GAMMA(1/4))*sin(Pi/5)^2 8626778044461918 a007 Real Root Of -948*x^4-912*x^3-98*x^2+819*x+719 8626778057344621 r009 Im(z^3+c),c=-23/48+3/47*I,n=28 8626778061467574 a007 Real Root Of 28*x^4+170*x^3-704*x^2-765*x-143 8626778079420745 s001 sum(exp(-3*Pi/4)^n*A242732[n],n=1..infinity) 8626778084880275 r002 44th iterates of z^2 + 8626778089378779 a007 Real Root Of -437*x^4+870*x^3-419*x^2-565*x+625 8626778097008979 a008 Real Root of (-8+5*x-x^2+8*x^4) 8626778131978564 m005 (1/2*Zeta(3)+7/11)/(1/2*Zeta(3)+5/6) 8626778153896641 a001 17711/1364*18^(19/29) 8626778172210561 g005 1/2*2^(1/2)/GAMMA(3/4)*GAMMA(5/6)^2/GAMMA(1/9) 8626778187292912 r004 Im(z^2+c),c=-55/46+1/9*I,z(0)=-1,n=28 8626778196015026 r005 Re(z^2+c),c=-27/32+8/57*I,n=51 8626778204585295 m005 (13/20+1/4*5^(1/2))/(7/8*Catalan+3/5) 8626778204643341 r005 Im(z^2+c),c=-41/58+1/18*I,n=11 8626778206041196 m001 (-ThueMorse+ZetaP(4))/(exp(1)+GAMMA(19/24)) 8626778211961579 r005 Re(z^2+c),c=5/56+1/2*I,n=42 8626778225765375 r005 Re(z^2+c),c=7/62+20/63*I,n=36 8626778237470220 l006 ln(3521/8343) 8626778241988637 r005 Re(z^2+c),c=-7/16+16/27*I,n=3 8626778251937427 m001 ln(gamma)^gamma/(Rabbit^gamma) 8626778267481727 a003 sin(Pi*17/103)-sin(Pi*17/86) 8626778303085990 r008 a(0)=0,K{-n^6,6+96*n^3-10*n^2+24*n} 8626778323449186 m001 HardyLittlewoodC3^Kolakoski-Zeta(1,-1) 8626778328976486 r002 20th iterates of z^2 + 8626778333649087 m002 -Pi^4-Log[Pi]/Pi+Sinh[Pi]*Tanh[Pi] 8626778346427744 a007 Real Root Of -666*x^4+826*x^3+181*x^2-317*x+491 8626778367029405 m005 (1/2*5^(1/2)-4/9)/(1/12*Catalan-6/7) 8626778387834201 a007 Real Root Of -907*x^4-523*x^3+365*x^2+881*x+73 8626778402803558 r005 Im(z^2+c),c=-23/40+13/30*I,n=26 8626778420071398 r008 a(0)=0,K{-n^6,-20-72*n^3-69*n^2+45*n} 8626778426020455 m006 (1/5*ln(Pi)-5)/(1/6/Pi+1/2) 8626778441716846 m005 (1/2*Zeta(3)-2/7)/(10/11*Zeta(3)-8/11) 8626778448243277 a007 Real Root Of -879*x^4+199*x^3-128*x^2-955*x-114 8626778463578471 m001 (Robbin-Thue)/(BesselI(1,2)+ArtinRank2) 8626778499702889 m001 (Lehmer+TwinPrimes)/(BesselI(0,1)-exp(1)) 8626778520943740 r008 a(0)=0,K{-n^6,-10+60*n^3+90*n^2-24*n} 8626778526346592 m001 Cahen*Porter-StolarskyHarborth 8626778535019654 a001 64300051206/329*34^(8/19) 8626778541753249 r008 a(0)=0,K{-n^6,-66+66*n^3+44*n^2+72*n} 8626778559714773 m001 1/GAMMA(5/6)/Bloch^2/exp(GAMMA(7/12)) 8626778564251231 a003 sin(Pi*3/109)*sin(Pi*50/103) 8626778577856507 m001 Gompertz/(Lehmer+Paris) 8626778618797783 a007 Real Root Of 9*x^4-78*x^3+452*x^2-513*x-834 8626778631722808 r005 Re(z^2+c),c=-79/90+2/55*I,n=5 8626778633489106 r005 Re(z^2+c),c=-19/22+23/47*I,n=3 8626778635529003 a007 Real Root Of -528*x^4-156*x^3-369*x^2-110*x+372 8626778649663267 m001 (Bloch+CopelandErdos)/(KomornikLoreti-Niven) 8626778652932815 l006 ln(2885/6836) 8626778680529152 a007 Real Root Of -331*x^4+487*x^3+750*x^2+91*x-766 8626778706543233 a007 Real Root Of -971*x^4-669*x^3-62*x^2-696*x-446 8626778721320536 m001 Bloch*Champernowne*ln(GAMMA(5/24)) 8626778722159119 r008 a(0)=0,K{-n^6,94-44*n^3-96*n^2-70*n} 8626778775043392 m001 (ln(Pi)+Rabbit)/(cos(1)+ln(5)) 8626778778001551 a007 Real Root Of 980*x^4+739*x^3-533*x^2-784*x-348 8626778792270954 a007 Real Root Of 52*x^4-693*x^3+761*x^2+218*x-852 8626778792589928 a007 Real Root Of 540*x^4-527*x^3-866*x^2+213*x+500 8626778796357084 a007 Real Root Of 631*x^4+664*x^3+155*x^2-791*x-69 8626778802330398 r002 53th iterates of z^2 + 8626778803762730 a007 Real Root Of -43*x^4-308*x^3+480*x^2-644*x-862 8626778859941104 a001 281/726103*233^(5/34) 8626778914808483 a007 Real Root Of 844*x^4+436*x^3+877*x^2+115*x-741 8626778920651814 s002 sum(A134672[n]/(pi^n+1),n=1..infinity) 8626778964869668 p001 sum((-1)^n/(436*n+23)/n/(25^n),n=1..infinity) 8626778969829817 a007 Real Root Of -790*x^4+532*x^3-619*x^2-293*x+987 8626778998796355 r005 Re(z^2+c),c=31/106+20/59*I,n=23 8626779027088332 m005 (1/3*2^(1/2)-4/5)/(13/4+1/4*5^(1/2)) 8626779032538296 a007 Real Root Of 576*x^4+221*x^3+806*x^2+743*x-136 8626779039073513 m001 sin(1)^(ln(Pi)*RenyiParking) 8626779044249636 m005 (1/2*5^(1/2)-2/9)/(3/11*5^(1/2)+3/7) 8626779082543859 a007 Real Root Of 848*x^4-879*x^3-847*x^2-63*x-458 8626779085716155 m001 ln(5)^HardyLittlewoodC5*Rabbit 8626779097835460 a007 Real Root Of 625*x^4-882*x^3-864*x^2+514*x+174 8626779104967126 a007 Real Root Of 92*x^4-558*x^3-395*x^2-293*x-368 8626779109649204 m009 (5/6*Psi(1,2/3)+2/3)/(8/3*Catalan+1/3*Pi^2-2) 8626779124934106 q001 3273/3794 8626779129568586 a001 6557470319842/521*521^(4/13) 8626779160534967 m001 ln(2)^(GAMMA(2/3)/ReciprocalFibonacci) 8626779162752692 r002 44th iterates of z^2 + 8626779164811931 m001 (GaussKuzminWirsing+Thue)/(Cahen+CareFree) 8626779186210317 r009 Im(z^3+c),c=-5/62+37/43*I,n=29 8626779200301043 a007 Real Root Of -740*x^4+589*x^3+364*x^2+198*x-410 8626779213458506 r002 5th iterates of z^2 + 8626779232534142 m001 (Backhouse+FeigenbaumDelta)/(Gompertz-Mills) 8626779234959306 a003 sin(Pi*7/104)*sin(Pi*12/89) 8626779239886467 m005 (1/2*3^(1/2)-3/5)/(4/5*exp(1)+10/11) 8626779262524087 a007 Real Root Of -315*x^4+851*x^3-885*x^2-623*x+842 8626779268815559 a007 Real Root Of 79*x^4-564*x^3+345*x^2-252*x-880 8626779297734003 a001 8/9349*11^(53/55) 8626779303374665 l006 ln(2249/5329) 8626779306133301 r005 Im(z^2+c),c=5/16+27/52*I,n=6 8626779307611380 a001 615*7^(4/23) 8626779349524328 a007 Real Root Of 658*x^4+919*x^3+580*x^2-401*x-552 8626779362393215 r005 Im(z^2+c),c=27/94+27/49*I,n=18 8626779364656101 a007 Real Root Of 889*x^4+912*x^3+471*x^2+456*x+136 8626779397619658 m001 Porter^polylog(4,1/2)/Riemann1stZero 8626779442246147 r009 Re(z^3+c),c=-67/118+16/59*I,n=16 8626779457410734 a001 3/34*55^(33/58) 8626779458877152 a007 Real Root Of 854*x^4-786*x^3-790*x^2+279*x-149 8626779467591158 a003 sin(Pi*23/70)/sin(Pi*52/111) 8626779480933312 m001 (GAMMA(11/12)+Robbin)/(Chi(1)-Zeta(5)) 8626779499860962 a007 Real Root Of -484*x^4+121*x^3-874*x^2-654*x+432 8626779500536212 h001 (-exp(3)-8)/(-4*exp(2)-3) 8626779508774470 a007 Real Root Of -842*x^4-742*x^3+248*x^2+753*x+455 8626779512023213 r005 Im(z^2+c),c=-9/16+1/65*I,n=33 8626779533313086 a007 Real Root Of 590*x^4-385*x^3-878*x^2-601*x-439 8626779548632562 m001 GaussAGM(1,1/sqrt(2))^2*ln(cos(Pi/12))^2 8626779556627968 p001 sum(1/(147*n+116)/(625^n),n=0..infinity) 8626779608649839 a008 Real Root of (2+6*x-4*x^2-5*x^3+x^4-5*x^5) 8626779622899938 a007 Real Root Of 755*x^4+180*x^3-5*x^2-771*x-964 8626779630213937 r002 46th iterates of z^2 + 8626779651632177 m001 (Magata-OrthogonalArrays)/(ln(gamma)-Pi^(1/2)) 8626779656104106 a001 6557470319842/843*322^(5/12) 8626779708119368 m005 (1/3*5^(1/2)+1/7)/(1/2*Zeta(3)+3/7) 8626779708847222 a007 Real Root Of 618*x^4-739*x^3+658*x^2+696*x-706 8626779725436891 r005 Re(z^2+c),c=-5/6+35/227*I,n=63 8626779731561694 m001 (Pi^(1/2)+TwinPrimes)/(Pi-arctan(1/3)) 8626779750937091 a007 Real Root Of -548*x^4+722*x^3+37*x^2-557*x+259 8626779764695478 m001 1/ln(GAMMA(11/12))/GAMMA(1/6)^2*Zeta(3)^2 8626779789269184 l006 ln(3862/9151) 8626779790637066 m005 (1/2*Zeta(3)-2)/(4/5*Catalan+8/9) 8626779793679603 m001 FeigenbaumB^GAMMA(7/12)/(FeigenbaumB^Sarnak) 8626779801656916 m001 StolarskyHarborth^FeigenbaumMu-ZetaQ(3) 8626779856900222 m001 (FeigenbaumMu+Weierstrass)/(Pi^(1/2)-Conway) 8626779857118991 m005 (1/2*exp(1)-5/8)/(2/11*5^(1/2)+4/9) 8626779866383067 r005 Re(z^2+c),c=-93/106+3/64*I,n=23 8626779874919016 a003 sin(Pi*26/73)*sin(Pi*29/71) 8626779877492105 m001 (2^(1/2)-exp(1))/(-sin(1/12*Pi)+OneNinth) 8626779893106829 r005 Re(z^2+c),c=-11/12+1/18*I,n=30 8626779967539395 m001 1/cosh(1)*ln(Artin)/exp(1)^2 8626779967701498 s001 sum(exp(-Pi/4)^(n-1)*A230583[n],n=1..infinity) 8626779969182572 r001 9i'th iterates of 2*x^2-1 of 8626779984490674 a007 Real Root Of 828*x^4-268*x^3-261*x^2-287*x-684 8626779992281704 a007 Real Root Of 741*x^4-356*x^3+586*x^2+968*x-240 8626780016558131 a007 Real Root Of 603*x^4+88*x^3+723*x^2+98*x-731 8626780017645937 m001 GAMMA(1/3)^2/ln(Rabbit)^2/sin(1)^2 8626780022783864 m001 BesselJZeros(0,1)/ln(5)/sqrt(3) 8626780073799884 a003 cos(Pi*11/48)+cos(Pi*46/99) 8626780092709411 a007 Real Root Of -856*x^4-305*x^3+240*x^2+85*x+173 8626780095784039 r005 Re(z^2+c),c=-97/114+8/37*I,n=5 8626780109236538 r001 17i'th iterates of 2*x^2-1 of 8626780115247780 a007 Real Root Of -574*x^4-404*x^3+41*x^2+73*x+91 8626780179012609 r005 Im(z^2+c),c=-3/98+5/54*I,n=5 8626780193609921 a007 Real Root Of 912*x^4-682*x^3-559*x^2+95*x-445 8626780240504133 l002 Ei(6,75/109) 8626780268887523 a007 Real Root Of -496*x^4+511*x^3+361*x^2-538*x-130 8626780276297349 a007 Real Root Of 991*x^4+339*x^3+536*x^2+203*x-555 8626780287537185 a007 Real Root Of -281*x^4+103*x^3-701*x^2+47*x+784 8626780298391796 r005 Re(z^2+c),c=-7/8+43/244*I,n=48 8626780336171029 m001 Conway*Thue^exp(1) 8626780355577555 m004 -5+(25*Pi)/2+5*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 8626780369559884 a007 Real Root Of 4*x^4-981*x^3+401*x^2+987*x-79 8626780369841899 m005 (1/3*exp(1)-2/3)/(7/10*Catalan-4/11) 8626780388033506 m001 (Rabbit+Robbin)/(GAMMA(2/3)+CopelandErdos) 8626780406725855 m001 MertensB3/GAMMA(17/24)/Zeta(3) 8626780420032686 m001 1/GAMMA(7/24)/Kolakoski^2*exp(sin(Pi/12))^2 8626780457415740 a008 Real Root of x^4-2*x^3-222*x^2-544*x+5006 8626780458513930 r009 Re(z^3+c),c=-17/126+26/51*I,n=22 8626780466750094 l006 ln(1613/3822) 8626780469941545 m001 (ln(2)+BesselI(0,2))/(OneNinth-ZetaP(2)) 8626780506415191 m001 GaussAGM(1,1/sqrt(2))^((2^(1/3))/sqrt(2)) 8626780522062613 a007 Real Root Of -213*x^4+376*x^3-183*x^2-127*x+386 8626780529253927 a007 Real Root Of -588*x^4-171*x^3-655*x^2+779*x+72 8626780608945692 r005 Re(z^2+c),c=-43/50+6/59*I,n=15 8626780626780626 q001 1514/1755 8626780654582571 m001 1/MertensB1*Bloch^2/ln(FeigenbaumD) 8626780663958816 a007 Real Root Of 589*x^4-125*x^3-657*x^2-499*x-348 8626780665906717 a007 Real Root Of 931*x^4+606*x^3+652*x^2+16*x-598 8626780686303044 r009 Im(z^3+c),c=-19/102+51/59*I,n=41 8626780701205672 g001 GAMMA(1/7,31/104) 8626780749347987 r005 Im(z^2+c),c=-11/12+9/125*I,n=19 8626780806183213 a007 Real Root Of 600*x^4-875*x^3+658*x^2+810*x-685 8626780832597859 b008 Sinh[Sech[Pi]/10] 8626780835783136 b008 ArcCsc[10*Cosh[Pi]] 8626780835899952 r005 Im(z^2+c),c=-29/60+55/59*I,n=3 8626780876970697 b008 1-43*E^3 8626780905303181 l006 ln(8857/9655) 8626780910597093 m001 (Otter+TwinPrimes)/(exp(1/Pi)-2*Pi/GAMMA(5/6)) 8626780944530094 m001 1/Khintchine/ln(Bloch)^2/BesselJ(0,1) 8626780944775142 a007 Real Root Of -595*x^4+484*x^3-827*x^2-315*x+984 8626780952048984 m005 (35/8+3/8*5^(1/2))/(1/4*Catalan-5/6) 8626780964714228 a007 Real Root Of -77*x^4-768*x^3-786*x^2+988*x+417 8626780984208157 p003 LerchPhi(1/256,6,49/103) 8626780990105276 m005 (1/2*Pi-3/7)/(2/3*5^(1/2)-1/6) 8626780993380564 m001 (GAMMA(7/12)+Thue)/(Si(Pi)+Catalan) 8626780995144309 a003 sin(Pi*11/56)/cos(Pi*25/94) 8626781010622863 a007 Real Root Of -741*x^4+972*x^3+332*x^2-376*x+463 8626781013817611 r002 7th iterates of z^2 + 8626781021678069 a003 sin(Pi*4/27)/cos(Pi*29/89) 8626781033690867 a003 cos(Pi*3/73)-cos(Pi*39/85) 8626781036082738 m001 ln(Niven)^2/FeigenbaumDelta*sqrt(2) 8626781060015774 a007 Real Root Of 213*x^4+327*x^3+569*x^2-273*x-567 8626781073894551 m001 (-MasserGramain+Porter)/(GAMMA(7/12)-gamma) 8626781075850057 a001 123/1346269*514229^(7/41) 8626781089265228 l006 ln(4203/9959) 8626781151418905 a001 843/121393*1597^(1/34) 8626781157627489 m001 exp(Zeta(3))*GAMMA(7/24)*sin(1) 8626781165808307 m006 (2/Pi+5/6)/(5/6*ln(Pi)+3/4) 8626781191189037 m005 (1/3*2^(1/2)+1/4)/(5/9*Pi-10/11) 8626781191876484 a007 Real Root Of 67*x^4-142*x^3+593*x^2+804*x+124 8626781197901124 a007 Real Root Of 719*x^4-835*x^3+866*x^2+737*x-943 8626781200026287 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=27 8626781240463589 m001 Tribonacci^ArtinRank2*TreeGrowth2nd^ArtinRank2 8626781248557563 m001 GAMMA(3/4)^2*Porter*exp(Zeta(1,2)) 8626781254610550 m001 (3^(1/3)+sin(1/12*Pi))/(Conway-Riemann2ndZero) 8626781255677984 m001 BesselI(1,1)^(Artin/exp(1/exp(1))) 8626781269987439 m005 (1/2*5^(1/2)+3/8)/(3/5*gamma-4/11) 8626781297896011 a001 109801/36*8^(1/2) 8626781297940733 a001 1/72*(1/2*5^(1/2)+1/2)^27*4^(1/4) 8626781318773000 m005 (1/6*exp(1)+5)/(5*2^(1/2)-3/4) 8626781325482396 a001 5/312119004989*29^(1/2) 8626781372846200 m008 (5/6*Pi^3-3/5)/(3*Pi^4+1/3) 8626781418009399 b008 E*(5-3*Sqrt[Pi]) 8626781419214101 p001 sum(1/(205*n+116)/(512^n),n=0..infinity) 8626781440120892 m001 GlaisherKinkelin/GAMMA(5/6)/ln(2+3^(1/2)) 8626781445332628 a007 Real Root Of -32*x^4-191*x^3+800*x^2+525*x-400 8626781446769536 a007 Real Root Of -589*x^4+961*x^3+798*x^2+614*x+879 8626781476955135 l006 ln(2590/6137) 8626781519238934 m005 (1/2*2^(1/2)+5/6)/(10/11*2^(1/2)+1/2) 8626781519854643 r005 Im(z^2+c),c=15/38+11/32*I,n=43 8626781569944355 m001 (Khinchin+Stephens)^MasserGramainDelta 8626781574279671 a001 10610209857723/521*521^(3/13) 8626781583701476 a007 Real Root Of -683*x^4+643*x^3-351*x^2-522*x+602 8626781592109324 a003 cos(Pi*16/107)*sin(Pi*18/43) 8626781623657040 m002 Sech[Pi]+Tanh[Pi]/Pi^12 8626781639493532 a007 Real Root Of 635*x^4-345*x^3-146*x^2-419*x-826 8626781648817814 a007 Real Root Of -471*x^4-348*x^3-458*x^2+496*x+46 8626781660973495 r002 2th iterates of z^2 + 8626781680668705 a007 Real Root Of 426*x^4-658*x^3-182*x^2+867*x+225 8626781685163935 a003 sin(Pi*12/65)/cos(Pi*25/89) 8626781718558604 a001 2/121393*610^(41/42) 8626781752814236 m001 (-Chi(1)+ReciprocalLucas)/(2^(1/2)-exp(1)) 8626781809613734 m001 (Conway+HardyLittlewoodC5)/(sin(1)+ln(Pi)) 8626781853685761 a001 521/591286729879*377^(17/22) 8626781857925451 a007 Real Root Of 460*x^4-863*x^3-500*x^2+570*x+55 8626781859901173 a001 144/199*3^(4/25) 8626781861375385 a007 Real Root Of -359*x^4-86*x^3-819*x^2-385*x+421 8626781908402990 a007 Real Root Of 261*x^4-925*x^3-661*x^2-91*x-325 8626781916324882 r005 Im(z^2+c),c=-5/13+7/54*I,n=7 8626781924379390 a008 Real Root of (-6+3*x+4*x^2-6*x^3-2*x^4-6*x^5) 8626781925447968 r005 Im(z^2+c),c=13/42+8/15*I,n=22 8626781933770557 l006 ln(3567/8452) 8626781941880669 r005 Re(z^2+c),c=-16/19+5/32*I,n=37 8626781963927050 m001 (-Zeta(1,2)+MertensB2)/(sin(1)+exp(1/exp(1))) 8626781998758066 a007 Real Root Of -303*x^4+265*x^3+541*x^2+869*x+685 8626782002291383 r005 Im(z^2+c),c=-123/122+4/45*I,n=11 8626782003383669 m001 ln(GAMMA(1/12))*Riemann3rdZero/sin(1)^2 8626782026994494 m002 Pi^(-12)+Sech[Pi] 8626782032584734 a007 Real Root Of 73*x^4+559*x^3-521*x^2+733*x-329 8626782046109763 a007 Real Root Of -648*x^4+937*x^3-34*x^2+243*x-427 8626782049040052 m001 1/GAMMA(13/24)*exp(RenyiParking)*sin(Pi/12)^2 8626782055018870 a007 Real Root Of -530*x^4-407*x^3-155*x^2+99*x+233 8626782061000754 a003 sin(Pi*25/67)*sin(Pi*32/83) 8626782064728505 a007 Real Root Of -275*x^4-324*x^3-270*x^2+861*x+888 8626782079640599 p004 log(19219/8111) 8626782086993621 a007 Real Root Of 856*x^4-318*x^3+463*x^2+176*x-871 8626782090750516 m001 1/ln(Riemann1stZero)/Lehmer*GAMMA(2/3) 8626782095277740 r009 Im(z^3+c),c=-3/20+3/37*I,n=4 8626782097474377 a001 228826127/55*9227465^(10/21) 8626782097476859 a001 1860498/55*225851433717^(10/21) 8626782102599180 m001 exp(Porter)*MertensB1/GAMMA(1/4)^2 8626782106657713 r005 Re(z^2+c),c=-2/15+47/55*I,n=20 8626782120173272 a007 Real Root Of 37*x^4-914*x^3+235*x^2-147*x-909 8626782121589859 a007 Real Root Of -65*x^4-679*x^3-995*x^2+139*x-676 8626782158301779 g006 Psi(1,11/12)+Psi(1,6/7)-Psi(1,4/11)-Psi(1,4/7) 8626782159053470 m005 (-15/4+1/4*5^(1/2))/(5/8*exp(1)+2) 8626782220452820 r009 Im(z^3+c),c=-41/126+47/64*I,n=7 8626782223600274 a007 Real Root Of -225*x^4+476*x^3+878*x^2+785*x+454 8626782234632874 m005 (-21/44+1/4*5^(1/2))/(6*3^(1/2)-11/12) 8626782244151131 l006 ln(7736/8433) 8626782270821254 m005 (1/2*2^(1/2)+1/10)/(5/11*exp(1)-3/10) 8626782275702114 a007 Real Root Of -945*x^4+164*x^3+691*x^2+877*x+871 8626782299145470 a007 Real Root Of -114*x^4+887*x^3-245*x^2-299*x+557 8626782300303287 a001 3/55*144^(5/9) 8626782322156987 a007 Real Root Of -373*x^4+994*x^3+676*x^2-920*x-452 8626782327754666 m001 (gamma+Zeta(3))/(BesselI(1,2)+Bloch) 8626782355757685 m001 FeigenbaumMu*(gamma+Tribonacci) 8626782357572603 m005 (1/2*gamma+5/12)/(1/7*gamma-9/10) 8626782361423386 a007 Real Root Of -607*x^4-67*x^3+649*x^2+967*x-938 8626782377320880 b008 Pi*Gamma[1/5,13] 8626782392365158 r009 Im(z^3+c),c=-47/86+22/41*I,n=5 8626782393056416 q001 2783/3226 8626782397652916 a007 Real Root Of 189*x^4-424*x^3+648*x^2-103*x-948 8626782411912244 r005 Im(z^2+c),c=-71/60+3/26*I,n=57 8626782419850507 a008 Real Root of (10+14*x-15*x^2-17*x^3) 8626782431128938 m005 (1/2*5^(1/2)+4/5)/(2/7*exp(1)-3) 8626782441577957 m005 (1/3*Catalan-1/7)/(1/7*exp(1)-1/5) 8626782443261049 m005 (1/2*Catalan+4/5)/(115/154+7/22*5^(1/2)) 8626782454270676 r002 51th iterates of z^2 + 8626782467772947 a007 Real Root Of -431*x^4+842*x^3+506*x^2+464*x+803 8626782509907499 r002 45th iterates of z^2 + 8626782523353333 a007 Real Root Of 485*x^4+146*x^3-377*x^2-330*x-179 8626782525909783 m001 (Catalan-Shi(1))/(-KhinchinHarmonic+OneNinth) 8626782530475687 m001 Zeta(1/2)^2*ArtinRank2^2*ln(Zeta(7)) 8626782532911294 m006 (5/6*Pi^2-3)/(1/3/Pi-1/6) 8626782559398575 r009 Re(z^3+c),c=-11/90+18/25*I,n=35 8626782564989585 r005 Re(z^2+c),c=-17/20+3/23*I,n=19 8626782578400164 a007 Real Root Of -388*x^4+574*x^3+926*x^2-49*x-148 8626782578680905 r002 2th iterates of z^2 + 8626782629064751 r005 Im(z^2+c),c=-51/38+3/46*I,n=26 8626782631611393 a007 Real Root Of 954*x^4-959*x^3-326*x^2-98*x-986 8626782640788844 a001 7/121393*3^(11/30) 8626782647079783 m005 (1/2*gamma-1/5)/(1/2*5^(1/2)-1/11) 8626782681124847 m001 Sierpinski/ln(Champernowne)^2*Zeta(1/2) 8626782785269901 m001 ReciprocalFibonacci^Paris/Mills 8626782790810615 a007 Real Root Of -816*x^4+200*x^3+817*x^2+767*x+634 8626782804685045 a007 Real Root Of -443*x^4-458*x^3+273*x^2+699*x+58 8626782808724439 b008 1+Pi*(24+Pi) 8626782808724439 m002 1+24*Pi+Pi^2 8626782821334824 r005 Re(z^2+c),c=7/62+20/63*I,n=35 8626782870189545 m001 1/GAMMA(1/6)/FeigenbaumB^2*exp(Zeta(3)) 8626782908373056 m001 1/Magata^2/ln(LandauRamanujan)^2/sinh(1)^2 8626782943709203 r005 Im(z^2+c),c=-31/82+7/51*I,n=14 8626782960969021 h001 (4/5*exp(1)+1/6)/(11/12*exp(1)+2/9) 8626782971456906 a007 Real Root Of -385*x^4-168*x^3-450*x^2-49*x+398 8626782971666968 m001 polylog(4,1/2)^(LaplaceLimit/Otter) 8626782978259012 m002 -4*E^Pi+E^Pi*Pi*Csch[Pi] 8626782982093858 a007 Real Root Of -610*x^4+856*x^3-894*x^2-883*x+791 8626782982772092 a007 Real Root Of -65*x^4+34*x^3+333*x^2+63*x-288 8626783049611568 a007 Real Root Of -140*x^4+715*x^3-14*x^2+372*x-692 8626783053546106 s002 sum(A204299[n]/(n^3*pi^n+1),n=1..infinity) 8626783053673629 m001 (Shi(1)+3^(1/3))/(-ln(2+3^(1/2))+ErdosBorwein) 8626783056504735 s002 sum(A204299[n]/(n^3*pi^n-1),n=1..infinity) 8626783062374396 a001 1364/3*75025^(39/58) 8626783062713091 m001 ln(ln(3)/arctan(1/2)) 8626783070800894 r005 Im(z^2+c),c=-23/86+1/8*I,n=19 8626783103807233 r004 Re(z^2+c),c=-11/12+1/18*I,z(0)=-1,n=25 8626783107170718 h001 (1/12*exp(1)+2/3)/(1/11*exp(2)+4/11) 8626783115211667 a007 Real Root Of 878*x^4+337*x^3-170*x^2-236*x-347 8626783121060516 r005 Im(z^2+c),c=-5/7+1/105*I,n=30 8626783122646719 a007 Real Root Of 244*x^4-246*x^3+791*x^2-71*x-943 8626783128869322 m006 (1/4*Pi-3/5)/(1/3*ln(Pi)-1/6) 8626783144775517 l006 ln(977/2315) 8626783151187510 m001 (-ErdosBorwein+Trott)/(Si(Pi)-gamma(3)) 8626783158769926 b008 81+4*ArcCosh[2] 8626783189633102 a007 Real Root Of -467*x^4+576*x^3-319*x^2+777*x-65 8626783217625479 m001 (BesselJ(1,1)+FibonacciFactorial)/(Kac+Mills) 8626783231364053 m001 (Catalan-DuboisRaymond)/(GaussAGM+ZetaQ(4)) 8626783248016060 r005 Im(z^2+c),c=-43/78+9/58*I,n=45 8626783255095282 s002 sum(A138316[n]/(n*exp(n)-1),n=1..infinity) 8626783266415119 a007 Real Root Of -384*x^4+240*x^3+811*x^2+453*x+154 8626783296357901 m005 (1/2*Pi-1/7)/(5/9*Zeta(3)-5/6) 8626783296547813 m009 (Pi^2-4)/(32*Catalan+4*Pi^2-3/4) 8626783317097522 a007 Real Root Of 986*x^4-42*x^3+175*x^2-126*x-812 8626783333447105 m001 exp(1)*(5^(1/2)-Zeta(1,2)) 8626783333447105 m001 exp(1)*(Zeta(1,2)-sqrt(5)) 8626783348551643 m001 (-FeigenbaumC+ZetaQ(3))/(5^(1/2)-Champernowne) 8626783396130575 b008 5*E^(1/3)+Sqrt[E] 8626783437727897 a007 Real Root Of -448*x^4+970*x^3-124*x^2+505*x-718 8626783478589723 m008 (1/6*Pi^2-1/4)/(1/2*Pi^3+2/3) 8626783515628453 r005 Re(z^2+c),c=-93/106+3/64*I,n=31 8626783548220777 m005 (19/20+1/4*5^(1/2))/(8/11*Zeta(3)+7/8) 8626783566265710 a007 Real Root Of -246*x^4+972*x^3+107*x^2+165*x+823 8626783587619999 m005 (1/3*exp(1)-1/6)/(2/11*2^(1/2)+3/5) 8626783606502823 r002 4th iterates of z^2 + 8626783607818405 m001 (Lehmer-PrimesInBinary)/(Zeta(5)+GAMMA(23/24)) 8626783635229839 r009 Im(z^3+c),c=-11/126+47/61*I,n=18 8626783644798089 a007 Real Root Of 238*x^4-233*x^3+893*x^2+437*x-569 8626783655174710 r009 Re(z^3+c),c=-13/28+19/33*I,n=13 8626783722725842 r001 1i'th iterates of 2*x^2-1 of 8626783728595028 r009 Im(z^3+c),c=-9/40+43/45*I,n=46 8626783748235895 a007 Real Root Of -211*x^4+354*x^3+15*x^2+495*x+760 8626783762772492 r002 49th iterates of z^2 + 8626783770705563 a007 Real Root Of -912*x^4-51*x^3+606*x^2+680*x+608 8626783784400054 a007 Real Root Of -741*x^4+478*x^3+585*x^2+349*x+583 8626783792154332 m005 (1/2*exp(1)-5/7)/(2/5*2^(1/2)+2/11) 8626783795359202 m001 Sierpinski*exp(ArtinRank2)/BesselK(1,1) 8626783795962704 a007 Real Root Of -24*x^4-193*x^3+37*x^2-707*x+163 8626783800500474 a007 Real Root Of -663*x^4+528*x^3+186*x^2+326*x+849 8626783839107983 a007 Real Root Of 512*x^4-467*x^3-552*x^2-900*x-949 8626783855425469 m001 (sin(1)+GAMMA(17/24))/(Kac+Tribonacci) 8626783857760119 h001 (4/9*exp(1)+1/7)/(6/11*exp(1)+1/12) 8626783895689180 a001 38/17*46368^(17/50) 8626783921614875 m001 Trott2nd^BesselI(1,2)*Tribonacci^BesselI(1,2) 8626783957726097 a007 Real Root Of 121*x^4+189*x^3-113*x^2-467*x+41 8626783958825465 r005 Re(z^2+c),c=-3/17+17/21*I,n=15 8626783986532955 a007 Real Root Of 110*x^4+224*x^3+321*x^2-954*x-979 8626784004681154 m002 5+(3*Coth[Pi])/Log[Pi]+Tanh[Pi] 8626784026904666 m001 (Niven+Salem)/(Catalan-LandauRamanujan2nd) 8626784035600058 a007 Real Root Of 297*x^4-977*x^3-624*x^2+245*x-116 8626784036770346 l006 ln(6615/7211) 8626784052075838 r002 5th iterates of z^2 + 8626784052973895 r009 Im(z^3+c),c=-33/94+17/19*I,n=4 8626784064815685 a007 Real Root Of -827*x^4-334*x^3-725*x^2-261*x+558 8626784075734641 r005 Re(z^2+c),c=2/19+7/52*I,n=8 8626784107511465 m002 (Log[Pi]*Sech[Pi])/Pi^5+Sech[Pi]*Tanh[Pi] 8626784161403949 l006 ln(4249/10068) 8626784181534314 a007 Real Root Of -690*x^4-263*x^3-397*x^2-628*x-33 8626784216538562 a007 Real Root Of -786*x^4-436*x^3-338*x^2-95*x+325 8626784220182925 m005 (2/5*Pi-5/6)/(4*2^(1/2)-3/4) 8626784269040780 a007 Real Root Of 863*x^4+123*x^3+614*x^2+663*x-284 8626784270681995 a003 sin(Pi*24/101)/sin(Pi*15/52) 8626784271007904 r005 Im(z^2+c),c=-9/52+6/53*I,n=14 8626784271485409 a001 52623384056061/610 8626784326674829 r005 Im(z^2+c),c=47/122+13/37*I,n=23 8626784345221467 a007 Real Root Of -383*x^4+911*x^3+907*x^2-852*x-613 8626784388805336 r005 Im(z^2+c),c=-15/106+50/61*I,n=33 8626784391974148 r005 Re(z^2+c),c=-15/14+38/217*I,n=58 8626784408297193 s002 sum(A017965[n]/(n^3*pi^n-1),n=1..infinity) 8626784431273214 r005 Re(z^2+c),c=-23/26+29/45*I,n=3 8626784464963213 l006 ln(3272/7753) 8626784467476176 a007 Real Root Of 837*x^4-730*x^3-485*x^2-461*x-969 8626784496788472 r005 Re(z^2+c),c=-7/8+12/205*I,n=21 8626784500339904 q001 1269/1471 8626784501674797 m005 (1/2*Catalan+5/12)/(2/7*5^(1/2)+3/8) 8626784502079462 r002 12i'th iterates of 2*x/(1-x^2) of 8626784514335559 a007 Real Root Of 74*x^4+529*x^3-978*x^2-252*x+385 8626784523886547 m005 (1/2*exp(1)+4)/(1/8*2^(1/2)+4/9) 8626784524729626 a001 47/8*34^(16/21) 8626784539209962 a007 Real Root Of 743*x^4+16*x^3-695*x^2-488*x-305 8626784541383376 a001 13/2*123^(1/17) 8626784560517051 r009 Re(z^3+c),c=-51/94+3/58*I,n=3 8626784580721061 a001 53316291173/521*1364^(14/15) 8626784581228543 r002 58th iterates of z^2 + 8626784581325326 a007 Real Root Of 91*x^4-475*x^3-579*x^2-98*x+770 8626784595082547 m001 Zeta(1,2)^DuboisRaymond/ln(Pi) 8626784610872526 a007 Real Root Of 606*x^4+551*x^3+616*x^2-97*x-524 8626784622322818 a003 cos(Pi*27/101)+cos(Pi*7/16) 8626784685896284 g002 Psi(4/5)-Psi(8/11)-Psi(2/9)-Psi(2/7) 8626784703924922 a007 Real Root Of -576*x^4-44*x^3+211*x^2+253*x+352 8626784719512379 a007 Real Root Of -88*x^4-650*x^3+931*x^2-157*x-560 8626784730954588 m001 1/OneNinth*exp(Paris)*sin(1) 8626784773421188 a001 76/121393*55^(2/25) 8626784782653446 m001 (Pi+Conway)/(DuboisRaymond-Rabbit) 8626784802308777 m001 ErdosBorwein/HeathBrownMoroz/Riemann1stZero 8626784816135799 a007 Real Root Of 29*x^4-242*x^3-210*x^2-48*x+337 8626784880544676 m005 (13/42+1/6*5^(1/2))/(2*gamma-4/11) 8626784883355350 a007 Real Root Of -571*x^4+942*x^3-8*x^2+696*x-883 8626784889842133 a001 86267571272/521*1364^(13/15) 8626784893688123 a001 54018521/144*2504730781961^(4/21) 8626784893688126 a001 370248451/144*102334155^(4/21) 8626784893818168 a007 Real Root Of -569*x^4+556*x^3-79*x^2-59*x+680 8626784907806789 a001 141422324*6557470319842^(9/17) 8626784907806790 a001 10749957122*1836311903^(9/17) 8626784907810244 a001 817138163596*514229^(9/17) 8626784912488190 a001 634430159/36*4181^(4/21) 8626784920499436 r005 Re(z^2+c),c=-63/74+7/40*I,n=17 8626784926723835 r005 Im(z^2+c),c=-2/3+4/131*I,n=16 8626784945086178 m001 (3^(1/3)-CareFree)/(OneNinth+RenyiParking) 8626784981195494 m001 exp(BesselJ(0,1))/Khintchine^2/sin(Pi/5)^2 8626784984305643 a007 Real Root Of -565*x^4+759*x^3+454*x^2-398*x+119 8626784985673953 a007 Real Root Of 629*x^4-911*x^3+343*x^2-628*x+523 8626785009656334 m005 (1/2*Catalan+10/11)/(3/5*3^(1/2)+6/11) 8626785026977704 l006 ln(2295/5438) 8626785042504846 a007 Real Root Of -155*x^4+225*x^3-772*x^2-125*x+697 8626785060441092 m001 ln(GAMMA(1/12))*Ei(1)^2/Zeta(7)^2 8626785082943155 a007 Real Root Of 836*x^4-238*x^3-401*x^2-600*x-835 8626785193481822 g001 Re(GAMMA(73/60+I*3/10)) 8626785198963217 a001 139583862445/521*1364^(4/5) 8626785199236310 a007 Real Root Of 869*x^4-345*x^3-664*x^2+141*x-87 8626785207287061 a001 36/6119*199^(49/52) 8626785231331273 p003 LerchPhi(1/10,5,13/20) 8626785239251748 m001 BesselJ(0,1)*exp(Robbin)^2/gamma^2 8626785242259641 a007 Real Root Of -498*x^4+283*x^3-200*x^2-580*x+106 8626785298977305 m001 Sierpinski^Cahen*HardyLittlewoodC4^Cahen 8626785343869691 r005 Re(z^2+c),c=-109/126+9/40*I,n=37 8626785344807059 r002 43th iterates of z^2 + 8626785357942208 r005 Re(z^2+c),c=-7/8+15/256*I,n=19 8626785392393982 m001 (ArtinRank2-Cahen)/(ZetaP(2)+ZetaP(3)) 8626785400768106 m001 (1-sin(1))/(-Tribonacci+ZetaQ(4)) 8626785408151284 r002 26th iterates of z^2 + 8626785417590124 r005 Re(z^2+c),c=-11/12+1/18*I,n=28 8626785456103724 a007 Real Root Of 580*x^4-964*x^3+236*x^2-226*x+317 8626785462534567 r009 Im(z^3+c),c=-11/94+27/32*I,n=53 8626785479432560 a007 Real Root Of 655*x^4+464*x^3+700*x^2+511*x-145 8626785489790136 a007 Real Root Of 508*x^4-625*x^3-579*x^2+388*x+83 8626785508084311 a001 225851433717/521*1364^(11/15) 8626785535948454 l006 ln(3613/8561) 8626785547292479 a003 sin(Pi*38/117)/sin(Pi*41/91) 8626785574117074 a003 sin(Pi*32/97)/sin(Pi*43/90) 8626785577822138 r002 24th iterates of z^2 + 8626785604889703 a007 Real Root Of -389*x^4+728*x^3+294*x^2-291*x+213 8626785638469386 a007 Real Root Of -355*x^4+628*x^3+481*x^2-200*x-392 8626785689895736 a003 sin(Pi*26/79)/sin(Pi*42/89) 8626785722493204 r005 Re(z^2+c),c=-7/110+12/59*I,n=6 8626785744118636 m001 gamma(1)-gamma(3)-Zeta(1,2) 8626785764008281 m001 (Psi(2,1/3)-Shi(1))/(-exp(-1/2*Pi)+Thue) 8626785778245532 a008 Real Root of x^4+77*x^2-11269 8626785812874031 r009 Im(z^3+c),c=-3/82+41/47*I,n=17 8626785817205417 a001 365435296162/521*1364^(2/3) 8626785829686251 r005 Re(z^2+c),c=-37/42+1/58*I,n=15 8626785847133296 m001 (-Otter+Paris)/(2^(1/2)-KhinchinHarmonic) 8626785851669828 m005 (1/2*exp(1)-1/10)/(4/7*5^(1/2)+2/11) 8626785864062730 m001 FibonacciFactorial^(GAMMA(11/12)/Zeta(1/2)) 8626785870590109 a007 Real Root Of 451*x^4+190*x^3+531*x^2+255*x-303 8626785871810520 m001 (GAMMA(3/4)*ZetaR(2)+ln(3))/ZetaR(2) 8626785877212955 r009 Im(z^3+c),c=-9/74+53/63*I,n=49 8626785877766561 m005 (1/2*5^(1/2)+5/8)/(2/5*2^(1/2)-4/11) 8626785884086499 m001 (exp(1/Pi)+CareFree)/(Sierpinski-ZetaP(3)) 8626785902615775 m001 ln(2)*BesselJZeros(0,1)/GAMMA(11/24) 8626785905235895 a007 Real Root Of -255*x^4-188*x^3-277*x^2+806*x+922 8626785935070732 a001 11/17711*610^(16/39) 8626785946422645 a007 Real Root Of 23*x^4+231*x^3+169*x^2-972*x-43 8626785960083229 a003 cos(Pi*1/68)-cos(Pi*13/97) 8626785964513722 a001 34/843*11^(13/41) 8626785976755984 m005 (1/2*5^(1/2)+7/12)/(5/7*5^(1/2)+3/8) 8626785985606785 a001 1/105937*17711^(23/33) 8626786015650376 r005 Re(z^2+c),c=-11/12+1/18*I,n=26 8626786022562196 a007 Real Root Of 702*x^4-646*x^3-360*x^2-465*x+695 8626786053448271 m005 (1/2*gamma+3/5)/(5/6*5^(1/2)-5/6) 8626786061766628 a007 Real Root Of 518*x^4-734*x^3-506*x^2-543*x-850 8626786065056357 a008 Real Root of x^4-2*x^3-47*x^2-116*x+244 8626786072727539 r002 14th iterates of z^2 + 8626786082458464 m001 1/ln(Riemann2ndZero)/CareFree/cos(1) 8626786088791940 r002 5th iterates of z^2 + 8626786114259177 r008 a(0)=0,K{-n^6,17-99*n^3+31*n^2-65*n} 8626786126326533 a001 591286729879/521*1364^(3/5) 8626786141139163 r005 Re(z^2+c),c=-29/34+15/122*I,n=43 8626786141647302 a007 Real Root Of -113*x^4+661*x^3-457*x^2-786*x+149 8626786190964099 r008 a(0)=0,K{-n^6,29+77*n^3+58*n^2-48*n} 8626786226574237 r008 a(0)=0,K{-n^6,-21-72*n^3-69*n^2+46*n} 8626786236123797 r008 a(0)=0,K{-n^6,-31+79*n^3+22*n^2+46*n} 8626786239241561 r005 Re(z^2+c),c=-109/126+4/43*I,n=35 8626786244016430 r005 Im(z^2+c),c=-1/18+45/62*I,n=12 8626786261999574 s001 sum(1/10^(n-1)*A231090[n]/n!,n=1..infinity) 8626786283040135 r005 Re(z^2+c),c=-3/34+31/36*I,n=52 8626786286296018 m004 -20*Pi+(5*Sinh[Sqrt[5]*Pi])/(6*Pi) 8626786289968359 g002 Psi(7/12)+Psi(3/11)-Psi(1/12)-Psi(4/7) 8626786300451060 p003 LerchPhi(1/256,4,21/64) 8626786301220196 r008 a(0)=0,K{-n^6,25-67*n^3-61*n^2-13*n} 8626786311045682 m001 (TwinPrimes-Weierstrass)/(Ei(1,1)+Tetranacci) 8626786340370262 r008 a(0)=0,K{-n^6,-45+64*n^3+60*n^2+37*n} 8626786343393889 m001 1/exp(Riemann3rdZero)/FeigenbaumC*GAMMA(1/12) 8626786384777351 m005 (1/2*gamma-2/11)/(1/6*Pi+5/7) 8626786386684488 m001 Zeta(7)*ErdosBorwein^2/ln(sqrt(3))^2 8626786397974899 a008 Real Root of (-3+x-2*x^2+8*x^4+3*x^8) 8626786409983224 r005 Im(z^2+c),c=-67/106+5/31*I,n=54 8626786422206260 l006 ln(1318/3123) 8626786435447661 a001 956722026041/521*1364^(8/15) 8626786454580832 r005 Im(z^2+c),c=-19/82+41/50*I,n=4 8626786460303830 h001 (7/9*exp(1)+3/7)/(7/9*exp(1)+5/6) 8626786493563334 a007 Real Root Of 583*x^4-893*x^3+552*x^2+495*x-880 8626786511512061 a007 Real Root Of 651*x^4-478*x^3+320*x^2+520*x-457 8626786516404738 a007 Real Root Of -72*x^4-635*x^3-172*x^2-389*x+539 8626786529964979 r008 a(0)=0,K{-n^6,93-44*n^3-96*n^2-69*n} 8626786535957082 m001 HardyLittlewoodC3*(Cahen+TravellingSalesman) 8626786553132030 m001 1/ln((2^(1/3)))^2/FeigenbaumDelta^2*Zeta(9)^2 8626786558687562 s002 sum(A210102[n]/(n*exp(pi*n)-1),n=1..infinity) 8626786560924322 l006 ln(5494/5989) 8626786578240155 a007 Real Root Of 238*x^4-973*x^3+314*x^2+472*x-583 8626786582292140 a001 930249*34^(12/19) 8626786586603667 m001 (exp(-1/2*Pi)+Zeta(1,2))/(Artin+Bloch) 8626786589758230 a001 4052739537881/843*322^(1/2) 8626786600288825 r005 Re(z^2+c),c=-43/50+18/59*I,n=3 8626786612710774 r005 Im(z^2+c),c=17/122+29/49*I,n=25 8626786624515464 m005 (1/2*Pi+3/7)/(-3/16+3/16*5^(1/2)) 8626786641006854 r002 44th iterates of z^2 + 8626786692926743 m005 (1/2*5^(1/2)-7/11)/(7/12*Zeta(3)-1/7) 8626786711787264 a007 Real Root Of -837*x^4+757*x^3-324*x^2-825*x+479 8626786744568800 a001 1548008755920/521*1364^(7/15) 8626786818392520 a007 Real Root Of 303*x^4+95*x^3+183*x^2+29*x-218 8626786837148374 m001 exp(Paris)^2/FeigenbaumAlpha*BesselK(0,1)^2 8626786846859088 a007 Real Root Of -845*x^4+535*x^3-325*x^2-529*x+597 8626786853892693 a005 (1/cos(15/209*Pi))^1072 8626786855493783 r005 Im(z^2+c),c=-75/118+13/24*I,n=7 8626786873032181 a007 Real Root Of -651*x^4+605*x^3-404*x^2-942*x+237 8626786887517792 r005 Re(z^2+c),c=7/32+13/42*I,n=33 8626786995163084 m001 (Pi+exp(1/Pi))/(gamma(1)+Gompertz) 8626787046500907 m005 (1/2*Catalan-3/7)/(3/10*2^(1/2)-1/12) 8626787053689950 a001 2504730781961/521*1364^(2/5) 8626787057938299 q001 2293/2658 8626787070369618 m001 (Stephens-Trott)^sin(1/12*Pi) 8626787089313806 m001 Riemann1stZero*ln(PrimesInBinary)/(3^(1/3)) 8626787129570821 a007 Real Root Of 292*x^4-364*x^3-424*x^2-681*x+975 8626787137193837 a001 233/2207*14662949395604^(19/21) 8626787137310556 a001 987/521*817138163596^(17/19) 8626787137310556 a001 987/521*14662949395604^(17/21) 8626787137310556 a001 987/521*192900153618^(17/18) 8626787150392093 m001 (ln(gamma)+ln(5))/(GlaisherKinkelin-ZetaQ(2)) 8626787168427827 a008 Real Root of (2+x+14*x^2+18*x^3) 8626787177682577 b008 49*EllipticK[3/8] 8626787180722615 a007 Real Root Of 995*x^4+838*x^3-287*x^2-222*x+9 8626787183616156 a003 cos(Pi*6/71)*sin(Pi*25/71) 8626787185735131 r005 Im(z^2+c),c=-49/86+1/64*I,n=56 8626787198463418 m001 (Catalan-sin(1))/(-BesselJ(1,1)+Conway) 8626787230665700 m001 (Si(Pi)*Zeta(1/2)+exp(1/exp(1)))/Zeta(1/2) 8626787230665700 m001 (Zeta(1/2)*Si(Pi)+exp(1/exp(1)))/Zeta(1/2) 8626787243899243 r005 Im(z^2+c),c=-65/54+3/32*I,n=34 8626787290882632 m005 (1/2*5^(1/2)+2/11)/(87/80+3/16*5^(1/2)) 8626787329149467 p003 LerchPhi(1/25,5,379/232) 8626787356946802 a007 Real Root Of 15*x^4-983*x^3+40*x^2+239*x-463 8626787362811111 a001 4052739537881/521*1364^(1/3) 8626787385716558 s002 sum(A047482[n]/(n*exp(n)-1),n=1..infinity) 8626787388000987 a007 Real Root Of 86*x^4+740*x^3+102*x^2+956*x-566 8626787434530963 a007 Real Root Of -737*x^4-324*x^3+302*x^2+491*x+399 8626787441963180 a007 Real Root Of -918*x^4-408*x^3+74*x^2+775*x+860 8626787443324724 m001 (2*Pi/GAMMA(5/6)-Cahen)/(Landau+Trott2nd) 8626787497802209 l006 ln(2977/7054) 8626787507389217 a001 4052739537881/76*29^(1/7) 8626787518541371 m001 ln(arctan(1/2))^2*ArtinRank2^2/gamma^2 8626787547634065 a007 Real Root Of 17*x^4-991*x^3+93*x^2-70*x+618 8626787562742189 r005 Re(z^2+c),c=2/19+29/56*I,n=39 8626787578364193 r009 Re(z^3+c),c=-12/19+24/25*I,n=2 8626787588537625 s002 sum(A184919[n]/(n*pi^n-1),n=1..infinity) 8626787593879509 r002 6th iterates of z^2 + 8626787613147108 h001 (4/7*exp(1)+8/11)/(8/11*exp(1)+2/3) 8626787613147108 m005 (1/2*exp(1)+7/11)/(7/11*exp(1)+7/12) 8626787617413175 m005 (1/2*3^(1/2)-1)/(6/11*5^(1/2)+1/3) 8626787638465112 a007 Real Root Of -639*x^4+302*x^3-550*x^2-538*x+493 8626787648520678 r005 Im(z^2+c),c=7/25+29/52*I,n=10 8626787654278919 r005 Re(z^2+c),c=-16/29+30/53*I,n=39 8626787663764177 r005 Re(z^2+c),c=-2/25+27/37*I,n=36 8626787671932283 a001 6557470319842/521*1364^(4/15) 8626787707863169 r005 Re(z^2+c),c=-37/42+1/57*I,n=21 8626787714300559 m005 (1/2*Catalan-1/6)/(1/7*Pi-1/9) 8626787727826904 m001 (ln(Pi)-3^(1/3))/(Zeta(1,2)+GlaisherKinkelin) 8626787759956076 r009 Im(z^3+c),c=-61/118+37/62*I,n=2 8626787773933102 r005 Re(z^2+c),c=-19/60+41/51*I,n=2 8626787794721116 a007 Real Root Of -875*x^4-117*x^3+740*x^2+64*x-86 8626787807437521 a003 sin(Pi*31/97)/sin(Pi*42/97) 8626787813657201 m001 Zeta(1,2)*ArtinRank2/ln(log(2+sqrt(3)))^2 8626787836028803 m001 1/Ei(1)/exp(MertensB1)^2/GAMMA(1/4) 8626787842173116 m001 (Conway-PlouffeB)/(ln(2)-(1+3^(1/2))^(1/2)) 8626787852477890 a001 17393796001/233*6557470319842^(16/17) 8626787884504932 m001 (3^(1/3))-ln(Pi)+BesselI(1,1) 8626787884504932 m001 3^(1/3)-ln(Pi)+BesselI(1,1) 8626787901792646 q001 5/57959 8626787904365559 m001 ZetaR(2)^GlaisherKinkelin*ZetaR(2)^gamma(3) 8626787931976828 m001 (Trott-Trott2nd)/(Zeta(5)-Otter) 8626787932254398 a007 Real Root Of 354*x^4-903*x^3+508*x^2+802*x-462 8626787960089766 m002 Pi^2/Log[Pi]+Log[Pi]/(E^Pi*Pi^2) 8626787976879865 m006 (1/6*Pi-3/5)/(2/5*exp(Pi)-2/5) 8626787977626566 a001 1515744265389/46*123^(1/5) 8626787981053466 a001 10610209857723/521*1364^(1/5) 8626787983258218 a007 Real Root Of 485*x^4-730*x^3-551*x^2-526*x-781 8626787985573062 a007 Real Root Of -203*x^4-349*x^3-874*x^2-766*x-122 8626788008968921 m001 (BesselJ(1,1)+ZetaP(3))^GaussKuzminWirsing 8626788027151257 m001 exp(Robbin)*Cahen^2*Zeta(5)^2 8626788036410923 q001 3317/3845 8626788061706267 m005 (1/2*exp(1)+1/9)/(4/7*Pi-1/11) 8626788064969891 m001 cos(1/12*Pi)^(FeigenbaumMu/Chi(1)) 8626788078131108 r002 48th iterates of z^2 + 8626788088827061 m001 (Tribonacci+Thue)/(Pi^(1/2)+FeigenbaumKappa) 8626788111155206 m005 (1/2*exp(1)+1/4)/(2/9*3^(1/2)-4/7) 8626788131014994 r005 Re(z^2+c),c=7/102+8/17*I,n=21 8626788157268700 r005 Re(z^2+c),c=-27/34+19/117*I,n=13 8626788164459783 m001 (MertensB3+StronglyCareFree)/(Pi-ArtinRank2) 8626788187440966 a007 Real Root Of 318*x^4-754*x^3-744*x^2+557*x+374 8626788190960818 a007 Real Root Of 334*x^4-140*x^3+543*x^2+22*x-660 8626788200125642 a007 Real Root Of -858*x^4+187*x^3+951*x^2+113*x-15 8626788227241465 a007 Real Root Of 762*x^4+536*x^3+323*x^2-643*x-873 8626788231797557 a001 137769808061807/1597 8626788231813183 m005 (1/2*5^(1/2)-3/8)/(1/10*3^(1/2)-2/11) 8626788266806314 r002 32th iterates of z^2 + 8626788271708850 a001 20365011074/521*3571^(16/17) 8626788276521940 a007 Real Root Of 965*x^4-300*x^3+910*x^2+624*x-866 8626788293907481 a007 Real Root Of -423*x^4+134*x^3+487*x^2+538*x+422 8626788311503113 a001 63246219*3571^(15/17) 8626788322640740 a007 Real Root Of -263*x^4+882*x^3-200*x^2+122*x-377 8626788351297376 a001 53316291173/521*3571^(14/17) 8626788352314158 l006 ln(1659/3931) 8626788370483650 a007 Real Root Of -385*x^4+971*x^3+365*x^2+233*x+766 8626788379784577 s002 sum(A187725[n]/(n*2^n+1),n=1..infinity) 8626788385309625 m001 (TreeGrowth2nd+ZetaP(4))/(ArtinRank2-Paris) 8626788391091640 a001 86267571272/521*3571^(13/17) 8626788393500956 m001 (1/2)^Ei(1)*(1/2)^GAMMA(13/24) 8626788402990432 r005 Im(z^2+c),c=-7/102+6/61*I,n=4 8626788410520601 m001 1/GAMMA(3/4)*exp(Cahen)^2*cos(1)^2 8626788412251924 m001 Zeta(1,-1)/exp(-1/2*Pi)*Trott 8626788415677217 r005 Im(z^2+c),c=29/70+9/43*I,n=16 8626788422280092 a001 377/76*11^(3/13) 8626788430885903 a001 139583862445/521*3571^(12/17) 8626788430992414 r009 Im(z^3+c),c=-11/86+31/38*I,n=12 8626788440920292 r002 40th iterates of z^2 + 8626788470680167 a001 225851433717/521*3571^(11/17) 8626788471118435 a003 sin(Pi*11/80)/sin(Pi*5/31) 8626788475509962 m001 GAMMA(1/4)*GAMMA(1/24)+Zeta(3) 8626788483015260 r005 Im(z^2+c),c=-25/18+19/210*I,n=12 8626788489270087 h001 (5/12*exp(1)+1/8)/(5/11*exp(1)+2/9) 8626788491638580 m001 cos(1)^Zeta(3)-Totient 8626788495028128 r005 Im(z^2+c),c=-93/94+3/35*I,n=22 8626788510474431 a001 365435296162/521*3571^(10/17) 8626788521754539 m001 (ZetaP(3)+ZetaP(4))/(Backhouse-MadelungNaCl) 8626788524401608 a007 Real Root Of 774*x^4-59*x^3-307*x^2-758*x-892 8626788532962708 a007 Real Root Of 111*x^4+941*x^3-208*x^2-648*x-751 8626788539968764 m001 QuadraticClass/(OneNinth^gamma(2)) 8626788550268696 a001 591286729879/521*3571^(9/17) 8626788573982665 a007 Real Root Of 587*x^4-193*x^3-577*x^2-638*x-570 8626788590062960 a001 956722026041/521*3571^(8/17) 8626788592823050 a007 Real Root Of 812*x^4-700*x^3-639*x^2+855*x+314 8626788596814405 r009 Re(z^3+c),c=-4/29+22/49*I,n=4 8626788629857225 a001 1548008755920/521*3571^(7/17) 8626788645951453 r005 Re(z^2+c),c=-97/86+9/38*I,n=8 8626788647644908 m005 (1/2*Pi+3)/(4/7*gamma+1/5) 8626788650016122 a001 2584/521*14662949395604^(7/9) 8626788650016122 a001 2584/521*505019158607^(7/8) 8626788668130359 a007 Real Root Of 836*x^4+219*x^3-214*x^2-926*x-962 8626788669651489 a001 2504730781961/521*3571^(6/17) 8626788688393478 v002 sum(1/(3^n*(24*n^2-21*n+43)),n=1..infinity) 8626788699986640 a007 Real Root Of 910*x^4+565*x^3+983*x^2+176*x-721 8626788709445754 a001 4052739537881/521*3571^(5/17) 8626788745350346 r005 Im(z^2+c),c=-9/52+6/53*I,n=16 8626788749240020 a001 6557470319842/521*3571^(4/17) 8626788789034285 a001 10610209857723/521*3571^(3/17) 8626788800444119 r005 Im(z^2+c),c=-5/58+45/58*I,n=39 8626788809599617 a001 360686040129360/4181 8626788814911455 a001 7778742049/521*9349^(18/19) 8626788820106212 a001 12586269025/521*9349^(17/19) 8626788825300969 a001 20365011074/521*9349^(16/19) 8626788830495726 a001 63246219*9349^(15/19) 8626788835690483 a001 53316291173/521*9349^(14/19) 8626788840885240 a001 86267571272/521*9349^(13/19) 8626788846079997 a001 139583862445/521*9349^(12/19) 8626788851274754 a001 225851433717/521*9349^(11/19) 8626788856469511 a001 365435296162/521*9349^(10/19) 8626788861249928 r005 Re(z^2+c),c=-7/8+13/176*I,n=5 8626788861664268 a001 591286729879/521*9349^(9/19) 8626788866859026 a001 956722026041/521*9349^(8/19) 8626788872053783 a001 1548008755920/521*9349^(7/19) 8626788877248540 a001 2504730781961/521*9349^(6/19) 8626788882443297 a001 4052739537881/521*9349^(5/19) 8626788887638054 a001 6557470319842/521*9349^(4/19) 8626788892832811 a001 10610209857723/521*9349^(3/19) 8626788893899808 a001 944288312326273/10946 8626788894702614 a001 2971215073/521*24476^(20/21) 8626788895388337 a001 4807526976/521*24476^(19/21) 8626788896074060 a001 7778742049/521*24476^(6/7) 8626788896759784 a001 12586269025/521*24476^(17/21) 8626788897445507 a001 20365011074/521*24476^(16/21) 8626788898131231 a001 63246219*24476^(5/7) 8626788898816954 a001 53316291173/521*24476^(2/3) 8626788899502677 a001 86267571272/521*24476^(13/21) 8626788900188401 a001 139583862445/521*24476^(4/7) 8626788900874124 a001 225851433717/521*24476^(11/21) 8626788901559848 a001 365435296162/521*24476^(10/21) 8626788902245571 a001 591286729879/521*24476^(3/7) 8626788902916698 a001 17711/521*45537549124^(15/17) 8626788902916698 a001 17711/521*312119004989^(9/11) 8626788902916698 a001 17711/521*14662949395604^(5/7) 8626788902916698 a001 17711/521*192900153618^(5/6) 8626788902916698 a001 17711/521*28143753123^(9/10) 8626788902916698 a001 17711/521*10749957122^(15/16) 8626788902931295 a001 956722026041/521*24476^(8/21) 8626788903259972 a001 73681302247/377*34^(8/19) 8626788903617018 a001 1548008755920/521*24476^(1/3) 8626788904302741 a001 2504730781961/521*24476^(2/7) 8626788904988465 a001 4052739537881/521*24476^(5/21) 8626788905674188 a001 6557470319842/521*24476^(4/21) 8626788906199040 a001 2472178896849459/28657 8626788906359912 a001 10610209857723/521*24476^(1/7) 8626788906407468 a001 1134903170/521*64079^(22/23) 8626788906498814 a001 1836311903/521*64079^(21/23) 8626788906590161 a001 2971215073/521*64079^(20/23) 8626788906681507 a001 4807526976/521*64079^(19/23) 8626788906772853 a001 7778742049/521*64079^(18/23) 8626788906864199 a001 12586269025/521*64079^(17/23) 8626788906955545 a001 20365011074/521*64079^(16/23) 8626788907046891 a001 63246219*64079^(15/23) 8626788907138237 a001 53316291173/521*64079^(14/23) 8626788907229583 a001 86267571272/521*64079^(13/23) 8626788907320929 a001 139583862445/521*64079^(12/23) 8626788907412275 a001 225851433717/521*64079^(11/23) 8626788907503621 a001 365435296162/521*64079^(10/23) 8626788907594967 a001 591286729879/521*64079^(9/23) 8626788907686313 a001 956722026041/521*64079^(8/23) 8626788907777660 a001 1548008755920/521*64079^(7/23) 8626788907869006 a001 2504730781961/521*64079^(6/23) 8626788907960352 a001 4052739537881/521*64079^(5/23) 8626788908051698 a001 6557470319842/521*64079^(4/23) 8626788908143044 a001 10610209857723/521*64079^(3/23) 8626788908171861 a001 2971215073/521*167761^(4/5) 8626788908233167 a001 63246219*167761^(3/5) 8626788908294472 a001 365435296162/521*167761^(2/5) 8626788908355777 a001 4052739537881/521*167761^(1/5) 8626788908377330 a001 433494437/521*439204^(8/9) 8626788908382299 a001 1836311903/521*439204^(7/9) 8626788908387268 a001 7778742049/521*439204^(2/3) 8626788908392237 a001 63246219*439204^(5/9) 8626788908397206 a001 139583862445/521*439204^(4/9) 8626788908400000 a001 317811/521*2537720636^(13/15) 8626788908400000 a001 317811/521*45537549124^(13/17) 8626788908400000 a001 317811/521*14662949395604^(13/21) 8626788908400000 a001 317811/521*192900153618^(13/18) 8626788908400000 a001 317811/521*73681302247^(3/4) 8626788908400000 a001 317811/521*10749957122^(13/16) 8626788908400000 a001 317811/521*599074578^(13/14) 8626788908402175 a001 591286729879/521*439204^(1/3) 8626788908407144 a001 2504730781961/521*439204^(2/9) 8626788908412113 a001 10610209857723/521*439204^(1/9) 8626788908416718 a001 2178309/521*2537720636^(7/9) 8626788908416718 a001 2178309/521*17393796001^(5/7) 8626788908416718 a001 2178309/521*312119004989^(7/11) 8626788908416718 a001 2178309/521*14662949395604^(5/9) 8626788908416718 a001 2178309/521*505019158607^(5/8) 8626788908416718 a001 2178309/521*28143753123^(7/10) 8626788908416718 a001 2178309/521*599074578^(5/6) 8626788908416719 a001 2178309/521*228826127^(7/8) 8626788908416959 a001 24157817/521*7881196^(10/11) 8626788908416968 a001 102334155/521*7881196^(9/11) 8626788908416981 a001 433494437/521*7881196^(8/11) 8626788908416989 a001 1134903170/521*7881196^(2/3) 8626788908416994 a001 1836311903/521*7881196^(7/11) 8626788908417006 a001 7778742049/521*7881196^(6/11) 8626788908417019 a001 63246219*7881196^(5/11) 8626788908417029 a001 5702887/521*141422324^(11/13) 8626788908417029 a001 5702887/521*2537720636^(11/15) 8626788908417029 a001 5702887/521*45537549124^(11/17) 8626788908417029 a001 5702887/521*312119004989^(3/5) 8626788908417029 a001 5702887/521*817138163596^(11/19) 8626788908417029 a001 5702887/521*14662949395604^(11/21) 8626788908417029 a001 5702887/521*192900153618^(11/18) 8626788908417029 a001 5702887/521*10749957122^(11/16) 8626788908417029 a001 5702887/521*1568397607^(3/4) 8626788908417029 a001 5702887/521*599074578^(11/14) 8626788908417032 a001 139583862445/521*7881196^(4/11) 8626788908417036 a001 225851433717/521*7881196^(1/3) 8626788908417036 a001 5702887/521*33385282^(11/12) 8626788908417044 a001 591286729879/521*7881196^(3/11) 8626788908417057 a001 2504730781961/521*7881196^(2/11) 8626788908417066 a001 63245986/521*20633239^(4/5) 8626788908417068 a001 267914296/521*20633239^(5/7) 8626788908417068 a001 24157817/521*20633239^(6/7) 8626788908417069 a001 10610209857723/521*7881196^(1/11) 8626788908417070 a001 1836311903/521*20633239^(3/5) 8626788908417070 a001 2971215073/521*20633239^(4/7) 8626788908417073 a001 63246219*20633239^(3/7) 8626788908417074 a001 53316291173/521*20633239^(2/5) 8626788908417074 a001 14930352/521*9062201101803^(1/2) 8626788908417076 a001 365435296162/521*20633239^(2/7) 8626788908417078 a001 1548008755920/521*20633239^(1/5) 8626788908417079 a001 4052739537881/521*20633239^(1/7) 8626788908417081 a001 39088169/521*1322157322203^(1/2) 8626788908417082 a001 102334155/521*141422324^(9/13) 8626788908417082 a001 433494437/521*141422324^(8/13) 8626788908417082 a001 1836311903/521*141422324^(7/13) 8626788908417082 a001 165580141/521*141422324^(2/3) 8626788908417082 a001 7778742049/521*141422324^(6/13) 8626788908417082 a001 63246219*141422324^(5/13) 8626788908417082 a001 102334155/521*2537720636^(3/5) 8626788908417082 a001 102334155/521*45537549124^(9/17) 8626788908417082 a001 102334155/521*817138163596^(9/19) 8626788908417082 a001 102334155/521*14662949395604^(3/7) 8626788908417082 a001 102334155/521*192900153618^(1/2) 8626788908417082 a001 102334155/521*10749957122^(9/16) 8626788908417082 a001 102334155/521*599074578^(9/14) 8626788908417082 a001 86267571272/521*141422324^(1/3) 8626788908417082 a001 139583862445/521*141422324^(4/13) 8626788908417082 a001 591286729879/521*141422324^(3/13) 8626788908417082 a001 2504730781961/521*141422324^(2/13) 8626788908417082 a001 10610209857723/521*141422324^(1/13) 8626788908417082 a001 267914296/521*2537720636^(5/9) 8626788908417082 a001 267914296/521*312119004989^(5/11) 8626788908417082 a001 267914296/521*3461452808002^(5/12) 8626788908417082 a001 267914296/521*28143753123^(1/2) 8626788908417082 a001 701408733/521*4106118243^(1/2) 8626788908417082 a001 1836311903/521*2537720636^(7/15) 8626788908417082 a001 1836311903/521*17393796001^(3/7) 8626788908417082 a001 1836311903/521*45537549124^(7/17) 8626788908417082 a001 1836311903/521*14662949395604^(1/3) 8626788908417082 a001 1836311903/521*192900153618^(7/18) 8626788908417082 a001 7778742049/521*2537720636^(2/5) 8626788908417082 a001 1836311903/521*10749957122^(7/16) 8626788908417082 a001 63246219*2537720636^(1/3) 8626788908417082 a001 2971215073/521*2537720636^(4/9) 8626788908417082 a001 139583862445/521*2537720636^(4/15) 8626788908417082 a001 365435296162/521*2537720636^(2/9) 8626788908417082 a001 591286729879/521*2537720636^(1/5) 8626788908417082 a001 2504730781961/521*2537720636^(2/15) 8626788908417082 a001 4052739537881/521*2537720636^(1/9) 8626788908417082 a001 10610209857723/521*2537720636^(1/15) 8626788908417082 a001 4807526976/521*817138163596^(1/3) 8626788908417082 a001 12586269025/521*45537549124^(1/3) 8626788908417082 a001 53316291173/521*17393796001^(2/7) 8626788908417082 a001 1548008755920/521*17393796001^(1/7) 8626788908417082 a001 63246219*45537549124^(5/17) 8626788908417082 a001 63246219*312119004989^(3/11) 8626788908417082 a001 63246219*14662949395604^(5/21) 8626788908417082 a001 63246219*192900153618^(5/18) 8626788908417082 a001 139583862445/521*45537549124^(4/17) 8626788908417082 a001 591286729879/521*45537549124^(3/17) 8626788908417082 a001 2504730781961/521*45537549124^(2/17) 8626788908417082 a001 10610209857723/521*45537549124^(1/17) 8626788908417082 a001 225851433717/521*312119004989^(1/5) 8626788908417082 a001 4052739537881/521*312119004989^(1/11) 8626788908417082 a001 591286729879/521*817138163596^(3/19) 8626788908417082 a001 10610209857723/521*14662949395604^(1/21) 8626788908417082 a001 6557470319842/521*23725150497407^(1/16) 8626788908417082 a001 10610209857723/521*192900153618^(1/18) 8626788908417082 a001 591286729879/521*192900153618^(1/6) 8626788908417082 a001 139583862445/521*817138163596^(4/19) 8626788908417082 a001 139583862445/521*14662949395604^(4/21) 8626788908417082 a001 139583862445/521*192900153618^(2/9) 8626788908417082 a001 86267571272/521*73681302247^(1/4) 8626788908417082 a001 956722026041/521*73681302247^(2/13) 8626788908417082 a001 139583862445/521*73681302247^(3/13) 8626788908417082 a001 53316291173/521*14662949395604^(2/9) 8626788908417082 a001 53316291173/521*505019158607^(1/4) 8626788908417082 a001 4052739537881/521*28143753123^(1/10) 8626788908417082 a001 63246219*28143753123^(3/10) 8626788908417082 a001 365435296162/521*28143753123^(1/5) 8626788908417082 a001 20365011074/521*23725150497407^(1/4) 8626788908417082 a001 20365011074/521*73681302247^(4/13) 8626788908417082 a001 10610209857723/521*10749957122^(1/16) 8626788908417082 a001 6557470319842/521*10749957122^(1/12) 8626788908417082 a001 2504730781961/521*10749957122^(1/8) 8626788908417082 a001 956722026041/521*10749957122^(1/6) 8626788908417082 a001 591286729879/521*10749957122^(3/16) 8626788908417082 a001 365435296162/521*10749957122^(5/24) 8626788908417082 a001 139583862445/521*10749957122^(1/4) 8626788908417082 a001 63246219*10749957122^(5/16) 8626788908417082 a001 53316291173/521*10749957122^(7/24) 8626788908417082 a001 7778742049/521*45537549124^(6/17) 8626788908417082 a001 7778742049/521*14662949395604^(2/7) 8626788908417082 a001 7778742049/521*192900153618^(1/3) 8626788908417082 a001 20365011074/521*10749957122^(1/3) 8626788908417082 a001 6557470319842/521*4106118243^(2/23) 8626788908417082 a001 7778742049/521*10749957122^(3/8) 8626788908417082 a001 2504730781961/521*4106118243^(3/23) 8626788908417082 a001 956722026041/521*4106118243^(4/23) 8626788908417082 a001 365435296162/521*4106118243^(5/23) 8626788908417082 a001 139583862445/521*4106118243^(6/23) 8626788908417082 a001 53316291173/521*4106118243^(7/23) 8626788908417082 a001 20365011074/521*4106118243^(8/23) 8626788908417082 a001 2971215073/521*23725150497407^(5/16) 8626788908417082 a001 2971215073/521*505019158607^(5/14) 8626788908417082 a001 2971215073/521*73681302247^(5/13) 8626788908417082 a001 2971215073/521*28143753123^(2/5) 8626788908417082 a001 2971215073/521*10749957122^(5/12) 8626788908417082 a001 7778742049/521*4106118243^(9/23) 8626788908417082 a001 6557470319842/521*1568397607^(1/11) 8626788908417082 a001 2971215073/521*4106118243^(10/23) 8626788908417082 a001 2504730781961/521*1568397607^(3/22) 8626788908417082 a001 956722026041/521*1568397607^(2/11) 8626788908417082 a001 365435296162/521*1568397607^(5/22) 8626788908417082 a001 225851433717/521*1568397607^(1/4) 8626788908417082 a001 139583862445/521*1568397607^(3/11) 8626788908417082 a001 53316291173/521*1568397607^(7/22) 8626788908417082 a001 20365011074/521*1568397607^(4/11) 8626788908417082 a001 1134903170/521*312119004989^(2/5) 8626788908417082 a001 1134903170/521*10749957122^(11/24) 8626788908417082 a001 7778742049/521*1568397607^(9/22) 8626788908417082 a001 1134903170/521*4106118243^(11/23) 8626788908417082 a001 10610209857723/521*599074578^(1/14) 8626788908417082 a001 2971215073/521*1568397607^(5/11) 8626788908417082 a001 6557470319842/521*599074578^(2/21) 8626788908417082 a001 1134903170/521*1568397607^(1/2) 8626788908417082 a001 2504730781961/521*599074578^(1/7) 8626788908417082 a001 1548008755920/521*599074578^(1/6) 8626788908417082 a001 956722026041/521*599074578^(4/21) 8626788908417082 a001 591286729879/521*599074578^(3/14) 8626788908417082 a001 365435296162/521*599074578^(5/21) 8626788908417082 a001 139583862445/521*599074578^(2/7) 8626788908417082 a001 53316291173/521*599074578^(1/3) 8626788908417082 a001 433494437/521*2537720636^(8/15) 8626788908417082 a001 63246219*599074578^(5/14) 8626788908417082 a001 20365011074/521*599074578^(8/21) 8626788908417082 a001 433494437/521*45537549124^(8/17) 8626788908417082 a001 433494437/521*14662949395604^(8/21) 8626788908417082 a001 433494437/521*192900153618^(4/9) 8626788908417082 a001 433494437/521*73681302247^(6/13) 8626788908417082 a001 433494437/521*10749957122^(1/2) 8626788908417082 a001 433494437/521*4106118243^(12/23) 8626788908417082 a001 7778742049/521*599074578^(3/7) 8626788908417082 a001 433494437/521*1568397607^(6/11) 8626788908417082 a001 1836311903/521*599074578^(1/2) 8626788908417082 a001 2971215073/521*599074578^(10/21) 8626788908417082 a001 1134903170/521*599074578^(11/21) 8626788908417082 a001 6557470319842/521*228826127^(1/10) 8626788908417082 a001 4052739537881/521*228826127^(1/8) 8626788908417082 a001 433494437/521*599074578^(4/7) 8626788908417082 a001 2504730781961/521*228826127^(3/20) 8626788908417082 a001 956722026041/521*228826127^(1/5) 8626788908417082 a001 365435296162/521*228826127^(1/4) 8626788908417082 a001 139583862445/521*228826127^(3/10) 8626788908417082 a001 53316291173/521*228826127^(7/20) 8626788908417082 a001 63246219*228826127^(3/8) 8626788908417082 a001 165580141/521*73681302247^(1/2) 8626788908417082 a001 165580141/521*10749957122^(13/24) 8626788908417082 a001 165580141/521*4106118243^(13/23) 8626788908417082 a001 165580141/521*1568397607^(13/22) 8626788908417082 a001 20365011074/521*228826127^(2/5) 8626788908417082 a001 7778742049/521*228826127^(9/20) 8626788908417082 a001 165580141/521*599074578^(13/21) 8626788908417082 a001 267914296/521*228826127^(5/8) 8626788908417082 a001 2971215073/521*228826127^(1/2) 8626788908417082 a001 1134903170/521*228826127^(11/20) 8626788908417082 a001 433494437/521*228826127^(3/5) 8626788908417082 a001 6557470319842/521*87403803^(2/19) 8626788908417082 a001 165580141/521*228826127^(13/20) 8626788908417082 a001 2504730781961/521*87403803^(3/19) 8626788908417082 a001 956722026041/521*87403803^(4/19) 8626788908417082 a001 365435296162/521*87403803^(5/19) 8626788908417082 a001 139583862445/521*87403803^(6/19) 8626788908417082 a001 53316291173/521*87403803^(7/19) 8626788908417082 a001 63245986/521*17393796001^(4/7) 8626788908417082 a001 63245986/521*14662949395604^(4/9) 8626788908417082 a001 63245986/521*505019158607^(1/2) 8626788908417082 a001 63245986/521*73681302247^(7/13) 8626788908417082 a001 63245986/521*10749957122^(7/12) 8626788908417082 a001 63245986/521*4106118243^(14/23) 8626788908417082 a001 63245986/521*1568397607^(7/11) 8626788908417082 a001 63245986/521*599074578^(2/3) 8626788908417083 a001 20365011074/521*87403803^(8/19) 8626788908417083 a001 7778742049/521*87403803^(9/19) 8626788908417083 a001 63245986/521*228826127^(7/10) 8626788908417083 a001 4807526976/521*87403803^(1/2) 8626788908417083 a001 2971215073/521*87403803^(10/19) 8626788908417083 a001 10610209857723/521*33385282^(1/12) 8626788908417083 a001 1134903170/521*87403803^(11/19) 8626788908417083 a001 433494437/521*87403803^(12/19) 8626788908417083 a001 165580141/521*87403803^(13/19) 8626788908417083 a001 6557470319842/521*33385282^(1/9) 8626788908417083 a001 63245986/521*87403803^(14/19) 8626788908417083 a001 2504730781961/521*33385282^(1/6) 8626788908417084 a001 956722026041/521*33385282^(2/9) 8626788908417084 a001 591286729879/521*33385282^(1/4) 8626788908417084 a001 365435296162/521*33385282^(5/18) 8626788908417085 a001 139583862445/521*33385282^(1/3) 8626788908417085 a001 24157817/521*141422324^(10/13) 8626788908417085 a001 24157817/521*2537720636^(2/3) 8626788908417085 a001 24157817/521*45537549124^(10/17) 8626788908417085 a001 24157817/521*312119004989^(6/11) 8626788908417085 a001 24157817/521*14662949395604^(10/21) 8626788908417085 a001 24157817/521*192900153618^(5/9) 8626788908417085 a001 24157817/521*28143753123^(3/5) 8626788908417085 a001 24157817/521*10749957122^(5/8) 8626788908417085 a001 24157817/521*4106118243^(15/23) 8626788908417085 a001 24157817/521*1568397607^(15/22) 8626788908417085 a001 24157817/521*599074578^(5/7) 8626788908417085 a001 53316291173/521*33385282^(7/18) 8626788908417085 a001 24157817/521*228826127^(3/4) 8626788908417085 a001 63246219*33385282^(5/12) 8626788908417085 a001 20365011074/521*33385282^(4/9) 8626788908417086 a001 24157817/521*87403803^(15/19) 8626788908417086 a001 7778742049/521*33385282^(1/2) 8626788908417086 a001 2971215073/521*33385282^(5/9) 8626788908417087 a001 1836311903/521*33385282^(7/12) 8626788908417087 a001 1134903170/521*33385282^(11/18) 8626788908417087 a001 433494437/521*33385282^(2/3) 8626788908417088 a001 102334155/521*33385282^(3/4) 8626788908417088 a001 165580141/521*33385282^(13/18) 8626788908417088 a001 6557470319842/521*12752043^(2/17) 8626788908417088 a001 63245986/521*33385282^(7/9) 8626788908417091 a001 2504730781961/521*12752043^(3/17) 8626788908417091 a001 24157817/521*33385282^(5/6) 8626788908417095 a001 956722026041/521*12752043^(4/17) 8626788908417098 a001 365435296162/521*12752043^(5/17) 8626788908417101 a001 139583862445/521*12752043^(6/17) 8626788908417102 a001 9227465/521*23725150497407^(1/2) 8626788908417102 a001 9227465/521*505019158607^(4/7) 8626788908417102 a001 9227465/521*73681302247^(8/13) 8626788908417102 a001 9227465/521*10749957122^(2/3) 8626788908417102 a001 9227465/521*4106118243^(16/23) 8626788908417102 a001 9227465/521*1568397607^(8/11) 8626788908417102 a001 9227465/521*599074578^(16/21) 8626788908417102 a001 9227465/521*228826127^(4/5) 8626788908417103 a001 9227465/521*87403803^(16/19) 8626788908417104 a001 53316291173/521*12752043^(7/17) 8626788908417107 a001 20365011074/521*12752043^(8/17) 8626788908417109 a001 12586269025/521*12752043^(1/2) 8626788908417109 a001 9227465/521*33385282^(8/9) 8626788908417110 a001 7778742049/521*12752043^(9/17) 8626788908417113 a001 2971215073/521*12752043^(10/17) 8626788908417116 a001 1134903170/521*12752043^(11/17) 8626788908417119 a001 433494437/521*12752043^(12/17) 8626788908417123 a001 165580141/521*12752043^(13/17) 8626788908417126 a001 63245986/521*12752043^(14/17) 8626788908417127 a001 6557470319842/521*4870847^(1/8) 8626788908417132 a001 24157817/521*12752043^(15/17) 8626788908417150 a001 2504730781961/521*4870847^(3/16) 8626788908417152 a001 9227465/521*12752043^(16/17) 8626788908417173 a001 956722026041/521*4870847^(1/4) 8626788908417196 a001 365435296162/521*4870847^(5/16) 8626788908417218 a001 139583862445/521*4870847^(3/8) 8626788908417221 a001 3524578/521*45537549124^(2/3) 8626788908417221 a001 3524578/521*10749957122^(17/24) 8626788908417221 a001 3524578/521*4106118243^(17/23) 8626788908417221 a001 3524578/521*1568397607^(17/22) 8626788908417221 a001 3524578/521*599074578^(17/21) 8626788908417221 a001 3524578/521*228826127^(17/20) 8626788908417222 a001 3524578/521*87403803^(17/19) 8626788908417228 a001 3524578/521*33385282^(17/18) 8626788908417241 a001 53316291173/521*4870847^(7/16) 8626788908417264 a001 20365011074/521*4870847^(1/2) 8626788908417287 a001 7778742049/521*4870847^(9/16) 8626788908417309 a001 2971215073/521*4870847^(5/8) 8626788908417331 a001 10610209857723/521*1860498^(1/10) 8626788908417332 a001 1134903170/521*4870847^(11/16) 8626788908417355 a001 433494437/521*4870847^(3/4) 8626788908417378 a001 165580141/521*4870847^(13/16) 8626788908417401 a001 63245986/521*4870847^(7/8) 8626788908417414 a001 6557470319842/521*1860498^(2/15) 8626788908417426 a001 24157817/521*4870847^(15/16) 8626788908417497 a001 4052739537881/521*1860498^(1/6) 8626788908417580 a001 2504730781961/521*1860498^(1/5) 8626788908417747 a001 956722026041/521*1860498^(4/15) 8626788908417830 a001 591286729879/521*1860498^(3/10) 8626788908417913 a001 365435296162/521*1860498^(1/3) 8626788908418034 a001 1346269/521*141422324^(12/13) 8626788908418034 a001 1346269/521*2537720636^(4/5) 8626788908418034 a001 1346269/521*45537549124^(12/17) 8626788908418034 a001 1346269/521*14662949395604^(4/7) 8626788908418034 a001 1346269/521*505019158607^(9/14) 8626788908418034 a001 1346269/521*192900153618^(2/3) 8626788908418034 a001 1346269/521*73681302247^(9/13) 8626788908418034 a001 1346269/521*10749957122^(3/4) 8626788908418034 a001 1346269/521*4106118243^(18/23) 8626788908418034 a001 1346269/521*1568397607^(9/11) 8626788908418034 a001 1346269/521*599074578^(6/7) 8626788908418034 a001 1346269/521*228826127^(9/10) 8626788908418035 a001 1346269/521*87403803^(18/19) 8626788908418079 a001 139583862445/521*1860498^(2/5) 8626788908418245 a001 53316291173/521*1860498^(7/15) 8626788908418328 a001 63246219*1860498^(1/2) 8626788908418411 a001 20365011074/521*1860498^(8/15) 8626788908418577 a001 7778742049/521*1860498^(3/5) 8626788908418744 a001 2971215073/521*1860498^(2/3) 8626788908418827 a001 1836311903/521*1860498^(7/10) 8626788908418910 a001 1134903170/521*1860498^(11/15) 8626788908419076 a001 433494437/521*1860498^(4/5) 8626788908419159 a001 267914296/521*1860498^(5/6) 8626788908419242 a001 165580141/521*1860498^(13/15) 8626788908419325 a001 102334155/521*1860498^(9/10) 8626788908419409 a001 63245986/521*1860498^(14/15) 8626788908419522 a001 6557470319842/521*710647^(1/7) 8626788908420742 a001 2504730781961/521*710647^(3/14) 8626788908421353 a001 1548008755920/521*710647^(1/4) 8626788908421963 a001 956722026041/521*710647^(2/7) 8626788908423183 a001 365435296162/521*710647^(5/14) 8626788908423607 a001 514229/521*817138163596^(2/3) 8626788908423607 a001 514229/521*10749957122^(19/24) 8626788908423607 a001 514229/521*4106118243^(19/23) 8626788908423607 a001 514229/521*1568397607^(19/22) 8626788908423607 a001 514229/521*599074578^(19/21) 8626788908423607 a001 514229/521*228826127^(19/20) 8626788908424403 a001 139583862445/521*710647^(3/7) 8626788908425623 a001 53316291173/521*710647^(1/2) 8626788908426843 a001 20365011074/521*710647^(4/7) 8626788908428063 a001 7778742049/521*710647^(9/14) 8626788908429284 a001 2971215073/521*710647^(5/7) 8626788908429894 a001 1836311903/521*710647^(3/4) 8626788908430504 a001 1134903170/521*710647^(11/14) 8626788908431724 a001 433494437/521*710647^(6/7) 8626788908432944 a001 165580141/521*710647^(13/14) 8626788908435095 a001 6557470319842/521*271443^(2/13) 8626788908444101 a001 2504730781961/521*271443^(3/13) 8626788908453107 a001 956722026041/521*271443^(4/13) 8626788908461804 a001 196418/521*2537720636^(8/9) 8626788908461804 a001 196418/521*312119004989^(8/11) 8626788908461804 a001 196418/521*23725150497407^(5/8) 8626788908461804 a001 196418/521*73681302247^(10/13) 8626788908461804 a001 196418/521*28143753123^(4/5) 8626788908461804 a001 196418/521*10749957122^(5/6) 8626788908461804 a001 196418/521*4106118243^(20/23) 8626788908461804 a001 196418/521*1568397607^(10/11) 8626788908461804 a001 196418/521*599074578^(20/21) 8626788908462114 a001 365435296162/521*271443^(5/13) 8626788908471120 a001 139583862445/521*271443^(6/13) 8626788908475623 a001 86267571272/521*271443^(1/2) 8626788908480126 a001 53316291173/521*271443^(7/13) 8626788908489133 a001 20365011074/521*271443^(8/13) 8626788908498139 a001 7778742049/521*271443^(9/13) 8626788908507145 a001 2971215073/521*271443^(10/13) 8626788908516152 a001 1134903170/521*271443^(11/13) 8626788908517394 a001 10610209857723/521*103682^(1/8) 8626788908525158 a001 433494437/521*271443^(12/13) 8626788908550831 a001 6557470319842/521*103682^(1/6) 8626788908584269 a001 4052739537881/521*103682^(5/24) 8626788908617706 a001 2504730781961/521*103682^(1/4) 8626788908651143 a001 1548008755920/521*103682^(7/24) 8626788908684580 a001 956722026041/521*103682^(1/3) 8626788908718018 a001 591286729879/521*103682^(3/8) 8626788908723608 a001 75025/521*2537720636^(14/15) 8626788908723608 a001 75025/521*17393796001^(6/7) 8626788908723608 a001 75025/521*45537549124^(14/17) 8626788908723608 a001 75025/521*817138163596^(14/19) 8626788908723608 a001 75025/521*14662949395604^(2/3) 8626788908723608 a001 75025/521*505019158607^(3/4) 8626788908723608 a001 75025/521*192900153618^(7/9) 8626788908723608 a001 75025/521*10749957122^(7/8) 8626788908723608 a001 75025/521*4106118243^(21/23) 8626788908723608 a001 75025/521*1568397607^(21/22) 8626788908751455 a001 365435296162/521*103682^(5/12) 8626788908784892 a001 225851433717/521*103682^(11/24) 8626788908818330 a001 139583862445/521*103682^(1/2) 8626788908851767 a001 86267571272/521*103682^(13/24) 8626788908885204 a001 53316291173/521*103682^(7/12) 8626788908918642 a001 63246219*103682^(5/8) 8626788908952079 a001 20365011074/521*103682^(2/3) 8626788908985516 a001 12586269025/521*103682^(17/24) 8626788909018953 a001 7778742049/521*103682^(3/4) 8626788909052391 a001 4807526976/521*103682^(19/24) 8626788909085828 a001 2971215073/521*103682^(5/6) 8626788909119265 a001 1836311903/521*103682^(7/8) 8626788909152703 a001 1134903170/521*103682^(11/12) 8626788909167134 a001 10610209857723/521*39603^(3/22) 8626788909186140 a001 701408733/521*103682^(23/24) 8626788909225334 a007 Real Root Of 694*x^4-159*x^3-228*x^2+424*x+49 8626788909417152 a001 6557470319842/521*39603^(2/11) 8626788909667169 a001 4052739537881/521*39603^(5/22) 8626788909917187 a001 2504730781961/521*39603^(3/11) 8626788910167204 a001 1548008755920/521*39603^(7/22) 8626788910417222 a001 956722026041/521*39603^(4/11) 8626788910464150 a007 Real Root Of -764*x^4+615*x^3-139*x^2+25*x+943 8626788910518042 a001 28657/521*312119004989^(4/5) 8626788910518042 a001 28657/521*23725150497407^(11/16) 8626788910518042 a001 28657/521*73681302247^(11/13) 8626788910518042 a001 28657/521*10749957122^(11/12) 8626788910518042 a001 28657/521*4106118243^(22/23) 8626788910667239 a001 591286729879/521*39603^(9/22) 8626788910917257 a001 365435296162/521*39603^(5/11) 8626788911167274 a001 225851433717/521*39603^(1/2) 8626788911417291 a001 139583862445/521*39603^(6/11) 8626788911667309 a001 86267571272/521*39603^(13/22) 8626788911917326 a001 53316291173/521*39603^(7/11) 8626788912167344 a001 63246219*39603^(15/22) 8626788912417361 a001 20365011074/521*39603^(8/11) 8626788912667379 a001 12586269025/521*39603^(17/22) 8626788912917396 a001 7778742049/521*39603^(9/11) 8626788913167414 a001 4807526976/521*39603^(19/22) 8626788913417431 a001 2971215073/521*39603^(10/11) 8626788913667448 a001 1836311903/521*39603^(21/22) 8626788913800383 a001 1527890584523186/17711 8626788914072111 a001 10610209857723/521*15127^(3/20) 8626788915957120 a001 6557470319842/521*15127^(1/5) 8626788917842130 a001 4052739537881/521*15127^(1/4) 8626788919727140 a001 2504730781961/521*15127^(3/10) 8626788921612149 a001 1548008755920/521*15127^(7/20) 8626788922817274 a001 10946/521*10749957122^(23/24) 8626788923497159 a001 956722026041/521*15127^(2/5) 8626788925382168 a001 591286729879/521*15127^(9/20) 8626788927267178 a001 365435296162/521*15127^(1/2) 8626788928771358 r005 Im(z^2+c),c=-23/40+1/56*I,n=22 8626788929152188 a001 225851433717/521*15127^(11/20) 8626788931037197 a001 139583862445/521*15127^(3/5) 8626788932922207 a001 86267571272/521*15127^(13/20) 8626788933273609 m001 GAMMA(3/4)*(ln(2)+Trott) 8626788934807216 a001 53316291173/521*15127^(7/10) 8626788936692226 a001 63246219*15127^(3/4) 8626788938577236 a001 20365011074/521*15127^(4/5) 8626788940462245 a001 12586269025/521*15127^(17/20) 8626788942347255 a001 7778742049/521*15127^(9/10) 8626788944232264 a001 4807526976/521*15127^(19/20) 8626788945187654 r001 35i'th iterates of 2*x^2-1 of 8626788946000192 a001 583602272196913/6765 8626788948508796 h001 (1/5*exp(1)+7/8)/(1/5*exp(2)+1/6) 8626788951483908 a001 10610209857723/521*5778^(1/6) 8626788953570669 m001 Zeta(1,-1)+Zeta(5)^LandauRamanujan 8626788965839517 a001 6557470319842/521*5778^(2/9) 8626788978542217 a007 Real Root Of -363*x^4+473*x^3-11*x^2+429*x+883 8626788980195126 a001 4052739537881/521*5778^(5/18) 8626788987689829 m001 1/Riemann1stZero^2*exp(Bloch)*Zeta(5)^2 8626788994550734 a001 2504730781961/521*5778^(1/3) 8626789007000385 a001 233/9349*14662949395604^(20/21) 8626789007117466 a001 4181/521*45537549124^(16/17) 8626789007117466 a001 4181/521*14662949395604^(16/21) 8626789007117466 a001 4181/521*192900153618^(8/9) 8626789007117466 a001 4181/521*73681302247^(12/13) 8626789008906343 a001 1548008755920/521*5778^(7/18) 8626789023261952 a001 956722026041/521*5778^(4/9) 8626789023643757 a007 Real Root Of -583*x^4-865*x^3-835*x^2+160*x+527 8626789037617561 a001 591286729879/521*5778^(1/2) 8626789042287481 a007 Real Root Of -224*x^4+32*x^3+180*x^2+631*x+555 8626789047553807 l006 ln(3659/8670) 8626789050038437 a007 Real Root Of 450*x^4-986*x^3+253*x^2+848*x-339 8626789051973170 a001 365435296162/521*5778^(5/9) 8626789066328779 a001 225851433717/521*5778^(11/18) 8626789068224395 a007 Real Root Of 937*x^4+229*x^3+437*x^2+210*x-516 8626789080684388 a001 139583862445/521*5778^(2/3) 8626789095039997 a001 86267571272/521*5778^(13/18) 8626789109395606 a001 53316291173/521*5778^(7/9) 8626789113041944 p003 LerchPhi(1/1024,3,464/205) 8626789123751215 a001 63246219*5778^(5/6) 8626789138106824 a001 20365011074/521*5778^(8/9) 8626789152462433 a001 12586269025/521*5778^(17/18) 8626789161566544 r005 Im(z^2+c),c=-13/94+32/39*I,n=33 8626789166700967 a001 222916232067553/2584 8626789172036721 a007 Real Root Of 357*x^4-981*x^3+830*x^2+741*x-806 8626789199503790 a007 Real Root Of -446*x^4+702*x^3+70*x^2-680*x+59 8626789206341872 r005 Im(z^2+c),c=-9/52+6/53*I,n=19 8626789221460544 r005 Im(z^2+c),c=-9/52+6/53*I,n=21 8626789225003678 r005 Im(z^2+c),c=-9/52+6/53*I,n=23 8626789225186229 r005 Im(z^2+c),c=-9/52+6/53*I,n=26 8626789225193251 r005 Im(z^2+c),c=-9/52+6/53*I,n=24 8626789225203076 r005 Im(z^2+c),c=-9/52+6/53*I,n=28 8626789225205431 r005 Im(z^2+c),c=-9/52+6/53*I,n=31 8626789225205472 r005 Im(z^2+c),c=-9/52+6/53*I,n=33 8626789225205473 r005 Im(z^2+c),c=-9/52+6/53*I,n=30 8626789225205486 r005 Im(z^2+c),c=-9/52+6/53*I,n=35 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=38 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=40 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=42 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=43 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=45 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=47 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=50 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=52 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=54 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=57 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=59 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=55 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=62 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=61 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=64 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=63 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=60 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=58 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=56 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=53 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=51 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=49 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=48 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=46 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=44 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=41 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=39 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=37 8626789225205488 r005 Im(z^2+c),c=-9/52+6/53*I,n=36 8626789225205493 r005 Im(z^2+c),c=-9/52+6/53*I,n=34 8626789225205525 r005 Im(z^2+c),c=-9/52+6/53*I,n=32 8626789225206003 r005 Im(z^2+c),c=-9/52+6/53*I,n=29 8626789225213274 r005 Im(z^2+c),c=-9/52+6/53*I,n=27 8626789225238818 r005 Im(z^2+c),c=-9/52+6/53*I,n=25 8626789226291843 r005 Im(z^2+c),c=-9/52+6/53*I,n=22 8626789234560529 r005 Im(z^2+c),c=-23/86+1/8*I,n=17 8626789235046098 r005 Im(z^2+c),c=-9/52+6/53*I,n=20 8626789238213667 r002 2th iterates of z^2 + 8626789240453044 r005 Im(z^2+c),c=-9/52+6/53*I,n=18 8626789240499528 a001 10610209857723/521*2207^(3/16) 8626789298588045 r005 Im(z^2+c),c=-9/52+6/53*I,n=17 8626789351193679 a001 6557470319842/521*2207^(1/4) 8626789357937854 a007 Real Root Of 172*x^4-288*x^3+281*x^2+78*x-422 8626789370002893 b008 8+3*SinIntegral[Pi/15] 8626789424007960 a007 Real Root Of 803*x^4-672*x^3-193*x^2-4*x-736 8626789425017246 a007 Real Root Of -954*x^4+721*x^3+277*x^2+132*x+899 8626789426891951 a007 Real Root Of 458*x^4-760*x^3+928*x^2+945*x-617 8626789427206457 r009 Im(z^3+c),c=-3/64+47/54*I,n=19 8626789442594728 a007 Real Root Of -60*x^4-519*x^3+106*x^2+992*x-225 8626789451107870 a005 (1/cos(19/223*Pi))^1647 8626789459199790 a007 Real Root Of -814*x^4-465*x^3-164*x^2+272*x+509 8626789461036137 a007 Real Root Of -186*x^4+953*x^3+866*x^2+862*x+814 8626789461887832 a001 4052739537881/521*2207^(5/16) 8626789501016119 a007 Real Root Of -489*x^4+589*x^3+967*x^2+818*x+635 8626789508246717 a007 Real Root Of 500*x^4-108*x^3+267*x^2-160*x-683 8626789536754144 m001 Riemann1stZero^2/exp(Conway)^2*BesselJ(0,1)^2 8626789569513573 a007 Real Root Of -113*x^4+306*x^3-150*x^2+136*x+488 8626789572581987 a001 2504730781961/521*2207^(3/8) 8626789584919577 a001 1597/521*312119004989^(10/11) 8626789584919577 a001 1597/521*3461452808002^(5/6) 8626789586553414 m001 (Mills+Riemann2ndZero)/(ln(2)+Ei(1)) 8626789588592693 r002 31th iterates of z^2 + 8626789624255059 l006 ln(2000/4739) 8626789652682605 m001 AlladiGrinstead^Niven-Zeta(1,-1) 8626789656093112 m005 (1/2*5^(1/2)+3/7)/(6/7*Pi-9/10) 8626789659269602 a007 Real Root Of 570*x^4-788*x^3+166*x^2+130*x-833 8626789661328932 r005 Re(z^2+c),c=-1/110+15/44*I,n=10 8626789669450851 h001 (-12*exp(2)+7)/(-12*exp(2)-6) 8626789679368724 r002 7th iterates of z^2 + 8626789683276142 a001 1548008755920/521*2207^(7/16) 8626789696373053 m002 -(Pi^4*Coth[Pi])+Sinh[Pi]*Tanh[Pi] 8626789698709597 m001 (gamma(1)*Cahen+BesselK(1,1))/Cahen 8626789703055736 a007 Real Root Of -352*x^4-825*x^3-972*x^2+34*x+418 8626789733714557 a001 11/21*75025^(2/45) 8626789753101546 a007 Real Root Of -783*x^4+790*x^3+867*x^2+224*x-912 8626789765554495 m001 (Zeta(3)-sin(1/5*Pi))/(Cahen-FeigenbaumKappa) 8626789788282847 r005 Im(z^2+c),c=11/82+58/61*I,n=3 8626789793970300 a001 956722026041/521*2207^(1/2) 8626789796510079 a001 1/11592*233^(49/58) 8626789802039665 a007 Real Root Of -894*x^4-866*x^3-397*x^2+70*x+295 8626789817896464 a007 Real Root Of -952*x^4+522*x^3+301*x^2-536*x+176 8626789820158604 m001 (Bloch+Lehmer)/(MertensB3-Paris) 8626789826288276 m001 (exp(1/Pi)+Kolakoski)/(ZetaP(3)+ZetaP(4)) 8626789830324237 a007 Real Root Of -182*x^4+167*x^3+702*x^2+465*x-930 8626789835281331 r004 Re(z^2+c),c=-1/14-16/19*I,z(0)=I,n=3 8626789840032721 m001 (ln(2)+ln(5))/(ErdosBorwein-Totient) 8626789840314709 m001 (-Zeta(1/2)+ReciprocalLucas)/(3^(1/2)+5^(1/2)) 8626789855834518 r009 Re(z^3+c),c=-19/122+13/20*I,n=54 8626789901153184 m001 (BesselJ(0,1)+gamma(1))/(-OneNinth+Trott2nd) 8626789904664458 a001 591286729879/521*2207^(9/16) 8626789961742145 m001 MadelungNaCl^sqrt(5)/((2/3)^sqrt(5)) 8626789979622404 a007 Real Root Of 423*x^4-658*x^3+431*x^2+62*x-924 8626789996338952 m002 ProductLog[Pi]/Pi^12+Sech[Pi] 8626789998125323 r002 2th iterates of z^2 + 8626790015358618 a001 365435296162/521*2207^(5/8) 8626790027273635 a007 Real Root Of 36*x^4+376*x^3+581*x^2+233*x+782 8626790070395381 r005 Re(z^2+c),c=-30/43*I,n=11 8626790072472832 m001 Pi*Bloch*LandauRamanujan2nd 8626790098770733 a007 Real Root Of 359*x^4-925*x^3+243*x^2+47*x-933 8626790120744292 a007 Real Root Of -305*x^4-565*x^3-863*x^2+178*x+602 8626790126052780 a001 225851433717/521*2207^(11/16) 8626790227464195 q001 1024/1187 8626790236746942 a001 139583862445/521*2207^(3/4) 8626790254956686 h001 (1/10*exp(1)+7/10)/(1/12*exp(1)+9/10) 8626790323371158 m001 (Salem+Thue)/(MertensB2+PisotVijayaraghavan) 8626790328772927 m001 ReciprocalFibonacci/(HardyLittlewoodC5^Shi(1)) 8626790338587547 r002 4th iterates of z^2 + 8626790347441107 a001 86267571272/521*2207^(13/16) 8626790348681285 r005 Re(z^2+c),c=-75/86+4/57*I,n=17 8626790379190507 l006 ln(4373/4767) 8626790382317922 r005 Re(z^2+c),c=-7/8+1/17*I,n=17 8626790410036805 a003 sin(Pi*7/72)/cos(Pi*29/75) 8626790422019311 r002 35th iterates of z^2 + 8626790430473598 m001 (Niven+Thue)/(GAMMA(13/24)+MertensB3) 8626790448658197 m001 (Landau+MinimumGamma)/(GAMMA(3/4)+ln(3)) 8626790452462161 r005 Re(z^2+c),c=-43/40+4/45*I,n=4 8626790458135272 a001 53316291173/521*2207^(7/8) 8626790466714833 r005 Re(z^2+c),c=13/56+16/55*I,n=9 8626790473970030 a007 Real Root Of 586*x^4+122*x^3+605*x^2+397*x-354 8626790484603563 a008 Real Root of (1+5*x+3*x^2+4*x^3+4*x^4-3*x^5) 8626790494012938 m001 Paris/Otter*Sierpinski 8626790498094545 h001 (7/12*exp(2)+1/6)/(5/8*exp(2)+4/7) 8626790525643237 l006 ln(2341/5547) 8626790534442083 a007 Real Root Of -408*x^4-578*x^3-868*x^2+334*x+789 8626790568829439 a001 63246219*2207^(15/16) 8626790569044046 r009 Im(z^3+c),c=-23/54+1/55*I,n=58 8626790578821377 a007 Real Root Of 844*x^4-440*x^3+122*x^2+417*x-481 8626790593829911 a007 Real Root Of 782*x^4+992*x^3+244*x^2-858*x-718 8626790601810827 r005 Im(z^2+c),c=-5/74+6/61*I,n=7 8626790640045213 a007 Real Root Of 677*x^4-73*x^3+462*x^2+170*x-619 8626790641125721 p003 LerchPhi(1/125,3,62/59) 8626790668467043 m001 GAMMA(11/12)/Bloch^2/ln(gamma) 8626790677128327 m001 (cos(1/5*Pi)-Lehmer)/(Sierpinski-ZetaP(4)) 8626790679406889 a001 85146424005746/987 8626790684489261 r005 Im(z^2+c),c=-139/122+5/46*I,n=43 8626790716904803 a007 Real Root Of 298*x^4-357*x^3+953*x^2+346*x-805 8626790723347345 a007 Real Root Of -811*x^4+615*x^3+510*x^2-317*x+191 8626790749366331 a007 Real Root Of 347*x^4-22*x^3+840*x^2+856*x-93 8626790756126014 a007 Real Root Of -373*x^4-136*x^3-491*x^2+352*x-3 8626790773489775 m005 (1/3*Zeta(3)+1/7)/(7/8*gamma+1/8) 8626790779028539 a008 Real Root of (-4+5*x+5*x^2+x^3+6*x^4-4*x^5) 8626790787148332 a007 Real Root Of -913*x^4+975*x^3-726*x^2-918*x+880 8626790799412382 a001 11/987*1346269^(49/51) 8626790858030271 a007 Real Root Of 525*x^4-804*x^3-558*x^2+381*x+312 8626790864388264 r002 7th iterates of z^2 + 8626790890702386 a007 Real Root Of 212*x^4-998*x^3-692*x^2+289*x+789 8626790939264455 a008 Real Root of (-5+2*x^2+3*x^3+2*x^4+x^5) 8626790964411348 m009 (2/5*Psi(1,3/4)-4)/(Psi(1,3/4)-6) 8626790970592976 a007 Real Root Of -762*x^4-654*x^3-739*x^2-953*x-270 8626790988465390 m009 (4/5*Psi(1,3/4)-1/4)/(1/4*Pi^2-2/5) 8626790991161093 a007 Real Root Of -651*x^4+667*x^3+848*x^2-796*x-529 8626791003197073 r005 Im(z^2+c),c=-9/52+6/53*I,n=15 8626791005888217 r005 Re(z^2+c),c=-37/42+1/57*I,n=23 8626791017650728 r009 Im(z^3+c),c=-2/21+25/29*I,n=5 8626791061625088 m001 arctan(1/2)/ln(1+sqrt(2))*GAMMA(13/24) 8626791061625088 m001 arctan(1/2)/ln(2^(1/2)+1)*GAMMA(13/24) 8626791068747239 a007 Real Root Of -866*x^4-88*x^3+400*x^2-521*x-324 8626791072366629 a007 Real Root Of 705*x^4-69*x^3-346*x^2-519*x-625 8626791089903597 m001 (GAMMA(5/6)-FeigenbaumD)/(Lehmer-ThueMorse) 8626791099953922 r005 Re(z^2+c),c=-19/110+25/43*I,n=3 8626791119051362 m005 (-21/44+1/4*5^(1/2))/(6/7*gamma-2/5) 8626791160362300 r005 Re(z^2+c),c=1/98+60/61*I,n=4 8626791172003271 a007 Real Root Of 535*x^4-352*x^3+546*x^2+323*x-650 8626791193912556 m001 Catalan^FeigenbaumC/(Catalan^ZetaR(2)) 8626791197819305 l006 ln(2682/6355) 8626791245643365 m001 (exp(Pi)+arctan(1/3))/(-PlouffeB+RenyiParking) 8626791261235398 m001 (ln(gamma)+(1+3^(1/2))^(1/2))/(Mills-Trott2nd) 8626791262481713 r005 Im(z^2+c),c=-29/52+43/58*I,n=4 8626791273669269 a007 Real Root Of -798*x^4+240*x^3+95*x^2-762*x-132 8626791301036032 a001 1/843*(1/2*5^(1/2)+1/2)^19*76^(9/19) 8626791326532203 m001 (ErdosBorwein+Niven)/(Pi+ArtinRank2) 8626791327758950 r005 Im(z^2+c),c=9/122+11/17*I,n=11 8626791330082291 a003 cos(Pi*2/47)-cos(Pi*28/61) 8626791338093695 r005 Re(z^2+c),c=-15/14+41/227*I,n=34 8626791351593565 m005 (-11/20+1/4*5^(1/2))/(1/11*2^(1/2)+11/12) 8626791364627526 m001 1/exp(GAMMA(1/24))^2/Bloch/GAMMA(23/24) 8626791370372328 r009 Re(z^3+c),c=-1/64+28/45*I,n=20 8626791389610482 a007 Real Root Of -x^4+819*x^3+243*x^2+499*x+776 8626791395463430 a007 Real Root Of 589*x^4-325*x^3-698*x^2-54*x-62 8626791414223439 r005 Re(z^2+c),c=11/70+23/40*I,n=16 8626791414646720 m001 (MertensB3+ZetaP(2))/(2^(1/3)+cos(1/5*Pi)) 8626791430535967 r005 Im(z^2+c),c=11/27+20/57*I,n=34 8626791475057016 b008 10+ExpIntegralEi[1/8] 8626791486063822 m001 (-MadelungNaCl+Rabbit)/(gamma+Kac) 8626791486416476 a003 sin(Pi*13/99)+sin(Pi*11/72) 8626791509703799 a001 10610209857723/521*843^(3/14) 8626791544080761 r009 Im(z^3+c),c=-25/48+4/7*I,n=5 8626791554672937 m005 (1/2*gamma-5/6)/(1/12*gamma+7/12) 8626791567231656 a007 Real Root Of -503*x^4+924*x^3-282*x^2-330*x+797 8626791588002810 r005 Re(z^2+c),c=-1/10+51/61*I,n=43 8626791595694077 r002 10th iterates of z^2 + 8626791603614653 b008 Sinh[3-2*Cosh[1]] 8626791608118738 p003 LerchPhi(1/512,3,187/178) 8626791658957177 m001 1/GAMMA(23/24)*GAMMA(1/6)*exp(arctan(1/2)) 8626791664766047 m005 (1/2*3^(1/2)+4)/(3*3^(1/2)+4/9) 8626791675946672 m003 -2+5*Cosh[1/2+Sqrt[5]/2]-6*Csch[1/2+Sqrt[5]/2] 8626791718349931 l006 ln(3023/7163) 8626791720476157 a007 Real Root Of -557*x^4+796*x^3-980*x^2-984*x+700 8626791723679793 r002 51th iterates of z^2 + 8626791728592063 h001 (-exp(1)-5)/(-3*exp(8)-4) 8626791736725155 r002 35i'th iterates of 2*x/(1-x^2) of 8626791751923911 a007 Real Root Of 480*x^4+122*x^3+318*x^2-431*x-796 8626791769551326 m004 6-(5*Cos[Sqrt[5]*Pi])/Pi+Log[Sqrt[5]*Pi]^2 8626791781649421 a007 Real Root Of 778*x^4+94*x^3-111*x^2-320*x-564 8626791811666898 a007 Real Root Of -725*x^4+189*x^3-799*x^2-506*x+681 8626791818583470 a007 Real Root Of -833*x^4-148*x^3-50*x^2-513*x-39 8626791821031458 a007 Real Root Of 300*x^4-519*x^3-319*x^2-666*x+979 8626791846857567 m005 (1/2*Zeta(3)+1/12)/(5*3^(1/2)-8/11) 8626791852972466 a001 1322157322203*1836311903^(7/17) 8626791852972466 a001 45537549124*6557470319842^(7/17) 8626791856135976 a003 sin(Pi*25/88)/sin(Pi*43/120) 8626791878812048 a007 Real Root Of 948*x^4-790*x^3-513*x^2-298*x+621 8626791914651666 r009 Im(z^3+c),c=-9/25+27/41*I,n=24 8626791941376172 s002 sum(A263349[n]/(pi^n+1),n=1..infinity) 8626791979939028 r009 Im(z^3+c),c=-3/29+17/20*I,n=23 8626792020613855 a007 Real Root Of -13*x^4+324*x^3-812*x^2+113*x+917 8626792035326109 m001 (Psi(2,1/3)-cos(1/12*Pi))/(Gompertz+ZetaQ(2)) 8626792058809559 m005 (1/2*5^(1/2)-4/7)/(2/5*Catalan-1) 8626792074534168 r009 Re(z^3+c),c=-9/98+9/58*I,n=6 8626792107211291 r005 Re(z^2+c),c=-41/48+3/25*I,n=47 8626792111346099 b008 -1+ArcSinh[22/7] 8626792133350845 l006 ln(3364/7971) 8626792140776289 m005 (1/2*exp(1)-1/7)/(7/9*Catalan-4/7) 8626792149828221 r005 Re(z^2+c),c=-15/14+31/195*I,n=16 8626792217984793 a007 Real Root Of -962*x^4-714*x^3-321*x^2+410*x+667 8626792252131532 m001 (gamma(3)-gamma)/(Champernowne+Landau) 8626792267276541 a007 Real Root Of -371*x^4-43*x^3-408*x^2+62*x+535 8626792290204737 m001 (5^(1/2)-GAMMA(11/12))/(-Paris+Porter) 8626792299998802 r002 32th iterates of z^2 + 8626792312641317 m001 (ln(3)+Zeta(1,2))/(FeigenbaumB+MertensB2) 8626792341622495 r002 12th iterates of z^2 + 8626792349579360 r009 Im(z^3+c),c=-35/118+3/50*I,n=5 8626792368442143 a007 Real Root Of -949*x^4+640*x^3-753*x^2-678*x+912 8626792376799545 a001 6557470319842/521*843^(2/7) 8626792396172199 m005 (-1/28+1/4*5^(1/2))/(3/4*2^(1/2)-1) 8626792400057715 h001 (8/11*exp(2)+5/12)/(9/11*exp(2)+2/3) 8626792400059839 r002 12th iterates of z^2 + 8626792418007796 a007 Real Root Of -340*x^4+403*x^3+17*x^2+316*x+707 8626792437807708 r002 47th iterates of z^2 + 8626792444376949 m005 (1/3*gamma+1/4)/(2/9*gamma+5) 8626792444827440 m001 1/GAMMA(1/12)/ln(FeigenbaumDelta)*GAMMA(7/12) 8626792471960214 l006 ln(3705/8779) 8626792519863514 a007 Real Root Of -316*x^4+469*x^3-102*x^2+446*x-38 8626792563113145 r005 Re(z^2+c),c=-93/106+3/64*I,n=29 8626792579220649 r005 Im(z^2+c),c=-17/118+9/11*I,n=60 8626792590607213 m001 (Kac-LaplaceLimit)/(ErdosBorwein+FeigenbaumD) 8626792590706175 r002 61th iterates of z^2 + 8626792626787388 b008 5+8*E^(2+Pi^(-1)) 8626792632669048 a007 Real Root Of 582*x^4-89*x^3+477*x^2-69*x-794 8626792667060991 a007 Real Root Of -169*x^4+434*x^3-81*x^2+122*x-230 8626792674892286 m002 -4*Pi+2*Pi^2*ProductLog[Pi] 8626792713358198 r005 Re(z^2+c),c=5/29+13/32*I,n=14 8626792717885185 a007 Real Root Of 294*x^4-949*x^3-252*x^2+309*x-318 8626792718182618 a001 199/21*46368^(28/33) 8626792733446574 a007 Real Root Of 8*x^4-975*x^3-147*x^2-521 8626792753493058 l006 ln(4046/9587) 8626792793333821 r004 Im(z^2+c),c=-9/14+3/19*I,z(0)=-1,n=29 8626792798291119 q001 2827/3277 8626792837079817 p004 log(29569/12479) 8626792879535211 l003 GAMMA(2,42/65) 8626792923656917 a001 199/3*5^(8/49) 8626792929519985 r005 Im(z^2+c),c=-79/94+3/46*I,n=5 8626792936805797 a007 Real Root Of -729*x^4+282*x^3-43*x^2-766*x-44 8626792942940133 r005 Im(z^2+c),c=-11/14+1/223*I,n=17 8626792989588947 m001 (Sarnak-Trott2nd)/(3^(1/3)-HardyLittlewoodC3) 8626792993258973 m001 Niven/GlaisherKinkelin^2/ln(cos(Pi/12))^2 8626793003042161 a007 Real Root Of 58*x^4+467*x^3-296*x^2-137*x-567 8626793013871103 r009 Im(z^3+c),c=-37/48+19/59*I,n=2 8626793056118731 a007 Real Root Of -310*x^4-656*x^3-150*x^2+693*x+460 8626793069480743 m005 (1/2*Zeta(3)+7/10)/(4/9*exp(1)+3/10) 8626793082999468 r005 Re(z^2+c),c=1/38+13/32*I,n=28 8626793096702772 m005 (2*exp(1)-4)/(5/6*exp(1)-3/5) 8626793110076861 a007 Real Root Of 321*x^4-612*x^3-838*x^2-481*x-362 8626793127021147 r005 Re(z^2+c),c=-17/82+24/35*I,n=17 8626793130164307 a007 Real Root Of -291*x^4+477*x^3-207*x^2+874*x-745 8626793130345094 l006 ln(7625/8312) 8626793146346587 a007 Real Root Of 761*x^4+209*x^3+725*x^2+52*x-782 8626793148551038 r002 64th iterates of z^2 + 8626793159219684 a007 Real Root Of -428*x^4+405*x^3+147*x^2+34*x+417 8626793174406376 r005 Re(z^2+c),c=-119/82+5/61*I,n=8 8626793198777816 r002 31th iterates of z^2 + 8626793219286570 m009 (1/5*Psi(1,1/3)+6)/(Psi(1,1/3)-4/5) 8626793243895379 a001 4052739537881/521*843^(5/14) 8626793334306053 a007 Real Root Of 65*x^4+448*x^3-985*x^2-118*x-95 8626793334657997 r005 Re(z^2+c),c=29/90+24/61*I,n=64 8626793368632040 a007 Real Root Of 656*x^4-533*x^3+196*x^2+587*x-345 8626793381007816 s002 sum(A081290[n]/((exp(n)+1)/n),n=1..infinity) 8626793422414281 m001 BesselI(0,1)^MertensB2/(Zeta(1/2)^MertensB2) 8626793433547848 r005 Re(z^2+c),c=1/90+39/53*I,n=8 8626793466703546 a007 Real Root Of 749*x^4-589*x^3+388*x^2+315*x-810 8626793480926237 a007 Real Root Of 975*x^4+649*x^3+564*x^2+14*x-531 8626793485939189 r009 Re(z^3+c),c=-9/98+9/58*I,n=8 8626793511094071 r009 Re(z^3+c),c=-9/98+9/58*I,n=9 8626793511960841 r009 Re(z^3+c),c=-9/98+9/58*I,n=11 8626793511984247 r009 Re(z^3+c),c=-9/98+9/58*I,n=12 8626793511984702 r009 Re(z^3+c),c=-9/98+9/58*I,n=14 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=15 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=17 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=20 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=23 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=26 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=29 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=32 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=35 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=38 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=40 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=41 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=42 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=44 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=39 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=37 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=36 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=34 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=33 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=31 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=30 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=28 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=27 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=25 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=24 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=22 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=21 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=18 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=19 8626793511984723 r009 Re(z^3+c),c=-9/98+9/58*I,n=16 8626793511984983 r009 Re(z^3+c),c=-9/98+9/58*I,n=13 8626793512304910 r009 Re(z^3+c),c=-9/98+9/58*I,n=10 8626793521647342 a007 Real Root Of 632*x^4+401*x^3+133*x^2-594*x-704 8626793523417926 a001 2504730781961/843*322^(7/12) 8626793545119574 a001 233/1364*14662949395604^(8/9) 8626793545234165 a001 610/521*23725150497407^(13/16) 8626793545234165 a001 610/521*505019158607^(13/14) 8626793592214351 m001 KhinchinLevy/FeigenbaumAlpha/ln(gamma) 8626793592214351 m001 KhintchineLevy/FeigenbaumAlpha/ln(gamma) 8626793636310173 a007 Real Root Of 117*x^4+898*x^3-958*x^2-49*x-606 8626793660984411 m001 Ei(1)*(Artin+StolarskyHarborth) 8626793702630984 a003 sin(Pi*1/85)-sin(Pi*26/73) 8626793712781914 r002 17th iterates of z^2 + 8626793733073893 r002 34th iterates of z^2 + 8626793736908315 r005 Re(z^2+c),c=11/114+28/55*I,n=45 8626793757421163 g007 Psi(2,3/11)+Psi(2,1/8)-Psi(2,4/7)-Psi(2,1/5) 8626793773358457 r002 37th iterates of z^2 + 8626793779140728 a007 Real Root Of -760*x^4+239*x^3-232*x^2-109*x+653 8626793809389541 a001 9349/3*5^(31/49) 8626793829137841 m001 (Niven-Riemann3rdZero)/(Pi-BesselJ(1,1)) 8626793850072531 m001 (-GAMMA(19/24)+1/3)/(-GAMMA(23/24)+2) 8626793853566271 r002 4th iterates of z^2 + 8626793859850390 a001 2537720636/21*987^(13/21) 8626793868577080 a007 Real Root Of -53*x^4-547*x^3-699*x^2+649*x-21 8626793902917482 r009 Re(z^3+c),c=-9/98+9/58*I,n=7 8626793928074363 r009 Im(z^3+c),c=-73/122+12/43*I,n=3 8626793932253641 a007 Real Root Of 251*x^4-400*x^3-746*x^2-211*x+855 8626793940340049 r008 a(0)=0,K{-n^6,16-99*n^3+31*n^2-64*n} 8626793971199073 m001 Pi^2*BesselJ(0,1)/exp(sqrt(5))^2 8626793978596483 r002 15th iterates of z^2 + 8626793985987162 m001 1/GAMMA(2/3)^2*Si(Pi)^2*exp(GAMMA(7/12)) 8626794006037531 s002 sum(A181093[n]/((3*n)!),n=1..infinity) 8626794070306458 m001 (1+GAMMA(7/12))/(Champernowne+FransenRobinson) 8626794093956654 r008 a(0)=0,K{-n^6,50-77*n^3-18*n^2-71*n} 8626794094162352 a007 Real Root Of 143*x^4-800*x^3+174*x^2-582*x+807 8626794110991300 a001 2504730781961/521*843^(3/7) 8626794128085820 r008 a(0)=0,K{-n^6,24-67*n^3-61*n^2-12*n} 8626794163207715 a007 Real Root Of -430*x^4+918*x^3-883*x^2-767*x+823 8626794171098073 a008 Real Root of (-2+7*x+3*x^2-8*x^4-6*x^8) 8626794185591022 m001 Salem^Landau/BesselI(0,1) 8626794187068960 r009 Re(z^3+c),c=-67/102+22/23*I,n=2 8626794195477255 r002 17th iterates of z^2 + 8626794196707326 m001 (gamma(2)-QuadraticClass)^GlaisherKinkelin 8626794210342097 a007 Real Root Of -913*x^4+470*x^3+551*x^2+374*x+720 8626794212759543 m001 (Shi(1)+Chi(1))/(Artin+MasserGramainDelta) 8626794212759543 m001 Ei(1)/(Artin+MasserGramainDelta) 8626794230861114 a007 Real Root Of 157*x^4+105*x^3+134*x^2-803*x-812 8626794232802034 m006 (4*exp(Pi)-1/5)/(2*exp(2*Pi)-1/3) 8626794235436717 m001 ln(Pi)^ln(gamma)/(ln(Pi)^Landau) 8626794258373205 q001 1803/2090 8626794258965747 r009 Im(z^3+c),c=-9/118+25/29*I,n=23 8626794262466576 r002 4th iterates of z^2 + 8626794279417865 m001 1/FeigenbaumB*Backhouse^2*ln(Zeta(3))^2 8626794307482959 m001 (MinimumGamma+ZetaQ(3))/(1+CareFree) 8626794360345879 r008 a(0)=0,K{-n^6,-65+38*n^3-58*n^2-32*n} 8626794362252228 a007 Real Root Of 307*x^4-174*x^3+576*x^2+565*x-223 8626794368727127 m001 (-Zeta(5)+GAMMA(13/24))/(1-ln(2)/ln(10)) 8626794377693031 a007 Real Root Of -30*x^4+856*x^3-567*x^2+932*x-915 8626794395065359 m005 (1/2*5^(1/2)+2/5)/(8/11*3^(1/2)+1/2) 8626794436854448 a007 Real Root Of 353*x^4-16*x^3+4*x^2+60*x-157 8626794465478102 r005 Re(z^2+c),c=-26/31+7/41*I,n=49 8626794467427310 m005 (1/2*gamma-3/4)/(53/120+1/24*5^(1/2)) 8626794494570686 m002 -6+Pi^6-Pi^10/ProductLog[Pi] 8626794567446799 m001 1/BesselK(1,1)^2*Cahen^2*ln(GAMMA(5/12)) 8626794622068523 r005 Im(z^2+c),c=4/21+30/47*I,n=5 8626794644814431 a007 Real Root Of -881*x^4-210*x^3-257*x^2-70*x+484 8626794682166929 a008 Real Root of (-5+3*x-x^2-3*x^3+4*x^4+6*x^5) 8626794688873997 r005 Im(z^2+c),c=-1/22+11/16*I,n=37 8626794690025767 a007 Real Root Of 971*x^4+564*x^3+851*x^2+830*x-93 8626794705745876 r005 Im(z^2+c),c=-23/27+4/61*I,n=8 8626794726908581 m001 (ln(2)-ErdosBorwein)/(MasserGramain-Niven) 8626794744276018 m003 (9*Sqrt[5])/64+4/Log[1/2+Sqrt[5]/2] 8626794763765376 a007 Real Root Of -97*x^4-911*x^3-553*x^2+661*x-781 8626794780405861 g001 abs(GAMMA(271/60+I*49/30)) 8626794797645937 a001 5600748293801/233*6557470319842^(14/17) 8626794820123250 m009 (1/6*Psi(1,3/4)+4)/(5*Psi(1,1/3)+4/5) 8626794821067828 r005 Re(z^2+c),c=37/94+11/16*I,n=4 8626794847782619 a001 370248451/144*4807526976^(6/23) 8626794847862582 a001 6643838879/144*75025^(6/23) 8626794857550026 a001 9349/21*591286729879^(13/21) 8626794918088296 a007 Real Root Of -77*x^4-687*x^3-198*x^2+67*x+716 8626794919243112 b008 -88+Sqrt[3] 8626794919243112 b008 -9+(2+Sqrt[3])/10 8626794926848264 a007 Real Root Of 206*x^4-733*x^3-150*x^2+837*x+249 8626794937565118 m006 (3/4*exp(2*Pi)-1/4)/(5/6/Pi+1/5) 8626794956250844 a001 4870847/21*24157817^(13/21) 8626794978087308 a001 1548008755920/521*843^(1/2) 8626795003418460 p004 log(36251/15299) 8626795005547726 a007 Real Root Of -543*x^4-567*x^3+6*x^2+883*x+694 8626795006494930 r002 27th iterates of z^2 + 8626795006661657 r005 Re(z^2+c),c=17/90+14/51*I,n=28 8626795013497393 a007 Real Root Of -32*x^4+233*x^3-906*x^2+77*x+908 8626795046998499 a007 Real Root Of 812*x^4-746*x^3-39*x^2-114*x-998 8626795073082807 a007 Real Root Of -876*x^4-281*x^3-814*x^2-979*x+66 8626795078481656 m001 ErdosBorwein^2*exp(Backhouse)^2/GAMMA(1/24)^2 8626795101890630 m009 (4/5*Psi(1,2/3)-4/5)/(2*Pi^2-3/5) 8626795137822583 r005 Re(z^2+c),c=4/15+8/27*I,n=5 8626795164201730 m005 (1/3*Zeta(3)+1/4)/(5/7*Catalan+1/10) 8626795177413237 r005 Re(z^2+c),c=-11/54+43/53*I,n=59 8626795179599298 a007 Real Root Of 878*x^4+114*x^3+443*x^2-297*x-999 8626795205933646 a007 Real Root Of 567*x^4-926*x^3+482*x^2-843*x+649 8626795218877700 h001 (-3*exp(1)-9)/(-10*exp(3)+2) 8626795246425389 m001 (Stephens-ZetaQ(2))/(GAMMA(13/24)-MertensB2) 8626795256829783 a007 Real Root Of -808*x^4+723*x^3-197*x^2-391*x+721 8626795290238685 a003 cos(Pi*12/71)/sin(Pi*53/108) 8626795323968414 a007 Real Root Of 90*x^4+670*x^3-808*x^2+877*x-620 8626795330008490 m001 Ei(1,1)^(MertensB1/Khinchin) 8626795339360718 a001 1/2576*17711^(4/49) 8626795363284715 a007 Real Root Of -649*x^4+399*x^3+969*x^2+353*x+199 8626795414685353 a007 Real Root Of 970*x^4-681*x^3+548*x^2+697*x-781 8626795462543438 p003 LerchPhi(1/64,5,277/107) 8626795480009199 m001 1/Bloch/ln(CopelandErdos)^2/Salem 8626795486773235 m001 1/exp(Zeta(1/2))^2*HardHexagonsEntropy*gamma^2 8626795512722045 m001 GAMMA(1/6)*ln(Riemann1stZero)^2/GAMMA(5/12)^2 8626795513325376 m001 (ln(3)-exp(1/Pi))/(KomornikLoreti-Porter) 8626795566371960 m002 -(Pi^4*Log[Pi]*Sech[Pi])+Tanh[Pi]^2 8626795588540794 r005 Re(z^2+c),c=-8/7+21/68*I,n=20 8626795656209626 a003 cos(Pi*7/23)*cos(Pi*52/105) 8626795664883228 a007 Real Root Of 209*x^4-515*x^3+294*x^2-991*x+851 8626795668052788 a007 Real Root Of -930*x^4-124*x^3-418*x^2+157*x+882 8626795673719683 a007 Real Root Of 498*x^4-227*x^3+828*x^2+810*x-339 8626795702025284 m001 (MertensB2+Otter)/(1+Pi*2^(1/2)/GAMMA(3/4)) 8626795704953066 m001 1/GAMMA(1/12)*ln(Riemann3rdZero)*GAMMA(7/24) 8626795718293476 m001 (Ei(1,1)+Riemann2ndZero)/(LambertW(1)+Ei(1)) 8626795720523680 a001 1/322*(1/2*5^(1/2)+1/2)^23*47^(8/21) 8626795739439292 m001 (cos(1/5*Pi)+Pi^(1/2))/(Magata-PrimesInBinary) 8626795742782774 m005 (1/2*5^(1/2)+2)/(4/5*3^(1/2)-5) 8626795749896314 a007 Real Root Of 85*x^4+818*x^3+806*x^2+551*x-837 8626795767272265 m001 (Robbin+Thue)/(ln(2^(1/2)+1)+QuadraticClass) 8626795781309684 a007 Real Root Of 122*x^4+959*x^3-800*x^2+132*x+667 8626795791927363 a007 Real Root Of 82*x^4-893*x^3-924*x^2-991*x-786 8626795802624185 r005 Re(z^2+c),c=-9/110+33/43*I,n=4 8626795811490472 m005 (1/2*Pi-1)/(1/7*3^(1/2)-10/11) 8626795812375785 l006 ln(341/808) 8626795845183403 a001 956722026041/521*843^(4/7) 8626795856999665 q001 2582/2993 8626795873259411 m001 (Zeta(1,-1)-gamma)/(Zeta(1,2)+ZetaP(4)) 8626795906492091 m001 (PlouffeB+Tribonacci)/(gamma(3)-Khinchin) 8626795955880852 r004 Im(z^2+c),c=7/46-1/13*I,z(0)=exp(7/8*I*Pi),n=3 8626795959079972 m001 (FeigenbaumD+TwinPrimes)/(Chi(1)-GAMMA(3/4)) 8626795962871240 a007 Real Root Of -583*x^4+406*x^3+362*x^2+460*x-604 8626795966621429 a007 Real Root Of 724*x^4-508*x^3-347*x^2-509*x-908 8626795967906758 r009 Im(z^3+c),c=-5/27+44/51*I,n=49 8626795968727568 a007 Real Root Of 466*x^4-932*x^3+411*x^2+602*x-643 8626795995466875 m001 (ln(3)+ThueMorse)/(Zeta(3)-ln(gamma)) 8626796003100221 a007 Real Root Of 935*x^4+671*x^3+103*x^2-748*x-809 8626796017076218 m001 Rabbit^2/exp(Magata)/TreeGrowth2nd^2 8626796038944938 h001 (-7*exp(2)-10)/(-3*exp(1)+1) 8626796079398420 m001 (Otter-Riemann2ndZero)/(arctan(1/3)+Pi^(1/2)) 8626796095483187 m001 (exp(1/Pi)-BesselI(0,2))/(Pi^(1/2)-Sarnak) 8626796113973726 m001 (BesselK(1,1)-PisotVijayaraghavan)/Chi(1) 8626796123948403 m003 -36*Csch[1/2+Sqrt[5]/2]+3/Log[1/2+Sqrt[5]/2] 8626796137305574 a003 sin(Pi*33/101)/sin(Pi*39/85) 8626796164993446 a007 Real Root Of 881*x^4+64*x^3+912*x^2+957*x-300 8626796168659724 h005 exp(cos(Pi*14/53)/cos(Pi*14/31)) 8626796169884562 a007 Real Root Of 505*x^4+177*x^3+895*x^2+50*x-789 8626796205584572 r005 Re(z^2+c),c=3/29+31/60*I,n=39 8626796214953362 a007 Real Root Of -422*x^4+282*x^3+623*x^2+802*x+643 8626796217391737 a007 Real Root Of -632*x^4+203*x^3-62*x^2+295*x+781 8626796218073598 r008 a(0)=0,K{-n^6,83+8*n^3-65*n^2+91*n} 8626796221857022 a007 Real Root Of 699*x^4-602*x^3+535*x^2+686*x-580 8626796224337764 m001 Pi*(2^(1/3)+Ei(1))-GAMMA(17/24) 8626796225800626 a007 Real Root Of 750*x^4+460*x^3+441*x^2+770*x+216 8626796234564410 m005 (1/3*Zeta(3)+2/3)/(2/3*Pi-6/7) 8626796252157475 r002 3th iterates of z^2 + 8626796254544358 a007 Real Root Of 719*x^4-91*x^3-936*x^2-632*x+902 8626796274750736 a007 Real Root Of 830*x^4+157*x^3+700*x^2+103*x-791 8626796343334171 r002 12th iterates of z^2 + 8626796375170439 r009 Im(z^3+c),c=-4/23+3/38*I,n=5 8626796398777768 a007 Real Root Of -625*x^4-668*x^3-210*x^2+128*x+184 8626796404278719 l006 ln(4963/5006) 8626796432256935 a001 10610209857723/1364*322^(5/12) 8626796457879033 r005 Im(z^2+c),c=-77/118+15/52*I,n=37 8626796475632577 m001 GAMMA(5/6)^2/Bloch*exp(sqrt(3))^2 8626796490873957 r005 Im(z^2+c),c=-75/64+5/34*I,n=30 8626796501733766 m001 (exp(1)+Thue)/PrimesInBinary 8626796509162043 a001 7/4181*610^(37/38) 8626796509699513 r005 Re(z^2+c),c=-37/42+1/57*I,n=25 8626796513915879 p003 LerchPhi(1/125,5,80/49) 8626796517291629 m002 1/4+Sinh[Pi]/(6*Pi) 8626796557654383 r002 37th iterates of z^2 + 8626796561958135 a003 sin(Pi*28/75)*sin(Pi*42/109) 8626796606208461 a007 Real Root Of -66*x^4+960*x^3-28*x^2+100*x+760 8626796616497488 p004 log(36469/15391) 8626796621212860 m001 (polylog(4,1/2)+Landau)/(Niven-PlouffeB) 8626796629659193 r002 32th iterates of z^2 + 8626796636540886 b008 ArcCsch[(3*(5+E))/2] 8626796705470004 m001 (Mills+Paris)/(cos(1/12*Pi)+LaplaceLimit) 8626796712279585 a001 591286729879/521*843^(9/14) 8626796714579055 q001 3361/3896 8626796715924039 m001 (Riemann3rdZero-Sierpinski)/(Ei(1)+CareFree) 8626796725931156 p001 sum(1/(450*n+289)/n/(16^n),n=1..infinity) 8626796733409140 a001 225851433717/199*199^(9/11) 8626796741624040 r005 Im(z^2+c),c=-15/17+2/31*I,n=25 8626796752485286 r005 Im(z^2+c),c=-71/122+7/37*I,n=17 8626796759698546 a007 Real Root Of 432*x^4-284*x^3+693*x^2+165*x-795 8626796768187095 a007 Real Root Of -117*x^4+992*x^3-70*x^2-657*x+187 8626796770725748 p001 sum(1/(525*n+116)/(256^n),n=0..infinity) 8626796807555321 m005 (1/2*gamma-3)/(2/11*2^(1/2)-4/7) 8626796816464324 a007 Real Root Of 888*x^4-905*x^3-737*x^2-56*x+686 8626796825003505 a007 Real Root Of -368*x^4+898*x^3+466*x^2-455*x-327 8626796829852666 l006 ln(3252/3545) 8626796834322069 r009 Im(z^3+c),c=-17/114+16/19*I,n=43 8626796845340373 m001 (Psi(1,1/3)+Si(Pi))/(-MinimumGamma+ZetaP(4)) 8626796845663787 a007 Real Root Of -768*x^4+806*x^3-88*x^2-471*x+602 8626796873867484 m001 Pi/(Psi(1,1/3)+arctan(1/2))+BesselI(1,1) 8626796886096784 m005 (1/2*exp(1)-2)/(2/11*2^(1/2)-1) 8626796889183277 r005 Im(z^2+c),c=-33/56+31/41*I,n=4 8626796892915391 r005 Re(z^2+c),c=7/52+23/40*I,n=40 8626796896134490 r005 Im(z^2+c),c=-33/56+1/63*I,n=46 8626796897252152 m005 (1/2*gamma-4/11)/(1/10*Pi+5/9) 8626796906543898 r002 40th iterates of z^2 + 8626796906555634 a007 Real Root Of 563*x^4-953*x^3-310*x^2-291*x-944 8626796911551464 r005 Im(z^2+c),c=-33/26+16/61*I,n=7 8626796923519549 r005 Re(z^2+c),c=-75/86+4/57*I,n=21 8626796942098926 a007 Real Root Of -648*x^4+872*x^3+827*x^2-48*x-775 8626796951073822 m001 ZetaQ(4)/(GaussAGM-Cahen) 8626796955170437 h001 (-7*exp(1)-7)/(-2*exp(3)+10) 8626796956747596 m001 1/cosh(1)^2/exp(FransenRobinson)^2/sqrt(Pi) 8626796957620918 m001 LambertW(1)^exp(Pi)/(Zeta(5)^exp(Pi)) 8626796957991510 a001 4807525989*322^(1/2) 8626796974675621 m002 3+Pi^3/(4*Log[Pi])-Log[Pi] 8626797034991450 r002 32th iterates of z^2 + 8626797040785009 a007 Real Root Of 766*x^4-875*x^3+373*x^2+782*x-589 8626797087585591 r002 35th iterates of z^2 + 8626797104444428 r002 3th iterates of z^2 + 8626797110814656 a007 Real Root Of 872*x^4-892*x^3-168*x^2+447*x-545 8626797114066436 a007 Real Root Of 142*x^4-946*x^3+586*x^2-667*x+668 8626797115651870 a001 3/28657*2584^(47/55) 8626797127658198 h001 (7/10*exp(1)+9/10)/(10/11*exp(1)+7/9) 8626797189116606 b008 Tanh[2+CosIntegral[Pi/11]] 8626797196971829 m001 (Champernowne-ZetaQ(2))/(ln(5)-GAMMA(7/12)) 8626797234477426 a007 Real Root Of 980*x^4+401*x^3-493*x^2-309*x-185 8626797246350331 a007 Real Root Of -98*x^4-221*x^3-457*x^2+426*x+620 8626797252824797 a007 Real Root Of 738*x^4-384*x^3+816*x^2+979*x-418 8626797253473511 m001 (1-ln(Pi))/(-BesselK(1,1)+BesselI(0,2)) 8626797265355324 r005 Re(z^2+c),c=-2/3+85/141*I,n=5 8626797268052202 a003 sin(Pi*33/89)*sin(Pi*33/85) 8626797273413147 r005 Re(z^2+c),c=-23/18+91/137*I,n=2 8626797305146826 v002 sum(1/(3^n*(3*n^2-n+52)),n=1..infinity) 8626797318855255 m006 (3*Pi-1/5)/(1/5*exp(2*Pi)-1/6) 8626797326936917 r009 Im(z^3+c),c=-3/19+11/13*I,n=43 8626797338022262 a007 Real Root Of 157*x^4-716*x^3+432*x^2-810*x+750 8626797358072798 m001 ln(2)*GAMMA(13/24)/HeathBrownMoroz 8626797358402213 r005 Im(z^2+c),c=-2/3+1/128*I,n=23 8626797365322657 a007 Real Root Of 77*x^4+724*x^3+571*x^2+494*x+119 8626797371987178 m005 (1/2*Zeta(3)+2/11)/(1/11*3^(1/2)+3/4) 8626797392172459 r005 Im(z^2+c),c=31/78+22/63*I,n=23 8626797404848077 a007 Real Root Of 946*x^4-995*x^3-412*x^2+516*x-411 8626797453670214 a008 Real Root of x^4-4*x^2-128*x-108 8626797464015817 m001 Lehmer^2/ln(FibonacciFactorial)^2*GAMMA(23/24) 8626797509059423 a005 (1/sin(104/233*Pi))^151 8626797529627979 p004 log(17077/7207) 8626797571425670 r009 Re(z^3+c),c=-37/110+25/37*I,n=2 8626797579375854 a001 365435296162/521*843^(5/7) 8626797597181339 r005 Re(z^2+c),c=7/62+20/63*I,n=40 8626797605038668 m001 1/cos(1)*Catalan^2/exp(sin(Pi/5)) 8626797606414299 r009 Re(z^3+c),c=-5/56+51/52*I,n=13 8626797618235297 r009 Im(z^3+c),c=-19/122+51/53*I,n=62 8626797655881078 m005 (1/8+1/4*5^(1/2))/(8/11*5^(1/2)-5/6) 8626797665837082 m005 (1/2*Zeta(3)+5/11)/(1/6*Pi+7/10) 8626797675353344 a007 Real Root Of 688*x^4+144*x^3-390*x^2-993*x-855 8626797683933798 m001 (Shi(1)+BesselJ(1,1))/(GAMMA(23/24)+Rabbit) 8626797685840287 m002 Log[Pi]/Pi^12+Sech[Pi] 8626797690492717 m002 2+3/E^Pi-Sinh[Pi]/ProductLog[Pi] 8626797690603911 a007 Real Root Of -553*x^4+376*x^3-440*x^2-283*x+631 8626797691289951 r005 Re(z^2+c),c=41/126+13/24*I,n=34 8626797756113161 m005 (1/2*Zeta(3)+7/11)/(gamma+6/7) 8626797756383069 a003 cos(Pi*17/67)-sin(Pi*25/87) 8626797763940995 r005 Re(z^2+c),c=-69/82+1/7*I,n=47 8626797773874872 m001 (Si(Pi)+cos(1))/(ln(2+3^(1/2))+Backhouse) 8626797782936208 m001 1/GAMMA(5/6)^2*MadelungNaCl/exp(arctan(1/2)) 8626797811618731 r005 Re(z^2+c),c=11/74+23/57*I,n=46 8626797846024660 m001 ArtinRank2^2*Backhouse/ln(TreeGrowth2nd) 8626797861904514 a007 Real Root Of -736*x^4+572*x^3+637*x^2-817*x-404 8626797867343128 m002 -Pi^3-2/Log[Pi]+Pi^6/ProductLog[Pi] 8626797882075672 m001 (Pi-GAMMA(23/24))/(ArtinRank2-ZetaP(2)) 8626797895630547 r005 Re(z^2+c),c=-37/42+1/57*I,n=19 8626797900450812 a007 Real Root Of -105*x^4-897*x^3-4*x^2-661*x+254 8626797927393264 m005 (1/2*Zeta(3)+4/7)/(3/5*Zeta(3)-6/7) 8626797949870403 m001 (gamma-ln(5))/(-FeigenbaumAlpha+Mills) 8626797953722451 m001 1/GAMMA(5/24)^2/Khintchine^2/ln(Zeta(7)) 8626797970447823 p003 LerchPhi(1/5,3,12/53) 8626797973514490 r002 37th iterates of z^2 + 8626797980071626 a007 Real Root Of -871*x^4+838*x^3+176*x^2+849*x-919 8626797998355153 r005 Re(z^2+c),c=-5/6+28/185*I,n=49 8626798001123915 m001 exp(Si(Pi))^2/Artin*Kolakoski 8626798036360385 m001 GAMMA(19/24)*KhintchineLevy/ln(sinh(1)) 8626798053988211 m005 (23/28+1/4*5^(1/2))/(101/126+5/14*5^(1/2)) 8626798068916858 r002 4th iterates of z^2 + 8626798116024555 a007 Real Root Of 958*x^4+736*x^3+97*x^2+253*x+88 8626798143513464 r005 Im(z^2+c),c=9/32+21/37*I,n=16 8626798145381453 a007 Real Root Of -652*x^4+940*x^3-319*x^2-597*x+687 8626798177045284 r002 44th iterates of z^2 + 8626798190422106 r002 44th iterates of z^2 + 8626798273803860 m001 (Paris+RenyiParking)/(Conway-FellerTornier) 8626798279670926 m002 -2+1/(5*Pi)+ProductLog[Pi] 8626798281039142 m002 -5*E^Pi-Pi/2+Pi^3 8626798309033685 a007 Real Root Of 849*x^4-526*x^3+893*x^2+841*x-747 8626798311115982 a007 Real Root Of -464*x^4-565*x^3-602*x^2+184*x+501 8626798314750690 r005 Im(z^2+c),c=-57/106+2/13*I,n=48 8626798318134877 a003 sin(Pi*35/106)/sin(Pi*49/102) 8626798343262837 h002 exp(11^(5/7)-3^(10/9)) 8626798343262837 h007 exp(11^(5/7)-3^(10/9)) 8626798379483663 m002 (E^Pi*ProductLog[Pi])/3+4*Sech[Pi] 8626798393723083 m005 (1/2*2^(1/2)+4/7)/(3^(1/2)-1/4) 8626798421826597 a007 Real Root Of -169*x^4+244*x^2+699*x-691 8626798446472211 a001 225851433717/521*843^(11/14) 8626798447047636 a007 Real Root Of -916*x^4-307*x^3+692*x^2+912*x+582 8626798448304692 a007 Real Root Of 576*x^4+272*x^3+87*x^2-336*x-499 8626798456408286 a007 Real Root Of -553*x^4+954*x^3+704*x^2+596*x+909 8626798473215044 r001 53i'th iterates of 2*x^2-1 of 8626798500404913 a007 Real Root Of 473*x^4-653*x^3-815*x^2-552*x-42 8626798512687505 m001 (Rabbit+Trott2nd)/(ZetaP(4)+ZetaQ(3)) 8626798538658881 a007 Real Root Of -486*x^4+954*x^3-128*x^2+14*x+989 8626798539765813 m009 (2*Psi(1,2/3)+3/5)/(4*Catalan+1/2*Pi^2-4/5) 8626798545981537 m001 (Conway+Riemann2ndZero)/(2^(1/2)+GAMMA(19/24)) 8626798594134989 r005 Im(z^2+c),c=-25/29+3/50*I,n=11 8626798595340230 m005 (3/4*2^(1/2)-2/3)/(3/4*gamma-5) 8626798599623350 a007 Real Root Of -501*x^4+862*x^3+218*x^2-17*x+654 8626798659520539 a007 Real Root Of 760*x^4-743*x^3-512*x^2-196*x-686 8626798669141542 m002 -3/Pi^2-Pi^4+Pi^6-Tanh[Pi] 8626798670247519 r005 Re(z^2+c),c=-9/14+79/188*I,n=41 8626798731009261 r005 Im(z^2+c),c=-22/19+1/9*I,n=56 8626798740582929 r009 Re(z^3+c),c=-3/44+48/55*I,n=27 8626798746391849 m001 (HardHexagonsEntropy-ZetaP(4))/GAMMA(7/12) 8626798749499110 m003 -2-5*Cot[1/2+Sqrt[5]/2]+5/Log[1/2+Sqrt[5]/2] 8626798764955479 a007 Real Root Of -732*x^4-381*x^3+522*x^2+301*x+32 8626798785805974 s002 sum(A228540[n]/(pi^n),n=1..infinity) 8626798793892390 a003 sin(Pi*4/99)-sin(Pi*34/75) 8626798798143733 a001 14662949395604*6557470319842^(5/17) 8626798803249583 l006 ln(4138/9805) 8626798815934671 r002 53th iterates of z^2 + 8626798819812034 m005 (1/3*Pi+1/10)/(131/154+3/14*5^(1/2)) 8626798819919324 p003 LerchPhi(1/256,5,271/166) 8626798826753175 a007 Real Root Of 683*x^4-595*x^3+665*x^2+370*x-936 8626798839434403 a007 Real Root Of 163*x^4-911*x^3-699*x^2+430*x+216 8626798855716290 a007 Real Root Of -796*x^4-433*x^3-786*x^2-795*x+62 8626798866115133 r009 Re(z^3+c),c=-1/86+19/50*I,n=13 8626798872835076 m001 (Lehmer+Weierstrass)/(Psi(1,1/3)+BesselI(0,2)) 8626798878639515 a007 Real Root Of 602*x^4+815*x^3+372*x^2-976*x-929 8626798887726333 p004 log(28607/12073) 8626798906787335 a007 Real Root Of -707*x^4+53*x^3-353*x^2-5*x+684 8626798925433759 m001 Artin*Landau-DuboisRaymond 8626798937355726 r005 Im(z^2+c),c=-1/40+51/64*I,n=4 8626798957248286 r002 33th iterates of z^2 + 8626798963084397 s001 sum(exp(-2*Pi/3)^n*A255034[n],n=1..infinity) 8626798979941880 a007 Real Root Of -283*x^4-28*x^3-467*x^2-289*x+237 8626798987857714 r005 Re(z^2+c),c=33/86+11/56*I,n=22 8626798991962322 r009 Re(z^3+c),c=-19/118+41/59*I,n=58 8626799054994012 r005 Re(z^2+c),c=-101/126+9/61*I,n=19 8626799066037845 r009 Re(z^3+c),c=-1/110+19/35*I,n=3 8626799071853164 l006 ln(3797/8997) 8626799104929252 a007 Real Root Of -776*x^4-132*x^3-44*x^2-169*x+232 8626799113574180 m005 (1/2*Pi-3/4)/(2/9*5^(1/2)+5/11) 8626799126601712 a007 Real Root Of 286*x^4-695*x^3-70*x^2-346*x-851 8626799160269171 a007 Real Root Of -997*x^4+188*x^3+462*x^2-451*x-60 8626799188462899 m005 (1/2*Zeta(3)+1/8)/(1/10*Catalan+3/4) 8626799197022054 a007 Real Root Of 903*x^4-554*x^3+914*x^2+779*x-864 8626799212455864 m001 (3^(1/3)-FeigenbaumD)/(Paris+Totient) 8626799285150717 r005 Re(z^2+c),c=7/62+20/63*I,n=39 8626799291881385 a001 2/305*144^(54/55) 8626799292962814 a007 Real Root Of -879*x^4+413*x^3-597*x^2+594*x+56 8626799307896844 a007 Real Root Of 356*x^4-761*x^3+957*x^2+510*x-958 8626799312662044 a007 Real Root Of 250*x^4-426*x^3-535*x^2-989*x-867 8626799313568655 a001 139583862445/521*843^(6/7) 8626799322007809 a007 Real Root Of 826*x^4-492*x^3-118*x^2+382*x-356 8626799333052408 a007 Real Root Of -731*x^4+765*x^3-801*x^2-953*x+670 8626799333603696 a007 Real Root Of -583*x^4+998*x^3-415*x^2-965*x+440 8626799341666449 a003 cos(Pi*25/89)+cos(Pi*38/89) 8626799361077216 m001 ln(gamma)^ln(2)*Mills 8626799373444850 a007 Real Root Of -654*x^4-599*x^3-194*x^2+175*x+273 8626799393462420 l006 ln(3456/8189) 8626799398072232 r005 Re(z^2+c),c=-20/23+5/63*I,n=37 8626799409808613 a007 Real Root Of 224*x^4-317*x^3+211*x^2+498*x-55 8626799417899320 a001 105937/6*199^(36/49) 8626799455235225 m001 (ln(2+3^(1/2))+Rabbit)/(GAMMA(3/4)+Zeta(1/2)) 8626799520775607 m001 1/exp(Lehmer)^2*GolombDickman^2/sinh(1)^2 8626799544362258 r005 Re(z^2+c),c=-20/23+5/63*I,n=51 8626799552763384 m005 (1/2*exp(1)+6)/(2/9*Zeta(3)-2/11) 8626799557032115 q001 779/903 8626799557032115 r002 2th iterates of z^2 + 8626799557032115 r005 Im(z^2+c),c=-125/86+19/42*I,n=2 8626799563268935 r005 Re(z^2+c),c=29/102+43/64*I,n=2 8626799565569239 r005 Im(z^2+c),c=-9/52+6/53*I,n=13 8626799574061058 m001 (exp(1)-Paris)/GaussKuzminWirsing 8626799595465496 r005 Re(z^2+c),c=-20/23+5/63*I,n=53 8626799596929559 m001 (Salem+ZetaP(4))/(cos(1/5*Pi)+Cahen) 8626799603873424 m001 2*Pi/GAMMA(5/6)/(Riemann1stZero^Zeta(1,-1)) 8626799668823196 r005 Re(z^2+c),c=-31/40+6/55*I,n=51 8626799669582798 a007 Real Root Of 762*x^4-990*x^3-422*x^2+105*x-653 8626799712295877 h001 (9/10*exp(1)+2/3)/(5/11*exp(2)+1/4) 8626799736627671 a001 1364/3*433494437^(11/18) 8626799785484988 l006 ln(3115/7381) 8626799819236275 r005 Re(z^2+c),c=1/48+25/63*I,n=30 8626799836907591 r005 Re(z^2+c),c=-20/23+5/63*I,n=55 8626799884170713 a007 Real Root Of -889*x^4-940*x^3-316*x^2+816*x+828 8626799893769645 p003 LerchPhi(1/12,3,425/186) 8626799992853310 m001 (2^(1/3)-sin(1))/(-Ei(1,1)+CareFree) 8626799999751639 r005 Re(z^2+c),c=-7/10+61/210*I,n=43